

BGSCRIPT SCRIPTING LANGUAGE
DEVELOPER GUIDE

Wednesday, 2 December 2020

Version 34.

 Silicon Labs Page of 3 55

Table of Contents

1 Version History ________ __ 5
2 Introduction ___ 6
3 What is BGScript? __ 7

3.1 BGScript Scripting Language __ 7
3.2 BGScript vs. BGAPI __ 8

4 BGScript Syntax ___ 9
4.1 Comments ___ 9
4.2 Variables and Values ___ 9

4.2.1 Values __ 9
4.2.2 Variables __ 9
4.2.3 Global Variables ___ 11
4.2.4 Constant Values ___ 11
4.2.5 Buffers ___ 11
4.2.6 Strings ___ 12
4.2.7 Constant Strings ___ 12

4.3 Expressions ___ 14
4.4 Commands __ 15

4.4.1 event <event_name> (<event_parameters>) _____________________________________ 15
4.4.2 if <expression> then [else] end if ___ 15
4.4.3 while <expression> end while ___ 16
4.4.4 call <command name>(<command parameters>..)[(response parameters)] _____________ 16
4.4.5 let <variable> = <expression> ___ 16
4.4.6 return __ 17
4.4.7 sfloat(mantissa, exponent) ___ 17
4.4.8 float(mantissa, exponent) __ 18
4.4.9 memcpy(destination, source, length) ___ 18
4.4.10 memcmp(buffer1, buffer2, length) ___ 18
4.4.11 memset(buffer, value, length) __ 19

4.5 Procedures __ 20
4.6 Using multiple script files ___ 21

4.6.1 import ___ 21
4.6.2 export ___ 21

5 BGScript Limitations ___ 23
5.1 32-bit resolution __ 23
5.2 Declaration required before use __ 23
5.3 Reading internal temperature meter disabled IO interrupts _________________________________ 23
5.4 Writing data to an endpoint, which is not read ___ 23
5.5 No interrupts on Port 2 ___ 23
5.6 Performance ___ 23
5.7 RAM ___ 23
5.8 Flash ___ 24
5.9 Stack ___ 24

5.9.1 Interface drivers __ 24
5.10 Debugging ___ 24

6 Example BGscripts __ 25
6.1 Basics __ 25

6.1.1 Catching system start-up ___ 25
6.1.2 Catching Bluetooth connection event ___ 26
6.1.3 Catching Bluetooth disconnection event ___ 27

6.2 Hardware interfaces ___ 28
6.2.1 ADC ___ 28
6.2.2 I2C __ 30
6.2.3 GPIO __ 31
6.2.4 SPI __ 33
6.2.5 Generating PWM signals __ 35

6.3 Timers __ 36
6.3.1 Continuous timer generated interrupt __ 36
6.3.2 Single timer generated interrupt __ 37

 Silicon Labs Page of 4 55

6.4 USB and UART endpoints __ 38
6.4.1 UART endpoint __ 38
6.4.2 USB endpoint ___ 39

6.5 Attribute Protocol (ATT) __ 40
6.5.1 Catching attribute write event ___ 40

6.6 Generic Attribute Profile (GATT) __ 41
6.6.1 Changing device name __ 41
6.6.2 Writing to local GATT database ___ 42

6.7 PS store __ 43
6.7.1 Writing a PS keys __ 43
6.7.2 Reading a PS keys ___ 44

6.8 Flash ___ 45
6.8.1 Erasing, Reading and Writing Flash __ 45

6.9 Advanced scripting examples __ 47
6.9.1 Catching IO events and exposing them in GATT __________________________________ 47

6.10 Bluegiga Development Kit Specific Examples __ 48
6.10.1 Display initialization __ 48
6.10.2 FindMe demo __ 49
6.10.3 Temperature and battery readings to display ____________________________________ 50

6.11 BGScript tricks __ 52
6.11.1 HEX to ASCII ___ 52
6.11.2 UINT to ASCII __ 52

7 BGScript editors __ 54
7.1 Notepad ++ __ 54

7.1.1 Syntax highlight for BGScript ___ 54

 Silicon Labs Page of 5 55

1 Version History

Version Comments

2.3 BGScript limitations updated with performance comments

2.4 Added new features included in v.1.1 software.
Small improvements made into BGScript examples
Added a 4-channel PWM example

2.5 Reading ADC does not disable IO interrupts

2.6 Added battery reading example using the internal battery monitor

2.7 Updated ADC internal reference to 1.24V (was 1.15V)

3.0 BLE SW1.2 additions and changes:

Procedure support added
Memset support for buffer handling added
Limitations section aligned with the new SW enhancements

In addition, editorial improvements are done within the document.

3.1 Improved BGScript syntax documentation

3.2 I2C example improved and corrected

3.3 Splitting BGScript into multiple files through IMPORT and export directive made possible

3.4 Improvements to BGScript syntax description

3.5 Bluetooth Low Energy Software 1.3.0 compatible document version. The limitation for the
maximum size of all DIM variables is removed.

3.6 Editorial changes

3.7 Bluetooth Low Energy Software 1.3.1 compatible document version. Editorial changes and
Examples section updated.

3.8 Added comments about RAM and Flash availability to BGScript limitations.
Added example how to use the raw flash API.

3.9 Comments added to flash example script

4.0 Removed BGScript limitation of 255 byte variables

4.1 Added debug instructions

4.2 Editorial changes

4.3 Renamed "Bluetooth Smart" to "Bluetooth Low Energy" according to the official Bluetooth SIG
nomenclature.

 Silicon Labs Page of 6 55

2 Introduction
This document briefly describes the Bluegiga BGScript programming language for Bluegiga

Low Bluetooth

Energy Products. It explains what the BGScript programming language is, what its benefits are, how it may be
used, and what its limitations are. The document also contains multiple examples of BGScript code and some
API methods, and how it can be used to perform various tasks such as detecting

connections, Bluetooth

receiving and transmitting data, and managing hardware interfaces like UART, USB, SPI, and I2C.

THIS DOCUMENT IS NOT A COMPREHENSIVE REFERENCE FOR THE COMPLETE BGAPI
PROTOCOL.

This covers only the BGScript syntax and some brief examples, but is not meant to show every
possible command, response, and event that is part of the Bluegiga API. For this information, please
see the latest corresponding for the modules which you are using. The API API Reference Guide
Reference Guide may be downloaded from the same Documentation page from which this document
came.

 Silicon Labs Page of 7 55

3 What is BGScript?

3.1 BGScript Scripting Language

Bluegiga BGScript is a simple BASIC-style programming language that allows end-user applications to be
embedded to the Bluegiga

Low Energy modules. The benefit of using BGScript is that one can create Bluetooth

fully standalone

Low Energy devices without the need of an external MCU and this enables further Bluetooth

size, cost and power consumption reductions. Although being a simple and easy-to-learn programming
language BGScript does provide features and functions to create fairly complex and powerful applications and it
provides the necessary APIs for managing Bluetooth connections, security, data transfer and various hardware
interfaces such as UART, USB, SPI, I2C, GPIO, PWM and ADC.

BGScript is fully event based programming language and code execution is started when events such as
system start-up,

connection, I/O interrupt etc. occur.Bluetooth

BGScript applications are developed with Bluegiga's free-of-charge

Low Energy SDK and the Bluetooth

BGScript applications are executed in the BGScript Virtual Machine (VM) that is part of the Bluegiga Bluetooth
Low Energy software. The Bluetooth Low Energy SDK comes with all the necessary tools for code editing and
compilation and also the needed tools for installing the complied firmware binary to the Bluegiga Bluetooth Low
Energy modules. Multiple example applications and code snipplets are also available for Bluegiga implementing
applications like thermometers, heart rate transmitters, medical sensors and iBeacons just to mention a few.

The illustration below describes the Bluegiga Bluetooth Low Energy software, API and how BGScript VM and
applications interface to it.

Figure: BGScript System Architecture

A simple BGScript code example:

 Silicon Labs Page of 8 55

system started, occurs on boot or reset
event system_boot(major, minor, patch, build, ll_version, protocol_version, hw)

 # Enable BLE advertising mode
 call gap_set_mode(gap_general_discoverable, gap_undirected_connectable)

 # Enable BLE bonding mode
 call sm_set_bondable_mode(1)

 # Start a repeating timer at 1-second interval (32768Hz = crystal frequency)
 call hardware_set_soft_timer(32768, 0, 0)
end

3.2 BGScript vs. BGAPI

BGScript applications are just one way of controlling the Bluegiga Bluetooth Low Energy modules and it may
not be usable in every use case. For example the amount of available hardware interfaces, RAM or Flash may
limit you to implement and execute your application on the microcontroller on-board the Bluegiga Bluetooth Low
Energy modules. If this is the case an alternate way of controlling the module is the BGAPI protocol. BGAPI
protocol is a simple binary based protocol that works over the physical UART and USB interfaces available on
the Bluetooth Low Energy modules. An external host processor can be used to implement the end user
application and this application can control the Bluetooth Low Energy modules using the BGAPI protocol.

When BGScript is enabled, the BGAPI protocol is disabled. BGScript cannot be used at the same
time as BGAPI control from an external host.

 Silicon Labs Page of 9 55

4 BGScript Syntax

The BGScript scripting language has BASIC-like syntax. Code is executed only in response to and events,
each line of code is executed in successive order, starting from the beginning of the definition and ending event
at a or statement. Each line represents a single command.return end

BGScript scripting language is currently supported by multiple Bluegiga's Low Energy and Wi-Fi Bluetooth
products and the BGScript commands and events are specific to each technology.

Below is a conceptual code example of a simple BGScript based Bluegiga Wi-Fi software. The code below is
executed at the system start i.e. when the device is powered up and the code will start the Wi-Fi subsystem and
connects to a Wi-Fi access point with the SSID " ".test_ssid

Simple BGScript syntax example

system start-up event listener
event system_boot(major, minor, patch, build, bootloader, tcpip, hw)
 # Turn Wi-Fi subsystem on
 call sme_wifi_on()
end

Wi-Fi ON event listener
event sme_wifi_is_on(result)
 # connect to a network
 call sme_connect_ssid(9, "test_ssid")
end

4.1 Comments

Anything after a character is considered as a comment, and ignored by the compiler.#

x = 1 # comment

4.2 Variables and Values

4.2.1 Values

Values are always interpreted as integers (no floating-point numbers). Hexadecimal values can be expressed
by putting before the value. Internally, all values are 32-bit signed integers stored in memory in little-endian $
format.

x = 12 # same as x = $0c
y = 703710 # same as y = $abcde

IP addresses are automatically converted to their 32-bit decimal value equivalents.

x = 192.168.1.1 # same as x = $0101A8C0

4.2.2 Variables

Variables (not buffers) are signed 32-bit integer containers, stored in little-endian byte order. Variables must be
defined before usage.

dim x

 Silicon Labs Page of 10 55

Example

dim x
dim y

x = (2 * 2) + 1
y = x + 2

 Silicon Labs Page of 11 55

4.2.3 Global Variables

Variables can be defined globally using definition which must be used outside an block.dim event

dim j

software timer listener
event hardware_soft_timer(handle)
 j = j + 1
 call attributes_write(xgatt_counter, 2, j)
end

4.2.4 Constant Values

Constants are signed 32-bit integers stored in little-endian byte order and they also need to be defined before
use. Constants can be particularly useful because they do not take up any of the limited RAM that is available to
BGScript applications and instead constant values are stored in flash as part of the application code.

const x = 2

4.2.5 Buffers

Buffers hold 8-bit values and can be used to prepare or parse more complex data structures. For example a
buffer might be used in a Low Energy on-module application to prepare an attribute value before Bluetooth
writing it into the attribute database.

Similar to variables buffers need to be defined before usage. Currently the maximum size of a buffer is 256
bytes.

event hardware_io_port_status(delta, port, irq, state)
 tmp(0:1) = 2
 tmp(1:1) = 60 * 32768 / delta

 call attributes_write(xgatt_hr, 2, tmp(0:2))
end

dim u(10)

Buffers use an index notation with the following format:

BUFFER(< >:< >)expression size

The < > is used as the index of the first byte in the buffer to be accessed and < > is used to expression size
specify how many bytes are used starting from the location defined by < >. Note that this is expression <size>

 the end index position.not

u(0:1) = $a
u(1:2) = $123

The following syntax could be used with the same result due to little-endian byte ordering:

u(0:3) = $1230a

When using constant numbers to initialize a buffer, only (4) bytes may be set at a time. Longer buffers four
must be written in multiple parts or using a string literal (see section below).Strings

 Silicon Labs Page of 12 55

u(0:4) = $32484746
u(4:1) = $33

Buffer index and size are optional and if left empty default values are used. Default value for index is 0 and
default value for size is maximum size of buffer.

Using Buffers with Expressions

Buffers can also be used in mathematical expressions, but only a maximum of (4) bytes are supported at a four
time since all numbers are treated as signed 32-bit integers in little-endian format. The following examples show
valid use of buffers in expressions.

a = u(0:4)
a = u(2:2) + 1
u(0:4) = b
u(2:1) = b + 1

The following example is :not valid

if u(0:5) = "FGH23" then
 # do something
end if

This is because the mathematical equality operator ("=") interprets both sides as numerical values and in
BGScript numbers are always 4 bytes (32 bits). This means you can only compare (with '=') buffer segments
which are exactly four (4) bytes long. If you need to compare values which are not four (4) bytes in length you
must use the function, which is described later in this document.memcmp

if u(1:4) = "GH23" then
 # do something
end if

4.2.6 Strings

Buffers can be initialized using literal string constants. Using this method more than four (4) bytes at a time may
be assigned.

u(0:5) = "FGH23"

Literal strings support C-style escape sequences, so the following example will do the same as the above:

u(0:5) = "\x46\x47\x48\x32\x33"

Using this method you can assign and subsequently compare longer values such as 128-bit custom UUIDs for
example when scanning or searching a GATT database for proprietary services or characteristics. However
keep in mind that the data must be presented in little-endian format, so the value assigned here as a string
literal should be the reverse of the 128-bit UUID entered into the UUID attributes if that is what you are gatt.xml
searching for.

4.2.7 Constant Strings

Constant strings must be defined before use. Maximum size of constant string depends on application and
stack usage. For standard BLE examples safe size is around 64 bytes.

 Silicon Labs Page of 13 55

const str() = "test string"

And can be used in place of buffers. Note that in following example index and size of buffer is left as default
values.

call endpoint_send(11, str(:))

Note

Command "endpoint_send" is specific for Wi-Fi stack.

 Silicon Labs Page of 14 55

4.3 Expressions

Expressions are given in infix notation.

x = (1+2) * (3+1)

The following are supported:mathematical operators

Operation Symbol

Addition: +

Subtraction: -

Multiplication: *

Division: /

Less than: <

Less than or equal: <=

Greater than: >

Greater than or equal: >=

Equals: =

Not equals: !=

Parentheses ()

Note

Currently there is no support for or operators.modulo power

The following are supported:bitwise operators

Operation Symbol

AND &

OR |

XOR ^

Shift left <<

Shift right >>

The following are supported:logical operators

Operation Symbol

AND &&

OR ||

 Silicon Labs Page of 15 55

4.4 Commands

4.4.1 event <event_name> (<event_parameters>)

A code block defined between and keywords is event listener and will be run in response to a event end
specific event. BGscript allows implementing multiple listeners for a single event. This makes it easier and more
natural to implement helper libraries for specific tasks. Event listeners will be executed in the order in which they
appear in the script source. Execution will stop when reaching keyword of last event listener or end return
keyword in any event listener. BGScript VM (Virtual Machine) queues each event generated by the API and
executes them in FIFO order, atomically (one at a time and all the way through to completion or early
termination).

This example shows a basic system boot event handler for the Low Energy modules. The example Bluetooth
will start Low Energy advertisements as soon as the module is powered on or reset:Bluetooth

event system_boot(major, minor, patch, build, ll_version, protocol_version, hw)
 call gap_set_mode(gap_general_discoverable, gap_undirected_connectable)
end

This example shows multiple event listeners in BGscript. Multiple listeners allow to import files without breaking
previous implementation. The example executes imported code if handle equals ota_data, otherwise executes
event code from custom.bgs file:

ota.bgs

event attributes_value(connection, reason, handle, offset, value_len, value_data)
 if handle = ota_data then
 # Do something
 return # Return and prevent propagating event to next event listeners
 end if
end

custom.bgs

import "ota.bgs"
event attributes_value(connection, reason, handle, offset, value_len, value_data)
 # This is executed if handle != ota_data
end

4.4.2 if <expression> then [else] end if

Conditions can be tested with clause. Any commands between and will be executed if <if then end if
> is true (or non-zero).expression

if x < 2 then
 x = 2
 y = y + 1
end if

If is used and if the condition is success, then any commands between and will be executed. else then else
However if the condition fails then any commands between and will be executed.else end if

if x < 2 then
 x = 2
 y = y + 1
else
 y = y - 1
end if

 Silicon Labs Page of 16 55

Note! BGScript uses . This means that bitwise and operators have lower C language operator precedence & |
precedence than the comparison operator, and so comparisons are handled first if present in the same
expression. This is important to know when creating more complex conditional statements. It is a good idea to
include explicit parentheses around expressions which you need to be evaluated first.

if $0f & $f0 = $f0 then
 # will match because ($f0 = $f0) is true, and then ($0f & true) is true
end if

if ($0f & $f0) = $f0 then
 # will NOT match because ($0f & $f0) is $00, and $00 != $f0
end if

4.4.3 while <expression> end while

Loops can be made using . All commands on lines between and will be executed while <while while end while
> is true (or non-zero).expression

a = 0
while a < 10
 # will loop 10 times
 a = a + 1
end while

4.4.4 call <command name>(<command parameters>..)[(response parameters)]

The command is used to execute BGAPI commands and receive command responses. Command call
parameters can be given as expressions and response parameters are variable names where response values
will be stored. Response parentheses and parameters can be omitted if the response is not needed by your
application.

Note

Note that all response variables must be declared before use.

dim r

write 2 bytes from tmp buffer index 0 to xgatt_hr attribute
(response will be stored in variable "r")
call attributes_write(xgatt_hr, 2, tmp(0:2))(r)

If buffer or string is needed as parameter, then the buffer size is set in previous parameter.

event system_boot(major, minor, patch, build, ll_version, protocol_version, hw)
 call endpoint_send(0,13,"Hello, world!")
end

The command can also be used to execute user-defined procedures (functions). The syntax in this case is call
similar to executing a BGAPI command, except return values are not supported.

4.4.5 let <variable> = <expression>

Optional command to assign an expression to a variable.

 Silicon Labs Page of 17 55

let a = 1
let b = a + 2

4.4.6 return

This command returns from an event or a procedure.

event hardware_io_port_status(delta, port, irq, state)
 if state = 0
 return #returns from event
 end if
 tmp(0:1) = 2
 tmp(1:1) = 60 * 32768 / delta

 call attributes_write(xgatt_hr, 2, tmp(0:2))
end

4.4.7 sfloat(mantissa, exponent)

This function changes given mantissa and exponent in to a 16bit IEEE-11073 SFLOAT value which has base-
10. Conversion is done using following algorithm:

Exponent Mantissa

Length 4 bits 12 bits

Type 2's-complement 2's-complement

Mathematically the number generated by () is calculated as . The return sfloat <mantissa> * 10^<exponent>
value is a 2-byte uint8 array in the SFLOAT format. Below are some example parameters, and their resulting
decimal sfloat values:

Mantissa Exponent Result (actual)

-105 -1 -10.5

100 0 100

320 3 320,000

Use the function as follows, assuming that is already defined as a 2-byte uint8s array (or bigger):sfloat() buf

buf(0:2) = sfloat(-105, -1)

The array will now contain the SFLOAT representation of . buf -10.5

Some reserved special purpose values:

NaN (not a number)
exponent 0
mantissa 0x007FF

NRes (not at this resolution)
exponent 0
mantissa 0x00800

Positive infinity
exponent 0
mantissa 0x007FE

 Silicon Labs Page of 18 55

Negative infinity
exponent 0
mantissa 0x00802

Reserved for future use
exponent 0
mantissa 0x00801

4.4.8 float(mantissa, exponent)

Changes the given mantissa and exponent in to 32-bit IEEE-11073 FLOAT value which has base-10.
Conversion is done using the following algorithm:

Exponent Mantissa

Length 8 bits 24 bits

Type signed integer signed integer

Some reserved special purpose values:

NaN (not a number)
exponent 0
mantissa 0x007FFFFF

NRes (not at this resolution)
exponent 0
mantissa 0x00800000

Positive infinity
exponent 0
mantissa 0x007FFFFE

Negative infinity
exponent 0
mantissa 0x00800002

Reserved for future use
exponent 0
mantissa 0x00800001

4.4.9 memcpy(destination, source, length)

The function copies bytes from the source buffer to destination buffer. Destination and source should memcpy
not overlap. Note that the buffer index notation only uses the byte index, and should not also include the start

 portion, for example " " instead of " ".size dst(start) dst(start:size)

dim dst(3)
dim src(4)
memcpy(dst(0), src(1), 3)

4.4.10 memcmp(buffer1, buffer2, length)

The function compares and , for the length defined with . The function returns memcmp buffer1 buffer2 length
1 if the data is identical.

dim x(3)
dim y(4)
if memcmp(x(0), y(1), 3) then
 # do something
end if

 Silicon Labs Page of 19 55

4.4.11 memset(buffer, value, length)

This function fills with the data defined in for the length defined with . buffer value length

dim dst(4)
memset(dst(0), $30, 4)

 Silicon Labs Page of 20 55

4.5 Procedures

BGScript supports procedures which can be used to implement subroutines. Procedures differ from functions
used in other programming languages since they do not return a value and cannot be used expressions.
Procedures are called using the command just like other BGScript commands.call

Procedures are defined by procedure command as shown below. Parameters are defined inside parentheses
the same way as in event definition. Buffers are defined as last parameter and requires a pair of empty
parentheses.

Example using procedures to print MAC address (WiFi modules only due to "endpoint_send" command
and Wi-Fi specific events):

MAC address output on Wifi modules

dim n, j

print a nibble
procedure print_nibble(nibble)
 n = nibble
 if n < $a then
 n = n + $30
 else
 n = n + $37
 end if
 call endpoint_send(0, 1, n)
end

print hex values
procedure print_hex(hex)
 call print_nibble(hex/16)
 call print_nibble(hex&$f)
end

print MAC address
procedure print_mac(len, mac())
 j = 0
 while j < len
 call print_hex(mac(j:1))
 j = j + 1
 if j < 6 then
 call endpoint_send(0, 1, ":")
 end if
 end while
end

boot event listener
event system_boot(major, minor, patch, build, bootloader, tcpip, hw)
 # read mac address
 call config_get_mac(0)
end

MAC address read event listener
event config_mac_address(hw_interface, mac)
 # print the MAC address
 call print_mac(6, mac(0:6))
end

Example using single procedure to print arbitrary hex data in ASCII with optional separator:

 Silicon Labs Page of 21 55

MAC address output on BLE modules

flexible procedure to display %02X byte arrays
dim hex_buf(3) # [0,1] = ASCII hex representation, [2]=separator
dim hex_index # byte array index
procedure print_hex_bytes(endpoint, separator, reverse, b_length, b_data())
 hex_buf(2:1) = separator
 hex_index = 0
 while hex_index < b_length
 if reverse = 0 then
 hex_buf(0:1) = (b_data(hex_index:1)/$10) + 48 + ((b_data(hex_index:1)/$10)/10*7)
 hex_buf(1:1) = (b_data(hex_index:1)&$f) + 48 + ((b_data(hex_index:1)&$f)/10*7)
 else
 hex_buf(0:1) = (b_data(b_length - hex_index - 1:1)/$10) + 48 + ((b_data(b_length -
hex_index - 1:1)/$10)/10*7)
 hex_buf(1:1) = (b_data(b_length - hex_index - 1:1)&$f) + 48 + ((b_data(b_length -
hex_index - 1:1)&$f)/10*7)
 end if
 if separator > 0 && hex_index < b_length - 1 then
 call system_endpoint_tx(endpoint, 3, hex_buf(0:3))
 else
 call system_endpoint_tx(endpoint, 2, hex_buf(0:2))
 end if
 hex_index = hex_index + 1
 end while
end

dim mac_addr(6) # MAC address container
event system_boot(major, minor, patch, build, ll_version, protocol_version, hw)
 # get module's MAC address (will be little-endian byte order)
 call system_address_get()(mac_addr(0:6))

 # output HEX representation (will look like "00:07:80:AA:BB:CC")
 # endpoint=UART1, separator=":", reverse=enabled, length=6, data="mac_addr" buffer
 call print_hex_bytes(system_endpoint_uart1, ":", 1, 6, mac_addr(0:6))
end

4.6 Using multiple script files

4.6.1 import

The directive allows you to include other script files.import

main.bgs

import "other.bgs"

event system_boot(major, minor, patch, build, bootloader, tcpip, hw)
 # wifi module has booted
end

4.6.2 export

By default all code and data are local to each script file. The directive allows accessing variables and export
procedures from external files.

hex.bgs

export dim hex(16)
export procedure init_hex()
 hex(0:16) = "0123456789ABCDEF"
end

 Silicon Labs Page of 22 55

main.bgs

import "hex.bgs"
event system_boot(major, minor, patch, build, ll_version, protocol, hw)
 call init_hex()
end

 Silicon Labs Page of 23 55

5 BGScript Limitations

5.1 32-bit resolution

All operations in BGScript must be done using values that fit into 32 bits. The limitation affects for example long
timer intervals. Since the soft timer has a 32.768kHz tick speed, it is possible in theory to have maximum
interval of (2^32-1)/32768kHz = 36.4h. If longer timer periods are needed, incremental counters need to be
used.

In particular with LE products, timer is 22 bits, so the maximum value with BLE112 is 2^22 = Bluetooth
4194304/32768Hz = 128 seconds, while with BLED112 USB dongle the maximum value is 2^22 =
4194304/32000Hz = 131 seconds

5.2 Declaration required before use

All data and procedures needs to be declared before usage.

5.3 Reading internal temperature meter disabled IO interrupts

Reading BLE112 internal temperature sensor value

call hardware_adc_read(14,3,0)

5.4 Writing data to an endpoint, which is not read

If the USB interface is enabled and the USB is connected to a USB host, there needs to be an application
reading the data written to the USB. Otherwise the BGAPI messages will fill the buffers and cause the firmware
to eventually freeze.

5.5 No interrupts on Port 2

Currently I/O interrupts cannot be enabled on any of the Port 2 pins. Interrupts are only only supported on Port
0 or Port 1.

5.6 Performance

BGScript has limited performance, which might prevent some applications to be implemented using BGscript.
Typically, BGScript can execute commands/operations in the order of thousands per second.

For example on the Bluegiga Low Energy products like BLE112, BLE113, BLED112 USB dongle and Bluetooth
BLE121LR a single line of BGscript takes 1-2ms to interpret.

5.7 RAM

BGScript applications have limited amount of available RAM depending on the hardware the script is executed
on. The RAM on a device is shared between multiple resources such as the Blue or the Wi-Fi stack tooth
software, the data buffers, the BGScript application and the GATT data base (in the case of Low Bluetooth
Energy products). For example in the case of Low Energy products the RAM available for the Bluetooth
BGScript application is be around 2-4kB depending how much data is allocated for connections and Bluetooth
data buffers.

 Silicon Labs Page of 24 55

The RAM allocation and usage is displayed by the compiler after a successful BGScript application bgbuild
compilation.

5.8 Flash

Just like with RAM, BGScript applications also have limited amount of available flash available depending on
the hardware the script is executed on. The flash memory on a device is shared between multiple resources
such as the or the Wi-Fi stack software, the BGScript application, the GATT data base, USB Bluetooth
descriptors, OTA updates etc. The flash available for a BGScript application can be used to store application
data either via the PS-key APIs or using the raw flash read, write and erase functions.

The Flash allocation and usage is displayed by the compiler after a successful BGScript application bgbuild
compilation.

5.9 Stack

BGScript applications also have limited available stack which is equal 100 bytes. Typical push instruction
increases stack pointer by 4 bytes. Before executing BGScript, event parameters are pushed into stack. When
calling BGAPI, command parameters are also pushed into stack and then stack is forwarded to correct handler
routine. When there is too much data in the main execution stack (which handles the procedure calls and
parameters), then some data may be written outside the "safe" area of the stack. This overflows the user "dim"
variable area, and causes user variables corruption.

After stack overflow, firmware sometimes continues to operate normally, however in some cases module may
reboot. Sometimes results and behavior may be unpredictable. There is no rule for this kind of situation, so
BGScript code shall be deeply tested if it works correctly, taking into account all constraints about the stack
size.

5.9.1 Interface drivers

At the moment BGScript cannot be used to develop complex interface drivers (SPI, UART etc.), but they are
exposed via the built-in interface APIs.

5.10 Debugging

BGScript does not support line-by-line code execution or debugging at the moment. The best way to debug the
code therefore is to use UART or USB interface to print debug messages.
The example below shows one way how to use UART interface to print debug messages

Writing to USB endpoint

Debug enabled/disabled
const debug = 1

System start/boot listener
event system_boot(major,minor,patch,build,ll_version,protocol,hw)

 # Print debug message
 if (debug = 1) then
 call system_endpoint_tx(5, 14, "System started\n")
 end if
end

 Silicon Labs Page of 25 55

6 Example BGscripts
This section contains some useful BGScript examples to illustrate syntax and a few of the API commands,
responses, and events that you can use with BGScript.

THIS DOCUMENT IS NOT A COMPREHENSIVE REFERENCE FOR THE COMPLETE BGAPI
PROTOCOL.

This covers only the BGScript syntax and some brief examples, but is not meant to show every
possible command, response, and event that is part of the Bluegiga API. For this information, please
see the latest corresponding for the modules which you are using. The API API Reference Guide
Reference Guide may be downloaded from the same Documentation page from which this document
came.

6.1 Basics

This section contains very basic BGScript examples.

6.1.1 Catching system start-up

This example shows how to catch a system boot event. This event is the entry point to all BGScript code
execution and can be compared to the function in a C application. The event occurs every time the main()
module is powered on or reset.

System start-up

Boot event listener
event system_boot(major, minor, patch, build, ll_version, protocol, hw)
 # System started, enable advertising and allow connections
 call gap_set_mode(gap_general_discoverable, gap_undirected_connectable)
 ...
end

 Silicon Labs Page of 26 55

6.1.2 Catching Bluetooth connection event

When a connection is received, a event is generated.Bluetooth connection_status(...)

The example below shows how to enable advertisements to make the device connectable, and how to catch the
 connection and disconnection events.Bluetooth

Entering advertisement mode after disconnect

dim connected # connection status variable

System boot event listener
event system_boot(major, minor, patch, build, ll_version, protocol, hw)
 # Device is not connected yet
 connected = 0

 # Set advertisement interval to 20ms min, 30ms max (units are 0.625ms)
 # Use all three advertisement channels (7 = bitmask 0b00000111)
 call gap_set_adv_parameters(32, 48, 7)

 # Start advertising (discoverable/connectable)
 call gap_set_mode(gap_general_discoverable, gap_undirected_connectable)
end

Connection event listener
event connection_status(connection, flags, address, address_type, conn_interval, timeout, latency,
bonding)
 # Device is connected
 connected = 1
end

 Silicon Labs Page of 27 55

6.1.3 Catching Bluetooth disconnection event

When a connection is lost, a Bluetooth connection_disconnected(...) event is created. Since a BLE device will
not automatically resume advertisements upon disconnection, usually it is desirable to add an event handler
which will do this.

Entering advertisement mode after disconnect

Disconnection event listener
event connection_disconnected(connection, result)
 # connection disconnected, resume advertising
 call gap_set_mode(gap_general_discoverable, gap_undirected_connectable)
end

 Silicon Labs Page of 28 55

6.2 Hardware interfaces

This section contains basic examples that show how to use hardware interfaces such as I2C, SPI, analog input
(ADC), etc. from within BGScript.

6.2.1 ADC

The analog-to-digital converter (ADC) built into the BLE modules provides a versatile 8-channel interface
capable of up to 12 effective bits (including negative ranges). ADC conversions are triggered with the

command, and the conversion results can be captured with the hardware_adc_read(...) hardware_adc_result
 event listener. Note that the results come back immediately in the response to the read command, (...) do not

but instead you must make use of the result event.

The example below shows how to read the internal temperature monitor and how to convert the value into
Celsius. For details on the arguments of the command, please see the latest hardware_adc_read(...) API

.Reference Guide

ADC read

dim celsius
dim offset
dim tmp(5)

System boot event generated when the device is stared
event system_boot(major, minor, patch, build, ll_version, protocol_version, hw)
 # Request ADC read operation
 # 14 = internal temperature sensor channel
 # 3 = 12 effective bits, range = [-2048, +2047] when right-aligned
 # 0 = internal 1.24V reference
 call hardware_adc_read(14, 3, 0)
end

ADC conversion result event listener
event hardware_adc_result(input, value)
 # ADC value is 12 MSB
 celsius = value / 16

 # Calculate temperature
 # ADC*V_ref/ADC_max * T_coeff + offset
 celsius = (10*celsius*1240/2047) * 10/45 + offset

 # Set flags according to Health Thermometer specification
 # 0 = Temperature value is on Celsius scale
 tmp(0:1) = 0

 # Convert to IEEE 11073 32-bit float
 tmp(1:4) = float(celsius, -1)
end

 Silicon Labs Page of 29 55

The example below shows how to read the internal battery monitor, and how to convert the battery voltage level
into percentage. A full example is included in the Bluetooth Low Energy SDK v1.1 or newer.

ADC read

dim bat_pct
dim batconn_handle

This event listener listens for incoming ATT protocol read requests, and when the battery
attribute is read, executes an ADC read and sends back the computer result when complete.
event attributes_user_read_request(connection, handle, offset, maxsize)
 # Store current connection handle for later
 batconn_handle = connection
 # Request ADC read operation
 # 15 = AVDD/3 channel (will be between 0.66v - 1.2v by definition)
 # 3 = 12 effective bits, range = [-2048, +2047] when right-aligned
 # 0 = internal 1.24V reference
 call hardware_adc_read(15, 3, 0)
end

This event listener catches the ADC result
event hardware_adc_result(input, value)
 # ADC behavior:
 # - Range is [-2048, +2047] when 12 ENOB is selected
 # - Value will be left-aligned in a 16-bit container, meaning the direct
 # result will be in the range [-32768, +32767] and must be shifted
 # - Actual battery readings will only ever be positive, so we only care
 # about the positive part of the range [0, +32767] or 0x0000-0x7FFF
 # - VDD voltage = (value >> 4) * 3 * 1.24 / 2048

 # *** IMPORTANT***
 # A new CR2032 battery reads at ~2.52v based on some tests, but different
 # batteries may exhibit different levels here depending on chemistry.
 # You should test the range with your own battery to make sure).

 # - A "full" battery will read ~2.65v:
 # --> (2.65v/3) * (32767/1.24v) = 23342
 # - An "empty" battery will read ~2.0v (min module voltage):
 # --> (2.0v/3) * (32767/1.24v) = 17616
 # This means we must scale [+17616, +23342] to [0, +100]

 bat_pct = (value - 17616) * 100 / (23342 - 17616)

 # enforce 0%/100% bounds
 if bat_pct > 100 then
 bat_pct = 100
 end if
 if bat_pct < 0 then
 bat_pct = 0
 end if

 # respond with calculated percent (connection=stored value, result=0, length=1, data=bat_pct)
 call attributes_user_read_response(batconn_handle, 0, 1, bat_pct)
end

The above example requires the Bluetooth Low Energy SDK v1.1 or newer in order to work
reliably. The code automatically turns off the external DC/DC (if used) when the AVDD/3
conversion starts, and then re-enables it after the conversion is complete.

 Silicon Labs Page of 30 55

6.2.2 I2C

The BLE112 module has a software I2C implementation (bit-banging) which uses two fixed GPIO pins. For
communicating over the I2C bus with the BLE112 module, the following hardware setup is needed:

Pin 7 (P1_7): I2C clock
Pin 8 (P1_6): I2C data

Pull-ups must be enabled on both of the pins for proper operation. Note that the I2C clock rate in the BLE112 is
approximately 25 kHz, and may vary slightly from transaction to transaction due to other high-priority interrupt
handling routines in the stack, such as those dealing with BLE radio transmissions.

The BLE113 and BLE121LR modules have a hardware I2C implementation (only master mode is supported).
For these modules, no standard GPIOs are required, since they have dedicated I2C pins:

BLE113:
Pin 14: I2C clock
Pin 15: I2C data

BLE121LR:
Pin 24: I2C clock
Pin 25: I2C data

On the BLE112, no UART or SPI peripheral can be used in with Channel 1 Alternative 2
configuration when I2C is used, since that Channel/Alt configuration requires P1_6/P1_7 pins. Also,
the DC/DC converter (if used) should be assigned to a different Port1 pin besides P1_6 or P1_7.

The following examples show basic I2C write and read calls:

I2C operations

Writing 1 byte (0xF5) to device with 7-bit I2C slave address of 0x68, 8-bit WRITE address of
0xD0.
I2C stop condition is sent after the transmission.
"written" variable indicates how many bytes were successfully written.
call hardware_i2c_write($D1, 1, 1, "\xF5")(written)

Reading 2 bytes from device which has 7-bit I2C slave address of 0x68, 8-bit READ address of
0xD1.
I2C stop condition is sent after the transmission.
Result 0 indicates successful read.
call hardware_i2c_read($D0, 1, 2)(result, data_len, data(0:data_len))

 Silicon Labs Page of 31 55

6.2.3 GPIO

GPIO wake-up

When the device has no active tasks (advertising, scanning, or connection maintenance) or user-defined soft
timers running, it can enter the lowest power mode (PM3), which consumes only about 400nA (0.4uA). In order
to wake up from PM3, an external wake-up signal on a GPIO is required.

The example here shows how an IO interrupt can be used to wake up the module, start advertising, and then
stop advertising after 5 seconds so that the module can re-enter PM3 if a remote BLE device does not connect
first.

Enabling and catching GPIO interrupts

Boot event listener
event system_boot(major, minor, patch, build, ll_version, protocol_version, hw)
 # Enable GPIO interrupts from PORT 0 PINs P0_0 and P0_1 on rising edge
 call hardware_io_port_config_irq(0, $3, 0)
end

GPIO interrupt listener
event hardware_io_port_status(timestamp, port, irq, state)
 # Configure advertisement parameters (25ms min/max, all three channels)
 call gap_set_adv_parameters(40, 40, 7)

 # Start advertisements
 call gap_set_mode(gap_general_discoverable, gap_undirected_connectable)

 # Start a 5-second one-shot soft timer
 call hardware_set_soft_timer($28000, 0, 1)
end

Soft timer event listener
event hardware_soft_timer(handle)
 # Stop advertisements and allow the device to go to PM3
 call gap_set_mode(0, 0)
end

The example above enables a user-defined GPIO interrupt that is handled by the BGScript application. This
type of interrupt is triggered and processed only when the edge transition occurs, and once the

 event handler has been executed, the module will return to a low-power mode if hardware_io_port_status()
possible until the next similar edge transition. The Bluegiga BLE stack provides another way to wake the
module in a more permanent, user-controllable manner, by enabling a dedicated . This pin will hold wake-up pin
the module in an active/wake state as long as it is asserted, only allowing the module to sleep again when it is
de-asserted. This can be very useful if you need to send UART traffic to the module, for instance, since UART
data is not processed while the module is asleep.

The wake-up pin is configured in the "hardware.xml" file for your project, and is documented in the Bluetooth
. The following note provides an example configuration:Low Energy Module Configuration Guide

To enable PM3 and configure an active-high wake-up pin on P0_0, the following configurations need
to be used in the file.hardware.xml

<hardware>
<sleeposc enable="true" ppm="30" />
<wakeup_pin enable="true" port="0" pin="0" />
<usb enable="false" endpoint="none" />
<txpower power="15" bias="5" />
<port index="0" tristatemask="0" pull="down" />
<script enable="true" />
<slow_clock enable="true" />
</hardware>

 Silicon Labs Page of 32 55

Writing GPIO logic states

The example below shows how to alternate P0_0 high/low once per second. If an LED is attached to this pin, it
should blink regularly.

1-second

dim pin_state

Boot event listener
event system_boot(major, minor, patch, build, ll_version, protocol_version, hw)
 # Configure P0_0 as output (port=0, pin mode mask = 0b00000001)
 call hardware_io_port_config_direction(0, $01)

 # Set P0_0 pin HIGH
 # (port=0, pin selection mask = 0b00000001, pin logic mask = 0b00000001)
 # NOTE: logic value parameter is also a bitmask, not a single 0/1 to apply to all selected pins
 call hardware_io_port_write(0, $01, $01)

 # Set current pin state to "on" (1)
 pin_state = 1

 # Start a 1-second repeating timer
 call hardware_set_soft_timer(32768, 0, 0)
end

Soft timer event listener
event hardware_soft_timer(handle)
 # When timer expires (repeatedly), set P0_0 pin LOW or HIGH depending on
 # previous state and then update "pin_state" to opposite of what it was
 if pin_state = 0 then
 # P0_0 was LOW, now set HIGH
 # (port=0, pin selection mask = 0b00000001, pin logic mask = 0b00000001)
 call hardware_io_port_write(0, $01, $01)
 else
 # P0_0 was HIGH, now set LOW
 # (port=0, pin selection mask = 0b00000001, pin logic mask = 0b00000000)
 call hardware_io_port_write(0, $01, $00)
 end if
 pin_state = 1 - pin_state
end

The example below shows how to set P0_1 and P0_6 as output pins and set the logic state of each based on
boot/reset and a 5-second timer.

Timed GPIO writes with P0_1 and P0_6

Boot event listener
event system_boot(major, minor, patch, build, ll_version, protocol_version, hw)
 # Configure P0_1 and P0_6 as output (port=0, pin mode mask = 0b01000010)
 call hardware_io_port_config_direction(0, $42)

 # Set P0_1 and P0_6 pins HIGH
 # (port=0, pin selection mask = 0b01000010, pin logic mask = 0b01000010)
 # NOTE: logic value parameter is also a bitmask, not a single 0/1 to apply to all selected pins
 call hardware_io_port_write(0, $42, $42)

 # Start a 5-second one-shot timer
 call hardware_set_soft_timer($28000, 0, 1)
end

Soft timer event listener
event hardware_soft_timer(handle)
 # When timer expires, set P0_1 pin LOW but leave P0_6 HIGH
 # (port=0, pin selection mask = 0b01000010, pin logic mask = 0b01000000)
 call hardware_io_port_write(0, $42, $40)
end

 Silicon Labs Page of 33 55

6.2.4 SPI

The examples in this section require the following configuration settings to be in your project's
 to enable the SPI channel 0 interface and BGScript application support. However, the hardware.xml

polarity, phase, endianness, and baud may change depending on the requirements of the SPI slave
peripheral device(s) to which you are connecting the module.

<hardware>
...
<usart channel="0" mode="spi_master" alternate="2" polarity="positive" phase="1"
endianness="msb" baud="57600" endpoint="none" />
<script enable="true" />
</hardware>

SPI slave limitation

The SPI interfaces provided by the BLE modules can currently only be used in . The SPI master mode
internal hardware buffers inside the module and do not allow for efficient performance in SPI slave
mode. The SPI interface also cannot be used as a BGAPI host interface for this reason.

Writing to SPI

The SPI interface can be used as a peripheral interface to connect to external slaves devices such as motion
sensors, environmental sensors, or simple displays. Two SPI channels are available on the BLE modules, using
USART0 or USART1. The example below shows how to write data to SPI channel 0 using the

 API command.hardware_spi_transfer

Writing SPI interface

Boot event listener
event system_boot(major, minor, patch, build, ll_version, protocol_version, hw)
 # Write 5 bytes to SPI
 call hardware_spi_transfer(0, 5, "\x01\x02\x03\x04\x05")

 # Write a "Hello world" string to SPI
 call hardware_spi_transfer(0, 11, "Hello world")
end

 Silicon Labs Page of 34 55

Reading from SPI

The example below shows how to read data from the SPI channel 0 interface. The SPI interface returns the
same number of bytes as you write to it. Typically, bytes are written as placeholders if you are only 0x00
reading and do not need to write any other particular value at the same time, although any bytes may be
written. In this example, two (2) bytes are written to the SPI interface, and the bytes read back are returned in
the response. The data read is stored in the tmp array, and it has a length of two (2) bytes.

Reading SPI interface

dim tmp(10)
dim result
dim channel
dim tlen

Boot event listener
event system_boot(major, minor, patch, build, ll_version, protocol_version, hw)
 # Read 2 bytes from SPI channel 0
 call hardware_spi_transfer(0, 2, "\x00\x00")(result, channel, tlen, tmp(0:tlen))
end

 Silicon Labs Page of 35 55

6.2.5 Generating PWM signals

In order to generate PWM signals output compare mode needs to be used. PWM output signals can be
generated using the and when and are in .timer modulo mode channels 1 2 output compare mode 6 or 7

For detailed instructions about PWM please refer to chapter in CC2540 user guide.9.8 Output Compare Mode

In order to generate a 4 channel PWM signal the following example can be used.

A 4 channel PWM signal

Boot event listener
event system_boot(major, minor, patch, build, ll_version, protocol_version, hw)
 call hardware_timer_comparator(1, 0, 6, 32000)
 call hardware_timer_comparator(1, 1, 6, 16000)
 call hardware_timer_comparator(1, 2, 6, 10000)
 call hardware_timer_comparator(1, 3, 6, 8000)
 call hardware_timer_comparator(1, 4, 6, 4000)
end

The example uses Timer 1 in alternate 2 configuration with four (4) PWM channels in pins p1.1, p1.0,
p0.7 and p0.6

The following configurations need to be in the to enable the timer and BGScript execution.hardware.xml

<hardware>
...
<timer index =" 1 " enabled_channels =" 0x1f " divisor =" 0 " mode =" 2 " alternate =" 2 " />
</hardware>

Notice that PWMs do not work when the device is in a sleep mode.

 Silicon Labs Page of 36 55

6.3 Timers

This section describes how to use timers with BGscript.

6.3.1 Continuous timer generated interrupt

This example shows how to generate continuous timer generated interrupts

Enabling timer generated interrupts

Boot event listener
event system_boot(major ,minor ,patch ,build ,ll_version ,protocol_version ,hw)
 ...
 # Set timer to generate event every 1s
 # 1 = Timer ID
 # 0 = continuous timer
 call hardware_set_soft_timer(32768, 1, 0)
end

#Timer event listener
event hardware_soft_timer(handle)

 if (handle = 1) then
 #Code that you want to execute once per 1s
 end if
end

Even with a soft timer running the module can enter sleep mode 2, in which power consumption is about 1µA.
Sleep mode 3 is entered only if there are no timers running and the module is not having any scheduled radio
activity.

One active timer

There can only be one repeating timer running at the same time. It is good practice to stop the
currently running timer by issuing before launching the next one.call hardware_set_soft_timer()

 Silicon Labs Page of 37 55

6.3.2 Single timer generated interrupt

The 2nd example shows how to set a timer, which is called only once. This is useful, when some action needs
to be implemented only once, like the change of advertisement interval in Proximity profile.

In this example in the beginning the device advertises quickly, but after 30 seconds the advertisement interval is
reduced, in order to save battery.

Using timer once

Boot event listener
event system_boot(major,minor,patch,build,ll_version,protocol,hw)

 # Set advertisement parameters according to the Proximity profile
 # Min interval 20ms, max interval 30ms, use all 3 channels
 call gap_set_adv_parameters(32, 48, 7)

 # Enabled advertisement
 # Limited discovery, Undirected connectable
 call gap_set_mode(1, 2)

 # Start timer
 # single shot, 30 secods, timer handle = 1
 call hardware_set_soft_timer($F0000, 1, 1)
end

Timer event listener
event hardware_soft_timer(handle)

 # run the code only if timer handle is 1
 if handle = 1 then
 # Stop advertisement
 call gap_set_mode(0, 0)

 #Reconfigure parameters
 # Min interval 1000ms, max interval 2500ms, use all 3 channels
 call gap_set_adv_parameters(1600, 4000, 7)

 # Enabled advertisement
 # Limited discovery, Undirected connectable
 call gap_set_mode(1, 2)
 end if

end

 Silicon Labs Page of 38 55

6.4 USB and UART endpoints

This section describes the usage of endpoints, which can be used to send or receive data from interfaces like
UART or USB.

6.4.1 UART endpoint

The example shows how to send data to USART1 endpoint from BGScript.

Writing to USB endpoint

System start/boot listener
event system_boot(major,minor,patch,build,ll_version,protocol,hw)

 # Start continuous timer with 1 second interval. Handle ID 1
 # 1 second = $8000 (32.768kHz crystal)
 call hardware_set_soft_timer($8000, 1, 0)
end

Timer event(s) listener
event hardware_soft_timer(handle)

 # 1 second timer expired
 if handle = 1 then
 call system_endpoint_tx(5, 14, "TIMER EXPIRED\n")
 end if
end

The following configurations need to be in the to enable the UART interface and allow hardware.xml
BGscript to access it.

<?xml version="1.0" encoding="UTF-8" ?>

<hardware>
...
<usart channel="1" alternate="1" baud="115200" endpoint="none" />
<script enable="true" />
</hardware>

 Silicon Labs Page of 39 55

6.4.2 USB endpoint

The example shows how to send data to USB endpoint from BGScript.

Writing to USB endpoint

System start/boot listener
event system_boot(major,minor,patch,build,ll_version,protocol,hw)

 # Start continuous timer with 1 second interval. Handle ID 1
 # 1 second = $8000 (32.768kHz crystal)
 call hardware_set_soft_timer($8000, 1, 0)
end

Timer event(s) listener
event hardware_soft_timer(handle)

 # 1 second timer expired
 if handle = 1 then
 call system_endpoint_tx(3, 14, "TIMER EXPIRED\n")
 end if
end

The following configurations need to be in the to enable the USB interface and allow hardware.xml
BGscript to access it.

<?xml version="1.0" encoding="UTF-8" ?>

<hardware>
...
<usb enable="true" endpoint="none" />
<script enable="true" />
</hardware>

 Silicon Labs Page of 40 55

6.5 Attribute Protocol (ATT)

This section contains BGscript examples related to Attribute Protocol (ATT) events.

6.5.1 Catching attribute write event

The example shows to to catch an event when remote devices writes an attribute over a Bluetooth connection.
A simple FindMe example is used where the remote device writes a single value to the local GATT database
indicating the alert level.

Catching an attribute write

Listen for GATT write events
event attributes_value(connection, reason, handle, offset, value_len, value)
 # Read the value and enable corresponding alert
 level=value(0:1)
 if level=0 then
 # TODO: Execute an action corresponding "No alert" status.
 end if
 if level=1 then
 # TODO: Execute an action corresponding "Mild alert" status.
 end if
 if level=2 then
 # TODO: Execute an action corresponding "High alert" status.
 end if
end

 Silicon Labs Page of 41 55

6.6 Generic Attribute Profile (GATT)

This section shows examples how to manager the local GATT database.

6.6.1 Changing device name

The example below shows how to change the device name using BGScript.

In this example we use the following GATT database:

gatt.xml

<service uuid="1800">
 <description>Generic Access Profile</description>

 <characteristic uuid="2a00" id="xgatt_name">
 <properties read="true"/>
 <value>01020304050607</value>
 </characteristic>

 <characteristic uuid="2a01">
 <properties read="true" const="true" />
 <value type="hex">4142</value>
 </characteristic>
 </service>

To write a new value into the characteristic defined in the l following code needs to be used. Please gatt.xm
note that the must be the same as in the .id gatt.xml

script.bgs

Generate Friendly name in ASCII
name(0:1)=$42
name(1:1)=$47
name(2:1)=$53
name(3:1)=$63
name(4:1)=$72
name(5:1)=$69
name(6:1)=$70
name(7:1)=$74

#Write name to local GATT
call attributes_write(xgatt_name, 0, 7, name(0:7))

 Silicon Labs Page of 42 55

6.6.2 Writing to local GATT database

To write to the local GATT database you first need to define a characteristic under a service in your GATT
database (). You also need to assign an parameter for the characteristic, which can then be used in gatt.xml id
BGScript to write the value.

In this example we use the following GATT database:

gatt.xml

<service uuid="1809">
 <description>Health Thermometer Service</description>

 <characteristic uuid="2a1c" id="xgatt_temperature_celsius">
 <description>Celsius temperature</description>
 <properties indicate="true"/>
 <value type="hex">0000000000</value>
 </characteristic>
</service>

To write a new value into the characteristic defined in the l following code needs to be used. Please gatt.xm
note that the must be the same as in the .id gatt.xml

script.bgs

#write 5 bytes from tmp array to attribute with offset 0
call attributes_write(xgatt_temperature_celsius,0,5,tmp(0:5))

 Silicon Labs Page of 43 55

6.7 PS store

These examples show how to read and write PS-keys.

6.7.1 Writing a PS keys

The example shows how to write an attribute written by a remote device into PS store.Bluetooth

Writing to PS store

Check if remote device writes a value to the GATT and write it to a PS key 0x8000
Catch an attribute write
event attributes_value(connection, reason, handle, offset, value_len, value_data)

 # Check if handle value 1 is written
 if handle = 1
 # Write attribute value to PS-store
 call flash_ps_save($8000, value_len, value_data(0:value_len))
 end if
end

PS keys from 8000 to 807F can be used for persistent storage of user data.
Each key can store up to 32 Bytes.

 Silicon Labs Page of 44 55

6.7.2 Reading a PS keys

The example shows how to read a value from the local PS store and write it to GATT database.

Reading PS store

#Initialize a GATT value from a PS key, which is 2 bytes long
call flash_ps_load($8000)(result, len1, data1(0:2))

Write the PS value to handle with ID "xgatt_PS_value"
call attributes_write(xgatt_PS_value, 0, len1, data1(0:len1))

PS keys from 8000 to 807F can be used for persistent storage of user data.
Each key can store up to 32 Bytes.

 Silicon Labs Page of 45 55

6.8 Flash

These examples show how to erase, write and read data from the user data section on the Bluetooth Low
Energy devices flash.

6.8.1 Erasing, Reading and Writing Flash

The example shows how to use the raw flash API to access the user data area on the local flash memory.

Writing to PS store

variables used by the example script
dim read(11)
dim data(11)
dim length

Boot event listener. It will erase the first page on the flash and read 11 bytes from it
and prints the data to UART endpoint. Then the script writes 11 bytes to the flash and reads
and outputs it again.
event system_boot(major, minor, patch, build, ll_version, protocol_version, hw)

 # Data to write to flash
 data(0:2) = $ffff
 data(2:2) = $0000
 data(4:2) = $ffff
 data(6:2) = $0000
 data(8:2) = $ffff
 data(10:1) = $00

 # Set all bits to 1 by erasing the first page (page is 2kB)
 call flash_erase_page(0)

 # Read data from user area and print it
 # read 11 bytes from offset 0
 # Output will be all 0xff's
 # Note: You can only write 1s to 0s on the flash. Flash erase command can be used to turn 0s
to 1s.
 call flash_read_data(0, 11)(length, read(0:11))
 call system_endpoint_tx(5, 11, read(0:11))

 # Write data to user area
 # Offset 0, 11 bytes to write
 call flash_write_data(0, 11, data(0:11))

 # Read data from user area
 # read 11 bytes from offset 0
 # Output will correspond to data(0:11)
 call flash_read_data(0, 11)(length, read(0:11))
 call system_endpoint_tx(5, 11, read(0:11))
end

 Silicon Labs Page of 46 55

For the above example to work a user data area must be defined in file. The following config.xml
example allocates 2kB from the local flash to the user data.

<config>
<user_data size="0x800" />
</config>

For the UART endpoint to be available for BGScript application (used to output the data) the following
configuration must be used in the .hardware.xml

<hardware>
...
<usart channel="1" alternate="1" baud="115200" endpoint="none" />

...
</hardware>

 Silicon Labs Page of 47 55

6.9 Advanced scripting examples

This section shows more advanced scripting examples where several functions are made.

6.9.1 Catching IO events and exposing them in GATT

This example shows hot to catch I/O events and exposing them via a custom service in GATT data base.

The example service looks like the one below and the I/O characteristic has and properties.read notify

gatt.xml

 <service uuid="00431c4a-a7a4-428b-a96d-d92d43c8c7cf">
 <description>Bluegiga IO service</description>
 <characteristic uuid="f1b41cde-dbf5-4acf-8679-ecb8b4dca6fe" id="xgatt_io">
 <properties read="true" notify="true"/>
 <value type="hex" length="1"></value>
 </characteristic>
 </service>

In order to catch the I/O events and write them to GATT database the following event handled is used in
BGScript code.

script.bgs

#HW interrupt listener
event hardware_io_port_status(delta, port, irq, state)

 # Write I/O status to GATT
 call attributes_write(xgatt_io,0,1,irq)
end

On DKBLE112 development kit there are buttons in I/O pins P0_0 and P0_1 and in order for this example to
work with DKBLE112 the following configuration is needed in hardware.xml.

hardware.xml

 <port index="0" pull="down" />

 Silicon Labs Page of 48 55

6.10 Bluegiga Development Kit Specific Examples

This section contains examples specific to the Bluegiga BLE development kits.

6.10.1 Display initialization

The example below shows how to initialize the display in the BLE development kit and and how to write data to
it.

The supported commands can be found from the displays data sheet as well the initialization sequence.

DKBLE112 display initialization

Boot event listener
event system_boot(major,minor,patch,build,ll_version,protocol,hw)

 # Set display to command mode
 call hardware_io_port_write(1,$3,$1)
 call hardware_io_port_config_direction(1,$7)

 # Initialize the display (see NHDC0216CZFSWFBW3V3 data sheet)
 call hardware_spi_transfer(0,11,"\x30\x30\x30\x39\x14\x56\x6d\x70\x0c\x06\x01")

 # Set display to data mode
 # Write "Hello world\!" to the display.
 call hardware_io_port_write(1,$3,$3)
 call hardware_spi_transfer(0,12,"Hello world\!")

end

SPI configuration in hardware.xml
<usart channel="0" mode="spi_master" alternate="2" polarity="positive" phase="1"
endianness="msb" baud="57600" endpoint="none" />

 Silicon Labs Page of 49 55

6.10.2 FindMe demo

The example script implements a simple FindMe profile device. The alert status is displayed on the BLE
development kit's display when remote device changes the status.

SPI configuration in hardware.xml
<usart channel="0" mode="spi_master" alternate="2" polarity="positive" phase="1"
endianness="msb" baud="57600" endpoint="none" />

DKBLE112 FindMe Target

Boot event listener
event system_boot(major,minor,patch,build,ll_version,protocol,hw)

 # Put display into command mode
 call hardware_io_port_write(1,$3,$1)
 call hardware_io_port_config_direction(1,$7)

 # Configure Display
 call hardware_spi_transfer(0,11,"\x30\x30\x30\x39\x14\x56\x6d\x70\x0c\x06\x01")

 # Put display into data mode and write
 call hardware_io_port_write(1,$3,$3)
 call hardware_spi_transfer(0,12,"Find Me Demo")

 # Set advertisement parameters according to the Proximity profile. Min interval 1000ms, max
interval 2000ms, use all 3 channels
 call gap_set_adv_parameters(1600, 3200, 7)

 # Start advertisement and enable pairing mode
 call gap_set_mode(gap_general_discoverable,gap_undirected_connectable)
 call sm_set_bondable_mode(1)
end

Listen for GATT write events
event attributes_value(connection, reason, handle, value_len, value)

 # Put display to command mode and move cursor to position 40
 call hardware_io_port_write(1,$3,$1)
 call hardware_spi_transfer(0,1,"\xc0")

 #display to data mode
 call hardware_io_port_write(1,$3,$3)

 # Read value and enable corresponding alert
 level=value(0:1)
 if level=0 then
 call hardware_spi_transfer(0,10,"No Alert ")
 end if
 if level=1 then
 call hardware_spi_transfer(0,10,"Mild Alert")
 end if
 if level=2 then
 call hardware_spi_transfer(0,10,"High Alert")
 end if
end

Disconnection event listener
event connection_disconnected(handle,result)
 # Restart advertisement
 call gap_set_mode(gap_general_discoverable,gap_undirected_connectable)
end

 Silicon Labs Page of 50 55

6.10.3 Temperature and battery readings to display

The example below shows how to initialize the display in the BLE development kit and and how to write
temperature and battery (using potentiometer) readings into it.

The supported commands can be found from the displays data sheet as well the initialization sequence.

SPI configuration in hardware.xml
<usart channel="0" mode="spi_master" alternate="2" polarity="positive" phase="1"
endianness="msb" baud="57600" endpoint="none" />

DKBLE112 display, battery and temperature sensors

dim string(3)
dim milliv
dim tmp(4)
dim offset
dim celsius

Boot event listener
event system_boot(major,minor,patch,build,ll_version,protocol,hw)
 # Initialize the display (see NHD-C0216CZ-FSW-FBW-3V3 data sheet)
 call hardware_io_port_write(1,$7,$1)
 call hardware_io_port_config_direction(1,$7)
 call hardware_spi_transfer(0,11,"\x30\x30\x30\x39\x14\x56\x6d\x70\x0c\x06\x01")
 call hardware_io_port_write(1,$7,$3)

 # Write "Batt.: " to the display.
 call hardware_spi_transfer(0,7,"Batt.: ")

 # Change display data address
 call hardware_io_port_write(1,$7,$1)
 call hardware_spi_transfer(0,1,"\xc0")

 # Write "Temp.: " to the displays 2nd line
 call hardware_io_port_write(1,$7,$3)
 call hardware_spi_transfer(0,7,"Temp.: ")

 # Start timer @ ~2sec interval
 call hardware_set_soft_timer($ffff, 0 ,0)
end

Timer event listener
event hardware_soft_timer(handle)
 #read potentiometer for battery
 call hardware_adc_read(6,1,2)
 #read internal temperature
 call hardware_adc_read(14,3,0)
end

Bluegiga – A Silicon Labs Company Page of 51 55

DKBLE112 display, battery and temperature sensors (CONTINUED)

#ADC event listener
event hardware_adc_result(input,value)

 # Received battery reading
 if (input = 6) then
 #Convert HEX to STRING
 milliv=value/11+8
 tmp(0:1) = (milliv/1000) + (milliv / 10000*-10) + 48
 tmp(1:1) = (milliv/100) + (milliv / 1000*-10) + 48
 tmp(2:1) = (milliv/10) + (milliv / 100*-10) + 48
 tmp(3:1) = (milliv) + (milliv / 10*-10) + 48

 # Change display data address
 call hardware_io_port_write(1,$7,$1)
 call hardware_spi_transfer(0,1,"\x87")

 # Write battery value
 call hardware_io_port_write(1,$7,$3)
 call hardware_spi_transfer(0,4,tmp(0:4))
 call hardware_spi_transfer(0,3," mV")
 end if

 # Received temperature reading
 if (input = 14) then
 offset=-1490

 # ADC value is 12 MSB
 celsius = value / 16
 # Calculate temperature
 # ADC*V_ref/ADC_max / T_coeff + offset
 celsius = (10*celsius*1150/2047) * 10/45 + offset

 #Convert HEX to STRING
 string(0:1) = (celsius / 100) + 48
 string(1:1) = (celsius / 10) + (celsius / -100 * 10) + 48
 string(2:1) = celsius + (celsius / 10 * -10) + 48

 # Change display data address
 call hardware_io_port_write(1,$7,$1)
 call hardware_spi_transfer(0,1,"\xc7")

 # Write temperature value
 call hardware_io_port_write(1,$7,$3)
 call hardware_spi_transfer(0,2,string(0:2))
 call hardware_spi_transfer(0,1,".")
 call hardware_spi_transfer(0,1,string(2:1))
 call hardware_spi_transfer(0,1,"\xf2")
 call hardware_spi_transfer(0,1,"C")
 end if
end

 Silicon Labs Page of 52 55

6.11 BGScript tricks

6.11.1 HEX to ASCII

Printing local BT address on the display in DKBLE112

dim t(12)
dim addr(6)
event system_boot(major,minor,patch,build,ll_version,protocol,hw)
 call hardware_io_port_write(1,$7,$1)
 call hardware_io_port_config_direction(1,$7)

 #Initialize the display
 call hardware_spi_transfer(0,11,"\x30\x30\x30\x39\x14\x56\x6d\x70\x0c\x06\x01")
 call hardware_io_port_write(1,$7,$3)

 #Get local BT address
 call system_address_get()(addr(0:6))

 t(0:1) = (addr(5:1)/$10) + 48 + ((addr(5:1)/$10)/10*7)
 t(1:1) = (addr(5:1)&$f) + 48 + ((addr(5:1)&$f)/10*7)
 t(2:1) = (addr(4:1)/$10) + 48 + ((addr(4:1)/$10)/10*7)
 t(3:1) = (addr(4:1)&$f) + 48 + ((addr(4:1)&$f)/10*7)
 t(4:1) = (addr(3:1)/$10) + 48 + ((addr(3:1)/$10)/10*7)
 t(5:1) = (addr(3:1)&$f) + 48 + ((addr(3:1)&$f)/10*7)
 t(6:1) = (addr(2:1)/$10) + 48 + ((addr(2:1)/$10)/10*7)
 t(7:1) = (addr(2:1)&$f) + 48 + ((addr(2:1)&$f)/10*7)
 t(8:1) = (addr(1:1)/$10) + 48 + ((addr(1:1)/$10)/10*7)
 t(9:1) = (addr(1:1)&$f) + 48 + ((addr(1:1)&$f)/10*7)
 t(10:1) = (addr(0:1)/$10)+ 48 + ((addr(0:1)/$10)/10*7)
 t(11:1) = (addr(0:1)&$f) + 48 + ((addr(0:1)&$f)/10*7)

 call hardware_spi_transfer(0,12,t(0:12))
end

6.11.2 UINT to ASCII

To display sensor readings in the display, integer values must be converted to ASCII. Currently there is no build-
in function for doing this in the BGScript, but the following function can be used to convert integers to ASCII:

a = (rh / 100)

b = (rh / 10) + (rh / -100 * 10)

c = rh + (rh / 10 * -10)

And as BGScript code:

Converting 3 digit integer to ASCII

dim data
dim string(3)

string(0:1) = (data / 100) + 48
string(1:1) = (data / 10) + (data / -100 * 10) + 48
string(2:1) = data + (data / 10 * -10) + 48

To present the string in the display of the evaluation kit please refer to DKBLE112 display initialization --
BGScript

It is also possible to convert an arbitrary integer (unsigned up to 31 bits wide) using a more dynamic procedure.
For example, this could be suitable for displaying network port information in Wi-Fi designs. The code below
demonstrates this:

 Silicon Labs Page of 53 55

Converting arbitrary unsigned integer (up to 31 bits wide) to ASCII

procedure to output ASCII-formatted integer (input range [0, 2147483647])
dim x_int_work(9)
dim x_int_out(11)
procedure print_uint31(endpoint, num)
 x_int_work(0:1) = "\x00"
 x_int_work(1:4) = num
 if x_int_work(1:4) = 0 then
 x_int_out(10 - x_int_work(0:1):1) = "0" # already zero, so just use it
 x_int_work(0:1) = x_int_work(0:1) + 1 # string length increment
 else
 while x_int_work(1:4) > 0
 x_int_work(5:4) = (x_int_work(1:4) / 10) * 10 # create "decimal mask" for diff calc
 x_int_out(10 - x_int_work(0:1):1) = x_int_work(1:4) - x_int_work(5:4) + $30 # next
digit
 x_int_work(0:1) = x_int_work(0:1) + 1 # string length increment
 x_int_work(1:4) = x_int_work(1:4) / 10 # shift next decimal place over
 end while
 end if
 call endpoint_send(endpoint, x_int_work(0:1), x_int_out(11 - x_int_work(0:1):x_int_work(0:1)))
end

example usage for UART1 (channel=0) on WF121
call print_uint31(0, 2147483647) # print number to UART1

Note that the " " call would need to be replaced with " " for BLE modules.endpoint_send system_endpoint_tx

 Silicon Labs Page of 54 55

1.

2.
3.

7 BGScript editors

This section contains different tips and tricks for editors and IDEs.

7.1 Notepad ++

Notepad++ is very flexible text editor for programming purposes. Application and documentation can be
downloaded from .http://notepad-plus-plus.org/

7.1.1 Syntax highlight for BGScript

Notepad++ doesn't currently contain syntax highlighting for BGScript by default. You can however download
syntax highlighting rules defined by Bluegiga.

Installing the BGScript syntax highlight rules into Notepad++ is easy:

 https://www.silabs.com/support/resources.p-wireless_bluetooth-low-energy_bluegiga-legacy-modules
Import the highlighting rules to Notepad++ : View->User-Defined Dialogue->Import.
When editing the code, enable syntax highlighting from : Language -> BGscript

Notepad ++: How to create your own Syntax Highlighting scheme

http://sourceforge.net/apps/mediawiki/notepad-plus/index.php?title=User_Defined_Languages

Download the syntax highlighting rules from

http://notepad-plus-plus.org/
https://www.bluegiga.com/en-US/products/bluetooth-4.0-modules/ble112-bluetooth--smart-module/documentation/
https://www.bluegiga.com/en-US/products/bluetooth-4.0-modules/ble112-bluetooth--smart-module/documentation/
http://sourceforge.net/apps/mediawiki/notepad-plus/index.php?title=User_Defined_Languages

IoT Portfolio

www.silabs.com/IoT
SW/HW

www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support and Community
community.silabs.com

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or

intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"

parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes

without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information.

Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or reliability reasons. Such changes will not alter the specifications or the
performance of the product. Silicon Labs shall have no liability for the consequences of use of the information supplied in this document. This document does not imply or expressly grant

any license to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any FDA Class III devices, applications for which FDA premarket

approval is required or Life Support Systems without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or

health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon

Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering
such weapons. Silicon Labs disclaims all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such

unauthorized applications.

Trademark Information

Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, ClockBuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,

EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®,
Gecko OS, Gecko OS Studio, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, Z-

Wave®, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a
registered trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc.

400 West Cesar Chavez
Austin, TX 78701

USA

http://www.silabs.com

Simplicity Studio

One-click access to MCU and

wireless tools, documentation,

software, source code libraries &

more. Available for Windows,

Mac and Linux!

	Version History
	Introduction
	What is BGScript?
	 BGScript Scripting Language
	BGScript vs. BGAPI

	BGScript Syntax
	Comments
	Variables and Values
	Values
	Variables
	Example

	Global Variables
	Constant Values
	Buffers
	Using Buffers with Expressions

	Strings
	Constant Strings

	Expressions
	Commands
	event <event_name> (<event_parameters>)
	if <expression> then [else] end if
	while <expression> end while
	call <command name>(<command parameters>..)[(response parameters)]
	let <variable> = <expression>
	return
	sfloat(mantissa, exponent)
	float(mantissa, exponent)
	memcpy(destination, source, length)
	memcmp(buffer1, buffer2, length)
	memset(buffer, value, length)

	Procedures
	Using multiple script files
	import
	export

	BGScript Limitations
	32-bit resolution
	Declaration required before use
	Reading internal temperature meter disabled IO interrupts
	Writing data to an endpoint, which is not read
	No interrupts on Port 2
	Performance
	RAM
	Flash
	Stack
	Interface drivers

	Debugging

	Example BGscripts -- BGScript manual
	Basics
	Catching system start-up
	Catching Bluetooth connection event
	Catching Bluetooth disconnection event

	Hardware interfaces
	ADC
	I2C
	GPIO
	 GPIO wake-up
	Writing GPIO logic states

	SPI
	Writing to SPI
	Reading from SPI

	 Generating PWM signals

	Timers
	Continuous timer generated interrupt -- BGscript
	Single timer generated interrupt -- BGscript

	USB and UART endpoints
	UART endpoint
	USB endpoint

	Attribute Protocol (ATT)
	Catching attribute write event

	Generic Attribute Profile (GATT)
	Changing device name
	Writing to local GATT database

	PS store
	Writing a PS keys
	Reading a PS keys

	Flash
	Erasing, Reading and Writing Flash

	Advanced scripting examples
	Catching IO events and exposing them in GATT

	Bluegiga Development Kit Specific Examples
	Display initialization
	FindMe demo
	Temperature and battery readings to display

	BGScript tricks
	HEX to ASCII
	UINT to ASCII

	BGScript editors
	Notepad ++
	Syntax highlight for BGScript

