AD4212L-R50/AD4212L-R100 Weigh Module

Simplified Instruction Manual

Refer to the instruction manual on the A&D website.

URL: https://www.aandd.jp/

1WMPD4003880B

This Manual

- This manual describes how the product works and how to get the most out of it in terms of performance. Read this manual thoroughly before using the product and keep it at hand for future reference.
- Product specifications are subject to change without any obligation on the part of the manufacturer to notify of changes.
- This manual is subject to change without prior notice to improve the product. No part of this manual may be photocopied, reproduced, or translated into another language without the prior written consent of A&D Company, Limited.
- Do not attempt to repair, modify or disassemble the product. Doing so will void the warranty.

© 2019 A&D Company, Limited All rights reserved. 3-23-14 Higashi-Ikebukuro, Toshima-ku, Tokyo 170-0013, JAPAN Telephone: [81] (3) 5391-6132 Fax: [81] (3) 5391-1566

1. Precautions

Installation and Precautions Before Use

Before use, confirm the following for safe operation.

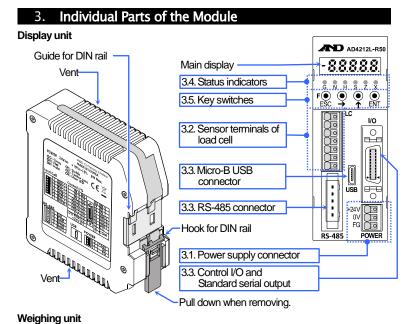
- □ For the installation site, avoid places with vibration, shock, extremely high temperature and humidity, direct sunlight, dust, splashing water, air containing salt or corrosive gases, and where inflammable gases are present.
- □ The operating temperature range is -10°C to +40°C (14°F to 104°F).
- Ground the weigh module.
- Use a stable 24 VDC power source free from instantaneous power failure or noise, which may cause malfunction. Do not share the power line with other
- □ Do not share the ground line with other electrical power equipment.
- □ When extending the load cell cable, separate it from the power line and electrical lines with much noise.
- □ Turn the weigh module on only after installation is complete. The weigh module is not equipped with a switch to turn it off.
- □ When installation is complete, take the protective cover off before turning the weigh module on.

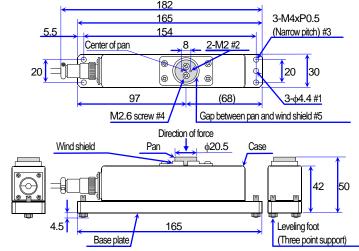
1.2. **Precautions During Use**

The weigh module is a precision instrument that handles micro signals. Prevent noise sources such as power lines, radios, electric welders or motors from affecting the instrument.

Do not disassemble the weigh module.

2. General S p	pecification	ons			
Model	AD42	12L-R50	AD4212L-R100		
Maximum capacity	5	51 g	110 g		
Minimum division	1	mg	1 mg		
Repeatability (Standard deviation)	1	mg	2 mg		
Stabilization time	0gto5g	Approx. 0.3 s	0 g to 5 g Approx. 0.3 s		
(With optimal filter set, under good ambient conditions)	5 g to 51 g	Approx. 1.0 s	5 g to 110 g Approx. 1.3 s		
Ability of the stopper to withstand overload	1 kg				
Weighing pan diameter	20.5 mm				
Weighing unit size/mass	30 x 165 x 56 mm (WxDxH)/Approx. 400 g				
Display unit size/mass	35.3 × 101.3 × 110 mm (W×D×H)/Approx. 200 g				
Cable dia./length/mass		4.5 mm/10 m/Approx. 350 g			
Power source		24 VDC +	10%, -15%		
Operating conditions	-10 °C to	+40 °C, 85%RH	or less (no condensation)		


Accessories


RS-485 connector (2 pieces) 35505-6200-A00 GF manufactured by 3M Branch connector (1 piece) 35715-L010-A00 AK manufactured by 3M Leveling foot (3 pieces)

□ Optimal digital filter setting example (Fac 🖫 setting)

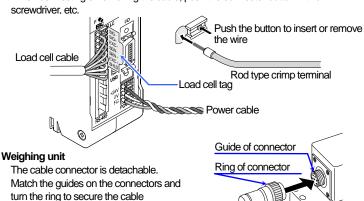
AD ₄	4212L-R50	AD4212L-R100		
Weighing range Example (setting value)		Weighing range	Example (setting value)	
0 g to 20 g	4.0 Hz (11)	0 g to 50 g	4.0 Hz (11)	
20 g to 51 g	1.0 Hz (15)	50 g to 110 g	1.0 Hz (15)	

* For the setting procedure, refer to "5.3.2. Basic Function".

- #1 Use the three \$\phi4.4\$ holes to attach the weighing unit with a tightening torque of approx. 1 Nm. #2 Use the two M2 holes to attach a jig to the pan with a depth of 5 mm and a tightening
- torque of 0.4 Nm or less.
- #3 Insert the three leveling feet into the three M4xP0.5 holes (narrow pitch).
- #4 Remove the two M2.6 screws when removing the pan.
- #5 When dirt and dust accumulate in the gap between the pan and the wind shield, remove the pan and then remove dirt and dust.

3.1. Power Supply Connector

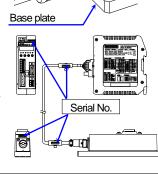
+24 VDC terminal 0 VDC terminal FG (SHLD/SLD) Ground terminal (All connector shields are connected internally with FG.)


Sensor Terminals of Load Cell

Cell							
7	SIG-	SIG-	SIG+	EXC-	SEN-	SEN+	
5	EXC-	Blue	Green	White	Purple	Orange	
4	SEN-						
2	EXC+						
1	SHLD						

Connection

Display unit


When connecting or removing the cable, push the connector button with a

□ Note

connector.

When connecting the cable, confirm that the display unit, the weighing unit and the cable have the same serial number. Otherwise, the display unit may not display the correct weighing value.

EXC+ SHLD

Red Yellow

3.3. Control I/O, Standard Serial Output, RS-485 and Micro-B USB

- Control I/O circuit is isolated from load cell and power supply terminals. Supply +24 VDC between I/O PWR+24V terminals and COM terminals.
- (MDR connector with 20 pins, manufactured by 3M).
- Standard serial output (C.L.) circuit is isolated from other terminals. (MDR connector with 20 pins, manufactured by 3M.)
- □ For the RS-485, use a power clamp connector (A type) manufactured by 3M.
- Use a standard Micro B USB connector for USB so that the function settings can be read and written.

Contro	ol I/0	o				
	N 6	20			10	IN 5
	N 4	19		$\overline{\mathbf{c}}$	9	IN 3
	N 2	18	l B	—	8	IN 1
	BTC	17	la	al.	7	OUT7
01	JT6	16	Ш		6	OUT5
Ol	JT4	15	Ш	11	5	OUT3
Õ	JT2	14	[<u> </u>	4	OUT1
	C.L.	13	₽	_	3	C.L.
I/O P		12	\Box	$^{\circ}$	2	СОМ
+;	24V	11			1	COIVI
RS-48	15				USE	}
	5	SLD				a)
	4	RTR	M			1
	3	SG				שש
	_		-	1		

3.4. Status Indicators

LED	Description
G	Gross: The LED lights when a gross value is displayed.
Z	Net: The LED lights when a net value is displayed.
H	Hold: The LED lights when the weighing value is being held.
S	Stable: The LED lights when the current weighing value is stable.
Z	Zero: The LED lights when the weighing value is within the center-zero range.
X	The LED indicates the function selected at $foc \mathfrak{M}$ in the basic function.

3.5. Key Switches

When power is turned on with no keys pressed, the weigh module enters weighing mode. In weighing mode, the key functions are as follows.

- Switches between the gross weight and the net weigh (default value)
- Zeros

Turns the display off (when pressed and held)

To perform other operations, refer to the instruction manual available on the A&D website.

3.6. Operation Mode

- (In weighing mode, ENT + F) The mode to set various functions □ Check mode (In function mode, → + ENT)
- The mode to check the performance of the weigh module Calibration mode (With the display turned off, F + ENT)
- The mode to calibrate zero point and span of the weigh module using a calibration weight or by inputting a value

Calibration

□ Function mode

The weigh module measures the voltage of the load cell and displays it. Calibration corrects the signal from the load cell to convert it into mass correctly.

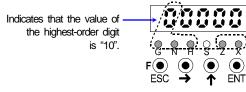
- Perform stable measurement during calibration to prevent measurement errors.
- M During stable measurement, the S

 LED lights.
- *The blinking decimal point means that the current value is not the weight value.
- # When $\boxed{\xi}$ with a number is displayed, it indicates that an error has occurred. Refer to "Calibration Errors" for details.
- X Before the calibration, allow the weigh module at least 10 minutes to warm up to avoid drift caused by changes in temperature.

4.1. Calibration Using a Weight (ε· \$ξξ)

Calibration is performed by loading and unloading a calibration weight.

- Step 1 Turn off the display by pressing and holding the **ENT** key. Then, while holding the **F** key, press the **ENT** key. **[8]** will be displayed indicating calibration mode.
- Step 2 Press the $\blacksquare NT$ key to enter calibration mode. $\boxed{ 5.581}$ is displayed. To return to weighing mode, press the **ESC** key.

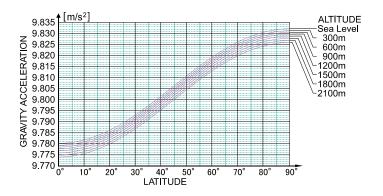

Zero Calibration 4.1.1.

- Step 3 Press the **ENT** key to display [31, 0].
 - To skip zero calibration, press the \(\begin{array}{c}\hdrace \text{key} and proceed to Step 5.\)
- Step 4 Confirm that the S LED is lit, and then press the ENT key. Then ····· is displayed for 2 seconds. To skip span calibration, press the **ESC** key twice to return to weighing mode.

4.1.2. Span Calibration

- Step 5 When [: 584] is displayed, press the ENT key. The current calibration weight value is displayed with the rightmost digit flashing. Specify a new value using the → and ↑ keys. To skip span calibration, press the **ESC** key three times to return to weighing mode.
- Step 6 Place the weight on the weighing pan. Confirm that the 🕲 LED is lit and press the **ENT** key. Then is displayed for 2 seconds. It is recommended to use a weight of 50g for AD4212L-R50, and 100g for AD4212L-R100. When using a weight other than the recommended one, use a weight with 1/2 or more of the maximum capacity.
- When [: End is displayed, remove the weight from the weighing pan. To calibrate span again, press the ightharpoonup key.
- Press the **ESC** key. Then **[: SEE]** is displayed and calibration data is stored in nonvolatile memory (FRAM) of the weigh module.
- Step 9 Press the **ESC** key to return to weighing mode.

When the span calibration value is set to 100 g in Step 5, select the highestorder digit using the > key, and then make the status indicator LEDs light as shown below using the key.



* The S LED lights when the display is stable.

	4.2.	. Calibration Errors (& &r))
Di	isplay	Cause	Treatment
ε	٤٠ ;	The display resolution (maximum capacity / minimum division) exceeds the specified value.	Make the minimum division greater or make the maximum capacity smaller. The specified value depends on the weigh module.
ε	Voltage at zero calibration exceeds in the positive direction.		Check the load cell rating and connection. When nothing is wrong with the rating and connection, adjust the load
ε	٤٠3	Voltage at zero calibration exceeds in the negative direction.	cell output. When the load cell or A/D converter may be the cause of error, confirm this by using check mode.
٤	824	The value of the calibration weight exceeds the maximum capacity.	Use an appropriate calibration weight
ε	٤٨S	The value of the calibration weight is less than the minimum division.	and calibrate again.
٤	818	The load cell sensitivity is not sufficient.	The load cell or A/D converter may be damaged.
ε	807	Voltage at span calibration is less than voltage at the zero point.	Check the load cell connection.
ε	8ء٤	The load cell output voltage is too high when the mass of maximum capacity is weighed.	The load cell or A/D converter may be damaged.

Gravity acceleration table

Amsterdam	9.813 m/s ²	Manila	9.784	m/s ²
Athens	9.800 m/s ²	Melbourne	9.800	m/s ²
Auckland NZ	9.799 m/s ²	Mexico City	9.779	m/s ²
Bangkok	9.783 m/s ²	Milan	9.806	m/s ²
Birmingham	9.813 m/s ²	New York	9.802	m/s ²
Brussels	9.811 m/s ²	Oslo	9.819	m/s ²
Buenos Aires	9.797 m/s ²	Ottawa	9.806	m/s ²
Calcutta	9.788 m/s ²	Paris	9.809	m/s ²
Chicago	9.803 m/s ²	Rio de Janeiro	9.788	m/s ²
Copenhagen	9.815 m/s ²	Rome	9.803	m/s ²
Cyprus	9.797 m/s ²	San Francisco	9.800	m/s ²
Djakarta	9.781 m/s ²	Singapore	9.781	m/s ²
Frankfurt	9.810 m/s ²	Stockholm	9.818	m/s ²
Glasgow	9.816 m/s ²	Sydney	9.797	m/s ²
Havana	9.788 m/s ²	Tainan	9.788	m/s ²
Helsinki	9.819 m/s ²	Taipei	9.790	m/s ²
Kuwait	9.793 m/s ²	Tokyo	9.798	m/s ²
Lisbon	9.801 m/s ²	Vancouver, BC	9.809	m/s ²
London (Greenwich)	9.812 m/s ²	Washington DC	9.801	m/s ²
Los Angeles	9.796 m/s ²	Wellington NZ	9.803	m/s ²
Madrid	9.800 m/s ²	Zurich	9.807	m/s ²

5. Function Mode

The function mode stores parameters to control the weigh module. The parameters are stored even without power supplied.

5.1. Stability Detection/Digital Filter/RS-485

Stability detection	€ - £08: Stability detection time € - £09: Stability detection width
Digital filter	Fac 05: Digital filter 1 Fac 05: Digital filter 2
RS-485	\$ 02: Communication mode\$ 03: Baud rate\$ 08: Slave address

5.2. **Key Operations**

5.2.1. Selecting Functions

ENT + F Proceeds to function mode from weighing mode.

Selects a type of function (upper 3 digits).

ENT Enters a selected function.

...... Selects an item under the selected function (lower 2 digits).

ENT Enters the item.

ESC Stores parameters and returns to weighing mode.

5.2.2. Changing Values

→ Moves the digit to be selected.

↑ Changes the numerical value.

ENT Stores the value and returns to the function selecting mode.

...... Does not store the value and returns to the function selection mode.

5.3. Function Table

5.3.1. Calibration Function (£ · Foc)

Step 1 Turn off the display by pressing and holding the Twen, while holding the key, press the key. key. key. will be displayed indicating calibration mode.

Step 2 Press the ENT key to enter calibration mode.

is displayed. To return to weighing mode, press the **ESC** key.

Step 3 Select using the key, and then press the ENT key.

Item & Function	Description, Range & Default va	alue
C-F08	Used with £ - £03 for stability detection.	
Stability detection time	Range (in 0.1 s intervals):	0.0 to 1.0 to 9.9
	Used with £ + £ @8 for stability detection.	
Stability detection width	Range (in 1 digit intervals):	0 to 2 to 100

5.3.2. Basic Function (Fig. 8)

Step 1 While holding the \blacksquare NT key, press the \blacksquare key. $\boxed{\textit{Fac}}$ will be displayed indicating function mode.

Step 2 Press the **ENT** key to enter function mode.

To return to weighing mode, press the **ESC** key.

Step 3 Select Fac F using the h key, and then press the key.

Item & Function	Description, Range & Defau	t value
Enc 85 Digital filter 1	Selects a cutoff frequency. 0: None 6: 20.0 Hz 12: 2.8 Hz 1:100.0 Hz 7: 14.0 Hz 13: 2.0 Hz 2: 70.0 Hz 8: 10.0 Hz 14: 1.4 Hz 3: 56.0 Hz 9: 7.0 Hz 15: 1.0 Hz 4: 40.0 Hz 10: 5.6 Hz 16: 0.7 Hz	
Foc 88 Digital filter 2	5: 28.0 Hz 11: 4.0 Hz Selects a cutoff frequency. 0: None 6: 20.0 Hz 12: 2.8 Hz 1:100.0 Hz 7: 14.0 Hz 13: 2.0 Hz 2: 70.0 Hz 8: 10.0 Hz 14: 1.4 Hz 3: 56.0 Hz 9: 7.0 Hz 15: 1.0 Hz 4: 40.0 Hz 10: 5.6 Hz 16: 0.7 Hz 5: 28.0 Hz 11: 4.0 Hz 17: 0.56 Hz	18: 0.40 Hz 19: 0.28 Hz 20: 0.20 Hz 21: 0.14 Hz 22: 0.10 Hz 23: 0.07 Hz

□ Optimal digital filter setting example (Fac@\$ setting)

AD ₄	4212L-R50	AD42	212L-R100
Weighing range	Example (setting value)	Weighing range	Example (setting value)
0 g to 20 g	4.0 Hz (11)	0 g to 50 g	4.0 Hz (11)
20 q to 51 q	1.0 Hz (15)	50 g to 110 g	1.0 Hz (15)

5.3.3. RS–485 Function (εξ ξ)

Step 1 While holding the ENT key, press the F key. Fac will be displayed indicating function mode.

Step 2 Press the **ENT** key to enter function mode. To return to weighing mode, press the **ESC** key.

Step 3 Select 5 using the key, and then press the NT key.

Item & Function	Description, Range & Default value	
Communication mode	5 : Modbus RTU 6 : Interval output at 100 times/s 7 : Interval output at 200 times/s 8 : Interval output at 500 times/s	
PS 83 Baud rate	5: 9600 bps 7: 38400 bps 6: 19200 bps 8: 115200 bps	
r \$ 08 Slave address	0 : None 1 to 99	

** The default value of the communication mode (r \$ \$2) is Modbus RTU. Modbus RTU communication parameters are as below:
Character bit length: 8 bits fixed Parity: Even fixed

Modbus RTU data address

Weighing values

Data Address			
(Holding Register)	RW	ltem	Remarks
400001 - 400002	R	Displayed value (Digital filter 1)	
400003 - 400004		Gross value (Digital filter 1)	
400005 - 400006		Net value (Digital filter 1)	
400007 - 400008		Tare value	
400009 - 400010		Status indicator (Status LED)	#6
400043 - 400044		Displayed value (Digital filter 2)	
400045 - 400046		Gross value (Digital filter 2)	
400047 - 400048		Net value (Digital filter 2)	

Error code (Data address : 400065 - 400068)

Error code	Error sub code		
Error item	Code No.	Item	Code No.
No error	0	N/A	0
A/D converter error	1	N/A	0
Nonvolatile memory error	2	N/A	0
RAM error	3	N/A	0
Calibration error	4		1 to 8
Weighing display error	5	N/A	0
Load cell connection verification error	6		1 to 255

#6 Bit address of status indicators (Data address: 400009 - 400010)

Data Ac (Holding F		RW	ltem	Remarks
400009.	15-00		Reserved internally	0 fixed
400010.	15-07		Reserved internally	0 fixed
400010.	06		Z : Zero	
400010.	05		S : Stable	
400010.	04	R	G : Gross	LED to turn on $= 1$
400010.	03		N : Net	LED to turn off $= 0$
400010.	02		H: Hold, Hold busy	
400010.	01		X: Basic function Fac@Y	
400010.	00		Reserved internally	0 fixed

Internal write cycle/write result (Data address : 400099 - 400100)

l	No.	Item	Reference
	0	Write success	
	1	Write failure	
	1 to 8	Calibration error	
	15 Internal write cycle Other None		Writing to the nonvolatile memory
			Not used

Access interval timer (Data Address: 400097 - 400098)

This is an interval timer to count up every 1 ms. When the values are read, the interval timer is initialized to "0". By reading the values periodically, an approximate communication time can be measured.