
Mitsubishi Programmable Controllers
Training Manual

MELSEC iQ-R Series Basic Course
(for GX Works3)



SAFETY PRECAUTION
(Always read these instructions before using the products.)

When designing the system, always read the relevant manuals and give sufficient consideration to safety.

During the exercise, pay full attention to the following points and handle the product correctly.

[EXERCISE PRECAUTIONS]

WARNING
● Do not touch the terminals while the power is on to prevent electric shock.

● Before opening the safety cover, turn off the power or ensure the safety.

● Do not touch the movable portion.

CAUTION
● Follow the instructor's direction during the exercise.

● Do not remove the module of the demonstration machine or change wirings without permission.

Doing so may cause failures, malfunctions, personal injuries and/or a fire.

● Turn off the power before mounting or removing the module.

Failure to do so may result in malfunctions of the module or electric shock.

● When the demonstration machine (such as X/Y table) emits abnormal odor/sound, press the "Power 

switch" or "Emergency switch" to turn off.

● When a problem occurs, notify the instructor as soon as possible.
A - 1



A -
MEMO
 2



REVISIONS
*The text number is given on the bottom left of the back cover.

 2016 MITSUBISHI ELECTRIC CORPORATION

Revision date *Manual number Description

February 2016 SH(NA)-081898ENG-A First edition

This manual confers no industrial property rights of any other kind, nor does it confer any patent licenses. Mitsubishi Electric Corporation cannot be held 

responsible for any problems involving industrial property rights which may occur as a result of using the contents noted in this manual.
A - 3



A -
MEMO
 4



C
O

N
T

E
N

T
S

CONTENTS
SAFETY PRECAUTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A - 1

REVISIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A - 3

INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A - 9

RELEVANT MANUALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A - 9

CHAPTER 1 BASICS OF A PROGRAMMABLE CONTROLLER 1 - 1

1.1 Programming Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 - 1

1.2 Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 - 2

1.3 System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 - 6

1.3.1 Overall configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 - 6

1.4 Memory Configuration of the CPU Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 - 11

1.5 External I/O Signals and I/O Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 - 13

1.6 System Configuration and I/O Numbers of the Demonstration Machine. . . . . . . . . . . . . . . . . . . . . . . . 1 - 17

CHAPTER 2 OPERATING GX Works3 2 - 1

2.1 Main Functions of GX Works3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 - 1

2.2 Operations Before Creating a Ladder Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 - 4

2.2.1 Starting GX Works3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 - 4

2.2.2 Creating a new project. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 - 5

2.3 Preparations for Stating the CPU Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 - 8

2.3.1 Installing a battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 - 9

2.3.2 Inserting or removing an extended SRAM cassette  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 - 9

2.3.3 Inserting and removing an SD memory card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 - 11

2.3.4 Specifying connection destination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 - 12

2.3.5 Initializing the CPU module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 - 15

2.3.6 Clearing the error history of CPU module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 - 18

2.3.7 Setting the clock of the CPU module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 - 19

2.4 Creating a Ladder Program  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 - 20

2.4.1 Creating a ladder program by entering devices and labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 - 21

2.4.2 Creating a ladder program with function keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 - 24

2.4.3 Creating a ladder program with tool buttons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 - 27

2.5 Converting a Created Ladder Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 - 30

2.6 Reading/Writing Data from/to the Programmable Controller CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 - 31

2.6.1 Writing data to the CPU module  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 - 33

2.6.2 Reading data from the CPU module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 - 35

2.7 Monitoring the Ladder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 - 37

2.8 Diagnosing the Programmable Controller CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 - 40

2.9 Editing a Ladder Program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 - 42

2.9.1 Modifying a part of a ladder program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 - 42

2.9.2 Drawing a line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 - 44

2.9.3 Deleting a line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 - 46

2.9.4 Inserting a row. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 - 47

2.9.5 Deleting a row . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 - 49

2.9.6 Cutting or copying a ladder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 - 50

2.10 Verifying Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 - 52

2.11 Saving a Created Ladder Program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 - 54

2.11.1 Saving a program in the single file format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 - 54

2.11.2 Saving a program in the workspace format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 - 55
A - 5



A - 6
2.12 Opening a Saved Project  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 - 57

2.13 Opening a Project in Another Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 - 58

CHAPTER 3 DEVICES AND PARAMETERS OF A PROGRAMMABLE CONTROLLER
3 - 1

3.1 Devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 - 1

3.2 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 - 3

CHAPTER 4 SEQUENCE INSTRUCTIONS AND BASIC INSTRUCTIONS -PART 1- 4 - 1

4.1 Instructions Described in This Chapter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 - 1

4.1.1 Instructions not described in this chapter -Part 1- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 - 2

4.1.2 Instructions not described in this chapter -Part 2- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 - 3

4.2 Differences Between [OUT] and [SET]/[RST] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 - 4

4.2.1 [OUT] (Coil output)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 - 4

4.2.2 [SET]/[RST](Setting/resetting devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 - 5

4.3 Measuring Timers (Timer, High-speed Timer, Retentive Timer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 - 6

4.4 Counting with a Counter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 - 9

4.5 [PLS] (Turning on a Specified Device for One Scan at the Rising Edge of an Input Condition)

[PLF] (Turning on a Specified Device for One Scan at the Falling Edge of an Input Condition) . . . . . 4 - 19

4.6 [CJ] (Conditional Jump of the Non-Delay Execution Type)

[SCJ] (Conditional Jump Executed After One Scan) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 - 25

4.7 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 - 30

4.7.1 Exercise 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 - 30

4.7.2 Exercise 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 - 31

4.7.3 Exercise 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 - 33

CHAPTER 5 BASIC INSTRUCTIONS -PART 2- 5 - 1

5.1 Notation of Values (Data)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 - 1

5.2 Transfer Instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 - 10

5.2.1 [MOV(P)] (Transferring 16-bit data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 - 10

5.2.2 [FMOV(P)] (Transferring the same data in a batch)

[BMOV(P)] (Transferring block data in a batch). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 - 18

5.3 Comparison Operation Instructions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 - 23

5.4 Arithmetic Operation Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 - 27

5.4.1 [+(P)] (Addition of 16-bit binary data)

[-(P)] (Subtraction of 16-bit binary data)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 - 27

5.4.2 [*(P)] (Multiplication of 16-bit binary data)

[/(P)] (Division of 16-bit binary data)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 - 30

5.4.3 32-bit data instructions and their necessities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 - 35

5.5 External Setting of Timer/Counter Values and External Display of Current Values . . . . . . . . . . . . . . . 5 - 38

5.6 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 - 40

5.6.1 [Exercise 1] MOV-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 - 40

5.6.2 [Exercise 2] MOV-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 - 41

5.6.3 [Exercise 3] Comparison instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 - 42

5.6.4 [Exercise 4] +, - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 - 43

5.6.5 [Exercise 5] *, /  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 - 44

5.6.6 [Exercise 6] D*, D/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 - 45

CHAPTER 6 HOW TO USE OTHER FUNCTIONS 6 - 1

6.1 Online Test Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 - 1



C
O

N
T

E
N

T
S

6.1.1 Forced on/off of the device (Y)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 - 2

6.1.2 Setting/resetting of the device (M). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 - 2

6.1.3 Current value change of the device (T) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 - 3

6.1.4 Reading error steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 - 4

6.1.5 Remote RUN/STOP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 - 5

6.2 Creating the Module Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 - 7

6.3 Device Batch Replacement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 - 10

6.3.1 Replacing device numbers in a batch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 - 10

6.3.2 Changing normally open contacts ↔ normally closed contacts of specified devices in a batch . . . . . . . . . . 6 - 12

6.4 Online Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 - 14

6.5 Watch Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 - 15

6.6 How to Create Comments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 - 16

CHAPTER 7 NEW FUNCTIONS OF MELSEC iQ-R/GX Works3 7 - 1

7.1 Features of MELSEC iQ-R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 - 1

7.2 Differences Between the MELSEC-Q Series and the MELSEC iQ-R Series. . . . . . . . . . . . . . . . . . . . . . . 7 - 4

7.3 Functions of GX Works3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 - 5

APPENDICES App. - 1

Appendix 1 I/O Control Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. - 1

Appendix 1.1 Direct mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. - 1

Appendix 1.2 Refresh mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. - 2

Appendix 1.3 Comparisons between direct mode and refresh mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. - 3

Appendix 2 List of Special Relay Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. - 4

Appendix 3 List of Special Register Areas  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. - 5

Appendix 4 Program Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. - 6

Appendix 4.1 Flip-flop ladder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. - 6

Appendix 4.2 One-shot ladder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. - 8

Appendix 4.3 Long-time timer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. - 9

Appendix 4.4 Off delay timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. - 10

Appendix 4.5 On delay timer (momentary input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .App. - 11

Appendix 4.6 On/off repeat ladder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .App. - 11

Appendix 4.7 Preventing chattering inputs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .App. - 11

Appendix 4.8 Ladder with common lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. - 12

Appendix 4.9 Time control program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. - 13

Appendix 4.10 Clock ladder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. - 14

Appendix 4.11 Star-delta starting of an electric motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. - 16

Appendix 4.12 Displaying the elapsed time and outputting before time limit . . . . . . . . . . . . . . . . . . . . . . . . . . App. - 17

Appendix 4.13 Retentive timer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. - 18

Appendix 4.14 Switching timer setting values with external switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. - 19

Appendix 4.15 Setting a counter with external switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. - 20

Appendix 4.16 Measuring the operating time  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. - 22

Appendix 4.17 Measuring the cycle time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. - 22

Appendix 4.18 Application example of (D)CML(P)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. - 23

Appendix 4.19 Dolly line control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. - 24

Appendix 4.20 Compressor sequential operation with ring counters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. - 26

Appendix 4.21 Application example to a positioning control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. - 30

Appendix 4.22 Application example using the index register (Z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. - 31

Appendix 4.23 Application example of FIFO instructions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. - 33

Appendix 4.24 Application example of data shifting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. - 36
A - 7



A - 8
Appendix 4.25 Program example: Square root operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. - 39

Appendix 4.26 Program example: Multiplication with the nth power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. - 40

Appendix 4.27 Displaying the number of failures and failure number in a failure detection program . . . . . . . App. - 41

Appendix 5 Memory and Files to be Handled by the CPU Module  . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. - 45

Appendix 6 Checking and Setting Shortcut Keys. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. - 47

Appendix 7 Index Modification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. - 48

Appendix 8 FB (Function Block). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. - 51

Appendix 8.1 FB  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. - 51

Appendix 8.1.1 FB conversion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. - 52

Appendix 8.1.2 Advantages of using FBs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. - 53

Appendix 8.1.3 FB library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. - 56

Appendix 8.1.4 Precautions for using FBs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. - 58

Appendix 8.2 Creating a program using FBs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. - 59



INTRODUCTION
This textbook describes a programmable controller, the methods of editing a program with GX Works3, sequence instructions 

and standard functions/function blocks for helping users to understand the programming for the MELSEC iQ-R series.

RELEVANT MANUALS

e-Manual refers to the Mitsubishi FA electronic book manuals that can be browsed using a dedicated tool.

e-Manual has the following features:

 • Required information can be cross-searched in multiple manuals.

 • Other manuals can be accessed from the links in the manual.

 • The hardware specifications of each part can be found from the product figures.

 • Pages that users often browse can be bookmarked.

Manual name [manual number] Description Available 
form

MELSEC iQ-R CPU Module User's Manual (Startup)

[SH-081263ENG]

Performance specifications, procedures before operation, and 

troubleshooting of the CPU module

e-Manual

EPUB

PDF

MELSEC iQ-R CPU Module User's Manual (Application)

[SH-081264ENG]

Memory, functions, devices, and parameters of the CPU module e-Manual

EPUB

PDF

MELSEC iQ-R Programming Manual (Program Design)

[SH-081265ENG]

Program specifications such as of ladder programs and ST programs, 

and labels

e-Manual

EPUB

PDF

MELSEC iQ-R Programming Manual (Instructions, Standard 

Functions/Function Blocks)

[SH-081266ENG]

Instructions for the CPU module, instructions dedicated for intelligent 

function modules, and standard functions/function blocks

e-Manual

EPUB

PDF

MELSEC iQ-R Module Configuration Manual

[SH-081262ENG]

System configuration, specifications, mounting, wiring, and 

maintenance and inspection required for using the MELSEC iQ-R series 

programmable controller

e-Manual

EPUB

PDF

GX Works3 Operating Manual

[SH-081215ENG]

System configuration of GX Works3, parameter setting, and operation 

method of the online function

e-Manual

EPUB

PDF
A - 9



A -
MEMO
 10



1

1 BASICS OF A PROGRAMMABLE 

CONTROLLER

1.1 Programming Languages
With the MELSEC iQ-R series, an optimal programming language can be selected and used according to the application.

Ladder diagram (Ladder)

Structured text language (ST)

The same operation is described in each language.

Programming in ladder is suitable for users who have knowledge and experience of sequence control and 

logical ladders. Programming in ST is suitable for users who have knowledge and experience of C 

programming.

Programming language Description

Ladder diagram (Ladder) A graphic language which describes ladders consisting of contacts and coils.

This language is used to describe logical ladders using symbolized contacts and coils to enable easy-

to-understand sequence control.

Structured text language (ST) A textual language used to describe programs using statements (such as IF) and operators.

Compared with the ladder diagram, this language can describe hard-to-describe operation processing 

concisely and legibly, and therefore is suitable for programming complicated arithmetic operations and 

comparison operations. Also, as with C, ST language can describe syntax control such as selective 

branches with conditional statements and repetitions with iteration statements, and thus can describe 

easy-to-understand, concise programs.
1  BASICS OF A PROGRAMMABLE CONTROLLER
1.1  Programming Languages 1 - 1



1 - 
1.2 Program

 • This section describes a flow from input signals to output signals.

 • This section describes that a programmable controller repeatedly executes operations (scans a program).

When a programmable controller is regarded as a control circuit, it can be described with an input circuit, output circuit, and 

internal sequence.

Figure 1.1 Configuration of a programmable controller

A programmable controller is an electronic device having a microcomputer at the center. A programmable controller can be 

regarded as a collection of relays, timers, and counters. As shown in Figure 1.1, normally open contacts and normally closed 

contacts are connected in series or in parallel and coils are turned on or off.

PB1

LS1

PB2

X0

X1

X2

X3

X4

X5

X6

COM

Input module Input circuit Internal sequence Output circuit

Y74

Output relay

K30

T1

Timer

T1

X6

X6

Y74

Y74

Y70

Y71

Y72

Y73

Y74

Y75

Y76

SL

Output module

COM

MC

(+) (-)

Programmable controller

Sensor

SV

Input relay 
contacts 
(virtual coils)

Magnetic 
contactor

External 
output 
contacts

External signals 
turn on/off input 
relays.

Input relay contacts 
activate the internal 
sequence.

The internal 
sequence 
transmits the 
on/off operations 
of the output relay.

The output 
circuit activates 
external loads.

Solenoid 
valve
2
1  BASICS OF A PROGRAMMABLE CONTROLLER
1.2  Program



1

A "relay", which is also called an electromagnetic relay, is a switch that relays signals. A relay is a key 

component that makes up a logic circuit.

1) Passing a current through a coil  

Energization

 • A normally open contact is 

closed (continuity state).

 • A normally closed contact is 

open (non-continuity state).

2) Stopping a current flowing through 

a coil  Deenergization

 • A normally open contact is open (non-continuity state).

 • A normally closed contact is closed (continuity state).

Operation of the internal sequence
The following describes the flow of signals in the internal sequence in figure 1.1.

1. When the sensor turns on, the coil of the input relay X6 is energized.

2. When the coil of the input relay X6 is energized, the normally open contact X6 goes in the continuity state and the coil of 

the output relay Y74 is energized.

(As the timer has not been energized at this time, the normally closed contact is in the continuity state.)

3. Once the coil of the output relay Y74 is energized, the external output contact Y74 goes in the continuity state and the 

magnetic contactor (MC) is turned on.

4. Turning off the sensor deenergizes the coil of the input relay X6 and the normally open contact X6 goes in the non-

continuity state.

As the self-holding normally open contact Y74 of the output relay is in the continuity state, the coil remains energized. 

(Self-holding operation)

5. When the coil of the output relay Y74 is energized (with the normally open contact Y74 in the continuity state), turning off 

the sensor (with the normally closed contact X6 in the continuity state) energizes the coil of the timer T1 and the timer 

starts measuring time.

In three seconds (K30 means 3.0 seconds), the normally open contact of the timer goes in the continuity state and the 

normally closed contact goes in the non-continuity state.

6. As a result, the coil of the output relay Y74 is deenergized and the load magnetic contactor drops.

The self-holding status of the output relay is released.

Timing chart
The following figure shows the timing chart of the operations of the input/output relays and timer.

Common
Coil

Coil OFF 
(always) (in operation) 

Normally 
closed contact

Normally 
open contact

Normally 
open 
contact 
Normally 
closed 
contact 

Coil ON 

Continuity 
state

Continuity 
state

Non-continuity 
state

Non-continuity 
state

(Coil)

(Contact)

3 seconds

Input X6

Timer

Timer T1

Output Y74

T1
1  BASICS OF A PROGRAMMABLE CONTROLLER
1.2  Program 1 - 3



1 - 
Program
The internal sequence is regarded as programs of a programmable controller. Programs are stored in the program memory in 

the form similar to the following instruction list.

Figure 1.2 Program

 • A program consists of a large number of instruction words and devices.

 • An instruction consists of instruction words and devices. Instructions are numbered to represent the order of operations.

The numbers are called step numbers. (Instruction words are also called "instructions".)

 • The number of steps differs depending on the types of instructions in use and the method of setting numerical values to be 

used for I/O numbers and operations.

(The more complex an operation is, the more steps are needed.)

 • An instruction is repeatedly executed starting from the step number 0 to the END instruction. (This is called "repetitive 

operation", "cyclic operation", or "scanning".) The time taken for one cycle is called operation cycle (scan time).

 • The number of steps from the step number 0 to the END instruction is the length or size of a program.

 • Programs are stored in the program memory inside a CPU module. The operation processing is executed in units of one 

ladder block.

One ladder block starts with an operation start instruction (LD, LDI) and ends with an OUT instruction (including data 

instructions).

Step number Instruction word Device 

0 LD X6 
1 OR Y74 
2 ANI T1 
3 OUT Y74 
4 LD Y74 
5 ANI X6 
6 OUT T1 K30 

0

4

X6

Y74

Y74

T1

X6

Y74

10 END
10 END 

(a) Ladder diagram (b) Instruction list (program list) 

K30T1OUT

Repetitive 
operation
4
1  BASICS OF A PROGRAMMABLE CONTROLLER
1.2  Program



1

Program processing sequence
A CPU module executes operations in series from the start step of the program memory from left to right and from top to 

bottom (in the order of 1), 2) ... and 17)) in units of a ladder block as shown below.

0

3

7

17

1)
X0

2)
X1

5)
X3

4)
X2

6)
X4

8)
X5

9)
X6

11)
X7

13)
X8

15)
X9

16)
XA

3)

Y11

Y12

Y13

Y14

Y15

Y10

7)

10)

12)

14)

17)
1  BASICS OF A PROGRAMMABLE CONTROLLER
1.2  Program 1 - 5



1 - 
1.3 System Configuration

This section describes the basic configuration of a programmable controller system.

This section describes the MELSEC iQ-R series system configuration.

1.3.1 Overall configuration
The MELSEC iQ-R series programmable controller system is configured by mounting modules on a base unit.

A power supply module is mounted on the power supply slot located on the left end of a main base unit, and a CPU module is 

mounted on the CPU slot located on the right side of the power supply slot. Modules other than the power supply module are 

mounted on the slots located on the right side of the CPU slot.

Up to 7 extension base units can be added and up to 64 modules can be mounted in the entire system to build a large system.

Figure 1.3 Overall configuration

(1)

(3)

(3)

(3)

(2)

(1) Main base unit
(2) Extension cable
(3) Extension base unit

Maximum number of extension base units: 7
6
1  BASICS OF A PROGRAMMABLE CONTROLLER
1.3  System Configuration



1

MELSEC-Q series modules and base units can be used by connecting the RQ extension base unit in the 

MELSEC iQ-R series system.

MELSEC-Q series power supply modules, I/O modules, and intelligent function modules can be mounted on 

the RQ extension base unit.

( MELSEC iQ-R Module Configuration Manual)

Base unit
The main roles of a base unit are to fix a power supply module, CPU module, and I/O modules, to supply 5VDC power from 

the power supply module to the CPU module and I/O modules, and to transmit control signals to each module.

Power supply module

Type Model Description

Main base unit R35B 5 slots

R38B 8 slots

R312B 12 slots

Extension base unit R65B 5 slots

R68B 8 slots

R612B 12 slots

RQ extension base unit

(For mounting MELSEC-Q series 

modules)

RQ65B 5 slots

RQ68B 8 slots

RQ612B 12 slots

Type Model Input Output

AC power supply module R61P 100 to 240VAC 5VDC/6.5A

DC power supply module R63P 24VDC 5VDC/6.5A

I/O0CPU modulePOWER I/O2I/O1 I/O3 I/O4

5V

SG

FG

OUT

MELSEC-Q series system MELSEC iQ-R series system
1  BASICS OF A PROGRAMMABLE CONTROLLER
1.3  System Configuration 1 - 7



1 - 
CPU module

■Programmable controller CPU

■Motion CPU

I/O module

Model Program capacity (maximum) Basic operation processing 
speed (LD instruction)

Maximum number of I/O points that can be 
connected to a programmable controller

R04CPU 40K steps 0.98ns 4096 points

R08CPU 80K steps

R16CPU 160K steps

R32CPU 320K steps

R120CPU 1200K steps

Model Number of controlled axes Operation cycle [ms] Servo program capacity [step]

R16MTCPU 16 axes 0.222, 0.444, 0.888, 1.777, 3.555, 7.111 32K

R32MTCPU 32 axes (16 axes × 2 systems) 0.222, 0.444, 0.888, 1.777, 3.555, 7.111 32K

Type Model Description

Input module RX10 AC input: 16 points, 100 to 240VAC (50/60Hz)

RX40C7 DC input: 16 points, 24VDC, 7.0mA

RX41C4 DC input: 32 points, 24VDC, 4.0mA

RX42C4 DC input: 64 points, 24VDC, 4.0mA

Output module RY10R2 Relay output: 16 points, 24VDC/2A, 240VAC/2A

RY40NT5P Transistor (sink) output: 16 points, 12 to 24VDC, 0.5A

RY41NT2P Transistor (sink) output: 32 points, 12 to 24VDC, 0.2A

RY42NT2P Transistor (sink) output: 64 points, 12 to 24VDC, 0.2A

RY40PT5P Transistor (source) output: 16 points, 12 to 24VDC, 0.5A

RY41PT1P Transistor (source) output: 32 points, 12 to 24VDC, 0.1A

RY42PT1P Transistor (source) output: 64 points, 12 to 24VDC, 0.1A

I/O combined module RH42C4NT2P DC input: 32 points, 24VDC, 4.0mA

Transistor (sink) output: 32 points, 12 to 24VDC, 0.2A
8
1  BASICS OF A PROGRAMMABLE CONTROLLER
1.3  System Configuration



1

Memory card
A CPU module has a built-in memory for storing parameters 

and programs as standard. Thus, users can execute 

programs without a memory card.

Users can use a memory card (SD memory card) to store a 

large amount of data such as boot data, comment data, 

logging data, database, and others.

This section describes the performance specifications of SD 

memory cards.

Precautions

All SD memory cards to be used in the CPU module need to be formatted. An SD memory card is unformatted when 

purchased. Before using the card, insert it into the CPU module and format it using the engineering tool. Do not format an SD 

memory card using a personal computer. ( GX Works3 Operating Manual)

Item L1MEM-2GBSD L1MEM-4GBSD

Type SD SDHC

Capacity 2G bytes 4G bytes

Number of storable files 256 32767

Number of storable 

folders

256 32767

Number of insertions 

and removals

Limited to 500 times

External 

dimensions

Height 32mm

Width 24mm

Depth 2.1mm

Weight 2g

SD memory card slot
1  BASICS OF A PROGRAMMABLE CONTROLLER
1.3  System Configuration 1 - 9



1 - 
Extended SRAM cassette
Users can extend device/label memory areas up to 5786K words by mounting an extended SRAM cassette on the 

programmable controller CPU. Users can assign device/label ranges and others in the extended areas as the areas 

connected with the built-in memory of the CPU module. Thus, users do not need to consider boundaries between each 

memory area, allowing them to do programming easily.

*1 For the R120CPU
*2 For the NZ2MC-8MBS (8M bytes)

When users write a security key in an extended SRAM cassette, the cassette plays a security function. This function prevents 

programs from being executed with the CPU module that does not have the same security key as the one written in the 

program file.

File register area

Label area

Device area

Internal memory
(max. 1690K words*1)

Extended SRAM cassette
(max. 4096K words*2)

Continuous access

Flexible memory 
allocation
10
1  BASICS OF A PROGRAMMABLE CONTROLLER
1.3  System Configuration



1

1.4 Memory Configuration of the CPU Module

This section describes the role of each memory.

The following shows the memory configuration of the CPU module.

*1 The built-in memory is a generic term for internal memory areas of the CPU module.

The usage of the memory can be checked from the engineering tool. For details, refer to the following.

 GX Works3 Operating Manual

RAM
This memory is for using file registers, local devices, and sampling trace files without a memory card. Using RAM areas as file 

registers enables users to quickly access the areas in the same way as data registers. This memory is also used for storing 

module error collection files.

■Program cache memory
This memory is used for program operations.

When the system is powered on or the CPU module is reset, programs stored in the program memory are transferred into the 

program cache memory and executed.

■Device/label memory
The device/label memory has the following areas.

*2 File register files which are stored in the area for storing file register files can be written or read in file unit.

Area Application

Device area User device

Label area Label area Global label and local label

Latch label area Global label and local label with latch specified

Local device area Local device (excluding index register)

File storage area File register file and other data*2

SD memory card

Built-in memory*1

RAM ROM

Program cache 
memory

Device/label 
memory

Refresh memory

CPU module 
buffer memory

Program memory

Data memory
1  BASICS OF A PROGRAMMABLE CONTROLLER
1.4  Memory Configuration of the CPU Module 1 - 11



1 - 
■Refresh memory
This memory is used to store data used to refresh communication with the intelligent function module.

■CPU buffer memory
This memory is used by the Ethernet function or in data communication between multiple CPU modules.

ROM
This memory is for storing data such as parameters and programs.

■Program memory
This memory is used to store necessary programs and parameters for the CPU module to perform operations.

Programs stored in the program memory are transferred into the program cache memory and executed.

■Data memory
This memory is used to store parameter files, device comment files, and/or other folders/files.

SD memory card
This memory is used to store the folder/files created by a function using the SD memory card and other folders/files.

The folder configuration is the same as the data memory.
12
1  BASICS OF A PROGRAMMABLE CONTROLLER
1.4  Memory Configuration of the CPU Module



1

1.5 External I/O Signals and I/O Numbers

This section describes how to assign I/O numbers for the MELSEC iQ-R series.

Wiring of I/O devices
Signals output from external input devices are replaced with the input numbers determined depending on the mounting 

position and terminal numbers of an input module, and used in programs. For outputs (coils) of operation results, the output 

numbers determined depending on the mounting position and the terminal numbers of an output module where an external 

output module has been connected.

Figure 1.4 Wiring of I/O devices

(RX)

(RY)

Slot number

Base unit

PB1

CS1

CS2

PB2

PB3

LS1

LS2

LS3

LS4

PB4

PB5

CS3

X0

X1

X2

X3

X4

X5

X6

X7

X8

X9

XA

XB

XC

XD

XE

XF

COM

Input number Output number

Y10

Y11

Y12

Y13

Y14

Y15

Y16

Y17

COM1

Y18

Y1F

COM2

MC3

MC2

MC1

RD

SV3

SV2

SV1

Input module
Output module

GN

• The maximum number of I/Os of a CPU module module is 4096.

• I/O numbers are hexadecimal numbers that start from 0. Inputs 
and outputs are numbered in order. "X" at the beginning of a 
number indicates "Input", and "Y" indicates "Output".

• I/O numbers can be freely assigned beyond a boundary 
between the MELSEC iQ-R series and the MELSEC-Q series, 
being free from the restriction of assignment orders.

0 1 2 3 4

(Power 
supply 
module)

(CPU 
module)
1  BASICS OF A PROGRAMMABLE CONTROLLER
1.5  External I/O Signals and I/O Numbers 1 - 13



1 - 
I/O numbers of a main base unit
I/O numbers of I/O modules mounted on a main base unit are assigned as follows. I/O numbers of an intelligent function 

module are assigned in the same way.

 • I/O numbers of one slot (one module) are assigned in ascending order in increments of 16 points (0 to FH).

The case where 16-point modules have been mounted to all slots is used as standard.

For example, the following figure shows I/O numbers of when a 32-point module is mounted to the fifth slot.

 • I/O numbers are assigned to empty slots (slot where no I/O modules are mounted).

For example, when the third slot is empty, I/O numbers are assigned as follows in the initial setting.

The number of assigned points can be changed in the setting.

tototo to to to to to

00

0F 1F 3F 4F

0 1 7

I/O number

to

80

8F

to

90

9F

to

A0

AF

to

B0

BF

Main base unit (R35B, R38B, R312B)

Base unit with eight slots (R38B)

Base unit with 12 slots (R312B)

Base unit with five slots (R35B)

Slot number

10 20

2F 5F 6F 7F

30 40 50 70

P
ow

er
 s

up
pl

y 
m

od
ul

e

2 3 4 65 98 1110

60

C
P

U
 m

od
ul

e

P
ow

er
 s

up
pl

y 
m

od
ul

e

00

8F7F

5F

4F2F1F0F

to to to to•toto

Main base unit

Slot number0 1 2 3 4 5 6 7

60

6F

30

3F

to

 

The I/O numbers of the 
module on the slot next 
to the one for 32-point 
module are changed. 
(The numbers are 
right-justified.)

10 20 40 50 70 80
to

toC
P

U
 m

od
ul

e

E
m

pt
y 

(3
0 

to
 3

F)

P
ow

er
 s

up
pl

y 
m

od
ul

e

00 10 20

7F6F5F4F2F1F0F

to to to totototo

Main base unit

3 4 5 6 70 1 2
40 50 60 70

Slot number

C
P

U
 m

od
ul

e

14
1  BASICS OF A PROGRAMMABLE CONTROLLER
1.5  External I/O Signals and I/O Numbers



1

I/O numbers of an extension base unit
Connect extension base units when the number of slots of the main base unit is insufficient.

I/O numbers are assigned as follows in the initial setting. I/O numbers of an intelligent function module are assigned in the 

same way.

 • I/O numbers are also assigned to the slots on an extension base unit in ascending order in increments of 16 points.

 • As the start I/O number of an extension base unit, the number after the last number of the main base unit or the previous 

extension base unit is used.

 • To empty slots and the areas with no slots, the value "0" can be assigned with parameters.

 • Up to seven base units can be extended including the extension base unit, RQ extension base unit, and MELSEC-Q series 

extension base unit.

P
ow

er
 s

up
pl

y 
m

od
ul

e
00 10 20

7F6F5F2F1F0F

to toto

40

4F

totototo

Slot number3 4 5 6 7
30

to

80

EFDFAF9F8F

to to to

C0

CF

tototo

F0

FF

to

Extension base unit (R68B)

8 9 10 11
B0

to

BF

totototo

Extension base unit (R65B)

19 20

to

100 110 120

12F11F10F

140

14F

130

13F

to to to totototo

Extension base unit (R68B)

21 22 23 24 25 26 27 28

to

150 1B0

1BF1AF17F16F15F

190

19F

1C0

1CF

180

18F

Extension cable

(Extension level 2)

(Extension level 3)

3F

Main base unit (R38B)

50 60 70

90 A0 D0 E0

160 170 1A0

(Note)
Parameters allow users to set the number of slots 
different from the actual number of slots. For 
example, a base unit with 12 slots can be set as a 
base unit with five slots and vice versa. This setting 
is for the future extension, or to prevent I/O 
numbers from being unintentionally shifted when a 
conventional system is replaced with a new one. 
For details, refer to the MELSEC iQ-R Module 
Configuration Manual.

0 1 2

12 1513 14

181716

P
ow

er
 s

up
pl

y 
m

od
ul

e
P

ow
er

 s
up

pl
y 

m
od

ul
e

P
ow

er
 s

up
pl

y 
m

od
ul

e

(Extension level 1)

C
P

U
 m

od
ul

e

1  BASICS OF A PROGRAMMABLE CONTROLLER
1.5  External I/O Signals and I/O Numbers 1 - 15



1 - 
This section describes the connection between the RQ extension base unit and MELSEC-Q series extension 

base unit.

The RQ extension base unit is connected to the lower level of the main base unit or MELSEC iQ-R series 

extension base unit with a MELSEC iQ-R series extension cable.

( MELSEC iQ-R Module Configuration Manual)

When additional MELSEC-Q series modules are mounted, the MELSEC-Q series extension base unit is 

connected to the lower level of the RQ extension base unit with a MELSEC-Q series extension cable. (The dot 

lines show the MELSEC-Q series extension cables.)

• When the RQ extension base unit is connected to the lower level 

of the main base unit

• When the RQ extension base unit is connected to the lower level 

of the extension base unit

• When the RQ extension base unit is connected to the lower level 

of the main base unit

• When the RQ extension base unit is connected to the lower level 

of the extension base unit

Main base unit

RQ extension base unit

Main base unit

Extension base unit

RQ extension base unit

Main base unit

RQ extension base unit

MELSEC-Q extension 
base unit

Main base unit

Extension base unit

RQ extension base unit

MELSEC-Q 
extension base unit
16
1  BASICS OF A PROGRAMMABLE CONTROLLER
1.5  External I/O Signals and I/O Numbers



1

1.6 System Configuration and I/O Numbers of the 

Demonstration Machine

R61P

Base unit (R35B)

GOT2000

USB cable

Peripheral

Ethernet cable

Power 
supply 
module

CPU 
module 

Analog 
input 

module

Analog 
output 
module

R60AD4 
(16 points)

R60DA4 
(16 points)

X100 
to 

X10F

Y170 
to 

Y17F

R08CPU 
module
1  BASICS OF A PROGRAMMABLE CONTROLLER
1.6  System Configuration and I/O Numbers of the Demonstration Machine 1 - 17



1 - 
GOT screen display

Upper section: The indication device can be changed.

Lower section: Data is displayed.

Upper section: The input device can be changed.

Lower section: The input data can be set and displayed.

 • Touching  switches the screen.

 • The initial value is automatically set to a device number in the upper section (trigger action function).

 • Touching the "Initialize Input/Indication Device" button also initializes the device number.

Initial indication device D0
 
Initial indication device D1

 
Initial indication device D10 (32 bits)

Initial input device D20 Initial input device D21 Initial input device D30 (32 bits)

Screen 1 Screen 2

Screen 3
18
1  BASICS OF A PROGRAMMABLE CONTROLLER
1.6  System Configuration and I/O Numbers of the Demonstration Machine



2

2 OPERATING GX Works3

This chapter describes the basic operations of GX Works3.

GX Works3 is an engineering tool for setting, programming, debugging, and maintenance of projects for the MELSEC iQ-R 

series programmable controllers and others on Windows.

Compared with GX Works2, the functionality and operability of GX Works3 have been improved.

For changes in the window display, refer to the following.

 MELSEC iQ-R Module Configuration Manual

2.1 Main Functions of GX Works3
GX Works3 manages programs and parameters in a project for each CPU module.

GX Works3 has the following main functions.

Creating programs
Users can create programs in a desired programming language, such as ladder or ST, depending on the processing.

<Ladder program>

<ST program>
2  OPERATING GX Works3
2.1  Main Functions of GX Works3 2 - 1



2 - 
Setting parameters
Users can set parameters for CPU modules, I/O modules, and intelligent function modules.

Reading/writing data from/to the CPU module
Users can read/write created sequence programs from/to the CPU module by using the "Write to PLC" and "Read from PLC" 

functions.

Users can edit sequence programs with the online change function even while the CPU module is in the RUN state.

Monitoring and debugging programs
Users can write created sequence programs to the CPU module and monitor data during operation, such as device values.

Writing data

Reading data

Programs can be monitored and debugged.

Pressing the buttons 
switches the ON/OFF state 
of the contact.
2
2  OPERATING GX Works3
2.1  Main Functions of GX Works3



2

Diagnostic function
GX Works3 make diagnoses on the current error status and error history of the CPU module or network. With the diagnostic 

function, system recovery can be completed in a short time.

The system monitor shows detailed information on intelligent function modules and others. This feature helps users to shorten 

the time taken for system recovery when an error occurs.

Diagnosing the CPU module module ("Module Diagnostics" window)

Diagnosing the status 
of the CPU module 
module
2  OPERATING GX Works3
2.1  Main Functions of GX Works3 2 - 3



2 - 
2.2 Operations Before Creating a Ladder Program

2.2.1 Starting GX Works3

Operating procedure

Select [MELSOFT]  [GX Works3]  [GX Works3] from the Windows Start menu*1.

*1 Select [Start]  [All apps] or [Start]  [All Programs].

Figure 2.1 Startup window of GX Works3
4
2  OPERATING GX Works3
2.2  Operations Before Creating a Ladder Program



2

2.2.2 Creating a new project

Operating procedure

1. Click  on the toolbar or select [Project]  

[New] from the menu (Ctrl + N).

2. Click the list button of "Series".

3. Select "RCPU" from the drop-down menu.

4. Click the list button of "Type".

5. Select "R08" from the drop-down menu.

(To the next page)

1. Click!

3. Click and select!

2. Click!

5. Click and select!

4. Click!
2  OPERATING GX Works3
2.2  Operations Before Creating a Ladder Program 2 - 5



2 - 
(From the previous page)

6. Click the list button of "Program Language".

7. Select "Ladder" from the drop-down menu.

8. Click the [OK] button.

9. The confirmation window for adding the 

module label of the selected module type 

("R08" in this case) appears. Click the [No] 

button.

(To the next page)

7. Click and select!

6. Click!

8. Click!

9. Click!
6
2  OPERATING GX Works3
2.2  Operations Before Creating a Ladder Program



2

10. A new project is created.

(From the previous page)
2  OPERATING GX Works3
2.2  Operations Before Creating a Ladder Program 2 - 7



2 - 
2.3 Preparations for Stating the CPU Module
Before writing a program to the CPU module, configure the switch setting, initialize the built-in memory, and make other 

preparations.

Perform the following (1) to (5) operations.

(1) Connecting a battery ( Page 2 - 9 Installing a battery)

A battery has not been connected at the factory shipment. Connect a battery connector.

(2) Inserting an extended SRAM cassette and an SD memory card

( Page 2 - 9 Inserting or removing an extended SRAM cassette,  Page 2 - 11 Inserting and removing an SD 

memory card)

Insert an extended SRAM cassette or an SD memory card or both to the CPU module as needed.

(3) Setting the switch position

Set the RUN/STOP/RESET switch to the STOP position.

(4) Connecting a personal computer to the CPU module using a USB cable or an Ethernet cable

(5) Powering on the system

Check the following items, and then power on the system.

• A cable is correctly connected to the power supply.

• The power supply voltage is within the specified range.

• The CPU module is in the STOP state.

(3)

(4)

(4)

(1)

(2)(2)
8
2  OPERATING GX Works3
2.3  Preparations for Stating the CPU Module



2

2.3.1 Installing a battery

Install a battery to the CPU module.

■Installation procedure
The connector plug of the Q6BAT is disconnected from the jack of the CPU module before shipment. To use the battery, 

connect the connector, following the procedure below.

2.3.2 Inserting or removing an extended SRAM cassette

■Insertion procedure
Insert an extended SRAM cassette while the programmable controller is powered off.

1. Open the battery cover located on the bottom of the CPU 

module.

2. Check that the Q6BAT (1) is correctly installed.

3. Check the direction and securely insert the connector plug of the 

Q6BAT (2) to the jack (3) of the CPU module.

4. Close the battery cover.

1. Open the cassette cover (1) located on the side of the 

CPU module.

2. Hold the top and bottom of the tab (2) of an extended 

SRAM cassette (with the notched edge facing to the 

right), and insert the cassette straight into the 

connector. After inserting the cassette, check that it is 

inserted completely.

3. Close the cover, and mount the CPU module on the 

base unit.

4. Power on the programmable controller.

5. Set the capacity of the inserted cassette in the CPU 

parameters ("Extended SRAM Cassette Setting") 

using the engineering tool.

[CPU Parameter]  [Memory/Device Setting]  

[Device/Label Memory Area Setting]  [Extended 

SRAM Cassette Setting]

6. Using the engineering tool, check that SM626 

(Extended SRAM cassette insertion flag) is on.

(2)

(3)

(1)

(1)

(2)
2  OPERATING GX Works3
2.3  Preparations for Stating the CPU Module 2 - 9



2 - 
Precautions
 • When the extended SRAM cassette is removed, all of the data on the device/label memory are erased. Back up the 

program and data before replacing the cassette.

 • If the capacity of the extended SRAM cassette differs before and after the replacement, the ERROR LED of the CPU 

module may flash. But, it is not an error. Change the capacity setting in the CPU parameters. (Refer to step 5 above.)

The extended SRAM cassette for the Universal model QCPU (Q4MCA-MBS) cannot be used.

■Removal procedure
Remove the extended SRAM cassette while the programmable controller is powered off.

1. Read the data on the device/label memory from the CPU module, and save it in advance using the engineering tool. 

(When the extended SRAM cassette is removed, all of the data on the device/label memory are erased.)

2. Power off the programmable controller.

3. Remove the CPU module from the base unit, and open the cassette cover located on the side of the CPU module.

4. Hold the top and bottom of the tab of the extended SRAM cassette, and pull the cassette straight out of the connector.

5. Close the cover, and mount the CPU module back on the base unit.

6. Power on the programmable controller.

7. Set "Extended SRAM Cassette Setting" in the CPU parameters to "Not Mounted".
10
2  OPERATING GX Works3
2.3  Preparations for Stating the CPU Module



2

2.3.3 Inserting and removing an SD memory card

Insert an SD memory card to the CPU module as needed.

■Insertion procedure
Check the direction and insert an SD memory card, following the procedure below.

■Removal procedure

Precautions
 • Follow the procedure above when inserting or removing the SD memory card while the system is powered on. If not, the 

data on the SD memory card may corrupt.

 • If any function that accesses the SD memory card is being executed when the SD memory card access control switch is 

pressed to remove the card, the CARD READY LED turns off after the processing of the function is completed. For this 

reason, the time required until the LED turns off differs depending on the function being executed.

 • If SM605 (Memory card remove/insert prohibit flag) is on, the CARD READY LED does not turn off even if the SD memory 

card access control switch is pressed. If not, turn on SM606 (SD memory card forced disable instruction) to forcibly disable 

access to the card.

1. Insert an SD memory card (1) into the card slot until it clicks with 

the notched edge in the direction as illustrated. After inserting the 

cassette, check that it is inserted completely. Poor contact may 

cause malfunction.

2. The CARD READY LED (2) starts flashing. When the card is 

ready to be used, the CARD READY LED stops flashing and 

turns on.

3. If the CARD READY LED does not turn on even after the card is 

inserted, check that SM606 (SD memory card forced disable 

instruction) and SM607 (SD memory card forced disable status 

flag) are off.

1. Press the SD memory card access control switch (1) for one 

second or longer to disable access to the card.

2. The CARD READY LED (2) flashes during the access stop 

processing, and turns off upon completion of the processing.

3. Push in and release the SD memory card (3), and then pull the 

card out of the slot.

(2)

(1)

(2)

(1)

(3)
2  OPERATING GX Works3
2.3  Preparations for Stating the CPU Module 2 - 11



2 - 
2.3.4 Specifying connection destination

Specify the connection destination for accessing the CPU module.

Operating procedure

1. Select [Online] → [Specify Connection 

Destination] from the menu of the engineering 

tool.

2. Click the [CPU Module Direct Coupled Setting] 

button on the "Specify Connection Destination 

Connection" window.

The "CPU Module Direct Coupled Setting" 

dialog box appears.

3.  Select the connection method, and click the 

[Yes] button.

4. Click "No Specification" of "Other Station 

Setting".

(To the next page)

1. Click!

2. Click!

3. Click!

4. Click!
12
2  OPERATING GX Works3
2.3  Preparations for Stating the CPU Module



2

(From the previous page)

5. Click the [Connection Test] button.

6. Check that the CPU module is successfully 

connected, and click the [OK] button.

7. Click the [OK] button.

5. Click!

6. Click!

7. Click!
2  OPERATING GX Works3
2.3  Preparations for Stating the CPU Module 2 - 13



2 - 
 •

With this setting, the personal computer is directly connected to the CPU module (connection destination) 

with a USB cable or an Ethernet cable. This setting is convenient for switching the connection destination 

between another station and the own station.

 •

The set connection route is displayed in an illustration.
14
2  OPERATING GX Works3
2.3  Preparations for Stating the CPU Module



2

2.3.5 Initializing the CPU module
Initialize the RCPU.

Operating procedure

1. Click [Online] → [CPU Memory Operation] 

from the menu.

2. Select "Data Memory" in the "Memory 

Management" dialog box.

3. Click the [Initialization] button.

4. The confirmation dialog box appears. Click the 

[Yes] button.

(To the next page)

1. Click!

2. Select this item.3. Click!

4. Click!
2  OPERATING GX Works3
2.3  Preparations for Stating the CPU Module 2 - 15



2 - 
(From the previous page)

5. When the initialization is completed, the dialog 

box shown on the left appears. Click the [OK] 

button.

6. Select "Device/Label".

7. Click the [Initialization] button.

8. The confirmation dialog box appears. Click the 

[Yes] button.

(To the next page)

5. Click!

6. Select this item.
7. Click!

8. Click!
16
2  OPERATING GX Works3
2.3  Preparations for Stating the CPU Module



2

(From the previous page)

9. When the initialization is completed, the dialog 

box shown on the left appears. Click the [OK] 

button.

10.When the initialization processing is 

completed, click the [Close] button to close the 

dialog box.

9. Click!

10. Click!
2  OPERATING GX Works3
2.3  Preparations for Stating the CPU Module 2 - 17



2 - 
2.3.6 Clearing the error history of CPU module
Clear the error history data of the RCPU.

Operating procedure

1. Click [Diagnostics] → [Module Diagnostics 

(CPU Diagnostics)] from the menu.

2. The dialog box shown on the left appears. 

Click the [Clear Error] button.

3. The confirmation dialog box appears. Click the 

[Yes] button.

4. Click the [Close] button to close the dialog 

box.

1. Click!

2. Click!

3. Click!

4. Click!
18
2  OPERATING GX Works3
2.3  Preparations for Stating the CPU Module



2

2.3.7 Setting the clock of the CPU module
The year, month, day, hour, minute, second, and day of week can be set to the clock element of the CPU module.

To use the clock function, use GX Works3 or a program.

Set the clock and read the setting with GX Works3.

Operating procedure

1. Click [Online] → [Set Clock] from the menu to 

display the "Set Clock" dialog box.

2. Set a year, month, day, hour, minute, second, 

and day of week on the "Set Clock" dialog box.

3. Click the [Execute] button.

4. Click the [Close] button.

1. Click!

2. Enter!

3. Click!

4. Click!
2  OPERATING GX Works3
2.3  Preparations for Stating the CPU Module 2 - 19



2 - 
2.4 Creating a Ladder Program

Operating procedure

The following figure shows the buttons on the toolbar. The character below each ladder symbol indicates each 

function key.

 

 • Use only one-byte characters.

 • Check that "Write Mode" is active.

How to input contacts and coils

Users can create ladders with the function keys and tool buttons. To input a contact or coil, specify a position 

where a contact or coil is to be input with the cursor and enter a device and label.

Users can switch a normally open contact and normally closed contact with the "/" key.

If an added ladder is in contact with the right rail or is an output device (Y, DY), the ladder is recognized as a 

coil. If not, it is recognized as a contact.

1. This section describes how to create a ladder 

program such as the one shown on the left.

 • Use only one-byte characters.

Two-byte characters cannot be used.

X102

Y170

X103

X100

Y170

Y171

A ladder program to be created

F5 F6 F7 F9

F8Shift Shift Shift

Ctrl

Ctrl
+ + +

+

+

F9

Main key operations

F5 F6 F9 F10

s: Shift key

c: Ctrl key

a: Alt key

Monitor Mode (F3)Write Mode (F2)
20
2  OPERATING GX Works3
2.4  Creating a Ladder Program



2

2.4.1 Creating a ladder program by entering devices and 
labels

Operating procedure

1. Move the cursor to the position where a ladder 

is added, and enter "X102". (When entering of 

the number starts, the ladder input window 

appears.)

To cancel an incorrect entry, press the  

key.

2. To confirm the entry, press the  key.

 • Clicking the [OK] button also confirms the entry.

 • Clicking the [Cancel] button also cancels the 

entry.

3. The added symbol ( ) is displayed.

4. Move the cursor to the next position and enter 

"X100".

5. Press the  key.

6. The added symbol ( ) is displayed.

7. Select the symbol and press the "/" key to 

switch the symbol with ( ).

(To the next page)

1. Enter the I/O number!

2. Press the 
Enter key!

4. Enter the I/O number!

3. The symbol is displayed!

5. Press the 
Enter key!

X102

6. The symbol is displayed!

X100

7. The symbol is changed! X100
2  OPERATING GX Works3
2.4  Creating a Ladder Program 2 - 21



2 - 
(From the previous page)

8. Move the cursor to the next position and enter 

"Y170".

9. Press the  key.

10. The added symbol ( ) is displayed.

11.  Move the cursor to the next position, enter 

"Y170", and select "Open Branch".

12. Press the  key.

13. The added symbol ( ) is displayed.

14.Move the cursor to the ladder under .

15. Enter "X103".

16. Press the  key.

(To the next page)

8. Enter the I/O number!

9. Press the 
Enter key!

10. The symbol is displayed!

11.

12.Press the 
Enter key!

Enter "Y170" and 
select "Open Branch"!

Y170

13. The symbol is displayed!

14. Move the cursor!

15. Enter the I/O number!

16. Press the 
Enter key!

Y170

Y170
22
2  OPERATING GX Works3
2.4  Creating a Ladder Program



2

(From the previous page)

17. The added symbol ( ) is displayed.

18.Move the cursor to the next position and enter 

"Y171".

19. Press the  key.

20. The added symbol ( ) is displayed.

21.Creating a ladder program is completed.

17. The symbol is displayed!

18. Enter the I/O number!

19. Press the 
Enter key!

X103

20. The symbol is displayed!
Y171
2  OPERATING GX Works3
2.4  Creating a Ladder Program 2 - 23



2 - 
2.4.2 Creating a ladder program with function keys

Operating procedure

1. Press the  key to open the ladder input 

window, and enter "X102".

To cancel an incorrect entry, press the  

key.

2. To confirm the entry, press the  key.

 • Clicking the [OK] button also confirms the entry.

 • Clicking the [Cancel] button also cancels the 

entry.

3. The added symbol ( ) is displayed.

4. Press the  key and enter "X100".

5. Press the  key after entering the device 

number.

6. The added symbol ( ) is displayed.

7. Press the  key and enter "Y170".

8. Press the  key after entering the device 

number.

(To the next page)

1.
2.

Press the F5 key 
and enter "X102"!

Press the 
Enter key!

4.

5.

3. The symbol is displayed!

Press the 
Enter key!

Press the F6 key 
and enter "X100"!

X102

7.
8.

6. The symbol is displayed!

Press the 
Enter key!Press the F7 key 

and enter "Y170"!

X100
24
2  OPERATING GX Works3
2.4  Creating a Ladder Program



2

(From the previous page)

9. The added symbol ( ) is displayed.

10.  Press the  key and the  key and 

enter "Y170".

11. Press the  key after entering the device 

number.

12. The added symbol ( ) is displayed.

13.Move the cursor to the ladder under .

14.  Press the  key and enter "X103".

15. Press the  key after entering the device 

number.

16. The added symbol ( ) is displayed.

17. Press the  key and enter "Y171".

18. Press the  key after entering the device 

number.

(To the next page)

10.
11.

9. The symbol is displayed!

Press the 
Enter key!Press the Shift and F5 

keys and enter "Y170"!

Y170

14.
15.

12. The symbol is displayed!

13. Move the cursor!

Press the F5 key 
and enter "X103"!

Press the 
Enter key!

Y170

Y170

17.

18.

16. The symbol is displayed!

Press the 
Enter key!

Press the F7 key 
and enter "Y171"!

X103
2  OPERATING GX Works3
2.4  Creating a Ladder Program 2 - 25



2 - 
(From the previous page)

19. The added symbol ( ) is displayed.

20.Creating a ladder program is completed.

19. The symbol is displayed!
Y171
26
2  OPERATING GX Works3
2.4  Creating a Ladder Program



2

2.4.3 Creating a ladder program with tool buttons

Operating procedure

1. Click  on the toolbar to open the ladder 

input window, and enter "X102".

To cancel an incorrect entry, press the  

key.

2. To confirm the entry, press the  key.

 • Clicking the [OK] button also confirms the entry.

 • Clicking the [Cancel] button also cancels the 

entry.

3. The added symbol ( ) is displayed.

4. Click  on the toolbar and enter "X100".

5. Press the  key.

6. The added symbol ( ) is displayed.

7. Click  on the toolbar and enter "Y170".

8. Press the  key.

(To the next page)

1.

2. Press the 
Enter key!

Click       and enter 
the I/O number!

4.

3. The symbol is displayed!

5. Press the 
Enter key!

Click       and enter 
the I/O number!

X102

6. The symbol is displayed!

7.

8. Press the 
Enter key!

Click       and enter 
the I/O number!

X100
2  OPERATING GX Works3
2.4  Creating a Ladder Program 2 - 27



2 - 
(From the previous page)

9. The added symbol ( ) is displayed.

10.  Click  on the toolbar and enter "Y170".

11. Press the  key.

12. The added symbol ( ) is displayed.

13.Move the cursor to the ladder under .

14.  Click  on the toolbar and enter "X103".

15. Press the  key.

16. The added symbol ( ) is displayed.

17.Click  on the toolbar and enter "Y171".

18. Press the  key.

(To the next page)

9. The symbol is displayed!

10.

11. Press the 
Enter key!

Click       and enter 
the I/O number!

Y170

12. The symbol is displayed!

13. Move the cursor!

14.

15. Press the 
Enter key!

Click       and enter 
the I/O number!

Y170

Y170

16. The symbol is displayed!

17.

18. Press the 
Enter key!

Click       and enter 
the I/O number!

X103
28
2  OPERATING GX Works3
2.4  Creating a Ladder Program



2

(From the previous page)

19. The added symbol ( ) is displayed.

20.Creating a ladder program is completed.

19. The symbol is displayed!
Y171
2  OPERATING GX Works3
2.4  Creating a Ladder Program 2 - 29



2 - 
2.5 Converting a Created Ladder Program

Operating procedure

1. Click [Convert] → [Convert] () from the 

menu.

2. The ladder program is converted. When the 

conversion processing is completed and the 

input ladder blocks are determined, the color 

of those ladder blocks changes from gray to 

white.

When an error has occurred during conversion, the 

cursor is moved to the position where the error has 

occurred. Check the ladder.

1. Click!
30
2  OPERATING GX Works3
2.5  Converting a Created Ladder Program



2

2.6 Reading/Writing Data from/to the Programmable 
Controller CPU

I/O assignment with the parameter setting
This section describes an example of the I/O assignment setting of parameters.

In this practice, this setting is not configured.

This section describes the I/O assignment setting of parameters.

1. Double-click "Parameter" in the "Project" view.

2. Double-click "System Parameter".

3. The "System Parameter" dialog box appears. Click "I/O 

Assignment Setting" in "Setting Item List".

(To the next page)

1. Double-click!

2. Double-click!

3. Click!
2  OPERATING GX Works3
2.6  Reading/Writing Data from/to the Programmable Controller CPU 2 - 31



2 - 
(From the previous page)

4. Double-click a row in "Module Name".

5. Set the following items on the "Add New Module" dialog 

box.

• "Module"

• "Module Name"

• "Mounting Slot No."

• "Start I/O No. Specification"

• "Start I/O No."

* The left figure is a setting example.

6. Click the [OK] button.

4. Double-click!

6. Click!

5. Set!
32
2  OPERATING GX Works3
2.6  Reading/Writing Data from/to the Programmable Controller CPU



2

2.6.1 Writing data to the CPU module
Before writing data to the CPU module, initialize the memory.

For details, refer to Section 2.3.5.

Operating procedure

1. Prior to this operation, create a ladder program 

(sequence program).

2. Set the RUN/STOP/RESET switch to the 

STOP position.

3. Click  on the toolbar, or click [Online] → 

[Write to PLC] from the menu.

4. Select the [Write] tab in the "Online Data 

Operation" window.

5. Select files and parameters to be written as 

shown left.

6. After selecting files and parameters, click the 

[Execute] button.

(To the next page)

2. Set the switch to "STOP"!

3. Click!

5.

6. Click!

4. Click and select!

Click and select the 
write target data!
2  OPERATING GX Works3
2.6  Reading/Writing Data from/to the Programmable Controller CPU 2 - 33



2 - 
(From the previous page)

7. If parameters or files have already existed in 

the CPU module, the confirmation window for 

overwriting the data appears. Click the [Yes] 

button.

8. The dialog box indicating that writing is in 

progress appears.

9. When writing the data is completed, the 

message "Completed" is displayed. Click the 

[Close] button.

10.Click the [Close] button to close the dialog 

box.

7. Click!

9. Click!

10. Click!
34
2  OPERATING GX Works3
2.6  Reading/Writing Data from/to the Programmable Controller CPU



2

2.6.2 Reading data from the CPU module

Operating procedure

1. Click  on the toolbar, or click [Online] → 

[Read from PLC] from the menu.

2. Select the [Read] tab in the "Online Data 

Operation" window.

3. Select files and parameters to be read and the 

destination where read data is to be stored.

4. Click the [Detail] button to set details such as a 

read range.

5. After selecting files and parameters, click the 

[Execute] button.

6. If parameters or files have already existed, the 

confirmation window for overwriting the data 

appears. Click the [Yes] button.

(To the next page)

1. Click!

3.4.

5. Click!

2. Click and select!

Click and select the 
read target data!

6. Click!
2  OPERATING GX Works3
2.6  Reading/Writing Data from/to the Programmable Controller CPU 2 - 35



2 - 
(From the previous page)

7. The dialog box indicating that reading is in 

progress appears.

8. When reading the data is completed, the 

message "Completed" is displayed. Click the 

[Close] button.

8. Click!
36
2  OPERATING GX Works3
2.6  Reading/Writing Data from/to the Programmable Controller CPU



2

2.7 Monitoring the Ladder

Operating procedure

Operation practice
 Check that turning on the switch X102 turns on the LED indicator Y170, and that the LED indicator Y170 remains on even 

after the switch X102 turns off.

 Check that turning on the switch X100 turns off the LED indicator Y170, and that the LED indicator Y170 remains off even 

after the switch X100 turns off.

 Turning on the switch X103 turns on the LED indicator Y171.

1. Prior to this operation, write a ladder program 

(sequence program) to the programmable 

controller CPU.

2. Set the RUN/STOP/RESET switch of the CPU 

module to the "RESET" position once (for 

about one second), return the switch to the 

"STOP" position, and then set the switch to the 

"RUN" position again.

3. Click  on the toolbar, or click [Online] → 

[Monitor] → [Monitor Mode] from the menu.

4. To stop monitoring, set the mode other than 

the monitor mode.

2. Set the switch to "RUN"!

3. Click!
2  OPERATING GX Works3
2.7  Monitoring the Ladder 2 - 37



2 - 
Monitoring on the monitor status bar
In the monitor mode, the following "Monitor Status" dialog box appears regardless of whether the operation status is 

monitoring in progress or not.

(1) Connection status

The connection status with the CPU module is displayed.

(2) CPU module operating status

The operating status of the CPU module in accordance with the RUN/STOP/RESET switch of the CPU module or the 

remote operation by the engineering tool is displayed.

(3) ERROR LED status

The ERROR LED status of the CPU module is displayed.

Clicking the icon opens the "Module Diagnostics" window.

( Page 2 - 40 Diagnosing the Programmable Controller CPU)

(4) USER LED status

The USER LED status of the CPU module is displayed.

Clicking the icon opens the "Module Diagnostics" window.

( Page 2 - 40 Diagnosing the Programmable Controller CPU)

(5) Scan time details

The scan time details are displayed. Select the value to be displayed from the drop-down list (current value, maximum 

value, or minimum value).

(6) Monitor target selection

Specify the monitor target FB instance when monitoring a FB program.

*1 For the module diagnostics, refer to Section 2.8.

(5)
(6)

(4)
(3)

(2)

(1)
38
2  OPERATING GX Works3
2.7  Monitoring the Ladder



2

Monitoring on the ladder editor
The following figure shows how the ladder status is displayed on the ladder editor.

(1) The on/off states of contacts and coils are displayed.

(2) The current value of the word/double word type data is displayed.

■On/off state display
The on/off states are displayed on the editor as follows:

*1 Only comparison instructions that are equivalent to contacts and the instructions that are equivalent to coils are supported.
Comparison instructions equivalent to contacts: 16-bit binary data comparison, 32-bit binary data comparison, floating-point data 
comparison, 64-bit floating-point data comparison
Instructions equivalent to coils: SET, RST, PLS, PLF, SFT, SFTP, MC, FF, DELTA, DELTAP

(1)

(1)

(2)

OFF:

ON:
2  OPERATING GX Works3
2.7  Monitoring the Ladder 2 - 39



2 - 
2.8 Diagnosing the Programmable Controller CPU

Operating procedure

1. Click [Diagnostics] → [Module Diagnostics 

(CPU Diagnostics)] from the menu.

2. The "Module Diagnostics" window appears.

For Q series modules, "-" is displayed in the rows of "Occurrence Date", "Status", and "Overview".

1. Click!

1) 4)

2)

3)
40
2  OPERATING GX Works3
2.8  Diagnosing the Programmable Controller CPU



2

Item Description

1) Error Information Select this tab to display the error information of the current programmable controller CPU.

2) Module Information List Select this tab to display the status information of the programmable controller CPU.

3) Event History Click  to display the error information, operation history, and system information history 

of the module.

4) Legend Displays the example of icons displayed on the window.
2  OPERATING GX Works3
2.8  Diagnosing the Programmable Controller CPU 2 - 41



2 - 
2.9 Editing a Ladder Program

2.9.1 Modifying a part of a ladder program

Operating procedure

This section describes how to modify a part of the 

ladder program shown on the left. (OUT Y171 → 

OUT Y172)

 • Use only one-byte characters.

Two-byte characters cannot be used.

1. Check that "Overwrite" is displayed at the 

bottom right of the window.

When "Insert" is displayed, press the  key to 

switch to "Overwrite".

When "Insert" is displayed, contacts or coils are 

added.

2. Click the position to be modified, and press the 

"F2" key.

(To the next page)

X102 X100

Y170

Y170

X103

Y171

Y172

A ladder program to be created

1. Check!

Added!
X105

<When changing X102 with X105 is attempted>

X102

Added!

RST   M3

SET  M3

<When changing SET with RST is attempted>

2. Press the "F2" key!
42
2  OPERATING GX Works3
2.9  Editing a Ladder Program



2

How to input contacts and coils

To input a contact or coil, specify a position where a contact or coil is to be input with the cursor and enter a 

device and label.

If an added ladder is in contact with the right rail or is an output device (Y, DY), the ladder is recognized as a 

coil. If not, it is recognized as a contact.

(From the previous page)

3. The device can be modified. Modify the device 

to "Y172", and press the  key.

4. The ladder program after the modification is 

displayed.

To change only the device number, click the 

F2 key.

5. Click [Convert] → [Convert] () from the 

menu to convert the ladder program after the 

modification.

3. Correct the output number 
and press the Enter key!

4. The device after change is displayed!
2  OPERATING GX Works3
2.9  Editing a Ladder Program 2 - 43



2 - 
2.9.2 Drawing a line

Operating procedure

This section describes how to draw a line in the 

ladder program shown on the left.

1. Move the mouse pointer close to the exiting 

line, and click the displayed icon.

2. Drag the icon from the position to the end 

position.

A vertical line is drawn on the left side of the cursor.

3. Release the left button of the mouse to create 

a line.

(To the next page)

A ladder program to be created

X102 X100

Y170

Y170

X103

Y172

Y173

1. Click!

2. Drag!

3. A line is created!
44
2  OPERATING GX Works3
2.9  Editing a Ladder Program



2

Adding or deleting a line with the key operation

In GX Works3, lines can be added or deleted with the  key + , , , or .

Users can draw a horizontal line from the cursor position to the position of the next contact, coil, or line by 

pressing  +  +  or .

(From the previous page)

4. Click  on the toolbar and enter "Y173".

5. Click the [OK] button.

6. The added symbol ( ) is displayed.

7. Click [Convert] → [Convert] () from the 

menu to convert the ladder program.

5. Click!

4. Click       and enter 
the I/O number!

6. The symbol is displayed!

Y173
2  OPERATING GX Works3
2.9  Editing a Ladder Program 2 - 45



2 - 
2.9.3 Deleting a line

Operating procedure

Adding or deleting a line with the key operation

In GX Works3, lines can be added or deleted with the  key + , , , or .

Users can draw a horizontal line from the cursor position to the position of the next contact, coil, or line by 

pressing  +  +  or .

This section describes how to delete a line in the 

ladder program shown on the left.

1. Move the mouse pointer close to the exiting 

line, and click the displayed icon.

2. Drag the icon along the line to be deleted.

3. Release the left button of the mouse to delete 

the line.

The line connected to "END" cannot be deleted.

4. Press the  key to delete ( ).

5. Click [Convert] → [Convert] () from the 

menu to convert the ladder program.

A ladder program to be created

X102 X100

Y170

Y170

X103

Y172

Y173

1. Click!

2. Drag!

3. The line is deleted!

4. Press the Delete key!

Y173
46
2  OPERATING GX Works3
2.9  Editing a Ladder Program



2

2.9.4 Inserting a row

Operating procedure

This section describes how to insert a row in the 

ladder program shown on the left.

1. Click and move the cursor on the row (desired 

position on the row) where a new row is 

inserted above.

A new row is inserted above the row.

2. Right-click on the ladder editor, and click [Edit] 

→ [Insert Row] ( + ) from the menu.

(To the next page)

A ladder program to be modified

X102 X100

Y170

Y170

X103

Y172

Y177

X107

1. Click and move 
the cursor!

2. Click!
2  OPERATING GX Works3
2.9  Editing a Ladder Program 2 - 47



2 - 
(From the previous page)

3. A new row is inserted above the row.

4. Click  on the toolbar to open the ladder 

input window, and enter "X107".

5. Click the [OK] button to confirm the entry.

6. The added symbol ( ) is displayed.

7. Click  on the toolbar and enter "Y177".

8. Click the [OK] button.

9. The added symbol ( ) is displayed.

10.Click [Convert] → [Convert] () from the 

menu to convert the ladder program.

3. A new row is inserted!

4.

5. Click!

Click       and enter 
the I/O number!

7.

8. Click!

Click       and enter 
the I/O number!

X107

9. The symbol is displayed!
Y177
48
2  OPERATING GX Works3
2.9  Editing a Ladder Program



2

2.9.5 Deleting a row

Operating procedure

This section describes how to delete a row in the 

ladder program shown on the left.

1. Click and move the cursor on the row (desired 

position on the row) to be deleted.

2. Right-click on the ladder editor, and click [Edit] 

→ [Delete Row] ( + ) from the right-

click menu.

3. The row is deleted.

4. Click [Convert] → [Convert] () from the 

menu to convert the ladder program.

A ladder program to be modified

X102 X100

Y170

Y170

X103

Y172

Y177

X107

1. Click and move 
the cursor!

2. Click!

3. The row is deleted!
2  OPERATING GX Works3
2.9  Editing a Ladder Program 2 - 49



2 - 
2.9.6 Cutting or copying a ladder

Operating procedure

This section describes how to cut or copy a part of 

the ladder program shown on the left and paste the 

cut part or the copy of the part to any desired 

location in the ladder.

1. Click and move the cursor to the position 

where a part of the ladder program is to be cut.

2. Drag the mouse to specify the cutting range.

The color of the specified range is highlighted.

To easily specify the range in units of ladder blocks, 

click the position where a step number is displayed 

and drag the mouse vertically.

3. Click  on the toolbar, or select [Edit] → [Cut] 

( + ) to cut the ladder in the specified 

range.

(To the next page)

X102 X100
Y170

Y170

X107

Y177

A ladder program to be modified

1. Click and move 
the cursor!

2. Drag to specify 
the range!

3. Click       to cut 
the range!
50
2  OPERATING GX Works3
2.9  Editing a Ladder Program



2

(From the previous page)

4. Click and the move the cursor to the position 

where a part of the ladder program is to be 

copied.

5. Drag the mouse to specify the copy range.

The color of the specified range is highlighted.

To easily specify the range in units of ladder blocks, 

click the position where a step number is displayed 

and drag the mouse vertically.

6. Click  on the toolbar, or select [Edit] → 

[Copy] ( + ).

7. Click and move the cursor to a position on the 

ladder block (any position on the block) where 

the copy is to be pasted.

8. Click  on the toolbar, or select [Edit] → 

[Paste] ( + ) from the menu.

4. Click and move 
the cursor!

5. Drag to specify 
the range!

6. Click      !

7. Click and move 
the cursor!

The copy is pasted on the 
block above this block!

8. Click       to paste 
the copy!
2  OPERATING GX Works3
2.9  Editing a Ladder Program 2 - 51



2 - 
2.10 Verifying Data
This section describes how to verify the currently-opened project and the data stored in the CPU module.

Perform this operation to check whether the projects are identical or to check changes in a program.

Operating procedure

1. Click [Online] → [Verify with PLC] from the 

menu.

2. The "Online Data Operation" dialog box 

appears. Select data to be verified.

3. Click the [Execute] button.

4. Verification results are displayed in the "Result 

List" window.

To check details of data, double-click the row 

of the data.

(To the next page)

1. Click!

3. Click!

2. Click and select!

4. Double-click!
52
2  OPERATING GX Works3
2.10  Verifying Data



2

(From the previous page)

5. Detailed results are displayed.

5. Displayed!
2  OPERATING GX Works3
2.10  Verifying Data 2 - 53



2 - 
2.11 Saving a Created Ladder Program

2.11.1 Saving a program in the single file format

Operating procedure

1. Click  on the toolbar, or select [Project] → 

[Save] ( + ) from the menu.

If the project is overwritten, the saving operation is 

completed in this step.

2. Specify the location where the project is 

stored.

3. Set a project name.

4. Set a title as necessary.

5. After setting each item, click the [Save] button.

The saving operation is completed.

1. Click!

2.

3. Set a project name!

4. Set a title as necessary!
5. Click!

Specify the location where 
the project is stored!
54
2  OPERATING GX Works3
2.11  Saving a Created Ladder Program



2

2.11.2 Saving a program in the workspace format

Operating procedure

1. Click [Project] → [Save as] from the menu.

2. Click the [Save as a Workspace Format 

Project] button at the bottom left in the "Save 

as" dialog box.

3. The dialog box for saving the project in the 

workspace format appears.

4. Specify the location where the project is 

stored.

5. Set a workspace name.

6. Set a project name.

7. Set a title as necessary.

8. After setting each item, click the [Save] button.

The saving operation is completed.

1. Click!

2. Click!

4.
6. Set a project name!

7. Set a title as necessary!

8. Click!

5. Set a workspace name!Specify the location 
where the project is 
stored!
2  OPERATING GX Works3
2.11  Saving a Created Ladder Program 2 - 55



2 - 
Single file format

A single file format is for handling a project as a single file.

By saving a project in the single file format, users can manage the project without considering folder and file 

structures. Users can easily perform operations such as changing a project name, copying or pasting a 

project, or sending/receiving data in Explorer.

Workspace format

A workspace format is for handling multiple projects in a batch.

To build a system consisting of multiple CPU modules, a project needs to be created for each CPU module. 

However, when users create and save projects of the system in the workspace format, they can manage the 

projects in a workspace.

When using MELSOFT Navigator, save projects in the workspace format.

<Single file format project (*.gx3)>

<System configuration example>

First construction for A company

<Warning processing A>

Ethernet

<Control B>

CC-Link IE Field Network

<Conveyor control C> <Incidental processing D>

<Project management of GX Works3>

First construction for A company

Warning processing A

Control B

Conveyor control C

Incidental processing D

• • • • • Workspace

• • • • • Project

Multiple projects are handled in a batch in the 
workspace format.
56
2  OPERATING GX Works3
2.11  Saving a Created Ladder Program



2

2.12 Opening a Saved Project

Operating procedure

1. Click  on the toolbar, or click [Project] → 

[Open] ( + ) from the menu.

2. Specify the location where the project is 

stored.

3. Click the project to open.

4. After setting each item, click the [Open] button.

If another project is open and has not been saved, the following dialog box appears.

[Yes] •  •  •  •  • The project is saved and closed.

[No]   •  •  •  •  • The project is not saved but closed.

[Cancel]  •  •  • The project is not closed.

1. Click!

2.

3. Click the project to open!

4. Click!

Specify the location where 
the project is stored!
2  OPERATING GX Works3
2.12  Opening a Saved Project 2 - 57



2 - 
2.13 Opening a Project in Another Format
Open a project created with GX Works2 by changing the module type with GX Works3.

Operating procedure

1. Click [Project] → [Open Other Format File] → 

[Open GX Works2 Format Project] from the 

menu.

2. Specify a project in the "Open GX Works2 

Format Project" dialog box, and click the 

[Open] button.

(To the next page)

1. Click!

2. Click!
58
2  OPERATING GX Works3
2.13  Opening a Project in Another Format



2

(From the previous page)

3. The message dialog box shown on the left 

appears. Click the [OK] button.

Changes in the project data due to the module 

type change are displayed on the output 

window.

4. When the module type change is completed, 

the message window shown on the left 

appears. Click the [OK] button.

5. The project created with GX Works2 is read.

3. Click!

4. Click!
2  OPERATING GX Works3
2.13  Opening a Project in Another Format 2 - 59



2 - 
MEMO
60
2  OPERATING GX Works3
2.13  Opening a Project in Another Format



3

3 DEVICES AND PARAMETERS OF A 
PROGRAMMABLE CONTROLLER

3.1 Devices
A device is an imaginary element for a program in the programmable controller CPU, as well as components (such as 

contacts and coils) of a program.

Type Description Remarks

X Input Provides the programmable controller with commands and/or data using 

external devices, such as push buttons, transfer switches, limit switches, 

and digital switches.

• Bit device

• Mainly handles on/off signals.

Y Output Outputs control results to solenoids, electromagnetic switches, signal lights, 

and digital indicators.

M Internal relay An auxiliary relay inside a programmable controller that cannot output 

signals directly to external devices

L Latch relay An auxiliary relay inside a programmable controller that cannot output 

signals directly to external devices. Data in this device is held at power-off.

B Link relay An internal relay for data link that cannot output signals directly to external 

devices. The areas not assigned in the link initial information setting can be 

used as the internal relay.

F Annunciator A device used for detecting failures. Create a failure detection program in 

advance and turn on the device while the programmable controller is 

running to store a numerical value in the special register (SD).

V Edge relay An internal relay that stores operation results (on/off information) from the 

beginning of a ladder block

SM Special relay An internal relay that stores the CPU module status

SB Link special relay An internal relay for data link that indicates the communication status or an 

error

FX Function input An internal relay that loads the on/off data specified by a subroutine call 

instruction with argument in a subroutine program

FY Function output An internal relay that passes operation results (on/off data) in a subroutine 

program to a subroutine program call source

X6

Y74

T2
Y74 Y 74

Device number
Device symbol
3  DEVICES AND PARAMETERS OF A PROGRAMMABLE CONTROLLER
3.1  Devices 3 - 1



3 - 
T(ST) Timer Four types of up-timing timers are provided: low-speed timer, high-speed 

timer, low-speed retentive timer, and high-speed retentive timer

• Word device

• Mainly handles data.

• One word consists of 16 bits.

• A bit of a device can be 

specified by "device number.*".

(* = 0 to F (hexadecimal))

C Counter Two types of up-timing counters are provided: counters used in sequence 

programs and counters used in interrupt sequence programs

D Data register Memory that stores data in a programmable controller

W Link register A data register for data link

R/ZR File register A register for extending data registers, which uses the standard RAM or 

memory card

SD Special register A register that stores the CPU module status

SW Link special register A data register for data link that stores the communication status or error 

definition

FD Function register A register used for passing data between the subroutine call source and the 

subroutine program

U3En\G

U3En\HG

CPU buffer memory access 

device

A device that accesses the memory used by the built-in functions of the 

CPU module, such as the Ethernet function and the function for writing/

reading data between CPU modules in the multiple CPU system

Z Index register A register used for indexing devices (X, Y, M, L, B, F, T, C, D, W, R, K, H, 

and P)

RD Refresh data register A device provided to be used as a refresh destination of the buffer memory

N Nesting Shows the nesting (nesting structure) of the master control.

P Pointer Points the jump destination of the branch instructions (CJ, SCJ, CALL and 

JMP).

I Interrupt pointer When an interrupt factor occurs, this device points a jump destination to the 

interrupt program corresponding to the interrupt factor.

J Network No. specification 

device

Use this device when specifying a network number with the data link 

instruction.

LT(LST) Long timer An up-timing timer that holds the current value in 32 bits • Word device

• Mainly handles data.

• One word consists of 32 bits.

A bit of a device can be specified 

by "device number.*".

(* = 0 to F (hexadecimal))

LC Long counter An up-timing counter that holds the number of times that an input condition 

turns on in a program in 32 bits

LZ Long index register A register used for indexing devices (X, Y, M, L, B, F, T, C, D, W, R, K, H, 

and P) with 32 bits

U I/O No. specification device A device used to specify an I/O number with the intelligent function module 

dedicated instruction

• Word device

• Mainly handles data.

• One word consists of 16 bits.

• A bit of a device can be 

specified by "device number.*".

(* = 0 to F (hexadecimal))

K Decimal constant A device used to specify the following; set value of a timer/counter, pointer 

number, interrupt pointer number, the number of digits of a bit device, and 

values of a basic/application instruction.

H Hexadecimal constant A device used to specify values of a basic/application instruction

E Real constant A device used to specify real numbers to an instruction

"String" Character string constant A device used to specify character strings to an instruction

Jn\X

Jn\Y

Jn\B

Jn\SB Link direct device
A device that can directly access a link device of a network module (The 

refresh parameter setting is not required.)

• Bit device

• Mainly handles on/off signals.

Jn\W

Jn\SW

• Word device

• Mainly handles data.

• One word consists of 16 bits.Un\G Module access device A device that accesses the buffer memory of an intelligent function module

Type Description Remarks
2
3  DEVICES AND PARAMETERS OF A PROGRAMMABLE CONTROLLER
3.1  Devices



3

3.2 Parameters
The parameters are basic setting values applied to a programmable controller to control objects as desired.

The parameters are classified into three types: system parameters, CPU parameters, and memory card parameters.

System parameters
The following is the list of system parameters.

Item Parameter No.

I/O Assignment Base/Power/Extension Cable Setting Base/Power Supply Module/Extension Cable model name 

setting

0203H

I/O Assignment Setting Slot 0201H

Module Name 0203H

Module Type/Points/Start XY/Module Status Setting 0200H

Control PLC Setting 0202H

Setting of Points Occupied by Empty Slot 0100H

Multiple CPU Setting Number of CPU modules 0301H

Communication Setting between 

CPU

Refresh Area Setting 0303H

CPU Buffer Memory Setting (Refresh (At the END)) 0304H

CPU Buffer Memory Setting (Refresh (At I45 Exe.)) 0308H

PLC Unit Data 0309H

Fixed Scan Communication Function -

Fixed Scan Communication Area Setting 0307H

Fixed Scan Communication Setting Fixed Scan Interval Setting of Fixed Scan Communication 0306H

Fixed Scan Communication Function and Inter-module 

Synchronization Function

0306H

Operation Mode Setting Stop Setting 0302H

Synchronous Startup Setting 030AH

Other PLC Control Module Setting I/O Setting Outside Group 0305H

Synchronization Setting 

within the Modules

Use Inter-module Synchronization Function in System -

Select Synchronous Target Unit between Unit 0101H

Synchronous Fixed Scan Interval Setting within the Modules 0101H

Synchronous Master Setting within the Modules 0102H
3  DEVICES AND PARAMETERS OF A PROGRAMMABLE CONTROLLER
3.2  Parameters 3 - 3



3 - 
CPU parameters
The following is the list of CPU parameters.

Item Parameter No.

Name Setting Title Setting 3100H

Comment Setting 3101H

Operation Related 

Setting

Timer Limit Setting 3200H

RUN-PAUSE Contact Setting 3201H

Remote Reset Setting 3202H

Output Mode Setting of STOP to RUN 3203H

Module Synchronous Setting 3207H

Clock Related Setting 3209H

Interrupt Settings Fixed Scan Interval Setting 3A00H

Fixed Scan Execution Mode Setting 3A00H

Interrupt Enable Setting in Executing Instruction 3A00H

Block No. Save/Recovery Setting 3A00H

Interrupt Priority Setting from Module 3A01H

Service Processing 

Setting

Device/Label Access Service Processing Setting 3B00H

File Setting File Register Setting 3300H

Initial Value Setting 3301H

File Setting for Device Data Storage 3303H

Memory/Device Setting Device/Label Memory Area Setting Extended SRAM Cassette 3404H

Device/Label Memory Area Capacity Setting 3400H

Device Points 3401H

Local Device 3405H

Latch Range Setting 3407H

Latch Type Setting of Latch Type Label 3408H

Index Register Setting 3402H

Refresh Memory Setting 3403H

Device Latch Interval Setting 3406H

Pointer Setting 340BH

Internal Buffer Capacity Setting 340AH

RAS Setting Scan Time Monitoring Time (WDT) Setting 3500H

Constant Scan Setting 3503H

Error Detection Setting 3501H

CPU Module Operation Setting at Error Detected 3501H

LED Display Setting 3502H

Event History Setting 3504H

Program Setting Program Setting Program Name 3700H

Execution Type 3700H

Type (Fixed Scan) 3700H

Type (Event) 3701H

Detail Setting Information -

Refresh Group Setting 3700H

Device/File Use or not 3700H

FB/FUN File Setting 3702H

Refresh Setting between 

Multiple CPU

Refresh Setting (At the END) 3901H

Refresh Setting (At I45 Exe.) 3902H

Routing Setting Routing Setting 3800H
4
3  DEVICES AND PARAMETERS OF A PROGRAMMABLE CONTROLLER
3.2  Parameters



3

Memory card parameters
The following is the list of memory card parameters.

 • When GX Works3 starts, the preset values are set in parameters. These values are called default values (initial values).

 • The programmable controller can run with default values, however, modify them within a specified range as necessary.

■Operation example: Changing the operation mode when an error occurs
When an operation error occurs, the status of the RCPU changes to STOP with the default value, however, changing the 

parameters allows the RCPU to keep the RUN state.

(1) Operation error example

In the division instruction, the processing to divide a value by 0 is executed.

Item Parameter No.

Boot Setting 2000H

Setting of File/Data Use or Not in Memory Card 2010H

1. Double-click "CPU Parameter" in the 

"Navigation" window.

(To the next page)

1. Double-click!
3  DEVICES AND PARAMETERS OF A PROGRAMMABLE CONTROLLER
3.2  Parameters 3 - 5



3 - 
(From the previous page)

2. The "CPU Parameter setting" dialog box 

appears. Click "RAS Setting" in "Setting Item 

List".

3. Change the setting of "Operation Error" in 

"CPU Module Operation Setting at Error 

Detected" to "Continue".

4. Click the [Apply] button.

2. Click!

3. Change!

4. Click!
6
3  DEVICES AND PARAMETERS OF A PROGRAMMABLE CONTROLLER
3.2  Parameters



4

4 SEQUENCE INSTRUCTIONS AND BASIC 
INSTRUCTIONS -PART 1-

4.1 Instructions Described in This Chapter
This chapter describes the following sequence instructions and basic instructions.

Instruction 
symbol

Function Ladder (device to be used) Instruction 
symbol

Function Ladder (device to be used)

Coil output Pulf

(Generating pulses for 

one program cycle at 

the falling edge of the 

input signal)

Setting devices Conditional jump

(non-delay execution)

Resetting devices Conditional jump

(executed after one 

scan)

Pulse

(Generating pulses for 

one program cycle at 

the rising edge of the 

input signal)

OUT

Bit device, bit specification 
of word device

PLF

Bit device, bit specification 
of word device

PLF

SET

Bit device, bit specification 
of word device

SET
CJ

Pointer

CJ Pn
n = 0 to 4095

RST

Bit device, bit specification 
of word device

RST
SCJ

n = 0 to 4095
Pointer

SCJ Pn

PLS

Bit device, bit specification 
of word device

PLS
4  SEQUENCE INSTRUCTIONS AND BASIC INSTRUCTIONS -PART 1-
4.1  Instructions Described in This Chapter 4 - 1



4 - 
4.1.1 Instructions not described in this chapter -Part 1-
The following table lists the instructions not described in this chapter. These instructions are introduced in "Introduction: PLC 

Course" and supported by conventional MELSEC-A series.

For details, refer to the MELSEC iQ-R Programming Manual (Instructions, Standard Functions/Function Blocks).

Instruction 
symbol

Function Ladder (device to be used) Instruction 
symbol

Function Ladder (device to be used)

Starting a logical 

operation

(Starting a normally 

open contact 

operation)

Intermediate branching

Starting a NOT 

operation

(Starting a normally 

closed contact 

operation)

Terminating branching

Logical AND operation

(Series connection of 

normally open 

contacts)

No operation For a space or deleting a program

Logical AND inverse 

operation

(Series connection of 

normally closed 

contacts)

END processing for 

terminating a program

Always used at the end of a 

program

Logical OR operation

(Parallel connection of 

normally open 

contacts)

Stopping an operation

Logical OR inverse 

operation

(Parallel connection of 

normally closed 

contacts)

1-bit shifting of devices

AND operation 

between logical blocks

(Series connection of 

blocks)

1-bit shifting of devices

(Pulse operation)

OR operation between 

logical blocks

(Parallel connection of 

blocks)

No operation

For inserting a page 

break at print out

Starting branching No operation

Recognized as the 

step 0 on Page n

LD

Bit device, bit specification 
of word device

MRD

LDI

Bit device, bit specification 
of word device

MPP

AND

Bit device, bit specification 
of word device

NOP

ANI

Bit device, bit specification 
of word device

END

OR

Bit device, bit specification 
of word device

STOP

STOP

ORI

Bit device, bit specification 
of word device

SFT

Bit device, bit specification 
of word device

SFT

ANB SFTP

Bit device, bit specification 
of word device

SFTP

ORB NOPLF

NOPLF

MPS PAGE

nPAGE
2
4  SEQUENCE INSTRUCTIONS AND BASIC INSTRUCTIONS -PART 1-
4.1  Instructions Described in This Chapter



4

4.1.2 Instructions not described in this chapter -Part 2-
The following table lists the instructions for the MELSEC Q and iQ-R series. The instructions are not supported by 

conventional MELSEC-A series.

For details, refer to the MELSEC iQ-R Programming Manual (Instructions, Standard Functions/Function Blocks).

Instruction 
symbol

Function Ladder (device to be used) Instruction 
symbol

Function Ladder (device to be used)

Starting a rising edge 

pulse operation

Calling a subroutine 

program

(Pulse operation)

Starting a falling edge 

pulse operation

Returning from a 

subroutine program

Series connection of 

rising edge pulses

Ending the main 

routine program

Series connection of 

falling edge pulses

Inverting operation 

results

Parallel connection of 

rising edge pulses

Operation result rising 

edge pulse conversion

(recorded with Vn)

Parallel connection of 

falling edge pulses

Operation result falling 

edge pulse conversion

(recorded with Vn)

Operation result rising 

edge pulse conversion

Inverting device 

outputs

Operation result falling 

edge pulse conversion

Converting the direct 

output into a pulse

Calling a subroutine 

program

Converting the direct 

output into a pulse

LDP

Bit device, bit specification 
of word device

CALLP

n = 0 to 4095
Pointer

CALLP Pn

LDF

Bit device, bit specification 
of word device

RET

RET

ANDP

Bit device, bit specification 
of word device

FEND

FEND

ANDF

Bit device, bit specification 
of word device

INV

Bit device, bit specification 
of word device

ORP

Bit device, bit specification 
of word device

EGP

Bit device, bit specification 
of word device

Vn

ORF

Bit device, bit specification 
of word device

EGF

Bit device, bit specification 
of word device

Vn

MEP

Bit device, bit specification 
of word device

FF

Bit device, bit specification 
of word device

FF

MEF

Bit device, bit specification 
of word device

DELTA

DY
DELTA

CALL

Pointer

CALL Pn
n = 0 to 4095

DELTAP

DY
DELTAP
4  SEQUENCE INSTRUCTIONS AND BASIC INSTRUCTIONS -PART 1-
4.1  Instructions Described in This Chapter 4 - 3



4 - 
4.2 Differences Between [OUT] and [SET]/[RST]

This section describes the OUT and SET/RST instructions and the operation of a self-holding ladder.

4.2.1 [OUT] (Coil output)

The OUT instruction turns on a specified device when the input condition turns on, and turns off the device when the condition 

turns off.

■Timing chart

Project name RB-1

Program name MAIN

Y170
X100

0

END2

X100

Y170
4
4  SEQUENCE INSTRUCTIONS AND BASIC INSTRUCTIONS -PART 1-
4.2  Differences Between [OUT] and [SET]/[RST]



4

4.2.2 [SET]/[RST](Setting/resetting devices)

The SET instruction turns on a specified device when the input condition turns on, and holds the on state of the device even 

though the condition turns off.

To turn off the device, use the RST instruction.

■Timing chart

Project name RB-2

Program name MAIN

SET

RST

Y170

Y170
X101

X100
0

2

END4

X100

X101

Y170
4  SEQUENCE INSTRUCTIONS AND BASIC INSTRUCTIONS -PART 1-
4.2  Differences Between [OUT] and [SET]/[RST] 4 - 5



4 - 
4.3 Measuring Timers (Timer, High-speed Timer, 
Retentive Timer)

 • This section describes how to input a timer.

 • This section describes the parameter setting for using a retentive timer.

 • This section describes the operation differences of various timers.

■Timing chart

The following four types of timers are available.

Project name RB-3

Program name MAIN

 • The operation of the timer contact delays by a set 

time after the coil is energized. (On delay timer)

 • The setting range of a timer value is K1 to 

K32767.

Low-speed (100ms) timer: 0.1 to 3276.7 seconds

High-speed (10ms) timer: 0.01 to 327.67 seconds

 • When the value set to a timer is 0, it is turned on 

(timeout) by the execution of the instruction.

Type Timer No. (initial value)

Low-speed timer •••••••• Counts time in increments of 

100ms.

Initial value

T0 to T2047 (2048 timers)

• Change the output instruction (OUT) to <HT0> to 

select a high-speed timer or high-speed retentive 

timer.High-speed timer •••••••• Counts time in increments of 

10ms.

Low-speed retentive timer ••••• Integrates time in 

increments of 100ms.

Initial value: 0

(The value can be changed with 

parameters.)

• To use retentive timers, set the number of device 

points used for retentive timers in the device setting of 

the CPU parameter.High-speed retentive timer •••• Integrates time in 

increments of 10ms.

Timer setting value (time limit: 3.0 seconds) 

Y170

Y171

X105

T0

T0

0

5

7

*OUT T is a 4-step instruction. 

END9

OUT T0 K30

Coil T0

3.0 seconds

Normally open 
contact T0, coil Y170

Normally open 
contact T0, coil Y170

Contact 
X105
6
4  SEQUENCE INSTRUCTIONS AND BASIC INSTRUCTIONS -PART 1-
4.3  Measuring Timers (Timer, High-speed Timer, Retentive Timer)



4

How to use retentive timers
When an input condition turns on, the coil turns on and the value of a retentive timer starts increasing. When the current value 

becomes equal to a set value, the retentive timer goes timeout and the contact turns on. When the input condition turns off 

during the addition, the coil turns off but the current value is held. When the input condition turns on again, the coil turns on 

and the current value is used in the integration to continuously increase the value of the timer.

■Timing chart

The following describes the operation of when the retentive timer is set to ST0 to ST31.

Project name Retentive timer

Program name MAIN

1. Double-click "Parameter" in the "Project" view.

(To the next page)

When using a retentive timer, 
specify the number of points in 
parameters in advance.

Always use the RST instruction for turning off the contact 
and clearing the current value after the retentive timer 
goes timeout.

X106

ST1
Y173

X107
RST ST1

END

0

7

12

5

OUT K50ST1

Contact X106

Coil ST1

03 50 3 5

Contact X107 (for inputting 
the RST instruction)

Current value 
of ST1

Normally open 
contact ST1

2.0 
seconds

3.0 
seconds

1. Double-click!
4  SEQUENCE INSTRUCTIONS AND BASIC INSTRUCTIONS -PART 1-
4.3  Measuring Timers (Timer, High-speed Timer, Retentive Timer) 4 - 7



4 - 
(From the previous page)

2. Double-click "CPU Parameter".

3. Click "Memory/Device Setting" in Setting Item 

List to display Setting Item.

Select "Device Setting" in "Device/Label 

Memory Area Detailed Setting" to display the 

reference button at the right edge. Click this 

button.

4. Click "Points" of "Device" for "Retentive Timer" 

and enter "32".

5. After the setting is completed, click the [Apply] 

button.

2. Double-click!

3. Click!

5. Click!

4. Enter!
8
4  SEQUENCE INSTRUCTIONS AND BASIC INSTRUCTIONS -PART 1-
4.3  Measuring Timers (Timer, High-speed Timer, Retentive Timer)



4

4.4 Counting with a Counter

 • This section describes how to input a counter.

 • This section describes the words "rise (rising edge)" and "fall (falling edge)".

Project name RB-4

Program name MAIN

Counter setting value

Y172

X101

C20

X107

0

5

7 C20RST

*OUT C is a 4-step instruction. 

12 END

OUT C20 K12
4  SEQUENCE INSTRUCTIONS AND BASIC INSTRUCTIONS -PART 1-
4.4  Counting with a Counter 4 - 9



4 - 
■Timing chart

A setting value can be directly specified with K or indirectly specified with D (data register).

A setting value of a timer can also be indirectly specified with the data register (D) in the same way as the one 

for counters.

 • A counter counts at the rising edge of 

an input signal.

 • After counting is up, the counter does 

not count at the rising edges of the 

subsequent input signals.

 • Once counting is up, the contact status 

and the current value (count value of 

the counter) do not change until the 

RST instruction is executed.

 • Executing the RST instruction before 

counting is up clears the counter value 

to 0.

 • The setting range of a counter value is 

K0 and K32767. (K0 turns on (starts 

counting) at execution of the 

instruction.)

 • The counter C30 counts up when the 

number of times that the input signal 

X100 turns on becomes equal to the 

value (such as 24) specified in the data 

register D110.

 • The indirect specification is useful for 

using a value specified with an 

external device as the setting value of 

a counter.

Contact X101

Coil C20

Contact C20, coil Y172

Contact X107 (for inputting the RST instruction)

(Current counter value)
1 01211321

D110

X100

C30

0

5 Y171

Set value

24

OUT C30 D110
10
4  SEQUENCE INSTRUCTIONS AND BASIC INSTRUCTIONS -PART 1-
4.4  Counting with a Counter



4

■Ladder example
When the execution command switch (X100) of the conveyor turns on, the buzzer (Y170) beeps for three seconds and the 

conveyor starts to operate (Y171).

The conveyor automatically stops when the sensor (X101) detects that six products have passed through.

Create the following ladder program and check that it operates properly.

Project name REX1

Program name MAIN

Sensor
(X101)

MC

Motor

(Y171)

Operating panel

Control panel

(X100)

Operation Buzzer

Conveyor

(Y170)

M0
M0

M0

M0

T0

X100

X101

Y171

0

4

7

12

14

19

Y170

Y171

C0RST

Y171

During operation

Buzzer

3-second timer

Conveyor operation

C0

24 END

C0OUT

T0OUT

K6

K30

Counter for counting 
the number of products
4  SEQUENCE INSTRUCTIONS AND BASIC INSTRUCTIONS -PART 1-
4.4  Counting with a Counter 4 - 11



4 - 
Operating procedure

■Creating a new project
Refer to section 2.2.2 and create a new project.

1. Click  on the toolbar.

2. The "New" dialog box appears.

Set the RCPU for the series, the R08 for the 

type, and "Ladder" for "Program Language". 

Then, click the [OK] button.

3. If a project that is being created exists, the 

confirmation dialog box for saving the project 

appears.

Click the [No] button.

(To the next page)

1. Click!

2. Click!

3. Click!
12
4  SEQUENCE INSTRUCTIONS AND BASIC INSTRUCTIONS -PART 1-
4.4  Counting with a Counter



4

(From the previous page)

4. The confirmation dialog box for adding module 

labels appears.

Click the [No] button.

5. The window for creating a new project 

appears.

4. Click!
4  SEQUENCE INSTRUCTIONS AND BASIC INSTRUCTIONS -PART 1-
4.4  Counting with a Counter 4 - 13



4 - 
■Creating a program
The following describes the procedure of entering devices and labels to create a ladder.

1. Move the cursor to the insertion position.

2. Enter "X100" with a keyboard.

(When entering of the number starts, the 

ladder input window appears.)

3. After entering the device number, click the 

[OK] button.

4. Move the cursor to the next insertion position 

and enter "C0" with the keyboard.

5. After entering the device number, click the 

[OK] button.

6. Select the input ladder and press the "/" key to 

switch the symbol.

(To the next page)

2. Enter the I/O number!

3. Click!

4. Enter the I/O number!

5. Click!

6. The symbol is changed!
14
4  SEQUENCE INSTRUCTIONS AND BASIC INSTRUCTIONS -PART 1-
4.4  Counting with a Counter



4

(From the previous page)

7. Move the cursor to the next insertion position, 

enter "M0" with the keyboard, and select a coil.

8. After entering the device number, click the 

[OK] button.

•

•

•

•

9. When creating the ladder is completed, click 

[Convert] - [Convert] from the menu.

8. Click!

7. Enter "M0" and 

select a coil!

9. Click!
4  SEQUENCE INSTRUCTIONS AND BASIC INSTRUCTIONS -PART 1-
4.4  Counting with a Counter 4 - 15



4 - 
■Writing data to the programmable controller

1. Write the data to the programmable controller.

(Set the RUN/STOP/RESET switch of the CPU 

module to STOP.)

Click  on the toolbar.

The "Online Data Operation" dialog box 

appears.

2. Select System Parameter/CPU Parameter, 

Module Parameter, and Program.

3. Click the [Execute] button.

4. If parameters have been already written, the 

confirmation dialog box for overwriting the 

parameters appears.

Click the [Yes] button.

(To the next page)

1. Click!

3. Click!

2. Click and select!

4. Click!
16
4  SEQUENCE INSTRUCTIONS AND BASIC INSTRUCTIONS -PART 1-
4.4  Counting with a Counter



4

(From the previous page)

5. The "Write to PLC" dialog box appears.

6. When writing the data is completed, the 

message "Completed" is displayed. Click the 

[Close] button.

6. Click!
4  SEQUENCE INSTRUCTIONS AND BASIC INSTRUCTIONS -PART 1-
4.4  Counting with a Counter 4 - 17



4 - 
■Monitoring the ladder
Monitor the ladder.

(Hold the RUN/STOP/RESET switch of the CPU module at the RESET position for one second or longer, and set the switch to 

RUN.)

Operation practice
 Turning on X100 turns on Y170 and starts T0 at the same time.

 The timer T0 goes timeout in three seconds, and Y170 turns off and Y171 turns on at the same time.

 Every time X101 turns on or off, the counter C0 counts the number of operations and Y171 turns off when counting is up 

(X101 turns on six times).

1. Click  on the toolbar or press the F3 key.

2. The ladder (write) window is switched to the 

ladder monitor window.

1. Click!
18
4  SEQUENCE INSTRUCTIONS AND BASIC INSTRUCTIONS -PART 1-
4.4  Counting with a Counter



4

4.5 [PLS] (Turning on a Specified Device for One Scan 
at the Rising Edge of an Input Condition)
[PLF] (Turning on a Specified Device for One Scan 
at the Falling Edge of an Input Condition)

 • This section describes the concept of one scan.

 • This section describes the operation timing of the PLS/PLF instruction.

1. The PLS instruction turns on a specified device only for one scan at the rising edge of the commanded condition.

■Timing chart

2. The PLF instruction turns on a specified device only for one scan at the falling edge of the commanded condition.

■Timing chart

Project name RB-5

Program name MAIN

0

3

X100

X101

M5PLS

PLF M0

1.

2.

6 END

X100

M5
One scan One scan

X101

M0
One scan One scan
4  SEQUENCE INSTRUCTIONS AND BASIC INSTRUCTIONS -PART 1-
4.5  [PLS] (Turning on a Specified Device for One Scan at the Rising Edge of an Input Condition) [PLF] (Turning on a Specified Device 4 - 19



4 - 
Application
 • These instructions can be used in a standby program that waits for an operation condition.

■Timing chart

X100

M0

M5

M0PLS

SET M5

Y170

T0
RST M5

 

OUT T0 K50

Execution 
condition

Execution 
command

M5

M0

5 seconds

X100 
(Command)

Y170 
(Operation)

Execution 
condition

Time to wait 
for conditions 
to be satisfied
20

4  SEQUENCE INSTRUCTIONS AND BASIC INSTRUCTIONS -PART 1-
4.5  [PLS] (Turning on a Specified Device for One Scan at the Rising Edge of an Input Condition) [PLF] (Turning on a Specified Device 



4

 • These instructions can be used in a program that detects the passage of moving objects.

The program detects that products have passed through and starts the next processing for the products.

■Timing chart

Useful application of the PLS/PLF instructions (Part 1)
These instructions can be used in a program that executes an output operation for a set period of time at timing when an input 

signal turns on.

■Timing chart

■Program example

Project name RB-6

Program name MAIN

Conveyor

X100

M0

Y170

PLF

SET

Detector
(Detection of input from X100)

Detector
ProductY170

M0

X100

M0

Y170

Input (X100)

Output (Y176) Set time limit
10 seconds

Pulse width

T16
M1

Y176

X100

Y176

M1PLF0

3
T16 K100

END11
4  SEQUENCE INSTRUCTIONS AND BASIC INSTRUCTIONS -PART 1-
4.5  [PLS] (Turning on a Specified Device for One Scan at the Rising Edge of an Input Condition) [PLF] (Turning on a Specified Device 4 - 21



4 - 
Useful application of the PLS/PLF instructions (Part 2)
These instructions can be used in a program that executes a repetitive operation such as switching the on/off status every 

time a push button switch (snap switch) is pressed.

(If the PLS instruction is used in the program, the program is executed at the rising edge caused when the push button switch 

is pressed. If the PLF instruction is used, the program is executed at the falling edge caused when the switch is released.)

■Timing chart

■Program example

Project name RB-7

Program name MAIN

X100

Y170

Y171

Y170
M0

M1PLF

5
Y170

M0PLS0
X100

M0 Y170

Y171
M1

11
Y171

M1 Y171

END17
22

4  SEQUENCE INSTRUCTIONS AND BASIC INSTRUCTIONS -PART 1-
4.5  [PLS] (Turning on a Specified Device for One Scan at the Rising Edge of an Input Condition) [PLF] (Turning on a Specified Device 



4

■Ladder example
Create the following ladder program and check that it operates properly.

■Timing chart

The following shows the timing chart of a self-holding ladder created with the OUT instruction. Compare this 

timing chart with the one of the self-holding ladder created with the PLS instruction.

Project name REX2

Program name MAIN

Y170
M0

Y170

X103

Y171
M1

X102

Y171

0

3

10

X100
M0PLS

X101
7 M1PLF

14 END

X102

M0

Y170

X100

X103

M1

Y171

X101

PLS

PLF

X102

X100

Y170

X102

Y170
Y170

X100
4  SEQUENCE INSTRUCTIONS AND BASIC INSTRUCTIONS -PART 1-
4.5  [PLS] (Turning on a Specified Device for One Scan at the Rising Edge of an Input Condition) [PLF] (Turning on a Specified Device 4 - 23



4 - 
Operating procedure

For the procedures of the following operations, refer to Section 4.4.

■Creating a new project

■Creating a program

■Writing data to the programmable controller

■Monitoring the ladder

Operation practice
 • Turning on X102 turns on Y170, and turning on X100 turns off Y170. (Even when X102 remains on, turning on X100 turns 

off Y170.)

 • Turning off X103 turns on Y171, and turning on X101 turns off Y171.

Related exercise ---- Exercise 3

The RCPU does not require input pulse processing because it uses derivation contacts ( / ).

Applicable instructions are LDP, LDF, ANDP, ANDF, ORP, and ORF.

[For the A/AnSCPU module] 
X100

M0

PLS M0

SET M5

[For the RCPU module] 
X100

SET M5
24

4  SEQUENCE INSTRUCTIONS AND BASIC INSTRUCTIONS -PART 1-
4.5  [PLS] (Turning on a Specified Device for One Scan at the Rising Edge of an Input Condition) [PLF] (Turning on a Specified Device 



4

4.6 [CJ] (Conditional Jump of the Non-Delay 
Execution Type)
[SCJ] (Conditional Jump Executed After One 
Scan)

 • This section describes that the programmable controller executes processing in every scan.

 • This section describes how to use a pointer.

1. When the input condition is on, the CJ instruction instantaneously skips the processing and jumps to a specified 

destination (pointer number) in the same program file, and the subsequent processing is executed.

When the input condition is off, the instruction does not skip any processing.

2. When the input condition is on, the SCJ instruction executes the processing in the scan without skipping any processing. 

From the next scan, the instruction skips the processing and jumps to a specified destination (pointer number) in the 

same program file, and the subsequent processing is executed.

When the input condition is off, the instruction does not skip any processing.

Use the SCJ instruction when some operations need be executed before skipping the program.

For example, use the instruction when an output needs to be turned on or reset in advance.

■Timing chart

Project name RB-10

Program name MAIN

0

5

11

16
Pointer

P10

X100

X101

X100

X103

X101

CJ P10

SCJ P10

Y170

Y171

14 FEND

1.

2.

19 END

Input condition
(X100, X101)

CJ

SCJ

Executed every scan

One scan One scan

Executed 
every scan

Executed 
every scan

Executed 
every scan
4  SEQUENCE INSTRUCTIONS AND BASIC INSTRUCTIONS -PART 1-
4.6  [CJ] (Conditional Jump of the Non-Delay Execution Type) [SCJ] (Conditional Jump Executed After One Scan) 4 - 25



4 - 
Precautions

 • Both the CJ and SCJ instructions can use P0 to P4095 as pointer numbers.

 • Use the FEND instruction as shown below to execute the processing with the CJ or SCJ instruction for every program 

block.

 • The status of ladders skipped by the CJ instruction is the one before execution of the CJ instruction.

 • If the CJ, SCJ, or JMP instruction is used to skip the timer with its coil that is on, the timer does not correctly measure the 

time.

Operand Bit Word Double 
word

Indirect 
specification

Constant Others 
(P)

Number of 
basic 
stepsX, Y, M, L, 

SM, F, B, 
SB, FX, 
FY

J\ T, ST, C, D, 
W, SD,SW, 
FD, R, ZR, 
RD

U\G, 
J\, 
U3E\(H)G

Z LT, 
LST, 
LC

LZ K, 
H

E $

(P)             4

Sequence 
program C

Sequence 
program B

Start

YES

NO

0

P

Sequence program A
Input condition

CJ

Sequence program B

Sequence program C

FEND

END

Step 0

END

Step 0

FEND

P

CJP

P

Sequence 
program A

Is the 
input condition 

on?

When the CJ 
instruction is not 
executed

When the CJ 
instruction is 
executed

Because X100 is on, all instructions 
in this area are not executed.
Thus, Y172 remains on even after 
X102 turns off.

1100

1103

P10 1330

X100

X102

X101

P10CJ

Y172

M1PLS

1100

1103

P10 1330

X100

X102

X101

Y172

(Before execution of the CJ instruction) (During execution of the CJ instruction)

P10CJ

M1PLS
26
4  SEQUENCE INSTRUCTIONS AND BASIC INSTRUCTIONS -PART 1-
4.6  [CJ] (Conditional Jump of the Non-Delay Execution Type) [SCJ] (Conditional Jump Executed After One Scan)



4

■Ladder example
Create the following ladder program with GX Works3 and write it to the CPU module of the demonstration machine. Then 

check the differences between the CJ instruction and the SCJ instruction.

Operating procedure

For the procedures of the following operations, refer to Section 4.4.

■Creating a new project

■Creating a program

■Writing data to the programmable controller

■Monitoring the ladder

Project name REX4

Program name MAIN

0

5

11

16
Pointer

P10

X100

X101

X100

X103

X101

CJ P10

SCJ P10

Y170

Y171

14 FEND

19 END
4  SEQUENCE INSTRUCTIONS AND BASIC INSTRUCTIONS -PART 1-
4.6  [CJ] (Conditional Jump of the Non-Delay Execution Type) [SCJ] (Conditional Jump Executed After One Scan) 4 - 27



4 - 
Operation practice

(1) When X100 and X101 are off, the CJ and SCJ instructions are not executed.

Thus, Y170 is on.

[Before execution of the CJ/SCJ instruction]

(2) When X100 turns on, the CJ instruction is executed and the processing is skipped and jumped to P10.

Thus, Y170 remains on.

[Execution of the CJ instruction] First scan and later

(3) When X100 turns off and X101 turns on, the SCJ instruction is executed and the processing is skipped and jumped to 

P10 in the second scan and later.

Thus, Y170 turns off.

[Execution of the SCJ instruction] First scan [Execution of the SCJ instruction] Second scan and later

X100

X101

X100

X103
Y171

Y170

SCJ P10

CJ P10

P10

0

5

11

16

X101

FEND14

X100

X101

X100

X103
Y171

Y170

SCJ P10

CJ P10

P10

0

5

11

16

X101

FEND14

X100

X101

X100

X103
Y171

Y170

SCJ P10

CJ P10

P10

0

5

11

16

X101

FEND14

One 
scan 
after on

Second 
scan 
and later 
after on

X100

X101

X100

X103
Y171

Y170

SCJ P10

CJ P10

P10

0

5

11

16

X101

FEND14
28
4  SEQUENCE INSTRUCTIONS AND BASIC INSTRUCTIONS -PART 1-
4.6  [CJ] (Conditional Jump of the Non-Delay Execution Type) [SCJ] (Conditional Jump Executed After One Scan)



4

(4) Y171 turns on or off when the CJ or SCJ instruction is executed.

• The following describes the differences between the CJ and SCJ instructions.

[CJ]

 0 LD X100

 1 CJ P10

 3 LD X101

 4 SCJ P10

 6 LDI X100

 7 ANI X101

 8 OUT Y170

11 P10

12 LD X103

Only first scan[SCJ]

 0 LD X100

 1 CJ P10

 3 LD X101

 5 SCJ P10

 7 LDI X100

 8 ANI X101

 9 OUT Y170

13 OUT Y171

14 END

12 P10

13 LD X103

14 OUT Y171

15 END

After X101 turns on
Second scan and later after on
4  SEQUENCE INSTRUCTIONS AND BASIC INSTRUCTIONS -PART 1-
4.6  [CJ] (Conditional Jump of the Non-Delay Execution Type) [SCJ] (Conditional Jump Executed After One Scan) 4 - 29



4 - 
4.7 Exercise

4.7.1 Exercise 1

LD to NOP
When X100 turns on, Y170 is self-held, and Y174 and Y177 alternately flicker every 0.5 seconds.

When X101 turns on, Y170 turns off and flickering of Y174 and Y177 also stops.

■Timing chart

Fill in the blanks ( ) in the following program and create the program with GX Works3. Then, check the operation with 

the demonstration machine.

(For answers, refer to Page 4-34.)

Project name RTEST1

Program name MAIN

                                                                                                                

                                                                                                                

                                                        

X100

Y170

T0

Y174

T1

Y177

X101
0.5 

seconds
0.5 

seconds
0.5 

seconds
0.5 

seconds

Y170

T0

X100

Y170

T1

Y174

Y177

0

4

10

16
Y170

K5

K5

END19
30
4  SEQUENCE INSTRUCTIONS AND BASIC INSTRUCTIONS -PART 1-
4.7  Exercise



4

4.7.2 Exercise 2

SET, RST
When X100 turns on, Y170 flickers at intervals of a one second. When Y170 flickers 10 times, it stops flickering for five 

seconds and restarts flickering.

Turning on X101 can stop flickering of Y170.

Fill in the blanks ( ) in the following program and create the program with GX Works3. Then, check the operation with 

the demonstration machine.

(For answers, refer to Page 4-34.)

Project name RTEST2

Program name MAIN

                                                                                                                

                                                                                                                

                                                                                                                

                                                                                                                

T0
M0

T1

Y170

C0

T2
T2

X100

X101

0

3

24

33

39

 M1 T1

T0

T0

K10

K10

K10

K50

M1RST

47 END
4  SEQUENCE INSTRUCTIONS AND BASIC INSTRUCTIONS -PART 1-
4.7  Exercise 4 - 31



4 - 
Hints

(1) The following shows the timing chart of the program.

(2) The following shows the basic flicker ladder and its timing chart.

 • The flicker ladder can be created with a special relay that generates a clock as shown below.

[Ladder] [Timing chart]

Although the left ladder uses SM413 (2 second 

clock), the following special relay areas can also 

be used.

SM409 (0.01 second clock)

SM410 (0.1 second clock)

SM411 (0.2 second clock)

SM412 (1 second clock)

SM414 (2n second clock)

SM415 (2n ms clock)

The operation starts with the clock off when the 

system is powered on or the CPU module is reset.

[Timing chart]

X100

M0

X101

Contact T0

Contact T1

Y170

Contact C0

One scan

5 seconds

Restart

Count value of C0 1. 2. 10. 1. 2.0.• • • • • • •

1 second1 second

1 second

1 
second

T1

T0

OUT T0 K10

OUT T1 K10

Contact T0

Contact T1

1 second

1 second
One scan

Start

 SM413 (2-second clock)
Y170

Y170
1 

second
1 

second
1 

second
32
4  SEQUENCE INSTRUCTIONS AND BASIC INSTRUCTIONS -PART 1-
4.7  Exercise



4

4.7.3 Exercise 3

PLS, PLF
Y170 repeatedly turns on and off every time X100 turns on, and Y171 repeatedly turns on and off every time X100 turns off.

■Timing chart

Fill in the blanks ( ) in the following program and create the program with GX Works3. Then, check the operation with 

the demonstration machine.

(For answers, refer to Page 4-34.)

Project name RTEST3

Program name MAIN

                                                                

                                                                

 X100

Y170

Y171

Y170
M0

M0

Y171
M1

M1

X100
0

5

11
Y171

Y171

Y170

Y170

M0

M1

17 END
4  SEQUENCE INSTRUCTIONS AND BASIC INSTRUCTIONS -PART 1-
4.7  Exercise 4 - 33



4 - 
Answers for the exercises in Chapter 4

Exercise Answer

1  Y170

 X101

 T1

 T0

 Y174

2  SET M0

 C0

 Y170

 SET M1

 RST C0

 RST M0

 RST C0

 RST M1

3  PLS

 PLF
34
4  SEQUENCE INSTRUCTIONS AND BASIC INSTRUCTIONS -PART 1-
4.7  Exercise



5

5 BASIC INSTRUCTIONS -PART 2-

5.1 Notation of Values (Data)

 • This section describes decimal, binary, and hexadecimal notations.

 • This section describes a method of interconversion.

The programmable controller CPU converts all information into on or off signals (logical 1 or 0) to store and process them. 

Thus, the programmable controller executes numerical operations using the numerical values stored as logical 1 or 0 (binary 

numbers = BIN).

In daily life, decimal values are commonly used. Thus, the decimal-to-binary conversion or the binary-to-decimal conversion 

are required when values are read (monitored) or written from/to the programmable controller. The engineering tool and some 

instructions have the functions for those conversions.

This section describes how values (data) are expressed in decimal, binary, hexadecimal or binary-coded decimal notation 

(BCD), and how to convert values.

Decimal
 • A decimal value consists of ten symbols, 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, which represent the order and size (amount).

After a digit reaches 9, an increment resets it to 0, causing an increment of the next digit to the left.

 • The following shows how a decimal value (in this case 153) is represented.

"Power of digit" can be expressed as follows.

n: Digit number (0, 1, 2 ...)

 10: Decimal value

 • In the MELSEC iQ-R series programmable controller, the symbol "K" is used to represent a value in decimal.

153 = 100 + 50 + 3
  = 1 × 100 + 5 × 10 + 3 × 1
  = 1 × 102 + 5 × 101 + 3 × 100

Decimal symbol (0 to 9)

"Power of digit"
5  BASIC INSTRUCTIONS -PART 2-
5.1  Notation of Values (Data) 5 - 1



5 - 
Binary (BIN)
 • A binary value consists of two symbols, 0 and 1, which represent the order and size (amount). After a digit reaches 1, an 

increment resets it to 0, causing an increment of the next digit to the left. One digit of 0 or 1 is called a bit.

 • The following example describes how to convert a binary value into a decimal value.

"10011101"

The following figure shows the binary value with bit numbers and binary bit weights.

The binary value is broken as follows.

= 1 × 128 + 0 × 64 + 0 × 32 + 1 × 16 + 1 × 8 + 1 × 4 + 0 × 2 + 1 × 1

= 128 + 16 + 8 + 4 + 1

= 157

A binary value can be converted into a decimal value by the addition of the weight of each bit whose code is 1.

Binary Decimal

0

1

10

11

100

101

110

111

1000



0

1

2

3

4

5

6

7

8



1

7

27

••
•

128

0

6

26

••
•

64

0

5

25

••
•

32

1

4

24

••
•

16

1

3

23

••
•

8

1

2

22

••
•

4

0

1

21

••
•

2

1

0

20
••

•

1

← Bit number

← Binary
← (Bit number)
← ("Binary") Bit weight
2
5  BASIC INSTRUCTIONS -PART 2-
5.1  Notation of Values (Data)



5

Hexadecimal
 • A hexadecimal value consists of 16 symbols, 0 to 9 and A to F, which represent the order and size (amount). After a digit 

reaches F, an increment resets it to 0, causing an increment of the next digit to the left.

 • Four bits of a binary value are equivalent to one digit of a hexadecimal value.

 • In the MELSEC iQ-R series programmable controller, the symbol "H" is used to represent a value in hexadecimal.

 • Hexadecimal values are used to represent the following device numbers.

• Input and output (X, Y)

• Function input and output (FX, FY)

• Link relay (B)

• Link register (W)

• Link special relay (SB)

• Link special register (SW)

• Link direct device (Jn\X, Jn\Y, Jn\B, Jn\SB, Jn\W, Jn\SW)

Decimal Binary

0 0     0 
1 1     1 
2 2    10 
3 3    11 
4 4   100 
5 5   101 
6 6   110 
7 7   111 
8 8  1000 
9 9  1001 

10 A  1010 
11 B  1011 
12 C  1100 
13 D  1101 
14 E  1110 
15 F  1111 
16 10 10000 
17 11 10001 
18 12 10010 

1 9 1 0 1 4 A 9 D 1 0 1 0 1 0 0 1 1 1 0 1

4

3

A

2

9

1

D

0 ← Digit number

← Hexadecimal

= (4) × 163 + (A) × 162 + (9) × 161 + (D) × 160

= 4 × 4096 + 10 × 256 + 9 × 16 + 13 × 1 
= 19101 

"Power of digit" 
   n •••• Digit number 

16 •••••• Hexadecimal

Hexadecimal

0 1 0 0
5  BASIC INSTRUCTIONS -PART 2-
5.1  Notation of Values (Data) 5 - 3



5 - 
Binary-coded decimal (BCD)
 • The binary-coded decimal system uses a binary value to represent each digit of a decimal value.

The decimal value 157, for example, is expressed as follows.

 • In BCD, decimal values of 0 to 9999 (the maximum 4-digit value) can be represented with 16 bits.

The following figure shows the weight of each bit in BCD.

 • BCD is used for the following signals.

1) Output signals of digital switches

2) Signals of seven-element display (digital HMI)

BCD code digital switch

0 1 2 3 4 5 6 7 8 9

1

2

5

1 0 ← Digit number

← Decimal7

(100)

0001 0101 0111

← Power of digit

← BCD

← Binary bit weight

(10) (1)

12481842 148 2

80
00

40
00

20
00

10
00 80
0

40
0

20
0

10
0 80 40 20 10 8 4 2

0 0 1 1 1

1

4 digits
3 digits

2 digits
1 digit

00 0 00 0 1 0 0 11

1(0)
2(0)
4(0)
8(0)

COM

(1)
(0)
(0)
(0)

(0)
(1)
(0)
(0)

(1)
(1)
(0)
(0)

(0)
(0)
(1)
(0)

(1)
(0)
(1)
(0)

(0)
(1)
(1)
(0)

(1)
(1)
(0)

(1) (0)
(0)
(0)
(1)

(1)
(0)
(0)
(1)
4
5  BASIC INSTRUCTIONS -PART 2-
5.1  Notation of Values (Data)



5

How to convert a decimal value into a binary value
Example) When the decimal value 157 is converted into a binary value

1)

2)

How to convert a decimal value into a hexadecimal value
Example) When the decimal value 157 is converted into a hexadecimal value

1)

157
128-

29
16-

13
8-

5
4-

1
1-

0

1 0 0 1 1 1 0 1

128 216 8 4 1 Bit 
weight

64 32

157÷ 2

1 0 0 1 1 1 0 1

128 2 1

78÷ 2

39÷ 2

19÷ 2

9÷ 2

4÷ 2

2÷ 2

1

•••1

•••0

•••1

•••1

•••1

•••0

•••0

Quotient

64 32 16 8 4

Remainder

1 0 0 1 1 1 0 1

9 D

157÷ 16

9 •••13(D)
5  BASIC INSTRUCTIONS -PART 2-
5.1  Notation of Values (Data) 5 - 5



5 - 
Numerical values used by the MELSEC iQ-R series programmable controller
 • Usually, 8 bits are called one byte, and 16 bits (two bytes) are called one word.

 • Registers of each word device in the MELSEC iQ-R series programmable controller consist of 16 bits.

• Data register (D)

• Current value of a timer (T)

• Current value of a counter (C)

• File register (R)

• Link register (W)

 • Values in the following two ranges can be processed in 16 bits (one word).

1) 0 to 65535

2) -32768 to 0 to +32767

 • The MELSEC iQ-R series programmable controller uses the range 2).

A negative value uses the 2's complement against a positive number (1 to +32767).

 • In the 2's complement, each binary bit is inverted, and 1 is added to the least significant bit.

Ex.

How to calculate the 2's complement against 1

0 0 0 1 1

1 byte

1 word (2 bytes)

1 1

1 bit

00 0 0 0 00

00 0

01 1 1

111

(Binary bit weight)32
76

8

16
38

4

81
92

40
96

20
48

10
24 51
2

25
6

12
8 64 32 16 8 4 2

D100

1

1

0 0 0 0 11•••

1 1 1 0

-1•••

+

Invert all bits.

The most significant bit of a negative value is always "1". This is the sign bit.

11

0 0 0 0 1

1 1 1 111 11

1 11

11111

111

1

0 0 00 0 0 00 0 0 0

1 11

0 0 0 00 0 0 0 0 00

11

Add 1 to the least 
significant bit.
6
5  BASIC INSTRUCTIONS -PART 2-
5.1  Notation of Values (Data)



5

Binary-coded decimal
(BCD)

Binary
(BIN)

Decimal
(K)

Hexadecimal
(H)

00000000 00000000

00000000 00000001

00000000 00000010

00000000 00000011

00000000 00000100

00000000 00000101

00000000 00000110

00000000 00000111

00000000 00001000

00000000 00001001

00000000 00000000

00000000 00000001

00000000 00000010

00000000 00000011

00000000 00000100

00000000 00000101

00000000 00000110

00000000 00000111

00000000 00001000

00000000 00001001

0

1

2

3

4

5

6

7

8

9

0000

0001

0002

0003

0004

0005

0006

0007

0008

0009

00000000 00010000

00000000 00010001

00000000 00010010

00000000 00010011

00000000 00010100

00000000 00010101

00000000 00001010

00000000 00001011

00000000 00001100

00000000 00001101

00000000 00001110

00000000 00001111

10

11

12

13

14

15

000A

000B

000C

000D

000E

000F

00000000 00010110

00000000 00010111

00000000 00011000

00000000 00011001

00000000 00100000

00000000 00100001

00000000 00100010

00000000 00100011

00000001 00000000

00000001 00100111

00000010 01010101

00010000 00000000

00100000 01000111

01000000 10010101

00000000 00010000

00000000 00010001

00000000 00010010

00000000 00010011

00000000 00010100

00000000 00010101

00000000 00010110

00000000 00010111

00000000 01100100

00000000 01111111

00000000 11111111

00000011 11101000

00000111 11111111

00001111 11111111

00100111 00010000

01111111 11111111

11111111 11111111

11111111 11111110

10000000 00000000

16

17

18

19

20

21

22

23

100

127

255

1000

2047

4095

10000

32767

-1

-2

-32768

0010

0011

0012

0013

0014

0015

0016

0017

0064

007F

00FF

03E8

07FF

0FFF

2710

7FFF

FFFF

FFFE

8000
5  BASIC INSTRUCTIONS -PART 2-
5.1  Notation of Values (Data) 5 - 7



5 - 
System configuration and I/O numbers of the demonstration machine

R61P

Base unit (R35B)

GOT2000

USB cable

Peripheral

Ethernet cable

Power 
supply 
module

CPU 
module 

Analog 
input 

module

Analog 
output 
module

R60AD4 
(16 points)

R60DA4 
(16 points)

X100 
to 

X10F

Y170 
to 

Y17F

R08CPU 
module
8
5  BASIC INSTRUCTIONS -PART 2-
5.1  Notation of Values (Data)



5

■GOT screen display

Upper section: The indication device can be changed.

Lower section: Data is displayed.

Upper section: The input device can be changed.

Lower section: The input data can be set and displayed.

 • Touching  switches the screen.

 • The initial value is automatically set to a device number in the upper section (trigger action function).

 • Touching the "Initialize Input/Indication Device" button also initializes the device number.

Initial indication device D0
 
Initial indication device D1

 
Initial indication device D10 (32 bits)

Initial input device D20 Initial input device D21 Initial input device D30 (32 bits)

Screen 1 Screen 2

Screen 3
5  BASIC INSTRUCTIONS -PART 2-
5.1  Notation of Values (Data) 5 - 9



5 - 
5.2 Transfer Instructions

5.2.1 [MOV(P)] (Transferring 16-bit data)

 • This section describes that data at the (s) side remains with the instruction for transferring data from the (s) 

side to the (d) side.

 • This section describes the operation differences between the instructions with P and the one without P.

 • When the input condition turns on, the current value of the timer T0 (source) is transferred into the data register D100 

(destination).

 • The current value of T0 in binary is transferred into D100 as it is. (Data conversion is not performed.)

 • When the input condition turns on, the decimal number 157 is transferred into the data register D102. The decimal number 

(K) is automatically converted into a binary value, transferred to the data register D102, and stored there in binary.

Project name RB-11

Program name MAIN

T0

T0

X101
C10RST13

X102
D100T018 MOV

X103
D101C1021 MOVP

X104
D102K157MOVP

X105
D103H4A9D30 MOVP

0

26

X107

END34

K50T0OUT

K1500C10OUT

(s) (d)

T0

128

D100

128

45

64 32 16 1248

64 32 16 1248

11 1 10 00000 00000 0

11 1 10 00000 00000 0

000D102

128

K157

18 216 43264

10000000 1 111 0
10
5  BASIC INSTRUCTIONS -PART 2-
5.2  Transfer Instructions



5

 • When the input condition turns on, the hexadecimal value 4A9D is converted into a binary value and transferred into the 

data register D103.

Differences between MOV and MOVP
The P in the MOVP instruction stands for a pulse.

 • Use the MOV instruction to read changing data all the time.

Use the MOVP instruction to instantaneously transfer data such as when setting data or reading data at the occurrence of 

an error.

 • Both of the following ladder programs function similarly.

*1 The number of steps varies depending on the devices to be used.

Operand Bit Word Double 
word

Indirect 
specification

Constant Others Number of 
basic 
stepsX, Y, M, L, 

SM, F, B, 
SB, FX, 
FY

J\ T, ST, C, D, 
W, SD,SW, 
FD, R, ZR, 
RD

U\G, 
J\, 
U3E\(H)G

Z LT, 
LST, 
LC

LZ K, 
H

E $

(s)             *1

(d)            

D103

1

H4A9D

24816326412
8

25
6

51
2

10
24

20
48

81
92

16
38

4

40
96 Binary

Bit weight

(A) (9) (D) Hexadecimal(4)

↑
Sign bit

0 000000 0 11 111111

Input condition

MOV

MOVP

Executed only once.

Data is transferred only in one scan after the input 

condition turns on. (Data is transferred only once.)

Data is transferred at every scan 

while the input condition is on.

X104
D102K157MOVP

X104
M1PLS

M1
D102K157MOV
5  BASIC INSTRUCTIONS -PART 2-
5.2  Transfer Instructions 5 - 11



5 - 
Items to be checked
CPU module: RUN

Inputs X102, X103, X104, X105, and X107: On

 • Monitor the values in the data register (D100 to D103).

After writing data to the programmable controller, click [Online] → [Monitor] → [Device/Buffer Memory Batch Monitor].

The "Device/Buffer Memory Batch Monitor" dialog box appears.

 • Enter "D100" in "Device Name" and press the  key.

Enter "D100".
Enter the device number 
and press the Enter key.
12
5  BASIC INSTRUCTIONS -PART 2-
5.2  Transfer Instructions



5

81
92

40
96

10
24 25

6 64 32 2

0 1 1 0000 11 1 1 1D103

16 8 4 1

12
8

51
2

20
48

16
38

4

(4) (A) (9) (D) Hexadecimal

H4A9D

19101

Word devices are expressed with the on/off states of bits.
  : Off (0 in binary)
  : On (1 in binary)

Current values of a timer and 
counter are monitored. (The 
values change.)

This value indicates that a decimal 
number 157 (K157) has been stored.

This value indicates the decimal 
number of the hexadecimal number 
4A9D.

Binary bit 
weight

↑
Sign bit

000 1
5  BASIC INSTRUCTIONS -PART 2-
5.2  Transfer Instructions 5 - 13



5 - 
 • Click  on the toolbar or select [View] → [Display Format Detailed Setting] from the menu.

The "Display Format" dialog box appears.

 • Change the display of the numerical values being monitored to the hexadecimal notation.

Select "HEX" for "Value" in the "Device Format" dialog box.

["Device/Buffer Memory Batch Monitor" window]

 • Change the display of the numerical values being monitored in a multi-point format.

Select "Word Multi-point" for "Display Unit Format" in the "Device Format" dialog box.

["Device/Buffer Memory Batch Monitor" window]

Value 
in D103

Value 
in D102

Value 
in D101

Value 
in D100
14
5  BASIC INSTRUCTIONS -PART 2-
5.2  Transfer Instructions



5

■Ladder example
Create the following ladder program with GX Works3 and write it to the CPU module of the demonstration machine. Then, 

check the execution of the MOV instruction.

Operating procedure

For the procedures of the following operations, refer to Section 4.4.

■Creating a new project

■Creating a program

■Writing data to the programmable controller

■Monitoring the ladder

■How to modify the transfer instruction
To modify the transfer instruction, follow the procedure below.

Ex.

Change the transfer data K200 of [MOV K200 D100] to K100.

1. Select the instruction to be modified.

2. Press the F2 key and modify K200 to K100.

3. Press the  key.

(All data in  can be modified with the above operation method.

When "Insert" is displayed, however, press the  key to change it to "Overwrite" before the modification.)

4. When the modification is completed, click [Convert] → [Convert] from the menu.

Project name REX7

Program name MAIN

D101

D100

D101

X100

X101

K200MOV0

5 RST

RST

D100MOV

D100

10 END
5  BASIC INSTRUCTIONS -PART 2-
5.2  Transfer Instructions 5 - 15



5 - 
■Operation practice
Check that turning on X100 of the operation panel of the demonstration machine changes the values of D100 and D101 to 

200 on the monitor window.

■Related exercise ---- Exercise 3

X100

X101

0

5

10 END

D100K200

D101D100

D100RST

D101RST

MOV

MOV

200

200200

When X100 turns on, the current values of 
D100 and D101 become 200.
16
5  BASIC INSTRUCTIONS -PART 2-
5.2  Transfer Instructions



5

K1M0
 • A word device D (data register), T (current value of a timer), or C (current value of a counter) consists of 16 bits (one word), 

and data is basically transferred in one device.

 • With 16 bit devices (such as X, Y, and M), data of the same size as a word device can be handled. The device numbers 

allocated to the bit devices must be in consecutive order.

 • Bit devices can process data in units of four points.

 • Other bit devices can also process data in the same way.

 • As long as the device numbers of four bit device areas are in consecutive order, any bit device can be specified as the start 

device.

M
19

M
18

M
17

M
16

M
15

M
14

M
13

M
12

M
11

M
10

M
9

M
8

M
7

M
6

M
5

M
4

M
3

M
2

M
1

M
0(Internal relay (M))

K1M0K2M6

K3M5
5  BASIC INSTRUCTIONS -PART 2-
5.2  Transfer Instructions 5 - 17



5 - 
5.2.2 [FMOV(P)] (Transferring the same data in a batch)
[BMOV(P)] (Transferring block data in a batch)

 • This section describes transfer instructions that handle multi-point data.

 • This section describes how to use batch monitoring.

Operation explanation

■FMOV

 • When the input condition turns on, the FMOV instruction transfers data in the device specified by (s) to the (n) points of 

device areas starting from the device specified by (d).

Ex.

The following figure shows the operation of when X103 turns on and the FMOV instruction is executed.

 • The FMOV instruction is useful for clearing many data sets in a batch.

Ex.

The FMOV instruction substitutes the multiple RST instructions as shown above.

Project name RB-14

Program name MAIN

X103
0

(d)(s)

K8D100K365FMOVP

(n)

X104
6 K16D108K7000FMOVP

X105
12

(d)(s)

K16D132D100BMOVP

(n)

X106
18 K48D100K0FMOVP

24 END

Input condition (d)(s)

K8D100K365FMOVP

(n)

365K365

365

365

365

365

D100

D101

D102

D107

••
•••

•

(d)

(s)
(n)

8 sets of data (K8)

SameInput condition

K8D100K0FMOV

Input condition

D100RST

D101RST

D107RST
18
5  BASIC INSTRUCTIONS -PART 2-
5.2  Transfer Instructions



5

■BMOV

 • When the input condition turns on, the BMOV instruction batch-transfers the (n) points of data stored starting from the 

device specified by (s) to the areas starting from the device specified by (d).

Ex.

The following figure shows the operation of when X105 turns on and the BMOV instruction is executed.

 • The BMOV instruction is useful for the following applications.

• Saving logging data in files

• Saving important data (such as automatic operation data and measurement data) into the latch areas, for example the 

data register set for backing up data at power-off in parameter, to prevent data loss at an unintended power failure

Operand Bit Word Double 
word

Indirect 
specification

Constant Others Number of 
basic 
stepsX, Y, M, L, 

SM, F, B, 
SB, FX, 
FY

J\ T, ST, C, D, 
W, SD,SW, 
FD, R, ZR, 
RD

U\G, 
J\, 
U3E\(H)G

Z LT, 
LST, 
LC

LZ K, 
H

E $

(s)             4

(d)            

(n)            

Input condition

K16D132D100BMOVP

(s) (n)(d)

365D100 365 D132

••
•

••
•

••
•

••
•

••
•

365D107 365 D139

7000D108 7000 D140

••
•

••
•

••
•

••
•

••
•

7000D115 7000 D147

(s) (d)
5  BASIC INSTRUCTIONS -PART 2-
5.2  Transfer Instructions 5 - 19



5 - 
■Operation practice
 • Write the program on the previous page to the CPU module, and set the operating status of the CPU module to RUN.

 • Follow the procedure below to execute the device batch monitor. Values in D100 to D147 can be monitored.

 • After writing data to the programmable controller, click [Online] → [Monitor] → [Device/Buffer Memory Batch Monitor].

Enter "D100" in "Device Name" of the "Device/Buffer Memory Batch Monitor" dialog box and press the  key.

 • Click "Display Format Detailed Setting" ( ) to display the "Display Format" dialog box.

Select "Word Multi-point" for "Display Unit Format".

 Click the [OK] button.

■Monitor window

1. Turn on X103.

The numerical value 365 is 

batch-transferred to the eight 

consecutive device areas D100 

to D107.

2. Turn on X104.

The numeric value 7000 is 

batch-transferred to 16 

consecutive device areas D108 

to D123.

3. Turn on X105.

The values in 16 consecutive 

device areas D100 to D115 are 

batch-transferred to 16 

consecutive device areas D132 

to D147.

4. Turn on X106.

The value "0" is batch-

transferred to all the 48 

consecutive device areas D100 

to D147.

This processing clears all the 48 

register areas to 0.
20
5  BASIC INSTRUCTIONS -PART 2-
5.2  Transfer Instructions



5

Reference
 • If (d) is a bit device, the operation becomes as follows.

■FMOV instruction

 • Among the device areas Y140 to Y15F, the device areas where "1" is stored output.

 • In the following program, turning on the input condition 1) turns on all the outputs Y140 to Y15F, or turning on the input 

condition 2) turns off them.

 • In units of four bits,

To turn off 16 bit device areas or less  MOV instruction Example 

To turn off 32 bit device areas or less  DMOV instruction Example 

To turn off more than 32 bit device areas  FMOV instruction Example 

■BMOV instruction

 • In the example above, product codes (16 bits) are stored in the device areas D100 to D103. The BMOV instruction is useful 

for displaying and monitoring only the lower two digits of the codes representing their types.

Input condition

K4K2Y140D100FMOV

0 0 0 0 0 0 0 1 0 1 1 0 1 1 0

D100 (Example: when the value is 365)

As (d) specifies a 
two-digit number, 
this data is ignored.

0 1 1 0 1 1 0

Y148• •Y14F

0 1 1 0 1 1 0

Y140Y147

0 1 1 0 1 1 0

Y158Y15F

0 1 1 0 1 1 0

Y150Y157

4 sets of data (K4)

••••••••• • • •••••••••

• • •••••••••• • •••••••••

1

11

11

(s) (n)(d)

(d) (d)

(d)(d)

(n)

(s)

Input condition 1)

K4K2Y140K255FMOV

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1Input condition 2)

K4K2Y140K0FMOV

Bit pattern of K255 1

MOV K0 K4M0

DMOV K0 K8M0

FMOV K0 K4K4M0
(The FMOV instruction turns off 
64 bit device areas.)

Input condition

K4K2Y140D100BMOV
As (d) specifies a 
two-digit number, 
this data is ignored.

5

Y148

4 sets of data (K4)

7

Y14F

5

Y140

1

Y147

5

Y158

5

Y15F

5

Y150

6

Y157

3 0 5 1D100

3 0 5 7D101

3 0 5 6D102

3 0 5 5D103

(s) (n)

(n)

(d)

(d) (d)

(d)(d)
5  BASIC INSTRUCTIONS -PART 2-
5.2  Transfer Instructions 5 - 21



5 - 
■Ladder example
Create the following ladder program with GX Works3 and write it to the CPU module of the demonstration machine. Then, 

check the execution of the FMOV instruction.

Operating procedure

For the procedures of the following operations, refer to Section 4.4.

■Creating a new project

■Creating a program

■Writing data to the programmable controller

■Monitoring the ladder

■Operation practice
Check that turning on X100 on the operation panel of the demonstration machine changes the values of D100 to D104 to 200 

on the batch monitor window. The data is cleared when X101 turns on.

Change the device batch monitor setting as shown below to display values in decimal, hexadecimal, or binary notation.

 • Value: DEC ••••••••••••••••••••• This setting displays values in decimal.

 • Value: HEX ••••••••••••••••••••• This setting displays values in hexadecimal.

 • Monitor Format: Bit Multi-point •••••••••• This setting displays values in binary.

■Related exercise ---- Exercise 4

Project name REX9

Program name MAIN

D100

D100
X100

K200FMOV0
X101

FMOV K05 K5

K5

10 END
22
5  BASIC INSTRUCTIONS -PART 2-
5.2  Transfer Instructions



5

5.3 Comparison Operation Instructions

This section describes how to compare numerical values.

 • The comparison instruction compares the value in the source 1 (s1) and that in the source 2 (s2), and brings the devices in 

the continuity state when conditions are satisfied.

 • The instruction can be regarded as one normally open contact ( ) because it goes in the continuity state only when 

conditions are satisfied.

 • ••••• The ladder goes in the continuity state when the value in the source 1 is equal to that in the 

source 2.

 • ••••• The ladder goes in the continuity state when the value in the source 1 is smaller than that in the 

source 2.

 • ••••• The ladder goes in the continuity state when the value in the source 1 is larger than that in the 

source 2.

 • ••••• The ladder goes in the continuity state when the value in the source 1 is equal to or smaller than 

that in the source 2.

 • ••••• The ladder goes in the continuity state when the value in the source 1 is equal to or larger than 

that in the source 2.

 • ••••• The ladder goes in the continuity state when the value in the source 1 are not equal to that in the 

source 2.

Project name RB-15

Program name MAIN

=

<

>

>= <=
Size comparison

MOV C0 D0

Y170

X102

X103

0

K1C0>

Y171K4C0=

Y172K6C0<=

Y173K8C0<>

Y174K2C0>

K3C0<=

K7C0>=

Y175

K10C0=

C0 K7<

RST C0

6

9

13

17

21

25

32

39

END46

(s1) (s2)

OUT C0 K99

<>

Y174C10K20>

C10K40<

Y174

(s1)= (s2)

(s1)< (s2)

(s1)> (s2)

(s1)<= (s2)

>= (s1) (s2)

<> (s1) (s2)
5  BASIC INSTRUCTIONS -PART 2-
5.3  Comparison Operation Instructions 5 - 23



5 - 
■Operation practice
 • Write the program to the CPU module.

 • C0 counts the number of times that X102 turns on.

 • Turning on X103 displays the current value of C0 in the initial indication device (D0).

 • Check that the device areas Y170 to Y175 turn on as follows.

[The range in which Y170 to Y175 turn on]

●: On : Off

 • The counter is designed to be reset every time the value reaches 10.

 • In this way, the comparison instructions not only compare data but also specify the range. These instructions are commonly 

used in the program to determine the acceptances of products.

*1 For 32-bit binary data

C0 Y175 Y174 Y173 Y172 Y171 Y170

0 ●  ● ●  

1 ●  ● ●  

2 ●  ● ●  ●

3 ● ● ● ●  ●

4  ● ● ● ● ●

5  ● ● ●  ●

6  ● ● ●  ●

7 ●  ●   ●

8 ●     ●

9 ●  ●  ●

10 RST C0

Operand Bit Word Double 
word

Indirect 
specification

Constant Others Number of 
basic 
stepsX, Y, M, L, 

SM, F, B, 
SB, FX, 
FY

J\ T, ST, C, D, 
W, SD,SW, 
FD, R, ZR, 
RD

U\G, 
J\, 
U3E\(H)G

Z LT, 
LST, 
LC

LZ K, 
H

E $

(s1)      *1 *1      3

(s2)      *1 *1     
24
5  BASIC INSTRUCTIONS -PART 2-
5.3  Comparison Operation Instructions



5

■Ladder example
Open the following project and write it to the CPU module of the demonstration machine. Then, check the execution of the > 

and < instructions.

0.0 second ≤ T0 < 3 seconds → Y170: On

2.7 seconds < T0 < 3.3 seconds → Y171: On

3.0 seconds < T0 ≤ 6.0 seconds → Y172: On

Operating procedure

■Opening a project

1. Open project data.

Click  on the toolbar.

2. The "Open" dialog box appears. Specify the save destination.

Double-click the displayed workspace "Chapter 5".

Project name REX10

Program name MAIN

Y170: On

T0:
0 2.8 6.0 seconds2.9 3.1 3.23.0

Y171: On Y172: On

T0

Y170

Y171

Y172

X100

M0

0

3

12

M0SET

K60
M0RST

T0

<

<

>

X101

16

23

6

27 END

K27

> K30

K30

T0

T0

T0

T0K33

Click!
5  BASIC INSTRUCTIONS -PART 2-
5.3  Comparison Operation Instructions 5 - 25



5 - 
3. Click "REX10" and click the [Open] button.

For the procedures of the following operations, refer to Section 4.4.

■Writing data to the programmable controller

■Monitoring the ladder

■Operation practice
Turn on X100 and check the operation of the program.
26
5  BASIC INSTRUCTIONS -PART 2-
5.3  Comparison Operation Instructions



5

5.4 Arithmetic Operation Instructions

5.4.1 [+(P)] (Addition of 16-bit binary data)
[-(P)] (Subtraction of 16-bit binary data)

 • This section describes addition or subtraction.

 • This section describes the differences between the instructions with P and the one without P.

1. Every time the input condition turns on, the value in the device specified in (s) is added to the value in the device 

specified in (d), and the result is stored in the device specified in (d).

2. When the input condition turns on, the value in the device specified in (s1) is added to the value in the device specified in 

(s2), and the result is stored in the device specified in (d).

Precautions

 • Always use  or  as the addition or subtraction instructions.

 • When + or - is used, an addition or subtraction operation is executed at every scan. To use + or -, convert operands into 

pulse in advance.

Project name RB-16

Program name MAIN

X102
0 D100K5+P

X103
D1015 K100D100+P

1.

2.

END10

(s1)

(s)

(d)

(d)

(s2)

(d)
D100 + 

(s)
(5) → 

(d)
D100

(Input condition) 
First: ON 
Second: ON 
Third: ON 

0 (example)
5 
10 

+ 
+ 
+ 

5 
5 
5 

→ 
→ 
→ 

5 
10 
15 

The value in D100 changes. 

(s1)
D100 + 

(s2)
(100) → 

(d)
D101

(Input condition) 
ON 15 (example) + 100 → 115 

The value in D100 is not changed by the addition.

+P -P

K5 D100+P
X102

PLS M0
X102

D100K5+
M0
5  BASIC INSTRUCTIONS -PART 2-
5.4  Arithmetic Operation Instructions 5 - 27



5 - 
The following two instructions work on the same principle in the addition or subtraction processing.

3. Every time the input condition turns on, the value in the device specified in (s) is subtracted from the value in the device 

specified in (d), and the result is stored in the device specified in (d).

4. When the input condition turns on, the value in the device specified in (S2) is subtracted from the value in the device 

specified in (S1), and the result is stored in the device specified in (d).

*1 The number of basic steps is four for .

Project name RB-17

Program name MAIN

Operand Bit Word Double 
word

Indirect 
specification

Constant Others Number of 
basic 
stepsX, Y, M, L, 

SM, F, B, 
SB, FX, 
FY

J\ T, ST, C, D, 
W, SD,SW, 
FD, R, ZR, 
RD

U\G, 
J\, 
U3E\(H)G

Z LT, 
LST, 
LC

LZ K, 
H

E $

(s1)             3 or 4*1

(s2)            

(d)            

K1 D100+P

D102K1-P

(Addition)

(Subtraction)

INCP D100

DECP D102

X104
0 D102K1000MOVP

X105
4

(d)

(s2)X106
9 D103K50D102-P

(d)(s1)

D102K10

(s)

3.

4.

14 END

-P

D102 - (10) → D102
(Input condition) 

First: ON 
Second: ON 
Third: ON 

1000 (example)
990 
980 

- 
- 
- 

10 
10 
10 

→ 
→ 
→ 

990 
980 
970 

The value in D102 changes. 

(d) (s) (d)

D102 - (50) → D103
(Input condition) 

ON 970 (example) - 50 → 920 

The value in D102 is not changed by the subtraction.

(s1) (s2) (d)

(s1) (s2) (d)
28
5  BASIC INSTRUCTIONS -PART 2-
5.4  Arithmetic Operation Instructions



5

■Ladder example
Create the following ladder program with GX Works3 and write it to the CPU module of the demonstration machine. Then, 

check the execution of the + and - instructions.

Operating procedure

For the procedures of the following operations, refer to Section 4.4.

■Creating a new project

■Creating a program

■Writing data to the programmable controller

■Monitoring the ladder

■Operation practice
 When X100 turns on, the value in D21 is stored in D100 and the value in D20 is stored in D101.

 Turn on X102. The value in D100 is added to the value in D101.

 Turn on X103. The value in D100 is subtracted from the value in D101.

 The initial indication device D0 displays the calculation result. When the result is a negative value, Y170 turns on and D0 is 

cleared to 0.

Project name REX11

Program name MAIN

+ D100 D101 = D101 + D100 → D101
400→300+100
5  BASIC INSTRUCTIONS -PART 2-
5.4  Arithmetic Operation Instructions 5 - 29



5 - 
5.4.2 [*(P)] (Multiplication of 16-bit binary data)
[/(P)] (Division of 16-bit binary data)

 • This section describes multiplication or division.

 • This section describes the concept of two words.

1. When the input condition turns on, the value in the device specified in (s1) is multiplied by the value in the device 

specified in (s2), and the result is stored in the device specified in (d).

Project name RB-18

Program name MAIN

X100
D1000 D20MOVP

X102
4

X103
D1209 K600D100/P

D110D100K600*P 1.

2.

END14

(s1) (d)(s2)

(s1) (d)(s2)

K600
600 ×

D100
4000 =

D111
2400000

Since these device areas are used as a 
32-bit (2-word) register for storing the result, 
the left-most bit of D110 (b15) is regarded 
as a part of the data, not as a sign bit.

When programming a ladder using the operation result of the *(P) instruction, always use 32-bit 
instructions (such as the DMOV instruction and the DMOVP instruction).

To store the result of 16-bit data × 16-bit data, 
a space of 16 bits (1 word) is not enough. 
Thus, the D110 specified in the program and 
the subsequent device area D111 are used 
for storing the result.

D110
(s1) (d)(s2)
30
5  BASIC INSTRUCTIONS -PART 2-
5.4  Arithmetic Operation Instructions



5

2. When the input condition turns on, the value in the device specified in (s1) is divided by the value in the device specified 

in (s2), and the result is stored in the device specified in (d). Values after the decimal point of the division result are 

ignored.

When a bit device is specified in (d), the quotient is stored but the remainder is not stored.

The following shows examples of processing of negative values.

The following shows examples of dividing a value by 0 or dividing 0 by a value.

■Operation practice
 Write the program to the CPU module and set the operating status of the CPU module to RUN.

 Turn on X100 and store the value of the initial input device D20 in D100.

 Turn on X102. The multiplication of 600 × D100 is executed.

 Turn on X103. The division of D100 ÷ 600 is executed.

*1 The number of steps in a multiplication instruction varies depending on the devices to be used.

Operand Bit Word Double 
word

Indirect 
specification

Constant Others Number of 
basic 
stepsX, Y, M, L, 

SM, F, B, 
SB, FX, 
FY

J\ T, ST, C, D, 
W, SD,SW, 
FD, R, ZR, 
RD

U\G, 
J\, 
U3E\(H)G

Z LT, 
LST, 
LC

LZ K, 
H

E $

(s1)             Multiplication 

instruction: 3 

or 4*1

Division 

instruction: 4

(s2)            

(d)            

D100
4000 ÷

K600
600 =

D120
6 400

and

Quotient

D121

The remainder is stored in the 
subsequent device area D121.

The quotient is stored in D120 that 
is specified in the program.

Remainder

(s1) (d)(s2)

Example -5 ÷ (-3) =  1, remainder = -2 
5 ÷ (-3) = -1, remainder =  2 

0 ÷ 0 
1 ÷ 0 
0 ÷ 1 Quotient and remainder = 0 

Error "OPERATION ERROR" 
Example
5  BASIC INSTRUCTIONS -PART 2-
5.4  Arithmetic Operation Instructions 5 - 31



5 - 
How to monitor 32-bit integer data

When the operation result of the multiplication instruction is outside the range of 0 to 32767, the result cannot 

be properly displayed even though the value is regarded as a 16-bit integer and the values in the lower 

registers are monitored in ladder.

To monitor the values properly, follow the procedure below.

 •  Click [View] → [Display Format Detailed Setting] from the menu to display the "Display Format" dialog box. 

Then, set "32-bit Integer [Signed]" for "Data Display Format".

Click the [OK] button.

 • Values are monitored properly.
32
5  BASIC INSTRUCTIONS -PART 2-
5.4  Arithmetic Operation Instructions



5

■Ladder example
Create the following ladder program with GX Works3 and write it to the CPU module of the demonstration machine. Then, 

check the execution of the * and / instructions.

Operating procedure

For the procedures of the following operations, refer to Section 4.4.

■Creating a new project

■Creating a program

■Writing data to the programmable controller
After writing data, touch the lower sections of the initial input device D20 and D21 to enter numerical values.

■Monitoring the ladder

Project name REX12

Program name MAIN
5  BASIC INSTRUCTIONS -PART 2-
5.4  Arithmetic Operation Instructions 5 - 33



5 - 
■Operation practice
 When X100 turns on, the values in the initial input device D20 and D21 are multiplied, and the result is output to the initial 

indication device D0.

 When X101 turns on, the value in the initial input device D21 is divided by the value in D20, and the quotient is output to 

the initial indication device D1 and the remainder is output to the initial indication device D0.

D100 × D101 → D110
→3×6 18
34
5  BASIC INSTRUCTIONS -PART 2-
5.4  Arithmetic Operation Instructions



5

5.4.3 32-bit data instructions and their necessities

 • This section describes the concept of two words.

 • This section describes the differences between a one-word instruction and two-word instruction.

 • The unit of the data memory of the MELSEC iQ-R series programmable controller is one word that consists of 16 bits. Thus, 

data is typically processed in units of one word at the transfer processing, comparison, and arithmetic operation.

 • The MELSEC iQ-R series programmable controller can process data in units of two words (32 bits). In that case, "D" is 

added at the beginning of each instruction to indicate that the instruction processes two-word data. The following shows 

examples.

 • The following shows the weights of 32 bits.

As the case of 16-bit data processing, the programmable controller takes the 2's complement in 32-bit data processing. 

Thus, the most significant bit b31 (b15 for 16-bit data) is processed as a sign bit.

Instruction

Transfer MOV(P) DMOV(P)

Comparison <, >, <=, >=, =, <> D<, D>, D<=, D>=, D=, D<>

Arithmetic operation +(P) D+(P)

-(P) D-(P)

*(P) D*(P)

/(P) D/(P)

Available range of 

numerical values

-32768 to 32767 -2147483648 to 2147483647

Available range of digit 

specification

K1 to K4 K1 to K8

1 word
16 bits 32 bits

2 words

10
73

74
18

24
-2

14
74

83
64

8

53
68

70
91

2
26

84
35

45
6

13
42

17
72

8
67

10
88

64
33

55
44

32
16

77
72

16
83

88
60

8
41

94
30

4
20

97
15

2
10

48
57

6

13
10

72
65

53
6

32
76

8
16

38
4

81
92

40
96

20
48

10
24 51

2
25

6
12

8 64 32 16 8 4 2 1

26
21

44
52

42
88

b31 b16 b0b15 • • • • • • • • • • • • • • • • • • • • • • • • • • •  • • • • • • • • • • • • • • • • • • • • • • • • • • •

b31 b0• • • • • • • • • • • • • • • • • • • • • • • • • • • •

Most significant bit 0: Positive value
1: Negative value

Available range of values
-2147483648 to 0 to 2147483647

(Sign bit)
5  BASIC INSTRUCTIONS -PART 2-
5.4  Arithmetic Operation Instructions 5 - 35



5 - 
 • Whether data is processed as two-word (32-bit) data or not depends on the size of the data.

In the following cases, use two-word instructions.

(1) When the data size exceeds the range (-32768 to 32767) in which data can be processed as one word

(2) When the result of the 16-bit multiplication instruction (one-word instruction) is transferred

*1 The result of the 32-bit data multiplication will be 64-bit data.

(3) When the result of the 32-bit division instruction is used

D100K50000DMOV

D101 D100

50000 50000

Transferred

Stored in two 
adjacent device 
areas.

(d)(s)

The multiplication 
result is stored in two 
adjacent device 
areas.

D110D101D100*

D111 D110

×

D101D100

D0D110DMOV

D111 D110 8-digit display (0 to 99999999)

MOV 
conversion

(s1) (s2) (d)

D140D130D120D/

D131 D130

÷

D0D140DMOV

D121 D120

(Quotient)

D141 D140

(Remainder)

D143 D142

Quotient display

D10D142DMOV Remainder display
36
5  BASIC INSTRUCTIONS -PART 2-
5.4  Arithmetic Operation Instructions



5

■Ladder example
Create the following ladder program with GX Works3 and write it to the CPU module of the demonstration machine. Then, 

check the two-word instructions.

Operating procedure

For the procedures of the following operations, refer to Section 4.4.

■Creating a new project

■Creating a program

■Writing data to the programmable controller

■Monitoring the ladder

Project name 2word

Program name MAIN
5  BASIC INSTRUCTIONS -PART 2-
5.4  Arithmetic Operation Instructions 5 - 37



5 - 
5.5 External Setting of Timer/Counter Values and 
External Display of Current Values

This section describes how to indirectly specify a setting value of a timer/counter.

A setting value of a timer or counter can be directly specified with K (decimal constant) or indirectly specified with D (data 

register). In the program shown below, the setting value can be changed from an external device.

After reading the program to GX Works3, write it to the programmable controller to check the operation.

Operating procedure

For the procedure of creating a project, refer to Section 5.3.

For the procedures of the operations after creating a project, refer to Section 4.4.

■Creating a new project

■Creating a program

■Writing data to the programmable controller

■Monitoring the ladder

Project name RTC

Program name MAIN

X104

SM400
11

X101
D106D2114 MOVP

X106
C10RST25

4

X100
D105D20MOVP

T10
Y1709

D0T10MOV

X105
18

C10
Y17123

SM400
D1C1030 MOV

Initial input device (D20)

1 2 3 4

D105    1 2 3 4

This device displays the current value of T10.

0

Initial indication device (D0)

END33

D105T10OUT

D106C10OUT

D105T10OUT
38
5  BASIC INSTRUCTIONS -PART 2-
5.5  External Setting of Timer/Counter Values and External Display of Current Values



5

■Operation practice

(1) External setting of timer values and display of current values

• Set the value of a timer in the initial input device (D20) and turn on the switch X100.

• When the switch X104 turns on, Y170 turns on after the time specified with the initial input device (D20).

(For example, Y170 turns on in 123.4 seconds when  is set to the timer.)

• The initial indication device (D0) displays the current value of the timer T10.

(2) External setting of counter values and display of current values

• Set the value of a counter in the initial input device (D21) and turn on the switch X101.

• Turn on and off the switch X105 repeatedly. When X105 has turned on for the number of times specified with the initial 

input device (D21) (counting is up), Y171 turns on.

• The initial indication device (D1) displays the current value of the counter C10 (the number of times that X105 has 

turned on).

• Turning on the switch X106 clears the counter C10 to 0. When the contact C10 is already on (counting up has already 

been completed), the contact is released.

4321
5  BASIC INSTRUCTIONS -PART 2-
5.5  External Setting of Timer/Counter Values and External Display of Current Values 5 - 39



5 - 
5.6 Exercise

5.6.1 [Exercise 1] MOV-1

Transfer the eight input points of X100 to X107 into D100 once and output them to Y170 to Y177.

(For example, Y170 turns on when X100 turns on.)

X100 → Y170, X101 → Y171, X102 → Y172, X103 → Y173, X104 → Y174, X105 → Y175, X106 → Y176, X107 → Y177

Fill in the blanks ( ) in the following program and create the program with GX Works3. Then, check the operation with 

the demonstration machine.

(For answers, refer to Page 5-46.)

■Hint

The following is a program created with sequence instructions and no MOV instructions.

Project name RTEST5

Program name MAIN

                                                        

                                                        

SM401
D100MOV0

MOV D100

END7

0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1

X100
X101
X102
X103
X104
X105
X106
X107

K2X100

(Input module)
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1

D100
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1

(Output module)
Y170
Y171
Y172
Y173
Y174
Y175
Y176
Y177

CPU module

K2Y170

MOV MOV The CPU module module loads the input signal as "1" when it 
is on, and loads the signal as "0" when it is off.
The output module turns on when the CPU module module outputs 
"1", or turns off when the CPU module module outputs "0".

Y170
X100

Y171
X101

Y172
X102

Y173
X103

Y174
X104

Y175
X105

Y176
X106

Y177
X107

0

2

4

6

8

10

12

14
40
5  BASIC INSTRUCTIONS -PART 2-
5.6  Exercise



5

5.6.2 [Exercise 2] MOV-2

Output the number of times that X101 has turned on to the initial indication device D0. As a precondition, the value set to the 

counter (C0) can be input with the initial input device (D20) and the setting will be available with turning on of X100.

Fill in the blanks ( ) in the following program and create the program with GX Works3. Then, check the operation with 

the demonstration machine.

(For answers, refer to Page 5-46.)

■Hint

Project name RTEST6

Program name MAIN

                                                        

                                                        

                                                        

                                                        

C0
X101

X100

SM401

X102

0

5

8

11 C0RST

C0

D100MOVP

Y170
C0

16

END18

Initial input device (D20)

D100

C0

CPU module module

X101: ON/OFF

Initial indication device (D0)

Set 
value
5  BASIC INSTRUCTIONS -PART 2-
5.6  Exercise 5 - 41



5 - 
5.6.3 [Exercise 3] Comparison instruction

Use two initial input devices to perform the operation processing of (A - B) and display the result on the initial indication device 

(D0).

Fill in the blanks ( ) in the following program and check the operation of the program with the demonstration machine.

(For answers, refer to Page 5-46.)

■Hint
The operation result is always output from the CPU module in binary.

Project name RTEST8

Program name MAIN

                                                        

                                                        

                                                        

                                                        

A

Initial input device (D20)Initial input device (D21)

B

Initial indication device (D0)

The initial indication device (D0) indicates the result of the 
calculation of A - B. When the result is a negative value, 
the device indicates 0 and the LED of Y170 turns on.

X100
0

Y170SET

D100

D101

D100D20

D21

-P D101

K0MOV D0

D101MOV D0

Y170RST

D101K0

D101K0

X101
7

26 END

D101D100- = D101 - D100 → D101
42
5  BASIC INSTRUCTIONS -PART 2-
5.6  Exercise



5

5.6.4 [Exercise 4] +, -

Load the value specified by the initial input device (D20) into D103 and D102 (32-bit data) when X100 turns on, add each of 

them to D101 and D100, and display the results in the initial indication device (D10).

Load the value specified by the initial input device (D20) into D105 and D104 when X101 turns on, subtract each of them from 

D101 and D100 and display the results. When the result is a negative value, Y177 turns on, the 2's complement is taken from 

the result to obtain and display an absolute value.

Fill in the blanks ( ) in the following program and check the operation of the program with the demonstration machine.

(For answers, refer to Page 5-46.)

■Reference

The CML instruction inverts the bit patterns of (s) and transfers the data into (d) when the input condition turns 

on.

Project name RTEST9

Program name MAIN

                                                        

                                                        

When the result is a 
negative value, it is 
converted into a positive 
value and displayed. 
(The absolute value of 
the negative value is 
determined.)

Subtracts the external 
setting value from D100.

Adds the external 
setting value to D100.

X100
0

M1PLS

D100

D100

D102D20

D102

DMOV D10

D104

DMOV

D<= K0 D100
X101

X100

X101

7

13

20

D20DMOV D104

DCML D100 D108D> K0 D10024
M1

D+P K1 D108

DMOV D108 D10

DMOV K0 D100
X107

41

Y177

Clears D100 and D101.

D100

END45

The device indicates the 
result when it is a 
positive value.

Outputs that the value is 
negative.

An absolute value is determined by the 
calculation of 2's complement of D100 and 
D101 (32-bit data).

M1
K0 D100D> D100 D108DCML

K1 D108D+P

Complement (negative transfer)

1 1 1 0 1 1 0 0 1 0
B31

D101 D100

0 0 0 1 0 0 1 1 0 1

D109 D108

0 0 0 1 0 0 1 1 1 0

D109 D108

(negative value)

After execution 
of the DCML 
instruction

(Absolute value)

After execution 
of the D + P 
instructions

B30 B18 B17 B16 B15 B14 B2 B1 B0
Before execution 
of the DCML 
instruction

Input condition

D100 D110CML
(d)(s)
5  BASIC INSTRUCTIONS -PART 2-
5.6  Exercise 5 - 43



5 - 
5.6.5 [Exercise 5] *, /

Multiplication and division data can be set when X100 turns on. The values specified by the initial input device D20 to D21 are 

multiplied when X102 turns on or are divided when X103 turns on. Create a program that outputs the result of the 

multiplication or the quotient of the division to the initial indication device (D10) and the remainder of the division to the initial 

indication device (D0).

(D21) × (D20) → (D0)

(D21) ÷ (D20) → (D0) •••••• (D10)

Two-digit numerical values are stored in D20 and D21.

Fill in the blanks ( ) in the following program and create the program with GX Works3. Then, check the operation with 

the demonstration machine.

(For answers, refer to Page 5-46.)

■Hint

Project name RTEST10

Program name MAIN

                                                        

                                                        

                                                        

                                                        

                                                        

                                                        

SM401
19

D10

D0D102

D103

X102

X103
7

13

D100

D101 D102

X100
0

D101

D100D21

D20
X103

X102
D100

D101 D102

24 END

Value of D21 Value of D20
D100 D101

0
D103

Value of D0
D102

Multiplication

Division Value of D21
D100

Value of D20
D101

Value of D0
D102

Value of D10
D103

×

•••÷
44
5  BASIC INSTRUCTIONS -PART 2-
5.6  Exercise



5

5.6.6 [Exercise 6] D*, D/

Multiply the value set by the 5-digit initial input device (D20) by 1100 when X102 turns on. When the result is 99999999 or 

smaller, display the value in the 10-digit initial indication device (D10).

Divide the value set by the 8-digit initial input device (D30) by 40000 when X103 turns on. When X104 is on, display the 

quotient in the initial indication device (D10). When X104 is off, display the remainder in the 10-digit initial indication device 

(D10).

(D20) × 1100 → (D10)

(D30) ÷ 40000 → Quotient (D10) •••••• X104: On

Remainder (D10) •••••• X104: Off

Fill in the blanks ( ) in the following program and create the program with GX Works3. Then, check the operation with 

the demonstration machine.

(For answers, refer to Page 5-46.)

Project name RTEST11

Program name MAIN

                                                        

                                                        

                                                        

                                                        

                                                        

                                                        

                                                        

D100

X102
0

D102

D100D20

K1100

X103

D102

Y177
D104K99999999D< Y177

D10

D110

X103
24

D112

D110D30

K40000

X102

D112

X104

D10DMOVP D104

D10DMOV

DMOV

DMOVP

X104

D104

D114

45 END
5  BASIC INSTRUCTIONS -PART 2-
5.6  Exercise 5 - 45



5 - 
Answers for the exercises in Chapter 5

Exercise Answer

1  K2X100

 K2Y170

2  D100

 D20

 MOV

 D0

3  MOVP

 MOVP

 >

 <=

4  D+P

 D-P

5  MOVP

 MOVP

 *P

 /P

 MOV

 MOV

6  DMOVP

 D*P

 DMOVP

 DMOVP

 D/P

 D114

 D116
46
5  BASIC INSTRUCTIONS -PART 2-
5.6  Exercise



6

6 HOW TO USE OTHER FUNCTIONS

6.1 Online Test Function

This section describes how to change the status of devices forcibly.

As a preparation, follow the procedure below.

Project name REX14

Program name MAIN

For details on the operation method, refer to Chapter 2.

1. Read the REX14 project with GX Works3.

2. Write the parameters and programs of the read project 

to the CPU module.

(The CPU module is in the STOP state.)

3. Set GX Works3 to monitor mode.

4. Check the program displayed in the window.

0
X106

Y170

X101
Y170

4
M10

T0
X104 K1500

MOV D1

12
T1

Y174
X106

Y174

16
X106Y174

T1

22 END

K30

T0
6  HOW TO USE OTHER FUNCTIONS
6.1  Online Test Function 6 - 1



6 - 
6.1.1 Forced on/off of the device (Y)

Checking with the demonstration machine
Check that clicking the menu switches the on/off status of Y170 and the LED of Y170 on the demonstration machine also 

turns on and off depending on this operation.

Precautions

When the CPU module is in the RUN state, operation results of the program are displayed preferentially. Thus, set the CPU 

module to the STOP state before checking with the demonstration machine.

Setting and resetting of contacts, changing current values of word devices, and forced output can also be 

performed with the test function during ladder monitoring with GX Works3.

Double-clicking a contact (pressing the  key) while holding the  key in the ladder monitor window of 

GX Works3 forcibly switches the on/off status of the contact.

For word devices, this operation registers the change target devices on the watch window and changes the 

current values.

6.1.2 Setting/resetting of the device (M)

Checking with the demonstration machine
Turn off X104 and check the following.

 When M10 is set,  goes in the non-continuity state and the current value of the timer T0 is cleared to 0.

Check that the display of the initial indication device (D1) stops.

 When M10 is reset,  goes in the continuity state and the timer T0 starts counting from 0. The counted value increases 

by 10 every second.

Check that the value in the initial indication device (D1) increases by 10 every second.

With the same procedure, bit devices other than the internal relay (M) also can be set or reset forcibly.

Set the CPU module to the STOP state before this operation.

1. Select the "Y170" cell on the ladder editor and click [Debug] 

→ [Modify Value] from the menu.

Clicking the menu forcibly turns on or off "Y170".

Set the CPU module to the RUN state before this operation.

1. Select the "M10" cell on the ladder editor and click [Debug] 

→ [Modify Value] from the menu.

Clicking the menu sets or resets "M10".

1. Click!

1. Click!

M10

M10
2
6  HOW TO USE OTHER FUNCTIONS
6.1  Online Test Function



6

6.1.3 Current value change of the device (T)

Checking with the demonstration machine
After entering the current value, press the  key and check that the value in the initial indication device (D1) changes to 

1000.

With the same procedure, the current values of word devices other than the timer (T) can also be changed.

Set the CPU module to the RUN state before this operation.

1. Select the "T0" cell on the ladder editor and click [Online] 

→ [Watch] → [Register to Watch Window] → [Watch 

Window 1].

2. "T0" is registered in the "Watch 1" window.

3. Right-click "T0" in the "Watch 1" window and click [Start 

Watching].

4. Watching of "Watch 1" starts.

5. Enter "1000" in "Current Value".

1. Click!

3. Click!

5. Enter!
6  HOW TO USE OTHER FUNCTIONS
6.1  Online Test Function 6 - 3



6 - 
6.1.4 Reading error steps

This section describes how to check errors.

Set the CPU module to the RUN state before this 

operation.

1. Click [Diagnostics] → [Module Diagnostics (CPU 

Diagnostics)] from the menu.

2. The "Module Diagnostics" dialog box appears.

Click the [Error Jump] button to jump to a 

selected error item.

• When an error has been detected, the 

corresponding error code and overview are 

displayed.

• When no error has been detected, a message 

"No Error" is displayed.

1. Click!

2. Click!
4
6  HOW TO USE OTHER FUNCTIONS
6.1  Online Test Function



6

6.1.5 Remote RUN/STOP

This section describes the method of remote operation with the software.

Set the CPU module to the RUN state before this operation.

1. Click [Online] → [Remote Operation] from the menu.

2. The "Remote Operation" dialog box appears. Select 

"STOP" in "Operation".

3. After the setting is completed, click the [Execute] button.

4. The message "Do you want to execute STOP operation?" 

appears. Click the [Yes] button.

(To the next page)

1. Click!

Click!3.

Click!2.

Click!4.
6  HOW TO USE OTHER FUNCTIONS
6.1  Online Test Function 6 - 5



6 - 
(From the previous page)

The CPU module is set to the STOP state.

5. Select "RUN" in the dialog box of step 2, and perform the 

steps 2 to 4 again.

The CPU module that was in the STOP state is set to the RUN 

state again.
6
6  HOW TO USE OTHER FUNCTIONS
6.1  Online Test Function



6

6.2 Creating the Module Configuration
Arrange program elements (objects) in the "Module Configuration" window so that the same configuration as that of the 

demonstration machine is created.

(For how to create a project, refer to Section 2.2.2.)

The configuration that can be created in the "Module Configuration" window is the one to be managed with the CPU module of 

the project.

Operating procedure

1. Double-click "Module Configuration" in the 

"Project" view.

2. The message dialog box shown on the left 

appears. Click the [OK] button.

3. The "Module Configuration" window appears.

(To the next page)

1. Double-click!

Click!2.
6  HOW TO USE OTHER FUNCTIONS
6.2  Creating the Module Configuration 6 - 7



6 - 
(From the previous page)

4. Select "R35B" from "Main Base" on the "Element 

Selection" window, and drag and drop it to the 

"Module Configuration" window.

5. Select "R61P" from "Power Supply" on the 

"Element Selection" window, and drag and drop it 

to the base unit arranged in 4.

(While the power supply module is being dragged 

and dropped, the slot where the power supply 

module can be arranged is highlighted.)

6. Select "R08CPU" that has already been arranged 

when the "Module Configuration" window 

appeared, and drag and drop it to the CPU slot 

on the base unit.

(To the next page)

4. Drag and drop!

5. Drag and drop!

6. Drag and drop!
8
6  HOW TO USE OTHER FUNCTIONS
6.2  Creating the Module Configuration



6

(From the previous page)

7. Select "R60AD4" from "Analog Input" on the 

"Element Selection" window, and drag and drop it 

to the slot No.0 on the base unit.

8. Select "R60DA4" from "Analog Output" on the 

"Element Selection" window, and drag and drop it 

to the slot No.1 on the base unit.

Arranging of program elements (objects) in the 

"Module Configuration" window is completed in 

the same configuration as the one of the 

demonstration machine.

7. Drag and drop!

8. Drag and drop!
6  HOW TO USE OTHER FUNCTIONS
6.2  Creating the Module Configuration 6 - 9



6 - 
6.3 Device Batch Replacement

This section describes how to change devices in a program in a batch.

6.3.1 Replacing device numbers in a batch

Replace Y140 to Y17F (64 outputs) with Y120 to Y15F (64 outputs) in a batch.

Users can also replace device numbers in a batch by specifying the number of device points in "Replace 

Device/Label".

1. Check that "Write Mode" is active and click 

[Find/Replace] → [Device Batch Replace] from 

the menu.

(To the next page)

1. Click!
10
6  HOW TO USE OTHER FUNCTIONS
6.3  Device Batch Replacement



6

(From the previous page)

2. The "Find and Replace" dialog box appears. 

Click "Find Device" and enter "Y140".

3. Click "Replace Device" and enter "Y120".

4. Click "Points" and enter "64".

5. After the setting is completed, click the 

[Replace All] button.

6. Check that device numbers have been changed.

5. Click!

2.3.4. Enter!

(Before) (After)
6  HOW TO USE OTHER FUNCTIONS
6.3  Device Batch Replacement 6 - 11



6 - 
6.3.2 Changing normally open contacts ↔ normally closed 
contacts of specified devices in a batch

This section describes how to change normally open contacts of specified devices to normally closed contacts and vice versa 

in a batch.

When changing normally open contacts  normally closed contacts in a specified area of a program, select 

the area and press the "/" key.

1. Check that "Write Mode" is active and click 

[Find/Replace] → [Change Open/Close 

Contact] from the menu.

2. The "Find and Replace" dialog box appears. 

Click "Replace Device/Label" and enter "X104" 

in the list box.

3. After the setting is completed, click the 

[Replace All] button.

(To the next page)

1. Click!

2. Enter!

Click!3.
12
6  HOW TO USE OTHER FUNCTIONS
6.3  Device Batch Replacement



6

Precautions

Before performing the exercise in Section 6.4 after this operation, do not forget to write the program in the personal computer 

to the CPU module.

For how to write a program, refer to Section 2.5.

(From the previous page)

4. Check that the normally closed contact is changed to a normally open contact.

(Before) (After)
6  HOW TO USE OTHER FUNCTIONS
6.3  Device Batch Replacement 6 - 13



6 - 
6.4 Online Change

This section describes how to change a program while the CPU module is in the RUN state.

This function allows users to write a program even while the CPU module is in the RUN state.

Precautions

Online change cannot be executed when the program in the CPU module and the program before the modification in GX 

Works3 do not match. Thus, when whether the programs match or not is unclear, verify them before the modification with GX 

Works3, and execute the online change.

Set the CPU module to the RUN state before this operation.

1. Change the ladder.

(In this example, change "X101" to "X100".)

2. After the change, click [Convert] → [Online Program 

Change] from the menu.

Or, press  + .

3. The message "CAUTION" appears. Click the [Yes] 

button to accept the change.

4. Online change is completed.

1. Change the device!

Click!2.

Click!3.
14
6  HOW TO USE OTHER FUNCTIONS
6.4  Online Change



6

6.5 Watch Window

This section describes the "Watch" window where devices can be checked at once.

This section describes how to register multiple devices or labels in one window and to monitor them at the same time.

1. Click [View] → [Docking Window] → one of 

[Watch 1] to [Watch 4] from the menu.

* In this example, select [Watch 1].

2. The "Watch 1" window appears. Select a row 

to be edited, and click "Name" and enter "T0".

3. The device or label is registered.

4. Click [Online] → [Watch] → [Start Watching] 

from the menu.

5. The current value of the registered device or 

label is displayed in the window.

1. Click!

2. Enter!

5. Displayed!
6  HOW TO USE OTHER FUNCTIONS
6.5  Watch Window 6 - 15



6 - 
6.6 How to Create Comments

This section describes how to create comments (device comments, statements, and notes) in a program.

Example of a printed ladder program with comments

Project name REX15

Program name MAIN

1 2 3 4 5 6 7 8 9 10 11 12

14 DMOV

T200 D0

15 (97)

X100

Trigger ON

SM4095

16 (99)

X101

Reset to 
clear

SM4095

17 (101)

END

1 2 3 4 5 6 7 8 9 10 11 12

1 (0)

T1

0.3s timer OUT

T0
Timer 0.6s 
No.1

K6

2 (5)

T0

Timer 0.6s 
No.1

OUT

T1
0.3s timer

K3

3

M1

0.9s flicker

4

M2

5 (12)

X107

Operation  
start

Y177

6 (14)

M1

0.9s flicker OUT

C2
Count the 
number of 
manufactu
red prod…

K1000

7 MOV

C2
Count the 
number of 
manufactu
red prod…

D10

8 (79)

C2

Count the 
number of 
manufactur
ed products

RST

C2
Count the 
number of 
manufactu
red prod…

9 (84)

T0

Timer 0.6s 
No.1

Y170

Flicker 
external 
display

10

Y171

11 (87)

T0

Timer 0.6s 
No.1

Y172

12

Y173

13 (90)

T200

OUTH

T200 K30000
16
6  HOW TO USE OTHER FUNCTIONS
6.6  How to Create Comments



6

Creating comments

1. Click [Device] → [Device Comment] in the "Project" 

view and double-click [Common Device Comment] to 

display the "Device Comment" window.

2. Click "Device Name" and enter "X100" in the list box.

3. Press the  key.

4. Click each of comment areas and enter comments as 

shown on the left.

5. Click "Device Name" and enter "Y170" in the list box.

6. Press the  key.

7. Click a comment area and enter a comment as shown 

on the left.

(To the next page)

1. Double-click!

4. Enter comments!

2. Enter!

7. Enter a comment!

5. Enter!
6  HOW TO USE OTHER FUNCTIONS
6.6  How to Create Comments 6 - 17



6 - 
Comments are used for indicating the function or application of each device. Up to 1024 characters can be 

entered in a comment.

(From the previous page)

8. Click "Device Name" and enter "M1" in the list box.

9. Press the  key.

10.Click a comment area and enter a comment as shown 

on the left.

11. Click "Device Name" and enter "T0" in the list box.

12.Press the  key.

13.Click each of comment areas and enter comments as 

shown on the left.

14.Click "Device Name" and enter "C2" in the list box.

15.Press the  key.

16.Click a comment area and enter a comment as shown 

on the left.

8. Enter!

10. Enter a comment!

11. Enter!

13. Enter comments!

14. Enter!

16. Enter a comment!
18
6  HOW TO USE OTHER FUNCTIONS
6.6  How to Create Comments



6

Saving comments

1. Click [Project] → [Save As] from the menu.

2. The "Save as" dialog box appears. Specify the save 

destination and a project name and click the [Save] 

button.

1. Click!

Click!2.
6  HOW TO USE OTHER FUNCTIONS
6.6  How to Create Comments 6 - 19



6 - 
Displaying a ladder with comments in windows of GX Works3

2. The ladder program is displayed with comments.

1. Click [View] → [Comment Display] from the menu.

1. Click!

(When comments are not displayed)

(When comments are displayed)
20
6  HOW TO USE OTHER FUNCTIONS
6.6  How to Create Comments



6

As well as device comments, statements and notes can be created in a ladder.

 • Statement: A comment that describes the function or application of a ladder block

 • Note: A comment that describes the function or application of an output or instruction

 • Creating statements

Click  and double-click a ladder block where a comment is to be created.

The "Input Line Statement" dialog box appears. Enter a comment and click the [OK] button.

 • Creating notes

Click  and double-click an output or instruction where a comment is to be created.

The "Input Note" dialog box appears. Enter a comment and click the [OK] button.

 • Statements and notes are classified into two categories: "In PLC" and "In Peripheral".

Category Type Description

In PLC • Line statement

• P statement

• I statement

• Note

Statements and notes can be stored in a CPU module.

This type of comments uses the following number of steps. (Assumed that 

only one-byte characters are entered. Values after the decimal point are 

rounded up.)

• 2 + Number of characters ÷ 2 (steps)

In Peripheral • Line statement

• P statement

• I statement

• Note

Statements and notes cannot be stored in a CPU module. (Only position 

information is stored.)

Statements and notes need to be stored in a peripheral.

One line consumes one step.

A text that has been entered is automatically preceded by an asterisk "*".

Statement

Note
6  HOW TO USE OTHER FUNCTIONS
6.6  How to Create Comments 6 - 21



6 - 
MEMO
22
6  HOW TO USE OTHER FUNCTIONS
6.6  How to Create Comments



7

7 NEW FUNCTIONS OF MELSEC iQ-R/GX Works3

7.1 Features of MELSEC iQ-R

Productivity

■Newly-developed high-speed system bus that greatly shortens takt time
The newly-developed high-speed system bus (40 times as fast as our conventional products) greatly speeds up the data 

communication among multiple CPU modules and the large-capacity data communication with network modules. This feature 

maximizes the performance and functions of the MELSEC iQ-R series.

■Multiple CPU system to realize a high-accuracy motion control
The cycle of data exchange between a programmable controller CPU and a Motion CPU has been speeded up 

(approximately 4 times as fast as our conventional products), realizing a high-accuracy motion control.

■Synchronization function to realize high-accuracy processing
The inter-module synchronization function operates intelligent function modules and I/O modules in synchronization with the 

program execution timing of a programmable controller CPU or a Motion CPU, realizing a high-accuracy control of systems 

and devices.

In addition, the CC-Link IE Field Network or SSCNET III/H synchronous communication synchronizes the operation timing of 

nodes on the network. This feature reduces variations caused by the network transmission delay time, allowing users to 

establish a stable system.

Engineering
Users can reduce development costs by intuitively programming with GX Works3.

For details on GX Works3, refer to Page 7 - 5 Functions of GX Works3.

Maintenance
The MELSEC iQ-R products are equipped with the preventive maintenance to prevent troubles from occurring and various 

maintenance functions for quickly recovering the system at occurrence of troubles to shorten downtime, improve the 

productivity, and maintain the quality of manufactured products.

■Collecting production information of production processes
(1) Users can monitor values in specified devices in real time at desired intervals or timing. (CPU module)

(2) When an error has occurred in a system, users can save device data in a batch and check the status at occurrence of the 

error with the data on the device monitor window. (CPU module)

Realtime monitor
7  NEW FUNCTIONS OF MELSEC iQ-R/GX Works3
7.1  Features of MELSEC iQ-R 7 - 1



7 - 
(3) Because data can be directly written to the database in an upper system, users can collect data such as the operating 

status of devices and equipment for improvement activities before occurrence of troubles. (MES interface module)

■Operation/error information history to solve troubles quickly
Users can check and save the history of events such as writing of programs, occurrence of errors, and power-off in a list. This 

feature enables users to quickly detect troubles caused by operation mistakes.

Quality

■Improving the reliability of a production system
MELSEC iQ-R series products have passed our strict quality evaluation tests implemented in various industrial scenes, such 

as EMC (ElectroMagnetic Compatibility) tests, LSI tests, temperature tests, vibration tests, and HALT tests.

QR codes are used to manage the quality information at the time of manufacturing and to offer high-quality products to our 

customers.

■Improved quality of products to be manufactured
 • With the inter-module synchronization function, users can synchronize the execution of an interrupt program and the 

network transmission cycle (link scan).

 • This function reduces variations of data communication (network transmission delay time) between a programmable 

controller and devices on a network, improving the quality of products to be manufactured.

MES

Operating status 
of devices and 
equipment

(Manufacturing 
Execution System)

List of event history data

2

Output module

Interrupt 
program

Network 
transmission 
cycle (Link scan)

Positioning 
module

Synchronous 
processing
2
7  NEW FUNCTIONS OF MELSEC iQ-R/GX Works3
7.1  Features of MELSEC iQ-R



7

Connectivity
With SLMP*1, users can perform seamless data communication from the production control level of an entire automation 

system to the device level such as sensors, without considering layers of the network.

■Seamless information linkage
With SLMP, users can access the production control system, programmable controllers, and other devices seamlessly in an 

identical manner without considering layers and boundaries of the networks. Users can easily monitor devices and collect 

data from anywhere.

■Simple connection to external devices with MELSOFT Library
With the predefined protocol support function of GX Works3, only selecting a protocol to be used and data to be sent or 

received enables the simple communication with external devices, such as vision sensors and temperature controllers.

Users do not need to create programs for communication, reducing the man-hour for developing programs.

*1 SLMP (Seamless Message Protocol): Simple, common, client-server type protocol that enables users to perform the data 
communication without considering layers and boundaries of networks among Ethernet products and CC-Link IE-compatible devices

Security
The MELSEC iQ-R series products are equipped with strong security functions such as the security key authentication to 

protect programs and an IP filter to prevent unauthorized accesses to control system.

■Security authentication to protect project data
The security key authentication function locks programs so that they cannot be opened in the personal computer where no 

security key has been registered.

■IP filter function
The IP filter function registers IP addresses of devices that can access the CPU module to prevent accesses from devices 

other than the registered ones. This function reduces risks of programs being hacked by an outsider, unauthorized 

modifications, or others.

Extended SRAM cassette where a 
security key has been registered

Extended SRARARARARAM cM caM caM ca cacaaMMMM ssessetsetetsseetsss te wte we wwte tet herhereereereerehererehe a aa
security key has beebeeebeebeebe n ren ren ren ren rereen gistgistgiststgistgisgig ereerederedreddderee
7  NEW FUNCTIONS OF MELSEC iQ-R/GX Works3
7.1  Features of MELSEC iQ-R 7 - 3



7 - 
Compatibility
Properties such as MELSEC-Q series programs used in the existing system and various modules can be utilized for the 

MELSEC iQ-R series.

■Utilizable program properties
MELSEC-Q series programs can be converted*1 into the ones for the MELSEC iQ-R series and utilized.

Stored program properties can be effectively used to reduce the man-hours for developing programs and to shorten the 

development period.

*1 Part of the programs cannot be converted. For details, refer to the GX Works3 Operating Manual.

■Utilizable modules
With dedicated extension base units, users can use the MELSEC-Q series modules in the MELSEC iQ-R series system.

(For details on the Q series modules that can be used in the MELSEC iQ-R system, refer to the Module Configuration 

Manual.)

Users can reduce costs required for spare parts or others and introduce the high-performance MELSEC iQ-R series.

7.2 Differences Between the MELSEC-Q Series and 
the MELSEC iQ-R Series

For differences between the MELSEC-Q series and the MELSEC iQ-R series, refer to the TECHNICAL BULLETIN No. FA-A-

0171.
4
7  NEW FUNCTIONS OF MELSEC iQ-R/GX Works3
7.2  Differences Between the MELSEC-Q Series and the MELSEC iQ-R Series



7

7.3 Functions of GX Works3
GX Works3, an engineering tool, has the functions that facilitate users to create projects (system configuration, programming) 

and perform maintenance (debugging, diagnostics, and management).

System design

■Simple system design
Creation of a project starts from system design. GX Works3 helps users to easily design a system. Users can create a module 

configuration only by selecting program elements and dragging and dropping them into the "Module Configuration" window of 

GX Works3.

■Easy creation of module parameters
Module parameters can be automatically created in the creation of a module configuration. Users can create module 

parameters of a project only by double-clicking a module on the "Module Configuration" window. Related parameters are 

displayed as the work window and parameters can be set.

Add modules by 
dragging and dropping 
them from the 
"Element Selection" 
window.Drag and drop

"Module Parameter" is 
added in the "Navigation" 
window.

Double-click!

The "Module Parameter" window appears.
7  NEW FUNCTIONS OF MELSEC iQ-R/GX Works3
7.3  Functions of GX Works3 7 - 5



7 - 
Programming

■MELSOFT Library prepared to reduce man-hours
A variety of libraries (FBs for partner products/module FBs/application libraries or others) are available in MELSOFT Library. 

Using FBs reduces the man-hours for developing programs.

Labels prepared to reduce loads
GX Works3 allows users to use global labels, local labels, and module labels. Global labels can be shared and used in 

multiple programs and other MELSOFT software applications. Local labels can be used in a program and FB where the labels 

are registered. Module labels have information about I/O signals and the buffer memory areas of each intelligent function 

module. Thus, users can create a program without considering I/O addresses and buffer memory addresses.

FBFB FBF

Application library

 FB for partner products

Vision sensor RFID 

 Module FB (FB for Mitsubishi devices)

Supported in the future

Energy saving

For packaging machine

Preventive maintenance

Operation support

Laser displacement 
sensor

Easy programing - What users need to 
do is to select parts!

Local label editor

Module label

Global label editor
6
7  NEW FUNCTIONS OF MELSEC iQ-R/GX Works3
7.3  Functions of GX Works3



7

Maintenance

■Diagnostic function
Users can easily identify faulty areas with the diagnostic function of GX Works3. Users can check a module configuration and 

error status in the system with the system monitor. Users can check errors that have occurred and operations performed in 

each module in chronological order with the event history display.

Because faulty areas on the network are graphically displayed in the various network diagnostics, downtime can be 

shortened.

■Language switching
Users can switch the language of the menu display or others in GX Works3. Users can create comments in each language 

and easily switch the display. Thus, when foreign engineers perform maintenance, they can easily understand programs only 

by switching the language of comments to their native language, helping their operations.

System Monitor "CC-Link IE Control diagnostics" window

Event History display

This area displays detailed information, causes, 
and actions for errors.

The comment language can be switched.

The display language can be easily 
switched in one package.
7  NEW FUNCTIONS OF MELSEC iQ-R/GX Works3
7.3  Functions of GX Works3 7 - 7



7 - 
MEMO
8
7  NEW FUNCTIONS OF MELSEC iQ-R/GX Works3
7.3  Functions of GX Works3



A

APPENDICES

Appendix 1 I/O Control Mode
The CPU module supports two types of I/O control modes: direct mode and refresh mode.

Appendix 1.1 Direct mode
In the direct mode, input signals are loaded into a programmable controller every time they are input and used as input 

information.

Operation results of a program are output to the data memory for outputs and an output module.

The following figure shows the flow of I/O information in the direct mode.

 • When an input contact instruction is executed

An OR operation is executed on the input information 1) of the input module and the input information 2) in the data 

memory.

The result is used as input information 3) and the sequence program is executed.

 • When an output contact instruction is executed

The output information 4) is read from the data memory and the sequence program is executed.

 • When the output OUT instruction is executed

The operation result of the sequence program 5) is output to the output module, and stored in the data memory for outputs 

(Y).

 • When the QCPU inputs and outputs in the direct mode, a sequence program uses DX for inputs and DY for outputs.

Network link refresh

Data memory for outputs (Y)

Programmable controller

Y170

X100

Y175

1)2)

3)

4)

5)

Input 
module

Output 
module

CPU module (Operation 
processing section)

Data memory for inputs (X)

Test operation with peripheral

Writing data from a serial communication 
module or others

Executing the OUT instruction in a sequence 
program
Test operation with peripheral
Writing data from a serial communication 
module or others
APPENDICES
Appendix 1  I/O Control Mode App. - 1



App
Appendix 1.2 Refresh mode
In the refresh mode, all changes caused in an input module are loaded in a batch into the data memory for inputs in a 

programmable controller CPU before the execution of program every scan. The data in the data memory for inputs is used for 

executing an operation.

Operation results of an output (Y) program are stored in the data memory for outputs. After the END instruction is executed, 

the data in the data memory for outputs is output in a batch to an output module.

The following figure shows the flow of I/O information in the refresh mode.

 • Input refresh

Input information is read from the input module in a batch 1) before the execution of the step 0, and stored in the data 

memory for inputs (X).

 • Output refresh

The data in the data memory for outputs (Y) 2) is output to the output module in a batch before the execution of the step 0.

 • When an input contact instruction is executed

Input information is read from the data memory for inputs (X) 3), and the sequence program is executed.

 • When an output contact instruction is executed

Output information is read from the data memory for outputs (Y) 4), and the sequence program is executed.

 • When the output OUT instruction is executed

The operation result of the sequence program 5) is stored in the data memory for outputs (Y).

Programmable controller

Y170

X100

Y175

1)

2)

3)

4)

5)

CPU module (Operation 
processing section)

Data memory 
for inputs (X)

When input 
refresh is 
executed

When output 
refresh is 
executed

Input 
module

Output 
module

Data memory 
for outputs (Y)
. - 2
APPENDICES
Appendix 1  I/O Control Mode



A

Appendix 1.3 Comparisons between direct mode and 
refresh mode

The following table shows the differences between the direct mode and the refresh mode using a ladder program in which the 

output Y170 turns on when the input X100 turns on as an example.

Item Direct mode Refresh mode

1. Ladder example

2. Response lag from when 

the input signal turns on to 

when the output signal 

turns on

• The delay time ranges from zero (only execution time of the 

instruction) to one scan.

• The delay time is zero to one scan.

• The delay time ranges from one to two scans.

• The delay time is one to two scans.

3. Execution time of the I/O 

instruction

• The direct mode needs the time longer than the one for the 

refresh mode because the programmable controller 

accesses I/O modules.

• The refresh mode needs the time shorter than the one for 

the direct mode because the programmable controller 

accesses the data memory.

4. Scan time • When the execution of the I/O instructions delays, the scan 

time becomes longer.

• The actual scan time is the execution time of the program.

• When the I/O instructions are executed quickly, the scan 

time becomes shorter.

• The actual scan time is the total of the execution time of a 

program, input transfer time, and output transfer time.

DY170
DX100

 

DY170
DX100

 

DNEDNE

Delay

Delay

Input instruction (LD X100)
Execution of a program

Minimum delay

Maximum delay

X100

Y170

X100

Y170

0 0 0 0

(one scan)

Output instruction 
(OUT Y170)

(Execution time of 
the instruction)

END

Internal input

Execution of a program

0

Minimum delay

Maximum delay

X100

X100

Y170

Y170

0 END 0

Delay
(one scan)

Delay
(two scans)

Input refresh
Output refresh

Internal input

Output instruction 
(OUT Y170)

Input instruction 
(LD X100)
APPENDICES
Appendix 1  I/O Control Mode App. - 3



App
Appendix 2 List of Special Relay Areas
Special relay (SM) is an internal relay whose application is fixed in the programmable controller. Thus, it cannot be used in the 

same way as other internal relay areas used in a sequence program.

However, users can turn on or off the special relay as needed to control the CPU module or remote I/O module.

The following table lists the items in the list.

For details on special relay areas, refer to the MELSEC iQ-R CPU Module User's Manual (Application).

Do not change the data set by the system in a program or by a device test. Doing so may result in system 

down or communication failure.

Item Description

No. Special relay number

Name Special relay name

Data stored Data stored in the special relay and its meaning

Details Detailed description of the data stored

Set by (setting timing) Set side of data (system or user) and timing when data is set by the system

<Set by>

• S: System

• U: User (program, engineering tool, GOT, or other testing operations from external device)

• U/S: User and system

<Set timing>

• Every END: Data is set every time END processing is performed.

• Initial: Data is set when initial processing is performed (e.g. powering on the system, changing the operating status 

from STOP to RUN).

• Status change: Data is set when the status is changed.

• Error: Data is set when an error occurs.

• Instruction execution: Data is set when an instruction is executed.

• Request: Data is set when requested by a user (using the special relay).

• Writing: Data is set when a user performs a writing operation.

• During END: Data is set when END processing is performed.

• Power-on to RUN or STOP to RUN: Data is set when the operating status changes from power-on to RUN or from 

STOP to RUN.
. - 4
APPENDICES
Appendix 2  List of Special Relay Areas



A

Appendix 3 List of Special Register Areas
Special register (SD) is an internal register whose application is fixed in the programmable controller. Thus, it cannot be used 

in the same way as other internal registers used in a sequence program. However, users can write data in special register 

areas as needed to control the CPU module or remote I/O module.

The data is stored in special register areas as binary values if not specified.

The following table lists the items in the list.

For details on special register areas, refer to the MELSEC iQ-R CPU Module User's Manual (Application).

Do not change the data set by the system in a program or by a device test. Doing so may result in system 

down or communication failure.

Item Description

No. Special register number

Name Special register name

Data stored Data stored in the special register

Details Detailed description of the data stored

Set by (setting timing) Set side of data (system or user) and timing when data is set by the system

<Set by>

• S: System

• U: User (program, engineering tool, GOT, or other testing operations from external device)

• U/S: User and system

<Set timing>

• Every END: Data is set every time END processing is performed.

• Initial: Data is set when initial processing is performed (e.g. powering on the system, changing the operating status 

from STOP to RUN).

• Status change: Data is set when the status is changed.

• Error: Data is set when an error occurs.

• Instruction execution: Data is set when an instruction is executed.

• Request: Data is set when requested by a user (using the special relay).

• Switch change: Data is set when the switch of the CPU module is changed.

• Card insertion/removal: Data is set when an SD memory card is inserted or removed.

• Writing: Data is set when a user performs a writing operation.

• During END: Data is set when END processing is performed.
APPENDICES
Appendix 3  List of Special Register Areas App. - 5



App
Appendix 4 Program Examples

Appendix 4.1 Flip-flop ladder

1. When X100 turns on, Y170 turns on. When X101 turns on, Y170 turns off.

2. When X102 turns on, Y171 turns off if Y170 is on, or turns on if Y170 is off. This flip-flop operation is repeated.

Project name RA-16

Program name MAIN

X100

X101
Y170RST

0

2

Y170SET

 

T0
X102

T0
0

6

T1

T0

K5

T1
K5

Y170

Y17112
 

END14
 

X102

Contact T0

Contact T1

Y170
Y171

 

. - 6
APPENDICES
Appendix 4  Program Examples



A

3. When X102 turns on, the flip-flop operation starts. In this operation, Y170 turns on if the timer T0 is on, and Y171 turns 

on if the timer T1 is on (Cycle: 10 seconds).

Project name RA-17

Program name MAIN

T0
T1

0
X102 K50

T0
7 M0PLS

Y170
M0

11 T1RST

T1
T0

T1
16

K50

T1
22

M1PLS

Y171

M1
26 T0RST

 

T1

31 END
 

X102

Contact T0

Contact T1

Y170

Y171  
APPENDICES
Appendix 4  Program Examples App. - 7



App
Appendix 4.2 One-shot ladder

1. Output starts and continues for a certain period of time after the input X101 turns on.

(The input ON time must be longer than the set time limit.)

2. When the input X100 turns on momentarily, Y176 turns on for a certain period of time.

3. When the input X100 turns off, output starts and continues for a certain period of time.

T15
X101

0
T15

K70

Y175

X101

Y175
Set time limit

7 seconds

Normally closed 
contact T15

T16
X100

0
Y176

K100

Y176

T16

 

X100
0

T16
M1PLF

T16
M1

Y176
3

K100

Y176
 

Set time limit

X100

Y176
Pulse width

10 seconds
. - 8
APPENDICES
Appendix 4  Program Examples



A

Appendix 4.3 Long-time timer

1. Arrange timers in series to obtain necessary time.

2. Use timers and counters to obtain necessary time.

Time limit of a timer × Set value of a counter = Long-time timer (Note that the accuracy of timers is accumulated.)

* Obtain necessary time by counting the number of timeouts of the timer T14 with the counter C7.
M56 resets T14 after a timeout. With C7, the output Y173 holds its ON state when counting is up. Y173 resets T14 and stops the 
subsequent time counting.

Project name RA-18

Program name MAIN

T9
X102

T9
0

5

3000.0 seconds

2000.0 seconds

K30000

T10
K20000

Y172
T10

11 Turn on this device 
after the time limit 
elapses.

X102

Y172 3000 seconds

5000 seconds

2000 
seconds

Normally open 
contact T9

Normally open 
contact T10

T14
X102

X102

C7RST

0

7

K9000

Y173

C7
K4

M56

M56

C7

Y173

Y173

T14
12

C7
18

Y173

END24

Turn on this device 
after the time limit 
elapses.

900 seconds × 4 = 3600 seconds = 1 hour

Coil T14

X102

C7

Y173

One scan

Normally open 
contact T14 (M56)
APPENDICES
Appendix 4  Program Examples App. - 9



App
Appendix 4.4 Off delay timer

Off delay timers are not provided for the MELSEC iQ-R series. Create off delay timers as follows.

1. When X105 turns off, the timer T6 starts operating.

2. Turning on X105 momentarily sets the operation ready.

When X106 turns on momentarily, the timer T8 starts operating.

* The above ladder operates as an off delay timer by momentarily turning on the inputs X105 and X106. M45 is equivalent to a momentary 
contact of T8.

T6
Y170

0
T6

K8

Y170
X105

6
Y170

X105

 

Coil T6

Set time limit
0.8 seconds

X105

Y170

Normally closed 
contact T6

Y171
X105

0
Y171

T8

T8
X106

4
M45

K41

M45

Y171

 

Set time limit

X106

Y171

X105

4.1 seconds

Coil T8, M45
Normally closed 
contact T8
. - 10
APPENDICES
Appendix 4  Program Examples



A

Appendix 4.5 On delay timer (momentary input)

An on delay timer of a programmable controller operates easily with a continuous input. The internal relay (M) is used with a 

momentary input.

* The above ladder operates as an on delay timer by momentarily turning on the inputs X101 
and X102.

Appendix 4.6 On/off repeat ladder

In an on/off repeat ladder, Y170 turns on when X100 turns on for the first time, and turns off when X100 turns on again.

Appendix 4.7 Preventing chattering inputs

Set a timer so that it starts operating when the input remains on for 0.2 seconds.

M1 turns on when X100 remains on for 0.2 seconds or longer. To prevent chattering inputs, use M1 instead of X100.

Project name RA-19

Program name MAIN

T4
X101

M50
0

K62

M50

Y170

Y171

X102

T4
8

10
T4

END12

The timer starts when 
X101 turns on.
Self-hold a value.

Turn on this device 6.2 
seconds later.
Turn on this device 6.2 
seconds later.

T4,M50

Set time limit

X102
X101

Y170
Y171

6.2 seconds

X101
0 Y170FF

 

X100
0

T1
5

T1

M1

K2

 

APPENDICES
Appendix 4  Program Examples App. - 11



App
Appendix 4.8 Ladder with common lines

The following ladder cannot be used as a program for a programmable controller. Use the master control instructions (MC, 

MCR) in the program.

Sequence program with master control instructions

Precautions

GX Works3 displays the on/off state of a master control on the title tag on the monitor window.

Project name RA-1

Program name MAIN

X100

Manual

X101

Automatic

X104 X103 Y171
Y170

X102

X107 Y179 X102
Y171

X106 X107

Y171

 

Relay ladder

X100

X102

0

4

M1N0MC

Manual ladder

X101

M10
X106

6 M11
X107

9 N0MCR
X101

X104

10

14

M2N0MC
X100

M20
X107

17 M21
Y179

20 N0MCR

X103

M10
21 Y170

Y171

M20

M11
25 Y171

X102

M21

Y171

Automatic ladder

Common ladder

30 END
. - 12
APPENDICES
Appendix 4  Program Examples



A

Appendix 4.9 Time control program

Set the time (two digits) with an input device to turn on outputs Y170 to Y172 with a specified time limit and display the 

elapsed time.

This program repeats this operation.

Project name RA-2

Program name MAIN

Push button for reading time X103

Switch for timer X104

Operation switch X105

5 9
Current time (D0)

2 6
Y170

Y171

Y172

Time setting (D20)

Turn on this device when the current 
value is shorter than 2 seconds.
Turn on this device when the current 
value is just 3 seconds.
Turn on this device when the current 
value is 4.1 seconds or longer.

In increments 
of 0.1 seconds

In increments 
of 0.1 seconds

Programmable 
controller

X103

X104

0

6 Start the timer.
Repeatedly flickers

T3
T3

15 T4

M5PLS
M5

3 D22D20MOV
T4

Y170

Turn on this device when 
T3 is 3.0 seconds.

D22
D22K0<>

K10

X105
20 D0T3MOV

T3K20>

Y171T3K30=

Y172T3K40<

Externally output the time.

Read the set time.

38 END

Turn on this device when 
T3 is 0.1 to 1.9 seconds.

Turn on this device when 
T3 is 4.1 seconds or 
longer.

2 digits in increments of 
0.1 seconds
APPENDICES
Appendix 4  Program Examples App. - 13



App
Appendix 4.10 Clock ladder

Output time information, such as hour, minute, and second to the initial indication device.

Project name RA-3

Program name MAIN

T1

0

10 C11
C11

15

T0
T0

5

T1

K60

K5

SM400
38 D10C11MOV

Counting minutes

T1
K5

C11RST

C12
K60

C12
24 C12RST

C13
K99

C13
33 C13RST

D1C12MOV

D0C13MOV

0.5s flicker

Counting seconds

Counting hours

45 END
. - 14
APPENDICES
Appendix 4  Program Examples



A

Clock function (supplement)
With the following ladder, the time set with GX Works3 is displayed on the MELSEC iQ-R series demonstration machine.

Project name REX13

1 2 3 4 5 6 7 8 9 10 11 12
Hour setting1

2 (0)
X107

MOVP D20 SD213

Minute setting3

4 MOVP D21 SD214

Second setting5

6 MOVP D30 SD215

Clock data set reque...7

8 PLS SM210

Clock da...9 (85)

10 (85)
X107 SM213

Hour display11

12 (115)
SM400

MOV SD213 D0

Minute display13

14 MOV SD214 D1

Second display15

16 MOV SD215 D10

Sunday17 (168)

18 (168) = H2000 SD216
Y176

Monday19 (180)

20 (180) = H2001 SD216
Y175

Tuesday21 (192)

22 (192) = H2002 SD216
Y174

Wednesd...23 (205)

24 (205) = H2003 SD216
Y173

Thursday25 (220)

26 (220) = H2004 SD216
Y172

Friday27 (234)

28 (234) = H2005 SD216
Y171

Saturday29 (246)

30 (246) = H2006 SD216
Y170

31 (260) END
APPENDICES
Appendix 4  Program Examples App. - 15



App
Appendix 4.11 Star-delta starting of an electric motor

Turning on the start switch starts the  operation. After the  operation time has elapsed, the Δ operation starts through 

the arc interlock state.

Project name RA-20

Program name MAIN

T6
18

Y170 Y171

T5
13

Y170
X100

Y170

0

9

During operation

  period timer

 operation

  operation

X101

Y170 Y172
T5

Y171

T6

Y172

K20

K5

T5 Y172

Y172

23 END

Arc interlock

During operation Y170

Stop X101

Y172

Start X100

T5 = 2 seconds
 operation

  Y171   period

T6 = 0.5 seconds • • • • • • Arc interlock
. - 16
APPENDICES
Appendix 4  Program Examples



A

Appendix 4.12 Displaying the elapsed time and 
outputting before time limit

With the following ladder, the initial indication device displays the elapsed time of a timer and indicates that the elapsed time 

has reached a set time limit.

This ladder can be applied to counters.

When X102 turns on, the operation starts. When X102 turns off, the operation stops.

X102
0 T53

D0T53MOV

Y176
Y176

Output the current value of the timer.

K6000

T53K500=

Y177T53K120>

The timer starts 
when X102 turns on.

Turn on this device when the current 
value is 50 seconds or longer.

Turn on this device when the current 
value is 12 seconds or shorter.

X102
0 T4

D0T4MOV

Y170

Output the current value of the timer.

K3000

T4K300>

Y172T4K319<

Y171T4K299<

T4K340>

T4K320>

Y173T4K339<

Y175T4K800<=

Y174T4K600<=

The timer starts 
when X102 turns on.

Turn on this device when the current 
value is 30 seconds or shorter.
Turn on this device when the current 
value is 30 to 31.9 seconds.
Turn on this device when the current 
value is 32 to 33.9 seconds.
Turn on this device when the current 
value is 34 seconds or longer.
Turn on this device when the current 
value is 60 seconds or longer.
Turn on this device when the current 
value is 80 seconds or longer.
APPENDICES
Appendix 4  Program Examples App. - 17



App
Appendix 4.13 Retentive timer

The input X102 repeatedly turns on and off. The ON time of X102 is integrated, and Y172 turns on with the integrated value n.

1. In the following ladder, the ON time is integrated without a retentive timer.

2. In the following ladder, a retentive timer has been assigned in the device setting of the CPU parameter.

Retentive timer (ST): 224 points (ST0 to ST223)

Project name RA-21

Program name MAIN

Project name RA-8

Program name MAIN

M0
X102

M0

0

T195D107MOV

D107T195MOV

M1
6

T195
12

X101
15

Y172

D107K0MOV

T195

M1

M1

K600

END19

The timer starts 
when X102 turns on.
Write the value of D107 to the 
timer when X102 turns on.
Save the current value 
of the timer in D107.

Y172 turns on when 
timer goes timeout.

Clear D107 when 
timer goes timeout.

ST195
X102

X101

0

7 ST195RST

Y172
ST195

5

K600

12 END

The timer starts 
when X102 turns on.
The data is not cleared even 
though the device is turned off.
The data is cleared 
when X101 turns on.
. - 18
APPENDICES
Appendix 4  Program Examples



A

Appendix 4.14 Switching timer setting values with 
external switches

The three time limits, 1 second, 10 seconds, and 100 seconds, of a timer can be switched with external switches.

To start or reset the timer, use a button on the GOT screen.

Project name RA-22

Program name MAIN

1 second

10 seconds

100 seconds

Start the timer.

Reset the timer.
PB

PB

SC

Input power supply

MC

RL

OL

Load

Indicate that the timer has gone timeout.

Indicate that the timer is in operation.X100

X101

X102

X103

X104

Y170

Y171

Y172

COM COM

Load power supply

Y170

X100

M0

0

13

Set value = 1 second

Start the timer.

X101
3 D100K100MOV

D100K10MOV

X102
6

X103
9

D100K1000MOV

M0SET
X104

11 M0RST

T8
D100

Y172

T8
19 Y171

Stop the timer.

Set value = 10 seconds

Set value = 100 seconds

22 END

Turn on this device while 
the timer is in operation.
Turn on this device when 
the timer has gone timeout.
APPENDICES
Appendix 4  Program Examples App. - 19



App
Appendix 4.15 Setting a counter with external switches

Configure the remote setting of a counter with the initial input device of the GOT, and display the current value of a counter in 

four digits.

An output turns on when the current value is the set value - 100 or 50, or when counting is up.

When the value set to the counter is smaller than 100, a setting error is displayed.

PB Setting signal X100

PB Start X105

PB Reset or stop X101

Count pulse X103

24VDC

I/O
UNIT0

D20

I/O
UNIT1

I/O
UNIT4

D0

I/O
UNIT3

Y174

Y173

Y172

Y171

100VAC

RD

R1

R2

R3

RD

Setting error
Y170

Start
Turn on X105.
Y171 turns on. Y172 turns on. Y173 turns on.

Y174 turns on.

Set value

Initial indication device (D0)

Initial input device (D20)

On during operation

Turn on this device when the 
current value is the set value 
- 100.
Turn on this device when the 
current value is the set value 
- 50.

Turn on this device at stop.

Maximum setting value = 9999

Setting error range

Counting up

Y170 
to 

174

X100 
to 

105

Current value = 
Set value - 100

Current value = 
Set value - 50
. - 20
APPENDICES
Appendix 4  Program Examples



A

Precautions

GX Works3 displays the on/off state of a master control on the title tag on the monitor window.

Project name RA-4

Program name MAIN

X100

M0

D101K100-

0

11 D101MOV D100

D102MOV D100

D102K50-

Setting

On during operation

M0SET
X101

2 M0RST
M0

4 D100D20MOV

Y170D100K100>
Y170

X105
23

Y171

C0
Y171

Y171
27 M3MC N0

X103
30 C0

D100

C1
D101

C2
D102

43 N0MCR
X101

44 C0RST

C1RST

C2RST
M0

57 D0MOV C0
C1

60 Y172
C2

62 Y173
C0

64 Y174

(Current value = Set value - 100)

(Current value = Set value - 50)

66 END

Read the set value.

Output an error when the 
set value is 100 or smaller.

Set value - 100

Set value - 50

The counter turns on at stop

The counter turns on when the 
current value is the set value - 100.
The counter turns on when the 
current value is the set value - 50.

The counter is reset 
when X101 turns on.

Externally display 
the counted value.
Turn on this device when the 
current value is the set value - 100.
Turn on this device when the 
current value is the set value - 50.
Turn on this device when 
counting up is done.
APPENDICES
Appendix 4  Program Examples App. - 21



App
Appendix 4.16 Measuring the operating time

Set the operating time of a control target and use this program for maintenance, such as part replacement or lubrication. Take 

measures to hold data of the timer (ST) and data register (D) at power-off. The following ladder operates as an operating time 

meter using D131 (in increments of an hour) for externally displaying the time.

Appendix 4.17 Measuring the cycle time

Measure the time from when a control target starts operating until when it completes operating for indicating cycle timeout or 

managing variation of the time.

With the following ladder, the cycle timeout is indicated, and <, >, and = instructions are used to determine the state of T200. 

Depending on the determination, the counter operates to measure the deviation of the time.

Project name RA-23

Program name MAIN

Project name RA-24

Program name MAIN

ST250
X102

ST250
0

5

6-minute timer

Indicate the timing for replacement.

K3600

D130K0MOV

ST250RST

D130K1+

D131K1+

D10D131MOV

D130K10=

SM400 (Always On)
21

D131K1000<=24 Y170

1-hour timer

28 END

The management time is set to 100 hours.

Measure the time in increments 
of an hour.
Externally output 
the operating time.

M56
X100

M56

0

4

X101

M56

T200

X107
24

T200
K32760

Y170SET10 T200K400<

14 T200K300< T200K400>= C10
K32760

Y170RST

C10RST

30 END

Cycling

Measure the 
cycle time.
The cycle time is up.

Count cycle times of 
3.01 to 4.00 seconds.

Clear the timeout 
display and counter.
. - 22
APPENDICES
Appendix 4  Program Examples



A

Appendix 4.18 Application example of (D)CML(P)

The following ladder is used to obtain the absolute value of a negative value of -32768 or smaller (-2147483648 at a 

minimum, 32-bit data).

(Example)

Every time when X101 turns on, 999 is subtracted from a set value and the result is displayed.

When the result is a negative value, the output Y170 turns on and its absolute value is displayed.

DCML

D+ D120

D100

K1

1 0 1 1 0 1 0 0 0 1 1  1 0 0 1 0

B
15

B
14

B
1

B
0

B
15

B
14

B
1

B
0• • • • • • • • • • •• • • • • • • • • • •

D101 D100

0 1 0 0 1 0 1 1 1 0 0  0 1 1 0 1

0 1 0 0 1 0 1 1 1 0 0  0 1 1 1 0
(Absolute value)

D120

D121 D120

D121 D120

(negative value)

Before execution 
of the DCML 
instruction

After execution 
of the DCML 
instruction

After execution 
of the D+ 
instruction

Reading the set value

Subtraction (-999)

Result = Negative

Setting Y170

+1 execution

Displaying the result

NO

YES

Turn on X100.

Turn on X101.

Execution of the 
DCML instruction

X100

X101

M0

Y170

D100D20DMOV0

4

18

31

D100K0D> Y170SET

D100K999D-P

D120D100DCML

D130K1

D10D130DMOV

D10D100DMOV

D+

Subtract 999.

M0PLS

Input data.

When D100 is a negative value, 
2's complement is taken to change 
the value to a positive value 
(absolute value).
Output an absolute value.

Output a positive value.

Turn on Y170 when the result is 
a negative value.

D120
APPENDICES
Appendix 4  Program Examples App. - 23



App
Appendix 4.19 Dolly line control

The following figure shows an example of the sequence control using a dolly to convey a workpiece (material).

Operations in one cycle are as follows; When a workpiece is set on a dolly, the dolly moves forward. When it reaches the 

forward limit position, the arm pushes the workpiece onto another conveyor. Then, the dolly moves backward and reaches its 

backward limit position.

Moving dolly forward
(Y171)

LS open complete (X104)

(Y174)

LS forward limit
(X102)

Operating panel

Start button
(X100)

(Y172)

Dolly

LS backward limit (X103)

Conveyor for workpieces

(Y170)
During operation lamp

Pushing forward 
(Y173)

LS workpiece 
present (X101)

Pushing 
backward

Moving dolly backward

Start button

Switch (LS workpiece present)

Switch (LS forward limit)

Switch (LS backward limit)

X100

X101

X102

X103

X104

Input

Y170

Y171

Y172

Y173

Y174

Output

MELSEC iQ-R

MC

MC

Moving dolly forward

Moving dolly backward

Pushing forward

Pushing backwardSV

SV

Switch (LS open complete)

During operation lamp
. - 24
APPENDICES
Appendix 4  Program Examples



A

Project name RA-10

Program name MAIN

Y1700

PLS

X100

X101Y170

M1

Y171 X102
SET

RST

SET

T0
Y173 K30

T0
RST

SET
Y174 X104

RST

SET
Y172 X103

RST

M2

During operation lamp

Moving dolly forward

Pushing forward

Pushing backward

Moving dolly backward

Completion flag

Y171

Y171

Y173

Y173

Y174

Y174

Y172

Y172

M2

X103
M1

END37

Timing chart

Start button X100

Switch (LS workpiece present) X101

Switch (LS forward limit) X102

Switch (LS backward limit) X103

Switch (LS open complete) X104

During operation lamp Y170

Moving dolly forward Y171

Moving dolly backward Y172

Pushing forward Y173

Pushing backward Y174

3 seconds
APPENDICES
Appendix 4  Program Examples App. - 25



App
Appendix 4.20 Compressor sequential operation with 
ring counters

The following figure shows a pressure control system with three compressors.

The lack of pressure is detected by three pressure switches. The number of compressors to be operated depends on a 

pressure shortage level detected. Compressors keep operating until a sufficient pressure is obtained. To equalize the number 

of operating times of compressors, the sequential control is performed.

Compressor control system configuration 

A B CCompressor

Pressure switch

PX1 PX2 PX3

Operating panel

MELSEC iQ-R

Sufficient pressure
Pressure shortage "Major"
Pressure shortage "Medium"
Pressure shortage "Minor"

PP P

Start button Stop button

Start
PB0

Stop
PB1

Pressure switch
PX1

PX2

X100

X101

X102

X103

Input
Y170

Output

Y171

Y172

Y173

MCA

MCB

MCC

Y174

Y175

Y176

Compressor A

Sufficient pressure

Pressure shortage "Minor"

Pressure shortage "Medium"

Pressure shortage "Major"

PX3 X104

MELSEC iQ-R

P

P

P

Compressor B

Compressor C
. - 26
APPENDICES
Appendix 4  Program Examples



A

■Operation explanation

(1) The basic operation of this system is as follows; When the start switch (X100) turns on, three compressors are activated 

because the pressure switches (X102, X103, and X104) are all off. When a sufficient pressure is obtained (X102, X103, 

and X104 turn on), all the three compressors will stop.

When the "Minor" pressure shortage occurs (X104 turns off) while all compressors have stopped, one compressor starts 

and continues operating until a sufficient pressure is obtained.

One compressor to be activated changes in order of A, B, and C every time when a pressure shortage occurs.

To stop the compressor, turn on the stop switch (X101).

(2) If one compressor cannot supply a sufficient pressure and the "Moderate" pressure shortage occurs (X103 turns off), the 

second compressor is also activated. When the compressor A has been operating, this second compressor will be the 

compressor C. When the compressor B has been operating, the second compressor will be the compressor A. When the 

compressor C has operating, and the second compressor will be the compressor B.

(3) If two compressors cannot supply a sufficient pressure and the "Major" pressure shortage occurs (X102 turns off), the 

third compressor is also activated.

If the "Major" pressure shortage suddenly occurs while one compressor is operating in the basic operation, the other two 

compressors are simultaneously activated.

(4) While two or more compressors are operating, they continuously operates until a sufficient pressure is obtained. When a 

sufficient pressure is obtained (X104 turns on), they will simultaneously stop.

Start - (X100)

PX3 - (X104)

Pressure switch PX2 - (X103)

PX1 - (X102)

A - (Y170)

Compressor B - (Y171)

C - (Y172)

Pressure shortage
Compressor

Major
B

Minor
C

Minor
A, C

Medium
A, B, C
Major

A
Minor

B
Minor

C
Minor

A, C
Medium

Timing chart

 
A, B, C
APPENDICES
Appendix 4  Program Examples App. - 27



App
Project name RA-11

Program name MAIN

M00
X100

M0

X104

Y175

F3M1PLS

F3M2PLS

During operation

Sufficient pressure display

Turn on M9 at startup.

Shifts by pressure shortage "Minor".

X104

X104

X103

Y174

Y175

X102

Y176

M0

Y174

M1

M2

M10

M0

M13

M10X104

Y175 M11

Y176

M11

Y175 M12

Y176

M12

Y175 M10

Y176

Y173

Y174

Y176

F3M9SET

F3M13SFT

F3M12SFT

F3M11SFT

F3M10SFT

F3M13RST

Y170

F3M10SET

Y171

Y172

4

13

6

19

23

26

29

36

45

48

50

M0
F3M9RST

F3M12RST

F3M11RST

F3M10RST

31

Shift register

Pressure shortage "Minor"

Pressure shortage "Medium"

Pressure shortage "Major"

Return the shift to M10.

Compressor A

Compressor B

Compressor C

X101

X103 Y175Y176

X102X104 Y176

X104

M0

F3END76

Reset when stop 
X101 turns on.

Pressure shortage "Minor" is indicated 
when the sufficient pressure X104 turns off.

Pressure shortage "Medium" is indicated when 
the sufficient pressure "Medium" X103 turns off.

Pressure shortage "Major" is indicated when 
the sufficient pressure "Minor" X102 turns off.
. - 28
APPENDICES
Appendix 4  Program Examples



A

In the basic operation, one compressor is activated when the pressure shortage occurs. The sequential control is performed 

to equalize the number of operating times of three compressors. This system uses three-step ring counters (ring-type shift 

registers) of M10 to M12.

When the pressure shortage occurs (X104 turns off), a shift signal is generated.

SET

RST
M9

Start X100

Stop X101

X104 (PX3) off

M10 M11

A                     B                    C

Compressor

M12

X104

M10

M11

M12

Shift operation
APPENDICES
Appendix 4  Program Examples App. - 29



App
Appendix 4.21 Application example to a positioning 
control

The following figure shows an example of a positioning system with a motor, a brake, and a pulse generator that outputs 

pulses for each unit.

Set a command value with the initial input device D20. When a positioning operation starts, the commanded value and the 

current value are compared to determine the run direction (forward or reverse). One is subtracted from the value in the 

register D116 in the forward direction, and one is added to the value in the register D116 in the reverse direction. When the 

current value is equal to the commanded value, the positioning operation is completed. The current position is displayed as a 

numerical value of the initial indication device D0.

Project name RA-26

Program name MAIN

X102

X100

X101

5 4 0 0

Initial input device (D20)

Y170
Y171
Y172

Start

MELSEC iQ-R

Home position

mm

0

D20

Initial indication device (D0)

D0

3 6 2 8

mm

0

Forward 
run

Reverse 
run BrakeMotor torquePulse 

generator

Forward 
run Reverse 

run

Home 
position

M00
X100

M0

Y170

Y171

X102

During operation

Read commanded values.

Reverse run

Externally display the current value.

D116D115<

D116D115>
M0 X101

D116D115=

D115D20MOVP

Y172

Y171

Y170

D116K1-P

D116K1+P

M2

D116K0MOV

D0D116MOV

Release the brake.

Forward run

-1 in the forward direction

+1 in the reverse direction

Execute home position return.

20

40

43

M2

SM400 (Always On)

END46

Check if the current value is 
equal to the commanded value.
. - 30
APPENDICES
Appendix 4  Program Examples



A

Appendix 4.22 Application example using the index 
register (Z)

1. The number of products manufactured on a day is counted every day of a month, and the actual production on each day 

is stored in the data register (D101 to D131) corresponding to the date.

2. Set the planned production volume on a day with the initial input device (D20). When the number of manufactured 

products reaches this value, the production stops.

3. Set a date with the initial input device (D21).

4. The total number of manufactured products in a month and the number of products manufactured on a day are output to 

external display devices.

C5 counts the number of products manufactured on the day.

C6 counts the total number of products manufactured in a month.

Enter a date in the index register (Z). The data register corresponding to the date is indirectly specified with D100Z0.

When Z0 is 30, "100 + 30" is stored in D100Z0 and D130 is specified.

["Device/Buffer Memory Batch Monitor" window]

The number of products manufactured on a day (1st to 31st) is stored in D101 to D131. Read the values and use them 

as production data as required.

D21

D20

X102

D1

D0

D10

Display date.Date

Counting

3 0

0 1 8 0

3 0

0 1 8 0

3 7 8 2

Input Output
Display the number of 
manufactured 
products on the day.

Planned 
production 
volume

Display total number 
of products.

Total number of products

Date

• • •

• • •

• • •

The actual production on each 
day (1st to 31th) of a month is 
stored in D101 to D131.

Planed production 
volume
APPENDICES
Appendix 4  Program Examples App. - 31



App
Project name RA-7

Program name MAIN

C5
SM410

C6
X100

Y170
M2

M3

SM400 (Always On)

C5

C6

X107

D0D100Z0MOV

D133C6MOV

C6C5-P

C5RST

RST

RST

0

5

16

41

44

53

75

D135K32760MOVD20K0=
X102

D20K0<>

D136K32<=

D136K1<= D136K31 3F=> M2RST

F3M3PLS

D135D20MOV

D136D21MOV

F3M2SET

SM411

Z0D136<> F3C5RST

Z0D136MOV

D100Z0C5MOV

D1Z0MOV

D10C6MOV

X106

K32K0FMOV

K2K0FMOV

D135

K32760

D100

D0

(0.1s clock) C5

Input production commands.

Specify a date.

Indirectly specify a date.

Externally display the production date.

66

FMOV       K0        D100 K32 Simultaneously transfer data 0 to D100 to D131. 

FMOV       K0          D0 K2 Simultaneously transfer data 0 to D0 and D1.

K2K0FMOV D10

END96

FMOV       K0         D10 K2 Simultaneously transfer data 0 to D10 and D11.

Write 32760 to D135 and count 
the number of manufactured 
products when the initial input 
device D20 is 0.

Y170 flashes to indicate an 
error when the production 
date is a value larger than 31.

Store the number of manufactured 
products in a data register.

Clear the number of manufactured 
products on a day anytime, if 
necessary.

Clear all at the end of a month.

Sets a tentative 
count.

Display the number of manufactured 
products in a month.

Display the number of manufactured 
products on that day.
. - 32
APPENDICES
Appendix 4  Program Examples



A

Appendix 4.23 Application example of FIFO instructions

In this system, processes and processing time of manual plating work are recorded to perform the processes with automatic 

operations.

MELSEC iQ-R
Conveyor system

Process

Plating bath

Teaching panel

120 123 124 125X

6)5)
2)1)

4)

← Left Right →

X101 X100

Cleaning

X102 Y173

Record

X103
Read

X105
Automatic Stop

X106 X107

Cleaning (Y172)

← Left (Y171) (Y170) Right →

6

1

2

8

4

16

32

6

135

150

120

100

20

135

6

1

2

8

4

16

32

0

0

0

135

6

150

120

100

20

135

0

0

32

D130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

D110

111

112

113

114

115

116

D120

121

122

123

124

125

126

Pointer

Process 1)

2)

3)

4)

5)

6)

Pointer

Process 1)

2)

3)

4)

5)

6)

135

1
K2Y174

The value is written by using the FIFWP instruction.

FIFO table

FIFO table

Turning on X103 backs up data.

Turning on X105 reads backup data.

Turning on X103 backs up data.

Turning on X105 reads backup data.

135

The value is written by using the FIFWP instruction.D100

D20

Current value of T1 timer

121 122

3)Automatic 
operation in 

progress

Plating bath 
pattern

Cleaning 
time

Enlarged illustration of 
a teaching panel

X120 to X125 sensors detect the position of 
a target object. (D20)

A value is read by 
using the FIFRP 
instruction.

(Constant of T0 timer)

A value is read by 
using the FIFRP 
instruction.

D101
APPENDICES
Appendix 4  Program Examples App. - 33



App
Operation pattern of switching manual work to automatic operation

Teaching panel Plating bath

X100 = Manual right movement button
X101 = Manual left movement button
X102 = Manual cleaning button
X103 = Recording data button
X105 = Reading data button
X106 = Automatic operation button
X107 = Operation stop button
Y173 = Automatic operation in progress LED

X120 = Plating bath 1 (D20 = K1)
X121 = Plating bath 2 (D20 = K2)
X122 = Plating bath 3 (D20 = K4)
X123 = Plating bath 4 (D20 = K8)
X124 = Plating bath 5 (D20 = K16)
X125 = Plating bath 6 (D20 = K32)

Cleaning machine

Y170 = Conveyor, Moving to right
Y171 = Conveyor, Moving to left
Y172 = Conveyor, Cleaning output

Moving to right (Y170 = ON)

Stop cleaning (Y172 = OFF)

Stop moving (Y170 = OFF)

Stop moving (Y170 = OFF)

Standby position (D20 = 0)
Plating bath 1 (D20 = 1)

Plating bath 2 (D20 = 2)

Plating bath 4 (D20 = 8)

Plating bath 3 (D20 = 4)

Plating bath 5 (D20 = 16)

Plating bath 6 (D20 = 32)

Plating bath 1 (D20 = 1)

A

1)

2)

3)

4)

5)

6)

A

Start moving to right (X100 = ON)

Stop moving to right (X100 = OFF)

Start cleaning (X102 = ON)

Finish cleaning (X102 = OFF)

Start moving to right (X100 = ON)

Stop moving to right (X100 = OFF)

Start cleaning (X102 = ON)

Finish cleaning (X102 = OFF)

Start moving to right (X100 = ON)

Stop moving to right (X100 = OFF)

Start cleaning (X102 = ON)

Finish cleaning (X102 = OFF)

Start moving to left (X101 = ON)

Stop moving to left (X101 = OFF)

Start cleaning (X102 = ON)

Finish cleaning (X102 = OFF)

Start moving to right (X100 = ON)

Stop moving to right (X100 = OFF)

Start cleaning (X102 = ON)

Finish cleaning (X102 = OFF)

Start automatic operation (X106 = ON → OFF)

Stop moving (Y170 = OFF)

Cleaning (Y172 = ON)

Moving to right (Y170 = ON)

Cleaning (Y172 = ON)

Stop cleaning (Y172 = OFF)

Moving to right (Y170 = ON)

Cleaning (Y172 = ON)

Stop cleaning (Y172 = OFF)

Moving to left (Y171 = ON)

Stop moving (Y171 = OFF)

Cleaning (Y172 = ON)

Stop cleaning (Y172 = OFF)

Moving to right (Y170 = ON)

Stop moving (Y170 = OFF)

Cleaning (Y172 = ON)

Stop cleaning (Y172 = OFF)

Moving to right (Y170 = ON)

Stop moving (Y170 = OFF)

Cleaning (Y172 = ON)

Stop cleaning (Y172 = OFF)

Moving to left (Y171 = ON)
(The automatic operation starts.)

The same operations are automatically executed from (A).

Finish cleaning (X102 = OFF)

Start moving to right (X100 = ON)

Stop moving to right (X100 = OFF)

Start cleaning (X102 = ON)

Automatic operation in progress LED 
(Y173 = ON)
. - 34
APPENDICES
Appendix 4  Program Examples



A

Project name RA-9

Program name MAIN

Y173

0
SM403

FMOV K0D100

5
X106

> D110
M2 SM403X107

Y173

M3

M4

M5

M6

M4

M6

M1
18 >= D110K0 M2

> K2Y174
M5 M3

40 M4

> D20
M4 M3

48 M5

M3
56

T2

= D20
T0 Y173

T2

T2

T0

73
X100 X101 Y173 Y171

Y170

79
X101

M5

X100 Y173 Y170
Y171

85 > D20
X102 SM403Y173

M6

23
M1 M2

FIFRP K2Y174

FIFRP D101

93
T2

Y172

96
M6

T1

MOV T1D100

FIFWP D100

105
M7

> D110K6 FIFWP D20

117
X103 Y173

BM0V D100

123
X105 Y173

BM0V D130

129
SM400

BCD D110

14
Y173 T0

PLS M1

PLF M7

132 END

34
M2 Y173T2

M3
M1

K3200

K10

D101

Read cleaning time.

Read completion flag

(to avoid chattering)

Move the conveyor to right.

Move the conveyor to left.

Manual cleaning in progress

Cleaning from the conveyor

Measure manual cleaning time.

Record manual cleaning time.

Manual cleaning end pulse

Record cleaning time.

Save recorded data.

Read saved data.

Automatic cleaning timer

K50

K0

D110

D120

D20

K2Y174

K2Y174

K0

D110

D120

K20D130

D110 K20

D121

Reset data to 0 only once 
at RUN.

End the automatic operation if 
FIFO read pulse data is not 
present during automatic 
operation.
Read position data of the plating 
bath if the data is present.

Move the conveyor to right 
because the current 
position is left.

Move the conveyor to left 
because the current 
position is right.

Output the automatic 
operation in progress LED.
(Indicate the automatic 
operation mode.)

Display the number of 
recorded data points.

Record the position 
of the plating bath.

Complete the movement 
and starts cleaning.
APPENDICES
Appendix 4  Program Examples App. - 35



App
Appendix 4.24 Application example of data shifting

When a workpiece is conveyed, its code number is also shifted. Data is read from the data register for processing machines, 

and the processing corresponding to the code number is performed.

A code number is stored in the data register, and the internal relay (M) corresponding to the code number turns on and 

processing is executed.

Machine Data register Code 1 Code 2 Code 3 Code 4 Code 5 Code 6 Code 7 Code 8

A D130 M1 M2 M3 M4 M5 M6 M7 M8

B D131 M11 M12 M13 M14 M15 M16 M17 M18

C D132 M21 M22 M23 M24 M25 M26 M27 M28

D D133 M31 M32 M33 M34 M35 M36 M37 M38

E D134 M41 M42 M43 M44 M45 M46 M47 M48

F D135 M51 M52 M53 M54 M55 M56 M57 M58

During operation
Y170

Start

Stop

Type detectionCode No. 1 to 8

X100

X101

X102

D20

Movement of 
workpiece

Shift 
command

Input 
module

Output 
module

Machine A Machine B Machine C Machine D Machine E Machine F

D130 D131 D132 D133 D134 D135

A code number is 
input by D20.

Code numbers shift 
when X102 turns on.
. - 36
APPENDICES
Appendix 4  Program Examples



A

Project name RA-12

Program name MAIN

Y170
X100

Y170

SM400 (Always On)

X102

M1
Y170

Y170

0

4

7

12

53

Machine A

X101

94

D130D20MOV

K6D130DSFLP

M2

M3

M4

M5

M6

M7

M8

M11

M12

M13

M14

M15

M16

M17

M18

M21

M22

M23

M24

M25

M26

M27

M28

Y170

D130K1=

D130K2=

D130K3=

D130K4=

D130K5=

D130K6=

D130K7=

D130K8=

D131K1=

K2=

K3=

K4=

K5=

K6=

K7=

K8=

D131

D131

D131

D131

D131

D131

D131

D132K1=

K2=

K3=

K4=

K5=

K6=

K7=

K8=

D132

D132

D132

D132

D132

D132

D132

Machine B

Machine C

During operation

Load code numbers.

Shift code numbers.
APPENDICES
Appendix 4  Program Examples App. - 37



App
M31
Y170

Y170

135

176

217

M32

M33

M34

M35

M36

M37

M38

M41

M42

M43

M44

M45

M46

M47

M48

M51

M52

M53

M54

M55

M56

M57

M58

Y170

D133K1=

K2=

K3=

K4=

K5=

K6=

K7=

K8=

D134K1=

K2=

K3=

K4=

K5=

K6=

K7=

K8=

D135K1=

K2=

K3=

K4=

K5=

K6=

K7=

K8=

D135

D135

D135

D135

D135

D135

D135

D133

D133

D133

D133

D133

D133

D133

D134

D134

D134

D134

D134

D134

D134

258 END

Machine D

Machine E

Machine F
. - 38
APPENDICES
Appendix 4  Program Examples



A

Appendix 4.25 Program example: Square root operations

The square root operation of the value stored in D105 is determined, and a result are stored in D106 and D107.

An operation result is stored as follows.

The RCPU provides square root operation instructions for values in a real number (floating point) data format.

Project name RA-14

Program name MAIN

X100
0

D106D105BSQRT

D1D107MOVP

Set data.D105D20MOVP

D10D106MOVP

Square root operation

Square root (integral part)

Square root (decimal part)

13 END

D105
0 to 9999

(BCD value)

D106 D107= 0 to 9999
(BCD value)

0 to 9999
(BCD value)

•

...... A value whose 5th decimal place is 
rounded off. 
Thus, the value has an error of ±1 
at the 4th decimal place.

Integral part Decimal part
APPENDICES
Appendix 4  Program Examples App. - 39



App
Appendix 4.26 Program example: Multiplication with the 
nth power

A value stored in D110 is multiplied n times (n: value stored in D114), and a result is stored in D110.

Precautions

If a value stored in D110 is larger than 2147483647, an error (OPERATION ERROR) occurs.

Project name RA-15

Program name MAIN

X101

X101

X101

X101

0

24

29

31

35

36
P0

K10K0FMOVP

D110D21MOVP

D115D110MOVP

D114D20MOVP

D114K1-P

P0SCJ

P0CJ

D114FOR

D110D115D110D*

D116K10000D110D/

NEXT

D10D116DMOV

Multiply the value n times.

Set n.

Clear data.

Set data.

D110

44 END

Externally output a 10-digit 
BCD value.
. - 40
APPENDICES
Appendix 4  Program Examples



A

Appendix 4.27 Displaying the number of failures and 
failure number in a failure detection 
program

The failure detection program displays the number of devices that is on among the bit devices (such as X, M, and F) used 

consecutively and their device numbers one by one.

[Application example]

When the internal relay (M) or the annunciator (F) is used as an output device of a failure detection program, use the following 

program to obtain failure numbers of multiple failures.

[Sequence program flow]

Failure detection ladder

X102                 ON → OFF

X100                 ON → OFF

X101                 ON → OFF

End
NO YES

Initial indication device (D0)

Condition of the program

(Operating procedure)

Initial indication device (D1)

Initial indication device (D10)

The annunciator (F) is used 
in the program example.

1) Searching for 
faulty (ON) devices

Displaying the number of 
remaining faulty devices 
including the one whose fault 
number has been currently 
displayed and the next fault 
number

The last fault 
number is 
displayed.

The total number 
of faulty ladders is 
assumed to be 50.

Displaying the first failure 
number

2) Displaying the number 
of faulty devices

Displaying the number of 
faulty devices on HMI A

Displaying the failure number 
on HMI C

Displaying the number of remaining 
faulty devices on HMI A
Displaying the next fault 
number on HMI C
APPENDICES
Appendix 4  Program Examples App. - 41



App
Project name RA-31

Program name MAIN

F3
X120

F5
X124

F8
X128

F13
X12C

F33
X130

F35
X134

F37
X138

F39
X13C

F1
X104

F11
X105

F16
X106

F40
X107

F3
X102

M700

M500
X100

M500

M600

D110

K8F1DSUMP

D100MOVP

K8F33DSUMP

D110D100+P

D0D110MOVP

M400SET

RST

PLS

M700SET

M200SET

M600RST

Z0K0MOV

D100K8F1DMOV

D100K8F33DMOVP

M200

M200 M400

0

3

6

9

12

15

18

21

24

27

30

33

36

60

66

74

Faulty ladder

Search for devices that are on.

D100

D100

Specify the start number 
of faulty ladders. (F1 → 0)
. - 42
APPENDICES
Appendix 4  Program Examples



A

1. Search for devices that are on.

When X102 turns on, the number of bits that are on among F1 to F64 is stored in D110 and displayed.

M100

X101

M300

M800

79

92

96

108

111

119

M200

M700

SM700

Z0K32=

Z0K50=

K1D100

SET

Z0INC

D10Z0MOV

M300PLS

M100RST

D10K1-

D0D110MOV

M600SET

M200RST

D10MOVP K0

M800PLS

M400RST

D110K0<

M100

DROR

121 END

Search for devices 
that are on while 
shifting 32-bit data 
to the right.

Search for the next 
device that is on

Reset when searching 
is completed.

DSUMP    K8F1     D100 

DSUMP   K8F33    D100 

1 1 1 0 0 1 0 0 1 0 0 1 0 0 0 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

B15 B0• • • • • • • • • • • • • • • • • • • • • • •

F
32

F
1

F
2

F
3

F
31

F
4• • • • • • •• • • • • • •

32 bits

AO after execution

The total number of 1s is stored in binary.
(This example has sixteen 1s.)

S before 
execution (K8F1)
APPENDICES
Appendix 4  Program Examples App. - 43



App
2. Search for devices that are on while shifting 32-bit data to the 

right.

(1) When X100 turns on, the above shift data (D100 and D101) is set and data is shifted to the right by one bit at every scan 

until the first on bit is detected.

Shifting of data stops in the scan in which the first on bit has been detected (SM700 turns on), and the total number of 

shifts (corresponding to device numbers) is displayed.

(2) Every time when X101 turns on, the next on bit is detected, and its device number is displayed. At the same time, one is 

subtracted from the number of bits that are on, and the remaining number of on bits is displayed.

1 1

1 1 1

0 0 0 0

0 0 1

1 1 1 1 1 1

0 0 1 0 0 1

0 0

0 0

0

0

1

1

0 0 0

0 00 0

1 1 1

1 1

0 0 0

0 00

0

0 0

1

0

1 0 0

00

0

1 0

1

F
16

F
1

• • • • • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • • • • •

F
48

F
33

• • • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • • • • •

F
32

F
17

F
64

F
49

F
50

16 16

7

23
D110

D110D100

Transferred by the MOVP instruction

Added by a +P instruction

Number of devices that are on among X120 to 15B

D100

DROR D100 K1

0

DMOV
1 1 0 0 1

1 01 1 0 1

F
32

F
31

F
3

F
2

F
1

F
0

32 bits

D101, D100

D101
(16 bits)

D100
(16 bits)

DMOV instruction

• • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • 

D100K8F1

DMOV D100K8F33

DROR

1 1 1 0 0 1 1 1 00 1 1 1 0 0 1

1 1 1 1 0 0 1 1 1 00 1 1 1 0 0 1

B0B4 B3 B2 B1B5

D100D101

To B31

To B31

Carry flag
(SM700)

Before execution

After execution

D100 K1

B31 B27B28B29B30 B14B15B16B17 B13

Value of B0 
before execution
. - 44
APPENDICES
Appendix 4  Program Examples



A

Appendix 5 Memory and Files to be Handled by the 
CPU Module

File types and storage memory
The following table lists file types and storage destination memory types.

: Can be stored (required for operation), : Can be stored, : Cannot be stored

*1 mmm indicates a value calculated by dividing the module I/O No. by 10H (3 digits in hexadecimal). For the CPU module, it will be 3FFH. 
Also, nn is the serial number (2-digit hexadecimal number) of a module extension parameter of each module.

*2 nn corresponds to the setting number and is 01 through 10.
*3 Can be stored but cannot operate as a function.
*4 When a program or a FB (function) program is stored in the built-in memory of the CPU module, it is divided tor the program memory 

and the data memory.
*5 Module extension parameter for the protocol setting, storing protocol setting information in the predefined protocol support function

File type CPU built-in memory SD memory 
card

File name and 
extensionProgram 

memory
Device/label memory Data 

memory

Drive 0 Drive 3 Drive 4 Drive 2

Program *4  *4  ANY_STRING.PRG

FB program *4  *4  ANY_STRING.PFB

CPU parameter     CPU.PRM

System parameter     SYSTEM.PRM

Module parameter     UNIT.PRM

Module extension parameter     • UEXmmmnn.PRM*1

• UEXmmm00.PPR*5

Memory card parameter     MEMCARD.PRM

Device comment     ANY_STRING.DCM

Initial device value     ANY_STRING.DID

Global label setting file     GLBLINF.IFG

Initial label value 

file

Initial global label 

value file

    GLBLINF.LID

Initial local label 

value file

    PROGRAM_NAME.LID

File register    *3 ANY_STRING.QDR

Event history     EVENT.LOG

Device data storage file    *3 DEVSTORE.QST

General-purpose data     ANY_STRING.CSV/BIN

Data logging 

setting file

Common setting 

file

    LOGCOM.LCS

Individual setting 

file

    LOGnn.LIS*2

Remote password     00000001.SYP
APPENDICES
Appendix 5  Memory and Files to be Handled by the CPU Module App. - 45



App
Memory capacity
The following table lists the memory capacity of each memory.

*1 The capacity of device area, label area, latch label area, and file storage area can be changed in parameter. The capacity of the device/
label memory can be increased by inserting an extended SRAM cassette.

*2 This is the total capacity of the device area and module label area.

Item R04CPU R08CPU R16CPU R32CPU R120CPU

Memory 

capacity

Program capacity 40K steps

(160K bytes)

80K steps

(320K bytes)

160K steps

(640K bytes)

320K steps

(1280K bytes)

1200K steps

(4800K bytes)

Program memory 160K bytes 320K bytes 640K bytes 1280K bytes 4800K bytes

SD memory card Differs depending on the SD memory card used. (SD/SDHC memory card: 32G bytes 

maximum)

Device/label memory Total 400K bytes 1188K bytes 1720K bytes 2316K bytes 3380K bytes

Device area*1 80K bytes

Label area*1 60K bytes 80K bytes 100K bytes 180K bytes 220K bytes

Latch label area*1 4K bytes 8K bytes

File storage area*1 256K bytes 1024K bytes 1536K bytes 2048K bytes 3072K bytes

Data memory 2M bytes 5M bytes 10M bytes 20M bytes 40M bytes

CPU buffer memory 1072K bytes (536K words) (including the fixed scan communication area (24K words))

Refresh memory 2048K bytes*2
. - 46
APPENDICES
Appendix 5  Memory and Files to be Handled by the CPU Module



A

Appendix 6 Checking and Setting Shortcut Keys
Shortcut keys of each function can be checked and set on the "Shortcut Key" window.

Up to three keys can be assigned to one command.

Window

[Tool] → [Shortcut Key]

Operating procedure

1. Double-click a command cell to which a shortcut key is to be set.

2. Press keys to be assigned with a keyboard.

3. Click the [Close] button.

■Applying the default setting
Select a format in the drop-down list of "Default" to apply the setting of shortcut keys.

Select one of the following formats.

 • Change to GX Works3 Format: Restores the initial setting.

 • Change to GPPA Format: Changes the key assignment of all commands to that of GPPA.

 • Change to GPPW Format: Changes the key assignment of all commands to that of GX Developer.

 • Change to MEDOC: Changes the key assignment of all commands to that of MELSEC MEDOC.

To share the shortcut key setting with other personal computers, import an exported file (*.gks).

The setting file exported from GX Works2 can also be imported.

■Buttons in the window

Click this button to import a saved shortcut key setting file (*.gks).

Click this button to save set shortcut keys as a shortcut key setting file (*.gks).
APPENDICES
Appendix 6  Checking and Setting Shortcut Keys App. - 47



App
Appendix 7 Index Modification
Specify the device number using the index register. The device number to be used is "Device number of device targeted for 

modification" + "Contents of index register".

16-bit index modification
The device number is modified using the index register (Z). The modification range for the device in the case of the 16-bit 

index modification is -32768 to 32767.

32-bit index modification
The device number is modified using the long index register (LZ). The modification range for the device in the case of the 32-

bit index modification is -2147483648 to 2147483647.

Devices for which index modification can be performed
The following table lists the devices that can be targeted for index modification.

*1 Can be used for the contact, coil and current value.
*2 For network numbers and the specification source of I/O numbers, 32-bit-based index modification cannot be used.
*3 When it is used as an interrupt pointer, index modification cannot be performed.

Combination of index modification
This section describes the combination of index modification

■Order of device specification and index modification
According to the priority order shown below, the device specification (digit specification, bit specification, indirect specification) 

and index modification can be applied. However, some word devices may not follow the priority order shown below.

Item Device

16-bit index modification X, Y, M, L, B, F, SB, V, T*1, LT*1, ST*1, LST*1, C*1, LC*1, D, W, SW, SM, SD, Jn\X, Jn\Y, Jn\B, Jn\SB, Jn\W, Jn\SW, 

Un\G, U3En\G, U3En\HG, R, ZR, RD, P*3, I*3, J, U, K, H

32-bit index modification M, B, SB, T*1, LT*1, ST*1, LST*1, C*1, LC*1, D, W, SW, Jn\B*2, Jn\W*2, Un\G*2, U3En\G*2, U3En\HG*2, R, ZR, RD, K, H

Order of priority When the device targeted for the device specification 
and index modification is a bit device

When the device targeted for the device specification 
and index modification is a word device

High



Low

1: Index modification

2: Digit specification

1: Index modification

2: Indirect specification

3: Bit specification

D100Z10

Index register number used for indexing
Indexing target device

D100LZ1

Index register number used for indexing

Indexing target device
. - 48
APPENDICES
Appendix 7  Index Modification



A

■Specification method combined with device specification
The device targeted for specification is modified in order of: 1st modification, 2nd modification and then 3rd modification. 

Besides, the following contents can be used only for the device for which the 1st modification can be applied. (For example, 

index modification + digit specification is impossible for the function input (FX).)

Precautions
This section describes the precautions on using index modification.

■Index modification between the FOR and NEXT instructions
Between the FOR instruction and the NEXT instruction, pulse output is provided through the edge relay (V). However, pulse 

output by the PLS, PLF, or pulse conversion (P) instruction is not available

■Index modification by the CALL instruction
In the CALL instruction, pulse output is provided through the edge relay (V). However, pulse output by the PLS, PLF, or pulse 

conversion (P) instruction is not available

■Device range check for index modification
For details on the device range check performed when index modification is used, refer to the following.

 MELSEC iQ-R Programming Manual (Instructions, Standard Functions/Function Blocks)

■Change of the index modification range (16-bit ←→ 32-bit modification)
To change the index modification range for switching from 16 bit to 32 bit, the user must:

 • Review the index modification block(s) within the program.

 • For 32-bit-based index modification with ZZ expression, because the specified index register (Zn) and the immediately 

following index register (Zn+1) are used, caution must be taken to prevent duplicated index registers from being used.

 • Review the number of points of the index register (Z) and that of the long index register (LZ), which are specified in "Index 

Register Setting".

Device targeted for 
specification

1st modification 2nd modification 3rd modification Example

Bit device Index modification Indirect specification  K4M100Z2

Word device Index modification Bit specification  D10Z2.0

Index modification Indirect specification  @D10Z2

Bit specification Index modification  D10.8Z2

Indirect specification Bit specification  @D10.8

Index modification Indirect specification Bit specification @D10Z2.8

Indirect specification Bit specification Index modification @D10.8Z2
APPENDICES
Appendix 7  Index Modification App. - 49



App
When values are stored in the index register
For 16-bit-based index modification using the index register (Z), the range is -32768 to 32767. Therefore, when values within 

the range from 32768 to 65535 are stored in the index register (Z) for an instruction which processes unsigned data, the 

instruction does not work in design because the range of the index modification will be -32768 to 32767. For the range of 

values larger than or equal to 32768, the long index register (LZ) must be used so that 32-bit-based index modification can be 

applied.

Ex.

Operation for Index modification

(1) When the value 65535 is stored in the index register (Z), 

D50000(-1) to D49999 are accessed because the value is 

turned into -1 when index modification is applied.

(2) When a value larger than or equal to 32768 is used for index 

modification, the value must be stored in the long index 

register (LZ). In doing so, the value 65535 is used as such 

for index modification using the long index register (LZ) and 

D50000 (65535) to D115535 become accessible.

D17231
D17232

D49999
D50000

D82767
D82768

D115535

-32768

Z0

-2147483648

LZ0

2147483647

32767

Device/label memory

1)

2)

SM400
+P_U K65535 Z0

MOV K100 D50000Z0

SM400
D+P_U K65535 LZ0

MOV K100 D50000LZ0

1) Unintended indexing operation 2) Normal indexing operation
. - 50
APPENDICES
Appendix 7  Index Modification



A

Appendix 8 FB (Function Block)

Appendix 8.1 FB
FB is an abbreviation for a function block. Users can convert frequently-used ladder blocks into FBs and utilize them in a 

sequence program.

Use of FBs improves the efficiency of program development and reduce mistakes in programming, improving the quality of a 

program.

Figure APP 8.1 Converting a sequence program into an FB

FB

1 2 3 4 5 6 7 8 9 10 11 12

1 (0)
M0 X0 M1

MOV D0 U0Z8\G9

2 SET Y5

3 DMOV U0Z8\G14 D100

4 DMOV U0Z8\G15 D102

5 DMOV U0Z8\G13 D104

6 D<> D2 D4 DMOV U0Z8\G14 D120

7 DMOV U0Z8\G16 D122

8 DMOV U0Z8\G18 D124

9 DMOV D2 D110

10 DMOV D4 D112

11 (48) END

Converted
APPENDICES
Appendix 8  FB (Function Block) App. - 51



App
Appendix 8.1.1 FB conversion
This section describes a flow in which ladder blocks are converted into an FB.

Labels (global labels and local labels) to be registered on the label editor and module labels (global labels) dedicated for a 

module are prepared.

 • Global label: A label that can be used in all programs in a project

 • Local label: A label that is used in each program

 • Module label: A label where I/O signals and buffer memory areas of a module in use have already been defined. Use of 

module labels allows users to do programming without considering module internal addresses.

For details on label types, classes, and data types, refer to the following.

 MELSEC iQ-R Programming Manual (Program Design)

Figure APP 8.1.1 Flow of FB conversion

( 

( 

Input

3) Convert the devices into FBs.

1) Program to be converted

Output
Internal 

label
Internal 
device

X1

> =  D1 K12 Y12

INCP D1

4) Paste the FBs on a program.

2) Divide inputs and outputs, and replace internal devices 
with internal labels.

Output 
label

Input 
label

i_Count

i_Count

m_CntINCP

K12> =  m_Cnt o_C_upo_C_UP

Input 
label

Output 
label

Count_Num
i_Count o_C_UP

Count_Num2
i_Count o_C_UP

Count_Num1
i_Count o_C_UP

X1

X2

Y12

Y22

Count processing 1

Count processing 2
Create input/output ladders 

(Set parameters).
. - 52
APPENDICES
Appendix 8  FB (Function Block)



A

Appendix 8.1.2 Advantages of using FBs

This section describes advantages of using FBs in the creation of a program.

(1) Easy programming

Users can create a sequence program by simply pasting FBs.

This advantage significantly reduces the man-hours for developing a program. (Using an FB library provided by 

Mitsubishi Electric Corporation allows users to create programs more easily.)

(2) Easy to read!

Using FBs in a sequence program improves the visibility of a program that only contains "boxes" (FBs), inputs, and 

outputs.

What users need to do is just to drag and drop 
an FB from the "Element Selection" window!
APPENDICES
Appendix 8  FB (Function Block) App. - 53



App
(3) Utilizable programs

By converting standard programs into FBs, users can utilize the programs many times.

Operations, such as copying a sequence program and modifying devices, which have often been required in the past, 

will be unnecessary.

(4) Improved quality of programs

By converting standard programs into FBs and utilizing them, users can develop uniformly-high quality programs without 

depending on the technological skills that program developers have.

Although each of developers A and B creates a sequence program for a different device, they can use the same FBs for 

common processing and the quality of their programs is uniformed.

Converted

Startup 
control FB

Startup 
control FB

Startup 
control FB

Startup 
control FB

Developer BDeveloper A

Individual 
processingIndividual 

processing
Common 

FB
. - 54
APPENDICES
Appendix 8  FB (Function Block)



A

(5) Properties can be protected!

By converting sequence programs into FBs and setting passwords on them, users can protect their technical know-how.

How to insert an FB
The following describes the procedure of inserting an FB.

Operating procedure

1. Click [View]  [Docking Window]  [Element Selection] from the 

menu.

2. Select an FB from the "Element Selection" window, and drag 

and drop it to the desired position on the ladder editor.

3. The "FB Instance Name" window appears. Select the target 

label (global label or local label), and enter an instance name.

(To the next page)

Sequence program related to 
technical know-how

Converted as a FB and 
protected with a password!
APPENDICES
Appendix 8  FB (Function Block) App. - 55



App
Appendix 8.1.3 FB library
An FB library is a collection of FBs available in GX Works3.

By using the FB library, users can easily create programs for the MELSEC-Q/L series modules and partner products.

■Example: Programmable controller modules

(From the previous page)

4. Select [Convert]  [Convert] on the menu bar. The ladder is 

converted, and the rungs are connected to the input and output 

labels of the FB instance.

5. Add the input and output parts of the inserted FB to complete the 

program. 

FBs for module

AD conversion 
data read

Analog
signal 

Offsetset
ting

Gain
setting

FBFBFB

Level meter
Flow meter
Pressure meter
   • 
   •
   •
. - 56
APPENDICES
Appendix 8  FB (Function Block)



A

■Example: Partner products

(1) FB library lineup

"FBs for programmable controller modules" or "FBs for partner products" are provided as FB libraries.

(2) How to get an FB library

For how to get an FB library, please consult your local Mitsubishi representative.

FBs for partner products

Vision 
sensor RFID

Laser 
displacement 

sensor

FBFBFB

CC-Link

Ethernet

RFID Laser displacement sensorVision sensor

Partner products
APPENDICES
Appendix 8  FB (Function Block) App. - 57



App
Appendix 8.1.4 Precautions for using FBs
Before using FBs, read the following precautions.

 • Only one FB can be pasted on one ladder block.

An output of an FB instance cannot be directly connected to an input of another FB instance.

To connect FBs each other, create a coil that receives outputs of an FB, and connect a contact of the coil to an input of 

another FB.

 • When the label setting of an FB has been changed, convert the program or all programs.

 • To insert an FB instance between FB instances, select [Edit] → [Insert Row] and add an empty row and 

insert the FB instance there.

 • Ladder blocks can be created in parallel at an input part of an FB instance.

To add a ladder between parallel ladder blocks, select the second row of the input part, and select [Edit] → 

[Insert Row] to add an empty row and create a ladder as shown below.
. - 58
APPENDICES
Appendix 8  FB (Function Block)



A

Appendix 8.2 Creating a program using FBs
For the operating procedure of using FBs, refer to Appendix 8.1.2 Advantages of using FBs.

Creating a program
Create the program described in the previous section using FBs.
APPENDICES
Appendix 8  FB (Function Block) App. - 59



App
MEMO
. - 60
APPENDICES
Appendix 8  FB (Function Block)



Mitsubishi Programmable Controllers Training Manual
MELSEC iQ-R Series Basic Course (for GX Works3)

Specifications subject to change without notice.

When exported from Japan, this manual does not require application to the
Ministry of Economy, Trade and Industry for service transaction permission.

HEAD OFFICE : TOKYO BUILDING, 2-7-3 MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN
NAGOYA WORKS : 1-14 , YADA-MINAMI 5-CHOME , HIGASHI-KU, NAGOYA , JAPAN

MODEL

MODEL
CODE

SH(NA)081898ENG-A (1602) MEE


	SAFETY PRECAUTION
	REVISIONS
	CONTENTS
	INTRODUCTION
	RELEVANT MANUALS
	1 BASICS OF A PROGRAMMABLE CONTROLLER
	1.1 Programming Languages
	1.2 Program
	1.3 System Configuration
	1.3.1 Overall configuration

	1.4 Memory Configuration of the CPU Module
	1.5 External I/O Signals and I/O Numbers
	1.6 System Configuration and I/O Numbers of the Demonstration Machine

	2 OPERATING GX Works3
	2.1 Main Functions of GX Works3
	2.2 Operations Before Creating a Ladder Program
	2.2.1 Starting GX Works3
	2.2.2 Creating a new project

	2.3 Preparations for Stating the CPU Module
	2.3.1 Installing a battery
	2.3.2 Inserting or removing an extended SRAM cassette
	2.3.3 Inserting and removing an SD memory card
	2.3.4 Specifying connection destination
	2.3.5 Initializing the CPU module
	2.3.6 Clearing the error history of CPU module
	2.3.7 Setting the clock of the CPU module

	2.4 Creating a Ladder Program
	2.4.1 Creating a ladder program by entering devices and labels
	2.4.2 Creating a ladder program with function keys
	2.4.3 Creating a ladder program with tool buttons

	2.5 Converting a Created Ladder Program
	2.6 Reading/Writing Data from/to the Programmable Controller CPU
	2.6.1 Writing data to the CPU module
	2.6.2 Reading data from the CPU module

	2.7 Monitoring the Ladder
	2.8 Diagnosing the Programmable Controller CPU
	2.9 Editing a Ladder Program
	2.9.1 Modifying a part of a ladder program
	2.9.2 Drawing a line
	2.9.3 Deleting a line
	2.9.4 Inserting a row
	2.9.5 Deleting a row
	2.9.6 Cutting or copying a ladder

	2.10 Verifying Data
	2.11 Saving a Created Ladder Program
	2.11.1 Saving a program in the single file format
	2.11.2 Saving a program in the workspace format

	2.12 Opening a Saved Project
	2.13 Opening a Project in Another Format

	3 DEVICES AND PARAMETERS OF A PROGRAMMABLE CONTROLLER
	3.1 Devices
	3.2 Parameters

	4 SEQUENCE INSTRUCTIONS AND BASIC INSTRUCTIONS -PART 1-
	4.1 Instructions Described in This Chapter
	4.1.1 Instructions not described in this chapter -Part 1-
	4.1.2 Instructions not described in this chapter -Part 2-

	4.2 Differences Between [OUT] and [SET]/[RST]
	4.2.1 [OUT] (Coil output)
	4.2.2 [SET]/[RST](Setting/resetting devices)

	4.3 Measuring Timers (Timer, High-speed Timer, Retentive Timer)
	4.4 Counting with a Counter
	4.5 [PLS] (Turning on a Specified Device for One Scan at the Rising Edge of an Input Condition) [PLF] (Turning on a Specified Device for One Scan at the Falling Edge of an Input Condition)
	4.6 [CJ] (Conditional Jump of the Non-Delay Execution Type) [SCJ] (Conditional Jump Executed After One Scan)
	4.7 Exercise
	4.7.1 Exercise 1
	4.7.2 Exercise 2
	4.7.3 Exercise 3


	5 BASIC INSTRUCTIONS -PART 2-
	5.1 Notation of Values (Data)
	5.2 Transfer Instructions
	5.2.1 [MOV(P)] (Transferring 16-bit data)
	5.2.2 [FMOV(P)] (Transferring the same data in a batch) [BMOV(P)] (Transferring block data in a batch)

	5.3 Comparison Operation Instructions
	5.4 Arithmetic Operation Instructions
	5.4.1 [+(P)] (Addition of 16-bit binary data) [-(P)] (Subtraction of 16-bit binary data)
	5.4.2 [*(P)] (Multiplication of 16-bit binary data) [/(P)] (Division of 16-bit binary data)
	5.4.3 32-bit data instructions and their necessities

	5.5 External Setting of Timer/Counter Values and External Display of Current Values
	5.6 Exercise
	5.6.1 [Exercise 1] MOV-1
	5.6.2 [Exercise 2] MOV-2
	5.6.3 [Exercise 3] Comparison instruction
	5.6.4 [Exercise 4] +, -
	5.6.5 [Exercise 5] *, /
	5.6.6 [Exercise 6] D*, D/


	6 HOW TO USE OTHER FUNCTIONS
	6.1 Online Test Function
	6.1.1 Forced on/off of the device (Y)
	6.1.2 Setting/resetting of the device (M)
	6.1.3 Current value change of the device (T)
	6.1.4 Reading error steps
	6.1.5 Remote RUN/STOP

	6.2 Creating the Module Configuration
	6.3 Device Batch Replacement
	6.3.1 Replacing device numbers in a batch
	6.3.2 Changing normally open contacts ↔ normally closed contacts of specified devices in a batch

	6.4 Online Change
	6.5 Watch Window
	6.6 How to Create Comments

	7 NEW FUNCTIONS OF MELSEC iQ-R/GX Works3
	7.1 Features of MELSEC iQ-R
	7.2 Differences Between the MELSEC-Q Series and the MELSEC iQ-R Series
	7.3 Functions of GX Works3

	APPENDICES
	Appendix 1 I/O Control Mode
	Appendix 1.1 Direct mode
	Appendix 1.2 Refresh mode
	Appendix 1.3 Comparisons between direct mode and refresh mode

	Appendix 2 List of Special Relay Areas
	Appendix 3 List of Special Register Areas
	Appendix 4 Program Examples
	Appendix 4.1 Flip-flop ladder
	Appendix 4.2 One-shot ladder
	Appendix 4.3 Long-time timer
	Appendix 4.4 Off delay timer
	Appendix 4.5 On delay timer (momentary input)
	Appendix 4.6 On/off repeat ladder
	Appendix 4.7 Preventing chattering inputs
	Appendix 4.8 Ladder with common lines
	Appendix 4.9 Time control program
	Appendix 4.10 Clock ladder
	Appendix 4.11 Star-delta starting of an electric motor
	Appendix 4.12 Displaying the elapsed time and outputting before time limit
	Appendix 4.13 Retentive timer
	Appendix 4.14 Switching timer setting values with external switches
	Appendix 4.15 Setting a counter with external switches
	Appendix 4.16 Measuring the operating time
	Appendix 4.17 Measuring the cycle time
	Appendix 4.18 Application example of (D)CML(P)
	Appendix 4.19 Dolly line control
	Appendix 4.20 Compressor sequential operation with ring counters
	Appendix 4.21 Application example to a positioning control
	Appendix 4.22 Application example using the index register (Z)
	Appendix 4.23 Application example of FIFO instructions
	Appendix 4.24 Application example of data shifting
	Appendix 4.25 Program example: Square root operations
	Appendix 4.26 Program example: Multiplication with the nth power
	Appendix 4.27 Displaying the number of failures and failure number in a failure detection program

	Appendix 5 Memory and Files to be Handled by the CPU Module
	Appendix 6 Checking and Setting Shortcut Keys
	Appendix 7 Index Modification
	Appendix 8 FB (Function Block)
	Appendix 8.1 FB
	Appendix 8.1.1 FB conversion
	Appendix 8.1.2 Advantages of using FBs
	Appendix 8.1.3 FB library
	Appendix 8.1.4 Precautions for using FBs

	Appendix 8.2 Creating a program using FBs



