
PUBLIC

MARKUS LEVY

HEAD OF AI AND ML TECHNOLOGIES

NXP SEMICONDUCTORS

FLEXIBLE OPTIONS FOR

INFERENCE IMPLEMENTATION

AT THE EDGE

PUBLIC 1

PUBLIC 2
2

Machine Learning

Concepts

PUBLIC 3

What is Machine Learning (ML)

• ML is a field of computer science (starting in 1960s) that gives

computers the ability to learn without being explicitly programmed.

• It is not a single algorithm! It is not only Neural Nets.

• Biggest field of ML is supervised learning (learning with a teacher).

• In supervised learning an algorithm is provided with a set of examples

– inputs and desired outputs.

• During training, an algorithm tries to minimize an error (on the output)

by adjusting internal parameters.

PUBLIC 4

First Stage Considerations for ML at the Edge

• IoT, Industrial, Automotive Application - Can I utilize machine learning?

• Training Time and amount and type of data required for training

• Availability of labeled data (e.g. supervised versus unsupervised)

• Tolerated accuracy

• Number of features

• Computational resources available (e.g. RAM & CPU)

• Latency required/tolerated (cost versus performance)

• Ease of Interpretation

• How will I deploy

PUBLIC 5

Edge Compute Enabler – Scalable Inference
Balancing cost vs. end-user experience

5PUBLIC

Gen. Purpose MCU
(e.g. Cortex® -Mx)

High Compute MCU
(e.g. Cortex® -M7)

6-8x improvement

5-10x improvement

Multi-core
Applications

Processor
(GHz +)

(e.g. Cortex® -Ax)

5x improvement

GPU (Open CL) /
DSP complexes > 10x improvement

Improving Performance, Increasing Systems Cost

In
fe

re
n

c
e

 T
im

e
 (

lo
g

 s
c
a

le
)

ML Accelerators
(incl. Neural Nets)

PUBLIC 6

Processing unit comparison (Resnet-50)

Size Frequency Inference/s Cost

efficiency

1x M7 1 (normalized) 600 MHz 1 (normalized) 1 (normalized)

4x A53 5.9 1.8 GHz 5.4 0.95

4x A55 8.3 1.8 GHz 33 4.0

Mid-range

GPU

8.3 800 MHz 11 1.3

Gen 1 ML IP 3.3 1 GHz 350 106

Google TPU 550 750 MHz ~15000 27

PUBLIC 7

Rule-of-Thumb ML Considerations

• Convolutional neural networks - object recognition, image and computer vision

• Recurrent neural networks - speech, handwriting recognition and time series

• Don’t consider training a deep neural net unless you have LOTS of training data.

• Classical ML model types can be trained with smaller data sets.

PUBLIC 8

What can machine learning do

Regression (Calculation)

• Predict continuous values

Classification (Choice)

• Recognition, object detection

Anomaly detection (Judgement)

• Detect abnormal conditions

Clustering

• Discover patterns / partitions

Learn strategies

• Reinforcement Learning

X=a, y=?

It is a ()

A: Dog B: Cat C: Cow D: Neither

Heart is going to

malfunction? Y/N

Find crowds

No need labels

How to play the game?

PUBLIC 9

How To Speak ML and Sound Like an Expert:

Input

85% A dancing banana man

10% Eyeballs on a peach slice

2% A moon rising over an island

1% A taco with cauliflower

1% A banana

The Neural Net inferred a label

of ‘Dancing Banana Man’
With a confidence

factor of 85%

Neural Nets Infer/Predict a Label with a Confidence Factor

They Do Not Inherently ‘Decide’ What Something Is

PUBLIC 10

What is Classical ML?
• Every ML algorithm except neural nets: SVM with linear and RBF kernels, Decision

trees, Random forest, K-Nearest neighbors, Boosting algorithm (ada-boost), Logistic

regression, k-means

• Usually much smaller number of parameters and don’t need big training datasets

• Usually faster (both training and inference) compared to NNs

• Might be used in combination with NNs

• Most of the algorithms require careful feature selection
SVM Decision Tree

https://medium.com/@williamkoehrsen/random-forest-simple-explanation-377895a60d2d

https://docs.opencv.org/2.4/_images/optimal-hyperplane.png

https://en.wikipedia.org/wiki/Decision_tree_learning

https://medium.com/@williamkoehrsen/random-forest-simple-explanation-377895a60d2d
https://docs.opencv.org/2.4/_images/optimal-hyperplane.png
https://en.wikipedia.org/wiki/Decision_tree_learning

PUBLIC 11

Supervised vs Unsupervised

• Supervised – Given Xi and Yi compute f where Yi= f(Xi)

• Unsupervised – Given only Xi , find the patterns

Raw Data

x2

x1

Unsupervised → you can cluster,

but not identify cluster label

x1

Supervised → you can fully classify

• Known State 1

• Known State 2

x1

+ input

labels

PUBLIC 12
https://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-algorithm-use/

https://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-algorithm-use/

PUBLIC 13

Traditional

Machine Learning

Workflow Train Model

Validate

Model

Test Final Model

acceptable

error?

Training

Data

Validation

Data

Test Data

80%

10%

10%

adjust

hyperparameters

Feature

Extraction

Sensor Data,

(a table) Pre-

Process

Data

data must be labelled

for supervised learning

model hypothesis

set

Training can be considered

an optimization problem

which starts with labelled

input data and an

expression to be minimized

model

score

Training data is pseudo-randomly chosen

Validation used to tune hyperparameters

Test to evaluate and predict generalization for new
data

PUBLIC 14

Trained Model Optimizations for Mapping to HW Capabilities

Quantize parameters - 32-bit floating point to 8-bit fixed-point -> 4x memory reduction

− Weights can be shared to improve compression

Operation fusing

− Fuse or chain operations to avoid roundtrips to accelerators

− Next gen NN supports operations for: convolution, activation, pooling and normalization

Pruning (sparsity)

− Remove weights and neurons w/small impact on accuracy, reducing memory size 4-10x

− Requires additional training

Next gen IP supports decompression scheme to further reduce weights memory footprint

PUBLIC 15
15

Move from the Cloud to the Edge

PUBLIC 16

Cloud Access With Amazon & Google ML Services

1. AWS SageMaker
Build, train & deploy ML models

2. AWS HyperParameter Optimization

Optional – to achieve better accuracy

3. AWS Greengrass ML – IoT service

Train on Cloud, Deploy on Edge

1. Google ML Engine

− Training & predictions services

− TensorFlow support

2. Google AutoML

− Designed for beginners/users which want to

obtain fast a model

− Based on dataset is able to build a NN, train it

and obtain a model

− 2 flavors

▪ Based model (for free)

▪ Advanced model (550$)

Copyright © 2018 Google, all rights reserved

PUBLIC 17

Google Cloud Interoperability

Cloud cookbook details interoperability between Cloud and ML SDK w/OCV

− Train using Google Cloud

− Deployed on i.MX 8 using OpenCV DNN

Instructions to teach user how to

− train a neural network (written in TensorFlow) on Google Cloud

− use the ML service

− store the model on Google Cloud storage

− download it locally

− use the Cloud model to perform inference locally

Edge Device

PUBLIC 18
18

Machine Learning

Deployment Overview

COMPANY CONFIDENTIAL 19

Inference Engine

ML Platform:

Kinetis and LPC MCUs i.MX RT Crossover Processors i.MX and Layerscape Apps Processors

Cortex®-M Cortex®-A GPU DSP ML accelerators

Hardware Abstraction Layer

OpenCLArm® Compute Library Custom API

ML Platform
Direct

Interface
Open Source Inference

OpenCV/Neon

Tencent NCNN

Arm NN

Android NN TensorFlow

TF Lite

NN Compiler Technology

GLOW

Vision & Sensors Applications

Soft ISP Sensors

Audio Front End

NXP Turnkey ML Solutions

Facial
Recognition

Speech
Recognition

Anomaly
Detection

NXP eIQ Machine Learning Software Development Environment

StereoVision

CMSIS-NNOpenCV/GPU

CMSIS-NN Open VX

PUBLIC 20
20

Machine Learning Deployment

(The Easy Way)

PUBLIC 21

Open Source Computer Vision Library: http://opencv.org

• Open-source BSD-licensed library

• Includes several hundreds of computer vision algorithms

− Image processing, image encoding/decoding

− Video encoding/decoding

− Video analysis

− Object detection

− Deep neural networks

− Machine learning

• Supports ARM NEON and OpenCL for acceleration

http://opencv.org/

PUBLIC 22

OpenCV introduction

• Can be used in combination with deep neural networks

− Example: facial recognition

Face detection

using OpenCV

object detection

Feature extraction

using deep neural

network

Face classification

using OpenCV

machine learning

PUBLIC 23

New AppNote

PUBLIC 24

i.MX 6, 7, 8

ML SDK with OpenCV 1.0

• OpenCV DNN Module​

− Inputs Caffe/TensorFlow formats

− Provides NN inference engine​

− Optimized for Neon

• OpenCV ML Module​

− Classical ML algorithms​

− Optimized for Neon

OpenCV

(e.g. image processing, machine learning)

Bindings: Python, Java

SoC

OpenCV HAL (e.g. Neon)

Demos, Apps

Linux

Yocto Recipe Build Per BSP

Documentation provides scripts & detailed description to modify

Caffe and TensorFlow models to run inference using OpenCV

PUBLIC 25

Why OpenCV for CML

OpenCV Dlib mlpack shark shogun H2O Libsvm liblinear svm^perf ThunderSVM

SVM (linear) x x - x x x x x x

SVM (RBF) x x - x x x - x

Decision Trees x - x x x

Gradient Boosting x - x x

EM (GMM) x - x x

Logistic Regression x - x x x x

AdaBoost (ml::Boost) x - x

Random Forests x x x x x x

KNN x x x x x

k-means x x x x x x

NEON support x x - x - - - - x

PUBLIC 26

Training and Inference Performance on M7 (e.g. i.MX RT)

Notes:

1. For training, OCV almost 2 orders of magnitude slower than libsvm due to some problem with class separability; could be

solved by using RBF kernel, but we haven’t done measurements with that (refer to benchmarking presentation).

2. OCV is faster on testing in all cases, and even 2 orders of magnitude faster on smartphone data

PUBLIC 27

Training Can Be Done in a Few Function Calls

#include <opencv2/core/core.hpp>
#include <opencv2/ml/ml.hpp>
...
using namespace cv;
using namespace cv::ml;
...

Mat samples = Mat_<float>(150, 4, samplesData);
Mat labels = Mat_<int>(150, 1, labelsData);
Mat_<int> responses;

/* Prepare training data and labels */
Ptr<TrainData> trainData = TrainData::create(samples, ROW_SAMPLE, labels);

/* Create a model */
Ptr<NormalBayesClassifier> trainedModel = NormalBayesClassifier::create();

/* Train the model */
trainedModel->train(trainData);

/* Predict values */
trainedModel->predict(samples, responses);
cout << "Classes predicted from trained model: " << responses.t();
cout << " / Accuracy: " << (countNonZero(responses == labels) / (float)labels.rows) * 100.0 << "%" << endl;

PUBLIC 28

Super Boring Example Output

It’s just a “Hello world”. It demonstrates that it works – model training, loading, prediction.

PUBLIC 29
29

Anomaly Detection as a

Subset of Machine Learning

PUBLIC 30

It’s All About the Data

• Multi-class supervised learning requires representative data for all classes

• In machine condition monitoring applications, this can be impractical to get

− Hard to run machinery to failure, certainly not a statistically significant number of times

• Enter “Anomaly Detection”, essentially a one-class learning problem

− Only needs “nominal” data for training!!!

• The Goal:

− Given a sample point X, compute the likelihood that X is a member of population all_X’s.

− Compare that to a specified threshold to determine if you have a nominal sample or not

PUBLIC 31

Bearing Faults Have Specific

Frequency Signatures

Pd = pitch diameter

Bd = ball diameter

Nb = number of balls

S = speed (revolutions/sec)

 = contact angle

BSF = Ball Spin Frequency

BPFO = Ball Pass Frequency of Outer Trace

BPFI = Ball Pass Frequency of Inner Trace

For ball defects:

BSF = ½ (Pd/Bd) x S x [1 – (Bd/Pd x cos )2]

For outer trace defects:

BPFO = ½ Nb x S x [1 – (Bd/Pd x cos )]

For inner trace defects:

BPFI = ½ Nb x S x [1 + (Bd/Pd x cos )]

Defect signals may be swamped by

other noise in the system, in which case

additional filtering may be needed to

extract the signature.

Pd

Bd

PUBLIC 32

One Class Support Vector Machines

• Used for anomaly detection

• The algorithm tells us if a sample is part of a known population or not

• Computing a probability by comparing with a threshold value

− Each contour line corresponds to a different threshold

𝒇𝒔𝒗𝒎 𝒙 =෍

𝒊=𝟏

𝒏

𝒊𝒆
−

𝒙−𝒔𝒗𝒊
𝟐

𝟐𝟐

where:
𝑥 is a d-dimensional feature vector

𝑠𝑣𝑖 𝑖=1
𝑛 are support vectors (SVs)

𝛼𝑖 𝑖=1
𝑛 are coefficients for SVs

 is known as the “kernel size”

a sample is considered True (1) if pdf 𝑓𝑠𝑣𝑚(𝑥) > threshold

or False (-1) otherwise

𝑠𝑔𝑛 𝑓𝑠𝑣𝑚 𝑥 − 𝑡ℎ𝑟

We are using a Gaussian Kernel

PUBLIC 33

Longer product life due

to preventive

maintenance and

periodic capability

upgrades. E.g. “Clean

Clothes as a Service”.

Product Life Cycle Intelligence – Monitoring/Tracking Use Cases

Factory – Key/ certificates

provisioning, datalogging,

movement monitoring,

manufacturing and self

tests (BLE/Wi-Fi/NFC)

Transport to store

or warehouse Ship to

consumer

Continuous

secure monitoring

& cloud upload

Secure run-time

data upload.

OEM uses data

to further tune

ML models, add

capabilities.

Preventive

maintenance, self-

test w/ data history

sent to cloud

Secure periodic ML

model &/or general

SW capability

updates

End-of-life decommissioning

and credentials recovery

Continuous sensor logging (Battery powered)

Review transport data,

display/demo, or storage

Installer reviews transport

data, runs self-tests,

securely onboards device

w/cloud, initiates run-time

data collection

Data initiated

preventative

maintenance

request

PUBLIC 34
34

Other Open Source Options

PUBLIC 35

Deployment of Arm NN

1. Connect to Arm NN through high level frameworks
•Using framework parsers provided by Arm NN

2.Connect to existing inference engine
•With inference engine calling Arm NN API
•Or inference engine calling ACL directly

3.Connect to ACL directly

PUBLIC 36

CMSIS-NN – Efficient NN Kernels for Cortex-M CPUs

• CNN library for Cortex-M by

ARM, new in CMSIS 5.3

• Fixed-point inference

• High level API

• Low level API

• Make use of some CMSIS

math & DSP lib APIs.

• 4.6x performance & 4.9x

energy efficiency than

baseline CMSIS-DSP

PUBLIC 37

CIFAR-10 model

• CIFAR-10 classification – classify images into 10

different object classes

• 3 convolution layer, 3 pooling layer and 1 fully

connected layer (~80% accuracy)

• https://www.cs.toronto.edu/~kriz/cifar.html

PUBLIC 38

DL frameworks (Google TensorFlow&Keras, Caffe/Caffe2,

Facebook PyTorch, Amazon MxNet, ONNX, etc)

trainer, quantizer, converter

Loadable NN models:

Can be stored in SD

card, or be flattened to

C arrays as source file.

Data feeder and

preprocessor

Model runner (load, parse, and inference)

CMSIS-NN adapter

PC tools to generate model

MCU firmware: inference engine

Data input: video,audio/time-series,

structured data

Cortex-M parts
Silicon

CMSIS-NN

NN SDK responsibilities
PC side : PC tool set

Firmware side: inference engine

dataset input

for training

Inference engine

based on CMSIS-NN

Map model operations

to CMSIS-NN APIs

PUBLIC 39

Benchmark Results using CMSIS-NN with CIFAR-10 Model

• Cortex-M4F(LPC54114) 212mS

• Cortex-M33(LPC55s69) 179mS

IDE

• IAR 8. 30.1

− High / Speed / No size constrains

Video

PUBLIC 40
40

Advanced Techniques

PUBLIC 41

GLOW – Graph Lowering Compiler

• Facebook open-sourced Glow in March 2018

• Machine learning compiler to accelerate the performance of deep learning

frameworks

• More rapidly design and optimize new silicon products for AI and ML by leveraging

community-driven compiler software.

• Glow accepts computation graphs from a variety of machine learning frameworks

and works with a range of accelerators.

PUBLIC 42

GLOW – From Graph to Machine Code

PUBLIC 43
43

IoT Solutions
Putting it All Together

PUBLIC 44

External Memory

Multimedia

i.MX 8M Mini

System Control

Security

3D Graphics: GC NanoUltra

Connectivity & I/O

1080p60 VP8, VP9, H.264, H.265 decoder

Main CPU Platform

NEON

32KB D-cache

FPU

32KB I-cache

512KB L2 Cache

Quad/Dual Corte-A53

NEON

32KB D-cache

FPU

32KB I-cache

Quad/Dual ortex-A53

NEON

32KB D-cache

FPU

32KB I-cache

Quad Cortex-A53

NEON

32KB D-cache

FPU

32KB I-cache

1080p60 VP8, H.264 encoder

Low Power, Security CPU

Cortex-M4

16KB I-cache

256KB TCM (SRAM)

16KB D-cache

2D Graphics: GC328

• OpenCV support accelerated on NEON
• TensorFlow and Caffe
• Classical machine learning algorithms

• Sensor integration (e.g. anomaly detection)
-M4 manages sensor reading/fusion, feature extraction
-Then use RPmsg to send data to the A53 for inferencing

Can be used for color space conversion

Graphics (OpenGL ES

ML-Related Functions That Can Be Done on i.MX 8M Mini

• Other open source options
-Arm NN w/NEON acceleration using Arm Compute Library (ACL)
-Android NN
-TensorFlow, TF Lite (direct deployment)
-EdgeScale deployment thru docker images
-ACL for image segmentation, feature detection/ extraction,
image processing, etc.

PUBLIC 45

Horizontal Machine Learning Technologies at the IoT Edge

Face and Object RecognitionVision

Local and Cloud Commands, Near and Far Field SupportVoice Control

Monitoring/Tracking: Vibration, Acoustic, and PressureAnomaly Detection

PUBLIC 46

IoT Edge Compute Enabling Technologies

Connectivity

Secure IoT

Capabilities

OTA

Boot

Manufacturing Provisioning

Onboarding Decommissioning

Face and Object RecognitionVision

Local and Cloud Commands, Near and Far Field SupportVoice Control

Monitoring/Tracking: Vibration, Acoustic, and PressureAnomaly Detection

Processor and

OS Platform

PUBLIC 47

Processor and

OS Platform

Combining Horizontal Capabilities to Build Vertical Solutions

Connectivity

Secure IoT

Capabilities

OTA

Boot

Manufacturing Provisioning

Onboarding Decommissioning

Face and Object RecognitionVision

Local and Cloud Commands, Near and Far Field SupportVoice Control

Monitoring/Tracking: Vibration, Acoustic, and PressureAnomaly Detection

Smart Appliance Smart Retail Smart IndustrySmart Home

PUBLIC 48

Example Customer Engagements Today

Anomaly Detection
Secure Facial Recognition

Voice Control

PUBLIC 49

Secure Facial Recognition

Empowering Future Products

Voice Control

Anomaly Detection

Voice Control

Anomaly DetectionFace Recognition

Voice Control

Smart lock

• Face unlocks

• Local voice

commands

(after face rec.)

Smart appliance

• Anomaly detection for

predictive maintenance

• Voice commands

“Wash cold,

heavily soiled”

Smart appliance / Smart Panel

• Embedded smart display

voice assistant, video calling

• Secure facial recognition

• Anomaly detection for

predictive maintenance

PUBLIC 50

Production Grade, Certified IoT Edge Machine Learning Solutions

• Implemented with best in class silicon,

software and IP from NXP and 3rd parties

• Near production ready hardware

− Cost and form factor optimized

• Pre-integrated production ready software,

fully tested & certified

• NXP provides a single point of contact

for support, licensing and procurement

• Use case dependent solutions:

− Turnkey – for well defined use cases

− Customizable – can be modified, tuned and

trained for specific use cases

BOMs

CertificationsLayoutsSchematics

Software Source

Documentation

OOB HW/SW

U1 MIMXRT1052DVL6B i.MXRT1050 Cross Processor

U3 W9812G6JB-6I 128Mbit SDRAM 3V 166MHz

U4 IS26KL256S-DABLI00256Mb Hyperflash 3V 100MHz Flash

U5 A7101CHTK2 Secure IoT/Authentication Conn IC

U6 LBEE5KL1DX-883 IC WIFI BT/BLE B/G/N 3-4.8V LGA46

U7 MKW21Z512VHT4 KINETIS L 32-BIT MCU CORTEX-M0

U8,U9 NX3L2267GM,115 IC ANALOG SWITCH SPDT 10XQFN

U10 XCL214B333DR DC/DC CONVERTER 3.3V 5W

PUBLIC 51

Trademark and copyright statement
The trademarks featured in this presentation are
registered and/or unregistered trademarks of NXP
Semiconductors in the EU and/or elsewhere. All
rights reserved. All other marks featured may be
trademarks of their respective owners.

Copyright © 2018

Thank You!

51

NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2018 NXP B.V.

