
STYLE GUIDE

NETLINX PROGRAMMING

COPYRIGHT NOTICE
AMX© 2015, all rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of AMX. Copyright protection claimed
extends to AMX hardware and software and includes all forms and matters copyrightable material and information now allowed by statutory or judicial
law or herein after granted, including without limitation, material generated from the software programs which are displayed on the screen such as
icons, screen display looks, etc. Reproduction or disassembly of embodied computer programs or algorithms is expressly prohibited.

LIABILITY NOTICE
No patent liability is assumed with respect to the use of information contained herein. While every precaution has been taken in the preparation of this
publication, AMX assumes no responsibility for error or omissions. No liability is assumed for damages resulting from the use of the information
contained herein. Further, this publication and features described herein are subject to change without notice.

AMX WARRANTY AND RETURN POLICY
The AMX Warranty and Return Policy and related documents can be viewed/downloaded at www.amx.com.

Table of Contents

iii NetLinx Programming Style Guide

Table of Contents
NetLinx Programming Style Guide Overview ..1

FORMATTING.. 1
CAPITALIZATION.. 1
INDENTATION ... 1
SPACING ... 1
DEFINE_ SECTION ORDERING... 2
BRACES, SEMICOLONS, AND PARENTHESIS... 2
MAXIMUM LINE LENGTH... 2
COMMENTING ... 3
EMPTY LINES... 3

IDENTIFIERS... 4
NAMING .. 4

HUNGARIAN NOTATION ... 4
UNDERSCORES AND CAMEL CASE... 4
VARIABLE DECLARATIONS ... 4

CODING.. 5
CONSTRUCTS TO AVOID ... 5

AVOID NESTING TOO MANY OPERATIONS IN ONE LINE. .. 5
EQUALS SIGNS.. 5
DEFINE_PROGRAM .. 5

INITIALIZATION ... 6
CONSTANTS .. 6
VARIABLES.. 6
INCLUDES ... 6
MODULES .. 6
FUNCTIONS... 6

Addendum ...7
Hungarian Notation for NetLinx programming ... 7

Intrinsic types... 7
Other Types... 7

NetLinx Programming Style Guide Overview
NetLinx Programming Style Guide Overview
The personal nature of coding style can make it difficult to collaborate in a team atmosphere and support a hardware manufacturer
that relies on custom programming. By providing a style guide for the NetLinx language it is our goal to drive standardization and
consistency among the programming community.
The intent of this document is not to convey how to program a NetLinx control system but rather establish a standardized
convention of the way code is formatted within any given program. In its most basic terms, coding style is how your code looks,
plain and simple. Coding style can be extremely personal and everyone has their preferred style whether it's because that's how
they were originally taught, they picked it up from another programming language, or it's just something that they developed on
their own. It is not uncommon to have to context switch between different programming languages and it is always preferred to use
the defined style of the language you are working with if a style guide is available.
While the hardware your code is running on doesn't care how the code looks, other programmers and support staff certainly do.
The way code looks adds to our understanding of it. Don't confuse the rules of the style with the rules of the language. The rules of
the language will allow you to write code in a large variety of styles, which is part of the problem. A lot of programmers, when faced
with issues in code someone else wrote, will reformat it in their own style in order to better understand what's going on and resolve
the issue. When everyone is writing code that looks different, everyone else is constantly trying to visually parse the code before
being able to understand it. When everyone is writing code that looks the same, your brain can relax a bit as the understanding
comes faster and some potential issues can be avoided entirely just by using a consistent programming style.
The concept of coding "best practice" is not covered as it pertains to CPU and memory efficiency. Using this style guide will
certainly help you develop more consistent, readable code but it is not designed to entirely avoid programmatic issues like
unnecessarily complicated string parsing operations or writing code that is not easily adaptable to system changes. Coding best
practice can be learned best in a Harman Professional University classroom, interacting with Technical Support, or AMX technical
documentation.

FORMATTING
CAPITALIZATION
The NetLinx language is not case sensitive. Traditionally AMX programming has been done in all capital letters. Underscores are
used in constants and variables in place of spaces (SYSTEM_POWER_STATE). For reasons of ergonomics and not having to jump in
and out of caps lock states, lower case is now preferred1. Alternatively, you can still use the all caps method but don't switch
between the two within a single piece of code. Pick one style and stick to it. It is understood that the current NetLinx templates and
code wizard still use all caps but it should not influence which method you use throughout the rest of the code.

INDENTATION
Use the default NetLinx Studio indentation. Viewing someone else's code that uses different indentation can be very messy.

Set tab stops to every 8 characters (default).
Indent before text with 4 characters (default).
Enable auto-indentation.

Matching braces should always line up.
Statements within the same encapsulation should always line up.

SPACING
All function names should be immediately followed by a left parenthesis. Do not use a space.
Examples:
define_function integer fnSystemOn(integer nInput)
{

 pulse[vdvProj,PWR_ON];
 pulse[dvRelays,SCREEN_DOWN];
 send_command dvDVX, "'VI',itoa(nInput),'O1'";
}

button_event[dvTP,1]
{
 push:
 {

 fnSystemOn(nDvdInput);
 }

}

All array references should be immediately followed by an open bracket. Do not use a space.
 mples:
non_volatile integer nSwitcherOut[8];

nSwitcherOut[3];

1. *Unless	otherwise	described	as	being	capitalized	later	in	this	document	(such	as	constant	names).
1 NetLinx Programming Style Guide

NetLinx Programming Style Guide Overview
Commas and semicolons are always followed by whitespace. Exceptions are only allowed in string expressions (concatenation),
devchan, or devlev.
Examples:
for (nCount = 1; nCount <= 8; nCount++)

non_volatile integer nTpButtons[] = {41, 56, 82, 108};

send_level dvVolume, 41, 100;

send_command dvDVX, "'VI',itoa(nInput),'O1'";

pulse[dvRelay,5];

Arithmetic and relational operators should have spaces on either side. Ex: (X + 2) > (Y - 6)
Increment/decrement operators should be immediately preceded by their operand, no spaces. Ex. nCount++;
The keywords if, while, for, switch, case, and active should be followed by a space.

DEFINE_ SECTION ORDERING
DEFINE_ sections should only be listed in the order they appear in the Edit menu's Insert Section dialogue or the default NetLinx
template (both of which have the same order). Do not place sections out of order or interleaved throughout the code, this makes
things hard to find and not intuitive.
You can repeat the same DEFINE_ statement within its proper location to assist with code folding.
Always use NetLinx template standard commenting on the lines directly preceding the DEFINE_ section. This follows the default
formatting of the Edit/Insert Section feature in NetLinx Studio.
Example:
(**)
(* THE EVENTS GO BELOW *)
(**)
DEFINE_EVENT

BRACES, SEMICOLONS, AND PARENTHESIS
Braces encapsulating compound statements should always appear on the next line of code (outline formatting) and never at the
end of a line (Egyptian or K&R formatting). Though the NetLinx compiler ignores extra spaces, carriage returns, and line feeds and
will allow either method, it is best to follow the outline format.
Example:
// K&R formatting. Not recommended!
button_event[dvTP,1] {
 push: {
 min_to[dvRelay,3];
 }
}

// Outline formatting. Braces line up.
button_event[dvTP,1]
{
 push:
 {
 min_to[dvRelay,3];
 }
}

Use braces on all if, while, for and wait statements as well as all event handlers even if they contain just one statement. This makes
it easier to read and debug as the associated statements are more clearly visible.
Semicolons at the end of a statement should be used at all times even though the NetLinx compiler does not require them. Since
the NetLinx compiler ignores extra spaces, carriage returns, and line feeds an error may occur depending on the statement(s) on
the next line. Proper use of semicolons helps avoid these types of compiler errors.
Parenthesis should be used in mathematical and relational expressions not only to specify order of precedence, but to also help
simplify the expression. When in doubt, parenthesize.

MAXIMUM LINE LENGTH
Avoid making lines longer than 120 characters. You should not have to scroll left or right to read your code. If something is
off-screen you can't see it and mistakes can be made. Break up long lines at logically appropriate lengths to fit within this character
limit.
2 NetLinx Programming Style Guide

NetLinx Programming Style Guide Overview
COMMENTING
Your code should utilize comments to describe complicated operations or anything not self-evident.

Instead of excessive comments on how you perform a complex operation, first try to make it easier to read by using more
descriptive identifiers. This helps in the future in case the operation changes but someone forgets to change the
comments.

Use line comments after device declarations to describe makes and models of controlled equipment in the DEFINE_DEVICE section.
Although /* */ can be used to create multi-line comments, (* *) is preferred due to its widespread use in NetLinx templates, help
files, sample code, and RMS SDK.
Comments using // should always be followed by a space before the comment for more readability.

EMPTY LINES
Use empty lines to separate events, local scope variable declarations, conditionals, waits, and loops. Everything is easier to see
when there is space surrounding it.
Example:
button_event[dvTP_Main,1]
{
 push:
 {
 stack_var integer nLoop;

 if (!nSystemPower)
 {
 fnSystemOn();
 }

 for (nLoop = 1; nLoop <= 4; nLoop++)
 {
 [dvTP,nLoop] = (nCurrentSource == nLoop);
 }
 }
}

button_event[dvTP_BluRay,0]
{
 push:
 {
 pulse[dvBluRay,button.input.channel];
 }
}
3 NetLinx Programming Style Guide

NetLinx Programming Style Guide Overview
IDENTIFIERS
NAMING
HUNGARIAN NOTATION
Traditionally, Hungarian Notation is used when naming devices, variables, and subroutines. Use of Hungarian Notation with
descriptive names and Camel Case makes code easier to read, understand, and helps prevent type based compiler issues.
Examples:
volatile integer nTransportStatus;

dvRelays = 5001:8:0;

non_volatile long lFeedbackTime[] = {300};

fnSystemOff();

Device names use the Hungarian Notation of dv, virtual devices use vdv, and device arrays use da.

NOTE: Refer to addendum at the end of this document for suggested notation of user def ined and intrinsic data types and devices.

UNDERSCORES AND CAMEL CASE
Constant definitions that occur in the Standard NetLinx API (SNAPI) use all capital letters and underscores to imply spaces. User
created constants should also use this method.
Variable names should use Camel Case. Except for the notation, every first letter of each word is capitalized (no underscores).

VARIABLE DECLARATIONS
Group variables for specific devices or subroutines together.
Variable names for specific devices, processes, and subroutines should share a common prefix. The descriptor should always follow
the subject.
Example:
non_volatile integer nBargraphMic1;
non_volatile integer nBargraphMic2;

volatile char sButtonLabelSource1[15];
volatile char sButtonLabelMacro2[15];

Declare variables as close as possible where they are used. Use local scope unless global scope is absolutely required.
Global scope variable declarations should always include the persistence and data type.
Examples:
DEFINE_VARIABLE
integer nCount; // No!
non_volatile y; // No!
x; // Are you kidding me???

volatile integer nSomeNumber; // YES!

Local scope variable declarations should always include the persistence and data type.
Example:
data_event [dvSwitcher]
{
 string:
 {
 char sTempBuffer[69]; // No!
 local_var nCount; // No!
 stack_var integer nInputNum; // YES!
 }
}

4 NetLinx Programming Style Guide

NetLinx Programming Style Guide Overview
CODING
CONSTRUCTS TO AVOID
AVOID NESTING TOO MANY OPERATIONS IN ONE LINE.
It can be very confusing and difficult to fix errors.
Example:
// Instead of this:
button_event[dvTpSwitcher,49] // Take button
{
 push:
 {
 send_command dvDGX,"format("'CL',itoa(nLevType),'I%1d'",
 nInput),'O',itoa(nOutput)";
 }
}

// Do this:
button_event[dvTpSwitcher,49] // Take button
{
 push:
 {
 send_command dvDGX,"format("'CL',itoa(nLevType), // Add level
 'I%1d'",nInput), // Add input
 'O',itoa(nOutput)"; // Add output
 }
}

EQUALS SIGNS
The NetLinx compiler allows the use of a single equals sign (=) as both a relational operator and an assignment. It is preferable to
use a single equals sign for assignment operations only and the double equals (==) for relational operations. The easy way to
remember it is if you say "gets" when referring to the single equals and "equal to" when referring to the double equals.
Example:
x = 4; // Say, "X gets four".

if (x == 4) // Say, "If x is equal to four".

DEFINE_PROGRAM
Avoid using DEFINE_PROGRAM whenever possible.

Due to differences in the underlying architecture of the NX-Series masters, changing variables in the DEFINE_PROGRAM
section of code can negatively impact program performance.

See "Differences in DEFINE_PROGRAM Program Execution" section of the NX-Series Controllers WebConsole &
Programming Guide for additional and alternate coding methodologies.

See also Tech Note #993
5 NetLinx Programming Style Guide

NetLinx Programming Style Guide Overview
INITIALIZATION
CONSTANTS
Per the rules of the NetLinx language, constants must be initialized to a value when they are declared.

VARIABLES
An initialization value of a variable does not need to be used if the intended value is null or 0.
If the intended initial value(s) of a variable or array are constants then the variable should be initialized with those values upon its
declaration.
If the intended initial value(s) of a variable are not constants then the variable should be initialized with those values within the
DEFINE_START section.
Variable arrays containing string expressions for device control should also be initialized within the DEFINE_START section.

INCLUDES
Use conditional compiling to prevent errors.
Example:
DEFINE_CONSTANT
#if_not_defined DEVICE_COMMUNICATING
integer DEVICE_COMMUNICATING = 251
#end_if

Do not use include files to replace typical sections of main code. Ex. - Don't use one include for all of your device definitions,
another for your global variables, etc.

Without device and variable declarations for a block of code in the same file you would have to copy or modify too many
other files to get it working.

Managing changes between files can be difficult.

MODULES
All user created NetLinx modules should follow the SNAPI guidelines for channels and commands. This allows for more consistency
between NetLinx, Duet, and Driver Design modules as well as making it easy to swap out modules or add RMS programming hooks
as needed.

FUNCTIONS
Local scope variables should be declared within the encapsulating braces, never before it.
For portability, global scope variables should not be referenced within a function but rather passed in as a parameter whenever
possible. This makes copying functions between programs easier and uses only a marginal amount of memory to reference the
initial variable.
6 NetLinx Programming Style Guide

Addendum

7 NetLinx Programming Style Guide

Addendum
Hungarian Notation for NetLinx programming
Intrinsic types

Other Types

*Members	of	a	structure	use	the	Hungarian	notation	from	the	list	of	intrinsic	types	above.	

char	cSomeChar	 //8 bit unsigned integer

char sSomeString[] // String array – ASCII data

widechar	wcSomeWideChar //	16	bit	unsigned	integer	(array	of	characters)

widechar	wsSomeWideChar[]	 //	Wide	String	array

integer	nSomeInt //	16	bit	unsigned	integer

sinteger	snSomeSignedInt //	16	bit	signed	integer

long	lSomeLong //	32	bit	unsigned	integer

slong	slSomeSignedLong //	32	bit	signed	integer

float	fSomeFloat //	32	bit	signed	floating	point

double	dSomeDouble //	64	bit	signed	floating	point

devchan	dcSomeDevChan //	Device	/	Channel	variable

devlev	dlSomeDevLev //	Device	/	Level	variable

integer	nSomeInt[] //	Integer	array

sinteger	snSomeSignedInt[] //	Signed	integer	array

long	lSomeLong[] //	Long	integer	array

slong	slSomeSignedLong[] //	Signed	long	integer	array

float	fSomeFloat[]	 //	Float	array

double	dSomeDouble[] //	Double	float	array

devchan	dcSomeDevChan[] //	Array	of	Device	/	Channel

devlev	dlSomeDevLev[] //	Array	of	Device	/	Level

struct_type _SomeStruct //	DEFINE_TYPE	for	a	Structure

user_type uSomeUserType // Variable of type user defined*

user_type	uUserTypeArray[]	 //	Array	of	user	defined	types

dev dvSomeDev // Device Variable

dev vdvSomeVirtualDevice // Virtual Device

dev daSomeDevArray[] //	Array	of	Devices

function fnSomeFunction // Function names

© 2015 Harman. All rights reserved. NetLinx, AMX, AV FOR AN IT WORLD, HARMAN, and their respective logos are
registered trademarks of HARMAN. Oracle, Java and any other company or brand name referenced may be
trademarks/registered trademarks of their respective companies.
AMX does not assume responsibility for errors or omissions. AMX also reserves the right to alter specifications
without prior notice at any time.
The AMX Warranty and Return Policy and related documents can be viewed/downloaded at www.amx.com.

3000 RESEARCH DRIVE, RICHARDSON, TX 75082
AMX.com | 800.222.0193 | 469.624.8000 | +1.469.624.7400 | fax 469.624.7153

Last Revised:
12/21/2015

http://www.amx.com/warranty/

	NETLINX PROGRAMMING STYLE GUIDE COVER
	Table of Contents
	NetLinx Programming Style Guide Overview
	FORMATTING
	CAPITALIZATION
	INDENTATION
	SPACING
	DEFINE_ SECTION ORDERING
	BRACES, SEMICOLONS, AND PARENTHESIS
	MAXIMUM LINE LENGTH
	COMMENTING
	EMPTY LINES

	IDENTIFIERS
	NAMING
	HUNGARIAN NOTATION
	UNDERSCORES AND CAMEL CASE
	VARIABLE DECLARATIONS

	CODING
	CONSTRUCTS TO AVOID
	AVOID NESTING TOO MANY OPERATIONS IN ONE LINE.
	EQUALS SIGNS
	DEFINE_PROGRAM

	INITIALIZATION
	CONSTANTS
	VARIABLES
	INCLUDES
	MODULES
	FUNCTIONS

	Addendum
	Hungarian Notation for NetLinx programming
	Intrinsic types
	Other Types

