
SiFive FU740-C000 Manual

v1p2

© SiFive, Inc.

https://manuals.plus/m/598ff81773183b63acd8490adfb161142c02a11ee2895f7ffaf89357379a75ec


SiFive FU740-C000 Manual

Proprietary Notice

Copyright © 2021, SiFive Inc. All rights reserved.

FU740-C000 Manual by SiFive, Inc. is licensed under Attribution-NonCommercial-NoDerivatives

4.0 International. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-

nd/4.0

Information in this document is provided "as is," with all faults.

SiFive expressly disclaims all warranties, representations, and conditions of any kind, whether

express or implied, including, but not limited to, the implied warranties or conditions of mer-

chantability, fitness for a particular purpose and non-infringement.

SiFive does not assume any liability rising out of the application or use of any product or circuit,

and specifically disclaims any and all liability, including without limitation indirect, incidental, spe-

cial, exemplary, or consequential damages.

SiFive reserves the right to make changes without further notice to any products herein.

Release Information

Version Date Changes

v1p2 March 25, 2021 • Added Creative Commons license

v1p1 March 8, 2021

• Added I2C content.

• Added virtual memory section to core chapters

• Updated clock and reset initialization section

• Miscellaneous grammar and spelling fixes

v1p0 December 14, 2020 • Initial release



Contents

1 Introduction ............................................................................................................12

1.1 FU740-C000 Overview ..............................................................................................12

1.2 S7 RISC‑V Monitor Core ...........................................................................................14

1.3 U74 RISC‑V Application Cores...................................................................................14

1.4 Interrupts ................................................................................................................. 15

1.5 On-Chip Memory System...........................................................................................15

1.6 Universal Asynchronous Receiver/Transmitter .............................................................15

1.7 Pulse Width Modulation .............................................................................................15

1.8 I²C ........................................................................................................................... 16

1.9 Hardware Serial Peripheral Interface (SPI) ..................................................................16

1.10 GPIO Peripheral .....................................................................................................16

1.11 Gigabit Ethernet MAC..............................................................................................16

1.12 DDR Memory Subsystem.........................................................................................16

1.13 PCIe x8 AXI4 Subsystem.........................................................................................17

1.14 Debug Support .......................................................................................................17

2 List of Abbreviations and Terms .................................................................18

3 S7 RISC‑V Core .....................................................................................................20

3.1 Supported Modes .....................................................................................................20

3.2 Instruction Memory System........................................................................................21

3.2.1 Execution Memory Space .................................................................................21

3.2.2 L1 Instruction Cache.........................................................................................21

3.2.3 Cache Maintenance..........................................................................................21

3.2.4 Coherence with an L2 Cache ............................................................................21

3.2.5 Instruction Fetch Unit........................................................................................22

3.2.6 Branch Prediction .............................................................................................22

3.3 Execution Pipeline ....................................................................................................23

3.4 Data Memory System ................................................................................................24

Introduction © SiFive, Inc. Page 1



3.4.1 Data Tightly-Integrated Memory (DTIM)..............................................................25

3.5 Fast I/O.................................................................................................................... 25

3.6 Atomic Memory Operations........................................................................................26

3.7 Physical Memory Protection (PMP).............................................................................26

3.7.1 PMP Functional Description ..............................................................................26

3.7.2 PMP Region Locking ........................................................................................27

3.7.3 PMP Registers .................................................................................................27

3.7.4 PMP Programming Overview ............................................................................29

3.7.5 PMP and Paging ..............................................................................................31

3.7.6 PMP Limitations ...............................................................................................31

3.7.7 Behavior for Regions without PMP Protection .....................................................31

3.7.8 Cache Flush Behavior on PMP Protected Region................................................32

3.8 Hardware Performance Monitor..................................................................................32

3.8.1 Performance Monitoring Counters Reset Behavior ..............................................32

3.8.2 Fixed-Function Performance Monitoring Counters ...............................................32

4 U74 RISC‑V Core ..................................................................................................36

4.1 Supported Modes .....................................................................................................37

4.2 Instruction Memory System........................................................................................37

4.2.1 L1 Instruction Cache.........................................................................................37

4.2.2 Cache Maintenance..........................................................................................37

4.2.3 Coherence with an L2 Cache ............................................................................37

4.2.4 Instruction Fetch Unit........................................................................................38

4.2.5 Branch Prediction .............................................................................................38

4.3 Execution Pipeline ....................................................................................................39

4.4 Data Memory System ................................................................................................40

4.4.1 L1 Data Cache .................................................................................................41

4.4.2 Cache Maintenance Operations.........................................................................41

4.4.3 L1 Data Cache Coherency ................................................................................41

4.4.4 Coherence with an L2 Cache ............................................................................41

4.5 Atomic Memory Operations........................................................................................42

4.6 Floating-Point Unit (FPU)...........................................................................................42

4.7 Virtual Memory Support .............................................................................................42

Introduction © SiFive, Inc. Page 2



4.7.1 Address and Page Table Formats ......................................................................43

4.7.2 Supervisor Address Translation and Protection Register (SATP) ...........................46

4.7.3 Supervisor Memory-Management Fence Instruction (SFENCE.VMA) .....................47

4.7.4 Scenarios Which Require SFENCE.VMA Instruction .............................................49

4.7.5 Trap Virtual Memory .........................................................................................50

4.7.6 Virtual Address Translation Process ...................................................................50

4.7.7 Virtual-to-Physical Mapping Example .................................................................51

4.7.8 MMU at Reset..................................................................................................53

4.8 Physical Memory Protection (PMP).............................................................................53

4.8.1 PMP Functional Description ..............................................................................53

4.8.2 PMP Region Locking ........................................................................................54

4.8.3 PMP Registers .................................................................................................54

4.8.4 PMP Programming Overview ............................................................................56

4.8.5 PMP and Paging ..............................................................................................58

4.8.6 PMP Limitations ...............................................................................................58

4.8.7 Behavior for Regions without PMP Protection .....................................................59

4.8.8 Cache Flush Behavior on PMP Protected Region................................................59

4.9 Hardware Performance Monitor..................................................................................59

4.9.1 Performance Monitoring Counters Reset Behavior ..............................................59

4.9.2 Fixed-Function Performance Monitoring Counters ...............................................59

4.9.3 Event-Programmable Performance Monitoring Counters......................................60

4.9.4 Event Selector Registers...................................................................................60

4.9.5 Event Selector Encodings .................................................................................60

4.9.6 Counter-Enable Registers .................................................................................63

5 Memory Map ...........................................................................................................64

6 Boot Process..........................................................................................................68

6.1 Reset Vector............................................................................................................. 69

6.2 Zeroth Stage Boot Loader (ZSBL) ..............................................................................70

6.3 First Stage Boot Loader (FSBL) .................................................................................71

6.4 Berkeley Boot Loader (BBL).......................................................................................72

6.5 Boot Methods ...........................................................................................................72

Introduction © SiFive, Inc. Page 3



6.5.1 Flash Bit-Banged x1 .........................................................................................72

6.5.2 Flash Memory-Mapped x1.................................................................................73

6.5.3 Flash Memory-Mapped x4.................................................................................73

6.5.4 SD Card Bit-Banged x1.....................................................................................73

7 Clocking and Reset.............................................................................................74

7.1 Clocking................................................................................................................... 75

7.2 Reset....................................................................................................................... 76

7.3 Memory Map (0x1000_0000–0x1000_0FFF) ............................................................76

7.4 Reset and Clock Initialization .....................................................................................83

7.4.1 Power-On ........................................................................................................83

7.4.2 Setting coreclk frequency...............................................................................84

8 Thermal Diode .......................................................................................................86

9 Interrupts.................................................................................................................. 87

9.1 Interrupt Concepts ....................................................................................................87

9.2 Interrupt Operation ....................................................................................................88

9.2.1 Interrupt Entry and Exit .....................................................................................89

9.3 Interrupt Control Status Registers...............................................................................89

9.3.1 Machine Status Register (mstatus) ..................................................................89

9.3.2 Machine Trap Vector (mtvec)............................................................................90

9.3.3 Machine Interrupt Enable (mie) .........................................................................92

9.3.4 Machine Interrupt Pending (mip) .......................................................................92

9.3.5 Machine Cause (mcause) .................................................................................93

9.4 Supervisor Mode Interrupts ........................................................................................95

9.4.1 Delegation Registers (m*deleg) .......................................................................95

9.4.2 Supervisor Status Register (sstatus) ...............................................................97

9.4.3 Supervisor Interrupt Enable Register (sie).........................................................98

9.4.4 Supervisor Interrupt Pending (sip) ....................................................................98

9.4.5 Supervisor Cause Register (scause).................................................................99

9.4.6 Supervisor Trap Vector (stvec) ......................................................................100

9.4.7 Delegated Interrupt Handling ...........................................................................101

Introduction © SiFive, Inc. Page 4



9.5 Interrupt Priorities ...................................................................................................102

9.6 Interrupt Latency.....................................................................................................102

10 Custom Instructions ......................................................................................103

10.1 CFLUSH.D.L1.......................................................................................................103

10.2 CDISCARD.D.L1...................................................................................................103

10.3 CEASE ................................................................................................................ 104

10.4 PAUSE................................................................................................................. 104

10.5 Branch Prediction Mode CSR.................................................................................104

10.5.1 Branch-Direction Prediction ...........................................................................105

10.6 SiFive Feature Disable CSR...................................................................................105

10.7 Other Custom Instructions .....................................................................................106

11 Bus-Error Unit ...................................................................................................107

11.1 Bus-Error Unit Overview ........................................................................................107

11.2 Reportable Errors..................................................................................................107

11.3 Functional Behavior...............................................................................................108

11.4 Memory Map ........................................................................................................108

12 Core-Local Interruptor (CLINT) ................................................................110

12.1 CLINT Memory Map ..............................................................................................110

12.2 MSIP Registers.....................................................................................................111

12.3 Timer Registers ....................................................................................................111

12.4 Supervisor Mode Delegation ..................................................................................111

13 Platform-Level Interrupt Controller (PLIC) .........................................112

13.1 Memory Map ........................................................................................................112

13.2 Interrupt Sources ..................................................................................................117

13.3 Interrupt Priorities..................................................................................................118

13.4 Interrupt Pending Bits ............................................................................................119

13.5 Interrupt Enables...................................................................................................120

13.6 Priority Thresholds ................................................................................................121

13.7 Interrupt Claim Process .........................................................................................121

Introduction © SiFive, Inc. Page 5



13.8 Interrupt Completion..............................................................................................121

14 Level 2 Cache Controller .............................................................................123

14.1 Level 2 Cache Controller Overview .........................................................................123

14.2 Functional Description ...........................................................................................123

14.2.1 Way Enable and the L2 Loosely Integrated Memory (L2-LIM) ...........................124

14.2.2 Way Masking and Locking.............................................................................125

14.2.3 L2 Scratchpad..............................................................................................125

14.2.4 Error Correcting Codes (ECC) .......................................................................126

14.3 Memory Map ........................................................................................................126

14.4 Register Descriptions ............................................................................................128

14.4.1 Cache Configuration Register (Config) .........................................................128

14.4.2 Way Enable Register (WayEnable) ...............................................................129

14.4.3 ECC Error Injection Register (ECCInjectError) ...........................................129

14.4.4 ECC Directory Fix Address (DirECCFix*) .....................................................129

14.4.5 ECC Directory Fix Count (DirECCFixCount) ................................................130

14.4.6 ECC Directory Fail Address (DirECCFail*) ..................................................130

14.4.7 ECC Data Fix Address (DatECCFix*) ...........................................................130

14.4.8 ECC Data Fix Count (DatECCFixCount).......................................................130

14.4.9 ECC Data Fail Address (DatECCFail*) ........................................................130

14.4.10 ECC Data Fail Count (DatECCFailCount) ..................................................130

14.4.11 Cache Flush Registers (Flush*) .................................................................130

14.4.12 Way Mask Registers (WayMask*) ................................................................131

15 Platform DMA Engine (PDMA) ..................................................................133

15.1 Functional Description ...........................................................................................133

15.1.1 PDMA Channels...........................................................................................133

15.1.2 Interrupts .....................................................................................................133

15.2 PDMA Memory Map ..............................................................................................134

15.3 Register Descriptions ............................................................................................135

15.3.1 Channel Control Register (Control) .............................................................135

15.3.2 Channel Next Configuration Register (NextConfig).......................................135

15.3.3 Channel Byte Transfer Register (NextBytes) ................................................136

Introduction © SiFive, Inc. Page 6



15.3.4 Channel Destination Register (NextDestination)........................................136

15.3.5 Channel Source Address (NextSource)........................................................136

15.3.6 Channel Exec Registers (Exec*)...................................................................137

16 Universal Asynchronous Receiver/Transmitter (UART) .............138

16.1 UART Overview ....................................................................................................138

16.2 UART Instances in FU740-C000.............................................................................138

16.3 Memory Map ........................................................................................................139

16.4 Transmit Data Register (txdata) ...........................................................................139

16.5 Receive Data Register (rxdata) ............................................................................140

16.6 Transmit Control Register (txctrl) .......................................................................140

16.7 Receive Control Register (rxctrl) ........................................................................141

16.8 Interrupt Registers (ip and ie) ..............................................................................141

16.9 Baud Rate Divisor Register (div) ...........................................................................142

17 Pulse Width Modulator (PWM) .................................................................144

17.1 PWM Overview .....................................................................................................144

17.2 PWM Instances in FU740-C000 .............................................................................145

17.3 PWM Memory Map ...............................................................................................145

17.4 PWM Count Register (pwmcount) ..........................................................................146

17.5 PWM Configuration Register (pwmcfg) ...................................................................147

17.6 Scaled PWM Count Register (pwms) .......................................................................148

17.7 PWM Compare Registers (pwmcmp0–pwmcmp3) ......................................................149

17.8 Deglitch and Sticky Circuitry...................................................................................150

17.9 Generating Left- or Right-Aligned PWM Waveforms .................................................151

17.10 Generating Center-Aligned (Phase-Correct) PWM Waveforms ................................151

17.11 Generating Arbitrary PWM Waveforms using Ganging ............................................153

17.12 Generating One-Shot Waveforms .........................................................................153

17.13 PWM Interrupts ...................................................................................................153

18 Inter-Integrated Circuit (I²C) Master Interface ..................................154

18.1 I²C Instance in FU740-C000...................................................................................154

18.2 I2C Overview ........................................................................................................154

Introduction © SiFive, Inc. Page 7



18.3 Features............................................................................................................... 155

18.4 Memory Map ........................................................................................................155

18.5 Prescale Register..................................................................................................156

18.6 Control Register....................................................................................................156

18.7 Transmit Register..................................................................................................157

18.8 Receive Register...................................................................................................157

18.9 Command Register ...............................................................................................157

18.10 Status Register ...................................................................................................158

18.11 Operation ...........................................................................................................158

18.11.1 System Configuration..................................................................................158

18.11.2 I2C Protocol ...............................................................................................159

18.11.3 START Signal.............................................................................................159

18.11.4 Slave Address Transfer ...............................................................................159

18.11.5 Data Transfer .............................................................................................160

18.11.6 STOP Signal ..............................................................................................160

18.12 Arbitration Procedure...........................................................................................160

18.12.1 Clock Synchronization.................................................................................160

18.12.2 Clock Stretching .........................................................................................161

18.13 Architecture ........................................................................................................161

18.13.1 Clock Generator .........................................................................................162

18.13.2 Byte Command Controller ...........................................................................162

18.13.3 Bit Command Controller ..............................................................................164

18.13.4 DataIO Shift Register ..................................................................................166

18.14 Programming examples} ......................................................................................166

18.14.1 Example 1..................................................................................................166

18.14.2 Example 2..................................................................................................167

19 Serial Peripheral Interface (SPI) ..............................................................169

19.1 SPI Overview........................................................................................................169

19.2 SPI Instances in FU740-C000 ................................................................................169

19.3 Memory Map ........................................................................................................170

19.4 Serial Clock Divisor Register (sckdiv) ...................................................................171

19.5 Serial Clock Mode Register (sckmode) ...................................................................172

Introduction © SiFive, Inc. Page 8



19.6 Chip Select ID Register (csid) ..............................................................................172

19.7 Chip Select Default Register (csdef) .....................................................................173

19.8 Chip Select Mode Register (csmode)......................................................................173

19.9 Delay Control Registers (delay0 and delay1) .......................................................174

19.10 Frame Format Register (fmt) ...............................................................................175

19.11 Transmit Data Register (txdata) .........................................................................176

19.12 Receive Data Register (rxdata) ..........................................................................177

19.13 Transmit Watermark Register (txmark) ................................................................177

19.14 Receive Watermark Register (rxmark) .................................................................177

19.15 SPI Interrupt Registers (ie and ip) ......................................................................178

19.16 SPI Flash Interface Control Register (fctrl) ........................................................179

19.17 SPI Flash Instruction Format Register (ffmt) ........................................................179

20 General Purpose Input/Output Controller (GPIO) ..........................181

20.1 GPIO Instance in FU740-C000 ...............................................................................181

20.2 Memory Map ........................................................................................................181

20.3 Input / Output Values .............................................................................................182

20.4 Interrupts.............................................................................................................. 182

20.5 Internal Pull-Ups ...................................................................................................183

20.6 Drive Strength.......................................................................................................183

20.7 Output Inversion ...................................................................................................183

21 One-Time Programmable Memory Interface (OTP) .......................184

21.1 OTP Overview ......................................................................................................184

21.2 Memory Map ........................................................................................................184

21.3 Detailed Register Fields.........................................................................................185

21.4 OTP Contents in the FU740-C000 ..........................................................................189

22 Gigabit Ethernet Subsystem .....................................................................190

22.1 Gigabit Ethernet Overview .....................................................................................190

22.2 Memory Map ........................................................................................................191

22.2.1 GEMGXL Management Block Control Registers

(0x100A_0000–0x100A_FFFF)..................................................................................191

Introduction © SiFive, Inc. Page 9



22.2.2 GEMGXL Control Registers (0x1009_0000–0x1009_1FFF)...........................192

22.3 Initialization and Software Interface ........................................................................192

23 DDR Subsystem ...............................................................................................193

23.1 DDR Subsystem Overview.....................................................................................193

23.2 Memory Map ........................................................................................................194

23.2.1 Physical Filter Registers (0x100B_8000–0x100B_8FFF)................................194

23.2.2 DDR Controller and PHY Control Registers (0x100B_0000–0x100B_3FFF) ....198

23.2.3 DDR Memory (0x8000_0000–0x1F_7FFF_FFFF) .........................................199

23.3 Reset and Initialization...........................................................................................200

24 PCIe x8 AXI4 Subsystem .............................................................................201

24.1 PCIe X8 AXI4 Subsystem Overview........................................................................201

25 Error Device .......................................................................................................203

26 Debug .................................................................................................................... 204

26.1 Debug CSRs ........................................................................................................204

26.1.1 Trace and Debug Register Select (tselect)..................................................205

26.1.2 Trace and Debug Data Registers (tdata1-3) ................................................205

26.1.3 Debug Control and Status Register (dcsr) .....................................................206

26.1.4 Debug PC (dpc)...........................................................................................206

26.1.5 Debug Scratch (dscratch) ..........................................................................206

26.2 Breakpoints ..........................................................................................................206

26.2.1 Breakpoint Match Control Register (mcontrol) ..............................................207

26.2.2 Breakpoint Match Address Register (maddress).............................................209

26.2.3 Breakpoint Execution ....................................................................................209

26.2.4 Sharing Breakpoints Between Debug and Machine Mode ................................210

26.3 Debug Memory Map..............................................................................................210

26.3.1 Debug RAM and Program Buffer (0x300–0x3FF) ...........................................210

26.3.2 Debug ROM (0x800–0xFFF) ........................................................................210

26.3.3 Debug Flags (0x100–0x110, 0x400–0x7FF) ................................................210

26.3.4 Safe Zero Address........................................................................................211

Introduction © SiFive, Inc. Page 10



26.4 Debug Module Interface.........................................................................................211

26.4.1 DM Registers ...............................................................................................211

26.4.2 Abstract Commands .....................................................................................212

26.4.3 Multi-core Synchronization ............................................................................212

27 Debug Interface ................................................................................................213

27.1 JTAG TAPC State Machine ....................................................................................213

27.2 Resetting JTAG Logic ............................................................................................214

27.3 JTAG Clocking ......................................................................................................214

27.4 JTAG Standard Instructions ...................................................................................215

27.5 JTAG Debug Commands .......................................................................................215

28 Error Correction Codes (ECC)..................................................................216

28.1 ECC Configuration ................................................................................................216

28.1.1 ECC Initialization ..........................................................................................217

28.2 ECC Interrupt Handling and Error Injection ..............................................................217

28.3 Hardware Operation Upon ECC Error .....................................................................218

29 References ..........................................................................................................219

Introduction © SiFive, Inc. Page 11



1

Introduction

The FU740-C000 is a Linux-capable SoC powered by SiFive’s U74-MC, the world’s first com-

mercially available superscalar heterogeneous multi-core RISC-V Core Complex. The

FU740-C000 is built around the U7 Core Complex, configured with 4xU74 cores and 1xS7 cores

integrated with a high speed DDR4 memory controller, PCIe Gen3 X8 PCIe and standard

peripherals.

The FU740-C000 is compatible with all applicable RISC‑V standards, and this document should

be read together with the official RISC‑V user-level, privileged, and external debug architecture

specifications.

1.1 FU740-C000 Overview

Figure 1 shows the overall block diagram of the FU740-C000.

A feature summary table can be found in Table 1.
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Figure 1: FU740-C000 top-level block diagram.

Table 1: FU740-C000 Feature Summary.

FU740-C000 Feature Set

Feature Description

Number of Harts 5 Harts.

S7 Core 1× S7 RISC‑V core.

U7 Core 4× U7 RISC‑V cores.

Level-2 Cache 2 MiB, 16-way L2 Cache.

PLIC Interrupts
69 Interrupt signals which can be connected to off core complex

devices.

1 Introduction
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Table 1: FU740-C000 Feature Summary.

FU740-C000 Feature Set

PLIC Priority Levels The PLIC supports 7 priority levels.

DDR3/4 Controller
64 bit + ECC Memory Controller to external DDR3/DDR3L/DDR4

memory

UART 0
Universal Asynchronous/Synchronous Transmitters for serial commu-

nication.

UART 1
Universal Asynchronous/Synchronous Transmitters for serial commu-

nication.

QSPI 0 Serial Peripheral Interface. QSPI 0 has 1 chip select signal.

QSPI 1 Serial Peripheral Interface. QSPI 1 has 4 chip select signals.

QSPI 2 Serial Peripheral Interface. QSPI 2 has 1 chip select signal.

PWM 0 16-bit Pulse-width modulator with 4 comparators.

PWM 1 16-bit Pulse-width modulator with 4 comparators.

I²C 0 Inter-Integrated Circuit (I²C) controller.

I²C 1 Inter-Integrated Circuit (I²C) controller.

GPIO 16 General Purpose I/O pins.

Gigabit Ethernet

MAC
10/100/1000 Ethernet MAC with GMII interface to an external PHY.

PCIe Gen3 x8 PCIe Gen3 X8 controller and PHY.

OTP 4Kx32b one-time programmable memory.

1.2 S7 RISC‑V Monitor Core

The FU740-C000 includes a 64-bit S7 RISC‑V core, which has a high-performance dual-issue

in-order execution pipeline, with a peak sustainable execution rate of two instructions per clock

cycle. The S7 core supports Machine and User privilege modes as well as standard Multiply,

Atomic, and Compressed RISC‑V extensions (RV64IMAC).

The monitor core is described in more detail in Chapter 3.

1.3 U74 RISC‑V Application Cores

The FU740-C000 includes four 64-bit U74 RISC‑V cores, each having a high-performance dual-

issue in-order execution pipeline, with a peak sustainable execution rate of two instructions per

1 Introduction
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clock cycle. The U74 core supports Machine, Supervisor, and User privilege modes as well as

standard Multiply, Single-Precision Floating Point, Double-Precision Floating Point, Atomic, and

Compressed RISC‑V extensions (RV64IMAFDC).

The application cores are described in more detail in Chapter 4.

1.4 Interrupts

The FU740-C000 includes a RISC-V standard Platform-Level Interrupt Controller (PLIC), which

supports 69 global interrupts with 7 priority levels. The FU740-C000 also provides the standard

RISC‑V machine-mode timer and software interrupts via the Core-Local Interruptor (CLINT).

Interrupts are described in Chapter 9. The CLINT is described in Chapter 12. The PLIC is

described in Chapter 13.

1.5 On-Chip Memory System

Each U74 core’s private L1 instruction and data caches are configured to be a 4-way set-asso-

ciative 32 KiB cache. The S7 monitor core has a 2-way set-associative 16 KiB L1 instruction

cache.

The shared 2 MiB L2 cache is divided into 4 address-interleaved banks to improve performance.

Each bank is 512 KiB and is a 16-way set-associative cache. The L2 also supports runtime

reconfiguration between cache and scratchpad RAM uses. The L2 cache acts as the system

coherence hub, with an inclusive directory-based coherence scheme to avoid wasting band-

width on snoops.

All on-chip memory structures are protected with parity and/or ECC. Each core has a Physical

Memory Protection (PMP) unit.

The Level 1 memories are described in Chapter 3 and Chapter 4. The PMP is described in Sec-

tion 3.7 and Section 4.8. The L2 Cache Controller is described in Chapter 14.

1.6 Universal Asynchronous Receiver/Transmitter

Multiple universal asynchronous receiver/transmitter (UARTs) are available and provide a

means for serial communication between the FU740-C000 and off-chip devices.

The UART peripherals are described in Chapter 16.

1.7 Pulse Width Modulation

The pulse width modulation (PWM) peripheral can generate multiple types of waveforms on

GPIO output pins and can also be used to generate several forms of internal timer interrupt.

1 Introduction
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The PWM peripherals are described in Chapter 17.

1.8 I²C

The FU740-C000 has an I²C controller to communicate with external I²C devices, such as sen-

sors, ADCs, etc.

The I²C is described in detail in Chapter 18.

1.9 Hardware Serial Peripheral Interface (SPI)

There are 3 serial peripheral interface (SPI) controllers. Each controller provides a means for

serial communication between the FU740-C000 and off-chip devices, like quad-SPI Flash mem-

ory. Each controller supports master-only operation over single-lane, dual-lane, and quad-lane

protocols. Each controller supports burst reads of 32 bytes over TileLink to accelerate instruc-

tion cache refills. 2 SPI controllers can be programmed to support eXecute-In-Place (XIP)

modes to reduce SPI command overhead on instruction cache refills.

The SPI interface is described in more detail in Chapter 19.

1.10 GPIO Peripheral

The GPIO Peripheral manages the connections to low-speed pads for generic I/O operations.

GPIO control includes pin direction, setting and getting pin values, configuring interrupts, and

controlling dynamic pull-ups.

The GPIO complex is described in more detail in Chapter 20.

1.11 Gigabit Ethernet MAC

The FU740-C000 has a Gigabit (10/100/1000) Ethernet MAC as defined in IEEE Standard for

Ethernet (IEEE Std. 802.3-2008). The Gigabit Ethernet MAC interfaces to an external PHY

using Gigabit Media Independent Interface (GMII).

The Gigabit Ethernet MAC is described in detail in Chapter 22.

1.12 DDR Memory Subsystem

The FU740-C000 has a DDR subsystem that supports an external 64-bit wide DDR4 DRAM

with optional ECC at a maximum data rate of 2400 MT/s.

Chapter 23 describes the details of the DDR Memory Subsystem.

1 Introduction
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1.13 PCIe x8 AXI4 Subsystem

The FU740-C000 has PCIe Gen3 X8 controller and PHY, operating in Root Complex (Mother-

board) mode. The PCIe Subsystem is an IO coherent/one-way coherent master into the L2

cache of the system.

Chapter 24 provides an overview of the PCIe x8 AXI4 Subsystem.

1.14 Debug Support

The FU740-C000 provides external debugger support over an industry-standard JTAG port,

including 2 hardware-programmable breakpoints per hart.

Debug support is described in detail in Chapter 26, and the debug interface is described in

Chapter 27.

1 Introduction
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2

List of Abbreviations and Terms

Term Definition

BHT Branch History Table

BTB Branch Target Buffer

RAS Return-Address Stack

CLINT
Core-Local Interruptor. Generates per-hart software interrupts and timer

interrupts.

CLIC
Core-Local Interrupt Controller. Configures priorities and levels for core

local interrupts.

hart Hardware Thread

DTIM Data Tightly Integrated Memory

ITIM Instruction Tightly Integrated Memory

JTAG Joint Test Action Group

LIM
Loosely Integrated Memory. Used to describe memory space delivered in

a SiFive Core Complex but not tightly integrated to a CPU core.

PMP Physical Memory Protection

PLIC
Platform-Level Interrupt Controller. The global interrupt controller in a

RISC-V system.

TileLink
A free and open interconnect standard originally developed at UC Berke-

ley.

RO Used to describe a Read Only register field.

RW Used to describe a Read/Write register field.

Introduction © SiFive, Inc. Page 18



Term Definition

WO Used to describe a Write Only registers field.

WARL
Write-Any Read-Legal field. A register field that can be written with any

value, but returns only supported values when read.

WIRI

Writes-Ignored, Reads-Ignore field. A read-only register field reserved for

future use. Writes to the field are ignored, and reads should ignore the

value returned.

WLRL

Write-Legal, Read-Legal field. A register field that should only be written

with legal values and that only returns legal value if last written with a

legal value.

WPRI

Writes-Preserve Reads-Ignore field. A register field that might contain

unknown information. Reads should ignore the value returned, but writes

to the whole register should preserve the original value.

2 List of Abbreviations and Terms
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3

S7 RISC‑V Core

This chapter describes the 64-bit S7 RISC‑V processor core, instruction fetch and execution

unit, L1 and L2 memory systems, Physical Memory Protection unit, Hardware Performance

Monitor, and external interfaces.

The S7 feature set is summarized in Table 2.

Table 2: S7 Feature Set

Feature Description

ISA RV64IMAC

SiFive Custom Instruction Extension (SCIE) Not Present

Modes Machine mode, user mode

L1 Instruction Cache 16 KiB 2-way instruction cache

Data Tightly-Integrated Memory (DTIM) 8 KiB DTIM

L2 Cache 2 MiB 16-way L2 cache with 4 banks

ECC Support Single error correction, double error detec-

tion on the DTIM and L2 cache.

Fast I/O Present

Physical Memory Protection 8 regions with a granularity of 64 bytes.

3.1 Supported Modes

The S7 supports RISC‑V user mode, providing two levels of privilege: machine (M) and user

(U). U-mode provides a mechanism to isolate application processes from each other and from

trusted code running in M-mode.
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See The RISC‑V Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10 for

more information on the privilege modes.

3.2 Instruction Memory System

This section describes the instruction memory system of the S7 Monitor core.

3.2.1 Execution Memory Space

The regions of executable memory consist of all directly addressable memory in the system.

The memory includes any volatile or non-volatile memory located off the Core Complex ports,

and includes the on-core-complex DTIM, L2 LIM, and L2 Zero Device.

All executable regions are treated as instruction cacheable. There is no method to disable this

behavior.

Trying to execute an instruction from a non-executable address results in an instruction access

trap.

3.2.2 L1 Instruction Cache

The L1 instruction cache is a 16 KiB 2-way set associative cache. It has a line size of 64 bytes

and is read/write-allocate with a random replacement policy. A cache line fill triggers a burst

access outside of the Core Complex, starting with the first address of the cache line. There are

no write-backs to memory from the instruction cache and it is not kept coherent with the memory

system. In multi-core systems, the instruction caches are not kept coherent with each other.

Out of reset, all blocks of the instruction cache are invalidated. The access latency of the cache

is one clock cycle. There is no way to disable the instruction cache and cache allocations begin

immediately out of reset.

The L1 instruction cache has parity error protection support.

3.2.3 Cache Maintenance

The instruction cache supports the FENCE.I instruction, which invalidates the entire instruction

cache. Writes to instruction memory from the core or another master must be synchronized with

the instruction fetch stream by executing FENCE.I.

3.2.4 Coherence with an L2 Cache

The L1 instruction cache is partially inclusive with the L2 Cache, described in Chapter 14. When

a block of instruction memory is allocated to the L1 cache, it is also allocated to the L2 cache if

the access was from the Memory Port. Instruction accesses to all other ports will not allocate to

the L2 cache, only the L1 cache.

3 S7 RISC‑V Core
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When a block is evicted from L1, it might still reside in the L2, which will reduce access time the

next time the block is fetched.

If a hart modifies instruction memory (i.e., self-modifying code), then a FENCE.I instruction is

required to synchronize the instruction and data streams. Even though FENCE.I targets the L1

instruction cache, no cache operation is required on the L2 cache to maintain instruction

coherency.

3.2.5 Instruction Fetch Unit

The S7 instruction fetch unit is responsible for keeping the pipeline fed with instructions from

memory. The instruction fetch unit delivers up to 8 bytes of instructions per clock cycle to sup-

port superscalar instruction execution. Fetches are always word-aligned and there is a one-

cycle penalty for branching to a 32-bit instruction that is not word-aligned.

The S7 implements the standard Compressed (C) extension to the RISC‑V architecture, which

allows for 16-bit RISC‑V instructions. As four 16-bit instructions can be fetched per cycle, the

instruction fetch unit can be idle when executing programs comprised mostly of compressed

16-bit instructions. This reduces memory accesses and power consumption.

All branches must be aligned to half-word addresses. Otherwise, the fetch generates an instruc-

tion address misaligned trap. Trying to fetch from a non-executable or unimplemented address

results in an instruction access trap.

3.2.6 Branch Prediction

The S7 instruction fetch unit contains sophisticated predictive hardware to mitigate the perfor-

mance impact of control hazards within the instruction stream. The instruction fetch unit is

decoupled from the execution unit, so that correctly predicted control-flow events usually do not

result in execution stalls.

• A 16-entry branch target buffer (BTB), which predicts the target of taken branches and direct

jumps;

• A 3.6 KiB branch history table (BHT), which predicts the direction of conditional branches;

• An 8-entry indirect-jump target predictor (IJTP);

• A 6-entry return-address stack (RAS), which predicts the target of procedure returns.

The BHT is a correlating predictor that supports long branch histories. The BTB has one-cycle

latency, so that correctly predicted branches and direct jumps result in no penalty, provided the

target is 8-byte aligned.

Direct jumps that miss in the BTB result in a one-cycle fetch bubble. This event might not result

in any execution stalls if the fetch queue is sufficiently full.

3 S7 RISC‑V Core
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The BHT, IJTP, and RAS take precedence over the BTB. If these structures' predictions dis-

agree with the BTB’s prediction, a one-cycle fetch bubble results. Similar to direct jumps that

miss in the BTB, the fetch bubble might not result in an execution stall.

Mispredicted branches usually incur a four-cycle penalty, but sometimes the branch resolves

later in the execution pipeline and incurs a six-cycle penalty instead. Mispredicted indirect jumps

incur a six-cycle penalty.

3.3 Execution Pipeline

Figure 2: Example S7 Block Diagram

The S7 execution unit is a dual-issue, in-order pipeline. The pipeline comprises eight stages:

two stages of instruction fetch (F1 and F2), two stages of instruction decode (D1 and D2),

address generation (AG), two stages of data memory access (M1 and M2), and register write-

back (WB). The pipeline has a peak execution rate of two instructions per clock cycle, and is

fully bypassed so that most instructions have a one-cycle result latency:

• Integer arithmetic and branch instructions can execute in either the AG or M2 pipeline stage.

If such an instruction’s operands are available when the instruction enters the AG stage,

then it executes in AG; otherwise, it executes in M2.

• Loads produce their result in the M2 stage. There is no load-use delay for most integer

instructions. However, effective addresses for memory accesses are always computed in the

AG stage. Hence, loads, stores, and indirect jumps require their address operands to be

ready when the instruction enters AG. If an address-generation operation depends upon a

load from memory, then the load-use delay is two cycles.

• Integer multiplication instructions consume their operands in the AG stage and produce their

results in the M2 stage. The integer multiplier is fully pipelined.

• Integer division instructions consume their operands in the AG stage. These instructions

have between a six-cycle and 68-cycle result latency, depending on the operand values.

3 S7 RISC‑V Core
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• CSR accesses execute in the M2 stage. CSR read data can be bypassed to most integer

instructions with no delay. Most CSR writes flush the pipeline, which is a seven-cycle

penalty.

Table 3: S7 Instruction Latency

Instruction Latency

LW Three-cycle latency, assuming cache hit1

LH, LHU, LB, LBU Three-cycle latency, assuming cache hit1

CSR Reads One-cycle latency2

MUL, MULH, MULHU,

MULHSU

Three-cycle latency

DIV, DIVU, REM, REMU Between six-cycle to 68-cycle latency, depending on operand

values3

1Effective address not ready in AG stage. Load to use latency = load to use delay + 1

2 cycle latency = cycle delay + 1

3The latency of DIV, DIVU, REM, and REMU instructions can be determined by calculating:

Latency = 2 cycles + log2(dividend) - log2(divisor) + 1 cycle

if the input is negative + 1 cycle if the output is negative

The pipeline only interlocks on read-after-write and write-after-write hazards, so instructions

may be scheduled to avoid stalls.

The pipeline implements a flexible dual-instruction-issue scheme. Provided there are no data

hazards between a pair of instructions, the two instructions may issue in the same cycle, pro-

vided the following constraints are met:

• At most one instruction accesses data memory.

• At most one instruction is a branch or jump.

• At most one instruction is an integer multiplication or division operation.

• Neither instruction explicitly accesses a CSR.

3.4 Data Memory System

The data memory system consists of on-core-complex data and the ports in the FU740-C000

memory map, shown in Chapter 5. The on-core-complex data memory consists of an 8 KiB

Data Tightly-Integrated Memory (DTIM) and 2 MiB L2 cache. A design cannot have both data

cache and DTIM.

3 S7 RISC‑V Core
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As no data cache is present, all data accesses are non-cacheable. Data accesses that are not

targeted at the DTIM are also called memory-mapped I/O accesses, or MMIOs.

The S7 pipeline allows for multiple outstanding memory accesses. The memory system includes

the Fast I/O feature, described in Section 3.5, which improves the throughput of MMIOs. The

number of outstanding MMIOs are implementation dependent. Misaligned accesses are not

allowed to any memory region and result in a trap to allow for software emulation.

3.4.1 Data Tightly-Integrated Memory (DTIM)

The DTIM provides deterministic access time, which is important for applications with hard real-

time requirements. The access latency is two clock cycles for words and double-words, and

three clock cycles for smaller quantities.

Stores are pipelined and commit on cycles where the data memory system is otherwise idle.

Loads to addresses currently in the store pipeline result in a five-cycle penalty.

The DTIM region can be used to store instructions, but it has no lasting performance advantage

over other memory regions. Fetching from the DTIM first results in an instruction cache line fill

and execution occurs from the instruction cache.

The DTIM is capable of supporting the RISC‑V standard Atomic (A) extension. Note that atomic

extension support has not been configured in the FU740-C000.

The DTIM supports ECC protection, as described in Chapter 28.

3.5 Fast I/O

The Fast I/O feature improves the performance of the memory-mapped I/O (MMIO) subsystem.

This is achieved by predicting whether an access is I/O or not by examining the base address of

a read or write.

Fast I/O enables a sustained rate of one MMIO operation per clock cycle. By contrast, when this

feature is excluded, MMIO loads can only sustain half that rate. Fast I/O also decouples the

MMIO load response from the cache-hit path. This way, MMIO requests and responses can

happen on the same cycle, doubling the peak load throughput.

Note

Fast I/O is NOT an I/O port.

3 S7 RISC‑V Core
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3.6 Atomic Memory Operations

The S7 core supports the RISC‑V standard Atomic (A) extension on the internal memory

regions.

The load-reserved (LR) and store-conditional (SC) instructions are special atomic instructions

that are only supported in data cacheable regions. As the S7 core does not have a data cache,

the LR and SC instructions will always generate a precise access exception.

3.7 Physical Memory Protection (PMP)

Machine mode is the highest privilege level and by default has read, write, and execute permis-

sions across the entire memory map of the device. However, privilege levels below machine

mode do not have read, write, or execute permissions to any region of the device memory map

unless it is specifically allowed by the PMP. For the lower privilege levels, the PMP may grant

permissions to specific regions of the device’s memory map, but it can also revoke permissions

when in machine mode.

When programmed accordingly, the PMP will check every access when the hart is operating in

user mode. For machine mode, PMP checks do not occur unless the lock bit (L) is set in the

pmpcfgY CSR for a particular region.

PMP checks also occur on loads and stores when the machine previous privilege level is user

(mstatus.MPP=0x0), and the Modify Privilege bit is set (mstatus.MPRV=1). For virtual address

translation, PMP checks are also applied to page table accesses in supervisor mode.

The S7 PMP supports 8 regions with a minimum region size of 64 bytes.

This section describes how PMP concepts in the RISC‑V architecture apply to the S7. For addi-

tional information on the PMP refer to The RISC‑V Instruction Set Manual, Volume II: Privileged

Architecture, Version 1.10.

3.7.1 PMP Functional Description

The S7 PMP unit has 8 regions and a minimum granularity of 64 bytes. Access to each region is

controlled by an 8-bit pmpXcfg field and a corresponding pmpaddrX register. Overlapping

regions are permitted, where the lower numbered pmpXcfg and pmpaddrX registers take priority

over higher numbered regions. The S7 PMP unit implements the architecturally defined

pmpcfgY CSR pmpcfg0, supporting 8 regions. pmpcfg2 is implemented, but hardwired to zero.

Access to pmpcfg1 or pmpcfg3 results in an illegal instruction exception.

The PMP registers may only be programmed in M-mode. Ordinarily, the PMP unit enforces per-

missions on U-mode accesses. However, locked regions (see Section 3.7.2) additionally

enforce their permissions on M-mode.
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3.7.2 PMP Region Locking

The PMP allows for region locking whereby, once a region is locked, further writes to the config-

uration and address registers are ignored. Locked PMP entries may only be unlocked with a

system reset. A region may be locked by setting the L bit in the pmpXcfg register.

In addition to locking the PMP entry, the L bit indicates whether the R/W/X permissions are

enforced on machine mode accesses. When the L bit is clear, the R/W/X permissions apply only

to U-mode.

3.7.3 PMP Registers

Each PMP region is described by an 8-bit pmpXcfg field, used in association with a 64-bit

pmpaddrX register that holds the base address of the protected region. The range of each

region depends on the Addressing (A) mode described in the next section. The pmpXcfg fields

reside within 64-bit pmpcfgY CSRs.

Each 8-bit pmpXcfg field includes a read, write, and execute bit, plus a two bit address-matching

field A, and a Lock bit, L. Overlapping regions are permitted, where the lowest numbered PMP

entry wins for that region.

PMP Configuration Registers

For RV64 architectures, pmpcfg1 and pmpcfg3 are not implemented. This reduces the footprint

since pmpcfg2 already contains configuration fields pmp8cfg through pmp11cfg for both RV32

and RV64.

07815162324313239404748555663

pmp0cfgpmp1cfgpmp2cfgpmp3cfgpmp4cfgpmp5cfgpmp6cfgpmp7cfg

Figure 3: RV64 pmpcfg0 Register

07815162324313239404748555663

pmp8cfgpmp9cfgpmp10cfgpmp11cfgpmp12cfgpmp13cfgpmp14cfgpmp15cfg

Figure 4: RV64 pmpcfg2 Register

The pmpcfgY and pmpaddrX registers are only accessible via CSR specific instructions such as

csrr for reads, and csrw for writes.

01234567

R (WARL)W (WARL)X (WARL)A (WARL)0 (WARL)L (WARL)

Figure 5: RV64 pmpXcfg bitfield

Table 4: pmpXcfg Bitfield Description

Bit Description

0 R: Read Permissions

0x0 - No read permissions for this region

0x1 - Read permission granted for this region
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Table 4: pmpXcfg Bitfield Description

Bit Description

1 W: Write Permissions

0x0 - No write permissions for this region

0x1 - Write permission granted for this region

2 X: Execute permissions

0x0 - No execute permissions for this region

0x1 - Execute permission granted for this region

[4:3] A: Address matching mode

0x0 - PMP Entry disabled

0x1 - Top of Range (TOR)

0x2 - Naturally Aligned Four Byte Region (NA4)

0x3 - Naturally Aligned Power-of-Two region, ≥ 8 bytes (NAPOT)

7 L: Lock Bit

0x0 - PMP Entry Unlocked, no permission restrictions applied to machine mode. PMP

entry only applies to S and U modes.

0x1 - PMP Entry Locked, permissions enforced for all privilege levels including

machine mode. Writes to pmpXcfg and pmpcfgY are ignored and can only be cleared

with system reset.

Note: The combination of R=0 and W=1 is not currently implemented.

Out of reset, the PMP register fields A and L are set to 0. All other hart state is unspecified by

The RISC‑V Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10.

Additional details on the available address matching modes is described below.

A = 0x0: The attributes are disabled. No PMP protection applied for any privilege level.

A = 0x1: Top of range (TOR). Supports four byte granularity, and the regions are defined by

[PMP(i) > a > PMP(i - 1)], where 'a' is the address range. PMP(i) is the top of the range, where

PMP(i - 1) represents the lower address range. If only pmp0cfg selects TOR, then the lower

bound is set to address 0x0.

A = 0x2: Naturally aligned four-byte region (NA4). Supports only a four-byte region with four

byte granularity. Not supported on SiFive U7 series cores since minimum granularity is 4 KiB.

A = 0x3: Naturally aligned power-of-two region (NAPOT), ≥ 8 bytes. When this setting is pro-

grammed, the low bits of the pmpaddrX register encode the size, while the upper bits encode the

base address right shifted by two. There is a zero bit in between, we will refer to as the least sig-

nificant zero bit (LSZB).

Some examples follow using NAPOT address mode.
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Table 5: pmpaddrX Encoding Examples for A=NAPOT

Base

Address

Region

Size*

LSZB

Position
pmpaddrX Value

0x4000_0000 8 B 0 (0x1000_0000 | 1’b0)

0x4000_0000 32 B 2 (0x1000_0000 | 3’b011)

0x4000_0000 4 KB 9 (0x1000_0000 | 10’b01_1111_1111)

0x4000_0000 64 KB 13 (0x1000_0000 | 14’b01_1111_1111_1111)

0x4000_0000 1 MB 17 (0x1000_0000 | 18’b01_1111_1111_1111_1111)

*Region size is 2(LSZB+3).

PMP Address Registers

The PMP has 8 address registers. Each address register pmpaddrX correlates to the respective

pmpXcfg field. Each address register contains the base address of the protected region right

shifted by two, for a minimum 4-byte alignment.

The maximum encoded address bits per The RISC‑V Instruction Set Manual, Volume II: Privi-

leged Architecture, Version 1.10 are [55:2].

0535463

address[55:2] (WARL)0 (WARL)

Figure 6: RV64 pmpaddrX Register

3.7.4 PMP Programming Overview

The PMP registers can only be programmed in machine mode. The pmpaddrX register should

be first programmed with the base address of the protected region, right shifted by two. Then,

the pmpcfgY register should be programmed with the properly configured 64-bit value containing

each properly aligned 8-bit pmpXcfg field. Fields that are not used can be simply written to 0,

marking them unused.

PMP Programming Example

The following example shows a machine mode only configuration where PMP permissions are

applied to three regions of interest, and a fourth region covers the remaining memory map.

Recall that lower numbered pmpXcfg and pmpaddrX registers take priority over higher numbered

regions. This rule allows higher numbered PMP registers to have blanket coverage over the

entire memory map while allowing lower numbered regions to apply permissions to specific

regions of interest. The following example shows a 64 KB Flash region at base address 0x0, a

32 KB RAM region at base address 0x2000_0000, and finally a 4 KB peripheral region at base

address base 0x3000_0000. The rest of the memory map is reserved space.
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Figure 7: PMP Example Block Diagram

PMP Access Scenarios

The L, R, W, and X bits only determine if an access succeeds if all bytes of that access are cov-

ered by that PMP entry. For example, if a PMP entry is configured to match the four-byte range

0xC–0xF, then an 8-byte access to the range 0x8–0xF will fail, assuming that PMP entry is the

highest-priority entry that matches those addresses.

While operating in machine mode when the lock bit is clear (L=0), if a PMP entry matches all

bytes of an access, the access succeeds. If the lock bit is set (L=1) while in machine mode, then

the access depends on the permissions set for that region. Similarly, while in Supervisor mode,

the access depends on permissions set for that region.

Failed read or write accesses generate a load or store access exception, and an instruction

access fault would occur on a failed instruction fetch. When an exception occurs while attempt-

ing to execute from a region without execute permissions, the fault occurs on the fetch and not

the branch, so the mepc CSR will reflect the value of the targeted protected region, and not the

address of the branch.

It is possible for a single instruction to generate multiple accesses, which may not be mutually

atomic. If at least one access generated by an instruction fails, then an exception will occur. It

might be possible that other accesses from a single instruction will succeed, with visible side

effects. For example, references to virtual memory may be decomposed into multiple accesses.
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On some implementations, misaligned loads, stores, and instruction fetches may also be

decomposed into multiple accesses, some of which may succeed before an access exception

occurs. In particular, a portion of a misaligned store that passes the PMP check may become

visible, even if another portion fails the PMP check. The same behavior may manifest for float-

ing-point stores wider than XLEN bits (e.g., the FSD instruction in RV32D), even when the store

address is naturally aligned.

3.7.5 PMP and Paging

The Physical Memory Protection mechanism is designed to compose with the page-based vir-

tual memory systems described in The RISC‑V Instruction Set Manual, Volume II: Privileged

Architecture, Version 1.10. When paging is enabled, instructions that access virtual memory

may result in multiple physical-memory accesses, including implicit references to the page

tables. The PMP checks apply to all of these accesses. The effective privilege mode for implicit

page-table accesses is supervisor mode.

Implementations with virtual memory are permitted to perform address translations speculatively

and earlier than required by an explicit virtual-memory access. The PMP settings for the result-

ing physical address may be checked at any point between the address translation and the

explicit virtual-memory access. A mis-predicted branch to a non-executable address range does

not generate a trap. Hence, when the PMP settings are modified in a manner that affects either

the physical memory that holds the page tables or the physical memory to which the page

tables point, M-mode software must synchronize the PMP settings with the virtual memory sys-

tem. This is accomplished by executing an SFENCE.VMA instruction with rs1=x0 and rs2=x0,

after the PMP CSRs are written.

If page-based virtual memory is not implemented, or when it is disabled, memory accesses

check the PMP settings synchronously, so no fence is needed.

3.7.6 PMP Limitations

In a system containing multiple harts, each hart has its own PMP device. The PMP permissions

on a hart cannot be applied to accesses from other harts in a multi-hart system. In addition,

SiFive designs may contain a Front Port to allow external bus masters access to the full mem-

ory map of the system. The PMP cannot prevent access from external bus masters on the Front

Port.

3.7.7 Behavior for Regions without PMP Protection

If a non-reserved region of the memory map does not have PMP permissions applied, then by

default, supervisor or user mode accesses will fail, while machine mode access will be allowed.

Access to reserved regions within a device’s memory map (an interrupt controller for example)

will return 0x0 on reads, and writes will be ignored. Access to reserved regions outside of a

device’s memory map without PMP protection will result in a bus error. The bus error can gener-

ate an interrupt to the hart using the Bus-Error Unit (BEU). See Chapter 11 for more information.
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3.7.8 Cache Flush Behavior on PMP Protected Region

When a line is brought into cache and the PMP is set up with the lock (L) bit asserted to protect

a part of that line, a data cache flush instruction will generate a store access fault exception if

the flush includes any part of the line that is protected. The cache flush instruction does an

invalidate and write-back, so it is essentially trying to write back to the memory location that is

protected. If a cache flush occurs on a part of the line that was not protected, the flush will suc-

ceed and not generate an exception. If a data cache flush is required without a write-back, use

the cache discard instruction instead, as this will invalidate but not write back the line.

3.8 Hardware Performance Monitor

The S7 processor core supports a basic hardware performance monitoring (HPM) facility. The

performance monitoring facility is divided into two classes of counters: fixed-function and event-

programmable counters. These classes consist of a set of fixed counters and their counter-

enable registers, as well as a set of event-programmable counters and their event selector reg-

isters. The registers are available to control the behavior of the counters. Performance monitor-

ing can be useful for multiple purposes, from optimization to debug.

3.8.1 Performance Monitoring Counters Reset Behavior

The instret and cycle counters are initialized to zero on system reset. The hardware perfor-

mance monitor event counters are not initialized on system reset, and thus have an arbirary

value. Users can write desired values to the counter control and status registers (CSRs) to start

counting at a given, known value.

3.8.2 Fixed-Function Performance Monitoring Counters

A fixed-function performance monitor counter is hardware wired to only count one specific event

type. That is, they cannot be reconfigured with respect to the event type(s) they count. The only

modification to the fixed-function performance monitoring counters that can be done is to enable

or disable counting, and write the counter value itself.

The S7 processor core contains two fixed-function performance monitoring counters.

Fixed-Function Cycle Counter (mcycle)

The fixed-function performance monitoring counter mcycle holds a count of the number of clock

cycles the hart has executed since some arbitrary time in the past. The mcycle counter is read-

write and 64 bits wide. Reads of mcycle return all 64 bits of the mcycle CSR.
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Fixed-Function Instructions-Retired Counter (minstret)

The fixed-function performance monitoring counter minstret holds a count of the number of

instructions the hart has retired since some arbitrary time in the past. The minstret counter is

read-write and 64 bits wide. Reads of minstret return all 64 bits of the minstret CSR.

Event-Programmable Performance Monitoring Counters

Complementing the fixed-function counters are a set of programmable event counters. The S7

HPM includes two addtitional event counters, mhpmcounter3 and mhpmcounter4. These pro-

grammable event counters are read-write and 64 bits wide. The hardware counters themselves

are implemented as 40-bit counters on the S7 core series. These hardware counters can be

written to in order to initialize the counter value.

Event Selector Registers

To control the event type to count, event selector CSRs mhpmevent3 and mhpmevent4 are used

to program the corresponding event counters. These event selector CSRs are 64-bit WARL reg-

isters.

The event selectors are partitioned into two fields; the lower 8 bits select an event class, and the

upper bits form a mask of events in that class.

Figure 8: Event Selector Fields

The counter increments if the event corresponding to any set mask bit occurs. For example, if

mhpmevent3 is set to 0x4200, then mhpmcounter3 will increment when either a load instruction

or a conditional branch instruction retires. An event selector of 0 means "count nothing".

Event Selector Encodings

Table 6 describes the event selector encodings available. Events are categorized into classes

based on the Event Class field encoded in mhpmeventX[7:0]. One or more events can be pro-

grammed by setting the respective Event Mask bit for a given event class. An event selector

encoding of 0 means "count nothing". Multiple events will cause the counter to increment any

time any of the selected events occur.

Table 6: mhpmevent Register

Machine Hardware Performance Monitor Event Register

Instruction Commit Events, mhpmeventX[7:0]=0
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Table 6: mhpmevent Register

Bits Description

8 Exception taken

9 Integer load instruction retired

10 Integer store instruction retired

11 Atomic memory operation retired

12 System instruction retired

13 Integer arithmetic instruction retired

14 Conditional branch retired

15 JAL instruction retired

16 JALR instruction retired

17 Integer multiplication instruction retired

18 Integer division instruction retired

Microarchitectural Events, mhpmeventX[7:0]=1

Bits Description

8 Load-use interlock

9 Long-latency interlock

10 CSR read interlock

11 Instruction cache/ITIM busy

12 Data cache/DTIM busy

13 Branch direction misprediction

14 Branch/jump target misprediction

15 Pipeline flush from CSR write

16 Pipeline flush from other event

17 Integer multiplication interlock

Memory System Events, mhpmeventX[7:0]=2

Bits Description

8 Instruction cache miss
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Table 6: mhpmevent Register

9 Memory-mapped I/O access

Event mask bits that are writable for any event class are writable for all classes. Setting an

event mask bit that does not correspond to an event defined in Table 6 has no effect for current

implementations. However, future implementations may define new events in that encoding

space, so it is not recommended to program unsupported values into the mhpmevent registers.

Combining Events

It is common usage to directly count each respective event. Additionally, it is possible to use

combinations of these events to count new, unique events. For example, to determine the aver-

age cycles per load from a data memory subsystem, program one counter to count "Data cache/

DTIM busy" and another counter to count "Integer load instruction retired". Then, simply divide

the "Data cache/DTIM busy" cycle count by the "Integer load instruction retired" instruction

count and the result is the average cycle time for loads in cycles per instruction.

It is important to be cognizant of the event types being combined; specifically, event types

counting occurrences and event types counting cycles.

Counter-Enable Registers

The 32-bit counter-enable register mcounteren controls the availability of the hardware perfor-

mance-monitoring counters to the next-lowest privileged mode.

The settings in these registers only control accessibility. The act of reading or writing these

enable registers does not affect the underlying counters, which continue to increment when not

accessible.

When any bit in the mcounteren register is clear, attempts to read the cycle, time, instruction

retire, or hpmcounterX register while executing in U-mode will cause an illegal instruction

exception. When one of these bits is set, access to the corresponding register is permitted in the

next implemented privilege mode, U-mode.

mcounteren is a WARL register. Any of the bits may contain a hardwired value of zero, indicat-

ing reads to the corresponding counter will cause an illegal instruction exception when execut-

ing in a less-privileged mode.
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4

U74 RISC‑V Core

This chapter describes the 64-bit U74 RISC‑V processor core, instruction fetch and execution

unit, L1 and L2 memory systems, Physical Memory Protection unit, Hardware Performance

Monitor, and external interfaces.

The U74 feature set is summarized in Table 7.

Table 7: U74 Feature Set

Feature Description

ISA RV64GC

SiFive Custom Instruction Extension (SCIE) Not Present

Modes Machine mode, user mode, supervisor mode

L1 Instruction Cache 32 KiB 4-way instruction cache

L1 Data Cache 32 KiB 8-way data cache

L2 Cache 2 MiB 16-way L2 cache with 4 banks

ECC Support Single error correction, double error detec-

tion on the data cache and L2 cache.

Fast I/O Present

Physical Memory Protection 8 regions with a granularity of 4096 bytes.

Memory Management Unit Sv39 virtual memory support with fully-asso-

ciative 40-entry L1 Data and Instruction

TLBs, and a direct-mapped 512-entry L2

TLB.
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4.1 Supported Modes

The U74 supports RISC‑V supervisor and user modes, providing three levels of privilege:

machine (M), user (U), and supervisor (S). U-mode provides a mechanism to isolate application

processes from each other and from trusted code running in M-mode. S-mode adds a number

of additional CSRs and capabilities.

See The RISC‑V Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10 for

more information on the privilege modes.

4.2 Instruction Memory System

This section describes the instruction memory system of the U74 Application core.

4.2.1 L1 Instruction Cache

The L1 instruction cache is a 32 KiB 4-way set associative cache. It is virtually-indexed, physi-

cally-tagged with a line size of 64 bytes and is read/write-allocate with a random replacement

policy. A cache line fill triggers a burst access outside of the Core Complex, starting with the first

address of the cache line. There are no write-backs to memory from the instruction cache and it

is not kept coherent with the memory system. In multi-core systems, the instruction caches are

not kept coherent with each other.

Out of reset, all blocks of the instruction cache are invalidated. The access latency of the cache

is one clock cycle. There is no way to disable the instruction cache and cache allocations begin

immediately out of reset.

The L1 instruction cache has parity error protection support.

4.2.2 Cache Maintenance

The instruction cache supports the FENCE.I instruction, which invalidates the entire instruction

cache. Writes to instruction memory from the core or another master must be synchronized with

the instruction fetch stream by executing FENCE.I.

4.2.3 Coherence with an L2 Cache

The L1 instruction cache is partially inclusive with the L2 Cache, described in Chapter 14. When

a block of instruction memory is allocated to the L1 cache, it is also allocated to the L2 cache if

the access was from the Memory Port. Instruction accesses to all other ports will not allocate to

the L2 cache, only the L1 cache.

When a block is evicted from L1, it might still reside in the L2, which will reduce access time the

next time the block is fetched.
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If a hart modifies instruction memory (i.e., self-modifying code), then a FENCE.I instruction is

required to synchronize the instruction and data streams. Even though FENCE.I targets the L1

instruction cache, no cache operation is required on the L2 cache to maintain instruction

coherency.

4.2.4 Instruction Fetch Unit

The U74 instruction fetch unit is responsible for keeping the pipeline fed with instructions from

memory. The instruction fetch unit delivers up to 8 bytes of instructions per clock cycle to sup-

port superscalar instruction execution. Fetches are always word-aligned and there is a one-

cycle penalty for branching to a 32-bit instruction that is not word-aligned.

The U74 implements the standard Compressed (C) extension to the RISC‑V architecture, which

allows for 16-bit RISC‑V instructions. As four 16-bit instructions can be fetched per cycle, the

instruction fetch unit can be idle when executing programs comprised mostly of compressed

16-bit instructions. This reduces memory accesses and power consumption.

All branches must be aligned to half-word addresses. Otherwise, the fetch generates an instruc-

tion address misaligned trap. Trying to fetch from a non-executable or unimplemented address

results in an instruction access trap.

4.2.5 Branch Prediction

The U74 instruction fetch unit contains sophisticated predictive hardware to mitigate the perfor-

mance impact of control hazards within the instruction stream. The instruction fetch unit is

decoupled from the execution unit, so that correctly predicted control-flow events usually do not

result in execution stalls.

• A 16-entry branch target buffer (BTB), which predicts the target of taken branches and direct

jumps;

• A 3.6 KiB branch history table (BHT), which predicts the direction of conditional branches;

• An 8-entry indirect-jump target predictor (IJTP);

• A 6-entry return-address stack (RAS), which predicts the target of procedure returns.

The BHT is a correlating predictor that supports long branch histories. The BTB has one-cycle

latency, so that correctly predicted branches and direct jumps result in no penalty, provided the

target is 8-byte aligned.

Direct jumps that miss in the BTB result in a one-cycle fetch bubble. This event might not result

in any execution stalls if the fetch queue is sufficiently full.

The BHT, IJTP, and RAS take precedence over the BTB. If these structures' predictions dis-

agree with the BTB’s prediction, a one-cycle fetch bubble results. Similar to direct jumps that

miss in the BTB, the fetch bubble might not result in an execution stall.
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Mispredicted branches usually incur a four-cycle penalty, but sometimes the branch resolves

later in the execution pipeline and incurs a six-cycle penalty instead. Mispredicted indirect jumps

incur a six-cycle penalty.

4.3 Execution Pipeline

Figure 9: Example U74 Block Diagram

The U74 execution unit is a dual-issue, in-order pipeline. The pipeline comprises eight stages:

two stages of instruction fetch (F1 and F2), two stages of instruction decode (D1 and D2),

address generation (AG), two stages of data memory access (M1 and M2), and register write-

back (WB). The pipeline has a peak execution rate of two instructions per clock cycle, and is

fully bypassed so that most instructions have a one-cycle result latency:

• Integer arithmetic and branch instructions can execute in either the AG or M2 pipeline stage.

If such an instruction’s operands are available when the instruction enters the AG stage,

then it executes in AG; otherwise, it executes in M2.

• Loads produce their result in the M2 stage. There is no load-use delay for most integer

instructions. However, effective addresses for memory accesses are always computed in the

AG stage. Hence, loads, stores, and indirect jumps require their address operands to be

ready when the instruction enters AG. If an address-generation operation depends upon a

load from memory, then the load-use delay is two cycles.

• Integer multiplication instructions consume their operands in the AG stage and produce their

results in the M2 stage. The integer multiplier is fully pipelined.

• Integer division instructions consume their operands in the AG stage. These instructions

have between a six-cycle and 68-cycle result latency, depending on the operand values.

• CSR accesses execute in the M2 stage. CSR read data can be bypassed to most integer

instructions with no delay. Most CSR writes flush the pipeline, which is a seven-cycle

penalty.
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Table 8: U74 Instruction Latency

Instruction Latency

LW Three-cycle latency, assuming cache hit1

LH, LHU, LB, LBU Three-cycle latency, assuming cache hit1

CSR Reads One-cycle latency2

MUL, MULH, MULHU,

MULHSU

Three-cycle latency

DIV, DIVU, REM, REMU Between six-cycle to 68-cycle latency, depending on operand

values3

1Effective address not ready in AG stage. Load to use latency = load to use delay + 1

2 cycle latency = cycle delay + 1

3The latency of DIV, DIVU, REM, and REMU instructions can be determined by calculating:

Latency = 2 cycles + log2(dividend) - log2(divisor) + 1 cycle

if the input is negative + 1 cycle if the output is negative

The pipeline only interlocks on read-after-write and write-after-write hazards, so instructions

may be scheduled to avoid stalls.

The pipeline implements a flexible dual-instruction-issue scheme. Provided there are no data

hazards between a pair of instructions, the two instructions may issue in the same cycle, pro-

vided the following constraints are met:

• At most one instruction accesses data memory.

• At most one instruction is a branch or jump.

• At most one instruction is a floating-point arithmetic operation.

• At most one instruction is an integer multiplication or division operation.

• Neither instruction explicitly accesses a CSR.

4.4 Data Memory System

The data memory system consists of on-core-complex data and the ports in the FU740-C000

memory map, shown in Chapter 5. The on-core-complex data memory consists of a 32 KiB L1

data cache and 2 MiB L2 cache. A design cannot have both data cache and DTIM.

Data accesses are classified as non-cacheable, for those targeting any port in the Core Com-

plex. Non-cacheable data accesses are collectively called memory-mapped I/O accesses, or

MMIOs.
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The U74 pipeline allows for multiple outstanding memory accesses, but only allows one out-

standing cache line fill. The number of outstanding MMIOs are implementation dependent. Mis-

aligned accesses are not allowed to any memory region and result in a trap to allow for software

emulation.

4.4.1 L1 Data Cache

The L1 data cache is a 32 KiB 8-way set-associative cache. It is virtually-indexed, physically-

tagged with a line size of 64 bytes and is read/write-allocate with a random replacement policy.

The cache operates in write-back mode; this means that if a cache line is dirty, it is written back

to memory when evicted. Out of reset, all lines of the cache are invalidated.

The L1 data cache supports ECC protection, as described in Chapter 28.

A cache line fill triggers a burst access starting with the first address of the cache line. On a

cache hit, the access latency is two clock cycles for words and double-words, and three clock

cycles for smaller quantities. Stores are pipelined and commit on cycles where the data memory

system is otherwise idle. Pending stores are stored in a buffer, which drains whenever there is

an idle cycle or another store. Loads to addresses currently in the store pipeline result in a five-

cycle penalty.

The data cache supports only one outstanding line fill. MMIOs can be issued before or after the

line fill as long as there are no address or register hazards.

The data cache cannot be disabled.

4.4.2 Cache Maintenance Operations

The data cache supports CFLUSH.D.L1 and CDISCARD.D.L1. The instruction CFLUSH.D.L1

cleans and invalidates the specified line or all cache lines. The instruction CDISCARD.D.L1 inval-

idates the specified line or all cache lines.

These custom instructions are further described in Chapter 10.

4.4.3 L1 Data Cache Coherency

All the L1 data caches in the Core Complex are kept coherent with an integrated coherency

manager. This is an automatic feature and cannot be disabled. The CFLUSH.D.L1 and

CDISCARD.D.L1 instructions only affect the core that executed the instruction. They are not

broadcast to all cores in the complex.

4.4.4 Coherence with an L2 Cache

The L1 data cache is inclusive with the L2 cache, described in Chapter 14.
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When a block of data is allocated to the L1 cache, it is also allocated to the L2 cache. When a

block is evicted from the L1, the corresponding line in the L2 is then updated and marked dirty.

The custom instructions CFLUSH.D.L1 and CDISCARD.D,L1 only target the L1 data cache, and

do not impact the L2 cache. The L2 cache controller contains flush capability, which performs a

clean and invalidate operation of a line in the L2 cache. If the targeted line also resides in the L1

cache, then it too will be cleaned and invalidated. Section 14.4.11 describes how to flush the L2

cache.

4.5 Atomic Memory Operations

The U74 core supports the RISC‑V standard Atomic (A) extension on the Memory Port and

internal memory regions.

Atomic instructions that target the Memory Port are implemented in the data cache and are not

observable on the external data bus. The load-reserved (LR) and store-conditional (SC) instruc-

tions are special atomic instructions that are only supported in data cacheable regions. They will

generate a precise access exception if targeted at uncacheable data regions.

4.6 Floating-Point Unit (FPU)

The U74 FPU provides full hardware support for the IEEE 754-2008 floating-point standard for

32-bit single-precision and 64-bit double-precision arithmetic. The FPU includes a fully pipelined

fused-multiply-add unit and an iterative divide and square-root unit, magnitude comparators,

and float-to-integer conversion units, all with full hardware support for subnormals and all IEEE

default values.

The FPU comes up disabled on reset. First initialize fcsr and mstatus.FS prior to executing

any floating-point instructions. In the freedom-metal startup code, write mstatus.FS[1:0] to

0x1.

4.7 Virtual Memory Support

The U74 has support for virtual memory through the use of a Memory Management Unit (MMU).

The MMU supports the Bare and Sv39 modes as described in The RISC‑V Instruction Set Man-

ual, Volume II: Privileged Architecture, Version 1.10. SiFive’s Sv39 implementation provides a

39-bit virtual address space using 38-bits of physical address space. Supported page sizes

include 4 KiB, 2 MiB, and 1 GiB megapages. The default Linux page size (PAGESIZE) is 4 KiB.

The translation lookaside buffers (TLBs) are address translation caches within the MMU. Trans-

lation is accomplished through page table entries (PTE) that reside in the TLB region. A hard-

ware page-table walker refills the TLBs upon a cache miss. The PTE entries are fetched from a

region defined by the root page table base address in the Supervisor Address Translation and

Protection (satp) CSR. Each PTE contains the information necessary to translate the virtual

memory address to a physical address on the design.
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There are both level 1 and level 2 TLB entries. Level 1 entries contain separate instruction

buffers (ITLB) and data buffers (DTLB) since they are accessed in different pipeline stages. The

ITLB and DTLB each contain 40 entries, which are fully associative. Level 2 TLB entries are uni-

fied, and contain 512 direct-mapped TLB entries. Level 2 TLB are all 4 KiB pages. A block dia-

gram of the instruction and data memory access from the L2 into the MMU TLB is shown below.

Figure 10: TLB Update Flow

Behaviors of the hardware are described below.

• When there is a TLB miss in the level 1 ITLB or DTLB, the level 2 unified TLB will populate

the level 1 TLB with the correct PTE, if it exists.

• When there is a miss in both level 1 and level 2 TLB, a hardware page table walk will occur

by the MMU to fill the TLB page table entry from the memory. The memory location where

the hart will start fetching TLB page table entry from is determined by the physical page

number (PPN) field in the Supervisor Address Translation and Protection (satp) CSR. The

refill will occur from the data cache if it exists there, otherwise it will refill from the L2 cache.

If L2 cache does not contain the data, then it will be fetched from system memory.

• Both level 1 and level 2 unified TLB page table entry replacement policy is pseudo-LRU.

• When level 1 TLB entry is evicted, this entry is not updated in the level 2 unified TLB.

• When the level 1 TLB entry is updated from level 2, the entry will reside in level 2 and will

not be removed.

• Executing the SFENCE.VMA instruction will invalidate both level 1 and level 2 TLB entries.

4.7.1 Address and Page Table Formats

An Sv39 virtual address is partitioned as shown below. Note that address bits [63:39] of every

instruction fetch, load, and store operation must be equal to bit 38, or else a page-fault excep-

tion will occur.
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011122021293038

page offsetVPN[0]VPN[1]VPN[2]

Figure 11: Sv39 Virtual Address

The 27-bit VPN is translated into a 44-bit PPN via a three-level page table, while the 12-bit page

offset is untranslated.

011122021293055

page offsetPPN[0]PPN[1]PPN[2]

Figure 12: Sv39 Physical Address

Sv39 page tables contain 29 page table entries (PTEs), eight bytes each. A page table is exactly

the size of a page and must always be aligned to a page boundary. As mentioned, satp.PPN

holds the physical page number of the root page table. Any level of PTE may be a leaf PTE, and

all page sizes (4 KiB, 2 MiB, and 1 GiB) must be virtually and physically aligned to a boundary

equal to its size. A page-fault exception is raised if the physical address is insufficiently aligned.

01234567891018192728535463

VRWXUGADRSWPPN[0]PPN[1]PPN[2]Reserved

Figure 13: Sv39 PTE Format

A description of the PTE configuration bits can be found in Table 9.

Table 9: PTE Configuration Bits

Bit Description

0 V: Valid

0x0 - Page table entry not valid

0x1 - Page table entry valid

1 R: Readable

0x0 - Page table entry not readable

0x1 - Page table entry readable

2 W: Writable

0x0 - Page table entry not writable

0x1 - Page table entry writable

3 X: Executable

0x0 - Page table entry not executable

0x1 - Page table entry executable

4 U: User mode access

0x0 - No access to user mode software

0x1 - Access granted to user mode software

5 G: Global mapping

0x0 - This mapping does not exist globally

0x1 - This mapping exists globally
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Table 9: PTE Configuration Bits

Bit Description

6 A: Accessed

0x0 - Leaf page table entry has not been read, written, or fetched since the last time A

was cleared

0x1 - Leaf page table entry has been read, written, or fetched since the last time A

was cleared

7 D: Dirty

0x0 - The virtual page has not been written since the last time D was cleared

0x1 - The virtual page has been written since the last time D was cleared

[9:8] RSW: Supervisor software use

X - Open for supervisor software use

Page Table Configurations

Read, write, and execute permissions for Sv39 are summarized in Table 10. The value PTE.V=1

indicates the PTE is valid, while PTE.V=0 means all other bits in PTE are don’t cares, and soft-

ware can use these freely. The value PTE.R=1 indicates the page is readable. Likewise,

PTE.W=1 indicates the page is writable, while PTE.X=1 means the page is executable. When

PTE.V=0, PTE.R=0, and PTE.W=0, this indicates the PTE is a pointer to the next level page table,

otherwise it is a leaf PTE. If a page is marked writable, it must also be marked readable. Combi-

nations of PTE.W=1 and PTE.R=0 are not currently supported.

Table 10: PTE Encoding fields

X W R Meaning

0 0 0 Pointer to next level of page table

0 0 1 Read-only page

0 1 0 Reserved

0 1 1 Read-write page

1 0 0 Execute-only page

1 0 1 Read-execute page

1 1 0 Reserved

1 1 1 Read-write-execute page

A fetch page-fault exception will occur if an instruction is fetched from a page that does not have

execute permissions. A load page-fault exception will occur if a load or load-reserved instruction
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falls within a page without read permissions. A store page-fault exception will occur if a store,

store-conditional, or AMO instruction falls within a page without write permissions.

The value PTE.U=1 indicates the page is accessible to user mode. Supervisor mode software

may also perform loads and stores to a page marked with PTE.U=1, but only if sstatus.SUM=1.

The sstatus.SUM bit modifies the privilege of supervisor mode loads and stores to virtual mem-

ory. Supervisor mode software may not execute code on any page marked with PTE.U=1.

Two schemes to manage the A and D bits are permitted:

• When a virtual page is accessed and the A bit is clear, or is written and the D bit is clear, a

page-fault exception is raised.

• When a virtual page is accessed and the A bit is clear, or is written and the D bit is clear, the

corresponding bit(s) are set in the PTE. The PTE update is atomic with respect to other

accesses to the PTE, and memory access will not occur until the PTE update is visible glob-

ally.

For non-leaf PTEs, the D, A, and U bits are reserved for future use and must be cleared by soft-

ware for forward compatibility.

It is important to note the U74 does not automatically set the accessed (A) and dirty (D) bits in a

Sv39 Page Table Entry (PTE). Instead, the U74 MMU will raise a page fault exception for a read

to a page with PTE.A=0 or a write to a page with PTE.D=0.

4.7.2 Supervisor Address Translation and Protection Register (SATP)

The satp register is a 64-bit read/write register used to control supervisor address translation

and protection.

04344596063

PPN (WARL)ASID (WARL)

MODE (WARL)

Figure 14: RV64 Supervisor Address Translation Register (satp)

• The satp.PPN field holds the physical page number (PPN) of the root page table, which is

the supervisor physical address divided by 4 KiB.

• The satp.ASID is an address space identifier used to facilitate address-translation fences

on a per-address-space basis.

• The satp.MODE field determines the selected address-translation scheme.

Translation Modes

Possible values for satp.MODE include:
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Table 11: SATP MODE Values

satp.MODE Description

0x0 Bare mode - no translation enabled

0x1 → 0x7 Reserved

0x8 Page-based 39-bit virtyual addressing (Sv39)

0x9 Page-based 48-bit virtual addressing (Sv48) (Not currently implemented)

0xA Reserved for page-based 57-bit virtual addressing

0xB Reserved for page-based 64-bit virtual addressing

0xC → 0xF Reserved

When satp.MODE=0x0, supervisor virtual addresses are equal to supervisor physical addresses,

and there is no additional memory protection beyond the physical memory protection scheme

described in Section 4.8. In this case, the remaining fields in satp have no effect.

For RV64 architectures on SiFive designs, satp.MODE=8 is used for Sv39 virtual addressing,

and no other modes are currently supported.

Note that writing satp does not imply any ordering constraints between page-table updates and

subsequent address translations. If the new address space’s page tables have been modified,

or if an ASID is reused, it may be necessary to execute an SFENCE.VMA instruction after writing

satp, which will:

1. Synchronize page table writes and address translation hardware for higher privilege

levels

2. Guarantee previous stores are ordered before all subsequent references from the

hart to the memory management data structures

3. Flush Level 1 and L2 unified TLB entry.

Note

Content from Section 4.7.3 , Section 4.7.4, Section 4.7.5, and Section 4.7.6 are directly

from The RISC‑V Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10.

4.7.3 Supervisor Memory-Management Fence Instruction (SFENCE.VMA)

The supervisor memory-management fence instruction SFENCE.VMA is used to synchronize

updates to in-memory memory-management data structures with current execution.
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opcoderdfunc3rs1rs2funct7

SYSTEM0PRIVvaddrasidSFENCE.VMA

Figure 15: SFENCE.VMA Instruction

Instruction execution causes implicit reads and writes to these data structures; however, these

implicit references are ordinarily not ordered with respect to explicit loads and stores. Executing

an SFENCE.VMA instruction guarantees that any previous stores already visible to the current

RISC‑V hart are ordered before all subsequent implicit references from that hart to the memory-

management data structures.

The SFENCE.VMA is used to flush any local hardware caches related to address translation. It is

specified as a fence rather than a TLB flush to provide cleaner semantics with respect to which

instructions are affected by the flush operation and to support a wider variety of dynamic

caching structures and memory-management schemes. SFENCE.VMA is also used by higher

privilege levels to synchronize page table writes and the address translation hardware.

SFENCE.VMA orders only the local hart’s implicit references to the memory-management data

structures.

Consequently, other harts must be notified separately when the memory-management data

structures have been modified. One approach is to use 1) a local data fence to ensure local

writes are visible globally, then 2) an interprocessor interrupt to the other thread, then 3) a local

SFENCE.VMA in the interrupt handler of the remote thread, and finally 4) signal back to orig-inat-

ing thread that operation is complete. This is, of course, the RISC-V analog to a TLB shoot-

down.

For the common case that the translation data structures have only been modified for a single

address mapping (i.e., one page or superpage), rs1 can specify a virtual address within that

mapping to affect a translation fence for that mapping only. Furthermore, for the common case

that the translation data structures have only been modified for a single address-space identifier,

rs2 can specify the address space. The behavior of SFENCE.VMA depends on rs1 and rs2 as

follows:

• If rs1=x0 and rs2=x0, the fence orders all reads and writes made to any level of the page

tables, for all address spaces.

• If rs1=x0 and rs2≠x0, the fence orders all reads and writes made to any level of the page

tables, but only for the address space identified by integer register rs2. Accesses to global

mappings are not ordered.

• If rs1≠x0 and rs2=x0, the fence orders only reads and writes made to the leaf page table

entry corresponding to the virtual address in rs1, for all address spaces.

• If rs1≠x0 and rs2≠x0, the fence orders only reads and writes made to the leaf page table

entry corresponding to the virtual address in rs1, for the address space identified by integer

register rs2. Accesses to global mappings are not ordered.

When rs2≠x0, bits [SXLEN-1:ASIDMAX] of the value held in rs2 are reserved for future use

and should be zeroed by software and ignored by current implementations. Furthermore, if [ASI-
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DLEN < ASIDMAX], the implementation shall ignore bits ASIDMAX-1:ASIDLEN of the value

held in rs2.

4.7.4 Scenarios Which Require SFENCE.VMA Instruction

The following common situations typically require executing an SFENCE.VMA instruction:

• When software recycles an ASID (i.e., reassociates it with a different page table), it should

first change satp to point to the new page table using the recycled ASID, then execute

SFENCE.VMA with rs1=x0 and rs2 set to the recycled ASID. Alternatively, software can exe-

cute the same SFENCE.VMA instruction while a different ASID is loaded into satp, provided

the next time satp is loaded with the recycled ASID, it is simultaneously loaded with the new

page table.

• If the implementation does not provide ASIDs, or software chooses to always use ASID 0,

then after every satp write, software should execute SFENCE.VMA with rs1=x0. In the com-

mon case that no global translations have been modified, rs2 should be set to a register

other than x0 but which contains the value zero, so that global translations are not flushed.

• If software modifies a non-leaf PTE, it should execute SFENCE.VMA with rs1=x0. If any PTE

along the traversal path had its G bit set, rs2 must be x0; otherwise, rs2 should be set to the

ASID for which the translation is being modified.

• If software modifies a leaf PTE, it should execute SFENCE.VMA with rs1 set to a virtual

address within the page. If any PTE along the traversal path had its G bit set, rs2 must be

x0; otherwise, rs2 should be set to the ASID for which the translation is being modified.

• For the special cases of increasing the permissions on a leaf PTE and changing an invalid

PTE to a valid leaf, software may choose to execute the SFENCE.VMA lazily. After modifying

the PTE but before executing SFENCE.VMA, either the new or old permissions will be used. In

the latter case, a page fault exception might occur, at which point software should execute

SFENCE.VMA in accordance with the previous bullet point.

Speculation

The U74 will perform a speculative data access as a result of speculative ITLB refill. Changes in

the satp register do not necessarily flush TLB entries. It is required to execute an SFENCE.VMA

instruction after modifying page table entries in order to flush the cached translations. Excep-

tions only occur on accesses that are generated as a result of instruction execution, not access

that are done speculatively.

ASID Usage for Supervisor Software

Supervisor software that uses ASIDs should use a nonzero ASID value to refer to the same

address space across all harts in the supervisor execution environment (SEE) and should not

use an ASID value of 0. If supervisor software does not use ASIDs, then the ASID field in the

satp CSR should be set to 0.
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4.7.5 Trap Virtual Memory

The mstatus.TVM (Trap Virtual Memory) bit supports intercepting supervisor virtual-memory

management operations. When TVM=1, attempts to read or write the satp CSR or execute the

SFENCE.VMA instruction while executing in S-mode will raise an illegal instruction exception.

When TVM=0, these operations are permitted in supervisor mode. TVM is hard-wired to 0 when

supervisor mode is not supported. The TVM mechanism improves virtualization efficiency by per-

mitting guest operating systems to execute in supervisor mode, rather than classically virtualiz-

ing them in user mode. This approach obviates the need to trap accesses to most S-mode

CSRs. Trapping satp accesses and the SFENCE.VMA instruction provides the hooks necessary

to lazily populate shadow page tables.

4.7.6 Virtual Address Translation Process

For Sv39, LEVELS equals 3, and PTESIZE equals 8 in the steps below. A virtual address (va) is

translated into a physical address (pa) as follows:

1. Let a be satp.ppn × PAGESIZE, and let i = LEVELS − 1.

2. Let pte be the value of the PTE at address a + va.vpn[i] × PTESIZE. If accessing pte

violates a PMA or PMP check, raise an access exception corresponding to the origi-

nal access type.

3. If pte.v = 0, or if pte.r = 0 and pte.w = 1, stop and raise a page-fault exception corre-

sponding to the original access type.

4. Otherwise, the PTE is valid. If pte.r = 1 or pte.x = 1, go to step 5. Otherwise, this

PTE is a pointer to the next level of the page table. Let i = i−1. If i < 0, stop and raise

a page-fault exception corresponding to the original access type. Otherwise, let a =

pte.ppn × PAGESIZE and go to step 2.

5. A leaf PTE has been found. Determine if the requested memory access is allowed

by the pte.r, pte.w, pte.x, and pte.u bits, given the current privilege mode and the

value of the SUM and MXR fields of the mstatus register. If not, stop and raise a

page-fault exception corresponding to the original access type.

6. If i > 0 and pte.ppn[i − 1 : 0] ≠ 0, this is a misaligned superpage; stop and raise a

page-fault exception corresponding to the original access type.

7. If pte.a = 0, or if the memory access is a store and pte.d = 0, either raise a page-

fault exception corresponding to the original access type, or:

a. Set pte.a to 1 and, if the memory access is a store, also set pte.d to 1.

b. If this access violates a PMA or PMP check, raise an access exception

corresponding to the original access type.

c. This update and the loading of pte in step 2 must be atomic; in particu-

lar, no intervening store to the PTE may be perceived to have occurred

in-between.

8. The translation is successful. The translated physical address is given as follows:
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a. pa.pgoff = va.pgoff.

b. If i > 0, then this is a superpage translation and pa.ppn[i − 1 : 0] =

va.vpn[i − 1 : 0].

c. pa.ppn[LEVELS − 1 : i] = pte.ppn[LEVELS − 1 : i].

4.7.7 Virtual-to-Physical Mapping Example

The following figure is a high-level view of how a virtual address is mapped to a physical

address for a Linux application. When the Linux kernel creates a process, it will allocate multiple

pages of physical memory to store the code and data. TLB MMU is used to:

• Translate the virtual addresses to physical addresses

• Provide uniform virtual memory layout for a user application

• Protect user applications unauthorized access to other address space

Figure 16: Linux User Application Memory Map Example

In this example, code beginning at VA=0x0001_0000 needs to be mapped to an address in off

chip volatile memory.

When the hart tries to execute instructions at this address, it needs to use a matched TLB page

table entry to do virtual address to physical address translation. If it can not be located in the
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level 1 instruction TLB, or the level 2 unified TLB, the hart will start hardware table walk from the

TLB page table base address. The page table base address is obtained by multiplying

satp.PPN by the level 2 PAGESIZE (4KiB).

Figure 17: Hardware Table Walk Example

The TLB MMU will execute a page table walk in order to determine the correct mapping for a

particular virtual address. Page table entries are pointers to the next level page table if the page

is marked as not Readable (R=0), not Writable (W=0), and not Executable (X=0). Otherwise it is a

leaf PTE.

In this example, there are 3 levels of page table entries. The hart will start the hardware table

walk from the level 1 page table entry. In the Sv39 scheme, there are 512 page table entries in

level 1 page table entry. A hart can quickly locate the entry using VPN2 number, in this case,

entry 0. The hart will continue the hardware table walk to the level 2 page table entry when the

entry doesn’t match.

There are 512 clusters of page table entries in level 2 and each cluster also has 512 TLB page

table entries. In this example, PPNs in the level 1 entry 0 is used to locate the right cluster in the

level 2 page entry. The hart will locate the entry using VPN1 number, in this case, entry 0. The
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hart will continue a hardware table walk to level 3 page table entry when this entry does not

match.

At the level 3 page table entry, there are 512x512 clusters of page table entries, and each clus-

ter has 512 TLB page table entries. In this example, PPNs in the level 2 entry 0 is used to locate

the correct cluster in the level 3 page entry. The hart then finds the entry using the VPN[0]

value, which in this case, correspons to entry 15.

When there is a match in level 3 page table entry, virtual address will map to physical address.

The physical page number is combined with the page offset to give the complete physical

address.

4.7.8 MMU at Reset

The TLB MMU is disabled by default out of reset. All accessed regions have a 1:1 virtual to

physical mapping when the MMU is disabled. If the PMP is not yet enabled, all access permis-

sions out of reset are determined by the static PMA values.

4.8 Physical Memory Protection (PMP)

Machine mode is the highest privilege level and by default has read, write, and execute permis-

sions across the entire memory map of the device. However, privilege levels below machine

mode do not have read, write, or execute permissions to any region of the device memory map

unless it is specifically allowed by the PMP. For the lower privilege levels, the PMP may grant

permissions to specific regions of the device’s memory map, but it can also revoke permissions

when in machine mode.

When programmed accordingly, the PMP will check every access when the hart is operating in

supervisor or user modes. For machine mode, PMP checks do not occur unless the lock bit (L)

is set in the pmpcfgY CSR for a particular region.

PMP checks also occur on loads and stores when the machine previous privilege level is super-

visor or User (mstatus.MPP=0x1 or mstatus.MPP=0x0), and the Modify Privilege bit is set

(mstatus.MPRV=1). For virtual address translation, PMP checks are also applied to page table

accesses in supervisor mode.

The U74 PMP supports 8 regions with a minimum region size of 4096 bytes.

This section describes how PMP concepts in the RISC‑V architecture apply to the U74. For

additional information on the PMP refer to The RISC‑V Instruction Set Manual, Volume II: Privi-

leged Architecture, Version 1.10.

4.8.1 PMP Functional Description

The U74 PMP unit has 8 regions and a minimum granularity of 4096 bytes. Access to each

region is controlled by an 8-bit pmpXcfg field and a corresponding pmpaddrX register. Overlap-
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ping regions are permitted, where the lower numbered pmpXcfg and pmpaddrX registers take

priority over highered numbered regions. The U74 PMP unit implements the architecturally

defined pmpcfgY CSR pmpcfg0, supporting 8 regions. pmpcfg2 is implemented, but hardwired

to zero. Access to pmpcfg1 or pmpcfg3 results in an illegal instruction exception.

The PMP registers may only be programmed in M-mode. Ordinarily, the PMP unit enforces per-

missions on S-mode and U-mode accesses. However, locked regions (see Section 4.8.2) addi-

tionally enforce their permissions on M-mode.

4.8.2 PMP Region Locking

The PMP allows for region locking whereby, once a region is locked, further writes to the config-

uration and address registers are ignored. Locked PMP entries may only be unlocked with a

system reset. A region may be locked by setting the L bit in the pmpXcfg register.

In addition to locking the PMP entry, the L bit indicates whether the R/W/X permissions are

enforced on machine mode accesses. When the L bit is clear, the R/W/X permissions apply to

S-mode and U-mode.

4.8.3 PMP Registers

Each PMP region is described by an 8-bit pmpXcfg field, used in association with a 64-bit

pmpaddrX register that holds the base address of the protected region. The range of each

region depends on the Addressing (A) mode described in the next section. The pmpXcfg fields

reside within 64-bit pmpcfgY CSRs.

Each 8-bit pmpXcfg field includes a read, write, and execute bit, plus a two bit address-matching

field A, and a Lock bit, L. Overlapping regions are permitted, where the lowest numbered PMP

entry wins for that region.

PMP Configuration Registers

For RV64 architectures, pmpcfg1 and pmpcfg3 are not implemented. This reduces the footprint

since pmpcfg2 already contains configuration fields pmp8cfg through pmp11cfg for both RV32

and RV64.

07815162324313239404748555663

pmp0cfgpmp1cfgpmp2cfgpmp3cfgpmp4cfgpmp5cfgpmp6cfgpmp7cfg

Figure 18: RV64 pmpcfg0 Register

07815162324313239404748555663

pmp8cfgpmp9cfgpmp10cfgpmp11cfgpmp12cfgpmp13cfgpmp14cfgpmp15cfg

Figure 19: RV64 pmpcfg2 Register

The pmpcfgY and pmpaddrX registers are only accessible via CSR specific instructions such as

csrr for reads, and csrw for writes.
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01234567

R (WARL)W (WARL)X (WARL)A (WARL)0 (WARL)L (WARL)

Figure 20: RV64 pmpXcfg bitfield

Table 12: pmpXcfg Bitfield Description

Bit Description

0 R: Read Permissions

0x0 - No read permissions for this region

0x1 - Read permission granted for this region

1 W: Write Permissions

0x0 - No write permissions for this region

0x1 - Write permission granted for this region

2 X: Execute permissions

0x0 - No execute permissions for this region

0x1 - Execute permission granted for this region

[4:3] A: Address matching mode

0x0 - PMP Entry disabled

0x1 - Top of Range (TOR)

0x2 - Naturally Aligned Four Byte Region (NA4)

0x3 - Naturally Aligned Power-of-Two region, ≥ 8 bytes (NAPOT)

7 L: Lock Bit

0x0 - PMP Entry Unlocked, no permission restrictions applied to machine mode. PMP

entry only applies to S and U modes.

0x1 - PMP Entry Locked, permissions enforced for all privilege levels including

machine mode. Writes to pmpXcfg and pmpcfgY are ignored and can only be cleared

with system reset.

Note: The combination of R=0 and W=1 is not currently implemented.

Out of reset, the PMP register fields A and L are set to 0. All other hart state is unspecified by

The RISC‑V Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10.

Additional details on the available address matching modes is described below.

A = 0x0: The attributes are disabled. No PMP protection applied for any privilege level.

A = 0x1: Top of range (TOR). Supports four byte granularity, and the regions are defined by

[PMP(i) > a > PMP(i - 1)], where 'a' is the address range. PMP(i) is the top of the range, where

PMP(i - 1) represents the lower address range. If only pmp0cfg selects TOR, then the lower

bound is set to address 0x0.

A = 0x2: Naturally aligned four-byte region (NA4). Supports only a four-byte region with four

byte granularity. Not supported on SiFive U7 series cores since minimum granularity is 4 KiB.

4 U74 RISC‑V Core

Introduction © SiFive, Inc. Page 55



A = 0x3: Naturally aligned power-of-two region (NAPOT), ≥ 8 bytes. When this setting is pro-

grammed, the low bits of the pmpaddrX register encode the size, while the upper bits encode the

base address right shifted by two. There is a zero bit in between, we will refer to as the least sig-

nificant zero bit (LSZB).

Some examples follow using NAPOT address mode.

Table 13: pmpaddrX Encoding Examples for A=NAPOT

Base

Address

Region

Size*

LSZB

Position
pmpaddrX Value

0x4000_0000 8 B 0 (0x1000_0000 | 1’b0)

0x4000_0000 32 B 2 (0x1000_0000 | 3’b011)

0x4000_0000 4 KB 9 (0x1000_0000 | 10’b01_1111_1111)

0x4000_0000 64 KB 13 (0x1000_0000 | 14’b01_1111_1111_1111)

0x4000_0000 1 MB 17 (0x1000_0000 | 18’b01_1111_1111_1111_1111)

*Region size is 2(LSZB+3).

PMP Address Registers

The PMP has 8 address registers. Each address register pmpaddrX correlates to the respective

pmpXcfg field. Each address register contains the base address of the protected region right

shifted by two, for a minimum 4-byte alignment.

The maximum encoded address bits per The RISC‑V Instruction Set Manual, Volume II: Privi-

leged Architecture, Version 1.10 are [55:2].

0535463

address[55:2] (WARL)0 (WARL)

Figure 21: RV64 pmpaddrX Register

4.8.4 PMP Programming Overview

The PMP registers can only be programmed in machine mode. The pmpaddrX register should

be first programmed with the base address of the protected region, right shifted by two. Then,

the pmpcfgY register should be programmed with the properly configured 64-bit value containing

each properly aligned 8-bit pmpXcfg field. Fields that are not used can be simply written to 0,

marking them unused.

PMP Programming Example

The following example shows a machine mode only configuration where PMP permissions are

applied to three regions of interest, and a fourth region covers the remaining memory map.
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Recall that lower numbered pmpXcfg and pmpaddrX registers take priority over higher numbered

regions. This rule allows higher numbered PMP registers to have blanket coverage over the

entire memory map while allowing lower numbered regions to apply permissions to specific

regions of interest. The following example shows a 64 KB Flash region at base address 0x0, a

32 KB RAM region at base address 0x2000_0000, and finally a 4 KB peripheral region at base

address base 0x3000_0000. The rest of the memory map is reserved space.

Figure 22: PMP Example Block Diagram

PMP Access Scenarios

The L, R, W, and X bits only determine if an access succeeds if all bytes of that access are cov-

ered by that PMP entry. For example, if a PMP entry is configured to match the four-byte range

0xC–0xF, then an 8-byte access to the range 0x8–0xF will fail, assuming that PMP entry is the

highest-priority entry that matches those addresses.

While operating in machine mode when the lock bit is clear (L=0), if a PMP entry matches all

bytes of an access, the access succeeds. If the lock bit is set (L=1) while in machine mode, then

the access depends on the permissions set for that region. Similarly, while in Supervisor mode

or User mode, the access depends on permissions set for that region.

Failed read or write accesses generate a load or store access exception, and an instruction

access fault would occur on a failed instruction fetch. When an exception occurs while attempt-
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ing to execute from a region without execute permissions, the fault occurs on the fetch and not

the branch, so the mepc CSR will reflect the value of the targeted protected region, and not the

address of the branch.

It is possible for a single instruction to generate multiple accesses, which may not be mutually

atomic. If at least one access generated by an instruction fails, then an exception will occur. It

might be possible that other accesses from a single instruction will succeed, with visible side

effects. For example, references to virtual memory may be decomposed into multiple accesses.

On some implementations, misaligned loads, stores, and instruction fetches may also be

decomposed into multiple accesses, some of which may succeed before an access exception

occurs. In particular, a portion of a misaligned store that passes the PMP check may become

visible, even if another portion fails the PMP check. The same behavior may manifest for float-

ing-point stores wider than XLEN bits (e.g., the FSD instruction in RV32D), even when the store

address is naturally aligned.

4.8.5 PMP and Paging

The Physical Memory Protection mechanism is designed to compose with the page-based vir-

tual memory systems described in The RISC‑V Instruction Set Manual, Volume II: Privileged

Architecture, Version 1.10. When paging is enabled, instructions that access virtual memory

may result in multiple physical-memory accesses, including implicit references to the page

tables. The PMP checks apply to all of these accesses. The effective privilege mode for implicit

page-table accesses is supervisor mode.

Implementations with virtual memory are permitted to perform address translations speculatively

and earlier than required by an explicit virtual-memory access. The PMP settings for the result-

ing physical address may be checked at any point between the address translation and the

explicit virtual-memory access. A mis-predicted branch to a non-executable address range does

not generate a trap. Hence, when the PMP settings are modified in a manner that affects either

the physical memory that holds the page tables or the physical memory to which the page

tables point, M-mode software must synchronize the PMP settings with the virtual memory sys-

tem. This is accomplished by executing an SFENCE.VMA instruction with rs1=x0 and rs2=x0,

after the PMP CSRs are written.

If page-based virtual memory is not implemented, or when it is disabled, memory accesses

check the PMP settings synchronously, so no fence is needed.

4.8.6 PMP Limitations

In a system containing multiple harts, each hart has its own PMP device. The PMP permissions

on a hart cannot be applied to accesses from other harts in a multi-hart system. In addition,

SiFive designs may contain a Front Port to allow external bus masters access to the full mem-

ory map of the system. The PMP cannot prevent access from external bus masters on the Front

Port.

4 U74 RISC‑V Core

Introduction © SiFive, Inc. Page 58



4.8.7 Behavior for Regions without PMP Protection

If a non-reserved region of the memory map does not have PMP permissions applied, then by

default, supervisor or user mode accesses will fail, while machine mode access will be allowed.

Access to reserved regions within a device’s memory map (an interrupt controller for example)

will return 0x0 on reads, and writes will be ignored. Access to reserved regions outside of a

device’s memory map without PMP protection will result in a bus error. The bus error can gener-

ate an interrupt to the hart using the Bus-Error Unit (BEU). See Chapter 11 for more information.

4.8.8 Cache Flush Behavior on PMP Protected Region

When a line is brought into cache and the PMP is set up with the lock (L) bit asserted to protect

a part of that line, a data cache flush instruction will generate a store access fault exception if

the flush includes any part of the line that is protected. The cache flush instruction does an

invalidate and write-back, so it is essentially trying to write back to the memory location that is

protected. If a cache flush occurs on a part of the line that was not protected, the flush will suc-

ceed and not generate an exception. If a data cache flush is required without a write-back, use

the cache discard instruction instead, as this will invalidate but not write back the line.

4.9 Hardware Performance Monitor

The U74 processor core supports a basic hardware performance monitoring (HPM) facility. The

performance monitoring facility is divided into two classes of counters: fixed-function and event-

programmable counters. These classes consist of a set of fixed counters and their counter-

enable registers, as well as a set of event-programmable counters and their event selector reg-

isters. The registers are available to control the behavior of the counters. Performance monitor-

ing can be useful for multiple purposes, from optimization to debug.

4.9.1 Performance Monitoring Counters Reset Behavior

The instret and cycle counters are initialized to zero on system reset. The hardware perfor-

mance monitor event counters are not initialized on system reset, and thus have an arbirary

value. Users can write desired values to the counter control and status registers (CSRs) to start

counting at a given, known value.

4.9.2 Fixed-Function Performance Monitoring Counters

A fixed-function performance monitor counter is hardware wired to only count one specific event

type. That is, they cannot be reconfigured with respect to the event type(s) they count. The only

modification to the fixed-function performance monitoring counters that can be done is to enable

or disable counting, and write the counter value itself.

The U74 processor core contains two fixed-function performance monitoring counters.
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Fixed-Function Cycle Counter (mcycle)

The fixed-function performance monitoring counter mcycle holds a count of the number of clock

cycles the hart has executed since some arbitrary time in the past. The mcycle counter is read-

write and 64 bits wide. Reads of mcycle return all 64 bits of the mcycle CSR.

Fixed-Function Instructions-Retired Counter (minstret)

The fixed-function performance monitoring counter minstret holds a count of the number of

instructions the hart has retired since some arbitrary time in the past. The minstret counter is

read-write and 64 bits wide. Reads of minstret return all 64 bits of the minstret CSR.

4.9.3 Event-Programmable Performance Monitoring Counters

Complementing the fixed-function counters are a set of programmable event counters. The U74

HPM includes two additional event counters, mhpmcounter3 and mhpmcounter4. These pro-

grammable event counters are read-write and 64 bits wide. The hardware counters themselves

are implemented as 40-bit counters on the U74 core series. These hardware counters can be

written to in order to initialize the counter value.

4.9.4 Event Selector Registers

To control the event type to count, event selector CSRs mhpmevent3 and mhpmevent4 are used

to program the corresponding event counters. These event selector CSRs are 64-bit WARL reg-

isters.

The event selectors are partitioned into two fields; the lower 8 bits select an event class, and the

upper bits form a mask of events in that class.

Figure 23: Event Selector Fields

The counter increments if the event corresponding to any set mask bit occurs. For example, if

mhpmevent3 is set to 0x4200, then mhpmcounter3 will increment when either a load instruction

or a conditional branch instruction retires. An event selector of 0 means "count nothing".

4.9.5 Event Selector Encodings

Table 14 describes the event selector encodings available. Events are categorized into classes

based on the Event Class field encoded in mhpmeventX[7:0]. One or more events can be pro-

grammed by setting the respective Event Mask bit for a given event class. An event selector
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encoding of 0 means "count nothing". Multiple events will cause the counter to increment any

time any of the selected events occur.

Table 14: mhpmevent Register

Machine Hardware Performance Monitor Event Register

Instruction Commit Events, mhpmeventX[7:0]=0

Bits Description

8 Exception taken

9 Integer load instruction retired

10 Integer store instruction retired

11 Atomic memory operation retired

12 System instruction retired

13 Integer arithmetic instruction retired

14 Conditional branch retired

15 JAL instruction retired

16 JALR instruction retired

17 Integer multiplication instruction retired

18 Integer division instruction retired

19 Floating-point load instruction retired

20 Floating-point store instruction retired

21 Floating-point addition retired

22 Floating-point multiplication retired

23 Floating-point fused multiply-add retired

24 Floating-point division or square-root retired

25 Other floating-point instruction retired

Microarchitectural Events, mhpmeventX[7:0]=1

Bits Description

8 Load-use interlock

9 Long-latency interlock
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Table 14: mhpmevent Register

10 CSR read interlock

11 Instruction cache/ITIM busy

12 Data cache/DTIM busy

13 Branch direction misprediction

14 Branch/jump target misprediction

15 Pipeline flush from CSR write

16 Pipeline flush from other event

17 Integer multiplication interlock

18 Floating-point interlock

Memory System Events, mhpmeventX[7:0]=2

Bits Description

8 Instruction cache miss

9 Data cache miss or memory-mapped I/O access

10 Data cache write-back

11 Instruction TLB miss

12 Data TLB miss

Event mask bits that are writable for any event class are writable for all classes. Setting an

event mask bit that does not correspond to an event defined in Table 14 has no effect for current

implementations. However, future implementations may define new events in that encoding

space, so it is not recommended to program unsupported values into the mhpmevent registers.

Combining Events

It is common usage to directly count each respective event. Additionally, it is possible to use

combinations of these events to count new, unique events. For example, to determine the aver-

age cycles per load from a data memory subsystem, program one counter to count "Data cache/

DTIM busy" and another counter to count "Integer load instruction retired". Then, simply divide

the "Data cache/DTIM busy" cycle count by the "Integer load instruction retired" instruction

count and the result is the average cycle time for loads in cycles per instruction.

It is important to be cognizant of the event types being combined; specifically, event types

counting occurrences and event types counting cycles.
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4.9.6 Counter-Enable Registers

The 32-bit counter-enable registers mcounteren and scounteren control the availability of the

hardware performance-monitoring counters to the next-lowest privileged mode.

The settings in these registers only control accessibility. The act of reading or writing these

enable registers does not affect the underlying counters, which continue to increment when not

accessible.

When any bit in the mcounteren register is clear, attempts to read the cycle, time, instruction

retire, or hpmcounterX register while executing in S-mode will cause an illegal instruction excep-

tion. When one of these bits is set, access to the corresponding register is permitted in the next

implemented privilege mode, S-mode.

The same bit positions in the scounteren register analogously control access to these registers

while executing in U-mode. If S-mode is permitted to access a counter register and the corre-

sponding bit is set in scounteren, then U-mode is also permitted to access that register.

mcounteren and scounteren are WARL registers. Any of the bits may contain a hardwired

value of zero, indicating reads to the corresponding counter will cause an illegal instruction

exception when executing in a less-privileged mode.
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5

Memory Map

The memory map of the FU740-C000 is shown in Table 15.

Table 15: FU740-C000 Memory Map. Memory Attributes: R - Read, W - Write, X

- Execute, C - Cacheabe, A - Atomics

Base Top Attr. Description

0x0000_0000 0x0000_0FFF Debug

0x0000_1000 0x0000_1FFF r x Rom

0x0000_2000 0x0000_3FFF Reserved

0x0000_4000 0x0000_4FFF rw a Test Status

0x0000_5000 0x0000_5FFF Reserved

0x0000_6000 0x0000_6FFF rw a Chip Select

0x0000_7000 0x0000_FFFF Reserved

0x0001_0000 0x0001_7FFF r x Rom

0x0001_8000 ‭0x00FF_FFFF Reserved

0x0100_0000 0x0100_1FFF rwx a S7 DTIM (8 KiB)

0x0100_2000 ‬‭0x016F_FFFF‬ Reserved

0x0170_0000 0x0170_0FFF rw a S7 Hart 0 Bus Error Unit

0x0170_1000 0x0170_1FFF rw a U74 Hart 1 Bus Error Unit

0x0170_2000 0x0170_2FFF rw a U74 Hart 2 Bus Error Unit

0x0170_3000 0x0170_3FFF rw a U74 Hart 3 Bus Error Unit
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Table 15: FU740-C000 Memory Map. Memory Attributes: R - Read, W - Write, X

- Execute, C - Cacheabe, A - Atomics

Base Top Attr. Description

0x0170_4000 0x0170_4FFF rw a U74 Hart 4 Bus Error Unit

‭0x0170_5000‬ 0x0‭1FF_FFFF‬ Reserved

0x0200_0000 0x0200_FFFF rw a CLINT

0x0201_0000 0x0201_0FFF rw a L2 Cache Controller

‭0x0201_1000‬ ‭0x0201_FFFF‬ Reserved

0x0202_0000 0x0202_0FFF rw a MSI ‭

0x0202_1000 0x0‬‭2FF_FFFF Reserved

0x0300_0000 0x030F_FFFF rw a DMA

‭0x0310_0000 ‬‭0x07FF_FFFF Reserved

0x0800_0000 0x081F_FFFF rwx a L2 Cache Controller

‭0x0820_0000 ‬‭0x08FF_FFFF Reserved

0x0900_0000 0x091F_FFFF rwx a Rom

‭0x0920_0000 ‬0x0‭9FF_FFFF‬ Reserved

0x0A00_0000 0x0bFF_FFFF rwxca Rom

0x0C00_0000 0x0FFF_FFFF rw a PLIC

0x1000_0000 0x1000_0FFF rw a PRCI

‭0x1000_1000 ‬‭0x1000_FFFF‬ Reserved

0x1001_0000 0x1001_0FFF rw a UART 0

0x1001_1000 0x1001_1FFF rw a UART 1

0x1001_2000 ‬‭0x1001_FFFF ‬ Reserved

0x1002_0000 0x1002_0FFF rw a PWM 0

0x1002_1000 0x1002_1FFF rw a PWM 1

0x1002_2000 ‬0x‭1002_FFFF Reserved

0x1003_0000 0x1003_0FFF rw a I2C 0

0x1003_1000 0x1003_1FFF rw a I2C 1
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Table 15: FU740-C000 Memory Map. Memory Attributes: R - Read, W - Write, X

- Execute, C - Cacheabe, A - Atomics

Base Top Attr. Description

0x‭1003_2000 ‭0x1003_FFFF ‬ Reserved

0x1004_0000 0x1004_0FFF rw a QSPI 0

0x1004_1000 0x1004_1FFF rw a QSPI 1

0x‭1004_2000 ‬ 0x‭1004_FFFF ‬ Reserved

0x1005_0000 0x1005_0FFF rw a QSPI 2

0x‭1005_1000 0x‬‭1005_FFFF Reserved

0x1006_0000 0x1006_0FFF rw a GPIO

‭0x1006_1000 0x‭1006_FFFF ‬ Reserved

0x1007_0000 0x1007_0FFF rw a OTP

0x1007_1000 0x1007_FFFF Reserved

0x1008_0000 0x1008_0FFF rw a Pin Control

‭0x1008_1000 ‬0x‭1008_FFFF ‬ Reserved

0x1009_0000 0x1009_1FFF rw a Ethernet

‭0x1009_2000 0x‬‭1009_FFFF Reserved

0x100A_0000 0x100A_0FFF rw a GEMGXL MGMT

0x‭100A_1000 ‬ 0x‭100A_FFFF ‬ Reserved

0x100B_0000 0x100B_3FFF rw a Memory Controller

0x‭100B_4000 ‬ 0x100B_7FFF‬ Reserved

0x100B_8000 0x100B_8FFF rw a Physical Filter

‭0x100B_9000 ‬0x‭100B_FFFF Reserved

0x100C_0000 0x100C_0FFF rw a DDR MGMT

‭0x100C_1000 ‬ 0x‭100C_FFFF‬ Reserved

0x100D_0000 0x100D_0FFF rw a PCIE MGMT

0x‭100D_1000 0x100D_FFFF ‬ Reserved

0x100E_0000 0x100E_0FFF rw a Order Ogler
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Table 15: FU740-C000 Memory Map. Memory Attributes: R - Read, W - Write, X

- Execute, C - Cacheabe, A - Atomics

Base Top Attr. Description

‭0x100E_1000 ‬ ‭0x13FF_FFFF ‬ Reserved

0x1400_0000 0x17FF_FFFF rwxca Error Device 0

0x1800_0000 0x1FFF_FFFF rwxca Error Device 1

0x2000_0000 0x2FFF_FFFF r x SPI 0

0x3000_0000 0x3FFF_FFFF r x SPI 1

0x4000_0000 0x5FFF_FFFF rwx a Reserved

0x6000_0000 0x7FFF_FFFF rw a PCIe

0x8000_0000 0x0008_7FFF_FFFF rwxca Memory

‭ 0x0008_8000_0000 ‬0x000‭D_EFFF_FFFF Reserved

0x000D_F000_0000 0x000D_FFFF_FFFF rw a PCIe

0x000E_0000_0000 0x000E_FFFF_FFFF rwx a PCIe

0x000‭F_0000_0000 0x000F_FFFF_FFFF Reserved

0x0010_0000_0000 0x0017_FFFF_FFFF rwx a Reserved

0x0018_0000_0000 0x001F_FFFF_FFFF rwxca Reserved

0x0020_0000_0000 0x003F_FFFF_FFFF r w a PCIe
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6

Boot Process

The FU740-C000 supports booting from several sources, which are controlled using the Mode

Select (MSEL[3:0]) pins on the chip. Typically, the boot process runs through several stages

before it begins execution of user-provided programs. These stages typically include the follow-

ing:

1. Zeroth Stage Boot Loader (ZSBL), which is contained in an on-chip mask ROM

2. First Stage Boot Loader (FSBL), which brings up PLLs and DDR memory, is the

default SiFive-provided FSBL for this chip

3. Berkeley Boot Loader (BBL), which adds emulation for soft instructions, is the

default SiFive-provided BBL used at product launch

4. User Payload, which contains the software to run, typically Linux

Both the ZSBL and FSBL download the next stage boot loader based on the MSEL setting. All

possible values are enumerated in Table 16. The three QSPI interfaces on the FU740-C000 can

be used to download media either from SPI flash (using x4 data pins or x1) or an SD card, using

the SPI protocol. These boot methods are detailed at the end of this chapter.

Table 16: Boot media used by ZSBL and FSBL depending on Mode Select

(MSEL)

MSEL FSBL BBL Purpose

0000 - - loops forever waiting for debugger

0001 - - jump directly to 0x2000_0000 (SPI 3)

0010 - - jump directly to 0x3000_0000 (SPI 4)

0011 - - (reserved)

0100 - - (reserved)

0101 QSPI0 x1 QSPI0 x1 -
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Table 16: Boot media used by ZSBL and FSBL depending on Mode Select

(MSEL)

MSEL FSBL BBL Purpose

0110 QSPI0 x4 QSPI0 x4 Rescue image from flash (preprogrammed)

0111 QSPI1 x4 QSPI1 x4 -

1000 QSPI1 SD QSPI1 SD -

1001 QSPI2 x1 QSPI2 x1 -

1010 QSPI0 x4 QSPI1 SD -

1011 QSPI2 SD QSPI2 SD Rescue image from SD card

1100 QSPI1 x1 QSPI2 SD -

1101 QSPI1 x4 QSPI2 SD -

1110 QSPI0 x1 QSPI2 SD -

1111 QSPI0 x4 QSPI2 SD Default boot mode

6.1 Reset Vector

On power-on, all cores jump to 0x1004 while running directly off of the external clock input,

expected to be 26 MHz. The memory at this location contains:

Table 17: Reset vector ROM

Address Contents

0x1000 The MSEL pin state

0x1004 auipc t0, 0

0x1008 lw t1, -4(t0)

0x100C slli t1, t1, 0x3

0x1010 add t0, t0, t1

0x1014 lw t0, 252(t0)

0x1018 jr t0

This small gate ROM implements an MSEL-dependent jump for all cores as follows:
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Table 18: Target of the reset vector

MSEL Reset address Purpose

0000 0x0000_1004 loops forever waiting for debugger

0001 0x2000_0000 memory-mapped QSPI0

0010 0x3000_0000 memory-mapped QSPI1

0011 0x0001_0000 ZSBL (reserved)

0100 0x0001_0000 ZSBL (reserved)

0101 0x0001_0000 ZSBL

0110 0x0001_0000 ZSBL

0111 0x0001_0000 ZSBL

1000 0x0001_0000 ZSBL

1001 0x0001_0000 ZSBL

1010 0x0001_0000 ZSBL

1011 0x0001_0000 ZSBL

1100 0x0001_0000 ZSBL

1101 0x0001_0000 ZSBL

1110 0x0001_0000 ZSBL

1111 0x0001_0000 ZSBL

6.2 Zeroth Stage Boot Loader (ZSBL)

The Zeroth Stage Boot Loader (ZSBL) is contained in a mask ROM at 0x1_0000. It is responsi-

ble for downloading the more complicated FSBL from a GUID Partition Table. All cores enter the

ZSBL running directly off of the external clock input, expected to be at 26 MHz. The core with

mhartid zero configures the peripheral clock dividers and then searches for a partition with

GUID type 5B193300-FC78-40CD-8002-E86C45580B47. It does this by first downloading the

GPT header (bytes 512-604) and then sequentially scanning the partition table block by block

(512 bytes) until the partition is found. Then, the entire contents of this partition, the FSBL, are

downloaded into the L2 LIM at address 0x0800_0000. Execution then branches to the FSBL.

The ZSBL uses the MSEL pins to determine where to look for the FSBL partition:
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Table 19: FSBL location downloaded by the ZSBL

MSEL FSBL location Method Width

0101 QSPI0 flash memory-mapped x1

0110 QSPI0 flash memory-mapped x4

0111 QSPI1 flash memory-mapped x4

1000 QSPI1 SD card bit-banged x1

1001 QSPI2 flash bit-banged x1

1010 QSPI0 flash memory-mapped x4

1011 QSPI2 SD card bit-banged x1

1100 QSPI1 flash bit-banged x1

1101 QSPI1 flash memory-mapped x4

1110 QSPI0 flash bit-banged x1

1111 QSPI0 flash memory-mapped x4

6.3 First Stage Boot Loader (FSBL)

The First Stage Boot Loader (FSBL) is executed from the L2 LIM, located at 0x0800_0000. It is

responsible for preparing the system to run from DDR. It performs these operations:

• Switch core frequency to 1 GHz (or 500 MHz if TLCLKSEL=1) by configuring and running off

the on-chip PLL

• Configure DDR PLL, PHY, and controller

• Set GEM GXL TX PLL to 125 MHz and reset it

• If there is an external PHY, reset it

• Download BBL from a partition with GUID type

2E54B353-1271-4842-806F-E436D6AF69851

• Scan the OTP for the chip serial number

• Copy the embedded DTB to DDR, filling in FSBL version, memory size, and MAC address

• Enable 15 of the 16 L2 ways (this removes almost all of the L2 LIM memory)

• Jump to DDR memory (0x8000_0000)

The FSBL reads the MSEL switches to determine where to look for the BBL partition:
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Table 20: BBL location downloaded by the FSBL

MSEL BBL location Method Width

0101 QSPI0 flash memory-mapped x1

0110 QSPI0 flash memory-mapped x4

0111 QSPI1 flash memory-mapped x4

1000 QSPI1 SD card bit-banged x1

1001 QSPI2 flash bit-banged x1

1010 QSPI1 SD card bit-banged x1

1011 QSPI2 SD card bit-banged x1

1100 QSPI2 SD card bit-banged x1

1101 QSPI2 SD card bit-banged x1

1110 QSPI2 SD card bit-banged x1

1111 QSPI2 SD card bit-banged x1

6.4 Berkeley Boot Loader (BBL)

The Berkeley Boot Loader (BBL) is executed from DDR, located at 0x8000_0000. It is responsi-

ble for providing the Supervisor Binary Interface (SBI) as well as emulating any RISC-V required

instructions that are not implemented by the chip itself. At the time of writing, BBL often includes

an embedded Linux kernel payload that it jumps to once the SBI is initialized.

6.5 Boot Methods

Both the ZSBL and FSBL download the next stage boot-loader from a QSPI interface. However,

the protocol used varies depending on MSEL. The details of these boot methods are detailed

here.

6.5.1 Flash Bit-Banged x1

When using the flash bit-banged boot method, the firmware switches the QSPI controller out of

flash memory-mapped mode and sends SPI commands directly to the controller. In this mode,

the QSPI interface is clocked no higher than 10 MHz. When the core is running at 26 MHz, this

means 8.3 MHz. At 1 GHz, this means exactly 10 MHz.

The firmware first sends commands RESET_ENABLE (0x66) and RESET (0x99). To download data

required during GPT parsing and partition payload, it uses READ (0x03) with a 3-byte address
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and no dummy cycles. Data is streamed continuously for the entire transfer. This means that

partitions needed during boot must be located within the low 16 MiB of the flash.

6.5.2 Flash Memory-Mapped x1

When using the flash memory-mapped x1 boot method, the firmware uses the QSPI controller’s

hardware SPI flash read support. In this mode, the QSPI interface is clocked no higher than

10 MHz. When the core is running at 26 MHz, this means 8.3 MHz. At 1 GHz, this means

exactly 10 MHz.

The firmware first manually runs RESET_ENABLE (0x66) and RESET (0x99). To download data

required during GPT parsing and partition payload, it uses memcpy from the memory-mapped

QSPI region. The QSPI controller is configured so that hardware flash interfaces uses READ

(0x03) with a 3-byte address and no dummy cycles. Data is streamed continuously for the

entire transfer. This means that partitions needed during boot must be located within the low

16 MiB of the flash.

6.5.3 Flash Memory-Mapped x4

When using the flash memory-mapped x4 boot method, the firmware uses the QSPI controller’s

hardware SPI flash read support. In this mode, the QSPI interface is clocked no higher than

10 MHz. When the core is running at 26 MHz, this means 8.3 MHz. At 1 GHz, this means

exactly 10 MHz.

The firmware first manually runs RESET_ENABLE (0x66) and RESET (0x99). To download data

required during GPT parsing and partition payload, it uses memcpy from the memory-mapped

QSPI region. The QSPI controller is configured so that hardware flash interfaces uses

FAST_READ_QUAD_OUTPUT (0x6b) with a 3-byte address and 8 dummy cycles. Data is streamed

continuously for the entire transfer. This means that partitions needed during boot must be

located within the low 16 MiB of the flash.

6.5.4 SD Card Bit-Banged x1

When using the SD card boot method, the firmware performs these initialization steps:

1. Wait 1 ms before initiating commands.

2. Set the QSPI controller to 400 kHz.

3. Send 10 SPI clock pulses with CS inactive.

4. Send CMD0, CMD8, ACMD41, CMD58, CMD16.

5. Set the QSPI controller to 20 MHz.

To download data required during GPT parsing and partition payload, it uses the

READ_BLOCK_MULTIPLE (18) command. Data is streamed continuously for the entire transfer.
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7

Clocking and Reset

This chapter describes the clocking and reset operation of the FU740-C000.

Clocking and reset is managed by the PRCI (Power Reset Clocking Interrupt) block (Figure 24).
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Figure 24: Clocking and Reset Architecture

7.1 Clocking

FU740-C000 generates all internal clocks from 26 MHz hfclk driven from an external oscillator

(HFCLKIN) or crystal (HFOSCIN) input, selected by input HFXSEL.

All harts operate in a single clock domain (coreclk) supplied by either corepll or

dvfscorepll, which can be selected using the corepllsel register. These PLLs step 26 MHz
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hfclk up to higher frequencies. The recommended frequency of coreclk is 1.0 GHz, however

operation at up to 1.5 GHz is possible.

tlclk is a divided version of the coreclk and generates the clock for the L2 cache.

The hfpclkpll generates the clock for peripherals such as SPI, UART, GPIO, I2C, and PWM.

dvfs_core_pll enables the user to change the CPU frequency without dropping down to the

lower frequency hfclk.

The DDR, Ethernet and PCIe Subsystems operate asynchronously. The PRCI contains two

dedicated PLLs used to step 26 MHz hfclk up to the DDR and Ethernet operating frequencies.

The PCIe Subsystem contains its own clock generation.

The PRCI contains memory-mapped registers that control the clock selection and configuration

of the PLLs. On power-on, the default PRCI register settings start the harts running directly from

hfclk. All additional clock management, for instance initializing the DDR PLL or stepping the

coreclk frequency, is performed through software reads and writes to the memory-mapped

PRCI control registers.

The CPU real time clock (rtcclk) runs at 1 MHz and is driven from input pin RTCCLKIN. This

should be connected to an external oscillator.

JTAG debug logic runs off of JTAG TCK as described in Chapter 26.

7.2 Reset

The FU740-C000 has two external reset pins.

PORESET_N is an asynchonous active low power-on reset that should be connected to an exter-

nal power sequencing/supervisory circuit.

ERESET_N is an asynchonous active low reset that can be connected to a reset button. There is

internal debounce and stretch logic.

The PRCI also contains hardware to generate internal synchronous resets for coreclk, tlclk,

and hfpclk domains and handle reset to and from the debug module. Resets for the DDR, Eth-

ernet and PCIE Subsystems are performed through software reads and writes to memory-

mapped PRCI control registers. These registers are outlined in Table 34 below.

7.3 Memory Map (0x1000_0000–0x1000_0FFF)

This section presents an overview of the PRCI control and configuration registers.
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Offset Name Description

0x00 hfxosccfg Crystal Oscillator Configuration and Status

0x04 core_pllcfg PLL Configuration and Status

0x08 core_plloutdiv PLL Final Divide Configuration

0x0C ddr_pllcfg PLL Configuration and Status

0x10 ddr_plloutdiv PLL Final Divide Configuration

0x1C gemgxl_pllcfg PLL Configuration and Status

0x20 gemgxl_plloutdiv PLL Final Divide Configuration

0x24 core_clk_sel_reg Select core clock source. 0: coreclkpll 1: external hfclk

0x28 devices_reset_n Software controlled resets (active low)

0x2C clk_mux_status Current selection of each clock mux

0x38 dvfs_core_pllcfg PLL Configuration and Status

0x3C dvfs_core_plloutdiv PLL Final Divide Configuration

0x40 corepllsel Select which PLL output to use for core clock. 0: corepll 1:

dvfscorepll

0x50 hfpclk_pllcfg PLL Configuration and Status

0x54 hfpclk_plloutdiv PLL Final Divide Configuration

0x58 hfpclkpllsel Select source for Periphery Clock (pclk). 0: hfpclkpll 1:

external hfclk

0x5C hfpclk_div_reg HFPCLK PLL divider value

0xE0 prci_plls Indicates presence of each PLL

hfxosccfg: Crystal Oscillator Configuration and Status (hfxosccfg)

Register Offset 0x0

Bits Field Name Attr. Rst. Description

[29:0] Reserved

30 hfxoscen RW 0x1 Crystal Oscillator Enable

Table 21: PRCI Memory Map

Table 22: hfxosccfg: Crystal Oscillator Configuration and Status
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31 hfxoscrdy RO X Crystal Oscillator Ready

core_pllcfg: PLL Configuration and Status (core_pllcfg)

Register Offset 0x4

Bits Field Name Attr. Rst. Description

[5:0] pllr RW 0x1 PLL R Value

[14:6] pllf RW 0x1F PLL F Value

[17:15] pllq RW 0x3 PLL Q Value

[20:18] pllrange RW 0x0 PLL Range Value

[23:21] Reserved

24 pllbypass RW 0x1 PLL Bypass

25 pllfsebypass RW 0x1 PLL FSE Bypass

[30:26] Reserved

31 plllock RO X PLL Lock

core_plloutdiv: PLL Final Divide Configuration (core_plloutdiv)

Register Offset 0x8

Bits Field Name Attr. Rst. Description

[31:0] Reserved

dvfs_core_pllcfg: PLL Configuration and Status (dvfs_core_pllcfg)

Register Offset 0x38

Bits Field Name Attr. Rst. Description

[5:0] pllr RW 0x1 PLL R Value

Table 22: hfxosccfg: Crystal Oscillator Configuration and Status

Table 23: core_pllcfg: PLL Configuration and Status

Table 24: core_plloutdiv: PLL Final Divide Configuration

Table 25: dvfs_core_pllcfg: PLL Configuration and Status
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[14:6] pllf RW 0x1F PLL F Value

[17:15] pllq RW 0x3 PLL Q Value

[20:18] pllrange RW 0x0 PLL Range Value

[23:21] Reserved

24 pllbypass RW 0x1 PLL Bypass

25 pllfsebypass RW 0x1 PLL FSE Bypass

[30:26] Reserved

31 plllock RO X PLL Lock

dvfs_core_plloutdiv: PLL Final Divide Configuration (dvfs_core_plloutdiv)

Register Offset 0x3C

Bits Field Name Attr. Rst. Description

[30:0] Reserved

31 pllcke RW 0x0 PLL Output Clock Enable

hfpclk_pllcfg: PLL Configuration and Status (hfpclk_pllcfg)

Register Offset 0x50

Bits Field Name Attr. Rst. Description

[5:0] pllr RW 0x1 PLL R Value

[14:6] pllf RW 0x1F PLL F Value

[17:15] pllq RW 0x3 PLL Q Value

[20:18] pllrange RW 0x0 PLL Range Value

[23:21] Reserved

24 pllbypass RW 0x1 PLL Bypass

25 pllfsebypass RW 0x1 PLL FSE Bypass

Table 25: dvfs_core_pllcfg: PLL Configuration and Status

Table 26: dvfs_core_plloutdiv: PLL Final Divide Configuration

Table 27: hfpclk_pllcfg: PLL Configuration and Status
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[30:26] Reserved

31 plllock RO X PLL Lock

hfpclk_plloutdiv: PLL Final Divide Configuration (hfpclk_plloutdiv)

Register Offset 0x54

Bits Field Name Attr. Rst. Description

[30:0] Reserved

31 pllcke RW 0x0 PLL Output Clock Enable

hfpclk_div_reg: HFPCLK PLL divider value (hfpclk_div_reg)

Register Offset 0x5C

Bits Field Name Attr. Rst. Description

[31:0] hfpclk_div_reg RW 0x0 HFPCLK PLL divider value

ddr_pllcfg: PLL Configuration and Status (ddr_pllcfg)

Register Offset 0xC

Bits Field Name Attr. Rst. Description

[5:0] pllr RW 0x1 PLL R Value

[14:6] pllf RW 0x1F PLL F Value

[17:15] pllq RW 0x3 PLL Q Value

[20:18] pllrange RW 0x0 PLL Range Value

[23:21] Reserved

24 pllbypass RW 0x1 PLL Bypass

25 pllfsebypass RW 0x1 PLL FSE Bypass

Table 27: hfpclk_pllcfg: PLL Configuration and Status

Table 28: hfpclk_plloutdiv: PLL Final Divide Configuration

Table 29: hfpclk_div_reg: HFPCLK PLL divider value

Table 30: ddr_pllcfg: PLL Configuration and Status
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[30:26] Reserved

31 plllock RO X PLL Lock

ddr_plloutdiv: PLL Final Divide Configuration (ddr_plloutdiv)

Register Offset 0x10

Bits Field Name Attr. Rst. Description

[30:0] Reserved

31 pllcke RW 0x0 PLL Output Clock Enable

gemgxl_pllcfg: PLL Configuration and Status (gemgxl_pllcfg)

Register Offset 0x1C

Bits Field Name Attr. Rst. Description

[5:0] pllr RW 0x1 PLL R Value

[14:6] pllf RW 0x1F PLL F Value

[17:15] pllq RW 0x3 PLL Q Value

[20:18] pllrange RW 0x0 PLL Range Value

[23:21] Reserved

24 pllbypass RW 0x1 PLL Bypass

25 pllfsebypass RW 0x1 PLL FSE Bypass

[30:26] Reserved

31 plllock RO X PLL Lock

gemgxl_plloutdiv: PLL Final Divide Configuration (gemgxl_plloutdiv)

Register Offset 0x20

Table 30: ddr_pllcfg: PLL Configuration and Status

Table 31: ddr_plloutdiv: PLL Final Divide Configuration

Table 32: gemgxl_pllcfg: PLL Configuration and Status

Table 33: gemgxl_plloutdiv: PLL Final Divide Configuration
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Bits Field Name Attr. Rst. Description

[30:0] Reserved

31 pllcke RW 0x0 PLL Output Clock Enable

devices_reset_n: Software controlled resets (active low) (devices_reset_n)

Register Offset 0x28

Bits Field Name Attr. Rst. Description

0 ddrctrl_reset_n RW 0x0 Active-Low ddrctrl reset

1 ddraxi_reset_n RW 0x0 Active-Low ddraxi reset

2 ddrahb_reset_n RW 0x0 Active-Low ddrahb reset

3 ddrphy_reset_n RW 0x0 Active-Low ddrphy reset

4 pcieaux_reset_n RW 0x0 Active-Low pcieaux reset

5 gemgxl_reset_n RW 0x0 Active-Low gemgxl reset

6 Reserved RW 0x0 Reserved

[31:7] Reserved

clk_mux_status: Current selection of each clock mux (clk_mux_status)

Register Offset 0x2C

Bits Field Name Attr. Rst. Description

0 coreclkpllsel RO X Current setting of coreclkpllsel mux

1 tlclksel RO X Current setting of tlclksel mux

2 rtcxsel RO X Current setting of rtcxsel mux

3 ddrctrlclksel RO X Current setting of ddrctrlclksel mux

4 ddrphyclksel RO X Current setting of ddrphyclksel mux

5 reserved0 RO X Current setting of reserved0 mux

Table 33: gemgxl_plloutdiv: PLL Final Divide Configuration

Table 34: devices_reset_n: Software controlled resets (active low)

Table 35: clk_mux_status: Current selection of each clock mux
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6 gemgxlclksel RO X Current setting of gemgxlclksel mux

7 mainmemclksel RO X Current setting of mainmemclksel mux

[31:8] Reserved

prci_plls: Indicates presence of each PLL (prci_plls)

Register Offset 0xE0

Bits Field Name Attr. Rst. Description

0 cltxpll RO X Indicates presence of cltxpll

1 gemgxlpll RO X Indicates presence of gemgxlpll

2 ddrpll RO X Indicates presence of ddrpll

3 hfpclkpll RO X Indicates presence of hfpclkpll

4 dvfscorepll RO X Indicates presence of dvfscorepll

5 corepll RO X Indicates presence of corepll

[31:6] Reserved

7.4 Reset and Clock Initialization

7.4.1 Power-On

1. The PCB should strap input signal HFXSEL to set the 26 MHz hfclk clock source. To

use a Crystal clock source connected to pins HFXOSCIN and HFXOSCOUT, connect

HFXSEL to GND. To use an Oscillator clock source connected to HFXCLKIN, connect

HFXSEL to VCC.

2. At power-on, PORESET_N should be asserted by an external power sequencing/

supervisory circuit. After power-ramp and valid hfclk, PORESET_N should be driven

low for a minimum of 10 ns.

3. Harts begin the Boot Flow described in Chapter 6, running at 26 MHz hfclk.

Table 35: clk_mux_status: Current selection of each clock mux

Table 36: prci_plls: Indicates presence of each PLL
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7.4.2 Setting coreclk frequency

1. COREPLL Setup

COREPLL is configured in software by setting the corepllcfg0 PRCI control register.

The input reference frequency for COREPLL is 26 MHz.

There is a reference frequency divider before the PLL loop. The divider value is

equal to PRCI PLL configuration register field divr + 1. The minimum supported

post-divide frequency is 7 MHz; thus, valid settings are 0, 1, and 2.

The valid PLL VCO range is 2400 MHz to 4800 MHz. The VCO feedback divider

value is equal to 2 x (divf + 1).

There is a further output divider after the PLL loop. The divider value is equal to

2divq. The maximum value of DIVQ is 6, and the valid output range is 20 to

2400 MHz.

For example, to setup COREPLL for 1 GHz operation, program divr = 0 (x1), divf

= 76 (4004 MHz VCO), divq = 2 (/4 Output divider).

2. Wait for Lock

Poll PRCI PLL configuration register field lock to wait for PLL lock.

3. Switch coreclk from 26 MHz hfclk to COREPLL

A glitch-free clock mux (GLCM) switches the driver of coreclk between hfclk and

COREPLL at runtime, under control of the PRCI control register coreclksel. Setting

CORECLKSEL equal to 0 selects COREPLL output.

1. DDRPLL and GEMGXLPLL Setup

The DDR and Ethernet subsystem input clocks are driven from DDRPLL and

GEMGXLPLL in the PRCI. The two PLLs are programmed as per COREPLL using

steps 1 and 2 listed above. GEMGXLPLL is set up for 125 MHz output frequency.

divr = 0, divf = 76 (4004 MHz VCO), divq = 5 DDRPLL is set up to run at the

memory MT/s divided by 4.

2. Wait for lock

Poll PRCI PLL configuration register field lock to wait for PLL lock.

3. Release Clock Gate

Both PLLs have an additional glitch-free clock gate on output controlled by PRCI

PLL configuration register field cke. This gate prevents runt pulses from clocking

these complex IPs during PLL lock. After PLL lock, the clock gate is released by set-

ting CKE to 1.
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4. Release Reset

After the clock is initialized, synchronous reset is released by setting the appropriate

bits in the PRCI Peripheral Devices Reset Control Register (devices_reset_n) to

1.

GEMGXL reset is released by setting PRCI Devices Reset Control Register

(devices_reset_n) field gemgxl_reset_n to 1. The complete reset sequence for

the DDR Subsystem is documented in Chapter 23.

7 Clocking and Reset
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8

Thermal Diode

The FU740-C000 implements a diode which may be used to measure the temperature of the

SoC during operation. Implemented in TSMC 28HPC process, the user can monitor the temper-

ature of the FU740-C000 by measuring a voltage drop which is proportional to an increase of

temperature on the chip itself.

Figure 25: Thermal Diode Block Diagram
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9

Interrupts

This chapter describes how interrupt concepts in the RISC‑V architecture apply to the

FU740-C000.

The definitive resource for information about the RISC‑V interrupt architecture is The RISC‑V

Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10.

9.1 Interrupt Concepts

The FU740-C000 supports Machine Mode and Supervisor Mode interrupts. It also has support

for the following types of RISC‑V interrupts: local and global.

Local interrupts are signaled directly to an individual hart with a dedicated interrupt value. This

allows for reduced interrupt latency as no arbitration is required to determine which hart will ser-

vice a given request and no additional memory accesses are required to determine the cause of

the interrupt.

Software and timer interrupts are local interrupts generated by the Core-Local Interruptor

(CLINT). The FU740-C000 contains no other local interrupt sources.

Global interrupts, by contrast, are routed through a Platform-Level Interrupt Controller (PLIC),

which can direct interrupts to any hart in the system via the external interrupt. Decoupling global

interrupts from the hart(s) allows the design of the PLIC to be tailored to the platform, permitting

a broad range of attributes like the number of interrupts and the prioritization and routing

schemes.

By default, all interrupts are handled in machine mode. For harts that support supervisor mode,

it is possible to selectively delegate interrupts to supervisor mode.

This chapter describes the FU740-C000 interrupt architecture.

Chapter 12 describes the Core-Local Interruptor.
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Chapter 13 describes the global interrupt architecture and the PLIC design.

The FU740-C000 interrupt architecture is depicted in Figure 26.

Figure 26: FU740-C000 Interrupt Architecture Block Diagram.

9.2 Interrupt Operation

Within a privilege mode m, if the associated global interrupt-enable {ie} is clear, then no inter-

rupts will be taken in that privilege mode, but a pending-enabled interrupt in a higher privilege

mode will preempt current execution. If {ie} is set, then pending-enabled interrupts at a higher

interrupt level in the same privilege mode will preempt current execution and run the interrupt

handler for the higher interrupt level.

When an interrupt or synchronous exception is taken, the privilege mode is modified to reflect

the new privilege mode. The global interrupt-enable bit of the handler’s privilege mode is

cleared.
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9.2.1 Interrupt Entry and Exit

When an interrupt occurs:

• The value of mstatus.MIE is copied into mcause.MPIE, and then mstatus.MIE is cleared,

effectively disabling interrupts.

• The privilege mode prior to the interrupt is encoded in mstatus.MPP.

• The current pc is copied into the mepc register, and then pc is set to the value specified by

mtvec as defined by the mtvec.MODE described in Table 39.

At this point, control is handed over to software in the interrupt handler with interrupts disabled.

Interrupts can be re-enabled by explicitly setting mstatus.MIE or by executing an MRET instruc-

tion to exit the handler. When an MRET instruction is executed, the following occurs:

• The privilege mode is set to the value encoded in mstatus.MPP.

• The global interrupt enable, mstatus.MIE, is set to the value of mcause.MPIE.

• The pc is set to the value of mepc.

At this point control is handed over to software.

The Control and Status Registers involved in handling RISC‑V interrupts are described in Sec-

tion 9.3.

9.3 Interrupt Control Status Registers

The FU740-C000 specific implementation of interrupt CSRs is described below. For a complete

description of RISC‑V interrupt behavior and how to access CSRs, please consult The RISC‑V

Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10.

9.3.1 Machine Status Register (mstatus)

The mstatus register keeps track of and controls the hart’s current operating state, including

whether or not interrupts are enabled. A summary of the mstatus fields related to interrupts in

the FU740-C000 is provided in Table 37. Note that this is not a complete description of mstatus

as it contains fields unrelated to interrupts. For the full description of mstatus, please consult

The RISC‑V Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10.

Table 37: FU740-C000 mstatus Register (partial)

Machine Status Register

CSR mstatus

Bits Field Name Attr. Description

0 Reserved WPRI
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Table 37: FU740-C000 mstatus Register (partial)

Machine Status Register

1 SIE RW Supervisor Interrupt Enable

2 Reserved WPRI

3 MIE RW Machine Interrupt Enable

4 Reserved WPRI

5 SPIE RW Supervisor Previous Interrupt Enable

6 Reserved WPRI

7 MPIE RW Machine Previous Interrupt Enable

8 SPP RW Supervisor Previous Privilege Mode

[10:9] Reserved WPRI

[12:11] MPP RW Machine Previous Privilege Mode

Interrupts are enabled by setting the MIE bit in mstatus and by enabling the desired individual

interrupt in the mie register, described in Section 9.3.3.

9.3.2 Machine Trap Vector (mtvec)

The mtvec register has two main functions: defining the base address of the trap vector, and

setting the mode by which the FU740-C000 will process interrupts. The interrupt processing

mode is defined in the lower two bits of the mtvec register as described in Table 39.

Table 38: mtvec Register

Machine Trap Vector Register

CSR mtvec

Bits Field Name Attr. Description

[1:0] MODE WARL MODE Sets the interrupt processing mode.

The encoding for the FU740-C000 supported

modes is described in Table 39.

[63:2] BASE[63:2] WARL Interrupt Vector Base Address.

When operating in Direct Mode, requires 4

byte alignment.
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Table 38: mtvec Register

Machine Trap Vector Register

When operating in Vectored Mode, requires

4 × XLEN byte alignment.

Table 39: Encoding of mtvec.MODE

MODE Field Encoding mtvec.MODE

Value Name Description

0x0 Direct All exceptions set pc to BASE

0x1 Vectored Asynchronous interrupts set pc to BASE + 4 ×

mcause.EXCCODE.

≥ 2 Reserved

See Table 38 for a description of the mtvec register. See Table 39 for a description of the

mtvec.MODE field. See Table 43 for the FU740-C000 interrupt exception code values.

Mode Direct

When operating in direct mode all synchronous exceptions and asynchronous interrupts trap to

the mtvec.BASE address. Inside the trap handler, software must read the mcause register to

determine what triggered the trap.

When in operating in Direct Mode, BASE must be 4-byte aligned.

Mode Vectored

While operating in vectored mode, interrupts set the pc to mtvec.BASE + 4 × exception code

(mcause.EXCCODE). For example, if a machine timer interrupt is taken, the pc is set to

mtvec.BASE + 0x1C. Typically, the trap vector table is populated with jump instructions to trans-

fer control to interrupt-specific trap handlers.

In vectored interrupt mode, BASE must be 4 × XLEN byte aligned.

All machine external interrupts (global interrupts) are mapped to exception code of 11. Thus,

when interrupt vectoring is enabled, the pc is set to address mtvec.BASE + 0x2C for any global

interrupt.
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9.3.3 Machine Interrupt Enable (mie)

Individual interrupts are enabled by setting the appropriate bit in the mie register. The mie regis-

ter is described in Table 40.

Table 40: mie Register

Machine Interrupt Enable Register

CSR mie

Bits Field Name Attr. Description

0 Reserved WPRI

1 SSIE RW Supervisor Software Interrupt Enable

2 Reserved WPRI

3 MSIE RW Machine Software Interrupt Enable

4 Reserved WPRI

5 STIE RW Supervisor Timer Interrupt Enable

6 Reserved WPRI

7 MTIE RW Machine Timer Interrupt Enable

8 Reserved WPRI

9 SEIE RW Supervisor External Interrupt Enable

10 Reserved WPRI

11 MEIE RW Machine External Interrupt Enable

[63:12] Reserved WPRI

9.3.4 Machine Interrupt Pending (mip)

The machine interrupt pending (mip) register indicates which interrupts are currently pending.

The mip register is described in Table 41.

Table 41: mip Register

Machine Interrupt Pending Register

CSR mip

Bits Field Name Attr. Description

0 Reserved WIRI
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Table 41: mip Register

Machine Interrupt Pending Register

1 SSIP RW Supervisor Software Interrupt Pending

2 Reserved WIRI

3 MSIP RO Machine Software Interrupt Pending

4 Reserved WIRI

5 STIP RW Supervisor Timer Interrupt Pending

6 Reserved WIRI

7 MTIP RO Machine Timer Interrupt Pending

8 Reserved WIRI

9 SEIP RW Supervisor External Interrupt Pending

10 Reserved WIRI

11 MEIP RO Machine External Interrupt Pending

[63:12] Reserved WIRI

9.3.5 Machine Cause (mcause)

When a trap is taken in machine mode, mcause is written with a code indicating the event that

caused the trap. When the event that caused the trap is an interrupt, the most-significant bit of

mcause is set to 1, and the least-significant bits indicate the interrupt number, using the same

encoding as the bit positions in mip. For example, a Machine Timer Interrupt causes mcause to

be set to 0x8000_0000_0000_0007. mcause is also used to indicate the cause of synchronous

exceptions, in which case the most-significant bit of mcause is set to 0.

See Table 42 for more details about the mcause register. Refer to Table 43 for a list of synchro-

nous exception codes.

Table 42: mcause Register

Machine Cause Register

CSR mcause

Bits Field Name Attr. Description

[9:0] Exception Code WLRL A code identifying the last exception.

[62:10] Reserved WLRL
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Table 42: mcause Register

Machine Cause Register

63 Interrupt WARL 1 if the trap was caused by an interrupt; 0

otherwise.

Table 43: mcause Exception Codes

Interrupt Exception Codes

Interrupt Exception Code Description

1 0 Reserved

1 1 Supervisor software interrupt

1 2 Reserved

1 3 Machine software interrupt

1 4 Reserved

1 5 Supervisor timer interrupt

1 6 Reserved

1 7 Machine timer interrupt

1 8 Reserved

1 9 Supervisor external interrupt

1 8 Reserved

1 11 Machine external interrupt

1 ≥ 12 Reserved

0 0 Instruction address misaligned

0 1 Instruction access fault

0 2 Illegal instruction

0 3 Breakpoint

0 4 Load address misaligned

0 5 Load access fault

0 6 Store/AMO address misaligned
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Table 43: mcause Exception Codes

Interrupt Exception Codes

0 7 Store/AMO access fault

0 8 Environment call from U-mode

0 9 Environment call from S-mode

0 10 Reserved

0 11 Environment call from M-mode

0 12 Instruction page fault

0 13 Load page fault

0 14 Reserved

0 15 Store/AMO page fault

0 ≥ 16 Reserved

9.4 Supervisor Mode Interrupts

The FU740-C000 supports the ability to selectively direct interrupts and exceptions to supervisor

mode, resulting in improved performance by eliminating the need for additional mode changes.

This capability is enabled by the interrupt and exception delegation CSRs; mideleg and

medeleg, respectively. Supervisor interrupts and exceptions can be managed via supervisor ver-

sions of the interrupt CSRs, specifically: stvec, sip, sie, and scause.

Machine mode software can also directly write to the sip register, which effectively sends an

interrupt to supervisor mode. This is especially useful for timer and software interrupts as it may

be desired to handle these interrupts in both machine mode and supervisor mode.

The delegation and supervisor CSRs are described in the sections below. The definitive

resource for information about RISC‑V supervisor interrupts is The RISC‑V Instruction Set Man-

ual, Volume II: Privileged Architecture, Version 1.10.

9.4.1 Delegation Registers (m*deleg)

By default, all traps are handled in machine mode. Machine mode software can selectively dele-

gate interrupts and exceptions to supervisor mode by setting the corresponding bits in mideleg

and medeleg CSRs. The exact mapping is provided in Table 44 and Table 45 and matches the

mcause interrupt and exception codes defined in Table 43.

Note that local interrupts may be delegated to supervisor mode.
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Table 44: mideleg Register

Machine Interrupt Delegation Register

CSR mideleg

Bits Field Name Attr. Description

0 Reserved WARL

1 SSIP RW Delegate Supervisor Software Interrupt

[4:2] Reserved WARL

5 STIP RW Delegate Supervisor Timer Interrupt

[8:6] Reserved WARL

9 SEIP RW Delegate Supervisor External Interrupt

[63:10] Reserved WARL

Table 45: medeleg Register

Machine Exception Delegation Register

CSR medeleg

Bits Attr. Description

0 RW Delegate Instruction Access Misaligned Exception

1 RW Delegate Instruction Access Fault Exception

2 RW Delegate Illegal Instruction Exception

3 RW Delegate Breakpoint Exception

4 RW Delegate Load Access Misaligned Exception

5 RW Delegate Load Access Fault Exception

6 RW Delegate Store/AMO Address Misaligned Exception

7 RW Delegate Store/AMO Access Fault Exception

8 RW Delegate Environment Call from U-Mode

9 RW Delegate Environment Call from S-Mode

[11:0] WARL Reserved

12 RW Delegate Instruction Page Fault
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Table 45: medeleg Register

Machine Exception Delegation Register

13 RW Delegate Load Page Fault

14 WARL Reserved

15 RW Delegate Store/AMO Page Fault Exception

[63:16] WARL Reserved

9.4.2 Supervisor Status Register (sstatus)

Similar to machine mode, supervisor mode has a register dedicated to keeping track of the

hart’s current state called sstatus. sstatus is effectively a restricted view of mstatus,

described in Section 9.3.1, in that changes made to sstatus are reflected in mstatus and vice-

versa, with the exception of the machine mode fields, which are not visible in sstatus.

A summary of the sstatus fields related to interrupts in the FU740-C000 is provided in Table

46. Note that this is not a complete description of sstatus as it also contains fields unrelated to

interrupts. For the full description of sstatus, consult the The RISC‑V Instruction Set Manual,

Volume II: Privileged Architecture, Version 1.10.

Table 46: FU740-C000 sstatus Register (partial)

Supervisor Status Register

CSR sstatus

Bits Field Name Attr. Description

0 Reserved WPRI

1 SIE RW Supervisor Interrupt Enable

[4:2] Reserved WPRI

5 SPIE RW Supervisor Previous Interrupt Enable

[7:6] Reserved WPRI

8 SPP RW Supervisor Previous Privilege Mode

[12:9] Reserved WPRI

Interrupts are enabled by setting the SIE bit in sstatus and by enabling the desired individual

interrupt in the sie register, described in Section 9.4.3.
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9.4.3 Supervisor Interrupt Enable Register (sie)

Supervisor interrupts are enabled by setting the appropriate bit in the sie register. The

FU740-C000 sie register is described in Table 47.

Table 47: sie Register

Supervisor Interrupt Enable Register

CSR sie

Bits Field Name Attr. Description

0 Reserved WPRI

1 SSIE RW Supervisor Software Interrupt Enable

[4:2] Reserved WPRI

5 STIE RW Supervisor Timer Interrupt Enable

[8:6] Reserved WPRI

9 SEIE RW Supervisor External Interrupt Enable

[63:10] Reserved WPRI

9.4.4 Supervisor Interrupt Pending (sip)

The supervisor interrupt pending (sip) register indicates which interrupts are currently pending.

The FU740-C000 sip register is described in Table 48.

Table 48: sip Register

Supervisor Interrupt Pending Register

CSR sip

Bits Field Name Attr. Description

0 Reserved WIRI

1 SSIP RW Supervisor Software Interrupt Pending

[4:2] Reserved WIRI

5 STIP RW Supervisor Timer Interrupt Pending

[8:6] Reserved WIRI

9 SEIP RW Supervisor External Interrupt Pending

[63:10] Reserved WIRI
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9.4.5 Supervisor Cause Register (scause)

When a trap is taken in supervisor mode, scause is written with a code indicating the event that

caused the trap. When the event that caused the trap is an interrupt, the most-significant bit of

scause is set to 1, and the least-significant bits indicate the interrupt number, using the same

encoding as the bit positions in sip. For example, a Supervisor Timer Interrupt causes scause

to be set to 0x8000_0000_0000_0005.

scause is also used to indicate the cause of synchronous exceptions, in which case the most-

significant bit of scause is set to 0. Refer to Table 50 for a list of synchronous exception codes.

Table 49: scause Register

Supervisor Cause Register

CSR scause

Bits Field Name Attr. Description

[62:0] Exception Code

(EXCCODE)

WLRL A code identifying the last exception.

63 Interrupt WARL 1 if the trap was caused by an interrupt; 0

otherwise.

Table 50: scause Exception Codes

Supervisor Interrupt Exception Codes

Interrupt Exception Code Description

1 0 Reserved

1 1 Supervisor software interrupt

1 2 – 4 Reserved

1 5 Supervisor timer interrupt

1 6 – 8 Reserved

1 9 Supervisor external interrupt

1 ≥ 10 Reserved

0 0 Instruction address misaligned

0 1 Instruction access fault

0 2 Illegal instruction

0 3 Breakpoint
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Table 50: scause Exception Codes

Supervisor Interrupt Exception Codes

0 4 Reserved

0 5 Load access fault

0 6 Store/AMO address misaligned

0 7 Store/AMO access fault

0 8 Environment call from U-mode

0 9 – 11 Reserved

0 12 Instruction page fault

0 13 Load page fault

0 14 Reserved

0 15 Store/AMO Page Fault

0 ≥ 16 Reserved

9.4.6 Supervisor Trap Vector (stvec)

By default, all interrupts trap to a single address defined in the stvec register. It is up to the

interrupt handler to read scause and react accordingly. RISC‑V and the FU740-C000 also sup-

port the ability to optionally enable interrupt vectors. When vectoring is enabled, each interrupt

defined in sie will trap to its own specific interrupt handler.

Vectored interrupts are enabled when the MODE field of the stvec register is set to 1.

Table 51: stvec Register

Supervisor Trap Vector Register

CSR stvec

Bits Field Name Attr. Description

[1:0] MODE WARL MODE determines whether or not interrupt

vectoring is enabled. The encoding for the

MODE field is described in Table 52.

[63:2] BASE[63:2] WARL Interrupt Vector Base Address. Must be

aligned on a 128-byte boundary when

MODE=1. Note, BASE[1:0] is not present in

this register and is implicitly 0.
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Table 52: Encoding of stvec.MODE

MODE Field Encoding stvec.MODE

Value Name Description

0 Direct All exceptions set pc to BASE

1 Vectored Asynchronous interrupts set pc to BASE + 4 ×

scause.EXCCODE

≥ 2 Reserved

If vectored interrupts are disabled (stvec.MODE=0), all interrupts trap to the stvec.BASE

address. If vectored interrupts are enabled (stvec.MODE=1), interrupts set the pc to stvec.BASE

+ 4 × exception code (scause.EXCCODE). For example, if a supervisor timer interrupt is taken,

the pc is set to stvec.BASE + 0x14. Typically, the trap vector table is populated with jump

instructions to transfer control to interrupt-specific trap handlers.

In vectored interrupt mode, BASE must be 128-byte aligned.

All supervisor external interrupts (global interrupts) are mapped to exception code of 9. Thus,

when interrupt vectoring is enabled, the pc is set to address stvec.BASE + 0x24 for any global

interrupt.

See Table 51 for a description of the stvec register. See Table 52 for a description of the

stvec.MODE field. See Table 50 for the FU740-C000 supervisor mode interrupt exception code

values.

9.4.7 Delegated Interrupt Handling

Upon taking a delegated trap, the following occurs:

• The value of sstatus.SIE is copied into sstatus.SPIE, then sstatus.SIE is cleared,

effectively disabling interrupts.

• The current pc is copied into the sepc register, and then pc is set to the value of stvec. In

the case where vectored interrupts are enabled, pc is set to stvec.BASE + 4 × exception

code (scause.EXCCODE).

• The privilege mode prior to the interrupt is encoded in sstatus.SPP.

At this point, control is handed over to software in the interrupt handler with interrupts disabled.

Interrupts can be re-enabled by explicitly setting sstatus.SIE or by executing an SRET instruc-

tion to exit the handler. When an SRET instruction is executed, the following occurs:

• The privilege mode is set to the value encoded in sstatus.SPP.

• The value of sstatus.SPIE is copied into sstatus.SIE.
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• The pc is set to the value of sepc.

At this point, control is handed over to software.

9.5 Interrupt Priorities

Individual priorities of global interrupts are determined by the PLIC, as discussed in Chapter 13.

FU740-C000 interrupts are prioritized as follows, in decreasing order of priority:

• Machine external interrupts

• Machine software interrupts

• Machine timer interrupts

• Supervisor external interrupts

• Supervisor software interrupts

• Supervisor timer interrupts

9.6 Interrupt Latency

Interrupt latency for the FU740-C000 is 4 cycles, as counted by the numbers of cycles it takes

from signaling of the interrupt to the hart to the first instruction fetch of the handler.

Global interrupts routed through the PLIC incur additional latency of 3 cycles where the PLIC is

clocked by clock. This means that the total latency, in cycles, for a global interrupt is: 4 + 3

(core_clock_0 Hz clock Hz). This is a best case cycle count and assumes the handler is

cached or located in ITIM. It does not take into account additional latency from a peripheral

source.

9 Interrupts
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10

Custom Instructions

These custom instructions use the SYSTEM instruction encoding space, which is the same as the

custom CSR encoding space, but with funct3=0.

10.1 CFLUSH.D.L1

• Implemented as state machine in L1 data cache, for cores with data caches.

• Only available in M-mode.

• When rs1 = x0, CFLUSH.D.L1 writes back and invalidates all lines in the L1 data cache.

• When rs1 != x0, CFLUSH.D.L1 writes back and invalidates the L1 data cache line contain-

ing the virtual address in integer register rs1.

• If the effective privilege mode does not have write permissions to the address in rs1, then a

store access or store page-fault exception is raised.

• If the address in rs1 is in an uncacheable region with write permissions, the instruction has

no effect but raises no exceptions.

• Note that if the PMP scheme write-protects only part of a cache line, then using a value for

rs1 in the write-protected region will cause an exception, whereas using a value for rs1 in

the write-permitted region will write back the entire cache line.

10.2 CDISCARD.D.L1

• Implemented as state machine in L1 data cache, for cores with data caches.

• Only available in M-mode.

• Opcode 0xFC200073: with optional rs1 field in bits [19:15].

• When rs1 = x0, CDISCARD.D.L1 invalidates, but does not write back, all lines in the L1

data cache. Dirty data within the cache is lost.
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• When rs1 ≠ x0, CDISCARD.D.L1 invalidates, but does not write back, the L1 data cache

line containing the virtual address in integer register rs1. Dirty data within the cache line is

lost.

• If the effective privilege mode does not have write permissions to the address in rs1, then a

store access or store page-fault exception is raised.

• If the address in rs1 is in an uncacheable region with write permissions, the instruction has

no effect but raises no exceptions.

• Note that if the PMP scheme write-protects only part of a cache line, then using a value for

rs1 in the write-protected region will cause an exception, whereas using a value for rs1 in

the write-permitted region will invalidate and discard the entire cache line.

10.3 CEASE

• Privileged instruction only available in M-mode.

• Opcode 0x30500073.

• After retiring CEASE, hart will not retire another instruction until reset.

• Instigates power-down sequence, which will eventually raise the cease_from_tile_X signal

to the outside of the Core Complex, indicating that it is safe to power down.

10.4 PAUSE

• Opcode 0x0100000F, which is a FENCE instruction with predecessor set W and null succes-

sor set. Therefore, PAUSE is a HINT instruction that executes as a no-op on all RISC-V imple-

mentations.

• This instruction may be used for more efficient idling in spin-wait loops.

• This instruction causes a stall of up to 32 cycles or until a cache eviction occurs, whichever

comes first.

10.5 Branch Prediction Mode CSR

This SiFive custom extension adds an M-mode CSR to control the current branch prediction

mode, bpm at CSR 0x7C0.

The FU740-C000’s branch prediction system includes a Return Address Stack (RAS), a Branch

Target Buffer (BTB), and a Branch History Table (BHT). While branch predictors are essential to

achieve high performance in pipelined processors, they can also cause undesirable timing vari-

ability for hard real-time systems. The bpm register provides a means to customize the branch

predictor behavior to trade average performance for a more predictable execution time.

The bpm CSR has a single, one bit field defined: Branch-Direction Prediction (bdp).

10 Custom Instructions

Introduction © SiFive, Inc. Page 104



10.5.1 Branch-Direction Prediction

The WARL bdp field determines the value returned by the BHT component of the branch predic-

tion system. A zero value indicates dynamic direction prediction and a non-zero value indicates

static-taken direction prediction. The BTB is cleared on any write to the bdp field and the RAS is

unaffected by writes to the bdp field.

10.6 SiFive Feature Disable CSR

The SiFive custom M-mode Feature Disable CSR is provided to enable or disable certain

microarchitectural features. In the FU740-C000, CSR 0x7C1 has been allocated for this pur-

pose. These features are described in Table 53.

Warning

The features that can be controlled by this CSR are subject to change or removal in future

releases. It is not advised to depend on this CSR for development.

A feature is fully enabled when the associated bit is zero.

On reset, all implemented bits are set to 1, disabling all features. The bootloader is responsible

for turning on all required features, and can simply write zero to turn on the maximal set of fea-

tures.

SiFive’s Freedom Metal bootloader handles turning on these features; when using a custom

bootloader, clearing the Feature Disable CSR must be implemented.

If a particular core does not support the disabling of a feature, the corresponding bit is hardwired

to zero.

Note that arbitrary toggling of the Feature Disable CSR bits is neither recommended nor sup-

ported; they are only intended to be set from 1 to 0.

A particular Feature Disable CSR bit is only to be used in a very limited number of situations, as

detailed in the Example Usage entry in Table 54.

Table 53: SiFive Feature Disable CSR

Feature Disable CSR

CSR 0x7C1

Bit Description

0 Disable data cache clock gating

10 Custom Instructions
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Table 53: SiFive Feature Disable CSR

1 Disable instruction cache clock gating

2 Disable pipeline clock gating

3 Disable speculative instruction cache refill

[8:4] Reserved

9 Suppress corrupt signal on GrantData messages

[15:10] Reserved

16 Disable short forward branch optimization

17 Disable instruction cache next-line prefetcher

[63:18] Reserved

Table 54: SiFive Feature Disable CSR Usage

Feature Disable CSR Usage

Bit Description / Usage

3 Disable speculative instruction cache refill

Example Usage: A particular integration might require that execution from the System

Port range be disallowed. Startup code would first configure PMP to prevent execution

from the System Port range, followed by clearing bit 3 of the Feature Disable CSR. This

would enable speculative instruction cache refill accesses, without allowing those to

access the System Port range because PMP would prohibit such accesses.

9 Suppress corrupt signal on GrantData messages

Example Usage 1: When running in debug mode on configurations having both ECC

and a BEU, setting bit 9 of the Feature Disable CSR will suppress debug mode errors.

Example Usage 2: Startup code could scrub errors present in RAMs at power-on, fol-

lowed by clearing bit 9 of the Feature Disable CSR to allow normal operation.

10.7 Other Custom Instructions

Other custom instructions may be implemented, but their functionality is not documented further

here and they should not be used in this version of the FU740-C000.

10 Custom Instructions
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11

Bus-Error Unit

This chapter describes the operation of the SiFive Bus-Error Unit.

11.1 Bus-Error Unit Overview

The Bus-Error Unit (BEU) is a per-processor device that records erroneous events and reports

them using platform-level and hart-local interrupts. The BEU can be configured to generate

interrupts on correctable memory errors, uncorrectable memory errors, and/or TileLink bus

errors.

11.2 Reportable Errors

Table 55 lists the events that a Bus-Error Unit may report.

Table 55: mhpmevent Register Description

Cause Meaning

0 No error

1 Reserved

2 Instruction cache or ITIM correctable ECC error

3 Reserved

4 Reserved

5 Load or store TileLink bus error

6 Data cache correctable ECC error

7 Data cache uncorrectable ECC error
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11.3 Functional Behavior

When one of the events listed in Table 55 occurs, the Bus-Error Unit can record information

about the event and can generate an interrupt to the PLIC or locally to the hart. The enable reg-

ister contains a mask of which events the BEU can record. Each bit in enable corresponds to

an event in Table 55; for example, if enable[3] is set, the BEU will record uncorrectable ITIM

errors.

The cause register indicates the event the BEU has most recently recorded, e.g., a value of 3

indicates an uncorrectable ITIM error. The cause value 0 is reserved to indicate no error. cause

is only written for events enabled in the enable register. Furthermore, cause is only written

when its current value is 0; that is, if multiple events occur, only the first one is latched, until soft-

ware clears the cause register.

The value register supplies the physical address that caused the event, or 0 if the address is

unknown. The BEU writes the value register whenever it writes the cause register: i.e., when

an event enabled in the enable register occurs, and when cause contains 0.

The accrued register indicates which events have occurred since the last time it was cleared by

software. Its format is the same as the enable register. The BEU sets bits in the accrued regis-

ter whether or not they are enabled in the enable register.

The plic_interrupt register indicates which accrued events should generate an interrupt to

the PLIC. An interrupt is generated when any bit is set in both accrued and plic_interrupt,

i.e., when (accrued & plic_interrupt) != 0.

The local_interrupt register indicates which accrued events should generate an interrupt

directly to the hart associated with this bus-error unit. An interrupt is generated when any bit is

set in both accrued and local_interrupt, i.e., when (accrued & local_interrupt) != 0}.

The interrupt cause is 128; it does not have a bit in the mie CSR, so it is always enabled; nor

does it have a bit in the mideleg CSR, so it cannot be delegated to a mode less privileged than

M-mode.

11.4 Memory Map

The Bus-Error Unit memory map is shown in Table 56.

Offset Name Description

0x00 cause Cause of error event

0x08 value Physical address of error event

0x10 enable Event enable mask

Table 56: Bus-Error Unit Memory Map

11 Bus-Error Unit
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Offset Name Description

0x18 plic_interrupt Platform-level interrupt enable mask

0x20 accrued Accrued event mask

0x28 local_interrupt Hart-local interrupt-enable mask

Table 56: Bus-Error Unit Memory Map

11 Bus-Error Unit
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12

Core-Local Interruptor (CLINT)

The CLINT block holds memory-mapped control and status registers associated with software

and timer interrupts. The FU740-C000 CLINT complies with The RISC‑V Instruction Set Manual,

Volume II: Privileged Architecture, Version 1.10.

12.1 CLINT Memory Map

Table 57 shows the memory map for CLINT on SiFive FU740-C000.

Table 57: CLINT Register Map

Address Width Attr. Description Notes

0x0200_0000 4B RW msip for hart 0

0x0200_0004 4B RW msip for hart 1

0x0200_0008 4B RW msip for hart 2

0x0200_000C 4B RW msip for hart 3

0x0200_0010 4B RW msip for hart 4

MSIP Registers (1 bit wide)

0x0200_4028

…

0x0200_BFF7

Reserved

0x0200_4000 8B RW mtimecmp for hart 0

0x0200_4008 8B RW mtimecmp for hart 1

0x0200_4010 8B RW mtimecmp for hart 2

0x0200_4018 8B RW mtimecmp for hart 3

MTIMECMP Registers

Introduction © SiFive, Inc. Page 110



Table 57: CLINT Register Map

Address Width Attr. Description Notes

0x0200_4020 8B RW mtimecmp for hart 4

0x0200_4028

…

0x0200_BFF7

Reserved

0x0200_BFF8 8B RW mtime Timer Register

0x0200_C000 Reserved

12.2 MSIP Registers

Machine-mode software interrupts are generated by writing to the memory-mapped control reg-

ister msip. Each msip register is a 32-bit wide WARL register where the upper 31 bits are tied to

0. The least significant bit is reflected in the MSIP bit of the mip CSR. Other bits in the msip reg-

isters are hardwired to zero. On reset, each msip register is cleared to zero.

Software interrupts are most useful for interprocessor communication in multi-hart systems, as

harts may write each other’s msip bits to effect interprocessor interrupts.

12.3 Timer Registers

mtime is a 64-bit read-write register that contains the number of cycles counted from the

rtc_toggle signal. A timer interrupt is pending whenever mtime is greater than or equal to the

value in the mtimecmp register. The timer interrupt is reflected in the mtip bit of the mip register

described in Chapter 9.

On reset, mtime is cleared to zero. The mtimecmp registers are not reset.

12.4 Supervisor Mode Delegation

By default, all interrupts trap to machine mode, including timer and software interrupts. In order

for supervisor timer and software interrupts to trap directly to supervisor mode, supervisor timer

and software interrupts must first be delegated to supervisor mode.

Please see Section 9.4 for more details on supervisor mode interrupts.

12 Core-Local Interruptor (CLINT)
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13

Platform-Level Interrupt Controller

(PLIC)

This chapter describes the operation of the Platform-Level Interrupt Controller (PLIC) on the

FU740-C000. The PLIC complies with The RISC‑V Instruction Set Manual, Volume II: Privileged

Architecture, Version 1.10 and can support a maximum of 69 external interrupt sources with 7

priority levels.

The FU740-C000 PLIC resides in the clock timing domain, allowing for relaxed timing require-

ments. The latency of global interrupts, as perceived by a hart, increases with the ratio of the

core_clock_0 frequency and the clock frequency.

13.1 Memory Map

The memory map for the FU740-C000 PLIC control registers is shown in Table 58. The PLIC

memory map has been designed to only require naturally aligned 32-bit memory accesses.

Table 58: SiFive PLIC Register Map. Only naturally aligned 32-bit memory accesses are

required.

PLIC Register Map

Address Width Attr. Description Notes

0x0C00_0000 Reserved

0x0C00_0004 4B RW source 1 priority

…

0x0C00_0114 4B RW source 69 priority

See Section 13.3 for more

information

0x0C00_0118

…

Reserved
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Table 58: SiFive PLIC Register Map. Only naturally aligned 32-bit memory accesses are

required.

PLIC Register Map

0x0C00_1000 4B RO Start of pending array

…

0x0C00_1008 4B RO Last word of pending array

See Section 13.4 for more

information

0x0C00_100C

…

Reserved

0x0C00_2000 4B RW Start Hart 0 M-Mode inter-

rupt enables

…

0x0C00_2008 4B RW End Hart 0 M-Mode interrupt

enables

See Section 13.5 for more

information

0x0C00_200C

…

Reserved

0x0C00_2080 4B RW Start Hart 1 M-Mode inter-

rupt enables

…

0x0C00_2088 4B RW End Hart 1 M-Mode interrupt

enables

See Section 13.5 for more

information

0x0C00_208C

…

Reserved

0x0C00_2100 4B RW Start Hart 1 S-Mode interrupt

enables

…

0x0C00_2108 4B RW End Hart 1 S-Mode interrupt

enables

See Section 13.5 for more

information

0x0C00_210C

…

Reserved

0x0C00_2180 4B RW Start Hart 2 M-Mode inter-

rupt enables

…

See Section 13.5 for more

information

13 Platform-Level Interrupt Controller (PLIC)
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Table 58: SiFive PLIC Register Map. Only naturally aligned 32-bit memory accesses are

required.

PLIC Register Map

0x0C00_2188 4B RW End Hart 2 M-Mode interrupt

enables

0x0C00_218C

…

Reserved

0x0C00_2200 4B RW Start Hart 2 S-Mode interrupt

enables

…

0x0C00_2208 4B RW End Hart 2 S-Mode interrupt

enables

See Section 13.5 for more

information

0x0C00_220C

…

Reserved

0x0C00_2280 4B RW Start Hart 3 M-Mode inter-

rupt enables

…

0x0C00_2288 4B RW End Hart 3 M-Mode interrupt

enables

See Section 13.5 for more

information

0x0C00_228C

…

Reserved

0x0C00_2300 4B RW Start Hart 3 S-Mode interrupt

enables

…

0x0C00_2308 4B RW End Hart 3 S-Mode interrupt

enables

See Section 13.5 for more

information

0x0C00_230C

…

Reserved

0x0C00_2380 4B RW Start Hart 4 M-Mode inter-

rupt enables

…

0x0C00_2388 4B RW End Hart 4 M-Mode interrupt

enables

See Section 13.5 for more

information

13 Platform-Level Interrupt Controller (PLIC)
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Table 58: SiFive PLIC Register Map. Only naturally aligned 32-bit memory accesses are

required.

PLIC Register Map

0x0C00_238C

…

Reserved

0x0C00_2400 4B RW Start Hart 4 S-Mode interrupt

enables

…

0x0C00_2408 4B RW End Hart 4 S-Mode interrupt

enables

See Section 13.5 for more

information

0x0C00_240C

…

Reserved

0x0C20_0000 4B RW Hart 0 M-Mode priority

threshold

See Section 13.6 for more

information

0x0C20_0008 4B RW Hart 0 M-Mode claim/com-

plete

See Section 13.7 for more

information

0x0C20_000C

…

Reserved

0x0C20_1000 4B RW Hart 1 M-Mode priority

threshold

See Section 13.6 for more

information

0x0C20_1008 4B RW Hart 1 M-Mode claim/com-

plete

See Section 13.7 for more

information

0x0C20_100C

…

Reserved

0x0C20_2000 4B RW Hart 1 S-Mode priority

threshold

See Section 13.6 for more

information

0x0C20_2008 4B RW Hart 1 S-Mode claim/com-

plete

See Section 13.7 for more

information

0x0C20_200C

…

Reserved

0x0C20_3000 4B RW Hart 2 M-Mode priority

threshold

See Section 13.6 for more

information

13 Platform-Level Interrupt Controller (PLIC)
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Table 58: SiFive PLIC Register Map. Only naturally aligned 32-bit memory accesses are

required.

PLIC Register Map

0x0C20_3008 4B RW Hart 2 M-Mode claim/com-

plete

See Section 13.7 for more

information

0x0C20_300C

…

Reserved

0x0C20_4000 4B RW Hart 2 S-Mode priority

threshold

See Section 13.6 for more

information

0x0C20_4008 4B RW Hart 2 S-Mode claim/com-

plete

See Section 13.7 for more

information

0x0C20_400C

…

Reserved

0x0C20_5000 4B RW Hart 3 M-Mode priority

threshold

See Section 13.6 for more

information

0x0C20_5008 4B RW Hart 3 M-Mode claim/com-

plete

See Section 13.7 for more

information

0x0C20_500C

…

Reserved

0x0C20_6000 4B RW Hart 3 S-Mode priority

threshold

See Section 13.6 for more

information

0x0C20_6008 4B RW Hart 3 S-Mode claim/com-

plete

See Section 13.7 for more

information

0x0C20_600C

…

Reserved

0x0C20_7000 4B RW Hart 4 M-Mode priority

threshold

See Section 13.6 for more

information

0x0C20_7008 4B RW Hart 4 M-Mode claim/com-

plete

See Section 13.7 for more

information

0x0C20_700C

…

Reserved

0x0C20_8000 4B RW Hart 4 S-Mode priority

threshold

See Section 13.6 for more

information

13 Platform-Level Interrupt Controller (PLIC)
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Table 58: SiFive PLIC Register Map. Only naturally aligned 32-bit memory accesses are

required.

PLIC Register Map

0x0C20_8008 4B RW Hart 4 S-Mode claim/com-

plete

See Section 13.7 for more

information

0x0C20_800C

…

Reserved

0x1000_0000 End of PLIC Memory Map

13.2 Interrupt Sources

The FU740-C000 has 69 interrupt sources. These are exposed at the top level via the

global_interrupts signals. Any unused global_interrupts inputs should be tied to logic 0.

These signals are positive-level triggered.

In the PLIC, as specified in The RISC‑V Instruction Set Manual, Volume II: Privileged Architec-

ture, Version 1.10, Global Interrupt ID 0 is defined to mean "no interrupt," hence

global_interrupts[0] corresponds to PLIC Interrupt ID 1.

Table 59: PLIC Interrupt Source Mapping

Source Start Source End Source

1 10 MSI

11 18 Debug Module Interface

19 19 L2 Cache DirError

20 20 L2 Cache DirFail

21 21 L2 Cache DataError

22 22 L2 Cache DataFail

23 38 GPIO

39 39 UART 0

40 40 UART 1

41 41 SPI 0

42 42 SPI 1

43 43 SPI 2

13 Platform-Level Interrupt Controller (PLIC)
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Table 59: PLIC Interrupt Source Mapping

Source Start Source End Source

44 47 PWM 0

48 51 PWM 1

52 52 I2C 0

53 53 I2C 1

54 54 DDR

55 55 MAC

56 64 PCIE

65 65 Bus-Error Unit 0

66 66 Bus-Error Unit 1

67 67 Bus-Error Unit 2

68 68 Bus-Error Unit 3

69 69 Bus-Error Unit 4

13.3 Interrupt Priorities

Each PLIC interrupt source can be assigned a priority by writing to its 32-bit memory-mapped

priority register. The FU740-C000 supports 7 levels of priority. A priority value of 0 is

reserved to mean "never interrupt" and effectively disables the interrupt. Priority 1 is the lowest

active priority, and priority 7 is the highest. Ties between global interrupts of the same priority

are broken by the Interrupt ID; interrupts with the lowest ID have the highest effective priority.

See Table 60 for the detailed register description.

Table 60: PLIC Interrupt Priority Registers

PLIC Interrupt Priority Register (priority)

Base Address 0x0C00_0000 + 4 × Interrupt ID

Bits Field Name Attr. Rst. Description

[2:0] Priority RW X Sets the priority for a given global inter-

rupt.

[31:3] Reserved RO 0
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13.4 Interrupt Pending Bits

The current status of the interrupt source pending bits in the PLIC core can be read from the

pending array, organized as 3 words of 32 bits. The pending bit for interrupt ID is stored in bit

of word . As such, the FU740-C000 has 3 interrupt pending registers. Bit

0 of word 0, which represents the non-existent interrupt source 0, is hardwired to zero.

A pending bit in the PLIC core can be cleared by setting the associated enable bit then perform-

ing a claim as described in Section 13.7.

Table 61: PLIC Interrupt Pending Register 1

PLIC Interrupt Pending Register 1 (pending1)

Base Address 0x0C00_1000

Bits Field Name Attr. Rst. Description

0 Interrupt 0 Pend-

ing

RO 0 Non-existent global interrupt 0 is hard-

wired to zero

1 Interrupt 1 Pend-

ing

RO 0 Pending bit for global interrupt 1

2 Interrupt 2 Pend-

ing

RO 0 Pending bit for global interrupt 2

…

31 Interrupt 31 Pend-

ing

RO 0 Pending bit for global interrupt 31

Table 62: PLIC Interrupt Pending Register 3

PLIC Interrupt Pending Register 3 (pending3)

Base Address 0x0C00_1008

Bits Field Name Attr. Rst. Description

0 Interrupt 64 Pend-

ing

RO 0 Pending bit for global interrupt 64

…

5 Interrupt 69 Pend-

ing

RO 0 Pending bit for global interrupt 69

[31:6] Reserved WIRI X
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13.5 Interrupt Enables

Each global interrupt can be enabled by setting the corresponding bit in the enables registers.

The enables registers are accessed as a contiguous array of 3 × 32-bit words, packed the

same way as the pending bits. Bit 0 of enable word 0 represents the non-existent interrupt ID 0

and is hardwired to 0.

64-bit and 32-bit word accesses are supported by the enables array in SiFive RV64 systems.

Table 63: PLIC Interrupt Enable Register 1 for Hart 0 M-Mode

PLIC Interrupt Enable Register 1 (enable1) for Hart 0 M-Mode

Base Address 0x0C00_2000

Bits Field Name Attr. Rst. Description

0 Interrupt 0 Enable RO 0 Non-existent global interrupt 0 is hard-

wired to zero

1 Interrupt 1 Enable RW X Enable bit for global interrupt 1

2 Interrupt 2 Enable RW X Enable bit for global interrupt 2

…

31 Interrupt 31

Enable

RW X Enable bit for global interrupt 31

Table 64: PLIC Interrupt Enable Register 3 for Hart 4 S-Mode

PLIC Interrupt Enable Register 3 (enable3) for Hart 4 S-Mode

Base Address 0x0C00_2408

Bits Field Name Attr. Rst. Description

0 Interrupt 64

Enable

RW X Enable bit for global interrupt 64

…

5 Interrupt 69

Enable

RW X Enable bit for global interrupt 69

[31:6] Reserved RO 0
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13.6 Priority Thresholds

The FU740-C000 supports setting of an interrupt priority threshold via the threshold register.

The threshold is a WARL field, where the FU740-C000 supports a maximum threshold of 7.

The FU740-C000 masks all PLIC interrupts of a priority less than or equal to threshold. For

example, a threshold value of zero permits all interrupts with non-zero priority, whereas a

value of 7 masks all interrupts.

Table 65: PLIC Interrupt Threshold Register

PLIC Interrupt Priority Threshold Register (threshold)

Base Address 0x0C20_0000

[2:0] Threshold RW X Sets the priority threshold

[31:3] Reserved RO 0

13.7 Interrupt Claim Process

A FU740-C000 hart can perform an interrupt claim by reading the claim/complete register

(Table 66), which returns the ID of the highest-priority pending interrupt or zero if there is no

pending interrupt. A successful claim also atomically clears the corresponding pending bit on

the interrupt source.

A FU740-C000 hart can perform a claim at any time, even if the MEIP bit in its mip (Table 41)

register is not set.

The claim operation is not affected by the setting of the priority threshold register.

13.8 Interrupt Completion

A FU740-C000 hart signals it has completed executing an interrupt handler by writing the inter-

rupt ID it received from the claim to the claim/complete register (Table 66). The PLIC does not

check whether the completion ID is the same as the last claim ID for that target. If the comple-

tion ID does not match an interrupt source that is currently enabled for the target, the completion

is silently ignored.
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Table 66: PLIC Interrupt Claim/Complete Register for Hart 0 M-Mode

PLIC Claim/Complete Register (claim)

Base Address 0x0C20_0008

[31:0] Interrupt Claim/

Complete for Hart

0 M-Mode

RW X A read of zero indicates that no inter-

rupts are pending. A non-zero read

contains the id of the highest pending

interrupt. A write to this register signals

completion of the interrupt id written.
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14

Level 2 Cache Controller

This chapter describes the functionality of the Level 2 Cache Controller used in the

FU740-C000.

14.1 Level 2 Cache Controller Overview

The SiFive Level 2 Cache Controller is used to provide access to fast copies of memory for

masters in a Core Complex. The Level 2 Cache Controller also acts as directory-based

coherency manager.

The SiFive Level 2 Cache Controller offers extensive flexibility as it allows for several features in

addition to the Level 2 Cache functionality. These include memory-mapped access to L2 Cache

RAM for disabled cache ways, scratchpad functionality, way masking and locking, ECC support

with error tracking statistics, error injection, and interrupt signaling capabilities.

These features are described in Section 14.2.

14.2 Functional Description

The FU740-C000 L2 Cache Controller is configured into 4 banks. Each bank contains 512 sets

of 16 ways and each way contains a 64-byte block. This subdivision into banks helps facilitate

increased available bandwidth between CPU masters and the L2 Cache as each bank has its

own dedicated 128-bit TL-C inner port. As such, multiple requests to different banks may pro-

ceed in parallel.

The outer port of the L2 Cache Controller is a 256-bit TL-C port shared among all banks and

typically connected to a DDR controller. The outer Memory port(s) of the L2 Cache Controller is

shared among all banks and typically connected to cacheable memory. The overall organization

of the L2 Cache Controller is depicted in Figure 27.
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Figure 27: Organization of the SiFive L2 Cache Controller

14.2.1 Way Enable and the L2 Loosely Integrated Memory (L2-LIM)

Similar to the ITIM discussed in Chapter 3, the SiFive Level 2 Cache Controller allows for its

SRAMs to act either as direct addressed memory in the Core Complex address space or as a

cache that is controlled by the L2 Cache Controller and which can contain a copy of any

cacheable address.

When cache ways are disabled, they are addressable in the L2 Loosely Integrated Memory

(L2-LIM) address space as described in the FU740-C000 memory map in Chapter 5. Fetching

instructions or data from the L2-LIM provides deterministic behavior equivalent to an L2 cache

hit, with no possibility of a cache miss. Accesses to L2-LIM are always given priority over cache

way accesses, which target the same L2 cache bank.

Out of reset, all ways, except for way 0, are disabled. Cache ways can be enabled by writing to

the WayEnable register described in Section 14.4.2. Once a cache way is enabled, it can not be

14 Level 2 Cache Controller
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disabled unless the FU740-C000 is reset. The highest numbered L2 Cache Way is mapped to

the lowest L2-LIM address space, and way 1 occupies the highest L2-LIM address range. As L2

cache ways are enabled, the size of the L2-LIM address space shrinks. The mapping of L2

cache ways to L2-LIM address space is show in Figure 28.

Figure 28: Mapping of L2 Cache Ways to L2-LIM Addresses

14.2.2 Way Masking and Locking

The SiFive L2 Cache Controller can control the amount of cache memory a CPU master is able

to allocate into by using the WayMaskX register described in Section 14.4.12. Note that WayMaskX

registers only affect allocations, and reads can still occur to ways that are masked. As such, it

becomes possible to lock down specific cache ways by masking them in all WayMaskX registers.

In this scenario, all masters can still read data in the locked cache ways but cannot evict data.

14.2.3 L2 Scratchpad

The SiFive L2 Cache Controller has a dedicated scratchpad address region that allows for allo-

cation into the cache using an address range which is not memory backed. This address region

is denoted as the L2 Zero Device in the Memory Map in Chapter 5. Writes to the scratchpad

region allocate into cache ways that are enabled and not masked. Care must be taken with the

scratchpad, however, as there is no memory backing this address space. Cache evictions from

addresses in the scratchpad result in data loss.

The main advantage of the L2 Scratchpad over the L2-LIM is that it is a cacheable region allow-

ing for data stored to the scratchpad to also be cached in a master’s L1 data cache resulting in

faster access.

The recommended procedure for using the L2 Scratchpad is as follows:

1. Use the WayEnable register to enable the desired cache ways.
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2. Designate a single master that will allocate into the scratchpad. For this procedure,

we designate this master as Master S. All other masters (CPU and non-CPU) are

denoted as Masters X.

3. Masters X: Write to the WayMaskX register to mask the ways that are to be used for

the scratchpad. This prevents Masters X from evicting cache lines in the designated

scratchpad ways.

4. Master S: Write to the WayMaskX register to mask all ways except the ways that are

to be used for the scratchpad. At this point, Master S should only be able to allocate

into the cache ways meant to be used as a scratchpad.

5. Master S: Write scratchpad data into the L2 Scratchpad address range (L2 Zero

Device).

6. Master S: Repeat steps 4 and 5 for each way to be used as scratchpad.

7. Master S: Use the WayMaskX register to mask the scratchpad ways for Master S so

that it is no longer able to evict cache lines from the designated scratchpad ways.

8. At this point, the scratchpad ways should contain the scratchpad data, with all mas-

ters able to read, write, and execute from this address space, and no masters able

to evict the scratchpad contents.

14.2.4 Error Correcting Codes (ECC)

The SiFive Level 2 Cache Controller supports ECC. ECC is applied to both categories of SRAM

used, the data SRAMs and the meta-data SRAMs (index, tag, and directory information). The

data SRAMs use Single-Error Correcting, Double-Error Detecting (SECDED). The meta-data

SRAMs use Single-Error Correcting, Double-Error Detecting (SECDED).

Whenever a correctable error is detected, the cache immediately repairs the corrupted bit and

writes it back to SRAM. This corrective procedure is completely invisible to application software.

However, to support diagnostics, the cache records the address of the most recently corrected

meta-data and data errors. Whenever a new error is corrected, a counter is increased and an

interrupt is raised. There are independent addresses, counters, and interrupts for correctable

meta-data and data errors.

DirFail, DirError, DataError, and DataFail signals are used to indicate that an L2 meta-

data, data, or uncorrectable L2 data error has occurred, respectively. These signals are con-

nected to the PLIC as described in Chapter 13 and are cleared upon reading their respective

count registers.

14.3 Memory Map

The L2 Cache Controller memory map is shown in Table 67.
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Offset Name Description

0x000 Config Information about the Cache Configuration

0x008 WayEnable The index of the largest way which has been enabled. May

only be increased.

0x040 ECCInjectError Inject an ECC Error

0x100 DirECCFixLow The low 32-bits of the most recent address to fail ECC

0x104 DirECCFixHigh The high 32-bits of the most recent address to fail ECC

0x108 DirECCFixCount Reports the number of times an ECC error occured

0x120 DirECCFailLow The low 32-bits of the most recent address to fail ECC

0x124 DirECCFailHigh The high 32-bits of the most recent address to fail ECC

0x128 DirECCFailCount Reports the number of times an ECC error occured

0x140 DatECCFixLow The low 32-bits of the most recent address to fail ECC

0x144 DatECCFixHigh The high 32-bits of the most recent address to fail ECC

0x148 DatECCFixCount Reports the number of times an ECC error occured

0x160 DatECCFailLow The low 32-bits of the most recent address to fail ECC

0x164 DatECCFailHigh The high 32-bits of the most recent address to fail ECC

0x168 DatECCFailCount Reports the number of times an ECC error occured

0x200 Flush64 Flush the phsyical address equal to the 64-bit written data from

the cache

0x240 Flush32 Flush the physical address equal to the 32-bit written data << 4

from the cache

0x800 WayMask0 Master 0 way mask register

0x808 WayMask1 Master 1 way mask register

0x810 WayMask2 Master 2 way mask register

0x818 WayMask3 Master 3 way mask register

0x820 WayMask4 Master 4 way mask register

0x828 WayMask5 Master 5 way mask register

0x830 WayMask6 Master 6 way mask register

Table 67: Register offsets within the L2 Cache Controller Control Memory Map
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Offset Name Description

0x838 WayMask7 Master 7 way mask register

0x840 WayMask8 Master 8 way mask register

0x848 WayMask9 Master 9 way mask register

0x850 WayMask10 Master 10 way mask register

0x858 WayMask11 Master 11 way mask register

0x860 WayMask12 Master 12 way mask register

0x868 WayMask13 Master 13 way mask register

0x870 WayMask14 Master 14 way mask register

0x878 WayMask15 Master 15 way mask register

0x880 WayMask16 Master 16 way mask register

14.4 Register Descriptions

This section describes the functionality of the memory-mapped registers in the Level 2 Cache

Controller.

14.4.1 Cache Configuration Register (Config)

The Config Register can be used to programmatically determine information regarding the

cache size and organization.

Information about the Cache Configuration: (Config)

Register Offset 0x0

Bits Field Name Attr. Rst. Description

[7:0] Banks RO 0x4 Number of banks in the cache

[15:8] Ways RO 0x10 Number of ways per bank

[23:16] lgSets RO 0x9 Base-2 logarithm of the sets per bank

[31:24] lgBlockBytes RO 0x6 Base-2 logarithm of the bytes per cache block

Table 67: Register offsets within the L2 Cache Controller Control Memory Map

Table 68: Config Register
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14.4.2 Way Enable Register (WayEnable)

The WayEnable register determines which ways of the Level 2 Cache Controller are enabled as

cache. Cache ways that are not enabled are mapped into the FU740-C000’s L2-LIM (Loosely

Integrated Memory) as described in the memory map in Chapter 5.

This register is initialized to 0 on reset and may only be increased. This means that, out of reset,

only a single L2 cache way is enabled, as one cache way must always remain enabled. Once a

cache way is enabled, the only way to map it back into the L2-LIM address space is by a reset.

The index of the largest way which has been enabled. May only be increased.:

(WayEnable)

Register Offset 0x8

Bits
Field

Name
Attr. Rst. Description

[7:0] WayEnable RW 0x0 The index of the largest way which has been enabled.

May only be increased.

14.4.3 ECC Error Injection Register (ECCInjectError)

The ECCInjectError register can be used to insert an ECC error into either the backing data or

meta-data SRAM. This function can be used to test error correction logic, measurement, and

recovery.

Inject an ECC Error: (ECCInjectError)

Register Offset 0x40

Bits Field Name Attr. Rst. Description

[7:0] ECCToggleBit RW 0x0 Toggle (corrupt) this bit index on the next cache

operation

[15:8] Reserved

16 ECCToggleType RW 0x0 Toggle (corrupt) a bit in 0=data or 1=directory

[31:17] Reserved

14.4.4 ECC Directory Fix Address (DirECCFix*)

The DirECCFixHi and DirECCFixLow registers are read-only registers that contain the address

of the most recently corrected meta-data error. This field supplies only the portions of the

address that correspond to the affected set and bank, since all ways are corrected together.

Table 69: Register

Table 70: ECCInjectError Register
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14.4.5 ECC Directory Fix Count (DirECCFixCount)

The DirECCFixCount register is a read-only register that contains the number of corrected L2

meta-data errors.

Reading this register clears the DirError interrupt signal described in Section 14.2.4.

14.4.6 ECC Directory Fail Address (DirECCFail*)

The DirECCFailLow and DirECCFailHigh registers are read-only registers that contains the

address of the most recent uncorrected L2 meta-data error.

14.4.7 ECC Data Fix Address (DatECCFix*)

The DatECCFixLow and DatECCFixHigh registers are read-only registers that contain the

address of the most recently corrected L2 data error.

14.4.8 ECC Data Fix Count (DatECCFixCount)

The DataECCFixCount register is a read-only register that contains the number of corrected

data errors.

Reading this register clears the DataError interrupt signal described in Section 14.2.4.

14.4.9 ECC Data Fail Address (DatECCFail*)

The DatECCFailLow and DatECCFailHigh registers are a read-only registers that contain the

address of the most recent uncorrected L2 data error.

14.4.10 ECC Data Fail Count (DatECCFailCount)

The DatECCFailCount register is a read-only register that contains the number of uncorrected

data errors.

Reading this register clears the DataFail interrupt signal described in Section 14.2.4.

14.4.11 Cache Flush Registers (Flush*)

The FU740-C000 L2 Cache Controller provides two registers that can be used for flushing spe-

cific cache blocks.

Flush64 is a 64-bit write-only register that flushes the cache block containing the address writ-

ten. Flush32 is a 32-bit write-only register that flushes a cache block containing the written

address left shifted by 4 bytes. In both registers, all bits must be written in a single access for

the flush to take effect.
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14.4.12 Way Mask Registers (WayMask*)

The WayMaskX register allows a master connected to the L2 Cache Controller to specify which

L2 cache ways can be evicted by master X. Masters can still access memory cached in masked

ways. The mapping between masters and their L2 master IDs is shown in Table 72.

At least one cache way must be enabled. It is recommended to set/clear bits in this register

using atomic operations.

Master 0 way mask register: (WayMask0)

Register Offset 0x800

Bits Field Name Attr. Rst. Description

0 WayMask0[0] RW 0x1 Enable way 0 for Master 0

1 WayMask0[1] RW 0x1 Enable way 1 for Master 0

2 WayMask0[2] RW 0x1 Enable way 2 for Master 0

3 WayMask0[3] RW 0x1 Enable way 3 for Master 0

4 WayMask0[4] RW 0x1 Enable way 4 for Master 0

5 WayMask0[5] RW 0x1 Enable way 5 for Master 0

6 WayMask0[6] RW 0x1 Enable way 6 for Master 0

7 WayMask0[7] RW 0x1 Enable way 7 for Master 0

8 WayMask0[8] RW 0x1 Enable way 8 for Master 0

9 WayMask0[9] RW 0x1 Enable way 9 for Master 0

10 WayMask0[10] RW 0x1 Enable way 10 for Master 0

11 WayMask0[11] RW 0x1 Enable way 11 for Master 0

12 WayMask0[12] RW 0x1 Enable way 12 for Master 0

13 WayMask0[13] RW 0x1 Enable way 13 for Master 0

14 WayMask0[14] RW 0x1 Enable way 14 for Master 0

15 WayMask0[15] RW 0x1 Enable way 15 for Master 0

Table 71: WayMask0 Register

14 Level 2 Cache Controller

Introduction © SiFive, Inc. Page 131



Master ID Description

0 Core 0 DCache MMIO

1 Core 0 FetchUnit

2 Core 1 DCache

3 Core 1 FetchUnit

4 Core 2 DCache

5 Core 2 FetchUnit

6 Core 3 DCache

7 Core 3 FetchUnit

8 Core 4 DCache

9 Core 4 FetchUnit

10 DMA

11 GEMGXL

12 OrderOgler

13 PCIe

14 PCIe

15 PCIe

16 PCIe

Table 72: Master IDs in the L2 Cache Controller
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15

Platform DMA Engine (PDMA)

This chapter describes the SiFive platform DMA (PDMA) engine. The PDMA unit has memory-

mapped control registers accessed over a TileLink slave interface to allow software to set up

DMA transfers. It also has a TileLink bus master port into the TileLink bus fabric to allow it to

autonomously transfer data between slave devices and main memory or to rapidly copy data

between two locations in memory. The PDMA unit can support multiple independent simultane-

ous DMA transfers using different PDMA channels and can generate PLIC interrupts on various

conditions during DMA execution.

15.1 Functional Description

15.1.1 PDMA Channels

The FU740-C000 PDMA has 4 independent DMA channels, which operate concurrently to sup-

port multiple simultaneous transfers. Each channel has an independent set of control registers,

which are described in Section 15.2 and Section 15.3, and 8 interrupts described in Section

15.1.2.

15.1.2 Interrupts

The PDMA has 2 interrupts per channel, (8 total), that are used to signal when either a transfer

has completed, or when a transfer error has occurred.

A channel’s interrupts are configured using its Control register described in Section 15.3.1. The

mapping of the FU740-C000 PDMA interrupt signals to the PLIC are described in Chapter 13.

Table 73: DMA interrupt map

Interrupt Purpose

0 Channel 0 transfer complete
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Table 73: DMA interrupt map

Interrupt Purpose

1 Channel 0 transfer encountered an error

2 Channel 1 transfer complete

3 Channel 1 transfer encountered an error

4 Channel 2 transfer complete

5 Channel 2 transfer encountered an error

6 Channel 3 transfer complete

7 Channel 3 transfer encountered an error

15.2 PDMA Memory Map

The PDMA has an independent set of registers for each channel. Each channel’s registers are

offset by 0x1000 so that the base address for a given PDMA channel is as follows:

Table 74 shows the memory map of the PDMA control registers.

Table 74: Platform DMA Memory Map

Platform DMA Memory Map (single channel)

Channel Base Address PDMA Base Address + 0x8_0000 + (0x1000 × Channel ID)

Offset Width Attr. Description Notes

0x000 4B RW Control Channel Control Register

0x004 4B RW NextConfig Next transfer type

0x008 8B RW NextBytes Number of bytes to move

0x010 8B RW NextDestination Destination start address

0x018 8B RW NextSource Source start address

0x104 4B RO ExecConfig Active transfer type

0x108 8B RO ExecBytes Number of bytes remaining

0x110 8B RO ExecDestination Destination current address

0x118 8B RO ExecSource Source current address
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15.3 Register Descriptions

This section describes the functionality of the memory-mapped registers in the Platform DMA

Engine.

15.3.1 Channel Control Register (Control)

The Control register holds the current status of the channel. It can be used to claim a PDMA

channel, initiate a transfer, enable interrupts, and check if a transfer has completed.

Table 75: Channel Control Register

Channel Control Register (Control)

Register Offset 0x000 + (0x1000 × Channel ID)

Bits
Field

Name
Attr. Rst. Notes

0 claim RW 0x0 Indicates that the channel is in use. Setting this clears all

of the channel’s Next registers. This bit can only be

cleared when run is low.

1 run RW 0x0 Setting this bit starts a DMA transfer by copying the Next

registers into their Exec counterparts.

[13:2] Reserved

14 doneIE RW 0x0 Setting this bit will trigger the channel’s Done interrupt

once a transfer is complete.

15 errorIE RW 0x0 Setting this bit will trigger the channel’s Error interrupt

upon receiving a bus error.

[29:16] Reserved

30 done RW 0x0 Indicates that a transfer has completed since the channel

was claimed.

31 error RW 0x0 Indicates that a transfer error has occured since the

channel was claimed.

15.3.2 Channel Next Configuration Register (NextConfig)

The read-write NextConfig register holds the transfer request type. The wsize and rsize fields

are used to determine the size and alignment of individual PDMA transactions, as a single

PDMA transfer might require multiple transactions. There is an upper-bound of 64 bytes on a

transaction size. These fields are WARL, so the actual size used can be determined by reading

the field after writing the requested size.
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The PDMA can be programmed to automatically repeat a transfer by setting the repeat bit field.

If this bit is set, once the transfer completes, the Next registers are automatically copied to the

Exec registers and a new transfer is initiated. The Control.run bit remains set during

“repeated” transactions. To stop repeating transfers, a master can monitor the channel’s Done

interrupt and lower the repeat bit accordingly.

Table 76: Channel Next Configuration Register

Channel Next Configuration Register (NextConfig)

Register Offset 0x004 + (0x1000 × Channel ID)

Bits
Field

Name
Attr. Rst. Notes

[1:0] Reserved

2 repeat RW 0x0 If set, the Exec registers are reloaded from the Next

registers once a transfer is complete. The repeat bit

must be cleared by software for the sequence to stop.

3 order RW 0x0 Enforces strict ordering by only allowing one of each

transfer type in-flight at a time

[25:4] Reserved

[27:24] wsize WARL 0x0 Base 2 Logarithm of PDMA transaction sizes; e.g. 0 is

1 byte, 3 is 8 bytes, 5 is 32 bytes

[31:28] rsize WARL 0x0 Base 2 Logarithm of PDMA transaction sizes; e.g. 0 is

1 byte, 3 is 8 bytes, 5 is 32 bytes

15.3.3 Channel Byte Transfer Register (NextBytes)

The read-write NextBytes register holds the number of bytes to be transferred by the channel.

The NextConfig.xsize fields are used to determine the size of the individual transactions that

will be used to transfer the number of bytes specified in this register.

The NextBytes register is a WARL register with a maximum count that can be much smaller

than the physical address size of the machine.

15.3.4 Channel Destination Register (NextDestination)

The read-write NextDestination register holds the physical address of the destination for the

transfer.

15.3.5 Channel Source Address (NextSource)

The read-write NextSource register holds the physical address of the source data for the trans-

fer.
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15.3.6 Channel Exec Registers (Exec*)

Each PDMA channel has a set of Exec registers which provide information on the transfer that is

currently executing. These registers are read-only and initialized when Control.run is set.

Upon initialization, the Next registers are copied into the Exec registers and a transfer begins.

The status of the transfer can be monitored by reading the Exec registers. ExecBytes indicates

the number of bytes remaining in a transfer, ExecSource indicates the current source address,

and ExecDestination indicates the current destination address.
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16

Universal Asynchronous Receiver/

Transmitter (UART)

This chapter describes the operation of the SiFive Universal Asynchronous Receiver/Transmit-

ter (UART).

16.1 UART Overview

The UART peripheral supports the following features:

• 8-N-1 and 8-N-2 formats: 1 start bit, 8 data bits, no parity bit, 1 or 2 stop bits

• 8-entry transmit and receive FIFO buffers with programmable watermark interrupts

• 16× Rx oversampling with 2/3 majority voting per bit

The UART peripheral does not support hardware flow control or other modem control signals, or

synchronous serial data transfers.

16.2 UART Instances in FU740-C000

FU740-C000 contains two UART instances. Their addresses and parameters are shown in

Table 77.

Table 77: UART Instances

Instance Num-

ber
Address div_width div_init

TX FIFO

Depth

RX FIFO

Depth

0 0x1001_0000 20 289 8 8

1 0x1001_1000 20 289 8 8
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16.3 Memory Map

The memory map for the UART control registers is shown in Table 78. The UART memory map

has been designed to require only naturally aligned 32-bit memory accesses.

Offset Name Description

0x00 txdata Transmit data register

0x04 rxdata Receive data register

0x08 txctrl Transmit control register

0x0C rxctrl Receive control register

0x10 ie UART interrupt enable

0x14 ip UART interrupt pending

0x18 div Baud rate divisor

16.4 Transmit Data Register (txdata)

Writing to the txdata register enqueues the character contained in the data field to the transmit

FIFO if the FIFO is able to accept new entries. Reading from txdata returns the current value of

the full flag and zero in the data field. The full flag indicates whether the transmit FIFO is

able to accept new entries; when set, writes to data are ignored. A RISC‑V amoor.w instruction

can be used to both read the full status and attempt to enqueue data, with a non-zero return

value indicating the character was not accepted.

Transmit Data Register (txdata)

Register Offset 0x0

Bits Field Name Attr. Rst. Description

[7:0] data RW X Transmit data

[30:8] Reserved

31 full RO X Transmit FIFO full

Table 78: Register offsets within UART memory map

Table 79: Transmit Data Register
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16.5 Receive Data Register (rxdata)

Reading the rxdata register dequeues a character from the receive FIFO and returns the value

in the data field. The empty flag indicates if the receive FIFO was empty; when set, the data

field does not contain a valid character. Writes to rxdata are ignored.

Receive Data Register (rxdata)

Register Offset 0x4

Bits Field Name Attr. Rst. Description

[7:0] data RO X Received data

[30:8] Reserved

31 empty RO X Receive FIFO empty

16.6 Transmit Control Register (txctrl)

The read-write txctrl register controls the operation of the transmit channel. The txen bit con-

trols whether the Tx channel is active. When cleared, transmission of Tx FIFO contents is sup-

pressed, and the txd pin is driven high.

The nstop field specifies the number of stop bits: 0 for one stop bit and 1 for two stop bits.

The txcnt field specifies the threshold at which the Tx FIFO watermark interrupt triggers.

The txctrl register is reset to 0.

Transmit Control Register (txctrl)

Register Offset 0x8

Bits Field Name Attr. Rst. Description

0 txen RW 0x0 Transmit enable

1 nstop RW 0x0 Number of stop bits

[15:2] Reserved

[18:16] txcnt RW 0x0 Transmit watermark level

[31:19] Reserved

Table 80: Receive Data Register

Table 81: Transmit Control Register
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16.7 Receive Control Register (rxctrl)

The read-write rxctrl register controls the operation of the receive channel. The rxen bit con-

trols whether the Rx channel is active. When cleared, the state of the rxd pin is ignored, and no

characters will be enqueued into the Rx FIFO.

The rxcnt field specifies the threshold at which the Rx FIFO watermark interrupt triggers.

The rxctrl register is reset to 0. Characters are enqueued when a zero (low) start bit is seen.

Receive Control Register (rxctrl)

Register Offset 0xC

Bits Field Name Attr. Rst. Description

0 rxen RW 0x0 Receive enable

[15:1] Reserved

[18:16] rxcnt RW 0x0 Receive watermark level

[31:19] Reserved

16.8 Interrupt Registers (ip and ie)

The ip register is a read-only register indicating the pending interrupt conditions, and the read-

write ie register controls which UART interrupts are enabled. ie is reset to 0.

The txwm condition becomes raised when the number of entries in the transmit FIFO is strictly

less than the count specified by the txcnt field of the txctrl register. The pending bit is

cleared when sufficient entries have been enqueued to exceed the watermark.

The rxwm condition becomes raised when the number of entries in the receive FIFO is strictly

greater than the count specified by the rxcnt field of the rxctrl register. The pending bit is

cleared when sufficient entries have been dequeued to fall below the watermark.

UART Interrupt Enable Register (ie)

Register Offset 0x10

Bits Field Name Attr. Rst. Description

0 txwm RW 0x0 Transmit watermark interrupt enable

1 rxwm RW 0x0 Receive watermark interrupt enable

Table 82: Receive Control Register

Table 83: UART Interrupt Enable Register
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[31:2] Reserved

UART Interrupt Pending Register (ip)

Register Offset 0x14

Bits Field Name Attr. Rst. Description

0 txwm RO X Transmit watermark interrupt pending

1 rxwm RO X Receive watermark interrupt pending

[31:2] Reserved

16.9 Baud Rate Divisor Register (div)

The read-write, div_width-bit div register specifies the divisor used by baud rate generation

for both Tx and Rx channels. The relationship between the input clock and baud rate is given by

the following formula:

The input clock is the bus clock tlclk. The reset value of the register is set to div_init, which

is tuned to provide a 115200 baud output out of reset given the expected frequency of tlclk.

Table 85 shows divisors for some common core clock rates and commonly used baud rates.

Note that the table shows the divide ratios, which are one greater than the value stored in the

div register.

Table 85: Common baud rates (MIDI=31250, DMX=250000) and required

divide values to achieve them with given bus clock frequencies. The divide val-

ues are one greater than the value stored in the div register.

tlclk (MHz) Target Baud (Hz) Divisor Actual Baud (Hz) Error (%)

500 31250 16000 31250 0

500 115200 4340 115207 0.0064

500 250000 2000 250000 0

500 1843200 271 1845018 0.099

750 31250 24000 31250 0

Table 83: UART Interrupt Enable Register

Table 84: UART Interrupt Pending Register
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Table 85: Common baud rates (MIDI=31250, DMX=250000) and required

divide values to achieve them with given bus clock frequencies. The divide val-

ues are one greater than the value stored in the div register.

tlclk (MHz) Target Baud (Hz) Divisor Actual Baud (Hz) Error (%)

750 115200 6510 115207 0.0064

750 250000 3000 250000 0

750 1843200 407 1842751 0.024

The receive channel is sampled at 16× the baud rate, and a majority vote over 3 neighboring

bits is used to determine the received value. For this reason, the divisor must be ≥16 for a

receive channel.

Baud Rate Divisor Register (div)

Register Offset 0x18

Bits
Field

Name
Attr. Rst. Description

[15:0] div RW X Baud rate divisor. div_width bits wide, and the reset

value is div_init.

[31:16] Reserved

Table 86: Baud Rate Divisor Register

16 Universal Asynchronous Receiver/Transmitter (UART)
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17

Pulse Width Modulator (PWM)

This chapter describes the operation of the Pulse-Width Modulation peripheral (PWM).

17.1 PWM Overview

Figure 29 shows an overview of the PWM peripheral. The default configuration described here

has four independent PWM comparators (pwmcmp0–pwmcmp3), but each PWM Peripheral is

parameterized by the number of comparators it has (ncmp). The PWM block can generate multi-

ple types of waveforms on output pins (pwm gpio) and can also be used to generate several

forms of internal timer interrupt. The comparator results are captured in the pwmcmp ip flops

and then fed to the PLIC as potential interrupt sources. The pwmcmp ip outputs are further

processed by an output ganging stage before being fed to the GPIOs.

PWM instances can support comparator precisions (cmpwidth) up to 16 bits, with the example

described here having the full 16 bits. To support clock scaling, the pwmcount register is 15 bits

wider than the comparator precision cmpwidth.
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Figure 29: PWM Peripheral

17.2 PWM Instances in FU740-C000

FU740-C000 contains two PWM instances. Their addresses and parameters are shown in Table

87.

Table 87: PWM Instances

Instance Number Address ncmp cmpwidth

0 0x1002_0000 4 16

1 0x1002_1000 4 16

17.3 PWM Memory Map

The memory map for the PWM peripheral is shown in Table 88.

17 Pulse Width Modulator (PWM)
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Offset Name Description

0x00 pwmcfg PWM configuration register

0x04 Reserved

0x08 pwmcount PWM count register

0x0C Reserved

0x10 pwms Scaled PWM count register

0x14 Reserved

0x18 Reserved

0x1C Reserved

0x20 pwmcmp0 PWM 0 compare register

0x24 pwmcmp1 PWM 1 compare register

0x28 pwmcmp2 PWM 2 compare register

0x2C pwmcmp3 PWM 3 compare register

17.4 PWM Count Register (pwmcount)

The PWM unit is based around a counter held in pwmcount. The counter can be read or written

over the TileLink bus. The pwmcount register is bits wide. For example, for

cmpwidth of 16 bits, the counter is held in pwmcount[30:0], and bit 31 of pwmcount returns a

zero when read.

When used for PWM generation, the counter is normally incremented at a fixed rate then reset

to zero at the end of every PWM cycle. The PWM counter is either reset when the scaled

counter pwms reaches the value in pwmcmp0, or is simply allowed to wrap around to zero.

The counter can also be used in one-shot mode, where it disables counting after the first reset.

PWM Count Register (pwmcount)

Register Offset 0x8

Bits Field Name Attr. Rst. Description

[30:0] pwmcount RW X PWM count register. cmpwidth + 15 bits wide.

Table 88: SiFive PWM memory map, offsets relative to PWM peripheral base address

Table 89: PWM Count Register
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31 Reserved

17.5 PWM Configuration Register (pwmcfg)

PWM Configuration Register (pwmcfg)

Register Offset 0x0

Bits Field Name Attr. Rst. Description

[3:0] pwmscale RW X PWM Counter scale

[7:4] Reserved

8 pwmsticky RW X PWM Sticky - disallow clearing pwmcmp ip bits

9 pwmzerocmp RW X PWM Zero - counter resets to zero after match

10 pwmdeglitch RW X PWM Deglitch - latch pwmcmp ip within same

cycle

11 Reserved

12 pwmenalways RW 0x0 PWM enable always - run continuously

13 pwmenoneshot RW 0x0 PWM enable one shot - run one cycle

[15:14] Reserved

16 pwmcmp0center RW X PWM0 Compare Center

17 pwmcmp1center RW X PWM1 Compare Center

18 pwmcmp2center RW X PWM2 Compare Center

19 pwmcmp3center RW X PWM3 Compare Center

[23:20] Reserved

24 pwmcmp0gang RW X PWM0/PWM1 Compare Gang

25 pwmcmp1gang RW X PWM1/PWM2 Compare Gang

26 pwmcmp2gang RW X PWM2/PWM3 Compare Gang

27 pwmcmp3gang RW X PWM3/PWM0 Compare Gang

28 pwmcmp0ip RW X PWM0 Interrupt Pending

Table 89: PWM Count Register

Table 90: PWM Configuration Register
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29 pwmcmp1ip RW X PWM1 Interrupt Pending

30 pwmcmp2ip RW X PWM2 Interrupt Pending

31 pwmcmp3ip RW X PWM3 Interrupt Pending

The pwmcfg register contains various control and status information regarding the PWM periph-

eral, as shown in Table 90.

The pwmen* bits control the conditions under which the PWM counter pwmcount is incremented.

The counter increments by one each cycle only if any of the enabled conditions are true.

If the pwmenalways bit is set, the PWM counter increments continuously. When pwmenoneshot

is set, the counter can increment but pwmenoneshot is reset to zero once the counter resets,

disabling further counting (unless pwmenalways is set). The pwmenoneshot bit provides a way

for software to generate a single PWM cycle then stop. Software can set the pwmenoneshot

again at any time to replay the one-shot waveform. The pwmen* bits are reset at wakeup reset,

which disables the PWM counter and saves power.

The 4-bit pwmscale field scales the PWM counter value before feeding it to the PWM compara-

tors. The value in pwmscale is the bit position within the pwmcount register of the start of a

cmpwidth-bit pwms field. A value of 0 in pwmscale indicates no scaling, and pwms would then be

equal to the low cmpwidth bits of pwmcount. The maximum value of 15 in pwmscale corre-

sponds to dividing the clock rate by 215, so for an input bus clock of 16 MHz, the LSB of pwms

will increment at 488.3 Hz.

The pwmzerocmp bit, if set, causes the PWM counter pwmcount to be automatically reset to zero

one cycle after the pwms counter value matches the compare value in pwmcmp0. This is normally

used to set the period of the PWM cycle. This feature can also be used to implement periodic

counter interrupts, where the period is independent of interrupt service time.

17.6 Scaled PWM Count Register (pwms)

The Scaled PWM Count Register pwms reports the cmpwidth-bit portion of pwmcount which

starts at pwmscale, and is what is used for comparison against the pwmcmp registers.

Scaled PWM Count Register (pwms)

Register Offset 0x10

Bits Field Name Attr. Rst. Description

[15:0] pwms RW X Scaled PWM count register. cmpwidth bits wide.

Table 90: PWM Configuration Register

Table 91: Scaled PWM Count Register
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[31:16] Reserved

17.7 PWM Compare Registers (pwmcmp0–pwmcmp3)

PWM 0 Compare Register (pwmcmp0)

Register Offset 0x20

Bits Field Name Attr. Rst. Description

[15:0] pwmcmp0 RW X PWM 0 Compare Value

[31:16] Reserved

PWM 1 Compare Register (pwmcmp1)

Register Offset 0x24

Bits Field Name Attr. Rst. Description

[15:0] pwmcmp1 RW X PWM 1 Compare Value

[31:16] Reserved

PWM 2 Compare Register (pwmcmp2)

Register Offset 0x28

Bits Field Name Attr. Rst. Description

[15:0] pwmcmp2 RW X PWM 2 Compare Value

[31:16] Reserved

PWM 3 Compare Register (pwmcmp3)

Register Offset 0x2C

Table 91: Scaled PWM Count Register

Table 92: PWM 0 Compare Register

Table 93: PWM 1 Compare Register

Table 94: PWM 2 Compare Register

Table 95: PWM 3 Compare Register
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Bits Field Name Attr. Rst. Description

[15:0] pwmcmp3 RW X PWM 3 Compare Value

[31:16] Reserved

The primary use of the ncmp PWM compare registers is to define the edges of the PWM wave-

forms within the PWM cycle.

Each compare register is a cmpwdith-bit value against which the current pwms value is com-

pared every cycle. The output of each comparator is high whenever the value of pwms is greater

than or equal to the corresponding pwmcmp .

If the pwmzerocomp bit is set, when pwms reaches or exceeds pwmcmp0, pwmcount is cleared to

zero and the current PWM cycle is completed. Otherwise, the counter is allowed to wrap

around.

17.8 Deglitch and Sticky Circuitry

To avoid glitches in the PWM waveforms when changing pwmcmp register values, the

pwmdeglitch bit in pwmcfg can be set to capture any high output of a PWM comparator in a

sticky bit (pwmcmp ip for comparator ) and prevent the output falling again within the same

PWM cycle. The pwmcmp ip bits are only allowed to change at the start of the next PWM cycle.

Note

The pwmcmp0ip bit will only be high for one cycle when pwmdeglitch and pwmzerocmp are

set where pwmcmp0 is used to define the PWM cycle, but can be used as a regular PWM

edge otherwise.

If pwmdeglitch is set, but pwmzerocmp is clear, the deglitch circuit is still operational but is now

triggered when pwms contains all 1s and will cause a carry out of the high bit of the pwms incre-

menter just before the counter wraps to zero.

The pwmsticky bit disallows the pwmcmp ip registers from clearing if they are already set and

is used to ensure interrupts are seen from the pwmcmp ip bits.

Table 95: PWM 3 Compare Register

17 Pulse Width Modulator (PWM)

Introduction © SiFive, Inc. Page 150



17.9 Generating Left- or Right-Aligned PWM Waveforms

Figure 30: Basic right-aligned PWM waveforms. All possible base waveforms are shown for a

7-clock PWM cycle (pwmcmp0=6). The waveforms show the single-cycle delay caused by regis-

tering the comparator outputs in the pwmcmp ip bits. The signals can be inverted at the GPIOs

to generate left-aligned waveforms.

Figure 30 shows the generation of various base PWM waveforms. The figure illustrates that if

pwmcmp0 is set to less than the maximum count value (6 in this case), it is possible to generate

both 100% (pwmcmp 0) and 0% (pwmcmp pwmcmp0) right-aligned duty cycles using the

other comparators. The pwmcmp ip bits are routed to the GPIO pads, where they can be

optionally and individually inverted, thereby creating left-aligned PWM waveforms (high at

beginning of cycle).

17.10 Generating Center-Aligned (Phase-Correct) PWM

Waveforms

The simple PWM waveforms in Figure 30 shift the phase of the waveform along with the duty

cycle. A per-comparator pwmcmp center bit in pwmcfg allows a single PWM comparator to

generate a center-aligned symmetric duty-cycle as shown in Figure 31. The pwmcmp center bit

changes the comparator to compare with the bitwise inverted pwms value whenever the MSB of

pwms is high.

This technique provides symmetric PWM waveforms but only when the PWM cycle is at the

largest supported size. At a 16 MHz bus clock rate with 16-bit precision, this limits the fastest

PWM cycle to 244 Hz, or 62.5 kHz with 8-bit precision. Higher bus clock rates allow proportion-
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ally faster PWM cycles using the single comparator center-aligned waveforms. This technique

also reduces the effective width resolution by a factor of 2.

pwms pwmscenter

000 000

001 001

010 010

011 011

100 011

101 010

110 001

111 000

Figure 31: Center-aligned PWM waveforms generated from one comparator. All possible

waveforms are shown for a 3-bit PWM precision. The signals can be inverted at the GPIOs to

generate opposite-phase waveforms.

When a comparator is operating in center mode, the deglitch circuit allows one 0-to-1 transition

during the first half of the cycle and one 1-to-0 transition during the second half of the cycle.

Table 96: Illustration of how count value is inverted before presentation to comparator when

pwmcmp center is selected, using a 3-bit pwms value.
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17.11 Generating Arbitrary PWM Waveforms using Ganging

A comparator can be ganged together with its next-highest-numbered neighbor to generate arbi-

trary PWM pulses. When the pwmcmp gang bit is set, comparator fires and raises its

pwm gpio signal. When comparator (or pwmcmp0 for pwmcmp3) fires, the pwm gpio out-

put is reset to zero.

17.12 Generating One-Shot Waveforms

The PWM peripheral can be used to generate precisely timed one-shot pulses by first initializing

the other parts of pwmcfg then writing a 1 to the pwmenoneshot bit. The counter will run for one

PWM cycle, then once a reset condition occurs, the pwmenoneshot bit is reset in hardware to

prevent a second cycle.

17.13 PWM Interrupts

The PWM can be configured to provide periodic counter interrupts by enabling auto-zeroing of

the count register when a comparator 0 fires (pwmzerocmp=1). The pwmsticky bit should also

be set to ensure interrupts are not forgotten while waiting to run a handler.

The interrupt pending bits pwmcmp ip can be cleared down using writes to the pwmcfg register.

The PWM peripheral can also be used as a regular timer with no counter reset (pwmzerocmp=0),

where the comparators are now used to provide timer interrupts.
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18

Inter-Integrated Circuit (I²C) Master

Interface

The SiFive Inter-Integrated Circuit (I²C) Master Interface is based on OpenCores® I²C Master

Core.

Download the original documentation at https://opencores.org/project,i2c.

All I²C control register addresses are 4-byte aligned.

18.1 I²C Instance in FU740-C000

FU740-C000 contains one I²C instance. Its address is shown in Table 97.

Table 97: I²C Instance

Instance Number Address

0 0x1003_0000

1 0x1003_1000

18.2 I2C Overview

I2C is a two-wire, bi-directional serial bus that provides a simple and efficient method of data

exchange between devices. It is most suitable for applications requiring occasional communica-

tion over a short distance between many devices. The I2C standard is a true multi-master bus

including collision detection and arbitration that prevents data corruption if two or more masters

attempt to control the bus simultaneously.

The interface defines 3 transmission speeds:
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1. Normal: 100Kbps

2. Fast: 400Kbps

3. High speed: 3.5Mbps

Only 100Kbps and 400Kbps modes are supported directly. For High speed special IOs are

needed. If these IOs are available and used, then High speed is also supported.

18.3 Features

1. Compatible with Philips I2C standard

2. Multi Master Operation

3. Software programmable clock frequency

4. Clock Stretching and Wait state generation

5. Software programmable acknowledge bit

6. Interrupt or bit-polling driven byte-by-byte data-transfers

7. Arbitration lost interrupt, with automatic transfer cancelation

8. Start/Stop/Repeated Start/Acknowledge generation

9. Start/Stop/Repeated Start detection

10. Bus busy detection

11. Supports 7 and 10bit addressing mode

12. Operates from a wide range of input clock frequencies

a. Static synchronous design

b. Fully synthesizable

18.4 Memory Map

The memory map for the I2C control registers is shown in Table 98. The I2C memory map has

been designed to only require naturally aligned 32-bit memory accesses.

Table 98: Register Offsets within I2C Memory Map

Name Offset Access Description

PRERlo 0x000 RW Clock Prescale register lo-byte

PRERhi 0x004 RW Clock Prescale register hi-byte

CTR 0x008 RW Control register
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Table 98: Register Offsets within I2C Memory Map

Name Offset Access Description

TXR 0x00C W Transmit register

RXR 0x00C R Receive register

CR 0x010 W Command register

SR 0x010 R Status register

Please note that all reserved bits are read as zeros. To ensure forward compatibility, they

should be written as zeros.

18.5 Prescale Register

This register is used to prescale the SCL clock line. Due to the structure of the I2C interface, the

core uses a 5 * SCL clock internally. The prescale register must be programmed to this 5 * SCL

frequency (minus 1). Change the value of the prescale register only when the ‘EN’ bit is cleared.

Example: clock frequency = 32MHz, desired SCL frequency = 100KHz

Reset value: 0xFFFF

18.6 Control Register

The core responds to new commands only when the EN bit is set. Pending commands are fin-

ished. Clear the ‘EN’ bit only when no transfer is in progress, i.e. after a STOP command, or

when the command register has the STO bit set. When halted during a transfer, the core can

hang the I2C bus.

Table 99: Control Register Fields

Field Bit Access Description Reset Value

EN 7 RW I2C core enable bit 0x0

IEN 6 RW I2C core interrupt enable bit 0x0

Reserved 5:0 R Reserved 0x0
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18.7 Transmit Register

Table 100: Transmit Register Fields

Bit Access
Reset

Value
Description

[7:1] W 0x0 Next byte to transmit via I2C

0 W 0x0 In case of a data transfer this bit represent the data’s LSB. In case

of a slave address transfer this bit represents the RW bit. . 1 =

reading from slave . 0 = writing to slave

18.8 Receive Register

Table 101: Receive Register Fields

Bit Access Reset Value Description

[7:0] R 0x0 Last byte received via I2C

18.9 Command Register

The STA, STO, RD, WR, and IACK bits are cleared automatically. %These bits are always read as

zeros.

Table 102: Command Register Fields

Field Bit Access
Reset

Value
Description

STA 7 W 0x0 Generate (repeated) start condition.

STO 6 W 0x0 Generate stop condition.

RD 5 W 0x0 Read from slave.

WR 4 W 0x0 Write to slave.

ACK 3 W 0x0 When a receiver, sent ACK (ACK = ‘0’) or NACK

(ACK = ‘1’).

Reserved [2:1] 0x0 Reserved IACK
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18.10 Status Register

Table 103: Status Register Fields

Field Bit Access Description Reset Value

RxACK 7 R 0x0 Received acknowledge from slave This flag

represents acknowledge from the addressed

slave. . 1 = No acknowledge received . 0 =

Acknowledge received

Busy 6 R 0x0 I2C bus busy . 1 after START signal detected .

0 after STOP signal detected

AL 5 R 0x0 Arbitration lost. This bit is set when the core lost

arbitration.

Arbitration is lost when: . a STOP signal is

detected, but non requested . the master drives

SDA high, but SDA is low

See bus-arbitration section for more informa-

tion.

Reserved [4:2] R 0x0 Reserved

TIP 1 R 0x0 Transfer in progress. . 1 when transferring data

. 0 when transfer complete

IF 0 R 0x0 Interrupt Flag. This bit is set when an interrupt

is pending, which will cause a processor inter-

rupt request if the IEN bit is set. The Interrupt

Flag is set when: . one byte transfer has been

completed . arbitration is lost

18.11 Operation

18.11.1 System Configuration

The I2C system uses a serial data line (SDA) and a serial clock line (SCL) for data transfers. All

devices connected to these two signals must have open drain or open collector outputs. The

logic AND function is exercised on both lines with external pull-up resistors.

Data is transferred between a Master and a Slave synchronously to SCL on the SDA line on a

byte-by-byte basis. Each data byte is 8 bits long. There is one SCL clock pulse for each data bit

with the MSB being transmitted first. An acknowledge bit follows each transferred byte. Each bit

is sampled during the high period of SCL; therefore, the SDA line may be changed only during
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the low period of SCL and must be held stable during the high period of SCL. A transition on the

SDA line while SCL is high is interpreted as a command (see START and STOP signals).

18.11.2 I2C Protocol

Normally, a standard communication consists of four parts:

1. START signal generation

2. Slave address transfer

3. Data transfer

4. STOP signal generation

Figure 32: I2C operation

18.11.3 START Signal

When the bus is free/idle, meaning no master device is engaging the bus (both SCL and SDA

lines are high), a master can initiate a transfer by sending a START signal. A START signal,

usually referred to as the S-bit, is defined as a high-to-low transition of SDA while SCL is high.

The START signal denotes the beginning of a new data transfer. A Repeated START is a

START signal without first generating a STOP signal. The master uses this method to communi-

cate with another slave or the same slave in a different transfer direction (e.g. from writing to a

device to reading from a device) without releasing the bus.

The core generates a START signal when the STA-bit in the Command Register is set and the

RD or WR bits are set. Depending on the current status of the SCL line, a START or Repeated

START is generated.

18.11.4 Slave Address Transfer

The first byte of data transferred by the master immediately after the START signal is the slave

address. This is a seven-bits calling address followed by a RW bit. The RW bit signals the slave

the data transfer direction. No two slaves in the system can have the same address. Only the

slave with an address that matches the one transmitted by the master will respond by returning

an acknowledge bit by pulling the SDA low at the 9th SCL clock cycle.

Note: The core supports 10bit slave addresses by generating two address transfers. See the

Philips I2C specifications for more details.
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The core treats a Slave Address Transfer as any other write action. Store the slave device’s

address in the Transmit Register and set the WR bit. The core will then transfer the slave

address on the bus.

18.11.5 Data Transfer

Once successful slave addressing has been achieved, the data transfer can proceed on a byte-

by-byte basis in the direction specified by the RW bit sent by the master. Each transferred byte

is followed by an acknowledge bit on the 9th SCL clock cycle. If the slave signals a No Acknowl-

edge, the master can generate a STOP signal to abort the data transfer or generate a Repeated

START signal and start a new transfer cycle.

If the master, as the receiving device, does not acknowledge the slave, the slave releases the

SDA line for the master to generate a STOP or Repeated START signal.

To write data to a slave, store the data to be transmitted in the Transmit Register and set the

WR bit. To read data from a slave, set the RD bit. During a transfer the core set the TIP flag,

indicating that a Transfer is In Progress. When the transfer is done the TIP flag is reset, the IF

flag set and, when enabled, an interrupt generated. The Receive Register contains valid data

after the IF flag has been set. The user may issue a new write or read command when the TIP

flag is reset.

18.11.6 STOP Signal

The master can terminate the communication by generating a STOP signal. A STOP signal,

usually referred to as the P-bit, is defined as a low-to-high transition of SDA while SCL is at logi-

cal 1.

18.12 Arbitration Procedure

18.12.1 Clock Synchronization

The I2C bus is a true multimaster bus that allows more than one master to be connected on it. If

two or more masters simultaneously try to control the bus, a clock synchronization procedure

determines the bus clock. Because of the wired-AND connection of the I2C signals a high to low

transition affects all devices connected to the bus. Therefore a high to low transition on the SCL

line causes all concerned devices to count off their low period. Once a device clock has gone

low it will hold the SCL line in that state until the clock high state is reached. Due to the wired-

AND connection the SCL line will therefore be held low by the device with the longest low

period, and held high by the device with the shortest high period.
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Figure 33: I2C Clock Synchronization

18.12.2 Clock Stretching

Slave devices can use the clock synchronization mechanism to slow down the transfer bit rate.

After the master has driven SCL low, the slave can drive SCL low for the required period and

then release it. If the slave’s SCL low period is greater than the master’s SCL low period, the

resulting SCL bus signal low period is stretched, thus inserting wait-states.

18.13 Architecture

The I2C core is built around four primary blocks; the Clock Generator, the Byte Command Con-

troller, the Bit Command Controller and the DataIO Shift Register. All other blocks are used for

interfacing or for storing temporary values.
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Figure 34: I2C Architecture

18.13.1 Clock Generator

The Clock Generator generates an internal clock enable signal that triggers all syn-

chronous elements in the Bit Command Controller. It also handles clock stretching needed by

some slaves.

18.13.2 Byte Command Controller

The Byte Command Controller handles I2C traffic at the byte level. It takes data from the Com-

mand Register and translates it into sequences based on the transmission of a single byte. By

setting the START, STOP, and READ bit in the Command Register, for example, the Byte Com-

mand Controller generates a sequence that results in the generation of a START signal, the

reading of a byte from the slave device, and the generation of a STOP signal. It does this by

dividing each byte operation into separate bit-operations, which are then sent to the Bit Com-

mand Controller.
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Figure 35: I2C FSM
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18.13.3 Bit Command Controller

The Bit Command Controller handles the actual transmission of data and the generation of the

specific levels for START, Repeated START, and STOP signals by controlling the SCL and SDA

lines. The Byte Command Controller tells the Bit Command Controller which operation has to be

performed. For a single byte read, the Bit Command Controller receives 8 separate read com-

mands. Each bit-operation is divided into 5 pieces (idle and A, B, C, and D), except for a STOP

operation which is divided into 4 pieces (idle and A, B, and C).
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Figure 36: I2C command waveforms
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18.13.4 DataIO Shift Register

The DataIO Shift Register contains the data associated with the current transfer. During a read

action, data is shifted in from the SDA line. After a byte has been read the contents are copied

into the Receive Register. During a write action, the Transmit Register’s contents are copied into

the DataIO Shift Register and are then transmitted onto the SDA line.

18.14 Programming examples}

18.14.1 Example 1

Write 1 byte of data to a slave.

Slave address = 0x51 (b'1010001)

Data to write = 0xAC

I2C Sequence:

1. generate start command

2. write slave address + write bit

3. receive acknowledge from slave

4. write data

5. receive acknowledge from slave

6. generate stop command

Commands:

1. write 0xA2 (address + write bit) to Transmit Register, set STA bit, set WR bit. Wait for

interrupt or TIP flag to negate.

2. read RxACK bit from Status Register, should be 0. Write 0xAC to Transmit register,

set STO bit, set WR bit. Wait for interrupt or TIP flag to negate.

3. read RxACK bit from Status Register, should be 0.

Figure 37: I2C Example 1
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Note

The time for the Interrupt Service Routine is not shown here. It is assumed that the ISR is

much faster then the I2C cycle time, and therefore not visible.

18.14.2 Example 2

Read a byte of data from an I2C memory device.

Slave address = 0x4E

Memory location to read from = 0x20

I2C sequence:

1. generate start signal

2. write slave address + write bit

3. receive acknowledge from slave

4. write memory location

5. receive acknowledge from slave

6. generate repeated start signal

7. write slave address + read bit

8. receive acknowledge from slave

9. read byte from slave

10. write no acknowledge (NACK) to slave, indicating end of transfer

11. generate stop signal

Commands:

1. write 0x9C (address + write bit) to Transmit Register, set STA bit, set WR bit. Wait for

interrupt or TIP flag to negate.

2. read RxACK bit from Status Register, should be 0. Write 0x20 to Transmit register,

set WR bit. Wait for interrupt or TIP flag to negate.

3. read RxACK bit from Status Register, should be 0. Write 0x9D (address + read bit) to

Transmit Register, set STA bit, set WR bit. Wait for interrupt or TIP flag to negate.

4. set RD bit, set ACK to ‘1’ (NACK), set STO bit
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Figure 38: I2C example 2

Note

The time for the Interrupt Service Routine is not shown here. It is assumed that the ISR is

much faster then the I2C cycle time, and therefore not visible.}
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19

Serial Peripheral Interface (SPI)

This chapter describes the operation of the SiFive Serial Peripheral Interface (SPI) controller.

19.1 SPI Overview

The SPI controller supports master-only operation over the single-lane, dual-lane, and quad-

lane protocols. The baseline controller provides a FIFO-based interface for performing pro-

grammed I/O. Software initiates a transfer by enqueuing a frame in the transmit FIFO; when the

transfer completes, the slave response is placed in the receive FIFO.

In addition, a SPI controller can implement a SPI flash read sequencer, which exposes the

external SPI flash contents as a read/execute-only memory-mapped device. Such controllers

are reset to a state that allows memory-mapped reads, under the assumption that the input

clock rate is less than 100 MHz and the external SPI flash device supports the common Win-

bond/Numonyx serial read (0x03) command. Sequential accesses are automatically combined

into one long read command for higher performance.

The fctrl register controls switching between the memory-mapped and programmed-I/O

modes, if applicable. While in programmed-I/O mode, memory-mapped reads do not access the

external SPI flash device and instead return 0 immediately. Hardware interlocks ensure that the

current transfer completes before mode transitions and control register updates take effect.

19.2 SPI Instances in FU740-C000

FU740-C000 contains three SPI instances. Their addresses and parameters are shown in Table

104.

Table 104: SPI Instances

Instance Flash Controller Address cs_width div_width

QSPI 0 Y 0x1004_0000 1 16
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Table 104: SPI Instances

Instance Flash Controller Address cs_width div_width

QSPI 1 Y 0x1004_1000 4 16

QSPI 2 N 0x1005_0000 1 16

19.3 Memory Map

The memory map for the SPI control registers is shown in Table 105. The SPI memory map has

been designed to require only naturally-aligned 32-bit memory accesses.

Offset Name Description

0x00 sckdiv Serial clock divisor

0x04 sckmode Serial clock mode

0x08 Reserved

0x0C Reserved

0x10 csid Chip select ID

0x14 csdef Chip select default

0x18 csmode Chip select mode

0x1C Reserved

0x20 Reserved

0x24 Reserved

0x28 delay0 Delay control 0

0x2C delay1 Delay control 1

0x30 Reserved

0x34 Reserved

0x38 Reserved

0x3C Reserved

0x40 fmt Frame format

0x44 Reserved

Table 105: Register offsets within the SPI memory map. Registers marked * are present only

on controllers with the direct-map flash interface.
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Offset Name Description

0x48 txdata Tx FIFO Data

0x4C rxdata Rx FIFO data

0x50 txmark Tx FIFO watermark

0x54 rxmark Rx FIFO watermark

0x58 Reserved

0x5C Reserved

0x60 fctrl SPI flash interface control*

0x64 ffmt SPI flash instruction format*

0x68 Reserved

0x6C Reserved

0x70 ie SPI interrupt enable

0x74 ip SPI interrupt pending

19.4 Serial Clock Divisor Register (sckdiv)

The sckdiv is a div_width-bit register that specifies the divisor used for generating the serial

clock (SCK). The relationship between the input clock and SCK is given by the following for-

mula:

The input clock is the bus clock tlclk. The reset value of the div field is 0x3.

Serial Clock Divisor Register (sckdiv)

Register Offset 0x0

Bits Field Name Attr. Rst. Description

[11:0] div RW 0x3 Divisor for serial clock. div_width bits wide.

[31:12] Reserved

Table 105: Register offsets within the SPI memory map. Registers marked * are present only

on controllers with the direct-map flash interface.

Table 106: Serial Clock Divisor Register
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19.5 Serial Clock Mode Register (sckmode)

The sckmode register defines the serial clock polarity and phase. Table 108 and Table 109

describe the behavior of the pol and pha fields, respectively. The reset value of sckmode is 0.

Serial Clock Mode Register (sckmode)

Register Offset 0x4

Bits Field Name Attr. Rst. Description

0 pha RW 0x0 Serial clock phase

1 pol RW 0x0 Serial clock polarity

[31:2] Reserved

Value Description

0 Inactive state of SCK is logical 0

1 Inactive state of SCK is logical 1

Value Description

0 Data is sampled on the leading edge of SCK and shifted on the trailing edge of SCK

1 Data is shifted on the leading edge of SCK and sampled on the trailing edge of SCK

19.6 Chip Select ID Register (csid)

The csid is a -bit register that encodes the index of the CS pin to be toggled

by hardware chip select control. The reset value is 0x0.

Chip Select ID Register (csid)

Register Offset 0x10

Bits Field Name Attr. Rst. Description

Table 107: Serial Clock Mode Register

Table 108: Serial Clock Polarity

Table 109: Serial Clock Phase

Table 110: Chip Select ID Register
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[31:0] csid RW 0x0 Chip select ID. bits wide.

19.7 Chip Select Default Register (csdef)

The csdef register is a cs_width-bit register that specifies the inactive state (polarity) of the CS

pins. The reset value is high for all implemented CS pins.

Chip Select Default Register (csdef)

Register Offset 0x14

Bits
Field

Name
Attr. Rst. Description

[31:0] csdef RW 0x1 Chip select default value. cs_width bits wide, reset to

all-1s.

19.8 Chip Select Mode Register (csmode)

The csmode register defines the hardware chip select behavior as described in Table 112. The

reset value is 0x0 (AUTO). In HOLD mode, the CS pin is deasserted only when one of the fol-

lowing conditions occur:

• A different value is written to csmode or csid.

• A write to csdef changes the state of the selected pin.

• Direct-mapped flash mode is enabled.

Chip Select Mode Register (csmode)

Register Offset 0x18

Bits Field Name Attr. Rst. Description

[1:0] mode RW 0x0 Chip select mode

[31:2] Reserved

Table 110: Chip Select ID Register

Table 111: Chip Select Default Register

Table 112: Chip Select Mode Register
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Value Name Description

0 AUTO Assert/deassert CS at the beginning/end of each frame

2 HOLD Keep CS continuously asserted after the initial frame

3 OFF Disable hardware control of the CS pin

19.9 Delay Control Registers (delay0 and delay1)

The delay0 and delay1 registers allow for the insertion of arbitrary delays specified in units of

one SCK period.

The cssck field specifies the delay between the assertion of CS and the first leading edge of

SCK. When sckmode.pha = 0, an additional half-period delay is implicit. The reset value is 0x1.

The sckcs field specifies the delay between the last trailing edge of SCK and the deassertion of

CS. When sckmode.pha = 1, an additional half-period delay is implicit. The reset value is 0x1.

The intercs field specifies the minimum CS inactive time between deassertion and assertion.

The reset value is 0x1.

The interxfr field specifies the delay between two consecutive frames without deasserting

CS. This is applicable only when sckmode is HOLD or OFF. The reset value is 0x0.

Delay Control Register 0 (delay0)

Register Offset 0x28

Bits Field Name Attr. Rst. Description

[7:0] cssck RW 0x1 CS to SCK Delay

[15:8] Reserved

[23:16] sckcs RW 0x1 SCK to CS Delay

[31:24] Reserved

Delay Control Register 1 (delay1)

Register Offset 0x2C

Table 113: Chip Select Modes

Table 114: Delay Control Register 0

Table 115: Delay Control Register 1
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Bits Field Name Attr. Rst. Description

[7:0] intercs RW 0x1 Minimum CS inactive time

[15:8] Reserved

[23:16] interxfr RW 0x0 Maximum interframe delay

[31:24] Reserved

19.10 Frame Format Register (fmt)

The fmt register defines the frame format for transfers initiated through the programmed-I/O

(FIFO) interface. Table 117, Table 118, and Table 119 describe the proto, endian, and dir

fields, respectively. The len field defines the number of bits per frame, where the allowed range

is 0 to 8 inclusive.

For flash-enabled SPI controllers, the reset value is 0x0008_0008, corresponding to proto =

single, dir = Tx, endian = MSB, and len = 8. For non-flash-enabled SPI controllers, the reset

value is 0x0008_0000, corresponding to proto = single, dir = Rx, endian = MSB, and len = 8.

Frame Format Register (fmt)

Register Offset 0x40

Bits
Field

Name
Attr. Rst. Description

[1:0] proto RW 0x0 SPI protocol

2 endian RW 0x0 SPI endianness

3 dir RW X SPI I/O direction. This is reset to 1 for flash-enabled SPI

controllers, 0 otherwise.

[15:4] Reserved

[19:16] len RW 0x8 Number of bits per frame

[31:20] Reserved

Value Description Data Pins

0 Single DQ0 (MOSI), DQ1 (MISO)

Table 115: Delay Control Register 1

Table 116: Frame Format Register

Table 117: SPI Protocol. Unused DQ pins are tri-stated.
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Value Description Data Pins

1 Dual DQ0, DQ1

2 Quad DQ0, DQ1, DQ2, DQ3

Value Description

0 Transmit most-significant bit (MSB) first

1 Transmit least-significant bit (LSB) first

Value Description

0 Rx: For dual and quad protocols, the DQ pins are tri-stated. For the single protocol,

the DQ0 pin is driven with the transmit data as normal.

1 Tx: The receive FIFO is not populated.

19.11 Transmit Data Register (txdata)

Writing to the txdata register loads the transmit FIFO with the value contained in the data field.

For fmt.len < 8, values should be left-aligned when fmt.endian = MSB and right-aligned

when fmt.endian = LSB.

The full flag indicates whether the transmit FIFO is ready to accept new entries; when set,

writes to txdata are ignored. The data field returns 0x0 when read.

Transmit Data Register (txdata)

Register Offset 0x48

Bits Field Name Attr. Rst. Description

[7:0] data RW 0x0 Transmit data

[30:8] Reserved

31 full RO X FIFO full flag

Table 117: SPI Protocol. Unused DQ pins are tri-stated.

Table 118: SPI Endianness

Table 119: SPI I/O Direction

Table 120: Transmit Data Register
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19.12 Receive Data Register (rxdata)

Reading the rxdata register dequeues a frame from the receive FIFO. For fmt.len < 8, values

are left-aligned when fmt.endian = MSB and right-aligned when fmt.endian = LSB.

The empty flag indicates whether the receive FIFO contains new entries to be read; when set,

the data field does not contain a valid frame. Writes to rxdata are ignored.

Receive Data Register (rxdata)

Register Offset 0x4C

Bits Field Name Attr. Rst. Description

[7:0] data RO X Received data

[30:8] Reserved

31 empty RW X FIFO empty flag

19.13 Transmit Watermark Register (txmark)

The txmark register specifies the threshold at which the Tx FIFO watermark interrupt triggers.

The reset value is 1 for flash-enabled SPI controllers, and 0 for non-flash-enabled SPI con-

trollers.

Transmit Watermark Register (txmark)

Register Offset 0x50

Bits
Field

Name
Attr. Rst. Description

[2:0] txmark RW X Transmit watermark. The reset value is 1 for flash-enabled

controllers, 0 otherwise.

[31:3] Reserved

19.14 Receive Watermark Register (rxmark)

The rxmark register specifies the threshold at which the Rx FIFO watermark interrupt triggers.

The reset value is 0x0.

Table 121: Receive Data Register

Table 122: Transmit Watermark Register
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Receive Watermark Register (rxmark)

Register Offset 0x54

Bits Field Name Attr. Rst. Description

[2:0] rxmark RW 0x0 Receive watermark

[31:3] Reserved

19.15 SPI Interrupt Registers (ie and ip)

The ie register controls which SPI interrupts are enabled, and ip is a read-only register indicat-

ing the pending interrupt conditions. ie is reset to zero. See Table 124.

The txwm condition becomes raised when the number of entries in the transmit FIFO is strictly

less than the count specified by the txmark register. The pending bit is cleared when sufficient

entries have been enqueued to exceed the watermark. See Table 125.

The rxwm condition becomes raised when the number of entries in the receive FIFO is strictly

greater than the count specified by the rxmark register. The pending bit is cleared when suffi-

cient entries have been dequeued to fall below the watermark. See Table 125.

SPI Interrupt Enable Register (ie)

Register Offset 0x70

Bits Field Name Attr. Rst. Description

0 txwm RW 0x0 Transmit watermark enable

1 rxwm RW 0x0 Receive watermark enable

[31:2] Reserved

SPI Watermark Interrupt Pending Register (ip)

Register Offset 0x74

Bits Field Name Attr. Rst. Description

0 txwm RO 0x0 Transmit watermark pending

1 rxwm RO 0x0 Receive watermark pending

Table 123: Receive Watermark Register

Table 124: SPI Interrupt Enable Register

Table 125: SPI Watermark Interrupt Pending Register
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[31:2] Reserved

19.16 SPI Flash Interface Control Register (fctrl)

When the en bit of the fctrl register is set, the controller enters direct memory-mapped SPI

flash mode. Accesses to the direct-mapped memory region causes the controller to automati-

cally sequence SPI flash reads in hardware. The reset value is 0x1. See Table 126.

SPI Flash Interface Control Register (fctrl)

Register Offset 0x60

Bits Field Name Attr. Rst. Description

0 en RW 0x1 SPI Flash Mode Select

[31:1] Reserved

19.17 SPI Flash Instruction Format Register (ffmt)

The ffmt register defines the format of the SPI flash read instruction issued by the controller

when the direct-mapped memory region is accessed while in SPI flash mode.

An instruction consists of a command byte followed by a variable number of address bytes,

dummy cycles (padding), and data bytes. Table 127 describes the function and reset value of

each field.

SPI Flash Instruction Format Register (ffmt)

Register Offset 0x64

Bits Field Name Attr. Rst. Description

0 cmd_en RW 0x1 Enable sending of command

[3:1] addr_len RW 0x3 Number of address bytes (0 to 4)

[7:4] pad_cnt RW 0x0 Number of dummy cycles

[9:8] cmd_proto RW 0x0 Protocol for transmitting command

[11:10] addr_proto RW 0x0 Protocol for transmitting address and padding

Table 125: SPI Watermark Interrupt Pending Register

Table 126: SPI Flash Interface Control Register

Table 127: SPI Flash Instruction Format Register
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[13:12] data_proto RW 0x0 Protocol for receiving data bytes

[15:14] Reserved

[23:16] cmd_code RW 0x3 Value of command byte

[31:24] pad_code RW 0x0 First 8 bits to transmit during dummy cycles

Table 127: SPI Flash Instruction Format Register
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20

General Purpose Input/Output Controller

(GPIO)

This chapter describes the operation of the General Purpose Input/Output Controller (GPIO) on

the FU740-C000. The GPIO controller is a peripheral device mapped in the internal memory

map. It is responsible for low-level configuration of actual GPIO pads on the device (direction,

pull up-enable, etc.), as well as selecting between various sources of the controls for these sig-

nals. The GPIO controller allows separate configuration of each of ngpio GPIO bits.

Atomic operations such as toggles are natively possible with the RISC-V 'A' extension.

20.1 GPIO Instance in FU740-C000

FU740-C000 contains one GPIO instance. Its address and parameters are shown in Table 128.

Table 128: GPIO Instance

Instance Number Address ngpio

0 0x1006_0000 16

20.2 Memory Map

The memory map for the GPIO control registers is shown in Table 129. The GPIO memory map

has been designed to require only naturally-aligned 32-bit memory accesses. Each register is

ngpio bits wide.
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Offset Name Description

0x00 input_val Pin value

0x04 input_en Pin input enable*

0x08 output_en Pin output enable*

0x0C output_val Output value

0x10 pue Internal pull-up enable*

0x14 ds Pin drive strength

0x18 rise_ie Rise interrupt enable

0x1C rise_ip Rise interrupt pending

0x20 fall_ie Fall interrupt enable

0x24 fall_ip Fall interrupt pending

0x28 high_ie High interrupt enable

0x2C high_ip High interrupt pending

0x30 low_ie Low interrupt enable

0x34 low_ip Low interrupt pending

0x38 iof_en I/O function enable

0x3C iof_sel I/O function select

0x40 out_xor Output XOR (invert)

20.3 Input / Output Values

The GPIO can be configured on a bitwise fashion to represent inputs and/or outputs, as set by

the input_en and output_en registers. Writing to the output_val register updates the bits

regardless of the tristate value. Reading the output_val register returns the written value.

Reading the input_val register returns the actual value of the pin gated by input_en.

20.4 Interrupts

A single interrupt bit can be generated for each GPIO bit. The interrupt can be driven by rising

or falling edges, or by level values, and interrupts can be enabled for each GPIO bit individually.

Table 129: GPIO Peripheral Register Offsets. Only naturally aligned 32-bit memory accesses

are supported. Registers marked with an * are asynchronously reset to 0. All other registers are

synchronously reset to 0.
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Inputs are synchronized before being sampled by the interrupt logic, so the input pulse width

must be long enough to be detected by the synchronization logic.

To enable an interrupt, set the corresponding bit in the rise_ie and/or fall_ie to 1. If the cor-

responding bit in rise_ip or fall_ip is set, an interrupt pin is raised.

Once the interrupt is pending, it will remain set until a 1 is written to the *_ip register at that bit.

The interrupt pins may be routed to the PLIC or directly to local interrupts.

20.5 Internal Pull-Ups

When configured as inputs, each pin has an internal pull-up which can be enabled by software.

At reset, all pins are set as inputs, and pull-ups are disabled.

20.6 Drive Strength

On the FU740-C000, the drive strength registers do not control anything about the GPIO,

although the registers can be read and written.

20.7 Output Inversion

When configured as an output, the software-writable out_xor register is combined with the out-

put to invert it.
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21

One-Time Programmable Memory

Interface (OTP)

This chapter describes the operation of the SiFive controller for the eMemory

EG004K32TQ028XW01 NeoFuse® One-Time-Programmable (OTP) memory.

21.1 OTP Overview

OTP is one-time programmable memory. Each bit starts out as 1 and can be written to 0 by

using the controller interface. The OTP is laid out as a 4096×32 bit array.

The controller provides a simple register-based interface to write the inputs of the macro and

read its outputs. All timing and sequencing are the responsibility of the driver software.

21.2 Memory Map

The memory map for the OTP control registers is shown in Table 130. The OTP memory map

has been designed to require only naturally-aligned 32-bit memory accesses. For further infor-

mation about the functionality and timing requirements of each of the inputs/outputs, refer to the

datasheet for eMemory EG004K32TQ028XW01.

Offset Name Description

0x00 PA Address input

0x04 PAIO Programming address input

0x08 PAS Program redundancy cell selection input

0x0C PCE OTP Macro enable input

Table 130: Register offsets within the eMemory OTP Controller memory map
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Offset Name Description

0x10 PCLK Clock input

0x14 PDIN Write data input

0x18 PDOUT Read Data output

0x1C PDSTB Deep standby mode enable input (active low)

0x20 PPROG Program mode enable input

0x24 PTC Test column enable input

0x28 PTM Test mode enable input

0x2C PTM_REP Repair function test mode enable input

0x30 PTR Test row enable input

0x34 PTRIM Repair function enable input

0x38 PWE Write enable input (defines program cycle)

21.3 Detailed Register Fields

Each register is described in more detail below.

PA: Address input (PA)

Register Offset 0x0

Bits Field Name Attr. Rst. Description

[11:0] PA RW 0x0 Address input

[31:12] Reserved

PAIO: Programming address input (PAIO)

Register Offset 0x4

Bits Field Name Attr. Rst. Description

[4:0] PAIO RW 0x0 Programming address input

Table 130: Register offsets within the eMemory OTP Controller memory map

Table 131: PA: Address input

Table 132: PAIO: Programming address input
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[31:5] Reserved

PAS: Program redundancy cell selection input (PAS)

Register Offset 0x8

Bits Field Name Attr. Rst. Description

0 PAS RW 0x0 Program redundancy cell selection input

[31:1] Reserved

PCE: OTP Macro enable input (PCE)

Register Offset 0xC

Bits Field Name Attr. Rst. Description

0 PCE RW 0x0 OTP Macro enable input

[31:1] Reserved

PCLK: Clock input (PCLK)

Register Offset 0x10

Bits Field Name Attr. Rst. Description

0 PCLK RW 0x0 Clock input

[31:1] Reserved

PDIN: Write data input (PDIN)

Register Offset 0x14

Bits Field Name Attr. Rst. Description

Table 132: PAIO: Programming address input

Table 133: PAS: Program redundancy cell selection input

Table 134: PCE: OTP Macro enable input

Table 135: PCLK: Clock input

Table 136: PDIN: Write data input
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0 PDIN RW 0x0 Write data input

[31:1] Reserved

PDOUT: Read Data output (PDOUT)

Register Offset 0x18

Bits Field Name Attr. Rst. Description

[31:0] PDOUT RO X Read Data output

PDSTB: Deep standby mode enable input (active low) (PDSTB)

Register Offset 0x1C

Bits Field Name Attr. Rst. Description

0 PDSTB RW 0x0 Deep standby mode enable input (active low)

[31:1] Reserved

PPROG: Program mode enable input (PPROG)

Register Offset 0x20

Bits Field Name Attr. Rst. Description

0 PPROG RW 0x0 Program mode enable input

[31:1] Reserved

PTC: Test column enable input (PTC)

Register Offset 0x24

Bits Field Name Attr. Rst. Description

Table 136: PDIN: Write data input

Table 137: PDOUT: Read Data output

Table 138: PDSTB: Deep standby mode enable input (active low)

Table 139: PPROG: Program mode enable input

Table 140: PTC: Test column enable input
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0 PTC RW 0x0 Test column enable input

[31:1] Reserved

PTM: Test mode enable input (PTM)

Register Offset 0x28

Bits Field Name Attr. Rst. Description

[2:0] PTM RW 0x0 Test mode enable input

[31:3] Reserved

PTM_REP: Repair function test mode enable input (PTM_REP)

Register Offset 0x2C

Bits Field Name Attr. Rst. Description

0 PTM_REP RW 0x0 Repair function test mode enable input

[31:1] Reserved

PTR: Test row enable input (PTR)

Register Offset 0x30

Bits Field Name Attr. Rst. Description

0 PTR RW 0x0 Test row enable input

[31:1] Reserved

PTRIM: Repair function enable input (PTRIM)

Register Offset 0x34

Table 140: PTC: Test column enable input

Table 141: PTM: Test mode enable input

Table 142: PTM_REP: Repair function test mode enable input

Table 143: PTR: Test row enable input

Table 144: PTRIM: Repair function enable input
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Bits Field Name Attr. Rst. Description

0 PTRIM RW 0x0 Repair function enable input

[31:1] Reserved

PWE: Write enable input (defines program cycle) (PWE)

Register Offset 0x38

Bits Field Name Attr. Rst. Description

0 PWE RW 0x0 Write enable input (defines program cycle)

[31:1] Reserved

21.4 OTP Contents in the FU740-C000

SiFive reserves the first 1 KiB of the 16 KiB OTP memory for internal use.

The current usage is shown in Table 146, with an example where the stored serial number is

0x00000001:

Table 146: Initial OTP Contents for example Serial Number 0x1

32-bit Offset serial serial_n

0xFC 0x1 0xffffffe

0xFE 0xffffffff 0xffffffff

The serial number stored in OTP can be found using this method:

for (i = 0xfe; i > 0; i -= 2)

serial   = read_otp_word(i);

serial_n = read_otp_word(i+1);

if (serial == ~serial_n)

break;

Table 144: PTRIM: Repair function enable input

Table 145: PWE: Write enable input (defines program cycle)
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22

Gigabit Ethernet Subsystem

This chapter describes the operation of Gigabit Ethernet on the FU740-C000.

22.1 Gigabit Ethernet Overview

FU740-C000 integrates a single Cadence GEMGXL Gigabit Ethernet Controller that implements

full-duplex 10/100/1000 Mb/s Ethernet MAC as defined in IEEE Standard for Ethernet (IEEE

Std. 802.3-2008). The Gigabit Ethernet controller interfaces to an external PHY using Gigabit

Media Independent Interface (GMII).

Figure 39: Gigabit Ethernet Subsystem architecture.

The GEMGXL is parameterized to support the following features:

• IEEE Standard 802.3-2008 supporting 10/100/1000 Mbps operation

• GMII/MII interface
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• MDIO interface for physical layer management of external PHY

• Flow Control. Full duplex mode and half duplex operation with TX/RX of pause frames

• Receive Traffic Policing. Ability to drop frames

• Scatter-gather 32-bit wide bus mastering DMA and 64-bit addresses

• 128-bit bit wide 4 KiB deep DMA RX/TX packet buffers with cut-through operation mode

• Interrupt generation to signal TX/RX completion, errors and wake-up

• IPv4 and IPv6 checksum offload

• Automatic pad and cyclic redundancy check (CRC) generation on transmit frames

• Jumbo frames up to 10240 bytes

• 128-bit wide 4 KiB deep RX/TX packet buffers

• 4 source/destination frame filters for use in Wake on LAN and Pause Frame Handling

• Ethernet loopback mode

• IEEE 1588 standard for precision clock synchronization protocol is not supported

The GEMGXL Management block enables software to switch the clock used for transmit logic

for 10/100 mode (MII) versus gigabit (GMII) mode. In 10/100 MII mode, transmit logic in the

GEMGXL must be clocked from a free-running clock (TX_CLK) generated by the external PHY.

In gigabit GMII mode, the GEMGXL, not the external PHY, must generate the 125 MHz transmit

clock towards the PHY.

The Gigabit Ethernet Subsystem operates on a separate clock.

22.2 Memory Map

This section presents an overview of the GEMGXL control registers.

22.2.1 GEMGXL Management Block Control Registers (0x100A_0000–0x100A_FFFF)

Table 147: GEMGXL Management TX Clock Select Register

GEMGXL Management TX Clock Select Register

Base Address 0x100A_0000

Bits Field Name Rst. Description

0 tx_clk_sel 0x0 GEMGXL TX clock operation mode:

0 = GMII mode. Use 125 MHz gemgxlclk from PRCI in TX logic

and output clock on GMII output signal GTX_CLK

1 = MII mode. Use MII input signal TX_CLK in TX logic

22 Gigabit Ethernet Subsystem
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Table 148: GEMGXL Management Control Status Speed Mode Register

GEMGXL Management Control Status Speed Mode Register

Base Address 0x100A_0020

Bits Field Name Rst. Description

[3:0] control_status_speed_mode 0x0 4’b0000 = 10 Mbps Ethernet operation using

MII interface

4’b0001 = 100 Mbps Ethernet operation

using MII interface

4’b001x = 1000 Mbps Ethernet operation

using GMII interface

22.2.2 GEMGXL Control Registers (0x1009_0000–0x1009_1FFF)

The complete memory map of the GEMGXL device is described in the Cadence GEMGXL macb

Linux driver header:

https://github.com/torvalds/linux/blob/v4.15/drivers/net/ethernet/cadence/macb.h

22.3 Initialization and Software Interface

Clocking and reset is initialized in the First Stage Boot Loader (FSBL) as described in Chapter

7.

The Gigabit Ethernet Subsystem is controlled by the Cadence GEMGXL macb Linux driver:

https://github.com/torvalds/linux/blob/v4.15/drivers/net/ethernet/cadence/macb_main.c

The switching of GEMGXL TXCLK by the GEMGXL Management Block is controlled by a sec-

ond Linux driver:

https://github.com/riscv/riscv-linux/blob/riscv-linux-4.15/drivers/clk/sifive/gemgxl-mgmt.c

22 Gigabit Ethernet Subsystem
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23

DDR Subsystem

This chapter describes the operation of the DDR subsystem on the FU740-C000.

23.1 DDR Subsystem Overview

The DDR subsystem supports external 32/64-bit wide DDR3, DDR3L, or DDR4 DRAM with

optional ECC. The maximum data rate is 2400 MT/s. The maximum memory depth is 128 GiB

implemented as 1 or 2 ranks.

Figure 40: DDR Subsystem architecture

The DDR Subsystem consists of three main blocks:

1. DDR PHY. Analog PADs. Digital high-speed training and alignment circuits.

2. DDR Controller. Generation of DDR Read/Write/Refresh commands to PHY DFI

interface.
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3. Physical Filter. Prevents memory accesses to the DDR controller that are within the

maximum DDR 128 GiB range but beyond the range of the attached DRAM

devices.

The DDR Subsystem operates on a separate clock, ddrctrlclk, running at 1/4 DDR data rate

with clock domain crossers to the TileLink clock TLCLK.

There are three TileLink slave interfaces:

1. DDR Memory Access Interface. A 256-bit wide TileLink slave node.

2. Physical Filter Control Register Interface. A 64-bit wide TileLink slave node.

3. DDR Controller/Phy Control Register Interface A 64-bit wide TileLink slave node.

A single interrupt output is connected to the PLIC.

23.2 Memory Map

23.2.1 Physical Filter Registers (0x100B_8000–0x100B_8FFF)

The Physical Filter controls whether accesses of certain types are allowed or denied. It is

located between the L2 Cache and the DDR memory controller, so filters accesses that would

otherwise go to the DDR controller.

The filtering behavior is controlled by a series of Device PMP registers which are accessible via

memory mapped reads and writes. The list is a priority allow list. If no Device PMP matches the

transaction will be denied. Otherwise the first Device PMP which is active and address matches

is compared against the requested read and/or write permissions. When an access is denied

the Phyiscal Filter crafts and responds with a Tile Link Denied response message. For transac-

tions in flight, the Physical Filter will only prevent acquisition of new permissions; it will not shoot

down permissions acquired previously.

When a Device PMP register’s a bit is set, it is enabled and Top of Range (TOR) matching is

applied. For a given PMP register, the associated address register forms the top of the address

range, and the preceding PMP address register forms the bottom of the address range. If

PMP[i]'s a field is set to TOR, the entry matches any address y such that PMP[i-1].address ⇐

y < PMP[i].address . If PMP[0].a is set (TOR is applied), zero is used for the lower bound,

and so it matches any address y < PMP[0].address. Note that the addresses bits stored in the

PMP registers are addr_hi, or page address. Pages are 4096 bytes in size.

Setting a PMP’s r or w bit set grants read or write access respectively.

PMP registers are protected by an l or lock bit. Once lock bit is set the PMP register can no

longer be modified until reset. In addition, if the following PMP access is set to TOR, the PMP’s

address cannot be modified, even if its own lock bit is not set.

23 DDR Subsystem
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Offset Name Description

0x00 devicepmp0 Physical Filter Device PMP Register 0

0x08 devicepmp1 Physical Filter Device PMP Register 1

0x10 devicepmp2 Physical Filter Device PMP Register 2

0x18 devicepmp3 Physical Filter Device PMP Register 3

devicepmp0: Physical Filter Device PMP Register 0 (devicepmp0)

Register Offset 0x0

Bits
Field

Name
Attr. Rst. Description

[9:0] Reserved

[35:10] addr_hi RW 0x80000 Page address. Specifies top-of-range page address

for this PMP and bottom-of-range address for follow-

ing PMP. Cannot be modified if l bit is set, or if a bit

and l bit is set on the subsequent PMP.

[55:36] Reserved

56 r RW 0x1 Read bit. When set grants read access to the match-

ing address range. Cannot be modified if l bit is set.

57 w RW 0x1 Write bit. When set grants write access to the match-

ing address range. Cannot be modified if l bit is set.

58 Reserved

59 a RW 0x1 Access bit. When clear, this PMP does not filter any-

thing. When set, Top-of-Range (TOR) filtering is

applied by this PMP. Cannot be modified if l bit is set.

[62:60] Reserved

63 l RW 0x0 Lock bit. When set, prevents modification to other

fields in the register. Cannot be modified if l bit is set.

devicepmp1: Physical Filter Device PMP Register 1 (devicepmp1)

Register Offset 0x8

Table 149: Physical Filter Memory Map

Table 150: devicepmp0: Physical Filter Device PMP Register 0

Table 151: devicepmp1: Physical Filter Device PMP Register 1

23 DDR Subsystem
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Bits
Field

Name
Attr. Rst. Description

[9:0] Reserved

[35:10] addr_hi RW 0x0 Page address. Specifies top-of-range page address for

this PMP and bottom-of-range address for following PMP.

Cannot be modified if l bit is set, or if a bit and l bit is set

on the subsequent PMP.

[55:36] Reserved

56 r RW 0x0 Read bit. When set grants read access to the matching

address range. Cannot be modified if l bit is set.

57 w RW 0x0 Write bit. When set grants write access to the matching

address range. Cannot be modified if l bit is set.

58 Reserved

59 a RW 0x0 Access bit. When clear, this PMP does not filter anything.

When set, Top-of-Range (TOR) filtering is applied by this

PMP. Cannot be modified if l bit is set.

[62:60] Reserved

63 l RW 0x0 Lock bit. When set, prevents modification to other fields

in the register. Cannot be modified if l bit is set.

devicepmp2: Physical Filter Device PMP Register 2 (devicepmp2)

Register Offset 0x10

Bits
Field

Name
Attr. Rst. Description

[9:0] Reserved

[35:10] addr_hi RW 0x880000 Page address. Specifies top-of-range page address

for this PMP and bottom-of-range address for fol-

lowing PMP. Cannot be modified if l bit is set, or if a

bit and l bit is set on the subsequent PMP.

[55:36] Reserved

56 r RW 0x0 Read bit. When set grants read access to the

matching address range. Cannot be modified if l bit

is set.

Table 151: devicepmp1: Physical Filter Device PMP Register 1

Table 152: devicepmp2: Physical Filter Device PMP Register 2

23 DDR Subsystem
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57 w RW 0x0 Write bit. When set grants write access to the

matching address range. Cannot be modified if l bit

is set.

58 Reserved

59 a RW 0x0 Access bit. When clear, this PMP does not filter

anything. When set, Top-of-Range (TOR) filtering is

applied by this PMP. Cannot be modified if l bit is

set.

[62:60] Reserved

63 l RW 0x0 Lock bit. When set, prevents modification to other

fields in the register. Cannot be modified if l bit is

set.

devicepmp3: Physical Filter Device PMP Register 3 (devicepmp3)

Register Offset 0x18

Bits
Field

Name
Attr. Rst. Description

[9:0] Reserved

[35:10] addr_hi RW 0x2000000 Page address. Specifies top-of-range page

address for this PMP and bottom-of-range

address for following PMP. Cannot be modified if l

bit is set, or if a bit and l bit is set on the subse-

quent PMP.

[55:36] Reserved

56 r RW 0x1 Read bit. When set grants read access to the

matching address range. Cannot be modified if l

bit is set.

57 w RW 0x1 Write bit. When set grants write access to the

matching address range. Cannot be modified if l

bit is set.

58 Reserved

59 a RW 0x1 Access bit. When clear, this PMP does not filter

anything. When set, Top-of-Range (TOR) filtering

is applied by this PMP. Cannot be modified if l bit

is set.

Table 152: devicepmp2: Physical Filter Device PMP Register 2

Table 153: devicepmp3: Physical Filter Device PMP Register 3
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[62:60] Reserved

63 l RW 0x0 Lock bit. When set, prevents modification to other

fields in the register. Cannot be modified if l bit is

set.

23.2.2 DDR Controller and PHY Control Registers (0x100B_0000–0x100B_3FFF)

16 KiB of memory-mapped registers control the DDR controller and the PHY mode of operation.

For example, memory timing settings, PAD mode configuration, initialization, and training.

The First Stage Boot Loader (FSBL) directly computes the contents of a subset of these regis-

ters as part of the DDR Reset and Initialization process. These registers are documented below.

Please contact SiFive directly to determine the complete register settings for your application.

Table 154: DDR Controller Control Register 0

DDR Controller Control Register 0

Base Address 0x100B_0000

Bits Field Name Rst. Description

0 start 0x0 Start initialization of DDR Subsystem

[11:8] dram_class 0x0 DDR3:0x6 DDR4:0xA

Table 155: DDR Controller Control Register 19

DDR Controller Control Register 19

Base Address 0x100B_004C

Bits Field Name Rst. Description

[18:16] bstlen 0x2 Encoded burst length.

BL1=0x1 BL2=0x2 BL4=0x3 BL8=3

Table 156: DDR Controller Control Register 21

DDR Controller Control Register 21

Base Address 0x100B_0054

Bits Field Name Rst. Description

Table 153: devicepmp3: Physical Filter Device PMP Register 3
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Table 156: DDR Controller Control Register 21

DDR Controller Control Register 21

0 optimal_rmodew_en 0 Enables DDR controller optimized

Read Modify Write logic

Table 157: DDR Controller Control Register 120

DDR Controller Control Register 120

Base Address 0x100B_01E0

Bits Field Name Rst. Description

16 diable_rd_interleave 0 Disable read data interleaving.

Set to 1 in FSBL for valid TileLink

operation

Table 158: DDR Controller Control Register 132

DDR Controller Control Register 132

Base Address 0x100B_0210

Bits Field Name Rst. Description

7 int_status[7] 0 An error has occured on the port com-

mand channel

8 int_status[8] 0 The memory initialization has been

completed

Table 159: DDR Controller Control Register 136

DDR Controller Control Register 136

Base Address 0x100B_0220

Bits Field Name Rst. Description

[31:0] int_mask 0 MASK interrupt due to cause

INT_STATUS [31:0]

23.2.3 DDR Memory (0x8000_0000–0x1F_7FFF_FFFF)

The attached DDR is memory mapped starting at address 0x8000_0000.

23 DDR Subsystem
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23.3 Reset and Initialization

At power-on, the DDR Subsystem is held in reset by the PRCI block.

The DDR Subsystem is initialized in the First Stage Boot Loader (FSBL) as follows:

1. The DDR Subsystem DDRCTRLCLK input clock is started. DDRPLL in the PRCI is

programmed to generate the DDR Subsystem clock, which runs at 1/4 the memory

MT/s. See Chapter 7.

2. The DDR Subsystem is brought out of reset.

a. The DDR controller reset is released by setting the PRCI Peripheral

Devices Reset Control Register (devicesresetreg) field

ddr_ctrl_rst_n to 1.

b. A wait of one full DDRCTRLCLK cycles occurs.

c. The DDR controller register interface reset and DDR Subsystem PHY

reset are released by setting PRCI register fields ddr_axi_rst_n,

ddr_ahb_rst_n and ddr_phy_rst_n to 1.

d. A wait of 256 full DDRCTRLCLK cycles occurs.

3. The DDR Controller configuration registers at address 0x100B_0000 to

0x100B_0424 are set. The start register field in the DDR Subsystem Control Reg-

ister 0 (0x100B_0000) is held at 0.

4. The DDR PHY configuration registers from address 0x100B_5200 to 0x100B_52F8

are set.

5. The DDR PHY configuration registers from address 0x100B_4000 to 0x100B_51FC

are set.

6. The "encoded burst length" bstlen field in DDR Subsystem Control Register 19 is

set at address 0x100B_004C.

7. All interrupts are disabled by setting int_mask in DDR Subsystem control register

136 at address 0x100B_0220 to 0xFFFF_FFFF.

8. The start register field in DDR Subsystem Control Register 0 at address

0x100B_0000 is set to 1, activating the DDR calibration and training operation.

9. The CPU waits for memory initialization completion, polling register int_status[8]

in DDR Subsystem Control Register 132 (0x100B_0210).

10. The Bus Blocker in front of the DDR controller memory slave port is disabled by set-

ting Bus Blocker Control Register 0 at address 0x100B_8000. Bits 56 to 59 are set

to 0xF enabling all memory operations. The least significant bits are set to the upper

DDR address in 32-bit words.

11. The DDR Subsystem is ready to service memory accesses at base address

0x8000_0000.

23 DDR Subsystem
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24

PCIe x8 AXI4 Subsystem

This chapter describes the use and functionality of the PCIe x8 AXI4 Subsystem on the

FU740-C000.

24.1 PCIe X8 AXI4 Subsystem Overview

The PCIe X8 AXI4 Subsystem manages the PCI Express lanes which are controlled by the

FU740-C000. The PCIe Subsystem is an IO coherent/one-way coherent master into the L2

cache of the system. The PCIe AXI4 Subsystem operates in Gen3 mode and supports a data

width of 128 or 256 bits. The figure below shows the architecture of the PCIe X8 AXI4 Subsys-

tem.

The PCIe X8 AXI4 Subsystem is composed of two main blocks:

1. PCIe PHY:

◦ PIPE 4 interface.

◦ Datapath encoding and decoding.

◦ Error reporting.

2. PCIe Controller

◦ Initialization of the PHY.

◦ Packet TX and RX commands to the PHY PIPE interface.
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Figure 41: PCIe Block Diagram

The PHY module manages incoming and outgoing packets from and to the PCIe lane. The PCIe

controller implements three PCIe protocol layers: Transaction, Data Link and MAC, where the

Transaction layer is used for packet transmission between a device on the PCI Express lane

and the SoC. The PCIe X8 AXI4 Subsystem receives two external reference clock input signals

port_refclk_p and port_refclk_n. Additionally, the PCIe Controller is connected to two sep-

arate clock and reset signals: clkrst_aux_clk and clkrst_power_up_rst respectively.

There are 4 devices connected to the PCIe X8 AXI4 Subsystem:

1. AXI4 Master Device which provides a 64 bit address and 128 bit data packet.

2. AXI4 Slave Device which receives 64 bit address and 128 bit data packet.

3. AXI4 Slave Device which receives 64 bit address and 128 bit data packet.

4. A MGMT device.

24 PCIe x8 AXI4 Subsystem
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25

Error Device

The error device is a TileLink slave that responds to all requests with a TileLink error. It has no

registers. The entire memory range discards writes and returns zeros on read. Both operation

acknowledgments carry an error indication.

The error device serves a dual role. Internally, it is used as a landing pad for illegal off-chip

requests. However, it also useful for testing software handling of bus errors.
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26

Debug

This chapter describes the operation of SiFive debug hardware, which follows The RISC‑V

Debug Specification, Version 0.13. Currently only interactive debug and hardware breakpoints

are supported.

26.1 Debug CSRs

This section describes the per-hart trace and debug registers (TDRs), which are mapped into

the CSR space as follows:

Table 160: Debug Control and Status Registers

CSR Name Description Allowed Access Modes

tselect Trace and debug register select D, M

tdata1 First field of selected TDR D, M

tdata2 Second field of selected TDR D, M

tdata3 Third field of selected TDR D, M

dcsr Debug control and status register D

dpc Debug PC D

dscratch Debug scratch register D

The dcsr, dpc, and dscratch registers are only accessible in debug mode, while the tselect

and tdata1-3 registers are accessible from either debug mode or machine mode.
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26.1.1 Trace and Debug Register Select (tselect)

To support a large and variable number of TDRs for tracing and breakpoints, they are accessed

through one level of indirection where the tselect register selects which bank of three

tdata1-3 registers are accessed via the other three addresses.

The tselect register has the format shown below:

Table 161: tselect CSR

Trace and Debug Select Register

CSR tselect

Bits Field Name Attr. Description

[31:0] index WARL Selection index of trace and debug registers

The index field is a WARL field that does not hold indices of unimplemented TDRs. Even if

index can hold a TDR index, it does not guarantee the TDR exists. The type field of tdata1

must be inspected to determine whether the TDR exists.

26.1.2 Trace and Debug Data Registers (tdata1-3)

The tdata1-3 registers are XLEN-bit read/write registers selected from a larger underlying

bank of TDR registers by the tselect register.

Table 162: tdata1 CSR

Trace and Debug Data Register 1

CSR tdata1

Bits Field Name Attr. Description

[27:0] TDR-Specific Data

[31:28] type RO Type of the trace & debug register selected

by tselect

Table 163: tdata2/3 CSRs

Trace and Debug Data Registers 2 and 3

CSR tdata2/3

Bits Field Name Attr. Description

[31:0] TDR-Specific Data

26 Debug
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The high nibble of tdata1 contains a 4-bit type code that is used to identify the type of TDR

selected by tselect. The currently defined types are shown below:

Table 164: tdata Types

Type Description

0 No such TDR register

1 Reserved

2 Address/Data Match Trigger

≥ 3 Reserved

The dmode bit selects between debug mode (dmode=1) and machine mode (dmode=1) views of

the registers, where only debug mode code can access the debug mode view of the TDRs. Any

attempt to read/write the tdata1-3 registers in machine mode when dmode=1 raises an illegal

instruction exception.

26.1.3 Debug Control and Status Register (dcsr)

This register gives information about debug capabilities and status. Its detailed functionality is

described in The RISC‑V Debug Specification, Version 0.13.

26.1.4 Debug PC (dpc)

When entering debug mode, the current PC is copied here. When leaving debug mode, execu-

tion resumes at this PC.

26.1.5 Debug Scratch (dscratch)

This register is generally reserved for use by Debug ROM in order to save registers needed by

the code in Debug ROM. The debugger may use it as described in The RISC‑V Debug Specifi-

cation, Version 0.13.

26.2 Breakpoints

The FU740-C000 supports two hardware breakpoint registers per hart, which can be flexibly

shared between debug mode and machine mode.

When a breakpoint register is selected with tselect, the other CSRs access the following infor-

mation for the selected breakpoint:

26 Debug
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Table 165: TDR CSRs when used as Breakpoints

CSR Name Breakpoint Alias Description

tselect tselect Breakpoint selection index

tdata1 mcontrol Breakpoint match control

tdata2 maddress Breakpoint match address

tdata3 N/A Reserved

26.2.1 Breakpoint Match Control Register (mcontrol)

Each breakpoint control register is a read/write register laid out in Table 166.

Table 166: Test and Debug Data Register 3

Breakpoint Control Register (mcontrol)

Register Offset CSR

Bits Field

Name

Attr. Rst. Description

0 R WARL X Address match on LOAD

1 W WARL X Address match on STORE

2 X WARL X Address match on Instruction FETCH

3 U WARL X Address match on User Mode

4 S WARL X Address match on Supervisor Mode

5 Reserved WPRI X Reserved

6 M WARL X Address match on Machine Mode

[10:7] match WARL X Breakpoint Address Match type

11 chain WARL 0 Chain adjacent conditions.

[15:12] action WARL 0 Breakpoint action to take.

[17:16] sizelo WARL 0 Size of the breakpoint. Always 0.

18 timing WARL 0 Timing of the breakpoint. Always 0.

19 select WARL 0 Perform match on address or data.

Always 0.

20 Reserved WPRI X Reserved

26 Debug

Introduction © SiFive, Inc. Page 207



Table 166: Test and Debug Data Register 3

Breakpoint Control Register (mcontrol)

[26:21] maskmax RO 4 Largest supported NAPOT range

27 dmode RW 0 Debug-Only access mode

[31:28] type RO 2 Address/Data match type, always 2

The type field is a 4-bit read-only field holding the value 2 to indicate this is a breakpoint con-

taining address match logic.

The action field is a 4-bit read-write WARL field that specifies the available actions when the

address match is successful. The value 0 generates a breakpoint exception. The value 1 enters

debug mode. Other actions are not implemented.

The R/W/X bits are individual WARL fields, and if set, indicate an address match should only be

successful for loads/stores/instruction fetches, respectively, and all combinations of imple-

mented bits must be supported.

The M/S/U bits are individual WARL fields, and if set, indicate that an address match should

only be successful in the machine/supervisor/user modes, respectively, and all combinations of

implemented bits must be supported.

The match field is a 4-bit read-write WARL field that encodes the type of address range for

breakpoint address matching. Three different match settings are currently supported: exact,

NAPOT, and arbitrary range. A single breakpoint register supports both exact address matches

and matches with address ranges that are naturally aligned powers-of-two (NAPOT) in size.

Breakpoint registers can be paired to specify arbitrary exact ranges, with the lower-numbered

breakpoint register giving the byte address at the bottom of the range and the higher-numbered

breakpoint register giving the address 1 byte above the breakpoint range, and using the chain

bit to indicate both must match for the action to be taken.

NAPOT ranges make use of low-order bits of the associated breakpoint address register to

encode the size of the range as follows:

Table 167: NAPOT Size Encoding

maddress Match type and size

a…aaaaaa Exact 1 byte

a…aaaaa0 2-byte NAPOT range

a…aaaa01 4-byte NAPOT range

a…aaa011 8-byte NAPOT range

26 Debug
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Table 167: NAPOT Size Encoding

a…aa0111 16-byte NAPOT range

a…a01111 32-byte NAPOT range

… …

a01…1111 231-byte NAPOT range

The maskmax field is a 6-bit read-only field that specifies the largest supported NAPOT range.

The value is the logarithm base 2 of the number of bytes in the largest supported NAPOT range.

A value of 0 indicates that only exact address matches are supported (1-byte range). A value of

31 corresponds to the maximum NAPOT range, which is 231 bytes in size. The largest range is

encoded in maddress with the 30 least-significant bits set to 1, bit 30 set to 0, and bit 31 holding

the only address bit considered in the address comparison.

To provide breakpoints on an exact range, two neighboring breakpoints can be combined with

the chain bit. The first breakpoint can be set to match on an address using action of 2 (greater

than or equal). The second breakpoint can be set to match on address using action of 3 (less

than). Setting the chain bit on the first breakpoint prevents the second breakpoint from firing

unless they both match.

26.2.2 Breakpoint Match Address Register (maddress)

Each breakpoint match address register is an XLEN-bit read/write register used to hold signifi-

cant address bits for address matching and also the unary-encoded address masking informa-

tion for NAPOT ranges.

26.2.3 Breakpoint Execution

Breakpoint traps are taken precisely. Implementations that emulate misaligned accesses in soft-

ware will generate a breakpoint trap when either half of the emulated access falls within the

address range. Implementations that support misaligned accesses in hardware must trap if any

byte of an access falls within the matching range.

Debug-mode breakpoint traps jump to the debug trap vector without altering machine-mode reg-

isters.

Machine-mode breakpoint traps jump to the exception vector with "Breakpoint" set in the

mcause register and with badaddr holding the instruction or data address that caused the trap.
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26.2.4 Sharing Breakpoints Between Debug and Machine Mode

When debug mode uses a breakpoint register, it is no longer visible to machine mode (that is,

the tdrtype will be 0). Typically, a debugger will leave the breakpoints alone until it needs them,

either because a user explicitly requested one or because the user is debugging code in ROM.

26.3 Debug Memory Map

This section describes the debug module’s memory map when accessed via the regular system

interconnect. The debug module is only accessible to debug code running in debug mode on a

hart (or via a debug transport module).

26.3.1 Debug RAM and Program Buffer (0x300–0x3FF)

The FU740-C000 has 16 32-bit words of program buffer for the debugger to direct a hart to exe-

cute arbitrary RISC-V code. Its location in memory can be determined by executing aiupc

instructions and storing the result into the program buffer.

The FU740-C000 has two 32-bit words of debug data RAM. Its location can be determined by

reading the DMHARTINFO register as described in the RISC-V Debug Specification. This RAM

space is used to pass data for the Access Register abstract command described in the RISC-V

Debug Specification. The FU740-C000 supports only general-purpose register access when

harts are halted. All other commands must be implemented by executing from the debug pro-

gram buffer.

In the FU740-C000, both the program buffer and debug data RAM are general-purpose RAM

and are mapped contiguously in the Core Complex memory space. Therefore, additional data

can be passed in the program buffer, and additional instructions can be stored in the debug data

RAM.

Debuggers must not execute program buffer programs that access any debug module memory

except defined program buffer and debug data addresses.

The FU740-C000 does not implement the DMSTATUS.anyhavereset or

DMSTATUS.allhavereset bits.

26.3.2 Debug ROM (0x800–0xFFF)

This ROM region holds the debug routines on SiFive systems. The actual total size may vary

between implementations.

26.3.3 Debug Flags (0x100–0x110, 0x400–0x7FF)

The flag registers in the debug module are used for the debug module to communicate with

each hart. These flags are set and read used by the debug ROM and should not be accessed

by any program buffer code. The specific behavior of the flags is not further documented here.

26 Debug

Introduction © SiFive, Inc. Page 210



26.3.4 Safe Zero Address

In the FU740-C000, the debug module contains the addresses 0x0 through 0xFFF in the mem-

ory map. Memory accesses to these addresses raise access exceptions, unless the hart is in

debug mode. This property allows a "safe" location for unprogrammed parts, as the default

mtvec location is 0x0.

26.4 Debug Module Interface

The SiFive Debug Module (DM) conforms to The RISC‑V Debug Specification, Version 0.13. A

debug probe or agent connects to the Debug Module through the Debug Module Interface

(DMI). The following sections describe notable spec options used in the implementation and

should be read in conjunction with the RISC‑V Debug Specification.

26.4.1 DM Registers

dmstatus register

dmstatus holds the DM version number and other implementation information. Most impor-

tantly, it contains status bits that indicate the current state of the selected hart(s).

dmcontrol register

A debugger performs most hart control through the dmcontrol register.

Table 168: Debug Control Register

Control Function

dmactive This bit enables the DM and is reflected in the dmactive output signal.

When dmactive=0, the clock to the DM is gated off.

ndmreset This is a read/write bit that drives the ndreset output signal.

resethaltreq When set, the DM will halt the hart when it emerges from reset.

hartreset Not Supported

hartsel This field selects the hart to operate on

hasel When set, additional hart(s) in the hart array mask register are selected in

addition to the one selected by hartsel.

hawindow register

This register contains a bitmap where bit 0 corresponds to hart 0, bit 1 to hart 1, etc. Any bits set

in this register select the corresponding hart in addition to the hart selected by hartsel.
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26.4.2 Abstract Commands

Abstract commands provide a debugger with a path to read and write processor state. Many

aspects of Abstract Commands are optional in the RISC‑V Debug Spec and are implemented

as described below.

Table 169: Debug Abstract Commands

Cmdtype Feature Support

Access

Register

GPR reg-

isters

Access Register command, register number 0x1000 - 0x101f

CSR regis-

ters

Not supported. CSRs are accessed using the Program Buffer.

FPU regis-

ters

Not supported. FPU registers are accessed using the Program

Buffer.

Autoexec Both autoexecprogbuf and autoexecdata are supported.

Post-incre-

ment

Not supported.

Quick

Access

Not supported.

Access

Memory

Not supported. Memory access is accomplished using the Pro-

gram Buffer.

26.4.3 Multi-core Synchronization

The DM is configured with one Halt Group which may be programmed to synchronize execution

between harts or between hart(s) and external logic such as a cross-trigger matrix. The Halt

Group is configured using the dmcs2 register.
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27

Debug Interface

The SiFive FU740-C000 includes the JTAG debug transport module (DTM) described in The

RISC‑V Debug Specification 0.13. This enables a single external industry-standard 1149.1

JTAG interface to test and debug the system. The JTAG interface is directly connected to input

pins.

27.1 JTAG TAPC State Machine

The JTAG controller includes the standard TAPC state machine shown in Figure 42. The state

machine is clocked with TCK. All transitions are labelled with the value on TMS, except for the

arc showing asynchronous reset when TRST=0.
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Figure 42: JTAG TAPC state machine.

27.2 Resetting JTAG Logic

The JTAG logic must be asynchronously reset by asserting the power-on-reset signal. This dri-

ves an internal jtag_reset signal.

Asserting jtag_reset resets both the JTAG DTM and debug module test logic. Because parts

of the debug logic require synchronous reset, the jtag_reset signal is synchronized inside the

FU740-C000.

During operation, the JTAG DTM logic can also be reset without jtag_reset by issuing 5

jtag_TCK clock ticks with jtag_TMS asserted. This action resets only the JTAG DTM, not the

debug module.

27.3 JTAG Clocking

The JTAG logic always operates in its own clock domain clocked by jtag_TCK. The JTAG logic

is fully static and has no minimum clock frequency. The maximum jtag_TCK frequency is part-

specific.
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27.4 JTAG Standard Instructions

The JTAG DTM implements the BYPASS and IDCODE instructions.

On the FU740-C000, the IDCODE is set to 0x20000913.

27.5 JTAG Debug Commands

The JTAG DEBUG instruction gives access to the SiFive debug module by connecting the

debug scan register between jtag_TDI and jtag_TDO.

The debug scan register includes a 2-bit opcode field, a 7-bit debug module address field, and a

32-bit data field to allow various memory-mapped read/write operations to be specified with a

single scan of the debug scan register.

These are described in The RISC‑V Debug Specification 0.13.
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28

Error Correction Codes (ECC)

Error correction codes (ECC) are implemented on various memories within the FU740-C000,

allowing for the detection and, in some cases, correction of memory errors. The following SRAM

blocks on the FU740-C000 support ECC: data cache, L2 cache, and DTIM.

The minimal case of an ECC error is a single-bit error that is detected, reported via interrupt

handler, and corrected automatically by hardware without any software intervention. More diffi-

cult scenarios involve double or multi-bit errors that are still reported and tracked in hardware

but are not correctable. The ECC hardware includes logic for detection and correction, in addi-

tion to 7 redundant bits per 32-bit codeword or 8 redundant bits per 64-bit codeword.

Table 170: Memory Protection Summary

Name Protection Type

Branch Predictor None

D-Cache Data SECDED ECC (32+7b)

D-Cache Tag SECDED ECC

DTIM SECDED ECC (32+7b)

L2 Cache Data SECDED ECC (64+8b)

L2 Directory Tag SECDED ECC

L2TLB None

28.1 ECC Configuration

All blocks with ECC support are enabled globally through the Bus-Error Unit (BEU) configuration

registers. The BEU is used to configure ECC reporting and enable interrupt handling via the

global or local interrupt controller. The global interrupt controller is the Platform-Level Interrupt

Controller (PLIC). The local interrupt controller is the Core-Local Interruptor (CLINT). The BEU
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registers plic_interrupt and local_interrupt are used to route the errors to the respective

interrupt controller. Additionally, the BEU can be used for TileLink bus errors.

28.1.1 ECC Initialization

Any SRAM block containing ECC functionality needs to be initialized prior to use. This does not

include cache memory, since an internal state machine initializes data cache valid bits, and

instruction cache valid bits are flops with reset. ECC will correct defective bits based on memory

contents, so if memory is not first initialized to a known state, then the ECC will not operate as

expected. It is recommended to use a DMA, if available, to write the entire SRAM or cache to

zeros prior to enabling ECC reporting. If no DMA is present, use store instructions issued from

the processor. Initializing memory with ECC from an external bus is not recommended. After ini-

tialization, ECC-related registers can be written to zero, and then ECC reporting can be

enabled. 64-bit aligned writes are recommended.

The startup code in the freedom-metal repository provides a method to automatically initialize

memory with ECC. This is accomplished using an assembly-level function

_metal_memory_scrub, located in file scrub.S. The linker script provides the symbol

__metal_eccscrub_bit as a flag to enable the startup code to initialize memory with ECC. It is

important to note that this memory initialization is limited to 64 KB to support RTL simulation run

times. If unexpected ECC errors occur, check the range of the startup initialization to ensure it

covers the region used by the software application.

28.2 ECC Interrupt Handling and Error Injection

Single-bit errors are automatically repaired by the hardware.

BEU errors are always enabled and thus do not have a control bit in mie (Machine Interrupt

Enable) CSR. Likewise, there is no dedicated control bit for BEU errors in the mideleg

(Machine Interrupt Delegation) CSR, so it cannot be delegated to a lower privilege mode than

M-mode. Error injection, and thus software handling of errors, can be accomplished manually by

writing the BEU cause register. The BEU is further described in Chapter 11.

Monitoring overall ECC events can be accomplished in software via the interrupt handler.

The L2 Cache Controller contains hardware counters to track ECC events, and optionally inject

ECC errors to test the software handling of ECC events. The L2 Cache Controller is further

described in Chapter 14.

The exception code value is located in the mcause (Machine Trap Cause) CSR. When BEU

interrupts are routed thorugh the PLIC, the default exception code value will be 11 (0xB).

When ECC interrupts are routed through the CLINT, the default exception code value will be

128 (0x80). These exception codes are further detailed in Section 9.3.5.
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28.3 Hardware Operation Upon ECC Error

Hardware will operate differently depending on which memory type encounters an ECC errror:

• Data Cache: The error is corrected and the cache line is invalidated and written back to the

next level of memory.

• DTIM: Single-bit errors are corrected and written back to the RAM.

• L2 Cache: Single-bit correction for L2 data and metadata (metadata includes index, tag, and

directory information). Double-bit detection only on the L2 data array.

Double-bit errors are reported at the Core Complex boundary via the halt_from_tile_X signal

that, if asserted, remains high until reset.
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