
Verifying Local Transformations on Relaxed
Memory Models

Sebastian Burckhardt1, Madanlal Musuvathi1, and Vasu Singh2

1 Microsoft Research
2 EPFL, Switzerland

Abstract. The problem of locally transforming or translating programs
without altering their semantics is central to the construction of correct
compilers. For concurrent shared-memory programs this task is chal-
lenging because (1) concurrent threads can observe transformations that
would be undetectable in a sequential program, and (2) contemporary
multiprocessors commonly use relaxed memory models that complicate
the reasoning.
In this paper, we present a novel proof methodology for verifying that a
local program transformation is sound with respect to a specific hardware
memory model, in the sense that it is not observable in any context. The
methodology is based on a structural induction and relies on a novel
compositional denotational semantics for relaxed memory models that
formalizes (1) the behaviors of program fragments as a set of traces,
and (2) the effect of memory model relaxations as local trace rewrite
operations.
To apply this methodology in practice, we implemented a semi-automated
tool called Traver and used it to verify/falsify several compiler transfor-
mations for a number of different hardware memory models.

1 Introduction

Compilers perform a series of transformations that translate a high-level program
into low-level machine instructions, while optimizing the code for performance.
For correctness, these transformations must preserve the meaning for any in-
put program. Proving the correctness of program transformations has been well
studied for sequential programs [29, 18, 17, 19].

However, concurrent shared-memory programs require additional caution be-
cause transformations that reorder, introduce, or eliminate accesses to shared
memory may be observed by concurrent threads and can thus introduce sub-
tle safety or liveness errors in an otherwise correct program. For example, the
redundant read elimination shown in Fig. 1 is not safe because it leads to non-
termination, and the branch consolidation in Fig. 2 is unsafe because it can lead
to an assertion violation.

Typically, only a very small part of all memory accesses (namely the accesses
that are used for synchronization purposes) are susceptible to such issues. How-
ever, in the absence of a whole-program-analysis or user-provided annotations,

int X = 0;

Transformation Observer

int r1 = X;

while(X == 0);
⇒int r1 = X;

while(r1 == 0);
X = 1;

Fig. 1. Redundant read elimination causing nontermination.

bool B = false, X = false, Y = false;

Transformation Observer

bool r = B;

if(r) {
X = r; Y = !r;

} else {
Y = !r; X = r;

}

⇒
bool r = B;

X = r;

Y = !r;

X = true;

assert(X || Y);

Fig. 2. This branch consolidation is unsafe: the assert can fail in the transformed
program, but not the original program. The reason is that the transformation changes
the order of the writes to X and Y in the then-branch.

we can not distinguish between data accesses and accesses that are used for
synchronization. In practice, most compilers rely on the programmer to provide
special type qualifiers like ’volatile’ [20] or ’atomic’ [4] or on custom annota-
tions to identify synchronization accesses. Programs that correctly convey all
synchronization are called ’properly labeled’ [14] or ’data-race-free’ [2].

There is a general understanding on how to correctly transform data-race
free programs [20, 4, 25]. In this paper, however, we address the more conserva-
tive problem of safely transforming general programs, including programs that
contain data races, or programs that are missing the annotations or types needed
to identify synchronization accesses.

It may seem at first that under this conservative restriction, very few transfor-
mations would be safe. However, we can assume that programs that are designed
to work on relaxed hardware memory models are resilient to certain transforma-
tions. Clearly, there is no need for a compiler to be more conservative than the
hardware executing the compiled program.

For example, consider the example in Fig. 2 again, but let the execution be
on a machine that relaxes write-to-write order. Now, we may argue that the
transformation is indeed correct as it does not introduce new behaviors: if write-
to-write order is relaxed by the hardware, the assertion violation may occur even
for the original untransformed program.

For some transformations it can be rather mind-boggling to determine whether
it is safe for a given architecture. For instance, by using the methodology pre-

sented in this paper, we will prove (though not fully comprehend) that the
transformation

{r := A; if r == 0 then A := 0} → {r := A}

is safe on a sequentially consistent machine, unsafe on a machine that relaxes
write-to-read order (such as TSO), but once more safe on a machine that addi-
tionally relaxes write-to-write order (such as PSO).

Overall, we summarize our contributions as follows:

– (Section 3) We build a semantic foundation for relaxed hardware memory
models. We show how many common relaxations can be explained as local
rewrite operations on memory access sequences. In particular, we present a
novel aggregation rule that can explain the effect of store buffers, the most
common relaxation of all. Our semantics is compositional (it defines the be-
havior of program fragments recursively) and can model infinite executions.

– (Section 4) We present a proof methodology to verify the soundness of local
program transformations over relaxed memory models, based on a notion of
observations. We introduce a notion of invisible rewrite rules (Section 4.1)
to reason about all possible program contexts.

– (Section 5) We show how to apply the methodology in practice by veri-
fying/falsifying 8 program transformation for 5 different memory models
(including sequential consistency), aided by a custom semi-automatic tool
called Traver. Given a local program transformation and a memory model,
Traver uses an automated theorem prover [11] to prove that the set of obser-
vations of the transformed program is contained in the set of observations
of the original program, for all possible program contexts. Conversely, when
provided with an additional falsification context, Traver can automatically
show that the transformation leads to observable differences in behavior.
This produces a certificate of unsoundness of the transformation.

2 Related Work

Our calculus and semantics, and in particular the handling of infinite executions,
were inspired by Brookes’ fully abstract denotational semantics for sequentially
consistent programs [6]. Languages and semantics to study relaxed memory mod-
els have been developed before, in both operational style [5] and algebraic style
[24]. Our work differs in that it (1) guarantees fairness for infinite executions and
(2) relates to contemporary multiprocessor architectures and common program
transformations.

Much prior work on hardware memory models focuses on the complex in-
tricacies of axiomatic specifications and gives only partial formalizations (in
particular, program syntax is generally ignored). Some work departs from the
mainstream and uses an operational style [23] or an algebraic style [3, 27] (where
the algebraic style bears some similarity to our use of dynamic rewrite rules, but

does not include the important store-load aggregation rule which is crucial to
correctly model contemporary hardware memory models). Recently, researchers
have proposed revised axiomatic formalizations of the x86 architecture [13, 22].
Our work is orthogonal: our goal is to find simple yet precise means to reason
about various common hardware relaxations, rather than fully model all details
of one specific hardware architecture.

Our work was partly motivated by recent work [9, 26] that demonstrated the
difficulty of manually verifying compiler optimizations against memory models.
It is also similar to efforts on verifying the soundness of compiler transformations
for language-level models (Java, DRF) [25]. Unlike the latter, however, we define
soundness of transformations relative to the hardware memory model (and are
thus not susceptible to whether programs are data-race-free or not), can han-
dle infinite executions, and provide a tool that helps to automate parts of the
verification/falsification effort.

3 Semantic Foundation

In this section, we lay the foundation for understanding hardware memory mod-
els and for reasoning about them formally. We start by demonstrating how we
explain typical relaxations in the hardware using dynamic rewrite operations.
We then formalize this concept by defining a simple imperative language for
shared-memory programs and a compositional denotational semantics. Along
the way, we discuss various challenges, such as how our semantics handles infi-
nite executions and fairness.

We start with a quick introduction to relaxed hardware memory models,
revisiting classical examples [1, 14]. We use special diagrams called derivations
to explain how to understand relaxations as a consequence of dynamic rewriting
of access sequences. We distinguish three types of dynamic rewrite operations:
reordering, aggregation, and splitting.

Ordering relaxations allow the hardware to execute operations in a different
order than specified by the program. This can speed up execution as it allows
the hardware to delay the completion of operations with high latency (such as
propagating stores to a global shared memory) past subsequent operations with
low latency (such as reading a locally cached value). In Fig. 3 (a) and (b), we
show classic “litmus tests” to illustrate the effects of ordering relaxations. These
programs distinguish syntactically between processor-local registers (lowercase
identifiers) and shared memory locations (capitalized identifiers).

Not all effects can be explained by simply reordering instructions. For exam-
ple, the program in Fig. 3(c) is a variation of 3(b) that shows how stored values
can be visible to subsequent loads by the same processor before they have been
committed to shared memory. This effect is very common and often attributed
to processor-local “store buffers”. We explain this effect as an aggregation of the
store with the following load.

More formally, let 〈ld L, x〉 and 〈st L, x〉 represent store or load accesses
from/to location L, with loaded/stored value of x. Now consider the dynamic

(a) (b) (c)

Initially: A = B = 0

P1 P2

A := 1
B := 1

r := B
s := A

Eventually: r = 1, s = 0

Initially: A = B = 0

P1 P2

A := 1
r := B

B := 1
s := A

Eventually: r = s = 0

Initially: A = B = 0

P1 P2

A := 1
u := A
r := B

B := 1
v := B
s := A

Eventually: r = s = 0, u = v = 1

Fig. 3. (a) This outcome is possible if the stores by P1 are reordered, or if the loads
by P2 are reordered. (b) This outcome (known as Dekker) is possible if the stores are
delayed past the loads. (c) This outcome (a variation of Dekker) is possible if stores
can be both forwarded to loads and delayed past loads.

sss (swap store-store)

〈st L, x〉〈st L′, x′〉 L6=L′→ 〈st L′, x′〉〈st L, x〉
sll (swap load-load)
〈ld L, x〉〈ld L′, x′〉 → 〈ld L′, x′〉〈ld L, x〉

ssl (swap store-load)

〈st L, x〉〈ld L′, x′〉 L6=L′→ 〈ld L′, x′〉〈st L, x〉
sls (swap load-store)

〈ld L, x〉〈st L′, x′〉 L6=L′→ 〈st L′, x′〉〈ld L, x〉
asl (aggregate store-load)
〈st L, x〉〈ld L, x〉 → 〈st L, x〉

Model Rewrite Rules

SC (none)
390 ssl
TSO ssl asl
x86-TSO ssl asl
PSO ssl asl sss
CLR ssl asl sll

RMO ssl asl sss sll6c 6d sls6c6d

Alpha ssl asl sss sll6= sls6c 6d

Fig. 4. Dynamic rewrite operations employed by some commercial hardware memory
models and by the CLR memory model. The symbols 6 c, 6 d and 6= indicate that the
accesses are swapped only if they are not control dependent, not data dependent, or
target a different location, respectively.

〈st A, 1〉〈st B, 1〉ysss
〈st B, 1〉〈st A, 1〉 〈ld B, 1〉〈ld A, 0〉︸ ︷︷ ︸
〈st B, 1〉〈ld B, 1〉〈ld A, 0〉〈st A, 1〉

〈st A, 1〉〈ld B, 0〉yssl
〈ld B, 0〉〈st A, 1〉

〈st B, 1〉〈ld A, 0〉yssl
〈ld A, 0〉〈st B, 1〉︸ ︷︷ ︸

〈ld B, 0〉〈ld A, 0〉〈st A, 1〉〈st B, 1〉

〈st A, 1〉〈ld A, 1〉〈ld B, 0〉yasl
〈st A, 1〉〈ld B, 0〉yssl
〈ld B, 0〉〈st A, 1〉

〈st B, 1〉〈ld B, 1〉〈ld A, 0〉yasl
〈st B, 1〉〈ld A, 0〉yssl
〈ld A, 0〉〈st B, 1〉︸ ︷︷ ︸

〈ld B, 0〉〈ld A, 0〉〈st A, 1〉〈st B, 1〉

Fig. 5. Top left: Derivation for Fig. 3(a). P1 issues two stores that get reordered by
sss before being interleaved with the two loads by P2. Note that we could provide
an alternative derivation where the loads get reordered by sll. Top right: Derivation
for Fig. 3(b). Both store-load sequences are reordered by ssl before being interleaved.
Bottom: Derivation for Fig. 3(c). Both processors first aggregate the stores with the
first following load by asl, then delay it past the second load by ssl.

rewrite operations in Fig. 4. All of these operations preserve the semantics of
single-processor programs, as long as the conditions are observed (asl applies
only to accesses that target the same location and store/load the same value,
while sss, ssl, and sls apply only to accesses that target different locations).

To see how these dynamic rewrite operations can explain the examples in
Fig. 3, consider the derivation diagrams in Fig. 5. Each processor first produces
a sequence of memory accesses consistent with the program. These sequences are
dynamic, as they contain data that may not be known statically (such as actual
addresses and values loaded or stored), and may repeat program fragments that
execute in loops. The access sequences may then be locally modified by the dy-
namic rewrite operations. Next, the sequences of the processors are interleaved.
Informally, an interleaving shuffles the various sequences while maintaining the
access order within each sequence (we give a formal definition in Section 3.2).
Our derivation diagrams show which sequences are being interleaved with an un-
derbrace. At the end of the derivation (but not necessarily before), the sequence
must be value-consistent ; that is, loaded values must be equal to the latest value
stored to the same location, or the initial value if there is no preceding store.

In general, it is quite difficult to establish a precise relationship between ab-
stract memory models (described as a collection of relaxations, in the style of
[1]) and official memory model specifications of commercially available multipro-
cessors. However, it is possible and sensible for research purposes to model just
the abstract core of such models, by focusing on the behavior of regular loads
and stores. Fig. 4 shows how can model the core of many commercial hardware
memory models, and even the CLR memory model, using the dynamic rewrite
rules defined in Fig. 3. Our main sources for constructing this table were [16] for
390, [28] for TSO, PSO and RMO, [10] for Alpha, [22] for x86-TSO, and [7, 12,
21] for CLR.

Beyond simple loads and stores, all of these architectures contain additional
constructs (such as locked instructions, compare-and-swaps, various memory
fences, or volatile memory accesses). Many of them can be formalized using
custom syntax and rewrite rules. However, for simplicity, we stick to regular
loads and stores in this paper, augmented only by atomic load-stores (which
offer a general method to represent synchronization operations such as locked
instructions or compare-and-swap) and a full memory fence. Also, we do not
currently model control or data dependencies (which would require us to follow
the machine language syntax much more closely, as done in [22], for example).

Some memory models (such as PPC, ARM, RC, and PC) allow stores to be
split into separate components for each processor. By combining the asl rule
with a hierarchical cache organization, our formalism can handle a limited form
of store splitting that is sufficient to explain most examples (for more detail on
this topic, see [8]).

To correctly handle examples that involve synchronization with spinloops
(such as Fig. 1), our formalism must handle infinite executions and model fairness
conditions (e.g., the store must eventually be performed). To illustrate the sub-
tleties of infinite rewriting, consider first the program in Fig. 6(a). If we naively

(a) (b)

Initially: A = B = r = s = 0

P1 P2

A := 1
while (r == 0)
r := B

while (s == 0)
s := A

B := 1

Eventually: P1, P2 do not terminate

Initially: A = B = r = s = 0

P1 P2

while (r == 0){
r := B
A := 1
B := 0

}

while (s == 0){
s := A
B := 1
A := 0
}

Eventually: P1, P2 do not terminate

Fig. 6. (a) This outcome is not possible: the store by P1 has to reach P2 eventually,
and vice versa. (b) This outcome is possible: both processors repeat Dekker forever.

allow infinite applications of ssl, the store of A can be delayed past the infinite
number of subsequent loads in the while loop. As a result, the program may
not terminate, which we would like to disallow for the following reason. On ac-
tual hardware, stores are not retained indefinitely, so this program is guaranteed
to terminate. Now consider Fig. 6(b). This program is essentially a “repeated
Dekker” (Fig. 3(b)) and it is conceivable that both P1 and P2 keep executing
forever. To explain such behavior, we need to apply ssl infinitely often.

To handle both these examples correctly, our denotational semantics uses
parallel rewriting on infinite traces (to be formally defined in the next section).

3.1 A Simple Imperative Language for Shared Memory

We now proceed to formalize our description of relaxed memory models. We
start by defining a simple imperative “toy” programming language that is suffi-
cient to express the relevant concepts. It is explicitly parallel and distinguishes
syntactically between shared variables (uppercase identifiers) and local variables
(lowercase identifiers). All variables are mutable and lexically scoped, and must
be initialized. For example, the litmus test in Fig. 3(a) looks as follows:

share A = 0 in (share B = 0 in

(local r = 0 in (local s = 0 in

((A := 1; B := 1) ‖ (r := B; s := A)))))

The formal syntax is shown in Fig. 7. We let L be the set of shared variables
(locations in shared memory), R be the set of processor-local variables (regis-
ters), V = L ∪R be the set of all variables, and X be the set of values assumed
by the variables.

The (load) and (store) statements move values between local and shared
variables. The (assign) statement performs computation, such as addition, on
local variables. The (compare-and-swap) statement compares the values of L
and rc , stores rn to L if they are equal, and assigns the original value of L to rr .
Note that our language does not contain lock or unlock instructions, as there is in

L ∈ L (shared variable)
r ∈ R (local variable)
x ∈ X (value)
f : Xn → X (local computation), n ≥ 0
s ::= skip (skip)
| r := L (load)
| L := r (store)
| r := f(r1, . . . , rn) (assign), n ≥ 0
| rr := cas(L, rc , rn) (compare and swap)
| fence (full memory fence)
| get r (read from console)
| print r (write to console)
| s; s (sequential composition)
| s1 ‖ · · · ‖ sn (parallel composition), n ≥ 2
| if r then s else s (conditional)
| while r do s (loop)
| local r = x in s (local variable declaration)
| share L = x in s (shared variable declaration)

Fig. 7. Syntax of program snippets s.

fact no blocking synchronization at the hardware level (blocking synchronization
can be implemented using spinloops and compare-and-swap). We also include a
(fence) statement to enforce a full memory fence.

The statements (get) and (print) represent simple I/O in the form of reading
from or writing to an interactive console. The statements (sequential composi-
tion), (conditional) and (loop) have their usual meaning (we let the special value
0 denote false, and all others denote true). The statement (parallel composition)
executes its components concurrently, and waits for all of them to finish be-
fore completing. The statements (local) and (shared) declare mutable variables
and initialize them to the given value. Compared to let, as used in functional
languages, they differ by (1) allowing mutation of the variable, and (2) strictly
restricting the scope and lifetime to the nested snippet.

To enforce that local variables are not accessed concurrently, we define the
free variables as in (Fig. 8) and call a snippet ill-formed if it contains a parallel
composition s1 ‖ · · · ‖ sn such that for some i, j, we have (FV (si)∩FV (sj)∩R) 6=
∅, and well-formed otherwise. We let S be the set of all well-formed snippets.

Finally, we define a program to be a well-formed snippet s with no free vari-
ables. We let P be the set of all programs.

Note that conventional hardware memory models consider only a restricted
shape of programs (a single parallel composition of sequential processes). Our
syntax is more general, as it allows arbitrary nesting of declarations and com-
positions. This (1) simplifies the definitions and proofs, (2) lets us perform local
reasoning (because we can delimit the scope of variables), and (3) allows us to
explore the implications of hierarchical memory organizations.

FV (skip) = ∅
FV (r := L) = {r, L}
FV (L := r) = {L, r}

FV (r0 := f(r1 . . . rn)) = {r0, r1, . . . rn}
FV (rr := cas(L, rc , rn)) = {L, rr , rc , rn}

FV (fence) = ∅
FV (get r) = {r}

FV (print r) = {r}
FV (s; s′) = FV (s) ∪ FV (s′)

FV (s1 ‖ · · · ‖ sn) = FV (s1) ∪ · · · ∪ FV (sn)
FV (if r then s else s′) = {r} ∪ FV (s) ∪ FV (s′)

FV (while r do s) = {r} ∪ FV (s)
FV (local r = x in s) = FV (s) \ {r}

FV (share L = x in s) = FV (s) \ {L}

Fig. 8. Definition of the set of free variables FV (s) of s.

3.2 Denotational Semantics

Our semantics mirror the ideas behind the derivation diagrams used in the pre-
vious section. Informally speaking, each processor generates a set of potential
traces. These traces are concatenated by sequential composition, interleaved by
parallel composition, and modified by the dynamic rewrite operations of the
memory model. They are then filtered by requiring value consistency (after be-
ing interleaved and reordered).

To capture the semantics of a program or snippet more formally, we first
define a set B of behaviors; We then recursively define the semantic function
[[]]M to map any snippet s onto the set [[s]]M ⊂ B of its behaviors for a given
memory model M . We represent the memory model M as a set of dynamic
rewrite operations, and model its effect on behaviors as a closure operator.

To capture behaviors locally, we use a combination of state valuations (to
capture local state) and event traces (to capture externally visible events and
accesses to shared variables). Let Q be the set of local states, defined as functions
R → X , and let Evt be the set of events e of the form

e ::= 〈ld L, x〉 | 〈st L, x〉 | 〈ldst L, xl, xs〉 | 〈fence〉 | 〈get x〉 | 〈print x〉.

We let Evt∗ be the set of finite event sequences (containing in particular the
empty sequence, denoted ε), we let Evtω be the set of infinite event sequences,
and we let Evt∞ = Evt∗ ∪ Evtω be the set of all event sequences. For two
sequences w ∈ Evt∗ and w′ ∈ Evt∞, we let ww′ ∈ Evt∞ be the concatenation
as usual. For a sequence of finite sequences w1, w2, · · · ∈ Evt∗, we let w1w2 · · · ∈
Evt∞ be the concatenation (which may be finite or infinite).

We then define the set of behaviors

B = (Q×Q× Evt∗) ∪ (Q× Evt∞).

A triple (q, q′, w) represents a terminating behavior that starts in local state
q, ends in local state q′, and emits the finite event sequence w. A pair (q, w)

represents a nonterminating behavior that starts in local state q and emits the
(finite or infinite) event sequence w. For a set B ⊆ B and states q, q′ ⊆ Q we
define the projections [B]qq′ = {w | (q, q′, w) ∈ B} and [B]q = {w | (q, w) ∈ B}.

To specify dynamic rewrite operations formally, we use rewrite rules (as in
Fig. 4) of the form p

ϕ→ q where p and q are symbolic event sequences (that is,
sequences of events where locations and values are represented by variables) and
where ϕ (if present) is a formula over the variables appearing in p and q which
describes conditions under which the rewrite rule applies. We let T be the set
of all such rewrite rules.

Definition 1. A memory model is a finite set M ⊂ T of rewrite rules.

Definition 2. For a rewrite rule t = p
ϕ→ q, let gt ⊂ Evt∗ × Evt∗ be the set of

pairs (w1, w2) such that there exists a valuation of the variables in p, q for which
p = w1, q = w2 and ϕ is true. Then, define the operator t : P(Evt∗)→ P(Evt∗)
to map a set A of finite event sequences to the set

t(A) = {ww2w
′ | w,w′ ∈ Evt∗ ∧ (w1, w2) ∈ gt ∧ ww1w

′ ∈ A}

For a set of rewrite rules M ⊂ T and a set of finite sequences A ⊂ Evt∗,
we define the result of applying M to A as M(A) = A ∪

⋃
t∈M t(A). In order to

apply M to infinite sequences as well, we first introduce a definition for parallel
rewriting. We generalize the notation for sequence concatenation to sets of se-
quences as usual (elementwise): for example, for S ⊆ Evt∗ and S′ ⊆ Evt∞ we
let SS′ = {ss′ | s ∈ S, s ∈ S′}.

Definition 3. Let f : P(Evt∗) → P(Evt∗). Then we define the operators Pf :
P(Evt∗)→ P(Evt∗) and P̂f : P(Evt∞)→ P(Evt∞) by

Pf (A) =
⋃
{ f(A1) · · · f(An) | Ai ⊂ Evt∗ such that A1 · · ·An ⊆ A}

P̂f (Â) =
⋃
{ f(A1)f(A2)f(A3) · · · | Ai ⊂ Evt∗ such that A1A2A3 · · · ⊆ Â}

Note that P̂f (Â) may contain infinite sequences even if Â does not.3 We now
show how to construct fixpoints for the effect of memory models M ⊆ T on
behaviors.

Definition 4. Let M be a memory model. We define M∗ : P(Evt∗)→ P(Evt∗)
and M∞ : P(Evt∞)→ P(Evt∞) by

M∗(A) =
⋃
k≥0

Mk(A) M∞(Â) =
⋃
k≥0

(P̂M∗)k(Â)

Moreover, for a set B ⊆ B of behaviors, define the closure BM =

{(q, q, w) | q, q′ ∈ Q and w ∈M∗([B]qq′)}∪{(q, w) | q ∈ Q and w ∈M∞([B]q)}.

3 for example, consider Â = {ε} and M = {ε→ 0}. Then P̂M (Â) contains the infinite
sequence 000 · · · .

We can show that this is indeed a closure operation, namely, that (BM)M =
BM (see our tech report [8] for a proof). Note that our use of parallel rewriting
applies the rewrite rules in a “locally finite” manner, which is important to
handle infinite executions correctly.4

Definition of the Semantics. Using the notations listed in the next para-
graph, Fig. 9 shows our recursive definition of the semantic function [[.]]M : S →
P(B) that assigns to each snippet s the set of behaviors [[s]]M that s may ex-
hibit on memory model M . It computes behaviors of snippets from the inside
out, applying the rewrite rules at each step. Sequential composition appends the
behaviors of its constituents, while parallel composition interleaves them. The
behaviors of a load include all possible values it could load (because the actual
value depends on the context which is not known at this point). Value consis-
tency is enforced at the level of the shared-variable declaration, at which point
we also project away accesses to that variable.5 Fences are modeled as events
that do not participate in any rewrite rules, thus enforcing ordering.

Notations used. For q ∈ Q, r ∈ R and x ∈ X we let q[r 7→ x] denote
the function that maps r to x, but is otherwise the same as the function q.
For a shared variable L ∈ L, let Evt(L) ⊆ Evt be the set of memory accesses
to L. For w ∈ Evt∞ and i ∈ N, let w[i] ∈ Evt be the event at position i
(starting with 1). Let dom w ⊆ N be the set of positions of w. For two sequences
w,w′ ∈ Evt∞ we define the set of fair interleavings (w#w′) ⊆ Evt∞ to consist
of all sequences u ∈ Evt∞ such that there exist strictly monotonic functions
f : dom w → dom u and g : dom w′ → dom u satisfying rg f ∩ rg g = ∅
and rg f ∪ rg g = dom w, and such that w[i] = u[f(i)] and w′[i] = u[g(i)] for
all valid positions i. Note that the interleaving operator # is commutative and
associative. For a subset of events C ⊆ Evt , we define the projection function
proj C : Evt∞ → Evt∞ to map a sequence to the largest subsequence containing
only events in C. We write proj−L short for the function proj Evt\Evt(L) (which
removes all accesses to L). We call a sequence w ∈ Evt∞ value-consistent with
respect to a shared variable L ∈ L and an initial value x ∈ X if for each load of
L appearing in w, the value loaded matches the value of the rightmost store to
L that precedes the load in w, or the initial value x if there is no such store. We
let Cons(L, x) ⊆ Evt∞ be the set of all sequences that are value-consistent with
respect to L and x. Similarly, we let Cons(L, x, x′) ⊆ Evt∗ be the set of finite
sequences that are value-consistent with respect to initial and final values x and
x′ of L, respectively. For simplicity, we assume X = Z.

4 For example, consider the operation ssl in Fig. 4 which represents the effect of
stores being delayed in a buffer; while there is no bound on how long stores can be
delayed, they must be eventually performed. Our formalism reflects this properly, as
follows (using digits 0,1 instead of load and store events for illustration purposes).
Let A = {1010 . . . } and M = {10→ 01}. Then 0k1010 . . . is in M∞(A), but 000 · · ·
is not.

5 This behavior is similar to “hide” operators in process algebras. It implies that
the behaviors of a program (unlike the behaviors of snippets) contain only external
events.

[[skip]]M = {(q, q, ε) | q ∈ Q}M

[[r :=h L]]M = {(q, q[r 7→ x], 〈ld L, x〉) | q ∈ Q, x ∈ X}M

[[L :=h r]]M = {(q, q, 〈st L, q(r)〉 | q ∈ Q}M

[[r0 := f(r1 . . . rn)]]M = {(q, q[r0 7→ f(q(r1) . . . q(rn)], ε) | q ∈ Q}M

[[rr := cash(L, rc , rn)]]M =

(
{(q, q[rr 7→ q(rc)], 〈ldst L, q(rc), q(rn)〉) | q ∈ Q}
∪ {(q, q[rr 7→ x], 〈ldst L, x, x〉) | q ∈ Q, x ∈ X , x 6= q(rc)}

)M

[[get r]]M = {(q, q[r 7→ x], 〈get x〉) | q ∈ Q, x ∈ X}M

[[print r]]M = {(q, q, 〈print q(r)〉 | q ∈ Q}M

[[s1; s2]]M = {(q, q′, w) | there exist (q, q′′, w1) ∈ [[s1]]M and (q′′, q′, w2) ∈ [[s2]]M with w = w1w2}
∪ {(q, w) | (q, w) ∈ [[s1]]M}
∪ {(q, w) | there exist (q, q′, w1) ∈ [[s1]]M and (q′, w2) ∈ [[s2]]M with w = w1w2}

M

[[s1 ‖ · · · ‖ sn]]M =

{(q, q′, w) | there exist (q, qi, wi) ∈ [[si]]M for all 1 ≤ i ≤ n such that
w ∈ w1 # . . .#wn and such that q′(r) = qi(r) for all r ∈ FV (si) and
q′(r) = q(r) for all r /∈ FV (s1) ∪ . . .FV (sn)}

∪ {(q, w) | there exist w1, . . . , wn ∈ Evt∞ and a nonempty subset D ⊆ {1, . . . , n}
such that for all j ∈ D, we have a behavior (q, wj) ∈ [[sj]]M ,
and for all j /∈ D, we have a behavior (q, qj , wj) ∈ [[sj]]M for some qj ,
and w ∈ w1 # . . .#wn}

M

[[if r then s1 else s2]]M =(
{(q, q′, w) | (q(r) 6= 0 ∧ (q, q′, w) ∈ [[s1]]M) ∨ (q(r) = 0 ∧ (q, q′, w) ∈ [[s2]]M)}
∪ {(q, w) | (q(r) 6= 0 ∧ (q, w) ∈ [[s1]]M) ∨ (q(r) = 0 ∧ (q, w) ∈ [[s2]]M)}

)M
[[while r do s]]M =
{(q0, qn, w1 · · ·wn) | there exist n ≥ 0 and q0, . . . , qn such that (qi, qi+1, wi+1) ∈ [[s]]M

for 0 ≤ i < n, and q0(r) 6= 0, . . . , qn−1(r) 6= 0, and qn(r) = 0}
∪ {(q0, w1w2 · · ·) | ∃q1, q2, . . . : (qi, qi+1, wi+1) ∈ [[s]]M and qi(r) 6= 0}
∪ {(q0, w1 · · ·wn) | there exist n ≥ 1 and q0, . . . , qn−1 such that qi(r) 6= 0 for all i and

(qi, qi+1, wi+1) ∈ [[s]]M for 0 ≤ i < n− 1 and (qn−1, wn) ∈ [[s]]M}

M

[[local L = x in s]]M = {(q, q′, w) | there exists a behavior (q[r 7→ x], q′′, w) ∈ [[s]]M
such that q′ = q′′[r 7→ q(r)]}

∪ {(q, w) | there exists a behavior (q[r 7→ x], w) ∈ [[s]]M}

M

[[share L = x in s]]M =
{(q, q′, w) | there exists a behavior (q, q′, w′) ∈ [[s]]M

such that w′ ∈ Cons(L, x) and w = proj−L(w′)}
∪ {(q, w) | there exists a behavior (q, w′) ∈ [[s]]M

such that w′ ∈ Cons(L, x) and w = proj−L(w′)}

M

Fig. 9. Denotational Semantics of our Calculus, parameterized by a set M of dynamic
rewrite rules. An empty set M represents the standard semantics (sequential consis-
tency).

p1 p2 p3 p4

 local r = 1 in
local s = 2 in
(print r) ‖ (print s)

local r = 1 in
local s = 2 in
print r;
print s

 local r = 1 in

while r do
print r

local r = 0 in
get r;
while r do

skip;
print r

Fig. 10. Four example programs. p1 and p2 always terminate, p3 never terminates, and
p4 sometimes terminates. p1 can be soundly transformed to p2, but not vice versa.

4 Verifying Local Program Transformations

In this section, we present our methodology for verifying the soundness of local
program transformations on a chosen hardware memory model. We start with a
general definition of what can be observed about a program execution. Next, we
show how to prove that a local, static program transformation is unobservable
(and thus sound) if its effect on dynamic traces can be captured by invisible
rewrite rules on those traces (Section 4.1) . For each memory model, we present
a list of invisible rewrite rules and describe how we proved invisibility.

For our purposes, the observable behavior of a program includes (1) whether
the program terminates or diverges, and (2) the sequence of externally visible
events (that is, interactions of the program with the environment). We formalize
this by defining the subset Ext ⊂ Evt of externally visible events and the set O
of observations as

Ext = {〈get n〉 | n ∈ Z} ∪ {〈print n〉 | n ∈ Z}
O = {u | u ∈ Ext∗} ∪ {∇u | u ∈ Ext∞}

An observation of the form u represents a terminating execution that produces
the finite event sequence u; an observation of the form ∇u represents a nontermi-
nating execution that produces the (finite or infinite) sequence u. For example,
the program p1 in Fig. 10 has two possible observations, 〈print 1〉〈print 2〉 and
〈print 2〉〈print 1〉; the program p2 has one possible observation, 〈print 1〉〈print 2〉;
the program p3 has one possible observation, ∇〈print 1〉ω; and the program p4

has the set {〈get 0〉〈print 0〉} ∪ {∇〈get n〉 | n 6= 0} of observations.
Using the semantics established in the previous section, we now formally

define the set of observations of a program p on a memory model M as follows:

obsM (p) = {u | ∃(q, q′, w) ∈ [[p]]M : u = proj Ext(w)}
∪ {∇u | ∃(q, w) ∈ [[p]]M : u = proj Ext(w)}

For programs p, p′ ∈ P, we let 〈p⇒ p′〉 represent the global transformation of p
into p′. We then define a global transformation 〈p⇒ p′〉 to be sound for memory
model M if it does not introduce any new observations, that is, obsM (p′) ⊆
obsM (p).

Note that we consider it acceptable if the transformed program has fewer
observations than the original one. For example, we would consider it o.k. to

edl (eliminate double load) : 〈ld L, x〉〈ld L, x〉 → 〈ld L, x〉
eds (eliminate double store) : 〈st L, x〉〈st L, x′〉 → 〈st L, x′〉

ecs (eliminate confirmed store) : 〈st L, x〉〈ld L, x〉 → 〈st L, x〉
asl (aggregate store-load) : 〈st L, x〉〈ld L, x〉 → 〈st L, x〉

iil (invent irrelevant load) : ε→ 〈ld L, ∗〉
eil (eliminate irrelevant load) : 〈ld L, ∗〉 → ε

Fig. 11. A list of rewrite rules that are invisible for certain memory models. The last
two contain wildcards; the meaning is that those rules apply to sets of behaviors, rather
than indidvidual behaviors.
.

transform program p1 to program p2 in Fig. 10, which essentially reduces the
nondeterministic choices available to the scheduler in scheduling the two print
statements. An external entity interacting with the program cannot conclusively
detect that a transformation took place. The reason is that schedulers are free
to favor certain schedules over others (as long as the schedules themselves are
fair). Therefore, an observer can not tell whether the reduction in schedules is
caused by the transformation or by a whim of the scheduler.

In this work, we focus on local transformations, that is, transformations of
components whose context is not known. See Fig. 12 for 8 examples of local
transformations. More formally, we define a program context to be a “program
with a hole []”, defined syntactically as follows:

c ::= [] | c ; s | s ; c | local r = x in c | share L = x in c
| while r do c | if r then c else s | if r then s else c
| s1 ‖ · · · ‖ sk−1 ‖ c ‖ sk+1 ‖ · · · ‖ sn (where 1 ≤ k ≤ n)

For a context c and snippet s, we let c[s] be the snippet obtained by replacing
the hole in c with s. For two snippets s, s′ ∈ S, we let 〈s→ s′〉 be a local transfor-
mation. We say a local transformation 〈s→ s′〉 induces a global transformation
〈p ⇒ p′〉 if there exists a context c such that p = c[s], p′ = c[s′], and we say a
local transformation is sound if all induced global transformations are sound.

4.1 Invisible Rewrite Rules

To determine whether a local transformation 〈s→ s′〉 (such as shown in Fig. 12)
is sound, we can compare the set of behaviors [[s]]M and [[s′]]M . Because our de-
notational semantics is defined recursively, it is quite obvious that [[s′]]M = [[s]]M
implies obsM (c[s′]) = obsM (c[s]) in any context c, and thus that the transforma-
tion is sound. Unfortunately, not all transformations are that simple to prove,
because a transformation can be sound even if [[s′]]M 6= [[s]]M (our semantics is
not fully abstract).6

6 For example, consider the “redundant read-after-read elimination” transformation
from Fig. 12, and consider M = SC = ∅. Clearly, the sets [[s′]]M and [[s]]M are not
the same and not contained in each other (all behaviors of [[s′]]M contain one fewer

(load reordering) {if r then {s := A; t := B} else {t := B; s := A}}
→ {s := A; t := B}

(store reordering) {if r then {A := s; B := t} else {B := t; A := s}}
→ {A := s; B := t}

(irrelevant read elim.) {local r = 0 in {r := A; if r then {B := s} else {B := s}}}
→ {B := s}

(irrelevant read introd.) {if r then local s = 0 in {s := A; B := s}}
→ {local s = 0 in {s := A; if r then B := s}}}

(redundant read-after-read elim.) {r := A; b := A} → {r := A; b := r}
(redundant read-after-write elim.) {A := r; s := A} → {A := r; s := r}

(redundant write-before-write elim.) {A := r; A := s} → {A := s}
(redundant write-after-read elim.) {r := A; if r == 0 then A := 0} → {r := A}

Fig. 12. Some examples of local transformations [26]. The snippets follow the syntax
defined in §3.1, with L = {A,B, . . . } and R = {r, s, t, . . . }.

To handle a larger generality of transformations, we introduce the concept
of “invisible” rewrite rules on dynamic traces. Essentially, we show that certain
dynamic rewrite operations never alter the set of observations. In particular, any
rewrite rule that is already part of the memory model is invisible. In general,
there can be many more such rules, however. Consider the rules shown in Fig. 11.
All of these rules are “invisible” on at least some of the memory models.

More formally, we say a local transformation 〈s → s′〉 is covered by a set of
rewrite rules D if

[[s′]]M ⊆ fD([[s]]M),

where the operator fD : P(B)→ P(B) on behaviors is defined as parallel rewrit-
ing7

[fD(B)]qq′ = PD([B]qq′) [fD(B)]q = P̂D([B]q).

The following definition and theorem relate how invisibility provides the
means to prove the soundness of a local transformation by showing that it is
covered by some set D of invisible rules.

Definition 5 (Invisibility). Let D be a set of rewrite rules, and let M be a
memory model. We say D is invisible on M if it is the case that any local
transformation that is covered by D is sound for M . We say an individual rule
d is invisible on M if the set {d} is invisible on M .

Theorem 1. The dynamic rewrite rules edl, eds, ecs, asl, eil, and iil are
invisible on SC , the rules edl, eds, eil, and iil are invisible on TSO, 390 and
PSO, the rules edl, eds, eil, and iil are invisible on CLR, and the set {eds, ecs}
is invisible on PSO.

load). Nevertheless, this transformation is actually safe, because the removal of the
read can not be observed by any context.

7 Recall our earlier definition of [X]qq′ = {w | (q, q′, w) ∈ X} and [X]q = {w | (q, w) ∈
X} for a set X ⊂ B of behaviors.

The proof of Thm. 1 is based on structural induction, and is available in our
tech report [8]. However, walking through the entire proof whenver we wish to
enlarge the list of rules or memory models in Thm. 1 is unpractical. Thus, we
have broken out a set of conditions that are sufficient to prove invisibility, and
can be checked with relative ease.

Theorem 2 (Simple Conditions for Invisibility). Let M ⊆ T be a memory
model, and let D ⊆ T be a set of rewrite rules. Then the following conditions
are sufficient to guarantee that D is invisible on M :

1. (Commutativity). m(PD(A)) ⊆ PD(M∗(A)) for all m ∈M and A ⊆ Evt∗.
2. (Atomicity). if (S1, S2) ∈ Gd for some d ∈ D, then all sequences in S2 are

of length 0 or 1.
3. (Value Consistency) if (S1, S2) ∈ Gd for some d ∈ D, and w2 ∈ S2 ∩

Cons(L, x, x′) for some L, x, and x′, then there exists a w1 ∈ S1∩Cons(L, x, x′)
such that proj−L({w2}) ∈ D(proj−L({w1})).

4. (External Consistency) if (S1, S2) ∈ Gd for some d ∈ D, then proj Ext(S2) ⊆
proj Ext(S1).

We illustrate the use of these conditions by walking through one case, namely
M = 390 = {ssl} and D = {edl}. Atomicity is immediate (the right-hand side of
edl is a single event). Value Consistency is straightforward because the left- and
right-hand side of edl are functionally equivalent, and the projection proj−L will
either map them both to ε or both to themselves. External Consistency is trivial
as edl does not contain external events. Commutativity requires some work.
To show that ssl(Pedl(A)) ⊂ Pedl(ssl∗(A)) for all A, we examine ssl(Pedl(A))
and think about all possible scenarios where ssl rewrites modified positions of
a parallel application of edl (if it rewrites only unmodified positions, it clearly
commutes with Pedl). Thinking about this scenario (matching the left-hand side
of ssl with the right-hand side of edl), we can single out the following situation

〈st L, x〉〈ld L′, x′〉〈ld L′, x′〉 ∈ A
〈st L, x〉〈ld L′, x′〉 ∈ PD(A)
〈ld L′, x′〉〈st L, x〉 ∈ ssl(Pedl)

Now we understand that starting with the same first line, we can get to the same
last line by first applying ssl twice and then applying Pedl:

〈st L, x〉〈ld L′, x′〉〈ld L′, x′〉 ∈ A
〈ld L′, x′〉〈st L, x〉〈ld L′, x′〉 ∈ ssl(A)
〈ld L′, x′〉〈ld L′, x′〉〈st L, x〉 ∈ ssl(ssl(A))

〈ld L′, x′〉〈st L, x〉w′ ∈ Pedl(ssl(ssl(A)))

which implies the claim.

5 Application

To simplify the task of proving or refuting soundness, we automated some parts
of the proof by developing a tool called Traver, written in F# and using the

transformation name
(see Fig. 12) S

C

3
9
0

T
S
O

P
S
O

C
L
R

(load reordering) × × × ×
√

(store reordering) × × ×
√

×
(irrelevant read elim.)

√
(eil)

√
(eil)

√
(eil)

√
(eil)

√
(eil)

(irrelevant read intr.)
√

(iil)
√

(iil)
√

(iil)
√

(iil)
√

(iil)

(red. read-after-read elim.)
√

(edl)
√

(edl)
√

(edl)
√

(edl)
√

(edl)

(red. wr.-bef.-wr. elim.)
√

(eds)
√

(eds)
√

(eds)
√

(eds)
√

(eds)

(red. read-after-wr. elim.)
√

(asl) ×
√ √ √

(red. wr.-after-read elim.)
√

(ecs) × ×
√

(eds, ecs) ×

Fig. 13. Soundness results for the examples from Fig. 12. For sound transformations
(marked by

√
), we list the set D of invisible rules employed by the proof. For unsound

transformations (marked by ×), we show example derivations in Fig. 14. All results
were validated by our tool.

automated theorem prover Z3 [11]. It operates in one of two modes, verification
or falsification.

– In verification mode, Traver takes as input a local transformation 〈s→ s′〉,
a memory model M , and a set D of invisible rewrite rules supplied by the
user. It then executes both s and s′ symbolically to obtain symbolic repre-
sentations of their behaviors, and attempts to prove that D covers 〈s→ s′〉
by computing the closure of [[s]]M under D and checking whether it contains
[[s′]]M . If successful, soundness is established. Otherwise, the result is incon-
clusive,and Traver reports a behavior in the set difference to the user (which
can be inspected to find new candidates for invisible rules that may help to
prove soundness, or provide ideas on how to falsify the transformation).

– In falsification mode, Traver takes as input a local transformation 〈s→ s′〉,
a memory model M , and a context c (which may contain several threads).
It then computes the closure of c[s′] and c[s] under interleavings under M ,
and solves for a behavior of c[s′] that is not observationally equivalent to any
behavior in c[s] (assuming that all initial and final values of all variables are
being observed) . If such a behavior is found, soundness has been successfully
refuted. Otherwise, the result is inconclusive.

For both modes, the snippets s, s′ are supplied to Traver using a sugared
syntax, which makes it very easy to try out many different local transformations
(however, we currently support loop-free snippets without parallel composition
only). The model M is specified by selecting a subset of the rewrite rules in
Fig. 4 and Fig. 11 (not including rewrite rules that are conditional on control or
data dependencies).

Using our tool, we successfully proved or refuted soundness of the 8 trans-
formations in Fig. 12 for the memory models SC, 390, TSO,8 PSO, and CLR as

8 Note that the results for TSO also apply for x86-TSO and for x86-IRIW

defined in Fig.4. The total time needed by the tool to prove/refute all examples
is about 15 seconds. The results are shown in Fig. 13.

As expected, the first two transformations (load-reordering, store-reordering)
are unsound for all models except models that specifically relax load-load order
or store-store order.

The next four transformations (irrelevant-read-elimination, irrelevant-read-
introduction, redundant-read-after-read-elimination, and redundant-write-before-
write-elimination) are sound for all memory models. The last two transforma-
tions proved more interesting. For both, we were able to prove that they are
sound on SC . However, they exhibit some surprising behavior on relaxed mem-
ory models.

– The redundant-read-after-write-elimination is unsound on 390. Fig. 14 (left)
shows a derivation to explain this effect. Intuitively, the sequence {A :=
r; s := A} has a fence-like effect on 390 which is lost by the transformation.
However, on memory models that also support store-load forwarding (asl),
this transformation is sound.

– The redundant-write-after-read elimination is unsound on 390, TSO, and
CLR, but sound on PSO . Fig. 14 (right) shows a derivation to explain this
effect. Intuitively, the reason is that because the transformed snippet is a
simple load, it can be swapped with a preceding store if the rule ssl is part
of the memory model. This would not be possible with the original code
unless the memory model also contains the rule sss which in turn sheds
some light on why this transformation is sound for PSO .

We believe it would have been very difficult to correctly determine soundness
of these transformations (in particular the last two) or to discover the derivations
that explain the effects without our proof methodology.

6 Conclusion and Future Work

Our experience with Traver has successfully demonstrated the power of formal-
ism and automation in discovering corner cases where normal intuition fails. We
believe that the proof methodology and the tool presented in the paper have
many more uses in the future. Of particular interest are (1) verifying trans-
lations involving different memory models (between different architectures, or
between different intermediate representations), and (2) extending our method-
ology to transformations involving higher-level synchronization such as locks,
semaphores, or sending and receiving messages on channels.

References

1. S. Adve and K. Gharachorloo. Shared memory consistency models: a tutorial.
Computer, 29(12):66–76, 1996.

2. S. Adve and M. Hill. A unified formalization of four shared-memory models. IEEE
Trans. Parallel Distrib. Syst., 4(6):613–624, 1993.

[
A := 1;
r := A;
s := B;

B := 1;
fence;
t := A;

]
⇓[

A := 1;
r := 1;
s := B;

B := 1;
fence;
t := A;

]
final values s = t = 0, A = B = r = 1

〈st A, 1〉〈ld B, 0〉

〈ld B, 0〉〈st A, 1〉 〈st B, 1〉〈fence〉〈ld A, 0〉︸ ︷︷ ︸
〈ld B, 0〉〈st B, 1〉〈fence〉〈ld A, 0〉〈st A, 1〉

 B := 1;
r := A;

if(r == 0)
A := 0;

A := 1;
fence;
s := B;

⇓[

B := 1;
r := A;

A := 1;
fence;
s := B;

]
final values r = s = 0, A = B = 1

〈st B, 1〉〈ld A, 0〉

〈ld A, 0〉〈st B, 1〉 〈st A, 1〉〈fence〉〈ld B, 0〉︸ ︷︷ ︸
〈ld A, 0〉〈st A, 1〉〈fence〉〈ld B, 0〉〈st B, 1〉

Fig. 14. (Left.) Derivation showing that the redundant-read-after-write-elimination is
not sound on 390. (Right.) Derivation showing that the redundant-write-after-read-
elimination is not sound on 390, on TSO , and on CLR. (Both.) We show the original
program, the transformed program, and an execution of the transformed program that
is not possible on the original program. All shared variables and registers are initially
zero.

3. Arvind and J.-W. Maessen. Memory model = instruction reordering + store atom-
icity. In ISCA, pages 29–40, 2006.

4. Hans-Juergen Boehm and Sarita V. Adve. Foundations of the C++ concurrency
memory model. In Programming Language Design and Implementation (PLDI),
pages 68–78, 2008.

5. G. Boudol and G. Petri. Relaxed memory models: an operational approach. In
Principles of Programming Languages (POPL), 2009.

6. S. Brookes. Full abstraction for a shared variable parallel language. In LICS, pages
98–109, 1993.

7. C. Brumme. cbrumme’s weblog. http://blogs.gotdotnet.com/cbrumme/

archive/2003/05/17/51445.aspx.
8. S. Burckhardt, M. Musuvathi, and V. Singh. Verification of compiler transfor-

mations for concurrent programs. Technical Report MSR-TR-2008-171, Microsoft
Research, 2008.

9. P. Cenciarelli and E. Sibilio. The java memory model: Operationally, denotation-
ally, axiomatically. In In 16th European Symposium on Programming (ESOP),
2007.

10. Compaq Computer Corporation. Alpha Architecture Reference Manual, 4th edi-
tion, January 2002.

11. Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In
Tools and Algorithms for the Construction and Analysis of Systems, pages 337–340,
2008.

12. J. Duffy. Joe Duffy’s Weblog. http://www.bluebytesoftware.com/blog/2007/

11/10/CLR20MemoryModel.aspx.
13. S. Sarkar et al. The semantics of x86-CC multiprocessor machine code. In Princi-

ples of Programming Languages (POPL), 2009.

14. K. Gharachorloo. Memory Consistency Models for Shared-Memory Multiproces-
sors. PhD thesis, University of Utah, 2005.

15. Intel Corporation. Intel 64 Architecture Memory Ordering White Paper, August
2007.

16. International Business Machines Corporation. z/Architecture Principles of Opera-
tion, first edition, December 2000.

17. Gerwin Klein and Tobias Nipkow. A machine-checked model for a java-like lan-
guage, virtual machine, and compiler. ACM Transactions on Programming Lan-
guages and Systems, 28(4):619–695, 2006.

18. Sorin Lerner, Todd Millstein, and Craig Chambers. Automatically proving the
correctness of compiler optimizations. In Programming Language Design and Im-
plementation (PLDI), pages 220–231, 2003.

19. Xavier Leroy. Formal certification of a compiler back-end or: programming a com-
piler with a proof assistant. In Principles of programming languages (POPL), pages
42–54, 2006.

20. J. Manson, W. Pugh, and S. Adve. The Java memory model. In Principles of
Programming Languages (POPL), 2005.

21. V. Morrison. Understand the impact of low-lock techniques in multithreaded apps.
MSDN Magazine, 20(10), October 2005.

22. S. Owens, S. Sarkar, and P. Sewell. A better x86 memory model: x86-TSO (ex-
tended version). Technical Report UCAM-CL-TR-745, Univ. of Cambridge, 2009.

23. S. Park and D. L. Dill. An executable specification, analyzer and verifier for RMO
(relaxed memory order). In Symposium on Parallel Algorithms and Architectures
(SPAA), pages 34–41, 1995.

24. V. Saraswat, R. Jagadeesan, M. Michael, and C. von Praun. A theory of memory
models. In PPoPP ’07: Principles and practice of parallel programming, pages
161–172, 2007.

25. J. Sevcik. Program Transformations in Weak Memory Models. PhD thesis, Uni-
versity of Edinburgh, 2008.

26. J. Sevcik and D. Aspinall. On validity of program transformations in the Java mem-
ory model. In European Conference on Object-Oriented Programming (ECOOP),
2008.

27. X. Shen, Arvind, and L. Rudolph. Commit-reconcile & fences (crf): A new memory
model for architects and compiler writers. In ISCA, pages 150–161, 1999.

28. D. Weaver and T. Germond, editors. The SPARC Architecture Manual Version 9.
PTR Prentice Hall, 1994.

29. William D. Young. A mechanically verified code generator. Journal of Automated
Reasoning, 5(4):493–518, 1989.

