OMRON

i4L

Robots

User's Manual

i4-350L i4-450L i4-550L

- NOTE -

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permission of OMRON.

No patent liability is assumed with respect to the use of the information contained herein. Moreover, because OMRON is constantly striving to improve its high-quality products, the information contained in this manual is subject to change without notice. Every precaution has been taken in the preparation of this manual. Nevertheless, OMRON assumes no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained in this publication.

Trademarks -

Company names and product names in this document are the trademarks or registered trademarks of their respective companies.

Copyrights

Microsoft product screen shots reprinted with permission from Microsoft Corporation.

Introduction

Thank you for purchasing the i4L robot.

This manual is OMRON's original instructions describing the setup, operations, and user maintenance of the i4L robot (herein also referred to as robot).

Please read this manual and make sure you understand the functionality and performance of the robot before attempting to use it.

Keep this manual in a safe place where it will be available for reference during operation.

Intended Audience

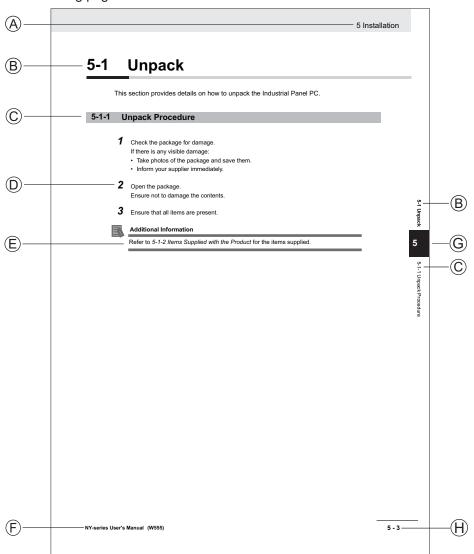
This manual is intended for the following personnel, who must also have knowledge of factory automation (FA) systems and robotic control methods.

- Personnel in charge of introducing FA systems.
- · Personnel in charge of designing FA systems.
- Personnel in charge of installing and maintaining FA systems.
- Personnel in charge of managing FA systems and facilities.

Applicable Products

This manual provides information for the following robot models.

When information varies between different robot models, details are provided. When information is common to all robot models, an illustration of a single robot model is typically shown.


Product	Models
i4L Robot	i4-350L
	i4-450L
	i4-550L
	i4-550L (350 mm Z)

Additional Information

Refer to 1-4 Robot Configurations on page 1-12 for more information.

Manual Information

Page Structure

The following page structure is used in this manual.

Note: This illustration is provided as a sample. It will not literally appear in this manual.

Item	Explanation	ltem	Explanation
А	Level 1 heading	Е	Special Information
В	Level 2 heading	F	Manual name
С	Level 3 heading	G	Page tab with the number of the main section
D	Step in a procedure	Н	Page number

Special Information

Special information in this manual is classified as follows:

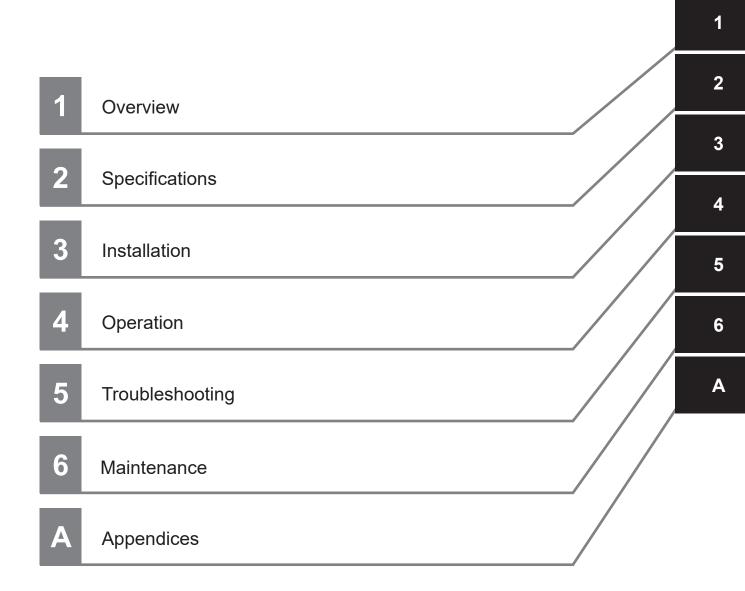
Precautions for Safe Use

Precautions on what to do and what not to do to ensure safe usage of the product.

Precautions for Correct Use

Precautions on what to do and what not to do to ensure proper operation and performance.

Additional Information


Additional information to read as required. This information is provided to increase understanding or make operation easier.

Version Information

Information on differences in specifications and functionality between different versions.

Sections in this Manual

CONTENTS

Introduction	
Intended Audience	
Applicable Products	
Manual Information	
Page Structure	
Special Information	3
Sections in this Manual	5
Terms and Conditions Agreement	
Warranty and Limitations of Liability	
Application Considerations	
Disclaimers	
Safety Precautions	
Definition of Precautionary Information	
Symbols	
Dangers	
Warnings	15
Cautions	17
Precautions for Safe Use	
Precautions for Correct Use	
Regulations and Standards	22
Conformance to EU Directives	
Conformance to KC Certification	
Software Licenses and Copyrights	
Related Manuals	
Related Product Manuals	
Glossary	
Revision History	

Section 1 Overview

1-1	Inter	nded Use	1-2
1-2	Robe	ot Features	
	1-2-1	Basic Robot Components	
	1-2-2	Front Panel	1-5
	1-2-3	Connectors	1-7
1-3	Infor	mation Labels	1-10
	1-3-1	Robot Label	1-10
	1-3-2	Controller Label	
1-4	Robe	ot Configurations	1-12
	1-4-1	i4-350L	
	1-4-2	i4-450L	
	1-4-3	i4-550L	1-12

1-13
1-13
1-14
1-14
1-14
1-15
1-15
1-15
1-16
1-16
1-17
-

Section 2 Specifications

2-1 Phys	ical Specifications	
2-1-1	Robot Overall Dimensions	
2-1-2	Mounting Flange Dimensions	
2-1-3	Tool Flange Dimensions	
2-1-4	Front Panel Dimensions	
2-1-5	Robot Work Envelope Dimensions	2-6
2-1-6	Robot Weights	2-7
2-2 Perfo	rmance Specifications	2-8
2-2-1	General Performance Information	
2-2-2	Stopping Distances and Times	2-8
2-3 Elect	rical Specifications	2-12
2-3-1	Power Supply Specifications	
2-3-2	XIO and TIO Connector I/O Specifications	
2-4 Envir	onmental Specifications	2-14
2-5 Other	r Specifications	2-15
2-5-1	Connector and Port Specifications	
2-5-2	Mounting Hardware and Torques	

Section 3 Installation

3-1	Robot Installation Procedure	3-2
3-	Mounting the Robot -2-1 Robot Mounting Surface -2-2 Mounting Procedure	3-3
3-3	Installing End-of-Arm Tooling	3-5
	Installing Optional Equipment -4-1 Mounting External Equipment to the Robot	
3- 3-	Adjustable Hardstops-5-1Joint 1 Adjustable Hardstops-5-2Joint 2 Adjustable Hardstops-5-3Joint 3 Adjustable Hardstop	3-8 3-8
3-	System Cable Installation -6-1 System Cable Overview -6-2 System Cable Installation Procedure	3-10
3- 3-	Connecting Digital I/O-7-1XIO Connector Signals and Wiring-7-2TIO Connector Signals and Wiring-7-3IO Blox Connections	3-13 3-17
	Installing Safety Equipment -8-1 Installing the Front Panel	

3-8-2	Safety Circuits	
3-9 Suppl	lying Power and Ground	
3-9-1	Grounding the System	
3-9-2	24 VDC Connections	
3-9-3	48 VDC Connections	
3-10 Verify	ving Installation	
3-10-1	Mechanical Checks	
3-10-2	System Cable Checks	
3-10-3	Safety Equipment Checks	
3-10-4	Switch Position Checks	

Section 4 Operation

4-1 Payl	4-1 Payload and Acceleration Considerations	
4-2 Robo	ot Control Modes	4-3
4-2-1	Manual Mode	4-3
4-2-2	Automatic Mode	4-3
4-3 Enat	bling and Disabling the Robot	
4-3-1	Enabling Robot High Power	4-5
4-3-2		
4-4 LED	Indicator	4-7
4-5 Brak	ce Operation	4-8
	•	
4-5-1	Built-in Brake Release Button	4-8
4-6 Coni	necting to the Robot	4-10
4-6 Coni		4-10

Section 5 Troubleshooting

5-1	Fault Detection	2
5-2	Emergency Stop Troubleshooting5-3	3
5-3	Error Messages	4

Section 6 Maintenance

6-1	Field-	replaceable Items	6-2
6-2	Perio	dic Maintenance	6-3
	6-2-1	Periodic Maintenance Overview	
	6-2-2	Checking Safety Functions	6-3
	6-2-3	Checking Fastener Torques	6-4
	6-2-4	Checking Safety and Warning Labels	6-4
	6-2-5	Checking for Oil Leaks	6-5
	6-2-6	Lubricating Joint 3	6-6
	6-2-7	Replacing Encoder Backup Batteries	6-7
	6-2-8	Cleaning the Robot	6-8
6-3	Non-r	periodic Maintenance	6-9
•••	6-3-1	Replacing the Tool Flange	

Appendices

A-1	Unpacking and Inspecting the RobotA-2	2
~ '		-

A-1-1	Before Unpacking the Robot	
A-1-2	Unpacking the Robot	
A-2 Rep	acking the Robot for Transport	A-4
A-3 Tran	nsportation and Storage Considerations	A-5
A-4 I/O \$	Signal Numbering	A-6
A-4-1		
A-4-2		
A-5 Cab	le Pinouts	A-7
A-5-1	XSYSTEM Cable Pinouts	
A-5-2	XBELTIO Adapter Cable Pinouts	
A-5-3	Belt Encoder Y-adapter Cable Pinouts	A-9
A-6 Part	ts List	A-11

Index

Terms and Conditions Agreement

Warranty and Limitations of Liability

Warranty

Exclusive Warranty

Omron's exclusive warranty is that the Products will be free from defects in materials and workmanship for a period of twelve months from the date of sale by Omron (or such other period expressed in writing by Omron). Omron disclaims all other warranties, expressed or implied.

Limitations

OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, ABOUT NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OF THE PRODUCTS. BUYER ACKNOWLEDGES THAT IT ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE. Omron further disclaims all warranties and responsibility of any type for claims or expenses based on infringement by the Products or otherwise of any intellectual property right.

Buyer Remedy

Omron's sole obligation hereunder shall be, at Omron's election, to (i) replace (in the form originally shipped with Buyer responsible for labor charges for removal or replacement thereof) the non-complying Product, (ii) repair the non-complying Product, or (iii) repay or credit Buyer an amount equal to the purchase price of the non-complying Product; provided that in no event shall Omron be responsible for warranty, repair, indemnity or any other claims or expenses regarding the Products unless Omron's analysis confirms that the Products were properly handled, stored, installed and maintained and not subject to contamination, abuse, misuse or inappropriate modification. Return of any Products by Buyer must be approved in writing by Omron before shipment. Omron Companies shall not be liable for the suitability or unsuitability or the results from the use of Products in combination with any electrical or electronic components, circuits, system assemblies or any other materials or substances or environments. Any advice, recommendations or information given orally or in writing, are not to be construed as an amendment or addition to the above warranty. See http://www.omron.com/global/ or contact your Omron representative for published information.

Limitations of Liability

OMRON COMPANIES SHALL NOT BE LIABLE FOR SPECIAL, INDIRECT, INCIDENTAL, OR CON-SEQUENTIAL DAMAGES, LOSS OF PROFITS OR PRODUCTION OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED IN CONTRACT, WARRANTY, NEGLIGENCE OR STRICT LIABILITY. Further, in no event shall liability of Omron Companies exceed the individual price of the Product on which liability is asserted.

Application Considerations

Suitability for Use

Omron Companies shall not be responsible for conformity with any standards, codes or regulations which apply to the combination of the Product in the Buyer's application or use of the Product. At Buyer's request, Omron will provide applicable third party certification documents identifying ratings and limitations of use which apply to the Product. This information by itself is not sufficient for a complete determination of the suitability of the Product in combination with the end product, machine, system, or other application or use. Buyer shall be solely responsible for determining appropriateness of the particular Product with respect to Buyer's application, product or system. Buyer shall take application responsibility in all cases.

NEVER USE THE PRODUCT FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCT(S) IS PROPERLY RATED AND IN-STALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

Programmable Products

- Omron Companies shall not be responsible for the user's programming of a programmable Product, or any consequence thereof.
- Omron Companies shall not be responsible for the operation of the user accessible operating system (e.g. Windows, Linux), or any consequence thereof.

Disclaimers

Performance Data

Data presented in Omron Company websites, catalogs and other materials is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of Omron's test conditions, and the user must correlate it to actual application requirements. Actual performance is subject to the Omron's Warranty and Limitations of Liability.

Change in Specifications

Product specifications and accessories may be changed at any time based on improvements and other reasons. It is our practice to change part numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the Product may be changed without any notice. When in doubt, special part numbers may be assigned to fix or establish key specifications for your application. Please consult with your Omron's representative at any time to confirm actual specifications of purchased Product.

Errors and Omissions

Information presented by Omron Companies has been checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical or proofreading errors or omissions.

Safety Precautions

Definition of Precautionary Information

The following notation is used in this manual to provide precautions required to ensure safe usage of the i4L robot. The safety precautions that are provided are extremely important to safety. Always read and heed the information provided in all safety precautions.

The following notation is used.

Anger	Identifies an imminently hazardous situation which, if not avoid- ed, is likely to result in serious injury, and might result in fatality or severe property damage.
	Indicates a potentially hazardous situation which, if not avoid- ed, could result in death or serious injury. Additionally, there may be severe property damage.
	Indicates a potentially hazardous situation which, if not avoid- ed, may result in minor or moderate injury, or property damage.

Symbols

	The circle and slash symbol indicates operations that you must not do. The specific opera- tion is shown in the circle and explained in text. This example indicates prohibiting disassembly.
	The triangle symbol indicates precautions (including warnings). The specific operation is shown in the triangle and explained in text. This example indicates a precaution for electric shock.
$\underline{\land}$	The triangle symbol indicates precautions (including warnings). The specific operation is shown in the triangle and explained in text. This example indicates a general precaution.
0	The filled circle symbol indicates operations that you must do. The specific operation is shown in the circle and explained in text. This example shows a general precaution for something that you must do.
	The triangle symbol indicates precautions (including warnings). The specific operation is shown in the triangle and explained in text. This example indicates a precaution for high temperatures.

Dangers

General

An i4L robot can cause serious injury or death, or damage to itself and other equipment, if the following safety precautions are not observed:

- All personnel who install, operate, teach, program, or maintain the system must read this guide, read the Robot Safety Guide, and complete a training course for their responsibilities in regard to the robot.
- All personnel who design the robot system must read this guide, read the Robot Safety Guide, and must comply with all local and national safety regulations for the location in which the robot is installed.
- The robot system must not be used for purposes other than described in *1-1 Intended Use* on page 1-2. Contact your local Omron support if you are not sure of the suitability for your application.
- The user is responsible for providing safety barriers around the robot to prevent anyone from accidentally coming into contact with the robot when it is in motion.
- Power to the robot and its power supply must be locked out and tagged out before any maintenance is performed.
- When the robot or robotic equipment is not investigated in conjunction with a system work cell, the instructions shall call attention to the following: the interlocked portion of barrier shall be installed, applied, and maintained so that it has the capability of being easily unlocked from the inside of the safeguarded space, with or without power available, when the possibility of full body access exists.

i4L robots are not collaborative robots. They require a dedicated work area that will prevent personnel from coming into contact with them during operation.

The normal and intended use of these robots does not create hazards.

These robots have been designed and constructed in accordance with the relevant requirements of IEC 60204-1.

These robots are intended for use in parts assembly and material handling for payloads up to 5.0 kg.

Refer to the *Robot Safety Guide (Cat. No. 1590)* for details on the intended use of our robots.

These robots are intended for industrial use only.

Perform a risk assessment before using.

These robots are not intended for:

- Use in the presence of ionizing or non-ionizing radiation.
- Use in potentially explosive atmospheres.
- Use in medical or life saving applications.
- Use in a residential setting.

Installation

The robot system must be installed with user-supplied interlock barriers. The interlocked barriers must open the E-Stop circuit in the event of personnel attempting to enter the work cell when High Power is enabled. Failure to install suitable guarding or interlocks could result in injury or death. We strictly prohibit installation, commissioning, or operation of any robot without adequate safeguards. These must be compliant with applicable local and national standards. The placement of safety controls shall avoid requiring a person to enter a hazardous area to actuate them. Controls shall be located outside of the safeguarded space, except for certain controls such as emergency stops or a teach pendant, where based on a risk assessment they may be located within the safeguarded space. After installing the robot, you must test it before you use it for the first time. Failure to do this could cause death, serious injury, or equipment damage. Failure to ground robot-mounted equipment or tooling that uses hazardous voltages could lead to injury or fatality of a person touching the end-effector during an electrical fault. Any High Power push-buttons must be installed outside of the robot's workspace.

Warnings

General

The instructions for operation, installation, and maintenance given in this document must be strictly observed.

If air pressure is present, disconnect it from the robot when servicing end-of-arm tooling or other pneumatic components to prevent unsecured pneumatic air lines from accidentally injuring personnel.

Do not move the robot links if the robot is not secured. Failure to comply could result in the robot falling and causing either personnel injury or property damage.

Installation

Ensure that installation and post-installation checks of the product are performed by personnel in charge who possess a thorough understanding of the machinery to be installed.

Ensure compliance with all local and national safety and electrical codes for the installation and operation of the robot system.

Provide appropriately-sized Branch Circuit Protection and Lockout / Tagout Capability in accordance with the National Electrical Code and any local codes.	0
Always use proper lifting technique when lifting the robot. Failure to comply could result in the robot falling and causing either personnel injury or equipment damage.	0
If you supply your own Front Panel, its design must comply with the requirements of IEC 60204-1 and ISO 13849. The E-Stop's push button must comply with ISO 13850 (Clause 5.5.2).	0
Disabling the High Power button violates IEC 60204-1. Do not alter its functionality.	0
If a robot is mounted to a surface with inadequate stiffness, damage to the z-axis quill or other mechanical components can result from excessive oscillation during operation.	\triangle
The robot's center of mass can cause the robot to fall over if the robot is not properly secured with the mounting bolts.	0
The robot must be installed to avoid interference with buildings, structures, utilities, other machines and equipment that may create trapping or pinch points. It must be installed in accordance with Standard for Robots and Robotic Devices – Safety Requirements for Industrial Robots – Part 2: Robot Systems and Integration, ISO 10218-2.	\bigwedge
Ensure that interconnecting cables or pneumatic lines are routed away from the robot workspace.	
To reduce the risk of fire or electric shock, install the robot in a controlled environment relatively free of contaminants.	0

Operation

Before starting the operation of equipment, always confirm that the safety equipment of the robot works properly. If a malfunction of the safety equipment is detected, follow the troubleshooting procedure.	0
Use the total weight of the end-of-arm tooling and the payload to stay within the payload rating of the robot. Ensure that the system never exceeds that maximum payload.	0
Perform a full risk assessment which includes the end-of-arm tooling and any payload to prevent crushing, shearing, payload ejection, entanglement, stabbing or puncture haz-ard.	0
Releasing a brake may cause the quill, tool flange, end-of-arm tooling, and payload to drop. To prevent possible injury to personnel or damage to the equipment, make sure that the equipment is supported when releasing the brake and verify that the end-of-arm tooling and payload are clear of all obstructions.	0
All signals that pass-through the USER connectors are not associated with any robot controls, emergency stop circuits, or robot power. Implement appropriate safety measures to ensure that these signals are not active during emergency stop conditions or while the robot is powered OFF.	0

n Automatic mode, the robot can move unexpectedly. Ensure all personnel remain clear of the cell when Automatic mode is enabled.	0
f an operator is going to be in the work cell with the switch in Manual mode, the operator nust carry an enabling device such as the T20 pendant.	0
Whenever possible, perform Manual mode operations with all personnel outside the vorkspace.	0
The stopping time and distance, or angle, of a robot joint from initiation of a stop signal is not negligible and must be taken into account when designing and applying safeguarding devices.	$\underline{\land}$
Never connect or disconnect system cables while power is applied to the robot. Failure o comply may cause unexpected behavior and can result in personnel injury and equip- nent damage.	0
Never run a robot system with all jumpers installed. This would leave the system with no E-Stops.	0
Do not use the robot in hazardous environments (explosive gas, and oil mist).	$\underline{\land}$
The robot shall be operated within its specified temperature range to ensure proper oper- ation.	$\underline{\land}$
The robot's physical hardstop devices are not intended to withstand repeated use and if his occurs, the hardstop may become damaged. Implement proper programming and configuration of joint range limits to prevent hardstop impacts.	$\underline{\land}$

Maintenance

Do not use organic solvents to clean any part of the robot unless directed in the cleaning instructions. Organic solvents might damage electronics resulting in an unsafe operating state that could cause injury or damage to equipment.

Cautions

The design and installation of the complete system must comply with the safety standards and regulations in the country of use. The integrators of the robot should understand the safety laws and regulations in their countries and prevent major hazards from occurring in the complete system.

Precautions for Safe Use

- The Joint 3 quill and the tool flange are not grounded to protective earth. If hazardous voltages are present at any user-supplied robot-mounted equipment or tooling, you must install a ground connection from that equipment or tooling to the ground point on the robot base.
- This equipment must be shipped and stored in a temperature-controlled environment, within the range –25 to +55°C. The recommended humidity range is 5 to 90%, non-condensing. It should be shipped and stored in the supplied packaging, which is designed to prevent damage from normal shock and vibration.
- Output 8 can be assigned to indicate the robot's High Power state. When High Power is enabled, this output will turn ON. When High Power is not enabled, this output will be OFF. This is not a safety-rated means of indicating a High Power state and should only be used for monitoring the robot status. Use the ACE software to make this configuration if needed.
- Do not apply 48 VDC power until all installation steps are complete and verified and all safety measures are in place.
- · High power cannot be enabled unless all safety circuits are satisfied.
- The LED indicator does not reflect the robot's High Power status. To see the robot's High Power status, use the Front Panel indicator or a user-supplied indicator connected to the XFP connector.
- The braking mechanism operates passively. If 24 VDC Control Power is removed from the system, the brake mechanism will automatically activate. 24 VDC Control Power must be supplied to release the brake. To prevent possible damage to the equipment, remove any payload from the end-of-arm tooling, make sure that Joint 3 is supported while releasing the brake, and verify that the end-of-arm tooling or other installed equipment is clear of all obstructions.
- The High Power indicator must be operational to satisfy safety requirements.
- You can contribute to resource conservation and protecting the environment by the proper disposal
 of Waste Electronics and Electrical Equipment (WEEE). All electrical and electronic products should
 be disposed of separately from the municipal waste system according to local ordinances using designated collection facilities.

- The product contains lithium batteries with a perchlorate content of 6ppb or higher. When exporting
 an end product containing the product to or shipping through California, USA, label all packing and
 shipping containers appropriately. Special handling may apply. Refer to https://dtsc.ca.gov for more
 information.
- Dispose of any battery that has been dropped or otherwise subjected to excessive shock. Batteries that have been subjected to shock may leak if they are used.
- Batteries may leak, rupture, heat, or ignite. Never short-circuit, charge, disassemble, heat, or incinerate a battery or subject it to strong shock.
- Any person who programs, teaches, operates, maintains, or repairs robots or robot systems shall be trained and can demonstrate competence to safely perform the assigned task.
- Any person who programs, teaches, operates, maintains, or repairs robots or robot systems shall be trained on responding to emergency or abnormal situations.
- Do not connect user-supplied Manual / Automatic contacts or other control signals in parallel with the Front Panel switch contact. This would violate the Single Point of Control principle and might allow Automatic mode to be selected while an operator is in the cell.

- Acoustic emission from these robots may be up to 70 dB (A) at 1 m distance under worst-case conditions. Typical values will be lower, depending on payload, speed, acceleration, and mounting. Appropriate safety measures should be taken, such as ear protection and display of a warning sign.
- Any moving robot requires some distance to stop. This requires more distance at high operating speeds or heavier payloads. When stopping a robot, make sure that there is no interference with other equipment.
- Do not expose the shipping container to excessive shock and vibration. This could damage the robot.
- Using improper lubrication products on the robot may damage it.
- After an operator places the robot in Manual mode using the Front Panel key switch, they should remove the key for safety purposes.
- If the supplied Front Panel is not used, a High Power indicator light must be present in the system. This indicator light must be amber in color. It must be either mounted to the robot or integrated into the work cell where it is visible from all approaches or entry points.
- If a supplementary audible means of robot operation is provided, it shall exceed the ambient noise at the end-use application.
- You can burn yourself. Do not touch the robot after it has been running at high ambient temperatures or at fast cycle times (over 60 cycles per minute). The robot surface temperature can exceed 85° C.
- During manual operation, ensure all persons are a safe distance away from the robot work envelope.
- The robot can be lifted by hand. Only use the base and inner link when lifting the robot. Never maneuver the robot using the quill or flyover assemblies.
- To stop the robot in an emergency, press any E-stop button and then follow the internal procedures of your company or organization defined for an emergency situation.
- If a fire occurs on the robot, use a CO₂ type fire extinguisher.
- In case of entrapment of a person by the robot or any other emergency or abnormal situation, you
 can manually move the inner and outer links to a safe position while 48 VDC High Power is disabled. A brake device prevents Joints 3 and 4 from moving when High Power is disabled and can
 only be released while 24 VDC Control Power is present.
- Prior to placing the robot in Automatic Mode, all safeguards must be returned to their safe state.

Precautions for Correct Use

- Robot motion is not possible until High Power is supplied and has been enabled. Refer to 4-3 Enabling and Disabling the Robot on page 4-5 for more information.
- Control power must be present before High Power can be enabled.
- The T20 pendant can only control the robot it is directly connected to.
- Either a Front Panel or equivalent circuits are required to enable High Power to the robot. Refer to *XFP Wiring Diagram* on page 3-24 for more information.
- If the Front Panel High Power ON / OFF indicator fails, you might incorrectly assume that High Power is OFF, and the robot is safe. To prevent this, a failed indicator causes an error (-924) *Front panel HIGH POWER lamp failure* and locks out the High Power enabling until you replace the indicator. Refer to the eV+ Language Reference Guide (Cat. No. 1605) for more information about error handling. Refer to High Power Indicator Check Procedure on page 3-32 for information about High Power er indicator operation verification.
- It is recommended to use a properly secured, 18 mm (minimum) thick steel plate with a maximum surface roughness of 25 µm as a robot mounting surface.
- The mounting surface should be clean and prepared according to the information provided in *3-2-1 Robot Mounting Surface* on page 3-3 before attempting to mount the robot.
- Do not over-tighten the tool flange setscrew. This will cause off-center alignment of the tool flange on the quill.
- Always reduce joint motion limits with software configuration settings when hardstops are used to restrict range of motion. Refer to the *Automation Control Environment (ACE) Version 4 User's Manual (Cat. No. 1633)* for more information.
- Never loosen or remove the quill clamp collar while the z-axis brake is released.
- If Teach Pendant cabling is installed, the jumper plug or the Teach Pendant must be connected to satisfy safety circuits and allow High Power to be enabled.
- Do not disable or bypass the High Power button. This will violate IEC 60204-1.
- Operating the robot outside of the payload and speed constraints described in this document can damage or reduce the service life of the z-axis quill.
- If a Front Panel is not present, the High Power indicator and High Power button signals can be accessed with the XFP system cable connector. Refer to *Front Panel Connections* on page 3-21 for more information.
- Attempting to release the brake while High Power is ON will automatically disable High Power. If the robot is moving, this will cause it to stop abruptly.
- If no controller(s) is detected, check the Ethernet network and cables and ensure that a network connection is available to the robot and the PC.
- Only replace items on the robot system with the parts supplied by OMRON.
- Only use the recommended grease on the joint 3 quill. Use THK AFF Grease (part number 20950-000). Refer to the provided Safety Data Sheet for proper handling.
- When removing and replacing the tool flange, you must reinstall it in the same position to avoid losing the calibration for the robot.
- Use surge suppression when switching inductive loads such as relays to prevent damage to the output circuits.
- Any externally mounted equipment is considered robot payload. Consideration to the payload attached to the Tool Flange should be made when mounting external equipment to the robot.

- If the robot has a bottom Primary Interface Panel orientation, do not temporarily set the robot upright on a flat surface because this can damange the Primary Interface Panel connectors.
- Avoid rotating the quill / Joint 4 when the brake is released. This could result in an out-of-range condition and may prevent program execution.
- All fastener torque values provided must be applied within ±5%.
- Keep a minimum of 300 mm clearance from the Primary Interface Panel to allow for switch and cable connection access.

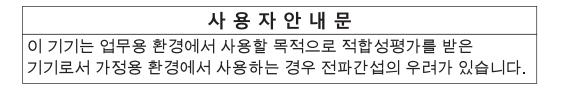
Regulations and Standards

Conformance to EU Directives

The robot complies with the following EN Directives.

Directives

- 2006/42/EC Machinery Directive
- 2014/30/EU
 EMC Directive


EN Harmonized Standards

The robot system conforms to the following EN standards.

- EN ISO 12100 Safety of Machinery General Principles for Design Risk Assessment and Reduction
 EN ISO 13849-1 Safety of Machinery Safety Related Parts of Control Systems SRP/CS – Part 1
 EN ISO 10218-1 Robots for industrial environments Safety requirements, Part 1: Robot
 EN 60204-1
- Safety of Machinery Electrical equipment of machines, Part 1 General Requirements
- EN 61000-6-4 EMC, Part 6-4: Emissions Standard for Industrial Environments
- EN 61000-6-2
 EMC, Part 6-2: Immunity Emissions Standard for Industrial Environments

Conformance to KC Certification

When you use this product in South Korea, observe the following precautions.

This product meets the electromagnetic compatibility requirements for business use. There is a risk of radio interference when this product is used in home.

Software Licenses and Copyrights

This product incorporates certain third party software. The license and copyright information associated with this software is available at http://www.fa.omron.co.jp/nj_info_e/.

Related Manuals

Use the following related manuals for reference.

Related Product Manuals

Manual Name	Description
eV+ Language User's Guide (Cat. No. I604)	Provides the concepts and strategies of programming with eV+.
eV+ Language Reference Guide (Cat. No. I605)	Provides references to eV+ language and functionality.
eV+ Operating System User's Guide (Cat. No. I606)	Describes the eV+ operating system for v2.x.
eV+ Operating System Reference Guide (Cat. No. I607)	Provides eV+ operating system keyword descriptions.
Robot Safety Guide (Cat. No. I590)	Contains safety information for OMRON industrial robots.
Automation Control Environment (ACE) Version 4 User's Manual (Cat. No. I633)	Contains information that is necessary to use Automation Control Environment (ACE) software.
T20 Pendant User's Manual (Cat. No. I601)	Describes the use of the T20 manual control pendant.
Adept XIO Termination Block Installation Guide (00340-000)	Describes the use of the XIO Termination Block unit.
Omron Adept IO Blox User's Guide (04638-000)	Describes the use of the IO Blox unit.
IPC Application Controller User's Manual (Cat. No. I632)	Describes the use of the IPC Application Controller.

Glossary

Term / Abbreviation	Description
Application Controller	Industrial PC that provides additional functionality to the robot to execute PackManager and Robot Vision Manager applications.
Automatic Mode	Operating state of the robot during normal conditions. In this mode, pro- gram execution will control the robot up to the maximum allowable speed.
Control Power	24 VDC supply that energizes control and other non-servo motor circuits.
End-of-arm Tooling	Any device mounted to the robot's tool flange intended for performing work during robot operation.
Emergency Stop	An action or device used to immediately stop the robot. This may be referred to as emergency stop, E-stop, or ESTOP.
Flyover	The cable assembly that connects the robot base to the outer link.
Hardstop	Physical limit that restricts the range of motion for a robot axis.
High Power	48 VDC supply that energizes all internal servo motors to allow robot mo- tion.
Joint	Mechanical robot component that connects its moving parts.
LED Indicator	Multi-colored light on top of the outer link that provides a visual indication of the robot operating state.
Link	Mechanical robot component that moves in a radial motion.
Manual Mode	Operating state of the robot during commissioning, position teaching, and other setup operations.
SCARA	Selective Compliance Assembly Robot Arm
T20 Pendant	Optional, handheld device used to manually jog the robot, teach locations, and debug programs without a PC. This is also referred to as a Teach Pendant or a pendant.
Quill	Mechanical robot component that provides motion in the z-axis and rotary motion for the tool flange. This is a ball-screw mechanism.
Work Envelope	Working area that is accessible by the robot considering any end-of-arm tooling and part shapes that are attached.
Workspace	Total area that the robot occupies considering all capable range of motion.

Revision History

A manual revision code appears as a suffix to the catalog number on the front and back covers of the manual.

Revision code	Date	Revised content
01	November 2020	Original production
02	December 2020	Minor modifications
03	January 2021	Corrections and revisions
04	February 2021	Minor modifications

Overview

This section provides general information about the robot.

1-1	Intende	ed Use	1-2
1-2	Robot	Features	
	1-2-1	Basic Robot Components	
	1-2-2	Front Panel	
	1-2-3	Connectors	
1-3	Inform	ation Labels	1-10
	1-3-1	Robot Label	
	1-3-2	Controller Label	
1-4	Robot	Configurations	
• •	1-4-1	i4-350L	
	1-4-2	i4-450L	
	1-4-3	i4-550L	
	1-4-4	i4-550L (350 mm Z)	
	1-4-5	Mounting and Cabling Options	
1-5	Model	Numbers	1-14
	1-5-1	Robot Model Numbers	
	1-5-2	Controller Model Numbers	1-14
1-6	Option	al Hardware	1-15
	1-6-1	IO Blox	
	1-6-2	T20 Pendant	
	1-6-3	IPC Application Controller	
	1-6-4	XIO Termination Block	
	1-6-5	Optional Cables	

1-1 Intended Use

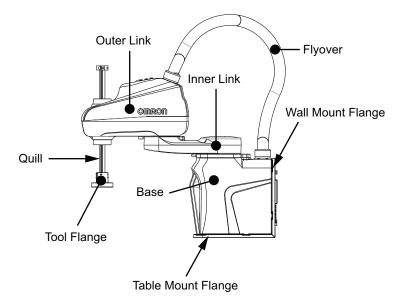
The i4L robot is a selective compliance assembly robot arm (SCARA) for use within factory environments. It is designed to perform automated motion control typically used with material handling operations.

The i4L robot is capable of high speed, high-precision motion for payloads up to 5 kg. Its compact design and flexible programmability make it ideal for a wide variety of robotic applications.

1

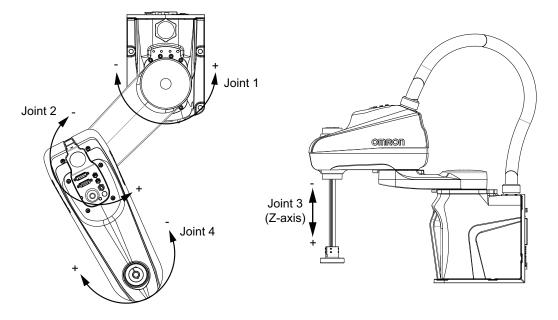
1-2 Robot Features

This section provides information about the hardware features of the i4L robot.

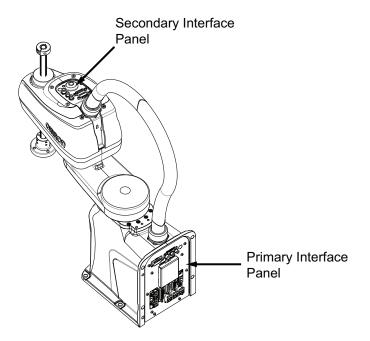

- The robot can be mounted on a horizontal surface (table mount) or a vertical surface (wall mount) without the need for additional adapters or brackets.
- Cable connections can be arranged so that they exit through the mounting surface or parallel to the mounting surface.
- A highly visible, multi-colored LED light dome provides convenient indication of the robot status.
- The multi-colored LED light dome has an integrated brake release button built-in.
- A small and compact form factor is achieved with advanced internal controls and circuitry.
- Mounting points are available on the exterior of the robot for items such as cameras and solenoid valves.
- Pass through electrical and pneumatic ports are available from the base of the robot to the outer link.
- Mechanical accommodations are present on the outer link cover and tool flange for user-supplied bellows.
- The Primary Interface Panel provides a central location for all cable connections and a Secondary Interface Panel on the outer link provides connections for end-of-arm tooling and other hardware.
- Built-in, optically isolated I/O provides 17 inputs and 12 outputs. I/O is expandable with optional I/O Blox units.
- Work envelope limits can be adjusted with configurable hard-stop points for robot joints 1, 2, and 3.

1-2-1 Basic Robot Components

The robot consists of the following components that are referred to throughout this manual. Use the information below to identify the robot's basic components.


Mechanical Components

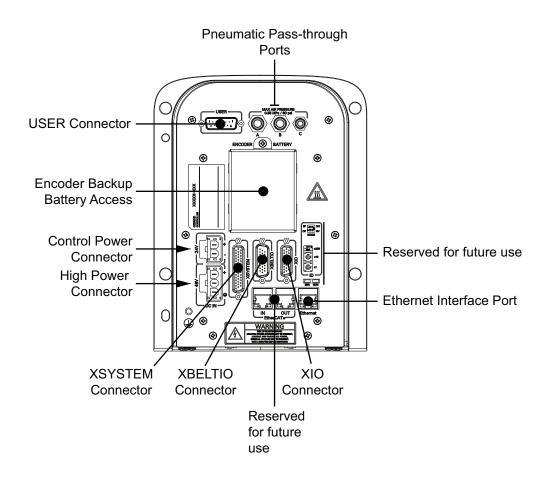
Use the image below to identify the robot's mechanical components.


Axes of Motion

Use the following diagrams to understand the robot's 4 axes of motion.

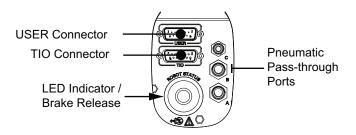
Interface Panels

Use the information below to identify the robot's interface panels and their functions.


• Primary Interface Panel

The Primary Interface Panel is located on the base of the robot and provides access to the following items.

1-2 Robot Features


1

1-2-2 Front Panel

• Secondary Interface Panel

The Secondary Interface Panel is located on top of the outer link and provides access to the following items.

1-2-2 Front Panel

The Front Panel is a device that provides remote control and status functions when mounted a safe distance outside of the robot workspace. The Front Panel provides the following functions.

- Setting the robot mode to Manual or Automatic mode. Refer to *4-2 Robot Control Modes* on page 4-3 for more information.
- Indicating the robot High Power and Control Power state.
- Enabling robot High Power. Refer to 4-3-1 Enabling Robot High Power on page 4-5 for more information.
- Activating an emergency stop and disabling robot High Power.

If Front Panel signals need to be relocated, refer to *XFP Wiring Diagram* on page 3-24 for internal circuit details.

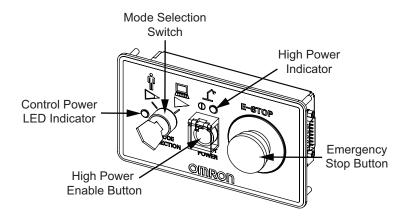
Precautions for Safe Use

If the supplied Front Panel is not used, a High Power indicator light must be present in the system. This indicator light must be amber in color. It must be either mounted to the robot or integrated into the work cell where it is visible from all approaches or entry points.

Precautions for Correct Use

- Either a Front Panel or equivalent circuits are required to enable High Power to the robot. Refer to *XFP Wiring Diagram* on page 3-24 for more information.
- If the Front Panel High Power ON / OFF indicator fails, you might incorrectly assume that High Power is OFF, and the robot is safe. To prevent this, a failed indicator causes an error (-924) *Front panel HIGH POWER lamp failure* and locks out the High Power enabling until you replace the indicator. Refer to the XeV+ Language Reference Guide (Cat. No. 1605) for more information about error handling. Refer to *High Power Indicator Check Procedure* on page 3-32 for information about High Power indicator operation verification.

Additional Information


- The Front Panel is supplied with an extension cable that must be used to connect it to the XFP connector on the XSYSTEM cable. Refer to *3-8-1 Installing the Front Panel* on page 3-20 for more information.
- Design of the factory-supplied Front Panel E-Stop is in accordance with the requirements of IEC 60204-1 and ISO 13849.

- If you supply your own Front Panel, its design must comply with the requirements of IEC 60204-1 and ISO 13849. The E-Stop's push button must comply with ISO 13850 (Clause 5.5.2).
- If an operator is going to be in the work cell with the switch in Manual mode, the operator must carry an enabling device such as the T20 pendant.
- Whenever possible, perform Manual mode operations with all personnel outside the workspace.

- Disabling the High Power button violates IEC 60204-1. Do not alter its functionality.
- In Automatic mode, the robot can move unexpectedly. Ensure all personnel remain clear of the cell when Automatic mode is enabled.

Use the information in the table below to understand Front Panel item details.

Item	Description
Control Power LED Indicator	Provides an indication that the robot is receiving 24 VDC Control Power
	with a green LED.

Item	Description
Mode Selection Switch	Controls the robot's operating mode. The left position selects Manual
	mode. The right position selects Automatic mode.
	Refer to 4-2 Robot Control Modes on page 4-3 for more information.
High Power Indicator	Provides an indication of the robot's High Power state with an amber
	LED.
	Refer to 4-3 Enabling and Disabling the Robot on page 4-5 for more
	information.
High Power Enable Button	Button to request robot High Power.
Emergency Stop Button ^{*1}	Button for emergency stopping of the robot.

*1. This switch is a dual-channel, passive E-stop device that supports Category 3 CE safety requirements.

1-2-3 Connectors

This section describes all connectors on the robot.

USER Connectors

The USER connectors provide pass-through electrical signals from the Primary Interface Panel to the Secondary Interface Panel.

Pass-through electrical signals are typically used for end-of-arm tooling sensing and control. All USER connector pin associations between the Primary Interface Panel and the Secondary Interface Panel are one-to-one. For example, pins 1 through pins 15 of the USER connector on the Primary Interface Panel are directly connected to pins 1 through 15 of the USER connector on the Secondary Interface Panel.

All signals that pass-through the USER connectors are not associated with any robot controls, emergency stop circuits, or robot power. Implement appropriate safety measures to ensure these signals are not active during emergency stop conditions or while the robot is powered OFF.

Additional Information

Refer to 2-5-1 Connector and Port Specifications on page 2-15 for more information about the USER connector signal specifications.

Control Power Connector

The Control Power connector is used to supply 24 VDC to the robot logic circuits. When power is supplied to this connector, the robot will boot up and control functions such as programming and configuration are possible.

A mating connector is supplied with the robot.

Additional Information

Control power is user-supplied. Refer to 2-3-1 Power Supply Specifications on page 2-12 for information about Control Power specifications. Refer to 3-9-2 24 VDC Connections on page 3-29 for information about Control Power wiring.

Precautions for Correct Use

Robot motion is not possible until High Power is supplied and has been enabled. Refer to *4-3 Enabling and Disabling the Robot* on page 4-5 for more information.

High Power Connector

The High Power connector is used to supply 48 VDC to the internal servo amplifiers.

When power is supplied to this connector and High Power has been enabled, the robot is ready to move.

A mating connector is supplied with the robot.

Additional Information

High Power is user-supplied. Refer to 2-3-1 Power Supply Specifications on page 2-12 for information about High Power specifications. Refer to 3-9-3 48 VDC Connections on page 3-29 for information about High Power wiring.

Precautions for Correct Use

Control Power must be present before High Power can be enabled.

XSYSTEM Connector

The XSYSTEM connector provides connections to external equipment such as a Front Panel, Teach Pendant, and user-supplied safety devices.

The robot is supplied with an XSYSTEM cable and jumper plugs. This cable provides connections for a Front Panel, Teach Pendant, and other user-supplied safety devices.

- The part number for the XSYSTEM cable is 13322-000.
- The length of this cable is 1.8 m.

Additional Information

Refer to 3-6-1 System Cable Overview on page 3-10 for more information.

XBELTIO Connector

The XBELTIO connector provides access to the following signals.

- Belt encoder inputs 1 and 2
- Expansion I/O
- · Force sensor
- RS-232

Additional Information

Refer to Optional Connections on page 3-11 for more information.

1

XIO Connector

The XIO connector provides access to built-in I/O of the robot (12 inputs, 8 outputs).

-	

Additional Information

Refer to the 3-7-1 XIO Connector Signals and Wiring on page 3-13 for more information about XIO connector wiring.

Ethernet Interface Port

The Ethernet interface port provides communications for programming and configuration. It also provides communications for runtime operation when an IPC Application Controller is present in the system.

Pneumatic Pass-through Ports

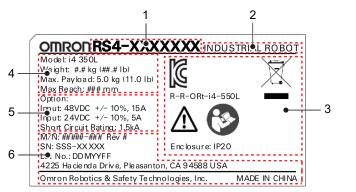
The pneumatic pass-through ports provide pass-through air lines from the Primary Interface Panel to the Secondary Interface Panel.

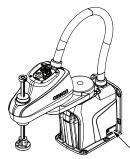
Pneumatic pass-through ports are typically used for end-of-arm tooling control.

TIO Connector

The TIO connector provides 5 digital inputs and 4 digital outputs for use with end-of-arm tooling. These signals are fully programmable for integration with robot motion, part sensing, and other robot functions.

Additional Information

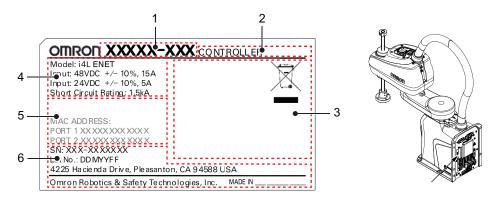

Refer to 3-7-2 TIO Connector Signals and Wiring on page 3-17 for more information.


1-3 Information Labels

The information labels contain relevant information about the robot and the controller. The following examples will be different from your product label.

1-3-1 Robot Label

The robot label is described below.


ltem	Name	Description	
1	Part number *1	The robot part number is displayed.	
2	Product type	The product type is displayed.	
3	Alerts and compliance	General alerts and compliance information is displayed.	
4	Robot information	The robot model, weight, maximum payload, and maximum reach is displayed.	
5	Electrical information	General electrical power supply information about the robot is displayed.	
6	Production information	 The following information is provided. M/N indicates the model number and revision level. SN indicates the serial number. Lot. No. indicates the lot number in the format of DDMYYFF. Month number 1 to 9 for January to September, X for October, Y for November, and Z for December. FF is reserved for internal use. Product origin information is displayed. 	

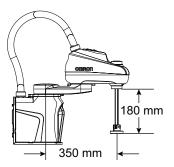
*1. Refer to 1-5 Model Numbers on page 1-14 for model information.

1

1-3-2 Controller Label

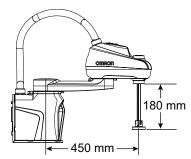
The controller label is described below.

Item	Name	Description	
1	Part number ^{*1}	The controller part number is displayed.	
2	Product type	The product type is displayed.	
3	Alerts and compliance	General alerts and compliance information is displayed.	
4	Controller information	The controller model and general electrical power supply information is displayed.	
5	MAC Address	Reserved for future use.	
6	Production information	 The following information is provided. SN indicates the serial number. Lot. No. indicates the lot number in the format of DDMYYFF. Month number 1 to 9 for January to September, X for October, Y for November, and Z for December. FF is reserved for internal use. Product origin information is displayed. 	

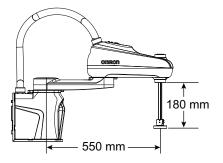

*1. Refer to 1-5 Model Numbers on page 1-14 for model information.

1-4 Robot Configurations

The i4L robot is offered in a variety of configurations with different work envelopes and z-axis stroke lengths.


1-4-1 i4-350L

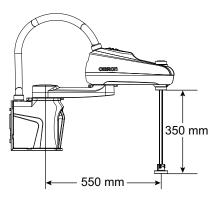
The i4-350L configuration has a reach of 350 mm and a z-axis stroke of 180 mm.


1-4-2 i4-450L

The i4-450L configuration has a reach of 450 mm and a z-axis stroke of 180 mm.

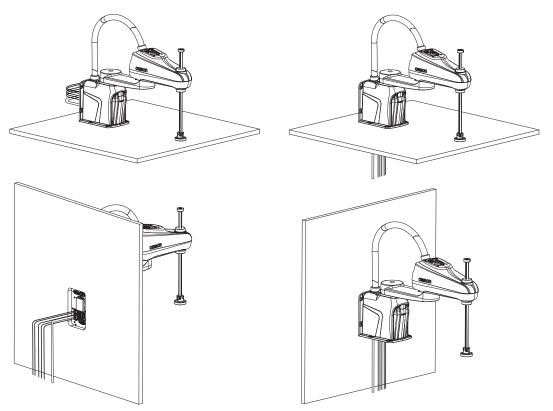
1-4-3 i4-550L

The i4-550L configuration has a reach of 550 mm and a z-axis stroke of 180 mm.



1

1-4-4 i4-550L (350 mm Z)


1-4-4 i4-550L (350 mm Z)

The i4-550L (350 mm Z) configuration has a reach of 550 mm and a z-axis stroke of 350 mm.

1-4-5 Mounting and Cabling Options

The robot has a table mount flange and a wall mount flange integrated into the base. This allows the robot to be table-mounted or wall-mounted without the need for additional brackets or adapters. The rear / bottom Primary Interface Panel orientation options allow cables to exit through the mounting surface or parallel to the mounting surface as shown below.

1-5 Model Numbers

Models numbers and descriptions associated with the robot are provided below.

1-5-1 Robot Model Numbers

The table below provides all robot model numbers and descriptions.

Model Number	Reach	Z-axis Stroke	Primary Interface Panel Orien- tation
RS4-2053002	350 mm	180 mm	Rear
RS4-2054002	450 mm		
RS4-2055002	550 mm		
RS4-2055004	550 mm	350 mm	
RS4-2053102	350 mm	180 mm	Bottom
RS4-2054102	450 mm		
RS4-2055102	550 mm		
RS4-2055104	550 mm	350 mm	

1-5-2 Controller Model Numbers

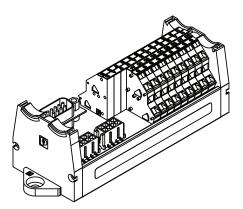
The table below provides all robot controller model numbers and descriptions.

Model Number	Description	
19354-000	Controller with Ethernet communications support.	

1-6 Optional Hardware

The following optional hardware is available for the robot.

1-6-1 IO Blox


IO Blox units are available to expand the I/O capacity of the robot. Each unit offers 8 inputs and 8 outputs. Up to 4 IO Blox units can be added to the robot.

- The part number for an IO Blox unit connected directly to the robot is 90356-30200.
- The part number for IO Blox units connected to another IO Blox unit is 90356-30100.

Additional Information

Refer to 3-7-3 *IO Blox Connections* on page 3-19 and the *Omron Adept IO Blox User's Guide* (04638-000) for more information.

1-6-2 T20 Pendant

The T20 pendant is an optional handheld device that allows you to manually jog the robot, teach locations, and view V+ programs without a PC.

- The part number for the pendant kit is 10054-010. This kit includes the T20 pendant, an adapter cable (3 m), and a jumper plug.
- The adapter cable includes a round, 17-pin connector that can be panel-mounted. It can be mounted to a surface with up to 6.5 mm of thickness and requires an M23 hole.

Precautions for Correct Use

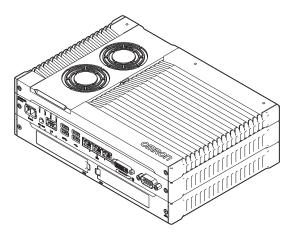
The T20 pendant can only control the robot it is directly connected to.

Additional Information

Refer to 3-6-1 System Cable Overview on page 3-10 and the T20 Pendant User's Manual (Cat. No. 1601) for more information.

1

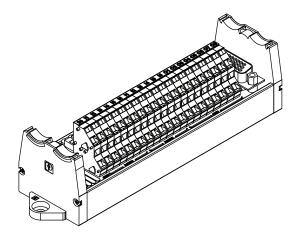
1-6-3 IPC Application Controller


The IPC Application Controller can be added to your system to execute PackManager and Robot Vision Manager applications.

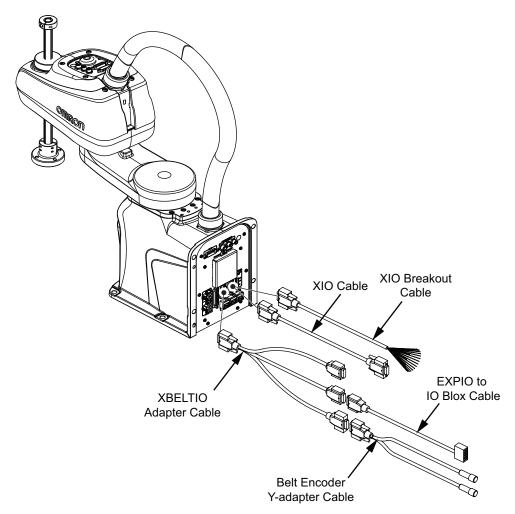
The Pack Manager application controls automated pick-and-place systems with cameras, conveyors, and robots based on the data that you set up in the ACE software. It is executed on the IPC Application Controller to control the process data and recipe data.

The Robot Vision Manager application processes images captured by cameras based on the data that you set up in the ACE Software. It is executed on the IPC Application Controller.

The part number for the IPC Application Controller with ACE Software pre-installed is AC1-152000. Refer to the following manuals for more information.


- Automation Control Environment (ACE) Version 4 User's Manual (Cat. No. 1633)
- IPC Application Controller User's Manual (Cat. No. 1632)

1-6-4 XIO Termination Block


The XIO Termination Block is used to connect digital I/O devices to the robot. This unit provides terminal block connection points for 12 inputs and 8 outputs. LED indicators are provided to indicate ON/OFF status. Each input has a switch to simulate input signals for troubleshooting or testing purposes. Use the XIO cable to connect the XIO Termination block to the robot. Refer to *XIO Cable on page 1-18* for more information.

- The part number for the XIO Termination Block is 90356-40100 (2 m cable included).
- Refer to the Adept XIO Termination Block Installation Guide (00340-000) for more information.

1-6-5 Optional Cables

This section provides information about optional cables that are available.

1

XBELTIO Adapter Cable

The optional XBELTIO adapter cable connects to the XBELTIO connector on the Primary Interface Panel. It provides connections for belt encoder, force sensor, RS-232, and IO Blox signals.

- The part number for this cable is 13463-000.
- The length of this cable is 600 mm.

Additional Information

Refer to A-5-2 XBELTIO Adapter Cable Pinouts on page A-8 for more information.

Belt Encoder Y-adapter Cable

The optional belt encoder Y-adapter cable connects to the XBELTIO adapter cable's BELT ENCODER connector. This cable provides individual connections for two belt encoder input signals.

- The part number for this cable is 09443-000.
- The length of this cable is 3 m.

Additional Information

Refer to A-5-3 Belt Encoder Y-adapter Cable Pinouts on page A-9 for more information.

XIO Breakout Cable

The optional XIO breakout cable connects to the XIO connector on the Primary Interface Panel and provides a method to connect I/O devices directly to the robot without using an XIO Termination Block unit.

- This cable is not compatible with the XIO Termination Block.
- · This cable cannot be used together with an XIO cable.
- The part number for this cable is 04465-000.
- The length of this cable is 5 m.

Additional Information

Refer to 3-7-1 XIO Connector Signals and Wiring on page 3-13 for more information.

XIO Cable

The optional XIO cable connects to the XIO connector on the Primary Interface Panel. It is used to connect an XIO Termination Block to the system.

- The part number for this cable is 03695-000.
- The length of this cable is 2 m.

Additional Information

Refer to 1-6-4 XIO Termination Block on page 1-16 for more information.

EXPIO to IO Blox Cable

The optional EXPIO to IO Blox cable connects to the XBELTIO adapter cable's FORCE/EXPIO connector. It allows a direct connection between this connector and optional IO Blox units.

- The part number for this cable is 04677-030.
- The length of this cable is 3 m.

Additional Information

Refer to 3-7-3 IO Blox Connections on page 3-19 for more information.

1-6-5 Optional Cables

1 Overview

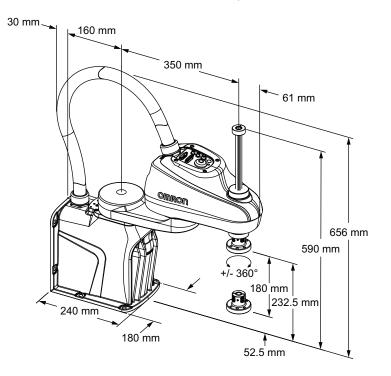
2

Specifications

This section provides specifications for the robot's hardware, performance, electrical connections, installation environment, and other technical aspects of the system.

2-1	Physic	cal Specifications	
	2-1-1	Robot Overall Dimensions	
	2-1-2	Mounting Flange Dimensions	
	2-1-3	Tool Flange Dimensions	
	2-1-4	Front Panel Dimensions	
	2-1-5	Robot Work Envelope Dimensions	
	2-1-6	Robot Weights	
2-2	Perfor	mance Specifications	
	2-2-1	General Performance Information	
	2-2-2	Stopping Distances and Times	
2-3	Electri	ical Specifications	2-12
	2-3-1	Power Supply Specifications	
	2-3-2	XIO and TIO Connector I/O Specifications	
2-4	Enviro	onmental Specifications	2-14
2-5	Other	Specifications	2-15
	2-5-1	Connector and Port Specifications	
	2-5-2	Mounting Hardware and Torques	

2-1 Physical Specifications

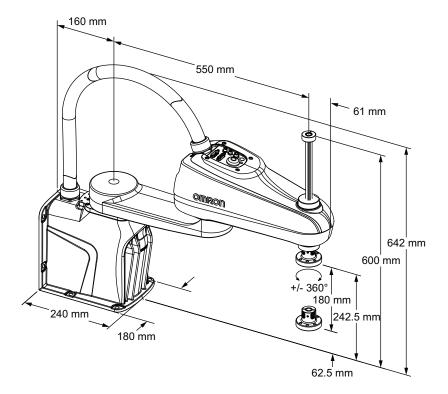

This section provides physical specifications for the i4L robot.

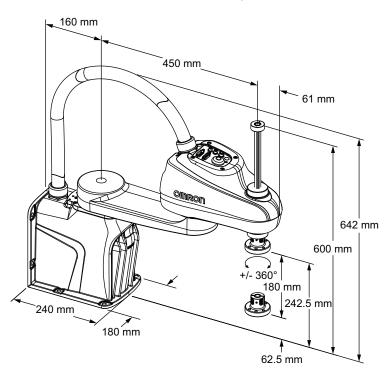
2-1-1 Robot Overall Dimensions

Use the diagrams below to understand the robot's overall physical dimensions.

i4-350L Dimensions

Overall dimensions for the i4-350L are provided below.


2 Specifications

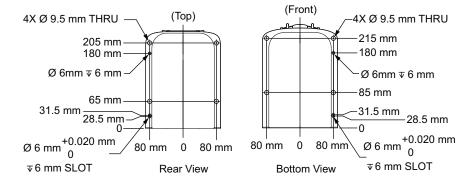

i4-450L Dimensions

Overall dimensions for the i4-450L are provided below.

i4-550L Dimensions

Overall dimensions for the i4-550L are provided below.

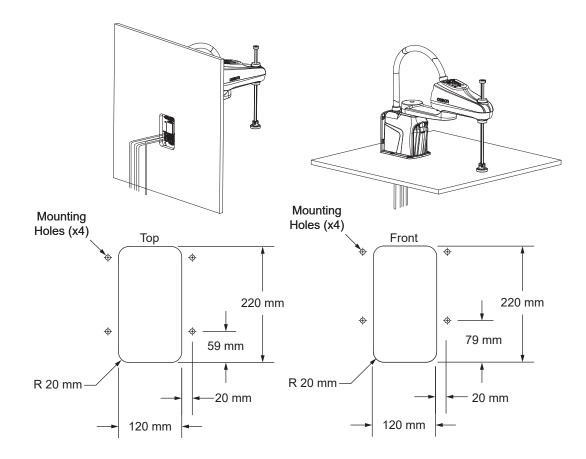
i4-550L (350 mm Z) Dimensions


160 mm 550 mm 61 mm 770 mm 442 mm 442 sm 442 sm 40 mm 180 mm

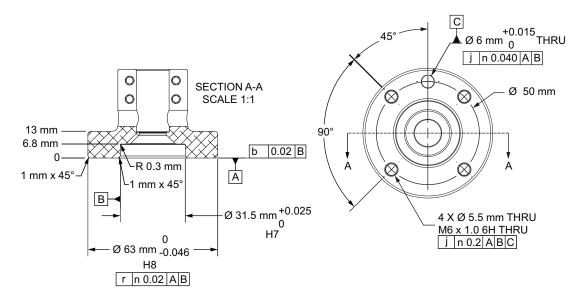
Overall dimensions for the i4-550L (350 mm Z) are provided below.

Cable Clearances

There must be at least 183 mm of clearance from the Primary Interface Panel connectors to provide adequate space for cables. These clearances apply to all robot models.

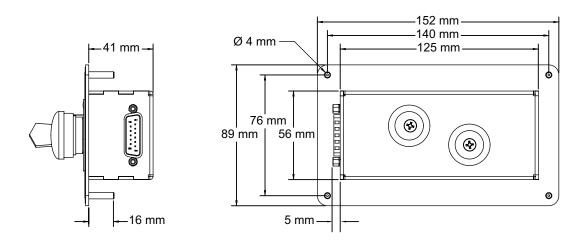

2-1-2 Mounting Flange Dimensions

The robot's mounting flange dimensions are provided below.

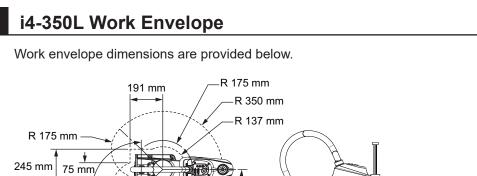

Cable Exit Cutout Dimensions

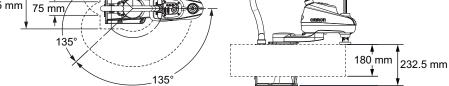
Use the cutout dimensions provided below when cables exit the mounting surface.

2-1-3 Tool Flange Dimensions

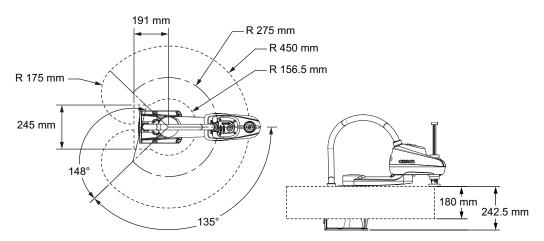

The robot's tool flange dimensions are provided below. Geometry and tolerances meet ISO-9409-1-50-4-M6 (2004) requirements for manipulating industrial robots.

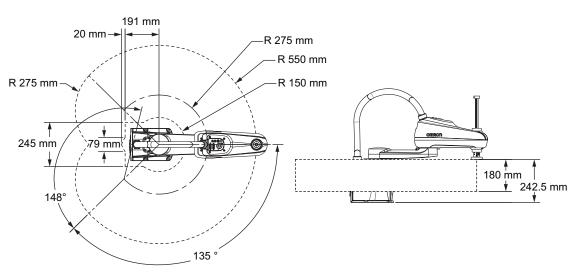
2-1-4 Front Panel Dimensions


The Front Panel dimensions are provided below.


2-1-3 Tool Flange Dimensions

2-1-5 Robot Work Envelope Dimensions


Use the diagrams below to understand the robot's working envelope dimensions.



i4-450L Work Envelope

Work envelope dimensions are provided below.


i4-550L Work Envelope

Work envelope dimensions are provided below.

i4-550L (350 mm Z) Work Envelope

Work envelope dimensions are provided below.

2-1-6 Robot Weights

Weights for the different robot models are provided in the following table.

Robot Model	Weight
i4-350L	15.1 kg
i4-450L	15.9 kg
i4-550L	16.4 kg
i4-550L (350 mm Z)	16.5 kg

2-2 Performance Specifications

The following sections provide robot performance specifications.

2-2-1 General Performance Information

The following table provides general performance information for the robot.

Iten	า	i4-350L	i4-450L	i4-550L	i4-550L (350 mm Z)	
Payload ^{*1}		2 kg rated 5 kg maximum				
Reach		350 mm	450 mm	550 mm		
Joint Range	Joint 1	±135°	±135°			
	Joint 2	±135°	±148°			
	Joint 3	180 mm			350 mm	
	Joint 4	±360°				
Joint 4 Moment	of Inertia	0.05 kg-m ² maximum				
Downward Push Force burst with no load		150 N				
Cycle Time ^{*2}		0.57 s 0.54 s		0.54 s		
Repeatability at 100% speed		X, Y: 0.01 mm Joint 3: 0.01 mm Joint 4: 0.01°				
Joint speeds	Joint 1	456 degrees/s				
(maximum)	Joint 2	456 degrees/s				
	Joint 3	800 mm/s				
Joint 4		6000 degrees/s				

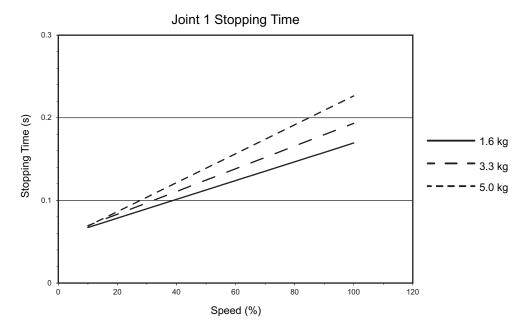
*1. Payload is considered as any object(s) attached to a robot link or tool flange including items such as end effectors, tooling, valves, grippers, and objects being handled by the robot.

*2. Cycle time is defined as a continuous path with straight-line motion cycle in which the robot tool moves up 25 mm, over 305 mm, down 25 mm, and then back along the same path (not achievable over all paths in the robot working envelope). Values listed are for sustained motion, no joint 4 rotation, with a 2 kg payload, at 20° C ambient temperature.

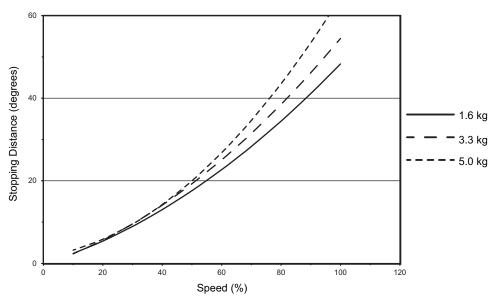
Z-axis Quill Bending Moments

When the robot is operating at high payloads with high acceleration / deceleration, the z-axis quill may be subject to excessive bending moments. Careful considerations must be made under these conditions. Refer to *4-1 Payload and Acceleration Considerations* on page 4-2 for more information.

2-2-2 Stopping Distances and Times

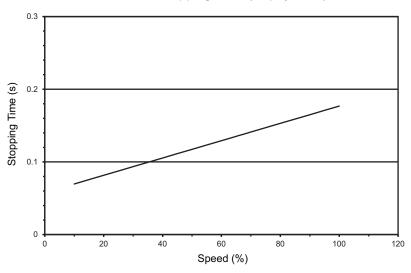

The following graphs present information required by Clause 7.2 n of ISO 10218-1. This information should be used to calculate the safe distance needed when designing and installing safeguarding devices.

A WARNING

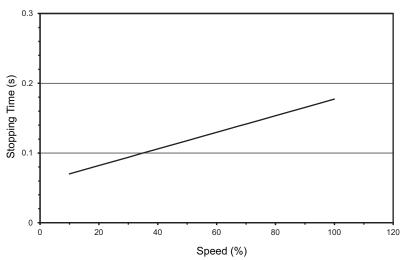

The stopping time and distance, or angle, of a robot joint from initiation of a stop signal is not negligible and must be taken into account when designing and applying safeguarding devices.

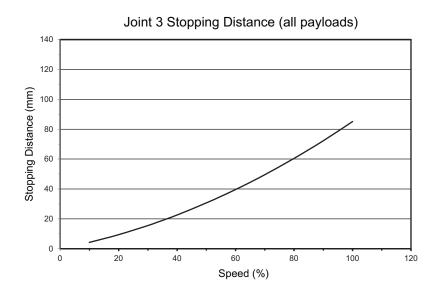
The graphs show the time elapsed and distances traveled between the initiation of a stop signal and the cessation of all robot motion.

For stop category 1, the stopping time and distance values depend on the speed, load, and extension of the robot, stated for 33%, 66% and 100% of the maximum payload (5 kg). Data provided is for the three joints of greatest displacement (J1, J2, and J3).



Joint 1 Stopping Distance


 $\underline{\mathbb{V}}$


Joint 2 Stopping Time (all payloads)

Joint 2 Stopping Distance (all payloads) Stopping Distance (degrees) Speed (%)

Joint 3 Stopping Time (all payloads)

2-3 Electrical Specifications

Electrical specifications are provided in the sections below.

2-3-1 **Power Supply Specifications**

Specifications for the 24 VDC and 48 VDC power supplies are provided below.

24 VDC Control Power Supply Specifications

Item Specification		
Supply voltage range	24 VDC ±10%	
Current / power requirements	5 A / 120 W maximum	
Circuit protection	User-supplied 5 A in-line fuse	
Wire size	0.75 mm ² to 2.5 mm ²	
Shielding	User-supplied connection from power supply cable shield to robot ground point.	

48 VDC High Power Supply Specifications

Item	Specification	
Supply voltage range	48 VDC ±10%	
Current / power requirements	20 A / 960 W maximum	
Wire size	2.5 mm ²	
Shielding	User-supplied connection from power supply cable shield to robot ground point	

2-3-2 XIO and TIO Connector I/O Specifications

Specifications for the XIO and TIO connector input and output circuits are provided below.

Туре	Item	Specification
Input circuits	Туре	Sinking / Sourcing
	Operational voltage range	0 to 30 VDC
	OFF state voltage range	0 to 3 VDC
	ON state voltage range	10 to 30 VDC
	Typical threshold voltage	8 VDC
	Operational current range	0 to 7.5 mA
	OFF state current range	0 to 0.5 mA
	ON state current range	2.5 to 6 mA
	Typical threshold current	2.0 mA
	Impedance (V _{in} / I _{in})	39 kΩ
	Current at 24 VDC	< 6 mA
	ON response time (hardware)	5 µs
	OFF response time (hardware)	5 µs

Туре	Item	Specification
Output circuits	Туре	Sourcing
	Output voltage range	24 VDC ±10%
	Total current output for all XIO cir-	1.0 A maximum at 50° C ambient tempera-
	cuits	ture
		1.5 A maximum at 25° C ambient tempera-
		ture
	Total current output for all TIO cir-	1.0 A maximum at 50° C ambient tempera-
	cuits	ture
		1.5 A maximum at 25° C ambient tempera-
		ture
	ON state resistance at 0.5A	0.14Ω maximum at 85° C
	Output leakage current	5 μA maximum
	ON response time (hardware)	30 µs
	OFF response time (hardware)	38 µs
	Short circuit current limit	0.7 to 2.5 A
	Output voltage at inductive load	$(+V - 52) \le V_{demag} \le (+V - 41)$ where $I_{out} =$
	(turn OFF)	0.5 A and load ≥ 1 mH

2-4 Environmental Specifications

Environmental specifications are provided below.

To reduce the risk of fire or electric shock, install the robot in a controlled environment relatively free of contaminants.

Item	Specification
Ambient operating temperature ^{*1}	5 to 40°C
Storage temperature	–25 to 55°C
Humidity	5 to 90%, non-condensing
Altitude	2000 m maximum
Pollution degree	2
Protection class	IP20 / NEMA Type 1

*1. A warm-up is required at low temperatures.

2-5 Other Specifications

Other specifications for associated equipment are provided below.

2-5-1

Connector and Port Specifications

Robot connector specifications are provided below.

Additional Information

Refer to *Section 3 Installation* on page 3-1 for more information about connector wiring and pin diagrams.

Connector	Specification	
Pneumatic pass-through ports	Push-connect type fittings with a maximum air pres-	
	sure of 0.55 MPa	
	Port A and B fittings: 6 mm	
	Port C fitting: 4 mm	
USER connectors	15 pin, D-sub, male	
	Rated current: 3 A	
Control Power connector	Molex 2-wire receptacle	
	Part number: 43160-2102	
High Power connector	Molex 3-wire receptacle	
	Part number: 43160-2103	
XSYSTEM connector	44 pin, D-sub HD, female	
XBELTIO connector	26 pin, D-sub HD, male	
XIO connector	26 pin, D-sub HD, female	
Ethernet interface port	RJ-45	
TIO connector	15 pin, D-sub, female	

2-5-2 Mounting Hardware and Torques

The following bolt types, washers, and torque is required for mounting the robot.

Туре	Quantity	Size	Class	Torque
Socket Head Cap	4	• M8 x 1.25 mm 10.9 or 12.9 30-32		30-32 N-m
Screw		 DIN 912 or ISO 4782 		
Flat Washer	4	• M8	8.8	
		• DIN 125 or ISO 7089		

\land WARNING

The robot's center of mass can cause the robot to fall over if the robot is not properly secured with the mounting bolts.

3

Installation

This section provides information about installing the robot and other necessary equipment.

3-1	Robot		
3-2	Moun 3-2-1 3-2-2	ting the Robot Robot Mounting Surface Mounting Procedure	
3-3	Install	ling End-of-Arm Tooling	3-5
3-4	Instal l 3-4-1	ling Optional Equipment Mounting External Equipment to the Robot	
3-5	Adjus 3-5-1 3-5-2 3-5-3	table Hardstops Joint 1 Adjustable Hardstops Joint 2 Adjustable Hardstops Joint 3 Adjustable Hardstop	
3-6	Syste 3-6-1 3-6-2	m Cable Installation System Cable Overview System Cable Installation Procedure	
3-7	Conne 3-7-1 3-7-2 3-7-3	ecting Digital I/O XIO Connector Signals and Wiring TIO Connector Signals and Wiring IO Blox Connections	
3-8	Instal l 3-8-1 3-8-2	ling Safety Equipment Installing the Front Panel Safety Circuits	
3-9	Suppl 3-9-1 3-9-2 3-9-3	ying Power and Ground Grounding the System 24 VDC Connections 48 VDC Connections	
3-10	Verify 3-10-1 3-10-2 3-10-3 3-10-4	ing Installation Mechanical Checks System Cable Checks Safety Equipment Checks Switch Position Checks	

3-1 Robot Installation Procedure

The basic installation steps are provided below.

- Ensure that installation and post-installation checks of the product are performed by personnel in charge who possess a thorough understanding of the machinery to be installed.
- The robot must be installed to avoid interference with buildings, structures, utilities, other machines and equipment that may create trapping or pinch points. It must be installed in accordance with Standard for Robots and Robotic Devices – Safety Requirements for Industrial Robots – Part 2: Robot Systems and Integration, ISO 10218-2.

7

Additional Information

Refer to A-1 Unpacking and Inspecting the Robot on page A-2 for more information.

1 Mount the robot.

Refer to 3-2 Mounting the Robot on page 3-3 for more information.

- **2** Install the end-of-arm tooling. Refer to 3-3 Installing End-of-Arm Tooling on page 3-5 for more information.
- **3** Install any equipment such as cameras, solenoid valves, a Front Panel, or bellows. Refer to *3-4 Installing Optional Equipment* on page 3-6 for more information.
- **4** Connect any necessary pneumatic air lines using the pass-through ports. Refer to *2-5-1 Connector and Port Specifications* on page 2-15 for more information.
- **5** Make any necessary adjustments to hardstops. Refer to *3-5 Adjustable Hardstops* on page 3-7 for more information.
- **6** Connect all required system cables. Refer to 3-6 System Cable Installation on page 3-10 and 3-7 Connecting Digital I/O on page 3-13 for more information.
 - Connect all required safety equipment. Refer to *3-8 Installing Safety Equipment* on page 3-20 for more information.
- Make power and ground connections.
 Refer to 3-9 Supplying Power and Ground on page 3-28 for more information.
- **9** Verify the robot installation. Refer to *3-10 Verifying Installation* on page 3-31 for more information.

3-2 Mounting the Robot

Use the information in the following sections to mount the robot.

3-2-1 Robot Mounting Surface

The following considerations must be made when preparing a robot mounting surface.

- It must be smooth and flat.
- It must be rigid enough to prevent vibration and flexing that is caused by reactionary forces during fast robot motion.
- It must be designed to support the weight of the robot with payload.
- Table-mounted robots must be placed on a level, horizontal surface.
- Wall-mounted robots must be fastened to a 90° vertical surface.
- When the robot is mounted to a vertical surface, considerations for preventing a collision with the mounting surface should be made.

If a robot is mounted to a surface with inadequate stiffness, damage to the z-axis quill or other mechanical components can result from excessive oscillation during operation.

rh

Precautions for Correct Use

- It is recommended to use a properly secured, 18 mm (minimum) thick steel plate with a maximum surface roughness of 25 μm as a robot mounting surface.
- Keep a minimum of 300 mm clearance from the Primary Interface Panel to allow for switch and cable connection access.

3-2-2 Mounting Procedure

Use the following procedure to mount the robot.

\land WARNING

• Always use proper lifting technique when lifting the robot. Failure to comply could result in the robot falling and causing either personnel injury or equipment damage.

• The robot's center of mass can cause the robot to fall over if the robot is not properly secured with the mounting bolts.

Precautions for Safe Use

The robot can be lifted by hand. Only use the base and inner link when lifting the robot. Never maneuver the robot using the quill or flyover assemblies.

Precautions for Correct Use

The mounting surface should be clean and prepared according to the information provided in *3-2-1 Robot Mounting Surface* on page 3-3 before attempting to mount the robot.

3-2-1 Robot Mounting Surface

Before beginning the mounting procedure, have the following tools and resources available. Prepare the mounting holes before beginning the mounting procedure.

- Prepare the mounting holes.
- A torque wrench for proper tightening of the mounting bolts.
- · Assistance to lift and maneuver the robot into the mounting position.
- Four socket-head cap screws with flat washers. Refer to 2-5-2 Mounting Hardware and Torques on page 2-15 for more information.
 - **1** Using the dimensions provided in *2-1-2 Mounting Flange Dimensions* on page 2-4, prepare four holes in the mounting surface to accommodate the user-supplied machine bolts (specified above). A slot and hole are provided in the mounting flange for dowel pins.

- **3** Align the holes in the mounting flange with the prepared mounting holes in the mounting surface.
- **4** Insert all four bolts with washers to secure the robot to the mounting surface.
 - Tighten the four bolts to 31 N-m of torque.

Additional Information

After mounting the robot, check the mounting bolt torque after 72 hours of initial operation and then recheck every 3 months thereafter. Refer to *6-2 Periodic Maintenance* on page 6-3 for more information.

5

After all four bolts have been tightened to the specified torque, the mounting procedure is complete.

3-3 Installing End-of-Arm Tooling

You must provide, install, and ground (if necessary) end-of-arm tooling to the tool flange.

Use the following details when designing and installing end-of-arm tooling.

- Hole diameters and placement on the tool flange comply with ISO-9409-1-50-4-M6 (2004) standards.
- End-of-arm tooling is attached to the tool flange using M6 x 1.0 (Class 10.9 or higher) screws with a minimum of 10 mm thread engagement into the tool flange.
- Apply Loctite 243 thread lock (or equivalent) to secure the screws.
- Apply a torque of 7.5 N-m when tightening tooling screws.

Additional Information

Refer to 2-1-3 Tool Flange Dimensions on page 2-5 for more information.

If the end-of-arm tooling requires pneumatic or electrical connections, use the pass-through connections from the Primary Interface Panel to the Secondary Interface Panel. Refer to *1-2-3 Connectors* on page 1-7 for more information.

Precautions for Safe Use

The Joint 3 quill and the tool flange are not grounded to protective earth. If hazardous voltages are present at any user-supplied robot-mounted equipment or tooling, you must install a ground connection from that equipment or tooling to the ground point on the robot base. Refer to *3-9-1 Grounding the System* on page 3-28 for more information about grounding the tool flange.

Failure to ground robot-mounted equipment or tooling that uses hazardous voltages could lead to injury or fatality of a person touching the end-effector during an electrical fault.

3

3-4 Installing Optional Equipment

This section provides information about installing the following optional equipment.

3-4-1 Mounting External Equipment to the Robot

The robot body has accommodations to mount external equipment such as a camera or solenoid valves. Use the information below to understand how to mount external equipment to the robot. 4 mounting holes are provided on the bottom of the outer link between joint 2 and joint 4. 2 mounting holes are provided on the bottom and near the end of the outer link.

The following considerations should be made when mounting external equipment to the robot.

- Do not mount equipment that will interfere with robot motion or other objects in the work cell.
- Do not mount equipment in a way that can induce excessive inertia to the outer link.
- Mounting holes are thru-type and the robot body is 6.5 mm thick. Do not use fasteners that can extend into the body of the robot. This can interfere with internal components.

Precautions for Correct Use

Any externally mounted equipment is considered robot payload. Consideration to the payload attached to the Tool Flange should be made when mounting external equipment to the robot.

Apply a torque of 2.5 N-m to the user-supplied fasteners when mounting equipment to the 4 mounting holes between joint 2 and joint 4. Apply Loctite thread lock type 222 or equivalent.

Apply a toque of 4.5 N-m to the user-supplied fasteners when mounting equipment to the 2 mounting holes at the end of the outer link. Apply Loctite thread lock type 243 or equivalent.

3-5 Adjustable Hardstops

The robot is equipped with several mechanical hardstop adjustment points for joints 1, 2, and 3 as described in the following sections. Adjust these mechanical hardstops to restrict the robot's range of motion in order to prevent collisions within the workspace if necessary.

The robot's physical hardstop devices are not intended to withstand repeated use and if this occurs, the hardstop may become damaged. Implement proper programming and configuration of joint range limits to prevent hardstop impacts.

rh

Precautions for Correct Use

Always reduce joint motion limits with software configuration settings when hardstops are used to restrict range of motion. Refer to the *Automation Control Environment (ACE) Version 4 User's Manual (Cat. No. 1633)* for more information.

Additional Information

- Obstacles may be defined with software configuration to restrict the robot tool-tip from entering specified volumes of the work envelope. Refer to the *Automation Control Environment* (ACE) Version 4 User's Manual (Cat. No. 1633) for more information.
- Refer to 2-1-5 Robot Work Envelope Dimensions on page 2-6 for full range of motion values.

Joint Hardstop	Joint Limita-	Range of Motion Software Limit Setting		
Position	tion	i4-350L	i4-450L	i4-550L / i4-550L (350 mm Z)
1	Joint 1	-109.5°		
2		+109.5°		
3	Joint 2	-124°	-118°	
4		+124°	+118°	
5		See note ^{*1}	-133°	
6			+133°	
7	Joint 3	5 mm from end of travel.		

*1. The i4-350L model includes pre-installed hardstop screws in positions 5 and 6 to prevent base interference with the quill. Do not remove these pre-installed hardstop screws.

3-5-1 Joint 1 Adjustable Hardstops

Use the following information when making joint 1 hardstop adjustments.

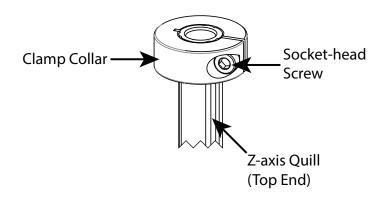
- Four M8 X 10 socket head cap screws, class 12.9 are supplied with the robot for use as Joint 1 and Joint 2 adjustable hardstops.
- · Apply Loctite thread lock type 243 or equivalent.
- Apply a torque of 17 N-m when tightening the hardstop screws.

3-5-2 Joint 2 Adjustable Hardstops

Use the following information when making joint 2 hardstop adjustments.

- Four M8 X 10 socket head cap screws, class 12.9 are supplied with the robot for use as Joint 1 and Joint 2 adjustable hardstops.
- · Apply Loctite thread lock type 243 or equivalent.
- Apply a torque of 17 N-m when tightening the hardstop screws.

3-5-3 Joint 3 Adjustable Hardstop


The joint 3 down stroke can be limited by sliding the clamp collar down the z-axis quill to a lower position.

The following tools are required when adjusting the joint 3 hardstop.

- 4 mm hex bit
- Torque wrench
- · Loctite thread lock type 243 or equivalent

Precautions for Correct Use

Never loosen or remove the quill clamp collar while the z-axis brake is released.

Loosen the clamp collar socket-head screw and slide the clamp to the appropriate location to limit the down stroke of the z-axis quill. When the clamp is in the desired location, apply thread lock and tighten the socket-head screw to a torque of 4.5 N-m.

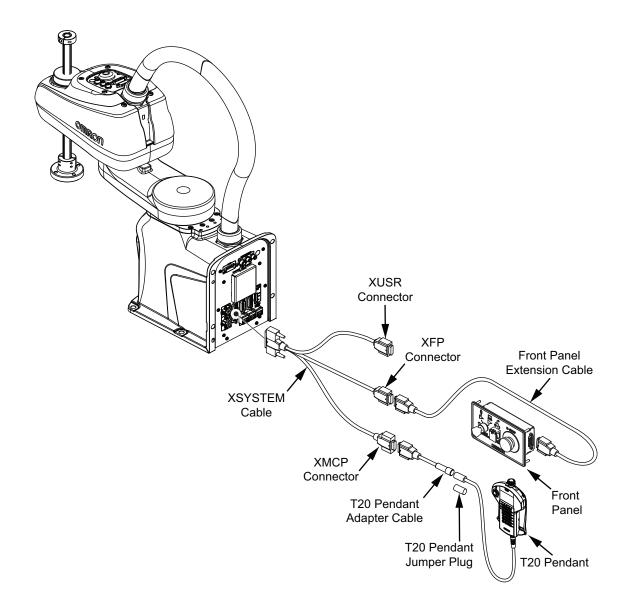
3-6 System Cable Installation

This section provides information about installing the robot system cables.

- Never connect or disconnect system cables while power is applied to the robot.
 Failure to comply may cause unexpected behavior and can result in personnel injury and equipment damage.
- Provide appropriately-sized Branch Circuit Protection and Lockout / Tagout Capability in accordance with the National Electrical Code and any local codes.
- Ensure that interconnecting cables or pneumatic lines are routed away from the robot workspace.

3-6-1 System Cable Overview

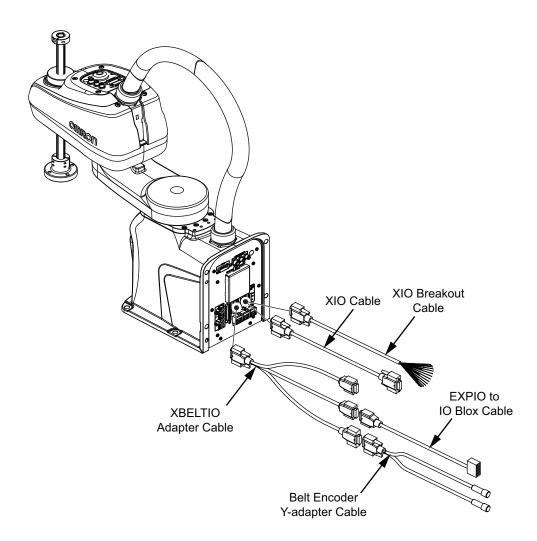
Standard and optional cable connections are provided below.


Standard Connections

The following figure shows standard connections with the XSYSTEM cable. This cable is supplied with the robot.

Additional Information

Refer to *3-8 Installing Safety Equipment* on page 3-20 for more information about XFP, XUSR, and XMCP connections.


Optional Connections

The following figure shows optional connections to the robot.

Additional Information

Refer to 3-7 *Connecting Digital I/O* on page 3-13 for more information about connecting I/O with IO Blox Units or with the XIO connector.

3-6-2 System Cable Installation Procedure

The following procedure provides details about system cable installation. The robot must be mounted before following the steps below. Refer to *3-2 Mounting the Robot* on page 3-3 for more information.

- **1** Connect the XSYSTEM cable to the Primary Interface Panel XSYSTEM connector and route the XFP, XUSR, and XMCP connectors to their appropriate locations.
- 2 Connect any digital I/O to the XIO and TIO connectors. Refer to 3-7 *Connecting Digital I/O* on page 3-13 for more information.
- Connect external equipment such as the Front Panel and Teach Pendant to the XSYSTEM cable XFP and XMCP connectors.
 Refer to 3-6-1 System Cable Overview on page 3-10 for more information.
- **4** Connect all user-supplied safety equipment to the XUSR connector on the XSYSTEM cable. Refer to *3-8 Installing Safety Equipment* on page 3-20 for more information.
- **5** If applicable, connect devices to the XBELTIO connector and the USER connectors. Refer to *Optional Connections* on page 3-11 for more information.

3-7 Connecting Digital I/O

The following sections describe the various methods to connect digital I/O to the robot.

3-7-1 XIO Connector Signals and Wiring

The XIO connector on the Primary Interface Panel provides access to built-in digital I/O.

The 12 available inputs correspond to V+ signal numbers 1097 to 1108.

The 8 available outputs correspond to V+ signal numbers 0097 to 0104.

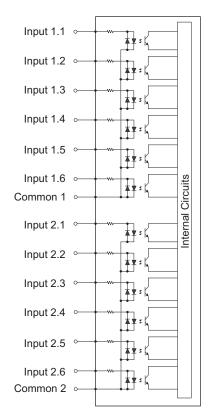
The XIO connector pin assignments are provided below. The Designation and Signal Bank information in the table below only apply when using an XIO Termination Block.

Additional Information

Refer to 2-3-2 XIO and TIO Connector I/O Specifications on page 2-12 for electrical specifications. Refer to 2-5-1 Connector and Port Specifications on page 2-15 for connector specifications.

PIN 9 PIN 1 PIN 18 0 0 0 0 0 0 0 0 0 0 PIN 10 PIN 26 PIN 10 PIN 10

Pin Number	Designation	Signal Bank	V+ Signal Number
1	Ground		
2	24 VDC		
3	Common 1	1	
4	Input 1.1		1001
5	Input 2.1		1002
6	Input 3.1		1003
7	Input 4.1		1004
8	Input 5.1		1005
9	Input 6.1		1006
10	Ground		
11	24 VDC		
12	Common 2	2	
13	Input 1.2		1007
14	Input 2.2		1008
15	Input 3.2		1009
16	Input 4.2		1010
17	Input 5.2		1011
18	Input 6.2		1012


Pin Number	Designation	Signal Bank	V+ Signal Number
19	Output 1		1
20	Output 2		2
21	Output 3		3
22	Output 4		4
23	Output 5		5
24	Output 6		6
25	Output 7		7
26	Output 8		8

XIO Internal Circuits

Use the following information to understand the XIO internal circuits.

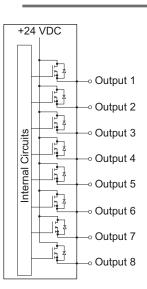
• XIO Input Signals

The twelve inputs are arranged in two banks of six. Each bank is electrically isolated from the other bank. Each input is optically isolated. The six inputs within each bank share a common source / sink line.

• XIO Output Signals

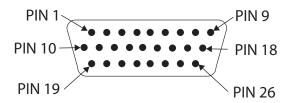
The eight outputs share a common, sourcing driver integrated circuit. The driver is designed to supply a load with one side connected to ground. Each channel is capable of switching up to 0.7 A of current. This driver has over-temperature protection, shorted load protection, and is current limiting. The driver draws power from the 24 VDC Control Power supplied to the robot through a self-reset-ting polyfuse.

Precautions for Safe Use


Output 8 can be assigned to indicate the robot's High Power state. When High Power is enabled, this output will turn ON. When High Power is not enabled, this output will be OFF. This is not a safety-rated means of indicating a High Power state and should only be used for monitoring the robot status. Use the ACE software to make this configuration if needed.

Precautions for Correct Use

Use surge suppression when switching inductive loads such as relays to prevent damage to the output circuits.


Additional Information

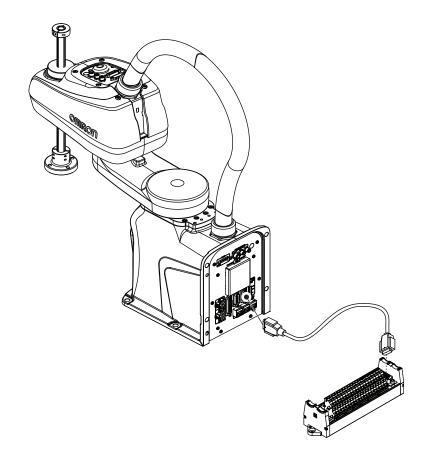
If there is an output short or other over-current condition, the affected output of the driver integrated circuit turns OFF until the condition is removed.

XIO Breakout Cable Pinouts

Use the following diagrams for XIO Breakout cable pinout information.

Pin Number	Signal	Wire Color
1	GND	White
2	24 VDC	White / Black
3	Common 1	Red
4	Input 1.1	Red / Black

Pin Number	Signal	Wire Color
5	Input 2.1	Yellow
6	Input 3.1	Yellow / Black
7	Input 4.1	Green
8	Input 5.1	Green / Black
9	Input 6.1	Blue
10	GND	Blue / White
11	24 VDC	Brown
12	Common 2	Brown / White
13	Input 1.2	Orange
14	Input 2.2	Orange / Black
15	Input 3.2	Gray
16	Input 4.2	Gray / Black
17	Input 5.2	Violet
18	Input 6.2	Violet / White
19	Output 1	Pink
20	Output 2	Pink / Black
21	Output 3	Light blue
22	Output 4	Light blue / Black
23	Output 5	Light green
24	Output 6	Light green / Black
25	Output 7	White / Red
26	Output 8	White / Blue
Shell	Shield	


XIO Termination Block

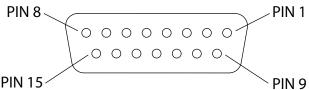
An XIO termination block can be connected directly to the XIO connector to provide simple wiring and access to the built-in I/O.

Additional Information

Refer to the Adept XIO Termination Block Installation Guide (00340-000) for more information.

3-7-2 **TIO Connector Signals and Wiring**

The TIO connector on the Secondary Interface Panel provides access to built-in digital I/O. The 5 available inputs correspond to V+ signal numbers 1033 to 1037.


The 4 available outputs correspond to V+ signal numbers 33 to 36.

The TIO connector pin assignments are provided below.

Additional Information

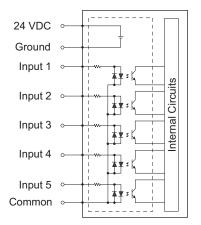
Refer to 2-3-2 XIO and TIO Connector I/O Specifications on page 2-12 for electrical specifications.

Refer to 2-5-1 Connector and Port Specifications on page 2-15 for connector specifications.

PIN 15

Pin Number	Designation	V+ Signal Number
1	Common	
2	Input 5	1037
3	Input 2	1034
4	Input 4	1036
5	24 VDC	
6	Output 3	35

3


Pin Number	Designation	V+ Signal Number
7	Output 4	36
8	Ground	
9	Input 1	1033
10	Input 3	1035
11	Ground	
12	Output 1	33
13	Output 2	34
14	Ground	
15		

TIO Internal Circuits

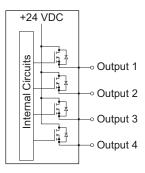
Use the following diagram to understand the TIO internal circuits.

• TIO Input Signals

The 5 input channels are optically isolated and share a common source / sink line.

• TIO Output Signals

The 4 outputs share a common, sourcing driver integrated circuit. The driver is designed to supply a load with one side connected to ground. Each channel is capable of switching up to 0.7 A of current. This driver has over-temperature protection, shorted load protection, and is current limiting. The driver draws power from the primary 24 VDC input to the robot through a self-resetting polyfuse.

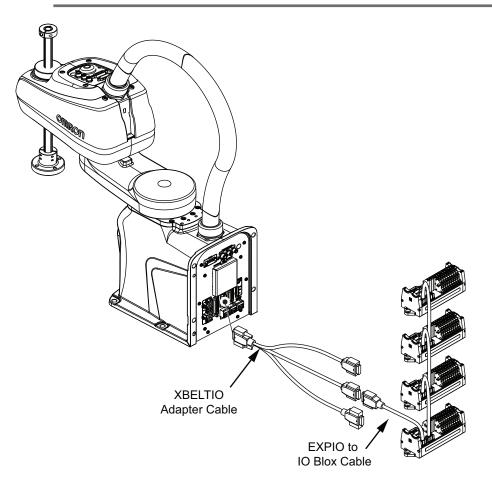

rh

Precautions for Correct Use

Use surge suppression when switching inductive loads such as relays to prevent damage to the output circuits.

Additional Information

If there is an output short or other over-current condition, the affected output of the driver integrated circuit turns OFF until the condition is removed.


3-7-3 IO Blox Connections

IO Blox units can be connected to the XBELTIO connector using the XBELTIO adapter cable. Up to 4 IO Blox units can be connected as shown below.

Additional Information

Refer to the Omron Adept IO Blox User's Guide (04638-000) for more information.

3-8 Installing Safety Equipment

The user-supplied safety equipment connects to the system through the XMCP, XUSR and XFP connectors on the XSYSTEM cable. Refer to the following sections for safety equipment connection details.

 The robot system must be installed with user-supplied interlock barriers. The interlocked barriers must open the E-Stop circuit in the event of personnel attempting to enter the work cell when High Power is enabled. Failure to install suitable guarding or interlocks could result in injury or death. We strictly prohibit installation, commissioning, or operation of any robot without adequate safeguards. These must be compliant with applicable local and national standards.

- The placement of safety controls shall avoid requiring a person to enter a hazardous area to actuate them.
- Controls shall be located outside of the safeguarded space, except for certain controls such as emergency stops or a teach pendant, where based on a risk assessment they may be located within the safeguarded space.

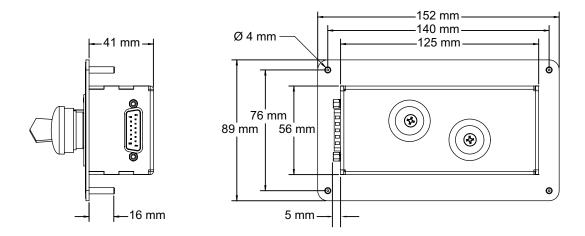
Before starting the operation of equipment, always confirm that the safety equipment of the robot works properly. If a malfunction of the safety equipment is detected, follow the procedure for abnormal conditions.

The design and installation of the complete system must comply with the safety standards and regulations in the country of use. The integrators of the robot should understand the safety laws and regulations in their countries and prevent major hazards from occurring in the complete system.

Additional Information

Refer to the Robot Safety Guide (Cat. No. 1590) for more information.

3-8-1 Installing the Front Panel


Use the dimensions below to install the Front Panel in a suitable location outside of the robot's workspace where it can be easily accessed for emergency stops.

The length of the XSYSTEM cable (1.8 m) and the length of the Front Panel extension cable (3 m) should also be considered when choosing an installation location. If you need to extend the Front Panel beyond the supplied cable distance, contact your local OMRON representative for more information.

Any High Power push-buttons must be installed outside of the robot's workspace.

Front Panel Connections

The Front Panel is connected directly to the XFP connector on the XSYSTEM cable with the 3 m extension cable supplied with the Front Panel.

- The part number of the extension cable is 10356-10500.
- The length of the extension cable is 3 m.

Additional Information

Refer to XFP Connections on page 3-23 for more information.

3-8-2 Safety Circuits

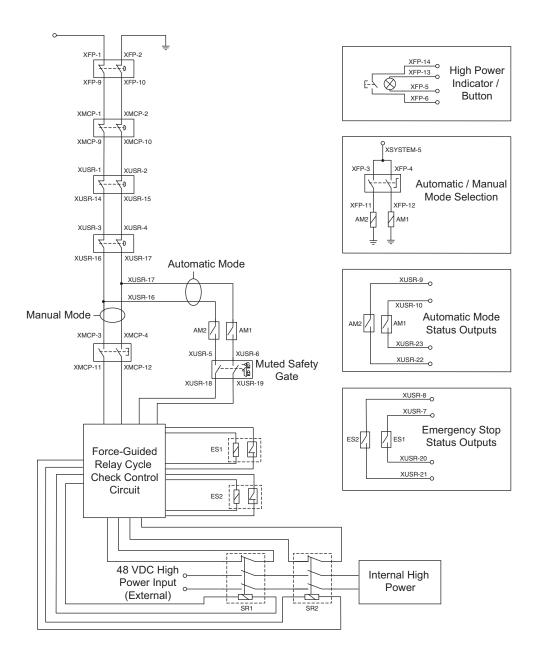
The XSYSTEM cable provides connections for all emergency stop circuits. All emergency stop circuits are dual-channel and voltage-free. These voltage-free contacts are provided by a redundant, cyclical-ly-checked, positive-drive, safety relay circuit for Category 3 PL-d per ISO 13849 operation.

The XUSR connector provides access to the following safety circuits.

- · Dual channel emergency stop inputs.
- Dual channel emergency stop status outputs.
- Dual channel muted safety gate inputs.
- · Dual channel Automatic / Manual mode status outputs.

The XFP connector provides access to the following safety circuits that are typically used with the Front Panel.

- Dual channel emergency stop inputs.
- Dual channel Automatic / Manual mode selection inputs.
- · High power indicator output.
- High power enable input.
- Control power indicator output.


The XMCP connector provides access to the following safety circuits that are use with a connected Teach Pendant.

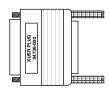
- Dual channel E-stop button inputs.
- Dual channel pendant enable switch inputs.

Use the diagram below to understand safety circuits.

3-21

3-8-2 Safety Circuits

XUSR Connections


Use the information in the following table to understand the signals provided on the XUSR connector.

Pins	Description	Additional Information
1, 14	Emergency stop channel 1 input	Typically connected to normally closed contacts on user-
2, 15	Emergency stop channel 2 input	supplied safety devices such as E-stop buttons, safety switches, or safety relays.

Pins	Description	Additional Information
3, 16 4, 17	Line emergency stop inputs	Normally closed contacts on user-supplied safety devices typically used for other robot or line emergency stop in- terconnection. This does not affect emergency stop indication signals on pins 7, 20.
5, 18	Muted safety gate channel 1 input	Causes emergency stop in Automatic mode only.
6, 19	Muted safety gate channel 2 input	
7, 20	Emergency stop status channel 1 output	Internal contacts are closed when Front Panel, Teach
8, 21	Emergency stop status channel 2 output	Pendant, and user-supplied safety devices are not ena- bled / activated.
9, 22	Automatic mode status channel 1	Internal contacts are closed when the robot is in automat-
10, 23	Automatic mode status channel 2	ic mode.
11, 12, 13, 24, 25	Reserved for future use.	

• XUSR Jumper Plug

The XUSR jumper plug is provided for safety equipment troubleshooting only.

Never run a robot system with all jumpers installed. This would leave the system with no E-Stops.

Additional Information

The XUSR jumper plug is supplied with the robot. The part number for the XUSR jumper plug is 04736-000.

XFP Connections

Use the information in the following table to understand the signals provided on the XFP connector.

Additional Information

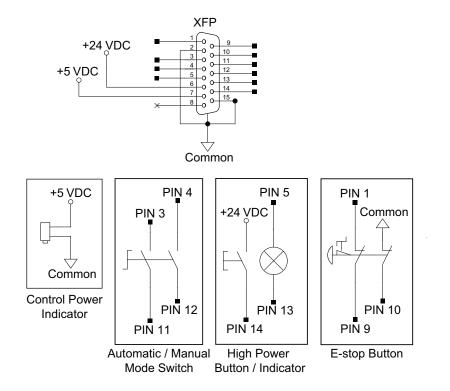
Refer to Front Panel Connections on page 3-21 for more information.

Pins	Description	Additional Information
1, 9	Front panel E-stop button channel 1 input	Typically connected to normally closed contacts
2, 10	Front panel E-stop button channel 2 input	on the E-stop button used with the Front Panel.
3, 11	Automatic / Manual mode selection channel 1 in- put	Typically connected to the selector switch used with the front panel. An open circuit selects
4, 12	Automatic / Manual mode selection channel 2 in- put	Manual mode. A closed circuit selects Automat- ic mode.
5, 13	System-supplied 5 VDC output (pin 5) and com- mon (pin 13) for High Power indicator lamp.	If lamp is user-supplied, it must draw between 10 mA to 500 mA to satisfy the internal High Power lamp monitoring function. ^{*1}
6, 14	High Power ON / OFF	Typically connected to a momentary push-but- ton that enables High Power when all safety circuits are satisfied.
7, 15	System-supplied 5 VDC output (pin 7) and com- mon (pin 15) for Control Power indicator.	If indicator is user-supplied, the recommended load is between 20 to 500 mA.
8	Reserved for future use	

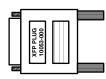
*1. Lamps that illuminate with a low current (10 mA to 25 mA) may appear dim when the High Power is OFF due to leakage current. If this occurs, add additional resistance to ensure the lamp is OFF when High Power is not enabled.

• XFP Wiring Diagram

Use the following diagram to understand XFP electrical connections.



If you supply your own Front Panel E-Stop, its design must comply with the requirements of IEC 60204-1 and ISO 13849. The E-Stop's push button must comply with ISO 13850.


Precautions for Correct Use

Do not disable or bypass the High Power button. This will violate IEC 60204-1.

• XFP Jumper Plug

The XFP jumper plug is provided for safety equipment troubleshooting.

Never run a robot system with all jumpers installed. This would leave the system with no E-Stops.

Additional Information

- The XFP jumper plug is supplied with the robot.
- The part number for the XFP jumper plug is 10053-000.

XMCP Connections

Use the information in the following table to understand the signals provided on the XMCP connector.

PIN 8 PIN 1 PIN 15 PIN 1 PIN 1 PIN 1 PIN 1 PIN 1 PIN 1 PIN 9

Additional Information

Refer to the T20 Pendant User's Manual (Cat. No. 1601) for additional information.

Precautions for Correct Use

If Teach Pendant cabling is installed, the jumper plug or the Teach Pendant must be connected to satisfy safety circuits and allow High Power to be enabled.

Pins	Description	Additional Information
1, 9	Pendant E-stop button channel 1	Connected to the pendant's integrated E-stop button.
2, 10	Pendant E-stop button channel 2	
3, 11	Pendant enable switch channel 1	Connected to the pendant's integrated enable switch.
4, 12	Pendant enable switch channel 2	
6	24 VDC pendant supply	
7	Serial communications TXD	Pendant serial communications transmit signal.
8	Serial communications RXD	Pendant serial communications receive signal.
13	Serial communications GND	Pendant serial communications ground signal.
Shield	Ground shield	
5, 14, 15	Reserved for future use.	

XMCP Jumper Plug

The XMCP jumper plug is used when there is no T20 pendant adapter cable connected.

Never run a robot system with all jumpers installed. This would leave the system with no E-Stops.

Additional Information

- · The XMCP jumper plug is supplied with the robot.
- The part number for the XMCP jumper plug is 10052-000.

Teach Pendant Jumper Plug

The Teach Pendant jumper plug is provided to allow the system to operate when Teach Pendant cabling is installed, but the Teach Pendant is not connected. This plugs into the Teach Pendant adapter cable when the pendant is not in use.

E T	

Additional Information

- The jumper plug is supplied with the Teach Pendant kit.
- The part number for the Teach Pendant jumper plug is 10048-000.

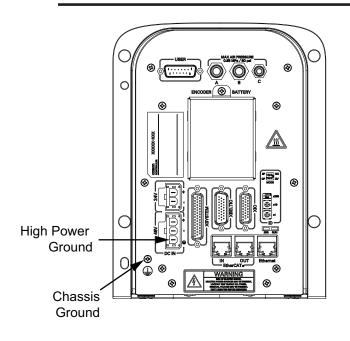
3-9 Supplying Power and Ground

The robot requires separate 24 VDC and 48 VDC power supplies. The 24 VDC supply provides Control Power and the 48 VDC supply provides power to the internal servo amplifiers. A lockout tagout main disconnect device must be installed on the AC supply to the 24 VDC and 48 VDC power supplies. These devices are user-supplied. Disconnect devices shall be accessible and conveniently located to facilitate application of lockout devices during service and maintenance. Use the information below to make all power supply connections to the robot.

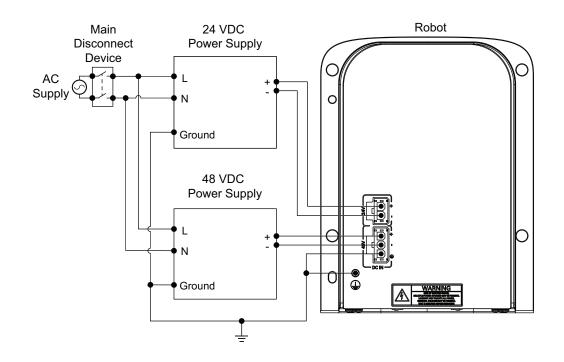
Additional Information

Refer to 2-3-1 *Power Supply Specifications* on page 2-12 for information about power supply requirements and other wiring details.

3-9-1 Grounding the System


The system should be grounded properly to avoid transient voltages or other electrical noise. There are two primary ground points on the system as described below.

- High Power ground
- Chassis ground

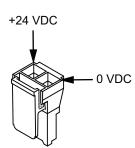

Precautions for Safe Use

The Joint 3 quill and the tool flange are not grounded to protective earth. If hazardous voltages are present at any user-supplied robot-mounted equipment or tooling, you must install a ground connection from that equipment or tooling to the ground point on the robot base.

Ground Circuit

Use the following diagram to understand the recommended grounding circuit.

3-9-2 24 VDC Connections


The 24 VDC Control Power connector is located on the Primary Interface Panel. A 24 VDC power supply mating connector is provided with the robot.

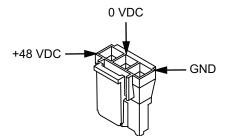
Use the illustration below to understand the polarity of the mating connector.

B.

Additional Information

The connector and pins are provided with the robot and require assembly with user-supplied wires. The connector part number is 02708-000. The pin part number is 02709-000.

3-9-3 48 VDC Connections


The 48 VDC High Power connector is located on the Primary Interface Panel. A 48 VDC power supply mating connector is provided with the robot.

Use the illustration below to understand the polarity and ground terminals of the mating connector.

Additional Information

The connector and pins are provided with the robot and require assembly with user-supplied wires. The connector part number is 22009-000L. The pin part number is 02709-000.

3-10 Verifying Installation

If any modifications have been made to the robot during installation or other actions, make the following checks before operation.

3-10-1 Mechanical Checks

Make the following mechanical checks after any hardware adjustments have been made to the system.

- · Check that the robot mounting surface is secure and adequate.
- · Check all mounting bolts and other fasteners for proper torque.
- Check the tool flange and end-of-arm tooling for correct installation and grounding (when necessary).
- · Check any equipment that is mounted to the robot to make sure it is securely fastened.

3-10-2 System Cable Checks

Make the following system cable checks after any adjustments have been made to cable connections.

- Check all cables and connectors to ensure that they are securely fastened and free of damage.
- Check the system ground and power supply connections to make sure that they are connected properly.
- Check that all cables are adequately supported and not strained near the connectors.

3-10-3 Safety Equipment Checks

Make the following checks to all user-supplied safety equipment to ensure emergency stops are properly installed and other safety systems are functioning correctly.

When checking safety equipment, the following prerequisites are necessary.

- · ACE software must be installed and available.
- The Front Panel operating mode switch must be in the Automatic position.
- · All emergency stop devices must be able to be activated and deactivated easily.

Use the following utilities in the ACE software to confirm safety operations controlled by robot software.

Safety Setting Function	Description
Configure Teach Restrict	The objective of the Teach Restrict feature is to comply with safety regulations
Verify Teach Restrict Auto	which require that the speed be limited while the robot is in Manual mode.
Verify Teach Restrict Manual	This is hardware-based safety functionality to prevent rapid robot motion in Manual mode even in the unexpected event of software error attempting to move a robot faster than allowed. While jogging the robot in Manual mode, if any joint exceeds its configured speed limit, the system will disable High Pow- er. Configuration will set predetermined speed limits for each robot motor. Verification will verify that Teach Restrict operations are functioning properly in Automatic and Manual modes.

Safety Setting Function	Description	
Configure E-stop Hardware	The objective of the ESTOP hardware delay feature is to comply with safety	
Delay	regulations which require the robot to have the capability of disabling High	
Verify E-stop Hardware Delay	op Hardware Delay Power without software intervention in an emergency stop situation.	
	Configuration will set the delay for the emergency stop timer circuit.	
	Verification will verify that High Power is disabled without software interven-	
	tion in an emergency stop situation.	

Additional Information

Refer to the Automation Control Environment (ACE) Version 4 User's Manual (Cat. No. 1633) for more information about using the Safety Setting functions.

Emergency Stop Check Procedure

Use the following procedure to check for correct emergency stop operation.

- 1 If a pendant is present in the system, connect it to the XSYSTEM cable.
- **2** Prepare all emergency stop devices for enabling the robot High Power.
- **3** Enable the robot High Power with one of the methods described in *4-3-1 Enabling Robot High Power* on page 4-5.
- 4 Confirm that robot High Power is enabled using the High Power indicator. If robot High Power is not enabled, refer to *Section 5 Troubleshooting* on page 5-1 for more information.
- **5** Activate each and every emergency stop device connected to the system to check that High Power is disable for all safety equipment. This includes pendant safety devices, Front Panel safety devices, and any other safety equipment wired to the XUSR connector. After one safety device check is made, deactivate it, enable High Power again, and make a check for the next safety device. Repeat 2 to 5 until all safety device functionality is confirmed to be working properly.

High Power Indicator Check

When High Power is enabled, an amber indicator lamp must turn ON to alert personnel that the robot is capable of motion to satisfy safety requirements.

• High Power Indicator Check Procedure

Use the following procedure to verify that the High Power indicator is working correctly.

- 1 Apply Control Power to the robot and disable High Power.
- **2** Make a High Power request using one of the methods described in *High Power Request Methods* on page 4-6.

3 Check that the High Power indicator flashes. After the High Power request is made and the indicator is checked, the procedure is complete.

3-10-4 Switch Position Checks

Switches on the Primary Interface Panel are reserved for future use and have no effect on the operation of the system. 3 Installation

4

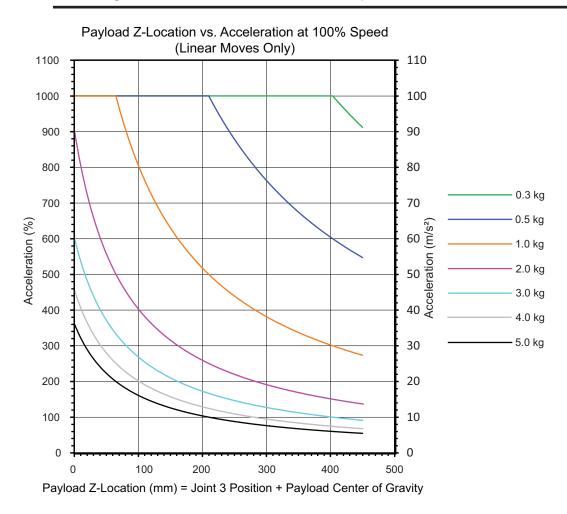
Operation

This section provides information necessary to operate the robot.

4-1 Payload and Acceleration Considerations		
4-2 Robo	ot Control Modes	
4-2-1	Manual Mode	
4-2-2		
4-3 Enab	ling and Disabling the Robot	
4-3-1		
4-3-2		
4-4 LED	Indicator	
4-5 Brak	e Operation	
4-5-1	•	
4-6 Conn	necting to the Robot	
4-6-1	Initial Connection Procedure	4-10
4-7 Manu	ually Jogging the Robot	

٢Þ

4-1 Payload and Acceleration Considerations


Careful considerations must be made when using high payloads, high accelerations, or a combination of both.

If non-linear moves such as joint moves or arc moves are required with high speeds or high payloads, contact your local OMRON representitive for more information about acceleration and payload limitations.

Use the following chart to understand the limitations to acceleration and payload when making linear moves. Some linear moves are not achievable over all paths in the working envelope.

Precautions for Correct Use

Operating the robot outside of the payload and speed constraints described in this document can damage or reduce the service life of the z-axis quill.

4-2 Robot Control Modes

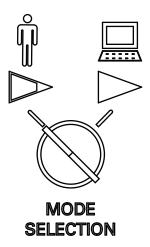
The robot can operate in Automatic or Manual control modes. These modes are described in the following sections.

4-2-1 Manual Mode

Manual mode is typically used during functions of commissioning, position teaching, and other setup operations. In this mode, the robot will respond to the control signals issued by the connected pendant.

When the robot is placed in Manual mode, robot motion speed is limited to 250 mm/sec and servo torque is limited so an operator can safely work inside the cell. Programs can execute from the pend-ant in STEP mode.

Precautions for Safe Use


- After the robot is placed in Manual mode using the Front Panel key switch, the key should be removed for safety purposes.
- During manual operation, ensure all persons are a safe distance away from the robot work envelope.

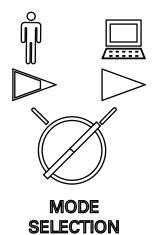
Additional Information

Refer to the T20 Pendant User's Manual (Cat. No. 1601) for more information.

To place the robot in Manual mode, use the Front Panel key switch and rotate it to the left position as indicated below. Changing the robot control mode will automatically disable High Power.

4-2-2 Automatic Mode

Automatic mode is used when the robot is operating under normal conditions. When the robot is placed in Automatic mode, program execution will control the robot up to the maxi-


mum speed.

Precautions for Safe Use

Prior to placing the robot in Automatic Mode, all safeguards must be returned to their safe state.

To place the robot in Automatic mode, use the Front Panel key switch and rotate it to the right position as indicated below. Changing the robot control mode will automatically disable High Power.

In Automatic mode, the robot can move unexpectedly. Ensure all personnel remain clear of the cell when Automatic mode is enabled.

4-3 Enabling and Disabling the Robot

Enabling the robot energizes all robot servo motors with the 48 VDC power supply. This is also referred to as enabling High Power. When the robot is enabled, it is capable of moving. Program execution and I/O control functions are still operational when High Power is disabled. However, ATTACH or other motion commands may return errors or delay program execution if High Power is disabled. Refer to the *eV*+ *Language Reference Guide (Cat. No. 1605)* for more information. Disabling the robot de-energizes all robot servo motors.

Additional Information

When High Power is enabled, the brake is automatically released. When High Power is disabled, the brake is automatically activated to prevent downward motion of the quill due to gravity.

Precautions for Safe Use

High Power cannot be enabled unless all safety circuits are satisfied.

4-3-1 Enabling Robot High Power

Enabling the robot High Power can be achieved with different methods under certain conditions as described in the following sections.

High Power Safety Timeout

If the safety timeout function is enabled in the robot configuration, the High Power indicator on the Front Panel will flash for a specified amount of time after a High Power request is made. If the High Power button is not pressed within the specified amount of time, a safety timeout occurs and High Power is not applied.

The safety timeout function is enabled by default and has a duration set for 10 seconds. The safety timeout function configuration settings are accessed with the ACE software. Refer to the *Automation Control Environment (ACE) Version 4 User's Manual (Cat. No. 1633)* for more information.

Precautions for Correct Use

If a Front Panel is not present, the High Power indicator and High Power button signals can be accessed with the XFP system cable connector. Refer to *Front Panel Connections* on page 3-21 for more information.

High Power and Faults

If a fault is present, the robot will not enter the High Power state.

The AUTO.POWER.OFF system switch controls if the robot prevents or disables High Power for the following errors. Refer to the *eV*+ *Language Reference Guide (Cat. No. 1605)* for more information.

High Power Request Methods

There are several methods to request robot High Power as described below.

• Request Power with the Front Panel

When a Front Panel is present in the system, the High Power button can be used to request High Power to the robot.

Additional Information

Refer to *Front Panel Connections* on page 3-21 for more information about connecting external devices to the High Power enable signal on the XFP connector.

• Request High Power with a Connected PC

High power can be requested with the ACE software. Refer to the *Automation Control Environment* (ACE) Version 4 User's Manual (Cat. No. 1633) more information.

• Request High Power with a User Program

High power can be requested with a user program through the use of the POWER system switch keyword. Refer to the *eV*+ *Language Reference Guide (Cat. No. 1605)* for more information.

• Request High Power with the Pendant

If a pendant is connected to the robot, it can be used to request High Power. Refer to the *T20 Pendant User's Manual (Cat. No. 1601)* for more information.

4-3-2 Disabling High Power

The conditions described below can disable or prevent the robot High Power state.

- · Robot faults.
- E-stop open circuit detection.
- · User programming with the POWER system switch keyword.
- External signals connected to the XUSR connector on the XSYSTEM cable.

4-4 LED Indicator

The LED indicator on the top of the outer link provides a visual status of the robot. The LED indications and associated robot states are described below.

Precautions for Safe Use

The LED indicator does not reflect the robot's High Power status. To see the robot's High Power status, use the Front Panel indicator or a user-supplied indicator connected to the XFP connector.

LED Indication	Robot State	
OFF	Control Power is not present.	
Solid White	The robot is initializing.	
Solid Blue	The robot is booting.	
Slow Flashing Blue (0.25 Hz)	The robot is in an idle state with no errors present.	
Fast Flashing Green (1 Hz)	The robot is in a normal operating state while in Automatic mode.	
Slow Flashing Green (0.25 Hz)	The robot is in a normal operating state while in Manual mode.	
Fast Flashing Red (1 Hz)	The robot is in an error state from an emergency stop or other condition.	
Solid Red	The robot has a system error.	

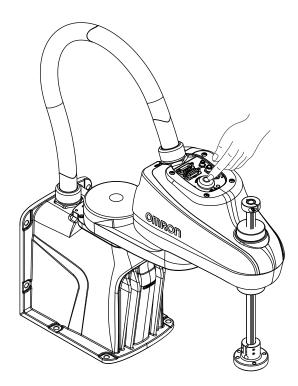
4

4-5 Brake Operation

The robot has a mechanical brake on joints 3 and 4. Releasing the brake is typically done when you need to manually position joint 3 or 4. The brake is controlled with the methods described below. The mechanical brake is capable of preventing the z-axis quill from lowering more than 5 mm when up to 100 N of downward force is applied.

Releasing a brake may cause the quill, tool flange, end-effector, and payload to drop. To prevent possible injury to personnel or damage to the equipment, make sure that the equipment is supported when releasing the brake and verify that the end-effector and payload are clear of all obstructions.

Precautions for Safe Use


- The braking mechanism operates passively. If 24 VDC Control Power is removed from the system, the brake mechanism will automatically activate. 24 VDC Control Power must be supplied to release the brake. To prevent possible damage to the equipment, remove any payload from the end-of-arm tooling, make sure that Joint 3 is supported while releasing the brake, and verify that the end-of-arm tooling or other installed equipment is clear of all obstructions.
- In case of entrapment of a person by the robot or any other emergency or abnormal situation, you can manually move the inner and outer links to a safe position while 48 VDC High Power is disabled. A brake device prevents Joints 3 and 4 from moving when High Power is disabled and can only be released while 24 VDC Control Power is present.

Precautions for Correct Use

- Attempting to release the brake while High Power is ON will automatically disable High Power. If the robot is moving, this will cause it to stop abruptly.
- Robot joints 1 and 2 have no brake mechanism and can be manually moved when power is not present.
- Avoid rotating the quill / Joint 4 when the brake is released. This could result in an out-ofrange condition and may prevent program execution.

4-5-1 Built-in Brake Release Button

The brake release button is built-in and integrated into the LED indicator light on the top of the outer link. Pressing this button while the 24 VDC Control Power is ON and High Power is disabled will release the brake. The brake will remain released while the button is pressed. Releasing the button will re-enable the brake.

4

4-6 Connecting to the Robot

Use the information in this section to establish a connection to the robot with the ACE software.

The following conditions must be present before attempting to connect to the robot.

- ACE software must be installed on the PC.
- The robot must be completely installed with all safety equipment connected and verified.
- 24 VDC Control Power must be supplied to the robot.
- An Ethernet network must be available and connected to the robot and the PC.

4-6-1 Initial Connection Procedure

Use the procedure below to detect and connect to a robot controller.

- **1** After starting the ACE software, click the **Connect to Device** item. If the robot controller appears in the Detected Controller IP Address area, select it and click the **Connect** Button. This will initiate the online connection process. If no controller appears in this area, proceed to the next step.
- 2 To find a robot controller on the Ethernet network, click the **Detect and Configure Robotic Controller** Button. This will open the Controller IP Address Detection and Configuration Dialog Box.

In this area, a detected controller's properties can be modified to establish an online connection.

If a controller is detected but resides on a different LAN and does not have a gateway configured, an online connection is not possible until one of the following actions are taken.

- The detected controller's IP address and / or subnet is changed for compatibility with the PC's LAN connection. Select the detected controller and change the Desired Properties Address, Subnet, and Name accordingly.
- The PC's IP address and LAN connection are changed to be compatible with the controller's network settings. Adjust the PCs network adapter properties accordingly.

Precautions for Correct Use

If no controller(s) is detected, check the Ethernet network and cables and ensure that a network connection is available to the robot and the PC.

3 After the desired robot controller appears with the proper network settings, click the **Connect** Button to establish a connection and complete this procedure.

4-7 Manually Jogging the Robot

Manually jogging the robot is typically performed during setup or when teaching locations.

Precautions for Safe Use

During manual operation, ensure all persons are a safe distance away from the robot work envelope.

The following considerations should be made when jogging the robot.

- The jog speed and accelerations of the robot are reduced from normal operating speeds and accelerations.
- The jog speed of the robot can be adjusted.
- Robot motion can be incremented by specified amounts when extra precision is needed.
- Jogging can be executed in world, tool, or joint modes.
- The robot can be manually jogged with software or a pendant. Refer to the Automation Control Environment (ACE) Version 4 User's Manual (Cat. No. 1633) or the T20 Pendant User's Manual (Cat. No. 1601) for more information.
 - The robot can be jogged with the pendant while in Automatic mode or in Manual mode.
 - The robot can be jogged with the software while in Automatic mode. If the pendant is connected, it must be set to COMP to allow the software to jog the robot.

4

4 Operation

5

Troubleshooting

This section provides robot troubleshooting information.

5-1	Fault Detection	5-2
5-2	Emergency Stop Troubleshooting	5-3
5-3	Error Messages	5-4

5-1 Fault Detection

Robot faults can be detected with the following methods.

- Create a V+ program to change the state of an output signal when a fault is present. Refer to the *eV* + *Language Reference Guide (Cat. No. 1605)* for more information.
- Use the LED indicator to visually see when a fault is present. Refer to *4-4 LED Indicator* on page 4-7 for more information.
- Connect a PC running the ACE software.

5-2 Emergency Stop Troubleshooting

If the emergency stop circuit is not operating as expected, the following supplied jumper plugs can be used to troubleshoot the problem. These jumpers can be placed on the XSYSTEM cable to bypass and isolate safety devices. Refer to *3-6-1 System Cable Overview* on page 3-10 for jumper installation locations.

- XFP jumper plug (part number 10052-000)
- XUSR jumper plug (part number 04736-000)
- XMCP jumper plug (10052-000)

\land WARNING

Never run a robot system with all jumpers installed. This would leave the system with no E-Stops.

5

5-3 Error Messages

The following table lists robot error messages. Use the ACE software to access robot status codes.

Additional Information

Other system messages may be present. Use the ACE software to check for these messages.

Error Code	eV+ Error Message	Explanation	Corrective Action
-606	*Robot overheated*	The temperature sensor on the embedded processor board is at its temperature limit.	Try slowing the motion or insert pauses. Also, check for excessive ambient temperature, inadequate ventilation, and proper function of any cooling fans.
-643	*E-STOP detected by ro- bot*	An E-STOP condition has been detected by the robot.	Remove the source of the E-STOP and re-enable High Power.
-648	*Safety System Not Com- missioned*	The E-Stop Delay has not been commissioned and verified. The Teach Restrict has not been commissioned and verified.	Commission and verify the E-Stop Delay or Teach Restrict.
-651	*RSC communications failure*	There is a failure to communicate with the Robot Signature Card.	Contact your local OMRON support.
-670	*RSC power failure*	The 24 VDC input voltage is out of bounds (too high or low). The high-voltage DC bus for the amplifiers is out of bounds (too high or low). A loss of High Power was detect- ed.	Check connections and voltage lev- el from the user-supplied 24 VDC power supply. Check High Power connections for shorts or opens. Turn High Power back ON and restart the program. If the error persists, contact your local OMRON support.
-1007	*Motor stalled* Mtr #	A motor stall occurs when the maximum allowed torque was ap- plied on a given motor for longer than the timeout period. Typically occurs when an obstacle is en- countered.	Check for obstacles and free move- ment of all joints. Turn High Power back on and repeat the motion that failed.

Error Code	eV+ Error Message	Explanation	Corrective Action
-1009	*Safety System Fault* Code 0	Robot hardware did not detect pressing the Front Panel High Power button before the servo system attempted to enable pow- er.	Contact your local OMRON support.
	Safety System Fault Code 1	Contact your local OMRON support	•
	Safety System Fault Code 2	The safety system failed on chan- nel 1 during the cyclic check of du- al-channel power system. This may indicate a welded relay con- tact or other hardware failure.	Contact your local OMRON support.
	Safety System Fault Code 3	The safety system failed channel 2 during the cyclic check of dual- channel power system. May indi- cate hardware failure.	
	Safety System Fault Code 4	The internal E-STOP delay timer timed out and turned power off. Normally, software sequences the shutdown before the time-out.	
	Safety System Fault Code 5	The power system was improperly unlocked by software during a power sequence in manual mode.	
	Safety System Fault Code 6	CAT-3 hardware safety system de- tected an encoder OVERSPEED and turned power off. This circuit is active in Manual mode only on select robots which have the CAT-3 teach mode option.	Intentionally triggered during specif- ic commissioning tests for the CAT-3 system. If during normal op- eration, contact your local OMRON support.
	Safety System Fault Code 9	Error reported by the watchdog circuit that cross-checks the clocks for the dual-channel safety system.	Contact your local OMRON sup- port.
	Safety System Fault Code 10	An error was detected during a software self test of a secondary safety and monitoring circuit (SRV_DIRECT / SRV_ STAT).	
-1016	*Motor overheating* Mtr #	The motor encoder temperature sensor indicates an overtempera- ture.	Reduce robot speed, acceleration and/or deceleration motions, or in- troduce delays in the application cycle to give the motor an opportu- nity to cool.
-1018	*Motor Amplifier Fault*	A power amplifier fault is indicated on axis #.	Check user motor power connec- tions for shorts or opens. Turn High Power back ON and re- start the program. If the error per- sists, contact your local OMRON support.

Error Code	eV+ Error Message	Explanation	Corrective Action
-1021	*Duty-cycle exceeded* Mtr #	The indicated motor (#) has high power use for too long a period of time. The servo system has disa- bled power to protect the robot hardware.	 Turn High Power back ON and reduce the speed or acceleration for the motion that was in progress or for motions that preceded the message. If the robot is operating at low temperatures when this error occurs, perform a warm-up operation at low speeds and acceleration and then resume normal operation. If the robot is operating at high temperatures when this error occurs, reduce speed, acceleration, or provide additional cooling and then resume operation.
-1025	*Encoder Fault*	The servo system has detected an electrical or physical condition that resulted in an encoder fault.	Refer to the eV+ Language Refer- ence Guide (Cat. No. I605) for more information.
-1027	*Hard envelope error* Mtr #	The indicated motor was not track- ing the commanded position with sufficient accuracy as set by the configuration.	Turn on high power and try to per- form the motion at a slower speed. Make sure that noth- ing is obstructing the robot's mo- tion. If the error continues, contact your local OMRON support.
-1115	*Power system failure* Code 0	The dual-channel brake circuit has reported a cyclic check error.	Contact your local OMRON support.
	Power system failure Code 1	The power system has unexpect- edly turned off power.	
	Power system failure Code 2	Overvoltage in the highvoltage DC bus to the regenerative energy dump circuit.	
	Power system failure Code 3	The regenerative energy dump cir- cuit has exceeded its max short- term dump rating.	
	Power system failure Code 4	Contact your local OMRON support.	
	Power system failure Code 5	An inrush error was detected by the power sequencer. This means the high-voltage DC bus failed to rise at the expected rate when power was enabled.	This can occur if High Power is abruptly removed during the High Power enable sequence. If it occurs unexpectedly, contact your local OMRON support.

Maintenance

This section provides information for maintaining the robot.

6-1	Field-r	Field-replaceable Items6-			
6-2	Period	ic Maintenance	6-3		
	6-2-1	Periodic Maintenance Overview	. 6-3		
	6-2-2	Checking Safety Functions	. 6-3		
	6-2-3	Checking Fastener Torques	. 6-4		
	6-2-4	Checking Safety and Warning Labels	. 6-4		
	6-2-5	Checking for Oil Leaks	. 6-5		
	6-2-6	Lubricating Joint 3	. 6-6		
	6-2-7	Replacing Encoder Backup Batteries	. 6-7		
	6-2-8	Cleaning the Robot	. 6-8		
6-3	Non-pe	eriodic Maintenance	6-9		
	6-3-1	Replacing the Tool Flange	. 6-9		

6-1 Field-replaceable Items

The following items are field replaceable. Contact your local OMRON representative for parts not listed below.

Precautions for Correct Use

Only replace items on the robot system with the parts supplied by OMRON.

Item	Part Number	Description
Encoder Backup Batter- ies (3)	20269-000F	3.6 VDC lithium-thionyl chloride AA-size bobbin cell type.
Tool Flange	19360-016F	Tool flange assembly including all fasteners, washers, and thread lock compound.
Front Panel	92546-10358	Front Panel kit including extension cable.

6-2 Periodic Maintenance

This section lists when to perform periodic maintenance on your robots and the steps for checking each item to inspect.

6-2-1 Periodic Maintenance Overview

The following table gives a summary of the periodic maintenance procedures and guidelines on frequency.

Item	Period	Reference
Check E-Stop, enable and key switches, and barrier interlocks	6 months	Refer to 6-2-2 Checking Safety Functions on page 6-3 for more information.
Check fastener torques	3 months	Refer to 6-2-3 Checking Fastener Torques on page 6-4 for more information.
Check safety labels	1 week	Refer to 6-2-4 Checking Safety and Warning Labels on page 6-4 for more information.
Check the High Power indicator op- eration	1 week	Refer to <i>High Power Indicator Check Procedure</i> on page 3-32 for more information.
Check for signs of oil around robot joints	3 months	Refer to 6-2-5 Checking for Oil Leaks on page 6-5 for more information.
Lubricate the joint 3 quill	3 months or 150 km of travel	Refer to 6-2-6 Lubricating Joint 3 on page 6-6 for more information.
Replace the encoder backup bat- teries	2 to 4 years	Refer to 6-2-7 <i>Replacing Encoder Backup Batteries</i> on page 6-7 for more information.
Clean the exterior of the robot	As needed	Refer to 6-2-8 Cleaning the Robot on page 6-8 for more information.

6-2-2 Checking Safety Functions

All safety devices in the system should be checked regularly for proper functionality. Operating any of the following safety devices should disable robot High Power.

- E-stop button(s) on the Front Panel or connected to the XSYSTEM cable.
- E-stop button and enabling switch on the pendant (if connected).
- All other safety devices connected to the XSYSTEM cable.

$\langle \langle \rangle$

Precautions for Safe Use

The High Power indicator must be operational to satisfy safety requirements.

Additional Information

Refer to 3-10-3 Safety Equipment Checks on page 3-31 for more information.

High Power Indicator Check

The robot monitors current used by the High Power indicator. This is to ensure that a High Power indicator device is connected and functioning properly to satisfy safety requirements. If the robot does not detect a current between 10 mA to 500 mA when High Power is requested, an error condition (-924) *Front panel HIGH POWER lamp failure* will be present and High Power will not be enabled.

The High Power indicator needs to be periodically checked for correct functionality.

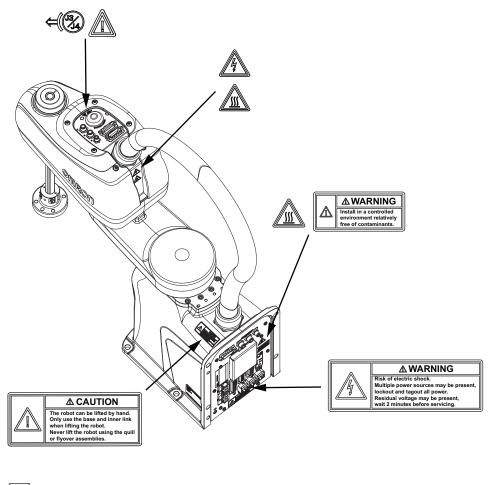
The following considerations should be made before beginning the High Power indicator check procedure.

- · Control power and High Power supplies need to be available.
- All connected safety devices must be capable of providing signals for a safe state.
- The robot High Power needs to be disabled and robot motions will not execute during this procedure.
- High Power safety timeout must be enabled to allow the indicator to flash after a High Power request is made. The recommended setting is 10 seconds. Refer to *Automation Control Environment* (*ACE*) Version 4 User's Manual (Cat. No. 1633) for more information.

High Power Indicator Check Procedure

Use the following procedure to verify that the High Power indicator is working correctly.

- **1** Apply Control Power to the robot and disable High Power.
- **2** Make a High Power request using one of the methods described in *High Power Request Methods* on page 4-6.
- **3** Check that the High Power indicator flashes. After the High Power request is made and the indicator is checked, the procedure is complete.

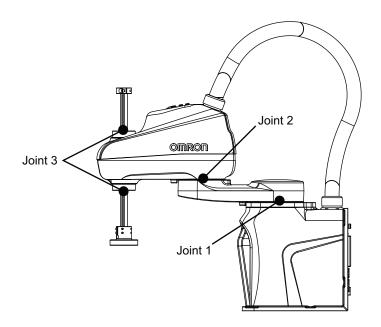

6-2-3 Checking Fastener Torques

The following fasteners must be periodically checked for proper torque.

- Mounting screws: 30 to 32 N-m
- External equipment mounting fasteners (if present): 2.5 N-m (M4 screws), 4.5 N-m (M5 screws)
- · Hardstops:
 - Joint 1 hardstops: 17 N-m
 - Joint 2 hardstops: 17 N-m
 - Joint 3 hardstop (clamp collar socket-head screw): 4.5 N-m
- Cable D-sub connectors: finger tight
- Tool flange setscrew: 1.1 N-m
- Tool flange socket-head screws: 2.5 N-m
- Tool flange end-of-arm tooling mounting fasteners: 7.5 N-m

6-2-4 Checking Safety and Warning Labels

This section lists the various safety and warning labels and their placement on the robot. Use this information to perform periodic checks.



Additional Information

The *to be a set of the set of th*

6-2-5 Checking for Oil Leaks

Periodically check the robot for oil leaks. Carefully inspect the following points for oil or excessive debris accumulation. Oil and dirt should not be present. If oil or excessive debris accumulation is detected, contact your local OMRON support representative.

6-2-6 Lubricating Joint 3

The joint 3 quill needs to be lubricated on a periodic basis of 3 months or 150 km of linear travel, whichever comes first.

Precautions for Correct Use

Only use the recommended grease on the joint 3 quill. Use THK AFF Grease (part number 20950-000). Refer to the provided Safety Data Sheet for proper handling.

Joint 3 Lubrication Procedure

Use the following procedure to lubricate joint 3.

Precautions for Safe Use

The braking mechanism operates passively. If 24 VDC Control Power is removed from the system, the brake mechanism will automatically activate. 24 VDC Control Power must be supplied to release the brake. To prevent possible damage to the equipment, remove any payload from the end-of-arm tooling, make sure that Joint 3 is supported while releasing the brake, and verify that the end-of-arm tooling or other installed equipment is clear of all obstructions.

Precautions for Correct Use

Avoid rotating the quill / Joint 4 when the brake is released. This could result in an out-of-range condition and may prevent program execution.

Additional Information

Ensure there are no z-axis motion restrictions. The full operating stroke is required during this lubrication procedure.

- **1** Press the brake release button while moving the z-axis to the top of its stroke to expose the upper section of the quill.
- **2** Remove any existing grease or debris from the exposed quill with a clean, lint-free cloth.
- **3** Apply a small bead of grease to all grooves on the quill.
- **4** Press the brake release button while moving the z-axis to the bottom of its stroke to expose the lower section of the quill.
- **5** Remove any existing grease or debris from the newly exposed section of the quill with a clean, lint-free cloth.
- **6** Move the z-axis up and down to distribute the new grease. This can be accomplished manually with the brake release button or by jogging the z-axis. After this step is finished, the joint 3 lubrication procedure is complete.

6-2-7 Replacing Encoder Backup Batteries

Backup batteries maintain joint position data stored by internal encoders. This data is protected by 3 lithium backup batteries located in the Primary Interface Panel.

Encoder backup batteries need to be replaced on a periodic basis of 2 to 4 years or when a low battery alarm is present.

Before beginning the replacement procedure, have the following items available.

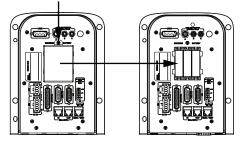
- Cross-head screwdriver, point size #1
- Three new replacement batteries (part number 20269-000F).

Encoder Backup Battery Replacement Procedure

Use the following procedure to replace encoder backup batteries.

Voltage must be maintained during the encoder backup battery replacement procedure to preserve joint position data. If 24 VDC Control Power is available, apply it to the robot during the battery replacement procedure. If 24 VDC Control Power is not available during the battery replacement procedure, replace one battery at a time and do not allow all three batteries to be absent from the compartment.

Precautions for Safe Use


- Batteries may leak, rupture, heat, or ignite. Never short-circuit, charge, disassemble, heat, or incinerate a battery or subject it to strong shock.
- Dispose of any battery that has been dropped or otherwise subjected to excessive shock. Batteries that have been subjected to shock may leak if they are used.
- Customers can contribute to resource conservation and protecting the environment by the proper disposal of WEEE (Waste Electronics and Electrical Equipment). All electrical and electronic products should be disposed of separately from the municipal waste system via designated collection facilities. For information about disposal of your old equipment, contact your local OMRON representative.

Precautions for Correct Use

Only replace items on the robot system with the parts supplied by OMRON.

1 Remove the encoder battery compartment cover fastener screw and then remove the cover.

Encoder Battery Compartment Cover Fastener Screw

- **2** Remove and replace the batteries while observing orientation for correct polarity indicated in the battery compartment (upwards is positive).
 - If 24 VDC Control Power is present, remove and replace all three batteries.
 - If 24 VDC Control Power is not present, remove and replace only one battery at a time.
- **3** After all batteries have been replaced, fasten the battery compartment cover to the Primary Interface Panel to complete this procedure.

6-2-8 Cleaning the Robot

Clean the exterior of the robot as needed. Inspect the external surface of the robot frequently when used in a dirty environment.

Remove any dirt and debris from the exterior of the robot. Debris can accumulate around robot joints. Take extra effort to clean around these areas.

Do not use organic solvents to clean any part of the robot unless directed in the cleaning instructions. Organic solvents might damage electronics resulting in an unsafe operating state that could cause injury or damage to equipment.

6-3 Non-periodic Maintenance

This section provides information and instructions for performing maintenance that does not occur at regular intervals.

6-3-1 Replacing the Tool Flange

Replace the tool flange if it gets damaged.

Before beginning the procedure, have the following tools available.

- 2.5 mm hex bit
- 3 mm hex bit
- Torque wrench
- · Loctite thread lock type 243 or equivalent
- · Loctite thread lock type 222MS or equivalent

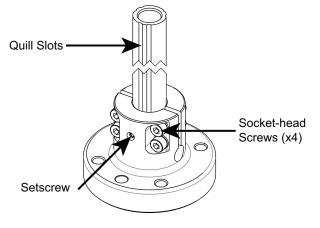
Failure to ground robot-mounted equipment or tooling that uses hazardous voltages could lead to injury or fatality of a person touching the end-effector during an electrical fault.

🗥 WARNING

If air pressure is present, disconnect it from the robot when servicing end-of-arm tooling or other pneumatic components to prevent unsecured pneumatic air lines from accidentally injuring personnel.

Precautions for Safe Use

The Joint 3 quill and the tool flange are not grounded to protective earth. If hazardous voltages are present at any user-supplied robot-mounted equipment or tooling, you must install a ground connection from that equipment or tooling to the ground point on the robot base. Refer to *3-9-1 Grounding the System* on page 3-28 for more information about grounding the Tool Flange.



Precautions for Correct Use

When removing and replacing the tool flange, you must reinstall it in the same position to avoid losing the calibration for the robot.

Tool Flange Replacement Procedure

Use the following procedure to replace the tool flange on the z-axis quill if necessary.

- 1 Take note of the old tool flange position and orientation on the quill.
- 2 Loosen the setscrew and socket-head screws while holding the old tool flange in place. This prevents it from falling off the z-axis quill.
- 3 Slide the tool flange off the z-axis quill.
- 4 Align the setscrew with the proper groove in the z-axis quill.
- 5 When the orientation is correct, slide the new tool flange up on the z-axis quill until it stops.
- 6 Apply thread lock (Loctite 243 or equivalent) to the setscrew and tighten to a torque of 1.1 N-m.

Precautions for Correct Use

Do not over-tighten the tool flange setscrew. This will cause off-center alignment of the tool flange on the quill.

7 Apply thread lock (Loctite 222MS or equivalent) to the socket-head screws and then use a torque wrench to tighten one of the socket-head screws to 1 N-m. Then, apply the same torque to the other socket-head screws. Finally, tighten each socket-head screw to the full 2.5 N-m torque.

When all socket-head screws are tight and the new tool flange is verified to be in the correct orientation, the replacement procedure is complete.

A

Appendices

A-1	Unnac	king and Inspecting the Robot	Δ-2
	A-1-1 A-1-2	Before Unpacking the Robot Unpacking the Robot	A-2
A-2	Repac	king the Robot for Transport	
A-3	Transp	oortation and Storage Considerations	A-5
A-4	I/O Sig	nal Numbering	A-6
	A-4-1	-	
	A-4-2	Output Signal Numbering	A-6
A-5	Cable	Pinouts	A-7
	A-5-1	XSYSTEM Cable Pinouts	
	A-5-2	XBELTIO Adapter Cable Pinouts	A-8
	A-5-3	Belt Encoder Y-adapter Cable Pinouts	
A-6	Parts L	_ist	A-11

A-1 Unpacking and Inspecting the Robot

This section provides information about unpacking and inspecting the robot.

A-1-1

Before Unpacking the Robot

Before unpacking the robot, carefully inspect all shipping containers for evidence of damage during transit. Pay special attention to any tilt and shock indication labels on the exteriors of the containers.

Precautions for Correct Use

If any damage is detected before unpacking the robot, request that the carrier's agent be present when you unpack the container.

A-1-2 Unpacking the Robot

The robot ships fastened to a pallet with the following items included inside the container.

- Accessories box
- Documents
- Software

Use the following procedure to unpack the robot from its shipping container. The following tools are required:

- 6 mm hex key
- · Cutting tools for securing straps and stretch wrap.

Additional Information

Retain all containers and packaging materials. These items may be necessary if there is any apparent damage or relocation becomes necessary at a later date. Prepare the mounting surface and have all mounting items available before beginning this procedure so the robot can be mounted immediately after unpacking. Refer to *3-2-2 Mounting Procedure* on page 3-3 for more information.

Precautions for Safe Use

The robot can be lifted by hand. Only use the base and inner link when lifting the robot. Never maneuver the robot using the quill or flyover assemblies.

Precautions for Correct Use

If the robot has a bottom Primary Interface Panel orientation, do not temporarily set the robot upright on a flat surface because this can damange the Primary Interface Panel connectors.

N

1 Begin by placing the shipping container on a flat and level surface.

2 Remove the straps that secure the outer shell to the pallet.

3 Lift the outer shell up and off the pallet and set it aside.

- **4** Remove the straps that secure the accessory box to the pallet and set it aside.
- **5** Inspect the entire robot for damage before proceeding. If any damage is evident, contact your local OMRON representative.
- 6 Remove the 4 M8 X 50 screws that fasten the robot to the pallet.

The robot's center of mass can cause the robot to fall over if the robot is not properly secured with the mounting bolts.

Do not reuse the screws to mount the robot. They are not sufficient grade.

- 7 Lift the robot and relocate it to the mounting surface.
- **8** Fasten the robot to the mounting surface using the 3-2-2 *Mounting Procedure* on page 3-3. When the robot is fastened to the mounting surface, the unpacking procedure is complete. After the robot is fastened to the mounting surface, the strech wrap and quill foam padding can be removed.

A-2 Repacking the Robot for Transport

The robot must be carefully packed if it needs to be transported. Reuse all original packing containers and materials and follow all safety guidelines detailed in the installation section of this manual. Reverse the installation instructions and unpacking instructions provided in this manual to repack the robot.

A-3 Transportation and Storage Considerations

This section provides details about transporting and storing your robot.

Precautions for Safe Use

- This equipment must be shipped and stored in a temperature-controlled environment, within the range –25 to +55°C. The recommended humidity range is 5 to 90%, non-condensing. It should be shipped and stored in the supplied packaging, which is designed to prevent damage from normal shock and vibration.
- Do not expose the shipping container to excessive shock and vibration. This could damage the robot.

Always keep the ISO double-arrows on the sides of the shipping container oriented up.

A-4 I/O Signal Numbering

Digital I/O for the eV+ programming language uses numeric signal numbers in the ranges provided below based on the I/O configuration of the system.

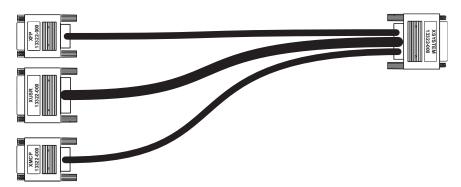
A-4-1 Input Signal Numbering

Use the table below to understand the digital input signal numbers.

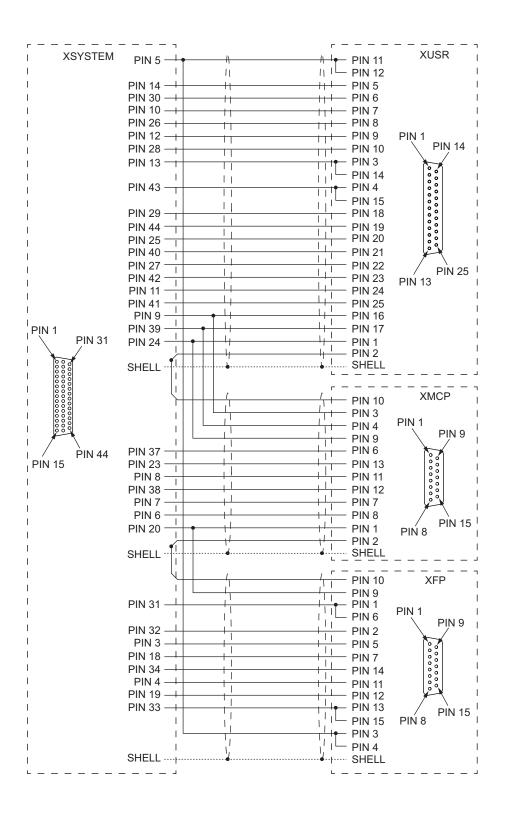
Input Type	Switch Position	Input Signal Numbers	
XIO		1001 to 1012	
TIO		1033 to 1037	
IO Blox 1	OFF, OFF	1065 to 1072	
IO Blox 2	ON, OFF	1073 to 1080	
IO Blox 3	OFF, ON	1081 to 1088	
IO Blox 4	ON, ON	1089 to 1096	

A-4-2 Output Signal Numbering

Use the table below to understand the digital output signal numbers.

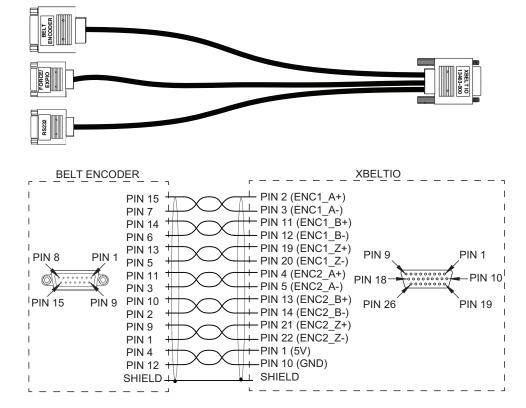

Output Type	Switch Position	Output Signal Numbers	
XIO		1 to 8	
TIO		33 to 36	
IO Blox 1	OFF, OFF	65 to 72	
IO Blox 2	ON, OFF	73 to 80	
IO Blox 3	OFF, ON	81 to 88	
IO Blox 4	ON, ON	89 to 96	

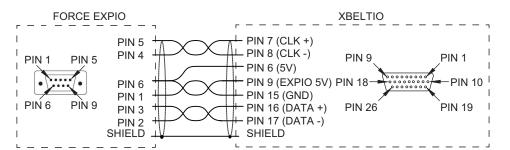
A-5 Cable Pinouts

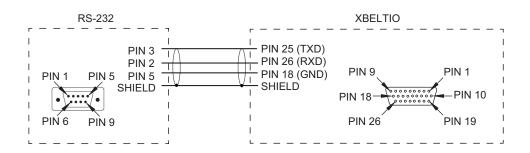

Cable pinout information is provided below.

A-5-1 XSYSTEM Cable Pinouts

Use the following diagrams for XSYSTEM cable pinout information.

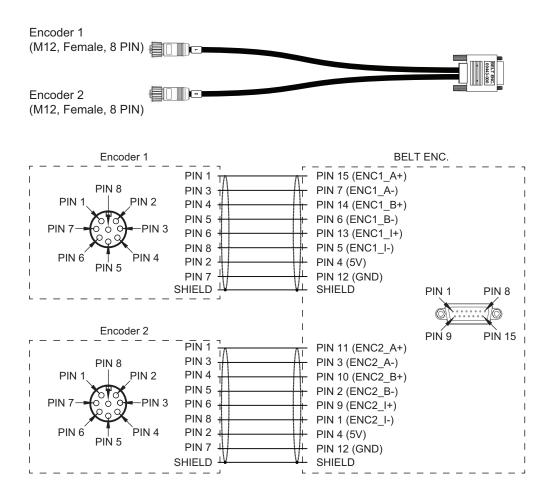



A



A-5-2 XBELTIO Adapter Cable Pinouts

Use the following diagrams for XBELTIO adapter cable pinout information.



A-5-3 Belt Encoder Y-adapter Cable Pinouts

Use the following diagrams for Belt Encoder Y-adapter cable pinout information.

Α

A-6 Parts List

	Item	Part Number	Details	Included	Optional
Cables	XSYSTEM cable	13322-000		Х	
	XBELTIO Cable	13463-000			Х
	XIO Breakout Cable	04465-000			Х
	IO Blox Exten- sion Cable (to robot)	04677-030	Extends the connection be- tween the IO Blox and the ro- bot up to 3 m.		X
	IO Blox Exten- sion Cable (be- tween units)	04679-030	Extends the connection be- tween IO Blox units up to 3 m.		X
	Encoder Exten- sion Cable	09446-050	Replaces or ex- tends encoder cable up to 5 m.		X
	Belt Encoder Y- adapter Cable	09443-000			Х
Connectors / Jumpers	Power Connec- tors Kit	22008-000	Includes Control Power and High Power connec- tors, pins, and a grounding screw.	Х	
	XFP Jumper Plug	10053-000		Х	
	XUSR Jumper Plug	04736-000		Х	
	XMCP Jumper Plug	10052-000		Х	
	T20 Pendant Jumper Plug	10048-000			Х

Standard robot parts and accessories are provided in the following table.

Α

l	Item	Part Number	Details	Included	Optional
Other Items	Encoder Backup Batteries	20269-000F	3 batteries in- cluded.	Х	
	Front Panel Kit	92546-10358	Kit includes front panel and 3 m cable.	Х	
	Tool Flange	19360-016F		Х	
	XIO Termination Block and Cable	90356-40100			Х
	T20 Pendant Kit	10046-010	Kit includes the pendant, 3 m adapter cable, and a jumper plug.		X
	T20 Pendant Wall Bracket	10079-000			Х
	IPC Application Controller	AC1-152000	Includes ACE software pre-in- stalled.		X
	IO Blox Kit (ro- bot connection)	90356-30200	Includes 300 mm cable to connect directly to the robot.		X
	IO Blox Kit (IO Blox connection)	90356-30100	Includes 200 mm cable to connect to an- other IO Blox unit.		X
	Joint 3 Quill Grease	20950-000	THK AFF type.		Х
	Encoder Kit	09742-001	Includes endod- er, mounting bracket, and 5 m cable.		Х

Index

Index

Α

Altitude	2-14
/	- 1 -

В

Base	1-3
Brake	
Force	4-8
Release Button	4-8
Brake Release	1-5

С

Cable Clearances Cables	2-4
Belt Encoder Y-adapter	
EXPIO to IO Blox	1-19, 3-11
XBELTIO Adapter	1-18, 3-11
XIO Breakout	1-18, 3-11
XIO	
XSYSTEM	1-8, 3-10
Connectors	
24 VDC	3-29
48 VDC	3-29
Control Power	1-4, 1-7, 2-15
High Power	1-4, 1-8, 2-15
ΤΙΟ	1-5, 1-9, 2-15
USER	. 1-4, 1-5, 1-7, 2-15
XBELTIO	1-4, 1-8, 2-15
XFP	
XIO	1-4, 1-9, 2-15
XMCP	3-10
XSYSTEM	1-4, 1-8, 2-15
XUSR	
Control Power LED Indicator	
Controller Label	
Cycle Time	2-8

D

Dimensions	
Cable Exit Cutout	2-4
Front Panel	2-5
i4-350L Overall	2-2
i4-350L Work Envelope	2-6
i4-450L Overall	2-3
i4-450L Work Envelope	2-6
i4-550L (350 mm Z) Overall	2-4
i4-550L (350 mm Z) Work Envelope	2-7
i4-550L Overall	2-3
i4-550L Work Envelope	2-7
Mounting Flange	
Tool Flange	2-5

Ε

Emergency Stop	
Encoder Backup Batteries	
End-of-Arm Tooling	
Error Messages	
Ethernet Interface Port	
External Equipment Mounting	

F

Faults	5-2
Flyover	
Front Panel	1-5, 6-2

G

Grounding	3-28
-----------	------

Н

Hardstops	3-7
Joint 2	3-8
Joint 3	3-8
Joint 1	3-8
High Power	1-5
Disabling	4-6
Enabling	4-5
Request Methods	
Safety Timeout	4-5
Humidity	
•	

I

I/O Signal Numbers	A-6
Inner Link	1-3
IO Blox	1-15, 3-19
IPC Application Controller	1-16

J

Jogging	4-11
Joint 1	
Joint 2	
Joint 3	
Joint 4	
Joint Ranges	2-8
Joint Speeds	2-8
Jumper Plugs	
Teach Pendant	
XFP	
XUSR	
XMCP	

L

LED Indicator	1-5, 4	4-7

Μ

Mode Selection Switch1-5	
Model Numbers	
Controller Model Number1-14	
Robot Model Numbers1-14	
Modes	
Automatic4-3	
Manual	
Moment of Inertia2-8	
Mounting	
Surface	
Procedure	

0

	_
Operating Temperature2-1	14
Outer Link1-	-3

Ρ

2-8, 4-2
2-15
1-4, 1-5, 1-9
2-14
2-12
2-14

R

Repeatability	2-8
Robot Label	. 1-10

S

Safety Circuits	3-21
Secondary Interface Panel	1-4, 1-5
Storage Temperature	2-14

Т

T20 Pendant	1-15
Table Mount Flange	1-3
Tool Flange	1-3, 6-2

W

Wall Mount Flange	1-3
Warning Labels	6-4
Wiring	
Belt Encoder Y-adapter Cable	A-9
TIO Connector	3-17
XBELTIO Adapter Cable	A-8
XFP Connector	3-23

XIO Connector	3-14
XMCP Connector	3-25
XUSR Connector	3-22
XSYSTEM Cable	A-7

X _____

Ζ

Index

OMRON Corporation Industrial Automation Company

Kyoto, JAPAN Contact: www.ia.omron.com

Regional Headquarters

OMRON EUROPE B.V. Wegalaan 67-69, 2132 JD Hoofddorp The Netherlands Tel: (31)2356-81-300/Fax: (31)2356-81-388

OMRON ASIA PACIFIC PTE. LTD. No. 438A Alexandra Road # 05-05/08 (Lobby 2), Alexandra Technopark, Singapore 119967 Tel: (65) 6835-3011/Fax: (65) 6835-2711 OMRON ELECTRONICS LLC 2895 Greenspoint Parkway, Suite 200 Hoffman Estates, IL 60169 U.S.A. Tel: (1) 847-843-7900/Fax: (1) 847-843-7787

OMRON ROBOTICS AND SAFETY TECHNOLOGIES, INC. 4225 Hacienda Drive, Pleasanton, CA 94588 U.S.A.

OMRON (CHINA) CO., LTD. Room 2211, Bank of China Tower, 200 Yin Cheng Zhong Road, PuDong New Area, Shanghai, 200120, China Tel: (86) 21-5037-2222/Fax: (86) 21-5037-2200 Authorized Distributor:

© OMRON Corporation 2021 All Rights Reserved. In the interest of product improvement, specifications are subject to change without notice.

Cat. No. I658-E-04

0221