
 2011 Microchip Technology Inc. DS51963A

Introduction to Microcontrollers
Lab Manual

Featuring the PIC24F Family

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
DS51963A-page 2
Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,
PIC32 logo, rfPIC and UNI/O are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MXDEV, MXLAB, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, chipKIT,
chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net,
dsPICworks, dsSPEAK, ECAN, ECONOMONITOR,
FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP,
Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB,
MPLINK, mTouch, Omniscient Code Generation, PICC,
PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE,
rfLAB, Select Mode, Total Endurance, TSHARC,
UniWinDriver, WiperLock and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2011, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.

ISBN: 978-1-61341-251-0
 2011 Microchip Technology Inc.

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

INTRODUCTION TO MICROCONTROLLERS
LAB MANUAL
Table of Contents
Lab 0. Introduction to Microcontrollers
0.1 Objective .. 7
0.2 Pre-Lab ... 7
0.3 The Lab .. 9

Lab 1. Timers
1.1 Objective .. 13
1.2 Pre-Lab ... 13

Lab 2. Interrupts
2.1 Interrupts .. 19
2.2 Pre-Lab ... 19
2.3 The Lab .. 23

Lab 3. UART
3.1 Objective .. 25
3.2 Pre-Lab ... 25
3.3 The Lab .. 30

Lab 4. Watchdog Timer (WDT)
4.1 Objective .. 33
4.2 Pre-Lab ... 33
4.3 The Lab .. 35

Lab 5. Comparator
5.1 Objective .. 37
5.2 Pre-Lab ... 37
5.3 The Lab .. 40

Lab 6. Analog-to-Digital Converter
6.1 Objective .. 43
6.2 Pre-Lab ... 43
6.3 The Lab .. 47

Lab 7. Pulse-Width Modulator (PWM)
7.1 Objective .. 51
7.2 Pre-Lab ... 51
7.3 The Lab .. 54

Lab 8. External Memory
8.1 Objective .. 57
8.2 Pre-Lab ... 57
8.3 The Lab .. 60
 2011 Microchip Technology Inc. DS51963A-page 3

Introduction to Microcontrollers Lab Manual
Lab 9. Power Management
9.1 Objective .. 63
9.2 Pre-Lab ... 63
9.3 The Lab .. 67

Lab 10. Project
10.1 Objective .. 69
10.2 The Lab .. 69

Appendix A. Creating an MPLAB IDE Project
A.1 Step One: Device Selection ... 71
A.2 Step Two: Language Toolsuite .. 72
A.3 Step Three: Create New Project File ... 73
A.4 Step Four: Add Existing Project Files .. 73
DS51963A-page 4  2011 Microchip Technology Inc.

INTRODUCTION TO MICROCONTROLLERS

LAB MANUAL

Lab Manual Introduction
INTRODUCTION

The purpose of these labs is to introduce the basic concepts of designing microcon-
troller based systems. Each lab will introduce a new concept and provide a starting
template that will guide the student toward creating a successful project.

Each lab includes a pre-lab section that the student should study prior to entering the
lab. It includes a basic description of the topics under consideration, as well as links to
many other resources that can be used for further study.

DEVELOPMENT ENVIRONMENT

This document describes how to use one of the starter kits as a development tool to
emulate and debug firmware on a target board.

The MPLAB® Integrated Development Environment (IDE) is a free, integrated toolset for
the development of embedded applications employing Microchip's PIC® MCUs and
dsPIC® DSCs. MPLAB IDE runs as a 32-bit application on MS Windows® (XP, Vista, or
Windows 7), and is an easy-to-use tool that includes a host of free software components
for fast application development and super-charged debugging. MPLAB IDE also serves
as a single, unified graphical user interface for additional Microchip and third party
software and hardware development tools. Moving between tools is easy, and upgrading
from the free software simulator to hardware debug and programming tools is done
quickly because MPLAB IDE has the same user interface for all tools.

These labs will use Microchip MPLAB IDE v8.63. It is available from the lab instructor or
as a free download from www.microchip.com. Future versions may work, but the exact
instructions may no longer be accurate.

Each lab will include a project template. This template will include all the settings required
for a suitable solution on the target hardware. There are many different ways to solve
each problem. Comments in the code like:

;

; CODE GOES HERE

;

will guide the student to locations where code will typically need to be added for a
successful outcome. Motivated students may choose to ignore those comments and
come up with a different solution to the same problem.
 2011 Microchip Technology Inc. DS51963A-page 5

Introduction to Microcontrollers Lab Manual
DEVELOPMENT HARDWARE

These labs are based on the MX Module series manufactured by Stratford Digital. The
MX Series includes modules from across all Microchip embedded controller families,
and provides a common mechanical and electrical interface. The modules are suitable
for a rapid-development environment, but are also engineered to be used in a produc-
tion environment.

The MX PIC24F EDU Module (STR001) is specifically designed for this lab. The main
processor on this module is the Microchip PIC24FJ256GB110. This 16-bit controller
has 256 Kb of internal flash memory and many useful peripheral modules. Each lab will
explore various aspects of this controller.

The MX PIC24F EDU Module also includes the PICkit™ on-board circuit that allows the
board to connect to MPLAB IDE with only a standard USB cable. The debugging and
programming resources normally found in an external PICkit 3, MPLAB ICD 3, or
MPLAB REAL ICE™ in-circuit emulator are included on board for an optimal develop-
ment environment.

All labs require the MX PIC24F EDU Module to be inserted into the MX Educational
Target Board (STR002).

The MX Educational Target Board provides the power and I/O required by the MX
PIC24F EDU Module. This board connects the various I/Os of the module to
easy-to-use interface connectors including RS232 DB9 connectors, a breadboarding
area, and common headers for other electrical busses.

The MX Series is intended to provide an infrastructure that will allow the user to quickly
develop their application on a known-good hardware platform. The commercial mod-
ules come with on-board Ethernet and USB (device, host, and on-the-go), as well as
various options for external memory. In addition, template projects are provided for
MPLAB IDE that include fully working TCP/IP and USB stacks along with demo appli-
cations. Only the custom firmware required for the specific application needs to be
added.

Note: Although the labs presented here are based on the MX Module series man-
ufactured by Stratford Digital, they can easily be implemented on a variety
of other development platforms from Microchip and third parties with minor
modifications. Many of the labs are also applicable to other 16-bit Microchip
products, including the PIC24H, dsPIC30F and dsPIC33F. For more
information, visit www.microchip.com/academic.
DS51963A-page 6  2011 Microchip Technology Inc.

LABS
Lab 0. Introduction to Microcontrollers
0.1 OBJECTIVE

This lab is an introduction to the following concepts required to complete the labs:

• MX PIC24F EDU Module

• Microchip PIC24FJ256GB110 MCU

• 16-bit MCU Assembly Instruction Set

• Microchip MPLAB IDE Software v8.63

0.2 PRE-LAB

0.2.1 Reference Material

• PIC24FJ256GB110 Family Data Sheet (DS39897)

• 16-Bit MCU and DSC Programmer’s Reference Manual (DS70157)

• MPLAB IDE User’s Guide (DS51519)

0.2.2 Assembly Language

All labs will be written in assembly language.

Assembly language is a low-level language for programming computers, microproces-
sors, and microcontrollers. It is specific to a particular device or family of devices and
is not typically portable between different processors.

A utility program called an assembler is used to translate assembly language into the
target hardware machine code. These labs will use Microchip's MPLAB ASM30 assem-
bler to generate machine code for the PIC24FJ256GB110.

Assembly language uses simple instructions, symbols, and numeric characters usually
defined by either the assembler utility or the device hardware manufacturer.

The assembler then performs a translation from the mnemonic assembly statements
into hardware specific machine instructions and data. The machine instructions can
then be programmed into the controller's memory and executed on the specific hard-
ware.

The “16-bit MCU and DSC Programmer's Reference Manual” (DS70157) from Micro-
chip is a complete list of all assembler instructions for the Microchip 16-bit processor
family, including the PIC24FJ256GB110.

A further suggestion from Microchip: Microchip Technology Inc. strongly suggests a
.s extension for assembly source files. This will enable you to easily use the C com-
piler driver without having to specify the option to tell the driver that the file should be
treated as an assembly file. See the “MPLAB C Compiler for PIC24 MCUs and dsPIC
DSCs User's Guide” (DS51284) for more details on the C compiler driver.

0.2.3 Timing

The project initializes the PIC24FJ256GB110 to run from its internal Fast RC oscillator.
It configures the use of the internal PLL to create an internal clock running at 32 MHz
(Fosc). The architecture of the PIC24 specifies that an instruction cycle (Fcy) is com-
 2011 Microchip Technology Inc. DS51963A-page 7

LABS
prised of two internal clock cycles, i.e. 16 MHz. This represents an instruction period of
62.5 ns. Most instructions are executed in a single instruction cycle. This means that
most instructions will execute in exactly 62.5 ns.

The exception to this is when a conditional test is true or the program counter is
changed as a result of the instruction. In these cases, the execution takes two instruc-
tion cycles, with the additional instruction cycle(s) executed as a NOP. Common forms
of these exceptions are the BRA (unconditional / computed branch), indirect CALL/
GOTO, all table reads and writes, and RETURN/RETFIE instructions.

Certain instructions that involve skipping over the subsequent instruction require either
two or three cycles if the skip is performed, depending on whether the instruction being
skipped is a single-word or two-word instruction. Moreover, double-word moves require
two cycles. The double-word instructions execute in two instruction cycles.

0.2.4 Delay Loops

Because the instruction period is so small (62.5 ns), it is often necessary to slow pro-
cessing down when human interaction is required. In this lab we will blink an LED. If we
toggled the LED at anything close to the instruction frequency the human eye would
not be able to detect the flashing.

A typical delay loop looks like this:

The way this loop works is that the first instruction, MOV #0xFFFF, W4, loads the W4
(this is an arbitrary working register and could be any register other than W15, which is
the stack pointer) register with the value 65535, which is the number of times we want
to loop. This instruction only gets executed once. The next instruction is the NOP
instruction, which is a “no operation” instruction, the purpose of which is to waste a pro-
cessor cycle. Next the DEC W4, W4 instruction decrements the value in W4, and finally
the BRA NZ, DELAY checks if the value in W4 has reached zero. If the value in W4
has not reached zero, a branch is executed and we jump back to the NOP instruction
and repeat until the W4 register eventually hits zero. At this point the branch is not
taken and we fall out of the loop.

Timing calculation for this delay loop:

• The MOV instruction is executed once, 1 cycle

• The loop consists of the NOP, DEC, and BRA instructions and gets executed 65535
times. Each time through the loop takes 4 cycles, except for the last time, which
only takes 3 cycles since the branch is not taken

• The total delay for this code is 1 cycle + (65535 x 4 cycles) – 1 cycle = 262140
cycles

With a 16 MHz instruction frequency, the loop will take 262140 cycles x 62.5 ns/cycle
= 0.01638375 sec to execute fully.

MOV #0xFFFF, W4

DELAY: NOP

DEC W4, W4

BRA NZ, DELAY

Instruction Cycles

MOV #0xFFFF, W4 1

NOP 1

DEC W4, W4 1

BRA NZ, DELAY 2, if the branch is taken, and 1 if the branch is
not taken.
DS51963A-page 8  2011 Microchip Technology Inc.

0.2.5 I/O Ports

The ability of the microcontroller to execute code is meaningless unless it can take
inputs from its environment and drive outputs to control the environment. The digital
I/O port is a primary method of doing just this.

Microchip's PIC microcontrollers organize the digital I/Os into “ports”. Each port on the
PIC24 is a collection of up to 16 individual I/Os, and they are named PORTA, PORTB,
PORTC, etc. These I/Os are easily configurable and can be accessed individually or
as a group. For now, we will discuss the ability to use them as digital inputs or digital
outputs.

All port pins have at least three registers directly associated with their operation as dig-
ital I/Os. The Data Direction register (TRISA, TRISB, TRISC, …) determines whether
the pin is an input or an output. If the data direction bit is a ‘1’, then the pin is an input.
If the data direction bit is a ‘0’, then the pin is an output.

Hint:

Think “I” for Input and change “I” (letter I) to “1” (one) in your mind.

Think “O” for Output and change “O” (letter O) to “0” (zero) in your mind.

All port pins are defined as inputs by default.

To write data to a digital output, a write to the appropriate Output Latch Register (LATA,
LATB, LATC, …) is required. To read data from a digital input read the appropriate Input
Port Register (PORTA, PORTB, PORTC, …).

Example code to configure port C bit 2 as output and set it low:

BCLR TRISC, #2 Configure port C bit 2 as output

BCLR PORTC, #2 Set port C bit 2 latch low

Example code to configure port C bit 0 as input and perform a bit compare on that input:

BSET TRISC, #0 Configure port C bit 0 as an input

NOP Required between a port direction change and port write

BTSS PORTC, #0 Check if port C bit 0 is low

One instruction cycle is required between a port direction change or port write opera-
tion and a read operation of the same port. Typically, this instruction would be a NOP.

0.3 THE LAB

0.3.1 Objective

Program the PIC24 microcontroller to blink an LED at a one second interval (LED on
for one second, then off for one second).

0.3.2 Bonus

Modify the code so that when one of the push buttons is held, the LED blinks at twice
the frequency. You may choose any of the four push buttons. Note the push buttons are
mapped to the following ports:

Push Button PIC® MCU Port

SW1 Port G Bit 12

SW2 Port G Bit 13

SW3 Port G Bit 15

SW4 Port C Bit 1
 2011 Microchip Technology Inc. DS51963A-page 9

LABS
0.3.3 Pertinent Information

The basic program flow is depicted in Figure 0-1.

FIGURE 0-1: LAB 0 BASIC PROGRAM FLOW

The template assembly file sets up this basic program flow. The student will need to
add the appropriate code to the relevant sections of the file lab0-intro.s.

As noted in the Pre-Lab, the maximum delay of a delay loop is about 0.016 seconds.
Further delaying will be required to obtain the interval of one second. A nested loop
(burying one loop within another loop) is one way to accomplish this.

Hint: We advise that you start by writing simple code to initialize the LED port pin and
turn the LED on before you dive in and write the delay loop. This will ensure that the
project compiles and the device is programmed properly with the simplest code.
Debugging of the delay loops will then be confined to just that section of code.

0.3.4 Creating a New Project

See Appendix A. “Creating an MPLAB IDE Project” for details about using the Proj-
ect Wizard to create a new project from scratch. The examples show the three files
required to add to the project. In order to view the various files in the project, ensure
that you have the Project Toolbar enabled. This is done by selecting View>Project in
the menu.

It is also useful to be able to view the output window. This will display various status
messages during the process of assembling and linking the project. To enable this
window, make sure View>Output is selected in the menu.

To run the assembler and linker to create the application binary, use the “Make” com-
mand. You can access this through the menu Project>Make or using the shortcut “F10”
function key.

If the make command is successful, the “BUILD SUCCEEDED” message will display
at the end of the output window.
DS51963A-page 10  2011 Microchip Technology Inc.

0.3.5 Programming the Device

In order to program the device, the build must complete successfully. This will create
the binary image that is required to load into the device Flash.

You must configure MPLAB IDE to use the licensed debugger circuit that resides on the
MX PIC24F EDU module, see Figure 0-2. In MPLAB IDE, select “Licensed Debugger”
from the menu Programmer>Select Programmer>Licensed Debugger.

FIGURE 0-2: SELECT PROGRAMMER

Now all that is needed is to program the device. To do this, ensure the programming
USB cable is connected, and select Programmer>Program from the menu. The output
window will display the status of the process. Any errors will be noted in this window.

Once programming is complete, the device should immediately begin to execute the
code. If successful, you will see the LED blink at the intended rate.
 2011 Microchip Technology Inc. DS51963A-page 11

LABS
NOTES:
DS51963A-page 12  2011 Microchip Technology Inc.

LABS
Lab 1. Timers
1.1 OBJECTIVE

The lab covers the following concepts:

• PIC24F hardware timer modules

• Assembly language CALL and RCALL instructions

• Using MPLAB IDE to measure code execution time

1.2 PRE-LAB

1.2.1 Reference Material

• PIC24FJ256GB110 Family Data Sheet (DS39897)

• 16-Bit MCU and DSC Programmer’s Reference Manual (DS70157)

• MPLAB IDE User’s Guide (DS51519)

• PIC24F Reference Manual – Section 14. Timers (DS39704)

1.2.2 Timers

The PIC24FJ256GB110 device offers five (5) 16-bit timers/counters designated as
Timer1, Timer2, …

With certain exceptions, all of the 16-bit timers have the same functional circuitry. The
16-bit timers are classified into three types to account for their functional differences:

• Timer1 is a Type A timer

• Timer2 and Timer4 are Type B timers

• Timer3 and Timer5 are Type C timers

Type B and Type C timers can be combined to form a 32-bit timer.

Each timer module consists of the following readable/writable registers:

• TMRx: 16-bit Timer Count register

• PRx: 16-bit Timer Period register associated with the timer

• TxCON: 16-bit Timer Control register associated with the timer

Timers can be run from either an external clock connected to the TxCK pin, or the inter-
nal clock (Fosc/2). This lab will use the internal clock as the MX PIC24F EDU Module
does not connect an external clock to the TxCLK pins.

1.2.3 Subroutine CALL
A subroutine CALL in assembly is a powerful tool for reusing code and keeping your
code clean and legible. Low-level functions can be abstracted into higher level func-
tions by the use of subroutine. This is similar to the use of a function in the 'C' language.
In fact, 'C' functions make use of the RCALL assembly instruction.

A CALL is similar to a GOTO or BRA instruction except that it stores the address of the
next instruction and allows you to return to it with the RETURN instruction.
 2011 Microchip Technology Inc. DS51963A-page 13

LABS
The 16-bit MCU and DSC device families have two types of calls:

• CALL – Call subroutine

• RCALL – Relative call

When performing function calls, it is recommended that RCALL be used instead of
CALL, since RCALL only consumes 1 word of program memory. Table 1-1 highlights
some of the main differences in the behavior of CALL and RCALL in modifying the
program flow.

TABLE 1-1: LAB 1 METHODS OF MODIFYING PROGRAM FLOW

1.2.4 IDE Concepts: Stopwatch

The Stopwatch is useful for simple timing between program halts to time the execution
of sections of code.

Several debug tools have a stopwatch feature including.

• MPLAB SIM Simulator: Debugger>Stopwatch

• MPLAB ICD 3 in-circuit debugger: Debugger>Breakpoints, Stopwatch

To use the StopWatch with MPLAB SIM Simulator, select Debugger>Select Tool>4
MPLAB SIM.

Condition/Instruction PC Modification Software Stack Usage

Sequential Execution PC = PC + 2 None

BRA Expr(1)

(Branch Unconditionally)
PC = PC + 2*Slit16 None

BRA Condition, Expr(1)

(Branch Conditionally)
PC = PC + 2 (condition false)
PC = PC + 2*Slit16 (condition
true)

None

CALL Expr(1)

(Call Subroutine)
PC = lit23 PC + 4 is PUSHed on the

stack(2)

CALL Wn
(Call Subroutine Indirect)

PC = Wn PC + 2 is PUSHed on the
stack(2)

GOTO Expr(1)

(Unconditional Indirect Jump)
PC = lit23 None

GOTO Wn
(Unconditional Indirect Jump)

PC = Wn None

RCALL Expr(1)

(Relative Call)
PC = PC + 2*Slit16 PC + 2 is PUSHed on the

stack(2)

RCALL Wn
(Computed Relative Call)

PC = PC + 2*Wn PC + 2 is PUSHed on the
stack(2)

Exception Handling PC = address of the exception
handler (read from vector table)

PC + 2 is PUSHed on the
stack(3)

PC = Target REPEAT instruction
(REPEAT Looping)

PC not modified (if REPEAT
active)

None

Note 1: For BRA, CALL and GOTO, the Expr may be a label, absolute address or expression,
which is resolved by the linker to a 16-bit or 23-bit value (Slit16 or lit23).

2: After CALL or RCALL is executed, RETURN or RETLW will POP the Top-of-Stack
(TOS) back into the PC.

3: After an exception is processed, RETFIE will POP the Top-of-Stack (TOS) back into
the PC.
DS51963A-page 14  2011 Microchip Technology Inc.

Setup the Simulator processor frequency:

1. Select Debugger>Settings and then click on the Osc/Trace tab. This is where the
clock speed of your hardware is set. These values will also be used to set certain
fields in the Stopwatch.

2. Select the units of frequency.

3. Enter the processor frequency value.

The lab project initializes the PIC24FJ256GB110 to run from its internal Fast RC oscil-
lator and configures the use of the internal PLL to create an internal clock running at
32 MHz.

FIGURE 1-1: LAB 1 STOPWATCH SETUP

Now the Stopwatch is configured. Start the Stopwatch using the menu item. Select
Debugger>Stopwatch.

FIGURE 1-2: LAB 1 STOPWATCH USE
 2011 Microchip Technology Inc. DS51963A-page 15

LABS
To use the Stopwatch, insert two breakpoints around the section of code you wish to
time. Run the code to the first breakpoint, “Zero” the StopWatch and then run the code
to the next breakpoint. The Stopwatch will show the number of instruction cycles and
time between the two breakpoints.

Hint: When using the Stopwatch with MPLAB SIM Simulator, it is important to set the
Simulator Processor Frequency correctly. Otherwise the Stopwatch time will be incor-
rect. An easy way to test if this has been set properly is to set breakpoints around a
simple instruction such as MOV. This should execute in 0.062500 uSecs.

1.2.5 The Lab

1.2.5.1 OBJECTIVE

Program the PIC24 microcontroller to use a hardware timer to blink an LED at a 1 sec-
ond interval (LED on for 1 second then off for 1 second). Show your calculations for the
Timer delay.

Use a subroutine CALL or RCALL somewhere in the code. A common use would be to
move the configuration instructions for the timer into a subroutine. This keeps the main
line code cleaner with only one line required to initialize the timer module at the start of
the code.

Use the stopwatch to check your timer and verify it is actually running at 1 sec (5 sec
for the bonus).

Hint: Use one breakpoint at your LED toggle instruction (BTG PORTC, #2), run the
code to that breakpoint, then “Zero” the stopwatch and run it again.

1.2.5.2 BONUS

Modify the code and setup a 32-bit TIMER to blink the LED at a 5 sec interval. Show
your calculations for the timer delay.

1.2.5.3 PERTINENT INFORMATION

The basic program flow is illustrated in Figure 1-3.
DS51963A-page 16  2011 Microchip Technology Inc.

FIGURE 1-3: LAB 1 BASIC PROGRAM FLOW

The template assembly file sets up this basic program flow. The student will need to
add the appropriate code to the relevant sections of the file lab1-timers.s.
 2011 Microchip Technology Inc. DS51963A-page 17

LABS
NOTES:
DS51963A-page 18  2011 Microchip Technology Inc.

LABS
Lab 2. Interrupts
2.1 INTERRUPTS

2.1.1 Objective

This lab covers the following concepts:

• Using interrupts on the PIC24F

• Using the MPLAB IDE Watch window to inspect real-time register values during
programming debugging

2.2 PRE-LAB

2.2.1 Reference Material

• PIC24FJ256GB110 Family Data Sheet (DS39897)

• 16-Bit MCU and DSC Programmer’s Reference Manual (DS70157)

• MPLAB IDE User’s Guide (DS51519)

• PIC24F Family Reference Manual – Section 8. Interrupts (DS39707)

• PIC24F Family Reference Manual – Section 14. Timers (DS39704)

2.2.2 Interrupts

An interrupt (also called an exception) is an asynchronous signal or a synchronous
software event intended to inform the processor that there is a need for a change in
execution.

Interrupts were introduced to avoid wasting the processor’s time in a polling loop. This
method means the processor is fully executing while waiting for an external event, often
without the ability to handle other system events.

When an interrupt occurs, it causes the processor to save its current state on the soft-
ware stack and then execute a special subroutine. The Interrupt Vector Table is a list
of the addresses to these special routines. The PIC24F allows for the possibility of a
unique subroutine for each interrupt source.

The special subroutines are known as Interrupt Service Routines (ISRs). It is good
design practice for an ISR to execute as quickly as possible, so the processor should
spend as little time in the ISR as possible. This becomes an issue when you have mul-
tiple, real-time, nested interrupts. In all cases, loops and polling should be avoided in
any ISR.

The main difference between an ISR and a normal subroutine is that before executing
an ISR, the processor saves its current state so that when the ISR is complete, the pro-
cessor state can be exactly reproduced and program flow will continue as if the inter-
rupt did not occur (with the exception of any changes caused by the ISR itself). As a
result, the last instruction of an ISR must be a RETFIE instruction. This restores the
processor state.
 2011 Microchip Technology Inc. DS51963A-page 19

LABS
The processor saves the following information on the software stack as illustrated in
Figure 2-1:

• The current PC value

• The low byte of the processor STATUS register (SRL)

• The IPL3 Status bit (CORCON<3>)

FIGURE 2-1: LAB 2 STACK LOCATION

The RETFIE (Return from Interrupt) instruction will unstack the PC return address,
IPL3 status bit and SRL register, to return the processor to the state and priority level
prior to the interrupt sequence.

For the PIC24F, the Interrupt Vector Table (IVT) resides in program memory, starting at
location 0x000004. It contains 126 vectors, consisting of 8 non-maskable trap vectors,
plus up to 118 sources of interrupt. Each interrupt vector contains a 24-bit wide
address. The value programmed into each interrupt vector location is the starting
address of the associated Interrupt Service Routine (ISR).

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in
Figure 2-2. Access to the AIVT is provided by the ALTIVT control bit (INTCON2<15>).
If the ALTIVT bit is set, all interrupt and exception processes will use the alternate vec-
tors instead of the default vectors. The alternate vectors are organized in the same
manner as the default vectors.
DS51963A-page 20  2011 Microchip Technology Inc.

FIGURE 2-2: LAB 2 PRIMARY AND ALTERNATE INTERRUPT VECTOR TABLE

Note: A device Reset is not a true exception because the interrupt controller is not
involved in the Reset process. The PIC24F device clears its registers in response to a
Reset, which forces the PC to zero. The processor then begins program execution at
location 0x000000.

When a UART1 Receiver interrupt occurs, the processor stores its current state on the
software stack and then jumps to the address stored in the vector table for that inter-
rupt. For the PIC24FJ256GB110, the UART1 Receiver uses interrupt 11, Interrupt Vec-
tor Table Address 0x00002A.

The processor would therefore branch to and execute the code located at the address
stored at 0x00002A when a UART1 Receiver interrupt occurs.

Refer to the Microchip “PIC24FJ256GB110 Family Data Sheet” (DS39897) for a com-
plete list of “implemented interrupt vectors”.

Setting up interrupts in assembly for the PIC24FJ256GB110 is actually quite easy.
MPLAB IDE does a lot of the overhead work and each interrupt has a predefined label.
Table 2-1 lists some of these predefined labels.
 2011 Microchip Technology Inc. DS51963A-page 21

LABS
TABLE 2-1: LAB 2 LIST OF SOME DEFINED INTERRUPTS

To setup an interrupt in assembly, an interrupt label must first be declared. Next, the
label must be used to indicate the desired ISR, not unlike any other label for a normal
subroutine. The only difference between a subroutine and ISR, is that for an ISR the
label is unique and it must end with a RETFIE instruction.

To verify that the ISR label is at the correct memory location in program memory, select
View>Program Memory and choose the Machine tab.

Label Interrupt Source Address

__INT0Interrupt External Interrupt 0 0x00014

__IC1Interrupt Input Capture 1 0x00016

__OC1Interrupt Output Compare 1 0x00018

__T1Interrupt TIMER1 0x0001A

__Interrupt4 Interrupt 4 0x0001C

__I2CInterrupt Input Compare 2 0x0001E

__OC2Inerrupt Output Compare 2 0x00020

__T2Interrupt TIMER2 0x00022

__T3Interrupt TIMER3 0x00024

__SPI1ErrInterrupt SPI1 Error 0x00026

__SPI1Interrupt SPI1 Event 0x00028

__U1RXInterrupt UART1 Receiver 0x0002A

__U1TXInterrupt UART1 Transmitter 0x0002C

__ADC1Interrupt ADC1 Conversion Done 0x0002E

__Interrupt14 Interrupt 14 0x00030

__Interrupt15 Interrupt 15 0x00032

__SI2C1Interrupt I2C1 Slave Event 0x00034

__MI2C1Interrupt I2C1 Master Event 0x00036

__CompInterrupt Comparator Event 0x00038

__CNInterrupt Input Change Notification 0x0003A

__INT1Interrupt External Interrupt 0 0x0003C

__U2RxInterrupt UART2 Receiver 000050h

.global __T1Interrupt ; Declare Timer1 ISR name global

__T1Interrupt:

 ; Timer1 ISR code goes here

RETFIE ; Return from Interrupt Service Routine
DS51963A-page 22  2011 Microchip Technology Inc.

2.2.3 IDE Concepts Watch Window

It is often necessary to be able to determine exactly what is happening to debug a prob-
lem in the program flow. MPLAB IDE provides a Watch window for this purpose.

There are a large number of registers in the File Register window and Special Function
Register (SFR) windows. However, to debug any function, only a small subset of these
are required in order to determine the exact program function. To set up a specific list
of registers to view, you can use the Watch window. To open the Watch window select
View>Watch.

To add an item to the Watch window:

• Choose an SFR or Symbol from the drop-down list and then click the correspond-
ing Add button

• Drag an item from the SFR, File Register or File window

• Click directly in the window under symbol name and type in the item

The file register address of the symbols is listed first, followed by the symbol name and
finally the value of the symbol.

For this particular lab, the following registers may be of interest:

• WREG15 (Software Stack Pointer)

• WREG0 (Working Register)

• PORTC (LED1 is bit 2)

• T1CON (Timer1 Control Register if you are using Timer1)

• PR1 (Timer1 Preload Register)

• IEC0 (Interrupt Enable Bits)

• IFS0 (Interrupt Flag Status Bits)

FIGURE 2-3: LAB 2 REGISTERS OF INTEREST
 2011 Microchip Technology Inc. DS51963A-page 23

LABS
2.3 THE LAB

2.3.1 Objective

Using the Lab1 framework, program the PIC24 microcontroller to use a hardware Timer
to blink an LED at a 1 second interval (LED on for 1 second, then off for 1 second). In
this lab, toggle the LED inside an Interrupt Service Routine.

Use a Watch window to view register changes as you step through your code.

2.3.2 Pertinent Information

The basic program flow is depicted in Figure 2-4.

FIGURE 2-4: LAB 3 BASIC PROGRAM FLOW

The template assembly file sets up this basic program flow. The student will need to
add the appropriate code to the relevant sections of the file lab2-interrupts.s.
DS51963A-page 24  2011 Microchip Technology Inc.

LABS
Lab 3. UART
3.1 OBJECTIVE

This lab covers the following concepts:

• PIC24F UART Hardware Module

• PIC24F Peripheral Pin Select Hardware Module

• ASCII Character Encoding

3.2 PRE-LAB

3.2.1 Reference Material

• PIC24FJ256GB110 Data Sheet (DS39897)

• 16-Bit MCU and DSC Programmer’s Reference Manual (DS70157)

• MPLAB IDE User’s Guide (DS51519)

• PIC24F Reference Manual – Section 8. Interrupts (DS39707)

• PIC24F Reference Manual – Section 12. Peripheral Pin Select (DS39711)

• PIC24F Reference Manual – Section 21. UART (DS39708)

3.2.2 UART (Universal Asynchronous Receiver/Transmitter)

A UART is a piece of hardware that uses a shift register to convert data between serial
and parallel forms. As the name implies, each UART actually contains two pieces of
hardware and therefore two shift registers, a Receiver (Rx) and a Transmitter (Tx).

Simplified, a UART transmitter takes bytes (8 bits) of data and transmits them as indi-
vidual bits in sequential fashion. Then another UART receiver at the other end takes
those sequential bits and re-assembles them back into bytes.

The simple reason for this is that serial transmission across a single wire is much more
cost effective then parallel transmission across multiple wires.

The communication is actually a little more complicated then described above. The
UART is an “asynchronous” receiver/transmitter. Therefore, some synchronization
between transmitter and receiver is required. To accomplish this, both the transmitter
and receiver must run at the same baud rate with a START and one or two STOP bits
inserted into the serial bit stream. Parity bits can also be inserted into the bit stream for
error detection. Figure 3-1 illustrates all possible bits in a serial bit stream.

FIGURE 3-1: LAB 3 SERIAL TRANSMISSION OF BYTE

A standard embedded UART configuration is 8 bits of data with no parity bit and one
stop bit. This is also referred to as 8N1 and is illustrated in Figure 3-2.
 2011 Microchip Technology Inc. DS51963A-page 25

LABS
FIGURE 3-2: LAB 3 UART 8N1 SERIAL BIT STREAM

3.2.3 ASCII (American Standard Code for Information Interchange)

ASCII was based on earlier teleprinter encoding systems. It specifies the correspon-
dence between numeric/binary values and character symbols. It was designed to allow
digital devices to communicate, process and store character information.

ASCII is a seven-bit code, with the eighth bit functioning as a parity bit for error check-
ing, if desired.

The first 32 ASCII codes (0-31 decimal) are reserved for control characters (now mostly
obsolete). These codes were not intended to represent printable characters, but rather
to send control information to devices. For example, character 0x0A “Line Feed” could
be sent to a terminal program to skip to the next line or to a printer to advance its paper.

Control characters of interest:

 0x08 Back space

 0x0A Line Feed

 0x0D Carriage Return

ASCII was designed for character symbol communication, processing and storage. It
does not contain mechanisms for document layout and formatting apart from some
basic line-oriented formatting. Document formatting is achieved with schemes such as
markup language. HTML (Hyper Text Markup Language) is an example of one such
scheme.

FIGURE 3-3: 7-BIT ASCII CODE CHART

Hint: To view any of the ASCII display characters, simply hold the Alt key and type the
decimal number in most Windows text editors.
DS51963A-page 26  2011 Microchip Technology Inc.

3.2.4 I/O Ports with Peripheral Pin Select (PPS)

The Peripheral Pin Select (PPS) module controls the connection between digital hard-
ware modules and the external device pins. Traditionally, microcontroller pins would
only be internally connected to a specific hard module with a dedicated function. As
microcontrollers became more complex, configuration options were provided to select
the I/O of a hardware module from a small number of preconfigured options.

The PPS module allows for ultimate configuration. For any pin controlled by the PPS
module, a completely flexible connection matrix exists between the I/O of the hardware
module and the device pins. Thus, any hardware module can be connected to any
device pin. This allows for a much more flexible user configuration of hardware mod-
ules.

The hardware modules managed by the PPS are all digital-only peripherals. These
include general serial communications (UART and SPI), general purpose timer clock
inputs, timer related peripherals (input capture and output compare) and external inter-
rupt inputs.

In comparison, some digital-only peripheral modules are not currently included in the
Peripheral Pin Select feature. This is because the peripheral's function requires special
I/O circuitry on a specific port and cannot be easily connected to multiple pins. These
modules include I2C™, high-speed communication (Ethernet and USB), change notifi-
cation inputs, RTCC alarm output and all modules with analog inputs, such as the A/D
Converter.

A key difference between remappable and non-remappable peripherals is that remap-
pable peripherals are not associated with a default I/O pin. The peripheral must always
be assigned to a specific I/O pin before it can be used. In contrast, non-remappable
peripherals are always available on a default pin, assuming that the peripheral is active
and not conflicting with another peripheral.

When a remappable peripheral is active on a given I/O pin, it takes priority over all other
digital I/O and digital communication peripherals associated with the pin. Priority is
given regardless of the type of peripheral that is mapped. Remappable peripherals
never take priority over any analog functions associated with the pin.

The PIC24FJ256GB110 has a total of 44 remappable pins, which includes 12 input only
pins:

• RP0-RP31 Remappable Peripheral (input or output)

• RPI32-RPI43 Remappable Peripheral (input ONLY)
 2011 Microchip Technology Inc. DS51963A-page 27

LABS
3.2.5 PPS Input Mapping

The PIC24FJ256GB110 has 21 Input Remappable Peripheral Registers (RPINRx).

TABLE 3-1: LAB 3 INPUT REMAPPABLE PERIPHERALS REGISTERS

At first glance, this appears confusing, but it is actually a simple mapping once under-
stood. Since we are mapping inputs, we can use any of the RP0-RP31 or RPI32-RPI43
pins. Start by picking the desired peripheral pin and then write the PR or PRI number
to that register.

Register Input Name Function Mapping Bits

RPINR0 External Interrupt 1 (INT1) INT1R<5:0>

RPINR1 External Interrupt 3 (INT3)
External Interrupt 2 (INT2)

INT3R<5:0>
INT2R<5:0>

RPINR2 External Interrupt 4 (INT4) INT4R<5:0>

RPINR3 Timer3 External Clock (T3CK)
Timer2 External Clock (T2CK)

T3CKR<5:0>
T2CKR<5:0>

RPINR4 Timer5 External Clock (T5CK)
Timer4 External Clock (T4CK)

T5CKR<5:0>
T4CKR<5:0>

RPINR7 Input Capture 2 (IC2)
Input Capture 1 (IC1)

IC2R<5:0>
IC1R<5:0>

RPINR8 Input Capture 4 (IC4)
Input Capture 3 (IC3)

IC4R<5:0>
IC3R<5:0>

RPINR9 Input Capture 6 (IC6)
Input Capture 5 (IC5)

IC6R<5:0>
IC5R<5:0>

RPINR10 Input Capture 8 (IC8)
Input Capture 7 (IC7)

IC8R<5:0>
IC7R<5:0>

RPINR11 Output Compare Fault B (OCFB)
Output Compare Fault A (OCFA)

OCFBR<5:0>
OCFAR<5:0>

RPINR15 Input Capture 9 (IC9) IC9R<5:0>

RPINR17 UART3 Receive (U3RX) U3RXR<5:0>

RPINR18 UART1 Clear to Send (U1CTS)
UART1 Receive (U1RX)

U1CTSR<5:0>
U1RXR<5:0>

RPINR19 UART2 Clear to Send (U2CTS)
UART2 Receive (U2RX)

U2CTSR<5:0>
U2RXR<5:0>

RPINR20 SPI1 Clock Input (SCK1IN)
SPI1 Data Input (SDI1)

SCK1R<5:0>
SDI1R<5:0>

RPINR21 UART3 Clear to Send (U3CTS)
SPI1 Slave Select Input (SS1IN)

U3CTSR<5:0>
SS1R<5:0>

RPINR22 SPI2 Clock Input (SCK2IN)
SPI2 Data Input (SDI2)

SCK2R<5:0>
SDI2R<5:0>

RPINR23 SPI2 Slave Select Input (SS2IN) SS2R<5:0>

RPINR27 UART4 Clear to Send (U4CTS)
UART4 Receive (U4RX)

U4CTSR<5:0>
U4RXR<5:0>

RPINR28 SPI3 Clock Input (SCK3IN)
SPI3 Data Input (SDI3)

SCK3R<5:0>
SDI3R<5:0>

RPINR29 SPI3 Slave Select Input (SS31IN) SS3R<5:0>
DS51963A-page 28  2011 Microchip Technology Inc.

For example:

3.2.6 PPS Output Mapping

The PIC24FJ256GB110 has 16 Output Remappable Peripheral Registers (RPORx).

The output mapping is the exact opposite to the input mapping. For input mapping, the
port number is written to a function register. For output mapping, the function number
is written to the port register. This makes sense since each output pin can only be con-
nected to one peripheral output.

TABLE 3-2: LAB 3 PPS OUTPUT CONFIGURATION

Mapping Action

Map “UART1 Receiver” to RP30 Write the RP value 30 decimal = 0x1E hex into
U3RXR<5:0>

Map “SPI3 Data Input” to RPI38 Write the RPI value 38 decimal = 0x26 hex into
SDI3R<5:0>

Output Function
Number

Function Output Name

0 NULL Null

1 C1OUT Comparator 1 Output

2 C2OUT Comparator 2 Output

3 U1TX UART1 Transmit

4 U1RTS UART1 Request To Send

5 U2TX UART2 Transmit

6 U2RTS UART2 Request To Send

7 SDO1 SPI1 Data Output

8 SCK1OUT SPI1 Clock Output

9 SS1OUT SPI1 Slave Select Output

10 SDO2 SPI2 Data Output

11 SCK2OUT SPI2 Clock Output

12 SS2OUT SPI2 Slave Select Output

13-17 Unused N/C

18 OC1 Output Compare 1

19 OC2 Output Compare 2

20 OC3 Output Compare 3

21 OC4 Output Compare 4

22 OC5 Output Compare 5

23 OC6 Output Compare 6

24 OC7 Output Compare 7

25 OC8 Output Compare 8

26-27 Unused N/C

28 OC1 UART3 Transmit

29 U3RTS UART3 Request To Send

30 U4TX UART4 Transmit

31 U4RTS UART4 Request To Send

32 SDO3 SPI3 Data Output

33 SCK3OUT SPI3 Clock Output

34 SS3OUT SPI3 Slave Select Output

35 OC9 Output Compare 9

36 C3OUT Comparator 3 Output

37-63 Unused N/C
 2011 Microchip Technology Inc. DS51963A-page 29

LABS
Setting the RPORx register with the listed value assigns that output function to the
associated RPn pin.

Each RPORx register holds function numbers for two PR port pins.

• RPOR0<13:8> = RP1R<5:0> = RP1 Output Pin Mapping bits

• RPOR0<5:0> = RP0R<5:0> = RP0 Output Pin Mapping bits

For example:

3.2.7 PPS Register Lock/Unlock Sequence

Under normal operation, writes to the RPINRx and RPORx registers are not allowed.

Attempted writes will appear to execute normally, but the contents of the registers will
remain unchanged. To change these registers, they must be unlocked in hardware. The
register lock is controlled by the IOLOCK bit (OSCCON<6>). Setting IOLOCK prevents
writes to the control registers; clearing IOLOCK allows writes.

To set or clear IOLOCK, a specific command sequence must be executed:

1. Write 46h to OSCCON<7:0>.

2. Write 57h to OSCCON<7:0>.

3. Clear (or set) IOLOCK as a single operation.

Register unlock sequence in assembly:

Register lock sequence in assembly:

Notes: The RPINRx and RPORx registers are unlocked after reset. Therefore, you will
be able to write these registers without having to perform the register unlock sequence.

In real world applications, it is important to protect the PPS configuration. Accidental
changes to the RPINRx and RPORx registers during normal operation would be
extremely undesirable. Under normal circumstances the code would configure the
RPINRx and RPORx registers and then immediately run the register lock sequence.

It should also be noted that if the configuration bit IOL1WAY bit (CW2<4>) is set, when
once the IOLOCK bit is set once, it can not be cleared again (not even with the unlock
sequence) and the PPS registers cannot be written again.

Mapping Action

Map UART 3 Tx to PR31 (pin 39) Write the value 28 decimal = 0x1C hex to
RP31R<5:0>

Map the Comparator 2 Output to RP9
(pin 33)

Write the value 2 decimal = 0x02 hex to RP9R<5:0>

MOV #OSCCON, W1

MOV #0x46, W2

MOV #0x57, W3

MOV.B #W2, [W1] ; Must be a MOV.B

MOV.B #W3, [W1] ; Must be a MOV.B

BCLR #OSCCON, #IOLOCK ; Unlock Registers

MOV #OSCCON, W1

MOV #0x46, W2

MOV #0x57, W3

MOV.B #W2, [W1] ; Must be a MOV.B

MOV.B #W3, [W1] ; Must be a MOV.B

BSET #OSCCON, #IOLOCK ; Lock Registers
DS51963A-page 30  2011 Microchip Technology Inc.

3.3 THE LAB

3.3.1 Objective

Program the PIC24 microcontroller to use the UART to communicate with a program
such as Windows HyperTerminal. Setup the UART for 8N1 with 9600 baud, and show
your baud rate calculations.

Use the UART receiver interrupt to inform you when a character is available. Process
the character received and transmit back the same character but in the opposite case,
i.e. if a lower case “e” is received, then “E” would be transmitted back.

Connect the RS232 port of the MX Educational Target to a PC and use a terminal emu-
lator (e.g. HyperTerminal that comes with Windows) to communicate with the embed-
ded processor using ACSII characters.

3.3.2 Pertinent Information

The PIC24FJ256GB110 has 4 configurable UARTS. This lab will only use one.

Configure PPS for the chosen UART peripheral. To use the DB9 RS-232 port “CH1” on
the MX Educational Target board, map Rx to RP30 (pin 52) and Tx to RP15 (pin 53).
To enable handshaking (not required), map RTS to RP5 (pin 48) and CTS to RPI43 (pin
47). The basic program flow is depicted in Figure 3-4.
 2011 Microchip Technology Inc. DS51963A-page 31

LABS
FIGURE 3-4: LAB 3 BASIC PROGRAM FLOW

The template assembly file sets up this basic program flow. The student will need to
add the appropriate code to the relevant sections of the file lab3-uart.s.
DS51963A-page 32  2011 Microchip Technology Inc.

LABS
Lab 4. Watchdog Timer (WDT)
4.1 OBJECTIVE

This lab covers the following concepts:

• PIC24F Watchdog Module

• PIC24F Configuration Bits

4.2 PRE-LAB

4.2.1 Reference Material

• PIC24FJ256GB110 Family Data Sheet (DS39897)

• 16-Bit MCU and DSC Programmer's Reference Manual (DS70157)

• MPLAB IDE User's Guide (DS51519)

• PIC24F Family Reference Manual – Section 8. Interrupts (DS39707)

• PIC24F Family Reference Manual – Section 9. Watchdog Timer (DS39697)

• PIC24F Family Reference Manual – Section 12. Peripheral Pin Select (DS39711)

• PIC24F Family Reference Manual – Section 14. Timers (DS39704)

• PIC24F Family Reference Manual – Section 21. UART (DS39708)

4.2.2 The Watchdog Timer

The primary function of the Watchdog Timer (WDT) is to reset the microcontroller in the
event of a software malfunction. It can also be used to wake the device from Sleep or
Idle mode.

The WDT is a free-running timer which uses the low-power RC oscillator. It requires no
external components so the WDT will continue to operate even if the system's primary
clock source (e.g., the crystal oscillator) is stopped.

FIGURE 4-1: LAB 4 WATCHDOG CIRCUIT
 2011 Microchip Technology Inc. DS51963A-page 33

LABS
When enabled, the WDT will increment until it overflows or “times out”. A system should
be designed so that under normal circumstances the WDT will never “time out”. Thus,
if the situation occurs, then something is wrong and drastic action should be taken. The
typical reason for this to happen is due to a firmware bug that gets stuck in an infinite
loop.

If the WDT “times out”, it will force a device reset. There are few options to deal with
errors like this in an embedded system. The only real option is to reset the device and
restart code execution. If the error condition is resolved the system will restart success-
fully. If the error condition remains, the system may be remain in a loop of continuously
resetting.

In order to prevent the WDT reset, the application must periodically clear the WDT
using the instruction CLRWDT. This resets the timer to ‘0’. The application would typi-
cally do this once through the main control loop.

The exception to this is during Sleep or Idle modes. In these cases, the processor will
continue execution from the point where the PWRSAV instruction was executed. Thus,
the WDT can be an integral part of a low-power design.

In either case, it is possible to determine if the processor has experienced a WDT time
out. The WDTO bit (RCON<4>) will be set to indicate that the device reset or wake-up
event was due to a WDT time-out. If the WDT wakes the CPU from Sleep or Idle mode,
the SLEEP status bit (RCON<3>) or IDLE status bit (RCON<2>) will also be set to indi-
cate that the device was previously in a power-saving mode.

4.2.3 Watchdog Timer Period

WDT Period (ms) = Prescaler Factor x Postscaler Factor

Prescaler Factor:

1 for WDTPRE is ‘0’

4 for WDTPRE is ‘1’

Postscaler Factor:

1/Postscaler Ratio

TABLE 4-1: LAB 4 WATCHDOG PERIODS

Postscaler Setting
(WDTPS3:WDTPS0)

Postscaler Ratio
(1/Postscaler Factor)

Timeout Period

5-Bit Prescaler
(FWPSA = 0)

7-Bit Prescaler
(FWPSA = 1)

0000 1:1 1 ms 4 ms

0001 1:2 2 ms 8 ms

0010 1:4 4 ms 16 ms

0011 1:8 8 ms 32 ms

0100 1:16 16 ms 64 ms

0101 1:32 32 ms 128 ms

0110 1:64 64 ms 256 ms

0111 1:128 128 ms 512 ms

1000 1:256 256 ms 1.024s

1001 1:512 512 ms 2.048s

1010 1:1024 1.024s 4.096s

1011 1:2048 2.048s 8.192s

1100 1:4096 4.096s 16.384s

1101 1:8192 8.192s 32.768s

1110 1:16384 16.384s 65.536s

1111 1:32768 32.768s 131.072s
DS51963A-page 34  2011 Microchip Technology Inc.

4.2.4 Configuration Bits

In general, most device configuration is done at run time by executing various instruc-
tions. However, there are some lower level functions that are only configurable at pro-
gramming time. The WDT pre-scaler and post-scaler are two of the configuration
settings that are only configurable at programming time.

The top three words of on-chip program memory in the PIC24FJ256GB110 family of
devices are reserved for configuration information. On device Reset, the configuration
information is copied into the appropriate run-time registers.

The Configuration bits are mapped starting at program memory location F80000h. Note
that this address is beyond the user program memory space. In fact, it belongs to the
configuration memory space (800000h-FFFFFFh), which can only be accessed using
table reads and table writes and cannot be modified during normal code execution.

Each lab has a file named config_bits_pic24fj256gb110.inc that includes the
values used for every Configuration bit available in this family of devices. It also
includes comments that describe each possible setting for each field.

4.3 THE LAB

4.3.1 Objective

Modify the file config_bits_pic24fj256gb110.inc to change the WDT period
and write code to monitor the Watchdog Timer. Use the controller itself to measure the
Watchdog Timer period and compare to the expected values.

Since the WDT time out will cause the processor to reset, a clever scheme is needed
to measure the WDT time out. One way to do this is to configure a timer for a 1 ms
period. Each time the timer expires, increment a local variable and send out the value
of that variable through the UART to be monitored using a PC terminal emulator (like
HyperTerminal).

When the Watchdog Timer expires, it will reset the controller and thus the value of the
timer will be reset to zero. By waiting for a button press on startup, it is possible to keep
the controller from continuously overwriting the previous values in the terminal emula-
tor on power up. In this case, the last counter value that was written to the UART should
be the WDT period.

The UART needs to run at 115200 baud. At that baud rate, a character will take about
87 us to be transmitted. This means there will be just enough time for some processing
and to transmit about 10 characters between the 1 ms interrupts. If more characters are
sent out the UART, then the resolution of the timer must increase. This will decrease
the accuracy of the measurement, but may allow for a more informative message. This
is a typical design trade-off that happens in real embedded system design.

4.3.2 Pertinent Information

The basic program flow is depicted in Figure 4-2.
 2011 Microchip Technology Inc. DS51963A-page 35

LABS
FIGURE 4-2: LAB 4 BASIC PROGRAM FLOW

The application will have to enable the WDT in code with the instruction BSET RCON,
#SWDTEN.

The WDT, prescaler and postscaler are reset by a CLRWDT instruction during normal
code execution.

Remember that when the WDT “overflows”, it will reset the microcontroller. This means
all volatile RAM values will be reset to zero.

The template assembly file sets up this basic program flow. The student will need to
add the appropriate code to the relevant sections of the file lab4-wdt.s.
DS51963A-page 36  2011 Microchip Technology Inc.

LABS
Lab 5. Comparator
5.1 OBJECTIVE

This lab covers the following concepts:

• PIC24F Comparator Hardware module

• PIC24F Comparator Voltage Reference Module

5.2 PRE-LAB

5.2.1 Reference Material

• PIC24FJ256GB110 Family Data Sheet (DS39897)

• 16-Bit MCU and DSC Programmer's Reference Manual (DS70157)

• MPLAB IDE User’s Guide (DS51519)

• PIC24F Family Reference Manual – Section 8. Interrupts (DS39707)

• PIC24F Family Reference Manual – Section 12. Peripheral Pin Select (DS39711)

• PIC24F Family Reference Manual – Section 19. Dual Comparator Module
(DS39710)

• PIC24F Family Reference Manual – Section 20. Comparator Voltage Reference
Module (DS39708)

5.2.2 Comparator

A comparator compares two analog inputs and switches its output to indicate which is
larger. When the Vin+ input is larger than to the Vin- input, the output is high. When the
Vin- input is larger than the Vin+ input, the output is low.

FIGURE 5-1: LAB 5 COMPARATOR DESCRIPTION

The PIC24FJ256GB110 comparator input/output configurations are completely user
programmable using the CMxCON registers.

Schematic symbol for single

comparator

Inputs Output
Vin+ > Vin- High
Vin+ < Vin- Low
Vin+ = Vin- Indeterminate

 2011 Microchip Technology Inc. DS51963A-page 37

LABS
FIGURE 5-2: LAB 5 COMPARATOR I/O CONFIGURATION

The PIC24FJ256GB110 contains three analog comparators.

FIGURE 5-3: LAB 5 TRIPLE COMPARATOR BLOCK DIAGRAM

5.2.3 Voltage Reference Module

The PIC24FJ256GB110 has a built-in voltage reference. The voltage reference is a 16-
tap, resistor ladder network that provides a selectable reference voltage. Although its
primary purpose is to provide a reference for the analog comparators, it may also be
used independently of them.
DS51963A-page 38  2011 Microchip Technology Inc.

FIGURE 5-4: LAB 5 COMPARATOR VOLTAGE REFERENCE BLOCK
DIAGRAM

The voltage reference is configurable through the CVRCON register.

TABLE 5-1: REFERENCE VOLTAGE WITH VDD = 3.3V

If CVRR = 1: Voltage Reference = ((CVR3:CVR0)/24) x (CVRSRC)

If CVRR = 0: Voltage Reference = (CVRSRC/4) + ((CVR3:CVR0)/32) x (CVRSRC)

CVR3:CVR0
CVRR = 0 CVRR = 1

CVREF CVREF (VDD 3.3V) CVREF CVREF (VDD 3.3V)

0000 VDD x 8/32 0.83V VDD x 0/24 0V

0001 VDD x 9/32 0.93V VDD x 1/24 0.14V

0010 VDD x 10/32 1.03V VDD x 2/24 0.28V

0011 VDD x 11/32 1.13V VDD x 3/24 0.41V

0100 VDD x 12/32 1.24V VDD x 4/24 0.55V

0101 VDD x 13/32 1.34V VDD x 5/24 0.69V

0110 VDD x 14/32 1.44V VDD x 6/24 0.83V

0111 VDD x 15/32 1.55V VDD x 7/24 0.96V

1000 VDD x 16/32 1.65V VDD x 8/24 1.10V

1001 VDD x 17/32 1.75V VDD x 9/24 1.24V

1010 VDD x 18/32 1.86V VDD x 10/24 1.38V

1011 VDD x 19/32 1.96V VDD x 11/24 1.51V

1100 VDD x 20/32 2.06V VDD x 12/24 1.65V

1101 VDD x 21/32 2.17V VDD x 13/24 1.79V

1110 VDD x 22/32 2.27V VDD x 14/24 1.93V

1111 VDD x 23/32 2.37V VDD x 15/24 2.06V
 2011 Microchip Technology Inc. DS51963A-page 39

LABS
5.3 THE LAB

5.3.1 Objective

Set up the Comparator and Voltage Reference module to create a simple voltage
meter. Use the breadboard area on the MX Educational Target board to provide a very
simple adjustable voltage source.

Setup Comparator 1 with Vin- = C1INB (pin 21) and with Vin+ = CVref. Adjust the volt-
age reference to measure the input voltage on C1INB. Format the results and send
back the results as a three-digit number formatted similar to “1.65V”.

To make things a little easier, simply step through the reference voltages with
CVRR = 1 (0V to 2.06V), monitor when the comparator output changes and report that
voltage back through the serial port.

To make debugging easier, configure the Voltage Reference module to output the volt-
age level on the CVREF pin (CVRCON<7> = CVREN). This will enable you to view the
behavior of the VRef voltage with an external multi-meter.

Note: Make sure to wait for the voltage reference to stabilize before checking the
output of the comparator.

Verify the measured results with a multi-meter.

5.3.2 Bonus

Modify the code to use a divide and conquer method of determining the voltage with a
minimum number of iterations. Also use all reasonable reference voltages available, ie.
CVRR = 0 and CVRR = 1 for the full range from 0V to 2.37V with more steps.

5.3.3 Pertinent Information

You will need to setup a simple external variable voltage circuit to vary an external volt-
age signal. This will be used as the external voltage to drive comparators Vin- input.

Wire a potentiometer as illustrated below.

The potentiometer (also known as a “pot”) is a three terminal resistor that will form an
adjustable voltage divider. This will allow adjustment of the voltage at the comparators
Vin- input between 0 and 3.3V.

The basic program flow is depicted in Figure 5-5.

Potentiometer

Potentiometer Circuit
DS51963A-page 40  2011 Microchip Technology Inc.

FIGURE 5-5: LAB 5 BASIC PROGRAM FLOW

The template assembly file sets up this basic program flow. The student will need to
add the appropriate code to the relevant sections of the file lab5-comparator.s.
 2011 Microchip Technology Inc. DS51963A-page 41

LABS
NOTES:
DS51963A-page 42  2011 Microchip Technology Inc.

LABS
Lab 6. Analog-to-Digital Converter
6.1 OBJECTIVE

Configure the PIC24FJ256GB110 10-bit A/D converter module to create a simple
voltage meter.

6.2 PRE-LAB

6.2.1 Reference Material

• PIC24FJ256GB110 Family Data Sheet (DS39897)

• 16-Bit MCU and DSC Programmer's Reference Manual (DS70157)

• MPLAB IDE User's Guide (DS51519)

• PIC24F Family Reference Manual – Section 8. Interrupts (DS39707)

• PIC24F Family Reference Manual – Section 17. 10-Bit A/D Converter (DS39705)

6.2.2 A/D Converter

The PIC24FJ256GB110 incorporates a 10-bit successive approximation converter.
Figure 6-1 illustrates the internal structure of the A/D Converter module.
 2011 Microchip Technology Inc. DS51963A-page 43

LABS
FIGURE 6-1: ADC MODULE DIAGRAM

Each ADC module has the following registers that control the behavior of the module.
For example, ADC1 has the following registers:

• AD1CON1: A/D Control Register 1

• AD1CON2: A/D Control Register 2

• AD1CON3: A/D Control Register 3

• AD1CHS: A/D Input Select Register

• AD1PCFGL: A/D Port Configuration Register (Low)

• AD1PCFGH: A/D Port Configuration Register (High)

• AD1CSSL: A/D Input Scan Select Register
DS51963A-page 44  2011 Microchip Technology Inc.

To configure the A/D module, the following steps must be executed:

1. Configure port pins as analog inputs and/or select band gap reference inputs
(AD1PCFGL<15:0> and AD1PCFGH<1:0>)

2. Select voltage reference source to match expected range on analog inputs
(AD1CON2<15:13>)

3. Select the analog conversion clock to match desired data rate with processor
clock (AD1CON3<7:0>)

4. Select the appropriate sample/conversion sequence (AD1CON1<7:5> and
AD1CON3<12:8>)

5. Select how conversion results are presented in the buffer (AD1CON1<9:8>)

6. Select interrupt rate (AD1CON2<5:2>)

7. Turn on A/D module (AD1CON1<15>)

If interrupts are used, then the following steps must be executed during configuration
of the A/D module:

1. Clear the AD1IF bit

2. Select A/D interrupt priority

3. Enable the interrupt; set AD1IE bit

6.2.3 Conversion Time

The A/D Converter has a maximum rate at which conversions may be completed. An
analog module clock, TAD, controls the conversion timing. The A/D conversion requires
12 clock periods (12 TAD). The A/D clock is derived from the device instruction clock.

The period of the A/D conversion clock is software selected using a 6-bit counter. There
are 64 possible options for TAD, specified by the ADCS bits in the AD1CON3 register.

For correct A/D conversions, the A/D conversion clock (TAD) must be selected to
ensure a minimum TAD time of 75 ns.

FOSC = 32 MHz

TCY = 2/FOSC = 2/32 MHz = 62.5 ns

ADCS<7:0> = (TAD/TCY) – 1

TAD = TCY • (ADCS<7:0> + 1)

For TAD > 75 ns we will require ADCS of at least 1.

6.2.4 Sample Time

Figure 6-2 the analog input model of the 10-bit A/D Converter of the
PIC24FJ256GB110.

FIGURE 6-2: ANALOG INPUT OF THE PIC24FJ256GB110 A/D CONVERTER

The total sampling time for the A/D is a function of the holding capacitor charge time.
 2011 Microchip Technology Inc. DS51963A-page 45

LABS
For the A/D Converter to meet its specified accuracy, the charge holding capacitor
(CHOLD) must be allowed to fully charge to the voltage level on the analog input pin.
The source impedance (RS), the interconnect impedance (RIC) and the internal sam-
pling switch (RSS) impedance combine to directly affect the time required to charge
CHOLD. The combined impedance of the analog sources must, therefore, be small
enough to fully charge the holding capacitor within the chosen sample time. To mini-
mize the effects of pin leakage currents on the accuracy of the A/D Converter, the max-
imum recommended source impedance, RS, is 2.5 k. After the analog input channel is
selected (changed), this sampling function must be completed prior to starting the con-
version. The internal holding capacitor will be in a discharged state prior to each sample
operation.

At least 1 TAD time period should be allowed between conversions for the sample time.

TSMP = SAMC<4:0> • TAD

SAM<4:0> = TSMP/TAD

6.2.5 A/D Converter Transfer Function

The 10-bit A/D Converter has 1024 steps. The output is from 0 to 1023. Where 0 is
0.000V, and 1023 is 3.300V for VR+ = AVSS (3.3V) and VR- = AVDD (GND).

FIGURE 6-3: ADC TRANSFER FUNCTION
DS51963A-page 46  2011 Microchip Technology Inc.

The first code transition occurs when the input voltage is ((VR+) – (VR-))/1024 or 1 LSb

• Output 1 is centered at VR- + (1.5 • ((VR+) – (VR-))/1024)

• Output 512 is centered at VREFL + (512.5 • ((VR+) – (VR-))/1024)

• An input voltage less than VR- + (((VR-) – (VR-))/1024) converts as 0

• An input voltage greater than (VR-) + (1023((VR+) – (VR-))/1024) converts as
1023

6.3 THE LAB

6.3.1 Objective

This lab is similar to the previous Comparator Lab. However, this time we will use the
10-bit A/D Converter module to create a more accurate voltage meter.

The 10-bit A/D Converter has an array of timing and control selections, which allows
the user to create flexible scanning sequences. Conversions can be started individually
by program control, continuously free running, or triggered by selected hardware
events.

This lab is flexible in allowing you to configure the A/D Converter module any way you
choose to complete the task.

This lab including program flow chart assumes the A/D Converter “auto-conversion trig-
ger” and the “ADC1 Conversion Done” interrupt is being used.

6.3.2 Setup

• ADC input to AN4 (pin 21), which is the same input that was used for the
Comparator Lab.

• VR+ = AVSS

• VR- = AVDD

• Setup the 10-Bit A/D Converter module to measure an input voltage on AN4.

• Then use the UART to send the measured voltage to a terminal program.

• You will be required to do some formatting to the A/D Converter output value and
send back the voltage as a four digit number formatted similar to “1.234V”.

• The expected output is illustrated in the Figure 6-4.

FIGURE 6-4: EXAMPLE TERMINAL OUTPUT
 2011 Microchip Technology Inc. DS51963A-page 47

LABS
6.3.3 Pertinent Information

You will need to setup a simple variable voltage circuit for the analog input to the A/D
Converter. This is the same circuit that was used in Comparator Lab.

Wire a potentiometer as illustrated below.

The potentiometer (also known as a “pot”) is a three terminal resistor that will form an
adjustable voltage divider. This will allow adjustment of the voltage at the A/D Converter
input between 0 and 3.3V.

6.3.4 Converting the A/D Converter Value

The A/D Converter output value will need to be converted to the corresponding input
voltage value. To do this accurately, you will need to use 32bit divisions and multiplica-
tions.

A/D Converter step size for VR+ = 3.3V and VR- = GND

Step size = 3.3V/1023

Step size ~ 0.0032258064V

16-bit calculations 216 = 65536

ADC count = 1023 (3.300V)

To convert the value to volts, we can multiply ADC counts by an integer value of step
size, but with a 16-bit result register, we are limited to using a value of 32 since a larger
integer value would cause the register to overflow.

Volts = 1023 x 32 = 32736

The value 32736 represents 3.2736V.

So, for an ADC output of 1023, which should be 3.3V, we calculate 3.2736V.

32-bit calculations 232 = 4294967296

ADC count = 1023 (3.300V)

To convert the value to volts, we again multiply ADC counts by an integer value of step
size, but this time we can use a complete 16-bit value or 32258. This will not overflow
the 32-bit results register.

Volts = 1023 x 32258 = 32999934

The value 32999934 represents 3.2999934V.

Other methods to convert the A/D Converter value to voltage are possible but this
method is advised. This will force the use of 32-bit arithmetic instructions and their
associated registers.

Reminder from Lab 2 – Interrupts

The basic program flow is depicted in Figure 6-5.

__ADC1Interrupt ADC1 Conversion Done 0x0002E

Potentiometer

Potentiometer Circuit
DS51963A-page 48  2011 Microchip Technology Inc.

FIGURE 6-5: LAB 6 PROGRAM FLOW

The template assembly file sets up this basic program flow. The student will need to
add the appropriate code to the relevant sections of the file lab6-adc.s.
 2011 Microchip Technology Inc. DS51963A-page 49

LABS
NOTES:
DS51963A-page 50  2011 Microchip Technology Inc.

LABS
Lab 7. Pulse-Width Modulator (PWM)
7.1 OBJECTIVE

Configure one of the PIC24FJ256GB110 Output Compare Blocks as a PWM to drive
an LED and generate a “heart beat” similar to the power LED on a Macintosh computer.

7.2 PRE-LAB

7.2.1 Reference Material

• PIC24FJ256GB110 Family Data Sheet (DS39897)

• 16-Bit MCU and DSC Programmer's Reference Manual (DS70157)

• MPLAB IDE User's Guide (DS51519)

• PIC24F Family Reference Manual – Section 8. Interrupts (DS39707)

• PIC24F Family Reference Manual – Section 12. I/O Ports with Peripheral Pin
Select (PPS) (DS39711)

• PIC24F Family Reference Manual – Section 35. Output Compare with Dedicated
Timer (DS39723)

7.2.2 Pulse-Width Modulation (PWM) Mode

Pulse-Width Modulation is used to efficiently regulate the amount of electrical power
delivered to a load by quickly switching power between fully ON and fully OFF.

The “duty cycle” is the proportion of ON time in the “period” and is often expressed in
percentage. 75% duty cycle would be delivering power ¾ of the time, and 100% would
be fully on.

A very simple implementation can be used to deliver an average voltage of 1.67V by
pulse-width modulating 5V with a 33% duty cycle as illustrated below.

FIGURE 7-1: BASIC PWM TO CONTROL POWER DELIVERY

A more complicated implementation can be used to deliver sinusoidal power. This is a
similar example to what we will be doing in this lab.
 2011 Microchip Technology Inc. DS51963A-page 51

LABS
FIGURE 7-2: USING PWM TO CREATE A SINE WAVE

7.2.3 Output Compare Blocks

The PIC24FJ256GB110 has 9 Output Compare Blocks. Each of these blocks can be
configured as any of the following:

• Center-Aligned PWM mode

• Edge-Aligned PWM Mode

• Double Compare Continuous Pulse mode

• Double Compare Single-Shot mode

• Single Compare mode

• Single Compare Single-Shot mode

In PWM mode, the output compare module can be configured for edge-aligned or cen-
ter-aligned pulse waveform generation. All PWM operations are double-buffered (buf-
fer registers are internal to the module and are not mapped into SFR space).

To configure the output compare module for PWM operation:

1. Configure the OCx output for one of the available Peripheral Pin Select pins.

2. Calculate the desired duty cycles and load them into the OCxR register.

3. Calculate the desired period and load it into the OCxRS register.

4. Select the current OCx as the sync source by writing 0x1F to SYNCSEL<4:0>
(OCxCON2<4:0>), and clearing OCTRIG (OCxCON2<7>).

5. Select a clock source by writing the OCTSEL<2:0> (OCxCON<12:10>) bits.

6. Enable interrupts, if required, for the timer and output compare modules. The
output compare interrupt is required for PWM Fault pin utilization.

7. Select the desired PWM mode in the OCM<2:0> (OCxCON1<2:0>) bits.

8. If a timer is selected as a clock source, set the TMRy prescale value and enable
the time base by setting the TON (TxCON<15>) bit.

This peripheral contains input and output functions that may need to be configured by
the Peripheral Pin Select.

Registers associated with the Output Compare Block when used as a PWM module:

• OCxCON1: Output Compare x Control Register 1

• OCxCON2: Output Compare x Control Register 2

• OCxR: Compare Register

• OCxRS: Secondary Compare Register
DS51963A-page 52  2011 Microchip Technology Inc.

FIGURE 7-3: OUTPUT COMPARE BLOCK DIAGRAM

The OCx outputs must be assigned to an available RPn pin before use.

7.2.4 PWM Duty Cycle

The PWM duty cycle is specified by writing to the OCxRS and OCxR registers. The
OCxRS and OcxR registers can be written to at any time, but the duty cycle value is
not latched until the period is complete. This provides a double buffer for the PWM duty
cycle and is essential for glitchless PWM operation.

Some important boundary parameters of the PWM duty cycle include:

• If OCxR, OCxRS, and PRy are all loaded with 0000h, the OCx pin will remain low
(0% duty cycle).

• If OCxRS is greater than PRy, the pin will remain high (100% duty cycle).

7.2.5 Edge-Aligned PWM Mode Operation

When synchronization occurs, the following five events occur on the next increment
cycle:

• The timer is reset to zero and resumes counting

• The OCx pin is set high (exception: if OCxRS = 0000, the OCx pin would not be
set)

• The OCxR and OCxRS Buffered registers are updated from OCxR and OCxRS

• Interrupt flag, OCxIF, is set

• When the timer and OCxR match, the pin would be set low. This match does not
generate interrupts.

Figure 7-4 depicts the output compare pin over time with OCxR = 0x0000 and OCxRS
= 0x5000.
 2011 Microchip Technology Inc. DS51963A-page 53

LABS
FIGURE 7-4: OUTPUT COMPARE WITH INITIAL OCxRS = 0x0000

Figure 7-5 depicts the output compare pin over time with OCxR = 0x1000 and OCxRS
= 0x5000.

FIGURE 7-5: OUTPUT COMPARE WITH INITIAL OCxRS = 0x1000

7.3 THE LAB

7.3.1 Objective

Write code to configure and enable one of the nine PIC24FJ256GB110 output compare
blocks as a PWM. Use the PWM to generate an LED “heart beat” similar to the power
LED on a Macintosh computer.

You will need to generate a similar pattern to the sinusoid illustrated earlier. Although
generating a sinusoid is possible, it is somewhat unnecessary. A triangle like wave with
some tweaking should work sufficiently for our intended purpose. The LED should
“beat”. It should repeatedly slowly transition from OFF to ON and then back to OFF.

7.3.2 Pertinent Information

The LEDs are NOT connected to remappable peripheral output pins. Therefore, it will
not be possible to drive the LED directly with the PWM output. Rather it will be neces-
sary to toggle the desired LED port pin based on the PWM output.
DS51963A-page 54  2011 Microchip Technology Inc.

LEDs are on the following ports:

Reminder From lab2-interrupts:

The basic program flow is depicted in Figure 7-6.

FIGURE 7-6: LAB 7 BASIC PROGRAM FLOW

The template assembly file sets up this basic program flow. The student will need to
add the appropriate code to the relevant sections of the file lab7-pwm.s.

LED PIC® MCU Port

LED1 Port C Bit 2

LED2 Port C Bit 3

LED3 Port C Bit 4

LED4 Port E Bit 9

__OC1Interrupt Output Compare 1 0x00018

__OC2Interrupt Output Compare 2 0x00020
 2011 Microchip Technology Inc. DS51963A-page 55

LABS
NOTES:
DS51963A-page 56  2011 Microchip Technology Inc.

LABS
Lab 8. External Memory
8.1 OBJECTIVE

Investigate the MX PIC24F module memory resources and the general design issues
surrounding memory use in embedded systems.

8.2 PRE-LAB

8.2.1 Reference Material

• PIC24FJ256GB110 Family Data Sheet (DS39897)

• 16-Bit MCU and DSC Programmer’s Reference Manual (DS70157)

• MPLAB IDE User’s Guide (DS51519)

• PIC24F Family Reference Manual – Section 23. Serial Peripheral Interface (SPI)
(DS39699)

8.2.2 Memory Basics

At a basic level, memory circuits hold their contents for future accesses. Most memory
provides an interface to write information into the memory (i.e. store) and to read infor-
mation out of the memory (i.e. load). The write interface is not always available during
run time, e.g. One-Time-Program (OTP) memories.

The ability of a memory circuit to hold its contents when power is removed is one way
to categorize memory. The contents of volatile memory are erased when power to the
circuit is disconnected. Examples of this are the DDR memory of a desktop computer.
Nonvolatile memory holds its contents even when power is removed from the circuit.
Examples of this are a USB disk that contains NAND Flash memory.

8.2.3 Memory in Embedded Systems

In some ways, developing firmware for an embedded controller is not unlike writing
code for a desktop computer. Many aspects of the design process are similar: lan-
guages can often be the same (i.e. “C”), the control loops are similar, the sequential
access is the same, and even multi-tasking and threads can be used on each. But
when it comes to memory, the equations are completely different.

A desktop computer has resources that are simply not feasible for embedded systems,
e.g. a large hard drive. As a result, most modern OSs assume that a large hard drive
is connected to the computer. By using a technique called “virtual memory”, a program
that is executing has access to an almost unlimited amount of memory. If the OS needs
more memory, then it will swap out little used areas of its volatile memory to the hard
drive. This then allows the OS to use that volatile memory space for further program
execution. If the memory that was previously swapped out is required, then the OS will
swap it back with another area of memory. As a result, most programmers can assume
that they have a virtually unlimited amount of RAM memory to use, and the OS takes
care of the details.
 2011 Microchip Technology Inc. DS51963A-page 57

LABS
Most embedded systems do not have such features. This is primarily due to the size,
cost, and power consumption required to have such complicated hardware. As a result,
designers of embedded systems must constantly evaluate the consumption of the lim-
ited resources of the microcontroller. If a program runs out of memory, there is no
recovery and the system will fail. In some cases it will not even compile.

8.2.4 PIC24F Memory

The PIC24FJ256GB110 family has the following internal memory resources:

It is possible to use the program memory to store data in a nonvolatile fashion. If the
data being stored is only going to be written a small number of times, this is sufficient.
However, since the program memory is only guaranteed up to about 1000 write cycles,
this is not sufficient for data that will be written many times over a long lifespan.

EEPROM is typically guaranteed for many more write cycles. 10,000; 100,000; or even
1,000,000 are typical specifications. Since the PIC24F on board does not have any
internal EEPROM memory, this is provided by an external memory chip.

8.2.5 Extending Microcontroller Resources

No matter how many internal resources a microcontroller has, there is a real-world
application that needs more or different resources. Examples of this would be
EEPROM memory or some sort of specific sensor circuit like a temperature sensor.

In these cases, it is necessary to connect an external chip or circuit. To facilitate this,
microcontroller manufacturers provide standard bus interfaces. The
PIC24JF256GB110 is no exception, providing three SPI bus controllers and three I2C
bus controllers, as well as the Parallel Master Port (PMP) module. There are many
external circuits and sensors that can be connected on these busses to extend and
enhance the functionality of the microcontroller.

8.2.6 MX PIC24F EDU Module Memory

The MX PIC24F EDU Module provides the following external memory resources that
are available to the PIC24F.

This external EEPROM is guaranteed to retain its data for more than 200 years over
1,000,000 write cycles!

Access to the external EEPROM memory is provided using the SPI bus. The chip
select signal, SPI_CS_ROM, is connected to pin RB13 of the PIC MCU.

Memory Size Classification

Program Memory 256 Kbytes Nonvolatile

RAM 16 Kbytes Volatile

Date EEPROM 0 Nonvolatile

Note 1: Some of the newer PIC24F_K devices do incorporate internal EEPROM.

Memory Size Classification

External EEPROM 32 Kbytes Nonvolatile
DS51963A-page 58  2011 Microchip Technology Inc.

8.2.7 Serial Peripheral Interface (SPI)

SPI was created by Motorola. The SPI bus, also referred to as the “four wire” bus, is a
single master multiple slave full duplex synchronous serial interface. The SPI operates
with a single master and one or more slave devices. Only one device can talk to the
master at any given time. Therefore, a chip select or “Slave Select (SS)” is required
from the master to each slave device. When more the one slave device is connected
to the SPI bus, these slave devices are required to tri-state their MISO output when
they are not selected. Devices without tri-state outputs cannot share an SPI bus and
therefore can only be used in a single slave configuration.

The master pulls the Slave Select Low for the desired Slave device and sends a bit on
the MOSI line. The master must then wait if the slave device requires a wait period,
which is often the case for Analog-to-Digital Converters.

Next, the master issues clock cycles. A full duplex transmission occurs during each
clock cycle. The master drives the clock line high. On the rising edge of the clock, the
slave reads in the bit on the MOSI line and shifts out the MSB from its shift register onto
the MISO line. The master drives the clock low and reads the MISO line and places its
next bit on the MOSI line. The master drives the clock high and the clock cycle repeats.

Note: The master must clock in an extra eight dummy bits to read the last eight bits
from the slave.

FIGURE 8-1: SIMPLIFIED SPI SYSTEM

FIGURE 8-2: GENERIC SPI TIMING
 2011 Microchip Technology Inc. DS51963A-page 59

LABS
The PIC24FJ256GB110 has three SPI modules. The SPI serial interface consists of
four pins:

• SDIx: Serial Data Input

• SDOx: Serial Data Output

• SCKx: Shift Clock Input or Output

• SSx: Active-Low Slave Select or Frame Synchronization I/O Pulse

The SPI module can be configured to operate using 2, 3 or 4 pins.

In 3-pin mode, SSx is not used. In 2-pin mode, both SDOx and SSx are not used.

The PIC24FJ256GB100 SPI module provides two methods of operation: Standard and
Enhanced Buffer mode. In Standard mode, data is shifted through a single serial buffer.
In Enhanced Buffer mode, data is shifted through an 8-level FIFO buffer. In this lab the
Standard mode is sufficient. The Enhanced Buffer mode is useful when higher data
rates are required.

FIGURE 8-3: STANDARD MODE SPI MODULE BLOCK DIAGRAM

To set up the SPI module for the Standard Master mode of operation:

1. If using interrupts:

a) Clear the SPIxIF bit in the respective IFS register.

b) Set the SPIxIE bit in the respective IEC register.

c) Write the SPIxIP bits in the respective IPC register to set the interrupt priority.

2. Write the desired settings to the SPIxCON1 and SPIxCON2 registers with
MSTEN (SPIxCON1<5>) = 1.

3. Clear the SPIROV bit (SPIxSTAT<6>).

4. Enable SPI operation by setting the SPIEN bit (SPIxSTAT<15>).

5. Write the data to be transmitted to the SPIxBUF register. Transmission (and
reception) will start as soon as data is written to the SPIxBUF register.

DS51963A-page 60  2011 Microchip Technology Inc.

8.3 THE LAB

8.3.1 Objective

Write a program to look for a string at a particular address in the external EEPROM.
Then, using the UART and a terminal emulator like in Lab 3, display the string or an
error message. Finally, provide a simple prompt that allows the user to enter a new
string. This string, if entered, would be stored into the same location in external
memory.

Record how much program and data memory your program takes. This is reported by
MPLAB IDE in the menu View>Memory Usage.

8.3.2 Pertinent Information

In order to write into EEPROM, it must first be erased. Then, and only then, can it be
successfully programmed. An EEPROM that has been erased will read 0xff as the
value of each byte. This is how the program will know if a string has been entered since
0xff is not a valid ASCII character.

The string could either be of fixed length or could be NULL terminated (like C uses).
You will have to add the logic for the NULL termination to both the writing and reading
of the data, i.e. you will have to write an extra 0x00 value after the string entered by the
user.

When enabling the SPI for the external 25LC256 EEPROM memory, you will have to
drive the SPI_CS_ROM (pin 42) and SPI_CS_ID (pin 92) directly and run the SPI in 3-
pin mode. It is important to ensure that other devices on the SPI bus are inactive.

SPI chip select lines:

SPI_CS_ROM (pin 42), PORTB (pin 13)

You will have to configure the PPS for the SPI for the following pins:

SPI_SCK (pin 10), configure PPS output RP21 to SCKxOUT

SPI_MOSI (pin 12), configure PPS output RP19 to SDOx

SPI_MISO (pin 11), configure PPS input RP26 to SPIx

The basic program flow is depicted in Figure 8-4.
 2011 Microchip Technology Inc. DS51963A-page 61

LABS
FIGURE 8-4: BASIC PROGRAM FLOW

The template assembly file sets up this basic program flow. The student will need to
add the appropriate code to the relevant sections of the file lab8-memory.s.
DS51963A-page 62  2011 Microchip Technology Inc.

LABS
Lab 9. Power Management
9.1 OBJECTIVE

Learn to consider power consumption issues for embedded designs.

9.2 PRE-LAB

9.2.1 Reference Material

• PIC24FJ256GB110 Family Data Sheet (DS39897)

• 16-Bit MCU and DSC Programmer’s Reference Manual (DS70157)

• PIC24F Family Reference Manual – Section 6. Oscillator (DS39700)

• PIC24F Family Reference Manual – Section 10. Power Saving Features
(DS39698)

• PIC24F Family Reference Manual – Section 14. Timers (DS39704)

• AN1267 nanoWatt and nanoWatt XLP Technologies: An Introduction to
Microchip’s Low-Power Devices (DS01267)

9.2.2 Power

Every electronic system requires power to run. For systems powered by batteries, it is
important to minimize the amount of power required – this extends battery life or allows
for the use of a smaller battery. As the number of electronic systems continues to grow,
it is becoming more and more important to reduce the power consumption and the
impact on our planet. The concepts presented in this lab are a first step to understand-
ing this complex topic.

There are two components to the total power consumption of a system: static power
consumption and dynamic power consumption.

Static power is the current consumed when the main clock is disabled. In general, this
includes supervisory circuitry as well as logic required to turn the main clock on due to
some external condition. This also includes the leakage currents of the device transis-
tors themselves. In general, this is very low and fixed for a given microcontroller device.

Dynamic power is the current consumed by the switching of digital logic. The higher the
frequency, the more switches occur in a given amount of time and more power is con-
sumed. Dynamic power tends to be much larger than static power for embedded sys-
tems and the design of the software can greatly influence this factor. Thus, this lab will
focus on methods to reduce the dynamic power.

9.2.3 Calculating Power

The dynamic power of a circuit can be calculated with the following equation:

PDYN = C•V2•F
Where PDYN is the power consumed in Watts, C is the capacitance being switched per
clock cycle in Farads, V is the amplitude of the voltage in Volts, and F is the frequency
of the switching in Hz. This equation is for one switched node. The total dynamic power
consumed by a circuit is simply the sum of the dynamic power consumed for each node
in the circuit.
 2011 Microchip Technology Inc. DS51963A-page 63

LABS
The capacitance of a node is determined by the fabrication of the chip and the printed
circuit board circuit. From a software perspective this power consumption is fixed.

The voltage amplitude of the switched signal has the largest impact on the dynamic
power consumed as it obeys the square law. Reducing the voltage of the system
greatly reduces the dynamic power. This again is a system level design choice and is
typically not within the domain of software control.

The clock switching frequency is the one factor that is heavily controlled by the software
running on a microcontroller. Microcontrollers like the PIC24F that have been designed
with low power in mind provide multiple facilities to reduce the dynamic power con-
sumption of the microcontroller.

It is critical to note that to obtain the lowest power consumption of an embedded sys-
tem, all of these items need to be considered at the beginning of a design cycle. The
Microchip PIC24F and the MX module have already determined the capacitance of
each node and the voltage amplitude of each interface. This lab will focus on reducing
the frequency of switching.

9.2.4 Reducing Power – Main Clock

The discussion in Section 9.2.3 “Calculating Power” highlighted that the main
method to reduce power consumption is to reduce the number of times the main clock
is switching. The primary method of doing this is to control the main clock frequency.
Microchip's PIC24F provides many methods to do this.

Section 8.0 of the PIC24FJ256BG110 Family Data Sheet describes all the details of the
oscillator configuration. Figure 9-1 is reproduced as a quick reference. The main sys-
tem clock (labeled CPU) is controlled by many configuration registers and control reg-
isters and can take on many different frequencies.

In general, a system’s main clock should be run at the slowest speed that allows for
acceptable system performance. However, for systems that have bursts of activity fol-
lowed by long idle times, it may be advantageous to run at a higher clock frequency. A
higher clock frequency allows the calculations to be completed faster, and the system
can get into its lowest power consumption mode faster. The trade-off for this situation
is unique to each system.
DS51963A-page 64  2011 Microchip Technology Inc.

FIGURE 9-1: PIC24FJ256GB110 FAMILY CLOCK DIAGRAM

9.2.5 Reducing Power – Turn Off Unused Peripherals

While turning off the main clock or greatly reducing the main clock frequency is the
most effective power consumption strategy, it often isn't the only solution required. If
the main clock is turned off, then the system can't actually do anything other than wake
up, which doesn't make for a very useful system. In order to reduce power consump-
tion, it is necessary to turn off the clock to sub-circuits that are not being used. If
F = 0 Hz (i.e. not switching), then no dynamic power will be consumed for a given sub-
circuit.

Microchip provides a few operating modes in order to help with this. Each operating
mode provides the clock to a different subset of internal peripheral circuits. Table 9-1
from AN1267 lists the different Operating Modes and what peripherals are active in
each mode. It also describes the current consumption in each mode and how the sys-
tem can exit the mode (or wake-up).

Section 9.0 of the PIC24FJ256BG110 Family Data Sheet provides the details of the
specific power-saving features of this device.
 2011 Microchip Technology Inc. DS51963A-page 65

LABS
TABLE 9-1: MICROCHIP PIC® MCU OPERATING MODE OVERVIEW

9.2.6 Reducing Power – Go to Sleep

For many embedded systems, most of their operating life is spent waiting for a human
to interact with the system (press a button for instance). Until this interaction is detected
there is very little for the system to do. These are prime opportunities to go into the
Sleep operating mode (i.e., turn off the main clock).

Table 9-1 lists INT0 as a possible wake-up source. This means that the system can go
into the Deep Sleep Mode (lowest power consumption possible) and still monitor the
INT0 input. If the system can be designed such that the human interaction triggers this
interrupt, then the system will consume the least amount of dynamic power.

Operating
Mode

Active
Clocks

Active
Peripherals

Wake-up
Sources

Typical
Current

Typical Usage

Deep Sleep(1) • Timer1/SOSC

• INTRC/LPRC

• RTCC

• DSWDT

• DSBOR

• INT0

• RTCC

• DSWDT

• DSBOR

• INT0

• MCLR

< 50 nA • Long life, battery-based
applications

• Applications with
increased Sleep times

Sleep • Timer1/SOSC

• INTRC/LPRC

• A/D RC

• RTCC

• WDT

• ADC

• Comparators

• CVREF

• INTx

• Timer1

• HLVD

• BOR

All device
wake-up sources
(see device data
sheet)

50-100 nA Most low-power applications

Idle • Timer1/SOSC

• INTRC/LPRC

• A/D RC

All Peripherals All device
wake-up sources
(see device data
sheet)

25% of
Run Current

Any time the device is wait-
ing for an event to occur
(e.g., external or peripheral
interrupts)

Doze(2) All Clocks All Peripherals Software or
interrupt wake-up

35-75% of
Run Current

Applications with high-speed
peripherals, but requiring
low CPU use

Run All Clocks All Peripherals N/A See device
data sheet

Normal operation

Note 1: Available on PIC18 and PIC24 devices with nanoWatt XLP Technology only.

2: Available on PIC24, dsPIC® DSC and PIC32 devices only.
DS51963A-page 66  2011 Microchip Technology Inc.

9.2.7 Microchip XLP Technology

As more electronic applications require low power or battery power, energy conserva-
tion becomes paramount. Today’s applications must consume little power and, in
extreme cases, last for up to 15-20 years, while running from a single battery. To enable
applications like these, products with Microchip’s nanoWatt XLP Technology offer the
industry's lowest currents for Run and Sleep, where extreme low-power applications
spend 90%-99% of their time.

Benefits of nanoWatt XLP Technology:

• Sleep currents below 20 nA

• Brown-out Reset down to 45 nA

• Watchdog Timer down to 220 nA

• Real-time Clock/Calendar down to 470 nA

• Run currents down to 50 µA/MHz

• Full analog and self-write capability down to 1.8

Visit www.microchip.com/xlp for more information.

9.3 THE LAB

9.3.1 Objective

Using the Lab 2 framework, use the power reduction concepts of the pre-lab to reduce
the total power consumption of the system. Measure the power consumed to confirm
that the changes are effective in reducing power.

9.3.2 Pertinent Information

The clock setup is configured in both configuration bits (set during programming and
specified in file config_bits_pic24fj256gb110.inc) and control register bits
(dynamically set by the application code at run time).

If the main clock frequency is changed, then the timer pre-scaler settings may need to
change.

Use a voltmeter to measure the voltage across the input power measurement resistor
(R32). This is a 0.1 Ohm resistor, and by using the equation P = VI, the total current
consumed can be calculated. Do this for the project before and after the power con-
sumption changes are made and record your results.
 2011 Microchip Technology Inc. DS51963A-page 67

LABS
NOTES:
DS51963A-page 68  2011 Microchip Technology Inc.

LABS
Lab 10. Project
10.1 OBJECTIVE

Simulate a real embedded system.

10.2 THE LAB

10.2.1 Objective

Use the I/O of the MX PIC24F EDU Module and the MX Educational Target to simulate
a real-life system. Write a specification that defines which I/O is used to simulate the
environment and then write the code to control the system accordingly.

Use at least 5 of the lab topics in the system.

10.2.2 Elevator Control Example

10.2.2.1 SYSTEM OVERVIEW

The system to be developed is a 4-floor elevator controller. These will be called Level
1-Level 4. Each level will have a request button that users would press to request ser-
vice from the elevator. Each level will also have an indicator to display that service has
been requested. Once the request is serviced, the indicator will be turned off.

Inside the elevator, a character display will inform the occupants of the floor that the
elevator cart is approaching.

10.2.2.2 I/O MAPPING

The 4 push buttons on the MX Educational Target will represent the request buttons for
each level of the building. The 4 LEDs on the MX Educational Target will represent the
current location of the elevator.

The UART will be used to output the text to a terminal emulator running on an external
PC. The terminal emulator should be set to 9600 baud 8-N-1 to display the text prop-
erly. The UART will also be used to input the destination floor for the user.

The timer interrupt will be used to simulate the time it takes for the elevator cart to go
from one floor to the next. This time will be set to 3 seconds from one floor to the next
floor.

10.2.2.3 TOPICS COVERED

1. I/O port control from Lab 0

2. UART control from Lab 3

3. Timers from Lab 1

4. Interrupts from Lab 2

5. Power-saving features from Lab 9
 2011 Microchip Technology Inc. DS51963A-page 69

LABS
10.2.2.4 FUNCTIONAL DESCRIPTION

The system will power up and assume that it is on level 1. The service request indica-
tors on each level will be turned off. The state will default to Idle Request.

The elevator cart controller has four states: Idle Request, Moving Request, Idle Target,
and Moving Target. The Request states are a result of the service request buttons, and
the Target states are a result of the target being entered from the terminal emulator over
the UART.

When a request button is pressed, the service request indicator will be turned on. When
in Idle state, a request from any level (except the current level) will cause the state to
change to the Moving Target state. The elevator will move in the correct direction given
its current location and the location of the service request. The elevator will move to the
level of the requested level, turn off the service requested indicator, and then move to
the Idle Target state. Subsequent button presses on service request buttons will be
ignored until the current service is completed.

When in Idle Target state, the system is waiting for the user to enter the desired target
level. When a valid number is entered, the system will then move to the desired level.
When this movement is completed, the system will return to Idle Request, at which time
subsequent service requests will be processed.

At all times the level display on the terminal emulator will indicate the current level (if in
Idle Request or Idle Target state), or the level that is being approached during move-
ment.

10.2.2.5 POSSIBLE ENHANCEMENTS TO FUNCTIONALITY

There are many ways this system could be made better. Consider adding these func-
tional enhancements:

• Queueing of service requests

• Simulating ramping up and down speed of the elevator cart

• Blinking level indicator when that level is the target level and the cart is
approaching

• ...
DS51963A-page 70  2011 Microchip Technology Inc.

INTRODUCTION TO MICROCONTROLLERS

LAB MANUAL

Appendix A. Creating an MPLAB IDE Project
This appendix will walk through the process of creating a new MPLAB IDE project in a
step-by-step manner. These labs assume MPLAB IDE version 8.63 is being used. Sub-
sequent versions of MPLAB IDE will most likely follow a very similar process but may
differ in small details.

The easiest way to create a new project is to use the Project Wizard. Advanced users
can perform this process manually but it is often faster to use the Project Wizard and
then simply modify specific characteristics of the project.

A.1 STEP ONE: DEVICE SELECTION

To start, select Project>Project Wizard… from the MPLAB IDE menu. This will launch
the Project Wizard. Clicking on “Next” on the first screen will begin the process. The
Step One dialog is where you select the target device. In the case of these labs, the
target device is the PIC24FJ256GB110. Scroll through the drop-down box to select this
device as shown in Figure A-1. Click on “Next” to continue.

FIGURE A-1: PROJECT WIZARD STEP ONE
 2011 Microchip Technology Inc. DS51963A-page 71

Introduction to Microcontrollers Lab Manual
A.2 STEP TWO: LANGUAGE TOOLSUITE

In step two, the software toolset is selected. This consists of the assembler, linker, and
optional C language compiler (not used in these labs). In the Active Toolsuite
drop-down box, select “Microchip ASM30 Toolsuite”. This toolsuite consists of a collec-
tion of three individual tools:

• ASM30 Assembler

• LINK30 Linker

• LIB30 Archiver

In general, the default locations will be correct. In the case where multiple versions of
MPLAB IDE are installed on the same computer, it is necessary to ensure that the exact
location of each of the three tools points to the correct version (normally the latest). The
most important thing is that all three tools point to the same version.

Enable the checkbox “Store tool locations in project” to store these settings in the
project files.

Figure A-2 shows a typical dialog for this step. Note that the exact location of the
installed tools will vary based on local IT policies.

FIGURE A-2: PROJECT WIZARD STEP TWO
DS51963A-page 72  2011 Microchip Technology Inc.

A.3 STEP THREE: CREATE NEW PROJECT FILE

This step creates the actual project file including the path to that project. Ensure that
the radio box “Create New Project File” is selected and then click on the “Browse” but-
ton. Browse to the desired location and enter the project name in the “File name” text
box. Click on “Save”. This will fill in the full path name in the project name text box. An
example is shown in Figure A-3.

Consult your lab instructor on the actual path to the local project folders.

FIGURE A-3: PROJECT WIZARD STEP THREE

A.4 STEP FOUR: ADD EXISTING PROJECT FILES

In this step we'll add any files that already exist for our project. For Lab 0, this includes
the following files:

• config_bits_pic24fj256gb110.inc
• p24fj256gb110.gld
• lab0-intro.s

Browse to the default lab folder (see lab instructor for specific details) and highlight
these three files and click on the “Add>>” button to add them to the project. The files
can be selected individually with a discrete pressing of the “Add>>” button for each file.
The files can also be selected at once by holding down the “Ctrl” key on the keyboard
and then pressing “Add>>” button once to add all the files at once.

Click on the “Next” button to continue and then click on “Finish” to complete. The project
files are created. This includes a file with the extension.mcs that contains the project
settings, and a file with the extension.mcw that contains the workspace settings.

For best results, load the workspace and save its state to keep the window locations
and other configuration settings consistent between editing sessions.
 2011 Microchip Technology Inc. DS51963A-page 73

DS51963A-page 74  2011 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Hangzhou
Tel: 86-571-2819-3180
Fax: 86-571-2819-3189

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370

Taiwan - Kaohsiung
Tel: 886-7-213-7830
Fax: 886-7-330-9305

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

Worldwide Sales and Service

05/02/11

http://support.microchip.com
http://www.microchip.com

	Lab Manual Introduction
	Lab 0. Introduction to Microcontrollers
	0.1 Objective
	0.2 Pre-Lab
	0.2.1 Reference Material
	0.2.2 Assembly Language
	0.2.3 Timing
	0.2.4 Delay Loops
	0.2.5 I/O Ports

	0.3 The Lab
	0.3.1 Objective
	0.3.2 Bonus
	0.3.3 Pertinent Information
	Figure 0-1: Lab 0 Basic Program Flow

	0.3.4 Creating a New Project
	0.3.5 Programming the Device
	Figure 0-2: Select programmer

	Lab 1. Timers
	1.1 Objective
	1.2 Pre-Lab
	1.2.1 Reference Material
	1.2.2 Timers
	1.2.3 Subroutine CALL
	Table 1-1: Lab 1 Methods of Modifying Program Flow

	1.2.4 IDE Concepts: Stopwatch
	Figure 1-1: Lab 1 Stopwatch Setup
	Figure 1-2: Lab 1 Stopwatch Use

	1.2.5 The Lab
	Figure 1-3: Lab 1 Basic Program Flow

	Lab 2. Interrupts
	2.1 Interrupts
	2.1.1 Objective

	2.2 Pre-Lab
	2.2.1 Reference Material
	2.2.2 Interrupts
	Figure 2-1: Lab 2 Stack Location
	Figure 2-2: Lab 2 Primary and Alternate Interrupt Vector Table
	Table 2-1: Lab 2 List of Some Defined Interrupts

	2.2.3 IDE Concepts Watch Window
	Figure 2-3: Lab 2 Registers of Interest

	2.3 The Lab
	2.3.1 Objective
	2.3.2 Pertinent Information
	Figure 2-4: Lab 3 Basic Program Flow

	Lab 3. UART
	3.1 Objective
	3.2 Pre-Lab
	3.2.1 Reference Material
	3.2.2 UART (Universal Asynchronous Receiver/Transmitter)
	Figure 3-1: Lab 3 Serial Transmission of Byte
	Figure 3-2: Lab 3 UART 8N1 Serial Bit Stream

	3.2.3 ASCII (American Standard Code for Information Interchange)
	Figure 3-3: 7-Bit ASCII Code Chart

	3.2.4 I/O Ports with Peripheral Pin Select (PPS)
	3.2.5 PPS Input Mapping
	Table 3-1: Lab 3 Input Remappable Peripherals Registers

	3.2.6 PPS Output Mapping
	Table 3-2: Lab 3 PPS Output Configuration

	3.2.7 PPS Register Lock/Unlock Sequence

	3.3 The Lab
	3.3.1 Objective
	3.3.2 Pertinent Information
	Figure 3-4: Lab 3 Basic Program Flow

	Lab 4. Watchdog Timer (WDT)
	4.1 Objective
	4.2 Pre-Lab
	4.2.1 Reference Material
	4.2.2 The Watchdog Timer
	Figure 4-1: Lab 4 Watchdog Circuit

	4.2.3 Watchdog Timer Period
	Table 4-1: Lab 4 Watchdog Periods

	4.2.4 Configuration Bits

	4.3 The Lab
	4.3.1 Objective
	4.3.2 Pertinent Information
	Figure 4-2: Lab 4 Basic Program Flow

	Lab 5. Comparator
	5.1 Objective
	5.2 Pre-Lab
	5.2.1 Reference Material
	5.2.2 Comparator
	Figure 5-1: Lab 5 Comparator Description
	Figure 5-2: Lab 5 Comparator I/O Configuration
	Figure 5-3: Lab 5 Triple Comparator Block Diagram

	5.2.3 Voltage Reference Module
	Figure 5-4: Lab 5 Comparator Voltage Reference Block Diagram
	Table 5-1: Reference Voltage with Vdd = 3.3V

	5.3 The Lab
	5.3.1 Objective
	5.3.2 Bonus
	5.3.3 Pertinent Information
	Figure 5-5: Lab 5 Basic Program Flow

	Lab 6. Analog-to-Digital Converter
	6.1 Objective
	6.2 Pre-Lab
	6.2.1 Reference Material
	6.2.2 A/D Converter
	Figure 6-1: ADC Module Diagram

	6.2.3 Conversion Time
	6.2.4 Sample Time
	Figure 6-2: Analog Input of the PIC24FJ256GB110 A/D Converter

	6.2.5 A/D Converter Transfer Function
	Figure 6-3: ADC Transfer Function

	6.3 The Lab
	6.3.1 Objective
	6.3.2 Setup
	Figure 6-4: Example Terminal Output

	6.3.3 Pertinent Information
	6.3.4 Converting the A/D Converter Value
	Figure 6-5: Lab 6 Program Flow

	Lab 7. Pulse-Width Modulator (PWM)
	7.1 Objective
	7.2 Pre-Lab
	7.2.1 Reference Material
	7.2.2 Pulse-Width Modulation (PWM) Mode
	Figure 7-1: Basic PWM to Control Power Delivery
	Figure 7-2: Using PWM to Create a Sine Wave

	7.2.3 Output Compare Blocks
	Figure 7-3: Output Compare Block Diagram

	7.2.4 PWM Duty Cycle
	7.2.5 Edge-Aligned PWM Mode Operation
	Figure 7-4: Output Compare with Initial OCxRS = 0x0000
	Figure 7-5: Output Compare with Initial OCxRS = 0x1000

	7.3 The Lab
	7.3.1 Objective
	7.3.2 Pertinent Information
	Figure 7-6: Lab 7 Basic Program Flow

	Lab 8. External Memory
	8.1 Objective
	8.2 Pre-Lab
	8.2.1 Reference Material
	8.2.2 Memory Basics
	8.2.3 Memory in Embedded Systems
	8.2.4 PIC24F Memory
	8.2.5 Extending Microcontroller Resources
	8.2.6 MX PIC24F EDU Module Memory
	8.2.7 Serial Peripheral Interface (SPI)
	Figure 8-1: Simplified SPI System
	Figure 8-2: Generic SPI Timing
	Figure 8-3: Standard Mode SPI Module Block Diagram

	8.3 The Lab
	8.3.1 Objective
	8.3.2 Pertinent Information
	Figure 8-4: Basic Program Flow

	Lab 9. Power Management
	9.1 Objective
	9.2 Pre-Lab
	9.2.1 Reference Material
	9.2.2 Power
	9.2.3 Calculating Power
	9.2.4 Reducing Power – Main Clock
	Figure 9-1: PIC24FJ256GB110 Family Clock Diagram

	9.2.5 Reducing Power – Turn Off Unused Peripherals
	Table 9-1: Microchip PIC® MCU Operating Mode Overview

	9.2.6 Reducing Power – Go to Sleep
	9.2.7 Microchip XLP Technology

	9.3 The Lab
	9.3.1 Objective
	9.3.2 Pertinent Information

	Lab 10. Project
	10.1 Objective
	10.2 The Lab
	10.2.1 Objective
	10.2.2 Elevator Control Example

	Appendix A. Creating an MPLAB IDE Project
	A.1 Step One: Device Selection
	Figure A-1: Project Wizard Step One

	A.2 Step Two: Language Toolsuite
	Figure A-2: Project Wizard Step Two

	A.3 Step Three: Create New Project File
	Figure A-3: Project Wizard Step Three

	A.4 Step Four: Add Existing Project Files
	Corporate Office
	Atlanta
	Boston
	Chicago
	Cleveland
	Fax: 216-447-0643
	Dallas
	Detroit
	Indianapolis
	Toronto
	Fax: 852-2401-3431
	Australia - Sydney
	China - Beijing
	China - Shanghai
	India - Bangalore
	Korea - Daegu
	Korea - Seoul
	Singapore
	Taiwan - Taipei
	Fax: 43-7242-2244-393
	Denmark - Copenhagen
	France - Paris
	Germany - Munich
	Italy - Milan
	Spain - Madrid
	UK - Wokingham
	Worldwide Sales and Service

