
Cisco IOS NAT − Integration with MPLS VPN

Document ID: 112084

Contents

Introduction
 Benefits from NAT � MPLS Integration
 Design Considerations
 Deployment Scenarios
 Deployment Options and Configuration Details
 Egress PE NAT
 Ingress PE NAT
 Packets Arriving at Central PE after Ingress PE NAT
 Service Example
 Availability
 Conclusion
 Related Information

Introduction

Cisco IOS® Network Address Translation (NAT) software allows access to shared services from multiple
MPLS VPNs, even when the devices in the VPNs use IP addresses that overlap. Cisco IOS NAT is
VRF−aware and can be configured on provider edge routers within the MPLS network.

Note: MPLS in IOS is supported only with legacy NAT. At this time, there is no support in Cisco IOS for
NAT NVI with MPLS.

The deployment of MPLS VPNs is projected to increase rapidly over the next several years. The benefits of a
common network infrastructure that permits rapid expansion and flexible connectivity options will
undoubtedly drive further growth in services that can be offered to the Internetwork community.

However, barriers to growth still remain. IPv6 and its promise of an IP address space that exceeds the
connectivity needs for the foreseeable future is still in the early phases of deployment. Existing networks
commonly use private IP addressing schemes as defined within RFC 1918 . Network address translation is
often used to interconnect networks when address spaces overlap or duplication exists.

Service providers and enterprises that have network application services they want to offer or share with
customers and partners will want to minimize any connectivity burden placed on the user of the service. It is
desirable, even mandatory, to extend the offering to as many potential users as needed to achieve the desired
goals or return. The IP addressing scheme in use must not be a barrier that excludes potential users.

By deploying Cisco IOS NAT within the common MPLS VPN infrastructure, communications service
providers can relieve some of the connectivity burden on customers and accelerate their ability to link more
shared application services to more consumers of those services.

Benefits from NAT � MPLS Integration

NAT integration with MPLS has benefits for both service providers and their enterprise customers. It offers
service providers more options to deploy shared services and to provide access to those services. Additional
service offerings can be a differentiator over competitors.

For Service Provider
For VPN

More service offerings
Reduced costs

Increased access options
Simpler access

Increased revenue
Addressing flexibility

Enterprise customers seeking to outsource some of their current workload can also benefit from wider
offerings by service providers. Shifting the burden of performing any necessary address translation to the
service provider network relieves them of a complicated administrative task. Customers may continue to use
private addressing, yet maintain access to shared services and the Internet. Consolidating the NAT function
within the service provider network may also lower the total cost to enterprise customers since the customer
edge routers do not have to perform the NAT function.

Design Considerations

When considering designs that will invoke NAT within the MPLS network, the first step is to determine the
service needs from an application point of view. You will need to consider the protocols used and any special
client/server communication imposed by the application. Make sure that the necessary support for the
protocols employed are supported and handled by Cisco IOS NAT. A list of supported protocols is provided
in the document Cisco IOS NAT Application Layer Gateways.

Next, it will be necessary to determine the expected usage of the shared service and the anticipated traffic rate
in packets−per−second. NAT is a router CPU−intensive function. Therefore, performance requirements will
be a factor in selecting a particular deployment option and to determine the number of NAT devices involved.

Also, consider any security issues and precautions that should be taken. Although MPLS VPNs, by definition,
are private and effectively separate traffic, the shared service network is generally common among many
VPNs.

Deployment Scenarios

There are two options for NAT deployment within the MPLS provider edge:

Centralized with egress NAT PEs•
Distributed with ingress NAT PEs•

Some advantages to configuring the NAT function at the egress point of the MPLS network nearest to the
shared service network include:

A centralized configuration that promotes simpler service provisioning•
Simplified troubleshooting•
Enhanced operational scalability•
Decreased IP address allocation requirements•

However, the advantages are offset by a reduction in scalability and performance. This is the main tradeoff
that must be considered. Of course, the NAT function can also be performed within the customer networks if
it is determined that integration of this feature with an MPLS network is not desirable.

Ingress PE NAT

NAT can be configured at the MPLS network ingress PE router as shown in Figure 1. With this design,
scalability is maintained to a large extent while performance is optimized by distributing the NAT function

over many edge devices. Each NAT PE handles traffic for sites locally connected to that PE. NAT rules and
access control lists or route maps control which packets require translation.

Figure 1: Ingress PE NAT

There is a restriction that prevents NAT between two VRFs while also providing NAT to a shared service as
shown in Figure 2. This is due to the requirement to designate interfaces as NAT �inside� and �outside�
interfaces. Support for connections between VRFs in a single PE is planned for a future Cisco IOS release.

Figure 2: Business to Business

Egress PE NAT

NAT can be configured at the MPLS network egress PE router as shown in Figure 3. With this design,
scalability is reduced to some degree since the central PE must maintain routes for all customer networks that
access the shared service. The application performance requirements must also be considered so that the
traffic does not overburden the router that must translate the IP addresses of the packets. Because NAT occurs

centrally for all customers using this path, IP address pools can be shared; thus, the total number of subnets
required is reduced.

Figure 3: Egress PE NAT

Multiple routers could be deployed to increase the scalability of the egress PE NAT design as shown in Figure
4. In this scenario, customer VPNs could be �provisioned� on a specific NAT router. Network address
translation would occur for the aggregate traffic to and from the shared service for that set of VPNs. For
example, traffic from the VPNs for Customer A and B could use NAT−PE1, while traffic to and from the
VPN for customer C uses NAT−PE2. Each NAT PE would carry traffic only for the specific VPNs defined
and only maintain routes back to the sites in those VPNs. Separate NAT address pools could be defined within
each of the NAT PE routers so that packets are routed from the shared service network to the proper NAT PE
for translation and routing back to the customer VPN.

Figure 4: Multiple Egress PE NAT

The centralized design does impose a restriction on how the shared service network must be configured.
Specifically, use of import/export of MPLS VPN routes between a shared service VPN and customer VPNs is
not possible. This is due to the nature of MPLS operation as specified by RFC 2547 . When routes are
imported and exported using the extended communities and route descriptors, NAT cannot determine the
source VPN from the packet coming into the central NAT PE. The usual case is to make the shared service
network a generic interface rather than a VRF interface. A route to the shared service network is then added in
the central NAT PE for each VRF table associated with a customer VPN needing access to the shared service
as part of the provisioning process. This is described in more detail later.

Deployment Options and Configuration Details

This section includes some details related to each of the deployment options. The examples are all taken from
the network shown in Figure 5. Refer to this diagram for the rest of this section.

Note: In the network used to illustrate the operation of VRF NAT for this paper, only PE routers are included.
There are no core �P� routers. However, the essential mechanisms can still be seen.

Figure 5: VRF NAT Configuration Example

Egress PE NAT

In this example, the provider edge routers marked gila and dragon are configured as simple PE routers. The
central PE near the shared service LAN (iguana) is configured for NAT. A single NAT pool is shared by each
customer VPN that needs access to the shared service. The NAT is performed only on packets destined for the
shared service host at 88.1.88.8.

Egress PE NAT Data Forwarding

With MPLS, each packet enters the network at an ingress PE and exits the MPLS network at an egress PE.
The path of label switching routers traversed from ingress to egress is known as the label switched path (LSP).
The LSP is unidirectional. A different LSP is used for return traffic.

When using egress PE NAT, a forwarding equivalence class (FEC) is effectively defined for all traffic from
users of the shared service. In other words, all packets destined for the shared service LAN are members of a
common FEC. A packet is assigned to a particular FEC just once at the ingress edge of the network and
follows the LSP to the egress PE. The FEC is designated in the data packet by adding a particular label.

Packet Flow to Shared Service from VPN

In order for devices in multiple VPNs that have overlapping address schemes to access a shared service host,
NAT is required. When NAT is configured at the egress PE, the network address translation table entries will
include a VRF identifier to differentiate duplicate addresses and ensure proper routing.

Figure 6: Packets Transmitted to Egress PE NAT

Figure 6 illustrates packets destined for a shared service host from two customer VPNs that have duplicate IP
addressing schemes. The figure shows a packet originating at Customer A with a source address of 172.31.1.1
destined for a shared server at 88.1.88.8. Another packet from Customer B with the same source IP address is
also sent to the same shared server. When the packets reach the PE router, a layer 3 lookup is done for the
destination IP network in the forwarding information base (FIB).

The FIB entry tells the PE router to forward the traffic to the egress PE using a label stack. The bottom label
in the stack is assigned by the destination PE router, in this case router iguana.

iguana#
show ip cef vrf custA 88.1.88.8

88.1.88.8/32, version 47, epoch 0, cached adjacency 88.1.3.2
0 packets, 0 bytes
 tag information set
 local tag: VPN−route−head
 fast tag rewrite with Et1/0, 88.1.3.2, tags imposed: {24}
 via 88.1.11.5, 0 dependencies, recursive

 next hop 88.1.3.2, Ethernet1/0 via 88.1.11.5/32
 valid cached adjacency
 tag rewrite with Et1/0, 88.1.3.2, tags imposed: {24}

iguana# show ip cef vrf custB 88.1.88.8
88.1.88.8/32, version 77, epoch 0, cached adjacency 88.1.3.2
0 packets, 0 bytes
 tag information set
 local tag: VPN−route−head
 fast tag rewrite with Et1/0, 88.1.3.2, tags imposed: {28}
 via 88.1.11.5, 0 dependencies, recursive
 next hop 88.1.3.2, Ethernet1/0 via 88.1.11.5/32
 valid cached adjacency
 tag rewrite with Et1/0, 88.1.3.2, tags imposed: {28}
iguana#

We can see from the display that packets from VRF custA will have a tag value of 24 (0x18) and packets from
VRF custB will have a tag value of 28 (0x1C).

In this case, because there are no �P� routers in our network, there is no additional tag imposed. Had there
been core routers, an outside label would have been imposed and the normal process of label swapping would
have taken place within the core network until the packet reached the egress PE.

Since the gila router is directly connected to the egress PE, we see that the tag is popped before it is ever
added:

gila#
show tag−switching forwarding−table

Local Outgoing Prefix Bytes tag Outgoing Next Hop
tag tag or VC or Tunnel Id switched interface
16 Pop tag 88.1.1.0/24 0 Et1/1 88.1.2.2
 Pop tag 88.1.1.0/24 0 Et1/0 88.1.3.2
17 Pop tag 88.1.4.0/24 0 Et1/1 88.1.2.2
18 Pop tag 88.1.10.0/24 0 Et1/1 88.1.2.2
19 Pop tag 88.1.11.1/32 0 Et1/1 88.1.2.2
20 Pop tag 88.1.5.0/24 0 Et1/0 88.1.3.2
21 19 88.1.11.10/32 0 Et1/1 88.1.2.2
 22 88.1.11.10/32 0 Et1/0 88.1.3.2
22 20 172.18.60.176/32 0 Et1/1 88.1.2.2
 23 172.18.60.176/32 0 Et1/0 88.1.3.2
23 Untagged 172.31.1.0/24[V] 4980 Fa0/0 10.88.162.6
24 Aggregate 10.88.162.4/30[V] 1920
25 Aggregate 10.88.162.8/30[V] 137104
26 Untagged 172.31.1.0/24[V] 570 Et1/2 10.88.162.14
27 Aggregate 10.88.162.12/30[V] \
 273480
30 Pop tag 88.1.11.5/32 0 Et1/0 88.1.3.2
31 Pop tag 88.1.88.0/24 0 Et1/0 88.1.3.2
32 16 88.1.97.0/24 0 Et1/0 88.1.3.2
33 Pop tag 88.1.99.0/24 0 Et1/0 88.1.3.2
gila#

gila# show tag−switching forwarding−table 88.1.88.0 detail
Local Outgoing Prefix Bytes tag Outgoing Next Hop
tag tag or VC or Tunnel Id switched interface
31 Pop tag 88.1.88.0/24 0 Et1/0 88.1.3.2
 MAC/Encaps=14/14, MRU=1504, Tag Stack{}
 005054D92A250090BF9C6C1C8847
 No output feature configured
 Per−packet load−sharing
gila#

The next displays depict echo packets as received by the egress PE NAT router (at interface E1/0/5 on
iguana).

From CustA:
DLC: −−−−− DLC Header −−−−−
 DLC:
 DLC: Frame 1 arrived at 16:21:34.8415; frame size is 118 (0076 hex)
 bytes.
 DLC: Destination = Station 005054D92A25
 DLC: Source = Station 0090BF9C6C1C
 DLC: Ethertype = 8847 (MPLS)
 DLC:
 MPLS: −−−−− MPLS Label Stack −−−−−
 MPLS:

MPLS: Label Value = 00018
 MPLS: Reserved For Experimental Use = 0
 MPLS: Stack Value = 1 (Bottom of Stack)
 MPLS: Time to Live = 254 (hops)
 MPLS:
 IP: −−−−− IP Header −−−−−
 IP:
 IP: Version = 4, header length = 20 bytes
 IP: Type of service = 00
 IP: 000. = routine
 IP: ...0 = normal delay
 IP: 0... = normal throughput
 IP: 0.. = normal reliability
 IP: 0. = ECT bit − transport protocol will ignore the CE
 bit
 IP: 0 = CE bit − no congestion
 IP: Total length = 100 bytes
 IP: Identification = 175
 IP: Flags = 0X
 IP: .0.. = may fragment
 IP: ..0. = last fragment
 IP: Fragment offset = 0 bytes
 IP: Time to live = 254 seconds/hops
 IP: Protocol = 1 (ICMP)
 IP: Header checksum = 5EC0 (correct)

IP: Source address = [172.31.1.1]
 IP: Destination address = [88.1.88.8]
 IP: No options
 IP:
 ICMP: −−−−− ICMP header −−−−−
 ICMP:
 ICMP: Type = 8 (Echo)
 ICMP: Code = 0
 ICMP: Checksum = 4AF1 (correct)
 ICMP: Identifier = 4713
 ICMP: Sequence number = 6957
 ICMP: [72 bytes of data]
 ICMP:
 ICMP: [Normal end of "ICMP header".]

From CustB:
DLC: −−−−− DLC Header −−−−−
 DLC:
 DLC: Frame 11 arrived at 16:21:37.1558; frame size is 118 (0076 hex)
 bytes.
 DLC: Destination = Station 005054D92A25
 DLC: Source = Station 0090BF9C6C1C
 DLC: Ethertype = 8847 (MPLS)
 DLC:
 MPLS: −−−−− MPLS Label Stack −−−−−
 MPLS:

MPLS: Label Value = 0001C
 MPLS: Reserved For Experimental Use = 0
 MPLS: Stack Value = 1 (Bottom of Stack)
 MPLS: Time to Live = 254 (hops)
 MPLS:
 IP: −−−−− IP Header −−−−−
 IP:
 IP: Version = 4, header length = 20 bytes
 IP: Type of service = 00
 IP: 000. = routine
 IP: ...0 = normal delay
 IP: 0... = normal throughput
 IP: 0.. = normal reliability
 IP: 0. = ECT bit − transport protocol will ignore the CE
 bit
 IP: 0 = CE bit − no congestion
 IP: Total length = 100 bytes
 IP: Identification = 165
 IP: Flags = 0X
 IP: .0.. = may fragment
 IP: ..0. = last fragment
 IP: Fragment offset = 0 bytes
 IP: Time to live = 254 seconds/hops
 IP: Protocol = 1 (ICMP)
 IP: Header checksum = 5ECA (correct)

IP: Source address = [172.31.1.1]
 IP: Destination address = [88.1.88.8]
 IP: No options
 IP:
 ICMP: −−−−− ICMP header −−−−−
 ICMP:
 ICMP: Type = 8 (Echo)
 ICMP: Code = 0
 ICMP: Checksum = AD5E (correct)
 ICMP: Identifier = 3365
 ICMP: Sequence number = 7935
 ICMP: [72 bytes of data]
 ICMP:
 ICMP: [Normal end of "ICMP header".]

These pings result in the following entries being created in the NAT table in the egress PE router iguana. The
specific entries created for the packets shown above can be matched by their ICMP identifier.

iguana#
show ip nat translations

Pro Inside global Inside local Outside local Outside global
icmp 192.168.1.3:3365 172.31.1.1:3365 88.1.88.8:3365 88.1.88.8:3365
icmp 192.168.1.3:3366 172.31.1.1:3366 88.1.88.8:3366 88.1.88.8:3366
icmp 192.168.1.3:3367 172.31.1.1:3367 88.1.88.8:3367 88.1.88.8:3367
icmp 192.168.1.3:3368 172.31.1.1:3368 88.1.88.8:3368 88.1.88.8:3368
icmp 192.168.1.3:3369 172.31.1.1:3369 88.1.88.8:3369 88.1.88.8:3369
icmp 192.168.1.1:4713 172.31.1.1:4713 88.1.88.8:4713 88.1.88.8:4713
icmp 192.168.1.1:4714 172.31.1.1:4714 88.1.88.8:4714 88.1.88.8:4714
icmp 192.168.1.1:4715 172.31.1.1:4715 88.1.88.8:4715 88.1.88.8:4715
icmp 192.168.1.1:4716 172.31.1.1:4716 88.1.88.8:4716 88.1.88.8:4716
icmp 192.168.1.1:4717 172.31.1.1:4717 88.1.88.8:4717 88.1.88.8:4717

iguana#
show ip nat translations verbose

Pro Inside global Inside local Outside local Outside global
icmp 192.168.1.3:3365 172.31.1.1:3365 88.1.88.8:3365 88.1.88.8:3365
 create 00:00:34, use 00:00:34, left 00:00:25, Map−Id(In): 2,

 flags:
extended, use_count: 0, VRF : custB
icmp 192.168.1.3:3366 172.31.1.1:3366 88.1.88.8:3366 88.1.88.8:3366
 create 00:00:34, use 00:00:34, left 00:00:25, Map−Id(In): 2,
 flags:
extended, use_count: 0, VRF : custB
icmp 192.168.1.3:3367 172.31.1.1:3367 88.1.88.8:3367 88.1.88.8:3367
 create 00:00:34, use 00:00:34, left 00:00:25, Map−Id(In): 2,
 flags:
extended, use_count: 0, VRF : custB
icmp 192.168.1.3:3368 172.31.1.1:3368 88.1.88.8:3368 88.1.88.8:3368
 create 00:00:34, use 00:00:34, left 00:00:25, Map−Id(In): 2,
 flags:
extended, use_count: 0, VRF : custB
icmp 192.168.1.3:3369 172.31.1.1:3369 88.1.88.8:3369 88.1.88.8:3369
 create 00:00:34, use 00:00:34, left 00:00:25, Map−Id(In): 2,
 flags:
extended, use_count: 0, VRF : custB
icmp 192.168.1.1:4713 172.31.1.1:4713 88.1.88.8:4713 88.1.88.8:4713
 create 00:00:37, use 00:00:37, left 00:00:22, Map−Id(In): 1,
Pro Inside global Inside local Outside local Outside global
 flags:
extended, use_count: 0, VRF : custA
icmp 192.168.1.1:4714 172.31.1.1:4714 88.1.88.8:4714 88.1.88.8:4714
 create 00:00:37, use 00:00:37, left 00:00:22, Map−Id(In): 1,
 flags:
extended, use_count: 0, VRF : custA
icmp 192.168.1.1:4715 172.31.1.1:4715 88.1.88.8:4715 88.1.88.8:4715
 create 00:00:37, use 00:00:37, left 00:00:22, Map−Id(In): 1,
 flags:
extended, use_count: 0, VRF : custA
icmp 192.168.1.1:4716 172.31.1.1:4716 88.1.88.8:4716 88.1.88.8:4716
 create 00:00:37, use 00:00:37, left 00:00:22, Map−Id(In): 1,
 flags:
extended, use_count: 0, VRF : custA
icmp 192.168.1.1:4717 172.31.1.1:4717 88.1.88.8:4717 88.1.88.8:4717
 create 00:00:37, use 00:00:37, left 00:00:22, Map−Id(In): 1,
 flags:
extended, use_count: 0, VRF : custA
iguana#

Packet Flow from Shared Service Back to Origin VPN

As packets flow back to devices that have accessed the shared service host, the NAT table is examined prior
to routing (packets going from NAT �outside� interface to �inside� interface). Because each unique entry
includes the corresponding VRF identifier, the packet can be translated and routed appropriately.

Figure 7: Packets Transmitted Back to Shared Service User

As shown in Figure 7, return traffic is first examined by NAT to find a matching translation entry. For
example, a packet is sent to destination 192.168.1.1. The NAT table is searched. When the match is found, the
appropriate translation is done to the �inside local� address (172.31.1.1) and then an adjacency lookup is
performed using the associated VRF ID from the NAT entry.

iguana# show ip cef vrf custA 172.31.1.0
172.31.1.0/24, version 12, epoch 0, cached adjacency 88.1.3.1
0 packets, 0 bytes
 tag information set
 local tag: VPN−route−head
 fast tag rewrite with Et1/0/5, 88.1.3.1, tags imposed: {23}
 via 88.1.11.9, 0 dependencies, recursive
 next hop 88.1.3.1, Ethernet1/0/5 via 88.1.11.9/32
 valid cached adjacency
 tag rewrite with Et1/0/5, 88.1.3.1, tags imposed: {23}

iguana# show ip cef vrf custB 172.31.1.0
172.31.1.0/24, version 18, epoch 0, cached adjacency 88.1.3.1
0 packets, 0 bytes
 tag information set
 local tag: VPN−route−head
 fast tag rewrite with Et1/0/5, 88.1.3.1, tags imposed: {26}
 via 88.1.11.9, 0 dependencies, recursive
 next hop 88.1.3.1, Ethernet1/0/5 via 88.1.11.9/32
 valid cached adjacency
 tag rewrite with Et1/0/5, 88.1.3.1, tags imposed: {26}
iguana#

Label 23 (0x17) is used for traffic destined for 172.31.1.0/24 in VRF custA and label 26 (0x1A) is used for
packets destined for 172.31.1.0/24 in VRF custB.

This is seen in the echo reply packets sent from router iguana:

To custA:
 DLC: −−−−− DLC Header −−−−−
 DLC:
 DLC: Frame 2 arrived at 16:21:34.8436; frame size is 118 (0076 hex)
 bytes.
 DLC: Destination = Station 0090BF9C6C1C
 DLC: Source = Station 005054D92A25
 DLC: Ethertype = 8847 (MPLS)

 DLC:
 MPLS: −−−−− MPLS Label Stack −−−−−
 MPLS:

MPLS: Label Value = 00017
 MPLS: Reserved For Experimental Use = 0
 MPLS: Stack Value = 1 (Bottom of Stack)
 MPLS: Time to Live = 254 (hops)
 MPLS:
 IP: −−−−− IP Header −−−−−
 IP:
 IP: Version = 4, header length = 20 bytes
 IP: Type of service = 00
 IP: 000. = routine
 IP: ...0 = normal delay
 IP: 0... = normal throughput
 IP: 0.. = normal reliability
 IP: 0. = ECT bit − transport protocol will ignore the CE
 bit
 IP: 0 = CE bit − no congestion
 IP: Total length = 100 bytes
 IP: Identification = 56893
 IP: Flags = 4X
 IP: .1.. = don't fragment
 IP: ..0. = last fragment
 IP: Fragment offset = 0 bytes
 IP: Time to live = 254 seconds/hops
 IP: Protocol = 1 (ICMP)
 IP: Header checksum = 4131 (correct)
 IP: Source address = [88.1.88.8]

IP: Destination address = [172.31.1.1]
 IP: No options
 IP:
 ICMP: −−−−− ICMP header −−−−−
 ICMP:
 ICMP: Type = 0 (Echo reply)
 ICMP: Code = 0
 ICMP: Checksum = 52F1 (correct)
 ICMP: Identifier = 4713
 ICMP: Sequence number = 6957
 ICMP: [72 bytes of data]
 ICMP:
 ICMP: [Normal end of "ICMP header".]

When the packet reaches the destination PE router, the label is used to determine the appropriate VRF and
interface to send the packet over.

gila#
show mpls forwarding−table

Local Outgoing Prefix Bytes tag Outgoing Next Hop
tag tag or VC or Tunnel Id switched interface
16 Pop tag 88.1.1.0/24 0 Et1/1 88.1.2.2
 Pop tag 88.1.1.0/24 0 Et1/0 88.1.3.2
17 Pop tag 88.1.4.0/24 0 Et1/1 88.1.2.2
18 Pop tag 88.1.10.0/24 0 Et1/1 88.1.2.2
19 Pop tag 88.1.11.1/32 0 Et1/1 88.1.2.2
20 Pop tag 88.1.5.0/24 0 Et1/0 88.1.3.2
21 19 88.1.11.10/32 0 Et1/1 88.1.2.2
 22 88.1.11.10/32 0 Et1/0 88.1.3.2
22 20 172.18.60.176/32 0 Et1/1 88.1.2.2
 23 172.18.60.176/32 0 Et1/0 88.1.3.2
23 Untagged 172.31.1.0/24[V] 6306 Fa0/0 10.88.162.6
24 Aggregate 10.88.162.4/30[V] 1920
25 Aggregate 10.88.162.8/30[V] 487120
26 Untagged 172.31.1.0/24[V] 1896 Et1/2 10.88.162.14

27 Aggregate 10.88.162.12/30[V] \
 972200
30 Pop tag 88.1.11.5/32 0 Et1/0 88.1.3.2
31 Pop tag 88.1.88.0/24 0 Et1/0 88.1.3.2
32 16 88.1.97.0/24 0 Et1/0 88.1.3.2
33 Pop tag 88.1.99.0/24 0 Et1/0 88.1.3.2
gila#

Configurations

Some extraneous information has been removed from the configurations for brevity.

IGUANA:
!
ip vrf custA
 rd 65002:100
 route−target export 65002:100
 route−target import 65002:100
!
ip vrf custB
 rd 65002:200
 route−target export 65002:200
 route−target import 65002:200
!
ip cef
mpls label protocol ldp
tag−switching tdp router−id Loopback0
!
interface Loopback0
 ip address 88.1.11.5 255.255.255.255
 no ip route−cache
 no ip mroute−cache
!
interface Loopback11
 ip vrf forwarding custA
 ip address 172.16.1.1 255.255.255.255
!
interface Ethernet1/0/0
 ip vrf forwarding custB
 ip address 10.88.163.5 255.255.255.252
 no ip route−cache
 no ip mroute−cache
!
interface Ethernet1/0/4
 ip address 88.1.1.1 255.255.255.0
 ip nat inside
 no ip mroute−cache
 tag−switching ip
!
interface Ethernet1/0/5
 ip address 88.1.3.2 255.255.255.0
 ip nat inside
 no ip mroute−cache
 tag−switching ip
!
!
interface FastEthernet1/1/0
 ip address 88.1.88.1 255.255.255.0
 ip nat outside
 full−duplex
!
interface FastEthernet5/0/0
 ip address 88.1.99.1 255.255.255.0
 speed 100
 full−duplex

!
router ospf 881
 log−adjacency−changes
 redistribute static subnets
 network 88.1.0.0 0.0.255.255 area 0
!
router bgp 65002
 no synchronization
 no bgp default ipv4−unicast
 bgp log−neighbor−changes
 neighbor 88.1.11.1 remote−as 65002
 neighbor 88.1.11.1 update−source Loopback0
 neighbor 88.1.11.9 remote−as 65002
 neighbor 88.1.11.9 update−source Loopback0
 neighbor 88.1.11.10 remote−as 65002
 neighbor 88.1.11.10 update−source Loopback0
 no auto−summary
 !
 address−family ipv4 multicast
 no auto−summary
 no synchronization
 exit−address−family
 !
 address−family vpnv4
 neighbor 88.1.11.1 activate
 neighbor 88.1.11.1 send−community extended
 neighbor 88.1.11.9 activate
 neighbor 88.1.11.9 send−community extended
 no auto−summary
 exit−address−family
 !
 address−family ipv4
 neighbor 88.1.11.1 activate
 neighbor 88.1.11.9 activate
 neighbor 88.1.11.10 activate
 no auto−summary
 no synchronization
 exit−address−family
 !
 address−family ipv4 vrf custB
 redistribute connected
 redistribute static
 no auto−summary
 no synchronization
 exit−address−family
 !
 address−family ipv4 vrf custA
 redistribute static
 no auto−summary
 no synchronization
 exit−address−family
!
ip nat pool SSPOOL1 192.168.1.1 192.168.1.254 prefix−length 24
ip nat inside source list 181 pool SSPOOL1 vrf custA overload
ip nat inside source list 181 pool SSPOOL1 vrf custB overload
ip classless
ip route 88.1.88.0 255.255.255.0 FastEthernet1/1/0
ip route 88.1.97.0 255.255.255.0 FastEthernet5/0/0 88.1.99.2
ip route 88.1.99.0 255.255.255.0 FastEthernet5/0/0 88.1.99.2
ip route 192.168.1.0 255.255.255.0 Null0
ip route vrf custA 88.1.88.8 255.255.255.255 FastEthernet1/1/0 88.1.88.8 global
ip route vrf custB 10.88.208.0 255.255.240.0 10.88.163.6
ip route vrf custB 64.102.0.0 255.255.0.0 10.88.163.6
ip route vrf custB 88.1.88.8 255.255.255.255 FastEthernet1/1/0 88.1.88.8 global
ip route vrf custB 128.0.0.0 255.0.0.0 10.88.163.6
no ip http server

!
access−list 181 permit ip any host 88.1.88.8
!

GILA:

!
ip vrf custA
 rd 65002:100
 route−target export 65002:100
 route−target import 65002:100
!
ip vrf custB
 rd 65002:200
 route−target export 65002:200
 route−target import 65002:200
!
ip cef
mpls label protocol ldp
tag−switching tdp router−id Loopback0
!
interface Loopback0
 ip address 88.1.11.9 255.255.255.255
!
interface FastEthernet0/0
 ip vrf forwarding custA
 ip address 10.88.162.5 255.255.255.252
 duplex full
!
interface Ethernet1/0
 ip address 88.1.3.1 255.255.255.0
 no ip mroute−cache
 duplex half
 tag−switching ip
!
interface Ethernet1/1
 ip address 88.1.2.1 255.255.255.0
 no ip mroute−cache
 duplex half
 tag−switching ip
!
interface Ethernet1/2
 ip vrf forwarding custB
 ip address 10.88.162.13 255.255.255.252
 ip ospf cost 100
 duplex half
!
interface FastEthernet2/0
 ip vrf forwarding custA
 ip address 10.88.162.9 255.255.255.252
 duplex full
!
router ospf 881
 log−adjacency−changes
 redistribute static subnets
 network 88.1.0.0 0.0.255.255 area 0
 default−metric 30
!
router bgp 65002
 no synchronization
 no bgp default ipv4−unicast
 bgp log−neighbor−changes
 neighbor 88.1.11.1 remote−as 65002
 neighbor 88.1.11.1 update−source Loopback0
 neighbor 88.1.11.1 activate
 neighbor 88.1.11.5 remote−as 65002

 neighbor 88.1.11.5 update−source Loopback0
 neighbor 88.1.11.5 activate
 no auto−summary
 !
 address−family ipv4 vrf custB
 redistribute connected
 redistribute static
 no auto−summary
 no synchronization
 exit−address−family
 !
 address−family ipv4 vrf custA
 redistribute connected
 redistribute static
 no auto−summary
 no synchronization
 exit−address−family
 !
 address−family vpnv4
 neighbor 88.1.11.1 activate
 neighbor 88.1.11.1 send−community extended
 neighbor 88.1.11.5 activate
 neighbor 88.1.11.5 send−community extended
 no auto−summary
 exit−address−family
!
ip classless
ip route vrf custA 172.31.1.0 255.255.255.0 FastEthernet0/0 10.88.162.6
ip route vrf custB 172.31.1.0 255.255.255.0 Ethernet1/2 10.88.162.14
!

Router dragon would have a configuration very similar to gila.

Import/Export of Route Targets Not Permitted

When the shared service network is configured as a VRF instance itself, central NAT at the egress PE is not
possible. This is because the incoming packets cannot be distinguished and only one route back to the
originating subnet is present at the egress PE NAT.

Note: The displays that follow are meant to illustrate the result of an invalid configuration.

The sample network was configured so that the shared service network was defined as a VRF instance (VRF
name = sserver). Now, a display of the CEF table on the ingress PE shows this:

gila# show ip cef vrf custA 88.1.88.0
88.1.88.0/24, version 45, epoch 0, cached adjacency 88.1.3.2
0 packets, 0 bytes
 tag information set
 local tag: VPN−route−head
 fast tag rewrite with Et1/0, 88.1.3.2, tags imposed: {24}
 via 88.1.11.5, 0 dependencies, recursive
 next hop 88.1.3.2, Ethernet1/0 via 88.1.11.5/32
 valid cached adjacency
 tag rewrite with Et1/0, 88.1.3.2, tags imposed: {24}
gila#

gila# show ip cef vrf custB 88.1.88.0
88.1.88.0/24, version 71, epoch 0, cached adjacency 88.1.3.2
0 packets, 0 bytes
 tag information set
 local tag: VPN−route−head
 fast tag rewrite with Et1/0, 88.1.3.2, tags imposed: {24}
 via 88.1.11.5, 0 dependencies, recursive

 next hop 88.1.3.2, Ethernet1/0 via 88.1.11.5/32
 valid cached adjacency
 tag rewrite with Et1/0, 88.1.3.2, tags imposed: {24}
gila#

iguana#
show tag−switching forwarding vrftags 24
Local Outgoing Prefix Bytes tag Outgoing Next Hop
tag tag or VC or Tunnel Id switched interface
24 Aggregate 88.1.88.0/24[V] 10988
iguana#

Note: Notice how the tag value 24 is imposed for both VRF custA and VRF custB.

This display shows the routing table for the shared service VRF instance �sserver�:

iguana#
show ip route vrf sserver 172.31.1.1
Routing entry for 172.31.1.0/24
 Known via "bgp 65002", distance 200, metric 0, type internal
 Last update from 88.1.11.9 1d01h ago
 Routing Descriptor Blocks:
 * 88.1.11.9 (Default−IP−Routing−Table), from 88.1.11.9, 1d01h ago
 Route metric is 0, traffic share count is 1
 AS Hops 0

Note: Only one route is present for the destination network from the egress PE router�s (iguana) perspective.

Therefore, traffic from multiple customer VPNs could not be distinguished and return traffic could not reach
the appropriate VPN. In the case where the shared service must be defined as a VRF instance, the NAT
function must be moved to the ingress PE.

Ingress PE NAT

In this example, the provider edge routers marked gila and dragon are configured for NAT. A NAT pool is
defined for each attached customer VPN that needs access to the shared service. The appropriate pool is used
for each of the customer network addresses that are NATed. The NAT is performed only on packets destined
for the shared service host at 88.1.88.8.

ip nat pool SSPOOL1 192.168.1.1 192.168.1.254 prefix−length 24
ip nat pool SSPOOL2 192.168.2.1 192.168.2.254 prefix−length 24
ip nat inside source list 181 pool SSPOOL1 vrf custA overload
ip nat inside source list 181 pool SSPOOL2 vrf custB overload

Note: In this scenario, shared pools are not supported. If the shared service LAN (at the egress PE) is
connected through a generic interface, then the NAT pool may be shared.

A ping sourced from a duplicate address (172.31.1.1) within each of the networks attached to neuse and
capefear8 results in these NAT entries:

From gila:

gila#
show ip nat translations

Pro Inside global Inside local Outside local Outside global
icmp 192.168.1.1:2139 172.31.1.1:2139 88.1.88.8:2139 88.1.88.8:2139
icmp 192.168.1.1:2140 172.31.1.1:2140 88.1.88.8:2140 88.1.88.8:2140
icmp 192.168.1.1:2141 172.31.1.1:2141 88.1.88.8:2141 88.1.88.8:2141
icmp 192.168.1.1:2142 172.31.1.1:2142 88.1.88.8:2142 88.1.88.8:2142

icmp 192.168.1.1:2143 172.31.1.1:2143 88.1.88.8:2143 88.1.88.8:2143
icmp 192.168.2.2:676 172.31.1.1:676 88.1.88.8:676 88.1.88.8:676
icmp 192.168.2.2:677 172.31.1.1:677 88.1.88.8:677 88.1.88.8:677
icmp 192.168.2.2:678 172.31.1.1:678 88.1.88.8:678 88.1.88.8:678
icmp 192.168.2.2:679 172.31.1.1:679 88.1.88.8:679 88.1.88.8:679
icmp 192.168.2.2:680 172.31.1.1:680 88.1.88.8:680 88.1.88.8:680

Note: The same inside local address (172.31.1.1) is translated to each of the defined pools according to the
source VRF. The VRF can be seen in the show ip nat translation verbose command:

gila# show ip nat translations verbose
Pro Inside global Inside local Outside local Outside global
icmp 192.168.1.1:2139 172.31.1.1:2139 88.1.88.8:2139 88.1.88.8:2139
 create 00:00:08, use 00:00:08, left 00:00:51, Map−Id(In): 3,
 flags:
extended, use_count: 0, VRF : custA
icmp 192.168.1.1:2140 172.31.1.1:2140 88.1.88.8:2140 88.1.88.8:2140
 create 00:00:08, use 00:00:08, left 00:00:51, Map−Id(In): 3,
 flags:
extended, use_count: 0, VRF : custA
icmp 192.168.1.1:2141 172.31.1.1:2141 88.1.88.8:2141 88.1.88.8:2141
 create 00:00:08, use 00:00:08, left 00:00:51, Map−Id(In): 3,
 flags:
extended, use_count: 0, VRF : custA
icmp 192.168.1.1:2142 172.31.1.1:2142 88.1.88.8:2142 88.1.88.8:2142
 create 00:00:08, use 00:00:08, left 00:00:51, Map−Id(In): 3,
 flags:
extended, use_count: 0, VRF : custA
icmp 192.168.1.1:2143 172.31.1.1:2143 88.1.88.8:2143 88.1.88.8:2143
 create 00:00:08, use 00:00:08, left 00:00:51, Map−Id(In): 3,
 flags:
extended, use_count: 0, VRF : custA
icmp 192.168.2.2:676 172.31.1.1:676 88.1.88.8:676 88.1.88.8:676
 create 00:00:10, use 00:00:10, left 00:00:49, Map−Id(In): 2,
 flags:
extended, use_count: 0, VRF : custB
icmp 192.168.2.2:677 172.31.1.1:677 88.1.88.8:677 88.1.88.8:677
 create 00:00:10, use 00:00:10, left 00:00:49, Map−Id(In): 2,
 flags:
extended, use_count: 0, VRF : custB
icmp 192.168.2.2:678 172.31.1.1:678 88.1.88.8:678 88.1.88.8:678
 create 00:00:10, use 00:00:10, left 00:00:49, Map−Id(In): 2,
 flags:
extended, use_count: 0, VRF : custB
icmp 192.168.2.2:679 172.31.1.1:679 88.1.88.8:679 88.1.88.8:679
 create 00:00:10, use 00:00:10, left 00:00:49, Map−Id(In): 2,
 flags:
extended, use_count: 0, VRF : custB
icmp 192.168.2.2:680 172.31.1.1:680 88.1.88.8:680 88.1.88.8:680
 create 00:00:10, use 00:00:10, left 00:00:49, Map−Id(In): 2,
 flags:
extended, use_count: 0, VRF : custB

These displays show the routing information for each of the locally attached VPNs for customer A and
customer B:

gila# show ip route vrf custA
Codes: C − connected, S − static, R − RIP, M − mobile, B − BGP
 D − EIGRP, EX − EIGRP external, O − OSPF, IA − OSPF inter area
 N1 − OSPF NSSA external type 1, N2 − OSPF NSSA external type 2
 E1 − OSPF external type 1, E2 − OSPF external type 2
 I − IS−IS, L1 − IS−IS level−1, L2 − IS−IS level−2, ia − IS−IS inter area
 * − candidate default, U − per−user static route, o − ODR
 P − periodic downloaded static route

Gateway of last resort is 88.1.11.1 to network 0.0.0.0

 172.18.0.0/32 is subnetted, 2 subnets
B 172.18.60.179 [200/0] via 88.1.11.1, 00:03:59
B 172.18.60.176 [200/0] via 88.1.11.1, 00:03:59
 172.31.0.0/24 is subnetted, 1 subnets
S 172.31.1.0 [1/0] via 10.88.162.6, FastEthernet0/0
 10.0.0.0/8 is variably subnetted, 5 subnets, 2 masks
B 10.88.0.0/20 [200/0] via 88.1.11.1, 00:03:59
B 10.88.32.0/20 [200/0] via 88.1.11.1, 00:03:59
C 10.88.162.4/30 is directly connected, FastEthernet0/0
C 10.88.162.8/30 is directly connected, FastEthernet2/0
B 10.88.161.8/30 [200/0] via 88.1.11.1, 00:04:00
 88.0.0.0/24 is subnetted, 2 subnets
B 88.1.88.0 [200/0] via 88.1.11.5, 00:04:00
B 88.1.99.0 [200/0] via 88.1.11.5, 00:04:00
S 192.168.1.0/24 is directly connected, Null0
B* 0.0.0.0/0 [200/0] via 88.1.11.1, 00:04:00

gila# show ip route vrf custB
Codes: C − connected, S − static, R − RIP, M − mobile, B − BGP
 D − EIGRP, EX − EIGRP external, O − OSPF, IA − OSPF inter area
 N1 − OSPF NSSA external type 1, N2 − OSPF NSSA external type 2
 E1 − OSPF external type 1, E2 − OSPF external type 2
 I − IS−IS, L1 − IS−IS level−1, L2 − IS−IS level−2, ia − IS−IS inter area
 * − candidate default, U − per−user static route, o − ODR
 P − periodic downloaded static route

Gateway of last resort is not set

 64.0.0.0/16 is subnetted, 1 subnets
B 64.102.0.0 [200/0] via 88.1.11.5, 1d21h
 172.18.0.0/32 is subnetted, 2 subnets
B 172.18.60.179 [200/0] via 88.1.11.1, 1d21h
B 172.18.60.176 [200/0] via 88.1.11.1, 1d21h
 172.31.0.0/24 is subnetted, 1 subnets
S 172.31.1.0 [1/0] via 10.88.162.14, Ethernet1/2
 10.0.0.0/8 is variably subnetted, 6 subnets, 3 masks
B 10.88.194.16/28 [200/100] via 88.1.11.1, 1d20h
B 10.88.208.0/20 [200/0] via 88.1.11.5, 1d21h
B 10.88.194.4/30 [200/100] via 88.1.11.1, 1d20h
B 10.88.163.4/30 [200/0] via 88.1.11.5, 1d21h
B 10.88.161.4/30 [200/0] via 88.1.11.1, 1d21h
C 10.88.162.12/30 is directly connected, Ethernet1/2
 11.0.0.0/24 is subnetted, 1 subnets
B 11.1.1.0 [200/100] via 88.1.11.1, 1d20h
 88.0.0.0/24 is subnetted, 2 subnets
B 88.1.88.0 [200/0] via 88.1.11.5, 1d21h
B 88.1.99.0 [200/0] via 88.1.11.5, 1d21h
S 192.168.2.0/24 is directly connected, Null0
B 128.0.0.0/8 [200/0] via 88.1.11.5, 1d21h

Note: A route for each of the NAT pools has been added from the static configuration. These subnets are
subsequently imported into the shared server VRF at the egress PE router iguana:

iguana# show ip route vrf sserver

Routing Table: sserver
Codes: C − connected, S − static, R − RIP, M − mobile, B − BGP
 D − EIGRP, EX − EIGRP external, O − OSPF, IA − OSPF inter area
 N1 − OSPF NSSA external type 1, N2 − OSPF NSSA external type 2
 E1 − OSPF external type 1, E2 − OSPF external type 2
 I − IS−IS, L1 − IS−IS level−1, L2 − IS−IS level−2, ia − IS−IS inter area
 * − candidate default, U − per−user static route, o − ODR

 P − periodic downloaded static route

Gateway of last resort is not set

 64.0.0.0/16 is subnetted, 1 subnets
B 64.102.0.0 [20/0] via 10.88.163.6 (custB), 1d20h
 172.18.0.0/32 is subnetted, 2 subnets
B 172.18.60.179 [200/0] via 88.1.11.1, 1d20h
B 172.18.60.176 [200/0] via 88.1.11.1, 1d20h
 172.31.0.0/24 is subnetted, 1 subnets
B 172.31.1.0 [200/0] via 88.1.11.9, 1d05h
 10.0.0.0/8 is variably subnetted, 8 subnets, 3 masks
B 10.88.194.16/28 [200/100] via 88.1.11.1, 1d20h
B 10.88.208.0/20 [20/0] via 10.88.163.6 (custB), 1d20h
B 10.88.194.4/30 [200/100] via 88.1.11.1, 1d20h
B 10.88.162.4/30 [200/0] via 88.1.11.9, 1d20h
B 10.88.163.4/30 is directly connected, 1d20h, Ethernet1/0/0
B 10.88.161.4/30 [200/0] via 88.1.11.1, 1d20h
B 10.88.162.8/30 [200/0] via 88.1.11.9, 1d20h
B 10.88.162.12/30 [200/0] via 88.1.11.9, 1d20h
 11.0.0.0/24 is subnetted, 1 subnets
B 11.1.1.0 [200/100] via 88.1.11.1, 1d20h
 12.0.0.0/24 is subnetted, 1 subnets
S 12.12.12.0 [1/0] via 88.1.99.10
 88.0.0.0/24 is subnetted, 3 subnets
C 88.1.88.0 is directly connected, FastEthernet1/1/0
S 88.1.97.0 [1/0] via 88.1.99.10
C 88.1.99.0 is directly connected, FastEthernet5/0/0
B 192.168.1.0/24 [200/0] via 88.1.11.9, 1d20h
B 192.168.2.0/24 [200/0] via 88.1.11.9, 01:59:23
B 128.0.0.0/8 [20/0] via 10.88.163.6 (custB), 1d20h

Configurations

Some extraneous information has been removed from the configurations for brevity.

GILA:
ip vrf custA
 rd 65002:100
 route−target export 65002:100
 route−target export 65002:1001
 route−target import 65002:100
!
ip vrf custB
 rd 65002:200
 route−target export 65002:200
 route−target export 65002:2001
 route−target import 65002:200
 route−target import 65002:10
!
ip cef
mpls label protocol ldp
!

interface Loopback0
 ip address 88.1.11.9 255.255.255.255
!
interface FastEthernet0/0

ip vrf forwarding custA
 ip address 10.88.162.5 255.255.255.252

ip nat inside
 duplex full
!
interface Ethernet1/0
 ip address 88.1.3.1 255.255.255.0

ip nat outside
 no ip mroute−cache
 duplex half
 tag−switching ip
!
interface Ethernet1/1
 ip address 88.1.2.1 255.255.255.0

ip nat outside
 no ip mroute−cache
 duplex half
 tag−switching ip
!
interface Ethernet1/2

ip vrf forwarding custB
 ip address 10.88.162.13 255.255.255.252

ip nat inside
 duplex half
!
router ospf 881
 log−adjacency−changes
 redistribute static subnets
 network 88.1.0.0 0.0.255.255 area 0
 default−metric 30
!
router bgp 65002
 no synchronization
 no bgp default ipv4−unicast
 bgp log−neighbor−changes
 neighbor 88.1.11.1 remote−as 65002
 neighbor 88.1.11.1 update−source Loopback0
 neighbor 88.1.11.1 activate
 neighbor 88.1.11.5 remote−as 65002
 neighbor 88.1.11.5 update−source Loopback0
 neighbor 88.1.11.5 activate
 no auto−summary
 !
 address−family ipv4 vrf custB
 redistribute connected
 redistribute static
 no auto−summary
 no synchronization
 exit−address−family
 !
 address−family ipv4 vrf custA
 redistribute connected
 redistribute static
 no auto−summary
 no synchronization
 exit−address−family
 !
 address−family vpnv4
 neighbor 88.1.11.1 activate
 neighbor 88.1.11.1 send−community extended
 neighbor 88.1.11.5 activate
 neighbor 88.1.11.5 send−community extended
 no auto−summary
 exit−address−family
!
ip nat pool SSPOOL1 192.168.1.1 192.168.1.254 prefix−length 24
ip nat pool SSPOOL2 192.168.2.1 192.168.2.254 prefix−length 24
ip nat inside source list 181 pool SSPOOL1 vrf custA overload
ip nat inside source list 181 pool SSPOOL2 vrf custB overload
ip classless
ip route vrf custA 172.31.1.0 255.255.255.0 FastEthernet0/0 10.88.162.6
ip route vrf custA 192.168.1.0 255.255.255.0 Null0
ip route vrf custB 172.31.1.0 255.255.255.0 Ethernet1/2 10.88.162.14

ip route vrf custB 192.168.2.0 255.255.255.0 Null0
!
access−list 181 permit ip any host 88.1.88.8
!

Note: The interfaces that face the customer networks are designated as NAT �inside� interfaces and the
MPLS interfaces are designated as NAT �outside� interfaces.

iguana:
ip vrf custB
 rd 65002:200
 route−target export 65002:200
 route−target export 65002:2001
 route−target import 65002:200
 route−target import 65002:10
!
ip vrf sserver
 rd 65002:10
 route−target export 65002:10
 route−target import 65002:2001
 route−target import 65002:1001
!
ip cef distributed
mpls label protocol ldp
!

interface Loopback0
 ip address 88.1.11.5 255.255.255.255
 no ip route−cache
 no ip mroute−cache
!
interface Ethernet1/0/0
 ip vrf forwarding custB
 ip address 10.88.163.5 255.255.255.252
 no ip route−cache
 no ip mroute−cache
!
interface Ethernet1/0/4
 ip address 88.1.1.1 255.255.255.0
 no ip route−cache
 no ip mroute−cache
 tag−switching ip
!
interface Ethernet1/0/5
 ip address 88.1.3.2 255.255.255.0
 no ip route−cache
 no ip mroute−cache
 tag−switching ip
!
interface FastEthernet1/1/0
 ip vrf forwarding sserver
 ip address 88.1.88.1 255.255.255.0
 no ip route−cache
 no ip mroute−cache
 full−duplex
!
router ospf 881
 log−adjacency−changes
 redistribute static subnets
 network 88.1.0.0 0.0.255.255 area 0
!
router bgp 65002
 no synchronization
 no bgp default ipv4−unicast
 bgp log−neighbor−changes

 neighbor 88.1.11.1 remote−as 65002
 neighbor 88.1.11.1 update−source Loopback0
 neighbor 88.1.11.9 remote−as 65002
 neighbor 88.1.11.9 update−source Loopback0
 neighbor 88.1.11.10 remote−as 65002
 neighbor 88.1.11.10 update−source Loopback0
 no auto−summary
 !
 address−family ipv4 multicast
 no auto−summary
 no synchronization
 exit−address−family
 !
 address−family vpnv4
 neighbor 88.1.11.1 activate
 neighbor 88.1.11.1 send−community extended
 neighbor 88.1.11.9 activate
 neighbor 88.1.11.9 send−community extended
 no auto−summary
 exit−address−family
 !
 address−family ipv4
 neighbor 88.1.11.1 activate
 neighbor 88.1.11.9 activate
 neighbor 88.1.11.10 activate
 no auto−summary
 no synchronization
 exit−address−family
 !
 address−family ipv4 vrf sserver
 redistribute connected
 no auto−summary
 no synchronization
 exit−address−family
 !
 address−family ipv4 vrf custB
 redistribute connected
 redistribute static
 no auto−summary
 no synchronization
 exit−address−family

Router dragon would have a configuration very similar to gila.

Packets Arriving at Central PE after Ingress PE NAT

The traces below illustrate the requirement for unique NAT pools when the destination shared service network
is configured as a VRF instance. Again, refer to the diagram in Figure 5. The packets shown below were
captured as they entered the MPLS IP interface e1/0/5 at router iguana.

Echo from Customer A VPN

Here, we see an echo request coming from source IP address 172.31.1.1 in VRF custA. The source address
has been translated to 192.168.1.1 as specified by the NAT configuration:

ip nat pool SSPOOL1 192.168.1.1 192.168.1.254 prefix−length 24
ip nat inside source list 181 pool SSPOOL1 vrf custA overload

DLC: −−−−− DLC Header −−−−−
 DLC:
 DLC: Frame 1 arrived at 09:15:29.8157; frame size is 118 (0076 hex)
 bytes.
 DLC: Destination = Station 005054D92A25

 DLC: Source = Station 0090BF9C6C1C
 DLC: Ethertype = 8847 (MPLS)
 DLC:
 MPLS: −−−−− MPLS Label Stack −−−−−
 MPLS:

MPLS: Label Value = 00019
 MPLS: Reserved For Experimental Use = 0
 MPLS: Stack Value = 1 (Bottom of Stack)
 MPLS: Time to Live = 254 (hops)
 MPLS:
 IP: −−−−− IP Header −−−−−
 IP:
 IP: Version = 4, header length = 20 bytes
 IP: Type of service = 00
 IP: 000. = routine
 IP: ...0 = normal delay
 IP: 0... = normal throughput
 IP: 0.. = normal reliability
 IP: 0. = ECT bit − transport protocol will ignore the CE
 bit
 IP: 0 = CE bit − no congestion
 IP: Total length = 100 bytes
 IP: Identification = 0
 IP: Flags = 0X
 IP: .0.. = may fragment
 IP: ..0. = last fragment
 IP: Fragment offset = 0 bytes
 IP: Time to live = 254 seconds/hops
 IP: Protocol = 1 (ICMP)
 IP: Header checksum = 4AE6 (correct)

IP: Source address = [192.168.1.1]
 IP: Destination address = [88.1.88.8]
 IP: No options
 IP:
 ICMP: −−−−− ICMP header −−−−−
 ICMP:
 ICMP: Type = 8 (Echo)
 ICMP: Code = 0
 ICMP: Checksum = 932D (correct)
 ICMP: Identifier = 3046
 ICMP: Sequence number = 3245
 ICMP: [72 bytes of data]
 ICMP:
 ICMP: [Normal end of "ICMP header".]
 ICMP:

Echo from Customer B VPN

Here, we see an echo request coming from source IP address 172.31.1.1 in VRF custB. The source address
has been translated to 192.168.2.1 as specified by the NAT configuration:

ip nat pool SSPOOL2 192.168.2.1 192.168.2.254 prefix−length 24
ip nat inside source list 181 pool SSPOOL2 vrf custB overload

DLC: −−−−− DLC Header −−−−−
 DLC:
 DLC: Frame 11 arrived at 09:15:49.6623; frame size is 118 (0076 hex)
 bytes.
 DLC: Destination = Station 005054D92A25
 DLC: Source = Station 0090BF9C6C1C
 DLC: Ethertype = 8847 (MPLS)
 DLC:
 MPLS: −−−−− MPLS Label Stack −−−−−
 MPLS:

MPLS: Label Value = 00019

 MPLS: Reserved For Experimental Use = 0
 MPLS: Stack Value = 1 (Bottom of Stack)
 MPLS: Time to Live = 254 (hops)
 MPLS:
 IP: −−−−− IP Header −−−−−
 IP:
 IP: Version = 4, header length = 20 bytes
 IP: Type of service = 00
 IP: 000. = routine
 IP: ...0 = normal delay
 IP: 0... = normal throughput
 IP: 0.. = normal reliability
 IP: 0. = ECT bit − transport protocol will ignore the CE
 bit
 IP: 0 = CE bit − no congestion
 IP: Total length = 100 bytes
 IP: Identification = 15
 IP: Flags = 0X
 IP: .0.. = may fragment
 IP: ..0. = last fragment
 IP: Fragment offset = 0 bytes
 IP: Time to live = 254 seconds/hops
 IP: Protocol = 1 (ICMP)
 IP: Header checksum = 49D6 (correct)

IP: Source address = [192.168.2.2]
 IP: Destination address = [88.1.88.8]
 IP: No options
 IP:
 ICMP: −−−−− ICMP header −−−−−
 ICMP:
 ICMP: Type = 8 (Echo)
 ICMP: Code = 0
 ICMP: Checksum = AB9A (correct)
 ICMP: Identifier = 4173
 ICMP: Sequence number = 4212
 ICMP: [72 bytes of data]
 ICMP:
 ICMP: [Normal end of "ICMP header".]

Note: The MPLS label value is 0019 in both of the packets shown above.

Echo Reply to Customer A VPN

Next, we see an echo reply going back to the destination IP address 192.168.1.1 in VRF custA. The
destination address is translated to 172.31.1.1 by the ingress PE NAT function.

To VRF custA:
 DLC: −−−−− DLC Header −−−−−
 DLC:
 DLC: Frame 2 arrived at 09:15:29.8198; frame size is 118 (0076 hex)
 bytes.
 DLC: Destination = Station 0090BF9C6C1C
 DLC: Source = Station 005054D92A25
 DLC: Ethertype = 8847 (MPLS)
 DLC:
 MPLS: −−−−− MPLS Label Stack −−−−−
 MPLS:

MPLS: Label Value = 0001A
 MPLS: Reserved For Experimental Use = 0
 MPLS: Stack Value = 1 (Bottom of Stack)
 MPLS: Time to Live = 254 (hops)
 MPLS:
 IP: −−−−− IP Header −−−−−
 IP:
 IP: Version = 4, header length = 20 bytes

 IP: Type of service = 00
 IP: 000. = routine
 IP: ...0 = normal delay
 IP: 0... = normal throughput
 IP: 0.. = normal reliability
 IP: 0. = ECT bit − transport protocol will ignore the CE
 bit
 IP: 0 = CE bit − no congestion
 IP: Total length = 100 bytes
 IP: Identification = 18075
 IP: Flags = 4X
 IP: .1.. = don't fragment
 IP: ..0. = last fragment
 IP: Fragment offset = 0 bytes
 IP: Time to live = 254 seconds/hops
 IP: Protocol = 1 (ICMP)
 IP: Header checksum = C44A (correct)
 IP: Source address = [88.1.88.8]

IP: Destination address = [192.168.1.1]
 IP: No options
 IP:
 ICMP: −−−−− ICMP header −−−−−
 ICMP:
 ICMP: Type = 0 (Echo reply)
 ICMP: Code = 0
 ICMP: Checksum = 9B2D (correct)
 ICMP: Identifier = 3046
 ICMP: Sequence number = 3245
 ICMP: [72 bytes of data]
 ICMP:
 ICMP: [Normal end of "ICMP header".]
 ICMP:

Echo Reply to Customer B VPN

Here, we see an echo reply going back to the destination IP address 192.168.1.1 in VRF custB. The
destination address is translated to 172.31.1.1 by the ingress PE NAT function.

To VRF custB:
DLC: −−−−− DLC Header −−−−−
 DLC:
 DLC: Frame 12 arrived at 09:15:49.6635; frame size is 118 (0076 hex) bytes.
 DLC: Destination = Station 0090BF9C6C1C
 DLC: Source = Station 005054D92A25
 DLC: Ethertype = 8847 (MPLS)
 DLC:
 MPLS: −−−−− MPLS Label Stack −−−−−
 MPLS:

MPLS: Label Value = 0001D
 MPLS: Reserved For Experimental Use = 0
 MPLS: Stack Value = 1 (Bottom of Stack)
 MPLS: Time to Live = 254 (hops)
 MPLS:
 IP: −−−−− IP Header −−−−−
 IP:
 IP: Version = 4, header length = 20 bytes
 IP: Type of service = 00
 IP: 000. = routine
 IP: ...0 = normal delay
 IP: 0... = normal throughput
 IP: 0.. = normal reliability
 IP: 0. = ECT bit − transport protocol will ignore the CE bit
 IP: 0 = CE bit − no congestion
 IP: Total length = 100 bytes
 IP: Identification = 37925

 IP: Flags = 4X
 IP: .1.. = don't fragment
 IP: ..0. = last fragment
 IP: Fragment offset = 0 bytes
 IP: Time to live = 254 seconds/hops
 IP: Protocol = 1 (ICMP)
 IP: Header checksum = 75BF (correct)
 IP: Source address = [88.1.88.8]

IP: Destination address = [192.168.2.2]
 IP: No options
 IP:
 ICMP: −−−−− ICMP header −−−−−
 ICMP:
 ICMP: Type = 0 (Echo reply)
 ICMP: Code = 0
 ICMP: Checksum = B39A (correct)
 ICMP: Identifier = 4173
 ICMP: Sequence number = 4212
 ICMP: [72 bytes of data]
 ICMP:
 ICMP: [Normal end of "ICMP header".]

Note: In the return packets, the MPLS label values are included and differ: 001A for VRF custA and 001D for
VRF custB.

Echo from Customer A VPN � Destination Is a Generic Interface

This next set of packets show the difference when the interface to the shared service LAN is a generic
interface and not part of a VRF instance. Here, the configuration has been changed to use a common pool for
both local VPNs with overlapping IP addresses.

ip nat pool SSPOOL1 192.168.1.1 192.168.1.254 prefix−length 24
ip nat inside source list 181 pool SSPOOL1 vrf custA overload
ip nat inside source list 181 pool SSPOOL1 vrf custB overload

DLC: −−−−− DLC Header −−−−−
 DLC:
 DLC: Frame 1 arrived at 09:39:19.6580; frame size is 118 (0076 hex)
 bytes.
 DLC: Destination = Station 005054D92A25
 DLC: Source = Station 0090BF9C6C1C
 DLC: Ethertype = 8847 (MPLS)
 DLC:
 MPLS: −−−−− MPLS Label Stack −−−−−
 MPLS:

MPLS: Label Value = 00019
 MPLS: Reserved For Experimental Use = 0
 MPLS: Stack Value = 1 (Bottom of Stack)
 MPLS: Time to Live = 254 (hops)
 MPLS:
 IP: −−−−− IP Header −−−−−
 IP:
 IP: Version = 4, header length = 20 bytes
 IP: Type of service = 00
 IP: 000. = routine
 IP: ...0 = normal delay
 IP: 0... = normal throughput
 IP: 0.. = normal reliability
 IP: 0. = ECT bit − transport protocol will ignore the CE
 bit
 IP: 0 = CE bit − no congestion
 IP: Total length = 100 bytes
 IP: Identification = 55
 IP: Flags = 0X

 IP: .0.. = may fragment
 IP: ..0. = last fragment
 IP: Fragment offset = 0 bytes
 IP: Time to live = 254 seconds/hops
 IP: Protocol = 1 (ICMP)
 IP: Header checksum = 4AAF (correct)

IP: Source address = [192.168.1.1]
 IP: Destination address = [88.1.88.8]
 IP: No options
 IP:
 ICMP: −−−−− ICMP header −−−−−
 ICMP:
 ICMP: Type = 8 (Echo)
 ICMP: Code = 0
 ICMP: Checksum = 0905 (correct)
 ICMP: Identifier = 874
 ICMP: Sequence number = 3727
 ICMP: [72 bytes of data]
 ICMP:
 ICMP: [Normal end of "ICMP header".]

Echo from Customer B VPN � Destination Is a Generic Interface

Here, we see an echo request coming from source IP address 172.31.1.1 in VRF custB. The source address
was translated to 192.168.1.3 (from common pool SSPOOL1) as specified by the NAT configuration:

ip nat pool SSPOOL1 192.168.1.1 192.168.1.254 prefix−length 24
ip nat inside source list 181 pool SSPOOL1 vrf custA overload
ip nat inside source list 181 pool SSPOOL1 vrf custB overload

DLC: −−−−− DLC Header −−−−−
 DLC:
 DLC: Frame 11 arrived at 09:39:26.4971; frame size is 118 (0076 hex)
 bytes.
 DLC: Destination = Station 005054D92A25
 DLC: Source = Station 0090BF9C6C1C
 DLC: Ethertype = 8847 (MPLS)
 DLC:
 MPLS: −−−−− MPLS Label Stack −−−−−
 MPLS:

MPLS: Label Value = 0001F
 MPLS: Reserved For Experimental Use = 0
 MPLS: Stack Value = 1 (Bottom of Stack)
 MPLS: Time to Live = 254 (hops)
 MPLS:
 IP: −−−−− IP Header −−−−−
 IP:
 IP: Version = 4, header length = 20 bytes
 IP: Type of service = 00
 IP: 000. = routine
 IP: ...0 = normal delay
 IP: 0... = normal throughput
 IP: 0.. = normal reliability
 IP: 0. = ECT bit − transport protocol will ignore the CE
 bit
 IP: 0 = CE bit − no congestion
 IP: Total length = 100 bytes
 IP: Identification = 75
 IP: Flags = 0X
 IP: .0.. = may fragment
 IP: ..0. = last fragment
 IP: Fragment offset = 0 bytes
 IP: Time to live = 254 seconds/hops
 IP: Protocol = 1 (ICMP)
 IP: Header checksum = 4A99 (correct)

IP: Source address = [192.168.1.3]
 IP: Destination address = [88.1.88.8]
 IP: No options
 IP:
 ICMP: −−−−− ICMP header −−−−−
 ICMP:
 ICMP: Type = 8 (Echo)
 ICMP: Code = 0
 ICMP: Checksum = 5783 (correct)
 ICMP: Identifier = 4237
 ICMP: Sequence number = 977
 ICMP: [72 bytes of data]
 ICMP:
 ICMP: [Normal end of "ICMP header".]

Note: When the interface at the egress PE is a generic interface (not a VRF instance), the labels imposed are
different. In this case, 0x19 and 0x1F.

Echo Reply to Customer A VPN � Destination Is a Generic Interface

Next, we see an echo reply going back to the destination IP address 192.168.1.1 in VRF custA. The
destination address is translated to 172.31.1.1 by the ingress PE NAT function.

DLC: −−−−− DLC Header −−−−−
 DLC:
 DLC: Frame 2 arrived at 09:39:19.6621; frame size is 114 (0072 hex)
 bytes.
 DLC: Destination = Station 0090BF9C6C1C
 DLC: Source = Station 005054D92A25
 DLC: Ethertype = 0800 (IP)
 DLC:
 IP: −−−−− IP Header −−−−−
 IP:
 IP: Version = 4, header length = 20 bytes
 IP: Type of service = 00
 IP: 000. = routine
 IP: ...0 = normal delay
 IP: 0... = normal throughput
 IP: 0.. = normal reliability
 IP: 0. = ECT bit − transport protocol will ignore the CE
 bit
 IP: 0 = CE bit − no congestion
 IP: Total length = 100 bytes
 IP: Identification = 54387
 IP: Flags = 4X
 IP: .1.. = don't fragment
 IP: ..0. = last fragment
 IP: Fragment offset = 0 bytes
 IP: Time to live = 254 seconds/hops
 IP: Protocol = 1 (ICMP)
 IP: Header checksum = 3672 (correct)
 IP: Source address = [88.1.88.8]

IP: Destination address = [192.168.1.1]
 IP: No options
 IP:
 ICMP: −−−−− ICMP header −−−−−
 ICMP:
 ICMP: Type = 0 (Echo reply)
 ICMP: Code = 0
 ICMP: Checksum = 1105 (correct)
 ICMP: Identifier = 874
 ICMP: Sequence number = 3727
 ICMP: [72 bytes of data]
 ICMP:

 ICMP: [Normal end of "ICMP header".]

Echo Reply to Customer B VPN � Destination Is a Generic Interface

Here, we see an echo reply going back to the destination IP address 192.168.1.3 in VRF custB. The
destination address is translated to 172.31.1.1 by the ingress PE NAT function.

DLC: −−−−− DLC Header −−−−−
 DLC:
 DLC: Frame 12 arrived at 09:39:26.4978; frame size is 114 (0072 hex)
 bytes.
 DLC: Destination = Station 0090BF9C6C1C
 DLC: Source = Station 005054D92A25
 DLC: Ethertype = 0800 (IP)
 DLC:
 IP: −−−−− IP Header −−−−−
 IP:
 IP: Version = 4, header length = 20 bytes
 IP: Type of service = 00
 IP: 000. = routine
 IP: ...0 = normal delay
 IP: 0... = normal throughput
 IP: 0.. = normal reliability
 IP: 0. = ECT bit − transport protocol will ignore the CE
 bit
 IP: 0 = CE bit − no congestion
 IP: Total length = 100 bytes
 IP: Identification = 61227
 IP: Flags = 4X
 IP: .1.. = don't fragment
 IP: ..0. = last fragment
 IP: Fragment offset = 0 bytes
 IP: Time to live = 254 seconds/hops
 IP: Protocol = 1 (ICMP)
 IP: Header checksum = 1BB8 (correct)
 IP: Source address = [88.1.88.8]

IP: Destination address = [192.168.1.3]
 IP: No options
 IP:
 ICMP: −−−−− ICMP header −−−−−
 ICMP:
 ICMP: Type = 0 (Echo reply)
 ICMP: Code = 0
 ICMP: Checksum = 5F83 (correct)
 ICMP: Identifier = 4237
 ICMP: Sequence number = 977
 ICMP: [72 bytes of data]
 ICMP:
 ICMP: [Normal end of "ICMP header".]

Note: Since the replies are destined to a global address, no VRF labels are imposed.

With the exit interface to the shared service LAN segment defined as a generic interface, a common pool is
permitted. The pings result in these NAT entries in router gila:

gila# show ip nat translations
Pro Inside global Inside local Outside local Outside global
icmp 192.168.1.3:4237 172.31.1.1:4237 88.1.88.8:4237 88.1.88.8:4237
icmp 192.168.1.3:4238 172.31.1.1:4238 88.1.88.8:4238 88.1.88.8:4238
icmp 192.168.1.3:4239 172.31.1.1:4239 88.1.88.8:4239 88.1.88.8:4239
icmp 192.168.1.3:4240 172.31.1.1:4240 88.1.88.8:4240 88.1.88.8:4240
icmp 192.168.1.3:4241 172.31.1.1:4241 88.1.88.8:4241 88.1.88.8:4241
icmp 192.168.1.1:874 172.31.1.1:874 88.1.88.8:874 88.1.88.8:874
icmp 192.168.1.1:875 172.31.1.1:875 88.1.88.8:875 88.1.88.8:875

icmp 192.168.1.1:876 172.31.1.1:876 88.1.88.8:876 88.1.88.8:876
icmp 192.168.1.1:877 172.31.1.1:877 88.1.88.8:877 88.1.88.8:877
icmp 192.168.1.1:878 172.31.1.1:878 88.1.88.8:878 88.1.88.8:878
gila#

gila# show ip nat tr ver
Pro Inside global Inside local Outside local Outside global
icmp 192.168.1.3:4237 172.31.1.1:4237 88.1.88.8:4237 88.1.88.8:4237
 create 00:00:08, use 00:00:08, left 00:00:51, Map−Id(In): 2,
 flags:
extended, use_count: 0, VRF : custB
icmp 192.168.1.3:4238 172.31.1.1:4238 88.1.88.8:4238 88.1.88.8:4238
 create 00:00:08, use 00:00:08, left 00:00:51, Map−Id(In): 2,
 flags:
extended, use_count: 0, VRF : custB
icmp 192.168.1.3:4239 172.31.1.1:4239 88.1.88.8:4239 88.1.88.8:4239
 create 00:00:08, use 00:00:08, left 00:00:51, Map−Id(In): 2,
 flags:
extended, use_count: 0, VRF : custB
icmp 192.168.1.3:4240 172.31.1.1:4240 88.1.88.8:4240 88.1.88.8:4240
 create 00:00:08, use 00:00:08, left 00:00:51, Map−Id(In): 2,
 flags:
extended, use_count: 0, VRF : custB
icmp 192.168.1.3:4241 172.31.1.1:4241 88.1.88.8:4241 88.1.88.8:4241
 create 00:00:08, use 00:00:08, left 00:00:51, Map−Id(In): 2,
 flags:
extended, use_count: 0, VRF : custB
icmp 192.168.1.1:874 172.31.1.1:874 88.1.88.8:874 88.1.88.8:874
 create 00:00:16, use 00:00:16, left 00:00:43, Map−Id(In): 3,
Pro Inside global Inside local Outside local Outside global
 flags:
extended, use_count: 0, VRF : custA
icmp 192.168.1.1:875 172.31.1.1:875 88.1.88.8:875 88.1.88.8:875
 create 00:00:18, use 00:00:18, left 00:00:41, Map−Id(In): 3,
 flags:
extended, use_count: 0, VRF : custA
icmp 192.168.1.1:876 172.31.1.1:876 88.1.88.8:876 88.1.88.8:876
 create 00:00:18, use 00:00:18, left 00:00:41, Map−Id(In): 3,
 flags:
extended, use_count: 0, VRF : custA
icmp 192.168.1.1:877 172.31.1.1:877 88.1.88.8:877 88.1.88.8:877
 create 00:00:18, use 00:00:18, left 00:00:41, Map−Id(In): 3,
 flags:
extended, use_count: 0, VRF : custA
icmp 192.168.1.1:878 172.31.1.1:878 88.1.88.8:878 88.1.88.8:878
 create 00:00:18, use 00:00:18, left 00:00:41, Map−Id(In): 3,
 flags:
extended, use_count: 0, VRF : custA

gila#
debug ip nat vrf

IP NAT VRF debugging is on
gila#
.Jan 2 09:34:54 EST: NAT−TAGSW(p) : Tag Pkt s=172.18.60.179, d=10.88.162.9, vrf=custA
.Jan 2 09:35:02 EST: NAT−TAGSW(p) : Tag Pkt s=172.18.60.179, d=10.88.162.13, vrf=custB
.Jan 2 09:35:12 EST: NAT−ip2tag : Tag Pkt s=172.31.1.1, d=88.1.88.8, vrf=custA
.Jan 2 09:35:12 EST: NAT−ip2tag: Punting to process
.Jan 2 09:35:12 EST: NAT−ip2tag : Tag Pkt s=172.31.1.1, d=88.1.88.8, vrf=custA
.Jan 2 09:35:12 EST: NAT−ip2tag: Punting to process
.Jan 2 09:35:12 EST: NAT−ip2tag : Tag Pkt s=172.31.1.1, d=88.1.88.8, vrf=custA
.Jan 2 09:35:12 EST: NAT−ip2tag: Punting to process
.Jan 2 09:35:12 EST: NAT−ip2tag : Tag Pkt s=172.31.1.1, d=88.1.88.8, vrf=custA
.Jan 2 09:35:12 EST: NAT−ip2tag: Punting to process
.Jan 2 09:35:12 EST: NAT−ip2tag : Tag Pkt s=172.31.1.1, d=88.1.88.8, vrf=custA
.Jan 2 09:35:12 EST: NAT−ip2tag: Punting to process

.Jan 2 09:35:19 EST: NAT−ip2tag : Tag Pkt s=172.31.1.1, d=88.1.88.8, vrf=custB

.Jan 2 09:35:19 EST: NAT−ip2tag: Punting to process

.Jan 2 09:35:19 EST: NAT−ip2tag : Tag Pkt s=172.31.1.1, d=88.1.88.8, vrf=custB

.Jan 2 09:35:19 EST: NAT−ip2tag: Punting to process

.Jan 2 09:35:19 EST: NAT−ip2tag : Tag Pkt s=172.31.1.1, d=88.1.88.8, vrf=custB

.Jan 2 09:35:19 EST: NAT−ip2tag: Punting to process

.Jan 2 09:35:19 EST: NAT−ip2tag : Tag Pkt s=172.31.1.1, d=88.1.88.8, vrf=custB

.Jan 2 09:35:19 EST: NAT−ip2tag: Punting to process

.Jan 2 09:35:19 EST: NAT−ip2tag : Tag Pkt s=172.31.1.1, d=88.1.88.8, vrf=custB

.Jan 2 09:35:19 EST: NAT−ip2tag: Punting to process
gila#

Service Example

An example of a shared virtual IP PBX service is shown in Figure 8. This illustrates a variant to the ingress
and egress examples described earlier.

In this design, the shared VoIP service is front−ended by a set of routers that perform the NAT function.
These routers have multiple VRF interfaces using a feature known as VRF−Lite. The traffic then flows to the
shared Cisco CallManager cluster. Firewall services are also provided on a per−company basis.
Inter−company calls must pass through the firewall, while intra−company calls are handled across the
customer VPN using the company�s internal addressing scheme.

Figure 8: Managed Virtual PBX Service Example

Availability

Cisco IOS NAT support for MPLS VPNs is available in Cisco IOS release 12.2(13)T and is available for all
platforms that support MPLS and can run this early deployment release train.

Conclusion

Cisco IOS NAT has features to permit scalable deployment of shared services today. Cisco continues to
develop NAT application level gateway (ALG) support for protocols important to customers. Performance
improvements and hardware acceleration for translation functions will ensure that NAT and ALGs provide
acceptable solutions for some time to come. All relevant standards activities and community actions are being
monitored by Cisco. As other standards are developed, their use will be evaluated based on customer desires,
requirements, and application.

Related Information

Cisco IOS NAT Application Layer Gateways•
MPLS and VPN Architectures •
Advanced MPLS Design and Implementation •
Technical Support & Documentation − Cisco Systems•

Contacts & Feedback | Help | Site Map
© 2014 − 2015 Cisco Systems, Inc. All rights reserved. Terms & Conditions | Privacy Statement | Cookie Policy | Trademarks of
Cisco Systems, Inc.

Updated: Aug 17, 2010 Document ID: 112084

