Zynq UltraScale+
MPSoC: Embedded
Design Tutorial

A Hands-On Guide to Effective
Embedded System Design

UG1209 (v2019.1) July 3, 2019

& XILINX

https://www.xilinx.com/bin/public/docSeeAllVersions?productType=DesignTools&documentId=UG1209

& XILINX.

Revision History

The following table shows the revision history for this document.

Section Revision Summary

07/03/2019 Version 2019.1

General updates Validated with Vivado® Design Suite and Petalinux
2019.1.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback
UG1209 (v2019.1) July 3, 2019 www.Xxilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=2

& XILINX

Table of Contents

ReVISION HIiStOry oottt it it ittt ettt eisentennsonnssnnssoosssnnsannsannses 2

Chapter 1: Introduction

AbOUt This GUIE . .. oottt ittt ittt ittt te e s eseansnsnsasasosossessssansnsasass 5
How Zynq UltraScale+ Devices Offer a Single Chip Solution.............. i, 6
How the Vivado Tools Expedite the Design Processcciiiiiiiiiiinirnnernnnnnnns 9
What You Need to Set Up Before Startingcciiiiiiiiiniiiiii it ietenennennnnn 10

Chapter 2: Zynq UltraScale+ MPSoC Processing System Configuration

Zynq UltraScale+ System Configuration. ittt ittt iinennennnns 13
Example Project: Creating a New Embedded Project with Zynq UltraScale+ MPSoC............ 14
Example Project: Running the “Hello World” Application from Arm Cortex-A53.............. 25
Example Project: Running the “Hello World” Application from Arm Cortex-R5............... 29
Additional Informationttt i i et ittt i e 32

Chapter 3: Build Software for PS Subsystems

Processing Unitsin Zynq UItraScale+o i iiiii ittt ittt inetenaeenaennnennns 34
Example Project: Create a Bare-Metal Application ProjectinSDK.ovuvnn. 35
Example Project: Create Linux Images using PetaLinuxcciitiiinnnennnnnn. 45

Chapter 4: Debugging with SDK

Xilinx System DebuUgger.ttt ittt ettt ettt a et e, 51
Debugging Software Using SDK.ttt ittt iiietrneeeeneeenoeenaesaaesannnnns 53
Debugging Using XSCT . . oi ittt iiiieiietnntnereseasensoassosossnsanssssosnasanss 56

Chapter 5: Boot and Configuration

RV =T 4 o T 7 T 67
Linuxon APUand Bare-Metal ONRPUt itiiiiiiiiii it nenrerensnsasasasnnnas 69
Boot Sequence for SD-Boot.i ittt it ettt ittt ettt et e e 69
Boot Sequence for QSPIBoot Mode. iiiii it ittt iii it et etataatantaaseenananns 79
Boot Sequence for QSPI-Boot Mode Using JTAG.ciitiitietnennrnnrnnenenaenannnns 90
Boot Sequence for USBBOOt Modeciiiitiiiiiiieiiiettnnerenaeenaesnaesannnnns 93
Secure Boot SeqUeNCE ittt i i i i it i e ittt 100

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 3
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=3

& XILINX.

Chapter 6: System Design Examples

Design Example 1: Using GPIOs, Timers,and Interrupts.ottt i ittt i i nnnnns 134
Design Example 2: Example Setup for Graphics and Display Port Based Sub-System 154

Appendix A: Debugging Problems with Secure Boot

Determine if PUF RegistrationisRUNNINg ittt iirninrnnnnnnnnnns 161
Read the BoOt IMage v ittt it ittt i et iieetenetenaseenesenasennsennsennnans 161

Appendix B: Additional Resources and Legal Notices

XiliNX RESOUICES . . oot ittt ittt itetetatatatsesnnsasansasasasnosnsnsnsasansnsass 162
SOIUtION CeNEErS. . oot ittt ittt ittt ittt seantaatansasssssassasansansnasassnns 162
Documentation Navigatorand Design Hubs ittt iieinennnnns 162
Design Filesfor This Tutorial ittt ittt et iinetenerenerenneennnens 163
XiliNX RESOUINCES . . o it ittt ittt ittt it tetsneaneansansossssssssnssnssnsnssnssnss 163
TrainiNg RESOUICES. . oottt vttt tinetenetonnessosssessssssosnsssnsssnsssanssnnsons 164
Please Read: Important Legal Noticesciiiiiiiiiiintinnernnereneeenneennnnns 165

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 4
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=4

& XILINX

Chapter 1

Introduction

About This Guide

This document provides an introduction to using the Xilinx® Vivado® Design Suite flow for
using the Zynq® UltraScale+™ MPSoC device. The examples are targeted for the Xilinx
ZCU102 Rev1 evaluation board. The tool versions used are Vivado and the Xilinx Software
Development Kit (SDK) 2019.1.

Note: To install SDK as part of the Vivado Design Suite, you must choose to include SDK in the
installer. See Xilinx Software Development Kit, page 8.

The examples in this document were created using the Xilinx tools running on Windows 10,
64-bit operating system, and Petalinux on Linux 64-bit operating system. Other versions of
the tools running on other Window installs might provide varied results. These examples
focus on introducing you to the following aspects of embedded design.

Note: The sequence mentioned in the tutorial steps for booting Linux on the hardware is specific to
the PetaLinux tools released for 2019.1, which must be installed on the Linux host machine for
exercising the Linux portions of this document.

« Chapter 2, Zynq UltraScale+ MPSoC Processing System Configuration describes
creation of a system with the Zynq UltraScale+ MPSoC Processing System (PS) and
running a simple “Hello World" application on Arm® Cortex®-A53 and Cortex-R5
processors. This chapter is an introduction to the hardware and software tools using a
simple design as the example.

« Chapter 3, Build Software for PS Subsystems describes steps to configure and build
software for processing blocks in processing system, including application processing
unit (APU), real-time processing unit (RPU), and platform management unit (PMU).

» Chapter 4, Debugging with SDK provides an introduction to debugging software using
the debug features of the Xilinx Software Development Kit (SDK). This chapter uses the
previous design and runs the software bare metal (without an OS) to show how to
debug. This chapter also lists Debug configurations for Zynq UltraScale+ MPSoC.

« Chapter 5, Boot and Configuration shows integration of components to configure and
create Boot images for a Zynqg UltraScale+ system. The purpose of this chapter is to
understand how to integrate and load Boot loaders.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 5
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=5

(: X”_INX® Chapter 1: Introduction

« Chapter 6, System Design Examples highlights how you can use the software blocks you
configured in Chapter 3 to create a Zynq UltraScale+ system.

» Appendix B, Additional Resources and Legal Notices provides links to additional
resources related to this guide.

Example Project

The best way to learn a tool is to use it. This guide provides opportunities for you to work
with the tools under discussion. Specifications for sample projects are given in the example
sections, along with an explanation of what is happening behind the scenes. Each chapter
and examples are meant to showcase different aspects of embedded design. The example
takes you through the entire flow to complete the learning and then moves on to another
topic.

Additional Documentation

Additional documentation is listed in Appendix B, Additional Resources and Legal Notices.

How Zynq UltraScale+ Devices Offer a Single Chip
Solution

Zynq UltraScale+ MPSoC, the next generation Zynq device, is designed with the idea of
using the right engine for the right task. The Zynq UltraScale+ comes with a versatile
Processing System (PS) integrated with a highly flexible and high-performance
Programmable Logic (PL) section, all on a single System on Chip (SoC). The Zynq
UltraScale+ MPSoC PS block includes engines such as the following:

« Quad-core Arm Cortex-A53 based Application Processing Unit (APU)

» Dual-core Arm Cortex-R5 based Real Time Processing Unit (RPU)

« Arm Mali-400 MP2 based Graphics Processing Unit (GPU)

« Dedicated Platform Management Unit (PMU) and Configuration Security Unit (CSU)

« List of High Speed peripherals, including Display port and SATA

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 6
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=6

(: X”_INX® Chapter 1: Introduction

The Programmable Logic Section, in addition to the programmable logic cells, also comes
integrated with few high performance peripherals, including the following:

» Integrated Block for PCI Express

« Integrated Block for Interlaken

» Integrated Block for 100G Ethernet
« System Monitor

« Video Codec Unit

The PS and the PL in Zynq UltraScale+ can be tightly or loosely coupled with a variety of
high performance and high bandwidth PS-PL interfaces.

To simplify the design process for such sophisticated devices, Xilinx offers the Vivado
Design Suite, Xilinx Software Development Kit (SDK), and PetaLinux Tools for Linux. This set
of tools provides you with everything you need to simplify embedded system design for a
device that merges an SoC with an FPGA. This combination of tools enables hardware and
software application design, code execution and debug, and transfer of the design onto
actual boards for verification and validation.

The Vivado Design Suite

Xilinx offers a broad range of development system tools, collectively called the Vivado
Design Suite. Various Vivado Design Suite Editions can be used for embedded system
development. In this guide we will utilize the System Edition. The Vivado Design Suite
Editions are shown in the following figure.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 7
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=7

8 X”_INX® Chapter 1: Introduction

Vivado Design Suite - HLx Editions

Vivado Design Suite - w"a_;: HL ;“ad:_IHL ::":du Vivado HL WebPACK Free 30-day
HLx Edition Features Edition ’ +tion Edition Edition (Device Limited) Evaluation

Accelerating Implementation

Synthesis and Place and

Route ® ® . *
Partial Reconfiguration® L) L) [.
Accelerating Verification
Vivado Simulator L] L] . L]
Vivado Device
L] L] L] L] .
Programmer
Vivado Logic Analyzer L) L) L) [.
Vivado Serial I/O Analyzer))) ® ®
Debug IP (ILA/VIO/IBERT) L] L] [] []
Accelerating High Level Design
Vivado High-Level
. . . L] L)
Synthesis
Vivado IP Integrator . . L] L)
System Generator for
L] .

DspP
*Can be purchased as an option.

Figure 1-1: Vivado Design Suite Editions

Other Vivado Components
Other Vivado components include:
« Embedded/Soft IP for the Xilinx embedded processors

« Documentation

« Sample projects

Xilinx Software Development Kit

The Software Development Kit (SDK) is an integrated development environment,
complementary to Vivado, that is used for C/C++ embedded software application creation
and verification. SDK is built on the Eclipse open-source framework and might appear
familiar to you or members of your design team.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 8
UG1209 (v2019.1) July 3, 2019 www.Xxilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=8

(: X”_INX® Chapter 1: Introduction

When you install the Vivado Design Suite, SDK is available as an optional software tool that
you must choose to include in your installation. For details, refer to Installation
Requirements, page 10.

For more information about the Eclipse development environment, refer to
http://www.eclipse.org.

Other SDK components include:

» Drivers and libraries for embedded software development

« Linaro GCC compiler for C/C++ software development targeting the Arm Cortex-A53
and Arm Cortex-R5 MPCore processors in the Zynq UltraScale+ Processing System

PetalLinux Tools

The Petalinux tools set is an Embedded Linux System Development Kit. It offers a
multi-faceted Linux tool flow, which enables complete configuration, build, and deploy
environment for Linux OS for the Xilinx Zynqg devices, including Zynq UltraScale+.

For more information, see the Petalinux Tools Documentation: Reference Guide (UG1144)
[Ref 7].

The PetalLinux Tools design hub provides information and links to documentation specific to
PetaLinux Tools. For more information, see Documentation Navigator and Design Hubs.

How the Vivado Tools Expedite the Design Process

You can use the Vivado Design Suite tools to add design sources to your hardware. These
include the IP integrator, which simplifies the process of adding IP to your existing project
and creating connections for ports (such as clock and reset).

You can accomplish all your hardware system development using the Vivado tools along
with IP integrator. This includes specification of the Zynq UltraScale+ Processing System,
peripherals, and the interconnection of these components, along with their respective
detailed configuration.

SDK is used for software development and is available either as part of the Vivado Design
Suite, or it can be installed and used without any other Xilinx tools installed on the machine
on which it is loaded. SDK can also be used to debug software applications.

The Zynq UltraScale+ Processing System (PS) can be booted and run without programming
the FPGA (programmable logic or PL). However, in order to use any soft IP in the fabric, or
to bond out PS peripherals using EMIO, programming of the PL is required. You can
program the PL using SDK or using the Vivado Hardware Manager.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 9
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
http://www.eclipse.org
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=9

(: X”_INX® Chapter 1: Introduction

For more information on the embedded design process, refer to the Vivado Design Suite
Tutorial: Embedded Processor Hardware Design (UG940) [Ref 2].

For more information about the Zynq UltraScale+ Processing System, refer to the Zyng
UltraScale+ Processing System Product Guide (PG201) [Ref 9].

What You Need to Set Up Before Starting

Before discussing the tools in depth, you should make sure they are installed properly and
your environments match the requirements mentioned in the "Example Project" section of
this guide.

Hardware Requirements for this Guide

This tutorial targets the Zynq UltraScale+ ZCU102 evaluation board. The examples in this
tutorial were tested using the ZCU102 Rev 1 board. To use this guide, you need the
following hardware items, which are included with the evaluation board:

« ZCU102 Rev1 evaluation board

« AC power adapter (12 VDC)

« USB Type-A to USB Micro cable (for UART communications)

« USB Micro cable for programming and debugging via USB-Micro JTAG connection
« SD-MMC flash card for Linux booting

« Ethernet cable to connect target board with host machine

« Monitor with Display Port (DP) capability and at least 1080P resolution.

« DP cable to connect the Display output from ZCU102 Board to a DP monitor.

Installation Requirements

Vivado Design Suite and SDK

Make sure that you have installed the 2019.1 Vivado HL System Edition tools. Visit
https://www.xilinx.com/support/download.html to confirm that you have the latest tools
version.

Ensure that you have both the Vivado Design Suite and SDK Tools installed. When you
install the Vivado Design Suite, SDK is available as an optional software tool that you must
elect to include in your installation by selecting the Software Development Kit check box,
as shown in the following figure. To install SDK by itself, you can deselect the other software
products and run the installer with only Software Development Kit selected.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 10
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/support/download.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=10

8 X”_INX® Chapter 1: Introduction

$ Vivado 2019.1 Installer - Vivado HL Design Edition
rado HL Design Ed

tion, verification and device programming. Complete device support, cable drivers an

USB I1 cables before proceeding)
d for WebPACK license)

r DSP with MATLAS

Reset to Defaults

 Tnc. Allrights reserved. <Back Next > Cancel

Figure 1-2: Vivado Installer - Select Software Development Kit

For more information on installing the Vivado Design Suite and SDK, refer to the Vivado
Design Suite User Guide: Release Notes, Installation, and Licensing (UG973) [Ref 3].

IMPORTANT: /nstallation does not create an SDK desktop shortcut by default. You can launch the SDK
binary from C:\Xilinx\SDK\2019.1\bin\xsdk.bat.

Petalinux Tools

Install the PetalLinux Tools to run through the Linux portion of this tutorial. PetaLinux tools
run under the Linux host system running one of the following:

« RHEL 7.2/7.3 (64-bit)
« CentOS 7.2/7.3 (64-bit)
+ Ubuntu 16.04.1/2 (64-bit)

Note: For more information, see Xilinx Answer 70395.

This can use either a dedicated Linux host system or a virtual machine running one of these
Linux operating systems on your Windows development platform.

When you install PetaLinux Tools on your system of choice, you must do the following:

« Download PetalLinux 2019.1 SDK software from the Xilinx Website.

« Download the ZCU102 PetalLinux BSP (ZCU102 BSP (prod-silicon)) from the 2019.1
downloads page.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 11
UG1209 (v2019.1) July 3, 2019 www.Xxilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=answers;d=70395.html
https://www.xilinx.com/member/forms/download/xef.html?filename=petalinux-v2019.1-final-installer.run
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools.htmltools/2019-1.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools.htmltools/2019-1.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=11

2: X”_INX® Chapter 1: Introduction

« Add common system packages and libraries to the workstation or virtual machine. For
more information, see the Installation Requirements from the Petalinux Tools
Documentation: Reference Guide (UG1144) [Ref 7].

Prerequisites

« 8 GB RAM (recommended minimum for Xilinx tools)
« 2 GHz CPU clock or equivalent (minimum of 8cores)

« 100 GB free HDD space

Extract the Petalinux Package

By default, the installer installs the package as a subdirectory within the current directory.
Alternatively, you can specify an installation path. Run the downloaded PetalLinux installer.

Note: Ensure that the Petalinux installation path is kept short. The PetaLinux build will fail if the path
exceeds 255 characters.

bash> ./petalinux-v2019.1-final-installer.run

Petalinux is installed in the petalinux-v2019.1-final directory, directly underneath
the working directory of this command. If the installer is placed in the home directory
/home /user, Petalinux is installed in /home/user/petalinux-v2019.1-final.

Refer to Chapter 3, Build Software for PS Subsystems for additional information about the
Petalinux environment setup, project creation, and project usage examples. A detailed
guide on PetalLinux Installation and usage can be found in the PetalLinux Tools
Documentation: Reference Guide (UG1144) [Ref 7].

Software Licensing

Xilinx software uses FLEXnet licensing. When the software is first run, it performs a license
verification process. If the license verification does not find a valid license, the license
wizard guides you through the process of obtaining a license and ensuring that the license
can be used with the tools installed. If you do not need the full version of the software, you
can use an evaluation license.For installation instructions and information, see the Vivado
Design Suite User Guide: Release Notes, Installation, and Licensing (UG973) [Ref 3].

Tutorial Design Files

See Design Files for This Tutorial, page 163 for information about downloading the design
files for this tutorial.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 12
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=12

& XILINX

Chapter 2

Zynq UltraScale+ MPSoC Processing
System Configuration

Now that you have been introduced to the Xilinx® Vivado® Design Suite, you will begin
looking at how to use it to develop an embedded system using the Zynq® UltraScale+™
MPSoC Processing System (PS).

The Zynq UltraScale+ device consists of Quad-Core Arm® Cortex®-A53 based APU,
Dual-Core Arm Cortex-R5 RPU, Mali 400 MP2 GPU, and many hard Intellectual Property
components (IPs), and Programmable Logic (PL). This offering can be used in two ways:

» The Zynq UltraScale+ PS can be used in a standalone mode, without attaching any
additional fabric IP.

« |IP cores can be instantiated in fabric and attached to the Zynqg UltraScale+ PS as a
PS+PL combination.

Zynq UltraScale+ System Configuration

Creation of a Zynq UltraScale+ system design involves configuring the PS to select the
appropriate boot devices and peripherals. To start with, as long as the PS peripherals and
available MIO connections meet the design requirements, no bitstream is required. This
chapter guides you through creating a simple PS-based design that does not require a
bitstream.

In addition to the basic PS configuration, this chapter will briefly touch upon the concept of
Isolation Configuration to create subsystems with protected memory and peripherals. This
advanced configuration mode in the PS Block enables you to setup subsystems comprising
Masters with dedicated memory and peripherals. The protection is provided by the XMPU
and the XPPU in Zynq UltraScale+ PS block. The isolation configuration also allows the
TrustZone settings for components to create and configure the systems in Secure and
Non-Secure Environments.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 13
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=13

& XILINX.

Chapter 2: Zynq UltraScale+ MPSoC Processing System Configuration

Example Project: Creating a New Embedded Project
with Zynq UltraScale+ MPSoC

For this example, you will launch the Vivado Design Suite and create a project with an
embedded processor system as the top level.

Starting Your Design

1. Start the Vivado Design Suite.

2. In the Vivado Quick Start page, click Create Project to open the New Project wizard.

3. Use the information in the table below to make selections in each of the wizard screens.

Table 2-1:

New Project Wizard Options

Wizard Screen

System Property

Setting or Command to Use

Project Name

Project name

edt zcul02

Project Location

C:/edt

Create Project Subdirectory

Leave this checked

Project Type

Specify the type of sources for your
design. You can start with RTL or a
synthesized EDIF.

RTL Project

Do not specify sources at this time
check box

Leave this unchecked.

Add Sources

Do not make any changes to this screen.

Add Constraints

Do not make any changes to this screen.

Default Part

Select

Boards

Display Name

Zynq UltraScale+ ZCU102
Evaluation Board

New Project Summary

Project Summary

Review the project summary

4. Click Finish. The New Project wizard closes and the project you just created opens in the

Vivado design tool.

Creating a Block Design Project

You will now use the IP Integrator to create a Block Design project.

1. In the Flow Navigator, under IP Integrator, click Create Block Design.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial

UG1209 (v2019.1) July 3, 2019

www.Xxilinx.com

l Send Feedback I

14

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=14

& XILINX.

Chapter 2: Zynq UltraScale+ MPSoC Processing System Configuration

Flow Navigator o e PROJECT MANAGER - edt_zcu102
~ PROJECT MANAGER
£+ Settings

Add Sources

Sources
a z 2 +
Design Sources
Language Templates
» Constraints
<F P catalog ~ [Simulation Sources
sim_1
¥ IPINTEGRATOR

Create Block Design

Open Block Design

Generate Block Design

Figure 2-1: Create Block Design Button

The Create Block Design wizard opens.

2. Use the following information to make selections in the Create Block Design wizard.

Table 2-2: Setting in Create Block Design Wizard

Wizard Screen

System Property Setting or Command to Use

Create Block Design

Design Name

edt zcul02

Directory <Local to Projects

Specify Source Set

Design Sources

3. Click OK.

The Diagram window view opens with a message that states that this design is empty. To
get started, you will next add some IP from the catalog.

4. Click the Add IP button + .

5. In the search box, type zyng to find the Zynq device IP.
6. Double-click the ZYNQ UltraScale+ MPSoC IP to add it to the Block Design.

The Zynq UltraScale+ MPSoC processing system IP block appears in the Diagram view,
as shown in the following figure.

Figure 2-2:

Zynq UltraScale+ MPSoC: Embedded Design Tutorial
UG1209 (v2019.1) July 3, 2019

Diagram x Address Editor
a ¥ X ¢ Q

X Designer Assistance available. Run Block Automation

+ & C o o

zynq_ultra_ps_e_ 0

M_AXI_HPMO_LPD 4 i
maxihpm0_lpd_aclk pl_resetnd
® pl_clko

UltraSCALE*

Zyng UltraScale+ MPSoC

Zynq UltraScale+ MPSoC Processing System IP Block

l Send Feedback I 15

www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=15

(: X”_INX® Chapter 2: Zynq UltraScale+ MPSoC Processing System Configuration

Managing the Zynq UltraScale+ Processing System in Vivado

Now that you have added the processor system for the Zynq MPSoC to the design, you can
begin managing the available options.

1. Double-click the ZYNQ UltraScale+ Processing System block in the Block Diagram
window.

The Re-customize IP dialog box opens, as shown in the following figure. Notice that by
default, the processor system does not have any peripherals connected

¢

Zyng UltraScale+ MPSoC (3.3) ’

© Documentation &* Presets IP Location

Page Navigator - PS UltraScale + Block Design

Canfigurabl)
Switch To Advanced b Cenfiaurable
RPU LPD

PS UltraScale+ Block Desic APU

. PS-PL
1/0 Configuration
(256 KB) ﬁ l ‘ GPU Mali-400

Clock Configuration on

{ CcCl |4——
-—-I GPIO
PCle Gen2 x1/x2/x4
DDR Configuration e | *
| SATAO SATA1

PS-PL Configuration x] I
<o] X
(S GEM 3

{oens [[omms] core s L

Ll USEB O UsE 1 . _':,"L h‘

Display Port

M

ACE ACPFPD

Bl [e
- PO SPI1
T T L
“--. 2zco rc1
= UART 0 —
™ [SYSMON |-' - -
: l " Y r r

DDR Controller
LFD_DMA (DDR3, DDR4, LPDOR3, LPDDRA)

X HPM [x S-AX "Zx S-AK| | S-AXI T 3AN
HPC

Tk
Ik
FPD || HP

I

LPD| LPD

PMU

T

| OK | Cancel

‘ csu

Figure 2-3: Re-customize IP Dialog Box

2. Click Cancel to exit the dialog box without making changes to the design.

TIP: In the Block Diagram window, notice the message stating that designer assistance is available, as
O shown in the following figure. When designer assistance is available, you can click the link to have
Vivado perform that step in your design.

Diagram » Address Editor be ? 0O0
a H & O Q + E C o -

® Designer Assistance available. Run Block Automation

Figure 2-4: Designer Assistance Link

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 16
UG1209 (v2019.1) July 3, 2019 www.Xxilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=16

2: X”_INX® Chapter 2: Zynq UltraScale+ MPSoC Processing System Configuration

3. You will now use a preset template created for the ZCU102 board. Click the Run Block

Automation Link.
The Run Block Automation dialog box opens.

Click OK to accept the default processor system options and make default pin
connections.

This configuration wizard enables many peripherals in the Processing System with some
multiplexed 1/0 (MIO) pins assigned to them according to the board layout of the
ZCU102 board. For example, UARTO and UART1 are enabled. The UART signals are
connected to a USB-UART connector through UART to the USB converter chip on the
ZCU102 board.

To verify, double-click on the Zynq UltraScale+ Processing System block in the block
diagram window.

Note the check marks that appear next to each peripheral name in the Zynq UltraScale+
device block diagram, signifying the I/O Peripherals that are active.

Iou

<IN
-~ e V]
<> nwoonras |
<> om0 || cemt |
<> cemz || omms v/
S
A

< smo || s |
q CANO || mw’\
<> zco v 1 v/
<= uasro V]| vasr1v]

‘ SYSMON ‘

MO

Figure 2-5: 1/O Unit with Active Peripherals Identified

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 17
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=17

2: X”_INX® Chapter 2: Zynq UltraScale+ MPSoC Processing System Configuration

In the block diagram, click one of the green I/O Peripherals, as shown in the previous
figure. The 10 Configuration dialog box opens for the selected peripheral.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial

4 Re-customize IP =

Zynq UltraScale+ MPSocC (3.3)

’
© Docurnentation &F Presets IP Location
Page Navigator 1/0 Configuration
[switch To Advanced MIO Voltage Standard
PS UltraScale+ Block Desic BankO [MIO 0:25] Bank1 [MIO 26:51] | Bank2 [MIO 52:77] | Bank3 [Dedicated]
LVCMOS18 v LVCMOS18 v LVCMOS18 v LVCMOS1E v
110 Configuration
Clock Configuration « Q T =
DDR Configuration Search:
PS-PL Configuration Peripheral o Signal /O Type Drive Strength{mA) Polarity Speed Pull Type Direction
Low Speed
Memory Interfaces
I/O Peripherals
CAN
12c
~] 12C 0 MIO 14 15
~]12C 1 MIO 16 .. 17
PITAG
=] PMU
Csu
SP1
UART
GPIO
Processing Uinit
High Speed
Reference Clocks

Figure 2-6: 1/0 Configuration Page of the Re-customize IP Dialog Box

This page enables you to configure low speed and high speed peripherals. For this

example, you will continue with the basic connection enabled using Board preset for
ZCU102.

In the Page Navigator, select PS-PL Configuration.

In PS-PL Configuration, expand PS-PL Interfaces and expand the Master Interface.

For this example, because there is no design in PL, you can disable the PS-PL interface.
In this case, AXI HPMO FPD and AXI HPM1 FPD Master Interfaces can be disabled.

De-select AXI HPMO FPD and AXI HPM1 FPD.

. l Send Feedback I 18
UG1209 (v2019.1) July 3, 2019 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=18

2: X”_INX® Chapter 2: Zynq UltraScale+ MPSoC Processing System Configuration

Zynq UltraScale+ MPSoC: Embedded Design Tutorial

The PS-PL configuration looks like following figure.

Re-customize IP *

Zynq UltraScale+ MPSoC (3.3) I
© Documentation %F Presets IP Location
Page Navigator PS-PL Configuration
« | = =

Switch To Advanced Mode

- Search:
PS UltraScale+ Block Design

Name Select

1/0 Configuration General

Clock Configuration PS-PL Interfaces
Master Interface

DDR Configuration AXI HPMO FPD

PS-PL Configuration AXIHPMT FPD
AXI HPMO LPD
Slave Interface

Debug

Figure 2-7: PS-PL Configuration

10. Click OK to close the Re-customize IP wizard.

Isolation Configuration

This section is for reference only. It explains the importance of Isolation Configuration
settings for different use-cases. Different use-cases may need to establish Isolation
Configurations on an as-need basis. Isolation configuration is optional and you can set it as
per your system requirement. Safety/Security critical use cases typically require isolation
between safe/non-safe or secure/non-secure portions of the design. This requires a
safe/secure region that contains a master (such as the RPU) along with its slaves (memory
regions and peripherals) to be isolated from non-safe or non-secure portions of the design.
In such cases, the TrustZone attribute can be applied to the dedicated peripherals or
memory locations. In this way only a valid and trusted master can access the secure slaves.
An other use-case requiring Isolation is for Platform and Power management. In this case,
independent subsystems can be created with Masters and slaves. This is used to identify
dependencies during run-time power management or warm restart for upgrade or recovery.
An example of this use-case can be found on the Zynq UltraScale+ Restart solution wiki
page. The Xilinx Memory Protection Unit (XMPU) and Xilinx Peripheral Protection Unit
(XPPU) in Zynq UltraScale+ provide hardware protection for memory and peripherals. These
protection units complement the isolation provided by TrustZone (TZ) and the Zynq
UltraScale+ MPSoC SMMU.

The XMPU and XPPU in Zynqg UltraScale+ allow Isolation of resources at SoC level. Arm
MMU and Trustzone enable Isolation within Arm Cortex-A53 Core APU. Hypervisor and
SMMU allows setting Isolation between Cortex-A53 cores. From a tools standpoint, these
Protection Units can be configured using Isolation Configuration in Zynqg UltraScale+ PS IP
wizard. The Isolation settings are exported as an initialization file which is loaded as a part

o l Send Feedback I 19
UG1209 (v2019.1) July 3, 2019 www.xilinx.com

https://www.xilinx.com
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841820/Zynq+UltraScale+Plus+Restart+solution
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=19

2' X”_INX® Chapter 2: Zynq UltraScale+ MPSoC Processing System Configuration
of the bootloader, in this case the First Stage Boot Loader (FSBL). For more details, see the
Zynq UltraScale+ MPSoC Technical Reference Manual (UG1085) [Ref 5].

1. Double-click the Zynq UltraScale+ Processing System in the block diagram window, if
it is not open.

2. Select Switch To Advanced Mode.

Notice the protection elements indicated by red blocks in the wizard.

Page Navigator = PS UltraScale+ Block Design

RPU APU nfigurable 1
Switch To Advanced Mode ‘ Gicvz | FRD —
‘ CortexA 5x ‘ ‘ CortexA 5x

g —
Canexn!
P§ UltraScale+ Block Design Neon Neon

s
SCUMimers PS-PL
IO Cenfiguration 3 ‘ | | Slosing (Configuraticn
Ace I L2 with ECC |
Clock Configuration (22::':3) l
7‘ﬁ GPU Mali-400

| ccl }«——_
1

Security

CortexA 5x
Neon

CortexA 5x
Nean

DDR Configuration 10U

PS-PL Configuration 1—“

Advanced Configuration

SATAQ SATA 1

X =il
i i
——— Core SW
- T/
B .
Soof D/ '
< e | S | i
_—
. 8

X
i

PCle Configuration

5-AXI
\ACP-FPD

Isolation Cenfiguration

Mo

ﬂ

f2x 5-aX1 [8-AXI
HPC | ACE

VCcu

dx S-AXI
HP

LD | FRD |

Tl HPM
r

E
!
|
ﬁ

fre emio

iy
=
PMU t
5 DDR Controllar
Microblaze LPD_DMA (DDR3, DDR4, LPDDR3, LPDDR4)

Figure 2-8: PS Configuration Advanced Mode

T2x HPM

3. To create an isolation setup, click Isolation Configuration.

This tutorial does not use Isolation Configuration and hence, no Isolation related
settings are requested.

4. Click OK to close the Re-customize IP wizard.

Note: For detailed steps to create isolation configuration, see XAPP1320.

Validating the Design and Connecting Ports
Use the following steps to validate the design:

1. Right-click in the white space of the Block Diagram view and select Validate Design.
Alternatively, you can press the F6 key.

2. A message dialog box opens and states "Validation successful. There are no errors or
critical warnings in this design.”

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 20
UG1209 (v2019.1) July 3, 2019 www.Xxilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/support/documentation/application_notes/xapp1320-isolation-methods.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=20

& XILINX.

Click OK to close the message.

Click Hierarchy.

o v kW

In the Block Design view, click the Sources tab.

Under Design Sources, right-click edt_zcu102 and select Create HDL Wrapper.

Chapter 2: Zynq UltraScale+ MPSoC Processing System Configuration

The Create HDL Wrapper dialog box opens. You will use this dialog box to create a HDL
wrapper file for the processor subsystem.

TIP: The HDL wrapper is a top-level entity required by the design tools.

7. Select Let Vivado manage wrapper and auto-update and click OK.

8. In the Block Diagram, Sources window, under Design Sources, expand

edt_zcu102_wrapper.

9. Right-click the top-level block diagram, titled edt_zcu102_i : edt_zcu102
(edt_zcu102.bd) and select Generate Output Products.

The Generate Output Products dialog box opens, as shown in the following figure.

Note: If you are running the Vivado Design Suite on a Linux host machine, you might see

¢ Generate Qutput Products

The following output products will be generated.

Preview
Q = =
= =
edt_zcu102.bd
Synthesis

Implementation

Simulation

Synthesis Options
Global

®) Out of context per IP

Qut of context per Block Design

Run Settings

MNumber of jobs: 4 g

.

Cancel

x|

Figure 2-9: Generate Output Products Dialog Box

additional options under Run Settings. In this case, continue with the default settings.

10. Click Generate.

This step builds all required output products for the selected source. For example,

constraints do not need to be manually created for the IP processor system. The Vivado
tools automatically generate the XDC file for the processor subsystem when Generate
Output Products is selected.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial
UG1209 (v2019.1) July 3, 2019

www.Xxilinx.com

l Send Feedback I

21

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=21

(: X”_INX® Chapter 2: Zynq UltraScale+ MPSoC Processing System Configuration

11. Click OK, if you see the message: “Out-of-context module run was launched for
generating output products”.

12. When the Generate Output Products process completes, click OK.

13.In the Block Diagram Sources window, click the IP Sources tab. Here you may see the
output products that you just generated, as shown in the following figure.

File Edit Flow Tools Window Layout View Help Quick Access
, B X E »p, B & = X
Flow Navigator - e B BLOCK DESIGN - edt_zcu102 *
~ PROJECT MANAGER - -
Sources x Design Signals Board ? _00
£+ Settings
Q = = + L

Add Sources
b Block Designs (1)

Language Templates v A0 edt_zcu102 (16)
1F IP Catalog ~ (= Synthesis (12)
» #FO edi_zcu102_zyng_ultra_ps_e_0_0 (10}
~ IP INTEGRATOR W8 edt_zcul102v

% edt_zcu102_oocxde
~ Implementation (2)

Create Block Design

Open Block Design 0 edt_zcu102_zyng_ultra_ps_e_0_0
Generate Block Design @ edt_zeul0Zy
% edt_zcu102_oocxdc
v SIMULATION ~ Simulation (2)

Run Simulation > O edt_zcu102_zyng_ultra_ps_e_0_0(1)

@ edt_zcul02v

¥ RTLANALYSIS Hierarchy | IP Sources Libraries Compile Order

Figure 2-10: Outputs Generated Under IP Sources

Exporting Hardware to SDK
In this example, you will launch SDK from Vivado.

1. Select File > Export > Export Hardware.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 22
UG1209 (v2019.1) July 3, 2019 www.Xxilinx.com I—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=22

2: X”_INX® Chapter 2: Zynq UltraScale+ MPSoC Processing System Configuration

The Export Hardware dialog box opens. Make sure that the Export to field is set to the
default option of <Local to Project>.

¢ Export Hardware @

Export hardware platform for software
development tools. ‘

Include bitstream

Exportto: | @3 =Local fo Project= hd

Figure 2-11: Export Hardware to SDK
2. Click OK.

TIP: The hardware is exported in a ZIP file (<project wrappers.hdf). When SDK launches, the file
O unzips automatically, and you can find all the files in the SDK project hardware platform folder.

3. Select File > Launch SDK.

The Launch SDK dialog box opens.

TIP: You can also start SDK in standalone mode and use the exported hardware. To do this, start SDK,
O and while creating a new project, point to the new target hardware that was exported.

4. Accept the default selections for Exported location and Workspace.

¢ Launch SDK |
Launch software development tool ‘
Exported location: | & <Local to Project= -
Workspace: & <Local to Project= e
@

Figure 2-12: Launch SDK Dialog Box
5. Click OK.

SDK opens. Notice that when SDK launches, the hardware description file is loaded
automatically.

The system.hdf tab shows the address map for the entire Processing System, as
shown in the following figure.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 23
UG1209 (v2019.1) July 3, 2019 www.Xxilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=23

& XILINX.

It system.hdf 52

edt_zcul02_wrapper_hw_platform_0 Hardware Platform Specification

Design Information

Target FPGA Device:
Part:

Created With:
Created On:

xczudeg

xczuleg-fivb1156-2-i

Vivado

Address Map for processor psu_cortexa53_[0-3]

Cell Base Addr
psu_gdma_1l Oufd510000
psu_gdma_2 0xfd520000
psu_gdma_3 Oxfd530000
psu_crf_apb Oxfd1a0000
psu_gdma_4 Ouf 540000
psu_gdma_5 0xfd550000
psu_gdma_§ Oxfd560000
psu_gdma_7 0xfd570000
psu_pcie_dma (e d0F0000
psu_pmu_global_0 (ffdB0000
psu_smmu_gpy 0xfdB00000
psu_gspi_0 000000
psu_siou (Oaefd3d0000
psu_smmu_reg (hefd5f0000
psu_sd_ 1 OxfFL70000
Ouerview
Figure 2-13:

What Just Happened?

Vivado exported the hardware specifications to the selected workspace where software

High Addr Slave I'f
Oxcf dS1FF
Oufd52ffff
OxfdS3FFT
Oxfd2dffff
Oxcf dSAFF
Oufd55FFFf
OxfdSBFff
OxfdSTFE
Oxf dOFFFFE
O fdbffff
OxFdffFff
OxFFOFFFF
Oxfd3dffff
Onef d STFFFF
OxFrLTFiF

Mem/Reg
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER

Segment

TrustZone
MenSecure
NonSecure
MonSecure
MeonSecure
MenSecure
NonSecure
MonSecure
MeonSecure
MenSecure
NonSecure
MonSecure
MeonSecure
MenSecure
NonSecure

MonSecure

AccessType
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write

Address Map in SDK system.hdf Tab

Chapter 2: Zynq UltraScale+ MPSoC Processing System Configuration

development will take place. If <Local to Project> was selected, then Vivado created a new
workspace in the Vivado project folder. The name of the workspace is
<project name>.sdk. In this example, the workspace created is
C:\edt\edt zcul02\edt zcul02.sdk.

The Vivado design tool exported the Hardware Platform Specification for your design

(system.hdf in this example) to SDK. In addition to system.hdf, the following additional

files are exported to SDK:
* Dpsu_init.c

* psu_init.h

* psu_init.tcl

* psu_init gpl.c

* psu_init gpl.h

* psu init.html

The system.hdf file opens by default when SDK launches. The address map of your

system read from this file is shown by default in the SDK window.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial

UG1209 (v2019.1) July 3, 2019

www.Xxilinx.com

l Send Feedback I

24

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=24

8 X”_INX® Chapter 2: Zynq UltraScale+ MPSoC Processing System Configuration

The psu_init.c, psu _init.h, psu init gpl.c,and psu_init gpl.h files contain

the initialization code for the Zynq UltraScale+ MPSoC Processing System and initialization
settings for DDR, clocks, phase-locked loops (PLLs), and 1Os. SDK uses these settings when
initializing the processing system so that applications can be run on top of the processing
system. Some settings in the processing system are fixed for the ZCU102 evaluation board.

What's Next?

Now, you can start developing the software for your project using SDK. The next sections
help you create a software application for your hardware platform.

Example Project: Running the “Hello World”
Application from Arm Cortex-A53

In this example, you will learn how to manage the board settings, make cable connections,
connect to the board through your PC, and run a simple hello world software application
from Arm Cortex-A53 in JTAG mode using System Debugger in Xilinx SDK.

1. Connect the power cable to the board.

2. Connect a USB Micro cable between the Windows Host machine and J2 USB JTAG
connector on the Target board.

3. Connect a USB micro cable to connector J83 on the target board with the Windows Host
machine. This is used for USB to serial transfer.

ﬁ IMPORTANT: Ensure that SW6 Switch, on the bottom right, is set to JTAG boot mode as shown in the
following figure.

L_ _E- N

Figure 2-14: SW6 Switch Settings for JTAG Boot Mode

4. Power on the ZCU102 board using the switch indicated in the figure below.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 25
UG1209 (v2019.1) July 3, 2019 www.Xxilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=25

8 XI LI NX® Chapter 2: Zynq UltraScale+ MPSoC Processing System Configuration

Figure 2-15: 2CU102 Board Power Switch

Note: If SDK is already running, jump to step 6.
5. Open SDK and set the workspace path to your project file, which in this example is
C:\edt\edt zcul02\edt zcul02.sdk.

Alternately, you can open SDK with a default workspace and later switch it to the correct
workspace by selecting File > Switch Workspace and then selecting the workspace.

6. Open a serial communication utility for the COM port assigned on your system. SDK
provides a serial terminal utility, which will be used throughout the tutorial; select
Window > Show View > Other > Terminal to open it.

7. Click the Connect button ¥ to set the serial configuration and connect it.

(L Problems | &) Tasks | & Cansole | 5 Properties | &9 Terminal 1 5¢ | =g |
NI A

Serial: (COM3, 115200, 8, 1, Mane, Mone - CLOSED) - Encoding: (150-8359-1)

Figure 2-16: Terminal Window Header Bar

8. To modify, disconnect the connection by clicking the Disconnect button.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 26
UG1209 (v2019.1) July 3, 2019 www.Xxilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=26

2: X”_INX® Chapter 2: Zynq UltraScale+ MPSoC Processing System Configuration

9. Click the Settings button [~] to open the Terminal Settings dialog box.

10. Verify the port details in the device manager.

UART-0 terminal corresponds to COM port with Interface-0. For this example, UART-0
terminal is set by default, so for the COM port, select the port with interface-0.

The following figure shows the standard configuration for the Zynq UltraScale+ MPSoC
Processing System.

mTerminal Settings @

View Settings:
View Title: Terminal 1

Encoding: I50-88589-1 -

Connection Type:

Serial [
Settings:

Port: COM3 -
Baud Rate: 115200 -
Data Bits: 8 -
Stop Bits: 1 -

Parity: MNone -
Flow Control: |None -

Timeout (sec): 5

[OK] | Cancel |

Figure 2-17: Terminal Settings Dialog Box

11. Select File > New > Application Project.

The new Project wizard opens.

12. Use the information in the table below to make your selections in the wizard screens.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial

. l Send Feedback I 27
UG1209 (v2019.1) July 3, 2019 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=27

& XILINX.

Chapter 2: Zynq UltraScale+ MPSoC Processing System Configuration

Table 2-3: New Application Project Settings for Standalone APU Application

Wizard Screen

System Properties

Setting or Command to Use

Application Project

Project Name

test a53

Use Default Location

Select this option

OS Platform

standalone

Hardware Platform

edt_zcu102_wrapper_hw_platform_0

Processor psu_cortexa53 0
Language C

Compiler 64-bit

Hypervisor Guest No

Board Support Package

Select Create New and provide the name
of test_a53 bsp.

Templates

Available Templates

Hello World

SDK creates the test a53 application project and test a53 bsp board support
package (BSP) project under the Project Explorer. It automatically compiles both and

creates the ELF file.

13. Right-click test_a53 and select Run as > Run Configurations.

14. Right-click Xilinx C/C++ application (System Debugger) and click New.

SDK creates the new run configuration, named test a53 Debug.

The configurations associated with the application are pre-populated in the Main tab of
the launch configurations.

15. Click the Target Setup tab and review the settings.

Notice that there is a configuration path to the initialization Tcl file. The path of
psu_init.tcl is mentioned here. This file was exported when you exported your
design to SDK; it contains the initialization information for the processing system.

16. Power cycle the board.

17.

[£i Problems | ¥ Tasks | &l Console | = Properties | & Terminall 2

Click Run.

"Hello World" appears on the serial communication utility in Terminal 1, as shown in
the following figure.

=l

Serial: (COM3, 115200, 8, 1, Nene, Mone - CONMECTED) - Encoding: (ISO-8859-1)
nello World

Zynq UltraScale+ MPSoC: Embedded Design Tutorial
UG1209 (v2019.1) July 3, 2019

Figure 2-18: Output on Serial Terminal

l Send Feedback I 28

www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=28

2: X”_INX® Chapter 2: Zynq UltraScale+ MPSoC Processing System Configuration

Note: There was no bitstream download required for the above software application to be
executed on the Zynq UltraScale+ evaluation board. The Arm Cortex-A53 quad core is already
present in the processing system. Basic initialization of this system to run a simple application is
done by the Device initialization Tcl script.

18. Power cycle the board and retain same connections and board settings for the next
section.

What Just Happened?

The application software sent the "Hello World" string to the UARTO peripheral of the PS
section.

From UARTO, the "Hello world" string goes byte-by-byte to the serial terminal application
running on the host machine, which displays it as a string.

Example Project: Running the “Hello World”
Application from Arm Cortex-R5
In this example, you will learn how to manage the board settings, make cable connections,

connect to the board through your PC, and run a simple hello world software application
from Arm Cortex-R5 in JTAG mode using System Debugger in Xilinx SDK.

Note: If you have already set up the board, skip to step 5.

1. Connect the power cable to the board.

2. Connect a USB Micro cable between the Windows Host machine and the J2 USB JTAG
connector on the Target board.

3. Connect a USB cable to connector J83 on the target board with the Windows Host
machine. This is used for USB to serial transfer.

4. Power on the ZCU102 board using the switch indicated in Figure 2-14.

i? IMPORTANT: Ensure that the SW6 switch is set to JTAG boot mode as shown in Figure 2-14.

Note: If SDK is already open, jump to step 6.
5. Open SDK and set the workspace path to your project file, which in this example is

C:\edt\edt zcul02\edt zcul02.sdk.

Alternately, you can open SDK with a default workspace and later switch it to the correct
workspace by selecting File > Switch Workspace and then selecting the workspace.

6. Open a serial communication utility for the COM port assigned on your system. SDK
provides a serial terminal utility, which will be used throughout the tutorial; select
Window > Show View > Terminal to open it.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 29
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=29

2: X”_INX® Chapter 2: Zynq UltraScale+ MPSoC Processing System Configuration

i Problems | &£ Tasks | & Consale | & Properties | & Terminal 1 52 = B8

Serial: (COM3, 115200, 8, 1, Mane, Mone - CLOSED) - Encoding: (150-8359-1)

Figure 2-19: Terminal Window Header Bar
7. Click the Connect button ¥ to set the serial configuration and connect it.

8. Click the Settings button [~] to open the Terminal Settings dialog box.

The Com -port details can be found in the device manager on host machine. UART-0
terminal corresponds to Com-Port with Interface-0. For this example, UART-0 terminal is
set by default, so for the Com-port, select the port with interface-0.

The following figure shows the standard configuration for the Zynq UltraScale+ MPSoC
Processing System.

mTerminal Settings @

View Settings:
View Title: Terminal 1

Encoding: 150-8859-1 -

Connection Type:

Serial i v
Settings:

Port: COM3 -
Baud Rate: 115200 hd
Data Bits: 8 -7
Stop Bits: 1 -

Parity: Mone -
Flow Control: |None -

Timeout (sec): 5

[OK l | Cancel |

Figure 2-20: Terminal Settings Dialog Box

9. In SDK, switch back from Debug perspective to C/C++ perspective. For this you have to
click Windows ->Open Perspective -> C/C++.

Ignore this step, if SDK is in C/C++ perspective already.
10. Select File > New > Application Project.

The New Project wizard opens.

11. Use the information in the following table to make your selections in the wizard screens.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 30
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=30

2: X”_INX® Chapter 2: Zynq UltraScale+ MPSoC Processing System Configuration

12.
13.

14.

15.

Wizard Screen System Properties Setting or Command to Use

Application Project Project Name hello_world_r5

Use Default Location Select this option

Hardware Platform edt_zcu102_wrapper_hw_platform_0

Processor psu_cortexr5_0

OS Platform standalone

Language C

Board Support Package Select Create New and provide the

name of hello_world_r5_bsp.

Templates Available Templates Hello World

SDK creates the hello world r5 application project and hello world r5 bsp
board support package (BSP) project under the Project Explorer. It automatically
compiles both and creates the ELF file.

Right-click hello_world_r5 and select Run as > Run Configurations.

Right-click Xilinx C/C+ + application (System Debugger) and click New.

SDK creates the new run configuration, named hello_world_r5 Debug. The
configurations associated with the application are pre-populated in the Main tab of the
launch configurations.

Click the Target Setup tab and review the settings.

Notice that there is a configuration path to the initialization Tcl file. The path of
psu_init.tcl is mentioned here. This file was exported when you exported your
design to SDK; it contains the initialization information for the processing system.

Click Run.

"Hello World" appears on the serial communication utility in Terminal 1, as shown in
the following figure.

[Z{ Problems | ¥ Tasks | Bl Console | =l Properties | & Terminal 1 23 B i

Senal: (COM3, 115200, 8, 1, None, Mone - CONMNECTED] - Encoding: (IS0-8859-1)
Hello World
]

Zynq UltraScale+ MPSoC: Embedded Design Tutorial

Figure 2-21: Output on Serial Terminal

Note: There was no bitstream download required for the above software application to be
executed on the Zynq UltraScale+ evaluation board. The Arm Cortex-R5 dual core is already
present on the board. Basic initialization of this system to run a simple application is done by the
Device initialization Tcl script.

o l Send Feedback I 31
UG1209 (v2019.1) July 3, 2019 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=31

2: X”_INX® Chapter 2: Zynq UltraScale+ MPSoC Processing System Configuration

What Just Happened?

The application software sent the "Hello World" string to the UARTO peripheral of the PS
section.

From UARTO, the "Hello world" string goes byte-by-byte to the serial terminal
application running on the host machine, which displays it as a string.

Additional Information

Board Support Package

The board support package (BSP) is the support code for a given hardware platform or
board that helps in basic initialization at power up and helps software applications to be run
on top of it. It can be specific to some operating systems with bootloader and device
drivers.

TIP: If you would like to regenerate the BSP, right click the BSP project under the Project Explorer and
O select Re-generate BSP Sources.
If you would like to change the target BSP after project creation:
1. Create a New Board Support Package for your target.
2. In the Project Explorer, right click your application project and select Change Referenced BSP, and
point the new BSP you want to set.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 32
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=32

2: X”_INX® Chapter 2: Zynq UltraScale+ MPSoC Processing System Configuration

Standalone OS

Standalone is a simple, low-level software layer. It provides access to basic processor
features such as caches, interrupts, and exceptions, as well as the basic processor features
of a hosted environment. These basic features include standard input/output, profiling,
abort, and exit. It is a single threaded semi-hosted environment.

ﬁ IMPORTANT: The application you ran in this chapter was created on top of the Standalone OS. The BSP
that your software application targets is selected during the New Application Project creation process.
If you would like to change the target BSP after project creation, you can manage the target BSP by
right-clicking the software application and selecting Change Referenced BSP.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 33
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=33

& XILINX

Chapter 3

Build Software for PS Subsystems

This chapter lists the steps to configure and build software for PS subsystems. In this
chapter, you will use the Zyng® UltraScale™+ hardware platform (hardware definition file)
configured in the Vivado® Design Suite.

In Chapter 2, you created and exported the hardware platform from Vivado. This hardware
platform contains the hardware handoff file, the processing system initialization files
(psu_init), and the PL bitstream. In this chapter, you will use the hardware platform in
Xilinx® SDK and Petalinux to configure software for the processing system.

This chapter serves two important purposes. One, it helps you build and configure the
software components that can be used in future chapters. Second, it describes the build
steps for a specific PS subsystem.

Processing Units in Zynq UltraScale+

The main processing units in the processing system in Zynq UltraScale+™ are listed below.

« Application Processing Unit: Quad-core Arm® Cortex®-A53 MPCore Processors
« Real Time Processing Unit: Dual-core Arm Cortex-R5 MPCore Processors

« Graphics Processing Unit: Arm Mali 400 MP2 GPU

« Platform Management Unit (PMU)

This section demonstrates configuring these units using system software. This can be
achieved either at the boot level using First Stage Boot Loader (FSBL) or via system
firmware, which is applicable to the platform management unit (PMU).

You will use the Zynq UltraScale+ hardware platform in SDK to perform the following tasks:

1. Create a First Stage Boot Loader (FSBL) for the Arm Cortex-A53 64-bit quad-core
processor unit (APU) and the Cortex-R5 dual-core real-time processor unit (RPU).

2. Create bare-metal applications for APU and RPU.

3. Create platform management unit (PMU) firmware for the platform management unit
using Xilinx SDK.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 34
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=34

(: XI LI NX® Chapter 3: Build Software for PS Subsystems

In addition to the bare-metal applications, this chapter also describes building U-Boot and
Linux Images for the APU. The Linux images and U-Boot can be configured and built using
the Petalinux build system.

Example Project: Create a Bare-Metal Application
Project in SDK

For this example, you will launch Xilinx SDK and create a bare-metal application using the
hardware platform for Zynq UltraScale+ created using the Vivado Design Suite. Figure 3-1,
page 36 shows the SDK New Application Project dialog box and possible options for
creating bare-metal (Standalone) applications for processing subsystems in Zynq
UltraScale+ devices.

Create First Stage Boot Loader for Arm Cortex-A53-Based APU

Start with creating the First Stage Boot Loader (FSBL). Zynqg UltraScale+ supports the FSBL
to run on either the APU or the RPU. This way, you can load the FSBL on the required Arm
processor, and the FSBL will then subsequently load the required application or secondary
boot loader on the required core.

In this example, you will create an FSBL image targeted for Arm Cortex-A53 core 0.

1. Start SDK if it is not already open.

2. Set the Workspace path based on the project you created in Chapter 2. For example,
C:\edt\edt zcul02\edt zcul02.sdk.

3. Select File > New > Application Project.

The New Project dialog box opens.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 35
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=35

(: XI LI NX® Chapter 3: Build Software for PS Subsystems

I3

m Mew Project [= '@

Application Project #.
Create a managed make application project. \E

Project name: fshl_a53

Use default location
Chedthedt_zcul02\edt_zcul02.sdk\fsbl_a53 Browse...

default

05 Platform: [standalone v]

Target Hardware

Hardware Platform: ’edt_zr_ulﬂl_wrapper_hw_platform_ﬂ VI ’ Ngw]
Processor; l psu_cortexad3_0 -
nsu_cortexas3 0
psu_cortexa53_1
Target Software psu_cortexa53_2
i) lpsu cortexas3 3
Language: @ C @ C++ psu_cortexr5_0
su_cortexrs 1
Compiler: [64—bit 'l Ipsu_pmu_ﬂ I
Hypervisor Guest: [No vl
Board Support Package: @ Create New | a53_bsp
Use existing
@' < Back Mext » Finish] [Cancel]

Figure 3-1: Application Project Page of New Project Wizard

4. Use the information in the following table to make your selections in the New Project
wizard:

Table 3-1: Settings to Create New Application Project - FSBL_A53

Wizard Screen System Properties Setting or Command
Application Project | Project Name fsbl a53

Use Default Location Select this option
OS Platform Standalone
Hardware Platform edt_zcu102_wrapper_hw_platform_0
Processor psu_cortexa53 0
Language C
Compiler 64-bit
Hypervisor Guest No
Board Support Package | Select Create New and provide the name of a53_bsp.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 36
UG1209 (v2019.1) July 3, 2019 www.Xxilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=36

(: XI LI NX® Chapter 3: Build Software for PS Subsystems

Table 3-1: Settings to Create New Application Project - FSBL_A53 (Cont’d)

Wizard Screen System Properties Setting or Command
Click Next
Templates Available Templates Zynq MP FSBL

5. In the Templates page, select Zynq MP FSBL:

@ Mew Project ?@

Templates .
Create one of the available templates to generate a fully-functioning

application project.

Available Templates:

Empty Application First Stage Bootloader (FSBL) for Zyng -
Hello World Ultrascale+ MPSoC. The FSBL configures
IwIP Echo Server the FPGA with HW bit stream (if it exists)
Memory Tests and loads the Operating System (05)
Peripheral Tests Image or Standalone (5A) Image or 2nd

Zyng MP DRAM tests Stage Boot Loader image from the
T S nonvolatilc memony (NAND/SD/OSPT) to
R&rA (DDR) and takes AS3/FS out of reset,
It supports multiple partitions, and each
partition can be a code image or a bit
stream.

'i?)' Mext = [Finish] ’ Cancel]

Figure 3-2: Templates Page of the New Project Wizard

6. Click Finish.
SDK creates the board Support package and an FSBL application.

By default, the FSBL is configured to show basic print messages. Next, you will modify the
FSBL build settings to enable debug prints.

For a list of the possible debug options for FSBL, refer to the £sbl a53 > src >
xfsbl debug.h file.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 37
UG1209 (v2019.1) July 3, 2019 www.Xxilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=37

(: XI LI NX® Chapter 3: Build Software for PS Subsystems

For this example, enable FSBL_DEBUG_INFO by doing the following:

1. In the Project Explorer folder, right-click the fsbl_a53 application.
Click C/C+ + Build Settings.

Select Settings > Tool Settings > Symbols.

Click the Add button E .

v A WD

Enter FSBL_DEBUG_INFO.

'@ Enter Value @

Defined symbols (-0

FSBL_DEBUG_INFO

[ok || Ccancel

Figure 3-3: Enter Value Dialog Box

The Symbols settings are as shown in the following figure.

B Properties for fsbl 253 =5

type filter text Settings - > -

: Resource

Builders [

4 C/C++ Build Configuration: |De|:}ug [Active] v| | Manage Configurations..,
Build Variables

Environment

Loiiini &) Tool Settings

4 Build Steps I Build Artifact l 'o_|_|_|5 Binary Parsers | & Error Parsersl

Tool Chain Editor 4 B3 ARM AS53 gec assembler Defined symbaols (-0) J 8 F
» CfC++ General & General
Project References a ﬁM AS53 goc compiler pENe o
d & P FSBL DEBUG INFO

Run/Debug Settings
Warnings

m

g Optimization

Figure 3-4: Symbols Settings for fsbl_a53 Application

6. Click OK to accept the changes and close the Settings dialog box.
7. Right-click the £sbl a53 application and select Clean Project.

Note: If the Project > Build Automatically setting is selected, SDK automatically builds the
application for you.

8. The FSBL executable is now saved as £sbl_a53 > debug > fsbl a53.elf.

In this tutorial, the application name fsbl_a53 is to identify that the FSBL is targeted for
APU (the Arm Cortex-A53 core).

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 38
UG1209 (v2019.1) July 3, 2019 www.Xxilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=38

& XILINX.

Chapter 3: Build Software for PS Subsystems

9. Save the file, and re-build the fsbl_a53 application.

Note: If the system design demands, the FSBL can be targeted to run on RPU, which can then load
rest of the software stack on RPU and APU.

Create First Stage Boot Loader for Arm Cortex-R5 Based RPU

You can also create an FSBL for Arm Cortex-R5 Core by doing the following.

1. Click File > New > Application Project to open the New Project dialog box.

@ Mew Project

= [

Application Project L

Create a managed make application pru:uject.| i /
Project name: fsbl_r3

Use default location

Chedth\edt_zcul02\edt_zcul02.sdk\fsbl_rS Browse
default

05 Platform: Istandalone v‘

Target Hardware

Hardware Flatform: [Edt_zculﬂl_wrapper_hw_platform_ﬂ vJ INewI

Processon [psu_corteer_ﬂ vJ

Target Software

Language: @ C ([0 C+s

32-bit
Board Support Package: @ Create New 5_bsp
Use existing

'/?:' < Back Mext > I[Finish l [Cancel I

Figure 3-5: Application Project Page of New Project Wizard

2. Use the information in the following table to make your selections in the New Project

wizard.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial

UG1209 (v2019.1) July 3, 2019

www.Xxilinx.com

l Send Feedback I

39

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=39

2: XI LI NX® Chapter 3: Build Software for PS Subsystems

Table 3-2: Settings to Create New Application Project - FSBL_R5

Wizard Screen System Properties Setting or Command

Application Project | Project Name fsbl r5
Use Default Location Select this option
OS Platform Standalone
Hardware Platform edt_zcu102_wrapper_hw_platform_0
Processor psu_cortexr5 0
Language C
Board Support Package | Select Create New and provide the name of r5 bsp.

Click Next

Templates Available Templates Zynq MP FSBL

3. Click Finish.

This creates the board Support package and an FSBL application targeted for RPU Arm
Cortex-R5 Core 0 in Zynq UltraScale+.

Create Bare-Metal Application for Arm Cortex-A53 based APU

Now that the FSBL is created, you will now create a simple bare-metal application targeted
for an Arm A53 Core 0.

For this example, you will use the test_a53 application that you created in Example Project:
Running the "Hello World” Application from Arm Cortex-A53 in Chapter 2

In test_a53, you selected a simple Hello World application. This application can be loaded
on APU by FSBL running on either APU or RPU.

SDK also provides few other bare-metal applications templates to make it easy to start
running applications on Zynq UltraScale+ devices. Alternatively, you can also select the
Empty Application template and copy or create your custom application source code in the
application folder structure.

Modify the Application Source Code
1. In the Project Explorer, click test a53 > src > helloworld.c.
This opens the helloworld. c source file for the test a53 application.

2. Modify the arguments in the print command, as shown below.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 40
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=40

2: XI LI NX® Chapter 3: Build Software for PS Subsystems

Print ("Hello World from APU\n\r");

int main()

1

init_platform();
print{"Hello World from APUAn\r");

cleanup_platform();
return 8;

}
Figure 3-6: Application Source Code Snippet: Print Command

3. Type Ctrl + S to save the changes.
4. Right-click the test a53 project and select Build Project.

5. Verify that the application is compiled and linked successfully and the test a53.elf
file is generated in the test _a53 > Debug folder.

|® ! Problems J=| Tasks B Console 2 [Properties Bl SDK Terminal = O

o) BB B O~

CDT Build Console [test_a53]

'Building target: test_a53.elf’

"Invoking: ARM AS3 gcc linker’

aarche4-none-elf-gecc -WL,-T -Wl,../src/lscript.ld -L../../a53_bsp/psu_cortexa53_8/1lib -o "test_a53.
"Finished building target: test_a53.elf’

"Invoking: ARM AS3 Print Size’
aarch64-none-elf-size test_a53.elf |tee "test_a53.elf.size”
text data bss dec hex filename
38928 2352 28656 53936 d2b@ test_asS3.elf
'Finished building: test_aS53.elf.size’

m

14:28:35 Build Finished (toock 1s.455ms)

Figure 3-7: CDT Build Console

Create Bare-Metal Application for Arm Cortex-R5 based RPU

In this example, you will create a bare-metal application project for Arm Cortex-R5 based
RPU. For this project, you will need to import the application source files available in the
Design Files ZIP file released with this tutorial. For information about locating these design
files, refer to Design Files for This Tutorial in Appendix B.

Creating the Application Project

1. In SDK, select File > New > Application Project to open the New Project wizard.

2. Use the information in the following table to make your selections in the wizard.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 41
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=41

2: XI LI NX® Chapter 3: Build Software for PS Subsystems

Table 3-3: Settings to Create New RPU Application Project

Wizard Screen System Properties Setting or Command to Use

Application Project Project Name testapp_ r5

Use Default Location Select this option

OS Platform standalone

Hardware Platform edt_zcu102_wrapper_hw_platform

Processor psu_cortexr5 0

Language C

Board Support Package Select Use Existing and select r5_bsp
Templates Available Templates Empty Application

Note: The r5_bsp board support package was created when you followed the steps in Create
First Stage Boot Loader for Arm Cortex-R5 Based RPU.

3. Click Finish.

The New Project wizard closes and SDK creates the testapp_r5 application project,
which can be found in the Project Explorer.

4. In the Project Explorer tab, expand the testapp_r5 project.

5. Right-click the src directory, and select Import to open the Import dialog box.

6. Expand General in the Import dialog box and select File System.

7. Click Next.

8. Select Browse and navigate to the design files folder, which you saved earlier (see
Design Files for This Tutorial in Appendix B).

9. Click OK.

10. Select the testapp. c file.

11. Click Finish. SDK automatically builds the application and displays the status in the
console window.

12. Open testapp. ¢ to review the source code for this application. The application
configures the UART interrupt and sets the Processor to WFI mode. This application is
reused and explained during run time in Chapter 5, Boot and Configuration.

Modifying the Linker Script

1. In the Project Explorer, expand the testapp r5 project.
2. Inthe src directory, double-click 1script.1d to open the linker script for this project.

3. In the linker script, in Available Memory Regions, modify following attributes for
psu_r5_ddr_0_MEM_0-:

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 42
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=42

2: XI LI NX® Chapter 3: Build Software for PS Subsystems

. Base Address: 0x70000000

o Size: 0x10000000

The linker script modification is shown in following figure. The following figure is for
representation only. Actual memory regions may vary in case of Isolation settings.

Linker Script: Iscript.ld

A linker script is used to control where different sections of an executable are placed in memory.
In this page, you can define new memory regions, and change the assignment of sectionsto memory regions.

Available Memory Regions

MName Base Address Size
psu_ocm_rarn_0_MEM_0 OncFFFCO000 Oncd 0000
psu_gspi_linear_0_MEM_D o COODO00D (o2 0000000
psu_r3_0_atern_MEM_D (w0 (o 10000
psu_r3_0_btcm_MEM_D 020000 D 10000
psu_r3_ddr_0_MEM_0 070000000 010000000
psu_r5_tem_ram_0_MEM_D (] Do 0000

Stack and Heap Sizes

Stack Size | Dx2000
Heap Size | 02000

Figure 3-8: Linker Script Modification

This modification in the linker script ensures that the RPU bare-metal application
resides above 0x70000000 base address in the DDR, and occupies no more than 256 MB
of size.

4. Type Ctrl + S to save the changes.
5. Right-click the testapp_r5 project and select Build Project.

6. Verify that the application is compiled and linked successfully and that the
testapp_ r5.elf file was generated in the testapp r5 > Debug folder.

Modifying the Board Support Package

The ZCU102 Evaluation kit has a USB-TO-QUAD-UART Bridge IC from Silicon Labs (CP2108).
This enables you to select a different UART port for applications running on A53 and R5
Cores. For this example, let A53 use the UART 0 by default, and send and receive RPU serial
data over UART 1. This requires a small modification in the r5_ bsp file.

1. Right-click r5 bsp and select Board Support Package Settings.

2. Click Standalone.

3. Modify the stdin and stdout values to psu_uart 1, as shown in the figure below.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 43
UG1209 (v2019.1) July 3, 2019 www.Xxilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=43

(: XI LI NX® Chapter 3: Build Software for PS Subsystems

m Board Support Package Settings
Board Support Package Settings w
Control various settings of your Board Support Package.
4 Overview
Configuration for 0S: standalone
4 divers MName Value Default Type Description
psu_cortexr5_0 = : % 4
stdin psu_uart 1 “\none peripheral stdin peripheral
stdout psu_uart 1 _/none peripheral stdout peripheral
aze_except false false boolean Enable MicroBlaze Exceptions
false false boolean Enable 5/W Intrusive Profiling on Hardware Targets
4 1 [
':ll?:.," | oK | | Cancel

Figure 3-9: Board Support Package Settings for RPU BSP
4. Click OK.
5. Right-click the testapp_ r5 project and select Build Project.

6. Verify that the application is compiled and linked successfully and that the
testapp_ r5.elf was generated in the testapp r5 > Debug folder.

Create PMU Firmware for Platform Management Unit

In this example, you will create PMU firmware using Xilinx SDK. PMU firmware plays an
important role in boot-up and overall platform management of Zynq UltraScale+ MPSoC.
For more information, see Platform Management Unit Firmware in Chapter 5.

1. Select File > New > Application Project.

2. In the application dialog box, enter Project name pmu_ fw.
3. Leave the Use default location check box selected.

4. For the OS Platform, select Standalone.

5. In the Target Hardware area, do the following:

a. Ensure that the hardware platform exported from Vivado in Chapter 2,
edt zcul02 wrapper hw platform 0, is selected as the Hardware
Platform.

b. For the processor, select psu_pmu_0.
6. In the Target Software area, do the following:
a. Select the C Language.
b. Under Board Support Package, select Create New and enter pmu_bsp.

7. Click Next.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 44
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=44

2: XI LI NX® Chapter 3: Build Software for PS Subsystems

8. Select the ZynqMP PMU Firmware.
9. Click Finish.

m Mew Project = =
Templates .
Create one of the available templates to generate a fully-functioning
application project.

Available Templates:

Platform Management Unit Firrmware for -
ZyngMP.

'?' < Back | Mext > [Finish | I Cancel |

Figure 3-10: Templates Page of the New Project Dialog Box

10. Verify that the firmware was compiled and linked successfully to generate the
executable in pmu_fw > Debug > pmu_ fw.elf.

Example Project: Create Linux Images using
PetaLinux

The earlier example highlighted creation of the bootloader images and bare-metal
applications for APU, RPU, and PMU using Xilinx SDK. In this chapter, you will configure and
build Linux Operating System Platform for Arm Cortex A53 core based APU on Zynq
UltraScale+. The Petalinux tool flow, along with the board-specific BSP, can be used to
configure and build Linux images.

i? IMPORTANT: This example needs a Linux Host machine. Petalinux Tools Documentation: Reference
Guide (UG1144) [Ref 7] for information about dependencies for PetalLinux 2019.1.

ﬁ IMPORTANT: This example uses the ZCU102 Petalinux BSP to create a Petalinux project. Ensure that
you have downloaded the ZCU102 BSP for Petalinux as instructed in Petalinux Tools, page 11.

1. Create a Petalinux project using the following command:

Spetalinux-create -t project -s $petalinux-create -t project -s <path to the
directory that has xilinx-zcul02-v2019.1-final.bsp>

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 45
UG1209 (v2019.1) July 3, 2019 www.Xxilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=45

(: XI LI NX® Chapter 3: Build Software for PS Subsystems

Note: xilinx-zcul02-v2019.1-final.bsp is the PetaLinux BSP for ZCU102 Production
Silicon Rev1.0 Board. Use xilinx-zcul02-2U9-ES2-Rev1.0-v2019.1-final.bsp, if you
are using ES2 Silicon on Rev 1.0 board.

The above step creates a Petalinux Project Directory, such as:
xilinx-zcul02-2019.1.

2. Change to the Petalinux project directory using the following command:

$ cd xilinx-zcul02-2019.1

The zCU102 Petalinux-BSP is the default ZCU102 Linux BSP. For this example, you
reconfigure the PetaLinux Project based on the Zynq UltraScale+ hardware platform that
you configured using Vivado Design Suite in Chapter 2.

3. Copy the hardware platform edt zcul02 wrapper.hdf to the Linux Host machine.
4. Reconfigure the project using the following command:

$ petalinux-config --get-hw-description=<path containing edt_ zcul02_ wrapper.hdfs/

This command opens the PetalLinux Configuration window. If required, make changes in
the configuration. For this example, the default settings from the BSP are sufficient to
generate required boot images.

The following steps will verify if PetaLinux is configured to create Linux and boot images
for SD Boot.

5. Select Subsystem AUTO Hardware Settings.
6. Select Advanced Bootable Images Storage Settings.
a. Select boot image settings.
b. Select Image Storage Media.
c. Select primary sd as the boot device.
7. Under the Advanced Bootable Images Storage Settings submenu, do the following:
a. Select kernel image settings.
b. Select Image Storage Media.
c. Select primary sd as the storage device.

8. Under Subsystem AUTO Hardware Settings, select Memory Settings and set the
System Memory Size to Ox6FFFFFFF

9. Save the configuration settings and exit the Configuration wizard.

10. Wait until PetaLinux reconfigures the project.

The following steps will build the Linux images, verify them, and generate the boot
image.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 46
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=46

2: XI LI NX® Chapter 3: Build Software for PS Subsystems

11. Modify Device Tree to disable Heartbeat LED and SW19 push button, from the device
tree. Due to this the RPU R5-0 can use PS LED and SW19 switch for other designs in this
tutorial. This can be done by adding the following to the system-user.dtsi which
can be found in the following location:

<Petalinux-projects>/project-spec/meta-user/recipes-bsp/device-tr
ee/files/system-user.dtsi

12. Add the following to system-user.dtsi, so that it looks like:

/include/ "system-conf.dtsi"

/A
gpio-keys {
swl9 |
status = "disabled";
Vi
}i
leds {
heartbeat led {
status = "disabled";
}i
}i
Vi
&uartl
{
status = "disabled";

}i
13.In <Petalinux-project>, build the Linux images using the following command:
$ petalinux-build

14. After the above statement executes successfully, verify the images and the timestamp in
the images directory in the Petalinux project folder using the following commands:

$ cd images/linux/
$ 1s -al

15. Generate the Boot image using the following command:

$ petalinux-package --boot --fsbl zyngmp fsbl.elf --u-boot

This creates a BOOT.BIN image file in the following directory:
<petalinux-project>/images/linux/BOOT.BIN

The Logs indicate that the above command includes PMU_FW and ATF in BOOT.BIN. You
can also add - -pmufw <PMUFW_ELF> and --atf <ATF_ ELF> in the above command.
Refer $ petalinux-package --boot --help for more details.

Note: The option to add bitstream, that is --fpga is missing from above command intentionally. This
is because the hardware configuration so far is only based on PS with no design in PL. In case a
bitstream is present in the design, - - fpga can be added in the petalinux-package command as
shown below:

petalinux-package --boot --fsbl zyngmp fsbl.elf --fpga system.bit --pmufw pmufw.elf
--atf bl3l.elf --u-boot u-boot.elf

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 47
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=47

8 XI LI NX® Chapter 3: Build Software for PS Subsystems

Verify the Image on the ZCU102 Board

To verify the image:

1.
2.
3.

Copy files BOOT.BIN and image.ub to an SD card.
Load the SD card into the ZCU102 board, in the J100 connector.

Connect a Micro USB cable from ZCU102 Board USB UART port (J83), to USB port on the
host Machine.

Configure the Board to Boot in SD-Boot mode by setting switch SW6 as shown in the
following figure.

Figure 3-11: SW6 Switch Settings for SD Boot Mode

Connect 12V Power to the ZCU102 6-Pin Molex connector.

Start a terminal session, using Tera Term or Minicom depending on the host machine
being used. set the COM port and baud rate for your system, as shown in the following
figure.

Tera Term: Serial port setup

Port: [comPport |

==
Baud rate: 115200 -|
Data: 8 bit - Cancel

Flow control:

Transmit delay

0 msecfchar 0 msecfline

Figure 3-12: COM Port Set Up

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 48
UG1209 (v2019.1) July 3, 2019 www.Xxilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=48

(: XI LI NX® Chapter 3: Build Software for PS Subsystems

7.

8.

For port settings, verify COM port in the device manager and select the COM port with
interface-0.

Turn on the ZCU102 Board using SW1, and wait until Linux loads on the board.

Create Linux Images using PetaLinux for QSPI Flash

The earlier example highlighted creation of the Linux Images and Boot images to boot from
an SD card. This section explains the configuration of PetalLinux to generate Linux images
for QSPI flash. For more information about the dependencies for PetalLinux 2019.1, see the
Petalinux Tools Documentation: Reference Guide (UG1144) [Ref 7].

1.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial

Before starting this example, create a backup of the boot images created for SD card
setup using the following commands:

cd <Petalinux-project-path>/xilinx-zcul02-2019.1/images/linux/
mkdir sd boot

cp image.ub sd_boot/

cp u-boot.elf sd boot/

cp BOOT.BIN sd_boot/

vy Ur r r

Change the directory to the Petalinux Project root directory:
$ cd <Petalinux-project-path>/xilinx-zcul02-2019.1
Launch the top level system configuration menu:

$ petalinux-config

The Configuration wizard opens.

Select Subsystem AUTO Hardware Settings.

Select Advanced bootable images storage Settings.

a. Select boot image settings.

b. Select image storage media.

c. Select primary flash as the boot device.

Under the Advanced bootable images storage Settings submenu, do the following:
a. Select kernel image settings.

b. Select image storage media.

c. Select primary flash as the storage device.

One level above, that is, under Subsystem AUTO Hardware Settings,

a. Select Flash Settings and notice the entries listed in the partition table.

b. Note that some memory (Ox1TE00000 + 0x40000) is set aside for initial Boot
partitions and U-Boot settings. These values can be modified on need basis.

o l Send Feedback I 49
UG1209 (v2019.1) July 3, 2019 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=49

2: XI LI NX® Chapter 3: Build Software for PS Subsystems

c. Based on this, the offset for Linux Images is calculated as Ox1E40000 in QSPI Flash
device. This will be used in Chapter 5, while creating Boot image for QSPI
Boot-mode.

The following steps will set the Linux System Memory Size to about 1.79 GB.

8. Under Subsystem AUTO Hardware Settings, do the following:
a. Select Memory Settings
a. Set System Memory Size to Ox6FFFFFFF
9. Save the configuration settings and exit the Configuration wizard.
10. Rebuild using the petalinux-build command.
11. Take a backup of u-boot.elf and the other images. These will be used in Chapter 5.

Note: For more information, refer to the Petalinux Tools Documentation: Reference Guide (UG1144)
[Ref 7]

In this chapter, you learned how to configure and compile Software blocks for Zynq
UltraScale+ devices using Xilinx tools. You will use these images in Chapter 6 to create Boot
images for a specific design example.

Next, you will debug software for Zynqg UltraScale+ devices using Xilinx SDK in Chapter 4,
Debugging with SDK.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 50
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=50

& XILINX

Chapter 4

Debugging with SDK

This chapter describes debug possibilities with the design flow you have already been
working with. The first option is debugging with software using the Xilinx® Software
Development Kit (SDK).

SDK debugger provides the following debug capabilities:

« Supports debugging of programs on Arm® Cortex®-A53, Arm Cortex-R5, and
MicroBlaze™ processor architectures (heterogeneous multi-processor hardware system
debugging)

« Supports debugging of programs on hardware boards
« Supports debugging on remote hardware systems
« Provides a feature-rich IDE to debug programs

« Provides a Tool Command Language (Tcl) interface for running test scripts and
automation

The SDK debugger enables you to see what is happening to a program while it executes.
You can set breakpoints or watchpoints to stop the processor, step through program
execution, view the program variables and stack, and view the contents of the memory in
the system.

Xilinx SDK supports debugging through Xilinx System Debugger.

Xilinx System Debugger

The Xilinx System Debugger uses the Xilinx hw_server as the underlying debug engine. SDK
translates each user interface action into a sequence of Target Communication Framework
(TCF) commands. It then processes the output from System Debugger to display the current
state of the program being debugged. It communicates to the processor on the hardware
using Xilinx hw_server.

The debug workflow is described in the following figure.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 51
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=51

& XILINX.

Specify
hw_server
details

Figure 4-1:

Create Debug

Chapter 4: Debugging with SDK

/'_ ______ ~

| Debug Executable

1] elf

1

.| SDK Debug

Configuration

Perspective

hw_server

Program running

on Hardware
or ISS

System Debugger Flow

The workflow is made up of the following components:

« Executable ELF File: To debug your application, you must use an Executable and

\
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
/

X16794-041816

Linkable Format (ELF) file compiled for debugging. The debug ELF file contains

additional debug information for the debugger to make direct associations between

the source code and the binaries generated from that original source. To manage the
build configurations, right-click the software application and select Build

Configurations > Manage.

« Debug Configuration: To launch the debug session, you must create a debug

configuration in SDK. This configuration captures options required to start a debug

session, including the executable name, processor target to debug, and other
information. To create a debug configuration, right-click your software application and
select Debug As > Debug Configurations.

« SDK Debug Perspective: Using the Debug perspective, you can manage the
debugging or running of a program in the Workbench. You can control the execution of
your program by setting breakpoints, suspending launched programs, stepping
through your code, and examining the contents of variables. To view the Debug
Perspective, select Window > Open Perspective > Debug.

You can repeat the cycle of modifying the code, building the executable, and debugging
the program in SDK.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial

UG1209 (v2019.1) July 3, 2019

www.Xxilinx.com

l Send Feedback I

52

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=52

(: X”_INX® Chapter 4: Debugging with SDK

Note: If you edit the source after compiling, the line numbering will be out of step because the
debug information is tied directly to the source. Similarly, debugging optimized binaries can also
cause unexpected jumps in the execution trace.

Debugging Software Using SDK
In this example, you will walk through debugging a hello world application.

If you did not create a hello world application on APU or RPU, follow the steps in Create
Bare-Metal Application for Arm Cortex-A53 based APU, page 40 to create a new hello world
application.

After you create the Hello World Application, work through below example to debug the
software using SDK.

1. Follow the steps in Example Project: Running the “Hello World” Application from Arm
Cortex-A53 to set the target in JTAG mode and power ON.

2. In the C/C++ Perspective, right-click the test a53 Project and select Debug As >
Launch on Hardware (System Debugger).

Note: The above step launches the System Debugger in the Debug perspective based on the
project settings. Alternatively, you can also create a Debug configuration which looks like
Figure 4-2.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 53
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=53

(: X”_INX® Chapter 4: Debugging with SDK

@ Debug Configurations
Create, manage, and run configurations =
Run or Debug a program using System Debugger,
E % | sEp Mame: test_a53 Debug
type filter text {® Target Setup [Application | 9= Argumnents | i Environment| 5 Symbol Files| B Source| & Path Map
A Performance Analysis =

1
[E Target Communication Framewaork

E. Xilinx C/C++ application (GDB)

45 Xilinx C/C++ application (System Debugger ¢)
4 %-F leinx C/C++ application (System Debugger) Connection: |L°CE| '] @
k34 test_a53 Debug

TiF

Debug Type: |Standa|one Application Debug '|

Hardware Platform: | edt_zcul02_wrapper_hw_platform_0 - |
Bitstream File: [Search...] [Browse... I [Generate...
Initialization File: psu_init.tel | Search... | | Browse... |
FPGA Device: Auto Detect | Select... |
PS Device: Auto Detect | Select... |
Summary of operations to be perfformed
[T] Reset entire system Follewing operaticns will be performed before launching the debugger.
[#] Reset APU 1. Resets and clears APU reset.
z 2. Runs psu_init to initialize PS.
3. The following processors will be reset and suspended.
[Enable RPU Split Mode 1) psu_cortexa53_0
4. All processors in the system will be suspended, and Applications will be
Program FPGA downloaded to the fellowing processors as specified in the Applications tab,

1) psu_cortexa53_0

[¥] Run psu_jnit
(Cihedt\edt_zcul02\edt_zculD2.sdk\fsbl_a53\Debug\fsbl_a53.elf)

[Enable Cross-Triggering

< | T 3 3

Filter matched 6 of 12 items ‘ Revert ‘ | Apply |

‘?\,' [Debug] | Close |

Figure 4-2: Debug Configurations

If the Confirm Perspective Switch popup window appears, click Yes. The Debug
Perspective opens.

Note: |f the Debug Perspective window does not automatically open, select Window >
Perspective >Open Perspective > Other, then select Debug in the Open Perspective wizard.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 54
UG1209 (v2019.1) July 3, 2019 www.Xxilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=54

(: X”_INX® Chapter 4: Debugging with SDK

E2 Debug - test 253/sre/helloworld.c - Xilinx SDK = |2
File Edit Source Refactor Navigate Search Project Run XilinxTools Window Help
Mz & W LDEPAEEE H-0-G-&® 9~ > Gl Qo) x Quick Access | 5 | B C/Co+ (45 Debug
45 Debug 1 | §» = = 5 [0 Breskpoints 1 REPARBES|H =18
4 §5 test 253 Debug (Local) 9,8 Hunction: _eit]
- 2 psTAP [7] & [function: main]
4§ PSU 7] 0 helloworld.c [line: 57]
i rRY
R
4 gd AR No scope specified.
4% Cortex-A53 0 (Breakpoint: main), EL3(S)/A64
=) main{): ./src . line 55 8 Registers 52 e .) =5
= _startup(): xil-crtd S, line 110 :
P Cortex-A53 1 (Reset Catch), EL3(S)/A64 B8 v
i Cortex-A53 #2 (Reset Catch), EL3(S)/A64 Name Hex Decimal Description
¥ Cortex-A53 23 (Reset Catch], ELI(S)/A64 15 A0 20020A000RER0aN4 2772
i sp 0020660000000b0 57520
C i pe 3640606600ABATIZA 2432
Y epsr 560802cd 1618613453
i vfp -

« 1 b

Hex: 2200000000000020, Dec: 2432, Oct: 24600, At: main() + (8
Bin: @020, 2000, 6800, 208A, DAGE, BAAA, BAGR, GG, 0GR, BOAE, BBA, ABEA, ABER, 1901, 1800, BADE
Size: & bytes, readable, writable

[helloworld.c &2 = B = Disassembly 2 t = |

Enter location here - & B(EE
7

B

54 {

o main:

v 00BOBOARERRERSTE: stp x29, x38, [sp, #-16]!
006200002000037C: mov x29, sp

#include <stdio.h>
#include "platform.h"
#include "xil_printf.h"

55 init platform();

3 . 56

int main() 200060RE00008950: | bI +16 ; addr=8x9c@: init platform

{ 5 aciot("Hello orld\n\c"): =
init_platform(); = 58

¥ BBBARREEAARREIES adrp x@, +4896; addr=@x10@8: Xil ICacheInvalidateline + @x8

print("Hello World\n\r"); 0000000000000988: add X8, %0, #9x8c8

GeEeREaEEnaaRISC: bl +25 5 addr=8x3f@: print
cleanup_platform(); 59 cleanup_platforn();
return 8; - = v

GARARAARAARARAIA . h1 18 + addr=avadR: cleanin nlatfarm
= ‘

Figure 4-3: Application Debug Perspective

Note: The addresses shown on this page might slightly differ from the addresses shown on your
system.

The processor is currently sitting at the beginning of main () with program execution
suspended at line 0x0000000000000980. You can confirm this information in the
Disassembly view, which shows the assembly-level program execution also suspended
at 0x0000000000000980.

Note: If the Disassembly view is not visible, select Window > Show View > Disassembly.

3. The helloworld.c window also shows execution suspended at the first executable
line of C code. Select the Registers view to confirm that the program counter, pc register,
contains 0x0000000000000980.

Note: If the Registers window is not visible, select Window > Show View > Registers.

4. Double-click in the margin of the helloworld.c window next to the line of code that
reads print (*Hello World\n\r”) ;. This sets a breakpoint at the printf
command. To confirm the breakpoint, review the Breakpoints window.

Note: If the Breakpoints window is not visible, select Window > Show View > Breakpoints.

5. Select Run > Step Into to step into the init platform () routine.

Program execution suspends at location 0x00000000000009¢8. The call stack is now
two levels deep.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 55
UG1209 (v2019.1) July 3, 2019 www.Xxilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=55

(: X”_INX® Chapter 4: Debugging with SDK

6. Select Run > Resume to continue running the program to the breakpoint.

Program execution stops at the line of code that includes the printf command. The
Disassembly and Debug windows both show program execution stopped at
0x0000000000000984.

Note: The execution address in your debugging window might differ if you modified the hello
world source code in any way.

7. Select Run > Resume to run the program to conclusion.

When the program completes, the Debug window shows that the program is suspended
in a routine called exit. This happens when you are running under control of the
debugger.

8. Re-run your code several times. Experiment with single-stepping, examining memory,
breakpoints, modifying code, and adding print statements. Try adding and moving
views.

TIP: You can use SDK tool debugging shortcuts for step-into (F5), step-return (F7), step-over (F6), and
O resume (F8).

Debugging Using XSCT

You can use the previous steps to debug bare-metal applications running on RPU and PMU
using SDK system Debugger GUI.

Additionally, you can debug in the command line mode using XSDB, which is encapsulated
as a part of XSCT. In this example, you will debug the bare-metal application testapp_r5
using XSCT.

Following steps indicate how to load a bare-metal application on R5 using XSCT.

This example is just to demonstrate the command line debugging possibility using
XSDB/XSCT. Based on the requirement, you can choose to debug the code using either the
System Debugger graphical interface or the command line debugger in XSCT. All XSCT
commands are scriptable and this applies to the commands covered in this example.

Set Up Target

1. Connect a USB cable between USB-JTAG J2 connector on target and the USB port on the
host machine.

2. Set the board in JTAG Boot mode, where SW6 is set as shown in following figure.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 56
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=56

8 X”_INX® Chapter 4: Debugging with SDK

Figure 4-4: SW6 Switch Settings for JTAG Boot Mode
3. Power on the Board using switch SW1.

4. Open XSCT Console in SDK, click the XSCT Console button |i| in the SDK tool bar.

Alternatively, you can also open the XSCT console from Xilinx > XSCT Console.

5. In the XSCT Console, connect to the target over JTAG using the connect command:

xsct% connect

The connect command returns the channel ID of the connection.

6. Command targets lists the available targets and allows you to select a target through its
ID.

The targets are assigned IDs as they are discovered on the JTAG chain, so the target IDs
can change from session to session.

For non-interactive usage such as scripting, the -filter option can be used to select
a target instead of selecting the target through its ID:

xsct% targets

The targets are listed as shown in the following figure.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 57
UG1209 (v2019.1) July 3, 2019 www.Xxilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=57

(: X”_INX® Chapter 4: Debugging with SDK

B #S5CT Console &3

X5CT Process

Xxsct% targets

1 E5 TIAF
2 EMO
3 FL
4 P50

5 RPFUO (Eeset)

& Corcex-R5 #0 (RFU Reset)

7 Cortex-R5 #1 (EFU Reset)

APT (L2 Cache Reset)

9 Cortex-A53 #0 (AFU Reset)
10 Cortex-A53 #1 (AFU Eeset)
11 Cortex-A53 #2 (AFU Eeset)
12 Cortex-AS3 #3 (AFU Eeset)

(e}

X3CLE

X3ctE

Figure 4-5: Target List
7. Now select PSU target. The Arm APU and RPU clusters are grouped under PSU.

xsct% targets -set -filter {name=~ “PSU”}

The command targets now lists the targets and also shows the selected target

highlighted with as asterisk (*) mark. You can also use target number to select a Target,

as shown in the following figure.

SDK Log -5 Search [Bll XSCT Console I

¥XS5CT Process

xsSct¥ ¥ target 4
xXsScCcLt% Ttargets
1 ES TAFP
2 Py
3 FT.
4% PSOT
5 RFUO ([(EBeset)
& Cortex—ERES #0 {(RPFU0 Reset)
T Corcex—ER5 #1 (FEFUO Reset)
APO (LZ2 Cache Reset)

w

= Cortex—Aa53 &0 (AFT Resetrt)
10 Cortex—a53 §#1 (AFT Resetr)
11 Corcex—A53 &2 (APT Reset)

1z Cortcex—Aa53 &3 (AFT Resetr)
HxHICLE

Figure 4-6: PSU Target Selected

8. Source the psu_init.tcl script and run the psu_init command to initialize the
Processing System of Zynq® UltraScale+™.

xsct% source

{c:\edt\edt zcul02\edt zcul02.sdk\edt zcul02 wrapper hw platform O\psu init.tcl}
xsct% psu_init

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback
UG1209 (v2019.1) July 3, 2019 www.Xxilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=58

(: X”_INX® Chapter 4: Debugging with SDK

Note the {} used in above command. These are required on windows machine to enable
backward slash (\) in paths. These braces can be avoided by using forward "/" in paths.
Considering Linux paths, use forward "/" because the paths in XSCT in Linux can work as
is, without any braces.

Load the Application Using XSCT

1.
2.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial

Now download the testapp_r5 application on Arm R5 Core 0.
Check and select RPU Cortex-R5 Core 0 target ID

xsct% targets
xsct% targets -set -filter {name =~ "Cortex-R5 #0"}
xsct% rst -processor

The command rst -processor clears the reset on an individual processor core.

This step is important, because when Zynq MPSoC boots up JTAG boot mode, all the
A53 and R5 cores are held in reset. You must clear the resets on each core, before
debugging on these cores. The rst command in XSDB can be used to clear the resets.

Note: The command rst -cores clears resets on all the processor cores in the group (such as
APU or RPU), of which the current target is a child. For example, when A53 #0 is the current
target, rst -cores clears resets on all the A53 cores in APU.

xsct% dow {C:\edt\edt zcul02\edt zcul02.sdk\testapp r5\Debug\testapp r5.elf}
Or
xsct% dow C:/edt/edt zcul02/edt zcul02.sdk/testapp r5/Debug/testapp r5.elf

At this point, you can see the sections from the ELF file downloaded sequentially. The
XSCT prompt can be seen after successful download.

Now, configure a serial terminal (Tera Term, Mini com, or the SDK Serial Terminal
interface for UART-1 USB-serial connection).

o l Send Feedback I 59
UG1209 (v2019.1) July 3, 2019 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=59

(: X”_INX® Chapter 4: Debugging with SDK

Serial Terminal Configuration

1.

Start a terminal session, using Tera Term or Mini com depending on the host machine
being used, and the COM port and baud rate as shown in following figure.

[Tera Term: Serial port setup @1
e Loowen]
Baud rate: 115200 [«

Data: '8 bit - | Cancel ‘

Parity: none -
Stop: 1 bit - Help
Flow control: none -

Transmit delay

] msecjchar] msec/line

Figure 4-7: COM Port Set Up

For port settings, verify the COM port in the device manager. There are four USB UART
interfaces exposed by the ZCU102 board. Select the COM port associated with the
interface with the lowest number. So in this case, for UART-0, select the COM port with
interface-0.

Similarly, for UART-1, select COM port with interface-1. Remember that R5 BSP has been
configured to use UART-1, and so R5 application messages will appear on the COM port
with UART-1 terminal.

Run and Debug Application Using XSCT

1.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial

Now before you run the application, set a breakpoint at main ().

xsct% Dbpadd -addr &main

This command returns the breakpoint ID.
You can verify the breakpoints planted using command bplist.
For more details on breakpoints in XSCT, type help breakpoint in XSCT,

Now resume the processor core.

xsct% con
The following informative messages will be displayed when the core hits the breakpoint.

xsct% Info: Cortex-R5 #0 (target 7) Stopped at 0x10021C (Breakpoint)

o l Send Feedback I 60
UG1209 (v2019.1) July 3, 2019 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=60

(: X”_INX® Chapter 4: Debugging with SDK

3. At this point, you can view registers when the core is stopped.
xsct$ rrd

4. View local variables
xsct% locals

5. Step over a line of the source code and view the stack trace.

xsct% nxt
Info: Cortex-R5 #0 (target 6) Stopped at 0x100490 (Step)
xsct% bt

You can use the help command to find other options:

SDK log 4 Search [l XSCT Console i2

X5CT Process
x3ct%® help
Available Help Categories

connections - Target Connection Management
registers - Target Registers

running - Program Execution

mEMOTY - Target Memory

download - Target Download FPGR/BINARY
reset - Target Reget

breakpoints - Target Breakpoints/Watchpoints
streams - Jtag UART

miscellaneous — Miscellaneous

Jjtag - JIAG Rccess

tfile - Target File System

avi - 5VF Operations

adk - 35DK Projects

petalinux - Petalinux commands

hsi — H5I commands

Type "help™ followed by above "category”™ for more details or
help” followed by the keyword "commands™ to list all the commands

x3cti

Figure 4-8: XSCT Help Categories

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 61
UG1209 (v2019.1) July 3, 2019 www.Xxilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=61

(: X”_INX® Chapter 4: Debugging with SDK

You can use the help running command to get a list of possible options for running
or debugging an application using XSCT.

SDK Leg || XSCT Console 52

X5CT Process

x3ct%® help running
Category commands

3tate - Display the current state of the target
stop - Stop active target

con - Resume active target

atp - 3step into a line of source code

nxt - 3step over a line of source code

stpi - Execute a machine instructicn

nxti - 3tep over a machine instruction

stpout - step ocut from current function

dis — Disassemble Instructions

print - Get or set the wvalue of an expression
locals - Get or set the wvalue of a local variable
backtrace - 3tack back trace

profile - Configure and run the GNU profiler

mbprofile - Configure and run the MB profiler

Type "help™ followed by above "command™, or the above "command™ followed by
"-help™ for more details

4 e

x3cti
Figure 4-9: XSCT Help for Debugging Program Execution
6. You can now run the code:
xsct% con

At this point, you can see the R5 application print message on UART-1 terminal.

Debugging FSBL using SDK

The FSBL is built with Size Optimization and Link Time Optimization Flags, that is -Os and
LTO optimizations by default in SDK. This reduces the memory footprint of FSBL. This needs
to be disabled for debugging FSBL.

Removing optimization can lead to increased code size, resulting in failure to build the
FSBL. To disable the optimization (for debugging), some FSBL features (that are not
required), need to be disabled in xfsbl config.h file of FSBL.

Now, create a new FSBL for this section instead of modifying the FSBL created in Chapter 3,
Build Software for PS Subsystems. This is to avoid disturbing the FSBL_a53 project, which
will be used extensively in rest of the chapters in this tutorial.

Create and Modify FSBL

Use the following steps to create an FSBL project.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 62
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=62

(: X”_INX® Chapter 4: Debugging with SDK

1. Start SDK if it is not already open.

2. Set the Workspace path based on the project you created in Chapter 3, Build Software
for PS Subsystems. For example, C:\edt\edt zculo02\edt zcul02.sdk.

3. Select File > New > Application Project.
The New Project dialog box opens.

4. Use the information in the following table to make your selections in the New Project

dialog box.
Table 4-1: Settings to Create FSBL_debug Project
Wizard Screen System Properties Setting or Command to Use
Application Project Project Name fsbl_debug
Use Default Location Select this option
OS Platform Standalone
Hardware Platform edt_zcu102_wrapper_hw_platform_0
Processor psu_cortexa53_0
Language C
Compiler 64-bit
Hypervisor Guest No
Board Support Package Select Create New and provide the name of
fsbl debug bsp
Click Next
Templates Available Templates Zynq MP FSBL
5. Click Finish.

SDK creates the board Support package and an FSBL application. Now disable
Optimizations as shown below.

1. In the Project Explorer folder, right-click the fsbl_debug application.

2. Click C/C+ + Build Settings.

3. Select Settings > Tool Settings tab > Arm v8 gcc Compiler > Miscellaneous
4

Remove -flto -ffat-lIto-objects from other flags, as shown below.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 63
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=63

& XILINX.

Chapter 4: Debugging with SDK

ER Properties for fsbl_debug
type filter text Settings
Resource
Builders o .
w C/CH+ Build Configuration: Debug [Active |
Build Variables
f“""‘_’”m""t ® Tool Settings B Devices / Build Steps " Build Artifact & Binary Parsers © Error Parsers
ogging
~ 1 ARM v8 gec assembler | Other flags | -c -fmessage-length=0 -MT"$@" -Os -fito-Het-Homobjectd—
Toal Chain Editc # General [verbase (4]
C/C++ General ~ ® ARM v8 gce compiler [Support ANS! pragrams (-ansi)
Project References
Run/Debug Settin
rectories
~ i Inferred Options
2 Software Platform
2 Pracessor Options
~ % ARM v8 gee linker
& General
& Libraries
Miscellancous
= Linker Script
“ & Inferred Options
Figure 4-10:

Modify FSBL BSP Build Settings
Similarly, the fsbl_debug_bsp needs to be modified to disable optimization.
Right-click fsbl_debug_bsp and select Board Support Package Settings.

Under Overview > Drivers > psu_cortexa53_0 > extra_compiler_flags, edit
extra_compiler_flags to remove "-flto -ffat-lto-objects" as shown below.

Board Support Package Settings

X
Board Support Package Settings &
Control various settings of your Board Support Package
~ Overview
Configuration for OS: psu_cortexa53_0
~ standalone
xilifs Narme Value Default Type
xilsecure archiver aarch64-none-elf-ar aarch64-none-el... string
« drivers cormpiler aarchbA-none-elf-gec aarchbd-none-el... string
psu_cortexa53_0 compiler_flags -02 ¢ string
exec_mode aarch6d enum
extra_compiler_flags -g -Wall -Wextra -Os -fte—~Fat-*o-chjects— -g -Wall -Wextra string
Figure 4-11:

Modify FSBL BSP Build Settings
Under Overview, click Standalone

Change zyngmp_fsbl_bsp flag to false to avoid resetting of default optimization settings
of BSP for FSBL when BSP rebuilds after these changes.

T8 ot Suppor P e St
Board Support Package Settings

g f o Bard Suppos

Figure 4-12:

Modify FSBL BSP Build Settings
Click OK, to save these settings. BSP re-builds automatically after this.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial

. l Send Feedback I 64
UG1209 (v2019.1) July 3, 2019 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=64

(: X”_INX® Chapter 4: Debugging with SDK

10. Go to the fsbl_debug>src>fsbl_config.h file. In the FSBL code include the options and
disable the following:

o #define FSBL_NAND_EXCLUDE_VAL (1U)
o #define FSBL_SECURE_EXCLUDE_VAL(1U)

Note: '1' is disable and '0' is enable.

At this point FSBL is ready to be debugged.

You can either debug the FSBL like any other standalone application (as shown in
Debugging Software Using SDK and Debugging Using XSCT), or debug FSBL as a part of a
Boot image by using the ‘Attach to running target’ mode of System Debugger.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 65
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=65

& XILINX

Chapter 5

Boot and Configuration

This chapter shows integration of components to create a Zynq UltraScale+ system. The
purpose of this chapter is to understand how to integrate and load Boot loaders, bare-metal
applications (For APU/RPU), and Linux Operating System for a Zynqg UltraScale+ system.

The following important points are covered in this chapter:

« System Software: FSBL, U-Boot, Arm® trusted firmware (ATF)
» Application Processing Unit (APU): Configure SMP Linux for APU
« Real-time Processing Unit (RPU): Configure Bare-metal for RPU in Lock-step
« Create Boot Image for the following Boot sequence:
a. APU
b. RPU Lock-step
« Create and load Secure Boot Image

Note: For more information on RPU Lock-step, see Zynq UltraScale+ MPSoC Technical Reference
Manual (UG1085) [Ref 5].

This boot sequence also includes loading the PMU Firmware for the Platform Management
Unit (PMU). You can achieve the above configurations using a Xilinx SDK and PetaLinux Tool
flow. While Chapter 3 focused only on creating software blocks for each processing unit in
the PS, this chapter explains how these blocks can be loaded as a part of a bigger system.

The Create Boot Image wizard (Bootgen - Command Line tool) from SDK is used in
generating Boot Image. Create Boot Image Wizard's or Bootgen'’s principle function is to
integrate the partitions (hardware-bitstream and software), and allow you to specify the
security options in the design. It can also create the cryptographic keys.

Functionally, Bootgen uses a Bootgen Image Format (BIF) file as an input, and generates a
single file image in binary BIN or MCS format. Bootgen outputs a single file image which is
loaded into NVM (QSPI, SD Card). The Bootgen GUI facilitates the creation of the BIF input
file.

This chapter makes use of Processing System block. Design Example 1: Using GPIOs, Timers,
and Interrupts, covers Boot-image which will include the PS partitions used in this chapter
and a bitstream targeted for PL fabric.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 66
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=66

2: X”_INX® Chapter 5: Boot and Configuration

System Software

The following system software blocks cover most of the Boot and Configuration for this
chapter. For detailed boot flow and various Boot sequences, refer to the "System Boot and
Configuration” chapter in the Zynqg UltraScale+ MPSoC: Software Developers Guide
(UG1137) [Ref 6].

First Stage Boot Loader

In non-secure Boot mode, the platform management unit (PMU) releases the reset of the
configuration security unit, and enters the PMU server mode to monitor power. At this
stage the configuration security unit loads the first stage boot loader (FSBL) into on-chip
memory (OCM). The FSBL can be run from either APU A53_0 or RPU R5_0 or RPU
R5_lockstep. In this example, the FSBL is targeted for APU A53 Core 0. The last 512 bytes of
this region is used by FSBL to share the hand-off parameters corresponding to applications
which ATF hands off.

The First Stage Boot Loader initializes important blocks in the processing subsystem. This
includes clearing the reset of the processors, initializing clocks, memory, UART, and so on
before handing over the control of the next partition in DDR, to either RPU or APU. In this
example, the FSBL loads bare-metal application in DDR and handsoff to RPU R5 in Lockstep
mode, and similarly loads U-Boot to be executed by APU A53 Core-0. For more information,
see the Zynq UltraScale+ MPSoC: Software Developers Guide (UG1137) [Ref 6].

For this chapter, you can use the FSBL executable that you created in Chapter 3. In FSBL
application, the xfsbl translation table.S differs from translation table.S
(of A53) in only one aspect, to mark DDR region as reserved. This is to avoid speculative
access to DDR before it is initialized. Once the DDR initialization is done in FSBL, memory
attributes for DDR region is changed to "Memory” so that it is cacheable.

Platform Management Unit Firmware

The platform management unit (PMU) and the configuration security unit manage and
perform the multi-staged booting process. The PMU primarily controls the
pre-configuration stage that executes PMU ROM to set up the system. The PMU handles all
of the processes related to reset and wake-up. SDK provides PMU Firmware that can be
built to run on the PMU. For more details on the Platform Management and PMU Firmware,
see the Zynq UltraScale+ MPSoC: Software Developers Guide (UG1137) [Ref 6].

The PMU Firmware can be loaded in the following ways:

1. Using BootROM to load PMU Firmware, as described in Boot Sequence for SD-Boot
2. Using FSBL to load PMU Firmware, as described in Boot Sequence for QSPI Boot Mode

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 67
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=67

2: X”_INX® Chapter 5: Boot and Configuration

3. Load PMU Firmware in JTAG boot mode, as described in Boot Sequence for QSPI-Boot
Mode Using JTAG.

For more information, see the PMU Firmware Xilinx Wiki.

U-Boot

The U-Boot acts as a secondary boot loader. After the FSBL handoff, the U-Boot loads Linux
on Arm A53 APU. After FSBL, the U-Boot configures the rest of the peripherals in the
processing system based on board configuration. U-Boot can fetch images from different
memory sources like eMMC, SATA, TFTP, SD, and QSPI. For this example, U-Boot and all
other images are loaded from the SD card. Therefore, for this example, the Board will be set
to SD-boot mode.

U-Boot can be configured and built using the Petalinux tool flow. For this example, you can
use the U-Boot image that you created in Chapter 3 or from the design files shared with this
document. See Design Files for This Tutorial, page 163 for information about downloading
the design files for this tutorial.

Arm Trusted Firmware

The Arm Trusted Firmware (ATF) is a transparent bare-metal application layer executed in
Exception Level 3 (EL3) on APU. The ATF includes a Secure Monitor layer for switching
between secure and non-secure world. The Secure Monitor calls and implementation of
Trusted Board Boot Requirements (TBBR) makes the ATF layer a mandatory requirement to
load Linux on APU on Zynq UltraScale+.

The FSBL loads ATF to be executed by APU, which keeps running in EL3 awaiting a service
request. The ATF starts at OxXFFFEAOOO. The FSBL also loads U-Boot in DDR to be executed by
APU, which loads Linux OS in SMP mode on APU. It is important to note that the PL
Bitstream should be loaded before ATF is loaded. The reason is FSBL uses the OCM region
which is reserved for ATF for holding a temporary buffer in the case where bitstream is
present in .BIN file. Because of this, if bitstream is loaded after ATF, FSBL will overwrite the
ATF image with its temporary buffer, corrupting ATF image. Hence, bitstream should be
positioned in .BIF before ATF and preferably immediately after FSBL and PMUFW.

The ATF (b131.elf) is built by default in PetaLinux and can be found in the Petalinux
Project images directory.

For more details on ATF, refer to the “Arm Trusted Firmware” section in the “Security”
chapter of the Zyng UltraScale+ MPSoC: Software Developers Guide (UG1137) [Ref 6].

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 68
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
http://www.wiki.xilinx.com/PMU+Firmware
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=68

2: X”_INX® Chapter 5: Boot and Configuration

Linux on APU and Bare-Metal on RPU

Now that the system software is configured, create Linux Images using PetaLinux Toolflow.
You already created the Petalinux images in Chapter 3. For this example, the Petalinux is
configured to build images for SD-boot. This is the default boot setting in PetaLinux.

The images can be found in the $<PetalLinux Project>/images/linux/ directory.
For loading Linux on APU, the following images will be used from PetalLinux:

e ATF-Dbl31l.elf

+ U-Boot - u-boot.elf

« Linux images - image . ub, which contains:
- Kernel image
o Device Tree System.dtb

o Filesystem - rootfs.cpio.gz.u-boot

In addition to Linux on APU, this example also loads a bare-metal Application on RPU R5 in
Lockstep mode.

For this example, refer the testapp_r5 application that you created in Create Bare-Metal
Application for Arm Cortex-R5 based RPU, page 41.

Alternatively you can also find the testapp r5.elf executable in the design files that
accompany this tutorial. See Design Files for This Tutorial, page 163 for information about
downloading the design files for this tutorial.

Boot Sequence for SD-Boot

Now that all the individual images are ready, let's create the boot image to load all of these
components on Zynq UltraScale+. This can be done using the Create Boot Image wizard in
SDK, using the following steps:

1. In SDK, select Xilinx > Create Boot Image.

2. Select all the partitions referred in earlier sections in this chapter, and set them as shown
in the following figure.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 69
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=69

& XILINX.

Chapter 5: Boot and Configuration

m Create Boot Image

Create Boot Image

Creates Zyng MP Boot Image in Jbin format from given FSBL elf and partition files in specified output folder,

Architecture: | Zyng MP

(®) Create new BIF file () Import from existing BIF file

©;

Basic Security

Output BIF file path: @l\Edt\Sd_bDDt-bif) | Browse...
UDF data: | | Browse...
[Isplit Output format: |BIN - ~

Qutput path: @edt\BOOT.bi—n_) | Browse...

Boot image partitions

File path

(bootloader) Chedthedt_zcul102\edt_zcul102.5dkM\fsbl_a53\ Debughfsbl_a33.elf
(prnu) Chedthedt_zoul02hedt_zcul02. sdk\pmu_fwh\Debughprmu_fw.elf
Chedt\design_files\bl31.elf

Chedt\edt_zcu102\edt_zcu102 sdk\testapp_ri\Debug'testapp_r3.elf
Chedt\design_files\sd_boot\u-boot.elf

Encrypted Authenticated Add
none none
Delete
none none
none none Edit
none none
none none Up
Down

(?:' Preview BIF Changes l'

Create Boot Image for SD Boot Mode

Figure 5-1:
First, add the FSBL partition.

Cancel

1. In the Create Boot Image dialog box, click Add to open the Add partition dialog box.

2. In the Add Partition dialog box, click Browse to select the FSBL executable.

3. For FSBL, ensure that the partition type is selected as bootloader and the correct
destination CPU is selected by the tool. The tool is configured to make this selection

based on the FSBL executable.

Note: Ignore the Exception Level drop down, as FSBL is set to EL3 by default. Also, leave the

Trustzone setting unselected for this example.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial
UG1209 (v2019.1) July 3, 2019 www.xilinx.com

| Send Feedback I 70

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=70

& XILINX.

Chapter 5: Boot and Configuration

B Add partition

Add new boot image partition

Add new boot image partition

File path:

Partition type:

[bootloader

*)

Destination Device: [PS

none

Checksurm: [none

7

Other

Alignment:
Reserve:

Startup:

Advanced

Offset:

Load:

Exception Level | ELO

[T Enable Trust Zone

Cihedthedt_zcul02\edt_zcul02.sdk!\fsbl_a53\Debug\fsbl_a53.elf

Browse...

~ | Destination CPU: | A53 64

AL

none

Browse...

QK

) {

Cancel]

Figure 5-2: Add New Boot Image Partition Dialog Box

4. Click OK to select FSBL and go back to Create Boot Image wizard.

Next, add the PMU and ATF firmware partitions.

1. Click Add to open the Add Partition dialog box, shown in the following figure.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial
UG1209 (v2019.1) July 3, 2019

www.Xxilinx.com

l Send Feedback I

71

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=71

& XILINX.

Chapter 5: Boot and Configuration

Zynq UltraScale+ MPSoC: Embedded Design Tutorial

. l Send Feedback I
UG1209 (v2019.1) July 3, 2019 www.xilinx.com

Bl Add partition
Add new boot image partition
Add new boot image partition ,@
File path: | Credt\edt zcul02\edt zcul02.sdk\pmu_fw\Debug\pmu_fw.elf | B |
Partition type: pmu (loaded by bootro ~
Ps tir 1 |AS30
none Encryption none
Checksum: none -
Other
Alignment: Offset:
Reserve: Load:
Startup:
Advanced
Exception Level |ELO o

[Enable Trust Zone

l'_?," l QK] | Cancel

Figure 5-3: Add PMUFW Partition
Add the PMU firmware partition.
a. Browse to and select the PMU Firmware executable.

b. For this partition, select pmu as the partition type.

Note: The pmu partition type also implies that the executable is targeted for PMU.
Therefore, the Destination Device and Destination CPU are grayed out for this setting.

Leave the Exception Level and Trustzone settings unselected.

Click OK.

Click Add to open Add Partition dialog box.

Add the ATF firmware b131.elf partition.

Note: ATF Firmware (b131.elf) can be found in <Petalinux Project>/image/linux/.

Alternatively, you can also use b131.elf from Design Files for This Tutorial.
a. For this partition, select datafile as the partition type.

b. Set the Destination Device as PS.

c. Set the Destination CPU as A53 0.

d. Set the Exception Level to EL3 and select Enable Trustzone.

72

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=72

8 X”_INX® Chapter 5: Boot and Configuration

B Edit Parition >
Edit the boot image partition
Edit the boot image partition @
File path: Chedt\design_files\bl31.elf | Browse...
Partition type: datafile e
Destination Device: |P5S ~ | Destination CPU: |A530 ~
none none
Checksurm: none ~
Browse...
Other
Alignment: | | Offset: | |
Reserve: | | Load: | |
Startup: | |
Advanced
Exception Level EL3 ~
Enable Trust Zone

Figure 5-4: Add ATF partition
7. Click OK.

Next, add the R5 executable and enable it in lockstep mode.

1. Click Add to add the R5 bare-metal executable.

ER Add partition
Add new boot image partition

Add new boot image partition _@
File path: = Ciedtiedt zeul02\edt_zcul02.sdk\testapp_r5\Debug\testapp_r5.elf Browse...
Partition type: [datafile - |
Destination Device: |PS v| Destination CPL: |R5 Lockstep vJ

none Encryption none
Checksurm: [none VI
Browse

Other

Alignment: Offset:

Reserve: Load:

Startup:

Advanced

Exception Level |ELO or

] Enable Trust Zone

':?::' [oK] | Cancel

Figure 5-5: Add RPU Image Partition

2. Set the Destination Device as PS.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback
UG1209 (v2019.1) July 3, 2019 www.Xxilinx.com I—\/—l

73

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=73

(: X”_INX® Chapter 5: Boot and Configuration

3. Set the Destination CPU as R5 Lockstep.

This sets the RPU R5 cores to run in Lockstep mode.
4. Leave Exception Level and Trustzone unselected.
5. Click OK.

Now, add the U-Boot partition. You can find u-boot.elf for sd_boot mode in
<Petalinux project>/images/linux/sd boot

1. Click Add to add the u-boot.elf partition.

2. For U-Boot, select the Destination Device as PS.
3. Select the Destination CPU as A53 0.

4. Set the Exception Level to EL2.

ER Edit Parition ¥
Edit the boot image partition
Edit the boot image partition| _@
File path: | Chedt\design_files\sd_boot\u-boot.elf | Browse...
Partition type: datafile ~
Destination Device: | PS ~ | Destination CPU: | A530 e
none none
Checksurm: none ~
Browse
Other
Alignment: | |Of‘f5et: | |
Reserve: | | Load: | |
Startup: | |
Advanced
@eption Level |EL2 ~)
[] Enable Trust Zone

Figure 5-6: Add U-Boot Partition
5. Click OK to return to the Create Boot Image wizard.

6. Click Create Image to close the wizard and create the boot image.
You can also create BOOT.bin images using the BIF attributes and the Bootgen command.

For this configuration, the BIF file contains following attributes:

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 74
UG1209 (v2019.1) July 3, 2019 www.Xxilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=74

8 X”_INX® Chapter 5: Boot and Configuration

the ROM_ image:
{
[bootloader, destination cpu=a53-0]
[bootloader]C:\edt\edt_ zculoO2\edt zcul02.sdk\fsbl a53\Debug\fsbl a53.elf
[pmufw_image] C:\edt\edt zculoO2\edt zcul02.sdk\pmu_ fw\Debug\pmu fw.elf
[destination_cpu = a53-0, exception_level=el-3,
trustzone] C:\edt\design files\bl31l.elf
[destination cpu =
r5-lockstep] C:\edt\edt zculO02\edt zcul02.sdk\testapp r5\Debug\testapp r5.elf
[destination cpu = a53-0,
exception level=el-2]C:\edt\design files\sd boot\u-boot.elf

}

SDK calls the following Bootgen command to generate the BOOT.bin image for this
configuration:

bootgen -image sd_boot.bif -arch zyngmp -o C:\edt\BOOT.bin

Running the Image on the ZCU102 Board

1.
2.
3.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial

Copy the BOOT.BIN and image.ub images to an SD card.
Load the SD card into the ZCU102 board, in the J100 connector.

Connect a micro USB cable from ZCU102 Board USB UART port (J83), to the USB port on
the host Machine.

Configure the Board to Boot in SD-Boot mode by setting switch SW6 to 1-ON, 2-OFF,
3-OFF and 4-OFF, as shown in following figure.

Figure 5-7: SW6 Switch Settings for SD Boot Mode

Connect 12V Power to the ZCU102 6-Pin Molex connector.

. | Send Feedback l 75
UG1209 (v2019.1) July 3, 2019 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=75

(: X”_INX® Chapter 5: Boot and Configuration

6. Start a terminal session, using Tera Term or Minicom depending on the host machine
being used, as well as the COM port and baud rate for your system, as shown in
following figure.

rTera Term: Serial port setup @1
Baud rate: 115200 -
Data: |th v| | Cancel |
Parity: |none v|
Stop: [1 bit -] | Help |
Flow control: |none v|
Transmit delay
0 msecfchar 1] msecfline

Figure 5-8: COM Port Set Up

7. For port settings, verify COM port in device manager.
There are four USB-UART interfaces exposed by the ZCU102 Board.

8. Select the COM port associated with the interface with the lowest number. In this case,
for UART-O0, select the COM port with interface-0.

9. Similarly, for UART-1, select COM port with interface-1.

Remember that the R5 BSP has been configured to use UART-1, and so R5 application
messages will appear on the COM port with the UART-1 terminal.

10. Turn on the ZCU102 Board using SW1, and wait until Linux loads on the board.

At this point, you can see the initial Boot sequence messages on your Terminal Screen
representing UART-O.

You can see that the terminal screen configured for UART-1 also prints a message. This
is the print message from the R5 bare-metal Application running on RPU, configured to
use UART-1 interface. This application is loaded by the FSBL onto RPU.

The bare-metal application has been modified to include the UART interrupt example.
This application now waits in the waiting for interrupt (WFI) state until a user input is
encountered from Keyboard in UART-1 terminal.

ielln World from R5-B displaved on UART-1

Figure 5-9: Hello World Displayed on UART-1 from R5-0

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 76
UG1209 (v2019.1) July 3, 2019 www.xilinx.com L\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=76

& XILINX.

Meanwhile, the boot sequence continues on APU and the images loaded can be

understood from the messages appearing on the UART-0 terminal. The messages are

high

lighted in the following figure.

filinx Zyng MP First Stage Boot Loader

2817.1 May 17 28019 -
Reset Mode s System Reset
Platform: Silicon <4.8)>, Cluster
[Running on AS53-8 (64-hit> Processor,
IF'HC VADJ Configuration Successful
figuration successful
itialization Done
= In Stage 2
shifter Boot Mode

D1 with level
iD: »rc=
IFile name is BOOT.BIN
Multiboot Reg : @xB

Image Header Iahle Offset BxQCB

Boot Gen Ver: Bx1820068

Mo of Partitions:= Bx5

Partition Header Addrecs:
Present Device:

@x440
axB

In Stage 3, Partition No:l
InEncrypted data Length: Bx31DE
Data word offset: Bx31DE
[otal Data word length: Bx3
Destination Load Address: GxFFFERBBB
Eixecution Address: BxFFFEASBOB
pata word offset: Bx189BO
Partition Attributes: Bx117
Partition 1 Load Success

= In Stage 3. Partition MNo:2
UnEncrypted data Length: Bxi14
Data word offset: Bx114
[otal Data word length: Bx11i4
Destination Load Address: @xB
Execution Address: Bx1AC
Data word offset: Bx13B90
Paptition Attributes: Ox71E
Initializing TCM ECC

Nddress BxFFEBBBAA . Length 480068, ECC

n 2 Load Succes
In Stage 3. Paltltlnn No:3
UnEncpypcad data Length: BOx1294
Data word offset: Bx1294

Bx1294

’arci

[otal Data word length:
pestination Load Address: @x70000000

Execution Address: Bx@

ata word offse Bx13CBA
Partition Attributes: Bx71E
Parcltlnn 3 Luad Success

Data word offacts Bx33153

[otal Data word length: Bx33153

Destination Load Address: @Ox10080800
: Bx10880806
BxquSB

Loaded
= In btage 4

*ot
Hyll Bx?BB reset r
ATF
NOTICE: BL31: Secure code at Ox8
| : BL31:
BL3
BL31: Built =

vi.1

B9:87:89, Hay

EL2
zuZey

ip p
is mmcf £1'70000 : U

12:84:18

1D BxBOOBABOO
Device Name:

initialized

Non secure code at Bx188308688
v2.B(release) ixilinx-v2018. 3 720~ gﬂBdlc??B

17 281

RCZUIEG

lease. Exec State BxB. HandoffAddress:

running on XCZUYEG-/silicon v4-/RILS .1 at Bxifreadbd

Chapter 5: Boot and Configuration

Loading Environment from SPI Flash... S8F: Detected n25¢g512a with page size 512 Bytes,)

Figure 5-10:

Messages from APU During Zynq UltraScale+ Boot Sequence

The U-Boot then loads Linux Kernel and other images on Arm Cortex®-A53 APU in SMP
mode. The terminal messages indicate when U-Boot loads Kernel image and the kernel
start up to getting a user interface prompt in Target Linux OS. The Kernel loading and
starting sequence can be seen in the following figure.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial

UG1209 (v2019.1) July 3, 2019

www.Xxilinx.com

| Send Feedback I

77

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=77

2: X”_INX® Chapter 5: Boot and Configuration

device B offset Ux1e4P@B@, zize OxledBB00
SF: 31719424 hytes (@ Bxled4BBBAA@ Read: 0K
H##t Loading kernel from FIT Image at 1P0@ABEA ...
Using 'conf@system—top.dth’ configuration
Trying ‘kernel@l’ kernel subimage
Description: Linux kernel
Type: Kernel Image
Compression: uncompressed
Data Start: Bx100001 68
Data Size: 18149888 Bytes = 17.3 MiB
Architecture: AArched
05: Linux
Load Address: BxB008000Q
Entry Point: OxB0080000
Hash algo: shal
Hash value: A8f @hf hBddB83eccIa?3eVa?5f716811a1c749fBe
Uerifying Hash Integrity ... shal+ QK
Loading ramdisk from FIT Image at 188800080 ...
Using 'conf@system—top.dth' configuration
Trying ‘ramdiskfl’ ramdisk subimage
Description: petalinux—user—image
Type: RAMDizk Image
Compression: gzip compressed
Data Start: Bx1115%64c
Data Size: 6622428 Bytes = 6.3 MiB
Architecture: AArchod
05: Linux
Load Addreszs: unavailahble
Entry Point: wunavailahle
Hash algo: shal
Hash value: JehlBhaahiBBaleebdb2ladfceBelalbfeel2claa
Uerifying Hash Integrity ... shal+ QK
Loading fdt from FIT Image at 100808880 ...
Using 'confl@szystem—top.dth’ configuration
Trying *‘fdtPsystem—top.dth’ fdt subimage
Description: Flattened Device Tree hlob
Type: Flat Device Tree
Compression: uncompressed
Data Start: Ax1114f48c
Data Size: 41348 Bytes = 48.4 KiB
Architecture: AArchb4d
Hazh algo: zhal
Hash value: aB?ceeh2?abl177bhf ad%17bhddd4f 9914d436acac
Uerifying Hash Integrity ... shal+ QK
Booting wsing the fdt bloh at Bxiii4f48c
Loading Kernel Image ... OK
Loading Ramdisk to B7%af@@8, end B7fffcdd ... 0K
Loading Device Tree to ARABRRBAA7a10A0@, end AARARAEARRY7ael?h ... 0K

Starting kernel ...
[

Figure 5-11: Kernel Loading and Start Sequence

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 78
UG1209 (v2019.1) July 3, 2019 www.Xxilinx.com L\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=78

2: X”_INX® Chapter 5: Boot and Configuration

Boot Sequence for QSPI Boot Mode

The ZCU102 board also comes with dual parallel QSPI Flashes adding up to 128 MB size. In
this example, you will create a boot image and load the images on Zynq UltraScale+ in QSPI
boot mode. The images can be configured using the Create Boot Image wizard in SDK. This
can be done by doing the following steps.

Note: This section assumes that you have created Petalinux Images for QSPI Boot mode by
following steps from Create Linux Images using Petalinux for QSPI Flash.

1. If SDK is not already running, start it and set the workspace as indicated in Chapter 3.
Select Xilinx > Create Boot Image.

Select Zynq MP as the Architecture.

Select the Create new BIF file option.

Ensure that the Output format is set to BIN.

o v M w N

In the Basic tab, browse to and select the Output BIF file path and Output path.

@ Create Boot Image

Create Boot Image
Creates Zyng MP Boot Image in .bin format from given FSBL elf and partition files in specified output folder. {C}

Architecture: |Zynq MP vl

@ Create new BIF file () Import from existing BIF file

Output BIF file path: ¢\edt\gspi_boot.bif | Browse...

UDF data: Browse... |
[T Split Output format: | BIM = |

Cutput path: chedtigspi_BOOT.bin | Browse...

Boot image partitions

File path Encrypted Authenticated Add |
(bootloader) Chedt\edt_zcull2h\edt_zcul02.sdk\fsbl_a53\Debugifsb.. neone none
Chedt\edt_zcul02edt_zcul02.sdidpru_fwi\Debugiprmu_fw.elf nene none
Chedt\design_files\gspi_boot\b31.elf none none | Edit
Cihedth\edt_zcul02\edt_zcull2.sdk\testapp_rohDebug'testapp_r3.elf none none
Chedt\design_files\gspi_boot\u-boot.elf none none | Up
C:h\edt\design_files\image.ub none none

l\?" l Preview BIF Changes | I Create Image I | Cancel J

Figure 5-12: Create Boot Image for QSPI Boot Mode

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 79
UG1209 (v2019.1) July 3, 2019 www.Xxilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=79

2: X”_INX® Chapter 5: Boot and Configuration

Next, add boot partitions.

1. Click Add to open the Add Partition dialog box.
2. In the Add Partition dialog box, click the Browse button to select the FSBL executable.

a. For FSBL, ensure that the Partition type is selected as bootloader and the correct
destination CPU is selected by the tool. The tool is configured to make this selection
based on the FSBL executable.

EX Add partition [
Add new boot image partition
Add new boot image partition @
File path: Ciedtiedt zcul02\edt_zcul02.sdk\fsbl_a33\Debug\fsbl_a53.elf Browse...
Partition type: |I::|00tloader v|
Destination Device: |PS v| Destination CPLU: | AS3 xbd v|
none none
Checksum: |r|0r|e v|
Other
Alignment: Offset:
Rezerve: Load:
Startup:
Advanced
Exception Level | ELD hd
Enable Trust Zone
'/?:' [oK l | Cancel |

Figure 5-13: Add New Boot Image Partition Dialog Box

b. Ignore the Exception Level, as FSBL is set to EL3 by default. Also, leave the Trustzone
setting unselected for this example.

c. Click OK to select the FSBL and go back to the Create Boot Image wizard.
3. Click Add to open the Add Partition window to add the next partition.
4. The next partition is the PMU firmware for the Platform Management Unit.
a. Select the Partition type as datafile and the Destination Device as PS.
b. Select PMU for Destination CPU.
c. Click OK.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 80
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=80

& XILINX.

B Add partition
Add new boot image partition
Add new boot image partition

Chapter 5: Boot and Configuration

2

i

File path: = Cedtiedt zeul02hedt zcul02.sdk\pmu_fui\Debug\prmu_fw.elf

Partition type: (datafile

zD

B

Destination Device: [PS

~| Destination cPU: ((PMU

none

none

Checksum: |nor|e

B |

m

Other

Alignment: Offset:
Reserve: Load:
Startup:

Advanced

Exception Level |ELO

] Enable Trust Zone

()]

?)

[0K] | Cancel

Figure 5-14: Add PMU Partition Details

5. The next partition to be added is the ATF firmware. For this, set the Partition type to

datafile.

a. The ATF executable b131.elf can be found in the PetalLinux images folder

<Petalinux_ project>/images/linux/.

b. Select the Destination Device as PS and the Destination CPU as A53 0.

c. Set the Exception Level to EL3 and select Enable Trustzone.

BB Edit Parition e
Edit the boot image partition
Edit the boot image partition @
File path: | C\edt\design_files\bI31.elf | Browse...
Partition type: datafile ~
Destination Device: | PS ~ | Destination CPL: |A530 ~
none none
Checksum: none ~
Erowse...
Other
Alignment: | | Offset: | |
Reserve: | | Load: | |
Startup: | |
Advanced

Exception Level EL3
Enable Trust Zone

D)

>
@

Figure 5-15:

Zynq UltraScale+ MPSoC: Embedded Design Tutorial

UG1209 (v2019.1) July 3, 2019

www.Xxilinx.com

Add ATF Partition

| Send Feedback I

81

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=81

& XILINX.

Chapter 5: Boot and Configuration

d. Click OK.
6. Click Add to add the R5 bare-metal executable.

a. Add the R5 executable and enable it in lockstep mode, as shown in the following

image.
b. Click OK.

Ef Add partition [==34]

Add new boot image partition
Add new boot image partition _@

File path: = Ci\edt\edt zcul02\edt zcul02.sdk'\testapp_r53\Debughtestapp_r5.elf Browse... |

Partition type: | datafile = |

Destination Device: |I-'-‘S vl Destination CPU: [R5 Lockstep v|

none Ercrypt none

Checksurm: [none VI
Other
Alignment: Offset:
Reserve: Load:
Startup:
Advanced
Exception Level |ELD .

[T Enable Trust Zone

e ':J'J

0K l | Cancel

Figure 5-16: Add RPU Lockstep Image Partition

7. Click Add to add the U-boot partition. u-boot .elf can be found in
<PetalLinux Project>/images/linux/

a. For U-Boot, make the following selections:

Zynq UltraScale+ MPSoC: Embedded Design Tutorial

Set the Partition Type to datafile.
Set the Destination Device to PS.
Set the Destination CPU to A53 0.
Set the Exception Level to EL2.

. l Send Feedback I
UG1209 (v2019.1) July 3, 2019 www.xilinx.com

82

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=82

(: X”_INX® Chapter 5: Boot and Configuration

Edit Parition X
Edit the boot image partition

Edit the boot image partition @
File path: |[Z:\users\surender\edt_201S.3\qspi_boot\u-boot.elf | Browse...
Partition type: datafile ~
Destination Device: | PS ~ | Destination CPU: |A330 ~

none none
Checksum: none ~
Browse...

Other

Alignment: | |Of'fset: | |

Reserve: | | Load: | |

Startup: | |

Advanced

Exception Level |EL2 ~

[Enable Trust Zone

':?;' Cancel

Figure 5-17: Add U-Boot Partition
b. Click OK.
8. Click Add to add the image.ub Linux image file.

a. The image.ub image file can be found in Petalinux project in the images/Linux
directory.

b. For image.ub, make the following selections:
- Set Partition Type to datafile.
- Set the Destination Device to PS.
- Set the Destination CPU to A53 0.

c. Enter 0x1E40000 as the Offset.

d. Leave Exception Level and Trustzone unselected.

O TIP: See Create Linux Images using Petalinux for QSPI Flash, to understand the offset value.

9. Click OK to go back to Create Boot Image wizard.
10. Click Create Image to create the qspi_BOOT.bin image.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 83
UG1209 (v2019.1) July 3, 2019 www.Xxilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=83

2: X”_INX® Chapter 5: Boot and Configuration

You can also create gspi BOOT.bin images using the BIF attributes and the Bootgen
command. You can view the BIF attributes for this configuration by clicking Preview BIF
Changes. For this configuration, the BIF file contains following attributes:

the ROM image:

{
[bootloader,

destination cpu=a53-0]C:\edt\edt zculO2\edt zcul02.sdk\fsbl a53\Debug\fsbl a53.elf
[destination cpu = pmul]C:\edt\edt zculO2\edt zcul02.sdk\pmu_ fw\

Debug\pmu_ fw.elf
[destination cpu = ab53-0, exception level=el-3,

trustzone] C:\edt\design files\bl31l.elf
[destination cpu =

r5-lockstep] C:\edt\edt_zculO2\edt zcul02.sdk\testapp_ r5\Debug\testapp r5.elf
[destination _cpu = a53-0,

exception level=el-2]C:\edt\design files\gspi boot\u-boot.elf

[offset = 0x1E40000, destination cpu = a53-0]C:\edt\design files\image.ub

}

SDK calls the following Bootgen command to generate the gspi BOOT.bin image for
this configuration.

bootgen -image gspi boot.bif -arch zyngmp -o C:\edt\gspi BOOT.bin

Note: In this boot sequence, the First Stage Boot Loader (FSBL) loads PMU firmware. This is because
the PMU Firmware was added as a datafile partition type. Ideally, the Boot ROM code can load the
PMU Firmware for PMU as witnessed in the earlier section. For more details on PMU Firmware, refer
to the “Platform Management” chapter in the Zynqg UltraScale+ MPSoC: Software Developers Guide
(UG1137) [Ref 6].

Running the Image in QSPI Boot Mode on ZCU102 Board

To test the image in this example, you will load the Boot image (gspi BOOT.bin) onto
QSPI on the ZCU102 board using the Program Flash utility in SDK. Alternately, you can use
the XSDB debugger in Xilinx SDK.

1.
2.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial

In Xilinx SDK, select Xilinx > Program Flash.

In the Program Flash wizard, browse to and select the gspi BOOT.bin image file that
was created as a part of this example.

Select qspi-x8-dual_parallel as the Flash type.
Set the Offset as 0 and select the FSBL ELF file (Esbl a53.elf).

Ensure that a USB cable is connected between the USB-JTAG connector on ZCU102
target and the USB port on the Host machine using the following steps.

a. Set the SW6 Boot mode switch as shown in the following figure.

b. Turn on the board.

o l Send Feedback I 84
UG1209 (v2019.1) July 3, 2019 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=84

8 XI LI NX® Chapter 5: Boot and Configuration

Figure 5-18: SW6 Switch Settings for JTAG Boot Mode

6. Click Program to start the process of programming the QSPI Flash with the
gspi BOOT.bin image.

= X
Program Flash Memory

Pragram Flash Memory via In-system Programmer,

Hardware Platform: | edt_zcul02_wrapper_hw_platform_0 e

Connection: Local ~ MNew

Device: | Auto Detect | Select...

Image File: | Chedtigqspi_BOOT.bin | | Browse |

Offset: | 0 |

Flash Type qgspi-x8-dual_parallel ~

FSEL File: | Ci\edt\edt_zcu102\edt_zcul02.sdk\fshl_a33\Debug\fshl_a53.elf | Browse
Convert ELF to bootloadable SREC format and program

[1Blank check after erase

[Verify after flash

®

Figure 5-19: Program Flash Memory Dialog Box

Wait until you see the message “Flash Operation Successful” in the SDK Console, as shown
in the following image.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 85
UG1209 (v2019.1) July 3, 2019 www.Xxilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=85

8 XI LI NX® Chapter 5: Boot and Configuration

|2 Problems J=| Tasks & Console 52 [T] Properties [Z] SDK Terminal

Pragram Flash

Connected to hw_server @ TCP:127.8.8.1:3121

Available targets and devices:

Target @ : jsn-JTAG-SMT2ZNC-218385A11A32

| Device @: jsn-JTAG-SMT2ZNC-218388A11A32-847380893-2

Retrieving Flash info...

f probe 8 B B

Performing Erase Operation...

Erase Operation successful.

INFO: [Xicom 5@-44] Elapsed time = 24 sec.

performing Program Operation...

8%...10%...20%. ..30%. . .40%. . .50%. . .60%. ..70%. . .80%. . .00%. .. 100%
Program Operation successful.

INFO: [Xicom 5@-44] Elapsed time = 1723 sec.

Flash Operation Successful

Figure 5-20: SDK Console Program Flash Messages

Set Up the ZCU102 Board

1. Connect Board USB-UART on Board to Host machine. Connect the Micro USB cable into
the ZCU102 Board Micro USB port J83, and the other end into an open USB port on the
host Machine.

2. Configure the Board to Boot in QSPI-Boot mode by switching SW6 as shown in
following figure.

Figure 5-21: SW6 Switch Settings for QSPI Boot Mode
3. Connect 12V Power to the ZCU102 6-Pin Molex connector.

4. Start a terminal session, using Tera Term or Mini com, depending on the host machine
being used, and the COM port and baud rate as shown in Figure 5-22.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 86
UG1209 (v2019.1) July 3, 2019 www.Xxilinx.com I—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=86

(: X”_INX® Chapter 5: Boot and Configuration

5. For port settings, verify the COM port in the device manager. There are four USB UART
interfaces exposed by the ZCU102.

6. Select the COM port associated with the interface with the lowest number. In this case,
for UART-O0, select the COM port with interface-0.

7. Similarly, for UART-1, select COM port with interface-1.

Remember, R5 BSP has been configured to use UART-1, so R5 application messages will
appear on the COM port with UART-1 terminal.

rTera Term: Serial port setup @1
Port | COMPort |
Baud rate: 115200 -

Data: |8 bit - | Cancel |
Parity: |none v|
Stop: [1 bit -] | Help |
Flow control: |none v|
Transmit delay
0 msecfchar 1] msecfline

Figure 5-22: COM Port Settings for UART-1 Terminal
8. Turn on the ZCU102 Board using SW1.

At this point, you can see initial Boot sequence messages on your Terminal Screen
representing UART-O.

You can see that the terminal screen configured for UART-1 also prints a message. This
is the print message from the R-5 bare-metal Application running on RPU, configured to
use UART-1 interface. This application is loaded by the FSBL onto RPU.

The bare-metal application has been modified to include the UART interrupt example.
This application now waits in the WFI state until a user input is encountered from
Keyboard in UART-1 terminal.

ﬂelln World from R5-B displaved on UART-1

Figure 5-23: Hello World Displayed on UART-1 From R5-0

Meanwhile, the boot sequence continues on APU and the images loaded can be
understood from the messages appearing on the UART-0 terminal. The messages are
highlighted in the following figure.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 87
UG1209 (v2019.1) July 3, 2019 www.xilinx.com L\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=87

(: X”_INX® Chapter 5: Boot and Configuration

Hilinx Zyng MP First S5tage Boot Loader

Release 2019.1 Hay 17 2019 — 12:84:1%8

Heset Mode System Reset

FPlatform: Silicun <4_A>, Cluster ID AxBEAAAAEHA

Running on A53-—A (E4—hit) Processor, Device Hame: HCEZU?EG

FMC UADJ Configuration Successful

Board Configuration successful

FProcessor Initialization Done

Lot oco 2

QEPI 32 hlt Boot Mode

QEPI iz in Dual Parallel connection

QSPI di= wsing 4 bhit bus

FlashID=Bx28 AxBB BAx2@

MICROH 512M Bits

viultiboot Heoa = BxA

Q5FI Reading Sy»c BxH,. Dest FFFF1CG48,. Length ECHA

-Image Header Table Offset BxB8CH

QSPI Reading Sy»c Bx8CH,. Dest FFFDFA88, Length 48

-l mage Header Table Detaills e

Boot Gen Uer: Bx18200008

Mo of Partitions: Bx9

FPartition Header Address: Bx44B8

FPartition Prezent Device: Bx@

Q5FPI Reading Syrc Bx1188,. Dest FFFDFACE, Length 48
Reading S»c BOx1148, De=st FFFDFlEB Length 4
Reading S»c Bx118H,. Dest FFFDF14B, Length
Reading Sr»c Bx11CHA,. De=st FFFDF188, Length
Reading S»c Bx1288,. De=t FFFDF1C8, Length
Reading S»c Bx1248,. De=t FFFDFZB88, Length
Reading S»c BAx1288,. De=t FFFDFZ48, Length
Reading S»c Bx12CHA,. De=t FFFDFZ88, Length
Reading S»c Bx1388,. De=s=t FFFDFZC8, Length

-In1t1a11"atlun Success

In Stage 3, Partition Ho:l

UnEncrypted data Length- Bx5C67

Data word offszset: BxHC67

Total Data word length: HAx5C6H7

Destination Load Addrxre=z=s: BxFFDCHAAAA

Execution Address: BxFFDCFFAAQA

Data word offset: BxBBHAA

Fartition Attributes: BAx83E

Q5FI Reading Syc Bx22CHAA,. Dest FFDCHAAEA,

-Partition 1 Load Success

In Stage 3. Partition Mo:=2

UnEncrypted data Length: Bx249

Data word offzset: Bx249

Total Data word length: Bx249

Deztination Load Address: BxFFDDB1CH

Execution Addres=: HAx@

Data word off=zet: BAxE?7A

Partition Attributes: BAx83E

QEFI Reading Syc 8x392DCA. Dest FFDDB1CE. Length

P ition 2 Load Success
In Stage 3. Partition Mo:=3

UnEncrypted data Length: @x188

Data word offszet: Bx1800

Total Data word length: @x184

Desztination Load Address: BxFFDDFG6EA

Execution Address:

Data word offset:

Partition Attributes:

QSPI Reading Sy»c Bx3AYHAA,. De=t FFDDFG6EH, Length

-PMU Firmware 2817.1 May 17 2017 12:26:17

PMU_ROM Uersion: xphr—us 1.8-8

FPartition 32 Luad Eucce

Figure 5-24: Messages Appearing on UART-0 Terminal

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 88
UG1209 (v2019.1) July 3, 2019 www.xilinx.com L\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=88

& XILINX.

Chapter 5: Boot and Configuration

The U-Boot then loads Linux Kernel and other images on Arm Cortex-A53 APU in SMP
mode. The terminal messages indicate when U-Boot loads Kernel image and the kernel

start up to getting a user interface prompt in Linux Kernel. The Kernel loading and

starting sequence can be seen in following figure.

device B offzet BxleddBBBA, zize Hxled4@B@BO
SF: 31719424 bytes P Bxled8088 Read: 0K
H#t Loading kernel from FIT Image at 10000080
Using "conf@system—top.dtbh’ configuration
Trying "kernell@l’ kernel subimage
Description: Linux kernel
Type: Kernel Image
Compression: uwncompressed
Data Start: A1 3801 A8
Data Size: 18149888 Butes = 17.3 HMiB
Architecture: AArchbd
08: Linux
Load Address: BxBHAB0A0A
Entry PFoint: BxBH08B08A0A
Hash algo: shal
Hash value: AEfdbf bAdd83eccIa?Iela?SE?
Uerifying Hash Integrity _.. shal+ 0K

Loading ramdisk from FIT Image at 160800860008

Uszing "conf@system—top.dth’ configuration
Trying "ramdisk@1’ ramdisk subimage

Description: petalinux—user—image

Type: RAMDisk Image

Compression: g=zip compressed

Data Stawrt: Bx1115%64c

Data Size: 6622420 Bytes = 6.3 HMiB

Architecture: AArchb4d

H Linux

Load Address: wnavailable

Entry Point: wnavailahble

Hash algo: shal

Hazh value: 3eblBbaablBRaleen3Ib2ladfce
Verifying Hash Integrity ... shal+ 0K
Loading fdt from FIT Image at 18080800 ___
Using "conf@system—top.dth’ configuration
Trying "fdtBPsystem—top.dth’ fdt subimage

Description: Flattened Device Tree blobh

Type: Flat Device Tree
Compression: uwncompressed

Data Start: Bx1114f48c

Data Size: 41348 Bytes = 4@.4 KiB
Architecture: AArchbd

Hash algo: shal

16811alc?47fBe

BelaZbfeeZcBaa

Hazh value: al7ceeb2?a6177bf ad517bhddd4f 991 4d436acac

Uerifying Hash Integrity ... shal+ 0K
Booting using the fdt blob at Bx1114f4Bc
Loading Kernel Image ... OK

Loading Ramdisk to 872af880,. end B7Effcdd
Loading Device Tree to UAOEREROAY?alB0@,. e

Starting kernel ...
[@.EBBBBB] Booting Linux on phgsical CPU_

. OK
nd BAAAAAAEAY??ae1Yh ... OK

@xAARRAAAAAG [@x110fdA34]

Figure 5-25: Kernel Loading and Starting Sequence

9. Wait until Linux loads on the Board.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial
UG1209 (v2019.1) July 3, 2019 www.xilinx.com

| Send Feedback I

89

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=89

8 X”_INX® Chapter 5: Boot and Configuration

Boot Sequence for QSPI-Boot Mode Using JTAG

Zynq UltraScale+ MPSoC supports many ways to load the boot image. One way is using the
JTAG interface. This example XSCT session demonstrates how to download a BOOT image
file (gspi_ BOOT.bin) in QSPI using the XSDB debugger. After the QSPI is loaded, the
gspi BOOT.bin image executes in the same way as QSPI Boot mode in Zynq UltraScale+.
You can use the same XSCT session or the System Debugger for debugging similar Boot
flows.

The following sections demonstrate the basic steps involved in this Boot mode.

Setting Up the Target

1. Connect a USB cable between the USB-JTAG J2 connector on the target and the USB
port on the host machine.

2. Set the board to JTAG Boot mode by setting the SW6 switch, as shown in the following
figure.

Figure 5-26: SW6 Switch Settings for JTAG Boot Mode

3. Power on the Board using switch SW1.

Open the XSCT Console in SDK by clicking the XSCT button |§| Alternatively, you can
also open the XSCT console by selecting Xilinx > XSCT Console.

4. In the XSCT console, connect to the target over JTAG using the connect command:

xsct% connect

The connect command returns the channel ID of the connection.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 90
UG1209 (v2019.1) July 3, 2019 www.Xxilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=90

2: X”_INX® Chapter 5: Boot and Configuration

5. The targets command lists the available targets and allows you to select a target using
its ID.

The targets are assigned IDs as they are discovered on the JTAG chain, so the IDs can
change from session to session.

Note: For non-interactive usage such as scripting, you can use the -filter option to select a
target instead of selecting the target using its ID.

xsct% targets

The targets are listed as shown in the following figure.

B “5CT Conscle 23

X5CT Process

HX3Cct% targets

1 FS TIAF
2 FMO
3 FEL
4 F50

5 RFEU (Reset)

& Cortex-R5S #0 (REU RBeset)

7 ~Cortex-R5 #1 (RPU Reset)

APT (L2 Cache Reset)

9 Cortex-A53 #0 (APU Reset)
10 Cortex—-AS3 #1 (AFU Eeset)
11 Cortex-AS3 #2 (APU Eeset)
12 Cortex-AS53 #3 (AFU Beset)

(e}

K3CcL%

X3Ccti

Figure 5-27: XSCT Targets

Load U-Boot Using XSCT/XSDB

1. Download the u-boot application on Cortex-A53 #0 using the following commands:

By default JTAG Security gates are enabled. Disable the security gates for DAP, PL TAP
and PMU (this will make PMU MB target visible to Debugger).

xsct% targets -set -filter {name =~ "PSU"}
xsct% mwr Oxffca0038 Ox1ff
xsct% targets

Verify if the PMU MB target is listed under the PMU device. Now, load and run PMUFW

xsct% targets -set -filter {name =~ "MicroBlaze PMU"}
xsct% dow {C:\edt\edt zculo2\edt zcul02.sdk\pmu fw\Debug\pmu fw.elf}
xsct% con

Now, reset APU Cortex-A53 Core 0 to load and run FSBL

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 91
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=91

2: X”_INX® Chapter 5: Boot and Configuration

xsct% targets -set -filter {name =~ "Cortex-AS53 #0"}
xsct% rst -processor

O TIP: rst -processor clears the reset on an individual processor core.

This step is important, because when Zynq UltraScale+ boots up in JTAG bootmode, all
the APU and RPU cores are held in reset. You must clear resets on each core before
performing debugging on these cores. You can use the rst command in XSCT to clear
the resets.

Note: rst -cores clears resets on all the processor cores in the group (such as APU or RPU) of
which the current target is a child. For example, when A53 #0 is the current target, rst -cores
clears resets on all the A53 cores in APU.

Load and run FSBL

xsct% dow {C:\edt\edt zculO02\edt zcul02.sdk\fsbl a53\Debug\fsbl a53.elf}
xsct% con

Verify FSBL messages on Serial Terminal and stop FSBL after couple of seconds

xsct% stop
Load and Run ATF

xsct% dow {C:\edt\design files\bl3l.elf}
xsct% con
xsct% stop

2. Configure a serial terminal (Tera Term, Mini com, or SDK Serial Terminal interface for
UART-0 USB-serial connection).

3. For serial terminal settings, see Figure 5-22.

xsct% dow [C:\edt_zcul02\u-boot.elf}

Downloading Program —— C:/edt_zcul02/u-boot.elf
section, .data: 0x08000000 - 0x0806c7Of
100% OMB 0.1ME/=s 00:03

Setting PC to Program Start Address 0x08000000
Successfully downleaded C:/edt _zcul02/u-boot.elf
xscth

4 Ll

xscthd
Figure 5-28: Verify the Image on the ZCU102 Board
4. Load and run U-Boot
xsct% dow {C:\edt\design files\sd boot\u-boot.elf}
5. Run U-Boot, using the con command in XSDB.
xsct$ con

6. In the target serial terminal, press any key to stop the U-Boot auto boot.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 92
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=92

2: X”_INX® Chapter 5: Boot and Configuration

7. Stop the core using the stop command in XSDB.

xsct% stop

Load Boot.bin in DDR Using XSDB

1. Download the Boot.bin binary into DDR on ZCU102. Use the same Boot.bin created for
QSPI boot mode.
xsct% dow -data {C:\edt\gspi BOOT.bin} 0x2000000

2. Now continue the U-Boot again, using the con command in XSDB.

xsct% con

Load the Boot.bin Image in QSPI Using U-Boot

1. Execute the following commands in the U-Boot console on the target terminal. These
commands erase QSPI and then write the Boot.bin image from DDR to QSPI.

ZyngMP> sf probe 0 0 0
ZyngMP> sf erase 0 0x4000000
ZyngMP> sf write 0x2000000 0O 0x4000000
2. After successfully writing the image to QSPI, turn off the board and set up the ZCU102
board as described in Set Up the ZCU102 Board, page 86.

You can see Linux loading on the UART-0 terminal and the R5 application executing in the
UART-1 terminal.

This chapter focused mostly on system boot and different components related to system
boot. In the next chapter, you will focus on applications, Linux and Standalone (bare-metal)
applications which will make use of PS peripherals, PL IPs, and processing power of APU
Cores and RPU cores.

Boot Sequence for USB Boot Mode

Zynq Ultrascale+ MPSoC also supports USB Slave Boot Mode. This is using the USB DFU
Device Firmware Upgrade (DFU) Device Class Specification of USB. Using a standard update
utility such as OpenMoko's DFU-Util, you will be able to load the newly created image on
Zynq UltraScale+ via the USB Port. The following steps list the required configuration to
load Boot images using this Boot mode. The DFU Utility is also shipped with Xilinx SDK and
PetaLinux.

Configure FSBL to Enable USB Boot Mode

There are few changes required in FSBL to enable USB Boot Mode. USB boot mode support
increases the footprint of FSBL (by approximately 10 KB). Since it is intended mostly during

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 93
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
http://dfu-util.sourceforge.net/releases/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=93

& XILINX.

Chapter 5: Boot and Configuration

initial development phase, its support is disabled by default to conserve OCM space. In this

section, you will modify the FSBL to enable the USB Boot Mode. Considering the FSBL
project is used extensively throughout this tutorial, we will not modify the existing FSBL
project. Instead, this section will make use of new FSBL project.

Create First Stage Boot Loader for Arm Cortex-A53-Based APU

1. In SDK, select File > New > Application Project to open the New Project wizard.

2. Use the information in the table below to make your selections in the wizard.

Table 5-1:

Wizard Properties and Commands

Wizard Screen

System Properties

Setting or Command to Use

Application Project

Project Name

fsbl_usb_boot

Use Default Location

Select this option

OS Platform

Standalone

Hardware Platform

edt_zcu102_wrapper_hw_platform_0

Processor psu_cortexa53_0
Language C

Compiler 64-bit
Hypervisor Guest No

Board Support
package

Select Use Existing and select a53_bsp

Templates

Available Templates

Zyng MP FSBL

Zynq UltraScale+ MPSoC: Embedded Design Tutorial
UG1209 (v2019.1) July 3, 2019

3. Click Finish.

4. In the Project Explorer tab, expand the fsbl_usb_boot project and open
xfsbl config.h from:

fsbl usb boot > src > xfsbl config.h

5. Inxfsbl config.h change or set following settings:

#define FSBI,_QSPI_EXCLUDE_ VAL (1U)
#define FSBL_SD EXCLUDE VAL (1U)
#define FSBL USB_EXCLUDE VAL (0U)

6. Use CTRL + S to save these changes.
7. Re-build FSBL (fsbl_usb_boot).

Creating Boot Images for USB Boot

In this section, you will create the Boot Images to be loaded, via USB using DFU utility.
Device Firmware Upgrade (DFU) is intended to download and upload firmware to/from
devices connected over USB. In this boot mode, the Boot loader (FSBL) and the PMUFW
which are loaded by Boot ROM are copied to Zynq Ultrascale+ On Chip Memory (OCM)

l Send Feedback I

www.Xxilinx.com

94

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=94

2: X”_INX® Chapter 5: Boot and Configuration

from Host Machine USB port using DFU Utility. The size of OCM (256 KB) limits the size of
boot image downloaded by BootROM in USB boot mode. Considering this, and subject to
size requirement being met, only FSBL and PMUFW are stitched into the first Boot .bin,
which is copied to OCM. Rest of the Boot partitions will be stitched in another Boot image
and copied to DDR to be loaded by the FSBL which is already loaded and running at this
stage. Follow the below steps to create Boot images for this boot mode.

1. In SDK, select Xilinx > Create Boot Image.

2. Select £sbl usb boot.elf andpmu_ fw.elf partitions and set them as shown in the
following figure.

@ Create Boot Image

Create Boot Image
Creates Zyng MP Boot Image in .bin format from given FSBL elf and partition files in specified output folder, _@

Architecture: | Zyng MP v‘

@ Creste new BIF file (0) Import from existing BIF file

Basic | Security |

Output BIF file path: ~ C\edt\usb-boot\usb_boot.bif m
UDF data: |Erowse...‘
: Split Qutput format: |BIN '|

Output path: Chedt\usb-boot\BOOT.bin Browse.

Boot image partitions

File path Encrypted Authenticated | Add |
(bootloader) Cihedt\edt_zcul02\edt_zcul02.sdk\fsbl_usbh_boot\Debug\fsbl_ush_boot.elf none none | T
(pmu) Chedt\edt_zcul02\edt_zcul02.sdk\pmu_fw\Debughpmu_fw.elf none none Je £
Edit |
E"_?_‘," ‘ Preview BIF Changes] ‘ Create Image | | Cancel |

Figure 5-29: Create Boot Image for USB Boot
3. Ensure that PMU Partition is set to be loaded by BootROM.

4. Click on Create Image to generate BOOT .bin.

Modifying Petalinux U-Boot

Modify Petalinux U-Boot so that it can load the image .ub image. The Device tree needs to
be modified to set USB in the Peripheral mode. The default PetaLinux configuration is set
for the USB in Host mode.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 95
UG1209 (v2019.1) July 3, 2019 www.Xxilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=95

2: X”_INX® Chapter 5: Boot and Configuration

For this, follow the below steps to modify system-user.dtsi in the Petalinux Project
<Petalinux-projects>/project-spec/meta-user/recipes-bsp/device-tree/
files/system-user.dtsi.

1. Add the following to system-user.dtsi, so that it looks like:

/include/ "system-conf.dtsi"

/A
gpio-keys ({
swl9 |
status = "disabled";
}i
}i
leds {
heartbeat led {
status = "disabled";
}i
}i
}i
&uartl
{
status = "disabled";
}i
&dwe3 0 {
dr mode = "peripheral";
maximum-speed = "super-speed";
Ji 7

The modified system-user.dtsi file can be found in <Design Files>/usb boot
released with tutorial.

Note: 2019.1 release does not support USB 3.0 slave boot mode support. For USB 3.0 slave boot
mode support see the Xilinx Answer 72409.

2. Build PetaLinux with the following changes.

$ petalinux-build

The following steps describe how to create a usb _boot .bin comprising rest of the
partitions.

Note: Copy the newly generated U-Boot to C:\edt\usb boot\. The u-boot.elf is also
available in Design Files for This Tutorial.

1. In SDK, select Xilinx > Create Boot Image.

2. Select FSBL and rest of the partitions and set them as shown in the following figure. For
this you can also choose to import the BIF File from SD Boot Sequence.

Note: Ensure that you have set the correct exception levels for ATF (EL-3, Trustzone) and U-Boot
(EL-2) partitions. These settings can be ignored for other partitions.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 96
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/support/answers/72409.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=96

8 XI LI NX® Chapter 5: Boot and Configuration

Ef Create Boot Image
Create Boot Image
Creates Zyng MP Boot Image in .bin format from given FSBL elf and partition files in specified output folder. @
Architecture: (ZyngMP =
@) Create new BIF file () Import from existing BIF file
Basic | Security
Output BIF file path: Cedtiusb-bootush_boot_partitions.bif Browse...
UDF data:
[Split Cutput format: [BIN =~
Output path: C_C:\edt\ush—boot\u sb_boot.ber
Boot image partitions
File path Encrypted Authenticated Add
(bootloader) Chedt\edt_zcul02\edt_zcul02.sdk\fsbl_usb_boot\Debug'\fsbl_usb_boot.elf none none
Delet
Ch\edt\design_files\sd_bootibl31.elf none none
Cihedthedt_zeul02\edt_zcul02.sdk\testapp_r3'\Debug'testapp_r3.elf __none __none
| C\edt\usb-bootiu-boot.elf noene nene |
@' [Prewaw BIF Changal [Create Image J I Cancel]

Figure 5-30: Create Boot Image with Rest of the Partitions

3. Notice that PMUFW partition is not required in this image, as it will be loaded by the
Boot ROM before this image (usb_boot.bin) is loaded.

4. Click on Create Image to generate usb_boot.bin.
Note: In addition to BOOT.bin and usb_boot.bin, the Linux image like image . ub is required to

boot till Linux. This image . ub will be loaded by DFU utility separately.

Boot using USB Boot

In this section you will load the boot images on ZCU102 target using DFU utility. Before you
start, set the board connections as shown below:

1. Set ZCU102 for USB Boot mode by setting SW6 (1-OFF, 2-OFF, 3-OFF, and 4-ON), as
shown below:

Figure 5-31: SW6 Settings for USB Boot Mode

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 97
UG1209 (v2019.1) July 3, 2019 www.Xxilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=97

2: X”_INX® Chapter 5: Boot and Configuration

2. Connect a USB 3.0 Cable to J96 USB 3 ULPI Connector, and the other end of the Cable to
USB port on Host Machine.

3. Connect a USB Micro cable between USB-UART port on Board (J83) and Host Machine.

4. Start a terminal session, using Tera Term or Minicom depending on the host machine
being used, as well as the COM port and baud rate for your system, as shown in
Figure 5-31.

5. Power ON the board.

The following steps will load the boot images via USB using DFU utility, which can be found
in SDK\2019.1\tps\1nx64\dfu-util-0.9.

Alternatively you can also install DFU utility on Linux using Package Manager supported by
Linux Distribution being used.

Boot Commands for Linux Host Machine

1. Check if the DFU can detect the USB target.

$ sudo dfu-util -1

The USB device should be enumerated with Vendorld : Productld which is 03fd:0050.
You should see something like below:

Found DFU: [03fd:0050] ver=0100, devnum=30, cfg=1, intf=0, alt=0, name="Xilinx DFU
Downloader", serial="2R49876D9CC1AA4"

Note: If you do not see the ‘Found DFU’ message, verify the connection and retry.
2. Now download the BOOT.bin that was created in Creating Boot Images for USB Boot.

$ sudo dfu-util -d 03fd:0050 -D <USB Boot_ Image Path>/Boot.bin

Verify from Serial Terminal if the FSBL is loaded successfully.

3. Now download the usb_boot .bin. Before this start another terminal session for
UART-1 serial console.

$ sudo dfu-util -d 03fd:0050 -D <USB_Boot Image Paths>/usb boot.bin

Check UART 0 terminal and wait until U-Boot loads.

4. On U-Boot prompt, type Enter to terminate autoboot. Verify from the UART1 console
that the R5 application is also loaded successfully.
5. In U-Boot console start DFU_RAM to enable downloading Linux Images

U-boot> run dfu ram

6. Download Linux Image Image.ub using following Command from Host Machine
Terminal:

$ sudo dfu-util -d 03£d:0300 -D <Petalinux project>/images/linux/image.ub -a 0

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 98
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=98

2: X”_INX® Chapter 5: Boot and Configuration

7. Now execute CTRL+C on U-Boot console to stop dfu_ram.
8. Run bootm command from U-Boot Console.

U-boot> bootm
9. Verify that Linux loads successfully on the target

Note: In this example, image.ub is copied to DDR location based on #define DFU_ALT_INFO_RAM
settings in U-Boot configuration. The same can be modified to copy other image files to DDR
location. Then, if required, these images can be copied to QSPI using U-Boot commands listed in
Boot Sequence for QSPI-Boot Mode Using JTAG.

Boot Commands for Windows Host Machine

1. In SDK, Select Xilinx > Launch Shell.
2. In Shell, use Check if the DFU can detect the USB target

> dfu-util.exe -1

Note: dfu-util.exe can be found in
<SDK_Installation path>\SDK\2019.1\tps\Win64\dfu-util-0.9\dfu-util.exe

3. The USB device should be enumerated with Vendorld : Productld which is 03fd:0050

Note: If you do not see the message starting with "Found DFU", download and install "zadig"
software. Open the software and click on options and select "List all devices". Select device
"Xilinx Dfu Downloader" and click on Install driver tab.

4. Now download the Boot.bin that was created in Creating Boot Images for USB Boot.
$ dfu-util.exe -d 03£d:0050 -D BOOT.bin

5. Verify from Serial Terminal (UART 0) that FSBL is loaded successfully.

6. Now download the usb_boot .bin. Before this start another terminal session for
UART-1 serial console.

$ dfu-util.exe -d 03£d:0050 -D usb_boot.bin

7. On U-Boot prompt type Enter to terminate auto-boot. Verify from UART1 console that
the R5 application is also loaded successfully.

Note: At this point, use Zadig utility to install drivers for "Usb download gadget" with device ID
03fd:0300. Without this, zadig software does not show "Xilinx DFU Downloader" after booting
U-Boot on target.

8. In U-Boot console start DFU_RAM to enable downloading Linux Images
U-boot> run dfu ram

9. Download Linux Image image.ub using following Command from Host Machine
Terminal

$ dfu-util.exe -d 03fd:0300 -D image.ub -a 0
10. Run bootm command from U-Boot Console.

U-boot> bootm

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 99
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=99

2: X”_INX® Chapter 5: Boot and Configuration

11. Verify that Linux loads successfully on the target.

Secure Boot Sequence

The secure boot functionality in Zynq UltraScale+ MPSoC allows you to support
confidentiality, integrity, and authentication of partitions. Secure boot is accomplished by
combining the Hardware Root of Trust (HROT) capabilities of the Zynq UltraScale+ device
with the option of encrypting all boot partitions. The HROT is based on the RSA-4096
asymmetric algorithm in conjunction with SHA-3/384, which is hardware accelerated, or
SHA-2/256, implemented as software. Confidentiality is provided using 256 bit Advanced
Encryption Standard - Galois Counter Mode (AES-GCM). This section focuses on how to use
and implement the following:

« Hardware Root of Trust with Key Revocation
« Partition Encryption with Differential Power Analysis (DPA) Countermeasures

« Black Key Storage using the Physically Unclonable Function (PUF)

The section Secure Boot System Design Decisions outlines high level secure boot decisions
which should be made early in design development. The Hardware Root of Trust section
discusses the use of a Root of Trust (RoT) in boot. The Boot Image Confidentiality and DPA
section discusses methods to use AES encryption.

The Boot Image Confidentiality and DPA section discusses the use of the operational key
and key rolling techniques as countermeasures to a DPA attack. Changing the AES key
reduces the exposure of both the key and the data protected by the key.

A red key is a key in unencrypted format. The Black Key Storage section provides a method
for storing the AES key in encrypted, or black format. Black key store uses the physically
unclonable function (PUF) as a Key Encryption Key (KEK).

The Practical Methods in Secure Boot section provides steps to develop and test systems
that use AES encryption and RSA authentication.

Secure Boot System Design Decisions
The following are device level decisions affecting Secure Boot:

+ Boot Mode

» AES Key Storage Location

« AES Storage State (encrypted or unencrypted)
« Encryption and Authentication requirements

« Key Provisioning

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 100
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=100

2: X”_INX® Chapter 5: Boot and Configuration

The boot modes which support secure boot are Quad Serial Peripheral Interface (QSPI), SD,
eMMC, and NAND. The AES key is stored in either eFUSEs (encrypted or unencrypted),
Battery Backed Random Access Memory (BBRAM) (unencrypted only), or in external NVM
(encrypted only).

In Zynq UltraScale+ MPSoC, partitions can be encrypted and/or authenticated on a
partition basis. Xilinx generally recommends that all partitions be RSA authenticated.
Partitions that are open source (U-Boot, Linux), or do not contain any proprietary or
confidential information, typically do not need to be encrypted. In systems in which there
are multiple sources/suppliers of sensitive data and/or proprietary IP, encrypting the
partitions using unique keys may be important.

DPA resistance requirements are dictated by whether the adversary has physical access to
the device.

Table 5-2 can be a good reference while deciding on features required to meet a specific
secure system requirement. Next sections will discuss the features in more detail.

Table 5-2: System Level Security Requirements

System Consideration/ Requirement Zynq UltraScale+ Feature
Ensure that only the users SW and HW runs on the device HWROT
Guarantee that the users SW and HW are not modified HWROT
Ensure that an adversary cannot clone or reverse engineer Boot Image Confidentiality

SW/HW

Protect sensitive data and proprietary Intellectual Property (IP) | Boot Image Confidentiality

Ensure that Private Key (AES key) is protected against side DPA Protections
channel attacks

Private/Secret keys (AES key) is stored encrypted at rest Black Key Storage

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 101
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=101

2: X”_INX® Chapter 5: Boot and Configuration

Hardware Root of Trust

Root of trusts are security primitives for storage (RTS), integrity (RTI), verification (RTV),
measurement (RTM), and reporting (RTR). RoT consists of hardware, firmware, and software.
The HROT has advantages over software RoTs because the HROT is immutable, has a smaller
attack surface, and the behavior is more reliable.

The HROT is based on the CSU, eFUSEs, BBRAM, and isolation elements. The HROT is
responsible for validating that the operating environment and configuration have not been
modified. The RoT acts as an anchor for boot, so an adversary can not insert malicious code
before detection mechanisms start.

Firmware and software run on the HROT during boot. Zynq UltraScale provides immutable
BootROM code, a first stage boot loader, device drivers, and the XILSKEY and XILSECURE
libraries which run on the HROT. These provide a well-tested, proven in use API so that
developers do not create security components from scratch with limited testing.

Data Integrity

Data integrity is the absence of corruption of hardware, firmware and software. Data
integrity functions verify that an adversary has not tampered with the configuration and
operating environment.

Zynq UltraScale+ verifies the integrity of partition(s) using both symmetric key (AES-GCM)
and asymmetric key (RSA) authentication. RSA uses a private/public key pair. The fielded
embedded system only has the public key. Theft of the public key is of limited value since it
is not possible, with current technology, to derive the private key from the public key.
Encrypted partitions are also authenticated using the Galois Counter Mode (GCM) mode of
AES.

In the secure boot flow, partitions are first authenticated and then decrypted if necessary.

Authentication

Figure 5-32 shows RSA signing and verification of partitions. From a secure facility, the SDK
Bootgen tool signs partitions, using the private key. In the device, the ROM verifies the FSBL
and either the FSBL or U-Boot verifies the subsequent partitions, using the public key.
Primary and secondary private/public key pairs are used. The function of the primary
private/public key pair is to authenticate the secondary private/public key pair. The function
of the secondary key is to sign/verify partitions.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 102
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=102

& XILINX.

Signing - Bootgen

Partition Data

i

SHA3

384 Bit Hash

RSA
Sign

Private Key ——

RSA Signature

Chapter 5: Boot and Configuration

Verification - ROMCode, FSBL, U-Boot

Partition Data RSA Signature

l i

RSA

SHA3 Public Key ——m] Verify

i l

384 Bit Hash == 384 Bit Hash

Figure 5-32: Zynq UltraScale+ RSA Authentication

To sign a partition, Bootgen first calculates the SHA3 of the partition data. The 384 bit hash
is then RSA signed using the private key. The resulting RSA signature is placed in the
authentication certificate. In the image, each signed partition has partition data followed by
an authentication certificate which includes the RSA signature.

Verification of the FSBL is handled by the CSU ROM code. To verify the subsequent
partitions, the FSBL or U-Boot uses the XILSECURE library.

There is a debug mode for authentication called bootheader authentication. In this mode of
authentication, the CSU ROM code does not check the primary public key digests, the
session key ID or the key revocation bits stored in the device eFUSEs. Therefore, this mode
is not secure. However, it is useful for testing and debugging as it does not require
programming of eFUSEs. This tutorial uses this mode. However, fielded systems should not
use boot header authentication. The example BIF file for a fully secured system is included

at the end of this section.

Boot Image Confidentiality and DPA

AES is used to ensure confidentiality of sensitive data and IP. Zynq UltraScale+ uses AES
Galois Counter Mode (GCM). Zynq UltraScale+ uses a 256 AES bit key. The principle AES
enhancements provided by Zynq UltraScale+ are increased resistance to Differential Power
Analysis (DPA) attacks and the availability of AES encryption/decryption post boot.

Bootgen and FSBL software support AES encryption. Private keys are used in AES
encryption, and AES encryption is done by Bootgen using the key files. The key files can be
generated by Bootgen or OpenSSL. The use of the operational key limits the exposure of the
device key. The use of the operational key in key rolling is discussed in the next section. To
maintain Boot image confidentiality, Encrypted Boot images can be created using Bootgen.
Software examples to program keys to BBRAM and eFUSE are also available in Xilinx SDK.
One such example is discussed in Practical Methods in Secure Boot.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial
www.xilinx.com

UG1209 (v2019.1) July 3, 2019

l Send Feedback I 103

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=103

2: X”_INX® Chapter 5: Boot and Configuration

DPA Protections

Key rolling is used for DPA resistance. Key rolling and black key store can be used in the
same design. In key rolling, software and bitstream is broken up into multiple data blocks,
each encrypted with a unique AES key. The initial key is stored in BBRAM or eFUSE NVM.
Keys for successive data blocks are encrypted in the previous data block. After the initial
key, the key update register is used as the key source.

A 96 bit initialization vector is included in the NKY key file. The IV uses 96 bits to initialize
AES counters. When key rolling is used, a 128 bit IV is provided in the bootheader. The 32
least significant bits define the block size of data to decrypt using the current key. The block
sizes following the initial block defined in the IV are defined as attributes in the Bootgen
Image Format (BIF) file.

An efficient method of key rolling uses the operational key. With the operational key,
Bootgen creates an encrypted secure header with the user specified operational key and
the first block IV. The AES key in eFUSE or BBRAM is used only to decrypt the 384 bit secure
header with the 256 bit operational key. This limits the exposure of the device key to DPA
attacks.

Black Key Storage

The PUF enables storing the AES key in encrypted (black) format. The black key can be
stored either in eFUSEs or in the bootheader. When needed for decryption, the encrypted
key in eFUSEs or the bootheader is decrypted using the PUF generated key encrypting key
(KEK).

There are two steps in using the PUF for black key storage. In the first, PUF registration
software is used to generate PUF helper data and the PUF KEK. The PUF registration data
allows the PUF to re-generate the identical key each time the PUF generates the KEK. For
more details on the use of PUF registration software, see PUF Registration - Boot Header
Mode. For more information on PUF Registration - eFUSE mode, see Programming BBRAM
and eFUSEs (XAPP1319) [Ref 13].

The helper data and encrypted user key must both be stored in eFUSEs if the PUF eFUSE
mode is used, and in the bootheader if the PUF Bootheader mode is used. The procedure
for the PUF bootheader mode is discussed in Using PUF in Bootheader Mode. For the
procedure to use PUF in eFUSE mode, see Programming BBRAM and eFUSEs (XAPP1319)
[Ref 13].

This tutorial uses PUF Bootheader Mode as it does not require programming of eFUSEs, and
is therefore useful for test and debug. However, the most common mode is PUF eFUSE
mode, as the PUB Bootheader mode requires a unique run of bootgen for each and every
device. The example BIF file for a fully secured system is included at the end of the Secure
Boot Sequence section demonstrates the PUF eFUSE mode.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 104
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=104

2: X”_INX® Chapter 5: Boot and Configuration

Practical Methods in Secure Boot

This section outlines the steps to develop secure boot in a Zynq UltraScale+ system.
Producing a secure embedded system is a two-step process. In the first phase, the
cryptographic keys are generated and programmed into NVM. In the second phase, the
secure system is developed and tested. Both steps use the Xilinx Software Design Kit (SDK)
to create software projects, generate the image, and program the image. For the second
phase, a test system can be as simple as £sbl.elf and hello.elf files. In this section,
you will use the same images used in Boot Sequence for SD-Boot, but this time the images
will be assembled together, and have the secure attributes enabled as part of the secure
boot sequence.

This section starts by showing how to generate AES and RSA keys. Following key
generation, systems using the advanced AES and RSA methods are developed and tested.
Keys generated in this section are also included in the Design Files for This Tutorial, released
with this tutorial.

The methods used to develop AES functionality are provided in the following sections:

« Generating all of the AES keys

« Enabling Encryption Using Key Rolling
« Enable use of an Operational Key

» AES key in eFUSE

* Using the PUF

The Creating RSA Private/Public Key Pairs section provides the steps to authenticate all
partitions loaded at boot. This section also shows how to revoke keys.

A requirement in the development of a secure system is to add security attributes which are
used in image generation. SDK's Bootgen generates a Boot Image Format (BIF) file. The BIF
file is a text file. In its simplest form, the BIF is a list of partitions to be loaded at boot.
Security attributes are added to the BIF to specify cryptographic functionality. In most
cases, the Bootgen GUI (Create Boot Image wizard) is used to generate the BIF file. In some
cases, adding security attributes requires editing the Bootgen generated BIF file. In Create
Boot Image Wizard in Xilinx SDK, after the Security tab is selected, the Authentication and
Encryption tabs are used to specify security attributes.

After implementing AES and RSA cryptography in secure boot, a Boot test is done. The
system loads successfully and displays the FSBL messages on the terminal. These messages
indicate the cryptographic operations performed on each partition. Appendix A,
Debugging Problems with Secure Boot provides steps that are required to use, if the secure
boot test fails.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 105
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=105

2: X”_INX® Chapter 5: Boot and Configuration

Sample Design Overview

The sample design demonstrates loading various types of images into the device. It
includes loading a FSBL, PMU Firmware, U-Boot, Linux, RPU software and a PL configuration
image. In this sample, all of these images are loaded by the FSBL which performs all
authentication and decryption. This is not the only means of booting a system. However, it
is the simple and secure method, as of 2019.1.

Release

PMU— gy csu ———————— AU Config Mgr (XILFPGA, XILSECURE), Framework, Warm-Restart, etc.
Reset
csu csu FSBL /
ROM | (Auth+Enc)
T
FspL Load Auth+Enc PMU FWiLoad Auth ATF; Load Auth+Enc Bitstream, Load Auth U-Boot; | !
Needs to run out of OCM for Security Reasons | |
| |
N‘ | OCM |
| !
ATF Needs to run out of OCM for Security Reasons J— }
|
L___l
APU
,,,,,,,,
UBoot Authentication is done in external memory; Too large for internal — }
|
|
|
|
\\x 1 !
Linux Authentication is done in external memory; Too large for internal | |
\\ | Protected |
! DDR |
!
} \
| | | }
: RPU : Assumption: Executes out of a combination of int/ext memory 1 |
_____ \L |
B
PL BIT PL Programmed and Operational — loaded by FSBL instead of Uboot since | CRAM!

Uboot operates out of DDR and is not as secure

X20902-052418

Figure 5-33: Sample Design Overview

Different sections within the boot image have different levels of security and are loaded
into different locations. The following table explains the contents of the final boot image.

Table 5-3: Final Boot Image with Secure Attributes

Binary Auth:ns'gcated AES Encrypted | Exception Level Loader
FSBL Yes Yes EL3 CSU ROM
PMU Firmware Yes Yes NA FSBL
PL Bitstream Yes Yes NA FSBL
Arm Trusted Firmware (ATF) | Yes No EL3 FSBL
R5 Software Yes Yes NA FSBL
U-Boot Yes No EL2 FSBL

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 106
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=106

2: X”_INX® Chapter 5: Boot and Configuration

Table 5-3: Final Boot Image with Secure Attributes (Cont’d)

RSA
Authenticated

Linux Yes No EL1 FSBL

Binary AES Encrypted Exception Level Loader

Notes:

1. In a Secure boot sequence PMU image is loaded by FSBL. Using the BootROM/CSU to load the PMU firmware
introduces a security weakness as the key/IV combination is used twice. First to decrypt the FSBL and then again
to decrypt the PMU image. This is not allowed for the secure systems.

2. As of 2019.1, U-Boot does not perform a secure authenticated loading of Linux. So instead of U-Boot, FSBL loads
the Linux images to memory address and then uses U-Boot to jump to that memory address.

This tutorial demonstrates assembling the binaries that are created using Chapter 6, System
Design Examples in a boot image with all the security features enabled. This section also
shows how PL bitstream can be added as a part of secure boot flow. Follow Chapter 6,
System Design Examples till the section Modifying the Build Settings to create all the
necessary files and then switch back.

Enabling the security features in boot image is done in two different methods. During the
first method, the BIF file is manually created using a text editor and then using that BIF file
to have Bootgen create keys. This enables you to identify the sections of the BIF file that are
enabled which security features. The second method uses the Create Boot Image wizard in
SDK. It demonstrates the same set of security features. The second method reuses the keys
from the first method for convenience.

Generating Keys for Authentication

There are multiple methods of generating keys. These include, but are not limited to, using
bootgen, customized key files, OpenSSL and Hardware Security Modules (HSMs). This
tutorial covers methods using bootgen. The bootgen created files can be used as templates
for creating files containing user-specified keys from the other key sources.

The creation of keys using bootgen commands requires the generation and modification of
the BIF files. The key generation section of this tutorial creates these bif files "by hand"
using a text editor. The next section, building your boot image demonstrates how to create
these BIF files using the SDKs Bootgen GUI (create Boot Image Wizard).

Creating RSA Private/Public Key Pairs

For this example, you will create the Primary and Secondary keys in the PEM format. The
keys are generated using Bootgen command-line options. Alternately, you can create the
keys using external tools like OpenSSL.

The following steps describe the process of creating the RSA Private/Public Key Pairs:

1. Launch the shell for SDK.
2. Select Xilinx > Launch Shell.

3. Create a file named key generation.bif.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 107
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=107

2: X”_INX® Chapter 5: Boot and Configuration

Note: The key generation.bif file will be used to create both the asymmetric keys in these
steps and the symmetric keys in later steps.

the ROM image:

{
[pskfile] pskO.pem
[sskfile] sskO.pem
[auth params]spk id = 0; ppk select = 0
[fsbl_configla53_x64
[bootloader] fsbl a53.elf
[destination cpu = pmulpmu fw.elf
[destination device = plledt zcul02 wrapper.bit
[destination cpu = a53-0, exception level = el-3, trustzone] bl3l.elf
[destination cpu = r5-0]tmr psled r5.elf
[destination_cpu = a53-0, exception level = el-2]u-boot.elf
[load = 0x1000000, destination cpu = a53-0]image.ub

}

4. Save the key generation.bif file in the C:\edt\secure boot sd\keys
directory.

5. Copy all of the ELF, BIF and UB files built in Chapter 6, System Design Examples to
C:\edt\secure boot sd\keys directory.

6. Navigate to the folder containing the BIF file.
cd C:\edt\secure boot_ sd\keys
7. Run the following command to generate the keys:
bootgen -p zu9eg -arch zyngmp -generate keys auth pem -image key generation.bif

8. Verify that the files psk0.pem and ssk0.pem are generated at the location specified
in the BIF file (c: \edt\secure boot sd\keys).

Generate SHA3 of Public Key in RSA Private/Public Key Pair

The following steps are required only for RSA Authentication with eFUSE mode, and can be
skipped for RSA authentication with bootheader mode. The 384 bits from sha3.txt can
be programmed to eFUSE for RSA Authentication with the eFUSE Mode. For more
information, see Programming BBRAM and eFUSEs (XAPP1319)[Ref 13].

1. Perform the steps from the prior section.

2. Now that the PEM files have been defined, add authentication = rsa attributes as
shown below to key generation.bif

the ROM image:
{
[pskfile] pskO.pem
[sskfile] sskO.pem
[auth_params]spk id = 0; ppk select = 0
[fsbl_configla53_ x64
[bootloader, authentication = rsa]fsbl ab53.elf
[destination cpu = pmu, authentication = rsalpmu fw.elf
[destination device = pl, authentication = rsaledt zcul02 wrapper.bit
[destination cpu = a53-0, exception level = el-3, trustzone, authentication =
rsalbl3l.elf

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 108
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=108

2: X”_INX® Chapter 5: Boot and Configuration

[destination cpu = r5-0, authentication = rsaltmr psled r5.elf
[destination cpu = a53-0, exception level = el-2, authentication = rsalu-boot.elf
[load = 0x1000000, destination cpu = a53-0, authentication = rsa]image.ub

}
3. Use the bootgen command to calculate the hash of the PPK:

bootgen -p zcu9eg -arch zyngmp -efuseppkbits ppk0 digest.txt -image
key generation.bif

4. Verify that the file ppk0_digest.txt is generated at the location specified
(c:\edt\secure boot sd\keys).

Additional RSA Private/Public Key Pairs

The steps in this section to generate Secondary RSA Private/Public key pair required for Key
Revocation, which requires programming of eFUSE. For more information, see Programming
BBRAM and eFUSEs (XAPP1319) [Ref 13]. You can skip this section if you do not intend to
use Key Revocation.

Repeat steps from Creating RSA Private/Public Key Pairsand Generate SHA3 of Public Key in
RSA Private/Public Key Pair to generate the second RSA private/public key pair and
generate the SHA3 of the second PPK.

1. Perform the steps from the prior section but with replacing psk0.pem, ssk0.pem, and
ppk0_digest.txt with pskl.pem, sskl.pemand ppkl digest.pem respectively.
Save this file as key generation 1.bif. That .bif file will look like:

the ROM image:
{
[pskfile]lpskl.pem
[sskfile] sskl.pem
[auth_params]spk id = 1; ppk select = 1
[fsbl configlab53 x64
[bootloader] fsbl a53.elf
[destination cpu = pmulpmu_ fw.elf
[destination device = plledt zcul02 wrapper.bit
[destination _cpu = a53-0, exception level = el-3, trustzone]lbl3l.elf
[destination_cpu = r5-0]tmr_psled_r5.elf
[destination cpu = a53-0, exception level = el-2]u-boot.elf
[load = 0x1000000, destination cpu = ab53-0]image.ub

}
2. Run the bootgen command to create the RSA private/public key pairs.

bootgen -p zu9eg -arch zyngmp -generate keys auth pem -image key generation 1.bif

3. Add authentication = rsa attributes to the key generation 1.bif file. The
.bif file will look like:

the ROM image:
{
[pskfile]pskl.pem
[sskfile] sskl.pem
[auth params]spk id = 1; ppk select = 1
[fsbl_configla53_ x64
[bootloader, authentication = rsa]fsbl ab3.elf

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 109
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=109

& XILINX.

Chapter 5: Boot and Configuration

[destination cpu =
[destination device
[destination cpu

rsalbl3l.elf
[destination_cpu
[destination cpu
[load 0x1000000,

}
Run the bootgen command to generate the hash of the primary RSA public key.

pmu, authentication
pl, authentication
ab3-0, exception level

rsalpmu_ fw.elf
rsaledt zcul02 wrapper.bit
el-3, trustzone, authentication

r5-0, authentication
ab3-0, exception level
destination cpu

= rsaltmr psled r5.elf
el-2, authentication rsal]u-boot.elf

a53-0, authentication rsa] image.ub

bootgen -p zcuSeg -arch zyngmp -efuseppkbits ppkl digest.txt -image
key generation_ 1.bif

Verify that the files ppk1l.pem, spkl.pem and ppkl digest.txt are all generated at
the location specified (c:\edt\secure boot\keys).

Enabling Boot Header Authentication

Boot header authentication is a mode of authenti

checks of the eFUSE hashes for the PPKs, the revo

cation that instructs the ROM to skip the
cation status of the PPKs and the Session

IDs for the secondary keys. This mode is useful for testing and debugging as it does not
require programming of eFUSEs. This mode can be permanently disabled for a device by
programming the RSA_EN eFUSEs which forces RSA Authentication with the eFUSE checks.

Fielded systems should use the RSA_EN eFUSE to
Header Authentication.

force the eFUSE checks and disable Boot

Add the bh_auth_enable attribute to the [fsbl_config] line so that the bif file appears as

following:

the ROM image:

{
[pskfile] pskO.pem
[sskfile] ssk0.pem
[auth params]spk id = 0; ppk select
[fsbl configla53 x64, bh auth enable
[bootloader, authentication rsal] fsbl a53
[destination cpu pmu, authentication
[destination_device pl, authentication
[destination_cpu a53-0, exception_ level

rsalbl3l.elf
[destination cpu
[destination cpu
[load 0x1000000,

0

r5-0, authentication
ab3-0, exception level
destination cpu a53-0

}

Generating Keys for Confidentiality

.elf

rsalpmu fw.elf

rsaledt_zcul02 wrapper.bit
el-3, trustzone, authentication

rsaltmr psled r5.elf
el-2, authentication = rsalu-boot.elf
, authentication rsal] image.ub

Image confidentiality is discussed in Boot Image Confidentiality and DPA section. In this
section you will modify the .bif file from the authentication section by adding the
attributes required to enable image confidentiality, using the AES-256-GCM encryption
algorithm. At the end, a bootgen command will be used to create all of the required

AES-256 keys.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial
UG1209 (v2019.1) July 3, 2019 www.xilinx.com

l Send Feedback I 110

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=110

2: X”_INX® Chapter 5: Boot and Configuration

Using AES Encryption

1. Enable image confidentiality by specifying the key source for the initial encryption key
(bbram_red_key for now) using the [keysrc encryption] bbram red key
attribute

2. On several of the partitions enable confidentiality by adding the encryption = aes
attribute of the partitions. Also specify a unique key file for each partition. Having a
unique key file for each partition allows each partition to use a unique set of keys which
increases security strength by not reusing keys and reducing the amount of information
encrypted on any one key. The key generation.bif file should now look as follows:

the ROM image:

{

[pskfile]pskO.pem

[sskfile] sskO.pem

[auth _params]spk id = 0; ppk select = 0

[keysrc_encryption]bbram red key

[fsbl configla53_x64, bh auth enable

[bootloader, authentication = rsa, encryption = aes, aeskeyfile

=fsbl a53.nky]lfsbl a53.elf

[destination cpu = pmu, authentication = rsa, encryption = aes, aeskeyfile =
pmu_fw.nkylpmu fw.elf

[destination_device = pl, authentication = rsa, encryption = aes, aeskeyfile =
edt zculO02 wrapper.nkyledt zcul02 wrapper.bit

[destination cpu = a53-0, exception level = el-3, trustzone, authentication =
rsalbl3l.elf

[destination cpu = r5-0, authentication = rsa, encryption = aes,aeskeyfile =
tmr_psled_r5.nkyltmr_psled r5.elf

[destination_cpu = a53-0, exception level = el-2, authentication = rsalu-boot.elf
[load = 0x1000000, destination cpu = a53-0, authentication = rsal]image.ub

}
Enabling DPA Protections

This section provides the steps to use an operational key and key rolling effective
countermeasures against the differential power analysis (DPA).

Enable use of an Operational Key

Use of an operational key limits the amount of information encrypted using the device key.
Enable use of the operational key by adding the opt_key attribute to the [fsbl_config] line of
the bif file. The key generation.bif file should now look like as shown below:

the ROM image:
{

[pskfile] pskO.pem

[sskfile] sskO.pem

[auth params]spk id = 0; ppk select = 0

[keysrc _encryption]bbram red key

[fsbl configla53 x64, bh auth enable, opt key

[bootloader, authentication = rsa, encryption = aes, aeskeyfile =
fsbl_a53.nkyl fsbl_a53.elf

[destination cpu = pmu, authentication = rsa, encryption = aes, aeskeyfile =
pmu_fw.nkylpmu fw.elf

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 111
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=111

2: X”_INX® Chapter 5: Boot and Configuration

[destination device = pl, authentication = rsa, encryption = aes, aeskeyfile =
edt zculO02 wrapper.nkyledt zcul02 wrapper.bit

[destination cpu = a53-0, exception level = el-3, trustzone, authentication
rsalbl3l.elf

[destination_cpu = r5-0, authentication = rsa, encryption = aes, aeskeyfile
tmr psled r5.nkyltmr_psled r5.elf

[destination cpu = ab53-0, exception level = el-2, authentication = rsalu-boot.elf

[load = 0x1000000, destination cpu = a53-0, authentication = rsa]image.ub

}

Enabling Encryption Using Key Rolling

Use of key rolling limits the amount of information encrypted using any of the other keys.
Key-rolling is enabled on a partition-by-partition basis using the blocks attribute in the bif
file. The blocks attribute allows specifying the amount of information in bytes to encrypt
with each key. For example, blocks=4096,1024(3),512(*) would use the first key for 4096
bytes, the 2nd through 4th keys for 1024 bytes and all remaining keys for 512 bytes. In this
example, the block command will be used to limit the life of each key to 1728 bytes.

Enable use of the key rolling by adding the blocks attribute to each of the encrypted
partitions. The key generation.bif file should now look like.

the ROM image:

{

[pskfile]pskO.pem

[sskfile] sskO.pem

[auth _params]spk id = 0; ppk select = 0

[keysrc_encryption]bbram red key

[fsbl configla53_x64, bh auth enable, opt_key

[bootloader, authentication = rsa, encryption = aes, aeskeyfile = fsbl a53.nky,
blocks = 1728 (*)]fsbl a53.elf

[destination cpu = pmu, authentication = rsa, encryption = aes,aeskeyfile =
pmu_fw.nky, blocks = 1728 (*)]pmu_fw.elf

[destination_device = pl, authentication = rsa, encryption = aes,aeskeyfile
edt zculO02 wrapper.nky, blocks = 1728(*)]edt zcul02 wrapper.bit
[destination cpu = a53-0, exception level = el-3, trustzone, authentication =
rsalbl3l.elf

[destination cpu = r5-0, authentication = rsa, encryption = aes, aeskeyfile
tmr psled r5.nky, blocks = 1728 (*)]tmr psled r5.elf

[destination_cpu = a53-0, exception level = el-2, authentication = rsalu-boot.elf
[load = 0x1000000, destination cpu = a53-0, authentication = rsal]image.ub

}

Generating all of the AES keys

Once all desired encryption features have been enabled, you can generate all key files by
running Bootgen. Some of the source files (for example, ELF) contain multiple sections.
These individual sections will be mapped to separate partitions, and each partition will have
a unique key file. In this case, the key file will be appended with a ".1.". For example, if the
pmu_fw.elf file contains multiple sections, both a pmu_fw.nky and a pmu_fw.1.nky
file will be generated.

1. Create all of the necessary NKY files by running the bootgen command that creates the
final BOOT .bin image.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 112
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=112

2: X”_INX® Chapter 5: Boot and Configuration

bootgen -p zcu9eg -arch zyngmp -image key generation.bif

2. Verify that the NKY files were generated. These file should include
edt zcul02 wrapper.nky, £sbl a53.nky, pmu fw.nky, pmu fw.1l.nky,
pmu_fw.2.nky, tmr psled r5.nky, and tmr psled r5.1.nky.

Using Key Revocation

Key revocation allows you to revoke a RSA primary or secondary public key. Key revocation
may be used due to elapsed time of key use or if there is an indication that the key is
compromised. The primary and secondary key revocation is controlled by onetime
programmable eFUSEs. The Xilinx Secure Key Library is used for key revocation, allowing
key revocation in fielded devices. Key revocation is discussed further in Zynqg UltraScale+
MPSoC Technical Reference Manual (UG1085) [Ref 5].

Using the PUF

In this section, the PUF is used for black key storage in the PUF Bootheader mode. RSA
authentication is required when the PUF is used. In PUF Bootheader mode, the PUF helper
data and the encrypted user's AES key are stored in the Bootheader. This section shows how
to create a BIF for using the PUF. Because the helper data and encrypted user key will be
unique for each and every board, the bootgen image created will only work on the board
from which the helper data originated.

At the end of the Secure Boot Sequence section, a different BIF file demonstrates using the
PUF in eFUSE mode. In PUF eFUSe mode, the PUF helper data and encrypted user's AES key
are stored in eFUSEs. In PUF eFUSE mode, a single boot image can be used across all
boards.

PUF Registration - Boot Header Mode

The PUF registration software is included in the XILSKEY library. The PUF registration
software operates in a Bootheader mode or eFUSE mode. The Bootheader mode allows
development without programming the OTP eFUSEs. The eFUSE mode is used in
production. This lab runs through PUF registration in Bootheader Mode only. For PUF
registration using eFUSE, see Programming BBRAM and eFUSEs (XAPP1319) [Ref 13].

The PUF registration software accepts a red (unencrypted) key as input, and produces
syndrome data (helper data), which also contains CHASH and AUX, and a black (encrypted)
key. When the PUF Bootheader mode is used, the output is put in the bootheader. When the
PUF eFUSE mode is used, the output is programmed into eFUSEs.

1. In SDK, right click tmr_psled_r5_bsp and click Board Support Package Settings.

2. Ensure that xilskey and the xilsecure libraries are enabled.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 113
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=113

& XILINX.

Chapter 5: Boot and Configuration

Board Support Package Settings

Control various settings of your Board Support Package.

S,

standalone as Typs:

Board Support Package Settings x

=ilfFs 5.5 ~
©OS Version
drivers

psu_cortexr5_0
Target Hardware
Processor:

Supported Libraries

the navigatar on the left.

Hardware Specification: /scratch/test/edt_zcul02 _wrapper_hw_platform _O/system.hdr

psu_cortexrsS_0

Check the box next ta the libraries you want included in your Board Support Package You can configure the library in

Name Version
libmetal {14
Iwip202 l10
openamp 15

£ xilffs 3.8
xilflash laa
xilfpga a0
ilisf 510
xilmfs l23

23

= 3o

- 6.4

s is a simple. low-level softwars layer. It provides access to basic
processor features such as caches. iNterrupts and exceptions as well as the basic
features of a hosted environment, such as standard input and output. profiling. abort
and exit

Description
| Libmetal Library
| Lwip202 Uibrary: IwiP (light weignt IP) is an open source TCPYIP stack configured fe
| OpenAmp Library
Generic Fat File System Library

| Xilinx Flash library for Intel/AMD CF| compliant parallel flash

| XiFPGA library provides an interface to the Linux or bare-metal users for canfigurir

| Xilinx In-system and Serial Flash Library

ile System

ement API Liby

| Xitinx Secure Library provides interface to AES, RSA and SHA hardware engines on

| Xilinx Secure Key Library supports programming efuse and bbram

Cancel oK

Figure 5-34:

Select Xilskey and Xilsecure Libraries

3. Click OK. Now open tmr_psled_r5_bsp > system.mss.

4. Scroll to the Libraries section. Click on xilskey 6.7 Import Examples.

5. In the dialog box, select the xilskey_puf_registration example. Click OK.

o

Bl Examples for xilskey

Import Examples

Select the examples te be imported into workpsace. Double click on the file to

view the source.

52

r @] b_.:'? x.i_l5k‘a_y__ﬁtj%_re_g:i;fration_

b 7] 2 xilskey_efuse_example

b [0 = silskey_bbram_sxample

b [= xilskey_bbram_ultrascale_example
il = xilskey_efuseps_zyngmp_sxample

b [7] = xilskey_bbramps_zyngmp_sxample

@. [Examples Directory] [

selectAll | |

DeselectAll | | oK]

Figure 5-35:

Import PUF Registration Example

6. In Project Explorer, right click tmr_psled_r_bsp_xilskey_puf_registration_1. Click
Rename and rename to puf_registration and click OK.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial
www.xilinx.com

UG1209 (v2019.1) July 3, 2019

| Send Feedback l 114

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=114

(: X”_INX® Chapter 5: Boot and Configuration

7.

mRename Resource 0= @

New name: puf_registration

Figure 5-36: Rename PUF Registration Project

In Project Explorer, Puf_registration App ' Src ' double click
xilskey puf registration.h to open in SDK.

Edit xilskey puf registration.h as follows:

a. Change #define XSK_PUF_INFO_ON_UART from FALSE to TRUE
b. Ensure that #define XSK_PUF_PROGRAM _EFUSE is set to FALSE
c. Set XSK_PUF_AES_KEY (the 256 bit key).

The key is to be entered in HEX format and should be Key 0 from the £sbl a53.nky
file that you generated in Generating all of the AES keys. You can find a sample key
below:

#define XSK_PUF_AES KEY
"68D58595279ED1481C674383583C1D98DA816202A57E7FE4F67859CB069CD510"

Note: Do not copy this key. Refer to the £sbl _a53.nky file for your key.

d. Set the XSK_PUF_BLACK_KEY_IV. The initialization vector IV is a 12 byte data of your
choice.

#define XSK PUF BLACK KEY IV "E1757A6E6DD1CCOF733BED31"

/* Following parameters should be configured by user */

#define XSK_PUF_INFO_ON_UART TRUd
#define XSK_PUF_PROGRAM_EFUSE FALSE
#detrine . L ALSE

/* For programming/reading secure bits of PUF */
#define XSK_PUF_READ_ SECUREBITS FALSE
#define XSK_PUF_PROGRAM_SECUREBITS FALSE

#if (XSK_PUF_PROGRAM_SECUREBITS == TRUE)

#define XSK_PUF_SYN_INVALID FALSE

#define XSK_PUF_SYN_WRLK FALSE

#define XSK_PUF_REGISTER DISABLE FALSE

#define XSK_PUF_RESERVED FALSE

#endif

#define XSK_PUF_AES_KEY "EATD39616B5C1CEDBBDEAFACITEBRETAFDB7EBAGDCBB39BTARES76FIEI2AESTER"
#define XSK_PUF_BLACK_KEY_IV "DB5S14B92D877477OAT3AB46F"

Figure 5-37: PUF Registration in Bootheader Mode

9. Save the file and exit.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial

. | Send Feedback I 115
UG1209 (v2019.1) July 3, 2019 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=115

2: X”_INX® Chapter 5: Boot and Configuration

10. In Project Explorer, right click on the puf_registration project and select Build Project.
11.In SDK, select Xilinx > Create Boot Image.
12. Select Zynq MP in the Architecture dialog box.
13. In the Output BIF file path: dialog box, specify
C:\edt\secureboot sd\puf registration\puf registration.bif
14. In the Output Path dialog box, specify
C:\edt\secureboot sd\puf registration\BOOT.bin

15.In the Boot Image Partitions pane, click Add. Add the partitions and set the destination
CPU of the puf_registration application to R5-0:

C:\edt\edt zculO2\edt zcul02.sdk\fsbl a53\Debug\fsbl a53.elf
C:\edt\edt_ zcul02\edt_ zcul02.sdk\puf registration\Debug\puf registration.elf

16. Click on Create Image to create the Boot Image for PUF registration

m Create Boot Image

Create Boot Image

Creates Zyng MP Boot Image in .bin format from given FSEL elf and partition files in specified output folder,

oo

Architecture: |Zynq MP -

@ Create new BIF file () Import from existing BIF file

Basic | Security!

Cutput BIF file path: Chedt\secureboot_sd\puf_registration\puf_registration.bif | Browse...
UDF data: | Browse... |
[Split Output format: |BIN

Output path: Chedt\secureboot_sd\puf_registration®BOOT.bin | Browse... |

Boot image partitions

File path Encrypted Authenticated | [Add |
(bootloader) Chedth edt_zcul02\edt_zcul02.sdk\fsbl_a53'Debughfshbl_a53.elif none none e
Chedthedt_zcul02\edt_zcul02 sdk\puf_registration\Debug'puf_registration.elf none none LJE i
Edit |
'::?;' | Preview BIF Changes] [Create Image] l Cancel]

Figure 5-38: PUF Registration Software
17.Insert a SD card into the PC SD card slot.
18. Copy C:\edt\secureboot sd\puf registration\BOOT.bin to the SD Card
19. Move the SD card from the PC SD card slot to the ZCU102 card slot.

20. Start a terminal session, using Tera Term or Minicom depending on the host machine
being used, as well as the COM port and baud rate for your system, as shown in
Figure 3-12.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 116
UG1209 (v2019.1) July 3, 2019 www.Xxilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=116

2: X”_INX® Chapter 5: Boot and Configuration

21.

22.
23.
24.

25.

26.
27.
28.

In the communication terminal menu bar, select File > Log. Enter
C:\edt\secureboot sd\puf registration\puf registration.log in the
dialog box.

Power cycle the board.
After the puf_registration software has run, exit the communication terminal.

The puf registration.log contentisusedin Using PUF in Bootheader Mode. Open
puf registration.log in a text editor.

Save the PUF Syndrome data that starts after App PUF Syndrome data Start!!!; and ends
at PUF Syndrome data End!!!, non-inclusive, to a file named helperdata. txt.

Save the black key IV identified by App: Black Key IV - to a file named black iv.txt.
Save the black key to a file named black key.txt.

The files helperdata.txt, black key.txt, and black iv.txt can be saved in
C:\edt\secure boot sd\keys

Using PUF in Bootheader Mode

The following steps describes the process to update the .bif file from the previous
sections to include using the PUF in Boot Header mode. This section will make use of the
Syndrome data and Black Key created during PUF registration process.

1.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial

Enable use of the PUF by adding all of the fields and attributes indicated in bold to the
bif file (key _generation.bif) shown below.

the ROM image:

{

[pskfile]l pskO0.pem

[sskfile] sskO.pem

[auth params]spk id = 0; ppk select = 0

[keysrc encryption]bh blk key

[bh key ivlblack iv.txt

[bh keyfile]lblack key.txt

[puf file]lhelperdata.txt

[fsbl configla53 x64, bh auth enable, opt key, puf4kmode,
shutter=0x0100005E, pufhd bh

[bootloader, authentication = rsa, encryption = aes, aeskeyfile = fsbl a53.nky,
blocks = 1728 (*)]fsbl_a53.elf

[destination_cpu = pmu, authentication = rsa, encryption = aes, aeskeyfile =
pmu_fw.nky, blocks = 1728 (*)]pmu fw.elf

[destination device = pl, authentication = rsa, encryption = aes, aeskeyfile =
edt zculO02 wrapper.nky, blocks = 1728(*)]edt zcul02 wrapper.bit
[destination cpu = a53-0, exception level = el-3, trustzone, authentication =
rsalbl3l.elf

[destination_cpu = r5-0, authentication = rsa, encryption = aes, aeskeyfile =
tmr psled r5.nky, blocks =1728(*)]tmr_psled r5.elf

[destination cpu = a53-0, exception level = el-2, authentication = rsalu-boot.elf
[load = 0x1000000, destination cpu = a53-0, authentication = rsal]image.ub

}

o l Send Feedback I 117
UG1209 (v2019.1) July 3, 2019 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=117

2: X”_INX® Chapter 5: Boot and Configuration

2. The above .bif file can be used for creating a final boot image using an AES key
encrypted in the boot image header with the PUF KEK. This would be done using the
following bootgen command.

bootgen -p zcu9eg -arch zyngmp -image key generation.bif -w -o BOOT.bin

Note: The above steps can also be executed with PUF in eFUSE mode. In this case you can repeat the
previous steps, using the PUF in eFUSE mode. This requires enabling the programming of eFUSEs
during PUF registration by setting the XSK_PUF_PROGRAM_EFUSE macro in the
xilskey puf registration.h file used to build the PUF registration application. Also, the BIF
would need to be modified to use the encryption key from eFUSE and removing the helper data and
black key files. PUF in eFUSE mode is not covered in this tutorial in order to avoid programming the
eFUSEs on development or tutorial systems.

[keysrc_encryption]efuse blk key
[bh_key iv]black iv.txt

System Example Using the SDK Create Boot Image Wizard

The prior sections enabled the various security features (authentication, confidentiality,
DPA protections, and black key storage) by hand editing the BIF file. This section performs
the same operations, but uses the SDK Bootgen Wizard as a starting point. The SDK
Bootgen Wizard creates a base BIF file, and then adds the additional security features that
are not supported by the wizard using a text editor.

1. Change directory to the bootgen files directory.
cd C:\edt\secure boot sd\bootgen files
2. Copy the below data from the prior example to this example.

cp ../keys/*nky .
cp ../keys/*pem .
cp ../keys/black iv.txt .
cp ../keys/helperdata.txt .
cp ../keys/*.elf .
cp ../keys/edt zcul02 wrapper.bit
cp ../keys/image.ub .
cp ../keys/black key.txt.
3. Click Programs > Xilinx Design Tools > SDK 2019.1 > Xilinx SDK 2019.1 to launch
SDK.

4. Click Xilinx Tools > Create Boot Image from the SDK menu bar to launch the Create
Boot Image wizard.

5. Select Zynq MP as the Architecture.

6. Enter the Output BIF file path as
c:\edt\secure boot sd\bootgen files\design bh bkey keyrolling.bif.

7. Select BIN as the output format.
8. Enter the output path c:\edt\secure boot sd\bootgen files\BOOT.bin.

9. Enable authentication.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 118
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=118

(: X”_INX® Chapter 5: Boot and Configuration

a. Click the Security tab.

b. Check the Use Authentication check box.

c. Browse to select the psk0.pem file for the PSK and the ssk0.pem for the SSK.
d. Ensure PPK select is 0.

e. Enter SPKID as 0.

f. Check the Use BH Auth checkbox.

Create Boot Image x

Create Boot Image
Creates Zyng MP Boot Image in .bin format from given FSBL elf and partition files in specified output folder. @

Architecture: Zyng MP
@) Create new BIF file O Import from existing BIF file
Basic Security

Authentication Encryption

UUse Authentication

PPK: | ‘ Browse... PSK: ‘zcureﬁbuutﬁsd\buutgEnjles\pskD.pem ‘ Browse...
SPK: | ‘ Browse.. SSK: ‘ zcure_boot_sd\bootgen_files\sskD.pemn ‘ Browse...
SPK Signature: | ‘ Browse...

Hashing Select: | SHA3 ~ | PPKSelect: 0 ~

SPKID: [0] BusesHaun

Boot image partitions

File path Encrypted Authenticated

(bootloader) Chedthedt_zcu102\edt_zcul102.sdkifsbl_a33\Debu... none nong Add
Delete
Edit
Up
Down

@ Preview BIF Ch c

£ review anges Cancel

Figure 5-39: Enable Authentication
10. Enable encryption.
a. Click the Encryption tab.
b. Check the Use Encryption checkbox.
c. Use the browse button to select £sbl a53.nky as the key file.

d. Check the Operational Key checkbox.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 119
UG1209 (v2019.1) July 3, 2019 www.Xxilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=119

2: X”_INX® Chapter 5: Boot and Configuration

Create Boot Image X

Create Boot Image %

Creates Zynq MP Boot Image in bin format from given FSBL elf and partition files in specified output folder.

Architecture: Zyng MP
® Create new BIFfile O Import from existing BIF file
Basic Seaurity

Authentication Encryption

Use Encryption
Key file: ‘ Cedt\secure_boat sd\boatgen files\fsol a53.nky Browse...
Key store: EFUSERED v |v| Operational Key
Boot image partitions
File path Encrypt.. Authent.. Add
(bootloader) C\edt\secure_hoot_sd\boot... none none
Delete
Edit
Up

()]

Preview BIF Changes Cancel

Figure 5-40: Enable Encryption
11. Click the Basic tab.

12. Add the FSBL binary to the boot image.
a. Click Add.
b. Use the browse button to select the £sbl a53.elf file.
c. Make sure the partition-type is bootloader and the destination CPU is a53x64.
d. Change authentication to RSA.
e. Change encryption to AES.
f. Click OK.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 120
UG1209 (v2019.1) July 3, 2019 www.Xxilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=120

2: X”_INX® Chapter 5: Boot and Configuration

,,,,,,,

Figure 5-41: Adding FSBL Binary
13. Add the PMW firmware binary to the boot image.
a. Click Add.
b. Use the browse button to select the pmu_fw.elf file.
c. Make sure the partition-type is datafile.
d. Change the destination CPU to PMU.
e. Change authentication to RSA.
f. Change encryption to AES.
g. Click OK.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 121
UG1209 (v2019.1) July 3, 2019 www.Xxilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=121

2: X”_INX® Chapter 5: Boot and Configuration

Figure 5-42: Adding PMU Firmware Binary
14. Add the PL Bitstream to the boot image.
a. Click the Add.
b. Use the browse button to select the edt zcul02 wrapper.bit file.
c. Make sure the partition-type is datafile.
d. Make sure the destination device is PL.
e. Change authentication to RSA.
f. Change encryption to AES.
g. Click OK.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 122
UG1209 (v2019.1) July 3, 2019 www.Xxilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=122

2: X”_INX® Chapter 5: Boot and Configuration

Add partition x I

partitiar -@-
m: | rseate re_t tgen_flesiedt_teu102 _wrapper.bit Browse
"

Figure 5-43: Adding PL Bitstream
15. Add the Arm Trusted Firmware (ATF) binary to the image.
a. Click Add.
b. Use the browse button to select the b131.elf file.
c. Make sure the partition-type is datafile.
d. Make sure the destination CPU is A53 0.
e. Change authentication to RSA.

f. Make sure the encryption is none.
g. Make sure the Exception Level is EL3 and enable Trust Zone.
h. Click OK.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 123
UG1209 (v2019.1) July 3, 2019 www.Xxilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=123

2: X”_INX® Chapter 5: Boot and Configuration

nane

Figure 5-44: Adding Arm Trusted Firmware

16. Add the R5 software binary to the boot image.

a. Click Add.

b. Use the browse button to select the tmr psled r5.elf file.

c. Make sure the partition-type is datafile.

d. Make sure the destination CPU is R5 0.

e. Change authentication to RSA.

f. Change encryption to AES.

g. Click OK.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 124
UG1209 (v2019.1) July 3, 2019 www.Xxilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=124

& XILINX.

Chapter 5: Boot and Configuration

| Edit Paritian

Edit the boat Image partition

Figure 5-45: Adding R5 Application Binary

17. Add the U-Boot software binary to the boot image.

a. Click Add.

b. Use the browse button to select the u-boot .elf file.

c. Make sure the partition-type is datafile.
d. Make sure the destination CPU is A53 0.
e. Change authentication to RSA.

f. Make sure that encryption is none.
g. Change the Exception Level to EL2.
h. Click OK.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial
UG1209 (v2019.1) July 3, 2019

www.Xxilinx.com

l Send Feedback I 125

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=125

2: X”_INX® Chapter 5: Boot and Configuration

Add new bost Image partition

Acd new boot image partition

Cancal

« |

B

Figure 5-46: Adding U-Boot Software
18. Add the Linux image to the boot image.
a. Click Add.
b. Use the browse button to select the image . ub file.
c. Make sure the partition-type is datafile.
d. Make sure the destination CPU is A53 0.
e. Change authentication to RSA.

f. Make sure that encryption is none.
g. Update the load field to 0x2000000.
h. Click OK.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial
UG1209 (v2019.1) July 3, 2019 www.xilinx.com

l Send Feedback I 126

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=126

& XILINX.

Chapter 5:

Boot and Configuration

Add partition
Add new boot Image partition

Add new baat image partition

Aligrenent: Offset

1000000

2

Figure 5-47: Adding Linux Boot Image
19. Click Create image

Zynq UltraScale+ MPSoC: Embedded Design Tutorial
UG1209 (v2019.1) July 3, 2019 www.xilinx.com

| Send Feedback I 127

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=127

& XILINX.

20.

Chapter 5

: Boot and Configuration

Create Boot Image X
Create Boot Image ?‘:}
Creates Zyngq MP Boot Image in .bin format from given FSBL elf and partition files in specified output folder.
Architecture: Zyng MP
(®) Create new BIF file () Import from existing BIF file
Basic Security
Qutput BIF file path: | C\edt\secure_boot_sd\bootgen_files\design_bh_bkey keyrolling.bif ‘ Browse...
UDF data: | ‘ Browse...
[split Output format: [BIN
Qutput path: | C\edt\secure_boot_sd\bootgen_files\BOOT.bin ‘ Browse...
Boot image partitions
File path Encrypt... Authenticated
(bootloader) C:\edt\secure_boot_sd\bootgen_files\fsbl_a53.elf aes rsa add
Cedt\secure_boot_sd\bootgen_files\pmu_fw.elf aes rsa Delete
Cedt\secure_boot_sd\bootgen_files\edt_zcu102_wrapper.bit aes rsa
C\edt\secure_boot_sd\bootgen_files\bl31.elf none rsa Edit
Cedt\secure_boot_sd\bootgen_files\tmr_psled_r5.elf aes rsa
C\edt\secure_boot_sd\bootgen_files\u-boot.elf none rsa Jz
Cedt\secure_boot_sd\bootgen_files\image.ub none rsa e
@ Preview BIF Changes Create Image Cancel

Figure 5-48: Creating a Final Boot Image

The design bh bkey keyrolling.bif file should look similar to the following:

the ROM image:

{
[pskfile] pskO.pem
[sskfile] sskO.pem
[auth params]spk id = 0; ppk select =
[aeskeyfile] fsbl_a53.nky
[keysrc_encryption] efuse_red key

[fsbl configla53 x64, bh auth enable, opt key
[bootloader, encryption = aes, authentication = rsalfsbl a53.elf
[encryption = aes, authentication = rsa, destination cpu =

[encryption = aes, authentication = rsa,

plledt _zculO2 wrapper.bit
[authentication = rsa, destination_cpu

[encryption = aes, authentication = rsa,

[authentication = rsa, destination cpu

[authentication = rsa, load = 0x2000000,

Zynq UltraScale+ MPSoC: Embedded Design Tutorial

UG1209 (v2019.1) July 3, 2019

destination device

pmul pmu_fw.elf

a53-0, exception level = el-3]bl31l.elf

destination cpu =

r5-0]tmr psled r5.elf

ab3-0, exception level = el-2]u-boot.elf

destination cpu =

www.Xxilinx.com

a53-0] image.ub

| Send Feedback I 128

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=128

2: X”_INX® Chapter 5: Boot and Configuration

21. This BIF file is still missing several security features that are not supported by the Create

Boot Image wizard. These are features are per-partition nky files, key rolling and black
key store.

22. Add black key store by changing the keysrc _encryption and adding the other
additional items so that the BIF file looks like the following:

the ROM image:
{
[pskfile] pskO.pem
[sskfile] sskO.pem
[auth_params]spk id = 0; ppk select = 0
[aeskeyfile] fsbl_a53.nky
[keysrc_encryptionlbh blk key
[bh key ivlblack iv.txt
[bh keyfilelblack key.txt
[puf filelhelperdata.txt
[fsbl_configla53 x64, bh auth enable, opt_ key, puf4kmode, shutter=0x0100005E,
pufhd bh
[bootloader, encryption = aes, authentication = rsalfsbl a53.elf
[encryption = aes, authentication = rsa, destination cpu = pmulpmu fw.elf
[encryption = aes, authentication = rsa, destination device =
plledt zculO2 wrapper.bit
[authentication = rsa, destination_cpu = a53-0, exception level = el-3]bl3l.elf
[encryption = aes, authentication = rsa, destination cpu = r5-0]tmr_psled r5.elf
[authentication = rsa, destination cpu = a53-0, exception level = el-2]u-boot.elf
[authentication = rsa, load = 0x2000000, destination cpu = a53-0]image.ub

}

23. Specify unique AES key files for each encrypted partition by updating the BIF file to look
like the following:

the ROM image:

{

[pskfile]pskO.pem

[sskfile] ssk0.pem

[auth params]spk id = 0; ppk select = 0
[keysrc_encryptionlbh blk key

[bh key ivlblack iv.txt
[bh_keyfilelblack_key.txt

[puf _file]helperdata.txt

[fsbl _configla53_x64, bh auth enable, opt_key, puf4kmode, shutter=0x0100005E,
pufhd bh

[bootloader, encryption = aes, aeskeyfile = fsbl a53.nky, authentication =
rsal fsbl a53.elf

[encryption = aes, aeskeyfile = pmu_ fw.nky, authentication = rsa, destination cpu =
pmu] pmu_fw.elf

[encryption = aes, aeskeyfile = edt zculO2 wrapper.nky, authentication = rsa,
destination device = plledt zcul02 wrapper.bit

[authentication = rsa, destination cpu = a53-0, exception level = el-3]bl31l.elf
[encryption = aes, aeskeyfile = tmr psled r5.nky, authentication = rsa,
destination_cpu = r5-0]tmr_psled r5.elf

[authentication rsa, destination cpu = a53-0, exception level = el-2]u-boot.elf
[authentication = rsa, load = 0x2000000, destination cpu = a53-0]image.ub

}

24. Enable key rolling by adding the block attributes to the encrypted partitions. The
updated BIF file should now look like the following:

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 129
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=129

2: X”_INX® Chapter 5: Boot and Configuration

the ROM image:

{

[pskfile]pskO.pem

[sskfile] sskO.pem

[auth _params]spk id = 0; ppk select = 0
[keysrc_encryption]lbh blk key

[bh key iv]lblack iv.txt

[bh keyfilelblack key.txt

[puf filelhelperdata.txt

[fsbl config]la53 x64, bh auth enable, opt key, puf4kmode, shutter=0x0100005e,
pufhd bh

[bootloader, encryption = aes, aeskeyfile = fsbl a53.nky, authentication = rsa,
blocks = 1728 (*)]1fsbl a53.elf

[encryption = aes, aeskeyfile = pmu fw.nky, authentication = rsa, destination cpu =
pmu, blocks 1728 (*)]pmu_fw.elf

[encryption = aes, aeskeyfile = edt zculO2 wrapper.nky, authentication = rsa,
destination_device = pl, blocks = 1728(*)]edt_zcul02_wrapper.bit

[authentication = rsa, destination_cpu = a53-0, exception_level = el-3]bl31l.elf

[encryption = aes, aeskeyfile = tmr psled r5.nky, authentication = rsa,
destination cpu = r5-0, blocks = 1728 (*)]tmr psled r5.elf
[authentication = rsa, destination cpu = a53-0, exception level = el-2]Ju-boot.elf

[authentication = rsa, load = 0x2000000, destination cpu = a53-0]image.ub

}

25. Generate the boot image by running the following command. Note that the
-encryption_ dump flag has been added. This flag causes the log file aes log. txt
to be created. The log file details all encryption operations that were used. This allows
you to see which keys and IVs were used on which sections of the boot image.

bootgen -p zcu9eg -arch zyngmp -image design bh bkey keyrolling.bif -w -o BOOT.bin
-encryption dump

Booting the system using a Secure Boot Image

This section demonstrates how to use the BOOT.bin boot image created in prior sections
to perform a secure boot using the ZCU102.

1. Copy the BOOT.bin image and the ps pl linux app.elf overto the SD card from
c:\edt\secure boot sd\bootgen files.

2. Insert the SD card into the ZCU102.
3. Set SW6 of the ZCU102 for SD boot mode (1=0N; 2,3,4=0FF).

Zynq UltraScale+ MPSoC: Embedded Design Tutorial

o l Send Feedback I 130
UG1209 (v2019.1) July 3, 2019 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=130

8 XI LI NX® Chapter 5: Boot and Configuration

Figure 5-49: SW6 Switch Settings for SD boot Mode
4. Connect Serial terminals to ZCU102 (115200, 8 data bits, 1 stop bit, no parity)
5. Power on the ZCU102
6. When the terminal reaches the U-boot ZyngMP> prompt, type bootm 0x2000000.

Rd Block Len: 512
5D wversion 3.0
High Capacity: Yes
Capacity: 3.7 GiB
Bus Width: 4-bit
Erase Group Size: 512 Bytes
reading image.ub

##% Unable to read file image.ub **
ZyngMP> bootm 0x1000000]]

Figure 5-50: U-Boot Prompt

7. Login into Linux using the following credentials:
Login: root;

password: root

Stal-tin syslogds/klogd: done
Starting tcf-agent: OK

PetaLinux 281%2.1 xilinx—-zculB2-20819_1 sdev-/ttyPSH

xilinx—zculB2-201%7_1 login: root
Password:
PootBxilink—zcul B2-20819_1:™%

Figure 5-51: Linux Login

Run the Linux Application as described in Design Example 1: Using GPIOs, Timers, and
Interrupts.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 131
UG1209 (v2019.1) July 3, 2019 www.Xxilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=131

2: X”_INX® Chapter 5: Boot and Configuration

Running the Linux Application
Use the following steps to run a Linux application:

1. Copy the application from SD card mount point to /tmp.
cp /run/media/mmcblkOpl/ps pl linux app.elf /tmp
Note: Mount the SD card manually if you fail to find SD card contents in this location.
mount /dev/mmcblkOpl /media/
2. Copy the application to /tmp.
cp /media/ps _pl linux app.elf /tmp
3. Run the application.

/tmp/ps_pl linux app.elf

Sample BIF for a fielded system

The following BIF file is an example for a fielded system. In order for this bif file to work on
a board it requires the RSA_EN, PPKO Digest, black AES key and PUF helper data to all be
programmed in the eFUSEs. Since programming these eFUSEs severely limits the use of the
device or board for testing and debugging, it is only included here as a reference. It is not
part of the tutorial.

The following changes are made to the final generation.bif file reach the following
result:

1. Change from PUF Bootheader mode to PUF eFUSE mode.

a. Change the keysrc_encryption attribute to efuse_blk_key.

b. Remove the bh_keyfile and puf_file lines.

c. Remove the pufdkmode and pufhd_bh attributes from the fsbl_config line.
2. Change from boot header authentication to eFUSE authentication.

a. Remove the bh_auth_enable attribute from the fsbl_config line.

the ROM image:
{
[pskfile] pskO.pem
[sskfile] ssk0.pem
[auth params]spk id = 0; ppk select = 0
[keysrc _encryption]efuse blk key
[bh key ivlblack iv.txt
[fsbl_config]la53 x64, opt_key, shutter=0x0100005E
[aeskeyfile] fsbl_a53.nky
[bootloader, authentication = rsa, encryption = aes, blocks = 1728 (*)]fsbl a53.elf
[aeskeyfile]lpmu_ fw.nky
[destination cpu = pmu, authentication = rsa, encryption = aes, blocks =
1728 (*)]pmu_fw.elf
[aeskeyfile]ledt zcul02 wrapper.nky

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 132
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=132

2: X”_INX® Chapter 5: Boot and Configuration

[destination device = pl, authentication = rsa, encryption = aes, blocks =
1728 (*)]edt zcul02 wrapper.bit
[destination cpu = a53-0, exception level = el-3, trustzone, authentication =
rsalbl3l.elf
[aeskeyfile]ltmr psled r5.nky
[destination cpu = r5-0, authentication = rsa, encryption = aes, blocks =
1728 (*)]tmr psled r5.elf
[destination cpu = a53-0, exception level = el-2, authentication = rsalu-boot.elf
[load = 0x2000000, destination cpu = a53-0, authentication = rsa]image.ub

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 133
UG1209 (v2019.1) July 3, 2019 www.Xxilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=133

& XILINX

Chapter 6

System Design Examples

This chapter guides you through building a system based on Zynq® UltraScale+™ devices
using available tools and supported software blocks. This chapter highlights how you can
use the software blocks you configured in Chapter 3 to create a Zynq UltraScale+ system. It
does not discuss domain-specific designs, but rather highlights different ways to use
low-level software available for Zynq UltraScale+ devices.

Design Example 1: Using GPIOs, Timers, and
Interrupts

The Zynq ZCU102 UltraScale+ Evaluation Board comes with a few user configurable
Switches and LEDs. This design example makes use of bare-metal and Linux applications to
toggle these LEDs, with the following details:

« The Linux applications configure a set of PL LEDs to toggle using a PS Dip Switch, and
another set of PL LEDs to toggle using a PL Dip Switch (SW17).

« The Linux APU A-53 Core 0 hosts this Linux application, while the RPU R5-0 hosts
another bare-metal application.

« The R5-Core 0 application uses an AXI Timer IP in Programmable logic to toggle PS LED
(DS50). The application is configured to toggle the LED state every time the timer
counter expires, and the Timer in the PL is set to reset periodically after a
user-configurable time interval. The system is configured such that the APU Linux
Application and RPU Bare-metal Application run simultaneously.

Configuring Hardware

The first step in this design is to configure the PS and PL sections. This can be done in
Vivado IP integrator. You start with adding the required IPs from the Vivado IP catalog and
then connect the components to blocks in the PS subsystem.

1. If the Vivado Design Suite is already open, start from the block diagram (shown in
Figure 2-2) and jump to step 4.

2. Open the Vivado Project that you created:

C:/edt/edt zcul02/edt zcul02.xpr

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 134
UG1209 (v2019.1) July 3, 2019 www.xilinx.com L—q,,————————J

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=134

& XILINX.

Chapter 6: System Design Examples

3. In the Flow Navigator, under IP Integrator, click Open Block Design and select

edt zcu102.bd.

~ [P INTEGRATOR

Create Block Design

Co;gen Block Design)

Generate Block Design

Figure 6-1:

~ Simulation Sources (1)
b sim_1 (1)
FE zew102 (zou102.bd)

Open Block Design

4. Right click in the block diagram and select Add IP from the IP catalog.

Adding and Configuring IPs

1. In the catalog, select AXI Timer.

The IP Details information displays, as shown in the following figure.

IP Properties 2.0EBX Details
AXI Timer - & .
: o Version:
Version: 2.0 (Rev. 21)
Interfaces:
Interfaces: ~ AXI4

Description: The AXI Timer/Counter is a 32/64-bit timer module t

AXI Timer
20 (Rev. 21)
AXi4

Description: The AXI Timer/Counter is a 32/64-bit timer modlule that attaches to the AXI4-Lite interface

Production

Included

Change Log: View Change Log

Xilinx, Inc.

xilinx.comip:axi_timer:2.0

Repository: - C/Xilinx/Vivado/2019.1/data/ip

AXl4-lite interface Status:

Status: Production License:
License: Included

g g Vendor:
Change Log: View Change Lo

s e VLNV:

Vendor: Xilinx, Inc.

VINV: xilink.comip:axi_timer2.0 %
<)

Figure 6-2:

IP Details Information

2. Double-click the AXI Timer IP to add it to the design.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial
UG1209 (v2019.1) July 3, 2019

www.Xxilinx.com

l Send Feedback I 135

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=135

(: X”_INX® Chapter 6: System Design Examples

3. Double-click the AXI Timer IP again to configure the IP, as shown in following figure.

¢ Re-customizeIP @

AXI Timer (2.0) ‘
© Documentation IP Location

Show disabled ports Component Name | axi_timer_0

Enable 64-bit mode

Width of the timer/counter (bits) = 32 w

; Timer 1
Sl soAx
capturetrigt generateoutd Active state of Capture Trigger Active High w
capturetrig1 generatecutt
freeze prum0 Active state of Generate Out signal | Active High w
£_axi_aclk interrupt
=_axi_aresetn Enable Timer 2
Timer 2
Active state of Capture Trigger Active High

Active state of Generate Out signal | Active High

| OK | | Cancel

Figure 6-3: Re-customize IP Dialog Box for AXI Timer

Click OK.

Again, right-click in the block diagram and select Add IP.

Search for “"AXI GPIO" and double-click the AXI GPIO IP to add it to the design.
Repeat step 5 and step 6 to add another instance of AXI GPIO IP.

® N o bk

Double-click axi_gpio_0 and select Push button 5bits from the GPIO Board Interface
drop-down list.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 136
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=136

& XILINX.

Chapter 6: System Design Examples

¢ Re-customize IP

AXI GPIO (2.0)

0 Documentation IP Location

Show disabled ports

HE
s_axi_aclk GRID |||
0 =_axi_aresstn

Component Mame | axi_gpio_0

Board IP Configuration

Associate IP interface with board interface

IP Interface Board Interface
GPIO | push buttons 5bits |~ |
GPIOZ2

Custom

Clear Board Parameters |

Enable Interrupt

| OK

| Cancel

Figure 6-4:

Re-customize IP Dialog Box for AXI GPIO

9. Click OK to configure the AXI_GPIO for Push buttons.

10. Double-click on axi gpio 1.

11. Configure axi_gpio_1 for PL LEDs by selecting 1ed 8bits from the GPIO Board
Interface drop-down list, as shown in the following figure.

¢ Re-customizeIP

AXI GPIO (2.0)
o Documentation

IP Location

Show disabled ports

S s ax
s axi_aclk

srio 4+ |||

o =_axi_aresetn

Component Name | axi_gpio_1

Board IP Configuration

Associate IP interface with board interface

IP Interface Board Interface
GPIO led 8bits >
GPIOZ Custom >
Clear Board Parameters
Enable Interrupt
| OK | | Cancel

Figure 6-5:

Configuring GPIO for led_8bits

12. Click OK to configure the AXI_GPIO for LED.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial

UG1209 (v2019.1) July 3, 2019

www.Xxilinx.com

l Send Feedback I 137

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=137

(: X”_INX® Chapter 6: System Design Examples

Connecting IP Blocks to Create a Complete System
Make the initial connections using Board presets. To do this, follow the below steps:

1. Double-click the Zynq UltraScale+ IP Block, and select a PL-PS interrupt as shown in
Figure 6-6 (Ignore and move to the next step, if this is selected by default).

¢ Re-custornize IP @
Zynq UltraScale+ MPSoC (3.0) ‘
@ Documentation £F Presets IP Location
Page Navigator £ PS-PL Configuration
8 4= i
Switch To Advanced Mode Search:
PS UltraScale+ Block Design Q Name Select
o |v General
'O Configuration T ~ Interrupts
= ~ PL1oPS
Clock Configuration IRQO[0-7] 1
DDR Configuration IRQ1[0-7])
APL Legacy Interrupts(IRC, FIC)
PS-PL Configuration RPU Legacy Interrupts(IRC, nFIC)
*» P5toPL
» Fabric Reset Enable v

» Address Fragmentation
» Others

» PS-PLInterfaces

» Debug

OK ‘ | Cancel

Figure 6-6: Selecting PL to PS Interrupt

2. In PS-PL Configuration, expand PS-PL Interfaces and expand the Master Interface.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 138
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=138

(: X”_INX® Chapter 6: System Design Examples

3. Expand AXI HPMO LPD and set the AXI HPMO LPD Data Width drop-down to 128 bit, as
shown in Figure 6-7.

P5-PL Configuration
« Q] = =2
Search:

Mame Select
» General
~ PS-PL Interfaces
~ Master Interface
» AXIHPMO FPD
> A1 HPMA FRPD
~ AX] HPMO LFD v
AX] HPMO LPD Data Width 128 b
» Slave Interface

» Debug

Figure 6-7: Set Data Width for AXI HPMO LPD
4. Click OK to complete the configuration and return to the block diagram.

5. In the diagram view, connect the interrupt port from axi timer 0 to
pl ps irglo0:0].

6. Click Run Connection Automation. Do not click on Run Block Automation.

/ Designer Assistance available. Run Block Automation Run Connection Automation

Figure 6-8: Run Connection Automation Link
7. In the Run Connection Automation dialog box, click All Automation.
8. Click OK.

9. In the Address Editor view, verify that the corresponding IPs are allocated the same
Address Map, as shown in the following figure. If not, set the offset address such that
they match the following figure.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 139
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=139

(: X”_INX® Chapter 6: System Design Examples

Diagram = Address Editor b

Q = | =

Cell Slave Interface Base Mame Offset Address

- zyng_ultra_ps_e_0

hd Data (40 address bits | Ox00230000000 [512M]

axi_gpio_0 S_AXl Reg 0x00_2000_1000
axi_gpio_1 S_Axl Reg 0x00_S000_2000
axi_timer_0 S_aAXl Reg Ox00_2000_0000

Figure 6-9: Address Map for PL IPs

Range High Address

AR - Ox00_S000_1FFF
AR - Ox00_S8000_2FFF
AR - Ox00_S000_0FFF

10. Validate the design and generate the output files for this design, as described in the

following sections.

Validating the Design and Generating Output

1. Return to the block diagram view and save the Block Design (press Ctrl + S).

2. Right-click in the white space of the Block Diagram view and select Validate Design.

Alternatively, you can press the F6 key.

A message dialog box opens and states "Validation successful. There are no errors or

critical warnings in this design.”

Click OK to close the message.
In the Block Design view, click the Sources tab.

Click Hierarchy.

o v~ W

edt zcul02 wrapper.

7. Right-click the top-level block diagram, titled edt zcul02 i

(edt _zcul02.bd) and select Generate Output Products.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial
UG1209 (v2019.1) July 3, 2019 www.xilinx.com

In the Block Diagram, Sources window, under Design Sources, expand

edt zcul02

l Send Feedback I 140

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=140

(: X”_INX® Chapter 6: System Design Examples

The Generate Output Products dialog box opens, as shown Figure 6-10.

¢ Generate Output Products @

The following output products will be generated.

Preview
a = ¢
~ #0 edi_zcu102.bd (OOC per IP
(il Synthesis

N implementation

(i Simulation

Synthesis Options

Global
® Qut of context per IP
Out of context per Block Design

Run Settings

Mumber of jobs: | 2

\?) Generate Cancel

Figure 6-10: Generate Output Products Dialog Box

Note: If you are running the Vivado Design Suite on a Linux host machine, you might see
additional options under Run Settings. In this case, continue with the default settings.

8. Click Generate.
9. When the Generate Output Products process completes, click OK.

10. In the Block Diagram Sources window, click the IP Sources tab. Here you can see the
output products that you just generated, as shown in the following figure.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 141
UG1209 (v2019.1) July 3, 2019 www.Xxilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=141

(: X”_INX® Chapter 6: System Design Examples

Flow Navigator -= S BLOCK DESIGN - edt_zcu102
~ PROJECT MANAGER - -
Sources x Design Signals Board
£} Settings
Q = £ +
Add Sources
w Block Designs (1)
Language Templates » edt_zcu102 (192)
¥ IP Catalog v [Synthesis (32)
> edt_zcu102_zyng_ultra_ps_e_0_0(19)
v IPINTEGRATOR > TFE edt_zeu102_axi_timer_0_1 (2)
Create Block Design > edt_zcu102_axi_gpio_0_1(9)
> TF[E edt_zcu102_axi_gpio_1_1(9)
o] Block Desi -
pen Block Deslan > edt_zcu102_xbar_0(9)
Generate Block Design » TFE edt_zcu102_rst_ps8_0_99M_0 (7)

® edt_zcu102y

v SIMULATION » edt_zcu102_auto_ds_0(11)
Run Simulation > edt_zcu102_auto_pc_0(9)
" edt_zcu102_oocxde

w Implementation (27}

v RTL ANALYSIS
edt_zcu102_zyng_ultra_ps_e_0_0(3)

> Open Elaborated Design edt_zcu102_axi_timer_0_1 (3)

>
>
> edt_zcu102_axi_gpio_0_1(4)
¥ SYNTHESIS » TFE edt_zeu102_axi_gpio_1_1(4)
P Run Synthesis » edt_zcu102_xbar_0 (2)
> edt_zcu102_rst_ps8_0_99M_0 (4)
® edt_zcu102y

> TF[E edt_zcu102_auto_ds_0

» Open Synthesized Design

¥ IMPLEMENTATION

» TFE edt_zcu102_auto_pc_0(2)
P Run Implementation I edt_zout02_oocxde
» Openlmplemented Design w Simulation (22)
> edt_zcu102_zyng_ultra_ps_e_0_01(15)
v PROGRAM AND DEBUGC > edt_zeu102_axi_timer_0_1(7)
Ji Generate Bitstream > TFIE edt zcu102_axi_gpio 0_1(7)
> edt_zcu102_axi_gpio_1_1(7)
> Open Hardware Manager s TFE edt zcu102 xbar 0 (12)
> edt_zcu102_rst_ps8_0_99M_0 (5)

® edt_zcu102y
> TF[E edt_zcu102_auto_ds_0(15)
> TF[E edt_zcu102_auto_pc_0(12)
edt_zcu102. protoinst

Figure 6-11: Outputs Generated Under IP Sources

Synthesizing the Design, Running Implementation, and Generating the
Bitstream

1. You can now synthesize the design. In the Flow Navigator pane, under Synthesis, click
Run Synthesis.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 142
UG1209 (v2019.1) July 3, 2019 www.Xxilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=142

(: X”_INX® Chapter 6: System Design Examples

Source File Properties
4 Synthesis i s

% Synthesis Settings
@- Run Synthesis
¥ Cpe

* <R

&, tutarial_bd.bd

Run Synthesis !

Run synthesis on your project source files, j2

4 Implementation
Part: wc7z020cl

R e e S

Figure 6-12: Run Synthesis Button
2. If Vivado prompts you to save your project before launching synthesis, click Save.
While synthesis is running, a status bar displays in the upper right-hand window. This

status bar spools for various reasons throughout the design process. The status bar
signifies that a process is working in the background.

[o][]
Running synth_design — | Cancel

b4

Figure 6-13: Status Bar

When synthesis completes, the Synthesis Completed dialog box opens.
3. Select Run Implementation and click OK.

Again, notice that the status bar describes the process running in the background. When
implementation completes, the Implementation Completed dialog box opens.

4. Select Generate Bitstream and click OK.

When Bitstream Generation completes, the Bitstream Generation Completed dialog box
opens.

5. Click Cancel to close the window.

6. After the Bitstream generation completes, export the hardware to SDK.

Exporting Hardware to SDK
In this example, you will launch SDK from Vivado.
1. From the Vivado toolbar, select File > Export > Export Hardware.

The Export Hardware dialog box opens. Make sure that the Include bitstream check
box is checked (only when design has PL design and bitstream generated), and that the
Export to field is set to the default option of <Local to Projects.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 143
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=143

(: X”_INX® Chapter 6: System Design Examples

2. Click OK.

At this point a warning, message appears to indicate that the Hardware Module has
already been exported.

3. Click Yes to overwrite the existing HDF file.

¢ Moedule Already Exported

|_9_I An exported file for this module was found at this location. Do you want to overwrite it?

LY | No |

Figure 6-14: Permission to Overwrite Existing Hardware Files

4. Once the Hardware files are exported, SDK also detects the new HDF and shows the
following warning message.

@ Warning! Hardware Specification File Change @

I "y 1 The criginal source from which the hardware specification for project
" ‘edt_zcul02_wrapper_hw_platform_0' is now different from the specification in the
project.

SDK will atternpt to synchronize the hardware specification and retarget your current
software projects to the hardware described by the new specification file and rebuild
them.

Linker script will not be updated automatically. Users need to update it manually.
The following specific changes will be made to the workspace:

1. The new specification file and associated bitstreamn
content (if any) will be copied into the workspace,

2. Hardware inferred compiler options will be updated.

3. Software specification files (M55) will be updated:
- Mewly connected peripherals will be assigned a driver.
- Disconnected peripherals will have their driver

assignments removed,
4. Projects that cannot be retargeted will be closed.

Are you sure you want to continue?

Don't warn me again or ask for confirmation regarding specification file changes

eI

Figure 6-15: SDK Warning Message about Detecting Updated HDF

The warning message is also to check if SDK can update the project in sync with the new
HDF.

5. Click Yes.

Now the SDK project is updated in sync with the new HDF file. To verify this, look for the
GPIO and AXI_Timer drivers, which were added in the BSP packages in the existing project.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial

o l Send Feedback I 144
UG1209 (v2019.1) July 3, 2019 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=144

(: X”_INX® Chapter 6: System Design Examples

Configuring Software

This use case has a bare-metal application running on an R5 core and a Linux Application
running on APU Linux Target. Most of the software blocks will remain the same as
mentioned in Chapter 3. The software for this design example requires additional drivers for
components added in the PL Logic. For this reason, you will need to generate a new
Bare-metal BSP in SDK using the Hardware files generated for this design. Linux also
requires the Linux BSP to be reconfigured in sync with the new hardware design file (HDF).
Before you configure the software, first look at the application design scheme. The system
has a bare-metal application on RPU, which starts with toggling the PS LEDs for a user
configurable period. The LEDs are set to toggle in synchronization with PL AXI Timer
running in the PL block. The application sets the AXI Timer in the generate mode and
generates an interrupt every time the Timer count expires. The application is designed to
toggle the PS LED state after handling the Timer interrupt. The application runs in an
infinite while loop and sets the RPU in WFI mode after toggling the LEDs for the
user-configured time period. This LED toggling sequence can be repeated again by getting
the RPU out of WFI mode using an external interrupt. For this reason, the UART interrupt is
also configured and enabled in the same application. While this application runs on the
RPU, the Linux target also hosts another Linux application. The Linux application uses user
Input from PS or PL switches to toggle PL LEDs. This Linux application also runs in an infinite
while loop, waiting for user input to toggle PL LEDs. The next set of steps show how to
configure System software and build user applications for this design.

Configure and Build Linux using Petalinux

First, create the Linux images using PetaLinux. The Linux images must be created in sync
with the hardware configuration for this design. You will also need to configure Petalinux to
create images for SD boot.

See the Example Project: Create Linux Images using PetaLinux in Chapter 3, and repeat
steps from step 2 to step 13 to update the device tree and build Linux images using
PetaLinux. Alternatively, you can also use the Linux image files shared with this tutorial. The
images for this section can be found in <design files>/design.

Follow step 15 to verify the images. The next step is to create a Bare-metal Application
targeted for Arm Cortex-R5 based RPU.

For this design example, you must import the application source files available in the
Design Files ZIP file released with this tutorial. For information about locating these design
files, see the Design Files for This Tutorial in Appendix B.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 145
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=145

(: X”_INX® Chapter 6: System Design Examples

Creating the Bare-Metal Application Project
1. In SDK, select File > New > Application Project.
The New Project wizard opens.

2. Use the information in the table below to make your selections in the wizard.

Table 6-1: Settings to Create Timer-Based RPU Application Project

Wizard Screen System Properties Setting or Command to Use
Application Project Project Name tmr psled r5
Use Default Location Select this option.
Hardware Platform edt_zcu102_wrapper_hw_platform_0
OS Platform standalone
Processor psu_cortexr5 0
Language C
Board Support Package Select Create New
Templates Available Templates Empty Application

3. Click Finish.

The New Project wizard closes and SDK creates the tmr psled r5 application project,
which you can view in the Project Explorer.

In the Project Explorer tab, expand the tmr_psled r5 project.
Right-click the src directory, and select Import to open the Import dialog box.
Expand General in the Import dialog box and select File System.

Click Next.

© N o b~

Select Browse and navigate to the design-files/designl folder, which you saved
earlier (see Additional Resources and Legal Notices in Appendix B.

9. Click OK.
10. Select and add the timer psled r5.c file.
11. Click Finish.

SDK automatically builds the application and displays the status in the console window.

Modifying the Linker Script

1. In the Project Explorer, expand the tmr psled r5 project.

2. Inthe src directory, double-click 1script.1d to open the linker script for this project.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 146
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=146

(: X”_INX® Chapter 6: System Design Examples

3.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial

In the linker script in Available Memory Regions, modify following attributes for
psu_r5_ddr_0_MEM_O :

Base Address: 0x70000000
Size: 0x10000000

The following figure shows the linker script modification. The following figure is for
representation only. Actual memory regions may vary in case of isolation settings.

Linker Script: Iscript.ld

Alinker script is used to control where different sections of an executable are placed in memory.
In this page, you can define new memeory regions, and change the assignment of sectionsto memory regions.

Available Memory Regions

Marme Base Address Size
psu_ocm_ram_0_MEM_D CFFFCO000 (A 0000
psu_gspi_linear 0_MEM_D (e CODO00ODD 20000000
psu_r3_0_atem_MEM_0 (ne (x 10000
psu_r3_0_btem_MEM_0 k20000 10000
psu_r3_ddr_ 0_MEM_D (k70000000 (10000000
psu_r3_tcm_rarm_0_MEM_0 (hed (w0000

Stack and Heap Sizes

Stack Size | (w2000

Figure 6-16: Linker Script Modification

This modification in the linker script ensures that the RPU bare-metal application
resides above 0x70000000 base address in the DDR, and occupies no more than 256 MB

of size.

Type Ctrl + S to save the changes.
Right-click the tmr psled r5 project and select Build Project.

Verify that the application is compiled and linked successfully and that the
tmr psled r5.elf file was generated in the tmr psled r5\Debug folder.

Verify that the BSP is configured for UART_1. For more information, see the Modifying
the Board Support Package in Chapter 3.

. | Send Feedback I 147
UG1209 (v2019.1) July 3, 2019 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=147

(: X”_INX® Chapter 6: System Design Examples

Creating the Linux Application Project

1.

In SDK, select File > New > Application Project.

The New Project wizard opens.

2. Use the information in the table below to make your selections in the wizard.
Table 6-2: Settings to Create New Linux Application Project
Wizard Screen System Properties Setting or Command to Use
Application Project Project Name ps_pl linux app
Use Default Location Select this option
OS Platform Linux
Processor psu_cortexA53
Language C
Compiler 64-bit
Templates Available Templates Linux Empty Application
3. Click Finish.
The New Project wizard closes and SDK creates the ps pl linux_ app application
project, which can be found in the Project Explorer.
4. In the Project Explorer tab, expand the ps_pl linux app project.
5. Right-click the src directory, and select Import to open the Import dialog box.
6. Expand General in the Import dialog box and select File System.
7. Click Next.
8. Select Browse and navigate to the design-files/designl folder, which you saved
earlier (see Design Files for This Tutorial in Appendix B.
9. Click OK.
10. Select and add the ps_pl linux_ app.c file.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial

Note: The application might fail to build because of a missing reference to the pthread Library.
The next section shows how to add the pthread library.

o l Send Feedback I 148
UG1209 (v2019.1) July 3, 2019 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=148

8 X”_INX® Chapter 6: System Design Examples

Modifying the Build Settings

This application makes use of Pthreads from the pthread library. Add the pthread library as
follows:

1. Right-click ps _pl linux_app, and click on C/C++ Build Settings.

2. Refer to the following figures to add the pthread library.

@ Properties for ps_pl_linux_app (= 'EI

type filter text Settings = e
I+ Resource =
Builders Configuration: IDebug [Active] v‘ IManage Configurations... *
4 C/C++ Build =
Build Variables
Environment B Tool Settings
Legging
Settings 4 % ARM AS53 Linux gee assembler Libraries (-I) _J 2
Tool Chain Editor (2 General
| C/C++ General a4 [ARM AS3 Linux gcc compiler
Project References (# Symbols
Run/Debug Settings (% Warnings
(# Optimization
(# Debugging

Build Steps | Build Artifact I [av Binary Parsers | @ Error Parsers|

m

(2 Profiling

(22 Directories

(2 Miscellaneous
4 (2 Inferred Options

(2 Software Platform

(2 Processor Options
4 B3 ARM AS3 Linux gee linker
B Genera
Miscellaneous
(2 Linker Script
4 (2 Inferred Options

(i Software Platiorm)

Library search path (-L) & B &l

oK] [Cancel

S

Figure 6-17: C/C++ Build Settings

m Enter Value @

Libraries (-I)

bthread

[ok || Ccancel

Figure 6-18: Add pthread Library
3. Click OK in both the windows.

SDK automatically builds the application and displays the status in the console window.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 149
UG1209 (v2019.1) July 3, 2019 www.Xxilinx.com I—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=149

(: X”_INX® Chapter 6: System Design Examples

Creating a Boot Image

Now that all the individual images are ready, you will create the boot image to load all of
these components on a Zynq UltraScale+ device. This can be done using the Create Boot
Image wizard in SDK, using the following steps. This example creates a Boot Image
BOOT.bin in C:\edt\designl.

1. Launch SDK, if it is not already running.

2. Set the workspace based on the project you created in Chapter 2. For example:
C:\edt\edt zcul02\edt zcul02.sdk

3. Select Xilinx > Create Boot Image.

4. See Figure 6-19 for settings in the Create Boot Image wizard.

5. Add the partitions as shown in the following figure.

Note: For detailed steps on how to add partitions, see Boot Sequence for SD-Boot.

m Create Boot Image @

Create Boot Image
Creates Zyng MP Boot Image in .bin format from given FSBL elf and partition files in specified output folder, _@
Architecture: ((Zyng MP =)

@ Create new BIF file () Import from existing BIF file

Basic Security!
Output BIF file path: {{ C\edt\designl\design .bif Browse...

UDF data:

1

| Browse...
[Split Output format: |BIN v|
Output path: (Chedt\designl\BOOT.bin) Browse...

Boot image partitions

File path Encrypted Authenticated m|
(bootloader) C\edt\edt_zcul02\edt_zcul02.sdk'\fsbl_a53\Debug\fshl_a53.elf none none

(pru) Chedthedt zoul02\edt zcul02.sdk\pmu_fwh\Debughpmu_fw.elf nene none | Delete
Chedt\edt_zcul02\edt_zcul02.sdk\edt_zcul02_wrapper_hw_platform_(\edt_zcul02_wrapper.bit | none none @
Ciedt\design_files\sd_boot\bI21.elf none none
Chedth\edt_zcul02\edt_zcul02.sdk\tmr_psled_r5\Debughtmr_psled_r5.elf none none Up
Ci\edt\design_files\sd_boot\u-boot.elf none none

t/:\' | Preview BIF Changes| | Create Image | [Cancel

Figure 6-19: Create Boot Image for SD Boot Mode

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 150
UG1209 (v2019.1) July 3, 2019 www.Xxilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=150

8 X”_INX® Chapter 6: System Design Examples

Note: This Boot image requires PL bitstream edt zcul02 wrapper.bit (Partition Type -
Datafile, Destination Device - PL). The Bitstream Partition needs to be added right after the
Bootloader while you create the boot image. Also note that the R5 application

tmr psled r5.elf is added as partition in this boot image.

6. After adding all the partitions, click Create Image.

ﬁ IMPORTANT: Ensure that you have set the correct exception levels for ATF (EL-3, Trustzone) and U-Boot
(EL-2) partitions. These settings can be ignored for other partitions.

Running the Image on a ZCU102 Board

Prepare the SD Card

Copy the images and executables on an SD card and load it in the SD card slot in the Board.

1. Copy files BOOT.BIN and image.ub to an SD card.
Note: BOOT.BIN is located in C:\edt\designl.

2. Copy the Linux application, ps_pl linux app.elf, to the same SD Card. The
application can be found in:

C:\edt\edt zculo02\edt zcul02.sdk\ps_pl linux_app\Debug

Target Setup

1. Load the SD card into the ZCU102 board, in the J100 connector.
2. Connect the USB-UART on the Board to the Host machine.

3. Connect the Micro USB cable into the ZCU102 Board Micro USB port J83, and the other
end into an open USB port on the host Machine.

4. Configure the Board to Boot in SD-Boot mode by setting switch SW6 as shown in the
following figure.

Figure 6-20: SW6 Switch Settings for SD Boot Mode

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 151
UG1209 (v2019.1) July 3, 2019 www.Xxilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=151

(: X”_INX® Chapter 6: System Design Examples

5. Connect 12V Power to the ZCU102 6-Pin Molex connector.

6. Start a terminal session, using TeraTerm or Minicom depending on the host machine
being used, as well as the COM port and baud rate for your system, as shown in
Figure 5-8.

7. For port settings, verify the COM port in the device manager.

There are four USB-UART interfaces exposed by the ZCU102 Board.

8. Select the COM Port associated with the interface with the lowest number. In this case,
for UART-O0, select the COM port with interface-0.

9. Similarly, for UART-1, select COM port with interface-1.

Remember that the R5 BSP has been configured to use UART-1, and so R5 application
messages will appear on the COM port with the UART-1 terminal.

Power ON Target and Run Applications
1. Turn on the ZCU102 Board using SW1, and wait until Linux loads on the board.

You can see the initial Boot sequence messages on your Terminal Screen representing
UART-0.

You can see that the terminal screen configured for UART-1 also prints a message. This
is the print message from the R-5 bare-metal Application running on RPU, configured to
use UART-1 interface. This application is loaded by the FSBL onto RPU.

2. Now that this application is running, notice the PS LED being toggled by the application,
and follow the instructions in the application terminal.

Turneﬂ ON
Turned OFF
Turned ON
Turned OFF
Turned ON

WFI mode. Press any key to repeat the sequence

Figure 6-21: R5-0 Bare Metal Application

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 152
UG1209 (v2019.1) July 3, 2019 www.xilinx.com L\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=152

(: X”_INX® Chapter 6: System Design Examples

Running Linux Applications

After Linux is up on the ZCU102 system, log in to the Linux target with login: root and
password: root. The Linux target is now ready for running applications.

Run the Linux application using following steps.

1. Copy the application from SD card mount point to /tmp
cp /run/media/mmcblkOpl/ps_pl linux_app.elf /tmp

Note: Mount the SD card manually if you fail to find SD card contents in this location.
mount /dev/mmcblkOpl /media/

Copy the application to /tmp.

cp /media/ps pl linux app.elf /tmp

2. Run the application.

/tmp/ps_pl linux app.elf

Application Started
Prezsz Sw 17 or Sw 17 on the hoard

Switch Pressed. ohserve
Switch Pressed. ohserve
Switch Pressed. ohserve
Switch Pressed. ohserve
Switch Pressed. ohserve

Switch Pressed. ohserve

Switch Pressed. ohserve

Figure 6-22: Linux Terminal

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 153
UG1209 (v2019.1) July 3, 2019 www.xilinx.com L\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=153

2: X”_INX® Chapter 6: System Design Examples

Design Example 2: Example Setup for Graphics and
Display Port Based Sub-System

This design example is primarily based on the Graphics Processing Unit and the Display Port
on a Zynq UltraScale+ MPSoC device. The main idea behind this example is to demonstrate
the configurations, packages, and tool flow required for running designs based on GPU and
DP on a Zynq UltraScale+ MPSoC device. This design example can be broken down into the
following sections:

1. Configuring the hardware.

2. Configuring PetaLinux RootFS to include the required packages:
a. GPU related packages
b. X Window System and dependencies

3. Building Boot images and Linux images using PetaLinux.

4. Building a Graphics OpenGL ES application targeted for Mali GPU. This application is
based on the X Window System.

5. Loading Linux on the ZCU102 board and running the Graphics Application on the target
to see the result on the display port.

Configuring the Hardware

In this section, you will configure the processing system to set Dual lower GT lanes for the
display port. The hardware configuration in this section is based on the same Vivado
project that you created in Design Example 1: Using GPIOs, Timers, and Interrupts.

Configuring Hardware in Vivado IP Integrator

1. Ensure that the edt_zcu102 project and the block design are open in Vivado.

2. Double-click the Zynq UltraScale+ Processing System block in the Block Diagram
window and wait till the Re-customize IP dialog box opens.

3. In Re-customize IP window, click on 1/0 Configuration > High Speed
4. De-select PCle peripheral connection

5. Expand Display Port, and set Lane Selection to Dual Lower, as shown in following figure:

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 154
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=154

(: X”_INX® Chapter 6: System Design Examples

6.

Zynq UltraScale+ MPSoC (3.0)

© Documentation ¥ Presets IP Location

Page Mavigator - 11O Configuration

Switch To Advanced Mode ~ MIO Voltage Standard
Bank0 [MIO 0:25] | Bank1 [MIQ 26:51] Bank2 [MIO 52.77]

PS UliraScale+ Block Design LVCMOS18 | LWVCMOS18 || LVCMOS18 ~

/0 Configuration

@& WOt

Search:

Clock Configuration
Peripheral o

» Low Speed
~ High Speed
PS-PL Configuration *» GEM
> UsB
> PCle D
~ | Display Port
> DPALX MIO 27 30 i

DDR Configuration

* Lane Selection Dual Lower A
> SATA

Figure 6-23: Display Port Lane Selection

Note: The Display port lane selection is set to Dual lane to support UHD@30 resolution in the
design example of this tutorial. This configuration will lock display for UHD@30 as well as lower
resolution like 1080p 60 and others, for corresponding monitors.

Click OK to close the Re-customize IP wizard.

& CAUTION! Do not click the Run Block Automation link. Clicking the link will reset the design as per
board preset and disable the design updates you made using in this section.

10.
11.

12.

Click File > Save Block Design to save the block design. Alternatively, you can press
CTRL + S to save the block design.

Click Generate Bitstream, to re-synthesize the design and generate the Bitstream.

After the Bitstream is generated successfully, click File > Export > Export Hardware to
export the hardware design.

Select Include Bistream.

Click OK.

The exported design can be found at following location:
<edt zcul02 Vivado project path>\edt zcul02.sdk\edt zcul02 wrapp
er.hdf

For this example, it can be found in
C:\edt\edt zculO2\edt zcul02.sdk\edt zcul02 wrapper.hdf

Copy the HDF file to a Linux Host machine.

The next section describes steps to build Linux for your Hardware configuration and also
add additional software packages for GPU and the X Window System.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial

o l Send Feedback I 155
UG1209 (v2019.1) July 3, 2019 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=155

(: X”_INX® Chapter 6: System Design Examples

Modifying the Configuration and Building Linux Images using
PetalLinux

Re-configure the PetaLinux BSP in sync with the new hardware changes. This section uses
the PetalLinux project you created in Example Project: Create Linux Images using PetaLinux.

1. Change to the Petalinux directory using the following command:

$ cd xilinx-zcul02-2019.1
2. Copy the hardware platform edt zcul02 wrapper.hdf in the Linux Host machine.
3. Reconfigure the BSP using the following command:

$ petalinux-config --get-hw-description=<path containing edt zcul02_ wrapper.hdfs/

The PetalLinux configuration wizard opens.
4. Save and exit the wizard without any additional configuration settings.
Wait until PetaLinux reconfigures the project.

5. Clean the existing Bootloader image. This is to ensure that the bootloader is recreated
in sync with new hardware design.

$ petalinux-build -c bootloader -x distclean

Building the Mali OpenGLES Application

This section leads you through building a Triangle-based Cube application. This application
is written in OpenGLES and is based on the X Window System. For more details and for the
application source code, refer to tricube in the design files folder of the zip file that
accompanies this tutorial. See Design Files for This Tutorial.

Use the following steps to build the OpenGLES application:

1. Copy the entire application source directory of tricube to the Linux host machine in
the recipe-apps directory of the Petalinux project.

<Petalinux-Project>/project-spec/meta-user/recipes-apps/tricube

2. Add the newly created tricube in petalinux-image.bbappend, which is located in

<plnx projects>/project-spec/meta-user/recipes-core/images/petali
nux-image-full.bbappend

With this addition, the file will look like below. Notice the new application in bold.

IMAGE INSTALL append = " peekpoke"
IMAGE INSTALL append = " gpio-demo"
IMAGE INSTALL append = " tricube"

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 156
UG1209 (v2019.1) July 3, 2019 www.xilinx.com L—q,,————————J

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=156

(: X”_INX® Chapter 6: System Design Examples

3.

Refer to recipe tricube/tricube.bb for detailed instructions and libraries used for
building this application. The X Window System (X11) packages included while building
the above application is application dependent. Libraries included in tricube.bb
recipe are based on the packages that were used in the application.

Enable GPU Libraries and Other Packages in RootFS

In this section, you will use the Petalinux rootfs Configuration wizard to add the Mali GPU
libraries. PetaLinux is shipped with Mali GPU libraries and device drivers for Mali GPU. By
default, the Mali driver is enabled in the kernel tree, but Mali user libraries need to be
configured (on an as-needed basis) in the rootfs. In addition to this, you will use the same
wizard to include the X Window System libraries.

1.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial

Open the Petalinux rootfs Configuration wizard -
$ petalinux-config -c rootfs
Navigate to and enable the following packages:

Filesystem Packages ---> libs ---> libmali-xlnx ---> libmali-xlnx
Filesystem Packages ---> libs ---> libmali-xlnx ---> libmali-xlnx-dev

These packages enable you to build and Run OpenGLES applications targeted for Mali
GPU in the Zynq UltraScale+ MPSoC device.
Add X11 package groups to add X window related packages:

Petalinux Package Groups > packagegroup-petalinux-xll >packagegroup-petalinux-x11
Petalinux Package Groups > packagegroup-petalinux-x11l >
packagegroup-petalinux-xll-dev

Add the OpenGLES application created in the earlier section:
User Packages ---> [*]tricube

After enabling all the packages, save the config file and exit the rootfs configuration
settings.

Build the Linux images using the following command:
$ petalinux-build
Note: If the Petalinux build fails, use the following commands to build again:

$ petalinux-build -x mrproper
$ petalinux-build

Verify that the image . ub Linux image file is generated in the images/1linux directory.
Generate the Boot image for this design example as follows:

$ petalinux-package --boot --fsbl images/linux/zyngmp fsbl.elf --pmufw
images/linux/pmufw.elf --atf images/linux/bl31l.elf --fpga images/linux/system.bit
--u-boot images/linux/u-boot.elf

o l Send Feedback I 157
UG1209 (v2019.1) July 3, 2019 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=157

2: X”_INX® Chapter 6: System Design Examples

A BOOT.BIN Boot image is created. It is composed of the FSBL boot loader, the PL
bitstream, PMU firmware and ATF, and U-Boot. Alternatively, see the steps in Creating a
Boot Image to create this boot image.

i} IMPORTANT: This example uses the GPU packages based on X window system, which is the default
setting in Petalinux 2019.1. To enable Frame Buffer fbdev based GPU Packages in Petalinux 2019.1,
add the following line in <Petalinux_project>/project-spec/meta-user/conf/petalinuxbsp.conf.
DISTRO FEATURES remove zyngmp = " x11"
See example eglfbdev application (based on fdev) available in Design Files for This Tutorial. For more
information, see the Xilinx Answer 68821.

Loading Linux and Running the OpenGLES Application on the
Target and Viewing the Result on the Display Port

Preparing the SD Card

Now that the Linux images are built and the application is also built, copy the following
images in an SD card and load the SD card in ZCU102 board.

¢ BOOT.BIN

* 1image.ub

Running the Application on a Linux Target

Setting Up the Target
Do the following to set up the Target:

1. Load the SD card into the J100 connector of the ZCU102 board.

2. Connect the Micro USB cable into the ZCU102 Board Micro USB port J83, and the other
end into an open USB port on the host Machine.

Also, make sure that the JTAG cable is disconnected. If the cable is not disconnected, the
system might hang.

3. Connect a Display Port monitor to the ZCU102 Board. The display port cable from the
DP monitor can be connected to the display port connector on the ZCU102 board.

Note: These images were tested on a UHD@30 Hz and a FullHD@60 Hz Display Port capable
monitor.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 158
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=answers;d=68821.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=158

8 X”_INX® Chapter 6: System Design Examples

4. Configure the Board to Boot in SD-Boot mode by setting switch SW6 as shown in the
following figure.

Enbl5sY

12 3 4

-
-
.
L

e
4J

Figure 6-24: SW6 Switch Settings for SD Boot Mode

5. Connect 12V Power to the ZCU102 6-Pin Molex connector.

6. Start a terminal session, using TeraTerm or Minicom depending on the host machine
being used, as well as the COM port and baud rate for your system, as shown in
Figure 5-8.

7. For port settings, verify the COM port in the device manager.

There are four USB-UART interfaces exposed by the ZCU102 Board. Select the COM port
associated with the interface with the lowest number. In this case, for UART-O0, select the
COM port with interface-0.

Powering On the Target and Running the Applications

1. Turn on the ZCU102 Board using SW1, and wait until Linux loads on the board.

2. After Linux loads, log in to the target Linux console using root for the login and
password.

3. Set the display parameters and start Xorg with the correct depth.

export DISPLAY=:0.0
/usr/bin/Xorg -depth 16&

4. Run the tricube application.

tricube

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 159
UG1209 (v2019.1) July 3, 2019 www.Xxilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=159

(: X”_INX® Chapter 6: System Design Examples

At this point, you can see a rotating multi-colored cube and a rotating triangle on the
display port. Notice that the cube is also made of multi-colored triangles.

Figure 6-25: Rotating Cube and Triangle

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 160
UG1209 (v2019.1) July 3, 2019 www.xilinx.com L\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=160

& XILINX

Appendix A

Debugging Problems with Secure Boot

This appendix describes how to debug security failures. One procedure determines if PUF
registration has been run on the device. A second procedure checks the value of the Boot
Header in the boot image.

Determine if PUF Registration is Running

The following steps can be used to verify if the PUF registration software has been run on
the device:

1. In SDK, select Xilinx > XSCT Console.

2. Enter the following commands at the prompt:

xsct% connect

xsct% targets

xsct% targets -set -filter {name =~ "Cortex-AS53 #0"}
xsct% rst -processor

xsct% mrd -force O0xFFCC1050 (OxFFCC1054)

3. This location contains the CHASH and AUX values. If non-zero, PUF registration software
has been run on the device.

Read the Boot Image

You can use the Bootgen Utility to verify the header values and the partition data used in
the Boot Image.

1. Change to the directory containing BOOT .bin.
2. From an XSCT prompt, run the following command.

bootgen utility -bin BOOT.bin -out myfile -arch zyngmp

3. Look for "BH" in myfile.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 161
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=161

& XILINX

Appendix B

Additional Resources and Legal Notices

Xilinx Resources

For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Solution Centers

See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

Documentation Navigator and Design Hubs

Xilinx Documentation Navigator provides access to Xilinx documents, videos, and support
resources, which you can filter and search to find information. To open the Xilinx
Documentation Navigator (DocNav):

« From the Vivado IDE, select Help > Documentation and Tutorials.

+ On Windows, select Start > All Programs > Xilinx Design Tools > DocNav >
DocNav.

« At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other
topics, which you can use to learn key concepts and address frequently asked questions. To
access the Design Hubs:

» In the Xilinx Documentation Navigator, click the Design Hubs View tab.
+ On the Xilinx website, see the Design Hubs page.

Note: For more information on Documentation Navigator, see the Documentation Navigator page
on the Xilinx website.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 162
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/support.html
https://www.xilinx.com/support.html
https://www.xilinx.com/support/solcenters.htm
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=162

2: X”_INX® Appendix B: Additional Resources and Legal Notices

Available in Documentation Navigator, design hubs provide quick access to documentation,
training, and information for specific design tasks. The following design hubs are applicable
to embedded development and the methods described in this guide:

« Petalinux Tools Design Hub

« Software Development Kit Design Hub

Design Files for This Tutorial

The ZIP file associated with this document contains the design files for the tutorial. You can
download the reference design files from the Xilinx website.

To view the contents of the ZIP file, download and extract the contents from the ZIP file to
C:\edt. The design files contain the HDF files, source code and prebuilt images for all the
sections.

Xilinx Resources

The following Xilinx Vivado Design Suite and Zynq® UltraScale+™ guides are referenced in
this document.

—_

Vivado Design Suite User Guide: Getting Started (UG910)

Vivado Design Suite Tutorial: Embedded Processor Hardware Design (UG940)
Vivado Design Suite User Guide: Release Notes, Installation, and Licensing (UG973)
UltraFast Embedded Design Methodology Guide (UG1046)

Zynq UltraScale+ MPSoC Technical Reference Manual (UG1085)

Zynq UltraScale+ MPSoC Software Developer Guide (UG1137)

Petalinux Tools Documentation: Reference Guide (UG1144)

© N o v A~ WD

Xilinx Software Development Kit (SDK) User Guide: System Performance Analysis
(UG1145)

9. Zynq UltraScale+ Processing System Product Guide (PG201)
10. Measured Boot of Zynq-7000 SoCs (XAPP1309)

11. Secure Boot of Zyng-7000 SoC (XAPP1175)

12. Changing the Cryptographic Key in Zynq-7000 SoC (XAPP1223)
13. Programming BBRAM and eFUSEs (XAPP1319)

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 163
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs;d=dh0016-petalinux-tools-hub.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs;d=dh0015-sdk-hub.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug910-vivado-getting-started.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug940-vivado-tutorial-embedded-design.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug973-vivado-release-notes-install-license.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?d=ug1046-ultrafast-design-methodology-guide.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1137-zynq-ultrascale-mpsoc-swdev.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1144-petalinux-tools-reference-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1145-sdk-system-performance.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=zynq_ultra_ps_e;v=latest;d=pg201-zynq-ultrascale-plus-processing-system.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1309-measured-boot.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1175_zynq_secure_boot.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1223-crypto-key-change.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1319-zynq-usp-prog-nvm.pdf
https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=54fdb4d3-f267-4986-ae73-1c66c2c100f2;d=ug1209-embedded-design-tutorial.zip
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=163

2: X”_INX® Appendix B: Additional Resources and Legal Notices

Support Resources

14. Xilinx Zynq UltraScale+ MPSoC Solution Center

15. The Software Zone:

https://www.xilinx.com/products/design-tools/software-zone/sdsoc.html#docsdownloa
d

Additional Resources

16. The Effect and Technique of System Coherence in Arm Multicore Technology by John
Goodacre, Senior Program Manager, Arm Processor Division
(http://www.mpsoc-forum.org/previous/2008/slides/8-6%20Goodacre.pdf)

17. Xilinx GitHub website: https://github.com/xilinx

18. The Linux Kernel Module Programming Guide:
http://tldp.org/LDP/lkmpg/2.6/html/index.html

Training Resources

Xilinx provides a variety of training courses and QuickTake videos to help you learn more
about the concepts presented in this document. Use these links to explore related videos:

1. Vivado Design Suite QuickTake Video Tutorials

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 164
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/support/answers/64375.html
https://www.xilinx.com/products/design-tools/software-zone/sdsoc.html#docsdownload
http://www.mpsoc-forum.org/previous/2008/slides/8-6 Goodacre.pdf
https://github.com/xilinx
http://tldp.org/LDP/lkmpg/2.6/html/index.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=vivado+videos
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=164

2: X”_INX® Appendix B: Additional Resources and Legal Notices

Please Read: Important Legal Notices

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a
result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised
of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of Xilinx's limited warranty, please refer to
Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and
support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use
in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical
applications, please refer to Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA" IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE (“SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY
DESIGN"). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY
TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY
AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

© Copyright 2017-2019 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated
brands included herein are trademarks of Xilinx in the United States and other countries. AMBA, AMBA Designer, ARM,
ARM1176JZ-S, CoreSight, Cortex, PrimeCell, and MPCore are trademarks of ARM in the EU and other countries. All other
trademarks are the property of their respective owners.

Zynq UltraScale+ MPSoC: Embedded Design Tutorial Send Feedback 165
UG1209 (v2019.1) July 3, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=165

	Zynq UltraScale+ MPSoC: Embedded Design Tutorial
	Revision History
	Table of Contents
	Ch. 1: Introduction
	About This Guide
	Example Project
	Additional Documentation

	How Zynq UltraScale+ Devices Offer a Single Chip Solution
	The Vivado Design Suite
	Other Vivado Components
	Xilinx Software Development Kit
	PetaLinux Tools

	How the Vivado Tools Expedite the Design Process
	What You Need to Set Up Before Starting
	Hardware Requirements for this Guide
	Installation Requirements
	Vivado Design Suite and SDK
	PetaLinux Tools
	Prerequisites
	Extract the PetaLinux Package

	Software Licensing
	Tutorial Design Files

	Ch. 2: Zynq UltraScale+ MPSoC Processing System Configuration
	Zynq UltraScale+ System Configuration
	Example Project: Creating a New Embedded Project with Zynq UltraScale+ MPSoC
	Starting Your Design
	Creating a Block Design Project
	Managing the Zynq UltraScale+ Processing System in Vivado
	Isolation Configuration
	Validating the Design and Connecting Ports
	Exporting Hardware to SDK
	What Just Happened?
	What's Next?

	Example Project: Running the “Hello World” Application from Arm Cortex-A53
	What Just Happened?

	Example Project: Running the “Hello World” Application from Arm Cortex-R5
	What Just Happened?

	Additional Information
	Board Support Package
	Standalone OS

	Ch. 3: Build Software for PS Subsystems
	Processing Units in Zynq UltraScale+
	Example Project: Create a Bare-Metal Application Project in SDK
	Create First Stage Boot Loader for Arm Cortex-A53-Based APU
	Create First Stage Boot Loader for Arm Cortex-R5 Based RPU
	Create Bare-Metal Application for Arm Cortex-A53 based APU
	Modify the Application Source Code

	Create Bare-Metal Application for Arm Cortex-R5 based RPU
	Creating the Application Project
	Modifying the Linker Script
	Modifying the Board Support Package

	Create PMU Firmware for Platform Management Unit

	Example Project: Create Linux Images using PetaLinux
	Verify the Image on the ZCU102 Board
	Create Linux Images using PetaLinux for QSPI Flash

	Ch. 4: Debugging with SDK
	Xilinx System Debugger
	Debugging Software Using SDK
	Debugging Using XSCT
	Set Up Target
	Load the Application Using XSCT
	Serial Terminal Configuration
	Run and Debug Application Using XSCT
	Debugging FSBL using SDK
	Create and Modify FSBL

	Ch. 5: Boot and Configuration
	System Software
	First Stage Boot Loader
	Platform Management Unit Firmware
	U-Boot
	Arm Trusted Firmware

	Linux on APU and Bare-Metal on RPU
	Boot Sequence for SD-Boot
	Running the Image on the ZCU102 Board

	Boot Sequence for QSPI Boot Mode
	Running the Image in QSPI Boot Mode on ZCU102 Board
	Set Up the ZCU102 Board

	Boot Sequence for QSPI-Boot Mode Using JTAG
	Setting Up the Target
	Load U-Boot Using XSCT/XSDB
	Load Boot.bin in DDR Using XSDB
	Load the Boot.bin Image in QSPI Using U-Boot

	Boot Sequence for USB Boot Mode
	Configure FSBL to Enable USB Boot Mode
	Create First Stage Boot Loader for Arm Cortex-A53-Based APU

	Creating Boot Images for USB Boot
	Modifying PetaLinux U-Boot

	Boot using USB Boot
	Boot Commands for Linux Host Machine
	Boot Commands for Windows Host Machine

	Secure Boot Sequence
	Secure Boot System Design Decisions
	Hardware Root of Trust
	Data Integrity
	Authentication

	Boot Image Confidentiality and DPA
	DPA Protections

	Black Key Storage

	Practical Methods in Secure Boot
	Sample Design Overview
	Generating Keys for Authentication
	Creating RSA Private/Public Key Pairs
	Generate SHA3 of Public Key in RSA Private/Public Key Pair
	Additional RSA Private/Public Key Pairs
	Enabling Boot Header Authentication

	Generating Keys for Confidentiality
	Using AES Encryption
	Enabling DPA Protections
	Enable use of an Operational Key
	Enabling Encryption Using Key Rolling
	Generating all of the AES keys

	Using Key Revocation
	Using the PUF
	PUF Registration - Boot Header Mode
	Using PUF in Bootheader Mode

	System Example Using the SDK Create Boot Image Wizard
	Booting the system using a Secure Boot Image
	Running the Linux Application
	Sample BIF for a fielded system

	Ch. 6: System Design Examples
	Design Example 1: Using GPIOs, Timers, and Interrupts
	Configuring Hardware
	Adding and Configuring IPs
	Connecting IP Blocks to Create a Complete System
	Validating the Design and Generating Output
	Synthesizing the Design, Running Implementation, and Generating the Bitstream
	Exporting Hardware to SDK

	Configuring Software
	Configure and Build Linux using PetaLinux
	Creating the Bare-Metal Application Project
	Modifying the Linker Script

	Creating the Linux Application Project
	Modifying the Build Settings
	Creating a Boot Image

	Running the Image on a ZCU102 Board
	Prepare the SD Card
	Target Setup
	Power ON Target and Run Applications
	Running Linux Applications

	Design Example 2: Example Setup for Graphics and Display Port Based Sub-System
	Configuring the Hardware
	Configuring Hardware in Vivado IP Integrator

	Modifying the Configuration and Building Linux Images using PetaLinux
	Building the Mali OpenGLES Application
	Enable GPU Libraries and Other Packages in RootFS
	Loading Linux and Running the OpenGLES Application on the Target and Viewing the Result on the Display Port
	Preparing the SD Card
	Running the Application on a Linux Target
	Setting Up the Target
	Powering On the Target and Running the Applications

	Appx. A: Debugging Problems with Secure Boot
	Determine if PUF Registration is Running
	Read the Boot Image

	Appx. B: Additional Resources and Legal Notices
	Xilinx Resources
	Solution Centers
	Documentation Navigator and Design Hubs
	Design Files for This Tutorial
	Xilinx Resources
	Support Resources
	Additional Resources

	Training Resources
	Please Read: Important Legal Notices

