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Social recommendation has achieved great success in many domains including e-commerce and location-based

social networks. Existingmethods usually explore the user-item interactions or user-user connections to predict

users’ preference behaviors. However, they usually learn both user and item representations in Euclidean

space, which has large limitations for exploring the latent hierarchical property in the data. In this paper, we

study a novel problem of hyperbolic social recommendation, where we aim to learn the compact but strong

representations for both users and items. Meanwhile, this work also addresses two critical domain-issues,

which are under-explored. First, users often make trade-off with multiple underlying aspect factors to make

decisions during their interactions with items. Second, users generally build connections with others in terms of

different aspects, which produces different influences with aspects in social network. To this end, we propose a

novel graph neural network (GNN) framework with multiple aspect learning, namely HyperSoRec. Specifically,

we first embed all users, items and aspects into hyperbolic space with superior representations to ensure their

hierarchical properties. Then, we adapt a GNN with novel multi-aspect message-passing-receiving mechanism

to capture different influences among users. Next, to characterize the multi-aspect interactions of users on

items, we propose an adaptive hyperbolic metric learning method by introducing learnable interactive relations

among different aspects. Finally, we utilize the hyperbolic translational distance to measure the plausibility in

each user-item pair for recommendation. Experimental results on two public datasets clearly demonstrate that

our HyperSoRec not only achieves significant improvement for recommendation performance but also shows

better representation ability in hyperbolic space with strong robustness and reliability.
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1 INTRODUCTION
It becomes more and more difficult for users nowadays lied in the situation of information explo-

sion to make decisions [32]. To alleviate this information overload, recommender systems play

a dominant role, which aims to provide users with personalized services by suggesting suitable

items (e.g., product) instead of letting them self-seeking. In recent years, they have become the

cornerstone for improving users’ experience in many applications, such as e-commerce [43, 59, 76],

location-based social network [35, 36], and tourism [40, 54], showing much proliferation.

In recommender systems, the key issue is to design an optimal algorithm that can predict users’

preferences on items, where it is necessary to learn good representations for both users and items

to describe their interactions [20]. Along this line, traditional methods explore the user-item inter-

actions by projecting both users and items into latent space with low-dimensional representations

considering their linear relationship [49, 56, 57] or non-linear relationship [16, 18, 20, 37]. Then, in-

spired by social theories indicating that users’ preferences are highly related to their social relations

(e.g., friends) [39, 46], many efforts have been devoted to exploiting users’ connections for social-

aware recommendation. Generally, they assume that a certain user’s preference can be affected

by her friends’ opinions or decisions, which leads to many typical methods by introducing some

social factors, such as social regularizations [24, 25, 44, 77, 83] and social features [7, 10, 55, 66, 68].

Recently, considering the fact that users’ influence may not only affect their local neighbors but

also propagate farther over the user-user connection network, research work further incorporate

the graph neural networks to capture the utility of this diffusion for social recommendation, such

as NGCF [69], GraphRec [11] and SocialGCN [72] and MCNE [67].

Though these methods have achieved great success, they usually learn both user and item

representations in Euclidean space, which cannot fully capture the beneficial latent structural

properties existing in relational user and item data. Specifically, first, user-item interaction graph

(the degree of each user or item node in the graph) generally follows the intrinsic power-law

distribution, which can often be traced back to hierarchical structures [50]. Second, user-user

connection network also exhibits an underlying tree-like structure, which demonstrates that the

number of users that may be connected to the central user grows exponentially. Therefore, there

exist a few users with large number of degrees but many ones lying in the boundary of network [50].

Therefore, both user-item interactions and user-user connections can form the 𝑛-ary trees, where

the number of nodes at distance 𝑟 from the root grows exponentially as 𝑛𝑟 . As many work suggest,

such tree-like data cannot be effectively embedded in Euclidean space but are capable of being

modeled in the more reliable hyperbolic space [15]. Let us take an intuitive example in Fig. 1 to

explain both spaces that helps understanding. In Fig. 1(a) with a two-dimensional Euclidean space,

given the radius 𝑟 , the space circumference and area can be calculated as 2𝜋𝑟 and 𝜋𝑟 2
respectively.

In such space, the number of nodes should grows polynomially to the center with respect to the

radius 𝑟 . Therefore, the general representation ability of Euclidean space can be summarized as

square-level, which may cause high distortion embeddings if we model the tree-like relational

user-item or user-user data [13, 42]. In contrast, in Fig. 1(b), given the radius 𝑟 , a two-dimensional

hyperbolic space (with curvature 𝜉2, 𝜉 > 0) has the circumference and area as 2𝜋 sinh(𝜉𝑟 ) and
2𝜋 (cosh(𝜉𝑟 ) − 1), respectively, both of which are exponential with respect to radius 𝑟 [13, 50].

Obviously, hyperbolic space has a stronger representation ability (with exponential-level) than

Euclidean space since it has a larger space given the same radius, and therefore, more nodes could be

embraced. As a result, such hyperbolic space is more suitable for modeling this relational user and

item data in social recommendation, which is prone to preserve the inherent tree-like hierarchical

relationship in same dimensional space compared to Euclidean space. Based on this intuition, in this

paper, we study a novel problem of hyperbolic social recommendation, where we aim to propose a
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(a) Euclidean Space (b) Hyperbolic Space

Fig. 1. An illustration example of a 2-dimensional Euclidean and hyperbolic space.

principled way for learning compact but strong user and item representations in hyperbolic space

to improve the recommendation performance.

Unfortunately, there are many technical and domain challenges along this line. First, compared

with commonly Euclidean space, it is even harder to learn user and item representations in hy-

perbolic space since we should simultaneously capture their hierarchy properties and similarity

relationship. Second, users’ interactions are usually influenced by different aspect factors. For

example, as shown in Fig. 2, “User a” considers three underlying aspect factors to select a mobile

phone including “Price”, “Brand” and “Appearance”, and then makes the final decision since she

focuses more on “Price” aspect. Therefore, it is a non-trivial problem to explore such multi-aspect

preference learning for user-item interactions in hyperbolic space. Third, in the user-user network,

social users usually build connections with multiple friends and adopt their opinions on different

aspects. For example, in Fig. 2, “user a” generally takes the advice from her “friend b” on the “Brand”

opinions of mobile phones but trust “friend c” more on “Price” comments. So how to distinguish

such differnt multi-aspect influences among user-user connections also bring us a critical challenge

for designing a hyperbolic social recommendation model in practice.

To address above challenges, we propose a novel graph neural network framework with multi-

aspect learning for hyperbolic social recommendation, namely HyperSoRec. Specifically, we first

embed users, items and aspects with compact but strong embeddings, which are prone to pre-

serve their inherent hierarchy properties in hyperbolic space, where we develop several specific

operations based on hyperboloid model to ensure the necessary vectorial transformations for

these representations. Then, we adapt a modified graph neural network framework with novel

multi-aspect message-passing-receiving mechanism to distinguish users’ influences with respect to

different underlying aspects during the social diffusion and propagation process over the user-user

network. Next, to characterize the effects of users’ preferences on items with different aspects, we

propose an adaptive hyperbolic metric learning method by introducing learnable interactive rela-

tions. At last, we calculate the plausibility score in hyperbolic space by using translational distance

for each user-item pair. We conduct extensive experiments on two public datasets for different

tasks. Experimental results not only demonstrate the significant recommendation performance

of HyperSoRec but also shows the better representation ability for users and items with strong

robustness and reliability in hyperbolic space. To the best of our knowledge, this is the first attempt

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:4 H. Wang et al.

Brand
Price

Appearance

User a

User b

User c

Influence

Interaction

Fig. 2. Multiple aspects illustration in user connections and behaviors. Different lines represent different
aspects. Brighter color means the higher effect.

to explore hyperbolic social recommendation considering both multi-aspect users’ influences and

item interactions simultaneously. In summary, the contributions of this article are as follows:

• In this paper, we propose a novel problem that learns compact but representative embeddings

of users and items in hyperbolic space for social recommendation, which could better maintain

the latent hierarchy properties between them.

• In order to address the multi-aspect users’ influence and item interaction problem, we design

a modified graph neural network with multi-aspect message-passing-receiving mechanism

in hyperbolic space to capture different users’ influences on multiple aspects, and propose a

hyperbolic metric learning method to characterize the multi-aspect interactions of users on

items by defining a learnable interactive relation for each specific user-item pair.

• Extensive experiments on public datasets have validated that HyperSoRec could outper-

form the state-of-the-art baselines with a significant margin. Besides, we further conduct

embedding visualization and several comparison experiments to intuitively illustrate the

effectiveness and robustness of HyperSoRec in hyperbolic space.

The rest of this paper is organized as follows. In Section 2, we introduce the related work. Then

we present some preliminaries of this work in Section 3 including our problem definition and some

basic knowledge. Next, Section 4 introduces technical parts of HyperSoRec model in detail and

Section 5 presents the experimental results. Finally, conclusions are given in Section 6.

2 RELATEDWORK
In this section, we summarize the related work into the following categories, i.e., traditional

recommendation, social-aware recommendation and hyperbolic learning.

2.1 Traditional Recommendation
Recommender system is a popular topic in information retrieval and data mining domain. which

has achieved great success in various applications, such as e-commerce [59, 76, 79], location-based

social network [35, 36, 78], tourism [14, 40, 54] and intelligent education [21, 84]. The primary

goal of it is to design an optimal algorithm that can recommend the best items to users instead of

letting them self-seeking. Traditionally, research work aim to explore the user-item interactions

for recommendation based on users’ explicit feedback (e.g., rating) [59] or implicit feedback (e.g.,

click) [9, 57]. Among them, factorization models play the dominant role in the earlier time, which

project users and items into latent space for describing user-item preference relationships [49, 56].

For example, Rendle et la. [57] proposed a BPR model to learn the relative preference of a user over

pairs of items. Factorization Machines (FM) were proposed to model the higher-order user-item
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relationships considering rich side features [56]. Despite achieving great success, these models just

capture user-item interactions with linear relationship (i.e., inner product), which may ignore the

utility of complex user-item interactive relationship in practice.

Recently, inspired by remarkable representation performance of deep learning in various domain,

such as computer vision [8] and nature language processing [47], researchers have attempted to

utilize neural network architectures for recommender system [16, 18, 20, 37]. For example, He et

al. [20] presented a neural collaborative filtering (NCF) model to explore the non-linear complicated

user-item relationships combined with matrix factorization and feed forward neural network.

One step further, NFM [18] and xDeepFM [37] were proposed to improve the recommendation

performance by considering higher-order feature interactions and explicit-implicit feature interac-

tions, respectively. Moreover, to enhance the ability of feature selection in user-item latent space,

many recent work designed neural attention mechanisms to measure the feature importance for

recommendation, such as AFM [74] and LRML [63].

2.2 Social Recommendation
Besides user-item interactions, many social scientists indicate that users’ preferences are highly

related to their social relations (e.g., friend, follow), which motivates many efforts that exploit users’

social connections for improving the recommendation performance [46]. Generally, they assume

that a user’s preference can be affected by her neighbor friends’ opinions and decisions in the social

network. Along this line, on one hand, some work empirically design some social regularizations

controlling that similar users share similar preferences in the factorization models [24, 25, 44, 77, 83].

For example, TrustMF [77] and ContextMF [25] consider the utility of social context and mutual

trust to measure the influences between users with each other, respectively. On the other hand,

a popular fashion suggests to incorporate the utility of social network for recommendations in

deep learning models, where the users’ relations can be viewed as a kind of beneficial auxiliary

explicit information describing the relationships between user-user and user-item in the high-level

embedding space [7, 62, 68]. Moreover, to capture the multi-aspect effect between social users,

Chen et al. [7] proposed to use memory network with attention mechanism for the social-aware

recommendation. These models directly explore the utility of first-order local neighbors’ influences

for social users in the domain.

Considering the fact that users’ social influences may not only affect their local neighbors but also

propagate farther over the user-user connection network, researchers have noticed the potentials of

using graph neural networks for social recommendations [67, 69, 72, 80]. Generally, such methods

treat the user-item interactions and user-user social network as the principled graph structure,

where users or items can be viewed as nodes, and then leverage the graph neural network (GNN) [60]

or graph convolution network (GCN) [28] to model the message passing and diffusion of social users

over the network to generate the node embedding. For example, Fan et al [11] proposed a GraphRec

model to capture the interactions and opinions in the user-item graph. Wu et al. [71, 72] designed

SocialGCN and DiffNet++ architecture for modeling the social diffusion over the user-user graph. To

further improve the performance of graph neural network adopted in recommendation problems,

ESFR [81] incorporated the adversarial strategy with it, and LightGCN [19] only retained the

graph convolution operation and discarded the feature transformations and non-linear activation.

Considering the different-type social relationship, Xu et al. [75] proposed a relation-aware GCN

model to distinguish the different connection relationship between social users, andWang et al. [67]

designed a conditional GNN for learning multiple similarities between users in both user-item and

user-user graph for social recommendation. Different from them, we focus on the different aspects

implied in a single relationship among users’ connections.
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In summary, existing methods usually model users and items in Euclidean space, where the

learned representations are limited for capturing latent hierarchical properties. In this work, we

target at learning both user and item representations in hyperbolic space, where we hope to keep

such properties of both user-user connections and user-item interactions in social recommendations.

2.3 Hyperbolic Learning
Hyperbolic geometry learning is a kind of attractive topic which targets at learning representation of

relational data to capture the inherent hierarchical structure [13, 30]. It can describe an embedding

space with exponential-level representation ability, where a two-dimensional hyperbolic space

(with curvature 𝜉2, 𝜉 > 0), as an example, has the circumference and area of radius 𝑟 as 2𝜋 sinh(𝜉𝑟 )
and 2𝜋 (cosh(𝜉𝑟 ) − 1), respectively, both of which are exponential with respect to radius 𝑟 [50].

Compared to the square-level Euclidean space (with the circumference 2𝜋𝑟 and area 𝜋𝑟 2
, with

respect to radius 𝑟 ), hyperbolic space owns stronger representation ability since it is capable of

containing more points in the space with same dimensions [4]. In the literature, there are many

popular models describing hyperbolic space as a Riemannian manifold[38], such as Poincaré ball

model, Hyperboloid model[30] and Beltrami-Klein model [50, 58]. Readers who are interested in

more details can refer to the corresponding works.

In the real world, there exist many relational data including biological protein graph [45], social

network [77], and word frequencies [50], etc. Specifically, such relational data can be approxi-

mated with tree-like structures (𝑛-ary trees), where the number of nodes at distance 𝑟 from the

root grows exponentially (as 𝑛𝑟 ), which can be effectively and smoothly modeled in hyperbolic

space [15]. Holding with such strong representation ability, researchers have explored the po-

tentials of hyperbolic space for many applications in different domain, like computer vision [15],

natural language processing [50] and graph learning [6], etc, showing its effectiveness for learning

hierarchical structures of complex relational data. For example, Gulcehre et al [15] proposed a

hyperbolic attention network for many NLP tasks including visual question answering and machine

translation. Chami et al. [6] explored an effective way to embed graph in the hyperbolic space.

Recently, noticing the potentials of its ability for learning user-item complex interactions, some

researchers have attempted to incorporate hyperbolic learning for recommender systems, such

as [5, 12, 48, 61, 64, 65]. Based on Poincaré metric [13], [64], [65], and [12] embed users and items

into hyperbolic space for recommending the items or next POI. Moreover, Schmeier et al [61]

proposed a parametric empirical Bayes approach to estimate the link reliability between entities,

and Mirvakhabova et al [48] adopted the Poincaré model with the variation auto-encoder for topk

recommendation problem. Different from them, to the best of our knowledge, we are the first to

introduce the hyperbolic space into social recommendation problem with GNN framework.

Our work improves such studies for social recommendations as follows. First, we propose a

general hyperbolic framework by a principled way to learn user and item representations, where

the latent hierarchy properties of both user-user connections and user-item interactions can be

captured simultaneously. Second, since users can connect with each other and interact with items

by multiple latent aspects, we explore both multi-aspect user influences and item interactions in

hyperbolic space for social-aware recommendation.

3 PRELIMINARIES
In this section, we first formally present our problem of hyperbolic social recommendation. Then

we introduce some basic knowledge including hyperboloid model and graph neural network in

order to better understand our work.
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3.1 Problem Definition
In the social platforms, there are a set of users 𝑈 = {𝑢1, 𝑢2, ..., 𝑢 |𝑈 |} and a set of items 𝑉 =

{𝑣1, 𝑣2, ..., 𝑣 |𝑉 |}, where |𝑈 | and |𝑉 | are the number of users and items respectively. Users often

perform two kinds of activities including interacting with items and connecting with other users.

Generally speaking, in different platforms, users show different interactions with items, e.g., users

can watch/rate movies in Netflx or click/buy a clothes in Taobao [57]. Meanwhile, users can

build different connections with each other, e.g., users can trust others in Epinions or follow

others in Weibo [24]. Without loss of generality, we record the user-item interactions as a matrix

𝑅 ∈ R |𝑈 |× |𝑉 |
that reflects the users’ preferences on items. If user 𝑢𝑖 have interacted with item 𝑣 𝑗 ,

the corresponding matrix element value 𝑅𝑖, 𝑗=1, otherwise 𝑅𝑖, 𝑗=0. Besides, we denote user-user

connections 𝐸 = {𝑒𝑎,𝑏} |𝑈 |
𝑎,𝑏=1

as the social relationship of graph 𝐺 = (𝑈 , 𝐸). If user 𝑢𝑎 and 𝑢𝑏 are

linked, the value of edge 𝑒𝑎𝑏 = 1, otherwise 𝑒𝑎𝑏 = 0. As mentioned in Section 1, there exists

latent hierarchy properties both in the user-item interaction matrix and user-user social graph,

respectively. Therefore, it is necessary to jointly learn such latent hierarchical properties of users’

influence and preference relationship for social recommendation in hyperbolic space. Formally, we

define our hyperbolic social recommendation problem as follows:

Definition 1. (Hyperbolic Social Recommendation). Given the user-item interaction matrix 𝑅
and social relationship graph𝐺 , we aim to learn a function: 𝑓 (𝑅,𝐺) → 𝑅 to predict the missing value
in 𝑅, where the function 𝑓 (𝑅,𝐺) should measure the similarity of users and items in hyperbolic space.

3.2 Hyperboloid Model
In this section, we will briefly introduce some basic concepts of hyperboloid model (also named

Lorentz model), which is necessary for our work. This is the basis preliminary for describing the

necessary hyperbolic space that we will use [42, 51].

Specifically, we should first introduce the basic process of Lorentzian inner product ⟨·, ·⟩𝐿 for

two vectors x, y ∈ R𝑛+1
, which is defined as follows:

⟨x, y⟩𝐿 = −x0y0 +
𝑛∑︁
𝑖=1

x𝑛y𝑛 . (1)

Then the hyperboloidmodelwhich describes an n-dimensional hyperbolic space can be defined

as a Riemannian manifold (H𝑛, 𝑔H𝑥 ), where notation H𝑛 = {x ∈ R𝑛+1
: ⟨x, x⟩𝐿 = −1, x0 > 0} denotes

the upper sheet of a two-sheeted n-dimensional hyperboloid
1
, and 𝑔H𝑥 = diag( [−1, 1, ..., 1]) is a

positive-definite Riemannian metric tensor, which can calculate the length and angle between

tangent vectors on the manifold[4, 58]. Without loss of generality, in the following, we use H𝑛 to

represent our hyperbolic space for simplification. The shortest path between two points in this

hyperbolic space is defined as a geodesic. It can be seen as the generalization of a straight-line in

Euclidean space [51]. Specifically, the induced distance function of two points (x, y) derived from

the geodesic between them is defined as:

𝑑𝐿 (x, y) = arcosh(−⟨x, y⟩𝐿) . (2)

Furthermore, for a certain point x ∈ H𝑛 in a hyperbolic space, we can define its corresponding tan-
gent space T𝑥H𝑛 = {v ∈ R𝑑+1

: ⟨v, x⟩𝐿 = 0} on the manifold as the first-order linear approximation

of H𝑛 around point x. Then we can utilize the exponential and logarithmic map operations [13]

to map points between tangent space and hyperbolic space. Formally, both mapping operations,

1
Here we consider ⟨x, x⟩𝐿 = −1 and explore the trainable curvature as further work.
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Table 1. The key mathematical notations.

Notation Description

H𝑑 a hyperbolic space H𝑑 of dimension 𝑑

𝑈 E ∈ R |𝑈 |×𝑑
the user embeddings in the Euclidean space of dimension 𝑑

𝑉 E ∈ R |𝑉 |×𝑑
the item embeddings in the Euclidean space of dimension 𝑑

𝑆𝑟 = {𝑟E𝑚 ∈ R𝑑 |𝑚 ∈ 1, ..., 𝑀} a set of aspect embeddings in the Euclidean space of dimension 𝑑

𝑈 0,H ∈ H𝑑 the user embeddings in the hyperbolic space of dimension 𝑑

𝑉H ∈ H𝑑 the item embeddings in the hyperbolic space of dimension 𝑑

𝑆H𝑟 = {𝑟H𝑚 ∈ H𝑑 |𝑚 = 1, .., 𝑀} a set of aspect embeddings in the hyperbolic space of dimension 𝑑

T𝑜H𝑑 the tangent space at origin 𝑜 with dimension 𝑑

𝐿 the layer number of graph neural network

𝑀 the number of aspects

i.e., can be defined as:

T𝑥H𝑛 → H𝑛 := expx (v) = cosh(∥v∥𝐿)x + sinh(∥v∥𝐿)
v

∥v∥𝐿
, (3)

H𝑛 → T𝑥H𝑛 := logx (y) =
arcosh(−⟨x, y⟩L)√︃

⟨x, y⟩2

𝐿
− 1

(
y + ⟨x, y⟩𝐿x

)
, (4)

where ∥v∥𝐿 =
√︁
⟨v, v⟩𝐿 is the norm of vector. Specifically, exponential map expx (v) projects a

tangent vector v ∈ T𝑥H𝑛 at point x’s tangent space into hyperbolic spaceH𝑛 , and logarithmicmap
logx (y) is the reverse projection operation to transform a vector at point y ∈ H𝑛 in hyperbolic space

into the corresponding point x’s tangent space T𝑥H𝑛 . Based on such exponential and logarithmic

maps, several operations in Euclidean space can be achieved in hyperbolic space [6, 13, 42], where

the details will be discussed in Section 4. Besides, there is another important mapping operation, i.e.,

parallel transport, which is a generalization of translation in Riemannian geometry. It transports

a tangent vector v ∈ T𝑥H𝑛 in point x’s tangent space to the tangent space T𝑦H𝑛 of another point y,
which is defined as follows:

𝑃x→y (v) = v −
⟨logx (y), v⟩𝐿
𝑑𝐿 (x, y)2

(
logx (y) + logy (x)

)
. (5)

Please note that in hyperbolic geometry, there exist many equivalent models of hyperbolic spaces

such as Poincaré ball model and Beltrami-Klein model [50, 58]. However, designing deep hyperbolic

method based on such models may cause normally compound numerical issues since it needs to

apply multiple exponential and logarithmic maps. To avoid such issue, in this work, we adopt the

hyperboloid model to make it easier to optimize our model parameters. Readers who are interested

in the hyperboloid model can refer to [30, 58] for more detailed discussions.

3.3 Graph Neural Network
In recent years, graph neural network (GNN) is a kind of hot technique, which has attracted a lot

of attentions from both academia and industry, because it can effectively capture the structure

information of graph to learn better node embeddings [17, 28, 31]. Generally, GNN produces several

graph layers with the message-passing-receiving mechanism, which can iteratively aggregating

neighbors’ information, so as to embed each node with a low-dimensional vector. Specifically,

given a graph𝐺 = (𝑈 , 𝐸), the single-layer network contains two necessary operations, i.e., message
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Fig. 3. HyperSoRec framework with multiple aspects for hyperbolic social recommendation.

passing (𝑣 → 𝑒) and message receiving (𝑒 → 𝑣), which are defined as follows:

𝑣 → 𝑒 : ℎ𝑙𝑖 =𝑊 𝑙𝑥𝑙−1

𝑖 + 𝑏𝑙 , (6)

𝑒 → 𝑣 : 𝑥𝑙𝑖 = 𝜎 (ℎ𝑙𝑖 +
∑︁

𝑗 ∈N(𝑖)
𝑎𝑖 𝑗ℎ

𝑙
𝑗 ), (7)

where𝑊 𝑙
and 𝑏𝑙 are the weight and bias parameters at layer 𝑙 , N(𝑖) = { 𝑗 : (𝑖, 𝑗 ∈ 𝐸)} ∪ {𝑖} is the

a set of neighbors of node 𝑣𝑖 , notation 𝑎𝑖 𝑗 denotes the weight relationship between node 𝑣𝑖 and

node 𝑣 𝑗 , and 𝜎 (·) is a non-linear activation function, e.g., Sigmoid function and ReLU function [1].

Through Eq. (6) and Eq. (7), the node 𝑣𝑖 first sends its message ℎ𝑙𝑖 to its surrounding neighbors, and

receives the incoming messages to update its embedding vector 𝑥𝑙𝑖 in the next layer. By further

stacking multiple layers to perform several message-passing-receiving operations, we can capture

the high-order structural information of graph for generating the final node representations, where

the message of nodes can be iteratively propagated over the network. In this work, our model

improves this typical message-passing-receiving mechanism, in order to capture the multi-aspect

influences among users in hyperbolic space. We will discuss the technical details in Section 4.3.

4 HYPERSOREC FRAMEWORK
In this section, we first briefly illustrate the framework overview of our proposedmodel HyperSoRec.

Then we introduce the technical details of each part. Finally, we present how to optimize model

parameters in hyperbolic space.
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4.1 Framework Overview
In this paper, we propose a novel graph neural network framework with multi-aspect learning for

hyperbolic social recommendation, namely HyperSoRec. Fig. 3 presents its architecture, which

mainly consists of three components, i.e., Hyperbolic Mapping, Multi-aspect User Influence Layer
andMulti-aspect Item Interaction Layer. Specifically, we first embed users, items along with multiple

aspects in a low-dimensional Euclidean space, and project them into a hyperbolic space. Then, we

design a graph neural network with novel multi-aspect message-passing-receiving mechanism in

hyperbolic space, in order to capture the different influences of users on multiple aspects. Further-

more, we propose a novel hyperbolic metric learning method by introducing attention network

for characterizing the multi-aspect interactions of users on items, so as to obtain the learnable

relations with respect to specific user-item pairs. At last, we utilize the translational distance in

hyperbolic space to calculate the plausibility score of users’ preference for recommendation. In the

following, we will elaborate the technical details of each component.

4.2 Hyperbolic Embedding Mapping
First of all, given the user-item interaction matrix 𝑅 and user-user social graph 𝐺 , the Mapping
Layer (Fig. 3 (a)) aims to project all Euclidean embeddings of users and items into a hyperbolic

space based on hyperboloid model, in order to preserve latent hierarchical properties between

them. Specifically, for all users and items, we first project them into a Euclidean space, which

are denoted as two embedding matrices, i.e., user Euclidean embedding matrix 𝑈 0,E ∈ R |𝑈 |×𝑑0

and item Euclidean embedding matrix 𝑉 E ∈ R |𝑉 |×𝑑0
, where 𝑑0 is the dimension of embedding

vector. Meanwhile, we assume there exist𝑀 aspects among user-user connections and user-item

interactions that do have effects, and also embed them in the same space with aspect Euclidean

embeddings 𝑆𝑟 = {𝑟E𝑚 ∈ R𝑑0 |𝑚 ∈ 1, ..., 𝑀}, where notation 𝑀 is the number of aspects. After all

initializations, we transform all these Euclidean embeddings into the tangent space T𝑜H𝑑0
of origin

𝑜 := {1, 0, ..., 0} ∈ H𝑑0
in 𝑑0-dimensional hyperbolic space. Specifically, for a Euclidean embedding

𝑥E (of each user, item or aspect), such process of transformation operation is described as follows:

ProjT𝑜H𝑑0
(𝑥E) = (0, 𝑥E), (8)

where the 𝑥E is the original vector representation of each user, item or aspect 𝑥 in Euclidean space.

First of all, in Eq. (8), we add an additional dimension with a value of 0 to obtain the projected

Euclidean embeddings (0, 𝑥E) in tangent space at origin 𝑜 , which satisfies the requirement that

⟨(0, 𝑥E), 𝑜⟩𝐿 = 0. Then we can utilize exponential map (Eq. (3)) at origin 𝑜 to map this projected

Euclidean embedding (0, 𝑥E) into the hyperbolic embedding 𝑥H in hyperboloid model as follows:
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xH = expo
(
(0, xE)

)
=
(
cosh(∥xE∥2), sinh(∥xE∥2)

xE

∥xE∥2

)
. (9)

According to these operations, we can map all users, items and aspects to obtain the corresponding

hyperbolic embeddings: 𝑈 0,H ∈ H𝑑0
, 𝑉H ∈ H𝑑0

and 𝑆H𝑟 = {𝑟H𝑚 ∈ H𝑑0 |𝑚 = 1, .., 𝑀}. The hyperbolic
mappling process is illustrated in Fig. 4.

Particularly, in practical scenarios, the aspects can be defined as users’ profiles (e.g., gender,

age), items’ attributes (e.g. category, brand) and some other factors (e.g., price, appearance), which

are formalized with an inductive problem under our framework. (Please note that exploring such

induction is not the main focus of this work, where we will leave it in the future.)

Through the Hyperbolic Mapping layer, we can obtain compact but representative embeddings for

users, items and aspects in hyperbolic space, so as to maintain their latent hierarchical properties

between them as suggested by [13]. We will further discuss this in later Section 5.3.2.

4.3 Modeling Multi-aspect User Influences
After the Mapping Layer, now we should deal with the problem of how to model users’ influence

propagation among their social connections. As shown in Fig. 2, users usually build connections

with different friends and adopt their opinions in terms of different aspects (e.g., price, brand).

Therefore, we propose a graph neural network (𝐿 graph layers) with novel multi-aspect message-

passing-receiving mechanism in hyperbolic space to capture such differnt multi-aspect influences

among users during propagation process (Fig. 3 (b)). Here, we still meet a technical challenge that

the traditional hyperboloid model does not define the necessary processes as similar as Euclidean

vectorial operations, like vector multiplication and addition, etc. Therefore, we cannot directly apply

the hyperboloid model in our HyperSoRec. To address this issue, we develop and implement the

similar vectorial operations by using the exponential and logarithmic maps (Eq. (3), Eq. (4)) inspired

by previous work [13, 42]. Specifically, Fig. 5 presents the detailed technique of our proposed

multi-aspect message-passing-receiving mechanism, which consists of two necessary processes,

i.e., multi-aspect message passing and multi-aspect message receiving.

4.3.1 Multi-aspect Message Passing. Different from traditional message passing Eq. (6), our multi-

aspect message passing process makes an assumption, that a certain user would have different

influences on the surrounding neighbors with respect to different aspects. Therefore, it needs to
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distinguish and quantify the messages on different aspects in this process. Specifically, at 𝑙 layer of

HyperSoRec, given a certain aspect𝑚 of user 𝑖 , we define a set of aspect-specific parameters for it

to obtain its message representation h𝑙,H
𝑖 |𝑚 on𝑚-th aspect to be passed to user 𝑖’ neighbors, which is

defined as follows:

h𝑙,H
𝑖 |𝑚 =𝑊 𝑙,E

𝑚 ⊗ u𝑙−1,H
𝑖

⊕ b𝑙,E𝑚 , (10)

where u𝑙−1,H
𝑖

∈ H𝑑𝑙−1
is hyperbolic embedding of user 𝑖 at previous layer 𝑙 −1, matrix𝑊

𝑙,E
𝑚 ∈ R𝑑𝑙−1×𝑑𝑙

and vector b𝑙,E𝑚 ∈ R𝑑𝑙 are Euclidean parameters with respect to𝑚-th aspect.

In Eq. (10), please note that operations ⊗ and ⊕ respectively represent matrix vector multiplication

and bias addition in hyperbolic space, which need be defined and implemented in this work.

Specifically, for the multiplication implementation: ⊗, we first utilize the logarithmic map operation

(log𝑜 (·), Eq. (4)) to project the hyperbolic embedding u𝑙−1,H
𝑖

into the tangent space T𝑜H𝑑𝑙−1
of origin

𝑜 , and then perform matrix vector multiplication in this Euclidean tangent space. After that, we

further utilize the exponential map operation (exp𝑜 (·), Eq. (3)) to transform it into a new hyperbolic

embedding t𝑙,H
𝑖 |𝑚 ∈ H𝑑𝑙 , this process is described as follows:

t𝑙,H
𝑖 |𝑚 =𝑊 𝑙,E

𝑚 ⊗ u𝑙−1,H
𝑖

:= expo (𝑊 𝑙,E
𝑚 logo (u

𝑙−1,H
𝑖

)). (11)

It’s worth noting that log𝑜 (·) map is processed in the hyperbolic space H𝑑𝑙−1
of previous layer 𝑙 − 1,

but the exp𝑜 (·) map is processed in the next layer 𝑙 ’s hyperbolic space H𝑑𝑙 .
Next, for the bias addition operation: ⊕, we build on the derivation from previous work [13, 42].

We also first define the Euclidean parameter b𝑙,E𝑚 as the vector in tangent space T𝑜H𝑑𝑙 of origin 𝑜 .

Then we parallel transport (Eq. (5)) it to another tangent vector space of the target point t𝑙,H
𝑖 |𝑚 , and

then utilize exponential map operation (exp(·), Eq. (3)) to bring this point back into the hyperbolic

space H𝑑𝑙 , which is defined as follows:

h𝑙,H
𝑖 |𝑚 = t𝑙,H

𝑖 |𝑚 ⊕ b𝑙,E𝑚 := expt𝑙,H
𝑖 |𝑚

(𝑃o→t𝑙,H
𝑖 |𝑚

(b𝑙,E𝑚 )), (12)

where 𝑃o→t𝑙,H
𝑖 |𝑚

(·) is the definition of parallel transport from tangent space T𝑜H𝑑𝑙 of origin 𝑜 to

another tangent space Tt𝑙,H
𝑖 |𝑚
H𝑑𝑙 of point t𝑙,H

𝑖 |𝑚 in the hyperbolic space H𝑑𝑙 .

Finally, through Eq. (11) and Eq. (12), we can obtain multiple message passing representations

{h𝑙,H
𝑖 |1 , ..., h

𝑙,H
𝑖 |𝑀 } on different aspects for user 𝑖 at a specific layer 𝑙 of HyperSoRec.

4.3.2 Multi-aspect Message Receiving. Similarly, our multi-aspect message receiving further

assumes that a user would receive the messages from her neighbors’ friends on different aspects,

which is also superior to traditional message receiving mechanism Eq. (6). Therefore, we need

to quantify how much she could update the information from her neighbors on each aspect in

hyperbolic space.Mathematically, for a certain user 𝑖 , we first define her neighbor setN(𝑖) consisting
of her sampled neighbors (with a fixed size) and herself. We will make detailed discussion about

the number of neighbor set in the experiment Section 5.3.2. Then, we can update her hyperbolic

embedding u𝑙,H
𝑖 |𝑚 about aspect𝑚 at layer 𝑙 as:

u𝑙,H
𝑖 |𝑚 = AGGR

𝑙
𝑚 (𝑖) := exph𝑙,H

𝑖 |𝑚

(
𝜎

( ∑︁
𝑗 ∈N(𝑖)

𝑎𝑙(𝑖, 𝑗) |𝑚loghl,Hi|m
(h𝑙,H

𝑗 |𝑚)
))
, (13)

where h𝑙,H
𝑗 |𝑚 is the hyperbolic message representation of her neighbor 𝑗 on aspect𝑚 at layer 𝑙 by

Eq.( 10). Value 𝑎𝑙(𝑖, 𝑗) |𝑚 means the corresponding influence weight of neighbor 𝑗 on𝑚-th aspect.
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In Eq. (13), by utilizing the logarithmic map operation (log(·), Eq. (4)) to project all the passing

message representation h𝑙,H
𝑗 |𝑚 of neighbor 𝑗 on𝑚-th aspect into the same tangent space Th𝑙,H

𝑖 |𝑚
H𝑑𝑙 of

current point h𝑙,H
𝑖 |𝑚 , we can make a better approximation in Euclidean space for hyperbolic space to

achieve lower distortion [6, 13]. Then in this tangent space, we accumulate the passing message

on𝑚-th aspect from all neighbors for user 𝑖 according to the weight scores 𝑎𝑙(𝑖, 𝑗) |𝑚 , and utilize the

non-linear activation function 𝜎 (𝑥) = ReLU(𝑥) =𝑚𝑎𝑥 (0, 𝑥) to update the representation of user

node 𝑖 . Furthermore, we perform the exponential map operation (exp(·), Eq. (3)) to transform it

back to the hyperbolic space, in order to obtain her updated hyperbolic embedding u𝑙,H
𝑖 |𝑚 on𝑚-th

aspect at next layer 𝑙 .

Next, for the definition of 𝑎 (𝑖, 𝑗) |𝑚 , we design an attention network by softmax operation based

on the hyperbolic distance 𝑑𝐿 (·, ·) (Eq. (2)) between two user nodes 𝑖 and 𝑗 on aspect𝑚 as:

𝑎𝑙(𝑖, 𝑗) |𝑚 = SOFTMAX𝑗 ∈N(𝑖)
(
𝛽 · 𝑑𝐿 (h𝑙,H𝑖 |𝑚, h

𝑙,H
𝑗 |𝑚) + 𝛾

)
, (14)

where 𝛽 and 𝛾 are scalar Euclidean parameters. By Eq. (14), we can make the nodes closer in

hyperbolic space have more larger value. Then these neighbors with larger weights would produce

more influence with respect to aspect𝑚 for message receiving information on user 𝑖 .

By Eq. (13) and Eq. (14), we can obtain a set of user 𝑖’s hyperbolic embeddings {u𝑙,H
𝑖 |1 , ..., u

𝑙,H
𝑖 |𝑀 }

on all 𝑀 aspects. Then we conduct a simple cumulative pooling operation to aggregate these

representations for the final hyperbolic embedding u𝑙,H
𝑖

of user 𝑖 , which is described as follows:

u𝑙,H
𝑖

= POOLING
𝑙 (𝑖) = expo (

𝑀∑︁
𝑚=1

logo (u
𝑙,H
𝑖 |𝑚)) . (15)

In Eq. (15), since the addition operation in hyperbolic space does not satisfy the commutativity or

associativity [13, 82], we have to calculate these embeddings by order like

( (
(u𝑙,H

𝑖 |1 ⊕u
𝑙,H
𝑖 |2 ) ⊕u

𝑙,H
𝑖 |3

)
⊕ ...

)
.

Thus we utilize logarithmic and exponential maps (Eq. (4) and Eq. (3)) to conduct the cumulative

pooling operation in the tangent space T𝑜H𝑑𝑙 , in order to accelerate our algorithm. After that,

through such entire multi-aspect message receiving operation Eq.(13) and Eq.(15), we can capture

the different influences of neighbor nodes onmultiple aspects, and update the hyperbolic embedding

u𝑙,H
𝑖

of user 𝑖 at next layer 𝑙 .

Finally, through Eq. (10)∼Eq. (15), we are able to capture the users’ influences on𝑀 aspects in

immediate neighborhood. Then we can continuously stack 𝐿 layers to characterize the propagation

of surrounding 𝐿-order users’ influences (Fig. 3 (b)). At last, we denote the output hyperbolic

embedding of user 𝑖 at last layer 𝐿 as its final representation for simplicity, i.e., uH𝑖 (∈ H𝑑 ) = u𝐿,H
𝑖

.

4.4 Modeling Multi-aspect Item Interactions
Next, our goal is to estimate the preference relationship of user-item pairs. Please recall that in

Fig. 2, users usually consider multiple underlying aspects (e.g., price, brand) to make the final

decisions. Therefore, motivated by this intuition, we introduce a novel adaptive hyperbolic metric

learning method to calculate the plausibility of a specific user-item pair (𝑢, 𝑣), which is based on

the translational distance 𝑢 + 𝑟 ≈ 𝑣 , where 𝑟 denotes relational vector between user 𝑢 and item 𝑖 , by

considering the utility of such multi-aspect item interactions (Fig. 3 (c)).
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4.4.1 Multi-aspect Interactive Relation. For a certain user-item pair (𝑖, 𝑝), we first define its

multi-aspect interactive vector rH(𝑖,𝑝) as follows:

rH(𝑖,𝑝) = expo

( 𝑀∑︁
𝑚=1

𝑎 (𝑖,𝑝) |𝑚logo (rH𝑚)
)
, (16)

where rH𝑚 is the corresponding hyperbolic embedding of𝑚-th aspect and 𝑎 (𝑖,𝑝) |𝑚 is the weight score

of user 𝑖 to item 𝑝 on this aspect. Similarly, we utilize the logarithmic and exponential maps (Eq. (4)

and Eq. (3)) to aggregate hyperbolic embeddings from different aspects, and obtain the final specific

interactive vector rH(𝑖,𝑝) for each user-item pair (𝑖, 𝑝).
We also introduce an attention network to calculate weight score 𝑎 (𝑖,𝑝) |𝑚 in Eq. (16) as:

𝑎 (𝑖,𝑝) |𝑚 = MLP

( (
logo (uH𝑖 ) ⊙ logo (vH𝑝 )

)
∥logo (rH𝑚)

)
, (17)

where ⊙ denotes the element-wise operation, (·∥·) denotes the concatenation of vectors, MLP is the

Euclidean Multi-layer Perception. We utilize logarithmic map to project hyperbolic embeddings of

user 𝑖 , item 𝑝 and each aspect relation 𝑟H𝑚 into the Euclidean tangent space T𝑜H𝑑 . Then we conduct

the element-wise operation to obtain the combined embedding of user and item, and concatenate

it with the relation vector as the input of attention network. By Eq. (17), we can assign greater

weights to the aspects that are more important for users in the interactive relations, in order to

make the users and items more similar on the corresponding aspects.

4.4.2 Score Function. After obtaining the hyperbolic interaction relation rH(𝑖,𝑝) for each user-item

pair (𝑖, 𝑝), we then derive its score function with translation distance formula (Eq. (2)) in hyperbolic

space to obtain the final plausibility, which is defined as follows:

𝑠 (𝑖, 𝑝) = 𝑑𝐿
(
uH𝑖 ⊕ rH(𝑖,𝑝) , v

H
𝑝 ) = arcosh(−⟨uH𝑖 ⊕ rH(𝑖,𝑝) , v

H
𝑝 ⟩𝐿

)
, (18)

where vH𝑝 ∈ H𝑑 is hyperbolic embedding of item 𝑝 . Here, we first add user vector uH𝑖 and interactive

relation vector rH(𝑖,𝑝) to obtain the transitional embedding in hyperbolic space, and then calculate the

hyperbolic distance 𝑑𝐿
(
uH𝑖 ⊕ rH(𝑖,𝑝) , v

H
𝑝 ) between this translational embedding and item embedding

vH𝑝 , which is regarded as the plausibility score for the user-item pair (𝑖, 𝑝). It’s worth mentioning

that notation ⊕ is addition operation defined in hyperboloid model, so we need to first map the

hyperbolic embeddings uH𝑖 and rH(𝑖,𝑝) into the tangent space and utilize the same operation defined

in Eq. (12), so as to achieve the accumulation operation of them in hyperbolic space.

4.5 Model Learning
In this subsection, we will describe the details of model learning of HyperSoRec including objective

function, training optimization and model complexity.

4.5.1 Objective Function. As we focus on the implicit feedbacks of users, we utilize the widely-

used hinge loss [73, 80] to learn score function for model learning between users and items (Fig. 3),

which is illustrated as follows:

L(𝑖, 𝑝, 𝑞) =
∑︁

(𝑖,𝑝) ∈D

∑︁
(𝑖,𝑞)∉D

max

(
0, 𝜆 + 𝑠 (𝑖, 𝑝)2 − 𝑠 (𝑖, 𝑞)2

)
, (19)

whereD is the set of all user-item pairs, 𝑞 is the sampled negative item that user 𝑖 haven’t interacted,

and 𝜆 is the margin for separating the hyperbolic distance between the positive (𝑝) and negative

(𝑞) sample pairs. Please note that we utilize the same relation vector rH(𝑖,𝑝) for the negative sample

pair (𝑖, 𝑞), which is motivated by our empirical results that can achieve better performance and
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convergence of HyperSoRec. By optimizing the objective function Eq. (19), we can make the distance

between users and items in positive pair (𝑖, 𝑝) closer, and separate the distance in negative pairs

(𝑖, 𝑞) farther. Benefit from the characteristics of hyperbolic space, we can move a point to a certain

distance with a smaller force than Euclidean space [13, 50], which can make HyperSoRec better

learn the compact hyperbolic embeddings of users and items that are prone to preserve the latent

hierarchy properties among them.

4.5.2 Optimization. Please note that HyperSoRec contains both Euclidean parameters 𝜃E (like

𝑊
𝑙,E
𝑚 , b𝑙,E𝑚 , etc) and hyperbolic parameters 𝜃H (like uH𝑢 , vH𝑝 , rH𝑚 , etc), and therefore, we conduct the

different optimization methods for these two types of parameters. We derive their Euclidean

gradients ▽L(𝜃 ) for all the model parameters 𝜃 = {𝜃E, 𝜃H}. On one hand, for Euclidean parameters

𝜃E, we can directly use the stochastic gradient algorithm (SGD) [3] for optimization. On the

other hand, for hyperbolic parameters 𝜃H, we adopt the Riemannian stochastic gradient algorithm

(RSGD) [30] for optimization as:

𝜃H𝑡+1
= exp𝜃H

𝑡
(−𝜂 · gradL(𝜃H𝑡 )), (20)

where 𝜂 is learning rate, and gradL(𝜃H𝑡 ) is the gradient of hyperbolic parameter 𝜃H𝑡 defined in the

Riemannian manifold. In order to obtain it, we first multiply it’s Euclidean gradient ▽L(𝜃H𝑡 ) by
Lorentz metric 𝑔H𝑥 (defined in Section 3.2) to obtain the steepest descent direction h𝑡 , and then

project it into the corresponding tangent space of current parameter 𝜃H𝑡 to get the Riemannian

gradient, which is defined as follows:

gradL(𝜃H𝑡 ) = proj𝜃H
𝑡
(h𝑡 ) = h𝑡 + ⟨𝜃H𝑡 , h⟩𝐿𝜃H𝑡 . (21)

After that, we can combine the learning rate𝜂 with exponential map to obtain the updated hyperbolic

parameter 𝜃H𝑡+1
. In order to find a better optimal solution and accelerate the model convergence,

we adopt the Adam [27] and RAMSGrad [2] algorithms to optimize the Euclidean and hyperbolic

parameters in HyperSoRec, respectively.

4.5.3 Time Complexity. In Section 4.3, we can observe that the computational complexity of

generating hyperbolic embeddings for all users is very high. Although in hyperbolic space, we

can still adopt the standard mini-batch training [17, 67] for acceleration to alleviate this problem,

so as to apply HyperSoRec to the large-scale social networks. With this mini-batch setting, the

complexity of HyperSoRec is fixed at O(𝐶 𝐵 Π𝐿
𝑖=1

|N𝑖 |), where 𝐶 is the number of negative item

samples, 𝐵 is the number of nodes in each batch, 𝐿 is the layer number of our GNN , and |N𝑖 | is
the number of sampling neighbors in each layer. In general optimization situation, we often set

𝐿 = 2 to achieve satisfactory results. Such time complexity is acceptable. Thus HyperSoRec could

be applied to the real-world recommendation systems. More discussions of HyperSoRec model

settings can be found in Section 5.3.2.

In summary, our proposed HyperSoRec framework mainly has the following advantages. First,

it provides a principled way to learn compact but representative embeddings of users and items

for hyperbolic social recommendation, which could preserve their latent hierarchy properties in

hyperbolic space. Second, HyperSoRec holds a GNN with novel multi-aspect message-sending-

receiving mechanism in hyperbolic space to capture different users’ influences on multiple aspects.

Third, HyperRoRec incorporates a novel adaptive hyperbolic metric learning method to model

the multi-aspect item interactions for recommendation. Last but not least, all the Euclidean and

hyperbolic parameters inHyperSoRec are optimized simultaneously in a unified learning framework,

and could be applied to the large social networks under an end-to-end mini-batch training strategy.
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Table 2. Statistics of the Datasets.

Datasets #Users #Links Tasks #Items #Interactions

Ciao 4,321 121,408

Beauty 9,243 23,091

Book 12,409 21,105

Travel 11,899 20,857

Epinions 10,459 280,258

Game 6,804 30,417

Electronics 12,425 30,429

Travel 11,885 38,578

Yelp 17,237 143,765 / 38,342 204,448

5 EXPERIMENTS
In this section, we will conduct extensive experiments to evaluate the performance of HyperSoRec

framework. Specifically, we first describe the datasets and experimental setup (Section 5.1). Then,

we demonstrate the effectiveness of HyperSoRec compared with several baselines (Section 5.2). At

last, we provide detailed analyses about HyperSoRec (Section 5.3).

5.1 Experimental Dataset and Setup
5.1.1 Datasets. In the experiments, we use three publicly available datasets, i.e., Ciao, Epinions

2

and Yelp [72]. Specifically, Ciao and Epinions are two popular who-trust-whom online social

platforms, which both record two kinds of users’ behaviors. First, users can consume products

which belong to several different categories (e.g., “Book” in Ciao and “Game” in Epinions). Second,

users can browse others’ comments on products and then “trust” ones who write good comments,

which establishes the trust network among users. Moreover, Yelp is a well-known online location-

based social network, where users can make friends with each other and rate the restaurants that

they have consumed. For these datasets, we make the following assumptions in this paper: First,

users usually take advices from their trusted friends when consuming a product or restaurant.

Second, users may trust others or make friends with respect to different aspects, e.g., a user can

trust the one who usually makes plausible opinions on the “price” of products, but trusts another

who are familiar with products’ “brand”. Third, users generally consume products or rate positively

to restaurants with respect to different aspects as well, e.g., a user may buy a book since she like the

“author”. Therefore, it is necessary to combine both users’ behaviors with considering the multiple

aspects when generating the recommendations.

For Ciao and Epinions datasets, it worth mentioning that users’ consumption behaviors for

different categories may be related to different aspects. For example, we may consider the aspects

like “author” or “style” when choosing a “Book” but focus on the aspects like “distance” or “cost” for

“Travel”. Therefore, in order to avoid such confusion, we respectively select three representative

categories in both datasets, i.e., “Beauty”, “Book”, “Travel” in Ciao and “Game”, “Electronics”, “Travel”

in Epinions, and conduct the recommendation experiments on them as different tasks. In Yelp,

we do not split the data and use all users’ rating behaviors as one task. Moreover, to ensure the

reliability of experimental results, we filtered out the users that had less than 2 social links and 2

item records. The detailed statistics of all datasets after preprocessing are presented in Table 2.

5.1.2 Comparison Methods. To demonstrate the effectiveness of HyperSoRec, we select several

state-of-the-art methods from three perspectives. Specifically, we first choose two models only

considering user-item interactions for recommendation, i.e., BPR and LRML. Then we select two

2
https://www.cse.msu.edu/~tangjili/trust.html
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Table 3. Characteristics of all models.

Model

User-item Interaction User-user Influence Embedding Space

Consider? Multiple aspects? Consider? Multiple aspects? Euclidean Hyperbolic

BPR [57]

√ × × -

√ ×
LRML [63]

√ √ × -

√ ×
HyperBPR [64]

√ × × - × √

HyperML [65]

√ × × - × √

FM [56]

√ × √ × √ ×
NMF [20]

√ × √ × √ ×
GraphRec [11]

√ × √ √ √ ×
SocialGCN [72]

√ × √ √ √ ×
LightGCN [19]

√ × √ √ √ ×
HyperSoRec(E)

√ √ √ √ √ ×
HyperSoRec-I

√ √
(Average)

√ √
(Eq. (17)) × √

HyperSoRec-U
√ √

(Eq. (14))

√ √
(Average) × √

HyperSoRec
√ √ √ √ × √

hyperbolic models capturing the latent hierarchy properties existing in user-item interactions, i.e.,

HyperBPR and HyperML. We also introduce five typical social-aware algorithms incorporating

social connections for recommendation, i.e., FM, NMF, GraphRec, SocialGCN and LightGCN. The

details of them are as follows:

• BPR[57]: BPR is a typical latent factor method for modeling users’ implicit feedback on items.

It designs a pairwise raking function to learn the preferences of a user over pairs of items.

• LRML[63]: LRML employs a augmented memory module to learn the latent relations of

each user-item pair, and utilizes the metric learning method to optimize the model for

recommending items to users.

• HyperBPR[64]: HyperBPR designs the distance function based on Poincaré model to mea-

suring user-item pairs in a hyperbolic space, and takes use of the criterion in BPR model to

optimize recommendations.

• HyperML[65]: HyperML explores the metric learning in hyperbolic space based on M¥obius
gyrovector spaces of Poincaré model for personalized ranking recommendation.

• FM[56]: FM has shown strong performance for personalized recommendation, where higher-

order interactions of features are considered. For our problem, we utilize the adjacency matrix

of users’ social relationship as its own attribute features.

• NMF[20]: NMF utilizes the deep neural network to capture the higher-order user-item feature

interactions, along with matrix factorization to improve recommendation performance.

• GraphRec[11]: GraphRec is the latest graph neural network framework for social recom-

mendation, which jointly captures the interactions and opinions between users and items.

• SocialGCN[72]: SocialGCN is a state-of-the-art model with a layer-wise propagation struc-

ture to model the recursive dynamic users’ influences in social recommendation.

• LightGCN[19]: LightGCN is the most competitive graph-based model for social recommen-

dation recently. It only retains the essential convolution operations and abandons the feature

transformation and nonlinear activation in common graph neural networks.

Moreover, to highlight the effectiveness of each part in our HyperSoRec including hyperbolic

representation, multi-aspect user influence and multi-aspect item interaction, we introduce the

following variants of HyperSoRec as:
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• HyperSoRec(E): HyperSoRec(E) can be viewed as a simplified version of HyperSoRec, that

performs all operations and embeddings in Euclidean space. It still considers both multi-aspect

users’ influences and item interactions when generating recommendations.

• HyperSoRec-I: HyperSoRec-I is a reduced version of HyperSoRec. Here, we keep the same

multi-aspect user-user influence learning as HyperSoRec, but ignore the different multi-aspect

importances of user-item interaction learning. Specifically, we utilize an average method to

replace the weights calculated by the attention network in Eq. (17).

• HyperSoRec-U: HyperSoRec-U is another reduced version. We keep the same multi-aspect

user-item interaction learning as HyperSoRec, but regard the user-user influences on multiple

aspects as the same (averaging scores) instead of the attention weights calculated by Eq. (14) .

For better illustration, we summarize the characteristics of these models in Table 3.

5.1.3 Evaluation Protocols. We conduct recommendation experiments on Yelp and each task

of Ciao and Epinions datasets. For each task or dataset, to start up the experiments, we randomly

select 70% of users’ consumption data as training set, 10% as validation set, and the remaining

20% as test set. Then, we evaluate the ranking performance for the recommendation of all models,

i.e., we target at providing a ranking list with recommended products for each user [26, 33]. To

obtain more rigorous experiments results, as Krichene et al. [29] suggested, we replace the sampling

strategy used in previous work [34, 72], and regard all the items that the user has not interacted

with as the candidates, so as to alleviate the biased results. Furthermore, for the evaluation metric,

we selected two widely used top@K ranking metrics including Recall and NDCG. Besides, we

truncate the ranked list with different top@K values K=[5, 10, 20] for both metrics, and observe the

similar trends in these results. Therefore, we only report the experimental results of K=5 for better

illustration as the representative. Finally, we repeat each experiment 10 times independently and

report the average ranking results to ensure the reliability.

5.1.4 Parameter Setting. There are several hyper-parameters to be specified in HyperSoRec

framework. First, we set the number of graph network layer for our multi-aspect influence prop-

agation part (Section 4.3) as 𝐿=2, where the corresponding dimensions of each layer are defined

as [100, 50, 50], with the sampled neighbor sizes N(𝑖) of each layer are [20, 15]. Then we set the

dimension of item and aspect embeddings as 50 in accordance with user embeddings at the last

network layer. (We will make the detailed analyses to show the effectiveness of embedding size in

HyperSoRec in Section 5.3.2). Next, as for the attention network implementation in HyperSoRec,

we leverage 2 layer feed forward neural network for the calculation (Eq. (14) and Eq. (17)). At last,

We also make the grid search for the hinge loss parameter 𝜆 in Eq. (19) from the set [1.0, 2.0,..., 5.0]

and select the best one in the experiments of each task.

In training stage, there are two types of model parameters to be initialized in Euclidean and

Hyperbolic spaces respectively. Specifically, for the model parameters in Euclidean space, we

initialize them with a Gaussian distribution with mean 0 and standard deviation 0.01. Then for the

parameters in Hyperbolic space, we initialize them with a uniform distribution [-0.001, 0.001]. In

addition, we set the learning rate as 0.003 and mini-batch size as 64. We also use dropout (probability

value 0.3) to prevent HyperSoRec from overfitting.

In the following experiments, we implement HyperSoRec and all compared baselines by PyTorch.

The parameters of all comparsion methods are set to be the same as the original settings stated

in their papers and tuned to the best performance. To ensure the fairness, all the baselines and

variants of HyperSoRec are implemented with same embedding sizes. We run all the experiments

on a Linux server with four 2.0GHz Intel Xeon E5-2620 CPUs and a Tesla K80 GPU.
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Table 4. Recommendation performance results on all datasets with Recall@5 metric.

Datasets Ciao Epinions

Yelp

Tasks Beauty Book Travel Electronics Travel Game

BPR 0.0121 0.0258 0.0161 0.0135 0.0267 0.0534 0.0092

LRML 0.0128 0.0262 0.0166 0.0141 0.0284 0.0561 0.0094

HyperBPR 0.0135 0.0266 0.0172 0.0146 0.0272 0.0544 0.0089

HyperML 0.0138 0.0265 0.0177 0.0145 0.0269 0.0558 0.0090

FM 0.0168 0.0272 0.0184 0.0217 0.0356 0.0574 0.0101

NMF 0.0172 0.0280 0.0191 0.0224 0.03794 0.0587 0.0102

GraphRec 0.0176 0.0294 0.0201 0.0247 0.0402 0.0595 0.0108

SocialGCN 0.0176 0.0301 0.0206 0.0246 0.0392 0.0582 0.0113

LightGCN 0.0178 0.0311 0.0210 0.0251 0.0405 0.0594 0.0117

HyperSoRec 0.0185 0.0328 0.0216 0.0271 0.0427 0.0606 0.0126

5.2 Experimental Results
5.2.1 Recommendation Performance Comparison. Table 4 and Table 5 report the overall rec-

ommendation performance by ranking metrics on both datasets for each task or dataset. We can

conclude several observations as follows: First, HyperSoRec consistently achieves significant im-

provements for all recommendation tasks on both datasets, especially on the NDCG metric. It

demonstrates that HyperSoRec can better characterizes multi-aspect users’ influences and multi-

aspect item interactions in hyperbolic space for social-aware recommendation. Second, compared

with the typical models in Euclidean space (i.e., BPR and LRML), hyperbolic models (i.e., Hyper-

SoRec, HyperBPR, HyperML) perform better results. This proves that hyperbolic space is prone to

capture the latent hierarchy properties implied in user-item data, so as to effectively enhance repre-

sentation ability of the learned hyperbolic embeddings of users and items in a compact space. Third,

we notice that social-based models (HyperSoRec, FM, NMF, GraphRec, SocialGCN, LightGCN)

perform better than those (BPR, LRML, HyperBPR, HyperML) with just considering user-item

interactions. This phenomenon demonstrates that exploring users’ social connections into modeling

can help learn users’ preferences, so that benefits the recommendation performance. Last but not

least, compared with all social models, traditional models (NMF, FM) do not perform as well as

graph-based ones (SocialGCN, GraphRec, LightGCN), which proves the effectiveness of graph

neural network for capturing the utility of social influence propagation in user-user connections.

What’s more, HyperSoRec performs even better since it not only considers both multi-aspect

users’ influences and multi-aspect item interactions, but also leverages a more suitable hyperbolic

space for recommendation. In summary, all the results clearly show the significant performance of

HyperSoRec in the social-aware recommendation task.

5.2.2 Ablation Study. In order to highlight the effectiveness of each part in HyperSoRec, we

further present the recommendation performance results of it with three variants including Hyper-

SoRec(E), HyperSoRec-I and HyperSoRec-U on all tasks of Ciao and Epinions datasets in Table 6

and Table 7. From the figures, we can conclude the following observations. First, we find models

in hyperbolic space (HyperSoRec, HyperSoRec-I, HyperSoRec-U) perform better than Euclidean-

based variant HyperSoRec(E), especially on NDCG metric. It proves the effectiveness of hyperbolic

representation ability for learning latent hierarchal relationship existing in user-user connections

and user-item interactions. Second, we notice that HyperSoRec achieves better performance than

HyperSoRec-I on all datasets. This demonstrates that users’ preferences on multiple aspects are
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Table 5. Recommendation performance results on all datasets with NDCG@5 metric.

Datasets Ciao Epinions

Yelp

Tasks Beauty Book Travel Electronics Travel Game

BPR 0.0124 0.0210 0.0147 0.0105 0.0233 0.0464 0.0090

LRML 0.0139 0.0244 0.0142 0.0111 0.0238 0.0499 0.0092

HyperBPR 0.0204 0.0328 0.0224 0.0153 0.0367 0.0692 0.0115

HyperML 0.0205 0.0322 0.0235 0.0152 0.0366 0.0723 0.0118

FM 0.0141 0.0228 0.0162 0.0145 0.0300 0.0428 0.0095

NMF 0.0149 0.0225 0.0170 0.0137 0.0312 0.0467 0.0097

GraphRec 0.0156 0.0236 0.0171 0.0166 0.0332 0.0476 0.0105

SocialGCN 0.0154 0.0244 0.0173 0.0167 0.0319 0.0474 0.0110

LightGCN 0.0162 0.0299 0.0177 0.0160 0.0321 0.0471 0.0120

HyperSoRec 0.0260 0.0398 0.0330 0.0325 0.0525 0.0775 0.0153

Table 6. Recommendation performance results of HyperSoRec variants with Recall@5.(𝑝-value<4.38e-2)

Datasets Ciao Epinions

Tasks Beauty Book Travel Electronics Travel Game

HyperSoRec(E) 0.0179 0.0307 0.0209 0.0266 0.0409 0.0598

HyperSoRec-I 0.0182 0.0321 0.0214 0.0264 0.0411 0.0598

HyperSoRec-U 0.0184 0.0315 0.0212 0.0268 0.0418 0.0597

HyperSoRec 0.0185 0.0328 0.0216 0.0271 0.0427 0.0606

Table 7. Recommendation performance results of HyperSoRec variants with NDCG@5.(𝑝-value<2.08e-3)

Datasets Ciao Epinions

Tasks Beauty Book Travel Electronics Travel Game

HyperSoRec(E) 0.0154 0.0298 0.0179 0.0178 0.0341 0.0480

HyperSoRec-I 0.0249 0.0380 0.0311 0.0224 0.0521 0.0772

HyperSoRec-U 0.0255 0.0396 0.0327 0.0226 0.0519 0.0773

HyperSoRec 0.0260 0.0398 0.0330 0.0325 0.0525 0.0775

different, and therefore, HyperSoRec can further improve the model performance by taking into

account the unequal weights of multi-aspect users’ preferences with the attention network . Third,

compared with the variant HyperSoRec-U, HyperSoRec consistently gains the best results. This

evidence proves it is necessary to distinguish different influences of users on multiple aspects,

which can help achieve better recommendations based on different semantic social connections.

From all observations, we can reach out the agreement that HyperSoRec is an effective framework

for social-aware recommendation, which learns the representative embeddings of users and items in

the compact hyperbolic space, and jointly explores multi-aspect users’ influences and multi-aspect

item interactions.

5.3 Model Analysis
In this subsection, we discuss HyperSoRec from various perspectives including hyperbolic embed-

ding visualization, parameter sensitivity and multi-aspect attention illustration.
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Fig. 6. Hyperbolic Embedding Visualization: Top two figures illustrate the user and item representations in
hyperbolic space by HyperSoRec respectively. Bottom two figures are the user and item representations in
Euclidean space by HyperSoRec(E) respectively.

5.3.1 Hyperbolic Embedding Visualization. Here, we intuitively demonstrate the representation

ability of HyperSoRec capturing the latent hierarchical property in the data. Specifically, we ran-

domly sample 500 users and items on “Beauty” task in Ciao, and equivalently map their hyperbolic

embeddings to the Poincaré disk for visualization [42, 50], which can help us to observe the relative

relationship between embeddings more intuitively in two-dimensional space. We also introduce

the corresponding embedding results of the variant HyperSoRec(E) for comparison. Moreover, we

mark three points 𝐴, 𝐵 and 𝐶 from high to low according to the users’ degree or items’ frequency,

in order to better illustrate their correlation in the 2-D space. Fig. 6 shows all the embedding

visualizations. First, compared with HyperSoRec(E), just a few points of HyperSoRec are distributed

around the circle center while more points are distributed at the boundary. This demonstrates that

learning user-item representations in hyperbolic space is more suitable to keep hierarchical data

than Euclidean space. This means that a small number of users with more degrees (items with

higher frequency) should be closer to the center of embeddings, and vice versa for users with less
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Fig. 7. Result comparison of HyperSoRec with different aspect number𝑀 .

degrees (items with lower frequency). Second, we can observe the relative relationship among

three points “A”, “B” and “C” in HyperSoRec more specifically though Fig. 6(a) and Fig. 6(b). we

observe that in HyperSoRec, users with more degrees (items with higher frequency) (i.e., “A”) are

closer to the center of circle than the ones with less degrees (lower frequency) (i.e., “C”). Such phe-

nomenon indicates HyperSoRec could preserve the relative hierarchical relationship between users

(items), even in the low-dimensional representation space. This indicates the learned hyperbolic

embeddings in HyperSoRec has a parsimonious but stronger representation ability than the typical

Euclidean embeddings by HyperSoRec(E), since it can effectively capture and preserve the latent

hierarchy properties among users and items.

5.3.2 Parameter Sensitivity. We now investigate the effectiveness of three necessary model

parameters: (1) the number of aspects𝑀 in users’ influence and item interactions; (2) the embedding

size 𝑑 for user, item and aspect representations; (3) the sampled neighbor size N𝑖 in each layer.

Sensitivity of aspect number 𝑀 : As we mention in Section 1, users may connect with others

and consume items both with respect to different underlying aspects. We first evaluate such claim.

Specifically, in this part, we vary the aspect number in {1, 3, 5, 7, 9} and present the results on all

different tasks in Ciao and Epinions datasets in Fig. 7. From the figure, as the aspect number 𝑀

increases, the performance of HyperSoRec firstly increases but decreases when its value surpasses

3, 5, 5 on “Beauty”, “Travel” and “Book”, in Ciao dataset respectively. The results on Epinions

dataset perform the similar trends, where the best settings of HyperSoRec in “Electronics”, “Travel”

and “Game” are 5, 3, 7, respectively. This demonstrates that HyperSoRec with suitable setting of

number𝑀 could effectively capture the utility of multi-aspect users’ influences and multi-aspect

item interactions. However, too large setting may also introduce some confusion of aspect learning,

which reduces the performance. In addition, we also find an interesting observation. That is, if we

ignore the aspect learning, i.e., aspect number𝑀 = 1, HyperSoRec just simply considers that there

is only one comprehensive aspect existing user-user connections and user-item interactions, where

such idea is similar to many previous work (Please see Table 3 for more details). However, with

such setting, HyperSoRec cannot generate satisfied performance. This phenomenon proves the

necessity of distinguishing the different influences and preferences on multiple aspects in social

recommendation among users and items again.
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Fig. 8. Result comparison of HyperSoRec with different embedding size 𝑑 .

Sensitivity of embedding size 𝑑 : The embedding size 𝑑 plays an important role in the model,

since it greatly affects the representation ability of learned embeddings. In this experiment, we

select HyperSoRec, HyperSoRec(E) and one of the state-of-the-art model SocialGCN for comparison

with the different size setting 𝑑={25, 50, 75, 100, 125}. For better illustration, we just report one task

on each dataset (i.e., “Beauty” on Ciao and “Electronics” on Epinions) as the representatives since

the result trends on other data tasks are similar after our experiments. The comparison results are

illustrated in Fig. 8. There are several phenomena we can observe. First, HyperSoRec consistently

performs the best in all settings, demonstrating that HyperSoRec, which is prone to capture the

latent hierarchy property in hyperbolic space, has better representation ability and robustness

than the Euclidean-based models (i.e., HyperSoRec, SocialGCN). Second, under the setting of

embedding dimension with small value, i.e., 𝑑=25, HyperSoRec performs significantly better than

others. This proves that HyperSoRec can gain better representation ability with low dimension but

the Euclidean-based models do lose such ability. Thus, HyperSoRec can guarantee the compact but

more representative ability of hyperbolic user and item embeddings for social recommendation.

Third, the performance of both Euclidean-based models increase significantly when the embedding

size increases, and gradually reduces the margin between HyperSoRec and them. This observation

illustrates that Euclidean-based methods generally need more dimension setting than hyperbolic

ones to learn the relative relationship between users and items for social-aware recommendation.

Sensitivity of sampled neighbor size N𝑖 : The sampled neighbor size N𝑖 also has different

impact on the efficiency and effectiveness of HyperSoRec. To further analyze the time efficiency

from experimental perspective (the time complexity analyses can be found in Section 4.5.3), we

conduct the experiments and introduce the baseline SocialGCN for comparison. Moreover, we

report the representative ones (i.e., "Beauty" in Ciao and "Electronics" in Epinions) to illustrate the

effect in a more intuitive way. In this experiment, we fix the number of sampled neighbors in each

layer to the same, and vary the size in set {10, 20, 30, 40, 50}. Fig. 9 shows the performance and the

corresponding runtime results of HyperSoRec and SocialGCN. From the figures, we can observe

that as the number of sampled neighbors N𝑖 increases, the margin between model performances

gradually decrease, but the corresponding runtime of algorithm increases rapidly. Therefore, we

select the number of sampled neighbor size as 20, in order to balance the performance and runtime in

practical applications. Besides, although our HyperSoRec needs more running time than SocialGCN,
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Fig. 9. Result comparison of HyperSoRec with different sampled neighbor number N𝑖 .

it can achieve better experimental performance. Moreover, as mentioned in Section 4.5.3, the

complexities of HyperSoRec is acceptable in practice that is mainly determined by the number of

graph layers and the sample size of neighbors. Therefore, we can make trade-off for HyperSoRec in

real-world circumstances to have the most satisfied ability.

5.3.3 Aspect Attention Illustration. Our model HyperSoRec also endow a good ability of inter-

pretability since it can analyze the multiple aspect influences between users and items in hyperbolic

social recommendation. Fig. 10 provides a user study analysis by visualizing the attention scores

in “Beauty” on Ciao dataset for illustration. Specifically, Fig. 10(a) shows how much she connects

her 5 neighbors (𝑢1, 𝑢2, · · · , 𝑢5) in different aspects, i.e., Eq. (14). Fig. 10(b) presents how much

she considers different aspects when she consumes 5 items (𝑖1, 𝑖2, · · · , 𝑖5), i.e., Eq. (17). For better
illustration, we make some preprocessing as follows. First, we set the aspect number𝑚 = 5 without

loss of generality. Second, we just select her 5 neighbors and 5 items since it is hard to illustrate

clearly if we visualize her all neighbors and items in one figure. Moreover, we normalize both

attention scores from Eq. (14) and Eq. (17).

From the figure, during the recommendation process, on one hand, we can observe that her

five friends have different effects on her with different aspects. For example, user 𝑢1 has dominant

influence on aspect𝑚4, which means the user usually take advice from her friend 𝑢1 on aspect𝑚4.

On the other hand, the user also consumes different items considering different aspects, e.g., she

likes the item 𝑖5 due to the possible reason that she may be attracted by the aspect𝑚3. Generally,

these observations can explain the results when we recommend an item to a target user in the

recommender system, which demonstrate the effectiveness of multi-aspect learning in HyperSoRec.

6 CONCLUSIONS
In this paper, we presented a novel problem of hyperbolic social recommendation. Specifically,

we proposed a novel hyperbolic graph neural network framework with multi-aspect learning

(HyperSoRec). In this framework, we provided a principled way to learn compact but strong

representations for users and items in hyperbolic space to preserve their inherent hierarchical

properties. Then we respectively proposed a graph neural network with novel message-passing-

receiving mechanism and an adaptive hyperbolic metric learning method to capture both multi-

aspect user influences and item interactions. Extensive experiments demonstrated not only the

better significant performance, but also the effectiveness and robustness for recommendation.
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Fig. 10. Aspect influence visualization by attention weight of a case user on “Beauty” in Ciao dataset. Left
figure shows how her five “friends” influences her on five aspects when she makes decisions. Right figure
demonstrates that how she considers five aspects when consuming each item.

In this work, we focused on the implicit aspects beteen users’ connections and interactions.

Although HyperSoRec can enhance the experimental performance and demonstrate the necessity

of modeling the relationship of users among multiple aspects, it cannot illustrate the specific

meaning of each aspect. In the future, we are willing to incorporate more auxiliary information

(e.g., knowledge graph, textual comments) to specify each aspect factors in HyperSoRec to improve

the interpretability of model. Besides, we will further explore more complex user modeling in

hyperbolic space, such as structure learning [23, 53, 85] and preference tracking [22, 41]. It will also

be the future potential direction to investigate the curvature of hyperbolic embedding space [52]

and effective optimiation algorithms [70] for practical applications.
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