
A Roadmap to
Self-service Data

Lakes in the
Cloud

Unlocking the value of streaming data by simplifying big data
discovery, processing and management in cloud data lakes.

Written by Yoni Iny, Co-founder & CTO, Upsolver

Technical Whitepaper

Table of Contents

Executive Summary …………………………...……………………………........4

Drivers of Streaming Data Complexity………………………………........5

Non-static data ……………………………………………................................5

Unstructured versus tabular ……………………………………………...........6

Experimental versus standardized use cases..................................6

Storage is a major cost factor……………………………………………..........6

Rise of the Data Lake ……………………………………………....................7

Challenges and entry barriers............. ……………………………............8

Upsolver: Reducing Friction and Complexity with a

Streaming Data Platform.........……………………………...……............11

Design Principles....……………....……………....……………....…………......11

Reference Architecture.............……………....……………....................12

2

Table of Contents

The Platform: Core Components.........……………....…………….......13

Data Management and Governance ..13

Stateful Stream Processing, ETL and Data Transformation..........16

Real-time and Ad-hoc Data Consumption....................................20

Use Case Examples and Reference Architectures......................25

Sisense Drives New Analytical Insights from S3...........................25

Bigabid Builds a Real-time Architecture.......................................27

Next Steps...29

3

Executive Summary

While the transformative nature of big data is commonly celebrated, its

organizational applications are often less glamorous: Gartner analyst Nick

Heudecker has recently estimated that 85% of big data projects fail, largely due

to misaligned expectations, management resistance, lack of skills, and data

governance challenges. From a technology perspective, failure takes the form of

an inability to deliver tangible business benefits from big data initiatives within
actionable time frames, despite significant resources and engineering hours

being sunk into them.

Technical departments struggle to maintain the complex software and hardware

stacks needed to effectively work with big data, and encounter difficulties in

hiring and retaining skilled personnel across the analytical life-cycle - from data

scientists who translate swathes of unstructured data into relevant insights, to

data engineers who build the infrastructure that enables data exploration and

experimentation.

In this paper we will present the infrastructural challenges of working with big

data streams; we will then proceed to introduce our solution: Upsolver, a

Streaming Data Platform that provides data management, processing and

delivery as services, within a data lake architecture that utilizes the scalability of

object storage such as Amazon S3. We will show how Upsolver simplifies the

process of transforming streaming data into workable data, dramatically

shortening time-to-value and increasing success rates for streaming data

projects.

4

https://www.techrepublic.com/article/85-of-big-data-projects-fail-but-your-developers-can-help-yours-succeed/

Drivers of Streaming Data Complexity

Streaming data is not merely big data - it is also fundamentally different data,

produced by different sources and requiring its own set of tools to handle.

Accordingly, the solution is rarely as simple as getting a bigger database.

Traditional organizational data originates from various operational systems such

as ERP, CRM, finance and HR systems-of-record; streaming data is typically

produced by sources such as industrial sensors, clickstreams, servers and user

app activity. This creates several core differences between streaming and

traditional data:

Non-static data

A traditional dataset typically captures a clearly delineated time and space, e.g.:

number of items currently in stock, new employees hired in the past year;

whereas big data is generated constantly, delivered in a continuous stream of

small files, capturing event-based interactions on a second-by-second basis,

e.g.: servers relaying their current state of operation, or a log of user activity on

a mobile app. Querying this data means creating an arbitrary start and end

point and creates challenges around data freshness, missing records and

synchronization.

5

Unstructured versus tabular

Due to the high velocity in which event-based data is produced, and its highly

disparate nature, it will be stored as objects (e.g. JSON files) rather than tables.

The relational databases that power almost every enterprise and every

application are built on tabular storage; using them to store unstructured data

requires lengthy cleansing and transformation processes.

Experimental versus standardized use cases

Common data sources lend themselves to tried-and-tested forms of analysis

and reporting; the potential of streaming data is unlocked through exploratory

techniques, predictive modeling and machine learning. Applying these analyses

requires broader and more flexible access to data, and can be hindered by the

need to structure data according to existing enterprise data warehouse

specifications.

Storage is a major cost factor

Databases can usually get away with using expensive storage with multiple

redundancies, since the size of the data is relatively small and the compute and

licensing costs outweigh the cost of storage. When dealing with big data,

storage costs can easily dwarf all other project costs.

6

Rise of the Data Lake

The unique characteristics of streaming data lead organizations to accept the

limitations of relational databases for storing and analyzing streams; instead,

recent years have seen a growing prominence of data lake architectures.

In this framework, the organization foregoes the attempt to ‘tame’ big data as it

is being ingested, instead adopting the principle of store now, analyze later:

records are stored in their raw, unstructured and schema-less form in a

distributed file system such as HDFS, or in cloud object storage such as Amazon

S3. The complicated process of transforming it into workable form is postponed

until the time the need arises to do so, in order to satisfy a new business

application or answer an analytical query.

Data lakes present several advantage for streaming data architectures:

• Easy to ingest data: the data lake approach removes the need for the

complex and expensive ETL processes that are prerequisite to storing

streaming data in a relational database; instead, a relevant subset of the data

can be transformed and wrangled as needed to address the particulars of

the use case that is being developed. This reduces much of the upfront costs

of working with big data.

7

• Ability to support a large range of use cases: Data lakes provide vastly greater

flexibility for developing new data-driven applications, especially for

innovative and exploratory analyses that rely on access to data in its original

form. Since invariably transformations into a rigid schema cause loss of

connections within the data, exploratory analysis often finds itself facing the

brick wall of not having retained the necessary information for that specific

question; the data lake approach sidesteps this issue by storing all the the

raw data in its original form, making it easier to answer questions based on

historical data.

• Reduced storage costs: In data lakes, storage is decoupled from compute and

can rely on inexpensive object storage in the cloud or on-premises. Since

compute resources are dramatically more costly than storage, data lakes can

significantly reduce infrastructure costs when working with large amounts of

data compared to storing the same amount of data in a database. This

comes in addition to the savings associated with removing the need for data

transformation and wrangling upon ingest.

Challenges and entry barriers:

Nevertheless, data lakes are not a silver bullet; while they serve to reduce

complexity in storing data, they also introduce new challenges around

managing, accessing and analyzing data, often becoming massive engineering

8

undertakings without clear results for the business. Typical stumbling blocks

include:

• Governance: data lakes are at constant risks of becoming data swamps as

new data is ‘dumped’ into them without a clear process of cataloging,

managing and visualizing existing data assets. This creates difficulty in

extracting relevant datasets and can pose governance and security

challenges around access permissions.

• Performance and latency: unstructured data must be structured before it

can be queried, resulting in lengthy and code-intensive ETL jobs. Batch

processing can produce partial, inaccurate results (limited to the data in the

batch), while stream processing introduces its own set of technical

challenges. Additional latencies and performance issues manifest due to

query engines needing to process millions of small files in order to return

query results; optimizing the storage layer through compression, compaction

and columnar file formats will help, but it is in itself a complex process that

requires specialized knowledge.

• Complexity and time to value: addressing the previous challenges poses a

major engineering challenge. DevOps and data engineering teams need to

invest massive amounts of resources and time in hardware and software.

Managed cloud services can address some of the physical infrastructure (at a

cost), but the latter still requires a broad set of open-source and licensed

9

software tools which vary based on the particular data lake implementation, as

well as significant customization and manual coding in Python and Scala to

manage, process and structure streaming data. Skilled big data engineers are

needed to maintain this infrastructure - and demand for these professionals

greatly exceeds supply, making them to difficult to hire and retain.

Reference architecture for cloud data lakes (without

Upsolver)

As we can see, this type of architecture relies on a lot of moving parts and a lot

of data engineering. For the data lake to provide value, every piece of the puzzle

is properly optimized and working as expected – which requires hundreds of big

data engineering hours.

10

The end result: Projects that drag for months and years with no definite

endpoint, exceeding budgets and failing to deliver the promised business

results - leading decision makers to conclude that the streaming data initiative

has failed, abandoning it altogether and potentially stifling innovation.

Upsolver: Reducing Friction and Complexity With a

Streaming Data Platformr and potentially stifling

innovation.

Design Principles:

In the previous chapter we highlighted the problem with streaming data;

traditional, data warehouse-based approaches are inadequately suited for

storing streams, while data lakes create significant complexity and technical

overhead when data needs to be effectively analyzed.

Upsolver modernizes data lakes by applying the design principles of SaaS and

full-stack analytics platforms to streaming data integration, processing and

analysis. This means giving data consumers an end-to-end platform for

transforming streaming data into usable data, with minimal IT or data

engineering overhead.

A visual self-service solution for governing data and building ETL flows: typical

data lake architectures rely on code-intensive frameworks for schema

11

discovery, metadata management and data modeling; Upsolver provides a

WYSIWYG user interface for visual data preparation and management.

A stateful ETL engine for streaming use cases: Upsolver uses homegrown in-

memory processing and compression algorithms to deliver performance that far

exceeds open source stream processing frameworks such as Apache Spark, out

of the box and without the need for months of manual performance tuning.

Automating data engineering best practices: the need to transform thousands

of unstructured small files into structured tables typically requires months of

coding to build ETL flows and data pipelines according to a convoluted list of

necessary best practices; Upsolver handles this process behind the scenes in a

manner that is almost entirely invisible to the end user, and automatically

transforms raw data streams into a high-performance data lake.

Reference architecture:

12

In the next sections we will dive deeper into the Upsolver data lake architecture,

and explain how it addresses current challenges in the data lake world and

enables data consumers to rapidly unlock the value of their big data streams.

The Platform: Core Components

1. Data Management and Governance

Data lakes are inherently messy as they ingest data as close as possible to its

raw form. However, optimizing raw data storage for analytical performance can

have tremendous impact on the ability to utilize the data further down the

road, while schema discovery and metadata management are crucial for

governing and controlling your data lake and preventing it from ‘swampifying’.

Storage

In order to be able to work with large quantities of data, efficient data loading is

essential. Data loaded into the data lake should be standardized and

compressed to make it easier for data consumers to work with it without the

end users needing to intimately understand the underlying storage layer.

Upsolver automatically optimizes the storage layer, using a hierarchical folder

structure with a lexicographic date part to facilitate data discovery. Files created

are either Avro or Parquet and rely on either Snappy or Gzip compression to

provide optimal performance when accessed by common query engines such as

Athena, Presto or Hive. Let’s look at some of the details behind each process.

13

File Formats

Avro and Parquet are complementary formats, where Avro is a self describing

hierarchical serialization format, and Parquet is a columnar file format that uses

Avro as the in memory representation. Data can easily be converted between

the two formats, and Avro is a very flexible and fast format. Upsolver ingests

data in Avro while creating columnar Parquet files to facilitate analytical

querying.

Some limitations exist in the Avro and Parquet specifications, for example field

names must be alphanumeric. Since real data can have any format and losing

information on the original data is undesirable, Upsolver uses an encoding

within the Avro/Parquet format in order to extend it to all field names.

Compression

Upsolver gives users the option to choose between Snappy and Gzip for all data

storage. Snappy is a fast and standard compression algorithm that gives

reasonable compression rates. Gzip results in smaller files and is also standard,

but has a much higher CPU overhead, which can be undesirable when

processing many terabytes of data. Compression is one of the most important

tools in reducing the size and cost of a data lake; data should never be stored

uncompressed!

14

Schema Discovery and Metadata Management

Metadata management is required since the data lake is opaque without it.

Unlike databases with built in querying and management tools, a data lake

without metadata requires expensive and time consuming queries with external

tools in order to figure out what it contains. Without a central repository of

such information, users will be stuck doing these actions over and over each

time they want to inspect their data.

An often-repeating pattern is a user creating an ETL flow based on where data

should be and how they expect the data to look, only to discover after a costly

ETL process that it isn’t what they expected. We call this “blind ETL” and it is

incredibly pointless and wasteful. A user doing a transformation of data should

have full visibility into the actual data at their fingertips, so that they can make

informed decisions and correct data issues before running an expensive batch

job.

In Upsolver, rich metadata on all fields in the data is automatically extracted

when data is loaded, and stored in an Upsolver Materialized View (more on that

later). This allows consumers of the data lake to operate within a framework

that gives visibility into the data at every step, preventing costly mistakes in ETL

definitions and helping with data governance.

15

2. Stateful Stream Processing, ETL and Data

Transformation

Why managing state is a challenge in data lake ETLs

Data lakes are highly valuable to enable agile data science, as storing the data in

its original form gives us the ability to reproduce an accurate picture of a

historical state of affairs [link to event sourcing article somewhere]. However,

unstructured object storage is not built for analytic querying: Unstructured

streams are impossible to analyze so ETLs (many many ETLs) are required to

structure the data so it could be queried.

Application state, is what makes the ETL challenge much much harder with data

lakes. Data applications usually require an aggregate view of the data over time

(state). For example: predicting the next best offer for a user requires a dataset

with historic user behaviour, tracking funnel KPIs like CTR requires a join

between a stream of views and a stream of clicks.

Unlike data lakes, relational databases are built for joining data since they have

indices. With data lakes, there are 2 options: Limit the use case to recent data

(streaming analytics systems like Spark Streaming store raw data in RAM for

joins) or spin-up an external NoSQL database (Redis and Cassandra are popular

options) to manage state over a long period of time. The first option is limiting

functionality and the second option creates a huge overhead.

16

In order to o accomplish the vision of data lakes - agile analytics and data

science over un/semi structured data, a powerful ETL engine is required.

Stateful ETLs With Upsolver

Upsolver uses a built-in indexing system called Materialized Views (see below)

to manage state. Materialized Views store the results of a Group-By query,

running continuously on data streams, as a time-series. The relevant results can

be fetched using a key and a snapshot time. For example: A data scientist could

retrieve results from any snapshot in time and avoid the impact of Data Leakage

in Models.

Materialized Views are persisted to an object storage, like AWS S3 and HDFS,

and cached in RAM for fast retrieval (under 1 millisecond). Materialized Views

work at a low RAM footprint (benchmark is 10% comparing to Cassandra) so it’s

possible to load a lot of data into RAM to drive stateful use cases like machine

learning.

By utilizing object storage and avoiding local disk storage, Materialized Views

dramatically reduce the cost and effort relative to using an external database,

especially when it comes to scaling, replication and recovery.

Lastly, Materialized Views are built retroactively (Replay / Re-stream) using data

already stored in an object storage, saving precious time spent waiting for data

to accumulate.

Tools for workflow management, data transformation and movement

17

https://machinelearningmastery.com/data-leakage-machine-learning/

Data in a data lake is only as useful as your ability to consume it, which

inevitably requires ETL. For example, join is a very slow operation in a data lake

(no native indexing) so joins are usually performed in the ETL stage and not in

the query stage.

The current go-to tool for big data transformation is Spark. Spark is an excellent

tool that gives incredible flexibility in transformations and SQL support over the

data lake, and has a vibrant ecosystem that is continually evolving. However, it is

not without its drawbacks.

Firstly, Spark works best for ad-hoc work and large batch processes, whereas

scheduling Spark jobs or managing them over a streaming data source requires

external tools, and can be quite challenging. Second, while getting started with

Spark for ad-hoc querying is very easy and does not require any special

knowledge of big data, the expertise required to use Spark correctly in

production systems is rare and expensive to obtain.

Upsolver offers an alternative approach by providing a robust WYSIWYG data

transformation tool built in that leverages Materialized Views to allow users

without big data expertise to define complex transformations over streaming

data. Scheduling and cluster/task management are handled implicitly, so users

only need to define the actual transformations without needing to have an in-

depth understanding of the underlying operations or infrastructure.

18

Support for nested data structures

Discussions around data often assume that data is flat, as can be represented

by a CSV file, or in a database table. There are many rows in the table, and each

has a single value for several typed columns. Unfortunately, real data is usually

much more complicated than that. A better data representation is what can be

represented in a JSON file; multiple records, each containing multiple named

fields, which in turn can be either records themselves, or arrays of values or

records.

This nested hierarchy helps represent meaningful connections between

different types of data, but does not lend itself well to simple query languages.

Traditional solutions would either flatten data in advance, losing connection

information and creating duplicate records; or else require code to be written in

order to perform the transformations within the nested structure, often

introducing bugs and performance issues.

Upsolver aims to give users maximum flexibility with real data structures. For

that reason, data enrichments in Upsolver always write to a location within the

original data hierarchy. How the data is processed depends on the relationship

between the input fields and the target field of the enrichment, as well as the

function used.

19

3. Real-time and Ad-hoc Data Consumption

Finally, for a data lake to provide actual return on investment, it needs to

address an actual need within the business such as improving operational

processes or enabling better data-driven decision making. Upsolver

operationalizes organizational data lakes by delivering clean, structured data to

various outputs and enabling high-throughput, low-latency access to data for

real-time use cases.

A data project will usually have one of two distinct methods for consuming the

data in its final state. The first is SQL, which is useful for analytics workloads and

ad-hoc querying for research and reporting. The second is using an operational

database for real-time serving, in order to power user interfaces and internal

systems. In order for the data lake to be successful as the central repository of

all data, it needs to be able to fill both of these roles.

Ad-hoc Analytics using SQL

SQL is the de-facto data querying language. Almost all consumers of data, from

data analysts to data scientists, are happy to use SQL where possible, since it is

expressive and easy to use.

Common use cases for SQL-based querying would be:

20

• Business intelligence and analytics: for example, a data analyst in a large web

company wants to create a daily report that contains the conversion rate of

all the different web pages of the organization.

• Data science: for example, a data scientist in an online retail company wants

to find products to offer to users based on products that they already

viewed/purchased. They will want to find all the products that the user

viewed, and find similar users’ purchases.

Integration with SQL Engines (Athena, Presto, Impala)

There are quite a few SQL over big data systems, including Apache Presto,

Apache Impala, Apache Drill and Amazon Athena (to name a few). What all

these systems have in common is that they do not manage the data itself, but

only provide a SQL layer over existing data. In order for them to work well, the

data needs to be stored in a way that keeps the amount of data scanned per

query to a minimum.

These “best practices” of data storage are quite challenging to implement for

the uninitiated. This will often cause teams to reach the mistaken conclusion

that the query engine itself isn’t performant enough, instead of realizing that

the data storage format itself is the problem. Upsolver has a deep integration

with SQL engines, which allows a user to treat their data lake as they would a

database. In the same way that databases have opaque storage structures

21

that “just work”, Upsolver abstracts the storage implementation details away

from the end user. This means that you will get the best performance possible

for your data from the get go.

Many data use cases only require aggregated data, or a small subset of the data.

Since data lakes store raw data, often data lake users are turned off to the idea

of scanning all their data, when the actual interesting data set is a tiny fraction

of that.

Upsolver helps with this use case by creating pre-aggregated and filtered

outputs of the data lake. This allows users to have multiple data tables in their

SQL engine, each looking at a different aspect of their data. Querying is made

much easier, faster and inexpensive when done only on the relevant subset of

the data.

Enabling Real-time Applications

The second data lake use case is where queries of the data lake are run in order

to make real time decisions, or display many data points to a user in an

interactive interface. These queries require very low latencies, and will often

use an operational database like Cassandra in order to fulfil the performance

requirements. Integrating such a database with data from a data lake can be

quite challenging, which is why Upsolver encapsulates a native operational

database within the data lake itself. Users can use Upsolver Materialized Views

to create pre-defined aggregations over their data lake, which can be served in

real time for operational use cases.

22

A few examples of operational workloads:

• Real-time reporting: A website wants to have interactive elements, such as

showing how many other active users are currently viewing the same page

from the same country.

• Anomaly detection: An industrial monitoring system measures many metrics

such as noise levels and air content at points around a machine. This data is

compared to historical values in real time in order to alert on anomalous

readings, which allows technicians to shut down the machine before any

permanent damage can occur.

Materialized Views

Materialized Views in Upsolver are key-value stores that are defined as

aggregations over a stream of data. For example, “The number of distinct user

ids per country in the last month” or “The first time and the last time we’ve

seen each user id each calendar month in the last year” are both definitions of

materialized views. In the first case, querying by country will return the number

of distinct users, and in the second case querying by user id will return the first

and last times we saw that user in each calendar month.

Materialized Views live on top of a stream, and all the data files are stored in

cloud storage. The data contained in them changes every minute by adding the

latest minute and removing the minute from the beginning of the time window.

23

They are built within an Upsolver Compute Cluster, and served from Upsolver

Query Clusters, which load the data files from cloud storage directly. Data files

are created every minute, and merged files are created in increasing time

intervals to support access to large time windows with logarithmic complexity.

Materialized Views are stored as sorted immutable hash tables, with the data

stored using a hybrid row/columnar format. Many databases use columnar

formats in order to greatly improve compression and query times. Columnar

formats also support run length encoding, which is a very efficient way to store

sparse values.

Since Materialized Views are used for random access “get by key” requests,

storing data in a pure columnar format introduces quite a lot of overhead - the

value from each column would need to be found individually, and lots of

random memory access slows things down considerably.

Instead, Upsolver uses columnar compression in a row based format. In order

to achieve the same compression as a columnar format would using run length

encoding, Arithmetic Coding is used as the entropy encoder. This allows for

optimal compression in exchange for performance, but our implementation of

the arithmetic decoder performs 16 million symbol decodes per second per

CPU (on AWS m5 instances), which prevents it from being a performance

bottleneck.

24

Use Case Examples and Reference
Architectures

Sisense Drives New Analytical Insights from S3

Sisense is one of the leading software providers in the highly competitive

business intelligence and analytics space, and has been named a Visionary by

Gartner for the past two years. Headquartered in New York and serving a global

market, the company provides an end-to-end BI platform that enables users to

reveal business insights from complex data. Sisense counts Nasdaq, Airbus,

Philips and the Salvation Army among its customers.

Seeking to expand the scope of its internal analytics, Sisense set out to build a

data lake in the AWS cloud in order to more effectively store and analyze

product usage data - and following a recommendation from the AWS team,

began looking into Upsolver’s streaming data platform.

The Requirements

• Transform data streams into structured fact tables that could then be sent to

Sisense’s BI software

• Ability to quickly iterate and answer new business questions as they arise

• Self-service solution that would not require a dedicated data engineering

team

25

The Solution

Business Benefits

• Ability to run new analytical queries on streaming data in Sisense

• Much-improved visibility into internal data

• Additional use cases around machine learning being rolled out

Engineering Benefits

• Agile infrastructure that enables new queries and tables to be generated on

the fly

• Data lake project could be handled internally and without the need to

devote a team of engineers.

To read the full case study, visit: https://www.upsolver.com/case-

studies/sisense-s3-data-lake

26

https://www.upsolver.com/case-studies/sisense-s3-data-lake

Bigabid Builds a Real-time Architecture to Supercharge Mobile User

Acquisition

Bigabid is an innovative mobile marketing and real-time bidding company that

empowers its partners to scale their mobile user acquisition efforts while

lowering advertising costs through CPA and AI-based optimization.

In order to maintain a high level of performance in the competitive app

advertising market, Bigabid needed to introduce real-time user profiling to its

algorithmic decision engine. This case study will demonstrate how the company

built a high-performance real-time architecture with minimal data engineering

using Upsolver, S3 and Amazon Athena.

The Requirements

• Create a real-time aggregate view of users which would include data from

the last 180 days, and use it to deliver more accurate bidding decisions.

• Clean, enrich and join data from several streams: bids, impressions, clicks,

and several third-party data providers.

• Support for advanced features such as Count of Sessions per User, which

would be difficult to achieve in a traditional database architecture.

• Improve data freshness from 8 hours to less than one minute.

27

The Solution:

The Results

Working with fresher, more accurate data has played a major role in Bigabid’s

ability to continuously provide exceptional performance for its customers. The

real-time architecture, powered by Upsolver, is now an essential component in

Bigabid’s platform.

To read the full case study, visit: https://www.upsolver.com/case-

studies/bigabid-real-time-architecture

28

Next Steps

• Learn more about Upsolver or schedule a live

demo: https://www.upsolver.com/

• Read more Upsolver case studies:

https://www.upsolver.com/customers

• Start a fully functional 14 day free trial:

https://app.upsolver.com/signup

29

https://www.upsolver.com/customers

