Glean: Structured Extractions from Templatic Documents

Sandeep Tata Navneet Potti James B. Wendt
Google Google Google
tata@google.com navsan@google.com jwendt@google.com
Lauro Beltrao Costa Marc Najork Beliz Gunel
Google Google Stanford University
laurocosta@google.com najork@google.com bgunel@stanford.edu

ABSTRACT

Extracting structured information from templatic documents is an
important problem with the potential to automate many real-world
business workflows such as payment, procurement, and payroll. The
core challenge is that such documents can be laid out in virtually
infinitely different ways. A good solution to this problem is one
that generalizes well not only to known templates such as invoices
from a known vendor, but also to unseen ones.

We developed a system called Glean to tackle this problem. Given
a target schema for a document type and some labeled documents
of that type, Glean uses machine learning to automatically extract
structured information from other documents of that type. In this
paper, we describe the overall architecture of Glean, and discuss
three key data management challenges : 1) managing the quality
of ground truth data, 2) generating training data for the machine
learning model using labeled documents, and 3) building tools that
help a developer rapidly build and improve a model for a given
document type. Through empirical studies on a real-world dataset,
we show that these data management techniques allow us to train
a model that is over 5 F1 points better than the exact same model
architecture without the techniques we describe. We argue that
for such information-extraction problems, designing abstractions
that carefully manage the training data is at least as important as
choosing a good model architecture.

PVLDB Reference Format:

Sandeep Tata, Navneet Potti, James B. Wendt, Lauro Beltrdo Costa, Marc
Najork, and Beliz Gunel. Glean: Structured Extractions from Templatic
Documents. PVLDB, 14(6): XXX-XXX, 2021.
doi:10.14778/3447689.3447703

1 INTRODUCTION

Many documents commonly used in business workflows are gener-
ated automatically by populating fields in a template. Examples of
such document types include invoices, receipts, bills, purchase or-
ders, tax forms, insurance quotes, pay stubs, and so on. Documents
of a particular type tend to contain the same key pieces of informa-
tion relevant to these workflows, and processing these documents

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 6 ISSN 2150-8097.
doi:10.14778/3447689.3447703

often relies on manual effort to extract such information. For ex-
ample, invoice processing usually requires extraction of fields like
due_date and amount_due from invoices. Documents generated
from the same template, such as invoices from the same vendor,
share the same layout. But there is a virtually-infinite variety of
such templates possible for each document type.

The focus of our work is on templatic, form-like documents.
Such documents tend to be layout-heavy: information is often pre-
sented in tables and boxes, and visual cues like spatial alignment are
crucial to understanding them. This is in contrast to text-heavy doc-
uments such as essays, legal contracts and research papers where
full sentences are used instead.

In this work we target the following challenge: Given a set of
labeled examples belonging to a particular document type (say
“invoices”) and a schema — i.e. a target set of fields to extract -
(say due_date and amount_due), build a system to extract the rele-
vant information from unseen documents of the same type. Several
recent papers [7, 10, 11, 22, 23] identify this problem as posing
different challenges from traditional information extraction set-
tings and describe techniques to build machine-learning models to
automatically extract structured information from such form-like
documents.

The key difficulty in solving such extraction tasks is that the
same information can be laid out and described in many distinct
ways. Figure 1 shows excerpts from four invoices, with a green
bounding box identifying the invoice date. This field is described
variously as ‘Date’, ‘Dated’, and ‘Invoice Date’. In some cases the
key phrase describing this field is immediately above the actual
date, such as in case (a), or to the left of the date in cases (b), (c), and
(d). When you consider a target schema with a dozen fields, this
becomes a particularly challenging extraction problem. Keeping
with the example of invoices, we may get a small set of labeled
examples from vendors A, B, and C representing a few such layouts
on which to train our models. We expect a model to do well on
unseen documents following the same layouts as documents from
A, B, C. The challenge is to do well when we receive documents
from new vendors D, E, and F which are laid out differently.

We designed and built a system called Glean to address this criti-
cal business problem, and we are currently using it to build special-
ized document parsing endpoints for Google Cloud APIs!. Since it
straddles the domains of natural language processing and computer
vision, we developed a novel approach to solve the unique modeling
challenges involved, which we discussed in our prior work [14]. In
this paper, however, we focus instead on the oft-overlooked aspects

!https://cloud.google.com/solutions/document-ai

https://doi.org/10.14778/3447689.3447703
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3447689.3447703

INVOICE

Invoice
Page 1 of 1
DATE INVOICE # Invoice Number: 100153386
118708 Invoice Date: 02/26/2015,
INVOICE

Supplying Loc No.
Document No.
Date

Page
Performance date

022 INVOICE # 215589
sy PO # 483554
DATED:(11/9/18)

4 4

2
1

/ 1
21/10/2018

Figure 1: Excerpts from invoices from different vendors. In-
stances of the invoice_date field are highlighted in green.

of training data management and associated tooling. Our goal is to
highlight the importance of careful design choices at every stage of
the pipeline in contributing to the overall performance, separately
from the machine learning modeling choices. In particular, we make
the following key contributions.

o We present Glean, a system for information extraction, and
describe the design choices we considered (Section 2).

e We summarize the core machine-learning ideas [14] in Sec-
tion 3, but focus on challenges around 1) understanding and
acquiring ground-truth data, 2) managing how training ex-
amples and labels are generated using the labeled data, and
3) tooling to support developers in quickly building models
to solve such extraction tasks (Section 4).

e Through ablation experiments on a real-world dataset, we
demonstrate that careful management of training data is at
least as important as the modeling advances themselves, and
without these techniques, extraction performance on a test
set drops by more than 5 F1 points (Section 5).

2 SYSTEM DESIGN

Given a target document type (say invoices) and an associated tar-
get schema, we want to build an extraction service that takes a
document image as input and returns a structured object conform-
ing to the target schema. Glean allows a developer to build such
a service without requiring any machine-learning expertise. The
components of the Glean extraction system are shown in Figure 2.

2.1 Overview

As a first step, we process the input document image using an
Optical Character Recognition (OCR) engine. OCR engines detect
all the text on the page along with their locations, and can organize
the detected text hierarchically into symbols, words and blocks
along with their bounding boxes.

The second input to the system is a target schema. In the ex-
ample in Figure 2, we use a toy schema for invoices that sim-
ply consists of two fields invoice_date and total_amount of
type date and price respectively. Glean uses an extensible type
system that also contains other basic data types like integer,
numeric, alphanumeric, and currency. It also supports address,
phone_number, url, and other common entity types.

Each type is associated with a candidate generator that identifies
spans of text in the OCR output that potentially correspond to an
instance of the type. We leverage an existing library of entity detec-
tors that are used in Google’s Knowledge Graph and are available
through a Cloud API 2 for all the types described above. Open-
source entity detection libraries can be used for common types like
names, dates, currency amounts, numbers, addresses, URLs, etc. 3
Custom types including dictionaries, regular expressions, and other
entity types from the Knowledge Graph (e.g. university_name)
may be added by implementing a new C++ class. The candidate
generators are designed to be high-recall - they identify every text
span in the document that is likely to be of their type. For example,
for dates, this may mean being robust to various ways of formatting
dates (“15/1/2020%, “15 January, 2020”, “2020-01-15", etc.).

Once extraction candidates have been generated, we use a Scorer
to assign a score for each (field, candidate) pair which estimates the
likelihood that the given candidate is the right extraction value for
that field. Note that multiple fields may belong to the same type
(e.g. invoice_date and due_date) and may therefore share the
same set of candidates. A candidate is typically represented by the
text span identified by the candidate generator along with context
such as text in its immediate neighborhood to provide the scoring
function with additional features. We describe a machine-learned
scorer in Section 3, trained using a set of labeled examples, that can
generalize well to new templates.

The final component is the Assigner. This component takes all the
scored candidates for a field and document, and assigns one of the
candidates as the extraction value. The default assigner simply uses
an ArgMax assignment strategy. However, additional business logic
specific to a document type can be specified in the Assigner includ-
ing constraints like “invoice_date must precede due_date chrono-
logically”. The output of the assigner is an assignment of a text
string to each field specified in the input schema and possibly a
null assignment for fields with either no candidates or only low
scoring candidates. The precision of the system can be adjusted by
imposing a minimum score threshold for each field.

2.2 Design Choices

We discuss several non-obvious choices that informed the design.
Using OCR: Using OCR as the first step gives us two advantages.
First, it allows us to completely avoid having to deal with document
format parsing (there are dozens of common office formats beyond
just PDFs). Second, it enables the same stack to work with images
of documents as well as native digital documents such as PDFs.
Modern OCR engines have excellent accuracy on native digital
documents [21], are robust to scanning noise and are starting to do
well even on hand-written documents.

Why not pose this as a key-value detection problem? An alternative
abstraction to solving such a problem is the “key-value detection”
engine that several vendors® > have popularized. Such models sim-
ply detect a pair of neighboring strings and classify one of them as a
“key” and the other a “value”. This is clearly a useful building block
in dealing with form-like documents. Often, there is substantial

Zhttps://developers.google.com/knowledge-graph
Shttps://cloud.google.com/natural-language/docs/reference/rest/v1/Entity
*https://docs.aws.amazon.com/textract/

> https://azure.microsoft.com/en-us/services/cognitive-services/form-recognizer/

Candidate
Generators

Total Amount

Assigner $ 2,895.81

e ,—> 10/22/18| 0.9 ,—> Invoice Date
) 03 [10/22/18

11/01/18] o2 ‘

—| Price Extraction Result

Document Image

invoice_date: date
total_amount: price |

Target Schema

Inputs

Candidates
(generated based on field type)

Scored Candidates §

Outputs

Figure 2: Glean Extraction System: The system takes a document image and a target schema as inputs, performs OCR, generates
candidates, scores these candidates using a model that was previously trained on that target schema, and assigns the best
candidates to the fields in the schema to produce the extraction result.

variation in the text used to represent the key from one document
to another — a purchase order number may be represented vari-
ously as “P.O”, “PO Number:”, “Purchase Order”, “PO#” and so on.
Using the output of a key-value system requires additional code to
normalize and map these keys into some notion of schema managed
by the application to use the output in a business workflow. Similar
validation needs to be applied to the value string as well, converting
strings like “# 123” to “123” that may be detected as the value for a
“P.O” key. Instead of letting each application manage the complexity
of turning keys and values into structured objects that conform to
a particular schema, managing this in the extraction system makes
it easier to integrate into existing business workflows.

Schemas and Candidate Generators: We support a simple schema
language that can specify flat schemas® associating each named
field with a type. Fields may be marked optional or required. We
associate a high-recall candidate generator with each field type,
leveraging an internal library of text annotators that was devel-
oped for web-search tasks. Several open-source entity detection
libraries” may be used to detect common types like names, dates,
currency amounts, numbers, addresses, URLs, etc. that are shared
across many document types. Some fields, such as “product name”
in a receipt, might not lend themselves to an obvious candidate
generator. For difficult fields, we resort to a fall-back candidate
generator that uses “lines” detected by the OCR engine.

An attentive reader may observe that in contrast, classic sequence-
tagging approaches from NLP do not require the specification of a
target schema, and can be trained to label an input text sequence
using a vocabulary of tags used in the training data. However,
these approaches are known to require large amounts of data to
work well for structured data extraction tasks [24]. For instance,
an LSTM-based model that we trained on a small training corpus
only recognized dates from 2019 as invoice dates since the training
examples did not contain any documents from other years. Lever-
aging domain-agnostic candidate generators allows us to better
generalize to unseen templates (e.g., by handling date formats not
present in the training data) while avoiding overfitting.

SFor simplicity, we do not discuss repeated and nested fields in this paper.
"NLTK: https://www.nltk.org/

2.3 Developer Workflow

The system is designed to be used by a developer who is not an
expert in machine-learning to implement an extraction system for
a particular document type (such as invoices, receipts, or bills). The
developer focuses on defining a target schema, identifying high-
recall candidate generators from an existing library of candidate
generators, and where required, improving the coverage of candi-
date generators (see Section 4.4 for more details). The training and
evaluation procedure itself requires no customization.

3 SCORER

We decompose the extraction task into four stages: OCR, candidate
generation, scoring, and assignment, as shown in Figure 2. Our
scorer model uses machine learning, where it takes as input the
target field from the schema and the extraction candidate to produce
a prediction score, and the model is both trained and evaluated
as a binary classifier. Note that alternative formulations, such as
posing this as a ranking problem [12], are also reasonable. While
specific modeling choices for the scorer are not the focus of this
paper, we briefly explain its architecture and how it connects to the
design decisions we make. For further details of the scorer model
architecture, please refer to Majumder et al. [14].

The features of each extraction candidate used in the scorer
model are its neighboring words and their relative positions, as
visualized in Figure 3. It is worth noting that we exclude the can-
didate’s value from the set of features in order to avoid biasing
the model towards the distribution of values seen during training,
which may not be representative of the entire domain at test time.

Our scorer model learns a dense representation for each ex-
traction candidate using a simple self-attention based architecture.
Separately, it learns dense representations for each field in the tar-
get schema that capture the semantics of the fields. Based on these
learned candidate and field representations, each extraction can-
didate is scored based on the similarity to its corresponding field
embedding. The model is trained as a binary classifier using cross-
entropy loss, where the target labels are obtained by comparing the
candidate to the ground truth, as described in Section 4.2 below.

. | "
Similarity [o b J
! I
\Invciceﬂlumber\
[1307581]
\ Invoice\bale \
10/22/18)— i T T
Purchase OrderNumber| ~— Candidate Field

Figure 3: A candidate’s score is based on the similarity be-
tween its embedding and a field embedding. A date extrac-
tion candidate “10/22/18” is shown in blue, along with its
neighboring tokens, shown in orange.

Having separate stages of candidate generation and machine-
learned scoring has several advantages. First, leveraging high-recall
candidate generators significantly reduces the search space for the
machine-learned scorer. This way, the scorer focuses on learning to
understand spatial relationships and the semantics of the fields in
the target schema, rather than learning to extract generic notions
like numbers, dates, and addresses, or the various formats in which
these may be presented in a document. Second, separately encoding
the candidate and the field allows learning a field-agnostic repre-
sentation of the neighborhood of a candidate. As an example, the
different ways an invoice_date may be laid out, as in Figure 1,
are not substantially different from those of amount_due. In other
words, it is not the spatial relationships that are field-specific, it is
the set of key phrases associated with it, such as “Invoice Date” and
“Date of Invoicing” for invoice_date.

4 MANAGING DATA

This section describes design choices aimed at acquiring ground
truth for a document corpus, generating training examples and
labels, as well as tooling for computing and improving candidate
generation.

4.1 Ground Truth

Humans provide a bounding box identifying the area containing
each field of a document. We use the text detected by the OCR
system within this bounding box as the text value for that field.
Note that the OCR process provides the recognized symbols and a
hierarchy of individual characters, words, paragraphs, and blocks.
Each element in the hierarchy is associated with bounding boxes
represented on the two-dimensional Cartesian plane of the doc-
ument page. The ground truth for a given document for a field
consists of both the bounding box and the detected text within
it. Labelers are typically instructed to identify all instances of a
field, and not just the first instance. As we describe later, this makes
it easier to generate consistent training data using the different
equality functions (Section 4.2) that we support.

Relying on the bounding boxes and getting the corresponding
OCR text for ground truth has several advantages. It allows us to
handle documents in different formats, making the labeling process
simpler than having annotators providing the exact text for each

field. It reduces the likelihood of typos and data-entry errors from
humans that might lead to noisy training data, and is generally
a quicker task than typing out precise values. However, it also
injects two categories of errors from the OCR engine that affect the
extraction performance: character-level accuracy, and the reading
order of the words captured in the hierarchy representation.

The first category is well known: OCR may mis-recognize a
character or set of characters (e.g., ‘4’ vs ‘A’, or ‘google’ vs ‘g00gle’).
This is particularly common when there’s very little context that
might allow a language model to disambiguate a lone ‘O’ from a ‘0’.
The second category of error is highly dependent on the document
layout: text-heavy single column pages are less error-prone (e.g., an
English text can be formed by simply sweeping the text from left to
right and from top to bottom). A document with multiple columns,
form fields and tables is challenging. Form-like documents often
have non-trivial formatting, so errors in the reading order may
make it harder for downstream models to extract longer/multi-line
fields like addresses.

Our preliminary experiments showed the choice of OCR engines
and its parameters have a significant impact on the overall per-
formance. We have observed a 6.5 point difference in the F1 score
depending on the choice of two internals systems available. How-
ever, improving or configuring OCR engines is out of the scope of
this paper. The design choices in Glean are generally applicable
irrespective of the choice of OCR engine.

4.2 Equality Functions

In order to generate training data consisting of positive and negative
examples, we must compare the candidates for a field with the
ground truth annotations for that field. When a candidate matches
the ground truth, we label it as a positive example, and negative
otherwise. The method by which we match candidates and ground
truth can have a significant impact on the quality of the training
data. We discuss two distinct strategies:

match-by-position compares the bounding boxes of candi-
dates to the bounding boxes drawn by human labelers of the
ground truth—in our case we consider two bounding boxes
to match if their intersection-over-union is greater than a
fixed threshold (say 0.5).

match-by-value performs a field type-specific semantic equal-
ity comparison between the actual value of the candidate
with the value detected by OCR within the ground truth
bounding box drawn by the human labeler.

Each of the above matching strategies come with benefits and
drawbacks. For example, consider the match-by-position strategy.
There are sometimes multiple mentions of a field in a document
sharing the same value, like the amount_due being present both at
the top and bottom of an invoice. If the human labeler did not label
all such instances, this strategy would produce false negative labels.
This technique may also generate false positives if, due to human
error or possibly OCR misalignment, the ground truth bounding
box only covers a part of the ground truth text or be unnecessarily
long and cover extraneous text. These cases are largely mitigated
by setting the minimum intersection-over-union threshold for a
match to be less than 1.0.

The match-by-value strategy is type-specific. For example, con-
sider a numeric field. While matching by value, “2.00” and “2” are
equal. If the ground truth bounding box covered “2.00”, but candi-
date generation only picked up “2” as a candidate, this would match
by value, but not by position. Matching by value will usually be
able to label all mentions of a particular value, even if the labelers
missed a few instances. Therefore, this strategy has a low rate of
false negatives. However, it can lead to false positives when the
same value occurs multiple times in a document, but has differ-
ent semantics. For example, the same date may occur both as a
delivery_date as well as a due_date in an invoice. This equality
function would mark both dates as positive for both fields, mak-
ing it harder for the model to learn to distinguish between these
fields. While match-by-value can produce noisy training data in
such scenarios, it is the right equality function to use for evaluation,
since the application typically cares about extracting a value, not
the position or the bounding box where it occurs.

In the process of exploring different strategies, we realized that
while neither one is perfect, a practical recipe is to 1) instruct the
human labelers to mark all instances of a field, 2) use match-by-
position to generate training data, and 3) use match-by-value to
evaluate extractions. This produced the highest quality training data
and led to the best extraction performance on an unseen dataset.
As we demonstrate with experiments on a real-world dataset in
Section 5, changing this recipe to use match-by-value for training
data leads to a significant loss in extraction performance.

4.3 Label Vocabulary

Given a candidate for a particular field in a document, an equality
function yields a boolean value describing if the candidate matched
the ground truth. In order to manage how this information turns
into labels for training examples, we consider the candidates for
a given field and document, and compute a label with one of five
distinct values:

o CORRECT: The ground truth was non-empty and the equal-
ity function returned true.

o INCORRECT: The equality function returned false and there
was at least one candidate for that field and document for
which it returned true.

e ABSENT_IN_GROUND_TRUTH: The ground truth was empty,
and this is an optional field.

e FAULTY_GROUND_TRUTH: The value in the ground truth
violates an integrity constraint. For instance, a field is marked
required, but the ground truth for the field is empty. Or
the value in the ground truth does not conform to the type
constraint for the field.

e UNABLE_TO_MATCH: The ground truth value is present
and not faulty. However, there was no candidate for which
the equality function returned true.

This fine-grained approach to labeling the candidates allows us
more control over how to generate and use the data for training a
model. It should come as no surprise to any reader that real-world
labeling tasks are seldom perfect. There are several papers [5] de-
scribing the challenges in getting high-quality labeled data for
non-trivial tasks, especially if they require some familiarity with

a narrow domain. Further, OCR errors may prevent certain docu-
ments from contributing clean labeled data. The fine-grained labels
allow us to put sanity checks in place to discard data that seems
problematic from the training data or, even more importantly, the
validation or test data.

Recall that we model the scorer as a binary classifier by con-
structing examples using field and candidate pairs (Section 3). We
map candidates labeled CORRECT as positives, those labeled IN-
CORRECT or ABSENT_IN_GROUND_TRUTH as negatives, and
discard the rest from the training data. The choice to discard candi-
dates labeled FAULTY_GROUND_TRUTH is not surprising. Since
the ground truth violates some integrity constraint, we’re better off
discarding it from our training and validation data sets, and when
possible, sending that particular document back for re-labeling. A
candidate may be labeled UNABLE_TO_MATCH, either because
a matching function was defined too strictly (e.g. using an exact
string match to compare “Dr. Alice Jones” and “Alice Jones”) or
the candidate generator used for that field happened to miss the
actual ground truth labeled in the document (insufficient recall). In
Section 5 we show using experiments on a real-world corpus that
discarding such candidates results in a model with better perfor-
mance on the test set.

4.4 Tooling for Candidate Coverage

High-recall candidate generators are critical to the success of the
modeling approach in Glean. There are two metrics that give us a
sense of how good the candidate generator for each field is:

(1) coverage: Among the documents that had ground truth for
a given field, for what fraction were we able to generate at
least one positive candidate?

(2) fraction_correct_candidates: Among all the candidates
generated for a given field, what fraction were labeled COR-
RECT?

These metrics depend on the matching strategy, so we compute
them for each of the matching strategies supported. The first metric,
coverage is by far the more important — on a given corpus, it is
a ceiling for the recall of our extraction system for this field. If
we are unable to identify the ground truth as a candidate using
one of our candidate generators configured for our field, we can-
not extract the correct value. The second metric is less important,
but helps us make a choice between two options with the same
coverage. Intuitively, a candidate generator with a higher value
of fraction_correct_candidates presents an easier problem to the
scorer, asking it to identify the correct candidate out of a smaller
pool. In the candidate-generation stage, the system automatically
computes and outputs these two metrics for each of the matching
strategies.

Consider a candidate generator for phone numbers. Many have
previously described the complexity of relying on regular expres-
sions to produce precise extractions [15, 26]. On the other hand, a
high-recall regular expression can be developed relatively easily
if we are willing to tolerate extraneous matches (social security
numbers, zip-codes, etc.).

Field Name Type Cov. | Pres. F1
amount_due price 100% 42% | 83.2%
delivery_date | date 98% 5% | 78.0%
due_date date 99% 35% | 95.2%
invoice_date date 99% 95% | 96.3%

invoice_number | alphanum | 99% 95% | 96.9%
order_number alphanum | 88% 74% | 79.3%
supplier_id alphanum | 87% 38% | 79.4%
total_amount price 99% 80% | 90.8%
tax_amount price 98% 53% | 85.5%
Table 1: Target schema along with candidate coverage, frac-
tion of docs where each field is present in the ground truth
using the match-by-position strategy, and the per-field F1
scores on the test set using the Baseline model.

5 EXPERIMENTS

The experiments in this section are designed to evaluate the impact
of the design choices previously outlined in Section 4. Through
these experiments, we hope to convince the reader that careful
management of training data is at least as important as the underly-
ing machine-learning model. We also show that Glean models are
relatively quick to train and can be served with interactive latencies.

5.1 Impact of Training Data Management

We use a dataset of ~14K documents from the payments domain. For
the experiments in this paper, we used a target schema consisting of
9 fields shown in Table 1, belonging to price, date and alphanum
field types. The third column reports the coverage number (fraction
of documents with at least one positive candidate) described in
Section 4.4. The fourth column reports the fraction of documents
with a non-empty value for that field in the ground truth. The
fifth column reports per-field end-to-end F1 scores obtained by the
“Baseline” model on the test set before any ablations (described
below).

In all the experiments below, we split the documents into 80%-
20% training and validation splits. In each case, we train 10 models
with different random initializations on the training split. We choose
the model with the best validation AUC-ROC (area under the ROC
curve), and evaluate it on a test set using match-by-value semantics.
We use a separate test set consisting of 950 invoices where the
vendors issuing these invoices were completely disjoint from those
issuing the invoices in the train and validation sets. Thus, the per-
formance reported on the test set is truly representative of how well
the model does on unseen templates. We report the macro-average
Fl1-score® across the 9 fields on the test set. We also report the
statistical significance by computing the macro-average F1-score
for each of the 10 models trained, and calculating the p-value using
a t-test comparing the baseline with each row in the table. As is
evident from the table, each result is statistically significant with
all p-values well below 0.05.

8The F1 score is the harmonic mean of precision and recall. We compute an F1 score
for each field, and report the arithmetic mean across the per-field F1 scores. This metric
treats all fields as equally important.

Training Method E2E F1 | Delta | p-value
Baseline 87.2% - -
Train using match-by-value 84.8% | -2.4% 0.007
Retain UNABLE_TO_MATCH 84.9% | -2.3% 0.003
Retain overlapping candidates 81.9% | -5.3% 0.022
Disallow spaces in alphanum 80.2% | -7.0% 0.003
Use a simpler model architecture ‘ 85.8% | -1.4% ‘ 0.002 ‘

Table 2: End-to-end extraction performance on a test set (F1
score, larger is better) when training the same model archi-
tecture with training data generated in different ways. The
last row uses a simpler model architecture for comparison.

We hold the model architecture and hyper-parameters constant
across all the experiments, and only vary how the data was gener-
ated. In the first case, described as “Baseline” in Table 2, we make
the following choices:

(1) We generate labels using match-by-position semantics (as
opposed to match-by-value).

(2) We discard training examples which were labeled as UN-
ABLE_TO_MATCH.

(3) While generating training examples for a given field of the
schema, if a candidate overlaps a previously-generated can-
didate, we discard it and only retain the first candidate. This
avoids candidates with nearly identical neighborhoods pre-
senting with different labels.

Evaluation on the test set is always done using match-by-value
semantics, as this is what the user of the extraction system cares
about. The other rows in the table serve as an ablation study, where
we reverse each of the choices described for the baseline above, and
report the end-to-end F1 score on the test set.

The second row in the table reports the result of using match-
by-value semantics for training. As explained in Section 4, multiple
fields of the same type may incidentally share the same value in
a document, e.g., the delivery_date and due_date in an invoice.
The match-by-value equality function would treat both the corre-
sponding candidates as positives for both fields, adding noise to
the training data. Hence, the end-to-end F1 score for this approach
is 2.4 points worse than the baseline.

When we are unable to find any positive candidate for a field
in a document that has ground truth for that field, we label all
the candidates as UNABLE_TO_MATCH. We usually discard these
from the training set (not the validation and test sets) to avoid false
negative labels that are artifacts of overly-strict equality functions
or poor candidate generators. Instead, when we choose to retain
these as negative training examples (third row in the table), we see
a 2.3 F1 points drop compared to the baseline. We also find that
retaining overlapping candidates, because they may have different
labels while sharing the same neighborhood, results in a drop of
5.3 F1 points from the baseline.

To demonstrate the value of tooling that evaluates candidate
coverage, we changed the candidate generator associated with
the three alphanum fields — invoice_number, order_number, and
supplier_id. The alphanum candidate generator uses a simple
regular expression to match a string consisting of at least one digit
and any letters or chosen punctuation symbols (“1234”, “A1234”,

Field Name Type [Cov. [F1
Insurance Statements
coverage_start date 93% | 91.3%
coverage_end date 99% | 97.0%
premium_amount price 91% | 90.2%
policy_id alphanum | 100% | 91.0%
cancel_date date 99% | 98.4%
insurer_name company 95% | 89.0%
insurance_type enum 100% | 96.3%
property_address address 60% | 52.0%
Paystubs
period_start_date | date 97% | 88.8%
period_end_date date 94% | 87.5%
pay_date date 97% | 84.7%
gross_earnings price 100% | 93.0%
gross_earnings_ytd | price 100% | 82.0%

Table 3: Schema for insurance statements and paystubs
along with candidate coverage and per-field F1 scores using
the Baseline model.

“A12-34”, “A1/234”, etc.). In the baseline, it also allows consecutive
space-separated strings that match this regular expression. For this
experiment, we disallowed spaces in this candidate generator to
illustrate the impact that such seemingly-minor implementation
choices can have on performance. As shown in the table, disal-
lowing spaces resulted in a drop of 7 F1 points from the baseline.
Much of this drop can be attributed to supplier_id field whose
coverage dropped by 30 points and F1 by 20 points. Manual exami-
nation confirmed that these loss cases were documents where the
supplier_id is formatted with spaces. It is worth noting that many
previous papers [16, 22] have made the design choice of using a
high-recall candidate generator to simplify the design of an infor-
mation extraction system. However, not much work has gone into
tooling to make it easy to rapidly measure and improve the recall
of a candidate generator for a particular field type in the context
of a document corpus. Making a bad choice here can completely
hide any improvements from more sophisticated machine learning
modeling for Scorer, as we show below.

Finally, to put into perspective the relative impact of careful
management of training data versus using a more sophisticated
modeling strategy, we trained a simpler model using the same
training data as the baseline. In this simplified model architecture,
rather than using a self-attention layer that was critical to the
gains described in the modeling work [14], we simply combined
the neighbor embeddings and the candidate position embedding
using a max-pooling layer. We chose this as a comparison because
this is a reasonable model that one might propose for a problem
like this beyond simply using a bag-of-words. The F1 score from
this model was 1.4 points worse than the baseline, as reported in
the last row of Table 2. Observe that this degradation is smaller
than the degradation in all the ablations above where we make the
wrong choice with respect to generating the training data.

5.2 Other Document Types

Table 3 shows the target schema, the candidate coverage, and end-to-
end extraction F1 score from the baseline model for two additional

document types: home insurance statements and paystubs. We
hope these high-level results illustrate how well Glean performs
for diverse document types and field types.

The target schema for home insurance documents has 8 fields.
The training dataset consisted of 700 documents and the test set
consisted of 100 documents gathered by our partners. As is evident
from the F1 scores, the model does very well on fields that have
high candidate coverage. The property_address field has fairly
low candidate coverage - our candidate generator is able to find cor-
rect address candidates on the document in only about 60% of the
cases. As a result, the final F1 score for this field is just 52%. Manual
inspection revealed that in many documents, the address was split
into separate fields like: “Street Address”, “City”, “State”, and “Zip
code”. The candidate generator we used for the property_address
field was not developed to detect address strings that were split
into distinct sub-fields. The only other field with end-to-end perfor-
mance below 90% is the insurer_name field, despite a 95% coverage
from the candidate generator. Examining the error cases, we found
that there is often no key phrase like “Insurance Company” near
the true insurer_name value. When there’s only one company
mentioned on the document, only one candidate is generated and
the extraction is correct. But in the error cases we observed, mul-
tiple company names appeared on the document without such
disambiguating key phrases in the neighborhood, so the model
occasionally picked the wrong candidate.

The paystub document type has 5 target fields. The training set
was even smaller, consisting of just 130 documents with a test set
of 30 documents. While only one of the fields gets above an F1
score of 0.9, with additional training data, we expect to improve
the extraction performance of all fields to above 0.9.

It is worth noting that field types like date and price which
were already supported for the payment domain, we were able to
use exactly the same candidate generators for these new document
types as well. This highlights the value of our design choice of sepa-
rating candidate generation from scoring: when adding support for
a new document type, there is no need to develop a new generator
to detect dates, say, in all their various formats.

5.3 Training and Serving

While the design choices in our system were not aimed at minimiz-
ing training or serving time, factoring the problem into candidate
generation, scoring, and assignment makes it possible to train and
serve a fairly inexpensive model. On the corpus of ~14K docu-
ments, after candidate generation, the schema in Table 1 resulted
in ~1.3M examples. On a single GPU, we were able to train a model
in approximately 45 minutes converging after 25 epochs.

For comparison, we also trained a BERTGrid [7] model which
extracts directly from the document without generating candidates.
On a GPU, training converged after 20 epochs in approximately
1090 minutes and resulted in similar to worse F1 scores across
all fields. Decomposing the problem into candidate generation,
scoring, and assigning allows us to use a substantially simpler
model architecture compared to some of the alternatives presented
in prior work. Our goal here is not a careful comparison of training
cost — instead we make the case that our approach is at least an
order of magnitude cheaper to train than alternatives that use a

OCR | Candidate | Scoring | Total
Generation

Mean 1,102 23 78 | 1,203

Median | 1,512 21 77 | 1,610

95%-ile | 4,100 56 133 | 4,289

Table 4: Serving time in milliseconds for the main stages of
the Glean extraction system.

more sophisticated model architecture. This isn’t necessarily an
intrinsic advantage — in some settings, training 10X longer to get a
1% accuracy improvement is a perfectly reasonable trade-off since
the model may only be trained and updated once every few months.
The faster training time allows us to iterate faster, experiment with
more modeling ideas and quickly produce a higher quality model
for a given task.

We measured the extraction time for the validation data set using
the Glean extraction system that is currently available through
Google Cloud APIs. Although extraction time did not guide the
design choices for scoring and candidate generation, our goal is to
understand if they add a significant time to the overall extraction.
Table 4 shows how long the system spent in three main stages
of extraction. The OCR stage dominates the overall time, and the
scoring and candidate generation stages contribute to roughly just
5% to 10% of the extraction time. The assignment stage (Figure 2)
takes a negligible amount of time and is omitted from the table.

6 RELATED WORK

The Glean extraction system draws on decades of research on in-
formation extraction from text, from the web, and from templatic
documents, as well as research on data management literature for
information extraction tasks.

Information Extraction from Webpages Leveraging the tem-
plate information to understand the visual layout within documents
has been a well-known technique in the context of information
extraction from webpages [2-4, 25, 27]. Although these proposed
methods are relevant to extraction from templatic documents, they
are not immediately applicable to our setting, as we simply do not
have access to the source markup representation for the document
images we would like to extract from. Similarly, Elmeleegy et al.
[9] propose an unsupervised domain-agnostic technique to extract
tables from HTML lists using language models and a corpus of
tables. However, they do not utilize any spatial information, and
assume that there is no single right answer for the table extraction
problem that leads to subjective quality. Toda et al. [20] propose
a probabilistic method that automatically selects segments from
the input data-rich text and associates them with the appropriate
fields in the form through content and style related features using
a Bayesian Network. However, they do not use any spatial informa-
tion, and rely on a greedy heuristic to find an approximate solution.

Data Management Data Civilizer [6] proposes an end-to-end big
data management system that supports users by finding relevant
data for their specific tasks; and Data Debugger [18] proposes an

end-to-end data framework that enables users to identify and miti-
gate data-related problems in their pipelines. Our paper similarly
identifies the importance of managing training data, but focuses on
the data management techniques that are critical in the context of
an information extraction system. The experience reported by Dag-
ger [18] parallels what we reported on the impact of data quality
on building machine-learned information extraction systems. Wu
et al. [22] propose a new data model to extract information from
richly formatted data for knowledge base construction— account-
ing for document-level relations, multi-modality, and data variety
challenges which are inherent to richly formatted data. Sarkhel and
Nandi [19] propose a general information extraction framework
for visually rich documents where they segment a document into a
bag of logical blocks and use the context boundaries of these blocks
to identify the named entities within the document.

Machine Learning Katti et al. [11] propose inputting documents
as 2D grids of text tokens to fully convolutional encoder-decoder
networks. Denk and Reisswig [7] incorporate pretrained BERT text
embeddings into that 2D grid representation. Xu et al. [23] propose
integrating 2D position embeddings and image embeddings, pro-
duced with a Faster R-CNN [17] model, into the backbone structure
of a BERT language model [8] and using a masked visual-language
loss during pre-training. Similarly, Garncarek et al. [10] propose
integrating the 2D layout information into the backbone struc-
ture of both BERT and RoBERTa [13], where they construct layout
embeddings using a graph neural network using a heuristically con-
structed document graph. In contrast with the pre-training based
approaches, our extraction system (1) requires several orders of
magnitude less labeled training data (2) an order of magnitude less
training and inference time, while (3) retaining the ability to tackle
the harder problem of generalizing to unseen templates. In addi-
tion, Bai et al. [1] propose a neural collaborative filtering model
for user-item interactions that integrate neighborhood information
through an interaction network. Although their machine learning
architecture is similar to ours, we construct field-candidate pairs
using high-recall candidate generators instead of heuristic methods
based on a provided interaction network. Finally, several ideas in
our paper are complementary to the Snorkel framework by Rat-
ner et al. [16], where they programmatically label training data
using user-defined labeling functions. Similar to writing code for
the labeling functions, writing code for high-recall candidate gener-
ators in the Glean extraction system is a weak form of supervision.
Therefore, adopting a Snorkel-like data programming framework
for building Glean models could be interesting future work.

7 SUMMARY

In this paper, we presented the problem of extracting structured
data from form-like documents and a system called Glean to solve it.
Glean factors the information extraction problem into 4 components
— an off-the-shelf OCR engine, high-recall candidate generators, a
machine-learned scorer, and an assigner. We argued that managing
training data is a key challenge in building a good solution to this
problem and described various design choices around tackling this.
Through experiments on a large real-world dataset, we showed that
these choices are at least as important as a good modeling strategy.

REFERENCES

[1] Ting Bai, Ji-Rong Wen, Jun Zhang, and Wayne Xin Zhao. 2017. A Neural Col-

[9

[10

[11

[12
[13

[14

=

]

]

]
]

laborative Filtering Model with Interaction-based Neighborhood. Proceedings of
the 2017 ACM on Conference on Information and Knowledge Management (2017),
1979-1982.

Deng Cai, Shipeng Yu, Ji-Rong Wen, and Wei-Ying Ma. 2003. Extracting Content
Structure for Web Pages Based on Visual Representation. In Proceedings of the
5th Asia-Pacific Web Conference. 406-417.

Deng Cai, Shipeng Yu, Ji-Rong Wen, and Wei-Ying Ma. 2004. Block-based Web
Search. In Proceedings of the 27th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval. 456-463.

Gobinda G. Chowdhury. 1999. Template Mining for Information Extraction from
Digital Documents. Library Trends 48, 1 (1999), 182-208.

Florian Daniel, Pavel Kucherbaev, Cinzia Cappiello, Boualem Benatallah, and
Mohammad Allahbakhsh. 2018. Quality Control in Crowdsourcing: A Survey
of Quality Attributes, Assessment Techniques, and Assurance Actions. ACM
Comput. Surv. 51, 1, Article 7 (Jan. 2018), 40 pages.

Dong Deng, Raul Castro Fernandez, Ziawasch Abedjan, Sibo Wang, Michael
Stonebraker, Ahmed K. Elmagarmid, Thab F. Ilyas, Samuel Madden, Mourad
Ouzzani, and Nan Tang. 2017. The Data Civilizer System. In Proceedings of the
8th Biennial Conference on Innovative Data Systems Research.

Timo I. Denk and Christian Reisswig. 2019. BERTgrid: Contextualized Embedding
for 2D Document Representation and Understanding. arXiv:1909.04948 [cs.CL]
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies. 4171-4186.
Hazem Elmeleegy, Jayant Madhavan, and Alon Halevy. 2009. Harvesting Rela-
tional Tables from Lists on the Web. Proceedings of the VLDB Endowment 2 (2009),
1078-1089.

Lukasz Garncarek, Rafal Powalski, Tomasz Stanistawek, Bartosz Topolski, Piotr
Halama, and Filip Gralinski. 2020. LAMBERT: Layout-Aware language Modeling
using BERT for information extraction. arXiv:2002.08087 [cs.CL]

Anoop R. Katti, Christian Reisswig, Cordula Guder, Sebastian Brarda, Steffen
Bickel, Johannes Héhne, and Jean Baptiste Faddoul. 2018. Chargrid: Towards
Understanding 2D Documents. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing. 4459-4469.

Tie-Yan Liu. 2011. Learning to Rank for Information Retrieval. Springer-Verlag.
Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Dangi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A
Robustly Optimized BERT Pretraining Approach. arXiv:1907.11692 [cs.CL]
Bodhisattwa Prasad Majumder, Navneet Potti, Sandeep Tata, James B. Wendt,
Qi Zhao, and Marc Najork. 2020. Representation Learning for Information

[19

[20

[21

[22

[23

[24

[25

[26

[27

Extraction from Form-like Documents. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics. 6495-6504.

Rachel Millner. 2008. Four regular expressions to check email addresses. https://
www.wired.com/2008/08/four-regular-expressions-to-check-email-addresses/
Alexander Ratner, Stephen H. Bach, Henry R. Ehrenberg, Jason Alan Fries, Sen
Whu, and Christopher Ré. 2017. Snorkel: Rapid Training Data Creation with Weak
Supervision. Proceedings of the VLDB Endowment 11, 3 (Nov. 2017), 269-282.
Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. 2015. Faster R-CNN:
Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence 39, 6 (2015), 1137-1149.
El Kindi Rezig, Lei Cao, Giovanni Simonini, Maxime Schoemans, Samuel Madden,
Nan Tang, Mourad Ouzzani, and Michael Stonebraker. 2020. Dagger: A Data (not
code) Debugger. In Proceedings of the 10th Conference on Innovative Data Systems
Research.

Ritesh Sarkhel and Arnab Nandi. 2019. Visual Segmentation for Information
Extraction from Heterogeneous Visually Rich Documents. In Proceedings of the
2019 International Conference on Management of Data. 247-262.

Guilherme A. Toda, Eli Cortez, Altigran S. da Silva, and Edleno de Moura. 2010.
A Probabilistic Approach for Automatically Filling Form-Based Web Interfaces.
Proceedings of the VLDB Endowment 4, 3 (Dec. 2010), 151-160.

Jake Walker, Yasuhisa Fujii, and Ashok Popat. 2018. A Web-Based OCR Service for
Documents. In 13th IAPR International Workshop on Document Analysis Systems —
Short Papers Booklet. 21-22.

Sen Wu, Luke Hsiao, Xiao Cheng, Braden Hancock, Theodoros Rekatsinas, Philip
Levis, and Christopher Ré. 2018. Fonduer: Knowledge Base Construction from
Richly Formatted Data. In Proceedings of the 2018 International Conference on
Management of Data. 1301-1316.

Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, and Ming Zhou. 2019.
LayoutLM: Pre-training of Text and Layout for Document Image Understanding.
arXiv:1912.13318 [cs.CL]

Zhilin Yang, Ruslan Salakhutdinov, and William W. Cohen. 2017. Trans-
fer Learning for Sequence Tagging with Hierarchical Recurrent Networks.
arXiv:1703.06345 [cs.CL]

Shipeng Yu, Deng Cai, Ji-Rong Wen, and Wei-Ying Ma. 2003. Improving Pseudo-
Relevance Feedback in Web Information Retrieval Using Web Page Segmentation.
In Proceedings of the 12th International World Wide Web Conference. 11-18.
Shanshan Zhang, Lihong He, Eduard Dragut, and Slobodan Vucetic. 2019. How to
Invest My Time: Lessons from Human-in-the-Loop Entity Extraction. In Proceed-
ings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining. 2305-2313.

Jun Zhu, Zaiqing Nie, Ji-Rong Wen, Bo Zhang, and Wei-Ying Ma. 2006. Simul-
taneous Record Detection and Attribute Labeling in Web Data Extraction. In
Proceedings of the 12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 494-503.

https://arxiv.org/abs/1909.04948
https://arxiv.org/abs/2002.08087
https://arxiv.org/abs/1907.11692
https://www.wired.com/2008/08/four-regular-expressions-to-check-email-addresses/
https://www.wired.com/2008/08/four-regular-expressions-to-check-email-addresses/
https://arxiv.org/abs/1912.13318
https://arxiv.org/abs/1703.06345

	Abstract
	1 Introduction
	2 System Design
	2.1 Overview
	2.2 Design Choices
	2.3 Developer Workflow

	3 Scorer
	4 Managing Data
	4.1 Ground Truth
	4.2 Equality Functions
	4.3 Label Vocabulary
	4.4 Tooling for Candidate Coverage

	5 Experiments
	5.1 Impact of Training Data Management
	5.2 Other Document Types
	5.3 Training and Serving

	6 Related Work
	7 Summary
	References

