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Introduction

The FU740-C000 is a Linux-capable SoC powered by SiFive's U74-MC, the world’s first com-
mercially available superscalar heterogeneous multi-core RISC-V Core Complex. The
FU740-CO000 is built around the U7 Core Complex, configured with 4xU74 cores and 1xS7 cores
integrated with a high speed DDR4 memory controller, PCle Gen3 X8 PCle and standard
peripherals.

The FU740-C000 is compatible with all applicable RISC-V standards, and this document should
be read together with the official RISC-V user-level, privileged, and external debug architecture
specifications.

1.1 FU740-C000 Overview

Figure 1 shows the overall block diagram of the FU740-C000.

A feature summary table can be found in Table 1.
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Figure 1: FU740-C000 top-level block diagram.

Table 1: FU740-C000 Feature Summary.

FU740-C000 Feature Set

Feature Description
Number of Harts 5 Harts.
S7 Core 1x S7 RISC-V core.
U7 Core 4x U7 RISC-V cores.
Level-2 Cache 2 MiB, 16-way L2 Cache.
PLIC Interrupts ggvlir::tee;rupt signals which can be connected to off core complex
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Table 1: FU740-C000 Feature Summary.

FU740-C000 Feature Set

PLIC Priority Levels | The PLIC supports 7 priority levels.

DDR3/4 Controller 64 bit + ECC Memory Controller to external DDR3/DDR3L/DDR4

memory

UART O U_nivgrsal Asynchronous/Synchronous Transmitters for serial commu-
nication.

UART 1 U_nivgrsal Asynchronous/Synchronous Transmitters for serial commu-
nication.

QSPIO Serial Peripheral Interface. QSPI 0 has 1 chip select signal.

QSPI 1 Serial Peripheral Interface. QSPI 1 has 4 chip select signals.

QSPI 2 Serial Peripheral Interface. QSPI 2 has 1 chip select signal.

PWM 0 16-bit Pulse-width modulator with 4 comparators.

PWM 1 16-bit Pulse-width modulator with 4 comparators.

2C 0 Inter-Integrated Circuit (12C) controller.

2C 1 Inter-Integrated Circuit (12C) controller.

GPIO 16 General Purpose 1/O pins.

Gigabit Ethernet 10/100/1000 Ethernet MAC with GMII interface to an external PHY.

MAC
PCle Gen3 x8 PCle Gen3 X8 controller and PHY.
OTP 4Kx32b one-time programmable memory.

1.2 S7 RISC-V Monitor Core

The FU740-C000 includes a 64-bit S7 RISC-V core, which has a high-performance dual-issue
in-order execution pipeline, with a peak sustainable execution rate of two instructions per clock
cycle. The S7 core supports Machine and User privilege modes as well as standard Multiply,
Atomic, and Compressed RISC-V extensions (RV64IMAC).

The monitor core is described in more detail in Chapter 3.

1.3 U74 RISC-V Application Cores

The FU740-C000 includes four 64-bit U74 RISC-V cores, each having a high-performance dual-
issue in-order execution pipeline, with a peak sustainable execution rate of two instructions per
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clock cycle. The U74 core supports Machine, Supervisor, and User privilege modes as well as
standard Multiply, Single-Precision Floating Point, Double-Precision Floating Point, Atomic, and
Compressed RISC-V extensions (RV64IMAFDC).

The application cores are described in more detail in Chapter 4.

1.4 Interrupts

The FU740-CO000 includes a RISC-V standard Platform-Level Interrupt Controller (PLIC), which
supports 69 global interrupts with 7 priority levels. The FU740-C000 also provides the standard
RISC-V machine-mode timer and software interrupts via the Core-Local Interruptor (CLINT).

Interrupts are described in Chapter 9. The CLINT is described in Chapter 12. The PLIC is
described in Chapter 13.

1.5 On-Chip Memory System

Each U74 core’s private L1 instruction and data caches are configured to be a 4-way set-asso-
ciative 32 KiB cache. The S7 monitor core has a 2-way set-associative 16 KiB L1 instruction
cache.

The shared 2 MiB L2 cache is divided into 4 address-interleaved banks to improve performance.
Each bank is 512 KiB and is a 16-way set-associative cache. The L2 also supports runtime
reconfiguration between cache and scratchpad RAM uses. The L2 cache acts as the system
coherence hub, with an inclusive directory-based coherence scheme to avoid wasting band-
width on snoops.

All on-chip memory structures are protected with parity and/or ECC. Each core has a Physical
Memory Protection (PMP) unit.

The Level 1 memories are described in Chapter 3 and Chapter 4. The PMP is described in Sec-
tion 3.7 and Section 4.8. The L2 Cache Controller is described in Chapter 14.

1.6 Universal Asynchronous Receiver/Transmitter

Multiple universal asynchronous receiver/transmitter (UARTS) are available and provide a
means for serial communication between the FU740-C000 and off-chip devices.

The UART peripherals are described in Chapter 16.

1.7 Pulse Width Modulation

The pulse width modulation (PWM) peripheral can generate multiple types of waveforms on
GPIO output pins and can also be used to generate several forms of internal timer interrupt.
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The PWM peripherals are described in Chapter 17.

1.8 I°C

The FU740-C000 has an I2C controller to communicate with external 12C devices, such as sen-
sors, ADCs, etc.

The 12C is described in detail in Chapter 18.

1.9 Hardware Serial Peripheral Interface (SPI)

There are 3 serial peripheral interface (SPI) controllers. Each controller provides a means for
serial communication between the FU740-C000 and off-chip devices, like quad-SPI Flash mem-
ory. Each controller supports master-only operation over single-lane, dual-lane, and quad-lane
protocols. Each controller supports burst reads of 32 bytes over TileLink to accelerate instruc-
tion cache refills. 2 SPI controllers can be programmed to support eXecute-In-Place (XIP)
modes to reduce SPI command overhead on instruction cache refills.

The SPI interface is described in more detail in Chapter 19.

1.10 GPIO Peripheral

The GPIO Peripheral manages the connections to low-speed pads for generic I1/O operations.
GPIO control includes pin direction, setting and getting pin values, configuring interrupts, and
controlling dynamic pull-ups.

The GPIO complex is described in more detail in Chapter 20.

1.11 Gigabit Ethernet MAC

The FU740-C000 has a Gigabit (10/100/1000) Ethernet MAC as defined in IEEE Standard for
Ethernet (IEEE Std. 802.3-2008). The Gigabit Ethernet MAC interfaces to an external PHY
using Gigabit Media Independent Interface (GMII).

The Gigabit Ethernet MAC is described in detail in Chapter 22.

1.12 DDR Memory Subsystem

The FU740-C000 has a DDR subsystem that supports an external 64-bit wide DDR4 DRAM
with optional ECC at a maximum data rate of 2400 MT/s.

Chapter 23 describes the details of the DDR Memory Subsystem.
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1.13 PCle x8 AXlI4 Subsystem

The FU740-C000 has PCle Gen3 X8 controller and PHY, operating in Root Complex (Mother-
board) mode. The PCle Subsystem is an IO coherent/one-way coherent master into the L2
cache of the system.

Chapter 24 provides an overview of the PCle x8 AXI4 Subsystem.

1.14 Debug Support

The FU740-C000 provides external debugger support over an industry-standard JTAG port,
including 2 hardware-programmable breakpoints per hart.

Debug support is described in detail in Chapter 26, and the debug interface is described in
Chapter 27.
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List of Abbreviations and Terms

Term Definition
BHT Branch History Table
BTB Branch Target Buffer
RAS Return-Address Stack
CLINT Core-Local Interruptor. Generates per-hart software interrupts and timer
interrupts.
CLIC Core-Local Interrupt Controller. Configures priorities and levels for core
local interrupts.
hart Hardware Thread
DTIM Data Tightly Integrated Memory
ITIM Instruction Tightly Integrated Memory
JTAG Joint Test Action Group
LIM Loosely Integrated Memory. Used to describe memory space delivered in
a SiFive Core Complex but not tightly integrated to a CPU core.
PMP Physical Memory Protection
Platform-Level Interrupt Controller. The global interrupt controller in a
PLIC
RISC-V system.
TileLink A free and open interconnect standard originally developed at UC Berke-
ley.
RO Used to describe a Read Only register field.
RW Used to describe a Read/Write register field.
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2 List of Abbreviations and Terms

Term Definition
WO Used to describe a Write Only registers field.
WARL Write-Any Read-Legal field. A register field that can be written with any

value, but returns only supported values when read.

Writes-Ignored, Reads-Ignore field. A read-only register field reserved for
WIRI future use. Writes to the field are ignored, and reads should ignore the
value returned.

Write-Legal, Read-Legal field. A register field that should only be written
WLRL with legal values and that only returns legal value if last written with a
legal value.

Writes-Preserve Reads-Ignore field. A register field that might contain
WPRI unknown information. Reads should ignore the value returned, but writes
to the whole register should preserve the original value.
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S7 RISC-V Core

This chapter describes the 64-bit S7 RISC-V processor core, instruction fetch and execution
unit, L1 and L2 memory systems, Physical Memory Protection unit, Hardware Performance
Monitor, and external interfaces.

The S7 feature set is summarized in Table 2.

Table 2: S7 Feature Set

Feature Description

ISA RV64IMAC

SiFive Custom Instruction Extension (SCIE) Not Present

Modes Machine mode, user mode

L1 Instruction Cache 16 KiB 2-way instruction cache

Data Tightly-Integrated Memory (DTIM) 8 KiB DTIM

L2 Cache 2 MiB 16-way L2 cache with 4 banks

ECC Support Single error correction, double error detec-
tion on the DTIM and L2 cache.

Fast 1/10 Present

Physical Memory Protection 8 regions with a granularity of 64 bytes.

3.1 Supported Modes

The S7 supports RISC-V user mode, providing two levels of privilege: machine (M) and user
(V). U-mode provides a mechanism to isolate application processes from each other and from
trusted code running in M-mode.
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See The RISC-V Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10 for
more information on the privilege modes.

3.2 Instruction Memory System

This section describes the instruction memory system of the S7 Monitor core.

3.2.1 Execution Memory Space

The regions of executable memory consist of all directly addressable memory in the system.
The memory includes any volatile or non-volatile memory located off the Core Complex ports,
and includes the on-core-complex DTIM, L2 LIM, and L2 Zero Device.

All executable regions are treated as instruction cacheable. There is no method to disable this
behavior.

Trying to execute an instruction from a non-executable address results in an instruction access
trap.

3.2.2 L1 Instruction Cache

The L1 instruction cache is a 16 KiB 2-way set associative cache. It has a line size of 64 bytes
and is read/write-allocate with a random replacement policy. A cache line fill triggers a burst
access outside of the Core Complex, starting with the first address of the cache line. There are
no write-backs to memory from the instruction cache and it is not kept coherent with the memory
system. In multi-core systems, the instruction caches are not kept coherent with each other.

Out of reset, all blocks of the instruction cache are invalidated. The access latency of the cache
is one clock cycle. There is ho way to disable the instruction cache and cache allocations begin
immediately out of reset.

The L1 instruction cache has parity error protection support.

3.2.3 Cache Maintenance

The instruction cache supports the FENCE. I instruction, which invalidates the entire instruction
cache. Writes to instruction memory from the core or another master must be synchronized with
the instruction fetch stream by executing FENCE. I.

3.2.4 Coherence with an L2 Cache

The L1 instruction cache is partially inclusive with the L2 Cache, described in Chapter 14. When
a block of instruction memory is allocated to the L1 cache, it is also allocated to the L2 cache if

the access was from the Memory Port. Instruction accesses to all other ports will not allocate to
the L2 cache, only the L1 cache.
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When a block is evicted from L1, it might still reside in the L2, which will reduce access time the
next time the block is fetched.

If a hart modifies instruction memory (i.e., self-modifying code), then a FENCE. I instruction is
required to synchronize the instruction and data streams. Even though FENCE. I targets the L1
instruction cache, no cache operation is required on the L2 cache to maintain instruction
coherency.

3.2.5 Instruction Fetch Unit

The S7 instruction fetch unit is responsible for keeping the pipeline fed with instructions from
memory. The instruction fetch unit delivers up to 8 bytes of instructions per clock cycle to sup-
port superscalar instruction execution. Fetches are always word-aligned and there is a one-
cycle penalty for branching to a 32-bit instruction that is not word-aligned.

The S7 implements the standard Compressed (C) extension to the RISC-V architecture, which
allows for 16-bit RISC-V instructions. As four 16-bit instructions can be fetched per cycle, the
instruction fetch unit can be idle when executing programs comprised mostly of compressed
16-bit instructions. This reduces memory accesses and power consumption.

All branches must be aligned to half-word addresses. Otherwise, the fetch generates an instruc-
tion address misaligned trap. Trying to fetch from a non-executable or unimplemented address
results in an instruction access trap.

3.2.6 Branch Prediction

The S7 instruction fetch unit contains sophisticated predictive hardware to mitigate the perfor-
mance impact of control hazards within the instruction stream. The instruction fetch unit is
decoupled from the execution unit, so that correctly predicted control-flow events usually do not
result in execution stalls.

* A 16-entry branch target buffer (BTB), which predicts the target of taken branches and direct
jumps;
* A 3.6 KiB branch history table (BHT), which predicts the direction of conditional branches;
* An 8-entry indirect-jump target predictor (IJTP);
* A 6-entry return-address stack (RAS), which predicts the target of procedure returns.
The BHT is a correlating predictor that supports long branch histories. The BTB has one-cycle

latency, so that correctly predicted branches and direct jumps result in no penalty, provided the
target is 8-byte aligned.

Direct jumps that miss in the BTB result in a one-cycle fetch bubble. This event might not result
in any execution stalls if the fetch queue is sufficiently full.
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The BHT, IJTP, and RAS take precedence over the BTB. If these structures' predictions dis-
agree with the BTB’s prediction, a one-cycle fetch bubble results. Similar to direct jumps that
miss in the BTB, the fetch bubble might not result in an execution stall.

Mispredicted branches usually incur a four-cycle penalty, but sometimes the branch resolves
later in the execution pipeline and incurs a six-cycle penalty instead. Mispredicted indirect jumps
incur a six-cycle penalty.

3.3 Execution Pipeline

F1 F2 D1 D2 AG M1 M2 wB

‘ Branch Predictor ‘ ‘ Data Cache/TIM
— —_— E — ] Pipeline A

D Divide D
Integer
Register
Instruction Cache / TIM File
BR BR

‘ Multiply
R | | | | Pipeline B

FP

RegFile Floating Point

MHA@\A@N

Figure 2: Example S7 Block Diagram

The S7 execution unit is a dual-issue, in-order pipeline. The pipeline comprises eight stages:
two stages of instruction fetch (F1 and F2), two stages of instruction decode (D1 and D2),
address generation (AG), two stages of data memory access (M1 and M2), and register write-
back (WB). The pipeline has a peak execution rate of two instructions per clock cycle, and is
fully bypassed so that most instructions have a one-cycle result latency:

 Integer arithmetic and branch instructions can execute in either the AG or M2 pipeline stage.
If such an instruction’s operands are available when the instruction enters the AG stage,
then it executes in AG; otherwise, it executes in M2.

» Loads produce their result in the M2 stage. There is no load-use delay for most integer
instructions. However, effective addresses for memory accesses are always computed in the
AG stage. Hence, loads, stores, and indirect jumps require their address operands to be
ready when the instruction enters AG. If an address-generation operation depends upon a
load from memory, then the load-use delay is two cycles.

» Integer multiplication instructions consume their operands in the AG stage and produce their
results in the M2 stage. The integer multiplier is fully pipelined.

 Integer division instructions consume their operands in the AG stage. These instructions
have between a six-cycle and 68-cycle result latency, depending on the operand values.
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* CSR accesses execute in the M2 stage. CSR read data can be bypassed to most integer
instructions with no delay. Most CSR writes flush the pipeline, which is a seven-cycle
penalty.

Table 3: S7 Instruction Latency

Instruction Latency
LW Three-cycle latency, assuming cache hit!
LH, LHU, LB, LBU Three-cycle latency, assuming cache hit*
CSR Reads One-cycle latency?
MUL, MULH, MULHU, Three-cycle latency
MULHSU
Dlv, DIVU, REM, REMU Between six-cycle to 68-cycle latency, depending on operand
values®

LEffective address not ready in AG stage. Load to use latency = load to use delay + 1
2 cycle latency = cycle delay + 1

3The latency of DIV, DIVU, REM, and REMU instructions can be determined by calculating:
Latency = 2 cycles + logz(dividend) - logz(divisor) + 1 cycle
if the input is negative + 1 cycle if the output is negative

The pipeline only interlocks on read-after-write and write-after-write hazards, so instructions
may be scheduled to avoid stalls.

The pipeline implements a flexible dual-instruction-issue scheme. Provided there are no data
hazards between a pair of instructions, the two instructions may issue in the same cycle, pro-
vided the following constraints are met:

* At most one instruction accesses data memory.

* At most one instruction is a branch or jump.

* At most one instruction is an integer multiplication or division operation.

< Neither instruction explicitly accesses a CSR.

3.4 Data Memory System

The data memory system consists of on-core-complex data and the ports in the FU740-C000
memory map, shown in Chapter 5. The on-core-complex data memory consists of an 8 KiB
Data Tightly-Integrated Memory (DTIM) and 2 MiB L2 cache. A design cannot have both data
cache and DTIM.
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As no data cache is present, all data accesses are non-cacheable. Data accesses that are not
targeted at the DTIM are also called memory-mapped I/O accesses, or MMIOs.

The S7 pipeline allows for multiple outstanding memory accesses. The memory system includes
the Fast I/O feature, described in Section 3.5, which improves the throughput of MMIOs. The
number of outstanding MMIOs are implementation dependent. Misaligned accesses are not
allowed to any memory region and result in a trap to allow for software emulation.

3.4.1 Data Tightly-Integrated Memory (DTIM)

The DTIM provides deterministic access time, which is important for applications with hard real-
time requirements. The access latency is two clock cycles for words and double-words, and
three clock cycles for smaller quantities.

Stores are pipelined and commit on cycles where the data memory system is otherwise idle.
Loads to addresses currently in the store pipeline result in a five-cycle penalty.

The DTIM region can be used to store instructions, but it has no lasting performance advantage
over other memory regions. Fetching from the DTIM first results in an instruction cache line fill
and execution occurs from the instruction cache.

The DTIM is capable of supporting the RISC-V standard Atomic (A) extension. Note that atomic
extension support has not been configured in the FU740-C000.

The DTIM supports ECC protection, as described in Chapter 28.

3.5 Fastl/O

The Fast I/O feature improves the performance of the memory-mapped I/0O (MMIO) subsystem.
This is achieved by predicting whether an access is I/O or not by examining the base address of
a read or write.

Fast I/0 enables a sustained rate of one MMIO operation per clock cycle. By contrast, when this
feature is excluded, MMIO loads can only sustain half that rate. Fast I/O also decouples the

MMIO load response from the cache-hit path. This way, MMIO requests and responses can
happen on the same cycle, doubling the peak load throughput.

Note

Fast I/O is NOT an I/O port.
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3.6 Atomic Memory Operations

The S7 core supports the RISC-V standard Atomic (A) extension on the internal memory
regions.

The load-reserved (LR) and store-conditional (SC) instructions are special atomic instructions
that are only supported in data cacheable regions. As the S7 core does not have a data cache,
the LR and SC instructions will always generate a precise access exception.

3.7 Physical Memory Protection (PMP)

Machine mode is the highest privilege level and by default has read, write, and execute permis-
sions across the entire memory map of the device. However, privilege levels below machine
mode do not have read, write, or execute permissions to any region of the device memory map
unless it is specifically allowed by the PMP. For the lower privilege levels, the PMP may grant
permissions to specific regions of the device’s memory map, but it can also revoke permissions
when in machine mode.

When programmed accordingly, the PMP will check every access when the hart is operating in
user mode. For machine mode, PMP checks do not occur unless the lock bit (L) is set in the
pmpcfgY CSR for a particular region.

PMP checks also occur on loads and stores when the machine previous privilege level is user
(mstatus.MPP=0x0), and the Modify Privilege bit is set (mstatus.MPRV=1). For virtual address
translation, PMP checks are also applied to page table accesses in supervisor mode.

The S7 PMP supports 8 regions with a minimum region size of 64 bytes.

This section describes how PMP concepts in the RISC-V architecture apply to the S7. For addi-
tional information on the PMP refer to The RISC-V Instruction Set Manual, Volume IlI: Privileged
Architecture, Version 1.10.

3.7.1 PMP Functional Description

The S7 PMP unit has 8 regions and a minimum granularity of 64 bytes. Access to each region is
controlled by an 8-bit pmpXcfg field and a corresponding pmpaddrX register. Overlapping
regions are permitted, where the lower numbered pmpXcfg and pmpaddrX registers take priority
over higher numbered regions. The S7 PMP unit implements the architecturally defined
pmpcfgY CSR pmpcfg0, supporting 8 regions. pmpcfg2 is implemented, but hardwired to zero.
Access to pmpcfgl or pmpcfg3 results in an illegal instruction exception.

The PMP registers may only be programmed in M-mode. Ordinarily, the PMP unit enforces per-
missions on U-mode accesses. However, locked regions (see Section 3.7.2) additionally
enforce their permissions on M-mode.
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3.7.2 PMP Region Locking

The PMP allows for region locking whereby, once a region is locked, further writes to the config-
uration and address registers are ignored. Locked PMP entries may only be unlocked with a
system reset. A region may be locked by setting the L bit in the pmpXcfg register.

In addition to locking the PMP entry, the L bit indicates whether the R/W/X permissions are
enforced on machine mode accesses. When the L bit is clear, the R/W/X permissions apply only
to U-mode.

3.7.3 PMP Registers

Each PMP region is described by an 8-bit pmpXcfg field, used in association with a 64-bit
pmpaddrX register that holds the base address of the protected region. The range of each
region depends on the Addressing (A) mode described in the next section. The pmpXcfg fields
reside within 64-bit pmpcfgY CSRs.

Each 8-bit pmpXcfg field includes a read, write, and execute bit, plus a two bit address-matching
field A, and a Lock bit, L. Overlapping regions are permitted, where the lowest numbered PMP
entry wins for that region.

PMP Configuration Registers

For RV64 architectures, pmpcfgl and pmpcfg3 are not implemented. This reduces the footprint
since pmpcfg2 already contains configuration fields pmp8cfg through pmpiicfg for both RV32
and RV64.

A 1o Iy A— a®9 C7.) — 223 @5 00 87 0
l pmp7cfg ‘ pmp6cfg ‘ pmp5cfg ‘ pmp4cfg ‘ pmp3cfg ‘ pmp2cfg ‘ pmplcfg ‘ pmpOcfg

Figure 3: RV64 pmpcfg0 Register

63 5655 447 4@B9 331 2423 1615 87 0
l pmpl5cfg ‘ pmpl4cfg ‘ pmp1l3cfg ‘ pmpl2cfg ‘ pmpllcfg ‘ pmp1l0cfg ‘ pmp9cfg ‘ pmp8cfg ‘

Figure 4: RV64 pmpcfg2 Register

The pmpcfgY and pmpaddrX registers are only accessible via CSR specific instructions such as
csrr for reads, and csrw for writes.

7 6 ' 5 4 ' 3 2 1 0
[ Lwary) | 0 (WARL) \ A (WARL) | xwary [ wwarL) | RwaRL)

Figure 5: RV64 pmpXcfg bitfield

Table 4: pmpXcfg Bitfield Description

Bit Description

0 R: Read Permissions
0x0 - No read permissions for this region
0x1 - Read permission granted for this region

Introduction © SiFive, Inc. Page 27



3 S7 RISC-V Core

Table 4: pmpXcfg Bitfield Description

Bit Description

1 W: Write Permissions
0x0 - No write permissions for this region
0x1 - Write permission granted for this region

2 X: Execute permissions
0x0 - No execute permissions for this region
0x1 - Execute permission granted for this region

[4:3] | A: Address matching mode

0x0 - PMP Entry disabled

0x1 - Top of Range (TOR)

0x2 - Naturally Aligned Four Byte Region (NA4)

0x3 - Naturally Aligned Power-of-Two region, = 8 bytes (NAPOT)

7 L: Lock Bit

0x0 - PMP Entry Unlocked, no permission restrictions applied to machine mode. PMP
entry only applies to S and U modes.

0x1 - PMP Entry Locked, permissions enforced for all privilege levels including
machine mode. Writes to pmpXcfg and pmpcfgy are ignored and can only be cleared
with system reset.

Note: The combination of R=0 and w=1 is not currently implemented.

Out of reset, the PMP register fields A and L are set to 0. All other hart state is unspecified by
The RISC-V Instruction Set Manual, Volume Il: Privileged Architecture, Version 1.10.

Additional details on the available address matching modes is described below.
A = 0x0: The attributes are disabled. No PMP protection applied for any privilege level.

A = 0x1: Top of range (TOR). Supports four byte granularity, and the regions are defined by
[PMP(i) > a > PMP(i - 1)], where 'a' is the address range. PMP(i) is the top of the range, where
PMP(i - 1) represents the lower address range. If only pmpocfg selects TOR, then the lower
bound is set to address 0x0.

A = 0x2: Naturally aligned four-byte region (NA4). Supports only a four-byte region with four
byte granularity. Not supported on SiFive U7 series cores since minimum granularity is 4 KiB.

A = 0x3: Naturally aligned power-of-two region (NAPOT), = 8 bytes. When this setting is pro-
grammed, the low bits of the pmpaddrX register encode the size, while the upper bits encode the
base address right shifted by two. There is a zero bit in between, we will refer to as the least sig-
nificant zero bit (LSZB).

Some examples follow using NAPOT address mode.
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Table 5: pmpaddrXx Encoding Examples for A=NAPOT

pddross | Siter | position E A
0x4000_0000 8B 0 (0x1000_0000 | 1'b0O)
0Xx4000_0000 32B 2 (0X1000_0000 | 3'be11)
0Xx4000_0000 4 KB 9 (0x1000_0000 | 10'bG1_1111_1111)
0x4000_0000 64 KB 13 (0x1000_00600 | 14’'b61_1111 1111 1111)
0x4000_0000 1MB 17 (0x1000_0000 | 18’b61_1111 1111 1111 1111)

*Region size is 2(-578+3),

PMP Address Registers

The PMP has 8 address registers. Each address register pmpaddrX correlates to the respective
pmpXcfg field. Each address register contains the base address of the protected region right
shifted by two, for a minimum 4-byte alignment.

The maximum encoded address bits per The RISC-V Instruction Set Manual, Volume Il: Privi-
leged Architecture, Version 1.10 are [55:2].

Figure 6: RV64 pmpaddrX Register

3.7.4 PMP Programming Overview

The PMP registers can only be programmed in machine mode. The pmpaddrX register should
be first programmed with the base address of the protected region, right shifted by two. Then,
the pmpcfgy register should be programmed with the properly configured 64-bit value containing
each properly aligned 8-bit pmpXcfg field. Fields that are not used can be simply written to O,
marking them unused.

PMP Programming Example

The following example shows a machine mode only configuration where PMP permissions are
applied to three regions of interest, and a fourth region covers the remaining memory map.
Recall that lower numbered pmpXcfg and pmpaddrX registers take priority over higher numbered
regions. This rule allows higher numbered PMP registers to have blanket coverage over the
entire memory map while allowing lower numbered regions to apply permissions to specific
regions of interest. The following example shows a 64 KB Flash region at base address 0x0, a
32 KB RAM region at base address 0x2000_0000, and finally a 4 KB peripheral region at base
address base 0x3000_0000. The rest of the memory map is reserved space.

Introduction © SiFive, Inc. Page 29



3 S7 RISC-V Core

A Do -
Read, Ewecute 3, Region 0= TOR for 64KB region
Flash I—V’P - pmpdcly = 851000_1101 (B0
. pOAD = (wx0000_4000
Nk DS
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i

Region L= MAPOT for 3ZKB region

RAM
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Figure 7: PMP Example Block Diagram

PMP Access Scenarios

The L, R, W, and X bits only determine if an access succeeds if all bytes of that access are cov-
ered by that PMP entry. For example, if a PMP entry is configured to match the four-byte range
0xC—0xF, then an 8-byte access to the range 0x8—-0xF will fail, assuming that PMP entry is the
highest-priority entry that matches those addresses.

While operating in machine mode when the lock bit is clear (L=0), if a PMP entry matches all
bytes of an access, the access succeeds. If the lock bit is set (L=1) while in machine mode, then
the access depends on the permissions set for that region. Similarly, while in Supervisor mode,
the access depends on permissions set for that region.

Failed read or write accesses generate a load or store access exception, and an instruction
access fault would occur on a failed instruction fetch. When an exception occurs while attempt-
ing to execute from a region without execute permissions, the fault occurs on the fetch and not
the branch, so the mepc CSR will reflect the value of the targeted protected region, and not the
address of the branch.

It is possible for a single instruction to generate multiple accesses, which may not be mutually
atomic. If at least one access generated by an instruction fails, then an exception will occur. It
might be possible that other accesses from a single instruction will succeed, with visible side
effects. For example, references to virtual memory may be decomposed into multiple accesses.
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On some implementations, misaligned loads, stores, and instruction fetches may also be
decomposed into multiple accesses, some of which may succeed before an access exception
occurs. In particular, a portion of a misaligned store that passes the PMP check may become
visible, even if another portion fails the PMP check. The same behavior may manifest for float-
ing-point stores wider than XLEN bits (e.g., the FSD instruction in RV32D), even when the store
address is naturally aligned.

3.7.5 PMP and Paging

The Physical Memory Protection mechanism is designed to compose with the page-based vir-
tual memory systems described in The RISC-V Instruction Set Manual, Volume II: Privileged
Architecture, Version 1.10. When paging is enabled, instructions that access virtual memory
may result in multiple physical-memory accesses, including implicit references to the page
tables. The PMP checks apply to all of these accesses. The effective privilege mode for implicit
page-table accesses is supervisor mode.

Implementations with virtual memory are permitted to perform address translations speculatively
and earlier than required by an explicit virtual-memory access. The PMP settings for the result-
ing physical address may be checked at any point between the address translation and the
explicit virtual-memory access. A mis-predicted branch to a non-executable address range does
not generate a trap. Hence, when the PMP settings are modified in a manner that affects either
the physical memory that holds the page tables or the physical memory to which the page
tables point, M-mode software must synchronize the PMP settings with the virtual memory sys-
tem. This is accomplished by executing an SFENCE . VMA instruction with rs1=x0 and rs2=x0,
after the PMP CSRs are written.

If page-based virtual memory is not implemented, or when it is disabled, memory accesses
check the PMP settings synchronously, so no fence is needed.

3.7.6 PMP Limitations

In a system containing multiple harts, each hart has its own PMP device. The PMP permissions
on a hart cannot be applied to accesses from other harts in a multi-hart system. In addition,
SiFive designs may contain a Front Port to allow external bus masters access to the full mem-
ory map of the system. The PMP cannot prevent access from external bus masters on the Front
Port.

3.7.7 Behavior for Regions without PMP Protection

If a non-reserved region of the memory map does not have PMP permissions applied, then by
default, supervisor or user mode accesses will fail, while machine mode access will be allowed.
Access to reserved regions within a device’s memory map (an interrupt controller for example)
will return @x0 on reads, and writes will be ignored. Access to reserved regions outside of a
device’s memory map without PMP protection will result in a bus error. The bus error can gener-
ate an interrupt to the hart using the Bus-Error Unit (BEU). See Chapter 11 for more information.
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3.7.8 Cache Flush Behavior on PMP Protected Region

When a line is brought into cache and the PMP is set up with the lock (L) bit asserted to protect
a part of that line, a data cache flush instruction will generate a store access fault exception if
the flush includes any part of the line that is protected. The cache flush instruction does an
invalidate and write-back, so it is essentially trying to write back to the memory location that is
protected. If a cache flush occurs on a part of the line that was not protected, the flush will suc-
ceed and not generate an exception. If a data cache flush is required without a write-back, use
the cache discard instruction instead, as this will invalidate but not write back the line.

3.8 Hardware Performance Monitor

The S7 processor core supports a basic hardware performance monitoring (HPM) facility. The
performance monitoring facility is divided into two classes of counters: fixed-function and event-
programmable counters. These classes consist of a set of fixed counters and their counter-
enable registers, as well as a set of event-programmable counters and their event selector reg-
isters. The registers are available to control the behavior of the counters. Performance monitor-
ing can be useful for multiple purposes, from optimization to debug.

3.8.1 Performance Monitoring Counters Reset Behavior

The instret and cycle counters are initialized to zero on system reset. The hardware perfor-
mance monitor event counters are not initialized on system reset, and thus have an arbirary
value. Users can write desired values to the counter control and status registers (CSRs) to start
counting at a given, known value.

3.8.2 Fixed-Function Performance Monitoring Counters

A fixed-function performance monitor counter is hardware wired to only count one specific event
type. That is, they cannot be reconfigured with respect to the event type(s) they count. The only
maodification to the fixed-function performance monitoring counters that can be done is to enable
or disable counting, and write the counter value itself.

The S7 processor core contains two fixed-function performance monitoring counters.

Fixed-Function Cycle Counter (mcycle)

The fixed-function performance monitoring counter mcycle holds a count of the number of clock
cycles the hart has executed since some arbitrary time in the past. The mcycle counter is read-
write and 64 bits wide. Reads of mcycle return all 64 bits of the mcycle CSR.
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Fixed-Function Instructions-Retired Counter (minstret)

The fixed-function performance monitoring counter minstret holds a count of the number of
instructions the hart has retired since some arbitrary time in the past. The minstret counter is
read-write and 64 bits wide. Reads of minstret return all 64 bits of the minstret CSR.

Event-Programmable Performance Monitoring Counters

Complementing the fixed-function counters are a set of programmable event counters. The S7
HPM includes two addtitional event counters, mhpmcounter3 and mhpmcounter4. These pro-
grammable event counters are read-write and 64 bits wide. The hardware counters themselves
are implemented as 40-bit counters on the S7 core series. These hardware counters can be
written to in order to initialize the counter value.

Event Selector Registers

To control the event type to count, event selector CSRs mhpmevent3 and mhpmevent4 are used
to program the corresponding event counters. These event selector CSRs are 64-bit WARL reg-
isters.

The event selectors are partitioned into two fields; the lower 8 bits select an event class, and the
upper bits form a mask of events in that class.

MXLEN-1 26|25 8|7 0

(Unimplemented Bits) Event Mask Event Class

Figure 8: Event Selector Fields

The counter increments if the event corresponding to any set mask bit occurs. For example, if
mhpmevent3 is set to 0x4200, then mhpmcounter3 will increment when either a load instruction
or a conditional branch instruction retires. An event selector of 0 means "count nothing".

Event Selector Encodings

Table 6 describes the event selector encodings available. Events are categorized into classes
based on the Event Class field encoded in mhpmeventX[7:0]. One or more events can be pro-
grammed by setting the respective Event Mask bit for a given event class. An event selector
encoding of 0 means "count nothing". Multiple events will cause the counter to increment any
time any of the selected events occur.

Table 6: mhpmevent Register

Machine Hardware Performance Monitor Event Register

Instruction Commit Events, mhpmeventX[7:0]=0
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Table 6: mhpmevent Register

Bits Description
8 Exception taken
9 Integer load instruction retired
10 Integer store instruction retired
11 Atomic memory operation retired
12 System instruction retired
13 Integer arithmetic instruction retired
14 Conditional branch retired
15 JAL instruction retired
16 JALR instruction retired
17 Integer multiplication instruction retired
18 Integer division instruction retired

Microarchitectural Events, mhpmeventX[7:0]=1

Bits Description

8 Load-use interlock

9 Long-latency interlock

10 CSR read interlock

11 Instruction cache/ITIM busy
12 Data cache/DTIM busy

13 Branch direction misprediction
14 Branch/jump target misprediction
15 Pipeline flush from CSR write
16 Pipeline flush from other event
17 Integer multiplication interlock

Memory System Events, mhpmeventX[7:0]=2

Bits

Description

8

Instruction cache miss
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Table 6: mhpmevent Register

9 Memory-mapped I/O access

Event mask bits that are writable for any event class are writable for all classes. Setting an
event mask bit that does not correspond to an event defined in Table 6 has no effect for current
implementations. However, future implementations may define new events in that encoding
space, so it is not recommended to program unsupported values into the mhpmevent registers.

Combining Events

It is common usage to directly count each respective event. Additionally, it is possible to use
combinations of these events to count new, unique events. For example, to determine the aver-
age cycles per load from a data memory subsystem, program one counter to count "Data cache/
DTIM busy" and another counter to count "Integer load instruction retired". Then, simply divide
the "Data cache/DTIM busy" cycle count by the "Integer load instruction retired" instruction
count and the result is the average cycle time for loads in cycles per instruction.

It is important to be cognizant of the event types being combined; specifically, event types
counting occurrences and event types counting cycles.

Counter-Enable Registers

The 32-bit counter-enable register mcounteren controls the availability of the hardware perfor-
mance-monitoring counters to the next-lowest privileged mode.

The settings in these registers only control accessibility. The act of reading or writing these
enable registers does not affect the underlying counters, which continue to increment when not
accessible.

When any bit in the mcounteren register is clear, attempts to read the cycle, time, instruction
retire, or hpmcounterX register while executing in U-mode will cause an illegal instruction
exception. When one of these bits is set, access to the corresponding register is permitted in the
next implemented privilege mode, U-mode.

mcounteren is a WARL register. Any of the bits may contain a hardwired value of zero, indicat-
ing reads to the corresponding counter will cause an illegal instruction exception when execut-
ing in a less-privileged mode.
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U74 RISC-V Core

This chapter describes the 64-bit U74 RISC-V processor core, instruction fetch and execution
unit, L1 and L2 memory systems, Physical Memory Protection unit, Hardware Performance
Monitor, and external interfaces.

The U74 feature set is summarized in Table 7.

Table 7: U74 Feature Set

Feature Description

ISA RV64GC

SiFive Custom Instruction Extension (SCIE) Not Present

Modes Machine mode, user mode, supervisor mode

L1 Instruction Cache 32 KiB 4-way instruction cache

L1 Data Cache 32 KiB 8-way data cache

L2 Cache 2 MiB 16-way L2 cache with 4 banks

ECC Support Single error correction, double error detec-
tion on the data cache and L2 cache.

Fast 1/10 Present

Physical Memory Protection 8 regions with a granularity of 4096 bytes.

Memory Management Unit Sv39 virtual memory support with fully-asso-

ciative 40-entry L1 Data and Instruction
TLBs, and a direct-mapped 512-entry L2
TLB.
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4.1 Supported Modes

The U74 supports RISC-V supervisor and user modes, providing three levels of privilege:
machine (M), user (U), and supervisor (S). U-mode provides a mechanism to isolate application
processes from each other and from trusted code running in M-mode. S-mode adds a number
of additional CSRs and capabilities.

See The RISC-V Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10 for
more information on the privilege modes.

4.2 Instruction Memory System

This section describes the instruction memory system of the U74 Application core.

4.2.1 L1 Instruction Cache

The L1 instruction cache is a 32 KiB 4-way set associative cache. It is virtually-indexed, physi-
cally-tagged with a line size of 64 bytes and is read/write-allocate with a random replacement
policy. A cache line fill triggers a burst access outside of the Core Complex, starting with the first
address of the cache line. There are no write-backs to memory from the instruction cache and it
is not kept coherent with the memory system. In multi-core systems, the instruction caches are
not kept coherent with each other.

Out of reset, all blocks of the instruction cache are invalidated. The access latency of the cache
is one clock cycle. There is ho way to disable the instruction cache and cache allocations begin
immediately out of reset.

The L1 instruction cache has parity error protection support.

4.2.2 Cache Maintenance

The instruction cache supports the FENCE. I instruction, which invalidates the entire instruction
cache. Writes to instruction memory from the core or another master must be synchronized with
the instruction fetch stream by executing FENCE. I.

4.2.3 Coherence with an L2 Cache

The L1 instruction cache is partially inclusive with the L2 Cache, described in Chapter 14. When
a block of instruction memory is allocated to the L1 cache, it is also allocated to the L2 cache if

the access was from the Memory Port. Instruction accesses to all other ports will not allocate to
the L2 cache, only the L1 cache.

When a block is evicted from L1, it might still reside in the L2, which will reduce access time the
next time the block is fetched.
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If a hart modifies instruction memory (i.e., self-modifying code), then a FENCE. I instruction is
required to synchronize the instruction and data streams. Even though FENCE. I targets the L1
instruction cache, no cache operation is required on the L2 cache to maintain instruction
coherency.

4.2.4 Instruction Fetch Unit

The U74 instruction fetch unit is responsible for keeping the pipeline fed with instructions from
memory. The instruction fetch unit delivers up to 8 bytes of instructions per clock cycle to sup-
port superscalar instruction execution. Fetches are always word-aligned and there is a one-
cycle penalty for branching to a 32-bit instruction that is not word-aligned.

The U74 implements the standard Compressed (C) extension to the RISC-V architecture, which
allows for 16-bit RISC-V instructions. As four 16-bit instructions can be fetched per cycle, the
instruction fetch unit can be idle when executing programs comprised mostly of compressed
16-bit instructions. This reduces memory accesses and power consumption.

All branches must be aligned to half-word addresses. Otherwise, the fetch generates an instruc-
tion address misaligned trap. Trying to fetch from a non-executable or unimplemented address
results in an instruction access trap.

4.2.5 Branch Prediction

The U74 instruction fetch unit contains sophisticated predictive hardware to mitigate the perfor-
mance impact of control hazards within the instruction stream. The instruction fetch unit is
decoupled from the execution unit, so that correctly predicted control-flow events usually do not
result in execution stalls.

* A 16-entry branch target buffer (BTB), which predicts the target of taken branches and direct
jumps;
« A 3.6 KiB branch history table (BHT), which predicts the direction of conditional branches;
* An 8-entry indirect-jump target predictor (IJTP);
* A 6-entry return-address stack (RAS), which predicts the target of procedure returns.
The BHT is a correlating predictor that supports long branch histories. The BTB has one-cycle

latency, so that correctly predicted branches and direct jumps result in no penalty, provided the
target is 8-byte aligned.

Direct jumps that miss in the BTB result in a one-cycle fetch bubble. This event might not result
in any execution stalls if the fetch queue is sufficiently full.

The BHT, IJTP, and RAS take precedence over the BTB. If these structures' predictions dis-
agree with the BTB’s prediction, a one-cycle fetch bubble results. Similar to direct jumps that
miss in the BTB, the fetch bubble might not result in an execution stall.
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Mispredicted branches usually incur a four-cycle penalty, but sometimes the branch resolves
later in the execution pipeline and incurs a six-cycle penalty instead. Mispredicted indirect jumps
incur a six-cycle penalty.

4.3 Execution Pipeline

F1 F2 D1 D2 AG M1 M2 wB

‘ Branch Predictor ‘ ‘ Data Cache/TIM
- — ] Pipeline A

D Divide D
Integer
Register
Instruction Cache / TIM File
BR BR

‘ Multiply
R | | | | Pipeline B

FP
RegFile

MHA@\A@N

Figure 9: Example U74 Block Diagram

Floating Point —

The U74 execution unit is a dual-issue, in-order pipeline. The pipeline comprises eight stages:
two stages of instruction fetch (F1 and F2), two stages of instruction decode (D1 and D2),
address generation (AG), two stages of data memory access (M1 and M2), and register write-
back (WB). The pipeline has a peak execution rate of two instructions per clock cycle, and is
fully bypassed so that most instructions have a one-cycle result latency:

Integer arithmetic and branch instructions can execute in either the AG or M2 pipeline stage.
If such an instruction’s operands are available when the instruction enters the AG stage,
then it executes in AG; otherwise, it executes in M2.

Loads produce their result in the M2 stage. There is no load-use delay for most integer
instructions. However, effective addresses for memory accesses are always computed in the
AG stage. Hence, loads, stores, and indirect jumps require their address operands to be
ready when the instruction enters AG. If an address-generation operation depends upon a
load from memory, then the load-use delay is two cycles.

Integer multiplication instructions consume their operands in the AG stage and produce their
results in the M2 stage. The integer multiplier is fully pipelined.

Integer division instructions consume their operands in the AG stage. These instructions
have between a six-cycle and 68-cycle result latency, depending on the operand values.

CSR accesses execute in the M2 stage. CSR read data can be bypassed to most integer
instructions with no delay. Most CSR writes flush the pipeline, which is a seven-cycle
penalty.

Introduction © SiFive, Inc. Page 39



4 U74 RISC-V Core

Table 8: U74 Instruction Latency

Instruction Latency
LW Three-cycle latency, assuming cache hit!
LH, LHU, LB, LBU Three-cycle latency, assuming cache hit*
CSR Reads One-cycle latency?
MUL, MULH, MULHU, Three-cycle latency
MULHSU
Dlv, DIVU, REM, REMU Between six-cycle to 68-cycle latency, depending on operand
values®

LEffective address not ready in AG stage. Load to use latency = load to use delay + 1
2 cycle latency = cycle delay + 1

3The latency of DIV, DIVU, REM, and REMU instructions can be determined by calculating:
Latency = 2 cycles + logz(dividend) - logz(divisor) + 1 cycle
if the input is negative + 1 cycle if the output is negative

The pipeline only interlocks on read-after-write and write-after-write hazards, so instructions
may be scheduled to avoid stalls.

The pipeline implements a flexible dual-instruction-issue scheme. Provided there are no data
hazards between a pair of instructions, the two instructions may issue in the same cycle, pro-
vided the following constraints are met:

* At most one instruction accesses data memory.

* At most one instruction is a branch or jump.

e At most one instruction is a floating-point arithmetic operation.

* At most one instruction is an integer multiplication or division operation.

< Neither instruction explicitly accesses a CSR.

4.4 Data Memory System

The data memory system consists of on-core-complex data and the ports in the FU740-C000
memory map, shown in Chapter 5. The on-core-complex data memory consists of a 32 KiB L1
data cache and 2 MiB L2 cache. A design cannot have both data cache and DTIM.

Data accesses are classified as non-cacheable, for those targeting any port in the Core Com-
plex. Non-cacheable data accesses are collectively called memory-mapped I/O accesses, or
MMIOs.
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The U74 pipeline allows for multiple outstanding memory accesses, but only allows one out-
standing cache line fill. The number of outstanding MMIOs are implementation dependent. Mis-
aligned accesses are not allowed to any memory region and result in a trap to allow for software
emulation.

441 L1 Data Cache

The L1 data cache is a 32 KiB 8-way set-associative cache. It is virtually-indexed, physically-
tagged with a line size of 64 bytes and is read/write-allocate with a random replacement policy.
The cache operates in write-back mode; this means that if a cache line is dirty, it is written back
to memory when evicted. Out of reset, all lines of the cache are invalidated.

The L1 data cache supports ECC protection, as described in Chapter 28.

A cache line fill triggers a burst access starting with the first address of the cache line. On a
cache hit, the access latency is two clock cycles for words and double-words, and three clock
cycles for smaller quantities. Stores are pipelined and commit on cycles where the data memory
system is otherwise idle. Pending stores are stored in a buffer, which drains whenever there is
an idle cycle or another store. Loads to addresses currently in the store pipeline result in a five-
cycle penalty.

The data cache supports only one outstanding line fill. MMIOs can be issued before or after the
line fill as long as there are no address or register hazards.

The data cache cannot be disabled.

4.4.2 Cache Maintenance Operations

The data cache supports CFLUSH.D.L1 and CDISCARD.D.L1. The instruction CFLUSH.D.L1
cleans and invalidates the specified line or all cache lines. The instruction CDISCARD.D.L1 inval-
idates the specified line or all cache lines.

These custom instructions are further described in Chapter 10.

4.4.3 L1 Data Cache Coherency

All the L1 data caches in the Core Complex are kept coherent with an integrated coherency
manager. This is an automatic feature and cannot be disabled. The CFLUSH.D.L1 and
CDISCARD.D. L1 instructions only affect the core that executed the instruction. They are not
broadcast to all cores in the complex.

4.4.4 Coherence with an L2 Cache

The L1 data cache is inclusive with the L2 cache, described in Chapter 14.
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When a block of data is allocated to the L1 cache, it is also allocated to the L2 cache. When a
block is evicted from the L1, the corresponding line in the L2 is then updated and marked dirty.

The custom instructions CFLUSH.D.L1 and CDISCARD.D, L1 only target the L1 data cache, and
do not impact the L2 cache. The L2 cache controller contains flush capability, which performs a
clean and invalidate operation of a line in the L2 cache. If the targeted line also resides in the L1
cache, then it too will be cleaned and invalidated. Section 14.4.11 describes how to flush the L2
cache.

4.5 Atomic Memory Operations

The U74 core supports the RISC-V standard Atomic (A) extension on the Memory Port and
internal memory regions.

Atomic instructions that target the Memory Port are implemented in the data cache and are not
observable on the external data bus. The load-reserved (LR) and store-conditional (SC) instruc-
tions are special atomic instructions that are only supported in data cacheable regions. They will
generate a precise access exception if targeted at uncacheable data regions.

4.6 Floating-Point Unit (FPU)

The U74 FPU provides full hardware support for the IEEE 754-2008 floating-point standard for
32-bit single-precision and 64-bit double-precision arithmetic. The FPU includes a fully pipelined
fused-multiply-add unit and an iterative divide and square-root unit, magnitude comparators,
and float-to-integer conversion units, all with full hardware support for subnormals and all IEEE
default values.

The FPU comes up disabled on reset. First initialize fcsr and mstatus.FS prior to executing
any floating-point instructions. In the freedom-metal startup code, write mstatus.FS[1:0] to
Ox1.

4.7 Virtual Memory Support

The U74 has support for virtual memory through the use of a Memory Management Unit (MMU).
The MMU supports the Bare and Sv39 modes as described in The RISC-V Instruction Set Man-
ual, Volume IlI: Privileged Architecture, Version 1.10. SiFive's Sv39 implementation provides a
39-bit virtual address space using 38-bits of physical address space. Supported page sizes
include 4 KiB, 2 MiB, and 1 GiB megapages. The default Linux page size (PAGESIZE) is 4 KiB.

The translation lookaside buffers (TLBs) are address translation caches within the MMU. Trans-
lation is accomplished through page table entries (PTE) that reside in the TLB region. A hard-
ware page-table walker refills the TLBs upon a cache miss. The PTE entries are fetched from a
region defined by the root page table base address in the Supervisor Address Translation and
Protection (satp) CSR. Each PTE contains the information necessary to translate the virtual
memory address to a physical address on the design.
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There are both level 1 and level 2 TLB entries. Level 1 entries contain separate instruction
buffers (ITLB) and data buffers (DTLB) since they are accessed in different pipeline stages. The
ITLB and DTLB each contain 40 entries, which are fully associative. Level 2 TLB entries are uni-
fied, and contain 512 direct-mapped TLB entries. Level 2 TLB are all 4 KiB pages. A block dia-
gram of the instruction and data memory access from the L2 into the MMU TLB is shown below.

Inside the core Outside the core
S39 MMU
Level 1 TLB Level 2 Unified TLB
Full Associative, pseudo-LRU  Direct-map, pseudo-LRU
Instruction TLB —
entries [
Mapping virtual address :
for the instruction stream g
- 5 ’ >
- [ <
o ] S
g ' O [}
- = 2
A 3 [a N
Mapping virtual address — -
forthe daa stream [(TTTTITT] L <
I EEEEEEE
Data TLB entries —

Figure 10: TLB Update Flow
Behaviors of the hardware are described below.
* When there is a TLB miss in the level 1 ITLB or DTLB, the level 2 unified TLB will populate
the level 1 TLB with the correct PTE, if it exists.

* When there is a miss in both level 1 and level 2 TLB, a hardware page table walk will occur
by the MMU to fill the TLB page table entry from the memory. The memory location where
the hart will start fetching TLB page table entry from is determined by the physical page
number (PPN) field in the Supervisor Address Translation and Protection (satp) CSR. The
refill will occur from the data cache if it exists there, otherwise it will refill from the L2 cache.
If L2 cache does not contain the data, then it will be fetched from system memory.

* Both level 1 and level 2 unified TLB page table entry replacement policy is pseudo-LRU.
* When level 1 TLB entry is evicted, this entry is not updated in the level 2 unified TLB.

* When the level 1 TLB entry is updated from level 2, the entry will reside in level 2 and will
not be removed.

e Executing the SFENCE . VMA instruction will invalidate both level 1 and level 2 TLB entries.

4.7.1 Address and Page Table Formats

An Sv39 virtual address is partitioned as shown below. Note that address bits [63:39] of every
instruction fetch, load, and store operation must be equal to bit 38, or else a page-fault excep-
tion will occur.

Introduction © SiFive, Inc. Page 43



4 U74 RISC-V Core

38""""3029""""2120'"""'1211"""""'0
[ oowewn - [ o cwennn [ 0 wewor [ . pageoffset . |

Figure 11: Sv39 Virtual Address

The 27-bit VPN is translated into a 44-bit PPN via a three-level page table, while the 12-bit page
offset is untranslated.

B peN 2] [ " eeniu [ peniol | pageoffset |

Figure 12: Sv39 Physical Address

Sv39 page tables contain 2° page table entries (PTES), eight bytes each. A page table is exactly
the size of a page and must always be aligned to a page boundary. As mentioned, satp.PPN
holds the physical page number of the root page table. Any level of PTE may be a leaf PTE, and
all page sizes (4 KiB, 2 MiB, and 1 GiB) must be virtually and physically aligned to a boundary
equal to its size. A page-fault exception is raised if the physical address is insufficiently aligned.

63 s3 207 a8 109876543210
| Reserved | PPN[2] [ " eenn) [ eenio] | Rswplallu[xwR]v]

Figure 13: Sv39 PTE Format

A description of the PTE configuration bits can be found in Table 9.

Table 9: PTE Configuration Bits

Bit Description

0 | V:Valid
0x0 - Page table entry not valid
0x1 - Page table entry valid

1 R: Readable
0x0 - Page table entry not readable
0x1 - Page table entry readable

2 | W: Writable
0x0 - Page table entry not writable
0x1 - Page table entry writable

3 | X: Executable
0x0 - Page table entry not executable
0x1 - Page table entry executable

4 U: User mode access
0x0 - No access to user mode software
0x1 - Access granted to user mode software

5 G: Global mapping
0x0 - This mapping does not exist globally
0x1 - This mapping exists globally
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Table 9: PTE Configuration Bits

Bit

Description

A: Accessed

0x0 - Leaf page table entry has not been read, written, or fetched since the last time A
was cleared

0x1 - Leaf page table entry has been read, written, or fetched since the last time A
was cleared

D: Dirty
0x0 - The virtual page has not been written since the last time D was cleared
0x1 - The virtual page has been written since the last time D was cleared

[9:8]

RSW: Supervisor software use
X - Open for supervisor software use

Page Table Configurations

Read, w

rite, and execute permissions for Sv39 are summarized in Table 10. The value PTE.v=1

indicates the PTE is valid, while PTE.V=0 means all other bits in PTE are don'’t cares, and soft-
ware can use these freely. The value PTE.R=1 indicates the page is readable. Likewise,
PTE.W=1 indicates the page is writable, while PTE.X=1 means the page is executable. When
PTE.V=0, PTE.R=0, and PTE.W=0, this indicates the PTE is a pointer to the next level page table,

otherwis

e itis a leaf PTE. If a page is marked writable, it must also be marked readable. Combi-

nations of PTE.wW=1 and PTE.R=0 are not currently supported.

Table 10: PTE Encoding fields

X w R Meaning
0 0 0 Pointer to next level of page table
0 0 1 Read-only page
0 1 0 Reserved
0 1 1 Read-write page
1 0 0 Execute-only page
1 0 1 Read-execute page
1 1 0 Reserved
1 1 1 Read-write-execute page

A fetch page-fault exception will occur if an instruction is fetched from a page that does not have

execute

permissions. A load page-fault exception will occur if a load or load-reserved instruction
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falls within a page without read permissions. A store page-fault exception will occur if a store,
store-conditional, or AMO instruction falls within a page without write permissions.

The value PTE.U=1 indicates the page is accessible to user mode. Supervisor mode software
may also perform loads and stores to a page marked with PTE.U=1, but only if sstatus.SUM=1.
The sstatus.SUM bit modifies the privilege of supervisor mode loads and stores to virtual mem-
ory. Supervisor mode software may not execute code on any page marked with PTE.U=1.

Two schemes to manage the A and D bits are permitted:

* When a virtual page is accessed and the A bit is clear, or is written and the D bit is clear, a
page-fault exception is raised.

* When a virtual page is accessed and the A bit is clear, or is written and the D bit is clear, the
corresponding bit(s) are set in the PTE. The PTE update is atomic with respect to other
accesses to the PTE, and memory access will not occur until the PTE update is visible glob-
ally.

For non-leaf PTES, the D, A, and U bits are reserved for future use and must be cleared by soft-
ware for forward compatibility.

It is important to note the U74 does not automatically set the accessed (A) and dirty (D) bits in a
Sv39 Page Table Entry (PTE). Instead, the U74 MMU will raise a page fault exception for a read
to a page with PTE.A=0 or a write to a page with PTE.D=0.

4.7.2 Supervisor Address Translation and Protection Register (SATP)

The satp register is a 64-bit read/write register used to control supervisor address translation
and protection.

63 6059 443 0

Figure 14: RV64 Supervisor Address Translation Register (satp)
* The satp.PPN field holds the physical page number (PPN) of the root page table, which is
the supervisor physical address divided by 4 KiB.

e The satp.ASID is an address space identifier used to facilitate address-translation fences
on a per-address-space basis.

e The satp.MODE field determines the selected address-translation scheme.

Translation Modes

Possible values for satp.MODE include:
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Table 11: SATP MODE Values

satp.MODE Description
0x0 Bare mode - no translation enabled
0x1 - Ox7 Reserved
0x8 Page-based 39-bit virtyual addressing (Sv39)
0x9 Page-based 48-bit virtual addressing (Sv48) (Not currently implemented)
OXA Reserved for page-based 57-bit virtual addressing
0xB Reserved for page-based 64-bit virtual addressing
OXC - OxF Reserved

When satp.MODE=0x0, supervisor virtual addresses are equal to supervisor physical addresses,
and there is no additional memory protection beyond the physical memory protection scheme
described in Section 4.8. In this case, the remaining fields in satp have no effect.

For RV64 architectures on SiFive designs, satp.MODE=8 is used for Sv39 virtual addressing,
and no other modes are currently supported.

Note that writing satp does not imply any ordering constraints between page-table updates and
subsequent address translations. If the new address space’s page tables have been modified,
or if an ASID is reused, it may be necessary to execute an SFENCE. VMA instruction after writing

satp, which will:

1. Synchronize page table writes and address translation hardware for higher privilege

levels

2. Guarantee previous stores are ordered before all subsequent references from the
hart to the memory management data structures

3. Flush Level 1 and L2 unified TLB entry.

Note

Content from Section 4.7.3 , Section 4.7.4, Section 4.7.5, and Section 4.7.6 are directly
from The RISC-V Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10.

4.7.3 Supervisor Memory-Management Fence Instruction (SFENCE.VMA)

The supervisor memory-management fence instruction SFENCE . VMA is used to synchronize
updates to in-memory memory-management data structures with current execution.
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Figure 15: SFENCE.VMA Instruction

Instruction execution causes implicit reads and writes to these data structures; however, these
implicit references are ordinarily not ordered with respect to explicit loads and stores. Executing
an SFENCE . VMA instruction guarantees that any previous stores already visible to the current
RISC-V hart are ordered before all subsequent implicit references from that hart to the memory-
management data structures.

The SFENCE.VMA is used to flush any local hardware caches related to address translation. It is
specified as a fence rather than a TLB flush to provide cleaner semantics with respect to which
instructions are affected by the flush operation and to support a wider variety of dynamic
caching structures and memory-management schemes. SFENCE . VMA is also used by higher
privilege levels to synchronize page table writes and the address translation hardware.

SFENCE . VMA orders only the local hart’s implicit references to the memory-management data
structures.

Consequently, other harts must be notified separately when the memory-management data
structures have been modified. One approach is to use 1) a local data fence to ensure local
writes are visible globally, then 2) an interprocessor interrupt to the other thread, then 3) a local
SFENCE.VMA in the interrupt handler of the remote thread, and finally 4) signal back to orig-inat-
ing thread that operation is complete. This is, of course, the RISC-V analog to a TLB shoot-
down.

For the common case that the translation data structures have only been modified for a single
address mapping (i.e., one page or superpage), rs1 can specify a virtual address within that
mapping to affect a translation fence for that mapping only. Furthermore, for the common case
that the translation data structures have only been modified for a single address-space identifier,
rs2 can specify the address space. The behavior of SFENCE . VMA depends on rs1 and rs2 as
follows:

* If rs1=x0 and rs2=x0, the fence orders all reads and writes made to any level of the page
tables, for all address spaces.

« If rs1=x0 and rs2#x0, the fence orders all reads and writes made to any level of the page
tables, but only for the address space identified by integer register rs2. Accesses to global
mappings are not ordered.

» If rs1#x0 and rs2=x0, the fence orders only reads and writes made to the leaf page table
entry corresponding to the virtual address in rs1, for all address spaces.

e If rs1#x0 and rs2#x0, the fence orders only reads and writes made to the leaf page table
entry corresponding to the virtual address in rsi, for the address space identified by integer
register rs2. Accesses to global mappings are not ordered.

When rs2#x0, bits [SXLEN-1:ASIDMAX] of the value held in rs2 are reserved for future use
and should be zeroed by software and ignored by current implementations. Furthermore, if [ASI-
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DLEN < ASIDMAX], the implementation shall ignore bits ASIDMAX-1:ASIDLEN of the value
held in rs2.

4.7.4 Scenarios Which Require SFENCE.VMA Instruction

The following common situations typically require executing an SFENCE . VMA instruction:

« When software recycles an ASID (i.e., reassociates it with a different page table), it should
first change satp to point to the new page table using the recycled ASID, then execute
SFENCE . VMA with rs1=x0 and rs2 set to the recycled ASID. Alternatively, software can exe-
cute the same SFENCE. VMA instruction while a different ASID is loaded into satp, provided
the next time satp is loaded with the recycled ASID, it is simultaneously loaded with the new
page table.

« If the implementation does not provide ASIDs, or software chooses to always use ASID 0,
then after every satp write, software should execute SFENCE . VMA with rs1=x0. In the com-
mon case that no global translations have been modified, rs2 should be set to a register
other than x0 but which contains the value zero, so that global translations are not flushed.

« If software modifies a non-leaf PTE, it should execute SFENCE.VMA with rs1=x0. If any PTE
along the traversal path had its G bit set, rs2 must be x0; otherwise, rs2 should be set to the
ASID for which the translation is being modified.

« |f software modifies a leaf PTE, it should execute SFENCE . VMA with rsi set to a virtual
address within the page. If any PTE along the traversal path had its G bit set, rs2 must be
x0; otherwise, rs2 should be set to the ASID for which the translation is being modified.

» For the special cases of increasing the permissions on a leaf PTE and changing an invalid
PTE to a valid leaf, software may choose to execute the SFENCE . VMA lazily. After modifying
the PTE but before executing SFENCE . VMA, either the new or old permissions will be used. In
the latter case, a page fault exception might occur, at which point software should execute
SFENCE.VMA in accordance with the previous bullet point.

Speculation

The U74 will perform a speculative data access as a result of speculative ITLB refill. Changes in
the satp register do not necessarily flush TLB entries. It is required to execute an SFENCE.VMA
instruction after modifying page table entries in order to flush the cached translations. Excep-
tions only occur on accesses that are generated as a result of instruction execution, not access
that are done speculatively.

ASID Usage for Supervisor Software

Supervisor software that uses ASIDs should use a honzero ASID value to refer to the same
address space across all harts in the supervisor execution environment (SEE) and should not
use an ASID value of 0. If supervisor software does not use ASIDs, then the ASID field in the
satp CSR should be set to 0.
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4.7.5 Trap Virtual Memory

The mstatus.TVM (Trap Virtual Memory) bit supports intercepting supervisor virtual-memory
management operations. When TvM=1, attempts to read or write the satp CSR or execute the
SFENCE . VMA instruction while executing in S-mode will raise an illegal instruction exception.
When TVvM=0, these operations are permitted in supervisor mode. TVM is hard-wired to ® when
supervisor mode is not supported. The TVM mechanism improves virtualization efficiency by per-
mitting guest operating systems to execute in supervisor mode, rather than classically virtualiz-
ing them in user mode. This approach obviates the need to trap accesses to most S-mode
CSRs. Trapping satp accesses and the SFENCE. VMA instruction provides the hooks necessary
to lazily populate shadow page tables.

4.7.6 Virtual Address Translation Process

For Sv39, LEVELS equals 3, and PTESIZE equals 8 in the steps below. A virtual address (va) is
translated into a physical address (pa) as follows:

1. Letabe satp.ppn x PAGESIZE, and leti = LEVELS - 1.

2. Let pte be the value of the PTE at address a + va.vpn][i] x PTESIZE. If accessing pte
violates a PMA or PMP check, raise an access exception corresponding to the origi-
nal access type.

3. Ifpte.v =0, orif pte.r = 0 and pte.w = 1, stop and raise a page-fault exception corre-
sponding to the original access type.

4. Otherwise, the PTE is valid. If pte.r = 1 or pte.x = 1, go to step 5. Otherwise, this
PTE is a pointer to the next level of the page table. Leti=i-1. If i <0, stop and raise
a page-fault exception corresponding to the original access type. Otherwise, let a =
pte.ppn x PAGESIZE and go to step 2.

5. Aleaf PTE has been found. Determine if the requested memory access is allowed
by the pte.r, pte.w, pte.x, and pte.u bits, given the current privilege mode and the
value of the SUM and MXR fields of the mstatus register. If not, stop and raise a
page-fault exception corresponding to the original access type.

6. Ifi>0and pte.ppn[i — 1:0] # 0, this is a misaligned superpage; stop and raise a
page-fault exception corresponding to the original access type.

7. If pte.a=0, or if the memory access is a store and pte.d = 0, either raise a page-
fault exception corresponding to the original access type, or:
a. Set pte.ato 1 and, if the memory access is a store, also set pte.d to 1.

b. If this access violates a PMA or PMP check, raise an access exception
corresponding to the original access type.

c. This update and the loading of pte in step 2 must be atomic; in particu-
lar, no intervening store to the PTE may be perceived to have occurred
in-between.

8. The translation is successful. The translated physical address is given as follows:
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a. pa.pgoff = va.pgoff.

. Ifi>0, then this is a superpage translation and pa.ppn[i—1:0] =
va.vpn[i— 1:0].

C. pa.ppn[LEVELS -1 :i] = pte.ppn[LEVELS -1 : i].

4.7.7 \Virtual-to-Physical Mapping Example

The following figure is a high-level view of how a virtual address is mapped to a physical
address for a Linux application. When the Linux kernel creates a process, it will allocate multiple
pages of physical memory to store the code and data. TLB MMU is used to:

< Translate the virtual addresses to physical addresses

« Provide uniform virtual memory layout for a user application

« Protect user applications unauthorized access to other address space

Virtual Address Physical Address

0x40_0080_03F0
Stack \

0xA000_0000

Off Chip Volatile Memory

\J 0x8000_0000

0x4000_0000

Mapped

with

multiple  —m8—
TLB

entries

Heap

Off Chip Non Volatile Memory
data & bss

0x2000_0000

Text
Peripheral Address space

0x0001_0000

0x0000_1000

J Debug & Reserve Address space
0x0000_0000 0x0000_0000

Figure 16: Linux User Application Memory Map Example

In this example, code beginning at VA=0x0001_0000 needs to be mapped to an address in off
chip volatile memory.

When the hart tries to execute instructions at this address, it needs to use a matched TLB page
table entry to do virtual address to physical address translation. If it can not be located in the
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level 1 instruction TLB, or the level 2 unified TLB, the hart will start hardware table walk from the
TLB page table base address. The page table base address is obtained by multiplying
satp.PPN by the level 2 PAGESIZE (4KiB).
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Figure 17: Hardware Table Walk Example

The TLB MMU will execute a page table walk in order to determine the correct mapping for a
particular virtual address. Page table entries are pointers to the next level page table if the page
is marked as not Readable (R=0), not Writable (w=0), and not Executable (x=0). Otherwise it is a
leaf PTE.

In this example, there are 3 levels of page table entries. The hart will start the hardware table
walk from the level 1 page table entry. In the Sv39 scheme, there are 512 page table entries in
level 1 page table entry. A hart can quickly locate the entry using VPN2 number, in this case,
entry 0. The hart will continue the hardware table walk to the level 2 page table entry when the
entry doesn’'t match.

There are 512 clusters of page table entries in level 2 and each cluster also has 512 TLB page
table entries. In this example, PPNs in the level 1 entry 0 is used to locate the right cluster in the
level 2 page entry. The hart will locate the entry using VPN1 number, in this case, entry 0. The
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hart will continue a hardware table walk to level 3 page table entry when this entry does not
match.

At the level 3 page table entry, there are 512x512 clusters of page table entries, and each clus-
ter has 512 TLB page table entries. In this example, PPNs in the level 2 entry 0 is used to locate
the correct cluster in the level 3 page entry. The hart then finds the entry using the VPNJ[O]
value, which in this case, correspons to entry 15.

When there is a match in level 3 page table entry, virtual address will map to physical address.
The physical page number is combined with the page offset to give the complete physical
address.

4.7.8 MMU at Reset

The TLB MMU is disabled by default out of reset. All accessed regions have a 1:1 virtual to
physical mapping when the MMU is disabled. If the PMP is not yet enabled, all access permis-
sions out of reset are determined by the static PMA values.

4.8 Physical Memory Protection (PMP)

Machine mode is the highest privilege level and by default has read, write, and execute permis-
sions across the entire memory map of the device. However, privilege levels below machine
mode do not have read, write, or execute permissions to any region of the device memory map
unless it is specifically allowed by the PMP. For the lower privilege levels, the PMP may grant
permissions to specific regions of the device’s memory map, but it can also revoke permissions
when in machine mode.

When programmed accordingly, the PMP will check every access when the hart is operating in
supervisor or user modes. For machine mode, PMP checks do not occur unless the lock bit (L)
is set in the pmpcfgY CSR for a particular region.

PMP checks also occur on loads and stores when the machine previous privilege level is super-
visor or User (mstatus.MPP=0x1 or mstatus.MPP=0x0), and the Modify Privilege bit is set
(mstatus.MPRV=1). For virtual address translation, PMP checks are also applied to page table
accesses in supervisor mode.

The U74 PMP supports 8 regions with a minimum region size of 4096 bytes.

This section describes how PMP concepts in the RISC-V architecture apply to the U74. For
additional information on the PMP refer to The RISC-V Instruction Set Manual, Volume II: Privi-
leged Architecture, Version 1.10.

4.8.1 PMP Functional Description

The U74 PMP unit has 8 regions and a minimum granularity of 4096 bytes. Access to each
region is controlled by an 8-bit pmpXcfg field and a corresponding pmpaddrX register. Overlap-
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ping regions are permitted, where the lower numbered pmpXcfg and pmpaddrX registers take
priority over highered numbered regions. The U74 PMP unit implements the architecturally
defined pmpcfgY CSR pmpcfg0, supporting 8 regions. pmpcfg2 is implemented, but hardwired
to zero. Access to pmpcfgl or pmpcfg3 results in an illegal instruction exception.

The PMP registers may only be programmed in M-mode. Ordinarily, the PMP unit enforces per-
missions on S-mode and U-mode accesses. However, locked regions (see Section 4.8.2) addi-
tionally enforce their permissions on M-mode.

4.8.2 PMP Region Locking

The PMP allows for region locking whereby, once a region is locked, further writes to the config-
uration and address registers are ignored. Locked PMP entries may only be unlocked with a
system reset. A region may be locked by setting the L bit in the pmpXcfg register.

In addition to locking the PMP entry, the L bit indicates whether the R/W/X permissions are
enforced on machine mode accesses. When the L bit is clear, the R/W/X permissions apply to
S-mode and U-mode.

4.8.3 PMP Registers

Each PMP region is described by an 8-bit pmpXcfg field, used in association with a 64-bit
pmpaddrX register that holds the base address of the protected region. The range of each
region depends on the Addressing (A) mode described in the next section. The pmpXcfg fields
reside within 64-bit pmpcfgY CSRs.

Each 8-bit pmpXcfg field includes a read, write, and execute bit, plus a two bit address-matching
field A, and a Lock bit, L. Overlapping regions are permitted, where the lowest numbered PMP
entry wins for that region.

PMP Configuration Registers

For RV64 architectures, pmpcfgl and pmpcfg3 are not implemented. This reduces the footprint
since pmpcfg2 already contains configuration fields pmp8cfg through pmpiicfg for both RV32
and RV64.

E C1c;E M - A 4B 3B 23 lels 87 0
l pmp7cfg ‘ pmp6cfg ‘ pmp5cfg ‘ pmpécfg ‘ pmp3cfg ‘ pmp2cfg ‘ pmplcfg ‘ pmpOcfg

Figure 18: RV64 pmpcfgo Register

63 5655 487 4B9 3231 2423 1615 87 0
l pmp1l5cfg ‘ pmplacfg ‘ pmpl3cfg ‘ pmpl2cfg ‘ pmpllcfg ‘ pmpl0cfg ‘ pmp9cfg ‘ pmp8cfg ‘

Figure 19: RV64 pmpcfg2 Register

The pmpcfgY and pmpaddrX registers are only accessible via CSR specific instructions such as
csrr for reads, and csrw for writes.
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7 6 ' 5 4 ' 3 2 1 0
L (WARL) 0 (WARL) \ A (WARL) | xwary [ wwarL) | R(waRL)

Figure 20: RV64 pmpXcfg bitfield

Table 12: pmpXcfg Bitfield Description

Bit Description

0 R: Read Permissions
0x0 - No read permissions for this region
0x1 - Read permission granted for this region

1 W: Write Permissions
0x0 - No write permissions for this region
0x1 - Write permission granted for this region

2 X: Execute permissions
0x0 - No execute permissions for this region
0x1 - Execute permission granted for this region

[4:3] | A: Address matching mode

0x0 - PMP Entry disabled

0x1 - Top of Range (TOR)

0x2 - Naturally Aligned Four Byte Region (NA4)

0x3 - Naturally Aligned Power-of-Two region, = 8 bytes (NAPOT)

7 L: Lock Bit

0x0 - PMP Entry Unlocked, no permission restrictions applied to machine mode. PMP
entry only applies to S and U modes.

0x1 - PMP Entry Locked, permissions enforced for all privilege levels including
machine mode. Writes to pmpXcfg and pmpcfgy are ignored and can only be cleared
with system reset.

Note: The combination of R=0 and wW=1 is not currently implemented.

Out of reset, the PMP register fields A and L are set to 0. All other hart state is unspecified by
The RISC-V Instruction Set Manual, Volume Il: Privileged Architecture, Version 1.10.

Additional details on the available address matching modes is described below.

A = 0x0: The attributes are disabled. No PMP protection applied for any privilege level.

A = 0x1: Top of range (TOR). Supports four byte granularity, and the regions are defined by
[PMP(i) > a > PMP(i - 1)], where 'a" is the address range. PMP(i) is the top of the range, where

PMP(i - 1) represents the lower address range. If only pmpocfg selects TOR, then the lower
bound is set to address 0x0.

A = 0x2: Naturally aligned four-byte region (NA4). Supports only a four-byte region with four
byte granularity. Not supported on SiFive U7 series cores since minimum granularity is 4 KiB.
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A = 0x3: Naturally aligned power-of-two region (NAPQOT), = 8 bytes. When this setting is pro-
grammed, the low bits of the pmpaddrX register encode the size, while the upper bits encode the
base address right shifted by two. There is a zero bit in between, we will refer to as the least sig-

nificant zero bit (LSZB).

Some examples follow using NAPOT address mode.

Table 13: pmpaddrx Encoding Examples for A=NAPOT

Address | Sive | Posttion pnpaddrx Value
Ox4000_0000 8B 0 (0x1000_0000 1'b0)
0Xx4000_0000 32B 2 (0x1000_0000 3'b011)
0Xx4000_0000 4 KB 9 (0X1000_0000 10'b01_1111_1111)
OXx4000_0000 64 KB 13 (0X1000_0000 14'b01_1111 1111 1111)
Ox4000_0000 1 MB 17 (0x1000_0000 18'b01_1111 1111 11311 1111)
*Region size is 2(-578+3),

PMP Address Registers

The PMP has 8 address registers. Each address register pmpaddrX correlates to the respective
pmpxcfg field. Each address register contains the base address of the protected region right
shifted by two, for a minimum 4-byte alignment.

The maximum encoded address bits per The RISC-V Instruction Set Manual, Volume II: Privi-
leged Architecture, Version 1.10 are [55:2].

[ owary [T address[55:2] (WARL) T

Figure 21: RV64 pmpaddrX Register

4.8.4 PMP Programming Overview

The PMP registers can only be programmed in machine mode. The pmpaddrX register should
be first programmed with the base address of the protected region, right shifted by two. Then,
the pmpcfgy register should be programmed with the properly configured 64-bit value containing
each properly aligned 8-bit pmpXcfg field. Fields that are not used can be simply written to O,
marking them unused.

PMP Programming Example

The following example shows a machine mode only configuration where PMP permissions are
applied to three regions of interest, and a fourth region covers the remaining memory map.
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Recall that lower numbered pmpXcfg and pmpaddrX registers take priority over higher numbered
regions. This rule allows higher numbered PMP registers to have blanket coverage over the
entire memory map while allowing lower numbered regions to apply permissions to specific
regions of interest. The following example shows a 64 KB Flash region at base address 0x0, a
32 KB RAM region at base address 0x2000_0000, and finally a 4 KB peripheral region at base
address base 0x3000_0000. The rest of the memory map is reserved space.

Read, Execule b Region 0- TOR for 648 region
Flash I—V"P . pmpicly = BH'1000_1101 (0x80)
. P = CeD000_4000
ANk DS
o ol

Read, g Region 1= MAPOT for 32KE region
RAM —
pmplcip = Bo'1001 L0011 (OwSE)

2anmm mam - prrguadr], = CoeDB00_OFFF [LSZE = 17)

— Read, Wrie Region 2= MAPOT for 4K region
P Sl |—3 pmgiZciy = B1001_10L1 (GE])

- prigacidr? = CwDODD OUFF [LEZE = 9)

P Aropss Region 3: MUPOT for 4G8 regaon

b,
I—If:r..z.-..-.,m,: 7 | pmgstetg = str1001_t000 (e

- pmpaddrs = (wlFFF_FFFF (LS8 = 19}

a2 W E

pmpxcty  [t]e]w [anm{xfu]n]

Figure 22: PMP Example Block Diagram

PMP Access Scenarios

The L, R, W, and X bits only determine if an access succeeds if all bytes of that access are cov-
ered by that PMP entry. For example, if a PMP entry is configured to match the four-byte range
0xC-0xF, then an 8-byte access to the range 0x8—0xF will fail, assuming that PMP entry is the
highest-priority entry that matches those addresses.

While operating in machine mode when the lock bit is clear (L=0), if a PMP entry matches all
bytes of an access, the access succeeds. If the lock bit is set (L=1) while in machine mode, then
the access depends on the permissions set for that region. Similarly, while in Supervisor mode
or User mode, the access depends on permissions set for that region.

Failed read or write accesses generate a load or store access exception, and an instruction
access fault would occur on a failed instruction fetch. When an exception occurs while attempt-
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ing to execute from a region without execute permissions, the fault occurs on the fetch and not
the branch, so the mepc CSR will reflect the value of the targeted protected region, and not the
address of the branch.

It is possible for a single instruction to generate multiple accesses, which may not be mutually
atomic. If at least one access generated by an instruction fails, then an exception will occur. It
might be possible that other accesses from a single instruction will succeed, with visible side
effects. For example, references to virtual memory may be decomposed into multiple accesses.

On some implementations, misaligned loads, stores, and instruction fetches may also be
decomposed into multiple accesses, some of which may succeed before an access exception
occurs. In particular, a portion of a misaligned store that passes the PMP check may become
visible, even if another portion fails the PMP check. The same behavior may manifest for float-
ing-point stores wider than XLEN bits (e.g., the FSD instruction in RV32D), even when the store
address is naturally aligned.

4.8.5 PMP and Paging

The Physical Memory Protection mechanism is designed to compose with the page-based vir-
tual memory systems described in The RISC-V Instruction Set Manual, Volume II: Privileged
Architecture, Version 1.10. When paging is enabled, instructions that access virtual memory
may result in multiple physical-memory accesses, including implicit references to the page
tables. The PMP checks apply to all of these accesses. The effective privilege mode for implicit
page-table accesses is supervisor mode.

Implementations with virtual memory are permitted to perform address translations speculatively
and earlier than required by an explicit virtual-memory access. The PMP settings for the result-
ing physical address may be checked at any point between the address translation and the
explicit virtual-memory access. A mis-predicted branch to a non-executable address range does
not generate a trap. Hence, when the PMP settings are modified in a manner that affects either
the physical memory that holds the page tables or the physical memory to which the page
tables point, M-mode software must synchronize the PMP settings with the virtual memory sys-
tem. This is accomplished by executing an SFENCE . VMA instruction with rs1=x0 and rs2=xo,
after the PMP CSRs are written.

If page-based virtual memory is not implemented, or when it is disabled, memory accesses
check the PMP settings synchronously, so no fence is needed.

4.8.6 PMP Limitations

In a system containing multiple harts, each hart has its own PMP device. The PMP permissions
on a hart cannot be applied to accesses from other harts in a multi-hart system. In addition,
SiFive designs may contain a Front Port to allow external bus masters access to the full mem-
ory map of the system. The PMP cannot prevent access from external bus masters on the Front
Port.
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4.8.7 Behavior for Regions without PMP Protection

If a non-reserved region of the memory map does not have PMP permissions applied, then by
default, supervisor or user mode accesses will fail, while machine mode access will be allowed.
Access to reserved regions within a device’s memory map (an interrupt controller for example)
will return @x0 on reads, and writes will be ignored. Access to reserved regions outside of a
device’'s memory map without PMP protection will result in a bus error. The bus error can gener-
ate an interrupt to the hart using the Bus-Error Unit (BEU). See Chapter 11 for more information.

4.8.8 Cache Flush Behavior on PMP Protected Region

When a line is brought into cache and the PMP is set up with the lock (L) bit asserted to protect
a part of that line, a data cache flush instruction will generate a store access fault exception if
the flush includes any part of the line that is protected. The cache flush instruction does an
invalidate and write-back, so it is essentially trying to write back to the memory location that is
protected. If a cache flush occurs on a part of the line that was not protected, the flush will suc-
ceed and not generate an exception. If a data cache flush is required without a write-back, use
the cache discard instruction instead, as this will invalidate but not write back the line.

4.9 Hardware Performance Monitor

The U74 processor core supports a basic hardware performance monitoring (HPM) facility. The
performance monitoring facility is divided into two classes of counters: fixed-function and event-
programmable counters. These classes consist of a set of fixed counters and their counter-
enable registers, as well as a set of event-programmable counters and their event selector reg-
isters. The registers are available to control the behavior of the counters. Performance monitor-
ing can be useful for multiple purposes, from optimization to debug.

4.9.1 Performance Monitoring Counters Reset Behavior

The instret and cycle counters are initialized to zero on system reset. The hardware perfor-
mance monitor event counters are not initialized on system reset, and thus have an arbirary
value. Users can write desired values to the counter control and status registers (CSRs) to start
counting at a given, known value.

4.9.2 Fixed-Function Performance Monitoring Counters

A fixed-function performance monitor counter is hardware wired to only count one specific event
type. That is, they cannot be reconfigured with respect to the event type(s) they count. The only
modification to the fixed-function performance monitoring counters that can be done is to enable
or disable counting, and write the counter value itself.

The U74 processor core contains two fixed-function performance monitoring counters.
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Fixed-Function Cycle Counter (ncycle)

The fixed-function performance monitoring counter mcycle holds a count of the number of clock
cycles the hart has executed since some arbitrary time in the past. The mcycle counter is read-
write and 64 bits wide. Reads of mcycle return all 64 bits of the mcycle CSR.

Fixed-Function Instructions-Retired Counter (minstret)

The fixed-function performance monitoring counter minstret holds a count of the number of
instructions the hart has retired since some arbitrary time in the past. The minstret counter is
read-write and 64 bits wide. Reads of minstret return all 64 bits of the minstret CSR.

4.9.3 Event-Programmable Performance Monitoring Counters

Complementing the fixed-function counters are a set of programmable event counters. The U74
HPM includes two additional event counters, mhpmcounter3 and mhpmcounter4. These pro-
grammable event counters are read-write and 64 bits wide. The hardware counters themselves
are implemented as 40-bit counters on the U74 core series. These hardware counters can be
written to in order to initialize the counter value.

4.9.4 Event Selector Registers

To control the event type to count, event selector CSRs mhpmevent3 and mhpmevent4 are used
to program the corresponding event counters. These event selector CSRs are 64-bit WARL reg-
isters.

The event selectors are partitioned into two fields; the lower 8 bits select an event class, and the
upper bits form a mask of events in that class.

MXLEN-1 26|25 8|7 0

(Unimplemented Bits) Event Mask Event Class

Figure 23: Event Selector Fields

The counter increments if the event corresponding to any set mask bit occurs. For example, if
mhpmevent3 is set to ©x4200, then mhpmcounter3 will increment when either a load instruction
or a conditional branch instruction retires. An event selector of 0 means "count nothing".

4.9.5 Event Selector Encodings

Table 14 describes the event selector encodings available. Events are categorized into classes
based on the Event Class field encoded in mhpmeventX[7:0]. One or more events can be pro-
grammed by setting the respective Event Mask bit for a given event class. An event selector
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encoding of 0 means "count nothing". Multiple events will cause the counter to increment any
time any of the selected events occur.

Table 14: mhpmevent Register

Machine Hardware Performance Monitor Event Register
Instruction Commit Events, mhpmeventX[7:0]=0

Bits Description

8 Exception taken

9 Integer load instruction retired

10 Integer store instruction retired

11 Atomic memory operation retired

12 System instruction retired

13 Integer arithmetic instruction retired

14 Conditional branch retired

15 JAL instruction retired

16 JALR instruction retired

17 Integer multiplication instruction retired

18 Integer division instruction retired

19 Floating-point load instruction retired

20 Floating-point store instruction retired

21 Floating-point addition retired

22 Floating-point multiplication retired

23 Floating-point fused multiply-add retired

24 Floating-point division or square-root retired

25 Other floating-point instruction retired

Microarchitectural Events, mhpmeventX[7:0]=1

Bits Description

8 Load-use interlock

9 Long-latency interlock
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Table 14: mhpmevent Register

10 CSR read interlock

11 Instruction cache/ITIM busy

12 Data cache/DTIM busy

13 Branch direction misprediction
14 Branch/jump target misprediction
15 Pipeline flush from CSR write

16 Pipeline flush from other event
17 Integer multiplication interlock
18 Floating-point interlock

Memory System Events, mhpmeventX[7:0]=2

Bits Description
8 Instruction cache miss
9 Data cache miss or memory-mapped I/O access
10 Data cache write-back
11 Instruction TLB miss
12 Data TLB miss

Event mask bits that are writable for any event class are writable for all classes. Setting an
event mask bit that does not correspond to an event defined in Table 14 has no effect for current
implementations. However, future implementations may define new events in that encoding
space, so it is not recommended to program unsupported values into the mhpmevent registers.

Combining Events

It is common usage to directly count each respective event. Additionally, it is possible to use
combinations of these events to count new, unique events. For example, to determine the aver-
age cycles per load from a data memory subsystem, program one counter to count "Data cache/
DTIM busy" and another counter to count "Integer load instruction retired". Then, simply divide
the "Data cache/DTIM busy" cycle count by the "Integer load instruction retired" instruction
count and the result is the average cycle time for loads in cycles per instruction.

It is important to be cognizant of the event types being combined; specifically, event types
counting occurrences and event types counting cycles.
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4.9.6 Counter-Enable Registers

The 32-bit counter-enable registers mcounteren and scounteren control the availability of the
hardware performance-monitoring counters to the next-lowest privileged mode.

The settings in these registers only control accessibility. The act of reading or writing these
enable registers does not affect the underlying counters, which continue to increment when not
accessible.

When any bit in the mcounteren register is clear, attempts to read the cycle, time, instruction
retire, or hpmcounterX register while executing in S-mode will cause an illegal instruction excep-
tion. When one of these bits is set, access to the corresponding register is permitted in the next
implemented privilege mode, S-mode.

The same bit positions in the scounteren register analogously control access to these registers
while executing in U-mode. If S-mode is permitted to access a counter register and the corre-
sponding bit is set in scounteren, then U-mode is also permitted to access that register.

mcounteren and scounteren are WARL registers. Any of the bits may contain a hardwired
value of zero, indicating reads to the corresponding counter will cause an illegal instruction
exception when executing in a less-privileged mode.
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Memory Map

The memory map of the FU740-C000 is shown in Table 15.

Table 15: FU740-C000 Memory Map. Memory Attributes: R - Read, W - Write, X
- Execute, C - Cacheabe, A - Atomics

Base Top Attr. Description

OX0000_0000 OXO000_OFFF Debug

OX0000_1000 OX0000_1FFF r x Rom

OX0000_2000 OX0000_3FFF Reserved

OX0000_4000 OX0000_4FFF rw a | Test Status

OXx0000_5000 OXOO00_5FFF Reserved

OX0000_6000 OX0000_6FFF rw a | Chip Select

OX0000_7000 OX0000_FFFF Reserved

OX0001_0000 OX0001_7FFF r x Rom

0x0001_8000 OXOOFF_FFFF Reserved

0x0100_0000 Ox0100_1FFF rwx a | S7 DTIM (8 KiB)

O0x010060_2000 OX016F_FFFF Reserved

0x0170_0000 0x0170_OFFF rw a | S7 Hart 0 Bus Error Unit

0x0170_1000 0x0170_1FFF rw a [ U74 Hart 1 Bus Error Unit

0x0170_2000 0x0170_2FFF rw a | U74 Hart 2 Bus Error Unit

0x0170_3000 0x0170_3FFF rw a | U74 Hart 3 Bus Error Unit
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Table 15: FU740-C000 Memory Map. Memory Attributes: R - Read, W - Write, X
- Execute, C - Cacheabe, A - Atomics

Base Top Attr. Description
0x0170_4000 Ox0170_4FFF rw a | U74 Hart 4 Bus Error Unit
0x0170_5000 OXO1FF_FFFF Reserved
O0x0200_0000 OX0200_FFFF rw a | CLINT
0x0201_0000 0x0201_OFFF rw a | L2 Cache Controller
0x0201_1000 0x0201_FFFF Reserved
0x0202_0000 0x0202_0OFFF rw a | MSI
0x0202_1000 OX02FF_FFFF Reserved
OX0300_0000 OXO30F_FFFF rw a | DMA
0x0310_0000 OXO7FF_FFFF Reserved
0x0800_0000 Ox081F_FFFF rwx a | L2 Cache Controller
Ox0820_0000 OXO8FF_FFFF Reserved
OX0900_0000 OX091F_FFFF rwx a | Rom
0x0920_0000 OXO9FF_FFFF Reserved
Ox0A00_0000 OXObFF_FFFF rwxca | Rom
OXx0COO_0000 OXOFFF_FFFF rw a | PLIC
0Xx1000_0000 OX1000_O0OFFF rw a | PRCI
0Xx1000_1000 0Xx1000_FFFF Reserved
0x1001_00600 Ox1001_OFFF rw a | UARTO
0x1001_1000 OX1001_1FFF rw a | UART1
0x1001_2000 0Xx1001_FFFF Reserved
0x1002_0000 Ox1002_OFFF rw a|PWMO
0x1002_1000 Ox1002_1FFF rw a|PWML1
0x1002_2000 0X1002_FFFF Reserved
0X1003_0000 OX1003_O0OFFF rw a|l2CO0
0x1003_1000 Ox1003_1FFF rw a|l2C1
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Table 15: FU740-C000 Memory Map. Memory Attributes: R - Read, W - Write, X
- Execute, C - Cacheabe, A - Atomics

Base Top Attr. Description
0x1003_2000 0x1003_FFFF Reserved
0x1004_0000 Ox1004_OFFF rw a| QSPIO
0x1004_1000 0x1004_1FFF rw a | QSPI1
0x1004_2000 0x1004_FFFF Reserved
0x1005_0000 Ox1005_OFFF rw a | QSPI2
0x1005_1000 0x1005_FFFF Reserved
0x1006_0000 0Xx1006_OFFF rw a | GPIO
0x1006_1000 0x1006_FFFF Reserved
0x1007_0000 0x1007_OFFF rw a | OTP
0x1007_1000 0x1007_FFFF Reserved
0x1008_0000 0Xx1008_OFFF rw a | Pin Control
0x1008_1000 0x1008_FFFF Reserved
0x1009_0000 OX1009_1FFF rw a | Ethernet
0x1009_2000 0Xx1009_FFFF Reserved
OXx100A_0000 OX100A_OFFF rw a | GEMGXL MGMT
OXx100A_1000 OX100A_FFFF Reserved
0x100B_0000 Ox100B_3FFF rw a | Memory Controller
0Xx100B_4000 0Xx100B_7FFF Reserved
0x100B_8000 0Xx100B_8FFF rw a | Physical Filter
0x100B_9000 0Xx100B_FFFF Reserved
0x100C_0000 Ox100C_OFFF rw a | DDR MGMT
0x100C_1000 0Xx100C_FFFF Reserved
0x100D_0000 0Xx100D_OFFF rw a | PCIE MGMT
0x100D_1000 0x100D_FFFF Reserved
Ox100E_0000 Ox100E_OFFF rw a | Order Ogler
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Table 15: FU740-C000 Memory Map. Memory Attributes: R - Read, W - Write, X
- Execute, C - Cacheabe, A - Atomics

Base Top Attr. Description
Ox100E_1000 Ox13FF_FFFF Reserved
0x1400_0000 OX17FF_FFFF rwxca | Error Device 0
0x1800_0000 OX1FFF_FFFF rwxca | Error Device 1
0X2000_0000 OX2FFF_FFFF r x SPI O
0x3000_0000 OX3FFF_FFFF r x SPI'1
0x4000_0000 OX5FFF_FFFF rwx a | Reserved
OX6000_0000 OX7FFF_FFFF rw a | PCle
Ox8000_0000 Ox0008_7FFF_FFFF | rwxca | Memory

OxX0008_8000_0000 | OXOOOD_EFFF_FFFF Reserved
OX000D_FOO0O_0000 | OXxO000D_FFFF_FFFF | rw a | PCle
OXOOOE_0OOO_0000 | OXOOOE_FFFF_FFFF | rwx a | PCle
OXO00F_0000_0000 | OXOOOF_FFFF_FFFF Reserved
0x0010_0000_0000 | Ox0017_FFFF_FFFF | rwx a | Reserved
0x0018_0000_0000 | OxOO1F_FFFF_FFFF | rwxca | Reserved
0Xx0020_0000_0000 | OXO03F_FFFF_FFFF | r w a | PCle
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Boot Process

The FU740-C000 supports booting from several sources, which are controlled using the Mode
Select (MSEL[3:0]) pins on the chip. Typically, the boot process runs through several stages
before it begins execution of user-provided programs. These stages typically include the follow-

ing:

1. Zeroth Stage Boot Loader (ZSBL), which is contained in an on-chip mask ROM

2. First Stage Boot Loader (FSBL), which brings up PLLs and DDR memory, is the
default SiFive-provided FSBL for this chip

3. Berkeley Boot Loader (BBL), which adds emulation for soft instructions, is the

default SiFive-provided BBL used at product launch

4. User Payload, which contains the software to run, typically Linux

Both the ZSBL and FSBL download the next stage boot loader based on the MSEL setting. All

possible values are enumerated in Table 16. The three QSPI interfaces on the FU740-C000 can
be used to download media either from SPI flash (using x4 data pins or x1) or an SD card, using
the SPI protocol. These boot methods are detailed at the end of this chapter.

Table 16: Boot media used by ZSBL and FSBL depending on Mode Select

(MSEL)
MSEL FSBL BBL Purpose
0000 | - - loops forever waiting for debugger
0001 | - - jump directly to 0x2000_0000 (SPI 3)
0010 | - - jump directly to 0x3000_0000 (SPI 4)
0011 | - - (reserved)
0100 | - - (reserved)
0101 QSPIOx1 | QSPIOX1 | -
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Table 16: Boot media used by ZSBL and FSBL depending on Mode Select

(MSEL)
MSEL FSBL BBL
0110 | QSPIOx4 | QSPIO x4 | Rescue image from flash (preprogrammed)
0111 | QSPI1x4 | QSPI1x4 | -
1000 | QSPI1SD | QSPILSD | -
1001 QSPI2 x1 | QSPI2x1 | -
1010 QSPIO x4 | QSPIL SD | -
1011 | QSPI2 SD | QSPI2 SD | Rescue image from SD card
1100 QSPI1 x1 | QSPI2SD | -
1101 QSPI1 x4 | QSPI2 SD | -
1110 QSPIOx1 | QSPI2 SD | -
1111 | QSPIO x4 | QSPI2 SD | Default boot mode

6.1 Reset Vector

On power-on, all cores jump to 8x1004 while running directly off of the external clock input,

expected to be 26 MHz. The memory at this location contains:

This small gate ROM implements an MSEL-dependent jump for all cores as follows:

Table 17: Reset vector ROM

Address Contents
0x1000 The MSEL pin state
0x1004 auipct0, 0

0x1008 | Iw t1, -4(t0)

ox1eoc | sllit1, t1, Ox3
0x1010 | addtO, tO, t1
0x1014 | lw t0, 252(t0)
0x1018 | jrt0
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Table 18: Target of the reset vector

MSEL | Reset address Purpose

0000 | Ox0000_1004 loops forever waiting for debugger

0001 | 0x2000_00060 memory-mapped QSPIO

0010 | Ox3000_0000 memory-mapped QSPI1

0011 | Ox0001_0000 ZSBL (reserved)

0100 | Ox0001_0000 ZSBL (reserved)

0101 | Ox0001_0060060 ZSBL

0110 Ox0001_0000 ZSBL

0111 OXx0001_0000 ZSBL

1000 0Xx0001_0000 ZSBL

1001 | Ox0001_0000 ZSBL

1010 Ox0001_0000 ZSBL

1011 OXx0001_0000 ZSBL

1100 0Xx0001_0000 ZSBL

1101 | Ox0001_0000 ZSBL

1110 0Xx0001_0000 ZSBL

1111 OXx0001_0000 ZSBL

6.2 Zeroth Stage Boot Loader (ZSBL)

The Zeroth Stage Boot Loader (ZSBL) is contained in a mask ROM at 0x1_0000. It is responsi-
ble for downloading the more complicated FSBL from a GUID Partition Table. All cores enter the
ZSBL running directly off of the external clock input, expected to be at 26 MHz. The core with
mhartid zero configures the peripheral clock dividers and then searches for a partition with
GUID type 5B193300-FC78-40CD-8002-E86C45580B47. It does this by first downloading the
GPT header (bytes 512-604) and then sequentially scanning the partition table block by block
(512 bytes) until the partition is found. Then, the entire contents of this partition, the FSBL, are
downloaded into the L2 LIM at address 6x0800_0000. Execution then branches to the FSBL.

The ZSBL uses the MSEL pins to determine where to look for the FSBL partition:
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Table 19: FSBL location downloaded by the ZSBL

MSEL | FSBL location Method Width

0101 | QSPIO flash memory-mapped | x1

0110 | QSPIO flash memory-mapped | x4

0111 | QSPI1 flash memory-mapped | x4

1000 | QSPI1 SD card | bit-banged x1

1001 | QSPI2 flash bit-banged x1

1010 | QSPIO flash memory-mapped | x4

1011 | QSPI2 SD card | bit-banged x1

1100 | QSPI1 flash bit-banged x1

1101 | QSPI1 flash memory-mapped | x4

1110 | QSPIO flash bit-banged x1

1111 | QSPIO flash memory-mapped | x4

6.3 First Stage Boot Loader (FSBL)

The First Stage Boot Loader (FSBL) is executed from the L2 LIM, located at 0x0800_0000. It is
responsible for preparing the system to run from DDR. It performs these operations:

Switch core frequency to 1 GHz (or 500 MHz if TLCLKSEL=1) by configuring and running off
the on-chip PLL

Configure DDR PLL, PHY, and controller
Set GEM GXL TX PLL to 125 MHz and reset it
If there is an external PHY, reset it

Download BBL from a partition with GUID type
2E54B353-1271-4842-806F -E436D6AF69851

Scan the OTP for the chip serial number
Copy the embedded DTB to DDR, filling in FSBL version, memory size, and MAC address
Enable 15 of the 16 L2 ways (this removes almost all of the L2 LIM memory)

Jump to DDR memory (0x8000_0000)

The FSBL reads the MSEL switches to determine where to look for the BBL partition:
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Table 20: BBL location downloaded by the FSBL

MSEL | BBL location Method Width
0101 | QSPIO flash memory-mapped | x1
0110 | QSPIO flash memory-mapped | x4
0111 | QSPI1 flash memory-mapped | x4
1000 | QSPI1 SD card | bit-banged x1
1001 | QSPI2 flash bit-banged x1
1010 | QSPI1 SD card | bit-banged x1
1011 | QSPI2 SD card | bit-banged x1
1100 | QSPI2 SD card | bit-banged x1
1101 | QSPI2 SD card | bit-banged x1
1110 | QSPI2 SD card | bit-banged x1
1111 | QSPI2 SD card | bit-banged x1

6.4 Berkeley Boot Loader (BBL)

The Berkeley Boot Loader (BBL) is executed from DDR, located at 0x8000_0000. It is responsi-
ble for providing the Supervisor Binary Interface (SBI) as well as emulating any RISC-V required
instructions that are not implemented by the chip itself. At the time of writing, BBL often includes
an embedded Linux kernel payload that it jumps to once the SBI is initialized.

6.5 Boot Methods

Both the ZSBL and FSBL download the next stage boot-loader from a QSPI interface. However,
the protocol used varies depending on MSEL. The details of these boot methods are detailed
here.

6.5.1 Flash Bit-Banged x1

When using the flash bit-banged boot method, the firmware switches the QSPI controller out of
flash memory-mapped mode and sends SPI commands directly to the controller. In this mode,
the QSPI interface is clocked no higher than 10 MHz. When the core is running at 26 MHz, this
means 8.3 MHz. At 1 GHz, this means exactly 10 MHz.

The firmware first sends commands RESET_ENABLE (0x66) and RESET (0x99). To download data
required during GPT parsing and partition payload, it uses READ (0x03) with a 3-byte address
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and no dummy cycles. Data is streamed continuously for the entire transfer. This means that
partitions needed during boot must be located within the low 16 MiB of the flash.

6.5.2 Flash Memory-Mapped x1

When using the flash memory-mapped x1 boot method, the firmware uses the QSPI controller’s
hardware SPI flash read support. In this mode, the QSPI interface is clocked no higher than

10 MHz. When the core is running at 26 MHz, this means 8.3 MHz. At 1 GHz, this means
exactly 10 MHz.

The firmware first manually runs RESET_ENABLE (0x66) and RESET (0x99). To download data
required during GPT parsing and partition payload, it uses memcpy from the memory-mapped
QSPI region. The QSPI controller is configured so that hardware flash interfaces uses READ
(0x03) with a 3-byte address and no dummy cycles. Data is streamed continuously for the
entire transfer. This means that partitions needed during boot must be located within the low
16 MiB of the flash.

6.5.3 Flash Memory-Mapped x4

When using the flash memory-mapped x4 boot method, the firmware uses the QSPI controller’s
hardware SPI flash read support. In this mode, the QSPI interface is clocked no higher than

10 MHz. When the core is running at 26 MHz, this means 8.3 MHz. At 1 GHz, this means
exactly 10 MHz.

The firmware first manually runs RESET_ENABLE (0x66) and RESET (0x99). To download data
required during GPT parsing and partition payload, it uses memcpy from the memory-mapped
QSPI region. The QSPI controller is configured so that hardware flash interfaces uses
FAST_READ_QUAD_OUTPUT (0x6b) with a 3-byte address and 8 dummy cycles. Data is streamed
continuously for the entire transfer. This means that partitions needed during boot must be
located within the low 16 MiB of the flash.

6.5.4 SD Card Bit-Banged x1

When using the SD card boot method, the firmware performs these initialization steps:

Wait 1 ms before initiating commands.

Set the QSPI controller to 400 kHz.

Send 10 SPI clock pulses with CS inactive.
Send CMDO, CMD8, ACMD41, CMD58, CMD16.
Set the QSPI controller to 20 MHz.

a c wn ke

To download data required during GPT parsing and partition payload, it uses the
READ_BLOCK_MULTIPLE (18) command. Data is streamed continuously for the entire transfer.
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Clocking and Reset

This chapter describes the clocking and reset operation of the FU740-C000.

Clocking and reset is managed by the PRCI (Power Reset Clocking Interrupt) block (Figure 24).
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Figure 24: Clocking and Reset Architecture

7.1 Clocking

FU740-C000 generates all internal clocks from 26 MHz hfclk driven from an external oscillator
(HFCLKIN) or crystal (HFOSCIN) input, selected by input HFXSEL.

All harts operate in a single clock domain (coreclk) supplied by either corepll or
dvfscorepll, which can be selected using the corepllsel register. These PLLs step 26 MHz

Introduction © SiFive, Inc. Page 75



7 Clocking and Reset

hfclk up to higher frequencies. The recommended frequency of coreclk is 1.0 GHz, however
operation at up to 1.5 GHz is possible.

tlclk is a divided version of the coreclk and generates the clock for the L2 cache.
The hfpclkpll generates the clock for peripherals such as SPI, UART, GPIO, I12C, and PWM.

dvfs_core_pll enables the user to change the CPU frequency without dropping down to the
lower frequency hfclk.

The DDR, Ethernet and PCle Subsystems operate asynchronously. The PRCI contains two
dedicated PLLs used to step 26 MHz hfclk up to the DDR and Ethernet operating frequencies.
The PCle Subsystem contains its own clock generation.

The PRCI contains memory-mapped registers that control the clock selection and configuration
of the PLLs. On power-on, the default PRCI register settings start the harts running directly from
hfclk. All additional clock management, for instance initializing the DDR PLL or stepping the
coreclk frequency, is performed through software reads and writes to the memory-mapped
PRCI control registers.

The CPU real time clock (rtcclk) runs at 1 MHz and is driven from input pin RTCCLKIN. This
should be connected to an external oscillator.

JTAG debug logic runs off of JTAG TCK as described in Chapter 26.

7.2 Reset
The FU740-C000 has two external reset pins.

PORESET_N is an asynchonous active low power-on reset that should be connected to an exter-
nal power sequencing/supervisory circuit.

ERESET_N is an asynchonous active low reset that can be connected to a reset button. There is
internal debounce and stretch logic.

The PRCI also contains hardware to generate internal synchronous resets for coreclk, t1clk,
and hfpclk domains and handle reset to and from the debug module. Resets for the DDR, Eth-
ernet and PCIE Subsystems are performed through software reads and writes to memory-
mapped PRCI control registers. These registers are outlined in Table 34 below.

7.3 Memory Map (ox1e00_00ee—ex1000_0FFF)

This section presents an overview of the PRCI control and configuration registers.
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Table 21: PRCI Memory Map

Offset Name Description
0x00 | hfxosccfg Crystal Oscillator Configuration and Status
0x04 | core_pllcfg PLL Configuration and Status
0x08 | core_plloutdiv PLL Final Divide Configuration
0x0C | ddr_pllcfg PLL Configuration and Status
0x10 | ddr_plloutdiv PLL Final Divide Configuration
0x1C | gemgx1l_pllcfg PLL Configuration and Status
0x20 | gemgxl_plloutdiv PLL Final Divide Configuration
0x24 | core_clk_sel_reg Select core clock source. 0: coreclkpll 1: external hfclk
0x28 | devices_reset_n Software controlled resets (active low)
0x2C | clk_mux_status Current selection of each clock mux
0x38 | dvfs_core_pllcfg PLL Configuration and Status
0x3C | dvfs_core_plloutdiv | PLL Final Divide Configuration
0x40 | corepllsel Select which PLL output to use for core clock. O: corepll 1:
dvfscorepll
0x50 | hfpclk_pllcfg PLL Configuration and Status
0x54 | hfpclk_plloutdiv PLL Final Divide Configuration
0x58 | hfpclkpllsel Select source for Periphery Clock (pclk). 0: hfpclkpll 1:
external hfclk
0x5C | hfpclk_div_reg HFPCLK PLL divider value
OXE® | prci_plls Indicates presence of each PLL
Table 22: hixosccfg: Crystal Oscillator Configuration and Status
hfxosccfg: Crystal Oscillator Configuration and Status (hfxosccfg)
Register Offset 0x0
Bits Field Name Attr. | Rst. Description
[29:0] | Reserved
30 hfxoscen RW 0x1 | Crystal Oscillator Enable
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Table 22: hfxosccfg: Crystal Oscillator Configuration and Status

31

hfxoscrdy

RO

X

Crystal Oscillator Ready

Table 23: core plicfg: PLL Configuration and Status

core_plicfg: PLL Configuration and Status (core_pllcfg)
Register Offset 0x4
Bits Field Name Attr. | Rst. Description
[5:0] pllr RW 0x1 | PLL R Value
[14:6] | pllf RW | x1F | PLL F Value
[17:15] | pllq RW 0x3 | PLL Q Value
[20:18] | pllrange RW 0x0 | PLL Range Value
[23:21] | Reserved
24 pllbypass RW 0x1 | PLL Bypass
25 pllfsebypass | RW 0x1 | PLL FSE Bypass
[30:26] | Reserved
31 plllock RO X | PLL Lock

Table 24: core_plloutdiv: PLL Final Divide Configuration

core_plloutdiv: PLL Final Divide Configuration (core_plloutdiv)

Register Offset 0x8
Bits Field Name Attr. Rst. Description
[31:0] Reserved

Table 25: dvfs_core _plicfg: PLL Configuration and Status

dvfs_core_plicfg: PLL Configuration and Status (dvfs_core_pllcfg)

Register Offset 0x38
Bits Field Name Attr. Rst. Description
[5:0] pllr RW 0x1 | PLL R Value
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Table 25: dvfs_core_plicfg: PLL Configuration and Status

[14:6] pllf RW 0x1F | PLL F Value
[17:15] | pllq RW 0x3 | PLL Q Value
[20:18] | pllrange RW 0x0 | PLL Range Value

[23:21] | Reserved

24 pllbypass RW 0x1 | PLL Bypass

25 pllfsebypass RW 0x1 | PLL FSE Bypass

[30:26] | Reserved

31 plllock RO X | PLL Lock

Table 26: dvfs_core_plloutdiv: PLL Final Divide Configuration

dvfs_core_plloutdiv: PLL Final Divide Configuration (dvfs_core_plloutdiv)

Register Offset 0x3C

Bits Field Name Attr. Rst. Description
[30:0] | Reserved

31 pllcke RW 0x0 | PLL Output Clock Enable

Table 27: hfpclk_plicfg: PLL Configuration and Status

hfpclk_pllicfg: PLL Configuration and Status (hfpclk_pllcfg)

Register Offset 0x50

Bits Field Name Attr. | Rst. Description

[5:0] pllr RW 0x1 | PLL R Value
[14:6] | pl1f RW 0x1F | PLL F Value
[17:15] | pllq RW 0x3 | PLL Q Value
[20:18] | pllrange RwW 0x0 | PLL Range Value
[23:21] | Reserved

24 pllbypass RW 0x1 | PLL Bypass

25 pllfsebypass RW 0x1 | PLL FSE Bypass
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Table 27: hfpclk_plicfg: PLL Configuration and Status

[30:26]

Reserved

31

plllock

RO

PLL Lock

Table 28: hfpclk_plloutdiv: PLL Final Divide Configuration

hfpclk_plloutdiv: PLL Final Divide Configuration (hfpclk_plloutdiv)

Register Offset 0x54
Bits Field Name Attr. | Rst. Description
[30:0] | Reserved
31 pllcke RW 0x0 | PLL Output Clock Enable

Table 29: hfpclk_div_reg: HFPCLK PLL divider value

hfpclk_div_reg: HFPCLK PLL divider value (hfpclk_div_reg)

Register Offset 0x5C
Bits Field Name Attr. | Rst. Description
[31:0] | hfpclk_div_reg | RW 0x0 | HFPCLK PLL divider value

Table 30: ddr_plicfg: PLL Configuration and Status

ddr_plicfg: PLL Configuration and Status (ddr_pl1cfg)
Register Offset oxC
Bits Field Name | Attr. | Rst. Description
[5:0] | pllr RW ox1 | PLL R Value
[14:6] | pllf RW 0x1F | PLL F Value
[17:15] | pllq RW 0x3 | PLL Q Value
[20:18] | pllrange RW 0x0 | PLL Range Value
[23:21] | Reserved
24 pllbypass RW 0x1 | PLL Bypass
25 pllfsebypass | RW 0x1 | PLL FSE Bypass
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Table 30: ddr_plicfg: PLL Configuration and Status
[30:26] | Reserved

31 plllock RO X | PLL Lock

Table 31: ddr_plloutdiv: PLL Final Divide Configuration

ddr_plloutdiv: PLL Final Divide Configuration (ddr_plloutdiv)

Register Offset 0x10

Bits Field Name | Attr. | Rst. Description
[30:0] | Reserved

31 pllcke RW 0x0 | PLL Output Clock Enable

Table 32: gemgxl_plicfg: PLL Configuration and Status

gemgxl_plicfg: PLL Configuration and Status (gemgxl_pllcfg)

Register Offset 0x1C
Bits Field Name Attr. | Rst. Description
[5:0] pllr RW 0x1 | PLL R Value
[14:6] | pllf RW Ox1F | PLL F Value
[17:15] | pllq RW 0x3 | PLL Q Value
[20:18] | pllrange RW 0x0 | PLL Range Value

[23:21] | Reserved

24 pllbypass RwW 0x1 | PLL Bypass

25 pllfsebypass RW 0x1 | PLL FSE Bypass

[30:26] | Reserved

31 plllock RO X | PLL Lock

Table 33: gemgxl_plloutdiv: PLL Final Divide Configuration

gemgxl_plloutdiv: PLL Final Divide Configuration (gemgx1_plloutdiv)

Register Offset 0x20
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Table 33: gemgxl_plloutdiv: PLL Final Divide Configuration

Bits Field Name Attr. | Rst. Description
[30:0] | Reserved

31 pllcke RwW 0x0 | PLL Output Clock Enable

Table 34: devices_reset _n: Software controlled resets (active low)

devices_reset_n: Software controlled resets (active low) (devices_reset_n)
Register Offset 0x28
Bits Field Name Attr. | Rst. Description

0 ddrctrl_reset_n RW 0x0 | Active-Low ddrctrl reset
1 ddraxi_reset_n RW 0x0 | Active-Low ddraxi reset
2 ddrahb_reset_n RW 0x0 | Active-Low ddrahb reset
3 ddrphy_reset_n RW 0x0 | Active-Low ddrphy reset
4 pcieaux_reset_n RW 0x0 | Active-Low pcieaux reset
5 gemgxl_reset_n RW 0x0 | Active-Low gemgxl reset
6 Reserved RW 0x0 | Reserved

[31:7] | Reserved

Table 35: clk _mux_status: Current selection of each clock mux

clk_mux_status: Current selection of each clock mux (c1k_mux_status)
Register Offset 0x2C

Bits Field Name Attr. | Rst. Description
0 coreclkpllsel | RO X | Current setting of coreclkpllsel mux
1 tlclksel RO X | Current setting of ticlksel mux
2 rtcxsel RO X | Current setting of rtcxsel mux
3 ddrctrlclksel | RO X | Current setting of ddrctrlclksel mux
4 ddrphyclksel | RO X | Current setting of ddrphyclksel mux
5 reserved® RO X | Current setting of reserved0 mux
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Table 35: clk_mux_status: Current selection of each clock mux

gemgxlclksel

RO

X

Current setting of gemgxiclksel mux

mainmemclksel

RO

X

Current setting of mainmemclksel mux

[31:8] | Reserved

Table 36: prci_plls: Indicates presence of each PLL

prci_plls: Indicates presence of each PLL (prci_plls)

Register Offset OXEO
Bits Field Name | Attr. | Rst. Description
0 cltxpll RO X | Indicates presence of cltxpll
1 gemgxlpll RO X | Indicates presence of gemgxlpll
2 ddrpll RO X | Indicates presence of ddrpll
3 hfpclkpll RO X | Indicates presence of hfpclkpll
4 dvfscorepll | RO X | Indicates presence of dvfscorepll
5 corepll RO X | Indicates presence of corepll
[31:6] | Reserved

7.4 Reset and Clock Initialization

7.4.1 Power-On

1. The PCB should strap input signal HFXSEL to set the 26 MHz hfclk clock source. To
use a Crystal clock source connected to pins HFXOSCIN and HFXOSCOUT, connect
HFXSEL to GND. To use an Oscillator clock source connected to HFXCLKIN, connect

2.

HFXSEL to VCC.

At power-on, PORESET_N should be asserted by an external power sequencing/
supetrvisory circuit. After power-ramp and valid hfclk, PORESET_N should be driven
low for a minimum of 10 ns.

3. Harts begin the Boot Flow described in Chapter 6, running at 26 MHz hfclk.
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7 Clocking and Reset

7.4.2 Setting coreclk frequency

1. COREPLL Setup

COREPLL is configured in software by setting the corepllcfge PRCI control register.
The input reference frequency for COREPLL is 26 MHz.

There is a reference frequency divider before the PLL loop. The divider value is
equal to PRCI PLL configuration register field divr + 1. The minimum supported
post-divide frequency is 7 MHz; thus, valid settings are 0, 1, and 2.

The valid PLL VCO range is 2400 MHz to 4800 MHz. The VCO feedback divider
value isequalto 2 x (divf + 1).

There is a further output divider after the PLL loop. The divider value is equal to
291V4_ The maximum value of DIVQ is 6, and the valid output range is 20 to
2400 MHz.

For example, to setup COREPLL for 1 GHz operation, program divr = 0 (x1), divf
= 76 (4004 MHz VCO), divg = 2 (/4 Output divider).
Wait for Lock

Poll PRCI PLL configuration register field 1ock to wait for PLL lock.
Switch coreclk from 26 MHz hfclk to COREPLL

A glitch-free clock mux (GLCM) switches the driver of coreclk between hfclk and
COREPLL at runtime, under control of the PRCI control register coreclksel. Setting
CORECLKSEL equal to 0 selects COREPLL output.

DDRPLL and GEMGXLPLL Setup

The DDR and Ethernet subsystem input clocks are driven from DDRPLL and
GEMGXLPLL in the PRCI. The two PLLs are programmed as per COREPLL using
steps 1 and 2 listed above. GEMGXLPLL is set up for 125 MHz output frequency.
divr = 0, divf = 76 (4004 MHz VCO), divq = 5 DDRPLL is set up to run at the
memory MT/s divided by 4.

2. Wait for lock
Poll PRCI PLL configuration register field 1ock to wait for PLL lock.

3. Release Clock Gate
Both PLLs have an additional glitch-free clock gate on output controlled by PRCI
PLL configuration register field cke. This gate prevents runt pulses from clocking
these complex IPs during PLL lock. After PLL lock, the clock gate is released by set-
ting CKE to 1.
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4, Release Reset

After the clock is initialized, synchronous reset is released by setting the appropriate
bits in the PRCI Peripheral Devices Reset Control Register (devices_reset_n) to
1.

GEMGXL reset is released by setting PRCI Devices Reset Control Register
(devices_reset_n) field gemgx1_reset_n to 1. The complete reset sequence for
the DDR Subsystem is documented in Chapter 23.
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Thermal Diode

The FU740-C000 implements a diode which may be used to measure the temperature of the
SoC during operation. Implemented in TSMC 28HPC process, the user can monitor the temper-
ature of the FU740-C000 by measuring a voltage drop which is proportional to an increase of
temperature on the chip itself.

_ THERMALDIODE_ANODE
Thermal Diode

l |———THERMALDIODE_CATHODE
SGND

Figure 25: Thermal Diode Block Diagram
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Interrupts

This chapter describes how interrupt concepts in the RISC-V architecture apply to the
FU740-C000.

The definitive resource for information about the RISC-V interrupt architecture is The RISC-V
Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10.

9.1 Interrupt Concepts

The FU740-C000 supports Machine Mode and Supervisor Mode interrupts. It also has support
for the following types of RISC-V interrupts: local and global.

Local interrupts are signaled directly to an individual hart with a dedicated interrupt value. This
allows for reduced interrupt latency as no arbitration is required to determine which hart will ser-
vice a given request and no additional memory accesses are required to determine the cause of
the interrupt.

Software and timer interrupts are local interrupts generated by the Core-Local Interruptor
(CLINT). The FU740-C000 contains no other local interrupt sources.

Global interrupts, by contrast, are routed through a Platform-Level Interrupt Controller (PLIC),
which can direct interrupts to any hart in the system via the external interrupt. Decoupling global
interrupts from the hart(s) allows the design of the PLIC to be tailored to the platform, permitting
a broad range of attributes like the number of interrupts and the prioritization and routing
schemes.

By default, all interrupts are handled in machine mode. For harts that support supervisor mode,
it is possible to selectively delegate interrupts to supervisor mode.

This chapter describes the FU740-C000 interrupt architecture.

Chapter 12 describes the Core-Local Interruptor.
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Chapter 13 describes the global interrupt architecture and the PLIC design.

The FU740-C000 interrupt architecture is depicted in Figure 26.

On-Chip
Devices

—69—>

FU740-C000 Boundary

PLIC

M mode Software Interrupt—»

M mode Timer Interrupt—»

CLINT

M mode External Interrupt—>|

S71

Hart0

M mode Software Interrupt—»

M mode Timer Interrupt—|

M and S mode External Interrupt-»

U74

Hart1

M mode Software Interrupt—|

M mode Timer Interrupt—|

M and S mode External Interrupt-»

U74

Hart4

9.2 Interrupt Operation

Figure 26: FU740-C000 Interrupt Architecture Block Diagram.

Within a privilege mode m, if the associated global interrupt-enable {ie} is clear, then no inter-
rupts will be taken in that privilege mode, but a pending-enabled interrupt in a higher privilege
mode will preempt current execution. If {ie} is set, then pending-enabled interrupts at a higher
interrupt level in the same privilege mode will preempt current execution and run the interrupt

handler for the higher interrupt level.

When an interrupt or synchronous exception is taken, the privilege mode is modified to reflect
the new privilege mode. The global interrupt-enable bit of the handler’s privilege mode is

cleared.
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9.2.1 Interrupt Entry and Exit
When an interrupt occurs:
* The value of mstatus.MIE is copied into mcause.MPIE, and then mstatus.MIE is cleared,
effectively disabling interrupts.
» The privilege mode prior to the interrupt is encoded in mstatus.MPP.
« The current pc is copied into the mepc register, and then pc is set to the value specified by

mtvec as defined by the mtvec.MODE described in Table 39.

At this point, control is handed over to software in the interrupt handler with interrupts disabled.
Interrupts can be re-enabled by explicitly setting mstatus.MIE or by executing an MRET instruc-
tion to exit the handler. When an MRET instruction is executed, the following occurs:

« The privilege mode is set to the value encoded in mstatus.MPP.

¢ The global interrupt enable, mstatus.MIE, is set to the value of mcause.MPIE.

* The pc is set to the value of mepc.
At this point control is handed over to software.

The Control and Status Registers involved in handling RISC-V interrupts are described in Sec-
tion 9.3.

9.3 Interrupt Control Status Registers

The FU740-C000 specific implementation of interrupt CSRs is described below. For a complete
description of RISC-V interrupt behavior and how to access CSRs, please consult The RISC-V
Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10.

9.3.1 Machine Status Register (mstatus)

The mstatus register keeps track of and controls the hart’s current operating state, including
whether or not interrupts are enabled. A summary of the mstatus fields related to interrupts in
the FU740-C000 is provided in Table 37. Note that this is not a complete description of mstatus
as it contains fields unrelated to interrupts. For the full description of mstatus, please consult
The RISC-V Instruction Set Manual, Volume Il: Privileged Architecture, Version 1.10.

Table 37: FU740-C000 mstatus Register (partial)

Machine Status Register

CSR mstatus
Bits Field Name Attr. Description
0 Reserved WPRI
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Table 37: FU740-C000 mstatus Register (partial)

Machine Status Register

1 SIE RW Supervisor Interrupt Enable

2 Reserved WPRI

3 MIE RW Machine Interrupt Enable

4 Reserved WPRI

5 SPIE RW Supervisor Previous Interrupt Enable

6 Reserved WPRI

7 MPIE RW Machine Previous Interrupt Enable

8 SPP RW Supervisor Previous Privilege Mode
[10:9] Reserved WPRI
[12:11] MPP RwW Machine Previous Privilege Mode

Interrupts are enabled by setting the MIE bit in mstatus and by enabling the desired individual
interrupt in the mie register, described in Section 9.3.3.

9.3.2 Machine Trap Vector (mtvec)

The mtvec register has two main functions: defining the base address of the trap vector, and
setting the mode by which the FU740-C000 will process interrupts. The interrupt processing
mode is defined in the lower two bits of the mtvec register as described in Table 39.

Table 38: mtvec Register

Machine Trap Vector Register

CSR mtvec
Bits Field Name Attr. Description
[1:0] MODE WARL MODE Sets the interrupt processing mode.

The encoding for the FU740-C000 supported
modes is described in Table 39.

[63:2] BASE[63:2] WARL Interrupt Vector Base Address.

When operating in Direct Mode, requires 4
byte alignment.
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Table 38: mtvec Register

Machine Trap Vector Register

When operating in Vectored Mode, requires
4 x XLEN byte alignment.

Table 39: Encoding of mtvec.MODE

MODE Field Encoding mtvec . MODE

Value Name Description
0x0 Direct All exceptions set pc to BASE
Ox1 Vectored Asynchronous interrupts set pc to BASE + 4 x

mcause .EXCCODE.

>2 Reserved

See Table 38 for a description of the mtvec register. See Table 39 for a description of the
mtvec .MODE field. See Table 43 for the FU740-C000 interrupt exception code values.

Mode Direct

When operating in direct mode all synchronous exceptions and asynchronous interrupts trap to
the mtvec.BASE address. Inside the trap handler, software must read the mcause register to
determine what triggered the trap.

When in operating in Direct Mode, BASE must be 4-byte aligned.

Mode Vectored

While operating in vectored mode, interrupts set the pc to mtvec.BASE + 4 x exception code
(mcause .EXCCODE). For example, if a machine timer interrupt is taken, the pc is set to
mtvec.BASE + Ox1C. Typically, the trap vector table is populated with jump instructions to trans-
fer control to interrupt-specific trap handlers.

In vectored interrupt mode, BASE must be 4 x XLEN byte aligned.

All machine external interrupts (global interrupts) are mapped to exception code of 11. Thus,
when interrupt vectoring is enabled, the pc is set to address mtvec .BASE + 0x2C for any global
interrupt.
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9.3.3 Machine Interrupt Enable (mie)

Individual interrupts are enabled by setting the appropriate bit in the mie register. The mie regis-
ter is described in Table 40.

Table 40: mie Register

Machine Interrupt Enable Register
CSR mie
Bits Field Name Attr. Description
0 Reserved WPRI
1 SSIE RwW Supervisor Software Interrupt Enable
2 Reserved WPRI
3 MSIE RW Machine Software Interrupt Enable
4 Reserved WPRI
5 STIE RwW Supervisor Timer Interrupt Enable
6 Reserved WPRI
7 MTIE RW Machine Timer Interrupt Enable
8 Reserved WPRI
9 SEIE RwW Supervisor External Interrupt Enable
10 Reserved WPRI
11 MEIE RW Machine External Interrupt Enable
[63:12] Reserved WPRI

9.3.4 Machine Interrupt Pending (mip)

The machine interrupt pending (mip) register indicates which interrupts are currently pending.
The mip register is described in Table 41.

Table 41: mip Register

Machine Interrupt Pending Register

CSR mip
Bits Field Name Attr. Description
0 Reserved WIRI
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Table 41: mip Register

Machine Interrupt Pending Register

1 SSIP RW Supervisor Software Interrupt Pending

2 Reserved WIRI

3 MSIP RO Machine Software Interrupt Pending

4 Reserved WIRI

5 STIP RW Supervisor Timer Interrupt Pending

6 Reserved WIRI

7 MTIP RO Machine Timer Interrupt Pending

8 Reserved WIRI

9 SEIP RW Supervisor External Interrupt Pending

10 Reserved WIRI

11 MEIP RO Machine External Interrupt Pending
[63:12] Reserved WIRI

9.3.5 Machine Cause (mcause)

When a trap is taken in machine mode, mcause is written with a code indicating the event that
caused the trap. When the event that caused the trap is an interrupt, the most-significant bit of
mcause is set to 1, and the least-significant bits indicate the interrupt number, using the same
encoding as the bit positions in mip. For example, a Machine Timer Interrupt causes mcause to
be set to 6x8000_0000_0000_0007. mcause is also used to indicate the cause of synchronous
exceptions, in which case the most-significant bit of mcause is set to 0.

See Table 42 for more details about the mcause register. Refer to Table 43 for a list of synchro-
nous exception codes.

Table 42: mcause Register

Machine Cause Register
CSR mcause
Bits Field Name Attr. Description
[9:0] Exception Code WLRL A code identifying the last exception.
[62:10] Reserved WLRL
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Table 42: mcause Register

Machine Cause Register

63

Interrupt

otherwise.

WARL 1 if the trap was caused by an interrupt; O

Table 43: mcause Exception Codes

Interrupt Exception Codes

Interrupt

Exception Code | Description

Reserved

Supervisor software interrupt

Reserved

N

Machine software interrupt

Reserved

Supervisor timer interrupt

Reserved

S

Machine timer interrupt

Reserved

Supervisor external interrupt

ol N[Ol O] Ml W] N[ L] O

Reserved

N

11 | Machine external interrupt

>12 | Reserved

Instruction address misaligned

Instruction access fault

lllegal instruction

Load address misaligned

Load access fault

ol ol o] ol o] O Of

0
1
2
3 | Breakpoint
4
5
6

Store/AMO address misaligned
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Table 43: mcause Exception Codes

Interrupt Exception Codes

7 | Store/AMO access fault

8 | Environment call from U-mode

9 | Environment call from S-mode

10 | Reserved

11 | Environment call from M-mode

12 | Instruction page fault

13 | Load page fault

14 | Reserved

15 | Store/AMO page fault

O] ol o] ol o]l o] o]l o] of ©

> 16 | Reserved

9.4 Supervisor Mode Interrupts

The FU740-C000 supports the ability to selectively direct interrupts and exceptions to supervisor
mode, resulting in improved performance by eliminating the need for additional mode changes.

This capability is enabled by the interrupt and exception delegation CSRs; mideleg and
medeleg, respectively. Supervisor interrupts and exceptions can be managed via supervisor ver-
sions of the interrupt CSRs, specifically: stvec, sip, sie, and scause.

Machine mode software can also directly write to the sip register, which effectively sends an
interrupt to supervisor mode. This is especially useful for timer and software interrupts as it may
be desired to handle these interrupts in both machine mode and supervisor mode.

The delegation and supervisor CSRs are described in the sections below. The definitive
resource for information about RISC-V supervisor interrupts is The RISC-V Instruction Set Man-
ual, Volume II: Privileged Architecture, Version 1.10.

9.4.1 Delegation Registers (m*deleg)

By default, all traps are handled in machine mode. Machine mode software can selectively dele-
gate interrupts and exceptions to supervisor mode by setting the corresponding bits in mideleg
and medeleg CSRs. The exact mapping is provided in Table 44 and Table 45 and matches the
mcause interrupt and exception codes defined in Table 43.

Note that local interrupts may be delegated to supervisor mode.
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Table 44: mideleg Register

Machine Interrupt Delegation Register

CSR mideleg
Bits Field Name Attr. Description
0 Reserved WARL
1 SSIP RW Delegate Supervisor Software Interrupt
[4:2] Reserved WARL
5 STIP RW Delegate Supervisor Timer Interrupt
[8:6] Reserved WARL
9 SEIP RW Delegate Supervisor External Interrupt
[63:10] Reserved WARL
Table 45: medeleg Register
Machine Exception Delegation Register
CSR medeleg
Bits Attr. Description
0 RW Delegate Instruction Access Misaligned Exception
1 RW Delegate Instruction Access Fault Exception
2 RwW Delegate lllegal Instruction Exception
3 RW Delegate Breakpoint Exception
4 RW Delegate Load Access Misaligned Exception
5 RW Delegate Load Access Fault Exception
6 RwW Delegate Store/AMO Address Misaligned Exception
7 RW Delegate Store/AMO Access Fault Exception
8 RW Delegate Environment Call from U-Mode
9 RW Delegate Environment Call from S-Mode
[11:0] WARL Reserved
12 RW Delegate Instruction Page Fault
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Table 45: medeleg Register

Machine Exception Delegation Register
13 RW Delegate Load Page Fault
14 WARL Reserved
15 RwW Delegate Store/AMO Page Fault Exception
[63:16] WARL Reserved

9.4.2 Supervisor Status Register (sstatus)

Similar to machine mode, supervisor mode has a register dedicated to keeping track of the
hart’s current state called sstatus. sstatus is effectively a restricted view of mstatus,
described in Section 9.3.1, in that changes made to sstatus are reflected in mstatus and vice-
versa, with the exception of the machine mode fields, which are not visible in sstatus.

A summary of the sstatus fields related to interrupts in the FU740-C00O is provided in Table
46. Note that this is not a complete description of sstatus as it also contains fields unrelated to
interrupts. For the full description of sstatus, consult the The RISC-V Instruction Set Manual,
Volume II: Privileged Architecture, Version 1.10.

Table 46: FU740-C000 sstatus Register (partial)

Supervisor Status Register

CSR sstatus
Bits Field Name Attr. Description

0 Reserved WPRI

1 SIE RW Supervisor Interrupt Enable
[4:2] Reserved WPRI

5 SPIE RwW Supervisor Previous Interrupt Enable
[7:6] Reserved WPRI

8 SPP RW Supervisor Previous Privilege Mode
[12:9] Reserved WPRI

Interrupts are enabled by setting the SIE bit in sstatus and by enabling the desired individual
interrupt in the sie register, described in Section 9.4.3.
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9.4.3 Supervisor Interrupt Enable Register (sie)

Supervisor interrupts are enabled by setting the appropriate bit in the sie register. The
FU740-C000 sie register is described in Table 47.

Table 47: sie Register

Supervisor Interrupt Enable Register
CSR sie
Bits Field Name Attr. Description
0 Reserved WPRI
1 SSIE RW Supervisor Software Interrupt Enable
[4:2] Reserved WPRI
5 STIE RW Supervisor Timer Interrupt Enable
[8:6] Reserved WPRI
9 SEIE RW Supervisor External Interrupt Enable
[63:10] Reserved WPRI

9.4.4 Supervisor Interrupt Pending (sip)

The supervisor interrupt pending (sip) register indicates which interrupts are currently pending.
The FU740-C000 sip register is described in Table 48.

Table 48: sip Register

Supervisor Interrupt Pending Register

CSR sip
Bits Field Name Attr. Description

0 Reserved WIRI

1 SSIP RwW Supervisor Software Interrupt Pending
[4:2] Reserved WIRI

5 STIP RW Supervisor Timer Interrupt Pending
[8:6] Reserved WIRI

9 SEIP RwW Supervisor External Interrupt Pending

[63:10] Reserved WIRI
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9.4.5 Supervisor Cause Register (scause)

When a trap is taken in supervisor mode, scause is written with a code indicating the event that
caused the trap. When the event that caused the trap is an interrupt, the most-significant bit of
scause is set to 1, and the least-significant bits indicate the interrupt number, using the same
encoding as the bit positions in sip. For example, a Supervisor Timer Interrupt causes scause

to be set to ©x8000_0000_0000_0005.

scause is also used to indicate the cause of synchronous exceptions, in which case the most-
significant bit of scause is set to 0. Refer to Table 50 for a list of synchronous exception codes.

Table 49: scause Register

Supervisor Cause Register

CSR

scause

Bits

Field Name

Attr. Description

[62:0]

Exception Code
(EXCCODE)

WLRL A code identifying the last exception.

63

Interrupt

WARL 1 if the trap was caused by an interrupt; O
otherwise.

Table 50: scause Exception Codes

Supervisor Interrupt Exception Codes

Interrupt

Exception Code

Description

Reserved

Supervisor software interrupt

Reserved

N

Supervisor timer interrupt

Reserved

Supervisor external interrupt

Reserved

Instruction address misaligned

Instruction access fault

Illegal instruction

Ol ol Ol O PFrP| L] P

Breakpoint
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Table 50: scause Exception Codes

Supervisor Interrupt Exception Codes

0 4 | Reserved

0 5 | Load access fault

0 6 | Store/AMO address misaligned
0 7 | Store/AMO access fault

0 8 | Environment call from U-mode
0 9-11 | Reserved

0 12 | Instruction page fault

0 13 | Load page fault

0 14 | Reserved

0 15 | Store/AMO Page Fault

0 > 16 | Reserved

9.4.6 Supervisor Trap Vector (stvec)

By default, all interrupts trap to a single address defined in the stvec register. It is up to the

interrupt handler to read scause and react accordingly. RISC-V and the FU740-C000 also sup-
port the ability to optionally enable interrupt vectors. When vectoring is enabled, each interrupt
defined in sie will trap to its own specific interrupt handler.

Vectored interrupts are enabled when the MODE field of the stvec register is set to 1.

Table 51: stvec Register

Supervisor Trap Vector Register

CSR stvec

Bits Field Name Attr. Description

[1:0] MODE WARL MODE determines whether or not interrupt
vectoring is enabled. The encoding for the
MODE field is described in Table 52.

[63:2] BASE[63:2] WARL Interrupt Vector Base Address. Must be
aligned on a 128-byte boundary when
MODE-=1. Note, BASE[1:0] is not present in
this register and is implicitly 0.

Introduction © SiFive, Inc. Page 100



9 Interrupts

Table 52: Encoding of stvec.MODE

MODE Field Encoding stvec . MODE

Value Name Description
0 Direct All exceptions set pc to BASE
1 Vectored Asynchronous interrupts set pc to BASE + 4 X

scause.EXCCODE

=2 Reserved

If vectored interrupts are disabled (stvec.MODE=0), all interrupts trap to the stvec.BASE
address. If vectored interrupts are enabled (stvec.MODE=1), interrupts set the pc to stvec.BASE
+ 4 x exception code (scause.EXCCODE). For example, if a supervisor timer interrupt is taken,
the pc is set to stvec.BASE + 0x14. Typically, the trap vector table is populated with jump
instructions to transfer control to interrupt-specific trap handlers.

In vectored interrupt mode, BASE must be 128-byte aligned.

All supervisor external interrupts (global interrupts) are mapped to exception code of 9. Thus,
when interrupt vectoring is enabled, the pc is set to address stvec.BASE + 0x24 for any global

interrupt.

See Table 51 for a description of the stvec register. See Table 52 for a description of the
stvec.MODE field. See Table 50 for the FU740-C000 supervisor mode interrupt exception code
values.

9.4.7 Delegated Interrupt Handling
Upon taking a delegated trap, the following occurs:
e The value of sstatus.SIE is copied into sstatus.SPIE, then sstatus.SIE is cleared,
effectively disabling interrupts.

* The current pc is copied into the sepc register, and then pc is set to the value of stvec. In
the case where vectored interrupts are enabled, pc is set to stvec.BASE + 4 x exception
code (scause.EXCCODE).

e The privilege mode prior to the interrupt is encoded in sstatus.SPP.
At this point, control is handed over to software in the interrupt handler with interrupts disabled.
Interrupts can be re-enabled by explicitly setting sstatus.SIE or by executing an SRET instruc-
tion to exit the handler. When an SRET instruction is executed, the following occurs:

e The privilege mode is set to the value encoded in sstatus.SPP.

e The value of sstatus.SPIE is copied into sstatus.SIE.
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« The pc is set to the value of sepc.

At this point, control is handed over to software.

9.5 Interrupt Priorities

Individual priorities of global interrupts are determined by the PLIC, as discussed in Chapter 13.
FU740-C000 interrupts are prioritized as follows, in decreasing order of priority:

» Machine external interrupts

* Machine software interrupts

* Machine timer interrupts

» Supervisor external interrupts
» Supervisor software interrupts

* Supervisor timer interrupts

9.6 Interrupt Latency

Interrupt latency for the FU740-CO000 is 4 cycles, as counted by the numbers of cycles it takes
from signaling of the interrupt to the hart to the first instruction fetch of the handler.

Global interrupts routed through the PLIC incur additional latency of 3 cycles where the PLIC is
clocked by clock. This means that the total latency, in cycles, for a global interrupt is: 4 + 3 X
(core_clock_0 Hz - clock Hz). This is a best case cycle count and assumes the handler is
cached or located in ITIM. It does not take into account additional latency from a peripheral
source.
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Custom Instructions

These custom instructions use the SYSTEM instruction encoding space, which is the same as the
custom CSR encoding space, but with funct3=0.

10.1 CFLUSH.D.L1

Implemented as state machine in L1 data cache, for cores with data caches.
Only available in M-mode.
When rs1 = x0, CFLUSH.D.L1 writes back and invalidates all lines in the L1 data cache.

When rs1 !'= x0, CFLUSH.D. L1 writes back and invalidates the L1 data cache line contain-
ing the virtual address in integer register rsi.

If the effective privilege mode does not have write permissions to the address in rs1, then a
store access or store page-fault exception is raised.

If the address in rs1 is in an uncacheable region with write permissions, the instruction has
no effect but raises no exceptions.

Note that if the PMP scheme write-protects only part of a cache line, then using a value for
rsi in the write-protected region will cause an exception, whereas using a value for rsi in
the write-permitted region will write back the entire cache line.

10.2 CDISCARD.D.L1

Implemented as state machine in L1 data cache, for cores with data caches.
Only available in M-mode.
Opcode 0xFC200073: with optional rs1 field in bits [19:15].

When rs1 = x0, CDISCARD.D.L1 invalidates, but does not write back, all lines in the L1
data cache. Dirty data within the cache is lost.

Introduction © SiFive, Inc. Page 103



10 Custom Instructions

« When rs1l # x0, CDISCARD.D. L1 invalidates, but does not write back, the L1 data cache
line containing the virtual address in integer register rsi. Dirty data within the cache line is
lost.

« If the effective privilege mode does not have write permissions to the address in rsi, then a
store access or store page-fault exception is raised.

< If the address in rs1 is in an uncacheable region with write permissions, the instruction has
no effect but raises no exceptions.

* Note that if the PMP scheme write-protects only part of a cache line, then using a value for
rsi in the write-protected region will cause an exception, whereas using a value for rsi in
the write-permitted region will invalidate and discard the entire cache line.

10.3 CEASE

« Privileged instruction only available in M-mode.
e Opcode 0x30500073.
» After retiring CEASE, hart will not retire another instruction until reset.

 Instigates power-down sequence, which will eventually raise the cease_from_tile_X signal
to the outside of the Core Complex, indicating that it is safe to power down.

10.4 PAUSE

¢ Opcode 0x0100000F, which is a FENCE instruction with predecessor set W and null succes-
sor set. Therefore, PAUSE is a HINT instruction that executes as a no-op on all RISC-V imple-
mentations.

< This instruction may be used for more efficient idling in spin-wait loops.

e This instruction causes a stall of up to 32 cycles or until a cache eviction occurs, whichever
comes first.

10.5 Branch Prediction Mode CSR

This SiFive custom extension adds an M-mode CSR to control the current branch prediction
mode, bpm at CSR 0x7Co.

The FU740-C000’s branch prediction system includes a Return Address Stack (RAS), a Branch
Target Buffer (BTB), and a Branch History Table (BHT). While branch predictors are essential to
achieve high performance in pipelined processors, they can also cause undesirable timing vari-
ability for hard real-time systems. The bpm register provides a means to customize the branch
predictor behavior to trade average performance for a more predictable execution time.

The bpm CSR has a single, one bit field defined: Branch-Direction Prediction (bdp).
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10.5.1 Branch-Direction Prediction

The WARL bdp field determines the value returned by the BHT component of the branch predic-
tion system. A zero value indicates dynamic direction prediction and a non-zero value indicates

static-taken direction prediction. The BTB is cleared on any write to the bdp field and the RAS is
unaffected by writes to the bdp field.

10.6 SiFive Feature Disable CSR

The SiFive custom M-mode Feature Disable CSR is provided to enable or disable certain
microarchitectural features. In the FU740-C000, CSR 0x7C1 has been allocated for this pur-
pose. These features are described in Table 53.

Warning

The features that can be controlled by this CSR are subject to change or removal in future
releases. It is not advised to depend on this CSR for development.

A feature is fully enabled when the associated bit is zero.

On reset, all implemented bits are set to 1, disabling all features. The bootloader is responsible
for turning on all required features, and can simply write zero to turn on the maximal set of fea-
tures.

SiFive’'s Freedom Metal bootloader handles turning on these features; when using a custom
bootloader, clearing the Feature Disable CSR must be implemented.

If a particular core does not support the disabling of a feature, the corresponding bit is hardwired
to zero.

Note that arbitrary toggling of the Feature Disable CSR bits is neither recommended nor sup-
ported; they are only intended to be set from 1 to 0.

A particular Feature Disable CSR bit is only to be used in a very limited number of situations, as
detailed in the Example Usage entry in Table 54.

Table 53: SiFive Feature Disable CSR

Feature Disable CSR

CSR Ox7C1
Bit Description
0 Disable data cache clock gating
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Table 53: SiFive Feature Disable CSR

Disable instruction cache clock gating

2

Disable pipeline clock gating

3

Disable speculative instruction cache refill

[8:4]

Reserved

9

Suppress corrupt signal on GrantData messages

[15:10]

Reserved

16

Disable short forward branch optimization

17

Disable instruction cache next-line prefetcher

[63:18]

Reserved

Table 54: SiFive Feature Disable CSR Usage

Feature Disable CSR Usage

Bit

Description /| Usage

Disable speculative instruction cache refill

Example Usage: A particular integration might require that execution from the System
Port range be disallowed. Startup code would first configure PMP to prevent execution
from the System Port range, followed by clearing bit 3 of the Feature Disable CSR. This
would enable speculative instruction cache refill accesses, without allowing those to
access the System Port range because PMP would prohibit such accesses.

Suppress corrupt signal on GrantData messages

Example Usage 1: When running in debug mode on configurations having both ECC
and a BEU, setting bit 9 of the Feature Disable CSR will suppress debug mode errors.

Example Usage 2: Startup code could scrub errors present in RAMs at power-on, fol-
lowed by clearing bit 9 of the Feature Disable CSR to allow normal operation.

10.7 Other Custom Instructions

Other custom instructions may be implemented, but their functionality is not documented further
here and they should not be used in this version of the FU740-C000.
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Bus-Error Unit

This chapter describes the operation of the SiFive Bus-Error Unit.

11.1 Bus-Error Unit Overview

The Bus-Error Unit (BEU) is a per-processor device that records erroneous events and reports
them using platform-level and hart-local interrupts. The BEU can be configured to generate
interrupts on correctable memory errors, uncorrectable memory errors, and/or TileLink bus
errors.

11.2 Reportable Errors

Table 55 lists the events that a Bus-Error Unit may report.

Table 55: mhpmevent Register Description

Cause Meaning

No error

Reserved

Instruction cache or ITIM correctable ECC error

Reserved

Load or store TileLink bus error

Data cache correctable ECC error

0
1
2
3
4 Reserved
5
6
7

Data cache uncorrectable ECC error
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11.3 Functional Behavior

When one of the events listed in Table 55 occurs, the Bus-Error Unit can record information
about the event and can generate an interrupt to the PLIC or locally to the hart. The enable reg-
ister contains a mask of which events the BEU can record. Each bit in enable corresponds to
an event in Table 55; for example, if enable[3] is set, the BEU will record uncorrectable ITIM
errors.

The cause register indicates the event the BEU has most recently recorded, e.g., a value of 3
indicates an uncorrectable ITIM error. The cause value 0 is reserved to indicate no error. cause
is only written for events enabled in the enable register. Furthermore, cause is only written
when its current value is 0O; that is, if multiple events occur, only the first one is latched, until soft-
ware clears the cause register.

The value register supplies the physical address that caused the event, or O if the address is
unknown. The BEU writes the value register whenever it writes the cause register: i.e., when
an event enabled in the enable register occurs, and when cause contains 0.

The accrued register indicates which events have occurred since the last time it was cleared by
software. Its format is the same as the enable register. The BEU sets bits in the accrued regis-
ter whether or not they are enabled in the enable register.

The plic_interrupt register indicates which accrued events should generate an interrupt to
the PLIC. An interrupt is generated when any bit is set in both accrued and plic_interrupt,
i.e., when (accrued & plic_interrupt) !=0.

The local_interrupt register indicates which accrued events should generate an interrupt
directly to the hart associated with this bus-error unit. An interrupt is generated when any bit is
set in both accrued and local_interrupt, i.e., when (accrued & local_interrupt) != 0}.
The interrupt cause is 128; it does not have a bit in the mie CSR, so it is always enabled; nor
does it have a bit in the mideleg CSR, so it cannot be delegated to a mode less privileged than
M-mode.

11.4 Memory Map

The Bus-Error Unit memory map is shown in Table 56.

Table 56: Bus-Error Unit Memory Map

Offset Name Description
Ox00 | cause Cause of error event
0x08 | value Physical address of error event
0x10 | enable Event enable mask
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Table 56: Bus-Error Unit Memory Map

Offset Name Description
0x18 | plic_interrupt | Platform-level interrupt enable mask
0x20 | accrued Accrued event mask
0x28 | local_interrupt | Hart-local interrupt-enable mask
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Core-Local Interruptor (CLINT)

The CLINT block holds memory-mapped control and status registers associated with software
and timer interrupts. The FU740-C000 CLINT complies with The RISC-V Instruction Set Manual,
Volume II: Privileged Architecture, Version 1.10.

12.1 CLINT Memory Map
Table 57 shows the memory map for CLINT on SiFive FU740-C000.

Table 57: CLINT Register Map

Address Width | Attr. Description Notes

0x0200_0000 4B RW | msip for hart O MSIP Registers (1 bit wide)

0x0200_0004 4B RW | msip for hart 1

0x0200_0008 4B RW | msip for hart 2

0x0200_000C 4B RW | msip for hart 3

0x0200_0010 4B RW | msip for hart 4

0x0200_4028 Reserved

OX0200_BFF7

0x0200_4000 8B RW | mtimecmp for hart 0 | MTIMECMP Registers

0x0200_4008 8B RW | mtimecmp for hart 1

0x0200_4010 8B RW | mtimecmp for hart 2

0x0200_4018 8B RW | mtimecmp for hart 3
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Table 57: CLINT Register Map

Address Width | Attr. Description Notes

0x0200_4020 8B RW | mtimecmp for hart 4

0x0200_4028 Reserved

OX0200_BFF7

0x0200_BFF8 8B RW | mtime Timer Register

0x0200_C000 Reserved

12.2 MSIP Registers

Machine-mode software interrupts are generated by writing to the memory-mapped control reg-

ister msip. Each msip register is a 32-bit wide WARL register where the upper 31 bits are tied to
0. The least significant bit is reflected in the MSIP bit of the mip CSR. Other bits in the msip reg-

isters are hardwired to zero. On reset, each msip register is cleared to zero.

Software interrupts are most useful for interprocessor communication in multi-hart systems, as
harts may write each other’s msip bits to effect interprocessor interrupts.

12.3 Timer Registers

mtime is a 64-bit read-write register that contains the number of cycles counted from the
rtc_toggle signal. A timer interrupt is pending whenever mtime is greater than or equal to the
value in the mtimecmp register. The timer interrupt is reflected in the mtip bit of the mip register
described in Chapter 9.

On reset, mtime is cleared to zero. The mtimecmp registers are not reset.

12.4 Supervisor Mode Delegation

By default, all interrupts trap to machine mode, including timer and software interrupts. In order
for supervisor timer and software interrupts to trap directly to supervisor mode, supervisor timer
and software interrupts must first be delegated to supervisor mode.

Please see Section 9.4 for more details on supervisor mode interrupts.
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Platform-Level Interrupt Controller
(PLIC)

This chapter describes the operation of the Platform-Level Interrupt Controller (PLIC) on the
FU740-C000. The PLIC complies with The RISC-V Instruction Set Manual, Volume IlI: Privileged
Architecture, Version 1.10 and can support a maximum of 69 external interrupt sources with 7
priority levels.

The FU740-C000 PLIC resides in the clock timing domain, allowing for relaxed timing require-
ments. The latency of global interrupts, as perceived by a hart, increases with the ratio of the
core_clock_0 frequency and the clock frequency.

13.1 Memory Map

The memory map for the FU740-C000 PLIC control registers is shown in Table 58. The PLIC
memory map has been designed to only require naturally aligned 32-bit memory accesses.

Table 58: SiFive PLIC Register Map. Only naturally aligned 32-bit memory accesses are
required.

PLIC Register Map

Address Width | Attr. Description Notes
Ox0COO_0000 Reserved
0x0C00_0004 | 4B RW | source 1 priority
See Section 13.3 for more
information
0x0C00_0114 | 4B RW | source 69 priority
0x0CO00_0118 Reserved
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Table 58: SiFive PLIC Register Map. Only naturally aligned 32-bit memory accesses are

required.

PLIC Register Map

0x0C00_1000 | 4B RO | Start of pending array
See Section 13.4 for more
information
0x0CO0O_1008 | 4B RO | Last word of pending array
OX0COO_100C Reserved
OX0COO_2000 | 4B RW | Start Hart 0 M-Mode inter-
rupt enables
See Section 13.5 for more
information
0x0C00_2008 | 4B RW | End Hart 0 M-Mode interrupt
enables
OXx0COO_200C Reserved
Ox0C00_2080 | 4B RW | Start Hart 1 M-Mode inter-
rupt enables
See Section 13.5 for more
information
0x0C00_2088 | 4B RW | End Hart 1 M-Mode interrupt
enables
OX0CO0O_208C Reserved
0x0C00_2100 | 4B RW | Start Hart 1 S-Mode interrupt
enables
See Section 13.5 for more
information
0x0C00_2108 | 4B RW | End Hart 1 S-Mode interrupt
enables
OXx0COO_21060C Reserved
Ox0C00_2180 | 4B RW | Start Hart 2 M-Mode inter-

rupt enables

See Section 13.5 for more
information
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Table 58: SiFive PLIC Register Map. Only naturally aligned 32-bit memory accesses are

required.

PLIC Register Map

0x0C00_2188 | 4B RW | End Hart 2 M-Mode interrupt
enables
OX0CO0O_218C Reserved
0x0C00_2200 | 4B RW | Start Hart 2 S-Mode interrupt
enables
See Section 13.5 for more
information
0x0C00_2208 | 4B RW | End Hart 2 S-Mode interrupt
enables
OX0COO_220C Reserved
OXx0C00_2280 | 4B RW | Start Hart 3 M-Mode inter-
rupt enables
See Section 13.5 for more
information
0x0C00_2288 | 4B RW | End Hart 3 M-Mode interrupt
enables
OX0C00O_228C Reserved
0x0C00_2300 | 4B RW | Start Hart 3 S-Mode interrupt
enables
See Section 13.5 for more
information
0x0CO0_2308 | 4B RW | End Hart 3 S-Mode interrupt
enables
OXx0COO_230C Reserved
Ox0C00_2380 | 4B RW | Start Hart 4 M-Mode inter-
rupt enables
See Section 13.5 for more
information
0x0CE0_2388 | 4B RW | End Hart 4 M-Mode interrupt

enables
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Table 58: SiFive PLIC Register Map. Only naturally aligned 32-bit memory accesses are

required.

PLIC Register Map

Ox0C0O_238C

Reserved

threshold

0x0CO0_2400 | 4B RW | Start Hart 4 S-Mode interrupt

enables
See Section 13.5 for more
information

0x0C00_2408 | 4B RW | End Hart 4 S-Mode interrupt
enables

OX0CO0_240C Reserved

0x0C20_0000 | 4B RW | Hart 0 M-Mode priority See Section 13.6 for more
threshold information

0x0C20_0008 | 4B RW | Hart 0 M-Mode claim/com- See Section 13.7 for more
plete information

0Xx0C20_000C Reserved

0x0C20_1000 | 4B RW | Hart 1 M-Mode priority See Section 13.6 for more
threshold information

0x0C20_1008 | 4B RW | Hart 1 M-Mode claim/com- See Section 13.7 for more
plete information

0x0C20_100C Reserved

0x0C20_2000 | 4B RW | Hart 1 S-Mode priority See Section 13.6 for more
threshold information

Ox0C20_2008 | 4B RW | Hart 1 S-Mode claim/com- See Section 13.7 for more
plete information

0Xx0C20_200C Reserved

0x0C20_3000 | 4B RW | Hart 2 M-Mode priority See Section 13.6 for more

information
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Table 58: SiFive PLIC Register Map. Only naturally aligned 32-bit memory accesses are

required.

PLIC Register Map

Ox0C20_3008 | 4B RW | Hart 2 M-Mode claim/com- See Section 13.7 for more
plete information

0x0C20_300C Reserved

Ox0C20_4000 | 4B RW | Hart 2 S-Mode priority See Section 13.6 for more
threshold information

Ox0C20_4008 | 4B RW | Hart 2 S-Mode claim/com- See Section 13.7 for more
plete information

0Xx0C20_400C Reserved

0x0C20_5000 | 4B RW | Hart 3 M-Mode priority See Section 13.6 for more
threshold information

0x0C20_5008 | 4B RW | Hart 3 M-Mode claim/com- See Section 13.7 for more
plete information

Ox0C20_500C Reserved

Ox0C20_6000 | 4B RW | Hart 3 S-Mode priority See Section 13.6 for more
threshold information

0x0C20_6008 | 4B RW | Hart 3 S-Mode claim/com- See Section 13.7 for more
plete information

0X0C20_600C Reserved

OXx0C20_7000 | 4B RW | Hart 4 M-Mode priority See Section 13.6 for more
threshold information

Ox0C20_7008 | 4B RW | Hart 4 M-Mode claim/com- See Section 13.7 for more
plete information

OX0C20_700C Reserved

0x0C20_8000 | 4B RW | Hart 4 S-Mode priority See Section 13.6 for more

threshold

information
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Table 58: SiFive PLIC Register Map. Only naturally aligned 32-bit memory accesses are
required.

PLIC Register Map

Ox0C20_8008 | 4B RW | Hart 4 S-Mode claim/com- See Section 13.7 for more
plete information
0x0C20_800C Reserved

0Xx1000_0000

End of PLIC Memory Map

13.2 Interrupt Sources

The FU740-C000 has 69 interrupt sources. These are exposed at the top level via the
global_interrupts signals. Any unused global_interrupts inputs should be tied to logic O.
These signals are positive-level triggered.

In the PLIC, as specified in The RISC-V Instruction Set Manual, Volume IlI: Privileged Architec-
ture, Version 1.10, Global Interrupt ID O is defined to mean "no interrupt," hence
global_interrupts[0@] corresponds to PLIC Interrupt ID 1.

Table 59: PLIC Interrupt Source Mapping

Source Start | Source End Source

1 10 MSI

11 18 Debug Module Interface
19 19 L2 Cache DirError
20 20 L2 Cache DirFail

21 21 L2 Cache DataError
22 22 L2 Cache DataFail
23 38 GPIO

39 39 UART O

40 40 UART 1

41 41 SPI O

42 42 SPI'1

43 43 SPI1 2
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13.3

priority register. The FU740-C000 supports 7 levels of priority. A priority value of O is

Table 59: PLIC Interrupt Source Mapping

Source Start | Source End Source
44 47 PWM 0

48 51 PWM 1

52 52 12C 0

53 53 2C 1

54 54 DDR

55 55 MAC

56 64 PCIE

65 65 Bus-Error Unit 0
66 66 Bus-Error Unit 1
67 67 Bus-Error Unit 2
68 68 Bus-Error Unit 3
69 69 Bus-Error Unit 4

Interrupt Priorities

Each PLIC interrupt source can be assigned a priority by writing to its 32-bit memory-mapped

reserved to mean "never interrupt" and effectively disables the interrupt. Priority 1 is the lowest
active priority, and priority 7 is the highest. Ties between global interrupts of the same priority
are broken by the Interrupt ID; interrupts with the lowest ID have the highest effective priority.
See Table 60 for the detailed register description.

Table 60: PLIC Interrupt Priority Registers

PLIC Interrupt Priority Register (priority)

Base Address 0x0C00_0000 + 4 x Interrupt ID
Bits Field Name Attr. Rst. Description
[2:0] Priority RW X Sets the priority for a given global inter-
rupt.
[31:3] Reserved RO 0
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13.4 Interrupt Pending Bits

The current status of the interrupt source pending bits in the PLIC core can be read from the
pending array, organized as 3 words of 32 bits. The pending bit for interrupt ID N is stored in bit
(N mod 32) of word (IN/32). As such, the FU740-C000 has 3 interrupt pending registers. Bit

0 of word 0, which represents the non-existent interrupt source 0, is hardwired to zero.

A pending bit in the PLIC core can be cleared by setting the associated enable bit then perform-
ing a claim as described in Section 13.7.

Table 61: PLIC Interrupt Pending Register 1

PLIC Interrupt Pending Register 1 (pending1)
Base Address 0x0C00_1000
Bits Field Name Attr. Rst. Description

0 Interrupt O Pend- RO 0 Non-existent global interrupt O is hard-
ing wired to zero

1 Interrupt 1 Pend- RO 0 Pending bit for global interrupt 1
ing

2 Interrupt 2 Pend- RO 0 Pending bit for global interrupt 2
ing

31 Interrupt 31 Pend- RO 0 Pending bit for global interrupt 31
ing

Table 62: PLIC Interrupt Pending Register 3

PLIC Interrupt Pending Register 3 (pending3)
Base Address 0x0C00_1008
Bits Field Name Attr. Rst. Description
0 Interrupt 64 Pend- RO 0 Pending bit for global interrupt 64
ing
5 Interrupt 69 Pend- RO 0 Pending bit for global interrupt 69
ing
[31:6] Reserved WIRI X
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13.5 Interrupt Enables

Each global interrupt can be enabled by setting the corresponding bit in the enables registers.
The enables registers are accessed as a contiguous array of 3 x 32-bit words, packed the
same way as the pending bits. Bit O of enable word O represents the non-existent interrupt ID O
and is hardwired to O.

64-bit and 32-bit word accesses are supported by the enables array in SiFive RV64 systems.

Table 63: PLIC Interrupt Enable Register 1 for Hart 0 M-Mode

PLIC Interrupt Enable Register 1 (enable1) for Hart 0 M-Mode

Base Address 0x0C00_2000

Bits Field Name Attr. Rst. Description

0 Interrupt O Enable RO 0 Non-existent global interrupt O is hard-

wired to zero

1 Interrupt 1 Enable RW X Enable bit for global interrupt 1

2 Interrupt 2 Enable RwW X Enable bit for global interrupt 2

31 Interrupt 31 RW X Enable bit for global interrupt 31

Enable

Table 64: PLIC Interrupt Enable Register 3 for Hart 4 S-Mode

PLIC Interrupt Enable Register 3 (enable3) for Hart 4 S-Mode
Base Address 0x0C00_2408
Bits Field Name Attr. Rst. Description
0 Interrupt 64 RwW X Enable bit for global interrupt 64
Enable
5 Interrupt 69 RW X Enable bit for global interrupt 69
Enable
[31:6] Reserved RO 0
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13.6 Priority Thresholds

The FU740-C000 supports setting of an interrupt priority threshold via the threshold register.
The threshold is a WARL field, where the FU740-C000 supports a maximum threshold of 7.

The FU740-C000 masks all PLIC interrupts of a priority less than or equal to threshold. For
example, a threshold value of zero permits all interrupts with non-zero priority, whereas a
value of 7 masks all interrupts.

Table 65: PLIC Interrupt Threshold Register

PLIC Interrupt Priority Threshold Register (threshold)
Base Address 0x0C20_0000
[2:0] Threshold RW X Sets the priority threshold
[31:3] Reserved RO 0

13.7 Interrupt Claim Process

A FU740-C000 hart can perform an interrupt claim by reading the claim/complete register
(Table 66), which returns the ID of the highest-priority pending interrupt or zero if there is no
pending interrupt. A successful claim also atomically clears the corresponding pending bit on
the interrupt source.

A FU740-C000 hart can perform a claim at any time, even if the MEIP bit in its mip (Table 41)
register is not set.

The claim operation is not affected by the setting of the priority threshold register.

13.8 Interrupt Completion

A FU740-C000 hart signals it has completed executing an interrupt handler by writing the inter-
rupt ID it received from the claim to the claim/complete register (Table 66). The PLIC does not
check whether the completion ID is the same as the last claim ID for that target. If the comple-
tion ID does not match an interrupt source that is currently enabled for the target, the completion
is silently ignored.
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Table 66: PLIC Interrupt Claim/Complete Register for Hart 0 M-Mode

PLIC Claim/Complete Register (claim)

Base Address 0x0C20_0008
[31:0] Interrupt Claim/ RW X A read of zero indicates that no inter-
Complete for Hart rupts are pending. A non-zero read
0 M-Mode contains the id of the highest pending
interrupt. A write to this register signals
completion of the interrupt id written.
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Level 2 Cache Controller

This chapter describes the functionality of the Level 2 Cache Controller used in the
FU740-C000.

14.1 Level 2 Cache Controller Overview

The SiFive Level 2 Cache Controller is used to provide access to fast copies of memory for
masters in a Core Complex. The Level 2 Cache Controller also acts as directory-based
coherency manager.

The SiFive Level 2 Cache Controller offers extensive flexibility as it allows for several features in
addition to the Level 2 Cache functionality. These include memory-mapped access to L2 Cache
RAM for disabled cache ways, scratchpad functionality, way masking and locking, ECC support
with error tracking statistics, error injection, and interrupt signaling capabilities.

These features are described in Section 14.2.

14.2 Functional Description

The FU740-C000 L2 Cache Controller is configured into 4 banks. Each bank contains 512 sets
of 16 ways and each way contains a 64-byte block. This subdivision into banks helps facilitate
increased available bandwidth between CPU masters and the L2 Cache as each bank has its
own dedicated 128-bit TL-C inner port. As such, multiple requests to different banks may pro-
ceed in parallel.

The outer port of the L2 Cache Controller is a 256-bit TL-C port shared among all banks and
typically connected to a DDR controller. The outer Memory port(s) of the L2 Cache Controller is
shared among all banks and typically connected to cacheable memory. The overall organization
of the L2 Cache Controller is depicted in Figure 27.
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TileLink Bus
TL-C TL-C
Bank 0 . Bank N
SiFive L2 Cache Controller \
Memory Bank
Port SetN |

—{Set 1 |
—Set 0

- Way 0: 64B Cache Block

- Way 1: 64B Cache Block

L Way N: 64B Cache Block

Figure 27: Organization of the SiFive L2 Cache Controller

14.2.1 Way Enable and the L2 Loosely Integrated Memory (L2-LIM)

Similar to the ITIM discussed in Chapter 3, the SiFive Level 2 Cache Controller allows for its
SRAMs to act either as direct addressed memory in the Core Complex address space or as a
cache that is controlled by the L2 Cache Controller and which can contain a copy of any
cacheable address.

When cache ways are disabled, they are addressable in the L2 Loosely Integrated Memory
(L2-LIM) address space as described in the FU740-C000 memory map in Chapter 5. Fetching
instructions or data from the L2-LIM provides deterministic behavior equivalent to an L2 cache
hit, with no possibility of a cache miss. Accesses to L2-LIM are always given priority over cache
way accesses, which target the same L2 cache bank.

Out of reset, all ways, except for way 0, are disabled. Cache ways can be enabled by writing to
the WayEnable register described in Section 14.4.2. Once a cache way is enabled, it can not be
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disabled unless the FU740-CO000 is reset. The highest numbered L2 Cache Way is mapped to
the lowest L2-LIM address space, and way 1 occupies the highest L2-LIM address range. As L2
cache ways are enabled, the size of the L2-LIM address space shrinks. The mapping of L2
cache ways to L2-LIM address space is show in Figure 28.

Bank
Reserved 0x01_C000
SetN |
—Set1 |
Y Way 1 0x01_8000
L Way 0: 64B Cache Block /
— /
L Way 1: 64B Cache Block ]
— Way N-1: 64B Cache Block —1 |
L | T Way N-1 0x00_4000
L Way N: 64B Cache Block —1 |
\ Way N 0x00_0000

Offset from LIM base

Figure 28: Mapping of L2 Cache Ways to L2-LIM Addresses

14.2.2 Way Masking and Locking

The SiFive L2 Cache Controller can control the amount of cache memory a CPU master is able
to allocate into by using the wayMaskX register described in Section 14.4.12. Note that wayMaskX
registers only affect allocations, and reads can still occur to ways that are masked. As such, it
becomes possible to lock down specific cache ways by masking them in all wayMaskX registers.
In this scenario, all masters can still read data in the locked cache ways but cannot evict data.

14.2.3 L2 Scratchpad

The SiFive L2 Cache Controller has a dedicated scratchpad address region that allows for allo-
cation into the cache using an address range which is not memory backed. This address region
is denoted as the L2 Zero Device in the Memory Map in Chapter 5. Writes to the scratchpad
region allocate into cache ways that are enabled and not masked. Care must be taken with the
scratchpad, however, as there is no memory backing this address space. Cache evictions from
addresses in the scratchpad result in data loss.

The main advantage of the L2 Scratchpad over the L2-LIM is that it is a cacheable region allow-
ing for data stored to the scratchpad to also be cached in a master’s L1 data cache resulting in
faster access.

The recommended procedure for using the L2 Scratchpad is as follows:

1. Use the wayEnable register to enable the desired cache ways.
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2. Designate a single master that will allocate into the scratchpad. For this procedure,
we designate this master as Master S. All other masters (CPU and non-CPU) are
denoted as Masters X.

3. Masters X: Write to the WayMaskX register to mask the ways that are to be used for
the scratchpad. This prevents Masters X from evicting cache lines in the designated
scratchpad ways.

4. Master S: Write to the WayMaskX register to mask all ways except the ways that are
to be used for the scratchpad. At this point, Master S should only be able to allocate
into the cache ways meant to be used as a scratchpad.

5. Master S: Write scratchpad data into the L2 Scratchpad address range (L2 Zero
Device).

6. Master S: Repeat steps 4 and 5 for each way to be used as scratchpad.

7. Master S: Use the WayMaskX register to mask the scratchpad ways for Master S so
that it is no longer able to evict cache lines from the designated scratchpad ways.

8. At this point, the scratchpad ways should contain the scratchpad data, with all mas-
ters able to read, write, and execute from this address space, and no masters able
to evict the scratchpad contents.

14.2.4 Error Correcting Codes (ECC)

The SiFive Level 2 Cache Controller supports ECC. ECC is applied to both categories of SRAM
used, the data SRAMs and the meta-data SRAMs (index, tag, and directory information). The
data SRAMs use Single-Error Correcting, Double-Error Detecting (SECDED). The meta-data
SRAMs use Single-Error Correcting, Double-Error Detecting (SECDED).

Whenever a correctable error is detected, the cache immediately repairs the corrupted bit and
writes it back to SRAM. This corrective procedure is completely invisible to application software.
However, to support diagnostics, the cache records the address of the most recently corrected
meta-data and data errors. Whenever a new error is corrected, a counter is increased and an
interrupt is raised. There are independent addresses, counters, and interrupts for correctable
meta-data and data errors.

DirFail, DirError, DataError, and DataFail signals are used to indicate that an L2 meta-
data, data, or uncorrectable L2 data error has occurred, respectively. These signals are con-
nected to the PLIC as described in Chapter 13 and are cleared upon reading their respective
count registers.

14.3 Memory Map

The L2 Cache Controller memory map is shown in Table 67.
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Table 67: Register offsets within the L2 Cache Controller Control Memory Map

Offset Name Description

0x000 | Config Information about the Cache Configuration

0x008 | WayEnable The index of the largest way which has been enabled. May
only be increased.

0x040 | ECCInjectError | Injectan ECC Error

0x100 | DirECCFixLow The low 32-bits of the most recent address to fail ECC

0x104 | DirECCFixHigh The high 32-bits of the most recent address to fail ECC

0x108 | DirECCFixCount Reports the number of times an ECC error occured

0x120 | DirECCFailLow The low 32-bits of the most recent address to fail ECC

©x124 | DirECCFailHigh | The high 32-bits of the most recent address to fail ECC

0x128 | DirECCFailCount | Reports the number of times an ECC error occured

0x140 | DatECCFixLow The low 32-bits of the most recent address to fail ECC

0x144 | DatECCFixHigh The high 32-bits of the most recent address to fail ECC

0x148 | DatECCFixCount Reports the number of times an ECC error occured

0x160 | DatECCFaillLow The low 32-bits of the most recent address to fail ECC

0x164 | DatECCFailHigh | The high 32-bits of the most recent address to fail ECC

0x168 | DatECCFailCount | Reports the number of times an ECC error occured

0x200 | Flush64 Flush the phsyical address equal to the 64-bit written data from
the cache

0x240 | Flush32 Flush the physical address equal to the 32-bit written data << 4
from the cache

0x800 | WayMaskoO Master O way mask register

0x808 | WayMaskl Master 1 way mask register

0x810 | WayMask2 Master 2 way mask register

0x818 | WayMask3 Master 3 way mask register

0x820 | WayMask4 Master 4 way mask register

0x828 | WayMask5 Master 5 way mask register

0x830 | WayMask6 Master 6 way mask register
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Table 67: Register offsets within the L2 Cache Controller Control Memory Map

Offset

Name

Description

0x838 | WayMask?7

Master 7 way mask register

0x840 | WayMask8

Master 8 way mask register

0x848 | WayMask9

Master 9 way mask register

0x850 | WayMask10

Master 10 way mask register

0x858 | WayMask11l

Master 11 way mask register

Ox860 | WayMask12

Master 12 way mask register

0x868 | WayMask13

Master 13 way mask register

0x870 | WayMask14

Master 14 way mask register

0x878 | WayMask15

Master 15 way mask register

0x880 | WayMask16

Master 16 way mask register

14.4 Register Descriptions

This section describes the functionality of the memory-mapped registers in the Level 2 Cache

Controller.

14.4.1 Cache Configuration Register (Config)

The config Register can be used to programmatically determine information regarding the
cache size and organization.

Table 68: Config Register

Information about the Cache Configuration: (Config)
Register Offset 0x0

Bits Field Name | Attr. | Rst. Description

[7:0] | Banks RO 0x4 | Number of banks in the cache

[15:8] | ways RO 0x10 | Number of ways per bank
[23:16] | 1gSets RO 0x9 | Base-2 logarithm of the sets per bank
[31:24] | 1gBlockBytes | RO 0x6 | Base-2 logarithm of the bytes per cache block
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14.4.2 Way Enable Register (wayEnable)

The wayEnable register determines which ways of the Level 2 Cache Controller are enabled as
cache. Cache ways that are not enabled are mapped into the FU740-C000’s L2-LIM (Loosely
Integrated Memory) as described in the memory map in Chapter 5.

This register is initialized to 0 on reset and may only be increased. This means that, out of reset,
only a single L2 cache way is enabled, as one cache way must always remain enabled. Once a
cache way is enabled, the only way to map it back into the L2-LIM address space is by a reset.

Table 69: WayEnab < Register

The index of the largest way which has been enabled. May only be increased.:
(wayEnable)
Register Offset | 0x8
Bits Ak Attr. | Rst. Description
Name
[7:0] | wayEnable | RW 0x0 | The index of the largest way which has been enabled.
May only be increased.

14.4.3 ECC Error Injection Register (ECCInjectError)

The ECCInjectError register can be used to insert an ECC error into either the backing data or
meta-data SRAM. This function can be used to test error correction logic, measurement, and
recovery.

Table 70: ECCInjectError Register

Inject an ECC Error: (ECCInjectError)

Register Offset 0x40

Bits Field Name Attr. | Rst. Description

[7:0] | ECCToggleBit | RW 0x0 | Toggle (corrupt) this bit index on the next cache
operation

[15:8] | Reserved

16 ECCToggleType | RW 0x0 | Toggle (corrupt) a bit in O=data or 1=directory

[31:17] | Reserved

14.4.4 ECC Directory Fix Address (DirECCFix*)

The DirECCFixHi and DirECCFixLow registers are read-only registers that contain the address
of the most recently corrected meta-data error. This field supplies only the portions of the
address that correspond to the affected set and bank, since all ways are corrected together.
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14.4.5 ECC Directory Fix Count (DirECCFixCount)

The DirECCFixCount register is a read-only register that contains the number of corrected L2
meta-data errors.

Reading this register clears the DirError interrupt signal described in Section 14.2.4.

14.4.6 ECC Directory Fail Address (DirECCFail*)

The DirECCFaillLow and DirECCFailHigh registers are read-only registers that contains the
address of the most recent uncorrected L2 meta-data error.

14.4.7 ECC Data Fix Address (DatECCFix*)

The DatECCFixLow and DatECCFixHigh registers are read-only registers that contain the
address of the most recently corrected L2 data error.

14.4.8 ECC Data Fix Count (DatECCFixCount)

The DataECCFixCount register is a read-only register that contains the number of corrected
data errors.

Reading this register clears the DataError interrupt signal described in Section 14.2.4.

14.4.9 ECC Data Fail Address (DatECCFail*)

The DatECCFaillLow and DatECCFailHigh registers are a read-only registers that contain the
address of the most recent uncorrected L2 data error.

14.4.10 ECC Data Fail Count (patECCFailCount)
The DatECCFailCount register is a read-only register that contains the number of uncorrected
data errors.

Reading this register clears the DataFail interrupt signal described in Section 14.2.4.

14.4.11 Cache Flush Registers (Flush*)

The FU740-C000 L2 Cache Controller provides two registers that can be used for flushing spe-
cific cache blocks.

Flush64 is a 64-bit write-only register that flushes the cache block containing the address writ-
ten. Flush32 is a 32-bit write-only register that flushes a cache block containing the written
address left shifted by 4 bytes. In both registers, all bits must be written in a single access for
the flush to take effect.
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14.4.12 Way Mask Registers (WwayMask*)

The wayMaskX register allows a master connected to the L2 Cache Controller to specify which
L2 cache ways can be evicted by master X. Masters can still access memory cached in masked

ways. The mapping between masters and their L2 master IDs is shown in Table 72.

At least one cache way must be enabled. It is recommended to set/clear bits in this register
using atomic operations.

Table 71: wayMasko Register

Master 0 way mask register: (WayMasko)
Register Offset 0x800
Bits | Field Name | Attr. | Rst. Description
0 WayMaskO[0] RW 0x1 | Enable way 0 for Master 0
1 WayMaskO[1] RW 0x1 | Enable way 1 for Master 0
2 | wayMaske[2] RW 0x1 | Enable way 2 for Master 0
3 | wayMask0o[3] RW 0x1 | Enable way 3 for Master O
4 WayMask0[4] RW 0x1 | Enable way 4 for Master 0
5 WayMaskO[5] RW 0x1 | Enable way 5 for Master 0
6 | WwayMasko[6] RW 0x1 | Enable way 6 for Master O
7 | wayMasko[7] RW 0x1 | Enable way 7 for Master O
8 WayMasko[8] RW 0x1 | Enable way 8 for Master 0
9 WayMask0O[9] RW 0x1 | Enable way 9 for Master 0
10 | wayMask@[10] | RW 0x1 | Enable way 10 for Master 0
11 | wayMask@[11] | RW 0x1 | Enable way 11 for Master 0
12 | wayMask®[12] | RW 0x1 | Enable way 12 for Master 0
13 | wayMask®[13] | RW 0x1 | Enable way 13 for Master 0
14 | wayMask@[14] | RW 0x1 | Enable way 14 for Master 0
15 | wayMask@[15] | RW 0x1 | Enable way 15 for Master 0
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Table 72: Master IDs in the L2 Cache Controller

Master ID Description
0 Core 0 DCache MMIO
1 Core 0 FetchUnit
2 Core 1 DCache
3 Core 1 FetchUnit
4 Core 2 DCache
5 Core 2 FetchUnit
6 Core 3 DCache
7 Core 3 FetchUnit
8 Core 4 DCache
9 Core 4 FetchUnit
10 DMA

11 GEMGXL

12 OrderOgler

13 PCle

14 PCle

15 PCle

16 PCle
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Platform DMA Engine (PDMA)

This chapter describes the SiFive platform DMA (PDMA) engine. The PDMA unit has memory-
mapped control registers accessed over a TileLink slave interface to allow software to set up
DMA transfers. It also has a TileLink bus master port into the TileLink bus fabric to allow it to
autonomously transfer data between slave devices and main memory or to rapidly copy data
between two locations in memory. The PDMA unit can support multiple independent simultane-
ous DMA transfers using different PDMA channels and can generate PLIC interrupts on various
conditions during DMA execution.

15.1 Functional Description

15.1.1 PDMA Channels

The FU740-C000 PDMA has 4 independent DMA channels, which operate concurrently to sup-
port multiple simultaneous transfers. Each channel has an independent set of control registers,
which are described in Section 15.2 and Section 15.3, and 8 interrupts described in Section
15.1.2.

15.1.2 Interrupts

The PDMA has 2 interrupts per channel, (8 total), that are used to signal when either a transfer
has completed, or when a transfer error has occurred.

A channel’s interrupts are configured using its Control register described in Section 15.3.1. The
mapping of the FU740-C000 PDMA interrupt signals to the PLIC are described in Chapter 13.

Table 73: DMA interrupt map

Interrupt Purpose

0 Channel 0 transfer complete
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Table 73: DMA interrupt map

Interrupt

Purpose

1

Channel 0 transfer encountered an error

Channel 1 transfer complete

Channel 1 transfer encountered an error

Channel 2 transfer complete

Channel 2 transfer encountered an error

Channel 3 transfer complete

2
3
4
5
6
7

Channel 3 transfer encountered an error

15.2 PDMA Memory Map

The PDMA has an independent set of registers for each channel. Each channel’s registers are
offset by 0x1000 so that the base address for a given PDMA channel is as follows:

PDMA Base Address + 0280000 + (021000 x Channel ID).

Table 74 shows the memory map of the PDMA control registers.

Table 74: Platform DMA Memory Map

Platform DMA Memory Map (single channel)

Channel Base Address | PDMA Base Address + 0x8_0000 + (0x1000 x Channel ID)

Offset Width Attr. Description Notes
0x000 4B RW Control Channel Control Register
0x004 4B RW NextConfig Next transfer type
0x008 8B RW NextBytes Number of bytes to move
0x010 8B RW NextDestination Destination start address
0x018 8B RW NextSource Source start address
0x104 4B RO ExecConfig Active transfer type
0x108 8B RO ExecBytes Number of bytes remaining
0x110 8B RO ExecDestination Destination current address
0x118 8B RO ExecSource Source current address

Introduction © SiFive, Inc. Page 134



15 Platform DMA Engine (PDMA)

15.3 Register Descriptions

This section describes the functionality of the memory-mapped registers in the Platform DMA
Engine.

15.3.1 Channel Control Register (Control)

The control register holds the current status of the channel. It can be used to claim a PDMA
channel, initiate a transfer, enable interrupts, and check if a transfer has completed.

Table 75: Channel Control Register

Channel Control Register (Control)

Register Offset 0x000 + (0x1000 x Channel ID)

Bits il Attr. | Rst. Notes
Name
0 claim RW | ex0 | Indicates that the channel is in use. Setting this clears all

of the channel’s Next registers. This bit can only be
cleared when run is low.

1 run RW | 0x0 | Setting this bit starts a DMA transfer by copying the Next
registers into their Exec counterparts.

[13:2] | Reserved

14 donelE RW | ox0 | Setting this bit will trigger the channel’s Done interrupt
once a transfer is complete.

15 errorIE | RW | 0x0 | Setting this bit will trigger the channel’'s Error interrupt
upon receiving a bus error.

[29:16] | Reserved

30 done RW | ex0 | Indicates that a transfer has completed since the channel
was claimed.
31 error RW | 0x0 | Indicates that a transfer error has occured since the

channel was claimed.

15.3.2 Channel Next Configuration Register (NextConfig)

The read-write NextConfig register holds the transfer request type. The wsize and rsize fields
are used to determine the size and alignment of individual PDMA transactions, as a single
PDMA transfer might require multiple transactions. There is an upper-bound of 64 bytes on a
transaction size. These fields are WARL, so the actual size used can be determined by reading
the field after writing the requested size.
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The PDMA can be programmed to automatically repeat a transfer by setting the repeat bit field.
If this bit is set, once the transfer completes, the Next registers are automatically copied to the
Exec registers and a new transfer is initiated. The Control. run bit remains set during
“repeated” transactions. To stop repeating transfers, a master can monitor the channel’s bDone
interrupt and lower the repeat bit accordingly.

Table 76: Channel Next Configuration Register

Channel Next Configuration Register (NextConfig)

Register Offset 0x004 + (0x1000 x Channel ID)

Bits A Attr. | Rst. Notes
Name

[1:0] | Reserved

2 repeat RW 0x0 | If set, the Exec registers are reloaded from the Next
registers once a transfer is complete. The repeat bit
must be cleared by software for the sequence to stop.

3 order RW 0x0 | Enforces strict ordering by only allowing one of each
transfer type in-flight at a time

[25:4] | Reserved

[27:24] | wsize WARL | 0x0 | Base 2 Logarithm of PDMA transaction sizes; e.g. 0 is
1 byte, 3 is 8 bytes, 5 is 32 bytes

[31:28] | rsize WARL | 0x0 | Base 2 Logarithm of PDMA transaction sizes; e.g. 0 is
1 byte, 3 is 8 bytes, 5 is 32 bytes

15.3.3 Channel Byte Transfer Register (NextBytes)

The read-write NextBytes register holds the number of bytes to be transferred by the channel.
The NextConfig.xsize fields are used to determine the size of the individual transactions that
will be used to transfer the number of bytes specified in this register.

The NextBytes register is a WARL register with a maximum count that can be much smaller
than the physical address size of the machine.

15.3.4 Channel Destination Register (NextDestination)

The read-write NextDestination register holds the physical address of the destination for the
transfer.

15.3.5 Channel Source Address (NextSource)

The read-write NextSource register holds the physical address of the source data for the trans-
fer.
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15.3.6 Channel Exec Registers (Exec*)

Each PDMA channel has a set of Exec registers which provide information on the transfer that is
currently executing. These registers are read-only and initialized when Control.run is set.
Upon initialization, the Next registers are copied into the Exec registers and a transfer begins.

The status of the transfer can be monitored by reading the Exec registers. ExecBytes indicates
the number of bytes remaining in a transfer, ExecSource indicates the current source address,
and ExecDestination indicates the current destination address.
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Universal Asynchronous Receiver/
Transmitter (UART)

This chapter describes the operation of the SiFive Universal Asynchronous Receiver/Transmit-
ter (UART).

16.1 UART Overview

The UART peripheral supports the following features:

¢ 8-N-1 and 8-N-2 formats: 1 start bit, 8 data bits, no parity bit, 1 or 2 stop bits
¢ 8-entry transmit and receive FIFO buffers with programmable watermark interrupts

¢ 16x Rx oversampling with 2/3 majority voting per bit

The UART peripheral does not support hardware flow control or other modem control signals, or
synchronous serial data transfers.

16.2 UART Instances in FU740-C000

FU740-C000 contains two UART instances. Their addresses and parameters are shown in
Table 77.

Table 77: UART Instances

Instance Num- . . ... TX FIFO RX FIFO
ber Address div_width | div_init Depth Depth
0 0x1001_0000 20 289 8 8
1 0x1001_1000 20 289 8 8
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16.3 Memory Map

The memory map for the UART control registers is shown in Table 78. The UART memory map
has been designed to require only naturally aligned 32-bit memory accesses.

Table 78: Register offsets within UART memory map

Offset | Name Description

0x00 | txdata | Transmit data register

0x04 | rxdata | Receive data register

0x08 | txctrl | Transmit control register

0x0C | rxctrl | Receive control register

0x10 | ie UART interrupt enable
0x14 | ip UART interrupt pending
0x18 | div Baud rate divisor

16.4 Transmit Data Register (txdata)

Writing to the txdata register enqueues the character contained in the data field to the transmit
FIFO if the FIFO is able to accept new entries. Reading from txdata returns the current value of
the full flag and zero in the data field. The full flag indicates whether the transmit FIFO is
able to accept new entries; when set, writes to data are ignored. A RISC-V amoor .w instruction
can be used to both read the full status and attempt to enqueue data, with a non-zero return
value indicating the character was not accepted.

Table 79: Transmit Data Register

Transmit Data Register (txdata)

Register Offset 0x0

Bits | Field Name | Attr. | Rst. Description

[7:0] | data RW X | Transmit data

[30:8] | Reserved

31 full RO X | Transmit FIFO full
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16.5 Receive Data Register (rxdata)

Reading the rxdata register dequeues a character from the receive FIFO and returns the value
in the data field. The empty flag indicates if the receive FIFO was empty; when set, the data
field does not contain a valid character. Writes to rxdata are ignored.

Table 80: Receive Data Register

Receive Data Register (rxdata)

Register Offset 0x4

Bits | Field Name | Attr. [ Rst. Description

[7:0] | data RO X | Received data

[30:8] | Reserved

31 empty RO X | Receive FIFO empty

16.6 Transmit Control Register (txctri)

The read-write txctrl register controls the operation of the transmit channel. The txen bit con-
trols whether the Tx channel is active. When cleared, transmission of Tx FIFO contents is sup-
pressed, and the txd pin is driven high.

The nstop field specifies the number of stop bits: @ for one stop bit and 1 for two stop bits.
The txcnt field specifies the threshold at which the Tx FIFO watermark interrupt triggers.
The txctrl register is reset to 0.

Table 81: Transmit Control Register

Transmit Control Register (txctrl)

Register Offset 0x8

Bits | Field Name | Attr. | Rst. Description
0 txen RW 0x0 | Transmit enable
1 nstop RW 0x0 | Number of stop bits

[15:2] | Reserved

[18:16] | txcnt RW 0x0 | Transmit watermark level

[31:19] | Reserved
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16.7 Receive Control Register (rxctr1)

The read-write rxctrl register controls the operation of the receive channel. The rxen bit con-
trols whether the Rx channel is active. When cleared, the state of the rxd pin is ignored, and no
characters will be enqueued into the Rx FIFO.

The rxcnt field specifies the threshold at which the Rx FIFO watermark interrupt triggers.
The rxctrl register is reset to 8. Characters are enqueued when a zero (low) start bit is seen.

Table 82: Receive Control Register

Receive Control Register (rxctrl)

Register Offset 0xC

Bits | Field Name | Attr. | Rst. Description

0 rxen RW 0x0 | Receive enable

[15:1] | Reserved

[18:16] | rxcnt RW 0x0 | Receive watermark level

[31:19] | Reserved

16.8 Interrupt Registers (ip and ie)

The ip register is a read-only register indicating the pending interrupt conditions, and the read-
write ie register controls which UART interrupts are enabled. ie is reset to 0.

The txwm condition becomes raised when the number of entries in the transmit FIFO is strictly
less than the count specified by the txcnt field of the txctrl register. The pending bit is
cleared when sufficient entries have been enqueued to exceed the watermark.

The rxwm condition becomes raised when the number of entries in the receive FIFO is strictly
greater than the count specified by the rxcnt field of the rxctrl register. The pending bit is
cleared when sufficient entries have been dequeued to fall below the watermark.

Table 83: UART Interrupt Enable Register

UART Interrupt Enable Register (ie)

Register Offset 0x10

Bits | Field Name | Attr. | Rst. Description
0 txwm RW 0x0 | Transmit watermark interrupt enable
1 r Xwm RW 0x0 | Receive watermark interrupt enable
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Table 83: UART Interrupt Enable Register

[31:2] | Reserved

Table 84: UART Interrupt Pending Register

UART Interrupt Pending Register (ip)
Register Offset 0x14
Bits | Field Name | Attr. | Rst. Description
0 txwm RO X | Transmit watermark interrupt pending
1 rXwm RO X | Receive watermark interrupt pending
[31:2] | Reserved

16.9 Baud Rate Divisor Register (div)

The read-write, div_width-bit div register specifies the divisor used by baud rate generation
for both Tx and Rx channels. The relationship between the input clock and baud rate is given by
the following formula:

fin
baud = . <
foau div+1
The input clock is the bus clock t1clk. The reset value of the register is set to div_init, which
is tuned to provide a 115200 baud output out of reset given the expected frequency of t1clk.

Table 85 shows divisors for some common core clock rates and commonly used baud rates.
Note that the table shows the divide ratios, which are one greater than the value stored in the
div register.

Table 85: Common baud rates (MIDI=31250, DMX=250000) and required
divide values to achieve them with given bus clock frequencies. The divide val-
ues are one greater than the value stored in the div register.

tlclk (MHz) | Target Baud (Hz) | Divisor | Actual Baud (Hz) | Error (%)
500 31250 16000 31250 | ©
500 115200 4340 115207 | 0.0064
500 250000 2000 250000 [ O
500 1843200 271 1845018 | 0.099
750 31250 24000 31250 | ©
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divide values to achieve them with given bus clock frequencies. The divide val-

Table 85: Common baud rates (MIDI=31250, DMX=250000) and required

ues are one greater than the value stored in the div register.

tlclk (MHz) | Target Baud (Hz) | Divisor | Actual Baud (Hz) | Error (%)
750 115200 6510 115207 | 0.0064
750 250000 3000 250000 | O
750 1843200 407 1842751 | 0.024

The receive channel is sampled at 16x the baud rate, and a majority vote over 3 neighboring
bits is used to determine the received value. For this reason, the divisor must be =16 for a
receive channel.

Table 86: Baud Rate Divisor Register

Baud Rate Divisor Register (div)

Register Offset | 0x18
Bits Hisite Attr. | Rst. Description
Name
[15:0] | div RW X | Baud rate divisor. div_width bits wide, and the reset
value is div_init.
[31:16] | Reserved
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Pulse Width Modulator (PWM)

This chapter describes the operation of the Pulse-Width Modulation peripheral (PWM).

17.1 PWM Overview

Figure 29 shows an overview of the PWM peripheral. The default configuration described here
has four independent PWM comparators (pwmcmp@—pwmcmp3), but each PWM Peripheral is
parameterized by the number of comparators it has (ncmp). The PWM block can generate multi-
ple types of waveforms on output pins (pwmXgpio) and can also be used to generate several
forms of internal timer interrupt. The comparator results are captured in the pwmcmpXip flops
and then fed to the PLIC as potential interrupt sources. The pwmcmpXip outputs are further
processed by an output ganging stage before being fed to the GPIOs.

PWM instances can support comparator precisions (cmpwidth) up to 16 bits, with the example
described here having the full 16 bits. To support clock scaling, the pwmcount register is 15 bits
wider than the comparator precision cmpwidth.
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Figure 29: PWM Peripheral

17.2 PWM Instances in FU740-C000

FU740-C000 contains two PWM instances. Their addresses and parameters are shown in Table

87.

Table 87: PWM Instances

Instance Number Address ncmp | cmpwidth

0 0x1002_0000 4 16

1 0x1002_106000 4 16

17.3 PWM Memory Map

The memory map for the PWM peripheral is shown in Table 88.
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Table 88: SiFive PWM memory map, offsets relative to PWM peripheral base address

Offset Name Description
0x00 | pwmcfg PWM configuration register
0x04 | Reserved
0x08 | pwmcount | PWM count register
0x0C | Reserved
0x10 | pwms Scaled PWM count register
0x14 | Reserved
0x18 | Reserved
0x1C | Reserved
0x20 | pwmcmpo PWM 0 compare register
0x24 | pwmcmpl PWM 1 compare register
0x28 | pwmcmp2 PWM 2 compare register
0x2C | pwmcmp3 PWM 3 compare register

17.4 PWM Count Register (pwmcount)

The PWM unit is based around a counter held in pwmcount. The counter can be read or written
over the TileLink bus. The pwmcount register is (15 + cmpwidth) bits wide. For example, for
cmpwidth of 16 bits, the counter is held in pwmcount[30:0], and bit 31 of pwmcount returns a

zero when read.

When used for PWM generation, the counter is normally incremented at a fixed rate then reset
to zero at the end of every PWM cycle. The PWM counter is either reset when the scaled
counter pwms reaches the value in pwmcmp@, or is simply allowed to wrap around to zero.

The counter can also be used in one-shot mode, where it disables counting after the first reset.

Table 89: PWM Count Register

PWM Count Register (pwmcount)

Register Offset 0x8

Bits | Field Name | Attr. [ Rst. Description
[30:0] | pwmcount RW X | PWM count register. cmpwidth + 15 bits wide.
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Table 89: PWM Count Register

31 Reserved

17.5 PWM Configuration Register (pwncfg)
Table 90: PWM Configuration Register

PWM Configuration Register (pwmcfg)

Register Offset 0x0
Bits Field Name Attr. | Rst. Description
[3:0] | pwmscale RW X | PWM Counter scale

[7:4] Reserved

8 pwmsticky RW X | PWM Sticky - disallow clearing pwmcmpXip bits

9 pwmzerocmp RW X | PWM Zero - counter resets to zero after match

10 pwmdeglitch RW X | PWM Deglitch - latch pwmcmp X ip within same
cycle

11 Reserved

12 pwmenalways RW 0x0 | PWM enable always - run continuously

13 pwmenoneshot | RW 0x0 | PWM enable one shot - run one cycle

[15:14] | Reserved

16 pwmcmp@center | RW X | PWMO Compare Center
17 pwmcmplcenter | RW X | PWM1 Compare Center
18 pwmcmp2center | RW X | PWM2 Compare Center
19 pwmcmp3center | RW X | PWM3 Compare Center

[23:20] | Reserved

24 pwmcmpOgang RW X | PWMO/PWM1 Compare Gang
25 pwmcmplgang RW X | PWM1/PWM2 Compare Gang
26 pwmcmp2gang RW X | PWM2/PWM3 Compare Gang
27 pwmcmp3gang RW X | PWM3/PWMO Compare Gang
28 pwmcmpOip RW X | PWMO Interrupt Pending
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Table 90: PWM Configuration Register

29 pwmcmplip RW X | PWM1 Interrupt Pending
30 pwmcmp2ip RW X | PWM2 Interrupt Pending
31 pwmcmp3ip Rw X | PWM3 Interrupt Pending

The pwmcfg register contains various control and status information regarding the PWM periph-
eral, as shown in Table 90.

The pwmen* bits control the conditions under which the PWM counter pwmcount is incremented.
The counter increments by one each cycle only if any of the enabled conditions are true.

If the pwmenalways bit is set, the PWM counter increments continuously. When pwmenoneshot
is set, the counter can increment but pwmenoneshot is reset to zero once the counter resets,
disabling further counting (unless pwmenalways is set). The pwmenoneshot bit provides a way
for software to generate a single PWM cycle then stop. Software can set the pwmenoneshot
again at any time to replay the one-shot waveform. The pwmen* bits are reset at wakeup reset,
which disables the PWM counter and saves power.

The 4-bit pwmscale field scales the PWM counter value before feeding it to the PWM compara-
tors. The value in pwmscale is the bit position within the pwmcount register of the start of a
cmpwidth-bit pwms field. A value of O in pwmscale indicates no scaling, and pwms would then be
equal to the low cmpwidth bits of pwmcount. The maximum value of 15 in pwmscale corre-

sponds to dividing the clock rate by 215 so for an input bus clock of 16 MHz, the LSB of pwms
will increment at 488.3 Hz.

The pwmzerocmp bit, if set, causes the PWM counter pwmcount to be automatically reset to zero
one cycle after the pwms counter value matches the compare value in pwmcmp®. This is normally
used to set the period of the PWM cycle. This feature can also be used to implement periodic
counter interrupts, where the period is independent of interrupt service time.

17.6 Scaled PWM Count Register (pwns)

The Scaled PWM Count Register pwms reports the cmpwidth-bit portion of pwmcount which
starts at pwmscale, and is what is used for comparison against the pwmcmp registers.

Table 91: Scaled PWM Count Register

Scaled PWM Count Register (pwms)

Register Offset 0x10

Bits | Field Name | Attr. | Rst. Description

[15:0] | pwms RW X | Scaled PWM count register. cmpwidth bits wide.
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Table 91: Scaled PWM Count Register

[31:16] | Reserved

17.7 PWM Compare Registers (pwmcmpo—pwmcmps)
Table 92: PWM 0 Compare Register

PWM 0 Compare Register (pwmcmpo0)

Register Offset 0x20

Bits | Field Name | Attr. | Rst. Description

[15:0] | pwmcmp@ RW X | PWM 0 Compare Value

[31:16] | Reserved

Table 93: PWM 1 Compare Register

PWM 1 Compare Register (pwmcmp1)

Register Offset 0x24

Bits | Field Name | Attr. | Rst. Description

[15:0] | pwmcmpil RW X | PWM 1 Compare Value

[31:16] | Reserved

Table 94: PWM 2 Compare Register

PWM 2 Compare Register (pwmcmp2)

Register Offset 0x28

Bits | Field Name | Attr. | Rst. Description

[15:0] | pwmcmp2 RW X | PWM 2 Compare Value

[31:16] | Reserved

Table 95: PWM 3 Compare Register

PWM 3 Compare Register (pwmcmp3)

Register Offset 0x2C
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Table 95: PWM 3 Compare Register

Bits | Field Name | Attr. | Rst. Description

[15:0] | pwmcmp3 RW X | PWM 3 Compare Value

[31:16] | Reserved

The primary use of the ncmp PWM compare registers is to define the edges of the PWM wave-
forms within the PWM cycle.

Each compare register is a cmpwdith-bit value against which the current pwms value is com-
pared every cycle. The output of each comparator is high whenever the value of pwms is greater
than or equal to the corresponding pwmcmp X.

If the pwmzerocomp bit is set, when pwms reaches or exceeds pwmcmp®, pwmcount is cleared to
zero and the current PWM cycle is completed. Otherwise, the counter is allowed to wrap
around.

17.8 Deglitch and Sticky Circuitry

To avoid glitches in the PWM waveforms when changing pwmcmp X register values, the
pwmdeglitch bit in pwmcfg can be set to capture any high output of a PWM comparator in a
sticky bit (pwmemp X ip for comparator X) and prevent the output falling again within the same
PWM cycle. The pwmcmpXip bits are only allowed to change at the start of the next PWM cycle.

Note

The pwmcmp®@ip bit will only be high for one cycle when pwmdeglitch and pwmzerocmp are
set where pwmcmp@ is used to define the PWM cycle, but can be used as a regular PWM
edge otherwise.

If pwmdeglitch is set, but pwmzerocmp is clear, the deglitch circuit is still operational but is now
triggered when pwms contains all 1s and will cause a carry out of the high bit of the pwms incre-
menter just before the counter wraps to zero.

The pwmsticky bit disallows the pwmcmp X ip registers from clearing if they are already set and
is used to ensure interrupts are seen from the pwmcmpXip bits.
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17.9 Generating Left- or Right-Alighed PWM Waveforms

pwms | O 1 2 3 4 5 6 0

PWM Cycle

b -]
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)
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pwmcmpX="7 ! :
1
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Figure 30: Basic right-aligned PWM waveforms. All possible base waveforms are shown for a

7-clock PWM cycle (pwmcmp0=6). The waveforms show the single-cycle delay caused by regis-

tering the comparator outputs in the pwmecmp X ip bits. The signals can be inverted at the GPIOs
to generate left-aligned waveforms.

Figure 30 shows the generation of various base PWM waveforms. The figure illustrates that if
pwmcmpo is set to less than the maximum count value (6 in this case), it is possible to generate
both 100% (pwmcmpX = 0) and 0% (pwmcmpX > pwmcmp0) right-aligned duty cycles using the
other comparators. The pwmcmpXip bits are routed to the GPIO pads, where they can be
optionally and individually inverted, thereby creating left-aligned PWM waveforms (high at
beginning of cycle).

17.10 Generating Center-Aligned (Phase-Correct) PWM
Waveforms

The simple PWM waveforms in Figure 30 shift the phase of the waveform along with the duty
cycle. A per-comparator pwmcmpXcenter bit in pwmcfg allows a single PWM comparator to
generate a center-aligned symmetric duty-cycle as shown in Figure 31. The pwmcmpXcenter bit
changes the comparator to compare with the bitwise inverted pwms value whenever the MSB of
pwms is high.

This technique provides symmetric PWM waveforms but only when the PWM cycle is at the
largest supported size. At a 16 MHz bus clock rate with 16-bit precision, this limits the fastest
PWM cycle to 244 Hz, or 62.5 kHz with 8-bit precision. Higher bus clock rates allow proportion-
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ally faster PWM cycles using the single comparator center-aligned waveforms. This technique
also reduces the effective width resolution by a factor of 2.

Table 96: lllustration of how count value is inverted before presentation to comparator when
pwmemp X center is selected, using a 3-bit pwms value.

pwms | pwmscenter
000 000
001 001
010 010
011 011
100 011
101 010
110 001
111 000
I I
pwms | O 1 2 3 4 5 6 7 0 1 2 4 5 6 0 1
: PWM Cycle : :
pwmcmpX=0 i E E
pwmcmpX=1 E J \ E / \_E
pwmcmpX=2 i / \ E / \ E
pwmempX=3 E / \ E / \ E
pwmcmpX=4 i E E

Figure 31: Center-aligned PWM waveforms generated from one comparator. All possible
waveforms are shown for a 3-bit PWM precision. The signals can be inverted at the GPIOs to

generate opposite-phase waveforms.

When a comparator is operating in center mode, the deglitch circuit allows one 0-to-1 transition
during the first half of the cycle and one 1-to-0 transition during the second half of the cycle.
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17.11 Generating Arbitrary PWM Waveforms using Ganging

A comparator can be ganged together with its next-highest-numbered neighbor to generate arbi-
trary PWM pulses. When the pwmcmpXgang bit is set, comparator X fires and raises its

pwmX gpio signal. When comparator X + 1 (or pwmcmp® for pwmcmp3) fires, the pwmXgpio out-
put is reset to zero.

17.12 Generating One-Shot Waveforms

The PWM peripheral can be used to generate precisely timed one-shot pulses by first initializing
the other parts of pwmcfg then writing a 1 to the pwmenoneshot bit. The counter will run for one
PWM cycle, then once a reset condition occurs, the pwmenoneshot bit is reset in hardware to
prevent a second cycle.

17.13 PWM Interrupts

The PWM can be configured to provide periodic counter interrupts by enabling auto-zeroing of
the count register when a comparator O fires (pwmzerocmp=1). The pwmsticky bit should also
be set to ensure interrupts are not forgotten while waiting to run a handler.

The interrupt pending bits pwmcmpXip can be cleared down using writes to the pwmcfg register.

The PWM peripheral can also be used as a regular timer with no counter reset (pwmzerocmp=0),
where the comparators are now used to provide timer interrupts.

Introduction © SiFive, Inc. Page 153



18

Inter-Integrated Circuit (I?’C) Master
Interface

The SiFive Inter-Integrated Circuit (I12C) Master Interface is based on OpenCores® [2C Master
Core.

Download the original documentation at https://opencores.org/project,i2c.

All I2C control register addresses are 4-byte aligned.

18.1 I2C Instance in FU740-C000

FU740-C000 contains one I2C instance. Its address is shown in Table 97.

Table 97: [2C Instance

Instance Number Address

0 0x1003_0000

1 0x1003_1000

18.2 1%C Overview

1°C is a two-wire, bi-directional serial bus that provides a simple and efficient method of data
exchange between devices. It is most suitable for applications requiring occasional communica-

tion over a short distance between many devices. The 1°C standard is a true multi-master bus
including collision detection and arbitration that prevents data corruption if two or more masters
attempt to control the bus simultaneously.

The interface defines 3 transmission speeds:
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1. Normal: 100Kbps
2. Fast: 400Kbps
3. High speed: 3.5Mbps

Only 100Kbps and 400Kbps modes are supported directly. For High speed special 10s are
needed. If these 10s are available and used, then High speed is also supported.

18.3 Features

Compatible with Philips 1°C standard

Multi Master Operation

Software programmable clock frequency

Clock Stretching and Wait state generation

Software programmable acknowledge bit

Interrupt or bit-polling driven byte-by-byte data-transfers
Arbitration lost interrupt, with automatic transfer cancelation

Start/Stop/Repeated Start/Acknowledge generation

© © N o g s> w DN PRE

Start/Stop/Repeated Start detection

=
©

Bus busy detection

[EEN
[EEN

. Supports 7 and 10bit addressing mode

=
N

. Operates from a wide range of input clock frequencies

a. Static synchronous design

b. Fully synthesizable

18.4 Memory Map

The memory map for the 1°C control registers is shown in Table 98. The 1°C memory map has
been designed to only require naturally aligned 32-bit memory accesses.

Table 98: Register Offsets within ’C Memory Map

Name | Offset | Access Description

PRER1lo | Ox000 | RW Clock Prescale register lo-byte
PRERhi | 0x004 | RW Clock Prescale register hi-byte
CTR 0x008 | RW Control register
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Table 98: Register Offsets within Pc Memory Map

Name | Offset | Access Description
TXR 0x00C | W Transmit register

RXR 0x00C | R Receive register

CR 0x010 | W Command register
SR 0x010 | R Status register

Please note that all reserved bits are read as zeros. To ensure forward compatibility, they
should be written as zeros.

18.5 Prescale Register

This register is used to prescale the SCL clock line. Due to the structure of the 1°C interface, the
core uses a 5 * SCL clock internally. The prescale register must be programmed to this 5 * SCL
frequency (minus 1). Change the value of the prescale register only when the ‘EN’ bit is cleared.

Example: clock frequency = 32MHz, desired SCL frequency = 100KHz

prescale = = irm

Reset value: OXFFFF

18.6 Control Register

The core responds to new commands only when the EN bit is set. Pending commands are fin-
ished. Clear the ‘EN’ bit only when no transfer is in progress, i.e. after a STOP command, or
when the command register has the STO bit set. When halted during a transfer, the core can

hang the 1°C bus.

Table 99: Control Register Fields

Field Bit | Access Description Reset Value
EN 7 | RW I°C core enable bit 0x0
IEN 6 | RW I°C core interrupt enable bit | ©X@
Reserved | 50 | R Reserved 0x0
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18.7 Transmit Register

Table 100: Transmit Register Fields

Bit | Access il Description
Value
[7:1] | W 0x0 Next byte to transmit via 1°C
0 W 0x0 In case of a data transfer this bit represent the data’s LSB. In case
of a slave address transfer this bit represents the RW bit. . 1 =
reading from slave . @ = writing to slave

18.8 Receive Register

Table 101: Receive Register Fields

Bit | Access

Reset Value Description

[7:0] | R

0x0

Last byte received via 1°C

18.9 Command Register

The STA, STO, RD, WR, and IACK bits are cleared automatically. %These bits are always read as

zeros.
Table 102: Command Register Fields
Field Bit | Access AL Description
Value

STA 7 w 0x0 Generate (repeated) start condition.

STO 6 W 0x0 Generate stop condition.

RD 5 W 0x0 Read from slave.

WR 4 W 0x0 Write to slave.

ACK 3 w 0x0 When a receiver, sent ACK (ACK ='0") or NACK

(ACK =1").

Reserved | [2:1] | ox0 Reserved | IACK
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18.10 Status Register
Table 103: Status Register Fields

Field Bit | Access | Description Reset Value

RXACK 7 R 0x0 Received acknowledge from slave This flag
represents acknowledge from the addressed
slave. . 1 = No acknowledge received . 0 =
Acknowledge received

Busy 6 R 0x0 I°C bus busy . 1 after START signal detected .
0 after STOP signal detected

AL 5 R Ox0 Arbitration lost. This bit is set when the core lost
arbitration.

Arbitration is lost when: . a STOP signal is
detected, but non requested . the master drives
SDA high, but SDA is low

See bus-arbitration section for more informa-

tion.
Reserved | [4:2] | R 0x0 Reserved
TIP 1 R 0x0 Transfer in progress. . 1 when transferring data

. @ when transfer complete

IF 0 R 0x0 Interrupt Flag. This bit is set when an interrupt
is pending, which will cause a processor inter-
rupt request if the IEN bit is set. The Interrupt
Flag is set when: . one byte transfer has been
completed . arbitration is lost

18.11 Operation

18.11.1 System Configuration

The 1°C system uses a serial data line (SDA) and a serial clock line (SCL) for data transfers. All
devices connected to these two signals must have open drain or open collector outputs. The
logic AND function is exercised on both lines with external pull-up resistors.

Data is transferred between a Master and a Slave synchronously to SCL on the SDA line on a
byte-by-byte basis. Each data byte is 8 bits long. There is one SCL clock pulse for each data bit
with the MSB being transmitted first. An acknowledge bit follows each transferred byte. Each bit
is sampled during the high period of SCL; therefore, the SDA line may be changed only during
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the low period of SCL and must be held stable during the high period of SCL. A transition on the
SDA line while SCL is high is interpreted as a command (see START and STOP signals).

18.11.2 I%C Protocol

Normally, a standard communication consists of four parts:

1. START signal generation
2. Slave address transfer
3. Data transfer

4. STOP signal generation

5] L5n Fam L
L R (A ' S @ Pl el s 2 g & Bl B Pl a ]

S & AT A X A W B D AN B AT A1 RV 3 ACH A= Cl OO W 03 ) DA D0 Jaece, P

Figure 32: PC operation

18.11.3 START Signal

When the bus is free/idle, meaning no master device is engaging the bus (both SCL and SDA
lines are high), a master can initiate a transfer by sending a START signal. A START signal,
usually referred to as the S-bit, is defined as a high-to-low transition of SDA while SCL is high.
The START signal denotes the beginning of a new data transfer. A Repeated START is a
START signal without first generating a STOP signal. The master uses this method to communi-
cate with another slave or the same slave in a different transfer direction (e.g. from writing to a
device to reading from a device) without releasing the bus.

The core generates a START signal when the STA-bit in the Command Register is set and the
RD or WR bits are set. Depending on the current status of the SCL line, a START or Repeated
START is generated.

18.11.4 Slave Address Transfer

The first byte of data transferred by the master immediately after the START signal is the slave
address. This is a seven-bits calling address followed by a RW bit. The RW bit signals the slave
the data transfer direction. No two slaves in the system can have the same address. Only the
slave with an address that matches the one transmitted by the master will respond by returning
an acknowledge bit by pulling the SDA low at the 9th SCL clock cycle.

Note: The core supports 10bit slave addresses by generating two address transfers. See the
Philips 1°C specifications for more details.
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The core treats a Slave Address Transfer as any other write action. Store the slave device’s
address in the Transmit Register and set the WR bit. The core will then transfer the slave
address on the bus.

18.11.5 Data Transfer

Once successful slave addressing has been achieved, the data transfer can proceed on a byte-
by-byte basis in the direction specified by the RW bit sent by the master. Each transferred byte
is followed by an acknowledge bit on the 9th SCL clock cycle. If the slave signals a No Acknowl-
edge, the master can generate a STOP signal to abort the data transfer or generate a Repeated
START signal and start a new transfer cycle.

If the master, as the receiving device, does not acknowledge the slave, the slave releases the
SDA line for the master to generate a STOP or Repeated START signal.

To write data to a slave, store the data to be transmitted in the Transmit Register and set the
WR bit. To read data from a slave, set the RD bit. During a transfer the core set the TIP flag,
indicating that a Transfer is In Progress. When the transfer is done the TIP flag is reset, the IF
flag set and, when enabled, an interrupt generated. The Receive Register contains valid data
after the IF flag has been set. The user may issue a new write or read command when the TIP
flag is reset.

18.11.6 STOP Signal

The master can terminate the communication by generating a STOP signal. A STOP signal,
usually referred to as the P-bit, is defined as a low-to-high transition of SDA while SCL is at logi-
cal 1.

18.12 Arbitration Procedure

18.12.1 Clock Synchronization

The I12C bus is a true multimaster bus that allows more than one master to be connected on it. If
two or more masters simultaneously try to control the bus, a clock synchronization procedure

determines the bus clock. Because of the wired-AND connection of the 1°C signals a high to low
transition affects all devices connected to the bus. Therefore a high to low transition on the SCL
line causes all concerned devices to count off their low period. Once a device clock has gone
low it will hold the SCL line in that state until the clock high state is reached. Due to the wired-
AND connection the SCL line will therefore be held low by the device with the longest low
period, and held high by the device with the shortest high period.
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Siart counting Start counting
lerer mesrined Figh period
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SCL1 Master1 SCL
j_ [ Master2 SCL
|\ wired-AND SCL

Figure 33: I°C Clock Synchronization

18.12.2 Clock Stretching

Slave devices can use the clock synchronization mechanism to slow down the transfer bit rate.
After the master has driven SCL low, the slave can drive SCL low for the required period and
then release it. If the slave’s SCL low period is greater than the master’s SCL low period, the
resulting SCL bus signal low period is stretched, thus inserting wait-states.

18.13 Architecture

The 12C core is built around four primary blocks; the Clock Generator, the Byte Command Con-
troller, the Bit Command Controller and the DatalO Shift Register. All other blocks are used for
interfacing or for storing temporary values.
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Pre:
: rcqlc.a]r: o © lock
Remster generator
Command :
: Register Byte 1 Bit ¢ »SCL
Command Command
Status Controller Controller la—» DA
Register
: Transmit : ‘
Register DatalO
Shift
: Receive Register
Register

Figure 34: I°C Architecture

18.13.1 Clock Generator

The Clock Generator generates an internal $4 x fgor,$ clock enable signal that triggers all syn-
chronous elements in the Bit Command Controller. It also handles clock stretching needed by
some slaves.

18.13.2 Byte Command Controller

The Byte Command Controller handles 12C traffic at the byte level. It takes data from the Com-
mand Register and translates it into sequences based on the transmission of a single byte. By
setting the START, STOP, and READ bit in the Command Register, for example, the Byte Com-
mand Controller generates a sequence that results in the generation of a START signal, the
reading of a byte from the slave device, and the generation of a STOP signal. It does this by
dividing each byte operation into separate bit-operations, which are then sent to the Bit Com-
mand Controller.
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18.13.3 Bit Command Controller

The Bit Command Controller handles the actual transmission of data and the generation of the
specific levels for START, Repeated START, and STOP signals by controlling the SCL and SDA
lines. The Byte Command Controller tells the Bit Command Controller which operation has to be
performed. For a single byte read, the Bit Command Controller receives 8 separate read com-
mands. Each bit-operation is divided into 5 pieces (idle and A, B, C, and D), except for a STOP
operation which is divided into 4 pieces (idle and A, B, and C).
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18.13.4 DatalO Shift Register

The DatalO Shift Register contains the data associated with the current transfer. During a read
action, data is shifted in from the SDA line. After a byte has been read the contents are copied
into the Receive Register. During a write action, the Transmit Register’s contents are copied into
the DatalO Shift Register and are then transmitted onto the SDA line.

18.14 Programming examples}

18.14.1 Example 1l

Write 1 byte of data to a slave.
Slave address = 0x51 (b'1010001)
Data to write = ©xAC

I12C Sequence:

generate start command

write slave address + write bit
receive acknowledge from slave
write data

receive acknowledge from slave

o 0k~ w N

generate stop command
Commands:
1. write OxA2 (address + write bit) to Transmit Register, set STA bit, set wR bit. Wait for

interrupt or TIP flag to negate.

2. read RxACK bit from Status Register, should be 0. Write 0xAC to Transmit register,
set STO bit, set WR bit. Wait for interrupt or TIP flag to negate.

3. read RxACK bit from Status Register, should be 0.

" Firsl comenand sequencs i Secomd command sequence 3 :
AV AV AV AV AV AV AV AV AVATAVAVAVAVAVAVAVAVAYE:
S04 _i'.i,'l'_l'n ."_'lI .'._lll Wr mck |I'_I L |"_|'l. ack | :

Figure 37: c Example 1
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Note

The time for the Interrupt Service Routine is not shown here. It is assumed that the ISR is
much faster then the 12C cycle time, and therefore not visible.

18.14.2 Example 2

Read a byte of data from an I2C memory device.
Slave address = 0x4E

Memory location to read from = 0x20

I12C sequence:

generate start signal

write slave address + write bit
receive acknowledge from slave
write memory location

receive acknowledge from slave
generate repeated start signal
write slave address + read bit

receive acknowledge from slave

© © N o g s> w NP

read byte from slave

=
©

write no acknowledge (NACK) to slave, indicating end of transfer

11. generate stop signal
Commands:
1. write Ox9C (address + write bit) to Transmit Register, set STA bit, set WR bit. Wait for

interrupt or TIP flag to negate.

2. read RxACK bit from Status Register, should be 0. Write 0x20 to Transmit register,
set WR bit. Wait for interrupt or TIP flag to negate.

3. read RxACK bit from Status Register, should be 0. Write 0x9D (address + read bit) to
Transmit Register, set STA bit, set WR bit. Wait for interrupt or TIP flag to negate.

4. set RD bit, set ACK to ‘1’ (NACK), set STO bit

Introduction © SiFive, Inc. Page 167



18 Inter-Integrated Circuit (12C) Master Interface

. ILE Third command segumon :_E= Founb pommmand séguenon !
spa iRy /) f Vi nck i 07 Y e} D8) B4 ) B3 Y02 {01 ) Do fackkp

Figure 38: Pc example 2

Note

The time for the Interrupt Service Routine is not shown here. It is assumed that the ISR is
much faster then the 1°C cycle time, and therefore not visible.}
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Serial Peripheral Interface (SPI)

This chapter describes the operation of the SiFive Serial Peripheral Interface (SPI) controller.

19.1 SPI Overview

The SPI controller supports master-only operation over the single-lane, dual-lane, and quad-
lane protocols. The baseline controller provides a FIFO-based interface for performing pro-
grammed I/O. Software initiates a transfer by enqueuing a frame in the transmit FIFO; when the
transfer completes, the slave response is placed in the receive FIFO.

In addition, a SPI controller can implement a SPI flash read sequencer, which exposes the
external SPI flash contents as a read/execute-only memory-mapped device. Such controllers
are reset to a state that allows memory-mapped reads, under the assumption that the input
clock rate is less than 100 MHz and the external SPI flash device supports the common Win-
bond/Numonyx serial read (0x83) command. Sequential accesses are automatically combined
into one long read command for higher performance.

The fctrl register controls switching between the memory-mapped and programmed-1/O
modes, if applicable. While in programmed-1/0 mode, memory-mapped reads do not access the
external SPI flash device and instead return @ immediately. Hardware interlocks ensure that the
current transfer completes before mode transitions and control register updates take effect.

19.2 SPI Instances in FU740-C000

FU740-C000 contains three SPI instances. Their addresses and parameters are shown in Table
104.

Table 104: SPI Instances

Instance | Flash Controller Address cs_width | div_width

QSPI 0 Y 0x1004_0000 1 16
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Table 104: SPI Instances

Instance | Flash Controller Address cs_width | div_width

QSPI 1 Y 0x1004_1000 4 16

QSPI 2 N 0x1005_0000 1 16

19.3 Memory Map

The memory map for the SPI control registers is shown in Table 105. The SPI memory map has
been designed to require only naturally-aligned 32-bit memory accesses.

Table 105: Register offsets within the SPI memory map. Registers marked * are present only
on controllers with the direct-map flash interface.

Offset Name Description

0x00 | sckdiv Serial clock divisor

Ox04 | sckmode Serial clock mode

0x08 | Reserved

0x0C | Reserved

0x10 | csid Chip select ID

0x14 | csdef Chip select default

0x18 | csmode Chip select mode

0x1C | Reserved

0x20 | Reserved

0x24 | Reserved

0x28 | delay0 Delay control 0

0x2C | delay1l Delay control 1

0x30 | Reserved

0x34 | Reserved

0x38 | Reserved

0x3C | Reserved

Ox40 | fmt Frame format

0x44 | Reserved
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Table 105: Register offsets within the SPI memory map. Registers marked * are present only
on controllers with the direct-map flash interface.

Offset Name Description
0x48 | txdata Tx FIFO Data
0x4C | rxdata Rx FIFO data
0x50 | txmark Tx FIFO watermark
0x54 | rxmark Rx FIFO watermark
0x58 | Reserved
0x5C | Reserved
0x60 | fctrl SPI flash interface control*
0x64 | ffmt SPI flash instruction format*
0x68 | Reserved
0x6C | Reserved
0x70 | ie SPI interrupt enable
0x74 | ip SPI interrupt pending

19.4 Serial Clock Divisor Register (sckdiv)

The sckdiv is a div_width-bit register that specifies the divisor used for generating the serial
clock (SCK). The relationship between the input clock and SCK is given by the following for-

mula:

The input clock is the bus clock t1clk. The reset value of the div field is 0x3.

fsck -

fin
2(div + 1)

Table 106: Serial Clock Divisor Register

Serial Clock Divisor Register (sckdiv)

Register Offset 0x0
Bits | Field Name | Attr. | Rst. Description
[11:0] | div RwW 0x3 | Divisor for serial clock. div_width bits wide.

[31:12] | Reserved
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19.5 Serial Clock Mode Register (sckmode)

The sckmode register defines the serial clock polarity and phase. Table 108 and Table 109
describe the behavior of the pol and pha fields, respectively. The reset value of sckmode is 0.

Table 107: Serial Clock Mode Register

Serial Clock Mode Register (sckmode)

Register Offset 0x4

Bits | Field Name | Attr. | Rst. Description
0 pha RW 0x0 | Serial clock phase
1 pol RW 0x0 | Serial clock polarity

[31:2] | Reserved

Table 108: Serial Clock Polarity

Value Description

0 | Inactive state of SCK is logical O

1 | Inactive state of SCK is logical 1

Table 109: Serial Clock Phase

Value Description

0 | Data is sampled on the leading edge of SCK and shifted on the trailing edge of SCK

1 | Data is shifted on the leading edge of SCK and sampled on the trailing edge of SCK

19.6 Chip Select ID Register (csid)

The csid is a logs (es_width)-bit register that encodes the index of the CS pin to be toggled
by hardware chip select control. The reset value is 0x0.

Table 110: Chip Select ID Register

Chip Select ID Register (csid)

Register Offset 0x10

Bits | Field Name | Attr. [ Rst. Description
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Table 110: Chip Select ID Register

[31:0] | csid RW 0x0 | Chip select ID. logs (cs_width) bits wide.

19.7 Chip Select Default Register (csdef)

The csdef register is a cs_width-bit register that specifies the inactive state (polarity) of the CS
pins. The reset value is high for all implemented CS pins.

Table 111: Chip Select Default Register

Chip Select Default Register (csdef)

Register Offset 0x14
Bits Al Attr. | Rst. Description
Name
[31:0] | csdef RW 0x1 | Chip select default value. cs_width bits wide, reset to
all-1s.

19.8 Chip Select Mode Register (csmode)

The csmode register defines the hardware chip select behavior as described in Table 112. The
reset value is 8x0 (AUTO). In HOLD mode, the CS pin is deasserted only when one of the fol-
lowing conditions occur:

+ A different value is written to csmode or csid.

» A write to csdef changes the state of the selected pin.

« Direct-mapped flash mode is enabled.

Table 112: Chip Select Mode Register

Chip Select Mode Register (csmode)

Register Offset 0x18

Bits | Field Name | Attr. | Rst. Description

[1:0] | mode RW 0x0 | Chip select mode

[31:2] | Reserved
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Table 113: Chip Select Modes

Value | Name Description

0 | AUTO | Assert/deassert CS at the beginning/end of each frame

2 | HOLD | Keep CS continuously asserted after the initial frame

3 | OFF Disable hardware control of the CS pin

19.9 Delay Control Registers (delaye and delay1)

The delay6 and delay1 registers allow for the insertion of arbitrary delays specified in units of
one SCK period.

The cssck field specifies the delay between the assertion of CS and the first leading edge of
SCK. When sckmode . pha = 0, an additional half-period delay is implicit. The reset value is 0x1.

The sckcs field specifies the delay between the last trailing edge of SCK and the deassertion of
CS. When sckmode . pha = 1, an additional half-period delay is implicit. The reset value is 0x1.

The intercs field specifies the minimum CS inactive time between deassertion and assertion.
The reset value is 0x1.

The interxfr field specifies the delay between two consecutive frames without deasserting
CS. This is applicable only when sckmode is HOLD or OFF. The reset value is 0x0.

Table 114: Delay Control Register 0

Delay Control Register 0 (delay0)

Register Offset 0x28

Bits | Field Name | Attr. | Rst. Description

[7:0] | cssck RW 0x1 | CS to SCK Delay

[15:8] | Reserved

[23:16] | sckecs RW 0x1 | SCK to CS Delay

[31:24] | Reserved

Table 115: Delay Control Register 1

Delay Control Register 1 (delay1)

Register Offset 0x2C
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Table 115: Delay Control Register 1

Bits | Field Name | Attr. | Rst. Description

[7:0] | intercs RW 0x1 | Minimum CS inactive time
[15:8] | Reserved
[23:16] | interxfr RW 0x0 | Maximum interframe delay
[31:24] | Reserved

19.10 Frame Format Register (fnt)

The fmt register defines the frame format for transfers initiated through the programmed-1/0O
(FIFO) interface. Table 117, Table 118, and Table 119 describe the proto, endian, and dir
fields, respectively. The len field defines the number of bits per frame, where the allowed range
is 0 to 8 inclusive.

For flash-enabled SPI controllers, the reset value is 0x0008_0008, corresponding to proto =
single, dir = Tx, endian = MSB, and len = 8. For non-flash-enabled SPI controllers, the reset
value is 0x0008_0000, corresponding to proto = single, dir = RX, endian = MSB, and len = 8.

Table 116: Frame Format Register

Frame Format Register (fmt)
Register Offset | 0x40
Bits I\Tzi-,\(::i Attr. | Rst. Description
[1:0] | proto RW 0x0 | SPI protocol
2 endian RW ox0 | SPI endianness
3 dir RW X | SPI'I/O direction. This is reset to 1 for flash-enabled SPI
controllers, O otherwise.
[15:4] | Reserved
[19:16] | 1en RW 0x8 | Number of bits per frame
[31:20] | Reserved
Table 117: SPI Protocol. Unused DQ pins are tri-stated.
Value | Description Data Pins
0 | Single DQO (MOSI), DQ1 (MISO)
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Table 117: SPI Protocol. Unused DQ pins are tri-stated.

Value | Description Data Pins
1 | Dual DQO, DQ1
2 | Quad DQO, DQ1, DQ2, DQ3
Table 118: SPI Endianness
Value Description
0 | Transmit most-significant bit (MSB) first
1 | Transmit least-significant bit (LSB) first

Table 119: SPI I/O Direction

Value

Description

0 | Rx: For dual and quad protocols, the DQ pins are tri-stated. For the single protocol,
the DQO pin is driven with the transmit data as normal.

1 | Tx: The receive FIFO is not populated.

19.11 Transmit Data Register (txdata)

Writing to the txdata register loads the transmit FIFO with the value contained in the data field.
For fmt . len < 8, values should be left-aligned when fmt .endian = MSB and right-aligned

when fmt.endian = LSB.

The full flag indicates whether the transmit FIFO is ready to accept new entries; when set,
writes to txdata are ignored. The data field returns @x0 when read.

Table 120: Transmit Data Register

Transmit Data Register (txdata)

Register Offset 0x48
Bits | Field Name | Attr. | Rst. | Description
[7:0] | data RW 0x0 | Transmit data
[30:8] | Reserved
31 full RO X | FIFO full flag
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19.12 Receive Data Register (rxdata)

Reading the rxdata register dequeues a frame from the receive FIFO. For fmt.1len < 8, values
are left-aligned when fmt .endian = MSB and right-aligned when fmt.endian = LSB.

The empty flag indicates whether the receive FIFO contains new entries to be read; when set,
the data field does not contain a valid frame. Writes to rxdata are ignored.

Table 121: Receive Data Register

Receive Data Register (rxdata)

Register Offset 0x4C

Bits | Field Name | Attr. | Rst. Description

[7:0] | data RO X | Received data

[30:8] | Reserved

31 empty RW X | FIFO empty flag

19.13 Transmit Watermark Register (txmark)

The txmark register specifies the threshold at which the Tx FIFO watermark interrupt triggers.
The reset value is 1 for flash-enabled SPI controllers, and o for non-flash-enabled SPI con-

trollers.

Table 122: Transmit Watermark Register

Transmit Watermark Register (txmark)

Register Offset | 0x50

Bits At Attr. | Rst. Description
Name
[2:0] | txmark RW X | Transmit watermark. The reset value is 1 for flash-enabled

controllers, 0 otherwise.

[31:3] | Reserved

19.14 Receive Watermark Register (rxmark)

The rxmark register specifies the threshold at which the Rx FIFO watermark interrupt triggers.
The reset value is 0x0.
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Table 123: Receive Watermark Register

Receive Watermark Register (rxmark)

Register Offset 0x54
Bits | Field Name | Attr. [ Rst. Description
[2:0] | rxmark RW 0x0 | Receive watermark
[31:3] | Reserved

19.15 SPI Interrupt Registers (ie and ip)

The ie register controls which SPI interrupts are enabled, and ip is a read-only register indicat-
ing the pending interrupt conditions. ie is reset to zero. See Table 124.

The txwm condition becomes raised when the number of entries in the transmit FIFO is strictly
less than the count specified by the txmark register. The pending bit is cleared when sufficient
entries have been enqueued to exceed the watermark. See Table 125.

The rxwm condition becomes raised when the number of entries in the receive FIFO is strictly
greater than the count specified by the rxmark register. The pending bit is cleared when suffi-
cient entries have been dequeued to fall below the watermark. See Table 125.

Table 124: SPI Interrupt Enable Register

SPI Interrupt Enable Register (ie)

Register Offset 0x70
Bits | Field Name | Attr. | Rst. Description
0 txwm RW 0x0 | Transmit watermark enable
1 rXwm RW 0x0 | Receive watermark enable
[31:2] | Reserved

Table 125: SPI Watermark Interrupt Pending Register

SPI Watermark Interrupt Pending Register (ip)

Register Offset 0x74
Bits | Field Name | Attr. | Rst. Description
0 txwm RO 0x0 | Transmit watermark pending
1 rXwm RO 0x0 | Receive watermark pending
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Table 125: SPI Watermark Interrupt Pending Register
[31:2] | Reserved

19.16 SPI Flash Interface Control Register (fctr1)

When the en bit of the fctrl register is set, the controller enters direct memory-mapped SPI
flash mode. Accesses to the direct-mapped memory region causes the controller to automati-
cally sequence SPI flash reads in hardware. The reset value is 8x1. See Table 126.

Table 126: SPI Flash Interface Control Register

SPI Flash Interface Control Register (fctrl)

Register Offset 0x60

Bits | Field Name | Attr. | Rst. Description

0 en RW 0x1 | SPI Flash Mode Select

[31:1] | Reserved

19.17 SPI Flash Instruction Format Register (ffmt)

The ffmt register defines the format of the SPI flash read instruction issued by the controller
when the direct-mapped memory region is accessed while in SPI flash mode.

An instruction consists of a command byte followed by a variable number of address bytes,
dummy cycles (padding), and data bytes. Table 127 describes the function and reset value of
each field.

Table 127: SPI Flash Instruction Format Register

SPI Flash Instruction Format Register (ffmt)

Register Offset 0x64

Bits Field Name | Attr. | Rst. Description

0 cmd_en RW 0x1 | Enable sending of command

[3:1] | addr_len RW 0x3 | Number of address bytes (0 to 4)

[7:4] pad_cnt RW 0x0 | Number of dummy cycles

[9:8] | cmd_proto | Rw 0x0 | Protocol for transmitting command

[11:10] | addr_proto | RW 0x0 | Protocol for transmitting address and padding
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Table 127: SPI Flash Instruction Format Register
[13:12] | data_proto | RW 0x0 | Protocol for receiving data bytes
[15:14] | Reserved
[23:16] | cmd_code RW 0x3 | Value of command byte
[31:24] | pad_code RW 0x0 | First 8 bits to transmit during dummy cycles
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General Purpose Input/Output Controller
(GPIO)

This chapter describes the operation of the General Purpose Input/Output Controller (GPIO) on
the FU740-C000. The GPIO controller is a peripheral device mapped in the internal memory
map. It is responsible for low-level configuration of actual GPIO pads on the device (direction,
pull up-enable, etc.), as well as selecting between various sources of the controls for these sig-
nals. The GPIO controller allows separate configuration of each of ngpio GPIO bits.

Atomic operations such as toggles are natively possible with the RISC-V 'A' extension.

20.1 GPIO Instance in FU740-C000

FU740-C000 contains one GPIO instance. Its address and parameters are shown in Table 128.

Table 128: GPIO Instance

Instance Number Address ngpio

0 0X1006_0000 16

20.2 Memory Map

The memory map for the GPIO control registers is shown in Table 129. The GPIO memory map
has been designed to require only naturally-aligned 32-bit memory accesses. Each register is
ngpio bits wide.
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Table 129: GPIO Peripheral Register Offsets. Only naturally aligned 32-bit memory accesses
are supported. Registers marked with an * are asynchronously reset to 0. All other registers are
synchronously reset to O.

Offset Name Description
0x00 | input_val [ Pinvalue
0x04 | input_en Pin input enable*
0x08 | output_en | Pin output enable*
0x0C | output_val | Output value
0x10 | pue Internal pull-up enable*
0x14 | ds Pin drive strength
0x18 | rise_ie Rise interrupt enable
0x1C | rise_ip Rise interrupt pending
0x20 | fall_ie Fall interrupt enable
0x24 | fall_ip Fall interrupt pending
0x28 | high_ie High interrupt enable
0x2C | high_ip High interrupt pending
0x30 | low_ie Low interrupt enable
0x34 | low_ip Low interrupt pending
0x38 | iof_en I/O function enable
0x3C | iof_sel I/O function select
0x40 | out_xor Output XOR (invert)

20.3 Input / Output Values

The GPIO can be configured on a bitwise fashion to represent inputs and/or outputs, as set by
the input_en and output_en registers. Writing to the output_val register updates the bits
regardless of the tristate value. Reading the output_val register returns the written value.
Reading the input_val register returns the actual value of the pin gated by input_en.

20.4 Interrupts

A single interrupt bit can be generated for each GPIO bit. The interrupt can be driven by rising
or falling edges, or by level values, and interrupts can be enabled for each GPIO bit individually.
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Inputs are synchronized before being sampled by the interrupt logic, so the input pulse width
must be long enough to be detected by the synchronization logic.

To enable an interrupt, set the corresponding bit in the rise_ie and/or fall_ie to 1. If the cor-
responding bitin rise_ip or fall_ip is set, an interrupt pin is raised.

Once the interrupt is pending, it will remain set until a 1 is written to the *_ip register at that bit.

The interrupt pins may be routed to the PLIC or directly to local interrupts.

20.5 Internal Pull-Ups

When configured as inputs, each pin has an internal pull-up which can be enabled by software.
At reset, all pins are set as inputs, and pull-ups are disabled.

20.6 Drive Strength

On the FU740-C000, the drive strength registers do not control anything about the GPIO,
although the registers can be read and written.

20.7 Output Inversion

When configured as an output, the software-writable out_xor register is combined with the out-
put to invert it.
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One-Time Programmable Memory
Interface (OTP)

This chapter describes the operation of the SiFive controller for the eMemory
EG004K32TQ028XW01 NeoFuse® One-Time-Programmable (OTP) memory.

21.1 OTP Overview

OTP is one-time programmable memory. Each bit starts out as 1 and can be written to 6 by
using the controller interface. The OTP is laid out as a 4096x32 bit array.

The controller provides a simple register-based interface to write the inputs of the macro and
read its outputs. All timing and sequencing are the responsibility of the driver software.

21.2 Memory Map

The memory map for the OTP control registers is shown in Table 130. The OTP memory map
has been designed to require only naturally-aligned 32-bit memory accesses. For further infor-
mation about the functionality and timing requirements of each of the inputs/outputs, refer to the
datasheet for eMemory EG004K32TQ028XWO01.

Table 130: Register offsets within the eMemory OTP Controller memory map

Offset | Name Description
0x00 | PA Address input
0x04 | PAIO Programming address input
0x08 | PAS Program redundancy cell selection input
0x0C | PCE OTP Macro enable input
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Table 130: Register offsets within the eMemory OTP Controller memory map

Offset | Name Description
0x10 | PCLK Clock input
0x14 | PDIN Write data input

0x18 | PDOUT Read Data output

@x1C | PDSTB Deep standby mode enable input (active low)

0x20 | PPROG Program mode enable input
0x24 | PTC Test column enable input
0x28 | PTM Test mode enable input

®x2C | PTM_REP | Repair function test mode enable input

0x30 | PTR Test row enable input
0x34 | PTRIM Repair function enable input
0x38 | PWE Write enable input (defines program cycle)

21.3 Detailed Register Fields

Each register is described in more detail below.

Table 131: PA: Address input

PA: Address input (PA)

Register Offset 0x0

Bits | Field Name | Attr. | Rst. | Description

[11:0] | PA RW 0x0 | Address input

[31:12] | Reserved

Table 132: PAIO: Programming address input

PAIO: Programming address input (PAIO)

Register Offset 0x4

Bits | Field Name | Attr. | Rst. Description

[4:0] | PAIO RW 0x0 | Programming address input
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Table 132: PAIO: Programming address input

[31:5] | Reserved

Table 133: PAS: Program redundancy cell selection input

PAS: Program redundancy cell selection input (PAS)

Register Offset 0x8
Bits | Field Name | Attr. | Rst. Description

0 PAS RW 0x0 | Program redundancy cell selection input
[31:1] | Reserved

Table 134: PCE: OTP Macro enable input
PCE: OTP Macro enable input (PCE)
Register Offset 0xC
Bits | Field Name | Attr. | Rst. Description

0 PCE RW 0x0 | OTP Macro enable input

[31:1] | Reserved

Table 135: PCLK: Clock input
PCLK: Clock input (PCLK)

Register Offset 0x10

Bits | Field Name | Attr. | Rst. | Description

0 PCLK RW 0x0 | Clock input

[31:1] | Reserved

Table 136: PDIN: Write data input

PDIN: Write data input (PDIN)

Register Offset 0x14

Bits | Field Name | Attr. | Rst. Description
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Table 136: PDIN: Write data input

0 PDIN RW 0x0 | Write data input

[31:1] | Reserved

Table 137: PDOUT: Read Data output
PDOUT: Read Data output (PDOUT)

Register Offset 0x18

Bits | Field Name | Attr. | Rst. Description

[31:0] | PDOUT RO X | Read Data output

Table 138: PDSTB: Deep standby mode enable input (active low)

PDSTB: Deep standby mode enable input (active low) (PDSTB)

Register Offset 0x1C

Bits

Field Name | Attr. | Rst. Description

0

PDSTB RW 0x0 | Deep standby mode enable input (active low)

[31:1]

Reserved

Table 139: PPROG: Program mode enable input

PPROG: Program mode enable input (PPROG)

Register Offset 0x20

Bits | Field Name | Attr. | Rst. Description

0 PPROG RW 0x0 | Program mode enable input

[31:1] | Reserved

Table 140: PTC: Test column enable input

PTC: Test column enable input (PTC)

Register Offset 0x24

Bits | Field Name | Attr. | Rst. Description
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Table 140: PTC: Test column enable input

PTC

RwW

0x0

Test column enable input

[31:1]

Reserved

Table 141: PTM: Test mode enable input

PTM: Test mode enable input (PTM)

Register Offset 0x28
Bits | Field Name | Attr. | Rst. Description
[2:0] | PTM RW 0x0 | Test mode enable input
[31:3] | Reserved

Table 142: PTM_REP: Repair function test mode enable input

PTM_REP: Repair function test mode enable input (PTM_REP)

Register Offset

0x2C

Bits

Field

Name | Attr.

Rst.

Description

0

PTM_REP

RW

0OXx0

Repair function test mode enable input

[31:1]

Reserved

Table 143: PTR: Test row enable input

PTR: Test row enable input (PTR)

Register Offset

0x30

Bits

Field Name

Attr.

Rst.

Description

0

PTR

RwW

0x0

Test row enable input

[31:1]

Reserved

Table 144: PTRIM: Repair function enable input

PTRIM: Repair function enable input (PTRIM)

Regist

er Offset

0x34
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Table 144: PTRIM: Repair function enable input

Bits | Field Name | Attr. | Rst. Description

0 PTRIM RW 0x0 | Repair function enable input

[31:1] | Reserved

Table 145: PWE: Write enable input (defines program cycle)

PWE: Write enable input (defines program cycle) (PWE)

Register Offset 0x38

Bits | Field Name | Attr. [ Rst. Description

0 PWE RW 0x0 | Write enable input (defines program cycle)
[31:1] | Reserved

21.4 OTP Contents in the FU740-C000

SiFive reserves the first 1 KiB of the 16 KiB OTP memory for internal use.

The current usage is shown in Table 146, with an example where the stored serial number is
0Xx00000001:

Table 146: |Initial OTP Contents for example Serial Number 0x1

32-bit Offset serial serial_n

OxFC 0x1 Oxffffffe

OxFE Oxffffffff OXffffffff

The serial number stored in OTP can be found using this method:

for (1 = oxfe; 1 > 0; i -= 2)

serial = read_otp_word(1i);

serial n = read_otp_word(i+1);

if (serial == ~serial _n)
break;
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Gigabit Ethernet Subsystem

This chapter describes the operation of Gigabit Ethernet on the FU740-C000.

22.1 Gigabit Ethernet Overview

FU740-C000 integrates a single Cadence GEMGXL Gigabit Ethernet Controller that implements
full-duplex 10/100/1000 Mb/s Ethernet MAC as defined in IEEE Standard for Ethernet (IEEE
Std. 802.3-2008). The Gigabit Ethernet controller interfaces to an external PHY using Gigabit
Media Independent Interface (GMII).
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Figure 39: Gigabit Ethernet Subsystem architecture.
The GEMGXL is parameterized to support the following features:

» |EEE Standard 802.3-2008 supporting 10/100/1000 Mbps operation
* GMII/MIl interface
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* MDIO interface for physical layer management of external PHY

¢ Flow Control. Full duplex mode and half duplex operation with TX/RX of pause frames

« Receive Traffic Policing. Ability to drop frames

e Scatter-gather 32-bit wide bus mastering DMA and 64-bit addresses

« 128-bit bit wide 4 KiB deep DMA RX/TX packet buffers with cut-through operation mode

« Interrupt generation to signal TX/RX completion, errors and wake-up

¢ IPv4 and IPv6 checksum offload

e Automatic pad and cyclic redundancy check (CRC) generation on transmit frames

e Jumbo frames up to 10240 bytes

e 128-bit wide 4 KiB deep RX/TX packet buffers

« 4 source/destination frame filters for use in Wake on LAN and Pause Frame Handling

« Ethernet loopback mode

« |EEE 1588 standard for precision clock synchronization protocol is not supported
The GEMGXL Management block enables software to switch the clock used for transmit logic
for 10/100 mode (MII) versus gigabit (GMII) mode. In 10/100 MIl mode, transmit logic in the
GEMGXL must be clocked from a free-running clock (TX_CLK) generated by the external PHY.

In gigabit GMII mode, the GEMGXL, not the external PHY, must generate the 125 MHz transmit
clock towards the PHY.

The Gigabit Ethernet Subsystem operates on a separate clock.

22.2 Memory Map

This section presents an overview of the GEMGXL control registers.

22.2.1 GEMGXL Management Block Control Registers (6x100A_0000—0x100A FFFF)
Table 147: GEMGXL Management TX Clock Select Register

GEMGXL Management TX Clock Select Register
Base Address 0x100A_0000

Bits | Field Name | Rst. | Description

0 tx_clk_sel | 0x0 | GEMGXL TX clock operation mode:

0 = GMII mode. Use 125 MHz gemgxlclk from PRCI in TX logic
and output clock on GMII output signhal GTX_CLK

1 = MIl mode. Use MIl input signal TX_CLK in TX logic
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Table 148: GEMGXL Management Control Status Speed Mode Register

GEMGXL Management Control Status Speed Mode Register
Base Address 0x100A 0020

Bits | Field Name Rst. | Description

[3:0] | control_status_speed_mode | 0x0 | 4’beeEOO = 10 Mbps Ethernet operation using
MII interface

4'b0001 = 100 Mbps Ethernet operation
using Mll interface

4'b0O1x = 1000 Mbps Ethernet operation
using GMII interface

22.2.2 GEMGXL Control Registers (6x1009_0000—0x1009_1FFF)

The complete memory map of the GEMGXL device is described in the Cadence GEMGXL mach
Linux driver header:

https://github.com/torvalds/linux/blob/v4.15/drivers/net/ethernet/cadence/machb.h

22.3 Initialization and Software Interface

Clocking and reset is initialized in the First Stage Boot Loader (FSBL) as described in Chapter
7.

The Gigabit Ethernet Subsystem is controlled by the Cadence GEMGXL macb Linux driver:
https://github.com/torvalds/linux/blob/v4.15/drivers/net/ethernet/cadence/mach_main.c

The switching of GEMGXL TXCLK by the GEMGXL Management Block is controlled by a sec-
ond Linux driver:

https://github.com/riscv/riscv-linux/blob/riscv-linux-4.15/drivers/clk/sifive/gemgxl-mgmt.c
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DDR Subsystem

This chapter describes the operation of the DDR subsystem on the FU740-C000.

23.1 DDR Subsystem Overview

The DDR subsystem supports external 32/64-bit wide DDR3, DDR3L, or DDR4 DRAM with
optional ECC. The maximum data rate is 2400 MT/s. The maximum memory depth is 128 GiB
implemented as 1 or 2 ranks.

DDR Subsystem — DDR4 x8 8Gb
Interrupt
—1 DDR4x88Gb
Physical Filter Control E—
Register L —  DDR4 x8 8Gb
64-bit wide TileLink Slave
— DDR4 x8 8Gb
Physical DDR 4 DFI DDR 4 X
DDR Memory Access Filter * Controller PHY T
256-bit wide TileLink Slave | DDR4x88Gb
| DDR4x88Gb
Controller/PHY Control Regifster
Interface ||
64-bit wide TileLink Slave DDR4 x8 8Gb
— DDR4 x88Gb

ddrctriclk

Figure 40: DDR Subsystem architecture
The DDR Subsystem consists of three main blocks:

1. DDR PHY. Analog PADs. Digital high-speed training and alignment circuits.

2. DDR Controller. Generation of DDR Read/Write/Refresh commands to PHY DFI
interface.
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3. Physical Filter. Prevents memory accesses to the DDR controller that are within the
maximum DDR 128 GiB range but beyond the range of the attached DRAM
devices.

The DDR Subsystem operates on a separate clock, ddrctrlclk, running at 1/4 DDR data rate
with clock domain crossers to the TileLink clock TLCLK.

There are three TileLink slave interfaces:

1. DDR Memory Access Interface. A 256-bit wide TileLink slave node.
2. Physical Filter Control Register Interface. A 64-bit wide TileLink slave node.

3. DDR Controller/Phy Control Register Interface A 64-bit wide TileLink slave node.

A single interrupt output is connected to the PLIC.

23.2 Memory Map

23.2.1 Physical Filter Registers (0x100B_8000—0x100B_8FFF)

The Physical Filter controls whether accesses of certain types are allowed or denied. It is
located between the L2 Cache and the DDR memory controller, so filters accesses that would
otherwise go to the DDR controller.

The filtering behavior is controlled by a series of Device PMP registers which are accessible via
memory mapped reads and writes. The list is a priority allow list. If no Device PMP matches the
transaction will be denied. Otherwise the first Device PMP which is active and address matches
is compared against the requested read and/or write permissions. When an access is denied
the Phyiscal Filter crafts and responds with a Tile Link Denied response message. For transac-
tions in flight, the Physical Filter will only prevent acquisition of new permissions; it will not shoot
down permissions acquired previously.

When a Device PMP register’s a bit is set, it is enabled and Top of Range (TOR) matching is
applied. For a given PMP register, the associated address register forms the top of the address
range, and the preceding PMP address register forms the bottom of the address range. If
PMPIi]'s a field is set to TOR, the entry matches any address y such that PMP[i-1].address «
y < PMP[i].address . If PMP[0].a is set (TOR is applied), zero is used for the lower bound,
and so it matches any address y < PMP[0] .address. Note that the addresses bits stored in the
PMP registers are addr_hi, or page address. Pages are 4096 bytes in size.

Setting a PMP’s r or w bit set grants read or write access respectively.
PMP registers are protected by an 1 or lock bit. Once lock bit is set the PMP register can no

longer be modified until reset. In addition, if the following PMP access is set to TOR, the PMP’s
address cannot be modified, even if its own lock bit is not set.
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Table 149: Physical Filter Memory Map

Offset Name Description

0x00 | devicepmp® | Physical Filter Device PMP Register O

0x08 | devicepmpl | Physical Filter Device PMP Register 1

0x10 | devicepmp2 | Physical Filter Device PMP Register 2

0x18 | devicepmp3 | Physical Filter Device PMP Register 3

Table 150: devicepmpO: Physical Filter Device PMP Register 0

devicepmpO: Physical Filter Device PMP Register 0 (devicepmp®)

Register Offset | 0x0

Bits Al Attr. Rst. Description
Name

[9:0] | Reserved

[35:10] | addr_hi | Rw 0x80000 | Page address. Specifies top-of-range page address
for this PMP and bottom-of-range address for follow-
ing PMP. Cannot be modified if 1 bit is set, or if a bit
and 1 bit is set on the subsequent PMP.

[55:36] | Reserved

56 r RW 0x1 | Read bit. When set grants read access to the match-
ing address range. Cannot be madified if | bit is set.

57 w RW 0x1 | Write bit. When set grants write access to the match-
ing address range. Cannot be modified if | bit is set.

58 Reserved

59 a RW 0x1 | Access bit. When clear, this PMP does not filter any-
thing. When set, Top-of-Range (TOR) filtering is
applied by this PMP. Cannot be modified if | bit is set.

[62:60] | Reserved

63 1 RW 0x0 | Lock bit. When set, prevents modification to other
fields in the register. Cannot be modified if | bit is set.

Table 151: devicepmpl: Physical Filter Device PMP Register 1

devicepmpl: Physical Filter Device PMP Register 1 (devicepmp1)

Register Offset | 0x8
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Table 151: devicepmpl: Physical Filter Device PMP Register 1

Bits Al Attr. | Rst. Description
Name
[9:0] | Reserved
[35:10] | addr_hi | RwW 0x0 | Page address. Specifies top-of-range page address for
this PMP and bottom-of-range address for following PMP.
Cannot be modified if 1 bit is set, or if a bit and 1 bit is set
on the subsequent PMP.
[55:36] | Reserved
56 r RW 0x0 | Read bit. When set grants read access to the matching
address range. Cannot be modified if | bit is set.
57 w RW 0x0 | Write bit. When set grants write access to the matching
address range. Cannot be modified if | bit is set.
58 Reserved
59 a RW 0x0 | Access bit. When clear, this PMP does not filter anything.
When set, Top-of-Range (TOR) filtering is applied by this
PMP. Cannot be modified if | bit is set.
[62:60] | Reserved
63 1 RW 0x0 | Lock bit. When set, prevents modification to other fields
in the register. Cannot be modified if | bit is set.
Table 152: devicepmp2: Physical Filter Device PMP Register 2

devicepmp2: Physical Filter Device PMP Register 2 (devicepmp2)

Register Offset | 0x10
Bits ALt Attr. Rst. Description
Name
[9:0] Reserved
[35:10] | addr_hi | RwW 0x880000 | Page address. Specifies top-of-range page address
for this PMP and bottom-of-range address for fol-
lowing PMP. Cannot be modified if 1 bit is set, or if a
bit and 1 bit is set on the subsequent PMP.
[55:36] | Reserved
56 r RW 0x0 | Read bit. When set grants read access to the
matching address range. Cannot be modified if | bit
is set.
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Table 152:

devicepmp?2: Physical Filter Device PMP Register 2

57

RW

Ox0

Write bit. When set grants write access to the
matching address range. Cannot be modified if | bit
is set.

58

Reserved

59

a

Rw

Ox0

Access bit. When clear, this PMP does not filter
anything. When set, Top-of-Range (TOR) filtering is
applied by this PMP. Cannot be modified if | bit is
set.

[62:60]

Reserved

63

1

Rw

0OXx0

Lock bit. When set, prevents modification to other
fields in the register. Cannot be modified if | bit is
set.

Table 153:

devicepmp3: Physical Filter Device PMP Register 3

devicepmp3: Physical Filter Device PMP Register 3 (devicepmp3)

Register Offset | 0x18
Bits Al Attr. Rst. Description
Name
[9:0] | Reserved
[35:10] | addr_hi | Rw 0x2000000 | Page address. Specifies top-of-range page
address for this PMP and bottom-of-range
address for following PMP. Cannot be modified if 1
bit is set, or if a bit and 1 bit is set on the subse-
guent PMP.
[55:36] | Reserved

56 r RW 0x1 | Read bit. When set grants read access to the
matching address range. Cannot be modified if |
bit is set.

57 w RW 0x1 | Write bit. When set grants write access to the
matching address range. Cannot be modified if |
bit is set.

58 Reserved

59 a RW 0x1 | Access bit. When clear, this PMP does not filter
anything. When set, Top-of-Range (TOR) filtering
is applied by this PMP. Cannot be modified if | bit
is set.
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Table 153: devicepmp3: Physical Filter Device PMP Register 3

[62:60] | Reserved

63 1

Rw

0OXx0

Lock bit. When set, prevents modification to other
fields in the register. Cannot be modified if | bit is

set.

23.2.2 DDR Controller and PHY Control Registers (0x100B_0000—0x100B_3FFF)

16 KiB of memory-mapped registers control the DDR controller and the PHY mode of operation.
For example, memory timing settings, PAD mode configuration, initialization, and training.

The First Stage Boot Loader (FSBL) directly computes the contents of a subset of these regis-
ters as part of the DDR Reset and Initialization process. These registers are documented below.
Please contact SiFive directly to determine the complete register settings for your application.

Table 154: DDR Controller Control Register O

DDR Controller Control Register 0

Base Address

0x100B_0000

Bits Field Name Rst. Description
0 start 0x0 Start initialization of DDR Subsystem
[11:8] dram_class 0x0 DDR3:0x6 DDR4:0xA
Table 155: DDR Controller Control Register 19
DDR Controller Control Register 19
Base Address 0x100B_004C
Bits Field Name Rst. Description
[18:16] bstlen 0x2 Encoded burst length.
BL1=0x1 BL2=0x2 BL4=0x3 BL8=3
Table 156: DDR Controller Control Register 21
DDR Controller Control Register 21
Base Address 0x100B_0054
Bits Field Name Rst. Description
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Table 156: DDR Controller Control Register 21

DDR Controller Control Register 21

0 optimal_rmodew_en 0 Enables DDR controller optimized
Read Modify Write logic
Table 157: DDR Controller Control Register 120
DDR Controller Control Register 120
Base Address 0x100B_01EO
Bits Field Name Rst. Description
16 diable_rd_interleave 0 Disable read data interleaving.
Set to 1 in FSBL for valid TileLink
operation
Table 158: DDR Controller Control Register 132
DDR Controller Control Register 132
Base Address 0x100B_0210
Bits Field Name Rst. Description
7 int_status[7] 0 An error has occured on the port com-
mand channel
8 int_status|[8] 0 The memory initialization has been
completed
Table 159: DDR Controller Control Register 136
DDR Controller Control Register 136
Base Address 0x100B_0220
Bits Field Name Rst. Description
[31:0] int_mask 0 MASK interrupt due to cause

INT_STATUS [31:0]

23.2.3 DDR Memory (0x8000_0000—0x1F_7FFF_FFFF)

The attached DDR is memory mapped starting at address 0x8000_0000.
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23.3 Reset and Initialization
At power-on, the DDR Subsystem is held in reset by the PRCI block.

The DDR Subsystem is initialized in the First Stage Boot Loader (FSBL) as follows:

1. The DDR Subsystem DDRCTRLCLK input clock is started. DDRPLL in the PRCl is
programmed to generate the DDR Subsystem clock, which runs at 1/4 the memory
MT/s. See Chapter 7.

2. The DDR Subsystem is brought out of reset.

a. The DDR controller reset is released by setting the PRCI Peripheral
Devices Reset Control Register (devicesresetreg) field
ddr_ctrl_rst_nto 1.

b. A wait of one full DDRCTRLCLK cycles occurs.

c. The DDR controller register interface reset and DDR Subsystem PHY
reset are released by setting PRCI register fields ddr_axi_rst_n,
ddr_ahb_rst_n and ddr_phy_rst_nto 1.

d. A wait of 256 full DDRCTRLCLK cycles occurs.

3. The DDR Controller configuration registers at address 0x100B_0000 to
0x100B_0424 are set. The start register field in the DDR Subsystem Control Reg-
ister 0 (0x100B_0000) is held at 0.

4. The DDR PHY configuration registers from address 0x100B_5200 to 0x100B_52F8
are set.

5. The DDR PHY configuration registers from address 0x100B_4000 to 0x100B_51FC
are set.

6. The "encoded burst length" bstlen field in DDR Subsystem Control Register 19 is
set at address 0x100B_004C.

7. All interrupts are disabled by setting int_mask in DDR Subsystem control register
136 at address 6x100B_0220 to OxFFFF_FFFF.

8. The start register field in DDR Subsystem Control Register 0 at address
0x100B_0000 is set to 1, activating the DDR calibration and training operation.

9. The CPU waits for memory initialization completion, polling register int_status[8]
in DDR Subsystem Control Register 132 (0x100B_0210).

10. The Bus Blocker in front of the DDR controller memory slave port is disabled by set-
ting Bus Blocker Control Register 0 at address 6x100B_8000. Bits 56 to 59 are set
to OxF enabling all memory operations. The least significant bits are set to the upper
DDR address in 32-bit words.

11. The DDR Subsystem is ready to service memory accesses at base address
0Xx8000_0000.
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PCle x8 AXI4 Subsystem

This chapter describes the use and functionality of the PCle x8 AXI4 Subsystem on the
FU740-C000.

24.1 PCle X8 AXI4 Subsystem Overview

The PCle X8 AXI4 Subsystem manages the PCI Express lanes which are controlled by the
FU740-C000. The PCle Subsystem is an 10 coherent/one-way coherent master into the L2
cache of the system. The PCle AXI4 Subsystem operates in Gen3 mode and supports a data
width of 128 or 256 bits. The figure below shows the architecture of the PCle X8 AXI4 Subsys-
tem.

The PCle X8 AXI4 Subsystem is composed of two main blocks:
1. PCle PHY:

> PIPE 4 interface.
- Datapath encoding and decoding.
o Error reporting.

2. PCle Controller

o [nitialization of the PHY.
o Packet TX and RX commands to the PHY PIPE interface.
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\\\\\

Figure 41: PCle Block Diagram

The PHY module manages incoming and outgoing packets from and to the PCle lane. The PCle
controller implements three PCle protocol layers: Transaction, Data Link and MAC, where the
Transaction layer is used for packet transmission between a device on the PCI Express lane
and the SoC. The PCle X8 AXI4 Subsystem receives two external reference clock input signals
port_refclk_p and port_refclk_n. Additionally, the PCle Controller is connected to two sep-
arate clock and reset signals: clkrst_aux_clk and clkrst_power_up_rst respectively.

There are 4 devices connected to the PCle X8 AXI4 Subsystem:

AXIl4 Master Device which provides a 64 bit address and 128 bit data packet.
AXIl4 Slave Device which receives 64 bit address and 128 bit data packet.
AXIl4 Slave Device which receives 64 bit address and 128 bit data packet.

A MGMT device.

N
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Error Device

The error device is a TileLink slave that responds to all requests with a TileLink error. It has no
registers. The entire memory range discards writes and returns zeros on read. Both operation
acknowledgments carry an error indication.

The error device serves a dual role. Internally, it is used as a landing pad for illegal off-chip
requests. However, it also useful for testing software handling of bus errors.
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Debug

This chapter describes the operation of SiFive debug hardware, which follows The RISC-V
Debug Specification, Version 0.13. Currently only interactive debug and hardware breakpoints

are supported.

26.1 Debug CSRs

This section describes the per-hart trace and debug registers (TDRs), which are mapped into
the CSR space as follows:

Table 160: Debug Control and Status Registers

CSR Name Description Allowed Access Modes
tselect Trace and debug register select D, M
tdatal First field of selected TDR D,M
tdata2 Second field of selected TDR D,M
tdata3 Third field of selected TDR D, M
dcsr Debug control and status register D
dpc Debug PC D
dscratch Debug scratch register D

The dcsr, dpc, and dscratch registers are only accessible in debug mode, while the tselect
and tdatal-3 registers are accessible from either debug mode or machine mode.
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26.1.1 Trace and Debug Register Select (tselect)

To support a large and variable number of TDRs for tracing and breakpoints, they are accessed
through one level of indirection where the tselect register selects which bank of three
tdatal-3 registers are accessed via the other three addresses.

The tselect register has the format shown below:

Table 161: tselect CSR

Trace and Debug Select Register

CSR tselect
Bits Field Name Attr. Description
[31:0] index WARL | Selection index of trace and debug registers

The index field is a WARL field that does not hold indices of unimplemented TDRs. Even if
index can hold a TDR index, it does not guarantee the TDR exists. The type field of tdatai
must be inspected to determine whether the TDR exists.

26.1.2 Trace and Debug Data Registers (tdata1-3)

The tdatai-3 registers are XLEN-bit read/write registers selected from a larger underlying
bank of TDR registers by the tselect register.

Table 162: tdatal CSR

Trace and Debug Data Register 1

CSR tdatal
Bits Field Name Attr. Description
[27:0] TDR-Specific Data
[31:28] type RO Type of the trace & debug register selected
by tselect
Table 163: tdata2/3 CSRs
Trace and Debug Data Registers 2 and 3
CSR tdata2/3
Bits Field Name Attr. Description
[31:0] TDR-Specific Data
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The high nibble of tdatal contains a 4-bit type code that is used to identify the type of TDR
selected by tselect. The currently defined types are shown below:

Table 164: tdata Types

Type Description

0 No such TDR register

1 Reserved

2 Address/Data Match Trigger
>3 Reserved

The dmode bit selects between debug mode (dmode=1) and machine mode (dmode=1) views of
the registers, where only debug mode code can access the debug mode view of the TDRs. Any
attempt to read/write the tdatal-3 registers in machine mode when dmode=1 raises an illegal
instruction exception.

26.1.3 Debug Control and Status Register (dcsr)

This register gives information about debug capabilities and status. Its detailed functionality is
described in The RISC-V Debug Specification, Version 0.13.

26.1.4 Debug PC (dpc)

When entering debug mode, the current PC is copied here. When leaving debug mode, execu-
tion resumes at this PC.

26.1.5 Debug Scratch (dscratch)

This register is generally reserved for use by Debug ROM in order to save registers needed by
the code in Debug ROM. The debugger may use it as described in The RISC-V Debug Specifi-
cation, Version 0.13.

26.2 Breakpoints

The FU740-C000 supports two hardware breakpoint registers per hart, which can be flexibly
shared between debug mode and machine mode.

When a breakpoint register is selected with tselect, the other CSRs access the following infor-
mation for the selected breakpoint:
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Table 165: TDR CSRs when used as Breakpoints

CSR Name | Breakpoint Alias Description
tselect tselect Breakpoint selection index
tdatal mcontrol Breakpoint match control
tdata2 maddress Breakpoint match address
tdata3 N/A Reserved

26.2.1 Breakpoint Match Control Register (ncontrol)

Each breakpoint control register is a read/write register laid out in Table 166.

Table 166: Test and Debug Data Register 3

Breakpoint Control Register (mcontrol)

Register Offset CSR
Bits Field Attr. Rst. Description
Name
0 R WARL X Address match on LOAD
1 wW WARL X Address match on STORE
2 X WARL X Address match on Instruction FETCH
3 U WARL X Address match on User Mode
4 S WARL X Address match on Supervisor Mode
5 Reserved WPRI X Reserved
6 M WARL X Address match on Machine Mode
[10:7] match WARL X Breakpoint Address Match type
11 chain WARL 0 Chain adjacent conditions.
[15:12] action WARL 0 Breakpoint action to take.
[17:16] sizelo WARL 0 Size of the breakpoint. Always O.
18 timing WARL 0 Timing of the breakpoint. Always O.
19 select WARL 0 Perform match on address or data.
Always 0.
20 Reserved WPRI X Reserved
Introduction © SiFive, Inc. Page 207




26 Debug

Table 166: Test and Debug Data Register 3

Breakpoint Control Register (mcontrol)
[26:21] maskmax RO 4 Largest supported NAPOT range
27 dmode RW 0 Debug-Only access mode
[31:28] type RO 2 Address/Data match type, always 2

The type field is a 4-bit read-only field holding the value 2 to indicate this is a breakpoint con-
taining address match logic.

The action field is a 4-bit read-write WARL field that specifies the available actions when the
address match is successful. The value 0 generates a breakpoint exception. The value 1 enters
debug mode. Other actions are not implemented.

The R/WI/X bits are individual WARL fields, and if set, indicate an address match should only be
successful for loads/stores/instruction fetches, respectively, and all combinations of imple-
mented bits must be supported.

The M/S/U bits are individual WARL fields, and if set, indicate that an address match should
only be successful in the machine/supervisor/user modes, respectively, and all combinations of
implemented bits must be supported.

The match field is a 4-bit read-write WARL field that encodes the type of address range for
breakpoint address matching. Three different match settings are currently supported: exact,
NAPOT, and arbitrary range. A single breakpoint register supports both exact address matches
and matches with address ranges that are naturally aligned powers-of-two (NAPOT) in size.
Breakpoint registers can be paired to specify arbitrary exact ranges, with the lower-numbered
breakpoint register giving the byte address at the bottom of the range and the higher-numbered
breakpoint register giving the address 1 byte above the breakpoint range, and using the chain
bit to indicate both must match for the action to be taken.

NAPOT ranges make use of low-order bits of the associated breakpoint address register to
encode the size of the range as follows:

Table 167: NAPOT Size Encoding

maddress Match type and size
a..aaaaaa Exact 1 byte

a..aaaaa0 2-byte NAPOT range
a..aaaafl 4-byte NAPOT range
a..aaad11 8-byte NAPOT range
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Table 167: NAPOT Size Encoding

a..aa0111 16-byte NAPOT range
a..a01111 32-byte NAPOT range
a61..1111 23L.byte NAPOT range

The maskmax field is a 6-bit read-only field that specifies the largest supported NAPOT range.
The value is the logarithm base 2 of the number of bytes in the largest supported NAPOT range.
A value of 0 indicates that only exact address matches are supported (1-byte range). A value of

31 corresponds to the maximum NAPOT range, which is 231 bytes in size. The largest range is
encoded in maddress with the 30 least-significant bits set to 1, bit 30 set to 0, and bit 31 holding
the only address bit considered in the address comparison.

To provide breakpoints on an exact range, two neighboring breakpoints can be combined with
the chain bit. The first breakpoint can be set to match on an address using action of 2 (greater
than or equal). The second breakpoint can be set to match on address using action of 3 (less
than). Setting the chain bit on the first breakpoint prevents the second breakpoint from firing
unless they both match.

26.2.2 Breakpoint Match Address Register (maddress)

Each breakpoint match address register is an XLEN-bit read/write register used to hold signifi-
cant address bits for address matching and also the unary-encoded address masking informa-
tion for NAPOT ranges.

26.2.3 Breakpoint Execution

Breakpoint traps are taken precisely. Implementations that emulate misaligned accesses in soft-
ware will generate a breakpoint trap when either half of the emulated access falls within the
address range. Implementations that support misaligned accesses in hardware must trap if any
byte of an access falls within the matching range.

Debug-mode breakpoint traps jump to the debug trap vector without altering machine-mode reg-
isters.

Machine-mode breakpoint traps jump to the exception vector with "Breakpoint” set in the
mcause register and with badaddr holding the instruction or data address that caused the trap.
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26.2.4 Sharing Breakpoints Between Debug and Machine Mode

When debug mode uses a breakpoint register, it is no longer visible to machine mode (that is,
the tdrtype will be 0). Typically, a debugger will leave the breakpoints alone until it needs them,
either because a user explicitly requested one or because the user is debugging code in ROM.

26.3 Debug Memory Map

This section describes the debug module’s memory map when accessed via the regular system
interconnect. The debug module is only accessible to debug code running in debug mode on a
hart (or via a debug transport module).

26.3.1 Debug RAM and Program Buffer (6x300—-0x3FF)

The FU740-C000 has 16 32-bit words of program buffer for the debugger to direct a hart to exe-
cute arbitrary RISC-V code. Its location in memory can be determined by executing aiupc
instructions and storing the result into the program buffer.

The FU740-C000 has two 32-bit words of debug data RAM. Its location can be determined by
reading the DMHARTINFO register as described in the RISC-V Debug Specification. This RAM
space is used to pass data for the Access Register abstract command described in the RISC-V
Debug Specification. The FU740-C000 supports only general-purpose register access when
harts are halted. All other commands must be implemented by executing from the debug pro-
gram buffer.

In the FU740-C000, both the program buffer and debug data RAM are general-purpose RAM
and are mapped contiguously in the Core Complex memory space. Therefore, additional data
can be passed in the program buffer, and additional instructions can be stored in the debug data
RAM.

Debuggers must not execute program buffer programs that access any debug module memory
except defined program buffer and debug data addresses.

The FU740-C000 does not implement the DMSTATUS . anyhavereset or
DMSTATUS.allhavereset bits.

26.3.2 Debug ROM (0x800—0xFFF)

This ROM region holds the debug routines on SiFive systems. The actual total size may vary
between implementations.

26.3.3 Debug Flags (0x100-0x110, 0x400—0x7FF)

The flag registers in the debug module are used for the debug module to communicate with
each hart. These flags are set and read used by the debug ROM and should not be accessed
by any program buffer code. The specific behavior of the flags is not further documented here.
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26.3.4 Safe Zero Address

In the FU740-C000, the debug module contains the addresses 0x0 through 0xFFF in the mem-
ory map. Memory accesses to these addresses raise access exceptions, unless the hart is in
debug mode. This property allows a "safe" location for unprogrammed parts, as the default
mtvec location is 0x0.

26.4 Debug Module Interface

The SiFive Debug Module (DM) conforms to The RISC-V Debug Specification, Version 0.13. A
debug probe or agent connects to the Debug Module through the Debug Module Interface
(DMI). The following sections describe notable spec options used in the implementation and
should be read in conjunction with the RISC-V Debug Specification.

26.4.1 DM Registers

dmstatus register

dmstatus holds the DM version number and other implementation information. Most impor-
tantly, it contains status bits that indicate the current state of the selected hart(s).

dmcontrol register

A debugger performs most hart control through the dmcontrol register.

Table 168: Debug Control Register

Control Function

dmactive This bit enables the DM and is reflected in the dmactive output signal.
When dmactive=0, the clock to the DM is gated off.

ndmreset This is a read/write bit that drives the ndreset output signal.

resethaltreq | When set, the DM will halt the hart when it emerges from reset.

hartreset Not Supported
hartsel This field selects the hart to operate on
hasel When set, additional hart(s) in the hart array mask register are selected in

addition to the one selected by hartsel.

hawindow register

This register contains a bitmap where bit 0 corresponds to hart 0, bit 1 to hart 1, etc. Any bits set
in this register select the corresponding hart in addition to the hart selected by hartsel.
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26.4.2 Abstract Commands

Abstract commands provide a debugger with a path to read and write processor state. Many
aspects of Abstract Commands are optional in the RISC-V Debug Spec and are implemented
as described below.

Table 169: Debug Abstract Commands

Cmdtype Feature Support
Access GPR reg- Access Register command, register number 0x1000 - 0x101f
Register isters
CSR regis- | Not supported. CSRs are accessed using the Program Buffer.
ters
FPU regis- | Not supported. FPU registers are accessed using the Program
ters Buffer.
Autoexec Both autoexecprogbuf and autoexecdata are supported.
Post-incre- | Not supported.
ment
Quick Not supported.
Access
Access Not supported. Memory access is accomplished using the Pro-
Memory gram Buffer.

26.4.3 Multi-core Synchronization

The DM is configured with one Halt Group which may be programmed to synchronize execution
between harts or between hart(s) and external logic such as a cross-trigger matrix. The Halt
Group is configured using the dmcs2 register.
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Debug Interface

The SiFive FU740-C000 includes the JTAG debug transport module (DTM) described in The
RISC-V Debug Specification 0.13. This enables a single external industry-standard 1149.1
JTAG interface to test and debug the system. The JTAG interface is directly connected to input
pins.

27.1 JTAG TAPC State Machine

The JTAG controller includes the standard TAPC state machine shown in Figure 42. The state
machine is clocked with TCK. All transitions are labelled with the value on TMS, except for the
arc showing asynchronous reset when TRST=0.
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Figure 42: JTAG TAPC state machine.

27.2 Resetting JTAG Logic

The JTAG logic must be asynchronously reset by asserting the power-on-reset signal. This dri-
ves an internal jtag_reset signal.

Asserting jtag_reset resets both the JTAG DTM and debug module test logic. Because parts
of the debug logic require synchronous reset, the jtag_reset signal is synchronized inside the
FU740-C000.

During operation, the JTAG DTM logic can also be reset without jtag_reset by issuing 5
jtag_TCK clock ticks with jtag_TMS asserted. This action resets only the JTAG DTM, not the
debug module.

27.3 JTAG Clocking

The JTAG logic always operates in its own clock domain clocked by jtag_TCK. The JTAG logic
is fully static and has no minimum clock frequency. The maximum jtag_TCK frequency is part-
specific.
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27.4 JTAG Standard Instructions
The JTAG DTM implements the BYPASS and IDCODE instructions.

On the FU740-C000, the IDCODE is set to 0x20000913.

27.5 JTAG Debug Commands

The JTAG DEBUG instruction gives access to the SiFive debug module by connecting the
debug scan register between jtag_TDI and jtag_TDO.

The debug scan register includes a 2-bit opcode field, a 7-bit debug module address field, and a
32-bit data field to allow various memory-mapped read/write operations to be specified with a
single scan of the debug scan register.

These are described in The RISC-V Debug Specification 0.13.
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Error Correction Codes (ECC)

Error correction codes (ECC) are implemented on various memories within the FU740-C000,
allowing for the detection and, in some cases, correction of memory errors. The following SRAM
blocks on the FU740-C000 support ECC: data cache, L2 cache, and DTIM.

The minimal case of an ECC error is a single-bit error that is detected, reported via interrupt
handler, and corrected automatically by hardware without any software intervention. More diffi-
cult scenarios involve double or multi-bit errors that are still reported and tracked in hardware
but are not correctable. The ECC hardware includes logic for detection and correction, in addi-
tion to 7 redundant bits per 32-bit codeword or 8 redundant bits per 64-bit codeword.

Table 170: Memory Protection Summary

Name Protection Type

Branch Predictor | None

D-Cache Data SECDED ECC (32+7b)

D-Cache Tag SECDED ECC

DTIM SECDED ECC (32+7h)

L2 Cache Data SECDED ECC (64+8b)

L2 Directory Tag | SECDED ECC

L2TLB None

28.1 ECC Configuration

All blocks with ECC support are enabled globally through the Bus-Error Unit (BEU) configuration
registers. The BEU is used to configure ECC reporting and enable interrupt handling via the
global or local interrupt controller. The global interrupt controller is the Platform-Level Interrupt
Controller (PLIC). The local interrupt controller is the Core-Local Interruptor (CLINT). The BEU
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registers plic_interrupt and local_interrupt are used to route the errors to the respective
interrupt controller. Additionally, the BEU can be used for TileLink bus errors.

28.1.1 ECC Initialization

Any SRAM block containing ECC functionality needs to be initialized prior to use. This does not
include cache memory, since an internal state machine initializes data cache valid bits, and
instruction cache valid bits are flops with reset. ECC will correct defective bits based on memory
contents, so if memory is not first initialized to a known state, then the ECC will not operate as
expected. It is recommended to use a DMA, if available, to write the entire SRAM or cache to
zeros prior to enabling ECC reporting. If no DMA is present, use store instructions issued from
the processor. Initializing memory with ECC from an external bus is not recommended. After ini-
tialization, ECC-related registers can be written to zero, and then ECC reporting can be
enabled. 64-bit aligned writes are recommended.

The startup code in the freedom-metal repository provides a method to automatically initialize
memory with ECC. This is accomplished using an assembly-level function
_metal_memory_scrub, located in file scrub.S. The linker script provides the symbol
__metal_eccscrub_bit as a flag to enable the startup code to initialize memory with ECC. It is
important to note that this memory initialization is limited to 64 KB to support RTL simulation run
times. If unexpected ECC errors occur, check the range of the startup initialization to ensure it
covers the region used by the software application.

28.2 ECC Interrupt Handling and Error Injection

Single-bit errors are automatically repaired by the hardware.

BEU errors are always enabled and thus do not have a control bit in mie (Machine Interrupt
Enable) CSR. Likewise, there is no dedicated control bit for BEU errors in the mideleg
(Machine Interrupt Delegation) CSR, so it cannot be delegated to a lower privilege mode than
M-mode. Error injection, and thus software handling of errors, can be accomplished manually by
writing the BEU cause register. The BEU is further described in Chapter 11.

Monitoring overall ECC events can be accomplished in software via the interrupt handler.

The L2 Cache Controller contains hardware counters to track ECC events, and optionally inject
ECC errors to test the software handling of ECC events. The L2 Cache Controller is further
described in Chapter 14.

The exception code value is located in the mcause (Machine Trap Cause) CSR. When BEU
interrupts are routed thorugh the PLIC, the default exception code value will be 11 (0xB).

When ECC interrupts are routed through the CLINT, the default exception code value will be
128 (0x80). These exception codes are further detailed in Section 9.3.5.
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28.3 Hardware Operation Upon ECC Error
Hardware will operate differently depending on which memory type encounters an ECC errror:
» Data Cache: The error is corrected and the cache line is invalidated and written back to the
next level of memory.
< DTIM: Single-bit errors are corrected and written back to the RAM.
e L2 Cache: Single-bit correction for L2 data and metadata (metadata includes index, tag, and

directory information). Double-bit detection only on the L2 data array.

Double-bit errors are reported at the Core Complex boundary via the halt_from_tile_X signal
that, if asserted, remains high until reset.

Introduction © SiFive, Inc. Page 218



29

References

Visit the SiFive forums for support and answers to frequently asked questions:
https://forums.sifive.com

[1] A. Waterman and K. Asanovic, Eds., The RISC-V Instruction Set Manual, Volume I: User-
Level ISA, Version 2.2, May 2017. [Online]. Available: https://riscv.org/specifications/

[2] ——, The RISC-V Instruction Set Manual Volume II: Privileged Architecture Version 1.10,
May 2017. [Online]. Available: https://riscv.org/specifications/

Introduction © SiFive, Inc. Page 219



	SiFive FU740-C000 Manual
	SiFive FU740-C000 Manual
	Proprietary Notice
	Release Information

	1 Introduction
	1.1 FU740-C000 Overview
	1.2 S7 RISC‑V Monitor Core
	1.3 U74 RISC‑V Application Cores
	1.4 Interrupts
	1.5 On-Chip Memory System
	1.6 Universal Asynchronous Receiver/Transmitter
	1.7 Pulse Width Modulation
	1.8 I²C
	1.9 Hardware Serial Peripheral Interface (SPI)
	1.10 GPIO Peripheral
	1.11 Gigabit Ethernet MAC
	1.12 DDR Memory Subsystem
	1.13 PCIe x8 AXI4 Subsystem
	1.14 Debug Support

	2 List of Abbreviations and Terms
	3 S7 RISC‑V Core
	3.1 Supported Modes
	3.2 Instruction Memory System
	3.2.1 Execution Memory Space
	3.2.2 L1 Instruction Cache
	3.2.3 Cache Maintenance
	3.2.4 Coherence with an L2 Cache
	3.2.5 Instruction Fetch Unit
	3.2.6 Branch Prediction

	3.3 Execution Pipeline
	3.4 Data Memory System
	3.4.1 Data Tightly-Integrated Memory (DTIM)

	3.5 Fast I/O
	3.6 Atomic Memory Operations
	3.7 Physical Memory Protection (PMP)
	3.7.1 PMP Functional Description
	3.7.2 PMP Region Locking
	3.7.3 PMP Registers
	PMP Configuration Registers
	PMP Address Registers

	3.7.4 PMP Programming Overview
	PMP Programming Example
	PMP Access Scenarios

	3.7.5 PMP and Paging
	3.7.6 PMP Limitations
	3.7.7 Behavior for Regions without PMP Protection
	3.7.8 Cache Flush Behavior on PMP Protected Region

	3.8 Hardware Performance Monitor
	3.8.1 Performance Monitoring Counters Reset Behavior
	3.8.2 Fixed-Function Performance Monitoring Counters
	Fixed-Function Cycle Counter (mcycle)
	Fixed-Function Instructions-Retired Counter (minstret)
	Event-Programmable Performance Monitoring Counters
	Event Selector Registers
	Event Selector Encodings
	Combining Events

	Counter-Enable Registers



	4 U74 RISC‑V Core
	4.1 Supported Modes
	4.2 Instruction Memory System
	4.2.1 L1 Instruction Cache
	4.2.2 Cache Maintenance
	4.2.3 Coherence with an L2 Cache
	4.2.4 Instruction Fetch Unit
	4.2.5 Branch Prediction

	4.3 Execution Pipeline
	4.4 Data Memory System
	4.4.1 L1 Data Cache
	4.4.2 Cache Maintenance Operations
	4.4.3 L1 Data Cache Coherency
	4.4.4 Coherence with an L2 Cache

	4.5 Atomic Memory Operations
	4.6 Floating-Point Unit (FPU)
	4.7 Virtual Memory Support
	4.7.1 Address and Page Table Formats
	Page Table Configurations

	4.7.2 Supervisor Address Translation and Protection Register (SATP)
	Translation Modes

	4.7.3 Supervisor Memory-Management Fence Instruction (SFENCE.VMA)
	4.7.4 Scenarios Which Require SFENCE.VMA Instruction
	Speculation
	ASID Usage for Supervisor Software

	4.7.5 Trap Virtual Memory
	4.7.6 Virtual Address Translation Process
	4.7.7 Virtual-to-Physical Mapping Example
	4.7.8 MMU at Reset

	4.8 Physical Memory Protection (PMP)
	4.8.1 PMP Functional Description
	4.8.2 PMP Region Locking
	4.8.3 PMP Registers
	PMP Configuration Registers
	PMP Address Registers

	4.8.4 PMP Programming Overview
	PMP Programming Example
	PMP Access Scenarios

	4.8.5 PMP and Paging
	4.8.6 PMP Limitations
	4.8.7 Behavior for Regions without PMP Protection
	4.8.8 Cache Flush Behavior on PMP Protected Region

	4.9 Hardware Performance Monitor
	4.9.1 Performance Monitoring Counters Reset Behavior
	4.9.2 Fixed-Function Performance Monitoring Counters
	Fixed-Function Cycle Counter (mcycle)
	Fixed-Function Instructions-Retired Counter (minstret)

	4.9.3 Event-Programmable Performance Monitoring Counters
	4.9.4 Event Selector Registers
	4.9.5 Event Selector Encodings
	Combining Events

	4.9.6 Counter-Enable Registers


	5 Memory Map
	6 Boot Process
	6.1 Reset Vector
	6.2 Zeroth Stage Boot Loader (ZSBL)
	6.3 First Stage Boot Loader (FSBL)
	6.4 Berkeley Boot Loader (BBL)
	6.5 Boot Methods
	6.5.1 Flash Bit-Banged x1
	6.5.2 Flash Memory-Mapped x1
	6.5.3 Flash Memory-Mapped x4
	6.5.4 SD Card Bit-Banged x1


	7 Clocking and Reset
	7.1 Clocking
	7.2 Reset
	7.3 Memory Map (0x1000_0000–0x1000_0FFF)
	7.4 Reset and Clock Initialization
	7.4.1 Power-On
	7.4.2 Setting coreclk frequency


	8 Thermal Diode
	9 Interrupts
	9.1 Interrupt Concepts
	9.2 Interrupt Operation
	9.2.1 Interrupt Entry and Exit

	9.3 Interrupt Control Status Registers
	9.3.1 Machine Status Register (mstatus)
	9.3.2 Machine Trap Vector (mtvec)
	Mode Direct
	Mode Vectored

	9.3.3 Machine Interrupt Enable (mie)
	9.3.4 Machine Interrupt Pending (mip)
	9.3.5 Machine Cause (mcause)

	9.4 Supervisor Mode Interrupts
	9.4.1 Delegation Registers (m*deleg)
	9.4.2 Supervisor Status Register (sstatus)
	9.4.3 Supervisor Interrupt Enable Register (sie)
	9.4.4 Supervisor Interrupt Pending (sip)
	9.4.5 Supervisor Cause Register (scause)
	9.4.6 Supervisor Trap Vector (stvec)
	9.4.7 Delegated Interrupt Handling

	9.5 Interrupt Priorities
	9.6 Interrupt Latency

	10 Custom Instructions
	10.1 CFLUSH.D.L1
	10.2 CDISCARD.D.L1
	10.3 CEASE
	10.4 PAUSE
	10.5 Branch Prediction Mode CSR
	10.5.1 Branch-Direction Prediction

	10.6 SiFive Feature Disable CSR
	10.7 Other Custom Instructions

	11 Bus-Error Unit
	11.1 Bus-Error Unit Overview
	11.2 Reportable Errors
	11.3 Functional Behavior
	11.4 Memory Map

	12 Core-Local Interruptor (CLINT)
	12.1 CLINT Memory Map
	12.2 MSIP Registers
	12.3 Timer Registers
	12.4 Supervisor Mode Delegation

	13 Platform-Level Interrupt Controller (PLIC)
	13.1 Memory Map
	13.2 Interrupt Sources
	13.3 Interrupt Priorities
	13.4 Interrupt Pending Bits
	13.5 Interrupt Enables
	13.6 Priority Thresholds
	13.7 Interrupt Claim Process
	13.8 Interrupt Completion

	14 Level 2 Cache Controller
	14.1 Level 2 Cache Controller Overview
	14.2 Functional Description
	14.2.1 Way Enable and the L2 Loosely Integrated Memory (L2-LIM)
	14.2.2 Way Masking and Locking
	14.2.3 L2 Scratchpad
	14.2.4 Error Correcting Codes (ECC)

	14.3 Memory Map
	14.4 Register Descriptions
	14.4.1 Cache Configuration Register (Config)
	14.4.2 Way Enable Register (WayEnable)
	14.4.3 ECC Error Injection Register (ECCInjectError)
	14.4.4 ECC Directory Fix Address (DirECCFix*)
	14.4.5 ECC Directory Fix Count (DirECCFixCount)
	14.4.6 ECC Directory Fail Address (DirECCFail*)
	14.4.7 ECC Data Fix Address (DatECCFix*)
	14.4.8 ECC Data Fix Count (DatECCFixCount)
	14.4.9 ECC Data Fail Address (DatECCFail*)
	14.4.10 ECC Data Fail Count (DatECCFailCount)
	14.4.11 Cache Flush Registers (Flush*)
	14.4.12 Way Mask Registers (WayMask*)


	15 Platform DMA Engine (PDMA)
	15.1 Functional Description
	15.1.1 PDMA Channels
	15.1.2 Interrupts

	15.2 PDMA Memory Map
	15.3 Register Descriptions
	15.3.1 Channel Control Register (Control)
	15.3.2 Channel Next Configuration Register (NextConfig)
	15.3.3 Channel Byte Transfer Register (NextBytes)
	15.3.4 Channel Destination Register (NextDestination)
	15.3.5 Channel Source Address (NextSource)
	15.3.6 Channel Exec Registers (Exec*)


	16 Universal Asynchronous Receiver/Transmitter (UART)
	16.1 UART Overview
	16.2 UART Instances in FU740-C000
	16.3 Memory Map
	16.4 Transmit Data Register (txdata)
	16.5 Receive Data Register (rxdata)
	16.6 Transmit Control Register (txctrl)
	16.7 Receive Control Register (rxctrl)
	16.8 Interrupt Registers (ip and ie)
	16.9 Baud Rate Divisor Register (div)

	17 Pulse Width Modulator (PWM)
	17.1 PWM Overview
	17.2 PWM Instances in FU740-C000
	17.3 PWM Memory Map
	17.4 PWM Count Register (pwmcount)
	17.5 PWM Configuration Register (pwmcfg)
	17.6 Scaled PWM Count Register (pwms)
	17.7 PWM Compare Registers (pwmcmp0–pwmcmp3)
	17.8 Deglitch and Sticky Circuitry
	17.9 Generating Left- or Right-Aligned PWM Waveforms
	17.10 Generating Center-Aligned (Phase-Correct) PWM Waveforms
	17.11 Generating Arbitrary PWM Waveforms using Ganging
	17.12 Generating One-Shot Waveforms
	17.13 PWM Interrupts

	18 Inter-Integrated Circuit (I²C) Master Interface
	18.1 I²C Instance in FU740-C000
	18.2 I2C Overview
	18.3 Features
	18.4 Memory Map
	18.5 Prescale Register
	18.6 Control Register
	18.7 Transmit Register
	18.8 Receive Register
	18.9 Command Register
	18.10 Status Register
	18.11 Operation
	18.11.1 System Configuration
	18.11.2 I2C Protocol
	18.11.3 START Signal
	18.11.4 Slave Address Transfer
	18.11.5 Data Transfer
	18.11.6 STOP Signal

	18.12 Arbitration Procedure
	18.12.1 Clock Synchronization
	18.12.2 Clock Stretching

	18.13 Architecture
	18.13.1 Clock Generator
	18.13.2 Byte Command Controller
	18.13.3 Bit Command Controller
	18.13.4 DataIO Shift Register

	18.14 Programming examples}
	18.14.1 Example 1
	18.14.2 Example 2


	19 Serial Peripheral Interface (SPI)
	19.1 SPI Overview
	19.2 SPI Instances in FU740-C000
	19.3 Memory Map
	19.4 Serial Clock Divisor Register (sckdiv)
	19.5 Serial Clock Mode Register (sckmode)
	19.6 Chip Select ID Register (csid)
	19.7 Chip Select Default Register (csdef)
	19.8 Chip Select Mode Register (csmode)
	19.9 Delay Control Registers (delay0 and delay1)
	19.10 Frame Format Register (fmt)
	19.11 Transmit Data Register (txdata)
	19.12 Receive Data Register (rxdata)
	19.13 Transmit Watermark Register (txmark)
	19.14 Receive Watermark Register (rxmark)
	19.15 SPI Interrupt Registers (ie and ip)
	19.16 SPI Flash Interface Control Register (fctrl)
	19.17 SPI Flash Instruction Format Register (ffmt)

	20 General Purpose Input/Output Controller (GPIO)
	20.1 GPIO Instance in FU740-C000
	20.2 Memory Map
	20.3 Input / Output Values
	20.4 Interrupts
	20.5 Internal Pull-Ups
	20.6 Drive Strength
	20.7 Output Inversion

	21 One-Time Programmable Memory Interface (OTP)
	21.1 OTP Overview
	21.2 Memory Map
	21.3 Detailed Register Fields
	21.4 OTP Contents in the FU740-C000

	22 Gigabit Ethernet Subsystem
	22.1 Gigabit Ethernet Overview
	22.2 Memory Map
	22.2.1 GEMGXL Management Block Control Registers (0x100A_0000–0x100A_FFFF)
	22.2.2 GEMGXL Control Registers (0x1009_0000–0x1009_1FFF)

	22.3 Initialization and Software Interface

	23 DDR Subsystem
	23.1 DDR Subsystem Overview
	23.2 Memory Map
	23.2.1 Physical Filter Registers (0x100B_8000–0x100B_8FFF)
	23.2.2 DDR Controller and PHY Control Registers (0x100B_0000–0x100B_3FFF)
	23.2.3 DDR Memory (0x8000_0000–0x1F_7FFF_FFFF)

	23.3 Reset and Initialization

	24 PCIe x8 AXI4 Subsystem
	24.1 PCIe X8 AXI4 Subsystem Overview

	25 Error Device
	26 Debug
	26.1 Debug CSRs
	26.1.1 Trace and Debug Register Select (tselect)
	26.1.2 Trace and Debug Data Registers (tdata1-3)
	26.1.3 Debug Control and Status Register (dcsr)
	26.1.4 Debug PC (dpc)
	26.1.5 Debug Scratch (dscratch)

	26.2 Breakpoints
	26.2.1 Breakpoint Match Control Register (mcontrol)
	26.2.2 Breakpoint Match Address Register (maddress)
	26.2.3 Breakpoint Execution
	26.2.4 Sharing Breakpoints Between Debug and Machine Mode

	26.3 Debug Memory Map
	26.3.1 Debug RAM and Program Buffer (0x300–0x3FF)
	26.3.2 Debug ROM (0x800–0xFFF)
	26.3.3 Debug Flags (0x100–0x110, 0x400–0x7FF)
	26.3.4 Safe Zero Address

	26.4 Debug Module Interface
	26.4.1 DM Registers
	dmstatus register
	dmcontrol register
	hawindow register

	26.4.2 Abstract Commands
	26.4.3 Multi-core Synchronization


	27 Debug Interface
	27.1 JTAG TAPC State Machine
	27.2 Resetting JTAG Logic
	27.3 JTAG Clocking
	27.4 JTAG Standard Instructions
	27.5 JTAG Debug Commands

	28 Error Correction Codes (ECC)
	28.1 ECC Configuration
	28.1.1 ECC Initialization

	28.2 ECC Interrupt Handling and Error Injection
	28.3 Hardware Operation Upon ECC Error

	29 References

