
September 2015

Mobile Payment
Application (MPA)

Solutions with
WhiteboxCRYPTO

Whitepaper



Mobile Payment Application (MPA) Solutions with 
WhiteboxCRYPTO

Introduction
Mobile payment applications must remain highly secure despite residing on uncontrolled platforms.
Regulatory policy and industry best practices require a mix of information security and application
security practices, including the use of anti-tamper/anti-reverse engineering technology, and sound
crypto-key-refresh practices. WhiteboxCRYPTO™ helps meet these requirements by providing a method
to deploy reverse engineering resistant cryptography in a manner that supports secure key-refresh,
integration of tamper-resistance features, and synthetic diversity (deployment or redeployment with
functionally identical ciphers that appear different to a reverse-engineer).

WhiteboxCRYPTO has been deployed domestically and internationally on Windows, Linux, MacOS,
Android, iOS, and Solaris.

Technical Hurdles in the Mobile Payment Industry
Mobile payment applications (MPAs) are subject to multiple sources of requirements. The PCI standards
are generally accepted; however, each card provider adds his own requirements and protocols. Mobile
payment application providers are left to find their own methods of satisfying the security and protocol
requirements for multiple vendors and standards bodies.

Commonly encountered requirements for MPAs are:

• Any public/private key pairs used by MPA must be generated on-device. 

• All keys transferred to the MPA must be protected by cryptography at least as strong as the keys 
being transferred during transit.

• The MPA must not retain any portion of a user PIN longer than is required to generate 
authentication cryptograms.

• Anti-tamper and anti-reverse engineering technologies must be deployed to slow the process of 
compromising keys.

• MPAs must be redeployed bi-monthly with alternate anti-tamper and anti-reverse engineering 
techniques to limit the effectiveness of reverse-engineering efforts.

• Cryptographic keys must be discarded after a specified service lifetime (cryptoperiod).

These tasks are not technically challenging until one considers that the device running the MPA is
completely under the control of a potentially malicious user. If the associated cryptographic keys are ever
present in memory, they can simply be captured, and a malicious user can decrypt all other keys and
sensitive messages. The preceding bullets become much more complicated if one adds an additional
requirement:

• Cryptographic keys should never appear in the clear in the MPA.

With this addition, one requires a method of generating key pairs, receiving keys, and using keys without
having them be exposed. One must perform PIN operations as a combination of dynamic user input and
cryptographic keys, but without revealing the keys. Further, these approaches must be amenable to the
application of anti-tamper techniques, and must ideally participate in the diversified redeployment
requirement. Because keys must be discarded, one cannot simply deploy a set of heavily obfuscated
cryptographic routines with the keys pre-embedded; one must deploy a key management solution that
operates without exposing the keys.

WhiteboxCRYPTO is first and foremost a cryptographic key protection technology. In the following
sections, we describe how it can be deployed to resolve some of these tricky design points.
Revision 1 2



Mobile Payment Application (MPA) Solutions with WhiteboxCRYPTO
Secure Key Management with WhiteboxCRYPTO
WhiteboxCRYPTO is designed around a set of features that make it possible to perform secure key
management on an insecure platform. There are three critical features that enable this:

• WhiteboxCRYPTO ciphers operate using their keys in a protected form. 

• WhiteboxCRYPTO ciphers can produce/consume data in an obfuscated form.

• WhiteboxCRYPTO ciphers can prepare protected form keys from obfuscated-form data.

For example, WhiteboxCRYPTO can generate a protected-form RSA private key, preparing a public key
in the usual form. When it receives a standard RSA-wrapped Advanced Encryption Standard (AES) key,
it can unwrap this key to an obfuscated form, and prepare a WhiteboxAES key from the obfuscated data.
In this way, a server/HSM that knows nothing about WhiteboxCRYPTO can securely (blind-) transfer an
AES key to an MPA, which can in turn establish a secure channel using the key—all without exposing
any of the private/secret keys in memory on the MPA.

Anti-Tamper, Anti-Reverse Engineering, and Redeployment
WhiteboxCRYPTO ciphers are designed to be reverse engineering resistant. The protected form of the
key and the cipher implementation constitute a matched pair. These are produced through a randomized
generation process that yields ANSI-C compliant source code. The ability to re-generate randomized
"instances" of the ciphers immediately lends support for the requirement that MPAs be redeployed
periodically with different protection mechanisms.

Because cipher instances are ANSI-C source code, any anti-tamper tools/techniques that process
source-code or object-code can be applied. All protected form key material takes the form of flat arrays of
bytes1; this offers an ideal target for tamper reactions, as perturbing the key material will cause the
ciphers to produce incorrect results, which can be a subtle mechanism for introducing a tamper
response. Crypto failures can be difficult for a reverse engineer to diagnose, particularly when used in
conjunction with other anti-debugging or anti-tampering mechanisms.

Note: 1 All ciphers represent keys using a flat byte-array form for cross-platform interoperability. Some 
ciphers will prepare this array into a host-platform-specific form for faster operation at runtime.

Deploying WhiteboxCRYPTO
In this section, we describe the design process and logistics of deploying a WhiteboxCRYPTO-based
solution.

Designing for Data Obfuscation
Data obfuscation is a key feature for WhiteboxCRYPTO, but using it effectively takes some
consideration. First, in the context of WhiteboxCRYPTO, "data obfuscation" implies a parameterized
family of data-representations. This means a design can employ more than one data-obfuscation format,
which is useful for restricting data-flows within an application.

It can become tricky to discuss a system that uses multiple data-obfuscation forms; "colors" make a nice
analogy for discussion purposes. For example, "you cannot pass the plaintext from RSA-decrypt to AES-
encrypt, RSA produces blue data, and that AES instance expects green.” This color-based convention is
used throughout the remainder of this whitepaper to indicate different non-interoperable data-obfuscation
formats.
3 Revision 1



Mobile Payment Application (MPA) Solutions with WhiteboxCRYPTO
Each WhiteboxCRYPTO cipher instance can be configured to expect its inputs to be either classical
(unobfuscated) or obfuscated under a specific color. A cipher instance's output can be independently
chosen as classical or obfuscated. A common configuration is to leave the ciphertext side of a cipher
classical, but produce obfuscated plaintext. This configuration is most useful for performing 
key-management operations, as they are commonly multi-step. Using obfuscated plaintext allows the
key-management steps to proceed without revealing the intermediate values.

Input/output obfuscation is selected at instance generation time, and is therefore static at runtime.
Passing data of the wrong color to an input will generate meaningless output. A helpful way to go about
an obfuscated-data design is to first enumerate each cipher-use in the system and identify the
producer/consumer relations between the cipher-uses. This can be drawn as a graph. The ciphers at the
producer end of all edges directed to a common destination must use the same output color; likewise, the
consumer end of all edges originating from an obfuscated output must expect that color on the incoming
data. 

For example, in Figure 1, Elliptic Curve Diffie Hellman (ECDH) is used to negotiate an ephemeral 
Key-encryption key (KEK). In this example, ECDH is configured to interact with a classical (that is, 
non-whitebox-aware) server, and produce the shared secret under blue obfuscation. Following this, an
X9.63 Key Derivation Function (KDF) instance accepts the raw shared secret under blue obfuscation,
and produces the KEK under red obfuscation. The main data path uses AES dynamic key preparation
(from red data) to prepare a protected form version of the KEK for the AES-CBC-decrypt instance, which
in turn takes a classical AES-wrapped payment key, and decrypts it to obtain a green obfuscated
payment key. Data Encryption Standard (DES) dynamic key preparation (from green) is applied to
prepare the payment key for use with the DES instance, which is subsequently used to process classical
transaction data into a payment cryptogram.

Note: Obfuscated data can be treated as an array of ordinary bytes, and can be logged, 
persisted/recovered and so on, just like classical data. The same is true of protected form AES and 
DES keys. Therefore, legacy static KEKs (as illustrated) can be pre-converted to red, before 
storing.

Figure 1 • Designing for Obfuscation

In Figure 1, three 'colors' of obfuscation are used, Anything in 'red' obfuscation can be used as a
payment-key KEK. Anything in 'green' obfuscation can be used as a payment key. 'Blue' obfuscation is
only used to hide the intermediate value between ECDH and the subsequent KDF. Therefore, colors
directly constrain data-flow. For example, because KEKs are red, they cannot be prepared in any
meaningful way for the DES RMAC instance.

As you can see, data obfuscation can be a powerful tool for controlling data flows within a cryptographic
application, while at the same time preventing observation of the intermediate values in the key
management operations.
Revision 1 4



Mobile Payment Application (MPA) Solutions with WhiteboxCRYPTO
Obtaining Protected Keys
The primary function of WhiteboxCRYPTO is to protect cryptographic keys during usage. This raises an
immediate question: how does one get keys into a protected form? There are two methods:

• Static—offline key preparation via a command-line tool 

• Dynamic—online key preparation from obfuscated data via an API call

Static offline key preparation is a simple command line process, wherein the target key (or key pair) is
specified on the command line, and the tool produces a binary data file (or alternatively, a C source file
and header) containing the protected form of the given key.

The dynamic key preparation process, on the other hand, is designed to remain secure even when
operating on an untrusted device. It is a runtime API that permits the caller to translate obfuscated data
into the protected key form for a given cipher instance.

Because each cipher instance is randomly generated, the key preparation process must be informed
about the specific way the target cipher represents its keys. Thus, the static key preparation tool must be
given a meta-data file that describes the target key format. This meta-data file is produced at the same
time as the cipher instance. Dynamic key preparation uses code generated at the same time as the
target cipher instance. Hence, it embeds knowledge of the target key format implicitly. 

Note: The dynamic key preparation API expects its input in a particular color; therefore, it must be 
considered during the overall design process for data obfuscation.

Controlling Cipher Direction
In many cases, it is desirable to restrict the cipher direction for some keys. That is, a given key is only
permitted to be used in encryption operations, but not in decryption operations. WhiteboxCRYPTO
instances support single direction operations, even for symmetric ciphers. Bi-directional operation is
supported by a pair of distinct instances; therefore, the protected key form for the encrypt instance is
incompatible with the decrypt instance. (Note that it is possible to prepare the same key into both
protected key forms, if desired.)

Single direction cipher control can be considered during the design of any WhiteboxCRYPTO
deployment.

Supported Ciphers
For bootstrapping the key management infrastructure:

• RSA key pair generation

• Finite field Diffie-Hellman

• Elliptic curve Diffie-Hellman

Public key operations:

• Elliptic curve El Gamal

• Elliptic curve DSA sign/verify

• RSA encryption/decryption/sign/verify

Symmetric ciphers:

• AES (ECB, CBC, CTR, GCM, CCM, CMAC, and others)

• DES (ECB, CBC, RMAC)

Supporting operations:

• Digests: SHA1 / SHA2

• KDFs: X9.63 KDF, NIST SP800-108 KDF

• Various obfuscated data-manipulation tools.

Need something novel? Microsemi® has prepared white-box versions of custom ciphers for clients as
well.
5 Revision 1



WP/MPA/09012015

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA

Within the USA: +1 (800) 713-4113 
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor
and system solutions for communications, defense & security, aerospace and industrial
markets. Products include high-performance and radiation-hardened analog mixed-signal
integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and
synchronization devices and precise time solutions, setting the world's standard for time; voice
processing devices; RF solutions; discrete components; security technologies and scalable
anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as
custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and
has approximately 3,600 employees globally. Learn more at www.microsemi.com.

© 2015 Microsemi Corporation. All
rights reserved. Microsemi and the
Microsemi logo are trademarks of
Microsemi Corporation. All other
trademarks and service marks are the
property of their respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or
the suitability of its products and services for any particular purpose, nor does Microsemi assume any
liability whatsoever arising out of the application or use of any product or circuit. The products sold
hereunder and any other products sold by Microsemi have been subject to limited testing and should not
be used in conjunction with mission-critical equipment or applications. Any performance specifications are
believed to be reliable but are not verified, and Buyer must conduct and complete all performance and
other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely
on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's
responsibility to independently determine suitability of any products and to test and verify the same. The
information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire
risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or
implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such
information itself or anything described by such information. Information provided in this document is
proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

mailto:sales.support@microsemi.com
www.microsemi.com

	Mobile Payment Application (MPA) Solutions with WhiteboxCRYPTO
	Introduction
	Technical Hurdles in the Mobile Payment Industry
	Secure Key Management with WhiteboxCRYPTO
	Anti-Tamper, Anti-Reverse Engineering, and Redeployment
	Deploying WhiteboxCRYPTO
	Designing for Data Obfuscation
	Obtaining Protected Keys
	Controlling Cipher Direction
	Supported Ciphers


