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Abstract The act and experience of programming is, at its heart, a fundamentally human activity that results
in the production of artifacts. When considering programming, therefore, it would be a glaring omission to not
involve people who specialize in studying artifacts and the human activity that yields them: archaeologists.

Here we consider this with respect to computer games. We draw from the nascent archaeological subarea
of archaeogaming to carry out a digital excavation of the code and techniques used in the implementation of
Entombed, an Atari 2600 game released in 1982 by US Games. The player in this game is, appropriately, an
archaeologist who must make their way through a zombie-infested maze. Maze generation is a fruitful area
for comparative retrogame archaeology, because a number of early games on different platforms featured
mazes, and their variety of approaches can be compared. The maze in Entombed is particularly interesting:
it is shaped in part by the extensive real-time constraints of the Atari 2600 platform, and also had to be
generated efficiently and use next to no memory. We reverse engineered key areas of the game’s code to
uncover its unusual maze-generation algorithm, which we have also built a reconstruction of, and analyzed
the mysterious table that drives it. In addition, we discovered what appears to be a 35-year-old bug in the
code, as well as direct evidence of code-reuse practices amongst game developers.

What further makes this game’s development interesting is that, in an era where video games were typically
solo projects, a total of five people were involved in various ways with Entombed. We piece together some of
the backstory of the game’s development and intoxicant-fueled design using interviews to complement our
technical work.

Finally, we contextualize this example in archaeology and lay the groundwork for a broader interdisci-
plinary discussion about programming, one that includes both computer scientists and archaeologists.
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Entombed

EJ Introduction

Donald Knuth famously characterized programming as an art through his series of
The Art of Computer Programming volumes. This is telling. Art is a creative, human
endeavor, and one that typically results in the production of (possibly ephemeral)
artifacts. When viewed in that light, it seems clear that the study of programming
overlaps with the artifact-based study of human activity: archaeology. Traditional
archaeology primarily concerns itself with past human activity, and in our examination
of programming we focus here on the recent past, and in particular the programming
of old computer games.’

Play is also a human activity, of course, and it was both natural and inevitable
that computers would be harnessed to play games. The early computers used for
games were heavily constrained in multiple dimensions: memory, CPU power, speed,
graphics, sound, storage capability. And yet, game programmers of the time cajoled
these platforms into running their creations, laying the foundations for what has
become a multi-billion-dollar industry whose products have cultural relevance.

How did these programmers accomplish their task under such constrained condi-
tions? Necessity is the mother of invention, and indeed it has been observed in many
fields that there is a link between constraint and creativity (e.g., [55]). Retrogame
programmers used many clever programming tricks to make their creations work, and
there is an opportunity to dig these out, study them, and preserve this knowledge,
essentially conducting “retrogame archaeology.”

We present this archaeology through a case study of the 1982 game Entombed, a
game where the player — an archaeologist — had to traverse a maze populated by
zombies. As described later, we used technical means to reverse engineer, analyze,
and reconstruct the maze-generation algorithm, an algorithm that had to operate
on the fly using next to no resources. We also were able to uncover a decades-old
bug and, using that, demonstrate code reuse between games. By supplementing our
technical work with interviews, we were able to learn more about the unusual design
story behind this game and development practices that would not be apparent from
the code alone.

Entombed was released for the Atari 2600 (Figure 1), a popular home game console
in the early days of the game industry. Making its debut in 1977, the Atari 2600* was
not the first home game console to appear, a distinction enjoyed by the Magnavox
Odyssey of 1972. Nor was it even the first to sport game cartridges in a modern
sense, having been beat to market by the Fairchild Channel F (1976) and the short-
lived RCA Studio II (1977). However, the Atari 2600 did have a surprisingly lengthy
lifespan: it was produced until 1992, well after its competitors’ products had eclipsed
the 2600’s capabilities. Perhaps in part due to its longevity, in part being the first

T'We use “computer games” in preference to “video games” because not all computer games
require video.

21t was originally called the Atari Video Computer System (VCS), but it is perhaps bet-
ter known under its later “Atari 2600” name, which we use throughout this paper for
consistency.
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B Figure1 The Atari 2600 (four-switch model) and one of its joysticks [3]

introduction many homes had to computers and video games [34], the Atari 2600 took
on a degree of cultural importance; Montfort and Bogost observe that ‘the generic
term for a videogame system in the early 198os was “an Atari” [32, page 4]. Its
simple one-button joystick is arguably iconic even today [32, 57], even appearing as a
(largely) positive example of industrial design [29].3 And, while not the sole cause,
the Atari 2600 can be said to have had a substantial economic impact by virtue of its
role in the 1983 North American video game crash [14].
The contributions of this paper are fivefold.
= Adding to current understanding about the art of programming, by highlighting
low-level programming techniques that are now less prominent, in the context of
an extremely constrained platform (the Atari 2600) that was in widespread use for
many years. This helps capture these techniques in the programming literature for
modern and future audiences.
= Through our case study, increasing understanding of early procedural content
generation by documenting Entombed’s maze generation algorithm which, to our
knowledge, is unique.
= Empirically demonstrating code reuse practices in early computer games through
the “signature” of a buggy pseudo-random number generator.
= Helping to develop interdisciplinary methodology across disparate disciplines for
studying software and the programming that created it. This allows a more diverse
set of people, with different methodologies, to study programming.
= Specifically, working across disciplines with an archaeologist. Archaeology is a
term easily purloined, but it is an established field older than computer science
and includes more than working with old things. As a discipline, archaeology is
well used to interpreting a wide range of evidence to understand human activity,

3 Foreshadowing Section 2, they note ‘The greatest genius of the design may very well be the
constraints it placed on game developers’ [29, page 98].
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and here we turn our attention to a digital artifact, Entombed. Already we can

see through our case study that programmers’ intention is lost, and evidence from

the people involved (something which we will unfortunately not enjoy for much
longer) is conflicting. As our software ages it will become increasingly important
that appropriate methods for its study have been established.

From a technical point of view, the Atari 2600 had design decisions and constraints
that made it an extremely challenging platform to program, which we examine in the
next section. Section 3 presents our case study, Entombed, after which we contextualize
our work (and programming more generally) with respect to archaeology in Section 4.
Finally, Sections 5 and 6 discuss related work and our conclusions, respectively.

EJ Programming the Atari 2600

In order to fully appreciate the constraints under which Atari 2600 programmers had
to work, and to understand how Entombed was shaped by those constraints, we need
to take a close look at the Atari 2600 platform from the programmer’s point of view.
We frame this discussion by beginning with a summary list of the 2600’s programming
constraints:

= Limited ROM (i.e., program) space.

= Very little RAM.

= No interrupts — polling only for I/0 and timer.

= No video framebuffer.

= Real-time requirements, necessitating cycle counting.

No operating system, BIOS, or pre-existing ROM routines.

Possible lack of technical documents, and the need to reverse engineer the platform.
We now turn to the platform’s design for context, to explain where these constraints
came from. The Atari 2600’s motherboard contained only three chips of note, a stark
contrast to some of its competition — the Fairchild Channel F, for instance, had 40
chips [16]. Since the 2600’s functionality was divided between those three chips, we
use them to structure this tour of the platform. Unless stated otherwise, information in
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this section is drawn from [60]. Figure 2 shows the 2600’s memory map* for reference
throughout this section.

2a CPU

The CPU in the Atari 2600 was the 6507, a stripped-down version of the 6502, an
8-bit processor. The 6502 and variants thereof featured prominently in that era, and
could be found powering game consoles (Atari 2600, Nintendo NES, PC Engine),
home computers (Apple II, Commodore 64, BBC Micro, and many others), and even
embedded inside peripherals (Commodore 1541 floppy disk drive). With only 28 pins
rather than the 4o pins on the 6502, the 6507 was for all intents and purposes a full
6502 internally, but sacrificed some I/O lines to compensate for the smaller package.

The change with the largest effect between the 6502 and 6507 was the reduction in
address bus lines. A full 6502 had 16 address lines for its 64 KiB address space; the
6507 exported only the low 13 lines, meaning that only 8 KiB of address space could
be uniquely distinguished from outside the 6507, and the programmer saw extensive
memory mirroring [10]. For example, the programmer would see the memory contents
located at $fooo replicated at at $dooo, $hooo, $9000, and so on, because the three
high bits of an address were unknown outside the 6507 and thus addresses could not
be precisely decoded. These address space limitations also imply that game size was
very limited, with later 2600 games transcending the 4 KiB ROM barrier only through
“bank switching” that required additional hardware in the game cartridge.

Bank switching refers to the ability to have 1 of N different memory banks potentially
available, all mapped to the same range in the address space; only one of them would
be accessible at any given time. The programmer would select a memory bank via
separate control lines [38] or, on systems like the Atari 2600 or Apple II, by accessing
memory-mapped “soft switches” [4, 10].

Another 6507 tradeoff that affected how programs were structured was the lack of
interrupt lines. Code could not be interrupt-driven, and all I/0 had to be performed
via polling.

2.2 RIOT

Some RAM was obviously required for the Atari 2600, and it was located inside an
MOS 6532 — better known as a “RIOT” chip for its amalgamation of RAM, I/0, and
Timer in one package [47]. This chip provides the entirety of the RAM on the system,
a whopping 128 bytes of it.

This meager amount of memory had programmer-visible effects when combined
with the 6507’s architecture. The first 256 bytes of the 6507’s address space, “zero
page,” was prime memory real estate: instructions referencing zero page were both
shorter and faster. The 6507’s fixed-position stack page was the second 256 bytes, as
far as the 6507 was concerned. The 2600 quietly mapped the stack into zero page,

4 For simplicity, the figure omits the memory mirroring we discuss later.
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however, meaning that the RIOT’s 128 bytes did double duty. The programmer had to
carefully balance stack usage with variable storage, as the Atari programmer’s guide
put it, ‘hoping the two never meet’ [60, page 21].

The I/0 available through the RIOT for the programmer’s polling pleasure included
two four-position joysticks, and five of the six switches on the main console could
also be polled, up to and including the switch labeled ‘game reset.” Some 1/0, like the
joystick buttons and paddle controllers, was routed instead to the final chip, the TIA.

23 TIA

The TIA, or television interface adapter, was a custom Atari chip whose primary
purpose was driving the video and audio signal of the TV that the Atari 2600 would
be plugged in to.

The mention of RAM above did not mention any RAM used for the video framebuffer,
and the reason for that was because the Atari 2600 didn’t have one. In most systems,
then and now, the programmer would conceptualize their game display in terms
of high-level objects such as the player might see, placing them in memory that
the hardware would automatically take care of rendering onscreen. Not so on the
Atari 2600. A 2600 programmer had to structure their code to render the display on
a line by line basis, and repeat that for every single video frame. The TIA’s register
values would be used to produce the output signal for any given line, but it was the
programmer’s responsibility to load those TIA registers with the correct values before
the television’s electron beam swept past, a process called ‘racing the beam’ [32].

The TIA’s design, sans framebuffer, would have made sense to hardware engineers
used to building video games using discrete logic, which involves a similar decom-
position of screen images as a repeatedly redrawn 2D grid [5]. Effectively the design
turned the Atari 2600 into a real-time system, where a failure by the programmer to
meet the video timing constraints would result in the picture rolling. The time-critical
display code in an Atari 2600 game was referred to as the “kernel,” and programmers
would typically count cycles in their assembly code to avoid overruns, leaving docu-
mentary evidence as assembly comments in the source code. Carol Shaw’s River Raid
(1982) source code, for example, is littered with sporadic running cycle count totals
in addition to comments like ‘WASTE 2 CYCLES’ [51]. Other programmers adopted a
more dynamic approach, making code changes until the picture rolled, then fixing
the problem [45].

Needless to say, the limited memory along with the video timing constraints de-
manded that programmers write 2600 games in assembly. The 6507 was relatively
slow, and there were only 76 machine cycles per [video] line’ [60, page 4]. Given that
6507 instructions all take two or more cycles, there was no room for inefficiency.

2.4 Other Design Tradeoffs and Omissions
There were other conspicuous design tradeoffs and omissions that affected Atari 2600

programmers. In the above description, there is no mention of a BIOS or a ROM of
any sort. The user of the 2600 completed the computer in a very literal way, in that
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the ROM for the machine was contained in the game cartridge the user plugged into
the unit. There was no built-in set of ROM routines for a programmer to draw upon;
even the reset vector data the 6507 first fetches upon power-up (i.e., the address the
CPU should begin execution at when reset) is located externally to the 2600.

One important omission related to where a programmer happened to be. Atari was
not in the habit of sharing technical documentation or software development Kkits
with third-party developers. In fact, Atari went so far as to sue the first publishers of
third-party Atari 2600 games [14, 27, 35]. For programmers who had worked for Atari
making 2600 games, like the four who left Atari and founded Activision [14, 27], the
lack of official technical information would not have been a problem. Other aspiring
third-party developers had to start by reverse-engineering the Atari 2600 platform,
however, like the company that produced Entombed [9].

While this whole-platform reverse engineering task seems daunting, and we do not
intend to minimize it in any way, it is fair to consider how difficult it would have been
for developers. Two-thirds of the 2600’s innards were commodity chips; data sheets
and other documentation for the RIOT and 6502 (if not the 6507 specifically) would
have been readily available. The only real mystery was the custom TIA chip, but luckily
the Rosetta Stone for understanding the TIA shipped with the Atari 2600. Code in
game cartridge ROMs was not subject to any technical protection, and dumping and
disassembling a ROM’s contents would be neither difficult nor expensive. The 1977
game Combat, specifically, was a pack-in game for the Atari 2600 and was created
to exercise the 2600’s hardware as it was developed. As Montfort and Bogost put
it, ‘Combat is practically a pure demonstration of the capabilities of the Atari VCS
[2600], showing how they were intended to be used’ [32, page 19]. Combat was
not even a large ROM image to reverse engineer, weighing in at only 2 KiB. In short,
reverse-engineering enough of the Atari 2600 to program it would appear to have
been a tractable problem: the spartan nature of the platform lended itself to revealing
its secrets.

That same simplicity did make it a challenge to program, though. It is intuitively easy
to see why, given the limited memory, the slow processor, the real-time requirements,
and the need to conceptualize and code each video frame in terms of individual lines.
The programming challenges are noted by former 2600 programmers in interviews.
John Harris said ‘The way the machine had to be programmed was so obscure and
so challenging that you had to write extremely optimal code’ [19]; Doug Neubauer
observed ‘Using a 6502 to race an electron beam across the screen is a lot harder
than having a full-screen bitmap to play with’ [18]; Warren Robinett simply stated ‘It
was pretty challenging to do any game on it’ [20]. Ultimately, the 2600’s constraints
shaped the design of the software that ran on it, like Entombed.

) Case Study: Entombed
The physical artifact of Entombed (Figure 3) is a standard Atari 2600 cartridge, with a

slightly more sculpted case than the usual Atari fare (e.g., Figure 4). But the interesting
aspects lie inside, in the digital artifact.
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B Figure3 Entombed, the physical artifact, front view (left) and side angle showing beveled
case (right)

B Figure 4 Atari 2600 Combat cartridge for physical comparison

Before embarking on this case study of Entombed, it would be a reasonable question
to ask why we chose this particular artifact over all other Atari 2600 games. The first
author teaches a senior computer science course on retrogame implementation [8],
and he was looking for a game that students could use for a reverse engineering
assignment. The game had to have interesting features to study, yet at the same time
be relatively unknown, because a more popular entry in the Atari 2600 canon would
be likely to have a publicly available disassembly for students to find. The choice of
Entombed was thus largely serendipitous. Given that archaeological finds can similarly
rely on chance, this method of selecting Entombed seems apropos. Indeed, we would
argue that the fact that there were so many interesting features within the 4 KiB ROM
image of this one arbitrarily-selected game suggests that there may be many more
things to find in other artifacts from the era.

Figure 5 shows what Entombed looked like. A randomly-generated maze gradually
scrolled up the screen; if the “archaeologist” player character was forced to the top of
the screen, or touched a zombie (not shown), the player would lose a life.

The maze shown in the figure already reveals some of the Atari 2600’s architecture.
The maze walls are represented by the TIA’s 20 bits of ‘playfield’ [60] per line, which
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B Figure5 Entombed game screen, highlighting design and gameplay aspects

describe half the screen; the playfield can be either duplicated or reflected. The latter
is done for Entombed, yielding the vertical symmetry of the maze. Another notable
feature of the maze captured here is that it is unsolvable: there is no path by which
the player character can move to the bottom of the screen. This would spell certain
doom for the player, were it not for the free-floating rectangle in the upper right
part of the screen. This is a “make-break,” and acquiring these allows the player to
make a new piece of maze wall or, more importantly, remove an existing piece of
wall. Wall pieces added and removed take effect on both halves of the screen, again
reflecting the symmetry. The fact that make-breaks are needed speaks to the algorithm
used for maze generation, which we examine in Section 3.2. But first, we explain the
methodology used in this work.

3.1 Methodology

We began by manually reverse-engineering the relevant parts of Entombed’s binary
code, via both static and dynamic analysis using the Stella Atari 2600 emulator (version
3.9.3 on MacOS X for the initial analysis, and more recently Stella 4.7.1 on Linux
along with MAME/MESS o0.191). Analysis of binary code without the involvement of
the code’s author has a long tradition in computer security (i.e., analyzing malicious
code), up to and including analyzing its bugs; Spafford’s analysis of the Internet
Worm is a notable early example [53]. The correctness of our analysis is verified
using reconstructions and objective comparison between our reconstructions and the
real game, as detailed in Appendices B and C. We focused on the maze (and the
pseudo-random number generator it relies upon) as the dominant, distinctive feature
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of Entombed, and additionally that permits comparison with those types of algorithms
in games published contemporaneously [10].

In our setting, we can view reverse engineering as a type of archaeology, a means
to discover if a digital artifact has interesting implementation features to study, and as
critical background preparation for fact-checking or formal interviews with developers.
It is not necessarily the case that developers retain source code that would avoid
reverse engineering, either. In our experience, source code for early games is frequently
lost or, if extant, may be legally encumbered or otherwise unobtainable, and for all
these reasons we start with the binary code.

The mention of legal encumberment correctly suggests that there are copyright
considerations when doing our research. Our work falls under research and education
fair dealing exceptions (similar to fair use in the United States) of the Copyright Act
of Canada [37]. However, this would not extend to distribution, meaning that it is
not possible to share an archived binary image of Entombed or its full disassembly.
Even linking to infringing material can run afoul of the law [48], and in any event
there are multiple locations for game images. Instead, as games’ binary images are
quickly found with Internet search engines, we supply a means for ascertaining if a
found image matches the one we used: a 4 KiB Entombed image with MD5 checksum
6b683be69fg2958abeoe2agg45157ads.

After reverse engineering, we turned to interviews to augment our understanding
of Entombed’s development. From this era, there is typically a very small set of people
— frequently one person — responsible for game development, making the choice
of interview subjects obvious. (We discuss the interview results and development
practices further in Section 3.4.) However, our experience indicates that this small set
of interview subjects can be hard to locate, unresponsive, or unfortunately deceased.
We were lucky, in Entombed’s case, to find two existing interviews, and we were able
to contact Entombed’s programmer for our own additional interview.>

Our oral history interview® was conducted as a semi-structured interview. We asked
questions via email, making transcription accuracy not an issue, and the interview
subject had the opportunity to review the final interview transcript prior to publication
in our institutional repository [9]. Given the brevity and specificity of the interviews,
it was trivial to identify the portions pertaining to the maze algorithm and the pseudo-
random number generator, and consequently we have treated the interviews as source
documents and incorporated all that material into Section 3.4.

There are cautions with respect to oral histories and accuracy [43], like a tendency
to exaggerate one’s contribution or importance. We argue that these cautions extend,
in the case of programmers asked about long-past code, to technical details. Simply too
much time has elapsed to recall reliable technical information, and we see evidence of
vague and conflicting memories in Section 3.4. All is not lost, though, because many
hidden truths that a programmer left behind reside in the code.

5 Interview conducted with ethics approval from the University of Calgary Conjoint Faculties
Research Ethics Board, File REB16-1235.
® See [43] for a good general oral history introduction.
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B Figure 6 Maze wall context used to select a new bit

3.2 Maze

As mentioned, we reverse engineered the somewhat convoluted assembly code for the
maze generation algorithm used by Entombed. The maze is dynamically generated
row by row:7 as the maze scrolls up, bits are produced representing the newly revealed
row at the bottom of the screen. Due to vertical symmetry, at most the 20 bits of the
playfield need be generated, but in fact it is much less than that.

The 20 bits of the TIA’s playfield are split across three TIA registers, one of which
holds the leftmost four bits of the playfield [60]. Entombed’s maze always has a wall
on the left-hand (and through reflection, right-hand) side that uses exactly four bits.
The maze generation thus is left to produce 16 bits. However, each playfield bit of the
maze is duplicated in Entombed, meaning the generation algorithm only has to select
eight bits to represent a new maze row.

The way each bit is chosen is shown in Figure 6. For each bit X that represents a
piece of maze wall, from left to right, five bits of wall context are extracted, the two
immediately to the left of X (a and b), and the three above X (c, d, and e). Initially,
a...c would be located in the omnipresent left-hand wall, and the algorithm initializes
them to a =1,b =0, and c to a bit drawn from the pseudo-random number generator
we examine in the next section. For the eighth bit generated, e would be across the
line of vertical symmetry and provide the same information as d, and e is instead set
to another pseudo-random bit for this final step.

The remaining question is exactly how a...e are used to choose X, and there is
no completely satisfactory answer. The five wall context bits index into a mysterious
32-byte lookup table, from which is drawn one of three results for X: wall, no wall, or
a pseudo-random decision. The mapping is shown in Table 1, and no obvious patterns
in the mapping are apparent. To increase our confidence, we represented the table
as a Karnaugh map (choosing a number of different representations for the trinary
value of X), but the algebraic solutions did not reveal any simple patterns of note. Our
conclusion is that the table values were manually chosen, or manually tuned, by the
maze algorithm designer.

As an example, Figure 7 steps through the algorithm, illustrating how the last two
maze rows in Figure 5 may be produced. Notice how the maze wall context “window”
shown in Figure 6 slides from left to right one bit at a time as each maze row is
generated.

Following each maze row’s generation, Entombed performs what we refer to as
postprocessing: looking for one of two patterns in recently-produced maze rows and,

7 To avoid ambiguity, we refer to maze rows to distinguish them from screen lines. Each maze
row is represented by multiple lines onscreen (see Figure 5).
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finding either pattern, making an adjustment to the last-generated row. The first
pattern is encountered extremely rarely in our testing,® where the last 11 maze rows
all have a o in the leftmost column. The second pattern is more frequent but more
difficult to describe, where the last 7 bits in the rightmost column (i.e., the center of
the maze) all match the ninth last rightmost bit. Because the eighth bit is skipped, the
second pattern actually catches four different combinations of the last 9 rightmost
bits. In any case, finding either pattern causes all or part of the last-generated maze
row to be reset to o, effectively breaking out of the detected pattern.

Ad hoc postprocessing aside, there were a number of maze-based games in the
early days of computer games, and it is instructive to undertake some comparative
archaeology. Here we consider the maze algorithms used in Amazing Maze (1978),
3D Labyrinth (1982), and Rogue (1993)? [10]. Including Entombed’s maze algorithm in
the mix, the common theme is a lack of commonality: there is a diversity of algorithms
even amongst those that have solvable mazes. It would be easy to dismiss this negative
result out of hand, but the same thing is seen even in different areas of retrogame
implementation, areas as seemingly mundane as text and line representations [10].
There seems to be a great deal of programmer — of human - creativity buried in the
code of retrogames, underscoring our earlier point that these are a rich set of artifacts
to examine.

Finally, we built a reconstruction of the maze-generation algorithm in Python to test
our reverse-engineered result. A sample of its output is included in Appendix A, and
the Python code is in Appendix B along with details of how we verified its correctness.
Normally an experimental reconstruction would be compared with the original to
ensure perfect fidelity [11], but in Entombed this is somewhat challenging. The pseudo-
random number generator that the maze algorithm uses is shared with other elements
of the game that need random numbers, and the random number generator itself has
some quirks.

3.3 Pseudo-Random Number Generator and Code Reuse

The variety of patterns shown in the maze generation relies on the pseudo-random
number generator (PRNG) in the game code. Its 6507 disassembly is shown in Listing 1,
with references to the consecutive zero page RAM locations $dd, $de, $df, and $Seo
replaced with w, X, Y, and z respectively. As the code is important to our results, and
not all readers are likely to be familiar with 6507 assembly, we will explain it in some
detail. A reconstruction in Python is provided in Appendix C along with verification
details.

A good way to understand this code is by thinking of w through z as representing
two big-endian 16-bit values, where WX acts as the last number generated by the PRNG

8 In the verification data described in Appendix B, we saw the first pattern only 10 times in
300,000 maze rows; the second pattern appeared 4324 times in 5000 mazes.
° This is a later release of Rogue; early versions did not have the mazes.
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M Listing1 Entombed’s PRNG implementation

LBCAS5:

LDA W
STA Y
LDA X
STA YA
ASL

ROL W
ASL

ROL W
CLC

ADC VA
STA X
LDA #S00
ADC W
CLC

ADC Y
STA W
LDA #3500
INC X
ADC W
STA W
RTS

(and initially, the PRNG seed), and Yz is a temporary value. The 6507 is only able to
operate on 8-bit values, and the 16-bit operations must be decomposed accordingly.
Additionally, the 6507 has a single accumulator, A, that is used extensively here; some
instructions name it explicitly (LDA, STA), others implicitly (ASL, ADC).

The load and store instructions in Lines 2-5 begin the PRNG by copying the value of
WX into Yz, leaving the least-significant byte (LSB) of WX in the accumulator. Lines 6—7
multiply WX by two, by left-shifting its in-accumulator LSB left (into the carry bit),
then rotating W left: the 6507’s rotate is a 9-bit rotation through the carry bit. The
multiplication by two is then repeated in Lines 8—9.

Lines 10-12 start the 16-bit addition Wx+YzZ by adding the LSB of wx, which is still
in the accumulator, to the original LSB value as copied to z. The 6507’s only add
instruction is an add with carry, making management of the carry bit (here, CLC to
clear the carry) important. The resulting value is finally stored out of the accumulator
back into X.

Half of the 16-bit addition is complete at this point. The most-significant byte (MSB)
of WX is computed by Lines 13-17 in two parts. First, o is added to the MSB in w,
propagating any carry from the LSB. Second, Y is added to the possibly-updated w
value in the accumulator, and then stored into W.

The last step before returning, in Lines 1821, is a 16-bit increment of WX, increment-
ing the LSB X in memory and propagating the carry through to w by adding o (and
the carry). The overall calculation is

WX=4xWX+WX+1
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which, combining terms and taking the 16-bit nature of the computation into account,
is actually

WX,,.1 = (5 x WX, +1) mod 65536,

the form of a linear congruential PRNG algorithm [28] with constants 5, 1, and 65536.
The implied modulo from the 16-bit wordsize is suboptimal in terms of the PRNG’s
generated numbers [28], but is not uncommon to find in retrogame code [10].

The reason why it was necessary to go into depth on the PRNG code was because of
what happens at the very end: it has a bug. Lines 18-21 should increment wX by one,
and they would if the INCrement instruction modified the carry bit. If that were the
case, the LSB X would be incremented, and the carry would be correctly propagated to
the MSB w with the add of o. Instead, the carry is incorrectly propagated with a value
from earlier in the PRNG. According to our tests, the resulting PRNG is hampered
in that a non-buggy version of this PRNG would have a full period from all starting
seed values, whereas the maximum number of distinct values we saw with the buggy
version from any seed was 1200.™ Still, in a game environment where a “good enough”
PRNG is sufficient, this is not a show-stopping problem. An Entombed player would
definitely not notice any effects from the bug, as a plausible pseudo-random sequence
is still generated. Would a programmer notice the bug? We suspect not: the PRNG
works, and we argue that a programmer would mentally abstract away that routine
once written. Our tests showed that 50.3% of generated values corresponded to the
non-buggy values, and in each case where they failed to coincide, the high byte (W) is
only off by one.

What this bug does give us, however, is a very distinctive signature for this PRNG
code. From an archaeological standpoint, we can use this to identify programmers’
code reuse activity. We downloaded a corpus of 533 Atari 2600 game ROM images
from AtariAge [6] and searched for the PRNG code in all the ROMs. The exact zero
page addresses of W, X, Y, and Z were treated as wildcards in case the variables moved
around in different games.

Besides Entombed, we found this code in five other games. Three (M.A.D., Raft
Rider, Towering Inferno) were also published by US Games; another, Q*bert, has
people credited that intersect with the US Games games [7]; the last one, Angriff
der Luftflotten, has almost no available information to work with, but appears to be
a minor variant of M.A.D. Regardless, the common buggy PRNG gives very strong
evidence of code reuse. It seems clear that the PRNG code either originated elsewhere
and was copied into Entombed, or was copied from Entombed to other games. Who
might have done this?

3.4 Design and Development

Early console game programmers were frequently uncredited for their work [14,
27]. Even a cursory examination of early games and their packaging is sufficient to

We chose this as a more meaningful metric rather than the period because the buggy PRNG
would rarely return to the seed value.
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B Table2 Entombed development credits

Source Role Credited

Newell interview [54] Maze algorithm Duncan Muirhead, Paul Allen Newell

Programming Steve Sidley
Game design Tom Sloper
Sloper interview [39]  Programming Steve Sidley
Game design Tom Sloper

Original design  Jeff Corsiglia

Sidley interview [9] Programming Steve Sidley
Original design  Jeff Corsiglia, Tom Sloper
Maze algorithm not explicitly named

verify the lack of programmer credit, and it was the motivating factor behind Warren
Robinett’s famous Easter egg in Adventure (1980) for the Atari 2600 [44, 41:19]. So
instead, we begin the search for authorship in non-primary sources. Wikipedia, circa
2016, claimed that Entombed was ‘written by Tom Sloper and Jeff Corsiglia’ [58],
information also found on the game’s MobyGames entry [31]. Most recently, the
Wikipedia entry has been altered to read ‘designed by Tom Sloper and programmed
by Paul Allen Newell’ [59]. As it turns out, all are wrong in whole or part.

Still, as a starting point this proved to be helpful. We found the transcript of an
interview with Tom Sloper [39], and armed with information from there found another
interview with Paul Allen Newell [54]. Both sources agreed that the programmer
of Entombed was a Steve Sidley, whom we were able to locate and interview [9].
Combining all these sources together reveals the authorship information in Table 2.
The maze algorithm came first (Muirhead and Newell), a proof of concept of the
maze generator was programmed for the 2600 (Newell), a game was designed from
it (Corsiglia, then Sloper), and the game was written (Sidley).

The early days of game programming were the age of the so-called “bedroom
programmer,” a solo developer; this is reflected in numerous oral histories and what
credits are known for early games. This was the case even inside relatively large
companies, as Warren Robinett recollected from his time at Atari [20]: ‘Each 2600
game was designed entirely by one person.’ It is therefore notable that at a time when
a usual scenario would be one programmer, one game, that five different people were
involved in one way or another with the development of Entombed.

We also learn more about the development and evolution of the maze algorithm. As
Newell tells it [54], ‘Duncan and I went out for a beer and ended up coming up with
this “problem” of wondering whether one could generate an endless maze that always
had a solution’ and that ‘We worked out the algorithm and [...] I spent a weekend
coding something up.’ The assertion that the generated maze was solvable is at odds
with the final maze in Entombed, of course, as Figure 5 attested to. The original maze
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algorithm apparently had further properties: for instance, Newell went on to say that
the algorithm was parameterized to give an adjustable level of difficulty.™
Sidley’s recollection of the algorithm is slightly more colorful [9]:

‘The basic maze generating routine had been partially written by a stoner
who had left. I contacted him to try and understand what the maze generating
algorithm did. He told me it came upon him when he was drunk and whacked
out of his brain, he coded it up in assembly overnight before he passed out, but
now could not for the life of him remember how the algorithm worked.’

Sidley also observed that the maze code was uncommented, and when asked about
the 32-byte table said ‘It was a mystery to me too, I couldn’t unscramble it. I just used
it to generate the new row at the bottom of the screen.’

Regardless of which version of events is followed, it seems fair to say that some level
of intoxication was involved in the development of the maze algorithm.™ Newell’s
claim that the original maze was solvable is certainly possible: Eller’s algorithm, for
instance, generates solvable mazes a row at a time [12]. (And, coincidentally, was
invented in 1982 [12], the year Entombed was released.)

Sidley’s interview [9] also gives glimpses of the development environment and
practices. Their need to reverse engineer the Atari 2600 in lieu of documentation
was already mentioned, but it is striking that Sidley — despite having completed a
Master’s degree in computer science from UCLA just prior — had never programmed
in assembly language before. This is corroborated by Newell, who mentioned giving
Sidley a 6502 primer [54]. Sidley did not explicitly remember any code reuse between
games, although recalled there were some PRNGs around the company. He did seem
to harbor some nostalgia for that time [9]: ‘Those of us who programmed 6502 for
those games have a special bond. Like climbing Everest without oxygen.’

It is worth mentioning that we did not ask Sidley about the PRNG bug. In our
view, three things weighed against it: the difficulty of spotting the bug; the ease with
which the bug could have been fixed had it been known; the unreliability of memory
regarding long-past technical minutia.

In Context: Archaeology and Archaeogaming

To understand how programming and games fit into the field of archaeology, and
to separate it from inaccurate Hollywood depictions, we first need to step back and
examine what archaeology is.

Broadly speaking, archaeology can be defined as ‘the study of the ancient and recent
human past through material remains’ [49]. The material remains used within archae-
ology can include physical artifacts, features, architecture, and landscapes as well as
biological and ecological materials [42]. Archaeology is not limited to the physical:
there is also significant scope for blending additional disciplines such as heritage or

I'We have made several attempts to contact Newell for more information, to no avail.
> Perhaps this is the reason why the code seemed convoluted, as we mentioned in Section 3.2.
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history to explore intangible elements, textual material, experimental reconstruction,
and consideration of ephemeral entities such as experience and emotion.

Archaeology’s focus on material remains separates it from closely related fields such
as history, in which the analysis of textual documents and records are the primary
methods used to unpick the past. The use of material remains allows archaeologists to
explore data that either could not be captured via text or otherwise was suppressed,
omitted, or not deemed necessary to be captured in written forms. In other words,
‘[a]rchaeology shows us things we are not normally meant to see’ [36, page 39].

At its core, archaeology is concerned with what things are, when they are from,
what they functioned as, how they were made, the impact that they had on both
individual humans and wider societies, as well as the impact that humans had on
these things. In short, it is a discipline that is concerned with identifying and under-
standing the intertwined relationship between ‘things’ and the human ways of life
that include them [23]. Here we have taken a blended approach, delving deeply into
the archaeology of Entombed through material analysis and the excavation of code,
using interviews to contextualize and explore these findings in greater detail. This
section places our work in an archaeological framework, and makes a case for the
value of this approach for exploring and understanding computer games.

Computer games, such as Entombed, are an example of material culture from the
recent human past — physical and digital artifacts born from human interactions with
code, art, audio, and industrial design which go on to have additional lives in the
archaeological record through play and discard [13]. As a type of material culture,
it stands to reason that computer games can be examined and understood through
archaeological lenses. Indeed, several computer game artifacts have been found in the
physical archaeological record, such as the E.T. cartridges excavated in Alamogordo,
New Mexico [41]. In cases of physical excavation, the traditional archaeological toolkit
of trowels and shovels has proven effective. However, when faced with the question
of how to excavate and understand the construction and operation of computer
games under the hood, the traditional archaeological toolkit faces some significant
challenges; archaeogaming is an emerging branch of the archaeological discipline
which is dedicated to exploring such challenges.

Archaeogaming has been defined as ‘the archaeology both in and of digital games’ [40,
page 2], a field of study that ranges from exploring representations of archaeology
within a game to excavating code, and even creating games to explore archaeological
methods and theories. At the core of archaeogaming is the idea that computer games
‘provide landscapes and objects that are productive for archaeological investigations of
digital materiality’ [33, page 9], a vastly important area of study given the commercial
and social impact that computer games have had on recent human past and present.

In analyzing the visual and narrative aspects of Entombed via archaeogaming,
we find tenuous links to archaeology: the player character is described as being an
archaeologist attempting to traverse a zombie-infested maze. The second author’s
experience as an archaeologist, as well as extended literature on the topic of archae-
ology, would indicate that this representation is inaccurate, though potentially has a
popular culture basis in the adventure-filled fictional literature spawned by the grand
stories of the antiquitarian era. However, as we shift our archaeogaming approach
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away from the rendered aspects, to what is happening under the hood of Entombed,
the archaeogaming approach revealed information beyond what could be observed in
textual documents or surface readings of the game through play.

Material culture, including computer games, is crafted through human interaction
with a medium. Through this interaction, the constraints of the medium have a hand
in shaping the potential space of what can be made. In traditional archaeology, for
example, the composition and properties of different rocks afforded the flintknapper™
certain opportunities and precluded the production of other types of stone tools.
Through archaeological observation and engagement, we can come to understand the
role that physical mediums have on shaping production and human interaction. In
analyzing computer games archaeologically, we put aside microscopes and chemical
composition testing in favor of design schematics and engineering approaches. As
presented in Section 2, the Atari 2600 had a number of physical, intrinsic constraints
which shaped the potential space of Entombed through the affordances of how code
could be constructed and executed.

In addition to exploration of the medium, an archaeological approach is interested
in exploring how something was made, with what, and by whom. The marks of human
activity on a medium can be found, for example, in the tool marks or impressions a
potter leaves in their wares. These physical tool marks and impressions are a kind
of signature that can be analyzed through scientific method, comparison to existing
specimens, and archaeological interpretation. The analysis of these signatures can tell
us a lot about the tools used in construction, the person or peoples involved in creating
them, as well as the conditions and broader society that frame their construction.
Given that programming is a human activity, it stands to reason that by excavating
and analyzing code we can find similar marks that provide clues not only as to how it
was made but also who made it.

Often in archaeology we find surprises, differences between what we expect to find
and the information that we subsequently uncover and interpret [26]. In the case of
Entombed, analysis of the code revealed abnormalities that had been replicated across
other games, a kind of “maker’s mark” that went on to have wider cultural significance
through its replication. Such replication would traditionally represent a single maker
(or group of makers working under the same approach) implementing the same
process. While this may still be the case with Entombed, the programmer’s medium
allows for instant and perfect duplication, meaning that the evidence of the maker’s
mark can be transferred identically across iterations. This represents an interesting
set of challenges for archaeology. Traditional archaeological methods such as seriation
and dating can help unravel the temporal sequence of these marks; however, further
investigation into their meaning and context requires the augmentation of archaeology
through computer science, anthropology, or history. Given the age of computer games,
we are in the fortunate position of being able to interview and interact with the
creators, a situation that many Roman or paleolithic archaeologists wish they were in.

3 A flintknapper is the technical term for a person who creates stone tools.
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In this paper, the fragments of human activity, manifested in code, posed questions
of authorship and process that otherwise would have been hidden from sight. Then,
comparison across other Atari 2600 games showed a wider societal framework of
reuse, and through augmenting these archaeological approaches with interviews we
were able to generate layers of meaning around these entities. These approaches
provided valuable - though at times conflicting — information, a reminder that human
memory can be fallible, written history incomplete, and that material remains can
only ever capture part of the story.

Computer games are a type of material culture [40], emergent from the human
activities of programming and design. Using archaeological approaches allows for the
data and stories that result from the medium and production process to be explored
meaningfully, allowing unseen elements to be found, explored and given meaning.
However, the position of computer games in straddling the physical (hardware) and the
digital (software) poses some interesting challenges to the archaeological discipline,
and necessitates the development of new toolkits and approaches to facilitate effective
archaeological exploration. As demonstrated here, archaeology provides an effective
framework for exploring the complex entanglement between computer games as
material culture and the human activities involved in creation of, interaction with,
and disposal of things; however, for archaeological approaches to be meaningful in
this context, collaboration with computer science approaches is required.

H Related Work

“Archaeology” is a term that is compelling, thanks to pop-culture depictions of archae-
ologists, and also one that is easy to co-opt or at least use metaphorically. In terms
of software, a typical definition is that software archaeology is the understanding
of legacy code [24, 46], and consequently the archaeology label rears its head oc-
casionally in software engineering research. For instance, the 2010 ACM/IEEE ICSE
conference had three papers presented in a ‘software archaeology’ session [25]. What
is unclear about the work done under this moniker is how often an actual archaeologist
is involved; archaeology is, of course, a discipline much older than computer science,
and we argue that it is a natural opportunity for interdisciplinary work as we have
begun here.

Further, in computer science, a general solution is often seen as better or more
elegant than a specific one. While we are aware that the arguments we make and
the techniques we use here could be construed as a case for software archaeology in
general, we make the somewhat counterintuitive claim that a specific focus on game
archaeology is advantageous. To explain why, we need to step back and examine the
landscape of allied areas of study.

As artifacts with cultural relevance, games have been subject to organized academic
study in the humanities for almost two decades; Aarseth claims 2001 as ‘Year One’ of
the field of game studies [1]. They are not alone: there is active work in game history
(e.g., [30]), and an entire area called “platform studies” dedicated to ‘the investigation
of underlying computing systems and how they enable, constrain, shape, and support
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the creative work that is done on them’ [32, page vii] (which, despite the general
description, over half the books on the topic at present are game platforms). In other
words, there is already considerable ongoing research and expertise to draw upon by
virtue of staying within the realm of computer games, not to mention narrowing the
otherwise dizzying range of artifacts that might be chosen to study.

Where existing work on games can fall short is in technical depth and rigor, and
even a deliberate exclusion of technical methods. For example, one book touting itself
as ‘a comprehensive introduction to the field of game studies’ [15] does not even
mention studying game code as a type of analysis [15, page 11]. (Others are not quite
as exclusionary: Fernandez-Vara notes that a game’s ‘technological context’ may be of
import, with reference to platform studies [17].) One might imagine that computer
history, another possible allied field, would be immune to this problem, and indeed
there are attempts to capture technical history, such as the intermittent History of
Programming Languages conferences [2]. But, as Haigh notes, ‘the technical history
of computer science is greatly understudied’ [21, page 43].

An all-technical approach to studying games with a heavy computer science bias is
certainly possible. Retrogame archaeology was previously defined as ‘understand[ing]
the tools, techniques, and technology used in old games’ implementation [...] and
placing them in a broader, modern technical context’ [10, page 206]. However, this
myopic technical view omits the human element which is needed to fully understand
the context of development, and is something added through an interdisciplinary
approach involving archaeologists.

Specific to maze generation algorithms, they fall under the broader umbrella of
procedural content generation (PCG). While there are a number of treatments of
PCG [22, 50, 52, 56], they tend to focus on recent developments rather than past
techniques. The only work we are aware of examining historical PCG in technical
detail is our own [10], and Entombed’s unusual (and possibly unique) algorithm adds
to that body of knowledge.

I3 conclusion

Computer games are a not just a technical product; they are a form of material
culture which can be examined through archaeological lenses. Here, we swapped the
traditional archaeological tools of shovels and trowels for digital counterparts, drilling
down into the material remains of Entombed’s code to expose artifacts of the human
process of programming. Comparisons to other maze-based games revealed a diversity
of approaches to maze generation, a finding which highlights the uniqueness of these
artifacts as well as the human creativity involved in the design and programming of
computer games. Additional comparisons to a corpus of Atari 2600 games revealed a
practice of code reuse, a finding which touched upon the wider cultural landscape of
computer game creation during this era.

As artifacts of the recent past, computer games also offer archaeologists the chance
to augment, compare, and contrast material culture with interviews and history. Here,
this practice provided significant insights as well as affirming a constant struggle

4:22



John Aycock and Tara Copplestone

between anthropology, archaeology, and history: that humans, material remains, and
written texts can all tell very different stories.

Finally, the position of computer games in straddling the physical (hardware)
and the digital (software) poses a set of domain-specific challenges to archaeology
that archaeogaming seeks to untangle and, as this paper demonstrates, for which
collaboration with computer science may prove particularly fruitful.

The limitation of this work is that the methodology across computer science and
archaeology is not yet as fully and deeply integrated as it will become in future: this
is only the start of an interdisciplinary discussion. Through our case study, we are
beginning to see how the technical study of programming artifacts can be enhanced
though archaeological, human context and interpretation; in the other direction, the
technical ability to understand and reverse engineer code is of benefit to archaeolo-
gists coming to terms with an increasing glut of contemporary digital artifacts. The
interdisciplinary archaeology-computer science combination sets the stage for novel
approaches to study programming and code, in ways that are contextual to the people
who produced it, and appropriate for challenges posed by aging software.
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IE] Maze Algorithm Reconstruction and Verification

Listing 2 shows our Python reconstruction of Entombed’s maze-generation algorithm.

M Listing2 Python reconstruction of Entombed’s maze-generation algorithm

import random

def getrandombit() : return random.randint(o, 1)
def leftrandombit(): return getrandombit()
def rightrandombit(): return getrandombit()
def midrandombit() : return getrandombit()
def generated(x): pass
def prrow(seed):
PF12 = # "PF" == 2600's playfield
for i in range(8):
if seed & 1:
PF12 = + PF12
else:
PF12 = + PF12
seed >>= 1
PFo12 = + PF12
print PFo12, PFo12[::—1]
# the mystery table from Entombed
MAGIC = {
(oboo, obooo): 1,
(oboo, oboo1) 1,
(oboo, obo10): 1,
(oboo, obo11): None, # None == random bit
(oboo, ob100): o,
(oboo, ob101) o,
(oboo, ob110): None,
(oboo, ob111) None,
(obo1, obooo): 1,
(obo1, oboo1) 1,
(obo1, obo10): 1,
(obo1, obo11): 1,
(obo1, ob100): None,
(obo1, ob101): o,
(obo1, ob110) o,
(obo1, ob111) o,
(ob1o, obooo): 1,
(ob1o, oboo1): 1,
(ob1o, obo10): 1,
(ob1o, obo11): None,
(ob1o, ob100): o,
(ob10o, ob101): o,
(ob1o, ob110): o,
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(ob1o, ob111): o,

(ob11, obooo):
(ob11, oboo1)
(ob11, obo10):
(ob11, obo11): None,
(ob11, ob100):
(ob11, ob101)
(ob11, ob110):
(ob11, ob111)

}

def rowgen(lastrows):
# prepend and append random bits to last row
lastrowpadded = leftrandombit ()
lastrowpadded <<= 8
lastrowpadded [= lastrows[—1]
lastrowpadded <<= 1
lastrowpadded |= rightrandombit ()

# last two bits generated in current row, initial value = 10
lasttwo = ob1o

newrow = O

# iterate from 7...0, inclusive
for i in range(7, —1, —1):
threeabove = (lastrowpadded >> i) & ob111

newbit = MAGIC[ lasttwo, threeabove]
if newbit is None:

newbit = midrandombit()
newrow = (newrow << 1) | newbit

lasttwo = ( (lasttwo << 1) | newbit ) & ob11

# hook for verification
generated (newrow)

# now do postprocessing
lastrows .append(newrow)
lastrows = lastrows[—11:]

# postprocessing condition 1
history = [ b & oxfo for b in lastrows ]
if o not in history:
if sum( [ b & ox80 for b in history ] ) == o:
lastrows[—1] = o

# postprocessing condition 2
history = [ b & oxf for b in lastrows[—7:] 1]
if o not in history:

comparator = o
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if len(lastrows) >= 9:
comparator = lastrows[—9]

if sum( [ b&1 for b in history 1 ) == (comparator&1)*7:
lastrows[—1] &= oxfo

prrow(lastrows[—1])
return lastrows

def mazegen():
lastrows = [ o ]
while True:
lastrows = rowgen(lastrows)

if __name__ ==
mazegen ()

For the reasons explained in Section 3.2, it is difficult to verify the reconstruction’s
accuracy due to PRNG values being used (and therefore perturbed) elsewhere in the
game. However, we were able to verify Listing 2 in the following manner.

We began by creating a patched version of the Entombed binary, with three changes
applied, as shown in the table below. These patches keep the player moving contin-
uously downwards without colliding with maze walls or zombies, permitting us to
gather maze data from Entombed for an unending number of mazes.

Address Original Value =~ New Value = Reason

Sbods $20$18 $ba  $ea Sea Sea Disable player-zombie collisions
$bhs9a $01 sfe Disable player-playfield collisions
Shéas Sho $90 Force player movement downward

We then ran the patched image in MAME (MESS) o.191 as follows; maze.script is a
debugger script (Listing 3) that instruments the patched binary to capture in-game
maze generation data.

mess64 —debug —debugscript maze.script —log —window a2600 —cart Entombed
— —patched. bin

The instrumentation captures, in particular, the PRNG bit values that Entombed uses
while generating the maze, as well as the generated result for each maze row. If our
algorithm reconstruction, when fed those same PRNG bits, produces the same maze
rows (without any PRNG bits left over), then our reconstruction matches the original.
We compare the generated maze rows prior to the maze algorithm’s postprocessing,
because Entombed’s postprocessing step actually works directly on the playfield
register data, making direct comparison between postprocessed values not possible.
However, we do this without loss of generality, as any maze modifications due to
postprocessing affect maze row values in subsequent maze rows, which we do verify.

B Listing3 Maze instrumentation script

bpset boa1,1,{ logerror , b@dd, b@de; g }
bpset bsbg,1,{ logerror i g}
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bpset bs27,1,{ logerror i g}

bpset bs9s,1,{ logerror i g}
bpset bzad,1,{ logerror i g}
bpset bs46s4,1,{ logerror , b@87; g }
bpset bss7,1,{ logerror , P&1; g }
bpset bs61,1,{ logerror , P&1; g }
bpset bsee,1,{ logerror , P&1; g }

g

We captured five logs using MAME, each with 1000 mazes generated (300,000
maze rows in total, since each maze has 60 rows). Using a test harness for automated
comparison, we have verified that our algorithm reconstruction matches the game
output exactly. We have additionally verified that both postprocessing cases were seen
in the logs, and that all entries in the “mystery table” were used.

PRNG Reconstruction and Verification

Listing 4 shows Python code that reconstructs the output from Entombed’s PRNG.
Its overall structure can be understood in terms of the linear congruential generator
equation given earlier: the multiplication by 5 (Line 9), and the addition of 1 (Line 16).
However, the bug in Entombed’s PRNG complicates matters in practice, and in partic-
ular the calculation of an adjustment of the high byte (Lines 13-14) is deeply reliant
on the original assembly code.

M Listing 4 Python reconstruction of Entombed’s PRNG

def byte(x): return x & oxff
def lsb(x): return byte(x)
def msb(x): return byte(x >> 8)
def bito(x): return (x >> 8) & 1

def entombedPRNG(seed):
prng = seed

prng = prng * 5
prngH = msb(prng)
if prng > 65535:
# "cbit" refers to the 6507's carry bit
cbit = bitg( byte(s * Isb(seed)) + Ilsb(seed) )
cbit bitg ( byte(msb(seed << 2) + chit) + msh(seed) )
prngH = byte( prngH + cbit )
prnglL = byte( Isb(prng) + 1 )
prng = (prngH << 8) + prnglL

return prng

if __name__ == :
for s in range(256):
seed = (s << 8) | s
for i in range(65536):
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seed = entombedPRNG(seed)
print % seed

When the code in Listing 4 is executed as a program (as opposed to being imported
as a module), it cycles through all possible seed values and generates the maximum
possible amount of pseudo-random numbers for each seed. Note that Entombed’s
code duplicates a single byte value in both high and low bytes of the initial 16-bit seed,
meaning that 256 initial seed values do in fact cover the entire range of initial seeds.

To verify correctness of the resulting output, we ran Entombed in MAME (MESS)
0.191 as follows, where script is given in Listing 5.

mess64 —debug —debugscript script —log —window a2600 —cart Entombed. bin
The debugger script cajoles the emulator into repeatedly running Entombed’s PRNG
code through the same sequence as the above Python code, logging each generated

value for later comparison. For reference, $bcas is the entry point of the PRNG, and
$bccg is the PRNG’s RTS instruction.

M Listing5 PRNG verification script

bpset bcco,temp1 < 10000,{ logerror , b@dd, b@de; temp1++;
< pc=bcas; g }
bpset bccy,temp1 >= 10000 && tempo < ff ,{ ++tempo; printf , tempo;

< b@dd=tempo; b@de=tempo; temp1=0; pc=bcas; g }
bpset bcco,temp1 >= 10000 && tempo >= ff
tempo = temp1 = O

pc = bcas
w@dd = o
g
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