
Anybus® CompactCom™ 40
EtherCAT®

NETWORK GUIDE
SCM-1202-034 2.3 en-US ENGLISH

Important User Information
Disclaimer
The information in this document is for informational purposes only. Please inform HMS Industrial Networks of any
inaccuracies or omissions found in this document. HMS Industrial Networks disclaims any responsibility or liability
for any errors that may appear in this document.

HMS Industrial Networks reserves the right to modify its products in line with its policy of continuous product
development. The information in this document shall therefore not be construed as a commitment on the part of
HMS Industrial Networks and is subject to change without notice. HMS Industrial Networks makes no commitment
to update or keep current the information in this document.

The data, examples and illustrations found in this document are included for illustrative purposes and are only
intended to help improve understanding of the functionality and handling of the product. In view of the wide range
of possible applications of the product, and because of the many variables and requirements associated with any
particular implementation, HMS Industrial Networks cannot assume responsibility or liability for actual use based on
the data, examples or illustrations included in this document nor for any damages incurred during installation of the
product. Those responsible for the use of the product must acquire sufficient knowledge in order to ensure that the
product is used correctly in their specific application and that the application meets all performance and safety
requirements including any applicable laws, regulations, codes and standards. Further, HMS Industrial Networks will
under no circumstances assume liability or responsibility for any problems that may arise as a result from the use of
undocumented features or functional side effects found outside the documented scope of the product. The effects
caused by any direct or indirect use of such aspects of the product are undefined and may include e.g. compatibility
issues and stability issues.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Table of Contents Page

1 Preface ... 5
1.1 About this document ..5

1.2 Related Documents ..5

1.3 Document History ..5

1.4 Document Conventions ...6

1.5 Document Specific Conventions..6

1.6 Trademark Information ...8

2 About the Anybus CompactCom 40 EtherCAT... 9
2.1 General ..9

2.2 Features ... 10

3 Basic Operation ... 11
3.1 General Information ... 11

3.2 EtherCAT Implementation Details ... 15

3.3 CANopen over EtherCAT Implementation Details... 17

3.4 Data exchange... 18

3.5 File System ... 19

3.6 Communication Settings in Stand Alone Shift Register Mode ... 21

3.7 Network Reset Handling.. 22

3.8 Configured Station Alias (Node Address) .. 23

3.9 Device ID .. 23

3.10 Modular Device Profile.. 23

4 Object Dictionary (CANopen over EtherCAT) .. 24
4.1 Standard Objects ... 24

4.2 Manufacturer and Profile Specific Objects .. 29

5 Anybus Module Objects.. 35
5.1 General Information ... 35

5.2 Anybus Object (01h) ... 36

5.3 Diagnostic Object (02h) ... 37

5.4 Network Object (03h) ... 39

5.5 Network Configuration Object (04h) .. 41

5.6 Socket Interface Object (07h) ... 48

5.7 SMTP Client Object (09h)... 65

5.8 Network Ethernet Object (0Ch) .. 70

5.9 Functional Safety Module Object (11h) .. 72

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

6 Host Application Objects .. 79
6.1 General Information ... 79

6.2 Functional Safety Object (E8h).. 80

6.3 Assembly Mapping Object (EBh) ... 82

6.4 Sync Object (EEh) ... 83

6.5 EtherCAT Object (F5h) .. 85

6.6 Ethernet Host Object (F9h) .. 92

7 Web Server .. 96
7.1 General Information ... 96

7.2 Default Web Pages ... 96

7.3 Server Configuration... 98

8 FTP Server .. 102
8.1 General Information ... 102

8.2 User Accounts ... 102

8.3 Session Example .. 103

9 E-mail Client... 104
9.1 General Information ... 104

9.2 How to Send E-mail Messages .. 104

10 Server Side Include (SSI) ... 105
10.1 General Information ... 105

10.2 Include File ... 105

10.3 Command Functions... 105

10.4 Argument Functions ... 120

10.5 SSI Output Configuration ... 124

11 JSON... 125
11.1 General Information ... 125

11.2 JSON Objects... 126

11.3 Example ... 144

A Categorization of Functionality .. 145
A.1 Basic .. 145

A.2 Extended .. 145

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

B Implementation Details .. 146
B.1 SUP-bit Definition .. 146

B.2 Anybus State Machine .. 146

B.3 Application Status Register .. 147

B.4 Application Watchdog Timeout Handling.. 147

C Technical Specification.. 148
C.1 Front View .. 148

C.2 Functional Earth (FE) Requirements... 150

C.3 Power Supply .. 150

C.4 Environmental Specification... 150

C.5 EMC Compliance.. 151

D Timing & Performance .. 152
D.1 General Information ... 152

D.2 Internal Timing .. 152

E Secure HICP (Secure Host IP Configuration Protocol) ... 154
E.1 General .. 154

E.2 Operation ... 154

F Backward Compatibility.. 155
F.1 Initial Considerations .. 155

F.2 Hardware Compatibility .. 155

F.3 General Software ... 161

F.4 Network Specific — EtherCAT... 163

G Copyright Notices .. 165

This page intentionally left blank

Preface 5 (176)

1 Preface
1.1 About this document

This document is intended to provide a good understanding of the functionality offered by the
Anybus CompactCom 40 EtherCAT. The document describes the features that are specific to
Anybus CompactCom 40 EtherCAT. For general information regarding Anybus CompactCom,
consult the Anybus CompactCom design guides.

The reader of this document is expected to be familiar with high level software design and
communication systems in general. The information in this network guide should normally be
sufficient to implement a design. However if advanced EtherCAT specific functionality is to be
used, in-depth knowledge of EtherCAT networking internals and/or information from the official
EtherCAT specifications may be required. In such cases, the persons responsible for the
implementation of this product should either obtain the EtherCAT specification to gain sufficient
knowledge or limit their implementation in such a way that this is not necessary.

For additional related documentation and file downloads, please visit the support website at
www.anybus.com/support.

1.2 Related Documents
Document Author Document ID

Anybus CompactCom 40 Software Design Guide HMS HMSI-216–125

Anybus CompactCom M40 Hardware Design Guide HMS HMSI-216–126

Anybus CompactCom B40 Design Guide HMS HMSI-27-230

Anybus CompactCom Host Application Implementation Guide HMS HMSI-27-334

IEC 61158-6 IEC
CiA Draft Standard 301 v4.02 CAN in Automation

1.3 Document History
Version Date Description

1.1 2017–01–19 FM to DOX, change of document number from HMSI-27-220 to SCM-1202-027.
Version numbering restarted.
M12 connectors added
Minor corrections

1.2 2017-06-15 Added the Get_Object_Description service and attributes 20, 21, 22 to the
EtherCAT object
Added note to Modular Device Profile, Object Entries section
In Watchdog Functionality, PDI watchdog is now supported
Added information in the Object Dictionary section
Added information about the ESI generator in the ESI section
Added a reference to the Watchdog Functionality section in the ERR LED
description
Minor corrections

1.3 2017-07-11 Added appendix on backward compatibility

1.4 2017-09-29 Added safety objects (11h and E8h) and information about FSoE (Fail Safe over
EtherCAT)

1.5 2017-12-04 Updated Network Ethernet Object (0Ch)

1.6 2018-01-11 Updated trademark information

1.7 2018-01-17 Updated trademark information

1.8 2018-05-25 Updated trademark information
Updated network data types
Updated EtherCAT Host Object
Minor corrections

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

http://www.anybus.com/support

Preface 6 (176)

Version Date Description

1.9 2018-11-01 Added instance attribute #27 to EtherCAT Object (F5h)
Updated description of network reset

2.3 2019-05-27 Rebranding
Minor updates

1.4 Document Conventions
Ordered lists are used for instructions that must be carried out in sequence:

1. First do this

2. Then do this

Unordered (bulleted) lists are used for:

• Itemized information

• Instructions that can be carried out in any order

...and for action-result type instructions:

► This action...

→ leads to this result

Bold typeface indicates interactive parts such as connectors and switches on the hardware, or
menus and buttons in a graphical user interface.

Monospaced text is used to indicate program code and other
kinds of data input/output such as configuration scripts.

This is a cross-reference within this document: Document Conventions, p. 6

This is an external link (URL): www.hms-networks.com

This is additional information which may facilitate installation and/or operation.

This instruction must be followed to avoid a risk of reduced functionality and/or damage
to the equipment, or to avoid a network security risk.

Caution
This instruction must be followed to avoid a risk of personal injury.

WARNING
This instruction must be followed to avoid a risk of death or serious injury.

1.5 Document Specific Conventions
• The terms “Anybus” or “module” refers to the Anybus CompactCom module.

• The terms “host” or “host application” refer to the device that hosts the Anybus.

• Hexadecimal values are written in the format NNNNh or 0xNNNN, where NNNN is the
hexadecimal value.

• A byte always consists of 8 bits.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

http://www.hms-networks.com

Preface 7 (176)

• The terms “basic” and “extended” are used to classify objects, instances and attributes.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Preface 8 (176)

1.6 Trademark Information
Anybus® is a registered trademark of HMS Industrial Networks.

EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation
GmbH, Germany.

Safety over EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff
Automation GmbH, Germany.

All other trademarks are the property of their respective holders.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

About the Anybus CompactCom 40 EtherCAT 9 (176)

2 About the Anybus CompactCom 40 EtherCAT
2.1 General

The Anybus CompactCom 40 EtherCAT communication module provides instant EtherCAT
conformance tested connectivity via the patented Anybus CompactCom host interface. Any
device that supports this standard can take advantage of the features provided by the module,
allowing seamless network integration regardless of network type.

This product conforms to all aspects of the host interface for Anybus CompactCom 40 modules
defined in the Anybus CompactCom 40 Hardware and Software Design Guides, making it fully
interchangeable with any other device following that specification. Generally, no additional
network related software support is needed, however in order to be able to take full advantage
of advanced network specific functionality, a certain degree of dedicated software support may
be necessary.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

About the Anybus CompactCom 40 EtherCAT 10 (176)

2.2 Features
• CANopen over EtherCAT (CoE)

– Complete Access support

• Support for Modular Device Profile

• Ethernet connectors or M12 connectors

• DS301 compliant

• Galvanically isolated bus electronics

• Network Identity customization

• EMCY support

• Up to 57343 ADIs can be accessed from the network as Manufacturer Specific Objects and
Device Profile Specific Objects (generic mode).

• Up to 16383 ADIs can be accessed form the network as Manufacturer Specific Objects and
Device Profile Specific Objects (modular device profile enabled)

• Up to 1486 bytes of fast cyclic I/O in each direction

• EtherCAT Slave Interface file provided by HMS

• Support for Sync0 functionality using distributed clocks

• Ethernet over EtherCAT (EoE)

• Web server with customizable content

• FTP server

• E-mail client

• Server Side Include (SSI) functionality

• JSON functionality

• Black channel interface, offering a transparent channel supporting Fail Safe over EtherCAT
(FSoE).

• File access over EtherCAT (FoE)

• Support for process data remap from the network

• Network cycle time down to 100 μs

• Possible to implement DS402 drive profile, Semi device profiles, and other device profiles

If the TwinCAT 3, or a later version of 2.11, tool is used, the max amount of process data will be 1473
bytes, due to limitations in the tool.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Basic Operation 11 (176)

3 Basic Operation
3.1 General Information
3.1.1 Software Requirements

No additional network support code needs to be written in order to support the Anybus
CompactCom 40 EtherCAT, however due to the nature of the EtherCAT networking system,
certain restrictions must be taken into account:

• ADIs with instance numbers up to 57343 (DFFFh) can be accessed from the network. If the
Modular Device Profile is implemented and running, instance numbers are limited to 16383
(3FFFh).

• When mapping ADIs to process data, there is a limit of 1486 elements or 1486 bytes,
whichever comes first, that can be mapped in either direction.

• The flexible nature of the Anybus concept allows the application to modify the behavior on
EtherCAT in ways which contradict the generic EtherCAT Slave Information file or in other
ways voids network certification. Those responsible for the implementation of the final
product should ensure that their level of implementation matches their own requirements
and policies regarding network certification and interoperability.

• The use of advanced EtherCAT-specific functionality may require in-depth knowledge in
EtherCAT networking internals and/or information from the official EtherCAT specifications.
In such cases, those responsible for the implementation of the product should either obtain
the EtherCAT specification to gain sufficient knowledge or limit their implementation is such
a way that this is not necessary.

If the TwinCAT 3, or a later version of 2.11, tool is used, the max amount of process data will be 1473
bytes, due to limitations in the tool.

For in–depth information regarding the Anybus CompactCom software interface, consult the
Anybus CompactCom 40 Software Design Guide.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Basic Operation 12 (176)

3.1.2 EtherCAT Slave Interface (ESI) File
Each device on EtherCAT is associated with a EtherCAT Slave Interface (ESI) file in XML format,
which holds a description of the device and its functions.

To ensure interoperability and to reduce the complexity for the end user, it is strongly
recommended to create a custom ESI file to match the final implementation of the product. To
aid with the ESI file creation, HMS provides a tool called HMS EtherCAT ESI Generator, which is
freely downloadable from the Anybus CompactCom 40 EtherCAT product page on www.anybus.
com.

The EtherCAT Technology Group (ETG) requires that the Vendor ID is changed to reflect the
vendor of the end product. The following scenarios, among others, may require additional
changes to the EtherCAT Slave Interface file.

• The use of a custom Product Code.

• The use of an own Vendor ID.

• Change of the product revision.

• The host application supports the Remap_ADI commands.

• The use of Ethernet over EtherCAT (EoE).

• Slow application response times. Explicit requests should be handled within 1 ms in order to
comply with the generic ESI file supplied by HMS. This may not be sufficient for a slow serial
link with a substantial amount of I/O (in such case, the mailbox timeout value in the file
needs to be increased accordingly).

Note that deviations from the generic ESI file requires the use of custom Product Codes apart from the
required custom Vendor ID.

3.1.3 Device Identity
In a generic implementation (i.e. no network specific support is implemented) the module will
appear as a generic HMS device with the following identity information:

Object Entry Value

Vendor ID E000 001Bh (HMS Industrial Networks Secondary Vendor ID, has to be
replaced by the Vendor ID of the end product vendor.)

Product Code 0000 0036h (Anybus CompactCom 40 EtherCAT)

Device Name Anybus CompactCom 40 EtherCAT

Serial Number (Assigned during manufacturing)

By implementing support for the EtherCAT Object (F5h), the module can be customized to
appear as a vendor specific implementation rather than a generic Anybus device. For the end
product to pass the ETG conformance tests and be certified, a separate Vendor ID has to be
requested from ETG.

See also...

• EtherCAT Object (F5h), p. 85

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Basic Operation 13 (176)

3.1.4 File Access over EtherCAT (FoE)
The module supports File Access over EtherCAT (FoE) for downloading firmware files from a
Client machine to the Server. All FoE requests not concerning files with the extension hiff (HMS
firmware files) or the extension .nfo, will be forwarded to the Application File System Interface
object. Since FoE offers only very basic FTP functionality, saved files (other than .hiff files) will
end up in the root folder of the Application File System Interface object.

If a firmware file, downloaded through FoE, is pending for update, the file with the extension hiff
will be possible to upload via FoE.

FoE is not supported for Anybus IP.

3.1.5 Fail Safe over EtherCAT (FSoE)
The Anybus CompactCom 40 EtherCAT supports FSoE. This profile makes it possible for a user to
send data on a black channel interface, i.e. a safe channel over EtherCAT, using an add-on safety
module, e.g. the IXXAT Safe T100. For an application to support FSoE, the Functional Safety
Object (E8h, host application object) has to be implemented. The Anybus CompactCom serial
channel is used for the functional safety communication. When this channel is used for the host
application, a second separate serial channel is implemented for the functional safety
communication. See the Anybus CompactCom Hardware Design Guide for more information.

See...

• Functional Safety Module Object (11h), p. 72

• Functional Safety Object (E8h), p. 80

3.1.6 Ethernet over EtherCAT (EoE)
The module supports transparent tunneling of non-EtherCAT Ethernet frames to and from an
EtherCAT slave, using Ethernet over EtherCAT (EoE).

EoE is not supported for Anybus IP in limited mode.

With Ethernet over EtherCAT (EoE), the following features are supported:

• Web server with customizable content

• FTP server

• E-mail client

• Server Side Include (SSI) functionality

• JSON functionality

Since the Ethernet frames are embedded in mailbox communication, the performance will be
reduced compared to normal Ethernet communication. The data throughput will depend on...

• The EtherCAT process data cycle time

• The mailbox size (in bytes)

To be able to use Ethernet over EtherCAT (EoE), the Anybus CompactCom 40 device
needs to be assigned a MAC address. Users with devices containing older software (prior
to software version 2.00) will need to set the MAC address manually, in the Ethernet Host
Object, to be able to use Ethernet over EtherCAT (EoE).

To indicate or remove support for Ethernet over EtherCAT (EoE) in the ESI file, see the following:

To support Ethernet over EtherCAT (EoE), the <Mailbox> element should look like this:

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Basic Operation 14 (176)

<Mailbox DataLinkLayer="1">
<EoE IP="0" MAC="0" TimeStamp="0" />
<CoE SdoInfo="1" CompleteAccess="1" PdoAssign="0" PdoConfig="0"
PdoUpload="1"/>
<FoE/>

</Mailbox>

To remove support for Ethernet over EtherCAT (EoE), the <Mailbox> element should look like
this:

<Mailbox DataLinkLayer="1">
<CoE SdoInfo="1" CompleteAccess="1" PdoAssign="0" PdoConfig="0"
PdoUpload="1"/>
<FoE/>

</Mailbox>

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Basic Operation 15 (176)

3.2 EtherCAT Implementation Details
3.2.1 General Information

The module implements a full EtherCAT slave with the following basic properties:

Application Layer: CANopen over EtherCAT

FMMUs. 4

Sync Managers. 4

RAM Size: 16 kByte

See also...

• CANopen over EtherCAT Implementation Details, p. 17

3.2.2 EtherCAT Synchronization
EtherCAT synchronization and jitter accuracy may depend on different things:

• How often the master sends out sync frames

• Temperature variations in the environment (large impact)

• The implementation of the EtherCAT slave device

• Which Ethernet physical layer is used in the slave devices (RJ45, E-Bus etc.)

The Anybus CompactCom 40 EtherCAT modules all demonstrate less than 1 μs synchronization
accuracy. For RJ45 products the accuracy may be around 50 ns under good conditions, and for E-
Bus products around 30 ns.

3.2.3 Sync Managers
The module features four Sync Managers:

Sync Manager 0 Used for mailbox write transfers (Master to Slave).

The module has a configurable write mailbox size with default size of 276 bytes,
corresponding to 255 bytes plus relevant protocol headers and padding.

Sync Manager 1 Used for mailbox read transfers (Slave to Master).

The module has a configurable read mailbox size with default size of 276 bytes,
corresponding to 255 bytes plus relevant protocol headers and padding.

Sync Manager 2 Contains the RxPDOs (in practice, Sync Manager 2 holds the Read Process Data).

Sync Manager 3 Contains the TxPDOs (in practice, Sync Manager 3 holds the Write Process Data).

3.2.4 FMMUs
There are four FMMUs. The EtherCAT master can use the FMMUs freely for any purpose.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Basic Operation 16 (176)

3.2.5 Addressing Modes
As a full EtherCAT, the module supports the following addressing modes:

• position addressing

• node addressing

• logical addressing

3.2.6 Watchdog Functionality
Output I/O Sync Manager Watchdog

If enabled, this watchdog monitors the PDO communication towards the Anybus module. If the
master doesn’t update the Read Process Data within the specified time period, this will trigger a
timeout condition in the module, causing it to shift from OPERATIONAL to SAFE-OPERATIONAL.
The supervision-bit (SUP) is also affected by this.

The sync manager watchdog is enabled by default in the ESI file, with a default time period of
100 ms.

The sync manager watchdog can always be disabled/enabled manually in the configuration tool
for the master.

See also...

• SUP-bit Definition, p. 146

PDI Watchdog

PDI watchdog functionality is supported.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Basic Operation 17 (176)

3.3 CANopen over EtherCAT Implementation Details
3.3.1 General Information

As mentioned previously, the module implements CANopen over EtherCAT. The object
implementation is based on the DS301 communication profile.

See also...

• Data exchange, p. 18

• Object Dictionary (CANopen over EtherCAT), p. 24

3.3.2 Implemented Services
The module implements the following CANopen services:

Service Description

SDO Download Expedited Writes up to four octets to the slave

SDO Download Normal Writes up to a negotiated number of octets to the slave

Download SDO Segment Writes additional data if the object size exceeds the negotiated no. of octets.

SDO Upload Expedited Reads up to four octets from the slave

SDO Upload Normal Reads up to a negotiated number of octets from the slave

Upload SDO Segment Reads additional data if the object size exceeds the negotiated no. of octets

Abort SDO Transfer Server abort of service in case of an erroneous condition
Get OD List Reads a list of available indexes
Get Object Description Reads details of an index

Get Entry Description Reads details of a subindex

Emergency Reports unexpected conditions and diagnostic events.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Basic Operation 18 (176)

3.4 Data exchange
3.4.1 Application Data (ADI)

Application Data Instances (ADIs) can be accessed from the network via dedicated object entries
in the Manufacturer Specific range and the Profile range (2001h - FFFFh). The SDO information
protocol allows nodes to retrieve the name and data type of the ADI.

See also...

• Manufacturer and Profile Specific Objects, p. 29

3.4.2 Process Data
ADIs mapped as Process Data will be exchanged cyclically as Process Data Objects (PDOs) on the
bus. The actual PDO map is based on the Process Data map specified during startup or how the
application is implemented. It can be changed from the network during runtime, if the
application has implemented the remap commands in the Application Data Object.

The module supports up to 6 TPDOs and up to 6 RPDOs, each supporting up to 254 SDO
mappings. Each SDO equals one Process Data mapped ADI element (i.e. mapping multiple
element ADIs will result in multiple SDO mappings). The number of TPDOs and RPDOs can be
extended if the Assembly Mapping Object is implemented.

To gain in configurability, the Assembly Mapping Object can be used to remap and replace the
Process Data map specified at startup. Each PDO will be represented by an instance in the
Assembly Mapping Object. The PDOs will then be remapped when the module enters the Safe-
Operational state.

If the Modular Device Object is implemented, i.e. the Modular Device Profile is enabled, the
Assembly Mapping Object will be ignored.

Preferably, the EtherCAT Slave Information file should be altered to match the actual Process Data
implementation. This is not a general requirement, but it has a positive impact on compatibility with 3rd
party masters.

See also...

• Standard Objects, p. 24

• Manufacturer and Profile Specific Objects, p. 29

• Assembly Mapping Object (EBh), p. 82

• Application Data Object (see Anybus CompactCom 40 Software Design Guide)

• Modular Device Object (see Anybus CompactCom 40 Software Design Guide)

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Basic Operation 19 (176)

3.5 File System
3.5.1 Overview

The Anybus CompactCom 40 EtherCAT has a built-in file system, that can be accessed from the
application and from the network. Three directories are predefined:

VFS The virtual file system that e.g. holds the web pages of the module.

Application This directory provides access to the application file system through the Application File
System Interface Object (EAh) (optional).

Firmware The firmware directory points to the firmware candidate area where firmware files can
be uploaded.

In the firmware folder, it is not possible to use append mode when writing a file. Be sure to use write
mode only.

Anybus
CompactCom
File system

File 1

File 2

VFS

File 1

File 2

Application

Application
File system

File A1

File A2

Directory A1

File A1:1

File A1:2

The Anybus CompactCom accesses
the application file system through the
Application File System Interface Object.

Anybus CompactCom Application

Firmware

Fig. 1

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Basic Operation 20 (176)

3.5.2 General Information
The built-in file system hosts 28 Mb of nonvolatile storage, which can be accessed by the HTTP
and FTP servers, the e-mail client, and the host application (through the Anybus File System
Interface Object (0Ah).

Maximum number of directories and files that can be stored in the root directory is 511, if only
short filenames are used (8 bytes name + 3 bytes extension). If longer filenames are used, less
than 511 directories/files can be stored. This limitation does not apply to other directories in the
file system.

The file system uses the following conventions:

• \ (backslash) is used as a path separator

• Names may contain spaces, but must not begin or end with one.

• Valid characters in names are ASCII character numbers less than 127, excluding the
following characters: \ / : * ? “ < > |

• Names cannot be longer than 48 characters

• A path cannot be longer than 126 characters (filename included)

See also...

• FTP Server, p. 102

• Web Server, p. 96

• E-mail Client, p. 104

• Server Side Include (SSI), p. 105

The file system is located in flash memory. Due to technical reasons, each flash segment
can be erased approximately 100000 times before failure, making it unsuitable for
random access storage.

The following operations will erase one or more flash segments:

• Deleting, moving or renaming a file or directory

• Writing or appending data to an existing file

• Formatting the file system

3.5.3 System Files
The file system contains a set of files used for system configuration. These files, known as
“system files”, are regular ASCII files which can be altered using a standard text editor (such as
the Notepad in Microsoft Windows™). The format of these files are, with some exceptions, based
on the concept of keys, where each keys can be assigned a value, see below.

Example 1:

[Key1]
value of Key1

[Key2]
value of Key2

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Basic Operation 21 (176)

3.6 Communication Settings in Stand Alone Shift Register Mode
If the Anybus CompactCom 40 is used stand alone, there is no application from which to set the
IP address. The IP address is instead set using the DIP1 switches (IP address byte 3) and the
virtual attributes (Ethernet Host Object (F9h), attribute #17), that are written to the memory
during setup (IP address byte 0 – 2). A flowchart is shown below.

Start

DIP1 switch settings
(0 - 255)

 255 0

1 - 254

Values stored in
 Network Con�guration
Object instances #3 - #6

 will be used

Ethernet
 Host Object (F9h),

attribute #17
implemented

Yes

No Use default value for
IP address bytes 0 - 2:

192.168.0.X

Use DIP switch settings
for IP address byte 3

End

Use attribute #17 values
for IP address bytes 0 - 2

IP address is stored in Network
Con�guration Object (04h),

 instance #3

Check for DHCP
availability

Yes

No

DHCP will be used for
communication settings,

that will be stored in
Network Con�guration

Object (04h), instances #3 - #6

Values stored in
 Network Con�guration
Object instances #3 - #6

 will be used

Network Con�guration Object (04h)
Instance #4, Subnet mask: 255.255.255.0

Instance #5 Gateway address: 0.0.0.0
Instance 6, DHCP: OFF

See also...

Ethernet Host Object (F9h), p. 92

Network Configuration Object (04h), p. 41

Anybus CompactCom M40 Hardware Design Guide

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Basic Operation 22 (176)

3.7 Network Reset Handling
3.7.1 Reset Node

If a valid firmware has been downloaded via FoE (File access over EtherCAT), the Anybus
CompactCom 40 EtherCAT will send a reset type 00h (power-on reset) to the application at the
transition from BOOT to INIT. Prior to the reset command a Reset_Request command has to be
sent to the host application to make sure that a reset can be performed.

If the host application needs to reset the Anybus CompactCom 40 EtherCAT, the reset process
must be implemented in the host application as shown in the flowchart below.

Has a valid .hiff file
been downloaded to
the firmware folder?

Is the reset requested
by a power-on-reset

command?

Firmware revision
2.11 or later?

Reset process
initiated

Reset method 2Reset method 1

Yes

NoYes

Yes

No

No

Fig. 2

Reset method 1: The reset signal is activated and remains so until the Anybus CompactCom can be
initialized.

Reset method 2: A short pulse, longer than 10 µs, is applied to the reset signal. After at least another 20
ms, the reset signal is activated again and remains so until the Anybus CompactCom can
be initialized.

3.7.2 Restore Manufacturer Parameters to Default
Upon receiving a “Restore Manufacturer Parameters to Default” request from the network, the
module will issue a reset command to the Application Object (FFh) with CmdExt[1] set to 01h
(Factory default reset).

A factory default reset can only be performed in the EtherCAT state PREOPERATIONAL.
Performing a reset in another state than PREOPERATIONAL will generate SDO abort code
08000020h (invalid state).

See also...

• Standard Objects, p. 24, entry 1011h (‘Restore Parameters’)

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Basic Operation 23 (176)

3.8 Configured Station Alias (Node Address)
The Configured Station Alias (node address) range is 1... 65535. Address 0 indicates that the
device has yet to be configured. The Configured Station Alias is stored in the slave EEPROM and
may be used by some masters as a node address.

For most applications it is recommended to leave the Configured Station Alias unchanged, but it
is possible to assign each slave an address from the network.

3.9 Device ID
The Device ID is used by the master to explicitly identify a slave. This is e.g. useful when changing
a faulty device during runtime, a so called HotConnect application. A preconfigured device can
be entered into the network, and its Device ID can be set to the same Device ID as the faulty
device was appointed.

It is also useful to prevent cable swapping when there are two or more identical devices on the
network.

The Device ID range is 1... 65535. Address 0 indicates that the device has yet to be configured.
The value can be set using the Network Configuration Object, instance 1.

In the Anybus CompactCom M30 EtherCAT, the Network Configuration Object, instance 3 was used for
the Device ID

See also...

• Network Configuration Object (04h), p. 41

3.10 Modular Device Profile
The Anybus CompactCom 40 EtherCAT supports the Modular Device Profile, that is enabled if the
Modular Device Object is implemented in the application. Running this profile, the module
supports a maximum of 63 slots, including the coupler in slot 0. The maximum number of ADIs,
that can be accessed from the network, is 16383.

The value of the Device Type Object (1000h) is changed to 00005001h.

Enabling the Modular Device Profile will override the settings of the Assembly Mapping Object, if
this object is implemented.

See also....

• Modular Device Object (Anybus CompactCom 40 Software Design Guide)

• Modular Device Profile, Object Entries, p. 32

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Object Dictionary (CANopen over EtherCAT) 24 (176)

4 Object Dictionary (CANopen over EtherCAT)
4.1 Standard Objects
4.1.1 General

The standard object dictionary is implemented according to the DS301 communication profile.
Note that certain object entries correspond to settings in the EtherCAT Object (F5h), and the
Diagnostic Object (02h).

4.1.2 Object Entries
Index Object Name Subin-

dex
Description Type Access Notes

1000h Device Type 00h Device Type U32 RO Default 0000 0000h
(No profile). Can be
managed through the
EtherCAT Object,
which can optionally
be implemented in the
host application. See
EtherCAT Object (F5h),
p. 85.
If the host application
Modular Device Object
is implemented, the
default value is 0000
5001h.

1001h Error register 00h Error register U8 RO This information
managed through the
Diagnostic Object, see
Diagnostic Object (02h),
p. 37.

1003h Pre-defined error field 00h Number of errors U8 RW

01h...0-
5h

Error field U32 RO

1008h Manufacturer device
name

00h Manufacturer device
name

Visible
string

RO These entries are
managed through the
EtherCAT Object,
which can optionally
be implemented in the
host application. See
EtherCAT Object (F5h),
p. 85.

1009h Manufacturer hardware
version

00h Manufacturer hardware
version

Visible
string

RO

100Ah Manufacturer software
version

00h Manufacturer Software
version

Visible
string

RO

1011h Restore parameters 00h Largest sub index
supported

U8 RO 01h

01h Restore all default
parameters

U32 RW -

1018h Identity object 00h Number of entries U8 RO Number of entries
01h Vendor ID U32 RO These entries are

managed through the
EtherCAT Object,
which can optionally
be implemented in the
host application. See
EtherCAT Object (F5h),
p. 85.

02h Product Code U32 RO

03h Revision Number U32 RO

04h Serial Number U32 RO

10F1h Error Settings object 00h Number of entries U8 RO

02h Sync error counter limit U32 RW

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Object Dictionary (CANopen over EtherCAT) 25 (176)

Index Object Name Subin-
dex

Description Type Access Notes

1600h -
1xxxh

Receive PDO mapping 00h No. of mapped
application objects in
PDO

U8 RO/RW No. of mapped objects
(0.. 254), see Mapping
ADIs on PDOs, p. 27 for
more information.
Receive PDO mapping
is writable when
dynamic process data
is supported by the
application (remap
commands). Note:
only writable in PREOP
device state.

01h Mapped object #1 U32 RO/RW -

02h Mapped object #2 U32 RO/RW -
... -
NNh Mapped object #NN U32 RO/RW -

1A00h -
1xxxh

Transmit PDO mapping 00h No. of mapped
application objects in
PDO

U8 RO/RW No. of mapped objects
(0.. 254), see Mapping
ADIs on PDOs, p. 27 for
more information.
Transmit PDO mapping
is writable when
dynamic process data
is supported by the
application (remap
commands). Note:
only writable in PREOP
device state.

01h Mapped object #1 U32 RO/RW -

02h Mapped object #2 U32 RO/RW -
... -
NNh Mapped object #NN U32 RO/RW -

1C00h Sync Manager
Communication Type

00h Number of entries U8 RO 4

01h Mailbox wr U8 RO 1

02h Mailbox rd U8 RO 2

03h Process Data out U8 RO 3

04h Process Data in U8 RO 4

1C12h Sync Manager Rx PDO
Assign

00h No. of assigned PDOs U8 RO/RW When using static PDO
mapping this subindex
is read only. When
using dynamic PDO
mapping, it is writable
(only writable in
PREOP device state).

01h -
NNh

Assigned PDO U16 RO/RW

1C13h Sync Manager Tx PDO
Assign

00h No. of assigned PDOs U8 RO/RW If more than one sync
mode is supported,
this entry is writable
(only writable in
PREOP device state).

01h -
NNh

Assigned PDO U16 RO/RW

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Object Dictionary (CANopen over EtherCAT) 26 (176)

Index Object Name Subin-
dex

Description Type Access Notes

1C32h Output SyncManager
Parameter

00h Max subindex
supported

U8 RO 12 (0Bh)

01h Sync mode U16 RO/RW 00h: Free Run
02h: DC Sync0
See Sync Object (EEh),
p. 83.

02h Cycle time U32 RW Cycle time in
nanoseconds

03h Shift time U32 RW Shift time in
nanoseconds

04h Synchronization Types
supported

U16 RO Bit 0 set: FREE_RUN
supported
Bit 2 set: DC Sync0
supported.
Bit 5 set: Output shift
with local timer
All other bits are set to
0
See Sync Object (EEh),
p. 83.

05h Minimum cycle time U32 RO Minimum cycle time in
nanoseconds.

06h Output Calc and Copy
Time

U32 RO Output Calc and Copy
Time in nanoseconds.

09h Delay time U32 RO Delay time in
nanonseconds. Always
set to 0.

0Ch Cycle Time Too Small U16 RO Cycle time to small

1C33h Input SyncManager
Parameter

00h Max subindex
supported

U8 RO 12 (0Bh)

01h Sync mode U16 RO/RW 00h: Free Run
02h: DC Sync0
See Sync Object (EEh),
p. 83.

02h Cycle time U32 RW Cycle time in
nanoseconds, same
value as 1C32h,
subindex 2.

03h Shift time U32 RW Shift time in
nanoseconds.

04h Synchronization Types
supported

U16 RO Bit 0 set: FREE_RUN
supported
Bit 2 set: DC Sync0
supported.
Bit 5 set: Input shift
with local timer
All other bits are set to
0
See Sync Object (EEh),
p. 83.

05h Minimum cycle time U32 RO Minimum cycle time in
nanoseconds, same
value as 1C32h,
subindex 5.

06h Input Calc and Copy
Time

U32 RO Input Calc and Copy
Time in nanoseconds.

0Ch Cycle Time Too Small U16 RO Cycle time to small,
same value as 1C32h,
subindex 12 (0Bh).

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Object Dictionary (CANopen over EtherCAT) 27 (176)

Mapping ADIs on PDOs

The Receive PDO mapping objects (1600h - 1xxxh) and the Transmit PDO mapping objects
(1A00h - 1xxxh) are configured depending on how the host application is set up:

Mode Access Number of objects (in each
direction)

Number of sub indexes per
object

Notes

Generic, static
mapping

RO 1 - 6
Depends on how many ADI
mapping items that are
mapped by the application
during setup. Each PDO can
hold 254 ADI mapping items.

1 - 254
Depends on how many ADI
mapping items that are
mapped by the application
during setup. One PDO
mapping object at the time
will be filled with mapped
items.

Generic, dynamic
mapping

RW 1 - 6
Depends on how many ADI
mapping items that are
mapped by the application
during setup. Each PDO can
hold 254 ADI mapping items.

254 (except the 6th object,
that has 216 sub indexes as
the maximum number of
entries is 1486)

If theTwinCAT 3, or a
later version of 2.11,
tool is used, the
maximal number of
entries will be 1473
bytes, due to limitations
in the tool.

Assembly Mapping
Object
implemented in
host

RO/RW Number of assembly
mapping instances in that
direction (max 63)

1486/(number of objects)
(max 254)

See Assembly Mapping
Object (EBh), p. 82 for
more information.
Access is RO if the
corresponding assembly
instance is static, RW if
it is dynamic
If the TwinCAT 3, or a
later version of 2.11,
tool is used, the
maximal number of
entries will be 1473
bytes, due to limitations
in the tool.

Modular device,
static mapping

RO Same as the number of
modules that have objects
mappable in that direction
(max 63)

Same as the number of ADIs
mapped in that direction
during setup

Modular device,
dynamic mapping

RW Same as the number of
modules that have objects
mappable in that direction
(max 63)

1486/(number of objects)
(max 254)

If theTwinCAT 3, or a
later version of 2.11,
tool is used, the
maximal number of
entries will be 1473
bytes, due to limitations
in the tool.

Please note that in Generic mode and in Modular Device Profile mode, the ADI to PDO mapping
is performed by the application at startup. Also note that if both the Assembly Mapping Object
and the Modular Device Object are implemented in the host, the Modular Device Profile mode
will be enabled, overriding the settings of the Assembly Mapping Object.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Object Dictionary (CANopen over EtherCAT) 28 (176)

The PDO assignment objects (1C12h and 1C13h) are configured depending on how the host
application is set up:

Mode Access Number of sub indexes per object Content

Generic, static mapping RO Same as the number of PDO mapping
objects in that direction.

All PDO mapping objects in that direction.

Generic, dynamic
mapping

RW Same as the number of PDO mapping
objects in that direction.

All PDO mapping objects in that direction.

Assembly Mapping
Object implemented in
host

RW Same as the number of PDO mapping
objects in that direction.

The first PDO in that direction.

Modular device, static
mapping

RO Same as the number of PDO mapping
objects in that direction.

All PDO mapping objects in that direction.

Modular device,
dynamic mapping

RW Same as the number of PDO mapping
objects in that direction.

All PDO mapping objects in that direction.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Object Dictionary (CANopen over EtherCAT) 29 (176)

4.2 Manufacturer and Profile Specific Objects
4.2.1 General

Each object entry in the manufacturer specific range (2001h...FFFFh) corresponds to an instance
(a.k.a. ADI) within the Application Data Object (FEh), i.e. network accesses to these objects result
in object requests towards the host application. In case of an error, the error code returned in
the response from the host application will be translated into the corresponding CANopen abort
code.

Since any access to these object entries will result in an object access towards the host application, the
time spent communicating on the host interface must be taken into account when calculating the SDO
timeout value.

4.2.2 Network Data Format
Data is translated between the native network format and the Anybus data format as follows:

Anybus Data Type Network Data Type

Number of sub elements = 1 Number of sub elements > 1
BOOL UNSIGNED8 OCTET_STRING

SINT8 INTEGER8 ARRAY_OF_SINT

SINT16 INTEGER16 ARRAY_OF_INT

SINT32 INTEGER32 ARRAY_OF_DINT

UINT8 UNSIGNED8 OCTET_STRING

UINT16 UNSIGNED16 ARRAY_OF_UINT

UINT32 UNSIGNED32 ARRAY_OF_UDINT

CHAR VISIBLE_STRING VISIBLE_STRING

ENUM UNSIGNED8 or ENUM OCTET_STRING

BITS8 BITARR8 OCTET_STRING

BITS16 BITARR16 ARRAY_OF_UINT

BITS32 BITARR32 ARRAY_OF_UDINT

OCTET OCTET_STRING OCTET_STRING

SINT64 INTEGER64 OCTET_STRING

UINT64 UNSIGNED64 OCTET_STRING

FLOAT REAL32 OCTET_STRING

DOUBLE REAL64 OCTET_STRING

PAD0-16 NULL Not supported

BOOL1 BOOL Not supported

BIT1 - BIT7 BIT1 - BIT7 Not supported

ADIs with multiple elements are represented either as arrays (all elements share the same data
type) or as records (the elements may have different data types). Exceptions to this are CHAR
which will always be represented as VISIBLE_STRING, and OCTET which will always be
represented as OCTET_STRING.

Single element ADIs are represented as a simple variable, with the exception of CHAR which will
always be represented as VISIBLE_STRING, and OCTET which will always be represented as
OCTET_STRING.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Object Dictionary (CANopen over EtherCAT) 30 (176)

4.2.3 Error Codes
If an error occurs when an object in the application is requested from the module, the error code
returned is translated to an CANopen abort code as follows:

Anybus CompactCom Error Code CANopen Abort Code Description (CANopen)

Reserved N/A -If an error occurs when an object in the
application is requested from the
module, the error code returned is
translated to an CANopen abort code as
follows:

Fragmentation error (serial mode) N/A -

Invalid message format N/A -

Unsupported object 0602 0000h Object does not exist in the object
dictionary.

Unsupported instance 0602 0000h Object does not exist in the object
dictionary.

Unsupported command 0604 0043h General parameter incompatibility
reason.

Invalid CmdExt[0] 0602 0000h Object does not exist in the object
dictionary. (ADI access)

Invalid CmdExt[1] 0609 0011h Subindex does not exist. (ADI access]

Attribute not settable 0601 0002h Attempt to write a read only object.

Attribute not gettable 0601 0001h Attempt to read a write only object.

Too much data 0607 0012h Data type does not match, length of
service parameter too long.

Not enough data 0607 0013h Data type does not match, length of
service parameter too short.

Out of range 0609 0030h Value range of parameter exceeded (only
for write access).

Invalid state 0800 0022h Data cannot be transferred or stored to
the application because of the present
device state.

Out of resources 0504 0005h Out of memory

Value too high 0609 0031h Value of parameter higher than upper
limit (only for write access).

Value too low 0609 0032h Value of parameter lower than lower
limit (only for write access).

Write access to a read process data
mapped ADI

0601 0006h Object mapped to RxPDO, SDO download
blocked.

Protected access 0800 0021h Data cannot be read or stored because of
local control

Object Specific Error 0800 0000h General error

If no corresponding error code can be defined on CANopen, the default error code will be
General error (0800 000h).

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Object Dictionary (CANopen over EtherCAT) 31 (176)

4.2.4 Object Entries
The exact representation of an ADI depends on its number of elements. In the following
example, ADIs no. 0002h and 0004h only contain one element each, causing them to be
represented as simple variables rather than arrays. The other ADIs have more than 1 element (of
the same data type), causing them to be represented as arrays. If an ADI has more than 1
element, of different data types, it will be represented as a record.

The offset between the ADI no. and the object index is always 2000h.

Index Object Name Subindex Description Type Access

2001h ADI 0001h 00h Number of entries (NNh) U8 RO

01h ADI value(s) (Attribute #5)
ADIs with multiple elements (i.e. arrays) are
represented as multiple subindexes.
The data type and access rights of the ADI
values are determined by the ADI itself.

- -

02h
...
...
NNh

2002h ADI 0002h 00h ADI value (Attribute #5) - -

2003h ADI 0003h 00h Number of entries (NNh) U8 RO

01h ADI value(s) (Attribute #5)
ADIs with multiple elements (i.e. arrays) are
represented as multiple subindexes.

- -

02h
...
...
NNh

2004h ADI 0004h 00h ADI value (Attribute #5) - -

2005h ADI 0005h 00h Number of entries (NNh) U8 RO

01h ADI value(s) (Attribute #5)
ADIs with multiple elements (i.e. arrays) are
represented as multiple subindexes.

- -

02h
...
...
NNh

...
5FFFh ADI 3FFFh 00h Number of entries (NNh) U8 RO

01h ADI value(s) (Attribute #5)
ADIs with multiple elements (i.e. arrays) are
represented as multiple subindexes.

- -

02h
...
...
NNh

4.2.5 Fail Safe over EtherCAT, Object Entries
The object below shall be implemented if Fail Safe over EtherCAT is enabled.

Index Object Name Subin-
dex

Description Type Access Notes

F980h Device safety
address

00h Device safety address UN-
SIGN-
ED8

RO -

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Object Dictionary (CANopen over EtherCAT) 32 (176)

4.2.6 Modular Device Profile, Object Entries
The objects listed in the table below, shall be implemented if the Modular Device Profile mode is
enabled.

Index Object Name Subin-
dex

Description Type Access Notes

6000h -
6FFFh

Input data Any ADIs for all modules,
except the coupler, that are
write process data
mappable will be
represented in this range.

Any R, RW For more information,
see ADI to SDO
Translation, p. 33.

7000h-
7FFFh

Output data Any ADIs for all modules,
except the coupler, that are
read process data
mappable will be
represented in this range.

Any W, RW For more information,
see ADI to SDO
Translation, p. 33.

9nnnh Information data Any Information objects, one
for each module, occupying
a slot, except the coupler.

Any RW For more information,
see Module
Identification Objects, p.
34

F000h Modular Device
Profile

00h Number of entries (NNh) U8 R Value: 5

01h Index distance U16 R This value decides how
many objects are
assigned to each slot.
The value is the same
for all modules, and
thus gives the index
distance between two
slots.
Value: "Number of ADIs
per slot", attribute #12
in the Modular Device
Object. See Anybus
CompactCom 40
Software Design Guide
for more information.

02h Maximum number of
modules

U16 R Value: "Number of
slots", Attribute 11 in
the Modular Device
Object. See Anybus
CompactCom 40
Software Design Guide
for more information.

04h General Information U32 R Value: 0000 0700h
(Subindexes 9, 10, and
11 are supported in the
9nnnh module
identification objects)

05h Module PDO group of the
device

U16 R Set to 0 to force the
coupler process data to
be positioned ahead of
the process data. This
allows for better
integration towards the
modular device host
object.

F030h Configured Module
Ident List

00h Number of Entries
(Number of slots-1)

U8 R The master writes the
configured module list
to these objects, so that
the slave can compare
the expected module
configuration to the
actual configuration.

01h Module identity of the
module configured on
position 1 (slot 1).

U32 RW

... ...
0nh Module identity of the

module configured on
position n (slot n).

U32 RW

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Object Dictionary (CANopen over EtherCAT) 33 (176)

Index Object Name Subin-
dex

Description Type Access Notes

F050h Detected Module
Ident List

00h Number of Entries
(Number of slots-1)

U8 R This object contains
information about the
modules, in the
occupied slots, scanned
from the application.

01h Module identity of the
module configured on
position 1 (slot 1).

U32 RW

... ...
0nh Module identity of the

module configured on
position n (slot n).

U32 RW

F600h -
F6FFh

Input data area for
the coupler

Any ADIs for the coupler that
are write process
mappable will be
represented in this range.

Any R, RW -

F700h -
F7FFh

Output data area
for the coupler

Any ADIs for the coupler that
are read process mappable
will be represented in this
range.

Any W, RW -

If the Configured Module Ident List (F030h) does not match the Detected Module Ident List
(F050h), the module will indicate a mismatch configuration by setting the ALStatusCode register
to 0070h. The module will not enter SAFE-OPERATIONAL state.

This list comparison can be skipped, by setting the attribute Compare identity lists (attribute 22) of the
EtherCAT object to FALSE.

ADI to SDO Translation

In the Modular Device Profile, all ADIs have to be mapped in numbering order. The number of
ADIs mapped per slot is defined in the Modular Device Object, where the same number of
objects is assigned to each slot. Depending on whether the ADIs are write or read mappable,
they will be mapped to different object ranges. An ADI that is both read and write mappable will
be mapped to both ranges. Please note that the SDOs are assigned in number order, but occupy
different ranges, depending on type.

The ADIs, that are neither read nor write mappable, will not be mapped to an SDO, resulting in
“empty SDOs” as shown in the table below.

Module ADI Type SDO

0 (Coupler) 1 Write mappable F600h

2 Read mappable F701h

3 Write mappable F602h

4 Read mappable F703h

5 Not mappable -

1 6 Read mappable 7000h

7 Write mappable 6001h

8 Writable -

9 Read only -

10 Read mappable 7004h

2 11 Writeable -

12 Read only -

- - -
14 Write mappable 6008h

15 Write and Read mappable 6009h and 7009h

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Object Dictionary (CANopen over EtherCAT) 34 (176)

Module Identification Objects

The first SDO in the 9nnnh range for each module, shall be predefined according to the table
below:

Subindex Type Access Name and Description

00h (0) U8 R Highest sub-index supported.
Value: 11 (0Bh)

09h (9) U16 R Module PDO group.
Value: 1. (The PDO group is set to 1 for all modules
except the coupler to allw coupler data to be put
before module data.)

0Ah (10) U32 R Module Identity
(Module identity for the module according to the host
application.)

0Bh (11) U16 r Slot (Module number)

PDO Mapping

The Receive PDO mapping objects and the Transmit PDO mapping objects are configured
depending on how the host application is set up. One object in the 16xxh series is created for
each module, that holds at least one read mappable ADI. The object numbers will be 1600h +
slot number -1. One object in the 1Axxh series is created for each module, that holds at least one
write mappable ADI. The object numbers will be 1A00h + slot number -1.

If the coupler holds any write or read mappable ADIs, objects will be created for these. Any
objects for the coupler are created after all other mapping objects have been created.

For more information, see Mapping ADIs on PDOs, p. 27.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Anybus Module Objects 35 (176)

5 Anybus Module Objects
5.1 General Information

This chapter specifies the Anybus Module Object implementation in the module.

Standard Objects:

• Anybus Object (01h), p. 36

• Diagnostic Object (02h), p. 37

• Network Object (03h), p. 39

• Network Configuration Object (04h), p. 41

• Socket Interface Object (07h), p. 48

• SMTP Client Object (09h), p. 65

• File System Interface Object (0Ah), see Anybus CompactCom 40 Software Design Guide

• Network Ethernet Object (0Ch), p. 70

• Functional Safety Module Object (11h), p. 72

Network Specific Objects:

(none)

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Anybus Module Objects 36 (176)

5.2 Anybus Object (01h)
Category
Basic

Object Description
This object assembles all common Anybus data, and is described thoroughly in the general Anybus
CompactCom 40 Software Design Guide.

Supported Commands

Object: Get_Attribute

Instance: Get_Attribute

Set_Attribute

Get_Enum_String

Object Attributes (Instance #0)
This object assembles all common Anybus data, and is described thoroughly in the general Anybus
CompactCom 40 Software Design Guide.

Instance Attributes (Instance #1)
Basic

Name Access Type Value

1 Module type Get UINT16 0403h (Anybus CompactCom 40)

2... 11 - - - Consult the general Anybus CompactCom 40 Software
Design Guide for further information.

12 LED colors Get struct of:
UINT8 (LED1A)
UINT8 (LED1B)
UINT8 (LED2A)
UINT8 (LED2B)

Value: Color:
01h Green
02h Red
01h Green
02h Red

13... 16 - - - Consult the general Anybus CompactCom 40 Software
Design Guide for further information.17 Virtual attributes Get/Set

18 Black list/White list Get/Set

19 Network time Get UINT64 64-bit value expressed in nanoseconds.
Base: 12:00 AM, January 1, 2000.
The Network time attribute contains the value of the DC
system time register of the EtherCAT slave controller.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Anybus Module Objects 37 (176)

5.3 Diagnostic Object (02h)
Category
Extended

Object Description
This object provides a standardised way of handling host application events & diagnostics, and is thoroughly
described in the general Anybus CompactCom 40 Software Design Guide.

An EMCY Object (Emergency Object) is sent on the network each time a diagnostic instance is created or
deleted.

Supported Commands

Object: Get_Attribute

Create

Delete

Instance: Get_Attribute

Object Attributes (Instance #0)
Name Access Type Value

1... 4 - - - Consult the general Anybus CompactCom 40 Software
Design Guide for further information.

11 Max no. of instances Get UINT16 5 + 1 (one instance is reserved for a major unrecoverable
event)

12 Supported functionality Get BITS32 Bit 0: 0 (The module does not support latching events)
Bits 1 - 31: 0

Instance Attributes (Instance #1)
Basic

Name Access Type Value

1 Severity Get UINT8 See Anybus CompactCom 40 Software Design Guide

2 Event Code Get UINT8
3 NW specific extension Get Array of UINT8 CANopen specific EMCY code (2 bytes)

4 -7 (not used)

When an instance is created (i.e. a diagnostic event is entered), the following actions are performed:

1. A new entry will be created in object entry 1003h (pre-defined error field) in one of two possible ways:

– If the Event Code is 00h — FEh:

MSB (UINT32) LSB

(Not used) (Not used) Event Code 00h

– If the Event Code is FFh (network specific):

MSB (UINT32) LSB

(Not used) (Not used) Error Code (low byte)

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Anybus Module Objects 38 (176)

2. The Error Register (object entry 1001h) is set with the corresponding bit information

Bit Description Condition for setting bit

0 Generic error Always set when another error bit in this object is set.

1 Current Event code is 20h - 23h
OR
Event code is FFh AND the high byte in NW specific information is 20h - 23h.

2 Voltage Event code is 30h - 33h
OR
Event code is FFh AND the high byte in NW specific information is 30h - 33h.

3 Temperature Event code is 40h - 42h
OR
Event code is FFh AND the high byte in NW specific information is 40h - 42h.

4 Communication error Event code is 80h - 82h
OR
Event code is FFh AND the high byte in NW specific information is 80h - 82h
OR
Anybus state equals ERROR.

5 Device profile specific Always 0

6 Reserved Always 0

7 Manufacturer specific Event code is FFh
AND
the high byte in NW specific information is FFh.

3. If the diagnostic instance is created in the state WAIT_PROCESS or higher, an EMCY object is sent to the
network with the following information:

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

00h Event
Code

Error
Register
(1001h)

Manufacturer Specific Field (Not used)

No EMCY object is sent if the instance is created in either of the states SETUP or NW_INIT.

When creating a Major unrecoverable event, this will not end up as an EMCY message on the bus, since
this effectively forces the Anybus module to enter the EXCEPTION state.

Bytes 0 and 1 (00h + Event Code) will be replaced by the value of attribute 3 if implemented.

An EMCY object with error code 0000h (“error reset”) is sent when a diagnostic instance is deleted.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Anybus Module Objects 39 (176)

5.4 Network Object (03h)
Category
Basic

Object Description
For more information regarding this object, consult the general Anybus CompactCom 40 Software Design
Guide.

Supported Commands

Object: Get_Attribute

Instance: Get_Attribute

Set_Attribute

Get_Enum_String

Map_ADI_Write_Area

Map_ADI_Read_Area

Map_ADI_Write_Ext_Area

Map_ADI_Read_Ext_Area

Object Attributes (Instance #0)
(Consult the general Anybus CompactCom 40 Software Design Guide for further information.)

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Anybus Module Objects 40 (176)

Instance Attributes (Instance #1)
Basic

Name Access Type Value

1 Network type Get UINT16 0087h

2 Network type string Get Array of CHAR ‘EtherCAT’

3 Data format Get ENUM 00h (LSB first)

4 Parameter data support Get BOOL True

5 Write process data size Get UINT16 Current write process data size (in bytes).
Updated on every successful Map_ADI_Write_Area, Map_
ADI_Write_Ext_Area and Remap_ADI_Write_Area.
Consult the general Anybus CompactCom 40 Software
Design Guide for further information.

6 Read process data size Get UINT16 Current read process data size (in bytes).
Updated on every successful Map_ADI_Read_Area, Map_
ADI_Read_Ext_Area and Remap_ADI_Read_Area.
Consult the general Anybus CompactCom 40 Software
Design Guide for further information.

7 Exception Information Get UINT8 Additional information may be provided here when the
module has entered the EXCEPTION state, see exception
information in table below.
Consult the general Anybus CompactCom 40 Software
Design Guide for further information.

8... 10 (reserved) -

Exception Information
Value Description

00h No additional information available.
01h (reserved)
02h
03h
04h
05h
06h The implementation of the Assembly Mapping Host Object is incorrect, e.g. the attribute 11 or 12 is not supported.

07h The application supports the Remap ADI commands, but returned an error response when requesting object attributes
11 or 12 of the Application Data Object ("No. of read process data mappable instances" or "No of write process data
mappable instances") or when issuing the Get_Instance_Numbers command towards the Application Data Object.

08h The implementation of the Modular Device Object in the host application is not correct, e.g. an error response is
received on the Get_List command.

09h The MAC address is missing when running Anybus IP.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Anybus Module Objects 41 (176)

5.5 Network Configuration Object (04h)
Category
Extended

Object Description
This object holds network specific configuration parameters that may be set by the end user. A reset command
(factory default) issued towards this object will result in all instances being set to their default values.

As soon as the used combination of IP address, Subnet mask and Gateway is changed, the module informs the
application by writing the new set to instance #1, attribute #16 in the Ethernet Host Object (F9h).

See also...

• Ethernet Host Object (F9h), p. 92

Supported Commands

Object: Get_Attribute

Reset

Instance: Get_Attribute

Set_Attribute

Object Attributes (Instance #0)
Name Access Type Value

1 Name Get Array of CHAR “Network configuration”

2 Revision Get UINT8 01h
3 Number of instances Get UINT16 13
4 Highest instance no. Get UINT16 21

Instance Attributes (Instance #1, Device ID)
Extended

See also Device ID, p. 23.

Changes have immediate effect.

Name Access Type Value

1 Name Get Array of CHAR “Device ID”
Multilingual, see Multilingual Strings, p. 47

2 Data type Get UINT8 05h (= UINT16)

3 Number of elements Get UINT8 01h (one element)

4 Descriptor Get UINT8 03h (read/write access)

5 Value Get/Set UINT16 1...65535: Valid network address
0: Device not configured (Default)

6 Configured Value Get UINT16 Configured value for Device ID. The value always equals
the value of attribute #5.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Anybus Module Objects 42 (176)

Instance Attributes (Instance #3, IP Address)
Value is used after module reset.

Name Access Data Type Description

1 Name Get Array of CHAR “IP address”
(Multilingual, see Multilingual Strings, p. 47

2 Data type Get UINT8 04h (= UINT8)

3 Number of elements Get UINT8 04h (four elements)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of UINT8 If read, the actual value will be received. If written, the written value
is reflected in attribute #6 until a reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

6 Configured Value Get Array of UINT8 Holds the configured value, which will be written to attribute #5 after
the module has been reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

This attribute should not be set by the application at every power on, as this would cause certification
problems.

Instance Attributes (Instance #4, Subnet Mask)
Value is used after module reset.

Name Access Data Type Description

1 Name Get Array of CHAR “Subnet mask”
(Multilingual, see Multilingual Strings, p. 47

2 Data type Get UINT8 04h (= UINT8)

3 Number of elements Get UINT8 04h (four elements)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of UINT8 If read, the actual value will be received. If written, the written value
is reflected in attribute #6 until a reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

6 Configured Value Get Array of UINT8 Holds the configured value, which will be written to attribute #5 after
the module has been reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

This attribute should not be set by the application at every power on, as this would cause certification
problems.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Anybus Module Objects 43 (176)

Instance Attributes (Instance #5, Gateway)
Value is used after module reset.

Name Access Data Type Description

1 Name Get Array of CHAR “Gateway”
(Multilingual, see Multilingual Strings, p. 47

2 Data type Get UINT8 04h (= UINT8)

3 Number of elements Get UINT8 04h (four elements)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of UINT8 If read, the actual value will be received. If written, the written value
is reflected in attribute #6 until a reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

6 Configured Value Get Array of UINT8 Holds the configured value, which will be written to attribute #5 after
the module has been reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

This attribute should not be set by the application at every power on, as this would cause certification
problems.

Instance Attributes (Instance #6, DHCP)
Value is used after module reset.

Name Access Data Type Description

1 Name Get Array of CHAR “DHCP”
(Multilingual, see Multilingual Strings, p. 47

2 Data type Get UINT8 08h (= ENUM)

3 Number of elements Get UINT8 01h (one element)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set ENUM Value
00h
01h

String
“Disable”
“Enable”

Meaning
DHCP disabled (default)
DHCP enabled
(Multilingual, see Multilingual Strings, p.
47

6 Configured Value Get ENUM Holds the configured value, which will be written to attribute #5 after
the module has been reset.
Value String Meaning

00h “Disable” DHCP disabled
01h “Enable” DHCP enabled

Instance Attributes (Instances #7 - #8)
(Reserved)

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Anybus Module Objects 44 (176)

Instance Attributes (Instance #9, DNS1)
This instance holds the address to the primary DNS server. Changes are valid after reset..

Name Access Data Type Description

1 Name Get Array of CHAR “DNS1”
(Multilingual, see Multilingual Strings, p. 47

2 Data type Get UINT8 04h (= UINT8)

3 Number of elements Get UINT8 04h (four elements)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of UINT8 If read, the actual value will be received. If written, the written value
is reflected in attribute #6 until a reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

6 Configured Value Get Array of UINT8 Holds the configured value, which will be written to attribute #5 after
the module has been reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

Instance Attributes (Instance #10, DNS2)
This instance holds the address to the secondary DNS server. Changes are valid after reset..

Name Access Data Type Description

1 Name Get Array of CHAR “DNS2”
(Multilingual, see Multilingual Strings, p. 47

2 Data type Get UINT8 04h (= UINT8)

3 Number of elements Get UINT8 04h (four elements)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of UINT8 If read, the actual value will be received. If written, the written value
is reflected in attribute #6 until a reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

6 Configured Value Get Array of UINT8 Holds the configured value, which will be written to attribute #5 after
the module has been reset.
Valid range: 0.0.0.0 - 255.255.255.255 (Default =0.0.0.0)

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Anybus Module Objects 45 (176)

Instance Attributes (Instance #11, Host name)
This instance holds the host name of the module. Changes are valid after reset..

Name Access Data Type Description

1 Name Get Array of CHAR “Host name”
(Multilingual, see Multilingual Strings, p. 47

2 Data type Get UINT8 07h (= CHAR)

3 Number of elements Get UINT8 40h (64 elements)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of CHAR If read, the actual value will be received. If written, the written value
is reflected in attribute #6 until a reset.
Host name, 64 characters

6 Configured Value Get Array of CHAR Holds the configured value, which will be written to attribute #5 after
the module has been reset.
Host name, 64 characters

Instance Attributes (Instance #12, Domain name)
This instance holds the domain name. Changes are valid after reset..

Name Access Data Type Description

1 Name Get Array of CHAR “Host name”
(Multilingual, see Multilingual Strings, p. 47

2 Data type Get UINT8 07h (= CHAR)

3 Number of elements Get UINT8 30h (48 elements)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of CHAR If read, the actual value will be received. If written, the written value
is reflected in attribute #6 until a reset.
Domain name, 48 characters

6 Configured Value Get Array of CHAR Holds the configured value, which will be written to attribute #5 after
the module has been reset.
Domain name, 48 characters

Instance Attributes (Instance #13, SMTP Server)
This instance holds the SMTP server address. Changes are valid after reset..

Name Access Data Type Description

1 Name Get Array of CHAR “SMTP server”
(Multilingual, see Multilingual Strings, p. 47

2 Data type Get UINT8 07h (= CHAR)

3 Number of elements Get UINT8 40h (64 elements)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of CHAR If read, the actual value will be received. If written, the written value
is reflected in attribute #6 until a reset.
SMTP server address, 64 characters.

6 Configured Value Get Array of CHAR Holds the configured value, which will be written to attribute #5 after
the module has been reset.
SMTP server address, 64 characters.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Anybus Module Objects 46 (176)

Instance Attributes (Instance #14, SMTP User)
This instance holds the user name for the SMTP account. Changes are valid after reset..

Name Access Data Type Description

1 Name Get Array of CHAR “SMTP user”
(Multilingual, see Multilingual Strings, p. 47

2 Data type Get UINT8 07h (= CHAR)

3 Number of elements Get UINT8 40h (64 elements)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of CHAR If read, the actual value will be received. If written, the written value
is reflected in attribute #6 until a reset.
SMTP account user name, 64 characters

6 Configured Value Get Array of CHAR Holds the configured value, which will be written to attribute #5 after
the module has been reset.
SMTP account user name, 64 characters

Instance Attributes (Instance #15, SMTP Password)
This instance holds the password for the SMTP account. Changes are valid after reset..

Name Access Data Type Description

1 Name Get Array of CHAR “SMTP Pswd”
(Multilingual, see Multilingual Strings, p. 47

2 Data type Get UINT8 07h (= CHAR)

3 Number of elements Get UINT8 40h (64 elements)

4 Descriptor Get UINT8 07h (read/write/shared access)

5 Value Get/Set Array of CHAR If read, the actual value will be received. If written, the written value
is reflected in attribute #6 until a reset.
SMTP account password, 64 characters

6 Configured Value Get Array of CHAR Holds the configured value, which will be written to attribute #5 after
the module has been reset.
SMTP account password, 64 characters

Instance Attributes (Instances #16 - #20)
(Reserved)

Instance Attributes (Instance #21, FSoE Address)
This instance holds the FSoE address when running Fail Safe over EtherCAT. Data written to the Value attribute
(#5) will be saved in nonvolatile memory.

Name Access Data Type Description

1 Name Get Array of CHAR FSoE Address
(Multilingual, see Multilingual Strings, p. 47

2 Data type Get UINT8 Data type: UINT16

3 Number of elements Get UINT8 One data element
4 Descriptor Get UINT8 Bit 0: 1 = read access

Bit 1: 1 = write access
5 Value Get/Set UINT16 FSoE address set by the host application

Range: 1–65535
Default: 1
Needs power cycle to be updated

6 Configured Value Get UINT16 Configured value for FSoE Address. The value always equals the value
of attribute #5.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Anybus Module Objects 47 (176)

Multilingual Strings
The instance names and enumeration strings in this object are multi-lingual, and are translated based on the
current language settings as follows:

Instance English German Spanish Italian French

1 Device ID Geräteadresse ID Dispos. ID Dispos. ID appareil

21 FSoE Address FSoE Adresse Dirección FSoE Indirizzo FSoE FSoE Adresse

Reset
When a factory default (reset) command is issued to this object, the configured Device ID will be set to 0
(default value).

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Anybus Module Objects 48 (176)

5.6 Socket Interface Object (07h)
Category
Extended

Object Description
This object provides direct access to the TCP/IP stack socket interface, enabling custom protocols to be
implemented over TCP/UDP.

Note that some of the commands used when accessing this object may require segmentation. A message will
be segmented if the amount of data sent or received is larger than the message channel can handle. For more
information, see Message Segmentation, p. 63.

The use of functionality provided by this object should only be attempted by users who are already familiar with socket
interface programming and who fully understands the concepts involved in TCP/IP programming.

Supported Commands

Object: Get_Attribute

Create (See below)

Delete (See below)

DNS_Lookup (See below)

Instance: Get_Attribute

Set_Attribute

Bind (See below)

Shutdown (See below)

Listen (See below)

Accept (See below)

Connect (See below)

Receive (See below)

Receive_From (See below)

Send (See below)

Send_To (See below)

P_Add_membership (See below)

IP_Drop_membership (See below)

Object Attributes (Instance #0)
Name Access Data Type Value

1 Name Get Array of CHAR “Socket interface”

2 Revision Get UINT8 01h
3 Number of instances Get UINT16 Number of opened sockets

4 Highest instance no. Get UINT16 Highest created instance number

11 Max. no. of instances Get UINT16 0008h (8 instances): BACnet/IP

0014h (20 instances): All other industrial Ethernet
networks

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Anybus Module Objects 49 (176)

Instance Attributes (Sockets #1...Max. no. of instances)
Extended

Name Access Data Type Description

1 Socket Type Get UINT8 Value: Socket Type

00h SOCK_STREAM, NONBLOCKING (TCP)

01h SOCK_STREAM, BLOCKING (TCP)

02h SOCK_DGRAM, NONBLOCKING (UDP)

03h SOCK_DGRAM, BLOCKING (UDP)

2 Port Get UINT16 Local port that the socket is bound to

3 Host IP Get UINT32 Host IP address, or 0 (zero) if not connected

4 Host port Get UINT16 Host port number, or 0 (zero) if not connected

5 TCP State Get UINT8 State (TCP sockets only):

Value State/Description

00h CLOSED Closed
01h LISTEN Listening for connection

02h SYN_SENT Active, have sent and received SYN

03h SYN_RECEIVED Have sent and received SYN

04h ESTABLISHED Established.
05h CLOSE_WAIT Received FIN, waiting for close

06h FIN_WAIT_1 Have closed, sent FIN

07h CLOSING Closed exchanged FIN; await FIN ACK

08h LAST_ACK Have FIN and close; await FIN ACK

09h FIN_WAIT_2 Have closed, FIN is acknowledged

Ah TIME_WAIT Quiet wait after close

6 TCP RX bytes Get UINT16 Number of bytes in RX buffers (TCP sockets only)

7 TCP TX bytes Get UINT16 Number of bytes in TX buffers (TCP sockets only)

8 Reuse address Get/Set BOOL Socket can reuse local address
Value
1
0

Meaning
Enabled
Disabled (default)

9 Keep alive Get/Set BOOL Protocol probes idle connection (TCP sockets only).
If the Keep alive attribute is set, the connection will be probed for the
first time after it has been idle for 120 minutes. If a probe attempt
fails, the connection will continue to be probed at intervals of 75s.
The connection is terminated after 8 failed probe attempts.

Value
1
0

Meaning
Enabled
Disabled (default)

10 IP Multicast TTL Get/Set UINT8 IP Multicast TTL value (UDP sockets only).
Default = 1.

11 IP Multicast Loop Get/Set BOOL IP multicast loop back (UDP sockets only)
Must belong to group in order to get the loop backed message

Value
1
0

Meaning
Enabled (default)
Disabled

12 (reserved)

13 TCP No Delay Get/Set BOOL Don’t delay send to coalesce packets (TCP).

Value
1
0

Meaning
Delay (default)
Don’t delay (turn off Nagle’s algorithm on socket)

14 TCP Connect
Timeout

Get/Set UINT16 TCP Connect timeout in seconds (default = 75s)

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Anybus Module Objects 50 (176)

Command Details: Create
Category

Extended

Details

Command Code 03h

Valid for: Object Instance

Description

This command creates a socket.

This command is only allowed in WAIT_PROCESS, IDLE and PROCESS_ACTIVE states.

• Command Details

Field Contents

CmdExt[0] (reserved, set to zero)

CmdExt[1] Value:
00h
01h
02h
03h

Socket Type:
SOCK_STREAM, NON-BLOCKING (TCP)
SOCK_STREAM, BLOCKING (TCP)
SOCK_DGRAM, NON-BLOCKING (UDP)
SOCK_DGRAM, BLOCKING (UDP)

• Response Details

Field Contents Comments
Data[0] Instance number (low) Instance number of the created socket.

Data[1] Instance number (high)

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Anybus Module Objects 51 (176)

Command Details: Delete
Category

Extended

Details

Command Code 04h

Valid for: Object Instance

Description

This command deletes a previously created socket and closes the connection (if connected).

• If the socket is of TCP-type and a connection is established, the connection is terminated with the RST-flag.

• To gracefully terminate a TCP-connection, it is recommended to use the ‘Shutdown’-command (see
below) before deleting the socket, causing the connection to be closed with the FIN-flag instead.

• Command Details

Field Contents Comments

CmdExt[0] Instance number to delete (low) Instance number of socket that shall be deleted.

CmdExt[1] Instance number to delete (high)

• Response Details

(no data)

Command Details: Bind
Category

Extended

Details

Command Code 10h

Valid for: Instance

Description

This command binds a socket to a local port.

• Command Details

Field Contents Comments

CmdExt[0] Requested port number (low) Set to 0 (zero) to request binding to any free port.

CmdExt[1] Requested port number (high)

• Response Details

Field Contents Comments

CmdExt[0] Bound port number (low) Actual port that the socket was bound to.

CmdExt[1] Bound port number (high)

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Anybus Module Objects 52 (176)

Command Details: Shutdown
Category

Extended

Details

Command Code 11h

Valid for: Instance

Description

This command closes a TCP-connection using the FIN-flag. Note that the response does not indicate if the
connection actually shut down, which means that this command cannot be used to poll non-blocking sockets,
nor will it block for blocking sockets.

• Command Details

Field Contents

CmdExt[0] (reserved, set to zero)

CmdExt[1] Value:
00h
01h
02h

Mode:
Shutdown receive channel
Shutdown send channel
Shutdown both receive- and send channel

• Response Details

(no data)

The recommended sequence to gracefully shut down a TCP connection is described below.

Application initiates shutdown:

1. Send shutdown with CmdExt[1] set to 01h. This will send FIN-flag to host shutting down the send channel,
note that the receive channel will still be operational.

2. Receive data on socket until error message Object specific error (EPIPE (13)) is received, indicating that
the host closed the receive channel. If host does not close the receive channel use a timeout and progress
to step 3.

3. Delete the socket instance. If step 2 timed out, RST-flag will be sent to terminate the socket.

Host initiates shutdown:

1. Receive data on socket, if zero bytes received it indicates that the host closed the receive channel of the
socket.

2. Try to send any unsent data to the host.

3. Send shutdown with CmdExt[1] set to 01h. This will send FIN-flag to host shutting down the send channel.

4. Delete the socket instance.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Anybus Module Objects 53 (176)

Command Details: Listen
Category

Extended

Details

Command Code 12h

Valid for: Instance

Description

This command puts a TCP socket in listening state.

• Command Details

Field Contents

CmdExt[0] (reserved, set to zero)

CmdExt[1] (reserved)

• Response Details

(no data)

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Anybus Module Objects 54 (176)

Command Details: Accept
Category

Extended

Details

Command Code 13h

Valid for: Instance

Description

This command accepts incoming connections on a listening TCP socket. A new socket instance is created for
each accepted connection. The new socket is connected with the host and the response returns its instance
number.

NONBLOCKING mode This command must be issued repeatedly (polled) for incoming connections. If no incoming
connection request exists, the module will respond with error code 0006h (EWOULDBLOCK).

BLOCKING mode This command will block until a connection request has been detected.

This command will only be accepted if there is a free instance to use for accepted connections. For blocking
connections, this command will reserve an instance.

• Command Details

(no data)

• Response Details

Field Contents

Data[0] Instance number for the connected socket (low byte)

Data[1] Instance number for the connected socket (high byte)

Data[2] Host IP address byte 4

Data[3] Host IP address byte 3

Data[4] Host IP address byte 2

Data[5] Host IP address byte 1

Data[6] Host port number (low byte)

Data[7] Host port number (high byte)

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Anybus Module Objects 55 (176)

Command Details: Connect
Category

Extended

Details

Command Code 14h

Valid for: Instance

Description

For SOCK-DGRAM-sockets, this command specifies the peer with which the socket is to be associated (to which
datagrams are sent and the only address from which datagrams are received).

For SOCK_STREAM-sockets, this command attempts to establish a connection to a host.

SOCK_STREAM-sockets may connect successfully only once, while SOCK_DGRAM-sockets may use this service
multiple times to change their association. SOCK-DGRAM-sockets may dissolve their association by connecting
to IP address 0.0.0.0, port 0 (zero).

NON-BLOCKING mode: This command must be issued repeatedly (polled) until a connection is connected, rejected or timed
out. The first connect-attempt will be accepted, thereafter the command will return error code 22
(EINPROGRESS) on poll requests while attempting to connect.

BLOCKING mode: This command will block until a connection has been established or the connection request is
cancelled due to a timeout or a connection error.

• Command Details

Field Contents

CmdExt[0] (reserved, set to zero)

CmdExt[1]

Data[0] Host IP address byte 4

Data[1] Host IP address byte 3

Data[2] Host IP address byte 2

Data[3] Host IP address byte 1

Data[4] Host port number (low byte)

Data[5] Host port number (high byte)

• Response Details

(no data)

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Anybus Module Objects 56 (176)

Command Details: Receive
Category

Extended

Details

Command Code 15h

Valid for: Instance

Description

This command receives data from a connected socket. Message segmentation may be used to receive up to
1472 bytes (for more information, see Message Segmentation, p. 63).

For SOCK-DGRAM-sockets, the module will return the requested amount of data from the next received
datagram. If the datagram is smaller than requested, the entire datagram will be returned in the response
message. If the datagram is larger than requested, the excess bytes will be discarded.

For SOCK_STREAM-sockets, the module will return the requested number of bytes from the received data
stream. If the actual data size is less than requested, all available data will be returned.

NON-BLOCKING mode: If no data is available on the socket, the error code 0006h (EWOULDBLOCK) will be returned.

BLOCKING mode: The module will not issue a response until the operation has finished.

If the module responds successfully with 0 (zero) bytes of data, it means that the host has closed the
connection. The send channel may however still be valid and must be closed using Shutdown and/or Delete.

• Command Details

Field Contents Comments

CmdExt[0] (reserved) (set to zero)

CmdExt[1] Segmentation Control bits For more information, see Message Segmentation, p. 63

Data[0] Receive data size (low) Only used in the first segment

Data[1] Receive data size (high)

• Response Details

The data in the response may be segmented (For more information, see Message Segmentation, p. 63).

Field Contents Comments

CmdExt[0] (reserved) (set to zero)

CmdExt[1] Segmentation Control bits For more information, see Message Segmentation, p. 63

Data[0...n] Received data -

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Anybus Module Objects 57 (176)

Command Details: Receive_From
Category

Extended

Details

Command Code 16h

Valid for: Instance

Description

This command receives data from an unconnected SOCK_DGRAM-socket. Message segmentation may be used
to receive up to 1472 bytes (For more information, see Message Segmentation, p. 63).

The module will return the requested amount of data from the next received datagram. If the datagram is
smaller than requested, the entire datagram will be returned in the response message. If the datagram is
larger than requested, the excess bytes will be discarded.

The response message contains the IP address and port number of the sender.

NON-BLOCKING mode: If no data is available on the socket, the error code 0006h (EWOULDBLOCK) will be returned.

BLOCKING mode: The module will not issue a response until the operation has finished.

• Command Details

Field Contents Comments

CmdExt[0] (reserved) (set to zero)

CmdExt[1] Segmentation Control bits For more information, see Message Segmentation, p. 63

Data[0] Receive data size (low byte) Only used in the first segment

Data[1] Receive data size (high byte)

• Response Details

The data in the response may be segmented (For more information, see Message Segmentation, p. 63).

Field Contents Comments

CmdExt[0] (reserved) (set to zero)

CmdExt[1] Segmentation Control bits For more information, see Message Segmentation, p. 63

Data[0] Host IP address byte 4 The host address/port information is only included in the first
segment. All data thereafter will start at Data[0]Data[1] Host IP address byte 3

Data[2] Host IP address byte 2

Data[3] Host IP address byte 1

Data[4] Host port number (low byte)

Data[5] Host port number (high byte)

Data[6...n] Received data

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Anybus Module Objects 58 (176)

Command Details: Send
Category

Extended

Details

Command Code 17h

Valid for: Instance

Description

This command sends data on a connected socket. Message segmentation may be used to send up to 1472
bytes (For more information, see Message Segmentation, p. 63).

NON-BLOCKING mode: If there isn’t enough buffer space available in the send buffers, the module will respond with error
code 0006h (EWOULDBLOCK)

BLOCKING mode: If there isn’t enough buffer space available in the send buffers, the module will block until there is.

• Command Details

To allow larger amount of data (i.e. >255 bytes) to be sent, the command data may be segmented (For
more information, see Message Segmentation, p. 63).

Field Contents Comments

CmdExt[0] (reserved) (set to zero)

CmdExt[1] Segmentation Control (For more information, see Message Segmentation, p. 63)

Data[0...n] Data to send -

• Response Details

Field Contents Comments

CmdExt[0] (reserved) (ignore)

CmdExt[1]

Data[0] Number of sent bytes (low) Only valid in the last segment

Data[1] Number of sent bytes (high)

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Anybus Module Objects 59 (176)

Command Details: Send_To
Category

Extended

Details

Command Code 18h

Valid for: Instance

Description

This command sends data to a specified host on an unconnected SOCK-DGRAM-socket. Message segmentation
may be used to send up to 1472 bytes (For more information, see appendix For more information, see
Message Segmentation, p. 63).

• Command Details

To allow larger amount of data (i.e. >255 bytes) to be sent, the command data may be segmented (For
more information, see Message Segmentation, p. 63).

Field Contents Comments

CmdExt[0] (reserved) (set to zero)

CmdExt[1] Segmentation Control For more information, see Message Segmentation, p. 63

Data[0] Host IP address byte 4 The host address/port information shall only be included in
the first segment. All data thereafter must start at Data[0]Data[1] Host IP address byte 3

Data[2] Host IP address byte 2

Data[3] Host IP address byte 1

Data[4] Host port number (low byte)

Data[5] Host port number (high byte)

Data[6...n] Data to send

• Response Details

Field Contents Comments

CmdExt[0] (reserved) (ignore)

CmdExt[1]

Data[0] Number of sent bytes (low byte) Only valid in the last segment

Data[1] Number of sent bytes (high byte)

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Anybus Module Objects 60 (176)

Command Details: IP_Add_Membership
Category

Extended

Details

Command Code 19h

Valid for: Instance

Description

This command assigns the socket an IP multicast group membership. The module always joins the “All hosts
group” automatically, however this command may be used to specify up to 20 additional memberships.

• Command Details

Field Contents

CmdExt[0] (reserved, set to zero)

CmdExt[1]

Data[0] Group IP address byte 4

Data[1] Group IP address byte 3

Data[2] Group IP address byte 2

Data[3] Group IP address byte 1

• Response Details

(no data)

Command Details: IP_Drop_Membership
Category

Extended

Details

Command Code 1Ah

Valid for: Instance

Description

This command removes the socket from an IP multicast group membership.

• Command Details

Field Contents

CmdExt[0] (reserved, set to zero)

CmdExt[1]

Data[0] Group IP address byte 4

Data[1] Group IP address byte 3

Data[2] Group IP address byte 2

Data[3] Group IP address byte 1

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Anybus Module Objects 61 (176)

• Response Details

(no data)

Command Details: DNS_Lookup
Category

Extended

Details

Command Code 1Bh

Valid for: Object

Description

This command resolves the given host name and returns the IP address.

• Command Details

Field Contents Comments

CmdExt[0] (reserved) (set to zero)

CmdExt[1]

Data[0... N] Host name Host name to resolve

• Response Details (Success)

Field Contents Comments

CmdExt[0] (reserved) (set to zero)

CmdExt[1]

Data[0] IP address byte 4 IP address of the specified host

Data[1] IP address byte 3

Data[2] IP address byte 2

Data[3] IP address byte 1

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Anybus Module Objects 62 (176)

Socket Interface Error Codes (Object Specific)
The following object-specific error codes may be returned by the module when using the socket interface
object.

Error Code Name Meaning

1 ENOBUFS No internal buffers available
2 ETIMEDOUT A timeout event occurred
3 EISCONN Socket already connected

4 EOPNOTSUPP Service not supported

5 ECONNABORTED Connection was aborted
6 EWOULDBLOCK Socket cannot block because unblocking socket type

7 ECONNREFUSED Connection refused
8 ECONNRESET Connection reset
9 ENOTCONN Socket is not connected
10 EALREADY Socket is already in requested mode

11 EINVAL Invalid service data
12 EMSGSIZE Invalid message size

13 EPIPE Error in pipe

14 EDESTADDRREQ Destination address required

15 ESHUTDOWN Socket has already been shutdown

16 (reserved) -

17 EHAVEOOB Out of band data available
18 ENOMEM No internal memory available

19 EADDRNOTAVAIL Address is not available
20 EADDRINUSE Address already in use

21 (reserved) -

22 EINPROGRESS Service already in progress

28 ETOOMANYREFS Too many references

101 Command aborted If a command is blocking on a socket, and that socket is closed using the Delete
command, this error code will be returned to the blocking command.

102 DNS name error Failed to resolve the host name (name error response from DNS server.

103 DNS timeout Timeout when performing a DNS lookup.

104 DNS command failed Other DNS error.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Anybus Module Objects 63 (176)

Message Segmentation
General

Category: Extended

The maximum message size supported by the Anybus CompactCom 40 is normally 1524 bytes. In some
applications a maximum message size of 255 bytes is supported, e.g. if an Anybus CompactCom 40 is to
replace an Anybus CompactCom 30 without any changes to the application. The maximum socket message size
is 1472. To ensure support for socket interface messages larger than 255 bytes a segmentation protocol is used.

The segmentation bits have to be set for all socket interface messages, in the commands where segmentation can be
used, whether the messages have to be segmented or not.

The segmentation protocol is implemented in the message layer and must not be confused with the
fragmentation protocol used on the serial host interface. Consult the general Anybus CompactCom 40 Software
Design Guide for further information.

The module supports 1 (one) segmented message per instance

Command Segmentation

When a command message is segmented, the command initiator sends the same command header multiple
times. For each message, the data field is exchanged with the next data segment.

Command segmentation is used for the following commands (Socket Interface Object specific commands):

• Send

• Send To

When issuing a segmented command, the following rules apply:

• When issuing the first segment, FS must be set.

• When issuing subsequent segments, both FS and LS must be cleared.

• When issuing the last segment, the LF-bit must be set.

• For single segment commands (i.e. size less or equal to the message channel size), both FS and LS must be
set.

• The last response message contains the actual result of the operation.

• The command initiator may at any time abort the operation by issuing a message with AB set.

• If a segmentation error is detected during transmission, an error message is returned, and the current
segmentation message is discarded. Note however that this only applies to the current segment;
previously transmitted segments are still valid.

Segmentation Control Bits (Command)

Bit Contents Meaning

0 FS Set if the current segment is the first segment

1 LS Set if the current segment is the last segment

2 AB Set if the segmentation shall be aborted

3...7 (reserved) Set to 0 (zero)

Segmentation Control Bits (Response)

Bit Contents Meaning

0... 7 (reserved) Ignore

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Anybus Module Objects 64 (176)

Response Segmentation

When a response is segmented, the command initiator requests the next segment by sending the same
command multiple times. For each response, the data field is exchanged with the next data segment.

Response segmentation is used for responses to the following commands (Socket Interface Object specific
commands):

• Receive

• Receive From

When receiving a segmented response, the following rules apply:

• In the first segment, FS is set.

• In all subsequent segment, both FS and LS are cleared.

• In the last segment, LS is set.

• For single segment responses (i.e. size less or equal to the message channel size), both FS and LS are set.

• The command initiator may at any time abort the operation by issuing a message with AB set.

Segmentation Control bits (Command)

Bit Contents Meaning

0 (reserved) (set to zero)
1
2 AB Set if the segmentation shall be aborted

3...7 (reserved) Set to 0 (zero)

Segmentation Control bits (Response)

Bit Contents Meaning

0 FS Set if the current segment is the first segment

1 LS Set if the current segment is the last segment

2...7 (reserved) Set to 0 (zero)

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Anybus Module Objects 65 (176)

5.7 SMTP Client Object (09h)
Category
Extended

Object Description
This object groups functions related to the SMTP client.

Supported Commands

Object: Get_Attribute

Create

Delete

Send e-mail from file (see below)

Instance: Get_Attribute

Set_Attribute

Send e-mail (see below)

Object Attributes (Instance #0)
Name Access Data Type Value

1 Name Get Array of CHAR “SMTP Client”

2 Revision Get UINT8 01h
3 Number of instances Get UINT16 -

4 Highest instance no. Get UINT16 -

11 Max. no. of instances Get UINT16 0006h
12 Success count Get UINT16 Reflects the no. of successfully sent messages

13 Error count Get UINT16 Reflects the no. of messages that could not be delivered

Instance Attributes (Instance #1)
Instances are created dynamically by the application.

Name Access Data Type Description

1 From Get/Set Array of CHAR e.g. “someone@somewhere.com”

2 To Get/Set Array of CHAR e.g.“ someone.else@anywhere.net”

3 Subject Get/Set Array of CHAR e.g. “Important notice”

4 Message Get/Set Array of CHAR e.g.“Shut down the system”

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Anybus Module Objects 66 (176)

Command Details: Create
Category

Extended

Details

Command Code 03h

Valid for: Object

Description

This command creates an e-mail instance.

• Command Details

Field Contents Comments

CmdExt[0] (reserved) (set to zero)

CmdExt[1]

• Response Details

Field Contents Comments

CmdExt[0] (reserved) (ignore)

CmdExt[1]

Data[0] Instance number low byte

Data[1] high byte

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Anybus Module Objects 67 (176)

Command Details: Delete
Category

Extended

Details

Command Code 04h

Valid for: Object

Description

This command deletes an e-mail instance.

• Command Details

Field Contents Comments

CmdExt[0] E-mail instance number low byte

CmdExt[1] high byte

• Response Details

(no data)

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Anybus Module Objects 68 (176)

Command Details: Send E-mail From File
Category

Extended

Details

Command Code 11h

Valid for: Object

Description

This command sends an e-mail based on a file in the file system.

The file must be a plain ASCII-file in the following format:

[To]
recipient

[From]
sender

[Subject]
email subject

[Headers]
extra headers, optional

[Message]
actual email message

• Command Details

Field Contents

CmdExt[0] (reserved, set to zero)

CmdExt[1]

Data[0... n] Path + filename of message file

• Response Details

(no data)

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Anybus Module Objects 69 (176)

Command Details: Send E-mail
Category

Extended

Details

Command Code 10h

Valid for: Instance

Description

This command sends the specified e-mail instance.

• Command Details

(no data)

• Response Details

(no data)

Object Specific Error Codes
Error Codes Meaning

1 SMTP server not found
2 SMTP server not ready

3 Authentication error
4 SMTP socket error
5 SSI scan error
6 Unable to interpret e-mail file

255 Unspecified SMTP error

(other) (reserved)

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Anybus Module Objects 70 (176)

5.8 Network Ethernet Object (0Ch)
Category
Extended

Object Description
This object provides Ethernet-specific information to the application.

Supported Commands

Object: Get_Attribute

Instance: Get_Attribute

Object Attributes (Instance #0)
Name Access Data Type Value

1 Name Get Array of CHAR “Network Ethernet”

2 Revision Get UINT8 01h
3 Number of instances Get UINT16 3
4 Highest instance no. Get UINT16 3

Instance Attributes (Instance #1)
Name Access Data Type Description

1 MAC Address Get Array of UINT8 Reserved, used for backwards compatibility.
(Device MAC address.)
(See also Ethernet Host Object (F9h), p. 92)

2 - 3 (reserved)

4 MAC Address Get Array of UINT8 Device MAC address

5 - 6 (reserved)

Instance Attributes (Instance #2)
Name Access Data Type Description

1 - 4 (reserved)

5 Interface Counters Get Array of
UINT32

See table below for array indexes.

6 Media Counters Get Array of
UINT32

See table below for array indexes.

Instance Attributes (Instance #3)
(reserved)

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Anybus Module Objects 71 (176)

Interface Counters
Array indexes of Interface Counters attribute (#5)

Index Name Description

0 In octets Octets received on the interface
1 In Unicast Packets Unicast packets received on the interface

2 In Non-Unicast Packets Non-unicast packets (multicast/broadcast) packets received on the interface

3 In Discards Inbound packets received on the interface but discarded

4 In Errors Inbound packets that contain errors (does not include In Discards)

5 In Unknown Protos Inbound packets with unknown protocol

6 Out Octets Octets transmitted on the interface
7 Out Unicast packets Unicast packets transmitted on the interface

8 Out Non-Unicast Packets Non-unicast (multicast/broadcast) packets transmitted on the interface

9 Out Discards Outbound packets discarded

10 Out Errors Outbound packets that contain errors

Media Counters
Array indexes of Media Counters attribute (#6)

Index Name Description

0 AlignmentErrors; Frames received that are not an integral number of octets in length

1 FCSErrors; Frames received that do not pass the FCS check

2 SingleCollisions; Successfully transmitted frames which experienced exactly one collision

3 MultipleCollisions; Successfully transmitted frames which experienced more than one collision

4 SQETestErrors; Number of times SQE test error is generated

5 DeferredTransmissions; Frames for which first transmission attempt is delayed because the medium is busy

6 LateCollisions; Number of times collision is detected later than 512 bit-times into the transmission
of a packet

7 ExcessiveCollisions; Frames for which transmission fails due to excessive collisions

8 lMACTransmitErrors; Frames for which transmission fails due to an internal MAC sublayer transmit error

9 lCarrieSenseErrors; Times that the carrier sense condition was lost or never asserted when attempting
to transmit a frame

10 lFrameTooLong; Frames received that exceed the maximum permitted frame size

11 lMACRecieveErrors; Frames for which reception on an interface fails due to an internal MAC sublayer
receive error

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Anybus Module Objects 72 (176)

5.9 Functional Safety Module Object (11h)
Category
Extended

Object Description
This object contains information provided by the Safety Module connected to the Anybus CompactCom
module. Please consult the manual for the Safety Module used, for values of the attributes below.

Supported Commands

Object: Get_Attribute

Error_Confirmation

Set_IO_Config_String

Get_Safety_Output_PDU

Get_Safety_Input_PDU

Instance: Get_Attribute

Object Attributes (Instance #0)
Name Access Data Type Value

1 Name Get Array of CHAR “Functional Safety Module”

2 Revision Get UINT8 01h
3 Number of instances Get UINT16 0001h
4 Highest instance no. Get UINT16 0001h

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Anybus Module Objects 73 (176)

Instance Attributes (Instance #1)
Name Access Data Type Description

1 State Get UINT8 Current state of the Safety Module
Please consult the manual for the Safety Module used.

2 Vendor ID Get UINT16 Identifies vendor of the Safety Module.
E.g. 0001h (HMS Industrial Networks)
Please consult the manual for the Safety Module used.

3 IO Channel ID Get UINT16 Describes the IO Channels that the Safety Module is equipped with.
Please consult the manual for the Safety Module used.

4 Firmware version Get Struct of
UINT8 (Major)
UINT8 (Minor)
UINT8 (Build)

Safety Module firmware version.
Format: version “2.18.3” would be represented as: first byte = 0x02,
second byte = 0x12, third byte = 0x03.

5 Serial number Get UINT32 32 bit number, assigned to the Safety Module at production.
Please consult the manual for the Safety Module used.

6 Output data Get Array of UINT8 Current value of the Safety Module output data, i.e. data FROM the
network
Note: This data is unsafe, since it is provided by the Anybus
CompactCom module.

7 Input data Get Array of UINT8 Current value of the Safety Module input data, i.e. data sent TO the
network.
Note: This data is unsafe, since it is provided by the Anybus
CompactCom module.

8 Error counters Get Struct of
UINT16 (ABCC
DR)
UINT16 (ABCC
SE)
UINT16 (SM
DR)
UINT16 (SM
SE)

Error counters (each counter stops counting at FFFFh)

ABCC DR: Responses (unexpected) from the Safety Module,
discarded by the Anybus CompactCom module.

ABCC SE: Serial reception errors detected by the Anybus
CompactCom module.

SM DR: Responses (unexpected) from the Anybus
CompactCom module, discarded by the Safety
Module.

SM SE: Serial reception errors detected by the Safety
Module.

9 Event log Get Array of UINT8 Latest Safety Module event information (if any) is logged to this
attribute. Any older event information is erased when a new event is
logged.
For evaluation by HMS support.

10 Exception information Get UINT8 If the Exception Code in the Anybus object is set to “Safety
communication error” (09h), additional exception information is
presented here, see table below.

11 Bootloader version Get Struct of
UINT8 Major
UINT8 Minor

Safety Module bootloader version.
Format: version “2.12” would be represented as: first byte = 0x02,
second byte = 0x0C

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Anybus Module Objects 74 (176)

Exception Information

If Exception Code 09h is set in the Anybus object, there is an error regarding the functional safety module in
the application. Exception information is presented in instance attribute #10 according to this table:

Value Exception Information

00h No information
01h Baud rate not supported

02h No start message

03h Unexpected message length

04h Unexpected command in response

05h Unexpected error code

06h Safety application not found

07h Invalid safety application CRC

08h No flash access
09h Answer from wrong safety processor during boot loader communication

0Ah Boot loader timeout
0Bh Network specific parameter error

0Ch Invalid IO configuration string

0Dh Response differed between the safety microprocessors (e.g. different module types)

0Eh Incompatible module (e.g. supported network)

0Fh Max number of retransmissions performed (e.g. due to CRC errors)

10h Firmware file error
11h The cycle time value in attribute #4 in the Functional Safety Host Object can not be used with the current baud

rate
12h Invalid SPDU input size in start-up telegram

13h Invalid SPDU output size in start-up telegram

14h Badly formatted input SPDU

15h Anybus to safety module initialization failure

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Anybus Module Objects 75 (176)

Command Details: Error_Confirmation
Category

Extended

Details

Command Code 10h

Valid for: Object

Description

When the Safety Module has entered the Safe State, for any reason, it must receive an error confirmation
before it can leave the Safe State. With this command it is possible to reset all safety channels of the safety
which, for any reason, are in the Safe State at the same time. The application issues this command to the
Anybus CompactCom module, when an error has been cleared by for example an operator. The Anybus
CompactCom forwards the command to the Safety Module.

The channel Safe State can also be confirmed by the safety PLC or by the safety module.

With this command

• Command Details

(no data)

• Response Details

(no data)

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Anybus Module Objects 76 (176)

Command Details: Set_IO_Config_String
Category

Extended

Details

Command Code 11h

Valid for: Object

Description

This command is sent from the host application when there is a need to change the default configuration of
the safety inputs and outputs. This string is used by networks where there are no other means (e.g. PLC or
some other tool) to provide the configuration to the safety module. Consult the specification of the safety
module for more information. The byte string passed is generated by HMS and need to be passed unmodified
using this command.

Information about this string is located in the specification of the safety module to which the string shall be
sent.

• Command Details

Field Contents

CmdExt[0] (not used)

CmdExt[1]

Data[0... n] Data (byte string)
The data consists of an IO configuration string, where the data format depends on the safety network.

• Response Details

(no data)

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Anybus Module Objects 77 (176)

Command Details: Get_Safety_Output_PDU
Category

Extended

Details

Command Code 12h

Valid for: Object

Description

This command can be issued by the application to get the complete safety output PDU sent by the PLC. The
Anybus CompactCom 40 EtherCAT will respond with the complete safety PDU, that the application then has to
interpret.

• Command Details

(no data)

• Response Details

Field Contents

CmdExt[0] (not used)

CmdExt[1]

Data[0... n] Safety PDU from PLC

Command Details: Get_Safety_Input_PDU
Category

Extended

Details

Command Code 13h

Valid for: Object

Description

This command can be issued by the application to get the complete safety input PDU sent by the safety
module. The Anybus CompactCom 40 EtherCAT will respond with the complete safety PDU, that the
application then has to interpret.

• Command Details

(no data)

• Response Details

Field Contents

CmdExt[0] (not used)

CmdExt[1]

Data[0... n] Safety PDU from safety module

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Anybus Module Objects 78 (176)

Object Specific Error Codes
Error Code Description Comments

01h The safety module rejected a message. Error code sent by safety module is found in MsgData[2] and MsgData[3].

02h Message response from the safety
module has incorrect format (for
example, wrong length).

-

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Host Application Objects 79 (176)

6 Host Application Objects
6.1 General Information

This chapter specifies the host application object implementation in the module. The objects
listed here may optionally be implemented within the host application firmware to expand the
EtherCAT implementation.

Standard Objects:

• Application Object (see Anybus CompactCom 40 Software Design Guide)

• Application File System Interface Object (see Anybus CompactCom 40 Software Design
Guide)

• Functional Safety Object (E8h), p. 80

• Assembly Mapping Object (EBh), p. 82

• Sync Object (EEh), p. 83

• Modular Device Object (see Anybus CompactCom 40 Software Design Guide)

• Application Data Object (see Anybus CompactCom 40 Software Design Guide)

• Ethernet Host Object (F9h), p. 92

Network Specific Objects:

• EtherCAT Object (F5h), p. 85

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Host Application Objects 80 (176)

6.2 Functional Safety Object (E8h)
Category
Extended

Object Description

Do not implement this object if a safety module is not used.

This object specifies the safety settings of the application. It is mandatory if Functional Safety is to be
supported and a Safety Module is connected to the Anybus CompactCom module.

Supported Commands

Object: Get_Attribute

Instance: Get_Attribute

Object Attributes (Instance #0)
Name Access Data Type Value

1 Name Get Array of CHAR “Functional Safety”

2 Revision Get UINT8 01h
3 Number of instances Get UINT16 0001h
4 Highest instance no. Get UINT16 0001h

Instance Attributes (Instance #1)
Name Access Data Type Default Value Comment

1 Safety enabled Get BOOL - When TRUE, enables communication with the Safety
Module.
Note: If functional safety is not supported, this
attribute must be set to FALSE.

2 Baud Rate Get UINT32 1020 kbit/s This attribute sets the baud rate of the
communication in bits/s between the Anybus
CompactCom and the Safety Module.
Valid values:

• 625 kbit/s

• 1000 kbit/s

• 1020 kbit/s (default)

Any other value set to this attribute, will cause the
module to enter the EXCEPTION state.
The attribute is optional. If not implemented, the
default value will be used.
Note: The host application shall never implement
this attribute when using the IXXAT Safe T100.

3 (reserved)

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Host Application Objects 81 (176)

Name Access Data Type Default Value Comment

4 Cycle Time Get UINT8 - Communication cycle time between the Anybus and
the Safety module in milliseconds.
Note: The host application shall never implement
this attribute when using the IXXAT Safe T100.
Valid values:

• 2 ms

• 4 ms

• 8 ms

• 16 ms

If another value is set in this attribute the Anybus
will enter Exception state.
Optional attribute; If not implemented the minimum
cycle time for the chosen baud rate will be used:

• 2 ms for 1020 kbit/s

• 2 ms for 1000 kbit/s

• 4 ms for 625 kbit/s

The Anybus CompactCom validates the cycle time
according to the minimum values above. If e.g. baud
rate is 625 kbit/s and the cycle time is set to 2 ms
the Anybus CompactCom will enter the EXCEPTION
state.

5 FW upgrade in progress Set BOOL False Indicates if the Anybus CompactCom is upgrading
the connected Safety module firmware. This means
that the Anybus CompactCom will stay in the NW_
INIT state longer than normal.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Host Application Objects 82 (176)

6.3 Assembly Mapping Object (EBh)
Category
Extended

Object Description
If the application has implemented this object, the object will replace the PDO mapping created when the
application is started. The original mapping will be replaced during the transition from PRE-OPERATIONAL state
to SAFE-OPERATIONAL state. The application must support the Remap_ADI commands, if this object is to be
implemented.

Each instance in the Assembly Mapping Object corresponds to one PDO. The first read assembly is mapped to
object 1600h in the object dictionary, the second to 1601h and so on. Similarly, the first write assembly is
mapped to object 1A00h, the second to 1A01h and so on. Up to 64 each of read and write assembly instances
are supported.

The table below illustrates an example on how PDO mapping object numbers are assigned for different
assembly mapping object instances.

Instance no. Direction PDO mapping object number

1 Write 1A00h
2 Read 1600h
3 Write 1A01h
4 Read 1601h
5 Read 1602h

Each assembly mapping instances supports up to 254 ADI elements, corresponding to one full PDO on
EtherCAT.

If the Modular Device Object is implemented in the host application, i.e. modular device profile is enabled, the
settings of this objects will be ignored.

See also ..

• Anybus CompactCom 40 Software Design Guide, “Assembly Mapping Object”

Standard Objects, p. 24 for assembly to PDO mapping.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Host Application Objects 83 (176)

6.4 Sync Object (EEh)
Category
Extended

Object Description
This object implements the host application SYNC settings.

The implementation of this object is optional; if it is not implemented, the module only supports the EtherCAT
Free Run mode.

If there is any problem with the configuration of the sync functionality as a whole, the application must
indicate this in the application status register. The module will then change EtherCAT states to SafeOp and
indicate the problem in the ALStatusCode register, see Application Status Register, p. 147

See also ...

• Anybus CompactCom 40 Software Design Guide, “Sync”

• Anybus CompactCom 40 Software Design Guide, “Sync Object”

Supported Commands

Object: Get_Attribute

Instance: Get_Attribute

Set_Attribute

Object Attributes (Instance #0)
(Consult the general Anybus CompactCom 40 Software Design Guide for further information.)

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Host Application Objects 84 (176)

Instance Attributes (Instance #1)
Extended

The attributes are represented on EtherCAT as follows:

Name Access Type Default
Value

Comment

1 Cycle time Get/Set UINT32 Application cycle time in nanoseconds.Replaces the setting in
object entry 1C32h, subindex 2. (SM Output Parameter, Cycle
time)

2 Output valid Get/Set UINT32 0 Output valid point relative to SYNC events, in nanoseconds.
Replaces the setting in object entry 1C32h, subindex 3. (SM
Output Parameter, Shift time)

3 Input capture Get/Set UINT32 0 Input capture point relative to SYNC events, in nanoseconds.
Replaces the setting in object entry 1C33, subindex 3. (SM
Input Parameter, Shift time)

4 Output processing Get UINT32 Minimum required time, in nanoseconds, between RDPDI
interrupt and valid output.
Specifies the value of object entry 1C32h, subindex 6. (SM
Output Parameter, Output Calc and Copy Time)
The Anybus latency is added to this value before it is
presented on EtherCAT.

5 Input processing Get UINT32 Maximum required time, in nanoseconds, from "Input
capture" until write process data has been completely
written to the Anybus CompactCom module.
Specifies the value of object entry 1C33h, subindex 6. (SM
Input Parameter, Input Calc and Copy Time)
The Anybus latency is added to this value before it is
presented on EtherCAT.

6 Min cycle time Get UINT32 Minimum cycle time supported by the application.
Specifies the values of object entries 1C32h and 1C33h,
subindex 5. (SM Output and SM Input Parameters, Minimum
cycle time)

7 Sync mode Get/Set UINT16 Selection of synchronization mode. The attribute enumerates
the bits in attribute 8.
0: Free Run (no sync)
1: Synced with DC
Specifies the values of object entries 1C32h and 1C33h,
subindex 1. (SM Output and SM Input Parameters,
Synchronization type).

8 Supported sync modes Get UINT16 A list of the synchronization modes the application supports.
Each bit corresponds to a mode in attribute 7.
Bit 0: 1 = Free run supported
Bit 1: 1 = DC supported
Specifies the values of object entries 1C32h and 1C33h,
subindex 4. (SM Output and Input Parameters,
Synchronization types supported)

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Host Application Objects 85 (176)

6.5 EtherCAT Object (F5h)
Category
Basic, extended

Object Description
This object implements EtherCAT specific settings in the host application.

The implementation of this object is optional; the host application can support none, some, or all of the
attributes specified below. The module will attempt to retrieve the values of these attributes during startup; if
an attribute is not implemented in the host application, simply respond with an error message (06h, “Invalid
CmdExt[0]”). In such case, the module will use its default value.

If the module attempts to retrieve a value of an attribute not listed below, respond with an error message
(06h, “Invalid CmdExt[0]”).

Support for this object is optional. If implemented, it is highly recommended to support all attributes in the range 1... 6.

To pass conformance tests, the end product has to have a Vendor ID valid for the end product vendor.

See also...

• Anybus CompactCom 40 Software Design Guide, “Error Codes”

Supported Commands

Object: Get_Attribute

Get_Object_Description

Instance: Get_Attribute

Set_Attribute

Object Attributes (Instance #0)
Name Access Type Value

1 Name Get Array of
CHAR

“EtherCAT”

2 Revision Get UINT8 01h
3 Number of instances Get UINT16 0001h
4 Highest instance no. Get UINT16 0001h

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Host Application Objects 86 (176)

Instance Attributes (Instance #1)
Basic

Name Access Type Default Value Comment

1 Vendor ID Get UINT32 E000 001Bh These values replace the settings in object entry 1018h.
(Identity Object)
Note: The default Vendor ID is an HMS secondary
Vendor ID, that cannot be used when running the
conformance test tool.

Extended

Name Access Type Default Value Comment

2 Product Code Get UINT32 0000 0036h These values replace the settings in object entry 1018h.
(Identity Object)3 Major revision Get UINT16 Major revision

4 Minor revision Get UINT16 Minor revision
5 Serial Number Get UINT32 Unique number,

assigned at
production

6 Manufacturer
Device Name

Get Array of
CHAR (Max.
64 bytes)

“CompactCom 40
EtherCAT”

Replaces object entry 1008h
(Manufacturer Device Name)

7 Manufacturer
Hardware Version

Get Array of
CHAR (Max.
64 bytes)

X.YY (major version.
minor version)

Specifies the value of object entry 1009h
(Manufacturer Hardware Version)

8 Manufacturer
Software Version

Get Array of
CHAR (Max.
64 bytes)

X.YY.ZZ (major
version.minor
version. build)

Specifies the value of object entry 100Ah
(Manufacturer Software Version)

9 ENUM ADIs Get Array of
UINT16

- By default. ENUMs will be translated to UNSIGNED8 on
EtherCAT. By implementing this attribute, ENUMs will be
translated to ENUMs on the bus as well. The attributes
shall contain a sorted list of ADI instance numbers which
are of type ENUM.
If this attribute is implemented, also implement the
optional Application Data Instance attribute #6 (‘Max.
Value’) of all ENUM ADIs, since this improves
performance and functionality of ENUMs on the bus
significantly.

10 Device Type Get UINT32 0000 0000h If implemented, this value replaces the default value for
object entry 1000h (Device type).

11 Write PD assembly
instance translation

Get Array of
UINT16

Empty This attribute can be used by the application to change
the default TxPDO mapping object of Write PD instances
in the Assembly Mapping Object. It corresponds to
attribute 11 in the Assembly Mapping Object, "Write PD
Instance List".
Each index in the array contains the TxPDO mapping
object number that is used for the instance on the same
index in the "Write PD Instance List" attribute.
Valid values: 1A00h - 1BFFh.

12 Read PD assembly
instance translation

Get Array of
UINT16

Empty This attribute can be used by the application to change
the default RxPDO mapping object of Read PD instances
in the Assembly Mapping Object. It corresponds to
attribute 12 in the Assembly Mapping Object, "Read PD
Instance List".
Each index in the array contains the RxPDO mapping
object number that is used for the instance on the same
index in the "Read PD Instance List" attribute.
Valid values: 1600h - 17FFh.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Host Application Objects 87 (176)

Name Access Type Default Value Comment

13 ADI translation Get Array of
Struct
{
UINT16
UINT16
}

Empty This attribute can be used by the application to
implement objects in the communication profile specific
CoE object area (1000h - 1FFFh). Objects already
implemented in the module cannot be replaced by ADIs.
The attribute is implemented as an array of packed
structs of two UINT16. The first UINT16 contains the ADI
instance number, the second contains the object index
that the ADI shall correspond to.
See ADI Translation, Example, p. 91

14 (Reserved) - - - (Reserved for future use)

15 Object subindex
translation

Get Array of
Struct
{
UINT16
UINT16
UINT8
}

Empty This attribute can be used by the application to
implement subindexes of objects in the profile specific
CoE object area (0x1000-0x1FFF). Subindexes already
implemented in the module cannot be replaced by ADIs
and this attribute can only be used to add subindexes to
objects explicitly defined in the module to be extendable.
The attribute is implemented as an array of packed
Structs of two UINT16 and one UINT8. The first UINT16
contains the ADI instance number, the second contains
the object index that the ADI shall correspond to. The
UINT8 contains the subindex of the latter object that the
ADI shall correspond to.
An object dictionary index/subindex entry may only be
translated to an ADI of type VAR. Translating the entry to
an ADI of type ARRAY or RECORD is not supported.
See:Object Subindex Translation, Example, p. 91

16 Enable FoE Get BOOL TRUE (=1) This attribute enables/disables functionality related to
File access over EtherCAT. If FoE is disabled it is not
possible to upgrade firmware via EtherCAT or access the
Application File System Interface Object (EAh) via
EtherCAT.
FoE is not supported for Anybus IP.

17 Enable EoE Get BOOL TRUE (=1) Enables/Disables functionality related to Ethernet over
EtherCAT. If EoE is disabled the module will not accept
any mailbox requests of EoE type and no IT functionality
in the module will be usable.

18 Change shift reg
switch functionality

Get BOOL FALSE (=0) Normally when running shift register operation mode,
switch 1 is used for the last octet of the IP address and
switch 2 is used for the Device ID. If this attribute is set
to TRUE this behavior is changed so switch 1 is used for
Device ID and switch 2 is used for the last octet of the IP
address.

19 Set Device ID as
Configured station
alias

Get BOOL FALSE (=0) Normally the Configured station alias value can only be
set from the EtherCAT configuration tool. This is the case
when this attribute is either false or not implemented. If
this attribute is set to True, the value set to instance 1 of
the network configuration object (Device ID) will be set
to the configured station alias as well (both the register
0x0012 and the EEPROM).

20 EtherCAT state Set UINT8 1 (=INIT) Whenever the EtherCAT state of the CompactCom is
changed the module will write the new state to this
attribute.

1: INIT
2: PRE-OPERATIONAL
3: BOOT
4: SAFE-OPERATIONAL
8: OPERATIONAL

Note: Since this attribute is set using the acyclic message
channel it should not be relied upon for checking e.g.
process data validity. Use the CompactCom state for such
information.
Note:Writes towards this attribute are informational
only, it is not possible for the host application to NAK a
state transition by returning an error on the Set_
Attribute request.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Host Application Objects 88 (176)

Name Access Type Default Value Comment

21 State transition
timeouts

Get Array of
UINT32[4]

[1000, 5000, 1000,
200]

This attribute can be implemented to change the
EtherCAT state transition timeouts. The attribute is an
array of UINT32 with 4 elements where each element
means the following:

0: PreopTimeout in milliseconds. Timeout for the INIT-
>PREOP and INIT->BOOT transitions. Corresponds to ESI
element PreopTimeout.

1: SafeopOpTimeout in milliseconds. Timeout for the
SAFEOP->OP and PREOP->SAFEOP transitions.
Corresponds to ESI element SafeopOpTimeout.

2: BackToInitTimeout in milliseconds. Timeout for all
state transitions back to the INIT state. Corresponds to
ESI element BackToInitTimeout.

3: BackToSafeopTimeout in milliseconds. Timeout for the
OP->SAFEOP transition. Corresponds to ESI element
BackToSafeopTimeout.
See section below for more information about state
transition timeouts

22 Compare identity
lists

Get BOOL TRUE (=1) This attribute is only relevant when using the modular
device profile.
When set to false the module will not compare the
configured and detected module identity lists on the
PREOP to SAFEOP transition.

23 FSoE status
indicator

Set ENUM 255 (=Status not
indicated)

This attribute is only relevant when safety over EtherCAT
is enabled.
This attribute is used by the host to update the FSoE
status LED. When the CompactCom module gets a LED
state change from the safety module this attribute is
updated.
0 = OFF
1 = Blinking
2 = ON
3 = Single flash
4 = Flickering
5 = Flickering with 1 flash
6 = Flickering with 2 flashes
7 = Flickering with 3 flashes
8 = Flickering with 4 flashes
9 = Flickering with 5 flashes
10 = Flickering with 6 flashes
254 = Fail-safe state
255 = Status not indicated.

24 Clear IdentALSts Get BOOL FALSE (=0) When this attribute is implemented and set to 1 (=True)
the CompactCom will always clear the “IdentALSts” bit in
the EEPROM general category. This way the CompactCom
will not indicate support for Explicit device identification.
If the attribute isn’t implemented, or set to 0 (=False),
the “IdentALSts” flag in the EEPROM general category
will be set to 1 as soon as the value attribute of Network
configuration object instance 1 (Device ID) is written.
Normally this attribute only needs to be supported by
host applications using the shift register operation mode
and lacking the Device ID switch.

25 SII Order Number Get Array of
CHAR(Max
64 Bytes)

Value of object
1008h,
Manufacturer
Device Name (See
attribute #6 above).

This attribute only needs to be implemented if the host
application needs a value other than CoE object 0x1008h
to be reported in the SII Order Number string.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Host Application Objects 89 (176)

Name Access Type Default Value Comment

26 SII Device Name Get Array of
CHAR(Max
64 Bytes)

Value of object
1008h,
Manufacturer
Device Name (See
attribute #6 above).

This attribute only needs to be implemented if the host
application needs a value other than CoE object 0x1008
to be reported in the SII Device Name Information string.

27 Last FoE Data ACK
delay

Get UINT16 500 Time in milliseconds that the Anybus CompactCom 40
EtherCAT will delay the ACK to the last FoE_Data request
in FoE write file transfers.
Note: if a file is opened for writing in the ABCC firmware
candidate area before this delay time has passed, the
Anybus CompactCom will send the ACK immediately.
This delay is intended for applications supporting the
SEMI device profile firmware upgrade specification, but
could also be used by applications used in a
configuration where the EtherCAT master has configured
a very short timeout for FoE transfers.

Attribute #21: State Transition Timeouts
The default state transition timeouts can normally be used. There are however a few situations where a host
application needs to change the state transition timeouts:

• If it takes a long time for the application to execute the process data remap commands, the
SafeOpTimeout may need to be increased. Remapping from the EtherCAT side is done on transition from
PREOP->SAFEOP. This timeout needs to be increased if there is a risk of exceeding the default timeout of
5 seconds.

• If the host application can operate synchronously and needs a long time to e.g. lock on to the sync signal,
the SafeOp timeout may need to be increased.

• If the host application supports firmware upgrade over EtherCAT, using the application file system
interface object, it may be necessary to increase the BackToInitTimeout. This is needed if e.g. the host
application must validate the HIFF file, it has uploaded to the Anybus file system interface object, on the
BOOT->INIT transition. For firmware upgrade over EtherCAT, please refer to “SEMI Device FW Upgrade”
from the EtherCAT Technology Group.

If these timeouts are changed the ESI file has to be updated with the new timeouts, see “EtherCAT Slave
Information Specification” from the EtherCAT Technology Group (table 71).

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Host Application Objects 90 (176)

Command Details: Get_Object_Description
Category

Extended

Details

Command Code 10h

Valid for: Object

Description

This command can optionally be supported by the host application to change the information added by the
CompactCom in “Get Object Description” SDO information responses for ADI structs.

Normally an ADI struct is translated into a RECORD object with EtherCAT data type 0x2A (No predefined
RECORD).

By implementing support for this command the host application can change both the object code and the
object data type returned for an object corresponding to an ADI struct.

This is needed when implementing some EtherCAT profiles, e.g. some of the SEMI device profiles.

If the host application responds with one of the error codes 0x03 (Unsupported object), 0x04 (Unsupported
instance) or 0x05 (Unsupported command) on this command, the CompactCom will not use this command for
future Get Object Description requests.

• Command Details

Field Contents Comments

CmdExt[0] Object index, low byte This is the object index that received a Get Object
Description SDO information request.

CmdExt[1] Object index, high byte

• Response Details

Field Contents Comments

CmdExt[0] Object index, low byte (mirrored from command) This is the object index that received a Get Object
Description SDO information request.

CmdExt[1] Object index, high byte (mirrored from command)

Data[0-1] EtherCAT data type (UINT16) EtherCAT data type that should be reported in the Get Object
Description response for the supplied object index.

Data[2] EtherCAT object code (UINT8) EtherCAT object code that should be reported in the Get
Object Description response for the supplied object index.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Host Application Objects 91 (176)

ADI Translation, Example
The host application wants to implement the diagnostic object (10F3h) and the timestamp object (10F8h). To
do this it needs to create two ADIs that match the CoE implementation of these objects, e.g. ADI F0F3h for the
diagnostic object and F0F8 for the timestamp object. It then needs to implement the following data for the ADI
translation attribute:

Example 2:

[
{

F0F3h
10F3h

}
{

F0F8h
10F8h

}
]

SDO requests towards these CoE objects will then be forwarded to the corresponding ADI. If a CoE object
present in this attribute is implemented by the module, the module will handle all requests to that object by
itself, and nothing is forwarded to the host application.

Object Subindex Translation, Example
The host application wants to implement the Sync Error subindex (subindex 32) of the 0x1C32 and 0x1C33
objects. To do this it needs to create two ADIs that match the CoE implementation of these entries. Let’s say it
creates ADI 0xF0FD for entry 0x1C32:32 and ADI 0xF0FE for entry 0x1C33:32. It then needs to implement the
following data for the “Object subindex translation” attribute:

Example 3:

[
{

0xF0FD
0x1C32
32

}
{

0xF0FE
0x1C33
32

}
]

SDO requests towards these CoE object/subindex entries will then be forwarded to the corresponding ADI.

If a CoE entry present in this attribute is implemented by the module, the module will handle all requests to
that entry by itself, as it will if the object does not support being extended with more subindexes, and nothing
is forwarded to the host application.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Host Application Objects 92 (176)

6.6 Ethernet Host Object (F9h)
Object Description
This object implements Ethernet features in the host application.

Supported Commands

Object: Get_Attribute

Instance: Get_Attribute

Set_Attribute

Object Attributes (Instance #0)
Name Access Data Type Value

1 Name Get Array of CHAR “Ethernet”

2 Revision Get UINT8 02h
3 Number of instances Get UINT16 0001h
4 Highest instance no. Get UINT16 0001h

Instance Attributes (Instance #1)
• If an attribute is not implemented, the default value will be used.

• The module is preprogrammed with a valid MAC address. To use that address, do not implement attribute
#1.

• Do not implement attributes #9 and #10, only used for PROFINET devices, if the module shall use the
preprogrammed MAC addresses.

• If new MAC addresses are assigned to a PROFINET device, these addresses (in attributes #1, #9, and #10)
have to be consecutive, e.g. (xx:yy:zz:aa:bb:01), (xx:yy:zz:aa:bb:02), and (xx:yy:zz:aa:bb:03) with the first
five octets not changing.

Name Access Data Type Default Value Comment

1 MAC address Get Array of UINT8 - 6 byte physical address value; overrides the preprogrammed
Mac address. Note that the new Mac address value must be
obtained from the IEEE.
Do not implement this attribute if the preprogrammed Mac
address is to be used.

2 Enable HICP Get BOOL True (Enabled) Enable/Disable HICP

3 Enable Web Server Get BOOL True (Enabled) Enable/Disable Web Server
(Not used if Transparent Ethernet is enabled.)

4 (reserved) Reserved for Anybus CompactCom 30 applications.

5 Enable Web ADI
access

Get BOOL True (Enabled) Enable/Disable Web ADI access
(Not used if Transparent Ethernet is enabled.)

6 Enable FTP server Get BOOL True (Enabled) Enable/Disable FTP server
(Not used if Transparent Ethernet is enabled.)

7 Enable admin
mode

Get BOOL False
(Disabled)

Enable/Disable FTP admin mode
(Not used if Transparent Ethernet is enabled.)

8 Network Status Set UINT16 - See below.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Host Application Objects 93 (176)

Name Access Data Type Default Value Comment

9 Port 1 MAC address Get Array of UINT8 - Note: This attribute is only valid for PROFINET devices.
6 byte MAC address for port 1 (mandatory for the LLDP
protocol).
This setting overrides any Port MAC address in the host
PROFINET IO Object.
Do not implement this attribute if the preprogrammed Mac
address is to be used.

10 Port 2 MAC address Get Array of UINT8 - Note: This attribute is only valid for PROFINET devices.
6 byte MAC address for port 2 (mandatory for the LLDP
protocol).
This setting overrides any Port MAC address in the host
PROFINET IO Object.
Do not implement this attribute if the preprogrammed Mac
address is to be used.

11 Enable ACD Get BOOL True (Enabled) Enable/Disable ACD protocol.
If ACD functionality is disabled using this attribute, the ACD
attributes in the CIP TCP/IP object (F5h) are not available.

12 Port 1 State Get ENUM 0 (Enabled) The state of Ethernet port 1.

• This attribute is not read by EtherCAT and Ethernet
POWERLINK devices, where Port 1 is always enabled.

• This attribute is not used by PROFINET and Ethernet
POWERLINK

00h: Enabled
01h: Disabled.

The port is treated as existing. References to the
port can exist, e.g. in network protocol or on
website.

13 Port 2 State Get ENUM 0 (Enabled) The state of Ethernet port 2.

• This attribute is not read by EtherCAT and Ethernet
POWERLINK devices, where Port 2 is always enabled.

• This attribute is not used by PROFINET

00h: Enabled
01h: Disabled.

The port is treated as existing. References to the
port can exist, e.g. in network protocol or on
website.

02h: Inactive.
The attribute is set to this value for a device that
only has one physical port. All two-port
functionality is disabled. No references can be
made to this port.
Note: This functionality is available for Ethernet/
IP and Modbus-TCP devices.

14 (reserved)

15 Enable reset from
HICP

Get BOOL 0 = False Enables the option to reset the module from HICP.

16 IP configuration Set Struct of:
UINT32 (IP
address)
UINT32
(Subnet mask)
UINT32
(Gateway)

N/A Whenever the configuration is assigned or changed, the
Anybus CompactCom module will update this attribute.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Host Application Objects 94 (176)

Name Access Data Type Default Value Comment

17 IP address byte 0–2 Get Array of UINT8
[3]

[0] = 192
[1] = 168
[2] = 0

First three bytes in IP address. Used in standalone shift register
mode if the configuration switch value is set to 1-245. In that
case the IP address will be set to:
Y[0].Y[1].Y[2].X
Where Y0-2 is configured by this attribute and the last byte X
by the configuration switch.

18 Ethernet PHY
Configuration

Get Array of BITS16 0x0000 for
each port

Ethernet PHY configuration bit field. The length of the array
shall equal the number of Ethernet ports of the product. Each
element represents the configuration of one Ethernet port
(element #0 maps to Ethernet port #1, element #1 maps to
Ethernet port #2 and so on).
Note: Only valid for EtherNet/IP and Modbus-TCP devices.

Bit 0: Auto negotiation fallback duplex
0 = Half duplex
1 = Full duplex

Bit 1–15: Reserved
20 SNMP read-only

community string
Get Array of CHAR “public” Note: This attribute is only valid for PROFINET devices.

Sets the SNMP read-only community string. Max length is 32.

21 SNMP read-write
community string

Get Array of CHAR “private” Note: This attribute is only valid for PROFINET devices.
Sets the SNMP read-write community string. Max length is 32.

22 DHCP Option 61
source

Get ENUM 0 (Disabled) Note: This attribute is currently only valid for Ethernet/IP
devices.
See below (DHCP Option 61, Client Identifier)

23 DHCP Option 61
generic string

Get Array of UINT8 N/A Note: This attribute is currently only valid for Ethernet/IP
devices.
See below (DHCP Option 61, Client Identifier)

24 Enable DHCP Client Get BOOL 1 = True Note: This attribute is currently valid for Ethernet/IP and
PROFINET devices.
Enable/disable DHCP Client functionality

0: DHCP Client functionality is disabled

1: DHCP Client functionality is enabled

Network Status
This attribute holds a bit field which indicates the overall network status as follows:

Bit Contents Description Comment

0 Link Current global link status
1= Link sensed
0= No link

1 IP established 1 = IP address established
0 = IP address not established

2 (reserved) (mask off and ignore)

3 Link port 1 Current link status for port 1
1 = Link sensed
0 = No link

EtherCAT only: This link status indicates whether the
Anybus CompactCom is able to communicat using
Ethernet over EtherCAT (EoE) or not. That is, it
indicates the status of the logical EoE port link and is
not related to the link status on the physical EtherCAT
ports.

4 Link port 2 Current link status for port 2
1 = Link sensed
0 = No link

Not used for EtherCAT

5... 15 (reserved) (mask off and ignore)

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Host Application Objects 95 (176)

DHCP Option 61 (Client Identifier)

Only valid for EtherNet/IP devices

The DHCP Option 61 (Client Identifier) allow the end-user to specify a unique identifier, which has to be unique
within the DHCP domain.

Attribute #22 (DHCP Option 61 source) is used to configure the source of the Client Identifier. The table below
shows the definition for the Client identifier for different sources and their description.

Value Source Description

0 Disable The DHCP Option 61 is disabled. This is the default value if the attribute is not implemented in the
application.

1 MACID The MACID will be used as the Client Identifier
2 Host Name The configured Host Name will be used as the Client Identifier

3 Generic String Attribute #23 will be used as the Client Identifier

Attribute #23 (DHCP Option 61 generic string) is used to set the Client Identifer when Attribute #22 has been
set to 3 (Generic String). Attribute #23 contains the Type field and Client Identifier and shall comply with the
definitions in RFC 2132. The allowed max length that can be passed to the module via attribute #23 is 64 octets.

Example:

If Attribute #22 has been set to 3 (Generic String) and Attribute #23 contains 0x01, 0x00, 0x30, 0x11, 0x33,
0x44, 0x55, the Client Identifier will be represented as an Ethernet Media Type with MACID 00:30:11:33:44:55.

Example 2:

If Attribute #22 has been set to 2 (Host Name) Attribute #23 will be ignored and the Client Identifier will be the
same as the configured Host Name.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Web Server 96 (176)

7 Web Server
7.1 General Information

The built-in web server provides a flexible environment for end-user interaction and
configuration purposes. JSON, SSI and client-side scripting allow access to objects and file system
data, enabling the creation of advanced graphical user interfaces.

The web interfaces are stored in the file system, which can be accessed through the FTP server. If
necessary, the web server can be completely disabled in the Ethernet Host Object (F9h).

The web server supports up to 20 concurrent connections and communicates through port 80.

See also...

• FTP Server, p. 102

• Server Side Include (SSI), p. 105

• JSON, p. 125

• Ethernet Host Object (F9h), p. 92

7.2 Default Web Pages
The default web pages provide access to:

• Network configuration parameters

• Network status information

• Access to the host application ADIs

The default web pages are built of files stored in a virtual file system accessible through the vfs
folder. These files are read only and cannot be deleted or overwritten. The web server will first
look for a file in the web root folder. If not found it will look for the file in the vfs folder, making it
appear as the files are located in the web root folder. By loading files in the web root folder with
exactly the same names as the default files in the vfs folder, it is possible to customize the web
pages, replacing such as pictures, logos and style sheets.

If a complete customized web system is designed and no files in the vfs folder are to be used, it
is recommended to turn off the virtual file system completely, see the File System Interface
Object.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Web Server 97 (176)

7.2.1 Network Configuration
The network configuration page provides interfaces for changing TCP/IP and SMTP settings in the
Network Configuration Object.

Fig. 3

The module needs a reset for the changes to take effect.

Available IP Configuration Settings

Name Description

DHCP Checkbox for enabling or disabling DHCP
Default value: disabled

IP address The TCP/IP settings of the module
Default values: 0.0.0.0Value ranges: 0.0.0.0 - 255.255.255.255Subnet mask

Gateway address

Host name IP address or name
Max 64 characters

Domain name IP address or name
Max 48 characters

Available SMTP Settings

Name Description

Server IP address or name
Max 64 characters

User Max 64 characters
Password Max 64 characters

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Web Server 98 (176)

7.2.2 Network Status Page
The Network Status web page contains the following information:

Current IP Configuration Description

DHCP: -

Host Name: -

IP Address: -

Subnet Mask: -

Gateway Address: -

DNS Server #1: -

DNS Server #2: -

Domain Name: -

Current Ethernet Status Description

MAC Address -

Port 1 The current link speed and duplex configuration.

Port 2 The current link speed and duplex configuration.

EtherCAT Statistics Description

Logical EoE port link: Link on one of the physical Ethernet ports is not enough to be able to
communicate using EoE. It is also necessary for the network state to be at
least pre-operational and mailbox communication to be active. “Logical EoE
port link” indicates if these requirements are fulfilled in order for the device
to be able to send and receive EoE frames.

Invalid frame counter IN port: Value of ESC register 0x300. Number of invalid frames received.

Rx error counter IN port: Value of ESC register 0x301. Number of Rx errors reported by the PHY.

Forwarded error counter IN port: Value of ESC register 0x308. Number of forwarded Rx errors.

Lost link counter IN port: Value of ESC register 0x310. Number of times link has been lost on the port.

Invalid frame counter OUT port: Value of ESC register 0x302. Number of invalid frames received.

Rx error counter OUT port: Value of ESC register 0x303. Number of Rx errors reported by the PHY.

Forwarded error counter OUT port: Value of ESC register 0x309. Number of forwarded Rx errors.

Lost link counter OUT port: Value of ESC register 0x311. Number of times link has been lost on the port.

EoE Interface Counters Description

In Octets: Received bytes.

In Ucast Packets: Received unicast packets.

In NUcast packets: Received non-unicast packets (broadcast and multicast).

In Discards: Received packets discarded due to no available memory buffers.

In Errors: Received packets discarded due to reception error.

In Unknown Protos: Received packets with unsupported protocol type.

Out Octets: Sent bytes.

Out Ucast packets: Sent unicast packets.

Out NUcast packets: Sent non-unicast packets (broadcast and multicast).

Out Discards: Outgoing packets discarded due to no available memory buffers.

Out Errors: Transmission errors.

7.3 Server Configuration
7.3.1 General Information

Basic web server configuration settings are stored in the system file \http.cfg. This file holds the
root directory for the web interface, content types, and a list of file types which shall be scanned
for SSI.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Web Server 99 (176)

File Format:
[WebRoot]
\web

[FileTypes]
FileType1:ContentType1
FileType2:ContentType2
...
FileTypeN:ContentTypeN

[SSIFileTypes]
FileType1
FileType2
...
FileTypeN

Web Root Directory
[WebRoot]

The web server cannot access files outside this directory.

Content Types
[FileTypes]

A list of file extensions and their reported content types.

See also...

Default Content Types, p. 100

SSI File Types
[SSIFileTypes]

By default, only files with the extension ‘shtm’ are scanned for SSI. Additional SSI file
types can be added here as necessary.

The web root directory determines the location of all files related to the web interface. Files
outside of this directory and its subdirectories cannot be accessed by the web server.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Web Server 100 (176)

7.3.2 Index page
The module searches for possible index pages in the following order:

1. <WebRoot>\index.htm

2. <WebRoot>\index.html

3. <WebRoot>\index.shtm

4. <WebRoot>\index.wml

Substitute <WebRoot> with the web root directory specified in \http.cfg.

If no index page is found, the module will default to the virtual index file (if enabled).

See also ...

• Default Web Pages, p. 96

7.3.3 Default Content Types
By default, the following content types are recognized by their file extension:

File Extension Reported Content Type

htm, html, shtm text/html

gif image/gif

jpeg, jpg, jpe image/jpeg
png image/x-png

js application/x-javascript

bat, txt, c, h, cpp, hpp text/plain

zip application/x-zip-compressed
exe, com application/octet-stream

wml text/vnd.wap.wml

wmlc application/vnd.wap.wmlc

wbmp image/vnd.wap.wbmp

wmls text/vnd.wap.wmlscript

wmlsc application/vnd.wap.wmlscriptc

xml text/xml

pdf application/pdf
css text/css

Content types can be added or redefined by adding them to the server configuration file.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Web Server 101 (176)

7.3.4 Authorization
Directories can be protected from web access by placing a file called ‘web_accs.cfg’ in the
directory to protect. This file shall contain a list of users that are allowed to access the directory
and its subdirectories.

Optionally, a login message can be specified by including the key [AuthName]. This message will
be displayed by the web browser upon accessing the protected directory.

File Format:
Username1:Password1
Username2:Password2
...
UsernameN:PasswordN

[AuthName]
(message goes here)

The list of approved users can optionally be redirected to one or several other files.

If the list of approved users is put in another file, be aware that this file can be accessed and read from
the network.

In the following example, the list of approved users will be loaded from here.cfg and too.cfg.

[File path]
\i\put\some\over\here.cfg
\i\actually\put\some\of\it\here\too.cfg

[AuthName]
Howdy. Password, please.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

FTP Server 102 (176)

8 FTP Server
8.1 General Information

The built-in FTP-server makes it easy to manage the file system using a standard FTP client. It can
be disabled using attribute #6 in the Ethernet Host Object (F9h).

By default, the following port numbers are used for FTP communication:

• TCP, port 20 (FTP data port)

• TCP, port 21 (FTP command port)

The FTP server supports up to two concurrent clients.

8.2 User Accounts
User accounts are stored in the configuration file \ftp.cfg. This file holds the usernames,
passwords, and home directory for all users. Users are not able to access files outside of their
home directory.

File Format:

User1:Password1:Homedirectory1
User2:Password2:Homedirectory2
User3:Password3:Homedirectory3

Optionally, the UserN:PasswordN-section can be replaced by a path to a file containing a list of
users as follows:

File Format (\ftp.cfg):

User1:Password1:Homedirectory1
User2:Password2:Homedirectory2
.
.
UserN:PasswordN:HomedirectoryN
\path\userlistA:HomedirectoryA
\path\userlistB:HomedirectoryB

The files containing the user lists shall have the following format:

File Format:

User1:Password1
User2:Password2
User3:Password3
.
.
.UserN:PasswordN

Notes:

• Usernames must not exceed 16 characters in length.

• Passwords must not exceed 16 characters in length.

• Usernames and passwords must only contain alphanumeric characters.

• If \ftp.cfg is missing or cannot be interpreted, all username/password combinations will be
accepted and the home directory will be the FTP root (i.e. \ftp\).

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

FTP Server 103 (176)

• The home directory for a user must also exist in the file system, if the user shall be able to
log in. It is not enough just to add the user information to the ftp.cfg file.

• If Admin Mode has been enabled in the Ethernet Object, all username/password
combinations will be accepted and the user will have unrestricted access to the file system (i.
e. the home directory will be the system root). The vfs folder is read-only.

• It is strongly recommended to have at least one user with root access (\) permission. If not,
Admin Mode must be enabled each time a system file needs to be altered (including \ftp.
cfg).

8.3 Session Example
The Windows Explorer features a built-in FTP client which can easily be used to access the file
system as follows:

1. Open the Windows Explorer.

2. In the address field, type FTP://<user>:<password>@<address>

– - Substitute <address> with the IP address of the Anybus module

– - Substitute <user> with the username

– - Substitute <password> with the password

3. Press Enter. The Explorer will now attempt to connect to the Anybus module using the
specified settings. If successful, the file system will be displayed in the Explorer window.

Fig. 4

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

E-mail Client 104 (176)

9 E-mail Client
9.1 General Information

The built-in e-mail client allows the application to send e-mail messages through an SMTP-server.
Messages can either be specified directly in the SMTP Client Object (04h), or retrieved from the
file system. The latter may contain SSI, however note that for technical reasons, certain
commands cannot be used (specified separately for each SSI command).

The client supports authentication using the ‘LOGIN’ method. Account settings etc. are stored in
the Network Configuration Object (04h).

9.2 How to Send E-mail Messages
To be able to send e-mail messages, the SMTP-account settings must be specified.

This includes:

• A valid SMTP-server address

• A valid username

• A valid password

To send an e-mail message, perform the following steps:

1. Create a new e-mail instance using the Create command (03h)

2. Specify the sender, recipient, topic and message body in the e-mail instance

3. Issue the Send Instance Email command (10h) towards the e-mail instance

4. Optionally, delete the e-mail instance using the Delete command (04h)

Sending a message based on a file in the file system is achieved using the Send Email from File
command. This command is described in the SMTP Client Object (04h).

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Server Side Include (SSI) 105 (176)

10 Server Side Include (SSI)
10.1 General Information

Server Side Include functionality, or SSI, allows data from files and objects to be represented on
web pages and in e-mail messages.

SSI are special commands embedded within the source document. When the Anybus
CompactCom module encounters such a command, it will execute it, and replace it with the
result (if applicable).

By default, only files with the extension ‘shtm’ are scanned for SSI.

10.2 Include File
This function includes the contents of a file. The content is scanned for SSI.

This function cannot be used in e-mail messages.

Syntax:

<?--#include file="filename"-->

filename: Source file

Scenario Default Output

Success (contents of file)

10.3 Command Functions
10.3.1 General Information

Command functions executes commands and includes the result.

General Syntax

<?--#exec cmd_argument='command'-->

command: Command function, see below

“command” is limited to a maximum of 500 characters.

Command Functions
Command Valid for E-mail Messages

GetConfigItem() Yes

SetConfigItem() No

SsiOutput() Yes

DisplayRemoteUser No

ChangeLanguage() No

IncludeFile() Yes

SaveDataToFile() No

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Server Side Include (SSI) 106 (176)

Command Valid for E-mail Messages

printf() Yes

scanf() No

10.3.2 GetConfigItem()
This command returns specific information from a file in the file system.

File Format

The source file must have the following format:

[key1]
value1

[key2]
value2
...
[keyN]
valueN

Syntax:

<?--exec cmd_argument='GetConfigItem("filename", "key"[,"separator"])'-->

filename: Source file to read from
key: Source [key] in file.

separator: Optional; specifies line separation characters (e.g. “
”).
(default is CRLF).

Default Output

Scenario Default Output

Success (value of specified key)

Authentication Error “Authentication error”
File open error “Failed to open file ‘filename’”

Key not found “Tag (key) not found”

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Server Side Include (SSI) 107 (176)

Example

The following SSI...

<?--exec cmd_argument='GetConfigItem("\example.cnf", "B")'-->

... in combination with the following file (‘\example.cnf’)...

[A]
First
[B]
Second
[C]
Third

... returns the string ‘Third’.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Server Side Include (SSI) 108 (176)

10.3.3 SetConfigItem()
This function stores an HTML-form as a file in the file system.

This function cannot be used in e-mail messages.

File Format

Each form object is stored as a [tag], followed by the actual value.

[form object name 1]
form object value 1

[form object name 2]
form object value 2

[form object name 3]
form object value 3

...
[form object name N]
form object value N

Form objects with names starting with underscore will not be stored.

Syntax:

<?--exec cmd_argument='SetConfigItem("filename"[, Overwrite])'-->

filename: Destination file. If the specified file does not exist, it will be created (provided that the path is
valid).

Overwrite: Optional; forces the module to create a new file each time the command is issued. The
default behavior is to modify the existing file.

Default Output

Scenario Default Output

Success “Configuration stored to‘filename’”

Authentication Error “Authentication error”
File open error “Failed to open file ‘filename’”

File write error “Could not store configuration to ‘filename’”

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Server Side Include (SSI) 109 (176)

Example

The following example demonstrates how to use this function. The resulting page sends a form
to itself, which is then evaluated by the SetConfigItem command.

<HTML>
<HEAD><TITLE>SetConfigItem Test</TITLE></HEAD>
<BODY>

<?--#exec cmd_argument='SetConfigItem("\food.txt")'-->

<FORM action="test.shtm">
<P>

<LABEL for="Name">Name: </LABEL>

<INPUT type="text" name="Name">

<LABEL for="_Age">Age: </LABEL>

<INPUT type="text" name="_Age">

<LABEL for="Food">Food: </LABEL>

<INPUT type="radio" name="Food" value="Cheese"> Cheese

<INPUT type="radio" name="Food" value="Sausage"> Sausage

<LABEL for="Drink">Drink: </LABEL>

<INPUT type="radio" name="Drink" value="Wine"> Wine

<INPUT type="radio" name="Drink" value="Beer"> Beer

<INPUT type="submit" name="_submit">
<INPUT type="reset" name="_reset">

</P>
</FORM>

</BODY>
</HTML>

The resulting file (‘\food.txt’) may look somewhat as follows:

[Name]
Cliff Barnes

[Food]
Cheese

[Drink]
Beer

In order for this example to work, the HTML file must be named “test.shtm”.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Server Side Include (SSI) 110 (176)

10.3.4 SsiOutput()
This command temporarily modifies the SSI output of the following command function.

Syntax:

<?--#exec cmd_argument='SsiOutput("success", "failure")'-->

success: String to use in case of success

failure: String to use in case of failure

Default Output

(this command produces no output on its own)

Example

The following example illustrates how to use this command.

<?--#exec cmd_argument='SsiOutput ("Parameter stored", "Error")'-->
<?--#exec cmd_argument='SetConfigItem("File.cfg", Overwrite)'-->

See also...

• SSI Output Configuration, p. 124

10.3.5 DisplayRemoteUser
This command stores returns the username on an authentication session.

This command cannot be used in e-mail messages.

Syntax:

<?--#exec cmd_argument='DisplayRemoteUser'-->

Default Output

Scenario Default Output

Success (current user)

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Server Side Include (SSI) 111 (176)

10.3.6 ChangeLanguage()
This command changes the language setting based on an HTML form object.

This function cannot be used in e-mail messages.

Syntax:

<?--#exec cmd_argument='ChangeLanguage("source")'-->

source: Name of form object which contains the new language setting.

The passed value must be a single digit as follows:

Form value Language

“0” English

“1” German

“2” Spanish

“3” Italian
“4” French

Default Output

Scenario Default Output

Success “Language changed”

Error “Failed to change language”

Example

The following example demonstrates how to use this function. The resulting page sends a form
to itself, which is then evaluated by the ChangeLanguage() command.

<HTML>
<HEAD><TITLE>ChangeLanguage Test</TITLE></HEAD>
<BODY>

<?--#exec cmd_argument='ChangeLanguage("lang")'-->

<FORM action="test.shtm">
<P>

<LABEL for="lang">Language(0-4): </LABEL>

<INPUT type="text" name="lang">

<INPUT type="submit" name="_submit">
</P>

</FORM>

</BODY>
</HTML>

In order for this example to work, the HTML file must be named “test.shtm”.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Server Side Include (SSI) 112 (176)

10.3.7 IncludeFile()
This command includes the content of a file. Note that the content is not scanned for SSI.

Syntax:

<?--#exec cmd_argument='IncludeFile("filename" [, separator])'-->

filename: Source file
separator: Optional; specifies line separation characters (e.g. “
”).

Default Output

Scenario Default Output

Success (file contents)

Authentication Error “Authentication error”
File Open Error “Failed to open file ‘filename’”

Example

The following example demonstrates how to use this function.

<HTML>
<HEAD><TITLE>IncludeFile Test</TITLE></HEAD>
<BODY>

<H1> Contents of ‘info.txt’:</H1>
<P>

<?--#exec cmd_argument='IncludeFile("info.txt")'-->.
</P>

</BODY>
</HTML>

Contents of ‘info.txt’:

Neque porro quisquam est qui dolorem ipsum quia dolor sit
amet,consectetur, adipisci velit...

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Server Side Include (SSI) 113 (176)

When viewed in a browser, the resulting page should look somewhat as follows:

Fig. 5

See also...

• Include File, p. 105

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Server Side Include (SSI) 114 (176)

10.3.8 SaveDataToFile()
This command stores data from an HTML form as a file in the file system. Content from the
different form objects are separated by a blank line (2*CRLF).

This function cannot be used in e-mail messages.

Syntax:

<?--#exec cmd_argument='SaveDataToFile("filename" [, "source"],
Overwrite|Append)'-->

filename Destination file. If the specified file does not exist, it will be created (provided that the path is
valid).

source: Optional; by specifying a form object, only data from that particular form object will be
stored. Default behavior is to store data from all form objects except the ones where the
name starts with underscore.

Overwrite|Append Specifies whether to overwrite or append data to existing files.

Default Output

Scenario Default Output

Success “Configuration stored to ‘filename’”

Authentication Error “Authentication error”
File Write Error “Could not store configuration to ‘filename’”

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Server Side Include (SSI) 115 (176)

Example

The following example demonstrates how to use this function. The resulting page sends a form
to itself, which is then evaluated by the SaveDataToFile command.

<HTML>
<HEAD><TITLE>SaveDataToFile Test</TITLE></HEAD>
<BODY>

<?--#exec cmd_argument='SaveDataToFile("\stuff.txt", “Meat”, Overwrite)'-->

<FORM action="test.shtm">
<P>

<LABEL for="Fruit">Fruit: </LABEL>

<INPUT type="text" name="Fruit">

<LABEL for="Meat">Meat: </LABEL>

<INPUT type="text" name="Meat">

<LABEL for="Meat">Bread: </LABEL>

<INPUT type="text" name="Bread">

<INPUT type="submit" name="_submit">
</P>

</FORM>

</BODY>
</HTML>

The resulting file (\stuff.txt) will contain the value specified for the form object called “Meat”.

In order for this example to work, the HTML file must be named “test.shtm”.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Server Side Include (SSI) 116 (176)

10.3.9 printf()
This function returns a formatted string which may contain data from the Anybus CompactCom
module and/or application. The formatting syntax used is similar to that of the standard C-
function printf().

The function accepts a template string containing zero or more formatting tags, followed by a
number of arguments. Each formatting tag corresponds to a single argument, and determines
how that argument shall be converted to human readable form.

Syntax:

<?--#exec cmd_argument='printf("template" [, argument1, ..., argumentN])'-->

template: Template which determines how the arguments shall be represented. May contain any
number of formatting tags which are substituted by subsequent arguments and formatted as
requested. The number of format tags must match the number of arguments; if not, the
result is undefined.
See section “Formatting Tags” below for more information.

argument: Source arguments; optional parameters which specify the actual source of the data that shall
be inserted in the template string. The number of arguments must match the number of
formatting tags; if not, the result is undefined.
At the time of writing, the only allowed argument is ABCCMessage().
See also...

• ABCCMessage(), p. 120

Default Output

Scenario Default Output

Success (printf() result)

ABCCMessage error ABCCMessage error string (Errors, p. 123)

Example

See ..

• ABCCMessage(), p. 120

• Example (Get_Attribute):, p. 122

Formatting Tags

Formatting tags are written as follows:

%[Flags][Width][.Precision][Modifier]type

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Server Side Include (SSI) 117 (176)

• Type (Required)

The Type-character is required and determines the basic representation as follows:

Type Character Representation Example
c Single character b

d, i Signed decimal integer. 565

e, E Floating-point number in exponential notation. 5.6538e2

f Floating-point number in normal, fixed-point notation. 565.38

g, G %e or %E is used if the exponent is less than -4 or greater than or
equal to the precision; otherwise %f is used. Trailing zeroes/
decimal point are not printed.

565.38

o Unsigned octal notation 1065
s String of characters Text
u Unsigned decimal integer 4242

x, X Hexadecimal integer 4e7f

% Literal %; no assignment is made %

• Flags (Optional)

Flag Character Meaning
- Left-justify the result within the give width (default is right justification)
+ Always include a + or - to indicate whether the number is positive or negative

(space) If the number does not start with a + or -, prefix it with a space character instead.

0 (zero) Pad the field with zeroes instead of spaces

For %e, %E, and %f, forces the number to include a decimal point, even if no digits follow. For %
x and %X, prefixes 0x or 0X, respectively.

• Width (Optional)

Width Meaning

number Specifies the minimum number of characters to be printed.
If the value to be printed is shorter than this number, the result is padded to make up the field
width. The result is never truncated even if the result is larger.

• Precision (Optional)

The exact meaning of this field depends on the type character:

Type Character Meaning

d, i, o, u, x, X Specifies the minimum no. of decimal digits to be printed. If the value to be printed is shorter
than this number, the result is padded with space. Note that the result is never truncated, even
if the result is larger.

e, E, f Specifies the no. of digits to be printed after the decimal point (default is 6).

g, G Specifies the max. no. of significant numbers to be printed.
s Specifies the max. no. of characters to be printed
c (no effect)

• Modifier

Modifier
Character

Meaning

hh Argument is interpreted as SINT8 or UINT8

h Argument is interpreted as SINT16 or UINT16

L Argument is interpreted as SINT32 or UINT32

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Server Side Include (SSI) 118 (176)

10.3.10 scanf()
This function is very similar to the printf() function described earlier, except that it is used for
input rather than output. The function reads a string passed from an HTML form object, parses
the string as specified by a template string, and sends the resulting data to the specified
argument. The formatting syntax used is similar to that of the standard C-function scanf().

The function accepts a source, a template string containing zero or more formatting tags,
followed by a number of arguments. Each argument corresponds to a formatting tag, which
determines how the data read from the HTML form shall be interpreted prior sending it to the
destination argument.

This command cannot be used in e-mail messages.

Syntax:

<?--#exec cmd_argument='scanf("source", "template" [,
argument1, ..., argumentN])'-->

source Name of the HTML form object from which the string shall be extracted.

template: Template which specifies how to parse and interpret the data. May contain any number of
formatting tags which determine the conversion prior to sending the data to subsequent
arguments. The number of formatting tags must match the number of arguments; if not, the
result is undefined.
See section “Formatting Tags” below for more information.

argument: Destination argument(s) specifying where to send the interpreted data. The number of
arguments must match the number of formatting tags; if not, the result is undefined.
At the time of writing, the only allowed argument is ABCCMessage().
See also...

• ABCCMessage(), p. 120

Default Output

Scenario Default Output

Success “Success”
Parsing error “Incorrect data format”

Too much data for argument “Too much data”

ABCCMessage error ABCCMessage error string (Errors, p. 123)

Example

See also...

ABCCMessage(), p. 120

Example (Set_Attribute):, p. 122

Formatting Tags

Formatting tags are written as follows:

%[*][Width][Modifier]type

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Server Side Include (SSI) 119 (176)

• Type (Required)

The Type-character is required and determines the basic representation as follows:

Type Input Argument Data Type
c Single character CHAR

d Accepts a signed decimal integer SINT8
SINT16
SINT32

i Accepts a signed or unsigned decimal integer. May be given as
decimal, hexadecimal or octal, determined by the initial characters
of the input data:
Initial Characters: Format:
0x Hexadecimal
0: Octal
1... 9: Decimal

SINT8/UINT8
SINT16/UINT16
SINT32/UINT32

u Accepts an unsigned decimal integer. UINT8
UINT16
UINT32

o Accepts an optionally signed octal integer. SINT8/UINT8
SINT16/UINT16
SINT32/UINT32

x, X Accepts an optionally signed hexadecimal integer. SINT8/UINT8
SINT16/UINT16
SINT32/UINT32

e, E,
f,
g, G

Accepts an optionally signed floating point number. The input
format for floating-point numbers is a string of digits, with some
optional characteristics:

– It can be a signed value

– It can be an exponential value, containing a decimal rational
number followed by an exponent field, which consists of an ‘E’
or an ‘e’ followed by an integer.

FLOAT

n Consumes no input; the corresponding argument is an integer into
which scanf writes the number of characters read from the object
input.

SINT8/UINT8
SINT16/UINT16
SINT32/UINT32

s Accepts a sequence of nonwhitespace characters STRING

[scanset] Accepts a sequence of nonwhitespace characters from a set of
expected bytes specified by the scanlist (e.g
‘[0123456789ABCDEF]’)
A literal ‘]’ character can be specified as the first character of the
set. A caret character (^) immediately following the initial ‘[’ inverts
the scanlist, i.e. allows all characters except the ones that are listed.

STRING

% Accepts a single %input at this point; no assignment or conversion
is done. The complete conversion specification should be %%.

-

• * (Optional)

Data is read but ignored. It is not assigned to the corresponding argument.

• Width (Optional)

Specifies the maximum number of characters to be read

• Modifier (Optional)

Specifies a different data size.

Modifier Meaning

h SINT8, SINT16, UINT8 or UINT16

l SINT32 or UINT32

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Server Side Include (SSI) 120 (176)

10.4 Argument Functions
10.4.1 General Information

Argument functions are supplied as parameters to certain command functions.

General Syntax:

(Syntax depends on context)

Argument Functions:

Function Description

ABCCMessage() -

10.4.2 ABCCMessage()
This function issues an object request towards an object in the module or in the host application.

Syntax

ABCCMessage(object, instance, command, ce0, ce1,
msgdata, c_type, r_type)

object Specifies the Destination Object

instance Specifies the Destination Instance

command Specifies the Command Number

ce0 Specifies CmdExt[0] for the command message

ce1 Specifies CmdExt[1] for the command message

msgdata Specifies the actual contents of the MsgData[] subfield in the command

• Data can be supplied in direct form (format depends on c_type)

• The keyword “ARG” is used when data is supplied by the parent command (e.g. scanf()).

c_type: Specifies the data type in the command (msgdata), see below.

r_type: Specifies the data type in the response (msgdata), see below.

Numeric input can be supplied in the following formats:

Decimal (e.g. 50) (no prefix)

Octal (e.g. 043) Prefix 0 (zero)

Hex (e.g. 0x1f) Prefix 0x

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Server Side Include (SSI) 121 (176)

• Command Data Types (c_type)

For types which support arrays, the number of elements can be specified using the suffix
[n], where n specifies the number of elements. Each data element must be separated by
space.

Type Supports Arrays Data format (as supplied in msgdata)

BOOL Yes 1
SINT8 Yes -25
SINT16 Yes 2345
SINT32 Yes -2569
UINT8 Yes 245
UINT16 Yes 40000
UINT32 Yes 32
CHAR Yes A
STRING No “abcde”

Note: Quotes can be included in the string if preceded by backslash
(“\”)
Example: “We usually refer to it as \‘the Egg\’”

FLOAT Yes 5.6538e2
NONE No Command holds no data, hence no data type

• Response Data Types (r_type)

For types which support arrays, the number of elements can be specified using the suffix
[n], where n specifies the number of elements.

Type Supports Arrays Data format (as supplied in msgdata)

BOOL Yes Optionally, it is possible to exchange the BOOL data with a message
based on the value (true or false). In such case, the actual data type
returned from the function will be STRING.
Syntax: BOOL<true><false>
For arrays, the format will be BOOL[n]<true><false>.

SINT8 Yes -

SINT16 Yes -

SINT32 Yes -

UINT8 Yes This type can also be used when reading ENUM data types from an
object. In such case, the actual ENUM value will be returned.

UINT16 Yes -

UINT32 Yes -

CHAR Yes -

STRING No -

ENUM No When using this data type, the ABCCMessage() function will first read
the ENUM value. It will then issue a ‘Get Enum String’-command to
retrieve the actual enumeration string. The actual data type in the
response will be STRING.

FLOAT Yes -

NONE No Response holds no data, hence no data type

It is important to note that the message will be passed transparently to the addressed
object. The SSI engine performs no checks for violations of the object addressing scheme,
e.g. a malformed Get_Attribute request which (wrongfully) includes message data will be
passed unmodified to the object, even though this is obviously wrong. Failure to observe
this may cause loss of data or other undesired side effects.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Server Side Include (SSI) 122 (176)

Example (Get_Attribute):

This example shows how to retrieve the IP address using printf() and ABCCMessage().

<?--#exec cmd_argument='printf("%u.%u.%u.%u",
ABCCMessage(4,3,1,5,0,0,NONE,UINT8[4]))'-->

Variable Value Comments

object 4 Network Configuration Object (04h)

instance 3 Instance #3 (IP address)

command 1 Get_attribute

ce0 5 Attribute #5
ce1 0 -

msgdata 0 -

c_type NONE Command message holds no data

r_type UINT8[4] Array of 4 unsigned 8-bit integers

Example (Set_Attribute):

This example shows how to set the IP address using scanf() and ABCCMessage(). Note the special
parameter value “ARG”, which instructs the module to use the passed form data (parsed by
scanf()).

<?--#exec cmd_argument='scanf("IP", "%u.%u.%u.%u",
ABCCMessage(4,3,2,5,0,ARG,UINT8[4],NONE))'-->

Variable Value Comments

object 4 Network Configuration Object (04h)

instance 3 Instance #3 (IP address)

command 2 Set_attribute

ce0 5 Attribute #5
ce1 0 -

msgdata ARG Use data parsed by scanf() call

c_type UINT8[4] Array of 4 unsigned 8-bit integers

r_type NONE Response message holds no data

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Server Side Include (SSI) 123 (176)

Errors

In case an object request results in an error, the error code in the response will be evaluated and
translated to readable form as follows:

Error Code Output

0 “Unknown error”
1 “Unknown error”
2 “Invalid message format”

3 “Unsupported object”

4 “Unsupported instance”

5 “Unsupported command”

6 “Invalid CmdExt[0]”

7 “Invalid CmdExt[1]”

8 “Attribute access is not set-able”
9 “Attribute access is not get-able”

10 “Too much data in msg data field”

11 “Not enough data in msg data field”

12 “Out of range”

13 “Invalid state”
14 “Out of resources”
15 “Segmentation failure”

16 “Segmentation buffer overflow”

17... 255 “Unknown error”

See also...

SSI Output Configuration, p. 124

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Server Side Include (SSI) 124 (176)

10.5 SSI Output Configuration
Optionally, the SSI output can be permanently changed by adding the file \output.cfg.

File format:

[ABCCMessage_X]
0:“Success string”
1:“Error string 1”
2:“Error string 2”
...
16“:Error string 16”

Each error code corresponds to a dedicated output string, labelled
from 1 to 16.
See Errors, p. 123

[GetConfigItem_X]
0: “Success string”
1:“Authentication error string”
2:“File open error string”
3:“Tag not found string”

Use “%s” to include the name of the file.

[SetConfigItem_X]
0: “Success string”
1:“Authentication error string”
2:“File open error string”
3:“File write error string”

Use “%s” to include the name of the file.

[IncludeFile_X]
0: “Success string”
1:“Authentication error string”
2:“File read error string”

Use “%s” to include the name of the file.

[scanf_X]
0: “Success string”
1:“Parsing error string”

-

[ChangeLanguage_X]
0: “Success string”
1:“Change error string”

-

All content above can be included in the file multiple times changing the value “X” in each tag for
different languages. The module will then select the correct output string based on the language
settings. If no information for the selected language is found, it will use the default SSI output.

Value of X Language

0 English

1 German
2 Spanish

3 Italian
4 French

See also...

•

SsiOutput(), p. 110

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

JSON 125 (176)

11 JSON
11.1 General Information

JSON is an acronym for JavaScript Object Notation and an open standard format for storing and
exchanging data in an organized and intuitive way. In Anybus CompactCom, it is used to transmit
data objects consisting of name - value pairs between the webserver in the Anybus CompactCom
and a web application. The object members are unordered, thus the value pairs can appear in
any order. JavaScripts are used to create dynamic web pages to present the values. Optionally, a
callback may be passed to the GET-request for JSONP output.

JSON is more versatile than SSI in that you not only can read and write, but also change the size
and the look of the web page dynamically. A simple example of how to create a web page is
added at the end of this chapter.

11.1.1 Encoding
JSON requests shall be UTF-8 encoded. The module will interpret JSON requests as UTF-8
encoded, while all other HTTP requests will be interpreted as ISO-8859-1 encoded. All JSON
responses, sent by the module, are UTF-8 encoded, while all other files sent by the web server
are encoded as stored in the file system.

11.1.2 Access
It is recommended to password protect the JSON resources. Add password protection by adding
a file called web_accs.cfg in the root directory (all web content will be protected). The file is
described in the “Web Server” section in this document.

11.1.3 Error Response
If the module fails to parse or process a request, the response will contain an error object with
an Anybus error code:

{
"error" : 02

}

The Anybus error codes are listed in the Anybus CompactCom 40 Software Design Guide.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

JSON 126 (176)

11.2 JSON Objects
11.2.1 ADI

info.json

GET adi/info.json[?callback=<function>]

This object holds information about the ADI JSON interface. This data is static during runtime.

Name Data Type Note

dataformat Number 0 = Little endian
1 = Big endian
(Affects value, min and max representations)

numadis Number Total number of ADIs
webversion Number Web/JSON API version

JSON response example:

{
"dataformat": 0,
"numadis": 123,
"webversion": 1

}

data.json

GET adi/data.json?offset=<offset>&count=<count>[&callback=<function>]
GET adi/data.json?inst=<instance>&count=<count>[&callback=<function>]

These object calls fetch a sorted list of up to <count> ADIs values, starting from <offset> or
<instance>. The returned values may change at any time during runtime.

Request data:

Name Data Type Description

offset Number Offset is the “order number” of the first requested ADI.
The first implemented ADI will always get order number 0. <count>
number of existing ADI values will be returned. I.e. non-existing ADIs
are skipped.

inst Number Instance number of first requested ADI.
<count> number of ADI values is returned. A null value will be returned
for non-existing ADIs

count String Number of requested ADI values

callback Number Optional.
A callback function for JSONP output.

Response data:

Name Data Type Description
— Array of Strings Sorted list of string representations of the ADI value attributes

JSON response example (using offset):

[
"FF",
"A201",
"01FAC105"

]

JSON response example (using inst):

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

JSON 127 (176)

[
"FF",
"A201",
null,
null,
"01FAC105"

]

metadata.json

GET adi/metadata.json?offset=<offset>&count=<count>[&callback=<function>]
GET adi/metadata.json?inst=<instance>&count=<count>[&callback=<function>]

These object calls fetch a sorted list of metadata objects for up to <count> ADIs, starting from
<offset> or <instance>.

The returned information provided is a transparent representation of the attributes available in
the host Application Data object (FEh). See the Anybus CompactCom 40 Software Design Guide
for more information about the content of each attribute.

The ADI metadata is static during runtime.

Request data:

Name Data Type Description

offset Number Offset is the “order number” of the first requested ADI.
The first implemented ADI will always get order number 0. Metadata
objects for <count> number of existing ADI will be returned. I.e. non-
existing ADIs are skipped.

inst Number Instance number of first requested ADI.
Metadata objects for <count> number of ADI values are returned. A
null object will be returned for non-existing ADIs

count String Number of requested ADI values

callback Number Optional.
A callback function for JSONP output.

Response data:

Name Data Type Description

instance Number -

name String May be NULL if no name is present.

numelements Number -

datatype Number -

min String Hex formatted string, see Hex Format Explained, p. 143 for more
information.
May be NULL if no minimum value is present.

max String Hex formatted string, see Hex Format Explained, p. 143 for more
information.
May be NULL of no maximum value is present.

access Number Bit 0: Read access
Bit 1: Write access

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

JSON 128 (176)

JSON response example (using offset):

[
{

"instance": 1,
"name": "Temperature threshold",
"numelements": 1,
"datatype": 0,
"min": "00",
"max": "FF",
"access": 0x03

},
{

...
}
]

JSON response example (using inst):

[
{

"instance": 1,
"name": "Temperature threshold",
"numelements": 1,
"datatype": 0,
"min": "00",
"max": "FF",
"access": 0x03

},
null,
null
{

...
}
]

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

JSON 129 (176)

metadata2.json

GET adi/metadata2.json?offset=<offset>&count=<count>[&callback=<function>]
GET adi/metadata2.json?inst=<instance>&count=<count>[&callback=<function>]

This is an extended version of the metadata function that provides complete information about
the ADIs. This extended version is needed to describe more complex data types such as
Structures.

The information provided is a transparent representation of the attributes available in the host
Application Data object (FEh). See the Anybus CompactCom 40 Software Design Guide for more
information about the content of each attribute.

The ADI metadata is static during runtime.

Request data:

Name Data Type Description

offset Number Offset is the “order number” of the first requested ADI.
The first implemented ADI will always get order number 0. Metadata
objects for <count> number of existing ADI will be returned. I.e. non-
existing ADIs are skipped.

inst Number Instance number of first requested ADI.
Metadata objects for <count> number of ADI values are returned. A
null object will be returned for non-existing ADIs

count String Number of requested ADI values

callback Number Optional.
A callback function for JSONP output.

Response data:

Name Data Type Description

instance Number -

numelements Array of umbers -

datatype Array of Numbers Array of datatypes.
For Structures and Variables, each array element defines the data type
of the corresponding element of the instance value. For Arrays, one
array element defines the data type for all elements of the instance
value.

descriptor Array of descriptors.
For Structures and Variables, each array element defines the descriptor
of the corresponding element of the instance value. For Arrays, one
array element defines the descriptor for all elements of the instance
value.

name May be NULL if no name is present.

min String Hex formatted string, see Hex Format Explained, p. 143 for more
information.
May be NULL if no minimum value is present.

max String Hex formatted string, see Hex Format Explained, p. 143 for more
information.
May be NULL of no maximum value is present.

default String Hex formatted string, see Hex Format Explained, p. 143 for more
information.
May be NULL of no default value is present.

numsubelements Array of Numbers For Structures and Variables each array element defines the number of
subelements of the corresponding element of the instance value.
May be NULL if not present.

elementname Array of Strings Array of names, one for each instance value element.
May be NULL if not present.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

JSON 130 (176)

JSON response example (using offset):

[
{

"instance": 1,
"numelements": 1,
"datatype": [0],
"descriptor": [9],
"name": "Temperature threshold",
"max": "FF",
"min": "00",
"default": "00",
"numsubelements": null
"elementname": null

},
{

...
}
]

JSON response example (instance):

[
{

"instance": 1,
"numelements": 1,
"datatype": [0],
"descriptor": [9],
"name": "Temperature threshold",
"max": "FF",
"min": "00",
"default": "00",
"numsubelements": null
"elementname": null

},
null,
null
{

...
}
]

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

JSON 131 (176)

enum.json

GET adi/enum.json?inst=<instance>[&value=<element>][&callback=<function>]

This object call fetches a list of enumeration strings for a specific instance.

The ADI enum strings are static during runtime.

Request data:

Name Data Type Description

inst Number Instance number of the ADI to get enum string for.

value Number Optional. If given only the enumstring for the requested <value> is
returned.

callback String Optional. A callback function for JSONP output.

Response data:

Name Data Type Description

string String String representation for the corresponding value.

value Number Value corresponding to the string representation.

JSON response example:

[
{

"string": "String for value 1",
"value": 1

},
{

"string": "String for value 2",
"value": 2

},
{

...
}
]

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

JSON 132 (176)

update.json

POST adi/update.json

Form data:

inst=<instance>&value=<data>[&elem=<element>][&callback=<function>]

Updates the value attribute of an ADI.

Request data:

Name Data Type Description

inst Number Instance number of the ADI
value String Value to set.

If the value attribute is a number it shall be hes formatted, see Hex
Format Explained, p. 143 for more information.

elem Number Optional.
If specified only a single element of the ADI value is set. Then <data>
shall only contain the value of the specified <element>.

callback String Optional.
A callback function for JSONP output.

Response data:

Name Data Type Note

result Number 0 = success
The Anybus CompactCom error codes are used. Please see the Anybus
CompactCom 40 Software Design Guide.

{
"result" : 0

}

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

JSON 133 (176)

11.2.2 Module
info.json

GET module/info.json

Response data:

Name Data Type Description

modulename String -

serial String 32 bit hex ASCII

fwver Array of Number (major, minor, build)

uptime Array of Number The uptime is implemented as an array of two 32 bit values: [high, low]
milliseconds (ms)

cpuload Number CPU load in %

fwvertext String Firmware version in text

vendorname String Vender name (Application Object (FFh), instance attribute #8)

hwvertext String Hardware version in text

networktype Number Network type (Network Object (03h), instance attribute #1)

JSON response example:

{
"modulename": "ABCC M40",
"serial": "ABCDEF00",
"fwver": [1, 5, 0],
"uptime": [5, 123456],
"cpuload": 55,
"fwvertext": "1.05.02",
"vendorname": "HMS Industrial Networks",
"hwvertext": "2",
"networktype": 133,

}

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

JSON 134 (176)

11.2.3 Network
ethstatus.json

GET network/ethstatus.json.

Name Data Type Description
mac String 6 byte hex

comm1 Object See object definition in the table below

comm2 Object See object definition in the table below

Comm Object Definition:

Name Data Type Description

link Number 0: No link
1: Link

speed Number 0: 10 Mbit
1: 100 Mbit

duplex Number 0: Half
1: Full

JSON response example:

{
"mac": "003011FF0201",
"comm1": {

"link": 1,
"speed": 1,
"duplex": 1

},
"comm2": {

"link": 1,
"speed": 1,
"duplex": 1

}
}

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

JSON 135 (176)

ipstatus.json & ipconf.json

These two object share the same data format. The object ipconf.json returns the configured IP
settings, and ipstatus.json returns the actual values that are currently used. ipconf.json can also
be used to alter the IP settings.

GET network/ipstatus.json

or

GET network/ipconf.json

Name Data Type Note

dhcp Number -

addr String -

subnet String -

gateway String -

dns1 String -

dns2 String -

hostname String -

domainname String -

{
"dhcp": 0,
"addr": "192.168.0.55",
"subnet": "255.255.255.0",
"gateway": "192.168.0.1",
"dns1": "10.10.55.1",
"dns2": "10.10.55.2"
"hostname": "abcc123",
"domainname": "hms.se"

}

To change IP settings, use network/ipconf.json. It accepts any number of arguments from the list
above. Values should be in the same format.

Example:

GET ipconf.json?dhcp=0&addr=10.11.32.2&hostname=abcc123&domainname=hms.se

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

JSON 136 (176)

ethconf.json

GET network/ethconf.json

Name Data Type Note
mac String -

comm1 Number -

comm2 Number Only present if two Ethernet ports are activated in the module.

The values of “comm1” and “comm2” are read from the Network Configuration object, instances
#7 and #8.

{
"mac": [00, 30, 11, FF, 02, 01],
"comm1": 0,
"comm2": 4

}

The parameters “comm1” and “comm2” are configurable by adding them as arguments to the
GET request:

GET network/ethconf.json?comm1=0&comm2=4

The parameters “comm1” and “comm2” may hold an error object with Anybus error code if the
module fails processing the request:

{
"mac": [00, 30, 11, FF, 02, 01],
"comm1": 0,
"comm2": { error: 14 },

}

The Anybus CompactCom error codes are used. Please see the Anybus CompactCom 40 Software
Design Guide.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

JSON 137 (176)

ifcounters.json

GET network/ifcounters.json?port=<port>

Valid values for the argument <port> are 0, 1, and 2.

• Valid values for the argument <port> are 0, 1, and 2.

• Port number 0 option refers to the internal port (CPU port).

• Port number 2 option is only valid if two Ethernet ports are activated in the module.

Name Data Type Description

inoctets Number IN: bytes

inucast Number IN: unicast packets

innucast Number IN: broadcast and multicast packets

indiscards Number IN: discarded packets

inerrors Number IN: errors

inunknown Number IN: unsupported protocol type

outoctets Number OUT: bytes

outucast Number OUT: unicast packets

outnucast Number OUT: broadcast and multicast packets

outdiscards Number OUT: discarded packets

outerrors Number OUT: errors

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

JSON 138 (176)

mediacounters.json

GET network/mediacounters.json?port=<port>

The argument <port> is either 1 or 2.

Port number 2 option is only valid if two Ethernet ports are activated in the module.

Name Data Type Description

align Number Frames received that are not an integral number of octets in
length

fcs Number Frames received that do not pass the FCS check

singlecoll Number Successfully transmitted frames which experienced exactly one
collision

multicoll Number Successfully transmitted frames which experienced more than
one collision

latecoll Number Number of collisions detected later than 512 bit times into the
transmission of a packet

excesscoll Number Frames for which transmissions fail due to excessive collisions
sqetest Number Number of times SQE test error is generated

deferredtrans Number Frames for which the first transmission attempt is delayed
because the medium is busy

macrecerr Number Frames for which reception fails due to an internal MAC
sublayer receive error

mactranserr Number Frames for which transmission fails due to an internal MAC
sublayer transmit error

cserr Number Times that the carrier sense was lost or never asserted when
attempting to transmit a frame

toolong Number Frames received that exceed the maximum permitted frame
size

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

JSON 139 (176)

nwstats.json

GET network/nwstats.json

This object lists available statistics data. The data available depends on the product.

Example output:

[]
or
[{ "identifier": "eipstats", "title": "EtherNet/IP Statistics" }]
or
[{ "identifier": "eitstats", "title": "Modbus TCP Statistics" }]
or
[

{ "identifier": "bacnetipstats",
"title": "BACnet/IP Statistics" },

{ "identifier": "bacnetaplserverstats",
"title": "BACnet Application Layer Server Statistics" },

{ "identifier": "bacnetaplclientstats",
"title": "BACnet Application Layer Client Statistics" }

{ "identifier": "bacnetalarmstats",
"title": "BACnet Alarm and Event Module Statistics" }

]
or
[{ "identifier": "eplifcounters", "title": "IT Interface Counters" }]
or
[

{ "identifier": "ectstats", "title": "EtherCAT Statistics" },
{ "identifier": "eoeifcounters", "title": "EoE Interface Counters" },

]
or
[{ "identifier" : "pnpof", "title" : "Fiber Optical Statistics" }]

Get network specific statistics (<ID> is an “identifier” value returned from the previous
command):

GET network/nwstats.json?get=<ID>

“eipstats”

[
{ "name": "Established Class1 Connections", "value": 0 },
{ "name": "Established Class3 Connections", "value": 1 }
{ "name": "Connection Open Request", "value": 0 },
{ "name": "Connection Open Format Rejects", "value": 0 },
{ "name": "Connection Open Resource Rejects", "value": 0 },
{ "name": "Connection Open Other Rejects", "value": 0 },
{ "name": "Connection Close Requests", "value": 0 },
{ "name": "Connection Close Format Rejects", "value": 0 },
{ "name": "Connection Other Rejects", "value": 0 },
{ "name": "Connection Timeouts", "value": 0 },

]

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

JSON 140 (176)

“eitstats”

[
{ "name": "Modbus Connections", "value": 0 },
{ "name": "Connection ACKs", "value": 1 }
{ "name": "Connection NACKs", "value": 0 },
{ "name": "Connection Timeouts", "value": 0 },
{ "name": "Process Active Timeouts", "value": 0 },
{ "name": "Processed messages", "value": 0 },
{ "name": "Incorrect messages", "value": 0 },

]

“bacnetipstats”

[
{ "name": "Unconfirmed server requests received", "value": 0 },
{ "name": "Unconfirmed server requests sent", "value": 1 }
{ "name": "Unconfirmed client requests sent", "value": 0 },

]

“bacnetaplserverstats”

[
{ "name": "Active transactions", "value": 0 },
{ "name": "Max Active transactions", "value": 1 }
{ "name": "Tx segments sent", "value": 0 },
{ "name": "Tx segment ACKs received", "value": 0 },
{ "name": "Tx segment NAKs received", "value": 0 },
{ "name": "Rx segments received", "value": 0 },
{ "name": "Rx segment ACKs sent", "value": 0 },
{ "name": "Duplicate Rx segment ACKs sent", "value": 0 },
{ "name": "Rx segment NAKs sent", "value": 0 },
{ "name": "Confirmed transactions sent", "value": 0 },
{ "name": "Confirmed transactions received", "value": 0 },
{ "name": "Tx segment timeouts", "value": 0 },
{ "name": "Rx segment timeouts", "value": 0 },
{ "name": "Implicit deletes", "value": 0 },
{ "name": "Tx timeout deletes", "value": 0 },
{ "name": "Rx timeout deletes", "value": 0 },
{ "name": "Tx aborts received", "value": 0 },
{ "name": "Rx aborts received", "value": 0 },
{ "name": "Transaction aborts sent", "value": 0 },
{ "name": "Transaction rejects sent", "value": 0 },
{ "name": "Transaction errors sent", "value": 0 },

]

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

JSON 141 (176)

“bacnetaplclientstats”

[
{ "name": "Active transactions", "value": 0 },
{ "name": "Max Active transactions", "value": 1 }
{ "name": "Tx segments sent", "value": 0 },
{ "name": "Tx segment ACKs received", "value": 0 },
{ "name": "Tx segment NAKs received", "value": 0 },
{ "name": "Rx segments received", "value": 0 },
{ "name": "Rx segment ACKs sent", "value": 0 },
{ "name": "Duplicate Rx segment ACKs sent", "value": 0 },
{ "name": "Rx segment NAKs sent", "value": 0 },
{ "name": "Confirmed transactions sent", "value": 0 },
{ "name": "Confirmed transactions received", "value": 0 },
{ "name": "Tx segment timeouts", "value": 0 },
{ "name": "Rx segment timeouts", "value": 0 },
{ "name": "Implicit deletes", "value": 0 },
{ "name": "Tx timeout deletes", "value": 0 },
{ "name": "Rx timeout deletes", "value": 0 },
{ "name": "Tx aborts received", "value": 0 },
{ "name": "Rx aborts received", "value": 0 },
{ "name": "Transaction aborts sent", "value": 0 },
{ "name": "Transaction rejects sent", "value": 0 },
{ "name": "Transaction errors sent", "value": 0 },

]

“bacnetalarmstats”

[
{ "name": "COV Active subscriptions", "value": 0 },
{ "name": "COV Max active subscriptions", "value": 1 }
{ "name": "COV Lifetime subscriptions", "value": 0 },
{ "name": "COV Confirmed resumes", "value": 0 },
{ "name": "COV Unconfirmed resumes", "value": 0 },
{ "name": "COV Confirmed notifications sent", "value": 0 },
{ "name": "COV Unconfirmed notifications sent", "value": 0 },
{ "name": "COV Confirmed notification errors", "value": 0 },
{ "name": "AE Active events", "value": 0 },
{ "name": "AE Active NC recipients", "value": 0 },
{ "name": "AE Confirmed resumes", "value": 0 },
{ "name": "AE UnConfirmed resumes", "value": 0 },
{ "name": "AE Confirmed notifications sent", "value": 0 },
{ "name": "AE UnConfirmed notifications sent", "value": 0 },
{ "name": "AE Confirmed notification errors", "value": 0 },
{ "name": "AE DAB lookup errors", "value": 0 },

]

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

JSON 142 (176)

“eplifcounters”

[
{ "name": "In Octets", "value": 22967 },
{ "name": "In Ucast Packets", "value": 121 }
{ "name": "In NUcast Packets", "value": 31 },
{ "name": "In Discards", "value": 0 },
{ "name": "In Errors", "value": 0 },
{ "name": "In Unknown Protos", "value": 0 },
{ "name": "Out Octets", "value": 169323 },
{ "name": "Out Ucast Packets", "value": 168 },
{ "name": "Out NUcast Packets", "value": 16 },
{ "name": "Out Discards", "value": 0 },
{ "name": "Out Errors", "value": 0 },

]

“ectstats”

[
{ "name": "Logical EoE port link", "value": "Yes" },
{ "name": "Invalid frame counter IN port", "value": 1 }
{ "name": "Rx error counter IN port", "value": 1 },
{ "name": "Forwarded error counter IN port", "value": 1 },
{ "name": "Lost link counter IN port", "value": 1 },
{ "name": "Invalid frame counter OUT port", "value": 1 },
{ "name": "Rx error counter OUT port", "value": 1 },
{ "name": "Forwarded error counter OUT port", "value": 1 },
{ "name": "Lost link counter OUT port", "value": 1 },

]

“eoeifcounters”

[
{ "name": "In Octets", "value": 22967 },
{ "name": "In Ucast Packets", "value": 121 }
{ "name": "In NUcast Packets", "value": 31 },
{ "name": "In Discards", "value": 0 },
{ "name": "In Errors", "value": 0 },
{ "name": "In Unknown Protos", "value": 0 },
{ "name": "Out Octets", "value": 169323 },
{ "name": "Out Ucast Packets", "value": 168 },
{ "name": "Out NUcast Packets", "value": 16 },
{ "name": "Out Discards", "value": 0 },
{ "name": "Out Errors", "value": 0 },

]

“pnpof”

[
{ "name" : "Port 1 Temperature (C)", "value" : "41.37" },
{ "name" : "Port 1 Power Budget (dB)", "value" : "23.0" },
{ "name" : "Port 1 Power Budget Status", "value" : "OK" },
{ "name" : "Port 2 Temperature (C)", "value" : "40.57" },
{ "name" : "Port 2 Power Budget (dB)", "value" : "0.0" },
{ "name" : "Port 2 Power Budget Status", "value" : "OK" }

]

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

JSON 143 (176)

11.2.4 Services
smtp.json

GET services/smtp.json

Password is not returned when retrieving the settings.

Name Data Type Note
server String IP address or name of mail server, e.g. “mail.hms.se”
user String -

[
{ "server": "192.168.0.55"},
{ "user": "test"}

]

Set:

Form data:

[
[server=192.168.0.56]&[user=test2]&[password=secret],

]

11.2.5 Hex Format Explained
The metadata max, min, and default fields and the ADI values are ASCII hex encoded binary data.
If the data type is an integer, the endianness used is determined by the dataformat field found in
adi/info.json.

Examples:

The value 5 encoded as a UINT16, with dataformat = 0 (little endian):

0500

The character array “ABC” encoded as CHAR[3] (dataformat is not relevant for CHAR):

414243

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

JSON 144 (176)

11.3 Example
This example shows how to create a web page that fetches Module Name and CPU load from the
module and presents it on the web page. The file, containing this code, has to be stored in the
built-in file system, and the result can be seen in a common browser.

<html>
<head>

<title>Anybus CompactCom</title>

<!-- Imported libs -->
<script type="text/javascript" src="vfs/js/jquery-1.9.1.js"></script>
<script type="text/javascript" src="vfs/js/tmpl.js"></script>

</head>
<body>

<div id="info-content"></div>
<script type="text/x-tmpl" id="tmpl-info">

From info.json

Module name:
{%=o.modulename%}

CPU Load:
{%=o.cpuload%}%

</script>
<script type="text/javascript">

$.getJSON("/module/info.json", null, function(data){
$("#info-content").html(tmpl("tmpl-info", data));

});
</script>

</body>
</html>

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Appendix A: Categorization of Functionality 145 (176)

A Categorization of Functionality
The objects, including attributes and services, of the Anybus CompactCom and the application
are divided into two categories: basic and extended.

A.1 Basic
This category includes objects, attributes and services that are mandatory to implement or to use.
They will be enough for starting up the Anybus CompactCom and sending/receiving data with
the chosen network protocol. The basic functions of the industrial network are used.

Additional objects etc, that will make it possible to certify the product also belong to this
category.

A.2 Extended
Use of the objects in this category extends the functionality of the application. Access is given to
the more specific characteristics of the industrial network, not only the basic moving of data to
and from the network. Extra value is given to the application.

Some of the functionality offered may be specialized and/or seldom used. As most of the
available network functionality is enabled and accessible, access to the specification of the
industrial network may be required.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Appendix B: Implementation Details 146 (176)

B Implementation Details
B.1 SUP-bit Definition

The supervised bit (SUP) indicates that the network participation is supervised by another
network device. In the case of EtherCAT, this functionality is mapped to the SyncManager
watchdog, which can be used to detect loss of communication with the master. The
SyncManager watchdog is enabled by the master.

EtherCAT-specific interpretation:

SUP-bit Interpretation

0 SyncManager Watchdog is disabled or not running.

1 SyncManager Watchdog is enabled and running.

The watchdog and supervised bit (SUP) will not be available if the Read Process Data size is zero.

B.2 Anybus State Machine
The table below describes how the Anybus State Machine relates to the EtherCAT network status.

Anybus State Corresponding EtherCAT State

WAIT_PROCESS INIT, BOOTSTRAP or PRE-OPERATIONAL

ERROR (‘Error Ind’-bit in ‘AL-Status’ is set)

PROCESS_ACTIVE OPERATIONAL

IDLE SAFE-OPERATIONAL
EXCEPTION (EtherCAT interface is forced to INIT state, and the master is informed that a power cycle is

required to resume communication)

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Appendix B: Implementation Details 147 (176)

B.3 Application Status Register
The application status register is primarily used in SYNC applications. It is used in applications
where the network in question supports the ability to indicate critical process data errors to the
master. If this is supported, the Anybus CompactCom module will accept and handle the below
listed status codes written by the application.

If the application sets an error status to the application status register , the module sets the
EtherCAT state to SafeOp. The value is translated to the ALStatusCode register as shown in the
table below.

Value Error ALStatusCode:
ALSTATUSCODE_XXX (#)

Comment

0000h No error - Application can operate in
state PROCESS_ACTIVE

0001h Not yet synchronized NOSYNCERROR (002Dh) Application is not synchronized
to the SYNC signal and not
ready to go to PROCESS_
ACTIVE.

0002h Sync config error INVALIDSYNCCFG (0030h) A problem with the
configuration of the Sync host
object prevents the application
from going to PROCESS_
ACTIVE.

0003h Read process data
configuration error

INVALIDOUTPUTMAPPING (0025h) A problem with the current
read process data mapping is
prevents the application from
going to PROCESS_ACTIVE.

0004h Write process data
configuration error

INVALIDINPUTMAPPING (0024h) A problem with the current
write process data mapping is
prevents the application from
going to PROCESS_ACTIVE.

0005h Synchronization loss FATALSYNCERROR (002Ch) Application has lost the lock to
the synchronization. If the
module is in state PROCESS_
ACTIVE, it will go to ERROR.

0006h Excessive data loss NOVALIDINPUTSANDOUTPUTS
(002Bh)

The application has detected a
significant loss of process data
frames from the network. If
the module is in state
PROCESS_ACTIVE, it will go to
ERROR.

0007h Output error DCSYNCIOERROR (0033h) A problem in the application
prevents it from acting on
outputs. If the module is in
state PROCESS_ACTIVE, it will
go to ERROR.

B.4 Application Watchdog Timeout Handling
The Anybus CompactCom 40 EtherCAT module will enter the EXCEPTION state if the application
watchdog times out.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Appendix C: Technical Specification 148 (176)

C Technical Specification
C.1 Front View
C.1.1 Front View (RJ45 Connectors)

Item
1 RUN LED

1 2

3

5 6

4

2 ERROR LED
3 EtherCAT (IN port)

4 EtherCAT (OUT port)

5 Link/Activity (IN port)

6 Link/Activity (OUT port)

The flash sequences for the RUN LED and the ERROR LED are defined in ETG1300_S_R_V1i1i0_
IndicatorLabelingSpecification.pdf (ETG).

C.1.2 Front View (M12 Connectors)
Item
1 RUN LED

1 2

5 6

3 4

2 ERROR LED
3 EtherCAT (IN port)

4 EtherCAT (OUT port)

5 Link/Activity (IN port)

6 Link/Activity (OUT port)

The flash sequences for the RUN LED and the ERROR LED are defined in ETG1300_S_R_V1i1i0_
IndicatorLabelingSpecification.pdf (ETG).

C.1.3 RUN LED
This LED reflects the status of the EtherCAT device.

LED State Indication Description

Off INIT EtherCAT device in ‘INIT’-state (or no power)

Green OPERATIONAL EtherCAT device in ‘OPERATIONAL’-state
Green, blinking PRE-OPERATIONAL EtherCAT device in ‘PRE-OPERATIONAL’-state

Green, single flash SAFE-OPERATIONAL EtherCAT device in ‘SAFE-OPERATIONAL’-state

Flickering BOOT The EtherCAT device is in ‘BOOT’ state

Red (Fatal Event) If RUN and ERR turn red, this indicates a fatal event,
forcing the bus interface to a physically passive state.
Contact HMS technical support.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Appendix C: Technical Specification 149 (176)

C.1.4 ERR LED
This LED indicates EtherCAT communication errors etc.

LED State Indication Description

Off No error No error (or no power)

Red, blinking Invalid configuration State change received from master is not possible due to
invalid register or object settings.

Red, single flash Unsolicited state change Slave device application has changed the EtherCAT state
autonomously.

Red, double flash Sync Manager watchdog
timeout

See Watchdog Functionality, p. 16 for more information.

Red Application controller failure Anybus module in EXCEPTION.
If RUN and ERR turn red, this indicates a fatal event,
forcing the bus interface to a physically passive state.
Contact HMS technical support.

Flickering Booting error detected E.g. due to firmware download failure.

C.1.5 Link/Activity
These LEDs indicate the EtherCAT link status and activity.

LED State Indication Description

Off No link Link not sensed (or no power)

Green Link sensed, no activity Link sensed, no traffic detected

Green, flickering Link sensed, activity Link sensed, traffic detected

C.1.6 Ethernet Connector (RJ45)
Pin Signal Notes

1 Tx+ -

1 8

2 Tx- -

3 Rx+ -

4 - Normally left unused; to ensure signal integrity, these pins are tied
together and terminated to PE via a filter circuit in the module.5 -

6 Rx- -

7 - Normally left unused; to ensure signal integrity, these pins are tied
together and terminated to PE via a filter circuit in the module.8 -

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Appendix C: Technical Specification 150 (176)

C.1.7 M12 Connectors, Code D
Pin Name Description

1 TXD+ Transmit positive

1
4

3
2

5

2 RXD+ Receive positive

3 TXD- Transmit negative

4 RXD- Receive negative

5 (Thread) Shield Shield

C.2 Functional Earth (FE) Requirements
In order to ensure proper EMC behavior, the module must be properly connected to functional
earth via the FE pad / FE mechanism described in the general Anybus CompactCom M40
Hardware Design Guide.

HMS Industrial Networks does not guarantee proper EMC behaviour unless these FE
requirements are fulfilled.

C.3 Power Supply
C.3.1 Supply Voltage

The module requires a regulated 3.3V power source as specified in the general Anybus
CompactCom M40 Hardware Design Guide.

C.3.2 Power Consumption
The Anybus CompactCom 40 EtherCAT is designed to fulfil the requirements of a Class B module.
For more information about the power consumption classification used on the Anybus
CompactCom platform, consult the general Anybus CompactCom Hardware Design Guide.

The current hardware design consumes up to 430 mA.

It is strongly advised to design the power supply in the host application based on the power consumption
classifications described in the general Anybus CompactCom Hardware Design Guide, and not on the
exact power requirements of a single product.

In line with HMS policy of continuous product development, we reserve the right to change the exact
power requirements of this product without prior notification. Note however that in any case, the
Anybus CompactCom 40 EtherCAT will remain as a Class B module.

C.4 Environmental Specification
Consult the Anybus CompactCom Hardware M40 Design Guide for further information.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Appendix C: Technical Specification 151 (176)

C.5 EMC Compliance
Consult the Anybus CompactCom Hardware M40 Design Guide for further information.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Appendix D: Timing & Performance 152 (176)

D Timing & Performance
D.1 General Information

This chapter specifies timing and performance parameters that are verified and documented for
the Anybus CompactCom 40 EtherCAT.

The following timing aspects are measured:

Category Parameters Page

Startup Delay T1, T2 152

NW_INIT Handling T100 152

Event Based WrMsg Busy Time T103 152

Event Based Process Data Delay T101, T102 153

For further information, please consult the Anybus CompactCom 40 Software Design Guide.

D.2 Internal Timing
D.2.1 Startup Delay

The following parameters are defined as the time measured from the point where /RESET is
released to the point where the specified event occurs.

Parameter Description Max. Unit.

T1 The Anybus CompactCom 40 EtherCAT module generates the first
application interrupt (parallel mode)

11 ms

T2 The Anybus CompactCom 40 EtherCAT module is able to receive and
handle the first application telegram (serial mode)

11 ms

D.2.2 NW_INIT Handling
This test measures the time required by the Anybus CompactCom 40 EtherCAT module to
perform the necessary actions in the NW_INIT-state.

Parameter Conditions
No. of network specific commands Max.

No. of ADIs (single UINT8) mapped to Process Data in each direction. (If the network specific
maximum is less than the value given here, the network specific value will be used.)

32

Event based application message response time > 1 ms

Ping-pong application response time > 10 ms

No. of simultaneously outstanding Anybus commands that the application can handle 1

Parameter Description Communication Max. Unit.

T100 NW_INIT handling Event based modes 3.6 ms

D.2.3 Event Based WrMsg Busy Time
The Event based WrMsg busy time is defined as the time it takes for the module to return the H_
WRMSG area to the application after the application has posted a message.

Parameter Description Min. Max. Unit.

T103 H_WRMSG area busy time 2.8 7.2 μs

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Appendix D: Timing & Performance 153 (176)

D.2.4 Event Based Process Data Delay
“Read process data delay” is defined as the time from when the last bit of the network frame has
been received by the network interface, to when the RDPDI interrupt is asserted to the
application.

“Write process data delay” is defined as the time from when the application exchanges write
process data buffers, to when the first bit of the new process data frame is sent out on the
network.

The tests were run in 16-bit parallel event mode, with interrupts triggered only for new process
data events. Eight different IO sizes (2, 16, 32, 64, 128, 256, 512 and 1024 bytes) were used in
the tests, all giving the same test results.

The delay added by the PHY circuit has not been included, as this delay is insignificant compared
to the total process data delay.

Parameter Description Delay (min.) Delay (typ.) Delay (max.) Unit

T101 Read process data delay - - 228 ns

T102 Write process data delay - - 170 ns

NP40

Anybus

Host
connector Host Application

Ethernet
PHY

Ethernet
Trafo

Ethernet
connectorEthernet

Network

Read process data delay

Fig. 6

NP40

Anybus

Host
connector Host Application

Ethernet
PHY

Ethernet
Trafo

Ethernet
connectorEthernet

Network

Write process data delay

Fig. 7

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

E Secure HICP (Secure Host IP Configuration Protocol)
E.1 General

The Anybus CompactCom 40 EtherCAT supports the Secure HICP protocol used by the Anybus
IPconfig utility for changing settings, e.g. IP address, Subnet mask, and enable/disable DHCP.
Anybus IPconfig can be downloaded free of charge from the HMS website, www.anybus.com.
This utility may be used to access the network settings of any Anybus product connected to the
network via UDP port 3250.

The protocol offers secure authentication and the ability to restart/reboot the device(s).

E.2 Operation
When the application is started, the network is automatically scanned for Anybus products. The
network can be rescanned at any time by clicking Scan.

To alter the network settings of a module, double-click on its entry in the list. A window will
appear, containing the settings for the module.

Fig. 8

Validate the new settings by clicking Set, or click Cancel to cancel all changes. Optionally, the
configuration can be protected from unauthorized access by a password. To enter a password,
check the Change password checkbox and enter the password in the New password text field.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Appendix F: Backward Compatibility 155 (176)

F Backward Compatibility
The Anybus CompactCom M40 series of industrial network modules have significantly better
performance and include more functionality than the modules in the Anybus CompactCom 30
series. The 40 series is backward compatible with the 30 series in that an application developed
for the 30 series should be possible to use with the 40 series, without any major changes. Also it
is possible to mix 30 and 40 series modules in the same application.

This appendix presents the backwards compatibility issues that have to be considered for Anybus
CompactCom 40 EtherCAT, when designing with both series in one application, or when adapting
a 30 series application for the 40 series.

F.1 Initial Considerations
There are two options to consider when starting the work to modify a host application
developed for Anybus CompactCom 30-series modules to also be compatible with the 40-series
modules:

• Add support with as little work as possible i.e. reuse as much as possible of the current
design.

– This is the fastest and easiest solution but with the drawback that many of the new
features available in the 40-series will not be enabled (e.g. enhanced and faster
communication interfaces, larger memory areas, and faster communication protocols).

– You have to check the hardware and software differences below to make sure the host
application is compatible with the 40-series modules. Small modifications to your
current design may be needed.

• Make a redesign and take advantage of all new features presented in the 40-series.

– A new driver and host application example code are available at
www.anybus.com/starterkit40 to support the new communication protocol. This driver
supports both 30-series and 40-series modules.

– You have to check the hardware differences below and make sure the host application
is compatible with the 40-series modules.

This information only deals with differences between the 30-series and the 40-series.

Link to support page: www.anybus.com/support.

F.2 Hardware Compatibility
Anybus CompactCom is available in three hardware formats; Module, Chip, and Brick.

F.2.1 Module
The modules in the 30-series and the 40-series share physical characteristics, like dimensions,
outline, connectors, LED indicators, mounting parts etc. They are also available as modules
without housing.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

http://www.anybus.com/starterkit40
http://www.anybus.com/support

Appendix F: Backward Compatibility 156 (176)

Fig. 9 Anybus CompactCom M30/M40

F.2.2 Chip
The chip (C30/C40) versions of the Anybus CompactCom differ completely when it comes to
physical dimensions.

There is no way to migrate a chip solution from the 30-series to the 40-series without a
major hardware update.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Appendix F: Backward Compatibility 157 (176)

F.2.3 Brick
The Anybus CompactCom B40-1 does not share dimensions with the Anybus CompactCom B30.
The B40-1 is thus not suitable for migration. However HMS Industrial Networks has developed a
separate brick version in the 40-series, that can be used for migration. This product, B40-2,
shares dimensions etc. with the B30. Please contact HMS Industrial Networks for more
information on the Anybus CompactCom B40-2.

Fig. 10 Anybus CompactCom B30

Fig. 11 Anybus CompactCom B40–1 (not for migration)

Fig. 12 Anybus CompactCom B40–2

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Appendix F: Backward Compatibility 158 (176)

F.2.4 Host Application Interface

25
50

1
26

MD
1

A1 A3 A5 A7 A9 A1
1

A1
3

D6 D4 D2 D0 VD
D

VS
S

OM
1

CE IR
Q

RE
SE

T
GO

P0
GI

P0
LE

D2
B

LE
D1

B
Tx

/O
M3

MI
1

VS
S

VS
S A0 A2 A4 A6 A8 A1
0

A1
2 D7 D5 D3 D1 VD
D

VS
S

OM
0

OM
2

R/
W OE

GO
P1

GI
P1

LE
D2

A
LE

D1
A Rx MI
0

MD
0

Fig. 13

Some signals in the host application interface have modified functionality and/or functions which
must be checked for compatibility. See the following sections.

Tx/OM3

In the 30-series, this pin is only used for Tx. It is tri-stated during power up, and driven by the
Anybus CompactCom UART after initialization. In the 40-series this pin is used as a fourth
operating mode setting pin (OM3). During startup after releasing the reset, this pin is read to
determine the operating mode to use. The pin is then changed to a Tx output.

In the 40-series, this pin has a built-in weak pull-up. If this pin, on a 30-series module or brick is
unconnected, pulled high, or connected to a high-Z digital input on the host processor, it will be
compatible with the 40-series. An external pull-up is recommended, but not required.

If this pin is pulled low by the host during startup in a 30-series application, any 40-series
module or brick, substituted in the application, will not enter the expected operating
mode.

Related Information: Anybus CompactCom M40 Hardware Design Guide (HMSI-216-126), Section
“Application Connector Pin Overview”

Module Identification (MI[0..1])

These pins are used by the host application (i.e. your product) to identify what type of Anybus
CompactCom that is mounted. The identification differs between the 30-series and the 40-series.

If your software use this identification you need to handle the new identification value.

MI1 MI0 Module Type

LOW LOW Active Anybus CompactCom 30

HIGH LOW Active Anybus CompactCom 40

MI[0..1] shall only be sampled by the application during the time period from power up to the
end of SETUP state. The pins are low at power up and before reset release.

Related Information: Anybus CompactCom M40 Hardware Design Guide (HMSI-216-126), Section
“Settings/Sync”.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Appendix F: Backward Compatibility 159 (176)

GIP[0..1]/LED3[A..B]

These pins are tri-stated inputs by default in the 30-series. In the 40-series, these pins are tri-
stated until the state NW_INIT. After that they become open-drain, active low LED outputs
(LED3A/LED3B).

No modification of the hardware is needed, if your current design has

• tied these pins to GND

• pulled up the pins

• pulled down the pins

• left the pins unconnected

However, if the application drive the pins high, a short circuit will occur.

If you connect the pins to LEDs, a pull-up is required.

In the 40-series, there is a possibility to set the GIP[0..1] and GOP[0..1] in high impedance state
(tri-state) by using attribute #16 (GPIO configuration) in the Anybus object (01h). I.e. if it is not
possible to change the host application hardware, this attribute can be configured for high
impedance state of GIP and GOP before leaving NW_INIT state.

Related Information: Anybus CompactCom M40 Hardware Design Guide (HMSI-216-126), Section
“LED Interface/D8-D15 (Data Bus)”.

GOP[0..1]/LED4[A..B]

These pins are outputs (high state) by default in the 30-series. In the 40-series, these pins are tri-
stated until the state NW_INIT, and after that they become push-pull, active low LED outputs
(LED4A/LED4B).

This change should not affect your product.

Related Information: Anybus CompactCom M40 Hardware Design Guide (HMSI-216-126), Section
3.2.3, “LED Interface/D8-D15 (Data Bus)”.

Address Pins A[11..13]

The address pins 11, 12, and 13 are ignored by the 30-series. These pins must be high when
accessing the 40-series module in backwards compatible 8-bit parallel mode. If you have left
these pins unconnected or connected to GND, you need to make a hardware modification to tie
them high.

Max Input Signal Level (VIH)

The max input signal level for the 30-series is specified as VIH=VDD+0,2 V, and for the 40-series as
VIH=3.45 V. Make sure that you do not exceed 3.45 V for a logic high level.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Appendix F: Backward Compatibility 160 (176)

RMII Compatibility

If the RMII mode is being used on an Anybus CompactCom 40 module and it is desired to remain
compatible with the 30 series, it is important to disable this connection when switching to an
Anybus CompactCom 30 module due to pin conflicts. The RMII port of the host processor should
be set to tristate by default, and only be enabled if an RMII capable Anybus CompactCom 40 is
detected. In case the RMII connection cannot be disabled through an internal hardware control
on the host processor, it will be necessary to design in external hardware (i.e. a FET bus switch)
to prevent short circuits

Related Information: Anybus CompactCom M40 Hardware Design Guide (HMSI-216-126), Section
3.2.5, “RMII — Reduced Media-Independent Interface”.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Appendix F: Backward Compatibility 161 (176)

F.3 General Software
F.3.1 Extended Memory Areas

The memory areas have been extended in the 40-series, and it is now possible to access larger
sizes of process data (up to 4096 bytes instead of former maximum 256 bytes) and message data
(up to 1524 bytes instead of former maximum 255 bytes). The 30-series has reserved memory
ranges that the application should not use. The 40-series implements new functionality in some
of these memory areas.

To use the extended memory areas you need to implement a new communication protocol which is not
part of this document.

Memory areas not supported by the specific network cannot be used. Make sure you do not access these
areas, e.g. for doing read/write memory tests.

Related Information: Anybus CompactCom 40 Software Design Guide (HMSI-216-125), Section
“Memory Map”

F.3.2 Faster Ping-Pong Protocol
The ping-pong protocol (the protocol used in the 30-series) is faster in the 40-series. A 30-series
module typically responds to a so called ping within 10-100 µs. The 40-series typically responds
to a ping within 2 µs.

Interrupt-driven applications (parallel operating mode) may see increased CPU load due to the
increased speed.

F.3.3 Requests from Anybus CompactCom to Host Application During Startup
All requests to software objects in the host application must be handled and responded to (even
if the object does not exist). This applies for both the 30-series and the 40-series. The 40-series
introduces additional objects for new functionality.

There may also be additional commands in existing objects added to the 40-series that must be
responded to (even if it is not supported).

If your implementation already responds to all commands it cannot process, which is the
expected behavior, you do not need to change anything.

F.3.4 Anybus Object (01h)
Attribute 30-series 40-series Change/Action/Comment

#1, Module Type 0401h 0403h Make sure the host application accepts the new
module type value for the 40-series.

#15, Auxiliary Bit Available Removed It is not possible to turn off the “Changed Data
Indication” in the 40-series. Also see “Control
Register CTRL_AUX-bit” and “Status Register
STAT_AUX-bit” below.

#16, GPIO Configuration Default: General
input and output
pins

Default: LED3 and
LED4 outputs

See also ..

• GIP[0..1]/LED3[A..B], p. 159

• GOP[0..1]/LED4[A..B], p. 159

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Appendix F: Backward Compatibility 162 (176)

F.3.5 Control Register CTRL_AUX-bit

30-series The CTRL_AUX bit in the control register indicates to the Anybus CompactCom if the process data
in the current telegram has changed compared to the previous one.

40-series The value of the CTRL_AUX bit is always ignored. Process data is always accepted.

All released Anybus CompactCom 30 example drivers from Anybus CompactCom comply with
this difference.

Related Information: Anybus CompactCom 40 Software Design Guide (HMSI-216-125), section
“Control Register”.

F.3.6 Status Register STAT_AUX-bit

30-series The STAT_AUX bit in the status register indicates if the output process data in the current
telegram has changed compared to the previous one. This functionality must be enabled in the
Anybus object (01h), Attribute #15. By default, the STAT_AUX bit functionality is disabled.

40-series The STAT_AUX bit indicates updated output process data (not necessarily changed data) from the
network compared to the previous telegram. The functionality is always enabled.

All released Anybus CompactCom 30 example drivers from HMS Industrial Networks comply with
this difference.

Related Information: Anybus CompactCom 40 Software Design Guide (HMSI-216-125), section
“Status Register”.

F.3.7 Control Register CTRL_R-bit

30-series The application may change this bit at any time.

40-series For the 8-bit parallel operating mode, the bit is only allowed to transition from 1 to 0 when the
STAT_M-bit is set in the status register. When using the serial operating modes, it is also allowed
to transition from 1 to 0 in the telegram immediately after the finalizing empty fragment.

All released Anybus CompactCom 30 example drivers from HMS Industrial Networks comply with
this difference.

Related Information: Anybus CompactCom 40 Software Design Guide (HMSI-216-125), section
“Control Register”.

F.3.8 Modifications of Status Register, Process Data Read Area, and Message Data
Read Area
In the 40-series, the Status Register, the Process Data Read Area, and the Message Data Read
Area are write protected in hardware (parallel interface). If the software for some reason writes
to any of those areas, a change is needed.

All releasedAnybus CompactCom 30 example drivers from HMS Industrial Networks comply with
this difference.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Appendix F: Backward Compatibility 163 (176)

F.4 Network Specific — EtherCAT
F.4.1 Network Configuration Object (04h)

The instance number for the Device ID instance has changed from number 3 (30-series) to
number 1 (40-series).

F.4.2 EtherCAT Object (F5h)
Attribute 30-series 40-series Change/Action/Comment

#2, Product Code Default: 0000
0034h

Default: 0000
0036h

If the attribute is implemented in the host
application, it overrides the default value and
there is no difference between the 30-series and
the 40-series.
If the attribute is not implemented, the default
value is used.

#6, Manufacturer
Device Name

Default: “Anybus-
CC EtherCAT”

Default:
“CompactCom 40
EtherCAT”

If the attribute is implemented in the host
application, it overrides the default value and
there is no difference between the 30-series and
the 40-series.
If the attribute is not implemented, the default
value is used.

F.4.3 ESI-file (Configuration file used by engineering tool)
When migrating from the 30-series to the 40-series, a new, updated ESI-file is needed. To help
you, there is an ESI-file Generator available from HMS Industrial Networks, see below.

ESI-file Generator

An ESI-file generator is available on the HMS Industrial Networks website. The generator will
create an up to date ESI file fitted for the specific design. The ESI generator works for both the
30-series and the 40-series.

The generator can be downloaded from www.anybus.com/starterkit40.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

http://www.anybus.com/starterkit40

Appendix F: Backward Compatibility 164 (176)

Keywords

The ESI-file generator is up to date with the following differences between the 30-series and the
40-series.

The Product Code, Revision Number and Product Name must be updated to reflect the current
module. Note: These values can be changed via the EtherCAT object (F5h) and the ESI-file values
must match the EtherCAT object values.

<Type ProductCode="#x00000036" RevisionNo="#x00020001">
CompactCom 40 EtherCAT</Type>

The EtherCAT state transition timeouts must be present in the ESI-file per the latest specification.
Note: These timeout values can be change via the EtherCAT object (F5h) and the ESI-file values
must match the EtherCAT object values.

<StateMachine>
<Timeout>

<PreopTimeout>1000</PreopTimeout>
<SafeopOpTimeout>5000</SafeopOpTimeout>
<BackToInitTimeout>1000</BackToInitTimeout>
<BackToSafeopTimeout>200</BackToSafeopTimeout>

<Timeout>
</StateMachine>

The sync manager start addresses have been changed in the 40-series, and the sync manager
sizes are now configurable in the EtherCAT configuration tool.

<Sm MinSize="34" MaxSize="1486" DefaultSize="276" StartAddress="#x4000"
ControlByte="#x26" Enable="1">MBoxOut</Sm>
<Sm MinSize="34" MaxSize="1486" DefaultSize="276" StartAddress="#x4800"
ControlByte="#x22" Enable="1">MBoxIn</Sm>
<Sm StartAddress="#x2800" ControlByte="#x20" Enable="1">Inputs</Sm>

The 40-series supports File over EtherCAT (FoE) and this must be reflected in the ESI-file. If FoE is
disabled in the EtherCAT host object, this keyword must be removed from the ESI-file.

<FoE/>

Since the 40-series is using the HMS slave controller, the EEPROM byte size and the SII
configuration data must be changed according to the following settings.

<ByteSize>384</ByteSize>
<ConfigData>80360046F4010000000000000000</ConfigData>

The 40-series supports the boot strap state, and requires the following keyword.

<BootStrap>0040000400480004</BootStrap>

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Appendix G: Copyright Notices 165 (176)

G Copyright Notices
Print formatting routines

Copyright (C) 2002 Michael Ringgaard. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.
3. Neither the name of the project nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Appendix G: Copyright Notices 166 (176)

Copyright (c) 2002 Florian Schulze.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.
3. Neither the name of the authors nor the names of the contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

ftpd.c - This file is part of the FTP daemon for lwIP

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Appendix G: Copyright Notices 167 (176)

FatFs - FAT file system module R0.09b (C)ChaN, 2013

FatFs module is a generic FAT file system module for small embedded systems. This is a free
software that opened for education, research and commercial developments under license policy
of following trems.

Copyright (C) 2013, ChaN, all right reserved.

The FatFs module is a free software and there is NO WARRANTY. No restriction on use. You can
use, modify and redistribute it for personal, non-profit or commercial products UNDER YOUR
RESPONSIBILITY. Redistributions of source code must retain the above copyright notice.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Appendix G: Copyright Notices 168 (176)

lwIP is licenced under the BSD licence:

Copyright (c) 2001-2004 Swedish Institute of Computer Science.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.
3. The name of the author may not be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Appendix G: Copyright Notices 169 (176)

Copyright 2013 jQuery Foundation and other contributors
http://jquery.com/

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to
do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Appendix G: Copyright Notices 170 (176)

rsvp.js

Copyright (c) 2013 Yehuda Katz, Tom Dale, and contributors

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to
do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Appendix G: Copyright Notices 171 (176)

libb (big.js)

The MIT Expat Licence.

Copyright (c) 2012 Michael Mclaughlin

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the 'Software'), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to
do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Appendix G: Copyright Notices 172 (176)

The "inih" library is distributed under the New BSD license:

Copyright (c) 2009, Ben Hoyt
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.
* Neither the name of Ben Hoyt nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY BEN HOYT ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL BEN HOYT BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Appendix G: Copyright Notices 173 (176)

MD5 routines

Copyright (C) 1999, 2000, 2002 Aladdin Enterprises.
All rights reserved.

This software is provided 'as-is', without any express or implied warranty. In no event will the
authors be held liable for any damages arising from the use of this software. Permission is
granted to anyone to use this software for any purpose, including commercial applications, and
to alter it and redistribute it freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote
the original software. If you use this software in a product, an acknowledgment in the product
documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as
being the original software.
3. This notice may not be removed or altered from any source distribution.

L. Peter Deutsch
ghost@aladdin.com

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

Appendix G: Copyright Notices 174 (176)

Format - lightweight string formatting library.
Copyright (C) 2010-2013, Neil Johnson
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.
* Neither the name of nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

Anybus® CompactCom™ 40 EtherCAT® Network Guide SCM-1202-034 2.3 en-US

This page intentionally left blank

last page

© 2019 HMS Industrial Networks
Box 4126
300 04 Halmstad, Sweden

info@hms.se SCM-1202-034 2.3 en-US / 2019-05-27 / 13430

	1 Preface
	1.1 About this document
	1.2 Related Documents
	1.3 Document History
	1.4 Document Conventions
	1.5 Document Specific Conventions
	1.6 Trademark Information

	2 About the Anybus CompactCom 40 EtherCAT
	2.1 General
	2.2 Features

	3 Basic Operation
	3.1 General Information
	3.1.1 Software Requirements
	3.1.2 EtherCAT Slave Interface (ESI) File
	3.1.3 Device Identity
	3.1.4 File Access over EtherCAT (FoE)
	3.1.5 Fail Safe over EtherCAT (FSoE)
	3.1.6 Ethernet over EtherCAT (EoE)

	3.2 EtherCAT Implementation Details
	3.2.1 General Information
	3.2.2 EtherCAT Synchronization
	3.2.3 Sync Managers
	3.2.4 FMMUs
	3.2.5 Addressing Modes
	3.2.6 Watchdog Functionality

	3.3 CANopen over EtherCAT Implementation Details
	3.3.1 General Information
	3.3.2 Implemented Services

	3.4 Data exchange
	3.4.1 Application Data (ADI)
	3.4.2 Process Data

	3.5 File System
	3.5.1 Overview
	3.5.2 General Information
	3.5.3 System Files

	3.6 Communication Settings in Stand Alone Shift Register Mode
	3.7 Network Reset Handling
	3.7.1 Reset Node
	3.7.2 Restore Manufacturer Parameters to Default

	3.8 Configured Station Alias (Node Address)
	3.9 Device ID
	3.10 Modular Device Profile

	4 Object Dictionary (CANopen over EtherCAT)
	4.1 Standard Objects
	4.1.1 General
	4.1.2 Object Entries

	4.2 Manufacturer and Profile Specific Objects
	4.2.1 General
	4.2.2 Network Data Format
	4.2.3 Error Codes
	4.2.4 Object Entries
	4.2.5 Fail Safe over EtherCAT, Object Entries
	4.2.6 Modular Device Profile, Object Entries

	5 Anybus Module Objects
	5.1 General Information
	5.2 Anybus Object (01h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)

	5.3 Diagnostic Object (02h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)

	5.4 Network Object (03h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)
	Exception Information

	5.5 Network Configuration Object (04h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1, Device ID)
	Instance Attributes (Instance #3, IP Address)
	Instance Attributes (Instance #4, Subnet Mask)
	Instance Attributes (Instance #5, Gateway)
	Instance Attributes (Instance #6, DHCP)
	Instance Attributes (Instances #7 - #8)
	Instance Attributes (Instance #9, DNS1)
	Instance Attributes (Instance #10, DNS2)
	Instance Attributes (Instance #11, Host name)
	Instance Attributes (Instance #12, Domain name)
	Instance Attributes (Instance #13, SMTP Server)
	Instance Attributes (Instance #14, SMTP User)
	Instance Attributes (Instance #15, SMTP Password)
	Instance Attributes (Instances #16 - #20)
	Instance Attributes (Instance #21, FSoE Address)
	Multilingual Strings
	Reset

	5.6 Socket Interface Object (07h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Sockets #1...Max. no. of instances)
	Command Details: Create
	Command Details: Delete
	Command Details: Bind
	Command Details: Shutdown
	Command Details: Listen
	Command Details: Accept
	Command Details: Connect
	Command Details: Receive
	Command Details: Receive_From
	Command Details: Send
	Command Details: Send_To
	Command Details: IP_Add_Membership
	Command Details: IP_Drop_Membership
	Command Details: DNS_Lookup
	Socket Interface Error Codes (Object Specific)
	Message Segmentation

	5.7 SMTP Client Object (09h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)
	Command Details: Create
	Command Details: Delete
	Command Details: Send E-mail From File
	Command Details: Send E-mail
	Object Specific Error Codes

	5.8 Network Ethernet Object (0Ch)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)
	Instance Attributes (Instance #2)
	Instance Attributes (Instance #3)
	Interface Counters
	Media Counters

	5.9 Functional Safety Module Object (11h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)
	Command Details: Error_Confirmation
	Command Details: Set_IO_Config_String
	Command Details: Get_Safety_Output_PDU
	Command Details: Get_Safety_Input_PDU
	Object Specific Error Codes

	6 Host Application Objects
	6.1 General Information
	6.2 Functional Safety Object (E8h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)

	6.3 Assembly Mapping Object (EBh)
	Category
	Object Description

	6.4 Sync Object (EEh)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)

	6.5 EtherCAT Object (F5h)
	Category
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)
	Attribute #21: State Transition Timeouts
	Command Details: Get_Object_Description
	ADI Translation, Example
	Object Subindex Translation, Example

	6.6 Ethernet Host Object (F9h)
	Object Description
	Supported Commands
	Object Attributes (Instance #0)
	Instance Attributes (Instance #1)
	Network Status
	DHCP Option 61 (Client Identifier)

	7 Web Server
	7.1 General Information
	7.2 Default Web Pages
	7.2.1 Network Configuration
	7.2.2 Network Status Page

	7.3 Server Configuration
	7.3.1 General Information
	7.3.2 Index page
	7.3.3 Default Content Types
	7.3.4 Authorization

	8 FTP Server
	8.1 General Information
	8.2 User Accounts
	8.3 Session Example

	9 E-mail Client
	9.1 General Information
	9.2 How to Send E-mail Messages

	10 Server Side Include (SSI)
	10.1 General Information
	10.2 Include File
	10.3 Command Functions
	10.3.1 General Information
	10.3.2 GetConfigItem()
	10.3.3 SetConfigItem()
	10.3.4 SsiOutput()
	10.3.5 DisplayRemoteUser
	10.3.6 ChangeLanguage()
	10.3.7 IncludeFile()
	10.3.8 SaveDataToFile()
	10.3.9 printf()
	10.3.10 scanf()

	10.4 Argument Functions
	10.4.1 General Information
	10.4.2 ABCCMessage()

	10.5 SSI Output Configuration

	11 JSON
	11.1 General Information
	11.1.1 Encoding
	11.1.2 Access
	11.1.3 Error Response

	11.2 JSON Objects
	11.2.1 ADI
	11.2.2 Module
	11.2.3 Network
	11.2.4 Services
	11.2.5 Hex Format Explained

	11.3 Example

	A Categorization of Functionality
	A.1 Basic
	A.2 Extended

	B Implementation Details
	B.1 SUP-bit Definition
	B.2 Anybus State Machine
	B.3 Application Status Register
	B.4 Application Watchdog Timeout Handling

	C Technical Specification
	C.1 Front View
	C.1.1 Front View (RJ45 Connectors)
	C.1.2 Front View (M12 Connectors)
	C.1.3 RUN LED
	C.1.4 ERR LED
	C.1.5 Link/Activity
	C.1.6 Ethernet Connector (RJ45)
	C.1.7 M12 Connectors, Code D

	C.2 Functional Earth (FE) Requirements
	C.3 Power Supply
	C.3.1 Supply Voltage
	C.3.2 Power Consumption

	C.4 Environmental Specification
	C.5 EMC Compliance

	D Timing & Performance
	D.1 General Information
	D.2 Internal Timing
	D.2.1 Startup Delay
	D.2.2 NW_INIT Handling
	D.2.3 Event Based WrMsg Busy Time
	D.2.4 Event Based Process Data Delay

	E Secure HICP (Secure Host IP Configuration Protocol)
	E.1 General
	E.2 Operation

	F Backward Compatibility
	F.1 Initial Considerations
	F.2 Hardware Compatibility
	F.2.1 Module
	F.2.2 Chip
	F.2.3 Brick
	F.2.4 Host Application Interface

	F.3 General Software
	F.3.1 Extended Memory Areas
	F.3.2 Faster Ping-Pong Protocol
	F.3.3 Requests from Anybus CompactCom to Host Application During Startup
	F.3.4 Anybus Object (01h)
	F.3.5 Control Register CTRL_AUX-bit
	F.3.6 Status Register STAT_AUX-bit
	F.3.7 Control Register CTRL_R-bit
	F.3.8 Modifications of Status Register, Process Data Read Area, and Message Data Read Area

	F.4 Network Specific — EtherCAT
	F.4.1 Network Configuration Object (04h)
	F.4.2 EtherCAT Object (F5h)
	F.4.3 ESI-file (Configuration file used by engineering tool)

	G Copyright Notices

