

DrägerSensor® & Portable Instruments Handbook 2nd Edition

DrägerSensor® & Portable Instruments Handbook

2nd Edition

Dräger Safety AG & Co. KGaA Lübeck, Germany 2011 2 | DrägerSensor® & Portable Instruments Handbook

13

This handbook is intended to be a reference for the users of portable gas detection. The information has been compiled to the best of our knowledge. However, the Dräger organiza-

tion is not responsible for any consequence or accident which may occur as the result of mi-

suse or misinterpretation of the information contained in this handbook.

The instructions for use may not always correspond to the data given in this book. For a full

understanding of the performance characteristics of the measurement devices and for the use of Dräger products, only the instructions of use enclosed with the product shall apply

and any inconsistencies between this handbook and the instructions for use shall be resol-

ved in favour of the instructions for use. The user should carefully read and fully understand

the instructions for use prior to the use of the measurement devices.

The use of descriptive names, trade names, trademarks, etc., even if not explicitly marked,

does not justify the assumption that such names are exempt from trademark and brand pro-

tection and therefore may be used freely by anyone.

Technical data is subject to modifications.

Publisher: Dräger Safety AG & Co. KGaA

DrägerSensor® & Portable Instruments Handbook

Lübeck, Germany

2009

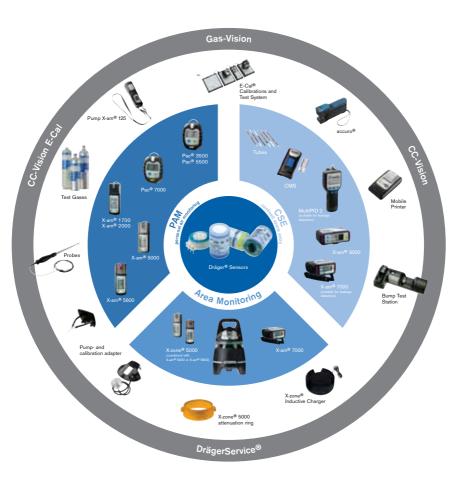
© 2009 Dräger Safety AG & Co. KGaA

Revalstrasse 1 · 23560 Lübeck · Germany

All rights reserved, in particular the right of reproduction,

dissemination, and translation.

Printed in Germany


Press date: 2012

ISBN 978-3-00-030827-7

CONTENTS

1	Foreword	7
2	Properties of dangerous gases and vapors	8
2.1	Gases – what is a gaseous matter?	8
2.2	Vapors – aren't they gases, too?	9
2.3	Our atmosphere	10
2.4	Ex, Ox, Tox - gas hazards!	12
2.5	Toxic gases and vapors	13
2.6	Flammable gases and vapors	14
2.7	LEL and preventative explosion protection	16
2.8	Flash point of flammable liquids	17
2.9	Concentration and their calculation	18
3	Introduction to portable instruments	19
3.1	Application areas for portable gas detection	19
3.2	Requirements for gas detection instruments	21
3.3	Explosion protection	23
3.4	ATEX 137 - directive 1999/92/EC	24
3.5	ATEX 95 - directive 94/9/EC	26
3.6	Laws and regulations in USA, Canada, and Mexico	30
3.7	Single-gas measuring instruments	36
3.8	Multi-gas measuring instruments	44
4	Introduction to sensor technology	66
4.1	Selecting the proper measurement method	67
4.2	Overview of detectable vapors and gases	68
4.3	Dräger CatEx sensors	86
4.4	Dräger infrared sensors	108
4.5	Dräger PID sensors	128
4.6	Electrochemical sensors	132
	DrägerSensor® XS	134
	DrägerSensor® XXS	204
4.7	Explanation to the sensor data	268

5	Accessories	272
5.1	Introduction	273
5.2	Equipment for calibration and function tests	273
5.3	Basic test with gas	274
5.4	Dräger Bump Test Station	274
5.5	Dräger E-Cal – the workshop solution	275
5.6	Calibration gases	276
5.7	Regulator valves	277
5.8	Pumps	278
5.9	Probes	278
5.10	Extension hoses	281
5.11	Dräger CC-Vision	283
5.12	Dräger GasVision	283

1 Foreword

Dear Readers.

So here it is – first edition of the DrägerSensor® & Portable Instruments Handbook. While creating this new handbook, we had our current customers in mind as well as prospective customers – and also our own staff. We gathered our own expertise together with some general principles and guidelines from the areas in which portable Portable Instrumentsare used. We hope that this will shed some light on the many and varied aspects of our sensors and portable gas detectors, so as to increase the safety in your place of work.

Dräger has been involved for decades in the development and production of gas detection sensors and portable gas detection devices. This is a subject area in motion – "panta rhei," as Heraclitus would have said – and the development is ongoing. Lots of innovative ideas have found their way into patents for sensors and gas detection devices. We have worked through, and continue to work through, lots of learning curves. And that is why it is always of tremendous benefit to gather the experience we have in the field of instrumentation together with our expertize in the development of sensors within one company. The demands placed on gas detection by the numerous standards and regulations are becoming more and more complex.

We are continually having to adjust in order to increase safety levels and protect people's lives. We hope that this handbook will provide you with a tool which will give you a quick, clear overview of the technologies we use – right down to the details.

May this book prove to be a dependable companion!

With best regards,

Ulf Ostermann
Portfolio Manager, Portable Instruments

P.S. A special thank to all the hard-working people who helped to produce this handbook.

2 Properties of dangerous gases and vapors

Flammable and toxic gases and vapors occur in many areas. It is important to recognize the danger they pose – and that is the purpose of gas detection and warning devices. This handbook is meant to give a basic introduction to gas detection technology, measuring principles and safety concerns.

2.1 Gases - what is a gaseous matter?

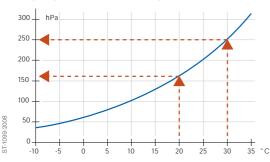
Matter at a temperature above its boiling point is referred to as a gas. In terms of the normal human environment, this means that all those substances whose boiling points at normal atmospheric pressure are below 20° C (68° F), are gases. The lightest gas is hydrogen (H₂, fourteen times lighter than air), the heaviest gas (around ten times heavier than air) is tungsten hexafluoride (WF₆).

Under normal conditions, one cubic centimeter of gas contains thirty trillion molecules, whose average distance from one another is only around 3 nanometers. They move through space at between several hundred and several thousand meters per second but, at the same time, they collide with other molecules many billions of times each second. With the result that they only cover around 50–100 nanometers between impacts, and they continuously change their direction and transfer energy to the other molecules with which they collide.

The result is a completely random molecular motion which in macroscopic terms can be measured as temperature (average kinetic energy of all the molecules) and pressure (the average force exerted on a surface by all the molecules hitting it), as well as volume (spatial extent). Pressure, temperature, and volume are always in a fixed relationship to one another, which is governed by external conditions. In an ideal situation, they obey what is known as the "ideal gas law," namely:

- At a constant pressure, their volume changes in proportion to their temperature their volume increases when heated;
- If the volume remains the same (for example, in a closed container), then their pressure changes in proportion to their temperature – for example, the pressure inside a container increases when heated;
- At a constant temperature, pressure changes inversely proportion to volume for instance, the interior pressure rises when gas is compressed.

The extremely fast random movement of gas molecules is also the reason why they mix freely with other gases, never to become seperated again. This molecular behavior also explains the tendency of molecules to become less concentrated (diffusion), something which plays an important role in gas detection technology. Generally speaking, these processes become faster, the more quickly the molecules move (in other words, the hotter the gas is) and the lighter the molecules are (in other words, the lighter the gas is).


2.2 Vapors - aren't they gases, too?

Unlike gas – of which there are only perhaps between 200 to 300 – the word vapor is used to describe the gaseous state of a material below its boiling point. Vapor is always in equilibrium with its fluid (and sometimes solid) phase – it condenses and vaporizes according to the temperature. This is most familiar to us with water; when moist air near the ground cools down at night, ground mist forms (condensation) – but the warmth of the morning sun dissipates the mist (evaporation).

In a closed container, a maximum vapor concentration always exists above the surface of a liquid, and this concentration is dependent on the temperature of the liquid. On a microscopic level, the vapor is a result of the random movement of the liquid's molecules combined with their ability to overcome the surface tension and mix with the air molecules above the surface.

Every liquid has a certain characteristic vapor pressure, which depends on its temperature and reaches atmospheric pressure when the liquid reaches its boiling point. A graphic depiction of this relationship is known as a vapor pressure curve, and it shows the maximum possible vapor concentration at any given temperature.

Vapor pressure curve of liquid n-hexane

If you divide the maximum possible vapor pressure by the ambient pressure, you are given the saturation concentration in Vol.-% (volume percent). Hexane gas at 20°C or 68° F (vapor pressure 162 hPa or 2.35 psi) and an ambient pressure of 1,000 hPa (14.5 psi) has a maximum possible concentration of 16.2 Vol.-%.

2.3 Our atmosphere

Our atmosphere extends far out into space, getting less dense the more it stretches. The blue color of the sky is caused by the scattering of the sun's rays on the air molecules in the atmosphere. The sky is actually already black by the time you reach a height of around 21 km (13 miles). If you were to subject the entire atmosphere to an even pressure of 1013 hPa (14.7 psi), then it would only be 8 km (5 miles) high, and the UV-absorbing stratospheric ozone layer would be a mere 3 mm (0.11 in.) high.

Typical composition of the earth's atmosphere in ppm:

	Composition				
Gas	dry	humid			
Principal gases					
N ₂ – nitrogen	780,840	768,543			
O ₂ – oxygen	209,450	206,152			
H ₂ O – water vapor	0	15,748			
Ar – argon	9,340	9,193			
CO ₂ – carbon dioxide	340	335			
Trace gases					
Ne – neon	18	18			
He - helium	5	5			
CH ₄ – methane	1.8	1.8			
Kr – krypton	1.1	1.1			
H ₂ – hydrogen	0.5	0.5			
N ₂ O – nitrous oxide	0.3	0.3			
CO – carbon monoxide	0.09	0.09			
Xe – xenon	0.09	0.09			
O ₃ – ozone	0.07	0.07			
Other trace gases	3.05	3.0			
Total	1,000,000	1,000,000			

1 Vol.-% = 10,000 ppm; assumption for humid air: 68% r.h. at 20°C (68°F)

The earth's atmosphere has a mass of around 5 quadrillion metric tons (5.235×10^{18} kg), which weighs down on an area on the earth's surface of 0.507×10^{15} m². This creates an atmospheric pressure on the earth's surface of 10,325 kg/m², which corresponds to normal atmospheric pressure: 1,013 hPa (14.7 psi). Atmospheric pressure decreases with increasing altitude:

Altitude m/ft.	Atmospheric pressure	Altitude m/ft. Atmospheric pressu	
	hPa/psi		hPa/psi
-1.000 (-3280.8)	1.148 (16.6)	2.000 (6.561,7)	795 (11.5)
-500 (-1640.4)	1.078 (15.6)	3.000 (9.842,5)	701 (10.2)
0 (0)	1.013 (14.7)	4.000 (13.123,3)	616 (8.9)
500 (1640.4)	952 (13.8)	5.000 (16.404,2)	540 (7.8)
1.000 (3280.8)	900 (13.1)	6.000 (19.685,0)	472 (6.8)
1.500 (4921.2)	840 (12.2)	8.000 (26.246,7)	356 (5.2)

The number of molecules in a given volume decreases with decreasing atmospheric pressure, which means that the results produced by partial pressure-measuring sensors are always dependent on the atmospheric pressure.

More than 78 Vol.-% of the earth's atmosphere is nitrogen, which is fully inert, and although available in excess, can not even be used as a much-needed fertilizer for plants. In contrast, highly reactive oxygen is fundamental to our breathing – more than that: it is the foundation of almost all life.

Just under 21 Vol.-% of the atmosphere is oxygen. A lack of oxygen is life-threatening – and cannot be perceived by the human senses.

Oxygen deficiency is generally caused by the release of an inert gas, which then in turn displace oxygen. Since the atmosphere is only around one fifth oxygen, the oxygen concentration is only reduced by around one fifth of the concentration of the inert gas. For example, if 10 Vol.-% of helium is released into the air then oxygen is reduced by 2 Vol.-% and the level of nitrogen by 8 Vol.-%. Because liquid nitrogen (-196°C or -321°F) is frequently used in industry, its evaporation can quickly cause a dangerous oxygen deficiency.

Oxygen enrichment (e.g. more than 25 Vol.-%) cannot be perceived by humans, but have severe consequences with respect to the flammability of materials, and may even cause autoignition. This is why explosion protection relates exclusively to atmospheric oxygen concentration.

At what level does it become dangerous?

Oxygen concentration in Vol%	Oxygen partial pressure in hPa/psi	Symptoms
Less than 17	Less than 170/2.5	Early stage of danger
		due to oxygen deficiency
11 to 14	110 to 140/1.6 to 2.0	Unnoticed decrease in physical and
		mental performance
8 to 11	80 to 110/1.2 to 2.0	Possible sudden loss of
		consciousness without warning
		after a certain period of exposure
6 to 8	60 to 80/0.9 to 1.2	Loss of consciousness within a few
		minutes - resuscitation possible if
		performed instantly
Less than 6	Less than 60/0.9	Immediate loss of consciousness

2.4 Ex, Ox, Tox – gas hazards!

Gases and vapors are almost always dangerous. If gases are not present in the atmospheric composition to which we are accustomed and which we can breathe, then safe breathing is threatened. Furthermore, all gases are potentially dangerous in their liquid, compressed, or normal state – the decisive factor is their concentration.

There are basically three categories of risk:

- Risk of explosion (ex) caused by flammable gases
- Oxygen (ox)

Risk of suffocation through oxygen deficiency Risk of increased flammability due to oxygen enrichment

- Risk of poisoning (tox) by toxic gases

Without equipment to assist, mankind is not in a position to detect these risks early enough to enable preventative steps from being taken. And, with a few exceptions, our nose has proven an extremely unreliable warning instrument.

For example, hydrogen sulfide can be detected in low concentrations because it smells of rotten eggs. However, the nose can no longer perceive the lethal, high concentrations of hydrogen sulfide. Many fatal accidents have occured because people have fled into what they thought was the safe, odour-free area.

Even harmless gases such as argon, helium or nitrogen can also become dangerous if they are suddenly released, displacing the oxygen that is essential to life. Then there is risk of suffocation. An oxygen concentration of less than six Vol.-% is deadly. An excess of oxygen increases the risk of fire, and can even cause flammable materials to self-ignite. By igniting, flammable gases and vapors can not only cause considerable damage to industrial plants and equipment, they can also threaten people's lives.

Therefore, it is essential to be able to detect Ex, Ox and Tox risks reliably, and to protect human life, industrial plants and equipment, as well as the environment by taking the appropriate measures. Whether Dräger-Tubes® or portable gas detectors, Dräger offers you individual solutions that meet your needs and enable you to counter gas risks professionally.

2.5 Toxic gases and vapors

The toxicity of gases and vapors used in industrial processes is defined in laboratory experiments by determining the LC_{50} rate. On that basis, and together with other scientific tests and experiments relating to occupational health at the workplace, authorized commissions in several countries make recommendations of limit values, which are legally binding. In Germany, this is the Federal Institute for Occupational safety and Health (BAuA).

This maximum allowable concentration in the air means that workers will not suffer any detrimental affects to their health if they spend their entire working lives breathing in gas concentrations, which do not exceed that level. This, however, must be assured.

Limit	Selected substances
value	to which this limit value applies
5,000 ppm	carbon dioxide
1,000 ppm	propane, butane
500 ppm	acetone
200 ppm	methyl ethyl ketone (MEK)
100 ppm	butanol
50 ppm	n-hexane, toluene
20 ppm	acetonitrile
10 ppm	chlorobenzene
5 ppm	diethylamine
1 ppm	1.1.2.2-tetrachloroethane
500 ppb	chlorine
200 ppb	methyl chlorformate
100 ppb	chlorine dioxide
50 ppb	glutaraldehyde
10 ppb	methyl isocyanate

Status 2010, according to TRGS 900 (Germany)

T+ Very toxic $LC_{50} < 0.5 \text{ g/m}^3$

Arsine, boron trichloride, boron trifluoride, bromine, diborane, fluorine, hydrogen cyanide, hydrogen fluoride, hydrogen phosphide, hydrogen sulfide, nitrogen dioxide, nitrogen monoxide, ozone, phosgene, sulfur tetrafluoride, tungsten hexafluoride

T Toxic
$$LC_{50} = 0.5 \dots 2.0 \text{ g/m}^3$$

Acetonitrile, ammonia, benzene, carbon disulfide, carbon monoxide, chlorine, cyanogen, hydrogen chloride, methanol, methyl bromide, nitrogen trifluoride, sulfur dioxide

LC₅₀ (LC stands for "lethal concentration") is the gas concentration in air, which – when inhaled over a given time period (usually four hours) – kills 50% of experimental animals (normally white laboratory rats).

2.6 Flammable gases and vapors

Flammable gases become more dangerous when they have a relatively low LEL (lower explosion limit) or flash point. The flash point is defined by the liquid's temerature-dependent vapor pressure and it's LEL.

Vapor	LEL Vol%	LEL g/m³	Flash point in °C/°F	Vapor pressure at 20°C (68° F) in mbar	Ignition temp. in °C/°F
acetone	2.5	60.5	< -20/-4	246	535/995
acrylonitrile	2.8	61.9	-5/23	117	480/896
benzene	1.2	39.1	-11/12	100	555/1031
n-butanol	1.7	52.5	35/95	7	325/617
n-butyl acetate	1.2	58.1	27/81	11	390/734
n-butyl acrylate	1.2	64.1	37/99	5	275/527
chlorobenzene	1.3	61.0	28/82	12	590/1094
cyclohexane	1.0	35.1	-18/-0,4	104	260/500
cyclopentane	1.4	40.9	-51/-60	346	320/608
1.2-dichloroethane (EDC)	6.2	255.7	13/55	87	440/824
diethyl ether	1.7	52.5	-40/-40	586	175/374
1.4-dioxane	1.9	69.7	11/52	38	375/707
epichlorhydrin	2.3	88.6	28/82	16	385/725
ethanol	3.1	59.5	12/54	58	400/752
ethyl acetate	2.0	73.4	-4/25	98	470/878
ethylbenzene	1.0	44.3	23/73	10	430/806
n-hexane	1.0	35.9	-22/-8	160	240/464
methanol	6.0	80.0	9/48	129	440/824
1-methoxy-2-propanol	1.8	67.6	32/90	12	270/518
methyl ethyl ketone (MEK)	1.5	45.1	-10/14	105	475/887
methyl methacrylate	1.7	70.9	10/50	40	430/806
n-nonane	0.7	37.4	31/88	5	205/401
n-octane	0.8	38.1	12/54	14	205/401
n-pentane	1.4	42.1	-40/-40	562	260/500

Vapor	LEL Vol%	LEL g/m³	Flash point in °C/°F	Vapor pressure at 20°C in mbar	Ignition temperature in °C/°F
i-propanol (IPA)	2.0	50.1	12/54	43	425/797
propylene oxide	1.9	46.0	-37/-35	588	430/806
styrol	1.0	43.4	32/90	7	490/914
tetrahydrofuran (THF)	1.5	45.1	-20/-4	200	230/446
toluene	1.1	42.2	6/43	29	535/995
xylene (isomer mixture)	1.0	44.3	25/77	7	465/869

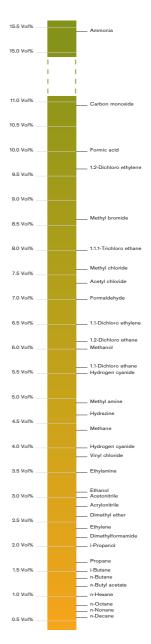
Gas	LEL	LEL	Ignition
	Vol%	g/m³	temperature in °C/°F
acetylene	2.3	24.9	305/581
ammonia	15.4	109.1	630/1166
1,3-butadiene	1.4	31.6	415/779
dimethyl ether	2.7	51.9	240/464
ethene (ethylene)	2.4	28.1	440/824
ethylene oxide	2.6	47.8	435/815
hydrogen	4.0	3.3	560/1040
i-butane	1.5	36.3	460/860
methane	4.4	29.3	595/1103
methyl chloride	7.6	159.9	625/1157
n-butane	1.4	33.9	365/689
n-butene (butylene)	1.2	28,1	360/680
propane	1.7	31.2	470/878
propene (propylene)	1.8	31.6	485/905

Only flammable liquids have a flash point.

By definition, flammable gases do not have a flash point.

2.7 LEL and preventative explosion protection

Flammable gases and vapors can form ignitable mixtures when combined with air, but the ratio of flammable gas to oxygen (or air) must lie within certain limits.

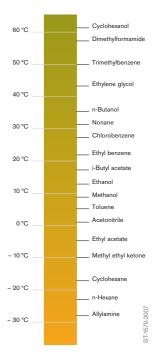

The lower explosion limit (LEL) is defined as the concentration of combustion gas (stated in Vol.-%) at which, under standardized conditions, the gas-air mixture can be ignited and will continue to burn on its own accord. The LEL of all known flammable gases and vapors lies in a range of approximately 0.5 to 15 Vol.-%. The LEL of hydrogen in air, for instance, is 4 Vol.-%. Accordingly, a gas sample containing 2 Vol.-% of hydrogen in air can definitely not be ignited.

Concentration limitation

This behavior of gases and vapors has important consequences for practical explosion protection. If a flammable gas cannot be ignited below it's LEL, then we can protect people against

explosions by measuring the gas concentrations continuously and using appropriate measures to ensure that concentrations never exceed a level such as half the LEL (50% LEL).

This method of preventative explosion protection is often referred to as a primary measure. What is prevented is not the ignition of the gas, but the very formation of an atmosphere which can explode. The preferred method of measuring these concentrations is to use infrared or catalytic bead sensors, which, when used for this purpose, must fulfill certain safety requirements.


2.8 Flash point of flammable liquids

Although we speak of flammable liquids, in fact, the liquid state is not flammable. It is the vapor, which can form a flammable mixture together with the oxygen in the air. Both the volatility of this vapor and its lower explosion limit (LEL) comprise the measure of its potential danger. This is described by what is known as the flash point.

To be able to ignite at all, the concentration of vapor above the surface of the liquid must exceed the LEL. Whether it does so or not depends on how much vapor is produced. This, in turn, depends on what is known as the vapor pressure, which depends upon the temperature of the liquid. In safety terms, this is described by defining a flash point (F). The flash point is the temperature at which sufficient vapor forms to create a vapor-air mixture, which can be ignited in a standardized

apparatus. If a flammable liquid's flash point is above 50° C (122° F), then it definitely cannot be ignited at a temperature of 30° C (86° F).

Therefore, the lower the flash point of a flammable liquid, the more dangerous it is. Because the vapor of a flammable liquid is not ignitable below its flash point, preventative explosion protection can consist of using liquids whose flash points are significantly higher than the ambient temperature. This is often done in practice, but it does have the disadvantage – when using such liquids as solvents – that large amounts of energy are required to evaporate them. Gases by definition do not have a flash point, because under normal conditions they do not exist in liquid form.

You cannot ignite diesel (F > 55°C) using a match, but you can ignite gasoline with one (F < -20°C)!

2.9 Concentration and their calculation

Concentration is defined as the content of a substance within a reference substance. When measuring harmful substances in the air, the quantity of that substance is defined in terms of a concentration in relation to the air. The right units must be chosen to produce useful figures for defining the concentration. High concentration is generally given as Vol.-% – in other words, one part of a substance to 100 parts of air. Air, for example, consists of 21% Vol.-% oxygen, which means that 100 parts of air contain 21 parts of oxygen. Lower concentration levels are measured in ppm = parts per million (mL/m³), or ppb = parts per billion (μ L/m³). A concentration of one ppm means there is one part of a substance in one million parts of air (the rough equivalent to one sugar cube inside a gasoline tanker). A concentration of one ppb refers to one part of a substance in one billion parts of air (equivalent to five people out of the entire population of the earth). Converting these very low concentrations into Vol.-% produces the following simple relationship:

1 Vol.-% = 10,000 ppm = 10,000,000 ppb

Alongside gaseous components, the air can also contain 'dissolved' solid or liquid substances, known as aerosols. The size of droplets or particles borne by the air is very small, which means that measuring them in terms of volume is not very useful. Aerosol concentrations are therefore measured in mg/m^3 .

		Vol%	ppm	ppb
Vol% =	10 L/m ³ 1 cL/L	1	10 ⁴	10 ⁷
ppm =	mL/m³ μL/L	10-4	1	10 ³
ppb =	μL/m³ nL/L	10 ⁻⁷	10 ⁻³	1

		g/L	mg/L	mg/m³
g/L =	10 L/m ³ 1 cL/L	1	10 ³	10 ⁶
mg/L =	mL/m³ μL/L	10-3	1	10 ³
mg/m³	μL/m³ nL/L	10 ⁻⁶	10 ⁻³	1

Converting mg/m³ into ppm

$$c_{\text{[ppm]}} = \begin{array}{c} \text{Molar volume} \\ \\ \text{Molar mass} \end{array} \quad c \quad c_{\text{[mg/m}^3]} = \begin{array}{c} \text{Molar mass} \\ \\ \\ \text{Molar volume} \end{array}$$

The molar volume of any gas is 24.1 L/mol at 20°C (68° F) and 1,013 hPa (14.7 psi); the molar mass of a specific gas should be adapted dependent on that gas.

3 Introduction to portable instruments

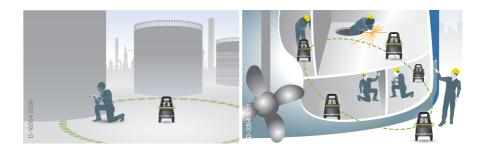
In the beginning, there was the canary. These little finches would warn miners about dangerous gases underground: if they stopped singing, the miners had to get out quick. Crude and inaccurate methods of determining gas concentrations in the atmosphere like this one have long been consigned to history.

Nowadays, precise measuring instruments monitor the concentration of dangerous gases and flammable vapors. The latest of these are compact, small, robust and flexible single-gas and multi-gas units. Gases and vapors are not always necessarily harmful; after all, the earth's atmosphere is made of them. It is not until their concentration exceeds critical levels (risk of poisoning and explosion) or drops below certain levels (risk of suffocation through oxygen deficiency) that they can become a threat. This is why portable gas detection devices are used in all kinds of ways throughout many branches of industry. Scenarios range from individual employees and small groups of workers – all the way to large-scale operations such as the industrial shutdown of an entire petrochemical plant. Instruments measuring the various dangerous gases have to perform reliably under changing conditions. This can place great demands on reliability, durability, and flexibility, because in the end the detection equipment is directly responsible for the safety and health of workers. Not every unit may be used in every working environment. Before a device is used, you have to determine whether its specifications are sufficient. These requirements are all laid down in various standards and directives.

3.1 Application areas for portable gas detection

Portable gas detection instruments are subject to very diverse requirements. Different application areas require solutions tailored to the measurment task, which also take into account the respective ambient conditions.

It is generally possible to distinguish between the following application areas:


Personal monitoring

- These devices are designed to warn the wearer about gas risks in the immediate vicinity. For this reason, they are usually worn on work clothing. The basic requirements that these units therefore have to fulfill are wearing comfort, durability, and reliability. Continuously measuring single-gas and multi-gas instruments are suitable for this kind of work.

Area monitoring

- The task here is to monitor an area in which one or more workers are active. The unit is positioned centrally so it can monitor the working area as effectively as possible. The basic requirements in this case are durability, stability, and an alarm, which is extremely easy to perceive (both visually and acoustic). Continuously measuring multi-gas instruments are used in this field.
- When several work areas are simultaneously being monitored and these individual areas are not visible from one central point, a wireless alarm chain with several area monitoring devices can provide maximum safety.

Confined space entry

- Maintenance and repair work often require people to climb into confined spaces. These areas of work can be especially dangerous because of the lack of space, the lack of ventilation, and the presense or development of hazardous substances. A clearance measurement is required before entry. Multi-gas instruments are used together with corresponding pumps and accessories such as hoses and probes. After a successful measurement where no hazards have been found, the same instruments can be used for continuous personal monitoring while working in the confined space.

Leak detection

Leakages can occur wherever gases or liquids are stored or transported. It is important to
identify leakages quickly so that the appropriate measures can be taken to avert harm to
people, the environment, and the facility. Detection devices combined with corresponding
pumps must be able to respond quickly so as to detect small changes in concentration.
High

3.2 Requirements for gas detection instruments

As safety products, gas detection devices for industrial use must fulfill the statutory requirements (explosion protection, electromagnetic compatibility), as well as other requirements, so that their quality and reliability remains assured even under tough conditions.

Explosion protection standards:

Design stipulations ensure that the gas measuring instrument does not become a source of ignition itself. Globally accepted standards include CENELEC (ATEX), CSA, UL, GOST, etc.

Protection ratings as defined by EN 60529 (IP Code)

The IP code provides information about the degree to which a casing provides protection against foreign objects and water.

IP = International Protection/Ingress Protection

Extract based on DIN EN 60529:

First Protection against index number solid foreign objects

Protection against contact. Protection against interior dust deposits

index number water

Second Protection against

Protection against projected water from any angle

Complete protection against touch. Protection against dust penetration

Protection against penetrating water during temporary flooding

Protection against penetrating water during temporary immersion

Protection class IP 67 provides a high degree of robustness, although this can have negative consequences in terms of vapor permeability. The MEWAGG research group ("Mess- und Warngeräte für gefährliche Gase") - part of BG Chemie (Germany's statutory employment accident insurance fund for the chemical industry) - therefore advises users who need to detect not only gases like methane and propane, but also higher hydrocarbons and solvents, to check the suitability of equipment with the manufacturer. This can, for example, involve a detection equipment assessment under ATEX.

Quality of measurement functions

Maintaining a predefined detection quality, even under extreme ambient conditions (temperature, pressure, wind, moisture, vibration, and so on)

EN 45 544 - for toxic gases and vapors

EN 50 104 - for oxygen

EN 60 079-29-1 - for flammable gases and vapors

Electromagnetic compatibility as defined by EN 50270

Electrical and electronic devices should not be influenced or interfered with by other electrical, magnetic, or electromagnetic fields - and vice versa. For instance, this means that using a mobile phone or a radio in the immediate vicinity of gas detection devices should not interfere with the instrument's detection signal, nor should the instrument interfere with the phone. EMC guidelines and standards define means of proving and confirming a device's insensitivity to interference and low level of interference output. Simply complying with the requirements of a standard or guideline may not be sufficient depending on the various operating and ambient conditions. Rugged industrial applications require much more robust

devices. Dräger pays special attention to these requirements, for example, with an additional in-house "robustness test."

RoHS and REACH

The requirements for materials and substances used must also be considered during the development and production of gas detection equipment. The European RoHS (Restriction of Hazardous Substances) Directive requires that six particularly dangerous substances may not be contained in electrical and electronic devices. The REACH Regulation (Registration, Evaluation, Authorization, and Restriction of Chemicals) requires that the presence of particularly hazardous materials in products must be disclosed. Dräger seeks to avoid such substances as far as possible within the scope of technical conditions and meets the relevant directives and regulations in this regard.

3.3 Explosion protection

Industrial processes very often involve flammable substances, including sometimes flammable particles. In these areas, flammable gases and vapors can sometimes be released on a process-related basis (such as relief valves) or by unforeseen incidents (breakdowns). As a means of prevention, areas such as these are designated EX areas ("zones") in which only equipment which is reliably protected against ignition may be used.

Explosion protection is standardized worldwide; IEC (international), CENELEC (European) and NEC 505 North American standards are similar, and based on the three-zone concept which is rapidly gaining acceptance in the USA.

Zone in IEC, NEC 505 and CENELEC	Dangerous, explosive atmosphere exists
Zone 0	constantly, regularly or long-term
Zone 1	occasionally
Zone 2	rarely and for short periods

American explosion protection compliant with NEC 500 is still typically based on the dual division concept:

Division in	Dangerous explosive	
NEC 500	atmosphere exists	
Division 1	constantly or occasionally	
Division 2	rarely and for short periods	

3.4 ATEX 137 - directive 1999/92/EC

ATEX stands for ATmospheres EXplosibles. This directive has been binding on all systems since July 30, 2006, and is addressed to employers. It describes minimum requirements for the protection of employees' health and safety in areas at risk of explosion.

The directive pursues the following targets:

- Prevent the formation of explosive atmospheres; if this is not possible
- Prevent the ignition of explosive atmospheres; if this is not possible
- Reduce the harmful effects of an explosion to a tolerable minimum.

Employers are obliged to assess the risk of explosion in the relevant areas. Zone categories are defined by answering the question: how likely is it that an explosive atmosphere (gas, vapor, dust) will form in the areas concerned?

ZONE DEFINITIONS IN ATEX 137, ANNEX I, 2

	Areas at risk of explosion are divided into the following zones according to the likelihood of
	an explosive atmosphere forming there:
Zone 0	Area in which explosive atmospheres comprising mixtures of air and flammable gases,
	vapors, and aerosols are present constantly, frequently, or over long periods of time.
Zone 1	Area in which, under normal operation, an explosive atmosphere can occasionally form as a
	mixture of air and flammable gases, vapors, or aerosols.
Zone 2	Area in which, under normal operation, an explosive atmosphere consisting of a mixture of
	air and flammable gases, vapors, or aerosols normally does not form - or, if so, only briefly.
Zone 20	Area in which explosive atmospheres in the form of clouds of combustible dust in the air are
	present constantly, frequently, or over long periods of time.
Zone 21	Area in which, under normal operation, an explosive atmosphere can occasionally form as
	clouds of combustible dust in the air.
Zone 22	Area in which, under normal operation, an explosive atmosphere in the form of a cloud of
	combustible dust in the air normally does not form - or, if so, only briefly.

Depending on the zone identified, only certain gas measuring instruments may be used there (this table links the categories of ATEX 95 with the zones in ATEX 137):

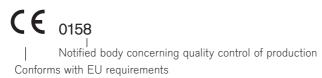
Permitted use	Gas, vapor (G)	Dust (D)
Instruments in category 1	Zone 0, 1, 2	Zone 20, 21, 22
Instruments in category 2	Zone 1, 2	Zone 21, 22
Instruments in category 3	Zone 2	Zone 22

(For instrument categories, see section 3.5 ATEX 95)

The instrument group and temperature category requirements are then determined by defining the flammable gases, vapors, aerosols, and dusts used, along with their ignition temperatures.

Extract from section 2.6 "Flammable gases and vapors"

Gas	LEL	LEL LEL Ignition	
	Vol%	g/m³	temperature in °C/°F
acetylene	2.3	24.9	305/581
ammonia	15.4	109.1	630/1166
1,3-butadiene	1.4	31.6	415/779
dimethyl ether	2.7	51.9	240/464
ethene (ethylene)	2.4	28.1	440/824
ethylene oxide	2.6	47.8	435/815
hydrogen	4.0	3.3	560/1040
i-butane	1.5	36.3	460/860
methane	4.4	29.3	595/1103
methyl chloride	7.6	159.9	625/1157
n-butane	1.4	33.9	365/689
n-butene (butylene)	1.2	28,1	360/680
propane	1.7	31.2	470/878
propene (propylene)	1.8	31.6	485/905


Vapor	LEL	LEL	Flash poin		•
	Vol%	g/m³	in °C/°F	at 20°C (68°F) in mba	ar in °C/°F
isopropyl alcohol (IPA)	2.0	50.1	12/54	43	425/797
propylene oxide	1.9	46.0	-37/-35	588	430/806
styrol	1,0	43.4	32/90	7	490/914
tetrahydrofuran (THF)	1.5	45.1	-20/-4	200	230/446
toluene	1.1	42.2	6/43	29	535/995
xylol (isomer mixture)	1.0	44.3	25/77	7	465/869

3.5 ATEX 95 - directive 94/9/EC

This directive applies to, among others, the manufacturers of gas detection and warning instruments. It describes the requirements that must be fulfilled by gas detection devices used in areas at risk of explosion, and which incorporate their own potential ignition sources.

The CE symbol of conformity - coupled with information about the equipment category (described the zones of the area at risk of explosion in which the gas warning instrument may be used as an electrical device) may look like this:

Markings as defined by 94/9/EC (ATEX 95)

Markings (as defined by ATEX):

Equipment groups I and II indicate in which area the device may be used:

Mining || = Industry

Information then follows about which equipment category the gas detection device satisfies:

Category 1	Very high level of safety, sufficient safety provided by two protective
	measures or in the event of two faults
Category 2	Sufficient safety in the event of frequent equipment faults or one
	breakdown
Category 3	Sufficient safety if operation is fault-free

Finally, the atmosphere is indicated (G: gas, vapor, aerosol or D: conductive and non-conductive combustible dusts).

The designation indicates the zones in which the instrument may be used (example for industry).

Ex area:	Zone 0	Zone 1	Zone 2	Zone 20	Zone 21	Zone 22
Ex atmosphere:	constantly,	occasionally	normally	constantly,	occasionally	normally
	long-term		not or only	long-term		not or only
	or frequently		short-term	or frequently		short-term
II1G	yes	yes	yes	no	no	no
II 2 G	no	yes	yes	no	no	no
II 3 G	no	no	yes	no	no	no
II 1 D	no	no	no	yes	yes	yes
II 2 D	no	no	no	no	yes	yes
II 3 D	no	no	no	no	no	yes

Explosion protection designation in EN 60079

EPL (Equipment Protection Level) G = gas; D = dust Ex d ia IIC T4 Gb — a = Zone 0; b = Zone 1; c = Zone 2

____temperature category

i = Intrinsic safety a = covers 2 faults

Explosion group I: mining,
II: everything except mining

b = covers 1 fault Subgroups IIA, IIB, and IIC: categorization of c = covers normal operation gases depending on their ignitibility

Ignition protection: Pressure-resistant encapsulation

Explosion protected equipment

The requirements for electrical equipment to be used in hazardous areas are outlined in the standard series EN 60079. In addition to the requirements, markings are defined as well. A marking according to ATEX as well as a marking to indicate the equipment protection level (EPL = Equipment Protection Level) is required. With the introduction of the EPL, it is now possible to allocate which device may be used in which explosive atmosphere or area outside of Europe as well.

Ignition protection types provide information about the protective measures incorporated into a device:

Ignition protection types and CENELEC standards

Abbreviation	CENELEC standard	Ignition protection type
Gas		
	EN 60079-0	General terms
Ех о	EN 60079-6	Oil immersion
Ех р	EN 60079-2	Pressurized encapsulation
Ex m	EN 60079-18	Encapsulation
Ex q	EN 60079-5	Powder / Sand filling
Ex d	EN 60079-1	Explosion/Flame-proof
		encapsulation
Ex e	EN 60079-7	Increased safety
Ex ia	EN 60079-11	Intrinsic safety
Ex ib		ia required for Zone 0
Ec ic		ib sufficient for Zone 1
		ic sufficient for Zone 2
Ex n	EN 60079-15	Ignition protection types for Zone 2
Dust		
	EN 61241-0	General terms
Ex tD	EN 61241-1	Protection by instrument housing
Ex pD	EN 61241-2	Dust – pressurized encapsulation
Ex iD	EN 61241-11	Dust – intrinsic safety

Comparison: Designation according to IEC (2007) / CENELEC (2009) and EU directive 94/9/EG (ATEX)

EPL (Equipment Protection Level)			
according to	according	Area	
IEC / CENELEC	to EU directive 94/9/EG		
Ма	M1	Mining	
Mb	M2		
Ga	1G	explosive gas atmosheres	
Gb	2G		
Gc	3G		
Da	1D	area with combustible dust	
Db	2D		
Dc	3D		

Explosion group

Explosion group I encompasses equipment used for mining (coal dust and methane atmospheres). Explosion group II applies to all other areas (all other gases). For the ignition types "explosion/flame-proof encapsulation" and "intrinsic safety," explosion group II is subdivided into IIA, IIB, and IIC. This subdivision relates to the different levels of ignitability in terms of ignition penetration and electrical sparks. Explosion group IIC covers all gases and vapors. In the future, we will also see explosion group III for flammable dusts, and this in turn will be subdivided in three other groups (IIIA: flammable fibers, IIIB: non-conductive dust, IIIC: conductive dust).

CATEGORIZATION OF GASES AND VAPORS

Explosion group	Temperature	Temperature category (max. permissible surface temperature)				
	T1 (450°C)	T2 (300°C)	T3 (200°C)	T4 (135°C)	T5 (100°C)	T6 (85°C)
Ignition temp.	> 450°C	300-450°C	200-300°C	135-300°C	100-135°C	85-100°C
	> 842°F	572-842°F	392-572°F	275-572°F	212-275°F	185-212°F
I	methane					
IIA	acetone	isoamyl acetate	amyl alcohol	acetaldehyde		
Ignition energy	ammonia	n-butane	benzine			
more than	benzene	n-butanol	diesel fuel			
0.18 mJ	ethyl acetate	1-butene	heating oil			
	methane	propyl acetate	n-hexane			
	methanol	i-propanol				
	propane	vinyl chloride				
	toluene					
IIB	hydrogen	1.3-butadiene	dimethyl ether	diethyl ether		
	cyanide					
Ignition energy	coal gas	1.4-dioxane	ethylglycol			
0.06 to 0.18 mJ		ethylene	hydrogen			
			sulfide			
		ethylene oxide				
IIC	hydrogen	acetylene				carbon
Ignition energy						disulfide
less than 0.06 mJ						

Temperature category

Electrical equipment in group II is categorized according to the maximum surface temperatures that are allowed to come into contact with explosive atmospheres. The ignition temperature of the gas must be greater than the maximum surface temperature. T6 covers all gases and vapors. For dust explosion protection, the maximum surface temperature is specified in °C, e.g. T130 °C (266 °F).

The last part of the designation, the EC construction type certificate, shows among other things which testing station tested the equipment and when the first time.

EC construction type certification:

Notified body having type-approved equipment

3.6 Laws and regulations in USA, Canada, and Mexico

Laws and regulations in most municipalities, states, and provinces in North America require certain products to be tested to a specific standard or group of standards by a Nationally Recognized Testing Laboratory (NRTL). There are a number of third party approval agencies in the US – UL, FM, ETL and many others. They all provide ratings for Intrinsic Safety and provide some performance testing. They do not have any regulatory or legal status. They are primarily a certification to verify the safety of a product for insurance purposes and to minimize liability.

Underwriters Laboratories Inc. (UL)

is a private third party product safety certification organization. UL develops standards and test procedures for products, materials, components, assemblies, tools and equipment, chiefly dealing with product safety. UL is one of several companies approved for such testing by the U.S. federal agency OSHA. OSHA maintains a list of approved NRTL's.

UL develops standards for safety, often based on American National Standards (ANSI) and evaluates many types of products. A typical standard for electronic products includes not only requirements for electrical safety, but also spread of fire and mechanical hazards. UL evaluates products for compliance with specific safety requirements. UL develops its Standards to correlate with the requirements of model installation codes, such as the National Electrical Code (NEC).

UL evaluates instruments for Intrinsic Safety (IS) for use in hazardous areas. The IS rating means that the instrument will not be the source of ignition in a potentially explosive environment. The areas are defined by the type of hazard that may exist (Class), the possibility of a hazard being present in the area (Division) and the specific hazards that may be encountered (Group). UL 913 is the applicable Standard for Safety for Intrinsically Safe Apparatus and Associated Apparatus for Use in Class I, II, and III, Division 1, Hazardous (Classified) Locations.

Hazardous Location:

An area where the possibility of explosion and fire is created by the presence of flammable gases, vapors, dusts, fibers or filings.

Class I	Those areas in which flammable gases or vapors may be present in the air in
	sufficient quantities to be explosive or ignitable.
Class II	Those areas made hazardous by the presence of combustible dust.
Class III	Those areas in which there are easily ignitable fibers or filings present, due to
	type of material being handled, stored or processed.

Division 1	Division 1 is the normal situation; the hazard would be expected to be	
	present in everyday production operations or during frequent repair and	
	maintenance activity.	
Division 2	Division 2 is the abnormal situation; material is expected to be confined	
	within closed containers or closed systems and will be present only through	
	accidental rupture, breakage or unusual faulty operation.	

Groups

The gases and vapors of Class I locations are broken into four groups by the codes A, B, C and D. These materials are grouped according to the ignition temperature of the substance, its explosion pressure and other flammable characteristics.

Class II – dust locations – groups E, F & G. These groups are classified according to the ignition temperature and the conductivity of the hazardous substance.

The gases and vapors of Class I locations are	Group A	Acetylene
broken into four groups by the codes A, B, C	Group B	Hydrogen
and D. These materials are grouped according	Group C	Ethyl-Ether, Ethylene,
to the ignition temperature of the substance,		Cycle Propane
its explosion pressure and other flammable	Group D	Gasoline, Hexane, Naptha,
characteristics.		Benzene, Butane, Propane,
		Alcohol, Laquer Solvent
		Vapors, Natural Gas
Class II – dust locations – groups E, F & G.	Group E	Metal Dust
These groups are classified according to the	Group F	Carbon Black, Coal,
ignition temperature and the conductivity of the		Coke Dust
hazardous substance.	Group G	Flour, Starch, Grain Dust

Operating Temperature Codes

Maximum Temperature				
Degrees C	Degrees F	Temperature Codes		
450	842	T1		
300	572	T2		
280	536	T2A		
260	500	T2B		
230	446	T2C		
215	419	T2D		
200	392	T3		
180	356	T3A		
165	329	T3B		
160	320	T3C		
135	275	T4		
120	248	T4A		
100	212	T5		
85	185	T6		

These are simplified definitions – refer to National Electrical Code (NEC), Article 500 for complete definitions.

Notes

- 1) T1 through T2D not applicable to Class II location.
- 2) T2A through T2D, Class I Group D only.

A typical UL classification would look like this:

Only as to intrinsic safety for use in hazardous locations

Class I&II, Div.1, Grps A,B,C,D,E,F,G

Safe in atmospheres containing the gases listed in the chart above
Use in areas where the hazard could exist at any time

For use in potentially explosive gas or dust atmospheres

UL is currently planning to start using the Zone classification system for North America as part of a global harmonization effort.

Division 1: Where ignitable concentrations	Zone 0: Where ignitable concentrations of		
of flammable gases, vapors or liquids can	flammable gases, vapors or liquids are		
exist all of the time or some of the time	present continuously or for long periods of		
under normal operating conditions.	time under normal operating conditions.		
	Zone 1: Where ignitable concentrations of		
	flammable gases, vapors or liquids are		
	likely to exist under normal operation		
	conditions.		
Division 2: Where ignitable concentrations	Zone 2: Where ignitable concentrations of		
of flammable gases, vapors or liquids are	flammable gases, vapors or liquids are		
not likely to exist under normal operation	not likely to exist under normal operation		
conditions.	conditions.		

US Mine Safety Health Administration (MSHA)

In the United States, equipment for use in mines must be approved by the US Mine Safety Health Administration (MSHA). MSHA maintains its own test facilities and has specific standards for electrical equipment being used in mines. MSHA defines and enforces safety regulations for all types of mining operations as legislated by the US Congress. This includes both underground and above ground coal mines, metal/nonmetal mines and large tunneling operations. The MSHA approval process is a legal requirement for use of equipment in a mine. MSHA considers all underground operations as hazardous locations. An MSHA approval reads a bit differently than a UL approval label, although the same classification codes are used:

Permissible Gas Monitor

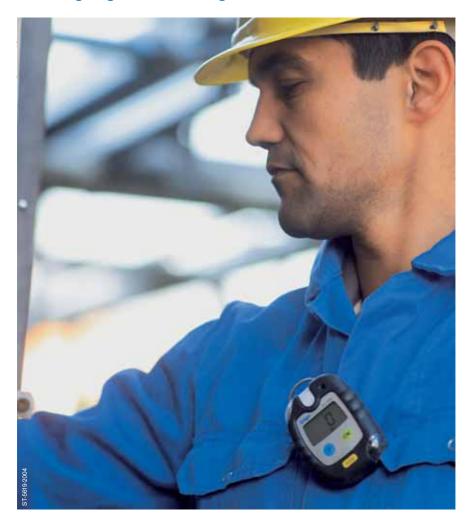
Only as to intrinsic safety for use in hazardous locations, Class I Div. 1, Group A<B<C<D Temp Code T4, Ta \leq 55 °C

The Canadian Standards Association (CSA)

The Canadian Standards Association (CSA) is a not-for-profit association composed of representatives from government, industry, and consumer groups. They are involved with many diverse areas of specialization such as climate change, business management and safety and performance standards, including those for electrical and electronic equipment, industrial equipment, boilers and pressure vessels, compressed gas handling appliances, environmental protection, and construction materials. CSA also provides advisory services, training materials and print and electronic published standard documents. Currently forty percent of all the standards issued by CSA are referenced in Canadian legislation.

CSA developed the CAN/CSA Z299 series of quality assurance standards still in use today. They are an alternative to the ISO 9000 series of quality standards.

They do all of the review and testing for Intrinsic Safety and conduct performance testing. They propose standards which are often codified into law or become de facto standards in Canada. CSA is a recognized NRTL for testing and safety.


Mexican Safety and Health

Mexican Safety and Health is controlled by the Norma Official Mexicana (NOM) regulations. Nom -005-STPS-1998 is very comparable to 29 CFR 1910.1200, the basic OSHA regulation in the US. While using US OSHA regulations as a basis, the Mexican government has implemented local requirements. They accept the testing and standards of any of the Nationally Recognized Testing Labs.

HAZARDOUS LOCATIONS CLASSIFICATIONS

Classification Material Presence	IEC, ATEX NEC 505 Codes	NEC 500 CSA/UL Codes	Max Surface Temp.	IEC, ATEX NEC 505 Codes	NEC 500 CSA/UL Codes
Continuously Present	Zone 0	Division 1	450 °C	T1	T1
Intermittently Present	Zone 1	Division 1	300 °C	T2	T2
Abnormally Present	Zone 2	Division 2	280 °C		T2A
Apparatus			260 °C		T2B
Gas & Vapors			230 °C		T2C
Acetylene	Group IIC	Class I/ Group A	215 °C		T2D
Hydrogen	Group IIB	Class I/ Group B	200 °C	T3	T3
Ethylene	Group IIB	Class I/ Group C	180 °C		ТЗА
Propane	Group IIA	Class I/ Group D	165 °C		T3B
Methane	Group I	Class I/ Group D	160 °C		T3C
Dust			135 °C	T4	T4
Metal	N/A	Class II/ Group E	120 °C		T4A
Coal	N/A	Class II/ Group F	100 °C	T5	T5
Grain	N/A	Class II/ Group G	85 °C	T6	T6
Fibers (All)	N/A	Class III			

3.7 Single-gas measuring instruments

If the danger of toxic gases or vapors can be narrowed down to a single gas or condustive component, then single-gas measuring and warning devices are the ideal solution for personal monitoring in the workplace. They are small, robust, and ergonomic. These devices are usually attached to the work clothing near the breathing area, but do not limit the movement of workers. They monitor the ambient air continuously and produce an alarm (visual, acoustic, and by vibration) if the gas concentration exceeds an alarm limit preset in the device. This enables employees to respond immediately to dangers if accidents occur during normal operation, or if unforeseen events occur during maintenance and repair work.

Dräger Pac 3500-7000

The Pac 3500-7000 family is equipped with XXS sensors. These miniaturized electrochemical sensors enable a small, ergonomic instrument design. The sensor sits right behind a replaceable dust and water filter which protects it from outside influences, and yet has a negligible effect on response times. Like accuracy and reliability, response time is a crucial factor. The t_{90} to t_{20} times provide information about how quickly the sensor responds to changes in gas concentration. Their fast response times and very small diffusion paths enable these sensors to react extremely quickly, immediately indicating any danger that arises. The electrical signal produced by the sensor is converted into a concentration reading on the display by the unit's electronics and software. Alarm thresholds are stored in the unit (A1 = pre-alarm/A2 = main alarm). If gas concentrations exceed these alarm thresholds, then the unit produces an acoustic, visual, and vibration alarm. Durability and explosion protection are two other important factors when choosing the right gas detection device.

Dräger X-am 5100

The Dräger X-am 5100 is designed for the measurement of the gases / vapors hydrazine, hydrogen peroxide, hydrogen chloride and hydrogen fluoride. These special gas hazards are difficult to detect because they adsorb to different surfaces. The open gas inlet projecting from the device prevents that adsorbing surfaces are between the gas and the gas sensor. A rapid response of the proven XS sensors is thus also ensured for these special gases.

Dräger Pac 3500/5500/7000

Small and robust, economical and powerful. The compact Dräger Pac family is equipped with the latest sensor technology and a multitude of features, and is tailor-made for the diverse demands of industry.

OTHER BENEFITS

Robust: water- and dust-protection compliant with IP 66/67

Ideal solution for functional testing and adjustment

Flexible alarm and warning features

Long sensor and device life time at Dräger Pac 5500 and 7000

Reliable gas entry from both sides

Personal monitoring

ESPECIALLY SUITED FOR THE FOLLOWING APPLICATIONS

Personal monitoring	Robust, IP 66/67
	Reliable gas inlets from both sides
	Response time of 10 seconds

The impact-resistant housing is covered with protective rubber, which makes it resistant to corrosive chemicals. A strong, rotating crocodile clip made from stainless steel allows the unit to be fixed securely to clothing or belt.

TECHNICAL SPECIFICATIONS

Dimensions (W × H × D)	84 × 64 × 25 mm; 3.3 x 2.5 x 1.0 in.		
Weight	120 g; 3.8 oz.		
Ambient conditions:			
Temperature	-30 to +50°C; -20 to +120°F		
Pressure	700 to 1,300 hPa		
Humidity	10 to 90% r.h.		
Ingress protection	IP 66/67		
Alarms:			
Visual	360°		
Acoustic	Multi-tone alarm > 90 dB in 30 cm (1 ft.)		
Vibration	yes		
Power supply	Replaceable lithium battery		

Dräger Pac 3500/5500/7000

FEATURES COMPARISON

	Dräger Pac 3500	Dräger Pac 5500	Dräger Pac 7000
Compatible sensors:			
XXS EC sensors	O ₂ , CO, H ₂ S-LC	O ₂ , CO, H ₂ S-LC	O ₂ , CO, H ₂ S-LC, CO ₂ , Cl ₂ , HCN, NH ₃ , NO, NO ₂ , PH ₃ , SO ₂ , H ₂ S, OV; OV-A
Operation time	2 years	Unlimited	Unlimited
Data logger:	Events saved with date and time (up to 60 events)	Events saved with date and time (up to 60 events)	Concentrations and events saved together with date and time (up to 120 hours at 1 data set per minute).
Battery life CO, H ₂ S	8 hours/day, 2 years (1 minute alarm per day)	8 hours/day, 2 years (1 minute alarm per day)	24 hours/day > 5,500 hours (1 minute alarm per day)
Battery life O ₂	8 hours/day, 1 year (1 minute alarm per day)	8 hours/day, 1 year (1 minute alarm per day)	24 hours/day > 2,700 hours (1 minute alarm per day)
Bump test	Pushing the OK- button 3 times	Pushing the OK- button 3 times	Automatic
Approvals:			
ATEX	ATEX I M1 / II 1G Ex ia I/IIC T4	ATEX I M1 / II 1G Ex ia I/IIC T4	ATEX I M1 / II 1G Ex ia I/IIC T4
Measurement performance certificate	-	-	XXS EC Sensoren: O ₂ , H ₂ S, CO
UL	Class I, II Div. 1 Group A, B, C, D, E, F, G Temp. Code T4	Class I, II Div. 1 Group A, B, C, D, E, F, G Temp. Code T4	Class I, II Div. 1 Group A, B, C, D, E, F, G Temp. Code T4
CSA	Class I, II Div. 1 Gruppe A, B, C, D, E, F, G TempCode T4	Class I, II Div. 1 Gruppe A, B, C, D, E, F, G TempCode T4	Class I, II Div. 1 Gruppe A, B, C, D, E, F, G TempCode T4
IECEx	Ex ia II CT4	Ex ia II CT4	Ex ia II CT4
GOST	PO Exial X / 0ExiallCT4 X	PO Exial X / 0ExiallCT4 X	PO Exial X / 0ExiallCT4 X
RUS – Pattern Approval	XXS EC Sensoren:	XXS EC Sensoren:	XXS EC Sensoren: O2,
Certificate of measuring instruments	O ₂ , H ₂ S, CO	O ₂ , H ₂ S, CO	H ₂ S, CO, H ₂ S LC, Cl ₂ , CO ₂ , HCN, PH ₃ , NH ₃ , NO ₂ , SO ₂ , OV, OV-A
MED	-		96/98/EC
CE mark	Electromagnetic compatibility (Direc- tive 2004/108/EC)	Electromagnetic compatibility (Direc- tive 2004/180/EC)	Electromagnetic compatibility (Directive 2004/108/EC)

ACCESSORIES

Calibration accessories

Dräger Bump Test Station

Dräger E-Cal

Communication accessories:

Dräger CC-Vision/Pac-Vision

Printer Set for Dräger Bump Test Station

Dräger E-Cal

Printer Set for Dräger Bump Test Station

Communication cradle & Dräger PacVision

Dräger X-am 5100

The Dräger X-am 5100 is designed for the measurement of the gases / vapors hydrazine, hydrogen peroxide, hydrogen chloride and hydrogen fluoride. These special gas hazards are difficult to detect because they adsorb to different surfaces. The open gas inlet projecting from the device prevents that adsorbing surfaces are between the gas and the gas sensor. A rapid response of the proven XS sensors is thus also ensured for these special gases. Dräger X-am 5100 can only be operated in diffusion mode.

OTHER BENEFITS

Usage in industrial area - Ex approved

Measurement performance of the sensors are independent of the device

Easy solutions for service, calibration and bump testing

Personal monitoring

ESPECIALLY SUITED FOR THE FOLLOWING APPLICATIONS

Personal monitoring

small and light rapid respond time of the Dräger XS Sensors Battery life > 200 hours

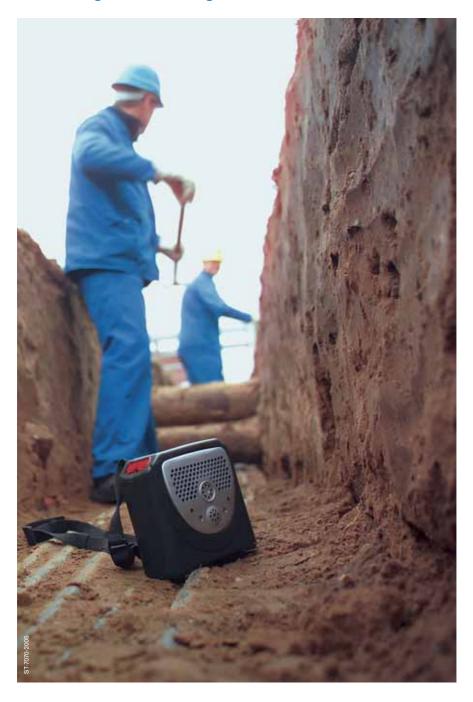
TECHNICAL SPECIFICATIONS

Dimensions (W × H × D)	47 x 129 x 55 mm; 1.85 x 5.08 x 2.17 in.	
Weight	ca. 220 g; 7 oz.	
Ambient conditions:		
Temperature	-20 to +50; -4 to +120°F	
Pressure	700 to 1300	
Humidity	10 to 95 % r.H.	
Ingress protection	IP 54	
Alarms:		
Visual	180°	
Acoustic	Multi-tone alarm > 90 dB in 30 cm (1 ft.)	
Vibration	yes	
Power supply	Alkaline, rechargeable NiMH for Alkaline Pack, T4	
	Akku Pack	
Battery life (h)	> 200	
Charging time (h)	< 4	
Compatible sensors	XS Sensors XS H ₂ O ₂ , XS Hydrazine, XS HF/HCL	
Operation time	unlimited	
Data logger	can be read out via IR > 1000 h at a recording	
	interval of 1 value per minute	
Approvals:		
ATEX	pending	
c CSA us	pending	
IECEx	pending	
CE mark	Electromagnetic compatibility	
	(Directive 2004/108/EC)	
RoHS	Directive 2002/95/EC	

ACCESSORIES

General accessories	Charging module	
	Car charging connection cable 12V/24V	
Calibration accessories	Communication accessories: Dräger CC-Vision	
	Calibration adapter	

Dräger CC-VisionCommunication software



Charging accessories

Car charging connecting cable

3.8 Multi-gas measuring instruments

If hazardous substances (Ex-Ox-Tox) occur in the work place, then it is advisable to use continuous multi-gas measuring instruments. These enable different measuring approaches be used (infrared, catalytic bead, PID, and electrochemical sensors) in one device, thus drawing on the strengths of the measurement principles.

The constellation of the sensors depends on the application. Up to 6 gases can be detected in real-time and continuously. As well as being used for personal monitoring and area monitoring, multi-gas measuring instruments can also be used for clearance monitorings and leak detection with the help of optional accessories. Multi-gas measuring instruments include the Dräger X-am 1700, X-am 2000, X-am 3000, X-am 5000, X-am 5600, and X-am 7000.

Gas measurement technology (example: Dräger X-am 7000) Selection from 25 different Cover Dräger sensors Internal sampling pump with an IP 67 membrane 2 Sensor slots 3 electrochemical sensor slots Compatible with PID, IR Ex, Compatible with up to 25 different IR CO2 and Cat Ex electrochemical sensors Warning function Large display Robust housing Visual 360° and Clearly structured, Robust, waterproof >100 dB loud scratch-proof display housing with standard multitone alarm informs in plain text rubber protection

Dräger X-am 1700/2000/5000/5600

Dräger offers a complete product series for the simultaneous measurement of different gases. The Dräger X-am 1700/2000/5000/5600 family is a new generation of gas detection equipment. Its practical design, cell-phone size, low weight, and the long-life of the electrochemical XXS sensors make this family the perfect companion for personal monitoring. Combined with an optional external pump and hose or probe, they are perfect for confined space entry measurements.

D-27784-2009

OTHER BENEFITS

Robust: water and dust protection compliant with IP 67

Reliable gas inlets from both sides

Precise, vapor-sensitive Ex monitoring

Ideal solution for functional testing and calibration

(automatic testing and calibration station - Dräger E-Cal & Dräger Bump Test Station)

Personal monitoring

Confined space entry

Leak detection

Area Monitoring

ESPECIALLY SUITED FOR THE FOLLOWING APPLICATIONS

Personal monitoring	Durable, IP 67	
Confined space entry	High level of flexibility using external pump (with 20	
	m or 66 ft. tube), adaptable to various probes	
Leak detection Catalytic sensors and XXS sensors res		
Area Monitoring	Wireless fenceline, available for use in Zone 0	

An optional external pump, which can be operated using a hose of up to 20 meters (66 ft.) long, is an ideal solution for applications involving the confined space entry measurements in tanks, pipelines, etc. When the instrument is placed in the cradle, the pump automatically starts. The Dräger E-Cal automatic test and calibration station and the Dräger Bump Test Station are ideal system accessories for saving time and minimizing your workload.

TECHNICAL SPECIFICATIONS

Dimensions (W × H × D)	47 × 129 × 31 mm; 1.8 x 5.1 x 1.2 in.	
Weight	220 g; 8.8 oz.	
Ambient conditions:		
Temperature	-20 to +50°C; -4 to +122°F	
Pressure	700 to 1,300 hPa	
Humidity	10 to 95% r.h.	
Ingress protection	IP 67	
Alarms:		
Visual	180°	
Acoustic	Multi-tone > 90 dB in 30 cm (1 ft.)	
Vibration	yes	
Power supply	Alkaline, rechargeable NiMH for alkaline pack,	
	T4 rechargeable battery pack	
Operating period (h)	approx. 10	
Charging time (h)	< 4	
Pump mode Maximum hose length 20 m; 66 ft.		
(Dräger X-am 1/2/5000 external pump)		

Dräger X-am 1700/2000/5000/5600

FEATURES COMPARISON

Compatible sensors	Dräger X-am 1700/2000	Dräger X-am 5000	Dräger X-am 5600
	X-am 1700: Catalytic sensor, O ₂ , CO and H ₂ S X-am 2000: Flexible 1 - 4 sensors. One cataly- tic sensor and XXS EC sensors - O ₂ , CO, and H ₂ S	Flexible from 1 to 4 sensors. One catalytic sensor and 3 XXS EC sensors (see XXS EC sensors)	Flexible from 1 to 4 sensors One IR sensor and 3 XXS EC sensors (see XXS EC sensors)
XXS EC sensors	O ₂ , CO, H ₂ S	Amine, O ₂ , CO, COCL ₂ , CO HC, H ₂ S, H ₂ S LC, H ₂ S HC, CO ₂ , Cl ₂ , HCN, NH ₃ , NO, NO ₂ , NO ₂ LC, PH ₃ , PH ₃ HC, SO ₂ , OV, OV-A, H ₂ S/CO, CO H ₂ (compensated), H ₂ , H ₂ HC, Odorant, O ₃	Amine, O ₂ , CO, COCL ₂ , CO HC, H ₂ S, H ₂ S LC, H ₂ S HC, CO ₂ , Cl ₂ , HCN, NH ₃ , NO, NO ₂ , NO ₂ LC, PH ₃ , PH ₃ HC, SO ₂ , OV, OV-A, H ₂ S/CO, CO H ₂ (compensated), H ₂ , H ₂ HC, Odorant, O ₃
Catalytic sensors			
Cat Ex 125 PR	0–100% LEL 0–5 Vol% CH ₄	0-100% LEL 0-100 Vol% CH ₄ Special calibration for organic vapors is possible	
Cat Ex 125 Mining		0-100% LEL 0-100 Vol% CH ₄	
Infrared sensors IR Ex			0-100% LEL 0-100 Vol% CH ₄ / C ₄ H ₁₀ / C ₂ H ₄ / LPG
IR CO ₂			0-5 Vol% CO ₂
IR CO₂/Ex			0-100% LEL 0-100 Vol% CH ₄ / C ₄ H ₁₀ / C ₂ H ₄ / LPG 0-5 Vol% CO ₂
Operation time	2 years (X-am 1700) unlimited (X-am 2000)	Unlimited	Unlimited
Data logger	Can be read out via Infrared > 1000 hours with 4 gases and a recording interval of 1 value per minute	Can be read out via Infrared > 1000 hours with 5 gases and a recording interval of 1 value per minute	Can be read out via Infrared > 1000 hours with 6 gases and a recording interval of 1 value per minute
Approvals:	I M1/II 2G Ex ia d IIC	I M1/II 1G Ex ia I/IIC T3	LM1/II.1C Ev in I/IIC
ATEX	T4/T3 I M2 EEx ia d I	I M2/II 2G Ex d ia I/IIC T4/T3	T4/T3
Measurement performance certificate	for O ₂ according to EN 50104/CO and H ₂ S according to EN 45544/Methane to No- nane according to EN 60079 and EN 50271	for O ₂ according to EN 50104/CO and H ₂ S according to EN 45544/Methane to Nonane according to EN 60079 and EN 50271	for O ₂ according to EN 50104/CO and H ₂ S according to EN 45544/Methane to Nonane according to EN 60079 and EN 50271
ŪL	Class I & II, Div. 1 Group A, B, C, D, E, F, G, T. Code T4/T3	Class I & II, Div. 1 Group A, B, C, D, E, F, G, T. Code T4/T3	
CSA	Class I Div. 1 Group A, B, C, D, T. Code T4/T3	Class I, Div. 1 Group A, B, C, D T. Code T4/T3	
c CSA us			Div.1, Class I, Groups A,B,C,D T4/T3 A/Ex ia IIC T4/T3 /Ga Canada: Ex ia IIC T4/T3 USA: AEx ia IIC T4/T3 Ga

FEATURES COMPARISON

	Dräger X-am 1700/2000	Dräger X-am 5000	Dräger X-am 5600
IECEx	Ex ia d I/IIC T4/T3	Ex ia I Ex ia IIC T3 Ex d ia I Ex d ia IIC T4/T3	Ex ia I Ex ia IIC T4/T3
CE mark	Electromagnetic compatibility (Directive 2004/108/EC)	Electromagnetic compatibility (Directive 2004/108/EC)	Electromagnetic compatibility (Directive 2004/108/EC)
RoHS	Directive 2002/95/EC	Directive 2002/95/EC	Directive 2002/95/EC
MED	X-am 2000: MED 96/98/EG	MED 96/98/EG	MED 96/98/EG
MSHA	X-am 1700 no / X-am 2000 according the requirement "Title 30 Code of Federal Regulations, Part 22 for use in gassy under- ground mines"	according the requirement "Title 30 Code of Federal Regu- lations, Part 22 for use in gassy underground mines"	-
GOST	PB Ex d ia I X / 1 Ex d ia IIC T4/T3 X	PO Ex ia I X / 0 Ex ia IIC T3 X oder PB Ex d ia I X/ 1 Ex d ia IIC T4/T3 X	

ACCESSORIES

General accessories	Charging module	
	Car charging connection cable 12V/24V	
Calibration accessories	Dräger Bump Test Station	
	Dräger E-Cal	
	Communication accessories: Dräger CC-Vision	
	Printer Set for Dräger Bump Test Station	
	Nonane tester (for function tests)	
Pump accessories	Dräger X-am 1/2/5000 external pump	
	Hoses of various lengths	
	Probes	
Area Monitoring	Dräger X-zone 5000	

Dräger E-Cal

External pump

Nonane tester

Dräger X-zone 5000

Dräger X-Zone 5000

State-of-the-art area monotoring – the Dräger X-zone 5000, in combination with the Dräger X-am 5000/5600 gas detection instruments, can be used for the measuement of one to six gases. This easily transportable, robust and waterproof unit extends mobile gas detection technology to a unique system with many flexible applications.

OTHER BENEFITS

IP 67 and Zone 0 approval for industrial applications

Wireless communication of X-zone's for frequencie: 868 MHz, 915 MHz, 433 Mhz and 430 MHz digital radio, robust and interference-free transmission between two X-zone up to 100 m robust and simple to be used induction wireless charging technology available

PowerOff-function: via the potential-free alarm contact external equipment can be switched off during an alarm occur.

ESPECIALLY SUITED FOR THE FOLLOWING APPLICATIONS

Area Monitoring	up to 25 Dräger X-zone can be automatically	
	interconnected to form a wireless fenceline, this	
	allows a flexible monitoirng of larger areas, e.g.	
	pipelines or industrial tanks continuous	
	operation of up to 120 hours for not only for	
	Dräger X-zone 5000 but for Dräger X-zone 5000	
	and Dräger X-am 5000/5600.	
Confined space entry	An optional intergrated pump allows the continuous	
	monitoring like confined space entry or locations	
	which are difficult to access, from a distance of up	
	to 45 m.	

The Dräger X-zone 5000 transforms the Dräger personal gas detection instruments Dräger X-am 5000/5600 into innovative area monitoring devices for a wide range of application. This gas measurement system is patented. With the 360° alarm amplifier, the acoustic warning is heard with the same volume from all sides. X-zone 5000 affords a new portable safety concept. Up to 25 Dräger X-zones can be automatically interconnected to form a wireless fenceline. In the event of a gas alarm, the device transmits the alarm signal to all units that are part of the fenceline which then signal a daughter alarm. The daughter alarm is, in contrast to the red master alarm, displayed geen/red by the illuminated LED ring, thus allowing and providing for a fast and easy recognitions of the alarm itself as well as of the alarm-trigging devices. This ensures and easy and clear evacuation alarm and alerting. Via the potential-free alarm contact, the Dräger X-zone 5000 device can also be interconnected and operate external equipment such as alarm horns, lamps or traffic lights. Furthermore, the fenceline signal together with the alarm contact can be forwarded to a control room - overseeing a wide range of applications. Dräger X-zone 5000 as an area monitoring devices often stay located well within an explosion hazard area, even in during a gas alarm. It is therefore all the more important the

devices are approved for use in explosion hazard areas, zone 0. The modern induction charger, is simple to use, comfortable and has no problem with dirty charging contacts, so it is maintenance friendly.

TECHNICAL SPECIFICATIONS

Dimensions (W × H × D)	480 x 300 x 300 mm; 19 x 12 x 12 in
Weight	7 kg; 247 oz. (12 Ah battery) 10 kg; 353 oz. (24 Ah
	battery)
Ambient conditions:	
Temperature	-20 to +50; -4 to +122°F
Pressure	700 to 1,300 hPa
Humidity	10 to 95 % r.h.
Ingress protection	IP 67
Alarms:	
Visual	360° LED (illuminated ring)
Acoustic	multi-tone: > 108 in 1m (3.3 ft.)
	> 120 in 30 cm (1 ft.)
Vibration	no

521

ACCESSORIES

General accessories	Inductive charger	
	Plug-in charger	
	Pb-battery (12 Ah or 24 Ah)	
	Socket, 30 cm high; for measurement of light	
	gases	
	Alarm damper, for use within bump tests	
	X-zone Switch Off, X-zone Switch On	
Calibration accessories	Bump Test adapter for function tests	
	Cover plate with diffusion adapter	
	Communication accessories:	
	Dräger CC-Vision	
	USB DIRA with USB cable	
Pump accessories	cover plate with pump adapter	
	different measuring probe	
	extension hose, different lenght	

Inductive charger Allowing easy charging

Socket For measurements of light gases

Cover plate
With diffusion adapter

Dräger CC-Vision
Configuration software

Alarm damper For use within bump tests

X-zone Switch Off Switching station

X-zone Switch On Switching station

Dräger X-am 3000

Rugged construction for industrial use: the robust Dräger X-am 3000 two- to four-gas detection device continuously measures H_2S , CO, O_2 , and flammable gas in the ambient air. Its functional design and microprocessor-controlled digital technology are made especially to fulfill the requirements of personal monitoring. Combined with a hose of up to 20 meters (66 ft.) in length, Dräger X-am 3000 with an internal high-performance pump is excellent for confined space entry measurements in tanks, pipelines, etc. When the pump adapter is attached, the device automatically switches from diffusion to pump operation.

OTHER BENEFITS

Integrated water- and dust-filter compliant with IP 65

Easy to handle, with large display

Intelligent sensors

Flexible power supply options

Personal monitoring

Confined space entry

ESPECIALLY SUITED FOR THE FOLLOWING APPLICATIONS

Personal monitoring	Durable, IP 65
Confined space entry	Internal high-performance pump combined with a
	hose of up to 20 m (66 ft.) and a pump adapter
Leak detection	Pump can be used together with various probes

An integrated water- and dust-filter ensures reliable operation. The optional rubber boot offers additional protection against impact and vibration. Replaceable NiMH and alkaline batteries, and a vehicle charger option, make the unit very flexible in application.

TECHNICAL SPECIFICATIONS

Dimensions (W × H × D)	90 × 140 × 55 mm; 3.5 x 5.5 x 2.2 in.
Weight	approx. 550 g; 20 oz.
Ambient conditions:	
Temperature	-20 to +55 °C, short-term -40 to +55 °C
	-5 to +130 °F, short-term -40 to +130 °F
Pressure	700 to 1,300 hPa
Humidity	10 to 95% r.h.
Ingress protection	IP 65
Alarms:	
Visual	yes
Acoustic	> 90 dB in 30 cm (1 ft.)
Vibration	yes
Power supply	Alkaline, rechargeable NiMH for alkaline pack
Battery life (h)	Alkaline: > 24 (diffusion mode)
•	> 12 (pump mode)
	NiMH: > 18 (diffusion mode)
	> 12 (pump mode)
Charging time (h)	< 4
Data logger (without bump tests)	60 h
Pump mode	Maximum hose length 20 m (66 ft.)
Approvals:	
ATEX	I M2 / II 2G EEx ia d I/IIC T4
	$-25 ^{\circ}\text{C} \le \text{Ta} \le +55 ^{\circ}\text{C} \text{ (NiMh)}$
	-25 °C ≤ Ta ≤ + 50 °C (alkaline)
Measurement performance certificate	for O ₂ according to EN 50104/ CO and H ₂ S
	according to EN 45544/ Methane according to
	EN 61779
UL	Class I Div. 1 Group A, B, C, D, T. Code T4
CSA	Class I Div. 1 Group A, B, C, D, T. Code T4
IECEx	Ex ia d I/IIC T4; $-25 \le \text{Ta} \le +55^{\circ}\text{C}$ (NiMh)
	$-25 \le Ta \le +50^{\circ}C$ (alkaline)
CE mark	Electromagnetic compatibility
	(Directive 2004/108/EC)
ACCESSORIES	
General accessories	Charging module, Power supply for vehicles
Calibration accessories	Dräger Bump Test Station
	Dräger E-Cal
	Communication accessories: Dräger CC-Vision
Pump accessories	Pump adapter
i unip accessories	Dräger X-am 3000 pump
	Probes
	Hoses
	110969

Dräger Bump Test Station Dräger E-Cal

Charging module

Pump adapter and hose

Dräger X-am 7000

Multi-purpose: the Dräger X-am 7000 is the innovative solution for the simultaneous and continuous measurement of up to five gases. A combination of more than 25 sensors allows flexible solutions to individual monitoring tasks. The X-am 7000 can be equipped with three electrochemical and two infrared, catalytic bead sensors or photo ionization sensors. It is the ideal companion in a variety of applications where the reliable detection of oxygen, toxic and combustible gases and vapors is necessary.

OTHER BENEFITS

Integrated water- and dust-filter, and immersion-proof, as defined in IP 67

Clearly structured, scratch-resistant display

Very loud acoustic multi-tone alarm and 360° all-round visual alarm

Intelligent charge management

Intuitive software functions

Area monitoring

Confined space entry

Leak detection

ESPECIALLY SUITED FOR THE FOLLOWING APPLICATIONS

Area monitoring	Durable, IP 67
Confined space entry	Built-in high-performance pump makes it possible to
	sample gas using a hose up to 45 m/150 ft. long.
Leak detection	Extensive portfolio of over 25 different
	DrägerSensors enables the detection of more than
	100 gases and vapors.

Smart Cat Ex sensors enable the detection of flammable gases and vapors, and can be calibrated to as many as five different sensitivity levels. The unit can be switched automatically from % LEL to 100 Vol.-% in full-range mode. Leakages are reliably detected, visually in bar-graph mode and audibly in tracking mode.

The PID sensor detects organic vapors in very low concentrations. An integrated library of 20 substances, three user-adaptable channels, and an easy switch to leak detection mode makes the instrument flexible enough to met your specific needs.

With the help of Dräger CC-Vision software, up to 5 different detection applications can be saved within the instrument. By doing so, the use of different instrument configurations can be set for that specific application. During operation, a simple change between these set parameters can be done via the instrument's menu.

In addition to the electrochemical sensors, the catalytic and infrared sensors are automatically recognized by the instrument upon insertion. All sensors are pre-calibrated, and therefore a reconfiguration of the Dräger X-am 7000 can be done by simply changing the sensor. No additional service or maintenance is necessary.

TECHNICAL SPECIFICATIONS

Dimensions (W × H × D)	150 × 140 × 75 mm; 5.9 x 5.6 x 3 in.	
Weight	600 g; 21 oz. (basic unit)	
	490 g; 17 oz. (rechargeable battery 3.0 Ah)	
	730 g; 26 oz. (rechargeable battery 6.0 Ah)	
Ambient conditions:		
Temperature	-20 to +55 °C, short-term, -40 to +60 °C,	
	-5 to + 130 °F, short-term -40 to +140 °F	
Pressure	700 to 1,300 hPa	
Humidity	10 to 95% r.h.	
Ingress protection	IP 67	
Alarms:		
Visual	360°	
Acoustic	Multi-tone > 100 dB in 30 cm (1 ft.)	
Vibration	no	
Power supply	Alkaline, rechargeable NiMH	
Battery life (h)	Alkaline: > 20	
	NiMH: > 9 (4.8 V/3.0 Ah)	
	> 20 (4.8 V/6.0 Ah)	
	(complete with all sensors and 20 % of the time in	
	pumped mode)	
Charging time (h)	3.5 to 7, dependent on battery type	
Data logger	100 h	
Pump mode	Maximum hose length of 45 m (150 ft.)	
Approvals:		
ATEX	II 2G EEx ia d IIC T4 Gb; -20 ≤ Ta ≤ + 60 °C	
	I M2 EEx ia d I Mb	
Measurement performance certificate	for Methane, Propane and Nonane according to	
	EN 60079-27-1	
UL	Class I Div. 1 Group A, B, C, D, Temp. Code T4	
	$-20 \le Ta \le +60 ^{\circ}C \text{ (NiMH)};$	
	-20 ≤ Ta ≤ +40 °C (Alkaline)	
CSA	Class I Div. 1 Gruppe A, B, C, D,	
	TCode T4 -20 ≤ Ta ≤ + 60 °C	
IECEx	Ex ia d I/IIC T4; -20 ≤ Ta ≤ + 60 °C	
MED	MED 96/98/EC	
CE mark	Electromagnetic compatibility	
	(Directive 2004/108/EC)	

ACCESSORIES

General accessories	Charging module
delicial decessiones	Power supply for charging module
	,
	Power supply for vehicles
	Car mounting kit
Calibration accessories	Dräger Bump Test Station
	Dräger E-Cal
	Communication accessories:
	Dräger CC-Vision/Gas-Vision
	Printer Set for Dräger Bump Test Station
Pump accessories	Pump adapter
	Pump membrane set
	Probes
	Hoses

Dräger Bump Test Station Dräger E-Cal

Pump adapter

Charging module

Dräger Multi-PID 2

Innovative technology: the Dräger Multi-PID 2 is a highly developed photo-ionization measuring instrument for highly volatile organic compounds. Its innovative PID (photo ionization detector) technology combines great sensitivity and durability with enormous flexibility in all sorts of applications such as screening soil, water and the ambient air in containers, detecting leakages, and taking measurements in confined spaces.

OTHER BENEFITS

Large standard measurement range of 0 to 2,000 ppm

Large 5-language display and assigned calibration button

Various warning functions

Prefilter tube for the specific measurement of benzene

Comprehensive gas library

Leak detection

ESPECIALLY SUITED FOR THE FOLLOWING APPLICATIONS

Leak search	PID sensor responds quickly
Confined space entry	Additional gas dilution probe extends
	measurement range up to 20,000 ppm

The instrument contains a gas library of up to 50 substances. Many other substances (see list of detectable gases and vapors) are identified and can be entered into the device if required. The Dräger application laboratory can also define customer-specified compounds for the instrument.

TECHNICAL SPECIFICATIONS

TECHNICAL SPECIFICATIONS	
Dimensions (W × H × D)	230 × 110 × 80 mm, width at handle 67 mm;
	9 x 4.3 x 3 in., width at handle 2.6 in.
Weight	860 g; 1.9 lb.
Ambient conditions:	
Temperature	0 to +40 °C; +32 to +104 °F
Pressure	<u>-</u>
Humidity	0 to 95% r.h., non-condensing
Alarms:	
Visual	Warning lamp
Acoustic	> 95 dB at 30 cm (1 ft.)
Vibration	No
Power supply	Nickel-cadmium battery
Operating period (h)	8
Charging time (h)	< 4
Data logger	Built-in data memory capable of storing up to
	15,000 readings
Pump operation	Hose length up to 3 m; 9.8 ft.
Approvals:	
CE mark	Electromagnetic compatibility
	(Directive 89/336/EEC)
TECHNICAL SPECIFICATIONS FO	R SENSORS
Lamps	10.6 eV/11.7 eV

10.6 eV/11.7 eV
0.1 ppm isobutylene
0.1 ppm to 100 ppm
1 ppm from 100 ppm
± 10% or ± 2 ppm, whichever is higher
≤ 3 seconds at 20 °C or 68 °F (T ₉₀)

ACCESSORIES

Worldwide charger, 110–230 V
Charger USA, 110 V AC
Rechargeable battery pack
12 V DC car charger adapter
Calibration gas regulator
Calibration gas (100 ppm i-butene)
Communication accessories: Dräger GasVision
Pre-tube holder
Pre-filter tube for benzene
Pre-filter tube for humidity
10.6 eV/11.7 eV detector lamp
Gas sample bag
Sampling probe, 17 cm (6.7 in.)
Dilution probe
Replacement filter for dilution probe
Replacement particle filter

ACCESSORIES

Dräger Multi-PID 2 Professional Set

Pre-filter tube for the specific measurement of benzene

Single charger

Dräger GasVision

The response factors apply to a measurement range of 5 to 500 ppm and are based on calibration with 100 ppm isobutylene. Response factor for isobutylene = 1.0. The response factors are determined using the following formula:

A response factor below 1 means that the compound is displayed with greater sensitivity than isobutylene. A response factor above 1 means that the compound is displayed with less sensitivity than isobutylene.

Substance	CAS No.	10.6 eV-lamp	11.7-eV lamp
Acetaldehyde	75-07-0	10.5	
Acetic acid, anhydride	108-24-7	4.9	
Acetone	67-64-1	1.2	
Acetophenone	98-86-2	1.7	
Acrolein	107-02-8	4.0	
Acrylonitrile	107-13-1		5.8
Allyl chloride	107-05-1	3.9	
(-)-Alpha-pinene	7785-26-4	0.4	
Ammonia	7664-41-7	10.0	
Aniline	62-53-3	0.5	
Benzene	71-43-2	0.5	
Benzonitrile	100-47-0	0.5	
Benzyl alcohol	100-51-6	1.0	
Biphenyl	92-52-4	3.2	
Bromoform	75-25-2	2.0	
1-Brompropane	106-94-5	1.9	
1,3-Butadiene	106-99-0	0.7	
1-Butanol	71-36-3	3.4	
1-Butanol, 3-methyl, acetate	123-92-2	1.8	
2-Butenal	4170-30-3	1.2	

Substance	CAS No.	10.6-eV lamp	11.7-eV lamp
2-Butoxyethyl acetate	112-07-2	2.3	
1-Butyl acetate	123-86-4	2.3	<u> </u>
1-Butyl mercaptan	109-79-5	0.6	
Carbon disulfide	75-15-0	1.3	
Carbonyl sulfide	463-58-1		4.8
Chloroacetone	78-95-5	1.3	
Chlorobenzene	108-90-7	0.4	
Cis-1,2-dichloroethylene	156-59-2	0.8	
Cumene	98-82-8	0.6	
Cyclohexane	110-82-7	1.3	
Cyclohexanone	108-94-1	0.9	
Cyclohexylamine	108-91-8	0.5	
Cyclopentane	287-92-3	> 20	
Dibutyl ether	142-96-1	1.0	
Dibutylamine	111-92-2	0.7	_
1,2-Dichlorobenzene	95-50-1	0.5	
1,1-Dichloroethylene	75-35-4	0.8	
1,3-Dichloropropene	542-75-6	0.8	
Diethyl ether	60-29-7	1.2	
1,1-Difluoroethene	75-38-7	12.0	
Diisopropyl ether	108-20-3	0.8	
Dimethyl disulfide	624-92-0	0.2	
Dimethyl ether	115-10-6	2.2	
Dimethyl sulfide	75-18-3	1.0	_
1,4-Dioxane	123-91-1	1.3	
Epichlorohydrin	106-89-8	6.5	
1,2-Ethanediamine	107-15-3	3.0	_
Ethanol	64-17-5		7.4
2-Ethoxyethanol	110-80-5	1.3	
2-Ethoxy-2-methylpropane	637-92-3	0.9	
Ethyl acetate	141-78-6	3.8	
Ethyl acrylate	140-88-5	2.3	
Ethyl bromide	74-96-4	4.8	
Ethyl mercaptan	75-08-1	0.6	
4-Ethyl toluene	622-96-8	0.5	
Ethylbenzene	100-41-4	0.5	
Ethylene	74-85-1	10.1	
2-Ethylhexyl acrylate	103-11-7	1.8	
Ethylene oxide	75-21-8	approx. 17	
Furfural	98-01-1	1.0	
2-Heptanone	110-43-0	0.9	_
1-Hexene	592-41-6	1.6	_
Hydrazine	302-01-2	1.0	_
Hydrogen phosphide	7803-51-2	3.4	

Substance	CAS No.	10.6-eV lamp	11.7-eV lamp
Hydrogen selenide	7783-07-5	0.8	
Hydrogen sulfide	7783-05-4	3.3	
4-Hydroxy-4-methylpentan-2-one	123-42-2	0.6	
i-Hexane	107-83-5	4.2	
lodomethane	74-88-4	0.9	
Iron pentacarbonyl	13463-40-6	0.6	
Isobutyl acetate	110-19-0	2.6	_
Isobutylene	115-11-7	1.0	
Isobutyraldehyde	78-84-2	1.1	
Iso-octane	540-84-1	1.2	_
Isoprene	78-79-5	0.6	
Isopropoxyethanol	109-59-1	1.2	
Isopropyl acetate	108-21-4	2.6	
Methanol	67-56-1		12.4
2-Methoxyethanol	109-86-4	3.0	
2-Methoxy-1-methylethyl acetate	108-65-6	1.2	
Methyl acetate	79-20-9	5.5	
Methyl bromide (bromomethane)	74-83-9	1.6	
2-Methyl butane	78-78-4	8.2	
Methyl ethyl ketone	78-93-3	0.8	
Methyl isobutyl ketone	108-10-1	1.0	_
Methyl mercaptan	74-93-1	0.5	
Methyl methacrylate	80-62-6	1.8	
Methyl tert-butyl ether (MTBE)	1634-04-4	0.8	_
Methylamine	74-89-5	1.3	
Methylene chloride	75-09-2		2.9
m-Xylol	108-38-3	0.5	
N,N-diethylaniline	91-66-7	0.4	
N,N-dimethylacetamide	127-19-5	0.1	
N,N-dimethylformamide	68-12-2	0.8	
Napthalene	91-20-3	0.2	
N-butyl acrylate	141-32-2	1.8	
N-decane	124-18-5	1.1	
N-heptane	142-82-5	2.4	
N-hexane	110-54-3	4.7	
Nitrobenzene	98-95-3	1.7	
2-Nitrotoluene	88-72-2	1.5	
3-Nitrotoluene	99-08-1	1.6	
N-Methyl-2-Pyrrolidone	872-50-4	1.4	
N-Nonane	111-84-2	1.4	
N-Octane	111-65-9	1.6	
N-Pentane	109-66-0	10.4	
N-Propanol	71-23-8	5.1	
N-Propyl acetate	109-60-4	3.1	

Substance	CAS No.	10.6-eV lamp	11.7-eV lamp
O-Cresol	95-48-7	0.8	
O-Toluidine	95-53-4	0.5	
O-Xylol	95-47-6	0.5	
P-Chloroaniline	106-47-8	1.3	
P-Cresol	106-44-5	2 .1	
Perchloroethylene	127-18-4	0.5	
Phenol	108-95-2	0.4	
Phenylhydrazine	100-63-0	1. 3	
Propanal	123-38-6	14.8	
2-Propanol	67-63-0	4.4	
2-Propen-1-ol	107-18-6	2.7	
Propylene	115-07-1	1.2	
1,2-Propylene oxide	75-56-9	5.8	
P-Xylol	106-42-3	0.5	
Styrol	100-42-5	0.4	
Tetra-Ethyl lead	78-00-2	approx. 0.2	
Tetrahydrofuran	109-99-9	1.5	
Tetrahydrothiophene	110-01-0	0.5	
Thiophene	110-02-1	0.5	
Toluene	108-88-3	0.5	
2,4-Toluene diisocyanate	584-84-9	0.4	
Trans-1,2-Dichloroethylene	156-60-5	0.4	
Trichloroethylene	79-01-6	0.5	
Trichloromethane (chloroform)	67-66-3		1.7
Trimethylamine	75-50-3	0.9	
1,3,5-Trimethylbenzene	108-67-8	0.3	
Vinyl acetate	108-05-4	1.2	
Vinyl bromide	593-60-2	0.4	
Vinyl chloride	75-01-4	1.5	

4 Introduction to sensor technology

The heart of every measuring instrument is its sensor. The sensor is crucial in determining the quality of measurements, and therefore it has a fundamental influence on the safety of the user. The development and production of sensors is part of Dräger's core competence.

4.1 Selecting the proper measurement method

Selecting the correct measuring principle is essential when detecting dangerous gases. Every measuring principle has its own strengths and limits, and each is better for particular groups of gases (flammable/toxic gases and oxygen). For this reason, it is important to ask which gases/vapors occur in the workplace Generally speaking, we differentiate between the following gas risks:

Risk of explosion

- Wherever flammable gases and vapors occur, there is an increased risk of explosion. Typical areas for this include mining, refineries, the chemical industry, and many others. Infrared and catalytic bead sensors are used to detect this type of risk. These sensors usually detect gas concentrations in the LEL (lower explosure level) range, but some of them can also be used for the 100 Vol.-% range.

Lack or excess of oxygen

 A lack of oxygen is life-threatening. An excess of oxygen can affect the flammability of materials and can even cause auto-ignition. Electrochemical sensors are used to measure oxygen. Their measuring range is from between 0 and 25 Vol.-% all the way up to 100 Vol.-%.

Toxicity

 Poisonous substances can occur anywhere – in industrial production and processing, in transport (rail, road, ship), in the case of incomplete combustion (CO), and also as a result of completely naturally processes such as rotting and decomposition of biomass. Electrochemical and PID sensors are used to detect toxic gases.

The decision about which sensor type is the right one for a particular application also depends on other factors such as:

- What other hazardous material are present (cross-sensitivity)?
- Is it necessary to measure hazardous material selectively, or is it more sensible to measure a complete parameter?

4.2 Overview of detectable vapors and gases

Sensitivity

Sensitivity not yet determ

ORDER NO.	68 09 135	68 10 886					68 10 890	68 09 165						6811530	ors 6809115	
S C	XS EC Hydride	XXS PH ₃					XXS Cl ₂	XS EC Cl ₂						XXS OV	XS EC Organic Vapors	
98 99 00-99			-0-	-0-	-0-	-0-			-0-	-0-	•			-0-		
SMARRI CAT EX (FR PR) SMARRI CAT EX (FR PR)											- B - C - C - C - C - C - C - C - C - C	-0-	-0-	-0-		-0-
CAS MARRY CAT EX (PR) 39 20 20 20 20 20 20 20 20 20 20 20 20 20	7784-42-1		71-43-2	100-47-0	100-51-6	92-52-4	7726-95-6		106-94-5	75-25-2	106-97-8	75-28-5	115-11-7	106-99-0		78-93-3
CHEMICAL	Arsine		Benzene	Benzonitrile	Benzylalcohol	Biphenyl	Bromine		1-Bromopropane	Bromoform (Tribromomethane)	n-Butane	i-Butane	i-Butene	1,3-Butadiene		Butanone

■ Sensitivity □ Sensitivity not yet determined data known

CHEMICAL		CAT EX SENSOR 2 SAMERT CAT EX (PR PR) SAMER	SAMERT IR.EX. SAME SAME	MULTI BION CO.		CA CA
2-Butoxyethyl acetate	112-07-2					
n-Butyl acetate	123-86-4					
n-Butyl acrylate	141-32-2					
n-Butylalcohol	71-36-3					
n-Butyl mercaptan (Butanethiol)	109-79-5					
tert. Butyl mercaptane	75-66-1				XS EC Odorant	68 09 200
					XXS Odorant	68 12 535
sec. Butyl mercaptane	513-53-1				XS EC Odorant	68 09 200
					XXS Odorant	68 12 535
Carbon dioxide	124-38-9		•		XXS CO ₂	68 10 889
					XS EC CO ₂	68 09 175
Carbon disulfide	75-15-0		_			
Carbon monoxide	0-80-089				XXS CO	68 10 882
					XXS H ₂ S/CO	68 11 410
					XXS CO H ₂ -CP	68 11 950
					XXS CO HC	68 12 010

Sensitivity | Sensitivity not yet determined data known

90 00 00 00 00 00 00 00 00 00 00 00 00 0	DEC ORDER NO.	XXS E CO 68 12 212	XS EC CO 68 09 105	XS EC CO HC 68 09 120	XS 2 CO 68 10 365	XS R CO 68 10 258	XS CO microPac 68 10 030	XXS Cl ₂ 68 10 890	XS EC Cl ₂ 68 09 165	XXS OV 68 11 530	XS EC Organic Vapors - A 68 09 522		a XS EC Cl ₂ 68 09 165	XXS EC CL ₂ 68 10 890	XS EC CIO ₂ 68 11 360		-
МАКТ САТ ЕК (НР РЯ) МИЦТІ РВ (1) МОЦТІ РВ (1) МОЦТР (1) МОЦТ	CATEX IR PID																-•-
	CAS NO.							7782-50-5		106-89-8		106-47-8	10049-04-4			78-95-5	108-90-7
CHEMICAL	DESIGNATION	Carbon monoxide						Chlorine		1-Chlorine-2,3 epoxypropane	(Epichlorohydrin)	4-Chloroaniline	Chlorine dioxide			Chloroacetone	Chlorobenzene

■ Sensitivity □ Sensitivity not yet determined data known

CHEMICAL		SMART CAT EX (HC PR)	SMART CAT EX (FR PR)	CVL EX SEROORS 5 CVL EX 13º PRIMING CVL EX 13º PRIMING WARRY CVL EX (EK PR) SWART CAT EX (PR)	X3-91 TAAMS X3-91	SMART IR-CO ₂ HC	SMART IR-EX SMART IR-CO ₂ IR-CO ₂ IR-CO ₂ IR-CO ₂ IR-CO ₃	Y	Old TAAMS		
DESIGNATION	CAS NO.	CATE	×	F	≅	F		PID	\perp	EC	ORDER NO.
p-Cresol	106-44-5										
m-Cresol	108-39-4										
o-Cresol	95-48-7										
Crotonaldehyde (2-Butenal)	4170-30-3										
Cumene (Isopropylbenzene)	98-85-8										
Cyclohexane	110-82-7	-			-						
Cyclohexanone	108-94-1							—□— —■			
Cyclohexylamine	108-91-8										
Cyclopentane	287-92-3	-			-						
n-Decane	124-18-5										
Diborane	19287-45-7									XXS PH ₃	68 10 886
Dibutylamine	111-92-2									XS EC Hydride	98 09 135
Dibutylether	142-96-1										
1,2-Dichlorobenzene	95-50-1										
1,3 Dichloropropene	542-75-6								—		

MULTI PIDII PO PIDII PO PIDII PO PIDII PO PIDII PO PIDII PID			XS EC Amine 68 09 545	XXS Amine 68 12 545	■	XS EC Organic Vapors 68 09 115		2	XXS Amine 68 12 545		XXS Odorant 68 12 535	-0-	XS EC Hydrazine 68 09 190	XS EC Hydrazine D 68 10 295	■ □ XS EC Odorant 68 09 200	XXS Odorant 68 19 535
MULTI PID II AMARTI CAT EX (PR PR) SMARTI RACO2 CAT EX 125 PR CAT CAT EX 125 PR CAT CAT EX 125 PR CAT		- O-	0-0-													
o A S	156-60-5		109-89-7		60-29-7		75-38-7	124-40-3		123-91-1	624-92-0	115-10-6	540-73-8		75-18-3	
CHEMICAL DESIGNATION	1,2-Dichloroethylene (trans)	Diesel fuel	Diethylamine		Diethylether		1,1-Difluorethylene	Dimethylamine		1,4-Dioxane	Dimethyldisulfide	Dimethyl ether	Dimethyl hydrazine		Dimethylsulfide	

Sensitivity

Sensitivity

General Sensitivity not yet determined

■ Sensitivity □ Sensitivity not yet determined

ORDER NO.				68 11 530	68 11 535	68 09 115	68 09 522		68 09 200	68 12 535			68 10 890	68 09 165	68 11 530	68 09 115
EC				XXS OV	XXS OV-A	XS EC Organic Vapors	XS EC Organic Vapors A		XS EC Odorant	XXS Odorant			XXS Cl ₂	XS EC CI ₂	XXS OV	XS EC Organic Vapors
GIGHT THAM I GIGHT		— — —														<u> </u>
Таммет сат ех (пет ред) 69 69 69 69 69 69 69 69 69 69 69 69 69																
SMART CAT EX (HC PR)													4			<u> </u>
CAS NO.	74-96-4	110-80-5	107-15-3	75-21-8				103-11-7	75-08-1		637-92-3	622-96-8	7782-41-4		50-00-0	
CHEMICAL	Ethylbromide	Ethyl cellosolve (2-Ethoxyethanol)	Ethylenediamine (1,2-Diaminoethane)	Ethylene oxide				2-Ethylhexylacrylate	Ethyl mercaptan (Ethanethiol)		Ethyl tert butyl ether (ETBE)	4-Ethyltoluene	Fluorine		Formaldehyde	

■ Sensitivity □ Sensitivity not yet determined

OD 6 CAMPA OF THE AMAZETI OF THE AMA	PID EC ORDER NO.	0-	XS EC Hydride 68 09 135	XS EC Hydrazine 68 09 190	XS EC Hydrazine D 68 10 295					XXS CO H ₂ -CP 68 11 950	XXS H ₂ HC 68 12 025	XXS H ₂ 68 12 370	XS EC H ₂ 68 09 185	XS H ₂ HC 68 11 365	XS EC HF/ HCI 68 09 140	XS EC HF/ HCI 68 09 140
SMART CAT EX (FR PR) 99 29 20 20 20 20 20 20 20 20 20 20 20 20 20	CAT EX IR															
	CAS NO.	98-01-1	7782-65-2	302-01-2		592-41-6	142-82-5	107-83-5	110-54-3	1333-74-0					10035-10-6	7647-01-0
CHEMICAL	DESIGNATION	Furfural	Germanium hydride	Hydrazine		1-Hexene	n-Heptane	i-Hexane	n-Hexane	Hydrogen					Hydrogen bromide	Hydrogen chloride

■ Sensitivity ☐ Sensitivity not yet determined

■ Sensitivity □ Sensitivity not yet determined

	ORDER NO.						68 11 535	68 09 522								
	EC						XXS OV-A	XS EC Organic Vapors								
MULTI PID III OR	PID	-0-		-0-	-0-	-0-	•				-0-	-0-		-0-	-0-	- - -
ВОРИТ ІВ'ЕХІССО ³ ВОРИТ ІВ'ЕХІССО ³ ВОРИБІІ ІВ'СО ³ ВОРІБІО ІВ' ВОРІБІО ІВ'СО ³ ВОРІБІО ІВ'СО ВОРІБІО ІВ'СО ³ ВОРІБІО ІВ'СО ³ ВОРІБІО ІВ'СО ³ ВОРІБІО ІВ'СО ВОРІБІО ІВ'СО ВО	CAT EX IR															
SMART CAT EX (HC PR)	CAS NO. C	123-42-2		74-88-4	13463-40-6	123-92-2	115-11-7		110-19-0	78-84-2	78-78-4	78-79-5	108-21-4	109-59-1	108-20-3	
CHEMICAL	DESIGNATION	4-Hydroxy-4-methyl-2-pentanone	(Diaceton alcohol)	lodomethane	Iron pentacarbonyl	Isoamyl acetate	Isobutene		Isobutyl acetate	Isobutyraldehyde	Isopentane	Isoprene (2-Methyl-1,3-Butadiene)	Isopropyl acetate	Isopropyl cellosolve	Isopropyl ether	Jet Fuel

■ Sensitivity ☐ Sensitivity not yet determined data known

	ORDER NO.										V 68 11 530	XS EC Organic Vapors 68 09 115					
	EC										XXS OV	XS EC					
GIGHTIUM	PID				-0-						•			-0-			—□- —□-
SMART IR-EX SMART IR-CO ₂ SMART IR-CO ₂ SMART IR-CO ₂ SMART IR-CO ₂ SMART IR-CO ₃	-			-													
OO VO X3-RI TRAMS OO VO X3-RI TRAMS	≅			-												—o-	
CAT EX SENSOR 2	CAT EX							- C-									
	CAS NO.			74-82-8	108-65-6			107-98-2	872-50-4	109-86-4	67-56-1		79-20-9	74-83-9	74-87-3	78-93-3	108-10-1
CHEMICAL	NOI	innefied as	(50 % Propane + 50 % n-Butane)	Methane	1-Methoxy-2-propylacetate	Propylene glycol monomethyl	Ether acetate (PGMEA)	1-Methoxy-Propanol-2	1-Methyl-2-pyrrolidone	2-Methoxy-ethanol	Methylalcohol (Methanol)		Methyl acetate	Methyl bromide (Bromomethane)	Methyl chloride	Methyl ethyl ketone	Methyl isobutyl ketone

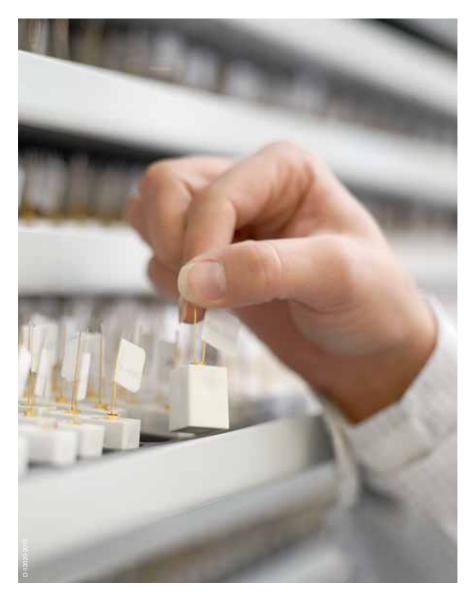
■ Sensitivity ☐ Sensitivity not yet determined data known

CHEMICAL		CAT EX SENSOR 2 CAT EX 125 MINING CAT EX 125 PR SMART CAT EX (PR) SMART CAT EX (PR) SMART CAT EX (HC PR)	SMARTIREX SMARTIRECO ₂ HC SMARTIRECO ₂ SIRECO ₂ SIRECO ₂ SIRECO ₂ SIRECO ₃ SIREC	DNAL IR-EX/CO ₂	MULTI PID II OGEV LAMP MULTI PID II TI, TEV LAMP ASAMP ASAMP ASAMPAT PID II OGEV LAMP		
DESIGNATION	CAS NO.	CAT EX	<u>R</u>		PID	EC	ORDER NO.
Methyl mercaptan (Methanethiol)	74-93-1					XS EC Odorant	68 09 200
Methyl n-amyl ketone (2-Heptanone)	110-43-0					XXS Odorant	68 12 535
Methyl tert-butyl ether (MTBE)	1634-04-4						
Methylen chloride	75-09-2				•		
Methylmethacrylate	80-62-6					XXS OV	68 11 530
						XS EC Organic Vapors A	68 09 522
Monomethylamine	74-89-5					XS EC Amine	68 09 545
						XXS Amine	68 12 545
Monomethylhydrazine	60-34-4					XS EC Hydrazine	68 09 190
						XS EC Hydrazine D	68 10 295
Napthalene	91-20-3						
Nitric acid	7697-37-2					XS EC HF/ HCI	68 09 140
2-Nitrotoluene	88-72-2						
3-Nitrotoluene	99-08-1						
Nitrobenzene	98-95-3						

CHEMICAL	ON O	OMERT CAT EX (HC PR) SMART CAT EX (FR PR) CAT EX 126 PR CAT EX 126 PR CAT EX 126 MINING CAT EX 126 MINING	SAMART IR-EX	DUAL IR-EX/CO ₂ "MULTI PID II "MU	Ç.	ON GAR
DESIGNATION	CAS NO.		¥		2	ORDER NO.
Nitrogen dioxide	10102-44-0				XXS NO ₂	68 10 884
					XS EC NO ₂	68 09 155
					XXS NO ₂ LC	68 12 600
Nitrogen monoxide	10102-43-9				ON SXX	68 11 545
					XS EC NO	68 09 125
n-Nonane	111-84-2	- C - C - C - C - C - C - C - C - C - C				
n-Octane	111-65-9	-0-				
iso-Octane	540-84-1					
(2,2,4-Trimethylpentane)						
Oxygen	7782-44-7				XXS O ₂	68 10 881
					XXS E O ₂	68 12 211
					XS EC O ₂ LS	68 09 130
					XS EC O ₂ 100	68 09 550
					XS 2 O ₂	68 10 375
					XS R O ₂ LS	68 10 262
					XS O ₂ miroPac	68 10 034

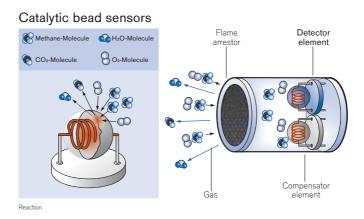
		016 51 80 (API API)	AING - 09 109 109 109 109 109 109 109 109 109	00,0100	086 11 80 TO	001 61 60	``	
СНЕМІСАL		SMART CAT EX	CAT EX 126 MIN	IR-EX	SMART IR-CO ₂ DUAL IR-EX/CC	MULTI PID II PID (F EV LAMP MULTI PID II TIJ TS V LAMP DIP TRAMS		
DESIGNATION	CAS NO.	CAT EX		≅		PID	EC	ORDER NO.
Ozon	10028-15-6						XXS Ozon	68 11 540
n-Pentane	109-66-0			•	-			
Pentylalcohol	71-41-0							
Petrol (Gasoline)	8030-31-7	-				-0-		
Phenol	108-95-2							
Phenyl hydrazine	100-63-0							
Phosgene	75-44-5						XS EC COCI ₂	68 08 582
Phosphine	7803-51-2						XS EC Hydride	68 09 135
							XS EC PH ₃	68 09 535
							XXS PH ₃	68 10 886
							XXS PH ₃ HC	68 12 020
Phosphorous trichloride	7719-12-2						XS EC HF/ HCI	68 09 140
Phosphorous trichlorideoxide	10025-87-3						XS EC HF/ HCI	68 09 140
Propane	74-98-6			•	•			
i-Propanol (Isopropanol)	67-63-0	_ 	_ =				XXS OV	68 11 530
							XS EC Organic Vapors	68 09 115

■ Sensitivity □ Sensitivity not yet determined data known


ORDER NO.		68 11 530	EC Organic Vapors 68 09 115			68 11 530	XS EC Organic Vapors 68 09 115	13 68 10 886	XS EC Hydride 68 09 135	68 11 530	XS EC Organic Vapors A 68 09 522	02 68 10 885	SO ₂ 68 09 160			68 11 530
u		XXS OV	XS EC			xxs ov	XS EC	XXS PH ₃	XS EC	xxs ov	XS EC	XXS SO ₂	XS EC SO ₂			XXS OV
CAT EX 125 PR		-0-		-0-	-0-	-0-				-0-				-0-	-0-	
SMART CAT EX (FR PR) .99 \70						— —				— —						
%, (ag OH) x3 T40 T44M2	-	•		(C)	4	•		ιģ		10		5-				
CAS NO.	71-23-8	115-07-1		123-38-6	109-60-4	75-56-9		7803-62-5		100-42-5		7446-09-5		127-18-4	78-00-2	109-99-9
CHEMICAL	n-Propanol	Propene		Propionaldehyde (Propanal)	n-Propyl acetate	Propylene Oxide (1,2 Epoxy propane)		Silane		Styrene		Sulphur dioxide		Tetrachloroethylene (PCE)	Tetraethyl lead	Tetrahydrofuran

■ Sensitivity ☐ Sensitivity not yet determined data known

	CAS NO. CAT EX SENSOR 2 (PR) (% 10.02-1) 110-01-0	00,01,00	IR-EX SMART IR-CO ₂ HI SMART IR-CO ₂ HI R-CO ₂ IR-CO ₃ MULTI PID II MULTI PID II MULTI PID II SMART PID	IR PID EC		■ □ XS EC THT	XS EC Odorant	XXS Odorant			-0-	0-0-	•		XS EC Amine	XXS Amine	XS EC Amine	XXS Amine	0-0-	A-vo sxx
--	---	----------	---	-----------	--	---------------	---------------	-------------	--	--	-----	------	---	--	-------------	-----------	-------------	-----------	------	----------


■ Sensitivity □ Sensitivity not yet determined data known

4.3 Dräger CatEx sensors

Under certain circumstances, flammable gases and vapors can be oxidized using the oxygen in the ambient air, causing heat of the reaction to be released. Typically, this is achieved through the use of special and suitably heated catalyst material, which slightly increases its temperature through the resulting heat of reaction. This slight increase in temperature is a measure of the gas concentration.

A small platinum coil is embedded in a porous ceramic bead with a diameter of less than 1 mm (0.04 in.). A current flows through the platinum coil, heating the pellistor to several hundred degrees. If the pellistor contains a suitable catalytic material, then its temperature will increase in the presence of flammable gases, which in turn causes the resistance of the platinum coil to increase. This change in resistance can then be evaluated electronically. The oxygen required for the combustion comes from the ambient air. This sensor works on the basis of the catalytic bead principle.

00000000

In order to eliminate changes in the ambient temperature, a second pellistor is used with almost the same structure, but which does not react to gas (it may, for example, contain no catalytic material). Coupled by a Wheatstone bridge, the two pellistors then form a sensor circuit, which is largely independent of the ambient temperature, and which can detect the presence of flammable gases and vapors. Because a catalytic bead sensor contains hot pellistors, it can - if the lower exposure level (LEL) is exceeded - become a source of ignition in its own right. This is prevented using a metal sinter disk. If an ignition occurs in the interior of the catalytic bead sensor, then the sensor's housing withstands the explosion pressure and the flame is cooled to below the ignition temperature of the gas by the sinter disk. This ensures that the flame does not penetrate through to the outside of the sensor. If gas concentrations are far above the LEL (above the stoichiometric mixture ratio), then the detector's sensitivity drops, because the ambient oxygen required for combustion is displaced. This can lead to ambient measurement results. That is why, in Dräger Cat Ex sensors, a compensatory element measures the thermal conduction of the ambient air being monitored, and this differs from the thermal conduction of normal air if a series of gases are present. The variable thus obtained then allows the device to provide a clear reading for the LEL range. If the device is adjusted and calibrated accordingly, then the thermal conduction signal can be used to determine the gas concentration of methane between 0 and 100 Vol.-%.

DrägerSensor® Smart CatEx (HC PR) Order no. 68 12 970

Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger X-am 7000	yes	yes	2 years	

MARKET SEGMENTS

Test gas:

Telecommunications, shipping, sewage, gas supply companies, refineries, chemical industry, mining, landfills, biogas plants, tunneling.

TECHNICAL SPECIFICATIONS

Detection limit:	2% LEL / 0.1 Vol%
Resolution:	1.0% LEL for the measuring range 0 to 100% LEL
	0.02 Vol% for the measuring range 0 to 5 Vol% CH ₄ (methane)
	1 Vol% for the measuring range 5 to 100 Vol% CH ₄ (methane)
Measurement range:	0 to 100% LEL or
	0 to 100 Vol% CH ₄ (methane)
General technical specifications	
Ambient conditions	
Temperature:	(-20 to 55)°C (-4 to 131)°F
Humidity:	(10 to 95)% RH
Pressure:	(700 to 1,300) hPa
Warm-up time:	≤ 5 minutes

FOR THE MEASUREMENT RANGE 0 TO 100% LEL WHEN CALIBRATED WITH METHANE IN AIR.

METHANE IN AIR:	
Response time:	≤ 15 seconds at 25 °C (77 °F) (T ₅₀)
	≤ 25 seconds at 25 °C (77 °F) (T ₉₀)
Measurement accuracy	
Zero point:	≤ ± 1% LEL
Sensitivity:	≤ ± 2.5% of measured value
Linearity error	≤ ± 2% LEL (0-40% LEL)
	≤ ± 5% of measured value (40-100% LEL)
Long-term drift	
Zero point:	≤ ± 1% LEL/month
Sensitivity:	≤ ± 2% LEL/month
Influence of temperature	
Zero point:	≤ ± 0.1% LEL/K at (-20 to 40)°C (-4 to 104)°F
Sensitivity:	\leq ± 0.3% of measured value/K at (-20 to 40)°C (-4 to 104)°F
Influence of humidity	
Zero point:	≤ ± 0.03% LEL/% RH
Sensitivity:	≤ ± 0.1% of measured value/% RH
Effect of sensor poisons:	Hydrogen sulphide H ₂ S 1000 ppmh ≤ ± 5 % of measured value
	Hexamethyldisiloxane HMDS 10 ppmh ≤ ± 5 % of measured value
	Hexamethyldisiloxane HMDS 30 ppmh \leq ± 20 % of measured value
	After an exposure of 10 ppm HDMS for 5 hours, the sensivity loss is
	less than 50 %. Halogenated hydrocarbons, heavy metals, substan-
	ces containing silicone or sulfur, or substances that can polymerize

→ potential poisoning. 4.5 Vol.-% $CO_2 \le \pm 4\%$ of measured value

approx. 2 Vol.-% or 50 Vol.-% CH4 test gas

FOR THE MEASUREMENT RANGE 0 TO 100% LEL WHEN CALIBRATED WITH PROPANE IN AIR:

Response time:	≤ 20 seconds at 25°C (77° F) (T ₅₀)
	≤ 40 seconds at 25°C (77° F) (T ₉₀)
Measurement accuracy	
Zero point:	≤ ± 1% LEL
Sensitivity:	≤ ± 2.5% of measured value
Linearity error:	≤ ± 4% LEL (0−40% LEL)
	≤ ± 10% of measured value (40-100% LEL)
Long-term drift	
Zero point:	≤ ± 4% LEL/month
Sensitivity:	≤ ± 1% LEL/month
Influence of temperature	
Zero point:	≤ ± 0.1% LEL/K at (-20 to 40)°C (-4 to 104)°F
Sensitivity:	≤ ± 0.3% of measured value/K at (-20 to 40)°C (-4 to 104)°F
Influence of humidity	
Zero point:	≤ ± 0.04% LEL/% RH
Sensitivity:	≤ ± 0.1% of measured value/% RH

FOR THE MEASUREMENT RANGE 0 TO 100 VOL.-% CH4:

Response time:	≤ 30 seconds at 25°C (77° F) at 0 to 5 Vol%			
	≤ 45 seconds at 25°C (77° F) at 5 to 100 Vol%			
Measurement accuracy				
Zero point:	≤ ± 0.05 Vol%			
Sensitivity:	≤ ± 2.5% of measured value			
Linearity error:				
0 to 2 Vol%	≤ ± 0.1 Vol%			
2 to 5 Vol%	≤ ± 10% of measured value			
5 to 50 Vol%	≤ ± 5 Vol%			
50 to 100 Vol%	≤ ± 10% of measured value			
Long-term drift				
Zero point:	≤ ± 0.15 Vol%/month			
Sensitivity 0 to 5 Vol%	≤ ± 5% of measured value/month			
Sensitivity 5 to 50 Vol%	≤ ± 3 Vol%/month			
Sensitivity 50 to 100 Vol%	≤ ± 5% of measured value/month			
Influence of temperature				
Zero point:	≤ ± 0.005 Vol%/K at (-20 to 40)°C (-4 to 104)°F			
Sensitivity 0 to 5 Vol%	\leq ± 0.5% of measured value/K at (-20 to 40)°C (-4 to 104)°F			
Sensitivity 5 to 50 Vol%	≤ ± 0.15 Vol%/K at (-20 to 40)°C (-4 to 104)°F			
Sensitivity 50 to 100 Vol%	≤ ± 0.3% of measured value/K at (-20 to 40)°C (-4 to 104)°F			
Influence of humidity				
Zero point:	≤ ± 0.0025 Vol%/RH			
Sensitivity 0 to 5 Vol%	≤ ± 0.2% of measured value/% RH			
Sensitivity 5 to 50 Vol%	≤ ± 0.1 Vol%/% RH			
Sensitivity 50 to 100 Vol%	≤ ± 0.2% of measured value/% RH			

TECHNICAL SPECIFICATIONS

FOR THE MEASUREMENT RANGE 0 TO 100% LEL WHEN CALIBRATED WITH NONANE IN AIR:

Response time, rising:	≤ 60 seconds (T ₅₀) at 25 °C (77 °F)
	≤ 320 seconds (T ₉₀) at 25 °C (77 °F)
Response time, declining:	≤ 130 seconds (T ₅₀) at 25 °C (77 °F)
	≤ 1000 seconds (T ₉₀) at 25 °C (77 °F)

SPECIAL CHARACTERISTICS

The DrägerSensor® Smart CatEx (HC PR) is used to detect flammable gases and vapors in the ambient air: LEL monitoring or, in the case of methane, also Vol.-% monitoring. It has an excellent poison resistance against hydrogen sulphide, siloxiane and other sensor poisons. These sensors have been tested according to EN 61779-1 and EN 61779-4 for methane, propane, and nonane for 0–100% LEL, and for 0–100 Vol.-% for methane in accordance with EN 61779-1 and EN 61779-5. Substance-specific data is stored in the data memory for 35 different gases and vapors.

DETECTING OTHER GASES AND VAPORS

Through the use of cross sensitivities for the measurement range of 0 to 100% LEL. The figures given are typical readings when calibrated with methane (CH₄) and apply to new sensors without additional diffusion barriers. A LEL of 4.4 Vol.-% was used for methane. If an LEL of 5.0 Vol.-% is used, then the figures in the table must be multiplied by a factor of 0.88. The table does not claim to be complete. The sensor may also be sensitive to other gases and vapors.

Gas/vapor	Chem. symbol	Test gas concentration	Displayed
		in Vol%	reading in % LEL
Acetone	CH ₃ COCH ₃	1.25	31
1,3-butadiene	CH ₂ CHCHCH ₂	0.70	26
Acetic acid	CH₃COOH	3.00	23
Ammonia	NH ₃	7.70	58
Benzene	C ₆ H ₆	0.60	22
Butane	C ₄ H ₁₀	0.70	27
Butanone	CH ₃ COC ₂ H ₅	0.75	22
Carbon monoxide	СО	5.45	41
Cyclohexane	C ₆ H ₁₂	0.50	21
Cyclopentane	C ₅ H ₁₀	0.70	27

Gas/vapor	Chem. symbol	Test gas concentration in Vol%	Displayed reading in % LEL
Diethyl ether	$(C_2H_5)_2O$	0.85	24
Diethylamine	$(C_2H_5)_2NH$	0.85	26
Ethane	C ₂ H ₆	1.20	34
Ethanol	C ₂ H ₅ OH	1.55	31
Ethene	C ₂ H ₄	1.20	36
Ethyl acetate	CH ₃ COOC ₂ H ₅	1.00	24
Ethine	C ₂ H ₂	1.15	34
Heptane	C ₇ H ₁₆	0.40	18
Hexane	C ₆ H ₁₄	0.50	21
Hydrogen	H ₂	2.00	48
1-Methoxy-Propanol-2	C ₄ H ₁₀ O ₂	0.90	22
Methane	CH ₄	2.20	50
Methanol	CH₃OH	3.00	39
Methyl tert-butyl ether (MTBE)	CH ₃ OC(CH ₃) ₃	0.80	27
n-butanol	C4H ₉ OH	0.70	19
n-butyl acetate	CH ₃ COOC ₄ H ₉	0.60	17
Nonane	C ₉ H ₂₀	0.35	13
Octane	C ₈ H ₁₈	0.40	17
Pentane	C ₅ H ₁₂	0.55	21
Pentanol	C ₅ H ₁₁ OH	0.60	19
Propane	C ₃ H ₈	0.85	28
Propanol	C ₃ H ₇ OH	0.60	19
Propene	C ₃ H ₆	1.00	32
Propylene oxide	C ₃ H ₆ O	0.95	23
Styrol	C ₆ H ₅ CHCH ₂	0.50	15
Toluene	C ₆ H ₅ CH ₃	0.50	19
Xylene	C ₆ H4(CH ₃) ₂	0.55	19

DrägerSensor® Smart CatEx (PR)

Order no. 68 12 980

Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger X-am 7000	yes	yes	2 years	

MARKET SEGMENTS

Telecommunications, shipping, sewage, gas supply companies, refineries, chemical industry, mining, landfills, biogas plants, tunneling.

TECHNICAL SPECIFICATIONS

Detection limit:	2% LEL / 0.1 Vol%
Resolution:	1.0% LEL for the measuring range 0 to 100% LEL,
	0.02 Vol% for the measuring range 0 to 5 Vol% CH ₄ (methane)
Measurement range:	0 to 100% LEL
General technical specifications	
Ambient conditions	
Temperature:	(-20 to 55)°C (-4 to 131)°F
Humidity:	(10 to 95)% RH
Pressure:	(700 to 1,300) hPa
Warm-up time:	≤ 5 minutes

Warm-up time:	≤ 5 minutes				
FOR THE MEASUREMEN	T RANGE 0 TO 100% LEL WHEN CALIBRATED WITH				
METHANE IN AIR:					
Response time:	≤ 15 seconds at 25 °C (77 °F) (T ₅₀)				
	\leq 25 seconds at 25 °C (77 °F) (T ₉₀)				
Measurement accuracy					
Zero point:	≤ ± 1% LEL				
Sensitivity:	≤ ± 2.5% of measured value				
Linearity error:	≤ ± 2% LEL (0-40% LEL)				
	\leq ± 5% of measured value (40–100% LEL)				
Long-term drift					
Zero point:	≤ ± 1% LEL/month				
Sensitivity:	≤ ± 2% LEL/month				
Influence of temperature					
Zero point:	≤ ± 0.1% LEL/K at (-20 to 40)°C (-4 to 104)°F				
Sensitivity:	\leq ± 0.3% of measured value/K at (-20 to 40)°C (-4 to 104)°F				
Influence of humidity					
Zero point:	≤ ± 0.03% LEL/% RH				
Sensitivity:	≤ ± 0.1% of measured value/% RH				
Effect of sensor poisons:	Hydrogen sulphide H ₂ S 1000 ppmh ≤ ± 5 % of measured value				
	Hexamethyldisiloxane HMDS 10 ppmh \leq ± 5 % of measured value				
	Hexamethyldisiloxane HMDS 30 ppmh ≤ ± 20 % of measured value				
	After an exposure of 10 ppm HDMS for 5 hours, the sensivity loss				
	is less than 50 %. Halogenated hydrocarbons, heavy metals, sub-				
	stances containing silicone or sulfur, or substances that can poly-				
	merize \rightarrow potential poisoning. 4.5 Vol% $CO_2 \le \pm 4\%$ of measured				
	value				
Test gas:	approx. 2 Vol% CH ₄ test gas				

FOR THE MEASUREMENT RANGE 0 TO 100% LEL WHEN CALIBRATED WITH PROPANE IN AIR:

Response time:	≤ 20 seconds at 25°C (77° F) (T ₅₀)		
	\leq 40 seconds at 25°C (77° F) (T ₉₀)		
Measurement accuracy			
Zero point:	≤ ± 1% LEL		
Sensitivity:	≤ ± 2.5% of measured value		
Linearity error:	≤ ± 4% LEL (0-40% LEL)		
	\leq ± 10% of measured value (40–100% LEL)		
Long-term drift			
Zero point:	≤ ± 4% LEL/month		
Sensitivity:	≤ ± 1% LEL/month		
Influence of temperature			
Zero point:	≤ ± 0.1% LEL/K at (-20 to 40)°C (-4 to 104)°F		
Sensitivity:	≤ ± 0.3% of measured value/K at (-20 to 40)°C (-4 to 104)°F		
Influence of humidity			
Zero point:	≤ ± 0.04% LEL/% RH		
Sensitivity:	≤ ± 0.1% of measured value/% RH		

FOR THE MEASUREMENT RANGE 0 TO 100% LEL WHEN CALIBRATED WITH NONANE IN AIR:

Response time, rising:	≤ 60 seconds (T ₅₀) at 25°C (77° F)	
	≤ 320 seconds (T ₉₀) at 25°C (77° F)	
Response time, declining:	≤ 130 seconds (T ₅₀) at 25°C (77° F)	
	≤ 1000 seconds (T ₉₀) at 25°C (77° F)	

SPECIAL CHARACTERISTICS

The DrägerSensor® Smart CatEx (PR) is used to detect flammable gases and vapors around the LEL in the ambient air. It has an excellent poison resistance against hydrogen sulphide, siloxiane and other sensor poisons. These sensors have been tested according to EN 61779-1 and EN 61779-4 for methane, propane, and nonane for a range of 0–100% LEL. Substance-specific data is stored in the data memory for 35 different gases and vapors.

DETECTING OTHER GASES AND VAPORS

Through the use of cross sensitivities for the measurement range of 0 to 100% LEL. The figures given are typical readings when calibrated with methane (CH₄) and apply to new sensors without additional diffusion barriers. A LEL of 4.4 Vol.-% was used for methane. If a LEL of 5.0 Vol.-% is used, then the figures in the table must be multiplied by a factor of 0.88. The table does not claim to be complete. The sensor may also be sensitive to other gases and vapors.

Gas/vapor	Chem. symbol	Test gas concentration in Vol%	Displayed reading in % LEL	
Acetone	CH ₃ COCH ₃	1.25	31	
1,3-butadiene	CH ₂ CHCHCH ₂	0.70	26	
Acetic acid	CH₃COOH	3.00	23	
Ammonia	NH ₃	7.70	58	
Benzene	C ₆ H ₆	0.60	22	
Butane	C ₄ H ₁₀	0.70	27	
Butanone	CH ₃ COC ₂ H ₅	0.75	22	
Carbon monoxide	CO	5.45	41	
Cyclohexane	C ₆ H ₁₂	0.50	21	
Cyclopentane	C ₅ H ₁₀	0.70	27	
Diethyl ether	(C ₂ H ₅) ₂ O	0.85	24	
Diethylamine	(C ₂ H ₅) ₂ NH	0.85	26	
Ethane	C ₂ H ₆	1.20	34	
Ethanol	C ₂ H ₅ OH	1.55	31	
Ethene	C ₂ H ₄	1.20	36	
Ethyl acetate	CH ₃ COOC ₂ H ₅	1.00	24	
Ethine	C ₂ H ₂	1.15	34	
Heptane	C ₇ H ₁₆	0.40	18	
Hexane	C ₆ H ₁₄	0.50	21	
Hydrogen	H ₂	2.00	48	
1-Methoxy-Propanol-2	C ₄ H ₁₀ O ₂	0.90	22	
Methane	CH ₄	2.20	50	
Methanol	CH₃OH	3.00	39	
Methyl tert-butyl ether (MTBE)	CH ₃ OC(CH ₃) ₃	0.80	27	
n-butanol	C4H ₉ OH	0.70	19	

Gas/vapor	Chem. symbol	Test gas concentration	Displayed
		in Vol%	reading
			in % LEL
n-butyl acetate	CH ₃ COOC ₄ H ₉	0.60	17
Nonane	C ₉ H ₂₀	0.35	13
Octane	C ₈ H ₁₈	0.40	17
Pentane	C ₅ H ₁₂	0.55	21
Pentanol	C ₅ H ₁₁ OH	0.60	19
Propane	C ₃ H ₈	0.85	28
Propanol	C ₃ H ₇ OH	0.60	19
Propene	C ₃ H ₆	1.00	32
Propylene oxide	C ₃ H ₆ O	0.95	23
Styrol	C ₆ H ₅ CHCH ₂	0.50	15
Toluene	C ₆ H ₅ CH ₃	0.50	19
Xylene	C ₆ H4(CH ₃) ₂	0.55	19

DrägerSensor® Smart CatEx (FR PR) Order no. 68 12 975

Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger X-am 7000	yes	yes	2 years	-

MARKET SEGMENTS

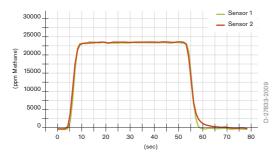
Gas supply companies (methane leak detection), telecommunications, shipping, sewage, refineries, chemical industry, mining, landfills, biogas plants, tunneling.

TECHNICAL SPECIFICATIONS

Detection limit:	2% LEL/0.1 Vol%		
Resolution:	1.0% LEL for the measuring range 0 to 100% LEL		
	0.02 Vol% for the measuring range 0 to 5 Vol% CH ₄ (methane)		
	1 Vol% for the measuring range 5 to 100 Vol% CH ₄ (methane)		
Measurement range:	0 to 100% LEL or		
	0 to 100 Vol% CH ₄ (methane)		
General technical specifications			
Ambient conditions			
Temperature:	(-20 to 55)°C (-4 to 131)°F		
Humidity:	(10 to 95)% RH		
Pressure:	(700 to 1,300) hPa		
Warm-up time:	≤ 5 minutes		

FOR THE MEASUREMENT RANGE 0 TO 100% LEL WHEN CALIBRATED WITH

METHANE IN AIR:	
Response time:	≤ 7 seconds at 25 °C (77 °F) (T ₅₀)
	≤ 9 seconds at 25 °C (77 °F) (T ₉₀)
Measurement accuracy	
Zero point:	≤ ± 1% LEL
Sensitivity:	≤ ± 2.5% of measured value
Linearity error:	≤ ± 4% LEL (0-40% LEL)
	≤ ± 10% of measured value (40–100% LEL)
Long-term drift	_
Zero point:	≤ ± 1% LEL/month
Sensitivity:	≤ ± 1% LEL/month
Influence of temperature	
Zero point:	≤ ± 0.1% LEL/K at (-20 to 40)°C (-4 to 104)°F
Sensitivity:	≤ ± 0.2% of measured value/K at (-20 to 40)°C (-4 to 104)°F
Influence of humidity	
Zero point:	≤ ± 0.05% LEL/% RH
Sensitivity:	≤ ± 0.3% of measured value/% RH
Effect of sensor poisons:	Hydrogen sulphide H ₂ S 1000 ppmh ≤ ± 5 % of measured value
	Hexamethyldisiloxane HMDS 10 ppmh ≤ ± 5 % of measured value
	Hexamethyldisiloxane HMDS 30 ppmh ≤ ± 20 % of measured value
	After an exposure of 10 ppm HDMS for 5 hours, the sensivity loss is
	less than 50 %. Halogenated hydrocarbons, heavy metals, substan-
	ces containing silicone or sulfur, or substances that can polymerize
	→ potential poisoning. 4.5 Vol% CO ₂ ≤ ± 4% of measured value


FOR THE MEASUREMENT RANGE 0 TO 100 VOL.-% CH4:

Response time:	\leq 14 seconds at 25°C (77° F) (T ₉₀) at 0 to 5 Vol%
	\leq 18 seconds at 25°C (77° F) (T ₉₀) at 5 to 100 Vol%
Measurement accuracy	
Zero point:	≤ ± 0.05 Vol%
Sensitivity:	≤ ± 2.5% of measured value
Linearity error:	
0 to 2 Vol%	≤ ± 0.1 Vol%
2 to 5 Vol%	≤ ± 10% of measured value
5 to 50 Vol%	≤ ± 5 Vol%
50 to 100 Vol%	≤ ± 10% of measured value
Long-term drift	
Zero point:	≤ ± 0.15 Vol%/month
Sensitivity 0 to 5 Vol%	≤ ± 5% of measured value/month
Sensitivity 5 to 50 Vol%	≤ ± 3 Vol%/month
Sensitivity 50 to 100 Vol%	≤ ± 5% of measured value/month
Influence of temperature	
Zero point:	≤ ± 0.005 Vol%/K at (-20 to 40)°C (-4 to 104)°F
Sensitivity 0 to 5 Vol%	\leq ± 0.5% of measured value/K at (-20 to 40)°C (-4 to 104)°F
Sensitivity 5 to 50 Vol%	≤ ± 0.15 Vol%/K at (-20 to 40)°C (-4 to 104)°F
Sensitivity 50 to 100 Vol%	\leq ± 0.3% of measured value/K at (-20 to 40)°C (-4 to 104)°F
Influence of humidity	
Zero point:	≤ ± 0.0025 Vol%/% RH
Sensitivity 0 to 5 Vol%	≤ ± 0.2% of measured value/% RH
Sensitivity 5 to 50 Vol%	≤ ± 0.1 Vol%/% RH
Sensitivity 50 to 100 Vol%	≤ ± 0.2% of measured value/% RH
Test gas:	approx. 2 Vol% or 50 Vol% CH ₄ test gas

SPECIAL CHARACTERISTICS

The DrägerSensor[®] Smart CatEx (FR PR) is especially suitable for detecting leaks on account of its fast response time (T_{90}) of less than 9 seconds for methane. Like all other Smart CatEx sensors, it is also suitable for detecting flammable gases and vapors around the LEL in the ambient air. It has an excellent poison resistance against hydrogen sulphide, siloxiane and other sensor poisons.

Response time of DrägerSensor CatEx FR in X-am 7000

DrägerSensor® CatEx 125 PR

Order no. 68 12 950

Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger X-am 1/2/5000		yes	2 years	

MARKET SEGMENTS

Telecommunications, shipping, sewage, gas supply companies, refineries, chemical industry, mining, landfills, biogas plants, sewage treatment plants, tunneling.

TECHNICAL SPECIFICATIONS

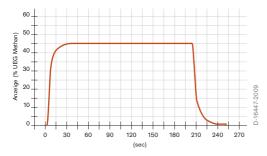
Detection limit:	1% LEL/0.05 Vol%
Resolution:	1.0% LEL for measuring range 0 to 100% LEL,
	0.1 Vol% for measuring range 0 to 5 Vol% CH ₄ (methane)
Measurement range:	0 to 100% LEL in Dräger X-am 1700/2000/500
	0 to 100 Vol.% CH ₄ (methane) in Dräger X-am 5000
General technical specifications	
Ambient conditions	
Temperature:	(-20 to 55)°C (-4 to 131)°F
Humidity:	(10 to 95)% RH
Pressure:	(700 to 1,300) hPa
Warm-up time:	≤ 3 minutes

FOR THE MEASUREMENT RANGE 0 TO 100% LEL WHEN CALIBRATED WITH

METHANE IN AIR:			
Response time:	≤ 17 seconds at 25 °C (77 °F) (T ₉₀)		
	≤ 7 seconds at 25 °C (77 °F) (T ₅₀)		
	typical values for X-am 2000 T ₉₀ at 25 °C (77 °F) ≤ 12 seconds		
	typical values for X-am 5000 T ₉₀ at 25 °C (77 °F) ≤ 10 seconds		
Measurement accuracy			
Zero point:	≤ ± 1% LEL		
Sensitivity:	≤ ± 1.5% LEL (0-50 % LEL)		
Linearity error:	≤ ± 2% LEL (0-90% LEL)		
Long-term drift			
Zero point:	≤ ± 2% LEL/month typical value in X-am 2000/5000 ≤ 1 % LEL/month		
Sensitivity:	≤ ± 2% LEL/month typical value in X-am 2000/5000 ≤ 1 % LEL/month		
Influence of temperature			
Zero point:	≤ ± 0.1% LEL/K at (-20 to 40)°C (-4 to 104)°F		
Sensitivity:	≤ ± 0.2% of measured value/K at (-20 to 40)°C (-4 to 104)°F		
Influence of humidity			
Zero point:	≤ ± 1% LEL		
Sensitivity:	≤ ± 2% LEL, effect of humidity when calibrating at 0% relative		
	humidity in the range of 10-90 % at 40°C)		
Effect of sensor poisons:	Hydrogen sulphide H ₂ S, 1000 ppmh ≤ ±2% of the measured value		
	Hexamethyldisiloxane HMDS 10 ppmh \leq ±5 % of the measured value		
	Hexamethyldisiloxane HMDS 30 ppmh ≤ ±20 % of the measured		
	value. After an exposure to HMDS of 10 ppm for 5 hours, the loss of		
	sensitivity is less than 50%. Halogenated hydrocarbons, volatile sub-		
	stances containing sulphur, heavy metals and silicon, or substances		
	capable of polymerisation poisoning possible.		

FOR THE MEASUREMENT RANGE 0 TO 100% LEL WHEN CALIBRATED WITH PROPANE IN AIR:

Response time:	≤ 10 seconds at 25°C (77° F) (T ₅₀)
	≤ 32 seconds at 25°C (77° F) (T ₉₀)
	typical values for X-am 2000 T ₉₀ at 25 °C (77 °F) ≤ 24 seconds
	typical values for X-am 5000 T_{90} at 25 °C (77 °F) \leq 14 seconds
Measurement accuracy	
Zero point:	1 % LEL
Sensitivity:	1 % LEL (0–50 % LEL)
Long-term drift	
Zero point:	≤ ± 2% LEL/month
Sensitivity:	≤ ± 2% LEL/month
Influence of temperature	
Zero point:	≤ ± 0.1% LEL/K at (-20 to 40)°C (-4 to 104)°F
Sensitivity:	≤ ± 0.1% of measured value/K at (-20 to 40)°C (-4 to 104)°F
Influence of humidity	
Zero point:	≤ ± 0.01% LEL/% RH
Sensitivity:	≤ ± 0.02% LEL (at 50% LEL and 0-90 % r.H. at 40 °C/104 °F)


FOR THE MEASUREMENT RANGE 0 TO 100 VOL.-% CH4:

Response time:	≤ 30 seconds at 25°C (77° F) (T ₉₀) at 5 to 100 Vol%		
Measurement accuracy			
Zero point:	≤ ± 0.05 Vol%		
Sensitivity:	≤ ± 2.5% of measured value		
Linearity error:			
0 to 2 Vol%	≤ ± 0.1 Vol%		
2 to 5 Vol%	≤ ± 10% of measured value		
5 to 50 Vol%	≤ ± 5 Vol%		
50 to 100 Vol%	≤ ± 10% of measured value		
Long-term drift			
Zero point:	≤ ± 0.15 Vol%/month		
Sensitivity 0 to 5 Vol%	≤ ± 5% of measured value/month		
Sensitivity 5 to 50 Vol%	≤ ± 3 Vol%/month		
Sensitivity 50 to 100 Vol%	≤ ± 5% of measured value/month		
Influence of temperature			
Zero point:	≤ ± 0.005 Vol%/K at (-20 to 40)°C (-4 to 104)°F		
Sensitivity 0 to 5 Vol%	\leq ± 0.5% of measured value/K at (-20 to 40)°C (-4 to 104)°F		
Sensitivity 5 to 50 Vol%	≤ ± 0.15 Vol%/K at (-20 to 40)°C (-4 to 104)°F		
Sensitivity 50 to 100 Vol%	≤ ± 0.3% of measured value/K at (-20 to 40)°C (-4 to 104)°F		
Influence of humidity			
Zero point:	≤ ± 0.0025 Vol%/RH		
Sensitivity 0 to 5 Vol%	≤ ± 0.2% of measured value/% RH		
Sensitivity 5 to 50 Vol%	≤ ± 0.1 Vol% RH		
Sensitivity 50 to 100 Vol%	≤ ± 0.2% of measured value/% RH		
Test gas:	approx. 2 Vol% or 50 Vol% CH ₄ test gas		

SPECIAL CHARACTERISTICS

The DrägerSensor® CatEx 125 PR (Poison Resistant) is used to detect flammable gases and vapors. The detection of hydrocarbons from methane to nonane is certified by a measurement performance certificates for use in the Dräger X-am 1/2/5000 series in accordance with EN 60079-29-1 and EN 50271. It also has a small long-term drift, few influence of humidity and excellent poison resistance against hydrogen sulphide, siloxiane and other sensor poisons.

DETECTING OTHER GASES AND VAPORS

Through the use of cross sensitivities for the measurement range of 0 to 100% LEL. The figures given are typical readings when calibrated with methane (CH₄) and apply to new sensors without additional diffusion barriers. A LEL of 4.4 Vol.-% was used for methane. If a LEL of 5.0 Vol.-% is used, then the figures in the table must be multiplied by a factor of 0.88. The table does not claim to be complete. The sensor may also be sensitive to other gases and vapors.

Gas/vapor	Chem. symbol	Test gas concentration in Vol%	Displayed reading in % LEL
Acetone	CH ₃ COCH ₃	1.25	31
Acetic acid	CH ₃ COOH	7.7	57
Ammonia	NH ₃	6.16	48
Benzene	C ₆ H ₆	0.6	25
Butadiene -1,3	CH ₂ CHCHCH ₂	0.7	27
Butane	C ₄ H ₁₀	0.7	26
n-butanol	C ₄ H ₉ OH	0.7	20
Butanone	CH ₃ COC ₂ H ₅	0.75	22
n-butyl acetate	CH ₃ COOC ₄ H ₉	0.6	18
Carbon monoxide	CO	5.45	32
Cyclohexane	C ₆ H ₁₂	0.5	21
Cyclopentane	C ₅ H ₁₀	0.7	27
Diethylamine	(C ₂ H ₅) ₂ NH	0.85	28

Gas/vapor	Chem. symbol	Test gas concentration in Vol%	Displayed reading in % LEL
Diethyl ether	$(C_2H_5)_2O$	0.85	27
Ethane	C ₂ H ₆	1.2	35
Ethanol	C ₂ H ₅ OH	1.55	33
Ethene	C ₂ H ₄	1.2	36
Ethine	C ₂ H ₂	1.15	36
Ethyl acetate	CH ₃ COOC ₂ H ₅	1.0	25
Heptane	C ₇ H ₁₆	0.4	17
Hexane	C ₆ H ₁₄	0.5	21
Hydrogen	H ₂	2.0	49
Methane	CH ₄	2.2	50
Methanol	CH ₃ OH	3.0	42
Methyl tert-butyl ether (MTBE)	CH ₃ OC(CH ₃) ₃	0.8	27
Nonane	C ₉ H ₂₀	0.35	15
1-Methoxy-Propanol-2-	C ₄ H ₁₀ O ₂	0.9	23
Octane	C ₈ H ₁₈	0.4	18
Pentane	C ₅ H ₁₂	0.55	22
Pentanol	C₅H11OH	0.6	19
Propane	C ₃ H ₈	0.85	29
Propanol	C ₃ H ₇ OH	1.00	27
Propene	C ₃ H ₆	1.00	35
Propylene oxide	C ₃ H ₆ O	0.95	25
Styrene	C ₆ H ₅ CHCH ₂	0.5	11
Toluene	C ₆ H ₅ CH ₃	0.5	21
Xylene	C ₆ H ₄ (CH ₃) ₂	0.55	22

DrägerSensor® CatEx 125 Mining

Order no. 68 11 970

Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger X-am 5000	_	yes	2 years	

MARKET SEGMENTS

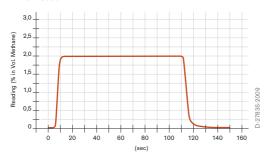
Mining, telecommunications, shipping, sewage, gas supply companies, refineries, chemical industry, landfills, biogas plants, sewage treatment plants, tunneling.

TECHNICAL SPECIFICATIONS

Detection limit:	2% LEL/0.1 Vol%	
Resolution:	1.0% LEL for measuring range 0 to 100% LEL,	
	0.1 Vol% for measuring range 0 to 5 Vol% CH ₄ (methane)	
Measurement range:	0 to 100% LEL or 0 to 100 Vol% CH ₄ (methane)	
General technical specifications	· · · · · · · · · · · · · · · · · · ·	
Ambient conditions		
Temperature:	(-20 to 55)°C (-4 to 131)°F	
Humidity:	(10 to 95)% RH	
Pressure:	(700 to 1,300) hPa	
Warm-up time:	≤ 5 minutes	

FOR THE MEASUREMENT RANGE 0 TO 100% LEL WHEN CALIBRATED WITH **METHANE IN AIR:**

Response time:	≤ 7 seconds at 25 °C (77 °F) (T ₅₀)
	≤ 10 seconds at 25 °C (77 °F) (T ₉₀)
Measurement accuracy	
Zero point:	≤ ± 1% LEL
Sensitivity:	≤ ± 2.5% of measured value
Long-term drift	
Zero point:	≤ ± 3% LEL/month
Sensitivity:	≤ ± 3% LEL/month
Influence of temperature	
Zero point:	≤ ± 0.1% LEL/K
Sensitivity:	≤ ± 0.2% of measured value/K
Influence of humidity	
Zero point:	≤ ± 0.05% LEL/% RH
Sensitivity:	≤ ± 0.3% of measured value/% RH


FOR THE MEASUREMENT RANGE 0 TO 100 VOL.-% CH4

FOR THE MEASUREMENT F	RANGE 0 TO 100 VOL% CH ₄ :	
Response time:	≤ 30 seconds at 25°C (77° F) (T ₉₀) at 0 to 5 Vol%	
	\leq 45 seconds at 25°C (77° F) (T ₉₀) at 5 to 100 Vol%	
Measurement accuracy		
Zero point:	≤ ± 0.05 Vol%	
Sensitivity:	≤ ± 2.5% of measured value	
Linearity error:		
0 to 2 Vol%	≤ ± 0.1 Vol%	
2 to 5 Vol%	≤ ± 10% of measured value	
5 to 50 Vol%	≤ ± 5 Vol%	
50 to 100 Vol%	≤ ± 10% of measured value	
Long-term drift		
Zero point:	≤ ± 0.15 Vol%/month	
Sensitivity 0 to 5 Vol%	≤ ± 5% of measured value/month	
Sensitivity 5 to 50 Vol%	≤ ± 3 Vol%/month	
Sensitivity 50 to 100 Vol%	≤ ± 5% of measured value/month	
Influence of temperature		
Zero point:	≤ ± 0.005 Vol%/K at (-20 to 40)°C (-4 to 104)°F	
Sensitivity 0 to 5 Vol%	≤ ± 0.5% of measured value/K at (-20 to 40)°C (-4 to 104)°F	
Sensitivity 5 to 50 Vol%	≤ ± 0.15 Vol%/K at (-20 to 40)°C (-4 to 104)°F	
Sensitivity 50 to 100 Vol%	≤ ± 0.3% of measured value/K at (-20 to 40)°C (-4 to 104)°F	
Influence of humidity		
Zero point:	≤ ± 0.0025 Vol%/% RH	
Sensitivity 0 to 5 Vol%	≤ ± 0.2% of measured value/% RH	
Sensitivity 5 to 50 Vol%	≤ ± 0.1 Vol%/RH.	
Sensitivity 50 to 100 Vol%	≤ ± 0.2% of measured value/% RH	
Test gas:	approx. 2 Vol% or 50 Vol% CH ₄ test gas	
Effect of sensor contaminants:	10 ppm Hydrogen sulfide (H ₂ S) → ≤ ± 10% of measured value/8 h	
	Halogenated hydrocarbons, heavy metals, substances containing	
	silicone or sulfur, or substances that can polymerize → potential	
	poisoning.	

SPECIAL CHARACTERISTICS

This sensor is optimized for the detection of methane. It has a response time (T_{90}) of less than 10 seconds. The pellistors are impact-protected, which makes the sensor especially shock-proof. In conjunction with this sensor, the Dräger X-am 5000 is approved for Zone 0/T4 worldwide. The LEL and the Vol.-% measuring range can be used in the Dräger X-am 5000.

Response time of DrägerSensor CatEx 125 Mining in X-am 5000

DrägerSensor® CatEx 2

Order no. 83 16 109

Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger X-am 3000	_	yes	2 years	

MARKET SEGMENTS

Telecommunications, shipping, sewage, gas supply companies, refineries, chemical industry, mining, landfills, biogas plants, tunneling.

TECHNICAL SPECIFICATIONS

Detection limit:	2% LEL/0.1 Vol%	
Resolution:	1.0% LEL for the measuring range 0 to 100% LEL CH ₄ (methane),	
	0.1 Vol% for the measuring range 0 to 5 Vol% CH ₄ (methane),	
	1 Vol% for the measuring range 5 to 100 Vol% CH ₄ (methane)	
Measurement range:	0 to 100% LEL or 0 to 100 Vol% CH ₄ (methane)	
General technical specifications		
Ambient conditions		
Temperature:	(-20 to 55)°C (-4 to 131)°F	
Humidity:	(10 to 95)% RH	
Pressure:	(700 to 1,300) hPa	
Warm-up time:	approx. 30 seconds	

FOR THE MEASUREMENT RANGE 0 TO 100% LEL WHEN CALIBRATED WITH **METHANE IN AIR:**

Response time:	≤ 8 seconds at 20 °C (68 °F) (T ₅₀)		
	≤ 15 seconds at 20 °C (68 °F) (T ₉₀)		
Measurement accuracy			
Zero point:	≤ ± 0.4% LEL		
Sensitivity:	≤ ± 5% of measured value		
Linearity filter	≤ ± 3% of measured value (0–50% LEL)		
	≤ ± 5% of measured value (50-100% LEL)		
Long-term drift			
Zero point:	≤ ± 0.75% LEL/month		
Sensitivity:	≤ ± 2.5% of measured value/month¹)		
Influence of temperature			
Zero point:	≤ ± 0.2% LEL/K		
Sensitivity:	≤ ± 0.3% of measured value/K		
Influence of humidity			
Zero point:	≤ ± 0.025% LEL/% RH		

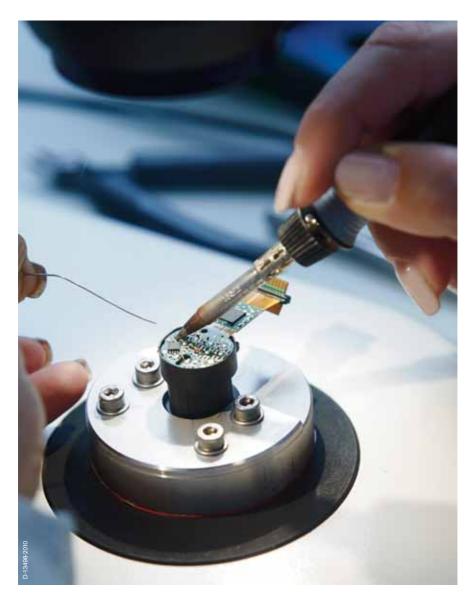
¹⁾ Measured over a period of 600 days.

FOR THE MEASUREMENT RANGE 0 TO 100 VOL.-% CH4:

Response time:	≤ 8 seconds at 20°C (T ₅₀)	
	≤ 15 seconds at 20°C (T ₉₀)	
Measurement accuracy		
Zero point:	≤ ± 0.8 Vol%	
Sensitivity:	≤ ± 7% of measured value	
Linearity error:		
5 to 50 Vol%	≤ ± 5 Vol% of measured value	
50 to 100 Vol%	≤ ± 10% of measured value	
Long-term drift		
Zero point:	≤ ± 1.2 Vol%/month	
Sensitivity	≤ ± 3% of measured value/month	
	(applies to entire measuring range)	
Influence of temperature		
Zero point:	≤ ± 2.5 Vol%/K at (−25 to 55)°C (−13 to 131)°F	
Sensitivity	≤ ± 0.35% of measured value/K at (-25 to 55)°C (-13 to 131)°F	
	(applies to entire measuring range)	
Influence of humidity		
Zero point:	≤ ± 0.025 Vol%/% RH	
Test gas:	approx. 2 Vol% CH ₄ test gas	
Effect of sensor contaminants:	10 ppm Hydrogen sulfide $(H_2S) \rightarrow \le \pm 10\%$ of measured value/8 h	
	Halogenated hydrocarbons, heavy metals, substances containing	
	silicone or sulfur, or substances that can polymerize → potential poi	
	soning.	

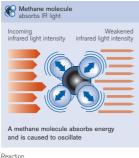
SPECIAL CHARACTERISTICS

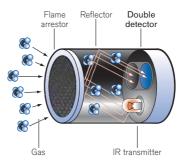
The DrägerSensor® CatEx 2 is used to detect flammable gases and vapors in the ambient air: LEL monitoring or, in the case of methane, also Vol.-% monitoring.


DETECTING OTHER GASES AND VAPORS

Through the use of cross sensitivities for the measurement range of 0 to 100% LEL. The correction factors given are typical readings when calibrated with methane (CH₄) and apply to new sensors without sensor filters. A LEL of 5.0 Vol.-% was used for methane. If a LEL of 4.4 Vol.-% is used, then the figures in the table must be multiplied by a factor of 1.14. The correction factors listed were determined for 25 °C (77 °F) and may fluctuate by ± 30% (source: NIOSH, Pocket guide to chemical hazards, 1997). The table does not claim to be complete. Calibrating the sensor using the actual gas that is to be measured is always preferable. The sensor may also be sensitive to other gases and vapors. Toxicity caused by catalyzer poisons can alter the relative sensitivities for various gases and vapors.

Gas/vapor	Chem. symbol	Correction factor	
Acetic acid	CH₃COOH	2.5	
Acetone	CH ₃ COCH ₃	2.2	
Ammonia	NH ₃	0.6	
Benzene	C ₆ H ₆	2.5	
1,3-butadiene	CH ₂ CHCHCH ₂	2	
n-butane	C ₄ H10	2	
n-butanol	C ₄ H9OH	4.5	
2-butanone	CH ₃ COC ₂ H ₅	2.6	
n-butyl acetate	CH ₃ COOC ₄ H ₉	3.9	
Carbon monoxide	СО	1.2	
Cyclohexane	C ₆ H ₁₂	2.5	
Cyclopentane	C5H ₁₀	2.5	
Diethyl ether	(C ₂ H5) ₂ O	2.3	
Ethane	C ₂ H ₆	1.4	
Ethanol	C ₂ H ₅ OH	1.7	
Ethene	C ₂ H ₄	1.5	
Ethine	C ₂ H ₂	1.2	
Ethyl acetate	CH ₃ COOC ₂ H ₅	2.6	
n-heptane	C ₇ H ₁₆	3	
n-hexane	C ₆ H ₁₄	2.3	
Hydrogen	H ₂	1.2	


Gas/vapor	Chem. symbol	Correction factor
Methane	CH ₄	1
Methanol	CH ₃ OH	1.5
n-nonane	C ₉ H20	4
n-octane	C ₈ H ₁₈	2.9
n-pentane	C ₅ H ₁₂	2.2
Propane	C ₃ H ₈	1.9
i-propanol	C ₃ H ₇ OH	2.7
n-propanol	C ₃ H ₇ OH	2.7
Propene	C ₃ H ₆	1.8
1,2-propylene oxide	C ₃ H ₆ O	2.1
Toluene	C ₆ H ₅ CH ₃	2.5
o-xylene	C ₆ H ₄ (CH ₃) ₂	3.5
m-xylene	C ₆ H ₄ (CH ₃) ₂	3.5
p-xylene	C ₆ H ₄ (CH ₃) ₂	4


4.4 Dräger infrared sensors

Every gas absorbs light in a particular way; some even absorb visible light (wavelength of 0.4 to 0.8 micrometers), which is why chlorine is yellowish green, bromine and nitrogen dioxide are brown, iodine vapor is violet, and so on - but unfortunately they are only visible in high (deadly) concentrations.

IR sensor

D-16404-2009

CH₄ + Energy → CH₄ (charged)

Hydrocarbons, on the other hand, absorb light in a certain wavelength range, from between about 3.3 and 3.5 micrometers - and that can be utilized for detection purposes, since the main components of air (oxygen, nitrogen, and argon) do not absorb radiation in that range. In a container containing gaseous hydrocarbons such as methane or propane, the intensity of an incoming infrared light will be weakened, and the degree of this weakening is dependent on the concentration of gas.

Air: infrared light passes through without weakening – intensity remains the same Gas (e.g. methane): infrared light becomes weaker as it passes through - intensity drops in relation to the concentration of methane. This is the principle of an infrared measuring instrument that utilizes Dräger IR sensors. Flammable gases and vapors are mostly hydrocarbons, and hydrocarbons are almost always detectable by means of their typical IR absorption levels.

Functional principle: the ambient air to be monitored passes into the measuring cuvette by means of diffusion or through the use of a pump. The infrared transmitter produces broad-band radiation that passes through a window into the cuvette, where it is reflected off the mirrored walls and passes through another window, falling onto the double detector. This double detector consists of a measurement and a reference detector. If the gas mixture contains a percentage of hydrocarbons, then some of the radiation is absorbed and the measurement detector produces a reduced electrical signal. The signal from the reference detector remains unchanged. Fluctuations in the performance of the infrared transmitter, dirt on the mirror and windows, and interference from dust or aerosols in the ambient air have the same effect on both sensors, and are fully compensated.

DrägerSensor® Smart IR Ex

Order no. 68 10 460

Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger X-am 7000	yes	yes	5 years	_

MARKET SEGMENTS

Telecommunications, shipping, sewage, gas supply companies, refineries, chemical industry, mining, landfills, biogas plants, tunneling.

TECHNICAL SPECIFICATIONS

Detection limit:	3% LEL/0.1 Vol%	
Resolution:	0.5% LEL	
Measurement range:	0 to 100% LEL/0 to 100 Vol%	
	depending on the gas being measured	
Ambient conditions		
Temperature:	(-20 to 60)°C (-4 to 140)°F	
Humidity:	(10 to 95)% RH	
Pressure:	(700 to 1,300) hPa	
Warm-up time:	≤ 4 minutes	

FOR THE MEASUREMENT RANGE 0 TO 100% LEL OR 0 TO 4.4 VOL.-% CH₄ WHEN CALIBRATED WITH METHANE IN AIR:

Response time:	Diffusion mode ≤ 20 seconds (T ₅₀)		
	Diffusion mode ≤ 50 seconds (T ₉₀)		
	Pump mode ≤ 20 seconds (T ₅₀)		
	Pump mode ≤ 41 seconds (T ₉₀)		
Measurement accuracy			
Zero point:	≤ ± 1.0% LEL methane		
Sensitivity:	≤ ± 2.0% LEL methane at 50% LEL		
Linearity error, typical:	≤ ± 5% of measured value		
Long-term drift			
Zero point:	≤ ± 2.5% LEL methane/month		
Sensitivity:	≤ ± 2.5% LEL methane/month at 50% LEL		
Influence of temperature			
Zero point:	≤ ± 0.05% LEL methane/K at (-20 to 60)°C (-4 to 140)°F		
Sensitivity:	≤ ± 0.15% LEL methane/K at 50% LEL and (-20 to 60)°C		
	(-4 to 140)°F		
Effect of humidity, at 40°C (104 °F)			
(0 to 95% RH, non-condensing)			
Zero point:	≤ ± 0.05% LEL methane/% RH		
	·		

FOR THE MEASUREMENT RANGE 0 TO 100% LEL OR 0 TO 1.7 VOL.-% C₃H₈ WHEN CALIBRATED WITH PROPANE IN AIR:

Measurement accuracy		
Zero point:	≤ ± 0.75% LEL propane	
Sensitivity	≤ ± 1.0% LEL propane at 50% LEL	
Linearity error, typical:	≤ ± 4.0% of measured value	
Long-term drift		
Zero point:	≤ ± 1.0% LEL propane/month	
Sensitivity	≤ ± 2.0% LEL propane/month at 50% LEL	
Influence of temperature		
Zero point:	≤ ± 0.03% LEL propane/K	
Sensitivity	≤ ± 0.08% LEL propane/K	
Effect of humidity, at 40°C (104 °F)		
(0 to 95% RH, non-condensing)		
Zero point:	≤ ± 0.03% LEL propane/% RH	
Test gas:	2 Vol% CH ₄	
	0.9 Vol% C ₃ H ₈	

SPECIAL CHARACTERISTICS

This sensor can be used for LEL monitoring and Vol.-% monitoring for some gases. The sensor's database can contain up to 50 different gases. It is also the ideal sensor for measuring hydrocarbons in an inert atmosphere, since its measuring method does not depend on the presence of oxygen. This sensor also has a very long life time, and there is no risk of poisoning from sulfurous or silicone compounds.

COMPATIBLE GASES AND MEASUREMENT RANGES:

Sensor precalibration

The sensor can be delivered with all the necessary calibration data available. The sensor's database can contain up to 50 different gases. The zero point and sensitivity are precalibrated in the sensor for methane (0 to 100% LEL) and propane (0 to 100% LEL). The Vol.-% and % LEL readings are differentiated by displaying the measured gas in upper- and lower-case letters (e.g. ch₄ for 0 to 100% LEL and CH₄ for 0 to 100 Vol.-%).

Gas	Data set name	Measurement range
n-butane	buta	0 to 100% LEL 2)
n-butane	BUTA	0 to 100 Vol%
Ethene	c ₂ h ₄	0 to 100% LEL 2)
Ethene	C ₂ H ₄	0 to 100 Vol%
Ethanol	EtOH	0 to 100% LEL 2)
Ex	Ex	0 to 100% LEL
Liquid petroleum gas	LPG	0 to 100% LEL 2) /
	(50% propane + 50% butane) ³⁾	0 to 100 Vol%
JetFuel	JetF	0 to 100% LEL 2)
Methane	ch ₄	0 to 100% LEL 2)
Methane	CH ₄	0 to 100 Vol%
n-nonane	Nona	0 to 100% LEL 2)
n-pentane	Pent	0 to 100% LEL 2)
Propane	c ₃ h ₈	0 to 100% LEL 2)
Propane	C ₃ H ₈	0 to 100 Vol%
Toluene	Tolu	0 to 100% LEL 2)

²⁾ LEL figures depend on country-specific standards.

³⁾ The figures in the table assume a composition of 50% propane and 50% butane.
In practice, the composition of LPG fluctuates, which can lead to increased measurement errors.

DETECTION OF OTHER GASES AND VAPORS FOR THE MEASUREMENT RANGE 0 TO 100% LEL:

Through the use of cross sensitivities when calibrated with propane (C_3H_8 , 100% LEL = 1.7 Vol.-%). The sensor can be used to detect the gases and vapors listed in the following table. The sensor must be configured to "Ex" measurement gas in the instrument. For example: if the instrument is subjected to 1.25 Vol.-% acetone (50% LEL), the instrument will show a reading of 19% LEL if configured to "Ex" measurement gas (calibration using 50% LEL / = 0.85 Vol.-% propane). Calibration using the target gas is preferable to calibration using a replacement gas.

Gas/vapor gas	Chemical symbol	Test gas concentration in Vol%	Reading displayed in % LEL (if calibrated to 0.85 Vol% propane)	Cross- sensitivity factor
Acetone	CH₃COCH₃	1.25	19	2.63
Acetylene	C_2H_2		not possible	_
Benzene	C ₆ H ₆	0.6	11	4.44
Butadiene -1,3	CH ₂ CHCHCH ₂	0.7	13	3.85
Cyclohexane	C ₆ H ₁₂		on request	_
Cyclopentane	C ₅ H ₁₀	0.7	52	0.96
Dimethyl ether	(C ₂ H ₅) ₂ O	1.35	62	0.81
Ethane	C ₂ H ₆	1.35	76	0.66
Ethanol	C ₂ H ₅ OH	1.75	64	0.78
Ethene	C ₂ H ₄	1.15	9	5.56
Ethyl acetate	CH ₃ COOC ₂ H ₅	1.05	35	1.43
Ethyl acrylate	$C_5H_8O_2$	0.85	23	2.17
i-butane	C ₄ H ₁₀	0.9	49	1.02
i-butene	C ₄ H ₈	0.8	32	1.56
Methanol	CH ₄ O	2.75	93	0.54
Methyl chloride	CH ₃ CI	3.8	42	1.19
Methylene chloride	CH ₂ Cl ₂	6.5	13	3.85
Methyl ethyl ketone	C ₄ H ₈ O	0.9	28	1.79
n-heptane	C ₇ H ₁₆	0.55	45	1.11
n-hexane	C ₆ H ₁₄	0.5	42	1.19
n-nonane	C ₉ H ₂₀	_	on request	_
n-octane	C ₈ H ₁₈	0.4	32	1.56
n-pentane	C ₅ H ₁₂	0.7	54	0.93
Propane	C ₃ H ₈	0.85	50	1.00
n-propanol	C ₃ H ₇ OH	0.6	40	1.25
o-xylene	C ₆ H ₄ (CH ₃) ₂	0.5	13	3.85
Toluene	C ₆ H ₅ CH ₃	0.6	19	2.63

DrägerSensor® IR EX

Order no. 68 12 180

Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger X-am 5600	_	yes	5 years	_

MARKET SEGMENTS

Telecommunications, shipping, sewage, gas supply companies, refineries, chemical industry, mining, landfills, biogas plants, tunneling.

TECHNICAL SPECIFICATIONS

Detection limit:	1% LEL/0.2 Vol%	
Resolution:	1% LEL/0.1 Vol% (dependent on measuring range)	
Measurement range:	0 to 100% LEL/0 to 100 Vol%	
	depending on the gas being measured	
Ambient conditions		
Temperature:	(-20 to 50)°C (-4 to 120)°F	
Humidity:	(10 to 95)% RH	
Pressure:	(700 to 1,300) hPa	
Warm-up time:	≤ 5 minutes	

FOR THE MEASUREMENT RANGE 0 TO 100% LEL OR 0 TO 4.4 VOL.-% CH₄ WHEN CALIBRATED WITH METHANE IN AIR:

Response time:	Diffusion mode ≤ 10 seconds (T ₅₀)	
	Diffusion mode ≤ 20 seconds (T ₉₀)	
	Pump mode \leq 10 seconds (T ₅₀)	
	Pump mode ≤ 15 seconds (T ₉₀)	
Measurement accuracy		
Zero point:	≤ ± 1.0% LEL methane	
Sensitivity:	≤ ± 1.5% LEL methane at 50% LEL	
Linearity error, typical:	\leq ± 3.5% of measured value or \leq ± 1.5% of the highest figure in the	
	set measuring (whichever is higher)	
Long-term drift		
Zero point:	≤ ± 0.2% LEL methane/month	
Sensitivity:	≤ ± 4.5% LEL methane/6 months at 50% LEL	
Influence of temperature		
Zero point:	≤ ± 0.015% LEL methane/K at (-20 to 50)°C (-4 to 120)°F	
Sensitivity:	≤ ± 0.03% LEL methane/K at 50% LEL and (-20 to 50)°C	
	(-4 to 120)°F	
Effect of humidity, at 40°C (104 °F)		
(0 to 95% RH, non-condensing)		
Zero point:	≤ ± 0.005% LEL methane/% RH	

FOR THE MEASUREMENT RANGE 0 TO 100% LEL OR 0 TO 1.7 VOL.-% C_3H_8 WHEN CALIBRATED WITH PROPANE IN AIR:

Response time:	Diffusion mode ≤ 15 seconds (T ₅₀)	
	Diffusion mode ≤ 25 seconds (T ₉₀)	
	Pump mode ≤ 15 seconds (T ₅₀)	
	Pump mode ≤ 20 seconds (T ₉₀)	
Measurement accuracy		
Zero point:	≤ ± 1.0% LEL propane	
Sensitivity	≤ ± 1.25% LEL propane	
Linearity error, typical:	\leq ± 3.0% of measured value or \leq ± 1.0% of the highest figure in the	
	set measuring (whichever is higher)	
Long-term drift		
Zero point:	≤ ± 0.3% LEL propane/month	
Sensitivity	≤ ± 3.0% LEL propane/6 months	
Influence of temperature		
Zero point:	≤ ± 0.02% LEL propane/K	
Sensitivity	≤ ± 0.025% LEL propane/K	
Effect of humidity, at 40°C (104 °F)		
(0 to 95% RH, non-condensing)		
Zero point:	≤ ± 0.008% LEL propane/% RH	
Test gas:	2 Vol% CH ₄ or 50 Vol% CH ₄	
	0.9 Vol% C ₃ H ₈	

SPECIAL CHARACTERISTICS

This sensor can be used for LEL monitoring, and Vol.-% monitoring for some gases. It is also the ideal sensor for measuring hydrocarbons in an inert atmosphere, since its measuring method does not depend on the presence of oxygen. This sensor also has a very long life time, and there is no risk of poisoning from sulfurous or silicone compounds.

COMPATIBLE GASES AND MEASURING RANGES:

Gas	Data set name	Measurement range
n-butane	buta	0 to 100% LEL 2)
n-butane	BUTA	0 to 100 Vol%
Ethene	c ₂ h ₄	0 to 100% LEL 2)
Ethene	C ₂ H ₄	0 to 100 Vol%
Ethanol	EtOH	0 to 100% LEL 2)
Ex	Ex	0 to 100% LEL
JetFuel	JetF	0 to 100% LEL 2)
Methane	ch ₄ 0 to 100% LEL ²⁾	
Methane	CH ₄	0 to 100 Vol%
n-nonane	Nona	0 to 100% LEL 2)
n-pentane	Pent	0 to 100% LEL 2)
Propane	c ₃ h ₄	0 to 100% LEL 2)
Propane	C ₃ H ₈	0 to 100 Vol%
Toluene	Tolu 0 to 100%	

²⁾ LEL figures depend on country-specific tandards.

DETECTION OF OTHER GASES AND VAPORS FOR THE MEASURING RANGE 0 TO 100% LEL

Gas/vapor gas	Chemical symbol	Test gas concentration in Vol%	Reading displayed in % LEL (if calibrated to 0.85 Vol% propane)	Cross- sensitivity factor
Acetone	C ₃ H ₆ O	1.25	18	2.78
Acetylene	C_2H_2	_	out of range	_
Benzene	C ₆ H ₆	0.6	20	2.50
Butadiene -1,3	C ₄ H ₆	0.7	20	2.50
i-Butane	(CH ₃) ₃ CH	0.75	41	1.22
n-Butane	C ₄ H ₁₀	0.7	42	1.19
i-Butene	(CH ₃) ₂ C=CH ₂	0.8	31	1.61
n-Butanol	C ₄ H ₁₀ O	0.85	25	2.0
2-Butanone (MEK)	C ₄ H ₈ O	0.75	22	2.27
Butyl Acetate	C ₆ H ₁₂ O ₂	0.60	20	2.5
Cyclohexane	C ₆ H ₁₂	0.50	15	3.33
Cyclopentane	C5H ₁₀	0.7	47	1.06
Dimethyl Aether	C ₂ H ₆ O	1.35	51	0.98
Diethylamine	C ₄ H ₁₁ N	0.85	44	1.14
Diethyl Aether	(C ₂ H ₅) ₂ O	0.85	46	1.09
Ethane	C ₂ H ₆	1.2	65	0.77
Ethylalcohol	C ₂ H ₆ O	1.55	41	1.22
Ethene	C ₂ H ₄	1.2	15	3.33
Ethylacetate	C ₄ H ₈ O ₂	1.0	35	1.43
Ethyl acetate	C ₅ H ₈ O ₂	0.85	26	1.92
n-Heptane	C ₇ H ₁₆	0.55	36	1.39
n-Hexane	C ₆ H ₁₄	0.5	34	1.47
Methane	CH ₄	2.2	37	1.35
Methanol	CH ₄ O	3,0	92	0,54
n-Methoxy-2-Propanol	$C_4H_{10}O_2$	0.9	26	1.92
Methyl-tert-butyl aether	C ₅ H ₁₂ O	0.80	59	0.85
Methyl chloride	CH ₃ CI	3.8	47	1.06
Methylen chlorid	CH ₂ Cl ₂	6.5	on request	_
Methyl ethyl ketone	C ₄ H ₈ O	0.75	on request	_
n-Nonane	C9H ₂₀	0.35	on request	
n-Octane	C8H ₁₈	0.40	20	2.50
n-Pentane	C5H ₁₂	0.55	36	1.39
Propane	C ₃ H ₈	0.85	50	1.00
n-Propylalcohol	C ₃ H ₇ OH	1.05	40	1.25
Propene	C ₃ H ₆	0.90	31	1.61
Propylene oxide	C ₃ H ₆ O	0.95	49	1.02
Toluene	C ₆ H ₅ CH ₃	0.50	19	2.63
o-Xylene	C ₆ H ₄ (CH ₃) ₂	0.5	11	4.55

0000 0000

DrägerSensor® Smart IR Ex

DrägerSensor® Smart IR CO₂

Order no. 68 10 590

Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger X-am 7000	yes	yes	5 years	

MARKET SEGMENTS

Telecommunications, shipping, sewage, gas supply companies, refineries, chemical industry, mining, landfills, biogas plants, tunneling.

TECHNICAL SPECIFICATIONS

Detection limit:	0.01 Vol%
Resolution:	0.01 Vol% CO ₂
Measurement range:	0 to 5 Vol% CO ₂
Ambient conditions	
Temperature:	(-20 to 60)°C (-4 to 140)°F
Humidity:	(10 to 95)% RH
Pressure:	(700 to 1,300) hPa
Warm-up time:	≤ 4 minutes

FOR THE MEASUREMENT RANGE 0 TO 5 VOL.-% CO2

Response time	Diffusion mode ≤ 20 seconds (T ₅₀)			
	Diffusion mode ≤ 45 seconds (T ₉₀)			
	Pump mode ≤ 15 seconds (T ₅₀)			
	Pump mode ≤ 30 seconds (T ₉₀)			
Measurement accuracy				
Zero point:	≤ ± 0.01 Vol% CO ₂			
Sensitivity:	≤ ± 0.06 Vol% CO ₂ at 2.5 Vol%			
Linearity error, typical:	≤ ± 5% of measured value			
Long-term drift				
Zero point:	≤ ± 0.004 Vol% CO ₂ /month			
Sensitivity:	≤ ± 3% of measured value/month at 2.5 Vol%			
Influence of temperature				
Zero point:	≤ ± 0.002 Vol% CO ₂ /K at (-20 to 60)°C (-4 to 140)°F			
Sensitivity:	≤ ± 0.4% of measured value/K at 2.5 Vol% and (-20 to 60)°C			
	(-4 to 140)°F			
Effect of humidity, at 40°C (104 °F)				
(0 to 95% RH, non-condensing)				
Zero point:	≤ ± 0.02 Vol% CO ₂			
Test gas:	2.5 Vol% CO ₂			

With its extremely low drift and low detection limit, this sensor is ideal for measuring carbon dioxide inside closed spaces, and for monitoring CO_2 in the workplace. As with all other IR sensors, it requires little maintenance and has a high level of long-term stability.

Effect of humidity, at 40°C (104 °F) (0 to 95% RH, non-condensing)

Zero point:

Test gas:

Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger X-am 7000	yes	yes	5 years	
MARKET SEGME				
Biogas, process gas	5			
TECHNICAL SPE	CIFICATIONS			
Detection limit:		.4 Vol%		
Resolution:	0	.2 Vol% CO ₂		
Measurement range	: 0	to 100 Vol% C	O ₂	
Ambient conditions				
Temperature:	(-	-20 to 60)°C (−4	to 140)°F	
Humidity:	(*	10 to 95)% RH		
Pressure:	(7	700 to 1,300) hP	a	
Warm-up time:	≤	4 minutes		
FOR THE MEASU	REMENT RAN	GE 0 TO 100	VOL% CO2	2
FOR THE MEASU Response time:		GE 0 TO 100 Diffusion mode ≤		
			20 seconds (T ₅₀)
)iffusion mode ≤	20 seconds (** 65 seconds (**	 Γ ₅₀) Γ ₉₀)
	D D P)iffusion mode ≤)iffusion mode ≤	20 seconds (** 65 seconds (** seconds (T ₅₀)	- 17 ₅₀) 1 ₉₀)
	C C P P	Diffusion mode ≤ Diffusion mode ≤ Dump mode ≤ 20	20 seconds (** 65 seconds (** seconds (T ₅₀)	- 17 ₅₀) 1 ₉₀)
Response time:	C C P P acy	Diffusion mode ≤ Diffusion mode ≤ Dump mode ≤ 20	20 seconds (765 seconds (T ₅₀) seconds (T ₉₀)	- 17 ₅₀) 1 ₉₀)
Response time: Measurement accur	C C P P acy	oiffusion mode ≤ Oiffusion mode ≤ Oump mode ≤ 20 Oump mode ≤ 65	20 seconds (** 65 seconds (** seconds (T ₅₀) seconds (T ₉₀)	T ₅₀) T ₉₀))
Response time: Measurement accur Zero point:	© C P P P P P P P P P P P P P P P P P P	biffusion mode ≤ biffusion mode ≤ bump mode ≤ 20 bump mode ≤ 65 ± 0.2 Vol% CC ± 2.0 Vol% CC	20 seconds (** 65 seconds (** seconds (T ₅₀) seconds (T ₉₀) 2 2 2 at 50 Vol%	T ₅₀) (T ₉₀)
Response time: Measurement accur Zero point: Sensitivity:	© C P P P P P P P P P P P P P P P P P P	biffusion mode ≤ biffusion mode ≤ bump mode ≤ 20 bump mode ≤ 65 ± 0.2 Vol% CC ± 2.0 Vol% CC	20 seconds (** 65 seconds (** seconds (T ₅₀) seconds (T ₉₀) 2 2 2 at 50 Vol%	-T ₅₀) (T ₉₀)
Measurement accur Zero point: Sensitivity: Linearity error, typic	C C P P Accy ≤ ≤ al: ≤	biffusion mode ≤ biffusion mode ≤ bump mode ≤ 20 bump mode ≤ 65 ± 0.2 Vol% CC ± 2.0 Vol% CC	20 seconds ($^{\circ}$ 65 seconds ($^{\circ}$ 5 seconds ($^{\circ}$ 5 seconds ($^{\circ}$ 6 seconds ($^{\circ}$ 7 seconds ($^{\circ}$ 7 seconds ($^{\circ}$ 7 seconds ($^{\circ}$ 8 seconds	T ₅₀) (T ₉₀)
Measurement accur Zero point: Sensitivity: Linearity error, typic Long-term drift	C C C P P	Diffusion mode \leq Diffusion mode \leq Diffusion mode \leq Dump mode \leq 20 Dump mode \leq 65	20 seconds ($^{\circ}$ 65 seconds ($^{\circ}$ Seconds	T ₅₀) (T ₉₀) (measured value (whichever is higher)
Measurement accur Zero point: Sensitivity: Linearity error, typic Long-term drift Zero point:	acy	biffusion mode ≤ biffusion mode ≤ 20 tump mode ≤ 20 tump mode ≤ 65 \pm 0.2 Vol% CO \pm 1 Vol% CO \pm 1 Vol% CO \pm 1 Vol% CO \pm 1.2 Vol% CO	20 seconds ($^{\circ}$ 65 seconds ($^{\circ}$ Seconds	T ₅₀) (T ₉₀) (measured value (whichever is higher)
Measurement accur Zero point: Sensitivity: Linearity error, typic Long-term drift Zero point: Sensitivity:	acy	biffusion mode ≤ biffusion mode ≤ 20 biffusion mode ≤ 20 tump mode ≤ 65 tump mode ≤ 65 \pm 0.2 Vol% CO \pm 1 Vol% CO2 \pm 0.2 Vol% CO2 \pm 3% of measure	20 seconds ($^{\circ}$ 65 seconds ($^{\circ}$ Seconds	T ₅₀) (T ₉₀) (measured value (whichever is higher)
Measurement accur Zero point: Sensitivity: Linearity error, typic Long-term drift Zero point: Sensitivity: Influence of temper	acy	biffusion mode ≤ biffusion mode ≤ 20 tump mode ≤ 20 tump mode ≤ 65 \pm 0.2 Vol% CO \pm 1 Vol% CO \pm 1 Vol% CO \pm 3% of measure \pm 0.004 Vol%	20 seconds ($^{\circ}$ 65 seconds ($^{\circ}$ seconds	T ₅₀) T ₉₀) measured value (whichever is higher)

≤ ± 0.5 Vol.-% CO₂ 50 Vol.-% CO₂

This sensor is especially suitable if you need to measure high concentrations of CO_2 in process gas, for example. CO_2 concentrations of up to 100 Vol.-% can be detected reliably with this sensor. Other qualities that distinguish this sensor are low cross-sensitivities, long-term stability, and minimal maintenance.

DrägerSensor® IR CO₂

Order no. 68 12 190

Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger X-am 5600		yes	5 years	

MARKET SEGMENTS

Telecommunications, shipping, sewage, gas supply companies, refineries, chemical industry, mining, landfills, biogas plants, tunneling.

TECHNICAL SPECIFICATIONS

Detection limit:	0.01 Vol% CO ₂
Resolution:	0.01 Vol% CO ₂ or 50 ppm CO ₂ (dependent on measuring range)
Measurement range:	0 to 5 Vol% CO ₂
Ambient conditions	
Temperature:	(-20 to 50)°C (-4 to 120)°F
Humidity:	(10 to 95)% RH
Pressure:	(700 to 1,300) hPa
Warm-up time:	≤ 5 minutes

FOR THE MEASUREMENT RANGE 0 TO 5 VOL.-% CO2

Response time:	Diffusion mode ≤ 15 seconds (T ₅₀)
	Diffusion mode ≤ 20 seconds (T ₉₀)
	Pump mode ≤ 10 seconds (T ₅₀)
	Pump mode ≤ 15 seconds (T ₉₀)
Measurement accuracy	
Zero point:	≤ ± 0.01 Vol% CO ₂
Sensitivity:	≤ ± 0.08 Vol% CO ₂ at 2.5 Vol%
Linearity error, typical:	\leq ± 3.5% of measured value or \leq ± 1.5% of the highest figure in the
	set measuring range (whichever is higher)
Long-term drift	
Zero point:	≤ ± 0.005 Vol% CO ₂ /month
Sensitivity:	≤ ± 0.1 Vol% CO ₂ /6 months
Influence of temperature	
Zero point:	≤ ± 0.0002 Vol% CO ₂ /K at (-20 to 50)°C (-4 to 120)°F
Sensitivity:	≤ ± 0.0015 Vol% CO ₂ /K at 2.5 Vol% and
	(-20 to 50)°C (-4 to 120)°F
Effect of humidity, at 40°C (104 °F)	
(0 to 95% RH, non-condensing)	
Zero point:	≤ ± 0.0001 Vol% CO ₂ /% RH
Test gas:	2.5 Vol% CO ₂

With its extremely low drift and low detection limit, this sensor is ideal for measuring carbon dioxide inside closed spaces, and for monitoring CO_2 in the workplace. As with all other IR sensors, it requires little maintenance and has a high level of long-term stability.

DrägerSensor® DUAL IR Ex/CO₂

Order no. 68 11 960

Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger X-am 5600	_	yes	5 years	_

MARKET SEGMENTS

Telecommunications, shipping, sewage, gas supply companies, refineries, chemical industry, mining, landfills, biogas plants, tunneling.

TECHNICAL SPECIFICATIONS

Detection limit:	1% LEL/0.2 Vol% for IR Ex		
	0.01 Vol% CO ₂ for IR CO ₂		
Resolution:	1% LEL/0.1 Vol% for IR Ex (dependent on measuring range)		
	0.01 Vol% CO_2 or 50 ppm CO_2 for IR CO_2		
	(dependent on measuring range)		
Measurement range:	0 to 100% LEL/0-100 Vol% CH ₄		
	0 to 5 Vol% CO ₂		
Ambient conditions			
Temperature:	(-20 to 50)°C (-4 to 120)°F		
Humidity:	(10 to 95)% RH		
Pressure:	(700 to 1,300) hPa		
Warm-up time:	≤ 5 minutes		

FOR THE MEASUREMENT RANGE 0 TO 100% LEL OR 0 TO 4.4 VOL.-% CH₄ WHEN CALIBRATED WITH METHANE IN AIR:

Response time:	Diffusion mode ≤ 10 seconds (T ₅₀)
	Diffusion mode ≤ 20 seconds (T ₉₀)
	Pump mode \leq 10 seconds (T ₅₀)
	Pump mode ≤ 15 seconds (T ₉₀)
Measurement accuracy	
Zero point:	≤ ± 1.0% LEL methane
Sensitivity:	≤ ± 1.5% LEL methane at 50% LEL
Linearity error, typical:	≤ ± 3.5% of measured value or ≤ ± 1.5% of the highest figure in the
	set measuring range (whichever is higher)
Long-term drift	
Zero point:	≤ ± 0.2% LEL methane/month
Sensitivity:	≤ ± 4.5% LEL methane/6 months at 50% LEL
Influence of temperature	
Zero point:	≤ ± 0.015% LEL methane/K at (-20 to 50)°C (-4 to 120)°F
Sensitivity:	≤ ± 0.03% LEL methane/K at 50% LEL and
	(-20 to 50)°C (-4 to 120)°F
Effect of humidity, at 40°C (104 °F)	
(0 to 95% RH, non-condensing)	
Zero point:	≤ ± 0.005% LEL methane/% RH

FOR THE MEASUREMENT RANGE 0 TO 100% LEL OR 0 TO 1.7 VOL.-% $C_{3}H_{8}$ When calibrated with propane in air

Response time:	Diffusion mode ≤ 15 seconds (T ₅₀)		
	Diffusion mode ≤ 25 seconds (T ₉₀)		
	Pump mode ≤ 15 seconds (T ₅₀)		
	Pump mode ≤ 20 seconds (T ₉₀)		
Measurement accuracy			
Zero point:	≤ ± 1.0% LEL propane		
Sensitivity:	≤ ± 1.25% LEL propane		
Linearity error, typical:	≤ ± 3.0% of measured value or ≤ ± 1.0% of highest measuring range		
	figure (whichever is higher)		
Long-term drift			
Zero point:	≤ ± 0.3% LEL propane/month		
Sensitivity:	≤ ± 3.0% LEL propane/6 months		
Influence of temperature			
Zero point:	≤ ± 0.02% LEL propane/K		
Sensitivity:	≤ ± 0.025% LEL propane/K		
Effect of humidity, at 40°C (104 °F)			
(0 to 95% RH, non-condensing)			
Zero point:	≤ ± 0.008% LEL propane/% RH		
FOR THE MEASUREMENT R	ANGE 0 TO 5 VOL% CO ₂		
Response time:	Diffusion mode ≤ 15 seconds (T ₅₀)		
	Diffusion mode ≤ 20 seconds (T ₉₀)		
	Pump mode ≤ 10 seconds (T ₅₀)		
	Pump mode ≤ 15 seconds (T ₉₀)		
Measurement accuracy			
Zero point:	≤ ± 0.01 Vol% CO ₂		
Sensitivity:	≤ ± 0.08 Vol% CO ₂ at 2.5 Vol%		
Linearity error, typical:	\leq ± 3.5% of measured value or \leq ± 1.5% of highest measuring range		
	figure (whichever is higher)		
Long-term drift			
Zero point:	≤ ± 0.005 Vol% CO ₂ /month		
Sensitivity:	≤ ± 0.1 Vol% CO ₂ /6 months		
Influence of temperature			
Zero point:	≤ ± 0.0002 Vol% CO ₂ /K at (-20 to 50)°C (-4 to 120)°F		
Sensitivity:	≤ ± 0.0015% Vol% CO ₂ /K at 2.5 Vol% and		
-	(-20 to 50)°C (-4 to 120)°F		
Effect of humidity, at 40°C (104 °F)			
Effect of humidity, at 40°C (104 °F) (0 to 95% RH, non-condensing)			
• • • • • • • • • • • • • • • • • • • •	≤ ± 0.0001 Vol% CO ₂ /% RH		
(0 to 95% RH, non-condensing)	≤ ± 0.0001 Vol% CO ₂ /% RH 2 Vol% CH ₄ or 50 Vol% CH ₄		

This sensor enables flammable gases and carbon dioxide to be measured simultaneously with just one sensor. As with all other IR sensors, it requires little maintenance, has a high level of long-term stability, and is highly resistant to poisoning.

COMPATIBLE GASES AND MEASURING RANGES:

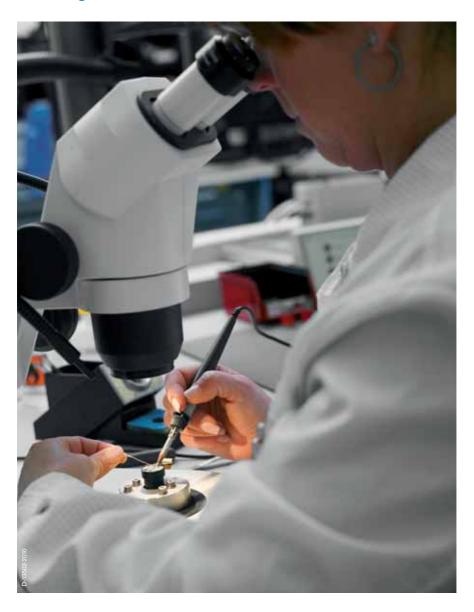
Gas	Data set name	Measurement range
Ethene	c ₂ h ₄	0 to 100% LEL 2)
Ethene	C ₂ H ₄	0 to 100 Vol%
Ethanol	EtOH	0 to 100% LEL 2)
Ex	Ex	0 to 100% LEL
JetFuel	JetF	0 to 100% LEL 2)
Methane	ch ₄	0 to 100% LEL 2)
Methane	CH ₄	0 to 100 Vol%
n-butane	buta	0 to 100% LEL 2)
n-butane	BUTA	0 to 100 Vol%
n-nonane	Nona	0 to 100% LEL 2)
n-pentane	Pent	0 to 100% LEL 2)
Propane	c ₃ h ₄	0 to 100% LEL 2)
Propane	C ₃ H ₈	0 to 100 Vol%
Toluene	Tolu	0 to 100% LEL 2)

DETECTION OF OTHER GASES AND VAPORS FOR THE MEASURING RANGE 0 TO 100% LEL

Gas/vapor gas	Chemical symbol	Test gas concentration	Reading displayed in % LEL	Cross- sensitivity
		in Vol%	(if calibrated to	factor
			0.85 Vol% propane)	
Acetone	C ₃ H ₆ O	1.25	18	2.78
Acetylene	C ₂ H ₂		out of range	_
Benzene	C ₆ H ₆	0.6	20	2.50
Butadiene -1,3	C ₄ H ₆	0.7	20	2.50
i-Butane	(CH ₃) ₃ CH	0.75	41	1.22
n-Butane	C ₄ H ₁₀	0.7	42	1.19
i-Butene	(CH ₃) ₂ C=CH ₂	0.8	31	1.61
n-Butanol	C ₄ H ₁₀ O	0.85	25	2.0
2-Butanone (MEK)	C ₄ H ₈ O	0.75	22	2.27
Butyl Acetate	C ₆ H ₁₂ O ₂	0.60	20	2.5
Cyclohexane	C ₆ H ₁₂	0.50	15	3.33
Cyclopentane	C5H ₁₀	0.7	47	1.06
Dimethyl Aether	C ₂ H ₆ O	1.35	51	0.98
Diethylamine	C ₄ H ₁₁ N	0.85	44	1.14
Diethyl Aether	(C ₂ H ₅) ₂ O	0.85	46	1.09

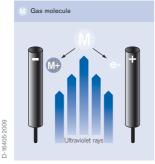
²⁾ LEL figures depend on country-specific standards.

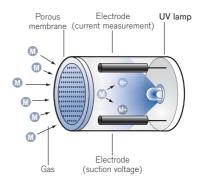
DETECTION OF OTHER GASES AND VAPORS FOR THE MEASURING RANGE 0 TO 100% LEL


$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	LEL sensitivity
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	factor
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	pane)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.77
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.22
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.33
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.43
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.92
Methane CH_4 2.2 37 Methanol CH_4O 3.0 92 n-Methoxy-2-Propanol $C_4H_{10}O_2$ 0.9 26 Methyl-tert-butyl aether $C_5H_{12}O$ 0.80 59	1.39
Methanol CH_4O $3,0$ 92 n-Methoxy-2-Propanol $C_4H_{10}O_2$ 0.9 26 Methyl-tert-butyl aether $C_5H_{12}O$ 0.80 59	1.47
n-Methoxy-2-Propanol $C_4H_{10}O_2$ 0.9 26 Methyl-tert-butyl aether $C_5H_{12}O$ 0.80 59	1.35
Methyl-tert-butyl aether C ₅ H ₁₂ O 0.80 59	0,54
	1.92
	0.85
Methyl chloride CH ₃ Cl 3.8 47	1.06
Methylen chlorid CH ₂ Cl ₂ 6.5 on request	
Methyl ethyl ketone C ₄ H ₈ O 0.75 on request	_
n-Nonane C9H ₂₀ 0.35 on request	-
n-Octane C8H ₁₈ 0.40 20	2.50
n-Pentane C5H ₁₂ 0.55 36	1.39
Propane C ₃ H ₈ 0.85 50	1.00
n-Propylalcohol C ₃ H ₇ OH 1.05 40	1.25
Propene C ₃ H ₆ 0.90 31	1.61
Propylene oxide C ₃ H ₆ O 0.95 49	1.02
Toluene C ₆ H ₅ CH ₃ 0.50 19	2.63
o-Xylene C ₆ H ₄ (CH ₃) ₂ 0.5 11	4.55

-10120-200

DrägerSensor® Smart IR CO₂


4.5 Dräger PID sensors



Many flammable gases and vapors are toxic to humans long before they reach the lower explosion limit (LEL). For this reason, personal protection in the workplace ideally includes the additional measurement of ppm levels of volatile organic substances using a PID sensor.

The air is drawn into the measuring chamber through the gas inlet. In the chamber, a UV lamp produces photons, which ionize certain molecules within the flow of gas. A relatively high amount of energy is required to ionize the air's permanent gases such as noble gases, nitrogen, oxygen, carbon dioxide, and water vapor. For this reason, these gases do not interfere with the measurement of the harmful substances. Most of the organic substances recognized as dangerous (such as hydrocarbons) are ionized and subjected to the electrical field between the electrodes in the measuring chamber. The strength of the resulting current is directly proportional to the concentration of ionized molecules inside the chamber. This makes it possible to determine the concentration of harmful substance in the air.

PID sensor

Ionization energy and UV lamps

lonization energy is measured in electron volts (eV) and defines the amount of energy required to bring a molecule into the ionized (charged) state. Ionization energy is something specific to each material, like the boiling point and vapor pressure. For a substance to be ionized, its ionization energy must be lower than the photon energy from the lamp used in the PID. Two types of lamps are commonly used – the 10.6-eV lamp and the 11.7-eV lamp. This enables a PID to detect whole groups of harmful substances, while it can also be used to measure single substances if calibrated accordingly.

Calibration and response factors

Isobutylene is used to calibrate a PID, unless the actual substance being measured can be used. The relative sensitivity to other substances is then expressed in terms of response factors. If a substance is detected with greater sensitivity than isobutylene, then its response factor is less than one. Substances that are detected with less sensitivity than isobutylene have a response factor greater than one.

FOR EXAMPLE:

Substance	Ionization energy	Response factor	
Benzene	9.25 eV	0.5	
Cyclohexane	9.98 eV	1.3	

DrägerSensor® Smart PID

Order no. 83 19 100

Used in	Plug & Play	Replaceable	Guaranty	UV lamp
Dräger X-am 7000	yes	yes	1 year	10.6 eV

MARKET SEGMENTS

Chemical industry, painters, storage and use of fuels (e.g. gas stations)

TECHNICAL SPECIFICATIONS

0 :
2 ppm isobutylene
1 ppm up to 100 ppm
2 ppm from 100 to 250 ppm
5 ppm from 250 ppm upwards
0 to 2,000 ppm isobutylene
(-20 to 60)°C (-4 to 140)°F
(10 to 95)% RH
(700 to 1,300) hPa
4 minutes

FOR THE MEASUREMENT RANGE 1 TO 2,000 PPM WHEN CALIBRATED WITH **ISOBUTYLENE IN AIR:**

Response time:	Diffusion mode ≤ 15 seconds (T ₂₀)
	Diffusion mode ≤ 50 seconds (T ₉₀)
	Pump mode \leq 10 seconds (T ₂₀)
	Pump mode ≤ 25 seconds (T ₉₀)
Repeatability	
Zero point:	≤ ± 1 ppm isobutylene
at 100 ppm isobutylene:	≤ ± 2 ppm isobutylene
Linearity error, typical:	≤ ± 5% of measured value
Pressure effect	≤ ± 0.1% of measured value/hPa
Effect of humidity, at 40°C (104 °F)	
(0 to 90% RH, non-condensing)	
Zero point:	≤ ± 0.06 ppm isobutylene/% RH
at 100 ppm isobutylene:	≤ ± 0.15 ppm isobutylene/% RH
Test gas:	approx. 100 ppm i-C ₄ H ₈ (isobutylene)

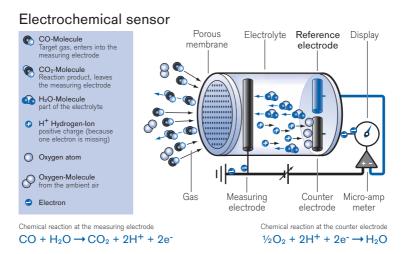
The PID can be used to detect numerous volatile organic compounds (VOCs). More than 20 of the VOCs most commonly used in industry are stored in its data memory. Other gases can be added to the memory on the customer's request.

GASES STORED IN THE MEMORY

Gas/vapor	CAS no.	Data set name	Measurement
			range
Acetone	67-64-1	ACTO	0-2,000 ppm
(-)-alpha-pinene	7785-26-4	aPIN	0-1,000 ppm
Benzene	71-43-2	BENZ	0-1,000 ppm
Chlorobenzene	108-90-7	CLBZ	0-3,000 ppm
Cyclohexane	110-82-7	CYHE	0-3,000 ppm
Diesel		DESL	0-2,000 ppm
Ethyl acetate	141-78-6	ETAC	0-5,000 ppm
Ethylbenzene	100-41-4	ETBZ	0-1,500 ppm
Gasoline		GASO	0-2,000 ppm
Isobutylene	115-11-7	IBUT	0-2,000 ppm
Jet fuel	-	JP8	0-1,000 ppm
Methyl bromide	74-83-9	MEBR	0-4,000 ppm
Methyl ethyl ketone	78-93-3	MEK	0-1,000 ppm
Methyl tert-butyl ether (MTBE)	1634-04-4	MTBE	0-2,000 ppm
n-nonane	111-84-2	NONA	0-3,000 ppm
n-octane	111-65-9	OCTA	0-5,000 ppm
Styrene	100-42-5	STYR	0-1,500 ppm
Toluene	108-88-3	TOLU	0-1,500 ppm
Trichloroethylene	79-01-6	TCE	0–1,500 ppm
Vinyl chloride	75-01-4	VC	0-3,000 ppm
Xylene	1330-20-7	XYLE	0–1,500 ppm

The standard gas is: Isobutylene - 0 to 2,000 ppm.

Other gases can be added to the memory on the customer's request.


4.6 Electrochemical sensors

Many toxic gases are highly reactive and can change their chemical composition under certain conditions. An electrochemical sensor is a micro-reactor, which produces a very small but measurable current when reactive gases are present. As in a normal household battery, this involves an electrochemical process, since the chemical transformation produces electrons.

The basic principle behind an electrochemical sensor involves at least two electrodes (a measuring electrode and a counter-electrode), which have contact with each other in two ways: first, through an electrically conductive medium (electrolyte, meaning a fluid that conducts ions) and, second, through an external electrical circuit (electron conductor). The electrodes are made of a special material that also has catalytic characteristics so that certain chemical reactions take place at what is known as the three-phase zone where gas, solid catalyzer, and liquid electrolyte meet. A dual-electrode sensor (measuring and counter-electrode) does, however, have many drawbacks. For instance, if high concentrations of gas occur, this leads to higher currents in the sensor and, therefore, to a drop in voltage. The drop in voltage, in turn, changes the preset sensor voltage. This can lead to unusable readings or, in the worst case, it can cause the chemical reaction inside the sensor to come to a halt during the measurement process.

For this reason, the Dräger XS and XXS sensors contain a third electrode known as the reference electrode, which does not have a current passing through it, and whose potential therefore remains constant. It continuously measures the sensor voltage at the measuring electrode, which can be corrected using the sensor's control enhancement. This produces a considerably improved measuring quality (e.g. in terms of linearity and selectivity) and a longer life time.

The Dräger XS sensors are known as "smart" sensors and contain their own EEPROM. This memory module contains all of the sensor's relevant data, which, when plugged into Dräger X-am 7000 is retrieved. The device then automatically adjusts itself to these figures (e.g. calibration figures, alarm level). This "plug & play" function enables sensors to be swapped between devices without performing operations such as a re-calibration. XXS sensors are used in the following devices: Dräger Pac 3500 to 7000 and Dräger X-am 1700/2000/5000 and to 5600. In this case, the sensor-relevant data is stored in the device. When a sensor is changed, this information is transferred using a software application.

CONTENTS XS SENSORS

XS Sensors	Chemical name (synonym)	
XS EC Amine	amine like methylamíne, ethylamine,	136
	dimethylamine etc.	
XS EC Cl ₂	chlorine	138
XS EC CIO ₂	chlorine dioxide	140
XS EC CO	carbon monoxide	142
XS 2 CO	carbon monoxide	142
XS R CO	carbon monoxide	142
XS CO micro Pac	carbon monoxide	142
XS EC CO HC	carbon monoxide	148
XS EC CO ₂	carbon dioxide	150
XS EC COCI ₂	phosgene	152
XS EC H ₂	hydrogen	154
XS EC H ₂ HC	hydrogen	156
XS EC HCN	hydrogen cyanide	158
XS EC HF/HCI	hydrogen chloride / hydrogen fluoride	160
XS EC H ₂ S 100	hydrogen sulfide	162
XS 2 H ₂ S	hydrogen sulfide	162
XS R H ₂ S	hydrogen sulfide	162
XS H ₂ S microPac	hydrogen sulfide	162
XS EC H ₂ S HC	hydrogen sulfide	168
XS EC 2 H ₂ S SR	hydrogen sulfide	170
XS EC H ₂ O ₂	hydrogen peroxide	172
XS EC Hydrazine	hydrazine	174
XS EC Hydrazine D	hydrazine	176
XS EC Hydride	hydride like hydrogen phosphide, phosphine,	178
	arsine etc.	
XS EC NH ₃	ammonia	180
XS EC NO	nitrogen monoxide	182
XS EC NO ₂	nitrogen dioxide	184
XS EC Odorant	sulfur compounds like tetrahydrothiophene,	186
	methylmercapten, ethylmercaptan etc.	
XS EC OV	organic gases and vapors like ethylene oxide,	188
	ethene, propene etc.	
XS EC OV-A	organic gases and vapors like ethylene oxide,	190
	styrene isobutylene etc.	

CONTENTS XS SENSORS

XS Sensors	Chemical name (synonym)	
XS EC O ₂ -LS	oxygen	192
XS 2 O ₂	oxygen	192
XS R O ₂	oxygen	192
XS O ₂ microPac	oxygen	192
XS EC O ₂ 100	oxygen	196
XS EC PH ₃ HC	hydrogen phosphide, phosphine	198
XS EC SO ₂	sulfur dioxide	200
XS EC THT	tetrahydrothiophene	202

DrägerSensor® XS EC Amine

Order no. 68 09 545

Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger X-am 7000	yes	yes	1 year	_

MARKET SEGMENTS

Foundries, refineries, power plants

TECHNICAL SPECIFICATIONS

Detection limit:	2 ppm		
Resolution:	1 ppm		
Measurement range:	0 to 100 ppm CH ₃ NH ₂ (methylamine)		
	0 to 100 ppm (CH ₃) ₂ NH (dimethylamine)		
	0 to 100 ppm (CH ₃) ₃ N (trimethylamine)		
	0 to 100 ppm C ₂ H ₅ NH ₂ (ethylamine)		
	0 to 100 ppm (C ₂ H ₅) ₂ NH (diethylamine)		
	0 to 100 ppm (C ₂ H ₅) ₃ N (triethylamine)		
Response time:	≤ 30 seconds at 20 °C or 68 °F (T ₅₀)		
Measurement accuracy			
Zero point:	≤ ± 2 ppm		
Sensitivity:	≤ ± 3% of measured value		
Long-term drift, at 20°C (68°F)			
Zero point:	≤ ± 2 ppm/month		
Sensitivity:	≤ ± 3% of measured value/month		
Warm-up time:	≤ 12 hours		
Ambient conditions			
Temperature:	(-40 to 50)°C (-40 to 122)°F		
Humidity:	(10 to 90)% RH		
Pressure:	(700 to 1,300) hPa		
Influence of temperature			
Zero point:	≤ ± 5 ppm		
Sensitivity:	≤ ± 5% of measured value		
Influence of humidity			
Zero point:	≤ ± 0.1 ppm/% RH		
Sensitivity:	≤ ± 0.2% of measured value/% RH		
Test gas:	approx. 50 to 100 ppm NH ₃ or one of the other target gases		
	(MA, DMA, TMA, EA, DEA, TEA)		

Six different amines can be detected using this sensor. It is sufficient to calibrate it using an ammonia test gas. By doing so, all of the other amines are then automatically calibrated.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of amine. To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES

Gas/vapor	Chem. symbol	Concentration	Display in ppm NH ₃
Acetone	CH ₃ COCH ₃	1,000 ppm	No effect
Carbon dioxide	CO ₂	1.5 Vol. %	≤ 5(-)
Carbon monoxide	CO	200 ppm	No effect
Chlorine	Cl ₂	10 ppm	≤ 20 ⁽⁻⁾
Ethene	C ₂ H ₄	1,000 ppm	≤ 3
Ethine	C ₂ H ₂	200 ppm	No effect
Hydrogen	H ₂	1,000 ppm	≤ 3
Hydrogen cyanide	HCN	25 ppm	≤ 3
Hydrogen sulfide	H ₂ S	20 ppm	≤ 50
Methane	CH ₄	10 Vol. %	No effect
Methanol	CH₃OH	200 ppm	≤ 3
Nitrogen dioxide	NO ₂	20 ppm	≤ 10(-)
Nitrogen monoxide	NO	20 ppm	≤ 10
Phosphine	PH ₃	5 ppm	≤ 8
Sulfur dioxide	SO ₂	20 ppm	No effect
Tetrahydrothiophene	C ₄ H ₈ S	10 ppm	≤ 10

DrägerSensor® XS EC Cl₂

Order no. 68 09 165

Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger X-am 7000	yes	yes	1 year	

MARKET SEGMENTS

Food and beverage, inorganic chemicals, manufacture of plastics, measuring hazardous material, pulp and paper, power generation, sewage plants water treatment.

TECHNICAL SPECIFICATIONS

Detection limit:	0.1 ppm
Resolution:	0.05 ppm
Measurement range:	0 to 20 ppm Cl ₂ (chlorine)
	0 to 20 ppm F ₂ (fluorine)
	0 to 20 ppm Br ₂ (bromine)
	0 to 20 ppm ClO ₂ (chlorine dioxide)
Response time:	≤ 30 seconds at 20 °C or 68 °F (T ₉₀)
Measurement accuracy	_
Zero point:	≤ ± 0.05 ppm
Sensitivity:	≤ ± 2% of measured value
Long-term drift, at 20°C (68°F)	
Zero point:	≤ ± 0.2 ppm/year
Sensitivity:	≤ ± 2% of measured value/month
Warm-up time:	≤ 1 hour
Ambient conditions	-
Temperature:	(-40 to 50)°C (-40 to 122)°F
Humidity:	(10 to 90)% RH
Pressure:	(700 to 1,300) hPa
Influence of temperature	_
Zero point:	 ≤ ± 0.1 ppm
Sensitivity:	≤ ± 5% of measured value
Influence of humidity	_
Zero point:	No effect
Sensitivity:	≤ ± 0.4% of measured value/% RH
Test gas:	approx. 5 to 10 ppm Cl_2 or one of the other target gases: F_2 , Br_2 ,
	CIO ₂

This sensor is suitable for monitoring concentrations of chlorine, bromine, fluorine, and chlorine dioxide in the ambient air. It is sufficient to calibrate the sensor using a chlorine test gas; by doing so, all of the other target gases are then automatically calibrated.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of chlorine. To be sure, please check if gas mixtures are present.

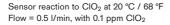
RELEVANT CROSS-SENSITIVITIES

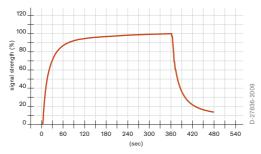
Gas/vapor	s/vapor Chem. symbol		Display in ppm Cl ₂	
Ammonia	NH ₃	50 ppm	≤ 0.5(-)	
Carbon dioxide	CO ₂	1.5 Vol. %	No effect	
Carbon monoxide	CO	100 ppm	No effect	
Ethene	C ₂ H ₄	1,000 ppm	No effect	
Ethine	C ₂ H ₂	200 ppm	No effect	
Hydrogen	H ₂	1,000 ppm	No effect	
Hydrogen cyanide	HCN 20 ppm H ₂ S 20 ppm (CH ₃) ₂ CHOH 1 Vol. %	20 ppm	≤ 0.1 ≤ 0.1(-) No effect	
Hydrogen sulfide		20 ppm		
i-propanol		1 Vol. %		
Methane	CH ₄	4 Vol. %		
Methanol	CH₃OH	500 ppm	≤ 0.3(-)	
Nitrogen dioxide	NO ₂	20 ppm	≤ 0.2	
Nitrogen monoxide	NO	25 ppm	No effect	
Phosphine	PH ₃	10 ppm	No effect	
Sulfur dioxide	SO ₂	10 ppm	≤ 0.2	
Tetrahydrothiophene	C ₄ H ₈ S	1,000 ppm	No effect	

DrägerSensor® XS EC ClO₂

Order no. 68 11 360

Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger X-am 7000	yes	yes	1 year	


MARKET SEGMENTS


Food and beverage, breweries, waste water treatment, swimming pools, industrial gases, pulp and paper.

TECHNICAL SPECIFICATIONS

Detection limit:	0.02 ppm	
Resolution:	0.01 ppm	
Measurement range:	0 to 20 ppm CIO ₂ (chlorine dioxide)	
Response time:	≤ 20 seconds at 20 °C or 68 °F (T ₅₀)	
Measurement accuracy		
Zero point:	≤ ± 0.02 ppm	
Sensitivity:	≤ ± 5% of measured value	
Long-term drift, at 20°C (68°F)	-	
Zero point:	≤ ± 0.03 ppm/year	
Sensitivity:	≤ ± 2% of measured value/month	
Warm-up time:	≤ 12 hours	
Ambient conditions		
Temperature:	(-20 to 50)°C (-4 to 122)°F	
Humidity:	(10 to 90)% RH	
Pressure:	(700 to 1,300) hPa	
Influence of temperature	-	
Zero point:	≤ ± 0.02 ppm	
Sensitivity:	≤ ± 5% of measured value	
Influence of humidity		
Zero point:	No effect	
Sensitivity:	≤ ± 0.1% of measured value/% RH	
Test gas:	CIO ₂ test gas between 40% and 100% of highest figure in the se	
	measuring range. Every time this sensor is used, a function test should	
	be done beforehand, for which the CIO ₂ generator (68 11 497) can be	
	used.	

The chlorine dioxide sensor is especially selective (see cross sensitivity table) and has a particularly low cross sensitivity to chlorine.

The values given in the table are standard an apply to new sensors, The values maybe fluctuate be \pm 30%. The sensor may also be sensitive to other gases (for information contact Dräger).

Gas mixtures can be displayed as the sum of all components. Gases with negative sensitivity may displace a positive display of chlorine dioxide. A check should be carried out to see if mixtures of gases are present.

RELEVANT CROSS-SENSITIVITIES

Gas/vapor	Chem. symbol	Concentration	Display in ppm CIO ₂
Ammonia	NH ₃	50 ppm	No effect
Carbon dioxide	CO ₂	10 Vol. %	No effect
Carbon monoxide	CO	200 ppm	No effect
Chlorine	Cl ₂	1 ppm	≤ 0.1
Hydrogen	H ₂	1,000 ppm	≤ 0.02
Hydrogen cyanide	HCN	10 ppm	No effect
Hydrogen sulfide	H ₂ S	20 ppm	≤ 0.5 ⁽⁻⁾
Methane	CH ₄	1 Vol. %	No effect
Methanol	CH₃OH	500 ppm	No effect
Nitrogen dioxide	NO ₂	20 ppm	≤1
Nitrogen monoxide	NO	20 ppm	≤ 0.05
Ozone	O ₃	0.5 ppm	≤ 0.05
Sulfur dioxide	SO ₂	20 ppm	No effect

DrägerSensor® XS EC CO DrägerSensor® XS 2 CO DrägerSensor® XS R CO DrägerSensor® XS CO microPac (Dräger X-am 3000 only) 68 10 030

Order no. 68 09 105 68 10 365

68 10 258

Used in	Plug & Play	Replaceable	Guaranty*	Selective filter
Dräger X-am 7000	yes	yes	3/2/5 years	D3T, 68 09 022 - replaceable for XS
				EC + XS R
				A2T, 68 10 378 - replaceable for XS-2
				Cross sensitivity of alcohols and acid
				gases (H ₂ S, SO ₂) are eleminated

MARKET SEGMENTS

Waste disposal, metal processing, petrochemicals, fertilizer production, mining and tunneling, shipping, inorganic chemicals, steel, organic chemicals, oil and gas, hazmat, biogas.

TECHNICAL SPECIFICATIONS

Detection limit:	2 ppm for XS EC / XS 2 / XS R, 6 ppm for XS microPac		
Resolution:	1 ppm		
Measurement range:	0 to 2,000 ppm CO (carbon monoxide)		
	0 to 1,000 ppm CO (carbon monoxide) for XS microPac		
Response time:	≤ 35 seconds at 20 °C or 68 °F (T ₉₀) – XS EC		
	≤ 20 seconds at 20 °C or 68 °F (T ₉₀) – XS 2		
	≤ 30 seconds at 20 °C or 68 °F (T ₉₀) – XS R		
	≤ 28 seconds at 20 °C or 68 °F (T ₉₀) – XS microPac		
Measurement accuracy			
Zero point:	≤ ± 2 ppm − XS EC / XS 2 / XS R, ≤ ± 4 ppm − XS microPac		
Sensitivity:	≤ ± 1% of measured value – XS EC / XS 2 / XS R		
	≤ 2% of measured value – XS microPac		
Long-term drift, at 20°C (68°I	F)		
Zero point:	≤ ± 1 ppm/month – XS EC / XS 2		
	≤ ± 6 ppm/year - XS R / XS microPac		
Sensitivity:	≤ ± 1% of measured value/month		
Warm-up time:	≤ 12 hours - XS EC / XS 2 / XS R, ≤ 10 minutes - XS microPac		
Ambient conditions			
Temperature:	(-20 to 50) °C (-4 to 122) °F - XS EC		
	(-40 to 50) °C (-40 to 122) °F - XS 2 / XS R / XS microPac		
Humidity:	(10 to 90)% RH		
Pressure:	(700 to 1,300) hPa		
Influence of temperature			
Zero point:	≤ ± 5 ppm		
Sensitivity:	≤ ± 0.4% of measured value/K		
Influence of humidity			
Zero point:	≤ ± 0.02 ppm/% RH – XS EC / XS microPac		
	No effect – XS 2 / XS R		
Sensitivity:	≤ ± 0.1% of measured value/% RH - XS EC / XS 2 / XS microPac		
	≤ ± 0.05% of measured value/% RH – XS R		
Test gas:	approx. 50–300 ppm CO test gas		

In addition to an outstanding linearity and a quick response time, these CO sensors are highly selective. Internal selective filters, some of which are replaceable, filter out the majority of accompanying gases such as alcohol and acidic gases like H₂S, SO₂.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by ± 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of carbon monoxide. To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES DrägerSensor® XS EC CO - 68 09 105

Gas/vapor	Chem. symbol	Concentration	Display in ppm CO without selective filter	Display in ppm CO with selective filter
Acetone	CH ₃ COCH ₃	1,000 ppm	≤ 20	≤ 1
Ammonia	NH ₃	200 ppm	≤ 1	≤ 1
Carbon dioxide	CO ₂	30 Vol. %	≤ 35	≤ 35
Chlorine	Cl2	20 ppm	≤ 1(-)	≤ 1
Dichloromethane	CH ₂ CL ₂	1,000 ppm	≤ 1	≤ 1
Ethane	C ₂ H ₆	0.2 Vol. %	≤ 1	≤ 1
Ethanol	C ₂ H ₅ OH	200 ppm	≤ 400	≤ 1
Ethene	C ₂ H ₄	10 ppm	≤ 25	≤ 25
Ethyl acetate	CH ₂ COOC ₂ H ₄	1,000 ppm	≤ 150	≤ 1
Ethine	C ₂ H2	200 ppm	≤ 500	≤ 300
Formaldehyde	НСНО	20 ppm	≤ 30	≤ 1
Hydrogen	H ₂	0.1 Vol. %	≤ 90	≤ 90
Hydrogen chloride	HCI	40 ppm	<u>≤</u> 6	≤ 1
Hydrogen cyanide	HCN	50 ppm	≤ 10	≤ 1(-)
Hydrogen sulfide	H ₂ S	30 ppm	≤ 120	≤ 1
Methane	CH ₄	5 Vol. %	≤ 1	≤ 1
Methanol	CH₃OH	175 ppm	≤ 150	≤ 2
Nitrogen dioxide	NO ₂	20 ppm	≤ 1	≤ 1
Nitrogen monoxide	NO	25 ppm	≤ 50	≤ 6
Phosgene	COCL ₂	50 ppm	≤ 1	≤ 1
Phosphine	PH ₃	5 ppm	≤ 20	≤ 3
Propane	C ₃ H ₈	1 Vol. %	≤ 1	≤ 1
Sulfur dioxide	SO ₂	25 ppm	≤ 25	≤ 1
Tetrachloroethylene	CCl ₂ CCl ₂	1,000 ppm	≤ 1	≤ 1
Toluene	C ₆ H ₅ CH ₃	1,000 ppm	≤ 1	≤ 1
Trichloroethylene	CHCICCI ₂	1,000 ppm	≤ 1	≤ 1

^{*} DrägerSensor XS EC CO DrägerSensor XS 2 CO DrägerSensor XS R CO DrägerSensor XS microPac CO (-) Indicates negative deviation

⁼ three-year guaranty

⁼ two-year guaranty = five-year guaranty

⁼ two-year guaranty

RELEVANT CROSS-SENSITIVITIES DrägerSensor® XS R CO - 68 10 258

Gas/vapor	Chem. symbol	Concentration	Display in ppm CO without selective filter	Display in ppm CO with selective filter
Acetone	CH₃COCH₃	1,000 ppm	≤ 20	No effect
Ammonia	NH ₃	200 ppm	No effect	No effect
Carbon dioxide	CO ₂	30 Vol. %	No effect	No effect
Chlorine	Cl ₂	20 ppm	No effect	No effect
Dichloromethane	CH ₂ CL ₂	1,000 ppm	No effect	No effect
Ethane	C ₂ H ₆	0.2 Vol. %	No effect	No effect
Ethanol	C ₂ H ₆ OH	200 ppm	≤ 400	No effect
Ethene	C ₂ H ₄	10 ppm	≤ 25	≤ 25
Ethyl acetate	CH ₂ COOC ₂ H ₄	1,000 ppm	≤ 150	No effect
Ethyne	C ₂ H ₂	200 ppm	≤ 500	≤ 300
Formaldehyde	HCHO	20 ppm	≤ 30	No effect
Hydrogen	H ₂	0.1 Vol. %	≤ 90	≤ 90
Hydrogen chloride	HCI	40 ppm	≤ 6	No effect
Hydrogen cyanide	HCN	50 ppm	≤ 10	No effect
Hydrogen sulfide	H ₂ S	30 ppm	≤ 120	No effect
Methane	CH ₄	5 Vol. %	No effect	No effect
Methanol	CH₃OH	175 ppm	≤ 150	≤ 2
Nitrogen dioxide	NO ₂	20 ppm	No effect	No effect
Nitrogen monoxide	NO	25 ppm	≤ 50	≤ 6
Phosgene	COCL ₂	50 ppm	No effect	No effect
Phosphine	PH ₃	5 ppm	≤ 20	≤ 3
Propane	C ₃ H ₈	1 Vol. %	No effect	No effect
Sulfur dioxide	SO ₂	25 ppm	≤ 25	No effect
Tetrachloroethylene	CCl ₂ CCl ₂	1,000 ppm	No effect	No effect
Toluene	C ₂ H ₅ CH ₃	1,000 ppm	No effect	No effect
Trichloroethylene	CHCICCI ₂	1,000 ppm	No effect	No effect

RELEVANT CROSS-SENSITIVITIES DrägerSensor® XS 2 CO - 68 10 365

Gas/vapor	Chem. symbol	Concentration	Display in ppm CO without selective filter	Display in ppm CO with selective filter
Acetone	CH₃COCH₃	1,000 ppm	≤ 20	No effect
Ammonia	NH ₃	200 ppm	No effect	No effect
Carbon dioxide	CO ₂	30 Vol. %	No effect	No effect
Chlorine	Cl ₂	20 ppm	No effect	No effect
Dichloromethane	CH ₂ CL ₂	1,000 ppm	No effect	No effect
Ethane	C ₂ H6	0.2 Vol. %	No effect	No effect
Ethanol	C ₂ H ₅ OH	200 ppm	≤ 400	No effect
Ethene	C ₂ H ₄	50 ppm	≤ 25	≤ 10
Ethyl acetate	CH ₂ COOC ₂ H ₄	1,000 ppm	≤ 150	No effect
Ethine	C ₂ H ₂	200 ppm	≤ 500	≤ 50
Formaldehyde	HCHO	20 ppm	≤ 30	No effect
Hydrogen	H ₂	0.1 Vol. %	≤ 20	≤ 20
Hydrogen chloride	HCI	40 ppm	≤ 6	No effect
Hydrogen cyanide	HCN	50 ppm	≤10	No effect
Hydrogen sulfide	H ₂ S	30 ppm	≤ 120	No effect
Methane	CH ₄	5 Vol. %	No effect	No effect
Methanol	CH₃OH	175 ppm	≤ 150	≤ 2
Nitrogen dioxide	NO ₂	20 ppm	No effect	No effect
Nitrogen monoxide	NO	25 ppm	≤ 50	No effect
Phosgene	COCL ₂	50 ppm	No effect	No effect
Phosphine	PH ₃	5 ppm	≤ 20	No effect
Propane	C ₃ H ₈	1 Vol. %	No effect	No effect
Sulfur dioxide	SO ₂	25 ppm	≤ 25	No effect
Tetrachloroethylene	CCl ₂ CCl ₂	1,000 ppm	No effect	No effect
Tetrahydrothiophene	C ₄ H ₈ S	5 ppm	No effect	No effect
Toluene	C ₂ H ₅ CH ₃	1,000 ppm	No effect	No effect
Trichloroethylene	CHCICCI ₂	1,000 ppm	No effect	No effect

RELEVANT CROSS-SENSITIVITIES DrägerSensor® XS CO MICROPAC - 68 10 030

Gas/vapor	Chem. symbol	Concentration	Display in
			ppm CO
Acetone	CH ₃ COCH ₃	1,000 ppm	≤ 1
Ammonia	NH ₃	200 ppm	≤ 1
Carbon dioxide	CO ₂	30 Vol. %	≤ 1
Chlorine	Cl ₂	20 ppm	≤ 1
Dichloromethane	CH ₂ Cl ₂	1,000 ppm	≤ 1
Ethane	C ₂ H ₆	0.2 Vol. %	≤ 1
Ethanol	C ₂ H ₅ OH	200 ppm	≤ 1
Ethene	C ₂ H ₄	10 ppm	≤ 25
Ethyl acetate	CH ₃ COOC ₂ H ₅	1,000 ppm	≤ 1
Ethine	C ₂ H ₂	200 ppm	≤ 300
Formaldehyde	HCHO	20 ppm	≤ 1
Hydrogen	H ₂	0.1 Vol. %	≤ 200
Hydrogen chloride	HCI	40 ppm	≤ 1
Hydrogen cyanide	HCN	50 ppm	≤ 1
Hydrogen phosphide	PH ₃	5 ppm	≤ 3
Hydrogen sulfide	H ₂ S	30 ppm	≤ 1
Methane	CH ₄	5 Vol. %	≤ 1
Methanol	CH ₃ OH	175 ppm	≤ 2
Nitrogen dioxide	NO ₂	20 ppm	≤ 1
Nitrogen monoxide	NO	25 ppm	≤ 6
Phosgene	COCl ₂	50 ppm	≤ 1
Propane	C ₃ H ₈		
Sulfur dioxide	SO ₂	25 ppm	≤ 1
Tetrachloroethylene	CCl ₂ CCl ₂	1,000 ppm	≤ 1
Toluene	C ₆ H ₅ CH ₃	1,000 ppm	≤ 1
Trichloroethylene	CHCICCI ₂	1,000 ppm	≤1

DrägerSensor® XS CO

DrägerSensor® XS EC CO HC

Order no. 68 09 120

Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger X-am 7000	yes	yes	1 year	

MARKET SEGMENTS

Waste disposal, metal processing, petrochemicals, fertilizer production, mining and tunneling, shipping, inorganic chemicals, steel, organic chemicals, oil and gas, hazmat, biogas.

Detection limit:	10 ppm			
Resolution:	5 ppm			
Measurement range:	0 to 10,000 ppm CO (carbon monoxide)			
Response time:	≤ 10 seconds at 20 °C or 68 °F (T ₉₀)			
Measurement accuracy				
Zero point:	≤ ± 5 ppm			
Sensitivity:	≤ ± 1% of measured value			
Long-term drift, at 20°C (68°F)				
Zero point:	≤ ± 2 ppm/month			
Sensitivity:	≤ ± 2% of measured value/month			
Warm-up time:	≤ 12 hours			
Ambient conditions	-			
Temperature:	(-40 to 50)°C (-40 to 122)°F			
Humidity:	(10 to 90)% RH			
Pressure:	(700 to 1,300) hPa			
Influence of temperature				
Zero point:	≤ ± 10 ppm			
Sensitivity:	≤ ± 0.3% of measured value/K			
Influence of humidity				
Zero point:	No effect			
Sensitivity:	≤ ± 0.05% of measured value/% RH			
Test gas:	approx. 300 ppm CO test gas			

Because of its excellent linearity, this sensor (measurement range 10,000 ppm) can be calibrated at the lower levels of its measurement range. It also offers very stable measurements, even at high concentrations and over long periods of time.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of carbon monoxide. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm CO
Acetone	CH₃COCH₃	1,000 ppm	≤ 30
Ammonia	NH ₃	200 ppm	No effect
Benzene	C ₆ H ₆	0.6 Vol. %	No effect
Carbon dioxide	CO ₂	10 Vol. %	No effect
Chlorine	Cl ₂	20 ppm	≤ 8(-)
Ethanol	C ₂ H ₅ OH	200 ppm	≤ 400
Ethene	C ₂ H ₄	20 ppm	≤ 50
Hydrogen	H ₂	0.1 Vol. %	≤ 400
Hydrogen chloride	HCI	40 ppm	No effect
Hydrogen cyanide	HCN	50 ppm	≤ 10
Hydrogen sulfide	H ₂ S	20 ppm	≤ 80
Methane	CH ₄	5 Vol. %	No effect
Nitrogen dioxide	NO ₂	20 ppm	No effect
Nitrogen monoxide	NO	20 ppm	≤ 40
Phosgene	COCl ₂	50 ppm	No effect
Phosphine	PH ₃	5 ppm	≤ 20
Sulfur dioxide	SO ₂	20 ppm	≤ 20
Tetrahydrothiophene	C ₄ H ₈ S	10 ppm	≤ 4

DrägerSensor® XS EC CO₂

Order no. 68 09 175

Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger X-am 7000	yes	yes	1 year	

MARKET SEGMENTS

Waste disposal, Food and beverage, breweries, metal processing, petrochemicals, fertilizer production, sewage, police, customs and rescue services, mining and tunneling, shipping and transport, power generation.

Detection limit:	0.2 Vol. %			
Resolution:	0.1 Vol. %			
Measurement range:	0 to 5 Vol. % CO ₂ (carbon dioxide)			
Response time:	≤ 45 seconds at 20 °C or 68 °F (T ₉₀)			
Measurement accuracy				
Zero point:	≤ ± 0.2 Vol. %			
Sensitivity:	≤ ± 20% of measured value			
Long-term drift, at 20°C (68°F)				
Zero point:	≤ ± 0.1 Vol. %/month			
Sensitivity:	≤ ± 15% of measured value/month			
Warm-up time:	≤ 12 hours			
Ambient conditions				
Temperature:	(-20 to 40)°C (-4 to 104)°F			
Humidity:	(10 to 90)% RH			
Pressure:	(700 to 1,300) hPa			
Influence of temperature				
Zero point:	≤ ± 0.01 Vol. %/K			
Sensitivity:	≤ ± 2% of measured value/K			
Influence of humidity				
Zero point:	≤ ± 0.005 Vol. %/% RH			
Sensitivity:	≤ ± 0.1% of measured value/% RH			
Test gas:	approx. 1 to 3 Vol. % CO ₂ test gas			

This sensor is highly sensitive (see cross-sensitivity list) and offers an economical alternative to infrared

sensors, if you need to warn against CO₂ concentrations in the ambient air.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of dioxide. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display
Ammonia	NH ₃	50 ppm	≤ 0.1 ⁽⁻⁾
Boron trichloride	BCl ₃	15 ppm	≤ 0.1
Carbon monoxide	CO	100 ppm	≤ 0.1
Chlorine	Cl ₂	5 ppm	≤ 0.1(-)
Ethanol	C ₂ H ₅ OH	130 ppm	≤ 0.1(-)
Ethene	C ₂ H ₄	50 ppm	≤ 0.1 ⁽⁻⁾
Hydrogen	H ₂	1,000 ppm	≤ 0.1(-)
Hydrogen chloride	HCI	20 ppm	≤ 0.1(-)
Hydrogen phosphide	PH ₃	5 ppm	≤ 0.1 ⁽⁻⁾
Hydrogen sulfide	H ₂ S	20 ppm	≤ 0.1(-)
Methane	CH ₄	30 Vol. %	≤ 0.1
Methanol	CH₃OH	200 ppm	≤ 0.1 ⁽⁻⁾
Nitrogen dioxide	NO ₂	20 ppm	≤ 0.1(-)
Nitrogen monoxide	NO	20 ppm	≤ 0.1(-)
Sulfur dioxide	SO ₂	20 ppm	≤ 0.1 ⁽⁻⁾

DrägerSensor® XS EC COCl₂

Order no. 68 08 582

Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger X-am 7000	yes	yes	6 months	

MARKET SEGMENTS

Production of plastics, insecticides production, dyes.

TECHNICAL SPECIFICATIO	N3			
Detection limit:	0.01 ppm			
Resolution:	0.01 ppm			
Measurement range:	0 to 10 ppm COCl ₂ (phosgene)			
Response time:	≤ 20 seconds at 20 °C or 68 °F (T ₂₀)			
	≤ 40 seconds at 20 °C or 68 °F (T ₅₀)			
Measurement accuracy				
Zero point:	≤ ± 0.01 ppm			
Sensitivity:	≤ ± 10% of measured value			
Long-term drift, at 20°C (68°F)	_			
Zero point:	≤ ± 0.01 ppm/month			
Sensitivity:	≤ ± 2% of measured value/month			
Warm-up time:	≤ 1 hour			
Ambient conditions	_			
Temperature:	(-20 to 40)°C (-4 to 104)°F			
Humidity:	(10 to 90)% RH			
Pressure:	(700 to 1,300) hPa			
Influence of temperature				
Zero point:	≤ ± 0.001 ppm/K			
Sensitivity:	≤ ± 1% of measured value/K			
Influence of humidity				
Zero point:	No effect			
Sensitivity:	≤ ± 0.05% of measured value/% RH			
Test gas:	COCl ₂ test gas between 40% and 100% of highest figure in the set			
	measurement range.			

The XS Phosgene sensor is highly selective, especially against hydrogen chloride (HCl).

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of phosgene. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm COCl ₂
Ammonia	NH ₃	20 ppm	No effect
Carbon dioxide	CO ₂	1.5 Vol. %	No effect
Carbon monoxide	CO	1,000 ppm	No effect
Chlorine	Cl ₂	0.5 ppm	≤ 0.2
Ethanol	C ₂ H ₅ OH	260 ppm	No effect
Ethine	C ₂ H ₂	20 ppm	No effect
Hydrogen	H ₂	8,000 ppm	No effect
Hydrogen chloride	HCI	0.5 ppm	≤ 0.7
Hydrogen peroxide	H ₂ O ₂	1 ppm	No effect
Hydrogen sulfide	H ₂ S	1 ppm	≤1
Nitrogen dioxide	NO ₂	1 ppm	≤ 0.1(-)
Nitrogen monoxide	NO	30 ppm	No effect
Ozone	O ₃	0.3 ppm	≤ 0.05(-)
Propanol	C ₃ H ₇ OH	500 ppm	No effect
Sulfur dioxide	SO ₂	2 ppm	No effect

DrägerSensor® XS EC H₂

Order no. 68 09 185

Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger X-am 7000	yes	yes	1 year	

MARKET SEGMENTS

Chemical, petrochemical, rocket fuel, leakages, production of plastics, metal processing, industrial gases, fertilizer production

Detection limit:	10 ppm		
Resolution:	5 ppm		
Measurement range:	0 to 2,000 ppm H ₂ (hydrogen)		
Response time:	≤ 20 seconds at 20 °C or 68 °F (T ₉₀)		
Measurement accuracy			
Zero point:	≤ ± 10 ppm		
Sensitivity:	≤ ± 1% of measured value		
Long-term drift, at 20°C (68°F)			
Zero point:	≤ ± 4 ppm/month		
Sensitivity:	≤ ± 4% of measured value/month		
Warm-up time:	≤ 1 hour		
Ambient conditions	_		
Temperature:	(-20 to 50)°C (-4 to 122)°F		
Humidity:	(10 to 90)% RH		
Pressure:	(700 to 1,300) hPa		
Influence of temperature			
Zero point:	≤ ± 10 ppm		
Sensitivity:	≤ ± 1 ppm/K		
Influence of humidity			
Zero point:	No effect		
Sensitivity:	≤ ± 0.15% of measured value/% RH		
Test gas:	approx. 1,000 ppm H ₂ test gas		

This sensor enables ppm concentrations of H_2 (hydrogen) to be measured in the ambient air. It has a very fast response time and is therefore especially suited to detect leakages.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of H_2 . To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm H ₂
Acetone	CH ₃ COCH ₃ 1,000 ppm		≤ 10
Ammonia	NH ₃	100 ppm	No effect
Carbon dioxide	CO ₂	1.5 Vol. %	No effect
Carbon monoxide	CO	100 ppm	≤ 130
Chlorine	Cl ₂	5 ppm	≤ 5(-)
Ethene	C ₂ H ₄	1,000 ppm	≤ 1800
Ethine	C ₂ H ₂	200 ppm	≤ 700
Hydrogen chloride	HCI	40 ppm	No effect
Hydrogen cyanide	HCN	20 ppm	≤ 20
Methane	CH ₄	50 Vol. %	No effect
Methanol	CH₃OH	500 ppm	≤ 750
Nitrogen dioxide	NO ₂	20 ppm	≤ 15(-)
Nitrogen monoxide	NO	20 ppm	≤ 10
Phosgene	COCl ₂	50 ppm	No effect
Phosphine	PH ₃	10 ppm	≤ 40
Sulfur dioxide	SO ₂	20 ppm	≤ 15
Tetrahydrothiophene	C ₄ H ₈ S	20 ppm	≤ 10

DrägerSensor® XS EC H₂ HC

Order no. 68 11 365

Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger X-am 7000	yes	yes	1 year	<u>-</u>

MARKET SEGMENTS

Ammonia synthesis, fuel refinement (hydrocracking), sulfur elimination, chemical, rocket fuel, leakage inspection, metal processing, industrial gases, fertilizer production, battery chargers, fuel cells.

Detection limit:	0.02 Vol. %		
Resolution:	0.01 Vol. %		
Measurement range:	0 to 4 Vol. % H ₂ (hydrogen)		
Response time:	≤ 20 seconds at 20 °C or 68 °F (T ₅₀)		
Measurement accuracy			
Zero point:	≤ ± 0.05 Vol. %		
Sensitivity:	≤ ± 2% of measured value		
Long-term drift, at 20°C (68°F)			
Zero point:	≤ ± 0.05 Vol. %/year		
Sensitivity:	≤ ± 3% of measured value/month		
Warm-up time:	≤ 1 hour		
Ambient conditions			
Temperature:	(-20 to 50)°C (-4 to 122)°F		
Humidity:	(10 to 90)% RH		
Pressure:	(700 to 1,300) hPa		
Influence of temperature			
Zero point:	≤ ± 0.05 Vol. %		
Sensitivity:	≤ ± 5% of measured value		
Influence of humidity			
Zero point:	No effect		
Sensitivity:	≤ ± 0.1% of measured value/% RH		
Test gas:	approx. 2 Vol. % H ₂ test gas		

This sensor covers the entire range of LELs up to 4 Vol. % H₂, and is therefore the ideal addition when using IR technology in the Dräger X-am 7000 to measure for explosion risks. The sensor also offers high selectivity (see cross-sensitivity specifications) and linearity.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of H_2 . To be sure, please check if gas mixtures are present.

Chem. symbol	Concentration	Display in Vol. % H ₂	
NH ₃	500 ppm	No effect	
CO ₂	1.5 Vol. %	No effect	
CO	1,000 ppm	≤ 0.1	
Cl ₂	50 ppm	No effect	
C ₂ H ₅ OH	250 ppm	No effect	
C ₂ H ₄	1,000 ppm	≤ 0.1	
C ₂ H ₂	200 ppm	≤ 0.02	
HCN	50 ppm	No effect	
H ₂ S	20 ppm	≤ 0.1	
CH ₄	1 Vol. %	No effect	
NO ₂	20 ppm	No effect	
NO	20 ppm	≤ 0.05	
PH ₃	5 ppm	≤ 0.02	
SO ₂	20 ppm	No effect	
	NH ₃ CO ₂ CO Cl ₂ C ₂ H ₅ OH C ₂ H ₄ C ₂ H ₂ HCN H ₂ S CH ₄ NO ₂ NO PH ₃	NH3 500 ppm CO2 1.5 Vol. % CO 1,000 ppm Cl2 50 ppm C2H5OH 250 ppm C2H4 1,000 ppm C2H2 200 ppm HCN 50 ppm H2S 20 ppm CH4 1 Vol. % NO2 20 ppm NO 20 ppm PH3 5 ppm	

DrägerSensor® XS EC HCN

Order no. 68 09 150

Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger X-am 7000	yes	yes	1 year	_

MARKET SEGMENTS

Metal processing, mining, fumigation and pest control, chemical war agent (blood agents).

Detection limit:	0.5 ppm		
Resolution:	0.1 ppm		
Measurement range:	0 to 50 ppm HCN (hydrogen cyanide)		
Response time:	≤ 10 seconds at 20 °C or 68 °F (T ₅₀)		
Measurement accuracy	-		
Zero point:	≤ ± 0.5 ppm		
Sensitivity:	≤ ± 5% of measured value		
Long-term drift, at 20°C (68°F)			
Zero point:	≤ ± 1 ppm/month		
Sensitivity:	≤ ± 5% of measured value/month		
Warm-up time:	≤ 15 minutes		
Ambient conditions			
Temperature:	(-20 to 50)°C (-4 to 122)°F		
Humidity:	(10 to 90)% RH		
Pressure:	(700 to 1,300) hPa		
Influence of temperature	-		
Zero point:	≤ ± 1 ppm		
Sensitivity:	≤ ± 5% of measured value		
Influence of humidity			
Zero point:	No effect		
Sensitivity:	≤ ± 0.1% of measured value/% RH		
Test gas:	approx. 10 ppm HCN		
	After long periods of exposure > 10 ppm HCN/hour, the sensor		
	should be recalibrated.		

The extremely quick response time of this sensor provides a fast and reliable warning against prussic acid (hydrogen cyanide).

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of hydrogen cyanide. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm HCN	
Acetone	CH ₃ COCH ₃	1,000 ppm	No effect	
Ammonia	NH ₃	200 ppm	No effect	
Carbon dioxide	CO ₂	1.5 Vol. %	No effect	
Carbon monoxide	CO	1,000 ppm	≤ 0.5	
Chlorine	Cl ₂	10 ppm	≤ 10(-)	
Ethene	C ₂ H ₄	1,000 ppm	No effect	
Ethylene oxide	C ₂ H ₄ O	30 ppm	No effect	
Ethine	C ₂ H ₂	200 ppm	≤ 20	
Formaldehyde	НСНО	50 ppm	≤ 2	
Hydrogen	H ₂	1.6 Vol. %	≤ 10	
Hydrogen sulfide	H ₂ S	20 ppm	≤ 5	
i-propanol	(CH ₃) ₂ CHOH	500 ppm	No effect	
Methane	CH ₄	20 Vol. %	No effect	
Methanol	CH₃OH	175 ppm	No effect	
Nitrogen dioxide	NO ₂	10 ppm	≤ 10 ⁽⁻⁾	
Nitrogen monoxide	NO	20 ppm	≤ 0.5	
Phosphine	PH ₃	5 ppm	≤ 25	
Propane	C ₃ H ₈	1 Vol. %	No effect	
Sulfur dioxide	SO ₂	20 ppm	≤ 10	
Tetrahydrothiophene	C ₄ H ₈ S	10 ppm	≤ 0.5	
	_		_	

DrägerSensor® XS EC HF/HCI

Order no. 68 09 140

Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger X-am 5100	no	yes	1 year	

MARKET SEGMENTS

Semiconductor, chemical

Detection limit:	1 ppm
Resolution:	0.1 ppm
Measurement range:	0 to 30 ppm HCl (hydrogen chloride)
	0 to 30 ppm HNO ₃ (nitric acid)
	0 to 30 ppm HBr (hydrogen bromide)
	0 to 30 ppm POCl ₃ (phosphoryl trichloride)
	0 to 30 ppm PCl ₃ (phosphorous trichloride)
	0 to 30 ppm HF (hydrogen fluoride)
Response time:	≤ 60 seconds at 20 °C or 68 °F (T ₅₀)
Measurement accuracy	
Zero point:	≤ ± 1 ppm
Sensitivity:	≤ ± 15% of measured value
Long-term drift, at 20°C (68°F)	
Zero point:	≤ ± 0.5 ppm/month
Sensitivity:	≤ ± 5% of measured value/month
Warm-up time:	≤ 1 hour
Ambient conditions	
Temperature:	(-20 to 40)°C (-4 to 104)°F
Humidity:	(30 to 90)% RH
Pressure:	(700 to 1,300) hPa
Influence of temperature	
Zero point:	≤ ± 0.5 ppm
Sensitivity:	≤ ± 10% of measured value
Influence of humidity	
Zero point:	No effect
Sensitivity:	≤ ± 2% of measured value/% RH
Test gas:	HCl test gas between 40% and 100% of the highest figure within the
	set measurement ranget; or one of the other target gases HCl, HNO ₃ ,
	HBr, POCl ₃ ,PCl ₃ , HF. Every time the sensor is used, the following
	function test should be performed beforehand. Procedure: hold the
	unit over a container containing a (9 ± 0.5) mol of acetic acid, at room
	temperature. Evaluation: after 30 seconds, the figure displayed should
	be greater than 0.5 ppm HCl. If the figure is less than 0.5 ppm, then
	the sensitivity must be calibrated. A function test can also be
	performed using the test gas.

This sensor is used exclusively in the Dräger X-am 5100. This sensor can be used to monitor concentrations of hydrogen chloride (HCl), nitric acid (HNO₃), hydrogen bromide (HBr), phosphoryl trichloride (POCl₃), phosphorous trichloride (PCl₃) and HF (hydrogen fluoride) in the ambient air.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of HCI/HF. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm HCl
Ammonia*	NH ₃	500 ppm	No effect
Carbon dioxide	CO ₂	10 Vol. %	No effect
Carbon monoxide	CO	150 ppm	No effect
Chlorine	Cl ₂	5 ppm	≤ 22
Hydrogen	H ₂	1.5 Vol. %	No effect
Hydrogen cyanide	HCN	20 ppm	≤ 9
Hydrogen peroxide	H ₂ O ₂	20 ppm	No effect
Hydrogen sulfide	H ₂ S	30 ppm	≤ 2
i-propanol	(CH ₃) ₂ CHOH	500 ppm	No effect
Methane	CH ₄	2 Vol. %	No effect
Nitrogen dioxide	NO ₂	20 ppm	≤ 0.8
Nitrogen monoxide	NO	20 ppm	≤ 5
Sulfur dioxide	SO ₂	20 ppm	≤ 20

^{*} Volatile alkaline substances (such as NH3, amines) can impair the function of the sensor. If in doubt, perform a function test.

DrägerSensor® XS EC H₂S 100 DrägerSensor® XS 2 H₂S DrägerSensor® XS R H₂S

Order no. 68 09 110

68 10 370

68 10 260

DrägerSensor® XS H₂S microPac (Dräger X-am 3000 only) 68 10 032

Used in	Plug & Play	Replaceable	Guaranty*	Selective filter
Dräger X-am 7000	yes	yes	3/2/5 years	. -

MARKET SEGMENTS

Waste disposal, petrochemical, fertilizer production, sewage, mining and tunneling, shipping, inorganic chemicals, steel industry, pulp and paper, organic chemicals, oil and gas, hazmat, biogas.

Detection limit:	1 ppm for XS EC / XS 2 / XS R, 2 ppm for XS microPac	
Resolution:	0.1 ppm for XS EC / XS 2 / XS R, 1 ppm for XS microPac	
Measurement range:	0 to 100 ppm H ₂ S (hydrogen sulfide)	
Response time:	≤ 20 seconds at 20 °C or 68 °F (T ₉₀) - XS R	
	≤ 25 seconds at 20 °C or 68 °F (T ₉₀) - XS EC	
	≤ 30 seconds at 20 °C or 68 °F (T ₉₀) - XS 2	
	≤ 39 seconds at 20 °C or 68 °F (T ₉₀) - XS microPac	
Measurement accuracy		
Zero point:	\leq ± 1 ppm - XS EC / XS 2 / XS R, \leq ± 2 ppm - XS microPac	
Sensitivity:	≤ ± 2% of measured value - XS EC / XS R / XS microPac	
	≤ ± 1% of measured value - XS 2	
Long-term drift, at 20°C (68°F)		
Zero point:	≤ ± 1 ppm/year - XS EC / XS R / XS microPac	
	≤ ± 1 ppm/month - XS 2	
Sensitivity:	≤ ± 1% of measured value/month	
Warm-up time:	≤ 12 hours - XS EC / XS 2 / XS R, ≤ 10 minutes - XS microPac	
Ambient conditions		
Temperature:	(-20 to 50)°C (-4 to 122)°F - XS EC	
	(-40 to 50)°C (-40 to 122)°F - XS 2 / XS R / XS microPac	
Humidity:	(10 to 90)% RH	
Pressure:	(700 to 1,300) hPa	
Influence of temperature	_	
Zero point:	≤ ± 5 ppm - XS EC / XS microPac, ≤ ± 2 ppm - XS 2 / XS R	
Sensitivity:	≤ ± 5% of measured value - XS EC / XS 2 / XS R	
	≤ ± 20% of measured value - XS microPac	
Influence of humidity		
Zero point:	≤ ± 0.02 ppm/% RH - XS EC / XS 2 / XS microPac, no effect - XS R	
Sensitivity:	≤ ± 0.05% of measured value/% RH - XS EC / XS 2 / XS R	
	≤ ± 0.75% of measured value/% RH - XS microPac	
Test gas:	approx. 20 to 100 ppm H ₂ S test gas	

^{*} DrägerSensor XS EC H_2S = three-year guaranty DrägerSensor XS 2 H_2S = two-year guaranty DrägerSensor XS R H_2S = five-year guaranty

DrägerSensor XS H₂S microPac = two-year guaranty

These sensor's advantages include fast response times and excellent linearity. At concentrations up to 20 ppm, sulfur dioxide only has a minor effect on hydrogen sulfide readings. This, therefore, enables the selective measurement of hydrogen sulfide alongside sulfur dioxide.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of H₂S. To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES DrägerSensor® XS EC H₂S 100

Gas/vapor	Chem. symbol Concentration		Display in ppm H ₂ S	
Acetone	CH₃COCH₃	1,000 ppm	≤ 4	
Ammonia	NH ₃	500 ppm	≤1	
Benzene	C ₆ H ₆ 0.6 Vol. %		≤1	
Carbon dioxide	CO ₂	1.5 Vol. %	≤ 1(-)	
Carbon disulfide	CS ₂	15 ppm	≤1	
Carbon monoxide	CO	125 ppm	≤ 3	
Chlorine	Cl ₂	20 ppm	≤ 2(-)	
Dimethyldisulfide	CH₃SSCH₃	20 ppm	≤ 13	
Dimethylsulfide	(CH ₃) ₂ S	20 ppm	≤ 6	
Ethanol	C ₂ H ₅ OH	200 ppm	≤ 2	
Ethanethiol	C₂H₅SH	20 ppm	≤ 5	
Ethene	C ₂ H ₄	1,000 ppm	≤ 10	
Ethine	C ₂ H ₂	0.6 Vol. %	≤ 10	
FAM regular gasoline (DIN 51635, DIN 51557)	-	0.55 Vol. %	≤1	
Hexane	C ₆ H ₁₄	0.6 Vol. %	≤1	
Hydrogen	H ₂	1 Vol. %	≤ 10	
Hydrogen chloride	HCI	40 ppm	≤1	
Hydrogen cyanide	HCN	50 ppm	≤1	
Methane	CH ₄	5 Vol. %	≤1	
Methanol	CH ₃ OH 200 ppm		≤ 10	
Methylmercaptane	CH₃SH	20 ppm	≤ 15	
Nitrogen dioxide	NO ₂	20 ppm	≤1	
Nitrogen monoxide	NO	20 ppm	≤ 10	
Octane	C ₈ H ₁₈	0.4 Vol. %	≤1	
Phosphine	PH ₃	5 ppm	≤ 5	
Propane	C ₃ H ₈	1 Vol. %	≤ 1	
Propene	C ₃ H ₆	0.5 Vol. %	≤ 1	
Sulfur dioxide	SO ₂	20 ppm	≤ 4	
sec-Butylmercaptan	C ₄ H ₁₀ SH	20 ppm	≤ 7 ppm	
Tetrahydrothiophene	C ₄ H ₅ S 20 ppm		≤ 4	
Toluene	$C_2H_5CH_3$ 0.6 Vol. % ≤ 1		≤ 1	
tert-Butylmercaptane	(CH ₃) ₃ CSH	20 ppm	≤ 10 ppm	
Trichloroethylene	CHCICCI ₂	1,000 ppm	≤ 1	
Xylol	C ₆ H ₄ (CH ₃) ₂	0.5 Vol. %	≤ 4	

⁽⁻⁾ Indicates negative deviation

RELEVANT CROSS-SENSITIVITIES DrägerSensor® XS 2 H₂S

Gas/vapor	Chem. symbol	Concentration	Display in ppm H ₂ S
Acetone	CH ₃ COCH ₃	1,000 ppm	≤4
Ammonia	NH ₃	500 ppm	No effect
Carbon dioxide	CO ₂	1.5 Vol. %	No effect
Carbon disulfide	CS ₂	15 ppm	No effect
Carbon monoxide	CO	125 ppm	≤3
Chlorine	Cl ₂	20 ppm	≤2(-)
Ethane	C ₂ H ₆	0.2 Vol. %	No effect
Ethanol	C ₂ H ₅ OH	200 ppm	≤2
Ethanethiol	C ₂ H ₅ SH	10 ppm	≤5
Ethene	C ₂ H ₄	1,000 ppm	≤10
Ethine	C ₂ H ₂	0.6 Vol. %	≤10
Hexane	C ₆ H ₁₄	0.6 Vol. %	No effect
Hydrogen	H ₂	1 Vol. %	≤10
Hydrogen chloride	HCI	40 ppm	No effect
Hydrogen cyanide	HCN	50 ppm	No effect
Methane	CH ₄	5 Vol. %	No effect
Methanol	CH ₃ OH	200 ppm	≤10
Nitrogen dioxide	NO ₂	20 ppm	No effect
Nitrogen monoxide	NO	20 ppm	≤10
Phosgene	COCL ₂	50 ppm	No effect
Phosphine	PH ₃	5 ppm	≤5
Propane	C ₃ H ₈	1 Vol. %	No effect
Sulfur dioxide	SO ₂	20 ppm	≤4
Tetrahydrothiophene	C ₄ H ₅ S	10 ppm	≤4
Toluene	C ₂ H ₅ CH ₃	0.6 Vol. %	No effect
Xylene	C ₆ H ₄ (CH ₃) ₂	0.5 Vol. %	≤4

RELEVANT CROSS-SENSITIVITIES DrägerSensor® XS R H₂S 100

Gas/vapor	Chem. symbol	Concentration	Display in ppm H₂S
Acetone	CH₃COCH₃	1,000 ppm	≤ 4
Ammonia	NH ₃	500 ppm	No effect
Benzene	C ₆ H ₆	0.6 Vol. %	No effect
Carbon dioxide	CO ₂	1.5 Vol. %	No effect
Carbon disulfide	CS ₂	15 ppm	No effect
Carbon monoxide	CO	125 ppm	No effect
Chlorine	Cl ₂	8 ppm	≤ 2(-)
Ethanol	C ₂ H ₅ OH	200 ppm	≤ 2
Ethanethiol	C ₂ H ₅ SH	10 ppm	≤ 5
Ethene	C ₂ H ₄	1,000 ppm	≤ 10
Ethine	C ₂ H ₂	0.6 Vol. %	≤ 10
FAM regular gasoline	_	0.55 Vol. %	No effect
(DIN 51635, DIN 51557)			
Hexane	C ₆ H ₁₄	0.6 Vol. %	No effect
Hydrogen	H ₂	1 Vol. %	≤ 10
Hydrogen chloride	HCI	40 ppm	No effect
Hydrogen cyanide	HCN	50 ppm	No effect
Methane	CH ₄	5 Vol. %	No effect
Methanol	CH₃OH	200 ppm	≤ 10
Nitrogen dioxide	NO ₂	20 ppm	No effect
Nitrogen monoxide	NO	20 ppm	≤ 10
Octane	C ₈ H ₁₈	0.4 Vol. %	No effect
Phosgene	COCl ₂	50 ppm	No effect
Phosphine	PH ₃	5 ppm	≤ 5
Propane	C ₃ H ₈	1 Vol. %	No effect
Propene	C ₃ H ₆	0.5 Vol. %	No effect
Sulfur dioxide	SO ₂	20 ppm	≤ 4
Tetrahydrothiophene	C ₄ H ₅ S	10 ppm	≤ 4
Toluene	C ₂ H ₅ CH ₃	0.6 Vol. %	No effect
Xylene	C ₆ H ₄ (CH ₃) ₂	0.5 Vol. %	≤ 4

RELEVANT CROSS-SENSITIVITIES DrägerSensor® XS H₂S MICROPAC

Gas/vapor	Chem. symbol	Concentration	Display in ppm H ₂ S
Acetone	CH ₃ COCH ₃	1,000 ppm	≤ 4
Ammonia	NH ₃	500 ppm	≤1
Benzene	C ₆ H ₆	0.6 Vol. %	≤1
Carbon dioxide	CO ₂	1.5 Vol. %	≤ 1(-)
Carbon disulfide	CS ₂	15 ppm	≤1
Carbon monoxide	CO	125 ppm	≤ 3
Chlorine	Cl ₂	8 ppm	≤ 2(-)
Ethanol	C ₂ H ₅ OH	200 ppm	≤1
Ethanethiol	C ₂ H ₅ SH	10 ppm	≤ 5
Ethene	C ₂ H ₄	1,000 ppm	≤ 10
Ethine	C ₂ H ₂	0.6 Vol. %	≤ 10
FAM regular gasoline	-	0.55 Vol. %	≤1
Hexane	C ₆ H ₁₄	0.6 Vol. %	≤1
Hydrogen	H ₂	1 Vol. %	≤ 10
Hydrogen chloride	HCI	40 ppm	≤1
Hydrogen cyanide	HCN	50 ppm	≤ 1
Hydrogen phosphide	PH ₃	5 ppm	≤ 5
Methane	CH ₄	5 Vol. %	≤1
Methanol	CH₃OH	200 ppm	≤1
Nitrogen dioxide	NO ₂	20 ppm	≤1
Nitrogen monoxide	NO	20 ppm	≤ 10
Octane	C ₈ H ₁₈	0.4 Vol. %	≤1
Phosgene	COCl ₂	50 ppm	≤1
Propane	C ₃ H ₈	1 Vol. %	≤1
Propene	C ₃ H ₆	0.5 Vol. %	≤1
Sulfur dioxide	SO ₂	20 ppm	≤ 4
Tetrahydrothiophene	C ₄ H ₈ S	10 ppm	≤ 4
Toluene	C ₆ H ₅ CH ₃	0.6 Vol. %	≤1
Xylene	C ₆ H ₄ (CH ₃) ₂	0.5 Vol. %	≤ 4

DrägerSensor® XS H₂S

DrägerSensor® XS EC H₂S HC

Order no. 68 09 180

Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger X-am 7000	yes	yes	1 year	

MARKET SEGMENTS

Waste disposal, petrochemical, fertilizer production, sewage, mining and tunneling, shipping, inorganic chemicals, steel industry, pulp and paper, organic chemicals, oil and gas, hazmat, biogas.

Detection limit:	5 ppm		
Resolution:	1 ppm		
Measurement range:	0 to 1,000 ppm H ₂ S (hydrogen sulfide)		
Response time:	≤ 20 seconds at 20 °C or 68 °F (T ₉₀)		
Measurement accuracy			
Zero point:	≤ ± 5 ppm		
Sensitivity:	≤ ± 5% of measured value		
Long-term drift, at 20°C (68°F)			
Zero point:	≤ ± 3 ppm/month		
Sensitivity:	≤ ± 3% of measured value/month		
Warm-up time:	≤ 12 hours		
Ambient conditions			
Temperature:	(-40 to 50)°C (-40 to 122)°F		
Humidity:	(10 to 90)% RH		
Pressure:	(700 to 1,300) hPa		
Influence of temperature	_		
Zero point:	≤ ± 5 ppm		
Sensitivity:	≤ ± 5% of measured value		
Influence of humidity			
Zero point:	≤ ± 0.1 ppm/% RH		
Sensitivity:	≤ ± 0.1% of measured value/% RH		
Test gas:	approx. 100 ppm H ₂ S test gas		

Because of its excellent linearity, this sensor can be calibrated in its lower measurement range using a hydrogen sulfide test gas without compromising on accuracy in its upper measurement range. It also offers a fast response time and good selectivity.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of H₂S. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm H ₂ S	
Acetone	CH₃COCH₃	1,000 ppm	≤ 4	
Ammonia	NH ₃	500 ppm	No effect	
Benzene	C ₆ H ₆	0.6 Vol. %	No effect	
Carbon dioxide	CO ₂	1.5 Vol. %	No effect	
Carbon disulfide	CS ₂	15 ppm	No effect	
Carbon monoxide	CO	125 ppm	≤ 3	
Chlorine	Cl ₂	8 ppm	<u>≤ 2</u> (-)	
Ethanol	C ₂ H ₅ OH	200 ppm	≤ 2	
Ethanethiol	C ₂ H ₅ SH	10 ppm	≤ 5	
Ethene	C ₂ H ₄	1,000 ppm	≤ 10	
Ethine	C ₂ H ₂	0.6 Vol. %	≤ 10	
FAM regular gasoline	_	0.55 Vol. %	No effect	
(DIN 51635, DIN 51557)				
Hexane	C ₆ H ₁₄	0.6 Vol. %	No effect	
Hydrogen	H ₂	0.1 Vol. %	≤ 10	
Hydrogen chloride	HCI	40 ppm	No effect	
Hydrogen cyanide	HCN	50 ppm	No effect	
Methane	CH ₄	5 Vol. %	No effect	
Methanol	CH₃OH	500 ppm	≤ 20	
Nitrogen dioxide	NO ₂	20 ppm	No effect	
Nitrogen monoxide	NO	20 ppm	≤ 10	
Octane	C ₈ H ₁₈	0.4 Vol. %	No effect	
Phosgene	COCl ₂	50 ppm	No effect	
Phosphine	PH ₃	5 ppm	≤ 5	
Propane	C ₃ H ₈	1 Vol. %	No effect	
Propene	C ₃ H ₆	0.5 Vol. %	No effect	
Sulfur dioxide	SO ₂	20 ppm	≤ 4	
Tetrahydrothiophene	C ₄ H ₈ S	10 ppm	≤ 2	
Toluene	C ₆ H ₅ CH ₃	0.6 Vol. %	No effect	
Xylol	C ₆ H ₄ (CH ₃) ₂	0.5 Vol. %	≤ 4	
(-) Indicates negative deviation		_ -		

⁽⁻⁾ Indicates negative deviation

DrägerSensor® XS 2 H₂S SR

Order no. 68 10 575

Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger X-am 7000	yes	yes	2 years	

MARKET SEGMENTS

Shipping

Detection limit:	1 ppm	
Resolution:	0.1 ppm	
Measurement range:	0 to 100 ppm H ₂ S (hydrogen sulfide)	
Response time:	≤ 30 seconds at 20 °C or 68 °F (T ₉₀)	
Measurement accuracy		
Zero point:	≤ ± 1 ppm	
Sensitivity:	≤ ± 1% of measured value	
Long-term drift, at 20°C (68°F)		
Zero point:	≤ ± 1 ppm/month	
Sensitivity:	≤ ± 2% of measured value/month	
Warm-up time:	≤ 15 minutes	
Ambient conditions		
Temperature:	(-40 to 50)°C (-40 to 122)°F	
Humidity:	(10 to 90)% RH	
Pressure:	(700 to 1,300) hPa	
Influence of temperature	-	
Zero point:	≤ ± 2 ppm	
Sensitivity:	≤ ± 5% of measured value	
Influence of humidity		
Zero point:	≤ ± 0.02 ppm/% RH	
Sensitivity:	≤ ± 0.05% of measured value/% RH	
Test gas:	approx. 20 to 100 ppm H ₂ S test gas	

This sensor offers a high level of electromagnetic compatibility, as is required in industries such as shipping.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of H₂S. To be sure, please check if gas mixtures are present.

ias/vapor Chem. symbol		Concentration	Display in ppm H ₂ S
Acetone	CH ₃ COCH ₃ 1,000 ppm		≤ 4
Ammonia	NH ₃	200 ppm	No effect
Carbon dioxide	CO ₂	1.5 Vol. %	No effect
Carbon disulfide	CS ₂	15 ppm	No effect
Carbon monoxide	CO	1,000 ppm	≤ 7
Chlorine	Cl ₂	20 ppm	≤ 6(-)
Ethane	C ₂ H ₆	0.2 Vol. %	No effect
Ethanol	C ₂ H ₅ OH	200 ppm	No effect
Ethanthiol	C ₂ H ₅ SH	10 ppm	≤ 5
Ethene	C ₂ H ₄	1,000 ppm	No effect
Ethine	C ₂ H ₂	200 ppm	No effect
Hexane	C ₆ H ₁₄	0.6 Vol. %	No effect
Hydrogen	H ₂	1 Vol. %	≤ 10
Hydrogen chloride	HCI	40 ppm	No effect
Hydrogen cyanide	HCN	50 ppm	No effect
Methane	CH ₄	5 Vol. %	No effect
Methanol	CH₃OH	500 ppm	No effect
Nitrogen dioxide	NO ₂	20 ppm	≤ 5(-)
Nitrogen monoxide	NO	20 ppm	≤ 2
Phosgene	COCl ₂	50 ppm	No effect
Phosphine	PH ₃	5 ppm	≤ 5
Propane	C ₃ H ₈	1 Vol. %	No effect
Sulfur dioxide	SO ₂	20 ppm	≤ 4
Tetrahydrothiophene	C ₄ H ₈ S	10 ppm	≤ 4
Toluene	C ₆ H ₅ CH ₃	0.6 Vol. %	No effect
Xylol	C ₆ H ₄ (CH ₃) ₂	0.5 Vol. %	≤ 4

DrägerSensor® XS EC H₂O₂

Order no. 68 09 170

Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger X-am 5100	no	yes	1 year	

MARKET SEGMENTS

Disinfection and sterilization, bleaching, decontaminating interior spaces.

TEOTIMORE OF EOII TORTIO	110
Detection limit:	0.5 ppm
Resolution:	0.1 ppm
Measurement range:	0 to 20 ppm H ₂ O ₂ (hydrogen peroxide)
Response time:	≤ 60 seconds at 20 °C or 68 °F (T ₉₀)
Measurement accuracy	-
Zero point:	≤ ± 0.5 ppm
Sensitivity:	≤ ± 10% of measured value
Long-term drift, at 20°C (68°F)	-
Zero point:	≤ ± 1 ppm/year
Sensitivity:	≤ ± 2% of measured value/month
Warm-up time:	≤ 12 hours
Ambient conditions	-
Temperature:	(0 to 50)°C (32 to 122)°F
Humidity:	(10 to 90)% RH
Pressure:	(700 to 1,300) hPa
Influence of temperature	-
Zero point:	≤ ± 1 ppm
Sensitivity:	≤ ± 0.5% of measured value/K
Influence of humidity	-
Zero point:	≤ ± 0.01 ppm/% RH
Sensitivity:	≤ ± 0.1% of measured value/% RH
Test gas:	H ₂ O ₂ test gas between 40% and 100% of the highest figure within the
	set measurement range. The Dräger Sensor XS EC H2O2 has a
	defined cross sensitivity to sulphur dioxide (SO ₂). Alternatively, the
	sensor can be calibrated using SO ₂ . Such surrogate calibration with
	SO ₂ can lead to an additional measuring error of up to 20%. We
	recommend calibrating devices using the gas that is to be detected
	during actual operation. This method of target gas calibration is more
	accurate than calibrating with a surrogate gas.

This sensor is used in the Dräger X-am 5100 to monitor the H_2O_2 (hydrogen peroxide) concentration in the ambient air. It offers high sensitivity (see cross-sensitivity table).

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of H_2O_2 . To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm H ₂ O ₂	
Acetone	CH ₃ COCH ₃	1,000 ppm	No effect	
Ammonia	NH ₃	100 ppm	No effect	
Carbon dioxide	CO ₂	1.5 Vol. %	No effect	
Carbon monoxide	CO	125 ppm	No effect	
Chlorine	Cl ₂	5 ppm	≤ 1(-)	
Ethene	C ₂ H ₄	50 ppm	No effect	
Ethine	C ₂ H ₂	200 ppm	≤ 35	
Hydrogen	H ₂	1.5 Vol. %	≤ 5	
Hydrogen chloride	HCI	15 ppm	≤ 3	
Hydrogen cyanide	HCN	25 ppm	≤ 7	
Hydrogen sulfide	H ₂ S	20 ppm	≤ 80	
i-propanol	(CH ₃)CHOH	500 ppm	No effect	
Methane	CH ₄	5 Vol. %	No effect	
Methanol	CH₃OH	200 ppm	No effect	
Nitrogen dioxide	NO ₂	20 ppm	≤ 15(-)	
Nitrogen monoxide	NO	20 ppm	No effect	
Phosphine	PH ₃	5 ppm	≤ 15	
Sulfur dioxide	SO ₂	20 ppm	≤ 10	
Tetrahydrothiophene	C ₄ H ₈ S	10 ppm	≤ 5	

DrägerSensor® XS EC Hydrazine

Order no. 68 09 190

Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger X-am 5100	no	yes	1 year	-

MARKET SEGMENTS

Rocket fuel, aircraft fuel (e.g. F-16), fuel for emergency power generators, for electrochemical power generation in secondary cells or in alkaline fuel cells, especially in space travel, submarines, and other military equipment.

TEOTIMORE OF EOIL TORTIO			
Detection limit:	0.02 ppm		
Resolution:	0.01 ppm		
Measurement range:	0 to 3 ppm N ₂ H ₄ (hydrazine)		
	0 to 3 ppm CH ₃ NH-NH ₂ (methyl hydrazine)		
	0 to 3 ppm (CH ₃) ₂ N-NH ₂ (dimethylhydrazine)		
Response time:	≤ 180 seconds at 20 °C or 68 °F (T ₉₀)		
Measurement accuracy	-		
Zero point:	≤ ± 0.01 ppm		
Sensitivity:	≤ ± 5% of measured value		
Long-term drift, at 20°C (68°F)			
Zero point:	≤ ± 0.01 ppm/month		
Sensitivity:	≤ ± 5% of measured value/month		
Warm-up time:	≤ 1 hour		
Ambient conditions			
Temperature:	(-20 to 50)°C (-4 to 122)°F		
Humidity:	(15 to 95)% RH		
Pressure:	(700 to 1,300) hPa		
Influence of temperature			
Zero point:	No effect		
Sensitivity:	≤ ± 5% of measured value		
Influence of humidity			
Zero point:	No effect		
Sensitivity:	≤ ± 0.1% of measured value/% RH		
Test gas:	N ₂ H ₄ , MMH or UDMH		

This sensor is used exclusively in the Dräger X-am 5100 for monitoring concentrations of hydrazine (N_2H_4) , methyl hydrazine (CH_3NH-NH_2) , and dimethylhydrazine $((CH_3)_2N-NH_2)$.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of hydrazine. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm N ₂ H ₄
Acetone	CH₃COCH₃	1,000 ppm	No effect
Ammonia	NH ₃	250 ppm	≤ 2.5
Carbon dioxide	CO ₂	100 Vol. %	No effect
Carbon monoxide	CO	1,000 ppm	No effect
Chlorine	Cl ₂	10 ppm	≤ 0.1(-)
Ethanol	C ₂ H ₅ OH	130 ppm	No effect
Ethene	C ₂ H ₄	20 ppm	No effect
Hydrogen	H ₂	1,000 ppm	No effect
Hydrogen sulfide	H ₂ S	20 ppm	≤ 0.25
i-propanol	(CH ₃) ₂ CHOH	1,000 ppm	No effect
Methane	CH ₄	3 Vol. %	No effect
Nitrogen dioxide	NO ₂	20 ppm	≤ 0,05
Nitrogen monoxide	NO	25 ppm	≤ 0.05
Propane	C ₃ H ₈	1.5 Vol. %	No effect
Sulfur dioxide	SO ₂	10 ppm	No effect

DrägerSensor® XS EC Hydrazine D

Order no. 68 10 295

Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger Pac III S / E*	yes	yes	6 months	

MARKET SEGMENTS

Rocket fuel, aircraft fuel (e.g. F-16), fuel for emergency power generators, for electrochemical power generation in secondary cells or in alkaline fuel cells, especially in space travel, submarines, and other military equipment.

0.02 ppm
0.01 ppm
0 to 3 ppm N ₂ H ₄ (hydrazine)
0 to 3 ppm CH ₃ NH-NH ₂ (methyl hydrazine)
0 to 3 ppm (CH ₃) ₂ N-NH ₂ (dimethylhydrazine)
≤ 180 seconds at 20 °C or 68 °F (T ₉₀)
≤ ± 0.01 ppm
≤ ± 10% of measured value
≤ ± 0.01 ppm/month
≤ ± 20% of measured value/6 months
≤ 1 hour
(-20 to 50)°C (-4 to 122)°F
(15 to 95)% RH
(700 to 1,300) hPa
No effect
≤ ± 5% of measured value
No effect
≤ ± 0.1% of measured value/% RH
N_2H_4 test gas between 40% and 100% of the highest figure in the set
measurement range; or of one of the other target gases: MMH or UDMH

^{*}The DrägerSensor XS EC Hydrazine D can be ordered as a replacement sensor for the Dräger Pac III S/E. The Dräger Pac III will no longer be sold at the end of 2011. The DrägerSensor XS EC Hydrazine used in combination with the Dräger X-am 5100 can then be used to monitor hydrazine concentrations.

This sensor is used exclusively in the Dräger Pac III for monitoring concentrations of hydrazine (N_2H_4), methyl hydrazine (N_3H_4), and dimethylhydrazine (N_3H_4). Hydrazines tend to be adsorbed by surfaces, which means a special sensor cap should be used (order no. 68 09 541). This sensor does not have to be recalibrated during its limited life span.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of hydrazine. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm N ₂ H ₄
Acetone	CH₃COCH₃	1,000 ppm	No effect
Ammonia	NH ₃	250 ppm	≤ 2.5
Carbon dioxide	CO ₂	100 Vol. %	No effect
Carbon monoxide	CO	1,000 ppm	No effect
Chlorine	Cl ₂	10 ppm	≤ 0.1(-)
Ethanol	C ₂ H ₅ OH	130 ppm	No effect
Ethene	C ₂ H ₄	20 ppm	No effect
Hydrogen	H ₂	1,000 ppm	No effect
Hydrogen sulfide	H ₂ S	20 ppm	≤ 0.25
i-propanol	(CH ₃) ₂ CHOH	1,000 ppm	No effect
Methane	CH ₄	3 Vol. %	No effect
Nitrogen dioxide	NO ₂	20 ppm	≤ 0.05
Nitrogen monoxide	NO	25 ppm	≤ 0.05
Propane	C ₃ H ₈	1.5 Vol. %	No effect
Sulfur dioxide	SO ₂	10 ppm	No effect

DrägerSensor® XS EC Hydride

Order no. 68 09 135

Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger X-am 7000	yes	yes	1 year	

MARKET SEGMENTS

Inorganic chemicals, industry, fumigation, pre entry measurement.

Detection limit:	0.02 ppm		
Resolution:	0.01 ppm		
Measurement range:	0 to 20 ppm PH ₃ (hydrogen phosphide)		
	0 to 20 ppm AsH ₃ (arsine)		
	0 to 1 ppm B ₂ H ₆ (diborane)		
	0 to 20 ppm GeH ₄ (germanium tetrahydride)		
	0 to 50 ppm SiH ₄ (silane)		
Response time:	≤ 10 seconds at 20 °C or 68 °F (T ₉₀) for PH ₃ , B ₂ H ₆ , SiH ₄		
	≤ 20 seconds at 20 °C or 68 °F (T ₉₀) for AsH ₃ , GeH ₄		
Measurement accuracy			
Zero point:	\leq ± 0.02 ppm for PH ₃ , B ₂ H ₆ , SiH ₄ , GeH ₄		
	\leq ± 0.05 ppm for AsH ₃		
Sensitivity:	≤ ± 2% of measured value		
Long-term drift, at 20°C (68°F)			
Zero point:	≤ ± 0.02 ppm/month		
Sensitivity:	≤ ± 2% of measured value/month for PH ₃ , AsH ₃		
	≤ ± 3% of measured value/month for SiH ₄		
	\leq ± 5% of measured value/month for B ₂ H ₆ , GeH ₄		
Warm-up time:	≤ 15 minutes		
Ambient conditions			
Temperature:	(-20 to 50)°C (-4 to 122)°F		
Humidity:	(10 to 90)% RH		
Pressure:	(700 to 1,300) hPa		
Influence of temperature			
Zero point:	≤ ± 0.02 ppm		
Sensitivity:	≤ ± 5% of measured value		
Influence of humidity			
Zero point:	≤ ± 0.02 ppm		
Sensitivity:	≤ ± 0.05% of measured value/% RH		
Test gas:	approx. 0.5 ppm PH ₃ test gas or one of the other target gases:		
	AsH ₃ , B ₂ H ₆ , GeH ₄ , SiH ₄		

This sensor can be used to monitor the concentration of PH_3 (hydrogen phosphide), AsH_3 (arsine), B_2H_6 (diborane), GeH_4 (germanium tetrahydride) or SiH_4 (silane) in the ambient air. It is sufficient to calibrate the sensor using a PH_3 test gas; by doing so all of the other target gases are then automatically calibrated.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of hydride. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm PH ₃	
Acetone	CH₃COCH₃	1,000 ppm	No effect	
Ammonia	NH ₃	250 ppm	No effect	
Carbon dioxide	CO ₂	1.5 Vol. %	No effect	
Carbon monoxide	CO	150 ppm	≤ 0.1	
Chlorine	Cl ₂	10 ppm	≤ 2(-)	
Ethene	C ₂ H ₄	1,000 ppm	≤ 0,2	
Ethine	C ₂ H ₂	200 ppm	≤ 12	
Formaldehyde	HCHO	50 ppm	≤ 0.15	
Hydrogen	H ₂	1,000 ppm	≤ 0.25	
Hydrogen cyanide	HCN	50 ppm	≤ 2	
Hydrogen sulfide	H ₂ S	20 ppm	≤ 20	
i-propanol	(CH ₃) ₂ CHOH	1 Vol. %	No effect	
Methane	CH ₄	4 Vol. %	No effect	
Methanol	CH₃OH	200 ppm	No effect	
Nitrogen dioxide	NO ₂	20 ppm	≤ 5(-)	
Nitrogen monoxide	NO	20 ppm	No effect	
Sulfur dioxide	SO ₂	10 ppm	≤ 2	

DrägerSensor® XS EC NH₃

Order no. 68 09 145

Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger X-am 7000	yes	yes	1 year	

MARKET SEGMENTS

Food and beverage, poultry farming, power generation, inorganic chemicals, fertilizer production, analysis of chemical war agents, hazmat, fumigation, metal processing, petrochemicals, pulp and paper.

Detection limit:	3 ppm			
Resolution:	1 ppm			
Measurement range:	0 to 300 ppm NH ₃ (ammonia)			
Response time:	≤ 20 seconds at 20 °C or 68 °F (T ₅₀)			
Measurement accuracy	-			
Zero point:	≤ ± 3 ppm			
Sensitivity:	≤ ± 3% of measured value			
Long-term drift, at 20°C (68°F)				
Zero point:	≤ ± 2 ppm/month			
Sensitivity:	≤ ± 2% of measured value/month			
Warm-up time:	≤ 12 hours			
Ambient conditions	_			
Temperature:	(-40 to 50)°C (-40 to 122)°F			
Humidity:	(10 to 90)% RH			
Pressure:	(700 to 1,300) hPa			
Influence of temperature				
Zero point:	≤ ± 5 ppm			
Sensitivity:	≤ ± 5% of measured value			
Influence of humidity				
Zero point:	≤ ± 0.1 ppm/% RH			
Sensitivity:	≤ ± 0.2% of measured value/% RH			
Test gas:	approx. 50 to 100 ppm NH ₃			

The quick response time of this sensor provides a fast and reliable warning against ammonia.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of NH3. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm NH ₃	
Acetone	CH ₃ COCH ₃ 1,000 ppm		No effect	
Carbon dioxide	CO ₂	1.5 Vol. %	≤ 5(-)	
Carbon monoxide	CO	200 ppm	No effect	
Chlorine	Cl ₂	10 ppm	≤ 20 ⁽⁻⁾	
Ethene	C ₂ H ₄	1,000 ppm	≤ 3	
Ethine	C ₂ H ₂	200 ppm	No effect	
Hydrogen	H ₂	1,000 ppm	≤ 3	
Hydrogen cyanide	HCN	25 ppm	≤ 3	
Hydrogen sulfide	H ₂ S	20 ppm	≤ 50	
Methane	CH ₄	10 Vol. %	No effect	
Methanol	CH₃OH	200 ppm	≤ 3	
Nitrogen dioxide	NO ₂	20 ppm	≤ 10(-)	
Nitrogen monoxide	NO	20 ppm	≤ 10	
Phosphine	PH ₃	5 ppm	≤ 8	
Sulfur dioxide	SO ₂	20 ppm	No effect	
Tetrahydrothiophene	C ₄ H ₈ S	10 ppm	≤ 10	

DrägerSensor® XS EC NO

Order no. 68 09 125

Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger X-am 7000	yes	yes	1 year	

MARKET SEGMENTS

Power plants, district heating plants

Detection limit:	1 ppm		
Resolution:	0.5 ppm		
Measurement range:	0 to 200 ppm NO (nitrogen monoxide)		
Response time:	≤ 30 seconds at 20 °C or 68 °F (T ₉₀)		
Measurement accuracy	-		
Zero point:	≤ ± 1 ppm		
Sensitivity:	≤ ± 3% of measured value		
Long-term drift, at 20°C (68°F)	-		
Zero point:	≤ ± 1 ppm/month		
Sensitivity:	≤ ± 3% of measured value/month		
Warm-up time:	≤ 18 hours		
Ambient conditions	-		
Temperature:	(-40 to 50)°C (-40 to 122)°F		
Humidity:	(10 to 90)% RH		
Pressure:	(700 to 1,300) hPa		
Influence of temperature			
Zero point:	≤ ± 0.01 ppm/K		
Sensitivity:	≤ ± 0.2% of measured value/K		
Influence of humidity			
Zero point:	≤ ± 0.01 ppm/% RH		
Sensitivity:	≤ ± 0.05% of measured value/% RH		
Test gas:	approx. 10 to 25 ppm NO test gas		

This sensor enables a selective measurement of NO. It also offers a very fast response time and excellent linearity across its entire measurement range.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of NO. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm NO	
Acetone	CH₃COCH₃	1,000 ppm	No effect	
Ammonia	NH ₃	500 ppm	No effect	
Benzene	C ₆ H ₆	0.6 Vol. %	No effect	
Carbon dioxide	CO ₂	5 Vol. %	No effect	
Carbon monoxide	CO	2,000 ppm	No effect	
Chlorine	Cl ₂	5 ppm	No effect	
Ethanol	C ₂ H ₅ OH	250 ppm	No effect	
Ethene	C ₂ H ₄	0.1 Vol. %	No effect	
Ethine	C ₂ H ₂	0.8 Vol. %	≤ 2	
Hydrogen	H ₂	5 Vol. %	≤ 2	
Hydrogen chloride	HCI	40 ppm	No effect	
Hydrogen cyanide	HCN	50 ppm	No effect	
Hydrogen sulfide	H ₂ S	5 ppm	≤ 5	
Methane	CH ₄	2 Vol. %	No effect	
Nitrogen dioxide	NO ₂	20 ppm	≤ 1	
Phosphine	PH ₃	2 ppm	≤ 2	
Propane	C ₃ H ₈	1 Vol. %	No effect	
Sulfur dioxide	SO ₂	10 ppm	≤ 2	
Tetrachloroethylene	CCl ₂ CCl ₂	1,000 ppm	No effect	
Toluene	C ₆ H ₅ CH ₃	0.6 Vol. %	No effect	
Trichloroethylene	CHCICCI ₂	1,000 ppm	No effect	

DrägerSensor® XS EC NO₂

Order no. 68 09 155

Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger X-am 7000	yes	yes	1 year	<u>-</u>

MARKET SEGMENTS

Inorganic chemicals, metal processing, oil and gas, petrochemicals, steel, shipping, rocket engineering, mining and tunneling.

Detection limit:	0.5 ppm		
Resolution:	0.1 ppm		
Measurement range:	0 to 50 ppm NO ₂ (nitrogen dioxide)		
Response time:	≤ 15 seconds at 20 °C or 68 °F (T ₉₀)		
Measurement accuracy	-		
Zero point:	≤ ± 0.5 ppm		
Sensitivity:	≤ ± 2% of measured value		
Long-term drift, at 20°C (68°F)			
Zero point:	≤ ± 1 ppm/month		
Sensitivity:	≤ ± 2% of measured value/month		
Warm-up time:	≤ 15 minutes		
Ambient conditions	-		
Temperature:	(-40 to 50)°C (-40 to 122)°F		
Humidity:	(10 to 90)% RH		
Pressure:	(700 to 1,300) hPa		
Influence of temperature			
Zero point:	≤ ± 1 ppm		
Sensitivity:	≤ ± 5% of measured value		
Influence of humidity			
Zero point:	No effect		
Sensitivity:	≤ ± 0.2% of measured value/% RH		
Test gas:	approx. 5 to 50 ppm NO ₂ test gas		

This sensor offers a fast response time and stable readings, even after experiencing high concentrations of nitrogen dioxide.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of NO₂. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm NO ₂
Acetaldehyde	CH₃CHO 500 ppm		No effect
Acetone	CH ₃ COCH ₃	1,000 ppm	No effect
Ammonia	NH ₃	200 ppm	No effect
Carbon dioxide	CO ₂	2.5 Vol. %	No effect
Carbon monoxide	CO	125 ppm	No effect
Chlorine	Cl ₂	10 ppm	≤ 10
Ethene	C ₂ H ₄	1,000 ppm	≤ 1(-)
Ethine	C ₂ H ₂	200 ppm	≤ 60(-)
Formaldehyde	HCHO	50 ppm	No effect
Hydrogen	H ₂	1,000 ppm	≤ 2(-)
Hydrogen cyanide	HCN	50 ppm	≤ 10(-)
Hydrogen sulfide	H ₂ S	20 ppm	≤ 100 ⁽⁻⁾
Methane	CH ₄	5 Vol. %	No effect
Methanol	CH ₃ OH	175 ppm	No effect
Nitrogen monoxide	NO	20 ppm	No effect
Phosphine	PH ₃	5 ppm	≤ 25 ⁽⁻⁾
Sulfur dioxide	SO ₂	50 ppm	≤ 50(-)
Tetrahydrothiophene	C ₄ H ₈ S	10 ppm	≤ 5(-)

DrägerSensor® XS EC Odorant

Order no. 68 09 200

Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger X-am 7000	yes	yes	1 year	B2T, 68 09 198 - replaceable
				Cross sensitivities from acidic gases
	_			(H ₂ S, SO ₂) are largely eliminated

MARKET SEGMENTS

Gas supply companies

Detection limit:	1 ppm		
Resolution:	0.5 ppm		
Measurement range:	0 to 40 ppm C ₄ H ₈ S (tetrahydrothiophene)		
	0 to 40 ppm (CH ₃) ₃ CSH (t-butyl mercaptan)		
	0 to 40 ppm C ₂ H ₅ CH(CH ₃)SH (sec-butyl mercaptan)		
	0 to 40 ppm CH ₃ SH (methyl mercaptan)		
	0 to 40 ppm C ₂ H ₅ SH (ethyl mercaptan)		
	0 to 100 ppm (CH ₃) ₂ S (dimethyl sulfide)		
	0 to 40 ppm CH ₃ SSCH ₃ (dimethyl disulfide)		
Response time:	≤ 90 seconds at 20 °C or 68 °F (T ₉₀)		
Measurement accuracy	-		
Zero point:	≤ ± 1 ppm		
Sensitivity:	≤ ± 5% of measured value		
Long-term drift, at 20°C (68°F)	-		
Zero point:	≤ ± 1 ppm/month		
Sensitivity:	≤ ± 3% of measured value/month		
Warm-up time:	≤ 12 hours		
Ambient conditions	-		
Temperature:	(-20 to 50)°C (-4 to 122)°F for THT, TBM, SBM		
	(5 to 40)°C (32 to 104)°F for MeM, EtM, DMS, DMDS		
Humidity:	(0 to 90)% RH		
Pressure:	(700 to 1,300) hPa		
Influence of temperature			
Zero point:	≤ ± 1 ppm		
Sensitivity:	≤ ± 5% of measured value		
Influence of humidity			
Zero point:	≤ ± 0.01 ppm/% RH		
Sensitivity:	≤ ± 0.1% of measured value/% RH		
Test gas:	THT test gas between 40% and 100% of the highest figure in the set		
	measurement range; or of one of the other target gases: TBM, SBM,		
	MeM, EtM, DMS, DMDS		

This sensor can be used to monitor seven different odorants in the ambient air or (for short periods) in natural gas. It is sufficient to calibrate the sensor using a THT test gas. By doing so, all of the other target gases are then automatically calibrated.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of THT. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm THT without selective filter	Display in ppm THT with selective filter
Acetone	CH₃COCH₃	1,000 ppm	≤ 3	≤ 3
Ammonia	NH ₃	200 ppm	No effect	No effect
Carbon dioxide	CO ₂	1.5 Vol. %	No effect	No effect
Carbon monoxide	CO	125 ppm	≤ 3	≤ 3
Chlorine	Cl ₂	8 ppm	≤ 3(-)	No effect
Ethene	C ₂ H ₄	50 ppm	No effect	No effect
Hydrogen	H ₂	1,000 ppm	≤ 2	≤ 2
Hydrogen cyanide	HCN	50 ppm	No effect	No effect
Hydrogen sulfide	H ₂ S	10 ppm	≤ 30	No effect
Methane	CH ₄	100 Vol. %	No effect	No effect
Methanol	CH ₃ OH	175 ppm	≤ 8	≤ 8
Nitrogen dioxide	NO ₂	20 ppm	≤ 2	≤ 2
Nitrogen monoxide	NO	20 ppm	≤ 30	≤ 30
n-propyl mercaptan	C ₃ H ₇ SH	6 ppm	≤ 4	≤ 4
Phosphine	PH ₃	5 ppm	≤ 15	≤ 15
Sulfur dioxide	SO ₂	20 ppm	≤ 15	No effect

DrägerSensor® XS EC OV

Order no. 68 09 115

Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger X-am 7000	yes	yes	1 year	_

MARKET SEGMENTS

Production of plastics, painter, chemical industry, disinfection, pest control.

Detection limit:	1 ppm		
Resolution:	0.5 ppm		
Measurement range:	0 to 200 ppm C ₂ H ₄ O (ethylene oxide)		
	0 to 200 ppm C ₃ H ₆ O (propylene oxide)		
	0 to 100 ppm C ₂ H ₄ (ethene)		
	0 to 100 ppm C ₃ H ₆ (propene)		
	0 to 100 ppm C ₂ H ₃ Cl (vinyl chloride)		
	0 to 100 ppm CH ₃ OH (methanol)		
	0 to 300 ppm C ₂ H ₅ OH (ethanol)		
	0 to 200 ppm CH ₃ CHO (acetaldehyde)		
	0 to 100 ppm CH ₂ CHCHCH ₂ (butadiene)		
	0 to 100 ppm HCHO (formaldehyde)		
	0 to 100 ppm CH ₃ COOC ₂ H ₃ (vinyl acetate)		
	0 to 300 ppm (H ₃ C) ₂ CHOH (isopropanol)		
Response time:	≤ 90 seconds at 20 °C or 68 °F (T ₅₀)		
Measurement accuracy			
Zero point:	≤ ± 3 ppm		
Sensitivity:	≤ ± 5% of measured value		
Long-term drift, at 20°C (68°F)			
Zero point:	≤ ± 2 ppm/month		
Sensitivity:	≤ ± 5% of measured value/month		
Warm-up time:	≤ 18 hours		
Ambient conditions			
Temperature:	(-20 to 50)°C (-4 to 122)°F		
Humidity:	(10 to 90)% RH		
Pressure:	(700 to 1,300) hPa		
Influence of temperature			
Zero point:	≤ ± 0.1 ppm/K at (-20 to 40)°C (-4 to 104)°F		
Zero point:	≤ ± 1 ppm/K at (40 to 50)°C (104 to 122)°F		
Sensitivity:	≤ ± 1% of measured value/K		
Influence of humidity			
Zero point:	No effect		
Sensitivity:	≤ ± 0.2% of measured value/% RH		
Test gas:	approx. 10 ppm C ₂ H ₄ O test gas or one of the other target gases		

This sensor is especially suited to detect leakages of numerous organic gases and vapors. Although it does not detect as broad a spectrum of gases as a PID, it has the key advantage of being almost completely insensitive to moisture. It also does not need to be calibrated every day, having instead a six-month calibration interval typical of electrochemical sensors. Furthermore, for the majority of gases it is enough to calibrate it using ethylene oxide, whereby all other gases are automatically calibrated as well. The exceptions are ethyne, tetrahydrofuran, and diethyl ether, which have to be calibrated using the target gas.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of ethylene oxide. To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES

Gas/vapor	Chem. symbol	Concentration	Display in ppm C ₂ H ₄ O
Acetic acid	CH₃COOH	100 ppm	No effect
Acetone	CH ₃ COCH ₃	1,000 ppm	≤ 15
Ammonia	NH ₃	100 ppm	No effect
Benzene	C ₆ H ₆	2,000 ppm	No effect
Carbon dioxide	CO ₂	30 Vol. %	No effect
Carbon monoxide	CO	100 ppm	≤ 56
Chlorine	Cl ₂	10 ppm	No effect
Chlorobenzene	C ₆ H ₅ Cl	200 ppm	No effect
Dichloromethane	CH ₂ Cl ₂	1,000 ppm	No effect
Dimethyl disulfide	(CH ₃) ₂ S ₂	50 ppm	≤ 65
Dimethyl sulfide	(CH ₃) ₂ S	50 ppm	≤ 40
Dimethylformamide	HCON(CH ₃) ₂	100 ppm	No effect
Ethane	C ₂ H ₆	0.2 Vol. %	No effect
Ethyl acetate	CH ₃ COOC ₂ H ₅	100 ppm	No effect
Gasoline, F 50	_	700 ppm	≤ 20
Gasoline,	-	0.5 Vol. %	≤ 3
FAM regular gasoline			
Gasoline, premium unleaded	-	700 ppm	≤ 70
Hydrogen	H ₂	5,000 ppm	≤ 50
Hydrogen chloride	HCI	40 ppm	≤ 10
Hydrogen cyanide	HCN	20 ppm	≤ 20
Hydrogen sulfide	H ₂ S	10 ppm	≤ 20
Methane	CH ₄	2 Vol. %	No effect
Methanethiol	CH₃SH	50 ppm	≤ 75
Methyl isobutyl ketone	(CH ₃) ₂ CHCH ₂ COCH ₃	500 ppm	No effect
Nitrogen dioxide	NO ₂	50 ppm	≤ 5
Nitrogen monoxide	NO	25 ppm	≤ 25
Phenol	C ₆ H ₅ OH	30 ppm	≤ 6
Phosgene	COCl ₂	50 ppm	No effect
Propane	C ₃ H ₈	1 Vol. %	≤ 3
Sulfur dioxide	SO ₂	10 ppm	≤ 4
Tetrachloroethylene	CCl ₂ CCl ₂	100 ppm	No effect
Toluene	C ₆ H ₅ CH ₃	1,000 ppm	No effect
Trichloroethylene	CHCICCI ₂	1,000 ppm	No effect
Xylol	C ₆ H ₄ (CH ₃) ₂	0.2 Vol. %	No effect

This sensor is not suitable for monitoring the limit values of ethylene oxide, propylene oxide, butadiene, formaldehyde, vinyl acetate or vinyl chloride.

DrägerSensor® XS EC OV-A

Order no. 68 09 522

Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger X-am 7000	yes	yes	1 year	

MARKET SEGMENTS

Production of plastics, disinfection, painter, chemical industry.

Detection limit:	5 ppm	
Resolution:	0.5 ppm	
Measurement range:	0 to 100 ppm C ₂ H ₄ O (ethylene oxide)	
	0 to 100 ppm H ₂ CCHCN (acrylonitrile)	
	0 to 100 ppm C ₆ H ₅ CHCH ₂ (styrol)	
	0 to 100 ppm H ₂ CC(CH ₃)COOCH ₃ (methyl methacrylate)	
	0 to 300 ppm (CH ₃) ₂ CCH ₂ (isobutylene)	
	0 to 100 ppm C ₂ H ₃ OCH ₂ Cl (epichlorohydrin)	
Response time:	≤ 90 seconds at 20 °C or 68 °F (T ₅₀) for EO, But, CIPO	
	≤ 300 seconds at 20 °C or 68 °F (T ₅₀) for ACN, MMA, Styr	
Measurement accuracy		
Zero point:	≤ ± 2 ppm	
Sensitivity:	≤ ± 20% of measured value	
Long-term drift, at 20°C (68°F)	
Zero point:	≤ ± 2 ppm/month	
Sensitivity:	≤ ± 10% of measured value/month	
Warm-up time:	≤ 18 hours	
Ambient conditions		
Temperature:	(-20 to 55)°C (-4 to 131)°F for EO, But, Styr, CIPO	
	(5 to 40)°C (41 to 104)°F for ACN, MMA	
Humidity:	(10 to 90)% RH	
Pressure:	(700 to 1,300) hPa	
Influence of temperature		
Zero point:	≤ ± 0.2 ppm/K	
Sensitivity:	≤ ± 1% of measured value/K	
Influence of humidity		
Zero point:	≤ ± 0.1 ppm/% RH	
Sensitivity:	≤ ± 0.2% of measured value/% RH	
Test gas:	approx. 10 ppm C ₂ H ₄ O test gas or one of the other target gases	
	CIPO, ACN, Styr, MMA, But	

The DrägerSensor® XS OV-A has the same excellent insensitivity to moisture that the other Dräger-Sensor® XS OVs have, but it has also been optimized for other organic gases and vapors. Target gas calibration is required for all gases. Because of the absorption effects of the gases it measures, dust filters cannot be used.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of ethylene oxide. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm C₂H₄O
Acetic acid	CH₃COOH	100 ppm	No effect
Acetone	CH₃COCH₃	1,000 ppm	≤ 15
Ammonia	NH ₃	100 ppm	No effect
Benzene	C ₆ H ₆	2,000 ppm	No effect
Carbon dioxide	CO ₂	30 Vol. %	No effect
Carbon monoxide	CO	30 ppm	≤ 15
Chlorine	Cl ₂	10 ppm	No effect
Chlorobenzene	C ₆ H ₅ Cl	200 ppm	No effect
Dichloromethane	CH ₂ Cl ₂	1,000 ppm	No effect
Dimethyl disulfide	(CH ₃) ₂ S ₂	50 ppm	≤ 65
Dimethyl sulfide	(CH ₃) ₂ S	50 ppm	≤ 40
Dimethylformamide	HCON(CH ₃) ₂	100 ppm	No effect
Ethyl acetate	CH₃COOC₂H₅	100 ppm	No effect
Gasoline, F 50	-	700 ppm	≤ 20
Hydrogen	H ₂	5,000 ppm	≤ 50
Hydrogen chloride	HCI	40 ppm	≤ 10
Hydrogen cyanide	HCN	20 ppm	≤ 20
Hydrogen sulfide	H ₂ S	10 ppm	≤ 20
Methane	CH ₄	2 Vol. %	No effect
Methanethiol	CH ₃ SH	50 ppm	≤ 75
Methyl isobutyl ketone	(CH ₃) ₂ CHCH ₂ COCH ₃	500 ppm	No effect
Nitrogen dioxide	NO ₂	50 ppm	≤ 5
Nitrogen monoxide	NO	25 ppm	≤ 25
Phenol	C ₆ H ₅ OH	30 ppm	≤ 6
Phosgene	COCl ₂	50 ppm	No effect
Sulfur dioxide	SO ₂	10 ppm	≤ 4
Trichloroethylene	CHCICCI ₂	1,000 ppm	No effect

DrägerSensor® XS EC O₂-LS DrägerSensor® XS 2 O₂ DrägerSensor® XS R O₂

Order no. 68 09 130

68 10 375

68 10 262

DrägerSensor® XS O₂ microPac (Dräger X-am 3000 only) 68 10 034

Used in	Plug & Play	Replaceable	Guaranty*	Selective filter
Dräger X-am 7000	yes	yes	3/2/5 years	-

MARKET SEGMENTS

Sewage, mining and tunneling, fumigation, biogas, measuring hazmat, industrial gases.

Detection limit:	0.1 Vol. %		
Resolution:	0.1 Vol. %		
Measurement range:	0 to 25 Vol. % O ₂ (oxygen)		
Response time:	≤ 25 seconds at 20 °C or 68 °F (T ₉₀) - XS EC		
	≤ 20 seconds at 20 °C or 68 °F (T ₉₀) – XS 2 / XS R		
	≤ 32 seconds at 20 °C or 68 °F (T ₉₀) - XS microPac		
Measurement accuracy			
Zero point:	≤ ± 0.2 Vol. %		
Sensitivity:	≤ ± 1% of measured value		
Long-term drift, at 20°C (68°F)			
Zero point:	≤ ± 0.5 Vol. %/year		
Sensitivity:	≤ ± 1% of measured value/month		
Warm-up time:	≤ 1 hour		
Ambient conditions	-		
Temperature:	(-40 to 50)°C (-40 to 122)°F		
Humidity:	(10 to 90)% RH		
Pressure:	(700 to 1,300) hPa		
Influence of temperature			
Zero point:	≤ ± 0.4 Vol. % XS EC / XS microPac		
	≤ ± 0.2 Vol. % XS 2 / XS R		
Sensitivity:	≤ ± 2% of measured value XS EC		
	≤ ± 1% of measured value XS R / XS 2		
	≤ ± 4.5% of measured value XS microPac		
Influence of humidity			
Zero point:	≤ ± 0.002 Vol. %/% RH - XS EC / XS microPac		
	No effect – XS 2 / XS R		
Sensitivity:	≤ ± 0.1% of measured value/% RH		
Test gas:	N ₂ (zero gas)		
	approx. 18 Vol. % O ₂		

^{*} DrägerSensor XS EC O_2 = three-year guaranty DrägerSensor XS 2 O_2 = two-year guaranty = five-year guaranty

DrägerSensor XS O₂ microPac = two-year guaranty

DrägerSensor® XS oxygen sensors are lead-free, thus complying with Directive 2002/95/EC (RoHS). Because they are non-consuming sensors, they have a much longer life spans than sensors that are consuming.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of O_2 . To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES DrägerSensor® XS EC O2 LS

Gas/vapor	Chem. symbol	Concentration	Display in Vol. % O ₂
Chlorine	Cl ₂	20 ppm	≤ 0.1
Carbon dioxide	CO ₂	5 Vol. %	≤ 0.1
Carbon monoxide	CO	0.5 Vol. %	≤ 0.3(-)
Ethane	C ₂ H ₆	5 Vol. %	≤ 0.1
Ethanol	C ₂ H ₅ OH	1 Vol. %	≤ 0.2(-)
Ethene	C ₂ H ₄	2 Vol. %	≤ 0.5(-)
Ethine	C ₂ H ₂	0.5 Vol. %	≤ 0.2 ⁽⁻⁾
Hydrogen	H ₂	1 Vol. %	≤ 1.6(-)
Hydrogen chloride	HCI	40 ppm	≤ 0.1
Hydrogen sulfide	H ₂ S	100 ppm	≤ 0.1
Methane	CH ₄	10 Vol. %	≤ 0.1
Nitrogen dioxide	NO ₂	50 ppm	≤ 0.1
Nitrogen monoxide	NO	100 ppm	≤ 0.1
Propane	C ₃ H ₈	2 Vol. %	≤ 0.1
Sulfur dioxide	SO ₂	50 ppm	≤ 0.1
	_	_	_

RELEVANT CROSS-SENSITIVITIES DrägerSensor® XS 2 O₂

Gas/vapor	Chem. symbol	Concentration	Display in Vol. % O ₂
Chlorine	Cl ₂	20 ppm	No effect
Carbon dioxide	CO ₂	5 Vol. %	No effect
Carbon monoxide	CO	0.5 Vol. %	≤ 0.3(-)
Ethane	C ₂ H ₆	5 Vol. %	No effect
Ethanol	C ₂ H ₅ OH	1 Vol. %	≤ 0.2(-)
Ethene	C ₂ H ₄	2 Vol. %	≤ 0.5 ⁽⁻⁾
Ethyne	C ₂ H ₂	0.5 Vol. %	≤ 0.2(-)
Hydrogen	H ₂	1 Vol. %	≤ 1.6 ⁽⁻⁾
Hydrogen chloride	HCI	40 ppm	No effect
Hydrogen sulfide	H ₂ S	100 ppm	No effect
Methane	CH ₄	10 Vol. %	No effect
Nitrogen dioxide	NO ₂	50 ppm	No effect
Nitrogen monoxide	NO	100 ppm	No effect
Propane	C ₃ H ₈	2 Vol. %	No effect
Sulfur dioxide	SO ₂	50 ppm	No effect

RELEVANT CROSS-SENSITIVITIES DrägerSensor® XS R O₂ LS

Gas/vapor	Chem. symbol	Concentration	Display in Vol. % O ₂
Chlorine	Cl ₂	20 ppm	No effect
Carbon dioxide	CO ₂	5 Vol. %	No effect
Carbon monoxide	CO	0.5 Vol. %	≤ 0.3(-)
Ethane	C ₂ H ₆	5 Vol. %	No effect
Ethanol	C ₂ H ₅ OH	1 Vol. %	≤ 0.2(-)
Ethene	C ₂ H ₄	2 Vol. %	≤ 0.5(-)
Ethyne	C ₂ H ₂	0.5 Vol. %	≤ 0.2(-)
Hydrogen chloride	HCI	40 ppm	No effect
Hydrogen sulfide	H ₂ S	100 ppm	No effect
Methane	CH ₄	10 Vol. %	No effect
Nitrogen dioxide	NO ₂	50 ppm	No effect
Nitrogen monoxide	NO	100 ppm	No effect
Propane	C ₃ H ₈	2 Vol. %	No effect
Sulfur dioxide	SO ₂	50 ppm	No effect

RELEVANT CROSS-SENSITIVITIES DrägerSensor® XS O₂ MICROPAC

Gas/vapor	Chem. symbol	Concentration	Display in Vol. % O ₂
Chlorine	Cl ₂	20 ppm	≤ 0.1
Carbon dioxide	CO ₂	5 Vol. %	≤ 0.1
Carbon monoxide	CO	0.5 Vol. %	≤ 0.3(-)
Ethane	C ₂ H ₆	5 Vol. %	≤ 0.1
Ethanol	C ₂ H ₅ OH	1 Vol. %	≤ 0.2(-)
Ethene	C ₂ H ₄	2 Vol. %	≤ 0.5(-)
Ethine	C ₂ H ₂	0.5 Vol. %	≤ 0.2(-)
Hydrogen	H ₂	1 Vol. %	≤ 1.6(-)
Hydrogen chloride	HCI	40 ppm	≤ 0.1
Hydrogen sulfide	H ₂ S	100 ppm	≤ 0.1
Methane	CH ₄	10 Vol. %	≤ 0.1
Nitrogen dioxide	NO ₂	50 ppm	≤ 0.1
Nitrogen monoxide	NO	100 ppm	≤ 0.1
Propane	C ₃ H ₈	2 Vol. %	≤ 0.1
Sulfur dioxide	SO ₂	50 ppm	≤ 0.1

DrägerSensor® XS EC O₂ 100

Order no. 68 09 550

Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger X-am 7000	yes	yes	1 year	

MARKET SEGMENTS

Sewage, mining and tunneling, fumigation, biogas, hazmat, industrial gases.

Detection limit:	0.5 Vol. %			
Resolution:	0.5 Vol. %			
Measurement range:	0 to 100 Vol. % O ₂ (oxygen)			
Response time:	≤ 5 seconds at 20 °C or 68 °F (T ₉₀)			
Measurement accuracy				
Zero point:	≤ ± 0.5 Vol. %			
Sensitivity:	≤ ± 1% of measured value			
Long-term drift, at 20°C (68°F)				
Zero point:	≤ ± 0.5 Vol. %/year			
Sensitivity:	≤ ± 3% of measured value/month			
Warm-up time:	≤ 1 hour			
Ambient conditions				
Temperature:	(0 to 45)°C (32 to 133)°F			
Humidity:	(10 to 90)% RH			
Pressure:	(700 to 1,100) hPa			
Influence of temperature	-			
Zero point:	No effect			
Sensitivity:	≤ ± 5% of measured value			
Influence of humidity				
Zero point:	No effect			
Sensitivity:	≤ ± 0.01% of measured value/% RH			
Test gas:	N ₂ (zero gas)			
	approx. 18 Vol. % O ₂			

This sensor can be used for measuring oxygen concentrations of up to 100 Vol. % O₂ in the ambient air. The principle upon which the sensor is based is the measurement of the partial oxygen pressure, which means it can also measure oxygen in inert gases like nitrogen, argon, and helium.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of O_2 . To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in Vol. %O ₂
Carbon dioxide	CO ₂	5 Vol. %	≤ 1(-)
Chlorine	Cl ₂	20 ppm	No effect
Helium	He	50 Vol. %	≤ 1(-)
Hydrogen chloride	HCI	40 ppm	No effect
Hydrogen sulfide	H ₂ S	100 ppm	No effect
Methane	CH ₄	10 Vol. %	No effect
Nitrogen dioxide	NO ₂	50 ppm	No effect
Nitrogen monoxide	NO	0.05 Vol. %	≤ 1(-)
Propane	C ₃ H ₈	2 Vol. %	No effect
Sulfur dioxide	SO ₂	50 ppm	No effect

DrägerSensor® XS EC PH₃ HC

Order no. 68 09 535

Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger X-am 7000	yes	yes	1 year	

MARKET SEGMENTS

Inorganic chemicals, industry, fumigation, pre entry measurements.

TECHNICAL SPECIFICATIO	'NS		
Detection limit:	2 ppm		
Resolution:	1 ppm		
Measurement range:	0 to 1,000 ppm PH ₃ (phosphine)		
Response time:	≤ 10 seconds at 20 °C or 68 °F (T ₉₀)		
Measurement accuracy			
Zero point:	≤ ± 1 ppm		
Sensitivity:	≤ ± 3% of measured value		
Long-term drift, at 20°C (68°F)			
Zero point:	≤ ± 1 ppm/month		
Sensitivity:	≤ ± 3% of measured value/month		
Warm-up time:	≤ 15 minutes		
Ambient conditions			
Temperature:	(-40 to 50)°C (-40 to 122)°F		
Humidity:	(10 to 90)% RH		
Pressure:	(700 to 1,300) hPa		
Influence of temperature			
Zero point:	No effect		
Sensitivity:	≤ ± 5% of measured value		
Influence of humidity			
Zero point:	No effect		
Sensitivity:	≤ ± 0.05% of measured value/% RH		
Test gas:	approx. 20 to 50 ppm PH ₃		

This sensor demonstrates excellent linearity across the whole measurement range even if calibrated in the lower levels of that range, and it also provides a stable reading even at high concentrations over long periods of time.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of phosphine. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm PH ₃
Acetone	CH₃COCH₃	1.25 Vol. %	No effect
Ammonia	NH ₃ 50 ppm		No effect
Arsine	AsH ₃	5 ppm	≤ 4
Carbon dioxide	CO ₂	10 Vol. %	No effect
Carbon monoxide	СО	300 ppm	No effect
Chlorine	Cl ₂	5 ppm	No effect
Diborane	B ₂ H ₆	5 ppm	≤ 3
Ethanol	C ₂ H ₅ OH	250 ppm	No effect
Ethene	C ₂ H ₄	200 ppm	No effect
Germanium tetrahydride	GeH ₄	5 ppm	≤ 5
Hydrogen	H ₂	1,000 ppm	No effect
Hydrogen chloride	HCI	20 ppm	No effect
Hydrogen cyanide	HCN	25 ppm	≤ 2
Hydrogen selenide	H ₂ Se	5 ppm	≤ 2
Hydrogen sulfide	H ₂ S	20 ppm	≤ 20
i-propanol	(CH ₃)CHOH	1 Vol. %	No effect
Methane	CH ₄	4 Vol. %	No effect
Methanol	CH₃OH	200 ppm	No effect
Nitrogen dioxide	NO ₂	20 ppm	≤ 5(-)
Nitrogen monoxide	NO	20 ppm	No effect
Silane	SiH ₄	5 ppm	≤ 5
Sulfur dioxide	SO ₂	10 ppm	≤ 2
Toluene	C ₆ H ₅ CH ₃	1 Vol. %	No effect
Trimethylboron	B(CH ₃) ₃	1 ppm	No effect

DrägerSensor® XS EC SO₂

Order no. 68 09 160

Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger X-am 7000	yes	yes	1 year	K1T, 68 09 163 – replaceabl
				Eliminates cross-sensitivity
				hydrogen sulfide (H ₂ S).

MARKET SEGMENTS

Food industry, pest control, mining, oil and gas, petrochemicals, pulp and paper, shipping, steel

Detection limit:	0.5 ppm	
Resolution:	0.1 ppm	
Measurement range:	0 to 100 ppm SO ₂ (sulfur dioxide)	
Response time:	≤ 20 seconds at 20 °C or 68 °F (T ₉₀)	
Measurement accuracy		
Zero point:	≤ ± 0.2 ppm	
Sensitivity:	≤ ± 2% of measured value	
Long-term drift, at 20°C (68°F)	-	
Zero point:	≤ ± 1 ppm/month	
Sensitivity:	≤ ± 2% of measured value/month	
Warm-up time:	≤ 15 minutes	
Ambient conditions	-	
Temperature:	(-40 to 50)°C (-40 to 122)°F	
Humidity:	(10 to 90)% RH	
Pressure:	(700 to 1,300) hPa	
Influence of temperature		
Zero point:	≤ ± 1 ppm	
Sensitivity:	≤ ± 5% of measured value	
Influence of humidity		
Zero point:	≤ ± 0.002 ppm/% RH	
Sensitivity:	≤ ± 0.2% of measured value/% RH	
Test gas:	approx. 10 ppm SO ₂ test gas	

In addition to a fast response time and excellent linearity, this sensor is highly selective if the selective filter is used. The K1T selective filter (order no. 68 09 163) is an accessory for the DrägerSensor® XS EC SO_2 and eliminates the sensor's cross-sensitivity to hydrogen sulfide. The filter has a lifetime of 2,000 ppm × hours, which means that at a hydrogen sulfide concentration of 1 ppm it can be used for 2,000 hours.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of SO₂. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm SO ₂ without selective filter
Acetaldehyde	CH₃CHO	500 ppm	≤ 0.5
Acetone	CH ₃ COCH ₃	1,000 ppm	≤ 0.5
Ammonia	NH ₃	200 ppm	≤ 0.5
Carbon dioxide	CO ₂	30 Vol. %	≤ 0.5
Carbon monoxide	CO	125 ppm	≤ 0.5
Chlorine	Cl ₂	5 ppm	≤ 5(-)
Ethene	C ₂ H ₄	50 ppm	≤ 0.5
Ethine	C ₂ H ₂	200 ppm	≤ 60
Formaldehyde	HCHO	50 ppm	≤1
Hydrogen cyanide	HCN	20 ppm	≤ 10
Hydrogen	H ₂	1,000 ppm	≤ 2
Hydrogen sulfide	H ₂ S	20 ppm	≤ 100
Methane	CH ₄	2 Vol. %	≤ 0.5
Methanol	CH₃OH	175 ppm	≤ 0.5
Nitrogen dioxide	NO ₂	20 ppm	≤ 20(-)
Nitrogen monoxide	NO	20 ppm	≤ 0.5
Phosphine	PH ₃	5 ppm	≤ 50
Tetrahydrothiophene	C ₄ H ₈ S	10 ppm	≤ 5

DrägerSensor® XS EC THT

Order no. 68 09 195

Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger Pac III S / E*	yes	yes	1 year	B2T, 68 09 198 - replaceable
				Cross sensitivities from acidic gases
				(H ₂ S, SO ₂) are largely eliminated

MARKET SEGMENTS

Gas supply companies

Detection limit:	3 mg/m ³		
Resolution:	1 mg/m ³		
Measurement range:	0 to 100 mg/m³ THT (tetrahydrothiophene)		
Response time:	≤ 90 seconds at 20 °C or 68 °F (T ₉₀)		
Measurement accuracy			
Zero point:	≤ ± 3 mg/m³		
Sensitivity:	≤ ± 5% of measured value		
Long-term drift, at 20°C (68°F)			
Zero point:	≤ ± 3 mg/m³/month		
Sensitivity:	≤ ± 3% of measured value/month		
Warm-up time:	≤ 12 hours		
Ambient conditions			
Temperature:	(-20 to 50)°C (-4 to 122)°F		
Humidity:	(10 to 90)% RH		
Pressure:	(700 to 1,300) hPa		
Influence of temperature			
Zero point:	≤ ± 3 mg/m ³		
Sensitivity:	≤ ± 5% of measured value		
Influence of humidity			
Zero point:	\leq ± 0.04 mg/m ³ /% RH		
Sensitivity:	≤ ± 0.01% of measured value/% RH		
Test gas:	THT test gas between 40% and 100% of the highest figure within the		
	set measurement range.		

THT (tetrahydrothiophene) is one of the most common odorants. This sensor is suitable for measuring THT concentrations in the ambient air. Using an internal, replaceable selective filter, the sensor is able to distinguish THT effectively from SO_2 and H_2S .

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of THT. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in mg/m³ THT without selective filter	Display in mg/m³ THT with selective filter
Acetone	CH₃COCH₃	1,000 ppm	≤ 10	≤ 10
Ammonia	NH ₃	200 ppm	No effect	No effect
Carbon dioxide	CO ₂	1.5 Vol. %	No effect	No effect
Carbon monoxide	CO	125 ppm	≤ 10	≤ 10
Chlorine	Cl ₂	8 ppm	≤ 10(-)	≤ 3(-)
Ethene	C ₂ H ₄	50 ppm	No effect	No effect
Hydrogen	H ₂	1,000 ppm	≤ 5	≤ 5
Hydrogen cyanide	HCN	50 ppm	No effect	No effect
Hydrogen sulfide	H ₂ S	10 ppm	≤ 100	No effect
Methane	CH ₄	100 Vol. %	No effect	No effect
Methanol	CH ₃ OH	175 ppm	≤ 25	≤ 25
Nitrogen dioxide	NO ₂	20 ppm	≤ 7	<u>≤</u> 7
Nitrogen monoxide	NO	20 ppm	≤ 90	≤ 90
Phosphine	PH ₃	5 ppm	≤ 50	≤ 50
Sulfur dioxide	SO ₂	20 ppm	≤ 45	No effect

CONTENTS XXS SENSORS

DrägerSensor® XXS	Chemical name (synonym)	
XXS Amine	amine like methylamíne, ethylamine,	206
	dimethylamine etc.	
XXS Cl ₂	chlorine	208
XXS CO	carbon monoxide	210
XXS E CO	carbon monoxide	210
XXS CO HC	carbon monoxide	214
XXS CO H ₂ -CP	carbon monoxide / hydrogen	216
XXS CO ₂	carbon dioxide	218
XXS COCI ₂	phosgene	220
XXS H ₂	hydrogen	222
XXS H ₂ HC	hydrogen	224
XXS HCN	hydrogen cyanide	226
XXS H ₂ S	hydrogen sulfide	228
XXS E H ₂ S	hydrogen sulfide	228
XXS H ₂ S HC	hydrogen sulfide	232
XXS H ₂ S LC	hydrogen sulfide	234
XXS H ₂ S / CO	hydrogen sulfide / carbon monoxide	236
XXS NH ₃	ammonia	238
XXX NO	nitrogen monoxide	240
XXS NO ₂	nitrogen dioxide	242
XXS NO ₂ LC	nitrogen dioxide	244
XXS OV	organic gases and vapors like ethylene oxide,	246
	ethene, propene etc.	
XXS OV-A	organic gases and vapors like ethylene oxide,	250
	styrene isobutylene etc.	
XXS O ₂	oxygen	254
XXS E O ₂	oxygen	254
XXS Odorant	sulfur compounds like tetrahydrothiophene,	258
	methylmercapten, ethylmercaptan etc.	
XXS Ozone	Ozone	260
XXS PH ₃	hydrogen phosphide, arsine, diborane, silane	262
XXS PH ₃ HC	hydrogen phosphide	264
XXS SO ₂	sulfur dioxide	266

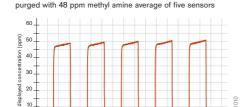
DrägerSensor® XXS Amine

Order no. 68 12 545

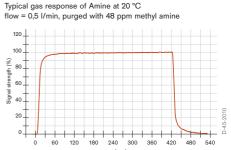
Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger X-am 5000	no	yes	1 year	no
Dräger X-am 5600	no	yes	1 year	

MARKET SEGMENTS

Foundries, refineries, power plants


Detection limit:	2 ppm
Resolution:	1 ppm
Measurement range:	0 - 100 ppm CH ₃ NH ₂ (methylamine)
	0 - 100 ppm (CH ₃) ₂ NH (dimethylamine)
	0 - 100 ppm (CH ₃) ₃ N (trimethylamine)
	0 - 100 ppm C ₂ H ₅ NH ₂ (ethylamine)
	0 - 100 ppm (C ₂ H ₅) ₂ NH (diethylamine)
	0 - 100 ppm (C ₂ H ₅) ₃ N (triethylamine)
Response time:	≤ 30 seconds at 20 °C or 68 °F (T ₉₀)
Measurement accuracy	
Zero point:	≤ ± 2 ppm
Sensitivity:	≤ ± 5 % of measured value
Long-term drift, at 20°C (68°F)	
Zero point:	≤ ± 2 ppm/month
Sensitivity:	≤ ± 3 % of measured value/month
Warm-up time:	≤ 12 hours
Ambient conditions	
Temperature:	(-40 to 50)°C (-40 to 122)°F
Humidity:	(10 to 90) % RH.
Pressure:	(700 to 1300) hPa
Influence of temperature	
Zero point:	≤ ± 5 ppm
Sensitivity:	≤ ± 5 % of measured value
Influence of humidity	
Zero point:	≤ ± 0.1 ppm / % RH
Sensitivity:	≤ ± 0.2 % of measured value/% RH
Test gas:	approx. 50 to 100 ppm NH ₃

Reproducibility of Amine sensors


1000 1500 2000 2500 3000 3500 4000

500

This sensor is suitable for monitoring concentration of six different amines in ambient air. A fast response time and excellent repeatability are just two examples of this sensor's special characteristics.

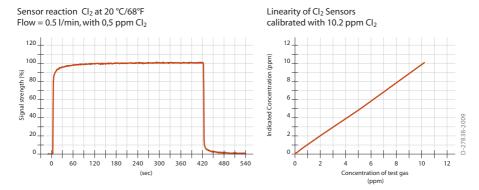
(sec)

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of NH $_3$. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm NH ₃
Acetone	CH₃COCH₃	1000 ppm	No effect
Carbon dioxide	CO ₂	1.5 Vol%	≤5 ppm (-)
Carbon monoxide	CO	200 ppm	No effect
Chlorine	Cl ₂	10 ppm	≤20 ppm (-)
Ethene	C ₂ H ₄	1000 ppm	≤3 ppm
Ethine	C ₂ H ₂	200 ppm	No effect
Hydrogen	H ₂	1000 ppm	≤3 ppm
Hydrogen cyanide	HCN	25 ppm	≤3 ppm
Hydrogen sulfide	H ₂ S	20 ppm	≤50 ppm
Methane	CH ₄	10 Vol%	No effect
Methanol	CH₃OH	200 ppm	≤10 ppm
Nitrogen dioxide	NO ₂	20 ppm	≤10 ppm (-)
Nitrogen monoxide	NO	20 ppm	≤10 ppm
Phosphine	PH ₃	5 ppm	≤8 ppm
Sulfur dioxide	SO ₂	20 ppm	No effect
Tetrahydrothiophene	C ₄ H ₈ S	10 ppm	≤10 ppm

DrägerSensor® XXS Cl₂

Order no. 68 10 890


Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger Pac 7000	no	yes	1 year	no
Dräger X-am 5000	no	yes	1 year	no
Dräger X-am 5600	no	yes	1 year	no

MARKET SEGMENTS

Food and beverage, inorganic chemicals, manufacture of plastics, measuring dangerous substances, pulp and paper, power generation, sewage plants, water treatment.

TECHNICAL SPECIFICATIO	NO TO THE PART OF
Detection limit:	0.05 ppm
Resolution:	0.05 ppm
Measurement range:	0 to 20 ppm Cl ₂ (chlorine)
	0 to 20 ppm F ₂ (fluorine)
	0 to 20 ppm Br ₂ (bromine)
	0 to 20 ppm ClO ₂ (chlorine dioxide)
Response time:	≤ 30 seconds at 20°C (T ₉₀) or 68 °F
Measurement accuracy	
Zero point:	≤ ± 0.05 ppm
Sensitivity:	≤ ± 2% of measured value
Long-term drift, at 20°C (68°F)	
Zero point:	≤ ± 0.2 ppm/year
Sensitivity:	≤ ± 2% of measured value/month
Warm-up time:	≤ 30 minutes
Ambient conditions	
Temperature:	(-40 to 50)°C (-40 to 122)°F
Humidity:	(10 to 90)% RH
Pressure:	(700 to 1,300) hPa
Influence of temperature	-
Zero point:	≤ ± 0.05 ppm
Sensitivity:	≤ ± 5% of measured value
Influence of humidity	
Zero point:	No effect
Sensitivity:	≤ ± 0.4% of measured value/% RH
Test gas:	approx. 5 to 10 ppm Cl ₂

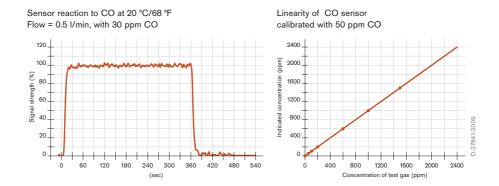
This sensor is suitable for monitoring concentrations of chlorine, bromine, fluorine, and chlorine dioxide in the ambient air. These sensors' advantages include excellent linearity and fast response times.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of chlorine. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm Cl ₂
Ammonia	NH ₃	50 ppm	No effect
Carbon dioxide	CO ₂	10 Vol%	No effect
Carbon monoxide	CO	1,000 ppm	No effect
Ethanol	C ₂ H ₅ OH	250 ppm	No effect
Ethine	C ₂ H ₂	100 ppm	No effect
Hydrogen	H ₂	1,000 ppm	No effect
Hydrogen chloride	HCI	20 ppm	≤ 0.6
Hydrogen cyanide	HCN	60 ppm	No effect
Hydrogen sulfide	H ₂ S	10 ppm	≤ 0.6 (-)
Methane	CH ₄	0.9 Vol%	No effect
Nitrogen dioxide	NO ₂	10 ppm	No effect
Nitrogen monoxide	NO	20 ppm	No effect
Ozone	O ₃	1 ppm	No effect
Phosphine	PH ₃	1 ppm	No effect
Sulfur dioxide	SO ₂	10 ppm	≤ 1 (-)

DrägerSensor® XXS CO DrägerSensor® XXS E CO

Order no. 68 10 882 68 12 212


Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger Pac 3500	no	yes	2 years	Internal selective filter
Dräger Pac 5500	no	yes	2 years	Cross sensitivities to alcohol
Dräger Pac 7000	no	yes	2 years	and acid gases (H ₂ S, SO ₂)
Dräger Pac 7000 5Y	no	yes	5 years	are eliminated
Dräger X-am 1700	no	yes	2 years	-
Dräger X-am 2000	no	yes	2 years	
Dräger X-am 5000	no	yes	2/5 years	_
Dräger X-am 5600	no	yes	2/5 years	-

MARKET SEGMENTS

Waste disposal industry, metal processing, petrochemical, fertilizer production, mining and tunneling, shipping, inorganic chemicals, steel, organic chemicals, oil and gas, measuring dangerous substances, biogas.

Detection limit:	2 ppm
Resolution:	2 ppm
Measurement range:	0 to 2,000 ppm CO (carbon monoxide)
Response time:	≤ 15 seconds at 20°C (T ₉₀) or 68 °F
Measurement accuracy	
Zero point:	≤ ± 2 ppm
Sensitivity:	≤ ± 2% of measured value
Long-term drift, at 20°C (68°F)	
Zero point:	≤ ± 2 ppm/year
Sensitivity:	≤ ± 3% of measured value/year
Warm-up time:	≤ 5 minutes
Ambient conditions	
Temperature:	(-40 to 50)°C (-40 to 122)°F
Humidity:	(10 to 90)% RH
Pressure:	(700 to 1,300) hPa
Influence of temperature	
Zero point:	≤ ± 5 ppm
Sensitivity:	≤ ± 0.3% of measured value/K
Influence of humidity	
Zero point:	No effect
Sensitivity:	≤ ± 0.02% of measured value/% RH
Test gas:	approx. 50 to 250 ppm CO

In addition to an outstanding linearity and a quick response time, these CO sensors are highly selective. An internal selective filter, which is fitted to the sensor as standard, filters out most associated gases such as alcohol and acid gases H₂S, SO₂.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of CO. To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES DRÄGERSENSOR® XXS CO

Gas/vapor	Chem. symbol	Concentration	Display in ppm CO
Ammonia	NH ₃	100 ppm	≤1
Carbon dioxide	CO ₂	30 Vol%	≤ 2
Chlorine	Cl ₂	20 ppm	≤1
Ethanol	C₂H₅OH	250 ppm	≤1
Ethine	C ₂ H ₂	100 ppm	≤ 200
Hydrogen	H ₂	0.1 Vol%	≤ 350
Hydrogen chloride	HCI	40 ppm	≤1
Hydrogen cyanide	HCN	50 ppm	≤1
Hydrogen sulfide	H ₂ S	30 ppm	≤1
Nitrogen dioxide	NO ₂	20 ppm	≤1
Nitrogen monoxide	NO	30 ppm	≤ 5
Methane	CH ₄	5 Vol%	≤1
Propane	C ₃ H ₈	1 Vol%	≤1
Sulfur dioxide	SO ₂	25 ppm	≤1

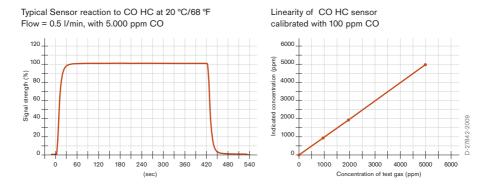
RELEVANT CROSS-SENSITIVITIES DRÄGERSENSOR® XXS E CO

Gas/vapor	Chem. symbol	Concentration	Display in ppm CO
Ammonia	NH ₃	100 ppm	No effect
Carbon dioxide	CO ₂	30 Vol%	≤ 2
Chlorine	Cl ₂	20 ppm	No effect
Ethanol	C ₂ H ₅ OH	250 ppm	No effect
Ethine	C ₂ H ₂	100 ppm	≤ 200
Hydrogen	H ₂	0.1 Vol%	≤ 350
Hydrogen chloride	HCI	40 ppm	No effect
Hydrogen cyanide	HCN	50 ppm	No effect
Hydrogen sulfide	H ₂ S	30 ppm	No effect
Nitrogen dioxide	NO ₂	20 ppm	No effect
Nitrogen monoxide	NO	30 ppm	≤ 5
Methane	CH ₄	5 Vol%	No effect
Propane	C ₃ H ₈	1 Vol%	No effect
Sulfur dioxide	SO ₂	25 ppm	No effect
		_	

DrägerSensor® XXS CO

DrägerSensor® XXS CO HC

Order no. 68 12 010


Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger X-am 5000	no	yes	1 year	Internal selective filter Cross
Dräger X-am 5600	no	yes	1 year	sensitivities to alcohol and acid
				gases (H ₂ S, SO ₂) are eliminated.

MARKET SEGMENTS

Waste disposal industry, metal processing, petrochemical, fertilizer production, mining and tunneling (in particular monitoring high CO concentrations during rescue operations), shipping, inorganic chemicals, biogas, hazmat, steel industry, oil and gas, organic chemicals.

Detection limit:	10 ppm	
Resolution:	5 ppm	
Measurement range:	0 to 10,000 ppm CO (carbon monoxide)	
Response time:	≤ 25 seconds at 20°C (T ₉₀) or 68 °F	
Measurement accuracy		
Zero point:	≤ ± 20 ppm	
Sensitivity:	≤ ± 2% of measured value	
Long-term drift, at 20°C (68°F)		
Zero point:	≤ ± 5 ppm/year	
Sensitivity:	≤ ± 1% of measured value/month	
Warm-up time:	≤ 5 minutes	
Ambient conditions		
Temperature:	(-40 to 50)°C (-40 to 122)°F	
Humidity:	(10 to 90)% RH	
Pressure:	(700 to 1,300) hPa	
Influence of temperature	-	
Zero point:	No effect	
Sensitivity:	≤ ± 0.3% of measured value/K	
Influence of humidity		
Zero point:	No effect	
Sensitivity:	≤ ± 0.02% of measured value/% RH	
Test gas:	approx. 250 ppm CO	

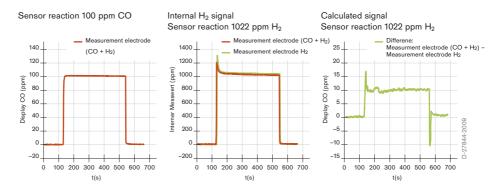
This sensor demonstrates excellent linearity across the whole measurement range even if calibrated in the lower reaches of that range, and it also provides a stable reading even at high concentrations over long periods of time.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of CO. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm CO
Ammonia	NH ₃	100 ppm	No effect
Carbon dioxide	CO ₂	30 Vol%	No effect
Chlorine	Cl ₂	20 ppm	No effect
Hydrogen	H ₂	0.1 Vol%	≤ 350
Hydrogen chloride	HCI	40 ppm	No effect
Hydrogen cyanide	HCN	50 ppm	No effect
Hydrogen sulfide	H ₂ S	30 ppm	No effect
Ethanol	C ₂ H ₅ OH	250 ppm	No effect
Ethine	C ₂ H ₂	100 ppm	≤ 200
Nitrogen dioxide	NO ₂	20 ppm	No effect
Nitrogen monoxide	NO	30 ppm	≤ 5
Methane	CH ₄	5 Vol%	No effect
Propane	C ₃ H ₈	1 Vol%	No effect
Sulfur dioxide	SO ₂	25 ppm	No effect

DrägerSensor® XXS CO H₂-CP

Order no. 68 11 950


Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger X-am 5000	no	yes	1 years	Internal selective filterCross
Dräger X-am 5600	no	yes	1 year	sensitivities to alcohol and acid
				gases (H ₂ S, SO ₂) are eliminated.

MARKET SEGMENTS

Steel industry, refineries, sewage treatment plants

Detection limit:	6 ppm
Resolution:	2 ppm
Measurement range:	0 to 2,000 ppm CO (carbon monoxide)
Response time:	≤ 25 seconds at 20°C (T ₉₀) or 68 °F
Measurement accuracy	
Zero point:	≤ ± 2 ppm
Sensitivity:	≤ ± 2% of measured value
Long-term drift, at 20°C (68°F)	
Zero point:	≤ ± 2 ppm/year
Sensitivity:	≤ ± 1% of measured value/month
Warm-up time:	≤ 12 hours
Ambient conditions	_
Temperature:	(-40 to 50) °C (-40 to 122) °F
Humidity:	(10 to 90)% RH
Pressure:	(700 to 1,300) hPa
Influence of temperature	
Zero point:	≤ ± 5 ppm
Sensitivity:	≤ ± 0.3% of measured value/K
Influence of humidity	
Zero point:	No effect
Sensitivity:	≤ ± 0.02% of measured value/% RH
Test gas:	approx. 250 ppm CO and 1,000 ppm H ₂

Carbon monoxide and hydrogen can occur simultaneously in many areas of work such as in the steel industry, refineries, and sewage treatment plants. Hydrogen affects the CO signal in conventional sensors, which leads to many false alarms. The DrägerSensor® XXS CO H_2 -CP uses two measuring electrodes – one of which measures CO and H_2 , the other only H_2 . The CO level is calculated and displayed on the basis of the difference between the two signals. A hydrogen concentration of 1,000 ppm (2.5% LEL) causes a maximum displayed concentration of only 15 ppm CO, which does not activate the CO alarm.

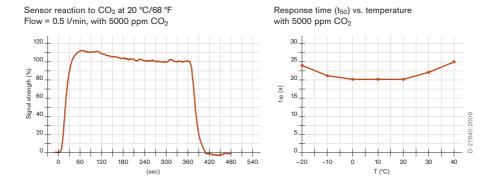
The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of CO. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm CO
Ammonia	NH ₃	100 ppm	≤ 1
Carbon dioxide	CO ₂	30 Vol%	≤1
Chlorine	Cl ₂	20 ppm	≤1
Hydrogen	H ₂	0.1 Vol%	< = ±15 (-)
Hydrogen chloride	HCI	40 ppm	≤1
Hydrogen cyanide	HCN	50 ppm	≤1
Hydrogen sulfide	H ₂ S	30 ppm	≤1
Ethanol	C ₂ H ₅ OH	250 ppm	≤1
Ethine	C ₂ H ₂	100 ppm	≤ 200
Methane	CH ₄	5 Vol%	≤1
Nitrogen dioxide	NO ₂	20 ppm	≤1
Nitrogen monoxide	NO	30 ppm	≤ 5
Propane	C ₃ H ₈	1 Vol%	≤1
Sulfur dioxide	SO ₂	25 ppm	≤1
		_	

¹⁾ after compensation

DrägerSensor® XXS CO₂

Order no. 68 10 889


Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger Pac 7000	no	yes	1 year	no
Dräger X-am 5000	no	yes	1 year	no
Dräger X-am 5600	no	yes	1 year	no

MARKET SEGMENTS

Waste disposal, Food and beverage (breweries), metal processing, petrochemical, fertilizer production, sewage, police, customs and rescue services, mining and tunneling, shipping and transport, power generation.

Detection limit:	0.3 Vol%
Resolution:	0.1 Vol%
Measurement range:	0 to 5 Vol% CO ₂ (carbon dioxide)
Response time:	≤ 30 seconds at 20°C (T ₅₀) or 68 °F
Measurement accuracy	
Zero point:	≤ ± 0.3 Vol%
Sensitivity:	≤ ± 20% of measured value
Long-term drift, at 20°C (68°F)	-
Zero point:	≤ ± 0.2 Vol%/year
Sensitivity:	≤ ± 15% of measured value/month
Warm-up time:	≤ 12 hours
Ambient conditions	
Temperature:	(-20 to 40)°C (-4 to 104)°F
Humidity:	(10 to 90)% RH
Pressure:	(700 to 1,300) hPa
Influence of temperature	
Zero point:	≤ ± 0.01 Vol%/K
Sensitivity:	≤ ± 2% of measured value
Influence of humidity	
Zero point:	No effect
Sensitivity:	≤ ± 0.1% of measured value/% RH
Test gas:	2.5 Vol% CO ₂

This sensor is highly sensitive (see cross-sensitivity list) and offers an economical alternative to infrared sensors if you need to warn against CO₂ concentrations in the ambient air.

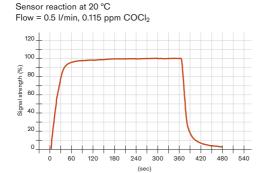
The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of CO₂. To be sure, please check if gas mixtures are present.

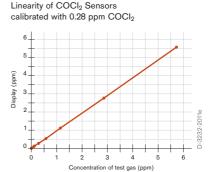
Chem. symbol	Concentration	Display in ppm CO ₂
NH ₃	50 ppm	No effect
CO	1,000 ppm	No effect
Cl ₂	10 ppm	No effect
C ₂ H ₅ OH	250 ppm	No effect
C ₂ H ₂	100 ppm	No effect
H ₂	1.6 Vol%	No effect
HCI	20 ppm	No effect
HCN	60 ppm	No effect
H ₂ S	20 ppm	No effect
NO ₂	20 ppm	No effect
NO	20 ppm	No effect
CH ₄	0.9 Vol%	No effect
O ₃	1.5 ppm	No effect
PH ₃	5 ppm	No effect
SO ₂	20 ppm	No effectt
	NH ₃ CO Cl ₂ C ₂ H ₅ OH C ₂ H ₂ H ₂ HCI HCN H ₂ S NO ₂ NO CH ₄ O ₃ PH ₃	NH ₃ 50 ppm CO 1,000 ppm Cl ₂ 10 ppm C ₂ H ₅ OH 250 ppm C ₂ H ₂ 100 ppm H ₂ 1.6 Vol% HCl 20 ppm HCN 60 ppm H ₂ S 20 ppm NO ₂ 20 ppm NO 20 ppm CH ₄ 0.9 Vol% O ₃ 1.5 ppm PH ₃ 5 ppm

DrägerSensor® XXS COCl₂

Order no. 68 12 005

Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger X-am 5000	no	yes	0,5 years	-
Dräger X-am 5600	no	yes	0,5 years	


MARKTSEGMENTE


Manufacture of plastics, chemical industry, insecticides production, dyes, military

TECHNISCHE DATEN

Detection limit:	0,01 ppm
Resolution:	0,01 ppm
Measurement range:	0 bis 10 ppm COCl ₂ (Phosgene)
Response time:	≤ 20 seconds at 20 °C (T ₂₀)
Measurement accuracy	
Zero point:	≤ ± 0,01 ppm
Sensitivity:	≤ ± 5 % of measured value
Long-term drift, at 20°C (68°F)	-
Zero point:	≤ ± 0,01 ppm/year
Sensitivity:	≤ ± 1 % of measured value/month
Warm-up time:	≤ 1 hour
Ambient conditions	
Temperature:	(-20 to 35) °C (-4 to 99) °F
Humidity:	(10 to 90) % RH
Pressure:	(700 to 1300) hPa
Influence of temperature	
Zero point:	no effect
Sensitivity:	≤ ± 0,2 % of measured value/K
Influence of humidity	
Zero point:	no effect
Sensitivity:	≤ ± 0,05 % of measured value/RH
Test gas:	COCl ₂ test gas between 4 to 8 ppm

This sensor's advantages include a very low detection limit, excellent linearity and high signal stability.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of COCl₂. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. Symbol	Concentration	Reading in ppm COCl ₂
Ammonia	NH ₃	20 ppm	no effect
Carbon dioxide	CO ₂	1,5 Vol%	no effect
Carbon monoxide	CO	1000 ppm	no effect
Chlorine	Cl ₂	0,5 ppm	≤ 0,2
Ethanol	C ₂ H ₅ OH	260 ppm	no effect
Ethine	C ₂ H ₂	20 ppm	no effect
Hydrogen	H ₂	8000 ppm	no effect
Hydrogen chloride	HCI	0,5 ppm	≤ 0,7
Hydrogen fluoride	HF	0,4 ppm	≤ 0,1 ppm
Hydrogen peroxide	H ₂ O ₂	1 ppm	no effect
Hydrogen sulfide	H ₂ S	1 ppm	≤ 1 ¹⁾
Nitrogen dioxide	NO ₂	1 ppm	≤ 0,1(-)
Nitrogen monoxide	NO	30 ppm	no effect
Ozone	O ₃	0,3 ppm	≤ 0,05(-)
Phosphine	PH ₃	0,5 ppm	≤ 0,1 ppm
Propanol	C ₃ H ₇ OH	500 ppm	no effect
Sulfur dioxide	SO ₂	2 ppm	no effect

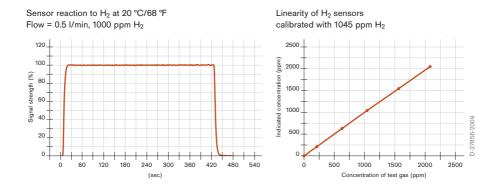
⁽⁻⁾ negatives Vorzeichen der Abweichung

 $^{^{1)}}$ dauerhafte Begasung mit $\mathrm{H_2S}$ kann zum Empfindlichkeitsverlust führen

⁽⁻⁾ negatives Vorzeichen der Abweichung

DrägerSensor® XXS H₂

Order no. 68 12 370


Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger X-am 5000	no	yes	1 year	Internal selective filter Cross
Dräger X-am 5600	no	yes	1 year	sensitivities to alcohol and acid
				gases (H ₂ S, SO ₂) are eliminated

MARKET SEGMENTS

Leak detection, chemical, petrochemical, rocket fuel, production of plastics, steel production, industrial gases, fertilizer, battery charging stations, fuel cells.

-	_
Detection limit:	10 ppm
Resolution:	5 ppm
Measurement range:	0 to 2,000 ppm H ₂ (hydrogen)
Response time:	≤ 10 seconds at 20°C (T ₉₀) or 68 °F
Measurement accuracy	
Zero point:	≤ ± 10 ppm
Sensitivity:	≤ ± 1% of measured value
Long-term drift, at 20°C (68°F)	-
Zero point:	≤ ± 4 ppm/year
Sensitivity:	≤ ± 4% of measured value/month
Warm-up time:	≤ 1 hour
Ambient conditions	
Temperature:	(-20 to 50)°C (-4 to 122)°F
Humidity:	(10 to 90)% RH
Pressure:	(700 to 1,300) hPa
Influence of temperature	
Zero point:	≤ ± 10 ppm
Sensitivity:	≤ ± 1 ppm/K
Influence of humidity	
Zero point:	No effect
Sensitivity:	≤ ± 0.15% of measured value/% RH
Test gas:	approx. 1,000 ppm H ₂

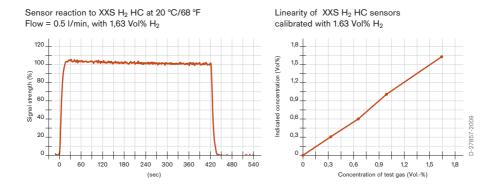
This sensor enables the detection of hydrogen concentrations in ppm. Its very fast response time makes it especially suitable for detecting leaks.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of H_2 . To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol Concentration		Display in ppm H ₂
Ammonia	NH ₃	100 ppm	≤ 1
Carbon dioxide	CO ₂	30 Vol%	≤ 2
Carbon monoxide	CO	1,000 ppm	≤ 200
Chlorine	Cl ₂	20 ppm	≤1
Ethanol	C ₂ H ₅ OH	250 ppm	≤1
Ethine	C ₂ H ₂	100 ppm	≤ 200
Hydrogen chloride	HCI	40 ppm	≤1
Hydrogen cyanide	HCN	50 ppm	≤1
Hydrogen sulfide	H ₂ S	30 ppm	≤1
Methane	CH4	5 Vol%	≤1
Nitrogen dioxide	NO ₂	20 ppm	≤1
Nitrogen monoxide	NO	20 ppm	≤ 51
Propane	C ₃ H8	1 Vol%	≤1
Sulfur dioxide	SO ₂	25 ppm	≤1

DrägerSensor® XXS H₂ HC

Order no. 68 12 025


Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger X-am 5000	no	yes	1 year	Internal selective filter Cross
Dräger X-am 5600	no	yes	1 year	sensitivities to hydrogen sulfide
				(H ₂ S) and sulfur dioxide (SO ₂) are
				eliminated

MARKET SEGMENTS

Chemical industry, petrochemical industry, rocket fuel, leak detection, production of plastics, metal processing, industrial gases, fertilizer manufacturing, battery charging stations, fuel cells.

Detection limit:	0.02 Vol%		
Resolution:	0.01 Vol%		
Measurement range:	0 to 4 Vol% H ₂ (hydrogen)		
Response time:	≤ 20 seconds at 20°C (T ₉₀) or 68 °F		
Measurement accuracy			
Zero point:	± 0.02 Vol%		
Sensitivity:	≤ ± 2% of measured value		
Long-term drift, at 20°C (68°F)	-		
Zero point:	≤ ± 0.05 Vol%/year		
Sensitivity:	≤ ± 3% of measured value/month		
Warm-up time:	≤ 1 hour		
Ambient conditions			
Temperature:	(-20 to 50)°C (-4 to 122)°F		
Humidity:	(10 to 90)% RH		
Pressure:	(700 to 1,300) hPa		
Influence of temperature	-		
Zero point:	≤ ± 0.05 Vol%		
Sensitivity:	≤ ± 5% of measured value		
Influence of humidity	-		
Zero point:	No effect		
Sensitivity:	≤ ± 0.01% of measured value/% RH		
Test gas:	approx. 2 Vol% H ₂		

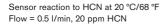
This sensor is suitable for measuring hydrogen across the entire LEL range. If a Dräger X-am 5600 is fitted with an IR-Ex sensor, then this sensor is the ideal addition for detecting any risk of explosion caused by hydrogen. Like all Dräger sensors, this one offers very fast response times and excellent linearity.

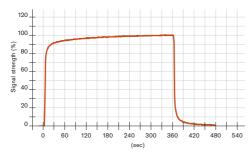
The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of H_2 . To be sure, please check if gas mixtures are present.

Chem. symbol Concentration		Display in Vol% H ₂
NH ₃	100 ppm	No effect
CO	1,000 ppm	≤ 0.1
CO ₂	30 Vol%	No effect
Cl ₂	20 ppm	No effect
C ₂ H ₅ OH	250 ppm	No effect
C ₂ H ₂	100 ppm	≤ 0.02
HCI	40 ppm	No effect
HCN	50 ppm	No effect
H ₂ S	30 ppm	No effect
CH4	5 Vol%	No effect
NO ₂	20 ppm	No effect
NO	20 ppm	≤ 0.05
C ₃ H ₈	1 Vol%	No effect
SO ₂	25 ppm	No effect
	NH ₃ CO CO ₂ Cl ₂ C ₂ C ₂ HCl HCN H ₂ S CH4 NO ₂ NO C ₃ H ₈	NH ₃ 100 ppm CO 1,000 ppm CO ₂ 30 Vol% Cl ₂ 20 ppm C ₂ H ₅ OH 250 ppm C ₂ H ₂ 100 ppm HCI 40 ppm HCN 50 ppm H ₂ S 30 ppm CH4 5 Vol% NO ₂ 20 ppm NO 20 ppm C ₃ H ₈ 1 Vol%

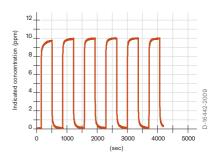
DrägerSensor® XXS HCN

Order no. 68 10 887


Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger Pac 7000	no	yes	1 year	no
Dräger X-am 5000	no	yes	1 year	no
Dräger X-am 5600	no	yes	1 year	no


MARKET SEGMENTS

Metal processing, mining, fumigation and pest control, chemical warfare agent (blood agents).


Detection limit:	0.5 ppm		
Resolution:	0.1 ppm		
Measurement range:	0 to 50 ppm HCN (hydrogen cyanide)		
Response time:	≤ 10 seconds at 20°C (T ₅₀) or 68 °F		
Measurement accuracy			
Zero point:	≤ ± 0.5 ppm		
Sensitivity:	≤ ± 5% of measured value		
Long-term drift, at 20°C (68°F)			
Zero point:	≤ ± 2 ppm/year		
Sensitivity:	≤ ± 5% of measured value/month		
Warm-up time:	≤ 15 minutes		
Ambient conditions			
Temperature:	(-20 to 50)°C (-4 to 122)°F		
Humidity:	(10 to 90)% RH		
Pressure:	(700 to 1,300) hPa		
Influence of temperature			
Zero point:	≤ ± 1 ppm		
Sensitivity:	≤ ± 5% of measured value		
Influence of humidity			
Zero point:	No effect		
Sensitivity:	≤ ± 0.1% of measured value/% RH		
Test gas:	approx. 10 ppm HCN		

This sensor's extremely quick response time and excellent repeatability provides a fast and reliable warning against Prussic acid (hydrogen cyanide).

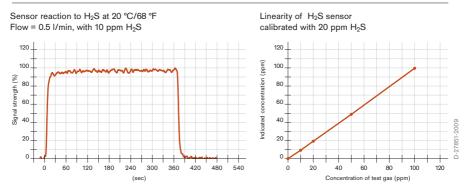
Repeatability of HCN sensors with mit 10 ppm HCN

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of HCN To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol Concentration		Display in ppm HCN
Ammonia	NH ₃	50 ppm	No effect
Carbon dioxide	CO ₂	10 Vol%	No effect
Carbon monoxide	CO	200 ppm	No effect
Chlorine	Cl ₂	10 ppm	≤ 20 (-)
Ethanol	C ₂ H ₅ OH	250 ppm	No effect
Ethine	C ₂ H ₂	100 ppm	≤ 10
Hydrogen	H ₂	1.5 Vol%	≤ 10
Hydrogen chloride	HCI	20 ppm	≤1
Hydrogen sulfide	H ₂ S	H ₂ S 20 ppm	
Methane	CH ₄	1 Vol%	No effect
Nitrogen dioxide	NO ₂	10 ppm	≤ 20 (-)
Nitrogen monoxide	NO	20 ppm	No effect
Ozone	O ₃	0.5 ppm	No effect
Phosphine	PH ₃	1 ppm	≤ 8
Sulfur dioxide	SO ₂	20 ppm	≤ 10

DrägerSensor® XXS H₂S DrägerSensor® XXS E H₂S

Order no. 68 10 883 68 12 213


Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger Pac 7000	no	yes	2 years	no
Dräger Pac 7000 5Y	no	yes	5 years	no
Dräger X-am 5000	no	yes	2/5 years	no
Dräger X-am 5600	no	yes	2/5 years	no

MARKET SEGMENTS

Waste disposal, petrochemical, fertilizer production, sewage, mining and tunneling, shipping, inorganic chemicals, steel, pulp and paper, organic chemicals, oil and gas, hazmat, biogas.

Detection limit:	2 ppm		
Resolution:	1 ppm		
Measurement range:	0 to 200 ppm H ₂ S (hydrogen sulfide)		
Response time:	≤ 15 seconds at 20°C (T90) or 68 °F		
Measurement accuracy			
Zero point:	≤ ± 0.5 ppm		
Sensitivity:	≤ ± 2% of measured value		
Long-term drift, at 20°C (68°F)			
Zero point:	≤ ± 1 ppm/year		
Sensitivity:	≤ ± 3% of measured value/year		
Warm-up time:	≤ 5 minutes		
Ambient conditions			
Temperature:	(-40 to 50)°C (-40 to 122)°F		
Humidity:	(10 to 90)% RH		
Pressure:	(700 to 1,300) hPa		
Influence of temperature			
Zero point:	No effect		
Sensitivity:	≤ ± 5% of measured value		
Influence of humidity			
Zero point:	No effect		
Sensitivity:	≤ ± 0.03% of measured value/% RH		
Test gas:	approx. 100 ppm H ₂ S		

This sensor's advantages include fast response times and excellent linearity. At concentrations up to 20 ppm, sulfur dioxide has hardly any effect on hydrogen sulfide readings. This enables the selective measurement of the gas concentration using the DrägerSensor® XXS SO_2 (with integrated selective filter) together with the DrägerSensor® XXS H_2S in a device such as a Dräger X-am 5000 or X-am 5600

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of H₂S. To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES DRÄGERSENSOR® XXS H2S

Gas/vapor	Chem. symbol	Concentration	Display in ppm H ₂ S
Ammonia	NH ₃	200 ppm	≤ 1
Carbon dioxide	CO ₂	5 Vol%	≤ 1 ⁽⁻⁾
Carbon monoxide	CO	500 ppm	≤ 1
Chlorine	Cl ₂	10 ppm	≤ 2 ⁽⁻⁾
Ethanol	C ₂ H ₅ OH	250 ppm	≤ 1
Ethine	C2H ₂	100 ppm	≤ 1
Hydrogen	H ₂	0.1 Vol%	≤ 1
Hydrogen chloride	HCI	40 ppm	≤ 1
Hydrogen cyanide	HCN	50 ppm	≤ 1
Methane	CH ₄	5 Vol%	≤ 1
Nitrogen dioxide	NO ₂	20 ppm	≤ 5 ⁽⁻⁾
Nitrogen monoxide	NO	30 ppm	≤1
Propane	C ₃ H ₈	1 Vol%	≤ 1
Sulfur dioxide	SO ₂		≤ 2

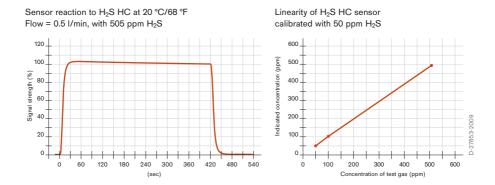
RELEVANT CROSS-SENSITIVITIES DRÄGERSENSOR® XXS E H₂S

Gas/vapor	Chem. symbol	Concentration	Display in ppm H ₂ S
Ammonia	NH ₃	200 ppm	No effect
Carbon dioxide	CO ₂	5 Vol%	≤ 1 ⁽⁻⁾
Carbon monoxide	CO	500 ppm	No effect
Chlorine	Cl ₂	10 ppm	≤ 2 ⁽⁻⁾
Ethanol	C ₂ H ₅ OH	250 ppm	No effect
Ethine	C2H ₂	100 ppm	No effect
Hydrogen	H ₂	0.1 Vol%	No effect
Hydrogen chloride	HCI	40 ppm	No effect
Hydrogen cyanide	HCN	50 ppm	No effect
Nitrogen dioxide	NO ₂	20 ppm	≤ 5(-)
Nitrogen monoxide	NO	30 ppm	No effect
Methane	CH ₄	5 Vol%	No effect
Propane	C ₃ H ₈	1 Vol%	No effect
Sulfur dioxide	SO ₂	20 ppm	≤ 2

DrägerSensor® XXS H₂S

DrägerSensor® XXS H₂S HC

Order no. 68 12 015


Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger X-am 5000	no	yes	1 year	no
Dräger X-am 5600	no	yes	1 year	no

MARKET SEGMENTS

Waste disposal industry, petrochemical, fertilizer production, sewage, mining and tunneling, shipping, inorganic chemicals, steel industry, pulp and paper, organic chemicals, oil and gas, measuring hazardous material, biogas.

Detection limit:	4 ppm		
Resolution:	2 ppm		
Measurement range:	0 to 1,000 ppm H ₂ S (hydrogen sulfide)		
Response time:	≤ 15 seconds at 20°C (T ₉₀) or 68 °F		
Measurement accuracy			
Zero point:	≤ ± 4 ppm		
Sensitivity:	≤ ± 2% of measured value		
Long-term drift, at 20°C (68°F)	-		
Zero point:	≤ ± 2 ppm/year		
Sensitivity:	≤ ± 1% of measured value/month		
Warm-up time:	≤ 5 minutes		
Ambient conditions			
Temperature:	(-40 to 50)°C (-40 to 122)°F		
Humidity:	(10 to 90)% RH		
Pressure:	(700 to 1,300) hPa		
Influence of temperature	-		
Zero point:	No effect		
Sensitivity:	≤ ± 5% of measured value		
Influence of humidity	-		
Zero point:	No effect		
Sensitivity:	≤ ± 0.03% of measured value/% RH		
Test gas:	approx. 100 ppm H₂S		

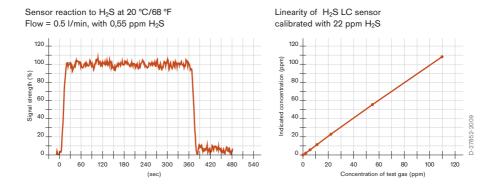
Because of its excellent linearity, this sensor can be calibrated in its lower measurement range using a hydrogen sulfide test gas without compromising on accuracy in its upper measurement range. It also offers a fast response time and good selectivity.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of H_2S . To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm H ₂ S
Ammonia	NH ₃	200 ppm	No effect
Carbon dioxide	CO ₂	5 Vol%	No effect
Carbon monoxide	CO	500 ppm	No effect
Chlorine	Cl ₂	10 ppm	No effect
Ethanol	C ₂ H ₅ OH	250 ppm	No effect
Ethine	C2H ₂	100 ppm	No effect
Hydrogen	H ₂	0.1 Vol%	No effect
Hydrogen chloride	HCI	40 ppm	No effect
Hydrogen cyanide	HCN	50 ppm	No effect
Hydrogen phosphide	PH ₃	5 ppm	≤ 4
Methane	CH ₄	5 Vol%	No effect
Nitrogen dioxide	NO ₂	20 ppm	≤ 5(-)
Nitrogen monoxide	NO	30 ppm	No effect
Propane	C ₃ H ₈	1 Vol%	No effect
Sulfur dioxide	SO ₂	20 ppm	≤ 2

DrägerSensor® XXS H₂S LC

Order no. 68 11 525


Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger Pac 3500	no	yes	2 years	no
Dräger Pac 5500	no	yes	2 years	no
Dräger Pac 7000	no	yes	2 years	no
Dräger X-am 1700	no	yes	2 years	no
Dräger X-am 2000	no	yes	2 years	no
Dräger X-am 5000	no	yes	2 years	no
Dräger X-am 5600	no	yes	2 years	no

MARKET SEGMENTS

Waste disposal, petrochemical, fertilizer production, sewage, mining and tunneling, shipping, inorganic chemicals, steel industry, pulp and paper, organic chemicals, oil and gas, hazmat, biogas.

Detection limit:	0.4 ppm			
Resolution:	0.1 ppm			
Measurement range:	0 to 100 ppm H ₂ S (hydrogen sulfide)			
Response time:	≤ 15 seconds at 20°C (T ₉₀) or 68 °F			
Measurement accuracy	-			
Zero point:	≤ ± 0.4 ppm			
Sensitivity:	≤ ± 5% of measured value			
Long-term drift, at 20°C (68°F)	-			
Zero point:	≤ ± 0.2 ppm/year			
Sensitivity:	≤ ± 5% of measured value/year			
Warm-up time:	≤ 5 minutes			
Ambient conditions				
Temperature:	(-40 to 50)°C (-40 to 122)°F			
Humidity:	(10 to 90)% RH			
Pressure:	(700 to 1,300) hPa			
Influence of temperature				
Zero point:	No effect			
Sensitivity:	≤ ± 5% of measured value			
Influence of humidity				
Zero point:	No effect			
Sensitivity:	≤ ± 0.1% of measured value/% RH			
Test gas:	approx. 25 ppm H ₂ S			

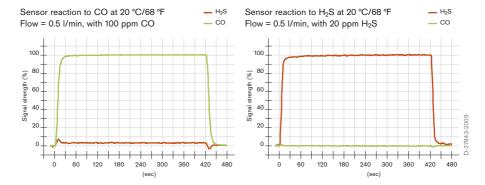
Combined with an excellent linearity and a fast response time, this sensor enables the selective measurement of hydrogen sulfide at below 1 ppm.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of H₂S. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm H ₂ S
Ammonia	NH ₃	200 ppm	No effect
Carbon dioxide	CO ₂	5 Vol%	No effect
Carbon monoxide	СО	500 ppm	≤1
Chlorine	Cl ₂	10 ppm	≤ 1(-)
Ethanol	C ₂ H ₅ OH	250 ppm	No effect
Ethine	C ₂ H ₂	100 ppm	No effect
Hydrogen	H ₂	0.1 Vol%	≤ 0.5
Hydrogen chloride	HCI	40 ppm	No effect
Hydrogen cyanide	HCN	50 ppm	No effect
Methane	CH ₄	5 Vol%	No effect
Nitrogen dioxide	NO ₂	20 ppm	≤ 4 ⁽⁻⁾
Nitrogen monoxide	NO	30 ppm	No effect
Propane	C ₃ H ₈	1 Vol%	No effect
Sulfur dioxide	SO ₂	20 ppm	≤ 1,5

DrägerSensor® XXS H₂S/CO

Order no. 68 11 410


Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger X-am 5000	no	yes	2 years	Internal selective filter for CO: Cross
Dräger X-am 5600	no	yes	2 years	sensitivities to alcohol and acid
				gases (H ₂ S, SO ₂) are eliminated

MARKET SEGMENTS

Waste disposal, metal processing, biogas, petrochemical, fertilizer production, sewage, mining and tunneling, shipping, inorganic chemicals, paper industry, hazmat, steel industry, oil and gas, organic chemicals.

Detection limit:	2 ppm (H ₂ S)/6 ppm (CO)			
Resolution:	1 ppm (H ₂ S)/2 ppm (CO)			
Measurement range:	0 to 200 ppm H ₂ S (hydrogen sulfide)			
	0 to 2,000 ppm CO (carbon monoxide)			
Response time:	≤ 20 seconds at 20°C (T ₉₀) or 68 °F			
Measurement accuracy				
Zero point:	$\leq \pm 2 \text{ ppm (H}_2\text{S})/\leq \pm 6 \text{ ppm (CO)}$			
Sensitivity:	≤ ± 2% of measured value			
Long-term drift, at 20°C (68°F)				
Zero point:	≤ ± 2 ppm/year			
Sensitivity:	≤ ± 1% of measured value/month			
Warm-up time:	≤ 5 minutes			
Ambient conditions				
Temperature:	(-40 to 50)°C (-40 to 122)°F			
Humidity:	(10 to 90)% RH			
Pressure:	(700 to 1,300) hPa			
Influence of temperature				
Zero point:	\leq ± 2 ppm (H ₂ S) \leq ± 5 ppm (CO)			
Sensitivity:	\leq ± 5% of measured value (H ₂ S) \leq ± 0.3% of measured value/K (CO)			
Influence of humidity				
Zero point:	No effect			
Sensitivity:	≤ ± 0.05% of measured value/% RH			
Test gas:	Gas mixture (CO, H ₂ S, CH ₄ ,O ₂)			

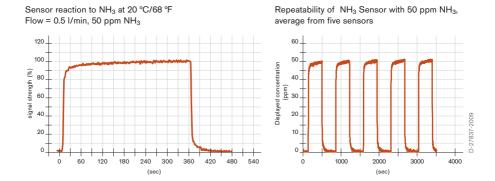
Carbon monoxide and hydrogen sulfide occur together in many areas of work. This sensor can monitor both gases simultaneously.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of CO or H_2S . To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm H ₂ S	Display in ppm CO
Ammonia	NH ₃	100 ppm	≤ 1	<u>≤ 1</u>
Carbon dioxide	CO ₂	30 Vol%	≤ 1 (-)	≤ 2
Carbon monoxide	CO	100 ppm	≤ 1	≤ 100
Chlorine	Cl ₂	20 ppm	≤ 2 ⁽⁻⁾	≤ 1
Hydrogen	H ₂	0.1 Vol%	≤ 1	≤ 350
Hydrogen chloride	HCI	40 ppm	≤ 1	≤ 1
Hydrogen cyanide	HCN	50 ppm	≤ 1	≤ 1
Hydrogen sulfide	H ₂ S	20 ppm	= 20	≤ 1
Ethanol	C ₂ H ₅ OH	250 ppm	≤ 1	≤ 1
Ethine	C ₂ H ₂	100 ppm	≤ 1	≤ 200
Nitrogen dioxide	NO ₂	20 ppm	≤ 5 (-)	≤ 1
Nitrogen monoxide	NO	30 ppm	≤ 1	≤ 5
Methane	CH ₄	5 Vol%	≤ 1	≤ 1
Propane	C ₃ H ₈	1 Vol%	≤ 1	≤ 1
Sulfur dioxide	SO ₂	25 ppm	≤ 2	≤ 1

DrägerSensor® XXS NH₃

Order no. 68 10 888


Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger Pac 7000	no	yes	1 year	B2X (68 12 424) - replaceable
Dräger X-am 5000	no	yes	1 year	Cross sensitivities to hydrogen sul-
Dräger X-am 5600	no	yes	1 year	fide (H ₂ S) and sulfur dioxide (SO ₂)
				are eliminated

MARKET SEGMENTS

Food and beverage, poultry farming, power generation, inorganic chemicals, fertilizer production, hazmat, fumigation, metal processing, petrochemical, pulp and paper.

Detection limit:	4 ppm		
Resolution:	1 ppm		
Measurement range:	0-300 ppm NH ₃ (ammonia)		
Response time:	≤ 10 seconds at 20°C (T ₅₀) or 68 °F		
Measurement accuracy			
Zero point:	≤ ± 4 ppm		
Sensitivity:	≤ ± 3% of measured value		
Long-term drift, at 20°C (68°F)			
Zero point:	≤ ± 5 ppm/year		
Sensitivity:	≤ ± 2% of measured value/month		
Warm-up time:	≤ 12 hours		
Ambient conditions	-		
Temperature:	(-40 to 50)°C (-40 to 122)°F		
Humidity:	(10 to 90)% RH		
Pressure:	(700 to 1,300) hPa		
Influence of temperature			
Zero point:	≤ ± 5 ppm		
Sensitivity:	≤ ± 5% of measured value		
Influence of humidity			
Zero point:	≤ ± 0.1 ppm/% RH		
Sensitivity:	≤ ± 0.2% of measured value/% RH		
Test gas:	approx. 50–300 ppm NH ₃		

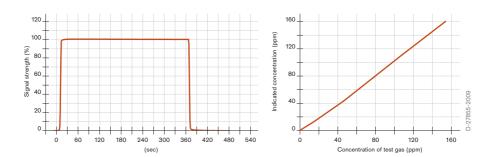
A fast response time and excellent repeatability are just two examples of this sensor's special characteristics.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of NH $_3$. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm NH ₃ without selective filter
Carbon dioxide	CO ₂	10 Vol%	No effect
Carbon monoxide	CO	1,000 ppm	No effect
Chlorine	Cl ₂	10 ppm	≤ 30 (-)
Ethanol	C ₂ H ₅ OH	250 ppm	≤ 40
Ethine	C ₂ H ₂	100 ppm	No effect
Hydrogen	H ₂	1,000 ppm	≤ 4
Hydrogen chloride	HCI	20 ppm	≤ 15 (-)
Hydrogen sulfide	H ₂ S	20 ppm	≤ 70
Methane	CH ₄	0.9 Vol%	No effect
Nitrogen dioxide	NO ₂	20 ppm	≤ 10 (-)
Nitrogen monoxide	NO	20 ppm	≤ 10
Ozone	O ₃	0.5 ppm	No effect
Phosphine	PH ₃	1 ppm	≤ 2
Sulfur dioxide	SO ₂	20 ppm	No effect

DrägerSensor® XXS NO

Order no. 68 11 545


Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger Pac 7000	no	yes	1 year	no
Dräger X-am 5000	no	yes	1 year	no
Dräger X-am 5600	no	yes	1 year	no

MARKET SEGMENTS

Power and district heating plants, chemical industry.

Detection limit:	0.3 ppm		
Resolution:	0.1 ppm		
Measurement range:	0 to 200 ppm NO (nitrogen monoxide)		
Response time:	≤ 10 seconds at 20°C (T ₉₀) or 68 °F		
Measurement accuracy			
Zero point:	≤ ± 0.3 ppm		
Sensitivity:	≤ ± 3% of measured value		
Long-term drift, at 20°C (68°F)			
Zero point:	≤ ± 0.3 ppm/year		
Sensitivity:	≤ ± 2% of measured value/month		
Warm-up time:	≤ 20 hours		
Ambient conditions	_		
Temperature:	(-40 to 50)°C (-40 to 122)°F		
Humidity:	(10 to 90)% RH		
Pressure:	(700 to 1,300) hPa		
Influence of temperature	_		
Zero point:	≤ ± 0.02 ppm/K		
Sensitivity:	≤ ± 0.3% of measured value/K		
Influence of humidity			
Zero point:	No effect		
Sensitivity:	≤ ± 0.05% of measured value/% RH		
Test gas:	approx. 50 ppm NO		

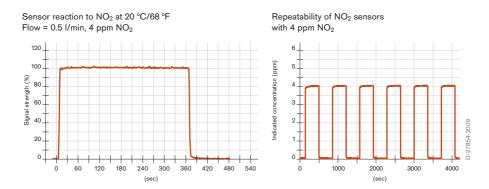
This sensor enables a selective measurement of NO. NO_2 concentrations < 20 ppm have not effects. It also offers a very fast response time and excellent linearity across its entire measurement range.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of NO. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm NO
Acetone	CH₃COCH₃	1,000 ppm	No effect
Ammonia	NH ₃	500 ppm	No effect
Benzene	C ₆ H ₆	0.6 Vol%	No effect
Carbon dioxide	CO ₂	5 Vol%	No effect
Carbon monoxide	СО	2,000 ppm	No effect
Chlorine	Cl ₂	5 ppm	No effect
Ethanol	C ₂ H ₅ OH	250 ppm	No effect
Ethene	C ₂ H ₄	0.1 Vol%	No effect
Ethine	C ₂ H ₂	0.8 Vol%	No effect
Hydrogen	H ₂	1.5 Vol%	No effect
Hydrogen chloride	HCI	40 ppm	No effect
Hydrogen cyanide	HCN	50 ppm	No effect
Hydrogen sulfide	H ₂ S	5 ppm	100
Methane	CH ₄	2 Vol%	No effect
Nitrogen dioxide	NO ₂	20 ppm	No effect
Phosphine	PH ₃	2 ppm	No effect
Propane	C ₃ H ₈	1 Vol%	No effect
Sulphur dioxide	SO ₂	10 ppm	No effect
Tetrachloroethylene	CCl ₂ CCl ₂	1,000 ppm	No effect
Toluene	C ₆ H ₅ CH ₃	0.6 Vol%	No effect
Trichloroethylene	CHCICCI ₂	1,000 ppm	No effect

DrägerSensor® XXS NO₂

Order no. 68 10 884


Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger Pac 7000	no	yes	1 year	no
Dräger X-am 5000	no	yes	1 year	no
Dräger X-am 5600	no	yes	1 year	no

MARKET SEGMENTS

Inorganic chemicals, metal processing, oil and gas, petrochemical, steel industry, shipping, rocket engineering, mining and tunneling.

	_	
Detection limit:	0.2 ppm	
Resolution:	0.1 ppm	
Measurement range:	0 to 50 ppm NO ₂ (nitrogen dioxide)	
Response time:	≤ 15 seconds at 20°C (T ₉₀) or 68 °F	
Measurement accuracy		
Zero point:	≤ ± 0.2 ppm	
Sensitivity:	≤ ± 2% of measured value	
Long-term drift, at 20°C (68°F)	_	
Zero point:	≤ ± 1 ppm/year	
Sensitivity:	≤ ± 2% of measured value/month	
Warm-up time:	≤ 15 minutes	
Ambient conditions		
Temperature:	(-30 to 50)°C (-22 to 122)°F	
Humidity:	(10 to 90)% RH	
Pressure:	(700 to 1,300) hPa	
Influence of temperature	_	
Zero point:	≤ ± 1 ppm	
Sensitivity:	≤ ± 5% of measured value	
Influence of humidity		
Zero point:	No effect	
Sensitivity:	≤ ± 0.2% of measured value/% RH	
Test gas:	approx. 5 to 10 ppm NO ₂	

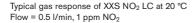
This sensor's advantages include a fast response time and excellent repeatability. This sensor enables a selective measurement of NO_2 . NO concentrations < 20 ppm do not influence the measurement results, thus a selective NO_2 measurement is possilbe.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of NO₂. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm NO ₂
Ammonia	NH ₃	50 ppm	No effect
Carbon dioxide	CO ₂	1.5 Vol%	No effect
Carbon monoxide	CO	200 ppm	No effect
Chlorine	Cl ₂	10 ppm	≤ 5
Ethanol	C ₂ H ₅ OH	250 ppm	No effect
Ethine	C ₂ H ₂	100 ppm	≤ 10 ⁽⁻⁾
Hydrogen	H ₂	1,000 ppm	No effect
Hydrogen chloride	HCI	20 ppm	≤ 10 ⁽⁻⁾
Hydrogen cyanide	HCN	60 ppm	≤ 10 ⁽⁻⁾
Hydrogen sulfide	H ₂ S	20 ppm	≤ 100 ⁽⁻⁾
Methane	CH4	1 Vol%	No effect
Sulphur dioxide	SO ₂	20 ppm	≤ 20(-)
Nitrogen monoxide	NO	20 ppm	No effect
Ozone	O ₃	0.5 ppm	No effect
Phosphine	PH ₃	1 ppm	≤ 4 ⁽⁻⁾

DrägerSensor® XXS NO₂ LC

Order no. 68 12 600


Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger X-am 5000	no	yes	1 year	no
Dräger X-am 5600	no	yes	1 year	no

MARKET SEGMENTS

Mining and tunnelling (emissions from diesel-engined vehicles), inorganic chemistry, metal processing, oil & gas, petrochemical industry, shipping, rocket technology

Detection limit:	0.04 ppm		
Resolution:	0.02 ppm		
Measurement range:	0 to 50 ppm NO ₂ (nitrogen dioxide)		
Response time:	≤ 15 seconds at 20°C (T ₉₀) or 68 °F		
Measurement accuracy			
Zero point:	≤ ± 0.02 ppm		
Sensitivity:	≤ ± 3% of measured value		
Long-term drift, at 20°C (68°F)	-		
Zero point:	≤ ± 0.04 ppm/year		
Sensitivity:	≤ ± 2% of measured value/month		
Warm-up time:	≤ 120 minutes		
Ambient conditions			
Temperature:	(-30 to 50)°C (-22 to 122)°F		
Humidity:	(10 to 90)% RH		
Pressure:	(700 to 1,300) hPa		
Influence of temperature	-		
Zero point:	No effect		
Sensitivity:	≤ ± 0.5% of measured value		
Influence of humidity	-		
Zero point:	No effect		
Sensitivity:	≤ ± 0.1% of measured value/% RH		
Test gas:	approx. 5 to 10 ppm NO ₂		

Low cross sensitivities (e.g against SO_2 , H_2S , NO and CO), which allows a selective measurement of NO_2 . With a detection limit of 0.04 ppm and a quick response time this sensor is excellent to measure around the limit values.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of NO₂. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm NO ₂ LC
Acetylene	C ₂ H ₂	100 ppm	no effect
Ammonia	NH ₃	30 ppm	no effect
Arsine	AsH ₃	0.5 ppm	no effect
Carbon dioxide	CO ₂	5 Vol%	no effect
Carbon monoxide	CO	2,000 ppm	no effect
Chlorine	Cl ₂	1 ppm	≤ 1.5
Chlorine dioxide	CIO ₂	1 ppm	≤ 1.5
Ethane	C ₂ H ₆	0.1 Vol%	no effect
Ethanol	C ₂ H ₅ OH	250 ppm	no effect
Hydrazine	N ₂ H ₄	1 ppm	no effect
Hydrogen	H ₂	0.1 Vol%	no effect
Hydrogen chloride	HCI	40 ppm	no effect
Hydrogen cyanide	HCN	50 ppm	no effect
Hydrogen sulfide	H ₂ S	1 ppm	≤ 0.03 ⁽⁻⁾
Methane	CH ₄	5 Vol%	no effect
Nitrogen monoxide	NO	30 ppm	no effect
Ozone	O ₃	0,5 ppm	≤1
Phosphine	PH ₃	0,5 ppm	no effect
Propane	C ₃ H ₈	1 Vol%	no effect
Sulfur dioxide	SO ₂	1 ppm	≤ 0.12 ⁽⁻⁾
	_	_	

DrägerSensor® XXS OV

Order no. 68 11 530

Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger Pac 7000	no	yes	1 year	no
Dräger X-am 5000	no	yes	1 year	no
Dräger X-am 5600	no	yes	1 year	no

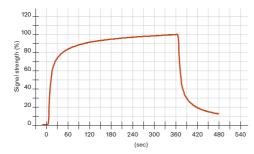
MARKET SEGMENTS

Production of plastics, disinfection, painter, chemical industry, pest control.

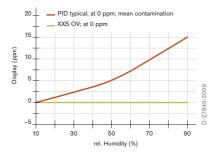
Detection limit:	1 ppm		
Resolution:	0.5 ppm		
Measurement range:	0 to 200 ppm C ₂ H ₄ O (ethylene oxide)		
	0 to 200 ppm C ₃ H ₆ O (propylene oxide)		
	0 to 100 ppm C ₂ H ₄ (ethene)		
	0 to 100 ppm C ₃ H ₆ (propene)		
	0 to 100 ppm C ₂ H ₃ Cl (vinyl chloride)		
	0 to 200 ppm CH ₃ OH (methanol)		
	0 to 100 ppm CH ₂ CHCHCH ₂ (butadiene)		
	0 to 100 ppm HCHO (formaldehyde)		
	0 to 300 ppm (H ₃ C) ₂ CHOH (isopropanol)		
	0 to 200 ppm C ₄ H ₈ O (tetrahydrofuran)		
	0 to 100 ppm C ₂ H ₃ OCH ₂ Cl (1-chloro-2,3 epoxypropane)		
	0 to 100 ppm C ₆ H ₅ CHCH ₂ (styrol)		
	0 to 100 ppm H ₂ CC(CH ₃)COOCH ₃ (methyl methacrylate)		
Response time:	≤ 20 seconds at 20°C (T ₅₀) or 68 °F		
Measurement accuracy	-		
Zero point:	≤ ± 3 ppm		
Sensitivity:	≤ ± 5% of measured value		
Long-term drift, at 20°C (68°F)			
Zero point:	≤ ± 5 ppm/year		
Sensitivity:	≤ ± 2% of measured value/month		
Warm-up time:	≤ 18 hours		
Ambient conditions			
Temperature:	(-20 to 50)°C (-4 to 122)°F		
Humidity:	(10 to 90)% RH		
Pressure:	(700 to 1,300) hPa		
Influence of temperature			
Zero point:	± 2 ppm at (-20 to 40)°C (-4 to 104)°F		
Zero point:	± 0.5 ppm/K at (40 to 50)°C (104 to 122)°F		
Sensitivity:	≤ ± 1% of measured value/K		
Influence of humidity	_		
Zero point:	No effect		
Sensitivity:	≤ ± 0.2% of measured value/% RH		

TECHNICAL SPECIFICATIONS

Test gas:


approx. 10 ppm C₂H₄O

The Dräger Sensor XXS OV has a defined cross-sensitivity to carbon monoxide (CO). It can be calibrated with CO as a replacement for all of its target gases. This replacement calibration using CO can produce an additional measuring error of up to 20%. We recommend that devices are calibrated with the gas you intend to detect in actual operation. Calibration using the target gas is more accurate than replacement gas calibration.


SPECIAL CHARACTERISTICS

This sensor is especially suited for detecting leakages of numerous organic gases and vapors. Although it does not detect as broad a spectrum of gases as a PID sensor, it has the key advantage of being almost completely insensitive to moisture. It also does not need to be calibrated every day, having instead a six-month calibration interval typical of electrochemical sensors.

Sensor reaction to C_2H_4O at 20 °C/68 °F Flow = 0.5 I/min, with 20 ppm C_2H_4O

Influence of humidity on XXS OV sensors and PID sensors

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of ethylene oxide. To be sure, please check if gas mixtures are present.

Gas/vapor Chem. symbol		Concentration	Display in ppm C ₂ H ₄ O
Acetaldehyde	CH₃CHO	55 ppm	≤ 15
Acetic acid	CH₃COOH	CH ₃ COOH 100 ppm	
Acrylonitrile	H ₂ CCHCN	80 ppm	≤ 15
Ammonia	NH ₃	100 ppm	No effect
Benzene	C ₆ H ₆	2,000 ppm	No effect
Carbon dioxide	CO ₂	30 Vol%	No effect
Carbon monoxide	CO	100 ppm	≤ 44
Chlorine	Cl ₂	10 ppm	No effect
Chlorobenzene	C ₆ H ₅ Cl	200 ppm	No effect
Dichloromethane	CH ₂ Cl ₂	1,000 ppm	No effect
Diethyl ether	(C ₂ H ₅) ₂ O	100 ppm	≤ 60
Dimethylformamide	HCON(CH3 ₃) ₂	100 ppm	No effect
Ethane	C ₂ H ₆	0.2 Vol%	No effect
Ethanol	C ₂ H ₅ OH	250 ppm	≤ 150
Ethine	C ₂ H ₂	100 ppm	≤ 150
Ethyl acetate	CH ₃ COOC ₂ H ₅	100 ppm	No effect
Hydrogen	H ₂	1,000 ppm	≤ 5
Hydrogen chloride	HCI	20 ppm	≤ 5
Hydrogen cyanide	HCN	20 ppm	≤ 10
Hydrogen sulfide	H ₂ S	20 ppm	≤ 40
Isobutylene	(CH ₃) ₂ CCH ₂	50 ppm	≤ 45
Nitrogen dioxide	NO ₂	20 ppm	≤ 2
Nitrogen monoxide	NO	20 ppm	≤ 20
Methane	CH ₄	2 Vol%	No effect
Methyl isobutyl ketone	(CH ₃) ₂ CHCH ₂ COCH ₃	500 ppm	No effect
Phosgene	COCl ₂	50 ppm	No effect
Sulfur dioxide	SO ₂	20 ppm	≤ 10
Tetrachloroethylene	CCl ₂ CCl ₂	100 ppm	No effect
Toluene	C ₆ H ₅ CH ₃	1,000 ppm	No effect
Trichloroethylene	CHCICCI ₂	1,000 ppm	No effect
Vinyl acetate	CH ₃ COOC ₂ H ₃	30 ppm	≤ 30
Xylol	C ₆ H ₄ (CH ₃) ₂	0.2 Vol%	No effect

DrägerSensor® XXS OV

DrägerSensor® XXS OV-A

Order no. 68 11 535

Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger Pac 7000	no	yes	1 year	no
Dräger X-am 5000	no	yes	1 year	no
Dräger X-am 5600	no	yes	1 year	no

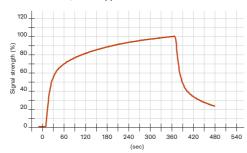
MARKET SEGMENTS

Production of plastics, disinfection, paintshops, chemical industry.

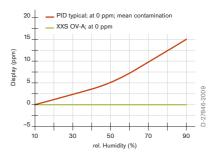
	· -
Detection limit:	1 ppm
Resolution:	1 ppm
Measurement range:	0 to 200 ppm C ₂ H ₄ O (ethylene oxide)
	0 to 100 ppm H ₂ CCHCN (acrylonitrile)
	0 to 300 ppm (CH ₃) ₂ CCH ₂ (isobutylene)
	0 to 100 ppm CH ₃ COOC ₂ H ₃ (vinyl acetate)
	0 to 300 ppm C ₂ H ₅ OH (ethanol)
	0 to 200 ppm CH ₃ CHO (acetaldehyde)
	0 to 200 ppm (C ₂ H ₅) ₂ O (diethyl ether)
	0 to 100 ppm C ₂ H ₂ (ethine)
Response time:	≤ 40 seconds at 20°C (T ₅₀) or 68 °F
Measurement accuracy	
Zero point:	≤ ± 5 ppm
Sensitivity:	≤ ± 20% of measured value
Long-term drift, at 20°C (68°F)	
Zero point:	≤ ± 5 ppm/year
Sensitivity:	≤ ± 3% of measured value/month
Warm-up time:	≤ 18 hours
Ambient conditions	
Temperature:	(-20 to 50)°C (-4 to 122)°F
Humidity:	(10 to 90)% RH
Pressure:	(700 to 1,300) hPa
Influence of temperature	
Zero point:	(-20 to 40)°C (-4 to 104)°F = ± 2 ppm
Zero point:	(40 to 60)°C (104 to 140)°F = ± 0.5 ppm/K
Sensitivity:	≤ ± 1% of measured value/K
Influence of humidity	
Zero point:	No effect
Sensitivity:	≤ ± 0.2% of measured value/% RH

TECHNICAL SPECIFICATIONS

Test	a	as	•


approx. 10 ppm C₂H₄O

The Dräger Sensor XXS OV-A has a defined cross-sensitivity to carbon monoxide (CO). It can be calibrated with CO as a replacement for all of its target gases. This replacement calibration using CO can produce an additional measuring error of up to 20%. We recommend that devices are calibrated with the gas you intend to detect in actual operation. Calibration using the target gas is more accurate than replacement gas calibration.


SPECIAL CHARACTERISTICS

The DrägerSensor® XXS OV-A has the same excellent characteristics as the DrägerSensor® XXS OV, but it has also been optimized for other organic gases and vapors. Just like the DrägerSensor® XXS OV, the DrägerSensor® XXS OV-A can be calibrated with CO as a replacement, although this may produce an additional measuring error of 20%. For more accurate measurements, we recommend calibrating using the target gas – i.e. the gas that you intend to detect in actual operation.

Sensor reaction to C_2H_4O at 20 °C/68 °F Flow = 0.5 I/min, with 20 ppm C_2H_4O

Influence of humidity on XXS OV-A sensors and PID sensors

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of ethylene oxide. To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES

Gas/vapor Chem. symbol		Concentration	Display in ppm C ₂ H ₄ O
1-chloro-2, 3 epoxypropane	C ₂ H ₃ OCH ₂ CI	25 ppm	≤ 10
Acetic acid	CH₃COOH	100 ppm	No effect
Ammonia	NH ₃	100 ppm	No effect
Benzene	C ₆ H ₆	2,000 ppm	No effect
Butadiene	CH ₂ CHCHCH ₂	50 ppm	≤ 75
Carbon dioxide	CO ₂	30 Vol%	No effect
Carbon monoxide	CO	100 ppm	≤ 45
Chlorine	Cl ₂	10 ppm	No effect
Chlorobenzene	C ₆ H ₅ Cl	200 ppm	No effect
Dichloromethane	CH ₂ Cl ₂	1,000 ppm	No effect
Dimethylformamide	HCON(CH ₃) ₂	100 ppm	No effect
Ethene	C ₂ H ₄	50 ppm	≤ 45
Ethyl acetate	CH ₃ COOC ₂ H ₅	100 ppm	No effect
Formaldehyde	НСОН	40 ppm	≤ 25
Hydrogen	H ₂	1,000 ppm	≤ 5
Hydrogen chloride	HCI	20 ppm	≤ 3
Hydrogen cyanide	HCN	20 ppm	≤ 8
Hydrogen sulfide	H ₂ S	20 ppm	≤ 40
Isopropanol	(H ₃ C) ₂ CHOH	250 ppm	≤ 110
Methane	CH ₄	2 Vol%	No effect
Methanol	CH₃OH	100 ppm	≤ 160
Methyl methacrylate	H ₂ CC(CH ₃)COOCH ₃	60 ppm	≤ 25
Methyl isobutyl ketone	(CH ₃) ₂ CHCH ₂ COCH ₃	500 ppm	No effect
Nitrogen dioxide	NO ₂	20 ppm	≤ 1
Nitrogen monoxide	NO	20 ppm	≤ 15
Phosgene	COCl ₂	50 ppm	No effect
Propene	C ₃ H ₆	50 ppm	≤ 35
Propylene oxide	C ₃ H ₆ O	50 ppm	≤ 45
Sulfur dioxide	SO ₂	20 ppm	≤ 9
Styrene	C ₆ H ₅ CHCH ₂	35 ppm	≤ 35
Tetrahydrofuran	C ₄ H8O	60 ppm	≤ 55
Trichloroethylene	CHCICCI ₂	1,000 ppm	No effect
Vinyl chloride	C ₂ H ₃ Cl	50 ppm	≤ 40

DrägerSensor® XXS OV-A

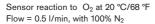
D-10157-2009

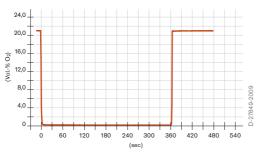
DrägerSensor® XXS O₂ DrägerSensor® XXS E O₂

Order no. 68 10 881 68 12 211

Used in	Plug & Play	Replaceable	Guaranty	Selective filter	
Dräger Pac 3500	no	yes	2 years	no	
Dräger Pac 5500	no	yes	2 years	no	
Dräger Pac 7000	no	yes	2 years	no	
Dräger Pac 7000 5Y	no	yes	5 years	no	
Dräger X-am 1700	no	yes	2 years	no	
Dräger X-am 2000	no	yes	2 years	no	
Dräger X-am 5000	no	yes	2/5 years	no	
Dräger X-am 5600	no	yes	2/5 years	no	

MARKET SEGMENTS


Sewage, mining and tunneling, fumigation, biogas, hazmat, industrial gases.


TECHNICAL SPECIFICATIONS

Detection limit:	0.1 Vol%		
Resolution:	0.1 Vol%		
Measurement range:	0 to 25 Vol% O ₂ (oxygen)		
Response time:	≤ 10 seconds at 20°C (T ₉₀) or 68 °F		
Measurement accuracy	-		
Zero point:	≤ ± 0.2 Vol%		
Sensitivity:	≤ ± 1% of measured value		
Long-term drift, at 20°C (68°F)			
Zero point:	≤ ± 0.5 Vol%/year		
Sensitivity:	≤ ± 1% of measured value/year		
Warm-up time:	≤ 15 minutes		
Ambient conditions			
Temperature:	(-40 to 50)°C (-40 to 122)°F		
Humidity:	(10 to 90)% RH		
Pressure:	(700 to 1,300) hPa		
Influence of temperature	-		
Zero point:	≤ ± 0.2 Vol%		
Sensitivity:	≤ ± 2% of measured value		
Influence of humidity	- -		
Zero point:	No effect		
Sensitivity:	≤ ± 0.1% of measured value/% RH		
Test gas:	approx. 18 Vol% O ₂ in N ₂		

SPECIAL CHARACTERISTICS

DrägerSensor® XXS oxygen sensors are lead-free, thus complying with Directive 2002/95/EC (RoHS). Because they are non-consuming sensors, they have much longer life times than sensors that are consuming. An extremely fast response time of less than ten seconds produces a reliable warning of any lack or excess of oxygen.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of O_2 . To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES DRÄGERSENSOR® XXS O2

Gas/vapor	Chem. symbol	Concentration	Display in Vol% O ₂
Ammonia	NH ₃	500 ppm	≤ 0.1
Carbon dioxide	CO ₂	10 Vol%	≤ 0.4 ⁽⁻⁾
Carbon monoxide	СО	0.5 Vol%	≤ 0.1
Chlorine	Cl ₂	10 ppm	≤ 0.1
Ethane	C ₂ H ₆	1.0 Vol%	≤ 0.2 ⁽⁻⁾
Ethanol	C ₂ H ₅ OH	250 ppm	≤ 0.1
Ethene	C ₂ H ₄	2 Vol%	≤ 2 ⁽⁻⁾
Ethine	C ₂ H ₂	1 Vol%	≤ 0.5 ⁽⁻⁾
Hydrogen	H ₂	1.6 Vol%	≤ 2.5 ⁽⁻⁾
Hydrogen chloride	HCI	40 ppm	≤ 0.1
Hydrogen cyanide	HCN	50 ppm	≤ 0.1
Hydrogen sulfide	H ₂ S	100 ppm	≤ 0.1
Methane	CH ₄	10 Vol%	≤ 0.1
Nitrogen dioxide	NO ₂	20 ppm	≤ 0.1
Nitrogen monoxide	NO	30 ppm	≤ 0.1
Propane	C ₃ H ₈	2 Vol%	≤ 0.1
Sulfur dioxide	SO ₂	20 ppm	≤ 0.1

RELEVANT CROSS-SENSITIVITIES DRÄGERSENSOR® XXS E O2

Gas/vapor	Chem. symbol	Concentration	Display in Vol% O2
Ammonia	NH ₃	500 ppm	No effect
Carbon dioxide	CO ₂	10 Vol%	≤ 0.4 ⁽⁻⁾
Carbon monoxide	CO	0.5 Vol%	No effect
Chlorine	Cl ₂	10 ppm	No effect
Ethane	C ₂ H ₆	1.0 Vol%	≤ 0.2 ⁽⁻⁾
Ethanol	C ₂ H ₅ OH	250 ppm	No effect
Ethene	C ₂ H ₄	2 Vol%	≤ 2 ⁽⁻⁾
Ethine	C ₂ H ₂	1 Vol%	≤ 0.5 ⁽⁻⁾
Hydrogen	H ₂	1.6 Vol%	≤ 2.5 ⁽⁻⁾
Hydrogen chloride	HCI	40 ppm	No effect
Hydrogen cyanide	HCN	50 ppm	No effect
Hydrogen sulfide	H ₂ S	100 ppm	No effect
Methane	CH ₄	10 Vol%	No effect
Nitrogen dioxide	NO ₂	20 ppm	No effect
Nitrogen monoxide	NO	30 ppm	No effect
Propane	C ₃ H ₈	2 Vol%	No effect
Sulfur dioxide	SO ₂	20 ppm	No effect

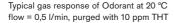
DrägerSensor® XXS O2

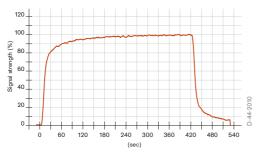
DrägerSensor® XXS Odorant

Order no. 68 12 535

Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger X-am 5000	no	yes	1 year	B2X (68 12 424) - replaceable
				Cross sensitivities to hydrogen sulfide
Dräger X-am 5600	no	yes	1 year	(H ₂ S) and sulfur dioxide (SO ₂) are
				eliminated

MARKET SEGMENTS


Gas supply companies


TECHNICAL SPECIFICATIONS

Detection limit:	1 ppm	
Resolution:	0.5 ppm	
Measurement range:	0 - 40 ppm THT (tetrahydrothiophene)	
	0 - 40 ppm (CH ₃) ₃ CSH (tertbutyl mercaptane)	
	0 - 40 ppm C ₂ H ₅ CH(CH ₃)SH (secbutyl mercaptane)	
	0 - 40 ppm CH ₃ SH (methyl mercaptane)	
	0 - 40 ppm C ₂ H ₅ SH (ethyl mercaptane)	
	0 - 100 ppm (CH ₃) ₂ S (dimethyl sulfide)	
	0 - 40 ppm CH ₃ SSCH ₃ (dimethyl disulfide)	
Response time:	≤ 90 seconds at 20 °C or 68 °F (T ₉₀)	
Measurement accuracy		
Zero point:	≤ ± 1 ppm	
Sensitivity:	≤ ± 3 % measured value/month	
Long-term drift, at 20°C (68°F)	_	
Zero point:	≤ ± 2 ppm/year	
Sensitivity:	≤ ± 2% measured value/month	
Warm-up time:	≤ 12 hours	
Ambient conditions		
Temperature:	(-20 to 50)°C (-4 to 122) °F for THT, TBM, SBM	
	(5 to 40)°C (32 to 104) °F for MeM, EtM, DMS, DMDS	
Humidity:	(10 to 90) % RH	
Pressure:	(700 to 1300) hPa	
Influence of temperature		
Zero point:	≤ ± 2 ppm	
Sensitivity:	≤ ± 10 % of measured value	
Influence of humidity		
Zero point:	≤ ± 0,1 ppm / % RH	
Sensitivity:	≤ ± 0,2 % of measured value/ RH	
Test gas:	THT test gas of approx. 10 ppm or an other of the target gases:	
	TBM, SBM, MeM, EtM, DMS, DMDS	

SPECIAL CHARACTERISTICS

This sensor can be used to monitor seven different odorants in the ambient air or (for short periods) in natural gas. It is sufficient to calibrate the sensor using a THT test gas. By doing so, all of the other target gases are then automatically calibrated. In addition to a quick response time this Odorant sensor are highly selective. An internal, replaceable selective filter filters out most associated gases in natural gases like H₂S and SO₂.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of NH3. To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES

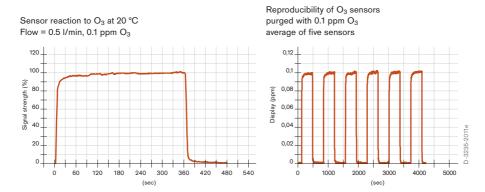
Gas/vapor	Chem. symbol	Concentration	Display in ppm THT without selective filter	Display in ppm THT with selective filter
Ammonia	NH ₃	200 ppm	No effect	No effect
Carbon dioxide CO ₂	1.5 Vol%	No effect	No effect	
Carbon monoxide	CO	125 ppm	No effect	No effect
Chlorine	Cl ₂	8 ppm	≤3 ppm (-)	No effect
Ethine	C ₂ H ₂	50 ppm	No effect	No effect
Hydrogen	H ₂	1000 ppm	No effect	No effect
Hydrogen cyanide	HCN	50 ppm	No effect	No effect
Hydrogen sulfide	H ₂ S	10 ppm	≤30ppm	No effect
Methane CH4	CH ₄	100 Vol%	No effect	No effect
Methanol	CH₃OH	200 ppm	≤5 ppm	≤5 ppm
Nitrogen dioxide	NO ₂	10 ppm	No effect	No effect
Nitrogen monoxide	NO	20 ppm	≤30 ppm	≤30 ppm
n-propyl mercaptan	C ₃ H ₇ SH	6 ppm	≤4 ppm	≤4 ppm
Phosphine PH3	PH ₃	5 ppm	≤15 ppm	≤15 ppm
Sulfur dioxide	SO ₂	20 ppm	≤15 ppm	No effect

DrägerSensor® XXS Ozone

Order no. 68 11 540

Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger X-am 5000	no	yes	1 year	no
Dräger X-am 5600	no	yes	1 year	no

MARKET SEGMENTS


Ozone generator manufacturer, coal-fired power plants, water treatment (drinking and industrial water), food and beverage industry, swimming pools, pulp and paper industry, pharmaceutical and cosmetics industry

TECHNICAL SPECIFICATIONS

Detection limit:	0,02 ppm			
Resolution:	0,01 ppm			
Measurement range:	0 to 50 ppm O ₃ (Ozon)			
Response time:	≤ 10 seconds at 20 °C (T ₅₀)			
Measurement accuracy				
Zero point:	≤ ± 0,01 ppm			
Sensitivity:	≤ ± 3 % of measured value			
Long-term drift, at 20°C (68°F)				
Zero point:	≤ ± 0,02 ppm/year			
Sensitivity:	≤ ± 2 % of measured value/month			
Warm-up time:	≤ 120 minutes			
Ambient conditions	=			
Temperature:	(-20 to 50) °C (-4 to 122) °F			
Humidity:	(10 to 90) % RH			
Pressure:	(700 to 1300) hPa			
Influence of temperature				
Zero point:	No effect			
Sensitivity:	≤ ± 0,5 % of measured value/K			
Influence of humidity				
Zero point:	No effect			
Sensitivity:	≤ ± 0,1 % of measured value/% RH			
Test gas:	Ozone, replacement gas for bump test and calibration NO ₂			
	(5 ppm)			

SPECIAL CHARACTERISTICS

A fast response time and excellent repeatability are just two examples of this sensor's special characteristics. With a detection limit of 0.02 ppm and a resolution of 0.01 ppm, it is also optimally suited for limit value monitoring.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of Ozone. To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES

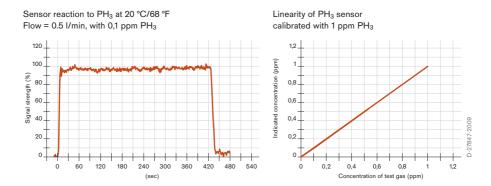
Gas/vapor	Chem. symbol	Concentration	Display in ppm Ozone
Ammonia	NH ₃	30 ppm	no effect
Arsine	AsH ₃	0,5 ppm	no effect
Carbon dioxide	CO ₂	5 Vol%	no effect
Carbon monoxide	CO	2000 ppm	no effect
Chlorine	Cl ₂	1 ppm	≤ 0,8
Chlorine dioxide	CIO ₂	1 ppm	≤ 0,8
Ethane	C ₃ H ₆	0,1 Vol%	no effect
Ethanol	C ₂ H ₅ OH	250 ppm	no effect
Ethine	C ₂ H ₂	100 ppm	no effect
Hydrazine	N ₂ H ₄	1 ppm	no effect
Hydrogen	H ₂	0,1 Vol%	no effect
Hydrogen chloride	HCI	40 ppm	no effect
Hydrogen cyanide	HCN	50 ppm	no effect
Hydrogen sulfide	H ₂ S	1 ppm	≤ 0,02 ⁽⁻⁾
Methane	CH ₄	5 Vol%	no effect
Nitrogen dioxide	NO ₂	1 ppm	≤ 0,5
Nitrogen monoxide	NO	30 ppm	no effect
Phosphine	PH ₃	0,5 ppm	no effect
Propane	C ₃ H ₈	1 Vol%	no effect
Sulfur dioxide	SO ₂	1 ppm	≤ 0,06 (-)

DrägerSensor® XXS PH₃

Order no. 68 10 886

Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger Pac 7000	no	yes	1 year	no
Dräger X-am 5000	no	yes	1 year	no
Dräger X-am 5600	no	yes	1 year	no

MARKET SEGMENTS


Inorganic chemicals, fumigation, clearance measurements.

TECHNICAL SPECIFICATIONS

TECHNICAL SPECIFICATIO	NS	
Detection limit:	0.02 ppm	
Resolution:	0.01 ppm	
Measurement range:	0 to 20 ppm PH ₃ (phosphine)	
	0 to 20 ppm AsH ₃ (arsine)	
	0 to 20 ppm B ₂ H ₆ (diborane)	
	0 to 20 ppm SiH ₄ (silane)	
Response time:	≤ 10 seconds at 20°C (T ₉₀) or 68 °F	
Measurement accuracy		
Zero point:	≤ ± 0.02 ppm	
Sensitivity:	≤ ± 2% of measured value	
Long-term drift, at 20°C (68°F)		
Zero point:	≤ ± 0.05 ppm/year	
Sensitivity:	≤ ± 2% of measured value/month	
Warm-up time:	≤ 15 minutes	
Ambient conditions		
Temperature:	PH ₃ , AsH ₃ , SiH ₄ : (-20 to 50)°C (-4 to 122)°F	
	B ₂ H ₆ : (0 to 50)°C (32 to 122)°F	
Humidity:	(10 to 90)% RH	
Pressure:	(700 to 1,300) hPa	
Influence of temperature		
Zero point:	≤ ± 0.02 ppm	
Sensitivity:	≤ ± 5% of measured value	
Influence of humidity		
Zero point:	No effect	
Sensitivity:	≤ ± 0.05% of measured value/% RH	
Test gas:	approx. 0.5 ppm PH ₃	

SPECIAL CHARACTERISTICS

This sensor's advantages include an extreme fast response time of less than 10 seconds for 90% of the measured signal, and its excellent linearity. It is suitable for monitoring concentrations of common hydrides such as phosphine, arsine, diborane, and silane in the ambient air.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of PH $_3$. To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES

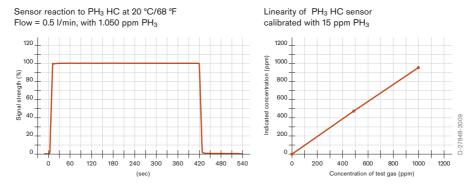
Gas/vapor	Chem. symbol	Concentration	Display	
			in ppm PH ₃	
Ammonia	NH ₃	50 ppm	No effect	
Carbon dioxide	CO ₂	10 Vol%	No effect	
Carbon monoxide	СО	200 ppm	No effect	
Chlorine	Cl ₂	10 ppm	≤ 2 (-)	
Hydrogen	H ₂	1,000 ppm	≤ 0.3	
Hydrogen chloride	HCI	20 ppm	≤ 1	
Hydrogen cyanide	HCN	60 ppm	≤ 5	
Hydrogen sulfide	H ₂ S	20 ppm	≤ 20	
Ethanol	C ₂ H ₅ OH	250 ppm	No effect	
Ethine	C ₂ H ₂	100 ppm	No effect	
Methane	CH ₄	0.9 Vol%	No effect	
Nitrogen dioxide	NO ₂	20 ppm	≤ 5 (-)	
Nitrogen monoxide	NO	20 ppm	No effect	
Ozone	O ₃	0.5 ppm	No effect	
Sulfur dioxide	SO ₂	10 ppm	≤ 1	

DrägerSensor® XXS PH₃ HC

Order no. 68 12 020

Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger X-am 5000	no	yes	1 year	no
Dräger X-am 5600	no	yes	1 year	no

MARKET SEGMENTS


Inorganic chemicals, industry, fumigation.

TECHNICAL SPECIFICATIONS

Detection limit:	2 ppm		
Resolution:	1 ppm		
Measurement range:	0 to 2,000 ppm PH ₃ (phosphine)		
Response time:	≤ 10 seconds at 20°C (T ₉₀) or 68 °F		
Measurement accuracy			
Zero point:	≤ ± 3 ppm		
Sensitivity:	≤ ± 2% of measured value		
Long-term drift, at 20°C (68°F)			
Zero point:	≤ ± 2 ppm/year		
Sensitivity:	≤ ± 2% of measured value/month		
Warm-up time:	≤ 15 minutes		
Ambient conditions			
Temperature:	(-20 to 50)°C (-4 to 122)°F		
Humidity:	(10 to 90)% RH		
Pressure:	(700 to 1,300) hPa		
Influence of temperature			
Zero point:	No effect		
Sensitivity:	≤ ± 5% of measured value		
Influence of humidity			
Zero point:	No effect		
Sensitivity:	≤ ± 0.05% of measured value/% RH		
Test gas:	approx. 20 ppm PH ₃		

SPECIAL CHARACTERISTICS

This sensor demonstrates excellent linearity across the whole measurement range even if calibrated in the lower reaches of that range, and it also provides a stable reading even at high concentrations over long periods of time.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of PH₃. To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES

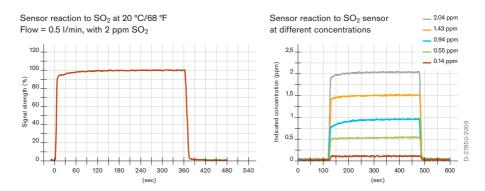
Gas/vapor	Chem. symbol	Concentration	Display in ppm PH ₃	
Ammonia	NH ₃	50 ppm	No effect	
Arsine	AsH ₃	5 ppm	≤ 5	
Carbon dioxide	CO ₂	10 Vol%	No effect	
Carbon monoxide	CO	200 ppm	No effect	
Chlorine	Cl ₂	10 ppm	No effect	
Diborane	B ₂ H ₆	5 ppm	≤ 3	
Ethanol	C ₂ H ₅ OH	250 ppm	No effect	
Ethine	C ₂ H ₂	100 ppm	No effect	
Hydrogen	H ₂	1,000 ppm	No effect	
Hydrogen chloride	HCI	20 ppm	No effect	
Hydrogen cyanide	HCN	60 ppm ≤ 5		
Hydrogen sulfide	H ₂ S	20 ppm	≤ 20	
Methane	CH ₄	0.9 Vol%	No effect	
Nitrogen dioxide	NO ₂	20 ppm	≤ 5 (-)	
Nitrogen monoxide	NO	20 ppm	No effect	
Ozone	O ₃	0.5 ppm	No effect	
Sulfur dioxide	SO ₂	10 ppm No effect		
Silane	SiH ₄	5 ppm ≤ 5		
		_		

DrägerSensor® XXS SO₂

Order no. 68 10 885

Used in	Plug & Play	Replaceable	Guaranty	Selective filter
Dräger Pac 7000	no	yes	1 year	KX (68 11 344) replaceable
Dräger X-am 5000	no	yes	1 year	Cross sensitivities to hydrogen
Dräger X-am 5600	no	yes	1 year	sulfide (H ₂ S) are eliminated

MARKET SEGMENTS


Food industry, pest control, mining, oil and gas, petrochemical, paper manufacture, shipping, steel industry.

TECHNICAL SPECIFICATIONS

Detection limit:	0.1 ppm		
Resolution:	0.1 ppm		
Measurement range:	0 to 100 ppm SO ₂ (sulfur dioxide)		
Response time:	≤ 15 seconds at 20°C (T ₉₀) or 68 °F		
Measurement accuracy			
Zero point:	≤ ± 0.1 ppm		
Sensitivity:	≤ ± 2% of measured value		
Long-term drift, at 20°C (68°F)	-		
Zero point:	≤ ± 1 ppm/year		
Sensitivity:	≤ ± 2% of measured value/month		
Warm-up time:	≤ 15 minutes		
Ambient conditions			
Temperature:	(-30 to 50)°C (-22 to 122)°F		
Humidity:	(10 to 90)% RH		
Pressure:	(700 to 1,300) hPa		
Influence of temperature	-		
Zero point:			
Sensitivity:	≤ ± 5% of measured value		
Influence of humidity			
Zero point:	No effect		
Sensitivity:	≤ ± 0.1% of measured value/% RH		
Test gas:	approx. 10 ppm SO ₂		

SPECIAL CHARACTERISTICS

As well as a fast response time and excellent linearity, this sensor is highly selective if the selective filter is used. The KX selective filter (order no. 68 11 344) is an accessory for the DrägerSensor® XXS EC SO₂ and eliminates the sensor's cross-sensitivity to hydrogen sulfide. The filter has a lifetime of 1,000 ppm × hours, which means that at a hydrogen sulfide concentration of 1 ppm, it can be used for 1,000 hours.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of SO₃. To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES

Gas/vapor	Chem. symbol	Concentration	Display in ppm SO ₂ without selective filter	
Ammonia	NH ₃	50 ppm	No effect	
Carbon dioxide	CO ₂	1.5 Vol%	No effect	
Carbon monoxide	CO	200 ppm	No effect	
Chlorine	Cl ₂	10 ppm	≤ 5 (-)	
Ethanol	C ₂ H ₅ OH	250 ppm	No effect	
Ethine	C ₂ H ₂	100 ppm	≤ 140	
Hydrogen	H ₂	1,000 ppm	No effect	
Hydrogen chloride	HCI	20 ppm	≤ 5	
Hydrogen cyanide	HCN	20 ppm	≤ 10	
Hydrogen sulfide	H ₂ S	20 ppm	≤ 60	
Methane	CH4	1 Vol%	No effect	
Nitrogen dioxide	NO ₂	20 ppm	≤ 30 (-)	
Nitrogen monoxide	NO	20 ppm	No effect	
Ozone	O ₃	0.5 ppm	No effect	
Phosphine	PH ₃	1 ppm	≤ 6	

4.7 Explanatory notes - sensor data

DRÄGERSENSOR

Name and type of the sensor as well as the order number

Used as follows:	Indicates the devices suitable for use with this sensor			
Plug & Play:	Indicates whether this sensor has plug & play functionality			
Replaceable:	Indicates whether the sensor in the device can be replaced			
Warranty:	Indicates the warranty period for the sensor			
Selective filter: Indicates whether this sensor has a selective filter and which				
	gases are filtered out			

MARKET SEGMENTS

A list of typical market segments in which this sensor is used. This list does not claim to be complete.

TECHNICAL DATA

Indicates the technical data for this sensor based on the sensor user manual.

SPECIAL FEATURES

Description of the features that characterize this sensor and thus make it particularly interesting for various applications.

RELEVANT INTERFERENCE

Selection of gases, which may affect the sensor in typical applications. The effect of the filter is depicted in a separate column for sensors with selective filter. (Data is based on the sensor user manual)

TECHNICAL DATA

TECHNICAL DATA				
Detection limit:	Indicates the smallest concentration other than zero depicted in the			
	display. Example: At a detection limit of 2 ppm, the value 2 ppm is depicted in the display as the first concentration. Concentrations lower			
	depicted in the display as the first concentration. Concentrations lower			
	than 2 ppm are depicted as 0 ppm.			
Resolution:	Indicates the concentration increments of the display. For example			
	With a detection limit of 2 ppm and a resolution of 1 ppm, the			
	concentrations are depicted in the following increments: 2 ppm /			
	3 ppm / 4 ppm			
Measurement Range:	Indicates the maximum measuring ranges of the sensors. All gases/			
measurement Nange.	vapors with their ranges are indicated if a sensor can be used for			
Daniel de la company	different gases and vapors.			
Response time:	Typically, the times listed here are T ₅₀ or T ₉₀ at 20°C (68°F). These			
	times indicate when 50 % or 90 % of the final signal has been rea-			
	ched.			
Measurement accuracy:	The data presented here relate to the zero point and the sensitivity:			
	A zero point measuring accuracy of ≤ ± 2 ppm means the zero point			
	may fluctuate between - 2 ppm and + 2 ppm. For example, if a			
	measuring accuracy of ≤ ± 3 ppm of the measured value is indicated			
	for the sensitivity, then the following can be said about the measuring			
	accuracy: The concentration is between 97 and 103 ppm if 100 ppm			
	is displayed.			
Long-term drift:	This information indicates the typical drift of the sensor in the zero			
	point and in the sensitivity across a longer period. This data may refer			
	to a month or a year. The long-term drift data of ≤ ± 0.2 ppm/year at			
	20° C (68°F) states that this sensor drifts max. ≤ ±2 ppm per year.			
	A value for the long-term drift of the sensitivity of ≤ ± 2 ppm/month,			
	indicates that after two months with a display of 100 ppm, the			
	maximum gas concentration may be between 96 and 104 ppm.			
Warm-up time:	The warm-up time indicates the amount of time needed before a newly			
•	installed sensor or a sensor, which was without electricity for a period			
	of time and then is powered up again, can be calibrated. However, the			
	sensor may be ready for use after only a few minutes. In this case,			
	there may be a higher rate of measurement errors.			
Ambient conditions:	Indicates the temperature, humidity, and pressure range in which the			
Ambient conditions.	sensor may be used. The indicated corrections do not apply with			
	measurements outside of the permissible ambient conditions. Dräger			
	,			
	is pleased to offer you additional advice on how to meet your specific			
	requirements. Please contact the respective branch office if you			
	require assistance. The addresses are listed on the rear cover page of			
	this manual.			

Influence of temperature:

The effect temperature may have must be considered when the measurement temperature deviates from the temperature during the calibration.

Example 1: Temperature effect on the sensitivity amounts to $\leq \pm 5~\%$ of the measured value. This means that the max. deviation across the entire temperature range of the sensor (typically - 40 to 50°C or - 40 to 122°F) is expected to be $\leq \pm 5~\%$. At an ambient temperature of, for example, - 10° C (14°F) and a displayed value of 100 ppm, the max. gas concentration may be between 95 and 105 ppm. The temperature difference between the temperature of the measurement and the temperature of the calibration must be taken into account with some sensors.

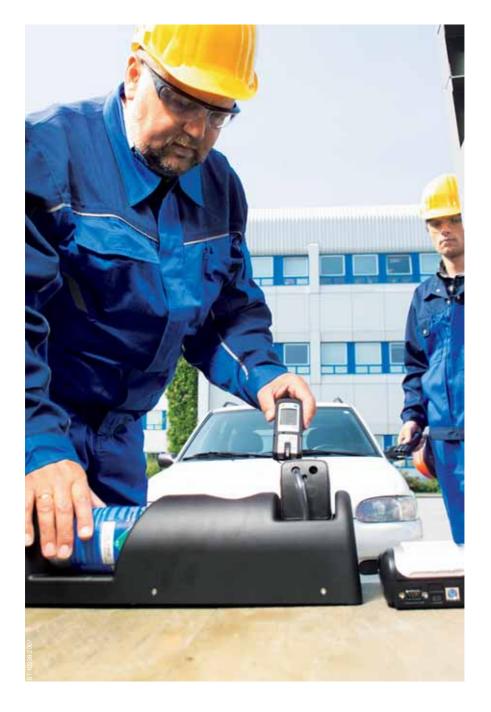
Example 2: The effect of temperature on the sensitivity is $\leq \pm 0.5$ % of the measured value / K. The sensor was calibrated at 25°C (77°F), the measurement is taken at an ambient temperature of 35°C (95°F). The temperature difference is then 10°C (14°F) or 10 K. This yields the following calculation: 10 x 0.5% = 5%

With an ambient temperature of 35°C (95°F) and a displayed value of 100 ppm, the max. gas concentration is between 95 and 105 ppm.

Influence of humidity:

The effects of humidity must be considered if the humidity during measurement deviates from the calibration humidity.

Example 1: The effect of humidity on the sensitivity is $\leq \pm 0.5$ % of the measured value. This means that the max. deviation to be expected amounts to $\leq \pm 5\%$ with the deviation applying to the entire humidity range of the sensor (typically 10 to 90 % rel. humidity). With an ambient humidity of 50 %, for example, and a displayed value of 100 ppm, the max. gas concentration may be between 95 and 105 ppm. The humidity difference between the humidity of the measurement and the humidity of the calibration must be taken into account with some sensors.


Example 2: The effects of humidity on the sensitivity is $\leq \pm 0.02$ % of the measured value / % rel. humidity. The sensor was calibrated at 0% rel. humidity, the measurement is taken at an ambient rel. humidity of 50 %. The difference of the rel. humidity is then 50 %. This yields the following calculation: 50 x 0.02 % = 1 %

With an ambient humidity of 50 % and a displayed value of 100 ppm, the max. gas concentration is between 99 and 101 ppm.

Test gas:

Recommended test gas concentration for calibrating the sensor.

5 Accessories

5.1 Introduction

The following chapter provides information about how to choose the right accessories and how to use them properly.

Safety

Detection devices that do not work correctly can provide no protection and can lead to accidents. The only way to guaranty a reliable and correct measurement and warning of gas risks is to test your detection device using a known gas concentration. This is commonly referred to as a function or bump test. The device may need to be calibrated.

Additional features

You can extend the functionality of gas detection devices by using the right accessories. For instance, a device for personal monitoring can be turned into a device for detecting leaks and for performing clearance measurements when entering confined spaces, simply by using a pump, probe, and extension hose. The right materials are important – for example, when using extension hoses.

Configuration/documentation/archiving

Gas detection devices can be adapted to a variety of applications by adjusting them to different evaluation parameters using an additional software program. This software runs on a separate computer. In many places of work, the exposure to hazardous material must be evaluated and documented. This process should be quick and intuitive.

5.2 Equipment for calibration and function tests

Gas detection devices are used for continuous measurements. Environmental influences or other gases can change the calibration, with which the sensor is delivered to the customer. Testing an instrument using a known gas concentration (also known as a function or bump test) is the only way to guarantee reliable and correct measurement of and warning against gas hazards. This test is important to verify whether the gas to be measured can flow through the dust and water filter to the sensor, to check that the sensor is properly calibrated, and to test that alarms are working and are set correctly. If the gas detector has been in contact with very high concentrations of toxic gases or vapours, it must immediately undergo a function (bump) test and the necessary adjustments, regardless of the required function test interval.

The various institutions stipulate regular sensitivity checks and functional tests (bump tests) for gas detection devices; In Germany, BG Chemie therefore recommends regular checks / calibrations in its data sheets T021 (gas warning equipment for toxic gases/vapors) / T023 (gas warning equipment for explosion protection). The EN 60079-29-2 standard (Gas detection devices – selection, installation, application, and maintenance of equipment for

the measurement of flammable gases and oxygen), which applies to all the member states of the European Union also stipulates a sensitivity test immediately before use (international: IEC 60079-29-2).

5.3 Basic test with gas

The easiest and least expensive way to test the function of your portable gas detection instrument is to conduct a basic test with gas. All you need is a test gas bottle containing the respective test gas, a trigger regulator and aninstrument-specific calibration adapter. The instrument's alarm is triggered by briefly exposing the sensors to the test gas. To adjust the instrument via a PC, you need additionally the Dräger CC-Vision software, which allows individual configuration and calibration of your gas detection instruments.

5.4 Dräger Bump Test Station

The Dräger Bump Test Station was designed to allow a function (bump) test to be performed with a test gas in order to check the warning functions of gas detection instruments. An integrated instrument-specific adapter is provided to test the Dräger Pac 3500 to 7000, and of Dräger X-am 1/2/5500 5600/, 3000 and 7000. When the concentration shown on the instrument's display is within an acceptable tolerance to the concentration of the test gas and the alarms were trigged, the function (bump) test was successful and verifies the instrument calibration. If the function (bump) test was not successful, the instrument needs to be calibrated. With some devices, this is done automatically following an unsuccessful function test in the Dräger Bump Test Station. Instruments with an event or data logger will store the results (pass or fail) of the function (bump) test, as well as the subsequent automatic calibration when applicable. The Dräger Bump Test Station functions independently, without any external power supply, making it ideal for use anywhere in the field. The data from the Dräger Bump Test Station can be sent to a Dräger mobile printer

using an optical port. This printer stores the results of the function test and prints them out. The results can also be exported using the Dräger CC-Vision software.

The tests are very short – sometimes only ten seconds, because the sensors respond so quickly – which makes for very low gas consumption and reduced operating costs.

5.5 Dräger E-Cal - the workshop solution

The Dräger E-Cal automatic testing and calibrating station incorporates as many as ten different instrument modules. Because Dräger detection devices can be calibrated and adjusted simultaneously, they are quick and therefore economic to maintain. The Dräger E-Cal is modular in design and, when fully equipped, can consist of a computer, a master station, and as many as ten different device modules.

Master station

The Master Station allows you to use either two, six or twelve different gases, and supports up to ten instrument modules.

Device module

When a Dräger portable gas detection instrument is inserted into its module, the sensors contained within are automatically detected. Once calibration has been successfully completed, the results are shown on both the module and the PC. Additionally, you can use the instrument module, with the respective plug, to charge your equipment. With the help of an optional adapter and a computer, each device module can also be operated independently of the master station, and used as an economic alternative for simple testing of a device's functionality.

Dräger CC-Vision software

The Dräger CC-Vision E-Cal software features intuitive operation and the configurable GO button makes the instrument even easier to use. Specific workshop processes i.e. function (bump) test, calibration, download of data logger or battery test are carried out automatically and simultaneously for up to 10 instruments. Combined with a search function, the software also offers equipment management. The Dräger CC-Vision E-Cal software provides a wide range of different analysis and tracking functions, e.g. who a particular instrument belongs to,

which instruments require calibration and when, and what the calibration history is for individual instruments. The software additionally prints out a record to facilitate your data documentation. The workshop solution also simplifies configuration of several Dräger portable gas detection instruments. The Dräger CC-Vision E-Cal software is compatible with any PC.

Purge module

An optional Purge Module is also available. When there is no ventialation systemminstalled this special option ensures the active and defined suction of waste gases – some of which are toxic and explosive – out of the Dräger E-Cal Station.

Device	Dräger Bump Test Station with printer	Dräger Bump Test Station	Dräger E-Cal Station	Basic test with gas	Software Dräger CC-Vision
Dräger Pac 3500 – 7000	•	•	•	•	•
Dräger X-am 1700/2000/5000/5600	-	•		•	•
Dräger X-am 3000		•		-	•
Dräger X-am 5100				•	•
Dräger X-am 7000	-	•			•
Dräger Multi-PID 2				•	

5.6 Calibration gases

High-quality test and calibration gases are required in order to test the function of gas detection devices effectively and, if needed, to calibrate them. Dräger test and calibration gases are produced in accordance with ISO 9002, which guarantys a high standard of quality worldwide. They are available as single gases as well as gas mixtures.

The gases are packaged in small, convenient disposable cylinders, which can be taken anywhere, thus enabling on-site function testing with the Dräger Bump Test Station.

Another advantage of the disposable cylinders is the fact that they do not need to be returned – once empty, you can simply dispose of them in an environmentally-friendly manner such as with metal waste. This means no rental or transport costs to return the cylinders.

5080-2005

5.7 Regulator valves

All of the regulator valves we supply are suitable for our test and calibration gas cylinders, and permit flow rates of 0.5 l/min.

USE

For devices without internal pumps

This valve has a thumb wheel for manually opening and closing the gas outlet.

Model 715

On-demand regulator valve

For devices with internal pumps

This valve opens automatically when the pump draws in gas.

For the Dräger E-Cal station

This regulator valve can be used in conjunction with devices that have internal pumps. If large, refillable cylinders with DIN 14 connectors are being used for the E-Cal station, then this valve can also be used in conjunction with a DIN 14 adaptor, which is also available from Dräger.

Trigger-regulator valve

For quick function tests prior to using a device

Pulling the trigger manually applies calibration gas briefly to the gas detection device's sensor. Tipping the trigger upwards fixes the regulating valve in the open position, providing a continuous flow of gas.

5.8 Pumps

Dräger X-am 3000 with pump adapter

Dräger X-am 7000 with pump adapter

Dräger X-am 1/2/5000 pump

Dräger X-am 3000 and Dräger X-am 7000 are optionally available with an integrated high-performance pump. When you attach the pump adaptor, the device automatically switches from diffusion to pump mode. This accessory enables the device to draw gas from remote measuring sites through a 20-meter-long (66 ft.) hose or, with a Dräger X-am 7000, a 45-meter-long (or 148 ft.) hose, thus enabling clearance measurements in shafts, tanks, and so on. The pump in the device is continuously monitored electronically. If the pump flow becomes too low – if, for example, the extension hose becomes kinked or blocked – then a pump alarm is activated on the device.

The Dräger X-am 1700/2000/5000/5600 devices can be also have this pump function through the use of the external X-am 1/2/5000 pump. When the detection device is put in to place, the pump function starts automatically and a flow test is initiated. Once the flow test is complete, the pump is ready for use and can be used in conjunction with a hose with a length of 20 meters (66 ft.).

The flow test prior to every use ensures safe and reliable pump operation. If the pump flow becomes too low, then a flow alarm is displayed on the pump. An easily replaceable dust and water filter protects the pump and the sensors in the device against dirt and contamination.

5.9 Probes

Probes, sometimes combined with extension hoses, are needed whenever leakages must be measured in inaccessible places, or when people are about to enter confined spaces.

ORDER	NAME		LENGTH	LENGTH MATERIAL	FOR USE WITH GAS DETECTION DEVICES	USES
83 17 188	Bar probe 400	P-85398-2009	40 cm	Stainless-steel probe with an external diameter of 10 mm (0.4 in.).	X-am 3000 X-am 7000 X-am 1700/2000 X-am 5000/5600 Multi PID II	This probe is particularly durable. It is used for applications such as pre entry measurements in gas-filled containers, where it is necessary to obtain air samples through closed seals.
64 08 160	GL probe (German Lloyd probe)	D-25393-2009	50 cm 1.6 ft.	Stainless-steel probe with an external diameter of 6 mm (0.24 in.).	X-am 3000 X-am 7000 X-am 1700/2000 X-am 5000/5600 Multi PID II	Measurements in hatchways on ships.
83 16 531	Leakage probe 70	8002-96841-12	70 cm 2.3 ft.	Flexible metal tube with an integrated Viton hose. External diameter of 10 mm (0.4 in.) Approved for Category 2G (Zone 1) Testing report BVS PP 03.2148 EG (exam)	X-am 3000 X-am 7000 X-am 1700/2000 X-am 5000/5600 Multi PID II	This flexible probe can measure "round corners," making it especially useful for difficult to reach places where there is a risk of explosion.
83 16 532	Bar probe 90	D-25396-2009	90 cm 3.0 ft.	Probe made from carbon-fiber reinforced plastic with an external diameter of 8 mm (0.3 in.).	X-am 3000 X-am 7000 X-am 1700/2000 X-am 5000/5600 Multi PID II	With its fixed length, this probe can be used for any applications involving distances of 90 cm (2.9 ft.) such as confined space entry.
83 16 530	Telescopic probe	8002-26641-12	3.3 ft.	Metal probe with an integrated Viton hose. External diameter of 12 mm (0.47 in.). Approved for Category 2G (Zone 1) Testing report BVS PP 03.2148 EG (exam)	X-am 3000 X-am 7000 X-am 1700/2000 X-am 5000/5600 Multi PID II	Extendable to lengths of up to 1 m (3.3 ft.). Suitable for areas where there is a risk of explosion.

Float probe 72.8 ft. Tube: CR-NR [polychloroprene 7.00
--

5.10 Extension hoses

Whenever the air quality has to be assessed at a distance, such as on the floor of a silo, at the bottom of a loading chamber on a ship, or in a sewage system, then extension hoses and pumps are needed. There are two important factors – the length of the hose and the material it is made of.

The power of the pump is crucial when deciding on the length of the hose. The Dräger X-am 1/2/5000 external pump and the pump intregrated in the Dräger X-am 3000 are designed for hoses with a length of up to 20 m (66 ft.). The Dräger X-am 7000 integrated pump is suitable for hose up to a length of 45 m (148 ft.).

When choosing the hose material, you must be aware of the way the gases you are measuring are absorbed into the surface of the hose.

Three different types of hose material have proven practical, each being suitable for particular groups of gases. The following table should help you to decide which type of hose to use.

CHARACTERISTICS

	Viton 1203150	Tygon 8320395	Rubber 1180681
Material	Viton	PVC	CR-NR DWN 2715
Chemical name	FKM	Polyvinyl chloride	Polychloroprene (CR) with natural rubber (NR)
Internal diameter	3.5 mm	5 mm	5 mm
External diameter	5 mm	8 mm	7 mm
Hardness	70 Shore A	55 Shore A	60 Shore A
Color	Black	Clear	Black
Benefits	Suitable for vapors	Transparent	Electrically conductive
Temperature range	-25°C to +200°C	-50°C to +75°C	-30°C to +135°C
Use in Ex areas	Suitable	Suitable	Suitable

TEST RESULTS AND MEASUREMENT RECOMMENDATIONS

	GAS	FORMULA	Gassing/ Rinsing time	Gassing/ Rinsing time	ie ie ie ie io ie
	GAS	PORMULA	10-m Viton hose	10-m Tygon R-3603 hose	Antistatic (rubber) hose
			_		
	Carbon dioxide	CO ₂	_ 🕴 📗 📗	†	†
	Carbon monoxide	СО	_ 🕴 📗 📗	†	+
	Oxygen	O ₂	_ 🕴 📗 📗	†	+
	Nitrogen dioxide	NO ₂	_	+	+
	Chlorine	Cl ₂	_ + + + +	++++	+ + + +
	Hydrogen sulfide	H ₂ S	_	+	+
	Phosgene	COCl ₂	_ •		+
	Hydrogen cyanide	HCN	_ •		+
	Phosphine	PH ₃		+	+
	Ammonia	NH ₃		+	+
	Nitrogen monoxide	NO	_ •	+	+
	Sulfur dioxide	SO ₂	_ •	+	+
Volatile hydrocarbons or gases	Methane – hexane		_	†	†
Low-volatility hydrocarbons	Toluene	C ₆ H ₅ CH ₃	_ •	+ + + +	+
Non-volatile hydrocarbons	Octane	C ₈ H ₁₈		+ + + +	+
	Acetic acid	CH₃COOH		+ + + +	+
	n-nonane	C ₉ H ₂₀	_ •	+ + + +	+ + + +
or gases	Styrol	C ₆ H ₅ CH=CH	2	+ + + +	+ + + +
			_		

suitable t₉₀ time

conditionally suitable, longer rinsing time, t_{90 > 5 min.}

not suitable

5.11 Dräger CC-Vision

The "CC" in Dräger CC-Vision stands for calibration and configuration, and that describes the two principal functions of this software. This software application enables Dräger gas detection devices to be configured and adjusted professionally. For instance, it enables some of the device's settings to be adjusted to the application on hand, and the sensors to be calibrated. The functions of the device are shown clearly on the screen in a tree structure, allowing quick, customized adjustment of the device's parameters, and calibration of the sensors as well. The software also helps to manage measurment data, thus enabling quick access to any reports you might need to locate.

5.12 Dräger GasVision

This software allows you to depict the measurement data stored in a device in table or graphic form. It shows an exposure curve for each sensor as an overview, from which segments can be extracted. This visualization enables hazardous situations to be recognized, and action to be taken accordingly. Comments about the place of measurement, the personnel, and other relevant data can be added to the records, allowing you to create complete documentation of the situation in a workplace.

Closing comments

This chapter only covers a part of our comprehensive range of accessories. As well as pumps, calibration, and communication accessories, we also offer a large range of bags and cases (equipped and empty), and a range of power supply units – meaning that you can adapt your accessories to any application. Our gas detection equipment is also complimented by our services such as maintenance contracts, full service agreements, and complete worry-free packages, as well as training courses such as device maintenance courses. Our staff at our branch offices will gladly advise you further about these products and services.

HEADQUARTERS

Dräger Safety AG & Co. KGaA Revalstrasse 1 23560 Lübeck, Germany

www.draeger.com

SUBSIDIARIES

AUSTRALIA

Praeger Safety
Pacific Pty. Ltd.
Axxess Corporate Park
Unit 99, 45 Gilby Road
Mt. Waverley. Vic 3149
Tel +61 3 92 65 50 00
Fax +61 3 92 65 50 95

CANADA

Draeger Canada Ltd. 7555 Danbro Crescent Mississauga, Ontario L5N 6P9 Tel +1 905 821 89 88 Fax +1 905 821 25 65

P. R. CHINA

Beijing Fortune
Draeger Safety
Equipment Co., Ltd.
A22 Yu An Rd, B Area,
Tianzhu Airport Industrial Zone,
Shunyi District, Beijing 101300
Tel +86 10 80 49 80 00
Fax +86 10 80 49 80 05

ISBN 978-3-00-030827-7

FRANCE

Dräger Safety France SAS 3c route de la Fédération, BP 80141 67025 Strasbourg Cedex 1 Tel +33 3 88 40 59 29 Fax +33 3 88 40 76 67

MEXICO

Draeger Safety S.A. de C.V. Av. Peñuelas No. 5 Bodega No. 37 Fraccionamiento Industrial San Pedrito Querétaro, Qro México Tel +52 442 246-1113 Fax +52 442 246-1114

NETHERLANDS

Dräger Safety
Nederland B.V.
Edisonstraat 53
2700 AH Zoetermeer
Tel +31 79 344 46 66
Fax +31 79 344 47 90

REP. OF SOUTH AFRICA

Dräger South Africa (Pty) Ltd. P.O.Box 68601 Bryanston 2021 Tel +27 11 465 99 59 Fax +27 11 465 69 53

SINGAPORE

Draeger Safety Asia Pte Ltd 67 Ayer Rajah Crescent #06-03 Singapore 139950 Tel +65 68 72 92 88 Fax +65 65 12 19 08

SPAIN

Draeger Safety Hispania S.A. Calle Xaudaró 5 28034 Madrid Tel +34 91 728 34 00 Fax +34 91 729 48 99

UNITED KINGDOM

Draeger Safety UK Ltd.
Blyth Riverside Business Park
Blyth, Northumberland
NE24 4RG
Tel +44 1670 352-891
Fax +44 1670 356-266

USA

Draeger Safety, Inc. 101 Technology Drive Pittsburgh, PA 15275 Tel +1 412 787 83 83 Fax +1 412 787 22 07

