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This document supports the following memory core versions:

• DDR3 v1.4
• DDR4 v2.2
• LPDDR3 v1.0
• QDR II+ v1.4
• QDR-IV+ v2.0
• RLDRAM 3 v1.4

Xilinx is creating an environment where employees, customers,
and partners feel welcome and included. To that end, we’re
removing non-inclusive language from our products and related
collateral. We’ve launched an internal initiative to remove
language that could exclude people or reinforce historical biases,
including terms embedded in our software and IPs. You may still
find examples of non-inclusive language in our older products as
we work to make these changes and align with evolving industry
standards.
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Introduction
The Xilinx® UltraScale™ architecture-based 
FPGAs Memory IP core is a combined 
pre-engineered controller and physical layer 
(PHY) for interfacing UltraScale architecture 
FPGA user designs to DDR3 and DDR4 SDRAM, 
LPDDR3 SDRAM, QDR II+ SRAM, QDR-IV SRAM, 
and RLDRAM 3 devices. 

This product guide provides information about 
using, customizing, and simulating a 
LogiCORE™ IP DDR3 or DDR4 SDRAM, LPDDR3 
SDRAM, QDR II+ SRAM, QDR-IV SRAM, or a 
RLDRAM 3 interface core for UltraScale 
architecture-based FPGAs. It also describes the 
core architecture and provides details on 
customizing and interfacing to the core.

Features
For feature information on the DDR3/DDR4 
SDRAM, LPDDR3 SDRAM, QDR II+ SRAM, 
QDR-IV SRAM, and RLDRAM 3 interfaces, see 
the following sections:

• Feature Summary in Chapter 1 for DDR3/
DDR4 SDRAM

• Feature Summary in Chapter 8 for LPDDR3 
SDRAM

• Feature Summary in Chapter 15 for QDR II+ 
SRAM

• Feature Summary in Chapter 22 for QDR-IV 
SRAM

• Feature Summary in Chapter 29 for 
RLDRAM 3

IP Facts

LogiCORE IP Facts Table
Core Specifics

Supported 
Device Family(1) UltraScale+™, Virtex®, and Kintex® UltraScale

Supported User 
Interfaces User

Resources

See Resource Utilization (DDR3/DDR4),
Resource Utilization (LPDDR3),
Resource Utilization (QDR II+),
Resource Utilization (QDR-IV),

Resource Utilization (RLDRAM 3).
Provided with Core

Design Files RTL
Example Design Verilog
Test Bench Verilog
Constraints File XDC
Simulation 
Model Not Provided

Supported 
S/W Driver N/A

Tested Design Flows(2)

Design Entry Vivado Design Suite

Simulation(3) For supported simulators, see the
Xilinx Design Tools: Release Notes Guide.

Synthesis Vivado Synthesis
Support

Release Notes 
and Known 
Issues

Master Answer Record: 58435

All Vivado IP 
Change Logs Master Vivado IP Change Logs: 72775

 Xilinx Support web page

Notes: 
1. For a complete listing of supported devices, see the 

Vivado IP catalog.
2. For the supported versions of third-party tools, see the

Xilinx Design Tools: Release Notes Guide.
3. Behavioral simulations are supported with Mixed 

Simulator Language. Netlist (post-synthesis and 
post-implementation) simulations are supported with 
Verilog Simulator Language and are not supported by 
Vivado Simulator.
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Chapter 1

Overview
IMPORTANT: This document supports DDR3 SDRAM core v1.4 and DDR4 SDRAM core v2.2.

Navigating Content by Design Process
Xilinx® documentation is organized around a set of standard design processes to help you 
find relevant content for your current development task. This document covers the 
following design processes:

• Hardware, IP, and Platform Development: Creating the PL IP blocks for the hardware 
platform, creating PL kernels, subsystem functional simulation, and evaluating the 
Vivado timing, resource and power closure. Also involves developing the hardware 
platform for system integration. Topics in this document that apply to this design 
process include:

° Clocking

° Resets

° Protocol Description

° Customizing and Generating the Core

° Example Design

Core Overview
The Xilinx UltraScale™ architecture includes the DDR3/DDR4 SDRAM cores. These cores 
provide solutions for interfacing with these SDRAM memory types. Both a complete 
Memory Controller and a physical (PHY) layer only solution are supported. The UltraScale 
architecture for the DDR3/DDR4 cores are organized in the following high-level blocks:

• Controller – The controller accepts burst transactions from the user interface and 
generates transactions to and from the SDRAM. The controller takes care of the SDRAM 
timing parameters and refresh. It coalesces write and read transactions to reduce the 
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Chapter 1: Overview

number of dead cycles involved in turning the bus around. The controller also reorders 
commands to improve the utilization of the data bus to the SDRAM.

• Physical Layer – The physical layer provides a high-speed interface to the SDRAM. This 
layer includes the hard blocks inside the FPGA and the soft blocks calibration logic 
necessary to ensure optimal timing of the hard blocks interfacing to the SDRAM. 

The application logic is responsible for all SDRAM transactions, timing, and refresh. 

° These hard blocks include:
- Data serialization and transmission
- Data capture and deserialization
- High-speed clock generation and synchronization
- Coarse and fine delay elements per pin with voltage and temperature tracking

° The soft blocks include:
- Memory Initialization – The calibration modules provide a JEDEC®-compliant 

initialization routine for the particular memory type. The delays in the 
initialization process can be bypassed to speed up simulation time, if desired.

- Calibration – The calibration modules provide a complete method to set all 
delays in the hard blocks and soft IP to work with the memory interface. Each bit 
is individually trained and then combined to ensure optimal interface 
performance. 

Results of the calibration process are available through the Xilinx debug tools. 
After completion of calibration, the PHY layer presents raw interface to the 
SDRAM.

• Application Interface – The user interface layer provides a simple FIFO-like interface 
to the application. Data is buffered and read data is presented in request order.

The above user interface is layered on top of the native interface to the controller. The 
native interface is not accessible by the user application and has no buffering and 
presents return data to the user interface as it is received from the SDRAM which is not 
necessarily in the original request order. The user interface then buffers the read and 
write data and reorders the data as needed. 
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Figure 1-1: UltraScale Architecture-Based FPGAs DDR3/DDR4 Memory Interface Solution
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Chapter 1: Overview

Feature Summary
DDR3 SDRAM
• Component support for interface width of 8 to 80 bits (RDIMM, UDIMM, and SODIMM 

support)

° Maximum component limit is 9 and this restriction is valid for components only and 
not for DIMMs

• DDR3 (1.5V) and DDR3L (1.35V)
• Dual slot support for RDIMMs, SODIMMs, and UDIMMs
• Quad-rank RDIMM support
• Density support

° Support densities up to 8 GB for components, 32 GB for RDIMMs, 16 GB for 
SODIMMs, and 16 GB for UDIMMs

° Other densities for memory device support is available through custom part 
selection

• 8-bank support
• x4 (x4 devices must be used in even multiples), x8, and x16 device support
• AXI4 Slave Interface

Note: The x4-based component interfaces do not support AXI4, while x4-based RDIMM and 
LRDIMM does support AXI4.

• x4, x8, and x16 components are supported
• 8-word burst support
• Support for 5 to 14 cycles of column-address strobe (CAS) latency (CL)
• On-die termination (ODT) support
• Support for 5 to 10 cycles of CAS write latency
• Source code delivery in Verilog
• 4:1 memory to FPGA logic interface clock ratio
• Open, closed, and transaction based pre-charge controller policy
• Interface calibration and training information available through the Vivado hardware 

manager
• Optional Error Correcting Code (ECC) support for non-AXI4 72-bit interfaces
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DDR4 SDRAM
• Component support for interface width of 8 to 80 bits (RDIMM, LRDIMM, UDIMM, and 

SODIMM support)

° Maximum component limit is 9 and this restriction is valid for components only and 
not for DIMMs

• Density support

° Support densities up to 32 GB for components, 64 GB for LRDIMMs, 128 GB for 
RDIMMs, 16 GB for SODIMMs, and 16 GB for UDIMMs

° Other densities for memory device support is available through custom part 
selection

• AXI4 Slave Interface
Note: The x4-based component interfaces do not support AXI4, while x4-based RDIMM and 
LRDIMM does support AXI4.

• x4, x8, and x16 components are supported
• Dual slot support for DDR4 RDIMMs, SODIMMs, LRDIMMs, and UDIMMs
• 8-word burst support
• Support for 9 to 24 cycles of column-address strobe (CAS) latency (CL)
• ODT support
• 3DS RDIMM and LRDIMM support
• 3DS component support
• Support for 9 to 18 cycles of CAS write latency
• Source code delivery in Verilog
• 4:1 memory to FPGA logic interface clock ratio
• Open, closed, and transaction based pre-charge controller policy
• Interface calibration and training information available through the Vivado hardware 

manager
• Optional Error Correcting Code (ECC) support for non-AXI4 72-bit interfaces
• CRC for write operations is not supported
• 2T timing for the address/command bus is not supported
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RECOMMENDED: Use x8 or x4-based interfaces for maximum efficiency. These devices have four bank 
groups and 16 banks which allow greater efficiency. Compared to the x16-based devices, which only 
have two bank groups and eight banks. The DDR4 devices have better access timing among the bank 
groups, so the larger number can increase the efficiency. Note that x16 DDP DDR4 DRAM is composed 
of two x8 devices that has the larger number of banks and groups. For more information, see AR: 71209.

IMPORTANT: DBI should be enabled with repeated single Burst Length = 8 (BL8) read access with all 
"0" on the DQ bus, followed by idle (NOP/DESELECT) inserted between each BL8 read burst as shown 
in Figure 1-2. Enabling the DBI feature effectively mitigates excessive power supply noise.
If DBI is not an option, then encoding the data to remove all “0” bursts in application before it reaches 
the memory controller is an equally effective method for mitigating power supply noise. For x4-based 
RDIMM/LRDIMM interfaces which lack the DM/DBI pin, the power supply noise is mitigated by the ODT 
settings used for these topologies. For x4-based component interfaces wider than 16 bits, the data 
encoding method is recommended.

Licensing and Ordering
This Xilinx LogiCORE IP module is provided at no additional cost with the Xilinx Vivado 
Design Suite under the terms of the Xilinx End User License. 

Information about other Xilinx LogiCORE IP modules is available at the Xilinx Intellectual 
Property page. For information on pricing and availability of other Xilinx LogiCORE IP 
modules and tools, contact your local Xilinx sales representative.

X-Ref Target - Figure 1-2

Figure 1-2: DQ Pattern with BL8 Read Burst
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License Checkers
If the IP requires a license key, the key must be verified. The Vivado® design tools have 
several license checkpoints for gating licensed IP through the flow. If the license check 
succeeds, the IP can continue generation. Otherwise, generation halts with error. License 
checkpoints are enforced by the following tools:

• Vivado synthesis
• Vivado implementation
• write_bitstream (Tcl command)

IMPORTANT: IP license level is ignored at checkpoints. The test confirms a valid license exists. It does 
not check IP license level.
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Product Specification

Standards
This core supports DRAMs that are compliant to the JESD79-3F, DDR3 SDRAM Standard and 
JESD79-4, DDR4 SDRAM Standard, JEDEC® Solid State Technology Association [Ref 1]. It 
also supports the DDR4 3DS Addendum.

For more information on UltraScale™ architecture documents, see References, page 789. 

Performance
Maximum Frequencies
For more information on the maximum frequencies, see the following documentation:

• Kintex UltraScale FPGAs Data Sheet, DC and AC Switching Characteristics (DS892) 
[Ref 2]

• Virtex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics (DS893) [Ref 3]
• Kintex UltraScale+ FPGAs Data Sheet: DC and AC Switching Characteristics (DS922) 

[Ref 4]
• Virtex UltraScale+ FPGAs Data Sheet: DC and AC Switching Characteristics (DS923) 

[Ref 5]
• Zynq UltraScale+ MPSoC Data Sheet: DC and AC Switching Characteristics (DS925) 

[Ref 6]
• UltraScale Maximum Memory Performance Utility (XTP414) [Ref 21]

Efficiency and Latency Measurements
The performance of the Memory Controller is shown here for several typical workloads. 
Efficiency gives the data bus utilization in % for long traffic streams, and latency shows the 
round-trip command-to-read-data delay at the user interface. The results were taken from 
simulations and hardware testing. The definition of each workload is shown in the following 
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sections. In each workload, the refresh interval is 7.8 µs and the periodic read interval is set 
to 1.0 µs. The address mapping option is ROW_COLUMN_BANK and ORDERING is NORMAL 
unless noted otherwise.

Efficiency Workloads

Sequential Read

• Simple address increment pattern
• 100% reads

Sequential Write

• Simple address increment pattern
• 100% writes (except for periodic reads generated by the controller for VT tracking)

Burst Read/Write Mix

• Repeating pattern of 64 sequential reads and 64 sequential writes
• 50/50 read/write mix

Short Burst Read/Write Mix

• Repeating pattern of four sequential reads and four sequential writes
• Full DRAM page accessed in bursts of four before changing the row address for high 

page hit rate
• 50/50 read/write mix

Random Address Read/Write Mix

• Repeating pattern of two random reads and two random writes
• Fully random address for a low page hit rate
• 50/50 read/write mix
Table 2-1: DDR Bus Efficiency

Workload DDR3 x8 Efficiency [%] DDR4 x8 Efficiency [%]
Sequential Read 94 94
Sequential Write 89 89
Burst Read/Write Mix 90 90
Short Burst Read/Write Mix 50 51
Random Address Read/Write Mix 23 24

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG150&Title=UltraScale%20Architecture-Based%20FPGAs%20Memory%20IP%20v1.4&releaseVersion=1.4&docPage=21


UltraScale Architecture-Based FPGAs Memory IP v1.4 22
PG150 October 22, 2021 www.xilinx.com

Chapter 2: Product Specification

Sequential write efficiency is lower than sequential read due to the injection of periodic 
reads in the write sequence. The burst workload achieves an efficiency just between 
sequential read and sequential write. The burst workload has read transactions frequently 
enough that periodic reads are not injected by the controller, but due to read/write bus 
turnaround the efficiency is still somewhat lower than a pure sequential read. 

The short burst workload shows the effect of more frequent bus turnaround compared to 
the 64 transaction bursts. The random workload shows the effect of frequent bus 
turnaround and page misses. In all the cases in Table 2-1, efficiency is primarily limited by 
DRAM specifications and the Memory Controller is scheduling transactions as efficiently as 
possible.

The example DDR3/DDR4 "Idle" read latencies are shown in the following section for both 
the user interface and PHY only interfaces. Actual read latency in hardware might vary due 
to command and data bus flight times, package delays, CAS latency, etc. 

The latency numbers are for an "Idle" case, where the Memory Controller starts off with no 
pending transactions, no pending refreshes or periodic reads, and any DRAM protocol or 
timing restrictions from previous commands have elapsed. When a new read transaction is 
received, there is nothing blocking progress and read data is returned with the minimum 
latency.

Idle Latency Categories

• Page Miss – DRAM bank open to row address that does not match the row address of 
the incoming read transaction and tRAS has elapsed

• Closed Page – All DRAM banks precharged and tRP has elapsed
• Page Hit – DRAM bank open to a row address that matches the Row address of the 

incoming transaction and tRCD has elapsed

Table 2-2 shows the user interface idle latency in DRAM clock cycles from assertion of 
app_en and app_rdy to assertion of app_rd_data_valid. 

Table 2-3 shows the PHY Only interface read CAS command to read data latency. This is 
equivalent to page hit latency. 

Table 2-2: User Interface Idle Latency
Latency Category DDR3 1600 CL = 11 [tCK] DDR4 2400 CL = 16 [tCK]

Page Miss 100 112
Closed Page 84 92
Page Hit 72 72

Table 2-3: PHY Only Interface Read CAS Command to Read Data Latency
Latency Category DDR3 1600 CL = 11 [tCK] DDR4 2400 CL = 16 [tCK]

Page Hit 40 44
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Resource Utilization
For full details about performance and resource utilization, visit Performance and Resource 
Utilization (DDR3) and Performance and Resource Utilization (DDR4).

Port Descriptions
For a complete Memory Controller solution there are three port categories at the top-level 
of the memory interface core called the “user design.” 

• The first category is the memory interface signals that directly interfaces with the 
SDRAM. These are defined by the JEDEC specification. 

• The second category is the application interface signals. These are described in the 
Protocol Description, page 118. 

• The third category includes other signals necessary for proper operation of the core. 
These include the clocks, reset, and status signals from the core. The clocking and reset 
signals are described in their respective sections.

The active-High init_calib_complete signal indicates that the initialization and 
calibration are complete and that the interface is now ready to accept commands for the 
interface.

For a PHY layer only solution, the top-level application interface signals are replaced with 
the PHY interface. These signals are described in the PHY Only Interface, page 156.

The signals that interface directly with the SDRAM and the clocking and reset signals are the 
same as for the Memory Controller solution.
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Chapter 3

Core Architecture
This chapter describes the UltraScale™ architecture-based FPGAs Memory Interface 
Solutions core with an overview of the modules and interfaces.

Overview
The UltraScale architecture-based FPGAs Memory Interface Solutions is shown in 
Figure 3-1.

X-Ref Target - Figure 3-1

Figure 3-1: UltraScale Architecture-Based FPGAs Memory Interface Solution Core Architecture
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Memory Controller
The Memory Controller (MC) is designed to take Read, Write, and Read-Modify-Write 
transactions from the user interface (UI) block and issues them to memory efficiently with 
low latency, meeting all DRAM protocol and timing requirements, while using minimal FPGA 
resources. The controller operates with a DRAM to system clock ratio of 4:1 and can issue 
one Activate, one CAS, and one Precharge command on each system clock cycle. 

The controller supports an open page policy and can achieve very high efficiencies with 
workloads with a high degree of spatial locality. The controller also supports a closed page 
policy and the ability to reorder transactions to efficiently schedule workloads with address 
patterns that are more random. The controller also allows a degree of control over low-level 
functions with a UI control signal for AutoPrecharge on a per transaction basis as well as 
signals that can be used to determine when DRAM refresh commands are issued.

The key blocks of the controller command path include:

1. The Group FSMs that queue up transactions, check DRAM timing, and decide when to 
request Precharge, Activate, and CAS DRAM commands.

2. The "Safe" logic and arbitration units that reorder transactions between Group FSMs 
based on additional DRAM timing checks while also ensuring forward progress for all 
DRAM command requests.

3. The Final Arbiter that makes the final decision about which commands are issued to the 
PHY and feeds the result back to the previous stages.

The maintenance blocks of the controller command path include:

1. Blocks that generate refresh and ZQCS commands
2. Commands needed for VT tracking
3. Optional block that implements a SECDED ECC for 72-bit wide data buses
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Figure 3-2 shows the Memory Controller block diagram.

Native Interface
The UI block is connected to the Memory Controller by the native interface, and provides 
the controller with address decode and read/write data buffering. On writes, data is 
requested by the controller one cycle before it is needed by presenting the data buffer 
address on the native interface. This data is expected to be supplied by the UI block on the 
next cycle. Hence there is no buffering of any kind for data (except due to the barrel shifting 
to place the data on a particular DDR clock).

On reads, the data is offered by the MC on the cycle it is available. Read data, along with a 
buffer address is presented on the native interface as soon as it is ready. The data has to be 
accepted by the UI block.

X-Ref Target - Figure 3-2

Figure 3-2: Memory Controller Block Diagram

UI

MC

Group FSM 0

Group FSM 1

Group FSM 2

Group FSM 3

Safe Logic
and

Reorder
Arbitration

Final
Arb

PHY

ECC

Precharge

RdData

WrData

Data

CMD/
Address

CMD/Addr

Read/Write
Transaction

Write 
Data

Read 
Data

Activate

CAS

CAS

Act
Pre

CAS
Act

Pre

CAS
Act

Pre

CAS
Act
Pre

Maintenance
Refresh, ZQCS,

VT Tracking

X24428-082420

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG150&Title=UltraScale%20Architecture-Based%20FPGAs%20Memory%20IP%20v1.4&releaseVersion=1.4&docPage=26


UltraScale Architecture-Based FPGAs Memory IP v1.4 27
PG150 October 22, 2021 www.xilinx.com

Chapter 3: Core Architecture

Read and write transactions are mapped to an mcGroup instance based on bank group and 
bank address bits of the decoded address from the UI block. Although there are no groups 
in DDR3, the name group represents either a real group in DDR4 x4 and x8 devices (which 
serves four banks of that group). For DDR3, each mcGroup module would service two 
banks. 

In the case of DDR4 x16 interface, the mcGroup represents 1-bit of group (there are only 
one group bit in x16) and 1-bit of bank, whereby the mcGroup serves two banks. 

The total number of outstanding requests depends on the number of mcGroup instances, as 
well as the round trip delay from the controller to memory and back. When the controller 
issues an SDRAM CAS command to memory, an mcGroup instance becomes available to 
take a new request, while the previous CAS commands, read return data, or write data might 
still be in flight.

Control and Datapaths

Control Path

The control path starts at the mcGroup instances. The mapping of SDRAM group and bank 
addresses to mcGroup instance ensures that transactions to the same full address map to 
the same mcGroup instance. Because each mcGroup instance processes the transactions it 
receives in order, read-after-write and write-after-write address hazards are prevented.

Datapath

Read and write data pass through the Memory Controller. If ECC is enabled, a SECDEC code 
word is generated on writes and checked on reads. For more information, see ECC, page 30. 
The MC generates the requisite control signals to the mcRead and mcWrite modules telling 
them the timing of read and write data. The two modules acquire or provide the data as 
required at the right time.

Read and Write Coalescing
The controller prioritizes reads over writes when reordering is enabled. If both read and 
write CAS commands are safe to issue on the SDRAM command bus, the controller selects 
only read CAS commands for arbitration. When a read CAS issues, write CAS commands are 
blocked for several SDRAM clocks specified by parameter tRTW. This extra time required for 
a write CAS to become safe after issuing a read CAS allows groups of reads to issue on the 
command bus without being interrupted by pending writes.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG150&Title=UltraScale%20Architecture-Based%20FPGAs%20Memory%20IP%20v1.4&releaseVersion=1.4&docPage=27


UltraScale Architecture-Based FPGAs Memory IP v1.4 28
PG150 October 22, 2021 www.xilinx.com

Chapter 3: Core Architecture

Reordering
Requests that map to the same mcGroup are never reordered. Reordering between the 
mcGroup instances is controlled with the ORDERING parameter. When set to "NORM," 
reordering is enabled and the arbiter implements a round-robin priority plan, selecting in 
priority order among the mcGroups with a command that is safe to issue to the SDRAM. 

The timing of when it is safe to issue a command to the SDRAM can vary on the target bank 
or bank group and its page status. This often contributes to reordering. 

When the ORDERING parameter is set to "STRICT," all requests have their CAS commands 
issued in the order in which the requests were accepted at the native interface. STRICT 
ordering overrides all other controller mechanisms, such as the tendency to coalesce read 
requests, and can therefore degrade data bandwidth utilization in some workloads.

Group Machines
In the Memory Controller, there are four group state machines. These state machines are 
allocated depending on technology (DDR3 or DDR4) and width (x4, x8, and x16). The 
following summarizes the allocation to each group machine. In this description, GM refers 
to the Group Machine (0 to 3), BG refers to group address, and BA refers to bank address. 
Note that group in the context of a group state machine denotes a notional group and does 
not necessarily refer to a real group (except in case of DDR4, part x4 and x8).

• DDR3, any part – Total of eight banks

° GM 0: BA[2:1] == 2'b00; services banks 0 and 1

° GM 1: BA[2:1] == 2'b01; services banks 2 and 3

° GM 2: BA[2:1] == 2'b10; services banks 4 and 5

° GM 3: BA[2:1] == 2'b11; services banks 6 and 7
• DDR4, x4 and x8 parts – Total of 16 banks

° GM 0: services BG 0; four banks per group

° GM 1: services BG 1; four banks per group

° GM 2: services BG 2; four banks per group

° GM 3: services BG 3; four banks per group
• DDR4, x16 parts – Total of eight banks

° GM 0: services BG 0, BA[0] == 0; 2 banks per group

° GM 1: services BG 0, BA[0] == 1; 2 banks per group

° GM 2: services BG 1, BA[0] == 0; 2 banks per group

° GM 3: services BG 1, BA[0] == 1; 2 banks per group
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Figure 3-3 shows the Group FSM block diagram for one instance. There are two main 
sections to the Group FSM block, stage 1 and stage 2, each containing a FIFO and an FSM. 
Stage 1 interfaces to the UI, issues Precharge and Activate commands, and tracks the DRAM 
page status.

Stage 2 issues CAS commands and manages the RMW flow. There is also a set of DRAM 
timers for each rank and bank used by the FSMs to schedule DRAM commands at the 
earliest safe time. The Group FSM block is designed so that each instance queues up 
multiple transactions from the UI, interleaves DRAM commands from multiple transactions 
onto the DDR bus for efficiency, and executes CAS commands strictly in order.

When a new transaction is accepted from the UI, it is pushed into the stage 1 transaction 
FIFO. The page status of the transaction at the head of the stage 1 FIFO is checked and 
provided to the stage 1 transaction FSM. The FSM decides if a Precharge or Activate 
command needs to be issued, and when it is safe to issue them based on the DRAM timers.

When the page is open and not already scheduled to be closed due to a pending RDA or 
WRA in the stage 2 FIFO, the transaction is transferred from the stage 1 FIFO to the stage 2 
FIFO. At this point, the stage 1 FIFO is popped and the stage 1 FSM begins processing the 
next transaction. In parallel, the stage 2 FSM processes the CAS command phase of the 
transaction at the head of the stage 2 FIFO. The stage 2 FSM issues a CAS command request 
when it is safe based on the tRCD timers. The stage 2 FSM also issues both a read and write 
CAS request for RMW transactions.

X-Ref Target - Figure 3-3

Figure 3-3: Group FSM Block Diagram
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ECC
The MC supports an optional SECDED ECC scheme that detects and corrects read data 
errors with 1-bit error per DQ bus burst and detects all 2-bit errors per burst. The 2-bit 
errors are not corrected. Three or more bit errors per burst might or might not be detected, 
but are never corrected. Enabling ECC adds four DRAM clock cycles of latency to all reads, 
whether errors are detected/corrected or not. 

A Read-Modify-Write (RMW) scheme is also implemented to support Partial Writes when 
ECC is enabled. Partial Writes have one or more user interface write data mask bits set High. 
Partial Writes with ECC disabled are handled by sending the data mask bits to the DRAM 
Data Mask (DM) pins, so the RMW flow is used only when ECC is enabled. When ECC is 
enabled, Partial Writes require their own command, wr_bytes or 0x3, so the MC knows 
when to use the RMW flow.

Note: When ECC is enabled, initialize (or write to) the memory space prior to performing partial 
writes (RMW).

Read-Modify-Write Flow
When a wr_bytes command is accepted at the user interface it is eventually assigned to a 
group state machine like other write or read transactions. The group machine breaks the 
Partial Write into a read phase and a write phase. The read phase performs the following:

1. First reads data from memory.
2. Checks for errors in the read data.
3. Corrects single bit errors. 
4. Stores the result inside the Memory Controller.

Data from the read phase is not returned to the user interface. If errors are detected in the 
read data, an ECC error signal is asserted at the native interface. After read data is stored in 
the controller, the write phase begins as follows: 

1. Write data is merged with the stored read data based on the write data mask bits. 
2. New ECC check bits are generated for the merged data and check bits are written to 

memory. 
3. Any multiple bit errors in the read phase results in the error being made undetectable in 

the write phase as new check bits are generated for the merged data. This is why the ECC 
error signal is generated on the read phase even though data is not returned to the user 
interface. This allows the system to know if an uncorrectable error has been turned into 
an undetectable error. 
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When the write phase completes, the group machine becomes available to process a new 
transaction. The RMW flow ties up a group machine for a longer time than a simple read or 
write, and therefore might impact performance.

ECC Module
The ECC module is instantiated inside the DDR3/DDR4 Memory Controller. It is made up of 
five submodules as shown in Figure 3-4.

Read data and check bits from the PHY are sent to the Decode block, and on the next 
system clock cycle data and error indicators ecc_single/ecc_multiple are sent to the 
NI. ecc_single asserts when a correctable error is detected and the read data has been 
corrected. ecc_multiple asserts when an uncorrectable error is detected. 

X-Ref Target - Figure 3-4

Figure 3-4: ECC Block Diagram
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Read data is not modified by the ECC logic on an uncorrectable error. Error indicators are 
never asserted for “periodic reads,” which are read transactions generated by the controller 
only for the purposes of VT tracking and are not returned to the user interface or written 
back to memory in an RMW flow.

Write data is merged in the Encode block with read data stored in the ECC Buffer. The merge 
is controlled on a per byte basis by the write data mask signal. All writes use this flow, so full 
writes are required to have all data mask bits deasserted to prevent unintended merging. 
After the Merge stage, the Encode block generates check bits for the write data. The data 
and check bits are output from the Encode block with a one system clock cycle delay.

The ECC Gen block implements an algorithm that generates an H-matrix for ECC check bit 
generation and error checking/correction. The generated code depends only on the 
PAYLOAD_WIDTH and DQ_WIDTH parameters, where DQ_WIDTH = PAYLOAD_WIDTH + 
ECC_WIDTH. Currently only DQ_WIDTH = 72 and ECC_WIDTH = 8 is supported.

Error Address
Each time a read CAS command is issued, the full DRAM address is stored in a FIFO in the 
decode block. When read data is returned and checked for errors, the DRAM address is 
popped from the FIFO and ecc_err_addr[51:0] is returned on the same cycle as signals 
ecc_single and ecc_multiple for the purposes of error logging or debug. Table 3-1 is 
a common definition of this address for DDR3 and DDR4. 

Latency
When the parameter ECC is ON, the ECC modules are instantiated and read and write data 
latency through the MC increases by one system clock cycle. When ECC is OFF, the data 
buses just pass through the MC and all ECC logic should be optimized out.

ECC Port Descriptions
Table 3-2 and Table 3-3 provide the ECC port descriptions at the User Interface.

Table 3-1: ECC Error Address Definition
ecc_err
_addr
[51:0]

51 50:48 47:45 44 43:42 41:40 39:24 23:22 21:18 17:8 7:6 5:4 3 2 1:0

DDR4 
(x4/x8) RSVD 3DS_

CID RSVD RM
W RSVD Row[17:0] RSVD RSVD Col

[9:0] RSVD Rank
[1:0]

Group
[1:0]

Bank
[1:0]

DDR4 
(x16) RSVD RSVD RSVD RM

W RSVD Row[17:0] RSVD RSVD Col
[9:0] RSVD Rank

[1:0] RSVD Group
[0]

Bank
[1:0]

DDR3 RSVD RSVD RSVD RM
W RSVD Row

[15:0] RSVD Col[13:0] RSVD Rank
[1:0] RSVD Bank[2:0]
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Table 3-2: DDR3 ECC Operation Signal Direction Description
Signal I/O Description

ddr3_ecc_single[7:0] O The ddr3_ecc_single signal is non-zero if the read data from the 
external memory has a single bit error per beat of the read burst.

ddr3_ecc_multiple[7:0] O

The ddr3_ecc_multiple signal is non-zero if the read data from the 
external memory has two bit errors per beat of the read burst. The 
SECDED algorithm does not correct the corresponding read data and 
puts a non-zero value on this signal to notify the corrupted read data 
at the User Interface.

ddr3_ecc_err_addr[44:0] O
This bus contains the address of the current read command. The 
ddr3_ecc_err_addr signal is valid during the assertion of either 
ddr3_ecc_single or ddr3_ecc_multiple.

Table 3-3: DDR4 ECC Operation Signal Direction Description
Signal I/O Description

ddr4_ecc_single[7:0] O The ddr4_ecc_single signal is non-zero if the read data from the 
external memory has a single bit error per beat of the read burst.

ddr4_ecc_multiple[7:0] O

The ddr4_ecc_multiple signal is non-zero if the read data from the 
external memory has two bit errors per beat of the read burst. The 
SECDED algorithm does not correct the corresponding read data and 
puts a non-zero value on this signal to notify the corrupted read data 
at the User Interface.

ddr4_ecc_err_addr[51:0] O
This bus contains the address of the current read command. The 
ddr4_ecc_err_addr signal is valid during the assertion of either 
ddr4_ecc_single or ddr4_ecc_multiple.
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Address Parity
The Memory Controller generates even command/address parity with a one DRAM clock 
delay after the chip select asserts Low. This signal is only used in DDR4 RDIMM 
configurations where parity is required by the DIMM RCD component. 

Address parity is supported only for DDR4 RDIMM and LRDIMM configurations, which 
includes 3DS RDIMMs and LRDIMMs. The Memory Controller does not monitor the 
Alert_n parity error status output from the RDIMM/LRDIMM and it might return 
corrupted data to the User Interface after a parity error.

To detect this issue, you need to add a pin to your design to monitor the Alert_n signal. 
If an Alert_n event is detected, the memory contents should be considered corrupt. To 
recover from a parity error the Memory Controller must be reset, and all DRAM contents are 
lost.

PHY
The PHY is considered the low-level physical interface to an external DDR3 or DDR4 SDRAM 
device as well as all calibration logic for ensuring reliable operation of the physical interface 
itself. The PHY generates the signal timing and sequencing required to interface to the 
memory device.

The PHY contains the following features:

• Clock/address/control-generation logics
• Write and read datapaths
• Logic for initializing the SDRAM after power-up

In addition, the PHY contains calibration logic to perform timing training of the read and 
write datapaths to account for system static and dynamic delays.

The PHY is included in the complete Memory Interface Solution core, but can also be 
implemented as a standalone PHY only block. A PHY only solution can be selected if you 
plan to implement a custom Memory Controller. For details about interfacing to the PHY 
only block, see the PHY Only Interface, page 156.

IMPORTANT: The PHY interface is not DFI-compliant.
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Overall PHY Architecture
The UltraScale architecture PHY is composed of dedicated blocks and soft calibration logic. 
The dedicated blocks are structured adjacent to one another with back-to-back 
interconnects to minimize the clock and datapath routing necessary to build high 
performance physical layers. 

The Memory Controller and calibration logic communicate with this dedicated PHY in the 
slow frequency clock domain, which is either divided by four or divided by two. This 
depends on the DDR3 or DDR4 memory clock. A more detailed block diagram of the PHY 
design is shown in Figure 3-5.

The Memory Controller is designed to separate out the command processing from the 
low-level PHY requirements to ensure a clean separation between the controller and 
physical layer. The command processing can be replaced with custom logic if desired, while 
the logic for interacting with the PHY stays the same and can still be used by the calibration 
logic.

X-Ref Target - Figure 3-5

Figure 3-5: PHY Block Diagram
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The PHY architecture encompasses all of the logic contained in <module>_...phy.sv. 
The PHY contains wrappers around dedicated hard blocks to build up the memory interface 
from smaller components. A byte lane contains all of the clocks, resets, and datapaths for a 
given subset of I/O. Multiple byte lanes are grouped together, along with dedicated 
clocking resources, to make up a single bank memory interface. Each nibble in the PHY 
contains a Register Interface Unit (RIU), a dedicated integrated block in the XIPHY that 
provides an interface to the general interconnect logic for changing settings and delays for 
calibration. For more information on the hard silicon physical layer architecture, see the 
UltraScale™ Architecture SelectIO™ Resources User Guide (UG571) [Ref 7].

The memory initialization is executed in Verilog RTL. The calibration and training are 
implemented by an embedded MicroBlaze™ processor. The MicroBlaze Controller System 
(MCS) is configured with an I/O Module and a block RAM. The 
<module>_...cal_addr_decode.sv module provides the interface for the processor to 
the rest of the system and implements helper logic. The <module>_...config_rom.sv 
module stores settings that control the operation of initialization and calibration, providing 
run time options that can be adjusted without having to recompile the source code.

The address unit connects the MCS to the local register set and the PHY by performing 
address decode and control translation on the I/O module bus from spaces in the memory 
map and MUXing return data (<module>_...cal_addr_decode.sv). In addition, it 
provides address translation (also known as “mapping”) from a logical conceptualization of 
the DRAM interface to the appropriate pinout-dependent location of the delay control in 
the PHY address space.

Table 3-4: PHY Modules
Module Name Description

<module>_...cal_top.sv Contains <module>_...cal_top.sv, <module>_...mc_pi.sv, and MUXes 
between the calibration and the Memory Controller.

<module>_...cal_riu.sv Contains the MicroBlaze processing system and associated logic.
<module>_...mc_pi.sv Adjusts signal timing for the PHY for reads and writes.
<module>_...cal_addr_decode.sv FPGA logic interface for the MicroBlaze processor.
<module>_...config_rom.sv Configuration storage for calibration options.
microblaze_mcs_0.sv MicroBlaze MCS module
<module>_...iob.sv Instantiates all byte IOB modules.
<module>_...iob_byte.sv Generates the I/O buffers for all the signals in a given byte lane.

<module>_...debug_microblaze.sv Simulation-only file to parse debug statements from software running in 
MicroBlaze to indicate status and calibration results to the log.

<module>_...cal_cplx.sv RTL state machine for complex pattern calibration.
<module>_...cal_cplx_data.sv Data patterns used for complex pattern calibration.
<module>_...xiphy.sv Top-level XIPHY module.
<module>_...phy.sv Top-level of the PHY, contains pll and xiphy.sv modules.
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Although the calibration architecture presents a simple and organized address map for 
manipulating the delay elements for individual data, control and command bits, there is 
flexibility in how those I/O pins are placed. For a given I/O placement, the path to the FPGA 
logic is locked to a given pin. To enable a single binary software file to work with any 
memory interface pinout, a translation block converts the simplified RIU addressing into 
the pinout-specific RIU address for the target design (see Table 3-5). 

The specific address translation is written by DDR3/DDR4 SDRAM after a pinout is selected 
and cannot be modified. The code shows an example of the RTL structure that supports 
this.

Casez(io_address)// MicroBlaze I/O module address
  // … static address decoding skipped
  //========================================//
  //===========DQ ODELAYS===================//
  //========================================//
  //Byte0
28’h0004100: begin //c0_ddr4_dq[0] IO_L20P_T3L_N2_AD1P_44 
    riu_addr_cal = 6’hD;
    riu_nibble = ‘h6;
  end
  // … additional dynamic addressing follows

In this example, DQ0 is pinned out on Bit[0] of nibble 0 (nibble 0 according to instantiation 
order). The RIU address for the ODELAY for Bit[0] is 0x0D. When DQ0 is addressed — 
indicated by address 0x000_4100), this snippet of code is active. It enables nibble 0 
(decoded to one-hot downstream) and forwards the address 0x0D to the RIU address bus.

The MicroBlaze I/O module interface is not always fast enough for implementing all of the 
functions required in calibration. A helper circuit implemented in 
<module>_...cal_addr_decode.sv is required to obtain commands from the 
registers and translate at least a portion into single-cycle accuracy for submission to the 
PHY. In addition, it supports command repetition to enable back-to-back read transactions 
and read data comparison.

Table 3-5: XIPHY RIU Addressing and Description
RIU Address Name Description

0x00 NIBBLE_CTRL0 Nibble Control 0. Control for enabling DQS gate in the XIPHY, GT_STATUS 
for gate feedback, and clear gate which resets gate circuit.

0x01 NIBBLE_CTRL1 Nibble Control 1. TX_DATA_PHASE control for every bit in the nibble.
0x02 CALIB_CTRL Calibration Control. XIPHY control and status for BISC.
0x03 Reserved Reserved
0x04 Reserved Reserved
0x05 BS_CTRL Bit slice reset. Resets the ISERDES and IFIFOs in a given nibble.
0x06 Reserved Reserved
0x07 PQTR Rising edge delay for DQS.
0x08 NQTR Falling edge delay for DQS.
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0x09 Reserved Reserved
0x0A TRISTATE_ODELAY Output delay for 3-state.
0x0B ODELAY0 Output delay for bit slice 0.
0x0C ODELAY1 Output delay for bit slice 1.
0x0D ODELAY2 Output delay for bit slice 2.
0x0E ODELAY3 Output delay for bit slice 3.
0x0F ODELAY4 Output delay for bit slice 4.
0x10 ODELAY5 Output delay for bit slice 5.
0x11 ODELAY6 Output delay for bit slice 6.
0x12 IDELAY0 Input delay for bit slice 0.
0x13 IDELAY1 Input delay for bit slice 1.
0x14 IDELAY2 Input delay for bit slice 2.
0x15 IDELAY3 Input delay for bit slice 3.
0x16 IDELAY4 Input delay for bit slice 4.
0x17 IDELAY5 Input delay for bit slice 5.
0x18 IDELAY6 Input delay for bit slice 6.
0x19 PQTR Align BISC edge alignment computation for rising edge DQS.
0x1A NQTR Align BISC edge alignment computation for falling edge DQS.
0x1B to 0x2B Reserved Reserved
0x2C WL_DLY_RNK0 Write Level register for Rank 0. Coarse and fine delay, WL_TRAIN.
0x2D WL_DLY_RNK1 Write Level register for Rank 1. Coarse and fine delay.
0x2E WL_DLY_RNK2 Write Level register for Rank 2. Coarse and fine delay.
0x2F WL_DLY_RNK3 Write Level register for Rank 3. Coarse and fine delay.
0x30 RL_DLY_RNK0 DQS Gate register for Rank 0. Coarse and fine delay.
0x31 RL_DLY_RNK1 DQS Gate register for Rank 1. Coarse and fine delay.
0x32 RL_DLY_RNK2 DQS Gate register for Rank 2. Coarse and fine delay.
0x33 RL_DLY_RNK3 DQS Gate register for Rank 3. Coarse and fine delay.
0x34 to 0x3F Reserved Reserved

Table 3-5: XIPHY RIU Addressing and Description (Cont’d)

RIU Address Name Description
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Memory Initialization and Calibration Sequence
After deassertion of the system reset, the PHY performs some required internal calibration 
steps first. 

1. The built-in self-check of the PHY (BISC) is run. BISC is used in the PHY to compute 
internal skews for use in voltage and temperature tracking after calibration is 
completed. 

2. After BISC is completed, calibration logic performs the required power-on initialization 
sequence for the memory. 

3. This is followed by several stages of timing calibration for the write and read datapaths.
4. After calibration is completed, PHY calculates internal offsets to be used in voltage and 

temperature tracking. 
5. PHY indicates calibration is finished and the controller begins issuing commands to the 

memory.
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Figure 3-6 shows the overall flow of memory initialization and the different stages of 
calibration. The dark gray color is not available for this release.

X-Ref Target - Figure 3-6

Figure 3-6: PHY Overall Initialization and Calibration Sequence
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When simulating a design out of DDR3/DDR4 SDRAM, the calibration it set to be bypassed 
to enable you to generate traffic to and from the DRAM as quickly as possible. When 
running in hardware or simulating with calibration, enabled signals are provided to indicate 
what step of calibration is running or, if an error occurs, where an error occurred. 

The first step in determining calibration status is to check the CalDone port. After the 
CalDone port is checked, the status bits should be checked to indicate the steps that were 
ran and completed. Calibration halts on the very first error encountered, so the status bits 
indicate which step of calibration was last run. The status and error signals can be checked 
through either connecting the Vivado analyzer signals to these ports or through the XSDB 
tool (also through Vivado).

The calibration status is provided through the XSDB port, which stores useful information 
regarding calibration for display in the Vivado IDE. The calibration status and error signals 
are also provided as ports to allow for debug or triggering. Table 3-6 lists the 
pre-calibration status signal description. 
Table 3-6: Pre-Calibration XSDB Status Signal Description

XSDB Status Register XSDB Bits[8:0] Description Pre-Calibration Step

DDR_PRE_CAL_STATUS

0 Done MicroBlaze has started up
1 Done Reserved
2 Done Reserved
3 Done Reserved
4 Done XSDB Setup Complete
5 – Reserved
6 – Reserved
7 – Reserved
8 – Reserved
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Table 3-7 lists the status signals in the port as well as how they relate to the core XSDB data. 
In the status port, the mentioned bits are valid and the rest are reserved. 

Table 3-7: XSDB Status Signal Descriptions

XSDB Status Register XSDB 
Bits[8:0]

Status Port 
Bits[127:0] Description Calibration Stage Name

Calibration 
Stage 

Number

DDR_CAL_STATUS_RANKx_0

0 0 Start DQS Gate 1
1 1 Done – –
2 2 Start Check for DQS gate 2
3 3 Done – –
4 4 Start Write leveling 3
5 5 Done – –
6 6 Start Read Per-bit Deskew 4
7 7 Done – –
8 8 Start Reserved 5

DDR_CAL_STATUS_RANKx_1

0 9 Done – –
1 10 Start Read DQS Centering (Simple) 6
2 11 Done – –
3 12 Start Read Sanity Check 7
4 13 Done – –
5 14 Start Write DQS-to-DQ Deskew 8
6 15 Done – –
7 16 Start Write DQS-to-DM Deskew 9
8 17 Done – –

DDR_CAL_STATUS_RANKx_2

0 18 Start Write DQS-to-DQ (Simple) 10
1 19 Done – –
2 20 Start Write DQS-to-DM (Simple) 11
3 21 Done – –
4 22 Start Reserved 12
5 23 Done – –
6 24 Start Write Latency Calibration 13
7 25 Done – –
8 26 Start Write/Read Sanity Check 0 14
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DDR_CAL_STATUS_RANKx_3

0 27 Done – –

1 28 Start Read DQS Centering 
(Complex) 15

2 29 Done – –
3 30 Start Write/Read Sanity Check 1 16
4 31 Done – –
5 32 Start Reserved 17
6 33 Done – –
7 34 Start Write/Read Sanity Check 2 18
8 35 Done – –

DDR_CAL_STATUS_RANKx_4

0 36 Start Write DQS-to-DQ (Complex) 19
1 37 Done – –
2 38 Start Write DQS-to-DM (Complex) 20
3 39 Done – –
4 40 Start Write/Read Sanity Check 3 21
5 41 Done – –
6 42 Start Reserved 22
7 43 Done – –
8 44 Start Write/Read Sanity Check 4 23

DDR_CAL_STATUS_RANKx_5

0 45 Done – –

1 46 Start Read Level Multi-Rank 
Adjustment 24

2 47 Done – –

3 48 Start Write/Read Sanity Check 5 
(For More than 1 Rank) 25

4 49 Done – –

5 50 Start Multi-Rank Adjustments and 
Checks 26

6 51 Done – –

7 52 Start Write/Read Sanity Check 6 (All 
Ranks) 27

8 53 Done – –

Table 3-7: XSDB Status Signal Descriptions (Cont’d)

XSDB Status Register XSDB 
Bits[8:0]

Status Port 
Bits[127:0] Description Calibration Stage Name

Calibration 
Stage 

Number
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Table 3-8 lists the post-calibration XSDB status signal descriptions.

Table 3-9 lists the error signals and a description of each error. To decode the error first look 
at the status to determine which calibration stage failed (the start bit would be asserted, the 
associated done bit deasserted) then look at the error code provided. The error asserts the 
first time an error is encountered.

Table 3-8: Post-Calibration XSDB Status Signal Description
XSDB Status Register XSDB Bits[8:0] Description Post-Calibration Step

DDR_POST_CAL_STATUS

0 Running
DQS Gate Tracking1 Idle

2 Fail
3 Running Read Margin Check (Reserved)
4 Running Write Margin Check (Reserved)
5 – Reserved
6 – Reserved
7 – Reserved
8 – Reserved
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Table 3-9: Error Signal Descriptions

STAGE_NAME Stage Code DDR_CAL_
ERROR_1

DDR_CAL_
ERROR_0 Error

DQS Gate 1

0x1 Byte RIU Nibble

Calibration uses the calculated latency from 
the MPR register as a starting point and then 
backs off and begins sampling. If the sample 
occurs too late in the DQS burst and there 
are no taps left to decrement for the latency, 
then an error has occurred.

0x2 Byte RIU Nibble Expected pattern was not found on 
GT_STATUS.

0x3 Byte RIU Nibble
CAS latency is too low. Calibration starts at a 
CAS latency (CL) – 3. For allowable CAS 
latencies, see EXTRA_CMD_DELAY 
Configuration Settings, page 173.

0x4 Byte RIU Nibble Pattern not found on GT_STATUS, all 0s were 
sampled. Expecting to sample the preamble.

0x5 Byte RIU Nibble Pattern not found on GT_STATUS, all 1s were 
sampled. Expecting to sample the preamble.

0x6 Byte RIU Nibble Could not find the 0->1 transition with fine 
taps in at least 1 tck (estimated) of fine taps.

0x7 Byte RIU Nibble Underflow of coarse taps when trying to limit 
maximum coarse tap setting.

0x8 Byte RIU Nibble Violation of maximum read latency limit.

0x9 Byte RIU Nibble Data check failed with DQS gate settings and 
read latency range has been exhausted.

DQS Gate Sanity 
Check 2 0xF N/A N/A PHY fails to return same number of data 

bursts as expected

Write Leveling 3

0x1 Byte N/A Cannot find stable 0.
0x2 Byte N/A Cannot find stable 1.

0x3 Byte N/A Cannot find the left edge of noise region with 
fine taps.

0x4 Byte N/A
Could not find the 0->1 transition with fine 
taps in at least 1 tck (estimated) of ODELAY 
taps.

Read Per-Bit Deskew 4
0x1 Nibble Bit No valid data found for a given bit in the 

nibble when running the deskew pattern.

0xF Nibble Bit Timeout error waiting for read data bursts to 
return.
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Read DQS Centering 6

0x1 Nibble Bit No valid data found for a given bit in the 
nibble.

0x2 Nibble Bit
Could not find the left edge of the data valid 
window to determine window size. All 
samples returned valid data.

0xF Nibble Bit Timeout error waiting for read data to return.

Read Sanity Check 7
0x1 Nibble 0 Read data comparison failure.
0xF N/A N/A Timeout error waiting for read data to return.

Write DQS-to-DQ 
Deskew 8

0x1 Byte Bit DQS deskew error. No valid data found; 
therefore, ran out of taps during search.

0x2 Byte Bit DQ deskew error. Failure point not found.

0xF Byte Bit Timeout error waiting for all read data bursts 
to return.

Write DQS-to-DM/
DBI Deskew 9

0x1 Byte Bit DQS deskew error. No valid data found; 
therefore, ran out of taps during search.

0x2 Byte Bit DM/DBI deskew error. Failure point not 
found.

0xF Byte Bit Timeout error waiting for all read data bursts 
to return.

Write DQS-to-DQ 
(Simple) 10

0x1 Byte N/A No valid data found; therefore, ran out of 
taps during search.

0xF Byte N/A Timeout error waiting for read data to return.

Write DQS-to-DM 
(Simple) 11

0x1 Byte N/A No valid data found; therefore, ran out of 
taps during search.

0xF Byte N/A Timeout error waiting for all read data bursts 
to return.

Write Latency 
Calibration 13

0x1 Byte N/A Could not find the data pattern within the 
allotted number of taps.

0x2 Byte N/A Data pattern not found. Data late at the start, 
instead of F0A55A96, found 00F0A55A.

0x3 Byte N/A
Data pattern not found. Data too early, not 
enough movement to find pattern. Found 
pattern of A55A96FF, 5A96FFFF, or 96FFFFFF.

0x4 Byte N/A Data pattern not found. Multiple reads to the 
same address resulted in a read mismatch.

0xF Byte N/A Timeout error waiting for read data to return.

Write Read Sanity
Check 14

0x1 Nibble 0 Read data comparison failure.
0xF N/A N/A Timeout error waiting for read data to return.

Table 3-9: Error Signal Descriptions (Cont’d)

STAGE_NAME Stage Code DDR_CAL_
ERROR_1

DDR_CAL_
ERROR_0 Error

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG150&Title=UltraScale%20Architecture-Based%20FPGAs%20Memory%20IP%20v1.4&releaseVersion=1.4&docPage=46


UltraScale Architecture-Based FPGAs Memory IP v1.4 47
PG150 October 22, 2021 www.xilinx.com

Chapter 3: Core Architecture

Read_Leveling 
(Complex) 15 See Read DQS Centering error codes.

Write Read Sanity 
Check 16

0x1 Nibble N/A Read data comparison failure.

0xF N/A N/A Timeout error waiting for all read data bursts 
to return.

Read VREF Training 17
0x1 Byte N/A No valid window found for any VREF value.
0xF Nibble N/A Timeout error waiting for read data to return.

Write Read Sanity
Check 18

0x1 Nibble 0 Read data comparison failure.
0xF N/A N/A Timeout error waiting for read data to return.

Write DQS-to-DQ 
(Complex) 19 See Write DQS-to-DQ (Simple) error codes.

Write Read Sanity 
Check 21

0x1 Nibble N/A Read data comparison failure.

0xF N/A N/A Timeout error waiting for all read data bursts 
to return.

Write VREF Training 22

0x1 Byte N/A No valid window found for any VREF value.

0x2 Byte N/A Readback Write VREF value from the DRAM 
does not match expected.

0xF Byte N/A Timeout error waiting for read data to return.

Write Read Sanity 
Check 23

0x1 Nibble N/A Read data comparison failure.

0xF N/A N/A Timeout error waiting for all read data bursts 
to return.

Write Read Sanity
Check 25

0x1 Nibble 0 Read data comparison failure.
0xF N/A N/A Timeout error waiting for read data to return.

Multi-Rank Adjust 
and Checks 26

0x1 Byte RIU Nibble
Could not find common setting across ranks 
for general interconnect read latency setting 
for given byte. Variance between ranks could 
not be compensated with coarse taps.

0x2 Byte RIU Nibble DQS Gate skew between ranks for a given 
byte larger than 360°.

0x3 Byte RIU Nibble
Write skew between ranks for a given byte 
larger than 180°. Check Write Latency Coarse 
settings.

0x4 Byte N/A Could not decrement coarse taps enough to 
limit coarse tap setting for all ranks.

0x5 Byte N/A Violation of maximum read latency limit.

Write Read Sanity
Check 27

0x1 Nibble RIU Nibble Read data comparison failure.
0xF N/A N/A Timeout error waiting for read data to return.

Table 3-9: Error Signal Descriptions (Cont’d)

STAGE_NAME Stage Code DDR_CAL_
ERROR_1

DDR_CAL_
ERROR_0 Error
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DQS Gate
During this stage of calibration, the read DQS preamble is detected and the gate to enable 
data capture within the FPGA is calibrated to be one clock cycle before the first valid data 
on DQ. The coarse and fine DQS gate taps (RL_DLY_COARSE and RL_DLY_FINE) are adjusted 
during this stage. Read commands are issued with gaps in between to continually search for 
the DQS preamble position. The DDR4 preamble training mode is enabled during this stage 
to increase the low preamble period and aid in detection. During this stage of calibration, 
only the read DQS signals are monitored and not the read DQ signals. DQS Preamble 
Detection is performed sequentially on a per byte basis.

During this stage of calibration, the coarse taps are first adjusted while searching for the 
low preamble position and the first rising DQS edge, in other words, a DQS pattern of 00X1. 

If the preamble is not found, the read latency is increased by one. The coarse taps are reset 
and then adjusted again while searching for the low preamble and first rising DQS edge. 
After the preamble position is properly detected, the fine taps are then adjusted to fine 
tune and edge align the position of the sample clock with the DQS.

DQS Gate Sanity Check

After completion of DQS gate calibration for all bytes in a given rank, read return timing is 
calculated and 10 read bursts with gaps between them are issued. Logic then checks that 
the FIFO is read 10 times. There is no data checking at this stage. This is just a basic 
functional check of the FIFO read port control logic, which is configured using the DQS gate 
calibration results. Read return timing is updated after DQS gate calibration for each rank. 
The final setting is determined by largest DQS gate delay out of all DQS lanes and all ranks. 

DQS Gate Tracking
0x1 Byte Rank Underflow of the coarse taps used for 

tracking.
0x2 Byte Rank Overflow of the coarse taps used for tracking.

Table 3-9: Error Signal Descriptions (Cont’d)

STAGE_NAME Stage Code DDR_CAL_
ERROR_1

DDR_CAL_
ERROR_0 Error

X-Ref Target - Figure 3-7

Figure 3-7: DDR3 vs. DDR4 Preamble

DDR3

DDR4

Preamble training mode

0 0 X 1 X 0 X 1 X 0

X14782-070915
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Write Leveling
DDR3/DDR4 write leveling allows the controller to adjust each write DQS phase 
independently with respect to the CK forwarded to the DDR3/DDR4 SDRAM device. This 
compensates for the skew between DQS and CK and meets the tDQSS specification. 

During write leveling, DQS is driven by the FPGA memory interface and DQ is driven by the 
DDR3/DDR4 SDRAM device to provide feedback. DQS is delayed until the 0 to 1 edge 
transition on DQ is detected. The DQS delay is achieved using both ODELAY and coarse tap 
delays. 

After the edge transition is detected, the write leveling algorithm centers on the noise 
region around the transition to maximize margin. This second step is completed with only 
the use of ODELAY taps. Any reference to “FINE” is the ODELAY search.

Read DQS Deskew and Centering
Read Leveling is performed over multiple stages to maximize the data eye and center the 
internal read sampling clock in the read DQ window for robust sampling. To perform this, 
Read Leveling performs the following sequential steps:

1. Maximizes the DQ eye by removing skew and OCV effects using per bit read DQ deskew.

° See Debugging Per-Bit Deskew Failures for details.
2. Sweeps DQS across all DQ bits and finds the center of the data eye using both easy 

(Multi-Purpose register data pattern) and complex data patterns. Centering of the data 
eye is completed for both the DQS and DQS#.

° See Debugging Read MPR DQS Centering Failures for details.

° See Debugging Complex Pattern Calibration Failures section for details.
3. Post calibration, continuously maintains the relative delay of DQS versus DQ across the 

VT range.

Read Per-Bit Deskew

Per-bit deskew is performed on a per-bit basis whereas Read Leveling DQS centering is 
performed on a per-nibble basis.

During per-bit deskew, Read Leveling Calibration, a pattern of 00000000_11111111 is 
written and read back while DQS adjustments (PQTR and NQTR individual fine taps on DQS) 
and DQ adjustments (IDELAY) are made.

At the end of this stage, the DQ bits are internally deskewed to the left edge of the 
incoming DQS.
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Read DBI Per-Bit Deskew

If the Read DBI option is selected for DDR4, the DBI input pin is calibrated by powering on 
the read DBI functionality, and reading back the regular deskew pattern from the DRAM, 
00000000_11111111. The DRAM sends the data back as 11111111_11111111 but the 
DBI pin itself has the 00000000_11111111 pattern, that is used to calibrate the DBI input 
pin itself.

Debugging Read DQS Centering (Simple)

During DQS read centering (simple), the toggling 01010101 MPR pattern is continuously 
read back while DQS adjustments (PQTR and NQTR individual fine taps on DQS) and DQ 
adjustments (IDELAY) are made. This is to establish an initial DQS center point using an easy 
pattern that does not rely on writing a pattern to the DRAM. 

Read Sanity Check
After read DQS centering but before Write DQS-to-DQ, a check of the data is made to 
ensure the previous stage of calibration did not inadvertently leave the alignment of the 
read path in a bad spot. A single MPR read command is sent to the DRAM, and the data is 
checked against the expected data across all bytes before continuing.

Write DQS-to-DQ
This stage of calibration is required to center align the write DQS in the write DQ window 
per bit. At the start of Write DQS Centering and Per-Bit Deskew, DQS is aligned to CK but no 
adjustments on the write window have been made. Write window adjustments are made in 
the following two sequential stages:

• Write Per-Bit Deskew
• Write DQS Centering

Write DQS-to-DQ Per-Bit Deskew

During write per-bit deskew, a toggling 10101010 pattern is continuously written and read 
back while making 90o clock phase adjustments on the write DQ along with individual fine 
ODELAY adjustments on DQS and DQ. At the end of per-bit write DQ deskew, the write DQ 
bits are aligned as they are transmitted to the memory.

Write DQS-to-DQ Centering

During Write DQS Centering, the same toggling 10101010 pattern is continuously written 
and read back. ODELAY adjustments on DQS and DQ are also made but all of the DQ 
ODELAY adjustments for a given byte are made in step to maintain the previously deskewed 
alignment.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG150&Title=UltraScale%20Architecture-Based%20FPGAs%20Memory%20IP%20v1.4&releaseVersion=1.4&docPage=50


UltraScale Architecture-Based FPGAs Memory IP v1.4 51
PG150 October 22, 2021 www.xilinx.com

Chapter 3: Core Architecture

Write DQS-to-DM/DBI
When the write DBI option is selected for DDR4, the pin itself is calibrated as a DM and write 
DBI is enabled at the end of calibration.

In all previous stages of calibration, data mask signals are driven low before and after the 
required amount of time to ensure they have no impact on calibration. Now, both the read 
and the writes have been calibrated and data mask can reliably be adjusted. If DM signals 
are not used within the interface, this stage of calibration is skipped.

During DM Calibration, a data pattern of 55555555_55555555 is first written to address 
0x000 followed by a write to the same address but with a data pattern of 
BBBBBBBB_BBBBBBBB with DM asserted during the rising edge of DQS. A read is then 
issued where the expected read back pattern is all “B” except for the data where DM was 
asserted. In these masked locations, a 5 is expected. The same series of steps completed 
during Write Per-Bit Deskew and Write DQS Centering is then completed but for the DM 
bits.

Read DQS Centering (DBI)
If the Read DBI option is selected for DDR4, the position of the DQS in the data valid 
window must also use the timing information of the DBI pin itself, because the DBI pin can 
be the limit to the data valid window.

The 0F0F0F0F pattern is written to the DRAM and read back with read DBI enabled. The 
DRAM sends the data back as FFFFFFFF but the DBI pin has the clock pattern 01010101, 
that is used to measure the data valid window of the DBI input pin itself. The final DQS 
location is determined based on the aggregate window for the DQ and DBI pins.

Write Latency Calibration
Write Latency Calibration is required to align DQS to the correct CK edge. During write 
leveling, DQS is aligned to the nearest rising edge of CK. However, this might not be the 
edge that captures the write command.

Depending on the interface type (UDIMM, RDIMM, LRDIMM, or component), the DQS could 
either be one CK cycle earlier than, two CK cycles earlier than, or aligned to the CK edge that 
captures the write command.

This is a pattern based calibration where coarse adjustments are made on a per byte basis 
until the expected on time write pattern is read back. The process is as follows:

1. Issue extended writes followed by a single read.
2. Check the pattern readback against the expected patterns.
3. If necessary add coarse adjustments.
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4. Repeat until the on time write pattern is read back, signifying DQS is aligned to the 
correct CK cycle, or an incorrect pattern is received resulting in a Write Latency failure.

The following data is written at address 0x000:

• Data pattern before (with extra DQS pulses): 0000000000000000
• Data pattern written to address 0x000: FF00AA5555AA9966
• Data pattern after (with extra DQS pulses): FFFFFFFFFFFFFFFFFF

Reads are then performed where the following patterns can be calibrated:

• On time write pattern read back: FF00AA5555AA9966 (no adjustments needed)
• One DQS early write pattern read back: AA5555AA9966FFFF
• Two DQS early write pattern read back: 55AA9966FFFFFFFF
• Three DQS early write pattern read back: 9966FFFFFFFFFFFF

Write Latency Calibration can fail for the following cases and signify a board violation 
between DQS and CK trace matching:

• Four DQS early pattern FFFFFFFFFFFFFFFF
• One DQS late write pattern read back: 0000FF00AA5555AA
• Two DQS late write pattern read back: 00000000FF00AA55
• Three DQS late write pattern read back: 000000000000FF00

Write/Read Sanity Check
After Write DQS-to-DQ, a check of the data is made to ensure the previous stage of 
calibration did not inadvertently leave the write or read path in a bad spot. A single write 
burst followed by a single read command to the same location is sent to the DRAM, and the 
data is checked against the expected data across all bytes before continuing. During this 
step, the expected data pattern as seen on a nibble is 937EC924.

Read DQS Centering (Complex)
The final stage of DQS read centering that is completed before normal operation is 
repeating the steps performed during MPR DQS read centering but with a difficult/complex 
pattern. The purpose of using a complex pattern is to stress the system for SI effects such 
as ISI and noise while calculating the read DQS center position. This ensures that the read 
center position can reliably capture data with margin in a true system.
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Write DQS-to-DQ Centering (Complex)
Note: The calibration step is only enabled for the first rank in a multi-rank system. Also, this is only 
enabled for data rates above 1,600 Mb/s.

For the same reasons as described in the Read DQS Centering (Complex), a complex data 
pattern is used on the write path to adjust the Write DQS-to-DQ alignment. The same steps 
as detailed in the Write DQS-to-DQ Centering are repeated just with a complex data 
pattern.

Read Leveling Multi-Rank Adjustment
For multi-rank systems the read DQS centering algorithm is ran on each rank, but the final 
delay setting must be common for all ranks. The results of training each rank separately are 
stored in XSDB, but the final delay setting is a computed average of the training results 
across all ranks. The final PQTR/NQTR delay is indicated by 
RDLVL_PQTR_CENTER_FINAL_NIBBLE/ RDLVL_NQTR_CENTER_FINAL_NIBBLE, while the DQ 
IDELAY is RDLVL_IDELAY_FINAL_BYTE_BIT.

Multi-Rank Adjustments and Checks

DQS Gate Multi-Rank Adjustment

During DQS gate calibration for multi-rank systems, each rank is allowed to calibrate 
independently given the algorithm as described in DQS Gate, page 48. After all ranks have 
been calibrated, an adjustment is required before normal operation to ensure fast 
rank-to-rank switching. The general interconnect signal clb2phy_rd_en (indicated by 
DQS_GATE_READ_LATENCY_RANK_BYTE in XSDB) that controls the gate timing on a 
DRAM-clock-cycle resolution is adjusted here to be the same for a given byte across all 
ranks. 

The coarse taps are adjusted so the timing of the gate opening stays the same for any given 
rank, where four coarse taps are equal to a single read latency adjustment in the general 
interconnect. During this step, the algorithm tries to find a common clb2phy_rd_en 
setting where across all ranks for a given byte the coarse setting would not overflow or 
underflow, starting with the lowest read latency setting found for the byte during 
calibration. If the lowest setting does not work for all ranks, the clb2phy_rd_en 
increments by one and the check is repeated. The fine tap setting is < 90°, so it is not 
included in the adjustment.

If the check reaches the maximum clb2phy_rd_en setting initially found during 
calibration without finding a value that works between all ranks for a byte, an error is 
asserted. If after the adjustment is made and the coarse taps are larger than 360° (four 
coarse tap settings), a different error is asserted. For the error codes, see Table 3-9, “Error 
Signal Descriptions,” on page 45.
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For multi-rank systems, the coarse taps must be seven or less so additional delay is added 
using the general interconnect read latency to compensate for the coarse tap requirement.

Write Latency Multi-Rank Check

The write latency is allowed to fall wherever it can in multi-rank systems, each rank is 
allowed to calibrate independently given the algorithms in Write Leveling and Write 
Latency Calibration. After all ranks have been calibrated and before it finishes, a check is 
made to ensure certain XIPHY requirements are met on the write path. The difference in 
write latency between the ranks is allowed to be 180° (or two XIPHY coarse taps). 

Enable VT Tracking
After the DQS gate multi-rank adjustment (if required), a signal is sent to the XIPHY to 
recalibrate internal delays to start voltage and temperature tracking. The XIPHY asserts a 
signal when complete, phy2clb_phy_rdy_upp for upper nibbles and 
phy2clb_phy_rdy_low for lower nibbles.

For multi-rank systems, when all nibbles are ready for normal operation there is a 
requirement of the XIPHY where two write-read bursts are required to be sent to the DRAM 
before starting normal traffic. A data pattern of F00FF00F is used for the first and 0FF00FF0 
for the second. The data itself is not checked and is expected to fail.

Write Read Sanity Check (Multi-Rank Only)
For multi-rank systems, a check of the data for each rank is made to ensure the previous 
stages of calibration did not inadvertently leave the write or read path in a bad spot. A 
single write burst followed by a single read command to the same location is sent to each 
DRAM rank. The data is checked against the expected data across all bytes before 
continuing. 

After all stages are completed across all ranks without any error, calDone gets asserted to 
indicate user traffic can begin. In XSDB, DBG_END contains 0x1 if calibration completes and 
0x2 if there is a failure.

Read and Write VREF Calibration
Starting with the release of Vivado 2016.1, both read and write VREF calibration is disabled. 
Through characterization it has been determined that read and write VREF calibration are 
not required. The eye sizes found with the default read/write VREF settings are comparable 
to the eye sizes found with the calibrated read/write VREF values. As these stages of 
calibration add calibration time, the stages do not have a positive effect on the eye sizes. 
Therefore, stages are disabled starting with the 2016.1 release.
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If you would like to manually re-enable the stages, follow these steps:

1. Follow the steps in Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 14] 
for modifying IP in the "Editing IP Sources" section.

2. Open the core_name/rtl/ip_top/core_name_ddr4.sv in a text editor outside of 
the Vivado Integrated Design Environment.

3. Locate the following lines:
parameter CAL_RD_VREF = "SKIP",
parameter CAL_RD_VREF_PATTERN = "SIMPLE",
parameter CAL_WR_VREF = "SKIP",
parameter CAL_WR_VREF_PATTERN = "SIMPLE",

Note: These lines occur twice. Once under ifdef SIMULATION and again under else. You need 
to modify the lines within the else.

4. Modify the SKIP setting to full:
parameter CAL_RD_VREF = "FULL",
parameter CAL_RD_VREF_PATTERN = "SIMPLE",
parameter CAL_WR_VREF = "FULL",
parameter CAL_WR_VREF_PATTERN = "SIMPLE",

DDR4 LRDIMM Memory Initialization and Calibration Sequence
Most of the LRDIMM calibration sequence details are in line with the DDR4 core calibration 
sequence details as described in the previous Memory Initialization and Calibration 
Sequence section, unless otherwise stated below.

Figure 3-8 shows the overall flow of memory initialization and the different stages of the 
LRDIMM calibration sequence. 
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X-Ref Target - Figure 3-8

Figure 3-8: LRDIMM Calibration Sequence
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Host calibration stages are repeated for every 
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The following data buffer calibration stages are added to meet the timing between the data 
buffer and DRAMs and these are repeated for each and every rank of the LRDIMM card/slot.

• MREP Training
• MRD Cycle Training
• MRD Center Training
• DWL Training
• MWD Cycle Training
• MWD Center Training

Whereas the host side calibration stages would exercise the timing between host and data 
buffer and they are performed once per every LRDIMM card/slot.

All the calibration stages between data buffer and DRAMs are exercised first and then the 
host side calibration stages are exercised. 

At the end of each of the data buffer calibration stages, Per Buffer Addressing (PBA) mode 
is enabled to program the calibrated latency and the delay values into the data buffer 
registers. 

The following sections describe the data buffer calibration stages.

MREP Training

This training is to align the Read MDQS phase with the data buffer clock. In this training 
mode, host drives the read commands, DRAM sends out the MDQS, data buffer samples the 
strobe with the clock, and feeds the result on DQ. Calibration continues to perform this 
training to find the 1 to 0 transition on Read MDQS sampled with the data buffer clock.

MRD Cycle Training

This training is to find out the correct cycle to maintain the set Read Latency value at the 
data buffer. In this training mode, host pre-programs the DB MPR registers with the 
expected pattern and issues the read commands. Data buffer compares the read data with 
the expected data and feeds the result on to the DQ bus. Calibration picks up the correct 
cycle based on the result of the comparison.

MRD Center Training

This training is to perform center alignment of the Read MDQS in the Read MDQ window at 
the data buffer. In this training mode, host pre-programs the DB MPR registers with the 
expected pattern and issues the read commands. Data buffer compares the read data with 
the expected data and feeds the result on to the DQ bus. Calibration finds the left and right 
edges of the valid window and centers it. 
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DWL Training

This training is to align the Write MDQS phase with the DRAM clock. In this training mode, 
DB drives the MDQS pulses, DRAM samples the clock with MDQS, and feeds the result on to 
MDQ. Data buffer forwards this result from MDQ to DQ. Calibration continues to perform 
this training to find 0 to 1 transition on the clock sampled with the Write Read at the DRAM.

MWD Cycle Training

This training is to find out the right cycle to maintain the set Write Latency value in the 
DRAM. In this training mode, host pre-programs the DB MPR registers with the expected 
pattern, issues the write commands to load the data into memory and issues the reads to 
the memory. Data buffer compares the read data with the expected data and feeds the 
result on to the DQ bus. Calibration picks up the correct cycle based on the result of the 
comparison.

MWD Center Training

This training is to center align the Write MDQS in the Write MDQ window at the DRAM. In 
this training mode, host pre-programs the DB MPR registers with the expected pattern, 
issues the write commands to load the data into memory, and issues the reads to the 
memory. Data buffer would compare the read data with the expected data and feeds the 
result on to the DQ bus. Calibration finds the left and right edges of the valid window and 
centers it.

CAL_STATUS

There are two types of LRDIMM devices available: dual-rank cards and quad-rank cards. 
Because the data buffer calibration stages are repeated for every rank of the card, the 
calibration sequence numbering is going to be different for dual-rank cards versus 
quad-rank cards.

The calibration status is provided through the XSDB port, which stores useful information 
regarding calibration for display in the Vivado IDE. The calibration status is provided as 
ports to allow for debug or triggering. 
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Table 3-10 lists the calibration status signals in the port as well as how they relate to the 
core XSDB data for dual-rank LRDIMM card. 

Table 3-10: XSDB Status Signal Description for Dual-Rank LRDIMM Card

XSDB Status Register
XSDB 
Bits 
[8:0]

Status 
Port Bits 
[127:0]

Description Calibration Stage Name
Calibration 

Stage 
Number

DDR_CAL_STATUS_SLOTx_0

0 0 Start Data Buffer Rank 0 MREP 1
1 1 Done – –
2 2 Start Data Buffer Rank 0 MRD Cycle 2
3 3 Done – –
4 4 Start Data Buffer Rank 0 MRD Center 3
5 5 Done – –
6 6 Start Data Buffer Rank 0 DWL 4
7 7 Done – –
8 8 Start Data Buffer Rank 0 MWD Cycle 5

DDR_CAL_STATUS_SLOTx_1

0 9 Done – –
1 10 Start Data Buffer Rank 0 MWD Center 6
2 11 Done – –
3 12 Start Data Buffer Rank 1 MREP 7
4 13 Done – –
5 14 Start Data Buffer Rank 1 MRD Cycle 8
6 15 Done – –
7 16 Start Data Buffer Rank 1 MRD Center 9
8 17 Done – –

DDR_CAL_STATUS_SLOTx_2

0 18 Start Data Buffer Rank 1 DWL 10
1 19 Done – –
2 20 Start Data Buffer Rank 1 MWD Cycle 11
3 21 Done – –
4 22 Start Data Buffer Rank 1 MWD Center 12
5 23 Done – –
6 24 Start DQS Gate 13
7 25 Done – –
8 26 Start DQS Gate Sanity Check 14
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DDR_CAL_STATUS_SLOTx_3

0 27 Done – –
1 28 Start Write Leveling 15
2 29 Done – –
3 30 Start Read Per-Bit Deskew 16
4 31 Done – –
5 32 Start Read Per-Bit DBI Deskew 17
6 33 Done – –
7 34 Start Read DQS Centering (Simple) 18
8 35 Done – –

DDR_CAL_STATUS_SLOTx_4

0 36 Start Read Sanity Check 19
1 37 Done – –
2 38 Start Write DQS to DQ Deskew 20
3 39 Done – –
4 40 Start Write DQS to DM/DBI Deskew 21
5 41 Done – –
6 42 Start Write DQS to DQ (Simple) 22
7 43 Done – –
8 44 Start Write DQS to DM/DBI (Simple) 23

DDR_CAL_STATUS_SLOTx_5

0 45 Done – –
1 46 Start Read DQS Centering DBI (Simple) 24
2 47 Done – –
3 48 Start Write Latency Calibration 25
4 49 Done – –
5 50 Start Write Read Sanity Check 0 26
6 51 Done – –
7 52 Start Read DQS Centering (Complex) 27
8 53 Done – –

Table 3-10: XSDB Status Signal Description for Dual-Rank LRDIMM Card (Cont’d)

XSDB Status Register
XSDB 
Bits 
[8:0]

Status 
Port Bits 
[127:0]

Description Calibration Stage Name
Calibration 

Stage 
Number
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DDR_CAL_STATUS_SLOTx_6

0 54 Start Write Read Sanity Check 1 28
1 55 Done – –
2 56 Start Read VREF Training 29
3 57 Done – –
4 58 Start Write Read Sanity Check 2 30
5 59 Done – –
6 60 Start Write DQS to DQ (Complex) 31
7 61 Done – –
8 62 Start Write DQS to DM/DBI (Complex) 32

DDR_CAL_STATUS_SLOTx_7

0 63 Done – –
1 64 Start Write Read Sanity Check 3 33
2 65 Done – –
3 66 Start Write VREF Training 34
4 67 Done – -
5 68 Start Write Read Sanity Check 4 35
6 69 Done – –

7 70 Start Read DQS Centering Multi Rank 
Adjustment 36

8 71 Done – –

DDR_CAL_STATUS_SLOTx_8

0 72 Start Write Read Sanity Check 5 37
1 73 Done – –
2 74 Start Multi Rank Adjustment and Checks 38
3 75 Done – -
4 76 Start Write Read Sanity Check 6 39
5 77 Done – –

Table 3-10: XSDB Status Signal Description for Dual-Rank LRDIMM Card (Cont’d)

XSDB Status Register
XSDB 
Bits 
[8:0]

Status 
Port Bits 
[127:0]

Description Calibration Stage Name
Calibration 

Stage 
Number
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Table 3-11 lists the calibration status signals in the port as well as how they relate to the 
core XSDB data for quad-rank LRDIMM card. 

Table 3-11: Status Signal Description for Quad-Rank LRDIMM Card

XSDB Status Register
XSDB 
Bits 
[8:0]

Status 
Port Bits 
[127:0]

Description Calibration Stage Name
Calibration 

Stage 
Number

DDR_CAL_STATUS_SLOTx_0

0 0 Start Data Buffer Rank 0 MREP 1
1 1 Done – –
2 2 Start Data Buffer Rank 0 MRD Cycle 2
3 3 Done – –
4 4 Start Data Buffer Rank 0 MRD Center 3
5 5 Done – –
6 6 Start Data Buffer Rank 0 DWL 4
7 7 Done – –
8 8 Start Data Buffer Rank 0 MWD Cycle 5

DDR_CAL_STATUS_SLOTx_1

0 9 Done – –
1 10 Start Data Buffer Rank 0 MWD Center 6
2 11 Done – –
3 12 Start Data Buffer Rank 1 MREP 7
4 13 Done – –
5 14 Start Data Buffer Rank 1 MRD Cycle 8
6 15 Done – –
7 16 Start Data Buffer Rank 1 MRD Center 9
8 17 Done – –

DDR_CAL_STATUS_SLOTx_2

0 18 Start Data Buffer Rank 1 DWL 10
1 19 Done – –
2 20 Start Data Buffer Rank 1 MWD Cycle 11
3 21 Done – –
4 22 Start Data Buffer Rank 1 MWD Center 12
5 23 Done – –
6 24 Start Data Buffer Rank 2 MREP 13
7 25 Done – –
8 26 Start Data Buffer Rank 2 MRD Cycle 14
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DDR_CAL_STATUS_SLOTx_3

0 27 Done – –
1 28 Start Data Buffer Rank 2 MRD Center 15
2 29 Done – –
3 30 Start Data Buffer Rank 2 DWL 16
4 31 Done – –
5 32 Start Data Buffer Rank 2 MWD Cycle 17
6 33 Done – –
7 34 Start Data Buffer Rank 2 MWD Center 18
8 35 Done – –

DDR_CAL_STATUS_SLOTx_4

0 36 Start Data Buffer Rank 3 MREP 19
1 37 Done – –
2 38 Start Data Buffer Rank 3 MRD Cycle 20
3 39 Done – –
4 40 Start Data Buffer Rank 3 MRD Center 21
5 41 Done – –
6 42 Start Data Buffer Rank 3 DWL 22
7 43 Done – –
8 44 Start Data Buffer Rank 3 MWD Cycle 23

DDR_CAL_STATUS_SLOTx_5

0 45 Done – –
1 46 Start Data Buffer Rank 3 MWD Center 24
2 47 Done – –
3 48 Start DQS Gate 25
4 49 Done – –
5 50 Start DQS Gate Sanity Check 26
6 51 Done – –
7 52 Start Write Leveling 27
8 53 Done – –

Table 3-11: Status Signal Description for Quad-Rank LRDIMM Card (Cont’d)

XSDB Status Register
XSDB 
Bits 
[8:0]

Status 
Port Bits 
[127:0]

Description Calibration Stage Name
Calibration 

Stage 
Number
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DDR_CAL_STATUS_SLOTx_6

0 54 Start Read Per-Bit Deskew 28
1 55 Done – –
2 56 Start Read Per-Bit DBI Deskew 29
3 57 Done – –
4 58 Start Read DQS Centering (Simple) 30
5 59 Done – –
6 60 Start Read Sanity Check 31
7 61 Done – –
8 62 Start Write DQS to DQ Deskew 32

DDR_CAL_STATUS_SLOTx_7

0 63 Done – –
1 64 Start Write DQS to DM/DBI Deskew 33
2 65 Done – –
3 66 Start Write DQS to DQ (Simple) 34
4 67 Done – –
5 68 Start Write DQS to DM/DBI (Simple) 35
6 69 Done – –
7 70 Start Read DQS Centering DBI (Simple) 36
8 71 Done – –

DDR_CAL_STATUS_SLOTx_8

0 72 Start Write Latency Calibration 37
1 73 Done – –
2 74 Start Write Read Sanity Check 0 38
3 75 Done – –
4 76 Start Read DQS Centering (Complex) 39
5 77 Done – –
6 78 Start Write Read Sanity Check 1 40
7 79 Done – –
8 80 Start Read VREF Training 41

Table 3-11: Status Signal Description for Quad-Rank LRDIMM Card (Cont’d)

XSDB Status Register
XSDB 
Bits 
[8:0]

Status 
Port Bits 
[127:0]

Description Calibration Stage Name
Calibration 

Stage 
Number
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ERROR STATUS

The Error signal descriptions of host calibration stages in Table 3-9 holds good for LRDIMM 
host calibration stages, except that the stage numbering is as per LRDIMM dual-rank or 
quad-rank configuration. 

DDR_CAL_STATUS_SLOTx_9

0 81 Done – –
1 82 Start Write Read Sanity Check 2 42
2 83 Done – –
3 84 Start Write DQS to DQ (Complex) 43
4 85 Done – –
5 86 Start Write DQS to DM/DBI (Complex) 44
6 87 Done – –
7 88 Start Write Read Sanity Check 3 45
8 89 Done – –

DDR_CAL_STATUS_SLOTx_10

0 90 Start Write VREF Training 46
1 91 Done – –
2 92 Start Write Read Sanity Check 4 47
3 93 Done – –

4 94 Start Read DQS Centering Multi Rank 
Adjustment 48

5 95 Done – –
6 96 Start Write Read Sanity Check 5 49
7 97 Done – –

8 98 Start Multi Rank Adjustment and 
Checks 50

DDR_CAL_STATUS_SLOTx_11
0 99 Done – –
1 100 Start Write Read Sanity Check 6 51
2 101 Done - -

Table 3-11: Status Signal Description for Quad-Rank LRDIMM Card (Cont’d)

XSDB Status Register
XSDB 
Bits 
[8:0]

Status 
Port Bits 
[127:0]

Description Calibration Stage Name
Calibration 

Stage 
Number
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Table 3-12 lists the error signals of the dual-rank LRDIMM data buffer calibration stages and 
their description. 

Table 3-13 lists the error signals of the quad-rank LRDIMM data buffer calibration stages 
and their description. 

Table 3-12: Error Signal Description of Dual-Rank LRDIMM Data Buffer Calibration Stages

STAGE_NAME Stage Code DDR_CAL_
ERROR_1

DDR_CAL_
ERROR_0 Error

Data Buffer Rank 0 MREP 1 1 Nibble – Edge 1 to 0 transition is not found for 
Rank 0

Data Buffer Rank 0 MRD Cycle 2 1 Nibble – Pattern did not match for any of the 
Read latencies of Rank 0

Data Buffer Rank 0 MRD Center 3 1 Nibble – Found very short read valid window for 
Rank 0

Data Buffer Rank 0 DWL 4 1 Nibble – Edge 0 to 1 transition is not found for 
Rank 0

Data Buffer Rank 0 MWD Cycle 5 1 Nibble – Pattern did not match for any of the 
Write latencies of Rank 0

Data Buffer Rank 0 MWD Center 6 1 Nibble – Found very short write valid window 
for Rank 0

Data Buffer Rank 1 MREP 7 1 Nibble – Edge 1 to 0 transition is not found for 
Rank 1

Data Buffer Rank 1 MRD Cycle 8 1 Nibble – Pattern did not match for any of the 
Read latencies of Rank 1

Data Buffer Rank 1 MRD Center 9 1 Nibble – Found very short read valid window for 
Rank 1

Data Buffer Rank 1 DWL 10 1 Nibble – Edge 0 to 1 transition is not found for 
Rank 1

Data Buffer Rank 1 MWD Cycle 11 1 Nibble – Pattern did not match for any of the 
Write latencies of Rank 1

Data Buffer Rank 1 MWD Center 12 1 Nibble – Found very short write valid window 
for Rank 1

Table 3-13: Error Signal Description Of Quad-Rank LRDIMM Data Buffer Calibration Stages

STAGE_NAME Stage Code DDR_CAL
_ERROR_1

DDR_CAL
_ERROR_0 Error

Data Buffer Rank 0 MREP 1 1 Nibble – Edge 1 to 0 transition is not found for 
Rank 0

Data Buffer Rank 0 MRD Cycle 2 1 Nibble – Pattern did not match for any of the 
Read latencies of Rank 0

Data Buffer Rank 0 MRD Center 3 1 Nibble – Found very short read valid window for 
Rank 0

Data Buffer Rank 0 DWL 4 1 Nibble – Edge 0 to 1 transition is not found for 
Rank 0
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Data Buffer Rank 0 MWD Cycle 5 1 Nibble – Pattern did not match for any of the 
Write latencies of Rank 0

Data Buffer Rank 0 MWD Center 6 1 Nibble – Found very short write valid window for 
Rank 0

Data Buffer Rank 1 MREP 7 1 Nibble – Edge 1 to 0 transition is not found for 
Rank 1

Data Buffer Rank 1 MRD Cycle 8 1 Nibble – Pattern did not match for any of the 
Read latencies of Rank 1

Data Buffer Rank 1 MRD Center 9 1 Nibble – Found very short read valid window for 
Rank 1

Data Buffer Rank 1 DWL 10 1 Nibble – Edge 0 to 1 transition is not found for 
Rank 1

Data Buffer Rank 1 MWD Cycle 11 1 Nibble – Pattern did not match for any of the 
Write latencies of Rank 1

Data Buffer Rank 1 MWD Center 12 1 Nibble – Found very short write valid window for 
Rank 1

Data Buffer Rank 2 MREP 13 1 Nibble – Edge 1 to 0 transition is not found for 
Rank 2

Data Buffer Rank 2 MRD Cycle 14 1 Nibble – Pattern did not match for any of the 
Read latencies of Rank 2

Data Buffer Rank 2 MRD Center 15 1 Nibble – Found very short read valid window for 
Rank 2

Data Buffer Rank 2 DWL 16 1 Nibble – Edge 0 to 1 transition is not found for 
Rank 2

Data Buffer Rank 2 MWD Cycle 17 1 Nibble – Pattern did not match for any of the 
Write latencies of Rank 2

Data Buffer Rank 2 MWD Center 18 1 Nibble – Found very short write valid window for 
Rank 2

Data Buffer Rank 3 MREP 19 1 Nibble – Edge 1 to 0 transition is not found for 
Rank 3

Data Buffer Rank 3 MRD Cycle 20 1 Nibble – Pattern did not match for any of the 
Read latencies of Rank 3

Data Buffer Rank 3 MRD Center 21 1 Nibble – Found very short read valid window for 
Rank 3

Data Buffer Rank 3 DWL 22 1 Nibble – Edge 0 to 1 transition is not found for 
Rank 3

Data Buffer Rank 3 MWD Cycle 23 1 Nibble – Pattern did not match for any of the 
Write latencies of Rank 3

Data Buffer Rank 3 MWD Center 24 1 Nibble – Found very short write valid window for 
Rank 3

Table 3-13: Error Signal Description Of Quad-Rank LRDIMM Data Buffer Calibration Stages (Cont’d)

STAGE_NAME Stage Code DDR_CAL
_ERROR_1

DDR_CAL
_ERROR_0 Error
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Save Restore
The feature saves the calibration data into an external memory and restores the same 
information at a later point of time for a quick calibration completion. The IP provides a set 
of XSDB ports in the user interface through which, you can save and restore the memory 
controller calibration data. 

When the FPGA is programmed and asked to calibrate in a regular mode, all required 
calibration stages are executed. You can start talking to the DRAM when the calibration 
completes and issues a save request at any point of time to save the calibration data. This 
is called save cycle. The FPGA can be reprogrammed or turned off after the save cycle. 

At a later point of time, the same design can be reprogrammed and asked to calibrate in 
restore mode in which, the calibration completes in a very quick time. This is called restore 
cycle. The placeholder that keeps the calibration data inside the memory controller while 
the FPGA is powered is called XSDB block RAM. 

It is required to save and restore the entire XSDB block RAM. Its end address can be 
obtained from the END_ADDR0/1 locations of the XSDB debug information. An example to 
calculate the end address is available in step 2, page 604.

If Match_Cycle is set to no wait, to minimize stage 1 configuration time, DCI calibration 
needs to be reset by instantiating the DCIRESET primitive. Also, the RST input to the 
primitive needs to be toggled, such that the DCI state machine is reset and the calibration 
process restarts.
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Figure 3-13 describes the save/restore sequence briefly. 
X-Ref Target - Figure 3-9

Figure 3-9: Save and Restore Sequence of the Calibration Data
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Table 3-14: User Interface Ports Description for Save and Restore
Signal Name I/O Width Description

app_save_req I 1
Request for saving the calibration data. No further memory requests 
are accepted when it is asserted. Must be asserted from Low to High 
only after calibration completion.

app_save_ack O 1 Save request acknowledgment. The signal stays High after it is 
asserted until a system reset is issued.
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The following is a save restore flow description:

1. Save cycle
a. Memory Controller boots up in a normal manner, completes calibration, and runs the 

user traffic.
b. Issue a save request to the Memory Controller by asserting app_save_req. Any 

read or write request that comes along with or after the save request is dropped and 
the controller behavior is not guaranteed. Thus, the traffic must be stopped before 
requesting the calibration data save.

app_restore_en I 1

XSDB block RAM restore enable. It must be asserted High within 50 
general interconnect cycles after ui_clk_sync_rst is deasserted in the 
restore cycle until calibration completes.
Assert this to notify MicroBlaze to wait for XSDB block RAM 
restoration completion. After the XSDB block RAM is restored, assert 
app_restore_complete to notify MicroBlaze to continue calibration. 
When asserted,
• MicroBlaze waits for app_restore_complete before proceeding to 

calibration
• Disables all calibration stages except DQS gating

app_restore_complete I 1 XSDB block RAM restore complete. It should be asserted High after 
the entire XSDB block RAM is restored until calibration completes.

app_dbg_out O
Debug Output
Do not connect any signals to app_dbg_out and keep the port open 
during instantiation

app_xsdb_select I 1
Save restore XSDB ports Select. 
Assert for the XSDB block RAM read or write access. It should be 
asserted as long as the access is required.

app_xsdb_rd_en I 1 XSDB block RAM read enable. Asserting this for one cycle issues one 
read command.

app_xsdb_wr_en I 1
XSDB block RAM write enable. Asserting this for one cycle issues one 
write command. The corresponding write address (app_xsdb_addr) 
and write data (app_xsdb_wr_data) are taken in the same cycle.

app_xsdb_addr I 16
XSDB block RAM address. This address is used for both read and write 
commands. app_xsdb_addr is taken in the same cycle when 
app_xsdb_rd_en or app_xsdb_wr_en is valid.

app_xsdb_wr_data I 9 XSDB block RAM write data. app_xsdb_wr_data is taken in the same 
cycle when app_xsdb_wr_en is valid.

app_xsdb_rd_data O 9 XSDB block RAM read data. app_xsdb_rd_data is valid when 
app_xsdb_rdy is asserted. 

app_xsdb_rdy O 1
Acknowledge for the previous command. Acts as a read data valid for 
read commands. Any new command must be sent only after receiving 
the app_xsdb_rdy response for the current command.

Table 3-14: User Interface Ports Description for Save and Restore (Cont’d)

Signal Name I/O Width Description
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c. Memory Controller asserts the app_save_ack after finishing all pending DRAM 
commands. Figure 3-10 shows the save request and acknowledge assertions.

d. When the app_save_ack is asserted, save the XSDB block RAM content into an 
external memory through the XSDB ports provided in the user interface as shown in 
Figure 3-11. The saved data can be used to restore the calibration in a shorter time 
at a later point of time.  

2. Restore cycle
a. Assert the app_restore_en signal within 50 general interconnect cycles after the 

user interface reset (ui_clk_sync_rst) is deasserted in the restore cycle. It should 
stay asserted until the calibration completes.

b. Restore the XSDB block RAM content from the external saved space into the Memory 
Controller through the XSDB ports provided in the user interface. The XSDB write 
timing is shown in Figure 3-12. Assert the app_restore_complete after the entire 
XSDB block RAM is restored as shown in Figure 3-13. 

c. Memory Controller recognizes this as a restore boot up when app_restore_en is 
asserted. The calibration sequence is going to be shortened in the restore mode. 
When app_restore_complete is asserted, the entire calibration data from XSDB 
block RAM is restored into PHY with minimal calculations.

X-Ref Target - Figure 3-10

Figure 3-10: Save Request and Acknowledge Assertions
X-Ref Target - Figure 3-11

Figure 3-11: XSDB Interface Timing for Reading XSDB Block RAM Content
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d. Memory Controller skips all calibration stages except the DQS gating stage and 
finishes calibration. User traffic starts after the calibration as usual.  

Reset Sequence
The sys_rst signal resets the entire memory design which includes general interconnect 
(fabric) logic which is driven by the MMCM clock (clkout0) and RIU logic. MicroBlaze™ and 
calibration logic are driven by the MMCM clock (clkout6). The sys_rst input signal is 
synchronized internally to create the ui_clk_sync_rst signal. The ui_clk_sync_rst 
reset signal is synchronously asserted and synchronously deasserted.

Figure 3-14 shows the ui_clk_sync_rst (fabric reset) is synchronously asserted with a 
few clock delays after sys_rst is asserted. When ui_clk_sync_rst is asserted, there are 
a few clocks before the clocks are shut off. 

The following are the reset sequencing steps:

1. Reset to design is initiated after ui_clk_sync_rst goes High.

X-Ref Target - Figure 3-12

Figure 3-12: XSDB Interface Timing for Writing XSDB Block RAM Content
X-Ref Target - Figure 3-13

Figure 3-13: Asserting app_restore_complete After Writing Entire Block RAM Content

X-Ref Target - Figure 3-14

Figure 3-14: Reset Sequence Waveform
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2. init_calib_complete signal goes Low when ui_clk_sync_rst is High.
3. Reset to design is deactivated after ui_clk_sync_rst is Low. 
4. After ui_clk_sync_rst is deactivated, the init_calib_complete is asserted after 

calibration is completed.

Clamshell Topology
This feature is supported for DDR4 Controller/PHY Mode option in the Controller and 
physical layer pull-down for User Interface, AXI interfaces, and Physical Layer Only 
interface. Clamshell topology supports the Physical Layer Ping Pong interface. 

Note: Only DDR4 single Rank components are supported with this feature. 

The clamshell topology saves the component area by placing them on both sides (top and 
bottom) of the board to mimic the address mirroring concept of the multi-rank RDIMMs. 
Address mirroring improves the signal integrity of the address and control ports and makes 
the PCB routing easier. The clamshell feature is available in the Basic tab as shown in 
Figure 3-15.
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The components are split into two categories called non-mirrored and mirrored. One 
additional chip select signal is added to the design for the mirrored components. 
Figure 3-16 shows the difference between the regular component topology and the 
clamshell topology.

X-Ref Target - Figure 3-15

Figure 3-15: Vivado Customize IP Dialog Box – Clamshell Topology
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As mentioned in Figure 3-15, CS0_n of a clamshell design drives the non-mirrored 
components while CS1_n driving the mirrored components. For more information on the 
PCB guidelines, see the UltraScale Architecture PCB Design and Pin Planning User Guide 
(UG583) [Ref 11].

Migration Feature
This feature is supported for DDR4 Controller/PHY Mode option in the Controller and 
physical layer for User Interface, AXI interfaces, and Physical Layer Only interface. 
Migration does not support the Physical Layer Ping Pong interface. This feature is helpful 
when migrating a design from the existing FPGA package to another compatible package. 
It also supports pin compatible packages within and across UltraScale and UltraScale+ 
families. For more information on the on pin compatible FPGAs, see the UltraScale 
Architecture PCB Design and Pin Planning User Guide (UG583) [Ref 11].

The migration option compensates the package skews of all address/command signals on 
the targeted device to keep the phase relationship of the source device intact. It is required 
only for the address/command bus as there is no calibration for these signals. 

The data bus (DQ and DQS) skews are not required to compensate because it is completed 
during the regular calibration sequence. The tool supports a skew difference of 0 to 75 ps 
only. 

X-Ref Target - Figure 3-16

Figure 3-16: Regular Component Topology vs. Clamshell Topology
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Figure 3-17 shows the Advanced Options tab to enable the migration feature. 
X-Ref Target - Figure 3-17

Figure 3-17: Vivado Customize IP Dialog Box – Enable Migration

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG150&Title=UltraScale%20Architecture-Based%20FPGAs%20Memory%20IP%20v1.4&releaseVersion=1.4&docPage=76


UltraScale Architecture-Based FPGAs Memory IP v1.4 77
PG150 October 22, 2021 www.xilinx.com

Chapter 3: Core Architecture

When Enable Migration is selected, a Migration Options tab is displayed as shown in 
Figure 3-18. It has entries for all address and command signals to enter the skew values on 
the corresponding pins. All entries are in picoseconds (ps). 

Table 3-15 to Table 3-17 show examples on the skew calculations that need to be entered in 
Figure 3-18 while migrating the FPGA device. The procedure to retrieve the delay values for 
the source and target devices is available in the Migration chapter in the UltraScale 
Architecture PCB Design and Pin Planning User Guide (UG583) [Ref 11]. 

These delay values for all used pins are listed in columns 2 and 3 for the source and target 
devices, respectively. The difference in the delay of the target device from the source is 
mentioned in column 4. Note that the skew can be positive or negative. Because the GUI 
expects only the positive skew values, the column 4 values are adjusted in the column 5 
such that the lowest skew difference becomes zero. The calculated values in column 5 are to 
be entered in Vivado as shown in Figure 3-18.

X-Ref Target - Figure 3-18

Figure 3-18: Vivado Customize IP Dialog Box – Migration Options
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The lowest skew among all entries of column 4 (Table 3-15) is +11 ps. Therefore, column 5 
gets formed by subtracting this lowest skew value (+11 ps) from column 4. 

The lowest skew among all entries of column 4 (Table 3-16) is -39 ps. Then, column 5 gets 
formed by subtracting this lowest skew value (-39 ps) from column 4. 

The lowest skew among all entries of column 4 (Table 3-17) is -18 ps. Hence, column 5 gets 
formed by subtracting this lowest skew value (-18 ps) from column 4.

Table 3-15: Calculation for All Positive Skews

Port Name Source Device Delay 
(in ps)

Target Device 
Delay (in ps)

Skew 
(Target Source)

Skew 
(Entered in GUI)

ADDR[0] 159 190 31 20
ADDR[1] 162 185 23 12
CK 154 165 11 0
CKE 160 182 22 11
CS 150 195 45 34

Table 3-16: Calculation for All Negative Skews

Port Name Source Device Delay 
(in ps)

Target Device 
Delay (in ps)

Skew 
(Target Source)

Skew 
(Entered in GUI)

ADDR[0] 189 150 -39 0
ADDR[1] 172 155 -17 22
CK 184 165 -19 20
CKE 170 162 -8 31
CS 180 175 -5 34

Table 3-17: Calculation for Mix of Positive and Negative Skews

Port Name Source Device Delay 
(in ps)

Target Device 
Delay (in ps)

Skew 
(Target Source)

Skew
(Entered in GUI)

ADDR[0] 169 190 21 39
ADDR[1] 172 185 13 31
CK 154 165 11 29
CKE 170 152 -18 0
CS 180 175 -5 13
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MicroBlaze MCS ECC
The MicroBlaze MCS local memory provides an option to enable Error Correcting Code 
(ECC). Error correction corrects single bit errors and detects double bit errors. Two 
additional ports are added to indicate single bit errors (LMB_CE) and double bit errors 
(LMB_UE).

The MicroBlaze MCS ECC can be selected from the MicroBlaze MCS ECC option section in 
the Advanced Options tab. The block RAM size increases if the ECC option for MicroBlaze 
MCS is selected.

Memory Settings
This section captures the settings of memory components and DIMMs.

DDR3 Register Module
DDR3 register module settings are captured in Table 3-18. The register contents are 
programmed to default value of 0s, unless otherwise specified in the table. 

DDR4 Register Module
DDR4 register module settings are captured in Table 3-19. The register contents are 
programmed to default value of 0s, unless otherwise specified in the table. 

Table 3-18: DDR3 Register Module Settings
Register Field Possible Values and Description
RC3 DBA[1:0], DA[4:3] Value based on DRAM loads on the card.
RC4 DBA[1:0], DA[4:3] Value based on DRAM loads on the card.
RC5 DBA[1:0], DA[4:3] Value based on DRAM loads on the card.
RC10 DBA[0], DA[4:3] Value based on the targeted speed.
RC11 DA[4:3] Value based on the targeted voltage.

Table 3-19: DDR4 Register Module Settings
Register Field Possible Values and Description
RC03 DA[3:0] Value based on DRAM loads on the card.
RC04 DA[3:0] Value based on DRAM loads on the card.
RC05 DA[3:0] Value based on DRAM loads on the card.
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RC08
DA[1:0]

For non-3DS configurations:
01 = Number of physical ranks per slot is 4 (LRDIMM Quad rank)
11 = Number of physical ranks per slot is 2 or 1
For 3DS configurations:
11 = 1 height
10 = 2 height
01 = 4 height

DA[3] 0 = If address pins are 18
1 = If address pins are 17

RC0A DA[2:0] Value based on the targeted speed.
RC0B DA[3] 1 = Input receiver Vref source is External VrefCA input

RC0D
DA[1:0]

01 = Direct Quad CS mode is when the number of ranks per slot is 4 (LRDIMM 
Quad rank)
00 = Direct Dual CS mode is when the number of ranks per slot is < 4

DA[2] 0 = LRDIMM configuration
1 = RDIMM configuration

RC2X DA[0] 1 = I2C bus interface is disabled
RC3X DA[7:0] Value based on the targeted speed.

Table 3-19: DDR4 Register Module Settings (Cont’d)

Register Field Possible Values and Description
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Designing with the Core
This chapter includes guidelines and additional information to facilitate designing with the 
core. 

Clocking
The memory interface requires one MMCM, one TXPLL per I/O bank used by the memory 
interface, and two BUFGs. These clocking components are used to create the proper clock 
frequencies and phase shifts necessary for the proper operation of the memory interface.

There are two TXPLLs per bank. If a bank is shared by two memory interfaces, both TXPLLs 
in that bank are used.

Note: DDR3/DDR4 SDRAM generates the appropriate clocking structure and no modifications to 
the RTL are supported.

The DDR3/DDR4 SDRAM tool generates the appropriate clocking structure for the desired 
interface. This structure must not be modified. The allowed clock configuration is as 
follows:

• Differential reference clock source connected to GCIO
• GCIO to MMCM (located in center bank of memory interface)
• MMCM to BUFG (located at center bank of memory interface) driving FPGA logic and 

all TXPLLs
• MMCM to BUFG (located at center bank of memory interface) divide by two mode 

driving 1/2 rate FPGA logic
• Clocking pair of the interface must be in the same SLR of memory interface for the SSI 

technology devices
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Requirements

GCIO

• Must use a differential I/O standard
• Must be in the same I/O column as the memory interface
• Must be in the same SLR of memory interface for the SSI technology devices
• The I/O standard and termination scheme are system dependent. For more information, 

consult the UltraScale Architecture SelectIO Resources User Guide (UG571) [Ref 7].

MMCM

• MMCM is used to generate the FPGA logic system clock (1/4 of the memory clock)
• Must be located in the center bank of memory interface
• Must use internal feedback
• Input clock frequency divided by input divider must be ≥  70 MHz (CLKINx / D ≥  

70 MHz)
• Must use integer multiply and output divide values

Input Clock Requirement

• The clock generator driving the GCIO should have jitter < 3 ps RMS.
• The input clock should always be clean and stable. The IP functionality is not 

guaranteed if this input system clock has a glitch, discontinuous, etc.
• No spread spectrum clock is allowed.

BUFGs and Clock Roots

• One BUFG is used to generate the system clock to FPGA logic and another BUFG is used 
to divide the system clock by two.

• BUFGs and clock roots must be located in center most bank of the memory interface.

° For two bank systems, the bank with the higher number of bytes selected is chosen 
as the center bank. If the same number of bytes is selected in two banks, then the 
top bank is chosen as the center bank.

° For four bank systems, either of the center banks can be chosen. DDR3/DDR4 
SDRAM refers to the second bank from the top-most selected bank as the center 
bank.

° Both the BUFGs must be in the same bank.
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TXPLL

• CLKOUTPHY from TXPLL drives XIPHY within its bank
• TXPLL must be set to use a CLKFBOUT phase shift of 90°
• TXPLL must be held in reset until the MMCM lock output goes High
• Must use internal feedback

Figure 4-1 shows an example of the clocking structure for a three bank memory interface. 
The GCIO drives the MMCM located at the center bank of the memory interface. MMCM 
drives both the BUFGs located in the same bank. The BUFG (which is used to generate 
system clock to FPGA logic) output drives the TXPLLs used in each bank of the interface.

X-Ref Target - Figure 4-1

Figure 4-1: Clocking Structure for Three Bank Memory Interface
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The MMCM is placed in the center bank of the memory interface.

• For two bank systems, MMCM is placed in a bank with the most number of bytes 
selected. If they both have the same number of bytes selected in two banks, then 
MMCM is placed in the top bank.

• For four bank systems, MMCM is placed in a second bank from the top.

For designs generated with System Clock configuration of No Buffer, MMCM must not be 
driven by another MMCM/PLL. Cascading clocking structures MMCM →  BUFG →  MMCM 
and PLL →  BUFG →  MMCM are not allowed.

If the MMCM is driven by the GCIO pin of the other bank, then the 
CLOCK_DEDICATED_ROUTE constraint with value "BACKBONE" must be set on the net that 
is driving MMCM or on the MMCM input. Setting up the CLOCK_DEDICATED_ROUTE 
constraint on the net is preferred. But when the same net is driving two MMCMs, the 
CLOCK_DEDICATED_ROUTE constraint must be managed by considering which MMCM 
needs the BACKBONE route. 

In such cases, the CLOCK_DEDICATED_ROUTE constraint can be set on the MMCM input. To 
use the "BACKBONE" route, any clock buffer that exists in the same CMT tile as the GCIO 
must exist between the GCIO and MMCM input. The clock buffers that exists in the I/O CMT 
are BUFG, BUFGCE, BUFGCTRL, and BUFGCE_DIV. So DDR3/DDR4 SDRAM instantiates BUFG 
between the GCIO and MMCM when the GCIO pins and MMCM are not in the same bank 
(see Figure 4-1). 

If the GCIO pin and MMCM are allocated in different banks, DDR3/DDR4 SDRAM generates 
CLOCK_DEDICATED_ROUTE constraints with value as "BACKBONE." If the GCIO pin and 
MMCM are allocated in the same bank, there is no need to set any constraints on the 
MMCM input. 

Similarly when designs are generated with System Clock Configuration as a No Buffer 
option, you must take care of the "BACKBONE" constraint and the BUFG/BUFGCE/
BUFGCTRL/BUFGCE_DIV between GCIO and MMCM if GCIO pin and MMCM are allocated in 
different banks. DDR3/DDR4 SDRAM does not generate clock constraints in the XDC file for 
No Buffer configurations and you must take care of the clock constraints for No Buffer 
configurations. For more information on clocking, see the UltraScale Architecture Clocking 
Resources User Guide (UG572) [Ref 8].

XDC syntax for CLOCK_DEDICATED_ROUTE constraint is given here: 

For DDR3:
set_property CLOCK_DEDICATED_ROUTE BACKBONE [get_pins -hier -filter {NAME =~ */
u_ddr3_infrastructure/gen_mmcme*.u_mmcme_adv_inst/CLKIN1}]

For DDR4:
set_property CLOCK_DEDICATED_ROUTE BACKBONE [get_pins -hier -filter {NAME =~ */
u_ddr4_infrastructure/gen_mmcme*.u_mmcme_adv_inst/CLKIN1}]
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For more information on the CLOCK_DEDICATED_ROUTE constraints, see the Vivado Design 
Suite Properties Reference Guide (UG912) [Ref 9].

Note: If two different GCIO pins are used for two DDR3/DDR4 SDRAM IP cores in the same bank, 
center bank of the memory interface is different for each IP. DDR3/DDR4 SDRAM generates MMCM 
LOC and CLOCK_DEDICATED_ROUTE constraints accordingly.

Sharing of Input Clock Source (sys_clk_p)
If the same GCIO pin must be used for two IP cores, generate the two IP cores with the same 
frequency value selected for option Reference Input Clock Period (ps) and System Clock 
Configuration option as No Buffer. Perform the following changes in the wrapper file in 
which both IPs are instantiated:

1. DDR3/DDR4 SDRAM generates a single-ended input for system clock pins, such as 
sys_clk_i. Connect the differential buffer output to the single-ended system clock 
inputs (sys_clk_i) of both the IP cores.

2. System clock pins must be allocated within the same I/O column of the memory 
interface pins allocated. Add the pin LOC constraints for system clock pins and clock 
constraints in your top-level XDC.

3. You must add a "BACKBONE" constraint on the net that is driving the MMCM or on the 
MMCM input if GCIO pin and MMCM are not allocated in the same bank. Apart from 
this, BUFG/BUFGCE/BUFGCTRL/BUFGCE_DIV must be instantiated between GCIO and 
MMCM to use the "BACKBONE" route.

Note:

° The UltraScale architecture includes an independent XIPHY power supply and TXPLL 
for each XIPHY. This results in clean, low jitter clocks for the memory system.

° Skew spanning across multiple BUFGs is not a concern because single point of 
contact exists between BUFG →  TXPLL and the same BUFG →  System Clock Logic.

° System input clock cannot span I/O columns because the longer the clock lines 
span, the more jitter is picked up.

TXPLL Usage
There are two TXPLLs per bank. If a bank is shared by two memory interfaces, both TXPLLs 
in that bank are used. One PLL per bank is used if a bank is used by a single memory 
interface. You can use a second PLL for other usage. To use a second PLL, you can perform 
the following steps:

1. Generate the design for the System Clock Configuration option as No Buffer. 
2. DDR3/DDR4 SDRAM generates a single-ended input for system clock pins, such as 

sys_clk_i. Connect the differential buffer output to the single-ended system clock 
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inputs (sys_clk_i) and also to the input of PLL (PLL instance that you have in your 
design).

3. You can use the PLL output clocks.

Additional Clocks
You can produce up to four additional clocks which are created from the same MMCM that 
generates ui_clk. Additional clocks can be selected from the Clock Options section in the 
Advanced tab. The GUI lists the possible clock frequencies from MMCM and the 
frequencies for additional clocks vary based on selected memory frequency (Memory 
Device Interface Speed (ps) value in the Basic tab), selected FPGA, and FPGA speed grade. 

Reduce System Noise During Calibration
The system design should be as quiet as possible during the calibration process. In 
particular, the Soft Error Mitigation (SEM) IP, if used, should be disabled during calibration. 
For calibration that occurs immediately after the configuration or reconfiguration of the 
FPGA, use the ICAP arbitration interface to hold off the SEM IP in the boot stage. For more 
information on the ICAP Arbitration Interface, see “ICAP Arbitration Interface” section in 
Chapter 3 of the UltraScale Architecture Soft Error Mitigation Controller LogiCORE IP Product 
Guide (PG187) [Ref 10].

For situations where the memory interface is reset and recalibrated without a 
reconfiguration of the FPGA, the SEM IP must be set into IDLE state to disable the memory 
scan and to send the SEM IP back into the scanning (Observation or Detect only) states 
afterwards. This can be done in two methods, through the “Command Interface” or “UART 
interface.” See Chapter 3 of the UltraScale Architecture Soft Error Mitigation Controller 
LogiCORE IP Product Guide (PG187) [Ref 10] for more information.

Resets
An asynchronous reset (sys_rst) input is provided. This is an active-High reset and the 
sys_rst must assert for a minimum pulse width of 5 ns. The sys_rst can be an internal 
or external pin.

IMPORTANT: If two controllers share a bank, they cannot be reset independently. The two controllers 
must have a common reset input.

For more information on reset, see the Reset Sequence in Chapter 3, Core Architecture.

Note: The best possible calibration results are achieved when the FPGA activity is minimized from 
the release of this reset input until the memory interface is fully calibrated as indicated by the 
init_calib_complete port (see the User Interface section of this document).
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PCB Guidelines for DDR3
Strict adherence to all documented DDR3 PCB guidelines is required for successful 
operation. For more information on PCB guidelines, see the UltraScale Architecture PCB 
Design and Pin Planning User Guide (UG583) [Ref 11].

PCB Guidelines for DDR4
Strict adherence to all documented DDR4 PCB guidelines is required for successful 
operation. For more information on PCB guidelines, see the UltraScale Architecture PCB 
Design and Pin Planning User Guide (UG583) [Ref 11].

Pin and Bank Rules
DDR3 Pin Rules
IMPORTANT: Xilinx advises Tandem Configuration users to avoid using bank 65 for design 
applications, especially when using Tandem PROM, to avoid complications because the programming 
bitstream is split into two stages. Specifically, IP cores built by the Memory IP or Memory Interface 
Generator (MIG) must not use bank 65 I/O. This ensures that IP can remain completely within stage 2, 
and avoid complications with its embedded I/O and demanding timing constraints.

The rules are for single and multi-rank memory interfaces.

• Address/control means cs_n, ras_n, cas_n, we_n, ba, ck, cke, a, parity (valid for 
RDIMMs only), and odt. Multi-rank systems have one cs_n, cke, odt, and one ck pair 
per rank.

• Pins in a byte lane are numbered N0 to N12.
• Byte lanes in a bank are designed by T0, T1, T2, or T3. Nibbles within a byte lane are 

distinguished by a “U” or “L” designator added to the byte lane designator (T0, T1, T2, 
or T3). Thus they are T0L, T0U, T1L, T1U, T2L, T2U, T3L, and T3U.

Note: There are two PLLs per bank and a controller uses one PLL in every bank that is being used by 
the interface.
1. dqs, dq, and dm location.

a. Designs using x8 or x16 components – dqs must be located on a dedicated byte 
clock pair in the upper nibble designated with “U” (N6 and N7). dq associated with 
a dqs must be in same byte lane on any of the other pins except pins N1 and N12.
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b. Designs using x4 components – dqs must be located on the dedicated dqs pair in 
the nibble (N0 and N1 in the lower nibble, N6 and N7 in the upper nibble). dq’s 
associated with a dqs must be in the same nibble on any of the other pins except pin 
N12 (upper nibble).

c. dm (if used) must be located on pin N0 in the byte lane with the corresponding dqs. 
When dm is disabled, pin N0 can be used for dq and pin N0 must not be used for 
address/control signal. Pin N0 must not be used for Address/Control when dm is not 
used (exception reset# pin).
Note: dm is not supported with x4 devices.

d. dm, if not used, must be pulled low on the PCB. Typical values used for this are equal 
to the DQ trace impedance such as 40 or 50Ω . Consult with the memory vendor for 
their specific recommendation. Unpredictable failures occur if this is not pulled low 
appropriately. 

IMPORTANT: Also, ensure that the interface is configured in the GUI to not use the data mask. 
Otherwise, the calibration logic attempts to train this pin which results in a calibration failure.

2. The x4 components must be used in pairs. Odd numbers of x4 components are not 
permitted. Both the upper and lower nibbles of a data byte must be occupied by a x4 
dq/dqs group.

3. Byte lanes with a dqs are considered to be data byte lanes. Pins N1 and N12 can be used 
for address/control in a data byte lane. If the data byte is in the same bank as the 
remaining address/control pins, see step #4.

4. Address/control can be on any of the 13 pins in the address/control byte lanes. Address/
control must be contained within the same bank.

5. For dual slot configurations of RDIMMs and UDIMMs: cs, odt, cke, and ck port widths 
are doubled. For exact mapping of the signals, see the DIMM Configurations.

6. One vrp pin per bank is used and DCI is required for the interfaces. A vrp pin is 
required in I/O banks containing inputs as well as in output only banks. It is required in 
output only banks because address/control signals use SSTL15_DCI/SSTL135_DCI to 
enable usage of controlled output impedance. DCI cascade is allowed. When DCI 
cascade is selected, vrp pin can be used as a normal I/O. All rules for the DCI in the 
UltraScale™ Architecture SelectIO™ Resources User Guide (UG571) [Ref 7] must be 
followed.

RECOMMENDED: Xilinx strongly recommends that the DCIUpdateMode option is kept with the default 
value of ASREQUIRED so that the DCI circuitry is allowed to operate normally.

7. ck pair(s) must be on any PN pair(s) in the Address/Control byte lanes.
8. reset_n can be on any pin as long as general interconnect timing is met and I/O 

standard must be SSTL15. Reset to DRAM should be pulled down so it is held low during 
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power up. When dm is disabled, the reset pin can be allocated to N0th pin of data byte 
lane or any other free pin of that byte lane as long as other rules are not violated.

RECOMMENDED: The recommended resistor should be a 4.7 kΩ  pull-down.

9. Banks can be shared between two controllers.
a. Each byte lane is dedicated to a specific controller (except for reset_n).
b. Byte lanes from one controller cannot be placed inside the other.  For example, with 

controllers A and B, “AABB” is allowed, while “ABAB” is not.

IMPORTANT: If two controllers share a bank, they cannot be reset independently. The two controllers 
must share a common reset input.

10. All I/O banks used by the memory interface must be in the same column.
11. All I/O banks used by the memory interface must be in the same SLR of the column for 

the SSI technology devices.
12. Maximum height of interface is five contiguous banks. The maximum supported 

interface is 80-bit wide.

Maximum component limit is nine and this restriction is valid for components only and 
not for DIMMs.

13. Bank skipping is not allowed.
14. Input clock for the MMCM in the interface must come from a GCIO pair in the I/O 

column used for the memory interface. Information on the clock input specifications 
can be found in the AC and DC Switching Characteristics data sheets (LVDS input 
requirements and MMCM requirements should be considered). For more information, 
see Clocking, page 81.

15. There are dedicated VREF pins (not included in the rules above). Either internal or 
external VREF is permitted. If an external VREF is not used, the VREF pins must be pulled 
to ground by a resistor value specified in the UltraScale™ Architecture SelectIO™ 
Resources User Guide (UG571) [Ref 7]. These pins must be connected appropriately for 
the standard in use. 

16. The interface must be contained within the same I/O bank type (High Range or High 
Performance). Mixing bank types is not permitted with the exceptions of the reset_n 
in step 7 and the input clock mentioned in step 12.

17. The par pin is required for DDR3 RDIMMs. For more information on parity errors, see 
the Address Parity, page 34.

18. The system reset pin (sys_rst_n) must not be allocated to Pins N0 and N6 if the byte 
is used for the memory I/Os.
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Note: If PCB compatibility between x4 and x8 based DIMMs is desired, additional restrictions apply. 
The upper x4 DQS group must be placed within the lower byte nibble (N0 to N5). This allows DM to 
be placed on N0 for the x8 pinout, pin compatibility for all DQ bits, and the added DQS pair for x4 
be placed on N0/N1.

For example, a typical DDR3 x4 based RDIMM data sheet shows the DQS9 associated with DQ4, DQ5, 
DQ6, and DQ7. This DQS9_p is used for the DM in an x8 configuration. This nibble must be 
connected to the lower nibble of the byte lane. The Vivado generated XDC labels this DQS9 as DSQ1 
(for more information, see the Pin Mapping for x4 RDIMMs/LRDIMMs). Table 4-1 and Table 4-2 
include an example for one of the configurations of x4/x8/x16.

Table 4-1: Byte Lane View of Bank on FPGA Die for x8 and x16 Support
I/O Type Byte Lane Pin Number Signal Name

– T0U N12 –
N T0U N11 DQ[7:0]
P T0U N10 DQ[7:0]
N T0U N9 DQ[7:0]
P T0U N8 DQ[7:0]
DQSCC-N T0U N7 DQS0_N
DQSCC-P T0U N6 DQS0_P
N T0L N5 DQ[7:0]
P T0L N4 DQ[7:0]
N T0L N3 DQ[7:0]
P T0L N2 DQ[7:0]
DQSCC-N T0L N1 –
DQSCC-P T0L N0 DM0

Table 4-2: Byte Lane View of Bank on FPGA Die for x4, x8, and x16 Support
I/O Type Byte Lane Pin Number Signal Name

– T0U N12 –
N T0U N11 DQ[3:0]
P T0U N10 DQ[3:0]
N T0U N9 DQ[3:0]
P T0U N8 DQ[3:0]
DQSCC-N T0U N7 DQS0_N
DQSCC-P T0U N6 DQS0_P
N T0L N5 DQ[7:4]
P T0L N4 DQ[7:4]
N T0L N3 DQ[7:4]
P T0L N2 DQ[7:4]
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Pin Swapping

• Pins can swap freely within each byte group (data and address/control), except for the 
DQS pair which must be on the dedicated dqs pair in the nibble (for more information, 
see the dqs, dq, and dm location., page 87).

• Byte groups (data and address/control) can swap easily with each other.
• Pins in the address/control byte groups can swap freely within and between their byte 

groups.
• No other pin swapping is permitted.

DDR3 Pinout Examples

IMPORTANT: Due to the calibration stage, there is no need for set_input_delay/
set_output_delay on the DDR3 SDRAM. Ignore the unconstrained inputs and outputs for DDR3 
SDRAM and the signals which are calibrated.

Table 4-3 shows an example of a 16-bit DDR3 interface contained within one bank. This 
example is for a component interface using two x8 DDR3 components.

DQSCC-N T0L N1 –/DQS9_N
DQSCC-P T0L N0 DM0/DQS9_P

Table 4-2: Byte Lane View of Bank on FPGA Die for x4, x8, and x16 Support (Cont’d)

I/O Type Byte Lane Pin Number Signal Name

Table 4-3: 16-Bit DDR3 (x8/x16 Part) Interface Contained in One Bank

Bank Signal Name Byte Group I/O Type

1 a0 T3U_12 –
1 a1 T3U_11 N
1 a2 T3U_10 P
1 a3 T3U_9 N
1 a4 T3U_8 P
1 a5 T3U_7 N
1 a6 T3U_6 P
1 a7 T3L_5 N
1 a8 T3L_4 P
1 a9 T3L_3 N
1 a10 T3L_2 P
1 a11 T3L_1 N
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1 a12 T3L_0 P

1 a13 T2U_12 –
1 a14 T2U_11 N
1 we_n T2U_10 P
1 cas_n T2U_9 N
1 ras_n T2U_8 P
1 ck_n T2U_7 N
1 ck_p T2U_6 P
1 cs_n T2L_5 N
1 ba0 T2L_4 P
1 ba1 T2L_3 N
1 ba2 T2L_2 P
1 sys_clk_n T2L_1 N
1 sys_clk_p T2L_0 P

1 cke T1U_12 –
1 dq15 T1U_11 N
1 dq14 T1U_10 P
1 dq13 T1U_9 N
1 dq12 T1U_8 P
1 dqs1_n T1U_7 N
1 dqs1_p T1U_6 P
1 dq11 T1L_5 N
1 dq10 T1L_4 P
1 dq9 T1L_3 N
1 dq8 T1L_2 P
1 odt T1L_1 N
1 dm1 T1L_0 P

1 vrp T0U_12 –
1 dq7 T0U_11 N
1 dq6 T0U_10 P

Table 4-3: 16-Bit DDR3 (x8/x16 Part) Interface Contained in One Bank (Cont’d)

Bank Signal Name Byte Group I/O Type
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Table 4-4 shows an example of a 16-bit DDR3 interface contained within one bank. This 
example is for a component interface using four x4 DDR3 components. 

1 dq5 T0U_9 N
1 dq4 T0U_8 P
1 dqs0_n T0U_7 N
1 dqs0_p T0U_6 P
1 dq3 T0L_5 N
1 dq2 T0L_4 P
1 dq1 T0L_3 N
1 dq0 T0L_2 P
1 reset_n T0L_1 N
1 dm0 T0L_0 P

Table 4-4: 16-Bit DDR3 Interface (x4 Part) Contained in One Bank
Bank Signal Name Byte Group I/O Type

1 a0 T3U_12 –
1 a1 T3U_11 N
1 a2 T3U_10 P
1 a3 T3U_9 N
1 a4 T3U_8 P
1 a5 T3U_7 N
1 a6 T3U_6 P
1 a7 T3L_5 N
1 a8 T3L_4 P
1 a9 T3L_3 N
1 a10 T3L_2 P
1 a11 T3L_1 N
1 a12 T3L_0 P

  
1 a13 T2U_12 –
1 a14 T2U_11 N
1 we_n T2U_10 P
1 cas_n T2U_9 N
1 ras_n T2U_8 P

Table 4-3: 16-Bit DDR3 (x8/x16 Part) Interface Contained in One Bank (Cont’d)

Bank Signal Name Byte Group I/O Type
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1 ck_n T2U_7 N
1 ck_p T2U_6 P
1 cs_n T2L_5 N
1 ba0 T2L_4 P
1 ba1 T2L_3 N
1 ba2 T2L_2 P
1 sys_clk_n T2L_1 N
1 sys_clk_p T2L_0 P

 
1 cke T1U_12 –
1 dq15 T1U_11 N
1 dq14 T1U_10 P
1 dq13 T1U_9 N
1 dq12 T1U_8 P
1 dqs3_n T1U_7 N
1 dqs3_p T1U_6 P
1 dq11 T1L_5 N
1 dq10 T1L_4 P
1 dq9 T1L_3 N
1 dq8 T1L_2 P
1 dqs2_n T1L_1 N
1 dqs2_p T1L_0 P

  
1 vrp T0U_12 –
1 dq7 T0U_11 N
1 dq6 T0U_10 P
1 dq5 T0U_9 N
1 dq4 T0U_8 P
1 dqs1_n T0U_7 N
1 dqs1_p T0U_6 P
1 dq3 T0L_5 N
1 dq2 T0L_4 P
1 dq1 T0L_3 N
1 dq0 T0L_2 P

Table 4-4: 16-Bit DDR3 Interface (x4 Part) Contained in One Bank (Cont’d)

Bank Signal Name Byte Group I/O Type
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Two DDR3 32-bit interfaces can fit in three banks by using all of the pins in the banks. To fit 
the configuration in three banks for various scenarios, different Vivado IDE options can be 
selected (based on requirement). Various Vivado IDE options that lead to pin savings are 
listed as follows:

• In data byte group, pins 1 and 12 are unused. Unused pins of the data byte group can 
be used for Address/Control pins if all Address/Control pins are allocated in the same 
bank. 

For example, if T3 byte group of Bank #2 is selected for data. Pins T3L_1 and T3U_12 are 
not used by data and these pins can be used for Address/Control if all Address/Control 
pins are allocated in Bank #2.

• If DCI cascade is selected, the vrp pin can be used as normal a I/O. 
• Memory reset pin (reset_n pin) can be allocated anywhere as long as timing is met.
• System clock pins can be allocated in different banks and must be within the same 

column of the memory interface banks selected.
• By disabling the Enabling Chip Select Pin option in the Vivado IDE, it frees up a pin 

and the cs# ports are not generated. 
• By disabling the Data Mask option in Vivado IDE, it frees up a pin and the data mask 

(dm) port is not generated.

One of the configurations with two 32-bit DDR3 interfaces in three banks is given in 
Table 4-5 (it is valid for memory part of x8/x16). Two interface signals are separated by 
name c0_ and c1_. Example is given with interface-0 (c0) selected in banks 0 and 1 and 
interface-1 (c1) selected in banks 1 and 2. 

1 dqs0_n T0L_1 N
1 dqs0_p T0L_0 P

Table 4-5: Two 32-Bit DDR3 Interfaces Contained in Three Banks
Bank Signal Name Byte Group I/O Type

2 c1_ddr3_we_n T3U_12 –
2 c1_ddr3_ck_c[0] T3U_11 N
2 c1_ddr3_ck_t[0] T3U_10 P
2 c1_ddr3_cas_n T3U_9 N
2 c1_ddr3_ras_n T3U_8 P
2 c1_ddr3_ba[2] T3U_7 N
2 c1_ddr3_ba[1] T3U_6 P
2 c1_ddr3_ba[0] T3L_5 N

Table 4-4: 16-Bit DDR3 Interface (x4 Part) Contained in One Bank (Cont’d)

Bank Signal Name Byte Group I/O Type
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2 c1_ddr3_adr[15] T3L_4 P
2 c1_ddr3_adr[14] T3L_3 N
2 c1_ddr3_adr[13] T3L_2 P
2 c1_ddr3_adr[12] T3L_1 N
2 c1_ddr3_adr[11] T3L_0 P

2 c1_ddr3_adr[10] T2U_12 –
2 c1_ddr3_adr[9] T2U_11 N
2 c1_ddr3_adr[8] T2U_10 P
2 c1_ddr3_adr[7] T2U_9 N
2 c1_ddr3_adr[6] T2U_8 P
2 c1_ddr3_adr[5] T2U_7 N
2 c1_ddr3_adr[4] T2U_6 P
2 c1_ddr3_adr[3] T2L_5 N
2 c1_ddr3_adr[2] T2L_4 P
2 c1_ddr3_adr[1] T2L_3 N
2 c1_ddr3_adr[0] T2L_2 P
2 c1_sys_clk_n T2L_1 N
2 c1_sys_clk_p T2L_0 P

2 c1_ddr3_cke[0] T1U_12 –
2 c1_ddr3_dq[31] T1U_11 N
2 c1_ddr3_dq[30] T1U_10 P
2 c1_ddr3_dq[29] T1U_9 N
2 c1_ddr3_dq[28] T1U_8 P
2 c1_ddr3_dqs_n[3] T1U_7 N
2 c1_ddr3_dqs_p[3] T1U_6 P
2 c1_ddr3_dq[27] T1L_5 N
2 c1_ddr3_dq[26] T1L_4 P
2 c1_ddr3_dq[25] T1L_3 N
2 c1_ddr3_dq[24] T1L_2 P
2 c1_ddr3_odt[0] T1L_1 N
2 c1_ddr3_dm[3] T1L_0 P

2 vrp T0U_12 –

Table 4-5: Two 32-Bit DDR3 Interfaces Contained in Three Banks (Cont’d)

Bank Signal Name Byte Group I/O Type
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2 c1_ddr3_dq[23] T0U_11 N
2 c1_ddr3_dq[22] T0U_10 P
2 c1_ddr3_dq[21] T0U_9 N
2 c1_ddr3_dq[20] T0U_8 P
2 c1_ddr3_dqs_n[2] T0U_7 N
2 c1_ddr3_dqs_p[2] T0U_6 P
2 c1_ddr3_dq[19] T0L_5 N
2 c1_ddr3_dq[18] T0L_4 P
2 c1_ddr3_dq[17] T0L_3 N
2 c1_ddr3_dq[16] T0L_2 P
2 c1_ddr3_cs_n[0] T0L_1 N
2 c1_ddr3_dm[2] T0L_0 P

1 c1_ddr3_reset_n T3U_12 –
1 c1_ddr3_dq[15] T3U_11 N
1 c1_ddr3_dq[14] T3U_10 P
1 c1_ddr3_dq[13] T3U_9 N
1 c1_ddr3_dq[12] T3U_8 P
1 c1_ddr3_dqs_n[1] T3U_7 N
1 c1_ddr3_dqs_p[1] T3U_6 P
1 c1_ddr3_dq[11] T3L_5 N
1 c1_ddr3_dq[10] T3L_4 P
1 c1_ddr3_dq[9] T3L_3 N
1 c1_ddr3_dq[8] T3L_2 P
1 – T3L_1 N
1 c1_ddr3_dm[1] T3L_0 P

1 – T2U_12 –
1 c1_ddr3_dq[7] T2U_11 N
1 c1_ddr3_dq[6] T2U_10 P
1 c1_ddr3_dq[5] T2U_9 N
1 c1_ddr3_dq[4] T2U_8 P
1 c1_ddr3_dqs_n[0] T2U_7 N
1 c1_ddr3_dqs_p[0] T2U_6 P
1 c1_ddr3_dq[3] T2L_5 N

Table 4-5: Two 32-Bit DDR3 Interfaces Contained in Three Banks (Cont’d)

Bank Signal Name Byte Group I/O Type
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1 c1_ddr3_dq[2] T2L_4 P
1 c1_ddr3_dq[1] T2L_3 N
1 c1_ddr3_dq[0] T2L_2 P
1 – T2L_1 N
1 c1_ddr3_dm[0] T2L_0 P

1 – T1U_12 –
1 c0_ddr3_dq[31] T1U_11 N
1 c0_ddr3_dq[30] T1U_10 P
1 c0_ddr3_dq[29] T1U_9 N
1 c0_ddr3_dq[28] T1U_8 P
1 c0_ddr3_dqs_n[3] T1U_7 N
1 c0_ddr3_dqs_p[3] T1U_6 P
1 c0_ddr3_dq[27] T1L_5 N
1 c0_ddr3_dq[26] T1L_4 P
1 c0_ddr3_dq[25] T1L_3 N
1 c0_ddr3_dq[24] T1L_2 P
1 – T1L_1 N
1 c0_ddr3_dm[3] T1L_0 P

1 – T0U_12 –
1 c0_ddr3_dq[23] T0U_11 N
1 c0_ddr3_dq[22] T0U_10 P
1 c0_ddr3_dq[21] T0U_9 N
1 c0_ddr3_dq[20] T0U_8 P
1 c0_ddr3_dqs_n[2] T0U_7 N
1 c0_ddr3_dqs_p[2] T0U_6 P
1 c0_ddr3_dq[19] T0L_5 N
1 c0_ddr3_dq[18] T0L_4 P
1 c0_ddr3_dq[17] T0L_3 N
1 c0_ddr3_dq[16] T0L_2 P
1 c0_ddr3_reset_n T0L_1 N
1 c0_ddr3_dm[2] T0L_0 P

0 c0_ddr3_cs_n[0] T3U_12 –

Table 4-5: Two 32-Bit DDR3 Interfaces Contained in Three Banks (Cont’d)

Bank Signal Name Byte Group I/O Type
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0 c0_ddr3_dq[15] T3U_11 N
0 c0_ddr3_dq[14] T3U_10 P
0 c0_ddr3_dq[13] T3U_9 N
0 c0_ddr3_dq[12] T3U_8 P
0 c0_ddr3_dqs_n[1] T3U_7 N
0 c0_ddr3_dqs_p[1] T3U_6 P
0 c0_ddr3_dq[11] T3L_5 N
0 c0_ddr3_dq[10] T3L_4 P
0 c0_ddr3_dq[9] T3L_3 N
0 c0_ddr3_dq[8] T3L_2 P
0 c0_ddr3_cke[0] T3L_1 N
0 c0_ddr3_dm[1] T3L_0 P

0 c0_ddr3_odt[0] T2U_12 –
0 c0_ddr3_dq[7] T2U_11 N
0 c0_ddr3_dq[6] T2U_10 P
0 c0_ddr3_dq[5] T2U_9 N
0 c0_ddr3_dq[4] T2U_8 P
0 c0_ddr3_dqs_n[0] T2U_7 N
0 c0_ddr3_dqs_p[0] T2U_6 P
0 c0_ddr3_dq[3] T2L_5 N
0 c0_ddr3_dq[2] T2L_4 P
0 c0_ddr3_dq[1] T2L_3 N
0 c0_ddr3_dq[0] T2L_2 P
0 c0_ddr3_we_n T2L_1 N
0 c0_ddr3_dm[0] T2L_0 P

0 c0_ddr3_cas_n T1U_12 –
0 c0_ddr3_ck_c[0] T1U_11 N
0 c0_ddr3_ck_t[0] T1U_10 P
0 c0_sys_clk_n T1U_9 N
0 c0_sys_clk_p T1U_8 P
0 c0_ddr3_ras_n T1U_7 N
0 c0_ddr3_ba[2] T1U_6 P
0 c0_ddr3_ba[1] T1L_5 N

Table 4-5: Two 32-Bit DDR3 Interfaces Contained in Three Banks (Cont’d)

Bank Signal Name Byte Group I/O Type
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DDR4 Pin Rules
IMPORTANT: Xilinx advises Tandem Configuration users to avoid using bank 65 for design 
applications, especially when using Tandem PROM, to avoid complications because the programming 
bitstream is split into two stages. Specifically, IP cores built by the Memory IP or Memory Interface 
Generator (MIG) must not use bank 65 I/O. This ensures that IP can remain completely within stage 2, 
and avoid complications with its embedded I/O and demanding timing constraints.

The rules are for single and multi-rank memory interfaces.

• Address/control means cs_n, ras_n (a16), cas_n (a15), we_n (a14), ba, bg, ck, cke, 
a, odt, act_n, and parity (valid for RDIMMs and LRDIMMs only). Multi-rank systems 
have one cs_n, cke, odt, and one ck pair per rank.

• Pins in a byte lane are numbered N0 to N12.
• Byte lanes in a bank are designed by T0, T1, T2, or T3. Nibbles within a byte lane are 

distinguished by a “U” or “L” designator added to the byte lane designator (T0, T1, T2, 
or T3). Thus they are T0L, T0U, T1L, T1U, T2L, T2U, T3L, and T3U.

0 c0_ddr3_ba[0] T1L_4 P
0 c0_ddr3_addr[15] T1L_3 N
0 c0_ddr3_addr[14] T1L_2 P
0 c0_ddr3_addr[13] T1L_1 N
0 c0_ddr3_addr[12] T1L_0 P

0 vrp T0U_12 –
0 c0_ddr3_addr[11] T0U_11 N
0 c0_ddr3_addr[10] T0U_10 P
0 c0_ddr3_addr[9] T0U_9 N
0 c0_ddr3_addr[8] T0U_8 P
0 c0_ddr3_addr[7] T0U_7 N
0 c0_ddr3_addr[6] T0U_6 P
0 c0_ddr3_addr[5] T0L_5 N
0 c0_ddr3_addr[4] T0L_4 P
0 c0_ddr3_addr[3] T0L_3 N
0 c0_ddr3_addr[2] T0L_2 P
0 c0_ddr3_addr[1] T0L_1 N
0 c0_ddr3_addr[0] T0L_0 P

Table 4-5: Two 32-Bit DDR3 Interfaces Contained in Three Banks (Cont’d)

Bank Signal Name Byte Group I/O Type
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Note: There are two PLLs per bank and a controller uses one PLL in every bank that is being used by 
the interface.
1. dqs, dq, and dm/dbi location.

a. Designs using x8 or x16 components – dqs must be located on a dedicated byte 
clock pair in the upper nibble designated with “U” (N6 and N7). dq associated with 
a dqs must be in same byte lane on any of the other pins except pins N1 and N12.

b. Designs using x4 components – dqs must be located on a dedicated byte clock pair 
in the nibble (N0 and N1 in the lower nibble, N6 and N7 in the upper nibble). dq 
associated with a dqs must be in same nibble on any of the other pins except pin 
N12 (upper nibble). The lower nibble dq and upper nibble dq must be allocated in 
the same byte lane. 

Note: The dm/dbi port is not supported in x4 DDR4 devices.
c. dm/dbi must be on pin N0 in the byte lane with the associated dqs. 
d. The x16 components must have the ldqs connected to the even dqs and the udqs 

must be connected to the ldqs + 1. The first x16 component has ldqs connected 
to dqs0 and udqs connected to dqs1 in the XDC file. The second x16 component 
has ldqs connected to dqs2 and udqs connected to dqs3. This pattern continues 
as needed for the interface. This does not restrict the physical location of the byte 
lanes. The byte lanes associated with the dqs’s might be moved as desired in the 
Vivado IDE to achieve optimal PCB routing.

Consider x16 part with data width of 32 and all data bytes are allocated in a single 
bank. In such cases, DQS needs to be mapped as given in Table 4-6.

In Table 4-6, the Bank-Byte and Selected Memory Data Bytes indicate byte allocation 
in the I/O pin planner. The following example is given for one of the generated 
configuration in the I/O pin planner. Based on pin allocation, DQ byte allocation 
might vary. 

DQS Allocated (in IP on the FPGA) indicates DQS that is allocated on the FPGA end. 
Memory device mapping indicates how DQS needs to be mapped on the memory 
end. 

2. The x4 components must be used in pairs. Odd numbers of x4 components are not 
permitted. Both the upper and lower nibbles of a data byte must be occupied by a x4 

Table 4-6: DQS Mapping for x16 Component

Bank-Byte Selected Memory 
Data Bytes

DQS Allocated 
(in IP on FPGA) Memory Device Mapping

BankX_BYTE3 DQ[0-7] DQS0 Memory Device 0 – LDQS
BankX_BYTE2 DQ[8-15] DQS1 Memory Device 0 – UDQS
BankX_BYTE1 DQ[16-23] DQS2 Memory Device 1 – LDQS
BankX_BYTE0 DQ[24-31] DQS3 Memory Device 1 – UDQS
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dq/dqs group. Each byte lane containing two x4 nibbles must have sequential nibbles 
with the even nibble being the lower number. For example, a byte lane can have nibbles 
0 and 1, or 2 and 3, but must not have 1 and 2. The ordering of the nibbles within a byte 
lane is not important.

3. Byte lanes with a dqs are considered to be data byte lanes. Pins N1 and N12 can be used 
for address/control in a data byte lane. If the data byte is in the same bank as the 
remaining address/control pins, see step #4.

4. Address/control can be on any of the 13 pins in the address/control byte lanes. Address/
control must be contained within the same bank.

5. One vrp pin per bank is used and DCI is required for the interfaces. A vrp pin is 
required in I/O banks containing inputs as well as in output only banks. It is required in 
output only banks because address/control signals use SSTL12_DCI to enable usage of 
controlled output impedance. DCI cascade is allowed for data rates of 2,133 Mb/s and 
lower. When DCI cascade is used, vrp pin can be used as a normal I/O. All rules for the 
DCI in the UltraScale™ Architecture SelectIO™ Resources User Guide (UG571) [Ref 7] must 
be followed.

RECOMMENDED: Xilinx strongly recommends that the DCIUpdateMode option is kept with the default 
value of ASREQUIRED so that the DCI circuitry is allowed to operate normally.

6. ck pair(s) must be on any PN pair(s) in the Address/Control byte lanes.
7. reset_n can be on any pin as long as general interconnect timing is met and I/O 

standard must be LVCMOS12. Reset to DRAM should be pulled down so it is held low 
during power up. 

RECOMMENDED: The recommended resistor should be a 4.7 kΩ  pull-down.

8. Banks can be shared between two controllers.
a. Each byte lane is dedicated to a specific controller (except for reset_n).
b. Byte lanes from one controller cannot be placed inside the other.  For example, with 

controllers A and B, “AABB” is allowed, while “ABAB” is not.

IMPORTANT: If two controllers share a bank, they cannot be reset independently. The two controllers 
must share a common reset input.

9. All I/O banks used by the memory interface must be in the same column.
10. All I/O banks used by the memory interface must be in the same SLR of the column for 

the SSI technology devices.
11. For dual slot configurations of RDIMMs, LRDIMMs, and UDIMMs: cs, odt, cke, and ck 

port widths are doubled. For exact mapping of the signals, see the DIMM 
Configurations.
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12. Maximum height of interface is five contiguous banks. The maximum supported 
interface is 80-bit wide.

Maximum component limit is nine and this restriction is valid for components only and 
not for DIMMs.

13. Bank skipping is not allowed.
14. Input clock for the MMCM in the interface must come from the a GCIO pair in the I/O 

column used for the memory interface. Information on the clock input specifications 
can be found in the AC and DC Switching Characteristics data sheets (LVDS input 
requirements and MMCM requirements should be considered). For more information, 
see Clocking, page 81.

15. The dedicated VREF pins in the banks used for DDR4 must be tied to ground with a 
resistor value specified in the UltraScale™ Architecture SelectIO™ Resources User Guide 
(UG571) [Ref 7]. Internal VREF is required for DDR4.

16. The interface must be contained within the same I/O bank type (High Performance). 
Mixing bank types is not permitted with the exceptions of the reset_n in step #7 and 
the input clock mentioned in step #14.

17. The par input for command and address parity, alert_n input/output, and the TEN 
input for Connectivity Test Mode are not supported by this interface. Consult UltraScale 
Architecture PCB Design and Pin Planning User Guide (UG583) [Ref 11] on how to 
connect these signals when not used. For more information on parity errors, see the 
Address Parity, page 34.

18. For all other DRAM/DIMM pins that are not mentioned in this section, for example, SAx, 
SCL, SDA, contact the memory vendor for proper connectivity.

19. The system reset pin (sys_rst_n) must not be allocated to Pins N0 and N6 if the byte 
is used for the memory I/Os.

IMPORTANT: Component interfaces should be created with the same component for all components in 
the interface. x16 components have a different number of bank groups than the x8 components. For 
example, a 72-bit wide component interface should be created by using nine x8 components or five x16 
components where half of one component is not used. Four x16 components and one x8 component is 
not permissible.
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Note: Pins N0 and N6 within the byte lane used by a memory interface can be utilized for other 
purposes when not needed for the memory interface. However, the functionality of these pins is not 
available until VTC_RDY asserts on the BITSLICE_CONTROL. For more information, see the 
UltraScale™ Architecture SelectIO™ Resources User Guide (UG571) [Ref 7].

If PCB compatibility between x4 and x8 based DIMMs is desired, additional restrictions apply. The 
upper x4 DQS group must be placed within the lower byte nibble (N0 to N5). This allows DM to be 
placed on N0 for the x8 pinout, pin compatibility for all DQ bits, and the added DQS pair for x4 be 
placed on N0/N1.

For example, a typical DDR4 x4 based RDIMM/LRDIMM data sheet shows the DQS9 associated with 
DQ4, DQ5, DQ6, and DQ7. This DQS9_t is used for the DM/DBI in an x8 configuration. This nibble 
must be connected to the lower nibble of the byte lane. The Vivado generated XDC labels this DQS9 
as DSQ1 (for more information, see the Pin Mapping for x4 RDIMMs/LRDIMMs). Table 4-7 and 
Table 4-8 include an example for one of the configurations of x4/x8/x16. 

Table 4-7: Byte Lane View of Bank on FPGA Die for x8 and x16 Support
I/O Type Byte Lane Pin Number Signal Name

– T0U N12 –
N T0U N11 DQ[7:0]
P T0U N10 DQ[7:0]
N T0U N9 DQ[7:0]
P T0U N8 DQ[7:0]
DQSCC-N T0U N7 DQS0_c
DQSCC-P T0U N6 DQS0_t
N T0L N5 DQ[7:0]
P T0L N4 DQ[7:0]
N T0L N3 DQ[7:0]
P T0L N2 DQ[7:0]
DQSCC-N T0L N1 –
DQSCC-P T0L N0 DM0/DBI0

Table 4-8: Byte Lane View of Bank on FPGA Die for x4, x8, and x16 Support
I/O Type Byte Lane Pin Number Signal Name

– T0U N12 –
N T0U N11 DQ[3:0]
P T0U N10 DQ[3:0]
N T0U N9 DQ[3:0]
P T0U N8 DQ[3:0]
DQSCC-N T0U N7 DQS0_c
DQSCC-P T0U N6 DQS0_t
N T0L N5 DQ[7:4]
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Pin Swapping

• Pins can swap freely within each byte group (data and address/control), except for the 
DQS pair which must be on the dedicated dqs pair in the nibble (for more information, 
see the dqs, dq, and dm/dbi location., page 101).

• Byte groups (data and address/control) can swap easily with each other.
• Pins in the address/control byte groups can swap freely within and between their byte 

groups.
• No other pin swapping is permitted.

DDR4 Pinout Examples

IMPORTANT: Due to the calibration stage, there is no need for set_input_delay/
set_output_delay on the DDR4 SDRAM. Ignore the unconstrained inputs and outputs for DDR4 
SDRAM and the signals which are calibrated.

Table 4-9 shows an example of a 32-bit DDR4 interface contained within two banks. This 
example is for a component interface using four x8 DDR4 components. 

P T0L N4 DQ[7:4]
N T0L N3 DQ[7:4]
P T0L N2 DQ[7:4]
DQSCC-N T0L N1 –/DQS9_c
DQSCC-P T0L N0 DM0/DBI0/DQS9_t

Table 4-8: Byte Lane View of Bank on FPGA Die for x4, x8, and x16 Support (Cont’d)

I/O Type Byte Lane Pin Number Signal Name

Table 4-9: 32-Bit DDR4 Interface Contained in Two Banks

Bank Signal Name Byte Group I/O Type

Bank 1
1 – T3U_12 –
1 – T3U_11 N
1 – T3U_10 P
1 – T3U_9 N
1 – T3U_8 P
1 – T3U_7 N
1 – T3U_6 P
1 – T3L_5 N
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1 – T3L_4 P
1 – T3L_3 N
1 – T3L_2 P
1 – T3L_1 N
1 – T3L_0 P

1 – T2U_12 –
1 – T2U_11 N
1 – T2U_10 P
1 – T2U_9 N
1 – T2U_8 P
1 – T2U_7 N
1 – T2U_6 P
1 – T2L_5 N
1 – T2L_4 P
1 – T2L_3 N
1 – T2L_2 P
1 – T2L_1 N
1 – T2L_0 P

1 reset_n T1U_12 –
1 dq31 T1U_11 N
1 dq30 T1U_10 P
1 dq29 T1U_9 N
1 dq28 T1U_8 P
1 dqs3_c T1U_7 N
1 dqs3_t T1U_6 P
1 dq27 T1L_5 N
1 dq26 T1L_4 P
1 dq25 T1L_3 N
1 dq24 T1L_2 P
1 unused T1L_1 N
1 dm3/dbi3 T1L_0 P

Table 4-9: 32-Bit DDR4 Interface Contained in Two Banks (Cont’d)

Bank Signal Name Byte Group I/O Type
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1 vrp T0U_12 –
1 dq23 T0U_11 N
1 dq22 T0U_10 P
1 dq21 T0U_9 N
1 dq20 T0U_8 P
1 dqs2_c T0U_7 N
1 dqs2_t T0U_6 P
1 dq19 T0L_5 N
1 dq18 T0L_4 P
1 dq17 T0L_3 N
1 dq16 T0L_2 P
1 – T0L_1 N
1 dm2/dbi2 T0L_0 P

Bank 2
2 a0 T3U_12 –
2 a1 T3U_11 N
2 a2 T3U_10 P
2 a3 T3U_9 N
2 a4 T3U_8 P
2 a5 T3U_7 N
2 a6 T3U_6 P
2 a7 T3L_5 N
2 a8 T3L_4 P
2 a9 T3L_3 N
2 a10 T3L_2 P
2 a11 T3L_1 N
2 a12 T3L_0 P

2 a13 T2U_12 –
2 we_n/a14 T2U_11 N
2 cas_n/a15 T2U_10 P
2 ras_n/a16 T2U_9 N

Table 4-9: 32-Bit DDR4 Interface Contained in Two Banks (Cont’d)

Bank Signal Name Byte Group I/O Type
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2 act_n T2U_8 P
2 ck_c T2U_7 N
2 ck_t T2U_6 P
2 ba0 T2L_5 N
2 ba1 T2L_4 P
2 bg0 T2L_3 N
2 bg1 T2L_2 P
2 sys_clk_n T2L_1 N
2 sys_clk_p T2L_0 P

2 cs_n T1U_12 –
2 dq15 T1U_11 N
2 dq14 T1U_10 P
2 dq13 T1U_9 N
2 dq12 T1U_8 P
2 dqs1_c T1U_7 N
2 dqs1_t T1U_6 P
2 dq11 T1L_5 N
2 dq10 T1L_4 P
2 dq9 T1L_3 N
2 dq8 T1L_2 P
2 odt T1L_1 N
2 dm1/dbi1 T1L_0 P

2 vrp T0U_12 –
2 dq7 T0U_11 N
2 dq6 T0U_10 P
2 dq5 T0U_9 N
2 dq4 T0U_8 P
2 dqs0_c T0U_7 N
2 dqs0_t T0U_6 P
2 dq3 T0L_5 N
2 dq2 T0L_4 P

Table 4-9: 32-Bit DDR4 Interface Contained in Two Banks (Cont’d)

Bank Signal Name Byte Group I/O Type
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Table 4-10 shows an example of a 16-bit DDR4 interface contained within a single bank. 
This example is for a component interface using four x4 DDR4 components. 

2 dq1 T0L_3 N
2 dq0 T0L_2 P
2 cke T0L_1 N
2 dm0/dbi0 T0L_0 P

Table 4-10: 16-Bit DDR4 Interface (x4 Part) Contained in One Bank
Bank Signal Name Byte Group I/O Type

1 a0 T3U_12 –
1 a1 T3U_11 N
1 a2 T3U_10 P
1 a3 T3U_9 N
1 a4 T3U_8 P
1 a5 T3U_7 N
1 a6 T3U_6 P
1 a7 T3L_5 N
1 a8 T3L_4 P
1 a9 T3L_3 N
1 a10 T3L_2 P
1 a11 T3L_1 N
1 a12 T3L_0 P

 
1 a13 T2U_12 –
1 we_n/a14 T2U_11 N
1 cas_n/a15 T2U_10 P
1 ras_n/a16 T2U_9 N
1 act_n T2U_8 P
1 ck_c T2U_7 N
1 ck_t T2U_6 P
1 ba0 T2L_5 N
1 ba1 T2L_4 P
1 bg0 T2L_3 N
1 bg1 T2L_2 P

Table 4-9: 32-Bit DDR4 Interface Contained in Two Banks (Cont’d)

Bank Signal Name Byte Group I/O Type
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Note: System clock pins (sys_clk_p and sys_clk_n) are allocated in different banks.

Two DDR4 32-bit interfaces can fit in three banks by using all of the pins in the banks. To fit 
the configuration in three banks for various scenarios, different Vivado IDE options can be 
selected (based on requirement). Various Vivado IDE options that lead to pin savings are 
listed as follows:

1 odt T2L_1 N
1 cke T2L_0 P

 
1 cs_n T1U_12 –
1 dq15 T1U_11 N
1 dq14 T1U_10 P
1 dq13 T1U_9 N
1 dq12 T1U_8 P
1 dqs3_c T1U_7 N
1 dqs3_t T1U_6 P
1 dq11 T1L_5 N
1 dq10 T1L_4 P
1 dq9 T1L_3 N
1 dq8 T1L_2 P
1 dqs2_c T1L_1 N
1 dqs2_t T1L_0 P

 
1 vrp T0U_12 –
1 dq7 T0U_11 N
1 dq6 T0U_10 P
1 dq5 T0U_9 N
1 dq4 T0U_8 P
1 dqs1_c T0U_7 N
1 dqs1_t T0U_6 P
1 dq3 T0L_5 N
1 dq2 T0L_4 P
1 dq1 T0L_3 N
1 dq0 T0L_2 P
1 dqs0_c T0L_1 N
1 dqs0_t T0L_0 P

Table 4-10: 16-Bit DDR4 Interface (x4 Part) Contained in One Bank (Cont’d)

Bank Signal Name Byte Group I/O Type
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• In data byte group, pins 1 and 12 are unused. Unused pins of the data byte group can 
be used for Address/Control pins if all Address/Control pins are allocated in the same 
bank. 

For example, if T3 byte group of Bank #2 is selected for data. Pins T3L_1 and T3U_12 are 
not used by data and these pins can be used for Address/Control if all Address/Control 
pins are allocated in Bank #2.

• If DCI cascade is selected, the vrp pin can be used as normal a I/O. DCI cascade is 
allowed for data rates of 2,133 Mb/s and lower.

• Memory reset pin (reset_n pin) can be allocated anywhere as long as timing is met.
• System clock pins can be allocated in different banks and must be within the same 

column of the memory interface banks selected.

One of the configurations with two 32-bit DDR4 interfaces in three banks is given in 
Table 4-11 (it is valid for memory part of x8/x16). Two interface signals are separated by 
name c0_ and c1_. Example is given with interface-0 (c0) selected in banks 0 and 1 and 
interface-1 (c1) selected in banks 1 and 2. 
Table 4-11: Two 32-Bit DDR4 Interfaces Contained in Three Banks
Bank Signal Name Byte Group I/O Type

2 c1_ddr4_cke[0] T3U_12 –
2 c1_ddr4_ck_c[0] T3U_11 N
2 c1_ddr4_ck_t[0] T3U_10 P
2 c1_ddr4_bg[1] T3U_9 N
2 c1_ddr4_bg[0] T3U_8 P
2 c1_ddr4_ba[1] T3U_7 N
2 c1_ddr4_ba[0] T3U_6 P
2 c1_ddr4_adr[16] T3L_5 N
2 c1_ddr4_adr[15] T3L_4 P
2 c1_ddr4_adr[14] T3L_3 N
2 c1_ddr4_adr[13] T3L_2 P
2 c1_ddr4_adr[12] T3L_1 N
2 c1_ddr4_adr[11] T3L_0 P

2 c1_ddr4_adr[10] T2U_12 –
2 c1_ddr4_adr[9] T2U_11 N
2 c1_ddr4_adr[8] T2U_10 P
2 c1_ddr4_adr[7] T2U_9 N
2 c1_ddr4_adr[6] T2U_8 P
2 c1_ddr4_adr[5] T2U_7 N
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2 c1_ddr4_adr[4] T2U_6 P
2 c1_ddr4_adr[3] T2L_5 N
2 c1_ddr4_adr[2] T2L_4 P
2 c1_ddr4_adr[1] T2L_3 N
2 c1_ddr4_adr[0] T2L_2 P
2 c1_sys_clk_n T2L_1 N
2 c1_sys_clk_p T2L_0 P

2 c1_ddr4_act_n T1U_12 –
2 c1_ddr4_dq[31] T1U_11 N
2 c1_ddr4_dq[30] T1U_10 P
2 c1_ddr4_dq[29] T1U_9 N
2 c1_ddr4_dq[28] T1U_8 P
2 c1_ddr4_dqs_c[3] T1U_7 N
2 c1_ddr4_dqs_t[3] T1U_6 P
2 c1_ddr4_dq[27] T1L_5 N
2 c1_ddr4_dq[26] T1L_4 P
2 c1_ddr4_dq[25] T1L_3 N
2 c1_ddr4_dq[24] T1L_2 P
2 c1_ddr4_odt[0] T1L_1 N
2 c1_ddr4_dm_dbi[3] T1L_0 P

2 vrp T0U_12 –
2 c1_ddr4_dq[23] T0U_11 N
2 c1_ddr4_dq[22] T0U_10 P
2 c1_ddr4_dq[21] T0U_9 N
2 c1_ddr4_dq[20] T0U_8 P
2 c1_ddr4_dqs_c[2] T0U_7 N
2 c1_ddr4_dqs_t[2] T0U_6 P
2 c1_ddr4_dq[19] T0L_5 N
2 c1_ddr4_dq[18] T0L_4 P
2 c1_ddr4_dq[17] T0L_3 N
2 c1_ddr4_dq[16] T0L_2 P
2 c1_ddr4_cs_n[0] T0L_1 N
2 c1_ddr4_dm_dbi[2] T0L_0 P

Table 4-11: Two 32-Bit DDR4 Interfaces Contained in Three Banks (Cont’d)

Bank Signal Name Byte Group I/O Type
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1 c1_ddr4_reset_n T3U_12 –
1 c1_ddr4_dq[15] T3U_11 N
1 c1_ddr4_dq[14] T3U_10 P
1 c1_ddr4_dq[13] T3U_9 N
1 c1_ddr4_dq[12] T3U_8 P
1 c1_ddr4_dqs_c[1] T3U_7 N
1 c1_ddr4_dqs_t[1] T3U_6 P
1 c1_ddr4_dq[11] T3L_5 N
1 c1_ddr4_dq[10] T3L_4 P
1 c1_ddr4_dq[9] T3L_3 N
1 c1_ddr4_dq[8] T3L_2 P
1 – T3L_1 N
1 c1_ddr4_dm_dbi[1] T3L_0 P

1 – T2U_12 –
1 c1_ddr4_dq[7] T2U_11 N
1 c1_ddr4_dq[6] T2U_10 P
1 c1_ddr4_dq[5] T2U_9 N
1 c1_ddr4_dq[4] T2U_8 P
1 c1_ddr4_dqs_c[0] T2U_7 N
1 c1_ddr4_dqs_t[0] T2U_6 P
1 c1_ddr4_dq[3] T2L_5 N
1 c1_ddr4_dq[2] T2L_4 P
1 c1_ddr4_dq[1] T2L_3 N
1 c1_ddr4_dq[0] T2L_2 P
1 – T2L_1 N
1 c1_ddr4_dm_dbi[0] T2L_0 P

1 – T1U_12 –
1 c0_ddr4_dq[31] T1U_11 N
1 c0_ddr4_dq[30] T1U_10 P
1 c0_ddr4_dq[29] T1U_9 N
1 c0_ddr4_dq[28] T1U_8 P
1 c0_ddr4_dqs_c[3] T1U_7 N

Table 4-11: Two 32-Bit DDR4 Interfaces Contained in Three Banks (Cont’d)

Bank Signal Name Byte Group I/O Type
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1 c0_ddr4_dqs_t[3] T1U_6 P
1 c0_ddr4_dq[27] T1L_5 N
1 c0_ddr4_dq[26] T1L_4 P
1 c0_ddr4_dq[25] T1L_3 N
1 c0_ddr4_dq[24] T1L_2 P
1 – T1L_1 N
1 c0_ddr4_dm_dbi[3] T1L_0 P

1 – T0U_12 –
1 c0_ddr4_dq[23] T0U_11 N
1 c0_ddr4_dq[22] T0U_10 P
1 c0_ddr4_dq[21] T0U_9 N
1 c0_ddr4_dq[20] T0U_8 P
1 c0_ddr4_dqs_c[2] T0U_7 N
1 c0_ddr4_dqs_t[2] T0U_6 P
1 c0_ddr4_dq[19] T0L_5 N
1 c0_ddr4_dq[18] T0L_4 P
1 c0_ddr4_dq[17] T0L_3 N
1 c0_ddr4_dq[16] T0L_2 P
1 c0_ddr4_reset_n T0L_1 N
1 c0_ddr4_dm_dbi[2] T0L_0 P

0 c0_ddr4_bg[1] T3U_12 –
0 c0_ddr4_dq[15] T3U_11 N
0 c0_ddr4_dq[14] T3U_10 P
0 c0_ddr4_dq[13] T3U_9 N
0 c0_ddr4_dq[12] T3U_8 P
0 c0_ddr4_dqs_c[1] T3U_7 N
0 c0_ddr4_dqs_t[1] T3U_6 P
0 c0_ddr4_dq[11] T3L_5 N
0 c0_ddr4_dq[10] T3L_4 P
0 c0_ddr4_dq[9] T3L_3 N
0 c0_ddr4_dq[8] T3L_2 P
0 c0_ddr4_cke[0] T3L_1 N
0 c0_ddr4_dm_dbi[1] T3L_0 P

Table 4-11: Two 32-Bit DDR4 Interfaces Contained in Three Banks (Cont’d)

Bank Signal Name Byte Group I/O Type
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0 c0_ddr4_act_n T2U_12 –
0 c0_ddr4_dq[7] T2U_11 N
0 c0_ddr4_dq[6] T2U_10 P
0 c0_ddr4_dq[5] T2U_9 N
0 c0_ddr4_dq[4] T2U_8 P
0 c0_ddr4_dqs_c[0] T2U_7 N
0 c0_ddr4_dqs_t[0] T2U_6 P
0 c0_ddr4_dq[3] T2L_5 N
0 c0_ddr4_dq[2] T2L_4 P
0 c0_ddr4_dq[1] T2L_3 N
0 c0_ddr4_dq[0] T2L_2 P
0 c0_ddr4_cs_n[0] T2L_1 N
0 c0_ddr4_dm_dbi[0] T2L_0 P

0 c0_ddr4_odt[0] T1U_12 –
0 c0_ddr4_ck_c[0] T1U_11 N
0 c0_ddr4_ck_t[0] T1U_10 P
0 c0_sys_clk_n T1U_9 N
0 c0_sys_clk_p T1U_8 P
0 c0_ddr4_bg[0] T1U_7 N
0 c0_ddr4_ba[1] T1U_6 P
0 c0_ddr4_ba[0] T1L_5 N
0 c0_ddr4_adr[16] T1L_4 P
0 c0_ddr4_adr[15] T1L_3 N
0 c0_ddr4_adr[14] T1L_2 P
0 c0_ddr4_adr[13] T1L_1 N
0 c0_ddr4_adr[12] T1L_0 P

0 vrp T0U_12 –
0 c0_ddr4_adr[11] T0U_11 N
0 c0_ddr4_adr[10] T0U_10 P
0 c0_ddr4_adr[9] T0U_9 N
0 c0_ddr4_adr[8] T0U_8 P
0 c0_ddr4_adr[7] T0U_7 N

Table 4-11: Two 32-Bit DDR4 Interfaces Contained in Three Banks (Cont’d)

Bank Signal Name Byte Group I/O Type
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Pin Mapping for x4 RDIMMs/LRDIMMs
Table 4-12 is an example showing the pin mapping for x4 DDR3 registered DIMMs between 
the memory data sheet and the XDC. 

0 c0_ddr4_adr[6] T0U_6 P
0 c0_ddr4_adr[5] T0L_5 N
0 c0_ddr4_adr[4] T0L_4 P
0 c0_ddr4_adr[3] T0L_3 N
0 c0_ddr4_adr[2] T0L_2 P
0 c0_ddr4_adr[1] T0L_1 N
0 c0_ddr4_adr[0] T0L_0 P

Table 4-12: Pin Mapping for x4 DDR3 DIMMs
Memory Data Sheet DDR3 SDRAM XDC

DQ[63:0] DQ[63:0]
CB3 to CB0 DQ[67:64]
CB7 to CB4 DQ[71:68]
DQS0, DQS0 DQS[0], DQS_N[0]
DQS1, DQS1 DQS[2], DQS_N[2]
DQS2, DQS2 DQS[4], DQS_N[4]
DQS3, DQS3 DQS[6], DQS_N[6]
DQS4, DQS4 DQS[8], DQS_N[8]
DQS5, DQS5 DQS[10], DQS_N[10]
DQS6, DQS6 DQS[12], DQS_N[12]
DQS7, DQS7 DQS[14], DQS_N[14]
DQS8, DQS8 DQS[16], DQS_N[16]
DQS9, DQS9 DQS[1], DQS_N[1]
DQS10, DQS10 DQS[3], DQS_N[3]
DQS11, DQS11 DQS[5], DQS_N[5]
DQS12, DQS12 DQS[7], DQS_N[7]
DQS13, DQS13 DQS[9], DQS_N[9]
DQS14, DQS14 DQS[11], DQS_N[11]
DQS15, DQS15 DQS[13], DQS_N[13]

Table 4-11: Two 32-Bit DDR4 Interfaces Contained in Three Banks (Cont’d)

Bank Signal Name Byte Group I/O Type

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG150&Title=UltraScale%20Architecture-Based%20FPGAs%20Memory%20IP%20v1.4&releaseVersion=1.4&docPage=116


UltraScale Architecture-Based FPGAs Memory IP v1.4 117
PG150 October 22, 2021 www.xilinx.com

Chapter 4: Designing with the Core

Table 4-13 is an example showing the pin mapping for x4 DDR4 registered DIMMs between 
the memory data sheet and the XDC.

DQS16, DQS16 DQS[15], DQS_N[15]
DQS17, DQS17 DQS[17], DQS_N[17]

Table 4-13: Pin Mapping for x4 DDR4 DIMMs
Memory Data Sheet DDR4 SDRAM XDC

DQ[63:0] DQ[63:0]
CB3 to CB0 DQ[67:64]
CB7 to CB4 DQ[71:68]
DQS0 DQS[0]
DQS1 DQS[2]
DQS2 DQS[4]
DQS3 DQS[6]
DQS4 DQS[8]
DQS5 DQS[10]
DQS6 DQS[12]
DQS7 DQS[14]
DQS8 DQS[16]
DQS9 DQS[1]
DQS10 DQS[3]
DQS11 DQS[5]
DQS12 DQS[7]
DQS13 DQS[9]
DQS14 DQS[11]
DQS15 DQS[13]
DQS16 DQS[15]
DQS17 DQS[17]

Table 4-12: Pin Mapping for x4 DDR3 DIMMs (Cont’d)

Memory Data Sheet DDR3 SDRAM XDC
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Protocol Description
This core has the following interfaces:

• User Interface
• AXI4 Slave Interface
• PHY Only Interface

User Interface
The user interface signals are described in Table 4-14 and connects to an FPGA user design 
to allow access to an external memory device. The user interface is layered on top of the 
native interface which is described earlier in the controller description.

Table 4-14: User Interface
Signal I/O Description

app_addr[APP_ADDR_WIDTH – 1:0] I This input indicates the address for the current request.
app_cmd[2:0] I This input selects the command for the current request.

app_autoprecharge(1) I This input instructs the controller to set the A10 autoprecharge bit 
on the DRAM CAS command for the current request.

app_en I This is the active-High strobe for the app_addr[], app_cmd[2:0], and 
app_hi_pri inputs.

app_rdy O
This output indicates that the user interface is ready to accept 
commands. If the signal is deasserted when app_en is enabled, the 
current app_cmd, app_autoprecharge, and app_addr must be retried 
until app_rdy is asserted.

app_hi_pri I This input is reserved and should be tied to 0.
app_rd_data
[APP_DATA_WIDTH – 1:0] O This provides the output data from read commands.

app_rd_data_end O This active-High output indicates that the current clock cycle is the 
last cycle of output data on app_rd_data[].

app_rd_data_valid O This active-High output indicates that app_rd_data[] is valid.
app_wdf_data
[APP_DATA_WIDTH – 1:0] I This provides the data for write commands.

app_wdf_end I This active-High input indicates that the current clock cycle is the 
last cycle of input data on app_wdf_data[].

app_wdf_mask
[APP_MASK_WIDTH – 1:0] I

This provides the mask for app_wdf_data[]. 
For DDR3 interface, app_wdf_mask port appears in the Data Mask 
enabled option in Vivado IDE.
For DDR4 interface, app_wdf_mask port appears in the “ECC” Vivado 
IDE option values of TRUE. For “ECC” Vivado IDE option values of 
FALSE, the port appears for DM_NO_DBI and DM_DBI_RD.
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app_addr[APP_ADDR_WIDTH – 1:0]

This input indicates the address for the request currently being submitted to the user 
interface. The user interface aggregates all the address fields of the external SDRAM and 
presents a flat address space.

The MEM_ADDR_ORDER parameter determines how app_addr is mapped to the SDRAM 
address bus and chip select pins. This mapping can have a significant impact on memory 
bandwidth utilization. “ROW_COLUMN_BANK” is the recommended MEM_ADDR_ORDER 
setting. Table 4-15 through Table 4-24 show the “ROW_COLUMN_BANK” mapping for DDR3 
and DDR4 with examples. Note that the three LSBs of app_addr map to the column 
address LSBs which correspond to SDRAM burst ordering. 

app_wdf_rdy O
This output indicates that the write data FIFO is ready to receive data. 
Write data is accepted when app_wdf_rdy = 1’b1 and app_wdf_wren 
= 1’b1.

app_wdf_wren I This is the active-High strobe for app_wdf_data[].
app_ref_req(2) I User refresh request.
app_ref_ack(2) O User refresh request completed.
app_zq_req(2) I User ZQCS command request.
app_zq_ack(2) O User ZQCS command request completed.
ui_clk O This user interface clock must be one quarter of the DRAM clock.
init_calib_complete O PHY asserts init_calib_complete when calibration is finished.
ui_clk_sync_rst O This is the active-High user interface reset.
addn_ui_clkout1 O Additional clock outputs provided based on user requirement.
addn_ui_clkout2 O Additional clock outputs provided based on user requirement.
addn_ui_clkout3 O Additional clock outputs provided based on user requirement.
addn_ui_clkout4 O Additional clock outputs provided based on user requirement.

dbg_clk O Debug Clock. Do not connect any signals to dbg_clk and keep the 
port open during instantiation.

sl_iport0 I
[36:0] Input Port 0 (* KEEP = "true" *)

sl_oport0 O
[16:0] Output Port 0 (* KEEP = "true" *)

c0_ddr4_app_correct_en_i I DDR4 Correct Enable Input
Notes: 
1. This port appears when "Enable Precharge Input" option is enabled in the Vivado IDE.
2. These ports appear upon enabling "Enable User Refresh and ZQCS Input" option in the Vivado IDE.

Table 4-14: User Interface (Cont’d)

Signal I/O Description
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The controller does not support burst ordering so these low order bits are ignored, making 
the effective minimum app_addr step size hex 8.
Table 4-15: DDR3 “ROW_COLUMN_BANK” Mapping

SDRAM app_addr Mapping
Rank (RANK == 1) ? 1’b0: app_addr[BANK_WIDTH + COL_WIDTH + ROW_WIDTH +: RANK_WIDTH]
Row app_addr[BANK_WIDTH + COL_WIDTH +: ROW_WIDTH]
Column app_addr[3 + BANK_WIDTH +: COL_WIDTH – 3], app_addr[2:0]
Bank app_addr[3 +: BANK_WIDTH – 1], app_addr[2 + BANK_WIDTH +: 1]

Table 4-16: DDR3 4 GB (512 MB x8) Single-Rank Mapping Example
SDRAM Bus Row[15:0] Column[9:0] Bank[2:0]
app_addr Bits 28 through 13 12 through 6, and 2, 1, 0 4, 3, 5

Table 4-17: DDR4 “ROW_COLUMN_BANK” Mapping
SDRAM app_addr Mapping

Rank

(RANKS == 1) ? 1'b0: 
(S_HEIGHT == 1) ? app_addr[COL_WIDTH + ROW_WIDTH + BANK_WIDTH + 
BANK_GROUP_WIDTH +: RANK_WIDTH]: 
app_addr[COL_WIDTH + ROW_WIDTH + BANK_WIDTH + BANK_GROUP_WIDTH + 
LR_WIDTH +: RANK_WIDTH]

Logical Rank 
(3DS)

(S_HEIGHT==1) ? 1'b0: 
app_addr[BANK_GROUP_WIDTH + BANK_WIDTH + COL_WIDTH + ROW_WIDTH +: 
LR_WIDTH]

Row app_addr[BANK_GROUP_WIDTH + BANK_WIDTH + COL_WIDTH +: ROW_WIDTH
Column app_addr[3 + BANK_GROUP_WIDTH + BANK_WIDTH +: COL_WIDTH – 3], app_addr[2:0]
Bank app_addr[3 + BANK_GROUP_WIDTH +: BANK_WIDTH
Bank Group app_addr[3 +: BANK_GROUP_WIDTH]

Table 4-18: DDR3 “BANK_ROW_COLUMN” Mapping
SDRAM app_addr Mapping

Rank (RANK == 1) ? 1'b0: app_addr[BANK_WIDTH + COL_WIDTH + ROW_WIDTH +: 
RANK_WIDTH]

Row app_addr[COL_WIDTH +: ROW_WIDTH]
Column app_addr[0 +: COL_WIDTH]
Bank app_addr[COL_WIDTH + ROW_WIDTH +: BANK_WIDTH]

Table 4-19: DDR3 4 GB (512 MB x8) Single-Rank Mapping Example
SDRAM Bus Row[15:0] Column[9:0] Bank[2:0]
app_addr Bits 25 through 10 9 through 0 28 through 26
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Table 4-20: DDR4 “BANK_ROW_COLUMN” Mapping
SDRAM app_addr Mapping

Rank

(RANK == 1) ? 1’b0:
(S_HEIGHT == 1) ? app_addr[COL_WIDTH + ROW_WIDTH+ BANK_WIDTH + 
BANK_GROUP_WIDTH +: RANK_WIDTH]:
app_addr[COL_WIDTH + ROW_WIDTH + BANK_WIDTH + BANK_GROUP_WIDTH + 
LR_WIDTH +: RANK_WIDTH]

Logical Rank 
(3DS)

(S_HEIGHT == 1) ? 1’b0:
app_addr[COL_WIDTH + ROW_WIDTH + BANK_WIDTH + BANK_GROUP_WIDTH +: 
LR_WIDTH]

Row app_addr[COL_WIDTH +: ROW_WIDTH]
Column app_addr[0 +: COL_WIDTH]
Group app_addr[COL_WIDTH + ROW_WIDTH + BANK_WIDTH +: BANK_GROUP_WIDTH]
Bank app_addr[COL_WIDTH + ROW_WIDTH +: BANK_WIDTH]

Table 4-21: DDR3 “ROW_BANK_COLUMN” Mapping
SDRAM app_addr Mapping

Rank (RANK == 1) ? 1'b0: app_addr[COL_WIDTH +BANK_WIDTH + ROW_WIDTH +: 
RANK_WIDTH]

Row app_addr[COL_WIDTH + BANK_WIDTH +: ROW_WIDTH]
Column app_addr[0 +: COL_WIDTH]
Bank app_addr[COL_WIDTH +: BANK_WIDTH]

Table 4-22: DDR3 4 GB (512 MB x8) Single-Rank Mapping Example
SDRAM Bus Row[15:0] Column[9:0] Bank[2:0]
app_addr Bits 28 through 13 9 through 0 12 through 10

Table 4-23: DDR4 “ROW_BANK_COLUMN” Mapping
SDRAM app_addr Mapping

Rank

(RANK == 1) ? 1’b0:
(S_HEIGHT == 1) ? app_addr[COL_WIDTH + ROW_WIDTH + BANK_WIDTH + 
BANK_GROUP_WIDTH +: RANK_WIDTH:
app_addr[COL_WIDTH + ROW_WIDTH + BANK_WIDTH + BANK_GROUP_WIDTH + 
LR_WIDTH +: RANK_WIDTH]

Logical Rank 
(3DS)

(S_HEIGHT == 1) ? 1’b0:
app_addr[COL_WIDTH + ROW_WIDTH + BANK_WIDTH + BANK_GROUP_WIDTH +: 
LR_WIDTH]

Row app_addr[COL_WIDTH + BANK_WIDTH + BANK_GROUP_WIDTH +: ROW_WIDTH]
Column app_addr[0 +: COL_WIDTH]
Group app_addr[COL_WIDTH + BANK_WIDTH +: BANK_GROUP_WIDTH]
Bank app_addr[COL_WIDTH +: BANK_WIDTH]
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The “ROW_COLUMN_BANK” setting maps app_addr[4:3] to the DDR4 bank group bits or 
DDR3 bank bits used by the controller to interleave between its group FSMs. The lower 
order address bits equal to app_addr[5] and above map to the remaining SDRAM bank 
and column address bits. The highest order address bits map to the SDRAM row. This 
mapping is ideal for workloads that have address streams that increment linearly by a 
constant step size of hex 8 for long periods. With this configuration and workload, 
transactions sent to the user interface are evenly interleaved across the controller group 
FSMs, making the best use of the controller resources. 

In addition, this arrangement tends to generate hits to open pages in the SDRAM. The 
combination of group FSM interleaving and SDRAM page hits results in very high SDRAM 
data bus utilization.

Address streams other than the simple increment pattern tend to have lower SDRAM bus 
utilization. You can recover this performance loss by tuning the mapping of your design flat 
address space to the app_addr input port of the user interface. If you have knowledge of 
your address sequence, you can add logic to map your address bits with the highest toggle 
rate to the lowest app_addr bits, starting with app_addr[3] and working up from there. 

For example, if you know that your workload address Bits[4:3] toggle much less than 
Bits[10:9], which toggle at the highest rate, you could add logic to swap these bits so that 
your address Bits[10:9] map to app_addr[4:3]. The result is an improvement in how the 
address stream interleaves across the controller group FSMs, resulting in better controller 
throughput and higher SDRAM data bus utilization.

Table 4-25 through Table 4-26 show the “ROW_COLUMN_LRANK_BANK” and 
“ROW_LRANK_COLUMN_BANK” mappings for DDR4 with 3DS examples.

Table 4-24: DDR4 4 GB (512 MB x8) Single-Rank Mapping Example
SDRAM Bus Row[14:0] Column[9:0] Bank[1:0] Bank Group[1:0]
app_addr Bits 28 through 14 13 through 7, and 2, 1, 0 6, 5 4, 3

Table 4-25: DDR4 ROW_COLUMN_LRANK_BANK
SDRAM app_addr Mapping

Rank
(RANK == 1) ? 1’b0: 
app_addr[ROW_WIDTH + COL_WIDTH + LR_WIDTH + BANK_WIDTH + 
BANK_GROUP_WIDTH +: RANK_WIDTH]

Logical_rank app_addr[3 + BANK_WIDTH + BANK_GROUP_WIDTH +: LR_WIDTH]

Row app_addr[COL_WIDTH + LR_WIDTH + BANK_WIDTH + BANK_GROUP_WIDTH +: 
ROW_WIDTH]

Column app_addr[3 + LR_WIDTH + BANK_WIDTH + BANK_GROUP_WIDTH +: COL_WIDTH – 3], 
app_addr[2:0]

Bank app_addr[3 + BANK_GROUP_WIDTH +: BANK_WIDTH]
Group app_addr[3 +: BANK_GROUP_WIDTH]
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The ROW_COLUMN_BANK_INTLV is a mapping option that swaps a column and bank bit. 
With this option, a sequential address stream maps the first eight transactions across four 
banks instead of eight banks. Then the next eight transactions map to the next four banks, 
and so on. This helps with the performance when there are short bursts of sequential 
addresses instead of very long bursts. 

Table 4-27 through Table 4-32 show the “ROW_COLUMN_BANK_INTLV” mapping for DDR3 
and DDR4 with examples. 

Table 4-26: DDR4 ROW_LRANK_COLUMN_BANK
SDRAM app_addr Mapping

Rank
(RANK == 1) ? 1’b0: 
app_addr[ROW_WIDTH + LR_WIDTH + COL_WIDTH + BANK_WIDTH + 
BANK_GROUP_WIDTH +: RANK_WIDTH]

Logical_rank app_addr[COL_WIDTH + BANK_WIDTH + BANK_GROUP_WIDTH +: LR_WIDTH]

Row app_addr[LR_WIDTH + COL_WIDTH + BANK_WIDTH + BANK_GROUP_WIDTH +: 
ROW_WIDTH]

Column app_addr[3 + BANK_WIDTH + BANK_GROUP_WIDTH +: COL_WIDTH – 3], app_addr[2:0]
Bank app_addr[3 + BANK_GROUP_WIDTH +: BANK_WIDTH]
Group app_addr[3 +: BANK_GROUP_WIDTH]

Table 4-27: DDR3 ROW_COLUMN_BANK_INTLV
SDRAM app_addr Mapping

Rank (RANK == 1) ? 1'b0: 
app_addr[COL_WIDTH + ROW_WIDTH + BANK_WIDTH +: RANK_WIDTH]

Row app_addr[BANK_WIDTH + COL_WIDTH +: ROW_WIDTH]

Column app_addr[3 + BANK_WIDTH + 1 +: COL_WIDTH – 4], app_addr[3 + BANK_WIDTH – 1 +: 
1], app_addr[2:0]

Bank app_addr[3 +: BANK_WIDTH – 1], app_addr[3 + BANK_WIDTH +: 1]

Table 4-28: DDR3 ROW_COLUMN_BANK_INTLV
SDRAM Bus Row[15:0] Column[9:0] Bank[2:0]
app_addr Bits 28 through 13 12 through 7, 5, and 2, 1, 0 4, 3, 6

Table 4-29: DDR4 (x16) ROW_COLUMN_BANK_INTLV
SDRAM app_addr Mapping

Rank
(RANK == 1) ? 1'b0: 
app_addr[COL_WIDTH + ROW_WIDTH + BANK_WIDTH + BANK_GROUP_WIDTH +: 
RANK_WIDTH

Row app_addr[BANK_GROUP_WIDTH + BANK_WIDTH + COL_WIDTH +: ROW_WIDTH

Column app_addr[3 + BANK_GROUP_WIDTH + BANK_WIDTH + 1 +: COL_WIDTH – 4], app_addr[3 
+ BANK_GROUP_WIDTH + 1 +: 1, app_addr[2:0]
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app_cmd[2:0]

This input specifies the command for the request currently being submitted to the user 
interface. The available commands are shown in Table 4-33. With ECC enabled, the 
wr_bytes operation is required for writes with any non-zero app_wdf_mask bits. The 
wr_bytes triggers a read-modify-write flow in the controller, which is needed only for 
writes with masked data in ECC mode.

Bank app_addr[3 + BANK_GROUP_WIDTH + 2 +: BANK_WIDTH – 1], app_addr[3 + 
BANK_GROUP_WIDTH +: BANK_WIDTH – 1]

Bank Group app_addr[3 +: BANK_GROUP_WIDTH]

Table 4-30: DDR4 4 GB (256 MB x16) Single-Rank Mapping Example for 
ROW_COLUMN_BANK_INTLV

SDRAM Bus Row[14:0] Column[9:0] Bank[1:0] Bank Group
app_addr Bits 27 through 13 12 through 7, 5, and 2, 1, 0 6, 4 3

Table 4-31: DDR4 (x4, x8) ROW_COLUMN_BANK_INTLV
SDRAM app_addr Mapping

Rank
(RANK == 1) ? 1'b0: 
app_addr[COL_WIDTH + ROW_WIDTH + BANK_WIDTH + BANK_GROUP_WIDTH +: 
RANK_WIDTH

Row app_addr[BANK_GROUP_WIDTH + BANK_WIDTH + COL_WIDTH +: ROW_WIDTH

Column app_addr[3 + BANK_GROUP_WIDTH + BANK_WIDTH + 1 +: COL_WIDTH – 4], app_addr[3 
+ BANK_GROUP_WIDTH +: 1, app_addr[2:0]

Bank app_addr[3 + BANK_GROUP_WIDTH + 1 +: BANK_WIDTH]
Bank Group app_addr[3 +: BANK_GROUP_WIDTH]

Table 4-32: DDR4 4 GB (512 MB x8) Single-Rank Mapping Example for 
ROW_COLUMN_BANK_INTLV

SDRAM Bus Row[14:0] Column[9:0] Bank[1:0] Bank Group[1:0]
app_addr Bits 28 through 14 13 through 8, 5, and 2, 1, 0 7, 6 4, 3

Table 4-33: Commands for app_cmd[2:0]
Operation app_cmd[2:0] Code

Write 000
Read 001

wr_bytes 011

Table 4-29: DDR4 (x16) ROW_COLUMN_BANK_INTLV (Cont’d)

SDRAM app_addr Mapping
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app_autoprecharge

This input specifies the state of the A10 autoprecharge bit for the DRAM CAS command 
for the request currently being submitted to the user interface. When this input is Low, the 
Memory Controller issues a DRAM RD or WR CAS command. When this input is High, the 
controller issues a DRAM RDA or WRA CAS command. This input provides per request 
control, but can also be tied off to configure the controller statically for open or closed 
page mode operation. The Memory Controller also has an option to automatically 
determine when to issue an AutoPrecharge. This option disables the app_autoprecharge 
input. For more information on the automatic mode, see Performance, page 189.

app_en

This input strobes in a request. Apply the desired values to app_addr[], app_cmd[2:0], and 
app_hi_pri, and then assert app_en to submit the request to the user interface. This 
initiates a handshake that the user interface acknowledges by asserting app_rdy.

app_wdf_data[APP_DATA_WIDTH – 1:0]

This bus provides the data currently being written to the external memory. 
APP_DATA_WIDTH is 2 × nCK_PER_CLK × DQ_WIDTH when ECC is disabled (ECC parameter 
value is OFF) and 2 × nCK_PER_CLK × (DQ_WIDTH – ECC_WIDTH) when ECC is enabled (ECC 
parameter is ON). 

PAYLOAD_WIDTH indicates the effective DQ_WIDTH on which the user interface data has 
been transfered. 

PAYLOAD_WIDTH is DQ_WIDTH when ECC is disabled (ECC parameter value is OFF). 

PAYLOAD_WIDTH is (DQ_WIDTH – ECC_WIDTH) when ECC is enabled (ECC parameter is ON).

app_wdf_end

This input indicates that the data on the app_wdf_data[] bus in the current cycle is the 
last data for the current request.

app_wdf_mask[APP_MASK_WIDTH – 1:0]

This bus indicates which bits of app_wdf_data[] are written to the external memory and 
which bits remain in their current state. APP_MASK_WIDTH is APP_DATA_WIDTH/8.

app_wdf_wren

This input indicates that the data on the app_wdf_data[] bus is valid.
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app_rdy

This output indicates whether the request currently being submitted to the user interface is 
accepted. If the user interface does not assert this signal after app_en is asserted, the 
current request must be retried. The app_rdy output is not asserted if:

° PHY/Memory initialization is not yet completed.

° All the controller Group FSMs are occupied (can be viewed as the command buffer 
being full).
- A read is requested and the read buffer is full.
- A write is requested and no write buffer pointers are available.

° A periodic read is being inserted.

app_rd_data[APP_DATA_WIDTH – 1:0]

This output contains the data read from the external memory.

app_rd_data_end

This output indicates that the data on the app_rd_data[] bus in the current cycle is the 
last data for the current request.

app_rd_data_valid

This output indicates that the data on the app_rd_data[] bus is valid.

app_wdf_rdy

This output indicates that the write data FIFO is ready to receive data. Write data is accepted 
when both app_wdf_rdy and app_wdf_wren are asserted. 

app_ref_req

When asserted, this active-High input requests that the Memory Controller send a refresh 
command to the DRAM. It must be pulsed for a single cycle to make the request and then 
deasserted at least until the app_ref_ack signal is asserted to acknowledge the request 
and indicate that it has been sent.

app_ref_ack

When asserted, this active-High input acknowledges a refresh request and indicates that 
the command has been sent from the Memory Controller to the PHY.
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app_zq_req

When asserted, this active-High input requests that the Memory Controller send a ZQ 
calibration command to the DRAM. It must be pulsed for a single cycle to make the request 
and then deasserted at least until the app_zq_ack signal is asserted to acknowledge the 
request and indicate that it has been sent.

app_zq_ack

When asserted, this active-High input acknowledges a ZQ calibration request and indicates 
that the command has been sent from the Memory Controller to the PHY.

ui_clk_sync_rst

This is the reset from the user interface which is in synchronous with ui_clk.

ui_clk

This is the output clock from the user interface. It must be a quarter the frequency of the 
clock going out to the external SDRAM, which depends on 4:1 mode selected in Vivado IDE.

init_calib_complete

PHY asserts init_calib_complete when calibration is finished. The application has no 
need to wait for init_calib_complete before sending commands to the Memory 
Controller.

Command Path

When the user logic app_en signal is asserted and the app_rdy signal is asserted from the 
user interface, a command is accepted and written to the FIFO by the user interface. The 
command is ignored by the user interface whenever app_rdy is deasserted. The user logic 
needs to hold app_en High along with the valid command, autoprecharge, and address 
values until app_rdy is asserted as shown for the "write with autoprecharge" transaction in 
Figure 4-2.
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A non back-to-back write command can be issued as shown in Figure 4-3. This figure 
depicts three scenarios for the app_wdf_data, app_wdf_wren, and app_wdf_end 
signals as follows:

1. Write data is presented along with the corresponding write command.
2. Write data is presented before the corresponding write command.
3. Write data is presented after the corresponding write command, but should not exceed 

the limitation of two clock cycles.

For write data that is output after the write command has been registered, as shown in 
Note 3 (Figure 4-3), the maximum delay is two clock cycles.

X-Ref Target - Figure 4-2

Figure 4-2: User Interface Command Timing Diagram with app_rdy Asserted

clk

app_cmd WRITE

app_addr Addr 0

app_en

app_rdy
Command is accepted when app_rdy is High and app_en is High.

app_autoprecharge

X24433-082420
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Write Path

The write data is registered in the write FIFO when app_wdf_wren is asserted and 
app_wdf_rdy is High (Figure 4-4). If app_wdf_rdy is deasserted, the user logic needs to 
hold app_wdf_wren and app_wdf_end High along with the valid app_wdf_data value 
until app_wdf_rdy is asserted. The app_wdf_mask signal can be used to mask out the 
bytes to write to external memory.

X-Ref Target - Figure 4-3

Figure 4-3: 4:1 Mode User Interface Write Timing Diagram (Memory Burst Type = BL8)
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The timing requirement for app_wdf_data, app_wdf_wren, and app_wdf_end relative 
to their associated write command is the same for back-to-back writes as it is for single 
writes, as shown in Figure 4-3.

The map of the application interface data to the DRAM output data can be explained with 
an example.

For a 4:1 Memory Controller to DRAM clock ratio with an 8-bit memory, at the application 
interface, if the 64-bit data driven is 0000_0806_0000_0805 (Hex), the data at the DRAM 
interface is as shown in Figure 4-5. This is for a BL8 (Burst Length 8) transaction.

X-Ref Target - Figure 4-4

Figure 4-4: 4:1 Mode User Interface Back-to-Back Write Commands Timing Diagram 
(Memory Burst Type = BL8)
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X-Ref Target - Figure 4-5

Figure 4-5: Data at the DRAM Interface for 4:1 Mode
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The data values at different clock edges are as shown in Table 4-34.

Table 4-35 shows a generalized representation of how DRAM DQ bus data is concatenated 
to form application interface data signals. app_wdf_data is shown in Table 4-35, but the 
table applies equally to app_rd_data. Each byte of the DQ bus has eight bursts, Rise0 
(burst 0) through Fall3 (burst 7) as shown previously in Table 4-34, for a total of 64 data bits. 
When concatenated with Rise0 in the LSB position and Fall3 in the MSB position, a 64-bit 
chunk of the app_wdf_data signal is formed. 

For example, the eight bursts of ddr3_dq[7:0] corresponds to DQ bus byte 0, and when 
concatenated as described here, they map to app_wdf_data[63:0]. To be clear on the 
concatenation order, ddr3_dq[0] from Rise0 (burst 0) maps to app_wdf_data[0], and 
ddr3_dq[7] from Fall3 (burst 7) maps to app_wdf_data[63]. The table shows a second 
example, mapping DQ byte 1 to app_wdf_data[127:64], as well as the formula for DQ 
byte N. 

In a similar manner to the DQ bus mapping, the DM bus maps to app_wdf_mask by 
concatenating the DM bits in the same burst order. Example for the first two bytes of the 
DRAM bus are shown in Table 4-36, and the formula for mapping DM for byte N is also 
given. 

Table 4-34: Data Values at Different Clock Edges
Rise0 Fall0 Rise1 Fall1 Rise2 Fall2 Rise3 Fall3

05 08 00 00 06 08 00 00

Table 4-35: DRAM DQ Bus Data Map

DQ Bus 
Byte App Interface Signal

DDR Bus Signal at Each BL8 Burst Position
Fall3 … Rise1 Fall0 Rise0

N app_wdf_data[(N + 1) 
× 64 – 1: N × 64]

ddr3_dq[(N + 1) 
× 8 – 1:N × 8] … ddr3_dq[(N + 1) 

× 8 – 1:N × 8]
ddr3_dq[(N + 1) 
× 8 – 1:N × 8]

ddr3_dq[(N + 1) 
× 8 – 1:N × 8]

1 app_wdf_data[127:64] ddr3_dq[15:8] … ddr3_dq[15:8] ddr3_dq[15:8] ddr3_dq[15:8]
0 app_wdf_data[63:0] ddr3_dq[7:0] … ddr3_dq[7:0] ddr3_dq[7:0] ddr3_dq[7:0]

Table 4-36: DRAM DM Bus Data Map

DM Bus 
Byte App Interface Signal

DDR Bus Signal at Each BL8 Burst Position
Fall3 … Rise1 Fall0 Rise0

N app_wdf_mask[(N + 1) 
× 8 – 1:N × 8] ddr3_dm[N] … ddr3_dm[N] ddr3_dm[N] ddr3_dm[N]

1 app_wdf_mask[15:0] ddr3_dm[1] … ddr3_dm[1] ddr3_dm[1] ddr3_dm[1]
0 app_wdf_mask[7:0] ddr3_dm[0] … ddr3_dm[0] ddr3_dm[0] ddr3_dm[0]
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Read Path

The read data is returned by the user interface in the requested order and is valid when 
app_rd_data_valid is asserted (Figure 4-6 and Figure 4-7). The app_rd_data_end 
signal indicates the end of each read command burst and is not needed in user logic. 

In Figure 4-7, the read data returned is always in the same order as the requests made on 
the address/control bus.

Maintenance Commands

The UI can be configured by the Vivado IDE to enable two DRAM Refresh modes. The 
default mode configures the UI and the Memory Controller to automatically generate 
DRAM Refresh and ZQCS commands, meeting all DRAM protocol and timing requirements. 
The controller interrupts normal system traffic on a regular basis to issue these 
maintenance commands on the DRAM bus. 

X-Ref Target - Figure 4-6

Figure 4-6: 4:1 Mode User Interface Read Timing Diagram (Memory Burst Type = BL8) #1
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X-Ref Target - Figure 4-7

Figure 4-7: 4:1 Mode User Interface Read Timing Diagram (Memory Burst Type = BL8) #2
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The User mode is enabled by checking the Enable User Refresh and ZQCS Input option in 
the Vivado IDE. In this mode, you are responsible for issuing Refresh and ZQCS commands 
at the rate required by the DRAM component specification after init_calib_complete 
asserts High. You use the app_ref_req and app_zq_req signals on the UI to request 
Refresh and ZQCS commands, and monitor app_ref_ack and app_zq_ack to know when 
the commands have completed. The controller manages all DRAM timing and protocol for 
these commands, other than the overall Refresh or ZQCS rate, just as it does for the default 
DRAM Refresh mode. These request/ack ports operate independently of the other UI 
command ports, like app_cmd and app_en. 

The controller might not preserve the exact ordering of maintenance transactions 
presented to the UI on relative to regular read and write transactions. When you request a 
Refresh or ZQCS, the controller interrupts system traffic, just as in the default mode, and 
inserts the maintenance commands. To take the best advantage of this mode, you should 
request maintenance commands when the controller is idle or at least not very busy, 
keeping in mind that the DRAM Refresh rate and ZQCS rate requirements cannot be 
violated.

Figure 4-8 shows how the User mode ports are used and how they affect the DRAM 
command bus. This diagram shows the general idea about this mode of operation and is 
not timing accurate. Assuming the DRAM is idle with all banks closed, a short time after 
app_ref_req or app_zq_req are asserted High for one system clock cycle, the controller 
issues the requested commands on the DRAM command bus. The app_ref_req and 
app_zq_req can be asserted on the same cycle or different cycles, and they do not have to 
be asserted at the same rate. After a request signal is asserted High for one system clock, 
you must keep it deasserted until the acknowledge signal asserts. 

X-Ref Target - Figure 4-8

Figure 4-8: User Mode Ports on DRAM Command Bus Timing Diagram
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Figure 4-9 shows a case where the app_en is asserted and read transactions are presented 
continuously to the UI when the app_ref_req and app_zq_req are asserted. The 
controller interrupts the DRAM traffic following DRAM protocol and timing requirements, 
issues the Refresh and ZQCS, and then continues issuing the read transactions. Note that 
the app_rdy signal deasserts during this sequence. It is likely to deassert during a 
sequence like this since the controller command queue can easily fill up during tRFC or 
tZQCS. After the maintenance commands are issued and normal traffic resumes on the bus, 
the app_rdy signal asserts and new transactions are accepted again into the controller.

Figure 4-9 shows the operation for a single-rank. In a multi-rank system, a single refresh 
request generates a DRAM Refresh command to each rank, in series, staggered by tRFC/2. 
The Refresh commands are staggered since they are relatively high power consumption 
operations. A ZQCS command request generates a ZQCS command to all ranks in parallel.

AXI4 Slave Interface
The AXI4 slave interface block maps AXI4 transactions to the UI to provide an 
industry-standard bus protocol interface to the Memory Controller. The AXI4 slave interface 
is optional in designs provided through the DDR3/DDR4 SDRAM tool. The RTL is consistent 
between both tools. For details on the AXI4 signaling protocol, see the Arm AMBA 
specifications [Ref 12].

The overall design is composed of separate blocks to handle each AXI channel, which allows 
for independent read and write transactions. Read and write commands to the UI rely on a 
simple round-robin arbiter to handle simultaneous requests. 

X-Ref Target - Figure 4-9

Figure 4-9: Read Transaction on User Interface Timing Diagram
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The address read/address write modules are responsible for chopping the AXI4 incr/wrap 
requests into smaller memory size burst lengths of either four or eight, and also conveying 
the smaller burst lengths to the read/write data modules so they can interact with the user 
interface. Fixed burst type is not supported.

If ECC is enabled, all write commands with any of the mask bits enabled are issued as 
read-modify-write operation. 

Also if ECC is enabled, all write commands with none of the mask bits enabled are issued as 
write operation.

AXI4 Slave Interface Parameters

Table 4-37 lists the AXI4 slave interface parameters. 

Table 4-37: AXI4 Slave Interface Parameters
Parameter Name Allowable Values Description

C_S_AXI_ADDR_WIDTH DDR3: 25–35
DDR4: 27–37

This is the width of address read and address 
write signals. It depends on memory density and 
the configuration selected. It is calculated as:
For DDR3: log2(RANKS) + ROW_WIDTH + 
COL_WIDTH + BANK_WIDTH + 
log2(PAYLOAD_WIDTH) – 3
For DDR4: log2(RANKS) + ROW_WIDTH + 
COL_WIDTH + BANK_WIDTH + 
BANK_GROUP_WIDTH + log2(PAYLOAD_WIDTH) 
– 3
PAYLOAD_WIDTH: This is the data width of the 
external memory interface which is limited to 8, 
16, 32, or 64 for AXI designs.

C_S_AXI_DATA_WIDTH 32, 64, 128, 256, 512

This is the width of data signals. Width of 
APP_DATA_WIDTH is recommended for better 
performance. Using a smaller width invokes an 
Upsizer, which would spend clocks in packing the 
data.

C_S_AXI_ID_WIDTH 1– 16 This is the width of ID signals for every channel.
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AXI Addressing

The AXI address from the AXI master is a TRUE byte address. The AXI shim converts the 
address from the AXI master to the memory based on AXI SIZE and memory data width. The 
LSBs of the AXI byte address are masked to 0, depending on the data width of the memory 
array. If the memory array is 64 bits (8 bytes) wide, AXI address[2:0] are ignored and treated 
as 0. If the memory array is 16 bits (2 bytes) wide, AXI address[0] is ignored and treated as 
0. DDR3/DDR4 DRAM is accessed in blocks of DRAM bursts and this memory controller 
always uses a fixed burst length of 8. The UI Data Width is always eight times the 
PAYLOAD_WIDTH.

C_S_AXI_SUPPORTS_NARROW_
BURST 0, 1

This parameter is only applicable when the 
C_S_AXI_DATA_WIDTH is equal to 
APP_DATA_WIDTH.
When C_S_AXI_DATA_WIDTH is equal to 
APP_DATA_WIDTH and this parameter is enabled, 
the AXI slave instantiates an upsizer. When 
Master sends AXI Narrow transfers (a transfer 
that is narrower than its data bus), the upsizer 
packs consecutive transfers to present a single 
request at the User Interface. Hence if this AXI 
slave can receive Narrow transfers, the 
parameter C_S_AXI_SUPPORTS_NARROW_BURST 
must be enabled. If not, it results in unexpected 
behavior when the Slave receives Narrow 
transfers.
When C_S_AXI_DATA_WIDTH is equal to 
APP_DATA_WIDTH and it is known that the AXI 
slave never received Narrow transfers, you can 
disable this parameter to avoid the instantiation 
of upsizer, thus saving implementation area. In 
this case, ensure that during actual simulation 
the AXI Slave never receives Narrow transfers.
When C_S_AXI_DATA_WIDTH is less than 
APP_DATA_WIDTH, upsizer is always instantiated 
and this parameter has no effect.

C_RD_WR_ARB_ALGORITHM

TDM, ROUND_ROBIN, 
RD_PRI_REG, 
RD_PRI_REG_STARVE_LIMIT, 
WRITE_PRIORITY_REG, 
WRITE_PRIORITY

This parameter indicates the Arbitration 
algorithm scheme. See Arbitration in AXI Shim, 
page 143 for more information.

C_ECC ON, OFF
This parameter specifies if ECC is enabled for the 
design or not. ECC is always enabled for 72-bit 
designs and disabled for all other data widths

Table 4-37: AXI4 Slave Interface Parameters (Cont’d)
Parameter Name Allowable Values Description
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AXI4 Slave Interface Signals

Table 4-39 lists the AXI4 slave interface specific signal. ui_clk and ui_clk_sync_rst to 
the interface is provided from the Memory Controller. AXI interface is synchronous to 
ui_clk. 

Table 4-38: AXI Byte Address Mapping
UI Data Width Memory Interface Data Width AXI Byte Address

64 8 AxADDR = app_addr[ADDR_WIDTH-1:0]
128 16 AxADDR = app_addr[ADDR_WIDTH-1:0], 1'b0
256 32 AxADDR = app_addr[ADDR_WIDTH-1:0], 2'b00
512 64 AxADDR = app_addr[ADDR_WIDTH-1:0], 3'b000

Table 4-39: AXI4 Slave Interface Signals
Name Width I/O Active State Description

ui_clk 1 O Output clock from the core to the interface.
ui_clk_sync_rst 1 O High Output reset from the core to the interface.

aresetn 1 I Low Input reset to the AXI Shim and it should be 
in synchronous with FPGA logic clock.

s_axi_awid C_S_AXI_ID_WIDTH I Write address ID
s_axi_awaddr C_S_AXI_ADDR_WIDTH I Write address

s_axi_awlen 8 I Burst length. The burst length gives the 
exact number of transfers in a burst.

s_axi_awsize 3 I Burst size. This signal indicates the size of 
each transfer in the burst.

s_axi_awburst 2 I Burst type. Only INCR/WRAP supported.

s_axi_awlock 1 I
Lock type. (This is not used in the current 
implementation.)
Note: When an unsupported value is selected, 
awburst defaults to an INCR burst type.

s_axi_awcache 4 I Cache type. (This is not used in the current 
implementation.)

s_axi_awprot 3 I Protection type. (Not used in the current 
implementation.)

s_axi_awqos 4 I Quality of service. (Not used in the current 
implementation.)

s_axi_awvalid 1 I High
Write address valid. This signal indicates 
that valid write address and control 
information are available.

s_axi_awready 1 O High
Write address ready. This signal indicates 
that the slave is ready to accept an address 
and associated control signals.

s_axi_wdata C_S_AXI_DATA_WIDTH I Write data
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s_axi_wstrb C_S_AXI_DATA_WIDTH/8 I Write strobes

s_axi_wlast 1 I High Write last. This signal indicates the last 
transfer in a write burst.

s_axi_wvalid 1 I High Write valid. This signal indicates that write 
data and strobe are available.

s_axi_wready 1 O High Write ready

s_axi_bid C_S_AXI_ID_WIDTH O Response ID. The identification tag of the 
write response.

s_axi_bresp 2 O Write response. This signal indicates the 
status of the write response.

s_axi_bvalid 1 O High Write response valid
s_axi_bready 1 I High Response ready
s_axi_arid C_S_AXI_ID_WIDTH I Read address ID
s_axi_araddr C_S_AXI_ADDR_WIDTH I Read address
s_axi_arlen 8 I Read burst length
s_axi_arsize 3 I Read burst size

s_axi_arburst 2 I Read burst type. Only INCR/WRAP 
supported.

s_axi_arlock 1 I
Lock type. (This is not used in the current 
implementation.)
Note: When an unsupported value is selected, 
arburst defaults to an INCR burst type.

s_axi_arcache 4 I Cache type. (This is not used in the current 
implementation.)

s_axi_arprot 3 I Protection type. (This is not used in the 
current implementation.)

s_axi_arqos 4 I Quality of service. (Not used in the current 
implementation.)

s_axi_arvalid 1 I High Read address valid
s_axi_arready 1 O High Read address ready
s_axi_rid C_S_AXI_ID_WIDTH O Read ID tag
s_axi_rdata C_S_AXI_DATA_WIDTH O Read data
s_axi_rresp 2 O Read response
s_axi_rlast 1 O Read last
s_axi_rvalid 1 O Read valid
s_axi_rready 1 I Read ready

dbg_clk 1 O
Debug Clock. Do not connect any signals to 
dbg_clk and keep the port open during 
instantiation.

Table 4-39: AXI4 Slave Interface Signals (Cont’d)

Name Width I/O Active State Description
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AXI4 Slave Interface Transaction Examples

Figure 4-10 shows the write full transfer timing diagram.  

Aligned (ADDR A) AXI data width = 32-bit AWID = 0 AWADDR = 'h0 AWSIZE = 2 AWLEN = 3 AWBURST = INCR
Unaligned (ADDR B) AXI data width = 32-bit AWID = 1 AWADDR = 'h3 AWSIZE = 2 AWLEN = 3 AWBURST = INCR

X-Ref Target - Figure 4-10

Figure 4-10: Write Full Transfer
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Figure 4-11 shows the read full transfer timing diagram.  

Aligned (ADDR A) AXI data width = 32-bit ARID = 0 ARADDR = 'h0 ARSIZE = 2 ARLEN = 3 ARBURST = INCR
Unaligned (ADDR B) AXI data width = 32-bit ARID = 1 ARADDR = 'h3 ARSIZE = 2 ARLEN = 3 ARBURST = INCR

X-Ref Target - Figure 4-11

Figure 4-11: Read Full Transfer
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Figure 4-12 shows the write narrow transfer timing diagram.  

Aligned (ADDR A) AXI data width = 32-bit AWID = 0 AWADDR = 'h0 AWSIZE = 1 AWLEN = 3 AWBURST = INCR
Unaligned (ADDR B) AXI data width = 32-bit AWID = 1 AWADDR = 'h3 AWSIZE = 1 AWLEN = 3 AWBURST = INCR

X-Ref Target - Figure 4-12

Figure 4-12: Write Narrow Transfer
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Figure 4-13 shows the read narrow transfer timing diagram.  

Aligned (ADDR A) AXI data width = 32-bit ARID = 0 ARADDR = 'h0 ARSIZE = 1 ARLEN = 3 ARBURST = INCR
Unaligned (ADDR B) AXI data width = 32-bit ARID = 1 ARADDR = 'h3 ARSIZE = 1 ARLEN = 3 ARBURST = INCR

X-Ref Target - Figure 4-13

Figure 4-13: Read Narrow Transfer
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Arbitration in AXI Shim

The AXI4 protocol calls for independent read and write address channels. The Memory 
Controller has one address channel. The following arbitration options are available for 
arbitrating between the read and write address channels. 

Time Division Multiplexing (TDM)

Equal priority is given to read and write address channels in this mode. The grant to the 
read and write address channels alternate every clock cycle. The read or write requests from 
the AXI master has no bearing on the grants. For example, the read requests are served in 
alternative clock cycles, even when there are no write requests. The slots are fixed and they 
are served in their respective slots only.

Round-Robin

Equal priority is given to read and write address channels in this mode. The grant to the 
read and write channels depends on the last served request granted from the AXI master. 
For example, if the last performed operation is write, then it gives precedence for read 
operation to be served over write operation. Similarly, if the last performed operation is 
read, then it gives precedence for write operation to be served over read operation.

Read Priority (RD_PRI_REG)

Read and write address channels are served with equal priority in this mode. The requests 
from the write address channel are processed when one of the following occurs:

• No pending requests from read address channel.
• Read starve limit of 256 is reached. It is only checked at the end of the burst.
• Read wait limit of 16 is reached.

The requests from the read address channel are processed in a similar method.

Read Priority with Starve Limit (RD_PRI_REG_STARVE_LIMIT)

The read address channel is always given priority in this mode. The requests from the write 
address channel are processed when there are no pending requests from the read address 
channel or the starve limit for read is reached.

Write Priority (WRITE_PRIORITY, WRITE_PRIORITY_REG)

Write address channel is always given priority in this mode. The requests from the read 
address channel are processed when there are no pending requests from the write address 
channel. Arbitration outputs are registered in WRITE_PRIORITY_REG mode.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG150&Title=UltraScale%20Architecture-Based%20FPGAs%20Memory%20IP%20v1.4&releaseVersion=1.4&docPage=143


UltraScale Architecture-Based FPGAs Memory IP v1.4 144
PG150 October 22, 2021 www.xilinx.com

Chapter 4: Designing with the Core

AXI4-Lite Slave Control/Status Register Interface Block

The AXI4-Lite Slave Control register block provides a processor accessible interface to the 
ECC memory option. The interface is available when ECC is enabled and the primary slave 
interface is AXI4. The block provides interrupts, interrupt enable, ECC status, ECC enable/
disable, ECC correctable errors counter, first failing correctable/uncorrectable data, ECC, 
and address. Fault injection registers for software testing is provided when the 
ECC_TEST_FI_XOR (C_ECC_TEST) parameter is ON. The AXI4-Lite interface is fixed at 32 data 
bits and signaling follows the standard AMBA AXI4-Lite specifications [Ref 12]. 

The AXI4-Lite Control/Status register interface block is implemented in parallel to the AXI4 
memory-mapped interface. The block monitors the output of the native interface to 
capture correctable (single bit) and uncorrectable (multiple bit) errors. When a correctable 
and/or uncorrectable error occurs, the interface also captures the byte address of the failure 
along with the failing data bits and ECC bits. Fault injection is provided by an XOR block 
placed in the write datapath after the ECC encoding has occurred. 

Only the first memory beat in a transaction can have errors inserted. For example, in a 
memory configuration with a data width of 72 and a mode register set to burst length 8, 
only the first 72 bits are corruptible through the fault injection interface. Interrupt 
generation based on either a correctable or uncorrectable error can be independently 
configured with the register interface. SLVERR response is seen on the read response bus 
(rresp) in case of uncorrectable errors (if ECC is enabled).

ECC Enable/Disable

The ECC_ON_OFF register enables/disables the ECC decode functionality. However, 
encoding is always enabled. The default value at start-up can be parameterized with 
C_ECC_ONOFF_RESET_VALUE. Assigning a value of 1 for the ECC_ON_OFF bit of this register 
results in the correct_en signal input into the mem_intfc to be asserted. Writing a value 
of 0 to the ECC_ON_OFF bit of this register results in the correct_en signal to be 
deasserted. When correct_en is asserted, decoding is enabled, and the opposite is true 
when this signal is deasserted. ECC_STATUS/ECC_CE_CNT are not updated when 
ECC_ON_OFF = 0. The FI_D0, FI_D1, FI_D2, and FI_D3 registers are not writable when 
ECC_ON_OFF = 0.

Single Error and Double Error Reporting

Two vectored signals from the Memory Controller indicate an ECC error: ecc_single and 
ecc_multiple. The ecc_single signal indicates if there has been a correctable error and 
the ecc_multiple signal indicates if there has been an uncorrectable error. The widths of 
ecc_multiple and ecc_single are based on the C_NCK_PER_CLK parameter. 

There can be between 0 and C_NCK_PER_CLK × 2 errors per cycle with each data beat 
signaled by one of the vector bits. Multiple bits of the vector can be signaled per cycle 
indicating that multiple correctable errors or multiple uncorrectable errors have been 
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detected. The ecc_err_addr signal (discussed in Fault Collection) is valid during the 
assertion of either ecc_single or ecc_multiple. 

The ECC_STATUS register sets the CE_STATUS bit and/or UE_STATUS bit for correctable error 
detection and uncorrectable error detection, respectively.

CAUTION! Multiple bit error is a serious failure of memory because it is uncorrectable. In such cases, 
application cannot rely on contents of the memory. It is suggested to not perform any further 
transactions to memory.

Interrupt Generation

When interrupts are enabled with the CE_EN_IRQ and/or UE_EN_IRQ bits of the ECC_EN_IRQ 
register, and a correctable error or uncorrectable error occurs, the interrupt signal is 
asserted. 

Fault Collection

To aid the analysis of ECC errors, there are two banks of storage registers that collect 
information on the failing ECC decode. One bank of registers is for correctable errors, and 
another bank is for uncorrectable errors. The failing address, undecoded data, and ECC bits 
are saved into these register banks as CE_FFA, CE_FFD, and CE_FFE for correctable errors. 
UE_FFA, UE_FFD, and UE_FFE are for uncorrectable errors. The data in combination with the 
ECC bits can help determine which bit(s) have failed. CE_FFA stores the address from the 
ecc_err_addr signal and converts it to a byte address. Upon error detection, the data is 
latched into the appropriate register. Only the first data beat with an error is stored. 

When a correctable error occurs, there is also a counter that counts the number of 
correctable errors that have occurred. The counter can be read from the CE_CNT register 
and is fixed as an 8-bit counter. It does not rollover when the maximum value is 
incremented. 

Fault Injection

The ECC Fault Injection registers, FI_D and FI_ECC, facilitates testing of the software drivers. 
When set, the ECC Fault Injection register XORs with the DDR3/DDR4 SDRAM datapath to 
simulate errors in the memory. It is ideal for injection to occur here because this is after the 
encoding has been completed. There is only support to insert errors on the first data beat, 
therefore there are two to four FI_D registers to accommodate this. During operation, after 
the error has been inserted into the datapath, the register clears itself. 

AXI4-Lite Slave Control/Status Register Interface Parameters

Table 4-40 lists the AXI4-Lite slave interface parameters.
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AXI4-Lite Slave Control/Status Register Interface Signals

Table 4-41 lists the AXI4 slave interface specific signals. Clock/reset to the interface is 
provided from the Memory Controller.

Table 4-40: AXI4-Lite Slave Control/Status Register Parameters

Parameter Name Default 
Value

Allowable 
Values Description

C_S_AXI_CTRL_ADDR_WIDTH 32 32 This is the width of the AXI4-Lite address buses.
C_S_AXI_CTRL_DATA_WIDTH 32 32 This is the width of the AXI4-Lite data buses.
C_ECC_ONOFF_RESET_VALUE 1 0, 1 Controls ECC ON/OFF value at startup/reset.

C_ECC_TEST OFF ON, OFF When ON, you can inject faults on the first 
burst of data/ECC.

Table 4-41: List of New I/O Signals

Name Width I/O Active 
State Description

s_axi_ctrl_awaddr C_S_AXI_CTRL_ADDR_WIDTH I Write address

s_axi_ctrl_awvalid 1 I High
Write address valid. This signal indicates 
that valid write address and control 
information are available. 

s_axi_ctrl_awready 1 O High
Write address ready. This signal indicates 
that the slave is ready to accept an 
address and associated control signals. 

s_axi_ctrl_wdata C_S_AXI_CTRL_DATA_WIDTH I Write data

s_axi_ctrl_wvalid 1 I High Write valid. This signal indicates that 
write data and strobe are available. 

s_axi_ctrl_wready 1 O High Write ready
s_axi_ctrl_bvalid 1 O High Write response valid
s_axi_ctrl_bresp2 2 O Write response
s_axi_ctrl_bready 1 I High Response ready
s_axi_ctrl_araddr C_S_AXI_CTRL_ADDR_WIDTH I Read address
s_axi_ctrl_arvalid 1 I High Read address valid
s_axi_ctrl_arready 1 O High Read address
s_axi_ctrl_rdata C_S_AXI_CTRL_DATA_WIDTH O Read data
s_axi_ctrl_rresp 2 O Read response
s_axi_ctrl_rvalid 1 O Read valid
s_axi_ctrl_rready 1 I Read ready
interrupt 1 O High IP Global Interrupt signal
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AXI4-Lite Slave Control/Status Register Map

ECC register map is shown in Table 4-42. The register map is Little Endian. Write accesses to 
read-only or reserved values are ignored. Read accesses to write-only or reserved values 
return the value 0xDEADDEAD. 

Table 4-42: ECC Control Register Map

Address Offset Register Name Access 
Type

Default 
Value Description

0x00 ECC_STATUS R/W 0x0 ECC Status Register
0x04 ECC_EN_IRQ R/W 0x0 ECC Enable Interrupt Register

0x08 ECC_ON_OFF R/W 0x0 or 
0x1

ECC On/Off Register. If C_ECC_ONOFF_RESET_
VALUE = 1, the default value is 0x1.

0x0C CE_CNT R/W 0x0 Correctable Error Count Register
(0x10–0x9C) Reserved

0x100 CE_FFD[31:00] R 0x0 Correctable Error First Failing Data Register
0x104 CE_FFD[63:32] R 0x0 Correctable Error First Failing Data Register
0x108 CE_FFD[95:64](1) R 0x0 Correctable Error First Failing Data Register
0x10C CE_FFD [127:96](1) R 0x0 Correctable Error First Failing Data Register

(0x110–0x17C) Reserved
0x180 CE_FFE R 0x0 Correctable Error First Failing ECC Register

(0x184–0x1BC) Reserved
0x1C0 CE_FFA[31:0] R 0x0 Correctable Error First Failing Address
0x1C4 CE_FFA[63:32] R 0x0 Correctable Error First Failing Address

(0x1C8–0x1FC) Reserved
0x200 UE_FFD [31:00] R 0x0 Uncorrectable Error First Failing Data Register
0x204 UE_FFD [63:32] R 0x0 Uncorrectable Error First Failing Data Register
0x208 UE_FFD [95:64](1) R 0x0 Uncorrectable Error First Failing Data Register

0x20C UE_FFD 
[127:96](1) R 0x0 Uncorrectable Error First Failing Data Register

(0x210–0x27C) Reserved
0x280 UE_FFE R 0x0 Uncorrectable Error First Failing ECC Register

(0x284–0x2BC) Reserved
0x2C0 UE_FFA[31:0] R 0x0 Uncorrectable Error First Failing Address
0x2C4 UE_FFA[63:32] R 0x0 Uncorrectable Error First Failing Address

(0x2C8–0x2FC) Reserved
0x300 FI_D[31:0](2) W 0x0 Fault Inject Data Register
0x304 FI_D[63:32](2) W 0x0 Fault Inject Data Register
0x308 FI_D[95:64](1)(2) W 0x0 Fault Inject Data Register
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AXI4-Lite Slave Control/Status Register Map Detailed Descriptions

ECC_STATUS

This register holds information on the occurrence of correctable and uncorrectable errors. 
The status bits are independently set to 1 for the first occurrence of each error type. The 
status bits are cleared by writing a 1 to the corresponding bit position; that is, the status bits 
can only be cleared to 0 and not set to 1 using a register write. The ECC Status register 
operates independently of the ECC Enable Interrupt register.

ECC_EN_IRQ

This register determines if the values of the CE_STATUS and UE_STATUS bits in the ECC 
Status register assert the Interrupt output signal (ECC_Interrupt). If both CE_EN_IRQ and 
UE_EN_IRQ are set to 1 (enabled), the value of the Interrupt signal is the logical OR between 
the CE_STATUS and UE_STATUS bits.

0x30C FI_D[127:96](1)(2) W 0x0 Fault Inject Data Register
(0x340–0x37C) Reserved

0x380 FI_ECC(2) W 0x0 Fault Inject ECC Register
Notes: 
1. Data bits 64–127 are only enabled if the DQ width is 144 bits.
2. FI_D* and FI_ECC* are only enabled if ECC_TEST parameter has been set to 1.

Table 4-42: ECC Control Register Map (Cont’d)

Address Offset Register Name Access 
Type

Default 
Value Description

Table 4-43: ECC Status Register

Bits Name Core 
Access 

Reset 
Value Description 

1 CE_STATUS R/W 0 If 1, a correctable error has occurred. This bit is cleared when a 1 
is written to this bit position.

0 UE_STATUS R/W 0 If 1, an uncorrectable error has occurred. This bit is cleared when 
a 1 is written to this bit position.

Table 4-44: ECC Interrupt Enable Register 

Bits Name Core 
Access 

Reset 
Value Description 

1 CE_EN_IRQ R/W 0 
If 1, the value of the CE_STATUS bit of ECC Status register is 
propagated to the Interrupt signal. If 0, the value of the 
CE_STATUS bit of ECC Status register is not propagated to the 
Interrupt signal. 

0 UE_EN_IRQ R/W 0 
If 1, the value of the UE_STATUS bit of ECC Status register is 
propagated to the Interrupt signal. If 0, the value of the 
UE_STATUS bit of ECC Status register is not propagated to the 
Interrupt signal. 
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ECC_ON_OFF

The ECC On/Off Control register allows the application to enable or disable ECC checking. 
The design parameter, C_ECC_ONOFF_RESET_VALUE (default on) determines the reset value 
for the enable/disable setting of ECC. This facilitates start-up operations when ECC might or 
might not be initialized in the external memory. When disabled, ECC checking is disabled 
for read but ECC generation is active for write operations.

CE_CNT

This register counts the number of occurrences of correctable errors. It can be cleared or 
preset to any value using a register write. When the counter reaches its maximum value, it 
does not wrap around, but instead it stops incrementing and remains at the maximum 
value. The width of the counter is defined by the value of the C_CE_COUNTER_WIDTH 
parameter. The value of the CE counter width is fixed to eight bits.

CE_FFA[31:0]

This register stores the lower 32 bits of the decoded DRAM address (Bits[31:0]) of the first 
occurrence of an access with a correctable error. The address format is defined in Table 3-1, 
page 32. When the CE_STATUS bit in the ECC Status register is cleared, this register is 
re-enabled to store the address of the next correctable error. Storing of the failing address 
is enabled after reset. 

CE_FFA[63:32]

This register stores the upper 32 bits of the decoded DRAM address (Bits[55:32]) of the first 
occurrence of an access with a correctable error. The address format is defined in Table 3-1, 

Table 4-45: ECC On/Off Control Register 

Bits Name Core 
Access Reset Value Description 

0 ECC_ON_OFF R/W 

Specified by 
design 
parameter, 
C_ECC_ONOFF_ 
RESET_VALUE 

If 0, ECC checking is disabled on read operations. (ECC 
generation is enabled on write operations when C_ECC = 1). 
If 1, ECC checking is enabled on read operations. All 
correctable and uncorrectable error conditions are captured 
and status is updated. 

Table 4-46: Correctable Error Counter Register 
Bits Name Core Access Reset Value Description 

7:0 CE_CNT R/W 0 Holds the number of correctable errors encountered.

Table 4-47: Correctable Error First Failing Address [31:0] Register 
Bits Name Core Access Reset Value Description 

31:0 CE_FFA[31:0] R 0 Address (Bits[31:0]) of the first occurrence of a 
correctable error.
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page 32. In addition, the upper byte of this register stores the ecc_single signal. When 
the CE_STATUS bit in the ECC Status register is cleared, this register is re-enabled to store 
the address of the next correctable error. Storing of the failing address is enabled after reset.

CE_FFD[31:0]

This register stores the (corrected) failing data (Bits[31:0]) of the first occurrence of an 
access with a correctable error. When the CE_STATUS bit in the ECC Status register is cleared, 
this register is re-enabled to store the data of the next correctable error. Storing of the 
failing data is enabled after reset. 

CE_FFD[63:32]

This register stores the (corrected) failing data (Bits[63:32]) of the first occurrence of an 
access with a correctable error. When the CE_STATUS bit in the ECC Status register is cleared, 
this register is re-enabled to store the data of the next correctable error. Storing of the 
failing data is enabled after reset.

CE_FFD[95:64]

Note: This register is only used when DQ_WIDTH == 144.

This register stores the (corrected) failing data (Bits[95:64]) of the first occurrence of an 
access with a correctable error. When the CE_STATUS bit in the ECC Status register is cleared, 
this register is re-enabled to store the data of the next correctable error. Storing of the 
failing data is enabled after reset.

Table 4-48: Correctable Error First Failing Address [63:32] Register 
Bits Name Core Access Reset Value Description 

31:24 CE_FFA[63:56] R 0 
ecc_single[7:0]. Indicates which bursts of the BL8 
transaction associated with the logged address had 
a correctable error. Bit[24] corresponds to the first 
burst of the BL8 transfer.

23:0 CE_FFA[55:32] R 0 Address (Bits[55:32]) of the first occurrence of a 
correctable error.

Table 4-49: Correctable Error First Failing Data [31:0] Register 
Bits Name Core Access Reset Value Description 

31:0 CE_FFD[31:0] R 0 Data (Bits[31:0]) of the first occurrence of a 
correctable error. 

Table 4-50: Correctable Error First Failing Data [63:32] Register
Bits Name Core Access Reset Value Description 

31:0 CE_FFD[63:32] R 0 Data (Bits[63:32]) of the first occurrence of a 
correctable error. 
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CE_FFD[127:96]

Note: This register is only used when DQ_WIDTH == 144.

This register stores the (corrected) failing data (Bits[127:96]) of the first occurrence of an 
access with a correctable error. When the CE_STATUS bit in the ECC Status register is cleared, 
this register is re-enabled to store the data of the next correctable error. Storing of the 
failing data is enabled after reset.

CE_FFE

This register stores the ECC bits of the first occurrence of an access with a correctable error. 
When the CE_STATUS bit in the ECC Status register is cleared, this register is re-enabled to 
store the ECC of the next correctable error. Storing of the failing ECC is enabled after reset.

Table 4-53 describes the register bit usage when DQ_WIDTH = 72.

Table 4-54 describes the register bit usage when DQ_WIDTH = 144.

UE_FFA[31:0]

This register stores the decoded DRAM address (Bits[31:0]) of the first occurrence of an 
access with an uncorrectable error. The address format is defined in Table 3-1, page 32. 
When the UE_STATUS bit in the ECC Status register is cleared, this register is re-enabled to 
store the address of the next uncorrectable error. Storing of the failing address is enabled 
after reset.

Table 4-51: Correctable Error First Failing Data [95:64] Register 
Bits Name Core Access Reset Value Description 

31:0 CE_FFD[95:64] R 0 Data (Bits[95:64]) of the first occurrence of a 
correctable error. 

Table 4-52: Correctable Error First Failing Data [127:96] Register
Bits Name Core Access Reset Value Description 

31:0 CE_FFD [127:96] R 0 Data (Bits[127:96]) of the first occurrence of a 
correctable error. 

Table 4-53: Correctable Error First Failing ECC Register for 72-Bit External Memory Width
Bits Name Core Access Reset Value Description 

7:0 CE_FFE R 0 ECC (Bits[7:0]) of the first occurrence of a correctable 
error.

Table 4-54: Correctable Error First Failing ECC Register for 144-Bit External Memory Width
Bits Name Core Access Reset Value Description 

15:0 CE_FFE R 0 ECC (Bits[15:0]) of the first occurrence of a 
correctable error.
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UE_FFA[63:32]

This register stores the decoded address (Bits[55:32]) of the first occurrence of an access 
with an uncorrectable error. The address format is defined in Table 3-1, page 32. In addition, 
the upper byte of this register stores the ecc_multiple signal. When the UE_STATUS bit 
in the ECC Status register is cleared, this register is re-enabled to store the address of the 
next uncorrectable error. Storing of the failing address is enabled after reset.

UE_FFD[31:0]

This register stores the (uncorrected) failing data (Bits[31:0]) of the first occurrence of an 
access with an uncorrectable error. When the UE_STATUS bit in the ECC Status register is 
cleared, this register is re-enabled to store the data of the next uncorrectable error. Storing 
of the failing data is enabled after reset.

UE_FFD[63:32]

This register stores the (uncorrected) failing data (Bits[63:32]) of the first occurrence of an 
access with an uncorrectable error. When the UE_STATUS bit in the ECC Status register is 
cleared, this register is re-enabled to store the data of the next uncorrectable error. Storing 
of the failing data is enabled after reset.

Table 4-55: Uncorrectable Error First Failing Address [31:0] Register 
Bits Name Core Access Reset Value Description 

31:0 UE_FFA [31:0] R 0 Address (Bits[31:0]) of the first occurrence of an 
uncorrectable error.

Table 4-56: Uncorrectable Error First Failing Address [31:0] Register 
Bits Name Core Access Reset Value Description 

31:24 UE_FFA[63:56] R 0 
ecc_multiple[7:0]. Indicates which bursts of the BL8 
transaction associated with the logged address had 
an uncorrectable error. Bit[24] corresponds to the 
first burst of the BL8 transfer.

23:0 UE_FFA[55:32] R 0 Address (Bits[55:32]) of the first occurrence of a 
correctable error.

Table 4-57: Uncorrectable Error First Failing Data [31:0] Register 
Bits Name Core Access Reset Value Description 

31:0 UE_FFD[31:0] R 0 Data (Bits[31:0]) of the first occurrence of an 
uncorrectable error. 

Table 4-58: Uncorrectable Error First Failing Data [63:32] Register 
Bits Name Core Access Reset Value Description 

31:0 UE_FFD [63:32] R 0 Data (Bits[63:32]) of the first occurrence of an 
uncorrectable error. 
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UE_FFD[95:64]

Note: This register is only used when the DQ_WIDTH == 144.

This register stores the (uncorrected) failing data (Bits[95:64]) of the first occurrence of an 
access with an uncorrectable error. When the UE_STATUS bit in the ECC Status register is 
cleared, this register is re-enabled to store the data of the next uncorrectable error. Storing 
of the failing data is enabled after reset.

UE_FFD[127:96]

Note: This register is only used when the DQ_WIDTH == 144.

This register stores the (uncorrected) failing data (Bits[127:96]) of the first occurrence of an 
access with an uncorrectable error. When the UE_STATUS bit in the ECC Status register is 
cleared, this register is re-enabled to store the data of the next uncorrectable error. Storing 
of the failing data is enabled after reset.

UE_FFE

This register stores the ECC bits of the first occurrence of an access with an uncorrectable 
error. When the UE_STATUS bit in the ECC Status register is cleared, this register is 
re-enabled to store the ECC of the next uncorrectable error. Storing of the failing ECC is 
enabled after reset.

Table 4-61 describes the register bit usage when DQ_WIDTH = 72.

Table 4-59: Uncorrectable Error First Failing Data [95:64] Register 
Bits Name Core Access Reset Value Description 

31:0 UE_FFD[95:64] R 0 Data (Bits[95:64]) of the first occurrence of an 
uncorrectable error. 

Table 4-60: Uncorrectable Error First Failing Data [127:96] Register
Bits Name Core Access Reset Value Description 

31:0 UE_FFD[127:96] R 0 Data (Bits[127:96]) of the first occurrence of an 
uncorrectable error. 

Table 4-61: Uncorrectable Error First Failing ECC Register for 72-Bit External Memory Width
Bits Name Core Access Reset Value Description 

7:0 UE_FFE R 0 ECC (Bits[7:0]) of the first occurrence of an 
uncorrectable error.
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Table 4-62 describes the register bit usage when DQ_WIDTH = 144.

FI_D0

This register is used to inject errors in data (Bits[31:0]) written to memory and can be used 
to test the error correction and error signaling. The bits set in the register toggle the 
corresponding data bits (word 0 or Bits[31:0]) of the subsequent data written to the 
memory without affecting the ECC bits written. After the fault has been injected, the Fault 
Injection Data register is cleared automatically.

The register is only implemented if C_ECC_TEST = ON or ECC_TEST_FI_XOR = ON and ECC = 
ON in a DDR3/DDR4 SDRAM design in the Vivado IP catalog.

Injecting faults should be performed in a critical region in software; that is, writing this 
register and the subsequent write to the memory must not be interrupted.

Special consideration must be given across FI_D0, FI_D1, FI_D2, and FI_D3 such that only a 
single error condition is introduced.

FI_D1

This register is used to inject errors in data (Bits[63:32]) written to memory and can be used 
to test the error correction and error signaling. The bits set in the register toggle the 
corresponding data bits (word 1 or Bits[63:32]) of the subsequent data written to the 
memory without affecting the ECC bits written. After the fault has been injected, the Fault 
Injection Data register is cleared automatically.

This register is only implemented if C_ECC_TEST = ON or ECC_TEST_FI_XOR = ON and ECC 
= ON in a DDR3/DDR4 SDRAM design in the Vivado IP catalog.

Injecting faults should be performed in a critical region in software; that is, writing this 
register and the subsequent write to the memory must not be interrupted.

Table 4-62: Uncorrectable Error First Failing ECC Register for 144-Bit External Memory Width
Bits Name Core Access Reset Value Description 

15:0 UE_FFE R 0 ECC (Bits[15:0]) of the first occurrence of an 
uncorrectable error.

Table 4-63: Fault Injection Data (Word 0) Register
Bits Name Core Access Reset Value Description 

31:0 FI_D0 W 0 
Bit positions set to 1 toggle the corresponding Bits[31:0] of 
the next data word written to the memory. This register is 
automatically cleared after the fault has been injected. 
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FI_D2

Note: This register is only used when DQ_WIDTH =144.

This register is used to inject errors in data (Bits[95:64]) written to memory and can be used 
to test the error correction and error signaling. The bits set in the register toggle the 
corresponding data bits (word 2 or Bits[95:64]) of the subsequent data written to the 
memory without affecting the ECC bits written. After the fault has been injected, the Fault 
Injection Data register is cleared automatically.

This register is only implemented if C_ECC_TEST = ON or ECC_TEST_FI_XOR = ON and ECC 
= ON in a DDR3/DDR4 SDRAM design in the Vivado IP catalog. 

Injecting faults should be performed in a critical region in software; that is, writing this 
register and the subsequent write to the memory must not be interrupted.

Special consideration must be given across FI_D0, FI_D1, FI_D2, and FI_D3 such that only a 
single error condition is introduced.

FI_D3

Note: This register is only used when DQ_WIDTH =144.

This register is used to inject errors in data (Bits[127:96]) written to memory and can be 
used to test the error correction and error signaling. The bits set in the register toggle the 
corresponding data bits (word 3 or Bits[127:96]) of the subsequent data written to the 
memory without affecting the ECC bits written. After the fault has been injected, the Fault 
Injection Data register is cleared automatically.

The register is only implemented if C_ECC_TEST = ON or ECC_TEST_FI_XOR = ON and ECC = 
ON in a DDR3/DDR4 SDRAM design in the Vivado IP catalog.

Injecting faults should be performed in a critical region in software; that is, writing this 
register and the subsequent write to the memory must not be interrupted.

Table 4-64: Fault Injection Data (Word 1) Register
Bits Name Core Access Reset Value Description 

31:0 FI_D1 W 0 
Bit positions set to 1 toggle the corresponding 
Bits[63:32] of the next data word written to the 
memory. This register is automatically cleared after 
the fault has been injected. 

Table 4-65: Fault Injection Data (Word 2) Register
Bits Name Core Access Reset Value Description 

31:0 FI_D2 W 0 
Bit positions set to 1 toggle the corresponding Bits[95:64] of 
the next data word written to the memory. This register is 
automatically cleared after the fault has been injected. 
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FI_ECC

This register is used to inject errors in the generated ECC written to the memory and can be 
used to test the error correction and error signaling. The bits set in the register toggle the 
corresponding ECC bits of the next data written to memory. After the fault has been 
injected, the Fault Injection ECC register is cleared automatically.

The register is only implemented if C_ECC_TEST = ON or ECC_TEST_FI_XOR = ON and ECC = 
ON in a DDR3/DDR4 SDRAM design in the Vivado IP catalog.

Injecting faults should be performed in a critical region in software; that is, writing this 
register and the subsequent write to memory must not be interrupted.

Table 4-67 describes the register bit usage when DQ_WIDTH = 72.

Table 4-68 describes the register bit usage when DQ_WIDTH = 144.

PHY Only Interface
This section describes the FPGA logic interface signals and key parameters of the DDR3 and 
DDR4 PHY. The goal is to implement a “PHY Only” solution that connects your own custom 
Memory Controller directly to the DDR3/DDR4 SDRAM generated PHY, instead of 
interfacing to the user interface or AXI Interface of a DDR3/DDR4 SDRAM generated 
Memory Controller. The PHY interface takes DRAM commands, like Activate, Precharge, 
Refresh, etc. at its input ports and issues them directly to the DRAM bus. 

Table 4-66: Fault Injection Data (Word 3) Register
Bits Name Core Access Reset Value Description 

31:0 FI_D3 W 0 
Bit positions set to 1 toggle the corresponding 
Bits[127:96] of the next data word written to the 
memory. The register is automatically cleared after 
the fault has been injected. 

Table 4-67: Fault Injection ECC Register for 72-Bit External Memory Width
Bits Name Core Access Reset Value Description 

7:0 FI_ECC W 0 
Bit positions set to 1 toggle the corresponding bit of the 
next ECC written to the memory. The register is 
automatically cleared after the fault has been injected. 

Table 4-68: Fault Injection ECC Register for 144-Bit External Memory Width
Bits Name Core Access Reset Value Description 

15:0 FI_ECC R 0 
Bit positions set to 1 toggle the corresponding bit of the 
next ECC written to the memory. The register is 
automatically cleared after the fault has been injected. 
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The PHY does not take in “memory transactions” like the user and AXI interfaces, which 
translate transactions into one or more DRAM commands that meet DRAM protocol and 
timing requirements. The PHY interface does no DRAM protocol or timing checking. When 
using a PHY Only option, you are responsible for meeting all DRAM protocol requirements 
and timing specifications of all DRAM components in the system.

The PHY runs at the system clock frequency, or 1/4 of the DRAM clock frequency. The PHY 
therefore accepts four DRAM commands per system clock and issues them serially on 
consecutive DRAM clock cycles on the DRAM bus. In other words, the PHY interface has four 
command slots: slots 0, 1, 2, and 3, which it accepts each system clock. The command in slot 
position 0 is issued on the DRAM bus first, and the command in slot 3 is issued last. The 
PHY does have limitations as to which slots can accept read and write CAS commands. For 
more information, see CAS Command Timing Limitations, page 176. Except for CAS 
commands, each slot can accept arbitrary DRAM commands.

The PHY FPGA logic interface has an input port for each pin on a DDR3 or DDR4 bus. Each 
PHY command/address input port has a width that is eight times wider than its 
corresponding DRAM bus pin. For example, a DDR4 bus has one act_n pin, and the PHY 
has an 8-bit mc_ACT_n input port. Each pair of bits in the mc_ACT_n port corresponds to 
a "command slot." The two LSBs are slot0 and the two MSBs are slot3. The PHY address 
input port for a DDR4 design with 18 address pins is 144 bits wide, with each byte 
corresponding to the four command slots for one DDR4 address pin. There are two bits for 
each command slot in each input port of the PHY. 

This is due to the underlying design of the PHY and its support for double data rate data 
buses. But as the DRAM command/address bus is single data rate, you must always drive 
the two bits that correspond to a command slot to the same value. See the following 
interface tables for additional descriptions and examples in the timing diagrams that show 
how bytes and bits correspond to DRAM pins and command slots.

The PHY interface has read and write data ports with eight bits for each DRAM DQ pin. Each 
port bit represents one data bit on the DDR DRAM bus for a BL8 burst. Therefore one BL8 
data burst for the entire DQ bus is transferred across the PHY interface on each system 
clock. The PHY only supports BL8 data transfers. The data format is the same as the user 
interface data format. For more information, see PHY, page 34.

The PHY interface also has several control signals that you must drive and/or respond to 
when a read or write CAS command is issued. The control signals are used by the PHY to 
manage the transfer of read and write data between the PHY interface and the DRAM bus. 
See the following signal tables and timing diagrams.

Your custom Memory Controller must wait until the PHY output calDone is asserted before 
sending any DRAM commands to the PHY. The PHY initializes and trains the DRAM before 
asserting calDone. For more information on the PHY internal structures and training 
algorithms, see the PHY, page 34. After calDone is asserted, the PHY is ready to accept any 
DRAM commands. 
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The only required DRAM or PHY commands are related to VT tracking and DRAM refresh/
ZQ. These requirements are detailed in VT Tracking, page 178 and Refresh and ZQ, 
page 181.

PHY Interface Signals

The PHY interface signals to the FPGA logic can be categorized into six groups: 

• Clocking and Reset
• Command and Address
• Write Data
• Read Data
• PHY Control
• Debug

Clocking and Reset and Debug signals are described in other sections or documents. See 
the corresponding references. In this section, a description is given for each signal in the 
remaining four groups and timing diagrams show examples of the signals in use.

Clocking and Reset

For more information on the clocking and reset, see the Clocking, page 81 section.

Command and Address

Table 4-69 shows the command and address signals for a PHY only option.
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Table 4-69: Command and Address
Signal I/O Description

mc_ACT_n[7:0] I

DRAM ACT_n command signal for four DRAM clock cycles. Bits[1:0] 
correspond to the first DRAM clock cycle, Bits[3:2] to the second, 
Bits[5:4] to the third, and Bits[8:7] to the fourth. 
For center alignment to the DRAM clock with 1N timing, both bits of a 
given bit pair should be asserted to the same value. 
See timing diagrams for examples. All of the command/address ports in 
this table follow the same eight bits per DRAM pin format. Active-Low. 
This signal is not used in DDR3 systems.

mc_ADR[ADDR_WIDTH × 8 – 1:0] I

DRAM address. Eight bits in the PHY interface for each address bit on 
the DRAM bus. 
Bits[7:0] corresponds to DRAM address Bit[0] on four DRAM clock 
cycles. 
Bits[15:8] corresponds to DRAM address Bit[1] on four DRAM clock 
cycles, etc. 
See the timing diagrams for examples. All of the multi-bit DRAM signals 
in this table follow the same format of 1-byte of the PHY interface port 
corresponding to four commands for one DRAM pin. Mixed active-Low 
and High depending on which type of DRAM command is being issued, 
but follows the DRAM pin active-High/Low behavior. The function of 
each byte of the mc_ADR port depends on whether the memory type is 
DDR4 or DDR3 and the particular DRAM command that is being issued. 
These functions match the DRAM address pin functions. 
For example, with DDR4 memory and the mc_ACT_n port bits asserted 
High, mc_ADR[135:112] have the function of RAS_n, CAS_n, and WE_n 
pins.

mc_RAS_n[7:0] I DDR3 DRAM RAS_n pin. Not used in DDR4 systems.
mc_CAS_n[7:0] I DDR3 DRAM CAS_n pin. Not used in DDR4 systems.
mc_WE_n[7:0] I DDR3 DRAM WE_n pin. Not used in DDR4 systems.
mc_BA[BANK_WIDTH × 8 – 1:0] I DRAM bank address. Eight bits for each DRAM bank address.
mc_BG[BANK_GROUP_WIDTH × 
8 – 1:0] I DRAM bank group address. Eight bits for each DRAM pin.

mc_C[LR_WIDTH × 8 – 1:0] I DDR4 DRAM Chip ID pin. Valid for 3DS RDIMMs only. LR_WIDTH is 
log2(StackHeight) where StackHeight (S_HEIGHT) is 2 or 4.

mc_CKE[CKE_WIDTH × 8 – 1:0] I DRAM CKE. Eight bits for each DRAM pin.
mc_CS_n[CS_WIDTH × 8 – 1:0] I DRAM CS_n. Eight bits for each DRAM pin. Active-Low.
mc_ODT[ODT_WIDTH × 8– 1:0] I DRAM ODT. Eight bits for each DRAM pin. Active-High.

mc_PAR[7:0] I DRAM address parity. Eight bits for one DRAM parity pin. 
Note: This signal is valid for RDIMMs/LRDIMMs only.
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Figure 4-14 shows the functional relationship between the PHY command/address input 
signals and a DDR4 command/address bus. The diagram shows an Activate command on 
system clock cycle N in the slot1 position. The mc_ACT_n[3:2] and mc_CS_n[3:2] are 
both asserted Low in cycle N, and all the other bits in cycle N are asserted High, generating 
an Activate in the slot1 position roughly two system clocks later and NOP/DESELECT 
commands on the other command slots. 

On cycle N + 3, mc_CS_n and the mc_ADR bits corresponding to CAS/A15 are set to 0xFC. 
This asserts mc_ADR[121:120] and mc_CS_n[1:0] Low, and all other bits in cycle N + 3 
High, generating a read command on slot0 and NOP/DESELECT commands on the other 
command slots two system clocks later. With the Activate and read command separated by 
three system clock cycles and taking into account the command slot position of both 
commands within their system clock cycle, expect the separation on the DDR4 bus to be 11 
DRAM clocks, as shown in the DDR bus portion of Figure 4-14. 

Note: Figure 4-14 shows the relative position of commands on the DDR bus based on the PHY input 
signals. Although the diagram shows some latency in going through the PHY to be somewhat 
realistic, this diagram does not represent the absolute command latency through the PHY to the DDR 
bus, or the system clock to DRAM clock phase alignment. The intention of this diagram is to show the 
concept of command slots at the PHY interface. 

X-Ref Target - Figure 4-14

Figure 4-14: PHY Command/Address Input Signal with DDR4 Command/Address Bus
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Figure 4-15 shows an example of using all four command slots in a single system clock. This 
example shows three commands to rank0, and one to rank1, in cycle N. BG and BA address 
pins are included in the diagram to spread the commands over different banks to not 
violate DRAM protocol. Table 4-70 lists the command in each command slot. 
Table 4-70: Command Slots

Command Slot 0 1 2 3
DRAM Command Read Activate Precharge Refresh
Bank Group 0 1 2 0
Bank 0 3 1 0
Rank 0 0 0 1

X-Ref Target - Figure 4-15

Figure 4-15: PHY Command/Address with All Four Command Slots
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To understand how DRAM commands to different command slots are packed together, the 
following detailed example shows how to convert DRAM commands at the PHY interface to 
commands on the DRAM command/address bus. To convert PHY interface commands to 
DRAM commands, write out the PHY signal for one system clock in binary and reverse the 
bit order of each byte. You can also drop every other bit after the reversal because the bit 
pairs are required to have the same value. In the subsequent example, the mc_BA[15:0] 
signal has a cycle N value of 0x0C3C: 

Take the upper eight bits for DRAM BA[1] and the lower eight bits for DRAM BA[0] and 
the expected pattern on the DRAM bus is:

This matches the DRAM BA[1:0] signal values of 0, 3, 1, and 0 shown in the Figure 4-15.

Write Data

Table 4-71 shows the write data signals for a PHY only option. 

Hex 0x0C3C
Binary 16'b0000_1100_0011_1100
Reverse bits in each byte 16'b0011_0000_0011_1100

BA[1]
00 11 00 00
0 1 0 0

Low High Low Low

BA[0]
00 11 11 00
0 1 1 0

Low High High Low

Table 4-71: Write Data
Signal I/O Description

wrData[DQ_WIDTH × 8 – 1:0] I

DRAM write data. Eight bits for each DQ lane on the DRAM bus. 
This port transfers data for an entire BL8 write on each system clock 
cycle. 
Write data must be provided to the PHY one cycle after the 
wrDataEn output signal asserts, or two cycles after if the ECC 
parameter is set to ON. This protocol must be followed. There is no 
data buffering in the PHY.

wrDataMask[DM_WIDTH × 8 – 1:0] I

DRAM write DM/DBI port. One bit for each byte of the wrData port, 
corresponding to one bit for each byte of each burst of a BL8 
transfer. wrDataMask is transferred on the same system clock cycle 
as wrData. Active-High. 
For DDR3 interface, wrDataMask port appears in the Data Mask 
enabled option in Vivado IDE.
For DDR4 interface, wrDataMask port appears in the “Data Mask 
and DBI” Vivado IDE option values of DM_NO_DBI and DM_DBI_RD. 
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Read Data

Table 4-72 shows the read data signals for a PHY only option. 

wrDataEn O

Write data required. PHY asserts this port for one cycle for each 
write CAS command. 
Your design must provide wrData and wrDataMask at the PHY input 
ports on the cycle after wrDataEn asserts, or two cycles after if the 
ECC parameter is set to ON.

wrDataAddr[DATA_BUF_ADDR_WIDTH 
– 1:0] O

Optional control signal. PHY stores and returns a data buffer 
address for each in-flight write CAS command. The wrDataAddr 
signal returns the stored addresses. It is only valid when the PHY 
asserts wrDataEn. 
You can use this signal to manage the process of sending write data 
into the PHY for a write CAS command, but this is completely 
optional.

tCWL[5:0] O Optional control signal. This output indicates the CAS write latency 
used in the PHY. 

dBufAdr[DATA_BUF_ADDR_WIDTH – 
1:0] I Reserved. Should be tied Low.

Table 4-71: Write Data (Cont’d)

Signal I/O Description

Table 4-72: Read Data
Signal I/O Description

rdData[DQ_WIDTH × 8 – 1:0] O

DRAM read data. Eight bits for each DQ lane on the DRAM bus. This 
port transfers data for an entire BL8 read on each system clock 
cycle. rdData is only valid when the rdDataEn, per_rd_done, or 
rmw_rd_done is asserted. Your design must consume the read data 
when rdDataEn one of these “data valid” signals asserts. There is no 
data buffering in the PHY.

rdDataEn O

Read data valid. This signal asserts High to indicate that the rdData 
and rdDataAddr signals are valid. rdDataEn asserts High for one 
system clock cycle for each BL8 read, unless the read was tagged as 
a special type of read. 
See the optional per_rd_done and rmw_rd_done signals for details 
on special reads. rdData must be consumed when rdDataEn asserts 
or data is lost. Active-High.

rdDataAddr[DATA_BUF_ADDR_WIDTH 
– 1:0] O

Optional control signal. PHY stores and returns a data buffer 
address for each in-flight read CAS command. The rdDataAddr 
signal returns the stored addresses. It is only valid when the PHY 
asserts rdDataEn, per_rd_done, or rmw_rd_done. Your design can 
use this signal to manage the process of capturing and storing read 
data provided by the PHY, but this is completely optional.
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PHY Control

Table 4-73 shows the PHY control signals for a PHY only option.

per_rd_done O

Optional read data valid signal. This signal indicates that a special 
type of read has completed and its associated rdData and 
rdDataAddr signals are valid. 
When PHY input winInjTxn is asserted High at the same time as 
mcRdCAS, the read is tagged as a special type of read, and 
per_rd_done asserts instead of rdDataEn when data is returned.

rmw_rd_done O

Optional read data valid signal. This signal indicates that a special 
type of read has completed and its associated rdData and 
rdDataAddr signals are valid. 
When PHY input winRmw is asserted High at the same time as 
mcRdCAS, the read is tagged as a special type of read, and 
rmw_rd_done asserts instead of rdDataEn when data is returned.

rdDataEnd O Unused. Tied High.

Table 4-72: Read Data (Cont’d)

Signal I/O Description

Table 4-73: PHY Control
Signal I/O Description

calDone O
Indication that the DRAM is powered up, initialized, and calibration is 
complete. This indicates that the PHY interface is available to send 
commands to the DRAM. Active-High.

mcRdCAS I
Read CAS command issued. This signal must be asserted for one system 
clock if and only if a read CAS command is asserted on one of the 
command slots at the PHY command/address input ports. Hold at 0x0 
until calDone asserts. Active-High.

mcWrCAS I
Write CAS command issued. This signal must be asserted for one 
system clock if and only if a write CAS command is asserted on one of 
the command slots at the PHY command/address input ports. Hold at 
0x0 until calDone asserts. Active-High.

winRank[1:0] I

Target rank for CAS commands. This value indicates which rank a CAS 
command is issued to. It must be valid when either mcRdCAS or 
mcWrCAS is asserted. The PHY passes the value from this input to the 
XIPHY to select the calibration results for the target rank of a CAS 
command in multi-rank systems. In a single-rank system, this input port 
can be tied to 0x0.

mcCasSlot[1:0] I

CAS command slot select. The PHY only supports CAS commands on 
even command slots. mcCasSlot indicates which of these two possible 
command slots a read CAS or write CAS was issued on. mcCasSlot is 
used by the PHY to generate XIPHY control signals, like DQ output 
enables, that need DRAM clock cycle resolution relative to the 
command slot used for a CAS command. 
Valid values after calDone asserts are 0x0 and 0x2. Hold at 0x0 until 
calDone asserts. This signal must be valid if mcRdCAS or mcWrCAS is 
asserted. For more information, see the CAS Command Timing 
Limitations, page 176.
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Figure 4-16 shows a write command example. On cycle N, write command “A” is asserted on 
the PHY command/address inputs in the slot0 position. The mcWrCAS input is also asserted 
on cycle N, and a valid rank value is asserted on the winRank signal. In Figure 4-16, there 
is only one CS_n pin, so the only valid winRank value is 0x0. The mcCasSlot[1:0] and 
mcCasSlot2 signals are valid on cycle N, and specify slot0. 

Write command “B” is then asserted on cycle N + 1 in the slot2 position, with mcWrCAS, 
winRank, mcCasSlot[1:0], and mcCasSlot2 asserted to valid values as well. On cycle 

mcCasSlot2 I

CAS slot 2 select. mcCasSlot2 serves a similar purpose as the 
mcCasSlot[1:0] signal, but mcCasSlot2 is used in timing critical logic in 
the PHY. Ideally mcCasSlot2 should be driven from separate flops from 
mcCasSlot[1:0] to allow synthesis/implementation to better optimize 
timing. mcCasSlot2 and mcCasSlot[1:0] must always be consistent if 
mcRdCAS or mcWrCAS is asserted. 
To be consistent, the following must be TRUE: 
mcCasSlot2==mcCasSlot[1]. Hold at 0x0 until calDone asserts. 
Active-High.

winInjTxn I

Optional read command type indication. When winInjTxn is asserted 
High on the same cycle as mcRdCAS, the read does not generate an 
assertion on rdDataEn when it completes. Instead, the per_rd_done 
signal asserts, indicating that a special type of read has completed and 
that its data is valid on the rdData output.
In DDR3/DDR4 SDRAM controller designs, the winInjTxn/per_rd_done 
signals are used to track non-system read traffic by asserting winInjTxn 
only on read commands issued for the purpose of VT tracking.

winRmw I

Optional read command type indication. When winRmw is asserted 
High on the same cycle as mcRdCAS, the read does not generate an 
assertion on rdDataEn when it completes. Instead, the rmw_rd_done 
signal asserts, indicating that a special type of read has completed and 
that its data is valid on the rdData output. 
In DDR3/DDR4 SDRAM controller designs, the winRmw/rmw_rd_done 
signals are used to track reads issued as part of a read-modify-write 
flow. The DDR3/DDR4 SDRAM controller asserts winRmw only on read 
commands that are issued for the read phase of a RMW sequence.

winBuf[DATA_BUF_ADDR_WIDTH
– 1:0] I

Optional control signal. When either mcRdCAS or mcWrCAS is asserted, 
PHY stores the value on the winBuf signal. The value is returned on 
rdDataAddr or wrDataAddr, depending on whether mcRdCAS or 
mcWrCAS was used to capture winBuf. 
In DDR3/DDR4 SDRAM controller designs, these signals are used to 
track the data buffer address used to source write data or sink read 
return data.

gt_data_ready I

Update VT Tracking. This signal triggers the PHY to read RIU registers 
in the XIPHY that measure how well the DQS Gate signal is aligned to 
the center of the read DQS preamble, and then adjust the alignment if 
needed. This signal must be asserted periodically to keep the DQS Gate 
aligned as voltage and temperature drift. For more information, see VT 
Tracking, page 178. Hold at 0x0 until calDone asserts. Active-High.

Table 4-73: PHY Control (Cont’d)

Signal I/O Description
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M, PHY asserts wrDataEn to indicate that wrData and wrDataMask values corresponding 
to command A need to be driven on cycle M + 1. 

Figure 4-16 shows the data and mask widths assuming an 8-bit DDR4 DQ bus width. The 
delay between cycle N and cycle M is controlled by the PHY, based on the CWL and AL 
settings of the DRAM. wrDataEn also asserts on cycle M + 1 to indicate that wrData and 
wrDataMask values for command B are required on cycle M + 2. Although this example 
shows that wrDataEn is asserted on two consecutive system clock cycles, you should not 
assume this will always be the case, even if mcWrCAS is asserted on consecutive clock cycles 
as is shown here. There is no data buffering in the PHY and data is pulled into the PHY just 
in time. Depending on the CWL/AL settings and the command slot used, consecutive 
mcWrCAS assertions might not result in consecutive wrDataEn assertions.

Figure 4-17 shows a read command example. Read commands are issued on cycles N and 
N + 1 in slot positions 0 and 2, respectively. The mcRdCAS, winRank, mcCasSlot, and 
mcCasSlot2 are asserted on these cycles as well. On cycles M + 1 and M + 2, PHY asserts 
rdDataEn and rdData. 

Note: The separation between N and M + 1 is much larger than in the write example (Figure 4-16). 
In the read case, the separation is determined by the full round trip latency of command output, 
DRAM CL/AL, and data input through PHY.

X-Ref Target - Figure 4-16

Figure 4-16: Write Command Example
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Debug

The debug signals are explained in Debug Tools, page 581.

PHY Only Parameters

All PHY parameters are configured by the DDR3/DDR4 SDRAM software. Table 4-74 
describes the PHY parameters. These parameter values must not be modified in the DDR3/
DDR4 SDRAM generated designs. The parameters are set during core generation. The core 
must be regenerated to change any parameter settings. 

X-Ref Target - Figure 4-17

Figure 4-17: Read Command Example
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Table 4-74: PHY Only Parameters
Parameter Name Default Value Allowable Values Description

ADDR_WIDTH 18 DDR4 18.. 17
DDR3 16.. 13 Number of DRAM Address pins

BANK_WIDTH 2 DDR4 2
DDR3 3 Number of DRAM Bank Address pins

BANK_GROUP_WIDTH 2 DDR4 2.. 1
DDR3 N/A Number of DRAM Bank Group pins
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CK_WIDTH 1 2.. 1 Number of DRAM Clock pins
CKE_WIDTH 1 2.. 1 Number of DRAM CKE pins
CS_WIDTH 1 2.. 1 Number of DRAM CS pins
ODT_WIDTH 1 4.. 1 Number of DRAM ODT pins

DRAM_TYPE “DDR4” “DDR4,”
“DDR3” DRAM Technology

DQ_WIDTH 16 Minimum = 8
Must be multiple of 8

Number of DRAM DQ pins in the 
channel

DQS_WIDTH 2
Minimum = 1

x8 DRAM – 1 per DQ byte
x4 DRAM – 1 per DQ nibble

Number of DRAM DQS pins in the 
channel

DM_WIDTH 2
Minimum = 0

x8 DRAM – 1 per DQ byte
x4 DRAM – 0

Number of DRAM DM pins in the 
channel

DATA_BUF_ADDR_WIDTH 5 5 Number of data buffer address bits 
stored for a read or write transaction

ODTWR 0x8421 0xFFFF .. 0x0000 Reserved for future use
ODTWRDEL 8 Set to CWL Reserved for future use
ODTWRDUR 6 7.. 6 Reserved for future use
ODTRD 0x0000 0xFFFF.. 0x0000 Reserved for future use
ODTRDDEL 11 Set to CL Reserved for future use
ODTRDDUR 6 7.. 6 Reserved for future use
ODTWR0DEL
ODTWR0DUR
ODTRD0DEL
ODTRD0DUR
ODTNOP

N/A N/A Reserved for future use

MR0 0x630 Legal SDRAM 
configuration DRAM MR0 setting

MR1 0x101 Legal SDRAM 
configuration DRAM MR1 setting

MR2 0x10 Legal SDRAM 
configuration DRAM MR2 setting

MR3 0x0 Legal SDRAM 
configuration DRAM MR3 setting

MR4 0x0 Legal SDRAM 
configuration DRAM MR4 setting. DDR4 only.

MR5 0x400 Legal SDRAM 
configuration DRAM MR5 setting. DDR4 only.

Table 4-74: PHY Only Parameters (Cont’d)

Parameter Name Default Value Allowable Values Description
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MR6 0x800 Legal SDRAM 
configuration DRAM MR6 setting. DDR4 only.

SLOT0_CONFIG 0x1
0x1
0x3
0x5
0xF

For more information, see 
SLOT0_CONFIG.

SLOT1_CONFIG 0x0
0x0
0x2
0xC
0xA

For more information, see 
SLOT0_CONFIG.

SLOT0_FUNC_CS 0x1
0x1
0x3
0x5
0xF

Memory bus CS_n pins used to send 
all DRAM commands including MRS 
to memory. Each bit of the parameter 
represents 1-bit of the CS_n bus, for 
example, the LSB indicates CS_n[0], 
and the MSB indicates CS_n[3]. For 
DIMMs this parameter specifies the 
CS_n pins connected to DIMM slot 0.
Note: slot 0 used here should not be 
confused with the "command slot0" term 
used in the description of the PHY 
command/address interface. For more 
information, see SLOT0_FUNC_CS.

SLOT1_FUNC_CS 0x0
0x0
0x2
0xC
0xA

See the SLOT0_FUNC_CS description. 
The only difference is that 
SLOT1_FUNC_CS specifies CS_n pins 
connected to DIMM slot 1.

REG_CTRL OFF ON
OFF

Enable RDIMM RCD initialization and 
calibration

CA_MIRROR OFF ON
OFF

Enable Address mirroring. This 
parameter is set to ON for the DIMMs 
that support address mirroring.

DDR4_REG_RC03 0x30 Legal RDIMM RCD 
configuration RDIMM RCD control word 03

DDR4_REG_RC04 0x40 Legal RDIMM RCD 
configuration RDIMM RCD control word 04

DDR4_REG_RC05 0x50 Legal RDIMM RCD 
configuration RDIMM RCD control word 05

tCK 938 Minimum 833 DRAM clock period in ps

tXPR 72
Minimum 1.

DRAM tXPR specification in 
system clocks

See JEDEC DDR SDRAM specification 
[Ref 1].

tMOD 6
Minimum 1.

DRAM tMOD specification 
in system clocks

See JEDEC DDR SDRAM specification 
[Ref 1].

Table 4-74: PHY Only Parameters (Cont’d)

Parameter Name Default Value Allowable Values Description
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tMRD 2
Minimum 1.

DRAM tMRD specification 
in system clocks

See JEDEC DDR SDRAM specification 
[Ref 1].

tZQINIT 256
Minimum 1.

DRAM tZQINIT 
specification in system 

clocks

See JEDEC DDR SDRAM specification 
[Ref 1].

TCQ 100 100 Flop clock to Q in ps. For simulation 
purposes only.

EARLY_WR_DATA OFF OFF Reserved for future use

EXTRA_CMD_DELAY 0 2.. 0
Added command latency in system 
clocks. Added command latency is 
required for some configurations. 
See details in CL/CWL section.

ECC “OFF” OFF
Enables early wrDataEn timing for 
DDR3/DDR4 SDRAM generated 
controllers when set to ON. PHY only 
designs must set this to OFF.

DM_DBI “DM_NODBI”

“NONE”
“DM_NODBI”
“DM_DBIRD”

“NODM_DBIWR”
“NODM_DBIRD”

“NODM_DBIWRRD”
“NODM_NODBI”

DDR4 DM/DBI configuration. For 
details, see Table 4-76.

USE_CS_PORT 1 0 = no CS_n pins
1 = CS_n pins used

Controls whether or not CS_n pins are 
connect to DRAM. If there are no 
CS_n pins the PHY initialization and 
training logic issues NOPs between 
DRAM commands. If there are no 
CS_n pins, The DRAM chip select pin 
(CS#) must be tied Low externally at 
the DRAM.

DRAM_WIDTH 8 16, 8, 4 DRAM component DQ width

RANKS 1 4, 2, 1 Number of ranks in the memory 
subsystem

nCK_PER_CLK 4 4 Number of DRAM clocks per system 
clock

C_FAMILY “kintexu” "kintexu"
"virtexu"

Device information used by 
MicroBlaze controller in the PHY.

BYTES 4 Minimum 3 Number of XIPHY "bytes" used for 
data, command, and address

DBYTES 2 Minimum 1 Number of bytes in the DRAM DQ bus

Table 4-74: PHY Only Parameters (Cont’d)

Parameter Name Default Value Allowable Values Description
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IOBTYPE

{39'b001_001_00
1_001_001_101_
101_001_001_00
1_001_001_001,
39'b001_001_00
1_001_001_001_
001_001_001_00
1_001_001_001,
39'b000_011_01
1_011_011_111_
111_011_011_01
1_011_001_011,
39'b001_011_01
1_011_011_111_
111_011_011_01
1_011_001_011}

3'b000 = Unused pin
3'b 001 = Single-ended 

output
3'b 010 = Single-ended 

input
3'b011 = Single-ended I/O

3'b100 = Unused pin
3'b 101 = Differential 

Output
3'b 110 = Differential Input

3'b 111 = Differential 
INOUT

IOB setting

PLL_WIDTH 1 DDR3/DDR4 SDRAM 
generated values Number of PLLs

CLKOUTPHY_MODE "VCO_2X" VCO_2X
Determines the clock output 
frequency based on the VCO 
frequency for the BITSLICE_CONTROL 
block

PLLCLK_SRC 0 0 = pll_clk0
1 = pll_clk1 XIPHY PLL clock source

DIV_MODE 0 0 = DIV4
1 = DIV2 XIPHY controller mode setting

DATA_WIDTH 8 8 XIPHY parallel input data width

CTRL_CLK 0x3
0 = Internal, local div_clk 

used
1 = External RIU clock used

Internal or external XIPHY clock for 
the RIU

INIT {(15 × 
BYTES){1'b1}}

1'b0
1'b1 3-state bitslice OSERDES initial value

RX_DATA_TYPE

{15'b000000_00_
00000_00,

15'b000000_00_
00000_00,

15'b011110_10_
11110_01,

15'b011110_10_
11110_01}

2'b00 = None
2'b01 = DATA(DQ_EN)

2'b10 = CLOCK(DQS_EN)
2'b11 = DATA_AND_CLOCK

XIPHY bitslice setting

TX_OUTPUT_PHASE_90

{13'b111111111
1111,

13'b1111111111
111,

13'b0000011000
010,

13'b1000011000
010}

1'b0 = No offset
1'b1 = 90° offset applied

XIPHY setting to apply 90° offset on a 
given bitslice

Table 4-74: PHY Only Parameters (Cont’d)

Parameter Name Default Value Allowable Values Description

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG150&Title=UltraScale%20Architecture-Based%20FPGAs%20Memory%20IP%20v1.4&releaseVersion=1.4&docPage=171


UltraScale Architecture-Based FPGAs Memory IP v1.4 172
PG150 October 22, 2021 www.xilinx.com

Chapter 4: Designing with the Core

RXTX_BITSLICE_EN

{13'b111110111
1111,

13'b1111111111
111,

13'b0111101111
111,

13'b1111101111
111}

1'b0 = No bitslice
1'b1 = Bitslice enabled XIPHY setting to enable a bitslice

NATIVE_ODLAY_BYPASS {(13 × 
BYTES){1'b0}}

1'b0 = FALSE
1'b1 = TRUE (Bypass)

Bypass the ODELAY on output 
bitslices

EN_OTHER_PCLK {BYTES{2'b01}} 1'b 0 = FALSE (not used)
1'b 1 = TRUE (used)

XIPHY setting to route capture clock 
from other bitslice

EN_OTHER_NCLK {BYTES{2'b01}} 1'b 0 = FALSE (not used)
1'b 1 = TRUE (used)

XIPHY setting to route capture clock 
from other bitslice

RX_CLK_PHASE_P
{{(BYTES – 

DBYTES){2'b00}}, 
{DBYTES{2'b11}}}

2'b00 for Address/Control, 
2'b11 for Data

XIPHY setting to shift the read clock 
DQS_P by 90° relative to the DQ

RX_CLK_PHASE_N
{{(BYTES – 

DBYTES){2'b00}}, 
{DBYTES{2'b11}}}

2'b00 for Address/Control, 
2'b11 for Data

XIPHY setting to shift the read clock 
DQS_N by 90° relative to the DQ

TX_GATING
{{(BYTES – 

DBYTES){2'b00}}, 
{DBYTES{2'b11}}}

2'b00 for Address/Control,
2'b11 for Data Write DQS gate setting for the XIPHY

RX_GATING
{{(BYTES – 

DBYTES){2'b00}}, 
{DBYTES{2'b11}}}

2'b00 for Address/Control,
2'b11 for Data Read DQS gate setting for the XIPHY

EN_DYN_ODLY_MODE
{{(BYTES – 

DBYTES){2'b00}}, 
{DBYTES{2'b11}}}

2'b00 for Address/Control,
2'b11 for Data

Dynamic loading of the ODELAY by 
XIPHY

BANK_TYPE "HP_IO" "HP_IO"
"HR_IO"

Indicates whether selected bank is HP 
or HR

SIM_MODE "BFM" "FULL", "BFM"
Flag to set if the XIPHY is used 
("UNISIM") or the behavioral model 
for simulation speed up.

SELF_CALIBRATE {(2 × 
BYTES){1'b0}}

{(2 × BYTES){1'b0}} for 
simulation, 

{(2 × BYTES){1'b1}} for 
hardware

BISC self calibration 

BYPASS_CAL "FALSE" "TRUE" for simulation, 
"FALSE" for hardware Flag to turn calibration ON/OFF

CAL_WRLVL "FULL" "FULL" Flag for calibration, write-leveling 
setting

CAL_DQS_GATE "FULL" "FULL" Flag for calibration, DQS gate setting

CAL_RDLVL "FULL" "FULL" Flag for calibration, read training 
setting

Table 4-74: PHY Only Parameters (Cont’d)

Parameter Name Default Value Allowable Values Description
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EXTRA_CMD_DELAY Parameter

Depending on the number of ranks, ECC mode, and DRAM latency configuration, PHY must 
be programmed to add latency on the DRAM command address bus. This provides enough 
pipeline stages in the PHY programmable logic to close timing and to process mcWrCAS. 
Added command latency is generally needed at very low CWL in single-rank configurations, 
or in multi-rank configurations. Enabling ECC might also require adding command latency, 
but this depends on whether your controller design (outside the PHY) depends on receiving 
the wrDataEn signal a system clock cycle early to allow for generating ECC check bits.

The EXTRA_CMD_DELAY parameter is used to add one or two system clock cycles of delay 
on the DRAM command/address path. The parameter does not delay the mcWrCAS or 
mcRdCAS signals. This gives the PHY more time from the assertion of mcWrCAS or mcRdCAS 
to generate XIPHY control signals. To the PHY, an EXTRA_CMD_DELAY setting of one or two 
is the same as having a higher CWL or AL setting.

Table 4-75 shows the required EXTRA_CMD_DELAY setting for various configurations of 
CWL, CL, and AL. 

CAL_WR_DQS_DQ "FULL" "FULL" Flag for calibration, write DQS-to-DQ 
setting

CAL_COMPLEX "FULL" "SKIP", "FULL" Flag for calibration, complex pattern 
setting

CAL_RD_VREF "SKIP" "SKIP", "FULL" Flag for calibration, read VREF setting
CAL_WR_VREF "SKIP" "SKIP", "FULL" Flag for calibration, write VREF setting

CAL_JITTER "FULL" "FULL", "NONE"
Reserved for verification. Speed up 
calibration simulation. Must be set to 
"FULL" for all hardware test cases.

t200us 53305 decimal 0x3FFFF.. 1
Wait period after BISC complete to 
DRAM reset_n deassertion in system 
clocks

t500us 133263 decimal 0x3FFFF.. 1
Wait period after DRAM reset_n 
deassertion to CKE assertion in 
system clocks

Table 4-74: PHY Only Parameters (Cont’d)

Parameter Name Default Value Allowable Values Description

Table 4-75: EXTRA_CMD_DELAY Configuration Settings
DRAM Configuration Required EXTRA_CMD_DELAY

DRAM CAS Write 
Latency CWL

DRAM CAS 
Latency CL

DRAM Additive 
Latency MR1[4:3]

Single-Rank 
without ECC

Single-Rank with 
ECC or Multi-Rank

5 5 0 1 2
5 5 1 0 1
5 5 2 1 2
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5 5 3 1 2
5 6 0 1 2
5 6 1 0 1
5 6 2 0 1
5 6 3 0 1
6 6 0 1 2
6 6 1 0 1
6 6 2 0 1
6 6 3 0 1
6 7 0 1 2
6 7 1 0 1
6 7 2 0 1
6 7 3 0 1
6 8 0 1 2
6 8 1 0 0
6 8 2 0 1
6 8 3 0 1
7 7 0 1 2
7 7 1 0 0
7 7 2 0 1
7 7 3 0 1
7 8 0 1 2
7 8 1 0 0
7 8 2 0 0
7 8 3 0 0
7 9 0 1 2
7 9 1 0 0
7 9 2 0 0
7 9 3 0 0
7 10 0 1 2
7 10 1 0 0
7 10 2 0 0
7 10 3 0 0

Table 4-75: EXTRA_CMD_DELAY Configuration Settings (Cont’d)

DRAM Configuration Required EXTRA_CMD_DELAY
DRAM CAS Write 

Latency CWL
DRAM CAS 
Latency CL

DRAM Additive 
Latency MR1[4:3]

Single-Rank 
without ECC

Single-Rank with 
ECC or Multi-Rank

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG150&Title=UltraScale%20Architecture-Based%20FPGAs%20Memory%20IP%20v1.4&releaseVersion=1.4&docPage=174


UltraScale Architecture-Based FPGAs Memory IP v1.4 175
PG150 October 22, 2021 www.xilinx.com

Chapter 4: Designing with the Core

DM_DBI Parameter

The PHY supports the DDR4 DBI function on the read path and write path. Table 4-76 shows 
how read and write DBI can be enabled separately or in combination. 

When write DBI is enabled, Data Mask is disabled. The DM_DBI parameter only configures 
the PHY and the MRS parameters must also be set to configure the DRAM for DM/DBI. 

8 8 0 1 2
8 8 1 0 0
8 8 2 0 0
8 8 3 0 0
8 9 0 1 2
8 9 1 0 0
8 9 2 0 0
8 9 3 0 0
8 10 0 1 2
8 10 1 0 0
8 10 2 0 0
8 10 3 0 0
8 11 0 1 2
8 11 1 0 0
8 11 2 0 0
8 11 3 0 0

9 to 12 X 0 0 1
9 to 12 X 1, 2, or 3 0 0

≥13 X 0 0 0
≥13 X 1, 2, or 3 0 0

Table 4-76: DM_DBI PHY Settings
DM_DBI Parameter Value PHY Read DBI PHY Write DBI PHY Write Data Mask
None Disabled Disabled Disabled
DM_NODBI Disabled Disabled Enabled
DM_DBIRD Enabled Disabled Enabled
NODM_DBIWR Disabled Enabled Disabled
NODM_DBIRD Enabled Disabled Disabled

Table 4-75: EXTRA_CMD_DELAY Configuration Settings (Cont’d)

DRAM Configuration Required EXTRA_CMD_DELAY
DRAM CAS Write 

Latency CWL
DRAM CAS 
Latency CL

DRAM Additive 
Latency MR1[4:3]

Single-Rank 
without ECC

Single-Rank with 
ECC or Multi-Rank
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The allowed values for the DM_DBI option in the GUI are as follows for x8 and x16 parts (“X” 
indicates supported and “–” indicates not supported): 

IMPORTANT: DBI should be enabled with repeated single Burst Length = 8 (BL8) read access with all 
"0" on the DQ bus, followed by idle (NOP/DESELECT) inserted between each BL8 read burst as shown 
in Figure 1-2. Enabling the DBI feature effectively mitigates excessive power supply noise. 
If DBI is not an option, then encoding the data to remove all “0” bursts in application before it reaches 
the memory controller is an equally effective method for mitigating power supply noise. For x4-based 
RDIMM/LRDIMM interfaces which lack the DM/DBI pin, the power supply noise is mitigated by the ODT 
settings used for these topologies. For x4-based component interfaces wider than 16 bits, the data 
encoding method is recommended.

For x4 parts, the supported DM_DBI option value is "NONE." 

DBI can be enabled to reduce power consumption in the interface by reducing the total 
number of DQ signals driven Low and thereby reduce noise in the VCCO supply. For further 
information where this might be useful for improved signal integrity, see Answer Record AR 
70006.

CAS Command Timing Limitations

The PHY only supports CAS commands on even command slots, that is, 0 and 2. This 
limitation is due to the complexity of the PHY logic driven by the PHY control inputs, like the 
mcWrCAS and mcRdCAS signals, not the actual DRAM command signals like 
mc_ACT_n[7:0], which just pass through the PHY after calDone asserts. The PHY logic is 

NODM_DBIWRRD Enabled Enabled Disabled
NODM_NODBI Disabled Disabled Disabled

Table 4-77: DM_DBI Options

Option Value
Native AXI

ECC Disable ECC Enable ECC Disable ECC Enable
DM_NO_DBI(1) X – X –
DM_DBI_RD X – X –
NO_DM_DBI_RD X X – X
NO_DM_DBI_WR X X – X
NO_DM_DBI_WR_RD X X – X
NO_DM_NO_DBI(2) – X – X

Notes: 
1. Default option for ECC disabled interfaces.
2. Default option for ECC enabled interfaces.

Table 4-76: DM_DBI PHY Settings (Cont’d)

DM_DBI Parameter Value PHY Read DBI PHY Write DBI PHY Write Data Mask
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complex because it generates XIPHY control signals based on the DRAM CWL and CL values 
with DRAM clock resolution, not just system clock resolution.

Supporting two different command slots for CAS commands adds a significant amount of 
logic on the XIPHY control paths. There are very few pipeline stages available to break up 
the logic due to protocol requirements of the XIPHY. CAS command support on all four slots 
would further increase the complexity and degrade timing.

Minimum Write CAS Command Spacing

The minimum Write CAS to Write CAS command spacing to different ranks is eight DRAM 
clocks. This is a PHY limitation. If you violate this timing, the PHY might not have enough 
time to switch its internal delay settings and drive Write DQ/DQS on the DDR bus with 
correct timing. The internal delay settings are determined during calibration, and it varies 
with system layout. 

Following the memory system layout guidelines ensures that a spacing of eight DRAM 
clocks is sufficient for correct operation. Write to Write timing to the same rank is limited 
only by the DRAM specification and the command slot limitations for CAS commands 
discussed earlier.

System Considerations for CAS Command Spacing

System layout and timing uncertainties should be considered in how your custom controller 
sets minimum CAS command spacing. The controller must space the CAS commands so that 
there are no DRAM timing violations and no DQ/DQS bus drive fights. When a DDR3/DDR4 
SDRAM generated memory controller is instantiated, the layout guidelines are considered 
and command spacing is adjusted accordingly for a worst case layout. 

Consider Read to Write command spacing, the JEDEC® DRAM specification [Ref 1] shows 
the component requirement as: RL + BL/2 + 2 – WL. This formula only spaces the Read DQS 
post-amble and Write DQS preamble by one DRAM clock on an ideal bus with no timing 
skews. Any DQS flight time, write leveling uncertainty, jitter, etc. reduces this margin. When 
these timing errors add up to more than one DRAM clock, there is a drive fight at the FPGA 
DQS pins which likely corrupts the Read transaction. A DDR3/DDR4 SDRAM generated 
controller uses the following formula to delay Write CAS after a Read CAS to allow for a 
worst case timing budget for a system following the layout guidelines: RL + BL/2 + 4 – WL.

Read CAS to Read CAS commands to different ranks must also be spaced by your custom 
controller to avoid drive fights, particularly when reading first from a "far" rank and then 
from a "near" rank. A DDR3/DDR4 SDRAM generated controller spaces the Read CAS 
commands to different ranks by at least six DRAM clock cycles.

Write CAS to Read CAS to the same rank is defined by the JEDEC DRAM specification 
[Ref 1]. Your controller must follow this DRAM requirement, and it ensures that there is no 
possibility of drive fights for Write to Read to the same rank. Write CAS to Read CAS spacing 
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to different ranks, however, must also be limited by your controller. This spacing is not 
defined by the JEDEC DRAM specification [Ref 1] directly. 

Write to Read to different ranks can be spaced much closer together than Write to Read to 
the same rank, but factors to consider include write leveling uncertainty, jitter, and tDQSCK. 
A DDR3/DDR4 SDRAM generated controller spaces Write CAS to Read CAS to different 
ranks by at least six DRAM clocks.

Additive Latency

The PHY supports DRAM additive latency. The only effect on the PHY interface due to 
enabling Additive Latency in the MRS parameters is in the timing of the wrDataEn signal 
after mcWrCAS assertion. The PHY takes the AL setting into account when scheduling 
wrDataEn. You can also find the rdDataEn asserts much later after mcRdCAS because the 
DRAM returns data much later. The AL setting also has an impact on whether or not the 
EXTRA_CMD_DELAY parameter needs to be set to a non-zero value.

VT Tracking

The PHY requires read commands to be issued at a minimum rate to keep the read DQS 
gate signal aligned to the read DQS preamble after calDone is asserted. In addition, the 
gt_data_ready signal needs to be pulsed at regular intervals to instruct the PHY to 
update its read DQS training values in the RIU. Finally, the PHY requires periodic gaps in 
read traffic to allow the XIPHY to update its gate alignment circuits with the values the PHY 
programs into the RIU. Specifically, the PHY requires the following after calDone asserts:

1. At least one read command every 1 µs. For a multi-rank system any rank is acceptable 
within the same channel. For a Ping Pong PHY, there are multiple channels. In that case, 
it is necessary to read command on each channel.

2. The gt_data_ready signal is asserted for one system clock cycle after rdDataEn or 
per_rd_done signal asserts at least once within each 1 µs interval.
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For a Ping Pong PHY, there are multiple channels. In that case, it is necessary to assert 
the gt_data_ready signal for multiple channels at the same time like the following 
figure.

X-Ref Target - Figure 4-18

Figure 4-18: Ping Pong PHY for Multiple Channels
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When the read is tagged as a special type of read, it is possible to assert the 
gt_data_ready signal after the per_rd_done signal at each channels like the 
following figure.

3. There is a three contiguous system clock cycle period with no read CAS commands 
asserted at the PHY interface every 1 µs.

The PHY cannot interrupt traffic to meet these requirements. It is therefore your custom 
Memory Controller's responsibility to issue DRAM commands and assert the 
gt_data_ready input signal in a way that meets the above requirements.

Figure 4-20 shows two examples where the custom controller must interrupt normal traffic 
to meet the VT tracking requirements. The first example is a High read bandwidth workload 
with mcRdCAS asserted continuously for almost 1 µs. The controller must stop issuing read 
commands for three contiguous system clocks once each 1 µs period, and assert 
gt_data_ready once per period. 

The second example is a High write bandwidth workload with mcWrCAS asserted 
continuously for almost 1 µs. The controller must stop issuing writes, issue at least one read 
command, and then assert gt_data_ready once per 1 µs period. 

IMPORTANT: The controller must not violate DRAM protocol or timing requirements during this 
process.

X-Ref Target - Figure 4-19

Figure 4-19: Ping Pong PHY for Special Type of Read
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Note: The VT tracking diagrams are not drawn to scale. 

A workload that has a mix of read and write traffic in every 1 µs interval might naturally 
meet the first and third VT tracking requirements listed above. In this case, the only extra 
step required is to assert the gt_data_ready signal every 1 µs and regular traffic would 
not be interrupted at all. The custom controller, however, is responsible for ensuring all 
three requirements are met for all workloads. DDR3/DDR4 SDRAM generated controllers 
monitor the mcRdCAS and mcWrCAS signals and decide each 1 µs period what actions, if 
any, need to be taken to meet the VT tracking requirements. Your custom controller can 
implement any scheme that meets the requirements described here.

Refresh and ZQ

After calDone is asserted by the PHY, periodic DRAM refresh and ZQ calibration are the 
responsibility of your custom Memory Controller. Your controller must issue refresh and ZQ 
commands, meet DRAM refresh and ZQ interval requirements, while meeting all other 
DRAM protocol and timing requirements. For example, if a refresh is due and you have open 
pages in the DRAM, you must precharge the pages, wait tRP, and then issue a refresh 
command, etc. The PHY does not perform the precharge or any other part of this process 
for you.

Ping Pong PHY

Overview

This section describes the Ping Pong PHY in the UltraScale architecture. It includes the Ping 
Pong PHY overview, configuration supported, and interface.

X-Ref Target - Figure 4-20

Figure 4-20: VT Tracking Diagrams
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RECOMMENDED: The Ping Pong PHY is based on the PHY only design. Read the PHY Only Interface 
section before starting this section. 

In the Ping Pong PHY, two memory channels are supported. The two channels share most of 
the control/address signals except CS_n, CKE, and ODT are duplicated for Channel1. Each 
channel has its own Data (DQ/DQS/DM) signals. The advantage of using Ping Pong PHY is 
that the control/address signals are pin saving.

Figure 4-21 shows a Ping Pong PHY design with a total channel width of DQ_WIDTH. The 
total channel width, DQ_WIDTH, is split into two evenly split channels. Each channel has a 
width of DQ_WIDTH/2. The solid arrows indicate shared control/address signals. The dashed 
arrows indicate CS_n[1:0], CKE[1:0], and ODT[1:0] connected to two separated 
channels. The dotted arrows indicate DQ/DQS/DM signals connected to two separated 
channels. 

X-Ref Target - Figure 4-21

Figure 4-21: Ping Pong PHY Topology in DDR4
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Supported Configuration

The following rules outline the configuration supported by the Ping Pong PHY:

1. The number of channels supported is two.
2. Supports for up to two ranks.
3. Supports for components only which includes twin-die components.
4. Memory components supported are x4, x8, and x16.
5. Each channel only has device(s) with the same device width (x4, x8, or x16).
6. Each channel has the same width and the same configuration. Each channel width must 

be a multiple of eight.
7. The maximum total channel width (DQ_WIDTH) of both channels is 64-bit.
8. Pin allocation is based on the Memory IP rules. Address/control signals map to any bank 

which is similar to the Memory IP pin rules. Skip bytes and mix of two channel data byte 
groups are allowed.

9. Ping Pong PHY design should follow the PCB layout requirement as a regular PHY only 
design in total channel width (DQ_WIDTH). 

10. One MMCM is instantiated in the middle bank. 
11. CAS command can be issued to Command Slot0/Slot2 only 

Note: The same restriction applies to PHY only designs.
12. Command issued should meet JEDEC timing specification per channel.
13. You have the option to share a CKE pin. In the case when the shared CKE is enabled, 

CKE[0] is used for both channels. When CKE sharing is enabled, connect Ch0 CKE to 
Ch1 as well. If you need to use power down mode, the same command needs to be 
issued to both channels.

14. Chip select disable is not available for Ping Pong PHY because chip select is used to 
distinguish if a given command is sent to Channel0 or Channel1.

15. I/O pin planner byte selection view is the same as the regular Memory IP. You must map 
Channel-0 to DQ[DQ_WIDTH/2 – 1:0] and Channel-1 to DQ[DQ_WIDTH – 1:DQ_WIDTH/
2].

Table 4-78: Ping Pong PHY Configuration Summary
Width/Device x4 x8 x16

16 X X –
32 X X X
48 X X –
64 X X X
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Ping Pong PHY Interface

The Ping Pong PHY interface is very similar to the PHY only interface except command/
address signals are shared by both Channel0 and Channel1 in the Ping Pong PHY. Because 
command/address signals are shared between Channel0 and Channel1, they are qualified 
separately by CS_n, CKE, and ODT per channel.

Table 4-79 to Table 4-82 show the Ping Pong PHY signal interfaces. 

Table 4-79: Ping Pong PHY Command/Address Interface
Signal I/O Description

mc_ACT_n[7:0] I

DRAM ACT_n command signal for four DRAM clock cycles. Bits[1:0] 
correspond to the first DRAM clock cycle, Bits[3:2] to the second, 
Bits[5:4] to the third, and Bits[8:7] to the fourth. For center alignment 
to the DRAM clock with 1N timing, both bits of a given bit pair should 
be asserted to the same value. See the timing diagrams for examples 
(PHY Only Interface). All of the command/address ports in this table 
follow the same eight bits per DRAM pin format. Active-Low. This 
signal is not used in DDR3 systems.

mc_ADR
[ADDR_WIDTH × 8 – 1:0] I

DRAM address. There are eight bits in the PHY interface for each 
address bit on the DRAM bus. Bits[7:0] corresponds to DRAM address 
bit zero on four DRAM clock cycles. Bits[15:8] corresponds to DRAM 
address bit one on four DRAM clock cycles, and so on. See the timing 
diagrams for examples (PHY Only Interface). All of the multi-bit DRAM 
signals in this table follow the same format of one byte of the PHY 
interface port corresponding to four commands for one DRAM pin. 
Mixed active-Low and High depending on which type of DRAM 
command is being issued, but follows the DRAM pin active-High/Low 
behavior. The function of each byte of the mc_ADR port depends on 
whether the memory type is DDR4 or DDR3, and the particular DRAM 
command that is being issued. These functions match the DRAM 
address pin functions. For example, with DDR4 memory and the 
mc_ACT_n port bits asserted High, mc_ADR[135:112] have the 
function of RAS_n, CAS_n, and WE_n pins.

mc_RAS_n[7:0] I DDR3 DRAM RAS_n pin. Not used in DDR4 systems.
mc_CAS_n[7:0] I DDR3 DRAM CAS_n pin. Not used in DDR4 systems.
mc_WE_n[7:0] I DDR3 DRAM WE_n pin. Not used in DDR4 systems.
mc_BA
[BANK_WIDTH × 8 – 1:0] I DRAM bank address. Eight bits for each DRAM bank address.

mc_BG
[BANK_GROUP_WIDTH × 8 – 1:0] I DRAM bank group address. Eight bits for each DRAM pin.

mc_CKE
[2 × CKE_WIDTH × 8 – 1:0] I

DRAM CKE. Eight bits for each DRAM pin. mc_CKE has a width of 
CKE_WIDTH × 8 if "Is CKE to be shared across 2 channels" option is 
enabled in Vivado IDE.
In Ping Pong PHY, bits [CKE_WIDTH × 8/2 – 1:0] is used for Channel0, 
bits [CKE_WIDTH × 8 – 1:CKE_WIDTH × 8/2] is used for Channel1.
In case of dual-rank design, mc_CKE is defines as {Ch1-CKE1, 
Ch1-CKE0, Ch0-CKE1, Ch0-CKE0}.
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mc_CS_n
[2 × CS_WIDTH × 8 – 1:0] I

DRAM CS_n. Eight bits for each DRAM pin. Active-Low.
In Ping Pong PHY, bits [CS_WIDTH × 8/2 – 1:0] is used for Channel0, 
bits [CS_WIDTH × 8 – 1:CS_WIDTH × 8/2] is used for Channel1.
In case of dual-rank design, mc_CS_n is defines as {Ch1-CS1, Ch1-CS0, 
Ch0-CS1, Ch0-CS0}.

mc_ODT
[2 × ODT_WIDTH × 8 – 1:0] I

DRAM ODT. Eight bits for each DRAM pin. Active-High.
In Ping Pong PHY, bits [ODT_WIDTH × 8/2 – 1:0] is used for Channel0, 
bits [ODT_WIDTH × 8 – 1:ODT_WIDTH × 8/2] is used for Channel1.
In case of dual-rank design, mc_ODT_n is defines as {Ch1-ODT1_n, 
Ch1-ODT0_n, Ch0-ODT1_n, Ch0-ODT0_n}.

mc_C[LR_WIDTH ×8 – 1:0] I DRAM (3DS) Logical rank select address. Eight bits for each DRAM pin.

Table 4-79: Ping Pong PHY Command/Address Interface (Cont’d)

Signal I/O Description

Table 4-80: Ping Pong PHY Write Data Interface
Signal I/O Description

wrData
[DQ_WIDTH × 8 – 1:0] I

DRAM write data. There are eight bits for each DQ lane on the 
DRAM bus. This port transfers data for an entire BL8 write on each 
system clock cycle. Write data must be provided to the PHY one 
cycle after the wrDataEn output signal asserts. This protocol must 
be followed. There is no data buffering in the PHY.
For Ping Pong PHY, wrData[DQ_WIDTH × 8/2 – 1:0] corresponds to 
channel0, wrData[DQ_WIDTH × 8 – 1:DQ_WIDTH × 8/2] 
corresponds to channel1.

wrDataMask
[DM_WIDTH × 8 – 1:0] I

DRAM write DM/DBI port. There is one bit for each byte of the 
wrData port, corresponding to one bit for each byte of each burst 
of a BL8 transfer. wrDataMask is transferred on the same system 
clock cycle as wrData. Active-High. 
For DDR3 interface, wrDataMask port appears for Data Mask 
enabled option in Vivado IDE.
For DDR4 interface, wrDataMask port appears in the "Data Mask 
and DBI" Vivado IDE option values of DM_NO_DBI and 
DM_DBI_RD. 
For Ping Pong PHY, wrDataMask[DM_WIDTH × 8/2 – 1:0] 
corresponds to channel0, wrDataMask[DM_WIDTH × 8 –1: 
DM_WIDTH × 8/2] corresponds to channel1.

wrDataEn[1:0] O

Write data required. The PHY asserts this port for one cycle for 
each write CAS command. Your design must provide wrData and 
wrDataMask at the PHY input ports on the cycle after wrDataEn 
asserts.
For Ping Pong PHY, Bit[0] corresponds to channel0, Bit[1] 
corresponds to channel1.
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wrDataAddr
[2 × DATA_BUF_ADDR_WIDTH – 1:0] O

Optional control signal. The PHY stores and return a data buffer 
address for each in-flight write CAS command. The wrDataAddr 
signal returns the stored addresses. It is only valid when the PHY 
asserts wrDataEn. You can use this signal to manage the process 
of sending write data into the PHY for a write CAS command, but 
this is completely optional.
For Ping Pong PHY, wrDataAddr[2 8 DATA_BUF_ADDR_WIDTH – 1: 
DATA_BUF_ADDR_WIDTH] corresponds to channel1, 
wrDataAddr[DATA_BUF_ADDR_WIDTH – 1:0] corresponds to 
channel0. 

tCWL[5:0] O Optional control signal. This output indicates the CAS write 
latency used in the PHY.

dBufAdr
[2 × DATA_BUF_ADDR_WIDTH – 1:0] I Reserved. Should be tied Low.

Table 4-80: Ping Pong PHY Write Data Interface (Cont’d)

Signal I/O Description

Table 4-81: Ping Pong PHY Read Data Interface
Signal I/O Description

rdData
[DQ_WIDTH × 8 – 1:0] O

DRAM read data. There are eight bits for each DQ lane on the 
DRAM bus. This port transfers data for an entire BL8 read on each 
system clock cycle. rdData is only valid when rdDataEn is asserted. 
Your design must consume the read data when rdDataEn asserts. 
There is no data buffering in the PHY.
For Ping Pong PHY, rdData[DQ_WIDTH × 8/2 – 1:0] corresponds to 
channel0, rdData[DQ_WIDTH × 8 – 1:DQ_WIDTH × 8/2] 
corresponds to channel1.

rdDataEn[1:0] O

Read data valid. This signal asserts for one system clock cycle for 
each completed read operation, indicating that the rdData, 
rdDataAddr, per_rd_done, and rmw_rd_done signals are valid. 
These signals are only valid when rdDataEn asserts. rdData must be 
consumed when rdDataEn asserts or data will be lost. Active-High.
For Ping Pong PHY, Bit[0] corresponds to channel0, Bit[1] 
corresponds to channel1.

rdDataAddr
[2 × DATA_BUF_ADDR_WIDTH – 1:0] O

Optional control signal. The PHY stores and returns a data buffer 
address for each in-flight read CAS command. The rdDataAddr 
signal returns the stored addresses. It is only valid when the PHY 
asserts rdDataEn. Your design can use this signal to manage the 
process of capturing and storing read data provided by the PHY, 
but this is completely optional.
For Ping Pong PHY, rdDataAddr[2 × DATA_BUF_ADDR_WIDTH – 1: 
DATA_BUF_ADDR_WIDTH] corresponds to channel1, 
rdDataAddr[DATA_BUF_ADDR_WIDTH – 1:0] corresponds to 
channel0.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG150&Title=UltraScale%20Architecture-Based%20FPGAs%20Memory%20IP%20v1.4&releaseVersion=1.4&docPage=186


UltraScale Architecture-Based FPGAs Memory IP v1.4 187
PG150 October 22, 2021 www.xilinx.com

Chapter 4: Designing with the Core

per_rd_done[1:0] O

Optional read status signal. The PHY stores and returns the 
winInjTxn signal on per_rd_done. The Memory IP generated 
controller uses this bit to indicate the return of a “periodic read”, 
and to distinguish this from normal system traffic.
For Ping Pong PHY, Bit[0] corresponds to channel0, Bit[1] 
corresponds to channel1.

rmw_rd_done[1:0] O

Optional read status signal. The PHY stores and returns the 
winRmw signal on rmw_rd_done. The Memory IP generated 
controller uses this bit to indicate the return of a read for a 
read-modify-write flow, and to distinguish this from normal 
system traffic.
For Ping Pong PHY, bit[0] corresponds to channel0, Bit[1] 
corresponds to channel1.

rdDataEnd[1:0] O Unused. Tied High.

Table 4-81: Ping Pong PHY Read Data Interface (Cont’d)

Signal I/O Description

Table 4-82: Ping Pong PHY Control Interface
Signal I/O Description

calDone O
Indication that the DRAM is powered up, initialized, and 
calibration is complete. This indicates that the PHY interface is 
available to send commands to the DRAM. Active-High.

mcRdCAS[1:0] I

Read CAS command issued. This signal must be asserted for one 
system clock if and only if a read CAS command is asserted on one 
of the command slots at the PHY command/address input ports. 
Hold at 0x0 until calDone asserts. Active-High.
For Ping Pong PHY, Bit[0] corresponds to channel0, Bit[1] 
corresponds to channel1.

mcWrCAS[1:0] I

Write CAS command issued. This signal must be asserted for one 
system clock if and only if a write CAS command is asserted on one 
of the command slots at the PHY command/address input ports. 
Hold at 0x0 until calDone asserts. Active-High.
For Ping Pong PHY, Bit[0] corresponds to channel0, Bit[1] 
corresponds to channel1.

winRank[3:0] I

Target rank for CAS commands. This value indicates which rank a 
CAS command is issued to. It must be valid when either mcRdCAS 
or mcWrCAS is asserted. The PHY passes the value from this input 
to the XIPHY to select the calibration results for the target rank of 
a CAS command in multi-rank systems. In a single-rank system this 
input port can be tied to 0x0.
For Ping Pong PHY, Bit[1:0] corresponds to channel0, Bit[3:2] 
corresponds to channel1.
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mcCasSlot[3:0] I

CAS command slot select. The PHY only supports CAS commands 
on even command slots. mcCasSlot indicates which of these two 
possible command slots a read CAS or write CAS was issued on. 
mcCasSlot is used by the PHY to generate XIPHY control signals, 
like DQ output enables, that need DRAM clock cycle resolution 
relative to the command slot used for a CAS command. Valid 
values after calDone asserts are 0x0 and 0x2. Hold at 0x0 until 
calDone asserts. This signal must be valid if mcRdCAS or mcWrCAS 
is asserted. For more information, see CAS Command Timing 
Limitations.
For Ping Pong PHY, Bit[1:0] corresponds to channel0, Bit[3:2] 
corresponds to channel1.

mcCasSlot2[1:0] I

CAS slot 2 select. mcCasSlot2 serves a similar purpose as the 
mcCasSlot[1:0] signal, but mcCasSlot2 is used in timing critical 
logic in the PHY. Ideally mcCasSlot2 should be driven from 
separate flops from mcCasSlot[1:0] to allow synthesis/
implementation to better optimize timing. mcCasSlot2 and 
mcCasSlot[1:0] must always be consistent if mcRdCAS or mcWrCAS 
is asserted. To be consistent, the following must be true: 
mcCasSlot2==mcCasSlot[1]. Hold at 0x0 until calDone asserts. 
Active-High.
For Ping Pong PHY, Bit[0] corresponds to channel0, Bit[1] 
corresponds to channel1.

winInjTxn[1:0] I

Optional read command type indication. When mcRdCAS is 
asserted, the PHY stores the value of winInjTxn and returns the 
value when read data is output. The return value is driven on the 
per_rd_done PHY output port. In Memory IP controller designs, the 
winInjTxn/per_rd_done signals are used to track non-system read 
traffic by asserting winInjTxn only on read commands issued for 
the purpose of VT tracking.
For Ping Pong PHY, Bit[0] corresponds to channel0, Bit[1] 
corresponds to channel1.

winRmw[1:0] I

Optional read command type indication. When mcRdCAS is 
asserted, the PHY stores the value of winRmw and returns the 
value when read data is output. The return value is driven on the 
rmw_rd_done output port. In Memory IP controller designs, the 
winRmw/rmw_rd_done signals are used to track reads issued as 
part of a read-modify-write flow. The Memory IP controller asserts 
winRmw only on read commands that are issued for the read phase 
of a RMW sequence.
For Ping Pong PHY, Bit[0] corresponds to channel0, Bit[1] 
corresponds to channel1.

Table 4-82: Ping Pong PHY Control Interface (Cont’d)

Signal I/O Description
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Performance
The efficiency of a memory system is affected by many factors including limitations due to 
the memory, such as cycle time (tRC) within a single bank, or Activate to Activate spacing to 
the same DDR4 bank group (tRRD_L). When given multiple transactions to work on, the 
Memory Controller schedules commands to the DRAM in a way that attempts to minimize 
the impact of these DRAM timing requirements. But there are also limitations due to the 
Memory Controller architecture itself. This section explains the key controller limitations 
and options for obtaining the best performance out of the controller.

Address Map
The app_addr to the DRAM address map is described in the User Interface. Six mapping 
options are included:

• ROW_COLUMN_BANK
• ROW_BANK_COLUMN
• BANK_ROW_COLUMN
• ROW_COLUMN_LRANK_BANK
• ROW_LRANK_COLUMN_BANK
• ROW_COLUMN_BANK_INTLV

winBuf
[2 × DATA_BUF_ADDR_WIDTH – 1:0] I

Optional control signal. When either mcRdCAS or mcWrCAS is 
asserted, the PHY stores the value on the winBuf signal. The value 
is returned on rdDataAddr or wrDataAddr, depending on whether 
mcRdCAS or mcWrCAS was used to capture winBuf. In Memory IP 
controller designs, these signals are used to track the data buffer 
address used to source write data or sink read return data.
For Ping Pong PHY, winBuf[2 × DATA_BUF_ADDR_WIDTH – 1: 
DATA_BUF_ADDR_WIDTH] corresponds to channel1, 
winBuf[DATA_BUF_ADDR_WIDTH – 1:0] corresponds to channel0.

gt_data_ready I

Update VT Tracking. This signal triggers the PHY to read RIU 
registers in the XIPHY that measure how well the DQS Gate signal 
is aligned to the center of the read DQS preamble, and then adjust 
the alignment if needed. This signal must be asserted periodically 
to keep the DQS Gate aligned as voltage and temperature drift. For 
more information, see VT Tracking. Hold at 0x0 until calDone 
asserts. Active-High.

Table 4-82: Ping Pong PHY Control Interface (Cont’d)

Signal I/O Description
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For a purely random address stream at the user interface, all of the options would result in 
a similar efficiency. For a sequential app_addr address stream, or any workload that tends 
to have a small stride through the app_addr memory space, the ROW_COLUMN_BANK 
mapping generally provides a better overall efficiency. This is due to the Memory Controller 
architecture and the interleaving of transactions across the Group FSMs. The Group FSMs 
are described in the Memory Controller, page 25. This controller architecture impact on 
efficiency should be considered even for situations where DRAM timing is not limiting 
efficiency. Table 4-83 shows two mapping options for the 4 Gb (x8) DRAM components.
 

Table 4-83: DDR3/DDR4 4 Gb (x8) DRAM Address Mapping without 3DS Options

 DRAM 
Address

DDR3 4 Gb (x8) DDR4 4 Gb (x8)
ROW_BANK_COLUMN ROW_COLUMN_BANK ROW_BANK_COLUMN ROW_COLUMN_BANK

Row 15 28 28 – –
Row 14 27 27 28 28
Row 13 26 26 27 27
Row 12 25 25 26 26
Row 11 24 24 25 25
Row 10 23 23 24 24
Row 9 22 22 23 23
Row 8 21 21 22 22
Row 7 20 20 21 21
Row 6 19 19 20 20
Row 5 18 18 19 19
Row 4 17 17 18 18
Row 3 16 16 17 17
Row 2 15 15 16 16
Row 1 14 14 15 15
Row 0 13 13 14 14

Column 9 9 12 9 13
Column 8 8 11 8 12
Column 7 7 10 7 11
Column 6 6 9 6 10
Column 5 5 8 5 9
Column 4 4 7 4 8
Column 3 3 6 3 7
Column 2 2 2 2 2
Column 1 1 1 1 1
Column 0 0 0 0 0
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Note: Highlighted bits are used to map addresses to Group FSMs in the controller.

From the DDR3 map, you might expect reasonable efficiency with the 
ROW_BANK_COLUMN option with a simple address increment pattern. The increment 
pattern would generate page hits to a single bank, which DDR3 could handle as a stream of 
back-to-back CAS commands resulting in high efficiency. But looking at the italic bank bits 
in Table 4-84 show that the address increment pattern also maps the long stream of page 
hits to the same controller Group FSM. 

For example, Table 4-84 shows how the first 12 app_addr addresses decode to the DRAM 
addresses and map to the Group FSMs for both mapping options. The 
ROW_BANK_COLUMN option only maps to the Group FSM 0 over this address range.

Bank 2 12 4 – –
Bank 1 11 3 11 6
Bank 0 10 5 10 5

Bank Group 1 – – 13 4
Bank Group 0 – – 12 3

Table 4-83: DDR3/DDR4 4 Gb (x8) DRAM Address Mapping without 3DS Options (Cont’d)

 DRAM 
Address

DDR3 4 Gb (x8) DDR4 4 Gb (x8)
ROW_BANK_COLUMN ROW_COLUMN_BANK ROW_BANK_COLUMN ROW_COLUMN_BANK

Table 4-84: DDR3 4 Gb (x8) app_addr Mapping Options

 app_addr
DDR3 4 Gb (x8) ROW_BANK_COLUMN DDR3 4 Gb (x8) ROW_COLUMN_BANK

Row Column Bank Group_FSM Row Column Bank Group_FSM
0x58 0x0 0x58 0x0 0 0x0 0x8 0x6 3
0x50 0x0 0x50 0x0 0 0x0 0x8 0x4 2
0x48 0x0 0x48 0x0 0 0x0 0x8 0x2 1
0x40 0x0 0x40 0x0 0 0x0 0x8 0x0 0
0x38 0x0 0x38 0x0 0 0x0 0x0 0x7 3
0x30 0x0 0x30 0x0 0 0x0 0x0 0x5 2
0x28 0x0 0x28 0x0 0 0x0 0x0 0x3 1
0x20 0x0 0x20 0x0 0 0x0 0x0 0x1 0
0x18 0x0 0x18 0x0 0 0x0 0x0 0x6 3
0x10 0x0 0x10 0x0 0 0x0 0x0 0x4 2
0x8 0x0 0x8 0x0 0 0x0 0x0 0x2 1
0x0 0x0 0x0 0x0 0 0x0 0x0 0x0 0
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The same address to Group FSM mapping issue applies to x16 DRAMs. The map for DDR4 
4 Gb (x16) is shown in Table 4-85. The ROW_COLUMN_BANK option gives the best 
efficiency with sequential address patterns. The bits used to map to the Group FSMs are 
highlighted. 
Table 4-85: DDR4 4 Gb (x16) Address Mapping

DRAM Address ROW_BANK_COLUMN ROW_COLUMN_BANK
Row 15 – –
Row 14 27 27
Row 13 26 26
Row 12 25 25
Row 11 24 24
Row 10 23 23
Row 9 22 22
Row 8 21 21
Row 7 20 20
Row 6 19 19
Row 5 18 18
Row 4 17 17
Row 3 16 16
Row 2 15 15
Row 1 14 14
Row 0 13 13

Column 9 9 12
Column 8 8 11
Column 7 7 10
Column 6 6 9
Column 5 5 8
Column 4 4 7
Column 3 3 6
Column 2 2 2
Column 1 1 1
Column 0 0 0

Bank 2 – –
Bank 1 12 5
Bank 0 11 4

Bank Group 1 – –
Bank Group 0 10 3
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For example, Table 4-86 shows how the first 12 app_addr decodes to the DRAM address 
and maps to the Group FSMs for the ROW_COLUMN_BANK mapping option. 

As mentioned in the Memory Controller, page 25, a Group FSM can issue one CAS 
command every three system clock cycles, or every 12 DRAM clock cycles, even for page 
hits. Therefore with only a single Group FSM issuing page hit commands to the DRAM for 
long periods, the maximum efficiency is 33%. 

Table 4-84 shows that the ROW_COLUMN_BANK option maps these same 12 addresses 
evenly across all eight DRAM banks and all four controller Group FSMs. This generates eight 
“page empty” transactions which open up all eight DRAM banks, followed by page hits to 
the open banks. 

With all four Group FSMs issuing page hits, the efficiency can hit 100%, for as long as the 
address increment pattern continues, or until a refresh interrupts the pattern, or there is bus 
dead time for a DQ bus turnaround, etc. Figure 4-22 shows the Group FSM issue over a 
larger address range for the ROW_BANK_COLUMN option. Note that the first 2k addresses 
map to two DRAM banks, but only one Group FSM.

Table 4-86: DDR4 4 Gb (x16) app_addr Mapping Options

app_addr
ROW_COLUMN_BANK

Row Column Bank Group_FSM
0xF8 0x0 0x18 0x3 3
0XE8 0x0 0x18 0x2 2
0XF0 0x0 0x18 0x3 1
0XE0 0x0 0x18 0x2 0
0X78 0x0 0x8 0x3 3
0X68 0x0 0x8 0x2 2
0X70 0x0 0x8 0x3 1
0x60 0x0 0x8 0x2 0
0x38 0x0 0x0 0x3 3
0x28 0x0 0x0 0x2 2
0x30 0x0 0x0 0x3 1
0x20 0x0 0x0 0x2 0
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The address map graph for the ROW_COLUMN_BANK option is shown in Figure 4-23. Note 
that the address range in this graph is only 64 bytes, not 8k bytes. This graph is showing the 
same information as in the Address Decode in Table 4-84. With an address pattern that 
tends to stride through memory in minimum sized steps, efficiency tends to be High with 
the ROW_COLUMN_BANK option.

X-Ref Target - Figure 4-22

Figure 4-22: DDR3 4 Gb (x8) Address Map ROW_BANK_COLUMN Graph
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Note that the ROW_COLUMN_BANK option does not result in High bus efficiency for all 
strides through memory. Consider the case of a stride of 16 bytes. This maps to only two 
Group FSMs resulting in a maximum efficiency of 67%. A stride of 32 bytes maps to only one 
Group FSM and the maximum efficiency is the same as the ROW_BANK_COLUMN option, 
just 33%. For an address pattern with variable strides, but strides that tend to be < 1k in the 
app_addr address space, the ROW_COLUMN_BANK option is much more likely to result in 
good efficiency.

The same Group FSM issue exists for DDR4. With an address increment pattern and the 
DDR4 ROW_BANK_COLUMN option, the first 4k transactions map to a single Group FSM, as 
well as mapping to banks within a single DRAM bank group. The DRAM would limit the 
address increment pattern efficiency due to the tCCD_L timing restriction. The controller 
limitation in this case is even more restrictive, due to the single Group FSM. Again the 
efficiency would be limited to 33%. 

With the ROW_COLUMN_BANK option, the address increment pattern interleaves across all 
the DRAM banks and bank groups and all of the Group FSMs over a small address range.

X-Ref Target - Figure 4-23

Figure 4-23: DDR3 4 Gb (x8) Address Map ROW_COLUMN_BANK Graph
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Figure 4-24 shows how the DDR4 4 Gb (x8) ROW_COLUMN_BANK address map for the first 
128 bytes of app_addr. This graph shows how the addresses map evenly across all DRAM 
banks and bank groups, and all four controller Group FSMs. 

X-Ref Target - Figure 4-24

Figure 4-24: DDR4 4 Gb (x8) Address Map ROW_COLUMN_BANK Graph
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Figure 4-25 shows the first 64 bytes of app_addr mapping evenly across banks, bank 
groups, and Group FSMs. 

When considering whether an address pattern at the user interface results in good DRAM 
efficiency, the mapping of the pattern to the controller Group FSMs is just as important as 
the mapping to the DRAM address. The app_addr bits that map app_addr addresses to 
the Group FSMs are shown in Table 4-87 for 4 Gb and 8 Gb components. 

Consider an example where you try to obtain good efficiency using only four DDR3 banks 
at a time. Assume you are using a 4 Gb (x8) with the ROW_COLUMN_BANK option and you 

X-Ref Target - Figure 4-25

Figure 4-25: DDR4 4 Gb (x16) Address Map ROW_COLUMN_BANK Graph

Table 4-87: DDR3/DDR4 Map Options for 4 Gb and 8 Gb
Memory Type DDR3 DDR4

Map Option ROW_BANK_COLUMN ROW_COLUMN
_BANK ROW_BANK_COLUMN ROW_COLUMN

_BANK
DRAM Component 
Width x4 x8 x16 x4, x8, x16 x4, x8 x16 x4, x8, x16

Component Density – – – – – – –
4 Gb 13,12 12,11 12,11 4,3 13,12 12,10 4,3
8 Gb 14,13 13,12 12,11 4,3 13,12 12,10 4,3
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decide to open a page in banks 0, 1, 2, and 3, and issue transactions to four column 
addresses in each bank. Using the address map from Address Map, determine the 
app_addr pattern that decodes to this DRAM sequence. Applying the Group FSM map 
from Table 4-87, determine how this app_addr pattern maps to the FSMs. The result is 
shown in Table 4-88. 

The four bank pattern in Table 4-88 works well from a DRAM point of view, but the 
controller only uses two of its four Group FSMs and the maximum efficiency is 67%. In 
practice it is even lower due to other timing restrictions like tRCD. A better bank pattern 
would be to open all the even banks and send four transactions to each as shown in 
Table 4-89.

Table 4-88: Four Banks Sequence on DDR3 4 Gb (x8)

 app_addr
Bank 0, 1, 2, 3 Sequence DDR3 4 Gb (x8) 

ROW_COLUMN_BANK

Row Column Bank Group_FSM
0xE8 0x0 0x18 0x3 1
0xC8 0x0 0x18 0x2 1
0xE0 0x0 0x18 0x1 0
0xC0 0x0 0x18 0x0 0
0xA8 0x0 0x10 0x3 1
0x88 0x0 0x10 0x2 1
0xA0 0x0 0x10 0x1 0
0x80 0x0 0x10 0x0 0
0x68 0x0 0x8 0x3 1
0x48 0x0 0x8 0x2 1
0x60 0x0 0x8 0x1 0
0x40 0x0 0x8 0x0 0
0x28 0x0 0x0 0x3 1
0x08 0x0 0x0 0x2 1
0x20 0x0 0x0 0x1 0
0x00 0x0 0x0 0x0 0

Table 4-89: Four Even Banks Sequence on DDR3 4 Gb (x8)

 app_addr
Bank 0, 2, 4, 6 Sequence DDR3 4 Gb (x8) 

ROW_COLUMN_BANK

Row Column Bank Group_FSM
0xD8 0x0 0x18 0x6 3
0xD0 0x0 0x18 0x4 2
0xC8 0x0 0x18 0x2 1
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The “even bank” pattern uses all of the Group FSMs and therefore has better efficiency than 
the previous pattern.

Controller Head of Line Blocking and Look Ahead
As described in the Memory Controller, page 25, each Group FSM has an associated 
transaction FIFO that is intended to improve efficiency by reducing “head of line blocking.” 
Head of line blocking occurs when one or more Group FSMs are fully occupied and cannot 
accept any new transactions for the moment, but the transaction presented to the user 
interface command port maps to one of the unavailable Group FSMs. This not only causes 
a delay in issuing new transactions to those busy FSMs, but to all the other FSMs as well, 
even if they are idle. 

For good efficiency, you want to keep as many Group FSMs busy in parallel as you can. You 
could try changing the transaction presented to the user interface to one that maps to a 
different FSM, but you do not have visibility at the user interface as to which FSMs have 
space to take new transactions. The transaction FIFOs prevent this type of head of line 
blocking until a UI command maps to an FSM with a full FIFO. 

0xC0 0x0 0x18 0x0 0
0x98 0x0 0x10 0x6 3
0x90 0x0 0x10 0x4 2
0x88 0x0 0x10 0x2 1
0x80 0x0 0x10 0x0 0
0x58 0x0 0x8 0x6 3
0x50 0x0 0x8 0x4 2
0x48 0x0 0x8 0x2 1
0x40 0x0 0x8 0x0 0
0x18 0x0 0x0 0x6 3
0x10 0x0 0x0 0x4 2
0x08 0x0 0x0 0x2 1
0x00 0x0 0x0 0x0 0

Table 4-89: Four Even Banks Sequence on DDR3 4 Gb (x8) (Cont’d)

 app_addr
Bank 0, 2, 4, 6 Sequence DDR3 4 Gb (x8) 

ROW_COLUMN_BANK

Row Column Bank Group_FSM
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A Group FSM FIFO structure can hold up to six transactions, depending on the page status 
of the target rank and bank. The FIFO structure is made up of two stages that also 
implement a “Look Ahead” function. New transactions are placed in the first FIFO stage and 
are operated on when they reach the head of the FIFO. Then depending on the transaction 
page status, the Group FSM either arbitrates to open the transaction page, or if the page is 
already open, the FSM pushes the page hit into the second FIFO stage. This scheme allows 
multiple page hits to be queued up while the FSM looks ahead into the logical FIFO 
structure for pages that need to be opened. Looking ahead into the queue allows an FSM to 
interleave DRAM commands for multiple transactions on the DDR bus. This helps to hide 
DRAM tRCD and tRP timing associated with opening and closing pages.

The following conceptual timing diagram shows the transaction flow from the UI to the 
DDR command bus, through the Group FSMs, for a series of transactions. The diagram is 
conceptual in that the latency from the UI to the DDR bus is not considered and not all 
DRAM timing requirements are met. Although not completely timing accurate, the diagram 
does follow DRAM protocol well enough to help explain the controller features under 
discussion. 

Four transactions are presented at the UI, the first three mapping to the Group FSM0 and 
the fourth to FSM1. On system clock cycle 1, FSM0 accepts transaction 1 to Row 0, Column 
0, and Bank 0 into its stage 1 FIFO and issues an Activate command. 

On clock 2, transaction 1 is moved into the FSM0 stage 2 FIFO and transaction 2 is accepted 
into FSM0 stage 1 FIFO. On clock cycles 2 through 4, FSM0 is arbitrating to issue a CAS 
command for transaction 1, and an Activate command for transaction 2. FSM0 is looking 
ahead to schedule commands for transaction 2 even though transaction 1 is not complete. 
Note that the time when these DRAM commands win arbitration is determined by DRAM 
timing such as tRCD and controller pipeline delays, which explains why the commands are 
spaced on the DDR command bus as shown. 

On cycle 3, transaction 3 is accepted into FSM0 stage 1 FIFO, but it is not processed until 
clock cycle 5 when it comes to the head of the stage 1 FIFO. Cycle 5 is where FSM0 begins 
looking ahead at transaction 3 while also arbitrating to issue the CAS command for 
transaction 2. Finally on cycle 4, transaction 4 is accepted into FSM1 stage 1 FIFO. If FSM0 
did not have at least a three deep FIFO, transaction 4 would have been blocked until cycle 6.

Table 4-90: Conceptional Timing Diagram for UI to DDR
Transaction Flow

System 
Clock Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13

UI 
Transaction 
Number

1 2 3 4  –  –  –  –  –  –  –  –  –
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This diagram does not show a high efficiency transaction pattern. There are no page hits 
and only two Group FSMs are involved. But the example does show how a single Group FSM 
interleaves DRAM commands for multiple transactions on the DDR bus and minimizes 
blocking of the UI, thereby improving efficiency.

Autoprecharge
The Memory Controller defaults to a page open policy. It leaves banks open, even when 
there are no transactions pending. It only closes banks when a refresh is due, a page miss 
transaction is being processed, or when explicitly instructed to issue a transaction with a 
RDA or WRA CAS command. The app_autoprecharge port on the UI allows you to 
explicitly instruct the controller to issue a RDA or WRA command in the CAS command 
phase of processing a transaction, on a per transaction basis. You can use this signal to 
improve efficiency when you have knowledge of what transactions will be sent to the UI in 
the future. 

The following diagram is a modified version of the “look ahead” example from the previous 
section. The page miss transaction that was previously presented to the UI in cycle 3 is now 
moved out to cycle 9. The controller can no longer “look ahead” and issues the Precharge to 
Bank 0 in cycle 6 because it does not know about the page miss until cycle 9. But if you 

UI 
Transaction

R0, 
C0, 
B0

R0, 
C0, 
B1

R1, 
C0, 
B0

R0, 
C0, 
B2

 –  –  –  –  –  –  –  –  –

FSM0 FIFO 
Stage 2  –

R0, 
C0, 
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R0, 
C0, 
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R0, 
C0, 
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R0, 
C0, 
B1

R0, 
C0, 
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R0, 
B0, 
B1

 –  –
R1, 
C0, 
B0

R1, 
C0, 
B0

R1, 
C0, 
B0

 –

FSM0 FIFO 
Stage 1

R0, 
C0, 
B0

R0, 
C0, 
B1

R0, 
C0, 
B1
R1, 
C0, 
B0

R0, 
C0, 
B1
R1, 
C0, 
B0

R1, 
C0, 
B0

R1, 
C0, 
B0

R1, 
C0, 
B0

R1, 
C0, 
B0

R1, 
C0, 
B0

 –  –  –  –

FSM1 FIFO 
Stage 2  –  –  –  –  –

R0, 
C0, 
B2

R0, 
C0, 
B2

R0, 
C0, 
B2

 –  –  –  –  –

FSM1 FIFO 
Stage 1  –  –  –

R0, 
C0, 
B2

R0, 
C0, 
B2

 –  –  –  –  –  –  –  –

DDR 
Command 
Bus

Act 
R0, 
B0

 –  –
Act 
R0, 
B1

ACT 
R0, 
B2
CAS 
C0, 
B0

Pre 
B0  –

CAS 
C0, 
B1

Act 
R1, 
B0
CAS 
C0, 
B2

 –  –  –
CAS 
C0, 
B0

Table 4-90: Conceptional Timing Diagram for UI to DDR (Cont’d)

Transaction Flow
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know that transaction 1 in cycle 1 is the only transaction to Row 0 in Bank0, assert the 
app_autoprecharge port in cycle 1. Then, the CAS command for transaction 1 in cycle 5 
is a RDA or WRA, and the transaction to Row 1, Bank 0 in cycle 9 is no longer a page miss. 
The transaction in cycle 9 is only needed as an Activate command instead of a Precharge 
followed by an Activate tRP later.

A general rule for improving efficiency is to assert app_autoprecharge on the last 
transaction to a page. An extreme example is an address pattern that never generates page 
hits. In this situation, it is best to assert app_autoprecharge on every transactions issued 
to the UI.

The controller has an option to automatically inject an autoprecharge on a transaction. 
When the Force Read and Write commands to use AutoPrecharge option is selected, the 
Memory Controller issues a transaction to memory with an AutoPrecharge if Column 
address bit A3 is set High. This feature disables the app_autoprecharge input signal on 
the User Interface. The Force option when used with the ROW_COLUMN_BANK_INTLV 
address mapping improves efficiency for transaction patterns with bursts of 16 sequential 

Table 4-91: Conceptional Timing Diagram with Autoprecharge
Transaction Flow

System 
Clock Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13

UI 
Transaction 
Number

1 2 – 3 – – – – 4  – – – –

UI 
Transaction

R0, C0, B0
AutoPrecharge

R0, 
C0, 
B1

–
R0, 
C0, 
B2

– – – –
R1, 
C0, 
B0 

– – – –

FSM0 FIFO 
Stage 2 –

R0, 
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B0

R0, 
C0, 
B0

R0, 
C0, 
B0

R0, 
C0, 
B1

R0, 
C0, 
B1

R0, 
B0, 
B1

– –
R1, 
C0, 
B0

R1, 
C0, 
B0

R1, 
C0, 
B0

–

FSM0 FIFO 
Stage 1 R0, C0, B0

R0, 
C0, 
B1

R0, 
C0, 
B1

R0, 
C0, 
B1

– – – –
R1, 
C0, 
B0

– – – –

FSM1 FIFO 
Stage 2 – – – – –

R0, 
C0, 
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R0, 
C0, 
B2

R0, 
C0, 
B2

– – – – –

FSM1 FIFO 
Stage 1 – – –

R0, 
C0, 
B2

R0, 
C0, 
B2

– – – – – – – –

DDR 
Command 
Bus

Act R0, B0 – –
Act 
R0, 
B1

Act 
R0, 
B2
CAS-
A 
C0, 
B0

– –
CAS 
C0, 
B1

Act 
R1, 
B0
CAS 
C0, 
B2

– – –
CAS 
C0, 
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addresses before switching to a different random address. Patterns like this are often seen 
in typical AXI configurations.

User Refresh and ZQCS
The Memory Controller can be configured to automatically generate DRAM refresh and 
ZQCS maintenance commands to meet DRAM timing requirements. In this mode, the 
controller blocks the UI transactions on a regular basis to issue the maintenance 
commands, reducing efficiency. 

If you have knowledge of the UI traffic pattern, you might be able to schedule DRAM 
maintenance commands with less impact on system efficiency. You can use the app_ref 
and app_zq ports at the UI to schedule these commands when the controller is configured 
for User Refresh and ZQCS. In this mode, the controller does not schedule the DRAM 
maintenance commands and only issues them based on the app_ref and app_zq ports. 
You are responsible for meeting all DRAM timing requirements for refresh and ZQCS.

Consider a case where the system needs to move a large amount of data into or out of the 
DRAM with the highest possible efficiency over a 50 µs period. If the controller schedules 
the maintenance commands, this 50 µs data burst would be interrupted multiple times for 
refresh, reducing efficiency roughly 4%. In User Refresh mode, however, you can decide to 
postpone refreshes during the 50 µs burst and make them up later. The DRAM specification 
allows up to eight refreshes to be postponed, giving you flexibility to schedule refreshes 
over a 9 × tREFI period, more than enough to cover the 50 µs in this example.

While User Refresh and ZQCS enable you to optimize efficiency, their incorrect use can lead 
to DRAM timing violations and data loss in the DRAM. Use this mode only if you thoroughly 
understand DRAM refresh and ZQCS requirements as well as the operation of the app_ref 
and app_zq UI ports. The UI port operation is described in the User Interface.

Periodic Reads
The FPGA DDR PHY requires at least one DRAM RD or RDA command to be issued every 
1 µs. This requirement is described in the User Interface. If this requirement is not met by 
the transaction pattern at the UI, the controller detects the lack of reads and injects a read 
transaction into Group FSM0. This injected read is issued to the DRAM following the normal 
mechanisms of the controller issuing transactions. The key difference is that no read data is 
returned to the UI. This is wasted DRAM bandwidth.

User interface patterns with long strings of write transactions are affected the most by the 
PHY periodic read requirement. Consider a pattern with a 50/50 read/write transaction 
ratio, but organized such that the pattern alternates between 2 µs bursts of 100% page hit 
reads and 2 µs bursts of 100% page hit writes. There is at least one injected read in the 2 µs 
write burst, resulting in a loss of efficiency due to the read command and the turnaround 
time to switch the DRAM and DDR bus from writes to reads back to writes. This 2 µs 
alternating burst pattern is slightly more efficient than alternating between reads and 
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writes every 1 µs. A 1 µs or shorter alternating pattern would eliminate the need for the 
controller to inject reads, but there would still be more read-write turnarounds. 

Bus turnarounds are expensive in terms of efficiency and should be avoided if possible. 
Long bursts of page hit writes, > 2 µs in duration, are still the most efficient way to write to 
the DRAM, but the impact of one write-read-write turnaround each 1 µs must be taken into 
account when calculating the maximum write efficiency.

DIMM Configurations
DDR3/DDR4 SDRAM memory interface supports UDIMM, RDIMM, LRDIMM, and SODIMM 
in multiple slot configurations. 

IMPORTANT: Note that the chip select order generated by Vivado is dependent to your board design.
Also, the DDR3/DDR4 IP core does not read SPD. If the DIMM configuration changes, the IP must be 
regenerated.

In the following configurations, the empty slot is not used and it is optional to be 
implemented on the board.

DDR3/DDR4 UDIMM/SODIMM
Table 4-92 and Figure 4-26 show the four configurations supported for DDR3/DDR4 
UDIMM and SODIMM.

For a dual-rank DIMM, Dual Slot configuration, follow the chip select order shown in 
Figure 4-26, where CS0 and CS1 are connected to Slot0 and CS2 and CS3 are connected to 
Slot1. 
Table 4-92: DDR3/DDR4 UDIMM Configuration

Slot0 Slot1
Single-rank Empty
Dual-rank Empty
Dual-rank Dual-rank
Single-rank Single-rank
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DDR3 RDIMM
Table 4-93 and Figure 4-27 show the five configurations supported for DDR3 RDIMM. 
DDR3 RDIMM requires two chip selects for a single-rank RDIMM to program the register 
chip. 

For a single-rank DIMM, Dual slot configuration, you must follow the chip select order 
shown in Figure 4-27, where CS0 and CS2 are connected to Slot0 and CS1 and CS3 are 
connected to Slot1. 

For a dual-rank DIMM, Dual Slot configuration, follow the chip select order shown in 
Figure 4-27, where CS0 and CS1 are connected to Slot0 and CS2 and CS3 are connected to 
Slot1. 

X-Ref Target - Figure 4-26

Figure 4-26: DDR3/DDR4 UDIMM Configuration
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Table 4-93: DDR3 RDIMM Configuration
Slot0 Slot1

Single-rank Empty
Single-rank Single-rank

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG150&Title=UltraScale%20Architecture-Based%20FPGAs%20Memory%20IP%20v1.4&releaseVersion=1.4&docPage=205


UltraScale Architecture-Based FPGAs Memory IP v1.4 206
PG150 October 22, 2021 www.xilinx.com

Chapter 4: Designing with the Core

Dual-rank Empty
Dual-rank Dual-rank
Quad-rank Empty

Table 4-93: DDR3 RDIMM Configuration (Cont’d)

Slot0 Slot1

X-Ref Target - Figure 4-27

Figure 4-27: DDR3 RDIMM Configuration
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DDR4 RDIMM
Table 4-94 and Figure 4-28 show the four configurations supported for DDR4 RDIMM. For 
dual-rank DIMM, Dual Slot configuration, follow the chip select order shown in Figure 4-28, 
where CS0 and CS1 are connected to Slot0 and CS2 and CS3 are connected to Slot1. 

SLOT0_CONFIG
In a given DIMM configuration, the logic chip select is mapped to physical slot using an 
8-bit number per SLOT. Each bit corresponds to a logic chip select connectivity in a SLOT.

Table 4-94: DDR4 RDIMM Configuration
Slot0 Slot1

Single-rank Empty
Single-rank Single-rank
Dual-rank Empty
Dual-rank Dual-rank

X-Ref Target - Figure 4-28

Figure 4-28: DDR4 RDIMM Configuration
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Example 1: Dual-Rank DIMM, Dual Slot system (total of four ranks):

SLOT0_CONFIG = 8'b0000_0011 // describes CS0 and CS1 are connected to SLOT0.
SLOT1_CONFIG = 8'b0000_1100 // describes CS2 and CS3 are connected to SLOT1.
SLOT0_FUNC_CS = 8'b0000_0011 // describes CS0 and CS1 in SLOT0 are functional chip 
select.
SLOT1_FUNC_CS = 8'b0000_1100 // describes CS2 and CS3 in SLOT1 are functional chip 
select.
SLOT0_ODD_CS  = 8'b0000_0010 // describes CS1 bit corresponding to ODD functional 
chip select located in slot0.
SLOT1_ODD_CS  = 8'b0000_1000 // describes CS3 bit corresponding to ODD functional 
chip select located in slot1.

Example 2: Single-Rank DIMM, Dual Slot system (total of two ranks):

SLOT0_CONFIG = 8'b0000_0001 // describes CS0 is connected to SLOT0.
SLOT1_CONFIG = 8'b0000_0010 // describes CS1 is connected to SLOT1.
SLOT0_FUNC_CS = 8'b0000_0001 // describes CS0 in SLOT0 is functional chip select.
SLOT1_FUNC_CS = 8'b0000_0010 // describes CS1 in SLOT1 is functional chip select.
SLOT0_ODD_CS  = 8'b0000_0000 // describes there is no ODD functional chip select 
located in slot0.
SLOT1_ODD_CS  = 8'b0000_0000 // describes there is no ODD functional chip select 
located in slot1.

SLOT0_FUNC_CS
A DDR3 single-rank RDIMM and two chip selects are needed to access the register chip. 
However, only the lower rank chip select is used as functional chip select. SLOT0_FUNC_CS 
describes the functional chip select per SLOT. For any DIMM other than a DDR3 single-rank 
RDIMM, SLOT0_CONFIG is the same as SLOT0_FUNC_CS and SLOT1_CONFIG is the same as 
SLOT1_FUNC_CS.

Example 1: DDR3 RDIMM, Single-Rank DIMM, Single Slot system:

SLOT0_CONFIG = 8'b0000_0011 // describes CS0 and CS1 are connected to SLOT0.
SLOT1_CONFIG = 8'b0000_0000 // describes no DIMM is connected to SLOT1.
SLOT0_FUNC_CS = 8'b0000_0001 // describes CS0 is functional chip select. CS1 is not 
functional chip select and is only used for register chip access.
SLOT1_FUNC_CS = 8'b0000_0000 // describes there is no functional chip select in 
SLOT1.
SLOT0_ODD_CS  = 8'b0000_0010 // describes CS1 bit corresponding to ODD functional 
chip select located in slot0.
SLOT1_ODD_CS  = 8'b0000_0000 // describes there is no ODD functional chip select 
located in slot1.

Example 2: DDR3 RDIMM, Single-Rank DIMM, Dual Slot system:

SLOT0_CONFIG = 8'b0000_0101 // describes CS0 and CS2 are connected to SLOT0.
SLOT1_CONFIG = 8'b0000_1010 // describes CS1 and CS3 are connected to SLOT1.
SLOT0_FUNC_CS = 8'b0000_0001 // describes CS0 is functional chip select. CS1 is not 
functional chip select and is only used for Register Chip access.
SLOT1_FUNC_CS = 8'b0000_0100 // describes CS2 is functional chip select. CS3 is not 
functional chip select and is only used for register chip access.
SLOT0_ODD_CS  = 8'b0000_0010 // describes CS1 bit corresponding to ODD functional 
chip select located in slot0.
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SLOT1_ODD_CS  = 8'b0000_1000 // describes CS3 bit corresponding to ODD functional 
chip select located in slot1.

DDR4 LRDIMM
Table 4-95 and Figure 4-29 show the three configurations supported for DDR4 LRDIMM.

For Dual Slot, dual-rank configuration, follow the chip select order shown in Figure 4-29, 
where CS0 and CS1 are connected to Slot0 and CS2 and CS3 are connected to Slot1. 
Table 4-95: DDR4 LRDIMM Configuration

Slot0 Slot1
Dual-rank Empty
Quad-rank Empty
Dual-rank Dual-rank

X-Ref Target - Figure 4-29

Figure 4-29: DDR4 LRDIMM Configuration
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Setting Timing Options
The DDR3/DDR4 interfaces are on the edge of meeting timing for certain configurations. 
Due to controller complexity, designs are failing in timing with levels of logic from eight to 
11 in controller modules (u_ddr_mc instance). To meet timing for such cases, Tcl command 
options are supported. These Tcl commands are supported for Controller/PHY mode of the 
Controller and Physical Layer. Based on the Tcl command set in the console, a few RTL 
parameters are going to change which are listed in Table 4-96. These parameters are valid 
for all DDR3/DDR4 designs. 

The default values of four parameters are given in Table 4-96. These parameters can be 
changed through the Tcl command using user parameter TIMING_OP1 or TIMING_OP2 for 
Controller/PHY mode of the Controller and Physical Layer. These Tcl options are not valid 
for any PHY_ONLY (Physical Layer Only and Physical Layer Ping Pong) designs. 

Steps to Change RTL Parameters
1. Generate DDR3 or DDR4 IP with Controller and Physical Layer selected.
2. In the Generate Output Products option do not select Generate instead select Skip. 

See Figure 4-30.

Table 4-96: Parameter Values Based on Tcl Command Option

Parameters Default Better timing, +4tCK Latency
(TIMING_OP1 Tcl Option)

Best timing, +4 to +8tCK Latency 
Depending on Transaction Pattern

(TIMING_OP2 Tcl Option)
CAS_FIFO_BYPASS ON ON OFF
PER_RD_PERF 1’b1 1’b1 1’b0
TXN_FIFO_BYPASS ON OFF OFF
TXN_FIFO_PIPE OFF ON ON
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3. Set the following command on the Tcl console:
set_property -dict [list config.TIMING_OP1 {true}] [get_ips <ip_name>]
For example: set_property -dict [list config.TIMING_OP1 {true}] [get_ips ddr4_0]

set_property -dict [list config.TIMING_OP2 {true}] [get_ips <ip_name>]
For example: set_property -dict [list config.TIMING_OP2 {true}] [get_ips ddr4_0]

X-Ref Target - Figure 4-30

Figure 4-30: Generate Output Products Window – Skip
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4. Generate output files by selecting Generate Output Products after right-clicking IP. See 
Figure 4-31. 

The generated output files have the RTL parameter values set as per Table 4-96.

Timing Improvements for 3DS Designs
The DDR4 3DS interfaces are not meeting timing for certain configurations. The failing 
timing paths are in the controller modules (u_ddr_mc instance). To meet timing for such 
cases, the Tcl command option is supported. Tcl command is supported for the Controller/
PHY mode of Controller and Physical Layer and valid for 3DS parts only (S_HEIGHT 
parameter value of 2 or 4). Based on the Tcl command that is set in the console, a few RTL 
parameters are going to change which are listed in Table 4-97. 

X-Ref Target - Figure 4-31

Figure 4-31: Sources Window – Generate Output Products
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DRAM pages are kept open as long as possible to reduce number of precharges. The 
controller contains a page table per bank and rank for each bank group. With 3DS, a third 
dimension is added to these page tables for logical ranks. This increases gate counts and 
makes timing closures harder. But the DRAM access performance is improved. ALIAS_PAGE 
= ON removes this dimension.

Similarly for 3DS, another dimension is added for logical rank to some per rank/bank 
counters which keeps track of tRAS, tRTP, and tWTP. ALIAS_P_CNT = ON removes the logical 
rank dimension.

Removing the third dimension does not affect correct operation of DRAM. However, it 
removes some of the performance advantages.

The default values of two parameters are given in Table 4-97. These parameters can be 
changed through the Tcl command using user parameter TIMING_3DS for Controller/PHY 
mode of Controller and Physical Layer. These Tcl options are not valid for any PHY_ONLY 
(Physical Layer Only and Physical Layer Ping Pong) designs. 

Steps to Change RTL Parameters
1. Generate the DDR3 or DDR4 IP with Controller and Physical Layer selected.
2. In the Generate Output Products option do not select Generate instead select Skip. 

See Figure 4-32.

Table 4-97: Parameter Values Based on Tcl Command Option for 3DS

Parameters Default Better Timing
(TIMING_3DS Tcl Option)

ALIAS_PAGE OFF ON
ALIAS_P_CNT OFF ON
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3. Set the following command on the Tcl console:
set_property -dict [list config.TIMING_3DS {true}] [get_ips <ip_name>]
For example:  set_property -dict [list config.TIMING_3DS {true}] [get_ips ddr4_0]

4. Generate output files by selecting Generate Output Products after right-clicking IP. See 
Figure 4-33.

X-Ref Target - Figure 4-32

Figure 4-32: Generate Output Products Window – Skip
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M and D Support for Reference Input Clock Speed
Memory IPs provide two possibilities to select the Reference Input Clock Speed. Value 
allowed for Reference Input Clock Speed (ps) is always ≥  Memory Device Interface Speed 
(ps).

• Memory IP lists the possible Reference Input Clock Speed values based on the targeted 
memory frequency (based on selected Memory Device Interface Speed).

• Otherwise, select M and D Options and target for desired Reference Input Clock Speed 
which is calculated based on selected CLKFBOUT_MULT (M), DIVCLK_DIVIDE (D), and 
CLKOUT0_DIVIDE (D0) values in the Advanced Clocking Tab. 

X-Ref Target - Figure 4-33

Figure 4-33: Sources Window – Generate Output Products
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The required Reference Input Clock Speed is calculated from the M, D, and D0 values 
entered in the GUI using the following formulas:

• MMCM_CLKOUT (MHz) = tCK / Phy_Clock_Ratio

Where tCK is the Memory Device Interface Speed selected in the Basic tab.

• CLKIN (MHz) = (MMCM_CLKOUT (MHz) × D × D0) / M

CLKIN (MHz) is the calculated Reference Input Clock Speed.

• VCO (MHz) = (CLKIN (MHz)) / D

VCO (MHz) is the calculated VCO frequency.

• PFD (MHz) = CLKIN (MHz) / D

PFD (MHz) is the calculated PFD frequency.

Calculated Reference Input Clock Speed from M, D, and D0 values are validated as per 
clocking guidelines. For more information on clocking rules, see Clocking.

Apart from the memory specific clocking rules, validation of the possible MMCM input 
frequency range, MMCM VCO frequency range, and MMCM PFD frequency range values are 
completed for M, D, and D0 in the GUI. 

For UltraScale devices, see Kintex UltraScale FPGAs Data Sheet: DC and AC Switching 
Characteristics (DS892) [Ref 2] and Virtex UltraScale FPGAs Data Sheet: DC and AC Switching 
Characteristics (DS893) [Ref 3] for MMCM Input frequency range, MMCM VCO frequency 
range, and MMCM PFD frequency range values. 

For UltraScale+ devices, see Kintex UltraScale+ FPGAs Data Sheet: DC and AC Switching 
Characteristics (DS922) [Ref 4], Virtex UltraScale+ FPGAs Data Sheet: DC and AC Switching 
Characteristics (DS923) [Ref 5], and Zynq UltraScale+ MPSoC Data Sheet: DC and AC 
Switching Characteristics (DS925) [Ref 6] for MMCM Input frequency range, MMCM VCO 
frequency range, and MMCM PFD frequency range values.

For possible M, D, and D0 values and detailed information on clocking and the MMCM, see 
the UltraScale Architecture Clocking Resources User Guide (UG572) [Ref 8].
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Design Flow Steps
This chapter describes customizing and generating the core, constraining the core, and the 
simulation, synthesis and implementation steps that are specific to this IP core. More 
detailed information about the standard Vivado® design flows and the Vivado IP integrator 
can be found in the following Vivado Design Suite user guides:

• Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994) 
[Ref 13]

• Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 14]
• Vivado Design Suite User Guide: Getting Started (UG910) [Ref 15]
• Vivado Design Suite User Guide: Logic Simulation (UG900) [Ref 16]

Customizing and Generating the Core
CAUTION! The Windows operating system has a 260-character limit for path lengths, which can affect 
the Vivado tools. To avoid this issue, use the shortest possible names and directory locations when 
creating projects, defining IP or managed IP projects, and creating block designs.

This section includes information about using Xilinx® tools to customize and generate the 
core in the Vivado Design Suite.

If you are customizing and generating the core in the IP integrator, see the Vivado Design 
Suite User Guide: Designing IP Subsystems using IP Integrator (UG994) [Ref 13] for detailed 
information. IP integrator might auto-compute certain configuration values when 
validating or generating the design. To check whether the values change, see the 
description of the parameter in this chapter. To view the parameter value, run the 
validate_bd_design command in the Tcl Console.

You can customize the IP for use in your design by specifying values for the various 
parameters associated with the IP core using the following steps:

1. Select the IP from the Vivado IP catalog.
2. Double-click the selected IP or select the Customize IP command from the toolbar or 

right-click menu.
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For more information about generating the core in Vivado, see the Vivado Design Suite User 
Guide: Designing with IP (UG896) [Ref 14] and the Vivado Design Suite User Guide: Getting 
Started (UG910) [Ref 15].

Note: Figures in this chapter are illustrations of the Vivado Integrated Design Environment (IDE). 
This layout might vary from the current version.

Basic Tab
Figure 5-1 and Figure 5-2 show the Basic tab when you start up the DDR3/DDR4 SDRAM. 

X-Ref Target - Figure 5-1

Figure 5-1: Vivado Customize IP Dialog Box for DDR3 – Basic
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IMPORTANT: All parameters shown in the controller options dialog box are limited selection options in 
this release.

X-Ref Target - Figure 5-2

Figure 5-2: Vivado Customize IP Dialog Box for DDR4 – Basic
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For the Vivado IDE, all controllers (DDR3, DDR4, LPDDR3, QDR II+, QDR-IV, and RLDRAM 3) 
can be created and available for instantiation.

In IP integrator, only one controller instance can be created and only two kinds of 
controllers are available for instantiation:

• DDR3
• DDR4
1. After a controller is added in the pull-down menu, select the Mode and Interface for 

the controller. Select the AXI4 Interface or have the option to select the Generate the 
PHY component only.

2. Select the settings in the Clocking, Controller Options, Memory Options, and 
Advanced User Request Controller Options.

In Clocking, the Memory Device Interface Speed sets the speed of the interface. The 
speed entered drives the available Reference Input Clock Speeds. For more 
information on the clocking structure, see the Clocking, page 81.

3. To use memory parts which are not available by default through the DDR3/DDR4 
SDRAM Vivado IDE, you can create a custom parts CSV file, as specified in the AR: 
63462. This CSV file has to be provided after enabling the Custom Parts Data File 
option. After selecting this option. you are able to see the custom memory parts along 
with the default memory parts. Note that, simulations are not supported for the custom 
part. Custom part simulations require manually adding the memory model to the 
simulation and might require modifying the test bench instantiation.

4. All available options of Data Mask and DBI and their functionality is described in 
Table 4-76. Also, the dependency of ECC on the DM_DBI input is mentioned in 
Table 4-77 for both user and AXI interfaces.

IMPORTANT: To support partial writes, AXI designs require Data Mask (DM) to always be selected and 
it is grayed out. This is for all AXI interfaces except 72 bits, which requires the use of ECC. Having ECC 
and DM in the same design causes the ECC to fail, so turning off the DM when ECC is enabled is 
required. 
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AXI Options Tab
Figure 5-3 shows the next tab called AXI Options when the AXI4 interface is selected in the 
Basic page. This displays the settings for AXI Options for the specific controller. 

X-Ref Target - Figure 5-3

Figure 5-3: Vivado Customize IP Dialog Box for DDR4 – AXI Options
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Advanced Clocking Tab
Figure 5-4 shows the next tab called Advanced Clocking. This displays the settings for 
Specify M and D value, System Clock Options, and Additional Clock Outputs for the 
specific controller. 

X-Ref Target - Figure 5-4

Figure 5-4: Vivado Customize IP Dialog Box for DDR3 – Advanced Clocking
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Advanced Options Tab
Figure 5-5 and Figure 5-6 show the next tab called Advanced Options. This displays the 
advanced memory options for the specific controller. 

X-Ref Target - Figure 5-5

Figure 5-5: Vivado Customize IP Dialog Box for DDR3 – Advanced Options
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X-Ref Target - Figure 5-6

Figure 5-6: Vivado Customize IP Dialog Box for DDR4 – Advanced Options
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Migration Options Tab
Figure 5-7 shows the next tab called Migration Options only for DDR4 displays when 
Enable Migration option is selected in Advanced Options tab. 

X-Ref Target - Figure 5-7

Figure 5-7: Vivado Customize IP Dialog Box for DDR4 – Migration Options
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DDR3/DDR4 SDRAM I/O Planning and Design Checklist Tab
Figure 5-8 and Figure 5-9 show the DDR3/DDR4 SDRAM I/O Planning and Design 
Checklist usage information. 

X-Ref Target - Figure 5-8

Figure 5-8: Vivado Customize IP Dialog Box – DDR3 SDRAM I/O Planning and Design Checklist
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User Parameters
Table 5-1 shows the relationship between the fields in the Vivado IDE and the User 
Parameters (which can be viewed in the Tcl Console).

X-Ref Target - Figure 5-9

Figure 5-9: Vivado Customize IP Dialog Box – DDR4 SDRAM I/O Planning and Design Checklist

Table 5-1: Vivado IDE Parameter to User Parameter Relationship
Vivado IDE Parameter/Value(1) User Parameter/Value(1) Default Value

System Clock Configuration System_Clock Differential
Internal VREF Internal_Vref TRUE
DCI Cascade DCI_Cascade FALSE
Debug Signal for Controller Debug_Signal Disable
Clock 1 (MHz) ADDN_UI_CLKOUT1_FREQ_HZ None
Clock 2 (MHz) ADDN_UI_CLKOUT2_FREQ_HZ None
Clock 3 (MHz) ADDN_UI_CLKOUT3_FREQ_HZ None
Clock 4 (MHz) ADDN_UI_CLKOUT4_FREQ_HZ None
Enable System Ports Enable_SysPorts TRUE
Default Bank Selections Default_Bank_Selections FALSE
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Reference Clock Reference_Clock FALSE
Enable System Ports Enable_SysPorts TRUE

DDR3
AXI4 Interface C0.DDR3_AxiSelection FALSE
Clock Period (ps) C0.DDR3_TimePeriod 1,071
Input Clock Period (ps) C0.DDR3_InputClockPeriod 13,947
General Interconnect to Memory Clock 
Ratio C0.DDR3_PhyClockRatio 4:1

Data Width C0.DDR3_AxiDataWidth 64
Arbitration Scheme C0.DDR3_AxiArbitrationScheme RD_PRI_REG
Address Width C0.DDR3_AxiAddressWidth 27
AXI4 Narrow Burst C0.DDR3_AxiNarrowBurst FALSE
Configuration C0.DDR3_MemoryType Components
Memory Part C0.DDR3_MemoryPart MT41J128M16JT-093
Data Width C0.DDR3_DataWidth 8
Data Mask C0.DDR3_DataMask TRUE
Burst Length C0.DDR3_BurstLength 8
RTT (nominal)-ODT C0.DDR3_OnDieTermination RZQ/6
CAS Latency C0.DDR3_CasLatency 11
CAS Write Latency C0.DDR3_CasWriteLatency 9
Chip Select C0.DDR3_ChipSelect TRUE
Memory Address Map C0.DDR3_Mem_Add_Map ROW_COLUMN_BANK
Memory Voltage C0.DDR3_MemoryVoltage 1.5
ECC C0.DDR3_Ecc FALSE
Ordering C0.DDR3_Ordering Normal
Burst Type C0.DDR3_BurstType Sequential
Output Driver Impedance Control C0.DDR3_OutputDriverImpedanceControl RZQ/6
AXI ID Width C0.DDR3_AxiIDWidth 4
Capacity C0.DDR3_Capacity 512

DDR4
AXI4 Interface C0.DDR4_AxiSelection FALSE
Clock Period (ps) C0.DDR4_TimePeriod 938
Input Clock Period (ps) C0.DDR4_InputClockPeriod 104,045
General Interconnect to Memory Clock 
Ratio C0.DDR4_PhyClockRatio 4:1

Data Width C0.DDR4_AxiDataWidth 64
Arbitration Scheme C0.DDR4_AxiArbitrationScheme RD_PRI_REG
Address Width C0.DDR4_AxiAddressWidth 27

Table 5-1: Vivado IDE Parameter to User Parameter Relationship (Cont’d)
Vivado IDE Parameter/Value(1) User Parameter/Value(1) Default Value
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Setting Burst Type for PHY_ONLY Designs
For DDR3 or DDR4, the default value of Burst Type is set to Sequential. This can be changed 
through the Tcl command using the user parameter C0.DDR3_BurstType for DDR3 and 
C0.DDR4_BurstType for DDR4. Table 5-2 shows details of the C0.DDR3_BurstType and 
C0.DDR4_BurstType user parameters. 

Follow these steps to change the Burst Type value.

1. Generate DDR3 or DDR4 PHY_ONLY IP.

AXI4 Narrow Burst C0.DDR4_AxiNarrowBurst FALSE
Configuration C0.DDR4_MemoryType Components
Memory Part C0.DDR4_MemoryPart MT40A256M16HA-083
Data Width C0.DDR4_DataWidth 8
Data Mask C0.DDR4_DataMask TRUE
Burst Length C0.DDR4_BurstLength 8
RTT (nominal)-ODT C0.DDR4_OnDieTermination RZQ/6
CAS Latency C0.DDR4_CasLatency 14
CAS Write Latency C0.DDR4_CasWriteLatency 11
Chip Select C0.DDR4_ChipSelect TRUE
Memory Address Map C0.DDR4_Mem_Add_Map ROW_COLUMN_BANK
Memory Voltage C0.DDR4_MemoryVoltage 1.2
ECC C0.DDR4_Ecc FALSE
Ordering C0.DDR4_Ordering Normal
Burst Type C0.DDR4_BurstType Sequential
Output Driver Impedance Control C0.DDR4_OutputDriverImpedenceControl RZQ/7
AXI ID Width C0.DDR4_AxiIDWidth 4
Capacity C0.DDR4_Capacity 512

Notes: 
1. Parameter values are listed in the table where the Vivado IDE parameter value differs from the user parameter value. Such 

values are shown in this table as indented below the associated parameter.

Table 5-1: Vivado IDE Parameter to User Parameter Relationship (Cont’d)
Vivado IDE Parameter/Value(1) User Parameter/Value(1) Default Value

Table 5-2: Burst Type User Parameter
User Parameter Value Format Default Value Possible Values

C0.DDR3_BurstType String Sequential Sequential, Interleaved
C0.DDR4_BurstType String Sequential Sequential, Interleaved
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2. In the Generate Output Products option, do not select Generate instead select Skip 
(Figure 5-10). 

3. Set the Burst Type value by running the following command on the Tcl console:
a. For DDR3 IP: 
set_property -dict [list CONFIG.C0.DDR3_BurstType <value_to_be_set>] [get_ips 
<ip_name>]

For example: 

set_property -dict [list CONFIG.C0.DDR3_BurstType {Interleaved}] [get_ips <ddr3_0>]

b. For DDR4 IP: 
set_property -dict [list CONFIG.C0.DDR4_BurstType <value_to_be_set>] [get_ips 
<ip_name>]

For example: 

set_property -dict [list CONFIG.C0.DDR4_BurstType {Interleaved}] [get_ips <ddr4_0>]

X-Ref Target - Figure 5-10

Figure 5-10: Generate Output Products Window – Skip
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4. Generate output files by selecting Generate Output Products after right-clicking IP 
(Figure 5-11). 

The generated output files have the Burst Type value set as per the selected value.

Setting Additive Latency for PHY_ONLY Designs
For DDR3/DDR4, the default value of Additive Latency is set to 0. This can be changed 
through the Tcl command using the user parameter AL_SEL for any PHY_ONLY (Physical 
Layer Only and Physical Layer Ping Pong designs). Table 5-3 shows details of the AL_SEL 
user parameter. 

X-Ref Target - Figure 5-11

Figure 5-11: Generate Output Products – Output Files
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Follow these steps to change the Additive Latency value.

1. Generate DDR3 or DDR4 PHY_ONLY IP.
2. In the Generate Output Products option, do not select Generate instead select Skip 

(Figure 5-12). 

3. Set the Additive Latency value by running the following command on the Tcl console:
set_property -dict [list config.AL_SEL <value_to_be_set>] [get_ips <ip_name>]

Table 5-3: Additive Latency User Parameter
User 

Parameter
Value 

Format
Default 
Value

Possible Values
(Non-3DS Memories)

Possible Values
(3DS Memories)

AL_SEL String 0
0 – Additive Latency = 0
CL-1 – Additive Latency = CL - 1
CL-2 – Additive Latency = CL - 2

0 – Additive Latency = 0
CL-2 – Additive Latency = CL - 2
CL-3 – Additive Latency = CL - 3

X-Ref Target - Figure 5-12

Figure 5-12: Generate Output Products Window – Skip
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For example: 

set_property -dict [list config.AL_SEL CL-1] [get_ips ddr4_0]

4. Generate output files by selecting Generate Output Products after right-clicking IP 
(Figure 5-13). 

The generated output files have the Additive Latency value set as per the selected value.

X-Ref Target - Figure 5-13

Figure 5-13: Generate Output Products – Output Files
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Setting Timing Parameters for DDR4 Non-Custom Memory Parts
To set timing parameters for DDR4 non-custom memory parts, see Table 5-4 and the 
following steps. 

IMPORTANT: The values entered are not validated, it is your responsibility to enter the right values.

1. Generate the DDR4 IP.
2. In the Generate Output Products option, do not select Generate instead select Skip 

(Figure 5-14). 

Table 5-4: User Parameters for DDR Non-Custom Memory Parts
User Parameter Value Format Default Value Units

C0.DDR4_TREFI Long 0 ps
C0.DDR4_TRFC Long 0 ps
C0.DDR4_TRFC_DLR Long 0 ps

X-Ref Target - Figure 5-14

Figure 5-14: Generate Output Products – Skip
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3. To set tREFI, run the following command on the Tcl console:
set_property -dict [list CONFIG.C0.DDR4_TREFI <value_to_be_set>] [get_ips <ip_name>]

For example:

set_property -dict [list CONFIG.C0.DDR4_TREFI {7800000}] [get_ips ddr4_0]

4. To set tRFC, run the following command on the Tcl console:
set_property -dict [list CONFIG.C0.DDR4_TRFC <value_to_be_set>] [get_ips <ip_name>]

For example:

set_property -dict [list CONFIG.C0.DDR4_TRFC {260000}] [get_ips ddr4_0]

5. To set tRFC_dlr, run the following command on the Tcl console:
set_property -dict [list CONFIG.C0.DDR4_TRFC_DLR <value_to_be_set>] [get_ips 
<ip_name>]

For example:

set_property -dict [list CONFIG.C0.DDR4_TRFC_DLR {40000}] [get_ips ddr4_0]

Note: C0.DDR4_TRFC_DLR can only be set for 3DS-memory parts.

Output Generation
For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 14]. 

I/O Planning
DDR3/DDR4 SDRAM I/O pin planning is completed with the full design pin planning using 
the Vivado I/O Pin Planner. DDR3/DDR4 SDRAM I/O pins can be selected through several 
Vivado I/O Pin Planner features including assignments using I/O Ports view, Package view, 
or Memory Bank/Byte Planner. Pin assignments can additionally be made through 
importing an XDC or modifying the existing XDC file. 

These options are available for all DDR3/DDR4 SDRAM designs and multiple DDR3/DDR4 
SDRAM IP instances can be completed in one setting. To learn more about the available 
Memory IP pin planning options, see the Vivado Design Suite User Guide: I/O and Clock 
Planning (UG899) [Ref 18].
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Constraining the Core
This section contains information about constraining the core in the Vivado Design Suite.

Required Constraints
For DDR3/DDR4 SDRAM Vivado IDE, you specify the pin location constraints. For more 
information on I/O standard and other constraints, see the Vivado Design Suite User Guide: 
I/O and Clock Planning (UG899) [Ref 18]. The location is chosen by the Vivado IDE 
according to the banks and byte lanes chosen for the design. 

The I/O standard is chosen by the memory type selection and options in the Vivado IDE and 
by the pin type. A sample for dq[0] is shown here.

set_property PACKAGE_PIN AF20 [get_ports "c0_ddr4_dq[0]"]
set_property IOSTANDARD POD12_DCI [get_ports "c0_ddr4_dq[0]"]

The system clock must have the period set properly:

create_clock -name c0_sys_clk -period 10 [get_ports c0_sys_clk_p]

For HR banks, update the output_impedance of all the ports assigned to HR banks pins 
using the reset_property command. For more information, see AR: 63852. 

IMPORTANT: Do not alter these constraints. If the pin locations need to be altered, rerun the DDR3/
DDR4 SDRAM Vivado IDE to generate a new XDC file.

Device, Package, and Speed Grade Selections
This section is not applicable for this IP core.

Clock Frequencies
This section is not applicable for this IP core.

Clock Management
For more information on clocking, see Clocking, page 81.

Clock Placement
This section is not applicable for this IP core.
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Banking
This section is not applicable for this IP core.

Transceiver Placement
This section is not applicable for this IP core.

I/O Standard and Placement
The DDR3/DDR4 SDRAM tool generates the appropriate I/O standards and placement 
based on the selections made in the Vivado IDE for the interface type and options.

IMPORTANT: The set_input_delay and set_output_delay constraints are not needed on the 
external memory interface pins in this design due to the calibration process that automatically runs at 
start-up. Warnings seen during implementation for the pins can be ignored.

Simulation
For comprehensive information about Vivado simulation components, as well as 
information about using supported third-party tools, see the Vivado Design Suite User 
Guide: Logic Simulation (UG900) [Ref 16]. For more information on simulation, see 
Chapter 6, Example Design and Chapter 7, Test Bench.

Note: The Example Design is a Mixed Language IP and simulations should be run with the 
Simulation Language set to Mixed. If the Simulation Language is set to Verilog, then it attempts 
to run a netlist simulation.

Synthesis and Implementation
For details about synthesis and implementation, see the Vivado Design Suite User Guide: 
Designing with IP (UG896) [Ref 14].
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Example Design
This chapter contains information about the example design provided in the Vivado® 
Design Suite. Vivado supports Open IP Example Design flow. To create the example design 
using this flow, right-click the IP in the Source Window, as shown in Figure 6-1 and select 
Open IP Example Design. 

This option creates a new Vivado project. Upon selecting the menu, a dialog box to enter 
the directory information for the new design project opens. 

Select a directory, or use the defaults, and click OK. This launches a new Vivado with all of 
the example design files and a copy of the IP. 

X-Ref Target - Figure 6-1

Figure 6-1: DDR4 Open IP Example Design
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Figure 6-2 shows the example design with the PHY only option selected (controller module 
does not get generated). 

Simulating the Example Design (Designs with 
Standard User Interface)
The example design provides a synthesizable test bench to generate a fixed simple data 
pattern. DDR3/DDR4 SDRAM generates the Simple Traffic Generator (STG) module as 
example_tb for native interface and example_tb_phy for PHY only interface. The STG 
native interface generates 100 writes and 100 reads. The STG PHY only interface generates 
10 writes and 10 reads.

The example design can be simulated using one of the methods in the following sections.

RECOMMENDED: If a custom wrapper is used to simulate the example design, the following parameter 
should be used in the custom wrapper:

parameter SIMULATION = "TRUE" 

The parameter SIMULATION is used to disable the calibration during simulation.

X-Ref Target - Figure 6-2

Figure 6-2: Open IP Example Design with PHY Only Option Selected
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Project-Based Simulation
This method can be used to simulate the example design using the Vivado Integrated 
Design Environment (IDE). Memory IP delivers memory models for DDR3 and IEEE 
encrypted memory models for DDR4.

The Vivado simulator, Questa Advanced Simulator, IES, and VCS tools are used for DDR3/
DDR4 IP verification at each software release. The Vivado simulation tool is used for DDR3/
DDR4 IP verification from 2015.1 Vivado software release. The following subsections 
describe steps to run a project-based simulation using each supported simulator tool.

Project-Based Simulation Flow Using Vivado Simulator
1. In the Open IP Example Design Vivado project, under Flow Navigator, select 

Simulation Settings. 
2. Select Target simulator as Vivado Simulator.

Under the Simulation tab, set the xsim.simulate.runtime to 1 ms (there are 
simulation RTL directives which stop the simulation after certain period of time, which is 
less than 1 ms) as shown in Figure 6-3. For DDR3 simulation, set the 
xsim.simulate.xsim.more_options to -testplusarg model_data+./. The 
Generate Scripts Only option generates simulation scripts only. To run behavioral 
simulation, Generate Scripts Only option must be de-selected.

3. Set the Simulation Language to Mixed.
4. Apply the settings and select OK.
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5. In the Flow Navigator window, select Run Simulation and select Run Behavioral 
Simulation option as shown in Figure 6-4.

X-Ref Target - Figure 6-3

Figure 6-3: Simulation with Vivado Simulator
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6. Vivado invokes Vivado simulator and simulations are run in the Vivado simulator tool. 
For more information, see the Vivado Design Suite User Guide: Logic Simulation (UG900) 
[Ref 16].

Project-Based Simulation Flow Using Questa Advanced 
Simulator
1. Open a DDR3/DDR4 SDRAM example Vivado project (Open IP Example Design...), then 

under Flow Navigator, select Simulation Settings. 
2. Select Target simulator as Questa Advanced Simulator.

a. Browse to the compiled libraries location and set the path on Compiled libraries 
location option.

b. Under the Simulation tab, set the modelsim.simulate.runtime to 1 ms (there 
are simulation RTL directives which stop the simulation after certain period of time, 
which is less than 1 ms) as shown in Figure 6-5. The Generate Scripts Only option 
generates simulation scripts only. To run behavioral simulation, Generate Scripts 
Only option must be de-selected. For DDR3 simulation, set the 
modelsim.simulate.vsim.more_options to +model_data+./.

3. Apply the settings and select OK.

X-Ref Target - Figure 6-4

Figure 6-4: Run Behavioral Simulation
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4. In the Flow Navigator window, select Run Simulation and select Run 
Behavioral Simulation option as shown in Figure 6-6.

X-Ref Target - Figure 6-5

Figure 6-5: Simulation with Questa Advanced Simulator
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5. Vivado invokes Questa Advanced Simulator and simulations are run in the Questa 
Advanced Simulator tool. For more information, see the Vivado Design Suite User Guide: 
Logic Simulation (UG900) [Ref 16].

Project-Based Simulation Flow Using IES
1. Open a DDR3/DDR4 SDRAM example Vivado project (Open IP Example Design...), then 

under Flow Navigator, select Simulation Settings. 
2. Select Target simulator as Incisive Enterprise Simulator (IES).

a. Browse to the compiled libraries location and set the path on Compiled libraries 
location option.

b. Under the Simulation tab, set the ies.simulate.runtime to 1 ms (there are 
simulation RTL directives which stop the simulation after certain period of time, 
which is less than 1 ms) as shown in Figure 6-7. The Generate Scripts Only option 
generates simulation scripts only. To run behavioral simulation, Generate Scripts 
Only option must be de-selected. For DDR3 simulation, set the 
modelsim.simulate.vsim.more_options to +model_data+./.

3. Apply the settings and select OK.

X-Ref Target - Figure 6-6

Figure 6-6: Run Behavioral Simulation
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4. In the Flow Navigator window, select Run Simulation and select Run 
Behavioral Simulation option as shown in Figure 6-6.

5. Vivado invokes IES and simulations are run in the IES tool. For more information, see the 
Vivado Design Suite User Guide: Logic Simulation (UG900) [Ref 16].

X-Ref Target - Figure 6-7

Figure 6-7: Simulation with IES Simulator
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Project-Based Simulation Flow Using VCS
1. Open a DDR3/DDR4 SDRAM example Vivado project (Open IP Example Design...), then 

under Flow Navigator, select Simulation Settings. 
2. Select Target simulator as Verilog Compiler Simulator (VCS).

a. Browse to the compiled libraries location and set the path on Compiled libraries 
location option.

b. Under the Simulation tab, set the vcs.simulate.runtime to 1 ms (there are 
simulation RTL directives which stop the simulation after certain period of time, 
which is less than 1 ms) as shown in Figure 6-8. The Generate Scripts Only option 
generates simulation scripts only. To run behavioral simulation, Generate Scripts 
Only option must be de-selected. For DDR3 simulation, set the 
modelsim.simulate.vsim.more_options to +model_data+./.

3. Apply the settings and select OK.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG150&Title=UltraScale%20Architecture-Based%20FPGAs%20Memory%20IP%20v1.4&releaseVersion=1.4&docPage=246


UltraScale Architecture-Based FPGAs Memory IP v1.4 247
PG150 October 22, 2021 www.xilinx.com

Chapter 6: Example Design

4. In the Flow Navigator window, select Run Simulation and select Run 
Behavioral Simulation option as shown in Figure 6-6.

5. Vivado invokes VCS and simulations are run in the VCS tool. For more information, see 
the Vivado Design Suite User Guide: Logic Simulation (UG900) [Ref 16].

X-Ref Target - Figure 6-8

Figure 6-8: Simulation with VCS Simulator
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Simulation Speed
DDR3/DDR4 SDRAM provides a Vivado IDE option to reduce the simulation speed by 
selecting behavioral XIPHY model instead of UNISIM XIPHY model. Behavioral XIPHY model 
simulation is a default option for DDR3/DDR4 SDRAM designs. To select the simulation 
mode, click the Advanced Options tab and find the Simulation Options as shown in 
Figure 5-5. 

The SIM_MODE parameter in the RTL is given a different value based on the Vivado IDE 
selection.

• SIM_MODE = BFM – If BFM mode is selected in the Vivado IDE, the RTL parameter 
reflects this value for the SIM_MODE parameter. This is the default option.

• SIM_MODE = FULL – If UNISIM mode is selected in the Vivado IDE, XIPHY UNISIMs are 
selected and the parameter value in the RTL is FULL.

Using Xilinx IP with Third-Party Synthesis Tools
For more information on how to use Xilinx IP with third-party synthesis tools, see the Vivado 

Design Suite User Guide: Designing with IP (UG896) [Ref 14].

CLOCK_DEDICATED_ROUTE Constraints and BUFG 
Instantiation
If the GCIO pin and MMCM are not allocated in the same bank, the 
CLOCK_DEDICATED_ROUTE constraint must be set to BACKBONE. To use the BACKBONE 
route, BUFG/BUFGCE/BUFGCTRL/BUFGCE_DIV must be instantiated between GCIO and 
MMCM input. DDR3/DDR4 SDRAM manages these constraints for designs generated with 
the Reference Input Clock option selected as Differential (at Advanced > FPGA Options 
> Reference Input). Also, DDR3/DDR4 SDRAM handles the IP and example design flows for 
all scenarios.

If the design is generated with the Reference Input Clock option selected as No Buffer (at 
Advanced > FPGA Options > Reference Input), the CLOCK_DEDICATED_ROUTE 
constraints and BUFG/BUFGCE/BUFGCTRL/BUFGCE_DIV instantiation based on GCIO and 
MMCM allocation needs to be handled manually for the IP flow. DDR3/DDR4 SDRAM does 
not generate clock constraints in the XDC file for No Buffer configurations and you must 
take care of the clock constraints for No Buffer configurations for the IP flow.
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For an example design flow with No Buffer configurations, DDR3/DDR4 SDRAM generates 
the example design with differential buffer instantiation for system clock pins. DDR3/DDR4 
SDRAM generates clock constraints in the example_design.xdc. It also generates a 
CLOCK_DEDICATED_ROUTE constraint as the “BACKBONE” and instantiates BUFG/BUFGCE/
BUFGCTRL/BUFGCE_DIV between GCIO and MMCM input if the GCIO and MMCM are not in 
same bank to provide a complete solution. This is done for the example design flow as a 
reference when it is generated for the first time. 

If in the example design, the I/O pins of the system clock pins are changed to some other 
pins with the I/O pin planner, the CLOCK_DEDICATED_ROUTE constraints and BUFG/
BUFGCE/BUFGCTRL/BUFGCE_DIV instantiation need to be managed manually. A DRC error 
is reported for the same.
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Test Bench
This chapter contains information about the test bench provided in the Vivado® Design 
Suite.

The intent of the performance test bench is for you to obtain an estimate on the efficiency 
for a given traffic pattern with the DDR3/DDR4 SDRAM controller. The test bench passes 
your supplied commands and address to the Memory Controller and measures the 
efficiency for the given pattern. The efficiency is measured by the occupancy of the dq bus. 
The primary use of the test bench is for efficiency measurements so no data integrity checks 
are performed. Static data is written into the memory during write transactions and the 
same data is always read back.

The stimulus to the Traffic Generator is provided through a 
ddr3_v1_4_0_ddr3_stimulus.txt file. The stimulus consists of command, address, 
and command repetition count. Each line in the stimulus file represents one stimulus 
(command repetition, address, and command). Multiple stimuli can be provided in a 
stimulus file and each stimulus is separated by the new line. 

Table 7-1: Modules for Performance Traffic Generator
File Name Description

ddr4_v2_2_ddr4_traffic_generator.sv This file has the Traffic Generator code for sending out the 
traffic for DDR4 and also for the calculation of bus utilized.

ddr4_v2_2_ddr4_stimulus_mem_x4_x8_3ds_2h.txt
ddr4_v2_2_ddr4_stimulus_mem_x4_x8_3ds_4h.txt
ddr4_v2_2_0_ddr4_stimulus_mem_x4_x8.txt
ddr4_v2_2_0_ddr4_stimulus_mem_x16.txt

File name depends on 3DS stack height and component width 
of memory part selected.

ddr3_v1_4_ddr3_traffic_generator.sv This file has the Traffic Generator code for sending out the 
traffic for DDR3 and also for the calculation of bus utilized.

ddr3_v1_4_0_ddr3_stimulus.txt These files have the stimulus with Writes, Reads, and NOPs 
for DDR3 for the calculation of bus utilization.
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Stimulus Pattern
Stimulus pattern for non-3DS part is 48 bits and the format is described in Table 7-2. For a 
3DS part, stimulus pattern is 52 bits and is described in Table 7-3. The stimulus pattern 
description for non-3DS and 3DS parts are shown in Table 7-4.

Command Encoding (Command[3:0])

Address Encoding (Address[35:0]/Address[39:0])
Address is encoded in the stimulus as per Figure 7-1 to Figure 7-6. All the address fields 
need to be entered in the hexadecimal format. All the address fields are the width that is 
divisible by four to enter in the hexadecimal format. The test bench only sends the required 
bits of an address field to the Memory Controller. 

For example, an eight bank configuration only bank Bits[2:0] is sent to the Memory 
Controller and the remaining bits are ignored. The extra bits for an address field are 

Table 7-2: Stimulus Command Pattern for Non-3DS
Command Repeat[47:40] Address [39:4] Command[3:0]

Table 7-3: Stimulus Command Pattern for 3DS
Command Repeat[51:44] Address [43:4] Command[3:0]

Table 7-4: Stimulus Pattern Description
Signal Description

Command[3:0] This corresponds to the WRITE/READ/NOP command that is sent to the 
user interface.

Address[35:0]/
Address[39:0]

This corresponds to the address to the user interface. For non-3DS part, 
the width is 36 bits and for 3DS the width is 40 bits.

Command Repeat[7:0]
This corresponds to the repetition count of the command. Up to 128 
repetitions can be made for a command. In the burst length of eight 
mode, 128 transactions fill up the page in the memory.

Table 7-5: Command Description
Command Code Description

WRITE 0 This corresponds to the Write operation that needs to be performed.
READ 1 This corresponds to the Read operation that needs to be performed.
NOP 7 This corresponds to the idle situation for the bus.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG150&Title=UltraScale%20Architecture-Based%20FPGAs%20Memory%20IP%20v1.4&releaseVersion=1.4&docPage=251


UltraScale Architecture-Based FPGAs Memory IP v1.4 252
PG150 October 22, 2021 www.xilinx.com

Chapter 7: Test Bench

provided for you to enter the address in a hexadecimal format. You must confirm the value 
entered corresponds to the width of a given configuration.  

• Column Address (Column[11:0]) – Column Address in the stimulus is provided with a 
maximum of 12 bits, but you need to address this based on the column width 
parameter set in your design. 

• Row Address (Row[15:0]) – Row address in the stimulus is provided with a maximum 
of 16 bits, but you need to address this based on the row width parameter set in your 
design.

• Bank Address (Bank[3:0]) – Bank address in the stimulus is provided with a maximum 
of four bits, but you need to address this based on the bank width parameter set in 
your design. 
Note: For DDR4, use the 2-bit LSB for Bank Address and two bits of MSB for Bank Groups.

• Rank Address (Rank[3:0]) – Rank address in the stimulus is provided with a maximum 
of four bits, but you need to address this based on the rank width parameter set in your 
design.

• Logical Rank[3:0] – Logical rank in the stimulus is provided with a maximum of four 
bits, This is based on a stack height parameter set in your design.

The address is assembled based on the top-level MEM_ADDR_ORDER parameter and sent to 
the user interface.

Command Repeat (Command Repeat[7:0])
The command repetition count is the number of time the respective command is repeated 
at the User Interface. The address for each repetition is incremented by 8. The maximum 
repetition count is 128. The test bench does not check for the column boundary and it 
wraps around if the maximum column limit is reached during the increments. The 128 
commands fill up the page. For any column address other than 0, the repetition count of 
128 ends up crossing the column boundary and wrapping around to the start of the column 
address. 

Table 7-6: Address Encoded for Non-3DS
Rank[3:0] Bank[3:0] Row[15:0] Column[11:0]

Table 7-7: Address Encoded for 3DS
Logical Rank[3:0] Rank[3:0] Bank[3:0] Row[15:0] Column[11:0]
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Chapter 7: Test Bench

Bus Utilization
The bus utilization is calculated at the User Interface taking total number of Reads and 
Writes into consideration and the following equation is used:

((rd_command_cnt + wr_command_cnt) × (BURST_LEN / 2) × 100) Equation 7-1

bw_cumulative = --------------------------------------------------------------------------------

((end_of_stimulus – calib_done) / tCK);

• BURST_LEN equals 8 for DDR3 and DDR4. BURST_LEN is divided by 2 in the BW 
formula to give the number tCK of data activity on the DDR bus for each read and write.

• rd_command_cnt and wr_command_cnt are the total number of read and write 
commands accepted at the User Interface between calib_done and 
end_of_stimulus.

• end_of_stimulus is the time when all the commands are done.
• calib_done is the time when the calibration is done.
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Example Patterns
These examples are based on the MEM_ADDR_ORDER set to BANK_ROW_COLUMN.

Single Read Pattern
00_0_2_000F_00A_1 – This pattern is a single read from 10th column, 15th row, and second bank. 

Single Write Pattern
00_0_1_0040_010_0 – This pattern is a single write to the 32nd column, 128th row, and first bank. 

X-Ref Target - Figure 7-1

Figure 7-1: Single Read Pattern

X-Ref Target - Figure 7-2

Figure 7-2: Single Write Pattern
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Single Write and Read to Same Address
00_0_2_000F_00A_0 – This pattern is a single write to 10th column, 15th row, and second bank.

00_0_2_000F_00A_1 – This pattern is a single read from 10th column, 15th row, and second bank.

Multiple Writes and Reads with Same Address
0A_0_0_0010_000_0 – This corresponds to 11 writes with address starting from 0 to 80 which can be seen in the column. 

X-Ref Target - Figure 7-3

Figure 7-3: Single Write and Read to Same Address

X-Ref Target - Figure 7-4

Figure 7-4: Multiple Writes with Same Address
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0A_0_0_0010_000_1 – This corresponds to 11 reads with address starting from 0 to 80 which can be seen in the column. 

Page Wrap during Writes
0A_0_2_000F_3F8_0 – This corresponds to 11 writes with column address wrapped to the starting of the page after one write. 

X-Ref Target - Figure 7-5

Figure 7-5: Multiple Reads with Same Address

X-Ref Target - Figure 7-6

Figure 7-6: Page Wrap during Writes
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Simulating the Performance Traffic Generator
Note: This is not supported when the AXI interface is enabled.

After opening the example_design project, follow the steps to run the performance 
traffic generator.

1. In the Vivado Integrated Design Environment (IDE), open the Simulation Sources 
section and double-click the sim_tb_top.sv file to open it in Edit mode. Or open the 
file from the following location, <project_dir>/example_project/
<component_name>_example/<component_name>_example.srcs/sim_1/
imports/tb/sim_tb_top.sv.

2. Add a `define BEHV line in the file[sim_tb_to.sv] and save it.
3. Go to the Simulation Settings in the Vivado IDE.

a. Select Target Simulator from the supported simulators (supported simulators are 
Questa Advanced Simulator, Incisive Enterprise Simulator (IES), Verilog Compiler 
Simulator (VCS), and Vivado simulator). Browse to the compiled libraries location 
and set the path on the Compiled Libraries Location option as per the Target 
Simulator.

b. Under the Simulation tab, set the simulation run-time to 1 ms (there are simulation 
RTL directives which stop the simulation after a certain period of time, which is less 
than 1 ms). The Generate Scripts Only option generates simulation scripts only. 

To run behavioral simulation, the Generate Scripts Only option must be 
de-selected. For DDR3 simulation, set the more_options for the following:

+model_data+./ for Questa/IES/VCS simulators
-testplusarg model_data+./for Vivado simulator

c. Click Apply to save these settings.
4. Click Run Simulations.
5. Check the transcript for the results.
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SECTION III:  LPDDR3

Overview
Product Specification
Core Architecture
Designing with the Core
Design Flow Steps
Example Design
Test Bench
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Chapter 8

Overview
IMPORTANT: This document supports LPDDR3 SDRAM core v1.0.

Navigating Content by Design Process
Xilinx® documentation is organized around a set of standard design processes to help you 
find relevant content for your current development task. This document covers the 
following design processes:

• Hardware, IP, and Platform Development: Creating the PL IP blocks for the hardware 
platform, creating PL kernels, subsystem functional simulation, and evaluating the 
Vivado timing, resource and power closure. Also involves developing the hardware 
platform for system integration. Topics in this document that apply to this design 
process include:

° Clocking

° Resets

° Protocol Description

° Customizing and Generating the Core

° Example Design

Core Overview
The Xilinx UltraScale™ architecture includes the LPDDR3 SDRAM core. This core provides 
solutions for interfacing with the SDRAM memory type. The UltraScale architecture for the 
LPDDR3 core is organized in the following high-level blocks:

• Controller – The controller accepts burst transactions from the user interface and 
generates transactions to and from the SDRAM. The controller takes care of the SDRAM 
timing parameters and refresh. It coalesces write and read transactions to reduce the 
number of dead cycles involved in turning the bus around. The controller also reorders 
commands to improve the utilization of the data bus to the SDRAM.
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Chapter 8: Overview

• Physical Layer – The physical layer provides a high-speed interface to the SDRAM. This 
layer includes the hard blocks inside the FPGA and the soft blocks calibration logic 
necessary to ensure optimal timing of the hard blocks interfacing to the SDRAM. 

The new hard blocks in the UltraScale architecture allow interface rates of up to 
1,600 Mb/s to be achieved. The application logic is responsible for all SDRAM 
transactions, timing, and refresh. 

These hard blocks include:

- Data serialization and transmission
- Data capture and deserialization
- High-speed clock generation and synchronization
- Coarse and fine delay elements per pin with voltage and temperature tracking

° The soft blocks include:
- Memory Initialization – The calibration modules provide a JEDEC®-compliant 

initialization routine for the particular memory type. The delays in the 
initialization process can be bypassed to speed up simulation time, if desired.

- Calibration – The calibration modules provide a complete method to set all 
delays in the hard blocks and soft IP to work with the memory interface. Each bit 
is individually trained and then combined to ensure optimal interface 
performance. 

Results of the calibration process are available through the Xilinx debug tools. 
After completion of calibration, the PHY layer presents raw interface to the 
SDRAM.

• Application Interface – The user interface layer provides a simple FIFO-like interface 
to the application. Data is buffered and read data is presented in request order.

The above user interface is layered on top of the native interface to the controller. The 
native interface is not accessible by the user application and has no buffering and 
presents return data to the user interface as it is received from the SDRAM which is not 
necessarily in the original request order. The user interface then buffers the read and 
write data and reorders the data as needed. 
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X-Ref Target - Figure 8-1

Figure 8-1: UltraScale Architecture-Based FPGAs LPDDR3 Memory Interface Solution
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Feature Summary
• Density support

° Support 8 GB for component

° Other densities for memory device support is available through custom part 
selection

• 8-bank support
• x32 device support

° x16 memory device support is available through custom part selection
• 8:1 DQ:DQS ratio support for all devices
• 8-word burst support
• Support for 6 to 12 cycles of column-address strobe (CAS) latency (CL)
• On-die termination (ODT) support
• Support for 3 to 6 cycles of CAS write latency
• JEDEC®-compliant LPDDR3 initialization support
• Source code delivery in Verilog
• 4:1 memory to FPGA logic interface clock ratio
• Open, closed, and transaction based pre-charge controller policy
• Interface calibration and training information available through the Vivado® Design 

Suite hardware manager
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Licensing and Ordering
This Xilinx LogiCORE IP module is provided at no additional cost with the Xilinx Vivado 
Design Suite under the terms of the Xilinx End User License. 

Information about other Xilinx LogiCORE IP modules is available at the Xilinx Intellectual 
Property page. For information on pricing and availability of other Xilinx LogiCORE IP 
modules and tools, contact your local Xilinx sales representative.

License Checkers
If the IP requires a license key, the key must be verified. The Vivado design tools have 
several license checkpoints for gating licensed IP through the flow. If the license check 
succeeds, the IP can continue generation. Otherwise, generation halts with error. License 
checkpoints are enforced by the following tools:

• Vivado synthesis
• Vivado implementation
• write_bitstream (Tcl command)

IMPORTANT: IP license level is ignored at checkpoints. The test confirms a valid license exists. It does 
not check IP license level.
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Chapter 9

Product Specification

Standards
This core supports DRAMs that are compliant to the JESD209-3C, LPDDR3 SDRAM Standard, 
JEDEC® Solid State Technology Association [Ref 1]. 

For more information on UltraScale™ architecture documents, see References, page 789. 

Performance
Maximum Frequencies
For more information on the maximum frequencies, see the following documentation:

• Kintex UltraScale FPGAs Data Sheet, DC and AC Switching Characteristics (DS892) 
[Ref 2]

• Virtex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics (DS893) [Ref 3]
• Kintex UltraScale+ FPGAs Data Sheet: DC and AC Switching Characteristics (DS922) 

[Ref 4]
• Virtex UltraScale+ FPGAs Data Sheet: DC and AC Switching Characteristics (DS923) 

[Ref 5]
• Zynq UltraScale+ MPSoC Data Sheet: DC and AC Switching Characteristics (DS925) 

[Ref 6]
• UltraScale Maximum Memory Performance Utility (XTP414) [Ref 21]

Resource Utilization
For full details about performance and resource utilization, visit Performance and Resource 
Utilization.
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Port Descriptions
For a complete Memory Controller solution there are three port categories at the top-level 
of the memory interface core called the “user design.” 

• The first category is the memory interface signals that directly interfaces with the 
SDRAM. These are defined by the JEDEC specification. 

• The second category is the application interface signals. These are described in the 
Protocol Description, page 296. 

• The third category includes other signals necessary for proper operation of the core. 
These include the clocks, reset, and status signals from the core. The clocking and reset 
signals are described in their respective sections.

The active-High init_calib_complete signal indicates that the initialization and 
calibration are complete and that the interface is now ready to accept commands for the 
interface.
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Chapter 10

Core Architecture
This chapter describes the UltraScale™ architecture-based FPGAs Memory Interface 
Solutions core with an overview of the modules and interfaces.

Overview
The UltraScale architecture-based FPGAs Memory Interface Solutions is shown in 
Figure 10-1.

X-Ref Target - Figure 10-1

Figure 10-1: UltraScale Architecture-Based FPGAs Memory Interface Solution Core Architecture
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Memory Controller
In the core default configuration, the Memory Controller (MC) resides between the user 
interface (UI) block and the physical layer. This is depicted in Figure 10-2. 

The Memory Controller is the primary logic block of the memory interface. The Memory 
Controller receives requests from the UI and stores them in a logical queue. Requests are 
optionally reordered to optimize system throughput and latency.

The Memory Controller block is organized as four main pieces:

• A configurable number of “bank machines”
• A configurable number of “rank machines”
• A column machine
• An arbitration block

X-Ref Target - Figure 10-2

Figure 10-2: Memory Controller Block Diagram
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Bank Machines
Most of the Memory Controller logic resides in the bank machines. Bank machines 
correspond to DRAM banks. A given bank machine manages a single DRAM bank at any 
given time. However, bank machine assignment is dynamic, so it is not necessary to have a 
bank machine for each physical bank. The number of banks can be configured to trade off 
between area and performance. This is discussed in greater detail in the Precharge Policy 
section.

The duration of a bank machine assignment to a particular DRAM bank is coupled to user 
requests rather than the state of the target DRAM bank. When a request is accepted, it is 
assigned to a bank machine. When a request is complete, the bank machine is released and 
is made available for assignment to another request. Bank machines issue all the commands 
necessary to complete the request.

On behalf of the current request, a bank machine must generate row commands and 
column commands to complete the request. Row and column commands are independent 
but must adhere to DRAM timing requirements. 

The following example illustrates this concept. Consider the case when the Memory 
Controller and DRAM are idle when a single request arrives. The bank machine at the head 
of the pool:

1. Accepts your request
2. Activates the target row
3. Issues the column (read or write) command
4. Precharges the target row
5. Returns to the idle pool of bank machines

Similar functionality applies when multiple requests arrive targeting different rows or banks.

Now consider the case when a request arrives targeting an open DRAM bank, managed by 
an already active bank machine. The already active bank machine recognizes that the new 
request targets the same DRAM bank and skips the precharge step (step 4). The bank 
machine at the head of the idle pool accepts the new user request and skips the activate 
step (step 2).

Finally, when a request arrives in between both a previous and subsequent request all to the 
same target DRAM bank, the controller skips both the activate (step 2) and precharge 
(step 4) operations.

A bank machine precharges a DRAM bank as soon as possible unless another pending 
request targets the same bank. This is discussed in greater detail in the Precharge Policy 
section.
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Column commands can be reordered for the purpose of optimizing memory interface 
throughput. The ordering algorithm nominally ensures data coherence. The reordering 
feature is explained in greater detail in the Reordering section.

Rank Machines
The rank machines correspond to DRAM ranks. Rank machines monitor the activity of the 
bank machines and track rank or device-specific timing parameters. For example, a rank 
machine monitors the number of activate commands sent to a rank within a time window. 
After the allowed number of activates have been sent, the rank machine generates an 
inhibit signal that prevents the bank machines from sending any further activates to the 
rank until the time window has shifted enough to allow more activates. Rank machines are 
statically assigned to a physical DRAM rank.

Column Machine
The single column machine generates the timing information necessary to manage the DQ 
data bus. Although there can be multiple DRAM ranks, because there is a single DQ bus, all 
the columns in all DRAM ranks are managed as a single unit. The column machine monitors 
commands issued by the bank machines and generates inhibit signals back to the bank 
machines so that the DQ bus is utilized in an orderly manner.

Arbitration Block
The arbitration block receives requests to send commands to the DRAM array from the bank 
machines. Row commands and column commands are arbitrated independently. For each 
command opportunity, the arbiter block selects a row and a column command to forward to 
the physical layer. The arbitration block implements a round-robin protocol to ensure 
forward progress.

Reordering
DRAM accesses are broken into two quasi-independent parts, row commands and column 
commands. Each request occupies a logical queue entry, and each queue entry has an 
associated bank machine. These bank machines track the state of the DRAM rank or bank it 
is currently bound to, if any.

If necessary, the bank machine attempts to activate the proper rank, bank, or row on behalf 
of the current request. In the process of doing so, the bank machine looks at the current 
state of the DRAM to decide if various timing parameters are met. Eventually, all timing 
parameters are met and the bank machine arbitrates to send the activate. The arbitration is 
done in a simple round-robin manner. Arbitration is necessary because several bank 
machines might request to send row commands (activate and precharge) at the same time.
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Not all requests require an activate. If a preceding request has activated the same rank, 
bank, or row, a subsequent request might inherit the bank machine state and avoid the 
precharge/activate penalties.

After the necessary rank, bank, or row is activated and the RAS to CAS delay timing is met, 
the bank machine tries to issue the CAS-READ or CAS-WRITE command. Unlike the row 
command, all requests issue a CAS command. Before arbitrating to send a CAS command, 
the bank machine must look at the state of the DRAM, the state of the DQ bus, priority, and 
ordering. Eventually, all these factors assume their favorable states and the bank machine 
arbitrates to send a CAS command. In a manner similar to row commands, a round-robin 
arbiter uses a priority scheme and selects the next column command.

The round-robin arbiter itself is a source of reordering. Assume for example that an 
otherwise idle Memory Controller receives a burst of new requests while processing a 
refresh. These requests queue up and wait for the refresh to complete. After the DRAM is 
ready to receive a new activate, all waiting requests assert their arbitration requests 
simultaneously. The arbiter selects the next activate to send based solely on its round-robin 
algorithm, independent of request order. Similar behavior can be observed for column 
commands.

The controller supports NORM ordering mode. In this mode, the controller reorders reads 
but not writes as needed to improve efficiency. All write requests are issued in the request 
order relative to all other write requests, and requests within a given rank-bank retire in 
order. This ensures that it is not possible to observe the result of a later write before an 
earlier write completes.

Precharge Policy
The controller implements an aggressive precharge policy. The controller examines the 
input queue of requests as each transaction completes. If no requests are in the queue for 
a currently open bank/row, the controller closes it to minimize latency for requests to other 
rows in the bank. Because the queue depth is equal to the number of bank machines, 
greater efficiency can be obtained by increasing the number of bank machines 
(nBANK_MACHS). As this number is increased, FPGA logic timing becomes more 
challenging. In some situations, the overall system efficiency can be greater with an 
increased number of bank machines and a lower memory clock frequency. Simulations 
should be performed with the target design command behavior to determine the optimum 
setting.
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PHY
The PHY is considered the low-level physical interface to an external LPDDR3 SDRAM device 
as well as all calibration logic for ensuring reliable operation of the physical interface itself. 
The PHY generates the signal timing and sequencing required to interface to the memory 
device.

The PHY contains the following features:

• Clock/address/control-generation logics
• Write and read datapaths
• Logic for initializing the SDRAM after power-up

In addition, the PHY contains calibration logic to perform timing training of the read and 
write datapaths to account for system static and dynamic delays.

IMPORTANT: The PHY interface is not DFI-compliant.

Overall PHY Architecture
The UltraScale architecture PHY is composed of dedicated blocks and soft calibration logic. 
The dedicated blocks are structured adjacent to one another with back-to-back 
interconnects to minimize the clock and datapath routing necessary to build high 
performance physical layers. 

The Memory Controller and calibration logic communicate with this dedicated PHY in the 
slow frequency clock domain, which is either divided by four. A more detailed block 
diagram of the PHY design is shown in Figure 10-3.
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The Memory Controller is designed to separate out the command processing from the 
low-level PHY requirements to ensure a clean separation between the controller and 
physical layer. The command processing can be replaced with custom logic if desired, while 
the logic for interacting with the PHY stays the same and can still be used by the calibration 
logic.

X-Ref Target - Figure 10-3

Figure 10-3: PHY Block Diagram
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Table 10-1: PHY Modules
Module Name Description

<module>_...cal.sv Contains <module>_...mc_pi.sv, MUXes, and MicroBlaze processing system 
and associated logic.

<module>_...cal_addr_decode.sv FPGA logic interface for the MicroBlaze processor.
<module>_...config_rom.sv Configuration storage for calibration options.
microblaze_mcs_0.sv MicroBlaze MCS module
<module>_...iob.sv Instantiates all byte IOB modules.
<module>_...iob_byte.sv Generates the I/O buffers for all the signals in a given byte lane.
<module>_...xiphy.sv Top-level XIPHY module.
<module>_...phy.sv Top-level of the PHY, contains pll and xiphy.sv modules.
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The PHY architecture encompasses all of the logic contained in <module>_...phy.sv. 
The PHY contains wrappers around dedicated hard blocks to build up the memory interface 
from smaller components. A byte lane contains all of the clocks, resets, and datapaths for a 
given subset of I/O. Multiple byte lanes are grouped together, along with dedicated 
clocking resources, to make up a single bank memory interface. Each nibble in the PHY 
contains a Register Interface Unit (RIU), a dedicated integrated block in the XIPHY that 
provides an interface to the general interconnect logic for changing settings and delays for 
calibration. For more information on the hard silicon physical layer architecture, see the 
UltraScale™ Architecture SelectIO™ Resources User Guide (UG571) [Ref 7].

The memory initialization, calibration, and training are implemented by an embedded 
MicroBlaze™ processor. The MicroBlaze Controller System (MCS) is configured with an I/O 
Module and a block RAM. The <module>_...cal_addr_decode.sv module provides 
the interface for the processor to the rest of the system and implements helper logic. The 
<module>_...config_rom.sv module stores settings that control the operation of 
initialization and calibration, providing run time options that can be adjusted without 
having to recompile the source code.

The address unit connects the MCS to the local register set and the PHY by performing 
address decode and control translation on the I/O module bus from spaces in the memory 
map and MUXing return data (<module>_...cal_addr_decode.sv). In addition, it 
provides address translation (also known as “mapping”) from a logical conceptualization of 
the DRAM interface to the appropriate pinout-dependent location of the delay control in 
the PHY address space.

Although the calibration architecture presents a simple and organized address map for 
manipulating the delay elements for individual data, control and command bits, there is 
flexibility in how those I/O pins are placed. For a given I/O placement, the path to the FPGA 
logic is locked to a given pin. To enable a single binary software file to work with any 
memory interface pinout, a translation block converts the simplified RIU addressing into 
the pinout-specific RIU address for the target design (see Table 10-2). 

The specific address translation is written by LPDDR3 SDRAM after a pinout is selected and 
cannot be modified. The code shows an example of the RTL structure that supports this.

Casez(io_address)// MicroBlaze I/O module address
  // … static address decoding skipped
  //========================================//
  //===========DQ ODELAYS===================//
  //========================================//
  //Byte0
28’h0004100: begin //c0_lpddr3_dq[0] IO_L20P_T3L_N2_AD1P_44 
    riu_addr_cal = 6’hD;
    riu_nibble = ‘h6;
  end
  // … additional dynamic addressing follows
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In this example, DQ0 is pinned out on Bit[0] of nibble 0 (nibble 0 according to instantiation 
order). The RIU address for the ODELAY for Bit[0] is 0x0D. When DQ0 is addressed — 
indicated by address 0x000_4100), this snippet of code is active. It enables nibble 0 
(decoded to one-hot downstream) and forwards the address 0x0D to the RIU address bus.

The MicroBlaze I/O module interface is not always fast enough for implementing all of the 
functions required in calibration. A helper circuit implemented in 
<module>_...cal_addr_decode.sv is required to obtain commands from the 
registers and translate at least a portion into single-cycle accuracy for submission to the 
PHY. In addition, it supports command repetition to enable back-to-back read transactions 
and read data comparison.

Table 10-2: XIPHY RIU Addressing and Description
RIU Address Name Description

0x00 NIBBLE_CTRL0 Nibble Control 0. Control for enabling DQS gate in the XIPHY, GT_STATUS 
for gate feedback, and clear gate which resets gate circuit.

0x01 NIBBLE_CTRL1 Nibble Control 1. TX_DATA_PHASE control for every bit in the nibble.
0x02 CALIB_CTRL Calibration Control. XIPHY control and status for BISC.
0x03 Reserved Reserved
0x04 Reserved Reserved
0x05 BS_CTRL Bit slice reset. Resets the ISERDES and IFIFOs in a given nibble.
0x06 Reserved Reserved
0x07 PQTR Rising edge delay for DQS.
0x08 NQTR Falling edge delay for DQS.
0x09 Reserved Reserved
0x0A TRISTATE_ODELAY Output delay for 3-state.
0x0B ODELAY0 Output delay for bit slice 0.
0x0C ODELAY1 Output delay for bit slice 1.
0x0D ODELAY2 Output delay for bit slice 2.
0x0E ODELAY3 Output delay for bit slice 3.
0x0F ODELAY4 Output delay for bit slice 4.
0x10 ODELAY5 Output delay for bit slice 5.
0x11 ODELAY6 Output delay for bit slice 6.
0x12 IDELAY0 Input delay for bit slice 0.
0x13 IDELAY1 Input delay for bit slice 1.
0x14 IDELAY2 Input delay for bit slice 2.
0x15 IDELAY3 Input delay for bit slice 3.
0x16 IDELAY4 Input delay for bit slice 4.
0x17 IDELAY5 Input delay for bit slice 5.
0x18 IDELAY6 Input delay for bit slice 6.
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Memory Initialization and Calibration Sequence
After deassertion of the system reset, the PHY performs some required internal calibration 
steps first. 

1. The built-in self-check of the PHY (BISC) is run. BISC is used in the PHY to compute 
internal skews for use in voltage and temperature tracking after calibration is 
completed. 

2. After BISC is completed, calibration logic performs the required power-on initialization 
sequence for the memory. 

3. This is followed by several stages of timing calibration for the write and read datapaths.
4. After calibration is completed, PHY calculates internal offsets to be used in voltage and 

temperature tracking. 
5. PHY indicates calibration is finished and the controller begins issuing commands to the 

memory.

0x19 PQTR Align BISC edge alignment computation for rising edge DQS.
0x1A NQTR Align BISC edge alignment computation for falling edge DQS.
0x1B to 0x2B Reserved Reserved
0x2C WL_DLY_RNK0 Write Level register for Rank 0. Coarse and fine delay, WL_TRAIN.
0x2D WL_DLY_RNK1 Write Level register for Rank 1. Coarse and fine delay.
0x2E WL_DLY_RNK2 Write Level register for Rank 2. Coarse and fine delay.
0x2F WL_DLY_RNK3 Write Level register for Rank 3. Coarse and fine delay.
0x30 RL_DLY_RNK0 DQS Gate register for Rank 0. Coarse and fine delay.
0x31 RL_DLY_RNK1 DQS Gate register for Rank 1. Coarse and fine delay.
0x32 RL_DLY_RNK2 DQS Gate register for Rank 2. Coarse and fine delay.
0x33 RL_DLY_RNK3 DQS Gate register for Rank 3. Coarse and fine delay.
0x34 to 0x3F Reserved Reserved

Table 10-2: XIPHY RIU Addressing and Description (Cont’d)

RIU Address Name Description
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Figure 10-4 shows the overall flow of memory initialization and the different stages of 
calibration. The dark gray color is not available for this release.

When simulating a design out of LPDDR3 SDRAM, the calibration it set to be bypassed to 
enable you to generate traffic to and from the DRAM as quickly as possible. When running 
in hardware or simulating with calibration, enabled signals are provided to indicate what 
step of calibration is running or, if an error occurs, where an error occurred. 

X-Ref Target - Figure 10-4

Figure 10-4: PHY Overall Initialization and Calibration Sequence
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The first step in determining calibration status is to check the CalDone port. After the 
CalDone port is checked, the status bits should be checked to indicate the steps that were 
ran and completed. Calibration halts on the very first error encountered, so the status bits 
indicate which step of calibration was last run. The status and error signals can be checked 
through either connecting the Vivado analyzer signals to these ports or through the XSDB 
tool (also through Vivado).

The calibration status is provided through the XSDB port, which stores useful information 
regarding calibration for display in the Vivado IDE. The calibration status and error signals 
are also provided as ports to allow for debug or triggering. Table 10-3 lists the 
pre-calibration status signal description. 

Table 10-4 lists the status signals in the port as well as how they relate to the core XSDB 
data. In the status port, the mentioned bits are valid and the rest are reserved. 

Table 10-3: Pre-Calibration XSDB Status Signal Description
XSDB Status Register XSDB Bits[8:0] Description Pre-Calibration Step

DDR_PRE_CAL_STATUS

0 Done MicroBlaze has started up
1 Done Reserved
2 Done Reserved
3 Done Reserved
4 Done XSDB Setup Complete
5 – Reserved
6 – Reserved
7 – Reserved
8 – Reserved

Table 10-4: XSDB Status Signal Descriptions

XSDB Status Register XSDB 
Bits[8:0]

Status Port 
Bits[127:0] Description Calibration Stage Name

Calibration 
Stage 

Number

DDR_CAL_STATUS_RANKx_0

0 0 Start Command Address 
Calibration 1

1 1 Done – –
2 2 Start Write Leveling 2
3 3 Done – –
4 4 Start DQS Gating 3
5 5 Done – –
6 6 Start Read Leveling 4
7 7 Done – –
8 8 Start Write DQS DQ Centering 5
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Table 10-5 lists the post-calibration XSDB status signal descriptions.

Command Address Calibration
Command address bus in LPDDR3 is a Double Data Rate (DDR) type and hence, centering 
the CK in each CA bit is necessary. This calibration stage allows the controller to adjust each 
CA bit with respect to the CK forwarded to the LPDDR3 SDRAM device. The controller uses 
the CA training mode of the LPDDR3 device to achieve the centering.

During the CA training mode, the data sent on the address bus is returned on the DQ bus. 
Each CA bit is delayed until a 0 to 1 transition is detected to find the left margin. Once the 
left edge detection is complete, CK is moved to find the right edge. The ODELAY elements 
are used on both CA and CK during this alignment.

DDR_CAL_STATUS_RANKx_1

0 9 Done – –
1 10 Start Write DQS DM Centering 6
2 11 Done – –
3 12 Start Write Latency Calibration 7
4 13 Done – –
5 14 Start Sanity Check 8
6 15 Done – –

Table 10-4: XSDB Status Signal Descriptions (Cont’d)

XSDB Status Register XSDB 
Bits[8:0]

Status Port 
Bits[127:0] Description Calibration Stage Name

Calibration 
Stage 

Number

Table 10-5: Post-Calibration XSDB Status Signal Description
XSDB Status Register XSDB Bits[8:0] Description Post-Calibration Step

DDR_POST_CAL_STATUS

0 Running
DQS Gate Tracking1 Idle

2 Fail
3 – Reserved
4 – Reserved
5 – Reserved
6 – Reserved
7 – Reserved
8 – Reserved
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Write Leveling
LPDDR3 write leveling allows the controller to adjust each write DQS phase independently 
with respect to the CK forwarded to the LPDDR3 SDRAM device. This compensates for the 
skew between DQS and CK and meets the tDQSS specification. 

During write leveling, DQS is driven by the FPGA memory interface and DQ is driven by the 
LPDDR3 SDRAM device to provide feedback. DQS is delayed until the 0 to 1 edge transition 
on DQ is detected. The DQS delay is achieved using both ODELAY and coarse tap delays. 

After the edge transition is detected, the write leveling algorithm centers on the noise 
region around the transition to maximize margin. This second step is completed with only 
the use of ODELAY taps. Any reference to “FINE” is the ODELAY search.

DQS Gate
During this stage of calibration, the read DQS preamble is detected and the gate to enable 
data capture within the FPGA is calibrated to be one clock cycle before the first valid data 
on DQ. The coarse and fine DQS gate taps (RL_DLY_COARSE and RL_DLY_FINE) are adjusted 
during this stage. Read commands are issued with gaps in between to continually search for 
the DQS preamble position. During this stage of calibration, only the read DQS signals are 
monitored and not the read DQ signals. DQS Preamble Detection is performed sequentially 
on a per byte basis.

During this stage of calibration, the coarse taps are first adjusted while searching for the 
low preamble position and the first rising DQS edge, in other words, a DQS pattern of 00X1. 

If the preamble is not found, the read latency is increased by one. The coarse taps are reset 
and then adjusted again while searching for the low preamble and first rising DQS edge. 
After the preamble position is properly detected, the fine taps are then adjusted to fine 
tune and edge align the position of the sample clock with the DQS.

X-Ref Target - Figure 10-5

Figure 10-5: LPDDR3 Preamble
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Read Leveling
Read Leveling is performed over multiple stages to maximize the data eye and center the 
internal read sampling clock in the read DQ window for robust sampling. To perform this, 
Read Leveling performs the following sequential steps:

1. Maximizes the DQ eye by removing skew and OCV effects using per bit read DQ deskew.
2. Sweeps DQS across all DQ bits and finds the center of the data eye using the 

Multi-Purpose register data pattern. Centering of the data eye is completed for both the 
DQS and DQS#.

3. Post calibration, continuously maintains the relative delay of DQS versus DQ across the 
VT range.

Read Per-Bit Deskew

Per-bit deskew is performed on a per-bit basis whereas Read Leveling DQS centering is 
performed on a per-nibble basis.

During per-bit deskew, Read Leveling Calibration, a pattern of 00000000_11111111 is 
written and read back while DQS adjustments (PQTR and NQTR individual fine taps on DQS) 
and DQ adjustments (IDELAY) are made.

At the end of this stage, the DQ bits are internally deskewed to the left edge of the 
incoming DQS.

Write DQS DQ Centering
This stage of calibration is required to center align the write DQS in the write DQ window 
per bit. At the start of Write DQS Centering and Per-Bit Deskew, DQS is aligned to CK but no 
adjustments on the write window have been made. Write window adjustments are made in 
the following two sequential stages:

• Write Per-Bit Deskew
• Write DQS Centering

Write DQS-to-DQ Per-Bit Deskew

During write per-bit deskew, a toggling 10101010 pattern is continuously written and read 
back while making 90o clock phase adjustments on the write DQ along with individual fine 
ODELAY adjustments on DQS and DQ. At the end of per-bit write DQ deskew, the write DQ 
bits are aligned as they are transmitted to the memory.
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Write DQS-to-DQ Centering

During Write DQS Centering, the same toggling 10101010 pattern is continuously written 
and read back. ODELAY adjustments on DQS and DQ are also made but all of the DQ 
ODELAY adjustments for a given byte are made in step to maintain the previously deskewed 
alignment.

Write DQS DM Calibration
In all previous stages of calibration, data mask signals are driven low before and after the 
required amount of time to ensure they have no impact on calibration. Now, both the read 
and the writes have been calibrated and data mask can reliably be adjusted. If DM signals 
are not used within the interface, this stage of calibration is skipped.

During DM Calibration, a data pattern of 55555555_55555555 is first written to address 
0x000 followed by a write to the same address but with a data pattern of 
BBBBBBBB_BBBBBBBB with DM asserted during the rising edge of DQS. A read is then 
issued where the expected read back pattern is all “B” except for the data where DM was 
asserted. In these masked locations, a 5 is expected. The same series of steps completed 
during Write Per-Bit Deskew and Write DQS Centering is then completed but for the DM 
bits.

Write Latency Calibration
Write Latency Calibration is required to align DQS to the correct CK edge. During write 
leveling, DQS is aligned to the nearest rising edge of CK. However, this might not be the 
edge that captures the write command.

Depending on the interface type, the DQS could either be one CK cycle earlier than, two CK 
cycles earlier than, or aligned to the CK edge that captures the write command.

This is a pattern based calibration where coarse adjustments are made on a per byte basis 
until the expected on time write pattern is read back. The process is as follows:

1. Issue extended writes followed by a single read.
2. Check the pattern readback against the expected patterns.
3. If necessary add coarse adjustments.
4. Repeat until the on time write pattern is read back, signifying DQS is aligned to the 

correct CK cycle, or an incorrect pattern is received resulting in a Write Latency failure.

The following data is written at address 0x000:

• Data pattern before (with extra DQS pulses): 0000000000000000
• Data pattern written to address 0x000: FF00AA5555AA9966
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• Data pattern after (with extra DQS pulses): FFFFFFFFFFFFFFFFFF

Reads are then performed where the following patterns can be calibrated:

• On time write pattern read back: FF00AA5555AA9966 (no adjustments needed)
• One DQS early write pattern read back: AA5555AA9966FFFF
• Two DQS early write pattern read back: 55AA9966FFFFFFFF
• Three DQS early write pattern read back: 9966FFFFFFFFFFFF

Write Latency Calibration can fail for the following cases and signify a board violation 
between DQS and CK trace matching:

• Four DQS early pattern FFFFFFFFFFFFFFFF
• One DQS late write pattern read back: 0000FF00AA5555AA
• Two DQS late write pattern read back: 00000000FF00AA55
• Three DQS late write pattern read back: 000000000000FF00

Write/Read Sanity Check
At the end of all calibration stages, a check of the data is made to ensure the previous stage 
of calibration did not inadvertently leave the write or read path in a bad spot. A single write 
burst followed by a single read command to the same location is sent to the DRAM, and the 
data is checked against the expected data across all bytes before continuing. During this 
step, the expected data pattern as seen on a nibble is 937EC924.

Enable VT Tracking
After all stages of calibration, a signal is sent to the XIPHY to recalibrate internal delays to 
start voltage and temperature tracking. The XIPHY asserts a signal when complete, 
phy2clb_phy_rdy_upp for upper nibbles and phy2clb_phy_rdy_low for lower 
nibbles.
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Reset Sequence
The sys_rst signal resets the entire memory design which includes general interconnect 
(fabric) logic which is driven by the MMCM clock (clkout0) and RIU logic. MicroBlaze™ and 
calibration logic are driven by the MMCM clock (clkout6). The sys_rst input signal is 
synchronized internally to create the ui_clk_sync_rst signal. The ui_clk_sync_rst 
reset signal is synchronously asserted and synchronously deasserted.

Figure 10-6 shows the ui_clk_sync_rst (fabric reset) is synchronously asserted with a 
few clock delays after sys_rst is asserted. When ui_clk_sync_rst is asserted, there are 
a few clocks before the clocks are shut off. 

The following are the reset sequencing steps:

1. Reset to design is initiated after ui_clk_sync_rst goes High.
2. init_calib_complete signal goes Low when ui_clk_sync_rst is High.
3. Reset to design is deactivated after ui_clk_sync_rst is Low. 
4. After ui_clk_sync_rst is deactivated, the init_calib_complete is asserted after 

calibration is completed.

X-Ref Target - Figure 10-6

Figure 10-6: Reset Sequence Waveform
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Designing with the Core
This chapter includes guidelines and additional information to facilitate designing with the 
core. 

Clocking
The memory interface requires one MMCM, one TXPLL per I/O bank used by the memory 
interface, and two BUFGs. These clocking components are used to create the proper clock 
frequencies and phase shifts necessary for the proper operation of the memory interface.

There are two TXPLLs per bank. If a bank is shared by two memory interfaces, both TXPLLs 
in that bank are used.

Note: LPDDR3 SDRAM generates the appropriate clocking structure and no modifications to the 
RTL are supported.

The LPDDR3 SDRAM tool generates the appropriate clocking structure for the desired 
interface. This structure must not be modified. The allowed clock configuration is as 
follows:

• Differential reference clock source connected to GCIO
• GCIO to MMCM (located in center bank of memory interface)
• MMCM to BUFG (located at center bank of memory interface) driving FPGA logic and 

all TXPLLs
• MMCM to BUFG (located at center bank of memory interface) divide by two mode 

driving 1/2 rate FPGA logic
• Clocking pair of the interface must be in the same SLR of memory interface for the SSI 

technology devices
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Requirements

GCIO

• Must use a differential I/O standard
• Must be in the same I/O column as the memory interface
• Must be in the same SLR of memory interface for the SSI technology devices
• The I/O standard and termination scheme are system dependent. For more information, 

consult the UltraScale Architecture SelectIO Resources User Guide (UG571) [Ref 7].

MMCM

• MMCM is used to generate the FPGA logic system clock (1/4 of the memory clock)
• Must be located in the center bank of memory interface
• Must use internal feedback
• Input clock frequency divided by input divider must be ≥  70 MHz (CLKINx / D ≥  

70 MHz)
• Must use integer multiply and output divide values

Input Clock Requirement

• The clock generator driving the GCIO should have jitter < 3 ps RMS.
• The input clock should always be clean and stable. The IP functionality is not 

guaranteed if this input system clock has a glitch, discontinuous, etc.
• No spread spectrum clock is allowed.

BUFGs and Clock Roots

• One BUFG is used to generate the system clock to FPGA logic and another BUFG is used 
to divide the system clock by two.

• BUFGs and clock roots must be located in center most bank of the memory interface.

° For two bank systems, the bank with the higher number of bytes selected is chosen 
as the center bank. If the same number of bytes is selected in two banks, then the 
top bank is chosen as the center bank.

° Both the BUFGs must be in the same bank.
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TXPLL

• CLKOUTPHY from TXPLL drives XIPHY within its bank
• TXPLL must be set to use a CLKFBOUT phase shift of 90°
• TXPLL must be held in reset until the MMCM lock output goes High
• Must use internal feedback

Figure 11-1 shows an example of the clocking structure for a three bank memory interface. 
The GCIO drives the MMCM located at the center bank of the memory interface. MMCM 
drives both the BUFGs located in the same bank. The BUFG (which is used to generate 
system clock to FPGA logic) output drives the TXPLLs used in each bank of the interface. 

The MMCM is placed in the center bank of the memory interface.

X-Ref Target - Figure 11-1

Figure 11-1: Clocking Structure for Three Bank Memory Interface
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• For two bank systems, MMCM is placed in a bank with the most number of bytes 
selected. If they both have the same number of bytes selected in two banks, then 
MMCM is placed in the top bank.

• For four bank systems, MMCM is placed in a second bank from the top.

For designs generated with System Clock configuration of No Buffer, MMCM must not be 
driven by another MMCM/PLL. Cascading clocking structures MMCM →  BUFG →  MMCM 
and PLL →  BUFG →  MMCM are not allowed.

If the MMCM is driven by the GCIO pin of the other bank, then the 
CLOCK_DEDICATED_ROUTE constraint with value "BACKBONE" must be set on the net that 
is driving MMCM or on the MMCM input. Setting up the CLOCK_DEDICATED_ROUTE 
constraint on the net is preferred. But when the same net is driving two MMCMs, the 
CLOCK_DEDICATED_ROUTE constraint must be managed by considering which MMCM 
needs the BACKBONE route. 

In such cases, the CLOCK_DEDICATED_ROUTE constraint can be set on the MMCM input. To 
use the "BACKBONE" route, any clock buffer that exists in the same CMT tile as the GCIO 
must exist between the GCIO and MMCM input. The clock buffers that exists in the I/O CMT 
are BUFG, BUFGCE, BUFGCTRL, and BUFGCE_DIV. So LPDDR3 SDRAM instantiates BUFG 
between the GCIO and MMCM when the GCIO pins and MMCM are not in the same bank 
(see Figure 11-1). 

If the GCIO pin and MMCM are allocated in different banks, LPDDR3 SDRAM generates 
CLOCK_DEDICATED_ROUTE constraints with value as "BACKBONE." If the GCIO pin and 
MMCM are allocated in the same bank, there is no need to set any constraints on the 
MMCM input. 

Similarly when designs are generated with System Clock Configuration as a No Buffer 
option, you must take care of the "BACKBONE" constraint and the BUFG/BUFGCE/
BUFGCTRL/BUFGCE_DIV between GCIO and MMCM if GCIO pin and MMCM are allocated in 
different banks. LPDDR3 SDRAM does not generate clock constraints in the XDC file for No 
Buffer configurations and you must take care of the clock constraints for No Buffer 
configurations. For more information on clocking, see the UltraScale Architecture Clocking 
Resources User Guide (UG572) [Ref 8].

XDC syntax for CLOCK_DEDICATED_ROUTE constraint is given here: 

For LPDDR3:
set_property CLOCK_DEDICATED_ROUTE BACKBONE [get_pins -hier -filter {NAME =~ */
u_ddr_infrastructure/gen_mmcme*.u_mmcme_adv_inst/CLKIN1}]

For more information on the CLOCK_DEDICATED_ROUTE constraints, see the Vivado Design 
Suite Properties Reference Guide (UG912) [Ref 9].

Note: If two different GCIO pins are used for two LPDDR3 SDRAM IP cores in the same bank, center 
bank of the memory interface is different for each IP. LPDDR3 SDRAM generates MMCM LOC and 
CLOCK_DEDICATED_ROUTE constraints accordingly.
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Sharing of Input Clock Source (sys_clk_p)
If the same GCIO pin must be used for two IP cores, generate the two IP cores with the same 
frequency value selected for option Reference Input Clock Period (ps) and System Clock 
Configuration option as No Buffer. Perform the following changes in the wrapper file in 
which both IPs are instantiated:

1. LPDDR3 SDRAM generates a single-ended input for system clock pins, such as 
sys_clk_i. Connect the differential buffer output to the single-ended system clock 
inputs (sys_clk_i) of both the IP cores.

2. System clock pins must be allocated within the same I/O column of the memory 
interface pins allocated. Add the pin LOC constraints for system clock pins and clock 
constraints in your top-level XDC.

3. You must add a "BACKBONE" constraint on the net that is driving the MMCM or on the 
MMCM input if GCIO pin and MMCM are not allocated in the same bank. Apart from 
this, BUFG/BUFGCE/BUFGCTRL/BUFGCE_DIV must be instantiated between GCIO and 
MMCM to use the "BACKBONE" route.

Note:

° The UltraScale architecture includes an independent XIPHY power supply and TXPLL 
for each XIPHY. This results in clean, low jitter clocks for the memory system.

° Skew spanning across multiple BUFGs is not a concern because single point of 
contact exists between BUFG →  TXPLL and the same BUFG →  System Clock Logic.

° System input clock cannot span I/O columns because the longer the clock lines 
span, the more jitter is picked up.

TXPLL Usage
There are two TXPLLs per bank. If a bank is shared by two memory interfaces, both TXPLLs 
in that bank are used. One PLL per bank is used if a bank is used by a single memory 
interface. You can use a second PLL for other usage. To use a second PLL, you can perform 
the following steps:

1. Generate the design for the System Clock Configuration option as No Buffer. 
2. LPDDR3 SDRAM generates a single-ended input for system clock pins, such as 

sys_clk_i. Connect the differential buffer output to the single-ended system clock 
inputs (sys_clk_i) and also to the input of PLL (PLL instance that you have in your 
design).

3. You can use the PLL output clocks.
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Additional Clocks
You can produce up to four additional clocks which are created from the same MMCM that 
generates ui_clk. Additional clocks can be selected from the Clock Options section in the 
Advanced tab. The GUI lists the possible clock frequencies from MMCM and the 
frequencies for additional clocks vary based on selected memory frequency (Memory 
Device Interface Speed (ps) value in the Basic tab), selected FPGA, and FPGA speed grade. 

Reduce System Noise during Calibration
The system design should be as quiet as possible during the calibration process. In 
particular, the Soft Error Mitigation (SEM) IP, if used, should be disabled during calibration. 
For calibration that occurs immediately after the configuration or reconfiguration of the 
FPGA, use the ICAP arbitration interface to hold off the SEM IP in the boot stage. For more 
information on the ICAP Arbitration Interface, see “ICAP Arbitration Interface” section in 
Chapter 3 of the UltraScale Architecture Soft Error Mitigation Controller LogiCORE IP Product 
Guide (PG187) [Ref 10].

For situations where the memory interface is reset and recalibrated without a 
reconfiguration of the FPGA, the SEM IP must be set into IDLE state to disable the memory 
scan and to send the SEM IP back into the scanning (Observation or Detect only) states 
afterwards. This can be done in two methods, through the “Command Interface” or “UART 
interface.” See Chapter 3 of the UltraScale Architecture Soft Error Mitigation Controller 
LogiCORE IP Product Guide (PG187) [Ref 10] for more information.

Resets
An asynchronous reset (sys_rst) input is provided. This is an active-High reset and the 
sys_rst must assert for a minimum pulse width of 5 ns. The sys_rst can be an internal 
or external pin.

IMPORTANT: If two controllers share a bank, they cannot be reset independently. The two controllers 
must have a common reset input.

For more information on reset, see the Reset Sequence in Chapter 10, Core Architecture.

Note: The best possible calibration results are achieved when the FPGA activity is minimized from 
the release of this reset input until the memory interface is fully calibrated as indicated by the 
init_calib_complete port (see the User Interface section of this document).
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PCB Guidelines for LPDDR3
Strict adherence to all documented LPDDR3 PCB guidelines is required for successful 
operation. For more information on PCB guidelines, see the UltraScale Architecture PCB 
Design and Pin Planning User Guide (UG583) [Ref 11].

Pin and Bank Rules
LPDDR3 Pin Rules
Here is some description on the terminology used in this section:

• Address/control means ck_t/ck_c, cs_n, ca[9:0], cke, and odt.
• Pins in a byte lane are numbered N0 to N12.
• Byte lanes in a bank are designed by T0, T1, T2, or T3. Nibbles within a byte lane are 

distinguished by a “U” or “L” designator added to the byte lane designator (T0, T1, T2, 
or T3). Thus they are T0L, T0U, T1L, T1U, T2L, T2U, T3L, and T3U.

Note: There are two PLLs per bank and a controller uses one PLL in every bank that is being used by 
the interface.
1. dqs, dq, and dm location.

a. dqs must be located on a dedicated dqs pair in the upper nibble designated with 
“U.” dq associated with a dqs must be in same byte lane on any of the other pins 
except pins 1 and 12.

b. The dm associated with a dqs must be located on pin N0 in the byte lane.
2. Byte lanes are configured as either data or address/control. No data signals (dqs, dq, 

dm) can be in a byte lane that is configured for address/control. Only pins 1 and 12 can 
be used for cke and odt pins in a data byte lane.

3. Address/control can be on any of the 13 pins in the address/control byte lanes. Address/
control must be contained within the same bank.
a. Address/control: ck_t/ck_c, ca[9:0], and cs_n must be placed in the same byte.
b. ck_t/ck_c must be placed in 0/1 or 6/7 pins of the byte.
c. cke and odt can be allocated in data or address/control byte lanes.
d. All address/control signals must be placed in the same bank.

4. There is one vrp pin per bank and DCI cascade is required for the interface when placed 
in a HP bank. DCI cascade option is supported.
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a. If DCI cascade option is disabled, vrp pin per bank is needed for DCI termination for 
memory pins allocated banks. So one vrp pin per bank is reserved in memory pins 
allocated banks during pin allocation.

b. If the bank contains any memory port(s), vrp must be reserved and must not be 
allocated to any Memory Port or any other general I/O.

c. If the bank contains system clock signals (sys_clk_p and sys_clk_n) and status 
output pins (init_calib_complete, data_compare_error and sys_rst_n) 
only, vrp can be used as normal I/O.

d. If DCI cascade option is enabled, vrp pin can be used for any memory port or any 
other general I/O. DCI cascade rules are the same as the I/O DCI rules and there are 
no specific DCI cascade rules for memory specific.

e. DCI cascade is valid for HP banks only.

RECOMMENDED: Xilinx strongly recommends that the DCIUpdateMode option is kept with the default 
value of ASREQUIRED so that the DCI circuitry is allowed to operate normally.

5. All I/O banks used by the memory interface must be in the same column and must be in 
the same SLR.

6. Maximum height of interface is two contiguous banks. 
7. Bank skipping is not allowed.
8. The input clock must be connected to GCIO. The highest performance is achieved when 

the input clock for the MMCM in the interface comes from the clock capable pair in the 
I/O column used for the memory interface.

9. System clock pins (sys_clk_p and sys_clk_n) restricted to the same column of 
memory I/Os allocated banks. Also, they must be in the same SLR of the memory 
interface for the SSI technology devices.

10. System clock pins can also be allocated in the memory banks.
11. System clock pins must be allocated within the same SLR of the memory pins allocated 

SLR.
12. System control/status signals (init_calib_complete, data_compare_error, and 

sys_rst_n) can be allocated in any bank in the device which also includes memory 
banks. These signals can also be allocated across SLR.

13. There are dedicated VREF pins (not included in the rules above). Either internal or 
external VREF is permitted. If an external VREF is not used, the VREF pins must be pulled 
to ground by a resistor value specified in the UltraScale™ Architecture SelectIO™ 
Resources User Guide (UG571) [Ref 7]. These pins must be connected appropriately for 
the standard in use. When using external VREF for a LPDDR3 interface, provide the FPGA 
VREF pins a 0.75V reference.
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IMPORTANT: The system reset pin (sys_rst_n) must not be allocated to pin N0 or N6 if the byte is 
used in a memory interface. Consult the UltraScale Architecture Select IO Resources User Guide 
(UG571) [Ref 7] for more information.

Pinout Swapping

• Pins can swap freely within each byte group (data and address/control), except for the 
DQS pair which must be on the dedicated DQS pair in the nibble (for more information, 
see the dqs, dq, and dm location in LPDDR3 Pin Rules). 

• Byte groups (data and address/control) can swap easily with each other.
• Pins in the address/control byte groups can swap freely within and between their byte 

groups.
• No other pin swapping is permitted.

Pinout Examples

IMPORTANT: Due to the calibration stage, there is no need for set_input_delay/
set_output_delay on the LPDDR3 SDRAM. Ignore the unconstrained inputs and outputs for 
LPDDR3 SDRAM and the signals which are calibrated.

Table 11-1 shows an example of a 32-bit LPDDR3 interface contained in two banks. This 
example is for a component interface using x32 LPDDR3 components. 
Table 11-1: 32-Bit LPDDR3 Interface Contained in Two Banks

Bank Signal Name Byte Group I/O Type

Bank 1
1 – T3U_12 –
1 – T3U_11 N
1 – T3U_10 P
1 – T3U_9 N
1 – T3U_8 P
1 – T3U_7 N
1 – T3U_6 P
1 – T3L_5 N
1 – T3L_4 P
1 – T3L_3 N
1 – T3L_2 P
1 – T3L_1 N
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1 – T3L_0 P

1 – T2U_12 –
1 – T2U_11 N
1 – T2U_10 P
1 – T2U_9 N
1 – T2U_8 P
1 – T2U_7 N
1 – T2U_6 P
1 – T2L_5 N
1 – T2L_4 P
1 – T2L_3 N
1 – T2L_2 P
1 – T2L_1 N
1 – T2L_0 P

1 – T1U_12 –
1 dq31 T1U_11 N
1 dq30 T1U_10 P
1 dq29 T1U_9 N
1 dq28 T1U_8 P
1 dqs3_c T1U_7 N
1 dqs3_t T1U_6 P
1 dq27 T1L_5 N
1 dq26 T1L_4 P
1 dq25 T1L_3 N
1 dq24 T1L_2 P
1 – T1L_1 N
1 dm3 T1L_0 P

1 vrp T0U_12 –
1 dq23 T0U_11 N
1 dq22 T0U_10 P

Table 11-1: 32-Bit LPDDR3 Interface Contained in Two Banks (Cont’d)

Bank Signal Name Byte Group I/O Type
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1 dq21 T0U_9 N
1 dq20 T0U_8 P
1 dqs2_c T0U_7 N
1 dqs2_t T0U_6 P
1 dq19 T0L_5 N
1 dq18 T0L_4 P
1 dq17 T0L_3 N
1 dq16 T0L_2 P
1 – T0L_1 N
1 dm2 T0L_0 P

Bank 2
2 ca0 T3U_12 –
2 ca1 T3U_11 N
2 ca2 T3U_10 P
2 ca3 T3U_9 N
2 ca4 T3U_8 P
2 ca5 T3U_7 N
2 ca6 T3U_6 P
2 ca7 T3L_5 N
2 ca8 T3L_4 P
2 ca9 T3L_3 N
2 cs_n T3L_2 P
2 ck_c T3L_1 N
2 ck_t T3L_0 P

2 – T2U_12 –
2 – T2U_11 N
2 – T2U_10 P
2 – T2U_9 N
2 – T2U_8 P
2 – T2U_7 N
2 – T2U_6 P
2 – T2L_5 N

Table 11-1: 32-Bit LPDDR3 Interface Contained in Two Banks (Cont’d)

Bank Signal Name Byte Group I/O Type

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG150&Title=UltraScale%20Architecture-Based%20FPGAs%20Memory%20IP%20v1.4&releaseVersion=1.4&docPage=294


UltraScale Architecture-Based FPGAs Memory IP v1.4 295
PG150 October 22, 2021 www.xilinx.com

Chapter 11: Designing with the Core

2 – T2L_4 P
2 – T2L_3 N
2 – T2L_2 P
2 sys_clk_n T2L_1 N
2 sys_clk_p T2L_0 P

2 – T1U_12 –
2 dq15 T1U_11 N
2 dq14 T1U_10 P
2 dq13 T1U_9 N
2 dq12 T1U_8 P
2 dqs1_c T1U_7 N
2 dqs1_t T1U_6 P
2 dq11 T1L_5 N
2 dq10 T1L_4 P
2 dq9 T1L_3 N
2 dq8 T1L_2 P
2 odt T1L_1 N
2 dm1 T1L_0 P

2 vrp T0U_12 –
2 dq7 T0U_11 N
2 dq6 T0U_10 P
2 dq5 T0U_9 N
2 dq4 T0U_8 P
2 dqs0_c T0U_7 N
2 dqs0_t T0U_6 P
2 dq3 T0L_5 N
2 dq2 T0L_4 P
2 dq1 T0L_3 N
2 dq0 T0L_2 P
2 cke T0L_1 N
2 dm0 T0L_0 P

Table 11-1: 32-Bit LPDDR3 Interface Contained in Two Banks (Cont’d)

Bank Signal Name Byte Group I/O Type
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Protocol Description
This core has a user interface.

User Interface
The user interface signals are described in Table 11-2 and connects to an FPGA user design 
to allow access to an external memory device. The user interface is layered on top of the 
native interface which is described earlier in the controller description.

Table 11-2: User Interface
Signal I/O Description

app_addr[APP_ADDR_WIDTH – 
1:0] I This input indicates the address for the current request.

app_cmd[2:0] I This input selects the command for the current request.

app_en I This is the active-High strobe for the app_addr[], app_cmd[2:0], and 
app_hi_pri inputs.

app_rdy O
This output indicates that the user interface is ready to accept 
commands. If the signal is deasserted when app_en is enabled, the 
current app_cmd, app_autoprecharge, and app_addr must be retried 
until app_rdy is asserted.

app_hi_pri I This input is reserved and should be tied to 0.
app_rd_data
[APP_DATA_WIDTH – 1:0] O This provides the output data from read commands.

app_rd_data_end O This active-High output indicates that the current clock cycle is the last 
cycle of output data on app_rd_data[].

app_rd_data_valid O This active-High output indicates that app_rd_data[] is valid.
app_wdf_data
[APP_DATA_WIDTH – 1:0] I This provides the data for write commands.

app_wdf_end I This active-High input indicates that the current clock cycle is the last 
cycle of input data on app_wdf_data[].

app_wdf_mask
[APP_MASK_WIDTH – 1:0] I This provides the mask for app_wdf_data[]. 

app_wdf_rdy O
This output indicates that the write data FIFO is ready to receive data. 
Write data is accepted when app_wdf_rdy = 1’b1 and app_wdf_wren = 
1’b1.

app_wdf_wren I This is the active-High strobe for app_wdf_data[].
ui_clk O This user interface clock must be one quarter of the DRAM clock.
init_calib_complete O PHY asserts init_calib_complete when calibration is finished.
ui_clk_sync_rst O This is the active-High user interface reset.
addn_ui_clkout1 O Additional clock outputs provided based on user requirement.
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app_addr[APP_ADDR_WIDTH – 1:0]

This input indicates the address for the request currently being submitted to the user 
interface. The user interface aggregates all the address fields of the external SDRAM and 
presents a flat address space.

The MEM_ADDR_ORDER parameter determines how app_addr is mapped to the SDRAM 
address bus and chip select pins. This mapping can have a significant impact on memory 
bandwidth utilization. “ROW_BANK_COLUMN” is the recommended MEM_ADDR_ORDER 
setting.

The address mapping in ROW_BANK_COLUMN ordering has been depicted in Table 11-3 
and Figure 11-2. 

addn_ui_clkout2 O Additional clock outputs provided based on user requirement.
addn_ui_clkout3 O Additional clock outputs provided based on user requirement.
addn_ui_clkout4 O Additional clock outputs provided based on user requirement.

dbg_clk O Debug Clock. Do not connect any signals to dbg_clk and keep the port 
open during instantiation.

sl_iport0 I
[36:0] Input Port 0 (* KEEP = "true" *)

sl_oport0 O
[16:0] Output Port 0 (* KEEP = "true" *)

Table 11-2: User Interface (Cont’d)

Signal I/O Description

Table 11-3: LPDDR3 ROW_BANK_COLUMN
SDRAM app_addr Mapping
Rank (RANK == 1) ? 1'b0:
Row app_addr[COL_WIDTH + BANK_WIDTH +: ROW_WIDTH]
Column app_addr[0 +: COL_WIDTH]
Bank app_addr[COL_WIDTH +: BANK_WIDTH]
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The address mapping in BANK_ROW_COLUMN ordering has been depicted in Table 11-4 
and Figure 11-3. 

X-Ref Target - Figure 11-2

Figure 11-2: Address Ordering for ROW_BANK_COLUMN
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Table 11-4: LPDDR3 BANK_ROW_COLUMN
SDRAM app_addr Mapping
Rank (RANK == 1) ? 1'b0:
Row app_addr[COL_WIDTH +: ROW_WIDTH]
Column app_addr[0 +: COL_WIDTH]
Bank app_addr[COL_WIDTH + ROW_WIDTH +: BANK_WIDTH]

X-Ref Target - Figure 11-3

Figure 11-3: Address Ordering for BANK_ROW_COLUMN
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app_cmd[2:0]

This input specifies the command for the request currently being submitted to the user 
interface. The available commands are shown in Table 11-5. 

app_en

This input strobes in a request. Apply the desired values to app_addr[], app_cmd[2:0], and 
app_hi_pri, and then assert app_en to submit the request to the user interface. This 
initiates a handshake that the user interface acknowledges by asserting app_rdy.

app_hi_pri

This input indicates that the current request is a high priority.

app_wdf_data[APP_DATA_WIDTH – 1:0]

This bus provides the data currently being written to the external memory. 

app_wdf_end

This input indicates that the data on the app_wdf_data[] bus in the current cycle is the 
last data for the current request.

app_wdf_mask[APP_MASK_WIDTH – 1:0]

This bus indicates which bits of app_wdf_data[] are written to the external memory and 
which bits remain in their current state. The bytes are masked by setting a value of 1 to the 
corresponding bits in app_wdf_mask. For example, if the application data width is 256, the 
mask width takes a value of 32. The least significant byte [7:0] of app_wdf_data is masked 
using Bit[0] of app_wdf_mask and the most significant byte [255:248] of app_wdf_data 
is masked using Bit[31] of app_wdf_mask. Hence if you have to mask the last DWORD, that 
is, bytes 0, 1, 2, and 3 of app_wdf_data, the app_wdf_mask should be set to 
32'h0000_000F. 

app_wdf_wren

This input indicates that the data on the app_wdf_data[] bus is valid.

Table 11-5: Commands for app_cmd[2:0]
Operation app_cmd[2:0] Code

Write 000
Read 001
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app_rdy

This output indicates whether the request currently being submitted to the user interface is 
accepted. If the user interface does not assert this signal after app_en is asserted, the 
current request must be retried. The app_rdy output is not asserted if:

° PHY/Memory initialization is not yet completed.

° All the bank machines are occupied (can be viewed as the command buffer being 
full).
- A read is requested and the read buffer is full.
- A write is requested and no write buffer pointers are available.

° A periodic read is being inserted.

app_rd_data[APP_DATA_WIDTH – 1:0]

This output contains the data read from the external memory.

app_rd_data_end

This output indicates that the data on the app_rd_data[] bus in the current cycle is the 
last data for the current request.

app_rd_data_valid

This output indicates that the data on the app_rd_data[] bus is valid.

app_wdf_rdy

This output indicates that the write data FIFO is ready to receive data. Write data is accepted 
when both app_wdf_rdy and app_wdf_wren are asserted. 

ui_clk_sync_rst

This is the reset from the user interface which is in synchronous with ui_clk.

ui_clk

This is the output clock from the user interface. It must be a quarter the frequency of the 
clock going out to the external SDRAM, which depends on 2:1 or 4:1 mode selected in 
Vivado IDE.
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init_calib_complete

PHY asserts init_calib_complete when calibration is finished. The application has no 
need to wait for init_calib_complete before sending commands to the Memory 
Controller.

Command Path

When the user logic app_en signal is asserted and the app_rdy signal is asserted from the 
user interface, a command is accepted and written to the FIFO by the user interface. The 
command is ignored by the user interface whenever app_rdy is deasserted. The user logic 
needs to hold app_en High along with the valid command, autoprecharge, and address 
values until app_rdy is asserted as shown for the "write with autoprecharge" transaction in 
Figure 11-4.

A non back-to-back write command can be issued as shown in Figure 11-5. This figure 
depicts three scenarios for the app_wdf_data, app_wdf_wren, and app_wdf_end 
signals as follows:

1. Write data is presented along with the corresponding write command.
2. Write data is presented before the corresponding write command.
3. Write data is presented after the corresponding write command, but should not exceed 

the limitation of two clock cycles.

For write data that is output after the write command has been registered, as shown in 
Note 3 (Figure 11-5), the maximum delay is two clock cycles.

X-Ref Target - Figure 11-4

Figure 11-4: User Interface Command Timing Diagram with app_rdy Asserted
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Write Path

The write data is registered in the write FIFO when app_wdf_wren is asserted and 
app_wdf_rdy is High (Figure 11-6). If app_wdf_rdy is deasserted, the user logic needs to 
hold app_wdf_wren and app_wdf_end High along with the valid app_wdf_data value 
until app_wdf_rdy is asserted. The app_wdf_mask signal can be used to mask out the 
bytes to write to external memory.

X-Ref Target - Figure 11-5

Figure 11-5: 4:1 Mode User Interface Write Timing Diagram (Memory Burst Type = BL8)
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The timing requirement for app_wdf_data, app_wdf_wren, and app_wdf_end relative 
to their associated write command is the same for back-to-back writes as it is for single 
writes, as shown in Figure 11-5.

The map of the application interface data to the DRAM output data can be explained with 
an example. For a 4:1 Memory Controller to DRAM clock ratio with an 8-bit memory, at the 
application interface, if the 64-bit data driven is 0000_0806_0000_0805 (Hex), the data 
values at different clock edges are as shown in Table 11-6. This is for a BL8 (Burst Length 8) 
transaction. 

Table 11-7 shows a generalized representation of how DRAM DQ bus data is concatenated 
to form application interface data signals. app_wdf_data is shown in Table 11-7, but the 
table applies equally to app_rd_data. Each byte of the DQ bus has eight bursts, Rise0 
(burst 0) through Fall3 (burst 7) as shown previously in Table 11-6, for a total of 64 data bits. 
When concatenated with Rise0 in the LSB position and Fall3 in the MSB position, a 64-bit 
chunk of the app_wdf_data signal is formed. 

For example, the eight bursts of lpddr3_dq[7:0] corresponds to DQ bus byte 0, and 
when concatenated as described here, they map to app_wdf_data[63:0]. To be clear on 
the concatenation order, lpddr3_dq[0] from Rise0 (burst 0) maps to app_wdf_data[0], 
and lpddr3_dq[7] from Fall3 (burst 7) maps to app_wdf_data[63]. The table shows a 
second example, mapping DQ byte 1 to app_wdf_data[127:64], as well as the formula 
for DQ byte N.

X-Ref Target - Figure 11-6

Figure 11-6: 4:1 Mode User Interface Back-to-Back Write Commands Timing Diagram 
(Memory Burst Type = BL8)
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Table 11-6: Data Values at Different Clock Edges
Rise0 Fall0 Rise1 Fall1 Rise2 Fall2 Rise3 Fall3

05 08 00 00 06 08 00 00

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG150&Title=UltraScale%20Architecture-Based%20FPGAs%20Memory%20IP%20v1.4&releaseVersion=1.4&docPage=303


UltraScale Architecture-Based FPGAs Memory IP v1.4 304
PG150 October 22, 2021 www.xilinx.com

Chapter 11: Designing with the Core

In a similar manner to the DQ bus mapping, the DM bus maps to app_wdf_mask by 
concatenating the DM bits in the same burst order. Example for the first two bytes of the 
DRAM bus are shown in Table 11-8, and the formula for mapping DM for byte N is also 
given.

Read Path

The read data is returned by the user interface in the requested order and is valid when 
app_rd_data_valid is asserted (Figure 11-7 and Figure 11-8). The app_rd_data_end 
signal indicates the end of each read command burst and is not needed in user logic. 

Table 11-7: DRAM DQ Bus Data Map

DQ Bus 
Byte App Interface Signal

DDR Bus Signal at Each BL8 Burst Position
Fall3 … Rise1 Fall0 Rise0

N app_wdf_data
[(N + 1) × 64 – 1: N × 64]

lpddr3_dq[(N + 
1) × 8 – 1:N × 8] … lpddr3_dq[(N + 

1) × 8 – 1:N × 8]
lpddr3_dq[(N + 1) 
× 8 – 1:N × 8]

lpddr3_dq[(N + 
1) × 8 – 1:N × 8]

1 app_wdf_data[127:64] lpddr3_dq[15:8] … lpddr3_dq[15:8] lpddr3_dq[15:8] lpddr3_dq[15:8]
0 app_wdf_data[63:0] lpddr3_dq[7:0] … lpddr3_dq[7:0] lpddr3_dq[7:0] lpddr3_dq[7:0]

Table 11-8: DRAM DM Bus Data Map

DM Bus 
Byte App Interface Signal

DDR Bus Signal at Each BL8 Burst Position
Fall3 … Rise1 Fall0 Rise0

N app_wdf_mask
[(N + 1) × 8 – 1:N × 8] lpddr3_dm[N] … lpddr3_dm[N] lpddr3_dm[N] lpddr3_dm[N]

1 app_wdf_mask[15:0] lpddr3_dm[1] … lpddr3_dm[1] lpddr3_dm[1] lpddr3_dm[1]
0 app_wdf_mask[7:0] lpddr3_dm[0] … lpddr3_dm[0] lpddr3_dm[0] lpddr3_dm[0]

X-Ref Target - Figure 11-7

Figure 11-7: 4:1 Mode User Interface Read Timing Diagram (Memory Burst Type = BL8) #1
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In Figure 11-8, the read data returned is always in the same order as the requests made on 
the address/control bus.

Periodic Reads
The FPGA DDR PHY requires two back-to-back DRAM RD or RDA command to be issued 
every 1 µs. This requirement is described in the User Interface. When the controller is 
writing and the 1 µs periodic reads are due, the reads are injected by the controller to the 
address of the next read/write in the queue. When the controller is idle and no reads or 
writes are requested, the periodic reads use the last address accessed. If this address has 
been closed, an activate is required. This injected read is issued to the DRAM following the 
normal mechanisms of the controller issuing transactions. The key difference is that no read 
data is returned to the UI. This is wasted DRAM bandwidth.

User interface patterns with long strings of write transactions are affected the most by the 
PHY periodic read requirement. Consider a pattern with a 50/50 read/write transaction 
ratio, but organized such that the pattern alternates between 2 µs bursts of 100% page hit 
reads and 2 µs bursts of 100% page hit writes. The periodic reads are injected in the 2 µs 
write burst, resulting in a loss of efficiency due to the read command and the turnaround 
time to switch the DRAM and DDR bus from writes to reads back to writes. This 2 µs 
alternating burst pattern is slightly more efficient than alternating between reads and 
writes every 1 µs. A 1 µs or shorter alternating pattern would eliminate the need for the 
controller to inject reads, but there would still be more read-write turnarounds. 

Bus turnarounds are expensive in terms of efficiency and should be avoided if possible. 
Long bursts of page hit writes, > 2 µs in duration, are still the most efficient way to write to 
the DRAM, but the impact of one write-read-write turnaround each 1 µs must be taken into 
account when calculating the maximum write efficiency.

X-Ref Target - Figure 11-8

Figure 11-8: 4:1 Mode User Interface Read Timing Diagram (Memory Burst Type = BL8) #2

app_rd_data

clk

app_cmd

R0

app_addr Addr 1

app_en

app_rd_data_valid

app_rdy

Addr 0

R1

READ

X18843-031517

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG150&Title=UltraScale%20Architecture-Based%20FPGAs%20Memory%20IP%20v1.4&releaseVersion=1.4&docPage=305


UltraScale Architecture-Based FPGAs Memory IP v1.4 306
PG150 October 22, 2021 www.xilinx.com

Chapter 11: Designing with the Core

M and D Support for Reference Input Clock Speed
Memory IPs provide two possibilities to select the Reference Input Clock Speed. Value 
allowed for Reference Input Clock Speed (ps) is always ≥  Memory Device Interface Speed 
(ps).

• Memory IP lists the possible Reference Input Clock Speed values based on the targeted 
memory frequency (based on selected Memory Device Interface Speed).

• Otherwise, select M and D Options and target for desired Reference Input Clock Speed 
which is calculated based on selected CLKFBOUT_MULT (M), DIVCLK_DIVIDE (D), and 
CLKOUT0_DIVIDE (D0) values in the Advanced Clocking Tab. 

The required Reference Input Clock Speed is calculated from the M, D, and D0 values 
entered in the GUI using the following formulas:

• MMCM_CLKOUT (MHz) = tCK / Phy_Clock_Ratio

Where tCK is the Memory Device Interface Speed selected in the Basic tab.

• CLKIN (MHz) = (MMCM_CLKOUT (MHz) × D × D0) / M

CLKIN (MHz) is the calculated Reference Input Clock Speed.

• VCO (MHz) = (CLKIN (MHz)) / D

VCO (MHz) is the calculated VCO frequency.

• PFD (MHz) = CLKIN (MHz) / D

PFD (MHz) is the calculated PFD frequency.

Calculated Reference Input Clock Speed from M, D, and D0 values are validated as per 
clocking guidelines. For more information on clocking rules, see Clocking.

Apart from the memory specific clocking rules, validation of the possible MMCM input 
frequency range, MMCM VCO frequency range, and MMCM PFD frequency range values are 
completed for M, D, and D0 in the GUI. 

For UltraScale devices, see Kintex UltraScale FPGAs Data Sheet: DC and AC Switching 
Characteristics (DS892) [Ref 2] and Virtex UltraScale FPGAs Data Sheet: DC and AC Switching 
Characteristics (DS893) [Ref 3] for MMCM Input frequency range, MMCM VCO frequency 
range, and MMCM PFD frequency range values. 
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For UltraScale+ devices, see Kintex UltraScale+ FPGAs Data Sheet: DC and AC Switching 
Characteristics (DS922) [Ref 4], Virtex UltraScale+ FPGAs Data Sheet: DC and AC Switching 
Characteristics (DS923) [Ref 5], and Zynq UltraScale+ MPSoC Data Sheet: DC and AC 
Switching Characteristics (DS925) [Ref 6] for MMCM Input frequency range, MMCM VCO 
frequency range, and MMCM PFD frequency range values.

For possible M, D, and D0 values and detailed information on clocking and the MMCM, see 
the UltraScale Architecture Clocking Resources User Guide (UG572) [Ref 8].
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Design Flow Steps
This chapter describes customizing and generating the core, constraining the core, and the 
simulation, synthesis and implementation steps that are specific to this IP core. More 
detailed information about the standard Vivado® design flows and the Vivado IP integrator 
can be found in the following Vivado Design Suite user guides:

• Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994) 
[Ref 13]

• Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 14]
• Vivado Design Suite User Guide: Getting Started (UG910) [Ref 15]
• Vivado Design Suite User Guide: Logic Simulation (UG900) [Ref 16]

Customizing and Generating the Core
CAUTION! The Windows operating system has a 260-character limit for path lengths, which can affect 
the Vivado tools. To avoid this issue, use the shortest possible names and directory locations when 
creating projects, defining IP or managed IP projects, and creating block designs.

This section includes information about using Xilinx® tools to customize and generate the 
core in the Vivado Design Suite.

If you are customizing and generating the core in the IP integrator, see the Vivado Design 
Suite User Guide: Designing IP Subsystems using IP Integrator (UG994) [Ref 13] for detailed 
information. IP integrator might auto-compute certain configuration values when 
validating or generating the design. To check whether the values change, see the 
description of the parameter in this chapter. To view the parameter value, run the 
validate_bd_design command in the Tcl Console.

You can customize the IP for use in your design by specifying values for the various 
parameters associated with the IP core using the following steps:

1. Select the IP from the Vivado IP catalog.
2. Double-click the selected IP or select the Customize IP command from the toolbar or 

right-click menu.
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For more information about generating the core in Vivado, see the Vivado Design Suite User 
Guide: Designing with IP (UG896) [Ref 14] and the Vivado Design Suite User Guide: Getting 
Started (UG910) [Ref 15].

Note: Figures in this chapter are illustrations of the Vivado Integrated Design Environment (IDE). 
This layout might vary from the current version.

Basic Tab
Figure 12-1 shows the Basic tab when you start up the LPDDR3 SDRAM. 

IMPORTANT: All parameters shown in the controller options dialog box are limited selection options in 
this release.

X-Ref Target - Figure 12-1

Figure 12-1: Vivado Customize IP Dialog Box for LPDDR3 – Basic
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For the Vivado IDE, all controllers (DDR3, DDR4, LPDDR3, QDR II+, QDR-IV, and RLDRAM 3) 
can be created and available for instantiation.

1. Select the settings in the Clocking, Controller Options, Memory Options, and 
Advanced User Request Controller Options.

In Clocking, the Memory Device Interface Speed sets the speed of the interface. The 
speed entered drives the available Reference Input Clock Speeds. For more 
information on the clocking structure, see the Clocking, page 284.

2. To use memory parts which are not available by default through the LPDDR3 SDRAM 
Vivado IDE, you can create a custom parts CSV file, as specified in the AR: 63462. This 
CSV file has to be provided after enabling the Custom Parts Data File option. After 
selecting this option. you are able to see the custom memory parts along with the 
default memory parts. Note that, simulations are not supported for the custom part. 
Custom part simulations require manually adding the memory model to the simulation 
and might require modifying the test bench instantiation.
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Advanced Clocking Tab
Figure 12-2 shows the next tab called Advanced Clocking. This displays the settings for 
Specify M and D value, System Clock Options, and Additional Clock Outputs for the 
specific controller. 

X-Ref Target - Figure 12-2

Figure 12-2: Vivado Customize IP Dialog Box for LPDDR3 – Advanced Clocking
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Advanced Options Tab
Figure 12-3 shows the next tab called Advanced Options. This displays the advanced 
memory options for the specific controller. 

X-Ref Target - Figure 12-3

Figure 12-3: Vivado Customize IP Dialog Box for LPDDR3 – Advanced Options
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LPDDR3 SDRAM I/O Planning and Design Checklist Tab
Figure 12-4 shows the LPDDR SDRAM I/O Planning and Design Checklist usage 
information. 

User Parameters
Table 12-1 shows the relationship between the fields in the Vivado IDE and the User 
Parameters (which can be viewed in the Tcl Console).

X-Ref Target - Figure 12-4

Figure 12-4: Vivado Customize IP Dialog Box – LPDDR3 SDRAM I/O Planning and Design Checklist

Table 12-1: Vivado IDE Parameter to User Parameter Relationship
Vivado IDE Parameter/Value(1) User Parameter/Value(1) Default Value

System Clock Configuration System_Clock Differential
Internal VREF Internal_Vref TRUE
DCI Cascade DCI_Cascade FALSE
Debug Signal for Controller Debug_Signal Disable
Clock 1 (MHz) ADDN_UI_CLKOUT1_FREQ_HZ None
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Output Generation
For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 14]. 

Clock 2 (MHz) ADDN_UI_CLKOUT2_FREQ_HZ None
Clock 3 (MHz) ADDN_UI_CLKOUT3_FREQ_HZ None
Clock 4 (MHz) ADDN_UI_CLKOUT4_FREQ_HZ None
Enable System Ports Enable_SysPorts TRUE
Default Bank Selections Default_Bank_Selections FALSE
Reference Clock Reference_Clock FALSE
Enable System Ports Enable_SysPorts TRUE
Clock Period (ps) C0.LPDDR3_TimePeriod 1,250
Input Clock Period (ps) C0.LPDDR3_InputClockPeriod 14,000
General Interconnect to Memory Clock 
Ratio C0.LPDDR3_PhyClockRatio 4:1

Configuration C0.LPDDR3_MemoryType Components
Memory Part C0.LPDDR3_MemoryPart MT52L256M32D1PF-107
Data Width C0.LPDDR3_DataWidth 32
CAS Latency C0.LPDDR3_CasLatency 12
CAS Write Latency C0.LPDDR3_CasWriteLatency 6
Memory Address Map C0.LPDDR3_Mem_Add_Map ROW_BANK_COLUMN

Notes: 
1. Parameter values are listed in the table where the Vivado IDE parameter value differs from the user parameter value. Such 

values are shown in this table as indented below the associated parameter.

Table 12-1: Vivado IDE Parameter to User Parameter Relationship (Cont’d)
Vivado IDE Parameter/Value(1) User Parameter/Value(1) Default Value
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I/O Planning
LPDDR3 SDRAM I/O pin planning is completed with the full design pin planning using the 
Vivado I/O Pin Planner. LPDDR3 SDRAM I/O pins can be selected through several Vivado 
I/O Pin Planner features including assignments using I/O Ports view, Package view, or 
Memory Bank/Byte Planner. Pin assignments can additionally be made through importing 
an XDC or modifying the existing XDC file. 

These options are available for all LPDDR3 SDRAM designs and multiple LPDDR3 SDRAM IP 
instances can be completed in one setting. To learn more about the available Memory IP pin 
planning options, see the Vivado Design Suite User Guide: I/O and Clock Planning (UG899) 
[Ref 18].

Constraining the Core
This section contains information about constraining the core in the Vivado Design Suite.

Required Constraints
For LPDDR3 SDRAM Vivado IDE, you specify the pin location constraints. For more 
information on I/O standard and other constraints, see the Vivado Design Suite User Guide: 
I/O and Clock Planning (UG899) [Ref 18]. The location is chosen by the Vivado IDE 
according to the banks and byte lanes chosen for the design. 

The I/O standard is chosen by the memory type selection and options in the Vivado IDE and 
by the pin type. A sample for dq[0] is shown here.

set_property PACKAGE_PIN AF20 [get_ports "c0_lpddr3_dq[0]"]
set_property IOSTANDARD POD12_DCI [get_ports "c0_lpddr3_dq[0]"]

The system clock must have the period set properly:

create_clock -name c0_sys_clk -period 10 [get_ports c0_sys_clk_p]

For HR banks, update the output_impedance of all the ports assigned to HR banks pins 
using the reset_property command. For more information, see AR: 63852. 

IMPORTANT: Do not alter these constraints. If the pin locations need to be altered, rerun the LPDDR3 
SDRAM Vivado IDE to generate a new XDC file.
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Device, Package, and Speed Grade Selections
This section is not applicable for this IP core.

Clock Frequencies
This section is not applicable for this IP core.

Clock Management
For more information on clocking, see Clocking, page 284.

Clock Placement
This section is not applicable for this IP core.

Banking
This section is not applicable for this IP core.

Transceiver Placement
This section is not applicable for this IP core.

I/O Standard and Placement
The LPDDR3 SDRAM tool generates the appropriate I/O standards and placement based on 
the selections made in the Vivado IDE for the interface type and options.

IMPORTANT: The set_input_delay and set_output_delay constraints are not needed on the 
external memory interface pins in this design due to the calibration process that automatically runs at 
start-up. Warnings seen during implementation for the pins can be ignored.
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Simulation
For comprehensive information about Vivado simulation components, as well as 
information about using supported third-party tools, see the Vivado Design Suite User 
Guide: Logic Simulation (UG900) [Ref 16]. For more information on simulation, see 
Chapter 13, Example Design and Chapter 14, Test Bench.

Synthesis and Implementation
For details about synthesis and implementation, see the Vivado Design Suite User Guide: 
Designing with IP (UG896) [Ref 14].
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Example Design
This chapter contains information about the example design provided in the Vivado® 
Design Suite. Vivado supports Open IP Example Design flow. To create the example design 
using this flow, right-click the IP in the Source Window, as shown in Figure 13-1 and select 
Open IP Example Design. 

This option creates a new Vivado project. Upon selecting the menu, a dialog box to enter 
the directory information for the new design project opens. 

Select a directory, or use the defaults, and click OK. This launches a new Vivado with all of 
the example design files and a copy of the IP. 

X-Ref Target - Figure 13-1

Figure 13-1: LPDDR3 Open IP Example Design
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Simulating the Example Design (Designs with 
Standard User Interface)
The example design provides a synthesizable test bench to generate a fixed simple data 
pattern. LPDDR3 SDRAM generates the Simple Traffic Generator (STG) module as 
example_tb for native interface. The STG native interface generates 100 writes and 100 
reads.

The example design can be simulated using one of the methods in the following sections.

Project-Based Simulation
This method can be used to simulate the example design using the Vivado Integrated 
Design Environment (IDE). Memory IP delivers memory models for LPDDR3.

The Vivado simulator, Questa Advanced Simulator, IES, and VCS tools are used for LPDDR3 
IP verification at each software release. The Vivado simulation tool is used for LPDDR3 IP 
verification from 2017.1 Vivado software release. The following subsections describe steps 
to run a project-based simulation using each supported simulator tool.

Project-Based Simulation Flow Using Vivado Simulator
1. In the Open IP Example Design Vivado project, under Flow Navigator, select 

Simulation Settings. 
2. Select Target simulator as Vivado Simulator.

Under the Simulation tab, set the xsim.simulate.runtime to 1 ms (there are 
simulation RTL directives which stop the simulation after certain period of time, which is 
less than 1 ms) as shown in Figure 13-2. The Generate Scripts Only option generates 
simulation scripts only. To run behavioral simulation, Generate Scripts Only option 
must be de-selected.

3. Set the Simulation Language to Mixed.
4. Apply the settings and select OK.
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5. In the Flow Navigator window, select Run Simulation and select Run Behavioral 
Simulation option as shown in Figure 13-3.

X-Ref Target - Figure 13-2

Figure 13-2: Simulation with Vivado Simulator

X-Ref Target - Figure 13-3

Figure 13-3: Run Behavioral Simulation
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6. Vivado invokes Vivado simulator and simulations are run in the Vivado simulator tool. 
For more information, see the Vivado Design Suite User Guide: Logic Simulation (UG900) 
[Ref 16].

Project-Based Simulation Flow Using Questa Advanced 
Simulator
1. Open a LPDDR3 SDRAM example Vivado project (Open IP Example Design...), then 

under Flow Navigator, select Simulation Settings. 
2. Select Target simulator as Questa Advanced Simulator.

a. Browse to the compiled libraries location and set the path on Compiled libraries 
location option.

b. Under the Simulation tab, set the modelsim.simulate.runtime to 1 ms (there 
are simulation RTL directives which stop the simulation after certain period of time, 
which is less than 1 ms) as shown in Figure 13-4. The Generate Scripts Only option 
generates simulation scripts only. To run behavioral simulation, Generate Scripts 
Only option must be de-selected.

3. Apply the settings and select OK.
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4. In the Flow Navigator window, select Run Simulation and select Run 
Behavioral Simulation option as shown in Figure 13-5.

X-Ref Target - Figure 13-4

Figure 13-4: Simulation with Questa Advanced Simulator

X-Ref Target - Figure 13-5

Figure 13-5: Run Behavioral Simulation
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5. Vivado invokes Questa Advanced Simulator and simulations are run in the Questa 
Advanced Simulator tool. For more information, see the Vivado Design Suite User Guide: 
Logic Simulation (UG900) [Ref 16].

Project-Based Simulation Flow Using IES
1. Open a LPDDR3 SDRAM example Vivado project (Open IP Example Design...), then 

under Flow Navigator, select Simulation Settings. 
2. Select Target simulator as Incisive Enterprise Simulator (IES).

a. Browse to the compiled libraries location and set the path on Compiled libraries 
location option.

b. Under the Simulation tab, set the ies.simulate.runtime to 1 ms (there are 
simulation RTL directives which stop the simulation after certain period of time, 
which is less than 1 ms) as shown in Figure 13-6. The Generate Scripts Only option 
generates simulation scripts only. To run behavioral simulation, Generate Scripts 
Only option must be de-selected. 

3. Apply the settings and select OK.
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4. In the Flow Navigator window, select Run Simulation and select Run 
Behavioral Simulation option as shown in Figure 13-5.

5. Vivado invokes IES and simulations are run in the IES tool. For more information, see the 
Vivado Design Suite User Guide: Logic Simulation (UG900) [Ref 16].

X-Ref Target - Figure 13-6

Figure 13-6: Simulation with IES Simulator
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Project-Based Simulation Flow Using VCS
1. Open a LPDDR3 SDRAM example Vivado project (Open IP Example Design...), then 

under Flow Navigator, select Simulation Settings. 
2. Select Target simulator as Verilog Compiler Simulator (VCS).

a. Browse to the compiled libraries location and set the path on Compiled libraries 
location option.

b. Under the Simulation tab, set the vcs.simulate.runtime to 1 ms (there are 
simulation RTL directives which stop the simulation after certain period of time, 
which is less than 1 ms) as shown in Figure 13-7. The Generate Scripts Only option 
generates simulation scripts only. To run behavioral simulation, Generate Scripts 
Only option must be de-selected.

3. Apply the settings and select OK.
X-Ref Target - Figure 13-7

Figure 13-7: Simulation with VCS Simulator
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4. In the Flow Navigator window, select Run Simulation and select Run 
Behavioral Simulation option as shown in Figure 13-5.

5. Vivado invokes VCS and simulations are run in the VCS tool. For more information, see 
the Vivado Design Suite User Guide: Logic Simulation (UG900) [Ref 16].

CLOCK_DEDICATED_ROUTE Constraints and BUFG 
Instantiation
If the GCIO pin and MMCM are not allocated in the same bank, the 
CLOCK_DEDICATED_ROUTE constraint must be set to BACKBONE. To use the BACKBONE 
route, BUFG/BUFGCE/BUFGCTRL/BUFGCE_DIV must be instantiated between GCIO and 
MMCM input. LPDDR3 SDRAM manages these constraints for designs generated with the 
Reference Input Clock option selected as Differential (at Advanced > FPGA Options > 
Reference Input). Also, LPDDR3 SDRAM handles the IP and example design flows for all 
scenarios.

If the design is generated with the Reference Input Clock option selected as No Buffer (at 
Advanced > FPGA Options > Reference Input), the CLOCK_DEDICATED_ROUTE 
constraints and BUFG/BUFGCE/BUFGCTRL/BUFGCE_DIV instantiation based on GCIO and 
MMCM allocation needs to be handled manually for the IP flow. LPDDR3 SDRAM does not 
generate clock constraints in the XDC file for No Buffer configurations and you must take 
care of the clock constraints for No Buffer configurations for the IP flow.

For an example design flow with No Buffer configurations, LPDDR3 SDRAM generates the 
example design with differential buffer instantiation for system clock pins. LPDDR3 SDRAM 
generates clock constraints in the example_design.xdc. It also generates a 
CLOCK_DEDICATED_ROUTE constraint as the “BACKBONE” and instantiates BUFG/BUFGCE/
BUFGCTRL/BUFGCE_DIV between GCIO and MMCM input if the GCIO and MMCM are not in 
same bank to provide a complete solution. This is done for the example design flow as a 
reference when it is generated for the first time. 

If in the example design, the I/O pins of the system clock pins are changed to some other 
pins with the I/O pin planner, the CLOCK_DEDICATED_ROUTE constraints and BUFG/
BUFGCE/BUFGCTRL/BUFGCE_DIV instantiation need to be managed manually. A DRC error 
is reported for the same.
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Test Bench
This chapter contains information about the test bench provided in the Vivado® Design 
Suite.

The example design of the LPDDR3 Memory Controller generates either a simple test bench 
or an Advanced Traffic Generator based on the Example Design Test Bench input in the 
Vivado Integrated Design Environment wizard. For more information on the traffic 
generators, see Chapter 36, Traffic Generator.
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SECTION IV:  QDR II+ SRAM

Overview
Product Specification
Core Architecture
Designing with the Core
Design Flow Steps
Example Design
Test Bench
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Chapter 15

Overview
IMPORTANT: This document supports QDR II+ SRAM core v1.4.

Navigating Content by Design Process
Xilinx® documentation is organized around a set of standard design processes to help you 
find relevant content for your current development task. This document covers the 
following design processes:

• Hardware, IP, and Platform Development: Creating the PL IP blocks for the hardware 
platform, creating PL kernels, subsystem functional simulation, and evaluating the 
Vivado timing, resource and power closure. Also involves developing the hardware 
platform for system integration. Topics in this document that apply to this design 
process include:

° Clocking

° Resets

° Protocol Description

° Customizing and Generating the Core

° Example Design

Core Overview
The Xilinx UltraScale™ architecture includes the QDR II+ SRAM core. This core provides 
solutions for interfacing with the QDR II+ SRAM memory type.

The QDR II+ SRAM core is a physical layer for interfacing Xilinx UltraScale FPGA user 
designs to the QDR II+ SRAM devices. QDR II+ SRAMs offer high-speed data transfers on 
separate read and write buses on the rising and falling edges of the clock. These memory 
devices are used in high-performance systems as temporary data storage, such as:

• Look-up tables in networking systems
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• Packet buffers in network switches
• Cache memory in high-speed computing
• Data buffers in high-performance testers

The QDR II+ SRAM solutions core is a PHY that takes simple user commands, converts them 
to the QDR II+ protocol, and provides the converted commands to the memory. The design 
enables you to provide one read and one write request per cycle eliminating the need for a 
Memory Controller and the associated overhead, thereby reducing the latency through the 
core.

Figure 15-1 shows a high-level block diagram of the QDR II+ SRAM interface solution. 

The physical layer includes the hard blocks inside the FPGA and the soft calibration logic 
necessary to ensure optimal timing of the hard blocks interfacing to the memory part.

The hard blocks include:

• Data serialization and transmission
• Data capture and deserialization
• High-speed clock generation and synchronization
• Coarse and fine delay elements per pin with voltage and temperature tracking

X-Ref Target - Figure 15-1

Figure 15-1: High-Level Block Diagram of QDR II+ Interface Solution
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The soft blocks include:

• Memory Initialization – The calibration modules provide an initialization routine for 
the particular memory type. The delays in the initialization process can be bypassed to 
speed up simulation time if desired.

The QDR II+ memories do not require an elaborate initialization procedure. However, 
you must ensure that the Doff_n signal is provided to the memory as required by the 
vendor. The QDR II+ SRAM interface design provided by the QDR II+ IP drives the 
Doff_n signal from the FPGA. After the internal MMCM has locked, the Doff_n signal 
is asserted High for 100 µs without issuing any commands to the memory device.

For memory devices that require the Doff_n signal to be terminated at the memory 
and not be driven from the FPGA, you must perform the required initialization 
procedure.

• Calibration – The calibration modules provide a complete method to set all delays in 
the hard blocks and soft IP to work with the memory interface. Each bit is individually 
trained and then combined to ensure optimal interface performance. Results of the 
calibration process is available through the Xilinx debug tools. After completion of 
calibration, the PHY layer presents raw interface to the memory part.

Feature Summary
• Component support for interface widths up to 36 bits
• x18 and x36 memory device support
• 4-word and 2-word burst support
• Only HSTL_I I/O standard support
• Cascaded data width support is available only for BL-4 designs
• Data rates up to 1,266 Mb/s for BL-4 designs
• Data rates up to 900 Mb/s for BL-2 designs
• Memory device support with 72 Mb density
• Support for 2.0 and 2.5 cycles of Read Latency
• Other densities for memory device support is available through custom part selection
• Source code delivery in Verilog and System Verilog
• 2:1 memory to FPGA logic interface clock ratio
• Interface calibration and training information available through the Vivado hardware 

manager
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Licensing and Ordering
This Xilinx LogiCORE IP module is provided at no additional cost with the Xilinx Vivado 
Design Suite under the terms of the Xilinx End User License. 

Information about other Xilinx LogiCORE IP modules is available at the Xilinx Intellectual 
Property page. For information on pricing and availability of other Xilinx LogiCORE IP 
modules and tools, contact your local Xilinx sales representative.

License Checkers
If the IP requires a license key, the key must be verified. The Vivado® design tools have 
several license checkpoints for gating licensed IP through the flow. If the license check 
succeeds, the IP can continue generation. Otherwise, generation halts with error. License 
checkpoints are enforced by the following tools:

• Vivado synthesis
• Vivado implementation
• write_bitstream (Tcl command)

IMPORTANT: IP license level is ignored at checkpoints. The test confirms a valid license exists. It does 
not check IP license level.
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Chapter 16

Product Specification

Standards
This core complies with the QDR II+ SRAM standard defined by the QDR Consortium. For 
more information on UltraScale™ architecture documents, see References, page 789. 

Performance
Maximum Frequencies
For more information on the maximum frequencies, see the following documentation:

• Kintex UltraScale FPGAs Data Sheet, DC and AC Switching Characteristics (DS892) 
[Ref 2]

• Virtex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics (DS893) [Ref 3]
• Kintex UltraScale+ FPGAs Data Sheet: DC and AC Switching Characteristics (DS922) 

[Ref 4]
• Virtex UltraScale+ FPGAs Data Sheet: DC and AC Switching Characteristics (DS923) 

[Ref 5]
• Zynq UltraScale+ MPSoC Data Sheet: DC and AC Switching Characteristics (DS925) 

[Ref 6]
• UltraScale Maximum Memory Performance Utility (XTP414) [Ref 21]

Resource Utilization
For full details about performance and resource utilization, visit Performance and Resource 
Utilization.
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Port Descriptions
There are three port categories at the top-level of the memory interface core called the 
“user design.” 

• The first category is the memory interface signals that directly interfaces with the 
memory part. These are defined by the QDR II+ SRAM specification. 

• The second category is the application interface signals which is referred to as the 
“user interface.” This is described in the Protocol Description, page 370. 

• The third category includes other signals necessary for proper operation of the core. 
These include the clocks, reset, and status signals from the core. The clocking and reset 
signals are described in their respective sections.

The active-High init_calib_complete signal indicates that the initialization and 
calibration are complete and that the interface is now ready to accept commands for the 
interface.
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Chapter 17

Core Architecture
This chapter describes the UltraScale™ architecture-based FPGAs Memory Interface 
Solutions core with an overview of the modules and interfaces.

Overview
The UltraScale architecture-based FPGAs Memory Interface Solutions is shown in 
Figure 17-1.

The user interface uses a simple protocol based entirely on SDR signals to make read and 
write requests. For more details describing this protocol, see User Interface in Chapter 18.
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Figure 17-1: UltraScale Architecture-Based FPGAs Memory Interface Solution Core
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There is no requirement for the controller in QDR II+ SRAM protocol and thus, the Memory 
Controller contains only the physical interface. It takes commands from the user interface 
and adheres to the protocol requirements of the QDR II+ SRAM device. It is responsible to 
generate proper timing relationships and DDR signaling to communicate with the external 
memory device. For more details, see Memory Interface in Chapter 18.

PHY
The PHY is considered the low-level physical interface to an external QDR II+ SRAM device. 
It contains the entire calibration logic for ensuring reliable operation of the physical 
interface itself. The PHY generates the signal timing and sequencing required to interface to 
the memory device.

The PHY contains the following features:

• Clock/address/control-generation logics
• Write and read datapaths
• Logic for initializing the SDRAM after power-up

In addition, the PHY contains calibration logic to perform timing training of the read and 
write datapaths to account for system static and dynamic delays.

Overall PHY Architecture
The UltraScale architecture PHY is composed of dedicated blocks and soft calibration logic. 
The dedicated blocks are structured adjacent to one another with back-to-back 
interconnects to minimize the clock and datapath routing necessary to build high 
performance physical layers. 
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The user interface and calibration logic communicate with this dedicated PHY in the slow 
frequency clock domain, which is divided by 2. A more detailed block diagram of the PHY 
design is shown in Figure 17-2.
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Figure 17-2: PHY Block Diagram
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Table 17-1: PHY Modules
Module Name Description

qdriip_phy.sv PHY top of QDR II+ design
qdriip_phycal.sv Contains the instances of XIPHY top and calibration top modules
qdriip_cal.sv Calibration top module
qdriip_cal_addr_decode.sv FPGA logic interface for the MicroBlaze processor
config_rom.sv Configuration storage for calibration options
debug_microblaze.sv MicroBlaze processor
qdriip_xiphy.sv Contains the XIPHY instance
qdriip_iob.sv Instantiates all byte IOB modules
qdriip_iob_byte.sv Generates the I/O buffers for all the signals in a given byte lane
qdriip_rd_bit_slip.sv Read bitslip
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The PHY architecture encompasses all of the logic contained in qdriip_xiphy.sv. The 
PHY contains wrappers around dedicated hard blocks to build up the memory interface 
from smaller components. A byte lane contains all of the clocks, resets, and datapaths for a 
given subset of I/O. Multiple byte lanes are grouped together, along with dedicated 
clocking resources, to make up a single bank memory interface. For more information on 
the hard silicon physical layer architecture, see the UltraScale™ Architecture SelectIO™ 
Resources User Guide (UG571) [Ref 7].

The memory initialization and calibration are implemented in C programming on a small 
soft core processor. The MicroBlaze™ Controller System (MCS) is configured with an I/O 
Module and block RAM. The module qdriip_cal_adr_decode.sv module provides the 
interface for the processor to the rest of the system and implements helper logic. The 
config_rom.sv module stores settings that control the operation of initialization and 
calibration, providing run time options that can be adjusted without having to recompile 
the source code.

The address unit connects the MCS to the local register set and the PHY by performing 
address decode and control translation on the I/O module bus from spaces in the memory 
map and MUXing return data (qdriip_cal_adr_decode.sv). In addition, it provides 
address translation (also known as “mapping”) from a logical conceptualization of the 
DRAM interface to the appropriate pinout-dependent location of the delay control in the 
PHY address space.

Although the calibration architecture presents a simple and organized address map for 
manipulating the delay elements for individual data, control and command bits, there is 
flexibility in how those I/O pins are placed. For a given I/O placement, the path to the FPGA 
logic is locked to a given pin. To enable a single binary software file to work with any 
memory interface pinout, a translation block converts the simplified Register Interface Unit 
(RIU) addressing into the pinout-specific RIU address for the target design. The specific 
address translation is written by QDR II+ SRAM after a pinout is selected. The code shows 
an example of the RTL structure that supports this.

Casez(io_address)// MicroBlaze I/O module address
  // … static address decoding skipped
  //========================================//
  //===========DQ ODELAYS===================//
  //========================================//
  //Byte0
  28’h0004100: begin //dq2 
    riu_addr_cal =  /* QDR II+ SRAM Generated */ 6’hd;
    riu_nibble =    /* QDR II+ SRAM Generated */ ‘h0;
  end
  // … additional dynamic addressing follows

In this example, DQ0 is pinned out on Bit[0] of nibble 0 (nibble 0 according to instantiation 
order). The RIU address for the ODELAY for Bit[0] is 0x0D. When DQ0 is addressed — 
indicated by address 0x000_4100), this snippet of code is active. It enables nibble 0 
(decoded to one-hot downstream) and forwards the address 0x0D to the RIU address bus.
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The MicroBlaze I/O interface operates at much slower frequency, which is not fast enough 
for implementing all the functions required in calibration. A helper circuit implemented in 
qdriip_cal_adr_decode.sv is required to obtain commands from the registers and 
translate at least a portion into single-cycle accuracy for submission to the PHY. In addition, 
it supports command repetition to enable back-to-back read transactions and read data 
comparison.

Memory Initialization and Calibration Sequence
After deassertion of the system reset, the PHY performs some required internal calibration 
steps first. 

1. The built-in self-check (BISC) of the PHY is run. It is used to compensate the internal 
skews among the data bits and the strobe on the read path.

2. After BISC completion, the required steps for the power-on initialization of the memory 
part starts.

3. It requires several stages of calibration for tuning the write and read datapath skews as 
mentioned in Figure 17-3.

4. After calibration is completed, PHY calculates internal offsets for the voltage and 
temperature tracking purpose by considering the taps used until the end of step 3.

5. When PHY indicates the calibration completion, the user interface command execution 
begins.
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Figure 17-3 shows the overall flow of memory initialization and the different stages of 
calibration.
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Figure 17-3: PHY Overall Initialization and Calibration Sequence
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BISC Calibration
Built-in Self Calibration (BISC) is the first stage of calibration. BISC is enabled by configuring 
the SELF_CALIBRATE parameter to 2'b11 for all the byte lanes. BISC compensates the on 
chip delay variations among the read bits and to center align the read clock in the read data 
window (if enabled). BISC does not compensate the PCB delay variations and thus, the 
output of BISC gives a fine center alignment but not an accurate one.

Memory Initialization
The memory initialization sequence is done as per the vendor requirements.

Read Leveling
The aim of this stage is to deskew all read data bits in a nibble and then keep the rise and 
fall edges of the read strobe inside the valid window at an approximate 90° position. 

After the completion of BISC, the capture clock position is within the valid window but not 
the center. Use this initial position to find the left and right edges of the valid window and 
then center align in it.

To create a clock pattern, write one burst of 1s and one burst of 0s into two address 
locations. Writing an entire burst of 1 or 0 eliminates toggles on the write data bits during 
the write transaction. Read leveling has to be done nibble wise as each nibble generates its 
own capture clock. You have to perform a back-to-back continuous reads from those two 
locations to find the two edges of the read data window. Here is the terminology used in 
read leveling algorithm:

• PQTR – It is the delay element on CQ_p capture clock. Its output is used to capture the 
rise data.

• NQTR – It is the delay element on CQ_n capture clock. Its output is used to capture the 
fall data,

• IDELAY – Delay element on each data bit,
• INFIFO OUTPUT – Read data to the user interface,

Read leveling is divided into two subsections:

Case 1: RL of 2

Aligning PQTR to Left Edge 

The first step in the deskew process is to decrement PQTR and NQTR delays until one of 
them acquires a 0 value. After the decrement for deskew only, the P data for all the bits in 
the nibble are analyzed to find the left edge. 
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In Figure 17-4, if PQTR is in the window for all the bits in the nibble then increment IDELAY 
for each bit until they fail. This deskews all the bits in the nibble and PQTR is aligned at the 
left edge for all the bits. 

For conditions in which the PQTR is outside the window for all the bits or any of the bits in 
the nibble, the PQTR/NQTR delays are incremented until there is a pass for all the bits. The 
next step would be to increment the IDELAY for each data bit in the nibble in Figure 17-5. 
This deskews all the bits in the nibble and PQTR is aligned at the left edge for all the bits. 

Aligning NQTR to Right Edge

During this process both NQTR/PQTR delays are moved to find the right edge and only the 
N data is used for comparison. In this case since the deskew is already completed, the N 
data for any of the bits in a byte changes the right edge would be considered found. 
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Figure 17-4: P Data in Data Window
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Figure 17-5: PQTR Outside of Window
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Figure 17-6 shows the condition when the N data is aligned to the right edge. 

The data is written into the INFIFO using the falling edge of the divided clock. The divided 
clock is derived from NQTR and it is being moved during the calibration stage. 

Centering NQTR and PQTR 

In this stage, the NQTR and PQTR values from the BISC calibration stage is used to center 
them in the data window. This is an initial calibration stage and the read leveling with 
complex data pattern is used after the write calibration.

PQTR_90 = PQTR values after BISC calibration - PQTR_ALIGN gives the tap count needed 
for the 90° offset.

NQTR_90 = NQTR values after BISC calibration - NQTR_ALIGN gives the tap count 
needed for the 90° offset.

These values are retained as soon as the calibration algorithm starts. Now PQTR is placed at 
the PQTR value at the end of "left edge alignment" + PQTR_90. NQTR is placed at NQTR 
value at the end of "right edge alignment" - NQTR_90. 
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Figure 17-6: NQTR Aligned to Right Edge
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Case 2: RL of 2.5

Aligning NQTR to Left Edge 

With the latency of 2.5, the first data is aligned to CQ#. 

The first step in the deskew process is to decrement PQTR and NQTR delays until one of 
them acquires a 0 value. After the decrement for deskew only, the N data for all the bits in 
the nibble are analyzed to find the left edge.

In Figure 17-8, if NQTR is in the window for all the bits in the nibble then increment IDELAY 
for each bit until they fail. This deskews all the bits in the nibble and NQTR is aligned at the 
left edge for all the bits.
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Figure 17-7: NQTR and PQTR with 90° Offset from BISC
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For conditions in which the NQTR is outside the window for all the bits or any of the bits in 
the nibble, the PQTR/NQTR delays are incremented until there is a pass for all the bits. The 
next step would be to increment the IDELAY for each data bit in the nibble in Figure 17-9. 
This deskews all the bits in the nibble and NQTR will be aligned at the left edge for all the 
bits.
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Figure 17-8: N Data in Data Window
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Aligning PQTR to Right Edge 

During this process both NQTR/PQTR delays are moved to find the right edge and only the 
P data is used for comparison. In this case since the deskew is already completed, the P data 
for any of the bits in a byte changes the right edge would be considered found. 

Figure 17-10 shows the condition when the P data is aligned to the right edge. 

The data is written into the INFIFO using the falling edge of the divided clock. The divided 
clock is derived from NQTR and it is being moved during the calibration stage. 
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Figure 17-9: NQTR Outside of Window
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Centering NQTR and PQTR 

In this stage, the NQTR and PQTR values from the BISC calibration stage is used to center 
them in the data window. This is an initial calibration stage and read leveling with complex 
data pattern is used after the write calibration. 

PQTR_90 = PQTR values after BISC calibration - PQTR_ALIGN gives the tap count needed 
for the 90° offset

NQTR_90 = NQTR values after BISC calibration - NQTR_ALIGN gives the tap count 
needed for the 90° offset

These values are retained as soon as the calibration algorithm starts. Now NQTR is placed at 
NQTR value at the end of "left edge alignment" + NQTR_90. PQTR is placed at PQTR value 
at the end of "right edge alignment" - PQTR_90. 
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Figure 17-10: PQTR Aligned to Right Edge
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Read Leveling Sanity Check
Sample write reads are performed to determine whether the read leveling calibration is 
successful.

Address Calibration (Enabled Only for BL2)
Address bits are DDR in BL2 SRAM parts while SDR in BL4 parts. It is done bitwise by only 
moving the ODELAY taps of the address bits. Memory clock K/K# is untouched throughout 
the calibration of QDR II+ IP. The calibration starts from A[0] until the last address bit. The 
algorithm is explained here by taking A[0] as an example:

1. To start, the algorithm writes one data burst each into two address locations.
a. Writes 11111 (all 1s) into the address location 1111111 (all 1s).
b. Writes 00000 (all 0s) into the address location 1111110 when calibrating A[0].
c. When these two addresses are sent on the rise and fall edges of every memory clock 

cycle, it creates a clock pattern on A[0] and a constant 1 on all other address bits. The 
similar cycle repeats for all address bits.

d. As you are writing the same data on all the edges of a write burst, you can keep the 
data free from any toggling. So, write calibration is not required at this stage.

e. Continues read is started.
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Figure 17-11: NQTR and PQTR with 90° Offset from BISC
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2. As there are no delay taps added on the address bits until this point of calibration, 
assume the initial relation between the memory clock and the address bit A[0] as shown 
in Figure 17-12. 

3. The position of the clock is found by reading the data pattern. 
a. As the address bit A[0] is continuously toggling, read commands are issued to either 

address 1111111 (all 1s) or 1111110 where there is a written known data pattern.
4. If the clock falls in the noise region or the previous fall window, first edge can be found. 

Else, the starting position is treated as the first edge. The same applies to the second 
edge as well.

5. The address bit is delayed by increasing its ODELAY taps until the next edge is found. At 
the end of this step, clock and address relation is shown in Figure 17-13. 
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Figure 17-12: Clock Approximately Edge Aligned with Address
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Figure 17-13: Detecting Second Edge of Address Bit
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6. The first and second edge taps are noted and centered in the middle of them as shown 
in Figure 17-14. As the maximum frequency supported is 450 MHz, there are enough 
margin even if the algorithm is not able to find the first and second edges. 

Address Calibration Sanity Check (Enabled Only for BL2)
Sample write reads are performed to determine whether the address calibration is 
successful.

Write Data Centering
The purpose of this calibration stage is to center align the K-clock in the data window of 
every write data bit. Delay elements of the K-clock are untouched during the entire process 
of K/K# centering. Use only the ODELAYs of the write data bits. Only one bit is taken in every 
single iteration and it is delayed until two edges of a data window are found or taps elapse. 

A static phase shift of 90° is applied on the K-clock all the time and thus, the initial position 
of the K-clock with respect to a write data bit is assumed to be one of the following three 
cases: 

• Case 1 – Clock is aligned inside the valid window, which is termed in Figure 17-15 as 
Current Rise Window (CR) for a selected rise edge of the K-clock.

X-Ref Target - Figure 17-14

Figure 17-14: Clock and Address Relation at End of A[0] Calibration
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• Case 2 – Clock is aligned inside the Left Noise region (LN) as shown in Figure 17-16. 

X-Ref Target - Figure 17-15

Figure 17-15: Clock Aligned Inside Valid Window
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X-Ref Target - Figure 17-16

Figure 17-16: Clock Aligned Inside Left Noise Region
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• Case 3 – Clock is aligned inside the Right Noise region (RN) as shown in Figure 17-17.

When the initial placement of the clock with respect to a data bit is as mentioned in cases 
1 and 2, you can only find the two edges of the previous fall window by moving the data 
delay taps. Therefore, you can only center in the previous fall window as shown in 
Figure 17-18. A separate bitslip stage is required to move the clock from previous fall to 
current rise window. 

However, the clock can be centered in proper data window (that is, current rise window) if 
the initial clock placement is as mentioned in case 3. The final placement is described in 
Figure 17-19. No bitslip is required in this scenario.

X-Ref Target - Figure 17-17

Figure 17-17: Clock Aligned Inside Right Noise Region
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X-Ref Target - Figure 17-18

Figure 17-18: Clock Placement at End of K-Centering Stage in Cases 1 and 2

CR

LN RN

PF CF

Rise Edge

D0

D1

D2

K-clock

X18202-040820

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG150&Title=UltraScale%20Architecture-Based%20FPGAs%20Memory%20IP%20v1.4&releaseVersion=1.4&docPage=352


UltraScale Architecture-Based FPGAs Memory IP v1.4 353
PG150 October 22, 2021 www.xilinx.com

Chapter 17: Core Architecture

The required immediate next step is to align the clock in the proper data window and bitslip 
calculation is done in the next stage of calibration. 

Write Data Sanity Check
Sample write reads are performed to determine whether the write data calibration is 
successful.

Write Data Bitslip Calibration
Consider a scenario in which the write data bits stay in all the three categories that are 
explained previously in the K-centering stage, before the centering process starts. For 
example, take one bit from each category as shown in Figure 17-20.

X-Ref Target - Figure 17-19

Figure 17-19: Clock Placement at End of K-Centering Stage in Case 3
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After clock centering is completed, a few bits are centered in the previous fall window and 
the others, in the current rise window. Figure 17-21 shows how the data bits in Figure 17-20 
is aligned after centering.

Figure 17-21 explains that clock placement for D2 is proper but it is improper for bits D0 
and D1, which are delayed by one bit time. The only method to correct the clock alignment 
for D0 and D1 is to delay the address/control bits by the same number of bit times. 
However, one bit time cannot be added on address/control bits as they are SDR signals. 
Thus, delay the address/control bits by two bit times (one clock cycle) and delay D0 and D1 
by one more bit time. 

X-Ref Target - Figure 17-20

Figure 17-20: Typical Clock Placement Inside Write Bus Before K-Centering
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The alignment in Figure 17-21 is modified to Figure 17-22 after adding one clock cycle 
delay.

Figure 17-22 explains that adding one bit time delay on D0 and D1 completes the clock 
alignment process. However, the data bit D2 is not done yet because it requires no bitslip 
before delaying the address/control bus. Therefore, it is required to add the same delay on 
D2 as that of address bus to complete its alignment. Figure 17-22 confirms the same as it 
takes two bit times (one clock cycle) for D2 to align the rise edge of the clock with CR 
(current rise window) of D2. 

X-Ref Target - Figure 17-21

Figure 17-21: Clock Placement After Centering
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X-Ref Target - Figure 17-22

Figure 17-22: Clock Placement After Adding One Clock Cycle Delay on Address/Control Bus
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Figure 17-23 shows the final alignment after adding corresponding delays on all data bits. 

Read Bitslip Calibration
In this stage of calibration, specific data pattern is written to a set of address locations. The 
data is read back continuously to check for bitslip requirements. Bitslip on each read bit is 
incremented until it matches with the expected pattern. If the bitslip value on any bit is 
incremented to more than 2, an error is issued because maximum possible read bitslip is 2.

Byte Writes Centering
See the Write Data Centering. Clock pattern is used on write data bits in write data 
centering and the same can be used here for the byte write bits calibration as well.

Byte Writes Sanity Check
Sample write reads are performed to determine whether the byte writes centering is 
successful.

Byte Writes Bitslip
See the Write Data Bitslip Calibration.

X-Ref Target - Figure 17-23

Figure 17-23: Final Clock Placement at End of Write Bitslip Stage
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Read Valid Calibration
In this stage of calibration, a specific data pattern is written to a set of address locations. 
The data is read back from the memory and the calibration algorithm looks for the expected 
data pattern to calculate the read latency. Based on the read latency the read valid signal is 
asserted for the read commands to validate the read data. 

Read Valid Sanity Check
Sample write reads are performed to determine whether the read valid calibration is 
successful.

Reset Sequence
The sys_rst signal resets the entire memory design which includes general interconnect 
(fabric) logic which is driven by the MMCM clock (clkout0) and RIU logic. MicroBlaze™ and 
calibration logic are driven by the MMCM clock (clkout6). The sys_rst input signal is 
synchronized internally to create the qdriip_rst_clk signal. The qdriip_rst_clk 
reset signal is synchronously asserted and synchronously deasserted.

Figure 17-24 shows the qdriip_rst_clk (fabric reset) is synchronously asserted with a 
few clock delays after sys_rst is asserted. When qdriip_rst_clk is asserted, there are 
a few clocks before the clocks are shut off. 

The following are the reset sequencing steps:

1. Reset to design is initiated after qdriip_rst_clk goes High.
2. init_calib_complete signal goes Low when qdriip_rst_clk is High.
3. Reset to design is deactivated after qdriip_rst_clk is Low. 
4. After qdriip_rst_clk is deactivated, the init_calib_complete is asserted after 

calibration is completed.

X-Ref Target - Figure 17-24

Figure 17-24: Reset Sequence Waveform
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MicroBlaze MCS ECC
The MicroBlaze MCS local memory provides an option to enable Error Correcting Code 
(ECC). Error correction corrects single bit errors and detects double bit errors. Two 
additional ports are added to indicate single bit errors (LMB_CE) and double bit errors 
(LMB_UE).

The MicroBlaze MCS ECC can be selected from the MicroBlaze MCS ECC option section in 
the Advanced Options tab. The block RAM size increases if the ECC option for MicroBlaze 
MCS is selected.
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Designing with the Core
This chapter includes guidelines and additional information to facilitate designing with the 
core. 

Clocking
The memory interface requires one MMCM, one TXPLL per I/O bank used by the memory 
interface, and two BUFGs. These clocking components are used to create the proper clock 
frequencies and phase shifts necessary for the proper operation of the memory interface.

There are two TXPLLs per bank. If a bank is shared by two memory interfaces, both TXPLLs 
in that bank are used.

Note: QDR II+ SRAM generates the appropriate clocking structure and no modifications to the RTL 
are supported.

The QDR II+ SRAM tool generates the appropriate clocking structure for the desired 
interface. This structure must not be modified. The allowed clock configuration is as 
follows:

• Differential reference clock source connected to GCIO
• GCIO to MMCM (located in center bank of memory interface)
• MMCM to BUFG (located at center bank of memory interface) driving FPGA logic and 

all TXPLLs
• MMCM to BUFG (located at center bank of memory interface) divide by two mode 

driving 1/2 rate FPGA logic
• Clocking pair of the interface must be in the same SLR of memory interface for the SSI 

technology devices
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Requirements

GCIO

• Must use a differential I/O standard
• Must be in the same I/O column as the memory interface
• Must be in the same SLR of memory interface for the SSI technology devices
• The I/O standard and termination scheme are system dependent. For more information, 

consult the UltraScale Architecture SelectIO Resources User Guide (UG571) [Ref 7].

MMCM

• MMCM is used to generate the FPGA logic system clock (1/2 of the memory clock)
• Must be located in the center bank of memory interface
• Must use internal feedback
• Input clock frequency divided by input divider must be ≥  70 MHz (CLKINx / D ≥  

70 MHz)
• Must use integer multiply and output divide values

Input Clock Requirement

• The clock generator driving the GCIO should have jitter < 3 ps RMS.
• The input clock should always be clean and stable. The IP functionality is not 

guaranteed if this input system clock has a glitch, discontinuous, etc.
• No spread spectrum clock is allowed.

BUFGs and Clock Roots

• One BUFG is used to generate the system clock to FPGA logic and another BUFG is used 
to divide the system clock by two.

• BUFGs and clock roots must be located in center most bank of the memory interface.

° For two bank systems, the bank with the higher number of bytes selected is chosen 
as the center bank. If the same number of bytes is selected in two banks, then the 
top bank is chosen as the center bank.

° Both the BUFGs must be in the same bank.

TXPLL

• CLKOUTPHY from TXPLL drives XIPHY within its bank
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• TXPLL must be set to use a CLKFBOUT phase shift of 90°
• TXPLL must be held in reset until the MMCM lock output goes High
• Must use internal feedback

Figure 18-1 shows an example of the clocking structure for a three bank memory interface. 
The GCIO drives the MMCM located at the center bank of the memory interface. MMCM 
drives both the BUFGs located in the same bank. The BUFG (which is used to generate 
system clock to FPGA logic) output drives the TXPLLs used in each bank of the interface. 

The MMCM is placed in the center bank of the memory interface.

• For two bank systems, MMCM is placed in a bank with the most number of bytes 
selected. If they both have the same number of bytes selected in two banks, then 
MMCM is placed in the top bank.

• For four bank systems, MMCM is placed in a second bank from the top.

X-Ref Target - Figure 18-1

Figure 18-1: Clocking Structure for Three Bank Memory Interface
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For designs generated with System Clock configuration of No Buffer, MMCM must not be 
driven by another MMCM/PLL. Cascading clocking structures MMCM →  BUFG →  MMCM 
and PLL →  BUFG →  MMCM are not allowed.

If the MMCM is driven by the GCIO pin of the other bank, then the 
CLOCK_DEDICATED_ROUTE constraint with value "BACKBONE" must be set on the net that 
is driving MMCM or on the MMCM input. Setting up the CLOCK_DEDICATED_ROUTE 
constraint on the net is preferred. But when the same net is driving two MMCMs, the 
CLOCK_DEDICATED_ROUTE constraint must be managed by considering which MMCM 
needs the BACKBONE route. 

In such cases, the CLOCK_DEDICATED_ROUTE constraint can be set on the MMCM input. To 
use the "BACKBONE" route, any clock buffer that exists in the same CMT tile as the GCIO 
must exist between the GCIO and MMCM input. The clock buffers that exists in the I/O CMT 
are BUFG, BUFGCE, BUFGCTRL, and BUFGCE_DIV. So QDR II+ SRAM instantiates BUFG 
between the GCIO and MMCM when the GCIO pins and MMCM are not in the same bank 
(see Figure 18-1). 

If the GCIO pin and MMCM are allocated in different banks, QDR II+ SRAM generates 
CLOCK_DEDICATED_ROUTE constraints with value as "BACKBONE." If the GCIO pin and 
MMCM are allocated in the same bank, there is no need to set any constraints on the 
MMCM input. 

Similarly when designs are generated with System Clock Configuration as a No Buffer 
option, you must take care of the "BACKBONE" constraint and the BUFG/BUFGCE/
BUFGCTRL/BUFGCE_DIV between GCIO and MMCM if GCIO pin and MMCM are allocated in 
different banks. QDR II+ SRAM does not generate clock constraints in the XDC file for No 
Buffer configurations and you must take care of the clock constraints for No Buffer 
configurations. For more information on clocking, see the UltraScale Architecture Clocking 
Resources User Guide (UG572) [Ref 8].

XDC syntax for CLOCK_DEDICATED_ROUTE constraint is given here: 

set_property CLOCK_DEDICATED_ROUTE BACKBONE [get_pins -hier -filter {NAME =~ */
u_qdriip_infrastructure/gen_mmcme*.u_mmcme_adv_inst/CLKIN1}]

For more information on the CLOCK_DEDICATED_ROUTE constraints, see the Vivado Design 
Suite Properties Reference Guide (UG912) [Ref 9].

Note: If two different GCIO pins are used for two QDR II+ SRAM IP cores in the same bank, center 
bank of the memory interface is different for each IP. QDR II+ SRAM generates MMCM LOC and 
CLOCK_DEDICATED_ROUTE constraints accordingly.
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Sharing of Input Clock Source (sys_clk_p)
If the same GCIO pin must be used for two IP cores, generate the two IP cores with the same 
frequency value selected for option Reference Input Clock Period (ps) and System Clock 
Configuration option as No Buffer. Perform the following changes in the wrapper file in 
which both IPs are instantiated:

1. QDR II+ SRAM generates a single-ended input for system clock pins, such as 
sys_clk_i. Connect the differential buffer output to the single-ended system clock 
inputs (sys_clk_i) of both the IP cores.

2. System clock pins must be allocated within the same I/O column of the memory 
interface pins allocated. Add the pin LOC constraints for system clock pins and clock 
constraints in your top-level XDC.

3. You must add a "BACKBONE" constraint on the net that is driving the MMCM or on the 
MMCM input if GCIO pin and MMCM are not allocated in the same bank. Apart from 
this, BUFG/BUFGCE/BUFGCTRL/BUFGCE_DIV must be instantiated between GCIO and 
MMCM to use the "BACKBONE" route.

Note:

° The UltraScale architecture includes an independent XIPHY power supply and TXPLL 
for each XIPHY. This results in clean, low jitter clocks for the memory system.

° Skew spanning across multiple BUFGs is not a concern because single point of 
contact exists between BUFG →  TXPLL and the same BUFG →  System Clock Logic.

° System input clock cannot span I/O columns because the longer the clock lines 
span, the more jitter is picked up.

TXPLL Usage
There are two TXPLLs per bank. If a bank is shared by two memory interfaces, both TXPLLs 
in that bank are used. One PLL per bank is used if a bank is used by a single memory 
interface. You can use a second PLL for other usage. To use a second PLL, you can perform 
the following steps:

1. Generate the design for the System Clock Configuration option as No Buffer. 
2. QDR II+ SRAM generates a single-ended input for system clock pins, such as 

sys_clk_i. Connect the differential buffer output to the single-ended system clock 
inputs (sys_clk_i) and also to the input of PLL (PLL instance that you have in your 
design).

3. You can use the PLL output clocks.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG150&Title=UltraScale%20Architecture-Based%20FPGAs%20Memory%20IP%20v1.4&releaseVersion=1.4&docPage=363


UltraScale Architecture-Based FPGAs Memory IP v1.4 364
PG150 October 22, 2021 www.xilinx.com

Chapter 18: Designing with the Core

Additional Clocks
You can produce up to four additional clocks which are created from the same MMCM that 
generates ui_clk. Additional clocks can be selected from the Clock Options section in the 
Advanced Options tab. The GUI lists the possible clock frequencies from MMCM and the 
frequencies for additional clocks vary based on selected memory frequency (Memory 
Device Interface Speed (ps) value in the Basic tab), selected FPGA, and FPGA speed grade. 

Reduce System Noise during Calibration
The system design should be as quiet as possible during the calibration process. In 
particular, the Soft Error Mitigation (SEM) IP, if used, should be disabled during calibration. 
For calibration that occurs immediately after the configuration or reconfiguration of the 
FPGA, use the ICAP arbitration interface to hold off the SEM IP in the boot stage. For more 
information on the ICAP Arbitration Interface, see “ICAP Arbitration Interface” section in 
Chapter 3 of the UltraScale Architecture Soft Error Mitigation Controller LogiCORE IP Product 
Guide (PG187) [Ref 10].

For situations where the memory interface is reset and recalibrated without a 
reconfiguration of the FPGA, the SEM IP must be set into IDLE state to disable the memory 
scan and to send the SEM IP back into the scanning (Observation or Detect only) states 
afterwards. This can be done in two methods, through the “Command Interface” or “UART 
interface.” See Chapter 3 of the UltraScale Architecture Soft Error Mitigation Controller 
LogiCORE IP Product Guide (PG187) [Ref 10] for more information.

Resets
An asynchronous reset (sys_rst) input is provided. This is an active-High reset and the 
sys_rst must assert for a minimum pulse width of 5 ns. The sys_rst can be an internal 
or external pin. 

IMPORTANT: If two controllers share a bank, they cannot be reset independently. The two controllers 
must have a common reset input.

For more information on reset, see the Reset Sequence in Chapter 17, Core Architecture.

PCB Guidelines for QDR II+ SRAM
Strict adherence to all documented QDR II+ SRAM PCB guidelines is required for successful 
operation. For more information on PCB guidelines, see the UltraScale Architecture PCB 
Design and Pin Planning User Guide (UG583) [Ref 11].
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Pin and Bank Rules
QDR II+ Pin Rules
This section describes the pin out rules for QDR II+ SRAM interface.

• Both HR and HP Banks are supported.
• All signal groups that are write data, read data, address/control, and system clock 

interfaces must be selected in a single column.
• All banks used must be adjacent. No skip banks allowed.
1. Write Data (D) and Byte Write (BW) Pins Allocation:

a. The entire write data bus must be placed in a single bank regardless of the number 
of memory components.

b. Only one write data byte is allowed per byte lane.
c. All byte lanes that are used for the write data of a single component must be 

adjacent, no skip byte lanes are allowed.
d. One of the write data bytes of a memory component should be allocated in the 

center byte lanes (byte lanes 1 and 2).
e. Each byte write pin (BW) must be allocated in the corresponding write data byte 

lane.
2. Memory Clock (K/K#) Allocation:

a. Memory Clock pair must be allocated in one of the byte lanes that are used for the 
write data of the corresponding memory component.

b. Memory clock should come from one of the center byte lanes (byte lanes 1 and 2).
c. K/K# can be allocated to any PN pair.

3. Read Data (Q) Allocation:
a. The entire read data bus must be placed in a single bank irrespective of the number 

of memory components.
b. All byte lanes that are used for the read data of a single component must be 

adjacent, no skip byte lanes are allowed.
c. One of the read data bytes of a memory component should be allocated in the 

center byte lanes (byte lanes 1 and 2).
d. If a byte lane is used for read data, Bit[0] and Bit[6] must be used. Read clock (CQ or 

CQ#) gets the first priority and data (Q) is the next.
e. Read data buses of two components should not share a byte lane.
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4. Read Clock (CQ/CQ#) Allocation:
a. Read Clock pair must be allocated in one of the byte lanes that are used for the read 

data of the corresponding memory component.
b. CQ/CQ# pair must be allocated in a single byte lane.
c. CQ/CQ# must be allocated only in the byte lanes 1 and 2 because the other byte 

lanes cannot forward the clock out for read data capture.
d. CQ/CQ# must be allocated in the center byte lane of all used byte lanes. If two byte 

lanes are used for the read data, either one of them can be used for CQ/CQ# 
allocation.

e. CQ and CQ# must be allocated to either pin 0 or pin 6 of a byte lane. For example, if 
CQ is allocated to pin 0, CQ# should be allocated to pin 6 and vice versa.

5. For x36 and x18 component designs:

All Read Data pins of a single component must not span more than three consecutive 
byte lanes and CQ/CQ# must always be allocated in center byte lane.

6. Address/Control (A/C) Pins Allocation:
a. All address/control (A/C) bits must be allocated in a single bank.
b. All A/C byte lanes should be contiguous and no skip byte lanes is allowed.
c. The address/control bank should be the same or adjacent to that of the write data 

bank.
d. There should not be any empty byte lane or read byte lane between A/C and write 

data byte lanes. This rule applies when A/C and write data share the same bank or 
allocated in adjacent banks.

e. Address/control pins should not share a byte lane with the write data as well as read 
data.

f. System clock pins (sys_clk_p/sys_clk_n) must be placed on any GCIO pin pair in 
the same column as that of the memory interface. Information on the clock input 
specifications can be found in the AC and DC Switching Characteristics data sheets 
(LVDS input requirements and MMCM requirements should be considered). For more 
information, see Clocking, page 359.

7. All I/O banks used by the memory interface must be in the same SLR of the column for 
the SSI technology devices.

8. One vrp pin per bank is used and DCI is required for the interfaces. A vrp pin is 
required in I/O banks containing inputs as well as output only banks. It is required in 
output only banks because address/control signals use HSTL_I_DCI to enable usage of 
controlled output impedance. DCI cascade is allowed. When DCI cascade is selected, 
vrp pin can be used as a normal I/O. All rules for the DCI in the UltraScale™ Device 
FPGAs SelectIO™ Resources User Guide (UG571) [Ref 7] must be followed.
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RECOMMENDED: Xilinx strongly recommends that the DCIUpdateMode option is kept with the default 
value of ASREQUIRED so that the DCI circuitry is allowed to operate normally.

9. There are dedicated VREF pins (not included in the rules above). Either internal or 
external VREF is permitted. If an external VREF is not used, the VREF pins must be pulled 
to ground by a resistor value specified in the UltraScale™ Device FPGAs SelectIO™ 
Resources User Guide (UG571) [Ref 7]. These pins must be connected appropriately for 
the standard in use.

10. The system reset pin (sys_rst_n) must not be allocated to Pins N0 and N6 if the byte 
is used for the memory I/Os.

Pin Swapping

• Pins can swap freely within each Write Data byte group.
• Pins can swap freely within each Read Data byte group, except CQ/CQ# pins. Pins can 

swap freely within and between their corresponding byte groups, but should not 
violate above mentioned Read Data pin/byte lane allocation rules.

• Pins can swap freely withing each Address/Control byte group. Pins can swap freely 
within and between their corresponding byte groups, but should not violate above 
mentioned Address/Control pin/byte lane allocation rules.

• Write Data Byte groups can swap easily with each other, but should not violate above 
mentioned Write Data pin/byte lane allocation rules.

• Read Data Byte groups can swap easily with each other, but should not violate above 
mentioned Read Data pin/byte lane allocation rules.

• Address/Control Byte groups can swap easily with each other, but should not violate 
above mentioned Address/Control pin/byte lane allocation rules.

• No other pin swapping is permitted.

QDR II+ Pinout Examples

IMPORTANT: Due to the calibration stage, there is no need for set_input_delay/
set_output_delay on the QDR II+ SRAM. Ignore the unconstrained inputs and outputs for QDR II+ 
SRAM and the signals which are calibrated.

Table 18-1 shows an example of an 18-bit QDR II+ SRAM interface contained within two 
banks. 
Table 18-1: 18-Bit QDR II+ Interface Contained in Two Banks

Bank Signal Name Byte Group I/O Type
1 – T1U_12 –
1 sys_clk_p T1U_11 N
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1 sys_clk_n T1U_10 P
1 – T1U_9 N
1 q17 T1U_8 P
1 q16 T1U_7 N
1 cq_p T1U_6 P
1 q15 T1L_5 N
1 q14 T1L_4 P
1 q13 T1L_3 N
1 q12 T1L_2 P
1 q11 T1L_1 N
1 cq_n T1L_0 P

1 vrp T0U_12 –
1 – T0U_11 N
1 q10 T0U_10 P
1 q9 T0U_9 N
1 q8 T0U_8 P
1 q7 T0U_7 N
1 q6 T0U_6 P
1 q5 T0L_5 N
1 q4 T0L_4 P
1 q3 T0L_3 N
1 q2 T0L_2 P
1 q1 T0L_1 N
1 q0 T0L_0 P

0 – T3U_12 –
0 – T3U_11 N
0 – T3U_10 P
0 d17 T3U_9 N
0 d16 T3U_8 P
0 d15 T3U_7 N
0 d14 T3U_6 P
0 d13 T3L_5 N
0 d12 T3L_4 P

Table 18-1: 18-Bit QDR II+ Interface Contained in Two Banks (Cont’d)

Bank Signal Name Byte Group I/O Type

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG150&Title=UltraScale%20Architecture-Based%20FPGAs%20Memory%20IP%20v1.4&releaseVersion=1.4&docPage=368


UltraScale Architecture-Based FPGAs Memory IP v1.4 369
PG150 October 22, 2021 www.xilinx.com

Chapter 18: Designing with the Core

0 d11 T3L_3 N
0 d10 T3L_2 P
0 bwsn1 T3L_1 N
0 d9 T3L_0 P

0 – T2U_12 –
0 d8 T2U_11 N
0 d7 T2U_10 P
0 d6 T2U_9 N
0 d5 T2U_8 P
0 k_n T2U_7 N
0 k_p T2U_6 P
0 d4 T2L_5 N
0 d3 T2L_4 P
0 d2 T2L_3 N
0 d1 T2L_2 P
0 bwsn0 T2L_1 N
0 d0 T2L_0 P

0 doff T1U_12 –
0 a21 T1U_11 N
0 a20 T1U_10 P
0 a19 T1U_9 N
0 a18 T1U_8 P
0 a17 T1U_7 N
0 a16 T1U_6 P
0 a15 T1L_5 N
0 a14 T1L_4 P
0 a13 T1L_3 N
0 a12 T1L_2 P
0 rpsn T1L_1 N
0 a11 T1L_0 P

0 vrp T0U_12 –
0 a10 T0U_11 N

Table 18-1: 18-Bit QDR II+ Interface Contained in Two Banks (Cont’d)

Bank Signal Name Byte Group I/O Type
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Protocol Description
This core has the following interfaces:

• User Interface
• Memory Interface

User Interface
The user interface connects an FPGA user design to the QDR II+ SRAM solutions core to 
simplify interactions between the user logic and the external memory device. The user 
interface provides a set of signals used to issue a read or write command to the memory 
device. These signals are summarized in Table 18-2.

0 a9 T0U_10 P
0 a8 T0U_9 N
0 a7 T0U_8 P
0 a6 T0U_7 N
0 a5 T0U_6 P
0 a4 T0L_5 N
0 a3 T0L_4 P
0 a2 T0L_3 N
0 a1 T0L_2 P
0 wpsn T0L_1 N
0 a0 T0L_0 P

Table 18-1: 18-Bit QDR II+ Interface Contained in Two Banks (Cont’d)

Bank Signal Name Byte Group I/O Type

Table 18-2: User Interface Signals
Signal I/O Description

app_rd_addr0[ADDR_WIDTH – 1:0] I Read Address. This bus provides the address to use for 
a read request. It is valid when app_rd_cmd0 is asserted.

app_rd_cmd0 I Read Command. This signal is used to issue a read 
request and indicates that the address on port0 is valid.

app_rd_data0[DBITS × BURST_LEN – 1:0] O Read Data. This bus carries the data read back from the 
read command issued on app_rd_cmd0
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app_rd_valid0 O
Read Valid. This signal indicates that data read back 
from memory is now available on app_rd_data0 and 
should be sampled.

app_wr_addr0[ADDR_WIDTH – 1:0] I Write Address. This bus provides the address for a write 
request. It is valid when app_wr_cmd0 is asserted.

app_wr_bw_n0[(DBITS/9) × BURST_LEN – 1:0] I
Byte Writes. This bus provides the byte writes for a write 
request and indicates which bytes need to be written 
into the SRAM. It is valid when app_wr_cmd0 is asserted 
and is active-Low.

app_wr_cmd0 I
Write Command. This signal is used to issue a write 
request and indicates that the corresponding sideband 
signals on write port0 are valid.

app_wr_data0[DBITS × BURST_LEN – 1:0] I Write Data. This bus provides the data to use for a write 
request. It is valid when app_wr_cmd0 is asserted.

app_rd_addr1[ADDR_WIDTH – 1:0](1) I Read Address. This bus provides the address to use for 
a read request. It is valid when app_rd_cmd1 is asserted.

app_rd_cmd1(1) I Read Command. This signal is used to issue a read 
request and indicates that the address on port1 is valid.

app_rd_data1[DBITS × BURST_LEN – 1:0](1) O Read Data. This bus carries the data read back from the 
read command issued on app_rd_cmd1.

app_rd_valid1(1) O
Read Valid. This signal indicates that data read back 
from memory is now available on app_rd_data1 and 
should be sampled.

app_wr_addr1[ADDR_WIDTH – 1:0](1) I Write Address. This bus provides the address for a write 
request. It is valid when app_wr_cmd1 is asserted.

app_wr_bw_n1[(DBITS/9) × BURST_LEN – 1:0](1) I
Byte Writes. This bus provides the byte writes for a write 
request and indicates which bytes need to be written 
into the SRAM. It is valid when app_wr_cmd1 is asserted 
and is active-Low.

app_wr_cmd1(1) I
Write Command. This signal is used to issue a write 
request and indicates that the corresponding sideband 
signals on write port1 are valid.

app_wr_data1[DBITS × BURST_LEN – 1:0](1) I Write Data. This bus provides the data to use for a write 
request. It is valid when app_wr_cmd1 is asserted.

clk O User Interface clock.
rst_clk O Reset signal synchronized by the User Interface clock.

Init_calib_complete O
Calibration Done. This signal indicates to the user 
design that read calibration is complete and the user 
can now initiate read and write requests from the client 
interface.

sys_rst I Asynchronous system reset input.
sys_clk_p/n I System clock to the Memory Controller.

Table 18-2: User Interface Signals (Cont’d)

Signal I/O Description
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Interfacing with the Core through the User Interface

Figure 18-2 shows the user interface protocol. 

Before any requests can be made, the init_calib_complete signal must be asserted 
High, as shown in Figure 18-2, no read or write requests can take place, and the assertion of 
app_wr_cmd0 or app_rd_cmd0 on the client interface is ignored. A write request is issued 
by asserting app_wr_cmd0 as a single cycle pulse. At this time, the app_wr_addr0, 
app_wr_data0, and app_wr_bw_n0 signals must be valid. 

On the following cycle, a read request is issued by asserting app_rd_cmd0 for a single 
cycle pulse. At this time, app_rd_addr0 must be valid. After one cycle of idle time, a read 
and write request are both asserted on the same clock cycle. In this case, the read to the 
memory occurs first, followed by the write. The write and read commands can be applied in 
any order at the user interface, two examples are shown in the Figure 18-2.

Also, Figure 18-2 shows data returning from the memory device to the user design. The 
app_rd_valid0 signal is asserted, indicating that app_rd_data0 is now valid. This 
should be sampled on the same cycle when app_rd_valid0 is asserted because the core 
does not buffer returning data. 

dbg_clk O Debug Clock. Do not connect any signals to dbg_clk 
and keep the port open during instantiation.

dbg_bus O Reserved. Do not connect any signals to dbg_bus and 
keep the port open during instantiation.

Notes: 
1. These ports are available and valid only in BL2 configuration. For BL4 configuration, these ports are not available or if 

available, no need to be driven.

Table 18-2: User Interface Signals (Cont’d)

Signal I/O Description

X-Ref Target - Figure 18-2

Figure 18-2:  User Interface Write/Read Timing Diagram
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In case of BL2, the same protocol should be followed on two independent ports: port-0 and 
port-1. Figure 18-2 shows the user interface signals on port-0 only.

Memory Interface
Memory interface is a connection from the FPGA memory solution to an external QDR II+ 
SRAM device. The I/O signals for this interface are defined in Table 18-3. These signals can 
be directly connected to the corresponding signals on the memory device. 

Table 18-3: Memory Interface Signals
Signal I/O Description

qdriip_cq_n I QDR CQ#. This is the echo clock returned from the memory derived from qdr_k_n.
qdriip_cq_p I QDR CQ. This is the echo clock returned from the memory derived from qdr_k_p.
qdriip_d O QDR Data. This is the write data from the PHY to the QDR II+ memory device.
qdriip_doff_n O QDR DLL Off. This signal turns off the DLL in the memory device.

qdriip_bw_n O QDR Byte Write. This is the byte write signal from the PHY to the QDR II+ SRAM 
device.

qdriip_k_n O QDR Clock K#. This is the inverted input clock to the memory device.
qdriip_k_p O QDR Clock K. This is the input clock to the memory device.
qdriip_q I QDR Data Q. This is the data returned from reads to memory.

qdriip_qvld I
QDR Q Valid. This signal indicates that the data on qdriip_q is valid. However, the QDR 
II+ core is not using this port to validate the data from the SRAM device. Instead, the 
core calibrates read latency for valid read data.

qdriip_sa O QDR Address. This is the address supplied for memory operations.
qdriip_w_n O QDR Write. This is the write command to memory.
qdriip_r_n O QDR Read. This is the read command to memory.
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Figure 18-3 shows the timing diagram for the sample write and read operations at the 
memory interface of a BL4 QDR II+ SRAM device and Figure 18-4 is that of a BL2 device.  

X-Ref Target - Figure 18-3

Figure 18-3:  Interfacing with a Four-Word Burst Length Memory Device
X-Ref Target - Figure 18-4

Figure 18-4:  Interfacing with a Two-Word Burst Length Memory Device

qdriip_k_n

qdriip_w_n

qdriip_r_n

qdriip_sa

qdriip_d

qdriip_bw_n

qdriip_q

qdriip_k_p

RD1 WR1

D11 D12 D13 D14

Q11 Q12 Q13 Q14

qdriip_cq_n

qdriip_cq_p

BW11 BW12 BW13 BW14

X24451-082420

qdriip_k_n

qdriip_w_n

qdriip_r_n

qdriip_sa

qdriip_d

qdriip_bw_n

qdriip_q

qdriip_k_p

qdriip_cq_n

qdriip_cq_p

RD1 WR1 RD2 WR2

D11 D12 D21 D22

BW11 BW12 BW21 BW22

Q11 Q12 Q21 Q22

X24452-082420

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG150&Title=UltraScale%20Architecture-Based%20FPGAs%20Memory%20IP%20v1.4&releaseVersion=1.4&docPage=374


UltraScale Architecture-Based FPGAs Memory IP v1.4 375
PG150 October 22, 2021 www.xilinx.com

Chapter 18: Designing with the Core

M and D Support for Reference Input Clock Speed
Memory IPs provide two possibilities to select the Reference Input Clock Speed. Value 
allowed for Reference Input Clock Speed (ps) is always ≥  Memory Device Interface Speed 
(ps).

• Memory IP lists the possible Reference Input Clock Speed values based on the targeted 
memory frequency (based on selected Memory Device Interface Speed).

• Otherwise, select M and D Options and target for desired Reference Input Clock Speed 
which is calculated based on selected CLKFBOUT_MULT (M), DIVCLK_DIVIDE (D), and 
CLKOUT0_DIVIDE (D0) values in the Advanced Clocking Tab. 

The required Reference Input Clock Speed is calculated from the M, D, and D0 values 
entered in the GUI using the following formulas:

• MMCM_CLKOUT (MHz) = tCK / Phy_Clock_Ratio

Where tCK is the Memory Device Interface Speed selected in the Basic tab.

• CLKIN (MHz) = (MMCM_CLKOUT (MHz) × D × D0) / M

CLKIN (MHz) is the calculated Reference Input Clock Speed.

• VCO (MHz) = (CLKIN (MHz)) / D

VCO (MHz) is the calculated VCO frequency.

• PFD (MHz) = CLKIN (MHz) / D

PFD (MHz) is the calculated PFD frequency.

Calculated Reference Input Clock Speed from M, D, and D0 values are validated as per 
clocking guidelines. For more information on clocking rules, see Clocking.

Apart from the memory specific clocking rules, validation of the possible MMCM input 
frequency range, MMCM VCO frequency range, and MMCM PFD frequency range values are 
completed for M, D, and D0 in the GUI. 

For UltraScale devices, see Kintex UltraScale FPGAs Data Sheet: DC and AC Switching 
Characteristics (DS892) [Ref 2] and Virtex UltraScale FPGAs Data Sheet: DC and AC Switching 
Characteristics (DS893) [Ref 3] for MMCM Input frequency range, MMCM VCO frequency 
range, and MMCM PFD frequency range values. 
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For UltraScale+ devices, see Kintex UltraScale+ FPGAs Data Sheet: DC and AC Switching 
Characteristics (DS922) [Ref 4], Virtex UltraScale+ FPGAs Data Sheet: DC and AC Switching 
Characteristics (DS923) [Ref 5], and Zynq UltraScale+ MPSoC Data Sheet: DC and AC 
Switching Characteristics (DS925) [Ref 6] for MMCM Input frequency range, MMCM VCO 
frequency range, and MMCM PFD frequency range values.

For possible M, D, and D0 values and detailed information on clocking and the MMCM, see 
the UltraScale Architecture Clocking Resources User Guide (UG572) [Ref 8].
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Design Flow Steps
This chapter describes customizing and generating the core, constraining the core, and the 
simulation, synthesis and implementation steps that are specific to this IP core. More 
detailed information about the standard Vivado® design flows and the Vivado IP integrator 
can be found in the following Vivado Design Suite user guides:

• Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994) 
[Ref 13]

• Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 14]
• Vivado Design Suite User Guide: Getting Started (UG910) [Ref 15]
• Vivado Design Suite User Guide: Logic Simulation (UG900) [Ref 16]

Customizing and Generating the Core
CAUTION! The Windows operating system has a 260-character limit for path lengths, which can affect 
the Vivado tools. To avoid this issue, use the shortest possible names and directory locations when 
creating projects, defining IP or managed IP projects, and creating block designs.

This section includes information about using Xilinx® tools to customize and generate the 
core in the Vivado Design Suite.

If you are customizing and generating the core in the IP integrator, see the Vivado Design 
Suite User Guide: Designing IP Subsystems using IP Integrator (UG994) [Ref 13] for detailed 
information. IP integrator might auto-compute certain configuration values when 
validating or generating the design. To check whether the values change, see the 
description of the parameter in this chapter. To view the parameter value, run the 
validate_bd_design command in the Tcl Console.

You can customize the IP for use in your design by specifying values for the various 
parameters associated with the IP core using the following steps:

1. Select the IP from the Vivado IP catalog.
2. Double-click the selected IP or select the Customize IP command from the toolbar or 

right-click menu.
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For more information about generating the core in Vivado, see the Vivado Design Suite User 
Guide: Designing with IP (UG896) [Ref 14] and the Vivado Design Suite User Guide: Getting 
Started (UG910) [Ref 15].

Note: Figures in this chapter are illustrations of the Vivado Integrated Design Environment (IDE). 
This layout might vary from the current version.

Basic Tab
Figure 19-1 shows the Basic tab when you start up the QDR II+ SRAM. 

IMPORTANT: All parameters shown in the controller options dialog box are limited selection options in 
this release.

For the Vivado IDE, all controllers (DDR3, DDR4, LPDDR3, QDR II+, QDR-IV, and RLDRAM 3) 
can be created and available for instantiation.

1. Select the settings in the Clocking and Controller Options.

X-Ref Target - Figure 19-1

Figure 19-1: Vivado Customize IP Dialog Box – Basic
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In Clocking, the Memory Device Interface Speed sets the speed of the interface. The 
speed entered drives the available Reference Input Clock Speeds. For more 
information on the clocking structure, see the Clocking, page 359.

2. To use memory parts which are not available by default through the QDR II+ SRAM 
Vivado IDE, you can create a custom parts CSV file, as specified in the AR: 63462. This 
CSV file has to be provided after enabling the Custom Parts Data File option. After 
selecting this option. you are able to see the custom memory parts along with the 
default memory parts. Note that, simulations are not supported for the custom part. 
Custom part simulations require manually adding the memory model to the simulation 
and might require modifying the test bench instantiation.

Advanced Clocking Tab
Figure 19-2 shows the next tab called Advanced Clocking. This displays the settings for 
Specify M and D value, System Clock Options, and Additional Clock Outputs for the 
specific controller. 

X-Ref Target - Figure 19-2

Figure 19-2: Vivado Customize IP Dialog Box – Advanced Clocking
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Advanced Options Tab
Figure 19-3 shows the next tab called Advanced Options. This displays the advanced 
memory options settings for the specific controller. 

X-Ref Target - Figure 19-3

Figure 19-3: Vivado Customize IP Dialog Box – Advanced Options
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QDR II+ SRAM I/O Planning and Design Checklist Tab
Figure 19-4 shows the QDR II+ SRAM I/O Planning and Design Checklist usage 
information. 

User Parameters
Table 19-1 shows the relationship between the fields in the Vivado IDE and the User 
Parameters (which can be viewed in the Tcl Console).

X-Ref Target - Figure 19-4

Figure 19-4: Vivado Customize IP Dialog Box – I/O Planning and Design Checklist

Table 19-1: Vivado IDE Parameter to User Parameter Relationship
Vivado IDE Parameter/Value(1) User Parameter/Value(1) Default Value

System Clock Configuration System_Clock Differential
Internal VREF Internal_Vref TRUE
DCI Cascade DCI_Cascade FALSE
Debug Signal for Controller Debug_Signal Disable
Clock 1 (MHz) ADDN_UI_CLKOUT1_FREQ_HZ None
Clock 2 (MHz) ADDN_UI_CLKOUT2_FREQ_HZ None
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Output Generation
For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 14].

I/O Planning
For details on I/O planning, see I/O Planning, page 235.

Constraining the Core
This section contains information about constraining the core in the Vivado Design Suite.

Required Constraints
The QDR II+ SRAM Vivado IDE generates the required constraints. A location constraint and 
an I/O standard constraint are added for each external pin in the design. The location is 
chosen by the Vivado IDE according to the banks and byte lanes chosen for the design. 

The I/O standard is chosen by the memory type selection and options in the Vivado IDE and 
by the pin type. A sample for qdriip_d[0] is shown here.

set_property LOC AP25 [get_ports {c0_qdriip_d[0]}]
set_property IOSTANDARD HSTL_I [get_ports {c0_qdriip_d[0]}]

Clock 3 (MHz) ADDN_UI_CLKOUT3_FREQ_HZ None
Clock 4 (MHz) ADDN_UI_CLKOUT4_FREQ_HZ None
Enable System Ports Enable_SysPorts TRUE
Default Bank Selections Default_Bank_Selections FALSE
Reference Clock Reference_Clock FALSE
Clock Period (ps) C0.QDRIIP_TimePeriod 1,819
Input Clock Period (ps) C0.QDRIIP_InputClockPeriod 13,637
Configuration C0.QDRIIP_MemoryType Components
Memory Part C0.QDRIIP_MemoryPart CY7C2565XV18-633BZXC
Data Width C0.QDRIIP_DataWidth 36
Burst Length C0.QDRIIP_BurstLen 4
Memory Name C0.QDRIIP_MemoryName Main Memory

Notes: 
1. Parameter values are listed in the table where the Vivado IDE parameter value differs from the user parameter value. Such 

values are shown in this table as indented below the associated parameter.

Table 19-1: Vivado IDE Parameter to User Parameter Relationship (Cont’d)
Vivado IDE Parameter/Value(1) User Parameter/Value(1) Default Value
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The system clock must have the period set properly:

create_clock -name c0_sys_clk –period 1.818 [get_ports c0_sys_clk_p]

Device, Package, and Speed Grade Selections
This section is not applicable for this IP core.

Clock Frequencies
This section is not applicable for this IP core.

Clock Management
For more information on clocking, see Clocking, page 359.

Clock Placement
This section is not applicable for this IP core.

Banking
This section is not applicable for this IP core.

Transceiver Placement
This section is not applicable for this IP core.

I/O Standard and Placement
The QDR II+ SRAM tool generates the appropriate I/O standards and placement based on 
the selections made in the Vivado IDE for the interface type and options.

IMPORTANT: The set_input_delay and set_output_delay constraints are not needed on the 
external memory interface pins in this design due to the calibration process that automatically runs at 
start-up. Warnings seen during implementation for the pins can be ignored.

Simulation
This section contains information about simulating the QDR II+ SRAM generated IP. Vivado 
simulator, Questa Advanced Simulator, IES, and VCS simulation tools are used for 
verification of the QDR II+ SRAM IP at each software release. Vivado simulator is not 
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supported yet. For more information on simulation, see Chapter 20, Example Design and 
Chapter 21, Test Bench.

Synthesis and Implementation
For details about synthesis and implementation, see the Vivado Design Suite User Guide: 
Designing with IP (UG896) [Ref 14].

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG150&Title=UltraScale%20Architecture-Based%20FPGAs%20Memory%20IP%20v1.4&releaseVersion=1.4&docPage=384


UltraScale Architecture-Based FPGAs Memory IP v1.4 385
PG150 October 22, 2021 www.xilinx.com

Chapter 20

Example Design
This chapter contains information about the example design provided in the Vivado® 
Design Suite. Vivado supports Open IP Example Design flow. To create the example design 
using this flow, right-click the IP in the Source Window, as shown in Figure 20-1 and select 
Open IP Example Design. 

This option creates a new Vivado project. Upon selecting the menu, a dialog box to enter 
the directory information for the new design project opens. 

Select a directory, or use the defaults, and click OK. This launches a new Vivado with all of 
the example design files and a copy of the IP.

X-Ref Target - Figure 20-1

Figure 20-1: Open IP Example Design
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Simulating the Example Design (Designs with 
Standard User Interface)
The example design provides a synthesizable test bench to generate a fixed simple data 
pattern to the Memory Controller. This test bench consists of an IP wrapper and an 
example_tb that generates 100 writes and 100 reads. QDR II+ SRAM does not deliver the 
QDR II+ memory models. The memory model required for the simulation must be 
downloaded from the memory vendor’s website.

The example design can be simulated using one of the methods in the following sections.

Project-Based Simulation
This method can be used to simulate the example design using the Vivado Integrated 
Design Environment (IDE). Memory IP does not deliver the QDR II+ memory models. The 
memory model required for the simulation must be downloaded from the memory vendor’s 
website. The memory model file must be added in the example design using Add Sources 
option to run simulation.

The Vivado simulator, Questa Advanced Simulator, IES, and VCS tools are used for QDR II+ 
IP verification at each software release. The Vivado simulation tool is used for QDR II+ IP 
verification from 2015.1 Vivado software release. The following subsections describe steps 
to run a project-based simulation using each supported simulator tool.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG150&Title=UltraScale%20Architecture-Based%20FPGAs%20Memory%20IP%20v1.4&releaseVersion=1.4&docPage=386


UltraScale Architecture-Based FPGAs Memory IP v1.4 387
PG150 October 22, 2021 www.xilinx.com

Chapter 20: Example Design

Project-Based Simulation Flow Using Vivado Simulator
1. In the Open IP Example Design Vivado project, under Add sources option, select the 

Add or create simulation sources option, and click Next as shown in Figure 20-2. 
X-Ref Target - Figure 20-2

Figure 20-2: Add Source Option in Vivado
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2. Add the memory model in the Add or create simulation sources page and click Finish 
as shown in Figure 20-3. 

3. In the Open IP Example Design Vivado project, under Flow Navigator, select 
Simulation Settings. 

4. Select Target simulator as Vivado Simulator.

Under the Simulation tab, set the xsim.simulate.runtime to 1 ms (there are 
simulation RTL directives which stop the simulation after certain period of time, which is 
less than 1 ms) as shown in Figure 20-4. The Generate Scripts Only option generates 
simulation scripts only. To run behavioral simulation, Generate Scripts Only option 
must be de-selected.

5. Set the Simulation Language to Mixed.
6. Apply the settings and select OK.

X-Ref Target - Figure 20-3

Figure 20-3: Add or Create Simulation Sources in Vivado
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7. In the Flow Navigator window, select Run Simulation and select Run Behavioral 
Simulation option as shown in Figure 20-5.

X-Ref Target - Figure 20-4

Figure 20-4: Simulation with Vivado Simulator
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8. Vivado invokes Vivado simulator and simulations are run in the Vivado simulator tool. 
For more information, see the Vivado Design Suite User Guide: Logic Simulation (UG900) 
[Ref 16].

X-Ref Target - Figure 20-5

Figure 20-5: Run Behavioral Simulation
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Project-Based Simulation Flow Using Questa Advanced 
Simulator
1. Open a QDR II+ SRAM example Vivado project (Open IP Example Design...), then under 

Add sources option, select the Add or create simulation sources option, and click 
Next as shown in Figure 20-6. 

X-Ref Target - Figure 20-6

Figure 20-6: Add Source Option in Vivado
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2. Add the memory model in the Add or create simulation sources page and click Finish 
as shown in Figure 20-7. 

3. In the Open IP Example Design Vivado project, under Flow Navigator, select 
Simulation Settings. 

4. Select Target simulator as Questa Advanced Simulator.
a. Browse to the compiled libraries location and set the path on Compiled libraries 

location option.
b. Under the Simulation tab, set the modelsim.simulate.runtime to 1 ms (there 

are simulation RTL directives which stop the simulation after certain period of time, 
which is less than 1 ms) as shown in Figure 20-8. The Generate Scripts Only option 
generates simulation scripts only. To run behavioral simulation, Generate Scripts 
Only option must be de-selected.

5. Apply the settings and select OK.

X-Ref Target - Figure 20-7

Figure 20-7: Add or Create Simulation Sources in Vivado
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6. In the Flow Navigator window, select Run Simulation and select Run 
Behavioral Simulation option as shown in Figure 20-9.

X-Ref Target - Figure 20-8

Figure 20-8: Simulation with Questa Advanced Simulator
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7. Vivado invokes Questa Advanced Simulator and simulations are run in the Questa 
Advanced Simulator tool. For more information, see the Vivado Design Suite User Guide: 
Logic Simulation (UG900) [Ref 16].

Project-Based Simulation Flow Using IES
1. Open a QDR II+ SRAM example Vivado project (Open IP Example Design...), then under 

Add sources option, select the Add or create simulation sources option and click 
Next as shown in Figure 20-6.

2. Add the memory model in the Add or create simulation sources page and click Finish 
as shown in Figure 20-7.

3. In the Open IP Example Design Vivado project, under Flow Navigator, select 
Simulation Settings. 

4. Select Target simulator as Incisive Enterprise Simulator (IES).
a. Browse to the compiled libraries location and set the path on Compiled libraries 

location option.
b. Under the Simulation tab, set the ies.simulate.runtime to 1 ms (there are 

simulation RTL directives which stop the simulation after certain period of time, 
which is less than 1 ms) as shown in Figure 20-10. The Generate Scripts Only option 
generates simulation scripts only. To run behavioral simulation, Generate Scripts 
Only option must be de-selected.

5. Apply the settings and select OK.

X-Ref Target - Figure 20-9

Figure 20-9: Run Behavioral Simulation
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6. In the Flow Navigator window, select Run Simulation and select Run 
Behavioral Simulation option as shown in Figure 20-9.

7. Vivado invokes IES and simulations are run in the IES tool. For more information, see the 
Vivado Design Suite User Guide: Logic Simulation (UG900) [Ref 16].

X-Ref Target - Figure 20-10

Figure 20-10: Simulation with IES Simulator
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Project-Based Simulation Flow Using VCS
1. Open a QDR II+ SRAM example Vivado project (Open IP Example Design...), then under 

Add sources option, select the Add or create simulation sources option and click 
Next as shown in Figure 20-6.

2. Add the memory model in the Add or create simulation sources page and click Finish 
as shown in Figure 20-7.

3. In the Open IP Example Design Vivado project, under Flow Navigator, select 
Simulation Settings. 

4. Select Target simulator as Verilog Compiler Simulator (VCS).
a. Browse to the compiled libraries location and set the path on Compiled libraries 

location option.
b. Under the Simulation tab, set the vcs.simulate.runtime to 1 ms (there are 

simulation RTL directives which stop the simulation after certain period of time, 
which is less than 1 ms) as shown in Figure 20-11. The Generate Scripts Only option 
generates simulation scripts only. To run behavioral simulation, Generate Scripts 
Only option must be de-selected.

5. Apply the settings and select OK.
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6. In the Flow Navigator window, select Run Simulation and select Run 
Behavioral Simulation option as shown in Figure 20-9.

7. Vivado invokes VCS and simulations are run in the VCS tool. For more information, see 
the Vivado Design Suite User Guide: Logic Simulation (UG900) [Ref 16].

X-Ref Target - Figure 20-11

Figure 20-11: Simulation with VCS Simulator
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Simulation Speed
QDR II+ SRAM provides a Vivado IDE option to reduce the simulation speed by selecting 
behavioral XIPHY model instead of UNISIM XIPHY model. Behavioral XIPHY model 
simulation is a default option for QDR II+ SRAM designs. To select the simulation mode, 
click the Advanced Options tab and find the Simulation Options as shown in Figure 19-3. 

The SIM_MODE parameter in the RTL is given a different value based on the Vivado IDE 
selection.

• SIM_MODE = BFM – If fast mode is selected in the Vivado IDE, the RTL parameter 
reflects this value for the SIM_MODE parameter. This is the default option.

• SIM_MODE = FULL – If UNISIM mode is selected in the Vivado IDE, XIPHY UNISIMs are 
selected and the parameter value in the RTL is FULL.

IMPORTANT: QDR II+ memory models from Cypress® Semiconductor need to be modified with the 
following two timing parameter values to run the simulations successfully: 
`define tcqd #0 
`define tcqdoh #0.15

Using Xilinx IP with Third-Party Synthesis Tools
For more information on how to use Xilinx IP with third-party synthesis tools, see the Vivado 

Design Suite User Guide: Designing with IP (UG896) [Ref 14].

CLOCK_DEDICATED_ROUTE Constraints and BUFG 
Instantiation
If the GCIO pin and MMCM are not allocated in the same bank, the 
CLOCK_DEDICATED_ROUTE constraint must be set to BACKBONE. To use the BACKBONE 
route, BUFG/BUFGCE/BUFGCTRL/BUFGCE_DIV must be instantiated between GCIO and 
MMCM input. QDR II+ SRAM manages these constraints for designs generated with the 
Reference Input Clock option selected as Differential (at Advanced > FPGA Options > 
Reference Input). Also, QDR II+ SRAM handles the IP and example design flows for all 
scenarios.

If the design is generated with the Reference Input Clock option selected as No Buffer (at 
Advanced > FPGA Options > Reference Input), the CLOCK_DEDICATED_ROUTE 
constraints and BUFG/BUFGCE/BUFGCTRL/BUFGCE_DIV instantiation based on GCIO and 
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MMCM allocation needs to be handled manually for the IP flow. QDR II+ SRAM does not 
generate clock constraints in the XDC file for No Buffer configurations and you must take 
care of the clock constraints for No Buffer configurations for the IP flow. 

For an example design flow with No Buffer configurations, QDR II+ SRAM generates the 
example design with differential buffer instantiation for system clock pins. QDR II+ SRAM 
generates clock constraints in the example_design.xdc. It also generates a 
CLOCK_DEDICATED_ROUTE constraint as the “BACKBONE” and instantiates BUFG/BUFGCE/
BUFGCTRL/BUFGCE_DIV between GCIO and MMCM input if the GCIO and MMCM are not in 
same bank to provide a complete solution. This is done for the example design flow as a 
reference when it is generated for the first time. 

If in the example design, the I/O pins of the system clock pins are changed to some other 
pins with the I/O pin planner, the CLOCK_DEDICATED_ROUTE constraints and BUFG/
BUFGCE/BUFGCTRL/BUFGCE_DIV instantiation need to be managed manually. A DRC error 
is reported for the same.
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Chapter 21

Test Bench
This chapter contains information about the test bench provided in the Vivado® Design 
Suite.

The Memory Controller is generated along with a simple test bench to verify the basic read 
and write operations. The stimulus contains 10 consecutive writes followed by 10 
consecutive reads for data integrity check.
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SECTION V:  QDR-IV SRAM

Overview
Product Specification
Core Architecture
Designing with the Core
Design Flow Steps
Example Design
Test Bench
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Chapter 22

Overview
IMPORTANT: This document supports QDR-IV SRAM core v2.0.

Navigating Content by Design Process
Xilinx® documentation is organized around a set of standard design processes to help you 
find relevant content for your current development task. This document covers the 
following design processes:

• Hardware, IP, and Platform Development: Creating the PL IP blocks for the hardware 
platform, creating PL kernels, subsystem functional simulation, and evaluating the 
Vivado timing, resource and power closure. Also involves developing the hardware 
platform for system integration. Topics in this document that apply to this design 
process include:

° Clocking

° Resets

° Protocol Description

° Customizing and Generating the Core

° Example Design

Core Overview
The Xilinx UltraScale™ architecture includes the QDR-IV SRAM core. This core provides 
solutions for interfacing with the QDR-IV SRAM memory type.

The QDR-IV SRAM is a high-performance memory device optimized to maximize the 
number of random transactions per second by the use of two independent bidirectional 
data ports.

The QDR-IV SRAM core is a physical layer with a controller for interfacing Xilinx UltraScale 
FPGA user designs to the QDR-IV SRAM devices. QDR-IV SRAMs offer high-speed data 
transfers on separate read and write buses on the rising and falling edges of the clock. 
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These memory devices are used in high-performance systems as temporary data storage, 
such as:

• Look-up tables in networking systems
• Packet buffers in network switches
• Cache memory in high-speed computing
• Data buffers in high-performance testers

The QDR-IV SRAM solutions core includes a PHY and the controller that takes user 
commands, processes them to make them compatible to the QDR-IV protocol, and provides 
the converted commands to the QDR-IV memory. The controller inside the core enables you 
to provide four commands per cycle simultaneously.

Figure 22-1 shows a high-level block diagram of the QDR-IV SRAM interface solution. 

The QDR-IV core includes the hard blocks inside the FPGA and the soft calibration logic 
necessary to ensure optimal timing of the hard blocks interfacing to the memory part.

The hard blocks include:

• Data serialization and transmission

X-Ref Target - Figure 22-1

Figure 22-1: High-Level Block Diagram of QDR-IV Interface Solution
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• Data capture and deserialization
• High-speed clock generation and synchronization
• Coarse and fine delay elements per pin with voltage and temperature tracking

The soft blocks include:

• Memory Initialization – The calibration modules provide an initialization routine and 
a reset sequence for the particular memory type. The delays in the initialization process 
can be bypassed to speed up simulation time if desired.

The QDR-IV SRAM must be initialized before it can operate in the normal functional 
mode. Initialization uses four special pins:

- RST_n pin to reset the device.
- CFG_n pin to program the configuration registers
- LBK0_n and LBK1_n pins for the loopback function.

The following steps should be followed to initialize the QDR-IV memory:

a. Apply power to the QDR-IV SRAM. Follow instructions described in the power-up 
sequence section in the memory data sheet.

b. Apply reset to the QDR-IV SRAM. Follow reset sequence instruction in the memory 
data sheet.

c. Assert Config (CFG_n = 0) and program the impedance control register.
d. Because the input impedance is updated, allow the PLL time (tPLL) to lock to the 

input clock. See the memory data sheet for tPLL value. 
• Calibration – The calibration modules provide a complete method to set all delays in 

the hard blocks and soft IP to work with the memory interface. Each bit is individually 
trained and then combined to ensure optimal interface performance. Results of the 
calibration process are available through the Xilinx debug tools. After completion of 
calibration, the PHY layer presents the raw interface to the memory part.

Feature Summary
• Component support for interface widths up to 36 bits
• Single component interface with x18 and x36 memory device support
• 2-word burst support (BL2 only)
• Only POD12 standard support
• Memory device support with 72 Mb density and 144 Mb density

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG150&Title=UltraScale%20Architecture-Based%20FPGAs%20Memory%20IP%20v1.4&releaseVersion=1.4&docPage=404


UltraScale Architecture-Based FPGAs Memory IP v1.4 405
PG150 October 22, 2021 www.xilinx.com

Chapter 22: Overview

• Other densities for memory device support is available through custom part selection
• Support for 5 (for HP memory part) and 8 (for XP memory part) cycles of read latency
• Support for 3 (for HP memory part) and 5 (for XP memory part) cycles of write latency
• Source code delivery in Verilog and SystemVerilog
• 4:1 memory to FPGA logic interface clock ratio
• Interface calibration and training information available through the Vivado hardware 

manager
• Programmable On-die Termination (ODT) support for address, clock, and data

Licensing and Ordering
This Xilinx LogiCORE IP module is provided at no additional cost with the Xilinx Vivado 
Design Suite under the terms of the Xilinx End User License. 

Information about other Xilinx LogiCORE IP modules is available at the Xilinx Intellectual 
Property page. For information on pricing and availability of other Xilinx LogiCORE IP 
modules and tools, contact your local Xilinx sales representative.

License Checkers
If the IP requires a license key, the key must be verified. The Vivado® design tools have 
several license checkpoints for gating licensed IP through the flow. If the license check 
succeeds, the IP can continue generation. Otherwise, generation halts with error. License 
checkpoints are enforced by the following tools:

• Vivado synthesis
• Vivado implementation
• write_bitstream (Tcl command)

IMPORTANT: IP license level is ignored at checkpoints. The test confirms a valid license exists. It does 
not check IP license level.
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Chapter 23

Product Specification

Standards
This core complies with the QDR-IV SRAM standard defined by the QDR Consortium. For 
more information on UltraScale™ architecture documents, see References, page 789. 

Performance
Maximum Frequencies
For more information on the maximum frequencies, see the following documentation:

• Kintex UltraScale FPGAs Data Sheet, DC and AC Switching Characteristics (DS892) 
[Ref 2]

• Virtex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics (DS893) [Ref 3]
• Kintex UltraScale+ FPGAs Data Sheet: DC and AC Switching Characteristics (DS922) 

[Ref 4]
• Virtex UltraScale+ FPGAs Data Sheet: DC and AC Switching Characteristics (DS923) 

[Ref 5]
• Zynq UltraScale+ MPSoC Data Sheet: DC and AC Switching Characteristics (DS925) 

[Ref 6]
• UltraScale Maximum Memory Performance Utility (XTP414) [Ref 21]

Resource Utilization
For full details about performance and resource utilization, visit Performance and Resource 
Utilization.
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Port Descriptions
There are three port categories at the top-level of the memory interface core called the 
“user design.” 

• The first category is the memory interface signals that directly interfaces with the 
memory part. These are defined by the QDR-IV SRAM specification. 

• The second category is the application interface signals which is referred to as the 
“user interface.” This is described in the Protocol Description, page 436. 

• The third category includes other signals necessary for proper operation of the core. 
These include the clocks, reset, and status signals from the core. The clocking and reset 
signals are described in their respective sections.

The active-High c0_init_calib_complete signal indicates that initialization and 
calibration are complete and that the interface is now ready to accept commands for the 
interface.

Ensure that the commands are issued only after c0_init_calib_complete is High. 
Any commands issued before c0_init_calib_complete signal is High will be lost.
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Chapter 24

Core Architecture
This chapter describes the UltraScale™ architecture-based FPGAs Memory Interface 
Solutions core with an overview of the modules and interfaces.

Overview
The UltraScale architecture-based FPGAs Memory Interface Solutions is shown in 
Figure 24-1.

The user interface uses a simple protocol based entirely on SDR signals to make read and 
write requests. For more details describing this protocol, see User Interface in Chapter 25.

X-Ref Target - Figure 24-1

Figure 24-1: UltraScale Architecture-Based FPGAs Memory Interface Solution Core
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Chapter 24: Core Architecture

PHY
The PHY is considered the low-level physical interface to an external QDR-IV SRAM device. 
It contains the entire calibration logic for ensuring reliable operation of the physical 
interface itself. The PHY generates the signal timing and sequencing required to interface to 
the memory device.

The PHY contains the following features:

• Clock/address/control-generation logics
• Write and read datapaths
• Logic for initializing the QDR-IV SRAM after power-up

In addition, the PHY contains calibration logic to perform timing training of the read and 
write datapaths to account for system static and dynamic delays.

Overall PHY Architecture
The UltraScale architecture PHY is composed of dedicated blocks and soft calibration logic. 
The dedicated blocks are structured adjacent to one another with back-to-back 
interconnects to minimize the clock and datapath routing necessary to build high 
performance physical layers. 
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The user interface/controller and calibration logic communicate with this dedicated PHY in 
the slow frequency clock domain, which is divided by 4. A more detailed block diagram of 
the PHY design is shown in Figure 24-2.

X-Ref Target - Figure 24-2

Figure 24-2: PHY Block Diagram
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Table 24-1: PHY Modules
Module Name Description

QDR-IV PHY PHY top of QDR-IV design
QDR-IV Calibration Calibration top module
QDR-IV Calibration Address Decoder FPGA logic interface for the MicroBlaze processor
QDR-IV Configuration ROM Configuration storage for calibration options
MicroBlaze MCS MicroBlaze processor
QDR-IV XIPHY Contains the XIPHY instance
QDR-IV IOB Byte Instantiates all byte IOB modules
QDR-IV IOB QDR-IV
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The PHY architecture encompasses all of the logic contained in QDR-IV XIPHY module. The 
PHY contains wrappers around dedicated hard blocks to build up the memory interface 
from smaller components. A byte lane contains all of the clocks, resets, and datapaths for a 
given subset of I/O. Multiple byte lanes are grouped together, along with dedicated 
clocking resources, to make up a single bank memory interface. For more information on 
the hard silicon physical layer architecture, see the UltraScale™ Architecture SelectIO™ 
Resources User Guide (UG571) [Ref 7].

The memory initialization and calibration are implemented in C programming on a small 
soft core processor. The MicroBlaze™ Controller System (MCS) is configured with an I/O 
Module, MicroBlaze Debug Module (MDM), and block RAM. The module QDR-IV 
Calibration Address Decoder provides the interface for the processor to the rest of the 
system and implements helper logic. The QDR-IV Configuration ROM module stores 
settings that control the operation of initialization and calibration, providing run time 
options that can be adjusted without having to recompile the source code.

The address unit connects the MCS to the local register set and the PHY by performing 
address decode and control translation on the I/O module bus from spaces in the memory 
map and MUXing return data (QDR-IV Calibration Address Decoder). In addition, it provides 
address translation (also known as “mapping”) from a logical conceptualization of the 
SRAM interface to the appropriate pinout-dependent location of the delay control in the 
PHY address space.

Although the calibration architecture presents a simple and organized address map for 
manipulating the delay elements for individual data, control and command bits, there is 
flexibility in how those I/O pins are placed. For a given I/O placement, the path to the FPGA 
logic is locked to a given pin. To enable a single binary software file to work with any 
memory interface pinout, a translation block converts the simplified Register Interface Unit 
(RIU) addressing into the pinout-specific RIU address for the target design. The specific 
address translation is written by QDR-IV SRAM after a pinout is selected. The code shows an 
example of the RTL structure that supports this.

Casez(io_address)// MicroBlaze I/O module address
  // … static address decoding skipped
  //========================================//
  //===========DQ ODELAYS===================//
  //========================================//
  //Byte0
  28’h0004100: begin //dq0 
    riu_addr_cal =  /* QDR-IV SRAM Generated */ 6’hd;
    riu_nibble =    /* QDR-IV SRAM Generated */ ‘h13;
  end
  // … additional dynamic addressing follows

In this example, DQ0 is pinned out on Bit[0] of nibble 0 (nibble 0 according to instantiation 
order). The RIU address for the ODELAY for Bit[0] is 0x0D. When DQ0 is addressed — 
indicated by address 0x000_4100), this snippet of code is active. It enables nibble 0 
(decoded to one-hot downstream) and forwards the address 0x0D to the RIU address bus.
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Chapter 24: Core Architecture

The MicroBlaze I/O module interface updates at a maximum rate of once every three clock 
cycles, which is not always fast enough for implementing all of the functions required in 
calibration. A helper circuit implemented in Calibration Address Decoder module is 
required to obtain commands from the registers and translate at least a portion into 
single-cycle accuracy for submission to the PHY. In addition, it supports command 
repetition to enable back-to-back read transactions and read data comparison.

Memory Initialization and Calibration Sequence
After deassertion of the system reset, the PHY performs some required internal calibration 
steps first. 

1. The built-in self-check (BISC) of the PHY is run. It is used to compensate the internal 
skews among the data bits and the strobe on the read path. The computed skews are 
used in the voltage and temperature tracking after calibration is completed.

2. After BISC completion, calibration logic performs the required power-on initialization 
sequence for the memory. This is followed by several stages of timing calibration for the 
write and read datapaths.

3. After calibration is completed, PHY calculates internal offsets to be used in voltage and 
temperature tracking.

4. When PHY indicates the calibration completion, the user interface command execution 
begins.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG150&Title=UltraScale%20Architecture-Based%20FPGAs%20Memory%20IP%20v1.4&releaseVersion=1.4&docPage=412


UltraScale Architecture-Based FPGAs Memory IP v1.4 413
PG150 October 22, 2021 www.xilinx.com

Chapter 24: Core Architecture

Figure 24-3 shows the overall flow of memory initialization and the different stages of 
calibration.

X-Ref Target - Figure 24-3

Figure 24-3: PHY Overall Initialization and Calibration Sequence
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Reset Sequence
The sys_rst signal resets the entire memory design which includes general interconnect 
(fabric) logic which is driven by the MMCM clock (clkout0) and RIU logic. MicroBlaze™ and 
calibration logic are driven by the MMCM clock (clkout6). The sys_rst input signal is 
synchronized internally to create the qdriv_rst_clk signal. The qdriv_rst_clk reset 
signal is synchronously asserted and synchronously deasserted.

Figure 24-4 shows the qdriv_rst_clk (fabric reset) is synchronously asserted with a few 
clock delays after sys_rst is asserted. When qdriv_rst_clk is asserted, there are a few 
clocks before the clocks are shut off. 

The following are the reset sequencing steps:

1. Reset to design is initiated after qdriv_rst_clk goes High.
2. init_calib_complete signal goes Low when qdriv_rst_clk is High.
3. Reset to design is deactivated after qdriv_rst_clk is Low. 
4. After qdriv_rst_clk is deactivated, the init_calib_complete is asserted after 

calibration is completed.

MicroBlaze MCS ECC
The MicroBlaze MCS local memory provides an option to enable Error Correcting Code 
(ECC). Error correction corrects single bit errors and detects double bit errors. Two 
additional ports are added to indicate single bit errors (LMB_CE) and double bit errors 
(LMB_UE).

The MicroBlaze MCS ECC can be selected from the MicroBlaze MCS ECC option section in 
the Advanced Options tab. The block RAM size increases if the ECC option for MicroBlaze 
MCS is selected.

X-Ref Target - Figure 24-4

Figure 24-4: Reset Sequence Waveform
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Chapter 25

Designing with the Core
This chapter includes guidelines and additional information to facilitate designing with the 
core. 

Clocking
The memory interface requires one MMCM, one TXPLL per I/O bank used by the memory 
interface and two BUFGs. These clocking components are used to create the proper clock 
frequencies and phase shifts necessary for the proper operation of the memory interface.

There are two TXPLLs per bank. If a bank is shared by two memory interfaces, both TXPLLs 
in that bank are used.

The QDR-IV IP generates the appropriate clocking structure for the desired interface. This 
structure must not be modified. The allowed clock configuration is as follows:

• Differential reference clock source connected to GCIO
• GCIO to MMCM (located in center bank of memory interface)
• MMCM to BUFG (located at center bank of memory interface) driving FPGA logic and 

all TXPLLs
• MMCM to BUFG (located at center bank of memory interface) divide by two mode 

driving 1/2 rate FPGA logic
• Clocking pair of the interface must be in the same SLR of memory interface for the SSI 

technology devices
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Requirements

GCIO

• Must use a differential I/O standard
• Must be in the same I/O column as the memory interface
• The I/O standard and termination scheme are system dependent. For more information, 

consult the UltraScale Architecture SelectIO Resources User Guide (UG571) [Ref 7].

MMCM

• MMCM is used to generate the FPGA logic system clock (1/2 of the memory clock)
• Must be located in the center bank of memory interface
• Must use internal feedback
• Input clock frequency divided by input divider must be ≥  70 MHz (CLKINx / D ≥  

70 MHz)
• Must use integer multiply and output divide values

BUFGs and Clock Roots

• One BUFG is used to generate the system clock to FPGA logic and another BUFG is used 
to divide the system clock by two.

• BUFG and clock roots must be located in center most bank of the memory interface.

° For two bank systems, the bank with the higher number of bytes selected is chosen 
as the center bank. If the same number of bytes is selected in two banks, then the 
top bank is chosen as the center bank.

° Both the BUFGs must be in the same bank

TXPLL

• CLKOUTPHY from TXPLL drives XIPHY within its bank
• TXPLL must be set to use a CLKFBOUT phase shift of 90°
• TXPLL must be held in reset until the MMCM lock output goes High
• Must use internal feedback
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Figure 25-1 shows an example of the clocking structure for a three bank memory interface. 
The GCIO drives the MMCM located at the center bank of the memory interface. MMCM 
drives both the BUFGs located in the same bank. The BUFG (which is used to generate 
system clock to FPGA logic) output drives the TXPLLs used in each bank of the interface. 

The MMCM is placed in the center bank of the memory interface.

• For two bank systems, MMCM is placed in a bank with the most number of bytes 
selected. If they both have the same number of bytes selected in two banks, then 
MMCM is placed in the top bank.

• For four bank systems, MMCM is placed in a second bank from the top.

X-Ref Target - Figure 25-1

Figure 25-1: Clocking Architecture Inside a QDR-IV Design
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For designs generated with System Clock configuration of No Buffer, MMCM must not be 
driven by another MMCM/PLL. Cascading clocking structures MMCM →  BUFG →  MMCM 
and PLL →  BUFG →  MMCM are not allowed.

If the MMCM is driven by the GCIO pin of the other bank, then the 
CLOCK_DEDICATED_ROUTE constraint with value "BACKBONE" must be set on the net that 
is driving MMCM or on the MMCM input. Setting up the CLOCK_DEDICATED_ROUTE 
constraint on the net is preferred. But when the same net is driving two MMCMs, the 
CLOCK_DEDICATED_ROUTE constraint must be managed by considering which MMCM 
needs the BACKBONE route. 

In such cases, the CLOCK_DEDICATED_ROUTE constraint can be set on the MMCM input. To 
use the "BACKBONE" route, any clock buffer that exists in the same CMT tile as the GCIO 
must exist between the GCIO and MMCM input. The clock buffers that exists in the I/O CMT 
are BUFG, BUFGCE, BUFGCTRL, and BUFGCE_DIV. So QDR-IV SRAM instantiates BUFG 
between the GCIO and MMCM when the GCIO pins and MMCM are not in the same bank 
(see Figure 25-1). 

If the GCIO pin and MMCM are allocated in different banks, QDR-IV SRAM generates 
CLOCK_DEDICATED_ROUTE constraints with value as "BACKBONE." If the GCIO pin and 
MMCM are allocated in the same bank, there is no need to set any constraints on the 
MMCM input. 

Similarly when designs are generated with System Clock Configuration as a No Buffer 
option, you must take care of the "BACKBONE" constraint and the BUFG/BUFGCE/
BUFGCTRL/BUFGCE_DIV between GCIO and MMCM if GCIO pin and MMCM are allocated in 
different banks. QDR-IV SRAM does not generate clock constraints in the XDC file for No 
Buffer configurations and you must take care of the clock constraints for No Buffer 
configurations. For more information on clocking, see the UltraScale Architecture Clocking 
Resources User Guide (UG572) [Ref 8].

XDC syntax for CLOCK_DEDICATED_ROUTE constraint is given here: 

set_property CLOCK_DEDICATED_ROUTE BACKBONE [get_pins -hier -filter {NAME =~ */
u_qdriv_infrastructure/gen_mmcme*.u_mmcme_adv_inst/CLKIN1}]

For more information on the CLOCK_DEDICATED_ROUTE constraints, see the Vivado Design 
Suite Properties Reference Guide (UG912) [Ref 9].

Note: If two different GCIO pins are used for two QDR-IV SRAM IP cores in the same bank, center 
bank of the memory interface is different for each IP. QDR-IV SRAM generates MMCM LOC and 
CLOCK_DEDICATED_ROUTE constraints accordingly.
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Sharing of Input Clock Source (sys_clk_p)
If the same GCIO pin must be used for two IP cores, generate the two IP cores with the same 
frequency value selected for option Reference Input Clock Period (ps) and System Clock 
Configuration option as No Buffer. Perform the following changes in the wrapper file in 
which both IPs are instantiated:

1. QDR-IV SRAM generates a single-ended input for system clock pins, such as 
sys_clk_i. Connect the differential buffer output to the single-ended system clock 
inputs (sys_clk_i) of both the IP cores.

2. System clock pins must be allocated within the same I/O column of the memory 
interface pins allocated. Add the pin LOC constraints for system clock pins and clock 
constraints in your top-level XDC.

3. You must add a "BACKBONE" constraint on the net that is driving the MMCM or on the 
MMCM input if GCIO pin and MMCM are not allocated in the same bank. Apart from 
this, BUFG/BUFGCE/BUFGCTRL/BUFGCE_DIV must be instantiated between GCIO and 
MMCM to use the "BACKBONE" route.

Note:

° The UltraScale architecture includes an independent XIPHY power supply and TXPLL 
for each XIPHY. This results in clean, low jitter clocks for the memory system.

° Skew spanning across multiple BUFGs is not a concern because single point of 
contact exists between BUFG →  TXPLL and the same BUFG →  System Clock Logic.

° System input clock cannot span I/O columns because the longer the clock lines 
span, the more jitter is picked up.

TXPLL Usage
There are two TXPLLs per bank. If a bank is shared by two memory interfaces, both TXPLLs 
in that bank are used. One PLL per bank is used if a bank is used by a single memory 
interface. You can use a second PLL for other usage. To use a second PLL, you can perform 
the following steps:

1. Generate the design for the System Clock Configuration option as No Buffer. 
2. QDR-IV SRAM generates a single-ended input for system clock pins, such as 

sys_clk_i. Connect the differential buffer output to the single-ended system clock 
inputs (sys_clk_i) and also to the input of PLL (PLL instance that you have in your 
design).

3. You can use the PLL output clocks.
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Additional Clocks
You can produce up to four additional clocks which are created from the same MMCM that 
generates ui_clk. Additional clocks can be selected from the Clock Options section in the 
Advanced Options tab. The GUI lists the possible clock frequencies from MMCM and the 
frequencies for additional clocks vary based on selected memory frequency (Memory 
Device Interface Speed (ps) value in the Basic tab), selected FPGA, and FPGA speed grade. 

Reduce System Noise during Calibration
The system design should be as quiet as possible during the calibration process. In 
particular, the Soft Error Mitigation (SEM) IP, if used, should be disabled during calibration. 
For calibration that occurs immediately after the configuration or reconfiguration of the 
FPGA, use the ICAP arbitration interface to hold off the SEM IP in the boot stage. For more 
information on the ICAP Arbitration Interface, see “ICAP Arbitration Interface” section in 
Chapter 3 of the UltraScale Architecture Soft Error Mitigation Controller LogiCORE IP Product 
Guide (PG187) [Ref 10].

For situations where the memory interface is reset and recalibrated without a 
reconfiguration of the FPGA, the SEM IP must be set into IDLE state to disable the memory 
scan and to send the SEM IP back into the scanning (Observation or Detect only) states 
afterwards. This can be done in two methods, through the “Command Interface” or “UART 
interface.” See Chapter 3 of the UltraScale Architecture Soft Error Mitigation Controller 
LogiCORE IP Product Guide (PG187) [Ref 10] for more information.

Resets
An asynchronous reset (sys_rst) input is provided. This active-High reset must assert for 
a minimum of 20 cycles of the FPGA logic clock. 

For more information on reset, see the Reset Sequence in Chapter 24, Core Architecture.

PCB Guidelines for QDR-IV SRAM
Strict adherence to all documented QDR-IV SRAM PCB guidelines is required for successful 
operation. For more information on PCB guidelines, see the UltraScale Architecture PCB 
Design and Pin Planning User Guide (UG583) [Ref 11].
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Pin and Bank Rules
QDR-IV Pin Rules
This section describes the pin out rules for QDR-IV SRAM (XP and HP) interface.

1. Only HP banks of the FPGA device are supported.
2. Data Group Definition: DQ pins, associated QK/QK# pins, associated DK/DK# pins, QVLD 

pin of corresponding port.
a. Association of DQ, QK/QK#, DK/DK#, and QVLD pins are as per the QDR-IV data 

sheet (defined by Cypress® Semiconductor).
b. For x18 component, PORT A, DQA[8:0], QKA[0]/QKA#[0], and DKA[0]/DKA#[0] 

associate a Data group; DQA[17:9], QKA[1]/QKA#[1]. DKA[1]/DKA#[1] associate with 
another Data group. Similar association is followed for PORT B.

c. For x36 component, PORT B, DQB[17:0], QKB[0]/QKB#[0], and DKB[0]/DKB#[0] 
associate a Data group; DQB[35:18], QKB[1]/QKB#[1]. DKB[1]/DKB#[1] associate with 
another Data group. Similar association is followed for PORT A.

3. Address/Control Group Definition: A, CK/CK#, AP, PE#, AINV, LDA#, LDB#, RWA#, RWB#, 
CFG#, RST#, LBK0#, and LBK1# pins of a single memory component.

4. All signal groups of the memory interface (that is, Data group, Address/Control group, 
and system clock) must be selected in a single column of banks.

5. All of the Address/Control group and Data group pins of a given memory interface 
design must be allocated within three consecutive banks, no skip banks allowed.

6. Address/Control group must be allocated in the center bank.
7. Pin association within Data and Address groups is strictly followed.
8. Data Group (x18 Component):

a. All the data groups of a single PORT must be allocated in a single bank.
b. All the pins of a single data group must be allocated within two consecutive byte 

lanes in a given bank.
c. DQ and associated QK/QK# and QVLD of a single data group must be allocated in a 

single byte lane.
d. DQ pins allocation:

All the DQ pins of a single data group can be allocated to any I/O pin except pin 1, 
pin 7, and pin 12 of the given byte lane.

e. QK/QK# pin allocation:
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All the QK/QK# pair of a single data group must be allocated to pin 0/pin 1 pair or 
pin 6/pin7 pair of the given byte lane.

f. DK/DK# pin allocation:
- All the DK/DK# pair of a single data group can be allocated to any differential 

pin pair.
- All the DK/DK# pair of a single data group can be allocated in the same or 

consecutive byte lane of the DQ pins (of the same data group) allocated byte 
lane.

g. QVLD pin allocation:
- QVLD of a single data group can be allocated to any I/O pin.
- QVLD is not utilized in the current design. It is reserved for future use.

h. Only DK/DK# pins of different data groups from a single PORT of a single 
component can share byte lanes. This rule should be used in conjunction with the 
above mentioned step a and step b.

i. Data groups of PORT A and PORT B of a single component cannot share byte lanes.
j. See the QDR-IV Pinout Examples, page 424.

9. Data Group (x36 Component):
a. All the data groups of a single PORT must be allocated in a single bank.
b. All the pins of a single data group must be allocated within two consecutive byte 

lanes in a given bank.
c. DQ pins allocation:

- All the DQ pins of a single data group can be allocated to any I/O pin except pin 
1, pin 7, and pin 12 of any given byte lane.

- DQ 0 to 8 pins of a single data group must be allocated in a single byte lane. 
Similarly, DQ 9 to 17 pins of the same data group must be allocated in the next 
consecutive byte lane of the same bank. Likewise, DQ 18 to 26 and DQ 27 to 35 
must be allocated in consecutive byte lanes, respectively.

d. QK/QK# pin allocation:

All the QK/QK# pair of a single data group must be allocated to pin 0/pin 1 pair or 
pin 6/pin7 pair of byte lanes 1 or 2.

e. DK/DK# pin allocation:

All the DK/DK# pair of a single data group can be allocated to any differential pin 
pair.

f. QVLD pin allocation:
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- QVLD of a single data group can be allocated to any I/O pin.
- QVLD is not utilized in the current design. It is reserved for future use.

g. Data groups of PORT A and PORT B of a single component cannot share byte lanes.
h. See the QDR-IV Pinout Examples, page 424.

10. Address/Control Group:
a. All the address/control group pins must be allocated in a single bank.
b. Pins A, AP, PE#, AINV, LDA#, LDB#, RWA#, RWB#, CFG#, RST#, LBK0#, and LBK1# of 

the design can be allocated to any I/O pin.
c. CK/CK# pin allocation:

- CK/CK# pair must be allocated only in byte lanes 1 or 2 (whichever is center to 
the A, AP, and AINV allocated byte lanes) of a given bank.

- CK/CK# pair can be allocated to any I/O differential pin pair.
d. Pins A, AP, and AINV must be allocated in consecutive 3-byte lanes (only) in a given 

bank.
11. System clock pins (sys_clk_p/sys_clk_n) must be placed on any GCCIO pin pair in 

the same column and same SLR as that of the memory interface. Information on the 
clock input specifications can be found in the AC and DC Switching Characteristics data 
sheets (LVDS input requirements and MMCM requirements should be considered). 

12. One vrp pin per bank is used and DCI is required for the interfaces. A vrp pin is 
required in I/O banks containing inputs as well as in output only banks. It is required in 
output only banks because address/control signals use POD12_DCI to enable usage of 
controlled output impedance. DCI cascade is allowed. When DCI cascade is selected, 
vrp pin can be used as a normal I/O. All rules for the DCI in the UltraScale™ Device 
FPGAs SelectIO™ Resources User Guide (UG571) [Ref 7] must be followed.

RECOMMENDED: Xilinx strongly recommends that the DCIUpdateMode option is kept with the default 
value of ASREQUIRED so that the DCI circuitry is allowed to operate normally.

13. There are dedicated VREF pins (not included in the rules above). Either internal or 
external VREF is permitted. If an external VREF is not used, the VREF pins must be pulled 
to ground by a resistor value specified in the UltraScale™ Device FPGAs SelectIO™ 
Resources User Guide (UG571) [Ref 7]. These pins must be connected appropriately for 
the standard in use.

14. The system reset pin (sys_rst_n) must not be allocated to Pins N0 and N6 if the byte 
is used for the memory I/Os.

IMPORTANT: QDR-IV IP does not support data inversion. Contact your memory vendor for terminating 
DINVA and DINVB at memory.
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QDR-IV Pinout Examples

Table 25-1 shows an example of an 36-bit QDR-IV SRAM interface contained within three 
banks. 
Table 25-1: 36-Bit QDR-IV Interface Contained in Three Banks

Bank Signal Name Byte Group Byte Group I/O 
Number

Special 
Designation Pin Number

44

DQB6

T0

N0 – BC31
– N1 – BD31
DQB1 N2 – BB29
DQB3 N3 – BC29
DQB2 N4 – BB31
DQB4 N5 – BC32
DKB0_P N6 – BD29
DKB0_N N7 – BD30
DQB0 N8 – BA32
DQB8 N9 – BB32
DQB7 N10 – BA30
DQB5 N11 – BB30
– N12 VRP BA29

44

DQB12

T1

N0 – AY30
QVLDB0 N1 – AY31
DQB9 N2 – AW31
DQB11 N3 – AY32
DQB15 N4 – AW29
DQB10 N5 – AW30
QKB0_P N6 – AV33
QKB0_N N7 – AW33
DQB17 N8 GCIO_P_3 AU30
DQB13 N9 GCIO_N_3 AU31
DQB14 N10 GCIO_P_4 AV31
DQB16 N11 GCIO_N_4 AV32
– N12 – AV29
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44

DQB24

T2

N0 GCIO_P_1 AT32
– N1 GCIO_N_1 AU32
DQB19 N2 GCIO_P_2 AT29
DQB20 N3 GCIO_N_2 AU29
DQB22 N4 – AR32
DQB21 N5 – AR33
QKB1_P N6 – AR28
QKB1_N N7 – AT28
DQB23 N8 – AP30
DQB26 N9 – AR31
DQB25 N10 – AR30
DQB18 N11 – AT30
– N12 – AT33

44

DQB27

T3

N0 – AN31
QVLDB1 N1 – AP31
DQB29 N2 – AN32
DQB33 N3 – AP33
DQB32 N4 – AP28
DQB34 N5 – AP29
DKB1_P N6 – AM30
DKB1_N N7 – AM31
DQB31 N8 – AM29
DQB35 N9 – AN29
DQB28 N10 – AL29
DQB30 N11 – AL30
– N12 – AN28

Table 25-1: 36-Bit QDR-IV Interface Contained in Three Banks (Cont’d)

Bank Signal Name Byte Group Byte Group I/O 
Number

Special 
Designation Pin Number
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45

–

T0

N0 – BC28
– N1 – BD28
– N2 – BD25
– N3 – BD26
– N4 – BB27
– N5 – BC27
– N6 – BC24
– N7 – BD24
– N8 – BB26
– N9 – BC26
– N10 – BB24
– N11 – BB25
– N12 VRP BA28

45

–

T1

N0 – AW28
PE_N N1 – AY28
RWB_N N2 – BA24
LDB_N N3 – BA25
RWA_N N4 – AY27
LDA_N N5 – BA27
LBK1_N N6 – AW25
LBK0_N N7 – AY25
– N8 GCIO_P_4 AV26
– N9 GCIO_N_4 AV27
RST_N N10 GCIO_P_3 AW26
CFG_N N11 GCIO_N_3 AY26
– N12 – AV28

Table 25-1: 36-Bit QDR-IV Interface Contained in Three Banks (Cont’d)

Bank Signal Name Byte Group Byte Group I/O 
Number

Special 
Designation Pin Number
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45

A18

T2

N0 GCIO_P_2 AU25
A20 N1 GCIO_N_2 AU26
A17 N2 GCIO_P_1 AR25
A16 N3 GCIO_N_1 AT25
A15 N4 – AT27
A14 N5 – AU27
CK_P N6 – AP25
CK_N N7 – AP26
A13 N8 – AR26
A12 N9 – AR27
A11 N10 – AN24
A10 N11 – AP24
AP N12 – AT24

45

A9

T3

N0 – AN26
A19 N1 – AN27
A8 N2 – AK25
A7 N3 – AL25
A6 N4 – AM26
A5 N5 – AM27
A4 N6 – AK27
AINV N7 – AL27
A3 N8 – AM24
A2 N9 – AM25
A1 N10 – AJ26
A0 N11 – AK26
– N12 – AL24

Table 25-1: 36-Bit QDR-IV Interface Contained in Three Banks (Cont’d)

Bank Signal Name Byte Group Byte Group I/O 
Number

Special 
Designation Pin Number
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46

DQA12

T0

N0 – BA33
– N1 – BB34
DQA15 N2 – BC33
DQA11 N3 – BD33
DQA10 N4 – BA34
DQA16 N5 – BA35
DKA0_P N6 – BC34
DKA0_N N7 – BD34
DQA9 N8 – BB35
DQA17 N9 – BC36
DQA14 N10 – BD35
DQA13 N11 – BD36
– N12 VRP AY33

46

DQA7

T1

N0 – BC39
QVLDA0 N1 – BD39
DQA5 N2 – BB36
DQA3 N3 – BC37
DQA8 N4 – BA38
DQA1 N5 – BB39
QKA0_P N6 – BC38
QKA0_N N7 – BD38
DQA0 N8 GCIO_P_1 AY37
DQA4 N9 GCIO_N_1 AY38
DQA2 N10 GCIO_P_2 BA37
DQA6 N11 GCIO_N_2 BB37
– N12 – BA39

Table 25-1: 36-Bit QDR-IV Interface Contained in Three Banks (Cont’d)

Bank Signal Name Byte Group Byte Group I/O 
Number

Special 
Designation Pin Number
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46

DQA19

T2

N0 GCIO_P_4 AV36
– N1 GCIO_N_4 AW36
DQA18 N2 GCIO_P_3 AY35
DQA26 N3 GCIO_N_3 AY36
DQA25 N4 – AW38
DQA20 N5 – AW39
QKA1_P N6 – AW34
QKA1_N N7 – AW35
DQA24 N8 – AU39
DQA23 N9 – AV39
DQA22 N10 – AV37
DQA21 N11 – AV38
– N12 – AV34

46

DQA32

T3

N0 – AT34
QVLDA1 N1 – AT35
DQA35 N2 – AU34
DQA31 N3 – AU35
DQA30 N4 – AR39
DQA27 N5 – AT39
DKA1_P N6 – AU36
DKA1_N N7 – AU37
DQA33 N8 – AR37
DQA29 N9 – AR38
DQA34 N10 – AT37
DQA28 N11 – AT38
– N12 – AR36

Table 25-1: 36-Bit QDR-IV Interface Contained in Three Banks (Cont’d)

Bank Signal Name Byte Group Byte Group I/O 
Number

Special 
Designation Pin Number
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Table 25-2 shows an example of an 18-bit QDR-IV SRAM interface contained within three 
banks. 
Table 25-2: 18-Bit QDR-IV Interface Contained in Three Banks

Bank Signal Name Byte Group Byte Group I/O 
Number

Special 
Designation Pin Number

49

–

T0

N0 – L38
– N1 – L39
– N2 – K38
– N3 – J38
– N4 – J39
– N5 – H39
– N6 – H37
– N7 – G37
– N8 – H38
– N9 – G39
DKB1_P N10 – F38
DKB1_N N11 – F39
– N12 VRP K37

49

QKB1_P

T1

N0 – K36
QKB1_N N1 – J36
DQB9 N2 – J33
DQB13 N3 – H34
DQB12 N4 – J35
DQB15 N5 – H36
DQB17 N6 – H33
QVLDB1 N7 – G34
DQB16 N8 GCIO_P_1 F34
DQB10 N9 GCIO_N_1 F35
DQB14 N10 GCIO_P_2 G35
DQB11 N11 GCIO_N_2 G36
– N12 – F33
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49

QKB0_P

T2

N0 GCIO_P_3 F37
QKB0_N N1 GCIO_N_3 E38
DQB6 N2 GCIO_P_4 E36
DQB8 N3 GCIO_P_3 E37
DQB5 N4 – D39
DQB7 N5 – C39
DQB4 N6 – D38
QVLDB0 N7 – C38
DQB0 N8 – D36
DQB3 N9 – C36
DQB1 N10 – B37
DQB2 N11 – A37
– N12 – C37

49

DKB0_P

T3

N0 – E35
DKB0_N N1 – D35
– N2 – D34
– N3 – C34
– N4 – D33
– N5 – C33
– N6 – B35
– N7 – B36
– N8 – B34
– N9 – A35
– N10 – A33
– N11 – A34
– N12 – E33

Table 25-2: 18-Bit QDR-IV Interface Contained in Three Banks (Cont’d)

Bank Signal Name Byte Group Byte Group I/O 
Number

Special 
Designation Pin Number
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50

–

T0

N0 – R27
– N1 – R28
– N2 – M30
– N3 – L30
– N4 – P28
– N5 – P29
– N6 – N29
– N7 – M29
– N8 – N27
– N9 – N28
– N10 – L28
– N11 – L29
– N12 VRP T28

50

–

T1

N0 – K30
PE_N N1 – J30
RWB_N N2 – K31
LDB_N N3 – J31
RWA_N N4 – J28
LDA_N N5 – J29
LBK1_N N6 – H32
LBK0_N N7 – G32
– N8 GCIO_P_4 H28
– N9 GCIO_N_4 H29
RST_N N10 GCIO_P_3 H31
CFG_N N11 GCIO_N_3 G31
– N12 – K28

Table 25-2: 18-Bit QDR-IV Interface Contained in Three Banks (Cont’d)

Bank Signal Name Byte Group Byte Group I/O 
Number

Special 
Designation Pin Number
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50

A18

T2

N0 GCIO_P_2 G30
A20 N1 GCIO_N_2 F30
A17 N2 GCIO_P_1 G29
A16 N3 GCIO_N_1 F29
A15 N4 – F32
A14 N5 – E32
CK_P N6 – E30
CK_N N7 – D30
A13 N8 – E31
A12 N9 – D31
A11 N10 – F28
A10 N11 – E28
AP N12 – D29

50

A9

T3

N0 – C31
A19 N1 – C32
A8 N2 – B30
A7 N3 – B31
A6 N4 – B32
A5 N5 – A32
A4 N6 – A29
AINV N7 – A30
A3 N8 – C29
A2 N9 – B29
A1 N10 – D28
A0 N11 – C28
– N12 – A28

Table 25-2: 18-Bit QDR-IV Interface Contained in Three Banks (Cont’d)

Bank Signal Name Byte Group Byte Group I/O 
Number

Special 
Designation Pin Number
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51

QKA0_P

T0

N0 – T25
QKA0_N N1 – R25
DQA1 N2 – T23
DQA8 N3 – R23
DQA4 N4 – R26
DQA6 N5 – P26
DQA0 N6 – P24
QVLDA0 N7 – N24
DQA7 N8 – P25
DQA5 N9 – N26
DQA2 N10 – P23
DQA3 N11 – N23
– N12 VRP M25

51

DKA0_P

T1

N0 – M26
DKA0_N N1 – M27
– N2 – M24
– N3 – L25
– N4 – L27
– N5 – K27
– N6 – L23
– N7 – L24
– N8 GCIO_P_4 K25
– N9 GCIO_N_4 J25
DKA1_P N10 GCIO_P_2 K26
DKA1_N N11 GCIO_N_2 J26
– N12 – J24

Table 25-2: 18-Bit QDR-IV Interface Contained in Three Banks (Cont’d)

Bank Signal Name Byte Group Byte Group I/O 
Number

Special 
Designation Pin Number
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51

QKA1_P

T2

N0 GCIO_P_3 G25
QKA1_N N1 GCIO_N_3 F25
DQA12 N2 GCIO_P_1 H26
DQA9 N3 GCIO_N_1 G26
DQA10 N4 – F27
DQA13 N5 – E27
DQA15 N6 – H27
QVLDA1 N7 – G27
DQA16 N8 – E25
DQA17 N9 – E26
DQA11 N10 – G24
DQA14 N11 – F24
– N12 – H24

51

–

T3

N0 – D26
– N1 – C27
– N2 – B27
– N3 – A27
– N4 – C26
– N5 – B26
– N6 – B25
– N7 – A25
– N8 – D24
– N9 – D25
– N10 – C24
– N11 – B24
– N12 – A24

Table 25-2: 18-Bit QDR-IV Interface Contained in Three Banks (Cont’d)

Bank Signal Name Byte Group Byte Group I/O 
Number

Special 
Designation Pin Number
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Protocol Description
This core has the following interfaces:

• Memory Interface
• User Interface
• Physical Interface

Memory Interface
The QDR-IV SRAM core is customizable to support several configurations. The specific 
configuration is defined by Verilog parameters in the top-level of the core.

User Interface
The user interface connects to an FPGA user design to the QDR-IV SRAM core to simplify 
interactions between the user design and the external memory device. The user interface 
provides a set of signals used to issue a read or write command to the memory device. 
These signals are summarized in Table 25-3.

Parameters and values:

• CH_ADDR_WIDTH – Address width of a channel. It depends on the QDR-IV SRAM. 
memory part. 

• CH_DATA_WIDTH – Data bus width of a channel. It is twice the memory data width. For 
example, 36 for 18-bit memory interface and 72 for 36-bit memory interface.

• CH_NUM – Number of channels. The value is fixed to be 4.
• CH_CMD_WIDTH – Number of bits required to represent a command. The value is 

fixed to be 2. 
Table 25-3: User Interface Signals

Signal I/O Description

sys_clk_p I P clock of input differential clock for internal MMCM.

sys_clk_n I N clock of input differential clock for internal MMCM.

sys_rst I System Reset. Brings the design to initial state.
ui_clk O FPGA logic clock to generate traffic for the IP.
ui_rst O Reset coming out from the design.
init_calib_complete O Calibration Completion status.
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app_addr_a_ch0[ADDR_WIDTH–1:0] I Address of write/read commands data of PORT A 
corresponding to channel 0. 

app_addr_a_ch1[ADDR_WIDTH–1:0] I Address of write/read commands data of PORT A 
corresponding to channel 1. 

app_addr_a_ch2[ADDR_WIDTH–1:0] I Address of write/read commands data of PORT A 
corresponding to channel 2. 

app_addr_a_ch3[ADDR_WIDTH–1:0] I Address of write/read commands data of PORT A 
corresponding to channel 3. 

app_cmd_a_ch0[CH_CMD_WIDTH–1:0] I Write, Read, or NOP command to the UI for PORT A 
corresponding to channel 0.

app_cmd_a_ch1[CH_CMD_WIDTH–1:0] I Write, Read, or NOP command to the UI for PORT A 
corresponding to channel 1.

app_cmd_a_ch2[CH_CMD_WIDTH–1:0] I Write, Read, or NOP command to the UI for PORT A 
corresponding to channel 2.

app_cmd_a_ch3[CH_CMD_WIDTH–1:0] I Write, Read, or NOP command to the UI for PORT A 
corresponding to channel 3.

app_cmd_en_a I
This signal is used to indicate to the User Interface that the 
input commands for PORT A are valid provided 
app_cmd_rdy_a is High. If app_cmd_rdy_a is Low, PORT A 
commands are ignored.

app_wrdata_a_ch0[CH_DATA_WIDTH–1:0] I Write Data for write commands of PORT A corresponding 
to channel 0.

app_wrdata_a_ch1[CH_DATA_WIDTH–1:0] I Write Data for write commands of PORT A corresponding 
to channel 1.

app_wrdata_a_ch2[CH_DATA_WIDTH–1:0] I Write Data for write commands of PORT A corresponding 
to channel 2.

app_wrdata_a_ch3[CH_DATA_WIDTH–1:0] I Write Data for write commands of PORT A corresponding 
to channel 3.

app_cmd_rdy_a O
This signal is used to indicate the user that UI is ready to 
accept new commands. 
Note: PORT A commands are not processed by the User 
Interface when app_cmd_rdy_a signal is Low.

app_rddata_a_ch0[CH_DATA_WIDTH–1:0] O Read Data of Read commands of PORT A corresponding to 
channel 0.

app_rddata_a_ch1[CH_DATA_WIDTH–1:0] O Read Data of Read commands of PORT A corresponding to 
channel 1.

app_rddata_a_ch2[CH_DATA_WIDTH–1:0] O Read Data of Read commands of PORT A corresponding to 
channel 2.

app_rddata_a_ch3[CH_DATA_WIDTH–1:0] O Read Data of Read commands of PORT A corresponding to 
channel 3.

app_rddata_valid_a[CH_NUM–1:0] O Read data valid of PORT A for four channels where Bit[0] 
corresponds to channel 0 and etc.

Table 25-3: User Interface Signals (Cont’d)

Signal I/O Description
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app_addr_b_ch0[CH_ADDR_WIDTH–1:0] I Address of write/read commands data of PORT B 
corresponding to channel 0.

app_addr_b_ch1[CH_ADDR_WIDTH–1:0] I Address of write/read commands data of PORT B 
corresponding to channel 1.

app_addr_b_ch2[CH_ADDR_WIDTH–1:0] I Address of write/read commands data of PORT B 
corresponding to channel 2.

app_addr_b_ch3[CH_ADDR_WIDTH–1:0] I Address of write/read commands data of PORT B 
corresponding to channel 3.

app_cmd_b_ch0[CH_CMD_WIDTH–1:0] I Write, Read or NOP command to the UI for PORT B 
corresponding to channel 0.

app_cmd_b_ch1[CH_CMD_WIDTH–1:0] I Write, Read or NOP command to the UI for PORT B 
corresponding to channel 1.

app_cmd_b_ch2[CH_CMD_WIDTH–1:0] I Write, Read or NOP command to the UI for PORT B 
corresponding to channel 2.

app_cmd_b_ch3[CH_CMD_WIDTH–1:0] I Write, Read or NOP command to the UI for PORT B 
corresponding to channel 3.

app_cmd_en_b I
This signal is used to indicate to the User Interface that the 
input commands for PORT B are valid provided 
app_cmd_rdy_b is High. If app_cmd_rdy_b is Low, PORT B 
commands are ignored.

app_wrdata_b_ch0[CH_DATA_WIDTH–1:0] I Write Data for write commands of PORT B corresponding 
to channel 0.

app_wrdata_b_ch1[CH_DATA_WIDTH–1:0] I Write Data for write commands of PORT B corresponding 
to channel 1.

app_wrdata_b_ch2[CH_DATA_WIDTH–1:0] I Write Data for write commands of PORT B corresponding 
to channel 2.

app_wrdata_b_ch3[CH_DATA_WIDTH–1:0] I Write Data for write commands of PORT B corresponding 
to channel 3.

app_cmd_rdy_b O
This signal is used to indicate the user that UI is ready to 
accept new commands.
Note: No commands for PORT B are processed by the UI when 
this signal is Low.

app_rddata_b_ch0[CH_DATA_WIDTH–1:0] O Read Data of Read commands of PORT B corresponding to 
channel 0.

app_rddata_b_ch1[CH_DATA_WIDTH–1:0] O Read Data of Read commands of PORT B corresponding to 
channel 1.

app_rddata_b_ch2[CH_DATA_WIDTH–1:0] O Read Data of Read commands of PORT B corresponding to 
channel 2.

app_rddata_b_ch3[CH_DATA_WIDTH–1:0] O Read Data of Read commands of PORT B corresponding to 
channel 3.

app_rddata_valid_b[CH_NUM–1:0] O Read data valid of PORT B for four channels where Bit[0] 
corresponds to channel 0 and etc.

Table 25-3: User Interface Signals (Cont’d)

Signal I/O Description
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Controller Features

The QDR-IV SRAM memory controller is designed to take read and write commands from 
the user interface and converts them so that they become compatible to the QDR-IV SRAM 
memory protocol. Also, it ensures that the commands to the memory are handled with low 
latencies meeting all the QDR-IV SRAM memory timing requirements.

The best efficiency from the controller is achieved when there is unidirectional traffic on 
each port, without any bank collision in them, without the command switch from read to 
write, or vice-versa. When there are alternate read/write commands, the efficiency is lost 
because the bidirectional QDR-IV SRAM data bus needs to be turned around. Also when 
there is bank collision, the controller has to add up latencies to avoid collision at the 
memory interface which reduces efficiency. Because there are four channels per port, which 
can be used for sending the command to the memory, you should know the command 
order and priorities. The following sections describe these in detail.

Command Order to the Memory

Figure 25-2 shows the command order when there is no command switch from read to write 
(vice-versa) and no bank collision. PORT A is called first by the controller followed by PORT 
B. This gets repeated in the same method. 

Bank Collision

Note: HP memory devices do not have bank access restriction so bank collision does not apply 
when you are dealing with HP memory devices. 

The last three bits of the address denote which bank out of the eight available banks in the 
memory device is being accessed. The rule as per the memory access for XP part is that 
PORT B cannot access the same bank in the same clock cycle as PORT A. Because there are 

X-Ref Target - Figure 25-2

Figure 25-2: Command Order

READ ch0 READ ch1 READ ch2 READ ch3

PORT A Input Command from User

READ ch0 READ ch1 READ ch2 READ ch3

PORT B Input Command from User

READ ch0
PORT A

READ ch0
PORT B

READ ch1
PORT A

READ ch1
PORT B

Command Sequence from Controller to the Memory Interface

READ ch2
PORT A

READ ch2
PORT B

READ ch3
PORT A

READ ch3
PORT B

X16056-022216
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four channels, the bank comparison for collision is done on a per-channel basis. If a collision 
is found on any of the four channels, all of the four channels of the corresponding ports are 
affected as explained in the later sections.

For detecting whether there is a collision, the last three bits of the channel address are 
compared. The following conditions are checked for collision detection:

1. Comparison is done channel-wise. That is, PORT A channel 0 is compared with PORT B 
channel 0. PORT A channel 0 is never compared with PORT B channel 1 or any other 
channel.

2. Only the last three bits of the channel address is compared. They all should match for 
collision to be detected.

3. Restriction for accessing the same bank in the same cycle only lies with PORT B and not 
on PORT A. This means that for detecting the collision, the last three bits of channel 0 
PORT A is compared with the last three bits of channel 0 of PORT B. 

PORT B channel 0 is not compared with PORT A channel 1 for collision detection. This is 
illustrated in Figure 25-3. 

Because of the four channels per port sending commands in every clock, there is an order 
in which the command is called by the controller towards the memory. 

X-Ref Target - Figure 25-3

Figure 25-3: Bank Address Comparison for Collision

app_addr_a_ch0[2:0]

app_addr_a_ch1[2:0]

app_addr_a_ch2[2:0]

app_addr_a_ch3[2:0]

app_addr_b_ch0[2:0]

app_addr_b_ch1[2:0]

app_addr_b_ch2[2:0]

app_addr_b_ch3[2:0]

Comparison is always done from PORT A to PORT B per channel
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Figure 25-4 shows how the bank collision signals for PORT A and PORT B are asserted. To 
begin, the priority remains with PORT A for accessing any bank. If PORT B tries to access 
(read command or write command) the same bank in the same clock, it is considered a 
PORT B collision. Therefore, Bank_collision_B is asserted and controller delays the 
processing of PORT B command by one user clock. 

If PORT A accesses the same bank again after the pending PORT B command is serviced, it 
is considered a PORT A collision. PORT A command processing is delayed by one user clock. 
This is done to provide equal opportunity to both the ports in case they are trying to access 
the same bank back-to-back.

Figure 25-4 takes channel 0 as an example and is true for all the channels. 

From Figure 25-4, there is a bank collision on PORT A or B and a corresponding ready is 
deasserted. It is your responsibility to ensure that it should not issue any command after it 
samples a ready to be Low (that is, hold its next command transaction until the ready gets 
asserted back). If you are not sure, the command issued while ready is Low is lost for all the 
four channels corresponding to the port as app_cmd_rdy_a and app_cmd_rdy_b are 
common for all four channels.

Note: Because there are four channels per port, collision on one channel delays the command 
processing for all four channels for that port. The following simulation snapshot explains this 
scenario (Figure 25-5).

X-Ref Target - Figure 25-4

Figure 25-4: Bank Collision Signals for PORT A and PORT B

app_cmd_rdy_b

app_cmd_rdy_a
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For example, the first collision occurs on PORT B channel 0 because PORT B wants to access 
the same bank in the same user clock. Then, the controller stores PORT B commands for all 
four channels and deasserts the PORT B ready signal. It is your responsibility to hold the 
next set of commands for PORT B until the user interface asserts the ready signal. If you 
issue another set of commands when the ready is Low, those commands for all four 
channels are lost and it does not go to the memory interface.

Channel Wise Command Order to the Memory

Figure 25-6 shows the channel wise command order when there is no command switch 
from read to write (vice-versa) and no collision. Channel 0 PORT A is sent to the memory 
interface first, followed by channel 0 PORT B, followed by channel 1 PORT A, followed by 
channel 1 PORT B, etc. 

X-Ref Target - Figure 25-5

Figure 25-5: QDR-IV Bank Collision Simulation

X-Ref Target - Figure 25-6

Figure 25-6: Command Order to the Memory

app_addr_a_ch0[2:0]

app_addr_a_ch1[2:0]

app_addr_a_ch2[2:0]

app_addr_a_ch3[2:0]

app_addr_b_ch0[2:0]

app_addr_b_ch1[2:0]

app_addr_b_ch2[2:0]

app_addr_b_ch3[2:0]

X16091-022216

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG150&Title=UltraScale%20Architecture-Based%20FPGAs%20Memory%20IP%20v1.4&releaseVersion=1.4&docPage=442


UltraScale Architecture-Based FPGAs Memory IP v1.4 443
PG150 October 22, 2021 www.xilinx.com

Chapter 25: Designing with the Core

Examples

The following section focuses on your command sequence and the controller after handling 
the command switching/collision processes and distributing to the memory interface.

In the first case, the command sequence is located at the input and output of the controller 
when there is no collision. The PORT A command has switched from read to write. As 
explained in the earlier section, the data bus is common for read and write and it has to 
switch direction. Therefore, it has to wait for the read command to be completed.

The controller introduces eight NOPs on PORT A to avoid the bus contention at the memory 
interface (see Figure 25-7). Because the write latency of the memory device is less than the 
read latency when the command switches from write to read, the controller inserts four 
NOPs between the commands. All PORT A commands are sent on the rising edge of the 
memory clock (CK clock shown in Figure 25-7) and all PORT B commands are sent on the 
falling edge.
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X-Ref Target - Figure 25-7

Figure 25-7: Case 1: No Bank Collision, Read to Write Command Switching

READ ch0 READ ch1 WRITE ch2 READ ch3

PORT A Input Command from User
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PORT B Input Command from User
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PORT A

READ ch1
PORT B

Command Sequence from Controller to the Memory Interface
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CMD
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In the second case, there is a collision between the channel 0 of PORT A and PORT B, but 
there is no command switching. The collision on PORT B results in its command processing 
getting delayed by one user clock. The controller now serves the next PORT A command to 
avoid bank rule violation at the memory. This is shown in Figure 25-8 where the rising edge 
on all PORT A commands are sent to the memory, but on the falling edge. Four NOPs are 
inserted first and then pending PORT B commands. 

Finally, the next and worst case is when there are bank collision and command switching. 
First, PORT B has a collision and its execution is delayed by one clock. After one clock when 
the controller serves the PORT B command, the next command on PORT A is a write which 
is a command switch. This is seen in Figure 25-9 where four NOPs are inserted on PORT B 
because of the collision and eight NOPs are inserted on PORT A for read to write command 
switching.

X-Ref Target - Figure 25-8

Figure 25-8: Case 2: Bank Collision, No Command Switching
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Command Table

There are three types of commands supported by the controller. Table 25-4 lists the 
command encoding. 

X-Ref Target - Figure 25-9

Figure 25-9: Case 3: Bank Collision, Read to Write Command Switching
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Table 25-4: Command Encoding
Command Value Command Type

00 NOP
01 Reserved
10 Read
11 Write
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Support for Mixed Command Assertion in Per User Clock

The QDR-IV device has a write latency of five and a read latency of eight. Also, there is a bus 
turnaround time of one clock. There must be five NOP commands between the read and 
write command whenever the write command follows a read command.

If you assert write and read commands in the same user clock, the controller takes care of 
asserting the NOP command before asserting the write command after a read command. 
Then, it asserts a busy signal to stop you from sending any further commands until it 
completes execution of the all accepted commands.

Taking Care of Bank Access Collision of PORT A and PORT B

There is a limitation for PORT B to access a bank at next edge after the bank is accessed by 
PORT A. There must be 1.5 memory clock gaps between the access of a bank by PORT B and 
PORT A if the bank access is followed by PORT B.

If you assert the same bank for PORT A and PORT B, the controller delays the command 
from PORT B by 1.5 memory clock cycles and asserts a busy until the execution of all the 
commands get completed.

Command Sequence

Because the read and write latencies are different for the given memory, the user interface 
ensures that the read and write command sequence issued at the memory are in correct 
order. If this is not guaranteed by the user interface, the device might be defective as the 
data bus in case of QDR-IV memory is bidirectional. Suppose for a given memory device, 
the read latency is eight and write latency is five. 

For example, if you issued one read command followed by three write commands on the 
four channels. This means that from the time when a read command is executed, eight 
memory clocks are required to retrieve the read data. On the eighth clock, memory drives 
the data bus. Because there are following write commands, the FPGA tries to drive the data 
bus on the sixth, seventh, and eighth cycle. 

On the eighth cycle, there is a case where both the FPGA and the memory tries to drive the 
same bus. This might damage the device and hence it is taken care of by the user interface 
inserting NOPs. This is explained further in Table 25-5 (W stands for a write command, R 
stands for a read command, NOP stands for No Operation).
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Order of Command Processing

Because the controller can handle four commands, you can issue four commands in parallel 
on four channels. The command issued on the first channel (CH0) is processed first, 
followed by the command issued on the second channel (CH1), followed by the command 
issued on the third channel (CH2), and followed by the command issued on the fourth 
channel (CH3). Expect the same order at the output of the controller. 

Table 25-5: Command Sequence
Input Command from User 

Interface 
CH0, CH1, CH2,C H3

Output Command from User Interface to Memory Interface

WR-WR-WR-WR WR-WR-WR-WR
RD-RD-RD-RD RD-RD-RD-RD

WR-RD-WR-RD WR-NP-NP-NP-NP-RD-NP-NP-NP-NP-NP-NP-NP-NP-WR-NP-NP-NP-NP-RD

RD-WR-RD-WR RD-NP-NP-NP-NP-NP-NP-NP-NP-WR-NP-NP-NP-NP-RD-NP-NP-NP-NP-NP-NP-
NP-NP-WR
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Interfacing with the Core through the User Interface

The user interface protocol is shown in the following Figure 25-10. 

Wait until the init_calib_complete signal is asserted High before sending any 
command as shown in Figure 25-10. No read or write requests are processed (that is, 
app_wr_cmd or app_rd_cmd on the client interface is ignored before 
init_calib_complete is High).

X-Ref Target - Figure 25-10

Figure 25-10: User Interface Write/Read Timing Diagram
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Figure 25-10 shows various commands being issued for different channels from you. For 
channel 0 and 2, it is the write command and for 1 and 3 it is the read command. For details, 
see the command table (Table 25-4).

For the write commands, write address and write data has to be valid in the same clock cycle 
as the write command. This means that for channel 0, app_wrdata_a_ch0 gets written at 
location app_addr_a_ch0. For channel 1 also, it occurs the same way. 

For the read commands, read address has to be present at the time of read commands 
assertion. The read data is available after a few clock cycles along with read valid signal. For 
Figure 25-10, for channel 1, app_rddata_a_ch1 becomes available with the 
app_rddara_valid[1] signal.

Physical Interface
The physical interface is the connection from the FPGA memory interface solution to an 
external QDR-IV SRAM device. The I/O signals for this interface are defined in Table 25-6. 
These signals can be directly connected to the corresponding signals on the memory 
device.  

Table 25-6: Physical Interface Signals
Signal I/O Description

ck I 
Address/Command Input Clock. CK is differential clock input. All control and 
address input signals are sampled on both the rising and falling edges of CK. The 
rising edge of CK samples the control and address inputs for PORT A, while the 
falling edge of CK samples the control and address inputs for PORT B.

ck_n I CK# is 180° out of phase with CK.

A[x:0] I

Address Inputs. Sampled on the rising edge of both CK and CK# clocks during 
active read and write operations. These address inputs are used for read and write 
operations on both ports. 
For (×36) data width, Address inputs A[20:0] are used and A[24:21] are reserved. 
For (×18) data width, Address inputs A[21:0] are used and A[24:22] are reserved. 
The reserved address inputs are No Connects and might be tied High, Low, or left 
floating.

AP I
Address Parity Input. Used to provide even parity across the address pins.
For (×36) data width, AP covers address inputs A[20:0].
For (×18) data width, AP covers address inputs A[21:0].

PE_n O
Address Parity Error Flag. Asserted Low when address parity error is detected. 
After asserted, PE# remains Low until cleared by a Configuration register 
command.

AINV I

Address Inversion Pin for Address and Address Parity Inputs.
For (x36) data width, AINV covers address inputs A[20:0] and the address parity 
input (AP).
For (x18) data width, AINV covers address inputs A[21:0] and the address parity 
input (AP).

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG150&Title=UltraScale%20Architecture-Based%20FPGAs%20Memory%20IP%20v1.4&releaseVersion=1.4&docPage=450


UltraScale Architecture-Based FPGAs Memory IP v1.4 451
PG150 October 22, 2021 www.xilinx.com

Chapter 25: Designing with the Core

DKA[1:0],
DKA_n[1:0] I

DKA[0]/DKA#[0] controls the DQA[17:0] inputs for x36 configuration and DQA[8:0] 
inputs for x18 configuration, respectively.
DKA[1]/DKA#[1] controls the DQA[35:18] inputs for x36 configuration and 
DQA[17:9] inputs for x18 configuration, respectively.

DKB[1:0],
DKB_n[1:0] I

DKB[0]/DKB#[0] controls the DQB[17:0] inputs for x36 configuration and DQB[8:0] 
inputs for x18 configuration, respectively.
DKB[1]/DKB#[1] controls the DQB[35:18] inputs for x36 configuration and 
DQB[17:9] inputs for x18 configuration, respectively.

QKA[1:0],
QKA_n[1:0] O

Data Output Clock.
QKA[0]/QKA#[0] controls the DQA[17:0] outputs for x36 configuration and 
DQA[8:0] outputs for x18 configuration, respectively.
QKA[1]/QKA#[1] controls the DQA[35:18] outputs for x36 configuration and 
DQA[17:9] outputs for x18 configuration, respectively.

QKB[1:0],
QKB_n[1:0] O

QKB[0]/QKB#[0] controls the DQB[17:0] outputs for x36 configuration and 
DQB[8:0] outputs for x18 configuration, respectively.
QKB[1]/QKB#[1] controls the DQB[35:18] outputs for x36 configuration and 
DQB[17:9] outputs for x18 configuration, respectively.

LDA_n I

Synchronous Load Input. LDA_n is sampled on the rising edge of the CK clock. 
LDA_n enables commands for data PORT A. LDA_n enables the commands when 
LDA_n is Low and disables the commands when LDA_n is High. When the 
command is disabled, new commands are ignored, but internal operations 
continue.

LDB_n I

Synchronous Load Input. LDB_n is sampled on the falling edge of the CK clock. 
LDB_n enables commands for data PORT B. LDB_n enables the commands when 
LDB_n is Low and disables the commands when LDB_n is High. When the 
command is disabled, new commands are ignored, but internal operations 
continue.

RWA_n I
Synchronous Read/Write Input. RWA_n input is sampled on the rising edge of the 
CK clock. The RWA_n input is used in conjunction with the LDA_n input to select a 
read or write operation. 

RWB_n I
RWB_n input is sampled on the falling edge of the CK clock. The RWB_n input is 
used in conjunction with the LDB_n input to select a read or write operation. The 
RWB_n input is used in conjunction with the LDB_n input to select a Read or Write 
operation.

QVLDA[1:0] O
Output Data Valid Indicator. The QVLDA pin indicates valid output data. QVLD is 
edge-aligned with QKA. For example, QVLDA[0] is edge-aligned with QKA[1:0] and 
QVLDA[1] is edge-aligned with QKA_n[1:0].

QVLDB[1:0] O
Output Data Valid Indicator. The QVLDB pin indicates valid output data. QVLD is 
edge-aligned with QKB. For example, QVLDB[0] is edge-aligned with QKB[1:0] and 
QVLDB[1] is edge-aligned with QKB_n[1:0].

CFG_n I Configuration bit. This pin is used to configure different mode registers.

Table 25-6: Physical Interface Signals (Cont’d)

Signal I/O Description
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Figure 25-11 shows the timing diagram for the sample write and read operations at the 
memory interface with write latency of three clock cycles and read latency of five clock 
cycles, respectively. 

The command is detected by the memory only when LDA_n and LDB_n are Low for PORT 
A and PORT B, respectively. When RWA_n is Low, it is write command and when it is High, it 
is a read command. This is true for PORT B as well. Address is DDR and hence on the rising 
edge of CK, address is considered to be valid for PORT A and on the falling edge it is 
considered for PORT B. 

In Figure 25-11, the cursor position is pointing to PORT A write command. Write address is 
0x050EE8. The DDR data is written into the memory as 0xC_6B7* and 0x0_57B* with the 
write latency at three clock cycles. 

Following falling edge is a PORT B write command at address 0x0A7BC4 and the DDR data 
which is written to this memory address at PORT B is 0xF_754* and 0x7_7B2.

Next, the CK rising edge is a PORT A read command at address 0x0E6741 and 
corresponding data becomes available at the DQA data bus after five CK clock cycles aligned 
to the rising edge of QK clock edge because the read latency is five. The DDR read data is 
0xC_818* and 0xA_150*. The qvlda is also asserted along with the data. For more 
information on read and write timing, see the QDR-IV memory specification. 

RST_n I Active-Low Asynchronous RST. This pin is active when RST# is Low and inactive 
when RST# is High. The RST# pin has an internal pull-down resistor.

LBK0_n,
LBK1_n I Loopback mode for control and address/command/clock deskewing.

Table 25-6: Physical Interface Signals (Cont’d)

Signal I/O Description

X-Ref Target - Figure 25-11

Figure 25-11: QDR-IV Memory Read Write Timing
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M and D Support for Reference Input Clock Speed
Memory IPs provide two possibilities to select the Reference Input Clock Speed. The value 
allowed for Reference Input Clock Speed (ps) is always ≥  Memory Device Interface Speed 
(ps).

• Memory IP lists the possible Reference Input Clock Speed values based on the targeted 
memory frequency (based on selected Memory Device Interface Speed).

• Otherwise, select M and D Options and target for desired Reference Input Clock Speed 
which is calculated based on selected CLKFBOUT_MULT (M), DIVCLK_DIVIDE (D), and 
CLKOUT0_DIVIDE (D0) values in the Advanced Clocking Tab. 

The required Reference Input Clock Speed is calculated from the M, D, and D0 values 
entered in the GUI using the following formulas:

• MMCM_CLKOUT (MHz) = tCK / Phy_Clock_Ratio

Where tCK is the Memory Device Interface Speed selected in the Basic tab.

• CLKIN (MHz) = (MMCM_CLKOUT (MHz) × D × D0) / M

CLKIN (MHz) is the calculated Reference Input Clock Speed.

• VCO (MHz) = (CLKIN (MHz)) / D

VCO (MHz) is the calculated VCO frequency.

• PFD (MHz) = CLKIN (MHz) / D

PFD (MHz) is the calculated PFD frequency.

Calculated Reference Input Clock Speed from M, D, and D0 values are validated as per 
clocking guidelines. For more information on clocking rules, see Clocking.

Apart from the memory specific clocking rules, validation of the possible MMCM input 
frequency range, MMCM VCO frequency range, and MMCM PFD frequency range values are 
completed for M, D, and D0 in the GUI. 

For UltraScale devices, see Kintex UltraScale FPGAs Data Sheet: DC and AC Switching 
Characteristics (DS892) [Ref 2] and Virtex UltraScale FPGAs Data Sheet: DC and AC Switching 
Characteristics (DS893) [Ref 3] for MMCM Input frequency range, MMCM VCO frequency 
range, and MMCM PFD frequency range values. 
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For UltraScale+ devices, see Kintex UltraScale+ FPGAs Data Sheet: DC and AC Switching 
Characteristics (DS922) [Ref 4], Virtex UltraScale+ FPGAs Data Sheet: DC and AC Switching 
Characteristics (DS923) [Ref 5], and Zynq UltraScale+ MPSoC Data Sheet: DC and AC 
Switching Characteristics (DS925) [Ref 6] for MMCM Input frequency range, MMCM VCO 
frequency range, and MMCM PFD frequency range values.

For possible M, D, and D0 values and detailed information on clocking and the MMCM, see 
the UltraScale Architecture Clocking Resources User Guide (UG572) [Ref 8].
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Design Flow Steps
This chapter describes customizing and generating the core, constraining the core, and the 
simulation, synthesis and implementation steps that are specific to this IP core. More 
detailed information about the standard Vivado® design flows and the Vivado IP integrator 
can be found in the following Vivado Design Suite user guides:

• Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994) 
[Ref 13]

• Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 14]
• Vivado Design Suite User Guide: Getting Started (UG910) [Ref 15]
• Vivado Design Suite User Guide: Logic Simulation (UG900) [Ref 16]

Customizing and Generating the Core
CAUTION! The Windows operating system has a 260-character limit for path lengths, which can affect 
the Vivado tools. To avoid this issue, use the shortest possible names and directory locations when 
creating projects, defining IP or managed IP projects, and creating block designs.

This section includes information about using Xilinx® tools to customize and generate the 
core in the Vivado Design Suite.

If you are customizing and generating the core in the IP integrator, see the Vivado Design 
Suite User Guide: Designing IP Subsystems using IP Integrator (UG994) [Ref 13] for detailed 
information. IP integrator might auto-compute certain configuration values when 
validating or generating the design. To check whether the values change, see the 
description of the parameter in this chapter. To view the parameter value, run the 
validate_bd_design command in the Tcl Console.

You can customize the IP for use in your design by specifying values for the various 
parameters associated with the IP core using the following steps:

1. Select the IP from the Vivado IP catalog.
2. Double-click the selected IP or select the Customize IP command from the toolbar or 

right-click menu.
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For more information about generating the core in Vivado, see the Vivado Design Suite User 
Guide: Designing with IP (UG896) [Ref 14] and the Vivado Design Suite User Guide: Getting 
Started (UG910) [Ref 15].

Note: Figures in this chapter are illustrations of the Vivado Integrated Design Environment (IDE). 
This layout might vary from the current version.

Basic Tab
Figure 26-1 shows the Basic tab when you start up the QDR-IV SRAM. 

IMPORTANT: All parameters shown in the controller options dialog box are limited selection options in 
this release.

For the Vivado IDE, all controllers (DDR3, DDR4, LPDDR3, QDR II+, QDR-IV, and RLDRAM 3) 
can be created and available for instantiation.

1. Select the settings in the Clocking, Controller Options, and Memory Options.

X-Ref Target - Figure 26-1

Figure 26-1: Vivado Customize IP Dialog Box – Basic
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In Clocking, the Memory Device Interface Speed sets the speed of the interface. The 
speed entered drives the available Reference Input Clock Speeds. For more 
information on the clocking structure, see the Clocking, page 415.

2. To use memory parts which are not available by default through the QDR-IV SRAM 
Vivado IDE, you can create a custom parts CSV file, as specified in the AR: 63462. This 
CSV file has to be provided after enabling the Custom Parts Data File option. After 
selecting this option. you are able to see the custom memory parts along with the 
default memory parts. Note that, simulations are not supported for the custom part. 
Custom part simulations require manually adding the memory model to the simulation 
and might require modifying the test bench instantiation.

IMPORTANT: Data Mask (DM) option is always selected for AXI designs and is grayed out (you cannot 
select it). For AXI interfaces, Read Modify Write (RMW) is supported and for RMW to mask certain bytes 
of Data Mask bits should be present. Therefore, the DM is always enabled for AXI interface designs. This 
is the case for all data widths except 72-bit. 
For 72-bit interfaces, ECC is enabled and DM is deselected and grayed out for 72-bit designs. If DM is 
enabled for 72-bit designs, computing ECC is not compatible, therefore DM is disabled for 72-bit 
designs.
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Advanced Clocking Tab
Figure 26-2 shows the next tab called Advanced Clocking. This displays the settings for 
Specify M and D value, System Clock Options, and Additional Clock Outputs for the 
specific controller. 

X-Ref Target - Figure 26-2

Figure 26-2: Vivado Customize IP Dialog Box – Advanced Clocking
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Advanced Options Tab
Figure 26-3 shows the next tab called Advanced Options. This displays the advanced 
memory options settings for the specific controller. 

X-Ref Target - Figure 26-3

Figure 26-3: Vivado Customize IP Dialog Box – Advanced Options
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QDR-IV SRAM I/O Planning and Design Checklist Tab
Figure 26-4 shows the QDR-IV SRAM I/O Planning and Design Checklist usage 
information. 

User Parameters
Table 26-1 shows the relationship between the fields in the Vivado IDE and the User 
Parameters (which can be viewed in the Tcl Console).

X-Ref Target - Figure 26-4

Figure 26-4: Vivado Customize IP Dialog Box – I/O Planning and Design Checklist

Table 26-1: Vivado IDE Parameter to User Parameter Relationship
Vivado IDE Parameter/Value(1) User Parameter/Value(1) Default Value

System Clock Configuration System_Clock Differential
Internal VREF Internal_Vref TRUE
DCI Cascade DCI_Cascade FALSE
Debug Signal for Controller Debug_Signal Disable
Clock 1 (MHz) ADDN_UI_CLKOUT1_FREQ_HZ None
Clock 2 (MHz) ADDN_UI_CLKOUT2_FREQ_HZ None
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Output Generation
For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 14].

I/O Planning
For details on I/O planning, see I/O Planning, page 235.

Constraining the Core
This section contains information about constraining the core in the Vivado Design Suite.

Required Constraints
The QDR-IV SRAM Vivado IDE generates the required constraints. A location constraint and 
an I/O standard constraint are added for each external pin in the design. The location is 
chosen by the Vivado IDE according to the banks and byte lanes chosen for the design. 

Clock 3 (MHz) ADDN_UI_CLKOUT3_FREQ_HZ None
Clock 4 (MHz) ADDN_UI_CLKOUT4_FREQ_HZ None
I/O Power Reduction IOPowerReduction OFF
Enable System Ports Enable_SysPorts TRUE
Default Bank Selections Default_Bank_Selections FALSE
Reference Clock Reference_Clock FALSE
Clock Period (ps) C0.QDRIV_TimePeriod 1,250
Input Clock Period (ps) C0.QDRIV_InputClockPeriod 13,000
PORT_ENABLE C0.QDRIV_PORT_ENABLE EN_BOTH
Configuration C0.QDRIV_MemoryType Components
TERMINATION_REG_VAL C0.QDRIV_ODT_VAL RZQ/4
Memory Part C0.QDRIV_MemoryPart CY7C4142KV13-106FCXC
Data Width C0.QDRIV_DataWidth 36
Performance Type C0.QDRIV_PerformanceType XP
Burst Length C0.QDRIV_BurstLen 2
Memory Name C0.QDRIV_MemoryName Main Memory

Notes: 
1. Parameter values are listed in the table where the Vivado IDE parameter value differs from the user parameter value. Such 

values are shown in this table as indented below the associated parameter.

Table 26-1: Vivado IDE Parameter to User Parameter Relationship (Cont’d)
Vivado IDE Parameter/Value(1) User Parameter/Value(1) Default Value
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The I/O standard is chosen by the memory type selection and options in the Vivado IDE and 
by the pin type. A sample for qdriv_a[0] is shown here.

set_property PACKAGE_PIN AK26 [get_ports {a[0]}]
set_property IOSTANDARD POD12_DCI [get_ports {a[0]}]

The system clock must have the period set properly:

create_clock -name sys_clk_i -period 2.000 [get_ports sys_clk_p]

Device, Package, and Speed Grade Selections
This section is not applicable for this IP core.

Clock Frequencies
This section is not applicable for this IP core.

Clock Management
For more information on clocking, see Clocking, page 359.

Clock Placement
This section is not applicable for this IP core.

Banking
This section is not applicable for this IP core.

Transceiver Placement
This section is not applicable for this IP core.

I/O Standard and Placement
The QDR-IV SRAM tool generates the appropriate I/O standards and placement based on 
the selections made in the Vivado IDE for the interface type and options.

IMPORTANT: The set_input_delay and set_output_delay constraints are not needed on the 
external memory interface pins in this design due to the calibration process that automatically runs at 
start-up. Warnings seen during implementation for the pins can be ignored.
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Chapter 26: Design Flow Steps

Simulation
This section contains information about simulating the QDR-IV SRAM generated IP. Vivado 
simulator, Questa Advanced Simulator, IES, and VCS simulation tools are used for 
verification of the QDR-IV SRAM IP at each software release. For more information on 
simulation, see Chapter 27, Example Design and Chapter 28, Test Bench.

Synthesis and Implementation
For details about synthesis and implementation, see the Vivado Design Suite User Guide: 
Designing with IP (UG896) [Ref 14].
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Chapter 27

Example Design
This chapter contains information about the example design provided in the Vivado® 
Design Suite. Vivado supports Open IP Example Design flow. To create the example design 
using this flow, right-click the IP in the Source Window, as shown in Figure 27-1 and select 
Open IP Example Design. 

This option creates a new Vivado project. Upon selecting the menu, a dialog box to enter 
the directory information for the new design project opens. 

Select a directory, or use the defaults, and click OK. This launches a new Vivado with all of 
the example design files and a copy of the IP.

X-Ref Target - Figure 27-1

Figure 27-1: Open IP Example Design
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Simulating the Example Design (Designs with 
Standard User Interface)
The example design provides a synthesizable test bench to generate a fixed simple data 
pattern to the Memory Controller. This test bench consists of an IP wrapper and an 
example_tb that generates 16 writes and 16 reads. QDR-IV SRAM does not deliver the 
QDR-IV memory models. The memory model required for the simulation must be 
downloaded from the memory vendor’s website.

The example design can be simulated using one of the methods in the following sections.

Project-Based Simulation
This method can be used to simulate the example design using the Vivado Integrated 
Design Environment (IDE). Memory IP does not deliver the QDR-IV memory models. The 
memory model required for the simulation must be downloaded from the memory vendor 
website. The memory model file must be added in the example design using Add Sources 
option to run simulation.

The Vivado simulator, Questa Advanced Simulator, IES, and VCS tools are used for QDR-IV 
IP verification at each software release. The Vivado simulation tool is used for QDR-IV IP 
verification from 2015.1 Vivado software release. The following subsections describe steps 
to run a project-based simulation using each supported simulator tool.
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Project-Based Simulation Flow Using Vivado Simulator
1. In the Open IP Example Design Vivado project, under Add sources option, select the 

Add or create simulation sources option, and click Next as shown in Figure 27-2. 
X-Ref Target - Figure 27-2

Figure 27-2: Add Source Option in Vivado
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2. Add the memory model in the Add or create simulation sources page and click Finish 
as shown in Figure 27-3. 

3. In the Open IP Example Design Vivado project, under Flow Navigator, select 
Simulation Settings. 

4. Select Target simulator as Vivado Simulator.

Under the Simulation tab, set the xsim.simulate.runtime to 1 ms (there are 
simulation RTL directives which stop the simulation after certain period of time, which is 
less than 1 ms) as shown in Figure 27-4. The Generate Scripts Only option generates 
simulation scripts only. To run behavioral simulation, Generate Scripts Only option 
must be de-selected.

5. Set the Simulation Language to Mixed.
6. Apply the settings and select OK.

X-Ref Target - Figure 27-3

Figure 27-3: Add or Create Simulation Sources in Vivado

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG150&Title=UltraScale%20Architecture-Based%20FPGAs%20Memory%20IP%20v1.4&releaseVersion=1.4&docPage=467


UltraScale Architecture-Based FPGAs Memory IP v1.4 468
PG150 October 22, 2021 www.xilinx.com

Chapter 27: Example Design

7. In the Flow Navigator window, select Run Simulation and select Run Behavioral 
Simulation option as shown in Figure 27-5.

X-Ref Target - Figure 27-4

Figure 27-4: Simulation with Vivado Simulator
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8. Vivado invokes Vivado simulator and simulations are run in the Vivado simulator tool. 
For more information, see the Vivado Design Suite User Guide: Logic Simulation (UG900) 
[Ref 16].

X-Ref Target - Figure 27-5

Figure 27-5: Run Behavioral Simulation
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Project-Based Simulation Flow Using Questa Advanced 
Simulator
1. Open a QDR-IV SRAM example Vivado project (Open IP Example Design...), then under 

Add sources option, select the Add or create simulation sources option, and click 
Next as shown in Figure 27-6. 

X-Ref Target - Figure 27-6

Figure 27-6: Add Source Option in Vivado
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2. Add the memory model in the Add or create simulation sources page and click Finish 
as shown in Figure 27-7. 

3. In the Open IP Example Design Vivado project, under Flow Navigator, select 
Simulation Settings. 

4. Select Target simulator as Questa Advanced Simulator.
a. Browse to the compiled libraries location and set the path on Compiled libraries 

location option.
b. Under the Simulation tab, set the modelsim.simulate.runtime to 1 ms (there 

are simulation RTL directives which stop the simulation after certain period of time, 
which is less than 1 ms) as shown in Figure 27-8. The Generate Scripts Only option 
generates simulation scripts only. To run behavioral simulation, Generate Scripts 
Only option must be de-selected.

5. Apply the settings and select OK.

X-Ref Target - Figure 27-7

Figure 27-7: Add or Create Simulation Sources in Vivado
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6. In the Flow Navigator window, select Run Simulation and select Run 
Behavioral Simulation option as shown in Figure 27-9.

X-Ref Target - Figure 27-8

Figure 27-8: Simulation with Questa Advanced Simulator
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7. Vivado invokes Questa Advanced Simulator and simulations are run in the Questa 
Advanced Simulator tool. For more information, see the Vivado Design Suite User Guide: 
Logic Simulation (UG900) [Ref 16].

Project-Based Simulation Flow Using IES
1. Open a QDR-IV SRAM example Vivado project (Open IP Example Design...), then under 

Add sources option, select the Add or create simulation sources option and click 
Next as shown in Figure 27-6.

2. Add the memory model in the Add or create simulation sources page and click Finish 
as shown in Figure 27-7.

3. In the Open IP Example Design Vivado project, under Flow Navigator, select 
Simulation Settings. 

4. Select Target simulator as Incisive Enterprise Simulator (IES).
a. Browse to the compiled libraries location and set the path on Compiled libraries 

location option.
b. Under the Simulation tab, set the ies.simulate.runtime to 1 ms (there are 

simulation RTL directives which stop the simulation after certain period of time, 
which is less than 1 ms) as shown in Figure 27-10. The Generate Scripts Only option 
generates simulation scripts only. To run behavioral simulation, Generate Scripts 
Only option must be de-selected.

5. Apply the settings and select OK.

X-Ref Target - Figure 27-9

Figure 27-9: Run Behavioral Simulation
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6. In the Flow Navigator window, select Run Simulation and select Run 
Behavioral Simulation option as shown in Figure 27-9.

7. Vivado invokes IES and simulations are run in the IES tool. For more information, see the 
Vivado Design Suite User Guide: Logic Simulation (UG900) [Ref 16].

X-Ref Target - Figure 27-10

Figure 27-10: Simulation with IES Simulator
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Project-Based Simulation Flow Using VCS
1. Open a QDR-IV SRAM example Vivado project (Open IP Example Design...), then under 

Add sources option, select the Add or create simulation sources option and click 
Next as shown in Figure 27-6.

2. Add the memory model in the Add or create simulation sources page and click Finish 
as shown in Figure 27-7.

3. In the Open IP Example Design Vivado project, under Flow Navigator, select 
Simulation Settings. 

4. Select Target simulator as Verilog Compiler Simulator (VCS).
a. Browse to the compiled libraries location and set the path on Compiled libraries 

location option.
b. Under the Simulation tab, set the vcs.simulate.runtime to 1 ms (there are 

simulation RTL directives which stop the simulation after certain period of time, 
which is less than 1 ms) as shown in Figure 27-11. The Generate Scripts Only option 
generates simulation scripts only. To run behavioral simulation, Generate Scripts 
Only option must be de-selected.

5. Apply the settings and select OK.
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6. In the Flow Navigator window, select Run Simulation and select Run 
Behavioral Simulation option as shown in Figure 27-9.

7. Vivado invokes VCS and simulations are run in the VCS tool. For more information, see 
the Vivado Design Suite User Guide: Logic Simulation (UG900) [Ref 16].

X-Ref Target - Figure 27-11

Figure 27-11: Simulation with VCS Simulator
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Simulation Speed
QDR-IV SRAM provides a Vivado IDE option to reduce the simulation speed by selecting 
behavioral XIPHY model instead of UNISIM XIPHY model. Behavioral XIPHY model 
simulation is a default option for QDR-IV SRAM designs. To select the simulation mode, 
click the Advanced Options tab and find the Simulation Options as shown in Figure 26-3. 

The SIM_MODE parameter in the RTL is given a different value based on the Vivado IDE 
selection.

• SIM_MODE = BFM – If fast mode is selected in the Vivado IDE, the RTL parameter 
reflects this value for the SIM_MODE parameter. This is the default option.

• SIM_MODE = FULL – If UNISIM mode is selected in the Vivado IDE, XIPHY UNISIMs are 
selected and the parameter value in the RTL is FULL.

IMPORTANT: QDR-IV memory models from Cypress® Semiconductor need to be modified with the 
following two timing parameter values to run the simulations successfully: 
`define tcqd #0 
`define tcqdoh #0.15

Using Xilinx IP with Third-Party Synthesis Tools
For more information on how to use Xilinx IP with third-party synthesis tools, see the Vivado 

Design Suite User Guide: Designing with IP (UG896) [Ref 14].

CLOCK_DEDICATED_ROUTE Constraints and BUFG 
Instantiation
If the GCIO pin and MMCM are not allocated in the same bank, the 
CLOCK_DEDICATED_ROUTE constraint must be set to BACKBONE. To use the BACKBONE 
route, BUFG/BUFGCE/BUFGCTRL/BUFGCE_DIV must be instantiated between GCIO and 
MMCM input. QDR-IV SRAM manages these constraints for designs generated with the 
Reference Input Clock option selected as Differential (at Advanced > FPGA Options > 
Reference Input). Also, QDR-IV SRAM handles the IP and example design flows for all 
scenarios.

If the design is generated with the Reference Input Clock option selected as No Buffer (at 
Advanced > FPGA Options > Reference Input), the CLOCK_DEDICATED_ROUTE 
constraints and BUFG/BUFGCE/BUFGCTRL/BUFGCE_DIV instantiation based on GCIO and 
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MMCM allocation needs to be handled manually for the IP flow. QDR-IV SRAM does not 
generate clock constraints in the XDC file for No Buffer configurations and you must take 
care of the clock constraints for No Buffer configurations for the IP flow. 

For an example design flow with No Buffer configurations, QDR-IV SRAM generates the 
example design with differential buffer instantiation for system clock pins. QDR-IV SRAM 
generates clock constraints in the example_design.xdc. It also generates a 
CLOCK_DEDICATED_ROUTE constraint as the “BACKBONE” and instantiates BUFG/BUFGCE/
BUFGCTRL/BUFGCE_DIV between GCIO and MMCM input if the GCIO and MMCM are not in 
same bank to provide a complete solution. This is done for the example design flow as a 
reference when it is generated for the first time. 

If in the example design, the I/O pins of the system clock pins are changed to some other 
pins with the I/O pin planner, the CLOCK_DEDICATED_ROUTE constraints and BUFG/
BUFGCE/BUFGCTRL/BUFGCE_DIV instantiation need to be managed manually. A DRC error 
is reported for the same.
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Chapter 28

Test Bench
This chapter contains information about the test bench provided in the Vivado® Design 
Suite.

The Memory Controller is generated along with a simple test bench to verify the basic read 
and write operations. The stimulus contains 16 consecutive writes followed by 16 
consecutive reads for data integrity check.
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SECTION VI:  RLDRAM 3

Overview
Product Specification
Core Architecture
Designing with the Core
Design Flow Steps
Example Design
Test Bench
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Chapter 29

Overview
IMPORTANT: Contact Xilinx Support if the overall system design includes the SEM IP prior to 
attempting to use the RLDRAM 3 memory interface.

Xilinx does not recommend using the RLD3 IP with an interface rate of 800 MHz or higher when the 
SEM IP is enabled.

There is a risk of post-calibration data errors with RLD3 designs that span multiple FPGA banks when 
the SEM IP is enabled. For RLD3 designs with an 18-bit data bus and address multiplexing enabled, it 
is possible to fit the entire interface in one FPGA bank. Other configurations will not be able to fit in a 
single FPGA bank and are at risk when the SEM IP is enabled.

You should always disable the SEM IP during RLD3 calibration.

IMPORTANT: This document supports RLDRAM 3 core v1.4.

Navigating Content by Design Process
Xilinx® documentation is organized around a set of standard design processes to help you 
find relevant content for your current development task. This document covers the 
following design processes:

• Hardware, IP, and Platform Development: Creating the PL IP blocks for the hardware 
platform, creating PL kernels, subsystem functional simulation, and evaluating the 
Vivado timing, resource and power closure. Also involves developing the hardware 
platform for system integration. Topics in this document that apply to this design 
process include:

° Clocking

° Resets

° Protocol Description

° Customizing and Generating the Core

° Example Design
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Core Overview
The Xilinx UltraScale™ architecture includes the RLDRAM 3 core. This core provides 
solutions for interfacing with these DRAM memory types. The UltraScale architecture for 
the RLDRAM 3 core is organized in the following high-level blocks:

• Controller – The controller accepts burst transactions from the User Interface and 
generates transactions to and from the RLDRAM 3. The controller takes care of the 
DRAM timing parameters and refresh.

• Physical Layer – The physical layer provides a high-speed interface to the DRAM. This 
layer includes the hard blocks inside the FPGA and the soft blocks calibration logic 
necessary to ensure optimal timing of the hard blocks interfacing to the DRAM.

The new hard blocks in the UltraScale architecture allow interface rates of up to 
2,133 Mb/s to be achieved.

° These hard blocks include:
- Data serialization and transmission
- Data capture and deserialization
- High-speed clock generation and synchronization
- Fine delay elements per pin with voltage and temperature tracking

° The soft blocks include:
- Memory Initialization – The calibration modules provide an initialization 

routine for RLDRAM 3. The delays in the initialization process are bypassed to 
speed up simulation time.

- Calibration – The calibration modules provide a complete method to set all 
delays in the hard blocks and soft IP to work with the memory interface. Each bit 
is individually trained and then combined to ensure optimal interface 
performance. Results of the calibration process are available through the Xilinx 
debug tools. After completion of calibration, the PHY layer presents raw 
interface to the DRAM.

• Application Interface – The "User Interface" layer provides a simple FIFO interface to 
the application. Data is buffered and read data is presented in request order.
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Feature Summary
• Component support for interface widths of 18, 36, and 72 bits

• ODT support
• Memory device support with 576 Mb and 1.125 Gb densities
• RLDRAM 3 initialization support

X-Ref Target - Figure 29-1

Figure 29-1: UltraScale Architecture-Based FPGAs Memory Interface Solution
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Table 29-1: Supported Configurations
Interface Width Burst Length Number of Device

36 BL2, BL4 1, 2
18 BL2, BL4, BL8 1, 2

36 with address 
multiplexing BL4 1, 2

18 with address 
multiplexing BL4, BL8 1, 2
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• Source code delivery in Verilog
• 4:1 memory to FPGA logic interface clock ratio
• Interface calibration and training information available through the Vivado hardware 

manager

Licensing and Ordering
This Xilinx LogiCORE IP module is provided at no additional cost with the Xilinx Vivado 
Design Suite under the terms of the Xilinx End User License. 

Information about other Xilinx LogiCORE IP modules is available at the Xilinx Intellectual 
Property page. For information on pricing and availability of other Xilinx LogiCORE IP 
modules and tools, contact your local Xilinx sales representative.
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License Checkers
If the IP requires a license key, the key must be verified. The Vivado® design tools have 
several license checkpoints for gating licensed IP through the flow. If the license check 
succeeds, the IP can continue generation. Otherwise, generation halts with error. License 
checkpoints are enforced by the following tools:

• Vivado synthesis
• Vivado implementation
• write_bitstream (Tcl command)

IMPORTANT: IP license level is ignored at checkpoints. The test confirms a valid license exists. It does 
not check IP license level.
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Chapter 30

Product Specification

Standards
For more information on UltraScale™ architecture documents, see References, page 789. 

Performance
Maximum Frequencies
For more information on the maximum frequencies, see the following documentation:

• Kintex UltraScale FPGAs Data Sheet, DC and AC Switching Characteristics (DS892) 
[Ref 2]

• Virtex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics (DS893) [Ref 3]
• Kintex UltraScale+ FPGAs Data Sheet: DC and AC Switching Characteristics (DS922) 

[Ref 4]
• Virtex UltraScale+ FPGAs Data Sheet: DC and AC Switching Characteristics (DS923) 

[Ref 5]
• Zynq UltraScale+ MPSoC Data Sheet: DC and AC Switching Characteristics (DS925) 

[Ref 6]
• UltraScale Maximum Memory Performance Utility (XTP414) [Ref 21]

Resource Utilization
For full details about performance and resource utilization, visit Performance and Resource 
Utilization.
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Chapter 30: Product Specification

Port Descriptions
There are three port categories at the top-level of the memory interface core called the 
“user design.”

• The first category is the memory interface signals that directly interfaces with the 
RLDRAM. These are defined by the Micron® RLDRAM 3 specification.

• The second category is the application interface signals which is the “user interface.” 
These are described in the Protocol Description, page 511.

• The third category includes other signals necessary for proper operation of the core. 
These include the clocks, reset, and status signals from the core. The clocking and reset 
signals are described in their respective sections.

The active-High init_calib_complete signal indicates that the initialization and 
calibration are complete and that the interface is now ready to accept commands for the 
interface.
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Chapter 31

Core Architecture
This chapter describes the UltraScale™ architecture-based FPGAs Memory Interface 
Solutions core with an overview of the modules and interfaces.

Overview
Figure 31-1 shows the UltraScale architecture-based FPGAs Memory Interface Solutions 
diagram.

The user interface uses a simple protocol based entirely on SDR signals to make read and 
write requests. See User Interface in Chapter 32 for more details describing this protocol.

X-Ref Target - Figure 31-1

Figure 31-1: UltraScale Architecture-Based FPGAs Memory Interface Solution Core

RLDRAM 3User FPGA 
Logic

Memory 
Controller

Physical 
Layer

User 
Interface

UltraScale Architecture-Based FPGAs

Initialization/
Calibration

CalDone

0

1

UltraScale Architecture-Based FPGAs Memory Interface Solution

Read Data

X16258-031616

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG150&Title=UltraScale%20Architecture-Based%20FPGAs%20Memory%20IP%20v1.4&releaseVersion=1.4&docPage=488


UltraScale Architecture-Based FPGAs Memory IP v1.4 489
PG150 October 22, 2021 www.xilinx.com
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The Memory Controller takes commands from the user interface and adheres to the 
protocol requirements of the RLDRAM 3 device. See Memory Controller for more details.

The physical interface generates the proper timing relationships and DDR signaling to 
communicate with the external memory device, while conforming to the RLDRAM 3 
protocol and timing requirements. See Physical Interface in Chapter 32 for more details.

Memory Controller
The Memory Controller (MC) enforces the RLDRAM 3 access requirements and interfaces 
with the PHY. The controller processes read and write commands in order for BL4 and BL8, 
so the commands presented to the controller is the order in which they are presented to the 
memory device. For BL2, the read commands are processed in order but the write 
commands are rearranged to increase the throughput.

The MC first receives commands from the user interface and determines if the command 
can be processed immediately or needs to wait. When all requirements are met, the 
command is placed on the PHY interface. For a write command, the controller generates a 
signal for the user interface to provide the write data to the PHY. This signal is generated 
based on the memory configuration to ensure the proper command-to-data relationship. 
Auto-refresh commands are inserted into the command flow by the controller to meet the 
memory device refresh requirements.

The data bus is shared for read and write data in RLDRAM 3. Switching from read commands 
to write commands and vice versa introduces gaps in the command stream due to switching 
the bus. For better throughput, changes in the command bus should be minimized when 
possible.

CMD_PER_CLK is a top-level parameter used to determine how many memory commands 
are provided to the controller per FPGA logic clock cycle. It depends on nCK_PER_CLK and 
the burst length. For example if nCK_PER_CLK = 4, the CMD_PER_CLK is set to 1 for burst 
length = 8 and CMD_PER_CLK is set to 2 for burst length = 4 and CMD_PER_CLK is set to 4 
for burst length = 2.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG150&Title=UltraScale%20Architecture-Based%20FPGAs%20Memory%20IP%20v1.4&releaseVersion=1.4&docPage=489


UltraScale Architecture-Based FPGAs Memory IP v1.4 490
PG150 October 22, 2021 www.xilinx.com

Chapter 31: Core Architecture

PHY
The PHY is considered the low-level physical interface to an external RLDRAM 3 device as 
well as all calibration logic for ensuring reliable operation of the physical interface itself. The 
PHY generates the signal timing and sequencing required to interface to the memory 
device.

The PHY contains the following features:

• Clock/address/control-generation logics
• Write and read datapaths
• Logic for initializing the SDRAM after power-up

In addition, the PHY contains calibration logic to perform timing training of the read and 
write datapaths to account for system static and dynamic delays.

Overall PHY Architecture
The UltraScale architecture PHY is composed of dedicated blocks and soft calibration logic. 
The dedicated blocks are structured adjacent to one another with back-to-back 
interconnects to minimize the clock and datapath routing necessary to build high 
performance physical layers.

The MC and calibration logic communicate with this dedicated PHY in the slow frequency 
clock domain, which is divided by 4. A more detailed block diagram of the PHY design is 
shown in Figure 31-1.

The MC is designed to separate out the command processing from the low-level PHY 
requirements to ensure a clean separation between the controller and physical layer. The 
command processing can be replaced with custom logic if desired, while the logic for 
interacting with the PHY stays the same and can still be used by the calibration logic.

Table 31-1: PHY Modules
Module Name Description

rld3_phy.sv Contains infrastructure (infrastructure.sv), rld_cal.sv, rld_xiphy.sv, and MUXes between the 
calibration and the Memory Controller.

rld_iob.sv Instantiates all byte IOB modules
rld_iob_byte.sv Generates the I/O buffers for all the signals in a given byte lane.
rld_addr_mux.sv Address MUX
rld_rd_bit_slip.sv Read bitslip
rld_wr_lat.sv Write latency
rld_xiphy.sv Top-level XIPHY module
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The PHY architecture encompasses all of the logic contained in rld_xiphy.sv. The PHY 
contains wrappers around dedicated hard blocks to build up the memory interface from 
smaller components. A byte lane contains all of the clocks, resets, and datapaths for a given 
subset of I/O. Multiple byte lanes are grouped together, along with dedicated clocking 
resources, to make up a single bank memory interface. For more information on the hard 
silicon physical layer architecture, see the UltraScale™ Architecture SelectIO™ Resources User 
Guide (UG571) [Ref 7].

Memory Initialization and Calibration Sequence
Immediately after power-up and on deassertion of system reset, built-in self-check (BISC) 
which is a PHY routine, is run to compensate the internal skews of the read data bits and the 
read capture clock. RLDRAM 3 power-up initialization routine, which is run through a RTL 
state machine, is triggered after successful completion of the BISC routine. When both the 
routines have run, the control is transferred to MicroBlaze™, which is a soft processor that 
calibrates the timing of the write and read data paths. At the end of calibration, BISC 
recalculates the ratio of the offsets between read/write data and their corresponding strobe 
clocks to track them over voltage and temperature.
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Chapter 31: Core Architecture

Figure 31-2 shows the overall flow of memory initialization and the different stages of 
calibration.

When simulating the RLDRAM 3 example design, the calibration process is bypassed to 
allow for quick traffic generation to and from the RLDRAM 3 device. Calibration is always 
enabled when running the example design in hardware. The hardware manager GUI 
provides information on the status of each calibration step or description of error in case of 
calibration failure.

X-Ref Target - Figure 31-2

Figure 31-2: Initialization and Calibration Sequence
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If the hardware manager GUI is not used, the first step in determining the calibration status 
is to check the status of init_calib_complete and calib_error signals. The 
init_calib_complete only asserts if calibration passes successfully, otherwise 
calib_error is asserted. Calibration halts on the very first error encountered. There are 
three status registers, dbg_pre_cal_status, dbg_cal_status, and 
dbg_post_cal_status that provide information on the failing calibration stage. Each bit 
of the dbg_cal_status register represents a successful start/end of a calibration step 
while that for dbg_pre_cal_status and dbg_post_cal_status represent the 
successful completion of certain events during and after calibration. Not all bits are 
assigned and some bits might be reserved. Table 31-2 lists the pre-calibration status signal 
description. 
Table 31-2: Pre-Calibration XSDB Status Signal Description

XSDB Status Register XSDB Bits [8:0] Description

RLD3_PRE_
CAL_STATUS

0 MicroBlaze started up successfully
1 All PLLs in the interface have locked successfully
2 BISC successfully completed initial calibration
3 RLDRAM 3 initialization completed
4 XSDB block RAM register setup complete
5 Reserved
6 Reserved
7 Reserved
8 Reserved
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Table 31-3: XSDB Status Signal Description

XSDB Status Register XSDB 
Bits[8:0]

dbg_cal_status 
Port Bits[31:0] Status Calibration Stage Name Calibration 

Stage Number

RLD3_CAL_
STATUS_RANK0_0

0 0 Start
Read Clock Alignment 1

1 1 Done
2 2 Start

Read DQ Deskew 2
3 3 Done
4 4 Start

Read DQ Training (Simple) 3
5 5 Done
6 6 Start

Read QVLD Training 4
7 7 Done
8 8 Start

Write DQ/ DM Deskew 5

RLD3_CAL_
STATUS_RANK0_1

0 9 Done
1 10 Start

Write/ Read Sanity Check 6
2 11 Done
3 12 Start

Byte Slip Training 7
4 13 Done
5 14 Start

QVLD Slip Training 8
6 15 Done
7 16 Start

Write/ Read Sanity Check 9
8 17 Done

RLD3_CAL_
STATUS_RANK0_2

0 18 Start
QVLD Align Training 10

1 19 Done
2 20 Start

Byte Align Training 11
3 21 Done
4 22 Start

Write/ Read Sanity Check 12
5 23 Done
6 24 Start

Read DQ Training (Complex) 13
7 25 Done
8 26 Start

Write/ Read Sanity Check 14

RLD3_CAL_
STATUS_RANK0_3

0 27 Done
1 28 Reserved
2 29 Reserved
3 30 Reserved
4 31 Reserved
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Read Clock Alignment

QK clock is required to be gated internally during various stages of RLDRAM 3 calibration in 
order to make delay adjustments. The internal gating signal needs to be aligned with the 
QK clock to prevent glitches from getting generating when the gating signals is released. 
Read clock alignment routine aligns the gating signal with the rising edge of the QK clock. 
Because QK is a free running clock, no write/read commands are issues and the internal 
gate delay adjustments are done based on coarse and fine gate delay taps (RL_DLY_COARSE 
and RL_DLY_FINE).

Read DQ Deskew

Read deskew routine helps to eliminate any delay variation within the DQ bits of a byte, 
which in turn improves the read DQ window size. During this stage of calibration, all DQ bits 
within a byte are deskewed by aligning them to the internal capture clock belonging to the 
same byte. The internal capture clock is a delayed version of QK and/or PQTR/NQTR delay 
taps of the capture clocks. The alignment is done by changing the IDELAY taps of individual 
DQs and/or of the capture clocks until all the bits in a byte are aligned.

A pattern of all 0s and all 1s is written to various locations in the RLDRAM 3 device. The 
write is done one location at a time with the data available on the memory bus four memory 
clock cycles ahead of the actual BL4 write data transaction and stays on the bus for two 
more memory clock cycles. Because the datapath is not calibrated at this point, this 
eliminates any critical timing between DQ and DK clock and ensures correct data is getting 
registered in the RLDRAM 3 device. The data read back appears as all 0s and all 1s over 
alternate general interconnect cycles. As an example, read data for a single DQ bit appears 
as a continuous stream of 00000000_11111111_00000000_11111111 over several 
memory clock cycles. Eight 0s represent data over four memory clock cycles (one general 
interconnect clock cycle).

Table 31-4: XSDB Post-Calibration XSDB Status Signal Description
XSDB Status Register XSDB Bits [8:0] Description

RLD3_POST_
CAL_STATUS

0 PHY ready failed to assert
1 Read margin started (stays asserted while running)
2 Write margin started (stays asserted while running)
3 Read margin failed
4 Write margin failed
5 Reserved
6 Reserved
7 Reserved
8 Reserved
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Read DQ Training (Simple)

Read DQ training is done to center the delayed version of QK capture clock within the read 
DQ window. This is done on a per nibble basis. Read Training Register (RTR) mode is 
enabled in the RLDRAM 3 device through the MRS2 command, which generates a 
continuous stream of 0101010101 pattern whenever a read transaction is issued. This 
provides a pattern for calibrating the internal clock by adjusting its PQTR/NQTR delays 
without having to write any pattern to the RLDRAM 3 device. 

The routine initially searches for the left edge and when successful, looks for the right edge. 
This is done by moving the PQTR/NQTR delays of the capture clock. When both left and 
right edges of the read DQ window have been found, the routine centers the capture clock.

Read QVLD Training

This calibration step aligns the incoming qvalid signal to the negative edge of the internal 
capture clock. This gives the maximum margin when capturing the value of qvalid on the 
positive edge of capture clock, which in turn is presented at the User Interface. 

Initially the qvalid signal is assigned the same IDELAY value as the corresponding QK 
clock of the byte it resides in. The qvalid IDELAY taps are then either incremented or 
decremented to align it to the negative edge of internal capture clock. 

Write DQ/DM Deskew

Similar to read deskew routine, this routine aligns all the bits of the write data spanning 
either a single byte or two bytes depending on the number of bytes per DK clock. This is 
done by changing the ODELAY tap values of individual DQ bits and/ or the DK clocks until 
all bits are deskewed.

DQ bits associated with each DK clock are initially phase shifted by 90° to roughly align 
them with the DK clock. A repetitive pattern of 10101010 is written and read back from 
memory. Each DQ ODELAY tap is changed to fine tune the alignment with DK clock. When 
all DQs are edge aligned to DK clock, the 90° phase shift on DQs is removed, leaving the DK 
clock center aligned in the write data window.

The same 90° shift is done on the DM bit during DM calibration. To deskew DM, certain bits 
of the original pattern are masked and the pattern is changed to all 0s. Alignment is 
achieved when the data bits with value 1 fail to get masked and are overwritten by value 0. 
The 90° phase shift on DM bits is removed at the end of alignment. DM deskew calibration 
is only performed when it is enabled at the time of RLDRAM 3 IP generation in Vivado 
Integrated Design Environment (IDE). 
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Write/Read Sanity Check Post Write DQ/DM Deskew

Since the write DQ/DM deskew alignment involves phase shifts and movement of DQ/DM 
and DK signals, a write/read check is performed to check the integrity of the write data path 
between the FPGA and RLDRAM 3 device. This is done by writing and reading the same 
10101010 pattern as write DQ/DM deskew stage.

Byte Slip Training

Calibration algorithm treats qvalid signal similar to data, that is, it does not rely on 
qvalid signal to capture the incoming data. Instead, the read data along with qvalid is 
continuously captured and presented at the User Interface. Based on the initial 
synchronization between the memory clock domain and the general interconnect clock 
domain, read data inside the general interconnect clock domain might not align in the same 
phase as that sent to the memory device. 

As an example, data written for a single bit as 00000000-11111111-00000000 might be 
seen in the general interconnect domain as 11110000-00001111-11110000. To correct 
this, the read data is "slipped" by the required number of memory clock cycles, in 
half-memory cycle increments. In the above example, slip value of 4 is assigned by the 
algorithm to align the data in the general interconnect domain. The slip values are always 
an even number and range from 2 to 6.

QVLD Slip Training

Since the DQ bytes are "slipped" to correct the phase alignment in the earlier stage, the 
same slip must be applied to the qvalid signal to align them to the DQ bits. To account for 
delay variation, the slip calculation for qvalid is done independent of the DQ byte slip 
calculation. This allows for more calibration flexibility and accommodates wider range of 
delay variation between bytes and qvalid signal. The slip values are always an even 
number and range from 2 to 6.

Write/Read Sanity Check Post Byte/QVLD Slip Training

Since DQ byte and qvalid slip calibration are done independently, a write/read check is 
performed at the end of it to ensure the assigned slip values have aligned the read data 
correctly in the general interconnect. This is done by repeating the data pattern used during 
byte slip training and checking against the expected data pattern in the general 
interconnect clock domain.
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QVLD Align Training/Byte Align Training

Slip training in the previous calibration step is done on a per byte basis. Depending on 
delay variation between bytes as well as the synchronization of individual QK clocks to the 
general interconnect clock domain, the read data for each byte might appear on different 
general interconnect cycles at the end of Byte/QVLD slip training. As an example, consider 
two bytes with the following data prior to slip calibration.

Byte slip calibration assigns slip value of 0 to Byte 0 and value of 6 to Byte 1. As a result, data 
in both bytes is offset by 1 general interconnect cycle. qvalid and byte align training is 
used to align the data between bytes. This is done by analyzing the spatial location of 
specific data within a byte relative to all other bytes in the general interconnect domain and 
adding an additional slip value of eight on top of the slip value from previous step to the 
bytes arriving one general interconnect cycle ahead of the other bytes.

Similar to the Slip stage, qvalid and byte align calibration are done independently as one 
qvalid spans two bytes in certain configurations and assigning slip value of one byte to it 
might cause the other byte to go out of sync.

Write/Read Sanity Check Post QVLD/Byte Align Training

Write/Read check is performed by reading back single general interconnect cycle worth of 
data to ensure all bytes and their corresponding qvalid signals are in alignment and 
appear at the same time at the User Interface.

Table 31-5: QVLD Align Training/Byte Align Training for Two Bytes

Memory Clock Cycle

Byte 0 Byte 1
General 

Interconnect 
Cycle 0

General 
Interconnect 

Cycle 1

General 
Interconnect 

Cycle 2

General 
Interconnect 

Cycle 0

General 
Interconnect 

Cycle 1

General 
Interconnect 

Cycle 2
Rise 0 0x1 0x9 0x17 0xx 0x7 0x15
Fall 0 0x2 0x10 0x18 0xx 0x8 0x16
Rise 1 0x3 0x11 0x19 0x1 0x9 0x17
Fall 1 0x4 0x12 0x20 0x2 0x10 0x18
Rise 2 0x5 0x13 0x21 0x3 0x11 0x19
Fall 2 0x6 0x14 0x22 0x4 0x12 0x20
Rise 3 0x7 0x15 0x23 0x5 0x13 0x21
Fall 3 0x8 0x16 0x24 0x6 0x14 0x22
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Read DQ Training (Complex)

The final stage of read capture clock centering is done when most of the other calibration 
stages have successfully completed. This stage is similar to read training (Simple) 
calibration but instead of simple clock pattern, more complex data patterns are written and 
read from the memory device to fine tune the centering of read capture clock. The patterns 
attempt to induce SI effects such as ISI and noise to emulate traffic running in an actual 
system and centers the capture strobe based on the reduced DQ read window size. This 
provides better margin when running system traffic.

Final Write/Read Sanity Check

A final write/read check is done to ensure previous stages of calibration did not 
inadvertently leave the write or read path in a failing state. All the calibration steps done 
prior to this are done in burst length four mode and the RLDRAM 3 device is updated with 
the default burst length at the start of this stage of calibration. A single general 
interconnect cycle worth of write/read transaction is performed and checked against 
expected data.

When all calibration stages are completed, the calib_complete signal is asserted at the 
User Interface and the control of the write/read datapath through the XIPHY gets 
transferred from calibration module to the User Interface.

Reset Sequence
The sys_rst signal resets the entire memory design which includes general interconnect 
(fabric) logic which is driven by the MMCM clock (clkout0) and RIU logic. MicroBlaze™ and 
calibration logic are driven by the MMCM clock (clkout6). The sys_rst input signal is 
synchronized internally to create the ui_clk_sync_rst signal. The ui_clk_sync_rst 
reset signal is synchronously asserted and synchronously deasserted.

Figure 31-3 shows the ui_clk_sync_rst (fabric reset) is synchronously asserted with a 
few clock delays after sys_rst is asserted. When ui_clk_sync_rst is asserted, there are 
a few clocks before the clocks are shut off. 

The following are the reset sequencing steps:

X-Ref Target - Figure 31-3

Figure 31-3: Reset Sequence Waveform
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1. Reset to design is initiated after ui_clk_sync_rst goes High.
2. init_calib_complete signal goes Low when ui_clk_sync_rst is High.
3. Reset to design is deactivated after ui_clk_sync_rst is Low. 
4. After ui_clk_sync_rst is deactivated, the init_calib_complete is asserted after 

calibration is completed.

MicroBlaze MCS ECC
The MicroBlaze MCS local memory provides an option to enable Error Correcting Code 
(ECC). Error correction corrects single bit errors and detects double bit errors. Two 
additional ports are added to indicate single bit errors (LMB_CE) and double bit errors 
(LMB_UE).

The MicroBlaze MCS ECC can be selected from the MicroBlaze MCS ECC option section in 
the Advanced Options tab. The block RAM size increases if the ECC option for MicroBlaze 
MCS is selected.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG150&Title=UltraScale%20Architecture-Based%20FPGAs%20Memory%20IP%20v1.4&releaseVersion=1.4&docPage=500


UltraScale Architecture-Based FPGAs Memory IP v1.4 501
PG150 October 22, 2021 www.xilinx.com

Chapter 32

Designing with the Core
This chapter includes guidelines and additional information to facilitate designing with the 
core. 

Clocking
The memory interface requires one MMCM, one TXPLL per I/O bank used by the memory 
interface, and two BUFGs. These clocking components are used to create the proper clock 
frequencies and phase shifts necessary for the proper operation of the memory interface.

There are two TXPLLs per bank. If a bank is shared by two memory interfaces, both TXPLLs 
in that bank are used.

Note: RLDRAM 3 generates the appropriate clocking structure and no modifications to the RTL are 
supported.

The RLDRAM 3 tool generates the appropriate clocking structure for the desired interface. 
This structure must not be modified. The allowed clock configuration is as follows:

• Differential reference clock source connected to GCIO
• GCIO to MMCM (located in center bank of memory interface)
• MMCM to BUFG (located at center bank of memory interface) driving FPGA logic and 

all TXPLLs
• MMCM to BUFG (located at center bank of memory interface) divide by two mode 

driving 1/2 rate FPGA logic
• Clocking pair of the interface must be in the same SLR of memory interface for the SSI 

technology devices
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Requirements

GCIO

• Must use a differential I/O standard
• Must be in the same I/O column as the memory interface
• Must be in the same SLR of memory interface for the SSI technology devices
• The I/O standard and termination scheme are system dependent. For more information, 

consult the UltraScale Architecture SelectIO Resources User Guide (UG571) [Ref 7].

MMCM

• MMCM is used to generate the FPGA logic system clock (1/4 of the memory clock)
• Must be located in the center bank of memory interface
• Must use internal feedback
• Input clock frequency divided by input divider must be ≥  70 MHz (CLKINx / D ≥  

70 MHz)
• Must use integer multiply and output divide values

Input Clock Requirement

• The clock generator driving the GCIO should have jitter < 3 ps RMS.
• The input clock should always be clean and stable. The IP functionality is not 

guaranteed if this input system clock has a glitch, discontinuous, etc.
• No spread spectrum clock is allowed.

BUFGs and Clock Roots

• One BUFG is used to generate the system clock to FPGA logic and another BUFG is used 
to divide the system clock by two.

• BUFGs and clock roots must be located in center most bank of the memory interface.

° For two bank systems, the bank with the higher number of bytes selected is chosen 
as the center bank. If the same number of bytes is selected in two banks, then the 
top bank is chosen as the center bank.

° For four bank systems, either of the center banks can be chosen. RLDRAM 3 refers 
to the second bank from the top-most selected bank as the center bank.

° Both the BUFGs must be in the same bank.
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TXPLL

• CLKOUTPHY from TXPLL drives XIPHY within its bank
• TXPLL must be set to use a CLKFBOUT phase shift of 90°
• TXPLL must be held in reset until the MMCM lock output goes High
• Must use internal feedback

Figure 32-1 shows an example of the clocking structure for a three bank memory interface. 
The GCIO drives the MMCM located at the center bank of the memory interface. MMCM 
drives both the BUFGs located in the same bank. The BUFG (which is used to generate 
system clock to FPGA logic) output drives the TXPLLs used in each bank of the interface. 

The MMCM is placed in the center bank of the memory interface.

X-Ref Target - Figure 32-1

Figure 32-1: Clocking Structure for Three Bank Memory Interface
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• For two bank systems, MMCM is placed in a bank with the most number of bytes 
selected. If they both have the same number of bytes selected in two banks, then 
MMCM is placed in the top bank.

• For four bank systems, MMCM is placed in a second bank from the top.

For designs generated with System Clock configuration of No Buffer, MMCM must not be 
driven by another MMCM/PLL. Cascading clocking structures MMCM →  BUFG →  MMCM 
and PLL →  BUFG →  MMCM are not allowed.

If the MMCM is driven by the GCIO pin of the other bank, then the 
CLOCK_DEDICATED_ROUTE constraint with value "BACKBONE" must be set on the net that 
is driving MMCM or on the MMCM input. Setting up the CLOCK_DEDICATED_ROUTE 
constraint on the net is preferred. But when the same net is driving two MMCMs, the 
CLOCK_DEDICATED_ROUTE constraint must be managed by considering which MMCM 
needs the BACKBONE route. 

In such cases, the CLOCK_DEDICATED_ROUTE constraint can be set on the MMCM input. To 
use the "BACKBONE" route, any clock buffer that exists in the same CMT tile as the GCIO 
must exist between the GCIO and MMCM input. The clock buffers that exists in the I/O CMT 
are BUFG, BUFGCE, BUFGCTRL, and BUFGCE_DIV. So RLDRAM 3 instantiates BUFG between 
the GCIO and MMCM when the GCIO pins and MMCM are not in the same bank (see 
Figure 32-1). 

If the GCIO pin and MMCM are allocated in different banks, RLDRAM 3 generates 
CLOCK_DEDICATED_ROUTE constraints with value as "BACKBONE." If the GCIO pin and 
MMCM are allocated in the same bank, there is no need to set any constraints on the 
MMCM input. 

Similarly when designs are generated with System Clock Configuration as a No Buffer 
option, you must take care of the "BACKBONE" constraint and the BUFG/BUFGCE/
BUFGCTRL/BUFGCE_DIV between GCIO and MMCM if GCIO pin and MMCM are allocated in 
different banks. RLDRAM 3 does not generate clock constraints in the XDC file for No 
Buffer configurations and you must take care of the clock constraints for No Buffer 
configurations. For more information on clocking, see the UltraScale Architecture Clocking 
Resources User Guide (UG572) [Ref 8].

XDC syntax for CLOCK_DEDICATED_ROUTE constraint is given here: 

set_property CLOCK_DEDICATED_ROUTE BACKBONE [get_pins -hier -filter {NAME =~ */
u_rld3_infrastructure/gen_mmcme*.u_mmcme_adv_inst/CLKIN1}]

For more information on the CLOCK_DEDICATED_ROUTE constraints, see the Vivado Design 
Suite Properties Reference Guide (UG912) [Ref 9].

Note: If two different GCIO pins are used for two RLDRAM 3 IP cores in the same bank, center bank 
of the memory interface is different for each IP. RLDRAM 3 generates MMCM LOC and 
CLOCK_DEDICATED_ROUTE constraints accordingly.
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Sharing of Input Clock Source (sys_clk_p)
If the same GCIO pin must be used for two IP cores, generate the two IP cores with the same 
frequency value selected for option Reference Input Clock Period (ps) and System Clock 
Configuration option as No Buffer. Perform the following changes in the wrapper file in 
which both IPs are instantiated:

1. RLDRAM 3 generates a single-ended input for system clock pins, such as sys_clk_i. 
Connect the differential buffer output to the single-ended system clock inputs 
(sys_clk_i) of both the IP cores.

2. System clock pins must be allocated within the same I/O column of the memory 
interface pins allocated. Add the pin LOC constraints for system clock pins and clock 
constraints in your top-level XDC.

3. You must add a "BACKBONE" constraint on the net that is driving the MMCM or on the 
MMCM input if GCIO pin and MMCM are not allocated in the same bank. Apart from 
this, BUFG/BUFGCE/BUFGCTRL/BUFGCE_DIV must be instantiated between GCIO and 
MMCM to use the "BACKBONE" route.

Note:

° The UltraScale architecture includes an independent XIPHY power supply and TXPLL 
for each XIPHY. This results in clean, low jitter clocks for the memory system.

° Skew spanning across multiple BUFGs is not a concern because single point of 
contact exists between BUFG →  TXPLL and the same BUFG →  System Clock Logic.

° System input clock cannot span I/O columns because the longer the clock lines 
span, the more jitter is picked up.

TXPLL Usage
There are two TXPLLs per bank. If a bank is shared by two memory interfaces, both TXPLLs 
in that bank are used. One PLL per bank is used if a bank is used by a single memory 
interface. You can use a second PLL for other usage. To use a second PLL, you can perform 
the following steps:

1. Generate the design for the System Clock Configuration option as No Buffer. 
2. RLDRAM 3 generates a single-ended input for system clock pins, such as sys_clk_i. 

Connect the differential buffer output to the single-ended system clock inputs 
(sys_clk_i) and also to the input of PLL (PLL instance that you have in your design).

3. You can use the PLL output clocks.
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Additional Clocks
You can produce up to four additional clocks which are created from the same MMCM that 
generates ui_clk. Additional clocks can be selected from the Clock Options section in the 
Advanced Options tab. The GUI lists the possible clock frequencies from MMCM and the 
frequencies for additional clocks vary based on selected memory frequency (Memory 
Device Interface Speed (ps) value in the Basic tab), selected FPGA, and FPGA speed grade. 

Resets
An asynchronous reset (sys_rst) input is provided. This is an active-High reset and the 
sys_rst must assert for a minimum pulse width of 5 ns. The sys_rst can be an internal 
or external pin.

IMPORTANT: If two controllers share a bank, they cannot be reset independently. The two controllers 
must have a common reset input.

For more information on reset, see the Reset Sequence in Chapter 31, Core Architecture.

PCB Guidelines for RLDRAM 3
Strict adherence to all documented RLDRAM 3 PCB guidelines is required for successful 
operation. For more information on PCB guidelines, see the UltraScale Architecture PCB 
Design and Pin Planning User Guide (UG583) [Ref 11].

Pin and Bank Rules
RLDRAM 3 Pin Rules
The rules are for single-rank memory interfaces.

• Address/control means cs_n, ref_n, we_n, ba, ck, reset_n, and a.
• All groups such as, Data, Address/Control, and System clock interfaces must be 

selected in a single column.
• Pins in a byte lane are numbered N0 to N12.
• Byte lanes in a bank are designed by T0, T1, T2, or T3. Nibbles within a byte lane are 

distinguished by a “U” or “L” designator added to the byte lane designator (T0, T1, T2, 
or T3). Thus they are T0L, T0U, T1L, T1U, T2L, T2U, T3L, and T3U.
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Note: There are two PLLs per bank and a controller uses one PLL in every bank that is being used by 
the interface.
1. RLDRAM 3 interface can only be assigned to HP banks of the FPGA device.
2. Read Clock (qk/qk_n), Write Clock (dk/dk_n), dq, qvld, and dm.

a. Read Clock pairs (qkx_p/n) must be placed on N0 and N1 pins. dq associated with 
a qk/qk_n pair must be in same byte lane on pins N2 to N11.

b. For the data mask off configurations, ensure that dm pin on the RLDRAM 3 device is 
grounded. When data mask is enabled, one dm pin is associated with nine bits in x18 
devices or with 18 bits in x36 devices. It must be placed in its associated dq byte 
lanes as listed:
- For x18 part, dm[0] must be allocated in dq[8:0] allocated byte group and 

dm[1] must be allocated in dq[17:9].
- For x36 part, dm[0] must be allocated in dq[8:0] or dq[26:18] allocated 

byte lane. Similarly dm[1] must be allocated in dq[17:9] or dq[35:27] 
allocated byte group. dq and dm must be placed on one of the pins from N2 to 
N11 in the byte lane. 

c. dk/dk_n must be allocated to any P-N pair in the same byte lane as ck/ck_n in the 
address/control bank.
Note: Pin 12 is not part of a pin pair and must not be used for differential clocks.

d. qvld (x18 device) or qvld0 (x36 device) must be placed on one of the pins from N2 
to N12 in the qk0 or qk1 data byte lane. qvld1 (x36 device) must be placed on one 
of the pins from N2 to N12 in of the qk2 or qk3 data byte lane.

3. Byte lanes are configured as either data or address/control. 
a. Pin N12 can be used for address/control in a data byte lane.
b. No data signals (qvalid, dq, dm) can be placed in an address/control byte lane.

4. Address/control can be on any of the 13 pins in the address/control byte lanes. Address/
control must be contained within the same bank. For three bank RLDRAM 3 interfaces, 
address/control must be in the centermost bank.

5. One vrp pin per bank is used and a DCI is required for the interfaces. A vrp pin is 
required in I/O banks containing inputs as well as output only banks. It is required in 
output only banks because address/control signals use SSTL12_DCI to enable usage of 
controlled output impedance. DCI cascade is allowed. When DCI cascade is selected, 
vrp pin can be used as a normal I/O. All rules for the DCI in the UltraScale™ Architecture 
SelectIO™ Resources User Guide (UG571) [Ref 7] must be followed.

6. ck must be on the PN pair in the Address/Control byte lane.
7. reset_n can be on any pin as long as FPGA logic timing is met and I/O standard can be 

accommodated for the chosen bank (SSTL12).
8. Banks can be shared between two controllers.
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a. Each byte lane is dedicated to a specific controller (except for reset_n).
b. Byte lanes from one controller cannot be placed inside the other.  For example, with 

controllers A and B, “AABB” is allowed, while “ABAB” is not.

IMPORTANT: If two controllers share a bank, they cannot be reset independently. The two controllers 
must share a common reset input.

9. All I/O banks used by the memory interface must be in the same column.
10. All I/O banks used by the memory interface must be in the same SLR of the column for 

the SSI technology devices.
11. Maximum height of interface is three contiguous banks for 72-bit wide interface.
12. Bank skipping is not allowed.
13. The input clock for the MMCM in the interface must come from the a GCIO pair in the 

I/O column used for the memory interface. Information on the clock input specifications 
can be found in the AC and DC Switching Characteristics data sheets (LVDS input 
requirements and MMCM requirements should be considered). For more information, 
see Clocking, page 501.

14. There are dedicated VREF pins (not included in the rules above). If an external VREF is not 
used, the VREF pins must be pulled to ground by a resistor value specified in the 
UltraScale™ Architecture SelectIO™ Resources User Guide (UG571) [Ref 7]. These pins 
must be connected appropriately for the standard in use. 

15. The interface must be contained within the same I/O bank type (High Range or High 
Performance). Mixing bank types is not permitted with the exceptions of the reset_n 
in step 6 and the input clock mentioned in step 11.

16. RLDRAM 3 pins not mentioned in the cited pin rules (JTAG, MF, etc.) or ones that you 
choose not to use in your design must be connected as per Micron® RLDRAM 3 data 
sheet specification.

17. The system reset pin (sys_rst_n) must not be allocated to Pins N0 and N6 if the byte 
is used for the memory I/Os.

Pin Swapping

• Pins can swap freely within each byte group (data and address/control) (for more 
information, see the RLDRAM 3 Pin Rules, page 506).

• Byte groups (data and address/control) can swap easily with each other.
• Pins in the address/control byte groups can swap freely within and between their byte 

groups.
• No other pin swapping is permitted.
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RLDRAM 3 Pinout Examples

IMPORTANT: Due to the calibration stage, there is no need for set_input_delay/
set_output_delay on the RLDRAM 3. Ignore the unconstrained inputs and outputs for RLDRAM 3 
and the signals which are calibrated.

Table 32-1 shows an example of an 18-bit RLDRAM 3 interface contained within one bank. 
This example is for a component interface using one x18 RLDRAM3 component with 
Address Multiplexing. 
Table 32-1: 18-Bit RLDRAM 3 Interface Contained in One Bank

Bank Signal Name Byte Group I/O Type Special Designation

1 qvld0 T3U_12 – –
1 dq8 T3U_11 N –
1 dq7 T3U_10 P –
1 dq6 T3U_9 N –
1 dq5 T3U_8 P –
1 dq4 T3U_7 N DBC-N
1 dq3 T3U_6 P DBC-P
1 dq2 T3L_5 N –
1 dq1 T3L_4 P –
1 dq0 T3L_3 N –
1 dm0 T3L_2 P –
1 qk0_n T3L_1 N DBC-N
1 qk0_p T3L_0 P DBC-P

1 reset_n T2U_12 – –
1 we# T2U_11 N –
1 a18 T2U_10 P –
1 a17 T2U_9 N –
1 a14 T2U_8 P –
1 a13 T2U_7 N QBC-N
1 a10 T2U_6 P QBC-P
1 a9 T2L_5 N –
1 a8 T2L_4 P –
1 a5 T2L_3 N –
1 a4 T2L_2 P –
1 a3 T2L_1 N QBC-N
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1 a0 T2L_0 P QBC-P

1 – T1U_12 – –
1 ba3 T1U_11 N –
1 ba2 T1U_10 P –
1 ba1 T1U_9 N –
1 ba0 T1U_8 P –
1 dk1_n T1U_7 N QBC-N
1 dk1_p T1U_6 P QBC-P
1 dk0_n T1L_5 N –
1 dk0_p T1L_4 P –
1 ck_n T1L_3 N –
1 ck_p T1L_2 P –
1 ref_n T1L_1 N QBC-N
1 cs_n T1L_0 P QBC-P

1 vrp T0U_12 – –
1 dq17 T0U_11 N –
1 dq16 T0U_10 P –
1 dq15 T0U_9 N –
1 dq14 T0U_8 P –
1 dq13 T0U_7 N DBC-N
1 dq12 T0U_6 P DBC-P
1 dq11 T0L_5 N –
1 dq10 T0L_4 P –
1 dq9 T0L_3 N –
1 dm1 T0L_2 P –
1 qk1_n T0L_1 N DBC-N
1 qk1_p T0L_0 P DBC-P

Table 32-1: 18-Bit RLDRAM 3 Interface Contained in One Bank (Cont’d)

Bank Signal Name Byte Group I/O Type Special Designation
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Protocol Description
This core has the following interfaces:

• Memory Interface
• User Interface
• Physical Interface

Memory Interface
The RLDRAM 3 core is customizable to support several configurations. The specific 
configuration is defined by Verilog parameters in the top-level of the core.

User Interface
The user interface connects to an FPGA user design to the RLDRAM 3 core to simplify 
interactions between the user design and the external memory device.

Command Request Signals

The user interface provides a set of signals used to issue a read or write command to the 
memory device. These signals are summarized in Table 32-2.

Table 32-2: User Interface Request Signals
Signal I/O Description

user_cmd_en I
Command Enable. This signal issues a read or 
write request and indicates that the 
corresponding command signals are valid.

sys_clk_p/n I Primary clock to the IP.
sys_rst I Primary Active-High reset to the IP.
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user_cmd[2 × CMD_PER_CLK – 1:0] I

Command. This signal issues a read, write, or NOP 
request. When user_cmd_en is asserted:
2’b00 = Write Command
2’b01 = Read Command
2’b10 = NOP
2’b11 = NOP
The NOP command is useful when more than one 
command per clock cycle must be provided to the 
Memory Controller yet not all command slots are 
required in a given clock cycle. The Memory 
Controller acts on the other commands provided 
and ignore the NOP command. NOP is not 
supported when CMD_PER_CLK == 1. 
CMD_PER_CLK is a top-level parameter used to 
determine how many memory commands are 
provided to the controller per FPGA logic clock 
cycle, it depends on nCK_PER_CLK and the burst 
length (see Figure 32-2)

user_addr[CMD_PER_CLK × ADDR_WIDTH – 1:0] I
Command Address. This is the address to use for 
a command request. It is valid when user_cmd_en 
is asserted.

user_ba[CMD_PER_CLK × BANK_WIDTH – 1:0] I
Command Bank Address. This is the address to use 
for a write request. It is valid when user_cmd_en is 
asserted.

user_wr_en I
Write Data Enable. This signal issues the write data 
and data mask. It indicates that the corresponding 
user_wr_* signals are valid.

user_wr_data[2 × nCK_PER_CLK × DATA_WIDTH – 1:0] I
Write Data. This is the data to use for a write 
request and is composed of the rise and fall data 
concatenated together. It is valid when user_wr_en 
is asserted.

user_wr_dm[2 × nCK_PER_CLK × DM_WIDTH – 1:0] I
Write Data Mask. When active-High, the write 
data for a given selected device is masked and not 
written to the memory. It is valid when user_wr_en 
is asserted.

user_afifo_empty O Address FIFO empty. If asserted, the command 
buffer is empty.

user_wdfifo_empty O Write Data FIFO empty. If asserted, the write data 
buffer is empty.

user_afifo_full O
Address FIFO full. If asserted, the command buffer 
is full, and any writes to the FIFO are ignored until 
deasserted.

user_wdfifo_full O
Write Data FIFO full. If asserted, the write data 
buffer is full, and any writes to the FIFO are 
ignored until deasserted.

Table 32-2: User Interface Request Signals (Cont’d)

Signal I/O Description
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Interfacing with the Core through the User Interface

The width of certain user interface signals is dependent on the system clock frequency and 
the burst length. This allows the client to send multiple commands per FPGA logic clock 
cycle as might be required for certain configurations.

Note: Both write and read commands in the same user_cmd cycle is not allowed.

user_afifo_aempty O Address FIFO almost empty. If asserted, the 
command buffer is almost empty.

user_afifo_afull O Address FIFO almost full. If asserted, the 
command buffer is almost full.

user_wdfifo_aempty O Write Data FIFO almost empty. If asserted, the 
write data buffer is almost empty.

user_wdfifo_afull O Write Data FIFO almost full. If asserted, the Write 
Data buffer is almost full.

user_rd_valid[CMD_PER_CLK – 1:0] O
Read Valid. This signal indicates that data read 
back from memory is available on user_rd_data 
and should be sampled.

user_rd_data[2 × nCK_PER_CLK × DATA_WIDTH – 1:0] O Read Data. This is the data read back from the 
read command.

init_calib_complete O
Calibration Done. This signal indicates back to the 
user design that read calibration is complete and 
requests can now take place.

cx_rld3_ui_clk O This User Interface clock should be one quarter of 
the RLDRAM3 clock.

cx_rld3_ui_clk_sync_rst O This is the active-High user interface reset.
cx_calib_error O When asserted indicates error during calibration.

dbg_clk O
Debug Clock. Do not connect any signals to 
dbg_clk and keep the port open during 
instantiation.

Table 32-2: User Interface Request Signals (Cont’d)

Signal I/O Description
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Figure 32-2 shows the user_cmd signal and how it is made up of multiple commands 
depending on the configuration. 

As shown in Figure 32-2, four command slots are present in a single user interface clock 
cycle for BL2. Similarly, two command slots are present in a single user interface clock cycle 
for BL4. These command slots are serviced sequentially and the return data for read 
commands are presented at the user interface in the same sequence. Note that the read 
data might not be available in the same slot as that of its read command. The slot of a read 
data is determined by the timing requirements of the controller and its command slot. One 
such example is mentioned in the following BL2 design configuration.

Assume that the following set of commands is presented at the user interface for a given 
user interface cycle.

It is not guaranteed that the read data appears in {DATA0, NOP, DATA1, NOP} order. It might 
also appear in {NOP, DATA0, NOP, DATA1} or {NOP, NOP, DATA0, DATA1} etc. orders. In any 
case, the sequence of the commands are maintained.

User Address Bit Allocation Based on RLDRAM 3 Configuration

Based on the RLDRAM 3 device selection, address width at the user interface is set in the 
multiple of 20 bits in case of 576 Mb device and 21 bits in case of 1.125 Gb device. 
Depending on the RLDRAM 3 device configuration, the actual address width can be less 
than the maximum address bits of 20 or 21 stated earlier. The width of the address bus does 
not include bank address bits. Table 32-4 summarizes the address width for various 
RLDRAM 3 configurations.

X-Ref Target - Figure 32-2

Figure 32-2:  Multiple Commands for user_cmd Signal

user_cmd

FPGA Logic Clock

RLDRAM 3 BL4

RLDRAM 3 BL8 user_cmd

{1, 0} {3, 2}

0 1

1st2nd

user_cmdRLDRAM 3 BL2 {3, 2, 1, 0} {7, 6, 5, 4}

X24454-082420

Table 32-3: Command Set in User Interface Cycle
Slots Commands

0 RD0
1 NOP
2 RD1
3 NOP
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The address bits at the user interface are concatenated based on the burst length as shown 
in Table 32-4. Pad the unused address bits with zero. An example for x36 burst length 4 
576 Mb device configuration is shown here:

{00, (18-bit address), 00, (18-bit address)} 
Table 32-4: User Address Width for 576 Mb and 1.125 Gb

Burst 
Length

RLDRAM 3 Device 
Data Width

Address Width at RLDRAM 3 Interface Address Width at User 
InterfaceNon-Multiplexed Mode Multiplexed Mode

576 Mb

2 18 20 Not supported by 
RLDRAM 3 {20, 20, 20, 20}

2 36 19 Not supported by 
RLDRAM 3

({0, 19}, {0, 19}, {0, 19}, 
{0, 19})

4 18 19 11 ({0, 19}, {0, 19})
4 36 18 11 ({00, 18},{00, 18})
8 18 18 11 ({00, 18})

8 36 Not supported by 
RLDRAM 3

Not supported by 
RLDRAM 3 N/A

1.125 Gb

2 18 21 Not supported by 
RLDRAM 3 {21, 21, 21, 21}

2 36 20 Not supported by 
RLDRAM 3

({0, 20}, {0, 20}, {0, 20}, 
{0, 20})

4 18 20 11 ({0, 20}, {0, 20})
4 36 19 11 ({00, 19},{00, 19})
8 18 19 11 ({00, 19})

8 36 Not supported by 
RLDRAM 3

Not supported by 
RLDRAM 3 N/A

Notes: 
1. Two device configurations (2x18, 2x36) follow the same address mapping as one device configuration mentioned.
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The user interface protocol for the RLDRAM 3 four-word burst architecture is shown in 
Figure 32-3. 

Before any requests can be accepted, the ui_clk_sync_rst signal must be deasserted 
Low. After the ui_clk_sync_rst signal is deasserted, the user interface FIFOs can accept 
commands and data for storage. The init_calib_complete signal is asserted after the 
memory initialization procedure and PHY calibration are complete, and the core can begin 
to service client requests.

X-Ref Target - Figure 32-3

Figure 32-3: RLDRAM 3 User Interface Protocol (Four-Word Burst Architecture)
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A command request is issued by asserting user_cmd_en as a single cycle pulse. At this 
time, the user_cmd, user_addr, and user_ba signals must be valid. To issue a read 
request, user_cmd is set to 2’b01, while for a write request, user_cmd is set to 2'b00. 
For a write request, the data is to be issued in the same cycle as the command by asserting 
the user_wr_en signal High and presenting valid data on user_wr_data and 
user_wr_dm. The user interface protocol for the RLDRAM 3 eight-word burst architecture 
is shown in Figure 32-4.

X-Ref Target - Figure 32-4

Figure 32-4: RLDRAM 3 User Interface Protocol (Eight-Word Burst Architecture)
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When a read command is issued some time later (based on the configuration and latency of 
the system), the user_rd_valid[0] signal is asserted, indicating that user_rd_data is 
now valid, while user_rd_valid[1] is asserted indicating that user_rd_data is valid, 
as shown in Figure 32-5. The read data should be sampled on the same cycle that 
user_rd_valid[0] and user_rd_valid[1] are asserted because the core does not 
buffer returning data. This functionality can be added in, if desired.

The Memory Controller only puts commands on certain slots to the PHY such that the 
user_rd_valid signals are all asserted together and return the full width of data, but the 
extra user_rd_valid signals are provided in case of controller modifications.

Physical Interface
The physical interface is the connection from the FPGA core to an external RLDRAM 3 
device. The I/O signals for this interface are defined in Table 32-5. These signals can be 
directly connected to the corresponding signals on the RLDRAM 3 device.

X-Ref Target - Figure 32-5

Figure 32-5: User Interface Protocol Read Data
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Table 32-5: Physical Interface Signals
Signal I/O Description

rld_ck_p O System Clock CK. This is the address/command clock to the memory device.
rld_ck_n O System Clock CK#. This is the inverted system clock to the memory device.
rld_dk_p O Write Clock DK. This is the write clock to the memory device.
rld_dk_n O Write Clock DK#. This is the inverted write clock to the memory device.
rld_a O Address. This is the address supplied for memory operations.
rld_ba O Bank Address. This is the bank address supplied for memory operations.
rld_cs_n O Chip Select CS#. This is the active-Low chip select control signal for the memory.
rld_we_n O Write Enable WE#. This is the active-Low write enable control signal for the memory.
rld_ref_n O Refresh REF#. This is the active-Low refresh control signal for the memory.

rld_dm O Data Mask DM. This is the active-High mask signal, driven by the FPGA to mask data 
that a user does not want written to the memory during a write command.

rld_dq I/O Data DQ. This is a bidirectional data port, driven by the FPGA for writes and by the 
memory for reads.

rld_qk_p I
Read Clock QK. This is the read clock returned from the memory edge aligned with 
read data on rld_dq. This clock (in conjunction with QK#) is used by the PHY to sample 
the read data on rld_dq.
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M and D Support for Reference Input Clock Speed
Memory IPs provide two possibilities to select the Reference Input Clock Speed. Value 
allowed for Reference Input Clock Speed (ps) is always ≥  Memory Device Interface Speed 
(ps).

• Memory IP lists the possible Reference Input Clock Speed values based on the targeted 
memory frequency (based on selected Memory Device Interface Speed).

• Otherwise, select M and D Options and target for desired Reference Input Clock Speed 
which is calculated based on selected CLKFBOUT_MULT (M), DIVCLK_DIVIDE (D), and 
CLKOUT0_DIVIDE (D0) values in the Advanced Clocking Tab. 

The required Reference Input Clock Speed is calculated from the M, D, and D0 values 
entered in the GUI using the following formulas:

• MMCM_CLKOUT (MHz) = tCK / Phy_Clock_Ratio

Where tCK is the Memory Device Interface Speed selected in the Basic tab.

• CLKIN (MHz) = (MMCM_CLKOUT (MHz) × D × D0) / M

CLKIN (MHz) is the calculated Reference Input Clock Speed.

• VCO (MHz) = (CLKIN (MHz)) / D

VCO (MHz) is the calculated VCO frequency.

• PFD (MHz) = CLKIN (MHz) / D

PFD (MHz) is the calculated PFD frequency.

Calculated Reference Input Clock Speed from M, D, and D0 values are validated as per 
clocking guidelines. For more information on clocking rules, see Clocking.

Apart from the memory specific clocking rules, validation of the possible MMCM input 
frequency range, MMCM VCO frequency range, and MMCM PFD frequency range values are 
completed for M, D, and D0 in the GUI. 

rld_qk_n I Read Clock QK#. This is the inverted read clock returned from the memory. This clock 
(in conjunction with QK) is used by the PHY to sample the read data on rld_dq.

rld_reset_n O RLDRAM 3 reset pin. This is the active-Low reset to the RLDRAM 3 device.

rld_qvld I This active-High data valid port indicates that the valid input data is available on the 
subsequent rising clock edge.

Table 32-5: Physical Interface Signals (Cont’d)

Signal I/O Description
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For UltraScale devices, see Kintex UltraScale FPGAs Data Sheet: DC and AC Switching 
Characteristics (DS892) [Ref 2] and Virtex UltraScale FPGAs Data Sheet: DC and AC Switching 
Characteristics (DS893) [Ref 3] for MMCM Input frequency range, MMCM VCO frequency 
range, and MMCM PFD frequency range values. 

For UltraScale+ devices, see Kintex UltraScale+ FPGAs Data Sheet: DC and AC Switching 
Characteristics (DS922) [Ref 4], Virtex UltraScale+ FPGAs Data Sheet: DC and AC Switching 
Characteristics (DS923) [Ref 5], and Zynq UltraScale+ MPSoC Data Sheet: DC and AC 
Switching Characteristics (DS925) [Ref 6] for MMCM Input frequency range, MMCM VCO 
frequency range, and MMCM PFD frequency range values.

For possible M, D, and D0 values and detailed information on clocking and the MMCM, see 
the UltraScale Architecture Clocking Resources User Guide (UG572) [Ref 8].
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Design Flow Steps
This chapter describes customizing and generating the core, constraining the core, and the 
simulation, synthesis and implementation steps that are specific to this IP core. More 
detailed information about the standard Vivado® design flows and the Vivado IP integrator 
can be found in the following Vivado Design Suite user guides:

• Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994) 
[Ref 13]

• Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 14]
• Vivado Design Suite User Guide: Getting Started (UG910) [Ref 15]
• Vivado Design Suite User Guide: Logic Simulation (UG900) [Ref 16]

Customizing and Generating the Core
CAUTION! The Windows operating system has a 260-character limit for path lengths, which can affect 
the Vivado tools. To avoid this issue, use the shortest possible names and directory locations when 
creating projects, defining IP or managed IP projects, and creating block designs.

This section includes information about using Xilinx® tools to customize and generate the 
core in the Vivado Design Suite.

If you are customizing and generating the core in the IP integrator, see the Vivado Design 
Suite User Guide: Designing IP Subsystems using IP Integrator (UG994) [Ref 13] for detailed 
information. IP integrator might auto-compute certain configuration values when 
validating or generating the design. To check whether the values change, see the 
description of the parameter in this chapter. To view the parameter value, run the 
validate_bd_design command in the Tcl Console.

You can customize the IP for use in your design by specifying values for the various 
parameters associated with the IP core using the following steps:

1. Select the IP from the Vivado IP catalog.
2. Double-click the selected IP or select the Customize IP command from the toolbar or 

right-click menu.
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For more information about generating the core in Vivado, see the Vivado Design Suite User 
Guide: Designing with IP (UG896) [Ref 14] and the Vivado Design Suite User Guide: Getting 
Started (UG910) [Ref 15].

Note: Figures in this chapter are illustrations of the Vivado Integrated Design Environment (IDE). 
This layout might vary from the current version.

Basic Tab
Figure 33-1 shows the Basic tab when you start up the RLDRAM 3 SDRAM. 

IMPORTANT: All parameters shown in the controller options dialog box are limited selection options in 
this release.

For the Vivado IDE, all controllers (DDR3, DDR4, LPDDR3, QDR II+, QDR-IV, and RLDRAM 3) 
can be created and available for instantiation.

1. Select the settings in the Clocking, Controller Options, and Memory Options.

X-Ref Target - Figure 33-1

Figure 33-1: Vivado Customize IP Dialog Box – Basic
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In Clocking, the Memory Device Interface Speed sets the speed of the interface. The 
speed entered drives the available Reference Input Clock Speeds. For more 
information on the clocking structure, see the Clocking, page 501.

2. To use memory parts which are not available by default through the RLDRAM 3 SDRAM 
Vivado IDE, you can create a custom parts CSV file, as specified in the AR: 63462. This 
CSV file has to be provided after enabling the Custom Parts Data File option. After 
selecting this option. you are able to see the custom memory parts along with the 
default memory parts. Note that, simulations are not supported for the custom part. 
Custom part simulations require manually adding the memory model to the simulation 
and might require modifying the test bench instantiation.

Advanced Clocking Tab
Figure 33-2 shows the next tab called Advanced Clocking. This displays the settings for 
Specify M and D value, System Clock Options, and Additional Clock Outputs for the 
specific controller. 

X-Ref Target - Figure 33-2

Figure 33-2: Vivado Customize IP Dialog Box – Advanced Clocking
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Advanced Options Tab
Figure 33-3 shows the next tab called Advanced Options. This displays the advanced 
memory options for the specific controller. 

X-Ref Target - Figure 33-3

Figure 33-3: Vivado Customize IP Dialog Box – Advanced Options
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RLDRAM 3 SDRAM I/O Planning and Design Checklist Tab
Figure 33-4 shows the RLDRAM 3 SDRAM I/O Planning and Design Checklist usage 
information. 

User Parameters
Table 33-1 shows the relationship between the fields in the Vivado IDE and the User 
Parameters (which can be viewed in the Tcl Console).

X-Ref Target - Figure 33-4

Figure 33-4: Vivado Customize IP Dialog Box – I/O Planning and Design Checklist

Table 33-1: Vivado IDE Parameter to User Parameter Relationship
Vivado IDE Parameter/Value(1) User Parameter/Value(1) Default Value

System Clock Configuration System_Clock Differential
Internal VREF Internal_Vref TRUE
DCI Cascade DCI_Cascade FALSE
Debug Signal for Controller Debug_Signal Disable
Clock 1 (MHz) ADDN_UI_CLKOUT1_FREQ_HZ None
Clock 2 (MHz) ADDN_UI_CLKOUT2_FREQ_HZ None
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Setting TWTR Check Parameter OFF for RLDRAM 3 Designs
This TWTR_CHECK_OFF switch provides the ability to turn OFF TWTR timing check inside the 
RLDRAM 3 controller. The default value of TWTR_CHECK parameter for RLDRAM 3 is set to 
ON. In many cases, it has been observed that some user traffic patterns never execute the 
TWTR timing. If the TWTR_CHECK_OFF switch is set to OFF, then the whole logic is 
bypassed. This can potentially help improve timing as well as improved bus efficiency. This 
can be changed through the Tcl command using the user parameter TWTR_CHECK_OFF for 
any RLDRAM 3 designs. Table shows details of the TWTR_CHECK_OFF user parameter. 

Note: Do not turn this timing check off unless the access pattern will never cause a TWTR failure. 

Follow these steps to change the TWTR check parameter value.

1. Generate RLDRAM 3 IP.

Clock 3 (MHz) ADDN_UI_CLKOUT3_FREQ_HZ None
Clock 4 (MHz) ADDN_UI_CLKOUT4_FREQ_HZ None
Enable System Ports Enable_SysPorts TRUE
Default Bank Selections Default_Bank_Selections FALSE
Reference Clock Reference_Clock FALSE
Enable System Ports Enable_SysPorts TRUE
Clock Period (ps) C0.RLD3_TimePeriod 1,071
Input Clock Period (ps) C0.RLD3_InputClockPeriod 13,947
General Interconnect to Memory 
Clock Ratio C0.RLD3_PhyClockRatio 4:1

Configuration C0.RLD3_MemoryType Components
Memory Part C0.RLD3_MemoryPart MT44K16M36RB-093
Data Width C0.RLD3_DataWidth 36
Data Mask C0.RLD3_DataMask TRUE
Burst Length C0.RLD3_BurstLength 8
Memory Voltage C0.RLD3_MemoryVoltage 1.2

Notes: 
1. Parameter values are listed in the table where the Vivado IDE parameter value differs from the user parameter value. Such 

values are shown in this table as indented below the associated parameter.

Table 33-1: Vivado IDE Parameter to User Parameter Relationship (Cont’d)
Vivado IDE Parameter/Value(1) User Parameter/Value(1) Default Value

Table 33-2: TWTR_CHECK_OFF User Parameter
User Parameter Value Format Default Value Possible Values

TWTR_CHECK_OFF String false False – TWTR_CHECK parameter set to ON
True – TWTR_CHECK parameter set to OFF
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2. In the Generate Output Products option, do not select Generate instead select Skip 
(Figure 33-5). 

3. Set the TWTR_CHECK_OFF value by running the following command on the Tcl console:
set_property -dict [list config.TWTR_CHECK_OFF <value_to_be_set>] [get_ips 
<ip_name>]

For example: 

set_property -dict [list config.TWTR_CHECK_OFF {true}] [get_ips rld3_0]

X-Ref Target - Figure 33-5

Figure 33-5: Generate Output Products Window – Skip
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4. Generate output files by selecting Generate Output Products after right-clicking IP 
(Figure 33-6). 

The generated output files have the TWTR_CHECK parameter value set as per the selected 
value.

Output Generation
For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 14]. 

I/O Planning
For details on I/O planning, see I/O Planning, page 235.

X-Ref Target - Figure 33-6

Figure 33-6: Generate Output Products – Output Files
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Constraining the Core
This section contains information about constraining the core in the Vivado Design Suite, if 
applicable.

Required Constraints
This section is not applicable for this IP core.

Device, Package, and Speed Grade Selections
This section is not applicable for this IP core.

Clock Frequencies
This section is not applicable for this IP core.

Clock Management
For information on clocking, see Clocking, page 501.

Clock Placement
This section is not applicable for this IP core.

Banking
This section is not applicable for this IP core.

Transceiver Placement
This section is not applicable for this IP core.

I/O Standard and Placement
The RLDRAM 3 tool generates the appropriate I/O standards and placement based on the 
selections made in the Vivado IDE for the interface type and options.

IMPORTANT: The set_input_delay and set_output_delay constraints are not needed on the 
external memory interface pins in this design due to the calibration process that automatically runs at 
start-up. Warnings seen during implementation for the pins can be ignored.
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Simulation
For comprehensive information about Vivado simulation components, as well as 
information about using supported third-party tools, see the Vivado Design Suite User 
Guide: Logic Simulation (UG900) [Ref 16].

Synthesis and Implementation
For details about synthesis and implementation, see the Vivado Design Suite User Guide: 
Designing with IP (UG896) [Ref 14].
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Chapter 34

Example Design
This chapter contains information about the example design provided in the Vivado® 
Design Suite. Vivado supports Open IP Example Design flow. To create the example design 
using this flow, right-click the IP in the Source Window, as shown in Figure 34-1 and select 
Open IP Example Design. 

This option creates a new Vivado project. Upon selecting the menu, a dialog box to enter 
the directory information for the new design project opens. 

Select a directory, or use the defaults, and click OK. This launches a new Vivado with all of 
the example design files and a copy of the IP. 

X-Ref Target - Figure 34-1

Figure 34-1: Open IP Example Design
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Simulating the Example Design (Designs with 
Standard User Interface)
The example design provides a synthesizable test bench to generate a fixed simple data 
pattern to the Memory Controller. This test bench consists of an IP wrapper and an 
example_tb that generates 100 writes and 100 reads. 

The example design can be simulated using one of the methods in the following sections.

Project-Based Simulation
This method can be used to simulate the example design using the Vivado Integrated 
Design Environment (IDE). Memory IP delivers memory models for RLDRAM 3.

The Vivado simulator, Questa Advanced Simulator, IES, and VCS tools are used for RLDRAM 
3. IP verification at each software release. The Vivado simulation tool is used for RLDRAM 3. 
IP verification from 2015.1 Vivado software release. The following subsections describe 
steps to run a project-based simulation using each supported simulator tool.

Project-Based Simulation Flow Using Vivado Simulator
1. In the Open IP Example Design Vivado project, under Flow Navigator, select 

Simulation Settings. 
2. Select Target simulator as Vivado Simulator.

Under the Simulation tab, set the xsim.simulate.runtime to 1 ms (there are 
simulation RTL directives which stop the simulation after certain period of time, which is 
less than 1 ms) as shown in Figure 34-2. The Generate Scripts Only option generates 
simulation scripts only. To run behavioral simulation, Generate Scripts Only option 
must be de-selected.

3. Set the Simulation Language to Mixed.
4. Apply the settings and select OK.
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5. In the Flow Navigator window, select Run Simulation and select Run Behavioral 
Simulation option as shown in Figure 34-3.

X-Ref Target - Figure 34-2

Figure 34-2: Simulation with Vivado Simulator
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6. Vivado invokes Vivado simulator and simulations are run in the Vivado simulator tool. 
For more information, see the Vivado Design Suite User Guide: Logic Simulation (UG900) 
[Ref 16].

Project-Based Simulation Flow Using Questa Advanced 
Simulator
1. Open a RLDRAM 3 example Vivado project (Open IP Example Design...), then under 

Flow Navigator, select Simulation Settings. 
2. Select Target simulator as Questa Advanced Simulator.

a. Browse to the compiled libraries location and set the path on Compiled libraries 
location option.

b. Under the Simulation tab, set the modelsim.simulate.runtime to 1 ms (there 
are simulation RTL directives which stop the simulation after certain period of time, 
which is less than 1 ms) as shown in Figure 34-4. The Generate Scripts Only option 
generates simulation scripts only. To run behavioral simulation, Generate Scripts 
Only option must be de-selected.

3. Apply the settings and select OK.

X-Ref Target - Figure 34-3

Figure 34-3: Run Behavioral Simulation
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4. In the Flow Navigator window, select Run Simulation and select Run 
Behavioral Simulation option as shown in Figure 34-5.

X-Ref Target - Figure 34-4

Figure 34-4: Simulation with Questa Advanced Simulator
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5. Vivado invokes Questa Advanced Simulator and simulations are run in the Questa 
Advanced Simulator tool. For more information, see the Vivado Design Suite User Guide: 
Logic Simulation (UG900) [Ref 16].

Project-Based Simulation Flow Using IES
1. Open a RLDRAM 3 example Vivado project (Open IP Example Design...), then under 

Flow Navigator, select Simulation Settings. 
2. Select Target simulator as Incisive Enterprise Simulator (IES).

a. Browse to the compiled libraries location and set the path on Compiled libraries 
location option.

b. Under the Simulation tab, set the ies.simulate.runtime to 1 ms (there are 
simulation RTL directives which stop the simulation after certain period of time, 
which is less than 1 ms) as shown in Figure 34-6. The Generate Scripts Only option 
generates simulation scripts only. To run behavioral simulation, Generate Scripts 
Only option must be de-selected.

3. Apply the settings and select OK.

X-Ref Target - Figure 34-5

Figure 34-5: Run Behavioral Simulation
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4. In the Flow Navigator window, select Run Simulation and select Run 
Behavioral Simulation option as shown in Figure 34-5.

5. Vivado invokes IES and simulations are run in the IES tool. For more information, see the 
Vivado Design Suite User Guide: Logic Simulation (UG900) [Ref 16].

X-Ref Target - Figure 34-6

Figure 34-6: Simulation with IES Simulator
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Project-Based Simulation Flow Using VCS
1. Open a RLDRAM 3 example Vivado project (Open IP Example Design...), then under 

Flow Navigator, select Simulation Settings. 
2. Select Target simulator as Verilog Compiler Simulator (VCS).

a. Browse to the compiled libraries location and set the path on Compiled libraries 
location option.

b. Under the Simulation tab, set the vcs.simulate.runtime to 1 ms (there are 
simulation RTL directives which stop the simulation after certain period of time, 
which is less than 1 ms) as shown in Figure 34-7. The Generate Scripts Only option 
generates simulation scripts only. To run behavioral simulation, Generate Scripts 
Only option must be de-selected.

3. Apply the settings and select OK.
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4. In the Flow Navigator window, select Run Simulation and select Run 
Behavioral Simulation option as shown in Figure 34-5.

5. Vivado invokes VCS and simulations are run in the VCS tool. For more information, see 
the Vivado Design Suite User Guide: Logic Simulation (UG900) [Ref 16].

X-Ref Target - Figure 34-7

Figure 34-7: Simulation with VCS Simulator
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Simulation Speed
RLDRAM 3 provides a Vivado IDE option to reduce the simulation speed by selecting 
behavioral XIPHY model instead of UNISIM XIPHY model. Behavioral XIPHY model 
simulation is a default option for RLDRAM 3 designs. To select the simulation mode, click 
the Advanced Options tab and find the Simulation Options as shown in Figure 33-3. 

The SIM_MODE parameter in the RTL is given a different value based on the Vivado IDE 
selection.

• SIM_MODE = BFM – If fast mode is selected in the Vivado IDE, the RTL parameter 
reflects this value for the SIM_MODE parameter. This is the default option.

• SIM_MODE = FULL – If UNISIM mode is selected in the Vivado IDE, XIPHY UNISIMs are 
selected and the parameter value in the RTL is FULL.

Using Xilinx IP with Third-Party Synthesis Tools
For more information on how to use Xilinx IP with third-party synthesis tools, see the Vivado 

Design Suite User Guide: Designing with IP (UG896) [Ref 14].

CLOCK_DEDICATED_ROUTE Constraints and BUFG 
Instantiation
If the GCIO pin and MMCM are not allocated in the same bank, the 
CLOCK_DEDICATED_ROUTE constraint must be set to BACKBONE. To use the BACKBONE 
route, BUFG/BUFGCE/BUFGCTRL/BUFGCE_DIV must be instantiated between GCIO and 
MMCM input. RLDRAM 3 manages these constraints for designs generated with the 
Reference Input Clock option selected as Differential (at Advanced > FPGA Options > 
Reference Input). Also, RLDRAM 3 handles the IP and example design flows for all 
scenarios.

If the design is generated with the Reference Input Clock option selected as No Buffer (at 
Advanced > FPGA Options > Reference Input), the CLOCK_DEDICATED_ROUTE 
constraints and BUFG/BUFGCE/BUFGCTRL/BUFGCE_DIV instantiation based on GCIO and 
MMCM allocation needs to be handled manually for the IP flow. RLDRAM 3 does not 
generate clock constraints in the XDC file for No Buffer configurations and you must take 
care of the clock constraints for No Buffer configurations for the IP flow.

For an example design flow with No Buffer configurations, RLDRAM 3 generates the 
example design with differential buffer instantiation for system clock pins. RLDRAM 3 
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generates clock constraints in the example_design.xdc. It also generates a 
CLOCK_DEDICATED_ROUTE constraint as the “BACKBONE” and instantiates BUFG/BUFGCE/
BUFGCTRL/BUFGCE_DIV between GCIO and MMCM input if the GCIO and MMCM are not in 
same bank to provide a complete solution. This is done for the example design flow as a 
reference when it is generated for the first time. 

If in the example design, the I/O pins of the system clock pins are changed to some other 
pins with the I/O pin planner, the CLOCK_DEDICATED_ROUTE constraints and BUFG/
BUFGCE/BUFGCTRL/BUFGCE_DIV instantiation need to be managed manually. A DRC error 
is reported for the same.
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Chapter 35

Test Bench
This chapter contains information about the test bench provided in the Vivado® Design 
Suite.

The Memory Controller is generated along with a simple test bench to verify the basic read 
and write operations. The stimulus contains 100 consecutive writes followed by 100 
consecutive reads for data integrity check.
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SECTION VII:  TRAFFIC GENERATOR

Traffic Generator
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Chapter 36

Traffic Generator

Overview
This section describes the setup and behavior of the Traffic Generator. In the UltraScale™ 
architecture, Traffic Generator is instantiated in the example design (example_top.sv) to 
drive the memory design through the application interface (Figure 36-1).

Two Traffic Generators are available to drive the memory design and they include: 

• Simple Traffic Generator
• Advanced Traffic Generator

By default, Vivado® connects the memory design to the Simple Traffic Generator. You can 
choose to use the Advanced Traffic Generator by defining a switch HW_TG_EN in the 
example_top.sv. The Simple Traffic Generator is referred to as STG and the Advanced 
Traffic Generator is referred to as ATG for the remainder of this section.

X-Ref Target - Figure 36-1

Figure 36-1: Traffic Generator and Application Interface
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Simple Traffic Generator
Memory IP generates the STG modules as example_tb for native interface and 
example_tb_phy for PHY only interface. The STG native interface generates 100 writes 
and 100 reads. The STG PHY only interface generates 10 writes and 10 reads. Both address 
and data increase linearly. Data check is performed during reads. Data error is reported 
using the compare_error signal.

Advanced Traffic Generator
The ATG is only supported for the user interface. When HW_TG_EN is defined, ATG is set to 
the default setting. The ATG could be programmed differently to test memory interface with 
different traffic patterns. In the example design created by Vivado, the ATG is set to default 
setting which is described in the next section. The default setting is recommended for most 
to get started. For further information on ATG programming, see the Traffic Generator 
Description section.

After memory initialization and calibration are done, the ATG starts sending write 
commands and read commands. If the memory read data does not match with the expected 
read data, the ATG flags compare errors through the status interface. For VIO or ILA debug, 
you have the option to connect status interface signals.

IMPORTANT: For DDR3 and DDR4 interfaces, ATG is disabled with the AXI interface.

Traffic Generator Default Behavior
In the default settings (parameter DEFAULT_MODE = 2016.3), the ATG performs memory 
writes followed by memory reads and data checks. Three types of patterns are generated 
sequentially:

1. PRBS23 data pattern
a. PRBS23 data pattern is used per data bit. Each data bit has a different default 

starting seed value.
b. Linear address pattern is used. Memory address space is walked through to cover full 

PRBS23 data pattern.
2. Hammer Zero pattern

a. Hammer Zero pattern is used for all data bits.
b. Linear address pattern is used. 1,024 Traffic Generator commands are issued.
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3. PRBS address pattern
a. PRBS23 data pattern is used per data bit. Each data bit has a different default 

starting seed value.
b. PRBS address pattern is used. 1,024 Traffic Generator commands are issued.

The ATG repeats memory writes and reads on each of the two patterns infinitely. For 
simulations, ATG performs 1,000 PRBS23 pattern followed by 1,000 Hammer Zero pattern 
and 1,000 PRBS address pattern.

Traffic Generator Description
This section provides detailed information on using the ATG beyond the default settings. 

Feature Support

In this section, the ATG basic feature support and mode of operation is described. The ATG 
allows you to program different traffic patterns, a read-write mode, and the duration of 
traffic burst based on their application.

Provide one traffic pattern for a simple traffic test in the direct instruction mode or program 
up to 32 traffic patterns into the traffic pattern table for a regression test in the traffic table 
mode.

Each traffic pattern can be programmed with the following options:

• Address Mode – Linear, PRBS, walking1/0.
• Data Mode – Linear, PRBS 8/10/23, walking1/0, and hammer1/0.
• Read/Write Mode – Write-read, write-only, read-only, write-once-read-forever.

° Read/Write Submode – When read/write mode is set to write-read, you can 
choose to send write and read commands. The first choice sends all write 
commands follow by read commands. 

The second choice sends write and read command pseudo-randomly. This submode 
is valid for DDR3/DDR4 and RLDRAM 3 only.

• Victim Mode – No Victim, held1, held0, Non-inverted aggressor, inverted aggressor, 
delayed aggressor, delayed victim.

• Victim Aggressor Delay – Aggressor or victim delay when the Victim mode of 
"delayed aggressor" or "delayed victim" modes is used.

• Victim Select – Victim selected from the ATG VIO input or victim rotates per nibble/per 
byte/per interface width.

• Number of Command Per Traffic Pattern
• Number of NOPs After Bursts
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• Number of Bursts Before NOP
• Next Instruction Pointer

Create one traffic pattern for simple traffic test using the direct instruction mode 
(vio_tg_direct_instr_en).

Also, create a sequence of traffic patterns by programming a "next instruction" 
(vio_tg_instr_nxt_instr) pointer pointing to one of the 32 traffic pattern entries for 
regression test in traffic table mode. 

The example in Table 36-1 shows four traffic patterns programmed in the table mode. 

The first pattern has PRBS data traffic written in Linear address space. The 1,000 write 
commands are issued followed by 1,000 read commands. Twenty cycles of NOPs are 
inserted between every 100 cycle of commands. After completion of instruction0, the next 
instruction points at instruction1.

Similarly, instruction1, instruction2, and instruction3 is executed and then looped back to 
instruction0. 

The ATG waits for calibration to complete (init_calib_complete and tg_start 
assertion). After the calibration complete and assertion of tg_start, the ATG starts 
sending the default traffic sequence according to traffic pattern table or direct instruction 
programmed. Memory Read/Write requests are then sent through the application interface, 
Memory Controller, and PHY. Either program the instruction table before asserting 
tg_start or pause the traffic generator (by asserting vio_tg_pause), reprogram the 
instruction table, and restart the test traffic for custom traffic pattern. For more 
information, see the Usage section.

The ATG performs error check when a traffic pattern is programmed to read/write modes 
that have write requests followed by read request (that is, Write-read-mode or 
Write-once-Read-forever-mode). The ATG first sends all write requests to the memory. After 
all write requests are sent, the ATG sends read requests to the same addresses as the write 

Table 36-1: Example of Instruction Program

Instruction 
Number

Addr 
Mode

Data 
Mode

Read/Write 
Mode

Victim 
Mode

Number of 
Instruction 

Iteration

Insert M 
NOPs 

Between 
N-Burst 

(M)

Insert M 
NOPs 

Between 
N-Burst 

(N)

Next 
Instruction

0 Linear PRBS Write-Read No Victim 1,000 20 100 1
1 Linear PRBS Write-Read No Victim 1,000 0 500 2
2 Linear Linear Write-Only No Victim 10,000 10 100 3
3 Linear Walking1 Write-Read No Victim 1,000 10 100 0
….
31
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requests. Then the read data returning from memory is compared with the expected read 
data.

If there is no mismatch error and the ATG is not programmed into an infinite loop, 
vio_tg_status_done asserts to indicate run completion.

The ATG has watchdog logic. The watchdog logic checks if the ATG has any request sent to 
the application interface or the application interface has any read data return within N 
(parameter TG_WATCH_DOG_MAX_CNT) number of cycles. This provides information on 
whether memory traffic is running or stalled (because of reasons other than data 
mismatch).

Usage

In this section, basic usage and programming of the ATG is covered.

The ATG is programmed and controlled using the VIO interface. Table 36-2 shows 
instruction table programming options. 

Table 36-2: Traffic Generator Instruction Options

Name Bit 
Width Description

Instruction Number 5 Instruction select. From 0 to 31.

Addr Mode 4

Address mode to be programmed.
0 = LINEAR; (with user-defined start address)
1 = PRBS; (PRBS supported range from 8 to 34 based on address width)
2= WALKING1
3 = WALKING0
4-15 = Reserved
Note: QDR-IV SRAM only supports Linear address with start address equal to 0.

Data Mode 4

Data mode to be programmed.
0 = LINEAR
1 = PRBS (PRBS supported 8, 10, 23)
2 = WALKING1
3 = WALKING0
4 = HAMMER1
5 = HAMMER0
6 = Block RAM
7 = CAL_CPLX
8-15 = Reserved
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Read/Write Mode 4

0 = Read Only (No data check)
1 = Write Only (No data check)
2 = Write/Read (Read performs after Write and data value is checked against 
expected write data. For QDR II+ SRAM, one port is used for write and another 
port is used for read.)
3 = Write once and Read forever (Data check on Read data)
4-15 = Reserved

Read/Write 
Submode 2

Read/Write submode to be programmed.
This is a submode option when vio_tg_instr_rw_mode is set to "WRITE_READ" 
mode.
This mode is only valid for DDR3/DDR4 and RLDRAM 3. For QDR II+ and QDR-IV 
SRAM interfaces, this mode should be set to 0.
WRITE_READ = 00; // Send all Write commands follow by Read commands 
defined in the instruction.
WRITE_READ_SIMULTANEOUSLY = 01; // Send Write and Read commands 
pseudo-randomly. Note that Write is always ahead of Read.
2 and 3 = Reserved

Victim Mode 3

Victim mode to be programmed.
One victim bit could be programmed using global register vio_tg_victim_bit. The 
rest of the bits on signal bus are considered to be aggressors.
The following program options define aggressor behavior:

NO_VICTIM = 0;
HELD1 = 1; // All aggressor signals held at 1
HELD0 = 2; // All aggressor signals held at 0 
NONINV_AGGR = 3; // All aggressor signals are same as victim
INV_AGGR = 4; // All aggressor signals are inversion of victim
DELAYED_AGGR = 5; // All aggressor signals are delayed version of victim (num 
of cycle of delay is programmed at vio_tg_victim_aggr_delay)
DELAYED_VICTIM = 6; // Victim signal is delayed version of all aggressors
CAL_CPLX = 7; Complex Calibration pattern

Victim Aggressor 
Delay 5

Define aggressor/victim pattern to be N-delay cycle of victim/aggressor, where 0 
≤  N ≤  24.
It is used when victim mode "DELAY_AGGR" or "DELAY VICTIM" mode is used in 
traffic pattern.

Victim Select 3

Victim bit behavior programmed.
VICTIM_EXTERNAL = 0; // Use Victim bit provided in vio_tg_glb_victim_bit
VICTIM_ROTATE4 = 1; // Victim bit rotates from Bits[3:0] for every Nibble
VICTIM_ROTATE8 = 2; // Victim bit rotates from Bits[7:0] for every Byte
VICTIM_ROTATE_ALL = 3; // Victim bit rotates through all bits
RESERVED = 4-7

Table 36-2: Traffic Generator Instruction Options (Cont’d)

Name Bit 
Width Description
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Note: Application interface signals are not shown in section. See the corresponding memory section 
for the application interface data format.

Using VIO to Control ATG

VIO is instantiated for the DDR3/DDR4 example design to exercise the Traffic Generator 
modes when the design is generated with the ATG option.

The expected write data and the data that is read back are added to the ILA instance. Write 
and read data can be viewed in ILA for one byte only. Data of various bytes can be viewed 
by driving the appropriate value for vio_rbyte_sel which is driven through VIO. 
vio_rbyte_sel is a 4-bit signal and you need to pass the value through VIO for a 
required byte. Based on the value driven for vio_rbyte_sel through VIO, a 
corresponding DQ byte write and read data are listed in ILA.

The VIO to drive ATG modes is disabled in the default example design. To enable VIO which 
drives ATG modes for DDR3/DDR4 interfaces, define the macro as VIO_ATG_EN in the 
example_top module as follows:

‘define VIO_ATG_EN

You have to manually instantiate VIO for other interfaces to exercise the Traffic Generator 
modes.

Number of 
instruction iteration 32

Number of Read and/or Write commands to be sent.
N = APP_ADDR_WIDTH – 3
Note: Note: APP_ADDR_WIDTH is defined in example_top.sv.
Linear Address Space Calculation:
Max No. of iterations = 2(N)

PRBS Address Space Calculation
Max No. of iterations = (2(N)) – 1
Walking1/0 Address Space Calculation:
Max No. of iterations = N

Insert M NOPs 
between N-burst (M) 10 M = Number of NOP cycles in between Read/Write commands at user interface 

at general interconnect clock, where M ≥  1.
Insert M NOPs 
between N-burst (N) 32 N = Number of Read/Write commands before NOP cycle insertion at user 

interface at general interconnect clock, where N ≥  1.

Next Instruction 6

Next instruction to run.
To end traffic, next instruction should point at EXIT instruction.
6’b000000-6’b011111 – valid instruction
6’b1????? – EXIT instruction

Table 36-2: Traffic Generator Instruction Options (Cont’d)

Name Bit 
Width Description

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG150&Title=UltraScale%20Architecture-Based%20FPGAs%20Memory%20IP%20v1.4&releaseVersion=1.4&docPage=550


UltraScale Architecture-Based FPGAs Memory IP v1.4 551
PG150 October 22, 2021 www.xilinx.com

Chapter 36: Traffic Generator

The ATG default control connectivity in the example design created by Vivado is listed in 
Table 36-3. 

Note: Application interface signals are not shown in this table. See the corresponding memory 
section for application interface address/data width. 

Table 36-3: Default Traffic Generator Control Connection
Signal I/O Width Description Default Value

clk I 1 Traffic Generator Clock Traffic Generator 
Clock

rst I 1 Traffic Generator Reset Traffic Generator 
Reset

init_calib_complete I 1 Calibration Complete Calibration 
Complete

General Control

vio_tg_start I 1

Enable traffic generator to proceed from 
"START" state to "LOAD" state after calibration 
completes.
If you do not plan to program instruction table 
or PRBS data seed, tie this signal to 1'b1.
If you plan to program instruction table or PRBS 
data seed, set this bit to 0 during reset. After 
reset deassertion and done with instruction/
seed programming, set this bit to 1 to start 
traffic generator.

Reserved signal. 
Tie to 1'b1.

vio_tg_rst I 1

Reset traffic generator (synchronous reset, level 
sensitive).
If there is outstanding traffic in memory 
pipeline, assert signal by some number of clock 
cycles until all outstanding transactions have 
completed.

Reserved signal. 
Tie to 0.

vio_tg_restart I 1

Restart traffic generator after generator is done 
with traffic, paused or stopped with error (level 
sensitive).
If there is outstanding traffic in memory 
pipeline, assert signal by some number of clock 
cycles until all outstanding transactions have 
completed.

Reserved signal. 
Tie to 0.

vio_tg_pause I 1 Pause traffic generator (level sensitive). Reserved signal. 
Tie to 0.

vio_tg_err_chk_en I 1
If enabled, stop after first error detected. Read 
test is performed to determine whether "READ" 
or "WRITE" error occurred. If not enabled, 
continue traffic without stop.

Reserved signal. 
Tie to 0.
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vio_tg_err_clear I 1

Clear all error excluding sticky error bit 
(positive edge sensitive).
Only use this signal when vio_tg_status_state is 
either TG_INSTR_ERRDONE or 
TG_INSTR_PAUSE. Error is cleared two cycles 
after vio_tg_err_clear is asserted.

Reserved signal. 
Tie to 0.

vio_tg_err_clear_all I 1

Clear all error including sticky error bit (positive 
edge sensitive).
Only use this signal when vio_tg_status_state is 
either TG_INSTR_ERRDONE or 
TG_INSTR_PAUSE. Error is cleared two cycles 
after vio_tg_err_clear_all is asserted.

Reserved signal. 
Tie to 0.

vio_tg_err_continue I 1
Continue traffic after error(s) at 
TG_INSTR_ERRDONE state (positive edge 
sensitive).

Reserved signal. 
Tie to 0.

Instruction Table Programming

vio_tg_direct_instr_
en I 1

0 = Traffic Table Mode – Traffic Generator uses 
traffic patterns programmed in 32-entry Traffic 
table which is found in 
ddr4_v2_2_tg_instr_bram.sv
1 = Direct Instruction Mode – Traffic Generator 
uses current traffic pattern presented at VIO 
interface

Reserved signal. 
Tie to 0.

vio_tg_instr_
program_en I 1 Enable instruction table programming (level 

sensitive).
Reserved signal. 
Tie to 0.

vio_tg_instr_num I 5 Instruction number to be programmed. Reserved signal. 
Tie to 0.

vio_tg_instr_addr_
mode I 4

Address mode to be programmed.
0 = LINEAR; (with user-defined start address)
1 = PRBS; (PRBS supported range from 8 to 34 
based on address width)
2= WALKING1
3 = WALKING0
4-15 = Reserved
Note: QDR-IV SRAM only supports Linear address 
with start address equal to 0.

Reserved signal. 
Tie to 0.

Table 36-3: Default Traffic Generator Control Connection (Cont’d)

Signal I/O Width Description Default Value
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vio_tg_instr_data_
mode I 4

Data mode to be programmed.
0 = LINEAR
1 = PRBS (PRBS supported 8, 10, 23)
2 = WALKING1
3 = WALKING0
4 = HAMMER1
5 = HAMMER0
6 = Block RAM
7 = CAL_CPLX (Must be programmed along 
with victim mode CAL_CPLX)
8-15 = Reserved

Reserved signal. 
Tie to 0.

vio_tg_instr_rw_
mode I 4

0 = Read Only (No data check)
1 = Write Only (No data check)
2 = Write/Read (Read performs after Write and 
data value is checked against expected write 
data. For QDR II+ SRAM, one port is used for 
write and another port is used for read.)
3 = Write once and Read forever (Data check on 
Read data)
4-15 = Reserved

Reserved signal. 
Tie to 0.

vio_tg_instr_rw_
submode I 2

Read/Write submode to be programmed.
This is a submode option when 
vio_tg_instr_rw_mode is set to "WRITE_READ" 
mode.
This mode is only valid for DDR3/DDR4 and 
RLDRAM 3. For QDR II+ and QDR-IV SRAM 
interfaces, this mode should be set to 0.
WRITE_READ = 0; // Send all Write commands 
follow by Read commands defined in the 
instruction.
WRITE_READ_SIMULTANEOUSLY = 1; // Send 
Write and Read commands pseudo-randomly. 
Note that Write is always ahead of Read.

Reserved signal. 
Tie to 0.

Table 36-3: Default Traffic Generator Control Connection (Cont’d)

Signal I/O Width Description Default Value
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vio_tg_instr_victim_m
ode I 3

Victim mode to be programmed.
One victim bit could be programmed using 
global register vio_tg_victim_bit. The rest of the 
bits on signal bus are considered to be 
aggressors.
The following program options define 
aggressor behavior:

NO_VICTIM = 0;
HELD1 = 1; // All aggressor signals held at 1
HELD0 = 2; // All aggressor signals held at 0 
NONINV_AGGR = 3; // All aggressor signals 
are same as victim
INV_AGGR = 4; // All aggressor signals are 
inversion of victim
DELAYED_AGGR = 5; // All aggressor signals 
are delayed version of victim (num of cycle of 
delay is programmed at 
vio_tg_victim_aggr_delay)
DELAYED_VICTIM = 6; // Victim signal is 
delayed version of all aggressors
CAL_CPLX = 7; Complex Calibration pattern 
(Must be programed along with Data Mode 
CAL_CPLX)

Reserved signal. 
Tie to 0.

vio_tg_instr_victim_ag
gr_delay I 5

Define aggressor/victim pattern to be N-delay 
cycle of victim/aggressor, where 0 ≤  N ≤  24.
It is used when victim mode "DELAY_AGGR" or 
"DELAY VICTIM" mode is used in traffic pattern.

Reserved signal. 
Tie to 0.

vio_tg_instr_victim_sel
ect I 3

Victim bit behavior programmed.
VICTIM_EXTERNAL = 0; // Use Victim bit 
provided in vio_tg_glb_victim_bit
VICTIM_ROTATE4 = 1; // Victim bit rotates from 
Bits[3:0] for every Nibble
VICTIM_ROTATE8 = 2; // Victim bit rotates from 
Bits[7:0] for every Byte
VICTIM_ROTATE_ALL = 3; // Victim bit rotates 
through all bits

Reserved signal. 
Tie to 0.

vio_tg_instr_num_of_it
er I 32

Number of Read/Write commands to issue 
(number of issue must be > 0 for each 
instruction programmed).

Reserved signal. 
Tie to 0.

vio_tg_instr_m_nops_
btw_n_burst_m I 10

M = Number of NOP cycles in between Read/
Write commands at user interface at general 
interconnect clock
N = Number of Read/Write commands before 
NOP cycle insertion at user interface at general 
interconnect clock

Reserved signal. 
Tie to 0.

Table 36-3: Default Traffic Generator Control Connection (Cont’d)

Signal I/O Width Description Default Value
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vio_tg_instr_m_nops_
btw_n_burst_n I 32

M = Number of NOP cycles in between Read/
Write commands at user interface at general 
interconnect clock
N = Number of Read/Write commands before 
NOP cycle insertion at user interface at general 
interconnect clock

Reserved signal. 
Tie to 0.

vio_tg_instr_nxt_
instr I 6

Next instruction to run.
To end traffic, next instruction should point at 
EXIT instruction.
6’b000000-6’b011111 – valid instruction
6’b1????? – EXIT instruction

Reserved signal. 
Tie to 0.

PRBS Data Seed Programming

vio_tg_seed_
program_en I 1

0 = Traffic Table Mode – Traffic Generator uses 
traffic patterns programmed in 32-entry Traffic 
table
1 = Direct Instruction Mode – Traffic Generator 
uses current traffic pattern presented at VIO 
interface

Reserved signal. 
Tie to 0.

vio_tg_seed_num I 8 Seed number to be programmed. Reserved signal. 
Tie to 0.

vio_tg_seed_data I PRBS DATA WIDTH
PRBS seed to be programmed for a selected 
seed number (vio_tg_seed_num). 
PRBS_DATA_WIDTH is by default 23. 
PRBS_DATA_WIDTH can support 8, 10, and 23.

Reserved signal. 
Tie to 0.

Global Registers

vio_tg_glb_victim_
bit I 8

Global register to define which bit in data bus is 
victim. It is used when victim mode is used in 
traffic pattern.

Reserved signal. 
Tie to 0.

vio_tg_glb_start_
addr I APP_ADDR_WIDTH Global register to define Start address seed for 

Linear Address Mode.
Reserved signal. 
Tie to 0.

vio_tg_glb_qdriv_rw_s
ubmode I 2

Use for QDR-IV to control different traffic setup 
when Write-Read mode is selected. 
2'b00 = Both Port A and Port B send Write 
traffic, follow by Read traffic
2'b01 = Port A sends Write traffic, while Port B 
sends Read traffic simultaneously
2'b10 = Port B sends Write traffic, while Port A 
sends Read traffic simultaneously
2'b11 = Both Port A and Port B send a mix of 
Write and Read traffic. Only Linear address 
mode is supported.

Table 36-3: Default Traffic Generator Control Connection (Cont’d)

Signal I/O Width Description Default Value
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Traffic Generator Internal Signals

tg_qdriv_submode11_
app_rd I 1

TG internal signal. Connect the signal to default 
programming value. 
app_rd_data_valid derivative for QDR-IV 
submode11 use.

Reserved signal. 
Tie to 0.

Error Status Registers
vio_tg_status_state O 4 Traffic Generator state machine state.
vio_tg_status_err_
bit_valid O 1 Error detected. It is used as trigger to detect read 

error.
vio_tg_status_err_
bit O APP_DATA_WIDTH Error bit mismatch. Bitwise mismatch pattern.

A 1 indicates error detected in that bit location.

vio_tg_status_err_
cnt O 32

Saturated counter that counts the number of 
assertion of the signal vio_tg_status_err_bit_valid.
The counter is reset by vio_tg_err_clear and 
vio_tg_err_clear_all.

vio_tg_status_err_
addr O APP_ADDR_WIDTH Error Address

Address location of failed read.
vio_tg_status_exp_
bit_valid O 1 Expected read data valid.

vio_tg_status_exp_
bit O APP_DATA_WIDTH Expected read data.

vio_tg_status_read_bit
_valid O 1 Memory read data valid.

vio_tg_status_read_bit O APP_DATA_WIDTH Memory read data.

vio_tg_status_first_
err_bit_valid O 1

If vio_tg_err_chk_en is set to 1, 
vio_tg_status_first_err_bit_valid is set to 1 when 
first mismatch error is encountered.
This register is not overwritten until 
vio_tg_err_clear, vio_tg_err_continue, and 
vio_tg_restart is triggered.

vio_tg_status_first_
err_bit O APP_DATA_WIDTH

If vio_tg_status_first_err_bit_valid is set to 1, only 
the first error mismatch bit pattern is stored in this 
register.

vio_tg_status_first_
err_addr O APP_ADDR_WIDTH If vio_tg_status_first_err_bit_valid is set to 1, only 

the first error address is stored in this register.

vio_tg_status_first_
exp_bit_valid O 1

If vio_tg_err_chk_en is set to 1, this represents 
expected read data valid when first mismatch 
error is encountered.

vio_tg_status_first_
exp_bit O APP_DATA_WIDTH

If vio_tg_status_first_exp_bit_valid is set to 1, 
expected read data for the first error is stored in 
this register.

vio_tg_status_first_
read_bit_valid O 1

If vio_tg_err_chk_en is set to 1, this represents 
read data valid when first mismatch error is 
encountered.

Table 36-3: Default Traffic Generator Control Connection (Cont’d)

Signal I/O Width Description Default Value
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vio_tg_status_first_
read_bit O APP_DATA_WIDTH

If vio_tg_status_first_read_bit_valid is set to 1, 
read data from memory for the first error is stored 
in this register.

vio_tg_status_err_
bit_sticky_valid O 1

Accumulated error mismatch valid over time. This 
register will be reset by vio_tg_err_clear, 
vio_tg_err_continue, vio_tg_restart.

vio_tg_status_err_
bit_sticky O APP_DATA_WIDTH If vio_tg_status_err_bit_sticky_valid is set to 1, this 

represents accumulated error bit.

vio_tg_status_err_
cnt_sticky O 32

Saturated counter that counts the number of 
assertion of the signal 
vio_tg_status_err_bit_sticky_valid. The counter is 
reset by vio_tg_err_clear_all.

vio_tg_status_err_
type_valid O 1

If vio_tg_err_chk_en is set to 1, read test is 
performed after the first mismatch error. Read test 
returns error type of either "READ" or "WRITE" 
error.
This register stores valid status of read test error 
type.

vio_tg_status_err_
type O 1

If vio_tg_status_err_type_valid is set to 1, this 
represents error type result from read test.
0 = Write Error,
1 = Read Error

vio_tg_status_done O 1
All traffic programmed completed. 
Note: If infinite loop is programmed, 
vio_tg_status_done does not assert.

vio_tg_status_wr_
done O 1 This signal pulses after a WRITE-READ mode 

instruction completes.

vio_tg_status_watch_d
og_hang O 1

Watchdog hang. This register is set to 1 if there 
is no Read/Write command sent or no Read 
data return for a period of time (defined in 
tg_param.vh).

compare_error O 1
Accumulated error mismatch valid over time. 
This register is reset by vio_tg_err_clear, 
vio_tg_err_continue, and vio_tg_restart.

tg_rd_err_addr_x1 O 50 Registered version of vio_tg_status_err_addr. 
Error Address location of failed read.

tg_exp_data_valid_x1 O 1
Registered version of 
vio_tg_status_exp_bit_valid. Expected read data 
valid of failed read. 

tg_exp_data_x1 O 64
Registered version of vio_tg_status_exp_bit. 
Expected read data of selected data byte lane 
(vio_rbyte_sel) of failed read.

tg_rd_data_valid_x1 O 1
Registered version of 
vio_tg_status_read_bit_valid. Memory read data 
valid.

Table 36-3: Default Traffic Generator Control Connection (Cont’d)

Signal I/O Width Description Default Value
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tg_rd_data_x1 O 64 Memory read data of selected data byte lane 
(vio_rbyte_sel) for the corresponding address.

first_err_bit_valid_x1 O 1

Registered version of 
vio_tg_status_first_err_bit_valid. If 
vio_tg_err_chk_en is set to 1, 
first_err_bit_valid_x1 is set to 1 when first 
mismatch error is encountered.

first_err_bit_x1 O 64
If vio_tg_status_first_err_bit_valid is set to 1, 
error mismatch bit pattern is stored in this 
register for the selected data byte lane 
(vio_rbyte_sel).

acc_bit_err_valid_x1 O 1
Registered version of 
vio_tg_status_err_bit_sticky_valid. Accumulated 
error mismatch valid over time.

acc_bit_err_x1 O 64
If vio_tg_status_err_bit_sticky_valid is set to 1, 
this represents accumulated error bits for the 
selected data byte lane using vio_rbyte_sel.

err_type_valid_x1 O 1
Registered version of 
vio_tg_status_err_type_valid. This register 
stores valid status of read test error type.

err_type_x1 O 1
Registered version of 
vio_tg_status_err_type_valid. If err_type_x1 is 
set to 1, this represents error type result from 
read test of the 0 = Write Error, 1 = Read Error.

acc_bit_err_x1 O APP_DATA_WIDTH
If vio_tg_status_err_bit_sticky_valid is set to 1, 
this represents accumulated error bit for the 
selected read byte lane (vio_rbyte_sel).

acc_bit_err_valid_x1 O 1

Registered version of 
vio_tg_status_err_bit_sticky_valid. Accumulated 
error mismatch valid over time. This register 
resets by vio_tg_err_clear, vio_tg_err_continue, 
and vio_tg_restart.

acc_byte_err_x1 O 10
If vio_tg_status_err_bit_sticky_valid is set to 1, 
each bit represents accumulated byte wise 
error.

acc_dq_err_x2 O 8 This register indicated the accumulated data 
byte error.

tg_rd_valid_cnt O 32 Register which keeps a count of valid read data 
from Memory.

tg_inst_cnt O 32 Register which keeps a count of completed 
WR-RD mode instructions.

Table 36-3: Default Traffic Generator Control Connection (Cont’d)

Signal I/O Width Description Default Value
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Traffic Error Detection

The ATG includes multiple data error reporting features. When using the Traffic Generator 
Default Behavior, check if there is a memory error in the Status register 
(vio_tg_status_err_sticky_valid) or if memory traffic stops 
(vio_tg_status_watch_dog_hang).

After the first memory error is seen, the ATG logs the error address 
(vio_tg_status_first_err_addr) and bit mismatch 
(vio_tg_status_first_err_bit).

Table 36-4 shows the common Traffic Generator Status register output which can be used 
for debug. 

tg_cmp_err_x1_cnt O 32

Delayed registered version of 
vio_tg_status_err_cnt. Saturated counter that 
counts the number of assertion of the signal 
vio_tg_status_err_bit_valid. The counter is reset 
by vio_tg_err_clear and vio_tg_err_clear_all.

vio_rbyte_sel O 4
Based on the value driven for vio_rbyte_sel 
through VIO, a corresponding DQ byte write 
and read data are listed in ILA.

Table 36-3: Default Traffic Generator Control Connection (Cont’d)

Signal I/O Width Description Default Value

Table 36-4: Common Traffic Generator Status Register for Debug
Signal I/O Width Description

vio_tg_status_err_bit_valid O 1 Intermediate error detected. It is used as trigger 
to detect read error.

vio_tg_status_err_bit O APP_DATA_WIDTH Intermediate error bit mismatch. Bitwise 
mismatch pattern.

vio_tg_status_err_addr O APP_ADDR_WIDTH Intermediate error address. Address location of 
failed read.

vio_tg_status_first_err_bit_valid O 1

If vio_tg_err_chk_en is set to 1, first_err_bit_valid 
is set to 1 when first mismatch error is 
encountered.
This register is not overwritten until 
vio_tg_err_clear, vio_tg_err_continue, and 
vio_tg_restart is triggered. 

vio_tg_status_first_err_bit O APP_DATA_WIDTH If vio_tg_status_first_err_bit_valid is set to 1, error 
mismatch bit pattern is stored in this register.

vio_tg_status_first_err_addr O APP_ADDR_WIDTH If vio_tg_status_first_err_bit_valid is set to 1, error 
address is stored in this register.

vio_tg_status_first_exp_bit_valid O 1
If vio_tg_err_chk_en is set to 1, this represents 
expected read data valid when first mismatch 
error is encountered.
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The VIO signal vio_tg_err_chk_en is used to enable error checking and can report read 
versus write data errors on vio_tg_status_err_type when 
vio_tg_status_err_type_valid is High.  When using vio_tg_err_chk_en, the ATG 
can be programmed to have two different behaviors when traffic error is detected.

1. Stop traffic after first error is seen.

The ATG stops traffic after first error. The ATG then performs a read-check to detect if 
the mismatch seen is a "WRITE" error or "READ" error. When vio_tg_status_state 
reaches ERRDone state, the read-check is completed. The vio_tg_restart can be 
pulsed to clear and restart ATG or the vio_tg_err_continue can be pulsed to 
continue traffic.

2. Continue traffic with error.

The ATG continues sending traffic. The traffic can be restarted by asserting pause 
(vio_tg_pause), followed by pulse restart (vio_tg_restart), then deasserting 
pause.

In both cases, bitwise sticky bit mismatch is available in VIO for accumulated mismatch. 

vio_tg_status_first_exp_bit O APP_DATA_WIDTH If vio_tg_status_first_exp_bit_valid is set to 1, 
expected read data is stored in this register.

vio_tg_status_first_read_bit_valid O 1
If vio_tg_err_chk_en is set to 1, this represents 
read data valid when first mismatch error is 
encountered.

vio_tg_status_first_read_bit O APP_DATA_WIDTH If vio_tg_status_first_read_bit_valid is set to 1, 
read data from memory is stored in this register.

vio_tg_status_err_bit_sticky_valid O 1
Accumulated error mismatch valid over time. This 
register is reset by vio_tg_err_clear, 
vio_tg_err_continue, and vio_tg_restart.

vio_tg_status_err_bit_sticky O APP_DATA_WIDTH If vio_tg_status_err_bit_sticky_valid is set to 1, this 
represents accumulated error bit.

vio_tg_status_done O 1
All traffic programmed completes. 
Note: If infinite loop is programmed, 
vio_tg_status_done does not assert.

vio_tg_status_wr_done O 1 This signal pulses after a Write-Read mode 
instruction completes.

vio_tg_status_watch_dog_hang O 1
Watchdog hang. This register is set to 1 if there is 
no Read/Write command sent or no Read data 
return for a period of time (defined in 
tg_param.vh).

Table 36-4: Common Traffic Generator Status Register for Debug (Cont’d)

Signal I/O Width Description
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When a mismatch error is encountered, use the vio_tg_status_err_bit_valid to 
trigger the Vivado Logic Analyzer. All error status are presented in the vio_tg_status_* 
registers.

Depending on the goal, different vio_tg_status_* signals can be connected to ILA or 
VIO for observation. For example, if regression is run on a stable design, compare_error 
and vio_tg_status_watch_dog_hang can be used to detect error or hang conditions.

For a design debug, vio_tg_status_err* signals track errors seen on current read data 
return. vio_tg_status_first* signals store the first error seen. 
vio_tg_status_err_bit_sticky* signals accumulate all error bits seen. 

Error bit buses could be very wide. It is recommended to add a MUX stage and a flop stage 
before connect the bus to ILA or VIO.

Error status can be cleared when the ATG is in either ERRDone or Pause states. Send a pulse 
to the vio_tg_clear to clear all error status except sticky bit. Send a pulse to the 
vio_tg_clear_all to clear all error status including sticky bit.

If vio_tg_err_chk_en is enabled, the ATG performs an error check to categorize whether 
a “READ” or “WRITE” error is encountered. The ATG categorizes error type using the 
following mechanism. When an error is first seen, the error is logged in the 
vio_tg_status_first* status registers. The error address would be read by the ATG for 
1,024 times. If all the reads return data differently from the 
vio_tg_status_first_exp_bit register and all the reads return the same data, the 
error is categorized as “WRITE” error. Otherwise, the error is categorized as “READ” error.

For additional information on how to debug data errors using the ATG, see Debugging Data 
Errors in Chapter 38, Debugging.

How to Program Traffic Generator Instruction

After calibration is completed, the ATG starts sending current traffic pattern presented at 
the VIO interface if direct instruction mode is on; or default traffic sequence according to 
the traffic pattern table if the direct instruction mode is OFF.

If it is desired to run a custom traffic pattern, either program the instruction table before 
the ATG starts or pause the ATG. Program the instruction table and restart the test traffic 
through the VIO.

Steps to program the instruction table (wait for at least one general interconnect cycle 
between each step) are listed here.

Programming instruction table after reset:

1. Set the vio_tg_start to 0 to stop the ATG before reset deassertion.
2. Check if the vio_tg_status_state is TG_INSTR_START (hex0). Then go to step 4.
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Programming instruction table after traffic started:

1. Set the vio_tg_start to 0 and set vio_tg_pause to 1 to pause the ATG.
2. Check and wait until the vio_tg_status_state is TG_INSTR_DONE (hexC), 

TG_INSTR_PAUSE (hex8), or TG_INSTR_ERRDONE (hex7).
3. Send a pulse to the vio_tg_restart. Then, go to step 4.

Common steps:

4. Set the vio_tg_instr_num_instr to the instruction number to be programmed.
5. Set all of the vio_tg_instr_* registers (instruction register) with desired traffic 

pattern.
6. Wait for four general interconnect cycles (optional for relaxing VIO write timing).
7. Set the vio_tg_instr_program_en to 1. This enables instruction table 

programming.
8. Wait for four general interconnect cycles (optional for relaxing VIO write timing).
9. Set the vio_tg_instr_program_en to 0. This disables instruction table 

programming.
10. Wait for four general interconnect cycles (optional for relaxing VIO write timing).
11. Repeat steps 3 to 9 if more than one instruction is programmed.
12. Optionally set the vio_tg_glb* registers (global register) if related features are 

programmed.
13. Optionally set the vio_tg_err_chk_en if you want the ATG to stop and perform read 

test in case of mismatch error.
14. Set the vio_tg_pause to 0 and set vio_tg_start to 1. This starts the ATG with new 

the programming.

In Figure 36-2, after c0_init_calib_complete signal is set, the ATG starts executing 
default instructions preloaded in the instruction table. Then, the vio_tg_pause is set to 
pause the ATG, and then pulse vio_tg_restart. Three ATG instructions are being 
re-programmed and the ATG is started again by deasserting vio_tg_pause and asserting 
tg_start.
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Figure 36-3 zooms into the VIO instruction programming in Figure 36-2. After pausing the 
traffic pattern, vio_tg_restart is pulsed. Then vio_tg_instr_num and 
vio_tg_instr* are set, followed by vio_tg_program_en pulse (note that 
vio_tg_instr_num and vio_tg_instr* are stable for four general interconnect cycles 
before and after vio_tg_program_en pulse). After programming instructions are 
finished, the vio_tg_pause is deasserted and vio_tg_start is asserted.

Important Note:

1. For Write-read mode or Write-once-Read-forever modes, this ATG issues all write traffic, 
followed by all read traffic. During read data check, expected read traffic is generated 
on-the-fly and compared with read data.

X-Ref Target - Figure 36-2

Figure 36-2: Basic ATG Simulation

X-Ref Target - Figure 36-3

Figure 36-3: ATG Re-Program Simulation
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If a memory address is written more than once with different data pattern, the ATG 
creates a false error check. Xilinx recommends for a given traffic pattern programmed, 
the number of command must be less than available address space programmed.

2. The ATG performs error check when read/write mode of a traffic pattern is programmed 
to be "Write-read mode" or "Write-once-Read-forever modes." For "Write-only" or 
"Read-only" modes error check is not performed.

To overwrite default ATG instruction table, update the mig_v1_2_tg_instr_bram.sv.

Traffic Generator Structure
In this section, the ATG logical structure and data flow is discussed.

The ATG data flow is summarized in Figure 36-4. The ATG is controlled and programmed 
through the VIO interface. Based on current instruction pointer value, an instruction is 
issued by the ATG state machine shown in Figure 36-5. 

Based on the traffic pattern programmed in Read/Write mode, Read and/Write requests are 
sent to the application interface. Write patterns are generated by the Write Data 
Generation, Write Victim Pattern, and Write Address Generation engines (gray). Similarly, 
Read patterns are generated by Read Address Generation engine (dark gray).

When Write-Read-mode or Write-Once-Read-forever mode are programmed, Read data 
check is performed. Read data is compared against Expected Read pattern generated by the 
Expected Data Generation, Expected Victim Pattern, and Expected Address Generation 
engines (gray and white). Data compare is done in the Error Checker block. Error status is 
presented to the VIO interface.
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Figure 36-5 and Table 36-5 show the ATG state machine and its states. The ATG resets at the 
"Start" state. After calibration completion (init_calib_complete) and the tg_start is 
asserted, the ATG state moves to instruction load called the "Load" state. The "Load" state 
performs next instruction load. When the instruction load is completed, the ATG state 
moves to Data initialization called the "Dinit" state. The "Dinit" state initializes all Data/
Address generation engines. After completion of data initialization, the ATG state moves to 
execution called the "exe" state. The "Exe" state issues Read and/or Write requests to the 
APP interface.

At the "Exe" state, you can pause the ATG and the ATG state moves to the "Pause" state. At 
the "Pause" state, the ATG can be restarted by issuing tg_restart through the VIO, or 
un-pause the ATG back to the "Exe" state.

X-Ref Target - Figure 36-4

Figure 36-4: Traffic Generator Data Flow
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At the "Exe" state, the ATG state goes through RWWait →  RWload → Dinit states if 
Write-Read mode or Write-once-Read-forever modes are used. At the RWWait, the ATG 
waits for all Read requests to have data returned (for QDR II+ SRAM). 

At the RWload state, the ATG transitions from Write mode to Read mode for DDR3/DDR4, 
RLDRAM II/RLDRAM 3, or from Write/Read mode to Read only mode for QDR II+ SRAM 
Write-once-Read-forever mode.

At the "Exe" state, the ATG state goes through LDWait → Load if the current instruction is 
completed. At the LDWait, the ATG waits for all Read requests to have data returned.

At the "Exe" state, the ATG state goes through DNWait → Done if the last instruction is 
completed. At the DNWait, the ATG waits for all Read requests to have data returned.

At the "Exe" state, the ATG state goes through ERRWait → ERRChk if an error is detected. At 
the ERRWait, the ATG waits for all Read requests to have data returned. The "ERRChk" state 
performs read test by issuing read requests to the application interface and determining 
whether "Read" or "Write" error occurred. After read test completion, the ATG state moves 
to "ERRDone."

At "Done," "Pause," and "ErrDone" states, the ATG can be restarted ATG by issuing 
tg_restart. 
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X-Ref Target - Figure 36-5

Figure 36-5: Traffic Generator State Machine
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Table 36-5: Traffic Generator State Machine States
State Enum Description

Start (default) 0 Default state after reset. Proceed to "Load" state when init_calib_complete and 
vio_tg_start are TRUE.

Load 1 Load instruction into instruction pointer. Determine "Read" and/or "Write" requests to 
be made in "EXE" state based on read/write mode.

Dinit 2 Data initialization of all Data and Address Pattern generators.

Exe 3 Execute state. Sends "Read" and/or "Write" requests to APP interface until 
programmed request count is met.
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Traffic Generator Supported Interface and Configuration
The ATG supports DDR3/DDR4, RLDRAM II/RLDRAM 3, QDR II+ SRAM, and QDR-IV 
interfaces with various configurations. For each interface and configuration, the 
CMD_PER_CLK needs to be programmed with a different value. 

Note: For design with 2:1 general interconnect cycle to memory clock cycle ratio and burst length 8 
(BL = 8), ATG error status interface vio_tg_status_* presents data in full burst (that is, double the 
APP_DATA_WIDTH).

RWLoad 4 Update "Read" and/or "Write" requests to be made in "EXE" state based on read/write 
mode.

ERRWait 5 Waiting until all outstanding "Read" traffic has returned and checked.
ERRChk 6 Perform read test to determine if error type is "Read" or "Write" error.
ERRDone 7 Stopped after an error. You could continue or restart TG.
Pause 8 Pause traffic

PauseWait 13 Waiting until all outstanding "Read" traffic has returned and checked. Go to Pause state 
after all outstanding “Read” traffic are completed.

LDWait 9 Waiting until all outstanding "Read" traffic has returned and checked. Go to Load state 
after all outstanding “Read” traffic are completed.

RWWait 10 Waiting until all outstanding "Read" traffic has returned and checked. Go to RWLoad 
state after all outstanding “Read” traffic are completed.

DNWait 11 Waiting until all outstanding "Read" traffic has returned and checked. Go to Done state 
after all outstanding “Read” traffic are completed.

Done 12 All instruction completed. You can program or restart TG.

Table 36-5: Traffic Generator State Machine States (Cont’d)

State Enum Description

Table 36-6: CMD_PER_CLK Setting for 4:1 General Interconnect Cycle to Memory Clock Cycle

Burst Length/
Mem Type

UltraScale 7 Series
DDR3/DDR4 RLDRAM 3 DDR3/DDR4 RLDRAM II RLDRAM 3

8 1 1 1 1 1
4 – 2 – 2 2
2 – 4 – – 4

Table 36-7: CMD_PER_CLK Setting for 2:1 General Interconnect Cycle to Memory Clock Cycle

Burst Length/
Mem Type

UltraScale 7 Series
QDR II+ DDR3/DDR4 RLDRAM II RLDRAM 3 QDR II+

8 – 0.5 0.5 0.5 –
4 1 – 1 1 1
2 2 – – 2 2
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How to Program Victim Mode/Victim Select/Victim Aggressor Delay

Basic cross-coupling patterns are supported in the victim mode. In a given Victim mode, the 
victim and aggressor behaviors are controlled by the Victim Select and the Victim 
Aggressor Delay.

First, program Victim mode to choose victim/aggressor relationship.

• Held1 – All aggressors held at 1
• Held0 – All aggressors held at 0
• NONINV_AGGR – All aggressors are same as victim pattern
• INV_AGGR – All aggressors are presented as inversion of victim pattern
• DELAYED_AGGR – All aggressors are presented as delayed version of victim pattern. 

Delay is programmable (vio_tg_victim_aggr_delay).
• DELAYED_VICTIM – Victim is presented as delayed version of aggressor pattern. Delay 

is programmable (vio_tg_victim_aggr_delay).
• CAL_CPLX – Both victim and aggressor are defined as calibration complex pattern. 

Both Data Mode and Victim Mode have to be programmed to CAL_CPLX.

After a Victim mode is selected, program the victim/aggressor select.

• Use the external VIO signal to choose victim bit (vio_tg_glb_victim_bit).
• Rotate victim per nibble (from Bits[3:0]) for every nibble.
• Rotate victim per byte (from Bits[7:0]) for every byte.
• Rotate victim in the whole memory interface.

If you selected Victim mode DELAYED_AGGR or DELAYED_VICTIM, the number of UI cycle 
shifted is programmed in vio_tg_victim_aggr_delay (where 0 ≤  N ≤  24).

Note: CAL_CPLX is a Xilinx internal mode that is used for the Calibration Complex Pattern.

How to Program PRBS Data Seed

One of the programmable traffic pattern data modes is PRBS data mode. In PRBS data 
mode, the PRBS Data Seed can be programmed per data bit using the VIO interface.

The following are steps to program PRBS Data Seed (wait for at least one general 
interconnect cycle between each step):

1. Set the vio_tg_start  to 0 to stop traffic generator before reset deassertion.
2. Check the vio_tg_status_state  to be TG_INSTR_START (hex0).
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3. Set the vio_tg_seed_num  and vio_tg_seed_data  with the desired seed 
address number and seed.

4. Wait for four general interconnect cycles (optional for relaxing VIO write timing).
5. Set the vio_tg_seed_program_en  to 1. This enables seed programming.
6. Wait for four general interconnect cycles (optional for relaxing VIO write timing).
7. Set the vio_tg_seed_program_en  to 0. This disables seed programming.
8. Wait for four general interconnect cycles (optional for relaxing VIO write timing).
9. Repeat steps 3 to 8 if more than one seed (data bit) is programmed.
10. Set the vio_tg_start  to 1. This starts traffic generator with new seed programming.

How to Program Linear Data Seed

One of the programmable traffic pattern data modes is Linear data mode. In Linear data 
mode, Linear data seed can be programmed by the parameter 
TG_PATTERN_MODE_LINEAR_DATA_SEED. The seed has a width of APP_DATA_WIDTH. For 4:1 
general interconnect cycle to memory clock cycle ratio (nCK_PER_CLK), the seed format 
consists of eight data bursts of linear seed. 

For 2:1 general interconnect cycle to memory clock cycle ratio, the seed format consists of 
four data bursts of linear seed. Each linear seed has a width of DQ_WIDTH. 

For example, a 72-bit wide memory design with 4:1 general interconnect cycle to memory 
clock cycle ratio, linear seed starting with base of decimal 1,024 is presented by {72'd1031, 
72'd1030, 72'd1029, 72'd1028, 72'd1027, 72'd1026, 72'd1025, and 72'd1024}. 

A second example, a 16-bit wide memory design with 2:1 general interconnect cycle to 
memory clock cycle ratio, linear seed starting with base of zero is presented by {16'd3, 
16'd2, 16'd1, and 16'd0}.

How to Program Linear Address Seed

One of the programmable traffic pattern address modes is Linear address mode. In Linear 
address mode, the Linear Address Seed can be programmed using the VIO input 
(vio_tg_glb_start_addr).
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The seed has a width of APP_ADDR_WIDTH and it is formed by a concatenation of N number 
of consecutive linear address seeds, where the number N is listed in Table 36-8 and 
Table 36-9. 

Least significant bit(s) of Linear address seed is padded with zero. For DDR3/DDR4, the 
3-bit of zero is padded because the burst length of eight is always used.

For RLDRAM 3, the 4-bit of zero is padded because the ATG cycles through 16 RLDRAM 3 
banks automatically. For QDR II+ and QDR-IV SRAM interfaces, zero padding is not 
required.

Read/Write Submode

When Read/Write mode is programmed to Write/Read mode in an instruction, there are 
two options to perform the data write and read. 

• ATG writes all data, then reads all data
• ATG switches between write and read pseudo-randomly. In this mode, data write is 

always ahead of data read. 

IMPORTANT: This mode is not supported in QDR II+ or QDR-IV SRAM interfaces.

Table 36-8: Linear Address Seed Look Up Table for 4:1 General Interconnect Cycle to Memory 
Clock Cycle

Burst Length/
Mem Type

UltraScale 7 Series
DDR3/DDR4 RLDRAM 3 DDR3/DDR4 RLDRAM II RLDRAM 3

8 1 1 1 1 1
4 – 1 – 1 1
2 – 1 – – 1

Table 36-9: Linear Address Seed Look Up Table for 2:1 General Interconnect Cycle to Memory 
Clock Cycle

Burst Length/
Mem Type

UltraScale 7 Series
QDR II+ DDR3/DDR4 RLDRAM II RLDRAM 3 QDR II+

8 – 1 1 1 –
4 1 – 1 1 1
2 2 – – 1 2
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QDR II+ and QDR-IV SRAMs ATG Support
This section covers special supports for QDR II+ and QDR-IV SRAM interfaces.

For QDR II+ SRAM, the ATG supports separate Write and Read command signals in an 
application interface. When Write-Read mode is selected, the ATG issues Write and Read 
command simultaneously.

For QDR-IV SRAM, the memory controller supports two ports. In each port, there are four 
read/write channels. The QDR-IV ATG top-level module is mig_v1_2_hw_tg_qdriv. The 
mig_v1_2_hw_tg_qdriv instantiates two regular ATG (mig_v1_2_hw_tg) and has two 
ATG status register interfaces. Each of the status register interface maps into one of the two 
ports.

QDR-IV ATG supports four different modes of traffic setup. The traffic modes are 
programmed using vio_tg_glb_qdriv_rw_submode. 

• Both PortA and PortB send Write traffic, follow by Read traffic.

° PortA and PortB split address space for Write/Read equally.
• PortA sends Write traffic, while PortB sends Read traffic simultaneously. In this mode, 

vio_tg_start[1] should be set to 1 to disable ATG[1].
• PortB sends Write traffic, while PortA sends Read traffic simultaneously. In this mode, 

vio_tg_start[1] should be set to 1 to disable ATG[1].
• Both PortA and PortB send a mix of Write and Read traffic over each channel per port. 

Only Linear Address mode is supported. 

For a given address, address_bit[1:0] represent the QDR-IV channel. 
Address_bit[5:2] are used to form a write mask or read mask as shown in Table 10. 
A one in the Read/Write Mask denotes that one of the four channels has read or write 
being active. For a given time, Read and Write Mask should never collide. In addition, 
Write is always 16 cycles ahead of Read. After the first 16 writes, Read and Write are 
always interlocked and all four channels are occupied with Read and Write commands.

Table 36-10: QDR-IV Read/Write Mask and Read/Write Channel Sharing Sequence
Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Write Mask 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Read Mask 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Cycle 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Write Mask 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Read Mask 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Cycle 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Write Mask 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
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Read Mask 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Cycle 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Write Mask 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Read Mask 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Cycle 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
Write Mask 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Read Mask 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Table 36-10: QDR-IV Read/Write Mask and Read/Write Channel Sharing Sequence (Cont’d)

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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SECTION VIII:  MULTIPLE IP CORES

Multiple IP Cores
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Multiple IP Cores
This chapter describes the specifications and pin rules for generating multiple IP cores.

Creating a Design with Multiple IP Cores
The following steps must be followed to create a design with multiple IP cores:

1. Generate the target Memory IP. If the design includes multiple instances of the same 
Memory IP configuration, the IP only needs to be generated once. The same IP can be 
instantiated multiple times within the design.

° If the IP shares the input sys_clk, select the No Buffer clocking option during IP 
generation with the same frequency value selected for option Reference Input 
Clock Period (ps). Memory IP that share sys_clk must be allocated in the same I/
O column. For more information on Sharing of Input Clock Source, see the Sharing 
of Input Clock Source for a link of each controller section.

2. Create a wrapper file to instantiate the target Memory IP cores.
3. Assign the pin locations for the Memory IP I/O signals. For more information on pin 

rules of the respective interface, see the Sharing of a Bank for a link of each controller 
section. Also, to learn more about the available Memory IP pin planning options, see the 
Vivado Design Suite User Guide: I/O and Clock Planning (UG899) [Ref 18].

4. Ensure the following specifications are followed.

Sharing of a Bank
Pin rules of each controller must be followed during IP generation. For more information on 
pin rules of each interface, see the respective IP sections:

• DDR3 Pin Rules in Chapter 4 and DDR4 Pin Rules in Chapter 4
• LPDDR3 Pin Rules in Chapter 11
• QDR II+ Pin Rules in Chapter 18
• QDR-IV Pin Rules in Chapter 25
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• RLDRAM 3 Pin Rules in Chapter 32

The same bank can be shared across multiple IP cores, but Memory IP allows sharing of 
banks across multiple IP cores if the rules for combining I/O standards in the same bank are 
followed. 

IMPORTANT: If two controllers share a bank, they cannot be reset independently. The two controllers 
must have a common reset input.

For more information on the rules for combining I/O standards in the same bank, see the 
section "Rules for Combining I/O Standards in the Same Bank,” in UltraScale™ Architecture 
SelectIO™ Resources User Guide (UG571) [Ref 7]. The DCI I/O banking rules are also captured 
in UG571.

Sharing of Input Clock Source
One GCIO pin can be shared across multiple IP cores. There are certain rules that must be 
followed to share input clock source and you must perform a few manual changes in the 
wrapper files. For more information on Sharing of Input Clock Source, see the respective 
interfaces:

• Sharing of Input Clock Source (sys_clk_p) in Chapter 4 (DDR3/DDR4)
• Sharing of Input Clock Source (sys_clk_p) in Chapter 11 (LPDDR3)
• Sharing of Input Clock Source (sys_clk_p) in Chapter 18 (QDR II+ SRAM)
• Sharing of Input Clock Source (sys_clk_p) in Chapter 25 (QDR-IV SRAM)
• Sharing of Input Clock Source (sys_clk_p) in Chapter 32 (RLDRAM 3)

XSDB and dbg_clk Changes
The dbg_clk port is an output from the Memory IP and it automatically connects to the 
dbg_hub logic by Vivado® during implementation. If multiple IP cores are instantiated in 
the same project, Vivado automatically connects the first IP dbg_clk to dbg_bug. 

In the wrapper file in which multiple Memory IP cores are instantiated, do not connect any 
signal to dbg_clk and keep the port open during instantiation. Vivado takes care of the 
dbg_clk connection to the dbg_hub.
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MMCM Constraints
MMCM must be allocated in the center bank of the memory I/Os selected banks. Memory 
IP generates the LOC constraints for MMCM such that there is no conflict if the same bank 
is shared across multiple IP cores.
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SECTION IX:  DEBUGGING

Debugging
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Debugging
This appendix includes details about resources available on the Xilinx® Support website 
and debugging tools. 

TIP: If the IP generation halts with an error, there might be a license issue. See License Checkers in 
Chapter 1 for more details.

Finding Help on Xilinx.com
To help in the design and debug process when using the Memory IP, the Xilinx Support web 
page contains key resources such as product documentation, release notes, answer records, 
information about known issues, and links for opening a Technical Support WebCase.

Documentation
This product guide is the main document associated with the Memory IP. This guide, along 
with documentation related to all products that aid in the design process, can be found on 
the Xilinx Support web page or by using the Xilinx Documentation Navigator.

Download the Xilinx Documentation Navigator from the Downloads page. For more 
information about this tool and the features available, open the online help after 
installation.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual 
property at all stages of the design cycle. Topics include design assistance, advisories, and 
troubleshooting tips. 

The Solution Center specific to the Memory IP core is located at Xilinx Memory IP Solution 
Center.
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Answer Records
Answer Records include information about commonly encountered problems, helpful 
information on how to resolve these problems, and any known issues with a Xilinx product. 
Answer Records are created and maintained daily ensuring that users have access to the 
most accurate information available. 

Answer Records for this core can be located by using the Search Support box on the main 
Xilinx support web page. To maximize your search results, use proper keywords such as: 

• Product name
• Tool message(s)
• Summary of the issue encountered

A filter search is available after results are returned to further target the results.

Master Answer Record for the Memory IP

AR: 58435

Technical Support
Xilinx provides technical support at the Xilinx support web page for this LogiCORE™ IP 
product when used as described in the product documentation. Xilinx cannot guarantee 
timing, functionality, or support if you do any of the following:

• Implement the solution in devices that are not defined in the documentation.
• Customize the solution beyond that allowed in the product documentation. 
• Change any section of the design labeled DO NOT MODIFY.

To contact Xilinx Technical Support, navigate to the Xilinx Support web page.
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Debug Tools
There are many tools available to address Memory IP design issues. It is important to know 
which tools are useful for debugging various situations. 

XSDB Debug
Memory IP includes XSDB debug support. The Memory IP stores useful core configuration, 
calibration, and data window information within internal block RAM. The Memory IP debug 
XSDB interface can be used at any point to read out this information and get valuable 
statistics and feedback from the Memory IP. The information can be viewed through a 
Memory IP Debug GUI or through available Memory IP Debug Tcl commands.

Memory IP Debug GUI Usage

After configuring the device the Memory IP debug core and contents are visible in the 
Hardware Manager (Figure 38-1).
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To export information about the properties to a spreadsheet, see Figure 38-2 which shows 
the Memory IP Core Properties window. Under the Properties tab, right-click anywhere in 
the field, and select the Export to Spreadsheet option in the context menu. Select the 
location and name of the file to save, use all the default options, and then select OK to save 
the file. 

For more information on the Properties window menu commands, see the “Properties 
Window Popup Menu Commands” section in the Vivado Design Suite User Guide: Using the 
Vivado IDE (UG893) [Ref 22].

X-Ref Target - Figure 38-1

Figure 38-1: Memory IP Debug Properties and Configuration Windows
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X-Ref Target - Figure 38-2

Figure 38-2: Memory IP Core Properties Export to Spreadsheet
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X-Ref Target - Figure 38-3

Figure 38-3: Example Display of Memory IP Debug Core
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Memory IP Debug Tcl Usage

The following Tcl commands are available from the Vivado Tcl Console when connected to 
the hardware. 

This outputs all XSDB Memory IP content that is displayed in the GUIs.

• get_hw_migs – Displays what Memory IP cores exist in the design
• refresh_hw_device – Refreshes the whole device including all cores
• refresh_hw_mig [lindex [get_hw_migs] 0] – Refreshes only the Memory IP 

core denoted by index (index begins with 0).
• report_property [lindex [get_hw_migs] 0] – Reports all of the parameters 

available for the Memory IP core. Where 0 is the index of the Memory IP core to be 
reported (index begins with 0).

• report_debug_core – Reports all debug core peripherals connected to the Debug 
Hub “dbg_hub.” Associates the debug core "Index" with the "Instance Name." Useful 
when multiple instances of Memory IP are instantiated within the design to associate 
the debug core index with the each IP instantiation.

X-Ref Target - Figure 38-4

Figure 38-4: Example of Refresh Device
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report_debug_core example:

Peripherals Connected to Debug Hub “dbg_hub” (2 Peripherals):
+-------+------------------------------+----------------------------------+
| Index | Type                         | Instance Name                    |
+-------+------------------------------+----------------------------------+
| 0     | vio_v3_0                     | gtwizard_ultrascale_0_vio_0_inst |
+-------+------------------------------+----------------------------------+
| 1     | labtools_xsdb_slave_lib_v2_1 | your_instance_name               |
+-------+------------------------------+----------------------------------+
| 2     | labtools_xsdb_slave_lib_v2_1 | your_instance_name               |
+-------+------------------------------+----------------------------------+
| 3     | labtools_xsdb_slave_lib_v2_1 | your_instance_name               |
+-------+------------------------------+----------------------------------+
| 4     | labtools_xsdb_slave_lib_v2_1 | your_instance_name               |
+-------+------------------------------+----------------------------------+

Example Design
Generation of a DDR3/DDR4 design through the Memory IP tool allows an example design 
to be generated using the Vivado Generate IP Example Design feature. The example 
design includes a synthesizable test bench with a traffic generator that is fully verified in 
simulation and hardware. This example design can be used to observe the behavior of the 
Memory IP design and can also aid in identifying board-related problems. 

For complete details on the example design, see Chapter 6, Example Design. The following 
sections describe using the example design to perform hardware validation.

Debug Signals
The Memory IP UltraScale designs include an XSDB debug interface that can be used to 
very quickly identify calibration status and read and write window margin. This debug 
interface is always included in the generated Memory IP UltraScale designs.

Additional debug signals for use in the Vivado Design Suite debug feature can be enabled 
using the Debug Signals option on the FPGA Options Memory IP GUI screen. Enabling this 
feature allows example design signals to be monitored using the Vivado Design Suite 
debug feature. Selecting this option brings the debug signals to the top-level and creates a 
sample ILA core that debug signals can be port mapped into.

Furthermore, a VIO core can be added as needed. For details on enabling this debug 
feature, see Customizing and Generating the Core, page 217. The debug port is disabled for 
functional simulation and can only be enabled if the signals are actively driven by the user 
design.
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Vivado Design Suite Debug Feature
The Vivado® Design Suite debug feature inserts logic analyzer and virtual I/O cores directly 
into your design. The debug feature also allows you to set trigger conditions to capture 
application and integrated block port signals in hardware. Captured signals can then be 
analyzed. This feature in the Vivado IDE is used for logic debugging and validation of a 
design running in Xilinx devices.

The Vivado logic analyzer is used with the logic debug IP cores, including:

• ILA 2.0 (and later versions)
• VIO 2.0 (and later versions)

See the Vivado Design Suite User Guide: Programming and Debugging (UG908) [Ref 20].

Reference Boards
The KCU105 evaluation kit is a Xilinx development board that includes FPGA interfaces to a 
64-bit (4 x16 components) DDR4 interface. This board can be used to test user designs and 
analyze board layout. 

Hardware Debug
Hardware issues can range from link bring-up to problems seen after hours of testing. This 
section provides debug steps for common issues. The Vivado Design Suite debug feature is 
a valuable resource to use in hardware debug. The signal names mentioned in the following 
individual sections can be probed using the Vivado Design Suite debug feature for 
debugging the specific problems.

Memory IP Usage
To focus the debug of calibration or data errors, use the provided Memory IP example 
design on the targeted board with the Debug Feature enabled through the Memory IP 
UltraScale GUI.

Note: Using the Memory IP example design and enabling the Debug Feature is not required to 
capture calibration and window results using XSDB, but it is useful to focus the debug on a known 
working solution.

However, the debug signals and example design are required to analyze the provided ILA 
and VIO debug signals within the Vivado Design Suite debug feature. The latest Memory IP 
release should be used to generate the example design. 
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General Checks
Ensure that all the timing constraints for the core were properly incorporated from the 
example design and that all constraints were met during implementation. 

1. If using MMCMs in the design, ensure that all MMCMs have obtained lock by 
monitoring the locked port. 

2. If your outputs go to 0, check your licensing.
3. Ensure all guidelines referenced in Chapter 4, Designing with the Core and the 

UltraScale Architecture PCB Design and Pin Planning User Guide (UG583) [Ref 11] have 
been followed.

4. In Chapter 4, Designing with the Core, it includes information on clocking, pin/bank, 
and reset requirements. In the UltraScale Architecture PCB Design and Pin Planning User 
Guide (UG583) [Ref 11], it includes PCB guidelines such as trace matching, topology and 
routing, noise, termination, and I/O standard requirements. Adherence to these 
requirements, along with proper board design and signal integrity analysis is critical to 
the success of high-speed memory interfaces.

5. Measure all voltages on the board during idle and non-idle times to ensure the voltages 
are set appropriately and noise is within specifications. 

° Ensure the termination voltage regulator (VTT) is powered on to VCCO/2.

° Ensure VREF is measured when External VREF is used and set to VCCO/2.
6. When applicable, check vrp resistors.
7. Look at the clock inputs to ensure that they are clean.
8. Information on the clock input specifications can be found in the AC and DC Switching 

Characteristics data sheets (LVDS input requirements and PLL requirements should be 
considered). 

9. Check the reset to ensure the polarity is correct and the signal is clean.
10. Check terminations. The UltraScale Architecture PCB Design and Pin Planning User Guide 

(UG583) [Ref 11] should be used as a guideline.
11. Perform general signal integrity analysis.

° Memory IP sets the most ideal ODT setting based on the memory parts and is 
described in the RTL as MR1. The RTL is ddr3_0_ddr3.sv for DDR3 and 
ddr4_0_ddr4.sv is for DDR4. IBIS simulations should be run to ensure 
terminations, the most ideal ODT, and output drive strength settings are 
appropriate.

° For DDR3/DDR4, observe dq/dqs on a scope at the memory. View the alignment of 
the signals, VIL/VIH, and analyze the signal integrity during both writes and reads. 

° Observe the Address and Command signals on a scope at the memory. View the 
alignment, VIL/VIH, and analyze the signal integrity.
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12. Verify the memory parts on the board(s) in test are the correct part(s) set through the 
Memory IP. The timing parameters and signals widths (that is, address, bank address) 
must match between the RTL and physical parts. Read/write failures can occur due to a 
mismatch.

13. If Data Mask (DM) is not being used for DDR3, ensure DM pin is tied low appropriately. 
For more information, see DDR3 Pin Rules in Chapter 4. Also, make sure that the GUI 
option for the DM selection is set correctly. If the DM is enabled in the IP but is not 
connected to the controller on the board, the calibration fails unpredictably.

14. For DDR3/DDR4, driving Chip Select (cs_n) from the FPGA is not required in single-rank 
designs. It can instead be tied low at the memory device according to the memory 
vendor’s recommendations. Ensure the appropriate selection (cs_n enable or disable) is 
made when configuring the IP. Calibration sends commands differently based on 
whether cs_n is enabled or disabled. If the pin is tied low at the memory, ensure cs_n 
is disabled during IP configuration.

15. ODT is required for all DDR3/DDR4 interfaces and therefore must be driven from the 
FPGA. Memory IP sets the most ideal ODT setting based on extensive simulation. The 
most ideal ODT value is described in the RTL as MR1. The RTL file is ddr3_0_ddr3.sv 
for DDR3 and ddr4_0_ddr4.sv is for DDR4. External to the memory device, terminate 
ODT as specified in the UltraScale Architecture PCB Design and Pin Planning User Guide 
(UG583) [Ref 11].

16. Check for any floating pins.

° The par input for command and address parity, alert_n input/output, and the 
TEN input for Connectivity Test Mode are not supported by the DDR4 UltraScale 
interface. Consult UltraScale Architecture PCB Design and Pin Planning User Guide 
(UG583) [Ref 11] on how to connect these signals when not used.
Note: The par is required for DDR3 RDIMM interfaces and is optional for DDR4 RDIMM/
LRDIMM interfaces.

° Floating reset_n/reset# or address pins can result in inconsistent failures across 
multiple resets and/or power supplies. If inconsistent calibration failures are seen, 
check the reset_n/reset# and address pins.

17. Measure the ck/ck_n, dqs/dqs_n, and system clocks for duty cycle distortion and 
general signal integrity. 

18. If Internal VREF is used (required for DDR4), ensure that the constraints are set 
appropriately in the XDC constraints file.

An example of the Interval VREF constraint is as follows:

set_property INTERNAL_VREF 0.600 [get_iobanks 45]

19. Check the MMCM and PLL lock signals.
20. If no system clock is present after configuring the part, the following error is generated 

in Vivado Hardware Manager:
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mig_calibration_ddr3_0.csv does not exist

21. Verify trace matching requirements are met as documented in the UltraScale 
Architecture PCB Design and Pin Planning User Guide (UG583) [Ref 11].

22. Bring the init_calib_complete out to a pin and check with a scope or view whether 
calibration completed successfully in Hardware Manager in the Memory IP Debug GUI.

23. Verify the configuration of the Memory IP. The XSDB output can be used to verify the 
Memory IP settings. For example, the clock frequencies, version of Memory IP, Mode 
register settings, and the memory part configuration (see step 12) can be determined 
using Table 38-1.

Table 38-1: Memory IP Configuration XSDB Parameters
Variable Name Description

CAL_MAP_VERSION
2015.1/2015.2 = 1
2015.3/2015.4 = 2
2016.1 = 3

CAL_STATUS_SIZE 7

CAL_VERSION_C_MB

C Code Version
2015.1 = 1
2015.2 = 2
2015.3 = 3
2015.4 = 4
2016.1 = 5

CAL_VERSION_RTL

RTL Code Version
2015.1 = 1
2015.2 = 2
2015.3 = 3
2015.4 = 4
2016.1 = 5

CONFIG_INFORMATION_0 Reserved
CONFIG_INFORMATION_0 Reserved
CONFIG_INFORMATION_1 Reserved
CONFIG_INFORMATION_2 Reserved
CONFIG_INFORMATION_3 Reserved
CONFIG_INFORMATION_4 Reserved
CONFIG_INFORMATION_5 Reserved
CONFIG_INFORMATION_6 Reserved
CONFIG_INFORMATION_7 Reserved
CONFIG_INFORMATION_8 Reserved
CONFIG_INFORMATION_9 Reserved
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CONFIG_INFORMATION_10 Reserved
CONFIG_INFORMATION_11 Reserved
CONFIG_INFORMATION_12 Reserved
CONFIG_INFORMATION_13 Reserved
CONFIG_INFORMATION_14 Reserved
CONFIG_INFORMATION_15 Reserved
CONFIG_INFORMATION_16 Reserved
CONFIG_INFORMATION_17 Reserved
CONFIG_INFORMATION_18 Reserved
CONFIG_INFORMATION_19 Reserved
CONFIG_INFORMATION_20 Reserved
CONFIG_INFORMATION_21 Reserved
CONFIG_INFORMATION_22 Reserved
CONFIG_INFORMATION_23 Reserved
CONFIG_INFORMATION_24 Reserved
CONFIG_INFORMATION_25 Reserved
CONFIG_INFORMATION_26 Reserved
CONFIG_INFORMATION_27 Reserved
CONFIG_INFORMATION_28 Reserved
CONFIG_INFORMATION_29 Reserved
CONFIG_INFORMATION_30 Reserved
CONFIG_INFORMATION_31 Reserved
CONFIG_INFORMATION_32 Reserved
MR0_0 MR0[8:0] Setting
MR0_1 MR0[15:9] Setting
MR1_0 MR1[8:0] Setting
MR1_1 MR1[15:9] Setting
MR2_0 MR2[8:0] Setting
MR2_1 MR2[15:9] Setting
MR3_0 MR3[8:0] Setting
MR3_1 MR3[15:9] Setting
MR4_0 MR4[8:0] Setting
MR4_1 MR4[15:9] Setting
MR5_0 MR5[8:0] Setting
MR5_1 MR5[15:9] Setting

Table 38-1: Memory IP Configuration XSDB Parameters (Cont’d)

Variable Name Description
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24. Copy all of the data reported and submit it as part of a WebCase. For more information 
on opening a WebCase, see Technical Support, page 580.

Debugging DDR3/DDR4 Designs

Calibration Stages

Figure 38-5 shows the overall flow of memory initialization and the different stages of 
calibration. The dark gray color is not available for this release.

MR6_0 MR6[8:0] Setting
MR6_1 MR6[15:9] Setting
Memory_Code_Name Reserved
Memory_Frequency_0 Memory tCK [8:0]
Memory_Frequency_1 Memory tCK [16:9]

Memory_Module_Type

Module Type
Component = 01
UDIMM = 02
SODIMM = 03
RDIMM = 04

Memory_Voltage

Memory Voltage
1.2V = 01
1.35V = 02
1.5V = 03

Mem_Type

Memory Type
DDR3 = 01
DDR4 = 02
RLDRAM 3 = 03
QDR II+ SRAM = 04

PLL_M CLKFBOUT_MULT_F value used in the core TXPLLs.
PLL_D DIVCLK_DIVIDE value using in the core TXPLLs.
MMCM_M CLKFBOUT_MULT_F value used in the core MMCM.
MMCM_D DIVCLK_DIVIDE value using in the core MMCM. 
Controller_Info Reserved

Table 38-1: Memory IP Configuration XSDB Parameters (Cont’d)

Variable Name Description
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X-Ref Target - Figure 38-5

Figure 38-5: PHY Overall Initialization and Calibration Sequence

DDR3/DDR4 SDRAM Initialization

Read DQS Centering (Simple)

Yes

No

Enable VT Tracking

Write Leveling

Read VREF Training (DDR4 Only)

Write VREF Training (DDR4 Only)

DQS Gate Calibration

Yes

Rank 
== 0?

Yes

System Reset

XIPHY BISC

Rank 
== 0?

No

No

All 
Done?

Calibration Done

XSDB Setup

Rank count + 1

Iterative loop to 
calibrate more ranks

Read Training (Per-bit Deskew)

Write DQS-to-DQ Deskew

Multi-Rank Checks and Adjustments (Multi-Rank Only)

Read DQS Centering Multi-Rank Adjustment

Read DQS Centering (Complex)

Yes
Rank 
== 0?

No
Write DQS-to-DQ (Complex)

Write Latency Calibration

Write DQS-to-DM/DBI Deskew

Write DQS-to-DQ (Simple)

Write DQS-to-DM/DBI (Simple)

DQS Gate 
Sanity Check

Read
Sanity Check

Write/Read
Sanity Check 0

Write/Read
Sanity Check 1

Write/Read
Sanity Check 2

Write/Read
Sanity Check 3

Write/Read
Sanity Check 4

Write/Read
Sanity Check 5*

Write/Read
Sanity Check 6**

*Sanity Check 5 runs for multi-rank and for a rank other  than the 
first rank. For example, if there were two ranks, it would run on 
the second only.
**Sanity Check 6 runs for multi-rank and goes through all of the 
ranks.

Read Training (DQS Centering – DBI)

Read Training (DBI Per-bit 
Deskew)

X24431-081021

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG150&Title=UltraScale%20Architecture-Based%20FPGAs%20Memory%20IP%20v1.4&releaseVersion=1.4&docPage=593


UltraScale Architecture-Based FPGAs Memory IP v1.4 594
PG150 October 22, 2021 www.xilinx.com

Chapter 38: Debugging

Memory Initialization

The PHY executes a JEDEC-compliant DDR3/DDR4 initialization sequence following the 
deassertion of system reset. Each DDR3/DDR4 SDRAM has a series of Mode registers 
accessed through Mode register set (MRS) commands. These Mode registers determine 
various SDRAM behaviors, such as burst length, read and write CAS latency, and additive 
latency. Memory IP designs never issue a calibration failure during Memory Initialization.

All other initialization/calibration stages are reviewed in the following Debugging 
Calibration Stages section.

Debug Signals

There are two types of debug signals used in Memory IP UltraScale debug. The first set is a 
part of a debug interface that is always included in generated Memory IP UltraScale 
designs. These signals include calibration status and tap settings that can be read at any 
time throughout operation when the Hardware Manager is open using either Tcl commands 
or the Memory IP Debug GUI.

The second type of debug signals are fully integrated in the IP when the Debug Signals 
option in the Memory IP tool is enabled and when using the Memory IP Example Design. 
However, these signals are currently only brought up in the RTL and not connected to the 
debug VIO/ILA cores. Manual connection into either custom ILA/VIOs or the ILA generated 
when the Debug Signals option is enabled is currently required. These signals are 
documented in Table 38-2. 

Table 38-2: DDR3/DDR4 Debug Signals Used in Vivado Design Suite Debug Feature
Signal Signal Width Signal Description

init_calib_complete [0:0]
Signifies the status of calibration.
1’b0 = Calibration not complete
1’b1 = Calibration completed successfully

cal_pre_status [8:0] Signifies the status of the memory core before calibration 
has started. See Table 38-3 for decoding information.

cal_r*_status [127:0]

Signifies the status of each stage of calibration. See 
Table 38-4 for decoding information. See the following 
relevant debug sections for usage information. 
Note: The * indicates the rank value. Each rank has a separate 
cal_r*_status bus.

cal_post_status [8:0] Signifies the status of the memory core after calibration has 
finished. See Table 38-5 for decoding information.
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dbg_cal_seq [2:0]

Calibration sequence indicator, when RTL is issuing 
commands to the DRAM. 
[0] = 1’b0 -> Single Command Mode, one DRAM command 
only. 1’b1 -> Back-to-Back Command Mode. RTL is issuing 
back-to-back commands.
[1] = Write Leveling Mode.
[2] = Extended write mode enabled, where extra data and 
DQS pulses are sent to the DRAM before and after the 
regular write burst.

dbg_cal_seq_cnt [31:0]
Calibration command sequence count used when RTL is 
issuing commands to the DRAM. Indicates how many 
DRAM commands are requested (counts down to 0 when all 
commands are sent out).

dbg_cal_seq_rd_cnt [7:0]
Calibration read data burst count (counts down to 0 when 
all expected bursts return), used when RTL is issuing read 
commands to the DRAM.

dbg_rd_valid [0:0] Read Data Valid

dbg_cmp_byte [5:0]

Calibration byte selection (used to determine which byte is 
currently selected and displayed in dbg_rd_data).

Table 38-2: DDR3/DDR4 Debug Signals Used in Vivado Design Suite Debug Feature (Cont’d)

Signal Signal Width Signal Description

dbg_cmp_byte DQS Byte
000000 0
000001 1
000010 2
000011 3
000100 4
000101 5
000110 6
000111 7
001000 8
001001 9
001010 10
001011 11
001100 12
001101 13
001110 14
001111 15
010000 16
010001 17
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dbg_rd_data [63:0] Read Data from Input FIFOs
dbg_rd_data_cmp [63:0] Comparison of dbg_rd_data and dbg_expected_data

dbg_expected_data [63:0]
Displays the expected data during calibration stages that 
use general interconnect-based data pattern comparison 
such as Read per-bit deskew or read DQS centering 
(complex).

dbg_cplx_config [15:0]

Complex Calibration Configuration
[0] = Start
[1] = 1’b0 selects the read pattern. 1’b1 selects the write 
pattern.
[3:2] = Rank selection
[8:4] = Byte selection
[15:9] = Number of loops through data pattern

dbg_cplx_status [1:0]
Complex Calibration Status
[0] = Busy
[1] = Done

dbg_cplx_err_log [63:0]

Complex calibration bitwise comparison result for all bits in 
the selected byte. Comparison is stored for each bit (1’b1 
indicates compare mismatch):
{fall3, rise3, fall2, rise2, fall1, rise1, fall0, rise0}
[7:0] = Bit[0] of the byte
[15:8] = Bit[1] of the byte
[23:16] = Bit[2] of the byte
[31:24] = Bit[3] of the byte
[39:32] = Bit[4] of the byte
[47:40] = Bit[5] of the byte
[55:48] = Bit[6] of the byte
[63:56] = Bit[7] of the byte

dbg_io_address [27:0] MicroBlaze I/O Address Bus
dbg_pllGate [0:0] PLL Lock Indicator
dbg_phy2clb_fixdly_rdy_low [BYTES × 1 – 1:0] XIPHY fixed delay ready signal (lower nibble)
dbg_phy2clb_fixdly_rdy_upp [BYTES × 1 – 1:0] XIPHY fixed delay ready signal (upper nibble)
dbg_phy2clb_phy_rdy_low [BYTES × 1 – 1:0] XIPHY PHY ready signal (lower nibble)
dbg_phy2clb_phy_rdy_upp [BYTES × 1 – 1:0] XIPHY PHY ready signal (upper nibble)
Traffic_error [BYTES × 8× 8 – 1:0] Reserved
Traffic_clr_error [0:0] Reserved
Win_start [3:0] Reserved

Table 38-2: DDR3/DDR4 Debug Signals Used in Vivado Design Suite Debug Feature (Cont’d)

Signal Signal Width Signal Description
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Determine the Failing Calibration Stage

XSDB can be used to very quickly determine which stage of calibration is failing, which 
byte/nibble/bit is causing the failure, and how the algorithm is failing.

Configure the device and, while the Hardware Manager is open, perform one of the 
following: 

1. Use the available XSDB Memory IP GUI to identify which stages have completed, which, 
if any, has failed, and review the Memory IP properties window for a message on the 
failure. Here is a sample of the GUI for a passing and failing case:

X-Ref Target - Figure 38-6

Figure 38-6: Memory IP XSDB Debug GUI Example – Calibration Pass

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG150&Title=UltraScale%20Architecture-Based%20FPGAs%20Memory%20IP%20v1.4&releaseVersion=1.4&docPage=597


UltraScale Architecture-Based FPGAs Memory IP v1.4 598
PG150 October 22, 2021 www.xilinx.com

Chapter 38: Debugging

2. Manually analyze the XSDB output by running the following commands in the Tcl 
prompt:

refresh_hw_device [lindex [get_hw_devices] 0]
report_property [lindex [get_hw_migs] 0]

Manually Analyzing the XSDB Output

The value of DDR_CAL_STATUS_RANK*_* can be used to determine which stages of 
calibration have passed on a per rank basis.

• RANK* within DDR_CAL_STATUS_RANK*_* denotes the physical DRAM RANK being 
calibrated. 

X-Ref Target - Figure 38-7

Figure 38-7: Memory IP XSDB Debug GUI Example – Calibration Failure
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• The _* at the end of DDR_CAL_STATUS_RANK*_* can be decoded in the "XSDB Status 
Reg" column in Table 38-4.

• XSDB Bit represents the nine bits assigned to each XSDB Status register.
• cal_r*_status represents the full port value used in simulation or when brought to 

an ILA core.
Note: A “1” in each bit position signifies the corresponding stage of calibration completed.

Table 38-3: DDR3/DDR4 Pre-Cal Status
XSDB Status Name Bit Description Pre-Calibration Step

DDR_PRE_CAL_STATUS

0 Done MicroBlaze has started up
1 Done Reserved
2 Done Reserved
3 Done Reserved
4 Done XSDB Setup Complete
5 Reserved
6 Reserved
7 Reserved
8 Reserved

Table 38-4: DDR3/DDR4 DDR_CAL_STATUS_RANK*_* Decoding
XSDB 

Status Reg XSDB Bit Status Bus Bits (Sim) Description Calibration Step

0

0 0 Start DQS Gate
1 1 Done
2 2 Start Check for DQS gate
3 3 Done
4 4 Start Write leveling
5 5 Done
6 6 Start Read Per-bit Deskew
7 7 Done
8 8 Start Reserved
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1

0 9 Done
1 10 Start Read DQS Centering (Simple)
2 11 Done
3 12 Start Read Sanity Check
4 13 Done
5 14 Start Write DQS-to-DQ Deskew
6 15 Done
7 16 Start Write DQS-to-DM Deskew
8 17 Done

2

0 18 Start Write DQS-to-DQ (Simple)
1 19 Done
2 20 Start Write DQS-to-DM (Simple)
3 21 Done
4 22 Start Reserved
5 23 Done
6 24 Start Write Latency Calibration
7 25 Done
8 26 Start Write/Read Sanity Check 0

3

0 27 Done
1 28 Start Read DQS Centering (Complex)
2 29 Done
3 30 Start Write/Read Sanity Check 1
4 31 Done
5 32 Start Reserved
6 33 Done
7 34 Start Write/Read Sanity Check 2
8 35 Done

Table 38-4: DDR3/DDR4 DDR_CAL_STATUS_RANK*_* Decoding (Cont’d)

XSDB 
Status Reg XSDB Bit Status Bus Bits (Sim) Description Calibration Step
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4

0 36 Start Write DQS-to-DQ (Complex)
1 37 Done
2 38 Start Reserved
3 39 Done
4 40 Start Write/Read Sanity Check 3
5 41 Done
6 42 Start Reserved
7 43 Done
8 44 Start Write/Read Sanity Check 4

5

0 45 Done
1 46 Start Read level multi-rank adjustment
2 47 Done

3 48 Start Write/Read Sanity Check 5 (for more than 
1 rank)

4 49 Done
5 50 Start Multi-rank adjustments & Checks
6 51 Done
7 52 Start Write/Read Sanity Check 6 (all ranks)
8 53 Done

Table 38-5: DDR3/DDR4 Post-Calibration Status
XSDB Status Name Bit Description Post-Calibration Step

DDR_POST_CAL_STATUS

0 Running
DQS Gate Tracking1 Idle

2 Fail
3 Running Read Margin Check (Reserved)
4 Running Write Margin Check (Reserved)
5 Handshake Failure (Reserved)
6 Margin Check Failure (Reserved)
7 Reserved
8 Reserved

Table 38-4: DDR3/DDR4 DDR_CAL_STATUS_RANK*_* Decoding (Cont’d)

XSDB 
Status Reg XSDB Bit Status Bus Bits (Sim) Description Calibration Step
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When the rank and calibration stage causing the failure are known, the failing byte, nibble, 
and/or bit position and error status for the failure can be identified using the signals listed 
in Table 38-6. 

With these error codes, the failing stage of calibration, failing bit, nibble, and/or byte 
positions, and error code are known. The next step is to review the failing stage in the 
following section for specific debugging steps.

Understanding Calibration Warnings (Cal_warning)

A warning flag indicates something unexpected occurred but calibration can continue. 
Warnings can occur for multiple bits or bytes. Therefore, a limit on the number of warnings 
stored is not set. Warnings are outputs from the PHY, where the cal_warning signal is 
asserted for a single clock cycle to indicate a new warning. 

In XSDB, the warnings are stored as part of the leftover address space in the block RAM 
used to store the XSDB data. The amount of space left over for warnings is dependent on 
the memory configuration (bus width, ranks, etc.). 

Table 38-6: DDR3/DDR4 DDR_CAL_ERROR_0/_1/_CODE Decoding
Variable Name Description

DDR_CAL_ERROR_0 Bit position failing
DDR_CAL_ERROR_1 Nibble or byte position failing

DDR_CAL_ERROR_CODE Error code specific to the failing stage of calibration. See the failing stage 
section below for details.
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The Vivado IDE displays warnings as highlighted in the example shown in Figure 38-8. 

The same warnings are displayed in the Properties window where the rest of the XSDB 
information is presented, as shown Figure 38-9. Apply a search filter of "warning" to find 
only the warning information. 

The following steps show how to manually read out the warnings.

X-Ref Target - Figure 38-8

Figure 38-8: Example Warnings Output in Warnings Tab

X-Ref Target - Figure 38-9

Figure 38-9: Example Warnings Output in Properties Tab
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1. Check the XSDB warnings fields to see if any warnings have occurred as listed in 
Table 38-7. If CAL_WARNINGS_END is non-zero then at least one warning has occurred. 

2. Determine the end of the regular XSDB address range. END_ADDR0 and END_ADDR1 
together form the end of the XSDB address range in the block RAM. The full address is 
made up by concatenating the two addresses together in binary (each made up of nine 
bits). For example, END_ADDR0 = 0x0AA and END_ADDR1 = 0x004 means the end 
address is 0x8AA (18’b 00_0000_100 0_1010_1010).

3. At the Hardware Manager Tcl Console, use the following command to read out a single 
warning: 
read_hw -hw_core [ lindex [get_hw_cores] 0] 0 0x8AB 0x02

This command reads out the XSDB block RAM location for the address provided up 
through the number of address locations requested. In the example above, the XSDB 
end address is 0x8AA. Add 1 to this value to get to the warning storage area. The next 
field (0x02 in the above example command) is the number of addresses to read from 
the starting location. Multiple addresses can be read out by changing 0x02 to whatever 
value is required.

4. The hex value read out is the raw data from the block RAM with four digits representing 
one register value. For example:

A value of 00140000 is broken down into 0014 as the second register field and 0000 
as the first register field where:

- First field indicates bit/byte/nibble flag (depending on the warning)
- Second field indicates the actual warning code, as shown in Table 38-8

Table 38-8 shows the description of the actual warning code. 

Table 38-7: DDR3/DDR4 DDR_CAL_ERROR_0/_1/_CODE Decoding
Variable Name Description

CAL_WARNINGS_START Number of block RAM address locations used to store a single 
warning (set to 2).

CAL_WARNINGS_END Total number of warnings stored in the block RAM.

Table 38-8: DDR3/DDR4 Warning Code Decoding

Stage of Calibration Code 
(Decimal) Unit 1(1) Unit 2(1) Description

Startup 1 N/A N/A RTL XSDB block RAM setting smaller than the code 
measures the range required.

DQS Gate 2 Nibble Rank (DDR4 only) Sampled 1XX or 01X with initial CAS read 
latency setting when expected to find 000 or 001.

DQS Gate 3 Nibble Rank When searching with fine taps, all samples returned 0 on 
GT_STATUS, did not find 1.
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DQS Gate 4 Nibble Rank Did not find a stable 1 on GT_STATUS when searching with 
fine taps.

DQS Gate 5 N/A Rank (DDR3 only) DQS gate ran without BISC enabled.

DQS Gate 6 Byte Rank
(DDR3 only) Data failure seen after DQS gate calibration 
for a given byte. XSDB contains the data seen in the 
BUS_DATA_BURST field.

DQS Gate 7 Byte Rank Multi-rank Only: Coarse taps and read latency adjusted to 
limit coarse taps < 8.

DQS Gate 8 Byte Rank
After initial pattern found, the forward coarse check failed 
to find expected stable 1 region before searching with fine 
taps.

WRLVL 9 Byte N/A ODELAY offset computation from BISC results is 0.
WRLVL 10 Byte N/A Step size accelerate computation from BISC results is 0.
WRLVL 11 Byte Rank Did not find a stable 1 when searching with ODELAY taps.
WRLVL 12 Byte Rank Lowest ODELAY setting is maximum ODELAY taps allowed.
Read DQS Centering 
(Simple) 13 Nibble Rank Small window found (< 33% of the bit time) for a given 

rising edge nibble (P).
Read DQS Centering 
(Complex) 14 Nibble Rank Small window found (< 33% of the bit time) for a given 

rising edge nibble (P).
Read DQS Centering 
(Simple) 15 Nibble Rank Small window found (< 33% of the bit time) for a given 

falling edge nibble (N).
Read DQS Centering 
(Complex) 16 Nibble Rank Small window found (< 33% of the bit time) for a given 

falling edge nibble (N).
Read DQS Centering 
(Simple) 17 Nibble Rank Right edge tap setting recorded is smaller than left edge 

tap (P).
Read DQS Centering 
(Complex) 18 Nibble Rank Right edge tap setting recorded is smaller than left edge 

tap (P).
Read DQS Centering 
(Simple) 19 Nibble Rank Right edge tap setting recorded is smaller than left edge 

tap (N).
Read DQS Centering 
(Complex) 20 Nibble Rank Right edge tap setting recorded is smaller than left edge 

tap (N).
Read DQS Centering 
(Simple) 21 Nibble Rank Hit end of tap delay before finding true right edge (P).

Read DQS Centering 
(Complex) 22 Nibble Rank Hit end of tap delay before finding true right edge (P).

Read DQS Centering 
(Simple) 23 Nibble Rank Hit end of tap delay before finding true right edge (N).

Read DQS Centering 
(Complex) 24 Nibble Rank Hit end of tap delay before finding true right edge (N).

Multi-Rank Read 
Adjust 25 Nibble Rank Final XSDB PQTR value did not match what was left in the 

RIU.

Table 38-8: DDR3/DDR4 Warning Code Decoding (Cont’d)

Stage of Calibration Code 
(Decimal) Unit 1(1) Unit 2(1) Description

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG150&Title=UltraScale%20Architecture-Based%20FPGAs%20Memory%20IP%20v1.4&releaseVersion=1.4&docPage=605


UltraScale Architecture-Based FPGAs Memory IP v1.4 606
PG150 October 22, 2021 www.xilinx.com

Chapter 38: Debugging

Debugging DQS Gate Calibration Failures 

The XIPHY is used to capture read data from the DRAM by using the DQS strobe to clock in 
read data and transfer the data to an internal FIFO using that strobe. The first step in 
capturing data is to evaluate where that strobe is so the XIPHY can open the gate and allow 
the DQS to clock the data into the rest of the PHY. 

The XIPHY uses an internal clock to sample the DQS during a read burst and provides a 
single binary value back called GT_STATUS. This sample is used as part of a training 
algorithm to determine where the first rising edge of the DQS is in relation to the sampling 
clock. 

Calibration logic issues individual read commands to the DRAM and asserts the 
clb2phy_rd_en signal to the XIPHY to open the gate which allows the sample of the DQS 
to occur. The clb2phy_rd_en signal has control over the timing of the gate opening on a 
DRAM-clock-cycle resolution (DQS_GATE_READ_LATENCY_RANK#_BYTE#). This signal is 

Multi-Rank Read 
Adjust 26 Nibble Rank Final XSDB NQTR value did not match what was left in the 

RIU.
Write DQS-to-DQ 
(Simple) 27 Byte N/A Small window found for DQ (< 33% of the bit time).

Write DQS-to-DQ 
(Complex) 28 Byte N/A Small window found for DQ (< 33% of the bit time).

Write DQS-to-DQ 
(Simple) 29 Byte N/A Size of the DQ window found is < 4x the difference of the 

left and right edge.
Write DQS-to-DQ 
(Complex) 30 Byte N/A Size of the DQ window found is < 4x the difference of the 

left and right edge.
Write DQS-to-DQ 
(Simple) 31 Byte N/A When computing aggregate eye size between DQ and DM, 

the DQ eye was recorded as 0.
Write DQS-to-DQ 
(Simple) 32 Byte N/A Small window found for DM (< 33% of the bit time)

Write DQS-to-DQ 
(Simple) 33 Byte N/A DM calibrated wanted to underflow the DQS ODELAY

Write DQS-to-DQ 
(Simple) 34 Byte N/A DM calibrated wanted to overflow the DQS ODELAY

Write VREF 35 Byte Rank VREF value read back from the DRAM did not match 
expected value.

WRLVL 36 Byte Rank Could not preserve the full offset skew on the Write 
DQS-to-DQ/DM output for the given rank.

Notes: 
1. Unit refers to value stored in the XSDB block RAM. Three locations are used in the block RAM for storage of a single warning, 

the first contains the code, Unit 1 is the next address, and Unit 2 is the following address.

Table 38-8: DDR3/DDR4 Warning Code Decoding (Cont’d)

Stage of Calibration Code 
(Decimal) Unit 1(1) Unit 2(1) Description
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controlled on a per-byte basis in the PHY and is set in the ddr_mc_pi block for use by both 
calibration and the controller. 

Calibration is responsible for determining the value used on a per-byte basis for use by the 
controller. The XIPHY provides for additional granularity in the time to open the gate 
through coarse and fine taps. Coarse taps offer 90° DRAM clock-cycle granularity (16 
available) and each fine tap provides a 2.5 to 15 ps granularity for each tap (512 available). 
BISC provides the number of taps for 1/4 of a memory clock cycle by taking 
(BISC_PQTR_NIBBLE#-BISC_ALIGN_PQTR_NIBBLE#) or 
(BISC_NQTR_NIBBLE#-BISC_ALIGN_NQTR_NIBBLE#). These are used to estimate the per-tap 
resolution for a given nibble.

The search for the DQS begins with an estimate of when the DQS is expected back. The total 
latency for the read is a function of the delay through the PHY, PCB delay, and the 
configured latency of the DRAM (CAS latency, Additive latency, etc.). The search starts three 
DRAM clock cycles before the expected return of the DQS. The algorithm must start 
sampling before the first rising edge of the DQS, preferably in the preamble region. DDR3 
and DDR4 have different preambles for the DQS as shown in Figure 38-10. 

The specification for the DDR3 preamble is longer (3/4 of a DRAM clock cycle) and starts 
from the terminated 3-state while the DDR4 preamble is shorter (1/2 of a DRAM clock cycle) 
and starts from the rail terminated level. For DDR4, the preamble training mode is enabled 
during DQS gate calibration, so the DQS is driven low whenever the DQS is idle. This allows 
for the algorithm to look for the same sample pattern on the DQS for DDR3/DDR4 where 
the preamble is larger than half a clock cycle for both cases. 

Given that DDR3 starts in the 3-state region before the burst, any accepted sample taken 
can either be a 0 or 1. To avoid this result, 20 samples (in hardware) are taken for each 
individual sample such that the probability of the 3-state region or noise in the sampling 
clock/strobe being mistaken for the actual DQS is low. This probability is given by the 
binomial probability shown in the binomial probability equation.

X = expected outcome

n= number of tries

X-Ref Target - Figure 38-10

Figure 38-10: DDR3/DDR4 DQS Preamble
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P = probability of a single outcome

When sampling in the 3-state region the result can be 0 or 1, so the probability of 20 
samples all arriving at the same value is roughly 9.5 × 10-6. Figure 38-11 shows an example 
of samples of a DQS burst with the expected sampling pattern to be found as the coarse 
taps are adjusted. The pattern is the expected level seen on the DQS over time as the 
sampling clock is adjusted in relation to the DQS.

Each individual element of the pattern is 20 read bursts from the DRAM and samples from 
the XIPHY. The gate in the XIPHY is opened and a new sample is taken to indicate the level 
seen on the DQS. If each of the samples matches with the first sample taken, the value is 
accepted. If all samples are not the same value that value is marked as “X” in the pattern. 
The “X” in the pattern shown is to allow for jitter and DCD between the clocks, and to deal 
with uncertainty when dealing with clocks with an unknown alignment. Depending on how 
the clocks line up they can resolve to all 0s, all 1s, or a mix of values, and yet the DQS 
pattern can still be found properly.

The coarse taps in the XIPHY are incremented and the value recorded at each individual 
coarse tap location, looking for the full pattern “00X1X0X1X0.” For the algorithm to 
incorrectly calculate the 3-state region as the actual DQS pattern, you would have to take 20 
samples of all 0s at a given coarse tap, another 20 samples of all 0s at another, then 20 
coarse taps of all 1s for the initial pattern (“00X1”). The probability of this occurring is 
8.67 × 10-19. This also only covers the initial scan and does not include the full pattern 
which scans over 10 coarse taps. 

While the probability is fairly low, there is a chance of coupling or noise being mistaken as 
a DQS pattern. In this case, each sample is no longer random but a signal that can be fairly 
repeatable. To guard against mistaking the 3-state region in DDR3 systems with the actual 
DQS pulse, an extra step is taken to read data from the MPR register to validate the gate 

X-Ref Target - Figure 38-11

Figure 38-11: Example DQS Gate Samples Using Coarse Taps
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alignment. The read path is set up by BISC for capture of data, placing the capture clock 
roughly in the middle of the expected bit time back from the DRAM.

Because the algorithm is looking for a set pattern and does not know the exact alignment 
of the DQS with the clock used for sampling the data, there are four possible patterns, as 
shown in Figure 38-12.

To speed up the pattern search, only the initial seven coarse taps are used to determine if 
the starting pattern is found. This eliminates the need to search additional coarse taps if the 
early samples do not match the expected result. If the result over the first coarse seven 
coarse taps is not one of the four shown in Figure 38-12, the following occurs:

• Coarse taps are reset to 0
• clb2phy_rd_en general interconnect control is adjusted to increase by one DRAM 

clock cycle
• Search starts again (this is the equivalent of starting at coarse tap four in Figure 38-12)

For DDR4, if the algorithm samples 1XX or 01X this means it started the sampling too late 
in relation to the DQS burst. The algorithm decreases the clb2phy_rd_en general 
interconnect control and try again. If the clb2phy_rd_en is at the low limit already it 
issues an error.

If all allowable values of clb2phy_rd_en for a given latency are checked and the expected 
pattern is still not found, the search begins again from the start but this time the sampling 
is offset by an estimated 45° using fine taps (half a coarse tap). This allows the sampling to 
occur at a different phase than the initial relationship. Each time through if the pattern is 
not found, the offset is reduced by half until all offset values have been exhausted.

X-Ref Target - Figure 38-12

Figure 38-12: DQS Gate Calibration Possible Patterns
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Figure 38-13 shows an extreme case of DCD on the DQS that would result in the pattern not 
being found until an offset being applied using fine taps. 

After the pattern has been found, the final coarse tap (DQS_GATE_COARSE_RANK#_BYTE#) 
is set based on the alignment of the pattern previously checked (shown in Figure 38-12). 
The coarse tap is set to be the last 0 seen before the 1 (3 is used to indicate an unstable 
region, where multiple samples return 0 and 1) was found in the pattern shown in 
Figure 38-14. During this step, the final value of the coarse tap is set between 3 to 6. If the 
coarse value of 7 to 9 is chosen, the coarse taps are decremented by 4 and the general 
interconnect read latency is incremented by 1, so the value falls in the 3 to 5 range instead.

X-Ref Target - Figure 38-13

Figure 38-13: DQS Gate Calibration Fine Offset Example

X-Ref Target - Figure 38-14

Figure 38-14: DQS Gate Coarse Setting Before Fine Search
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From this point the clb2phy_rd_en (DQS_GATE_READ_LATENCY_RANK#_BYTE#) is 
increased by 1 to position the gate in the final location before the start of the fine sweep. 
This is done to ensure the proper timing of the gate in relation to the full DQS burst during 
normal operation. Because this is sampling the strobe with another signal it can have jitter 
in relation to one another. 

For example, when they are lined up taking multiple samples it might give you a different 
result each time as a new sample is taken. The fine search begins in an area where all 
samples returned a 0 so it is relatively stable, as shown in Figure 38-15. The fine taps are 
incremented until a non-zero value is returned (which indicates the left edge of the unstable 
region) and that value recorded as shown in Figure 38-17 
(DQS_GATE_FINE_LEFT_RANK#_BYTE#). 

The fine taps are then incremented until all samples taken return a 1, as shown in 
Figure 38-16. This is recorded as the right edge of the uncertain region as shown in 
Figure 38-17 (DQS_GATE_FINE_RIGHT_RANK#_BYTE#).  

X-Ref Target - Figure 38-15

Figure 38-15: DQS Gate Fine Adjustment, Sample a 0

X-Ref Target - Figure 38-16

Figure 38-16: DQS Gate Fine Adjustment, Sample a 1
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The final fine tap is computed as the midpoint of the uncertain region, (right – left)/2 + left 
(DQS_GATE_FINE_CENTER_RANK#_BYTE#). This ensures optimal placement of the gate in 
relation to the DQS. For simulation, speeding up a faster search is implemented for the fine 
tap adjustment. This is performed by using a binary search to jump the fine taps by larger 
values to quickly find the 0 to 1 transition.

For multi-rank systems, separate control exists in the XIPHY for each rank and every rank 
can be trained separately for coarse and fine taps. After calibration is complete, 
adjustments are made so that for each byte, the clb2phy_rd_en 
(DQS_GATE_READ_LATENCY_RANK#_BYTE#) value for a given byte matches across all ranks. 
The coarse taps are incremented/decremented accordingly to adjust the timing of the gate 
signal to match the timing found in calibration. If a common clb2phy_rd_en setting 
cannot be found for a given byte across all ranks, an error is asserted.

Debug

To determine the status of DQS Gate Calibration, click the DQS_GATE stage under the 
Status window and view the results within the Memory IP Properties window. The 
message displayed in the Memory IP Properties identifies how the stage failed, or notes if 
it passed successfully. 

X-Ref Target - Figure 38-17

Figure 38-17: DQS Gate Fine Adjustment, Uncertain Region
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The status of DQS Gate can also be determined by decoding the DDR_CAL_ERROR_0 and 
DDR_CAL_ERROR_1 results according to Table 38-9. Execute the Tcl commands noted in the 
XSDB Debug section to generate the XSDB output containing the signal results.

X-Ref Target - Figure 38-18

Figure 38-18: Memory IP XSDB Debug GUI Example – DQS Gate
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Table 38-9: DDR_CAL_ERROR Decode for DQS Preamble Detection Calibration
DQS 
Gate 
Code

DDR_CAL_
ERROR_1

DDR_CAL_
ERROR_0 Description Recommended Debug Steps

0x1 Byte Logical 
Nibble

Based on the calculated latency from 
the MR register, back off and start 
sampling. If the sample occurs too late 
in the DQS burst and it cannot decrease 
the latency, then issue an error.

Check the PCB routing guidelines 
against the routing on the PCB being 
tested. Measure the Chip Select and 
the returning DQS and check if the 
time of the returning DQS matches 
the expected CAS latency. Check the 
levels on the DQS signal itself.

0x2 Byte Logical 
Nibble

Expected Pattern not found on 
GT_STATUS.

Check the DQS_GATE_PATTERN_* 
stored in XSDB. This stores what the 
DQS pattern found around the 
expected CAS latency. More generic 
version of error 0x4/0x5 where not 
all samples found matched. Probe 
the DQS when a read command 
occurs and look at the signal levels 
of the P/N pair. Check the VRP 
resistor value.

0x3 Byte Logical 
Nibble

CAS latency is too low. Calibration starts 
at a CAS latency (CL) minus 3; For 
allowable CAS latencies, see Table 4-75, 
page 173.

Check CAS latency parameter in the 
XSDB MR fields against what is 
allowed in Table 4-75, page 173.

0x4 Byte Logical 
Nibble

Pattern not found on GT_STATUS, all 
samples were 0. Expecting to sample 
the preamble.

Check power and pinout on the PCB/
Design. This is the error found when 
the DRAM does not respond to the 
Read command. Probe if the read 
DQS is generated when a read 
command is sent out.

0x5 Byte Logical 
Nibble

Pattern not found on GT_STATUS, all 
samples were 1. Expecting to sample 
the preamble.

Check power and pinout on the PCB/
Design. This is the error found when 
the DRAM does not respond to the 
Read command. Probe if the read 
DQS is generated when a read 
command is sent out.
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Table 38-10 shows the signals and values adjusted or used during the DQS Preamble 
Detection stage of calibration. The values can be analyzed in both successful and failing 
calibrations to determine the resultant values and the consistency in results across resets. 
These values can be found within the Memory IP core properties in the Hardware Manager 
or by executing the Tcl commands noted in the XSDB Debug section. 

0x6 Byte Logical 
Nibble

Could not find the 0->1 transition with 
fine taps in at least ½ tck (estimated) of 
fine taps.

Check the BISC values in XSDB (for 
the nibbles associated with the DQS) 
to determine the 90° offset value in 
taps. Check if any warnings are 
generated, look if any are 0x13 or 
0x014. 
For DDR3, BISC must be run and a 
data check is used to confirm the 
DQS gate settings, but if the data is 
wrong the algorithm keeps 
searching and could end up in this 
failure. Check data connections, vrp 
settings, VREF resistor in the PCB (or 
if internal VREF set properly for all 
bytes).

0x7 Byte Logical 
Nibble

Underflow of coarse taps when trying to 
limit maximum coarse tap setting.

Check calibrated coarse tap 
(DQS_GATE_COARSE_RANK*_BYTE*) 
setting for failing DQS to be sure the 
value is in the range of 1–6.

0x8 Byte Logical 
Nibble

Violation of maximum read latency 
limit.

Check DQS and CK trace lengths. 
Ensure the maximum trace length is 
not violated. For debug purposes, 
try a lower frequency where more 
search range is available and check if 
the stage is successful.

Table 38-9: DDR_CAL_ERROR Decode for DQS Preamble Detection Calibration (Cont’d)

DQS 
Gate 
Code

DDR_CAL_
ERROR_1

DDR_CAL_
ERROR_0 Description Recommended Debug Steps

Table 38-10: Additional XSDB Signals of Interest during DQS Preamble Detection
Signal Usage Signal Description

DQS_GATE_COARSE_RANK*_BYTE* One value per rank and 
DQS group Final RL_DLY_COARSE tap value. 

DQS_GATE_FINE_CENTER_RANK*_BYTE* One value per rank and 
DQS group

Final RL_DLY_FINE tap value. This is 
adjusted during alignment of sample 
clock to DQS. 

DQS_GATE_FINE_LEFT_RANK*_BYTE* One value per rank and 
DQS group

RL_DLY_FINE tap value when left edge was 
detected. 

DQS_GATE_FINE_RIGHT_RANK*_BYTE* One value per rank and 
DQS group

RL_DLY_FINE tap value when right edge 
was detected. 
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DQS_GATE_PATTERN_0/1/2_RANK*_BYTE* One value per rank and 
DQS group

The DQS pattern detected during DQS 
preamble detection. When a DQS 
Preamble Detection error occurs where 
the pattern is not found 
(DDR_CAL_ERROR code 0x0, 0x2, 0x4, or 
0x5), the pattern seen during CL+1 is 
saved here. 
The full pattern could be up to 13 bits. 
The first nine bits are stored on _0. 
Overflow bits are stored on _1. Currently, 
_2 is reserved. For example, 

9’b0_1100_1100
9’b1_1001_1000
9’b1_0011_0000
9’b0_0110_0000

Examples shown here are not 
comprehensive, as the expected pattern 
looks like:

10’b0X1X0X1X00
Where X above can be a 0 or 1. The LSB 
within this signals is the pattern detected 
when Coarse = 0, the next bit is the 
pattern detected when Coarse = 1, etc. 
Additionally, there can be up to three 
padded zeros before start of the pattern.
In some cases, extra information of 
interest is stored in the overflow register. 
The full pattern stored can be:

13’b0_0110_1100_0000
So the pattern is broken up and stored in 
two locations:

9’b0_0110_0000 <- PATTERN_0
9’b0_0001_0011 <- PATTERN_1

DQS_GATE_READ_LATENCY_RANK*_BYTE* One value per rank and 
DQS group

Read Latency value last used during DQS 
Preamble Detection. The Read Latency 
field is limited to CAS latency -3 to CAS 
latency + 7. If the DQS is toggling yet was 
not found check the latency of the DQS 
signal coming back in relation to the chip 
select.

BISC_ALIGN_PQTR_NIBBLE* One per nibble Initial 0° offset value provided by BISC at 
power-up.

BISC_ALIGN_NQTR_NIBBLE* One per nibble Initial 0° offset value provided by BISC at 
power-up.

Table 38-10: Additional XSDB Signals of Interest during DQS Preamble Detection (Cont’d)

Signal Usage Signal Description
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This is a sample of the results for the DQS Preamble Detection XSDB debug signals:

DQS_GATE_COARSE_RANK0_BYTE0 string true true 007
DQS_GATE_COARSE_RANK0_BYTE1 string true true 006
DQS_GATE_COARSE_RANK0_BYTE2 string true true 007
DQS_GATE_COARSE_RANK0_BYTE3 string true true 007
DQS_GATE_COARSE_RANK0_BYTE4 string true true 008
DQS_GATE_COARSE_RANK0_BYTE5 string true true 008
DQS_GATE_COARSE_RANK0_BYTE6 string true true 008
DQS_GATE_COARSE_RANK0_BYTE7 string true true 008
DQS_GATE_COARSE_RANK0_BYTE8 string true true 008
DQS_GATE_FINE_CENTER_RANK0_BYTE0 string true true 005
DQS_GATE_FINE_CENTER_RANK0_BYTE1 string true true 02b
DQS_GATE_FINE_CENTER_RANK0_BYTE2 string true true 024
DQS_GATE_FINE_CENTER_RANK0_BYTE3 string true true 019
DQS_GATE_FINE_CENTER_RANK0_BYTE4 string true true 022
DQS_GATE_FINE_CENTER_RANK0_BYTE5 string true true 021
DQS_GATE_FINE_CENTER_RANK0_BYTE6 string true true 011
DQS_GATE_FINE_CENTER_RANK0_BYTE7 string true true 008
DQS_GATE_FINE_CENTER_RANK0_BYTE8 string true true 000
DQS_GATE_FINE_LEFT_RANK0_BYTE0 string true true 002
DQS_GATE_FINE_LEFT_RANK0_BYTE1 string true true 028
DQS_GATE_FINE_LEFT_RANK0_BYTE2 string true true 021
DQS_GATE_FINE_LEFT_RANK0_BYTE3 string true true 015
DQS_GATE_FINE_LEFT_RANK0_BYTE4 string true true 020
DQS_GATE_FINE_LEFT_RANK0_BYTE5 string true true 01f
DQS_GATE_FINE_LEFT_RANK0_BYTE6 string true true 00f
DQS_GATE_FINE_LEFT_RANK0_BYTE7 string true true 006
DQS_GATE_FINE_LEFT_RANK0_BYTE8 string true true 000
DQS_GATE_FINE_RIGHT_RANK0_BYTE0 string true true 008
DQS_GATE_FINE_RIGHT_RANK0_BYTE1 string true true 02f
DQS_GATE_FINE_RIGHT_RANK0_BYTE2 string true true 028
DQS_GATE_FINE_RIGHT_RANK0_BYTE3 string true true 01e
DQS_GATE_FINE_RIGHT_RANK0_BYTE4 string true true 025
DQS_GATE_FINE_RIGHT_RANK0_BYTE5 string true true 024
DQS_GATE_FINE_RIGHT_RANK0_BYTE6 string true true 014
DQS_GATE_FINE_RIGHT_RANK0_BYTE7 string true true 00b
DQS_GATE_FINE_RIGHT_RANK0_BYTE8 string true true 001

BISC_PQTR_NIBBLE* One per nibble

Initial 90° offset value provided by BISC at 
power-up. Compute 90° value in taps by 
taking (BISC_PQTR – BISC_ALIGN_PQTR). 
To estimate tap resolution take (¼ of the 
memory clock period)/ (BISC_PQTR – 
BISC_ALIGN_PQTR). Useful for error code 
0x6.

BISC_NQTR_NIBBLE* One per nibble

Initial 90° offset value provided by BISC at 
power-up. Compute 90° value in taps by 
taking (BISC_NQTR – BISC_ALIGN_NQTR). 
To estimate tap resolution take (¼ of the 
memory clock period)/ (BISC_NQTR – 
BISC_ALIGN_NQTR). Useful for error code 
0x6.

Table 38-10: Additional XSDB Signals of Interest during DQS Preamble Detection (Cont’d)

Signal Usage Signal Description
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DQS_GATE_PATTERN_0_RANK0_BYTE0 string true true 130
DQS_GATE_PATTERN_0_RANK0_BYTE1 string true true 198
DQS_GATE_PATTERN_0_RANK0_BYTE2 string true true 130
DQS_GATE_PATTERN_0_RANK0_BYTE3 string true true 130
DQS_GATE_PATTERN_0_RANK0_BYTE4 string true true 060
DQS_GATE_PATTERN_0_RANK0_BYTE5 string true true 060
DQS_GATE_PATTERN_0_RANK0_BYTE6 string true true 060
DQS_GATE_PATTERN_0_RANK0_BYTE7 string true true 060
DQS_GATE_PATTERN_0_RANK0_BYTE8 string true true 060
DQS_GATE_PATTERN_1_RANK0_BYTE0 string true true 001
DQS_GATE_PATTERN_1_RANK0_BYTE1 string true true 001
DQS_GATE_PATTERN_1_RANK0_BYTE2 string true true 001
DQS_GATE_PATTERN_1_RANK0_BYTE3 string true true 001
DQS_GATE_PATTERN_1_RANK0_BYTE4 string true true 003
DQS_GATE_PATTERN_1_RANK0_BYTE5 string true true 003
DQS_GATE_PATTERN_1_RANK0_BYTE6 string true true 003
DQS_GATE_PATTERN_1_RANK0_BYTE7 string true true 003
DQS_GATE_PATTERN_1_RANK0_BYTE8 string true true 003
DQS_GATE_PATTERN_2_RANK0_BYTE0 string true true 000
DQS_GATE_PATTERN_2_RANK0_BYTE1 string true true 000
DQS_GATE_PATTERN_2_RANK0_BYTE2 string true true 000
DQS_GATE_PATTERN_2_RANK0_BYTE3 string true true 000
DQS_GATE_PATTERN_2_RANK0_BYTE4 string true true 000
DQS_GATE_PATTERN_2_RANK0_BYTE5 string true true 000
DQS_GATE_PATTERN_2_RANK0_BYTE6 string true true 000
DQS_GATE_PATTERN_2_RANK0_BYTE7 string true true 000
DQS_GATE_PATTERN_2_RANK0_BYTE8 string true true 000
DQS_GATE_READ_LATENCY_RANK0_BYTE0 string true true 010
DQS_GATE_READ_LATENCY_RANK0_BYTE1 string true true 010
DQS_GATE_READ_LATENCY_RANK0_BYTE2 string true true 010
DQS_GATE_READ_LATENCY_RANK0_BYTE3 string true true 010
DQS_GATE_READ_LATENCY_RANK0_BYTE4 string true true 010
DQS_GATE_READ_LATENCY_RANK0_BYTE5 string true true 010
DQS_GATE_READ_LATENCY_RANK0_BYTE6 string true true 010
DQS_GATE_READ_LATENCY_RANK0_BYTE7 string true true 010
DQS_GATE_READ_LATENCY_RANK0_BYTE8 string true true 010
BISC_ALIGN_NQTR_NIBBLE0 string true true 000
BISC_ALIGN_NQTR_NIBBLE1 string true true 000
BISC_ALIGN_NQTR_NIBBLE2 string true true 000
BISC_ALIGN_NQTR_NIBBLE3 string true true 000
BISC_ALIGN_NQTR_NIBBLE4 string true true 000
BISC_ALIGN_NQTR_NIBBLE5 string true true 000
BISC_ALIGN_NQTR_NIBBLE6 string true true 000
BISC_ALIGN_NQTR_NIBBLE7 string true true 000
BISC_ALIGN_NQTR_NIBBLE8 string true true 000
BISC_ALIGN_NQTR_NIBBLE9 string true true 000
BISC_ALIGN_NQTR_NIBBLE10 string true true 000
BISC_ALIGN_NQTR_NIBBLE11 string true true 000
BISC_ALIGN_NQTR_NIBBLE12 string true true 000
BISC_ALIGN_NQTR_NIBBLE13 string true true 000
BISC_ALIGN_NQTR_NIBBLE14 string true true 000
BISC_ALIGN_NQTR_NIBBLE15 string true true 000
BISC_ALIGN_NQTR_NIBBLE16 string true true 000
BISC_ALIGN_NQTR_NIBBLE17 string true true 000
BISC_ALIGN_PQTR_NIBBLE0 string true true 004
BISC_ALIGN_PQTR_NIBBLE1 string true true 006
BISC_ALIGN_PQTR_NIBBLE2 string true true 005
BISC_ALIGN_PQTR_NIBBLE3 string true true 005
BISC_ALIGN_PQTR_NIBBLE4 string true true 004
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BISC_ALIGN_PQTR_NIBBLE5 string true true 006
BISC_ALIGN_PQTR_NIBBLE6 string true true 003
BISC_ALIGN_PQTR_NIBBLE7 string true true 004
BISC_ALIGN_PQTR_NIBBLE8 string true true 007
BISC_ALIGN_PQTR_NIBBLE9 string true true 006
BISC_ALIGN_PQTR_NIBBLE10 string true true 003
BISC_ALIGN_PQTR_NIBBLE11 string true true 006
BISC_ALIGN_PQTR_NIBBLE12 string true true 004
BISC_ALIGN_PQTR_NIBBLE13 string true true 004
BISC_ALIGN_PQTR_NIBBLE14 string true true 004
BISC_ALIGN_PQTR_NIBBLE15 string true true 006
BISC_ALIGN_PQTR_NIBBLE16 string true true 004
BISC_ALIGN_PQTR_NIBBLE17 string true true 007
BISC_NQTR_NIBBLE0 string true true 030
BISC_NQTR_NIBBLE1 string true true 02f
BISC_NQTR_NIBBLE2 string true true 031
BISC_NQTR_NIBBLE3 string true true 031
BISC_NQTR_NIBBLE4 string true true 02e
BISC_NQTR_NIBBLE5 string true true 030
BISC_NQTR_NIBBLE6 string true true 02f
BISC_NQTR_NIBBLE7 string true true 031
BISC_NQTR_NIBBLE8 string true true 030
BISC_NQTR_NIBBLE9 string true true 031
BISC_NQTR_NIBBLE10 string true true 02f
BISC_NQTR_NIBBLE11 string true true 030
BISC_NQTR_NIBBLE12 string true true 02f
BISC_NQTR_NIBBLE13 string true true 032
BISC_NQTR_NIBBLE14 string true true 031
BISC_NQTR_NIBBLE15 string true true 031
BISC_NQTR_NIBBLE16 string true true 031
BISC_NQTR_NIBBLE17 string true true 031
BISC_PQTR_NIBBLE0 string true true 030
BISC_PQTR_NIBBLE1 string true true 032
BISC_PQTR_NIBBLE2 string true true 031
BISC_PQTR_NIBBLE3 string true true 032
BISC_PQTR_NIBBLE4 string true true 030
BISC_PQTR_NIBBLE5 string true true 030
BISC_PQTR_NIBBLE6 string true true 02e
BISC_PQTR_NIBBLE7 string true true 02f
BISC_PQTR_NIBBLE8 string true true 033
BISC_PQTR_NIBBLE9 string true true 033
BISC_PQTR_NIBBLE10 string true true 030
BISC_PQTR_NIBBLE11 string true true 034
BISC_PQTR_NIBBLE12 string true true 030
BISC_PQTR_NIBBLE13 string true true 030
BISC_PQTR_NIBBLE14 string true true 030
BISC_PQTR_NIBBLE15 string true true 031
BISC_PQTR_NIBBLE16 string true true 031
BISC_PQTR_NIBBLE17 string true true 033

Expected Results

Table 38-11 provides expected results for the coarse, fine, and read latency parameters 
during DQS Preamble Detection. These values can be compared to the results found in 
hardware testing.
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Hardware Measurements

This is the first stage of calibration. Therefore, any general setup issue can result in a failure 
during DQS Preamble Detection Calibration. The first items to verify are proper clocking 
and reset setup as well as usage of unmodified Memory IP RTL that is generated specifically 
for the SDRAM(s) in hardware. The General Checks, page 588 section should be verified 
when a failure occurs during DQS Preamble Detection. 

After the General Checks, page 588 have been verified, hardware measurements on DQS, 
and specifically the DQS byte that fails during DQS Preamble Detection, should be captured 
and analyzed. DQS must be toggling during DQS Preamble Detection. If this stage fails, 
after failure, probe the failing DQS at the FPGA using a high quality scope and probes. 
When a failure occurs, the calibration goes into an error loop routine, continually issuing 
read commands to the DRAM to allow for probing of the PCB. While probing DQS, validate:

1. Continuous DQS pulses exist with gaps between each BL8 read.
2. The signal integrity of DQS:

° Ensure VIL and VIH are met for the specific I/O Standard in use. For more 
information, see the Kintex UltraScale FPGAs Data Sheet: DC and AC Switching 
Characteristics (DS892) [Ref 2].

° Look for 50% duty cycle periods.

° Ensure that the signals have low jitter/noise that can result from any power supply 
or board noise.

If DQS pulses are not present and the General Checks, page 588 have been verified, probe 
the read commands at the SDAM and verify:

1. The appropriate read commands exist – CS# = 0, RAS# = 1, CAS# = 0, WE# = 1.
2. The signal integrity of each command signal is valid.

° Ensure VIL and VIH are met. For more information, see the JESD79-3F, DDR3 SDRAM 
Standard and JESD79-4, DDR4 SDRAM Standard, JEDEC Solid State Technology 
Association [Ref 1].

Table 38-11: Expected Results for DQS Preamble Detection Coarse/Fine Tap and RL
Parameter Description

DQS_GATE_COARSE_RANK*_BYTE* Final RL_DLY_COARSE tap value. Expected values 3-6 only.

DQS_GATE_FINE_CENTER_RANK*_BYTE*
Final RL_DLY_FINE tap value. Expected value should be 
less than 90 degrees (use BISC values to estimate the 90° 
value) and between DQS_GATE_FINE_LEFT and 
DQS_GATE_FINE_RIGHT.

DQS_GATE_READ_LATENCY_RANK*_BYTE* 
Read Latency value last used during DQS Preamble 
Detection. Expected value is dependent on the PCB trace 
length but should be in the range CL-2 to CL+4.
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3. CK to command timing.
4. RESET# voltage level.
5. Memory initialization routine.

Debugging Write Leveling Calibration Failures

The DDR3/DDR4 SDRAM memory modules use a fly-by topology on clocks, address, 
commands, and control signals to improve signal integrity. This topology causes a skew 
between DQS and CK at each memory device on the module. Write leveling is a feature in 
DDR3/DDR4 SDRAMs that allows the controller to adjust each write DQS phase 
independently with respect to the clock (CK) forwarded to the DDR3/DDR4 device to 
compensate for this skew and meet the tDQSS specification [Ref 1]. 

During write leveling, DQS is driven by the FPGA memory interface and DQ is driven by the 
DDR3/DDR4 SDRAM device to provide feedback. To start write leveling, an MRS command 
is sent to the DRAM to enable the feedback feature, while another MRS command is sent to 
disable write leveling at the end. Figure 38-19 shows the block diagram for the write 
leveling implementation. 

X-Ref Target - Figure 38-19

Figure 38-19: Write Leveling Block Diagram
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The XIPHY is set up for write leveling by setting various attributes in the RIU. WL_TRAIN is 
set to decouple the DQS and DQ when driving out the DQS. This allows the XIPHY to 
capture the returning DQ from the DRAM. Because the DQ is returned without the returning 
DQS strobe for capture, the RX_GATE is set to 0 in the XIPHY to disable DQS gate operation. 
While the write leveling algorithm acts on a single DQS at a time, all the XIPHY bytes are set 
up for write leveling to ensure there is no contention on the bus for the DQ.

DQS is delayed with ODELAY and coarse delay (WL_DLY_CRSE[12:9] applies to all bits in a 
nibble) provided in the RIU WL_DLY_RNKx register. The WL_DLY_FINE[8:0] location in the 
RIU is used to store the ODELAY value for write leveling for a given nibble (used by the 
XIPHY when switching ranks).

A DQS train of pulses is output by the FPGA to the DRAM to detect the relationship of CK 
and DQS at the DDR3/DDR4 memory device. DQS is delayed using the ODELAY and coarse 
taps in unit tap increments until a 0 to 1 transition is detected on the feedback DQ input. A 
single typical burst length of eight pattern is first put out on the DQS (four clock pulses), 
followed by a gap, and then 100 bursts length of eight patterns are sent to the DRAM 
(Figure 38-20). 

The first part is to ensure the DRAM updates the feedback sample on the DQ being sent 
back, while the second provides a clock that is used by the XIPHY to clock into the XIPHY 
the level seen on the DQ. Sampling the DQ while driving the DQS helps to avoid ringing on 
the DQS at the end of a burst that can be mistaken as a clock edge by the DRAM. 

To avoid false edge detection around the CK negative edge due to jitter, the DQS delays the 
entire window to find the large stable 0 and 1 region (Stable 0 or 1 indicates all samples 
taken return the same value). Check that you are to the left of this stable 1 region as the 
right side of this region is the CK negative edge being captured with the DQS, as shown in 
Figure 38-21.

X-Ref Target - Figure 38-20

Figure 38-20: Write Leveling DQS Bursts
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Write leveling is performed in the following two steps:

1. Find the transition from 0 to 1 using coarse taps and ODELAY taps (if needed). 

During the first step, look for a static 0 to be returned from all samples taken. This 
means 64 samples were taken and it is certain the data is a 0. Record the coarse tap 
setting and keep incrementing the coarse tap.

° If the algorithm receives another stable 0 update the setting 
(WRLVL_COARSE_STABLE0_RANK_BYTE) and continue. 

° If the algorithm receives a non-zero result (noise) or a stable 1 reading 
(WRLVL_COARSE_STABLE0_RANK_BYTE), the search has gone too far and the delay is 
backed up to the last coarse setting that gave a stable 0. This reference allows you 
to know the algorithm placed the coarse taps to the left of the transition desired.

° If the algorithm never sees a transition from a stable 0 to the noise or stable 1 using 
the coarse taps, the ODELAY of the DQS is set to an offset value (first set at 45°, 
WRLVL_ODELAY_INITIAL_OFFSET_BYTE) and the coarse taps are checked again from 
0. Check for the stable 0 to stable 1 transition (the algorithm might need to perform 
this if the noise region is close to 90° or there is a large amount of DCD).

° If the transition is still not found, the offset is halved and the algorithm tries again. 
The final offset value used is stored at WRLVL_ODELAY_LAST_OFFSET_RANK_BYTE. 
Because the algorithm is aligning the DQS with the nearest clock edge the coarse 
tap sweep is limited to five, which is 1.25 clock cycles. The final coarse setting is 
stored at WRLVL_COARSE_STABLE0_RANK_BYTE.

2. Find the center of the noise region around that transition from 0 to 1 using ODELAY 
taps.

The second step is to sweep with ODELAY taps and find both edges of the noise region 
(WRLVL_ODELAY_STABLE0_RANK_BYTE, WRLVL_ODELAY_STABLE1_RANK_BYTE while 
WRLVL_ODELAY_CENTER_RANK_BYTE holds the final value). The number of ODELAY taps 
used is determined by the initial alignment of the DQS and CK and the size of this noise 
region as shown in Figure 38-22.

X-Ref Target - Figure 38-21

Figure 38-21: Write Leveling Regions
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After the final ODELAY setting is found, the value of ODELAY is loaded in the RIU in the 
WL_DLY_RNKx[8:0] register. This value is also loaded in the ODELAY register for the DQ and 
the DM to match the DQS. If any deskew has been performed on the DQS/DQ/DM when 
reaching this point (multi-rank systems), the deskew information is preserved and the offset 
is applied. 

The lowest ODELAY value is stored at WRLVL_ODELAY_LOWEST_COMMON_BYTE, which is 
used to preserve the WRLVL element with the deskew portion of ODELAY for a given byte. 
During normal operation in a multi-rank system, the XIPHY is responsible for loading the 
ODELAY with the value stored for a given rank.

After write leveling, the MPR command is sent to the DRAM to disable the write leveling 
feature, the WL_TRAIN is set back to the default OFF setting, and the DQS gate is turned 
back on to allow for capture of the DQ with the returning strobe DQS.

Debug

To determine the status of Write Leveling Calibration, click the Write Leveling stage under 
the Status window and view the results within the Memory IP Properties window. The 
message displayed in Memory IP Properties identifies how the stage failed or notes if it 
passed successfully. 

X-Ref Target - Figure 38-22

Figure 38-22: Worst Case ODELAY Taps (Maximum and Minimum)
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The status of Write Leveling can also be determined by decoding the DDR_CAL_ERROR_0 
and DDR_CAL_ERROR_1 results according to Table 38-12. Execute the Tcl commands noted 
in the XSDB Debug section to generate the XSDB output containing the signal results.

X-Ref Target - Figure 38-23

Figure 38-23: Memory IP XSDB Debug GUI Example – Write Leveling
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Table 38-13 describes the signals and values adjusted or used during the Write Leveling 
stage of calibration. The values can be analyzed in both successful and failing calibrations 
to determine the resultant values and the consistency in results across resets. These values 
can be found within the Memory IP Core Properties within Hardware Manager or by 
executing the Tcl commands noted in the XSDB Debug. 

Table 38-12: DDR_CAL_ERROR Decode for Write Leveling Calibration
Write 

Leveling 
Code

DDR_CAL_
ERROR_1

DDR_CAL_
ERROR_0 Description Recommended Debug Steps

0x1 Byte N/A Cannot find stable 0 region

For failures on the second rank of a 
multi-rank DIMM, check if the DIMM 
uses mirroring and make sure the 
design generated matches what the 
DIMM expects. Check the pinout and 
connections of the address/control 
bus, specifically A7 which is used to 
power on the write leveling mode in 
the DRAM.

0x2 Byte N/A Cannot find stable 1 region

Check XSDB BUS_DATA_BURST fields 
to see what the data looked like. Check 
if a single BIT is stuck at a certain 
value. If possible, add an ILA to look at 
the dbg_rd_data to check multiple 
bursts of data.

0x3 Byte N/A Cannot find the left edge of noise 
region with fine taps

Check the BISC values in XSDB (for the 
nibbles associated with the DQS) to 
determine the 90° offset value in taps.

0x4 Byte N/A
Could not find the 0->1 transition 
with ODELAY taps in at least 1 tck 
(estimated) of ODELAY taps

Check the BISC values in XSDB (for the 
nibbles associated with the DQS) to 
determine the 90° offset value in taps.

Table 38-13: Signals of Interest for Write Leveling Calibration
Signal Usage Signal Description

WRLVL_COARSE_STABLE0 _RANK*_BYTE* One per rank 
per Byte WRLVL course tap setting to find Stable 0. 

WRLVL_COARSE_STABLE1 _RANK*_BYTE* One per rank 
per Byte

WRLVL coarse tap setting to find Stable 1 or 
noise. 

WRLVL_ODELAY_INITIAL_OFFSET_BYTE* One per Byte
ODELAY Offset used during Write Leveling. 
Used to estimate number of ODELAY taps to 
equal one coarse tap, for offsetting alignment 
during algorithm. 

WRLVL_ODELAY_STABLE0_RANK*_BYTE* One per rank 
per Byte

Left side of noise region when edge aligned (or 
last stable 0 received) before getting noisy data 
or stable 1.

WRLVL_ODLEAY_STABLE1_ RANK*_BYTE* One per rank 
per Byte

Right side of noise region when edge aligned 
(or first stable 1 received) after getting noisy 
data or stable 0.
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WRLVL_ODELAY_CENTER_ RANK*_BYTE* One per rank 
per Byte

Midpoint between WRLVL_ODELAY_STABLE0 
and WRLVL_ODELAY_STABLE1. Final ODELAY 
setting for the byte after WRLVL. 

WRLVL_ 
ODELAY_LAST_OFFSET_RANK*_BYTE*

One per rank 
per Byte

Final Offset setting used in the algorithm (may 
be smaller than 
WRLVL_ODELAY_INITIAL_OFFSET_BYTE*)

WRLVL_ODELAY_LOWEST_COMMON_Byte* One per Byte Final ODELAY setting programmed into the RIU.

BUS_DATA_BURST 
(Available in 2014.2 and later)

General purpose area for storing read bursts of 
data. This register is intended to store up to four 
bursts of data for a x8 byte. During Write 
Leveling, the bus is being used to store the DQ 
data that may be useful when an error occurs 
(such as a stuck-at-bit) without having to check 
general interconnect data.
During the first part of the algorithm data is 
sampled coming back at multiple coarse taps, 
and the data is stored in these locations. Given 
the number of samples taken and the limitation 
of space to store all samples, what is stored is 
the value found on the bus across multiple 
samples, as well as the last value seen for a 
given setting. 
The data is returned per bit and stored in a 
32-bit register such that single bit data is in the 
format of {f3, r3, f2, r2, f1, r1, f0, r0} (8-bits for a 
single bit of a burst). A single general 
interconnect 32-bit register holds data for bits 
{3, 2, 1, 0} while another holds data for bits {7, 
6, 5, 4}. For a x8 device, all bits are read in and 
“OR’d” together to create a “sample.” This 
sample is used to determine stable 0 or stable 
1. When dealing with multiple samples, if any 
sample does not match with the first sample, 
the data is marked as unstable internally 
(0x01010101).
The register is split up such that:

Bus_Data_Burst_0_Bit0, 
Bus_Data_Burst_0_Bit1,
Bus_Data_Burst_0_Bit2,
Bus_Data_Burst_0_Bit3

will hold the aggregate value found across all 
samples for a given tap setting. This might be 
for coarse = 0. 

Table 38-13: Signals of Interest for Write Leveling Calibration (Cont’d)

Signal Usage Signal Description
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BUS_DATA_BURST 
(Available in 2014.2 and later)
Continued

Then the following:
Bus_Data_Burst_0_Bit4, 
Bus_Data_Burst_0_Bit5,
Bus_Data_Burst_0_Bit6,
Bus_Data_Burst_0_Bit7

would hold the last single sample when taking 
multiple samples. For example, if it is set up to 
take five samples, this would hold the fifth 
sample, while the previous bit locations would 
hold the aggregate of all samples which might 
be UNSTABLE (0x01010101). Unstable can easily 
happen if the edges are close to being aligned 
already. 
Given that there are only four burst locations 
yet the algorithm could try up to six coarse taps, 
there are not enough locations to store all data 
(4 & 5 would overwrite locations 0 & 1). Some 
of the data will be overwritten in that case. This 
is mostly to aid in what is actually seen on the 
DQ bus as the coarse taps are adjusted. It 
provides a window into the data as the DQS is 
adjusted in relation to the CK for a full clock 
cycle.
If the coarse adjustment is found in the first 
step, a single location is used in case of a failure 
in the fine search.
When no stable 0 is found during the fine 
adjustment, the value received is stored at:

Bus_Data_Burst_0_Bit0, 
Bus_Data_Burst_0_Bit1,
Bus_Data_Burst_0_Bit2,
Bus_Data_Burst_0_Bit3

Much in the same way as before, 0 to 3 stores 
the aggregate, while 4 to 7 stores the final 
reading of a set of samples.

BISC_ALIGN_PQTR_NIBBLE* One per nibble Initial 0° offset value provided by BISC at 
power-up.

BISC_ALIGN_NQTR_NIBBLE* One per nibble Initial 0° offset value provided by BISC at 
power-up.

Table 38-13: Signals of Interest for Write Leveling Calibration (Cont’d)

Signal Usage Signal Description
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This is a sample of results for the Write Leveling XSDB debug signals:

WRLVL_COARSE_STABLE0_RANK0_BYTE0 string true true 003
WRLVL_COARSE_STABLE0_RANK0_BYTE1 string true true 000
WRLVL_COARSE_STABLE0_RANK0_BYTE2 string true true 000
WRLVL_COARSE_STABLE0_RANK0_BYTE3 string true true 000
WRLVL_COARSE_STABLE0_RANK0_BYTE4 string true true 002
WRLVL_COARSE_STABLE0_RANK0_BYTE5 string true true 001
WRLVL_COARSE_STABLE0_RANK0_BYTE6 string true true 001
WRLVL_COARSE_STABLE0_RANK0_BYTE7 string true true 001
WRLVL_COARSE_STABLE0_RANK0_BYTE8 string true true 001
WRLVL_COARSE_STABLE1_RANK0_BYTE0 string true true 004
WRLVL_COARSE_STABLE1_RANK0_BYTE1 string true true 001
WRLVL_COARSE_STABLE1_RANK0_BYTE2 string true true 001
WRLVL_COARSE_STABLE1_RANK0_BYTE3 string true true 001
WRLVL_COARSE_STABLE1_RANK0_BYTE4 string true true 003
WRLVL_COARSE_STABLE1_RANK0_BYTE5 string true true 002
WRLVL_COARSE_STABLE1_RANK0_BYTE6 string true true 002
WRLVL_COARSE_STABLE1_RANK0_BYTE7 string true true 002
WRLVL_COARSE_STABLE1_RANK0_BYTE8 string true true 002
WRLVL_ODELAY_CENTER_RANK0_BYTE0 string true true 02b
WRLVL_ODELAY_CENTER_RANK0_BYTE1 string true true 010
WRLVL_ODELAY_CENTER_RANK0_BYTE2 string true true 020
WRLVL_ODELAY_CENTER_RANK0_BYTE3 string true true 02b
WRLVL_ODELAY_CENTER_RANK0_BYTE4 string true true 008
WRLVL_ODELAY_CENTER_RANK0_BYTE5 string true true 02c
WRLVL_ODELAY_CENTER_RANK0_BYTE6 string true true 01b
WRLVL_ODELAY_CENTER_RANK0_BYTE7 string true true 02b
WRLVL_ODELAY_CENTER_RANK0_BYTE8 string true true 016
WRLVL_ODELAY_INITIAL_OFFSET_BYTE0 string true true 016
WRLVL_ODELAY_INITIAL_OFFSET_BYTE1 string true true 017
WRLVL_ODELAY_INITIAL_OFFSET_BYTE2 string true true 016
WRLVL_ODELAY_INITIAL_OFFSET_BYTE3 string true true 016
WRLVL_ODELAY_INITIAL_OFFSET_BYTE4 string true true 017
WRLVL_ODELAY_INITIAL_OFFSET_BYTE5 string true true 017
WRLVL_ODELAY_INITIAL_OFFSET_BYTE6 string true true 017
WRLVL_ODELAY_INITIAL_OFFSET_BYTE7 string true true 017
WRLVL_ODELAY_INITIAL_OFFSET_BYTE8 string true true 017
WRLVL_ODELAY_LAST_OFFSET_RANK0_BYTE0 string true true 016
WRLVL_ODELAY_LAST_OFFSET_RANK0_BYTE1 string true true 017

BISC_PQTR_NIBBLE* One per nibble

Initial 90° offset value provided by BISC at 
power-up. Compute 90° value in taps by taking 
(BISC_PQTR – BISC_ALIGN_PQTR). To estimate 
tap resolution take (¼ of the memory clock 
period)/ (BISC_PQTR – BISC_ALIGN_PQTR). 
Useful for error code 0x6.

BISC_NQTR_NIBBLE* One per nibble

Initial 90° offset value provided by BISC at 
power-up. Compute 90° value in taps by taking 
(BISC_NQTR – BISC_ALIGN_NQTR). To estimate 
tap resolution take (¼ of the memory clock 
period)/ (BISC_NQTR – BISC_ALIGN_NQTR). 
Useful for error code 0x6.

Table 38-13: Signals of Interest for Write Leveling Calibration (Cont’d)

Signal Usage Signal Description
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WRLVL_ODELAY_LAST_OFFSET_RANK0_BYTE2 string true true 016
WRLVL_ODELAY_LAST_OFFSET_RANK0_BYTE3 string true true 016
WRLVL_ODELAY_LAST_OFFSET_RANK0_BYTE4 string true true 017
WRLVL_ODELAY_LAST_OFFSET_RANK0_BYTE5 string true true 017
WRLVL_ODELAY_LAST_OFFSET_RANK0_BYTE6 string true true 017
WRLVL_ODELAY_LAST_OFFSET_RANK0_BYTE7 string true true 017
WRLVL_ODELAY_LAST_OFFSET_RANK0_BYTE8 string true true 017
WRLVL_ODELAY_LOWEST_COMMON_BYTE0 string true true 000
WRLVL_ODELAY_LOWEST_COMMON_BYTE1 string true true 000
WRLVL_ODELAY_LOWEST_COMMON_BYTE2 string true true 000
WRLVL_ODELAY_LOWEST_COMMON_BYTE3 string true true 000
WRLVL_ODELAY_LOWEST_COMMON_BYTE4 string true true 000
WRLVL_ODELAY_LOWEST_COMMON_BYTE5 string true true 000
WRLVL_ODELAY_LOWEST_COMMON_BYTE6 string true true 000
WRLVL_ODELAY_LOWEST_COMMON_BYTE7 string true true 000
WRLVL_ODELAY_LOWEST_COMMON_BYTE8 string true true 000
WRLVL_ODELAY_STABLE0_RANK0_BYTE0 string true true 028
WRLVL_ODELAY_STABLE0_RANK0_BYTE1 string true true 00d
WRLVL_ODELAY_STABLE0_RANK0_BYTE2 string true true 01d
WRLVL_ODELAY_STABLE0_RANK0_BYTE3 string true true 027
WRLVL_ODELAY_STABLE0_RANK0_BYTE4 string true true 004
WRLVL_ODELAY_STABLE0_RANK0_BYTE5 string true true 027
WRLVL_ODELAY_STABLE0_RANK0_BYTE6 string true true 017
WRLVL_ODELAY_STABLE0_RANK0_BYTE7 string true true 027
WRLVL_ODELAY_STABLE0_RANK0_BYTE8 string true true 014
WRLVL_ODELAY_STABLE1_RANK0_BYTE0 string true true 02e
WRLVL_ODELAY_STABLE1_RANK0_BYTE1 string true true 014
WRLVL_ODELAY_STABLE1_RANK0_BYTE2 string true true 023
WRLVL_ODELAY_STABLE1_RANK0_BYTE3 string true true 02f
WRLVL_ODELAY_STABLE1_RANK0_BYTE4 string true true 00c
WRLVL_ODELAY_STABLE1_RANK0_BYTE5 string true true 031
WRLVL_ODELAY_STABLE1_RANK0_BYTE6 string true true 020
WRLVL_ODELAY_STABLE1_RANK0_BYTE7 string true true 030
WRLVL_ODELAY_STABLE1_RANK0_BYTE8 string true true 018
BISC_ALIGN_NQTR_NIBBLE0 string true true 000
BISC_ALIGN_NQTR_NIBBLE1 string true true 000
BISC_ALIGN_NQTR_NIBBLE2 string true true 000
BISC_ALIGN_NQTR_NIBBLE3 string true true 000
BISC_ALIGN_NQTR_NIBBLE4 string true true 000
BISC_ALIGN_NQTR_NIBBLE5 string true true 000
BISC_ALIGN_NQTR_NIBBLE6 string true true 000
BISC_ALIGN_NQTR_NIBBLE7 string true true 000
BISC_ALIGN_NQTR_NIBBLE8 string true true 000
BISC_ALIGN_NQTR_NIBBLE9 string true true 000
BISC_ALIGN_NQTR_NIBBLE10 string true true 000
BISC_ALIGN_NQTR_NIBBLE11 string true true 000
BISC_ALIGN_NQTR_NIBBLE12 string true true 000
BISC_ALIGN_NQTR_NIBBLE13 string true true 000
BISC_ALIGN_NQTR_NIBBLE14 string true true 000
BISC_ALIGN_NQTR_NIBBLE15 string true true 000
BISC_ALIGN_NQTR_NIBBLE16 string true true 000
BISC_ALIGN_NQTR_NIBBLE17 string true true 000
BISC_ALIGN_PQTR_NIBBLE0 string true true 004
BISC_ALIGN_PQTR_NIBBLE1 string true true 006
BISC_ALIGN_PQTR_NIBBLE2 string true true 005
BISC_ALIGN_PQTR_NIBBLE3 string true true 005
BISC_ALIGN_PQTR_NIBBLE4 string true true 004
BISC_ALIGN_PQTR_NIBBLE5 string true true 006
BISC_ALIGN_PQTR_NIBBLE6 string true true 003
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BISC_ALIGN_PQTR_NIBBLE7 string true true 004
BISC_ALIGN_PQTR_NIBBLE8 string true true 007
BISC_ALIGN_PQTR_NIBBLE9 string true true 006
BISC_ALIGN_PQTR_NIBBLE10 string true true 003
BISC_ALIGN_PQTR_NIBBLE11 string true true 006
BISC_ALIGN_PQTR_NIBBLE12 string true true 004
BISC_ALIGN_PQTR_NIBBLE13 string true true 004
BISC_ALIGN_PQTR_NIBBLE14 string true true 004
BISC_ALIGN_PQTR_NIBBLE15 string true true 006
BISC_ALIGN_PQTR_NIBBLE16 string true true 004
BISC_ALIGN_PQTR_NIBBLE17 string true true 007
BISC_NQTR_NIBBLE0 string true true 030
BISC_NQTR_NIBBLE1 string true true 02f
BISC_NQTR_NIBBLE2 string true true 031
BISC_NQTR_NIBBLE3 string true true 031
BISC_NQTR_NIBBLE4 string true true 02e
BISC_NQTR_NIBBLE5 string true true 030
BISC_NQTR_NIBBLE6 string true true 02f
BISC_NQTR_NIBBLE7 string true true 031
BISC_NQTR_NIBBLE8 string true true 030
BISC_NQTR_NIBBLE9 string true true 031
BISC_NQTR_NIBBLE10 string true true 02f
BISC_NQTR_NIBBLE11 string true true 030
BISC_NQTR_NIBBLE12 string true true 02f
BISC_NQTR_NIBBLE13 string true true 032
BISC_NQTR_NIBBLE14 string true true 031
BISC_NQTR_NIBBLE15 string true true 031
BISC_NQTR_NIBBLE16 string true true 031
BISC_NQTR_NIBBLE17 string true true 031
BISC_PQTR_NIBBLE0 string true true 030
BISC_PQTR_NIBBLE1 string true true 032
BISC_PQTR_NIBBLE2 string true true 031
BISC_PQTR_NIBBLE3 string true true 032
BISC_PQTR_NIBBLE4 string true true 030
BISC_PQTR_NIBBLE5 string true true 030
BISC_PQTR_NIBBLE6 string true true 02e
BISC_PQTR_NIBBLE7 string true true 02f
BISC_PQTR_NIBBLE8 string true true 033
BISC_PQTR_NIBBLE9 string true true 033
BISC_PQTR_NIBBLE10 string true true 030
BISC_PQTR_NIBBLE11 string true true 034
BISC_PQTR_NIBBLE12 string true true 030
BISC_PQTR_NIBBLE13 string true true 030
BISC_PQTR_NIBBLE14 string true true 030
BISC_PQTR_NIBBLE15 string true true 031
BISC_PQTR_NIBBLE16 string true true 031
BISC_PQTR_NIBBLE17 string true true 033

Expected Results

The tap variance across DQS byte groups vary greatly due to the difference in trace lengths 
with fly-by-routing. When an error occurs, an error loop is started that generates DQS 
strobes to the DRAM while still in WRLVL mode. This error loop runs continuously until a 
reset or power cycle to aid in debug. Table 38-14 provides expected results for the coarse 
and fine parameters during Write Leveling.
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Hardware Measurements

The following measurements can be made during the error loop or when triggering on the 
status bit that indicates the start of WRLVL (dbg_cal_seq[1] = 1’b1).

• Verify DQS and CK are toggling on the board. The FPGA sends DQS and CK during 
Write Leveling. If they are not toggling, something is wrong with the setup and the 
General Checks, page 588 section should be thoroughly reviewed.

• Verify fly-by-routing is implemented correctly on the board.
• Verify CK to DQS trace matching. The required matching is documented with the 

UltraScale Architecture PCB Design and Pin Planning User Guide (UG583) [Ref 11]. 
Failure to adhere to this spec can result in Write Leveling failures.

• Trigger on the start of Write Leveling by bringing dbg_cal_seq[1] to an I/O and 
using the rising edge (1’b1) as the scope trigger. 
Monitor the following:

° MRS command at the memory to enable Write Leveling Mode. The Mode registers 
must be properly set up to enable Write Leveling. Specifically, address bit A7 must 
be correct. If the part chosen in the Memory IP is not accurate or there is an issue 
with the connection of the address bits on the board, this could be an issue. If the 
Mode registers are not set up to enable Write Leveling, the 0-to-1 transition is not 
seen.
Note: For dual-rank design when address mirroring is used, address bit A7 is not the same 
between the two ranks.

° Verify the ODT pin is connected and being asserted properly during the DQS 
toggling.

° Check the signal levels of all the DQ bits being returned. Any stuck-at-bits (Low/
High) or floating bits that are not being driven to a given rail can cause issues.

° Verify the DQS to CK relationship changes as the algorithm makes adjustments to 
the DQS. Check the DQ value being returned as this relationship changes.

Table 38-14: Expected Write Leveling Results
Parameter Description

WRLVL_COARSE_STABLE0_RANK*_BYTE* WRLVL Coarse tap setting after calibration. Expected values 
0 to 4.

WRLVL_ODELAY_STABLE1_RANK*_BYTE*
WRLVL ODELAY tap setting to find Stable 1 or noise. 
Expected values 0 to 90° setting of ODELAY taps (depending 
on the tap resolution).

WRLVL_ODELAY_CENTER_ RANK*_BYTE*
Midpoint between WRLVL_ODELAY_STABLE0 and 
WRLVL_ODELAY_STABLE1. Expected value should be less 
than 90° (use BISC values to estimate the 90° value) and 
between WRLVL_FINE_LEFT and WRLVL_FINE_RIGHT.
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° For DDR3 check the VREF voltage, while for DDR4 check the VREF settings are correct 
in the design.

• Using the Vivado Hardware Manager and while running the Memory IP Example Design 
with Debug Signals enabled, set the trigger to dbg_cal_seq = 0R0 (R signifies rising 
edge). The following simulation example shows how the debug signals should behave 
during successful Write Leveling.

Read Leveling Calibration Overview

After the gate has been trained and Write Leveling has completed, the next step is to ensure 
reliable capture of the read data with the DQS. This stage of Read Leveling is divided into 
two phases, Per-Bit Deskew and Read DQS Centering. Read DQS Centering utilizes the DDR3 
and DDR4 Multi Purpose Register (MPR). The MPR contains a pattern that can be used to 
train the read DQS and DQ for read capture. While DDR4 allows for several patterns, DDR3 
only has a single repeating pattern available. 

To perform per-bit deskew, a non-repeating pattern is useful to deal with or diagnose cases 
of extreme skew between different bits in a byte. Because this is limited by the DDR3 MPR 
pattern, a long pattern is first written to the DRAM and then read back to perform per-bit 
deskew (only done on the first rank of a multi-rank system). When per-bit deskew is 
complete, the simple repeating pattern available through both DDR3 and DDR4 MPR is 
used to center the DQS in the DQ read eye.

The XIPHY provides separate delay elements (2.5 to 15 ps per tap, 512 total) for the DQS to 
clock the rising and falling edge DQ data (PQTR for rising edge, NQTR for falling edge) on 
a per-nibble basis (four DQ bits per PQTR/NQTR). This allows the algorithm to center the 
rising and falling edge DQS strobe independently to ensure more margin when dealing with 
DCD. The data captured in the PQTR clock domain is transferred to the NQTR clock domain 
before being sent to the read FIFO and to the general interconnect clock domain. 

Due to this transfer of clock domains, the PQTR and NQTR clocks must be roughly 180° out 
of phase. This relationship between the PQTR/NQTR clock paths is set up as part of the BISC 

X-Ref Target - Figure 38-24

Figure 38-24: RTL Debug Signals during Write Leveling
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start-up routine, and thus calibration needs to maintain this relationship as part of the 
training (BISC_ALIGN_PQTR, BISC_ALIGN_NQTR, BISC_PQTR, BISC_NQTR).

Debugging Read Per-Bit Deskew Failures

First, write 0x00 to address 0x000. Because the write latency calibration has not yet been 
performed, the address DQ is held for eight clock cycles before and after the expected write 
latency is expected. The DQS toggles extra time before/after is shown in Figure 38-25. This 
ensures the data is written to the DRAM if the burst does not occur at the correct time the 
DRAM expects it. 

Next, write 0xFF to a different address to allow for back-to-back reads (Figure 38-26). For 
DDR3 address 0x008 is used, while for DDR4 address 0x000 and bank group 0x1 is used. 
At higher frequencies, DDR4 requires a change in the bank group to allow for back-to-back 
bursts of eight.

After the data is written, back-to-back reads are issued to the DRAM to perform per-bit 
deskew (Figure 38-27).

X-Ref Target - Figure 38-25

Figure 38-25: Per-Bit Deskew – Write 0x00 to Address 0x000
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DQS#

0 1 2 3 4 5 6 7

DQ
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0x00

X24467-082420

X-Ref Target - Figure 38-26

Figure 38-26: Per-Bit Deskew – Write 0xFF to Other Address
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X-Ref Target - Figure 38-27

Figure 38-27: Per-Bit Deskew – Back-to-Back Reads (No Gaps)
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Using this pattern each bit in a byte is left edge aligned with the DQS strobe (PQTR/NQTR). 
More than a bit time of skew can be seen and corrected as well.

RECOMMENDED: In general, a bit time of skew between bits is not ideal. Ensure the DDR3/DDR4 trace 
matching guidelines within DQS byte are met. See PCB Guidelines for DDR3, page 87 and PCB 
Guidelines for DDR4, page 87.

At the start of deskew, the PQTR/NQTR are decreased down together until one of them hits 
0 (to preserve the initial relationship setup by BISC). Next, the data for a given bit is checked 
for the matching pattern. Only the rising edge data is checked for correctness. The falling 
edge comparison is thrown away to allow for extra delay on the PQTR/NQTR relative to the 
DQ. 

While in the ideal case, the PQTR/NQTR are edge aligned with the DQ when the delays are 
set to 0. Due to extra delay in the PQTR/NQTR path, the NQTR might be pushed into the 
next burst transaction at higher frequencies and so it is excluded from the comparison 
(Figure 38-28 through Figure 38-29). More of the rising edge data of a given burst would 
need to be discarded to deal with more than a bit time of skew. If the last part of the burst 
was not excluded, the failure would cause the PQTR/NQTR to be pushed instead of the DQ 
IDELAY.

X-Ref Target - Figure 38-28

Figure 38-28: Per-Bit Deskew – Delays Set to 0 (Ideal)
X-Ref Target - Figure 38-29

Figure 38-29: Per-Bit Deskew – Delays Set to 0
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If the pattern is found, the given IDELAY on that bit is incremented by 1, then checked again. 
If the pattern is not seen, the PQTR/NQTR are incremented by 1 and the data checked again. 
The algorithm checks for the passing and failing region for a given bit, adjusting either the 
PQTR/NQTR delays or the IDELAY for that bit. 

To guard against noise in the uncertain region, the passing region is defined by a minimum 
window size (10), hence the passing region is not declared as found unless the PQTR/NQTR 
are incremented and a contiguous region of passing data is found for a given bit. All of the 
bits are cycled through to push the PQTR/NQTR out to align with the latest bit in a given 
nibble. Figure 38-30 through Figure 38-33 show an example of the PQTR/NQTR and various 
bits being aligned during the deskew stage.

X-Ref Target - Figure 38-30

Figure 38-30: Per-Bit Deskew – Initial Relationship Example
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The algorithm takes the result of each bit at a time and decides based on the results of that 
bit only. The common PQTR/NQTR are delayed as needed to align with each bit, but is not 
decremented. This ensures it gets pushed out to the latest bit.

X-Ref Target - Figure 38-31

Figure 38-31: Per-Bit Deskew – Early Bits Pushed Out
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X-Ref Target - Figure 38-32

Figure 38-32: Per-Bit Deskew – PQTR/NQTR Delayed to Align with Late Bit
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When completed, the PQTR/NQTR are pushed out to align with the latest DQ bit 
(RDLVL_DESKEW_PQTR_nibble, RDLVL_DESKEW_NQTR_nibble), but DQ bits calibrated first 
might have been early as shown in the example. Accordingly, all bits are checked once again 
and aligned as needed (Figure 38-33). 

The final DQ IDELAY value from deskew is stored at RDLVL_DESKEW_IDELAY_Byte_Bit.

Debug 

To determine the status of Read Per-Bit Deskew Calibration, click the Read Per-Bit Deskew 
stage under the Status window and view the results within the Memory IP Properties 
window. The message displayed in Memory IP Properties identifies how the stage failed or 
notes if it passed successfully. 

X-Ref Target - Figure 38-33

Figure 38-33: Per-Bit Deskew – Push Early Bits as Needed to Align
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The status of Read Per-Bit Deskew can also be determined by decoding the 
DDR_CAL_ERROR_0 and DDR_CAL_ERROR_1 results according to Table 38-15. Execute the 
Tcl commands noted in the XSDB Debug section to generate the XSDB output containing 
the signal results.

X-Ref Target - Figure 38-34

Figure 38-34: Memory IP XSDB Debug GUI Example – Read Per-Bit Deskew
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Table 38-16 describes the signals and values adjusted or used during the Read Per-Bit 
Deskew stage of calibration. The values can be analyzed in both successful and failing 
calibrations to determine the resultant values and the consistency in results across resets. 
These values can be found within the Memory IP Core Properties within Hardware 
Manager or by executing the Tcl commands noted in the XSDB Debug section. 

Table 38-15: DDR_CAL_ERROR Decode for Read Deskew Calibration
Per-Bit 
Deskew

DDR_CAL_
ERROR_CODE

DDR_CAL_
ERROR_1

DDR_CAL_
ERROR_0 Description Recommended Debug Steps

0x1 Nibble Bit
No valid data found for a given 
bit in the nibble (deskew 
pattern)

Check the BUS_DATA_BURST fields in 
XSDB. Check the dbg_rd_data, 
dbg_rd_data_cmp, and 
dbg_expected_data signals in the ILA. 
Check the pinout and look for any 
STUCK-AT-BITs, check vrp resistor, 
VREF resistor. Check BISC_PQTR, 
BISC_NQTR for starting offset 
between rising/falling clocks. Probe 
the board and check for the returning 
pattern to determine if the initial write 
to the DRAM happened properly, or if 
it is a read failure. Check ODT if it is a 
write issue.

0xF Nibble Bit Timeout error waiting for read 
data to return

Check the dbg_cal_seq_rd_cnt and 
dbg_cal_seq_cnt.

Table 38-16: Signals of Interest for Read Deskew Calibration
Signal Usage Signal Description

RDLVL_DESKEW_PQTR_NIBBLE* One per nibble Read leveling PQTR when left edge of read data valid 
window is detected during per bit read DQ deskew. 

RDLVL_DESKEW_NQTR_NIBBLE* One per nibble Read leveling NQTR when left edge of read data valid 
window is detected during per bit read DQ deskew.
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Figure 38-35 shows an example of the behavior described in the BUS_DATA_BURST 
description in Table 38-16. 

Data swizzling (bit reordering) is completed within the UltraScale PHY. Therefore, the data 
visible on BUS_DATA_BURST and a scope in hardware is ordered differently compared to 
what would be seen in ChipScope™. Figure 38-36 is an example of how the data is 
converted. 

Note: For this stage of calibration which is using a data pattern of all 0s or all 1s, the conversion is 
not visible. 

RDLVL_DESKEW_IDELAY_BYTE_BIT* One per Bit Read leveling IDELAY delay value found during per bit 
read DQ deskew. 

BUS_DATA_BURST (2014.3+)

When a failure occurs during deskew, some data is saved 
to indicate what the data looks like for a byte across some 
tap settings for a given byte the failure occurred for (DQ 
IDELAY is left wherever the algorithm left it).
Deskew (Figure 38-35): BUS_DATA_BURST_0 holds first 
part of two burst data (should be all 0) when PQTR/NQTR 
set to 0 taps.
BUS_DATA_BURST_1 holds second part of two burst data 
(should be all 1). when PQTR/NQTR set to 0 taps.
BUS_DATA_BURST_2 holds first part of two burst data 
(should be all 0) when PQTR/NQTR set to 90°.
BUS_DATA_BURST_3 holds second part of two burst data 
(should be all 1) when PQTR/NQTR set to 90°.

Table 38-16: Signals of Interest for Read Deskew Calibration
Signal Usage Signal Description

X-Ref Target - Figure 38-35

Figure 38-35: Deskew Error (XSDB BUS_DATA_BURST)
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X-Ref Target - Figure 38-36

Figure 38-36: Expected Read Back 0000_0000 Data Pattern
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This is a sample of results for the Read Per-Bit Deskew XSDB debug signals:

RDLVL_DESKEW_IDELAY_BYTE0_BIT0 string true true 02e
RDLVL_DESKEW_IDELAY_BYTE0_BIT1 string true true 02e
RDLVL_DESKEW_IDELAY_BYTE0_BIT2 string true true 02f
RDLVL_DESKEW_IDELAY_BYTE0_BIT3 string true true 030
RDLVL_DESKEW_IDELAY_BYTE0_BIT4 string true true 02f
RDLVL_DESKEW_IDELAY_BYTE0_BIT5 string true true 02f
RDLVL_DESKEW_IDELAY_BYTE0_BIT6 string true true 033
RDLVL_DESKEW_IDELAY_BYTE0_BIT7 string true true 030
RDLVL_DESKEW_IDELAY_BYTE1_BIT0 string true true 02f
RDLVL_DESKEW_IDELAY_BYTE1_BIT1 string true true 032
RDLVL_DESKEW_IDELAY_BYTE1_BIT2 string true true 02e
RDLVL_DESKEW_IDELAY_BYTE1_BIT3 string true true 032
RDLVL_DESKEW_IDELAY_BYTE1_BIT4 string true true 030
RDLVL_DESKEW_IDELAY_BYTE1_BIT5 string true true 032
RDLVL_DESKEW_IDELAY_BYTE1_BIT6 string true true 030
RDLVL_DESKEW_IDELAY_BYTE1_BIT7 string true true 031
RDLVL_DESKEW_IDELAY_BYTE2_BIT0 string true true 033
RDLVL_DESKEW_IDELAY_BYTE2_BIT1 string true true 030
RDLVL_DESKEW_IDELAY_BYTE2_BIT2 string true true 02e
RDLVL_DESKEW_IDELAY_BYTE2_BIT3 string true true 028

X-Ref Target - Figure 38-37

Figure 38-37: Expected Read Back 1111_1111 Data Pattern
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RDLVL_DESKEW_IDELAY_BYTE2_BIT4 string true true 02d
RDLVL_DESKEW_IDELAY_BYTE2_BIT5 string true true 02e
RDLVL_DESKEW_IDELAY_BYTE2_BIT6 string true true 02e
RDLVL_DESKEW_IDELAY_BYTE2_BIT7 string true true 02e
RDLVL_DESKEW_IDELAY_BYTE3_BIT0 string true true 02f
RDLVL_DESKEW_IDELAY_BYTE3_BIT1 string true true 030
RDLVL_DESKEW_IDELAY_BYTE3_BIT2 string true true 02e
RDLVL_DESKEW_IDELAY_BYTE3_BIT3 string true true 02e
RDLVL_DESKEW_IDELAY_BYTE3_BIT4 string true true 02e
RDLVL_DESKEW_IDELAY_BYTE3_BIT5 string true true 02c
RDLVL_DESKEW_IDELAY_BYTE3_BIT6 string true true 028
RDLVL_DESKEW_IDELAY_BYTE3_BIT7 string true true 02c
RDLVL_DESKEW_IDELAY_BYTE4_BIT0 string true true 02d
RDLVL_DESKEW_IDELAY_BYTE4_BIT1 string true true 031
RDLVL_DESKEW_IDELAY_BYTE4_BIT2 string true true 02c
RDLVL_DESKEW_IDELAY_BYTE4_BIT3 string true true 032
RDLVL_DESKEW_IDELAY_BYTE4_BIT4 string true true 030
RDLVL_DESKEW_IDELAY_BYTE4_BIT5 string true true 029
RDLVL_DESKEW_IDELAY_BYTE4_BIT6 string true true 031
RDLVL_DESKEW_IDELAY_BYTE4_BIT7 string true true 02e
RDLVL_DESKEW_IDELAY_BYTE5_BIT0 string true true 029
RDLVL_DESKEW_IDELAY_BYTE5_BIT1 string true true 02a
RDLVL_DESKEW_IDELAY_BYTE5_BIT2 string true true 02b
RDLVL_DESKEW_IDELAY_BYTE5_BIT3 string true true 02b
RDLVL_DESKEW_IDELAY_BYTE5_BIT4 string true true 028
RDLVL_DESKEW_IDELAY_BYTE5_BIT5 string true true 02c
RDLVL_DESKEW_IDELAY_BYTE5_BIT6 string true true 02c
RDLVL_DESKEW_IDELAY_BYTE5_BIT7 string true true 026
RDLVL_DESKEW_IDELAY_BYTE6_BIT0 string true true 028
RDLVL_DESKEW_IDELAY_BYTE6_BIT1 string true true 030
RDLVL_DESKEW_IDELAY_BYTE6_BIT2 string true true 025
RDLVL_DESKEW_IDELAY_BYTE6_BIT3 string true true 02d
RDLVL_DESKEW_IDELAY_BYTE6_BIT4 string true true 02c
RDLVL_DESKEW_IDELAY_BYTE6_BIT5 string true true 030
RDLVL_DESKEW_IDELAY_BYTE6_BIT6 string true true 032
RDLVL_DESKEW_IDELAY_BYTE6_BIT7 string true true 02d
RDLVL_DESKEW_IDELAY_BYTE7_BIT0 string true true 029
RDLVL_DESKEW_IDELAY_BYTE7_BIT1 string true true 02a
RDLVL_DESKEW_IDELAY_BYTE7_BIT2 string true true 030
RDLVL_DESKEW_IDELAY_BYTE7_BIT3 string true true 02d
RDLVL_DESKEW_IDELAY_BYTE7_BIT4 string true true 02c
RDLVL_DESKEW_IDELAY_BYTE7_BIT5 string true true 02a
RDLVL_DESKEW_IDELAY_BYTE7_BIT6 string true true 02b
RDLVL_DESKEW_IDELAY_BYTE7_BIT7 string true true 02b
RDLVL_DESKEW_IDELAY_BYTE8_BIT0 string true true 029
RDLVL_DESKEW_IDELAY_BYTE8_BIT1 string true true 02e
RDLVL_DESKEW_IDELAY_BYTE8_BIT2 string true true 02b
RDLVL_DESKEW_IDELAY_BYTE8_BIT3 string true true 02c
RDLVL_DESKEW_IDELAY_BYTE8_BIT4 string true true 02e
RDLVL_DESKEW_IDELAY_BYTE8_BIT5 string true true 02c
RDLVL_DESKEW_IDELAY_BYTE8_BIT6 string true true 031
RDLVL_DESKEW_IDELAY_BYTE8_BIT7 string true true 02f
RDLVL_DESKEW_NQTR_NIBBLE0 string true true 000
RDLVL_DESKEW_NQTR_NIBBLE1 string true true 000
RDLVL_DESKEW_NQTR_NIBBLE2 string true true 000
RDLVL_DESKEW_NQTR_NIBBLE3 string true true 000
RDLVL_DESKEW_NQTR_NIBBLE4 string true true 000
RDLVL_DESKEW_NQTR_NIBBLE5 string true true 000
RDLVL_DESKEW_NQTR_NIBBLE6 string true true 001
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RDLVL_DESKEW_NQTR_NIBBLE7 string true true 002
RDLVL_DESKEW_NQTR_NIBBLE8 string true true 000
RDLVL_DESKEW_NQTR_NIBBLE9 string true true 000
RDLVL_DESKEW_NQTR_NIBBLE10 string true true 000
RDLVL_DESKEW_NQTR_NIBBLE11 string true true 000
RDLVL_DESKEW_NQTR_NIBBLE12 string true true 000
RDLVL_DESKEW_NQTR_NIBBLE13 string true true 002
RDLVL_DESKEW_NQTR_NIBBLE14 string true true 001
RDLVL_DESKEW_NQTR_NIBBLE15 string true true 000
RDLVL_DESKEW_NQTR_NIBBLE16 string true true 000
RDLVL_DESKEW_NQTR_NIBBLE17 string true true 000
RDLVL_DESKEW_PQTR_NIBBLE0 string true true 000
RDLVL_DESKEW_PQTR_NIBBLE1 string true true 003
RDLVL_DESKEW_PQTR_NIBBLE2 string true true 000
RDLVL_DESKEW_PQTR_NIBBLE3 string true true 001
RDLVL_DESKEW_PQTR_NIBBLE4 string true true 002
RDLVL_DESKEW_PQTR_NIBBLE5 string true true 000
RDLVL_DESKEW_PQTR_NIBBLE6 string true true 000
RDLVL_DESKEW_PQTR_NIBBLE7 string true true 000
RDLVL_DESKEW_PQTR_NIBBLE8 string true true 003
RDLVL_DESKEW_PQTR_NIBBLE9 string true true 002
RDLVL_DESKEW_PQTR_NIBBLE10 string true true 001
RDLVL_DESKEW_PQTR_NIBBLE11 string true true 004
RDLVL_DESKEW_PQTR_NIBBLE12 string true true 001
RDLVL_DESKEW_PQTR_NIBBLE13 string true true 000
RDLVL_DESKEW_PQTR_NIBBLE14 string true true 000
RDLVL_DESKEW_PQTR_NIBBLE15 string true true 000
RDLVL_DESKEW_PQTR_NIBBLE16 string true true 000
RDLVL_DESKEW_PQTR_NIBBLE17 string true true 002

Expected Results

• Look at the individual IDELAY taps for each bit. The IDELAY taps should only vary by 0 
to 20 taps, and is dependent on PCB trace delays. For Deskew, the IDELAY taps are 
typically in the 50 to 70 tap range, while PQTR and NQTR are usually in the 0 to 5 tap 
range.

• Determine if any bytes completed successfully. The per-bit algorithm sequentially steps 
through each DQS byte. 

Hardware Measurements

1. Probe the write commands and read commands at the memory:

° Write = cs_n = 1; ras_n = 0; cas_n = 1; we_n = 1; act_n = 1 (DDR4 only)

° Read = cs_n = 1; ras_n = 0; cas_n = 1; we_n = 0; act_n = 1 (DDR4 only)
2. Probe a data pin to check for data being returned from the DRAM. 
3. Probe the writes checking the signal level of the write DQS and the write DQ. 
4. Probe the VREF level at the DRAM (for DDR3).
5. Probe the DM pin which should be deasserted during the write burst (or tied off on the 

board with an appropriate value resistor). 
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6. Probe the read burst after the write and check if the expected data pattern is being 
returned. 

7. Check for floating address pins if the expected data is not returned. 
8. Check for any stuck-at level issues on DQ pins whose signal level does not change. If at 

all possible probe at the receiver to check termination and signal integrity.
9. Check the DBG port signals and the full read data and comparison result to check the 

data in general interconnect. The calibration algorithm has RTL logic issue the 
commands and check the data. 
Check if the dbg_rd_valid aligns with the data pattern or is off (which can indicate an 
issue with DQS gate calibration). Set up a trigger when the error gets asserted to 
capture signals in the hardware debugger for analysis.

10. Re-check results from DQS gate or other previous calibration stages. Compare passing 
byte lanes against failing byte lanes for previous stages of calibration. If a failure occurs 
during simple pattern calibration, check the values found during deskew for example.

11. All of the data comparison for read deskew occurs in the general interconnect, so it can 
be useful to pull in the debug data in the hardware debugger and take a look at what the 
data looks like coming back as taps are adjusted, see Figure 38-38. The screen captures 
are from simulation, with a small burst of five reads. Look at dbg_rd_data, 
dbg_rd_data_cmp, and dbg_rd_valid.

12. Using the Vivado Hardware Manager and while running the Memory IP Example Design 
with Debug Signals enabled, set the Read Deskew trigger to cal_r*_status[6] = R 
(rising edge). To view each byte, add an additional trigger on dbg_cmp_byte and set to 
the byte of interest. The following simulation example shows how the debug signals 
should behave during successful Read Deskew. 

13. After failure during this stage of calibration, the design goes into a continuous loop of 
read commands to allow board probing.

X-Ref Target - Figure 38-38

Figure 38-38: RTL Debug Signals during Read Deskew (No Error)
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Debugging Read Per-Bit DBI Deskew Failures

If the read DBI option is selected for DDR4, the DBI pin needs to be calibrated along with 
the DQ bits being captured.

The regular deskew algorithm performs a per-bit deskew on every DQ bit in a nibble against 
the PQTR/NQTR, pushing early DQ bits to line up with late bits. Because the DBI pin is an 
input to one of the nibbles, it could have an effect on the PQTR/NQTR settings or even the 
other DQ pins if the DQ pins need to be pushed to align with the DBI pin. A similar 
mechanism as the DQ per-bit deskew is ran but the DBI pin is deskewed instead in relation 
to the PQTR/NQTR.

1. Turn on DBI on the read path (MRS setting in the DRAM and a fabric switch that inverts 
the read data when value read from the DBI pin is asserted).

2. If the nibble does not contain the DBI pin, skip the nibble and go to the next nibble.
3. Start from the previous PQTR/NQTR settings found during DQ deskew (edge alignment 

for bits in the nibble).
4. Issue back-to-back reads to address 0x000/Bank Group 0 and 0x000/Bank Group 1. 

This is repeated until per-bit DBI deskew is complete as shown in Figure 38-39. 

5. Delay the DBI pin with IDELAY to edge align with the PQTR/NQTR clock. If the PQTR/
NQTR delay needs to be adjusted, the other DQ bits in the nibble are adjusted 
accordingly. This occurs if the DBI pin arrives later than all other bits in the nibble.

6. Loop through all nibbles in the interface for the rank.
7. Turn off DBI on the read path (MRS setting in the DRAM and fabric switch).

Debug 

To determine the status of Read Per-Bit DBI Deskew Calibration, click the Read Per-Bit DBI 
Deskew Calibration stage under the Status window and view the results within the 
Memory IP Properties window. The message displayed in Memory IP Properties 
identifies how the stage failed or notes if it passed successfully.

The status of Read Per-Bit DBI Deskew can also be determined by decoding the 
DDR_CAL_ERROR_0 and DDR_CAL_ERROR_1 results according to Table 38-17. 

X-Ref Target - Figure 38-39

Figure 38-39: DBI Deskew Read Pattern
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Execute the Tcl commands noted in the XSDB Debug section to generate the XSDB output 
containing the signal results. 

Table 38-18 shows the signals and values adjusted or used during the Read Per-Bit Deskew 
stage of calibration. The values can be analyzed in both successful and failing calibrations 
to determine the resultant values and the consistency in results across resets. These values 
can be found within the Memory IP Core Properties within Hardware Manager or by 
executing the Tcl commands noted in the XSDB Debug section. 

Table 38-17: DDR_CAL_ERROR Decode for Read Per-Bit DBI Deskew
Per-Bit DBI 

Deskew 
DDR_CAL_

ERROR_
CODE

DDR_CAL_
ERROR_1

DDR_CAL_
ERROR_0 Description Recommended Debug Steps

0x1 Nibble N/A
No valid data found for a 
given bit in the nibble when 
running the deskew pattern

Check the BUS_DATA_BURST fields in 
XSDB. Check the dbg_rd_data, 
dbg_rd_data_cmp, and 
dbg_expected_data signals in the ILA. 
Check the pinout for the DBI pin.
Probe the board and check for the 
returning pattern to determine if the 
initial write to the DRAM happened 
properly, or if it is a read failure. Probe the 
DBI pin during the read.

0xF Nibble N/A Timeout error waiting for all 
read data bursts to return

Check the dbg_cal_seq_rd_cnt and 
dbg_cal_seq_cnt.

Table 38-18: Signals of Interest for Read Per-Bit DBI Deskew Calibration
Signal Usage Signal Description

RDLVL_DESKEW_DBI_PQTR One per nibble
Read leveling PQTR when left edge of 
read data valid window is detected 
during per-bit read DBI deskew.

RDLVL_DESKEW_DBI_NQTR One per nibble
Read leveling NQTR when left edge of 
read data valid window is detected 
during per-bit read DBI deskew.

RDLVL_DESKEW_DBI_IDELAY_BYTE One per Byte Read leveling IDELAY delay value found 
during per-bit read DBI deskew.

RDLVL_DESKEW_PQTR_NIBBLE One per nibble
Read leveling PQTR when left edge of 
read data valid window is detected 
during per-bit read DQ deskew.

RDLVL_DESKEW_NQTR_NIBBLE One per nibble
Read leveling NQTR when left edge of 
read data valid window is detected 
during per-bit read DQ deskew.
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Data swizzling (bit reordering) is completed within the UltraScale PHY. Therefore, the data 
visible on BUS_DATA_BURST and a scope in hardware is ordered differently compared to 
what would be seen in ChipScope™. Figure 38-40 is an example of how the data is 
converted. 

Note: For this stage of calibration which is using a data pattern of all 0s or all 1s, the conversion is 
not visible. 

RDLVL_DESKEW_IDELAY_BYTE_BIT* One per Bit Read leveling IDELAY delay value found 
during per-bit read DQ deskew.

BUS_DATA_BURST

When a failure occurs during deskew, 
some data is saved to indicate what the 
data looks like for a byte across some tap 
settings for a given byte the failure 
occurred for (DQ IDELAY is left wherever 
the algorithm left it).
Deskew (Figure 38-35): 
BUS_DATA_BURST_0 holds first part of 
two burst data (should be all 0) when 
PQTR/NQTR set to t taps.
BUS_DATA_BURST_1 holds second part 
of two burst data (should be all 1). When 
PQTR/NQTR set to 0 taps.
BUS_DATA_BURST_2 holds first part of 
two burst data (should be all 0) when 
PQTR/NQTR set to 90°.
BUS_DATA_BURST_3 holds second part 
of two burst data (should be all 1) when 
PQTR/NQTR set to 90°.

Table 38-18: Signals of Interest for Read Per-Bit DBI Deskew Calibration (Cont’d)

Signal Usage Signal Description
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X-Ref Target - Figure 38-40

Figure 38-40: Expected Read Back 0000_0000 Data Pattern
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This is a sample of results for the Read Per-Bit DBI Deskew XSDB debug signals:

RDLVL_DESKEW_IDELAY_BYTE0_BIT0 string true true 02e
RDLVL_DESKEW_IDELAY_BYTE0_BIT1 string true true 02e
RDLVL_DESKEW_IDELAY_BYTE0_BIT2 string true true 02f
RDLVL_DESKEW_IDELAY_BYTE0_BIT3 string true true 030
RDLVL_DESKEW_IDELAY_BYTE0_BIT4 string true true 02f
RDLVL_DESKEW_IDELAY_BYTE0_BIT5 string true true 02f
RDLVL_DESKEW_IDELAY_BYTE0_BIT6 string true true 033
RDLVL_DESKEW_IDELAY_BYTE0_BIT7 string true true 030
RDLVL_DESKEW_IDELAY_BYTE1_BIT0 string true true 02f
RDLVL_DESKEW_IDELAY_BYTE1_BIT1 string true true 032
RDLVL_DESKEW_IDELAY_BYTE1_BIT2 string true true 02e
RDLVL_DESKEW_IDELAY_BYTE1_BIT3 string true true 032
RDLVL_DESKEW_IDELAY_BYTE1_BIT4 string true true 030
RDLVL_DESKEW_IDELAY_BYTE1_BIT5 string true true 032
RDLVL_DESKEW_IDELAY_BYTE1_BIT6 string true true 030
RDLVL_DESKEW_IDELAY_BYTE1_BIT7 string true true 031
RDLVL_DESKEW_IDELAY_BYTE2_BIT0 string true true 033
RDLVL_DESKEW_IDELAY_BYTE2_BIT1 string true true 030
RDLVL_DESKEW_IDELAY_BYTE2_BIT2 string true true 02e
RDLVL_DESKEW_IDELAY_BYTE2_BIT3 string true true 028

X-Ref Target - Figure 38-41

Figure 38-41: Expected Read Back 1111_1111 Data Pattern
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RDLVL_DESKEW_IDELAY_BYTE2_BIT4 string true true 02d
RDLVL_DESKEW_IDELAY_BYTE2_BIT5 string true true 02e
RDLVL_DESKEW_IDELAY_BYTE2_BIT6 string true true 02e
RDLVL_DESKEW_IDELAY_BYTE2_BIT7 string true true 02e
RDLVL_DESKEW_IDELAY_BYTE3_BIT0 string true true 02f
RDLVL_DESKEW_IDELAY_BYTE3_BIT1 string true true 030
RDLVL_DESKEW_IDELAY_BYTE3_BIT2 string true true 02e
RDLVL_DESKEW_IDELAY_BYTE3_BIT3 string true true 02e
RDLVL_DESKEW_IDELAY_BYTE3_BIT4 string true true 02e
RDLVL_DESKEW_IDELAY_BYTE3_BIT5 string true true 02c
RDLVL_DESKEW_IDELAY_BYTE3_BIT6 string true true 028
RDLVL_DESKEW_IDELAY_BYTE3_BIT7 string true true 02c
RDLVL_DESKEW_IDELAY_BYTE4_BIT0 string true true 02d
RDLVL_DESKEW_IDELAY_BYTE4_BIT1 string true true 031
RDLVL_DESKEW_IDELAY_BYTE4_BIT2 string true true 02c
RDLVL_DESKEW_IDELAY_BYTE4_BIT3 string true true 032
RDLVL_DESKEW_IDELAY_BYTE4_BIT4 string true true 030
RDLVL_DESKEW_IDELAY_BYTE4_BIT5 string true true 029
RDLVL_DESKEW_IDELAY_BYTE4_BIT6 string true true 031
RDLVL_DESKEW_IDELAY_BYTE4_BIT7 string true true 02e
RDLVL_DESKEW_IDELAY_BYTE5_BIT0 string true true 029
RDLVL_DESKEW_IDELAY_BYTE5_BIT1 string true true 02a
RDLVL_DESKEW_IDELAY_BYTE5_BIT2 string true true 02b
RDLVL_DESKEW_IDELAY_BYTE5_BIT3 string true true 02b
RDLVL_DESKEW_IDELAY_BYTE5_BIT4 string true true 028
RDLVL_DESKEW_IDELAY_BYTE5_BIT5 string true true 02c
RDLVL_DESKEW_IDELAY_BYTE5_BIT6 string true true 02c
RDLVL_DESKEW_IDELAY_BYTE5_BIT7 string true true 026
RDLVL_DESKEW_IDELAY_BYTE6_BIT0 string true true 028
RDLVL_DESKEW_IDELAY_BYTE6_BIT1 string true true 030
RDLVL_DESKEW_IDELAY_BYTE6_BIT2 string true true 025
RDLVL_DESKEW_IDELAY_BYTE6_BIT3 string true true 02d
RDLVL_DESKEW_IDELAY_BYTE6_BIT4 string true true 02c
RDLVL_DESKEW_IDELAY_BYTE6_BIT5 string true true 030
RDLVL_DESKEW_IDELAY_BYTE6_BIT6 string true true 032
RDLVL_DESKEW_IDELAY_BYTE6_BIT7 string true true 02d
RDLVL_DESKEW_IDELAY_BYTE7_BIT0 string true true 029
RDLVL_DESKEW_IDELAY_BYTE7_BIT1 string true true 02a
RDLVL_DESKEW_IDELAY_BYTE7_BIT2 string true true 030
RDLVL_DESKEW_IDELAY_BYTE7_BIT3 string true true 02d
RDLVL_DESKEW_IDELAY_BYTE7_BIT4 string true true 02c
RDLVL_DESKEW_IDELAY_BYTE7_BIT5 string true true 02a
RDLVL_DESKEW_IDELAY_BYTE7_BIT6 string true true 02b
RDLVL_DESKEW_IDELAY_BYTE7_BIT7 string true true 02b
RDLVL_DESKEW_IDELAY_BYTE8_BIT0 string true true 029
RDLVL_DESKEW_IDELAY_BYTE8_BIT1 string true true 02e
RDLVL_DESKEW_IDELAY_BYTE8_BIT2 string true true 02b
RDLVL_DESKEW_IDELAY_BYTE8_BIT3 string true true 02c
RDLVL_DESKEW_IDELAY_BYTE8_BIT4 string true true 02e
RDLVL_DESKEW_IDELAY_BYTE8_BIT5 string true true 02c
RDLVL_DESKEW_IDELAY_BYTE8_BIT6 string true true 031
RDLVL_DESKEW_IDELAY_BYTE8_BIT7 string true true 02f
RDLVL_DESKEW_NQTR_NIBBLE0 string true true 000
RDLVL_DESKEW_NQTR_NIBBLE1 string true true 000
RDLVL_DESKEW_NQTR_NIBBLE2 string true true 000
RDLVL_DESKEW_NQTR_NIBBLE3 string true true 000
RDLVL_DESKEW_NQTR_NIBBLE4 string true true 000
RDLVL_DESKEW_NQTR_NIBBLE5 string true true 000
RDLVL_DESKEW_NQTR_NIBBLE6 string true true 001
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RDLVL_DESKEW_NQTR_NIBBLE7 string true true 002
RDLVL_DESKEW_NQTR_NIBBLE8 string true true 000
RDLVL_DESKEW_NQTR_NIBBLE9 string true true 000
RDLVL_DESKEW_NQTR_NIBBLE10 string true true 000
RDLVL_DESKEW_NQTR_NIBBLE11 string true true 000
RDLVL_DESKEW_NQTR_NIBBLE12 string true true 000
RDLVL_DESKEW_NQTR_NIBBLE13 string true true 002
RDLVL_DESKEW_NQTR_NIBBLE14 string true true 001
RDLVL_DESKEW_NQTR_NIBBLE15 string true true 000
RDLVL_DESKEW_NQTR_NIBBLE16 string true true 000
RDLVL_DESKEW_NQTR_NIBBLE17 string true true 000
RDLVL_DESKEW_PQTR_NIBBLE0 string true true 000
RDLVL_DESKEW_PQTR_NIBBLE1 string true true 003
RDLVL_DESKEW_PQTR_NIBBLE2 string true true 000
RDLVL_DESKEW_PQTR_NIBBLE3 string true true 001
RDLVL_DESKEW_PQTR_NIBBLE4 string true true 002
RDLVL_DESKEW_PQTR_NIBBLE5 string true true 000
RDLVL_DESKEW_PQTR_NIBBLE6 string true true 000
RDLVL_DESKEW_PQTR_NIBBLE7 string true true 000
RDLVL_DESKEW_PQTR_NIBBLE8 string true true 003
RDLVL_DESKEW_PQTR_NIBBLE9 string true true 002
RDLVL_DESKEW_PQTR_NIBBLE10 string true true 001
RDLVL_DESKEW_PQTR_NIBBLE11 string true true 004
RDLVL_DESKEW_PQTR_NIBBLE12 string true true 001
RDLVL_DESKEW_PQTR_NIBBLE13 string true true 000
RDLVL_DESKEW_PQTR_NIBBLE14 string true true 000
RDLVL_DESKEW_PQTR_NIBBLE15 string true true 000
RDLVL_DESKEW_PQTR_NIBBLE16 string true true 000
RDLVL_DESKEW_PQTR_NIBBLE17 string true true 002

Expected Results

• Look at the individual IDELAY taps for each bit. The IDELAY taps should only vary by 0 
to 20 taps, and is dependent on PCB trace delays. For Deskew, the IDELAY taps are 
typically in the 50 to 70 tap range, while PQTR and NQTR are usually in the 0 to 5 tap 
range.

• Determine if any bytes completed successfully. The per-bit algorithm sequentially steps 
through each DQS byte. 

Hardware Measurements

1. Probe the write commands and read commands at the memory:

° Write = cs_n = 1; ras_n = 0; cas_n = 1; we_n = 1; act_n = 1

° Read = cs_n = 1; ras_n = 0; cas_n = 1; we_n = 0; act_n = 1
2. Probe the data and DBI pins to check for data being returned from the DRAM. 
3. Probe the writes checking the signal level of the write DQS and the write DQ. 
4. Probe the DBI pin which should be deasserted during the write burst. The DBI pin should 

not be asserted because DBI write should be off.
5. Probe the read burst after the write and check if the expected data pattern is being 

returned. 
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6. Check for floating address pins if the expected data is not returned. 
7. Check for any stuck-at level issues on DQ/DBI pins whose signal level does not change. 

If at all possible probe at the receiver to check termination and signal integrity.
8. Check the DBG port signals and the full read data and comparison result to check the 

data in general interconnect. The calibration algorithm has RTL logic issue the 
commands and check the data. 
Check if the dbg_rd_valid aligns with the data pattern or is off (which can indicate an 
issue with DQS gate calibration). Set up a trigger when the error gets asserted to 
capture signals in the hardware debugger for analysis.

9. Re-check results from DQS gate or other previous calibration stages. Compare passing 
byte lanes against failing byte lanes for previous stages of calibration. If a failure occurs 
during simple pattern calibration, check the values found during deskew for example.

10. All of the data comparison for read deskew occurs in the general interconnect, so it can 
be useful to pull in the debug data in the hardware debugger and take a look at what the 
data looks like coming back as taps are adjusted, see Figure 38-42. The screen captures 
are from simulation, with a small burst of five reads. Look at dbg_rd_data, 
dbg_rd_data_cmp, and dbg_rd_valid.

11. Using the Vivado Hardware Manager and while running the Memory IP Example Design 
with Debug Signals enabled, set the Read DBI Deskew trigger to cal_r*_status[8] 
= R (rising edge). To view each byte, add an additional trigger on dbg_cmp_byte and 
set to the byte of interest. The following simulation example shows how the debug 
signals should behave during successful Read DBI Deskew. 

12. After failure during this stage of calibration, the design goes into a continuous loop of 
read commands to allow board probing.

X-Ref Target - Figure 38-42

Figure 38-42: RTL Debug Signals during Read DBI Deskew (No Error)
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Debugging Read DQS Centering (Simple/MPR) Failures

When the data is deskewed, the PQTR/NQTR delays need to be adjusted to center in the 
aggregate data valid window for a given nibble. The DRAM MPR register is used to provide 
the data pattern for centering. Therefore, the pattern changes each bit time and does not 
rely on being written into the DRAM first, eliminating some uncertainty. The simple clock 
pattern is used to allow for the same pattern checking for DDR3 and DDR4. Gaps in the 
reads to the DRAM are used to stress the initial centering to incorporate the effects of ISI on 
the first DQS pulse as shown in Figure 38-43.

To properly account for jitter on the data and clock returned from the DRAM, multiple data 
samples are taken at a given tap value. 64 read bursts are used in hardware while five are 
used in simulation. More samples mean finding the best alignment in the data valid 
window. 

Given that the PHY has two capture strobes PQTR/NQTR that need to be centered 
independently yet moved together, calibration needs to take special care to ensure the 
clocks stay in a certain phase relationship with one another. 

The data and PQTR/NQTR delays start with the value found during deskew. Data is first 
delayed with IDELAY such that both the PQTR and NQTR clocks start out just to the left of 
the data valid window for all bits in a given nibble so the entire read window can be scanned 
with each clock (Figure 38-44, RDLVL_IDELAY_VALUE_Rank_Byte_Bit). Scanning the window 
with the same delay element and computing the center with that delay element helps to 
minimize uncertainty in tap resolution that might arise from using different delay lines to 
find the edges of the read window.

X-Ref Target - Figure 38-43

Figure 38-43: Gap between MPR Reads
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At the start of training, the PQTR/NQTR and data are roughly edge aligned, but because the 
pattern is different from the deskew step the edge might have changed a bit. Also, during 
deskew the aggregate edge for both PQTR/NQTR is found while you want to find a separate 
edge for each clock.

After making sure both PQTR/NQTR start outside the data valid region, the clocks are 
incremented to look for the passing region (Figure 38-45). Rising edge data is checked for 
PQTR while falling edge data is checked for NQTR, with a separate check being kept to 
indicate where the passing region/falling region is for each clock.

When searching for the edge, a minimum window size of 10 is used to guarantee the noise 
region has been cleared and the true edge is found. The PQTR/NQTR delays are increased 
past the initial passing point until the minimum window size is found before the left edge 
is declared as found. If the minimum window is not located across the entire tap range for 
either clock, an error is asserted. 

X-Ref Target - Figure 38-44

Figure 38-44: Delay DQ Thus PQTR and NQTR in Failing Region
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X-Ref Target - Figure 38-45

Figure 38-45: PQTR and NQTR Delayed to Find Passing Region (Left Edge)
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After the left edge is found (RDLVL_PQTR_LEFT_Rank_Nibble, 
RDLVL_NQTR_LEFT_Rank_Nibble), the right edge of the data valid window can be searched 
starting from the left edge + minimum window size. A minimum window size is not used 
when searching for the right edge, as the starting point already guarantees a minimum 
window size has been met. 

Again, the PQTR/NQTR delays are incremented together and checked for error 
independently to keep track of the right edge of the window. Because the data from the 
PQTR domain is transferred into the NQTR clock domain in the XIPHY, the edge for NQTR is 
checked first, keeping track of the results for PQTR along the way (Figure 38-46).

When the NQTR edge is located, a flag is checked to see if the PQTR edge is found as well. 
If the PQTR edge was not found, the PQTR delay continues to search for the edge, while the 
NQTR delay stays at its right edge (RDLVL_PQTR_RIGHT_Rank_Nibble, 
RDLVL_NQTR_RIGHT_Rank_Nibble). For simulation, the right edge detection is sped up by 
having the delays adjusted by larger than one tap at a time.

After both rising and falling edge windows are found, the final center point is calculated 
based on the left and right edges for each clock. The final delay for each clock 
(RDLVL_PQTR_CENTER_Rank_Nibble, RDLVL_NQTR_CENTER_Rank_Nibble) is computed by:

left + ((right – left)/2).

For multi-rank systems deskew only runs on the first rank, while read DQS centering using 
the PQTR/NQTR runs on all ranks. After calibration is complete for all ranks, for a given DQ 
bit the IDELAY is set to the center of the range of values seen for all ranks 
(RDLVL_IDELAY_FINAL_BYTE_BIT). The PQTR/NQTR final value is also computed based on 
the range of values seen between all of the ranks (RDLVL_PQTR_CENTER_FINAL_NIBBLE, 
RDLVL_NQTR_CENTER_FINAL_NIBBLE).

X-Ref Target - Figure 38-46

Figure 38-46: PQTR and NQTR Delayed to Find Failing Region (Right Edge)
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IMPORTANT: For multi-rank systems, there must be overlap in the read window computation. Also, 
there is a limit in the allowed skew between ranks, see the PCB Guidelines for DDR3 in Chapter 4 and 
PCB Guidelines for DDR4 in Chapter 4.

Debug 

To determine the status of Read MPR DQS Centering Calibration, click the Read DQS 
Centering (Simple) stage under the Status window and view the results within the 
Memory IP Properties window. The message displayed in Memory IP Properties 
identifies how the stage failed or notes if it passed successfully.  

X-Ref Target - Figure 38-47

Figure 38-47: Memory IP XSDB Debug GUI Example – Read DQS Centering (Simple)
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The status of Read MPR DQS Centering can also be determined by decoding the 
DDR_CAL_ERROR_0 and DDR_CAL_ERROR_1 results according to Table 38-19. Execute the 
Tcl commands noted in the XSDB Debug section to generate the XSDB output containing 
the signal results. 

Table 38-20 shows the signals and values adjusted or used during the Read MPR DQS 
Centering stage of calibration. The values can be analyzed in both successful and failing 
calibrations to determine the resultant values and the consistency in results across resets. 
These values can be found within the Memory IP Core Properties within Hardware 
Manager or by executing the Tcl commands noted in the XSDB Debug section. 

Table 38-19: DDR_CAL_ERROR Decode for Read Leveling Calibration
Read DQS 
Centering 
DDR_CAL_

ERROR_
CODE

DDR_CAL_
ERROR_1

DDR_CAL_
ERROR_0 Description Recommended Debug Steps

0x1 Nibble Bit No valid data found for a 
given bit in the nibble

Check the BUS_DATA_BURST fields in 
XSDB. Check the dbg_rd_data, 
dbg_rd_data_cmp, and 
dbg_expected_data signals in the ILA. 
Check the pinout and look for any 
STUCK-AT-BITs, check VRP resistor, VREF 
resistor. Check the RDLVL_DESKEW_* 
fields of XSDB to check if any delays are 
much larger/smaller than others.

0x2 Nibble Bit
Could not find the left Edge 
(error condition) to 
determine window size

Check for a mapping issue. This usually 
implies a delay is not moving when it 
should. Check the connections going to 
the XIPHY and ensure the correct RIU is 
selected based on the byte being 
adjusted.

0xF Nibble Bit Timeout error waiting for 
read data to return

Check the dbg_cal_seq_rd_cnt and 
dbg_cal_seq_cnt.

Table 38-20: Signals of Interest for Read Leveling Calibration
Signal Usage Signal Description

RDLVL_PQTR_LEFT_RANK*_NIBBLE* One per rank per nibble
Read leveling PQTR tap position when 
left edge of read data valid window is 
detected (simple pattern).

RDLVL_NQTR_LEFT_RANK*_NIBBLE* One per rank per nibble
Read leveling NQTR tap position when 
left edge of read data valid window is 
detected (simple pattern).

RDLVL_PQTR_RIGHT_RANK*_NIBBLE* One per rank per nibble
Read leveling PQTR tap position when 
right edge of read data valid window is 
detected (simple pattern).

RDLVL_NQTR_RIGHT_RANK*_NIBBLE* One per rank per nibble
Read leveling NQTR tap position when 
right edge of read data valid window is 
detected (simple pattern).
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RDLVL_PQTR_CENTER_RANK*_NIBBLE* One per rank per nibble
Read leveling PQTR center tap position 
found at the end of read DQS centering 
(simple pattern).

RDLVL_NQTR_CENTER_RANK*_NIBBLE* One per rank per nibble
Read leveling NQTR center tap position 
found at the end of read DQS centering 
(simple pattern).

RDLVL_IDELAY_VALUE_RANK*_BYTE*_BIT* One per rank per Bit
Read leveling IDELAY delay value found 
during per bit read DQS centering 
(simple pattern).

RDLVL_IDELAY_DBI_RANK*_BYTE* One per rank per Byte Reserved

BISC_ALIGN_PQTR_NIBBLE* One per nibble Initial 0° offset value provided by BISC at 
power-up.

BISC_ALIGN_NQTR_NIBBLE* One per nibble Initial 0° offset value provided by BISC at 
power-up.

BISC_PQTR_NIBBLE* One per nibble

Initial 90° offset value provided by BISC 
at power-up. Compute 90° value in taps 
by taking (BISC_PQTR – 
BISC_ALIGN_PQTR). To estimate tap 
resolution take (¼ of the memory clock 
period)/ (BISC_PQTR – 
BISC_ALIGN_PQTR). Useful for error code 
0x6.

BISC_NQTR_NIBBLE* One per nibble

Initial 90° offset value provided by BISC 
at power-up. Compute 90° value in taps 
by taking (BISC_NQTR – 
BISC_ALIGN_NQTR). To estimate tap 
resolution take (¼ of the memory clock 
period)/ (BISC_NQTR – 
BISC_ALIGN_NQTR). Useful for error 
code 0x6.

RDLVL_PQTR_FINAL_NIBBLE* One per nibble Final Read leveling PQTR tap position 
from the XIPHY.

RDLVL_NQTR_FINAL_NIBBLE* One per nibble Final Read leveling NQTR tap position 
from the XIPHY.

RDLVL_IDELAY_FINAL_BYTE*_BIT* One per Bit Final IDELAY tap position from the 
XIPHY.

Table 38-20: Signals of Interest for Read Leveling Calibration (Cont’d)

Signal Usage Signal Description
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RDLVL_IDELAY_DBI_FINAL_BYTE* One per Byte Reserved

BUS_DATA_BURST (2014.3+)

When a failure occurs during simple 
pattern read training, some data is saved 
to indicate what the data looks like for a 
byte across some tap settings for a given 
byte the failure occurred for (DQ IDELAY 
is left wherever the algorithm left it).
Read DQS centering (Figure 38-48):
BUS_DATA_BURST_0 holds a single burst 
of data when PQTR/NQTR set to 0 taps.
BUS_DATA_BURST_1 holds a single burst 
of data when PQTR/NQTR set to 90°.
BUS_DATA_BURST_2 holds a single burst 
of data when PQTR/NQTR set to 180°.
BUS_DATA_BURST_3 holds a single burst 
of data when PQTR/NQTR set to 270°.

Table 38-20: Signals of Interest for Read Leveling Calibration (Cont’d)

Signal Usage Signal Description

X-Ref Target - Figure 38-48

Figure 38-48: Read DQS Centering Error (XSDB BUS_DATA_BURST)
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Data swizzling (bit reordering) is completed within the UltraScale PHY. Therefore, the data 
visible on BUS_DATA_BURST and a scope in hardware is ordered differently compared to 
what would be seen in ChipScope. Figure 38-49 and Figure 38-50 are examples of how the 
data is converted.

X-Ref Target - Figure 38-49

Figure 38-49: Expected Read Pattern of Toggling 0101_0101
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This is a sample of results for Read MPR DQS Centering using the Memory IP Debug GUI 
within the Hardware Manager. 

Note: Either the “Table” or “Chart” view can be used to look at the window.

Figure 38-51 and Figure 38-52 are screen captures from 2015.1 and might vary from the 
current version.

X-Ref Target - Figure 38-50

Figure 38-50: Expected Read Pattern of Toggling 1010_1010
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This is a sample of results for the Read Per-Bit Deskew XSDB debug signals:

RDLVL_IDELAY_VALUE_RANK0_BYTE0_BIT0 string true true 042
RDLVL_IDELAY_VALUE_RANK0_BYTE0_BIT1 string true true 042
RDLVL_IDELAY_VALUE_RANK0_BYTE0_BIT2 string true true 042
RDLVL_IDELAY_VALUE_RANK0_BYTE0_BIT3 string true true 045
RDLVL_IDELAY_VALUE_RANK0_BYTE0_BIT4 string true true 03a
RDLVL_IDELAY_VALUE_RANK0_BYTE0_BIT5 string true true 03e
RDLVL_IDELAY_VALUE_RANK0_BYTE0_BIT6 string true true 040
RDLVL_IDELAY_VALUE_RANK0_BYTE0_BIT7 string true true 03d
RDLVL_IDELAY_VALUE_RANK0_BYTE1_BIT0 string true true 038
RDLVL_IDELAY_VALUE_RANK0_BYTE1_BIT1 string true true 03d
RDLVL_IDELAY_VALUE_RANK0_BYTE1_BIT2 string true true 03e
RDLVL_IDELAY_VALUE_RANK0_BYTE1_BIT3 string true true 039
RDLVL_IDELAY_VALUE_RANK0_BYTE1_BIT4 string true true 03a
RDLVL_IDELAY_VALUE_RANK0_BYTE1_BIT5 string true true 034
RDLVL_IDELAY_VALUE_RANK0_BYTE1_BIT6 string true true 03c
RDLVL_IDELAY_VALUE_RANK0_BYTE1_BIT7 string true true 033
RDLVL_IDELAY_VALUE_RANK0_BYTE2_BIT0 string true true 041

X-Ref Target - Figure 38-51

Figure 38-51: Example Read Calibration Margin from Memory IP Debug GUI
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RDLVL_IDELAY_VALUE_RANK0_BYTE2_BIT1 string true true 042
RDLVL_IDELAY_VALUE_RANK0_BYTE2_BIT2 string true true 031
RDLVL_IDELAY_VALUE_RANK0_BYTE2_BIT3 string true true 040
RDLVL_IDELAY_VALUE_RANK0_BYTE2_BIT4 string true true 040
RDLVL_IDELAY_VALUE_RANK0_BYTE2_BIT5 string true true 033
RDLVL_IDELAY_VALUE_RANK0_BYTE2_BIT6 string true true 036
RDLVL_IDELAY_VALUE_RANK0_BYTE2_BIT7 string true true 031
RDLVL_IDELAY_VALUE_RANK0_BYTE3_BIT0 string true true 038
RDLVL_IDELAY_VALUE_RANK0_BYTE3_BIT1 string true true 038
RDLVL_IDELAY_VALUE_RANK0_BYTE3_BIT2 string true true 035
RDLVL_IDELAY_VALUE_RANK0_BYTE3_BIT3 string true true 035
RDLVL_IDELAY_VALUE_RANK0_BYTE3_BIT4 string true true 036
RDLVL_IDELAY_VALUE_RANK0_BYTE3_BIT5 string true true 03c
RDLVL_IDELAY_VALUE_RANK0_BYTE3_BIT6 string true true 038
RDLVL_IDELAY_VALUE_RANK0_BYTE3_BIT7 string true true 037
RDLVL_NQTR_CENTER_RANK0_NIBBLE0        string true true 03c
RDLVL_NQTR_CENTER_RANK0_NIBBLE1        string true true 03a
RDLVL_NQTR_CENTER_RANK0_NIBBLE2        string true true 03a
RDLVL_NQTR_CENTER_RANK0_NIBBLE3        string true true 039
RDLVL_NQTR_CENTER_RANK0_NIBBLE4        string true true 044
RDLVL_NQTR_CENTER_RANK0_NIBBLE5        string true true 038
RDLVL_NQTR_CENTER_RANK0_NIBBLE6        string true true 039
RDLVL_NQTR_CENTER_RANK0_NIBBLE7        string true true 03b
RDLVL_NQTR_LEFT_RANK0_NIBBLE0              string true true 009
RDLVL_NQTR_LEFT_RANK0_NIBBLE1              string true true 006
RDLVL_NQTR_LEFT_RANK0_NIBBLE2              string true true 00b
RDLVL_NQTR_LEFT_RANK0_NIBBLE3              string true true 008
RDLVL_NQTR_LEFT_RANK0_NIBBLE4              string true true 010
RDLVL_NQTR_LEFT_RANK0_NIBBLE5              string true true 006
RDLVL_NQTR_LEFT_RANK0_NIBBLE6              string true true 006
RDLVL_NQTR_LEFT_RANK0_NIBBLE7              string true true 00a
RDLVL_NQTR_RIGHT_RANK0_NIBBLE0            string true true 06f
RDLVL_NQTR_RIGHT_RANK0_NIBBLE1            string true true 06e
RDLVL_NQTR_RIGHT_RANK0_NIBBLE2            string true true 06a
RDLVL_NQTR_RIGHT_RANK0_NIBBLE3            string true true 06a
RDLVL_NQTR_RIGHT_RANK0_NIBBLE4            string true true 078
RDLVL_NQTR_RIGHT_RANK0_NIBBLE5            string true true 06a
RDLVL_NQTR_RIGHT_RANK0_NIBBLE6            string true true 06c
RDLVL_NQTR_RIGHT_RANK0_NIBBLE7            string true true 06d
RDLVL_PQTR_CENTER_RANK0_NIBBLE0        string true true 040
RDLVL_PQTR_CENTER_RANK0_NIBBLE1        string true true 040
RDLVL_PQTR_CENTER_RANK0_NIBBLE2        string true true 037
RDLVL_PQTR_CENTER_RANK0_NIBBLE3        string true true 03a
RDLVL_PQTR_CENTER_RANK0_NIBBLE4        string true true 043
RDLVL_PQTR_CENTER_RANK0_NIBBLE5        string true true 037
RDLVL_PQTR_CENTER_RANK0_NIBBLE6        string true true 03e
RDLVL_PQTR_CENTER_RANK0_NIBBLE7        string true true 040
RDLVL_PQTR_LEFT_RANK0_NIBBLE0              string true true 013
RDLVL_PQTR_LEFT_RANK0_NIBBLE1              string true true 015
RDLVL_PQTR_LEFT_RANK0_NIBBLE2              string true true 008
RDLVL_PQTR_LEFT_RANK0_NIBBLE3              string true true 00b
RDLVL_PQTR_LEFT_RANK0_NIBBLE4              string true true 018
RDLVL_PQTR_LEFT_RANK0_NIBBLE5              string true true 008
RDLVL_PQTR_LEFT_RANK0_NIBBLE6              string true true 00d
RDLVL_PQTR_LEFT_RANK0_NIBBLE7              string true true 012
RDLVL_PQTR_RIGHT_RANK0_NIBBLE0            string true true 06e
RDLVL_PQTR_RIGHT_RANK0_NIBBLE1            string true true 06c
RDLVL_PQTR_RIGHT_RANK0_NIBBLE2            string true true 066
RDLVL_PQTR_RIGHT_RANK0_NIBBLE3            string true true 06a
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RDLVL_PQTR_RIGHT_RANK0_NIBBLE4            string true true 06f
RDLVL_PQTR_RIGHT_RANK0_NIBBLE5            string true true 067
RDLVL_PQTR_RIGHT_RANK0_NIBBLE6            string true true 06f
RDLVL_PQTR_RIGHT_RANK0_NIBBLE7            string true true 06f
MULTI_RANK_RDLVL_IDELAY_BYTE0_BIT0     string true true 000
MULTI_RANK_RDLVL_IDELAY_BYTE0_BIT1     string true true 000
MULTI_RANK_RDLVL_IDELAY_BYTE0_BIT2     string true true 000
MULTI_RANK_RDLVL_IDELAY_BYTE0_BIT3     string true true 000
MULTI_RANK_RDLVL_IDELAY_BYTE0_BIT4     string true true 000
MULTI_RANK_RDLVL_IDELAY_BYTE0_BIT5     string true true 000
MULTI_RANK_RDLVL_IDELAY_BYTE0_BIT6     string true true 000
MULTI_RANK_RDLVL_IDELAY_BYTE0_BIT7     string true true 000
MULTI_RANK_RDLVL_IDELAY_BYTE1_BIT0     string true true 000
MULTI_RANK_RDLVL_IDELAY_BYTE1_BIT1     string true true 000
MULTI_RANK_RDLVL_IDELAY_BYTE1_BIT2     string true true 000
MULTI_RANK_RDLVL_IDELAY_BYTE1_BIT3     string true true 000
MULTI_RANK_RDLVL_IDELAY_BYTE1_BIT4     string true true 000
MULTI_RANK_RDLVL_IDELAY_BYTE1_BIT5     string true true 000
MULTI_RANK_RDLVL_IDELAY_BYTE1_BIT6     string true true 000
MULTI_RANK_RDLVL_IDELAY_BYTE1_BIT7     string true true 000
MULTI_RANK_RDLVL_IDELAY_BYTE2_BIT0     string true true 000
MULTI_RANK_RDLVL_IDELAY_BYTE2_BIT1     string true true 000
MULTI_RANK_RDLVL_IDELAY_BYTE2_BIT2     string true true 000
MULTI_RANK_RDLVL_IDELAY_BYTE2_BIT3     string true true 000
MULTI_RANK_RDLVL_IDELAY_BYTE2_BIT4     string true true 000
MULTI_RANK_RDLVL_IDELAY_BYTE2_BIT5     string true true 000
MULTI_RANK_RDLVL_IDELAY_BYTE2_BIT6     string true true 000
MULTI_RANK_RDLVL_IDELAY_BYTE2_BIT7     string true true 000
MULTI_RANK_RDLVL_IDELAY_BYTE3_BIT0     string true true 000
MULTI_RANK_RDLVL_IDELAY_BYTE3_BIT1     string true true 000
MULTI_RANK_RDLVL_IDELAY_BYTE3_BIT2     string true true 000
MULTI_RANK_RDLVL_IDELAY_BYTE3_BIT3     string true true 000
MULTI_RANK_RDLVL_IDELAY_BYTE3_BIT4     string true true 000
MULTI_RANK_RDLVL_IDELAY_BYTE3_BIT5     string true true 000
MULTI_RANK_RDLVL_IDELAY_BYTE3_BIT6     string true true 000
MULTI_RANK_RDLVL_IDELAY_BYTE3_BIT7     string true true 000
MULTI_RANK_RDLVL_NQTR_NIBBLE0 string true true 000
MULTI_RANK_RDLVL_NQTR_NIBBLE1 string true true 000
MULTI_RANK_RDLVL_NQTR_NIBBLE2 string true true 000
MULTI_RANK_RDLVL_NQTR_NIBBLE3 string true true 000
MULTI_RANK_RDLVL_NQTR_NIBBLE4 string true true 000
MULTI_RANK_RDLVL_NQTR_NIBBLE5 string true true 000
MULTI_RANK_RDLVL_NQTR_NIBBLE6 string true true 000
MULTI_RANK_RDLVL_NQTR_NIBBLE7 string true true 000
MULTI_RANK_RDLVL_PQTR_NIBBLE0               string true true 000
MULTI_RANK_RDLVL_PQTR_NIBBLE1               string true true 000
MULTI_RANK_RDLVL_PQTR_NIBBLE2               string true true 000
MULTI_RANK_RDLVL_PQTR_NIBBLE3               string true true 000
MULTI_RANK_RDLVL_PQTR_NIBBLE4               string true true 000
MULTI_RANK_RDLVL_PQTR_NIBBLE5               string true true 000
MULTI_RANK_RDLVL_PQTR_NIBBLE6               string true true 000
MULTI_RANK_RDLVL_PQTR_NIBBLE7               string true true 000
BISC_ALIGN_NQTR_NIBBLE0 string true true 000
BISC_ALIGN_NQTR_NIBBLE1 string true true 000
BISC_ALIGN_NQTR_NIBBLE2 string true true 000
BISC_ALIGN_NQTR_NIBBLE3 string true true 000
BISC_ALIGN_NQTR_NIBBLE4 string true true 000
BISC_ALIGN_NQTR_NIBBLE5 string true true 000
BISC_ALIGN_NQTR_NIBBLE6 string true true 000
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BISC_ALIGN_NQTR_NIBBLE7 string true true 000
BISC_ALIGN_PQTR_NIBBLE0 string true true 007
BISC_ALIGN_PQTR_NIBBLE1 string true true 004
BISC_ALIGN_PQTR_NIBBLE2 string true true 006
BISC_ALIGN_PQTR_NIBBLE3 string true true 005
BISC_ALIGN_PQTR_NIBBLE4 string true true 005
BISC_ALIGN_PQTR_NIBBLE5 string true true 004
BISC_ALIGN_PQTR_NIBBLE6 string true true 004
BISC_ALIGN_PQTR_NIBBLE7 string true true 004
BISC_NQTR_NIBBLE0 string true true 036
BISC_NQTR_NIBBLE1 string true true 033
BISC_NQTR_NIBBLE2 string true true 037
BISC_NQTR_NIBBLE3 string true true 035
BISC_NQTR_NIBBLE4 string true true 037
BISC_NQTR_NIBBLE5 string true true 036
BISC_NQTR_NIBBLE6 string true true 036
BISC_NQTR_NIBBLE7 string true true 036
BISC_PQTR_NIBBLE0 string true true 038
BISC_PQTR_NIBBLE1 string true true 036
BISC_PQTR_NIBBLE2 string true true 038
BISC_PQTR_NIBBLE3 string true true 035
BISC_PQTR_NIBBLE4 string true true 037
BISC_PQTR_NIBBLE5 string true true 037
BISC_PQTR_NIBBLE6 string true true 035
BISC_PQTR_NIBBLE7 string true true 036

Expected Results

• Look at the individual PQTR/NQTR tap settings for each nibble. The taps should only 
vary by 0 to 20 taps. Use the BISC values to compute the estimated bit time in taps. 

° For example, Byte 7 Nibble 0 in Figure 38-52 is shifted and smaller compared to the 
remaining nibbles. This type of result is not expected. For this specific example, the 
FPGA was not properly loaded into the socket.
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• Determine if any bytes completed successfully. The read DQS Centering algorithm 
sequentially steps through each DQS byte group detecting the capture edges. 

• To analyze the window size in ps, see the Determining Window Size in ps, page 773. In 
some cases, simple pattern calibration might show a better than ideal rise or fall 
window. Because a simple pattern (clock pattern) is used, it is possible for the rising 
edge clock to always find the same value (for example, 1) and the falling edge to always 
find the opposite (for example, 0). This can occur due to a non-ideal starting VREF value 
which causes duty cycle distortion making the rise or fall larger than the other. If the 
rise and fall window sizes are added together and compared against the expected clock 
cycle time, the result should be more reasonable. 

As a general rule of thumb, the window size for a healthy system should be ≥ 30% of the 
expected UI size.

Hardware Measurements

1. Using high quality probes and scope, probe the address/command to ensure the load 
register command to the DRAM that enables MPR was correct. To enable the MPR, a 
Mode register set (MRS) command is issued to the MR3 register with bit A2 = 1. To make 
this measurement, bring a scope trigger to an I/O based on the following conditions:

° cal_r*_status[9]= R (rising edge) && dbg_rd_valid = 1’b0 && 
cal_seq_cnt[2:0] = 3’b0

X-Ref Target - Figure 38-52

Figure 38-52: Example of Suspicious Calibration Read Margin
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° To view each byte, add an additional trigger on dbg_cmp_byte and set to the byte 
of interest.

Within this capture, A2 (must be 1) and we_n (must be 0). 

2. Probe the read commands at the memory:

° Read = cs_n = 1; ras_n = 0; cas_n = 1; we_n = 0; act_n = 1 (DDR4 only)
3. Probe a data pin to check for data being returned from the DRAM. 
4. Probe the read burst and check if the expected data pattern is being returned. 
5. Check for floating address pins if the expected data is not returned. 
6. Check for any stuck-at level issues on DQ pins whose signal level does not change. If at 

all possible probe at the receiver to check termination and signal integrity.
7. Check the DBG port signals and the full read data and comparison result to check the 

data in general interconnect. The calibration algorithm has RTL logic issue the 
commands and check the data. Check if the dbg_rd_valid aligns with the data pattern 
or is OFF (which can indicate an issue with DQS gate calibration). Set up a trigger when 
the error gets asserted to capture signals in the hardware debugger for analysis.

8. Re-check results from DQS gate or other previous calibration stages. Compare passing 
byte lanes against failing byte lanes for previous stages of calibration. If a failure occurs 
during simple pattern calibration, check the values found during deskew for example.

9. All of the data comparison for read DQS centering occurs in the general interconnect, so 
it can be useful to pull in the debug data in the hardware debugger and take a look at 
what the data looks like coming back as taps are adjusted, see Figure 38-53 and 
Figure 38-54. Screenshots shown are from simulation, with a small burst of five reads. 
Look at dbg_rd_data, dbg_rd_data_cmp, and dbg_rd_valid.

10. Using the Vivado Hardware Manager and while running the Memory IP Example Design 
with Debug Signals enabled, set the Read Centering trigger to (cal_r*_status[10] 
= R (rising edge) && dbg_rd_valid = 1’b0 && cal_seq_cnt[2:0] = 3’b0). To view 
each byte, add an additional trigger on dbg_cmp_byte and set to the byte of interest. 
The following simulation example shows how the debug signals should behave during 
successful Read DQS Centering.
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11. After failure during this stage of calibration, the design goes into a continuous loop of 
read commands to allow board probing.

Write Calibration Overview 

Note: The calibration step is only enabled for the first rank in a multi-rank system.

The DRAM requires the write DQS to be center-aligned with the DQ to ensure maximum 
write margin. Initially the write DQS is set to be roughly 90° out of phase with the DQ using 
the XIPHY TX_DATA_PHASE set for the DQS. The TX_DATA_PHASE is an optional per-bit 
adjustment that uses a fast internal XIPHY clock to generate a 90° offset between bits. The 
DQS and DQ ODELAY are used to fine tune the 90° phase alignment to ensure maximum 
margin at the DRAM.

A simple clock pattern of 10101010 is used initially because the write latency has not yet 
been determined. Due to fly-by routing on the PCB/DIMM module, the command to data 
timing is unknown until the next stage of calibration. Just as in read per-bit deskew when 
issuing a write to the DRAM, the DQS and DQ toggles for eight clock cycles before and after 
the expected write latency. This is used to ensure the data is written into the DRAM even if 

X-Ref Target - Figure 38-53

Figure 38-53: RTL Debug Signals during Read DQS Centering (No Error)
X-Ref Target - Figure 38-54

Figure 38-54: RTL Debug Signals during Read DQS Centering (Error Case Shown)
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the command-to-write data relationship is still unknown. Write DQS-to-DQ is completed in 
two stages, per-bit deskew and DQS centering.

Debugging Write Per-Bit Deskew Failures

Initially all DQ bits have the same ODELAY setting based on the write leveling results, but 
the ODELAY for each bit might need to be adjusted to account for skew between bits. 
Figure 38-55 shows an example of the initial timing relationship between a write DQS and 
DQ. 

1. Set TX_DATA_PHASE to 1 for DQ to add the 90° shift on the DQS relative to the DQ for 
a given byte (Figure 38-56). The data read back on some DQ bits are 10101010 while 
other DQ bits might be 01010101. 

2. If all the data for the byte does not match the expected data pattern, increment DQS 
ODELAY one tap at a time until the expected data pattern is found on all bits and save 
the delay as WRITE_DQS_TO_DQ_DESKEW_DELAY_Byte (Figure 38-57). As the DQS 
ODELAY is incremented, it moves away from the edge alignment with the CK. The 
deskew data is the inner edge of the data valid window for writes.

X-Ref Target - Figure 38-55

Figure 38-55: Initial Write DQS and DQ with Skew between Bits

Write DQS

DQ0

DQ1

DQn

TX_CLK_PHASE set to 1 for DQS
TX_CLK_PHASE set to 0 for DQ

X24480-082420

X-Ref Target - Figure 38-56

Figure 38-56: Add 90° Shift on DQ
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3. Increment each DQ ODELAY until each bit fails to return the expected data pattern (the 
data is edge aligned with the write DQS, Figure 38-58).

4. Return the DQ to the original position at the 0° shift using the TX_DATA_PHASE. Set DQS 
ODELAY back to starting value (Figure 38-59).

X-Ref Target - Figure 38-57

Figure 38-57: Increment Write DQS ODELAY until All Bits Captured with Correct Pattern
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X-Ref Target - Figure 38-58

Figure 38-58: Per-Bit Write Deskew
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Debug

To determine the status of Write Per-Bit Deskew Calibration, click the Write DQS to DQ 
Deskew stage under the Status window and view the results within the Memory IP 
Properties window. The message displayed in Memory IP Properties identifies how the 
stage failed or notes if it passed successfully. 

X-Ref Target - Figure 38-59

Figure 38-59: DQ Returned to Approximate 90° Offset with DQS
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The status of Write Per-Bit Deskew can also be determined by decoding the 
DDR_CAL_ERROR_0 and DDR_CAL_ERROR_1 results according to the Table 38-21. Execute 
the Tcl commands noted in the XSDB Debug section to generate the XSDB output 
containing the signal results.

X-Ref Target - Figure 38-60

Figure 38-60: Memory IP XSDB Debug GUI Example – Write DQS to DQ Deskew
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Table 38-22 shows the signals and values adjusted or used during the Write Per-Bit Deskew 
stage of calibration. The values can be analyzed in both successful and failing calibrations 
to determine the resultant values and the consistency in results across resets. These values 
can be found within the Memory IP Core Properties within the Hardware Manager or by 
executing the Tcl commands noted in the XSDB Debug section. 

Table 38-21: DDR_CAL_ERROR Decode for Write DQS Centering Calibration
Write 

DQS-to-DQ 
Deskew

DDR_CAL_
ERROR_

CODE

DDR_CAL_
ERROR_1

DDR_CAL_
ERROR_0 Description Recommended Debug Steps

0x1 Byte Bit DQS Deskew Error. Ran out of 
taps, no valid data found.

Check BUS_DATA_BURST XSDB field to 
check what values were returned. Check 
the alignment of DQS to DQ during a 
write burst with a scope on the PCB. 
Check the DQS-to-CK alignment. Check 
the WRLVL fields in XSDB for a given 
byte.

0x2 Byte Bit 
DQ (or DM) Deskew Error. 
Failure point not found (bit 
only indicated when set to 
CAL_FULL).

Check for a mapping issue. This usually 
implies a delay is not moving when it 
should. Check the connections going to 
the XIPHY and ensure the correct RIU is 
selected based on the byte being 
adjusted.

0xF Byte N/A Timeout error waiting for read 
data to return.

Check the dbg_cal_seq_rd_cnt and 
dbg_cal_seq_cnt.

Table 38-22: Signals of Interest for Write Per-Bit Deskew
Signal Usage Signal Description

WRITE_DQS_TO_DQ_DESKEW_DELAY_BYTE* One per Byte
ODELAY value required to place DQS into the byte 
write data valid window during write per-bit 
deskew. 

WRITE_DQS_ODELAY_FINAL_BYTE* One per Byte Final DQS ODELAY value.

WRITE_DQ_ODELAY_FINAL_BYTE*_BIT* One per Bit Final DQ ODELAY value.

BUS_DATA_BURST (2014.3+)

During calibration for a byte an example data 
burst is saved for later analysis in case of failure.
BUS_DATA_BURST_0 holds an initial read data 
burst pattern for a given byte with the starting 
alignment prior to write deskew (TX_DATA_PHASE 
set to 1 for DQS, 0 for DQ). The ODELAY values for 
DQS and DQ are the initial WRLVL values.
After a byte calibrates, the example read data 
saved in the BUS_DATA_BURST registers is cleared. 
BUS_DATA_BURST_1, BUS_DATA_BURST_2, and 
BUS_DATA_BURST_3 are not used.
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Data swizzling (bit reordering) is completed within the UltraScale PHY. Therefore, the data 
visible on BUS_DATA_BURST and a scope in hardware is ordered differently compared to 
what would be seen in ChipScope. Figure 38-62 is an example of how the data is converted.

This is a sample of results for the Write DQS Centering XSDB debug signals:

WRITE_DQS_ODELAY_FINAL_BYTE0 string true true 02b
WRITE_DQS_ODELAY_FINAL_BYTE1 string true true 010
WRITE_DQS_ODELAY_FINAL_BYTE2 string true true 020
WRITE_DQS_ODELAY_FINAL_BYTE3 string true true 02b

X-Ref Target - Figure 38-61

Figure 38-61: Write DQS Centering (XSDB BUS_DATA_BURST_0)
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X-Ref Target - Figure 38-62

Figure 38-62: Write DQS-to-DQ Debug Data (XSDB BUS_DATA_BURST, Associated Read Data Saved)
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WRITE_DQS_ODELAY_FINAL_BYTE4 string true true 00b
WRITE_DQS_ODELAY_FINAL_BYTE5 string true true 02c
WRITE_DQS_ODELAY_FINAL_BYTE6 string true true 01b
WRITE_DQS_ODELAY_FINAL_BYTE7 string true true 02b
WRITE_DQS_ODELAY_FINAL_BYTE8 string true true 016
WRITE_DQS_TO_DQ_DESKEW_DELAY_BYTE0 string true true 035
WRITE_DQS_TO_DQ_DESKEW_DELAY_BYTE1 string true true 01d
WRITE_DQS_TO_DQ_DESKEW_DELAY_BYTE2 string true true 030
WRITE_DQS_TO_DQ_DESKEW_DELAY_BYTE3 string true true 03a
WRITE_DQS_TO_DQ_DESKEW_DELAY_BYTE4 string true true 019
WRITE_DQS_TO_DQ_DESKEW_DELAY_BYTE5 string true true 039
WRITE_DQS_TO_DQ_DESKEW_DELAY_BYTE6 string true true 028
WRITE_DQS_TO_DQ_DESKEW_DELAY_BYTE7 string true true 039
WRITE_DQS_TO_DQ_DESKEW_DELAY_BYTE8 string true true 028
WRITE_DQ_ODELAY_FINAL_BYTE0_BIT0 string true true 033
WRITE_DQ_ODELAY_FINAL_BYTE0_BIT1 string true true 034
WRITE_DQ_ODELAY_FINAL_BYTE0_BIT2 string true true 033
WRITE_DQ_ODELAY_FINAL_BYTE0_BIT3 string true true 030
WRITE_DQ_ODELAY_FINAL_BYTE0_BIT4 string true true 02b
WRITE_DQ_ODELAY_FINAL_BYTE0_BIT5 string true true 02b
WRITE_DQ_ODELAY_FINAL_BYTE0_BIT6 string true true 033
WRITE_DQ_ODELAY_FINAL_BYTE0_BIT7 string true true 02c
WRITE_DQ_ODELAY_FINAL_BYTE1_BIT0 string true true 011
WRITE_DQ_ODELAY_FINAL_BYTE1_BIT1 string true true 00e
WRITE_DQ_ODELAY_FINAL_BYTE1_BIT2 string true true 00d
WRITE_DQ_ODELAY_FINAL_BYTE1_BIT3 string true true 00c
WRITE_DQ_ODELAY_FINAL_BYTE1_BIT4 string true true 00e
WRITE_DQ_ODELAY_FINAL_BYTE1_BIT5 string true true 00e
WRITE_DQ_ODELAY_FINAL_BYTE1_BIT6 string true true 010
WRITE_DQ_ODELAY_FINAL_BYTE1_BIT7 string true true 009
WRITE_DQ_ODELAY_FINAL_BYTE2_BIT0 string true true 023
WRITE_DQ_ODELAY_FINAL_BYTE2_BIT1 string true true 01b
WRITE_DQ_ODELAY_FINAL_BYTE2_BIT2 string true true 01d
WRITE_DQ_ODELAY_FINAL_BYTE2_BIT3 string true true 019
WRITE_DQ_ODELAY_FINAL_BYTE2_BIT4 string true true 019
WRITE_DQ_ODELAY_FINAL_BYTE2_BIT5 string true true 01a
WRITE_DQ_ODELAY_FINAL_BYTE2_BIT6 string true true 01d
WRITE_DQ_ODELAY_FINAL_BYTE2_BIT7 string true true 014
WRITE_DQ_ODELAY_FINAL_BYTE3_BIT0 string true true 02b
WRITE_DQ_ODELAY_FINAL_BYTE3_BIT1 string true true 02a
WRITE_DQ_ODELAY_FINAL_BYTE3_BIT2 string true true 025
WRITE_DQ_ODELAY_FINAL_BYTE3_BIT3 string true true 025
WRITE_DQ_ODELAY_FINAL_BYTE3_BIT4 string true true 028
WRITE_DQ_ODELAY_FINAL_BYTE3_BIT5 string true true 029
WRITE_DQ_ODELAY_FINAL_BYTE3_BIT6 string true true 021
WRITE_DQ_ODELAY_FINAL_BYTE3_BIT7 string true true 02b
WRITE_DQ_ODELAY_FINAL_BYTE4_BIT0 string true true 008
WRITE_DQ_ODELAY_FINAL_BYTE4_BIT1 string true true 005
WRITE_DQ_ODELAY_FINAL_BYTE4_BIT2 string true true 00b
WRITE_DQ_ODELAY_FINAL_BYTE4_BIT3 string true true 008
WRITE_DQ_ODELAY_FINAL_BYTE4_BIT4 string true true 004
WRITE_DQ_ODELAY_FINAL_BYTE4_BIT5 string true true 000
WRITE_DQ_ODELAY_FINAL_BYTE4_BIT6 string true true 009
WRITE_DQ_ODELAY_FINAL_BYTE4_BIT7 string true true 007
WRITE_DQ_ODELAY_FINAL_BYTE5_BIT0 string true true 031
WRITE_DQ_ODELAY_FINAL_BYTE5_BIT1 string true true 02f
WRITE_DQ_ODELAY_FINAL_BYTE5_BIT2 string true true 02e
WRITE_DQ_ODELAY_FINAL_BYTE5_BIT3 string true true 02d
WRITE_DQ_ODELAY_FINAL_BYTE5_BIT4 string true true 030
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WRITE_DQ_ODELAY_FINAL_BYTE5_BIT5 string true true 030
WRITE_DQ_ODELAY_FINAL_BYTE5_BIT6 string true true 030
WRITE_DQ_ODELAY_FINAL_BYTE5_BIT7 string true true 02a
WRITE_DQ_ODELAY_FINAL_BYTE6_BIT0 string true true 020
WRITE_DQ_ODELAY_FINAL_BYTE6_BIT1 string true true 023
WRITE_DQ_ODELAY_FINAL_BYTE6_BIT2 string true true 01f
WRITE_DQ_ODELAY_FINAL_BYTE6_BIT3 string true true 01f
WRITE_DQ_ODELAY_FINAL_BYTE6_BIT4 string true true 01f
WRITE_DQ_ODELAY_FINAL_BYTE6_BIT5 string true true 01d
WRITE_DQ_ODELAY_FINAL_BYTE6_BIT6 string true true 01d
WRITE_DQ_ODELAY_FINAL_BYTE6_BIT7 string true true 01b
WRITE_DQ_ODELAY_FINAL_BYTE7_BIT0 string true true 033
WRITE_DQ_ODELAY_FINAL_BYTE7_BIT1 string true true 031
WRITE_DQ_ODELAY_FINAL_BYTE7_BIT2 string true true 028
WRITE_DQ_ODELAY_FINAL_BYTE7_BIT3 string true true 02a
WRITE_DQ_ODELAY_FINAL_BYTE7_BIT4 string true true 02d
WRITE_DQ_ODELAY_FINAL_BYTE7_BIT5 string true true 02b
WRITE_DQ_ODELAY_FINAL_BYTE7_BIT6 string true true 031
WRITE_DQ_ODELAY_FINAL_BYTE7_BIT7 string true true 02e
WRITE_DQ_ODELAY_FINAL_BYTE8_BIT0 string true true 01f
WRITE_DQ_ODELAY_FINAL_BYTE8_BIT1 string true true 020
WRITE_DQ_ODELAY_FINAL_BYTE8_BIT2 string true true 017
WRITE_DQ_ODELAY_FINAL_BYTE8_BIT3 string true true 01c
WRITE_DQ_ODELAY_FINAL_BYTE8_BIT4 string true true 018
WRITE_DQ_ODELAY_FINAL_BYTE8_BIT5 string true true 013
WRITE_DQ_ODELAY_FINAL_BYTE8_BIT6 string true true 01f
WRITE_DQ_ODELAY_FINAL_BYTE8_BIT7 string true true 012

Hardware Measurements

Probe the DQ bit alignment at the memory during writes. Trigger at the start 
(cal_r*_status[14] = R for Rising Edge) and again at the end of per bit deskew 
(cal_r*_status[15] = R for Rising Edge) to view the starting and ending alignments. To 
look at each byte, add a trigger on the byte using dbg_cmp_byte.

Expected Results

Hardware measurements should show the write DQ bits are deskewed at the end of these 
calibration stages.

• Determine if any bytes completed successfully. The write calibration algorithm 
sequentially steps through each DQS byte group detecting the capture edges. 

• If the incorrect data pattern is detected, determine if the error is due to the write access 
or the read access. See the Determining If a Data Error is Due to the Write or Read, 
page 770.

Using the Vivado Hardware Manager and while running the Memory IP Example Design 
with Debug Signals enabled, set the trigger (cal_r*_status[14] =R for Rising Edge). 
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The following simulation examples show how the debug signals should behave during 
successful Write Per-Bit Deskew: 

X-Ref Target - Figure 38-63

Figure 38-63: RTL Debug Signals during Write Per-Bit Deskew #1
X-Ref Target - Figure 38-64

Figure 38-64: RTL Debug Signals during Write Per-Bit Deskew #2
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Debugging Write DQS Centering Failures

After per-bit write deskew, the next step is to determine the relative center of the DQS in the 
write data eye and compensate for any error in the TX_DATA_PHASE 90° offset.

1. Issue a set of write and read bursts with the data pattern 10101010 and check the read 
data. Just as in read write per-bit deskew when issuing a write to the DRAM, the DQS and 
DQ toggles for eight clock cycles before and after the expected write latency. This is 
used to ensure the data is written into the DRAM even if the command-to-write data 
relationship is still unknown.

2. Increment DQ ODELAY taps together until the read data pattern on all DQ bits changes 
from the expected data pattern 10101010. The amount of delay required to find the 
failing point is saved as WRITE_DQS_TO_DQ_PRE_ADJUST_MARGIN_LEFT_BYTE as shown 
in Figure 38-66.

3. Return DQ ODELAY taps to their original value.

X-Ref Target - Figure 38-65

Figure 38-65: RTL Debug Signals during Write Per-Bit Deskew #3

X-Ref Target - Figure 38-66

Figure 38-66: Write DQS Centering – Left Edge
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4. Find the right edge of the window by incrementing the DQS ODELAY taps until the data 
changes from the expected data pattern 10101010. The amount of delay required to 
find the failing point is saved as 
WRITE_DQS_TO_DQ_PRE_ADJUST_MARGIN_RIGHT_BYTE as shown in Figure 38-67. 

5. Calculate the center tap location for the DQS ODELAY, based on deskew and left and 
right edges. 

New DQS delay = deskew – [(dly0 – dly1)/2]

Where dly0 is the original DQS delay + left margin and dly1 is the original DQS delay + 
right margin.

The final ODELAY tap setting for DQS is indicated by 
WRITE_DQS_TO_DQ_DQS_ODELAY_BYTE while the DQ is WRITE_DQS_TO_DQ_DQ_ODELAY. 
The final computed left and right margin are WRITE_DQS_TO_DQ _MARGIN_LEFT_BYTE and 
WRITE_DQS_TO_DQ _MARGIN_RIGHT_BYTE.

Debug

To determine the status of Write DQS Centering Calibration, click the Write DQS to DQ 
(Simple) stage under the Status window and view the results within the Memory IP 
Properties window. The message displayed in Memory IP Properties identifies how the 
stage failed or notes if it passed successfully. 

X-Ref Target - Figure 38-67

Figure 38-67: Write DQS Centering – Right Edge

FDQ[n] 0 F 0

Write 
DQS

Write DQS 
Delayed

X24486-082420

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG150&Title=UltraScale%20Architecture-Based%20FPGAs%20Memory%20IP%20v1.4&releaseVersion=1.4&docPage=681


UltraScale Architecture-Based FPGAs Memory IP v1.4 682
PG150 October 22, 2021 www.xilinx.com

Chapter 38: Debugging

The status of Write DQS Centering can also be determined by decoding the 
DDR_CAL_ERROR_0 and DDR_CAL_ERROR_1 results according to Table 38-23. Execute the 
Tcl commands noted in the XSDB Debug section to generate the XSDB output containing 
the signal results. 

X-Ref Target - Figure 38-68

Figure 38-68: Memory IP XSDB Debug GUI Example – Write DQS to DQ (Simple)
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Table 38-23: DDR_CAL_ERROR Decode for Write DQS Centering Calibration
Write DQS 

to DQ 
DDR_CAL_

ERROR_
CODE

DDR_CAL
_ERROR_

1

DDR_CAL
_ERROR_

0
Description Recommended Debug Steps

0x1 Byte N/A No valid data found

Check BUS_DATA_BURST XSDB field to 
check what values were returned. Check 
the alignment of DQS to DQ during a write 
burst with a scope on the PCB. Check the 
DQS-to-CK alignment. Check the WRLVL 
fields in XSDB for a given byte. Check the 
Write_dqs_to_dq_deskew values.

0x2 Byte N/A No valid data found after 
adjustment

Check what adjustments have been made 
by analyzing the following: 
WRITE_DQS_TO_DQ_PRE_ADJUST_MARGI
N_RIGHT_BYTE*
WRITE_DQS_TO_DQ_MARGIN_LEFT_BYTE*
WRITE_DQS_TO_DQ_MARGIN_RIGHT_
BYTE*
WRITE_DQS_TO_DQ_DQS_ODELAY_BYTE*
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE*_
BIT*
WRITE_DQ_ODELAY_FINAL_BYTE*_BIT*
WRITE_DQS_ODELAY_FINAL_BYTE*_BIT*
See how much DQS and DQ have moved 
from the PRE_ADJUST_MARGIN to the 
MARGIN values. If the values are 
reasonable, probe DQS and DQ in 
hardware after this stage completes 
looking at the phase alignment between 
DQS and DQ on the failing byte.

0x3 Byte N/A
Failed to return to original 
location after measuring write 
margin

0xF Byte N/A Timeout error waiting for read 
data to return

Check the dbg_cal_seq_rd_cnt and 
dbg_cal_seq_cnt.
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Table 38-24 shows the signals and values adjusted or used during the Write DQS Centering 
stage of calibration. The values can be analyzed in both successful and failing calibrations 
to determine the resultant values and the consistency in results across resets. These values 
can be found within the Memory IP Core Properties within the Hardware Manager or by 
executing the Tcl commands noted in the XSDB Debug section. 

Table 38-24: Signals of Interest for Write DQS Centering
Signal Usage Signal Description

WRITE_DQS_TO_DQ_PRE_ADJUST_MARGIN_LEFT_BYTE* One per Byte
Left side of the write DQS-to-DQ 
window measured during 
calibration before adjustments 
made.

WRITE_DQS_TO_DQ_PRE_ADJUST_MARGIN_RIGHT _BYTE* One per Byte
Right side of the write DQS-to-DQ 
window measured during 
calibration before adjustments 
made.

WRITE_DQS_TO_DQ_MARGIN_LEFT_BYTE* One per Byte Left side of the write DQS-to-DQ 
window.

WRITE_DQS_TO_DQ_MARGIN_RIGHT _BYTE* One per Byte Right side of the write DQS-to-DQ 
window.

WRITE_DQS_TO_DQ_DQS_ODELAY_BYTE* One per Byte Final DQS ODELAY value after Write 
DQS-to-DQ (simple).

WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE*_BIT* One per Bit Final DQ ODELAY value after Write 
DQS-to-DQ (simple).

WRITE_DQS_ODELAY_FINAL_BYTE*_BIT* One per Byte Final DQS ODELAY value.

WRITE_DQ_ODELAY_FINAL_BYTE*_BIT* One per Bit Final DQ ODELAY value.
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Data swizzling (bit reordering) is completed within the UltraScale PHY. Therefore, the data 
visible on BUS_DATA_BURST and a scope in hardware is ordered differently compared to 
what would be seen in ChipScope. Figure 38-69 is an example of how the data is converted. 

This is a sample of results for the Write DQS Centering XSDB debug signals:

WRITE_DQS_TO_DQ_PRE_ADJUST_MARGIN_LEFT_BYTE0     string true true 063
WRITE_DQS_TO_DQ_PRE_ADJUST_MARGIN_LEFT_BYTE1     string true true 044
WRITE_DQS_TO_DQ_PRE_ADJUST_MARGIN_LEFT_BYTE2     string true true 058
WRITE_DQS_TO_DQ_PRE_ADJUST_MARGIN_LEFT_BYTE3     string true true 065
WRITE_DQS_TO_DQ_PRE_ADJUST_MARGIN_LEFT_BYTE4     string true true 042
WRITE_DQS_TO_DQ_PRE_ADJUST_MARGIN_LEFT_BYTE5     string true true 066
WRITE_DQS_TO_DQ_PRE_ADJUST_MARGIN_LEFT_BYTE6     string true true 057
WRITE_DQS_TO_DQ_PRE_ADJUST_MARGIN_LEFT_BYTE7     string true true 068
WRITE_DQS_TO_DQ_PRE_ADJUST_MARGIN_LEFT_BYTE8     string true true 057
WRITE_DQS_TO_DQ_PRE_ADJUST_MARGIN_RIGHT_BYTE0    string true true 056
WRITE_DQS_TO_DQ_PRE_ADJUST_MARGIN_RIGHT_BYTE1    string true true 042
WRITE_DQS_TO_DQ_PRE_ADJUST_MARGIN_RIGHT_BYTE2    string true true 05a
WRITE_DQS_TO_DQ_PRE_ADJUST_MARGIN_RIGHT_BYTE3    string true true 063
WRITE_DQS_TO_DQ_PRE_ADJUST_MARGIN_RIGHT_BYTE4    string true true 042
WRITE_DQS_TO_DQ_PRE_ADJUST_MARGIN_RIGHT_BYTE5    string true true 05c

X-Ref Target - Figure 38-69

Figure 38-69: Expected Read Pattern of Toggling 1010_1010
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WRITE_DQS_TO_DQ_PRE_ADJUST_MARGIN_RIGHT_BYTE6    string true true 048
WRITE_DQS_TO_DQ_PRE_ADJUST_MARGIN_RIGHT_BYTE7    string true true 05f
WRITE_DQS_TO_DQ_PRE_ADJUST_MARGIN_RIGHT_BYTE8    string true true 048
WRITE_DQ_ODELAY_FINAL_BYTE0_BIT0                 string true true 033
WRITE_DQ_ODELAY_FINAL_BYTE0_BIT1                 string true true 034
WRITE_DQ_ODELAY_FINAL_BYTE0_BIT2                 string true true 033
WRITE_DQ_ODELAY_FINAL_BYTE0_BIT3                 string true true 030
WRITE_DQ_ODELAY_FINAL_BYTE0_BIT4                 string true true 02b
WRITE_DQ_ODELAY_FINAL_BYTE0_BIT5                 string true true 02b
WRITE_DQ_ODELAY_FINAL_BYTE0_BIT6                 string true true 033
WRITE_DQ_ODELAY_FINAL_BYTE0_BIT7                 string true true 02c
WRITE_DQ_ODELAY_FINAL_BYTE1_BIT0                 string true true 011
WRITE_DQ_ODELAY_FINAL_BYTE1_BIT1                 string true true 00e
WRITE_DQ_ODELAY_FINAL_BYTE1_BIT2                 string true true 00d
WRITE_DQ_ODELAY_FINAL_BYTE1_BIT3                 string true true 00c
WRITE_DQ_ODELAY_FINAL_BYTE1_BIT4                 string true true 00e
WRITE_DQ_ODELAY_FINAL_BYTE1_BIT5                 string true true 00e
WRITE_DQ_ODELAY_FINAL_BYTE1_BIT6                 string true true 010
WRITE_DQ_ODELAY_FINAL_BYTE1_BIT7                 string true true 009
WRITE_DQ_ODELAY_FINAL_BYTE2_BIT0                 string true true 023
WRITE_DQ_ODELAY_FINAL_BYTE2_BIT1                 string true true 01b
WRITE_DQ_ODELAY_FINAL_BYTE2_BIT2                 string true true 01d
WRITE_DQ_ODELAY_FINAL_BYTE2_BIT3                 string true true 019
WRITE_DQ_ODELAY_FINAL_BYTE2_BIT4                 string true true 019
WRITE_DQ_ODELAY_FINAL_BYTE2_BIT5                 string true true 01a
WRITE_DQ_ODELAY_FINAL_BYTE2_BIT6                 string true true 01d
WRITE_DQ_ODELAY_FINAL_BYTE2_BIT7                 string true true 014
WRITE_DQ_ODELAY_FINAL_BYTE3_BIT0                 string true true 02b
WRITE_DQ_ODELAY_FINAL_BYTE3_BIT1                 string true true 02a
WRITE_DQ_ODELAY_FINAL_BYTE3_BIT2                 string true true 025
WRITE_DQ_ODELAY_FINAL_BYTE3_BIT3                 string true true 025
WRITE_DQ_ODELAY_FINAL_BYTE3_BIT4                 string true true 028
WRITE_DQ_ODELAY_FINAL_BYTE3_BIT5                 string true true 029
WRITE_DQ_ODELAY_FINAL_BYTE3_BIT6                 string true true 021
WRITE_DQ_ODELAY_FINAL_BYTE3_BIT7                 string true true 02b
WRITE_DQ_ODELAY_FINAL_BYTE4_BIT0                 string true true 008
WRITE_DQ_ODELAY_FINAL_BYTE4_BIT1                 string true true 005
WRITE_DQ_ODELAY_FINAL_BYTE4_BIT2                 string true true 00b
WRITE_DQ_ODELAY_FINAL_BYTE4_BIT3                 string true true 008
WRITE_DQ_ODELAY_FINAL_BYTE4_BIT4                 string true true 004
WRITE_DQ_ODELAY_FINAL_BYTE4_BIT5                 string true true 000
WRITE_DQ_ODELAY_FINAL_BYTE4_BIT6                 string true true 009
WRITE_DQ_ODELAY_FINAL_BYTE4_BIT7                 string true true 007
WRITE_DQ_ODELAY_FINAL_BYTE5_BIT0                 string true true 031
WRITE_DQ_ODELAY_FINAL_BYTE5_BIT1                 string true true 02f
WRITE_DQ_ODELAY_FINAL_BYTE5_BIT2                 string true true 02e
WRITE_DQ_ODELAY_FINAL_BYTE5_BIT3                 string true true 02d
WRITE_DQ_ODELAY_FINAL_BYTE5_BIT4                 string true true 030
WRITE_DQ_ODELAY_FINAL_BYTE5_BIT5                 string true true 030
WRITE_DQ_ODELAY_FINAL_BYTE5_BIT6                 string true true 030
WRITE_DQ_ODELAY_FINAL_BYTE5_BIT7                 string true true 02a
WRITE_DQ_ODELAY_FINAL_BYTE6_BIT0                 string true true 020
WRITE_DQ_ODELAY_FINAL_BYTE6_BIT1                 string true true 023
WRITE_DQ_ODELAY_FINAL_BYTE6_BIT2                 string true true 01f
WRITE_DQ_ODELAY_FINAL_BYTE6_BIT3                 string true true 01f
WRITE_DQ_ODELAY_FINAL_BYTE6_BIT4                 string true true 01f
WRITE_DQ_ODELAY_FINAL_BYTE6_BIT5                 string true true 01d
WRITE_DQ_ODELAY_FINAL_BYTE6_BIT6                 string true true 01d
WRITE_DQ_ODELAY_FINAL_BYTE6_BIT7                 string true true 01b
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WRITE_DQ_ODELAY_FINAL_BYTE7_BIT0                 string true true 033
WRITE_DQ_ODELAY_FINAL_BYTE7_BIT1                 string true true 031
WRITE_DQ_ODELAY_FINAL_BYTE7_BIT2                 string true true 028
WRITE_DQ_ODELAY_FINAL_BYTE7_BIT3                 string true true 02a
WRITE_DQ_ODELAY_FINAL_BYTE7_BIT4                 string true true 02d
WRITE_DQ_ODELAY_FINAL_BYTE7_BIT5                 string true true 02b
WRITE_DQ_ODELAY_FINAL_BYTE7_BIT6                 string true true 031
WRITE_DQ_ODELAY_FINAL_BYTE7_BIT7                 string true true 02e
WRITE_DQ_ODELAY_FINAL_BYTE8_BIT0                 string true true 01f
WRITE_DQ_ODELAY_FINAL_BYTE8_BIT1                 string true true 020
WRITE_DQ_ODELAY_FINAL_BYTE8_BIT2                 string true true 017
WRITE_DQ_ODELAY_FINAL_BYTE8_BIT3                 string true true 01c
WRITE_DQ_ODELAY_FINAL_BYTE8_BIT4                 string true true 018
WRITE_DQ_ODELAY_FINAL_BYTE8_BIT5                 string true true 013
WRITE_DQ_ODELAY_FINAL_BYTE8_BIT6                 string true true 01f
WRITE_DQ_ODELAY_FINAL_BYTE8_BIT7                 string true true 012
WRITE_DQS_ODELAY_FINAL_BYTE0                     string true true 02b
WRITE_DQS_ODELAY_FINAL_BYTE1                     string true true 010
WRITE_DQS_ODELAY_FINAL_BYTE2                     string true true 020
WRITE_DQS_ODELAY_FINAL_BYTE3                     string true true 02b
WRITE_DQS_ODELAY_FINAL_BYTE4                     string true true 00b
WRITE_DQS_ODELAY_FINAL_BYTE5                     string true true 02c
WRITE_DQS_ODELAY_FINAL_BYTE6                     string true true 01b
WRITE_DQS_ODELAY_FINAL_BYTE7                     string true true 02b
WRITE_DQS_ODELAY_FINAL_BYTE8                     string true true 016
WRITE_DQS_TO_DQ_DQS_ODELAY_BYTE0                 string true true 02b
WRITE_DQS_TO_DQ_DQS_ODELAY_BYTE1                 string true true 010
WRITE_DQS_TO_DQ_DQS_ODELAY_BYTE2                 string true true 020
WRITE_DQS_TO_DQ_DQS_ODELAY_BYTE3                 string true true 02b
WRITE_DQS_TO_DQ_DQS_ODELAY_BYTE4                 string true true 010
WRITE_DQS_TO_DQ_DQS_ODELAY_BYTE5                 string true true 02c
WRITE_DQS_TO_DQ_DQS_ODELAY_BYTE6                 string true true 01b
WRITE_DQS_TO_DQ_DQS_ODELAY_BYTE7                 string true true 02b
WRITE_DQS_TO_DQ_DQS_ODELAY_BYTE8                 string true true 016
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE0_BIT0             string true true 030
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE0_BIT1             string true true 031
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE0_BIT2             string true true 030
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE0_BIT3             string true true 02d
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE0_BIT4             string true true 028
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE0_BIT5             string true true 028
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE0_BIT6             string true true 030
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE0_BIT7             string true true 029
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE1_BIT0             string true true 00d
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE1_BIT1             string true true 00a
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE1_BIT2             string true true 009
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE1_BIT3             string true true 008
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE1_BIT4             string true true 00a
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE1_BIT5             string true true 00a
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE1_BIT6             string true true 00c
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE1_BIT7             string true true 005
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE2_BIT0             string true true 01f
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE2_BIT1             string true true 017
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE2_BIT2             string true true 019
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE2_BIT3             string true true 015
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE2_BIT4             string true true 015
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE2_BIT5             string true true 016
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE2_BIT6             string true true 019
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE2_BIT7             string true true 010
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE3_BIT0             string true true 028
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WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE3_BIT1             string true true 027
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE3_BIT2             string true true 022
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE3_BIT3             string true true 022
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE3_BIT4             string true true 025
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE3_BIT5             string true true 026
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE3_BIT6             string true true 01e
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE3_BIT7             string true true 028
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE4_BIT0             string true true 008
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE4_BIT1             string true true 005
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE4_BIT2             string true true 00b
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE4_BIT3             string true true 008
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE4_BIT4             string true true 004
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE4_BIT5             string true true 000
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE4_BIT6             string true true 009
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE4_BIT7             string true true 007
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE5_BIT0             string true true 02c
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE5_BIT1             string true true 02a
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE5_BIT2             string true true 029
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE5_BIT3             string true true 028
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE5_BIT4             string true true 02b
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE5_BIT5             string true true 02b
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE5_BIT6             string true true 02b
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE5_BIT7             string true true 025
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE6_BIT0             string true true 01b
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE6_BIT1             string true true 01e
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE6_BIT2             string true true 01a
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE6_BIT3             string true true 01a
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE6_BIT4             string true true 01a
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE6_BIT5             string true true 018
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE6_BIT6             string true true 018
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE6_BIT7             string true true 016
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE7_BIT0             string true true 02e
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE7_BIT1             string true true 02c
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE7_BIT2             string true true 023
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE7_BIT3             string true true 025
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE7_BIT4             string true true 028
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE7_BIT5             string true true 026
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE7_BIT6             string true true 02c
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE7_BIT7             string true true 029
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE8_BIT0             string true true 019
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE8_BIT1             string true true 01a
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE8_BIT2             string true true 011
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE8_BIT3             string true true 016
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE8_BIT4             string true true 012
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE8_BIT5             string true true 00d
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE8_BIT6             string true true 019
WRITE_DQS_TO_DQ_DQ_ODELAY_BYTE8_BIT7             string true true 00c
WRITE_DQS_TO_DQ_MARGIN_LEFT_BYTE0                string true true 028
WRITE_DQS_TO_DQ_MARGIN_LEFT_BYTE1                string true true 026
WRITE_DQS_TO_DQ_MARGIN_LEFT_BYTE2                string true true 02a
WRITE_DQS_TO_DQ_MARGIN_LEFT_BYTE3                string true true 028
WRITE_DQS_TO_DQ_MARGIN_LEFT_BYTE4                string true true 028
WRITE_DQS_TO_DQ_MARGIN_LEFT_BYTE5                string true true 027
WRITE_DQS_TO_DQ_MARGIN_LEFT_BYTE6                string true true 027
WRITE_DQS_TO_DQ_MARGIN_LEFT_BYTE7                string true true 02a
WRITE_DQS_TO_DQ_MARGIN_LEFT_BYTE8                string true true 026
WRITE_DQS_TO_DQ_MARGIN_RIGHT_BYTE0               string true true 027
WRITE_DQS_TO_DQ_MARGIN_RIGHT_BYTE1               string true true 028
WRITE_DQS_TO_DQ_MARGIN_RIGHT_BYTE2               string true true 028
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WRITE_DQS_TO_DQ_MARGIN_RIGHT_BYTE3               string true true 02a
WRITE_DQS_TO_DQ_MARGIN_RIGHT_BYTE4               string true true 029
WRITE_DQS_TO_DQ_MARGIN_RIGHT_BYTE5               string true true 029
WRITE_DQS_TO_DQ_MARGIN_RIGHT_BYTE6               string true true 027
WRITE_DQS_TO_DQ_MARGIN_RIGHT_BYTE7               string true true 02b
WRITE_DQS_TO_DQ_MARGIN_RIGHT_BYTE8               string true true 025

Hardware Measurements

Probe the DQS to DQ write phase relationship at the memory. DQS should be center aligned 
to DQ at the end of this stage of calibration. Trigger at the start (cal_r*_status[18] = 
R for Rising Edge) and again at the end (cal_r*_status[19] = R for Rising Edge) of 
Write DQS Centering to view the starting and ending alignments.

Expected Results

Hardware measurements should show that the write DQ bits are deskewed and that the 
write DQS are centered in the write DQ window at the end of these calibration stages.

• Look at the individual WRITE_DQS_TO_DQ_DQS_ODELAY and 
WRITE_DQS_TO_DQ_DQ_ODELAY tap settings for each nibble. The taps should only 
vary by 0 to 20 taps. See Determining Window Size in ps, page 773 to calculate the 
write window.

• Determine if any bytes completed successfully. The write calibration algorithm 
sequentially steps through each DQS byte group detecting the capture edges. 

• If the incorrect data pattern is detected, determine if the error is due to the write access 
or the read access. See Determining If a Data Error is Due to the Write or Read, 
page 770.

• Both edges need to be found. This is possible at all frequencies because the algorithm 
uses 90° of ODELAY taps to find the edges.

• To analyze the window size in ps, see Determining Window Size in ps, page 773. As a 
general rule of thumb, the window size for a healthy system should be ≥ 30% of the 
expected UI size.

Using the Vivado Hardware Manager and while running the Memory IP Example Design 
with Debug Signals enabled, set the trigger (cal_r*_status[18] = R for Rising Edge). 
The simulation examples shown in the Debugging Write Per-Bit Deskew Failures > Expected 
Results section can be used to additionally monitor the expected behavior for Write DQS 
Centering.
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Write Data Mask Calibration

Note: The calibration step is only enabled for the first rank in a multi-rank system.

During calibration the Data Mask (DM) signals are not used, they are deasserted during any 
writes before/after the required amount of time to ensure they have no impact on the 
pattern being written to the DRAM. If the DM signals are not used, this step of calibration 
is skipped.

Two patterns are used to calibrate the DM pin. The first pattern is written to the DRAM with 
the DM deasserted, ensuring the pattern is written to the DRAM properly. The second 
pattern overwrites the first pattern at the same address but with the DM asserted in a 
known position in the burst, as shown in Figure 38-71.

Because this stage takes place before Write Latency Calibration when issuing a write to the 
DRAM, the DQS and DQ/DM toggles for eight clock cycles before and after the expected 
write latency. This is used to ensure the data is written into the DRAM even though the 
command-to-write data relationship is still unknown. 

The read back data for any given nibble is 5B5B_5B5B, where the location of the 5 in the 
burst indicates where the DM is asserted. Because the data is constant during this step, the 
DQS-to-DQ alignment is not stressed. Only the DQS-to-DM is checked as the DQS and DM 
phase relationship is adjusted with each other.

X-Ref Target - Figure 38-70

Figure 38-70: DM Base Data Written
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X-Ref Target - Figure 38-71

Figure 38-71: DM Asserted
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Write DQS-to-DM Per-Bit Deskew

This step is similar to Write DQS-to-DQ Per-Bit Deskew but involves the DM instead of the 
DQ bits. See Write Calibration Overview, page 670 for an in-depth overview of the 
algorithm. The DQS ODELAY value used to edge align the DQS with the DM is stored as 
WRITE_DQS_TO_DM_DESKEW_BYTE. The ODELAY value for the DM is stored as 
WRITE_DQS_TO_DM_DM_ODELAY_BYTE.

Write DQS-to-DM Centering

This step is similar to Write DQS-to-DQ Centering but involves the DM instead of the DQ 
bits. See Write Calibration Overview, page 670 for an in-depth overview of the algorithm. 
The tap value DM was set at to find the left edge is saved as 
WRITE_DQS_TO_DM_PRE_ADJUST_MARGIN_LEFT_BYTE. The tap value DQS was set at to find 
the right edge is saved as WRITE_DQS_TO_DM_PRE_ADJUST_MARGIN_RIGHT_BYTE. 

The final DM margin is stored at WRITE_DQS_TO_DM_MARGIN_LEFT_BYTE and 
WRITE_DQS_TO_DM_MARGIN_RIGHT_BYTE.

Because the DQS ODELAY can only hold a single value, compute the aggregate smallest 
left/right margin between the DQ and DM. The DQS ODELAY value is set in the middle of 
this aggregate window. The final values of the DQS and DM can be found at 
WRITE_DQS_ODELAY_FINAL and WRITE_DM_ODELAY_FINAL.

Debug

To determine the status of Write Data Mask Calibration, click the Write DQS to DM/DBI 
(Simple) stage under the Status window and view the results within the Memory IP 
Properties window. The message displayed in Memory IP Properties identifies how the 
stage failed or notes if it passed successfully.
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The status of Write Data Mask Calibration can also be determined by decoding the 
DDR_CAL_ERROR_0 and DDR_CAL_ERROR_1 results according to Table 38-25. Execute the 
Tcl commands noted in the XSDB Debug section to generate the XSDB output containing 
the signal results.

X-Ref Target - Figure 38-72

Figure 38-72: Memory IP XSDB Debug GUI Example – Write DQS to DM/DMBI (Simple)
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Table 38-26 shows the signals and values adjusted or used during the Write Data Mask 
stage of calibration. The values can be analyzed in both successful and failing calibrations 
to determine the resultant values and the consistency in results across resets. These values 
can be found within the Memory IP Core Properties within the Hardware Manager or by 
executing the Tcl commands noted in the XSDB Debug section.

Table 38-25: DDR_CAL_ERROR Decode for Write Data Mask Calibration
Write DQS to 
DM Deskew
DDR_CAL_

ERROR_
CODE

DDR_CAL_
ERROR_1

DDR_CAL_
ERROR_0 Description Recommended Debug Steps

0x1 Byte N/A DQS Deskew Error. Ran out of 
taps, no valid data found.

Check BUS_DATA_BURST XSDB field to 
check what values were returned. Check 
the alignment of DQS to DM during a 
write burst with a scope on the PCB. 
Check the DQS-to-CK alignment. Check 
the WRLVL fields in XSDB for a given 
byte. Check the signal level of the DM on 
a write.

0x2 Byte N/A
DQ (or DM) Deskew Error. 
Failure point not found (bit 
only indicated when set to 
CAL_FULL).

Check for a mapping issue. This usually 
implies a delay is not moving when it 
should. Check the connections going to 
the XIPHY and ensure the correct RIU is 
selected based on the byte being 
adjusted.

0xF Byte N/A Timeout error waiting for 
read data to return.

Check the dbg_cal_seq_rd_cnt and 
dbg_cal_seq_cnt.

Table 38-26: Signals of Interest for Write Data Mask Calibration
Signal Usage Signal Description

WRITE_DQS_TO_DM_DESKEW_BYTE* One per Byte
ODELAY value required to place DQS 
into the byte write data valid window 
during write per-bit deskew. 

WRITE_DQS_TO_DM_PRE_ADJUST_MARGIN_LEFT_BYTE* One per byte
Left side of the write DQS-to-DM 
window measured during calibration 
before adjustments made.

WRITE_DQS_TO_DM_PRE_ADJUST_MARGIN_RIGHT _BYTE* One per Byte
Right side of the write DQS-to-DM 
window measured during calibration 
before adjustments made.

WRITE_DQS_TO_DM _MARGIN_LEFT_BYTE* One per Byte Left side of the write DQS-to-DM 
window.

WRITE_DQS_TO_DM _MARGIN_RIGHT _BYTE* One per Byte Right side of the write DQS-to-DM 
window.

WRITE_DQS_TO_DM_DQS_ODELAY_BYTE* One per Byte Final DQS ODELAY value after Write 
DQS-to-DM (simple).

WRITE_DQS_TO_DM_DM_ODELAY_BYTE*_BIT* One per Bit Final DM ODELAY value after Write 
DQS-to-DQ (simple).
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Data swizzling (bit reordering) is completed within the UltraScale PHY. Therefore, the data 
visible on BUS_DATA_BURST and a scope in hardware is ordered differently compared to 
what would be seen in ChipScope. Figure 38-73 and Figure 38-74 are examples of how the 
data is converted.

WRITE_DQS_ODELAY_FINAL_BYTE*_BIT* One per Byte Final DQS ODELAY value.
WRITE_DM_ODELAY_FINAL_BYTE*_BIT* One per Bit Final DM ODELAY value.

BUS_DATA_BURST (2014.3+)

During calibration for a byte an 
example data burst is saved for later 
analysis in case of failure.
BUS_DATA_BURST_0 holds an initial 
read data burst pattern for a given 
byte with the starting alignment 
prior to write DM deskew 
(TX_DATA_PHASE set to 1 for DQS, 0 
for DM and DQ).
BUS_DATA_BURST_1 holds a read 
data burst after write DM deskew 
and at the start of write DQS-to-DM 
centering, after TX_DATA_PHASE for 
DQS is set to 1 and the 
TX_DATA_PHASE for DQ/DM is set to 
1.
After a byte calibrates, the example 
read data saved in the 
BUS_DATA_BURST registers is 
cleared. BUS_DATA_BURST_2 and 
BUS_DATA_BURST_3 are not used.

Table 38-26: Signals of Interest for Write Data Mask Calibration (Cont’d)

Signal Usage Signal Description
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X-Ref Target - Figure 38-73

Figure 38-73: Example First Read Where DM is Opposite Desired Position
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This is a sample of results for the Write Data Mask XSDB debug signals:

WRITE_DM_ODELAY_FINAL_BYTE0                      string true true 031
WRITE_DM_ODELAY_FINAL_BYTE1                      string true true 01b
WRITE_DM_ODELAY_FINAL_BYTE2                      string true true 02a
WRITE_DM_ODELAY_FINAL_BYTE3                      string true true 036
WRITE_DM_ODELAY_FINAL_BYTE4                      string true true 011
WRITE_DM_ODELAY_FINAL_BYTE5                      string true true 036
WRITE_DM_ODELAY_FINAL_BYTE6                      string true true 029
WRITE_DM_ODELAY_FINAL_BYTE7                      string true true 039
WRITE_DM_ODELAY_FINAL_BYTE8                      string true true 029
WRITE_DQS_ODELAY_FINAL_BYTE0                     string true true 02b
WRITE_DQS_ODELAY_FINAL_BYTE1                     string true true 010
WRITE_DQS_ODELAY_FINAL_BYTE2                     string true true 020
WRITE_DQS_ODELAY_FINAL_BYTE3                     string true true 02b
WRITE_DQS_ODELAY_FINAL_BYTE4                     string true true 00b
WRITE_DQS_ODELAY_FINAL_BYTE5                     string true true 02c
WRITE_DQS_ODELAY_FINAL_BYTE6                     string true true 01b
WRITE_DQS_ODELAY_FINAL_BYTE7                     string true true 02b
WRITE_DQS_ODELAY_FINAL_BYTE8                     string true true 016
WRITE_DQS_TO_DM_DESKEW_BYTE0                     string true true 035
WRITE_DQS_TO_DM_DESKEW_BYTE1                     string true true 01d

X-Ref Target - Figure 38-74

Figure 38-74: Read Post DM Deskew Where DM is in Desired Position

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG150&Title=UltraScale%20Architecture-Based%20FPGAs%20Memory%20IP%20v1.4&releaseVersion=1.4&docPage=696


UltraScale Architecture-Based FPGAs Memory IP v1.4 697
PG150 October 22, 2021 www.xilinx.com

Chapter 38: Debugging

WRITE_DQS_TO_DM_DESKEW_BYTE2                     string true true 030
WRITE_DQS_TO_DM_DESKEW_BYTE3                     string true true 03a
WRITE_DQS_TO_DM_DESKEW_BYTE4                     string true true 019
WRITE_DQS_TO_DM_DESKEW_BYTE5                     string true true 039
WRITE_DQS_TO_DM_DESKEW_BYTE6                     string true true 028
WRITE_DQS_TO_DM_DESKEW_BYTE7                     string true true 039
WRITE_DQS_TO_DM_DESKEW_BYTE8                     string true true 028
WRITE_DQS_TO_DM_DM_ODELAY_BYTE0                  string true true 031
WRITE_DQS_TO_DM_DM_ODELAY_BYTE1                  string true true 01b
WRITE_DQS_TO_DM_DM_ODELAY_BYTE2                  string true true 02a
WRITE_DQS_TO_DM_DM_ODELAY_BYTE3                  string true true 036
WRITE_DQS_TO_DM_DM_ODELAY_BYTE4                  string true true 011
WRITE_DQS_TO_DM_DM_ODELAY_BYTE5                  string true true 036
WRITE_DQS_TO_DM_DM_ODELAY_BYTE6                  string true true 029
WRITE_DQS_TO_DM_DM_ODELAY_BYTE7                  string true true 039
WRITE_DQS_TO_DM_DM_ODELAY_BYTE8                  string true true 029
WRITE_DQS_TO_DM_DQS_ODELAY_BYTE0                 string true true 02b
WRITE_DQS_TO_DM_DQS_ODELAY_BYTE1                 string true true 015
WRITE_DQS_TO_DM_DQS_ODELAY_BYTE2                 string true true 026
WRITE_DQS_TO_DM_DQS_ODELAY_BYTE3                 string true true 033
WRITE_DQS_TO_DM_DQS_ODELAY_BYTE4                 string true true 013
WRITE_DQS_TO_DM_DQS_ODELAY_BYTE5                 string true true 02e
WRITE_DQS_TO_DM_DQS_ODELAY_BYTE6                 string true true 01d
WRITE_DQS_TO_DM_DQS_ODELAY_BYTE7                 string true true 02e
WRITE_DQS_TO_DM_DQS_ODELAY_BYTE8                 string true true 019
WRITE_DQS_TO_DM_MARGIN_LEFT_BYTE0                string true true 000
WRITE_DQS_TO_DM_MARGIN_LEFT_BYTE1                string true true 000
WRITE_DQS_TO_DM_MARGIN_LEFT_BYTE2                string true true 000
WRITE_DQS_TO_DM_MARGIN_LEFT_BYTE3                string true true 000
WRITE_DQS_TO_DM_MARGIN_LEFT_BYTE4                string true true 000
WRITE_DQS_TO_DM_MARGIN_LEFT_BYTE5                string true true 000
WRITE_DQS_TO_DM_MARGIN_LEFT_BYTE6                string true true 000
WRITE_DQS_TO_DM_MARGIN_LEFT_BYTE7                string true true 000
WRITE_DQS_TO_DM_MARGIN_LEFT_BYTE8                string true true 000
WRITE_DQS_TO_DM_MARGIN_RIGHT_BYTE0               string true true 000
WRITE_DQS_TO_DM_MARGIN_RIGHT_BYTE1               string true true 000
WRITE_DQS_TO_DM_MARGIN_RIGHT_BYTE2               string true true 000
WRITE_DQS_TO_DM_MARGIN_RIGHT_BYTE3               string true true 000
WRITE_DQS_TO_DM_MARGIN_RIGHT_BYTE4               string true true 000
WRITE_DQS_TO_DM_MARGIN_RIGHT_BYTE5               string true true 000
WRITE_DQS_TO_DM_MARGIN_RIGHT_BYTE6               string true true 000
WRITE_DQS_TO_DM_MARGIN_RIGHT_BYTE7               string true true 000
WRITE_DQS_TO_DM_MARGIN_RIGHT_BYTE8               string true true 000
WRITE_DQS_TO_DM_PRE_ADJUST_MARGIN_LEFT_BYTE0     string true true 026
WRITE_DQS_TO_DM_PRE_ADJUST_MARGIN_LEFT_BYTE1     string true true 01e
WRITE_DQS_TO_DM_PRE_ADJUST_MARGIN_LEFT_BYTE2     string true true 01c
WRITE_DQS_TO_DM_PRE_ADJUST_MARGIN_LEFT_BYTE3     string true true 019
WRITE_DQS_TO_DM_PRE_ADJUST_MARGIN_LEFT_BYTE4     string true true 022
WRITE_DQS_TO_DM_PRE_ADJUST_MARGIN_LEFT_BYTE5     string true true 025
WRITE_DQS_TO_DM_PRE_ADJUST_MARGIN_LEFT_BYTE6     string true true 023
WRITE_DQS_TO_DM_PRE_ADJUST_MARGIN_LEFT_BYTE7     string true true 025
WRITE_DQS_TO_DM_PRE_ADJUST_MARGIN_LEFT_BYTE8     string true true 01e
WRITE_DQS_TO_DM_PRE_ADJUST_MARGIN_RIGHT_BYTE0    string true true 033
WRITE_DQS_TO_DM_PRE_ADJUST_MARGIN_RIGHT_BYTE1    string true true 03f
WRITE_DQS_TO_DM_PRE_ADJUST_MARGIN_RIGHT_BYTE2    string true true 03e
WRITE_DQS_TO_DM_PRE_ADJUST_MARGIN_RIGHT_BYTE3    string true true 03f
WRITE_DQS_TO_DM_PRE_ADJUST_MARGIN_RIGHT_BYTE4    string true true 039
WRITE_DQS_TO_DM_PRE_ADJUST_MARGIN_RIGHT_BYTE5    string true true 036
WRITE_DQS_TO_DM_PRE_ADJUST_MARGIN_RIGHT_BYTE6    string true true 03b
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WRITE_DQS_TO_DM_PRE_ADJUST_MARGIN_RIGHT_BYTE7    string true true 03a
WRITE_DQS_TO_DM_PRE_ADJUST_MARGIN_RIGHT_BYTE8    string true true 041

Hardware Measurements

• Probe the DM to DQ bit alignment at the memory during writes. Trigger at the start 
(cal_r*_status[20] = R for Rising Edge) and again at the end 
(cal_r*_status[21] = R for Rising Edge) of Simple Pattern Write Data Mask 
Calibration to view the starting and ending alignments.

• Probe the DM to DQ bit alignment at the memory during writes. Trigger at the start 
(cal_r*_status[38] = R for Rising Edge) and again at the end 
(cal_r*_status[39] = R for Rising Edge) of Complex Pattern Write Data Mask 
Calibration to view the starting and ending alignments.

The following simulation examples show how the debug signals should behave during 
successful Write DQS-to-DM Calibration. 

X-Ref Target - Figure 38-75

Figure 38-75: RTL Debug Signals during Write DQS-to-DM Calibration #1
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Expected Results

• Look at the individual WRITE_DQS_TO_DM_DQS_ODELAY and 
WRITE_DQS_TO_DM_DM_ODELAY tap settings for each nibble. The taps should only 
vary by 0 to 20 taps. See Determining Window Size in ps, page 773 to calculate the 
write window.

• Determine if any bytes completed successfully. The write calibration algorithm 
sequentially steps through each DQS byte group detecting the capture edges. 

• If the incorrect data pattern is detected, determine if the error is due to the write access 
or the read access. See Determining If a Data Error is Due to the Write or Read, 
page 770.

• Both edges need to be found. This is possible at all frequencies because the algorithm 
uses 90° of ODELAY taps to find the edges.

Debugging Read DQS Centering with DBI

If the read DBI option is selected for DDR4, the capture of the DBI pin itself must be taken 
into account when deciding where to position the capture clock in the data valid window. 
When DBI read is enabled, the DRAM sends back a signal to indicate if the data stored in the 
array is inverted, so as to save power by not sending back the inverted data on the bus. The 
receiver inverts the data when the DBI pin is asserted. The DRAM does not support DBI 
during MPR reads used in Read DQS Centering (simple) calibration, so a pattern must be 
written into the DRAM before being read out. This stage occurs after the Write DQS-to-DQ/
DM stages to ensure the pattern can be written into the DRAM properly. 

1. Turn on DBI on the read path (MRS setting in the DRAM and a fabric switch that inverts 
the read data when the value read from the DBI pin is asserted).

X-Ref Target - Figure 38-76

Figure 38-76: RTL Debug Signals during Write DQS-to-DM Calibration #2
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2. Write the pattern 0-F-0-F-0-F-0-F to the DRAM (extending the data pattern before/
after the burst due to this step happening before write latency calibration) to address 
0x000/Bank Group 0.

3. If the nibble does not contain the DBI pin, skip the nibble and go to next nibble.
4. Start from the current setting of PQTR/NQTR, which is the center of the data valid 

window for the DQ found so far.
5. Issue reads to address 0x000/Bank Group 0. This is repeated until read DQS Centering 

with DBI is completed.

6. Find the left edge of read DBI pin. Decrement PQTR/NQTR to find the left edge of the 
read DBI pin until the data pattern changes from the expected pattern.

7. Find the right edge of the read DBI pin. Compute the aggregate window given the XSDB 
results for Read DQS Centering (simple) and the new result from DBI. This means take 
the (largest left + Smallest right)/2 + largest left. This gives the center result for the 
given nibble + DBI pin (aggregate center).

8. Turn off DBI on the read path (MRS setting in the DRAM and fabric switch).

Debug

To determine the status of Read DQS centering with DBI Calibration, click the Read DQS 
Centering DBI (Simple) Calibration stage under the Status window and view the results 
within the Memory IP Properties window. The message displayed in Memory IP 
Properties identifies how the stage failed or notes if it passed successfully.

X-Ref Target - Figure 38-77

Figure 38-77: Read DQS Centering with DBI Read Pattern
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The status of Read DQS Centering DBI (Simple) can also be determined by decoding the 
DDR_CAL_ERROR_0 and DDR_CAL_ERROR_1 results according to Table 38-27. Execute the 
Tcl commands noted in the XSDB Debug section to generate the XSDB output containing 
the signal results. 

Table 38-28 describes the signals and values adjusted or used during the Read DQS 
Centering DBI (Simple) stage of calibration. The values can be analyzed in both successful 
and failing calibrations to determine the resultant values and the consistency in results 
across resets. These values can be found within the Memory IP Core Properties within 
Hardware Manager or by executing the Tcl commands noted in the XSDB Debug section. 

Table 38-27: DDR_CAL_ERROR Decode for Read DQS Centering with DBI
Per-Bit DBI 

Deskew 
DDR_CAL_ERROR_

CODE

DDR_CAL_
ERROR_1

DDR_CAL_
ERROR_0 Description Recommended Debug Steps

0x1 Nibble N/A No valid data found for 
a given nibble.

Check the BUS_DATA_BURST fields in 
XSDB. Check the dbg_rd_data, 
dbg_rd_data_cmp, and 
dbg_expected_data signals in the ILA.
Check the pinout for the DBI pin.
Probe the board and check for the 
returning pattern to determine if the 
initial write to the DRAM happened 
properly, or if it is a read failure. Probe 
the DBI pin during the read.

0xF Nibble N/A
Timeout error waiting 
for all read data bursts 
to return.

Check the dbg_cal_seq_rd_cnt and 
dbg_cal_seq_cnt.

Table 38-28: Signals of Interest for Read DQS Centering with DBI
Signal Usage Signal Description

RDLVL_DBI_PQTR_LEFT_RANK_NIBBLE One per nibble
Read leveling PQTR when left edge of 
read data valid window is detected 
during Read DQS Centering DBI (Simple).

RDLVL_DBI_PQTR_RIGHT_RANK_NIBBLE One per nibble
Read leveling PQTR when right edge of 
read data valid window is detected 
during Read DQS Centering DBI (Simple).

RDLVL_DBI_PQTR_CENTER_RANK*_NIBBLE* One per nibble
Read leveling PQTR center point between 
right and left during Read DQS Centering 
DBI (Simple).

RDLVL_DBI_NQTR_LEFT_RANK*_NIBBLE* One per nibble
Read leveling NQTR when left edge of 
read data valid window is detected 
during Read DQS Centering DBI (Simple).

RDLVL_DBI_NQTR_RIGHT_ RANK*_NIBBLE* One per nibble
Read leveling NQTR when right edge of 
read data valid window is detected 
during Read DQS Centering DBI (Simple).
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RDLVL_DBI_NQTR_CENTER_RANK*_NIBBLE* One per nibble
Read leveling NQTR center point 
between right and left during Read DQS 
Centering DBI (Simple).

RDLVL_IDELAY_DBI_RANK*_BYTE* One per rank per Byte Read leveling IDELAY delay value for the 
DBI pin set during DBI deskew.

RDLVL_PQTR_LEFT_RANK*_NIBBLE* One per rank per nibble
Read leveling PQTR tap position when 
left edge of read data valid window is 
detected (simple pattern).

RDLVL_NQTR_LEFT_RANK*_NIBBLE* One per rank per nibble
Read leveling NQTR tap position when 
left edge of read data valid window is 
detected (simple pattern).

RDLVL_PQTR_RIGHT_RANK*_NIBBLE* One per rank per nibble
Read leveling PQTR tap position when
right edge of read data valid window is 
detected (simple pattern).

RDLVL_NQTR_RIGHT_RANK*_NIBBLE* One per rank per nibble
Read leveling NQTR tap position when 
right edge of read data valid window is 
detected (simple pattern).

RDLVL_PQTR_CENTER_RANK*_NIBBLE* One per rank per nibble
Read leveling PQTR center tap position 
found at the end of read DQS centering 
(simple pattern).

RDLVL_NQTR_CENTER_RANK*_NIBBLE* One per rank per nibble
Read leveling NQTR center tap position 
found at the end of read DQS centering 
(simple pattern).

RDLVL_IDELAY_VALUE_RANK*_BYTE*_BIT* One per rank per Bit
Read leveling IDELAY delay value found 
during per bit read DQS centering 
(simple pattern).

BISC_ALIGN_PQTR_NIBBLE* One per nibble Initial 0° offset value provided by BISC at 
power-up.

BISC_ALIGN_NQTR_NIBBLE* One per nibble Initial 0° offset value provided by BISC at 
power-up.

BISC_PQTR_NIBBLE* One per nibble

Initial 90° offset value provided by BISC 
at power-up. Compute 90° value in taps 
by taking (BISC_PQTR –
BISC_ALIGN_PQTR). To estimate tap 
resolution take (¼ of the memory clock 
period)/ (BISC_PQTR – 
BISC_ALIGN_PQTR).

Table 38-28: Signals of Interest for Read DQS Centering with DBI (Cont’d)

Signal Usage Signal Description
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Data swizzling (bit reordering) is completed within the UltraScale PHY. Therefore, the data 
visible on BUS_DATA_BURST and a scope in hardware is ordered differently compared to 
what would be seen in ChipScope. Figure 38-78 and Figure 38-79 are examples of how the 
data is converted.

BISC_NQTR_NIBBLE* One per nibble

Initial 90° offset value provided by BISC 
at power-up. Compute 90° value in taps 
by taking (BISC_NQTR –
BISC_ALIGN_NQTR). To estimate tap 
resolution take (¼ of the memory clock 
period)/ (BISC_NQTR – 
BISC_ALIGN_NQTR).

BUS_DATA_BURST

When a failure occurs during Read DQS 
centering with DBI, some data is saved to 
indicate what the data looks like for a 
byte across some tap settings for a given 
byte the failure occurred for (DQ IDELAY 
is not adjusted).
See Figure 38-48 for an example of the 
delays used for the capture:
BUS_DATA_BURST_0 holds a single burst 
of data when PQTR/NQTR set to 0 taps.
BUS_DATA_BURST_1 holds a single burst 
of data when PQTR/NQTR set to 90°.
BUS_DATA_BURST_2 holds a single burst 
of data when PQTR/NQTR set to 180°.
BUS_DATA_BURST_3 holds a single burst 
of data when PQTR/NQTR set to 270°.

Table 38-28: Signals of Interest for Read DQS Centering with DBI (Cont’d)

Signal Usage Signal Description
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X-Ref Target - Figure 38-78

Figure 38-78: Expected Read Pattern of Toggling 0101_0101
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This is a sample of results for Read DQS Centering DBI (Simple) XSDB debug signals (nibbles 
that do not contain the DBI pin are skipped and hence the fields are all 0):

RDLVL_DBI_NQTR_CENTER_RANK0_BYTE0   string  true       true     000
RDLVL_DBI_NQTR_CENTER_RANK0_BYTE1   string  true       true     000
RDLVL_DBI_NQTR_CENTER_RANK0_BYTE2   string  true       true     000
RDLVL_DBI_NQTR_CENTER_RANK0_BYTE3   string  true       true     000
RDLVL_DBI_NQTR_CENTER_RANK0_BYTE4   string  true       true     000
RDLVL_DBI_NQTR_CENTER_RANK0_BYTE5   string  true       true     000
RDLVL_DBI_NQTR_CENTER_RANK0_BYTE6   string  true       true     000
RDLVL_DBI_NQTR_CENTER_RANK0_BYTE7   string  true       true     000
RDLVL_DBI_NQTR_CENTER_RANK0_BYTE8   string  true       true     000
RDLVL_DBI_NQTR_LEFT_RANK0_BYTE0    string  true       true     000
RDLVL_DBI_NQTR_LEFT_RANK0_BYTE1    string  true       true     000
RDLVL_DBI_NQTR_LEFT_RANK0_BYTE2    string  true       true     000
RDLVL_DBI_NQTR_LEFT_RANK0_BYTE3    string  true       true     000
RDLVL_DBI_NQTR_LEFT_RANK0_BYTE4    string  true       true     000
RDLVL_DBI_NQTR_LEFT_RANK0_BYTE5    string  true       true     000
RDLVL_DBI_NQTR_LEFT_RANK0_BYTE6    string  true       true     000
RDLVL_DBI_NQTR_LEFT_RANK0_BYTE7    string  true       true     001
RDLVL_DBI_NQTR_LEFT_RANK0_BYTE8    string  true       true     000
RDLVL_DBI_NQTR_RIGHT_RANK0_BYTE0    string  true       true     058

X-Ref Target - Figure 38-79

Figure 38-79: Expected Read Pattern of Toggling 1010_1010
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RDLVL_DBI_NQTR_RIGHT_RANK0_BYTE1    string  true       true     050
RDLVL_DBI_NQTR_RIGHT_RANK0_BYTE2    string  true       true     04f
RDLVL_DBI_NQTR_RIGHT_RANK0_BYTE3    string  true       true     050
RDLVL_DBI_NQTR_RIGHT_RANK0_BYTE4    string  true       true     051
RDLVL_DBI_NQTR_RIGHT_RANK0_BYTE5    string  true       true     051
RDLVL_DBI_NQTR_RIGHT_RANK0_BYTE6    string  true       true     052
RDLVL_DBI_NQTR_RIGHT_RANK0_BYTE7    string  true       true     050
RDLVL_DBI_NQTR_RIGHT_RANK0_BYTE8    string  true       true     04c
RDLVL_DBI_PQTR_CENTER_RANK0_BYTE0   string  true       true     000
RDLVL_DBI_PQTR_CENTER_RANK0_BYTE1   string  true       true     000
RDLVL_DBI_PQTR_CENTER_RANK0_BYTE2   string  true       true     000
RDLVL_DBI_PQTR_CENTER_RANK0_BYTE3   string  true       true     000
RDLVL_DBI_PQTR_CENTER_RANK0_BYTE4   string  true       true     000
RDLVL_DBI_PQTR_CENTER_RANK0_BYTE5   string  true       true     000
RDLVL_DBI_PQTR_CENTER_RANK0_BYTE6   string  true       true     000
RDLVL_DBI_PQTR_CENTER_RANK0_BYTE7   string  true       true     000
RDLVL_DBI_PQTR_CENTER_RANK0_BYTE8   string  true       true     000
RDLVL_DBI_PQTR_LEFT_RANK0_BYTE0    string  true       true     000
RDLVL_DBI_PQTR_LEFT_RANK0_BYTE1    string  true       true     000
RDLVL_DBI_PQTR_LEFT_RANK0_BYTE2    string  true       true     000
RDLVL_DBI_PQTR_LEFT_RANK0_BYTE3    string  true       true     000
RDLVL_DBI_PQTR_LEFT_RANK0_BYTE4    string  true       true     000
RDLVL_DBI_PQTR_LEFT_RANK0_BYTE5    string  true       true     000
RDLVL_DBI_PQTR_LEFT_RANK0_BYTE6    string  true       true     000
RDLVL_DBI_PQTR_LEFT_RANK0_BYTE7    string  true       true     000
RDLVL_DBI_PQTR_LEFT_RANK0_BYTE8    string  true       true     000
RDLVL_DBI_PQTR_RIGHT_RANK0_BYTE0    string  true       true     065
RDLVL_DBI_PQTR_RIGHT_RANK0_BYTE1    string  true       true     05f
RDLVL_DBI_PQTR_RIGHT_RANK0_BYTE2    string  true       true     05b
RDLVL_DBI_PQTR_RIGHT_RANK0_BYTE3    string  true       true     061
RDLVL_DBI_PQTR_RIGHT_RANK0_BYTE4    string  true       true     05d
RDLVL_DBI_PQTR_RIGHT_RANK0_BYTE5    string  true       true     05e
RDLVL_DBI_PQTR_RIGHT_RANK0_BYTE6    string  true       true     05e
RDLVL_DBI_PQTR_RIGHT_RANK0_BYTE7    string  true       true     067
RDLVL_DBI_PQTR_RIGHT_RANK0_BYTE8    string  true       true     05e
RDLVL_IDELAY_DBI_FINAL_BYTE0    string  true       true     03b
RDLVL_IDELAY_DBI_FINAL_BYTE1    string  true       true     03a
RDLVL_IDELAY_DBI_FINAL_BYTE2    string  true       true     031
RDLVL_IDELAY_DBI_FINAL_BYTE3    string  true       true     038
RDLVL_IDELAY_DBI_FINAL_BYTE4    string  true       true     034
RDLVL_IDELAY_DBI_FINAL_BYTE5    string  true       true     03a
RDLVL_IDELAY_DBI_FINAL_BYTE6    string  true       true     035
RDLVL_IDELAY_DBI_FINAL_BYTE7    string  true       true     03c
RDLVL_IDELAY_DBI_FINAL_BYTE8    string  true       true     030
RDLVL_IDELAY_DBI_RANK0_BYTE0    string  true       true     000
RDLVL_IDELAY_DBI_RANK0_BYTE1    string  true       true     000
RDLVL_IDELAY_DBI_RANK0_BYTE2    string  true       true     000
RDLVL_IDELAY_DBI_RANK0_BYTE3    string  true       true     000
RDLVL_IDELAY_DBI_RANK0_BYTE4    string  true       true     000
RDLVL_IDELAY_DBI_RANK0_BYTE5    string  true       true     000
RDLVL_IDELAY_DBI_RANK0_BYTE6    string  true       true     000
RDLVL_IDELAY_DBI_RANK0_BYTE7    string  true       true     000
RDLVL_IDELAY_DBI_RANK0_BYTE8    string  true       true     000
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Expected Results

• Look at the window measured during Read DQS Centering (Simple) and compare what 
is found during Read DQS Centering DBI (Simple). The eye size found should be similar, 
and the PQTR/NQTR should not move by more than 10 taps typically.

• Determine if any bytes completed successfully. The algorithm sequentially steps 
through each DQS byte sequentially.

Hardware Measurements

1. Probe the write commands and read commands at the memory:

° Write = cs_n = 1; ras_n = 0; cas_n = 1; we_n = 1; act_n = 1

° Read = cs_n = 1; ras_n = 0; cas_n = 1; we_n = 0; act_n = 1
2. Probe a data pin and DBI pin to check for data being returned from the DRAM.
3. Probe the writes checking the signal level of the write DQS and the write DQ.
4. Probe the DBI pin which should be deasserted during the write burst. The DBI pin should 

not be asserted since DBI write should be OFF.
5. Probe the read burst after the write and check if the expected data pattern is being 

returned.
6. Check for floating address pins if the expected data is not returned.
7. Check for any stuck-at level issues on DQ/DBI pins whose signal level does not change. 

If at all possible probe at the receiver to check termination and signal integrity.
8. Check the DBG port signals and the full read data and comparison result to check the 

data in general interconnect. The calibration algorithm has RTL logic issue the 
commands and check the data.

9. Check if the dbg_rd_valid aligns with the data pattern or is OFF (which can indicate 
an issue with DQS gate calibration). Set up a trigger when the error gets asserted to 
capture signals in the hardware debugger for analysis.

10. Re-check results from DQS gate or other previous calibration stages. Compare passing 
byte lanes against failing byte lanes for previous stages of calibration. If a failure occurs 
during simple pattern calibration, check the values found during deskew for example.

11. All of the data comparison for read DQS Centering occurs in the general interconnect, so 
it can be useful to pull in the debug data in the hardware debugger and take a look at 
what the data looks like coming back as taps are adjusted, see Figure 38-80. The screen 
captures are from simulation, with a small burst of five reads. Look at dbg_rd_data, 
dbg_rd_data_cmp, and dbg_rd_valid.

12. Using the Vivado Hardware Manager and while running the Memory IP Example Design 
with Debug Signals enabled, set the Read DBI Deskew trigger to cal_r*_status[22] 
= R (rising edge). To view each byte, add an additional trigger on dbg_cmp_byte and 
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set to the byte of interest. The following simulation example shows how the debug 
signals should behave during successful Read DQS Centering with DBI.

13. After failure during this stage of calibration, the design goes into a continuous loop of 
read commands to allow board probing.

Write Latency Calibration

Write latency calibration is required to align the write DQS to the correct CK edge. During 
write leveling, the write DQS is aligned to the nearest rising edge of CK. However, this might 
not be the edge that captures the write command. Depending on the interface type 
(UDIMM, RDIMM, LRDIMM, or component), the DQS could be up to three CK cycles earlier 
than, or aligned to the CK edge that captures the write command.

Write latency calibration makes use of the coarse tap in the WL_DLY_RNK of the XIPHY for 
adjusting the write latency on a per byte basis. Write leveling uses up a maximum of three 
coarse taps of the XIPHY delay to ensure each write DQS is aligned to the nearest clock 
edge. Memory Controller provides the write data 1TCK early to the PHY, which is then 
delayed by write leveling up to one memory clock cycle. This means for the zero PCB delay 
case of a typical simulation the data would be aligned at the DRAM without additional delay 
added from write calibration. 

Write latency calibration can only account for early data, because in the case where the data 
arrives late at the DRAM there is no push back on the controller to provide the data earlier. 
With 16 XIPHY coarse taps available (each tap is 90°), four memory clock cycles of shift are 
available in the XIPHY with one memory clock used by write leveling. This leaves three 
memory clocks of delay available for write latency calibration.

X-Ref Target - Figure 38-80

Figure 38-80: RTL Debug Signals during Read DQS Centering with DBI (No Error)
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Figure 38-81 shows the calibration flow to determine the setting required for each byte.

The write DQS for the write command is extended for longer than required to ensure the 
DQS is toggling when the DRAM expects it to clock in the write data. A specific data pattern 
is used to check when the correct data pattern gets written into the DRAM, as shown in 
Figure 38-82.

X-Ref Target - Figure 38-81

Figure 38-81: Write Latency Calibration Flow
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In the example at the start of write latency calibration for the given byte. the target write 
latency falls in the middle of the data pattern. The returned data would be 
55AA9966FFFFFFFF rather than the expected FF00AA5555AA9966. The write DQS and 
data are delayed using the XIPHY coarse delay and the operation is repeated, until the 
correct data pattern is found or there are no more coarse taps available. After the pattern is 
found, the amount of coarse delay required is indicated by 
WRITE_LATENCY_CALIBRATION_COARSE_Rank_Byte. 

• If the data pattern is not found for a given byte, the data pattern found is checked to 
see if the data at the maximum delay available still arrives too early (indicating not 
enough adjustment was available in the XIPHY to align to the correct location) or if the 
first burst with no extra delay applied is already late (indicating at the start the data 
would need to be pulled back). The following data pattern is checked:

° Expected pattern on a per-nibble basis: F0A55A96

° Late Data Comparison: 00F0AA55A

° Early Data Comparison: A55A96FF, 5A96FFFF, 96FFFFFF
• If neither of these cases holds true, an attempt is made to try to reclassify the error as 

either a write or a read failure. A single write burst is sent to the DRAM followed by 20 
read bursts. The data from the first read burst is stored for comparison with the 
remaining 19 read bursts. 

• If all the read data matches, the error is classified as a write failure. 
• If the data does not match, it is marked as a read failure.

X-Ref Target - Figure 38-82

Figure 38-82: Write Latency Calibration Alignment Example
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Debug

To determine the status of Write Latency Calibration, click the Write Latency Calibration 
stage under the Status window and view the results within the Memory IP Properties 
window. The message displayed in Memory IP Properties identifies how the stage failed or 
notes if it passed successfully. 

The status of Write Latency Calibration can also be determined by decoding the 
DDR_CAL_ERROR_0 and DDR_CAL_ERROR_1 results according to Table 38-29. Execute the 
Tcl commands noted in the XSDB Debug section to generate the XSDB output containing 
the signal results.

X-Ref Target - Figure 38-83

Figure 38-83: Memory IP XSDB Debug GUI Example – Write Latency Calibration

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG150&Title=UltraScale%20Architecture-Based%20FPGAs%20Memory%20IP%20v1.4&releaseVersion=1.4&docPage=711


UltraScale Architecture-Based FPGAs Memory IP v1.4 712
PG150 October 22, 2021 www.xilinx.com

Chapter 38: Debugging

Table 38-30 shows the signals and values adjusted or used during the Write Latency stage 
of calibration. The values can be analyzed in both successful and failing calibrations to 
determine the resultant values and the consistency in results across resets. These values can 
be found within the Memory IP Core Properties in the Hardware Manager or by executing 
the Tcl commands noted in the XSDB Debug section.

Table 38-29: DDR_CAL_ERROR Decode for Write Latency Calibration
Write Latency

DDR_CAL_
ERROR_

CODE

DDR_CAL_
ERROR_1

DDR_CAL_
ERROR_0 Description Recommended Debug Steps

0x1 Byte N/A
Could not find the data pattern 
given the amount of movement 
available.

Check BUS_DATA_BURST XSDB data to 
check which bits failed or what data 
looked like when failed. Check margin 
for the byte for earlier stages of 
calibration. Probe the DQS/DQ signals 
(and DM if applicable).

0x2 Byte N/A
Data pattern not found. Data 
late at the start, instead of 
“F0A55A96,” found “00F0A55A.”

Check trace lengths for signals 
against what is allowed. If other Bytes 
calibrated properly check the 
WRITE_LATENCY_CALIBRATION_COAR
SE setting for them and check how 
much movement was required to 
calibrate them. Check that the CAS 
write latency is set properly during 
the initialization sequence.

0x3 Byte N/A

Data pattern not found. Data 
too early, not enough 
movement to find pattern. 
Found pattern of “A55A96FF,” 
“5A96FFFF,” or “96FFFFFF.”

Check trace lengths for signals 
against what is allowed. If other Bytes 
calibrated properly check the 
WRITE_LATENCY_CALIBRATION_COAR
SE setting for them and check how 
much movement was required to 
calibrate them. Check that the CAS 
write latency is set properly during 
the initialization sequence.

0x4 Byte N/A
Data pattern not found. 
Multiple reads to the same 
address resulted in a read 
mismatch.

Check read data margins from earlier 
stages of calibration. Check signal 
integrity during reads on the DQs and 
DQ. Check BUS_DATA_BURST XSDB 
data to check which bits failed.

0xF Byte N/A Timeout error waiting for read 
data to return.

Check the dbg_cal_seq_rd_cnt and 
dbg_cal_seq_cnt.
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Data swizzling (bit reordering) is completed within the UltraScale PHY. Therefore, the data 
visible on BUS_DATA_BURST and a scope in hardware is ordered differently compared to 
what would be seen in ChipScope. Figure 38-84 to Figure 38-86 show examples of how the 
data is converted. Because all Fs are written before this expected Write Latency pattern and 
all 0s after, this pattern can have Fs before and 0s after until Write Latency calibration is 
completed at which time Figure 38-84 to Figure 38-86 are accurate representation.

Table 38-30: Signals of Interest for Write Latency Calibration
Signal Usage Signal Description

WRITE_LATENCY_CALIBRATION_COARSE One per Byte Number of coarse taps added during Write Latency 
calibration.

BUS_DATA_BURST (2014.3+)

During calibration for a byte the read data is saved 
to XSDB for later analysis in case of a failure.
BUS_DATA_BURST_0 holds the read burst for at the 
starting coarse tap value left by write leveling (initial 
coarse tap setting).
BUS_DATA_BURST_1 holds the read burst at initial 
coarse tap + 4.
BUS_DATA_BURST_2 holds the read burst at initial 
coarse tap + 8.
BUS_DATA_BURST_3 holds the read burst at initial 
coarse tap + 12.
After a given byte finishes calibration, the 
BUS_DATA_BURST registers are cleared to 0 for use 
by the next byte.
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X-Ref Target - Figure 38-84

Figure 38-84: Expected Read Pattern of All 0s
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X-Ref Target - Figure 38-85

Figure 38-85: Expected Read Pattern of FF00AA55AA9966
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This is a sample of results for the Write Latency XSDB debug signals:

WRITE_LATENCY_CALIBRATION_COARSE_RANK0_BYTE0     string true true 003
WRITE_LATENCY_CALIBRATION_COARSE_RANK0_BYTE1     string true true 004
WRITE_LATENCY_CALIBRATION_COARSE_RANK0_BYTE2     string true true 004
WRITE_LATENCY_CALIBRATION_COARSE_RANK0_BYTE3     string true true 004
WRITE_LATENCY_CALIBRATION_COARSE_RANK0_BYTE4     string true true 006
WRITE_LATENCY_CALIBRATION_COARSE_RANK0_BYTE5     string true true 005
WRITE_LATENCY_CALIBRATION_COARSE_RANK0_BYTE6     string true true 005
WRITE_LATENCY_CALIBRATION_COARSE_RANK0_BYTE7     string true true 005
WRITE_LATENCY_CALIBRATION_COARSE_RANK0_BYTE8     string true true 005

Hardware Measurements

If the design is stuck in the Write Latency stage, the issue could be related to either the 
write or the read.  Determining whether the write or read is causing the failure is critical. The 
following steps should be completed. For additional details and examples, see the 
Determining If a Data Error is Due to the Write or Read, page 770 section. 

X-Ref Target - Figure 38-86

Figure 38-86: Expected Read Pattern of All 1s
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1. To trigger on the start of Write Latency Calibration, set the trigger to 
(cal_r*_status[24] = R for Rising Edge). 

2. To trigger on the end of Write Latency Calibration, set the trigger to 
(cal_r*_status[25] = R for Rising Edge). To look at each byte, additionally add a 
trigger on dbg_cmp_byte and set to the byte of interest. 

3. To ensure the writes are correct, observe the write DQS to write DQ relationship at the 
memory using high quality scope and probes. During Write Latency, a write is followed 
by a read so care needs to be taken to ensure the write is captured. For more 
information, see the Determining If a Data Error is Due to the Write or Read, page 770 
section. If there is a failing bit, determining the write DQS to write DQ relationship for 
the specific DQ bit is critical. The write ideally has the DQS center aligned in the DQ 
window. Misalignment between DQS and DQ during Write Calibration points to an issue 
with Write DQS Centering calibration. Review the Debugging Write DQS Centering 
Failures, page 680 section.

4. If the DQ-DQS alignment looks correct, next observe the we_n to DQS relationship at 
the memory during a write again using high quality scope and probes. The we_n to DQS 
delay must equal the CAS Write Latency (CWL). 

5. Using high quality scope and probes, verify the expected pattern 
(FF00AA5555AA9966) is being written to the DRAM during a write and that the 
expected pattern is being read back during the first Write Calibration read. If the pattern 
is correct during write and read at the DRAM, verify the DQS-CK alignment. During 
Write Calibration, these two signals should be aligned. Write Leveling aligned these two 
signals which has successfully completed before Write Latency. 

6. Probe ODT and we_n during a write command. For ODT to be properly powered on in 
the memory, ODT must assert before the write command.

7. Probe DM to ensure it is held low during calibration. If a board issue exists causing DM 
to improperly assert, incorrect data can be read back during calibration causing a write 
calibration failure. An example of a board issue on DM is when DM is not used and tied 
low at the memory with improper termination. 

Using the Vivado Hardware Manager and while running the Memory IP Example Design 
with Debug Signals enabled, set the trigger. 

• To trigger on the start of Write Latency Calibration, set the trigger to 
(cal_r*_status[24] = R for Rising Edge).

• To trigger on the end of Write Latency Calibration, set the trigger to 
(cal_r*_status[25] = R for Rising Edge). To look at each byte, additionally add a 
trigger on dbg_cmp_byte and set to the byte of interest. 

The following simulation example shows how the debug signals should behave during 
successful Write Latency Calibration.
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Expected Results

The expected value on WRITE_LATENCY_CALIBRATION_COARSE is dependent on the 
starting point set by Write Leveling (which can be 0 to 4). The PCB skew to the SDRAM 
typically adds up to two memory clock cycles to this starting point where each clock cycle 
is four coarse taps. 

X-Ref Target - Figure 38-87

Figure 38-87: RTL Debug Signals during Write Latency Calibration (x4 Example Shown)
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Debugging Read Complex Pattern Calibration Failures

Note: Only enabled for data rates above 1,600 Mb/s.

Complex data patterns are used for advanced read DQS centering for memory systems to 
improve read timing margin. Long and complex data patterns on both the victim and 
aggressor DQ lanes impact the size and location of the data eye. The objective of the 
complex calibration step is to generate the worst case data eye on each DQ lane so that the 
DQS signal can be aligned, resulting in good setup/hold margin during normal operation 
with any work load.

There are two long data patterns stored in a block RAM, one for a victim DQ lane, and an 
aggressor pattern for all other DQ lanes. These patterns are used to generate write data, as 
well as expected data on reads for comparison and error logging. Each pattern consists of 
157 8-bit chunks or BL8 bursts. 

Each DQ lane of 1-byte takes a turn at being the victim. An RTL state machine automatically 
selects each DQ lane in turn, MUXing the victim or aggressor patterns to the appropriate 
DQ lanes, issues the read/write transactions, and records errors. The victim pattern is only 
walked across the DQ lanes of the selected byte to be calibrated, and all other DQ lanes 
carry the aggressor pattern, including all lanes in un-selected bytes if there is more than 
1-byte lane.

Similar steps to those described in Read DQS Centering are performed, with the PQTR/
NQTR starting out at the left edge of the simple window found previously. The complex 
pattern is written and read back. All bits in a nibble are checked to find the left edge of the 
window, incrementing the bits together as needed or the PQTR/NQTR to find the aggregate 
left edge. After the left and right edges are found, it steps through the entire data eye.

Debug

To determine the status of Complex Read Leveling Calibration, click the Read DQS 
Centering (Complex) stage under the Status window and view the results within the 
Memory IP Properties window. The message displayed in Memory IP Properties 
identifies how the stage failed or notes if it passed successfully.
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The status of Read Leveling Complex can also be determined by decoding the 
DDR_CAL_ERROR_0 and DDR_CAL_ERROR_1 results according to Table 38-31. Execute the 
Tcl commands noted in the XSDB Debug section to generate the XSDB output containing 
the signal results. 

X-Ref Target - Figure 38-88

Figure 38-88: Memory IP XSDB Debug GUI Example – Read DQS Centering (Complex)
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Table 38-32 shows the signals and values adjusted or used during the Read Leveling 
Complex stage of calibration. The values can be analyzed in both successful and failing 
calibrations to determine the resultant values and the consistency in results across resets. 
These values can be found within the Memory IP Core Properties within the Hardware 
Manager or by executing the Tcl commands noted in the XSDB Debug section. 

Table 38-31: DDR_CAL_ERROR Decode for Complex Read Leveling
Read DQS 
Centering
DDR_CAL_

ERROR_
CODE

DDR_CAL_
ERROR_1

DDR_CAL_
ERROR_0 Description Recommended Debug Steps

0x1 Nibble N/A No valid data found for a 
given bit in the nibble

Check if the design meets timing. Check the 
margin found for the simple pattern for the 
given nibble/byte. Check if the IDELAY 
values used for each bit are reasonable to 
others in the byte. Check the 
dbg_cplx_config, dbg_cplx_status, 
dbg_cplx_err_log, dbg_rd_data, and 
dbg_expected_data during this stage of 
calibration. Determine if it is a read or a 
write error by measuring the signals on the 
bus after the write.

0x2 Nibble N/A
Could not find the left Edge 
(error condition) to 
determine window size

Check the dbg_cplx_config, 
dbg_cplx_status, dbg_cplx_err_log, 
dbg_rd_data, and dbg_expected_data and 
see if the data changes during this stage of 
calibration.

0xF Nibble N/A Timeout error waiting for 
read data to return

Check the dbg_cal_seq_rd_cnt and 
dbg_cal_seq_cnt.

Table 38-32: Signals of Interest for Complex Pattern Calibration
Signal Usage Signal Description

RDLVL_COMPLEX_PQTR_LEFT_Rank*_Nibble* One per 
nibble

Read leveling PQTR tap position when left edge 
of read data valid window is detected (complex 
pattern).

RDLVL_COMPLEX_NQTR_LEFT_Rank*_Nibble* One per 
nibble

Read leveling NQTR tap position when left edge 
of read data valid window is detected (complex 
pattern).

RDLVL_COMPLEX_PQTR_RIGHT_Rank*_Nibble* One per 
nibble

Read leveling PQTR tap position when right 
edge of read data valid window is detected 
(complex pattern).

RDLVL_COMPLEX_NQTR_RIGHT_Rank*_Nibble* One per 
nibble

Read leveling NQTR tap position when right 
edge of read data valid window is detected 
(complex pattern).

RDLVL_COMPLEX_PQTR_CENTER_Rank*_Nibble* One per 
nibble

Read leveling PQTR center tap position found at 
the end of read DQS centering (complex 
pattern).
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This is a sample of results for Complex Read Leveling using the Memory IP Debug GUI 
within the Hardware Manager. 

Note: Either the “Table” or “Chart” view can be used to look at the calibration windows.

Figure 38-89 and Figure 38-90 are screen captures from 2015.1 and might vary from the 
current version. 

RDLVL_COMPLEX_NQTR_CENTER_Rank*_Nibble* One per 
nibble

Read leveling NQTR center tap position found at 
the end of read DQS centering (complex 
pattern).

RDLVL_COMPLEX_IDELAY_Rank*_Bit* One per Bit Read leveling IDELAY delay value (complex 
pattern).

RDLVL_COMPLEX_IDELAY_DBI_Byte* One per 
Byte Reserved

Table 38-32: Signals of Interest for Complex Pattern Calibration (Cont’d)

Signal Usage Signal Description
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This is a sample of results for the Read Leveling Complex XSDB debug signals:

RDLVL_COMPLEX_IDELAY_DBI_BYTE0 string true true 000 
RDLVL_COMPLEX_IDELAY_DBI_BYTE1 string true true 000 
RDLVL_COMPLEX_IDELAY_DBI_BYTE2 string true true 000 
RDLVL_COMPLEX_IDELAY_DBI_BYTE3 string true true 000 
RDLVL_COMPLEX_IDELAY_DBI_BYTE4 string true true 000 
RDLVL_COMPLEX_IDELAY_DBI_BYTE5 string true true 000 
RDLVL_COMPLEX_IDELAY_DBI_BYTE6 string true true 000 
RDLVL_COMPLEX_IDELAY_DBI_BYTE7 string true true 000 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE0_BIT0 string true true 040 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE0_BIT1 string true true 03e 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE0_BIT2 string true true 042 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE0_BIT3 string true true 040 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE0_BIT4    string true true 03d 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE0_BIT5    string true true 03e 

X-Ref Target - Figure 38-89

Figure 38-89: Example of Complex Read Calibration Margin
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RDLVL_COMPLEX_IDELAY_RANK0_BYTE0_BIT6    string true true 03d 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE0_BIT7    string true true 03e 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE1_BIT0    string true true 03d 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE1_BIT1    string true true 042 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE1_BIT2    string true true 03a 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE1_BIT3    string true true 040 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE1_BIT4    string true true 03f 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE1_BIT5    string true true 042 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE1_BIT6    string true true 03e 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE1_BIT7    string true true 040 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE2_BIT0    string true true 043 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE2_BIT1    string true true 040 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE2_BIT2    string true true 047 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE2_BIT3    string true true 03d 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE2_BIT4    string true true 000 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE2_BIT5    string true true 03f 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE2_BIT6    string true true 043 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE2_BIT7    string true true 03c 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE3_BIT0    string true true 03d 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE3_BIT1    string true true 03d 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE3_BIT2    string true true 03d 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE3_BIT3    string true true 03c 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE3_BIT4    string true true 03e 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE3_BIT5    string true true 040 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE3_BIT6    string true true 038 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE3_BIT7    string true true 040 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE4_BIT0    string true true 044 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE4_BIT1    string true true 045 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE4_BIT2    string true true 046 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE4_BIT3    string true true 042 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE4_BIT4    string true true 046 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE4_BIT5    string true true 041 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE4_BIT6    string true true 043 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE4_BIT7    string true true 041 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE5_BIT0    string true true 040 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE5_BIT1    string true true 048 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE5_BIT2    string true true 040 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE5_BIT3    string true true 047 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE5_BIT4    string true true 03f 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE5_BIT5    string true true 04c 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE5_BIT6    string true true 040 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE5_BIT7    string true true 048 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE6_BIT0    string true true 038 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE6_BIT1    string true true 043 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE6_BIT2    string true true 038 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE6_BIT3    string true true 042 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE6_BIT4    string true true 03b 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE6_BIT5    string true true 041 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE6_BIT6    string true true 03d 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE6_BIT7    string true true 042 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE7_BIT0    string true true 044 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE7_BIT1    string true true 041 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE7_BIT2    string true true 048 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE7_BIT3    string true true 043 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE7_BIT4    string true true 048 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE7_BIT5    string true true 043 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE7_BIT6    string true true 049 
RDLVL_COMPLEX_IDELAY_RANK0_BYTE7_BIT7    string true true 045 
RDLVL_COMPLEX_NQTR_CENTER_RANK0_NIBBLE0  string true true 03c 
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RDLVL_COMPLEX_NQTR_CENTER_RANK0_NIBBLE1  string true true 041 
RDLVL_COMPLEX_NQTR_CENTER_RANK0_NIBBLE2  string true true 03b 
RDLVL_COMPLEX_NQTR_CENTER_RANK0_NIBBLE3  string true true 038 
RDLVL_COMPLEX_NQTR_CENTER_RANK0_NIBBLE4  string true true 03a 
RDLVL_COMPLEX_NQTR_CENTER_RANK0_NIBBLE5  string true true 039 
RDLVL_COMPLEX_NQTR_CENTER_RANK0_NIBBLE6  string true true 038 
RDLVL_COMPLEX_NQTR_CENTER_RANK0_NIBBLE7  string true true 038 
RDLVL_COMPLEX_NQTR_CENTER_RANK0_NIBBLE8  string true true 03a 
RDLVL_COMPLEX_NQTR_CENTER_RANK0_NIBBLE9  string true true 03f 
RDLVL_COMPLEX_NQTR_CENTER_RANK0_NIBBLE10 string true true 041 
RDLVL_COMPLEX_NQTR_CENTER_RANK0_NIBBLE11 string true true 03a 
RDLVL_COMPLEX_NQTR_CENTER_RANK0_NIBBLE12 string true true 03d 
RDLVL_COMPLEX_NQTR_CENTER_RANK0_NIBBLE13 string true true 039 
RDLVL_COMPLEX_NQTR_CENTER_RANK0_NIBBLE14 string true true 036 
RDLVL_COMPLEX_NQTR_CENTER_RANK0_NIBBLE15 string true true 040 
RDLVL_COMPLEX_NQTR_LEFT_RANK0_NIBBLE0    string true true 01a 
RDLVL_COMPLEX_NQTR_LEFT_RANK0_NIBBLE1    string true true 020 
RDLVL_COMPLEX_NQTR_LEFT_RANK0_NIBBLE2    string true true 01c 
RDLVL_COMPLEX_NQTR_LEFT_RANK0_NIBBLE3    string true true 018 
RDLVL_COMPLEX_NQTR_LEFT_RANK0_NIBBLE4    string true true 01a 
RDLVL_COMPLEX_NQTR_LEFT_RANK0_NIBBLE5    string true true 018 
RDLVL_COMPLEX_NQTR_LEFT_RANK0_NIBBLE6    string true true 017 
RDLVL_COMPLEX_NQTR_LEFT_RANK0_NIBBLE7    string true true 017 
RDLVL_COMPLEX_NQTR_LEFT_RANK0_NIBBLE8    string true true 016 
RDLVL_COMPLEX_NQTR_LEFT_RANK0_NIBBLE9    string true true 01d 
RDLVL_COMPLEX_NQTR_LEFT_RANK0_NIBBLE10   string true true 020 
RDLVL_COMPLEX_NQTR_LEFT_RANK0_NIBBLE11   string true true 01a 
RDLVL_COMPLEX_NQTR_LEFT_RANK0_NIBBLE12   string true true 01b 
RDLVL_COMPLEX_NQTR_LEFT_RANK0_NIBBLE13   string true true 018 
RDLVL_COMPLEX_NQTR_LEFT_RANK0_NIBBLE14   string true true 013 
RDLVL_COMPLEX_NQTR_LEFT_RANK0_NIBBLE15   string true true 020 
RDLVL_COMPLEX_NQTR_RIGHT_RANK0_NIBBLE0   string true true 05f 
RDLVL_COMPLEX_NQTR_RIGHT_RANK0_NIBBLE1   string true true 062 
RDLVL_COMPLEX_NQTR_RIGHT_RANK0_NIBBLE2   string true true 05b 
RDLVL_COMPLEX_NQTR_RIGHT_RANK0_NIBBLE3   string true true 059 
RDLVL_COMPLEX_NQTR_RIGHT_RANK0_NIBBLE4   string true true 05b 
RDLVL_COMPLEX_NQTR_RIGHT_RANK0_NIBBLE5   string true true 05a 
RDLVL_COMPLEX_NQTR_RIGHT_RANK0_NIBBLE6   string true true 059 
RDLVL_COMPLEX_NQTR_RIGHT_RANK0_NIBBLE7   string true true 059 
RDLVL_COMPLEX_NQTR_RIGHT_RANK0_NIBBLE8   string true true 05e 
RDLVL_COMPLEX_NQTR_RIGHT_RANK0_NIBBLE9   string true true 061 
RDLVL_COMPLEX_NQTR_RIGHT_RANK0_NIBBLE10  string true true 062 
RDLVL_COMPLEX_NQTR_RIGHT_RANK0_NIBBLE11  string true true 05b 
RDLVL_COMPLEX_NQTR_RIGHT_RANK0_NIBBLE12  string true true 05f 
RDLVL_COMPLEX_NQTR_RIGHT_RANK0_NIBBLE13  string true true 05a 
RDLVL_COMPLEX_NQTR_RIGHT_RANK0_NIBBLE14  string true true 05a 
RDLVL_COMPLEX_NQTR_RIGHT_RANK0_NIBBLE15  string true true 061 
RDLVL_COMPLEX_PQTR_CENTER_RANK0_NIBBLE0  string true true 03b 
RDLVL_COMPLEX_PQTR_CENTER_RANK0_NIBBLE1  string true true 03e 
RDLVL_COMPLEX_PQTR_CENTER_RANK0_NIBBLE2  string true true 038 
RDLVL_COMPLEX_PQTR_CENTER_RANK0_NIBBLE3  string true true 036 
RDLVL_COMPLEX_PQTR_CENTER_RANK0_NIBBLE4  string true true 03e 
RDLVL_COMPLEX_PQTR_CENTER_RANK0_NIBBLE5  string true true 03b 
RDLVL_COMPLEX_PQTR_CENTER_RANK0_NIBBLE6  string true true 037 
RDLVL_COMPLEX_PQTR_CENTER_RANK0_NIBBLE7  string true true 037 
RDLVL_COMPLEX_PQTR_CENTER_RANK0_NIBBLE8  string true true 03c 
RDLVL_COMPLEX_PQTR_CENTER_RANK0_NIBBLE9  string true true 03d 
RDLVL_COMPLEX_PQTR_CENTER_RANK0_NIBBLE10 string true true 040 
RDLVL_COMPLEX_PQTR_CENTER_RANK0_NIBBLE11 string true true 038 
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RDLVL_COMPLEX_PQTR_CENTER_RANK0_NIBBLE12 string true true 03d 
RDLVL_COMPLEX_PQTR_CENTER_RANK0_NIBBLE13 string true true 038 
RDLVL_COMPLEX_PQTR_CENTER_RANK0_NIBBLE14 string true true 03a 
RDLVL_COMPLEX_PQTR_CENTER_RANK0_NIBBLE15 string true true 042 
RDLVL_COMPLEX_PQTR_LEFT_RANK0_NIBBLE0    string true true 01c 
RDLVL_COMPLEX_PQTR_LEFT_RANK0_NIBBLE1    string true true 021 
RDLVL_COMPLEX_PQTR_LEFT_RANK0_NIBBLE2    string true true 019 
RDLVL_COMPLEX_PQTR_LEFT_RANK0_NIBBLE3    string true true 016 
RDLVL_COMPLEX_PQTR_LEFT_RANK0_NIBBLE4    string true true 01e 
RDLVL_COMPLEX_PQTR_LEFT_RANK0_NIBBLE5    string true true 01b 
RDLVL_COMPLEX_PQTR_LEFT_RANK0_NIBBLE6    string true true 018 
RDLVL_COMPLEX_PQTR_LEFT_RANK0_NIBBLE7    string true true 016 
RDLVL_COMPLEX_PQTR_LEFT_RANK0_NIBBLE8    string true true 018 
RDLVL_COMPLEX_PQTR_LEFT_RANK0_NIBBLE9    string true true 01c 
RDLVL_COMPLEX_PQTR_LEFT_RANK0_NIBBLE10   string true true 01f 
RDLVL_COMPLEX_PQTR_LEFT_RANK0_NIBBLE11   string true true 018 
RDLVL_COMPLEX_PQTR_LEFT_RANK0_NIBBLE12   string true true 01c 
RDLVL_COMPLEX_PQTR_LEFT_RANK0_NIBBLE13   string true true 01a 
RDLVL_COMPLEX_PQTR_LEFT_RANK0_NIBBLE14   string true true 01b 
RDLVL_COMPLEX_PQTR_LEFT_RANK0_NIBBLE15   string true true 022 
RDLVL_COMPLEX_PQTR_RIGHT_RANK0_NIBBLE0   string true true 05b 
RDLVL_COMPLEX_PQTR_RIGHT_RANK0_NIBBLE1   string true true 05c 
RDLVL_COMPLEX_PQTR_RIGHT_RANK0_NIBBLE2   string true true 057 
RDLVL_COMPLEX_PQTR_RIGHT_RANK0_NIBBLE3   string true true 057 
RDLVL_COMPLEX_PQTR_RIGHT_RANK0_NIBBLE4   string true true 05e 
RDLVL_COMPLEX_PQTR_RIGHT_RANK0_NIBBLE5   string true true 05c 
RDLVL_COMPLEX_PQTR_RIGHT_RANK0_NIBBLE6   string true true 057 
RDLVL_COMPLEX_PQTR_RIGHT_RANK0_NIBBLE7   string true true 058 
RDLVL_COMPLEX_PQTR_RIGHT_RANK0_NIBBLE8   string true true 061 
RDLVL_COMPLEX_PQTR_RIGHT_RANK0_NIBBLE9   string true true 05f 
RDLVL_COMPLEX_PQTR_RIGHT_RANK0_NIBBLE10  string true true 062 
RDLVL_COMPLEX_PQTR_RIGHT_RANK0_NIBBLE11  string true true 058 
RDLVL_COMPLEX_PQTR_RIGHT_RANK0_NIBBLE12  string true true 05f 
RDLVL_COMPLEX_PQTR_RIGHT_RANK0_NIBBLE13  string true true 057 
RDLVL_COMPLEX_PQTR_RIGHT_RANK0_NIBBLE14  string true true 059 
RDLVL_COMPLEX_PQTR_RIGHT_RANK0_NIBBLE15  string true true 062 

Expected Results

• Look at the individual PQTR/NQTR tap settings for each nibble. The taps should only 
vary by 0 to 20 taps. Use the BISC values to compute the estimated bit time in taps. 

° For example, Byte 7 Nibble 0 in Figure 38-90 is shifted and smaller compared to the 
remaining nibbles. This type of result is not expected. For this specific example, the 
SDRAM was not properly loaded into the socket.
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• Look at the individual IDELAY taps for each bit. The IDELAY taps should only vary by 0 
to 20 taps, and is dependent on PCB trace delays. For Deskew the IDELAY taps are 
typically in the 50 to 70 tap range, while PQTR and NQTR are usually in the 0 to 5 tap 
range.

• Determine if any bytes completed successfully. The read leveling algorithm sequentially 
steps through each DQS byte group detecting the capture edges. 

• If the incorrect data pattern is detected, determine if the error is due to the write access 
or the read access. See Determining If a Data Error is Due to the Write or Read, 
page 770.

• To analyze the window size in ps, see Determining Window Size in ps, page 773. As a 
general rule of thumb, the window size for a healthy system should be ≥  30% of the 
expected UI size.

• Compare read leveling window (read margin size) results from the simple pattern 
calibration versus the complex pattern calibration. The windows should all shrink but 
the reduction in window size should shrink relatively across the data byte lanes.

X-Ref Target - Figure 38-90

Figure 38-90: Suspicious Calibrated Read Window for Byte 7 Nibble 0
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° Use the Memory IP Debug GUI to quickly compare simple versus complex window 
sizes.

Figure 38-91 is a screen capture from 2015.1 and might vary from the current version. 

Hardware Measurements

1. Probe the write commands and read commands at the memory:

° Write = cs_n= 1; ras_n = 0; cas_n = 1; we_n = 1; act_n = 1 (DDR4 only)

° Read = cs_n = 1; ras_n = 0; cas_n = 1; we_n = 0; act_n = 1 (DDR4 only)
2. Probe a data pin to check for data being returned from the DRAM. 
3. Probe the VREF level at the DRAM (for DDR3).
4. Probe the DM pin which should be deasserted during the write burst (or tied off on the 

board with an appropriate value resistor). 
5. Probe the read burst after the write and check if the expected data pattern is being 

returned. 
6. Check for floating address pins if the expected data is not returned. 
7. Check for any stuck-at level issues on DQ pins whose signal level does not change. If at 

all possible probe at the receiver to check termination and signal integrity.
8. Check the DBG port signals and the full read data and comparison result to check the 

data in general interconnect. The calibration algorithm has RTL logic to issue the 

X-Ref Target - Figure 38-91

Figure 38-91: Comparing Simple and Complex Read Calibration Windows
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commands and check the data. Check if the dbg_rd_valid aligns with the data pattern 
or is off. Set up a trigger when the error gets asserted to capture signals in the hardware 
debugger for analysis.

9. Re-check results from previous calibration stages. Compare passing byte lanes against 
failing byte lanes for previous stages of calibration. If a failure occurs during complex 
pattern calibration, check the values found during simple pattern calibration for 
example.

10. All of the data comparison for complex read calibration occur in the general 
interconnect, so it can be useful to pull in the debug data in the hardware debugger and 
take a look at what the data looks like coming back as taps are adjusted, see 
Figure 38-92 and Figure 38-93. Screenshots shown are from simulation, with a small 
loop count set for the data pattern. Look at dbg_rd_data, dbg_rd_valid, and 
dbg_cplx_err_log.

11. Using the Vivado Hardware Manager and while running the Memory IP Example Design 
with Debug Signals enabled, set the Read Complex calibration trigger to 
cal_r*_status[28] = R (rising edge). To view each byte, add an additional trigger on 
dbg_cmp_byte and set to the byte of interest. The following simulation example shows 
how the debug signals should behave during Read Complex Calibration. 

Figure 38-92 shows the start of the complex calibration data pattern with an emphasis 
on the dbg_cplx_config bus shown. The “read start” bit is Bit[0] and the number of 
loops is set based on Bits[15:9], hence Figure 38-92 shows the start of complex read 
pattern and the loop count set to 1 (for simulation only). The dbg_cplx_status goes 
to 1 to indicate the pattern is in progress. See Table 38-2, page 594 for the list of all 
debug signals. 

X-Ref Target - Figure 38-92

Figure 38-92: RTL Debug Signals during Read Complex (Start)
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12. Analyze the debug signal dbg_cplx_err_log. This signal shows comparison 
mismatches on a per-bit basis. When a bit error occurs, signifying an edge of the 
window has been found, typically a single bit error is shown on dbg_cplx_err_log. 
Meaning, all bits of this bus are 0 except for the single bit that had a comparison 
mismatch which is set to 1. When an unexpected data error occurs during complex read 
calibration, for example a byte shift, the entire bus would be 1. This is not the expected 
bit mismatch found in window detection but points to a true read versus write issue. 
Now, the read data should be compared with the expected (compare) data and the error 
debugged to determine if it is a read or write issue. Use dbg_rd_data and 
dbg_rd_dat_cmp to compare the received data to the expected data.

13. For more information, see Debugging Data Errors, page 758.
14. After failure during this stage of calibration, the design goes into a continuous loop of 

read commands to allow board probing.

Debugging Write Complex Pattern Calibration Failures

Calibration Overview

The final stage of Write DQS-to-DQ centering that is completed before normal operation is 
repeating the steps performed during Write DQS-to-DQ centering but with a difficult/
complex pattern. The purpose of using a complex pattern is to stress the system for SI 
effects such as ISI and noise while calculating the write DQS center and write DQ positions. 
This ensures the write center position can reliably capture data with margin in a true system.

Debug

To determine the status of Write Complex Pattern Calibration, click the Write DQS to DQ 
(Complex) stage under the Status window and view the results within the Memory IP 
Properties window. The message displayed in Memory IP Properties identifies how the 
stage failed or notes if it passed successfully.

X-Ref Target - Figure 38-93

Figure 38-93: RTL Debug Signals during Read Complex (Writes and Reads)
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The status of Write Complex Pattern Calibration can also be determined by decoding the 
DDR_CAL_ERROR_0 and DDR_CAL_ERROR_1 results according to Table 38-33. Execute the 
Tcl commands noted in the XSDB Debug section to generate the XSDB output containing 
the signal results.

X-Ref Target - Figure 38-94

Figure 38-94: Memory IP XSDB Debug GUI Example – Write DQS to DQ (Complex)
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Table 38-34 shows the signals and values adjusted or used during the Write Complex 
Pattern stage of calibration. The values can be analyzed in both successful and failing 
calibrations to determine the resultant values and the consistency in results across resets. 
These values can be found within the Memory IP Core Properties within the Hardware 
Manager or by executing the Tcl commands noted in the XSDB Debug section. 

Table 38-33: DDR_CAL_ERROR Decode for Read Leveling and Write DQS Centering Calibration
Write DQS to 

DQ
DDR_CAL_

ERROR_
CODE

DDR_CAL_
ERROR_1

DDR_CAL_
ERROR_0 Description Recommended Debug Steps

0x1 Byte N/A No valid data found

Check if the design meets timing. Check the 
margin found for the simple pattern for the 
given nibble/byte. Check if the ODELAY values 
used for each bit are reasonable to others in 
the byte. Check the dbg_cplx_config, 
dbg_cplx_status, dbg_cplx_err_log, 
dbg_rd_data, and dbg_expected_data during 
this stage of calibration. Check the default 
VREF value being used is correct for the 
configuration.

0xF Byte N/A Timeout error waiting 
for read data to return

Check the dbg_cal_seq_rd_cnt and 
dbg_cal_seq_cnt.

Table 38-34: Signals of Interest for Complex Pattern Calibration
Signal Usage Signal Description

WRITE_COMPLEX_DQS_TO_DQ_PRE_ADJUST_MARGIN_
LEFT_BYTE*

One per 
Byte

Left side of the write DQS-to-DQ window 
measured during calibration before 
adjustments made.

WRITE_ COMPLEX 
_DQS_TO_DQ_PRE_ADJUST_MARGIN_RIGHT _BYTE*

One per 
Byte

Right side of the write DQS-to-DQ 
window measured during calibration 
before adjustments made.

WRITE_ COMPLEX _DQS_TO_DQ _MARGIN_LEFT_BYTE* One per 
Byte Left side of the write DQS-to-DQ window.

WRITE_ COMPLEX _DQS_TO_DQ _MARGIN_RIGHT 
_BYTE*

One per 
Byte

Right side of the write DQS-to-DQ 
window.

WRITE_ COMPLEX _DQS_TO_DQ_DQS_ODELAY_BYTE* One per 
Byte

Final DQS ODELAY value after Write 
DQS-to-DQ (Complex).

WRITE_ COMPLEX 
_DQS_TO_DQ_DQ_ODELAY_BYTE*_BIT* One per Bit Final DQ ODELAY value after Write 

DQS-to-DQ (Complex).

WRITE_DQS_ODELAY_FINAL_BYTE*_BIT* One per 
Byte Final DQS ODELAY value.

WRITE_DQ_ODELAY_FINAL_BYTE*_BIT* One per Bit Final DQ ODELAY value.
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Expected Results

• Look at the individual WRITE_COMPLEX_DQS_TO_DQ_DQS_ODELAY and 
WRITE_COMPLEX_DQS_TO_DQ_DQ_ODELAY tap settings for each nibble. The taps 
should only vary by 0 to 20 taps. To calculate the write window, see Determining 
Window Size in ps, page 773.

• Determine if any bytes completed successfully. The write calibration algorithm 
sequentially steps through each DQS byte group detecting the capture edges. 

• If the incorrect data pattern is detected, determine if the error is due to the write access 
or the read access. See Determining If a Data Error is Due to the Write or Read, 
page 770.

• Both edges need to be found. This is possible at all frequencies because the algorithm 
uses 90° of ODELAY taps to find the edges.

• To analyze the window size in ps, see Determining Window Size in ps, page 773. As a 
general rule of thumb, the window size for a healthy system should be ≥  30% of the 
expected UI size.

Using the Vivado Hardware Manager and while running the Memory IP Example Design 
with the Debug Signals enabled, set the trigger (cal_r*_status[36] = R for Rising 
Edge).
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The following simulation example shows how the debug signals should behave during 
successful Write DQS-to-DQ. 

Hardware Measurements

1. If the write complex pattern fails, use high quality probes and scope the DQS-to-DQ 
phase relationship at the memory during a write. Trigger at the start 
(cal_r*_status[36] = R for Rising Edge) and again at the end 
(cal_r*_status[37] = R for Rising Edge) of Write Complex DQS Centering to view 
the starting and ending alignments. The alignment should be approximately 90°.

2. If the DQS-to-DQ alignment is correct, observe the we_n-to-DQS relationship to see if 
it meets CWL again using cal_r*_status[25] = R for Rising Edge as a trigger.

3. For all stages of write/read leveling, probe the write commands and read commands at 
the memory:

° Write = cs_n = 1; ras_n = 0; cas_n = 1; we_n = 1; act_n = 1 (DDR4 only)

° Read = cs_n = 1; ras_n = 0; cas_n = 1; we_n = 0; act_n = 1 (DDR4 only)

X-Ref Target - Figure 38-95

Figure 38-95: Expected Behavior during Write Complex Pattern Calibration
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Multi-Rank Adjustments and Checks (Multi-Rank Designs Only)

Calibration Overview

For multi-rank designs, previously calibrated positions must be validated and adjusted 
across each rank within the system. The previously calibrated areas that need further 
adjustment for multi-rank systems are Read Level, DQS Preamble, and Write Latency. The 
adjustments are described in the following sections.

Common Read Leveling Settings

Each DQS has a single IDELAY/PQTR/NQTR value that is used across ranks. During Read 
Leveling Calibration, each rank is allowed to calibrate independently to find the ideal 
IDELAY/PQTR/NQTR tap positions for each DQS to each separate rank. During the 
multi-rank checks, the minimum and maximum value found for each DQS IDELAY/PQTR/
NQTR positions are checked, the range is computed, and the center point is used as the 
final setting. For example, if a DQS has a PQTR that sees values of rank0 = 50, rank1 = 50, 
rank2 = 50, and rank3 = 75, the final value would be 62. This is done to ensure a value can 
work well across all ranks rather than averaging the values and giving preference to values 
that happen more frequently.

DQS Gate Adjustment

During DQS gate calibration for multi-rank systems, each rank is allowed to calibrate 
independently. After all ranks have been calibrated, an adjustment is required before 
normal operation to ensure fast rank-to-rank switching. 

Across all ranks within a byte, the read latency and general interconnect delay 
(clb2phy_rd_en) must match. During the DQS Gate Adjustment stage of calibration, the 
coarse taps found during DQS Preamble Detection for each rank are adjusted such that a 
common read latency and clb2phy_rd_en can be used. Additionally, the coarse taps have 
to be within four taps within the same byte lane across all ranks. Table 38-35 shows the DQS 
Gate adjustment examples. 
Table 38-35: DQS gate Adjustment Examples

Example Setting
Calibration After Multi-Rank Adjustment

Rank 0 Rank 1 Rank 0 Rank 1 Result

#1
Read latency 14 15 14 14

Pass
Coarse taps 8 6 8 10

#2
Read latency 22 21 21 21

Pass
Coarse taps 6 9 10 9

#3
Read latency 10 15 N/A N/A

Error
Coarse taps 9 9 N/A N/A

#4
Read latency 10 11 10 10

Error
Coarse taps 6 9 6 13
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Write Latency Check between Ranks

The write leveling and write latency values are calibrated separately for each rank. After all 
ranks have been calibrated, a check is made to ensure certain XIPHY requirements are met 
on the write path. The difference in write latency between the ranks is allowed to be 180° (or 
two XIPHY coarse taps). This is checked during this stage.

Debug

To determine the status of Multi-Rank Adjustments and Checks, click the Read DQS 
Centering Multi Rank Adjustment or Multi Rank Adjustments and Checks stage under 
the Status window and view the results within the Memory IP Properties window. The 
message displayed in Memory IP Properties identifies how the stage failed or notes if it 
passed successfully. 

X-Ref Target - Figure 38-96

Figure 38-96: Memory IP XSDB Debug GUI Example – Read DQS Centering Multi-Rank Adjustment and 
Multi-Rank Adjustment and Checks
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The status of Read Level Multi-Rank Adjustment can also be determined by decoding the 
DDR_CAL_ERROR_0 and DDR_CAL_ERROR_1 results according to Table 38-36. Execute the 
Tcl commands noted in the XSDB Debug section to generate the XSDB output containing 
the signal results.  

Table 38-37 shows the signals and values adjusted or used during Read Level Multi-Rank 
Adjustment and Multi-Rank DQS Gate. The values can be analyzed in both successful and 
failing calibrations to determine the resultant values and the consistency in results across 
resets. These values can be found within the Memory IP Core Properties within the 
Hardware Manager or by executing the Tcl commands noted in the XSDB Debug section. 

Table 38-36: DDR_CAL_ERROR Decode for Multi-Rank Adjustments and Checks
Multi-Rank 

Adjustments & 
Checks

DDR_CAL_
ERROR_

CODE

DDR_CAL_
ERROR_1

DDR_CAL_
ERROR_0 Description Recommended Debug Steps

0x1 Byte RIU 
Nibble

Could not find common setting 
across ranks for general 
interconnect read latency setting 
for given byte. Variance between 
ranks could not be compensated 
with coarse taps.

Check PCB Trace lengths 
against what is allowed. Check 
the calibration results for 
DQS_GATE_COARSE, and 
DQS_GATE_READ_LATENCY for 
the byte that failed.

0x2 Byte RIU 
Nibble

Read skew between ranks for a 
given byte larger than 360°.

Check PCB Trace lengths 
against what is allowed. Check 
the calibration results for 
DQS_GATE_COARSE and 
DQS_GATE_READ_LATENCY for 
the byte that failed.

0x3 Byte RIU 
Nibble

Write skew between ranks for a 
given byte larger than 180°.

Check PCB Trace lengths 
against what is allowed. Check 
the calibration results for 
WRLVL_COARSE_STABLE0 and 
WRITE_LATENCY_CALIBRATIO
N_COARSE for the byte that 
failed. 

Table 38-37: Signals of Interest for Multi-Rank Adjustments and Checks
Signal Usage Signal Description

RDLVL_PQTR_FINAL_NIBBLE* One per 
nibble

Final Read leveling PQTR tap position from 
the XIPHY.

RDLVL_NQTR_FINAL_NIBBLE* One per 
nibble

Final Read leveling NQTR tap position from 
the XIPHY.

RDLVL_IDELAY_FINAL_BYTE*_BIT* One per Bit Final IDELAY tap position from the XIPHY.

RDLVL_IDELAY_DBI_FINAL_BYTE* One per Byte Reserved
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Expected Results

If no adjustments are required then the MULTI_RANK_* signals can be blank as shown, the 
field is only populated when a change is made to the values. 

MULTI_RANK_DQS_GATE_COARSE_RANK0_BYTE0    000
MULTI_RANK_DQS_GATE_COARSE_RANK0_BYTE1    000
MULTI_RANK_DQS_GATE_COARSE_RANK0_BYTE2    000
MULTI_RANK_DQS_GATE_COARSE_RANK0_BYTE3    000
MULTI_RANK_DQS_GATE_COARSE_RANK0_BYTE4    000
MULTI_RANK_DQS_GATE_COARSE_RANK0_BYTE5    000
MULTI_RANK_DQS_GATE_COARSE_RANK0_BYTE6    000
MULTI_RANK_DQS_GATE_COARSE_RANK0_BYTE7    000
MULTI_RANK_DQS_GATE_COARSE_RANK0_BYTE8    000
MULTI_RANK_DQS_GATE_COARSE_RANK1_BYTE0    000
MULTI_RANK_DQS_GATE_COARSE_RANK1_BYTE1    000
MULTI_RANK_DQS_GATE_COARSE_RANK1_BYTE2    000
MULTI_RANK_DQS_GATE_COARSE_RANK1_BYTE3    000
MULTI_RANK_DQS_GATE_COARSE_RANK1_BYTE4    000
MULTI_RANK_DQS_GATE_COARSE_RANK1_BYTE5    000
MULTI_RANK_DQS_GATE_COARSE_RANK1_BYTE6    000
MULTI_RANK_DQS_GATE_COARSE_RANK1_BYTE7    000
MULTI_RANK_DQS_GATE_COARSE_RANK1_BYTE8    000
MULTI_RANK_DQS_GATE_READ_LATENCY_BYTE0    000
MULTI_RANK_DQS_GATE_READ_LATENCY_BYTE1    000
MULTI_RANK_DQS_GATE_READ_LATENCY_BYTE2    000
MULTI_RANK_DQS_GATE_READ_LATENCY_BYTE3    000
MULTI_RANK_DQS_GATE_READ_LATENCY_BYTE4    000
MULTI_RANK_DQS_GATE_READ_LATENCY_BYTE5    000
MULTI_RANK_DQS_GATE_READ_LATENCY_BYTE6    000
MULTI_RANK_DQS_GATE_READ_LATENCY_BYTE7    000
MULTI_RANK_DQS_GATE_READ_LATENCY_BYTE8    000

The Read level Multi-Rank Adjustment changes the values of the “FINAL” fields for the read 
path. The margin for each individual rank is given in the table and chart but the final value 
is stored here.

RDLVL_IDELAY_FINAL_BYTE0_BIT0    04d
RDLVL_IDELAY_FINAL_BYTE0_BIT1    052
RDLVL_IDELAY_FINAL_BYTE0_BIT2    055
RDLVL_IDELAY_FINAL_BYTE0_BIT3    051
RDLVL_IDELAY_FINAL_BYTE0_BIT4    04f
RDLVL_IDELAY_FINAL_BYTE0_BIT5    04e
RDLVL_IDELAY_FINAL_BYTE0_BIT6    050
RDLVL_IDELAY_FINAL_BYTE0_BIT7    04b
RDLVL_IDELAY_FINAL_BYTE1_BIT0    04d

MULTI_RANK_DQS_GATE_READ_LATENCY_BYTE* One per Byte Final common general interconnect read 
latency setting used for a given byte.

MULTI_RANK_DQS_GATE_COARSE_RANK*_BYTE* One per Rank 
per Byte

Final RL_DLY_COARSE tap value used for a 
given byte (might differ from calibrated 
value).

Table 38-37: Signals of Interest for Multi-Rank Adjustments and Checks (Cont’d)

Signal Usage Signal Description
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RDLVL_IDELAY_FINAL_BYTE1_BIT1    050
RDLVL_IDELAY_FINAL_BYTE1_BIT2    04f
RDLVL_IDELAY_FINAL_BYTE1_BIT3    04c
RDLVL_IDELAY_FINAL_BYTE1_BIT4    050
RDLVL_IDELAY_FINAL_BYTE1_BIT5    051
RDLVL_IDELAY_FINAL_BYTE1_BIT6    052
RDLVL_IDELAY_FINAL_BYTE1_BIT7    04e
RDLVL_IDELAY_FINAL_BYTE2_BIT0    04f
RDLVL_IDELAY_FINAL_BYTE2_BIT1    052
RDLVL_IDELAY_FINAL_BYTE2_BIT2    053
RDLVL_IDELAY_FINAL_BYTE2_BIT3    049
RDLVL_IDELAY_FINAL_BYTE2_BIT4    04f
RDLVL_IDELAY_FINAL_BYTE2_BIT5    052
RDLVL_IDELAY_FINAL_BYTE2_BIT6    04e
RDLVL_IDELAY_FINAL_BYTE2_BIT7    04c
RDLVL_IDELAY_FINAL_BYTE3_BIT0    051
RDLVL_IDELAY_FINAL_BYTE3_BIT1    056
RDLVL_IDELAY_FINAL_BYTE3_BIT2    04c
RDLVL_IDELAY_FINAL_BYTE3_BIT3    04b
RDLVL_IDELAY_FINAL_BYTE3_BIT4    04f
RDLVL_IDELAY_FINAL_BYTE3_BIT5    050
RDLVL_IDELAY_FINAL_BYTE3_BIT6    055
RDLVL_IDELAY_FINAL_BYTE3_BIT7    050
RDLVL_IDELAY_FINAL_BYTE4_BIT0    04b
RDLVL_IDELAY_FINAL_BYTE4_BIT1    04c
RDLVL_IDELAY_FINAL_BYTE4_BIT2    046
RDLVL_IDELAY_FINAL_BYTE4_BIT3    048
RDLVL_IDELAY_FINAL_BYTE4_BIT4    054
RDLVL_IDELAY_FINAL_BYTE4_BIT5    055
RDLVL_IDELAY_FINAL_BYTE4_BIT6    054
RDLVL_IDELAY_FINAL_BYTE4_BIT7    04f
RDLVL_IDELAY_FINAL_BYTE5_BIT0    044
RDLVL_IDELAY_FINAL_BYTE5_BIT1    049
RDLVL_IDELAY_FINAL_BYTE5_BIT2    04a
RDLVL_IDELAY_FINAL_BYTE5_BIT3    045
RDLVL_IDELAY_FINAL_BYTE5_BIT4    04d
RDLVL_IDELAY_FINAL_BYTE5_BIT5    052
RDLVL_IDELAY_FINAL_BYTE5_BIT6    04e
RDLVL_IDELAY_FINAL_BYTE5_BIT7    04b
RDLVL_IDELAY_FINAL_BYTE6_BIT0    03d
RDLVL_IDELAY_FINAL_BYTE6_BIT1    03e
RDLVL_IDELAY_FINAL_BYTE6_BIT2    039
RDLVL_IDELAY_FINAL_BYTE6_BIT3    03c
RDLVL_IDELAY_FINAL_BYTE6_BIT4    053
RDLVL_IDELAY_FINAL_BYTE6_BIT5    052
RDLVL_IDELAY_FINAL_BYTE6_BIT6    04d
RDLVL_IDELAY_FINAL_BYTE6_BIT7    04c
RDLVL_IDELAY_FINAL_BYTE7_BIT0    040
RDLVL_IDELAY_FINAL_BYTE7_BIT1    03f
RDLVL_IDELAY_FINAL_BYTE7_BIT2    040
RDLVL_IDELAY_FINAL_BYTE7_BIT3    03c
RDLVL_IDELAY_FINAL_BYTE7_BIT4    046
RDLVL_IDELAY_FINAL_BYTE7_BIT5    047
RDLVL_IDELAY_FINAL_BYTE7_BIT6    048
RDLVL_IDELAY_FINAL_BYTE7_BIT7    045
RDLVL_IDELAY_FINAL_BYTE8_BIT0    04b
RDLVL_IDELAY_FINAL_BYTE8_BIT1    050
RDLVL_IDELAY_FINAL_BYTE8_BIT2    051
RDLVL_IDELAY_FINAL_BYTE8_BIT3    04e
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RDLVL_IDELAY_FINAL_BYTE8_BIT4    04a
RDLVL_IDELAY_FINAL_BYTE8_BIT5    04c
RDLVL_IDELAY_FINAL_BYTE8_BIT6    04d
RDLVL_IDELAY_FINAL_BYTE8_BIT7    04a
RDLVL_NQTR_CENTER_FINAL_NIBBLE0    064
RDLVL_NQTR_CENTER_FINAL_NIBBLE1    06b
RDLVL_NQTR_CENTER_FINAL_NIBBLE2    066
RDLVL_NQTR_CENTER_FINAL_NIBBLE3    06b
RDLVL_NQTR_CENTER_FINAL_NIBBLE4    062
RDLVL_NQTR_CENTER_FINAL_NIBBLE5    06c
RDLVL_NQTR_CENTER_FINAL_NIBBLE6    067
RDLVL_NQTR_CENTER_FINAL_NIBBLE7    069
RDLVL_NQTR_CENTER_FINAL_NIBBLE8    065
RDLVL_NQTR_CENTER_FINAL_NIBBLE9    05d
RDLVL_NQTR_CENTER_FINAL_NIBBLE10    05d
RDLVL_NQTR_CENTER_FINAL_NIBBLE11    05c
RDLVL_NQTR_CENTER_FINAL_NIBBLE12    061
RDLVL_NQTR_CENTER_FINAL_NIBBLE13    051
RDLVL_NQTR_CENTER_FINAL_NIBBLE14    054
RDLVL_NQTR_CENTER_FINAL_NIBBLE15    04f
RDLVL_NQTR_CENTER_FINAL_NIBBLE16    063
RDLVL_NQTR_CENTER_FINAL_NIBBLE17    06d
RDLVL_PQTR_CENTER_FINAL_NIBBLE0    064
RDLVL_PQTR_CENTER_FINAL_NIBBLE1    06a
RDLVL_PQTR_CENTER_FINAL_NIBBLE2    066
RDLVL_PQTR_CENTER_FINAL_NIBBLE3    068
RDLVL_PQTR_CENTER_FINAL_NIBBLE4    061
RDLVL_PQTR_CENTER_FINAL_NIBBLE5    06d
RDLVL_PQTR_CENTER_FINAL_NIBBLE6    067
RDLVL_PQTR_CENTER_FINAL_NIBBLE7    06c
RDLVL_PQTR_CENTER_FINAL_NIBBLE8    069
RDLVL_PQTR_CENTER_FINAL_NIBBLE9    060
RDLVL_PQTR_CENTER_FINAL_NIBBLE10    061
RDLVL_PQTR_CENTER_FINAL_NIBBLE11    061
RDLVL_PQTR_CENTER_FINAL_NIBBLE12    066
RDLVL_PQTR_CENTER_FINAL_NIBBLE13    056
RDLVL_PQTR_CENTER_FINAL_NIBBLE14    058
RDLVL_PQTR_CENTER_FINAL_NIBBLE15    058
RDLVL_PQTR_CENTER_FINAL_NIBBLE16    061
RDLVL_PQTR_CENTER_FINAL_NIBBLE17    06b

Hardware Measurements

No hardware measurements are available because no command or data are sent to the 
memory during this stage. Algorithm only goes through previously collected data.
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Debugging Write and Read Sanity Checks

Calibration Overview

Throughout calibration, read and write/read sanity checks are performed to ensure that as 
each stage of calibration completes, proper adjustments and alignments are made allowing 
writes and reads to be completed successfully. Sanity checks are performed as follows:

• Check for DQS Gate after DQS Preamble Detection
• Read Sanity Check after Read DQS Centering (Simple)
• Write/Read Sanity Check after Write Latency Calibration
• Write/Read Sanity Check after Read DQS Centering (Complex)
• Write/Read Sanity Check after Read VREF Training (Reserved)
• Write/Read Sanity Check after Write DQS-to-DQ Centering (Complex)
• Write/Read Sanity Check after Write VREF Training (Reserved)
• Write/Read Sanity check after Read DQS Centering Multi-Rank Adjustment (For ranks 

other than the first one)
• Write/Read Sanity check after DQS Gate Multi-Rank Adjustment when there is more 

than one rank

Each sanity check performed uses a different data pattern to expand the number of patterns 
checked during calibration.  
Table 38-38: Sanity Check Data Patterns

Sanity Check Stage
Data Pattern (as stored) – 32 

bits, 4 bits concatenated 
together each as 

{f3,r3,f2,r2,f1,r1,f0,r0}.

Data on DQ bus (nibble) as would 
be seen in a simulation or a scope

– r0 f0 r1 f1 r2 f2 r3 f3

DQS Gate Sanity Check 0xAAAAAAAA 0F0F_0F0F

Read Sanity Check 0xAAAAAAAA 0F0F_0F0F

Write/Read Sanity Check 0 0x399C4E27 937E_C924

Write/Read Sanity Check 1 0x3587D5DC E4F1_B837

Write/Read Sanity Check 2 0x919CD315 B254_F02E

Write/Read Sanity Check 3 0x4E2562E5 5AD8_07B1

Write/Read Sanity Check 4 0x2C6C9AAA 03CF_2D43
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Data swizzling (bit reordering) is completed within the UltraScale PHY. Therefore, the data 
visible on BUS_DATA_BURST and a scope in hardware is ordered differently compared to 
what would be seen in ChipScope. Figures are examples of how the data is converted for the 
sanity check data patterns.

Write/Read Sanity Check 5

Rank = 0 (No sanity check)
Rank = 1 (0x75294A2F)
Rank = 2 (0x75294A30)
Rank = 3 (0x75294A31)

Rank = 0 (No sanity check)
Rank = 1 (D397_8DA0)
Rank = 2 (C286_9DA0)
Rank = 3 (D286_9DA0)

Write/Read Sanity Check 6(1)

Rank = 0 (0xE5742542)
Rank = 1 (0xE5742543)
Rank = 2 (0xE5752442)
Rank = 3 (0xE5752443)

Rank = 0 (A1E0_4ED8)
Rank = 1 (B1E0_4ED8)
Rank = 2 (C1E0_4ED8)
Rank = 3 (D1E0_4ED8)

Notes: 
1. For 3DS systems, the Write/Read Sanity Check 6 is repeated for each stack in a given rank. For each stack, the data 

pattern is adjusted by adding 0x100 to the data pattern (as stored) for the base rank pattern. For example, for rank 
0, stack 0 would be data pattern 0xE5742542 as shown in the table, but rank 0, stack 1 the pattern would be 
0xE5742642 (and show up as 83E0_4ED8 on the DQ bus).

Table 38-38: Sanity Check Data Patterns (Cont’d)

Sanity Check Stage
Data Pattern (as stored) – 32 

bits, 4 bits concatenated 
together each as 

{f3,r3,f2,r2,f1,r1,f0,r0}.

Data on DQ bus (nibble) as would 
be seen in a simulation or a scope

– r0 f0 r1 f1 r2 f2 r3 f3
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X-Ref Target - Figure 38-97

Figure 38-97: Expected Read Pattern of DQS Gate and Read Sanity Checks
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X-Ref Target - Figure 38-98

Figure 38-98: Expected Read Back of Sanity Check 0 Data Pattern
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X-Ref Target - Figure 38-99

Figure 38-99: Expected Read Back of Sanity Check 1 Data Pattern
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X-Ref Target - Figure 38-100

Figure 38-100: Expected Read Back of Sanity Check 2 Data Pattern
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X-Ref Target - Figure 38-101

Figure 38-101: Expected Read Back of Sanity Check 3 Data Pattern
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X-Ref Target - Figure 38-102

Figure 38-102: Expected Read Back of Sanity Check 4 Data Pattern
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Debug

To determine the status of each sanity check, analyze the Memory IP Status window to 
view the completion of each check. Click the sanity check of interest to view the specific 
results within the Memory IP Properties window. The message displayed in Memory IP 
Properties identifies how the stage failed or notes if it passed successfully. 

X-Ref Target - Figure 38-103

Figure 38-103: Expected Read Back of Sanity Check 5 Data Pattern
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The status of each sanity check can also be determined by decoding 
DDR_CAL_STATUS_RANK*_* as shown in Table 38-4. Only two possible errors can occur 
during this stage of calibration, as shown Table 38-39. The data pattern used changes 
depending on which sanity check stage is run.

X-Ref Target - Figure 38-104

Figure 38-104: Memory IP XSDB Debug GUI Example – Write and Read Sanity Checks
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Table 38-40 shows the signals and values used to help determine which bytes the error 
occurred on, as well as to provide some data returned for comparison with the expected 
data pattern. These values can be found within the Memory IP Core Properties within the 
Hardware Manager or by executing the Tcl commands noted in the XSDB Debug section.

Table 38-39: DDR_CAL_ERROR Decode for Sanity Checks
Check for 
DQS Gate
DDR_CAL_

ERROR_
CODE

DDR_CAL_
ERROR_1

DDR_CAL_
ERROR_0 Description Recommended Debug Steps

0x1 nibble 0

Writes to error reg for each 
nibble that has compare failure. 
Register for XSDB holds the last 
nibble that had an error. For 
2014.3+ the data and expected 
data for up to three nibble errors 
is written to the data burst 
registers of XSDB. The fourth 
data burst location holds the 
array of all the nibble failures to 
indicate which of all nibbles 
showed an error.

Check the BUS_DATA_BURST XSDB 
Fields to determine which nibbles/bits 
failed. Check margin found during 
previous stages of calibration for the 
given byte that failed.

0xF N/A N/A Timeout error waiting for read 
data to return.

Check the dbg_cal_seq_rd_cnt and 
dbg_cal_seq_cnt.

Table 38-40: Signals of Interest for Sanity Check

Signal Usage Signal Description

BUS_DATA_BURST (2014.3+)

Stored sample data and list of which nibbles had an error. Determine 
which bytes or bits had a failure.
BUS_DATA_BURST_0 (BIT0-BIT3 addresses) stores the received data 
for the first nibble in which an error occurred. BUS_DATA_BURST_0 
(BIT4-BIT7 addresses) stores the expected data pattern.
BUS_DATA_BURST_1 (BIT0-BIT3 addresses) stores the received data 
for the second nibble in which an error occurred. BUS_DATA_BURST_1 
(BIT4-BIT7 addresses) stores the expected data pattern.
BUS_DATA_BURST_2 (BIT0-BIT3 addresses) stores the received data 
for the third nibble in which an error occurred. BUS_DATA_BURST_2 
(BIT4-BIT7 addresses) stores the expected data pattern.
BUS_DATA_BURST_3 stores an array which indicates which nibbles 
saw an error (indicated by a 1 in that bit location). Each address 
locations stores an array for up to eight nibbles. For example, 
BUS_DATA_BURST_3_BIT_0 = 0x3 would indicate nibble 0 and nibble 
1 saw an error. BUS_DATA_BURST_3_BIT_0 = 0x14 would indicate 
nibble 2 and nibble 4 saw an error.
BUS_DATA_BURST_3_BIT_1 = 0x5 would indicate nibble 8 and nibble 
10 saw an error.
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Hardware Measurements

The calibration status bits (cal_r*_status) can be used as hardware triggers to capture 
the write (when applicable) and read command and data on the scope. The entire interface 
is checked with one write followed by one read command, so any bytes or bits that need to 
be probed can be checked on a scope. The cal_r*_status triggers are as follows for the 
independent sanity checks:

• Check for DQS Gate after DQS Preamble Detection:

° Start –> cal_r*_status[2] = R for Rising Edge

° End –> cal_r*_status[3] = R for Rising Edge
• Read Sanity Check:

° Start –> cal_r*_status[12] = R for Rising Edge

° End –> cal_r*_status[13] = R for Rising Edge
• Write/Read Sanity Check 0:

° Start –> cal_r*_status[26] = R for Rising Edge

° End –> cal_r*_status[27] = R for Rising Edge
• Write/Read Sanity Check 1:

° Start –> cal_r*_status[30] = R for Rising Edge

° End –> cal_r*_status[31] = R for Rising Edge
• Write/Read Sanity Check 2:

° Start –> cal_r*_status[34] = R for Rising Edge

° End –> cal_r*_status[35] = R for Rising Edge
• Write/Read Sanity Check 3:

° Start –> cal_r*_status[40] = R for Rising Edge

° End –> cal_r*_status[41] = R for Rising Edge
• Write/Read Sanity Check 4:

° Start –> cal_r*_status[44] = R for Rising Edge

° End –> cal_r*_status[45] = R for Rising Edge
• Write/Read Sanity Check 5 (for more than 1 rank):

° Start –> cal_r*_status[48] = R for Rising Edge

° End –> cal_r*_status[49] = R for Rising Edge
• Write/Read Sanity Check 6 (all ranks):

° Start –> cal_r*_status[52] = R for Rising Edge
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° End –> cal_r*_status[53] = R for Rising Edge

VT Tracking

Tracking Overview

Calibration occurs one time at start-up, at a set voltage and temperature to ensure relation 
capture of the data, but during normal operation the voltage and temperature can change 
or drift if conditions change. Voltage and temperature (VT) change can adjust the 
relationship between DQS and DQ used for read capture and change the time in which the 
DQS/DQ arrive at the FPGA as part of a read.

DQS Gate Tracking

The arrival of the DQS at the FPGA as part of a read is calibrated at start-up, but as VT 
changes the time in which the DQS arrives can change. DQS gate tracking monitors the 
arrival of the DQS with a signal from the XIPHY and makes small adjustments as required if 
the DQS arrives earlier or later a sampling clock in the XIPHY. This adjustment is recorded as 
shown in Table 38-41.

Debug

Table 38-41: Signals of Interest for DQS Tracking
Signal Usage Signal Description

DQS_TRACK_COARSE_BYTE* One per Byte Last recorded value for DQS gate coarse setting.

DQS_TRACK_FINE_BYTE* One per Byte Last recorded value for DQS gate fine setting.

DQS_TRACK_COARSE_MAX_BYTE* One per Byte Maximum coarse tap recorded during DQS gate tracking.

DQS_TRACK_FINE_MAX_BYTE* One per Byte Maximum fine tap recorded during DQS gate tracking.

DQS_TRACK_COARSE_MIN_BYTE* One per Byte Minimum coarse tap recorded during DQS gate tracking.

DQS_TRACK_FINE_MIN_BYTE* One per Byte Minimum fine tap recorded during DQS gate tracking. 

BISC_ALIGN_PQTR One per nibble Initial 0° offset value provided by BISC at power-up.

BISC_ALIGN_NQTR One per nibble Initial 0° offset value provided by BISC at power-up.
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Expected Results

DQS_TRACK_COARSE_MAX_RANK0_BYTE0 string true true 007
DQS_TRACK_COARSE_MAX_RANK0_BYTE1 string true true 006
DQS_TRACK_COARSE_MAX_RANK0_BYTE2 string true true 007
DQS_TRACK_COARSE_MAX_RANK0_BYTE3 string true true 007
DQS_TRACK_COARSE_MAX_RANK0_BYTE4 string true true 008
DQS_TRACK_COARSE_MAX_RANK0_BYTE5 string true true 008
DQS_TRACK_COARSE_MAX_RANK0_BYTE6 string true true 008
DQS_TRACK_COARSE_MAX_RANK0_BYTE7 string true true 008
DQS_TRACK_COARSE_MAX_RANK0_BYTE8 string true true 008
DQS_TRACK_COARSE_MIN_RANK0_BYTE0 string true true 006
DQS_TRACK_COARSE_MIN_RANK0_BYTE1 string true true 006
DQS_TRACK_COARSE_MIN_RANK0_BYTE2 string true true 007
DQS_TRACK_COARSE_MIN_RANK0_BYTE3 string true true 007
DQS_TRACK_COARSE_MIN_RANK0_BYTE4 string true true 008
DQS_TRACK_COARSE_MIN_RANK0_BYTE5 string true true 008
DQS_TRACK_COARSE_MIN_RANK0_BYTE6 string true true 008
DQS_TRACK_COARSE_MIN_RANK0_BYTE7 string true true 007
DQS_TRACK_COARSE_MIN_RANK0_BYTE8 string true true 007
DQS_TRACK_COARSE_RANK0_BYTE0 string true true 007
DQS_TRACK_COARSE_RANK0_BYTE1 string true true 006
DQS_TRACK_COARSE_RANK0_BYTE2 string true true 007
DQS_TRACK_COARSE_RANK0_BYTE3 string true true 007
DQS_TRACK_COARSE_RANK0_BYTE4 string true true 008
DQS_TRACK_COARSE_RANK0_BYTE5 string true true 008
DQS_TRACK_COARSE_RANK0_BYTE6 string true true 008
DQS_TRACK_COARSE_RANK0_BYTE7 string true true 008
DQS_TRACK_COARSE_RANK0_BYTE8 string true true 007
DQS_TRACK_FINE_MAX_RANK0_BYTE0 string true true 02d
DQS_TRACK_FINE_MAX_RANK0_BYTE1 string true true 02d
DQS_TRACK_FINE_MAX_RANK0_BYTE2 string true true 027
DQS_TRACK_FINE_MAX_RANK0_BYTE3 string true true 01a
DQS_TRACK_FINE_MAX_RANK0_BYTE4 string true true 021
DQS_TRACK_FINE_MAX_RANK0_BYTE5 string true true 020
DQS_TRACK_FINE_MAX_RANK0_BYTE6 string true true 012
DQS_TRACK_FINE_MAX_RANK0_BYTE7 string true true 02e
DQS_TRACK_FINE_MAX_RANK0_BYTE8 string true true 02e

BISC_PQTR One per nibble

Initial 90° offset value provided by BISC at power-up. 
Compute 90° value in taps by taking (BISC_PQTR – 
BISC_ALIGN_PQTR). To estimate tap resolution take (¼ of 
the memory clock period)/ (BISC_PQTR – 
BISC_ALIGN_PQTR). Useful to know how many fine taps 
make up a coarse tap to compute amount of DQS gate 
drift (Average of the P & N values used for computation).

BISC_NQTR One per nibble

Initial 90° offset value provided by BISC at power-up. 
Compute 90° value in taps by taking (BISC_NQTR – 
BISC_ALIGN_NQTR). To estimate tap resolution take (¼ of 
the memory clock period)/ (BISC_NQTR – 
BISC_ALIGN_NQTR). Useful to know how many fine taps 
make up a coarse tap to compute amount of DQS gate 
drift. (Average of the P & N values used for computation).

Table 38-41: Signals of Interest for DQS Tracking (Cont’d)

Signal Usage Signal Description
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DQS_TRACK_FINE_MIN_RANK0_BYTE0 string true true 000
DQS_TRACK_FINE_MIN_RANK0_BYTE1 string true true 023
DQS_TRACK_FINE_MIN_RANK0_BYTE2 string true true 01d
DQS_TRACK_FINE_MIN_RANK0_BYTE3 string true true 00f
DQS_TRACK_FINE_MIN_RANK0_BYTE4 string true true 019
DQS_TRACK_FINE_MIN_RANK0_BYTE5 string true true 018
DQS_TRACK_FINE_MIN_RANK0_BYTE6 string true true 00a
DQS_TRACK_FINE_MIN_RANK0_BYTE7 string true true 000
DQS_TRACK_FINE_MIN_RANK0_BYTE8 string true true 000
DQS_TRACK_FINE_RANK0_BYTE0 string true true 001
DQS_TRACK_FINE_RANK0_BYTE1 string true true 028
DQS_TRACK_FINE_RANK0_BYTE2 string true true 022
DQS_TRACK_FINE_RANK0_BYTE3 string true true 014
DQS_TRACK_FINE_RANK0_BYTE4 string true true 01d
DQS_TRACK_FINE_RANK0_BYTE5 string true true 01c
DQS_TRACK_FINE_RANK0_BYTE6 string true true 00e
DQS_TRACK_FINE_RANK0_BYTE7 string true true 001
DQS_TRACK_FINE_RANK0_BYTE8 string true true 02b
BISC_ALIGN_NQTR_NIBBLE0 string true true 000
BISC_ALIGN_NQTR_NIBBLE1 string true true 000
BISC_ALIGN_NQTR_NIBBLE2 string true true 000
BISC_ALIGN_NQTR_NIBBLE3 string true true 000
BISC_ALIGN_NQTR_NIBBLE4 string true true 000
BISC_ALIGN_NQTR_NIBBLE5 string true true 000
BISC_ALIGN_NQTR_NIBBLE6 string true true 000
BISC_ALIGN_NQTR_NIBBLE7 string true true 000
BISC_ALIGN_PQTR_NIBBLE0 string true true 007
BISC_ALIGN_PQTR_NIBBLE1 string true true 004
BISC_ALIGN_PQTR_NIBBLE2 string true true 006
BISC_ALIGN_PQTR_NIBBLE3 string true true 005
BISC_ALIGN_PQTR_NIBBLE4 string true true 005
BISC_ALIGN_PQTR_NIBBLE5 string true true 004
BISC_ALIGN_PQTR_NIBBLE6 string true true 004
BISC_ALIGN_PQTR_NIBBLE7 string true true 004
BISC_NQTR_NIBBLE0 string true true 036
BISC_NQTR_NIBBLE1 string true true 033
BISC_NQTR_NIBBLE2 string true true 037
BISC_NQTR_NIBBLE3 string true true 035
BISC_NQTR_NIBBLE4 string true true 037
BISC_NQTR_NIBBLE5 string true true 036
BISC_NQTR_NIBBLE6 string true true 036
BISC_NQTR_NIBBLE7 string true true 036
BISC_PQTR_NIBBLE0 string true true 038
BISC_PQTR_NIBBLE1 string true true 036
BISC_PQTR_NIBBLE2 string true true 038
BISC_PQTR_NIBBLE3 string true true 035
BISC_PQTR_NIBBLE4 string true true 037
BISC_PQTR_NIBBLE5 string true true 037
BISC_PQTR_NIBBLE6 string true true 035
BISC_PQTR_NIBBLE7 string true true 036

BISC VT Tracking

The change in the relative delay through the FPGA for the DQS and DQ is monitored in the 
XIPHY and adjustments are made to the delays to account for the change in resolution of 
the delay elements. The change in the delays are recorded in the XSDB.
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Debug

Expected Results

To see where the PQTR and NQTR positions have moved since calibration, compare the 
VT_TRACK_PQTR_NIBBLE* and VT_TRACK_NQTR_NIBBLE* XSDB values to the final calibrated 
positions which are stored in RDLVL_PQTR_CENTER_FINAL_NIBBLE* and 
RDLVL_NQTR_CENTER_FINAL_NIBBLE*.

Table 38-42: Signals of Interest for DQS Tracking
Signal Usage Signal Description

VT_TRACK_PQTR_NIBBLE* One per nibble PQTR position last read during BISC VT Tracking.

VT_TRACK_NQTR_NIBBLE* One per nibble NQTR position last read during BISC VT Tracking.

VT_TRACK_PQTR_MAX_NIBBLE* One per nibble Maximum PQTR value found during BISC VT Tracking.

VT_TRACK_NQTR_MAX_NIBBLE* One per nibble Maximum NQTR value found during BISC VT Tracking.

VT_TRACK_PQTR_MIN_NIBBLE* One per nibble Minimum PQTR value found during BISC VT Tracking.

VT_TRACK_NQTR_MIN_NIBBLE* One per nibble Minimum NQTR value found during BISC VT Tracking.

RDLVL_PQTR_CENTER_FINAL_NIBBLE* One per nibble Final PQTR position found during calibration.

RDLVL_NQTR_CENTER_FINAL_NIBBLE* One per nibble Final NQTR position found during calibration.

BISC_ALIGN_PQTR One per nibble Initial 0° offset value provided by BISC at power-up.

BISC_ALIGN_NQTR One per nibble Initial 0° offset value provided by BISC at power-up.

BISC_PQTR One per nibble

Initial 90° offset value provided by BISC at power-up. 
Compute 90° value in taps by taking (BISC_PQTR – 
BISC_ALIGN_PQTR). To estimate tap resolution take 
(¼ of the memory clock period)/ (BISC_PQTR – 
BISC_ALIGN_PQTR). Useful to know how many fine 
taps make up a coarse tap to compute amount of DQS 
gate drift (Average of the P & N values used for 
computation).

BISC_NQTR One per nibble

Initial 90° offset value provided by BISC at power-up. 
Compute 90° value in taps by taking (BISC_NQTR – 
BISC_ALIGN_NQTR). To estimate tap resolution take 
(¼ of the memory clock period)/ (BISC_NQTR – 
BISC_ALIGN_NQTR). Useful to know how many fine 
taps make up a coarse tap to compute amount of DQS 
gate drift. (Average of the P & N values used for 
computation).
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To see how much movement the PQTR and NQTR taps exhibit over environmental changes, 
monitor:

VT_TRACK_PQTR_NIBBLE*
VT_TRACK_NQTR_NIBBLE*
VT_TRACK_PQTR_MAX_NIBBLE*
VT_TRACK_NQTR_MAX_NIBBLE*
VT_TRACK_PQTR_MIN_NIBBLE*
VT_TRACK_NQTR_MIN_NIBBLE*

Calibration Times

Calibration time depends on a number of factors, such as:

• General Interconnect Clock Frequency
• Number of DDR Ranks
• Memory Width
• Board Trace Lengths

Table 38-43 gives an example of calibration times for a DDR memory interface. 
Table 38-43: DDR Calibration Times

Memory 
Interface Component Type Width Memory Interface 

Speed (MT/s) Calibration Time (s)

DDR3

x8 components 72-bit

2,133 0.83

1,866 1.10

1,600 0.75

1,333 1.04

1,066 1.56

800 0.84

Dual-Rank SO-DIMM x8 72-bit
1,600 0.85

1,333 1.15

Dual-Rank RDIMM x8 72-bit
1,600 0.94

1,333 1.28
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Debugging Data Errors

General Checks

As with calibration error debug, the General Checks section should be reviewed. Strict 
adherence to proper board design is critical in working with high speed memory interfaces. 
Violation of these general checks is often the root cause of data errors. 

Replicating Data Errors Using the Advanced Traffic Generator

When data errors are seen during normal operation, the Memory IP Advanced Traffic 
Generator (ATG) should be used to replicate the error. The ATG is a verified solution that can 
be configured to send a wide range of data, address, and command patterns. It additionally 
presents debug status information for general memory traffic debug post calibration. The 
ATG stores the write data and compares it to the read data. This allows comparison of 
expected and actual data when errors occur. This is a critical step in data error debug as this 
section will go through in detail.

DDR4

X8 components 72-bit

2,400 0.61

2,133 0.79

1,866 1.05

1,600 0.73

1,333 1.06

UDIMM x8 72-bit

2,133 0.83

1,600 0.91

1,333 1.15

RDIMM x8 72-bit

2,133 0.93

1,600 0.79

1,333 1.22

Dual-Rank RDIMM x4 72-bit
1,600 0.88

1,333 1.18

Table 38-43: DDR Calibration Times (Cont’d)

Memory 
Interface Component Type Width Memory Interface 

Speed (MT/s) Calibration Time (s)
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ATG Setup

The default ATG configuration exercises predefined traffic instructions which are included 
in the mem_v1_2_tg_instr_bram.sv module.  To move away from the default 
configuration and use the ATG for data error debug, use the provided VIO and ILA cores 
that are generated with the example design. For more information, see the Using VIO to 
Control ATG in Chapter 36, Traffic Generator. 

Table 38-44: General Control
General Control I/O  Width Description 

vio_tg_start I 1

Enable traffic generator to proceed from "START" state to "LOAD" state after 
calibration completes.
If you do not plan to program instruction table NOR PRBS data seed, tie this 
signal to 1'b1.
If you plan to program instruction table OR PRBS data seed, set this bit to 
0 during reset. After reset deassertion and done with instruction/seed 
programming, set this bit to 1 to start traffic generator.

vio_tg_rst I 1
Reset traffic generator (synchronous reset, level sensitive)
If there is outstanding traffic in memory pipeline, assert this signal long 
enough until all outstanding transactions have completed.

vio_tg_restart I 1
Restart traffic generator after traffic generation is complete, paused, or 
stopped with error (level sensitive)
If there is outstanding traffic in memory pipeline, assert this signal long 
enough until all outstanding transactions have completed.

vio_tg_pause I 1 Pause traffic generator (level sensitive)

vio_tg_err_chk_en I 1
If enabled, stop upon first error detected. Read test is performed to 
determine whether "READ" or "WRITE" error occurred. If not enabled, 
continue traffic without stop.

vio_tg_err_clear I 1
Clear all errors excluding sticky error bit (positive edge sensitive)
Only use this signal when vio_tg_status_state is either TG_INSTR_ERRDONE 
or TG_INSTR_PAUSE

vio_tg_err_clear_all I 1
Clear all errors including sticky error bit (positive edge sensitive)
Only use this signal when vio_tg_status_state is either TG_INSTR_ERRDONE 
or TG_INSTR_PAUSE

vio_tg_err_continue I 1 Continue traffic after error(s) at TG_INSTR_ERRDONE state (positive edge 
sensitive)

Table 38-45: Instruction Programming
Instruction Programming  I/O Width Description 

vio_tg_direct_instr_en I 1
0: Traffic Table Mode – Traffic Generator uses traffic patterns 
programmed in 32-entry traffic table
1: Direct Instruction Mode – Traffic Generator uses current 
traffic pattern presented at VIO interface

vio_tg_instr_program_en I 1 Enable instruction table programming (level sensitive)
vio_tg_instr_num I 5 Instruction number to be programmed
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vio_tg_instr_addr_mode I 4

Address mode to be programmed.
LINEAR = 0; (with user defined start address)
PRBS = 1; (PRBS supported range from 8 to 34 based on 
address width)
WALKING1 = 2;
WALKING0 = 3;
4:15 Reserved

Note: QDR-IV only supports Linear address with start address 
equals to 0.

vio_tg_instr_data_mode I 4

Data mode to be programmed.
LINEAR = 0;
PRBS = 1; (PRBS supported 8,10,23)
WALKING1 = 2;
WALKING0 = 3;
HAMMER1 = 4;
HAMMER0 = 5;
Block RAM = 6;
CAL_CPLX = 7; (Must be programmed along with victim 
mode CAL_CPLX)
8:15: Reserved

vio_tg_instr_rw_mode I 4

0: Read Only (No data check)
1: Write Only (No data check)
2: Write / Read (Read performs after Write and data value is 
checked against expected write data. For QDR II+ SRAM, one 
port is used for write and another port is used for read)
3: Write Once and Read forever (Data check on Read data)
4-15: Reserved

vio_tg_instr_rw_submode I 2

Read/Write sub-mode to be programmed.
This is a sub-mode option when vio_tg_instr_rw_mode is set 
to "WRITE_READ" mode.
This mode is only valid for DDR3/DDR4 and RLDRAM 3. For 
QDR II+ SRAM and QDR-IV, this mode should be set to 0
WRITE_READ = 0; // Send all Write commands follow by Read 
commands defined in the instruction
WRITE_READ_SIMULTANEOUSLY = 1; // Send Write and Read 
commands pseudo-randomly. Note that Write is always 
ahead of Read.

Table 38-45: Instruction Programming (Cont’d)

Instruction Programming  I/O Width Description 
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vio_tg_instr_victim_mode I 3

Victim mode to be programmed.
One victim bit could be programmed using global register 
vio_tg_victim_bit.
The rest of the bits on signal bus are considered to be 
aggressors.
The following program options define aggressor behavior:

NO_VICTIM = 0;
HELD1 = 1;  // All aggressor signals held at 1
HELD0 = 2;  // All aggressor signals held at 0 
NONINV_AGGR = 3;  // All aggressor signals are same as 
victim
INV_AGGR = 4;  // All aggressor signals are inversion of 
victim
DELAYED_AGGR = 5;  // All aggressor signals are delayed 
version of victim (num of cycle of delay is programmed at 
vio_tg_victim_aggr_delay)
DELAYED_VICTIM = 6; // Victim signal is delayed version of 
all aggressors
CAL_CPLX = 7; Complex Calibration pattern (Must be 
programed along with Data Mode  CAL_CPLX)

vio_tg_instr_victim_aggr_delay I 5
Define aggressor/victim pattern to be N-delay cycle of 
victim/aggressor.
It is used when victim mode "DELAY_AGGR" or "DELAY 
VICTIM" mode is used in traffic pattern.

vio_tg_instr_victim_select I 3

Victim bit behavior programmed.
VICTIM_EXTERNAL = 0; // Use Victim bit provided in 
vio_tg_glb_victim_bit
VICTIM_ROTATE4 = 1; // Victim bit rotates from Bit[0] to 
Bit[3] for every Nibble
VICTIM_ROTATE8 = 2; // Victim bit rotates from Bit[0] to 
Bit[7] for every byte
VICTIM_ROTATE_ALL = 3; // Victim bit rotates through all 
bits

vio_tg_instr_num_of_iter I 32 Number of Read/Write commands to issue (number of issue 
must be > 0 for each instruction programmed)

vio_tg_instr_m_nops_btw_n_burst_m I 10
M: Number of NOP cycles in between Read/Write commands 
at User interface at general interconnect clock.
N: Number of Read/Write commands before NOP cycle 
insertion at User interface at general interconnect clock.

vio_tg_instr_m_nops_btw_n_burst_n I 32
M: Number of NOP cycles in between Read/Write commands 
at User interface at general interconnect clock.
N: Number of Read/Write commands before NOP cycle 
insertion at User interface at general interconnect clock.

vio_tg_instr_nxt_instr I 6

Next instruction to run.
To end traffic, next instruction should point at EXIT 
instruction.
6’b000000-6’b011111 – valid instruction
6’b1????? – EXIT instruction

Table 38-45: Instruction Programming (Cont’d)

Instruction Programming  I/O Width Description 
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Table 38-46: Status Registers
Status Registers  I/O Width Description 

vio_tg_status_state O 4 Traffic Generator state machine state

vio_tg_status_err_bit_valid O 1 Intermediate error detected
Used as trigger to detect read error

vio_tg_status_err_bit O APP_DATA_WIDTH Intermediate error bit mismatch
Bitwise mismatch pattern

vio_tg_status_err_addr O APP_ADDR_WIDTH Intermediate error address
Address location of failed read

vio_tg_status_exp_bit_valid O 1 Expected read data valid
vio_tg_status_exp_bit O APP_DATA_WIDTH Expected read data
vio_tg_status_read_bit_valid O 1 Memory read data valid
vio_tg_status_read_bit O APP_DATA_WIDTH Memory read data

vio_tg_status_first_err_bit_valid O 1

If vio_tg_err_chk_en is set to 1,
first_err_bit_valid is set to 1 when first mismatch 
error is encountered.
This register is not overwritten until 
vio_tg_err_clear, vio_tg_err_continue, 
vio_tg_restart is triggered. 

vio_tg_status_first_err_bit O APP_DATA_WIDTH
If vio_tg_status_first_err_bit_valid is set to 1,
error mismatch bit pattern is stored in this 
register.

vio_tg_status_first_err_addr O APP_ADDR_WIDTH If vio_tg_status_first_err_bit_valid is set to 1,
error address is stored in this register.

vio_tg_status_first_exp_bit_valid O 1
If vio_tg_err_chk_en is set to 1,
this represents expected read data valid when 
first mismatch error is encountered.

vio_tg_status_first_exp_bit O APP_DATA_WIDTH If vio_tg_status_first_exp_bit_valid is set to 1,
expected read data is stored in this register.

vio_tg_status_first_read_bit_valid O 1
If vio_tg_err_chk_en is set to 1,
this represents read data valid when first 
mismatch error is encountered.

vio_tg_status_first_read_bit O APP_DATA_WIDTH If vio_tg_status_first_read_bit_valid is set to 1,
read data from memory is stored in this register.

vio_tg_status_err_bit_sticky_valid O 1
Accumulated error mismatch valid over time.
This register is reset by vio_tg_err_clear, 
vio_tg_err_continue, vio_tg_restart.

vio_tg_status_err_bit_sticky O APP_DATA_WIDTH If vio_tg_status_err_bit_sticky_valid is set to 1,
this represents accumulated error bit

vio_tg_status_err_type_valid O 1

If vio_tg_err_chk_en is set to 1,
read test is performed upon the first mismatch 
error. Read test returns error type of either 
"READ" or "WRITE" error.
This register stores valid status of read test error 
type.
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ATG Debug Programming

The ATG provides three ways for traffic pattern programming:

1. Instruction block RAM (mem_v1_2_tg_instr_bram.sv)

° Used for regression with predefined traffic instructions

° Defines default traffic pattern

° Override default traffic pattern (re-compilation required)
2. Direct instruction through VIO input

° Used for quick Debug with SINGLE traffic instruction

° Reprogram through VIO without re-compilation
3. Program instruction table

° Used for Debug with MULTIPLE traffic instructions

° Reprogram through VIO without re-compilation

This document assumes debug using “Direct Instruction through VIO.” The same concepts 
extend to both “Instruction Block RAM” and “Program Instruction Table.” “Direct Instruction 
through VIO” is enabled using vio_tg_direct_instr_en. After 
vio_tg_direct_instr_en is set to 1, all of the traffic instruction fields can be driven by 
the targeted traffic instruction.

vio_tg_status_err_type O 1
If vio_tg_status_err_type_valid is set to 1,
this represents error type result from read test.
0 = Write Error
1 = Read Error

vio_tg_status_done O 1
All traffic programmed completes. 
Note: If infinite loop is programmed, 
vio_tg_status_done does not assert.

vio_tg_status_wr_done O 1 This signal pulses after a WRITE-READ mode 
instruction completes

vio_tg_status_watch_dog_hang O 1
Watchdog hang. This register is set to 1 if there is 
no READ/WRITE command sent or no READ data 
return for a period of time (defined in 
tg_param.vh).

compare_error O 1
Accumulated error mismatch valid over time.
This register resets by vio_tg_err_clear, 
vio_tg_err_continue, vio_tg_restart.

Table 38-46: Status Registers (Cont’d)

Status Registers  I/O Width Description 
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ATG Debug Read/Write Error/First Error Bit/First Error Address

ATG identifies if a traffic error is a Read or Write Error when vio_tg_err_chk_en is set to 
1. Assume EXP_WR_DATA is the expected write data. After the first traffic error is seen from 
a read (with a value of EXP_WR_DATA’), ATG issues multiple read commands to the failed 
memory address. If all reads return data EXP_WR_DATA’, ATG classifies the error as a 
WRITE_ERROR(0). Otherwise, ATG classifies the error as READ_ERROR(1). ATG also tracks the 
first error bit, first error address seen.

Example 1: The following VIO setting powers on Read/Write Error Type check.

.vio_tg_err_chk_en                  (1'b1), // Powers on Error Type Check

.vio_tg_direct_instr_en             (1'b1), // Powers on Direct Instruction Mode

.vio_tg_instr_num                   (5'b00000),

.vio_tg_instr_addr_mode             (TG_PATTERN_MODE_LINEAR),

.vio_tg_instr_data_mode             (TG_PATTERN_MODE_PRBS),

.vio_tg_instr_rw_mode               (TG_RW_MODE_WRITE_READ),

.vio_tg_instr_rw_submode            (2'b00),

.vio_tg_instr_victim_mode           (TG_VICTIM_MODE_NO_VICTIM),

.vio_tg_instr_victim_select         (3'b000),

.vio_tg_instr_victim_aggr_delay     (5'd0),

.vio_tg_instr_num_of_iter           (32'd1000),

.vio_tg_instr_m_nops_btw_n_burst_m  (10'd0),

.vio_tg_instr_m_nops_btw_n_burst_n  (32'd10),

.vio_tg_instr_nxt_instr             (6’d0),

Figure 38-105 shows a Write Error waveform. When vio_tg_status_err_type_valid 
is 1, vio_tg_status_err_type shows a WRITE ERROR (0). When 
vio_tg_status_first_err_bit_valid is 1, the following occurs:

• vio_tg_status_first_err_bit, 0x8 is the corrupted bit
• vio_tg_first_err_addr shows the address with the corrupted data as 0x678

Table 38-47: VIO Signals
Signal

vio_tg_instr_addr_mode
vio_tg_instr_data_mode
vio_tg_instr_rw_mode
vio_tg_instr_rw_submode
vio_tg_instr_victim_mode
vio_tg_instr_victim_select
vio_tg_instr_victim_aggr_delay
vio_tg_instr_num_of_iter 
vio_tg_instr_m_nops_btw_n_burst_m 
vio_tg_instr_m_nops_btw_n_burst_n 
vio_tg_instr_nxt_instr 
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Figure 38-106 shows a Read Error waveform. When vio_tg_status_err_type_valid is 
1, vio_tg_status_err_type shows a READ ERROR (0).  When 
vio_tg_status_first_err_bit_valid is 1, the following occurs:

• vio_tg_status_first_err_bit, 0x60 is the corrupted bit
• vio_tg_first_err_addr shows the address with the corrupted data as 0x1B0

X-Ref Target - Figure 38-105

Figure 38-105: VIO Write Error Waveform
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Chapter 38: Debugging

ATG Debug First Error Bit/First Error Address/Sticky Error Bit

When vio_tg_err_chk_en is set to 1, ATG stops after the first error. When 
vio_tg_err_chk_en is set to 0, ATG does not stop after the first error and would track 
error continuously using vio_tg_status_err_bit_valid/
vio_tg_status_err_bit/vio_tg_status_err_addr. 

The signals vio_tg_status_err_bit_sticky_valid/
vio_tg_status_err_bit_sticky accumulate all data bit(s) with error(s) seen.

Example 2: The following VIO setting powers off Read/Write Error Type check:

.vio_tg_err_chk_en                  (1'b0), // Powers on Error Type Check

.vio_tg_direct_instr_en             (1'b1), // Powers on Direct Instruction Mode

.vio_tg_instr_num                   (5'b00000),

.vio_tg_instr_addr_mode             (TG_PATTERN_MODE_LINEAR),

.vio_tg_instr_data_mode             (TG_PATTERN_MODE_PRBS),

.vio_tg_instr_rw_mode               (TG_RW_MODE_WRITE_READ),

.vio_tg_instr_rw_submode            (2'b00),

.vio_tg_instr_victim_mode           (TG_VICTIM_MODE_NO_VICTIM),

.vio_tg_instr_victim_select         (3'b000),

.vio_tg_instr_victim_aggr_delay     (5'd0),

.vio_tg_instr_num_of_iter           (32'd1000),

.vio_tg_instr_m_nops_btw_n_burst_m  (10'd0),

.vio_tg_instr_m_nops_btw_n_burst_n  (32'd10),

.vio_tg_instr_nxt_instr             (6’d0),

X-Ref Target - Figure 38-106

Figure 38-106: VIO Read Error Waveform
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Figure 38-107 shows six addresses with read error (note that this is the same example as 
was used with “Write Error” earlier. “Write Error” is not presented because 
vio_tg_err_chk_en is disabled here):

vio_tg_status_err_bit_valid is asserted six times.

For each assertion, the corresponding bit error is presented at vio_tg_status_err_bit. 
After five assertions in vio_tg_status_err_bit_valid (yellow marker), 
vio_tg_status_err_bit_sticky shows bits 0x1E (binary 11110) have bit corruption. 

ATG Debug WatchDog Hang

ATG expects the application interface to accept a command within a certain wait time. ATG 
also looks for the application interface to return data within a certain wait time after a read 
command is issued. If either case is violated, ATG flags a WatchDog Hang.

When WatchDogHang is asserted, if vio_tg_status_state is in “*Wait” states, ATG is 
waiting for read data return. If vio_tg_status_state is in “Exe” state, ATG is waiting for 
application interface to accept the next command.

Example 3: The following example shows that ATG asserts WatchDogHang. This example 
shares the same VIO control setting as Example 2.  In this example, ATG 
vio_tg_status_state shows a “DNWait” state.  Hence, ATG is waiting for read data 
return.

X-Ref Target - Figure 38-107

Figure 38-107: VIO Read Error Waveform
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To further debug, vio_tg_instr_data_mode is updated to Linear data for better 
understanding in data return sequence.

.vio_tg_err_chk_en                  (1'b0), // Powers on Error Type Check

.vio_tg_direct_instr_en             (1'b1), // Powers on Direct Instruction Mode

.vio_tg_instr_num                   (5'b00000),

.vio_tg_instr_addr_mode             (TG_PATTERN_MODE_LINEAR),

.vio_tg_instr_data_mode             (TG_PATTERN_MODE_LINEAR),

.vio_tg_instr_rw_mode               (TG_RW_MODE_WRITE_READ),

.vio_tg_instr_rw_submode            (2'b00),

.vio_tg_instr_victim_mode           (TG_VICTIM_MODE_NO_VICTIM),

.vio_tg_instr_victim_select         (3'b000),

.vio_tg_instr_victim_aggr_delay     (5'd0),

.vio_tg_instr_num_of_iter           (32'd1000),

.vio_tg_instr_m_nops_btw_n_burst_m  (10'd0),

.vio_tg_instr_m_nops_btw_n_burst_n  (32'd10),

.vio_tg_instr_nxt_instr             (6’d0),

With Linear Data, Figure 38-109 shows that when an error is detected, read data 
(vio_tg_status_read_bit) is one request ahead of expected data 
(vio_tg_status_exp_bit). One possibility is read command with address 0x1B0 is 
dropped. Hence the next returned data with read address 0x1B8 is being compared against 
the expected data of read address 0x1B0. 

X-Ref Target - Figure 38-108

Figure 38-108: ATG Debug Watchdog Hang Waveform
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Isolating the Data Error

Using either the Advanced Traffic Generator or the user design, the first step in data error 
debug is to isolate when and where the data errors occur. To perform this, the expected data 
and actual data must be known and compared. Looking at the data errors, the following 
should be identified:

• Are the errors bit or byte errors?

° Are errors seen on data bits belonging to certain DQS groups?

° Are errors seen on specific DQ bits?
• Is the data shifted, garbage, swapped, etc.?
• Are errors seen on accesses to certain addresses, banks, or ranks of memory?

° Designs that can support multiple varieties of DIMM modules, all possible address 
and bank bit combinations should be supported.

• Do the errors only occur for certain data patterns or sequences?

° This can indicate a shorted or open connection on the PCB. It can also indicate an 
SSO or crosstalk issue. 

• Determine the frequency and reproducibility of the error

° Does the error occur on every calibration/reset?

° Does the error occur at specific temperature or voltage conditions? 
• Determine if the error is correctable

X-Ref Target - Figure 38-109

Figure 38-109: ATG Debug Watchdog Hang Waveform with Linear Data
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° Rewriting, rereading, resetting, recalibrating.

The next step is to isolate whether the data corruption is due to writes or reads. 

Determining If a Data Error is Due to the Write or Read

Determining whether a data error is due to the write or the read can be difficult because if 
writes are the cause, read back of the data is bad as well. In addition, issues with control or 
address timing affect both writes and reads.

Some experiments that can help to isolate the issue include:

• If the errors are intermittent, issue a small initial number of writes, followed by 
continuous reads from those locations. If the reads intermittently yield bad data, there 
is a potential read issue. If the reads always yield the same (wrong) data, there is a write 
issue.

• Using high quality probes and scope, capture the write at the memory and the read at 
the FPGA to view data accuracy, appropriate DQS-to-DQ phase relationship, and signal 
integrity. To ensure the appropriate transaction is captured on DQS and DQ, look at the 
initial transition on DQS from 3-state to active. During a Write, DQS does not have a 
low preamble. During a read, the DQS has a low preamble. The following is an example 
of a DDR3 Read and a Write to illustrate the difference:

• Analyze read timing:

° Check the PQTR/NQTR values after calibration. Look for variations between PQTR/
NQTR values. PQTR/NQTR values should be very similar for DQs in the same DQS 
group.

X-Ref Target - Figure 38-110

Figure 38-110: DDR3 Read vs. Write Scope Capture
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Analyzing Read and Write Margin

The XSDB output can be used to determine the available read and write margins during 
calibration. Starting with 2014.3, an XSDB Memory IP GUI is available through the Hardware 
Manager to view the read calibration margins for both rising edge clock and failing edge 
clock. The margins are provided for both simple and complex pattern calibration. The 
complex pattern results are more representative of the margin expected during post 
calibration traffic.

X-Ref Target - Figure 38-111

Figure 38-111: Calibration Rising Edge Clocked Read Margin
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The following Tcl command can also be used when the Hardware Manager is open to get an 
output of the window values:

report_hw_mig [get_hw_migs]

X-Ref Target - Figure 38-112

Figure 38-112: Calibration Falling Edge Clocked Read Margin

Table 38-48: Signals of Interest for Read and Write Margin Analysis
Signal Usage Signal Description

MARGIN_CONTROL Per Interface Reserved
MARGIN_STATUS Per Interface Reserved

RDLVL_MARGIN_PQTR_LEFT_RANK*_BYTE*_BIT* Per Bit Number of taps from center of window to 
left edge.

RDLVL_MARGIN_NQTR_LEFT_RANK*_BYTE*_BIT* Per Bit Number of taps from center of window to 
left edge.

RDLVL_MARGIN_PQTR_RIGHT_RANK*_BYTE*_BIT* Per Bit Number of taps from center of window to 
right edge.

RDLVL_MARGIN_NQTR_RIGHT_RANK*_BYTE*_BIT* Per Bit Number of taps from center of window to 
right edge.

WRITE_DQS_DQ_MARGIN_LEFT_RANK*_BYTE*_BIT* Per Bit Number of taps from center of window to 
left edge.

WRITE_DQS_DQ_MARGIN_RIGHT_RANK*_BYTE*_BIT* Per Bit Number of taps from center of window to 
right edge.
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Analyzing Calibration Results

When data errors occur, the results of calibration should be analyzed to ensure that the 
results are expected and accurate. Each of the debugging calibration sections notes what 
the expected results are such as how many edges should be found, how much variance 
across byte groups should exist, etc. Follow these sections to capture and analyze the 
calibration results.

Determining Window Size in ps

To determine the window size in ps, first calculate the tap resolution and then multiply the 
resolution by the number of taps found in the read and/or write window. The tap resolution 
varies across process (down to variance at each nibble within a part).  

However, within a specific process, each tap within the delay chain is the same precise 
resolution.

1. To compute the 90° offset in taps, take (BISC_PQTR – BISC_ALIGN_PQTR). 
2. To estimate tap resolution, take (1/4 of the memory clock period) / (BISC_PQTR – 

BISC_ALIGN_PQTR).  
3. The same then applies for NQTR.

BISC is run on a per nibble basis for both PQTR and NQTR. The write tap results are given on 
a per byte basis. To use the BISC results to determine the write window, take the average of 
the BISC PQTR and NQTR results for each nibble. For example, ((BISC_NQTR_NIBBLE0 + 
BISC_NQTR_NIBBLE1 + BISC_PQTR_NIBBLE0 + BISC_PQTR_NIBBLE1) / 4). 

Conclusion

If this document does not help to resolve calibration or data errors, create a WebCase with 
Xilinx Technical Support (see Technical Support). Attach all of the captured waveforms, 
XSDB and debug signal results, and the details of your investigation and analysis.
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SECTION X:  APPENDICES

Upgrading
XCKU095/XCVU095 Recommended Memory 
Pinout Configurations
Additional Resources and Legal Notices
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Appendix A

Upgrading
There are no port or parameter changes for upgrading the Memory IP core in the Vivado 
Design Suite at this time.

For general information on upgrading the Memory IP, see the “Upgrading IP” section in 
Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 14].
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Appendix B

XCKU095/XCVU095 Recommended 
Memory Pinout Configurations

Introduction
The UltraScale™ devices, XCKU095 and XCVU095, have only one clock region between the 
two I/O columns in the center of the device which might require special pinout 
considerations. Other devices in the UltraScale and UltraScale+™ families do not require 
special pinout considerations because they have two or more clock regions between the 
I/O columns. 

During implementation, a large proportion of the user logic needs to be placed in the 
center of the device for connectivity and timing reasons. The reduced space between the 
I/O columns in conjunction with the presence of several Memory Interface IPs, or any large 
high performance I/O modules, can increase the placement complexity and challenge 
routing resources. Following the guidelines in this section ensures the most efficient use of 
available routing resources for faster and predictable timing closure.

For architectural and performance reasons, the memory interface logic needs to be placed 
in the clock regions located on the right-hand side of the I/Os. The memory interface 
controller logic is usually placed next to the Address/Command I/Os. A high overall device 
utilization or user floorplanning constraints in the area next to the Address/Command I/Os 
can result in reduced available routing resources.

When placing two Memory Interface IPs side-by-side with the Address/Command I/Os 
located on the same clock region row, several adjacent clock regions become highly utilized 
which limits the amount of user logic that can cross over or be placed in the same area. 
When vertically shifted by one or more I/O banks, the potential placement and routing 
challenges become less common.

In addition to memory interface pin planning, migration to the 2015.3 or later version of the 
Memory Interface IP helps with timing closure due to updates to the IP clocking and 
constraints. The next section discusses pinout options for different packages that results in 
the most efficient use of available routing resources.

Note: Additional design and constraint recommendations are provided in Additional 
Recommendations section.
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Memory Interface Pin Placement
The UltraScale XCKU095 device is available in four different packages and XCVU095 device 
is available in six different packages. XCVU095 in packages FFVD1517 and FFVC2104 do not 
require special pin placement because these devices have only one I/O column in the center 
of the device. Pin placement recommendations to reduce routing challenges for all the 
relevant packages are listed in this section. 

The maximum number of possible 72-bit DDR4 memory interfaces in each package is used 
to illustrate the pin placement suggestions. This is just an example, the goal is to offset the 
memory interfaces or at the very least offset the Address/Command I/O banks. The 
double-headed arrow represents the routing channel that is created by offsetting the 
Address/Command banks.

XCKU095 FFVA1156 Package
For the XCKU095 in the FFVA1156 package, a pin placement suggestion for two 72-bit 
DDR4 memory interfaces is shown in Figure B-1. The placement of the Address/Command 
banks in the horizontally adjacent interfaces A and B is offset by two clock regions to create 
a routing channel represented by the double-headed arrow.
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XCKU095 and XCVU095 in FFVC1517 Package
Both the XCKU095 and XCVU095 are available in the FFVC1517 package. A pin placement 
recommendation for two 72-bit DDR4 memory interfaces is shown in Figure B-2. The 
placement of the Address/Command banks in the horizontally adjacent interfaces A and B 
is offset by two clock regions to create a routing channel represented by the double-headed 
arrow.

X-Ref Target - Figure B-1

Figure B-1: XCKU095 FFVA1156 Package Pin Placement
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XCKU095 and XCVU095 in FFVB1760 Package
Both the XCKU095 and XCVU095 are available in the FFVB1760 package. A recommended 
pin placement with three 72-bit DDR4 memory interfaces is shown in Figure B-3. For this 
package, Memory Interface A is placed with the Address/Command bank at the top to 
leverage the unbonded banks in the second column. Memory Interface B and C are offset 
from each other which creates three routing channels between the two sides of the device.

X-Ref Target - Figure B-2

Figure B-2: FFVC1517 Package Pin Placement
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XCVU095 FFVA2104 Package
For the XCVU095 in the FFVA2104 package, a recommended pin placement with four 72-bit 
DDR4 memory interfaces is shown in Figure B-4. The strategy for this package was to create 
a two bank routing channel in the middle of the device. This limited the interfaces to a one 
bank separation with the horizontally adjacent Memory Interfaces.

X-Ref Target - Figure B-3

Figure B-3: FFVB1760 Package Pin Placement
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XCKU095 and XCVU095 in FFVB2104 Package
Both the XCKU095 and XCVU095 are available in the FFVB2104 package. A recommended 
pin placement with four 72-bit DDR4 memory interfaces is shown in Figure B-5. The 
strategy for this package was to create a two bank routing channel in the middle of the 
device. This limited the interfaces to a one bank separation with the horizontally adjacent 
Memory Interfaces.

X-Ref Target - Figure B-4

Figure B-4: XCVU095 FFVA2104 Package Pin Placement
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X-Ref Target - Figure B-5

Figure B-5: FFVB2104 Package Pin Placement
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Additional Recommendations
1. Migrate to 2015.3 or later version of the Vivado Design Suite:

a. Take advantage of the Quality of Results (QoR) improvements from newer releases.
b. Upgrade the Memory Interface IPs to benefit from the clocking and constraint 

improvements.
2. Offset the placement of the Address/Command banks in horizontally adjacent interfaces 

by at least one clock region to make routing resources available to user logic. The 
placement of the Address/Command bank within a 72-bit three bank interface depends 
on whether it is a DIMM or component interface. 

For a component interface, Xilinx recommends placing the Address/Command bank on 
the outer banks as shown in Figure B-5 for Memory Interface B. This placement enables 
optimal component placement with fly-by topology as shown in Figure B-6. 

For a DIMM interface, Xilinx recommends placing the Address/Command bank in the 
center as shown in Figure B-5 for Memory Interface C. This placement enables better 
PCB routing from the FPGA to the DIMM socket as shown in Figure B-7. 
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X-Ref Target - Figure B-6

Figure B-6: Address/Command Placement Recommendation for Five Components with Fly-By Topology
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3. Avoid high device utilization, especially for LUTs as they need space to be spread out in 
case of high density placement.

4. Design top-level connectivity to minimize crossings over the Memory Interface IPs.
5. Force spreading of memory interface logic placement to a wider area by using the 

pblock constraints.

X-Ref Target - Figure B-7

Figure B-7: Address/Command Bank Placement Recommendation for DIMM
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a. By default, the memory interface logic is only placed in the clock regions that 
include the I/O columns.

b. Use two clock region-wide pblock for the Memory Interface IPs located on the right 
I/O columns.

c. Do not apply this technique to the Memory Interface IPs located on the left I/O 
columns.

For example, an XCVU095 design with four wide Memory Interface IPs. Only two of them 
can have their placement relaxed: Memory Interface 2 and Memory Interface 3. 

X-Ref Target - Figure B-8

Figure B-8: Relaxing Memory Interface Placement with pblock Constraints
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The corresponding constraints are as follows:

create_pblock MemoryInterface2_pblock
resize_pblock MemoryInterface2_pblock -add CLOCKREGION_X3Y1:CLOCKREGION_X4Y3
add_cells_to_pblock MemoryInterface2_pblock [get_cells a/b/mig_2]

create_pblock MemoryInterface3_pblock
resize_pblock MemoryInterface3_pblock -add CLOCKREGION_X3Y5:CLOCKREGION_X4Y7
add_cells_to_pblock MemoryInterface3_pblock [get_cells a/b/mig_3]

6. When migrating, ensure banks selected in one device exist in the target device. See the 
"Migration between UltraScale Devices and Packages" chapter in the UltraScale Architecture 
PCB Design and Pin Planning User Guide (UG583) [Ref 11].
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Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see
Xilinx Support.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator provides access to Xilinx documents, videos, and support 
resources, which you can filter and search to find information. To open the Xilinx 
Documentation Navigator (DocNav): 

• From the Vivado® IDE, select Help > Documentation and Tutorials.
• On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.
• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other 
topics, which you can use to learn key concepts and address frequently asked questions. To 
access the Design Hubs:

• In the Xilinx Documentation Navigator, click the Design Hubs View tab.
• On the Xilinx website, see the Design Hubs page.
Note: For more information on Documentation Navigator, see the Documentation Navigator page 
on the Xilinx website.

Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG150&Title=UltraScale%20Architecture-Based%20FPGAs%20Memory%20IP%20v1.4&releaseVersion=1.4&docPage=788


UltraScale Architecture-Based FPGAs Memory IP v1.4 789
PG150 October 22, 2021 www.xilinx.com

Appendix C: Additional Resources and Legal Notices

References
These documents provide supplemental material useful with this product guide:

1. JESD79-3F, DDR3 SDRAM Standard, JESD79-4, DDR4 SDRAM Standard, and JESD209-3C, 
LPDDR3 SDRAM Standard, JEDEC Solid State Technology Association

2. Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics (DS892)
3. Virtex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics (DS893)
4. Kintex UltraScale+ FPGAs Data Sheet: DC and AC Switching Characteristics (DS922)
5. Virtex UltraScale+ FPGAs Data Sheet: DC and AC Switching Characteristics (DS923)
6. Zynq UltraScale+ MPSoC Data Sheet: DC and AC Switching Characteristics (DS925)
7. UltraScale Architecture SelectIO Resources User Guide (UG571)
8. UltraScale Architecture Clocking Resources User Guide (UG572)
9. Vivado Design Suite Properties Reference Guide (UG912)
10. UltraScale Architecture Soft Error Mitigation Controller LogiCORE IP Product Guide 

(PG187)
11. UltraScale Architecture PCB Design and Pin Planning User Guide (UG583)
12. Arm  AMBA  Specifications 
13. Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)
14. Vivado Design Suite User Guide: Designing with IP (UG896)
15. Vivado Design Suite User Guide: Getting Started (UG910)
16. Vivado Design Suite User Guide: Logic Simulation (UG900)
17. Vivado Design Suite User Guide: Implementation (UG904)
18. Vivado Design Suite User Guide: I/O and Clock Planning (UG899)
19. Vivado Design Suite User Guide: Release Notes, Installation, and Licensing (UG973)
20. Vivado Design Suite User Guide: Programming and Debugging (UG908)
21. UltraScale Maximum Memory Performance Utility (XTP414)
22. Vivado Design Suite User Guide: Using the Vivado IDE (UG893)
23. Fast Calibration and Daisy Chaining Functions in DDR4 Memory Interfaces Application 

Note (XAPP1321)
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Revision History
The following table shows the revision history for this document.
 

Date Version Revision
10/22/2021 1.4 DDR3/DDR4

• Updated clamshell supports the Physical Layer Ping Pong in Clamshell 
Topology.

08/11/2021 1.4 Editorial updates only. No technical content updates.
06/30/2021 1.4 DDR3/DDR4

• GB update in Feature Summary.
• Updated clock generator in Input Clock Requirement.
LPDDR3
• GB update in Feature Summary.
• Updated clock generator in Input Clock Requirement.
• Added Pinout Swapping.
QDR II+
• Updated clock generator in Input Clock Requirement.
RLDRAM 3
• Updated clock generator in Input Clock Requirement.

01/21/2021 1.4 • Added Navigating Content by Design Process in each section.
DDR3/DDR4
• Updated Important description in Feature Summary.
• Added Important note in DM_DBI Parameter.
• Updated description #17 in DDR4 Pin Rules.
Debugging
• Updated description #16 first bullet in General Checks.

06/03/2020 1.4 Added spread spectrum description in all Input Clock Requirement sections.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG150&Title=UltraScale%20Architecture-Based%20FPGAs%20Memory%20IP%20v1.4&releaseVersion=1.4&docPage=790


UltraScale Architecture-Based FPGAs Memory IP v1.4 791
PG150 October 22, 2021 www.xilinx.com

Appendix C: Additional Resources and Legal Notices

10/30/2019 1.4 DDR3/DDR4
• Updated x4 to x16 components in Feature Summary.
• Added LRDIMM support to DDR4 SDRAM.
• Added LRDIMM description in Address Parity.
• Updated note in Clamshell Topology.
• Added PAYLOAD_WIDTH description to Table 4-37.
• Added Tandem note in DDR3 Pin Rules and DDR4 Pin Rules.
• Added AXI Addressing.
• Updated #1 and #2 in VT Tracking.
QDR-IV
• Updated ECC important note in Basic Tab.
RLDRAM 3
• Added Important note in Overview.
• Removed Important note in Additional Clocks.
• Updated first paragraph and added note in Setting TWTR Check Parameter 

OFF for RLDRAM 3 Designs.
05/22/2019 1.4 • Added Simulation Language in all Project-Based Simulation Flow Using 

Vivado Simulator sections.
DDR3/DDR4
• Updated note #3 in Features.
• Updated description in Address Parity.
• Updated description in Fault Injection.
• Added timing parameters for DDR4 in Setting Timing Parameters for DDR4 

Non-Custom Memory Parts.
• Added note in Simulation.
Debugging
• Updated IBIS description for #11 and updated #15 description in General 

Checks.
12/05/2018 1.4 DDR3/DDR4

• Added AXI4 Slave Interface and note in DDR3 SDRAM.
• Added AXI4 Slave Interface, note, and recommended note in DDR4 SDRAM.
• Added AXI4 Slave Interface Transaction Examples section.
• Added important note in DIMM Configurations.
• Added Setting Burst Type for PHY_ONLY Designs section.
QDR II+
• Updated qdriip_doff_n in Memory Interface Signals table.
Traffic Generator
• Updated descriptions for M NOPs and N NOPs in Traffic Generator 

Instruction Options table.
• Updated Error Status Registers in Default Traffic Generator Control 

Connection table.
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04/04/2018 1.4 • Updated Input Clock Requirement section for DDR3, DDR4, LPDDR3, QDR 
II+, and RLDRAM 3 in Designing with the Core chapters.

• Added Recommended DCIUpdateMode note in DDR3, DDR4, LPDDR3, QDR 
II+, and QDR-IV Pin Rules section in Designing with the Core chapters.

• Updated system clock period to 10 in Required Constraints section for 
DDR3, DDR4, and LPDDR3 in Design Flow Steps chapters.

• Removed internal VREF description in Required Constraints in DDR3, DDR4, 
QDR II+, QDR-IV, and RLDRAM3 Design Flow Steps chapters.

DDR3/DDR4
• Added important note and figure on DBI in DDR4 SDRAM section of 

Overview chapter.
• Updated UltraScale Architecture-Based FPGAs DDR3/DDR4 MIS figure in 

Overview chapter.
• Updated DDR3/DDR4 support for RDIMM in Feature Summary section.
• Updated Optional ECC support in DDR4 SDRAM section in Overview 

chapter.
• Updated Vivado Customize IP Dialog Box – Clamshell Topology figure in 

Core Architecture chapter.
• Added match_cycle paragraph in Save Restore section in Core Architecture 

chapter.
• Updated description for app_wdf_mask[APP_MASK_WIDTH – 1:0] in User 

Interface table in Designing with the Core chapter.
• Updated Ping Pong PHY Topology in DDR4 figure in Designing with the 

Core chapter.
• Updated Vivado Customize IP Dialog Box for DDR4 – Basic figure in Design 

Flow Steps chapter.
• Added recommendation note in Simulating the Example Design (Designs 

with Standard User Interface) section in the Example Design chapter.
LPDDR3
• Updated Input Clock Requirement section in Designing with the Core 

chapter.
• Updated vrp pin description in LPDDR3 Pin Rules section in Designing with 

the Core chapter.
12/22/2017 1.4 • Added Reduce System Noise During Calibration section in all (except 

RLDRAM 3) Designing with the Core chapters.
DDR3/DDR4
• Updated DCI data rate description (#5) in DDR4 Pin Rules section.
• Added DBI description in DM_DBI Parameter section.
RLDRAM 3
• Added Important note in Additional Clocks section in Designing with the 

Core chapter.
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10/04/2017 1.4 • Added UltraScale+ references in all Maximum Frequencies sections.
DDR3/DDR4
• Updated maximum density support for DDR4.
• Updated UltraScale Architecture-Based FPGAs DDR3/DDR4 Memory 

Interface Solution figure in Overview chapter.
• Updated ROW_BANK_COLUMN and ROW_COLUMN_BANK columns in 

DDR4 4 Gb (x16) Address Mapping table.
• Added DDR3 “BANK_ROW_COLUMN” Mapping and Example tables and 

DDR3 “ROW_BANK_COLUMN” Mapping and Example tables.
• Updated signal names in User Interface Ports Description for Save and 

Restore table.
LPDDR3
• Updated UltraScale Architecture-Based FPGAs LPDDR3 Memory Interface 

Solution figure in Overview chapter.
• Updated cs_n, ck_c, and ck_t in bank 2 for 32-Bit LPDDR3 Interface 

Contained in Two Banks table.
• Added #13 to LPDDR3 Pin Rules section.
QDR II+
• Updated High-Level Block Diagram of QDR II+ Interface Solution figure in 

Overview chapter.
Traffic Generator
• Updated Number of instruction iteration description in Traffic Generator 

Instruction Options table.
06/07/2017 1.4 DDR3/DDR4

• Updated ddr3/4_ecc_single[7:0] and ddr3/4_ecc_multiple[7:0] descriptions 
in DDR3 ECC Operation Signal Direction Description and DDR4 ECC 
Operation Signal Direction Description tables. 

• Updated GUIs for Vivado Customize IP Dialog Box for DDR3 and DDR4 
Advanced Options.

Debugging
• Added export to spreadsheet description in Memory IP Debug GUI Usage 

section in Debugging appendix.
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04/05/2017 1.4 • Added MicroBlaze MCS ECC in all Core Architecture chapters.
• Added system reset pin description to all Pin Rules section in Designing 

with the Core chapter.
• Updated Advanced Options figure in Design Flow Steps chapters. 
• Removed Synplify Pro Black Box sections in all Example Design chapters.
• Added LPDDR3 IP section.
DDR3/DDR4
• Updated Notes in DDR3 and DDR4 section in Overview chapter.
• Added 3DS component support in DDR4 SDRAM section in Overview 

chapter.
• Updated the Physical Layer bullet in Overview chapter.
• Added CRC for write and 2T timing not supported in DDR4 Feature 

Summary.
• Added Read and Write VREF Calibration section in Core Architecture 

chapter.
• Added note in ECC in Core Architecture chapter.
• Added SSTL15 in DDR3 Pin Rules section in Designing with the Core 

chapter.
• Added LVCMOS12 in DDR4 Pin Rules section in Designing with the Core 

chapter.
• Added DDR4 4 Gb (x16) app_addr Mapping Options table in Designing with 

the Core chapter.
• Updated C_S_AXI_SUPPORTS_NARROW_BURST description in AXI4 Slave 

Interface Parameters table.
• Updated description in app_en in User Interface table.
• Added note in s_axi_awlock and s_axi_arlock rows in AXI4 Slave Interface 

Signals table.
• Updated Example 2 code in SLOT0_FUNC_CS section.
• Updated a and b description in Simulating the Performance Traffic 

Generator section.
QDR II+
• Updated description in qdriip_qvld in Memory Interface Signals table.
Traffic Generator
• Added important note in Advanced Traffic Generator section.
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11/30/2016 1.3 • Updated Advanced Clocking Tab GUIs in Design Flow Steps chapters.
• Updated SIM_MODE description in all Simulation Speed sections.
• Added PFD formula in M and D Support for Reference Input Clock Speed 

sections.
DDR3/DDR4
• Added Memory Settings in Core Architecture section.
• Added Note in the Resets section.
• Updated SIM_MODE description in PHY Only Parameters table.
• Updated code in SLOT0_CONFIG and SLOT0_FUNC_CS sections.
• Added PFD formula in M and D Support for Reference Input Clock Speed 

section.
• Updated stimulus memory description in Modules for Performance Traffic 

Generator table.
• Added 3DS part description in Stimulus Pattern section.
QDR II+
• Added important note in Resets section.
• Added Calibration Sequence descriptions in PHY section.
RLDRAM 3
• Added dm description in #2 in RLDRAM 3 Pin Rules section.
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10/05/2016 1.3 • Added density support in all Feature Summary sections.
• Added Reset Sequence sections.
• Updated Reset sections.
• Added M and D Support for Reference Input Clock Speed sections.
• Updated all Design Flow Steps and Example Design GUIs.
DDR3/DDR4
• Updated UltraScale Architecture-Based FPGAs DDR3/DDR4 Memory 

Interface Solution figure.
• Updated DDR Bus Efficiency table.
• Added SODIMMs and ECC features in Feature Summary.
• Updated maintenance block description in Memory Controller section.
• Added ECC Port Description section in ECC section.
• Updated ECC Block Diagram in ECC Module section.
• Updated MicroBlaze in PHY Module table.
• Updated Address Parity section.
• Added 0x9 to DQS Gate description in Error Signal Descriptions table.
• Added description and updated Status Port Bits title in XSDB Status Signal 

Descriptions table.
• Updated END_ADDR0/1 description in Save Restore section.
• Added Clamshell Topology and Migration sections.
• Updated User Interface table.
• Added Group to DDR4 ROW_COLUMN_LRANK_BANK and DDR4 

ROW_LRANK_COLUMN_BANK tables.
• Added Payload width in app_wdf_data[APP_DATA_WIDTH – 1:0] section.
• Updated description in Read Priority (RD_PRI_REG) section.
• Updated ECC Control Register Map table.
• Added Important Note in Pin and Bank Rules section.
• Updated bit names in Correctable Error First Failing Address [63:32] 

Register table.
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Continued

• Updated bit names in Uncorrectable Error First Failing Address [31:0] 
Register table.

• Updated 0x38 to 0x28 Group_FSM column in DDR3/DDR4 4 Gb (x8) 
app_addr Mapping Options table.

• Updated description in VT Tracking.
• Updated RTT default value in Vivado IDE Parameter to User Parameter 

Relationship table.
• Updated Test Bench chapter.
QDR II+
• Updated BUFGs and Clock Roots section.
QDR-IV
• Updated BUFGs and Clock Roots section.
RLDRAM 3
• Updated bits in Feature Summary section.
• Updated description in Memory Controller section.
• Added Important Note in Pin and Bank Rules section and #16 description.
Traffic Generator
• Updated Advanced Traffic Generator section.
Multiple IP Cores
• Added Important note in Sharing of a Bank section.
Debugging
• Added steps in Understanding Calibration Warnings (Cal_warning) section.
• Updated Signal Width to 127 in cal_r*_status in DDR3/DDR4 Debug Signals 

Used in Vivado Design Suite Debug Feature table.
• Updated Debugging Data Errors section.
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06/08/2016 1.2 • Added bullet description in all GCIO Requirements sections.
• Updated XDC syntax CLOCK_DEDICATED_ROUTE codes in all Designing 

with the Core chapters.
• Added information on clock input specs in all Pin Rules sections.
DDR3/DDR4
• Updated Save Restore section.
• Updated XDC syntax CLOCK_DEDICATED_ROUTE codes in Designing with 

the Core chapter.
• Updated description in Round-Robin section.
• Added DDR4 x16 Address Map table and Address Map Graph in 

Performance section.
• Removed QoS description in Read Priority (RD_PRI_REG) section.
• Updated C_S_AXI_CTRL_ADDR_WIDTH allowable value in AXI4-Lite Slave 

Control/Status Register Parameters table.
QDR II+
• Added optional internal VREF sample constraint in Required Constraints 

section.
QDR-IV
• Added optional internal VREF sample constraint in Required Constraints 

section.
RLDRAM 3
• Updated User Address Width for 576 Mb and 1.125 Gb table.
Debugging
• Added description to WRLVL_ODELAY_STABLE1_RANK*_BYTE* in Expected 

Results section.
• Updated DDR Calibration Times table.
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04/14/2016 1.2 • Fixed QDR-IV link.
• Added QDR-IV, 3DS, and LRDIMM support.
• Added (four DQ per DQS per x4 devices) description in DDR3/DDR4 

Feature Summary section.
• Added important notes relating to specific core versions to all Overview 

sections.
• Added references to all Maximum Frequencies section.
• Updated Synplify Pro Black Box sections in all Example Design chapters.
• Added Recommended Pinout Configurations appendix.
• Updated all Resets section.
DDR3/DDR4
• Updated Fig. 3-6: PHY Overall Initialization and Calibration Sequence.
• Added Read DBI Per-bit Deskew section.
• Added Read DQS Centering (DBI) section,
• Added DDR4 LRDIMM Memory Initialization and Calibration Sequence and  

Save Restore sections in Core Architecture chapter.
• Updated DDR3 and DDR4 Pin Rules sections.
• Updated DM_DBI description in PHY Only table.
• Updated Command and Address and Write Data tables.
• Added Setting Timing Options section.
• Updated Fig 4-9: User Mode Ports on DRAM Command Bus Timing 

Diagram.
• Updated Design Flow Steps chapter.
• Updated Ping Pong Overview section.
• Updated AXI4 Slave Interface Parameters table.Updated AXI4 Slave 

Interface Signals table.
• Added description in AXI4-Lite Slave Control/Status Register Interface 

Block section.
• Updated AXI4-Lite Slave Control/Status Register Parameters table.
• Updated List of New I/O Signals table.
• Updated PHY Only Parameters table.
• Updated PHY section with content moved to Debugging section.
• Added Ping Pong PHY section in Designing with the Core chapter.
• Updated Design Flow Steps chapter.
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Continued

QDR II+
• Added Pin Swapping section in Designing with the Core chapter.
• Updated Design Flow Steps chapter.
QDRIV
• Added new section.
RLDRAM 3
• Updated Core Architecture chapter.
• Added Pin Swapping section in Designing with the Core chapter.
• Updated User Address Bit Allocation Based on RLDRAM 3 Configuration.
• Updated and added sys_clk_p/n and sys_rst to Table 25-2: User Interface 

Request Signals.
• Added rld_qvld signal in Table 25-5: Physical Interface Signals table.
• Updated Design Flow Steps chapter.
• Updated Example Design section.
• Updated 100 writes and reads description in Test Bench chapter.
Traffic Generator
• Updated vio_tg_err_clear and vio_tg_err_clear_all descriptions in Default 

Traffic Generator Control Connection table.
Added new paragraph in Traffic Error Detection section.
Debugging
• Updated General Checks section.
• Updated Table 31-1: Memory IP Configuration XSDB Parameters.
• Updated Table 31-8: DDR3/DDR4 DDR Warning Code Decoding.
• Updated Debugging DDR3/DDR4 Designs section with content moved to 

PHY section.
• Updated Table 31-9: DDR_CAL_ERROR Decode for DQS Preamble Detection 

Calibration.
• Updated Table 31-21: DDR_CAL_ERROR Decode for Write DQS Centering 

Calibration.
• Added Debugging Read Per-Bit DBI Deskew Failures section.
• Updated Table 31-46: Sanity Check Data Patterns.
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11/18/2015 1.1 • Added support for UltraScale+ families.
• Added Input Clock Period Jitter in Requirements section.
• Updated Resource Utilization sections.
• Updated Customizing and Generating the Core figures.
• Updated User Parameters section.
DDR3/DDR4
• Added Efficiency and Latency Measurements in Performance section.
• Added Address Parity section in Core Architecture.
• Added Important note on DFI-compliant in PHY section.
• Updated description in Bus Utilization section.
• Added ROW_COLUMN_BANK_INTLV description in 

app_addr[ADDR_WIDTH – 1:0] section.
• Added description in app_autoprecharge section.
• Added description in Address Map section.
• Added description in Autoprecharge section.
• Updated Important note in Basic Tab section.
QDR II+
• Updated PHY Overall Initialization and Calibration Sequence figure.
• Updated Read Clock (CQ/CQ#) Allocation section.
Debugging
• Added Note in XSDB Debug section.
• Updated Data Mask trace impedance.
• Added 0x2 and 0x3 descriptions in DDR_CAL_ERROR Decode for Write DQS 

Centering Calibration table.
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09/30/2015 1.0 • Reset core version to v1.0.
• Updated BUFGCE_DIV to BUFG.
• Added description to all TXPLL sections.
• Added Reference Input Clock Period option in all Sharing of Input Clock 

Source (sys_clk_p) sections.
• Added TXPLL Usage and Additional Clocks sections to all interfaces.
• Updated Customizing and Generating the Core figures.
• Added note in all Non-Project-Based Simulation sections.
DDR3/DDR4
• Added DDR3L (1.35V), dual slot support and quad-rank support in Feature 

Summary.
• Updated PHY Block Diagram and table.
• Updated Fig. 3-6: PHY Overview Initialization and Cal. Seq.
• Updated Error Signals Descriptions table.
• Updated Read and Write VREF Calibration sections.
• Added description to app_wdf_data[APP_DATA_WIDTH – 1:0] and 

app_wdf_mask[APP_MASK_WIDTH – 1:0] sections.
• Added Pin Swapping section.
• Updated Pin and Bank Rules section.
• Added description in DQS Gate section.
• Updated descriptions for SLOT0_CONFIG, SLOT1_CONFIG, and 

SLOT0_FUNC_CS in PHY Only Parameters table.
• Added DIMM Configurations section.
• Added description in Basic Tab section.
• Updated figures in Customizing and Generating the Core section.
• Updated Simulating the Performance Traffic Generator section.
QDR II+
• Added description in Customizing and Generating the Core section.
RLDRAM 3
• Added interface widths to Supported Configurations table.
• Updated signal for user_rd_valid[CMD_PER_CLK – 1:0] in User Interface 

Request Signals table.
• Added RLDRAM 3 Address Width table.
• Updated PHY Overall Initialization and Calibration Sequence.
• Added description in Customizing and Generating the Core section.
• Updated description in Required Constraints section.
Traffic Generator
• Updated chapter.
Multiple IP
• Updated MMCM Constraints section.
Debugging
• Updated Hardware Debug section.
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06/24/2015 7.1 • Updated all Resource Utilization sections.
• Added clocking reference in all Requirements sections.
• Updated description in all Resets section.
• Updated all Clocking sections.
• Updated all CLOCK_DEDICATED_ROUTE Constraints and BUFG Instantiation 

sections.
DDR3/DDR4
• Added x4 devices are not supported in AXI note in Feature Summary 

section.
• Updated Fig. 3-6: PHY Overall Initialization and Calibration Sequence.
• Added Table 3-4: Pre-Calibration XSDB Status Signal Description.
• Updated Table 3-5: XSDB Status Signal Description
• Added Table 3-6: Post-Calibration XSDB Status Signal Description.
• Updated Read per-bit Deskew description in Table 3-6: Error Signal 

Descriptions.
• Updated description in Write DQS-to-DQ Centering section.
• Added Read DQS Centering (Complex) and Write DQS-to-DQ Centering 

(Complex) sections.
• Added Notes to Write DQS-to-DQ, Write DQS-to-DM, Write DQS-to-DQ 

Centering (Complex), Read VREF, and Read DQS Centering (Complex).
• Added Read VREF and Write VREF Calibrations section.
• Updated letter b and c descriptions in DDR3 Pin Rules section.
• Updated AXI4-Lite Slave Control/Status Register Map Detailed 

Descriptions.
• Added description in Project-Based Simulation Flow Using Vivado 

Simulator section.
QDR II+
• Added HSTL_I I/O standard support in Feature Summary.
• Added description to the Memory Initialization bullet in Overview section.
RLDRAM 3
• Updated description in Required Constraints section.
• Updated Fig. 17-4: PHY Overall Initialization and Calibration Sequence.
• Updated description d. in RLDRAM 3 Pin Rules.
Traffic Generator
• Updated Advanced Traffic Generator section.
Debugging Appendix
• Added AR: 60305 in General Checks section.
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04/01/2015 7.0 • Updated Supported User Interface and added #3 footnote in IP Facts table.
• Updated Application Interface description in the Overview chapter.
• Updated descriptions and added BACKBONE description in all Clocking 

sections.
• Added sys_rst and dbg_clk references throughout book.
• Added Simulation Flow and Simulation Speed to all sections.
• Added Project-Based Simulation Flow Using Vivado Simulator to all 

sections.
• Added CLOCK_DEDICATED_ROUTE Constraints and BUFG Instantiation to 

all sections.
DDR3/DDR4
• Updated Fig. 1-1: UltraScale Architecture-Based FPGAs Memory Interface 

Solution.
• Updated Feature Summary section.
• Updated Memory Controller section.
• Updated Group Machines section.
• Updated DQS section.
• Updated parameters in Write Leveling section.
• Updated and added Important note in Read DQS Centering section.
• Updated Read Leveling Multi-Rank Adjustment, Multi-Rank Adjustments 

and Checks, and added Write Latency Multi-Rank Check.
• Updated Write Per-bit Deskew section.
• Updated Write DQS-to-DM section.
• Updated Table 3-5: Error Signal Descriptions.
• Updated Table 3-6: Examples of DQS Gate Multi-Rank Adjustment (2 

Ranks).
• Updated DDR3 and DDR4 Pin Rules sections.
• Added Pin Mapping for x4 RDIMMs.
• Added app_ref_req, app_ref_ack, app_zq_req, and app_zq_ack in Table 4-7: 

User Interface.
• Updated Write Path section.
• Added Performance section.
• Added descriptions for app_ref_req, app_ref_ack, app_zq_req, and 

app_zq_ack.
• Added Maintenance Commands section.
• Updated Table 4-16: AXI4 Slave Interface Parameters.
• Added dbg_clk to Table 4-17: AXI4 Slave Interface Signals.
• Updated Time Division Multiplexing (TDM), Round-Robin, and Read 

Priority (RD_PRI_REG) sections.
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Continued

• Updated Table 4-76: Read Data to Table 4-77: PHY Only Parameters.
• Updated to 11 writes in Multiple Writes and Reads with Same Address to 

Page Wrap During Writes sections.
• Added Minimum Write CAS Command Spacing and System Considerations 

for CAS Command Spacing sections.
• Updated the Design Flow Steps chapter.
QDR II+
• Updated Feature Summary.
RLDRAM 3
• Added User Interface Allocation section.
• Added User Address Bit Allocation Based on RLDRAM 3 Configuration 

section.
• Added description to Interfacing with the Core through the User Interface 

section.
Traffic Generator
• Added Traffic Generator section.
Multiple IP
• Added Multiple IP section.
Migrating and Upgrading Appendix
• Added link to UG973 and description in Migrating and Upgrading chapter.
Debugging Appendix
• Added description in General Checks section.
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11/19/2014 6.1 QDR II+
• Added interface calibration in Feature Summary section.
• Updated description #2 in Sharing of Input Clock Source (sys_clk_p) 

section.
• Added read data pins description and cross-ref to system clock pins 

description in QDR II+ Pin Rules section.
• Added vrp description in QDR II+ Pin Rules section.
• Updated User Parameters table.
Updated GUIs in Example Design chapter.
DDR3/DDR4
• Updated Fig. 1-1: UltraScale Architecture-Based FPGAs Memory Interface 

Solution.
• Added interface calibration in Feature Summary section.
• Updated RIU code in Overall PHY Architecture section.
• Updated description #2 in Sharing of Input Clock Source (sys_clk_p) 

section.
• Added ECC description in Datapath section and ECC section.
• Updated resetn, input clock description, and added x4 Part Contained in 

One Bank tables in DDR3 and DDR4 Pin Rules sections.
• Added app_raw_not_ecc in Table 4-5: User Interface.
• Updated descriptions in app_cmd[2:0] section.
• Updated Fig. 4-2 and Fig. 4-6 to Fig. 4-8.
• Added examples for DRAM clock in Write Path section.
• Added PHY Only section in Protocol Description.
• Updated RTT (nominal)-ODT default values in Table 5:1: Vivado IDE 

Parameter to User Parameter Relationship.
• Updated GUIs in Customizing and Generating the Core section.
• Updated User Parameters table.
• Updated GUIs in Example Design chapter.
RLDRAM 3
• Added interface calibration in Feature Summary section.
• Updated Table 15-1: Supported Configurations and removed support for 

Read Latency in Feature Summary.
• Added CMD_PER_CLK description in Memory Controller section.
• Updated description #2 in Sharing of Input Clock Source (sys_clk_p) 

section.
• Updated input clock description in RLDRAM 3 Pin Rules section.
• Added note in Interfacing with the Core through the User Interface section.
• Updated Fig. 18-2: Multiple Commands for user_cmd Signal.
• Updated User Parameters table.
• Updated GUIs in Example Design chapter.
• Updated description in Simulating the Example Design (Designs with 

Standard User Interface) section.
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10/01/2014 6.0 DDR3/DDR4
• Updated Standards section.
• Updated Feature Summary section.
• Updated description in Memory Initialization and Calibration Sequence 

section.
• Updated Overall PHY Architecture section.
• Updated Fig. 3-4: PHY Overall Initialization and Calibration Sequence.
• Added new calibration status descriptions in Memory Initialization and 

Calibration Sequence section.
• Added DQS Gate, Write Leveling, Read Leveling, Read Sanity Check, Write 

DQS-to-DQ, Write Latency Calibration, Write/Read Sanity Check, Write 
DQS-to-DM, and Multi-Rank Adjustment sections.

• Updated DDR3/DDR4 Pin Rules section.
• Added AXI4 Slave Interface in Protocol Description section.
• Added Multiple IP Cores and Sharing of Input Clock Source in Clocking 

section.
• Removed Special Designation column in Table 4-1: 16-Bit Interface 

Contained in One Bank and Table 4-2: 32-Bit Interface Contained in Two 
Banks.

• Added app_autoprecharge to Table 4-3: User Interface.
• Added app_autoprecharge section.
• Updated app_rdy section.
• Updated ref_req and zq_req sections.
• Updated Table 5-1: Vivado IDE Parameter to User Parameter Relationship.
• Updated note description in Required Constraints section.
• Updated description in Simulation section.
• Updated GUIs in Example Design chapter.
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Continued

QDR II+
• Updated Feature Summary section.
• Updated Table 9-1: Device Utilization – Kintex UltraScale FPGAs.
• Updated Fig. 10-3: PHY Overall Initialization and Calibration Sequence.
• Updated MicroBlaze description in Overall PHY Architecture section.
• Updated Memory Initialization and Calibration Sequence section.
• Updated Resets section.
• Deleted Special Designation column in Table 11-1: 18-Bit QDR II+ Interface 

Contained in Two Banks.
• Added Multiple IP Cores and Sharing of Input Clock Source in Clocking 

section.
• Updated Protocol Description section.
• Updated Simulation section.
• Updated description in Simulating the Example Design (Designs with 

Standard User Interface) section.
• Updated GUIs in Example Design chapter.
RLDRAM 3
• Added Configuration table in Feature Summary section.
• Updated Memory Initialization bullet in Overview chapter.
• Added description to burst support in Feature Summary section.
• Updated Table 16-1: Device Utilization – Kintex UltraScale FPGAs.
• Updated Memory Controller section.
• Updated Overall PHY Architecture section.
• Updated Memory Initialization and Calibration Sequence section.
• Added Multiple IP Cores and Sharing of Input Clock Source in Clocking 

section.
• Added data mask description to RLDRAM 3 Pin Rules section.
• Updated GUIs in Example Design chapter.
Appendix
Added Migrating Appendix.
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06/04/2014 5.0 • Removed PCB sections and added link to UG583.
• Global replace BUFGCE to BUFGCE_DIV.
DDR3/DDR4
• Updated CAS cycle description in DDR3 Feature Summary.
• Updated descriptions in Native Interface section.
• Updated Control Path section.
• Updated Read and Write Coalescing section.
• Updated Reordering section.
• Updated DDR4 x16 parts in Group Machines section.
• Updated Fig. 3-3: PHY Block Diagram.
• Updated Table 3-1: PHY Modules.
• Updated module names in Overall PHY Architecture section.
• Updated Fig. 3-4: PHY Overall Initialization and Calibration Sequence.
• Added description to Memory Initialization and Calibration Sequence 

section.
• Added SSI rule in Clocking section.
• Added SSI rule and updated Address and ck descriptions in DDR3/DDR4 

Pin Rules sections.
• Added Important Note for calibration stage in DDR3/DDR4 Pinout 

Examples sections.
• Updated signal descriptions in Table 4-3: User Interface.
• Added new content in app_addr[ADDR_WIDTH – 1:0] section.
• Updated Write Path section.
• Updated Native Interface section.
• Added Important Note relating to Data Mask in Controller Options section.
• Added PHY Only section.
• Updated Fig. 5-1 to 5-8 in Customizing and Generating the Core section.
• Added User Parameters section in Design Flow Steps chapter.
• Updated I/O Standard and Placement section.
• Added Synplify Black Box Testing section in Example Design chapter.
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Continued

QDR II+
• Updated Read Latency in Feature Summary section.
• Updated Fig. 10-2: PHY Block Diagram and Table 17-1: PHY Modules.
• Updated Table 11-2: User Interface.
• Added SSI rule in Clocking section.
• Added Important Note for calibration stage in QDR II+ Pinout Examples 

section.
• Added SSI rule in QDR II+ Pin Rules section.
• Updated I/O Standard and Placement section.
• Added User Parameters section in Design Flow Steps chapter.
• Updated the descriptions in Simulating the Example Design (Designs with 

Standard User Interface) section.
• Added Synplify Black Box Testing section in Example Design chapter.
RLDRAM 3
• Added 18 bits in Feature Summary section.
• Updated Fig. 17-4: PHY Block Diagram.
• Updated module names in Table 17-1: PHY Modules.
• Updated module names in Overall PHY Architecture section.
• Added SSI rule in Clocking section.
• Updated c) and d) descriptions and added SSI rule in RLDRAM 3 Pin Rules 

section.
• Updated Table 18-2: User Interface Request Signals.
• Updated Fig. 18-2: Multiple Commands for user_cmd Signal.
• Added Important Note for calibration stage in RLDRAM 3 Pinout Examples 

section.
• Updated I/O Standard and Placement section.
• Added User Parameters section in Design Flow Steps chapter.
• Updated Test Bench chapter.
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04/02/2014 5.0 • Added Verilog Test Bench in IP Facts table.
DDR3/DDR4
• Added Overview chapter.
• Updated component support to 80 bits in Feature Summary section.
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• Removed Limitations section.
• Added VREF note in Required Constraints section.
• Updated new figures in Design Flow Steps chapter.
• Added new descriptions in Example Design chapter.
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QDR II+ SRAM
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Appendix
• Updated Debug Appendix.
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