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What is Machine Learning (ML)

• ML is a field of computer science (starting in 1960s) that gives 

computers the ability to learn without being explicitly programmed.

• It is not a single algorithm! It is not only Neural Nets.

• Biggest field of ML is supervised learning (learning with a teacher).

• In supervised learning an algorithm is provided with a set of examples 

– inputs and desired outputs.

• During training, an algorithm tries to minimize an error (on the output) 

by adjusting internal parameters.
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First Stage Considerations for ML at the Edge

• IoT, Industrial, Automotive Application - Can I utilize machine learning?

• Training Time and amount and type of data required for training

• Availability of labeled data (e.g. supervised versus unsupervised)

• Tolerated accuracy

• Number of features

• Computational resources available (e.g. RAM & CPU)

• Latency required/tolerated (cost versus performance)

• Ease of Interpretation

• How will I deploy
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Edge Compute Enabler – Scalable Inference
Balancing cost vs. end-user experience

5PUBLIC

Gen. Purpose MCU
(e.g. Cortex® -Mx)

High Compute MCU
(e.g. Cortex® -M7)

6-8x improvement

5-10x improvement

Multi-core 
Applications 

Processor
(GHz +)

(e.g. Cortex® -Ax)

5x improvement

GPU (Open CL) / 
DSP complexes > 10x improvement

Improving Performance, Increasing Systems Cost
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(incl. Neural Nets)
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Processing unit comparison (Resnet-50)

Size Frequency Inference/s Cost 

efficiency

1x M7 1 (normalized) 600 MHz 1 (normalized) 1 (normalized)

4x A53 5.9 1.8 GHz 5.4 0.95

4x A55 8.3 1.8 GHz 33 4.0

Mid-range

GPU

8.3 800 MHz 11 1.3

Gen 1 ML IP 3.3 1 GHz 350 106

Google TPU 550 750 MHz ~15000 27
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Rule-of-Thumb ML Considerations

• Convolutional neural networks - object recognition, image and computer vision

• Recurrent neural networks - speech, handwriting recognition and time series

• Don’t consider training a deep neural net unless you have LOTS of training data.

• Classical ML model types can be trained with smaller data sets.
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What can machine learning do

Regression (Calculation)

• Predict continuous values

Classification (Choice)

• Recognition, object detection

Anomaly detection (Judgement)

• Detect abnormal conditions

Clustering

• Discover patterns / partitions

Learn strategies 

• Reinforcement Learning

X=a, y=? 

It is a (  )  

A: Dog    B: Cat   C: Cow D: Neither

Heart is going to 

malfunction? Y/N

Find crowds

No need labels

How to play the game?
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How To Speak ML and Sound Like an Expert:  

Input

85% A dancing banana man

10% Eyeballs on a peach slice

2% A moon rising over an island 

1% A taco with cauliflower 

1% A banana

The Neural Net inferred a label

of ‘Dancing Banana Man’
With a confidence 

factor of 85%

Neural Nets Infer/Predict a Label with a Confidence Factor

They Do Not Inherently ‘Decide’ What Something Is
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What is Classical ML?
• Every ML algorithm except neural nets: SVM with linear and RBF kernels, Decision 

trees, Random forest, K-Nearest neighbors, Boosting algorithm (ada-boost), Logistic 

regression, k-means

• Usually much smaller number of parameters and don’t need big training datasets

• Usually faster (both training and inference) compared to NNs

• Might be used in combination with NNs

• Most of the algorithms require careful feature selection
SVM Decision Tree

https://medium.com/@williamkoehrsen/random-forest-simple-explanation-377895a60d2d

https://docs.opencv.org/2.4/_images/optimal-hyperplane.png

https://en.wikipedia.org/wiki/Decision_tree_learning

https://medium.com/@williamkoehrsen/random-forest-simple-explanation-377895a60d2d
https://docs.opencv.org/2.4/_images/optimal-hyperplane.png
https://en.wikipedia.org/wiki/Decision_tree_learning
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Supervised vs Unsupervised

• Supervised – Given Xi and Yi compute f where Yi= f(Xi)

• Unsupervised – Given only Xi , find the patterns

Raw Data

x2

x1

Unsupervised → you can cluster, 

but not identify cluster label

x1

Supervised → you can fully classify

• Known State 1

• Known State 2

x1

+ input 

labels
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https://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-algorithm-use/

https://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-algorithm-use/
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Traditional 

Machine Learning 

Workflow Train Model

Validate 

Model

Test Final Model

acceptable 

error?

Training

Data

Validation

Data

Test Data

80%

10%

10%

adjust 

hyperparameters

Feature

Extraction

Sensor Data,

(a table) Pre-

Process 

Data

data must be labelled

for supervised learning

model hypothesis 

set

Training can be considered 

an optimization problem 

which starts with labelled 

input data and an 

expression to be minimized

model

score

Training data is pseudo-randomly chosen

Validation used to tune hyperparameters

Test to evaluate and predict generalization for new 
data
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Trained Model Optimizations for Mapping to HW Capabilities

Quantize parameters - 32-bit floating point to 8-bit fixed-point -> 4x memory reduction

− Weights can be shared to improve compression

Operation fusing

− Fuse or chain operations to avoid roundtrips to accelerators

− Next gen NN supports operations for: convolution, activation, pooling and normalization

Pruning (sparsity)

− Remove weights and neurons w/small impact on accuracy, reducing memory size 4-10x

− Requires additional training

Next gen IP supports decompression scheme to further reduce weights memory footprint



PUBLIC 15
15

Move from the Cloud to the Edge
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Cloud Access With Amazon & Google ML Services

1. AWS SageMaker
Build, train & deploy ML models

2. AWS HyperParameter Optimization

Optional – to achieve better accuracy

3. AWS Greengrass ML – IoT service

Train on Cloud, Deploy on Edge

1. Google ML Engine

− Training & predictions services

− TensorFlow support

2. Google AutoML

− Designed for beginners/users which want to 

obtain fast a model

− Based on dataset is able to build a NN, train it 

and obtain a model

− 2 flavors

▪ Based model (for free)

▪ Advanced model (550$)

Copyright © 2018 Google, all rights reserved
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Google Cloud Interoperability

Cloud cookbook details interoperability between Cloud and ML SDK w/OCV

− Train using Google Cloud

− Deployed on i.MX 8 using OpenCV DNN

Instructions to teach user how to

− train a neural network (written in TensorFlow) on Google Cloud

− use the ML service

− store the model on Google Cloud storage

− download it locally

− use the Cloud model to perform inference locally

Edge Device
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Machine Learning 

Deployment Overview
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Inference Engine

ML Platform:

Kinetis and LPC MCUs i.MX RT Crossover Processors i.MX and Layerscape Apps Processors

Cortex®-M                         Cortex®-A                         GPU                         DSP                         ML accelerators

Hardware Abstraction Layer

OpenCLArm® Compute Library Custom API

ML Platform 
Direct 

Interface
Open Source Inference

OpenCV/Neon

Tencent NCNN

Arm NN

Android NN TensorFlow

TF Lite

NN Compiler Technology

GLOW

Vision & Sensors Applications

Soft ISP Sensors

Audio Front End

NXP Turnkey ML Solutions

Facial 
Recognition

Speech
Recognition

Anomaly 
Detection

NXP eIQ Machine Learning Software Development Environment

StereoVision

CMSIS-NNOpenCV/GPU

CMSIS-NN Open VX
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Machine Learning Deployment

(The Easy Way)
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Open Source Computer Vision Library: http://opencv.org

• Open-source BSD-licensed library

• Includes several hundreds of computer vision algorithms

− Image processing, image encoding/decoding

− Video encoding/decoding

− Video analysis

− Object detection

− Deep neural networks

− Machine learning

• Supports ARM NEON and OpenCL for acceleration

http://opencv.org/
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OpenCV introduction

• Can be used in combination with deep neural networks

− Example: facial recognition

Face detection

using OpenCV 

object detection

Feature extraction

using deep neural 

network

Face classification

using OpenCV 

machine learning
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New AppNote
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i.MX 6, 7, 8

ML SDK with OpenCV 1.0

• OpenCV DNN Module​

− Inputs Caffe/TensorFlow formats

− Provides NN inference engine​

− Optimized for Neon

• OpenCV ML Module​

− Classical ML algorithms​

− Optimized for Neon

OpenCV

(e.g. image processing, machine learning)

Bindings: Python, Java

SoC

OpenCV HAL (e.g. Neon)

Demos, Apps

Linux

Yocto Recipe Build Per BSP

Documentation provides scripts & detailed description to modify 

Caffe and TensorFlow models to run inference using OpenCV
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Why OpenCV for CML

OpenCV Dlib mlpack shark shogun H2O Libsvm liblinear svm^perf ThunderSVM

SVM (linear) x x - x x x x x x

SVM (RBF) x x - x x x - x

Decision Trees x - x x x

Gradient Boosting x - x x

EM (GMM) x - x x

Logistic Regression x - x x x x

AdaBoost (ml::Boost) x - x

Random Forests x x x x x x

KNN x x x x x

k-means x x x x x x

NEON support x x - x - - - - x
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Training and Inference Performance on M7 (e.g. i.MX RT)

Notes:

1. For training, OCV almost 2 orders of magnitude slower than libsvm due to some problem with class separability; could be 

solved by using RBF kernel, but we haven’t done measurements with that (refer to benchmarking presentation).

2. OCV is faster on testing  in all cases, and even 2 orders of magnitude faster on smartphone data
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Training Can Be Done in a Few Function Calls

#include <opencv2/core/core.hpp>
#include <opencv2/ml/ml.hpp>
...
using namespace cv;
using namespace cv::ml;
...

Mat samples = Mat_<float>(150, 4, samplesData);
Mat labels = Mat_<int>(150, 1, labelsData);
Mat_<int> responses;

/* Prepare training data and labels */
Ptr<TrainData> trainData = TrainData::create(samples, ROW_SAMPLE, labels);

/* Create a model */
Ptr<NormalBayesClassifier> trainedModel = NormalBayesClassifier::create();

/* Train the model */
trainedModel->train(trainData);

/* Predict values */
trainedModel->predict(samples, responses);
cout << "Classes predicted from trained model: " << responses.t();
cout << " / Accuracy: " << (countNonZero(responses == labels) / (float)labels.rows) * 100.0 << "%" << endl;
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Super Boring Example Output

It’s just a “Hello world”. It demonstrates that it works – model training, loading, prediction.
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Anomaly Detection as a 

Subset of Machine Learning
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It’s All About the Data

• Multi-class supervised learning requires representative data for all classes

• In machine condition monitoring applications, this can be impractical to get

− Hard to run machinery to failure, certainly not a statistically significant number of times

• Enter “Anomaly Detection”, essentially a one-class learning problem

− Only needs “nominal” data for training!!!

• The Goal:

− Given a sample point X, compute the likelihood that X is a member of population all_X’s.  

− Compare that to a specified threshold to determine if you have a nominal sample or not
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Bearing Faults Have Specific 

Frequency Signatures

Pd = pitch diameter

Bd = ball diameter

Nb = number of balls

S = speed (revolutions/sec)

 = contact angle

BSF = Ball Spin Frequency

BPFO = Ball Pass Frequency of Outer Trace

BPFI = Ball Pass Frequency of Inner Trace

For ball defects:

BSF = ½ (Pd/Bd) x S x [1 – (Bd/Pd x cos )2]

For outer trace defects:

BPFO = ½ Nb x S x [1 – (Bd/Pd x cos )]

For inner trace defects:

BPFI = ½ Nb x S x [1 + (Bd/Pd x cos )]

Defect signals may be swamped by 

other noise in the system, in which case 

additional filtering may be needed to 

extract the signature.  

Pd

Bd
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One Class Support Vector Machines

• Used for anomaly detection

• The algorithm tells us if a sample is part of a known population or not

• Computing a probability by comparing with a threshold value

− Each contour line corresponds to a different threshold

𝒇𝒔𝒗𝒎 𝒙 =෍

𝒊=𝟏

𝒏

𝒊𝒆
−

𝒙−𝒔𝒗𝒊
𝟐

𝟐𝟐

where:
𝑥 is a d-dimensional feature vector 

𝑠𝑣𝑖 𝑖=1
𝑛 are support vectors (SVs)

𝛼𝑖 𝑖=1
𝑛 are coefficients for SVs

 is known as the “kernel size”

a sample is considered True (1) if pdf 𝑓𝑠𝑣𝑚(𝑥) > threshold 

or False (-1) otherwise

𝑠𝑔𝑛 𝑓𝑠𝑣𝑚 𝑥 − 𝑡ℎ𝑟

We are using a Gaussian Kernel
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Longer product life due 

to preventive 

maintenance and 

periodic capability 

upgrades. E.g. “Clean 

Clothes as a Service”.

Product Life Cycle Intelligence – Monitoring/Tracking Use Cases

Factory – Key/ certificates 

provisioning, datalogging, 

movement monitoring,  

manufacturing and self 

tests (BLE/Wi-Fi/NFC)

Transport to store 

or warehouse Ship to 

consumer

Continuous 

secure monitoring 

& cloud upload

Secure run-time 

data upload. 

OEM uses data 

to further tune 

ML models, add 

capabilities.

Preventive 

maintenance, self-

test w/ data history 

sent to cloud

Secure periodic ML 

model &/or general 

SW capability 

updates

End-of-life decommissioning

and credentials recovery

Continuous sensor logging (Battery powered)

Review transport data, 

display/demo, or storage

Installer reviews transport 

data, runs self-tests, 

securely onboards device 

w/cloud, initiates run-time 

data collection 

Data initiated

preventative 

maintenance

request
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Other Open Source Options
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Deployment of Arm NN

1. Connect to Arm NN through high level frameworks
•Using framework parsers provided by Arm NN

2.Connect to existing inference engine
•With inference engine calling Arm NN API
•Or inference engine calling ACL directly

3.Connect to ACL directly
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CMSIS-NN – Efficient NN Kernels for Cortex-M CPUs

• CNN library for Cortex-M by 

ARM, new in CMSIS 5.3

• Fixed-point inference

• High level API

• Low level API

• Make use of some CMSIS 

math & DSP lib APIs.

• 4.6x performance & 4.9x 

energy efficiency than 

baseline CMSIS-DSP
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CIFAR-10 model

• CIFAR-10 classification – classify images into 10 

different object classes

• 3 convolution layer, 3 pooling layer and 1 fully 

connected layer (~80% accuracy)

• https://www.cs.toronto.edu/~kriz/cifar.html
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DL frameworks (Google TensorFlow&Keras, Caffe/Caffe2, 

Facebook PyTorch, Amazon MxNet, ONNX, etc) 

trainer, quantizer, converter

Loadable NN models:

Can be stored in SD 

card, or be flattened to 

C arrays as source file.

Data feeder and 

preprocessor

Model runner (load, parse, and inference)

CMSIS-NN adapter

PC tools to generate model

MCU firmware: inference engine

Data input: video,audio/time-series, 

structured data

Cortex-M parts
Silicon

CMSIS-NN

NN SDK responsibilities
PC side : PC tool set

Firmware side: inference engine

dataset input 

for training

Inference engine 

based on CMSIS-NN

Map model operations 

to CMSIS-NN APIs
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Benchmark Results using CMSIS-NN with CIFAR-10 Model

• Cortex-M4F(LPC54114)  212mS

• Cortex-M33(LPC55s69)  179mS

IDE

• IAR 8. 30.1

− High / Speed / No size constrains

Video
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Advanced Techniques
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GLOW – Graph Lowering Compiler

• Facebook open-sourced Glow in March 2018

• Machine learning compiler to accelerate the performance of deep learning 

frameworks

• More rapidly design and optimize new silicon products for AI and ML by leveraging 

community-driven compiler software.

• Glow accepts computation graphs from a variety of machine learning frameworks 

and works with a range of accelerators.
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GLOW – From Graph to Machine Code
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IoT Solutions
Putting it All Together
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External Memory

Multimedia

i.MX 8M Mini

System Control

Security

3D Graphics: GC NanoUltra

Connectivity & I/O

1080p60 VP8, VP9, H.264, H.265 decoder

Main CPU Platform

NEON

32KB D-cache

FPU

32KB I-cache

512KB L2 Cache

Quad/Dual Corte-A53

NEON

32KB D-cache

FPU

32KB I-cache

Quad/Dual ortex-A53

NEON

32KB D-cache

FPU

32KB I-cache

Quad Cortex-A53

NEON

32KB D-cache

FPU

32KB I-cache

1080p60 VP8, H.264 encoder

Low Power, Security CPU

Cortex-M4

16KB I-cache

256KB TCM (SRAM)

16KB D-cache

2D Graphics: GC328

• OpenCV support accelerated on NEON
• TensorFlow and Caffe
• Classical machine learning algorithms

• Sensor integration (e.g. anomaly detection)
-M4 manages sensor reading/fusion, feature extraction
-Then use RPmsg to send data to the A53 for inferencing

Can be used for color space conversion

Graphics (OpenGL ES

ML-Related Functions That Can Be Done on i.MX 8M Mini

• Other open source options
-Arm NN w/NEON acceleration using Arm Compute Library (ACL)
-Android NN
-TensorFlow, TF Lite (direct deployment)
-EdgeScale deployment thru docker images
-ACL for image segmentation, feature detection/ extraction, 
image processing, etc.
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Horizontal Machine Learning Technologies at the IoT Edge

Face and Object RecognitionVision

Local and Cloud Commands, Near and Far Field SupportVoice Control

Monitoring/Tracking: Vibration, Acoustic, and PressureAnomaly Detection
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IoT Edge Compute Enabling Technologies

Connectivity

Secure IoT 

Capabilities

OTA

Boot

Manufacturing Provisioning

Onboarding Decommissioning

Face and Object RecognitionVision

Local and Cloud Commands, Near and Far Field SupportVoice Control

Monitoring/Tracking: Vibration, Acoustic, and PressureAnomaly Detection

Processor and

OS Platform
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Processor and

OS Platform

Combining Horizontal Capabilities to Build Vertical Solutions

Connectivity

Secure IoT 

Capabilities

OTA

Boot

Manufacturing Provisioning

Onboarding Decommissioning

Face and Object RecognitionVision

Local and Cloud Commands, Near and Far Field SupportVoice Control

Monitoring/Tracking: Vibration, Acoustic, and PressureAnomaly Detection

Smart Appliance Smart Retail Smart IndustrySmart Home
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Example Customer Engagements Today

Anomaly Detection 
Secure Facial Recognition 

Voice Control
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Secure Facial Recognition 

Empowering Future Products

Voice Control

Anomaly Detection

Voice Control

Anomaly DetectionFace Recognition

Voice Control

Smart lock

• Face unlocks

• Local voice 

commands 

(after face rec.)

Smart appliance

• Anomaly detection for

predictive maintenance

• Voice commands

“Wash cold, 

heavily soiled”

Smart appliance / Smart Panel

• Embedded smart display 

voice assistant, video calling

• Secure facial recognition

• Anomaly detection for 

predictive maintenance
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Production Grade, Certified IoT Edge Machine Learning Solutions

• Implemented with best in class silicon, 

software and IP from NXP and 3rd parties

• Near production ready hardware

− Cost and form factor optimized

• Pre-integrated production ready software, 

fully tested & certified

• NXP provides a single point of contact 

for support, licensing and procurement

• Use case dependent solutions:

− Turnkey – for well defined use cases

− Customizable – can be modified, tuned and 

trained for specific use cases

BOMs

CertificationsLayoutsSchematics

Software Source

Documentation

OOB HW/SW

U1 MIMXRT1052DVL6B i.MXRT1050 Cross Processor

U3 W9812G6JB-6I 128Mbit SDRAM 3V 166MHz

U4 IS26KL256S-DABLI00256Mb Hyperflash 3V 100MHz Flash

U5 A7101CHTK2 Secure IoT/Authentication Conn IC

U6 LBEE5KL1DX-883 IC WIFI BT/BLE B/G/N 3-4.8V LGA46

U7 MKW21Z512VHT4 KINETIS L 32-BIT MCU CORTEX-M0

U8,U9 NX3L2267GM,115 IC ANALOG SWITCH SPDT 10XQFN

U10 XCL214B333DR DC/DC CONVERTER 3.3V 5W
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Trademark and copyright statement
The trademarks featured in this presentation are 
registered and/or unregistered trademarks of NXP 
Semiconductors in the EU and/or elsewhere.  All 
rights reserved.  All other marks featured may be 
trademarks of their respective owners.

Copyright © 2018

Thank You!
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