

User’s
Manual

IM 34M6P14-02E

Sequence CPU – Network Functions
(for F3SP66-4S, F3SP67-6S)

IM 34M6P14-02E
1st Edition Yokogawa Electric Corporation

Blank Page

 i

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

Media No. IM 34M6P14-02E (CD) 1st Edition : Jun. 15, 2007-00 (AR)
All Rights Reserved Copyright © 1992, Yokogawa Electric Corporation

Applicable Product:
� Range-free-controller FA-M3

- Model Name: F3SP66-4S, F3SP67-6S
- Name: Sequence CPU Module (with network functions)

The document number and document model code for this manual are given below.
Refer to the document number in all communications; also refer to the document
number or the document model code when purchasing additional copies of this manual.

Document No. : IM 34M6P14-02E
Document Model Code : DOCIM

 ii

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

Important

� About This Manual
- This Manual should be passed on to the end user.
- Before using the controller, read this manual thoroughly to have a clear

understanding of the controller.
- This manual explains the functions of this product, but there is no guarantee that

they will suit the particular purpose of the user.
- Under absolutely no circumstances may the contents of this manual be transcribed

or copied, in part or in whole, without permission.
- The contents of this manual are subject to change without prior notice.
- Every effort has been made to ensure accuracy in the preparation of this manual.

However, should any errors or omissions come to the attention of the user, please
contact the nearest Yokogawa Electric representative or sales office.

� Safety Precautions when Using/Maintaining the Product
- The following safety symbols are used on the product as well as in this manual.

Danger. This symbol on the product indicates that the operator must follow the
instructions laid out in this user’s manual to avoid the risk of personnel injuries,
fatalities, or damage to the instrument. Where indicated by this symbol, the manual
describes what special care the operator must exercise to prevent electrical shock
or other dangers that may result in injury or the loss of life.

Protective Ground Terminal. Before using the instrument, be sure to ground this
terminal.

Function Ground Terminal. Before using the instrument, be sure to ground this
terminal.

Alternating current. Indicates alternating current.

Direct current. Indicates direct current.

 iii

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

The following symbols are used only in the user’s manual.

WARNING
Indicates a “Warning”.
Draws attention to information essential to prevent hardware damage, software
damage or system failure.

CAUTION
Indicates a “Caution”
Draws attention to information essential to the understanding of operation and
functions.

TIP
Indicates a “TIP”
Gives information that complements the present topic.

SEE ALSO
Indicates a “SEE ALSO” reference.
Identifies a source to which to refer.

- For the protection and safe use of the product and the system controlled by it, be

sure to follow the instructions and precautions on safety stated in this manual
whenever handling the product. Take special note that if you handle the product in
a manner other than prescribed in these instructions, the protection feature of the
product may be damaged or impaired. In such cases, Yokogawa cannot guarantee
the quality, performance, function and safety of the product.

- When installing protection and/or safety circuits such as lightning protection devices
and equipment for the product and control system as well as designing or installing
separate protection and/or safety circuits for fool-proof design and fail-safe design of
processes and lines using the product and the system controlled by it, the user
should implement it using devices and equipment, additional to this product.

- If component parts or consumable are to be replaced, be sure to use parts specified
by the company.

- This product is not designed or manufactured to be used in critical applications
which directly affect or threaten human lives and safety — such as nuclear power
equipment, devices using radioactivity, railway facilities, aviation equipment, air
navigation facilities, aviation facilities or medical equipment. If so used, it is the
user’s responsibility to include in the system additional equipment and devices that
ensure personnel safety.

- Do not attempt to modify the product.

� Exemption from Responsibility
- Yokogawa Electric Corporation (hereinafter simply referred to as Yokogawa Electric)

makes no warranties regarding the product except those stated in the WARRANTY
that is provided separately.

- Yokogawa Electric assumes no liability to any party for any loss or damage, direct or
indirect, caused by the use or any unpredictable defect of the product.

 iv

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

� Software Supplied by the Company
- Yokogawa Electric makes no other warranties expressed or implied except as

provided in its warranty clause for software supplied by the company.
- Use the software with one computer only. You must purchase another copy of the

software for use with each additional computer.
- Copying the software for any purposes other than backup is strictly prohibited.
- Store the original media, such as floppy disks, that contain the software in a safe

place.
- Reverse engineering, such as decompiling of the software, is strictly prohibited.
- No portion of the software supplied by Yokogawa Electric may be transferred,

exchanged, or sublet or leased for use by any third party without prior permission by
Yokogawa Electric.

 v

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

� General Requirements for Using the FA-M3 Controller

� Avoid installing the FA-M3 controller in the following locations:
- Where the instrument will be exposed to direct sunlight, or where the operating

temperature exceeds the range 0°C to 55°C (32°F to 131°F).
- Where the relative humidity is outside the range 10 to 90%, or where sudden

temperature changes may occur and cause condensation.
- Where corrosive or flammable gases are present.
- Where the instrument will be exposed to direct mechanical vibration or shock.
- Where the instrument may be exposed to extreme levels of radioactivity.

� Use the correct types of wire for external wiring:
- Use copper wire with temperature ratings greater than 75°C.

� Securely tighten screws:
- Securely tighten module mounting screws and terminal screws to avoid problems

such as faulty operation.
- Tighten terminal block screws with the correct tightening torque as given in this

manual.

� Securely lock connecting cables:
- Securely lock the connectors of cables, and check them thoroughly before turning

on the power.

� Interlock with emergency-stop circuitry using external relays:
- Equipment incorporating the FA-M3 controller must be furnished with emergency-

stop circuitry that uses external relays. This circuitry should be set up to interlock
correctly with controller status (stop/run).

� Ground for low impedance:
- For safety reasons, connect the [FG] grounding terminal to a Japanese Industrial

Standards (JIS) Class D Ground*1 (Japanese Industrial Standards (JIS) Class 3
Ground). For compliance to CE Marking, use braided or other wires that can ensure
low impedance even at high frequencies for grounding.

 *1 Japanese Industrial Standard (JIS) Class D Ground means grounding resistance of 100 Ω max.

� Configure and route cables with noise control considerations:
- Perform installation and wiring that segregates system parts that may likely become

noise sources and system parts that are susceptible to noise. Segregation can be
achieved by measures such as segregating by distance, installing a filter or
segregating the grounding system.

� Configure for CE Marking Conformance:
- For compliance to CE Marking, perform installation and cable routing according to

the description on compliance to CE Marking in the “Hardware Manual”
(IM34M6C11-01E).

 vi

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

� Keep spare parts on hand:
- We recommend that you stock up on maintenance parts including spare modules.
- Preventive maintenance (replacement of the module or its battery) is required for

using the module beyond 10 years. For enquiries on battery replacement service,
contact your nearest Yokogawa Electric representative or sales office. (The module
has a built-in lithium battery. Lithium batteries may exhibit decreased voltage, and in
rare cases, leakage problems after ten years.)

� Discharge static electricity before operating the system:
- Because static charge can accumulate in dry conditions, first touch grounded metal

to discharge any static electricity before touching the system.

� Never use solvents such as paint thinner for cleaning:
- Gently clean the surfaces of the FA-M3 controller with a cloth that has been soaked

in water or a neutral detergent and wringed.
- Do not use volatile solvents such as benzine or paint thinner or chemicals for

cleaning, as they may cause deformity, discoloration, or malfunctioning.

� Avoid storing the FA-M3 controller in places with high temperature or
humidity:
- CPU modules and temperature control modules (F3CT04-�N, F3CR04-�N,

F3CV04-1N) have built-in batteries. Avoid storing modules with built-in batteries
under high temperature or humidity conditions. Storage at room temperature is
recommended.

- The service life of batteries may be shortened when installed or stored at locations
of extreme low or high temperatures. Beware that service life of batteries may be
drastically shortened under high-temperature conditions (storage temperature
should be between –20°C and 75°C).

� Always turn off the power before installing or removing modules:
- Failing to turn off the power supply when installing or removing modules, may result

in damage.

� Do not touch components in the module:
- In some modules you can remove the right-side cover and install ROM packs or

change switch settings. While doing this, do not touch any components on the
printed-circuit board, otherwise components may be damaged and modules may fail
to work.

� Do not use unused terminals:
- Do not connect wires to unused terminals on a terminal block or in a connector.

Doing so may adversely affect the functions of the module.

 vii

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

� Waste Electrical and Electronic Equipment
Waste Electrical and Electronic Equipment (WEEE), Directive 2002/96/EC
(This directive is only valid in the EU.)

This product complies with the WEEE Directive (2002/96/EC) marking requirement.
The following marking indicates that you must not discard this electrical/electronic
product in domestic household waste.

Product Category
With reference to the equipment types in the WEEE directive Annex 1, this product is
classified as a “Monitoring and Control instrumentation” product.
Do not dispose in domestic household waste.
When disposing products in the EU, contact your local Yokogawa Europe B. V. office.

 viii

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

Introduction

� Overview of the Manual
This manual describes the network functions of the F3SP66-4S and F3SP67-6S
sequence CPU modules for use with the Range-free Multi-controller FA-M3. For details
on sequencing, debug, storage and other non-network functions of the modules, see
"Sequence CPU – Functions (for F3SP66-4S, F3SP67-6S)" (IM34M6P14-01E).

� How to Read the Manual
Start with Chapter 1, "CPU Built-in Network Functions," which outlines the network
functions of the modules.
Chapters 2 and beyond describe the main protocols and network functions in separate
chapters. You may read selected chapters that relate to your application. Each chapter
is further divided by sub-function with detailed descriptions on usage, setup and
instructions/commands. References to other manuals for more details are included
wherever appropriate.

� Other User’s Manuals
Be sure to read each of the following manuals, in addition to this manual.

� For information on the general functions of the F3SP66-4S or F3S67-6S
sequence CPU module, refer to:
- Sequence CPU - Functions (for F3SP66-4S, F3SP67-6S) (IM 34M6P14-01E)

� For information on the instructions used with sequence CPUs, refer to:
- Sequence CPU - Instructions (IM34M6P12-03E)

� For information on the commands and responses of personal computer
link functions, refer to:
- Personal Computer Link Command (IM34M6P41-01E).

� When creating programs using ladder language, refer to:
- FA-M3 Programming Tool WideField2 (IM34M6Q15-01E)

� For information on the specifications*, configuration*, installation,
wiring, trial operation, maintenance and inspection of the FA-M3, as
well as information on the system-wide limitation of module installation,
refer to:
- Hardware Manual (IM34M6C11-01E).

*: For information on the specifications of products other than the power supply module, base module, I/O module, cable
and terminal block unit, refer to their respective user’s manuals.

 ix

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

Read the following user’s manuals, as required.

� For information on the functions of fiber-optic FA-bus modules, refer to:
- Fiber-optic FA-bus Module and Fiber-optic FA-bus Type 2 Module

(IM34M6H45-01E).

� For information on the functions of FA link H and fiber-optic FA link H
modules, refer to:
- FA Link H Module, Fiber-optic FA Link H Module (IM34M6H43-01E).

� For information on the FL-net functions, refer to:
- FL-net (OPCN-2) Interface Module (IM 34M6H32-02E)

� For information on the functions of the Ethernet Interface Module, refer
to:
- Ethernet Interface Module (IM 34M6H24-01E)

� For information on the functions of BASIC CPU modules, refer to:
- BASIC CPU Modules and YM-BASIC/FA Programming Language

(IM34M6Q22-01E).

 x

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

Copyrights and Trademarks

� Copyrights
Copyrights of the programs and online manual included in this CD-ROM belong to
Yokogawa Electric Corporation.
This online manual may be printed but PDF security settings have been made to prevent
alteration of its contents.
This online manual may only be printed and used for the sole purpose of operating this
product. When using a printed copy of the online manual, pay attention to possible
inconsistencies with the latest version of the online manual. Ensure that the edition
agrees with the latest CD-ROM version.
Copying, passing, selling or distribution (including transferring over computer networks)
of the contents of the online manual, in part or in whole, to any third party, is strictly
prohibited. Registering or recording onto videotapes and other media is also prohibited
without expressed permission of Yokogawa Electric Corporation.

� Trademarks
The trade and company names that are referred to in this document are either
trademarks or registered trademarks of their respective companies.

 TOC-1

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

CONTENTS
Applicable Product ..i
Important ...ii
Introduction..viii
Copyrights and Trademarks ..x
1. CPU Built-in Network Functions ... 1-1

1.1 Overview of CPU Built-in Network Functions.................. 1-1
1.2 10BASE-T/100BASE-TX Connector Specifications 1-2

1.2.1 CPU Built-in 10BASE-T/100BASE-TX Connector
Specifications... 1-2

1.2.2 Cable Connection .. 1-3
1.2.3 Network Setup before Operation... 1-4

1.3 CPU Built-in Network Diagnosis Function....................... 1-6
1.3.1 Self Diagnosis.. 1-6
1.3.2 ping.. 1-6
1.3.3 Troubleshooting Communications Problems............................. 1-7

2. Socket Communications Function ... 2-1

2.1 Overview of Socket Communications Function................................... 2-1
2.1.1 Overview of Socket Communications.. 2-1
2.1.2 Socket Communications Functions Supported by the

Module... 2-2
2.2 Socket Communications Function Specifications............................... 2-3

2.2.1 Socket Communications Function Specifications...................... 2-3
2.2.2 List of Socket Communications Instructions.............................. 2-3
2.2.3 Special Relays and Special Registers 2-4

2.3 Socket Communications Network Configurations 2-5
2.4 Socket Communications Setup ... 2-6

2.4.1 Basic Setup ... 2-6
2.4.2 Optional Setup... 2-6

2.5 Using Socket Communications ... 2-7
2.5.1 UDP/IP Socket Communications Procedure 2-7
2.5.2 TCP/IP Socket Communications Procedure 2-12
2.5.3 Precautions about Socket Communications............................ 2-21

2.6 Socket Instructions ... 2-23
2.6.1 Using Socket Instructions.. 2-23
2.6.2 List of Socket Instructions.. 2-37

FA-M3
Sequence CPU – Network Functions
(for F3SP66-4S, F3SP67-6S)

IM 34M6P14-02E 1st Edition

 TOC-2

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

2.6.3 Socket Instruction Specifications... 2-38
2.6.3.1 UDP/IP Communications Preparation Instructions... 2-38

 UDP/IP Open (UDPOPEN) ... 2-38
 UDP/IP Close (UDPCLOSE)... 2-40

2.6.3.2 UDP/IP Send and Receive Instructions 2-42
 UDP/IP Send Request (UDPSND)...................................... 2-42
 UDP/IP Receive Request (UDPRCV) 2-45

2.6.3.3 TCP/IP Communications Preparation Instructions... 2-48
 TCP/IP Open (TCPOPEN) .. 2-48
 TCP/IP Close (TCPCLOSE).. 2-51
 TCP/IP Connect Request (TCPCNCT) 2-53
 TCP/IP Listen Request (TCPLISN) 2-56

2.6.3.4 TCP/IP Send and Receive Instructions.................... 2-59
 TCP/IP Send Request (TCPSND)....................................... 2-59
 TCP/IP Receive Request (TCPRCV) 2-62

2.7 Socket Communications Sample Program... 2-65
2.7.1 UDP/IP Echo Server.. 2-66
2.7.2 TCP/IP Echo Server .. 2-72

3. FTP Function .. 3-1

3.1 Overview of FTP Function .. 3-1
3.1.1 Description of FTP... 3-1
3.1.2 FTP Functions Supported by the Module.................................. 3-2

3.2 FTP Network Configurations and Access Methods............................. 3-3
3.2.1 FTP Connection on Ethernet ... 3-3

3.3 FTP Client... 3-7
3.3.1 FTP Client Specifications... 3-7
3.3.2 FTP Client Setup ... 3-8
3.3.3 Using FTP Client ... 3-9

3.4 FTP Client Instructions ... 3-11
3.4.1 Using FTP Client Instructions ...3-11
3.4.2 List of FTP Client Instructions.. 3-14

3.5 FTP Client Instruction Specifications.. 3-15
3.5.1 FTP Client Open (FTPOPEN) ... 3-15
3.5.2 FTP Client Quit (FTPQUIT) ... 3-18
3.5.3 FTP Client Put File (FTPPUT)... 3-20
3.5.4 FTP Client Put Unique File (FTPPUTU).................................. 3-23
3.5.5 FTP Client Append File (FTPAPEND) 3-26
3.5.6 FTP Client Get File (FTPGET) .. 3-29
3.5.7 FTP Client Change Directory (FTPCD) 3-32
3.5.8 FTP Client Change Local Directory (FTPLCD) 3-34
3.5.9 FTP Client Current Directory Info (FTPPWD) 3-36
3.5.10 FTP Client Get File List (FTPLS)... 3-38
3.5.11 FTP Client Delete File (FTPDEL) .. 3-41
3.5.12 FTP Client Rename File (FTPREN) .. 3-43
3.5.13 FTP Client Make Directory (FTPMKDIR) 3-45

 TOC-3

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.5.14 FTP Client Remove Directory (FTPRMDIR)............................ 3-47
3.5.15 FTP Client Representation Type (FTPTYPE).......................... 3-49

3.6 FTP Server.. 3-51
3.6.1 FTP Server Specifications ... 3-51
3.6.2 FTP Server Setup.. 3-52
3.6.3 Using FTP Server .. 3-53
3.6.4 FTP Server Log ... 3-55
3.6.5 FTP Server Instructions... 3-57

3.6.5.1 FTP Server Run Request Service (FTPSRUN) 3-57
3.6.5.2 FTP Server Stop Request Service (FTPSSTOP) 3-59

3.7 Virtual Directory Commands.. 3-61
3.7.1 Overview of Virtual Directory Commands 3-61
3.7.2 Virtual Directory Command Setup... 3-65
3.7.3 Using Virtual Directory Commands ... 3-66
3.7.4 Virtual Directory Command Specifications 3-73
3.7.5 File/Device Conversion & Transfer Commands 3-73

3.7.5.1 Convert CSV File to Device (F2DCSV).................... 3-74
3.7.5.2 Convert Device to CSV File (D2FCSV).................... 3-77
3.7.5.3 Convert Binary File to Device (F2DBIN) 3-80
3.7.5.4 Convert Device to Binary File (D2FBIN) 3-82

3.7.6 Device Access Commands.. 3-84
3.7.6.1 Bit Read (BRD)... 3-85
3.7.6.2 Bit Write (BWR) .. 3-86
3.7.6.3 Bit Fill (BFL).. 3-87
3.7.6.4 Word Read (WRD) ... 3-88
3.7.6.5 Word Write (WWR)... 3-89
3.7.6.6 Word Fill (WFL) .. 3-90

3.7.7 Maintenance Commands... 3-91
3.7.7.1 Load Project (LOAD) .. 3-92
3.7.7.2 Save Project (SAVE) .. 3-94
3.7.7.3 Get Log (LOG).. 3-96
3.7.7.4 CPU Info (CPUINFO) ... 3-97
3.7.7.5 Application Info (APINFO).. 3-99
3.7.7.6 Run Mode (RUN).. 3-101
3.7.7.7 Stop Mode (STOP) ... 3-102
3.7.7.8 Activate Block (ACT) .. 3-103
3.7.7.9 Inactivate Block (INACT) .. 3-104
3.7.7.10 Reset CPU (CPURESET) 3-105
3.7.7.11 Clear Alarms (ALMCLEAR).................................... 3-106
3.7.7.12 Help (HELP) ... 3-108

3.7.8 File Operation and Disk Operation Commands..................... 3-109
3.7.8.1 Unmount (UNMOUNT) ... 3-110

3.7.9 Card Batch File Execution Commands3-111
3.7.9.1 Run Card Batch File (BATGO)3-111

3.8 FTP Function Sample Program.. 3-113
3.8.1 FTP using Ethernet.. 3-114

 TOC-4

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

4. Higher-level Link Service
(Personal Computer Link Function) ... 4-1
4.1 Overview of Higher-level Link Service .. 4-1
4.2 System Configurations for Higher-level Link Service 4-2
4.3 Personal Computer Link Function via SIO Port 4-6

4.3.1 Specifications... 4-6
4.3.2 Communications Protocol.. 4-8
4.3.3 Commands and Responses .. 4-9
4.3.4 Setup for Personal Computer Link Function via SIO Port....... 4-16
4.3.5 Using Personal Computer Link Function via SIO Port 4-17

4.4 Higher-level Link Service via Ethernet.. 4-18
4.4.1 Specifications... 4-18
4.4.2 Communications Protocol.. 4-18
4.4.3 Data Frame.. 4-19
4.4.4 Exit Code and Detailed Error Code in Response.................... 4-25
4.4.5 Specifying Devices in Commands ... 4-26
4.4.6 Setup for Higher-level Link Service via Ethernet..................... 4-28
4.4.7 Using Higher-level Link Service via Ethernet 4-30

4.5 List of Personal Computer Link Commands 4-31

5. Remote Programming Service .. 5-1
5.1 Remote Programming Service Specifications 5-2
5.2 Network Configurations.. 5-3

5.2.1 USB Connection .. 5-3
5.2.2 Ethernet Connection.. 5-4
5.2.3 Modem Connection ... 5-4

5.3 Remote Programming Service Setup.. 5-5
5.3.1 For USB Connection.. 5-5
5.3.2 For Ethernet Connection ... 5-6

Index ...Index-1
Revision Information ...i

 1-1

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

1. CPU Built-in Network Functions
This chapter describes the built-in network functions of the CPU module.

1.1 Overview of CPU Built-in Network
Functions
The CPU module comes ready with built-in network capability, which supports the
functions described below.

 Socket Communications Function
The socket communications function enables communications between the CPU module
and a PC or other equipment using the TCP/IP or UDP/IP protocol. It also allows
broadcasting using UDP/IP.

 FTP Function
The FTP function performs file transfer between the CPU module and a PC or other
equipment. Both FTP client function and FTP server function are supported.
In addition, a virtual directory function is provided as a proprietary extension of the FTP
server function. The virtual directory function enables various FA-M3 operations to be
added to FTP commands. These operations include manipulating device data and
switching the operating mode.

 Higher-level Link Service (PC Link Function)
The Higher-level Link Service (PC Link function) is a FA-M3 proprietary protocol, which
enables various FA-M3 operations such as reading and writing device data or switching
operating mode to be performed from a higher-level computer (e.g. PC).

 Remote Programming Service
The remote programming service enables connection between the Programming Tool
WideField2 software and the CPU module.

 DNS Function
The DNS function allows DNS clients to access the network using hostnames in place of
IP addresses in FTP client instructions and socket instructions. To use DNS, a DNS
server must be present on the network.

 1-2

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

1.2 10BASE-T/100BASE-TX Connector
Specifications
This section describes the 10BASE-T/100BASE-TX connector, which is located on
the front panel of the module.

1.2.1 CPU Built-in 10BASE-T/100BASE-TX Connector
Specifications

 General Specifications
Table 1.2.1 10BASE-T/100BASE-TX Connector Specifications

Specifications Item
Ethernet

Interface 10BASE-T 100BASE-TX
Access control CSMA/CD
Transmission rate 10 Mbps 100 Mbps
Transmission method Baseband

Tr
an

sm
is

si
on

Sp

ec
ifi

ca
tio

ns

Maximum distance
between nodes *1

100 m

Protocols *2 TCP, UDP, IP, ICMP, ARP, FTP
Transmission rate setting Auto-detect (10 Mbps or100Mbps)
Transmission mode Full duplex or half duplex

*1: Distance between a hub and the module.
*2: Some parts of the software of the Regents of University of California have been incorporated.

TIP
The CPU module is not counted as a module in the maximum limit of six installed Ethernet Interface
Modules defined in the "Hardware Manual" (IM34M6C11-01E).

 Special Relays and Special Registers
The tables below list the special relays and special registers related to the 10BASE-T/
100BASE-TX connector.

SEE ALSO
- For details on special relays and special registers related to the Socket Communications function,

see Subsection 2.2.3, "Special Relays and Special Registers."

- For details on special relays and special registers related to the FTP Client function, see
" Resource Relays" of Subsection 3.4.1, "Using FTP Client Instructions."

 Special Relays

Table 1.2.2 Special Relays Related to 10BASE-T/100BASE-TX Connector
Category 10BASE-T/100BASE-TX Connector Special Relays

No. Name Function Description

M0241 Link Status ON: Link is up
OFF: Link is down

Indicates the status of the link. Its status is
interlocked with the ON/OFF status of the LNK
LED located on the front panel of the module.

 Special Registers

Table 1.2.3 Special Registers Related to 10BASE-T/100BASE-TX Connector
Category 10BASE-T/100BASE-TX Connector Special Registers

No. Name Function Description
Z0114 MAC address low word Low-order 16 bits [$xxxx]
Z0115 MAC address mid word Mid-order 16 bits [$64xx]
Z0116

MAC Address
MAC address high word High-order 16 bits [$0000]

 1-3

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

1.2.2 Cable Connection
This subsection describes how to connect a cable to the 10BASE-T/100BASE-TX
connector.

 Connecting using 10BASE-T
10BASE-T is an Ethernet connection method using twisted-pair cables (STP/UTP
cables).
- The transmission rate is 10 Mbps.
- Uses category 3, 4 or 5 cables.
- In a 10BASE-T network, equipment such as PCs are connected to a hub using a

star topology.
- Hubs and twisted-pair cables used must conform to the Ethernet (10BASE-T)

specifications.
- Up to 4 segments are allowed for cascade connections to the hub.
- The maximum length allowed for the twisted-pair cables is 100 m.

 Connecting using 100BASE-TX
100BASE-TX is an Ethernet connection method using twisted-pair cables (STP/UTP
cables).
- The transmission rate is 100 Mbps.
- Uses category 5 cables.
- In a 100BASE-TX network, equipment such as PCs are connected to a hub using a

star topology.
- Hubs and twisted-pair cables used must conform to the Ethernet (100BASE-TX)

specifications.
- Up to 2 segments are allowed for cascade connections to the hub.
- The maximum length allowed for the twisted-pair cables is 100 m.

 How to Connect the Cable
Push the modular plug of the cable into the modular jack of the10BASE-T/100BASE-TX
connector until it clicks into place.

· Insert the cable with the latch facing left (towards the
power supply module) until it locks into place with a
clicking sound.

F0101.VSD
Figure 1.2.1 Orientation for Cable Insertion

 1-4

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

1.2.3 Network Setup before Operation
This subsection describes the basic network setup (IP address, etc.) before operation.
The setup involves changing CPU property values using any of the following means:
- Setup using WideField2 (via USB)
- Setup using WideField2 (via Ethernet)
- Setup using rotary switch function
- Setup using card batch file function

SEE ALSO
For details of CPU properties, see Chapter A9, "Setup Description" of "Sequence CPU – Functions (for
F3SP66-4S, F3SP67-6S)" (IM34M6P14-01E)

 Setup using WideField2 (via USB)
Connect the PC and the CPU module using USB, and change the required CPU
property values using the Programming Tool WideField2 software (hereinafter
abbreviated as "WideField2").

SEE ALSO
For details on how to change CPU property values using WideField2, see "FA-M3 Programming Tool
WideField2" (IM34M6Q15-01E).

 Setup using WideField2 (via Ethernet)
Connect the PC and the module using a crossed cable, and change the required CPU
property values using WideField2. Beware that the network configuration on the PC
must match the factory network settings of the module, a subset of which is shown in the
table below.

Table 1.2.4 Factory Network Settings (subset)
Setup Item Initial Value

IP address 192.168.0.2
Subnet mask 255.255.255.0

TIP
If the module is shipped with no configuration, the IP address and other settings may be different from
its normal factory settings. In such situations, you can perform network setup using other means
described in this section or restore the module to its factory settings using the rotary switch function.

SEE ALSO
- For details on how to change CPU properties using WideField2, see "FA-M3 Programming Tool

WideField2" (IM34M6Q15-01E).

- For details on network configuration of the PC, read the documentation of the PC and the operating
system.

- For details on how to restore the module to factory settings using the rotary switch function, see
Subsection B1.5.4, "Restore Factory Settings" of "Sequence CPU – Functions (for F3SP66-4S,
F3SP67-6S)" (IM34M6P14-01E).

 1-5

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Setup using rotary switch function
You can load a CPU property file stored on a SD memory card into the module using the
rotary switch. To find out the current module settings, you can also save CPU property
data from the module to a CPU property file on the SD memory card. The CPU property
file can be edited using any generic text editor.

SEE ALSO
- For details on how to load data using the rotary switch function, see Subsection B1.4.6, "Load

Project from CARD1" of "Sequence CPU – Functions (for F3SP66-4S, F3SP67-6S)"
(IM34M6P14-01E).

- For details on how to save data using the rotary switch function, see Subsection B1.4.4, "Save
Project to CARD1" of "Sequence CPU – Functions (for F3SP66-4S, F3SP67-6S)"
(IM34M6P14-01E).

 Setup using card batch file function
You can load a CPU property file stored on the SD memory card to the module by
executing a card batch file stored on an SD memory card. To check current module
settings, you can save CPU property data from the module to a CPU property file on the
SD memory card. The CPU property file can be edited using any generic text editor.

SEE ALSO
- For details on how to load data using the card batch file function, see Subsection B2.8.2.1, "Load

Project (LOAD)" of "Sequence CPU – Functions (for F3SP66-4S, F3SP67-6S)" (IM34M6P14-01E).

- For details on how to save data using the card batch file function, see Subsection B2.8.2.2, "Save
Project (SAVE)" of "Sequence CPU – Functions (for F3SP66-4S, F3SP67-6S)" (IM34M6P14-01E).

 1-6

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

1.3 CPU Built-in Network Diagnosis Function
This section describes the built-in network diagnosis function of the CPU module.

1.3.1 Self Diagnosis
The module has no self diagnosis function related to its network function.

1.3.2 ping
"ping" is a standard command used for verifying connections between machines
connected using Ethernet. The module is capable of replying to ping commands. By
executing a "ping" command from the command prompt of a PC, specifying the IP
address or hostname of the module, you can determine whether the connection
between the module and the PC is normal. If connection is normal, the module returns a
reply within the timeout interval.
Example: Executing a "ping" command to IP address 192.168.0.6 from the command
prompt of a PC and receiving a reply:

C:\>ping 192.168.0.6

Pinging 192.168.0.6 with 32 bytes of data:

Reply from 192.168.0.6: bytes=32 time<10ms TTL=128

Reply from 192.168.0.6: bytes=32 time<10ms TTL=128

Reply from 192.168.0.6: bytes=32 time<10ms TTL=128

Reply from 192.168.0.6: bytes=32 time<10ms TTL=128

Ping statistics for 192.168.0.6:

 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

 Minimum = 0ms, Maximum = 0ms, Average = 0ms

Example: Executing a "ping" command to IP address 10.0.142.79 from the command
prompt of a PC and receiving no reply:

C:\>ping 10.0.142.79

Pinging 10.0.142.79 with 32 bytes of data:

Request timed out.

Request timed out.

Request timed out.

Request timed out.

Ping statistics for 10.0.142.79:

 Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),

Approximate round trip times in milli-seconds:

 Minimum = 0ms, Maximum = 0ms, Average = 0ms

Example: Executing a "ping" command to hostname "abc001" from the command
prompt of a PC but the hostname or DNS setup is invalid:

C:\>ping abc001

Unknown host abc001.

 1-7

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

1.3.3 Troubleshooting Communications Problems
The subsection describes how to troubleshoot communications problems using the CPU
built-in network functions.

 If "ping" Fails:
If no reply is received for a "ping" command executed as described in Subsection 1.3.2,
"ping," perform the following checks:

 Are cables attached securely?
- Ensure that all cables to the module and network equipment (hub, routers, etc.) are

securely attached.
- If the remote equipment is directly connected to the module, ensure that a crossed

cable is used.

 Is power supplied to network equipment?
- Ensure that power is supplied to the module and network equipment (hub, router,

etc.).

 Further checks
Perform the checks described in "If "Ping" is Successful:" below

 If "ping" is Successful:
If a reply is returned for a "ping" command executed as described in Subsection 1.3.2,
"ping," perform the following checks:

 Are CPU property values valid?
- Ensure that the IP address and subnet mask values are valid.
- If hostnames are used for communications, check DNS related setup. Check with

the network administrator on the required DNS settings. To narrow down
possibilities, we recommend that you perform a test using the IP address in place of
the hostname.

- If you are using FTP client or socket communications functions of the module, check
the destination IP address and port number setup.

 Are network equipment configured properly?
- Check the setup of all network equipment by reading the related documentation.
- If the PC is running as a client through higher-level link service or tool service,

ensure that the IP address or port number is correctly specified for the module.
- If a router is used, check whether its specific port number is blocked. Similarly, if a

PC is used, check whether its specific port is blocked by a firewall.

 Is network configuration valid?
- Check network configuration details with the network administrator.
- If hostnames are used for communications, check the use of the DNS server.

Blank Page

 2-1

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

2. Socket Communications Function
This chapter describes the socket communications function.

2.1 Overview of Socket Communications
Function
This section gives a general overview of socket communications as a standard
communications protocol, followed by description of the socket communications
functions supported by the module.

2.1.1 Overview of Socket Communications
Socket communications provides an interface for easy communications using the
TCP/IP and UDP/IP protocols. It is known as "Winsock" in Microsoft Windows
terminology. With socket communications, PCs installed with UNIX or Windows can
communicate with each other using the TCP/IP or UDP/IP protocols.
In socket communications, destinations are viewed as sockets (or plugs), each
represented by a combination of an IP address and a port number. By issuing send
requests and receive requests to a socket, user programs can accomplish TCP/IP
communications and UDP/IP communications without complex programming.

F0201.VSD

IP address: xxx.xxx.xxx.2
Port number: 10630

Server A

IP address: xxx.xxx.xxx.26
Port number: 30100

Server B

IP address: xxx.xxx.xxx.150
Port number: 15117

Server C

Client

C
onnect

Com
mun

ica
te

Plug for server A

Plug for server B

Plug for server C

Client and server communicate with
each other through a socket/plug
connection.

C
onnect

Figure 2.1.1 Roles of Sockets (Illustrative Diagram)

 2-2

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

2.1.2 Socket Communications Functions Supported by the
Module
Socket communications functions supported by the module are described below.

 TCP/IP socket communications
TCP/IP socket communications performs TCP/IP communications by establishing a
virtual telephone-line-like one-to-one transmission channel between two nodes. Data
retransmission is carried out within the protocol, which is transparent to the application.
The application can safely assume a reliable transmission channel. Both client
communications and server communications can be carried out.
The price for reliable data transmission is lower transmission speed compared to UDP
due to heavier protocol processing.

 UDP/IP socket communications
UDP/IP socket communications differ from TCP/IP socket communications in the
following ways:
- Reliable data transmission is not guaranteed by the protocol (throw-and-forget)
- Multiple nodes can communicate using the same socket without establishing a one-

to-one transmission channel.
- Supports broadcast feature.
Reliable data transmission is the responsibility of the application. This allows a simpler
protocol and thus a higher transmission speed than TCP.

 UDP/IP broadcast
UDP/IP broadcast allows the same packet to be sent to a large number of unspecified
network nodes using a special IP address representing the entire network.
The multicast function is not supported.

 Features
- Socket communications instructions

A wide range of socket communications instructions are provided. This simplifies
programming and improves program readability when compared to the traditional
relay interface.

- Network filter function

Enables creation of secure applications by restricting the IP addresses that are
allowed to establish connections. A mask can also be used to grant permissions to a
class of network addresses.

- Automatic allocation of socket ID

Socket IDs are automatically allocated when sockets are opened, so that
management of socket ID numbers is transparent to the programmer when creating
or reusing communications programs.

- Error handling by status notification

At the end of instruction execution, any error status is reported to a user for further
handling. Programming for reconnecting after disconnection and retransmission is
relatively easy.

 2-3

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

2.2 Socket Communications Function
Specifications
This section describes the specifications of the socket communications function.

2.2.1 Socket Communications Function Specifications
Table 2.2.1 Socket Communications Function Specifications

 TCP/IP
 Socket Service

UDP/IP
Socket Service

Number of sockets 8 8
Send buffer size*4 4K bytes per socket 4K bytes per socket
Receive buffer size*4 4K bytes per socket 4K bytes per socket
Maximum size for sending*1 2K bytes per socket 2K bytes per socket
Maximum size for receiving*1 2K bytes per socket 4K bytes per socket
Number of registered IP addresses*2 16 (Socket address settings 1-16 of CPU properties)
Number of TCP/IP server
connections*3

7 –

*1: This is the maximum data size that can be handled per send or receive operation for TCP/IP sockets or the maximum
packet size that can be handled for UDP/IP sockets.

*2: This limit applies only if socket address settings of CPU properties are used in socket instructions. There is no limit if IP
addresses and port numbers are directly specified in socket instructions.

*3: This limit applies to the case where one TCP/IP socket is used for listening and the rest are used for client connections.
*4: In the event of multiple send and receive events within a short duration, the buffer size available for send/receive data is

somewhat reduced due to consumption by protocol headers.

2.2.2 List of Socket Communications Instructions
Table 2.2.2 List of Socket Communications Instructions

Service Name Ladder Instruction Description
UDP/IP Open UDPOPEN Opens a UDP/IP socket to enable communications.
UDP/IP Close UDPCLOSE Closes a UDP/IP socket.
UDP/IP Send Request UDPSND Sends data from a specified UDP/IP socket.
UDP/IP Receive Request UDPRCV Receives data from a specified UDP/IP socket.
TCP/IP Open TCPOPEN Opens a TCP/IP socket.
TCP/IP Close TCPCLOSE Closes a TCP/IP socket.
TCP/IP Connect Request TCPCNCT Issues a connection request to a server as a client, and

connects to the server if permitted to do so.
TCP/IP Listen Request TCPLISN Waits for a connection request from any client as a server,

and establishes connection if a request is received.
TCP/IP Send Request TCPSND Sends data from a specified TCP/IP socket.
TCP/IP Receive Request TCPRCV Receives data from a specified TCP/IP socket.

 2-4

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

2.2.3 Special Relays and Special Registers

 Special Relays
Table 2.2.3 Special Relays Related to Socket Communications

Category Continuous Type Application Instruction Resource Relays
No. Name Function Description

M1028 No Unused UDP
Socket

No unused UDP
socket is available. Turns on when all UDP/IP sockets are in use.

M1029 No Unused TCP
Socket

No unused TCP
socket is available. Turns on when all TCP/IP sockets are in use.

M1105
to

M1120
Socket Open Socket is open.

Each socket ID is associated with one special relay. The
relay for a socket ID turns on while the socket ID is open.
When the relay for a socket ID is OFF, the socket ID
cannot be used.
This is a read-only relay. Do not write to it.

M1121
to

M1136
Socket Busy Socket is busy.

Each socket ID is associated with one special relay. The
relay for a socket ID turns on during execution of any
socket instruction using the socket ID. When the relay for
a socket ID is ON, no other socket communication
instruction using the same socket ID can be executed
except for concurrent execution of sending and
receiving.
This is a read-only relay. Do not write to it.

M1073
to

M1088
Socket Sending Socket is performing

send processing.

Each socket ID is associated with one special relay. The
relay for a socket ID turns on during send processing of
the socket. When the relay for a socket ID is ON, no
send request is allowed for the same socket ID.
This is a read-only relay. Do not write to it.

M1089
to

M1104
Socket Receiving Socket is performing

receive processing.

Each socket ID is associated with one special relay. The
relay for a socket ID turns on during receive processing
of the socket. When the relay for a socket ID is ON, no
receive request is allowed for the same socket ID.
This is a read-only relay. Do not write to it.

 Special Registers
There are no special registers related the socket communications function.

 2-5

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

2.3 Socket Communications Network
Configurations
This section describes possible network configurations for using socket
communications functions.

 Network Configuration
Socket communication functions can be used in an Ethernet network environment.

 IP Routing
IP routing using default gateway and subnet mask is supported. Both can be specified
using Ethernet setup of CPU properties.

 2-6

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

2.4 Socket Communications Setup
This section describes how to configure socket communications before use.

2.4.1 Basic Setup
The table below shows required setup for socket communications before use.

Table 2.4.1 Basic Setup for Socket Communications
Name of Setup Type of Setup SEE ALSO*1

Ethernet setup CPU properties A9.5.2, 'Ethernet Setup"
Socket address setup CPU properties A9.5.3, "Socket Setup"

*1: For details on individual setup items, see "Sequence CPU – Functions (for F3SP66-4S, F3SP67-6S)"
(IM34M6P14-01E).

 Ethernet setup
The Ethernet setup configures the CPU module for joining an Ethernet network.
- Minimally, you must specify the IP address and subnet mask. If you set the subnet

mask to "0.0.0.0", the default mask for the class of the IP address is used.
- If you need to access another network via a gateway, you must define the default

gateway.
- To access other network nodes by hostname, you must define the DNS related

settings (DNS server, my hostname, domain name, domain suffixes).

 Socket address setup
Socket address setup defines the port number and IP address (or hostname) of one or
more socket communications destinations. Once defined, you can specify a destination
using its socket address setting number in socket instructions.

2.4.2 Optional Setup
The socket communications function may be configured as required before use.

Table 2.4.2 Optional Setup for Socket Communications
Name of Setup Type of Setup SEE ALSO*1

Socket setup CPU properties A9.5.3, "Socket setup"
Network filter setup CPU properties A9.5.8, "Network filter setup"

*1: For details on individual setup items, see "Sequence CPU – Functions (for F3SP66-4S, F3SP67-6S)"
(IM34M6P14-01E).

 Socket setup
Perform socket setup in the following situations:
- If using UDP/IP broadcast function
- To modify the TCP/IP keep-alive time

 Network filter setup
You may perform network filter setup to restrict the IP addresses for connection to the
module. By default, connections from all IP addresses are allowed. This setup affects all
functions (e.g. remote programming service, FTP server, etc.) running on TCP/IP or
UDP/IP.

 2-7

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

2.5 Using Socket Communications
This section describes the procedure and precautions for using the socket
communications function.

2.5.1 UDP/IP Socket Communications Procedure
This subsection describes the procedure for UDP/IP socket communications.

 Flowchart for UDP/IP Socket Communications
The flowchart for UDP/IP socket communications is shown below.

BEGIN

Open UDP/IP socket

UDP/IP Send
or

UDP/IP Receive

Close UDP/IP socket

END

Beginning of Loop
(if required)

End of loop
(if required)

UDP/IP Open (UDPOPEN) instruction

UDP/IP Send request (UDPSND) instruction
UDP/IP Receive request (UDPRCV) instruction

UDP/IP Close (UDPCLOSE) instruction

Instructions:

F0204.VSD
Figure 2.5.1 Flowchart for UDP/IP Socket Communications

 2-8

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Preparing for UDP/IP Socket Communications

 Instructions Used

Table 2.5.1 Instructions Used for Preparation of UDP/IP Socket Communications

Instruction Name Instruction
Mnemonic Description

UDP/IP Open UDPOPEN Opens a UDP/IP socket.

 Procedure
1. Execute a UDP/IP Open (UDPOPEN) instruction to open a UDP/IP socket.

Opening a socket secures system resources required for communications.
If a socket is successfully opened, the UDP/IP Open (UDPOPEN) instruction returns a
socket ID as the Status. This socket ID must be specified in subsequent send or receive
instructions to identify the socket.
Up to 8 UDP/IP sockets can be open concurrently at any one time.

 Send Procedure for UDP/IP Socket
This procedure sends data stored in devices (e.g. file registers (B)) via an open socket
by executing a UDP/IP Send Request (UDPSND) instruction.

F0205.VSD

$0201
$0300
$AF85
$07CC Send

Devices
(D, B etc.)

$02010300AF85 ...

UDPSND

$341A
$EFFF
$8E8E
$6555

Transmission text
stored by user
(Example)

Figure 2.5.2 Send Procedure for UDP/IP Socket

 Instructions Used

Table 2.5.2 Instructions Used in Send procedure for UDP/IP Socket

Instruction Name Instruction
Mnemonic Description

UDP/IP Send Request UDPSND Sends data from a specified UDP/IP socket.

 Procedure
1. Execute a UDP/IP Send Request (UDPSND) instruction, specifying the socket ID,

destination, first device for send data, etc.
2. After transmission completes, the result signal is held to ON for one scan period,

and the execution status is returned in the specified device.

In step 1 above, specify the socket ID returned in status by the UDP/IP Open
(UDPOPEN) instruction.
If an error status is returned, perform retry processing as required.

 2-9

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Receive Procedure for UDP/IP Socket
This procedure receives data to a specified device via an open socket by executing a
UDP/IP Receive Request (UDPRCV) instruction. The processing differs depending on
whether receive data is present in the system control buffer when the request is issued
(that is, when the instruction is executed).

C
UDPRCV

F0206.VSD

No receive data
at time of request:

User-specified
device

Receive

System
control buffer

Cop
y

(1) Receive
request

Receive data present
at time of request:

(2) Wait to
receive

(3) Receive
event

(4) Receive
completed

C
UDPRCV

C
UDPRCV

Empty Empty

Empty Empty

Empty

Empty

User-specified
device

System
control buffer

(1) Receive
event

(2) Receive
request

(3) Receive
completed

C
UDPRCV

C
UDPRCV

Empty

Empty

Empty

Receive

Figure 2.5.3 Receive Procedure for UDP/IP Socket

 Instructions Used

Table 2.5.3 Instructions Used in Receive Procedure for UDP/IP Socket

Instruction Name Instruction
Mnemonic Description

UDP/IP Receive Request UDPRCV Receives data from a specified UDP/IP socket.

 2-10

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Procedure
1. Execute a UDP/IP Receive Request (UDPRCV) instruction, specifying the socket

ID, sender, first device for storing received data, size of receive area, etc.
2. After receiving is completed, the UDP/IP Receive Request (UDPRCV) instruction

outputs ON to the connection line, and stores the execution status to the specified
register. The received data is stored to device according to the specified first device
and size.

In step 1 above, specify the socket ID returned as status by the UDP/IP Open
(UDPOPEN) instruction.

At the end of receiving, the system control buffer is emptied by discarding all data to
prepare for receiving a new packet. You can, however, override this behavior by
specifying not to delete the packet using the buffer option in the instruction.

If the size of receive area specified in step 1 is smaller than the packet size, only data of
the specified size is stored to device, and the packet in the system buffer (including the
part of the packet that is not stored) is then discarded. You should specify the size of
receive area such that it is larger than the largest expected data size to be received. You
can specify not to remove the packet from the system control buffer using the buffer
option in the instruction.

 2-11

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Ending UDP/IP Socket Communications

 Instructions Used

Table 2.5.4 Instruction Used for Ending UDP/IP Socket Communications

Instruction Name Instruction
Mnemonic Description

UDP/IP Close UDPCLOSE Closes a specified UDP/IP socket.

 Procedure
1. Execute a UDP/IP Close (UDPCLOSE) instruction to close a UDP/IP socket after

use.

When a socket is closed, system resource allocated for the socket ID is released for use
by new UDP/IP open instructions.

 Canceling UDP/IP Socket Communications

 Instructions Used
None

 Procedure
1. Set the input condition of the executing UDP/IP socket instruction to OFF.

You can cancel the execution of a continuous type application instruction including a
UDP/IP socket instruction by turning off its input condition. However, when instruction
processing actually terminates is indefinite and send or receive processing may actually
be completed. Depending on the state of the destination, cancellation may sometimes
take a long time to complete.

SEE ALSO
For details on cancellation, see " Canceling Execution of Continuous Type Application Instructions" in
Subsection 2.6.1, "Using Socket Instructions".

 2-12

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

2.5.2 TCP/IP Socket Communications Procedure
This subsection describes the procedure for TCP/IP socket communications.

 Flowchart for TCP/IP Socket Communications
The procedure for TCP/IP socket communications differs for a server and a client.
A server runs in a passive mode, listening for connection requests from clients and
establishes a connection when it receives a request.
A client runs in an active mode, actively issuing a connection request, and establishing
connection with a ready destination.
The respective flowcharts for the communications procedures under these two
scenarios are shown on the following pages.

 2-13

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

Connection
BEGIN

Open TCP/IP socket

TCP/IP Send
or

TCP/IP Receive

Close TCP/IP socket

END

Beginning of loop
(if required)

End of loop
(if required)

TCP/IP Open
(TCPOPEN) instruction

TCP/IP Send Request
(TCPSND) instruction
TCP/IP Receive Request
(TCPRCV) instruction

TCP/IP Close
(TCPCLOSE) instruction

INSTRUCTION

Issue
TCP/IP Listen request

Any
connection request from

client?

No

User processing
- System processing
- External event

TCP/IP Listen Request
(TCPLISN) instruction

F0207.VSD

Connecting to
another client?

No

Yes

Send/Receive
BEGIN

(7 socket IDs max.)

END

Close TCP/IP socket TCP/IP Close
(TCPCLOSE) instruction

All
send/receive

ended?

Yes

No

Yes
(Get new socket ID for sending & receiving)

Used here
INSTRUCTION

Figure 2.5.4 Flowchart for TCP/IP Socket Communications for Server

 2-14

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

BEGIN

Open TCP/IP socket

TCP/IP Send
or

TCP/IP Receive

Close TCP/IP socket

END

Beginning of loop
(if required)

End of loop
(if required)

TCP/IP Open
(TCPOPEN) instruction

TCP/IP Send Request
(TCPSND) instruction
TCP/IP Receive Request
(TCPRCV) instruction

TCP/IP Close
(TCPCLOSE) instruction

INSTRUCTION

Issue
TCP/IP connection request

Connection to server
successful?

Yes

No

User processing - System processing
- External event

TCP/IP Connect Request
(TCPCNCT) instruction

F0208.VSD
Figure 2.5.5 Flowchart for TCP/IP Socket Communications for Client

 2-15

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Preparing for TCP/IP Socket Communications
The preparation for TCP/IP socket communications differs for a server and a client.

 For Server (passive mode)
Instructions Used:
Table 2.5.5 Instructions Used for Preparation of TCP/IP Socket Communications (for server)

Instruction Name Instruction
Mnemonic Description

TCP/IP Open TCPOPEN Opens a TCP/IP socket.
TCP/IP Listen
Request

TCPLISN Waits for a connection request from any client as
a server, and establishes connection if a request
is received.

Procedure
1. Execute a TCP/IP Open (TCPOPEN) instruction to open a TCP/IP socket. If

execution is successful, system resource required for communications is secured
and a socket ID is returned as its status.

2. Execute a TCP/IP Listen Request (TCPLISN) instruction to wait for connection
requests from clients, specifying the socket ID returned in step 1.

3. When a connection request is received from a client, the TCP/IP Listen Request
(TCPLISN) instruction establishes a connection, and if successful, the result signal
is held to ON for one scan period and a new socket ID for sending and receiving is
returned as its status.

After connection is established, sending and receiving with the client is carried out via
the socket ID returned in step 3. The socket ID used in step 2 remains valid, and the
same socket (that is, same port number) can be used to listen for another connection
request from a different client by re-executing step 2.
Up to 8 TCP/IP sockets can be open concurrently at any one time. Subtracting the one
socket used for listening, that means up to 7 concurrent client connections are allowed.

 2-16

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 For Client (active mode)
Instructions Used:
Table 2.5.6 Instructions Used for Preparation of TCP/IP Socket Communications (for server)

Instruction Name Instruction
Mnemonic Description

TCP/IP Open TCPOPEN Opens a TCP/IP socket.
TCP/IP Connect
Request

TCPCNCT Issues a connection request to a server as a client, and
connects to the server if permitted to do so.

Procedure
1. Execute a TCP/IP Open (TCPOPEN) instruction to open a TCP/IP socket. If

execution is successful, system resource required for communications is secured
and a socket ID is returned in status.

2. Execute a TCP/IP Connect Request (TCPCNCT) instruction to request for
connection to a server, specifying the socket ID opened in step 1, destination, etc.

3. If the server accepts the connection request, a connection is established and ready
for communications. At the same time, the TCP/IP Connect Request (TCPCNCT)
instruction turns on the result signal to notify execution completion.

After connection is established, sending and receiving with the server is carried out via
the socket ID returned in step 1.

 2-17

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Send Procedure for TCP/IP Socket Communications
This procedure sends data stored in devices via an open socket by executing a TCP/IP
Send Request (TCPSND) instruction.

F0209.VSD

$0201
$0300
$AF85
$07CC Send

Devices
(D, B etc.)

$02010300AF85 ...

TCPSND

$341A
$EFFF
$8E8E
$6555

User-stored
transmission text
(Example)

Figure 2.5.6 Send Procedure for TCP/IP Socket

 Instructions Used

Table 2.5.7 Instructions Used in Send Procedure for TCP/IP Socket

Instruction Name Instruction
Mnemonic Description

TCP/IP Send Request TCPSND Sends data from a specified TCP/IP socket.

 Procedure
1. Execute a TCP/IP Send Request (TCPSND) instruction, specifying the socket ID,

first device for send data, send data size, etc.
2. When transmission is completed, the TCP/IP Send Request (TCPSND) instruction

holds result signal to ON to notify execution completion. You can check whether
execution is successful by checking the returned status.

For a server machine, specify the socket ID returned as status by the TCP/IP Listen
Request (TCPLISN) instruction in step 1. For a client machine, specify the socket ID
returned as status by the TCP/IP Open (TCPOPEN) instruction in step 1.

 2-18

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Receive Procedure for TCP/IP Socket
This procedure receives data to a specified device via an open socket by executing a
TCP/IP Receive Request (TCPRCV) instruction. The processing differs depending on
whether receive data is present in the system control buffer when the request is issued
(that is, when the instruction is executed).

C
TCPRCV

F0210.VSD

No receive data
at time of request User-

specified
device

Receive

System
control buffer

Cop
y

(1) Receive
request

Receive text present
at time of request

(2) Wait to
receive

(3) Receive
event

(4) Receive
completed

C
TCPRCV

C
TCPRCV

Empty Empty

Empty Empty

Empty

Empty

User-
specified
device

System
control buffer

(1) Receive
event

(2) Receive
request

(3) Receive
completed

C
TCPRCV

C
TCPRCV

Empty

Empty

Empty

Receive

Figure 2.5.7 Receive Procedure for TCP/IP Socket

 Instructions Used

Table 2.5.8 Instructions Used in Receive Procedure for TCP/IP Socket

Instruction Name Instruction
Mnemonic Description

TCP/IP Receive Request TCPRCV Receives data from a specified TCP/IP socket.

 2-19

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Procedure
1. Execute a TCP/IP Receive Request (TCPRCV) instruction, specifying the socket ID,

first device for storing received data, size of receive area, etc.
2. If received data is present in the system buffer, proceed to step 3. If there is no

received data in the system buffer, wait for receive data to arrive within the timeout
interval.

3. When receive processing is completed, the received data is stored to the specified
device, and the TCP/IP Receive Request (TCPRCV) instruction turns the result
signal to ON for one scan period to notify execution completion. You can check
whether execution is successful by checking the returned status.

4. In TCP/IP, depending on route conditions, sometimes the required data size cannot
be sent in one transmission so you should repeat steps 1 to 3 until the required data
size has been received.

For a server machine, specify the socket ID returned in status by the TCP/IP Listen
Request (TCPLISN) instruction in step 1. For a client machine, specify the socket ID
returned in status by the TCP/IP Open (TCPOPEN) instruction in step 1.

Whether data received in the system buffer is removed when read depends on the buffer
option specified in the TCP/IP Receive Request (TCPRCV) instruction. If normal mode
(default) or auto increment mode is specified, received data is removed from the system
buffer to create space for new data.

TIP
Specifying auto increment mode in a TCP/IP Receive Request (TCPRCV) instruction automatically
increments the address for storing received data after each instruction execution so that the entire data
received through multiple instruction executions can be stored contiguously to devices. For details, see
the description for the TCP/IP Receive Request (TCPRCV) instruction.

 2-20

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Ending TCP/IP Socket Communications

 Instructions Used

Table 2.5.9 Instructions Used for Ending TCP/IP Socket Communications

Instruction Name Instruction
Mnemonic Description

TCP/IP Close TCPCLOSE Closes a specified TCP/IP socket ID.

 Procedure
1. Execute a TCP/IP Socket Close (TCPCLOSE) instruction, specifying a socket ID.

When a socket is closed, system resource allocated for the socket ID is released for use
by new TCP/IP open instructions.

 Canceling TCP/IP Socket Communications

 Instructions Used
None

 Procedure
1. Set the input condition of the executing TCP/IP socket instruction to OFF.

You can cancel the execution of a continuous type application instruction including a
TCP/IP socket instruction by turning off its input condition. However, when instruction
processing actually terminates is indefinite and may even be after sending or processing
has been completed. Depending on the state of the destination, cancellation may take a
long time to complete.

SEE ALSO
For details on cancellation, see " Canceling Execution of Continuous Type Application Instructions" in
Subsection 2.6.1, "Using Socket Instructions".

 2-21

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

2.5.3 Precautions about Socket Communications
The precautions about socket communications are described below in separate sections
for UDP/IP and TCP/IP.

 Precautions about UDP/IP Socket Communications

 Size of receive area and data overflow
In UDP/IP, one send execution always corresponds to one receive execution and the
entire data is sent in a single block known as a packet. This is known as a datagram
model.
If the specified receive area size is smaller than a sent packet, the excess received data
is discarded because each packet is expected to be retrieved in one receive execution.
Therefore, you should always specify a receive area size larger than the maximum
expected packet size. Programming will be straightforward if you design the user buffer
used for receiving to be as large as the maximum packet size.

 Missing packets
The UDP/IP protocol does not include flow control. Furthermore, its internal receive
buffer for a socket is designed to keep packets that fit within its size. As a result, if
multiple packets are transmitted consecutively but data receiving to device by the ladder
program cannot catch up, old packets may be overwritten so that not all transmitted
packets are received.
In principle, if missing packets are not allowed, TCP/IP sockets should be used in place
of UDP/IP sockets. Alternatively, the application must be programmed to deal with
missing packets by, say, inserting a serial number in packets on the sending end and
requesting for retransmission if missing numbers are detected on the receiving end.

 2-22

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Precautions about TCP/IP Socket Communications

 Handling fragments when receiving
In the IP protocol, large size data is segmented before transmission to accommodate
channel restrictions. This process is known as fragmentation and the data segments are
known as fragments.
Fragmentation in TCP/IP communications is not transparent to a user application, which
is responsible for handling fragmented data. As each receive execution receives only a
fragment of the transmitted data, the number of send executions and the number of
receive executions may not tally. When seen from a user application, the data received
for a receive request may only be a part of the entire data transmitted from the source.
To ensure that all transmitted data is received, a user application must check the
received size and issue multiple receive requests as required.

 Recognizing end of received data
In TCP/IP, a user application is responsible for recognizing end of received data. This is
because TCP/IP handles sent data as contiguous data regardless of the original send
request units. This kind of data processing is known as a byte stream. Thus, it is the
responsibility of the user application to recognize the end of received data in the receive
buffer for individual receive requests.

 Flow control when receiving
In TCP/IP, when the receive buffer is full, its flow control puts the sending end in wait
state. Therefore, when receiving data exceeding the receive buffer size, a user
application cannot receive all data using one receive request. The user application
should receive the arrived data, clear the buffer, and repeat until all data has been
received.

 2-23

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

2.6 Socket Instructions
This section describes how to use socket instructions, followed by their
specifications.

2.6.1 Using Socket Instructions
 Continuous Type Application Instructions

Execution of many socket instructions cannot be completed within one scan period. To
avoid affecting control processing, a processing request is issued at the time of
instruction execution but the time-consuming actual processing is carried out in the
background. Such instructions are known as "continuous type application instructions."

C
FCOPY

FC0305.VSD

C
FCOPY

C
FCOPY

C
FCOPY

No. of scans

OFF

ON

ON

OFF

OFF

OFF

ON ON

Instruction
state

Instruction
processing

Foreground
(control processing)

Background
(peripheral processing)

Execution
begins

Execution
continues

Execution
ends

1

2

n

n+1

Figure 2.6.1 Concept of Continuous Type Application Instruction

 2-24

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Operation of Continuous Type Application Instructions
This subsection describes the operation of a continuous type application instruction. In
the description, the term "input condition" refers to the ON/OFF state of the circuit
connection line immediately preceding the continuous type application instruction.
- To execute the instruction:

Change its input condition from OFF to ON.
- To continue instruction execution:

Hold its input condition in ON state.
- When instruction execution completes:

The result signal (on the circuit line connected to the output (right) end of the
instruction) is held to ON for one scan period. A user program can check the
completion of a continuous type application instruction by monitoring an OUT
instruction or some other output-type instruction placed on the output end of the
instruction.

- To re-execute the instruction after it has completed execution:
Turn off and again turn on its input condition. The condition must be held in OFF
state for at least 1 scan period.

- To cancel (abort) instruction execution:
Turn off its input condition during instruction execution. The result signal is held to
ON for one scan period. However, the background instruction processing does not
end immediately. For more details, see " Canceling Execution of Continuous Type
Application Instructions" later in this subsection.

Table 2.6.1 Operation of Continuous Type Application Instructions

Instruction State of
Preceding Scan

Input Condition of
Preceding Scan

Input Condition of
Current Scan

Transition of Instruction
State in Current Scan

Result Signal
of Current Scan

ON Execute OFF Stopped OFF
OFF Stopped OFF

Continue Execution OFF ON
Execution Completed*1 ON for 1 scan

Execute ON

OFF Cancelled ON for 1 scan
ON Execution Completed OFF Execution

Completed*1
ON

OFF Stopped OFF
ON Start execution OFF Cancelled OFF
OFF Stopped OFF

*1: The transition to 'Execution Completed' state is independent of the input condition, and is triggered by completion of
background instruction processing.

 2-25

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Operation Result of Continuous Type Application Instructions
Continuous type application instructions output two types of operation result at the end
of instruction execution. A user program determines the completion of instruction
execution using the result signal, and checks whether execution is successful using the
status.

Table 2.6.2 Operation Result of Continuous Type Application Instructions
Operation Result Description

Result signal At the end of instruction execution, the result signal is held to ON for one scan.
The result signal is OFF at other times. A user program determines whether
instruction execution has completed by checking the ON/OFF state of the result
signal.

Status Regardless of whether instruction execution is successful, a status value is
stored in a user-specified device. Some devices may store other return values
in addition to the status so the status has a multi-word table structure.
If an error status is returned, a user program should perform application error
processing such as retry processing.

FC0306.VSD

C
XXXX D2001

D2001
ON output

0
450

8
-50

・・
・

+1
+2
+3

・・
・

*1: D2001 is used as an example for illustration purpose.
*2: This is an example of stored status values.

Device for storing status*1 Result signal

Stored status*2

Size of status
depends on
instruction

Figure 2.6.2 Operation Result Output of Continuous Type Application Instructions

 2-26

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Error Processing of Continuous Type Application Instructions
If instruction execution ends normally, a zero or positive integer is stored in status. If
execution ends in error, a negative integer is stored in status.
A user program should read the execution result status and perform whatever error
processing (e.g. retry) as appropriate if an error status is returned.
Even if an error status is returned, the module does not store an error code in a special
register, write to the system log (error log), turn on the ALM LED or ERR LED, or switch
the operating mode.

Continuous type
application instruction

Device for storing status

Check status
 Status >= 0: normal
 Status < 0: error

FC0307.VSD

Normal exit

Error exit

Turn off
instruction input

Figure 2.6.3 Error Processing of Continuous Type Application Instructions

 2-27

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Error Status of Continuous Type Application Instructions
The table below shows the error status codes of continuous type application
instructions.

Table 2.6.3 Continuous Type Application Instruction Status (timeout-related (-1xxx), non-error-
related (-2xxx), exclusive control related (-3xxx))

Continuous Type Application Instruction Status Category Value Name Description

-1000 Instruction Timeout
Processing failed to end within the timeout
interval specified by an instruction
parameter.

Timeout

-1001 Internal Communication
Timeout

No response was received within the internal
communication timeout interval. The
following timeout interval can be defined by a
user as a CPU property.
- FTP Client Network Timeout

-2000 End of File Detected End of file was detected during processing.
-2001 No Match Found No match was found.

-2002 Disconnected by Remote
Node

Connection was terminated by the remote
node. Check the status of the remote node.
This status is also returned if high network
load causes data loss.

-2003 Specified Size/Times
Processed

Processing has been completed for the
specified data size or iterations.
- The size of data received by a TCP/IP

Receive Instruction (TCPRCV instruction)
reaches the specified receive area size.

Non-error

-2004 Block Size Error Data size is smaller than the specified block
size.

-3001 Repeated Use of Function

A function or resource that disallows
repeated use was used repeatedly.
- Repeated execution of FTP client

instruction
- Repeated execution of file operation

instruction or disk operation instruction
- Repeated use of file ID or socket ID

-3003 Write-prohibit Destination

A write attempt to a destination was
unsuccessful because:
- the destination was being accessed
- the destination is a directory
- the destination is read-only

-3004 Repeated Write Mode An attempt was made to open a file, which is
already open in Write (Append) mode.

Exclusive control

-3005 Internal Resource
Depleted

Internal resource is temporarily depleted. To
resolve the problem, retry later. If the
problem persists, consider reducing
processing load.
- FA-M3 internal resource
- Protocol stack internal resource

 2-28

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

Table 2.6.4 Continuous Type Application Instruction Status (network-related (-5xxx))
Continuous Type Application Instruction Status Category Value Name Description

-5000 Connection Error Error was detected during connection.
-5001 Unknown Destination The destination was not found.

-5002 Buffer Overflow Send/receive buffer used by socket instructions has
overflowed.

-5030 FTP User Authentication
Failure

Access was denied by FTP server's user authentication
process.

-5031 FTP Password
Authentication Failure

Access was denied by FTP server's password
authentication process.

-5032 FTP Command
Sequence Error

FTP client processing could not continue because a
reply received from the FTP server was out of
sequence. This error may be due to repeated cancel
operations or bad line quality.

-5421 FTP Negative Reply 421
-5425 FTP Negative Reply 425
-5426 FTP Negative Reply 426
-5450 FTP Negative Reply 450
-5451 FTP Negative Reply 451
-5452 FTP Negative Reply 452
-5500 FTP Negative Reply 500
-5501 FTP Negative Reply 501
-5502 FTP Negative Reply 502
-5503 FTP Negative Reply 503
-5504 FTP Negative Reply 504
-5530 FTP Negative Reply 530
-5532 FTP Negative Reply 532
-5550 FTP Negative Reply 550
-5551 FTP Negative Reply 551
-5552 FTP Negative Reply 552

N
et

w
or

k

-5553 FTP Negative Reply 553

FTP server returns a negative reply.
The last three digits of this error code (positive value)
represent the reply code received from the FTP
server.*1

*1: For details on the meaning of each reply code, see the official FTP specification (RFC959). Note that the causes and
meanings of reply codes may vary with individual FTP server implementations.

Table 2.6.5 Continuous Type Application Instruction Status (file system related (-6xxx))
Continuous Type Application Instruction Status Category Value Name Description

-6000 Duplicate Filename Specified destination filename already exists

-6002 Insufficient Space
There is insufficient space on the storage media.
Or, number of files or directories exceeded maximum
limit.

-6004 Memory Card Not
Installed

Processing is not allowed because no memory card is
installed.

-6005 Memory Card Not
Mounted

Processing is not allowed because no memory card is
mounted.

-6006 Protection Switch is ON Processing is not allowed because the card protection
switch is enabled.

-6007 File System Failure

Processing could not continue because a file system
failure was detected or the file system is not in FAT16
format. Reformat the disk in FAT16 format, or replace
the memory card. This status may be returned
occasionally when there is insufficient space on the
storage media.

-6008 Memory Card Failure Processing could not continue because a memory card
failure was detected. Replace the memory card.

-6009 Unknown Write Error
An error of unknown cause was detected during write
processing. Reformat disk to FAT16 format, or replace
the memory card.

-6010 FLS Processing
Sequence Error

Executions of FLSFIRST, FLS and FLSFIN instructions
were out of sequence.

Fi
le

 s
ys

te
m

-6011 File Interpretation Error The NULL byte was detected during interpretation of a
text file.

 2-29

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

Table 2.6.6 Continuous Type Application Instruction Status (General Instruction (-9xxx))
Continuous Type Application Instruction Status Category Value Name Description

-9000 Cancel Request Issued A cancel request was issued. Check the resource relay to
determine when cancellation is completed.

-9010 Resource Not Opened The specified file ID or socket ID is not open. Execute an
Open instruction for the ID.

-9011 Resource Depleted

- No more unused socket ID or file ID is available. Check
the resource relay.

- An attempt was made to run multiple FTP clients.
Concurrent execution of FTP clients is not allowed.

-9012 Resource Released by
External Factor

Processing could not continue because a user has
caused the resource relay to be turned off so writing to
the resource relay is prohibited.
This error may occur if the SD memory card is unmounted
when a file is open.

-9013 Function Not Started
- A function required for processing is not running.
- FTP client is not running. Execute an FTPOPEN

instruction.

-9014 Invalid Device Access

An attempt was made to access an invalid device
number.
Check index modification, indirect designation, data size
and status size.

-9015 Data Processing Error The requested processing could not continue because of
invalid data.

-9020 Security Error The specified password or keyword is incorrect.

-9021 CPU Property ROM
Write Error

An attempt to write CPU property data to the internal
ROM failed.

G
en

er
al

 In
st

ru
ct

io
ns

-9999 Internal Error Internal error was detected.

 2-30

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

Table 2.6.7 Continuous Type Application Instruction Status (parameter error related (-1xxxx))
Continuous Type Application Instruction Status Category Value Name Description

-10xxx Parameter Error

The specified parameter is invalid.
The last 3 digits of the error code indicate the position
of the invalid instruction parameter and its offset from
the beginning of the table in words if the parameter is a
table.
Status: -10

: Parameter number (1 to 3)
: Offset in table (00 to 99)

-12xxx Invalid Pathname

The specified pathname is invalid. This error is
generated if path interpretation failed because the
specified file pathname violated a syntax rule.
The third digit of the error code indicates the location of
the invalid parameter.

Status: -12

: 1 to 3 : Text parameter number
 4 : CPU property
 9 : Unknown type

: System reserved (currently 00)

-13xxx Pathname Object Not
Found

The object designated by the pathname is not found.
This error is generated if the specified pathname
contains an invalid file or directory. For instance,
"\RAMDISK\MYDIR" is specified but there is no
directory named "MYDIR" on the RAM disk.
This error may also be generated if a wildcard is
specified but no match is found.
The third digit of the error code indicates the location of
the invalid parameter.

Status: -13

: 1 to 3 : Text parameter number
 4 : CPU property
 9 : Unknown type

: System reserved (currently 00)

P
ar

am
et

er
 E

rro
r

-15xxx Invalid String Length

The string length parameter is invalid.
This error is generated if the string length exceeds the
maximum limit, or if NULL is specified for a parameter
that does not allow a NULL value.
The third digit of the error code indicates the location of
the invalid parameter.

Status: -15

: 1 to 3 : Text parameter number
 4 : CPU property
 9 : Unknown type

: System reserved (currently 00)

 2-31

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Canceling Execution of Continuous Type Application Instructions
Execution of a continuous type application instruction can be cancelled by turning off its
input condition during execution. When a falling edge is detected in the input condition,
the result signal is immediately held to ON to notify termination of execution, and a
Cancel Request Issued status code (-9000) is stored in the instruction status.
However, note that despite notification of instruction termination, background instruction
processing is not yet terminated. Instead, a cancellation request is issued to background
processing, and a few seconds may be required to complete the termination.
If the same continuous type application instruction is executed before background
processing cancellation is completed, resource competition occurs and an exclusive
control related error will be generated. To avoid this, you should include the resource
relay in the input condition of a continuous type application instruction.

TIP
Just as with instruction cancellation, in the event of an instruction timeout (error code: -1000),
background instruction processing continues to run for a short while. Therefore, it is also necessary in
this case to incorporate exclusive control in the program using resource relays.

SEE ALSO
For details on resource relays, see " Resource Relays" later in this subsection.

CAUTION

When the input of a continuous type application instruction is turned off, the instruction
immediately returns a Cancel Request Issued status and terminates execution.
However, actual background processing such as background communications is not
terminated immediately. To check for termination of actual processing, check that the
associated resource relay is turned off.

 2-32

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Precautions When Executing Continuous Type Application Instructions
By nature, continuous type application instructions require multiple scans to complete
processing, and thus should not be executed only once but must be executed
repeatedly until execution completes.
The table below shows the precautions when executing continuous type application
instructions from different program types.
Table 2.6.8 Precautions when Executing Continuous Type Application Instructions

Program Type Precaution
Ladder block
(execute-all-blocks mode)

None

Ladder block
(execute-specified-blocks
mode)

Executing an Inactivate Block (INACT) instruction during execution of a
continuous type application instruction forces cancellation of instruction
processing.

Sensor control block Continue execution of a sensor control block until the execution of a
continuous type application instruction ends. If you stop a sensor control
block before instruction execution ends, instruction processing cannot be
completed.

I/O interrupt routine Use of continuous type application instructions in I/O interrupt routines is not
allowed.

Subroutine Repeat a subroutine call until the execution of a continuous type application
instruction ends. If you stop subroutine call before instruction execution ends,
instruction processing cannot be completed.

Macro and input macro Repeat a macro call until the execution of a continuous type application
instruction ends. If you stop macro call before execution of continuous type
application instruction ends, instruction processing cannot be completed.
Calling a macro containing an executing continuous type application
instruction from a different location in the program is not allowed.

CAUTION

- A continuous type application instruction will not execute correctly if it is executed in
only one scan.

- Do not execute the same continuous type application instruction more than once
within the same scan using macros. Repeat execution using FOR-NEXT instruction
or JMP instruction is also disallowed.

 Restrictions for Inserting Continuous Type Application Instructions
There are some restrictions for inserting continuous type application instructions in a
ladder diagram. Placing a continuous type application instruction in an invalid location
generates a program syntax error in WideField2.
The figure below illustrates some locations where continuous type application
instructions cannot be inserted.

Input is required

Output is required

Continuous type
application instruction

Cannot be bounded by
vertical connection lines

Continuous type
application instruction

Continuous type
application instruction

Continuous type
application instruction

Continuous type
application instruction

FC0308.VSD
Figure 2.6.4 Restrictions for Inserting Continuous Type Application Instructions

 2-33

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Online Edit of Continuous Type Application Instructions
Do not online edit a circuit containing an executing continuous type application
instruction. If an executing continuous type application instruction is edited online,
instruction processing will be forcedly terminated and re-executed using the modified
parameters (including text parameters). In this case, the result signal of the continuous
type application instruction will not be held to ON for 1 scan to indicate end of instruction
processing.
Even if parameter values are not modified during online edit, a Repeated Use of
Function error (status code -3001) may still be generated during re-execution depending
on the status of the resource.

CAUTION

Before performing online edit of a circuit containing continuous type application
instructions, check to ensure that no continuous type application instruction is running.

 Resource Relays
Resource relays are special relays for preventing competition between continuous type
application instructions. A resource relay indicates the status of a resource, which is
subject to exclusive control. Resources include file IDs socket IDs, functions and
instructions.
By inserting a resource relay in the input condition of a continuous type application
instruction, you can prevent errors due to resource competition. In particular, resource
relays are required for checking for completion of cancellation processing or instruction
timeout processing in user applications where cancellation request for a continuous type
application instruction, or timeout (-1000) may occur.

 Resource Relays (related to socket instructions)
Table 2.6.9 Resource Relays (related to socket instructions)
Category Continuous Type Application Instruction Resource Relays

No. Name Function Description

M1028 No Unused UDP
Socket

No unused UDP
socket is available. Turns on when all UDP/IP sockets are in use.

M1029 No Unused TCP
Socket

No unused TCP
socket is available. Turns on when all TCP/IP sockets are in use.

M1105
to

M1120
Socket Open Socket is open.

Each socket ID is associated with one special
relay. The relay for a socket ID turns on while the
socket ID is open. When the relay for a socket ID
is OFF, the socket ID cannot be used.
This is a read-only relay. Do not write to it.

M1121
to

M1136
Socket Busy Socket is busy.

Each socket ID is associated with one special
relay. The relay for a socket ID turns on during
execution of any socket instruction using the
socket ID. When the relay for a socket ID is ON,
no other socket communication instruction using
the same socket ID can be executed except for
concurrent execution of sending and receiving.
This is a read-only relay. Do not write to it.

M1073
to

M1088
Socket Sending Socket is performing

send processing.

Each socket ID is associated with one special
relay. The relay for a socket ID turns on during
send processing of the socket. When the relay for
a socket ID is ON, no send request is allowed for
the same socket ID.
This is a read-only relay. Do not write to it.

M1089
to

M1104
Socket Receiving Socket is performing

receive processing.

Each socket ID is associated with one special
relay. The relay for a socket ID turns on during
receive processing of the socket. When the relay
for a socket ID is ON, no receive request is
allowed for the same socket ID.
This is a read-only relay. Do not write to it.

 2-34

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Text Parameter
Some file system instructions use text parameters as instruction parameters. A text
parameter value can be stored using the Text Parameter (TPARA) instruction. The Text
Parameter (TPARA) instruction must be executed before an instruction that requires text
parameters.

 Text Parameter (TPARA)
This instruction is used to specify a text parameter required by some continuous type
application instructions.

Table 2.6.10 Text Parameter
Input

Condition
Required? Classification FUNC

No. Instruction Mnemonic Symbol
Yes No

Step Count
Pro-

cessing
Unit

Carry

Application
Instruction – Text Parameter TPARA

 TPARA

 – 5 8 bit –

 Parameter

Text Parameter TPARA n s1 s2 s3
n : Text parameter number (W) (1-4)
s1 : Device storing character string 1 (W)
 (Up to 255 characters, terminated by a NULL character)
s2 : Device storing character string 2 (W)
 (Up to 255 characters, terminated by a NULL character)
s3 : Device storing character string 3 (W)
 (Up to 255 characters, terminated by a NULL character)

 Available Devices
Table 2.6.11 Available Devices

Device
Parameter X Y I E L M T C D B W Z R V Con-

stant
Index

Modification
Indirect

Designation,
Pointer P

n Yes Yes

s1 Yes Yes

s2 Yes Yes

s3 Yes Yes
Note: See Section 1.15, "Restrictions on Devices Used as Instruction Parameters" of "Sequence CPU – Instructions"

(IM34M6P12-03E)

 2-35

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Function
This instruction is used to specify text parameters required by some continuous type
application instructions. You should specify the text parameter number according to the
text parameter number of the instruction requiring the text parameter.

F0129.VSD

C
FCOPY

Example: Parameters required by FCOPY

Text parameters

- Device for storing status
- Timeout interval
- Overwrite option
- Source file pathname
- Destination file pathname

TPARA 1

TPARA 2

Figure 2.6.5 Text Parameter Number (TPARA instruction must be executed before continuous

type application instruction)
The Text Parameter instruction must be executed to set up a text parameter before an
instruction requiring the text parameter. Text parameters are stored in the system text
parameter area. An instruction requiring a text parameter reads the text parameter from
the text parameter area when it begins execution (at the rising edge of the input).
One text parameter area is provided for all continuous type application instructions
executing in the normal scan, and another area is provided for all continuous type
application instructions executing in the sensor control block. Therefore, normal blocks
and the sensor control block do not compete for the text parameter area but continuous
type application instructions sharing each area do compete. You should store text
parameter value before each instruction execution to ensure proper execution.

F0130.VSD

C
FTPLS

Text parameter area

TPARA 1

TPARA 2

TPARA 3
1

2

3

Write

Read

Figure 2.6.6 Text Parameter Area

This instruction performs character string concatenation. It concatenates strings A to C
(see next figure) into one text parameter n (n=1 to 3). This string concatenation feature
enables user programs to define smaller string units and increase reuse of defined string
constants.

 2-36

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

Specify NULL for all non-required strings A to C. Using a zero constant value in an
instruction parameter is equivalent to specifying a NULL value.

F0131.VSD

TPARA n A B C

A B C+ + = Text parameter n

Text parameter no. Text

Figure 2.6.7 One Text Parameter

Each text parameter can contain up to 255 characters. The individual lengths and
combined length of strings A to C must not exceed 255 characters.

TIP
Using string concatenation, you can specify as text parameter various string combinations such as
string A, string B, string C, string (A+C), string (A+B), etc. Note that all unused parameters must be
specified as NULL.

 Programming Example

C
FCOPY D3051 50

I200

I201

I201
D3051 >= 0

TPARA #header #text2 #footer

SET I211

SET I212D3051 < 0

RST I200

Specify text parameter 2

Execute FCOPY
instruction

Check status

2

Specify text parameter 1TPARA D2000 #text1 01

0

Figure 2.6.8 Example of a Text Parameter Program

This sample code sets up text parameter 1 and text parameter 2, which are to be
passed to a Copy File instruction (FCOPY).
The string stored in devices starting with D2000 and the string defined by constant name
#text1 are concatenated to become text parameter 1. The three strings defined by
constant names #header, #text2 and #footer are concatenated to become text
parameter 2.

 2-37

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

2.6.2 List of Socket Instructions
Table 2.6.12 List of Socket Instructions

Instruction Group Service Name Ladder Instruction Description
UDP/IP Open UDPOPEN Opens a UDP/IP socket to enable

communications.
UDP/IP
communications
preparation
instructions

UDP/IP Close UDPCLOSE Closes a UDP/IP socket.

UDP/IP Send
Request

UDPSND Sends data from a specified UDP/IP socket. UDP/IP send and
receive
instructions UDP/IP Receive

Request
UDPRCV Receives data from a specified UDP/IP

socket.
TCP/IP Open TCPOPEN Opens a TCP/IP socket.
TCP/IP Close TCPCLOSE Closes a TCP/IP socket.
TCP/IP Connection
Request

TCPCNCT Issues a connection request to a server as a
client, and connects to the server if
permitted to do so.

TCP/IP
communications
preparation
instructions

TCP/IP Listen
Request

TCPLISN Waits for a connection request from any
client as a server, and establishes
connection if a request is received.

TCP/IP Send
Request

TCPSND Sends device data from a specified TCP/IP
socket.

TCP/IP send and
receive
instructions TCP/IP Receive

Request
TCPRCV Writes data received from a specified

TCP/IP socket to device.

 2-38

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

2.6.3 Socket Instruction Specifications
This subsection describes the specification of each socket instruction.

2.6.3.1 UDP/IP Communications Preparation Instructions
Table 2.6.13 List of UDP/IP Communications Preparation Instructions

Service Name Ladder Instruction Description
UDP/IP Open UDPOPEN Opens a UDP/IP socket to enable communications.
UDP/IP Close UDPCLOSE Closes a UDP/IP socket.

 UDP/IP Open (UDPOPEN)
Opens a UDP/IP socket to enable communications.

Table 2.6.14 UDP/IP Open
Input

Condition
Required? Classification FUNC

No. Instruction Mnemonic Symbol
Yes No

Step Count
Pro-

cessing
Unit

Carry

Continuous
type

application
instruction

– UDP/IP
Open UDPOPEN

C
UDPOPEN

 – 6 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
" Continuous Type Application Instructions" in Subsection 2.6.1, "Using Socket Instructions".

Parameter
C
UDPOPENUDP/IP Open ret n1 n2

Table 2.6.15 Parameters
Parameter Description

ret*1 Device for storing return status (W)
n1 Timeout interval (W)

[0 = infinite, 1-32767 (x100 ms)]
n2 My port number (W) [1-65535]*2 *3

*1: ret (status) is table data. For details on the return status (ret), see “Status (Return Value)”.
*2: Do not specify my port number as 12289, 12290, 12291, 12305 or 12307 as these numbers are used by the higher-level

link service and remote programming service.
*3: Word data is handled as an unsigned decimal or hexadecimal number.

Status (Return Value)
Table 2.6.16 Status (Return Value)

Offset
(word) Description

0, > 0 SOCKET ID (W) [0-7] (socket is opened successfully) ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see " Error Status of Continuous Type Application Instructions" of
" Continuous Type Application Instructions" in Subsection 2.6.1, "Using Socket Instructions".

 2-39

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

Available Devices
Table 2.6.17 Available Devices

Device
Parameter X Y I E L M T C D B W Z R V Con-

stant
Index

Modification
Indirect

Designation,
Pointer P

ret Yes Yes

n1 Yes Yes

n2 Yes Yes
Note: See Section 1.15, "Restrictions on Devices Used as Instruction Parameters" of "Sequence CPU – Instructions"

(IM34M6P12-03E)

Resource Relays
Table 2.6.18 Resource Relays Recommended for Insertion into Input Condition of

Instruction to Avoid Competition
Add to Input

Condition Number Name Usage
 M1028 No Unused UDP Socket

 M1029 No Unused TCP Socket
 M1105 to M1120 Socket Open
 M1121 to M1136 Socket Busy
 M1073 to M1088 Socket Sending
 M1089 to M1104 Socket Receiving

Execute UDOPEN instruction only
if the No Unused UDP Socket
relay is OFF.

Function
Opens a UDP/IP socket. Opening a socket secures system resources required for
communications.
Up to 8 UDP/IP sockets can be open concurrently at any one time.
If execution is successful, this instruction returns a socket ID in status, which is to be
used in subsequent UDP/IP send and receive instructions. The socket ID is
automatically allocated a value from 0 to 7, but not necessarily sequentially from 0.

Programming Example

I200 I201

I201
D3051 >= 0 SET I211

SET I212D3051 < 0

RST I200

Execute instruction

Check status

C
UDPOPEN D3051 100 4005

Figure 2.6.9 UDP/IP Open Sample Program

This sample code opens a UDP/IP socket for port number 4005. It specifies the timeout
interval as 100 (10 s).

The table below shows the returned status data (ret), assuming normal exit.

Device Value Table Parameter
ret = D3051 1 Status (socket ID)

 2-40

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 UDP/IP Close (UDPCLOSE)
Closes a UDP/IP socket. Once a socket is closed, no more sending or receiving is
allowed via the socket unless and until the socket is reopened.

Table 2.6.19 UDP/IP Close
Input

Condition
Required? Classification FUNC

No. Instruction Mnemonic Symbol
Yes No

Step Count
Pro-

cessing
Unit

Carry

Continuous
type

application
instruction

– UDP/IP
Close UDPCLOSE

C
UDPCLOSE – 6 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
" Continuous Type Application Instructions" in Subsection 2.6.1, "Using Socket Instructions".

Parameter

ret n1UDP/IP Close
C
UDPCLOSE n2

Table 2.6.20 Parameters
Parameter Description

ret*1 Device for storing return status (W)
n1 Timeout interval (W)

[0 = infinite, 1-32767 (x100 ms)]
n2 Socket ID (W) [0-7]

*1: ret (status) is table data. For details on the return status (ret), see “Status (Return Value)”.

Status (Return Value)
Table 2.6.21 Status (Return Value)

Offset
(word) Description

0 Normal exit ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see " Error Status of Continuous Type Application Instructions" of
" Continuous Type Application Instructions" in Subsection 2.6.1, "Using Socket Instructions".

Available Devices
Table 2.6.22 Available Devices

Device
Parameter X Y I E L M T C D B W Z R V Con-

stant
Index

Modification
Indirect

Designation,
Pointer P

ret Yes Yes

n1 Yes Yes

n2 Yes Yes
Note: See Section 1.15, "Restrictions on Devices Used as Instruction Parameters" of "Sequence CPU – Instructions"

(IM34M6P12-03E)

 2-41

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

Resource Relays
Table 2.6.23 Resource Relays Recommended for Insertion into Input Condition of

Instruction to Avoid Competition
Add to Input

Condition Number Name Usage

 M1028 No Unused UDP Socket
 M1029 No Unused TCP Socket
 M1105 to M1120 Socket Open
 M1121 to M1136 Socket Busy
 M1073 to M1088 Socket Sending
 M1089 to M1104 Socket Receiving

Execute UDPCLOSE instruction for a
socket ID only if its corresponding Socket
Busy, Socket Sending and Socket
Receiving relays are all off.

Function
Closes a UDP/IP socket. Once a socket is closed, no more sending or receiving is
allowed via the socket.

CAUTION

Issuing multiple close requests for the same socket is not allowed.

Programming Example

I200 I201

I201
D3051 >= 0 SET I211

SET I212D3051 < 0

RST I200

Execute instruction

Check status

C
UDPCLOSE D3051 100 1

Figure 2.6.10 UDP/IP Close Sample Program

This sample code closes a UDP/IP socket associated with socket ID 1. It specifies the
timeout interval as 100 (10 s).

The table below shows the returned status data (ret), assuming normal exit.

Device Value Table Parameter
ret = D3051 0 Status

 2-42

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

2.6.3.2 UDP/IP Send and Receive Instructions
Table 2.6.24 List of UDP/IP Send and Receive Instructions

Service Name Ladder
Instruction

Description

UDP/IP Send Request UDPSND Sends data from a specified UDP/IP socket.
UDP/IP Receive Request UDPRCV Receives data from a specified UDP/IP socket.

 UDP/IP Send Request (UDPSND)
Sends data stored in a specified device using UDP/IP communications.

Table 2.6.25 UDP/IP Send Request
Input

Condition
Required? Classification FUNC

No. Instruction Mnemonic Symbol
Yes No

Step Count
Pro–

cessing
Unit

Carry

Continuous
type

application
instruction

–
UDP/IP
Send

Request
UDPSND

C
UDPSND

 – 6 8 bit –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
" Continuous Type Application Instructions" in Subsection 2.6.1, "Using Socket Instructions".

Parameter

ret tUDP/IP Send Request
C
UDPSND s

Table 2.6.26 Parameters
Parameter Description

ret*1 Device for storing return status (W)
t+0 Timeout interval (W)

[0 = infinite, 1-32767 (x100 ms)]
t+1 Socket ID (W) [0-7]
t+2 Size of send data (W) [0-2048 (bytes)] *2
t+3 Socket destination (W) [*3

-1 = IP address and port no. (designated by t+4 to t+6)
1-16 = Socket address setting no. in CPU properties

]
t+4 Destination IP address low (W) [$0000-$FFFF] *3
t+5 Destination IP address high (W) [$0000-$FFFF] *3

t

t+6 Destination port no. (W) [1-65535] *4
s First device of send data (W)

*1: ret (status) is table data. For details on the return status (ret), see “Status (Return Value)”.
*2: 1472 bytes max. for broadcast communications.
*3: Do not specify destination IP address as 0.0.0.0. Otherwise, the operation or error status will be indefinite.
*4: Word data is handled as an unsigned decimal or hexadecimal number.

 2-43

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

Status (Return Value)
Table 2.6.27 Status (Return Value)

Offset
(word) Description

> 0 Sent data size [1-2048 (bytes)] ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see " Error Status of Continuous Type Application Instructions" of
" Continuous Type Application Instructions" in Subsection 2.6.1, "Using Socket Instructions".

Available Devices
Table 2.6.28 Available Devices

Device
Parameter X Y I E L M T C D B W Z R V Con-

stant
Index

Modification
Indirect

Designation,
Pointer P

ret Yes Yes

t Yes Yes

s # Yes Yes
Note: See Section 1.15, "Restrictions on Devices Used as Instruction Parameters" of "Sequence CPU – Instructions"

(IM34M6P12-03E)
#: You can specify the constant name of a constant definition but not a normal constant.

Resource Relays
Table 2.6.29 Resource Relays Recommended for Insertion into Input Condition of

Instruction to Avoid Competition
Add to Input

Condition Number Name Usage

 M1028 No Unused UDP Socket
 M1029 No Unused TCP Socket
 M1105 to M1120 Socket Open
 M1121 to M1136 Socket Busy
 M1073 to M1088 Socket Sending

 M1089 to M1104 Socket Receiving

Execute UDPSND instruction for a
socket ID only if both its corresponding
Socket Busy and Socket Sending relays
are OFF.

Function
Sends data stored in a specified device using UDP/IP communications.
You can either specify the destination using a socket address setting number defined in
the socket address setup of CPU properties, or specify an IP address and port number
directly as instruction parameters. In the latter case, set the socket destination
parameter as -1.
For the socket ID parameter, specify the socket ID returned by the UDP/IP Open
(UDPOPEN) instruction executed earlier.

Broadcast Transmission
If UDP broadcast is enabled in the socket setup of CPU properties, you can perform
broadcast transmission by setting the lowest byte of the destination IP address to 255.
For example, if the network address is 192.168.0.xxx, specify 192.168.0.255 to perform
broadcast transmission. Any attempt at broadcast transmission when UDP broadcast is
disabled in CPU properties will generate an unknown destination error (error code:
-5001).

 2-44

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

A target network node may fail to receive a broadcast transmission if it is configured to
ignore broadcast transmission or a different IP address is defined as the broadcast
address. For details, check with the network administrator.
A maximum send data size of 1472 bytes is allowed for broadcast transmission.

CAUTION

- Concurrent send requests for the same socket are not allowed but concurrent
execution of a send request and a receive request is allowed.

- If you specify a socket address setting number with a defined hostname in CPU
properties in the instruction, performance will be affected by the time required for
DNS resolution.

- The nature of the protocol is such that the instruction will exit normally even if the
link is down (e.g. the cable is not connected or the hub is switched off).

Programming Example

I200

I201

I201
D3051 >= 0

BMOV D0051 D2001 7

SET I211

SET I212D3051 < 0

RST I200

Set up parameter table t

Execute instruction

Check status

C
UDPSND D3051 D2001 B1025

Figure 2.6.11 UDP/IP Send Request Sample Program

This sample code sends to the node associated with socket destination number 4, 200
bytes of data stored in device starting from device B1025.

It specifies ret(=D3051), t(=D2001) and s(=B1025) with t set up as shown in the table
below.

Device Value Table Parameter
t = D2001 600 Timeout interval (=60 s)

D2002 1 Socket ID (= 1)
D2003 200 Size of send data (= 200 bytes)
D2004 4 Socket destination no. (= 4)
D2005
D2006

0 Destination IP address (not required for
this example)

D2007 0 Destination port no. (not required for this
example)

The table below shows the returned status data (ret), assuming normal exit.

Device Value Table Parameter
ret = D3051 200 Status (sent data size)

 2-45

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 UDP/IP Receive Request (UDPRCV)
Stores data received from a UDP/IP socket to a specified device.
Table 2.6.30 UDP/IP Receive Request

Input
Condition
Required? Classification FUNC

No. Instruction Mnemonic Symbol
Yes No

Step Count
Pro–

cessing
Unit

Carry

Continuous
type

application
instruction

–
UDP/IP
Receive
Request

UDPRCV
C
UDPRCV

 – 6 8 bit –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
" Continuous Type Application Instructions" in Subsection 2.6.1, "Using Socket Instructions".

Parameter

ret tUDP/IP Receive Request
C
UDPRCV d

Table 2.6.31 Parameters
Parameter Description

ret*1 Device for storing return status (W)
t+0 Timeout interval (W)

[0 = infinite, 1-32767 (x100 ms)]
t+1 Socket ID (W) [0-7]
t+2 Size of receive area (W) [0-4096 (bytes)]
t+3 Append NULL option (W) [0=no; 1=yes]

t

t+4 Buffer option (W) [*2
0=Delete packet in receive buffer after retrieval
1=Keep packet in receive buffer after retrieval
2=Check packet size of receive buffer (without receive processing)

]
d First device for storing received data (W)

*1: ret (status) is table data. For details on the return status (ret), see “ Status (Return Value)”.
*2: Buffer option 0 is recommended to avoid buffer overflow.

Status (Return Value)
Table 2.6.32 Status (Return Value)

Offset
(word) Description

> 0 Received data size [1-4096 (bytes)] *5 ret+0
< 0 Error status

ret+1 CPU properties socket address setting search result (W) [
 1-16 = Match for both IP address and port no.*1
101-116 = Match for IP address only*2
 -1 = No match*3

]
ret+2 Sender IP address low (W) [$0000-$FFFF]
ret+3 Sender IP address high (W) [$0000-$FFFF]

ret

ret+4 Sender port number (W) [0-65535] *4
*1: If a match is found for the IP address and port number of the sender in the socket address setup of CPU properties, the

corresponding setting number is returned.
*2: If a match is found for only the IP address of the sender in the socket address setup of CPU properties, the

corresponding setting number + 100 is returned.
*3: If no match is found for the IP address of the sender in the socket address setup of CPU properties, -1 is returned.
*4: Word data is handled as an unsigned decimal or hexadecimal number.
*5: Received data size includes any NULL byte appended according to the Append NULL option.

 2-46

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

SEE ALSO
For more details on error status, see " Error Status of Continuous Type Application Instructions" of
" Continuous Type Application Instructions" in Subsection 2.6.1, "Using Socket Instructions".

Available Devices
Table 2.6.33 Available Devices

Device
Parameter X Y I E L M T C D B W Z R V Con–

stant
Index

Modification
Indirect

Designation,
Pointer P

ret Yes Yes

t Yes Yes

d Yes Yes
Note: See Section 1.15, "Restrictions on Devices Used as Instruction Parameters" of "Sequence CPU – Instructions"

(IM34M6P12-03E)

Resource Relays
Table 2.6.34 Resource Relays Recommended for Insertion into Input Condition of

Instruction to Avoid Competition
Add to Input

Condition Number Name Usage

 M1028 No Unused UDP Socket
 M1029 No Unused TCP Socket
 M1105 to M1120 Socket Open
 M1121 to M1136 Socket Busy

 M1073 to M1088 Socket Sending
 M1089 to M1104 Socket Receiving

Execute UDPRCV instruction for a socket
ID only if both its corresponding Socket
Busy and Socket Receiving relays are
OFF.

Function
Stores data received from a UDP/IP socket to a specified device. For the socket ID
parameter, specify the socket ID returned by the UDP/IP Open (UDPOPEN) instruction
executed earlier. The size of the data stored to device is returned in status.
You can specify whether to append a NULL byte behind received data using the Append
Null Option.

If no data is received in the buffer when the instruction is executed, the instruction waits
for data to arrive. However, if the buffer option parameter is set to 2 (= check packet size
of receive buffer), the instruction completes execution without entering wait state even if
no data has been received. If a timeout interval is specified and no data is received
within the specified time, the instruction exits from wait state, holds the result signal to
ON and returns a timeout error in status.
If the buffer option parameter is 0, the data packet in the receive buffer is discarded after
retrieval regardless of the size of receive area.

Broadcast transmission
If broadcast transmission is enabled in the socket setup of CPU properties, the
instruction receives broadcast packets.

 2-47

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

CAUTION

- Concurrent receive requests for the same socket are not allowed but concurrent
execution of a send request and a receive request is allowed.

- You should specify the buffer option as 0 (= delete packet after retrieval) unless
there is a special reason not to do so. Specifying a non-zero buffer option means
that the receive buffer is not emptied and this may result in buffer overflow.

- If you specify a socket address setting number with a defined hostname in CPU
properties in the instruction, performance will be affected by the time required for
DNS resolution.

Programming Example

I200

I201

I201
D3051 >= 0

BMOV D0051 D2001 5

SET I211

SET I212D3051 < 0

RST I200

Set up parameter table t

Execute instruction

Check status

C
UDPRCV D3051 D2001 B1025

Figure 2.6.12 UDP/IP Receive Request Sample Program

This sample code receives data from the UDP/IP socket associated with socket ID 4,
and stores the received data to device, starting from device B1025.

It specifies ret(=D3051), t(=D2001) and d(=B1025), with t set up as shown in the table
below.

Device Value Table Parameter
t = D2001 6000 Timeout interval (= 600 s)

D2002 4 Socket ID (=4)
D2003 2048 Size of receive area (= 2048 bytes)
D2004 0 Append NULL option (= No)
D2005 0 Buffer option

(= Delete packet after retrieval (recommended))

The table below shows an example of the returned status data (ret), assuming that a
520-byte packet is received from an IP address (192.168.0.67:10456), which is not
registered in the socket address setup of CPU properties.

Device Value Table Parameter
ret = D3051 520 Status

D3052 -1 Sender socket address setting number
D3053 $0043
D3054 $C0A8

Sender IP address

D3055 10456 Sender port number

 2-48

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

2.6.3.3 TCP/IP Communications Preparation Instructions
Table 2.6.35 TCP/IP Communications Preparation Instructions

Service Name Ladder
Instruction

Description

TCP/IP Open TCPOPEN Opens a TCP/IP socket.
TCP/IP Close TCPCLOSE Closes a TCP/IP socket.
TCP/IP Connection
Request

TCPCNCT Issues a connection request to a server as a client,
and connects to the server if permitted to do so.

TCP/IP Listen Request TCPLISN Waits for a connection request from any client as a
server, and establishes connection if a request is
received.

 TCP/IP Open (TCPOPEN)
Opens a TCP/IP socket.

Table 2.6.36 TCP/IP Open
Input

Condition
Required? Classification FUNC

No. Instruction Mnemonic Symbol
Yes No

Step Count
Pro–

cessing
Unit

Carry

Continuous
type

application
instruction

– TCP/IP
Open TCPOPEN

C
TCPOPEN

 – 5 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
" Continuous Type Application Instructions" in Subsection 2.6.1, "Using Socket Instructions".

Parameter

ret nTCP/IP Open
C
TCPOPEN

Table 2.6.37 Parameters
Parameter Description

ret*1 Device for storing return status (W)
n Timeout interval (W)

[0 = infinite, 1-32767 (x100 ms)]
*1: ret (status) is table data. For details on the return status (ret), see “Status (Return Value)”.

Status (Return Value)
Table 2.6.38 Status (Return Value)

Offset
(word) Description

> 0 Socket ID (W) [8-15] (socket is successfully
opened)

ret

< 0 Error status

SEE ALSO
For more details on error status, see " Error Status of Continuous Type Application Instructions" of
" Continuous Type Application Instructions" in Subsection 2.6.1, "Using Socket Instructions".

 2-49

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

Available Devices
Table 2.6.39 Available Devices

Device
Parameter X Y I E L M T C D B W Z R V Con-

stant
Index

Modification
Indirect

Designation,
Pointer P

ret Yes Yes

n Yes Yes
Note: See Section 1.15, "Restrictions on Devices Used as Instruction Parameters" of "Sequence CPU – Instructions"

(IM34M6P12-03E)

Resource Relays
Table 2.6.40 Resource Relays Recommended for Insertion into Input Condition of

Instruction to Avoid Competition
Add to Input

Condition Number Name Usage

 M1028 No Unused UDP Socket
 M1029 No Unused TCP Socket

 M1105 to M1120 Socket Open
 M1121 to M1136 Socket Busy
 M1073 to M1088 Socket Sending
 M1089 to M1104 Socket Receiving

Execute TCPOPEN instruction only if the
No Unused TCP Socket relay is OFF.

Function
Opens a TCP/IP socket. Opening a socket secures system resources required for
communications to enable execution of the TCP/IP Connect Request (TCPCNCT)
instruction or the TCP/IP Listen Request (TCPLISN) instruction.

Up to 8 TCP/IP sockets can be open concurrently at any one time. The socket ID is
automatically allocated a value from 8 to 15, but not necessarily in any order.

If execution is successful, this instruction returns a socket ID in status, which is to be
used in subsequent TCP/IP Connect Request (TCPCNCT) instructions and TCP/IP
Listen Request (TCPLISN) instructions. When connected as a client (after executing a
TCPCNCT instruction), the same socket ID can also be used in TCP/IP send and
receive instructions.

CAUTION

The allocated socket ID can be any value between 8 and 15. Note that it does not start
from 0.

 2-50

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

Programming Example

I200 I201

I201
D3051 >= 0 SET I211

SET I212D3051 < 0

RST I200

Execute instruction

Check status

C
TCPOPEN D3051 100

Figure 2.6.13 TCP/IP Open Sample Program

This sample code opens a TCP/IP socket. It specifies the timeout interval as 100 (10 s).

The table below shows the returned status data (ret), assuming normal exit.

Device Value Table Parameter
ret = D3051 8 Status (socket ID)

 2-51

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 TCP/IP Close (TCPCLOSE)
Closes a TCP/IP socket. Once a socket is closed, the socket ID can no longer be used.

Table 2.6.41 TCP/IP Close
Input

Condition
Required? Classification FUNC

No. Instruction Mnemonic Symbol
Yes No

Step Count
Pro–

cessing
Unit

Carry

Continuous
type

application
instruction

– TCP/IP
Close TCPCLOSE

C
TCPCLOSE – 6 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
" Continuous Type Application Instructions" in Subsection 2.6.1, "Using Socket Instructions".

Parameter

ret n1TCP/IP Close
C
TCPCLOSE n2

Table 2.6.42 Parameters
Parameter Description

ret*1 Device for storing return status (W)
n1 Timeout interval (W)

[0 = infinite, 1-32767 (x100 ms)]
n2 Socket ID (W) [8-15]

*1: ret (status) is table data. For details on the return status (ret), see “Status (Return Value)”.

Status (Return Value)
Table 2.6.43 Status (Return Value)

Offset
(word) Description

0 Normal exit ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see " Error Status of Continuous Type Application Instructions" of
" Continuous Type Application Instructions" in Subsection 2.6.1, "Using Socket Instructions".

Available Devices
Table 2.6.44 Available Devices

Device
Parameter X Y I E L M T C D B W Z R V Con-

stant
Index

Modification
Indirect

Designation,
Pointer P

ret Yes Yes

n1 Yes Yes

n2 Yes Yes
Note: See Section 1.15, "Restrictions on Devices Used as Instruction Parameters" of "Sequence CPU – Instructions"

(IM34M6P12-03E)

 2-52

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

Resource Relays
Table 2.6.45 Resource Relays Recommended for Insertion into Input Condition of

Instruction to Avoid Competition
Add to Input

Condition Number Name Usage

 M1028 No Unused UDP Socket
 M1029 No Unused TCP Socket
 M1105 to M1120 Socket Open
 M1121 to M1136 Socket Busy
 M1073 to M1088 Socket Sending
 M1089 to M1104 Socket Receiving

Execute TCPCLOSE instruction for a
socket ID only if its corresponding Socket
Busy, Socket Sending and Socket
Receiving relays are all off.

Function
Closes a TCP/IP socket. Once a socket is closed, the socket ID can no longer be used.

CAUTION

- Issuing multiple close requests for the same socket is not allowed.
- Depending on the state of the destination, cancellation may sometimes take a long

time to complete.

Programming Example

I200 I201

I201
D3051 >= 0 SET I211

SET I212D3051 < 0

RST I200

Execute instruction

Check status

C
TCPCLOSE D3051 100 11

Figure 2.6.14 TCP/IP Close Sample Program

This sample code closes a TCP/IP socket associated with socket ID 11. It specifies the
timeout interval as 100 (10 s).

The table below shows the returned status data (ret), assuming normal exit.

Device Value Table Parameter
ret = D3051 0 Status

 2-53

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 TCP/IP Connect Request (TCPCNCT)
Issues a connection request to a TCP/IP server (a node which is waiting for connection
or, in other words, listening), and establishes a connection if permitted to do so.

Table 2.6.46 TCP/IP Connect Request
Input

Condition
Required? Classification FUNC

No. Instruction Mnemonic Symbol
Yes No

Step Count
Pro–

cessing
Unit

Carry

Continuous type
application
instruction

–
TCP/IP
Connect
Request

TCPCNCT
C
TCPCNCT

 – 5 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
" Continuous Type Application Instructions" in Subsection 2.6.1, "Using Socket Instructions".

Parameter

C
TCPCNCT ret tTCP/IP Connect Request

Table 2.6.47 Parameters
Parameter Description

ret*1 Device for storing return status (W)
t+0 Timeout interval (W)

[0 = infinite, 1-32767 (x100 ms)]
t+1 Socket ID (W) [8-15]
t+2 Socket destination (W) [*2

 -1 = IP address and port no. (designated by t+3 to t+5)
1-16 = Socket address setting no. in CPU properties

]
t+3 Destination IP address low (W) [$0000-$FFFF] *2
t+4 Destination IP address high (W) [$0000-$FFFF] *2

t

t+5 Destination port no. (W) [1-65535] *3
*1: ret (status) is table data. For details on the return status (ret), see “Status (Return Value)”.
*2: Do not specify destination IP address as 0.0.0.0. Otherwise, a parameter error status will be returned.
*3: Word data is handled as an unsigned decimal or hexadecimal number.

Status (Return Value)
Table 2.6.48 Status (Return Value)

Offset
(word) Description

0 Normal exit ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see " Error Status of Continuous Type Application Instructions" of
" Continuous Type Application Instructions" in Subsection 2.6.1, "Using Socket Instructions".

 2-54

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

Available Devices
Table 2.6.49 Available Devices

Device
Parameter X Y I E L M T C D B W Z R V Con-

stant
Index

Modification
Indirect

Designation,
Pointer P

ret Yes Yes

t Yes Yes
Note: See Section 1.15, "Restrictions on Devices Used as Instruction Parameters" of "Sequence CPU – Instructions"

(IM34M6P12-03E)

Resource Relays
Table 2.6.50 Resource Relays Recommended for Insertion into Input Condition of

Instruction to Avoid Competition
Add to Input

Condition Number Name Usage

 M1028 No Unused UDP Socket
 M1029 No Unused TCP Socket
 M1105 to M1120 Socket Open
 M1121 to M1136 Socket Busy

 M1073 to M1088 Socket Sending
 M1089 to M1104 Socket Receiving

Execute TCPCNCT instruction for a
socket ID only if its corresponding Socket
Busy relay is OFF.

Function
Prepares for communications as a client by issuing a connection request to a TCP/IP
server (a node which is waiting for connection or, in other words, listening), and
establishing a connection if permitted to do so.

You can either specify the destination using a socket address setting number defined in
the socket address setup of CPU properties, or specify an IP address and port number
directly as instruction parameters.

CAUTION

- Issuing multiple connection requests for the same socket is not allowed.
- Issuing a connection request to the address of a node itself is not allowed. Doing so

will generate an unknown destination error (error code: -5001).
- If a connection error code (-5000) or unknown destination error code (-5001) is

returned in status, you must execute the TCP/IP Close (TCPCLOSE) instruction. By
nature of a general protocol stack, the socket ID used transits to an invalid state.

- Sometimes communications may fail even after a TCP/IP Connect Request
(TCPCNCT) exits normally. This may happen if the server side develops an error
such as depletion of available sockets after it returns a successful reply to a
connection request but before it successfully establishes a transmission channel.

 2-55

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

Programming Example

I200

I201

I201
D3051 >= 0

BMOV D0051 D2001 6

SET I211

SET I212D3051 < 0

RST I200

Set up parameter table t

Execute instruction

Check status

C
TCPCNCT D3051 D2001

Figure 2.6.15 TCP/IP Connect Request Sample Program

This sample code issues a connection request by directly specifying 192.168.0.6:20677
as the destination address in the instruction.

It specifies ret(=D3051) and t(=D2001) with t set up as shown in the table below.

Device Value Table Parameter
t = D2001 600 Timeout interval (=60 s)

D2002 12 Socket ID (= 12)
D2003 -1 Socket destination no.(=direct designation)
D2004 $0006
D2005 $C0A8 Destination IP address (= 192.168.0.6)

D2006 20677 Destination port no. (= 20677)

The table below shows the returned status data (ret), assuming normal exit.

Device Value Table Parameter
ret =D3051 0 Status

 2-56

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 TCP/IP Listen Request (TCPLISN)
Waits for connection request from any TCP/IP client, and establishes connection if a
request is received.
Table 2.6.51 TCP/IP Listen Request

Input
Condition
Required? Classification FUNC

No. Instruction Mnemonic Symbol
Yes No

Step Count
Pro–

cessing
Unit

Carry

Continuous
type

application
instruction

–
TCP/IP
Listen

Request
TCPLISN

C
TCPLISN

 – 5 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
" Continuous Type Application Instructions" in Subsection 2.6.1, "Using Socket Instructions".

Parameter

ret tTCP/IP Listen Request
C

TCPLISN
Table 2.6.52 Parameters

Parameter Description
ret*1 Device for storing return status (W)

t+0 Timeout interval (W)
[0 = infinite, 1-32767 (x100 ms)]

t+1 Socket ID (W) [8-15]

t

t+2 My port number (W) [1-65535]*2 *3
*1: ret (status) is table data. For details on the return status (ret), see “Status (Return Value)”.
*2: Do not specify my port number as 12289, 12290, 12291, 12305 or 12307 as these numbers are used by the higher-level

link service and remote programming service.
*3: Word data is handled as an unsigned decimal or hexadecimal number.

Status (Return Value)
Table 2.6.53 Status (Return Value)

Offset
(word) Description

0 Normal exit ret+0
< 0 Error status

ret+1 New socket ID for sending and receiving (W) [8-15]
ret+2 CPU properties socket address setting search result (W) [

 1-16 = Match for both IP address and port no.*1
101-116 = Match for IP address only*2
 -1 = No match*3

]
ret+3 Source IP address low (W) [$0000-$FFFF]
ret+4 Source IP address high (W) [$0000-$FFFF]

ret

ret+5 Source port number (W) [1-65535] *4
*1: If a match is found for the IP address and port number of the source in the socket address setup of CPU properties, the

corresponding setting number is returned.
*2: If a match is found for only the IP address of the source in the socket address setup of CPU properties, the

corresponding setting number + 100 is returned.
*3: If no match is found for the IP address of the source in the socket address setup of CPU properties, -1 is returned.
*4: Word data is handled as an unsigned decimal or hexadecimal number.

SEE ALSO
For more details on error status, see " Error Status of Continuous Type Application Instructions" of
" Continuous Type Application Instructions" in Subsection 2.6.1, "Using Socket Instructions".

 2-57

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

Available Devices
Table 2.6.54 Available Devices

Device
Parameter X Y I E L M T C D B W Z R V Con-

stant
Index

Modification
Indirect

Designation,
Pointer P

ret Yes Yes

t Yes Yes
Note: See Section 1.15, "Restrictions on Devices Used as Instruction Parameters" of "Sequence CPU – Instructions"

(IM34M6P12-03E)

Resource Relays
Table 2.6.55 Resource Relays Recommended for Insertion into Input Condition of

Instruction to Avoid Competition
Add to Input

Condition Number Name Usage

 M1028 No Unused UDP Socket
 M1029 No Unused TCP Socket

 M1105 to M1120 Socket Open
 M1121 to M1136 Socket Busy

 M1073 to M1088 Socket Sending
 M1089 to M1104 Socket Receiving

Execute TCPLISN instruction for
a socket ID only if both the No
Unused TCP Socket relay and its
corresponding Socket Busy relay
are OFF.

Function
Prepares for communications as a server. Waits for connection request from any TCP/IP
client, and establishes connection if a request is received.

When the instruction successfully establishes a connection with a client, it returns a new
socket ID in status. The new socket ID is to be used for subsequent sending and
receiving. The socket ID specified as a parameter of this instruction is not used for
sending and receiving and therefore can be reused to listen for a connection request
from a different client by re-executing this instruction. In other words, the same socket
(=same port number) can be used to listen for connection requests from multiple clients.
After connection, data can be sent to and received from multiple clients.

CAUTION

- Issuing multiple connection requests for the same socket is not allowed.
- When sending data to and receiving data from TCP/IP clients, use the socket ID

returned in status by this instruction, but not the socket ID that is specified as a
parameter of this instruction.

Programming Example

I200 I201

I201
D3051 >= 0 SET I211

SET I212D3051 < 0

RST I200

Execute instruction

Check status

C
TCPLISN D3051 D0011

Figure 2.6.16 TCP/IP Connect Request Sample Program

 2-58

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

This sample code listens for a connection request from any client. It assumes that the
required parameter values (timeout interval, the socket ID to be used by the TCPLISN
instruction, my port number) are already stored in the device area starting from device
D0011. It specifies D3051 as the first device for storing the returned status and new
socket ID for sending and receiving.

The table below shows an example of the returned status data (ret), assuming that the
instruction exited normally after processing a connection request from a peer
(192.168.0.9: 10456), which is registered as socket address setting 3 in CPU properties.

Device Value Table Parameter
ret = D3051 0 Status

D3052 12 New socket ID for sending and receiving
D3053 3 Socket address setting no. of source
D3054 $0009
D3055 $C0A8 Source IP address

D3056 10456 Source port number

 2-59

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

2.6.3.4 TCP/IP Send and Receive Instructions
Table 2.6.56 List of TCP/IP Send and Receive Instructions

Service Name Ladder
Instruction

Description

TCP/IP Send Request TCPSND Sends device data from a specified TCP/IP socket.
TCP/IP Receive Request TCPRCV Writes data received from a specified TCP/IP socket to

device.

 TCP/IP Send Request (TCPSND)
Sends data stored in a specified device using TCP/IP communications.

Table 2.6.57 TCP/IP Send Request
Input

Condition
Required? Classification FUNC

No. Instruction Mnemonic Symbol
Yes No

Step Count
Pro–

cessing
Unit

Carry

Continuous
type

application
instruction

–
TCP/IP
Send

Request
TCPSND

C
TCPSND

 – 6 8 bit –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
" Continuous Type Application Instructions" in Subsection 2.6.1, "Using Socket Instructions".

Parameter

ret tTCP/IP Send Request
C
TCPSND s

Table 2.6.58 Parameters
Parameter Description

ret*1 Device for storing return status (W)
t+0 Timeout interval (W)

[0 = infinite, 1-32767 (x100 ms)]
t+1 Socket ID (W) [8-15]

t

t+2 Size of send data (W) [0-2048 (bytes)]
s First device of send data (W)

*1: ret (status) is table data. For details on the return status (ret), see “Status (Return Value)”.

Status (Return Value)
Table 2.6.59 Status (Return Value)

Offset
(word) Description

> 0 Sent data size [1-2048 (bytes)] ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see " Error Status of Continuous Type Application Instructions" of
" Continuous Type Application Instructions" in Subsection 2.6.1, "Using Socket Instructions".

 2-60

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

Available Devices
Table 2.6.60 Available Devices

Device
Parameter X Y I E L M T C D B W Z R V Con-

stant
Index

Modification
Indirect

Designation,
Pointer P

ret Yes Yes

t Yes Yes

s # Yes Yes
Note: See Section 1.15, "Restrictions on Devices Used as Instruction Parameters" of "Sequence CPU – Instructions"

(IM34M6P12-03E)
#: You can specify the constant name of a constant definition but not a normal constant.

Resource Relays
Table 2.6.61 Resource Relays Recommended for Insertion into Input Condition of

Instruction to Avoid Competition
Add to Input

Condition Number Name Usage

 M1028 No Unused UDP Socket
 M1029 No Unused TCP Socket
 M1105 to M1120 Socket Open
 M1121 to M1136 Socket Busy
 M1073 to M1088 Socket Sending

 M1089 to M1104 Socket Receiving

Execute TCPSND instruction for a
socket ID only if both its
corresponding Socket Busy relay
and Socket Sending relay are
OFF.

Function
Sends data stored in a specified device using TCP/IP communications.
Specify the destination as a socket ID. For a client, specify the socket ID returned by the
TCP/IP Open (TCPOPEN) instruction. For a server, specify the socket ID returned by
the TCP/IP Listen Request (TCPLISN) instruction.

CAUTION

Concurrent send requests for the same socket are not allowed but concurrent execution
of a send request and a receive request is allowed.

 2-61

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

Programming Example

I200

I201

I201
D3051 >= 0

BMOV D0051 D2001 3

SET I211

SET I212D3051 < 0

RST I200

Set up parameter table t

Execute instruction

Check status

C
TCPSND D3051 D2001 B1025

Figure 2.6.17 TCP/IP Send Request Sample Program

This sample code sends to the node connected to TCP/IP socket ID 12, 212 bytes of
data stored in device starting from device B1025.

It specifies ret(=D3051), t(=D2001) and s(=B1025) with t set up as shown in the table
below.

Device Value Table Parameter
t = D2001 600 Timeout interval (=60 s)

D2002 12 Socket ID (= 12)
D2003 212 Size of send data (= 212 bytes)

The table below shows the returned status data (ret), assuming normal exit.

Device Value Table Parameter
ret = D3051 212 Status (sent data size)

 2-62

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 TCP/IP Receive Request (TCPRCV)
Stores data received from a TCP/IP socket to a specified device.

Table 2.6.62 TCP/IP Receive Request
Input

Condition
Required? Classification FUNC

No. Instruction Mnemonic Symbol
Yes No

Step Count
Pro–

cessing
Unit

Carry

Continuous type
application
instruction

–
TCP/IP
Receive
Request

TCPRCV
C
TCPRCV

 – 6 8 bit –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
" Continuous Type Application Instructions" in Subsection 2.6.1, "Using Socket Instructions".

Parameter

ret tTCP/IP Receive Request
C
TCPRCV d

Table 2.6.63 Parameters
Parameter Description

ret*1 Device for storing return status (W)
t+0 Timeout interval (W)

[0 = infinite, 1-32767 (x100 ms)]
t+1 Socket ID (W) [8-15]
t+2 Size of receive area (W) [0-2048 (bytes)]
t+3 Append NULL option (W) *2

[0=no; 1=yes]

t

t+4 Buffer option (W) [*3
0 = Delete read data in receive buffer after retrieval
 (normal mode)
1 = Keep read data in receive buffer after retrieval
2 = Check data size in receive buffer
3 = Delete data in receive buffer without retrieval
4 = Delete read data in receive buffer after retrieval
 (Auto increment mode)

]
d First register for receive area (W)

*1: ret (status) is table data. For details on the return status (ret), see “ Status (Return Value)”.
*2: Any NULL byte appended according to the Append NULL option should be included in the size of receive area.
*3: Buffer options 0 and 4 are recommended to avoid buffer overflow.

Status (Return Value)
Table 2.6.64 Status (Return Value)

Offset
(word) Description

> 0 Received data size [1-2048 (bytes)*1 ret ret+0
< 0 Error status

*1: Received data size includes any NULL byte appended according to Append NULL option.

SEE ALSO
For more details on error status, see " Error Status of Continuous Type Application Instructions" of
" Continuous Type Application Instructions" in Subsection 2.6.1, "Using Socket Instructions".

 2-63

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

Available Devices
Table 2.6.65 Available Devices

Device
Parameter X Y I E L M T C D B W Z R V Con-

stant
Index

Modification
Indirect

Designation,
Pointer P

ret Yes Yes

t Yes Yes

d Yes Yes
Note: See Section 1.15, "Restrictions on Devices Used as Instruction Parameters" of "Sequence CPU – Instructions"

(IM34M6P12-03E)

Resource Relays
Table 2.6.66 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1028 No Unused UDP Socket
 M1029 No Unused TCP Socket
 M1105 to M1120 Socket Open
 M1121 to M1136 Socket Busy

 M1073 to M1088 Socket Sending
 M1089 to M1104 Socket Receiving

Execute TCPRCV instruction for a socket
ID only if both its corresponding Socket
Busy relay and Socket Receiving relay are
OFF.

Function
Stores data received from a TCP/IP socket to a specified device. After execution, the
size of data stored to device is returned in status. You can specify whether to append a
NULL byte behind received data using the Append Null Option.

If no data is received in the buffer when the instruction is executed, the instruction waits
for data to arrive. However, if the buffer option parameter is set to 2 (= check data size in
receive buffer), the instruction completes execution without entering wait state even if no
data has been received. If a timeout interval is specified and no data is received within
the specified time, the instruction exits from wait state, holds the result signal to ON and
returns a timeout error in status.

Auto increment mode
Specifying 4 for the buffer option parameter selects auto increment mode in which the
instruction automatically increments parameter d (first device for receive area) by the
received data size so that the entire data received through multiple instruction
executions can be stored contiguously to devices.

Using auto increment mode
Auto increment mode must be used together with normal mode. Specify normal mode
for the first execution of TCPRCV and specify auto increment mode for the second and
subsequent executions. This way, the received data will be stored contiguously to
device.
Do not modify the value of parameter d (first device of receive area) for the second and
subsequent executions as the byte offset is computed automatically by the instruction.

 2-64

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

Canceling auto increment mode
To reset the byte offset to zero, you can either:
- Execute the instruction by specifying any value other than 4 for the buffer option;
- Execute the instruction with a modified value of parameter d (first address of receive

area)

CAUTION

- Concurrent receive requests for the same socket are not allowed but concurrent
execution of a send request and a receive request is allowed.

- Selecting a buffer option that does not delete data in the receive buffer may lead to
buffer overflow.

- If auto increment mode is specified and the byte offset (= accumulated received
size) exceeds the specified size of receive area parameter, a "Specified Size/Times
Processed" (-2003) status is returned.

Programming Example

I200

I201

I201
D3051 >= 0

BMOV D0051 D2001 5

SET I211

SET I212D3051 < 0

RST I200

Set up parameter table t

Execute instruction

Check status

C
TCPRCV D3051 D2001 B1025

Figure 2.6.18 TCP/IP Receive Request Sample Program

This sample code waits for data from the node connected to TCP/IP socket ID 12, and
stores the received data to device, starting from device B1025.

It specifies ret(=D3051), t(=D2001) and d(=B1025), with t set up as shown in the table
below.

Device Value Table Parameter
t = D2001 6000 Timeout interval (= 600 s)

D2002 12 Socket ID (=12)
D2003 2048 Size of receive area (= 2048 bytes)
D2004 0 Append NULL option (= No)
D2005 0 Buffer option

(= Normal mode (recommended))

The table below shows the returned status data (ret), assuming normal exit after
receiving 608 bytes of data.

Device Value Table Parameter
ret = D3051 608 Status (received data size)

 2-65

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

2.7 Socket Communications Sample Program
This section describes a sample program for the socket communications
function. These sample programs are intended to help a user better understand
the instruction specifications and are not intended to be used directly in user
applications.

 List of Sample Programs
The table below shows the file structure of a sample program provided for the socket
communications function. Files for the sample program are automatically copied to the
respective folders shown below when WideField2 is installed.

Table 2.7.1 Sample Program Components and Location

Sample Program
Name

Component Location

Project ~\Fam3pjt\CPUSample\F3SP66\UECHOC\UECHOC.YPJT
~\Fam3pjt\CPUSample\F3SP66\UECHOS\UECHOS.YPJT

UDP/IP
echo server

CPU Properties ~\Fam3pjt\CPUSample\F3SP66\UECHOC\UECHOC.YPRP
~\Fam3pjt\CPUSample\F3SP66\UECHOS\UECHOS.YPRP

Project ~\Fam3pjt\CPUSample\F3SP66\TECHOC\TECHOC.YPJT
~\Fam3pjt\CPUSample\F3SP66\TECHOS\TECHOS.YPJT

TCP/IP
echo server

CPU Properties ~\Fam3pjt\CPUSample\F3SP66\TECHOC\TECHOC.YPRP
~\Fam3pjt\CPUSample\F3SP66\TECHOS\TECHOS.YPRP

Note: "~" in the "Location" column denotes the folder where WideField2 is installed.

 2-66

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

2.7.1 UDP/IP Echo Server

 Function and Usage
This is a sample program for a UDP/IP echo server. It consists of two components,
namely the client and the echo server. Two F3SP66-4S modules and one hub for
building an Ethernet network are required for running the program.
The client sends 2048 (the size can be customized by modifying the constant definition)
bytes of data to the echo server, and then receives a reply from the echo server.
The echo server returns the 2048 bytes of data received from the client back to the
client with no modification.
There are two ways to specify a destination in a UDPSND instruction -- either by
referring to an address setting number in CPU properties or by directly specifying an
address in the instruction parameter table. This sample program uses the latter
approach.

 Structure of Sample Program

 List of Instructions Used
The table below shows the main ladder instructions used in the sample program.

Table 2.7.2 List of Socket Instructions Used (for client)
Ladder Instruction

Mnemonic Purpose

UDPOPEN Opens a UDP socket to be used by the client.
UDPCLOSE Closes the UDP socket no longer needed by the client.
UDPSND Sends data to the echo server.
UDPRCV Receives data from the echo server.

Table 2.7.3 List of Socket Instructions Used (for echo server)
Ladder Instruction

Mnemonic Purpose

UDPOPEN Opens a UDP socket to be used by the echo server.
UDPCLOSE Closes the UDP socket no longer needed by the echo server.
UDPSND Sends data to the client.
UDPRCV Receives data from the client.

 List of Special Relays Used
The table below lists the main special relays used in the sample program.

Table 2.7.4 List of Special Relays Used (for client, echo server)

Name of Special Relay No. of Special
Relay Function

No Unused UDP Socket M1028 Checks for an unused UDP socket.
Socket Busy M1121 to M1136 Checks that the socket is not busy.
Socket Sending M1073 to M1088 Checks that the socket is not sending data.
Socket Receiving M1089 to M1104 Checks that the socket is not receiving data.
Always On M0033 Used in Always On circuit.
1 Scan ON at Program Start M0035 Turns on for one scan after program starts execution
US1 LED Lit M0125 Turns on US1 LED
US2 LED Lit M0127 Turns on US2 LED

 2-67

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Project
The table below shows the content of the WideField2 project containing the sample
program.

Table 2.7.5 Project Content (for Client)
Name Component Description

Configuration SP66 configuration with default setup.
You can also use a F3SP67-6S provided you change the CPU type
in the configuration.
Total of blocks 1 Blocks
Block 1 MAIN (client)
Total number of macros 1 Macros
Macro 1 DTMAKE (macro for creating send data)
#MYPORT My port number
#TGT_IP IP address of destination
#TGT_PT Port number of destination
#SNDSIZE Size of send data
#MAXSIZE Maximum packet size for receiving

UECHOC

Constant
definition

Others, 7 definitions in total

Table 2.7.6 Project Content (for Echo Server)
Name Component Description

Configuration SP66 configuration with default setup.
You can also use a F3SP67-6S provided you change the CPU type
in the configuration.
Total number of
blocks

1 Blocks

Block 1 MAIN (accepts connection request from client)
Macros Total number of

macros
0

#MYPORT My port number
#MAXSIZE Max. size for receiving
#E_5000 Error code (connection error)
#TOUT_A Instruction timeout interval

UECHOS

Constant
definition

#TOUT_B Instruction timeout interval

 CPU Properties
The table below shows the content of the CPU property file of the sample program.
You can run the sample program with the default values but you may need to modify
some property values to match the user environment.

Table 2.7.7 CPU Properties (for Client)
File Name Required Setup for Execution of Sample Program

Ethernet setup Specify the IP address and subnet mask to match the network
environment. If you are configuring a local network for the sample
program, you can run the sample program using the default values.
The sample program uses the following default values:
- ETHER_MY_IPADDRESS = 192.168.0.2
- ETHER_SUBNET_MASK = 255.255.255.0

Socket setup You can run the sample program using the default values.

UECHOC.YPRP

Socket
address setup

No setup is required because the sample program specifies the
destination directly in the instruction parameter table.

Table 2.7.8 CPU Properties (for Echo Server)
File Name Required Setup for Execution of Sample Program

UECHOS.YPRP Ethernet setup Specify the IP address and subnet mask to match the network
environment. If you are configuring a local network for the sample
program, you can run the sample program using the default values.
The sample program uses the following default values:
- ETHER_MY_IPADDRESS = 192.168.0.3
- ETHER_SUBNET_MASK = 255.255.255.0

 Files
This sample program uses no data file.

 2-68

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Ladder Program Listing
The figure on the following pages shows the ladder program listing. For details on the
purpose of individual devices used in the ladder program, see the I/O comments of the
block tag name definition.
The macro listing is omitted as the macro is not directly related to socket
communications.

 Project (UECHOC) Block (MAIN)

F0211.VSD
Figure 2.7.1 UDP/IP Sample Program Listing: Client MAIN (1/2)

 2-69

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

F0212.VSD
Figure 2.7.2 UDP/IP Sample Program Listing: Client MAIN (2/2)

 2-70

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Project (UECHOS) Block (MAIN)

F0213.VSD
Figure 2.7.3 UDP/IP Sample Program Listing: Echo Server MAIN (1/2)

 2-71

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

F0214.VSD
Figure 2.7.4 UDP/IP Sample Program Listing: Echo Server MAIN (2/2)

 2-72

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

2.7.2 TCP/IP Echo Server

 Function and Usage
This is a sample program for a TCP/IP echo server. It consists of two projects, namely
the client and the echo server. Two F3SP66-4S modules and one hub for building an
Ethernet network are required for running the program.
The client sends 2048 (the size can be customized by modifying the constant definition)
bytes of data to the echo server, and then receives a reply from the echo server.
The echo server returns the 2048 bytes of data received from the client back to the
client with no modification. The echo server passes a processing request to a child block
each time it receives a connection request from a client. It can support echo processing
for up to 7 clients.

 Structure of Sample Program

 List of Instructions Used
The table below shows the main ladder instructions used in the sample program.

Table 2.7.9 List of Socket Instructions Used (for client)
Ladder

Instruction
Mnemonic

Purpose

TCPOPEN Opens a TCP socket to be used by the client.
TCPCLOSE Closes the TCP socket no longer needed by the client.
TCPCNCT Issues a request to connect to the echo server.
TCPSND Sends data to the echo server.
TCPRCV Receives data from the echo server.

Table 2.7.10 List of Socket Instructions Used (for echo server)
Ladder

Instruction
Mnemonic

Purpose

TCPOPEN Opens a socket to be used by the echo server in a TCPLISN instruction to
listen for connection requests from the client.

TCPCLOSE Closes the socket used by the echo server in a TCPLISN instruction.
TCPLISN Listens for any connection request from the client, and establishes connection if

a request is received. When connection is established, a new socket ID for
used in data receiving and sending with the client is returned.

TCPSND Sends data to the client using the new socket ID returned by TCPLISN.
TCPRCV Receives data from the client using the new socket ID returned by TCPLISN.

 List of Special Relays Used
The table below lists the main special relays used in the sample program.

Table 2.7.11 List of Special Relays Used (for client, echo server)
Name of Special Relay No. of Special Relay Function

No Unused TCP Socket M1029 Checks for an unused TCP socket.
Socket Busy M1121 to M1136 Checks that the socket is not busy.
Socket Sending M1073 to M1088 Checks that the socket is not sending data.
Socket Receiving M1089 to M1104 Checks that the socket is not receiving data.
Always On M0033 Used in Always On circuit.
1 Scan ON at Program Start M0035 Turns on for one scan after program starts execution
US1 LED Lit M0125 Turns on US1 LED
US2 LED Lit M0127 Turns on US2 LED

 2-73

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Project
The table below shows the content of the WideField2 project containing the sample
program.
Table 2.7.12 Project Content (for Client)

Name Component Description
Configuration SP66 configuration with default setup.

You can also F3SP67-6S provided you change the CPU type in the configuration.
Total number of blocks 1 Blocks
Block 1 MAIN (client)
Total number of macros 1 Macros
Macro 1 DTMAKE (macro for creating send data)
#TGT_NO For specifying TCPNCNT destination

Socket address setting no. of CPU properties
#SNDSIZE Size of send data
#N_MODE TCPRCV buffer option

Normal mode
#A_MODE TCPRCV buffer option

Auto increment mode
#TOUT_A Instruction timeout interval

TECHOC

Constant
definition

Others, 7 definitions in total

Table 2.7.13 Project Content (for Echo Server)
Name Component Description

Configuration SP66 configuration with default setup except for local device setup.
You can also F3SP67-6S provided you change the CPU type in the configuration.
Total number of blocks 8
Block 1 MAIN (accepts connection requests from clients)

Blocks

Blocks 2 to 8 CHILD (child process for processing sending and
receiving)

Macros Total number of macros 0
#PORT Port no. used by TCPLISN for listening
#TOUT_A Instruction timeout interval
#TOUT_B Instruction timeout interval
#E_2002 Error code (Disconnected by remote node)

TECHOS

Constant definition

#E_5000 Error code (connection error)

 CPU Properties
The table below shows the content of the CPU property file of the sample program. You
can run the sample program with the default values but you may need to modify some
property values to match the user environment.
Table 2.7.14 CPU Properties (for Client)

File Name Required Setup for Execution of Sample Program
Ethernet setup Specify the IP address and subnet mask to match the network environment. If you are

configuring a local network for the sample program, you can run the sample program
using the default values.
The sample program uses the following default values:
- ETHER_MY_IPADDRESS = 192.168.0.2
- ETHER_SUBNET_MASK = 255.255.255.0

Socket setup You can run the sample program using the default values.

TECHOC.YPRP

Socket address
setup

Specify the IP address of the echo server or the port number used by the echo server
in the TCPLISN instruction. The default values are the same as the default values on
the echo server end. The sample program uses the following default values:
- SOCKET_PORT_1 = 1024
- SOCKET_ADR_IP_1 = 192.168.0.3

Table 2.7.15 CPU Properties (for Echo Server)

File Name Required Setup for Execution of Sample Program
TECHOS.YPRP Ethernet setup Specify the IP address and subnet mask to match the network environment. If you are

configuring a local network for the sample program, you can run the sample program
using the default values.
The sample program uses the following default values:
- ETHER_MY_IPADDRESS = 192.168.0.3
- ETHER_SUBNET_MASK = 255.255.255.0

 2-74

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Files
This sample program uses no data file.

 Ladder Program Listing
The figure on the following pages shows the ladder program listing. For details on the
purpose of individual devices used in the ladder program, see the I/O comments of the
block tag name definition.
The macro listing is omitted as the macro is not directly related to socket
communications.

 Project (TECHOC) Block (MAIN)

F0215.VSD
Figure 2.7.5 TCP/IP Sample Program Listing: Client MAIN (1/3)

 2-75

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

F0216.VSD
Figure 2.7.6 TCP/IP Sample Program Listing: Client MAIN (2/3)

 2-76

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

F0217.VSD
Figure 2.7.7 TCP/IP Sample Program Listing: Client MAIN (3/3)

 2-77

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Project (TECHOS) Block (MAIN)

F0218.VSD
Figure 2.7.8 TCP/IP Sample Program Listing: Echo Server MAIN (1/2)

 2-78

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

F0219.VSD
Figure 2.7.9 TCP/IP Sample Program Listing: Echo Server MAIN (2/2)

 2-79

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Project (TECHOS) Block (CHILD)

F0220.VSD
Figure 2.7.10 TCP/IP Sample Program Listing: Echo Server CHILD (1/2)

 2-80

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

F0221.VSD
Figure 2.7.11 TCP/IP Sample Program Listing: Echo Server CHILD (2/2)

 3-1

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3. FTP Function
This chapter describes the FTP function.

SEE ALSO
The FTP function uses the SD memory card, RAM disk and file system. For details, see Part C,
"Storage Functions" of "Sequence CPU – Functions (for F3SP66-4S, F3SP67-6S)" (IM34M6P14-01E)

3.1 Overview of FTP Function
This section gives a general overview of FTP as a standard file transfer protocol,
followed by an overview of the FTP function of the CPU module.

3.1.1 Description of FTP
FTP (File Transfer Protocol) is a widely-used protocol for file transfer and disk operation.
FTP is commonly used for file transfer between PCs and workstations as it is supported
by many software applications and C-language libraries.
A machine running FTP acts as an FTP server and an FTP client.

- FTP Client

An FTP client initiates a request for file transfer or disk operation. An FTP client
sends an FTP command to an FTP server in the form of a request, to which the FTP
server returns a response.

- FTP Server

An FTP server accepts file transfer or disk operation requests. When an FTP client
sends an FTP command as a request to the FTP server, the FTP server prepares
the requested file to be sent, or performs the requested disk operation, and then
sends a response to the FTP client.

Request
Example:
Request to send file

Response
Example:
Send requested file

FTP client

FTP server

F0301.VSD
Figure 3.1.1 FTP Client and Server Connection

 3-2

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.1.2 FTP Functions Supported by the Module

 FTP client
The CPU module supports FTP client functions. FTP commands are issued using
special ladder instructions.

 FTP server
The CPU module supports FTP server functions. It performs file transfer or disk
operations in response to requests from FTP clients such as PCs or other CPU
modules.

 Virtual directory commands
Virtual directory commands are extended FTP server functions of the CPU Module. By
coding a command as the file pathname of an FTP command, the module can be made
to perform various operations. For instance, using FTP, the module can be made to
automatically convert data in a transferred file and store the data to devices, or to
automatically convert device data into a file and send it, or to load or save a project.

These commands are known as virtual directory commands because they are specified
as file pathnames that do not actually exist on disk.

F0303.VSD

Dxxxx 8
5
6
1

··
·

+1
+2
+3

··
·

Devices

048C

CSV file
8,5,6,1...

Virtual directory 048C

FT
P

co
nn

ec
tio

n
Project file
of card load format

Virtual directory

Download

a,

FT
P

co
nn

ec
tio

n

Figure 3.1.2 Concept of Virtual Directory Command

 3-3

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.2 FTP Network Configurations and Access
Methods
This section describes possible network configurations for using FTP. It also
describes how to establish FTP client connections and specify files in FTP
commands for each of the network configurations.

3.2.1 FTP Connection on Ethernet
FTP connections can be established between machines over an Ethernet network.
The table below lists the possible client-server machine combinations for FTP
connection over Ethernet.

Table 3.2.1 Possible Client-Server Combinations for FTP Connection on Ethernet
FTP Client Machine FTP Server Machine

PC FA-M3
FA-M3 PC
FA-M3 FA-M3

Note: - The term "PC" here refers to any machine other than the sequence CPU module, which is the subject of this
manual.

- The term "FA-M3" here refers to the sequence CPU module, which is the subject of this manual.

The term "FTP client unit" here refers to an FA-M3 unit installed with a CPU module
which is running as an FTP client. The term "FTP server unit" here refers to an FA-M3
unit installed with a CPU module which is running as an FTP server.

 FTP Connection with PC as Client and FA-M3 as Server
We describe here how to establish an FTP connection with a PC running as FTP client
and an FA-M3 running as FTP server, as well as how to specify files in FTP commands
in such a configuration.

Ethernet

FTP client

FTP server
unit

F0306.VSD

FTP connection

Example:
IP address: 192.168.0.44
Account name: yokogawa
Password: electric

Figure 3.2.1 FTP Connection with PC as Client and FA-M3 as Server

 3-4

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 How to establish FTP connection
Specify a host for connection:
Specify the IP address or hostname of a CPU module, which is mounted on the FTP
server unit and connected to the Ethernet. Specify the FTP server port number in the
FTP client setup if the default value of 21 is not appropriate.

Example: To establish an FTP connection from a PC to an FA-M3 having IP address
192.168.0.44, enter:

open 192.168.0.44

Enter FTP account name:
Enter the FTP server account name of the CPU module, which is mounted on the FTP
server unit and connected to the Ethernet.

Example: Assuming that the FTP server account name is "yokogawa", enter:

User: yokogawa

Enter FTP password:
Enter an FTP server password for the CPU module, which is mounted on the FTP server
unit and connected to the Ethernet.

Example: Assuming the password is "electric", enter "electric". For security reasons, the
entered password is normally masked as shown below.

Password: ********

 How to specify files in FTP commands
Specify the pathname of a file on the CPU module to be accessed.

 3-5

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 FTP Connection with FA-M3 as Client and PC as Server
We describe here how to establish an FTP connection with an FA-M3 running as FTP
client and a PC running as FTP server, as well as how to specify files in FTP commands
in such a configuration.

Ethernet

FTP client unit

FTP server

F0307.VSD

FTP connection

Example:
IP address: 192.168.0.44
Account name: yokogawa
Password: electric

Figure 3.2.2 FTP Connection with FA-M3 as Client and PC as Server

 How to establish FTP connection
Specify a host for connection:
Specify the IP address or hostname of the PC. Specify the FTP server port number in
the FTP client setup of CPU properties if the default value of 21 is not appropriate.

Example: To establish an FTP connection from an FA-M3 to a PC having IP address
192.168.0.44, specify:

Destination FTP server/IP address (CPU properties) = 192.168.0.44

Enter FTP account name:
Enter the FTP server account name of the PC.

Example: Assuming that the FTP server account name is "yokogawa", enter:

Destination FTP server/account (CPU properties) = yokogawa

Enter FTP password:
Enter the FTP server password of the PC.

Example: Assuming the password is "electric", specify:

Destination FTP server/password (CPU properties) = electric

 How to specify files in FTP commands
Specify the file pathname relative to the FTP server home directory of the PC.

 3-6

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 FTP Connection with FA-M3 as Client and FA-M3 as Server
We describe here how to establish an FTP connection with an FA-M3 running as FTP
client and another FA-M3 running as FTP server, as well as how to specify files in FTP
commands in such a configuration.

Ethernet

FTP client unit

FTP server
unit

F0308.VSD

FTP connection

Example:
IP address: 192.168.0.44
Account name: yokogawa
Password: electric

Figure 3.2.3 FTP Connection with FA-M3 as Client and FA-M3 as Server

 How to establish FTP connection
Specify a host for connection:
Specify the IP address or hostname of the FA-M3 running as FTP server. Specify the
FTP server port number in the FTP client setup of CPU properties if the default value of
21 is not appropriate.

Example: To establish an FTP connection from an FA-M3 running as FTP client to
another FA-M3 running as FTP server and having IP address 192.168.0.44,
specify:

Destination FTP server/IP address (CPU properties) =
192.168.0.44

Enter FTP account name:
Enter the FTP server account name of the FA-M3 running as FTP server.

Example: Assuming that the FTP server account name is "yokogawa", specify:

Destination FTP server/account (CPU properties) = yokogawa

Enter FTP password:
Enter the FTP server password of the FA-M3 running as FTP server.

Example: Assuming the password is "electric", specify:

Destination FTP server/password (CPU properties) = electric

 How to specify files in FTP commands
Specify the pathname of a file on the CPU module to be accessed.

 3-7

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.3 FTP Client
This section describes FTP client functions of the module.

3.3.1 FTP Client Specifications

 General Specifications
Table 3.3.1 FTP Client Specifications

Item Specification
Number of FTP clients 1
User interface Special ladder instructions

 Instruction List
Table 3.3.2 FTP Commands (Ladder Instructions) Supported by the Module

Ladder Instruction Name Mnemonic Function
FTP Client Open FTPOPEN Runs FTP client, and sends account name and password for

connection to an FTP server.
FTP Client Quit FTPQUIT Disconnects from an FTP server and exits from FTP client.
FTP Client Put File FTPPUT Transfers a file to the FTP server.
FTP Client Put Unique File FTPPUTU Transfers a file to the FTP server to be stored with a unique

filename determined by FTP server.
FTP Client Append File FTPAPEND Transfers a file to the FTP server to be appended to a specified

file on the FTP server.
FTP Client Get File FTPGET Gets a file from the FTP server.
FTP Client Change Directory FTPCD Changes the remote current directory on the FTP server.
FTP Client Change Local Directory FTPLCD Changes the local current directory on the FTP client.
FTP Client Current Directory Info FTPPWD Gets information about the current directory of the FTP server.
FTP Client Get File List FTPLS Gets file information from the FTP server.
FTP Client Delete File FTPDEL Deletes one or more files on the FTP server.
FTP Client Rename File FTPREN Renames a file on the FTP server.
FTP Client Make Directory FTPMKDIR Creates a directory on the FTP server.
FTP Client Remove Directory FTPRMDIR Deletes a directory on the FTP server.
FTP Client Representation Type FTPTYPE Selects ASCII or binary representation for FTP data transfer. The

initial value is binary.

 Special Relays and Special Registers

 Special relays
The table below lists special relays related to FTP client functions.

Table 3.3.3 Special Relays (related to FTP Client Functions)
Category FTP Client Resource Relays

No. Name Function Description

M1027 FTP Client Busy
An FTP client
instruction is
being executed.

This relay turns on during execution of any FTP
client instruction. When the relay is ON, no other
FTP client instruction can be executed.
By inserting this relay in the input condition of an
FTP client instruction, you can prevent
inadvertent duplicate execution.
This is a read-only relay. Do not write to it.

 Special Registers
There are no special registers related to FTP client functions.

 3-8

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.3.2 FTP Client Setup
This subsection describes how to configure the FTP client function.

 Basic Setup
The table below shows basic setup required for the FTP client function before use.

Table 3.3.4 Basic Setup for FTP Client Function
Name of Setup Type of Setup SEE ALSO*1

Ethernet setup CPU Properties A9.5.2, "Ethernet Setup"
FTP client address setup CPU Properties " FTP Client Address Setup"

of A9.5.5, "FTP Client Setup"
*1: For details on individual setup items, see "Sequence CPU – Functions (for F3SP66-4S, F3SP67-6S)"

(IM34M6P14-01E).

 Ethernet setup
Ethernet setup configures the CPU module for joining an Ethernet network.

- Minimally, you must specify the IP address and subnet mask. If you set the subnet
mask to "0.0.0.0", the default mask for the class of the IP address is used.

- To access another network via a gateway, you must define the default gateway
address.

- To access other network nodes by hostname, you must define the DNS related
settings (DNS server, my hostname, domain name, domain suffixes)

 FTP client address setup
FTP client setup defines the IP address, hostname, account name (user name) and
password of one or more destination FTP servers. The FTP Client Open (FTPOPEN)
instruction performs connection processing using this information.

 Optional Setup
The FTP client function may be configured as required before use.

Table 3.3.5 Optional Setup for FTP Client
Name of Setup Type of Setup SEE ALSO*1

FTP client setup CPU properties " FTP Client Setup"
of A9.5.5, "FTP Client Setup"

*1: For details on individual setup items, see "Sequence CPU – Functions (for F3SP66-4S, F3SP67-6S)"
(IM34M6P14-01E).

 FTP client setup
You can define the response timeout interval (FTPC_NETACK_TOUT) for TCP/IP
communications, which is the layer below FTP in the network protocol. In a high-load,
low-speed communications environment, internal communications timeout errors (error
code: -1001) may be reported during execution of FTP client instructions. Lengthening
the timeout interval may resolve the problem in such situations. This timeout interval
also determines the minimum time required to detect the absence of a remote node.

 3-9

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.3.3 Using FTP Client
This subsection describes how to use the FTP client function.

BEGIN

Run FTP client

- Put file
- Get file

- Get file information
etc.

Terminate FTP client

END

Beginning of loop
(if required)

End of Loop
(if required)

FTP Client Open (FTPOPEN) instruction

FTP Client Put File (FTPPUT) instruction
FTP Client Get File (FTPGET)instruction
FTP Client Get File List (FTPLS) instruction
etc.

FTP Client Quit (FTPQUIT) instruction

Instruction Used:

Connection to FTP
server successful?

Yes

No

User processing - System processing
- External event

Disconnect from FTP server

F0317.VSD
Figure 3.3.1 FTP Client Procedure

 3-10

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Executing and Terminating FTP Client

 Executing FTP Client
The FTP Client Open (FTPOPEN) instruction establishes an FTP connection to the FTP
server if the execution exits normally.

 Terminating FTP Client
The FTP Client Quit (FTPQUIT) instruction disconnects an FTP connection with the FTP
server if the execution exits normally.

 Restrictions on FTP Client Execution
Concurrent execution of multiple FTP clients is not allowed. To connect to a different
FTP server, stop the active FTP client, change the destination and start FTP client
again.

 Specifying Destination for Connection to FTP Server
Define one or more FTP server destinations using FTP Client Address setup of CPU
Properties. You may then select one of these destinations by specifying its setting
number as an instruction parameter of the FTP Client Open (FTPOPEN) instruction.

SEE ALSO
- For details on FTP client address setup of CPU properties, see Subsection 3.3.2, "FTP Client

Setup."

 Executing FTP Commands
FTP commands can be executed using special FTP client ladder instructions.

SEE ALSO
For details on FTP client instructions, see Section 3.4, "FTP Client Instructions."

 3-11

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.4 FTP Client Instructions
This section briefly describes FTP client instructions.

3.4.1 Using FTP Client Instructions

 Continuous type Application Instructions
All FTP client instructions are continuous type application instructions.
Continuous type application instructions perform background processing that spans
multiple scans. When instruction execution is completed, the result signal (on the circuit
line connected to the output end of the instruction) is held to ON for one scan period.
Furthermore, a status indicating whether execution is successful is stored in a device
specified as an instruction parameter.

SEE ALSO
For details on continuous type application instructions, see " Continuous Type Application
Instructions" of Section 2.6.1, "Using Socket Instructions."

 Resource Relays
Resource relays are special relays for preventing competition between continuous type
application instructions. A resource relay indicates the release status of a resource
subject to exclusive control. Resources include file IDs, socket IDs, functions and
instructions.
By inserting a resource relay in the input condition of a continuous type application
instruction, you can prevent errors due to resource competition. In particular, resource
relays are required for checking for completion of cancellation processing or instruction
timeout processing in user applications where cancellation request for a continuous type
application instruction, or timeout (-1000) may occur.

 Resource Relays (related to FTP Client instructions)

Table 3.4.1 Resource Relays (related to FTP Client instructions)
Category Continuous Type Application Instruction Resource Relays

No. Name Function Description

M1027 FTP Client Busy
FTP client
instruction is
executing.

Turns on during execution of any FTP client
instruction. Execution of any other FTP client
instruction is not allowed while this relay is ON.
This relay can be inserted in the input condition of
FTP client instructions to prevent inadvertent
repeat executions.
This is a read-only relay. Do not write to it.

 Text Parameter
Some continuous type application instructions require text parameters to be specified in
addition to the usual instruction parameters. A text parameter can be specified using the
Text Parameter (TPARA) instruction.

SEE ALSO
For details on text parameters, see " Text Parameter" in Section 2.6.1, "Using Socket Instructions".

 3-12

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Handling of File Pathname

 Drive Name
A drive name is a disk identifier. On a Windows PC, a disk identifier is typically
represented in the form of "C:\" or "D:\". The CPU module has two types of disks,
namely, RAM disk and SD memory card, which are assigned the following directory
names:

RAM disk : \RAMDISK
SD memory card : \CARD1

TIP
- The '\' prefix in a drive name indicates the "root directory."

- Each directory or file in the root directory is coded after the drive name, separated by a backslash
character ('\').

 Relative pathname and absolute pathname
Both relative pathnames and absolute pathnames can be used in FTP client instructions.
Relative pathnames are pathnames relative to the current directory.

FC0312.VSD

Current directory Relative pathname Absolute pathname+ =

Specifying abc.txt using an absolute pathname
\RAMDISK\MYDIR\abc.txt
Change current directory to:
\RAMDISK\MYDIR
Specifying abc.txt using a relative pathname:
abc.txt

Specifying the
same file

Figure 3.4.1 Relative Pathname and Absolute Pathname

 Current directory (local)
The local current directory here refers to the current directory on the disk on the CPU module
executing the FTP client instruction.
FTP client instructions use a common current directory value, which applies only to FTP
client instructions, and is independent of the current directory of file system instructions
and card batch file functions.
The current directory defaults to "\RAMDISK" when FTP client is started.
To change the current directory, use the FTP Client Change Local Directory (FTPLCD)
instruction.
You may not specify a directory below pathname "\VIRTUAL".

TIP
Deleting or moving a directory designated as the current directory does not generate an error.
However, you should redefine the current directory in this case.

 3-13

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Current directory (remote)
The remote current directory here refers to the current directory on the disk of the connected
FTP server.
The management of the current directory on the FTP server follows the specifications of
the FTP server. To change the current directory on the FTP server, use the FTP Client
Change Directory (FTPCD) instruction.

SEE ALSO
For details on the handling of the current directory by the CPU module when it is running as an FTP
server, see " Current Directory" of " Handling of File Pathname" of Subsection 3.6.3, "Using FTP
Server."

 Root directory
The root directory is the directory at the top of the file hierarchy. It is represented by
pathname "\". A user may change directory to the root directory, display the current
directory, and get file information about the root directory. However, creating a file or
directory in the root directory is not allowed.
If you execute the Get File List command for the root directory, the drive name of the
module is displayed.

 3-14

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.4.2 List of FTP Client Instructions
Table 3.4.2 FTP Commands Supported by the CPU Module Running as an FTP Client

Ladder Instruction Name Mnemonic Function
FTP Client Open FTPOPEN Runs FTP client, and sends account name and password for

connection to an FTP server.
FTP Client Quit FTPQUIT Disconnects from an FTP server and exits from FTP client.
FTP Client Put File FTPPUT Transfers a file to the FTP server.
FTP Client Put Unique File FTPPUTU Transfers a file to the FTP server to be stored with a unique

filename determined by FTP server.
FTP Client Append File FTPAPEND Transfers a file to the FTP server to be appended to a specified file

on the FTP server.
FTP Client Get File FTPGET Gets a file from the FTP server.
FTP Client Change Directory FTPCD Changes the remote current directory on the FTP server.
FTP Client Change Local Directory FTPLCD Changes the local current directory on the FTP client.
FTP Client Current Directory Info FTPPWD Gets information about the current directory of the FTP server.
FTP Client Get File List FTPLS Gets file information from the FTP server.
FTP Client Delete File FTPDEL Deletes one or more files on the FTP server.
FTP Client Rename File FTPREN Renames a file on the FTP server.
FTP Client Make Directory FTPMKDIR Creates a directory on the FTP server.
FTP Client Remove Directory FTPRMDIR Deletes a directory on the FTP server.
FTP Client Representation Type FTPTYPE Selects ASCII or binary representation for FTP data transfer. The

initial value is binary.

 3-15

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.5 FTP Client Instruction Specifications
This section describes the specifications of FTP client instructions.

3.5.1 FTP Client Open (FTPOPEN)
Runs FTP client and connects to an FTP server.

Table 3.5.1 FTP Client Open
Input

Condition
Required? Classification FUNC

No. Instruction Mnemonic Symbol
Yes No

Step Count
Pro-

cessing
Unit

Carry

Continuous
type

application
instruction

– FTP Client
Open FTPOPEN

C
FTPOPEN

 – 6 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
“ Continuous Type Application Instructions” in Section 2.6.1, "Using Socket Instructions”.

 Parameter

ret n1FTP Client Open
C

FTPOPEN n2
Table 3.5.2 Parameters

Parameter Description
ret*1 Device for storing return status (W)
n1 Timeout interval (W)

[1-32767(×100 ms), 0 = longest(2147483647 ms)]
n2 FTP client address setting no. (w)[1-4]*2

*1: ret (status) is table data. For details on the return status (ret), see “ Status (Return Value)”.
*2: Do not specify 0.0.0.0 for the Destination IP address in FTP client address setup.

 Status (Return Value)
Table 3.5.3 Status (Return Value)

Offset
(word) Description

0 Normal exit ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see “ Error Status of Continuous Type Application Instructions” of
“ Continuous Type Application Instructions” in Section 2.6.1, "Using Socket Instructions”.

 3-16

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Available Devices
Table 3.5.4 Available Devices

Device
Parameter X Y I E L M T C D B W Z R V Con-

stant
Index

Modification
Indirect

Designation,
Pointer P

ret Yes Yes

n1 Yes Yes

n2 Yes Yes
Note: See Section 1.15, "Restrictions on Devices Used as Instruction Parameters” of “Sequence CPU – Instructions”

(IM34M6P12-03E)

 Resource Relays
Table 3.5.5 Resource Relays Recommended for Insertion into Input Condition of Instruction to

Avoid Competition
Add to Input

Condition Number Name Usage

 M1027 FTP Client Busy
Execute the instruction only
if the FTP Client Busy relay
is OFF.

 Function
Runs FTP client and connects to an FTP server. If connection is successful, the FTP
client is ready to send and receive files. The FTP server must also be running at the
destination.

You can select the destination FTP server by specifying a setting number (1-4) of FTP
client address setup for instruction parameter n2. In the FTP client address setup,
specify one or more FTP server destinations (IP address or hostname), along with port
number, account name and password.

SEE ALSO
For details on FTP client address setup, see "FTP Client Address Setup" of Subsection A9.5.5, "FTP
Client Setup" of "Sequence CPU – Functions (for F3SP66-4S, F3SP67-6S)" (IM34M6P14-01E)

To change the destination when an FTP client is running, terminate the FTP client using
the FTP Client Quit (FTPQUIT) instruction and re-execute the FTPOPEN instruction.

The port number used by the FTP client itself is automatically assigned by the system.

CAUTION

Only one FTP client service can be running on a CPU module at any one time.

 3-17

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Programming Example

I200 I201

I201
D3051 >= 0 SET I211

SET I212D3051 < 0

RST I200

Execute instruction

Check status

C
FTPOPEN D3051 100 1

Figure 3.5.1 Example of an FTP Client Open Program

This sample code connects to the FTP server designated by FTP client address setting
number 1. The timeout interval is set to 100 (10 s).

The table below shows the returned status data (ret), assuming normal exit.

Device Value Table Parameter
ret = D3051 0 Status

 3-18

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.5.2 FTP Client Quit (FTPQUIT)
Disconnects an FTP client (CPU module) started by the FTP Client Open (FTPOPEN)
instruction from its connected FTP server, and terminates the FTP client service.

Table 3.5.6 FTP Client Quit
Input

Condition
Required? Classification FUNC

No. Instruction Mnemonic Symbol
Yes No

Step Count
Pro-

cessing
Unit

Carry

Continuous
type

application
instruction

– FTP Client
Quit FTPQUIT

C
FTPQUIT

 – 5 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
“ Continuous Type Application Instructions” in Section 2.6.1, "Using Socket Instructions”.

 Parameter
C
FTPQUIT ret nFTP Client Quit

Table 3.5.7 Parameters
Parameter Description

ret*1 Device for storing return status (W)
n Timeout interval (W)

[1-32767(×100 ms), 0 = longest(2147483647 ms)]
*1: ret (status) is table data. For details on the return status (ret), see “ Status (Return Value)”.

 Status (Return Value)
Table 3.5.8 Status (Return Value)

Offset
(word) Description

0 Normal exit ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see “ Error Status of Continuous Type Application Instructions” of
“ Continuous Type Application Instructions” in Section 2.6.1, "Using Socket Instructions”.

 Available Devices
Table 3.5.9 Available Devices

Device
Parameter X Y I E L M T C D B W Z R V Con-

stant
Index

Modification
Indirect

Designation,
Pointer P

ret Yes Yes

n Yes Yes
Note: See Section 1.15, "Restrictions on Devices Used as Instruction Parameters” of “Sequence CPU – Instructions”

(IM34M6P12-03E)

 3-19

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Resource Relays
Table 3.5.10 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1027 FTP Client Busy
Execute the instruction only if
the FTP Client Busy relay is
OFF.

 Function
Disconnects an FTP client (CPU module) started by the FTP Client Open (FTPOPEN)
instruction from its connected FTP server, and terminates the FTP client service.

CAUTION

Depending on the status of the remote node, termination may take a long time.

 Programming Example

I200 I201

I201
D3051 >= 0 SET I211

SET I212D3051 < 0

RST I200

Execute instruction

Check status

C
FTPQUIT D3051 100

Figure 3.5.2 Example of an FTP Client Quit Program

This sample program terminates an FTP client. The timeout interval is set to 100 (10 s).

The table below shows the returned status data (ret), assuming normal exit.

Device Value Table Parameter
ret = D3051 0 Status

 3-20

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.5.3 FTP Client Put File (FTPPUT)
Sends a file stored on the disk of the CPU module to an FTP server.

Table 3.5.11 FTP Client Put File
Input

Condition
Required? Classification FUNC

No. Instruction Mnemonic Symbol
Yes No

Step Count
Pro-

cessing
Unit

Carry

Continuous
type

application
instruction

– FTP Client
Put File FTPPUT

C
FTPPUT

 – 5 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
“ Continuous Type Application Instructions” in Section 2.6.1, "Using Socket Instructions”.

 Parameter
C
FTPPUT ret nFTP Client Put File

Table 3.5.12 Parameters
Parameter Description

ret*1 Device for storing return status (W)
n Timeout interval (W)

[1-32767(×100 ms), 0 = longest(2147483647 ms)]
*1: ret (status) is table data. For details on the return status (ret), see “ Status (Return Value)”.

Table 3.5.13 Text Parameters
Parameter Description

1 s Source file pathname *2
2 d Destination file pathname*1*2

*1: If the value is NULL, the sent data will be stored in the current directory of the FTP server with the same filename as
the source filename.

*2: If a wildcard pattern is specified for the source file pathname s, the destination file pathname d must be a directory.

SEE ALSO
Specify text parameters using the Text Parameter (TPARA) instruction. For details on text parameters
and the Text Parameter (TPARA) instruction, see " Text Parameter" in Section C2.6.1, "Using Socket
Instructions".

 Status (Return Value)
Table 3.5.14 Status (Return Value)

Offset
(word) Description

> 0 Number of files sent (W)[1-32767] ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see “ Error Status of Continuous Type Application Instructions” of
“ Continuous Type Application Instructions” in Section 2.6.1, "Using Socket Instructions”.

 3-21

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Available Devices
Table 3.5.15 Available Devices

Device
Parameter X Y I E L M T C D B W Z R V Con-

stant
Index

Modification
Indirect

Designation,
Pointer P

ret Yes Yes

n Yes Yes
Note: See Section 1.15, "Restrictions on Devices Used as Instruction Parameters” of “Sequence CPU – Instructions”

(IM34M6P12-03E)

 Resource Relays
Table 3.5.16 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1027 FTP Client Busy Execute the instruction only if the
FTP Client Busy relay is OFF.

 Function
Sends a file stored on the disk of the CPU module to the FTP server.
Multiple files can be sent by including wildcard characters ('*', '?') in the file name. In
such situations, even if an error occurs at the FTP server end during file transfer,
processing of un-transferred files continues.
At the end of transfer, the number of transferred files is returned and stored in Status.

CAUTION

This instruction cannot be executed concurrently with other FTP client instructions.

 Programming Example

C
FTPPUT D3051 100

I200

I201

I201
D3051 >= 0

TPARA #remote 0 0

SET I211

SET I212D3051 < 0

RST I200

Specify text parameter 2

Execute instruction

Check status

2

Specify text parameter 1TPARA #local 0 01

Figure 3.5.3 Example of an FTP Client Put File Program

This sample code transfers a file on the FTP client with file pathname defined by
constant name "#local" to the FTP server file pathname defined by constant name
"#remote". The timeout interval is set to 100 (10 s).

 3-22

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

The table below shows the returned status data (ret), assuming normal exit.
Device Value Table Parameter

ret = D3051 1 Status

 3-23

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.5.4 FTP Client Put Unique File (FTPPUTU)
Sends a file on the module disk to the FTP server to be stored with a unique filename.

Table 3.5.17 FTP Client Put Unique File
Input

Condition
Required? Classification FUNC

No. Instruction Mnemonic Symbol
Yes No

Step Count
Pro-

cessing
Unit

Carry

Continuous
type

application
instruction

–
FTP Client
 Put Unique

File
FTPPUTU

C
FTPPUTU

 – 6 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
“ Continuous Type Application Instructions” in Section 2.6.1, "Using Socket Instructions”.

 Parameter

ret n1FTP Client Put Unique File
C

FTPPUTU n2
Table 3.5.18 Parameters

Parameter Description
ret*1 Device for storing return status (W)
n1 Timeout interval (W)

[1-32767(×100 ms), 0 = longest(2147483647 ms)]
n2 Filename return option (W) [

 0 = Filename is not returned.
 1 = Filename is returned.
]

*1: ret (status) is table data. For details on the return status (ret), see “ Status (Return Value)”.

Table 3.5.19 Text Parameters
Parameter Description

1 s1 Source file pathname
2 s2 (Reserved)*1

*1: Always specify NULL for this system-reserved parameter.

SEE ALSO
Specify text parameters using the Text Parameter (TPARA) instruction. For details on text parameters
and the Text Parameter (TPARA) instruction, see “ Text Parameter” in Section 2.6.1, “Using Socket
Instructions”.

 Status (Return Value)
Table 3.5.20 Status (Return Value)

Offset
(word) Description

> 0 Number of files sent (W)[1] ret+0
< 0 Error status

ret

ret+1
-17

Destination file name determined by FTP server (0-32
characters)
Appended with a trailing NULL character.

SEE ALSO
For more details on error status, see “ Error Status of Continuous Type Application Instructions” of
“ Continuous Type Application Instructions” in Section 2.6.1, "Using Socket Instructions”.

 3-24

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Available Devices
Table 3.5.21 Available Devices

Device
Parameter X Y I E L M T C D B W Z R V Con-

stant
Index

Modification
Indirect

Designation,
Pointer P

ret Yes Yes

n1 Yes Yes

n2 Yes Yes
Note: See Section 1.15, "Restrictions on Devices Used as Instruction Parameters” of “Sequence CPU – Instructions”

(IM34M6P12-03E)

 Resource Relays
Table 3.5.22 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1027 FTP Client Busy
Execute the instruction only
if the FTP Client Busy relay
is OFF.

 Function
Sends from the module to the FTP server a file, which is to be stored in the current
directory of the FTP server with a unique filename automatically determined by the FTP
server according to its specifications. The original filename of the sent file on the FTP
client is ignored during file naming.

F0319.VSD

048C"A0"
"2"

Example: Status

Filename determined
in step (2) is stored
to instruction status.

(4)

Filename determined
in step (2) is sent to
FTP client.

(3)

File is sent.
(The original filename
is not transmitted)

(1)

FTP connection

FTP server
 (supports

STOU command)

The file is named according to FTP
server’s naming rule and saved in
the current directory (e.g. “A02”).

(2)

FTP client FTP server
storage

:
:

Figure 3.5.4 Sending a File to FTP Server

The destination filename on the FTP server can be returned as status data using the
Filename Return Option parameter. The filename is returned without its pathname. The
maximum filename length that can be returned is 32 characters and any characters
exceeding the limit will be discarded.

Always specify NULL for the system-reserved s2 text parameter.

Wildcard characters must not be used with this instruction.

TIP
Filename extraction processing of the module follows the RFC1123 specifications. It will work correctly
even if the reply from the FTP server does not contain the "FILE:" string. In this case, the module
extracts and outputs the last word from the reply text, which therefore may include other characters
preceding the filename. (The reply from the IIS of Microsoft Windows does not contain the "FILE:"
string so the last word will be extracted as the filename.)

 3-25

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

CAUTION

- This instruction cannot be executed concurrently with other FTP client instructions.
- Wildcard characters must not be used with this instruction.

 Programming Example

C
FTPPUTU D3051 100

I200

I201

I201
D3051 >= 0

TPARA #remote 0 0

SET I211

SET I212D3051 < 0

RST I200

2

TPARA #local 0 01

1

Specify text parameter 2

Execute instruction

Check status

Specify text parameter 1

Figure 3.5.5 Example of an FTP Client Put Unique File Program

This sample code uses the FTPPUTU instruction to send a file on the FTP client with file
pathname defined by constant name "#local" to be stored in the current directory of the
FTP server with a unique name. The timeout interval is set to 100 (10 s); the Filename
Return Option is set to 1.

#local = "\ramdisk\mydir\myfile.csv"

The table below shows the returned status, assuming normal exit and a destination
filename on the FTP server of "A000004.tmp".

Device Value Table Parameter
ret = D3051 1 Status

D3052 “A0”
D3053 “00”
D3054 “00”
D3055 “4.”
D3056 “tm”
D3057 “p”+NULL

File name determined by the FTP server
(A000004.tmp)

 3-26

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.5.5 FTP Client Append File (FTPAPEND)
Sends a file on the module disk to be appended to a specified file on the FTP server.

Table 3.5.23 FTP Client Append File
Input

Condition
Required? Classification FUNC

No. Instruction Mnemonic Symbol
Yes No

Step Count
Pro-

cessing
Unit

Carry

Continuous
type

application
instruction

– FTP Client
Append File FTPAPEND

C
FTPAPEND

 – 5 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
“ Continuous Type Application Instructions” in Section 2.6.1, "Using Socket Instructions”.

 Parameter

C
FTPAPEND ret nFTP Client Append File

Table 3.5.24 Parameters
Parameter Description

ret*1 Device for storing return status (W)
n Timeout interval (W)

[1-32767(×100 ms), 0 = longest(2147483647 ms)]
*1: ret (status) is table data. For details on the return status (ret), see “ Status (Return Value)”.

Table 3.5.25 Text Parameters
Parameter Description

1 s Source file pathname
2 d Destination file pathname*1

*1: If the value is NULL, the sent data will be stored in the current directory of the FTP server with the same filename as
the source filename.

SEE ALSO
Specify text parameters using the Text Parameter (TPARA) instruction. For details on text parameters
and the Text Parameter (TPARA) instruction, see “ Text Parameter” in Section 2.6.1, “Using Socket
Instructions”.

 Status (Return Value)
Table 3.5.26 Status (Return Value)

Offset
(word) Description

0 Normal exit ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see “ Error Status of Continuous Type Application Instructions” of
“ Continuous Type Application Instructions” in Section 2.6.1, "Using Socket Instructions”.

 3-27

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Available Devices
Table 3.5.27 Available Devices

Device
Parameter X Y I E L M T C D B W Z R V Con-

stant
Index

Modification
Indirect

Designation,
Pointer P

ret Yes Yes

n Yes Yes
Note: See Section 1.15, "Restrictions on Devices Used as Instruction Parameters” of “Sequence CPU – Instructions”

(IM34M6P12-03E)

 Resource Relays
Table 3.5.28 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1027 FTP Client Busy
Execute the instruction only
if the FTP Client Busy relay
is OFF.

 Function
Sends a file on the module disk to be appended to a specified file on the FTP server.
If the specified destination filename exists on the FTP server, the sent file is appended
to the existing file. Otherwise, this instruction behaves the same way as the FTP Client
Put File (FTPPUT) instruction.

F0320.VSD

File A is sent.

(1)

FTP connection

FTP server

File A sent from FTP client
is appended to file A on
FTP server

(2)

FTP client FTP server
storage

File A

New file A
File A on FTP
server

File A sent from
FTP client

Concatenated

048C

Figure 3.5.6 Appending a File to a Specified File on the FTP Server

CAUTION

- This instruction cannot be executed concurrently with other FTP client instructions.
- Wildcard characters must not be used with this instruction.

 3-28

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Programming Example

C
FTPAPEND D3051 100

I200

I201

I201
D3051 >= 0

TPARA #remote 0 0

SET I211

SET I212D3051 < 0

RST I200

Specify text parameter 2

Execute instruction

Check status

2

Specify text parameter 1TPARA #local 0 01

Figure 3.5.7 Example of an FTP Client Append File Program

This sample code uses the FTPAPEND instruction to send a file on the FTP client
designated by constant name "#local" to be appended to a file on the FTP server
designated by constant name "#remote". The timeout interval is set to 100 (10 s).

The table below shows the returned status data (ret), assuming normal exit.

Device Value Table Parameter
ret = D3051 0 Status

 3-29

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.5.6 FTP Client Get File (FTPGET)
Gets a file from the FTP server and saves it to the disk of the module.

Table 3.5.29 FTP Client Get File
Input

Condition
Required? Classification FUNC

No. Instruction Mnemonic Symbol
Yes No

Step Count
Pro-

cessing
Unit

Carry

Continuous
type

application
instruction

– FTP Client
Get File FTPGET

C
FTPGET

 – 5 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
“ Continuous Type Application Instructions” in Section 2.6.1, "Using Socket Instructions”.

 Parameter
C
FTPGET ret nFTP Client Get File

Table 3.5.30 Parameters
Parameter Description

ret*1 Device for storing return status (W)
n Timeout interval (W)

[1-32767(×100 ms), 0 = longest(2147483647 ms)]
*1: ret (status) is table data. For details on the return status (ret), see “ Status (Return Value)”.

Table 3.5.31 Text Parameters
Parameter Description

1 s Source file pathname *2
2 d Destination file pathname *1*2

*1: If the value is NULL, the received data will be stored in the current directory of the FTP client with the same filename
as the source filename.

*2: If a wildcard pattern is specified for the source file pathname s, the destination file pathname d must be a directory.

SEE ALSO
Specify text parameters using the Text Parameter (TPARA) instruction. For details on text parameters
and the Text Parameter (TPARA) instruction, see “ Text Parameter” in Section 2.6.1, “Using Socket
Instructions”.

 Status (Return Value)
Table 3.5.32 Status (Return Value)

Offset
(word) Description

> 0 Number of files received (W) [1-32767] ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see “ Error Status of Continuous Type Application Instructions” of
“ Continuous Type Application Instructions” in Section 2.6.1, "Using Socket Instructions”.

 3-30

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Available Devices
Table 3.5.33 Available Devices

Device
Parameter X Y I E L M T C D B W Z R V Con-

stant
Index

Modification
Indirect

Designation,
Pointer P

ret Yes Yes

n Yes Yes
Note: See Section 1.15, "Restrictions on Devices Used as Instruction Parameters” of “Sequence CPU – Instructions”

(IM34M6P12-03E)

 Resource Relays
Table 3.5.34 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1027 FTP Client Busy
Execute the instruction only
if the FTP Client Busy relay
is OFF.

 Function
Gets a file from the FTP server and saves it to the disk of the module.
Multiple files can be retrieved by including wildcard characters ('*', '?') in the file name. In
such situations, even if an error occurs at the FTP server end during file transfer,
processing of un-transferred files continues.
At the end of transfer, the number of transferred files is returned and stored in Status.

CAUTION

This instruction cannot be executed concurrently with other FTP client instructions.

 Programming Example

C
FTPGET D3051 100

I200

I201

I201
D3051 >= 0

TPARA #local 0 0

SET I211

SET I212D3051 < 0

RST I200

Specify text parameter 2

Execute instruction

Check status

2

Specify text parameter 1TPARA #remote 0 01

Figure 3.5.8 Example of an FTP Client Get File Program

This sample code gets a file on the FTP server with file pathname defined by constant
name "#remote" and saves it to the FTP client file pathname defined by constant name
"#local". The timeout interval is set to 100 (10 s).

 3-31

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

The table below shows the returned status data (ret), assuming normal exit.
Device Value Table Parameter

ret = D3051 1 Status

 3-32

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.5.7 FTP Client Change Directory (FTPCD)
Changes the remote current directory on the FTP server.

Table 3.5.35 FTP Client Change Directory
Input

Condition
Required? Classification FUNC

No. Instruction Mnemonic Symbol
Yes No

Step Count
Pro-

cessing
Unit

Carry

Continuous
type

application
instruction

–
FTP Client

Change
Directory

FTPCD
C

FTPCD
 – 5 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
“ Continuous Type Application Instructions” in Section 2.6.1, "Using Socket Instructions”.

 Parameter
C

FTPCD ret n1FTP Client Change Directory
Table 3.5.36 Parameters

Parameter Description
ret*1 Device for storing return status (W)
n1 Timeout interval (W)

[1-32767(×100 ms), 0 = longest(2147483647 ms)]
*1: ret (status) is table data. For details on the return status (ret), see “ Status (Return Value)”.

Table 3.5.37 Text Parameters
Parameter Description

1 n2 New current directory pathname

SEE ALSO
Specify text parameters using the Text Parameter (TPARA) instruction. For details on text parameters
and the Text Parameter (TPARA) instruction, see “ Text Parameter” in Section 2.6.1, “Using Socket
Instructions”.

 Status (Return Value)
Table 3.5.38 Status (Return Value)

Offset
(word) Description

0 Normal exit ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see “ Error Status of Continuous Type Application Instructions” of
“ Continuous Type Application Instructions” in Section 2.6.1, "Using Socket Instructions”.

 3-33

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Available Devices
Table 3.5.39 Available Devices

Device
Parameter X Y I E L M T C D B W Z R V Con-

stant
Index

Modification
Indirect

Designation,
Pointer P

ret Yes Yes

n1 Yes Yes
Note: See Section 1.15, "Restrictions on Devices Used as Instruction Parameters” of “Sequence CPU – Instructions”

(IM34M6P12-03E)

 Resource Relays
Table 3.5.40 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1027 FTP Client Busy
Execute the instruction only
if the FTP Client Busy relay
is OFF.

 Function
Changes the remote current directory on the FTP server.

CAUTION

This instruction cannot be executed concurrently with other FTP client instructions.

 Programming Example

I200

I201

I201
D3051 >= 0

TPARA #remote 0 0

SET I211

SET I212D3051 < 0

RST I200

Specify text parameter 1

Execute instruction

Check status

1

C
FTPCD D3051 100

Figure 3.5.9 Example of an FTP Client Change Directory Program

This sample code changes the current directory on the FTP server to the directory
defined by constant name #remote. The timeout interval is set to 100 (10 s).

The table below shows the returned status data (ret), assuming normal exit.

Device Value Table Parameter
ret = D3051 0 Status

 3-34

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.5.8 FTP Client Change Local Directory (FTPLCD)
Changes the local current directory on the FTP client.

Table 3.5.41 FTP Client Change Local Directory
Input

Condition
Required? Classification FUNC

No. Instruction Mnemonic Symbol
Yes No

Step Count
Pro-

cessing
Unit

Carry

Continuous
type

application
instruction

–
FTP Client

Change Local
Directory

FTPLCD
C
FTPLCD

 – 5 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
“ Continuous Type Application Instructions” in Section 2.6.1, "Using Socket Instructions”.

 Parameter
C
FTPLCD ret n1FTP Client Change Local Directory

Table 3.5.42 Parameters
Parameter Description

ret*1 Device for storing return status (W)
n1 Timeout interval (W)

[1-32767(×100 ms), 0 = longest(2147483647 ms)]
*1: ret (status) is table data. For details on the return status (ret), see “ Status (Return Value)”.

Table 3.5.43 Text Parameters
Parameter Description

1 n2 New local current directory pathname

SEE ALSO
Specify text parameters using the Text Parameter (TPARA) instruction. For details on text parameters
and the Text Parameter (TPARA) instruction, see “ Text Parameter” in Section 2.6.1, “Using Socket
Instructions”.

 Status (Return Value)
Table 3.5.44 Status (Return Value)

Offset
(word) Description

0 Normal exit ret
< 0 Error status

SEE ALSO
For more details on error status, see “ Error Status of Continuous Type Application Instructions” of
“ Continuous Type Application Instructions” in Section 2.6.1, "Using Socket Instructions”.

 3-35

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Available Devices
Table 3.5.45 Available Devices

Device
Parameter X Y I E L M T C D B W Z R V Con-

stant
Index

Modification
Indirect

Designation,
Pointer P

ret Yes Yes

n1 Yes Yes
Note: See Section 1.15, "Restrictions on Devices Used as Instruction Parameters” of “Sequence CPU – Instructions”

(IM34M6P12-03E)

 Resource Relays
Table 3.5.46 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1027 FTP Client Busy
Execute the instruction only
if the FTP Client Busy relay
is OFF.

 Function
Changes the local current directory on the FTP client. The local current directory
defaults to "\RAMDISK" when FTP client is started.
Changing the local current directory of the FTP client does not affect the current
directories of other processing systems (e.g. current directory of the file system
instruction group) as the current directories are independent of each other.

 Programming Example

I200

I201

I201
D3051 >= 0

TPARA #local 0 0

SET I211

SET I212D3051 < 0

RST I200

Specify text parameter 1

Execute instruction

Check status

1

C
FTPLCD D3051 10

Figure 3.5.10 Example of an FTP Client Change Local Directory Program

This sample code changes the current directory on the FTP client to the directory
defined by constant name #local. The timeout interval is set to 10 (1 s).

The table below shows the returned status data (ret), assuming normal exit.

Device Value Table Parameter
ret = D3051 0 Status

 3-36

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.5.9 FTP Client Current Directory Info (FTPPWD)
Gets information about the current directory of the FTP server.

Table 3.5.47 FTP Client Current Directory Info
Input

Condition
Required? Classification FUNC

No. Instruction Mnemonic Symbol
Yes No

Step Count
Pro-

cessing
Unit

Carry

Continuous
type

application
instruction

–
FTP Client

Current Directory
Info

FTPPWD
C
FTPPWD

 – 6 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
“ Continuous Type Application Instructions” in Section 2.6.1, "Using Socket Instructions”.

 Parameter

ret tFTP Client Current Directory Info
C
FTPPWD d

Table 3.5.48 Parameters
Parameter Description

ret*1 Device for storing return status (W)
t+0 Timeout interval (W)

[1-32767(×100 ms), 0 = longest(2147483647 ms)]
t

t+1 Max. returned words (W) [1-65]
d Destination device (W)

*1: ret (status) is table data. For details on the return status (ret), see “ Status (Return Value)”.

 Status (Return Value)
Table 3.5.49 Status (Return Value)

Offset
(word) Description

0 Normal exit ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see “ Error Status of Continuous Type Application Instructions” of
“ Continuous Type Application Instructions” in Section 2.6.1, "Using Socket Instructions”.

 Available Devices
Table 3.5.50 Available Devices

Device
Parameter X Y I E L M T C D B W Z R V Con-

stant
Index

Modification
Indirect

Designation,
Pointer P

ret Yes Yes

t Yes Yes

d Yes Yes
Note: See Section 1.15, "Restrictions on Devices Used as Instruction Parameters” of “Sequence CPU – Instructions”

(IM34M6P12-03E)

 3-37

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Resource Relays
Table 3.5.51 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1027 FTP Client Busy
Execute the instruction only
if the FTP Client Busy relay
is OFF.

 Function
Gets information about the current directory of the FTP server. The returned file
pathname is a text string of maximum 127 bytes, with a NULL byte appended at the end.
If the returned file pathname exceeds the specified maximum number of returned words,
the excess bytes are discarded, and a data processing error code (-9015) is stored in
status.

 Programming Example

I200

I201

I201
D3051 >= 0

BMOV D0051 D2001 2

SET I211

SET I212D3051 < 0

RST I200

Set up parameter table t

Execute instruction
C

FTPPWD D3051 D2001 B1025

Check status

Figure 3.5.11 Example of an FTP Client Current Directory Info Program

This sample code gets information about the current directory of the connected FTP
server, and stores the current directory pathname to device B1025.

It specifies ret(=D3051), t(=D2001) and d(=B1025), with t set up as follows.

Device Value Table Parameter
t = D2001 100 Timeout interval (= 10 s)

D2002 65 Maximum returned words (= 65
words)

The table below shows the returned status data (ret), assuming normal exit.

Device Value Table Parameter
ret = D3051 0 Status

The table below shows a sample output of current directory information.

Device Value Table Parameter
d = B1025 “C: ”

B1026 “\M”
B1027 “YD”
B1028 “AT”
B1029 “A”+ NULL

Current directory information
(C: \MYDATA)

 3-38

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.5.10 FTP Client Get File List (FTPLS)
Gets detailed information about a specified directory or file on the FTP server.

Table 3.5.52 FTP Client Get File List
Input

Condition
Required? Classification FUNC

No. Instruction Mnemonic Symbol
Yes No

Step Count
Pro-

cessing
Unit

Carry

Continuous
type

application
instruction

– FTP Client
Get File List FTPLS

C
FTPLS

 – 5 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
“ Continuous Type Application Instructions” in Section 2.6.1, "Using Socket Instructions”.

 Parameter

ret nFTP Client Get File List
C

FTPLS
Table 3.5.53 Parameters

Parameter Description
ret*1 Device for storing return status (W)
n Timeout interval (W)

[1-32767(×100 ms), 0 = longest(2147483647 ms)]
*1: ret (status) is table data. For details on the return status (ret), see “ Status (Return Value)”.

Table 3.5.54 Text Parameters
Parameter Description

1 s Target directory pathname *1
2 d Output file pathname
3 n2 "ls" command option *2

*1: Specify a NULL value to get information about the current directory.
*2: Prefix the command option parameter value with a hyphen ('-'). For more details about the "ls" command options, see

the specifications of the FTP server. If an option is specified, the target directory pathname 's' parameter is ignored
and information about the current directory is returned.

SEE ALSO
Specify text parameters using the Text Parameter (TPARA) instruction. For details on text parameters
and the Text Parameter (TPARA) instruction, see “ Text Parameter” in Section 2.6.1, “Using Socket
Instructions”.

 Status (Return Value)
Table 3.5.55 Status (Return Value)

Offset
(word) Description

0 Normal exit Ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see “ Error Status of Continuous Type Application Instructions” of
“ Continuous Type Application Instructions” in Section 2.6.1, "Using Socket Instructions”.

 3-39

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Available Devices
Table 3.5.56 Available Devices

Device
Parameter X Y I E L M T C D B W Z R V Con-

stant
Index

Modification
Indirect

Designation,
Pointer P

ret Yes Yes

n Yes Yes
Note: See Section 1.15, "Restrictions on Devices Used as Instruction Parameters” of “Sequence CPU – Instructions”

(IM34M6P12-03E)

 Resource Relays
Table 3.5.57 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1027 FTP Client Busy
Execute the instruction only
if the FTP Client Busy relay
is OFF.

 Function
Gets a list of the names of files and directories contained in a FTP server directory
designated by the target pathname ('s') parameter. The returned information is output in
text format to a file designated by the output file pathname ('d') parameter. Internally, this
instruction executes the "NLST" FTP command.
You can specify options for the "NLST" command as a parameter of this FTPLS
instruction. For instance, specifying a command option of "-l" returns the file attribute,
creation date and other information in addition to the file name. Beware, however, that if
you specify an option, the source directory pathname ('s') parameter is ignored, and
information of the current directory is always returned.
The table below lists common "NLST" options used. The FTP server function of this
module supports only the "-l" option when the module is running as an FTP server.

Table 3.5.58 Examples of "NLST" command options
Option Description

-l Returns list output containing file size, creation date and other additional
information.

-t Returns list output sorted in descending order of date.
-tr Returns list output sorted in ascending order of date.
-F Appends a '/' identifier behind directory names.
-tF Returns list output sorted in descending order of date,

and appends a '/' identifier behind directory names.
Note: Supported "ls" command options vary with individual FTP server implementations so some of the options described

above may be unavailable.

CAUTION

- The operation and implementation of the "NLST" options is according to the
specifications of an individual FTP server.

- This instruction cannot be executed concurrently with other FTP client instructions.

 3-40

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Programming Example

C
FTPLS D3051 100

I200

I201

I201
D3051 >= 0

TPARA #lsopt 0 0

SET I211

SET I212D3051 < 0

RST I200

Specify text parameter 3

Execute instruction

Check status

3

Specify text parameter 2TPARA #local 0 02

TPARA #remote 0 01 Specify text parameter 1

Figure 3.5.12 Example of an FTP Client Get File List Program

This sample code gets file information for the current directory of the FTP server as
constant name #remote is assigned the null string. The returned information is output to
the file pathname defined by constant name #local. "NLST" option string defined by
constant name #lsopt is included as an instruction parameter. The timeout interval is set
to 100 (10 s).

#remote = ""

#local = "\ramdisk\filestat.txt"

#lsopt = "-l"

The table below shows the returned status data (ret), assuming normal exit.

Device Value Table Parameter
ret = D3051 0 Status

 3-41

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.5.11 FTP Client Delete File (FTPDEL)
Deletes one or more specified files on the FTP server.

Table 3.5.59 FTP Client Delete File
Input

Condition
Required? Classification FUNC

No. Instruction Mnemonic Symbol
Yes No

Step Count
Pro-

cessing
Unit

Carry

Continuous
type

application
instruction

– FTP Client
Delete File FTPDEL

C
FTPDEL

 – 5 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
“ Continuous Type Application Instructions” in Section 2.6.1, "Using Socket Instructions”.

 Parameter
C
FTPDEL ret nFTP Client Delete File

Table 3.5.60 Parameters
Parameter Description

ret*1 Device for storing return status (W)
n Timeout interval (W)

[1-32767(×100 ms), 0 = longest(2147483647 ms)]
*1: ret (status) is table data. For details on the return status (ret), see “ Status (Return Value)”.

Table 3.5.61 Text Parameters
Parameter Description

1 d Target file pathname

SEE ALSO
Specify text parameters using the Text Parameter (TPARA) instruction. For details on text parameters
and the Text Parameter (TPARA) instruction, see “ Text Parameter” in Section 2.6.1, “Using Socket
Instructions”.

 Status (Return Value)
Table 3.5.62 Status (Return Value)

Offset
(word) Description

> 0 Number of deleted files (W) [1-32767] ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see “ Error Status of Continuous Type Application Instructions” of
“ Continuous Type Application Instructions” in Section 2.6.1, "Using Socket Instructions”.

 3-42

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Available Devices
Table 3.5.63 Available Devices

Device
Parameter X Y I E L M T C D B W Z R V Con-

stant
Index

Modification
Indirect

Designation,
Pointer P

ret Yes Yes

n Yes Yes
Note: See Section 1.15, "Restrictions on Devices Used as Instruction Parameters” of “Sequence CPU – Instructions”

(IM34M6P12-03E)

 Resource Relays
Table 3.5.64 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1027 FTP Client Busy
Execute the instruction only
if the FTP Client Busy relay
is OFF.

 Function
Deletes one or more specified files on the FTP server.
Multiple files can be deleted by including wildcard characters ('*', '?') in the file name. In
such situations, even if an error occurs at the FTP server end during file deletion,
processing of undeleted files continues.
The number of deleted files is returned and stored in Status.

CAUTION

This instruction cannot be executed concurrently with other FTP client instructions.

 Programming Example

I200

I201

I201
D3051 >= 0

TPARA #remote 0 0

SET I211

SET I212D3051 < 0

RST I200

Specify text parameter 1

Execute instruction

Check status

1

C
FTPDEL D3051 100

Figure 3.5.13 Example of an FTP Client Delete File Program

This sample code deletes the file on the FTP server with pathname defined by constant
name #remote. The timeout interval is set to 100 (10 s).

The table below shows the returned status data (ret), assuming normal exit.

Device Value Table Parameter
ret = D3051 1 Status

 3-43

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.5.12 FTP Client Rename File (FTPREN)
Renames a file on the FTP server.

Table 3.5.65 FTP Client Rename File
Input

Condition
Required? Classification FUNC

No. Instruction Mnemonic Symbol
Yes No

Step Count
Pro-

cessing
Unit

Carry

Continuous
type

application
instruction

– FTP Client
Rename File FTPREN

C
FTPREN

 – 5 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
“ Continuous Type Application Instructions” in Section 2.6.1, "Using Socket Instructions”.

 Parameter
C

FTPREN ret nFTP Client Rename File
Table 3.5.66 Parameters

Parameter Description
ret*1 Device for storing return status (W)
n Timeout interval (W)

[1-32767(×100 ms), 0 = longest(2147483647 ms)]
*1: ret (status) is table data. For details on the return status (ret), see “ Status (Return Value)”.

Table 3.5.67 Text Parameters
Parameter Description

1 s Old file pathname
2 d New file pathname

SEE ALSO
Specify text parameters using the Text Parameter (TPARA) instruction. For details on text parameters
and the Text Parameter (TPARA) instruction, see “ Text Parameter” in Section 2.6.1, “Using Socket
Instructions”.

 Status (Return Value)
Table 3.5.68 Status (Return Value)

Offset
(word) Description

0 Normal exit ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see “ Error Status of Continuous Type Application Instructions” of
“ Continuous Type Application Instructions” in Section 2.6.1, "Using Socket Instructions”.

 3-44

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Available Devices
Table 3.5.69 Available Devices

Device
Parameter X Y I E L M T C D B W Z R V Con-

stant
Index

Modification
Indirect

Designation,
Pointer P

ret Yes Yes

n Yes Yes
Note: See Section 1.15, "Restrictions on Devices Used as Instruction Parameters” of “Sequence CPU – Instructions”

(IM34M6P12-03E)

 Resource Relays
Table 3.5.70 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1027 FTP Client Busy
Execute the instruction only
if the FTP Client Busy relay
is OFF.

 Function
Renames a file on the FTP server.

CAUTION

This instruction cannot be executed concurrently with other FTP client instructions.

 Programming Example

C
FTPREN D3051 100

I200

I201

I201
D3051 >= 0

TPARA #remote2 0 0

SET I211

SET I212D3051 < 0

RST I200

2

TPARA #remote1 0 01

Specify text parameter 2

Execute instruction

Check status

Specify text parameter 1

Figure 3.5.14 Example of an FTP Client Rename File Program

This sample code renames an FTP server file designated by constant name #remote1 to
the new name defined by constant name #remote2. The timeout interval is set to 100
(10 s).

The table below shows the returned status data (ret), assuming normal exit.

Device Value Table Parameter
ret = D3051 0 Status

 3-45

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.5.13 FTP Client Make Directory (FTPMKDIR)
Creates a directory on the FTP server.

Table 3.5.71 FTP Client Make Directory
Input

Condition
Required? Classification FUNC

No. Instruction Mnemonic Symbol
Yes No

Step Count
Pro-

cessing
Unit

Carry

Continuous
type

application
instruction

– FTP Client
Make Directory FTPMKDIR

C
FTPMKDIR

 – 5 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
“ Continuous Type Application Instructions” in Section 2.6.1, "Using Socket Instructions”.

 Parameter
C
FTPMKDIR ret nFTP Client Make Directory

Table 3.5.72 Parameters
Parameter Description

ret*1 Device for storing return status (W)
n Timeout interval (W)

[1-32767(×100 ms), 0 = longest(2147483647 ms)]
*1: ret (status) is table data. For details on the return status (ret), see “ Status (Return Value)”.

Table 3.5.73 Text Parameters
Parameter Description

1 d Pathname of directory to be created

SEE ALSO
Specify text parameters using the Text Parameter (TPARA) instruction. For details on text parameters
and the Text Parameter (TPARA) instruction, see “ Text Parameter” in Section 2.6.1, “Using Socket
Instructions”.

 Status (Return Value)
Table 3.5.74 Status (Return Value)

Offset
(word) Description

0 Normal exit ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see “ Error Status of Continuous Type Application Instructions” of
“ Continuous Type Application Instructions” in Section 2.6.1, "Using Socket Instructions”.

 3-46

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Available Devices
Table 3.5.75 Available Devices

Device
Parameter X Y I E L M T C D B W Z R V Con-

stant
Index

Modification
Indirect

Designation,
Pointer P

ret Yes Yes

n Yes Yes
Note: See Section 1.15, "Restrictions on Devices Used as Instruction Parameters” of “Sequence CPU – Instructions”

(IM34M6P12-03E)

 Resource Relays
Table 3.5.76 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1027 FTP Client Busy
Execute the instruction only
if the FTP Client Busy relay
is OFF.

 Function
Creates a directory on the FTP server.

CAUTION

This instruction cannot be executed concurrently with other FTP client instructions.

 Programming Example

I200

I201

I201
D3051 >= 0

TPARA #remote 0 0

SET I211

SET I212D3051 < 0

RST I200

Specify text parameter 1

Execute instruction

Check status

1

C
FTPMKDIR D3051 100

Figure 3.5.15 Example of an FTP Client Make Directory Program

This sample code creates a new directory on the FTP server according to the directory
pathname defined by constant name #remote. The timeout interval is set to 100 (10 s).

The table below shows the returned status data (ret), assuming normal exit.

Device Value Table Parameter
ret = D3051 0 Status

 3-47

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.5.14 FTP Client Remove Directory (FTPRMDIR)
Deletes a specified directory on the FTP server.

Table 3.5.77 FTP Client Remove Directory
Input

Condition
Required? Classification FUNC

No. Instruction Mnemonic Symbol
Yes No

Step Count
Pro-

cessing
Unit

Carry

Continuous
type

application
instruction

–
FTP Client
Remove
Directory

FTPRMDIR
C
FTPRMDIR

 – 5 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
“ Continuous Type Application Instructions” in Section 2.6.1, "Using Socket Instructions”.

 Parameter

ret nFTP Client Remove Directory
C
FTPRMDIR

Table 3.5.78 Parameters
Parameter Description

ret*1 Device for storing return status (W)
n Timeout interval (W)

[1-32767(×100 ms), 0 = longest(2147483647 ms)]
*1: ret (status) is table data. For details on the return status (ret), see “ Status (Return Value)”.

Table 3.5.79 Text Parameters
Parameter Description

1 d Pathname of directory to be deleted

SEE ALSO
Specify text parameters using the Text Parameter (TPARA) instruction. For details on text parameters
and the Text Parameter (TPARA) instruction, see “ Text Parameter” in Section 2.6.1, “Using Socket
Instructions”.

 Status (Return Value)
Table 3.5.80 Status (Return Value)

Offset
(word) Description

0 Normal exit ret
< 0 Error status

SEE ALSO
For more details on error status, see “ Error Status of Continuous Type Application Instructions” of
“ Continuous Type Application Instructions” in Section 2.6.1, "Using Socket Instructions”.

 3-48

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Available Devices
Table 3.5.81 Available Devices

Device
Parameter X Y I E L M T C D B W Z R V Con-

stant
Index

Modification
Indirect

Designation,
Pointer P

ret Yes Yes

n Yes Yes
Note: See Section 1.15, "Restrictions on Devices Used as Instruction Parameters” of “Sequence CPU – Instructions”

(IM34M6P12-03E)

 Resource Relays
Table 3.5.82 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1027 FTP Client Busy
Execute the instruction only
if the FTP Client Busy relay
is OFF.

 Function
Deletes a specified directory on the FTP server.

CAUTION

This instruction cannot be executed concurrently with other FTP client instructions.

 Programming Example

I200

I201

I201
D3051 >= 0

TPARA #remote 0 0

SET I211

SET I212D3051 < 0

RST I200

Specify text parameter 1

Execute instruction

Check status

1

C
FTPRMDIR D3051 100

Figure 3.5.16 Example of an FTP Client Remove Directory Program

This sample code deletes from the FTP server the directory designated by the directory
pathname defined by constant name #remote. The timeout interval is set to 100 (10 s).

The table below shows the returned status data (ret), assuming normal exit.

Device Value Table Parameter
ret = D3051 0 Status

 3-49

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.5.15 FTP Client Representation Type (FTPTYPE)
Selects ASCII or binary representation for FTP data transfer.

Table 3.5.83 FTP Client Representation Type
Input

Condition
Required? Classification FUNC

No. Instruction Mnemonic Symbol
Yes No

Step Count
Pro-

cessing
Unit

Carry

Continuous
type

application
instruction

–
FTP Client

Representation
Type

FTPTYPE
C
FTPTYPE

 – 6 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
“ Continuous Type Application Instructions” in Section 2.6.1, "Using Socket Instructions”.

 Parameter

ret n1FTP Client Representation Type
C
FTPTYPE n2

Table 3.5.84 Parameters
Parameter Description

ret*1 Device for storing return status (W)
n1 Timeout interval (W)

[1-32767(×100 ms), 0 = longest(2147483647 ms)]
n2 Representation type (W)[0 = ASCII, 1 = binary]

*1: ret (status) is table data. For details on the return status (ret), see “ Status (Return Value)”.

 Status (Return Value)
Table 3.5.85 Status (Return Value)

Offset
(word) Description

0 Normal exit ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see “ Error Status of Continuous Type Application Instructions” of
“ Continuous Type Application Instructions” in Section 2.6.1, "Using Socket Instructions”.

 Available Devices
Table 3.5.86 Available Devices

Device
Parameter X Y I E L M T C D B W Z R V Con-

stant
Index

Modification
Indirect

Designation,
Pointer P

ret Yes Yes

n1 Yes Yes

n2 Yes Yes
Note: See Section 1.15, "Restrictions on Devices Used as Instruction Parameters” of “Sequence CPU – Instructions”

(IM34M6P12-03E)

 3-50

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Resource Relays
Table 3.5.87 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1027 FTP Client Busy
Execute the instruction only
if the FTP Client Busy relay
is OFF.

 Function
Selects ASCII or binary representation for FTP data transfer. The representation type
defaults to binary when FTP client is started.
In binary representation data transfer, data in files are transferred as is. In general,
binary representation can be used for any file format. Both text files (e.g. files with
filename extensions ".txt", ".ypjc" and ".yprp") and binary files (e.g. files with filename
extensions ".bin", ".pdf", ".doc" and ".jpg") can be sent using binary representation.
ASCII representation is used for sending text files when newline code conversion is
required. At transmission, CRLF and CR characters are transmitted without change but
LF characters are converted to CRLF. Beware that specifying ASCII representation for
transferring a binary file will result in invalid data due to conversion processing.

CAUTION

- This instruction cannot be executed concurrently with other FTP client instructions.
- If the contents of the source file and destination file are unexpectedly different,

check whether the problem arose because ASCII representation was specified. If no
newline conversion is required, specify binary representation for FTP transfer of all
file formats.

 Programming Example

I200 I201

I201
D3051 >= 0 SET I211

SET I212D3051 < 0

RST I200

Execute instruction

Check status

C
FTPTYPE D3051 100 1

Figure 3.5.17 Example of an FTP Client Representation Type Program

This sample code switches to binary representation for data transfer to the connected
FTP server. The timeout interval is set to 100 (10 s).

The table below shows the returned status data (ret), assuming normal exit.

Device Value Table Parameter
ret = D3051 0 Status

 3-51

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.6 FTP Server
This section describes the FTP server function of the module.

3.6.1 FTP Server Specifications
The table below shows the specifications of the FTP server function.

Table 3.6.1 FTP Server Specifications
Item Specifications

Number of connected clients 4
Home directory \RAMDISK
Port number 21 (default value)
Maximum command length 256 bytes
Maximum file pathname length*1 256 bytes

Security function

- Login password
- FTP sever log
- Automatic disconnection upon multiple command buffer

overruns
*1: In the case of a relative pathname, the length limit is applied after conversion to absolute pathname.

The table below lists the commands supported by the FTP server function. The
command names use telnet command notation. Command mapping on the FTP client
end (get, put, etc.) is according to specifications of individual clients.

Table 3.6.2 Commands Supported by FTP Server (telnet command notation)
Command Function Specification
 USER User name
 PASS User password
 CWD Change current directory
 XCWD Change current directory
 CDUP Change to parent directory
 REIN Reinitialize server state
 QUIT Terminate service
 PORT Specify data connection port
 PASV Set server in passive mode
 TYPE Specify file format ASCII, binary
 STRU Specify file structure Only F-File is supported.
 MODE Specify transfer mode Only S-Stream is supported.
 RETR Retrieve a file copy
 STOR Store file to server
 APPE Append file
 STOU Store file with unique name - Specifications

 RFC1123
- Naming rule

User name.nnn (where nnn=000 to 999)
 REST Resend
 RNFR Rename from Used together with RNTO
 RNTO Rename to Used together with RNFR
 DELE Delete file on server
 RMD Remove directory
 XRMD Remove directory
 MKD Create directory
 XMKD Create directory
 PWD Return current directory
 XPWD Display current directory
 LIST Display file list
 NLST Display file list
 NOOP No operation
 HELP Display help

 3-52

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.6.2 FTP Server Setup
This subsection describes how to configure the FTP server function before use.

 Basic Setup
The table below shows required setup for the FTP server function before use.

Table 3.6.3 Basic Setup for FTP Server Function
Name of Setup Type of Setup SEE ALSO *1

Ethernet setup CPU properties A9.5.2, "Ethernet Setup"
*1: For details on individual setup items, see "Sequence CPU – Functions (for F3SP66-4S, F3SP67-6S)"

(IM34M6P14-01E).

 Ethernet setup
Minimally, you must specify the IP address and subnet mask. If you set the subnet mask
to "0.0.0.0", the default mask for the class of the IP address is used.

 Optional Setup
The FTP server function may be configured as required.

Table 3.6.4 Optional Setup for FTP Server Function
Name of Setup Type of Setup SEE ALSO *1

FTP server setup CPU properties A9.5.6, "FTP Server Setup"
Network filter setup CPU properties A9.5.8, "Network Filter Setup"
Function removal Configuration A9.2.12, "Function Removal"

*1: For details on individual setup items, see "Sequence CPU – Functions (for F3SP66-4S, F3SP67-6S)"
(IM34M6P14-01E).

 FTP server setup
You may use FTP server setup of CPU properties to modify default values for the
following items related to the FTP server function.
- FTP server/my port no. (default value=21)
- FTP server/maximum connections (default value=4)
- FTP server/password (default value="fam3@")
- FTP server/log (default value=Yes)
- FTP server/anonymous login enable (default value=Enabled)

When anonymous login is enabled, a user may log in successfully using any
password by specifying the username as "anonymous".

- FTP server/interval timeout (default value=3600 s)
If the FTP server receives no request from an FTP client within the specified time, it
terminates the connection with the FTP client.

- FTP server/network timeout (default value=60 s)
You can define the response timeout interval for TCP/IP communications, which is
the layer below FTP in the network protocol. In a high-load, low-speed
communications environment, an internal communications timeout error (error code:
-1001) may be reported during execution of an FTP client instruction. Lengthening
this timeout interval may solve the problem in such situations.

 Network filter setup
You may perform network filter setup to restrict the IP addresses connecting to the FTP
server. By default, connections from all IP addresses are allowed. This setting affects all
functions using the CPU built-in 10BASE-T/100BASE-TX connector such as socket
communications function and remote programming service.

 3-53

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.6.3 Using FTP Server
This subsection describes how to use the FTP server function.

 Starting and Stopping FTP Server

 Starting FTP Server
The FTP server function is automatically executed at module startup (power on or
module reset). The FTP server setup of CPU properties is read when the FTP server is
started.

 Stopping FTP Server
You cannot actually terminate the FTP server but you can stop the FTP server from
accepting requests from FTP clients by executing the FTP Server Stop Request Service
(FTPSTOP) instruction. To resume acceptance of requests from FTP clients by the FTP
server, execute the FTP Server Run Request Service (FTPSRUN) instruction.
When you remove the FTP server using Function Removal of Configuration, it does not
actually terminate the FTP server function but stops the FTP server from acceptance
requests from FTP clients.

TIP
Even if you have removed the FTP server using Function Removal of Configuration, you can resume
acceptance of requests from FTP clients by the FTP server by executing the FTP Server Run Request
Service (FTPSRUN) instruction.

 Connecting with FTP Clients
To connect to the FTP server from a remote FTP client, execute an open command from
the remote FTP client. If the remote client is an FA-M3 unit, you can connect to the FTP
server by executing the FTP Client Open (FTPOPEN) instruction.

SEE ALSO
- For details on how to specify the connection destination, see section 3.2, "FTP Network

Configurations and Access Methods."

- For details on how to use the FTP client function of the module, see Section 3.3, "FTP Client."

 Handling of File Pathname

 Relative pathname and absolute pathname
Both relative pathnames and absolute pathnames can be used with the FTP server
function of the module. Relative pathnames are pathnames relative to the current
directory.

FC0312.VSD

Current directory Relative pathname Absolute pathname+ =

Specifying abc.txt using an absolute pathname
\RAMDISK\MYDIR\abc.txt
Change current directory to:
\RAMDISK\MYDIR
Specifying abc.txt using a relative pathname:
abc.txt

Specifying the
same file

Figure 3.6.1 Relative Pathname and Absolute Pathname

 3-54

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Home directory
The home directory of the FTP server is "\RAMDISK".

 Current directory
The current directory of the FTP server defaults to the home directory ("\RAMDISK") of
the FTP server when an FTP connection is established with a remote FTP client. To
change the current directory of the FTP server, execute a change current directory (cd)
command from the remote FTP client. If the remote FTP client is an FA-M3 unit, you can
execute the FTP Client Change Directory (FTPCD) instruction.
You may not specify a directory below pathname "\VIRTUAL" for the current directory.

 3-55

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.6.4 FTP Server Log
Logs all accesses to and all responses from the FTP server.

 FTP Server Log Specifications

 FTP server log information
The table below lists the comma-delimited fields that form a log record.

Table 3.6.5 FTP Server Log Items
Field Description

Log number "xxx" (where xxx=000 to 188)
A running number. A smaller number indicates an older log record.

Date "yy/mm/dd" (yy=year, mm=month, dd=day)
The date when the log record is created.

Time "hh: mm: ss" (hh=hour, mm=minute, ss=second)
The time when the log record is created.

FTP client
IP address

"xxx.xxx.xxx.xxx" (where xxx=000 to 255)
IP address of the remote FTP client

Transmission
direction

"-->" (transmission from FTP client to FTP server)
"<--" (transmission from FTP server to FTP client)
Direction of message transmission

FtpServer An additional code generated to facilitate determination of transmission
direction

Account name Login account name
Characters beyond the length limit of 10 characters are not logged.

Message Transmitted FTP command at TELNET command level.

 Time when information is output to FTP server log
The FTP function outputs a log record to the FTP server log when it receives a request
from the FTP client and when it sends a response to the FTP client.
Up to 189 log records are allowed. When the limit is exceeded, the oldest log record is
overwritten.

 Special relays and special registers
No special relays or special registers are related to the FTP server log function.

 FTP Server Log Setup

 Basic Setup
The FTP server log function requires no basic setup before use.

 Optional Setup

Table 3.6.6 Optional Setup for FTP Server Log Function
Name of Setup Type of Setup SEE ALSO*1

FTP Server Setup CPU properties A9.5.6, "FTP Server Setup"
*1: For details on individual setup items, see "Sequence CPU – Functions (for F3SP66-4S, F3SP67-6S)"

(IM34M6P14-01E).

To generate no FTP server log, set the FTP Server/Log property of FTP Server Setup of
CPU Properties to 'No'. By default, FTP server log is generated.

 3-56

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Using FTP Server Log

 Starting FTP server log output
FTP server log output is automatically started if enabled in CPU properties.

 Getting FTP server log
You can get the FTP server log as a text file using smart access functions.

Table 3.6.7 Methods for Getting FTP Server Log
Function Outline SEE ALSO

Rotary switch function You can save the FTP server log to the SD memory card using
the rotary switch.

B1.4.5, "Module Info" *1

Card batch command
function

You can save the FTP server log to a directory on the module
by executing a card batch file.

B2.8.2.3, "Get Log (LOG)" *1

Virtual directory function You can get the FTP server log from a remote FTP client by
executing a virtual directory command on the module.

3.7.7.3, "Get Log (LOG)"

*1: For details on individual items, see "Sequence CPU – Functions (for F3SP66-4S, F3SP67-6S)" (IM34M6P14-01E).

 Stopping FTP server log output
You can stop FTP server log output using FTP server setup of CPU properties.

SEE ALSO
For details, see " FTP Server Log Setup" described earlier.

 Clearing FTP server log
The FTP server log is cleared automatically at module startup (power on or reset).

 3-57

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.6.5 FTP Server Instructions
FTP server instructions can be executed to suspend or resume the FTP server request
service, which accepts requests from remote FTP clients.

3.6.5.1 FTP Server Run Request Service (FTPSRUN)
This FTP server instruction resumes the FTP server request service, which accepts
requests from FTP clients, if the service had been suspended by a FTP Server Stop
Request Service (FTPSSTOP) instruction or by Function Removal of configuration.

Table 3.6.8 FTP Server Run Request Service
Input

Condition
Required? Classification FUNC

No. Instruction Mnemonic Symbol
Yes No

Step Count
Pro-

cessing
Unit

Carry

Continuous
type

application
instruction

–

FTP Server
Run

Request
Service

FTPSRUN
C
FTPSRUN

 – 5 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
“ Continuous Type Application Instructions” in Section 2.6.1, "Using Socket Instructions”.

 Parameter

ret nFTP Server Run Request Service
C

FTPSRUN
Table 3.6.9 Parameters

Parameter Description
ret*1 Device for storing return status (W)
n Timeout interval (W)

[1-32767(×100 ms), 0 = longest(2147483647 ms)]
*1: ret (status) is table data. For details on the return status (ret), see “ Status (Return Value)”.

 Status (Return Value)
Table 3.6.10 Status (Return Value)

Offset
(word) Description

0 Normal exit ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see “ Error Status of Continuous Type Application Instructions” of
“ Continuous Type Application Instructions” in Section 2.6.1, "Using Socket Instructions”.

 3-58

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Available Devices
Table 3.6.11 Available Devices

Device
Parameter X Y I E L M T C D B W Z R V Con-

stant
Index

Modification
Indirect

Designation,
Pointer P

ret Yes Yes

n Yes Yes
Note: See Section 1.15, "Restrictions on Devices Used as Instruction Parameters” of “Sequence CPU – Instructions”

(IM34M6P12-03E)

 Resource Relays
None. Ensure that there is no repeated execution of this instruction in your program.

 Function
Execution of this instruction is normally not required as FTP server is automatically
started at power on or module reset. This FTP server instruction, however, can be used
to resume the FTP server request service, which accepts requests from FTP clients, if
the service had been suspended by a FTP Server Stop Request Service (FTPSSTOP)
instruction or by Function Removal of configuration.

CAUTION

Processing of this instruction is always completed even in the presence of a timeout or
cancellation.

 Programming Example

I200 I201

I201
D3051 >= 0 SET I211

SET I212D3051 < 0

RST I200

Execute instruction

Check status

C
FTPSRUN D3051 10

Figure 3.6.2 Example of an FTP Server Run Request Service Program

This sample code resumes the FTP server request service, which had been suspended
by a FTP Server Stop Request Service (FTPSSTOP) instruction. The timeout interval is
set to 10 (1 s).

The table below shows the returned status data (ret), assuming normal exit.

Device Value Table Parameter
ret = D3051 0 Status

 3-59

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.6.5.2 FTP Server Stop Request Service (FTPSSTOP)
This FTP server instruction suspends the FTP server request service, which accepts
requests from FTP clients.

Table 3.6.12 FTP Server Stop Request Service
Input

Condition
Required? Classification FUNC

No. Instruction Mnemonic Symbol
Yes No

Step Count
Pro-

cessing
Unit

Carry

Continuous
type

application
instruction

–

FTP Server
Stop

Request
Service

FTPSSTOP
C
FTPSSTOP

 – 5 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
“ Continuous Type Application Instructions” in Section 2.6.1, "Using Socket Instructions”.

 Parameter

retFTP Server Stop Request Service
C
FTPSSTOP n

Table 3.6.13 Parameters
Parameter Description

ret*1 Device for storing return status (W)
n Timeout interval (W)

[1-32767(×100 ms), 0 = longest(2147483647 ms)]
*1: ret (status) is table data. For details on the return status (ret), see “ Status (Return Value)”.

 Status (Return Value)
Table 3.6.14 Status (Return Value)

Offset
(word) Description

0 Normal exit ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see “ Error Status of Continuous Type Application Instructions” of
“ Continuous Type Application Instructions” in Section 2.6.1, "Using Socket Instructions”.

 Available Devices
Table 3.6.15 Available Devices

Device
Parameter X Y I E L M T C D B W Z R V Con-

stant
Index

Modification
Indirect

Designation,
Pointer P

ret Yes Yes

n Yes Yes
Note: See Section 1.15, "Restrictions on Devices Used as Instruction Parameters” of “Sequence CPU – Instructions”

(IM34M6P12-03E)

 Resource Relays
None. Ensure that there is no repeat execution in your program.

 3-60

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Function
This FTP server instruction suspends the FTP server request service, which accepts
requests from FTP clients. If a request from an FTP client is being processed when this
instruction is executed, processing of the request will still be carried through to the end.

CAUTION

Processing of this instruction is always completed even in the event of a timeout or
cancellation.

 Programming Example

I200 I201

I201
D3051 >= 0 SET I211

SET I212D3051 < 0

RST I200

Execute instruction

Check status

C
FTPSSTOP D3051 100

Figure 3.6.3 Example of an FTP Server Stop Request Service Program

This sample program suspends the FTP server request service. The timeout interval is
set to 100 (10 s).

The table below shows the returned status data (ret), assuming normal exit.

Device Value Table Parameter
ret = D3051 0 Status

 3-61

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.7 Virtual Directory Commands
This section describes virtual directory commands.

3.7.1 Overview of Virtual Directory Commands
This subsection gives an overview of virtual directory commands.

 Overview of Virtual Directory Commands

 What are virtual directory commands?
Virtual directory commands are extended FTP server functions of the module. By coding
a command as the file pathname of an FTP put or get command, the module can be
made to perform various operations. For instance, using FTP, the module can be made
to automatically convert data in a transferred file and store the data to devices, or to
automatically convert device data into a file and send it, or to load or save a project.

F0322.VSD

Project file
of card load format

Virtual directory

Download

PUT command

8 0

C

4

8 0

C

4

FT
P

co
nn

ec
tio

n

Figure 3.7.1 Concept of Virtual Directory Command (PUT)

 3-62

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

F0323.VSD

Dxxxx 8
5
6
1

··
·

+1
+2
+3

··
·

Devices

CSV file
8,5,6,1...

Virtual directory

GET command

a,

8 0

C

4

8 0

C

4

FT
P

 c
on

ne
ct

io
n

Figure 3.7.2 Concept of Virtual Directory Command (GET)

 Support for device access using FTP
Both bit (relay) based and word based device access commands are provided. Virtual
directory commands enable complex processing that would require other protocols in
the past to be carried using only FTP. Some examples of such processing are
transmission of a processing request trigger after sending a recipe file and polling the
operating status of an application program.

8 0

C

4

F0324.VSD

Ixxxx ON
Yxxxx OFF

Virtual directory

GET command

FT
P

 c
on

ne
ct

io
n

Figure 3.7.3 Setting a Relay using a Virtual Directory Command

 3-63

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 List of Virtual Directory Commands
The table below lists the available virtual directory commands. The following figure
shows the corresponding virtual directory structure.

Table 3.7.1 List of Virtual Directory Commands
Command Group Function Name Command

Name
Description

Convert CSV File to Device F2DCSV Converts a CSV formatted file into device data.
Convert Device to CSV File D2FCSV Gets device data after it has been converted into a

CSV formatted file.
Convert Binary File to Device F2DBIN Converts a binary file into device data.

File/device
conversion &
transfer
commands

Convert Device to Binary File D2FBIN Gets device data after it has been converted into a
binary file.

BRD Reads bits.
BWR Writes bits.

Bit access

BFL Writes bits of the same data.
WRD Reads words.
WWR Writes words.

Device access
commands

Word access

WFL Writes words of the same data.
Load Project LOAD Loads project or CPU property data into the internal

ROM of the module.
Save Project SAVE Gets project or CPU property data from the internal

ROM of the module.
Get Log LOG Gets the system log or FTP server log in text format.
CPU Info CPUINFO Gets CPU Status (operating mode, alarm status, rotary

switch status, and card mount status).
Application Info APINFO Gets system information (project information, I/O setup

information).
Run Mode RUN Switches the operating mode to Run mode.
Stop Mode STOP Switches the operating mode to Stop mode.
Activate Block ACT Activates a specified block.
Inactivate Block INACT Inactivates a specified block.
Reset CPU CPURESET Resets CPU.
Clear Alarms ALMCLEAR Clears all alarms.

Maintenance
commands

Help HELP Gets help information on virtual directory commands.
File and disk
operation
commands

Unmount *1 UNMOUNT Unmounts a memory card.

Card batch file
execution
commands

Run Card Batch File BATGO Executes a specified card batch file.

*1: You can use FTP commands for file deletion, directory creation and other file operations.

 3-64

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 \F2DCSV_..
 \D2FCSV_..
 \F2DBIN_..
 \D2FBIN_..

\BRD_..
\BWR_..
\BFL_..
\WRD_..
\WWR_..
\WFL_..

\LOAD_..
\SAVE_..
\LOG_..
\CPUINFO
\APINFO_..
\RUN
\STOP
\ACT_..
\INACT_..
\CPURESET
\ALMCLEAR
\HELP

\UNMOUNT_..

\BATGO_..

\CMD

File/device
conversion and transfer
commands

Device access
commands

Maintenance
commands

File and disk operation
commands

card batch file execution
commands

\RAMDISK

\CARD1

\VIRTUAL

F0390.VSD

Note: - The directory structure below "\VIRTUAL" cannot be accessed using "ls" or other FTP commands for getting file or

directory information.
 - The "_.." suffix to a command indicates that the command has required parameters.
 - FTP LIST, NLST (or FTPLS instruction of the module) commands cannot be used to get directory or file

information of a virtual directory (a directory below "\VIRTUAL").

Figure 3.7.4 Directory Structure of Virtual Directory Commands

 3-65

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.7.2 Virtual Directory Command Setup
This subsection describes how to configure virtual directory commands before use.

 Basic Setup
The virtual directory command function requires some basic setup before use.

 FTP server setup
Virtual directory commands run on the FTP server so FTP server setup must be
performed.
If a timeout error (error code SE05) is reported during execution of a virtual directory
command having a long processing time (e.g. a Run Batch File (BATGO) command),
lengthening the FTP server network timeout (FTPS_NETACK_TOUT) interval may solve
the problem.

SEE ALSO
For details on FTP server setup, see Subsection 3.6.2, "FTP Server Setup."

 Optional Setup
Virtual directory commands may be configured as required before use.

Table 3.7.2 Optional Setup for Virtual Directory Commands
Name of Setup Type of Setup SEE ALSO*1

Function removal Configuration A9.2.12, "Function Removal"
FTP client setup CPU properties A9.5.5, "FTP Client Setup"

*1: For details on individual setup items, see "Sequence CPU – Functions (for F3SP66-4S, F3SP67-6S)"
(IM34M6P14-01E).

 Function removal
To disable all virtual directory commands, remove the virtual directory function using
function removal of configuration.

 FTP client setup
If an internal timeout error (error code: -1001) is returned as instruction status to a
FA-M3 unit running as FTP client, adjusting the network timeout on the FTP client end
using FTP client setup may solve the problem.

 3-66

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.7.3 Using Virtual Directory Commands
This subsection describes how to use virtual directory commands.
- Preparing for the use of virtual directory commands
- Executing virtual directory commands
- Checking execution results of virtual directory commands
- Virtual directory command syntax
- Error reply messages of virtual directory commands
- Relationship between Virtual directory command Execution and EXE LED status

The flowchart on the next page illustrates the procedure for using virtual directory
commands.

 3-67

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

BEGIN

Run FTP client

Issue
virtual directory command

Terminate
FTP client

END

Beginning of loop
(If required)

End of loop
(if required)

Run FTP client on PC, FA-M3, etc.

Issue virtual directory command using PUT
command or GET command

- If PUT/GET command returns an OK status, it
means that the virtual directory command is
successful.

- If PUT/GET command returns an error status,
it means that the virtual directory command is
not successful.

DESCRIPTION

Server
connection successful?

Yes

No

User processing - System processing
- External event

Disconnect
from FTP server

Connect to
FTP server

Connect to target FA-M3 FTP server using
OPEN command or instruction.

PUT or GET
successful?

Yes

Get or check
response file

If execution fails, check the response file for
error details. If no error is found in response file,
it indicates an error generated by FTP itself.

Terminate FTP client, and disconnect from FTP
server using QUIT command or instruction.

No

F0325.VSD
Figure 3.7.5 Procedure for Executing Virtual Directory Commands

 3-68

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Preparing for the Use of Virtual Directory Commands

 Run FTP server
Virtual directory commands run on the FTP server function of the module. By default, the
FTP server function of the module is automatically started at module startup (power on
or reset).

SEE ALSO
For details on using and configuring the FTP server function, see Section 3.6, "FTP Server."

CAUTION

Virtual directory commands are proprietary extended FTP server functions of the module
so they can be used only if the FTP server machine is the module and not a PC. There
is, however, no restriction on the FTP client machine, which can be the module, a PC or
some other machine.

 Prepare FTP client
Virtual directory commands are issued by an FTP client. Prepare an FTP client
application or FTP client library, which is to be executed on the module or a PC acting as
the FTP client. In addition, a command prompt on the PC is useful for checking
execution outcome.

 Connect to FTP server (the module) from FTP client
Establish an FTP connection from the FTP client to the FTP server (the module).

SEE ALSO
For details on how to connect to the FTP server, see Subsection 3.6.3, "Using FTP Server."

 3-69

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Executing Virtual Directory Commands
An execution request for a virtual directory command is issued by coding the virtual
directory command in the file pathname of an FTP put or get command, and sending the
FTP command from the FTP client to the FTP server (the module).

 Issuing a virtual directory command using a put command
You can invoke various functions of the module running as a remote FTP server by
coding the appropriate virtual directory command in the destination file pathname of a
put command. The example below shows a put command for sending a project file,
which is to be loaded on the module, from the PC to the module.

put myprj.ypjc \VIRTUAL\CMD\LOAD_.ypjc
Virtual directory commandFile to be sent

using put
put

A file on an FTP client can be processed according to a virtual
directory command by putting the file on the FTP server.
This sample command loads a project of card load format
named “myprj.ypjc” into the internal ROM of the CPU module.

F0326.VSD
Figure 3.7.6 Issuing a Virtual Directory Command using a put Command

 Issuing a virtual directory command using a get command
You can invoke various functions on the module running as a remote FTP server by
coding the appropriate virtual directory command in the source file pathname of a get
command. The get command can be used from a PC to get a project file from the
module and save it on the PC. The get command can also be used to switch the
operating mode, as well as read from or write to a specified device and perform other
operations which do not require getting a file.

get \VIRTUAL\CMD\SAVE_pass_.ypjc myprj.ypjc
Virtual directory command Source file pathnameget

You can get information (file) or perform processing
on the module running as FTP server from an FTP
client by “getting” a virtual directory command.
This sample command gets a project stored in the
internal ROM of the FTP server and saves it as a
project file of card load format named “myprj.ypjc” in
the current directory of the FTP client.

F0327.VSD
Figure 3.7.7 Issuing a Virtual Directory Command using a get Command

 3-70

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Checking Execution Results of Virtual Directory Commands
You can check the execution result of a virtual directory command by checking the reply
of the put command or get command and checking the response file.

 Successful execution of virtual directory command
If a virtual directory command execution is successful, the put command or get
command exits normally.

F0346.VSD
Figure 3.7.8 Successful Execution of Virtual Directory Command

 Unsuccessful execution of virtual directory command
If a virtual directory command execution is unsuccessful, the put command or get
command exits with error.
When an error occurs, the FTP server returns a "550 Can't open virtual file [<detailed
error code>]” error message if it recognizes the virtual directory command, and returns a
"550 Can't open file" error message if otherwise.

F0347.VSD
Figure 3.7.9 Unsuccessful Execution of Virtual Directory Command

 3-71

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

In addition, a response file describing the detailed error code is generated with the
following file pathname for each FTP server account name.

\VIRTUAL\CMD\RES_<account name>.res

TIP
- The response file contains information for the most recent error, and is overwritten each time an

error occurs. Therefore, if a put command or get command exits with error, you should check the
response file before issuing the next virtual directory command.

- Two FTP connections established using the same account name will have the same response file
name, which will pose a problem when checking detailed error codes.

 Virtual Directory Command Syntax
A virtual directory command consists of a common part, a command part, a parameter
part and a file part.
The table below describes each part of a virtual directory command.

Table 3.7.3 Virtual Directory Command Structure
Command Part Description Syntax

Common Specify an identifier denoting a virtual
directory command.

\VIRTUAL\CMD

Command Code the command name of a virtual
directory command.

<command name>
Specify a command name.

Parameters Specify parameters (arguments) of the
command, using an underscore ('_')
character as delimiter between the first
parameter and the command part, as well
as between parameters. The number of
parameters varies with command.

<parameters>
Specify command
arguments. Only
alphanumeric characters
are allowed.

File Specify file(s). See the description of
individual commands for details as it is
command-dependent.

<file name>
Specify a file name.

The common part is delimited from the command part using the backslash ('\') character,
which is the same character used for delimiting subdirectories.
Some examples of virtual directory commands are shown below.

>put data012.csv \VIRTUAL\CMD\F2DCSV_D101_-1_0_2_1_0_0_128

>get \VIRTUAL\CMD\D2FCSV_D101_2_128_0_6_1_0_0_4 data012.csv

 3-72

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Error Reply Messages of Virtual Directory Commands
Table 3.7.4 Error Reply Messages of Virtual Directory Commands

Reply Message Error
Code Description

PARAMETER ERROR SE01 Invalid parameter
DATA CONVERT ERROR SE02 Input data could not be converted to the specified format.
DEVICE BOUNDARY
VALUE EXCEEDED. SE03 An attempt was made to access a write-prohibit area.

MULTI CPU ERROR SE04 CPU number is invalid or no response was received from the
target CPU.

TIMEOUT ERROR SE05 Internal timeout has occurred.

FILE SYSTEM ERROR SE10
Processing could not continue because a file system failure was
detected. Reformat the disk in FAT16 format, or replace the
memory card.

INVALID FILE SE11 File data is invalid or could not be interpreted.

NO FILE ERROR SE12 File or directory was not found.
Or, no match was found for the specified wildcard pattern.

FILE OPEN ERROR SE13 An attempt was made to open a file which is already opened in
Write or Append mode.

FILE EXIST ERROR SE14
Specified destination file already exists.
Or, a directory could not be deleted because there are files in the
directory.

FILE PERMISSION
ERROR SE15

A write attempt to a destination was unsuccessful because:
- the destination was being accessed;
- the destination is a directory; or
- the destination is read-only.

NOEMPTY ERROR SE16 No free space is available on the disk.
Or, the number of files or directories exceeded the system limit.

NO CARD ERROR SE17 Processing is not allowed because no memory card is inserted.
CARD UNMOUNT
ERROR SE18 Processing is not allowed because no memory card is mounted.

CARD PROTECT ERROR SE19 Processing is not allowed because the protection switch is ON.

CARD ERROR SE20 Processing could not continue because a memory card failure
was detected. Replace the memory card.

SECURITY ERROR SE21 Security password mismatch
RUN MODE ERROR SE22 Processing is not allowed in Run or Debug mode.
STOP MODE ERROR SE23 Processing is not allowed in Stop mode.

CHANGE MODE ERROR SE24
Operating mode change is not allowed. This may be because
online edited changes are being written to the CPU module or
because of some other reason.

PROGRAM EXECUTION
MODE ERROR SE25 Block activation is not allowed in execute-all-blocks mode.

INVALID BLOCK NAME SE26 The specified block was not found.
FUNCTION DELETION SE27 The function is removed in the configuration.
FTPSERVER ERROR SE30 Processing could not continue due to an FTP server error.

 Relationship between Virtual Directory Command Execution and EXE
LED Status

The table below shows the relationship between the execution status of a virtual
directory command and the status of the EXE LED.
Unlike the rotary switch function and card batch file function, the EXE LED does not
blink when execution of a virtual directory command exits with error.

Table 3.7.5 Relationship between Virtual Directory Command Execution and EXE LED Status
State of Virtual

Directory Command
State of LED

Running - Lit
Normal exit
Error exit - Off

 3-73

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.7.4 Virtual Directory Command Specifications
Detailed specifications of the virtual directory commands are described in separate
subsections by command group.
- File/device conversion & transfer commands
- Device access commands
- Maintenance commands
- File operation and disk operation commands
- Card batch file execution commands

CAUTION

Virtual directory commands can handle file data of up to 2064384 bytes (about 2
megabytes). This capacity is shared by all FTP clients connected to the FTP server so
the size limit for each virtual directory command is smaller when multiple virtual directory
commands are executed concurrently.
A NOEMPTY ERROR (SE16) is generated if the size limit is exceeded.

3.7.5 File/Device Conversion & Transfer Commands
Table 3.7.6 List of File/Device Conversion & Transfer Commands

Instruction Name Command
Name

Function

Convert CSV File to Device F2DCSV Converts a CSV formatted file into device data.
Convert Device to CSV File D2FCSV Converts device data into a CSV formatted file.
Convert Binary File to Device F2DBIN Converts a binary file into device data.
Convert Device to Binary File D2FBIN Converts device data into a binary file.

Table 3.7.7 Terminology Description for File/Device Conversion & Transfer Commands
Term Description

Binary file A file containing binary data, with no delimiters.
CSV formatted file A text file in which ASCII coded data elements are delimited by comma (,)

characters or TAB characters. A CSV file can be displayed directly in Excel.
Conversely, an Excel file can be converted to a CSV formatted file with some
limitations.
A newline is also considered as a delimiter. Beware that a newline and a
contiguous delimiter character is treated as one field.

Field A field is one data element in a CSV formatted file.
Record A record (one line) in a CSV formatted file is delimited by a newline code.

One record contains 1 to n fields.

 3-74

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.7.5.1 Convert CSV File to Device (F2DCSV)
Converts data in CSV formatted file to binary data and writes the data to contiguous
devices.

 FTP Command Used
put

 Syntax
Table 3.7.8 Command Specifications

Command Part Syntax
Common \VIRTUAL\CMD

Command *1 \F2DCSV
1 First device for writing (7 ASCII characters max.) [device name]*2
2 Number of fields to be read (7 ASCII characters max.) [

-1 = until file end
0 - 4194304 (if device unit = bit)
0 - 524288 (if device unit = byte)
0 - 262144 (if device unit = word)
0 - 131072 (if device unit = long word)

]
3 Field representation type (1 ASCII character) [

0 = Decimal
1 = Hexadecimal
2 = Floating-point representation A ([-]d.dddd e[+/-]ddd form)
3 = Floating-point representation B ([-]dddd.dddd form)

]
4 Device unit (1 ASCII character) [

0 = Bit
1 = Byte
2 = Word
3 = Long word

]
5 Sign extension (1 ASCII character) [

0 = Pad with zeros
1 = Extend sign

]
6 Delimiter option (1 ASCII character) [

0 = Comma (,)
1 = TAB

]
7 Newline option (1 ASCII character) [

0 = CRLF
1 = LF

]

Parameters *1

8 Write limit in words (6 ASCII characters max.)
[1-262144 (words)]

File CSV formatted file name
*1: Delimit the command and each parameter using an underscore ('_') character.
*2: The table below shows the supported devices.

Table 3.7.9 Supported Devices

 X Y I E L M T C D B W Z R V Con-
stant

Index
Modification

Indirect
Designation,

Pointer P
First device
for writing No No

Note: - TP = timer current value
 - CP = counter current value

Command Line:

PUT <file> <common><command>_<parameter(1)>_..._<parameter(8)>

 3-75

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Example
This sample command reads the CSV formatted file named "data012.csv" containing
field data stored in decimal representation, and writes the number of required fields (128
words max.) as sign-extended word data to devices starting from B2001. It assumes that
the file uses CRLF as newline.

>put data012.csv \VIRTUAL\CMD\F2DCSV_B2001_-1_0_2_1_0_0_128

An example of an FTP reply is shown below assuming the command was executed from
a command prompt and exited with error.

200 PORT command successful.

150 Opening data connection.

550 Can't open virtual file[SE01 PARAMETER ERROR].

 Reply
Table 3.7.10 Reply Messages

Reply Message Code Description
OK
FIELD NUM. = xxxx

SE00 Normal exit
"xxxx" indicates the number of fields processed.

Other messages SE01,… Error reply message

SEE ALSO
For details on error reply messages, see " Error Reply Messages of Virtual Directory Commands" of
Subsection 3.7.3, "Using Virtual Directory Commands."

 Function
Converts data in CSV formatted file to binary data and writes the data to contiguous
devices.
- Text in decimal, hexadecimal or floating-point representation can be converted to

device data. Floating-point representation is converted to IEEE single-precision
floating-point representation.
Decimal ("-128" to "255", "-32768" to "65535", "-2147483648" to "4294967295")
Hexadecimal ("0x0" to "0xFFFFFFFF", "0" to "FFFFFFFF")
Floating-point ([-]d.dddd e[+/-]ddd, [-]dddd.dddd, Infinite "-INF"/"+INF")

- Available device unit options are bit, byte, word and long word. You can also specify
whether to perform sign extension.

- Available field delimiter options are the comma (,) and Tab characters.
- Comments can be included in the file. If a field begins with a double-quote ("),

single-quote ('), two slashes (//), or a slash and an asterisk (/*), the instruction skips
over all characters until it encounters a delimiter character or newline.

- Newline can be specified as CRLF (standard for Windows) or LF.

 3-76

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 5, 8, 6, 30
-2, 0, 0, 8
...

5
8
6
30
-2
0
0
8
:

B2001+0
B2001+1
B2001+2
B2001+3
B2001+4
B2001+5
B2001+6

B2001+7
:

CSV formatted file Device

Note: Device numbers and conversion method shown are examples.
FB0212.VSD

F2DCSV

Figure 3.7.10 CSV Formatted File to Device Conversion

TIP
Reading of File

- If end-of-file is encountered before the required number of fields is read, execution ends without
error.

- A newline ends a record, and thus always ends a field.
- Within a field, any and all space characters preceding the data string are ignored, but any space

character following the data string results in a field conversion error.
- '//' and other comment mark characters must always be coded at the beginning of a field.

Otherwise, a conversion error will be generated.
- If NULL or other invalid binary code is encountered, execution ends with a file interpretation error.

Conversion Error and Interpretation Error

- If a conversion error is detected, 0 is written to the device. If a conversion error is detected in a field
during conversion, an error is generated but processing continues.

- When the converted numeric value of a field exceeds the range of the device unit, a conversion
error is generated.

- Non-numeric representation "NaN" of D2FCSV generates a conversion error.

Data Conversion and Writing to Device

- You can specify to pad with '0's or extend the sign when the converted value of a field is smaller
than the size of the device unit.

- If the device unit is specified as bit, 0 is stored for a zero value while 1 is stored for any other value.
- If you specify the field representation type as floating-point representation, you must specify the

device unit as long word.
- Writing to device spans multiple scan cycles.

 3-77

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.7.5.2 Convert Device to CSV File (D2FCSV)
Converts device data to text and outputs a CSV formatted file.

 FTP Command Used
get

 Syntax
Table 3.7.11 Command Specifications

Command Part Syntax
Common \VIRTUAL\CMD

Command *1 \D2FCSV
1 First device for reading (7 ASCII characters max.) [device name] *2
2 Device unit (1 ASCII character) [

0 = bit
1 = byte
2 = word
3 = long word

]
3 Number of data units to be read (7 ASCII characters max.) [

0 - 4194304 (if device unit = bit)
0 - 524288 (if device unit = byte)
0 - 262144 (if device unit = word)
0 - 131072 (if device unit = long word)

]
4 Field representation type (1 ASCII character) [

0 = Decimal
1 = Hexadecimal
2 = Floating-point representation A ([-]d.dddd e[+/-]ddd form)
3 = Floating-point representation B ([-]dddd.dddd form)

]
5 Field length (2 ASCII characters max.) [

0 = automatic (as required after conversion)
1-13 = fixed field length in characters

]
6 Field space handling (1 ASCII character) [*3

0 = Pad with spaces
1 = Pad with zeros

]
7 Delimiter option (1 ASCII character) [

0 = comma (,)
1 =TAB

]
8 Newline option (1 ASCII character [

0 = CRLF
1 = LF

]

Parameters *1

9 Newline insertion position (5 ASCII characters max.) [
0 = Do not insert newline
1 - 32767 = Insert newline after n fields

]
File Output file name

*1: Delimit the command and each parameter using an underscore ('_') character.
*2: The table below shows the supported devices.
*3: If the field length is specified as 0 (automatic), this parameter is ignored but a valid dummy value (say, 0) must still be

specified.

Table 3.7.12 Supported Devices

 X Y I E L M T C D B W Z R V Con-
stant

Index
Modification

Indirect
Designation,

Pointer P
First device
for reading No No

Note: - TP = timer current value; TS = timer preset value
- CP = counter current value; CS = counter preset value

 3-78

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

Command Line:
GET <common><command>_<parameter(1)>_..._<parameter(9)> <file>

 Example
This sample command gets and stores device data starting from B2001 to a CSV
formatted file in the current directory according to the conditions given below.
- Device unit Word
- Number of data units to be read 128
- Field representation type Decimal
- Field length Automatic
- Field space handling Pad with spaces
- Delimiter option Comma
- Newline option CRLF
- Newline insertion position 4

>get \VIRTUAL\CMD\D2FCSV_B2001_2_128_0_0_1_0_0_4 data012.csv

An example of an FTP reply is shown below assuming the command was executed from
a command prompt and exited with error.

200 PORT command successful.

550 Can't open virtual file[SE01 PARAMETER ERROR].

 Reply
Table 3.7.13 Reply Messages

Reply Message Code Description
OK
DATA NUM. = xxxx

SE00 Normal exit
"xxxx" indicates the number of fields processed.

Other messages SE01,… Error reply message

SEE ALSO
For details on error reply messages, see " Error Reply Messages of Virtual Directory Commands" of
Subsection 3.7.3, "Using Virtual Directory Commands."

 Function
Converts device data to text and outputs a CSV formatted file.
- Available device unit options for reading are bit, byte, word and long word.
- Device data can be converted to text in decimal, hexadecimal or floating-point

representation after reading.
Decimal ("0" to "1", "-128" to "127", "-32768" to "32767", "-2147483648" to
"2147483647")
Hexadecimal ("0" to "FFFFFFFF")
Floating-point ([-]d.dddd e[+/-]ddd, [-]dddd.dddd, infinity "-INF" or "+INF", non-
numeric "NaN")

- You can specify the field length in characters for text conversion.
- You can specify whether to pad with space characters or pad with zeros if the

converted text is shorter than the specified field length.
- Available field delimiter options are the comma (,) and Tab characters.
- Newline can be specified as CRLF (standard for Windows) or LF.
- The number of fields in one record (from line beginning to line end) can be specified.

 3-79

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 5, 8, 6, 30
-2, 0, 0, 8
...

5
8
6
30
-2
0
0
8
:

B2001+0
B2001+1
B2001+2
B2001+3
B2001+4
B2001+5
B2001+6
B2001+7

:

CSV formatted fileDevice

Note: Device numbers and conversion method shown are examples.

FB0213.VSD

D2FCSV

Figure 3.7.11 Device to CSV Formatted File Conversion

TIP
Reading of Device Data

- Reading of data from devices spans multiple scan cycles.
- If you specify the field representation type as floating-point representation, you must specify the

device unit as long word for devices storing IEEE single-precision floating-point numbers.

Conversion Error and Interpretation Error
- If a conversion error occurs, "ERR" is written to the field. If a conversion error is detected for a field

during conversion, an error is generated but processing continues.
- If the converted text string is longer than the specified field length, a conversion error is generated.

Data Conversion
- If the field representation type is specified as decimal, the sign is included in the output digit count.
- In floating-point representation B, there are always 6 digits after the decimal point. Numeric values

smaller than 0.000001 are rounded to 0.

 3-80

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.7.5.3 Convert Binary File to Device (F2DBIN)
Converts data in binary file and writes the data to contiguous devices using the specified
data unit.

 FTP Command Used
put

 Syntax
Table 3.7.14 Command Specifications

Command Part Syntax
Common \VIRTUAL\CMD

Command *1 \F2DBIN
1 First device for writing (7 ASCII characters max.) [device name] *2
2 Number of data units to be read (7 ASCII characters max.) [

-1 = Until file end
0 - 4194304 (if device unit = bit)
0 - 524288 (if device unit = byte)
0 - 262144 (if device unit = word)
0 - 131072 (if device unit = long word)

]
3 Data unit (1 ASCII character) [

1 = byte
2 = word
3 = long word

]
4 Device unit (1 ASCII character) [

0 = bit
1 = byte
2 = word
3 = long word

]
5 Sign extension (1 ASCII character) [

0 = Pad with zeros
1 = Extend sign

]

Parameters *1

6 Write limit in words (6 ASCII characters max.)
 [1 - 262144 (words)]

File Binary file name
*1: Delimit the command and each parameter using an underscore ('_') character.
*2: The table below shows the supported devices.

Table 3.7.15 Supported Devices

 X Y I E L M T C D B W Z R V Con-
stant

Index
Modification

Indirect
Designation,

Pointer P
First device
for writing No No

Note: - TP = timer current value
- CP = counter current value

Command Line:

PUT <file> <common><command>_<parameter(1)>_..._<parameter(6)>

 3-81

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Example
This sample command reads all data (128 words max.) contained in the binary file
named "data012.bin" in word units and writes the word data to devices starting from
B2001. The sign extension parameter has no significance in this example.

>put data012.bin \VIRTUAL\CMD\F2DBIN_B2001_-1_2_2_1_128

An example of an FTP reply is shown below assuming the command was executed from
a command prompt and exited with error.

200 PORT command successful.

150 Opening data connection.

550 Can't open virtual file[SE01 PARAMETER ERROR].

 Reply
Table 3.7.16 Reply Messages

Reply Message Code Description
OK
DATA NUM. = xxxx

SE00 Normal exit
"xxxx" indicates the number of data units processed.

Other messages SE01,… Error reply message

SEE ALSO
For details on error reply messages, see " Error Reply Messages of Virtual Directory Commands" of
Subsection 3.7.3, "Using Virtual Directory Commands."

 Function
Converts data in binary file and writes the data to contiguous devices using the specified
data unit.

$0005
$0008
$0006
$001E
$FFFE
$0000
$0000
$0008

:

5
8
6
30
-2
0
0
8
:

B2001+0
B2001+1
B2001+2
B2001+3
B2001+4
B2001+5
B2001+6
B2001+7

:

Binary file Device

Note: Device numbers and conversion method shown are examples.
FB0214.VSD

F2DBIN

Figure 3.7.12 Binary File to Device Conversion

TIP
- If a conversion error occurs, 0 is written to the device. If a conversion error is detected during

conversion, an error is generated but processing continues.
- If the specified data unit is larger than the specified device unit, a conversion error is generated.
- If the device unit is specified as bit, 0 is stored for a zero value while 1 is stored for any other value.
- If the specified data unit is smaller than the specified device unit, you can specify to pad with '0's or

extend the sign.
- If end-of-file is encountered before the required number of data units are read, execution ends

without error.
- Writing to device spans multiple scan cycles.

 3-82

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.7.5.4 Convert Device to Binary File (D2FBIN)
Converts device data to a binary file.

 FTP Command Used
get

 Syntax
Table 3.7.17 Command Specifications

Command Part Syntax
Common \VIRTUAL\CMD

Command *1 \D2FBIN
1 First device for reading (7 ASCII characters max.) [device name]*2
2 Number of data units to be read (ASCII) [

0 -4194304 (if device data unit = bit)
0 - 524288 (if device data unit = byte)
0 - 262144 (if device data unit = word)
0 - 131072 (if device data unit = long word)

]
3 Device data unit (1 ASCII character) [

0 = bit
1 = byte
2 = word
3 = long word

]
4 File data unit (1 ASCII character) [

1 = byte
2 = word
3 = long word

]

Parameters *1

5 Sign extension (1 ASCII character) [
0 = Pad with zeros
1 = Extend sign

]
File Output file name

*1: Delimit the command and each parameter using an underscore ('_') character.
*2: The table below shows the supported devices.

Table 3.7.18 Supported Devices

 X Y I E L M T C D B W Z R V Con-
stant

Index
Modification

Indirect
Designation,

Pointer P
First device
to be read No No

Note: - TP = timer current value; TS = timer preset value
 - CP = counter current value; CS = counter preset value

Command Line:

GET <common><command>_<parameter(1)>_..._<parameter(5)> <file>

 3-83

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Example
This sample command writes device data starting from B2001 to a binary file named
"data012.bin" in the current directory according to the conditions given below.
- Number of data units to be read 128
- Device data unit Word
- File data unit Word
- Sign extension Extend sign (has no significance in this example)

>get \VIRTUAL\CMD\D2FBIN_B2001_128_2_2_1 data012.bin

An example of an FTP reply is shown below assuming the command was executed from
a command prompt and exited with error.

200 PORT command successful.

550 Can't open virtual file[SE01 PARAMETER ERROR].

 Reply
Table 3.7.19 Reply Messages

Reply Message Code Description
OK
DATA NUM. = xxxx

SE00 Normal exit
"xxxx" indicates the number of data units processed.

Other messages SE01,… Error reply message

SEE ALSO
For details on error reply messages, see " Error Reply Messages of Virtual Directory Commands" of
Subsection 3.7.3, "Using Virtual Directory Commands."

 Function
Converts device data to a binary file.

$0005
$0008
$0006
$001E
$FFFE
$0000
$0000
$0008

:

5
8
6

30
-2
0
0
8
:

B2001+0
B2001+1
B2001+2
B2001+3
B2001+4
B2001+5
B2001+6
B2001+7

:

Binary fileDevice

Note: Device numbers and conversion method shown are examples.
FB0215.VSD

D2FBIN

Figure 3.7.13 Device Data to Binary File Conversion

TIP
- If a conversion error occurs, 0 is written to the file. If a conversion error is detected during

conversion, an error is generated but processing continues.
- If the specified device unit is larger than the specified file unit, a conversion error is generated.
- If the specified device unit is smaller than the specified file unit, you can specify to pad with '0's or

extend the sign.
- Reading of data from devices spans multiple scan cycles.

 3-84

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.7.6 Device Access Commands
Table 3.7.20 List of Device Access Commands

Function Name Command
Name

Function

BRD Reads bits.
BWR Writes bits.

Bit access

BFL Writes bits of the same data.
WRD Reads words.
WWR Writes words.

Word access

WFL Writes words of the same data.

 3-85

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.7.6.1 Bit Read (BRD)
Reads bit data from consecutive relay devices.

 Syntax
Table 3.7.21 Command Specifications

Command Part Syntax
Common \VIRTUAL\CMD

Command *1 \BRD
1 First device name (7 ASCII characters max.) [device name]*2 Parameters *1
2 Number of bits (3 ASCII characters max.) [1-256]

File Data file name
*1: Delimit the command and each parameter using an underscore ('_') character.
*2: The table below shows the supported devices.

Table 3.7.22 Supported Devices

 X Y I E L M T C D B W Z R V Con-
stant

Index
Modification

Indirect
Designation,

Pointer P
First device No No

Command Line:

GET <common><command>_<parameter(1)>_<parameter(2)> <file>

 Example
This sample command reads 8 bits of data starting from device I223 and stores the data
in binary representation in a text file named "res.txt."

>get \VIRTUAL\CMD\BRD_I223_8 res.txt

Assuming that devices I223 to I230 contain the values {0,1,0,1,1,1,1,1}, the contents of
the data file will be:

01011111

An example of an FTP reply is shown below assuming the command was executed from
a command prompt and exited with error.

200 PORT command successful.

550 Can't open virtual file[SE01 PARAMETER ERROR].

 Reply
Table 3.7.23 Reply Messages

Reply Message Code Description
OK SE00 Normal exit
Other messages SE01,… Error reply message

SEE ALSO
For details on error reply messages, see " Error Reply Messages of Virtual Directory Commands" of
Subsection 3.7.3, "Using Virtual Directory Commands."

 Function
Reads bit data from consecutive relay devices. The data read is output in binary
representation to a text file. Character '1' (ASCII code=$31) is output to the file if a relay
device is ON while character '0' (ASCII code=$30) is output if a relay device is OFF.

 3-86

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.7.6.2 Bit Write (BWR)
Writes bit data into consecutive relay devices.

 Syntax
Table 3.7.24 Command Specifications

Command Part Syntax
Common \VIRTUAL\CMD

Command *1 BWR
1 First device name (7 ASCII characters max.) [device name]*2
2 Number of bits (3 ASCII characters max.) [1-128]

Parameters *1

3 Write data (1 ASCII character x specified Number of bits) [string of
'0's and '1's]

File Dummy file name
*1: Delimit the command and each parameter using an underscore ('_') character.
*2: The table below shows the supported devices.

Table 3.7.25 Supported Devices

 X Y I E L M T C D B W Z R V Con-
stant

Index
Modification

Indirect
Designation,

Pointer P

First device No No

Command Line:

GET <common><command>_<parameter(1)>_..._<parameter(3)> <file>

 Example
This sample command writes 8 bits of data ("00110001") to device, starting from device
I223. It specifies the dummy file name as "dmy.txt".

>get \VIRTUAL\CMD\BWR_I223_8_00110001 dmy.txt

An example of an FTP reply is shown below assuming the command was executed from
a command prompt and exited with error.

200 PORT command successful.

550 Can't open virtual file[SE01 PARAMETER ERROR].

 Reply
Table 3.7.26 Reply Messages

Reply Message Code Description
OK SE00 Normal exit
Other messages SE01, … Error reply message

SEE ALSO
For details on error reply messages, see " Error Reply Messages of Virtual Directory Commands" of
Subsection 3.7.3, "Using Virtual Directory Commands."

 Function
Writes bit data into consecutive relay devices. Specify a string of '1' and '0' characters in
the parameters part to turn on or turn off each relay device accordingly.

 3-87

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.7.6.3 Bit Fill (BFL)
Writes the same bit value into a specified number of consecutive relay devices.

 Syntax
Table 3.7.27 Command Specifications

Command Part Syntax
Common \VIRTUAL\CMD

Command *1 BFL
1 First device name (7 ASCII characters max.) [device name]*2
2 Number of bits (3 ASCII characters max.) [1-256]

Parameters *1

3 Write data (1 ASCII character) [0 or 1]
File Dummy file name

*1: Delimit the command and each parameter using an underscore ('_') character.
*2: The table below shows the supported devices.

Table 3.7.28 Supported Devices

 X Y I E L M T C D B W Z R V Con-
stant

Index
Modification

Indirect
Designation,

Pointer P
First device No No

Command Line:

GET <common><command>_<parameter(1)>_..._<parameter(3)> <file>

 Example
This sample command writes bit value 0 to 160 relay devices, starting from device I223.
It specifies the dummy file name as "dmy.txt".

>get \VIRTUAL\CMD\BFL_I223_160_0 dmy.txt

An example of an FTP reply is shown below assuming the command was executed from
a command prompt and exited with error.

200 PORT command successful.

550 Can't open virtual file[SE01 PARAMETER ERROR].

 Reply
Table 3.7.29 Reply Messages

Reply Message Code Description
OK SE00 Normal exit
Other messages SE01, … Error reply message

SEE ALSO
For details on error reply messages, see " Error Reply Messages of Virtual Directory Commands" of
Subsection 3.7.3, "Using Virtual Directory Commands."

 Function
Writes the same bit value into a specified number of consecutive relay devices. Specify
the write data as one digit in binary representation. Specify 1 or 0 in the parameters part
to turn on or turn off the specified number of relay devices.

 3-88

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.7.6.4 Word Read (WRD)
Reads word data from consecutive register devices.

 Syntax
Table 3.7.30 Command Specifications

Command Part Syntax
Common \VIRTUAL\CMD

Command *1 WRD
1 First device name (7 ASCII characters max.) [device name]*2 Parameters *1
2 Number of words (2 ASCII characters max.) [01 to 64 in decimal

representation]
File Data file name

*1: Delimit the command and each parameter using an underscore ('_') character.
*2: The table below shows the supported devices.

Table 3.7.31 Supported Devices

 X Y I E L M T C D B W Z R V Con-
stant

Index
Modification

Indirect
Designation,

Pointer P
First device No No

Note: - TP=timer current value; TS=timer preset value; TI=timer current value (count-up type)
 - CP=counter current value; CS=counter preset value; CI=counter current value (count-up type)

Command Line:

GET <common><command>_<parameter(1)>_<parameter(2)> <file>

 Example
This sample command reads 4 words of data starting from register D101 and stores the
data in hexadecimal representation in a text file named "regstat.txt."

>get \VIRTUAL\CMD\WRD_D101_4 regstat.txt

Assuming D101=$1, D102=$2, D103=$3, D104=$4, the content of the data file
(regstat.txt) will be:

0001000200030004

An example of an FTP reply is shown below assuming the command was executed from
a command prompt and exited with error.

200 PORT command successful.

550 Can't open virtual file[SE01 PARAMETER ERROR].

 Reply
Table 3.7.32 Reply Messages

Reply Message Code Description
OK SE00 Normal exit
Other messages SE01, … Error reply message

SEE ALSO
For details on error reply messages, see " Error Reply Messages of Virtual Directory Commands" of
Subsection 3.7.3, "Using Virtual Directory Commands."

 Function
Reads word data from consecutive register devices. The word data is output to a text file
contiguously with 4 hexadecimal digits per data word.

 3-89

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.7.6.5 Word Write (WWR)
Writes word data into consecutive register devices.

 Syntax
Table 3.7.33 Command Specifications

Command Part Syntax
Common \VIRTUAL\CMD

 Command *1 WWR
1 First device name (7 ASCII characters max.) [device name]*2
2 Number of words (2 ASCII characters max.) [01 to 32 in decimal

representation]

 Parameters *1

3 Write data (4 ASCII characters x specified number of words)
[0000 to FFFF in hexadecimal representation (for the specified
number of words)]

File Dummy file name
*1: Delimit the command and each parameter using an underscore ('_') character.
*2: The table below shows the supported devices.

Table 3.7.34 Supported Devices

 X Y I E L M T C D B W Z R V Con-
stant

Index
Modification

Indirect
Designation,

Pointer P
First device No No

Note: - TP = timer current value; TI = timer current value (count-up type)
 - CP=counter current value; CI=counter current value (count-up type)

Command Line:

GET <common><command>_<parameter(1)>_..._<parameter(3)> <file>

 Example
This sample command writes 4 words of data ($9096, $AA01, $0000, $8001) to device,
starting from device D101. It specifies the dummy file name as "dmy.txt".

>get \VIRTUAL\CMD\WWR_D101_4_9096_AA01_0000_8001 dmy.txt

An example of an FTP reply is shown below assuming the command was executed from
a command prompt and exited with error.

200 PORT command successful.

550 Can't open virtual file[SE01 PARAMETER ERROR].

 Reply
Table 3.7.35 Reply Messages

Reply Message Code Description
OK SE00 Normal exit
Other messages SE01, … Error reply message

SEE ALSO
For details on error reply messages, see " Error Reply Messages of Virtual Directory Commands" of
Subsection 3.7.3, "Using Virtual Directory Commands."

 Function
Writes word data into consecutive register devices. In the parameters part, specify the
data to be written contiguously, with 4 hexadecimal digits per word, for the specified
number of words.

 3-90

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.7.6.6 Word Fill (WFL)
Writes the same word data into a specified number of consecutive register devices.

 Syntax
Table 3.7.36 Command Specifications

Command Part Syntax
Common \VIRTUAL\CMD

Command *1 WFL
1 First device name (7 ASCII characters max.) [device name]*2
2 Number of words (3 ASCII characters max.) [1 to 256 in decimal

representation]

Parameters *1

3 Write data (4 ASCII character)
[0000 to FFFF in hexadecimal representation]

File Dummy file name
*1: Delimit the command and each parameter using an underscore ('_') character.
*2: The table below shows the supported devices.

Table 3.7.37 Supported Devices

 X Y I E L M T C D B W Z R V Con-
stant

Index
Modification

Indirect
Designation,

Pointer P
First device No No

Note: - TP = timer current value; TI = timer current value (count-up type)
 - CP=counter current value; CI=counter current value (count-up type)

Command Line:

GET <common><command>_<parameter(1)>_..._<parameter(3)> <file>

 Example
This sample command writes word value $0000 to 160 register devices, starting from
device D101. It specifies the dummy file name as "dmy.txt".

>get \VIRTUAL\CMD\WFL_D101_160_0000 dmy.txt

An example of an FTP reply is shown below assuming the command was executed from
a command prompt and exited with error.

200 PORT command successful.

550 Can't open virtual file[SE01 PARAMETER ERROR].

 Reply
Table 3.7.38 Reply Messages

Reply Message Code Description
OK SE00 Normal exit
Other messages SE01, … Error reply message

SEE ALSO
For details on error reply messages, see " Error Reply Messages of Virtual Directory Commands" of
Subsection 3.7.3, "Using Virtual Directory Commands."

 Function
Writes the same word data to a specified number of consecutive register devices. In the
Parameters part, specify the data to be written as 4 hexadecimal digits.

 3-91

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.7.7 Maintenance Commands
Table 3.7.39 List of Maintenance Commands

Function
 Name

Command
Name

Function

Load Project LOAD Loads project or CPU properties.
Save Project SAVE Saves project or CPU properties.
Get Log LOG Gets various log files.
CPU Info CPUINFO Gets CPU module information.
Application Info APINFO Gets user application information.
Run Mode RUN Switches operating mode to Run mode.
Stop Mode STOP Switches operating mode to Stop mode.
Activate Block ACT Activates a specified block. You may also activate a sensor

control block.
Inactivate Block INACT Inactivates a specified block. You may also inactivate a

sensor control block.
Reset CPU CPURESET Resets the CPU.
Clear Alarms ALMCLEAR Clears all alarms, and returns a log of cleared alarms.
Help HELP Gets help information on card batch file commands.

 3-92

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.7.7.1 Load Project (LOAD)
Loads a project file of card load format (file extension ".ypjc") or a CPU property file (file
extension ".yprp") into the internal ROM of the module when used in a put command.

 FTP Command Used
put

 Syntax
Table 3.7.40 Command Specifications

Command Part Syntax
Common \VIRTUAL\CMD

 Command *1 \LOAD
 Parameters *1 Extension of file to be loaded (13 ASCII characters max.) [*2

 .ypjc = card load format project file name extension
 xxxxxxxx.yprp = CPU property file name
]

File Card load format project file name (with file extension "ypjc")
or
CPU property file name (with file extension "yprp")

*1: Delimit the command and each parameter using an underscore ('_') character.
*2: "xxxxxxxx" can be any filename. This file name will be registered as the name of the CPU property data and the CPU

property file name when the CPU property file is uploaded or saved. When loading a project, specify only ".ypjc” as
even if a file name is specified, the project name used for creating the card load format project will be registered.

Command Line:

PUT <file> <common><command>_<parameter>

 Example
The first sample command loads a project file of card load format named "myproj.ypjc";
The second sample command loads a CPU property file named "myprop.yprop".

>put myproj.ypjc \VIRTUAL\CMD\LOAD_.ypjc

>put myprop.yprp \VIRTUAL\CMD\LOAD_myprop.yprp

An example of an FTP reply is shown below assuming the command was executed from
a command prompt and exited with error.

200 PORT command successful.

150 Opening data connection.

550 Can't open virtual file[SE01 PARAMETER ERROR].

 Reply
Table 3.7.41 Reply Messages

Reply Message Code Description
OK SE00 Normal exit
Other messages SE01, … Error reply message

SEE ALSO
For details on error reply messages, see " Error Reply Messages of Virtual Directory Commands" of
Subsection 3.7.3, "Using Virtual Directory Commands."

 3-93

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Function
Loads a project file of card load format (file extension ".ypjc") or a CPU property file (file
extension ".yprp") into the internal ROM of the module when used in a put command.

Operating mode dependency
Project loading is available only in Stop mode. CPU property loading is available in any
operating mode.
The operating mode before command execution is retained after command execution.

Protection
If executable program protection is enabled for the project stored in the internal ROM,
the project to be loaded must be protected by the same password for loading to
succeed. Block protection alone has no effect on project loading.
If CPU property data stored in the internal ROM is protected with a keyword, the
property file to be loaded must be set with the same keyword for loading to succeed.

If an error occurs
The operating mode right before execution remains in effect.
The table below shows the state of the data in the internal ROM in the event of an error.

Table 3.7.42 Internal ROM Contents after an Error
Error Data of Internal ROM

PARAMETER ERROR
RUN MODE ERROR
SECURITY ERROR

The data before execution is retained.

INVALID FILE
(CPU property file)

The CPU property data before execution is retained.

INVALID FILE
(project file)

Project programs are cleared.

FTPSERVER ERROR Unpredictable

 3-94

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.7.7.2 Save Project (SAVE)
Gets project or CPU property data stored in the internal ROM of the module when used
in a get command.

 FTP Command Used
get

 Syntax
Table 3.7.43 Command Specifications

Command Part Syntax
Common \VIRTUAL\CMD

 Command *1 \SAVE
1 Security password of executable program (8 ASCII characters

max.) *2
or
Security keyword for CPU properties (8 ASCII characters max.)

 Parameters *1

2 Filename extension (5 ASCII characters)[
 .ypjc = project file of card load format
 .yprp = CPU property file
]

File Project file name (with extension "ypjc")
or
CPU property file name (with extension "yprp")

*1: Delimit the command and each parameter using an underscore ('_') character.
*2: This parameter cannot be omitted even if the executable program or CPU property data is not protected. In this case,

you can specify any valid dummy text string.

Command Line:

GET <common><command>_<parameter(1)>_<parameter(2)> <file>

 Example
This sample command gets and saves an unprotected project file of card load format to
a file named "myprj.ypjc".

>get \VIRTUAL\CMD\SAVE_aaa_.ypjc myprj.ypjc

This sample command gets and saves a CPU property file protected with keyword
"yokogawa" to a file named "myprop.yprp".

>get \VIRTUAL\CMD\SAVE_yokogawa_.yprp myprop.yprp

An example of an FTP reply is shown below assuming the command was executed from
a command prompt and exited with error.

200 PORT command successful.

550 Can't open virtual file[SE01 PARAMETER ERROR].

 3-95

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Reply
Table 3.7.44 Reply Messages

Reply Message Code Description
OK SE00 Normal exit
Other messages SE01, … Error reply message

SEE ALSO
For details on error reply messages, see " Error Reply Messages of Virtual Directory Commands" of
Subsection 3.7.3, "Using Virtual Directory Commands."

 Function
Gets project or CPU property data stored in the internal ROM of the module when used
in a get command.
When used in a get command, this virtual directory command saves project or CPU
property data stored in the internal ROM as a file in card load format or a CPU property
file using the filename specified in the File part of the command.
You can specify whether to get a project file or CPU property file using the filename
extension parameter. To get a project file, specify ".ypjc"; to get a CPU property file,
specify ".yprp".

TIP
You may save the data using any filename but the project name remains the same as at the time of
loading.

Protection
If executable program protection is enabled for the project stored in the internal ROM,
you must specify a valid password as a command parameter. If the password is invalid,
the command returns an error without saving the file.
Block protection, even if enabled, is ignored during saving.
If the CPU property data is protected with a keyword, you must specify a valid keyword
as a command parameter for saving to succeed.
For security reasons, no keyword is output to the saved CPU property file.

 3-96

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.7.7.3 Get Log (LOG)
Gets and saves log information as a text file.

 FTP Command Used
get

 Syntax
Table 3.7.45 Command Specifications

Command Part Syntax
Common \VIRTUAL\CMD

 Command *1 \LOG
 Parameters *1 Log type [

 0 = system log
 1 = FTP server log
]

File Log file name
*1: Delimit the command and each parameter using an underscore ('_') character.

Command Line:

GET <common><command>_<parameter> <file>

 Example
This sample command saves the system log in a file named "cpu003.txt".

>get \VIRTUAL\CMD\LOG_0 cpu003.txt

An example of an FTP reply is shown below assuming the command was executed from
a command prompt and exited with error.

200 PORT command successful.

550 Can't open virtual file[SE01 PARAMETER ERROR].

 Reply
Table 3.7.46 Reply Messages

Reply Message Code Description
OK SE00 Normal exit
Other messages SE01, … Error reply message

SEE ALSO
For details on error reply messages, see " Error Reply Messages of Virtual Directory Commands" of
Subsection 3.7.3, "Using Virtual Directory Commands."

 Function
Gets and saves log data in a text file. You can get the following types of log data:
- System log (messages logged for error events, power on/off events, etc.)
- FTP server log (execution log of the FTP server)

 3-97

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.7.7.4 CPU Info (CPUINFO)
Gets and saves CPU information in a text file.

 FTP Command Used
get

 Syntax
Table 3.7.47 Command Specifications

Command Part Syntax
Common \VIRTUAL\CMD

 Command \CPUINFO
 Parameters –

File CPU information file name

Command Line:

GET <common><command> <file>

 Example
This sample command saves CPU information in a file named "mycpuinfo.txt".

>get \VIRTUAL\CMD\CPUINFO mycpuinfo.txt

An example of an FTP reply is shown below assuming the command was executed from
a command prompt and exited with error.

200 PORT command successful.

550 Can't open virtual file[SE01 PARAMETER ERROR].

 Reply
Table 3.7.48 Reply Messages

Reply Message Code Description
OK SE00 Normal exit
Other messages SE01, … Error reply message

SEE ALSO
For details on error reply messages, see " Error Reply Messages of Virtual Directory Commands" of
Subsection 3.7.3, "Using Virtual Directory Commands."

 3-98

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Function
Gets CPU information and saves it in a text file. The table below lists the returned CPU
information.

Table 3.7.49 Overview of CPU Information
CPU Information Data*1 Data Range

Nameplate information

MODEL = CPU type
SERIAL NO. = Serial number
DATE = Date of manufacture
MAC ID = MAC address
FIRMWARE REV. = Revision no.

CPU type [F3SP66-4S, F3SP67-6S].
Serial number [3 alphanumeric
characters and 6 numeric characters]
Date of manufacture [YY/MM/DD]
MAC address [12-digit hexadecimal
number]
Revision no. [starts with R00]

Operating mode PROGRAM MODE= Operating
mode

Operating mode [
 0 = Stop mode
 1 = Run mode
 2 = Debug mode
]

LED status

RDY LED = LED status
RUN LED = LED status
ALM LED = LED status
ERR LED = LED status
SD LED = LED status
EXE LED = LED status
US1 LED = LED status
US2 LED = LED status

LED status [
 0 = Off
 1 = Lit
 2 = Blinking
]

MODE switch status MODE SW = MODE switch value MODE switch value [0 to F]

CARD1 mount status CARD1 MOUNT STATUS = Mount
status

Mount status [
 0 = Unmounted
 1 = Mounted
]

CARD1 free space CARD1 FREE SPACE = Free space Free space [bytes]
CARD1 capacity CARD1 TOTAL SIZE = Capacity Capacity [bytes]

RAM disk free space RAMDISK FREE SPACE = Free
space Free space [bytes]

RAM disk capacity RAMDISK TOTAL SIZE = Capacity Capacity [bytes]

Alarm status Alarm name
Alarm name
(the same as that displayed by the
alarm monitor)

Block activation status
Block name 1 = Activation status
 :
Block name n = Activation status

Block name [up to 8 ASCII characters]
Activation status [
 0 = Inactive,
 1 = Active
]

*1: The data range of each italicized item is given in the "Data Range" column.

 3-99

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.7.7.5 Application Info (APINFO)
Gets application information (project information, configuration, I/O setup) in text format.

 FTP Command Used
get

 Syntax
Table 3.7.50 Command Specifications

Command Part Syntax
Common \VIRTUAL\CMD

 Command \APINFO
 Parameters *1 Password of executable program (8

ASCII characters max.)
File Application information file name

*1: This parameter cannot be omitted even if the executable program is not protected. In this case, you can specify any
valid dummy text string.

Command Line:

GET <common><command>_<parameter> <file>

 Example
This sample program gets and saves application information of a project whose
executable program is not protected in a file named "myapr.txt".

>get \VIRTUAL\CMD\APINFO_aaa myapr.txt

An example of an FTP reply is shown below assuming the command was executed from
a command prompt and exited with error.

200 PORT command successful.

550 Can't open virtual file[SE01 PARAMETER ERROR].

 Reply
Table 3.7.51 Reply Messages

Reply Message Code Description
OK SE00 Normal exit
Other messages SE01, … Error reply message

SEE ALSO
For details on error reply messages, see " Error Reply Messages of Virtual Directory Commands" of
Subsection 3.7.3, "Using Virtual Directory Commands."

 3-100

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Function
Returns application information (project information, configuration, I/O setup) in text
format. If the executable program of the project is protected, you must specify a valid
password in the Parameters part of the command.
(1) Project information

The following project information is output in text format.

 Table 3.7.52 System Information – Project Information
Project Information Data*1 Data Range

CPU model CPU TYPE = CPU type CPU type
[up to 9 ASCII characters]

Name of stored project PROJECT NAME = Project name Project name
[up to 8 ASCII characters]

Name of stored CPU
property data

CPU PROPERTY NAME =
CPU property name

CPU property name
[up to 255 ASCII characters]

Number of stored
program steps PROGRAM STEP = Number of steps Number of steps

[0 to maximum limit for the module]
Number of component
blocks BLOCK NUM = Number of blocks Number of blocks

 [1 to 1024]

Names of component
blocks

BLOCK NAME 1 = Name of block 1
 :
BLOCK NAME n = Name of block n

Name of block n
[up to 8 ASCII characters]
(n is between 1 and 1024)

Names of registered
macros*2

MACRO NAME 1 = Name of macro 1
 :
MACRO NAME n = Name of macro n

Name of macro n
[up to 8 ASCII characters]
(n is between 1 and 256)

*1: The data range of each italicized item is given in the "Data Range" column.
*2: Information is not stored for unregistered macros.

(2) I/O setup information

I/O setup information for each slot of a unit is output as one set of comma-delimited
elements consisting of type, number of X points, number of Y points and number of
registers as shown below. I/O setup information is available for up to 8 units each
consisting of up to 16 slots. Information for each unit is delimited by the newline
code.

Table 3.7.53 System Information – I/O Setup Information
Unit Sequence Element Format

Module type of SLOT1 4 ASCII characters
Number of X points of SLOT1 2-digit decimal number
Number of Y points of SLOT1 2-digit decimal number
Number of registers of SLOT1 5-digit decimal number
 : :
Module type of SLOT16 4 ASCII characters
Number of X points of SLOT16 2-digit decimal number
Number of Y points of SLOT16 2-digit decimal number

UNIT0 1

Number of registers of SLOT16 5-digit decimal number
UNIT1 2 Refer to the description for UNIT0. Refer to the description for UNIT0.
UNIT2 3 Refer to the description for UNIT0. Refer to the description for UNIT0.
UNIT3 4 Refer to the description for UNIT0. Refer to the description for UNIT0.
UNIT4 5 Refer to the description for UNIT0. Refer to the description for UNIT0.
UNIT5 6 Refer to the description for UNIT0. Refer to the description for UNIT0.
UNIT6 7 Refer to the description for UNIT0. Refer to the description for UNIT0.
UNIT7 8 Refer to the description for UNIT0. Refer to the description for UNIT0.

(3) Configuration information

Configuration information is output in text format.

 3-101

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.7.7.6 Run Mode (RUN)
Switches the operating mode to Run mode.

 FTP Command Used
get

 Syntax
Table 3.7.54 Command Specifications

Command Part Syntax
Common \VIRTUAL\CMD

 Command \RUN
 Parameters –

File Dummy file name

Command Line:

GET <common><command> <file>

 Example
This sample command switches the operating mode to Run mode.

>get \VIRTUAL\CMD\RUN dummy.txt

An example of an FTP reply is shown below assuming the command was executed from
a command prompt and exited with error.

200 PORT command successful.

550 Can't open virtual file[SE01 PARAMETER ERROR].

 Reply
Table 3.7.55 Reply Messages

Reply Message Code Description
OK SE00 Normal exit
Other messages SE01, … Error reply message

SEE ALSO
For details on error reply messages, see " Error Reply Messages of Virtual Directory Commands" of
Subsection 3.7.3, "Using Virtual Directory Commands."

 Function
Switches the operating mode to Run mode. No error is generated even if the module is
already in Run mode.
After command execution, a dummy file of zero byte is generated.
Switching to Run mode is not allowed while edited changes are being written to the CPU
module in online edit mode.

 3-102

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.7.7.7 Stop Mode (STOP)
Switches the operating mode to Stop mode.

 FTP Command Used
get

 Syntax
Table 3.7.56 Command Specifications

Command Part Syntax
Common \VIRTUAL\CMD

 Command \STOP
 Parameters –

File Dummy file name

Command Line:

GET <common><command> <file>

 Example
This sample command switches the operating mode to Stop mode.

>get \VIRTUAL\CMD\STOP dummy.txt

An example of an FTP reply is shown below assuming the command was executed from
a command prompt and exited with error.

200 PORT command successful.

550 Can't open virtual file[SE01 PARAMETER ERROR].

 Reply
Table 3.7.57 Reply Messages

Reply Message Code Description
OK SE00 Normal exit
Other messages SE01, … Error reply message

SEE ALSO
For details on error reply messages, see " Error Reply Messages of Virtual Directory Commands" of
Subsection 3.7.3, "Using Virtual Directory Commands."

 Function
Switches the operating mode to Stop mode. No error is generated even if the module is
already in Stop mode.
After command execution, a dummy file of zero byte is generated.

 3-103

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.7.7.8 Activate Block (ACT)
Activates a specified block.

 FTP Command Used
get

 Syntax
Table 3.7.58 Command Specifications

Command Part Syntax
Common \VIRTUAL\CMD

 Command *1 \ACT
 Parameters *1 Block name (8 ASCII characters max.)

File Dummy file name
*1: Delimit the command and each parameter using an underscore ('_') character.

Command Line:

GET <common><command>_<parameter> <file>

 Example
This sample command activates the block named "MAINBLK".

>get \VIRTUAL\CMD\ACT_MAINBLK dummy.txt

An example of an FTP reply is shown below assuming the command was executed from
a command prompt and exited with error.

200 PORT command successful.

550 Can't open virtual file[SE01 PARAMETER ERROR].

 Reply
Table 3.7.59 Reply Messages

Reply Message Code Description
OK SE00 Normal exit
Other messages SE01, … Error reply message

SEE ALSO
For details on error reply messages, see " Error Reply Messages of Virtual Directory Commands" of
Subsection 3.7.3, "Using Virtual Directory Commands."

 Function
Activates a specified block. You may also activate a sensor control block. No error is
generated even if the block is already running.
After command execution, a dummy file of zero byte is generated.
Block activation is not allowed in Stop mode and execute-all-blocks mode.

 3-104

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.7.7.9 Inactivate Block (INACT)
Inactivates a specified block.

 FTP Command Used
get

 Syntax
Table 3.7.60 Command Specifications

Command Part Syntax
Common \VIRTUAL\CMD

 Command *1 \INACT
 Parameters *1 Block name (8 ASCII characters max.)

File Dummy file name
*1: Delimit the command and each parameter using an underscore ('_') character.

Command Line:

GET <common><command>_<parameter> <file>

 Example
This sample command inactivates the block named "MOTION1".

>get \VIRTUAL\CMD\INACT_MOTION1 dummy.txt

An example of an FTP reply is shown below assuming the command was executed from
a command prompt and exited with error.

200 PORT command successful.

550 Can't open virtual file[SE01 PARAMETER ERROR].

 Reply
Table 3.7.61 Reply Messages

Reply Message Code Description
OK SE00 Normal exit
Other messages SE01, … Error reply message

SEE ALSO
For details on error reply messages, see " Error Reply Messages of Virtual Directory Commands" of
Subsection 3.7.3, "Using Virtual Directory Commands."

 Function
Inactivates a specified block. You may also inactivate a sensor control block. No error is
generated even if the block is not running.
After command execution, a dummy file of zero byte is generated.
Block inactivation is not allowed in Stop mode and execute-all-blocks mode.

 3-105

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.7.7.10 Reset CPU (CPURESET)
Resets the CPU.

 FTP Command Used
get

 Syntax
Table 3.7.62 Command Specifications

Command Part Syntax
Common \VIRTUAL\CMD

 Command \CPURESET
 Parameters –

File Reset information file name

Command Line:

GET <common><command> <file>

 Example
This sample command resets the CPU and saves the reset information file in a file
named "reset06.txt".

>get \VIRTUAL\CMD\CPURESET reset06.txt

An example of an FTP reply is shown below assuming the command was executed from
a command prompt and exited with error.

200 PORT command successful.

550 Can't open virtual file[SE01 PARAMETER ERROR].

 Reply
Table 3.7.63 Reply Messages

Reply Message Code Description
OK SE00 Normal exit
Other messages SE01, … Error reply message

SEE ALSO
For details on error reply messages, see " Error Reply Messages of Virtual Directory Commands" of
Subsection 3.7.3, "Using Virtual Directory Commands."

 Function
Resets the CPU, and gets the reset information file.
The MODE switch value and timestamp at the time of reset are logged in the reset
information file. The FTP connection is terminated after transfer of the reset information
file.

CAUTION

Pay attention to the boot mode, which is determined by the MODE switch value, before
resetting the CPU.

 3-106

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.7.7.11 Clear Alarms (ALMCLEAR)
Clears all alarms.

 FTP Command Used
get

 Syntax
Table 3.7.64 Command Specifications

Command Part Syntax
Common \VIRTUAL\CMD

 Command \ALMCLEAR
 Parameters –

File Cleared alarm log file name

Command Line:

GET <common><command> <file>

 Example
This sample command clears all alarms, and gets a cleared alarm log file named
"alm009.txt".

>get \VIRTUAL\CMD\ALMCLEAR alm009.txt

An example of an FTP reply is shown below assuming the command was executed from
a command prompt and exited with error.

200 PORT command successful.

550 Can't open virtual file[SE01 PARAMETER ERROR].

 Reply
Table 3.7.65 Reply Messages

Reply Message Code Description
OK SE00 Normal exit
Other messages SE01, … Error reply message

SEE ALSO
For details on error reply messages, see " Error Reply Messages of Virtual Directory Commands" of
Subsection 3.7.3, "Using Virtual Directory Commands."

 3-107

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Function
Clears all alarms. No error is generated even if no error is active when this command is
executed. The command gets and saves a cleared alarm log file, which contains the
following information:
- Error code
- Error message

Examples of Cleared Alarm Log File Content:
- If there was a momentary power failure:

Momentary power failure, 02-0000

- If there was no active alarm:
No error.

To check alarm information without clearing alarms, use the CPU Info (CPUINFO)
command instead.

TIP
- If the cause of an alarm persists, it would appear as if this command has failed to clear the alarm. In

this case, remove the cause of the alarm and re-execute the function.

- This command does not clear alarms related to I/O comparison error.

SEE ALSO
For details on the error messages, see Section B3.3, "Cleared Alarm Log Messages" of "Sequence
CPU – Functions (for F3SP66-4S, F3SP67-6S)" (IM34M6P14-01E).

 3-108

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.7.7.12 Help (HELP)
Gets and saves help information on virtual directory commands in a text file.

 FTP Command Used
get

 Syntax
Table 3.7.66 Command Specifications

Command Part Syntax
Common \VIRTUAL\CMD

 Command \HELP
 Parameters –

File Help file name

Command Line:

GET <common><command> <file>

 Example
This sample command gets and saves help information about virtual directory
commands in a file named "vdchelp.txt".

>get \VIRTUAL\CMD\HELP vdchelp.txt

An example of an FTP reply is shown below assuming the command was executed from
a command prompt and exited with error.

200 PORT command successful.

550 Can't open virtual file[SE01 PARAMETER ERROR].

 Reply
Table 3.7.67 Reply Messages

Reply Message Code Description
OK SE00 Normal exit
Other messages SE01, … Error reply message

SEE ALSO
For details on error reply messages, see " Error Reply Messages of Virtual Directory Commands" of
Subsection 3.7.3, "Using Virtual Directory Commands."

 Function
Gets and saves help information on virtual directory commands in a text file.
The help information includes a list of commands with their functional overview.

 3-109

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.7.8 File Operation and Disk Operation Commands
Table 3.7.68 List of File Operation and Disk Operation Commands

Function Name Command Name Function
Unmount UNMOUNT Unmounts a memory card

TIP
You can use standard FTP commands (get, put, mkdir, etc.) to perform file transfer, directory creation,
and other file operations.

 3-110

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.7.8.1 Unmount (UNMOUNT)
Unmounts the memory card, which is inserted and mounted in the card slot.

 FTP Command Used
get

 Syntax
Table 3.7.69 Command Specifications

Command Part Syntax
Common \VIRTUAL\CMD

 Command *1 \UNMOUNT
 Parameters *1 Memory card slot number (1 ASCII character) [always 1]

File Dummy file name
*1: Delimit the command and each parameter using an underscore ('_') character.

Command Line:

GET <common><command>_<parameter> <file>

 Example
This sample command unmounts memory card CARD1.

>get \VIRTUAL\CMD\UNMOUNT_1 dummy.txt

An example of an FTP reply is shown below assuming the command was executed from
a command prompt and exited with error.

200 PORT command successful.

550 Can't open virtual file[SE01 PARAMETER ERROR].

 Reply
Table 3.7.70 Reply Messages

Reply Message Code Description
OK SE00 Normal exit
Other messages SE01, … Error reply message

SEE ALSO
For details on error reply messages, see " Error Reply Messages of Virtual Directory Commands" of
Subsection 3.7.3, "Using Virtual Directory Commands."

 Function
Unmounts the memory card, which is inserted and mounted in the card slot. A memory
card in unmounted state can be safely removed, but does not allow access by programs
or via FTP.
If the memory card is successfully unmounted with normal exit, the SD LED located on
the front panel of the module turns off. Conversely, the SD LED is lit if the memory card
is mounted.
After command execution, a dummy file of zero byte is generated.
The card slot number command parameter is fixed to 1.

 3-111

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.7.9 Card Batch File Execution Commands
Table 3.7.71 List of Card Batch File Execution Commands

Function Name Command Name Function
Run Card Batch File BATGO Execute a specified card batch file.

3.7.9.1 Run Card Batch File (BATGO)
Executes a card batch file, which is stored on the memory card or RAM disk.

 FTP Command Used
get

 Syntax
Table 3.7.72 Command Specifications

Command Part Syntax
Common \VIRTUAL\CMD

 Command *1 \BATGO
1 Directory storing card batch file (7 ASCII characters max.)

[Only "CARD1" or "RAMDISK" can be specified]
 Parameters *1

2 Card batch file name (32 ASCII characters max.)
File Standard output file name

*1: Delimit the command and each parameter using an underscore ('_') character.

Command Line:

GET <common><command>_<parameter(1)>_<parameter(2)> <file>

 Example
This sample command executes the card batch file named "mybat.bat", which is stored
on the RAM disk.

>get \VIRTUAL\CMD\BATGO_ramdisk_mybat.bat dummy.txt

An example of an FTP reply is shown below assuming the command was executed from
a command prompt and exited with error.

200 PORT command successful.

550 Can't open virtual file[SE01 PARAMETER ERROR].

 Reply
Table 3.7.73 Reply Messages

Reply Message Code Description
OK SE00 Normal exit
Other messages SE01,… Error reply message

SEE ALSO
For details on error reply messages, see " Error Reply Messages of Virtual Directory Commands" of
Subsection 3.7.3, "Using Virtual Directory Commands."

 3-112

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Function
Executes a card batch file, which is stored on the memory card or RAM disk. You must
store the card batch file directly below the "\CARD1" or "\RAMDISK" directory.
When the execution of the card batch file exits normally, the standard output file, which
records the execution result of the card batch file, is returned. The standard output file is
generated at the specified file pathname in card batch file format regardless of whether
execution is successful.

SEE ALSO
For more details, see descriptions relating to the "Execution using a command" execution trigger in
Chapter B2, "Card Batch File Function" of "Sequence CPU – Functions (for F3SP66-4S, F3SP67-6S)
(IM34M6P14-01E)

 3-113

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.8 FTP Function Sample Program
This section describes a sample program for the FTP function. This sample
program is intended to help a user better understand the specifications and is not
intended to be used directly in user applications.

 List of Sample Programs
The table below shows the file structure of a sample program provided for FTP function.
Files for the sample program are automatically copied to the respective folders shown
below when WideField2 is installed.

Table 3.8.1 Sample Program Components and Location

Sample Program
Name

Component Location

Project ~\Fam3pjt\CPUSample\F3SP66\EFTP\EFTP.YPJT

CPU Properties ~\Fam3pjt\CPUSample\F3SP66\EFTP\EFTPC.YPRP
~\Fam3pjt\CPUSample\F3SP66\EFTP\EFTPS.YPRP

FTP using
Ethernet

Files ~\Fam3pjt\CPUSample\F3SP66\EFTP\ftpput.txt

Note: " ~ " in the "Location" column denotes the folder where Wildefiled2 is installed.

 3-114

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

3.8.1 FTP using Ethernet

 Function and Usage
This is a sample program for FTP using Ethernet. Two F3SP66-4S modules and two SD
memory cards are required to run the sample program.

Before running the sample program, copy the "ftpput.txt" file to the root directory of the
SD memory card of the FTP client CPU module. The sample program performs the
following processing:
1. Initializes devices.
2. Connects to FTP server.
3. Creates a directory on the FTP server.
 The directory to be created: (FTP server)\CARD1\FTPDIR
4. Changes the current directory to the newly created directory.
 Current directory: (FTP server)\CARD1\FTPDIR
5. Gets file information about the current directory.
 File information output filename: (FTP client)\CARD1\file_a.txt
6. Puts a file on the current directory.
 Source: (FTP client)\CARD1\ftpput.txt
 Destination: (FTP server)\CARD1\FTPDIR\yokogawa.txt
7. Gets a file from the current directory.
 Source: (FTP server)\CARD1\FTPDIR\yokogawa.txt
 Destination: (FTP client)\CARD1\ftpget.txt
8. Gets file information about the current directory.
 File information output filename: (FTP client)\CARD1\file_b.txt
9. Disconnects from FTP server.

Before running the sample program, copy the program components to their respective
destinations as shown in the table below.

Table 3.8.2 Destinations for Copying Sample Program Components
Name of Unit CPU No. Role of CPU Components

to be Copied
1 FTP client EFTP.YPJT

EFTPC.YPRP
ftpput.txt

2 – –
3 – –

FTP client unit

4 – –
1 FTP server EFTPS.YPRP
2 – –
3 – –

FTP server unit

4 – –

 3-115

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Structure of Sample Program

 List of Instructions Used
The table below shows the main ladder instructions used in the sample program.

Table 3.8.3 List of File Operation and Disk Operation Instructions Used
Ladder Instruction Mnemonic Purpose

FTPOPEN Connects to FTP server.
FTPQUIT Disconnects from FTP server.
FTPMKDIR Creates directory on FTP server.
FTPCD Changes current directory to directory created on FTP server.
FTPLS Gets file information before and after putting file.
FTPPUT Puts file on FTP server.
FTPGET Gets file from FTP server.

 List of Special Relays Used
The table below lists the main special relays used in the sample program.

Table 3.8.4 List of Special Relays Used
Name of Special Relay Special Relay No. Function

FTP Client Busy M1027 Checks whether any FTP client instruction is running.
Always ON M0033 Used for Always on circuit
1 Scan ON at Program Start M0035 Turns on for one scan after program starts execution
US1 LED Lit M0125 Used for turning on US1 LED

 Project
The table below shows the content of the WideField2 project containing the sample
program.

Table 3.8.5 Project Content
Name Component Description

Configuration SP66 configuration with default setup.
You can also use F3SP67-6S provided you change the CPU type in the
configuration.
Total number of
blocks

1 Blocks

Block 1 MAIN
Macros Total number of

macros
0

#FTP_TGT FTP client address setting number of CPU
properties specified in the FTPOPEN instruction.

#RDIR Directory name (on FTP server end)
#RFILE Target file for PUT/GET (on FTP server end)
#LDRIVE Drive name (on FTP client end)
#LDIR Directory name (on FTP client end)
#LFILE_P Target file for PUT (on FTP client end)
#LFILE_G Target file for GET (on FTP client end)
#LFILE_A Output file name for FTPLS(1)
#LFILE_B Output file name for FTPLS(2)
#LSOPT "ls" command option

EFTP

Constant
definition

Others, 15 definitions in total.

 3-116

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 CPU Properties
The table below shows the content of the CPU property file of the sample program.

Table 3.8.6 CPU Properties (EFTPC.YPRP)
File Name Required Setup for Execution of Sample Program

Ethernet setup Specify the IP address and subnet mask to match the network
environment. If you are configuring a local network for the sample
program, you can run the sample program using the default values.
The sample program uses the following default values:
- ETHER_MY_IPADDRESS = 192.168.0.2
- ETHER_SUBNET_MASK = 255.255.255.0

FTP client setup You can run the sample program using the default values.

EFTPC.YPRP

FTP client address
setup

Setting no. 1 defines the destination FTP server for the sample
program with the following property values:
- FTPC_SRV_ACCOUNT_1 = anonymous
- FTPC_SRV_PASSWORD_1 = fam3@
- FTPC_SRV_PORT_1 = 21
- FTPC_SRV_IP_1 = 192.168.0.3

Table 3.8.7 CPU Properties (EFTPS.YPRP)
File Name Required Setup for Execution of Sample Program

Ethernet setup Specify the IP address and subnet mask to match the network
environment. If you are configuring a local network for the sample
program, you can run the program using the default values.
The sample program uses the following default values:
- ETHER_MY_IPADDRESS = 192.168.0.3
- ETHER_SUBNET_MASK = 255.255.255.0

EFTPS.YPRP

FTP server setup You can run the sample program using the default values.

 Files
The table below lists the files used in the sample program.

Table 3.8.8 List of Files Used
File Name Input/Output Description

ftpput.txt Input File to be put on FTP server. Before running the sample program,
store this file in the root directory of the SD memory card of the
FTP client.

yokogawa.txt Output The sample program sends file "ftpput.txt" and stores it on the FTP
server into this file.

ftpget.txt Output The sample program gets file "yokogawa.txt" from the FTP server
and stores it into this file on the FTP client.

file_a.txt Output Output file for storing the file information before the put operation.
file_b.txt Output Output file for storing the file information after the put operation.

 3-117

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Ladder Program Listing
The figure on the following pages shows the ladder program listing. For details on the
purpose of individual devices used in the ladder program, see the I/O comments of the
block tag name definition.

 Project (EFTP) Block (MAIN)

F0348.VSD
Figure 3.8.1 FTP using Ethernet Sample Program Listing: MAIN (1/4)

 3-118

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

F0349.VSD
Figure 3.8.2 FTP using Ethernet Sample Program Listing: MAIN (2/4)

 3-119

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

F0350.VSD
Figure 3.8.3 FTP using Ethernet Sample Program Listing: MAIN (3/4)

 3-120

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

F0351.VSD
Figure 3.8.4 FTP using Ethernet Sample Program Listing: MAIN (4/4)

 4-1

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

4. Higher-level Link Service
(Personal Computer Link Function)
This chapter describes the Higher-level Link Service (Personal Computer Link
Function).

4.1 Overview of Higher-level Link Service
The higher-level link service (also known as personal computer link function)
enables a user to perform maintenance operations on the module (e.g. read/write
devices and change the operating mode) from a monitor or a personal computer
by sending processing requests as commands in a predefined format via a
communications line. As no programming is required on the module end, this
greatly simplifies creation of SCADA applications on the monitor or PC.

In this module, the higher-level link service can be accessed via its SIO port
and/or the 10BASE-T /100BASE-TX connector located on its front panel.

Ethernet

RS-232-C

Monitor (touch panel)
SCADA

FA-M3

Personal computer link commandPersonal computer link command

F0501.VSD

10BASE-T/100BASE-TX
connector

SIO port

Figure 4.1.1 Example of Higher-level Link Service Configuration

TIP
This function is normally called "higher-level link service" when accessed via the 10BASE-T/100BASE-
TX connector, but is normally called "personal computer (PC) link function" when accessed via the SIO
port. The former term, namely, "higher-level link service" is adopted as a generic name for the function.

 4-2

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

4.2 System Configurations for Higher-level
Link Service
This section describes the available system configurations for Higher-level Link
Service. In addition to system configurations using the built-in interfaces of the
module, other available system configurations are also described.

 Configuration for Higher-level Link Service via SIO Port
In this system configuration, connection is via the SIO port located on the front panel of
the module. A monitor or PC is connected using a dedicated RS-232-C monitor cable.

RS-232-C

Monitor (touch panel) FA-M3

Personal computer link command

F0502.VSD

SIO port

Figure 4.2.1 Configuration for Higher-level Link Service via SIO Port

Table 4.2.1 Supported Personal Computer Link Functions (via SIO Port)
Function Description Supported?

ASCII format personal computer link
commands

Personal computer link function using ASCII
format commands.

Binary format personal computer link
commands

Personal computer link function using binary
format commands. –

Event transmission function Function for sending events from FA-M3 to a
monitor or PC –

Modem connection function Function for providing higher-level link service via
a modem and telephone line. –

Write protection function Function for prohibiting writing to devices using
the personal computer link function.

 4-3

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Configuration for Higher-level Link Service via Ethernet
In this system configuration, connection is via the 10BASE-T/100BASE-TX connector
located on the front panel of the module. A monitor or PC is connected using TCP/IP or
UDP/IP communications protocol.

FA-M3

Personal computer link command

Ethernet

SCADA

F0503.VSD

10BASE-T/100BASE-TX
connector

Figure 4.2.2 Configuration for Higher-level Link Service via Ethernet

Table 4.2.2 Supported Personal Computer Link Functions (via Ethernet)
Function Description Supported?
ASCII format personal
computer link commands

Higher-level link service using ASCII format commands

Binary format personal
computer link commands

Higher-level link service using binary format commands

Event transmission
function

Function for sending events from FA-M3 to a monitor or PC –

Modem connection
function

Function for providing higher-level link service via a modem and
telephone line –

Write protection function Function for prohibiting writing to devices using higher-level link
service

 4-4

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Configuration for Higher-level Link Service via Personal Computer Link
Module
In this system configuration, connection is via the communications connector of a
Personal Computer Link Module (F3LC -). A monitor or PC is connected using
RS-232-C, RS-422-A or RS-485 serial communications. Remote connection over a
telephone line via a modem is also supported.

RS-232-C
RS-422-A
RS-485

Monitor (touch panel) FA-M3

Personal computer link command

F0504.VSD

Personal Computer
Link Module
F3LC11-1N
F3LC11-2N
F3LC11-1F
F3LC12-1F

Figure 4.2.3 Configuration for Higher-level Link Service via Personal Computer Link Module

Table 4.2.3 Supported Higher-level Link Service (via Personal Computer Link Module)
Function Description Supported?

ASCII format personal
computer link commands

Higher-level link service using ASCII format commands

Binary format personal
computer link commands

Higher-level link service using binary format commands –

Event transmission
function

Function for sending events from FA-M3 to a monitor or PC

Modem connection
function

Function for providing higher-level link service via a modem and
telephone line

Write protection function Function for prohibiting writing to devices using higher-level link
service

SEE ALSO
For details on configuration using Personal Computer Link Module, see "Personal Computer Link
Modules" (IM34M6H41-02E). This information is not included in this user's manual.

 4-5

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Configuration for Higher-level Link Service via Ethernet Interface
Module
In this system configuration, connection is via the 10BASE-T/100BASE-TX connector of
an Ethernet Interface Module (F3LE - T). A monitor or PC is connected using
TCP/IP or UDP/IP communications protocol.

Table 4.2.4 Supported Higher-level Link Service (via Ethernet Interface Module)
Function Description Supported?

ASCII format personal
computer link commands

Higher-level link service using ASCII format commands

Binary format personal
computer link commands

Higher-level link service using binary format commands

Event transmission
function

Function for sending events from FA-M3 to a monitor or PC

Modem connection
function

Function for providing higher-level link service via a modem and
telephone line

–

Write protection function Function for prohibiting writing to devices using higher-level link
service

FA-M3

Personal computer link command

SCADA

F0505.VSD

Ethernet

Ethernet Interface Module
F3LE01-5T
F3LE11-0T
F3LE12-0T

Figure 4.2.4 Configuration for Higher-level Link Service via Ethernet Interface Module

SEE ALSO
For details on Ethernet Interface Module, see "Ethernet Interface Module" (IM34M6H24-01E and
IM34M6H24-04E).

 4-6

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

4.3 Personal Computer Link Function via SIO
Port
This section describes the personal computer link function via SIO port.

4.3.1 Specifications
This subsection describes the personal computer link function via the SIO port in terms
of the functional specifications, communication specifications and the cables used.

 Functional Specifications
The table below shows the functional specifications of the personal computer link
function via the SIO port.
Table 4.3.1 Supported Personal Computer Link Functions (via SIO Port)

Function Description Supported?
ASCII format personal computer link
commands

Personal computer link function using ASCII
format commands.

Binary format personal computer link
commands

Personal computer link function using binary
format commands. –

Event transmission function Function for sending events from FA-M3 to a
monitor or PC –

Modem connection function Function for providing higher-level link service via
a modem and telephone line. –

Write protection function Function for prohibiting writing to devices using
the personal computer link function.

 Communication Specifications
The table below shows the communication specifications of the personal computer link
function via the SIO port.
Table 4.3.2 Communication Specifications of SIO Port (for Personal Computer Link Function)

Item Description
Interface EIA RS-232-C compliant
Transmission mode Half-duplex transmission
Synchronization Start-stop synchronization
Transmission rate (bps) 9600/19200/38400/57600/115200

Start bit : 1 bit
Data length : 8 bits (fixed)
Parity bit : None or Even

Data format

Stop bit : 1 bit (fixed)
Parity check Error detection
Checksum : Yes/No

Control line (RS-232-C) Not used
Xon/Xoff Not used
Setup items Transmission rate, data format, checksum, end

character and protection
Protocol Proprietary protocol
End character Yes/No
Protection feature *1 Yes/No
Access range All control data, upload/download program,

Run/Stop program, read error log
Transmission distance 12 m max.
External connection Dedicated monitor cable

*1: Enabling write protection prohibits writing to the FA-M3.

CAUTION

The SIO port of the module uses neither an RS-232-C control line nor Xon/Xoff
characters. Therefore, a monitor or PC may fail to receive data correctly at high
transmission rates.

 4-7

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

The table below shows the available transmission rates and data formats.

Table 4.3.3 Available Transmission Rates and Data Formats
Transmission

Rate (bps) Data Bits Parity Stop Bit

9600 8 bits Even 1 bit
9600 8 bits None 1 bit
19200 8 bits Even 1 bit
19200 8 bits None 1 bit
38400 8 bits Even 1 bit
38400 8 bits None 1 bit
57600 8 bits Even 1 bit
57600 8 bits None 1 bit
115200 8 bits Even 1 bit
115200 8 bits None 1 bit

 Cable
The table below lists dedicated cables for connecting a monitor or PC to the SIO port.

Table 4.3.4 Cables for SIO Port (Product Name: monitor cables)
Product Model Specifications

KM21-2T DOS/V compatible cable, 3 m long, (D-sub, 9-pin on PC end)
KM10-0S D-sub 9-pin adapter cable

F0506.VSD
Figure 4.3.1 Monitor Cable (SIO port end)

TIP
For CE marking conformance of equipment using the personal computer link function, fit the monitor
cable with a ferrite core.

Table 4.3.5 Examples of Ferrite Cores
Manufacturer Product Series

Kitagawa Industries Co., Ltd. RFC series
TDK Corporation ZCAT series
Tokin Co., Ltd. ESD-SR series

 4-8

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

4.3.2 Communications Protocol
An overview of the personal computer link communications protocol is shown below.
The maximum text length that can be transmitted each time in a personal computer link
command is 512 bytes.

F061103.VSD

STX
Station No.
CPU No.
Response wait time
Command
Parameters
Checksum
ETX
CR

STX
Station No.
CPU No.
OK
Command response

Checksum
ETX
CR

Communication
protocol of personal
computer link function

Sending station Receiving station

Figure 4.3.2 Personal Computer Link Communications Protocol

 4-9

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

4.3.3 Commands and Responses
This subsection describes personal computer link commands and responses.

SEE ALSO
For details on commands and responses, see "Personal Computer Link Command" (IM34M6P41-01E).

 Command Format and its Elements
The format of a command transmitted from a higher-level computer (or monitor) to the
FA-M3 is shown below.

F061106.VSD

STX code
Station No.
CPU No.
Response wait time
Command

Parameters

Checksum
ETX code
CR code

Required only if the configuration item
"Checksum" is set to "Yes"

No. of Bytes
1
2
2
1
3

Variable-length

2
1
1

Element

Required only if the configuration item
"End character" is set to "Yes"

Figure 4.3.3 Command Format and its Elements

Only uppercase alphabetic characters from A to Z (ASCII codes $41 to $5A in
hexadecimal) are used in commands and responses.
The individual elements are described below.

 STX (Start of Text) Code
This control code identifies the beginning of text. The corresponding character code is
$02.

 Station No.
The station number is fixed at 01 when the personal computer link function of the
sequence CPU module is used.

 CPU No.
Identifies the target sequence CPU module or add-on CPU module for a command
using a number from 01 to 04.
- 01: Sequence CPU module mounted in slot 1
- 02: Sequence CPU module mounted in slot 2
- 03: Sequence CPU module mounted in slot 3
- 04: Sequence CPU module mounted in slot 4

 4-10

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Response Wait Time
You can specify the maximum waiting time (time delay of up to 600 ms) for a response
following a command transmission. Set a longer wait time if the communication software
running on the higher-level computer is, say, a BASIC interpreter. Specify this time using
one character ('0' to 'F') as shown below.

Table 4.3.6 Response Wait Time

Character Response Wait Time
(ms) Character Response Wait Time

(ms)
0 0 8 80
1 10 9 90
2 20 A 100
3 30 B 200
4 40 C 300
5 50 D 400
6 60 E 500
7 70 F 600

F061107.VSD

CPU module
Internal processing time *1

Pre-
processing

Post-
procesing

Processing

Response

Command Response wait timeHigher-level
computer
(or monitor)

One scan Pause between scans One scan

*1: Even if the response wait time is set to 0, processing will be delayed by the internal processing time.

Figure 4.3.4 Response Wait Time

 Command
Using three letters, specify the type of access, such as reading or writing, from a higher-
level computer (or monitor) to the sequence CPU module.

 Parameters
These include device name, number of devices, data, etc. The actual parameters vary
depending on the command used. Some commands require no parameters.

 4-11

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Checksum
A checksum can be added to the transmission text for data validation. You can select
whether to add a checksum in the program configuration.
If checksum is set to "Yes", a checksum must be appended to a command before
transmission from the higher-level computer (or monitor) to the FA-M3. Moreover, a
checksum is automatically appended to the response transmitted from FA-M3.
If checksum is set to "No", this element must not be appended to a command.
How the checksum is calculated is explained below.
- Add the ASCII codes of the characters following the STX character and preceding

the checksum.
- Extract the low order byte of the sum and express its hexadecimal value as a

character string (2 characters, 2 bytes) to obtain the checksum.

F061108.VSD

Hexadecimal ASCII code

Transmission text (character string)

Range of checksum calculation
Checksum

The ASCII codes are added together as
30+31+30+31+41+42+52+44+58+30+30+32+30+31+2C+31+36=3B9 (in hexadecimal)
The checksum is the low-order byte ($B9) of the sum ($3B9 in hexadecimal),
expressed as a character string (“B9”).

STX 0 1 0 1 A B R D X 0 0 2 0 1 , 1 6 B 9 ETX CR

02 30 31 30 31 41 42 52 44 58 30 30 32 30 31 2C 31 36 42 39 03 0D

Figure 4.3.5 Checksum Calculation

 ETX (End of Text) Code
This control code identifies the end of text. The corresponding character code is $03.

 CR (Carriage Return) Code
This control code identifies the end. The corresponding character code is $0D (ASCII
code 13 in decimal)
This control code is required only if the end character is set to "Yes" in the configuration.

 4-12

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Response Format and its Elements
The format of a response that is sent from the FA-M3 to a higher-level computer (or
monitor) is shown here.

SEE ALSO
For details on individual elements and characters used, see " Command Format and its Elements"
given earlier in this section.

 If communications is normal

F061109.VSD

Appended to the
response only if
enabled accordingly
in the configuration.

OK

1
2
2
2

2
1
1

No. of Bytes Element
STX code
Station No.
CPU No.

Variable-length Command response

Checksum
ETX code
CR code

Figure 4.3.6 Response Format when Communications is Normal

If communications is successful, the character string "OK" and the command response
are returned.

 If a communications error occurs

F061110.VSD

Appended to the
response only
enabled accordingly
in the configuration.

ER
EC 1

1
2
2
2
2
2
3
2
1
1

No. of Bytes Element
STX code
Station No.
CPU No.

Command
Checksum
ETX code
CR code

EC 2

Figure 4.3.7 Response Format when an Error Occurs

If a communications error occurs, the character string "ER" is returned along with two
error codes (EC1 and EC2).
- EC1: Error code
- EC2: Detailed error code
In the communication failure is due to an error in the CPU number, the received 2-byte
CPU number is returned. If the failure is due to an error in the station number, no
response is returned.
If an ETX code in a command is not received, no response may be returned. If this
happens, be sure to perform timeout processing on the higher-level computer or
monitor.

 4-13

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Error Code in Response
When a communications error or a command error occurs, the module returns an "ER"
character string and an error code as a response to the command.
The table below lists the error codes that may be included in a response.

Table 4.3.7 Error Code in a Response
Error
Code
(EC1)

Semantics Possible Causes

01 CPU number error - The CPU number is outside the range of 1 to 4.
02 Command error - The command does not exist.

- The command is not executable.
03 Device specification error - The device name does not exist. *1

- A relay device is incorrectly specified for read/write access in word
units.

04 Value outside the setting
range

- Characters other than 0 and 1 are used for bit setting. *1
- Word setting is out of the valid range of 0000 to FFFF.
- The specified starting position in a command, such as Load/Save,

is out of the valid address range.
05 Data count out of range - The specified bit count, word count, etc. exceeded the

specifications range. *1
- The specified data count and the device parameter count, etc. do

not match.
06 Monitor error - Attempted to execute monitoring without having specified a monitor

command (BRS, WRS).
08 Parameter error - A parameter is invalid for a reason other than those given above. *1
41 Communication error - An error has occurred during communication. *1
42 Checksum error - Value of checksum differs. (Bit omitted or changed characters)
43 Internal buffer overflow - The amount of data received exceeded stipulated value.
51 Timeout error - No end-of-process response is returned from the CPU for reasons

such as CPU power failure. (timeout)
52 CPU processing error - The CPU has detected an error during processing. *1
F1 Internal error - A Cancel (PLC) command was issued during execution of a

command other than a Load (PLD) or Save (PSV) command.
- An internal error was detected.

*1: For details, see Table 4.3.8, "Detailed Error Code."

In the case of a parameter error, the number of the invalid parameter is stored in the
detailed error code.
In the case of a communication error, detailed error information is stored in the detailed
error code.

 4-14

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

Table 4.3.8 Detailed Error Codes
Error code

(EC1) Semantics Detailed Error Code (EC2)

03 Device specification
error

04 Value outside the
setting range

05 Data count out of range
08 Parameter error

Error parameter number, expressed in hexadecimal.
(The number of the first parameter where an error has occurred,
counting from the beginning of the parameters)
(Example)

(Example:)
 S
 T 0101ABRW 03 Y00501, 1, I0002, 0, I I0012,
 X

1 2 43

1

5 Parameter
numbers

Erroneous device number

6 7

In this case, Error code EC1=03
 Error code EC2=06.

41 Communication error
b7 b6 b5 b4 b3 b2 b1 b0

MSB LSB
Each bit has the following meaning:

b7: Reserved
b6: Reserved
b5: Framing error
b4: Overrun error
b3: Parity error
b2: Reserved
b1: Reserved
b0: Reserved

52 CPU processing error 1 : Self-diagnostic error
2 : Program error (including parameter error)
4 : Inter-CPU communication error
8 : Device access error
9 : Communication protocol error
A : Parameter error
B : Operating mode error, protected/exclusive access
C : Device/block specification error
F : Internal system error

Note: When the value of EC1 is other than those listed above, EC2 has no meaning.

 List of Supported Devices
Use a comma (,) or a space () to delimit parameters.
A device name is represented using six or seven characters (or bytes). Abbreviations
may be used.
For example, X00201 can be abbreviated as X201 and V00002 as V02 or V2.
Example: To read data from 5 input relays of CPU 1, starting from input relay X00201

with a response wait time of 100 ms.

F061111.VSD

S
T
X

0 1 0 0 0 2 0 1 0 0 5,1 A B R D X

CPU number

Command Parameters

Response wait time

Station number (fixed to 01)
Figure 4.3.8 Reading Five Input Relays, Starting from X00201

 4-15

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

Table 4.3.9 List of Supported Devices
 Read Write
 Device name Length Bit Word Bit Word

Xnnnnn
Input relay 6 bytes – –

Ynnnnn
Output relay 6 bytes

Innnnn
Internal relay 6 bytes

Ennnnn
(Extended) shared
relay

6 bytes

Lnnnnn
Link relay 6 bytes

Mnnnnn
Special relay 6 bytes *5 *5

Txnnnn
Timer 6 bytes *1 *2 – *2

R
el

ay
 D

ev
ic

es

Cxnnnn
Counter 6 bytes *1 *2 – *2

Dnnnnn
Data register 6 bytes – –

Rnnnnn
(Extended) shared
register

6 bytes – –

Vnnnnn
Index register 6 bytes – –

Bnnnnn*3
File register 7 bytes – –

Wnnnnn
Link register 6 bytes – –

W
or

d
de

vi
ce

s

Znnnnn
Special register 6 bytes – – *5

*1: Specify:
 - a time-out relay as TUnnnn
 - an end-of-count relay as CUnnnn
*2: Specify:

- the current value of a countdown timer as TPnnnn
- the current value of a countdown counter as CPnnnn
- the current value of a count-up timer*3 as TInnnn
- the current value of a count-up counter *3 as CInnnn
- the preset value of a timer*4 as TSnnnn
- the preset value of a counter*4 as CSnnnn

*3: In the FA-M3, countdown timers and counters are provided for display on host personal computers.
Current value of count-up timer/counter = preset value – current value of countdown timer/counter.

*4: You may not use these preset values in word write commands.
*5: You may not use the BWR, BFL, WWR and WFL commands to write to the module. Use the BRW and WRW commands

instead.

 Precautions for Communications
- You should include timeout handling on the higher-level computer to handle

situations where a response is not returned due to say, an incorrect station number
specified in the command.

- If the personal computer link function is used to download a program, then you
should not load another program from another source (personal computer link
module, Ethernet interface module, etc.) at the same time. Otherwise, normal
operation is not guaranteed.

- When writing to a shared device, the value may be immediately overwritten if
another sequence CPU module is using the same device.

- If a power failure occurs when a monitor command is in use, it is necessary to set it
again.

- The maximum text length that can be transmitted or received each time by the
personal computer link function is 512 bytes. However, the maximum size that can
be received by a higher-level computer may be limited to 256 bytes in some cases.
In such cases, make sure that the response text length does not exceed 256 bytes
by reducing the number of devices to be read.

 4-16

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

4.3.4 Setup for Personal Computer Link Function via SIO
Port
This subsection describes how to configure personal computer link function via SIO port
before use.

 Basic Setup
The table below shows the required setup for the personal computer link function via
SIO port before use.

Table 4.3.10 Basic Setup for Personal Computer Link Function via SIO Port
Name of Setup Type of Setup SEE ALSO *1

Set up Communication Configuration A9.2.7, "Set up Communication"
*1: For details on individual setup items, see "Sequence CPU – Functions (for F3SP66-4S, F3SP67-6S)"

(IM34M6P14-01E).

 Set up communication
Using communication setup, you must set the transmission rate and parity to match the
device to be connected. Select also whether to enable checksum and end character.

 Optional Setup
Personal computer link function via SIO port may be configured as required before use.

Table 4.3.11 Optional Setup for Personal Computer Link Function via SIO Port
Name of Setup Type of Setup SEE ALSO*1

Function removal Configuration A9.2.12, "Function removal"
*1: For details on individual setup items, see "Sequence CPU – Functions (for F3SP66-4S, F3SP67-6S)"

(IM34M6P14-01E).

 Function removal
To disable the personal computer link function, remove the higher-level link service
using function removal of configuration.
This setup affects higher-level link service via the SIO port or Ethernet of the CPU
module. However, it does not affect higher-level link service via a personal computer link
module or via an Ethernet interface module.

 4-17

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

4.3.5 Using Personal Computer Link Function via SIO Port
This subsection describes how to use the personal computer link function via the SIO
port.

 Connecting to a Monitor
To connect to a monitor, perform the following steps:

1. Create screen data on a PC.
2. Transfer screen data to a monitor.
3. Match the communication setup of the monitor and the SIO port.
4. Connect the monitor and the SIO port. Begin monitoring.

SEE ALSO
For details on how to connect to a monitor, see the documentation of the monitor.

 Connecting to a PC

 Connecting to a program created on a PC
To connect to a program on a PC, perform the following steps:

1. Create a communication program on a PC (using Visual Basic, etc.).
2. Match the communication setup of the communication program and the SIO port.
3. Connect the communication program and the SIO port. Begin monitoring.

 Connecting to a SCADA application
To connect to a SCADA application on a PC, perform the following steps:

1. Create screen data on a PC.
2. Match the communication setup of SCADA and the SIO port.
3. Connect SCADA and the SIO port. Begin monitoring.

SEE ALSO
For details on the application (Visual BASIC or SCADA) on the PC end, see the documentation for the
application.

 4-18

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

4.4 Higher-level Link Service via Ethernet
Higher-level link service via Ethernet is available for TCP/IP and UDP/IP protocols.

4.4.1 Specifications
The functional specifications and communications specifications of higher-level link
service via Ethernet are described below.

 Functional Specifications
The table below shows the functional specifications of the higher-level link service

Table 4.4.1 Supported Higher-level Link Service Functions (via Ethernet)
Function Description Supported?

ASCII format personal
computer link commands

Higher-level link service using ASCII format commands

Binary format personal
computer link commands

Higher-level link service using binary format commands

Event transmission
function

Function for sending events from FA-M3 to a monitor or PC –

Modem connection
function

Function for providing higher-level link service via a modem and
telephone line –

Write protection function Function for prohibiting writing to devices using higher-level link
service

 Communications Specifications
The table below shows the communications specifications of the higher-level link
service.

Table 4.4.2 Communications Specifications of Higher-level Link Service (via Ethernet)
 Item Specification
Communications protocol TCP/IP or UDP/IP (configurable on port basis)
Maximum number of
connections

TCP/IP = 8
UDP/IP = Non-connection type

Port number 12289 ($3001) = port A
12291 ($3003) = port B

Command data format ASCII or binary (configurable on port basis)

4.4.2 Communications Protocol
In higher-level link service, the module returns one response to each personal computer
link command received from a higher-level computer (monitor or PC).

F0507.VSD

Sending
station

Receiving station

Command Parameters End
character

Higher-level link communications protocol (ASCII format)

Sub-
header

Exit
code

Response parameters End
character

Sub-
header

Sending
station

Receiving station

CPU
no.

Command
parameters

Higher-level link communications protocol (binary format)

Sub-
header

Size

Exit
code

Response
parameters

SizeSub-
header

Figure 4.4.1 Communications Protocol

 4-19

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

4.4.3 Data Frame
You can set the communications data format for the higher-level link service to either
ASCII or binary. The selected data format applies to the entire higher-level link data
frame.
The respective formats for the higher-level link data frame are shown below.

 Data Frame in ASCII Format

FA5321.VSD

Sub-
header Command Command parameter End

character

2 bytes 3 bytes (command-dependent) 2 bytes

Command

Sub-
header Exit code Response parameter End

charactrer

2 bytes 2/4 bytes (response-dependent) 2 bytes

Response

Figure 4.4.2 Data Frame in ASCII Format

 Subheader

2 bytes

CPU No.

Command/response flag
FA5322.VSD

Figure 4.4.3 Subheader (ASCII)

Command/response Flag
Identifies a command or response using an ASCII character.
- “0” ($30): Command
- “1” ($31): Response

CPU No.
Identifies the target CPU module for a command by the slot where it is mounted using
an ASCII character.
- “1” ($31): CPU module mounted in slot 1
- “2” ($32): CPU module mounted in slot 2
- “3” ($33): CPU module mounted in slot 3
- “4” ($34): CPU module mounted in slot 4

 4-20

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Command
Identifies the type of request from a remote node.

SEE ALSO
For details on the commands, see "Personal Computer Link Command" (IM34M6P41-01E)

3 bytes

Command
FA5323.VSD

Figure 4.4.4 Command (ASCII)

 Command Parameters
This field contains device name, number of devices or other data. The actual parameters
depend on the command. Some commands require no parameters.

SEE ALSO
For details on command parameters, see “Personal Computer Link Command" (IM34M6P41-01E).

 Exit Code
The result of the execution of a command is automatically appended to the response as
an exit code.

SEE ALSO
For details on exit codes, see Subsection 4.4.4, "Exit Code and Detailed Error Code in Response."

"O"
$4F

2 bytes

Normal

"E"
$45

Error

"K"
$4B

"R"
$52 $xx $xx

4 bytes

FA5324.VSD
Figure 4.4.5 Exit Codes (ASCII)

 4-21

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Response Parameters
Normal Exit (exit code: “OK”)
This field contains the response to a command. The actual parameters depend on the
command. Some responses have no parameters.

SEE ALSO
For more details on responses, see “Personal Computer Link Command” (IM34M6P41-01E).

Error Exit (exit code: “ER ”)

5 bytes

Command
Detailed error code

FA5325.VSD
Figure 4.4.6 Response Parameters (ASCII)

Detailed Error Code
- Valid only when the error code is “ER03,” “ER04,” “ER05,” “ER08” or “ER52.”

SEE ALSO
For details on detailed error codes, see Subsection 4.4.4 “Exit Code and Detailed Error Code in
Response.”

Command
- The transmitted command is returned unchanged in the response.

 End Characters

C
R

$0D

2 bytes

L
F

$0A

FA5326.VSD
Figure 4.4.7 End Characters (ASCII)

A data frame must always be terminated with the CR
L

F ($0D0A) characters.
Append these two characters to all commands.
These end characters are automatically appended to a response.

 4-22

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Data Frame in Binary Format

Sub-
header

CPU
No. Size Command parameter

1 byte

Command

Sub-
header

Exit
code Size Response parameter

Response

1 byte 2 bytes Size

1 byte 1 byte 2 bytes Size

FA5327.VSD
Figure 4.4.8 Data Frame in Binary Format

 Subheader

1 byte

Command/response type

Command/response flag
FA5328.VSD

Figure 4.4.9 Subheader (binary)

Command/response Flag
Identifies a command or a response with one bit.
- 0: Command
- 1: Response

Command/response Type
Indicates the type of request transmitted from a remote node.

SEE ALSO
For more on commands, see “Personal Computer Link Command” (IM34M6P41-01E).

 4-23

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 CPU Number

1 byte

CPU No.
FA5329.VSD

Figure 4.4.10 CPU Number (binary)

Identifies the target CPU module by the slot where it is mounted.
- $01: CPU module mounted in slot 1
- $02: CPU module mounted in slot 2
- $03: CPU module mounted in slot 3
- $04: CPU module mounted in slot 4

 Exit Code
The result of the execution of a command is automatically included in the response as
an exit code.

SEE ALSO
For more details on exit codes, see Subsection 4.4.4, "Exit Code and Detailed Error Code in
Response."

1 byte

Exit code: If $00, ended normally.
If other than $00, ended in
error. FA532A.VSD

Figure 4.4.11 Exit Code (binary)

 Size

2 bytes

FA532B.VSD
Figure 4.4.12 Size (binary)

Indicates the size of the command or response parameter field (in bytes).
If a frame has no parameter, the value is zero.

 4-24

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Command Parameters
This field contains device names, number of points or other data. The actual
parameters depend on the command. Some commands require no parameters.

SEE ALSO
For details on command parameters, see “Personal Computer Link Command” (IM34M6P41-01E).

 Response Parameters
Normal Exit (exit code: $00):
This field contains the response to a command. The actual parameters depend on the
command. Some responses have no parameters.

SEE ALSO
For details on responses, see “Personal Computer Link Command” (IM34M6P41-01E).

Error Exit (exit code: non-zero)

2 bytes

CPU No.
Detailed error code

FA532C.VSD
Figure 4.4.13 Response Parameters (binary)

Detailed Error Code (1 byte)
- Valid only when the exit code is $03, $04, $05, $08 or $52.

SEE ALSO
For details on detailed error codes, see Subsection 4.4.4, "Exit Code and Detailed Error Code in
Response."

CPU Number (1 byte)
- The data contained in the transmitted command returned unchanged in the

response.

 4-25

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

4.4.4 Exit Code and Detailed Error Code in Response
This subsection describes the exit codes and detailed error codes, which may be
included in a response.

 Exit Code
The table below lists the exit codes that may be included in a response.

Table 4.4.3 Exit Codes
Exit Code

ASCII Binary Description Possible Causes

“OK” $00 Normal exit
“ER01” $01 CPU number error The specified CPU number is not within the range of 1 to 4.
“ER02” $02 Command error The specified command does not exist or the command

cannot be executed.
“ER03” $03 Device specification

error
The device does not exist.

“ER04” $04 Value outside the
setting range

A bit setting is neither 0 nor 1.

“ER05” $05 Data count out of
range

The number of bits or words specified exceeded the
specifications range.
Or, the number of parameters was different from the
specified number of data items or devices.

“ER06” $06 Monitor error An attempt was made to run a monitor with no monitor
specified.

“ER08” $08 Parameter error An invalid parameter, other than the above cases, is
specified.

“ER51” $51 Sequence CPU error The sequence CPU module fails to respond within a
specified time span (timeout).

“ER52” $52 Sequence CPU
processing error

An error was detected during CPU execution.

 Detailed Error Code
If the exit code in a response is other than "OK" for ASCII format or $00 for binary
format, the response parameter contains a detailed error code.

The detailed error code indicated is valid only if the exit code is “ER03”, “ER04”, “ER05”,
“ER08”, or “ER52” for ASCII format; or $03, $04, $05, $08, or $52 for binary format.
Otherwise, the value has no meaning.

Table 4.4.4 Detailed Error Codes
Exit Code

ASCII Binary Description Detailed Error Code and Its Meaning

“ER03” $03 Device specification error
“ER04” $04 Value outside setting range
“ER05” $05 Data count out of range
“ER08” $08 Parameter error

The detailed error codes are listed below.
For ASCII format, the code is represented as a
hexadecimal string.

ASCII Binary Meaning
“1 ” $1 Self-diagnostics error
“2 ” $2 Program error (including

parameter error)
“4 ” $4 Inter-CPU communications

error
“8 ” $8 Device access error
“9 ” $9 Command error
“A ” $A Parameter error
“B ” $B Operation mode error
“C ” $C Parameter error

“ER52” $52 Sequence CPU processing
error

“F ” $F System error
Note: “ ” denotes an indeterminate number or character.

 4-26

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

4.4.5 Specifying Devices in Commands
This section describes how to address a device of a sequence CPU module in a
command.

 List of Supported Devices
The table below lists the devices of a sequence CPU module that are accessible using
commands.
Table 4.4.5 List of Supported Devices

Read Command Write Command Devices By bit By word By bit By word
Input relay × ×
Output relay
Internal relay
Shared relay
Special relay
Timer relay
Counter relay Bi

t D
ev

ice
s

Link relay
Data register × ×
File register × ×
Shared register × ×
Index register × ×
Special register × ×
Link register × ×
Timer preset value × × ×
Timer current value × ×
Timer current value
(for count-up timers)

× ×

Counter preset value × × ×
Counter current value × ×

W
or

d
de

vic
es

Counter current value
(for count-up
counters)

× ×

: Supported
×: Not supported

 Specifying a Device in ASCII Format
Specify a device using a six- or seven-character name string as shown in the table
below.
Table 4.4.6 Specifying a Device in ASCII Format

Device Type How to Specify Device Type How to Specify
Input relay X “X ” Data register D “D ”
Output relay Y “Y ” File register B “B ”
Internal relay I “I ” Shared register R “R ”
Shared relay E “E ” Index register V “V ”
Special relay M “M ” Special register Z “Z ”
Timer relay T “TU ” Link register W “W ”
Counter relay C “CU ” Timer preset value “TS ”
Link relay L “L ” Timer current value “TP ”

Timer current value
(for count-up timers)

T

“TI ”

Counter preset value “CS ”
Counter current value “CP ”

Counter current value
(for count-up counters)

C

“CI ”

: Device number

Example: Specify data register 123 (D0123)

"D"
$44

"0"
$30

"0"
$30

"1"
$31

"2"
$32

"3"
$33

FA5511.VSD
Figure 4.4.14 Example for Specifying a Device (in ASCII format)

 4-27

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Specifying a Device in Binary Format
Specify a device by its device attribute and device number as follows:

Device
attribute Device No.

2 bytes 4 bytes

FA5521.VSD
Figure 4.4.15 How to Specify a Device (in binary format)

 Device Attribute
The table below shows the mapping between device type and device attribute.

Table 4.4.7 Device Attributes in Binary Format

Device Type Device
Attribute Device Type Device Attribute

Input relay X $0018 Data register D $0004
Output relay Y $0019 File register B $0002
Internal relay I $0009 Shared register R $0012
Shared relay E $0005 Index register V $0016
Special relay M $000D Special register Z $001A
Timer relay T $0014 Link register W $0017
Counter relay C $0003 Timer preset value $0020
Link relay L $000C Timer current value $0021

Timer current value
(for count-up timers)

T

$0025

Counter preset value $0030
Counter current value $0031

Counter current value
(for count-up counters)

C

$0035

 Device Number
Specify the device number using 4 bytes.
Example: Specify data register 123 (D0123).

$0004 $0000007B

FA5522.VSD
Figure 4.4.16 Example for Specifying a Device (in binary format)

 4-28

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

4.4.6 Setup for Higher-level Link Service via Ethernet
This subsection describes how to configure higher-level link service via Ethernet before
use.

 Basic Setup
The table below shows the required setup for higher-level link service via Ethernet
before use.

Table 4.4.8 Basic Setup for Higher-level Link Service via Ethernet
Name of Setup Type of Setup SEE ALSO *1

Ethernet setup CPU properties A9.5.2, "Ethernet Setup"
*1: For details on individual setup items, see "Sequence CPU – Functions (for F3SP66-4S, F3SP67-6S)"

(IM34M6P14-01E).

 Ethernet setup
Ethernet setup configures the CPU module for joining an Ethernet network. Minimally,
you must specify the IP address and subnet mask. If you set the subnet mask to
"0.0.0.0", the default mask for the class of the IP address is used.

 Optional Setup
Higher-level link service via Ethernet may be configured as required before use.

Table 4.4.9 Basic Setup for Higher-level Link Service via Ethernet
Name of Setup Type of Setup SEE ALSO *1

Higher-level link service
setup

CPU properties A9.5.4, ”Higher-level Link Service
Setup"

Network filter setup CPU properties A9.5.8, "Network Filter Setup"
Function removal Configuration A9.2.12, "Function Removal"

*1: For details on individual setup items, see "Sequence CPU – Functions (for F3SP66-4S, F3SP67-6S)"
(IM34M6P14-01E).

 Higher-level link service setup
To modify the default values for the communications protocol to be used for higher-level
link service (TCP/IP or UDP/IP) or the personal computer link command data format
(ASCII or binary), perform higher-level link service setup of CPU properties.
To prohibit write access to devices via higher-level link service, enable the write
protection.

Table 4.4.10 Default Values of Higher-level Link Service Setup
Setup Item Default Value

Higher-level link service port A protocol (port no. 12289)
Higher-level link service port A command data format

TCP/IP
ASCII

Higher-level link service port B protocol (port no. 12291)
Higher-level link service port B command data format

TCP/IP
Binary

Write protection Disabled

TIP
The Ethernet interface module (F3LE - T) has no protocol selection setting as it automatically
detects whether the connected network is TCP/IP or UDP/IP. If a monitor or application originally
communicating through an Ethernet interface module fails to run after the Ethernet interface module is
replaced by the sequence CPU module, check whether the protocol selection of the CPU module is
consistent with the connected equipment.

 4-29

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Network filter setup
You may perform network filter setup to restrict the IP addresses for connection to the
module. By default, connections from all IP addresses are allowed. This setup affects all
functions (e.g. remote programming service, FTP server, etc.) supporting the higher-
level link service via Ethernet function.

 Function removal
You may disable the higher-level link service using function removal of configuration.
Once deleted, the higher-level link service stops running and generating responses. The
module has several interfaces for higher-level link service and personal computer link
function and not all these interfaces can be removed by function removal.

Table 4.4.11 Higher-level Link Service Interfaces Removed by Function Removal

Interface State of Higher-level Link Service
after it is Removed using

Function Removal
Via the 10BASE-T/100BASE-TX connector located on the
front panel of the local CPU module.

Disabled

Via the SIO port located on the front panel of the local
CPU module

Disabled

Via the 10BASE-T/100BASE-TX connector located on the
front panel of another CPU module in a multi-CPU
configuration.

Enabled

Via the SIO port located on the front panel of another
CPU module in a multi-CPU configuration.

Enabled

Via the programming port located on the front panel of
another CPU module in a multi-CPU configuration.

Enabled

Via an advanced function module
(Ethernet interface module)

Enabled

Via an advanced function module
(personal computer link module)

Enabled

 4-30

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

4.4.7 Using Higher-level Link Service via Ethernet
This subsection describes how to use the Higher-level Link Service via Ethernet.

 Connecting to a Monitor
To connect to a monitor, perform the following steps:

1. Create screen data on a PC.
2. Transfer screen data to a monitor.
3. Match the communication setup of the monitor and the module.
4. Connect the monitor and the module. Begin monitoring.

SEE ALSO
For details on how to connect to the monitor, see the documentation of the monitor.

 Connecting to a PC

 Connecting to a program created on a PC
To connect to a program on a PC, perform the following steps:

1. Create a communication program on a PC (using Visual Basic, etc.)
2. Match the communication setup of the communication program and the module.
3. Connect the communication program and the module. Begin monitoring.

 Connecting to a SCADA application
To connect to a SCADA application on a PC, perform the following steps:

1. Create screen data on a PC.
2. Match the communication setup of SCADA and the module.
3. Connect SCADA and the module. Begin monitoring.

SEE ALSO
For details on the application (Visual BASIC or SCADA) on the PC end, see the documentation for the
application.

 4-31

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

4.5 List of Personal Computer Link Commands
A list of personal computer link commands supported by the module is given
below.

SEE ALSO
For details on the command specifications of personal computer link commands, see "Personal
Computer Link Command" (IM34M6P41-01E).

 Device Bit Access Commands
Table 4.5.1 List of Personal Computer Link Commands (Device Bit Access Commands)

Command
ASCII Binary Function Number of points processed

in one transmission
"BRD" $01 Reads bits. 1 to 256 bits
"BWR" $02 Writes bits. 1 to 256 bits
"BFL" $03 Writes bits of the same data. 1 to 256 bits
"BRR" $04 Reads bits randomly. 1 to 32 bits
"BRW" $05 Writes bits randomly. 1 to 32 bits
"BRS" $06 Specifies the devices to be monitored on a bit

basis.
 1 to 32 bits

"BRM" $07 Monitors bits. 1 to 32 bits

 Device Word Access Commands
Table 4.5.2 List of Personal Computer Link Commands (Device Word Access Commands)

Command
ASCII Binary Function Number of points processed

in one transmission
"WRD" $11 Reads words. 1 to 64 words
"WWR" $12 Writes words. 1 to 64 words
"WFL" $13 Writes words of the same data. 1 to 256 words
"WRR" $14 Reads words randomly. 1 to 32 words
"WRW" $15 Writes words randomly. 1 to 32 words
"WRS" $16 Specifies the devices to be monitored on a word

basis.
 1 to 32 words

"WRM" $17 Monitors words. 1 to 32 words

 Special Module Access Commands
Table 4.5.3 List of Personal Computer Link Commands (Special Module Access Commands)

Command
ASCII Binary Function Number of points processed

in one transmission
"SWR" $31 Reads words. 1 to 64 channels
"SWW" $32 Writes words. 1 to 64 channels
"SLR" $33 Reads long words 1 to 32 channels
"SLW" $34 Writes long words 1 to 32 channels

 Program Access Commands
Table 4.5.4 List of Personal Computer Link Commands (Program Access Commands)

Command
ASCII Binary Function
"PRI" $41 Reads program information.
"PLC" $42 Cancels program loading or saving.
"PLD" $43 Loads a program.
"PSV" $44 Saves a program.
"STA" $45 Starts a program.
"STP" $46 Stops a program.

 4-32

 IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

 Test Commands
Table 4.5.5 List of Personal Computer Link Commands (Test Commands)

Command
ASCII Binary Function
"TST" $51 Performs a (loopback) test.

 Miscellaneous Commands
Table 4.5.6 List of Personal Computer Link Commands (Miscellaneous Commands)

Command
ASCII Binary Function

"MDR" $61 Resets the module.
"INF" $62 Reads information.
"DTR" $63 Reads date and time.
"DTW" $64 Writes date and time.
"ERH" $65 Reads error history.
"ULR" $66 Reads user log.

 5-1

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

5. Remote Programming Service
Remote programming service enables a PC running WideField2 to connect with
the module.
The connection can be made via USB, Ethernet or modem. The table below lists
the available network configurations for connection to WideField2.
Table 5.1.1 List of Network Configurations for Connection to WideField2

Source Via Destination
USB
Ethernet PC
Modem

FA-M3

CAUTION

Remote programming service is intended for temporary connection between the module
and WideFIeld2 for FA-M3 maintenance purposes. As such, its correct operation is not
guaranteed for applications (e.g. recorders) that require reliable connections over
extended periods.

 5-2

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

5.1 Remote Programming Service
Specifications
This section describes the specifications of the remote programming service.

 For USB Connection
The table below shows the remote programming service specifications for USB
connection.

Table 5.1.2 Remote Programming Service Specifications for USB Connection
Item Specifications

Communications protocol USB1.1
Number of connections 1 max.
Compatible programming tool WideField2 R4 or later version

 For Ethernet Connection
The table below shows the remote programming service specifications for Ethernet
connection.

Table 5.1.3 Remote Programming Service Specifications for Ethernet Connection
Item Specifications

Communications protocol TCP/IP
Number of connections 2
Port number used 12290($3002)
Compatible programming tool WideField2 R4 or later version

 5-3

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

5.2 Network Configurations
This section describes the possible network configurations for remote
programming service.

SEE ALSO
For details on individual network configurations and connection methods, see "FA-M3 Programming
Tool WideField2" (IM34M6Q15-01E).

5.2.1 USB Connection
This subsection describes the network configuration for remote programming service
with the PC running the WideFIeld2 software connected to the USB port of the module.

CAUTION

- Depending on the chipset used in the PC running the WideField2 software,
connection may sometimes be unreliable. The USB connection function of the
module is not guaranteed to work with all PCs (chipsets).

- A USB connection may become unreliable or even disconnected due to noise. If this
happens, remove and re-attach the USB cable to the PC.

 Connecting PC and FA-M3 using USB
The figure below shows the configuration for remote programming service by connecting
a PC to FA-M3 using a USB cable.

In a multi-CPU configuration as shown in the figure below, by connecting the cable to
CPU module A, you can also access CPU modules B, C and D.

FA-M3
WideField2

USB1.1

A DCB

F0601.VSD

USB port

Figure 5.2.1 Connecting PC and FA-M3 using USB

 5-4

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

5.2.2 Ethernet Connection
This subsection describes the network configurations for remote programming service
with the PC running the WideFIeld2 software connected to the 10BASE-T/100BASE-TX
connector of the module.

 Connecting PC and FA-M3 using Ethernet
The figure below shows the configuration for remote programming service by connecting
a PC to FA-M3 using Ethernet.
In a multi-CPU configuration as shown in the figure below, by connecting the cable to
CPU module A, you can also access CPU modules B, C and D.

FA-M3
WideField2

A DCB

F0603.VSD

10BASE-T/100BASE-TX
connector

Ethernet

Figure 5.2.2 Connecting PC and FA-M3 using Ethernet

5.2.3 Modem Connection
In this configuration for remote programming service, connection to the module is made
via a telephone line using a modem. This enables maintenance of the FA-M3 from a
remote PC using WideField2.

SEE ALSO
For details on how to establish a modem connection, see "Personal Computer Link Modules"
(IM34M6H41-02E)

 5-5

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

5.3 Remote Programming Service Setup
This section describes how to configure the remote programming service before
use.

5.3.1 For USB Connection
This section describes how to configure the remote programming service before use
when using USB connection.

 Basic Setup
Remote programming service requires no basic setup before use when using USB
connection.

 Optional Setup
Remote programming service may be configured as required when using USB
connection.

Table 5.3.1 Optional Setup for Remote Programming Service using USB Connection
Name of Setup Type of Setup SEE ALSO *1

Function removal Configuration A9.2.12, "Function Removal"
*1: For details on individual setup items, see "Sequence CPU – Functions (for F3SP66-4S, F3SP67-6S)"

(IM34M6P14-01E).

 Function removal
To disable remote programming service, remove remote programming service using
function removal of configuration.

 5-6

IM 34M6P14-02E 1st Edition : Jun. 15, 2007-00

5.3.2 For Ethernet Connection
This section describes how to configure the remote programming service before use
when using Ethernet connection.

 Basic Setup
The table below shows required setup for remote programming service before use when
using Ethernet connection.

Table 5.3.2 Required Setup for Remote Programming Service using Ethernet Connection
Name of Setup Type of Setup SEE ALSO *1

Ethernet setup CPU properties A9.5.2, "Ethernet Setup"
*1: For details on individual setup items, see "Sequence CPU – Functions (for F3SP66-4S, F3SP67-6S)"

(IM34M6P14-01E).

 Ethernet setup
The Ethernet setup configures the CPU module for joining an Ethernet network.
Minimally, you must specify the IP address and subnet mask. If you set the subnet mask
to "0.0.0.0", the default mask for the class of the IP address is used.

 Optional Setup
Remote programming service may be configured as required when using Ethernet
connection.

Table 5.3.3 Optional Setup for Remote Programming Service using Ethernet Connection
Name of Setup Type of Setup SEE ALSO *1

Function removal Configuration A9.2.12, "Function Removal"
Network filter setup CPU properties A9.5.8, "Network Filter Setup"

*1: For details on individual setup items, see "Sequence CPU – Functions (for F3SP66-4S, F3SP67-6S)"
(IM34M6P14-01E).

 Function removal
To disable remote programming service, remove remote programming service using
function removal of configuration.

 Network filter setup
You may perform network filter setup to restrict the IP addresses for connection to the
module. By default, connections to all IP addresses are allowed. This setting affects all
functions using Ethernet connection (e.g. socket communications function and FTP
server function).

 Index-1

IM 34M6P14-02E 1st Edition: Jun. 15, 2007-00

INDEX
Numeric
10BASE-T/100BASE-TX connector1-2

A
absolute pathname .. 3-53

B
binary file ... 3-73

C
card batch file execution................................... 3-111
Command part .. 3-71
Common part ... 3-71
continuous type application instruction.............. 2-23
CPU properties1-4, 2-6, 3-8, 3-52
CSV formatted file.. 3-73
current directory .. 3-54

D
DNS ..1-1

F
File Part ... 3-71
file/device conversion & transfer........................ 3-73
FTP client... 3-1, 3-3, 3-7
FTP client instruction3-11, 3-15
FTP function ...3-1
FTP server instruction.. 3-57
FTP server log ... 3-55
FTP server ... 3-1, 3-3, 3-51

H
Higher-level link service..4-1
home directory ... 3-54

I
IP routing...2-5

M
MAC address ..1-2
modem..5-4
monitor..4-1
monitor cable ..4-7

P
Parameters part ... 3-71
personal computer link command...................... 4-31
personal computer link function............................4-1
ping ..1-6

R
relative pathname .. 3-53
remote programming service............................... 5-1
resource relay ... 2-33
Response file ... 3-70

S
SCADA .. 4-1
SIO port.. 4-6
socket communications function 2-1
socket instructions ... 2-23
status .. 2-25, 2-27

T
TCP/IP socket communications.................. 2-2, 2-12
Text Parameter .. 2-34

U
UDP/IP broadcast .. 2-2
UDP/IP socket communications 2-2, 2-7
USB port .. 5-3

V
virtual directory command.................................. 3-61

W
WideField2 .. 5-1

FA-M3
Sequence CPU – Network Functions
(for F3SP66-4S, F3SP67-6S)

IM 34M6P14-02E 1st Edition

Blank Page

 i

 IM 34M6P14-02E

1st Edition : Jun. 15, 2007-00

Revision Information
Document Name : Sequence CPU – Network Functions (for F3SP66-4S, F3SP67-6S)
Document No. : IM 34M6P14-02E

Edition Date Revised Item

1st Jun. 2007 New publication

Written by PLC International Sales & Marketing Gr.
 PLC Product Marketing Dept.
 Industrial Automation Systems Business
 Yokogawa Electric Corporation
Published by Yokogawa Electric Corporation
 2-9-32 Nakacho, Musashino-shi, Tokyo, 180-8750, JAPAN
Printed by Kohoku Publishing & Printing Inc.

Blank Page

	Applicable Product
	Important
	Introduction
	Copyrights and Trademarks
	CONTENTS
	1. CPU Built-in Network Functions
	1.1 Overview of CPU Built-in Network Functions
	1.2 10BASE-T/100BASE-TX Connector Specifications
	1.2.1 CPU Built-in 10BASE-T/100BASE-TX Connector Specifications
	1.2.2 Cable Connection
	1.2.3 Network Setup before Operation

	1.3 CPU Built-in Network Diagnosis Function
	1.3.1 Self Diagnosis
	1.3.2 ping
	1.3.3 Troubleshooting Communications Problems

	2. Socket Communications Function
	2.1 Overview of Socket Communications Function
	2.1.1 Overview of Socket Communications
	2.1.2 Socket Communications Functions Supported by the Module

	2.2 Socket Communications Function Specifications
	2.2.1 Socket Communications Function Specifications
	2.2.2 List of Socket Communications Instructions
	2.2.3 Special Relays and Special Registers

	2.3 Socket Communications Network Configurations
	2.4 Socket Communications Setup
	2.4.1 Basic Setup
	2.4.2 Optional Setup

	2.5 Using Socket Communications
	2.5.1 UDP/IP Socket Communications Procedure
	2.5.2 TCP/IP Socket Communications Procedure
	2.5.3 Precautions about Socket Communications

	2.6 Socket Instructions
	2.6.1 Using Socket Instructions
	2.6.2 List of Socket Instructions
	2.6.3 Socket Instruction Specifications
	2.6.3.1 UDP/IP Communications Preparation Instructions
	UDP/IP Open (UDPOPEN)
	UDP/IP Close (UDPCLOSE)

	2.6.3.2 UDP/IP Send and Receive Instructions
	UDP/IP Send Request (UDPSND)
	UDP/IP Receive Request (UDPRCV)

	2.6.3.3 TCP/IP Communications Preparation Instructions
	TCP/IP Open (TCPOPEN)
	TCP/IP Close (TCPCLOSE)
	TCP/IP Connect Request (TCPCNCT)
	TCP/IP Listen Request (TCPLISN)

	2.6.3.4 TCP/IP Send and Receive Instructions
	TCP/IP Send Request (TCPSND)
	TCP/IP Receive Request (TCPRCV)

	2.7 Socket Communications Sample Program
	2.7.1 UDP/IP Echo Server
	2.7.2 TCP/IP Echo Server

	3. FTP Function
	3.1 Overview of FTP Function
	3.1.1 Description of FTP
	3.1.2 FTP Functions Supported by the Module

	3.2 FTP Network Configurations and Access Methods
	3.2.1 FTP Connection on Ethernet

	3.3 FTP Client
	3.3.1 FTP Client Specifications
	3.3.2 FTP Client Setup
	3.3.3 Using FTP Client

	3.4 FTP Client Instructions
	3.4.1 Using FTP Client Instructions
	3.4.2 List of FTP Client Instructions

	3.5 FTP Client Instruction Specifications
	3.5.1 FTP Client Open (FTPOPEN)
	3.5.2 FTP Client Quit (FTPQUIT)
	3.5.3 FTP Client Put File (FTPPUT)
	3.5.4 FTP Client Put Unique File (FTPPUTU)
	3.5.5 FTP Client Append File (FTPAPEND)
	3.5.6 FTP Client Get File (FTPGET)
	3.5.7 FTP Client Change Directory (FTPCD)
	3.5.8 FTP Client Change Local Directory (FTPLCD)
	3.5.9 FTP Client Current Directory Info (FTPPWD)
	3.5.10 FTP Client Get File List (FTPLS)
	3.5.11 FTP Client Delete File (FTPDEL)
	3.5.12 FTP Client Rename File (FTPREN)
	3.5.13 FTP Client Make Directory (FTPMKDIR)
	3.5.14 FTP Client Remove Directory (FTPRMDIR)
	3.5.15 FTP Client Representation Type (FTPTYPE)

	3.6 FTP Server
	3.6.1 FTP Server Specifications
	3.6.2 FTP Server Setup
	3.6.3 Using FTP Server
	3.6.4 FTP Server Log
	3.6.5 FTP Server Instructions
	3.6.5.1 FTP Server Run Request Service (FTPSRUN)
	3.6.5.2 FTP Server Stop Request Service (FTPSSTOP)

	3.7 Virtual Directory Commands
	3.7.1 Overview of Virtual Directory Commands
	3.7.2 Virtual Directory Command Setup
	3.7.3 Using Virtual Directory Commands
	3.7.4 Virtual Directory Command Specifications
	3.7.5 File/Device Conversion & Transfer Commands
	3.7.5.1 Convert CSV File to Device (F2DCSV)
	3.7.5.2 Convert Device to CSV File (D2FCSV)
	3.7.5.3 Convert Binary File to Device (F2DBIN)
	3.7.5.4 Convert Device to Binary File (D2FBIN)

	3.7.6 Device Access Commands
	3.7.6.1 Bit Read (BRD)
	3.7.6.2 Bit Write (BWR)
	3.7.6.3 Bit Fill (BFL)
	3.7.6.4 Word Read (WRD)
	3.7.6.5 Word Write (WWR)
	3.7.6.6 Word Fill (WFL)

	3.7.7 Maintenance Commands
	3.7.7.1 Load Project (LOAD)
	3.7.7.2 Save Project (SAVE)
	3.7.7.3 Get Log (LOG)
	3.7.7.4 CPU Info (CPUINFO)
	3.7.7.5 Application Info (APINFO)
	3.7.7.6 Run Mode (RUN)
	3.7.7.7 Stop Mode (STOP)
	3.7.7.8 Activate Block (ACT)
	3.7.7.9 Inactivate Block (INACT)
	3.7.7.10 Reset CPU (CPURESET)
	3.7.7.11 Clear Alarms (ALMCLEAR)
	3.7.7.12 Help (HELP)

	3.7.8 File Operation and Disk Operation Commands
	3.7.8.1 Unmount (UNMOUNT)

	3.7.9 Card Batch File Execution Commands
	3.7.9.1 Run Card Batch File (BATGO)

	3.8 FTP Function Sample Program
	3.8.1 FTP using Ethernet

	4. Higher-level Link Service (PersonalComputer Link Function)
	4.1 Overview of Higher-level Link Service
	4.2 System Configurations for Higher-levelLink Service
	4.3 Personal Computer Link Function via SIO Port
	4.3.1 Specifications
	4.3.2 Communications Protocol
	4.3.3 Commands and Responses
	4.3.4 Setup for Personal Computer Link Function via SIO Port
	4.3.5 Using Personal Computer Link Function via SIO Port

	4.4 Higher-leve Link Service via Ethernet
	4.4.1 Specifications
	4.4.2 Communications Protocol
	4.4.3 Data Frame
	4.4.4 Exit Code and Detailed Error Code in Response
	4.4.5 Specifying Devices in Commands
	4.4.6 Setup for Higher-level Link Service via Ethernet
	4.4.7 Using Higher-level Link Service via Ethernet

	4.5 List of Personal Computer Link Commands

	5. Remote Programming Service
	5.1 Remote Programming Service Specifications
	5.2 Network Configurations
	5.2.1 USB Connection
	5.2.2 Ethernet Connection
	5.2.3 Modem Connection

	5.3 Remote Programming Service Setup
	5.3.1 For USB Connection
	5.3.2 For Ethernet Connection

	INDEX
	Revision Information

