

 Programming Manual Original Instructions

Logix 5000 Controllers Data
Access
1756 ControlLogix, 1756 GuardLogix, 1769 CompactLogix,
1769 Compact GuardLogix, 1789 SoftLogix, 5069
CompactLogix, 5069 Compact GuardLogix, Studio 5000
Logix Emulate

Logix 5000 Controllers Data Access

2 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020

Important User Information
Read this document and the documents listed in the additional resources section about installation, configuration, and
operation of this equipment before you install, configure, operate, or maintain this product. Users are required to familiarize
themselves with installation and wiring instructions in addition to requirements of all applicable codes, laws, and standards.

Activities including installation, adjustments, putting into service, use, assembly, disassembly, and maintenance are required to
be carried out by suitably trained personnel in accordance with applicable code of practice.

If this equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be
impaired.

In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use
or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and
requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for
actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software
described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc., is
prohibited.

Throughout this manual, when necessary, we use notes to make you aware of safety considerations.

WARNING: Identifies information about practices or circumstances that can cause an explosion in a hazardous environment, which may lead to
personal injury or death, property damage, or economic loss.

ATTENTION: Identifies information about practices or circumstances that can lead to personal injury or death, property damage, or economic loss.
Attentions help you identify a hazard, avoid a hazard, and recognize the consequence.

IMPORTANT Identifies information that is critical for successful application and understanding of the product.

Labels may also be on or inside the equipment to provide specific precautions.

SHOCK HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that dangerous voltage may be present.

BURN HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that surfaces may reach dangerous
temperatures.

ARC FLASH HAZARD: Labels may be on or inside the equipment, for example, a motor control center, to alert people to potential Arc Flash. Arc Flash
will cause severe injury or death. Wear proper Personal Protective Equipment (PPE). Follow ALL Regulatory requirements for safe work practices and
for Personal Protective Equipment (PPE).

 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020 3

Summary of Changes

This manual includes new and updated information. Use these reference
tables to locate changed information.

Grammatical and editorial style changes are not included in this summary.

Global changes

This table identifies changes that apply to all information about a subject in
the manual and the reason for the change. For example, the addition of new
supported hardware, a software design change, or additional reference
material would result in changes to all of the topics that deal with that subject.

Change Topic

Updated Legal notices. Legal notices on page 10

Updated branding. Throughout

New or enhanced features

None in this version.

 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020 5

Table of Contents

Studio 5000 environment .. 9
Additional resources ... 9
Legal notices ...10

Chapter 1
CIP Services Overview ... 11

CIP Data Types ... 11
Atomic data type sizes ... 12

Logix 5000 data .. 12
Tag type service parameter ... 13

Tag type service parameter values used with Logix controllers . 13
Analysis ... 13
Segment Encoding ... 13

Logical Segments ... 14
Symbolic Segments .. 14

CIP Service Request/Response Format .. 15
Services Supported by Logix 5000 Controllers .. 16

Read Tag Service .. 18
Example Using Symbolic Segment Addressing 18
Example Using Symbol Instance Addressing 18
Read Tag Service Error Codes ... 19

Read Tag Fragmented Service ... 19
Example Using Symbolic Segment Addressing 20
Example Using Symbol Instance Addressing 21
Read Tag Fragmented Service Error Codes23

Write Tag Service .. 24
Example Using Symbolic Segment Addressing 24
Example Using Symbol Instance Addressing 24
Write Tag Service Error Codes .. 25

Write Tag Fragmented Service .. 25
Example Using Symbolic Segment Addressing 26
Example Using Symbol Instance Addressing 27
Write Tag Fragmented Service Error Codes............................... 29

Read Modify Write Tag Service.. 30
Service Request Parameters ... 30
Example ... 30
Read Modify Write Tag Service Error Codes 31
Multiple Service Packet Service .. 31
Example .. 31

Logix Data Structures ..32
Work with Data Structures ... 33

Summary of Changes

Preface

CIP services

Table of Contents

6 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020

Tag type service parameters for structure ... 34

Chapter 2
How tags are organized in the controller .. 37

Symbol object .. 38
Template object ... 38

Create and maintain a symbol object list .. 40
Step 1: Find user-created controller scope tags in a Logix 5000
controller ... 41

Retrieve all symbol object instances ... 41
Example of retrieving the first group of tags 42
Analysis .. 42

Continue the retrieval process .. 43
Step 2: Isolate user-created tags from system tags/identifying
structured tags ..44

Symbol Type Attribute ...44
Eliminate tags by applying rules.. 46

Step 3: Determine the structure makeup for a specific structure 47
Example of reading template attributes .. 47
Analysis .. 48

Structure data format ... 49
Contents of the member information ... 50
Example of retrieving member information 50
Example ... 50
More about BOOLS in UDTs .. 52

Step 4: Determine the data packing of the members of a structure when
accessed as a whole... 53

Example of reading an entire structure ... 53
Step 5: Determine when the tags list and structure information need
refreshing .. 54

How to detect changes ... 54

Chapter 3
Atomic Members of Predefined Data Types .. 57

Example 1 (Symbolic Segment Addressing Method)......................... 57
Example 2 (Symbol Instance Addressing Method) 58
Example 3 (Symbolic Segment Addressing Method) 58
Example 4 (Symbolic Segment Addressing Method)59
Example 5 (Symbol Instance Addressing Method)59
Example 6 (Symbolic Segment Addressing Method) 60
Example 7 (Symbolic Segment Addressing Method) 61
Example 8 (Both Addressing Methods) .. 61

CIP Services and
User-created Tags

CIP Addressing Examples

Table of Contents

 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020 7

Example 9 (Both Addressing Methods) ... 62
Example 10 (Symbolic Segment Addressing Method) with BOOLs 62

Access User-Defined Structures .. 63
Example 1 ... 64
Example 2... 64
Example 3 ..65
Example 4 ..65
Example 5 ... 66
Example 6 ... 66

Chapter 4
Unconnected Messaging (UCMM) through PCCC 69
Connected Explicit Messages through PCCC ... 70
Fragmentation Protocol ... 72
PCCC Commands ... 73
Supported Subset of PCCC Commands ... 73
Initial Fields of All PCCC Commands ... 74
PLC-2 Communication Commands .. 75

Unprotected Read (CMD=01, 41; FNC not present) 75
Protected Write (CMD=00, 40; FNC not present) 75
Unprotected Write (CMD=08, 48; FNC not present) 75
Protected Bit Write (CMD=02, 42; FNC not present) 76
Unprotected Bit Write (CMD=05, 45; FNC not present) 76

PLC-5 Communication Commands .. 77
Addressing examples ... 77
Read Modify Write N (CMD=0F, 4F; FNC=79) 78
Typed Read (CMD=0F, 4F; FNC=68) ... 79
Typed Write (CMD=0F, 4F; FNC=67) .. 79
Word Range Read (CMD=0F, 4F; FNC=01) .. 79
Word Range Write (CMD=0F, 4F; FNC=00) 80
Bit Write (CMD=0F, 4F; FNC=02) .. 80

SLC Communication Commands ... 81
SLC Protected Typed Logical Read with 3 Address Fields (CMD=0F,
4F; FNC=A2) .. 81
SLC Protected Typed Logical Write with 3 Address Fields(CMD=0F,
4F, FNC=AA) .. 82
SLC Protected Typed Logical Read with 2 Address Fields (CMD=0F,
4F; FNC=A1) ... 82
SLC Protected Typed Logical Write with 2 Address Fields (CMD=0F,
4F; FNC=A9) ... 83

CIP Over the Controller
Serial Port

Index

 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020 9

Preface

Before using this document:

• Have a thorough understanding of CIP and EtherNet/IP.
• Have purchased a copy of the pertinent volumes of the CIP Networks

Library.
• Be properly licensed through ODVA to use the CIP technology.

For more information on the CIP Networks Library and CIP technologies,
contact ODVA at http://www.odva.org/.

The Studio 5000 Automation Engineering & Design Environment® combines
engineering and design elements into a common environment. The first
element is the Studio 5000 Logix Designer® application. The Logix Designer
application is the rebranding of RSLogix 5000® software and will continue to
be the product to program Logix 5000™ controllers for discrete, process,
batch, motion, safety, and drive-based solutions.

The Studio 5000® environment is the foundation for the future of
Rockwell Automation® engineering design tools and capabilities. The Studio
5000 environment is the one place for design engineers to develop all
elements of their control system.

These documents contain additional information concerning related
Rockwell Automation products.

Resource Description

Industrial Automation Wiring and Grounding
Guidelines, publication 1770-4.1

Provides general guidelines for installing a Rockwell
Automation industrial system.

Product Certifications webpage, available
at http://ab.rockwellautomation.com

Provides declarations of conformity, certificates,
and other certification details.

View or download publications
at http://www.rockwellautomation.com/literature. To order paper copies of
technical documentation, contact the local Rockwell Automation distributor
or sales representative.

Studio 5000 environment

Additional resources

http://www.odva.org/
http://literature.rockwellautomation.com/idc/groups/literature/documents/in/1770-in041_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/in/1770-in041_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/in/1770-in041_-en-p.pdf
http://ab.rockwellautomation.com/
http://www.rockwellautomation.com/literature

Preface

10 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020

Rockwell Automation publishes legal notices, such as privacy policies, license
agreements, trademark disclosures, and other terms and conditions on
the Legal Notices page of the Rockwell Automation website.

End User License Agreement (EULA)

You can view the Rockwell Automation End User License Agreement (EULA)
by opening the license.rtf file located in your product's install folder on your
hard drive.

The default location of this file is:

C:\Program Files (x86)\Common Files\Rockwell\license.rtf.

Open Source Software Licenses

The software included in this product contains copyrighted software that is
licensed under one or more open source licenses.

You can view a full list of all open source software used in this product and
their corresponding licenses by opening the oss_license.txt file located your
product's OPENSOURCE folder on your hard drive. This file is divided into
these sections:

• Components
Includes the name of the open source component, its version number,
and the type of license.

• Copyright Text
Includes the name of the open source component, its version number,
and the copyright declaration.

• Licenses
Includes the name of the license, the list of open source components
citing the license, and the terms of the license.

The default location of this file is:

C:\Program Files (x86)\Common Files\Rockwell\Help\<product
name>\Release Notes\OPENSOURCE\oss_licenses.txt.

You may obtain Corresponding Source code for open source packages
included in this product from their respective project web site(s).
Alternatively, you may obtain complete Corresponding Source code by
contacting Rockwell Automation via the Contact form on the Rockwell
Automation website: http://www.rockwellautomation.com/global/about-
us/contact/contact.page. Please include "Open Source" as part of the request
text.

Legal notices

https://www.rockwellautomation.com/global/legal-notices/overview.page
http://www.rockwellautomation.com/global/about-us/contact/contact.page
http://www.rockwellautomation.com/global/about-us/contact/contact.page

 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020 11

Chapter 1

CIP services

Communicating with Logix 5000 controllers require using CIP explicit
messaging. This chapter describes the subset of the CIP explicit messaging
constructs for understanding the service explanations that follow.

See also

CIP services overview on page 11

Tag type service parameter on page 13

Analysis on page 13

Segment Encoding on page 13

CIP Service Request/Response Format on page 15

Before using CIP services, review introductory information:

• CIP data types
• Logix 5000 data
• Tag Type Service parameter
• Segment encoding
• CIP Service Request/Response format

Data type information is very important in all aspects of CIP communication.
The type information is used for reading, writing, and, if necessary,
deciphering structures. The Logix 5000 controller supports these data types.

• Atomic. A bit, byte, 16-bit word, or 32-bit word, each of which stores a
single value. (CIP refers to these as Elementary Data Types.)

• Structure. A grouping of different data types that functions as a single
unit and serves a specific purpose. Depending on the needs of the
application, create additional structures, which are referred to as user-
defined structures.

• Array. A sequence of elements, each of which is the same data type.

• Define data in one, two, or three dimensions, as required (one
dimension is the most common).

• Use atomic or structure data types.

Data in the controller is organized as tags. The tags come in two basic types:
atomic and structure. Atomic types can be arrayed or singular, and are very

CIP Services Overview

CIP Data Types

Chapter 1 CIP services

12 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020

easy to work with. Structure types provide a great deal of flexibility, but are
more challenging to access. See the Atomic data type sizes table for details.

See also

CIP services overview on page 11

Atomic data type sizes on page 12

Logix 5000 data on page 12

Use the atomic data type sizes table for the data type value to use to store a
bit.

To store a Use this data type

Bit BOOL

Bit array DWORD (32-bit boolean array)
8-bit integer SINT
16-bit integer INT
32-bit integer DINT
32-bit float REAL
64-bit integer LINT

The Logix 5000 controller stores data in tags, in contrast to a PLC-5 or SLC
controller, which stores data in data files. Logix 5000 tags have these
properties:

• Name that identifies the data:

• Up to 40 characters in length.

• Scope:

• Controller (global), accessed directly.
• Program (local), which cannot be directly accessed, but can be

copied to a controller scope tag.

• Data type, which defines the organization of the data.
See CIP data types for more information.

In the Logix Designer application, version 21.00.00 and later, and in RSLogix
5000 software, version 18.00.00 and later, external access to controller scoped
tags is user selectable. If a tag’s External Access attribute is set to None, then
the tag cannot be accessed from outside the controller.

For more information about external access to controller scoped tags see the
Logix 5000 Controllers I/O and Tag Data Programming Manual, publication
1756-PM004.

For more information about tags and data types, see the Logix 5000
Controllers Design Considerations Reference Manual, publication 1756-
RM094.

Atomic data type sizes

Logix 5000 data

https://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm004_-en-p.pdf
https://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm004_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm094_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm094_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm094_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm094_-en-p.pdf

Chapter 1 CIP services

 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020 13

See also

CIP data types on page 11

The Read tag, Write Tag, Read Tag Fragmented, Write Tag Fragmented, and
Read-Modify-Write Tag services require a service parameter that identifies
the data type of the tag being referenced. This tag type parameter is:

• A 16-bit value for atomic tags
• Two 16-bit values for structured tags

The value used for structures is a calculated value. For details, see Tag type
service parameters for structures.

The tag type values used for atomic tags and the resulting data size are shown
in the table shown in Tag type service parameter values used with Logix controllers.

See also

Tag type service parameters for structures on page 34

Use this table for date types, tag type values, and size of transmitted data for
Logix controllers.

Data Type Tag Type Value Size of Transmitted Data

BOOL 0x0nc1
The BOOL value includes an additional
field (n) for specifying the bit position
within the SINT (n = 0-7).

1 byte

SINT 0x00C2 1 byte

INT 0x00C3 2 bytes
DINT 0x00C4 4 bytes
REAL 0x00CA 4 bytes
DWORD 0x00D3 4 bytes
LINT 0x00C5 8 bytes
bytes = Multi-byte data values are transmitted low-byte first

These values are based on the CIP Data Type Reporting Values that are
defined in Volume 1, Appendix C of the CIP Networks Library, but are extended
to 16-bits.

The Request Path in a CIP explicit message contains addressing information
indicating which internal resource in the target node directs the service. This
addressing information is organized by using Logical Segments, Symbolic
Segments, or both.

For more detailed information about segments, see the CIP Networks Library,
Volume 1, Appendix C.

Tag type service parameter

Tag type service parameter
values used with
Logix controllers

Analysis

Segment Encoding

Chapter 1 CIP services

14 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020

The following is a summary of the Logical Segment types defined by CIP that
are supported by the Logix 5000 controller.

See also

CIP services overview on page 11

These tables explain the Logical Segments. Not all segment types defined by
CIP are supported by Logix 5000 controllers.

Segment Type Value Byte Order Representation of Element ID Value (low byte first)

0 1 … n n+1

8-bit Element ID 0x28 Value N/A N/A N/A N/A

16-bit Element ID 0x29 00 Low High N/A N/A
32-bit Element ID 0x2A 00 Lowest Low High Highest

Segment Type Value Byte Order Representation of Class ID Value (low byte first)

0 1 … n n+1

8-bit Class ID 0x20 Value N/A N/A N/A N/A

16-bit Class ID 0x21 00 Low High N/A N/A

Segment Type Value Byte Order Representation of Instance ID Value (low byte first)

0 1 … n n+1

8-bit Instance ID 0x24 Value N/A N/A N/A N/A

16-bit Instance ID 0x25 00 Low High N/A N/A

Segment Type Value Byte Order Representation of Attribute ID Value (low byte first)

0 1 … n n+1

8-bit Attribute ID 0x30 Value N/A N/A N/A N/A

16-bit Attribute ID 0x31 00 Low High N/A N/A

See also

CIP services on page 11

Segment Encoding on page 13

CIP defines a way to reference items by their symbolic name. The segment
used is the ANSI Extended Symbol Segment defined in the CIP Networks
Library, Volume 1, Appendix C.

Logical Segments

Symbolic Segments

Chapter 1 CIP services

 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020 15

The Read/Write tags services can use these segments in the request path to
indicate which target tag to operate on. When addressing an arrayed tag, the
Logical Segment for Element ID is also used with the Symbolic Segment.

Segment Type Value Byte Order Representation (low byte first)

0 1 … N N+1

ANSI Extended
Symbolic

0x91 Length 1st char … Nth Char (1)

See also

Segment Encoding on page 13

All CIP services follow the Message Router Request/Response format defined
in the CIP Networks Library, Volume 1, Chapter 2. For complete descriptions, see
the CIP Networks Library. All requests take this form.

Message Request
Field

Description

Request Service Indicates to the object referenced in the request path to perform a task. The CIP
or the device manufacturer define these tasks. Most of the services covered in
this manual are defined by the Rockwell Automation vendor-specific objects, and
are not found in the CIP Networks Library.

Request Path Size A byte value that indicates the number of 16-bit words in the Request Path.

Request Path A variable sized field that consists of one or more segments. The path references
the item that services operate on in the controller. The path contains Logical or
Symbolic segments or both.

Request Data The service-specific data that is delivered to the object referenced in the
Request Path. This field only appears in the message frame if a service has
service-specific data.

This same form is used for ControlNet and EtherNet/IP communication CIP-
based networks. Requests received through the serial port use another
protocol.

Use the CIP service format for CIP-explicit messages and to deliver connected
or unconnected messages to the controller. The mechanisms for doing this are
CIP-network specific. For example, for EtherNet/IP access, see the CIP
Networks Library, Volume 1 unconnected, Chapter 3 and the EtherNet/IP Adaptation
of CIP, Volume 2.

For more information about using the EtherNet/IP network to communicate
with the controller, see
http://www.rockwellautomation.com/rockwellautomation/solutions-
services/oem/design-develop-deliver/information-enabled-solutions.page.
We recommend using connected messaging whenever possible. Be aware that
the information presented here does not replace the need to be properly
authorized by ODVA, Inc. to use the Ethernet/IP protocol.

The examples used throughout the manual show only the explicit message
protocol elements and not the network-specific details. The exception to this is

CIP Service
Request/Response Format

http://www.rockwellautomation.com/rockwellautomation/solutions-services/oem/design-develop-deliver/information-enabled-solutions.page
http://www.rockwellautomation.com/rockwellautomation/solutions-services/oem/design-develop-deliver/information-enabled-solutions.page

Chapter 1 CIP services

16 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020

the information in CIP Over the Controller Serial Port, which shows more details
of unconnected versus connected explicit messages, and of the PCCC and DF1
layers. All responses take the general form as shown in the table.

Message Response
Field

Description

Reply Service The request service with the MSB set to 1.

00 Reserved.
General Status An 8-bit value indicating success or error status. The CIP Networks Library,

Volume 1, Appendix B has a list of the general status codes. The object class
specified in the request path defines any extended status codes for each service
defined for that class.

Extended Status Size An 8-bit value that indicates how many 16-bit values follow in the additional status
field. For status=0 (success) this is 0.

Extended Status The array of 16-bit values that describe the general status code. Only present
when the size field is > 0.

Reply Data The data returned by the service request. This field only appears in the message
frame if a service has service-specific data.

See also

CIP Over the Controller Serial Port on page 69

PCCC Commands on page 73

These sections describe the inherent mode of communication and addressing
of the Logix 5000 controller. The following vendor-specific services operate
on tags in the controller using symbolic addressing:

• Read Tag Service (0x4c)
• Read Tag Fragmented Service (0x52)
• Write Tag Service (0x4d)
• Write Tag Fragmented Service (0x53)
• Read Modify Write Tag Service (0x4e)

The first four services preceding can be used with two addressing methods:

• Symbolic Segment Addressing
• Symbol Instance Addressing (available in version 21 and later.)

This table describes the addressing methods.

Addressing Method How it Works When to Use

Symbolic Segment • Uses the name of the tag in an ASCII format using
ANSI Extended Symbolic Segments

• Allows direct access to the tags as displayed in
the Logix Designer application Data Monitor

• The number of characters in the name affects:
• Packet size
• The number of services that can fit in the

Multiple Service Packet service
• The parsing time of the incoming message in

the controller

• For best performance in applications that access
small to moderate amounts of data.

• For improving performance by organizing the data
into user-defined structures and accessing those
structures.

Services Supported by
Logix 5000 Controllers

Chapter 1 CIP services

 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020 17

Addressing Method How it Works When to Use

Symbol Instance • Uses the instance ID of the symbol class for the
tag you want to access.

• The client application that accesses the
controller must:
• Retrieve the symbol instance information from

the controller to associate the name of the tag
with its instance ID

• Use the instance ID to access the tag.

For best performance in applications that access a
large number of tags.

Also use the Multiple Service Packet Service (0x0a) to combine multiple requests
in one message frame. This improves performance when accessing many tags
by minimizing the time to transmit and process multiple packets. The number
of requests that are included is limited by the size of each request. This
depends on the content of the request. For example, the number of characters
in the tag names impacts the number of requests combined by the Multiple
Service Packet Service. For further information, see Multiple Service Packet
Service.

These services have more descriptive names than earlier versions of this
publication.

Service Service name in earlier versions of this manual, Service name in Logix Designer

Read Tag Service CIP Read Data CIP Data Table Read

Read Tag Fragmented Service Read Data Fragmented Format N/A

Write Tag Service CIP Write Data CIP Data Table Write

Write Tag Fragmented Service Write Data Fragmented Format N/A

Multiple Service Packet Service Multiple Service Packet Service Multi-Request Service

For further information on services, refer to the services topics in this chapter.

For examples showing more complex addressing using both types of
addressing, see CIP Addressing Examples.

For further information on the Request Data and Reply Data, refer to the
examples in this chapter.

See also

Multiple Service Packet Service on page 31

CIP Addressing Examples on page 57

Read Tag Service on page 18

Read Tag Fragmented Service on page 19

Write Tag Service on page 24

Chapter 1 CIP services

18 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020

The Read Tag Service reads the data associated with the tag specified in the
path.

• Any data that fits into the reply packet is returned, even if it does not
all fit.

• If all the data does not fit into the packet, the error 0x06 is returned
along with the data.

• When reading a two or three dimensional array of data, all dimensions
must be specified.

• When reading a BOOL tag, the values returned for 0 and 1 are 0 and
0xFF, respectively.

See also

Services Supported by Logix 5000 Controllers on page 16

Example Using Symbolic Segment Addressing on page 18

Example Using Symbol Instance Addressing on page 18

Read a single tag named rate using Symbolic Segment Addressing. The tag
has a data type of DINT and a value of 534. The value used for Instance ID was
determined using methods described in CIP Services and User-created Tags.

1st Message Request Field Bytes (in hex) Description - Symbolic Segment Addressing

Request Service 4C Read Tag Service (Request)

Request Path Size 06 Request Path is 6 words (12 bytes) long
Request Path 91 0A 54 6F 74 61 6C 43 6F 75 6E 74 ANSI Ext. Symbolic Segment for TotalCount
Request Data 01 00 Number of elements to read (1)

1st Message Reply Field Bytes (in hex) Description - Symbolic Segment Addressing

Reply Service CC Read Tag Service (Reply)

Reserved 00
General Status 00 Success
Extended Status Size 00 No extended status
Reply Data C4 00 DINT Tag Type Value

16 02 00 00 0000216 = 534 decimal

See also

CIP Services and User-created Tags on page 37

Read a single tag named rate using Symbol Instance Addressing. The tag has a
data type of DINT and a value of 534.

Read Tag Service

Example Using Symbolic
Segment Addressing

Example Using Symbol
Instance Addressing

Chapter 1 CIP services

 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020 19

1st Message Request Field Bytes (in hex) Description - Symbol Instance Addressing

Request Service 4C Read Tag Service (Request)

Request Path Size 03 Request Path is 3 words (6 bytes) long
Request Path 20 6B

25 00 8F F6
Logical Segment for Symbol Class ID
Logical Segment for Instance ID of the tag rate

Request Data 01 00 Number of elements to read (1)

1st Message Reply Field Bytes (in hex) Description - Symbol Instance Addressing

Reply Service CC Read Tag Service (Reply)

Reserved 00
General Status 00 Success
Extended Status Size 00 No extended status
Reply Data C4 00 DINT Tag Type Value

16 02 00 00 0000216 = 534 decimal

See also

Read Tag Service on page 18

Services Supported by Logix 5000 Controllers on page 16

Both Symbolic Segment Addressing and Symbol Instance Addressing may
return these errors.

Error Code (Hex) Extended Error (Hex) Description of Error

0x04 0x0000 A syntax error was detected decoding the Request Path.

0x05 0x0000 Request Path destination unknown: Probably instance number is not present.
0x06 N/A Insufficient Packet Space: Not enough room in the response buffer for all the data.
0x13 N/A Insufficient Request Data: Data too short for expected parameters.
0x26 N/A The Request Path Size received was shorter or longer than expected.
0xFF 0x2105 General Error: Access beyond end of the object.

See also

Read Tag Service on page 18

The Read Tag Fragmented Service enables client applications to read a tag
with data that does not fit into a single packet (approximately 500 bytes). The
client must issue a series of requests to the controller to retrieve the data
using this service. The client must change the Offset field value with each
request by the number of bytes transferred in the response to the previous
request.

The Byte Offset field is expressed in number of bytes regardless of the data
type being read. In the example following, the data type being read is SINT,

Read Tag Service
Error Codes

Read Tag
Fragmented Service

Chapter 1 CIP services

20 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020

which happens to be a byte. The elements and offset are in the same units,
which is not the case for other data types.

See also

CIP services on page 11

Services Supported by Logix 5000 Controllers on page 16

Reading the tag TotalCount that has 1750 SINTs consists of these four service
requests with service data, as shown in the tables.

1st Message Request Field Bytes (in hex) Description - Symbolic Segment Addressing

Request Service 52 Read Tag Fragmented Service (Request)

Request Path Size 06 Request Path is 6 words (12 bytes) long
Request Path 91 0A 54 6F 74 61 6C 43 6F 75 6E 74 ANSI Ext. Symbolic Segment for TotalCount
Request Data D6 06 Number of elements to read (1750)

00 00 00 00 Start at this byte offset (0) and return as much as will fit

1st Message Reply Field Bytes (in hex) Description - Symbolic Segment Addressing

Reply Service D2 Read Tag Fragmented Service (Reply)

Reserved 00
General Status 06 Reply Data Too Large
Extended Status Size 00 No extended status
Reply Data C2 00 SINT Tag Type Value

nn nn nn…nn Data for Elements 0 through 489

2nd Message Request Field Bytes (in hex) Description - Symbolic Segment Addressing

Request Service 52 Read Tag Fragmented Service (Request)

Request Path Size 06 Request Path is 6 words (12 bytes) long
Request Path 91 0A 54 6F 74 61 6C 43 6F 75 6E 74 ANSI Ext. Symbolic Segment for TotalCount
Request Data D6 06 Number of elements to read (1750)

EA 01 00 00 Start at this byte offset (490) and return as much as will fit

2nd Message Reply Field Bytes (in hex) Description - Symbolic Segment Addressing

Reply Service D2 Read Tag Fragmented Service (Reply)

Reserved 00
General Status 06 Reply Data Too Large
Extended Status Size 00 No extended status
Reply Data C2 00 SINT Tag Type Value

nn nn nn…nn Data for Elements 490 through 979

Example Using Symbolic
Segment Addressing

Chapter 1 CIP services

 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020 21

3rd Message Request Field Bytes (in hex) Description - Symbolic Segment Addressing

Request Service 52 Read Tag Fragmented Service (Request)

Request Path Size 06 Request Path is 6 words (12 bytes) long
Request Path 91 0A 54 6F 74 61 6C 43 6F 75 6E 74 ANSI Ext. Symbolic Segment for TotalCount
Request Data D6 06 Number of elements to read (1750)

D4 03 00 00 Start at this offset (980) and return as much as will fit

3rd Message Reply Field Bytes (in hex) Description - Symbolic Segment Addressing

Reply Service D2 Read Tag Fragmented Service (Reply)

Reserved 00
General Status 06 Reply Data Too Large
Extended Status Size 00 No extended status
Reply Data C2 00 SINT Tag Type Value

nn nn nn…nn Data for Elements 980 through 1469

4th Message Request Field Bytes (in hex) Description - Symbolic Segment Addressing

Request Service 52 Read Tag Fragmented Service (Request)

Request Path Size 06 Request Path is 6 words (12 bytes) long
Request Path 91 0A 54 6F 74 61 6C 43 6F 75 6E 74 ANSI Ext. Symbolic Segment for TotalCount
Request Data D6 06 Number of elements to read (1750)

BE 05 00 00 Start at this offset (1470) and return as much as will fit

4th Message Reply Field Bytes (in hex) Description - Symbolic Segment Addressing

Reply Service D2 Read Tag Fragmented Service (Reply)

Reserved 00
General Status 00 Success
Extended Status Size 00 No extended status
Reply Data C2 00 SINT Tag Type Value

nn nn nn…nn Data for Elements 1470 through1749

See also

Read Tag Fragmented Service Error Codes on page 23

Reading the tag TotalCount that has 1750 SINTs using Symbol Instance
Addressing would consist of these four service requests with service data, as
shown in the tables. The value used for Instance ID was determined using
methods described in CIP Services and User-created Tags.

1st Message Request Field Bytes (in hex) Description - Symbol Instance Addressing

Request Service 52 Read Tag Fragmented Service (Request)

Request Path Size 03 Request Path is 3 words (6 bytes) long

Example Using Symbol
Instance Addressing

Chapter 1 CIP services

22 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020

1st Message Request Field Bytes (in hex) Description - Symbol Instance Addressing

Request Path 20 6B
25 00 1A E0

Logical Segment for Symbol Class ID
Logical Segment for Instance ID for the tag TotalCount

Request Data D6 06 Number of elements to read (1750)

Data Offset 00 00 00 00 Start at this element (0) and return as much will fit

1st Message Reply Field Bytes (in hex) Description - Symbol Instance Addressing

Reply Service D2 Read Tag Fragmented Service (Reply)

Reserved 00
General Status 06 Reply Data Too Large
Extended Status Size 00 No extended status
Reply Data C2 00 SINT Tag Type Value

nn nn nn…nn Data for Elements 0 thorough 489

2nd Message Request Field Bytes (in hex) Description - Symbol Instance Addressing

Request Service 52 Read Tag Fragmented Service (Request)

Request Path Size 03 Request Path is 3 words (6 bytes) long
Request Path 20 6B

25 00 1A E0
Logical Segment for Symbol Class ID
Logical Segment for Instance ID for the tag TotalCount)

Request Data D6 06 Number of elements to read (1750)

Data Offset EA 01 00 00 Start at this element (490) and return as much will fit

2nd Message Reply Field Bytes (in hex) Description - Symbol Instance Addressing

Reply Service D2 Read Tag Fragmented Service (Reply)

Reserved 00
General Status 06 Reply Data Too Large
Extended Status Size 00 No extended status
Reply Data C2 00 SINT Tag Type Value

nn nn nn…nn Data for Element 490 through 979

3rd Message Request Field Bytes (in hex) Description - Symbol Instance Addressing

Request Service 52 Read Tag Fragmented Service (Request)

Request Path Size 03 Request Path is 3 words (6 bytes) long
Request Path 20 6B

25 00 1A E0
Logical Segment for Symbol Class ID
Logical Segment for Instance ID for the tag TotalCount

Request Data D6 06 Number of elements to read (1750)

Data Offset D4 03 00 00 Start at this element (980) and return as much will fit

3rd Message Reply Field Bytes (in hex) Description - Symbol Instance Addressing

Reply Service D2 Read Tag Fragmented Service (Reply)

Reserved 00

Chapter 1 CIP services

 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020 23

General Status 06 Reply Data Too Large
Extended Status Size 00 No extended status
Reply Data C2 00 SINT Tag Type Value

nn nn nn…nn Data for Elements 980 through 1469

4th Message Request Field Bytes (in hex) Description - Symbol Instance Addressing

Request Service 52 Read Tag Fragmented Service (Request)

Request Path Size 03 Request Path is 3 words (6 bytes) long
Request Path 20 6B

25 00 1A E0
Logical Segment for Symbol Class ID
Logical Segment for Instance ID for the tag TotalCount

Request Data D6 06 Number of elements to read (1750)

Data Offset BE 05 00 00 Start at this element (1470) and return as much will fit

4th Message Reply Field Bytes (in hex) Description - Symbol Instance Addressing

Reply Service D2 Read Tag Fragmented Service (Reply)

Reserved 00
General Status 06 Reply Data Too Large
Extended Status Size 00 No extended status
Reply Data C2 00 SINT Tag Type Value

nn nn nn…nn Data for Elements 1490 through 1749

Each response, except the last one, shows the General Status of 06, Reply Data
Too Large, to indicate that more data is present than is in this particular frame.
The last response shows the General Status of 0 indicating that the data read
did not exceed the message size limit. This means that the entire sequence of
bytes has been read.

See also

CIP Services and User-created Tags on page 37

The Symbolic Segment Addressing and Symbol Instance Addressing may
return these errors.

Error Code (Hex) Extended Error (Hex) Description of Error

0x04 0x0000 A syntax error was detected decoding the Request Path.

0x05 0x0000 Request Path destination unknown: probably instance number is not present.
0x06 N/A Insufficient Packet Space: Not enough room in the response buffer for all the data.
0x13 N/A Insufficient Request Data: Data too short for expected parameters.
0x26 N/A The Request Path Size received was shorter or longer than expected.
0xFF 0x2105 General Error: Number of Elements or Byte Offset is beyond the end of the requested tag.

Read Tag Fragmented
Service Error Codes

Chapter 1 CIP services

24 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020

See also

CIP services on page 11

Services Supported by Logix 5000 Controllers on page 16

The Write Tag Service writes the data associated with the tag specified in the
path. The tag type must match for the write to occur. The controller validates
the tag type matches before executing the service.

• When writing a two or three dimensional array of data, all dimensions
must be specified.

• When writing to a BOOL tag, any non-zero value is interpreted as 1.

See also

Write Tag Service Error Codes on page 25

Write the value of 14 to a DINT tag named CartonSize using Symbolic Segment
Addressing.

Message Request Field Bytes (in hex) Description - Symbolic Segment Addressing

Request Service 4D Write Tag Service (Request)

Request Path Size 06 Request Path is 6 words (12 bytes) long
Request Path 91 0A 43 61 72 74 6F 6E 53 69 7A 65 ANSI Ext. Symbolic Segment for CartonSize
Request Data C4 00 DINT Tag Type Value

01 00 Number of elements to write (1)

0E 00 00 00 Data 0000000E=14 decimal

Message Reply Field Bytes (in hex) Description - Symbolic Segment Addressing

Reply Service CD Write Tag Service (Reply)
Reserved 00
General Status 00 Success
Extended Status Size 00 No extended status

See also

Write Tag Service on page 24

Write the value of 14 to a DINT tag named CartonSize using Symbolic Instance
Addressing. The value used for Instance ID was determined using methods
described in CIP Services and User-created Tags.

Message Request Field Bytes (in hex) Description - Symbol Instance Addressing

Request Service 4D Write Tag Service (Request)

Request Path Size 03 Request Path is 3 words (6 bytes) long

Write Tag Service

Example Using Symbolic
Segment Addressing

Example Using Symbol
Instance Addressing

Chapter 1 CIP services

 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020 25

Message Request Field Bytes (in hex) Description - Symbol Instance Addressing

Request Path 20 6B
25 00 36 71

Logical Segment for Symbol Class ID
Logical Segment for Instance ID for the tag CartonSize

Request Data C4 00 DINT Tag Type Value

01 00 Number of elements to write (1)

0E 00 00 00 Data 0000000E=14 decimal

Message Reply Field Bytes (in hex) Description - Symbol Instance Addressing

Reply Service CD Write Tag Service (Reply)

Reserved 00
General Status 00 Success
Extended Status Size 00 No extended status

See also

CIP Services and User-created Tags on page 37

The Symbolic Segment Addressing and Symbol Instance Addressing may
returns these error codes.

Error Code (Hex) Extended Error (Hex) Description of Error

0x04 0x0000 A syntax error was detected decoding the Request Path.

0x05 0x0000 Request Path destination unknown: Probably instance number is not present.
0x10 0x2101 Device state conflict: keyswitch position: The requestor is changing force

information in HARD RUN mode.
0x10 0x2802 Device state conflict: Safety Status: The controller is in a state in which Safety

Memory cannot be modified.
0x13 N/A Insufficient Request Data: Data too short for expected parameters.
0x26 N/A The Request Path Size received was shorter or longer than expected.
0xFF 0x2105 General Error: Number of Elements extends beyond the end of the requested tag.
0xFF 0x2107 General Error: Tag type used n request does not match the target tag’s data type.

See also

Write Tag Service on page 24

The Write Tag Fragmented Service enables client applications to write to a tag
in the controller whose data will not fit into a single packet (approximately
500 bytes). The client must issue a series of requests to the controller to write
all data using this service.

The Request Service, Request Path Size, Request Path, and Number of
Elements fields remain the same for each request. The client must change the
byte offset field value with each request by the number of bytes it transferred
in the previous request.

Write Tag Service
Error Codes

Write Tag
Fragmented Service

Chapter 1 CIP services

26 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020

The Byte Offset field is expressed in number of bytes regardless of the data
type being read. In the examples that follow, the data type being read is SINT,
which happens to be a byte. In this case, the elements and offset are in the
same units, which is not the case for other data types.

See also

Example Using Symbolic Segment Addressing on page 26

Example Using Symbol Instance Addressing on page 27

Writing 1750 SINTs to the tag TotalCount using Symbolic Segment Addressing
would consist of the following four service requests with service data as
shown in the tables that follow. The value used for Instance ID was
determined using methods described in CIP Services and User-created Tags.

1st Message Request Field Bytes (in hex) Description - Symbolic Segment Addressing

Request Service 53 Read Tag Fragmented Service (Request)

Request Path Size 06 Request Path is 6 words (12 bytes) long
Request Path 91 0A 54 6F 74 61 6C 43 6F 75 6E 74 ANSI Ext. Symbolic Segment for TotalCount
Request Data C2 00 SINT Tag Type Value

D6 06 Total number of elements to write (1750)

00 00 00 00 Start at this offset.
nn, nn, …nn Element Data for Elements 0 through 473

1st Message Reply Field Bytes (in hex) Description - Symbolic Segment Addressing

Reply Service D3 Write Tag Fragmented Service (Reply)

Reserved 00
General Status 00 Success
Extended Status Size 00 No extended status

2nd Message Request Field Bytes (in hex) Description - Symbolic Segment Addressing

Request Service 53 Write Tag Fragmented Service (Request)

Request Path Size 06 Request Path is 6 words (12 bytes) long
Request Path 91 0A 54 6F 74 61 6C 43 6F 75 6E 74 ANSI Ext. Symbolic Segment for TotalCount
Request Data C2 00 SINT Tag Type Value

D6 06 Total number of elements to write (1750)

DA 01 00 00 Start at this offset.
nn, nn, …nn Element Data for Elements 474 through 947

2nd Message Reply Field Bytes (in hex) Description - Symbolic Segment Addressing

Reply Service D3 Write Tag Fragmented Service (Reply)

Reserved 00
General Status 00 Success

Example Using Symbolic
Segment Addressing

Chapter 1 CIP services

 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020 27

2nd Message Reply Field Bytes (in hex) Description - Symbolic Segment Addressing

Extended Status Size 00 No extended status

3rd Message Request Field Bytes (in hex) Description - Symbolic Segment Addressing

Request Service 53 Write Tag Fragmented Service (Request)

Request Path Size 06 Request Path is 6 words (12 bytes) long
Request Path 91 0A 54 6F 74 61 6C 43 6F 75 6E 74 ANSI Ext. Symbolic Segment for TotalCount
Request Data C2 00 SINT Tag Type Value

D6 06 Total number of elements to write (1750)

B4 03 00 00 Start at this offset
nn, nn, …nn Element Data for Elements 948 through 1421

3rd Message Reply Field Bytes (in hex) Description - Symbolic Segment Addressing

Reply Service D3 Write Tag Fragmented Service (Reply)

Reserved 00
General Status 00 Success
Extended Status Size 00 No extended status

4th Message Request Field Bytes (in hex) Description - Symbolic Segment Addressing

Request Service 53 Write Tag Fragmented Service (Request)

Request Path Size 06 Request Path is 6 words (12 bytes) long
Request Path 91 0A 54 6F 74 61 6C 43 6F 75 6E 74 ANSI Ext. Symbolic Segment for TotalCount
Request Data C2 00 SINT Tag Type Value

D6 06 Total number of elements to write (1750)

8E 05 00 00 Start at this Offset
nn, nn, …nn Element Data for Elements 1422 through 1749

4th Message Reply Field Bytes (in hex) Description - Symbolic Segment Addressing

Reply Service D3 Write Tag Fragmented Service (Reply)

Reserved 00
General Status 00 Success
Extended Status Size 00 No extended status

See also

CIP Services and User-created Tags on page 37

Writing 1750 SINTs to the tag TotalCount using Symbol Instance Addressing
would consist of the following four service requests with service data as
shown in the tables.

Example Using Symbol
Instance Addressing

Chapter 1 CIP services

28 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020

1st Message Request Field Bytes (in hex) Description - Symbol Instance Addressing

Request Service 53 Write Tag Fragmented Service (Request)

Request Path Size 03 Request Path is 3 words (6 bytes) long
Request Path 20 6B

25 00 1A E0
Logical Segment for Symbol Class ID
Logical Segment for Instance ID for the tag TotalCount

Request Data C2 00 SINT Tag Type Value

D6 06 Number of elements to write (1750)

00 00 00 00 Start at this Offset
nn,nn,...nn Element Data for Elements 0 through 473

1st Message Reply Field Bytes (in hex) Description - Symbol Instance Addressing

Reply Service D3 Write Tag Fragmented Service (Reply)

Reserved 00
General Status 00 Success
Extended Status Size 00 No extended status

2nd Message Request Field Bytes (in hex) Description - Symbol Instance Addressing

Request Service 53 Write Tag Fragmented Service (Request)

Request Path Size 03 Request Path is 3 words (6 bytes) long
Request Path 20 6B

25 00 1A E0
Logical Segments for Symbol Class ID
Logical Segment for Instance ID for the tag TotalCount

Request Data C2 00 Tag Data Type

D6 06 Number of elements to write (1750)

EC 01 00 00 Start at this Offser
nn,nn,...nn Element Data (474 through 947)

2nd Message Reply Field Bytes (in hex) Description - Symbol Instance Addressing

Reply Service D3 Write Tag Fragmented Service (Reply)

Reserved 00
General Status 00 Success
Extended Status Size 00 No extended status

3rd Message Request Field Bytes (in hex) Description - Symbol Instance Addressing

Request Service 53 Write Tag Fragmented Service (Request)

Request Path Size 03 Request Path is 3 words (6 bytes) long
Request Path 20 6B

25 00 1A E0
Logical Segment for Symbol Class ID
Logical Segment for Instance ID for the tag TotalCount

Request Data C2 00 Tag Data Type

D6 06 Number of elements to write (1750)

B4 03 00 00 Start at this Offset
nn,nn,...nn Element Data (948 through 1421)

Chapter 1 CIP services

 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020 29

3rd Message Reply Field Bytes (in hex) Description - Symbol Instance Addressing

Reply Service D3 Write Tag Fragmented Service (Reply)

Reserved 00
General Status 00 Success
Extended Status Size 00 No extended status

4th Message Request Field Bytes (in hex) Description - Symbol Instance Addressing

Request Service 53 Write Tag Fragmented Service (Request)

Request Path Size 03 Request Path is 3 words (6 bytes) long

Request Path 20 6B
25 00 1A E0

Logical Segment for Symbol Class ID
Logical Segment for Instance ID for the tag TotalCount

Request Data C2 00 Tag Data Type

D6 06 Number of elements to write (1750)

8E 05 00 00 Start at this Offset
nn,nn,...nn Element Data (1422 through 1749)

4th Message Reply Field Bytes (in hex) Description - Symbol Instance Addressing

Reply Service D3 Write Tag Fragmented Service (Reply)

Reserved 00
General Status 00 Success
Extended Status Size 00 No extended status

The response to each request shows a General Status value of 00, Success status
indication, to indicate that the write operation was successful. No other Reply
Data is returned for this service.

See also

Write Tag Fragmented Service on page 25

Symbolic Segment Addressing and Symbol Instance Addressing return these
error codes.

Error Code
(Hex)

Extended
Error (Hex)

Description of Error

0x04 0x0000 A syntax error was detected decoding the Request Path.

0x05 0x0000 Request Path destination unknown: instance number is not present.
0x10 0x2101 Device state conflict: keyswitch position: The requestor is changing force information in HARD RUN

mode.
0x10 0x2802 Device state conflict: Safety Status: Unable to modify Safety Memory in the current controller state.

0x13 N/A Insufficient Request Data: Data is too small for expected parameters.
0x26 N/A The Request Path Size received was shorter or longer than expected.
0xFF 0x2104 General Error: Offset is beyond end of the requested tag.

0xFF 0x2105 General Error: Offset plus Number of Elements extends beyond the end of the requested tag.
0xFF 0x2107 General Error: Data type used in request does not match the data type of the target tag.

Write Tag Fragmented
Service Error Codes

Chapter 1 CIP services

30 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020

See also

Write Tag Fragmented Service on page 25

The Read Modify Write Tag Service modifies Tag data with individual bit
resolution. ControlLogix controllers read the Tag data, applies the logical or
modification masks or both, and writes the data the Tag. Also use the Read
Modify Write Tag Service to modify a single bit in a Tag without disturbing
other data.

See also

PCCC Commands on page 73

These are the Service Request Parameters.

Name Description of Reply Data Semantics of Values

Size of masks Size in bytes of modify masks Only 1,2,4,8,12 accepted

OR masks Array of OR modify masks 1 mask sets bit to 1
AND masks Array of AND modify masks 0 mask resets bit to 0

The size of masks must be the same or smaller than the size of the data type
being accessed. For complete data integrity, the size of the mask should match
the size of the data type. For example, to avoid the possibility of a mix of old
and new data when modifying dynamic data, the size of the mask must match
the size of the data type.

See also

CIP services on page 11

Read Modify Write Tag Service on page 30

Set bit 2 and reset bit 5 of the DINT named ControlWord.

Message Request Field Bytes (in hex) Description

Request Service 4E Read Modify Write Tag Service (Request)

Request Path Size 07 Request Path is 7 words (14 bytes) long
Request Path 91 0B 43 6F 6E 7H 72 6F 6C 57 6F 72 64 00 ANSI Ext. Symbolic Segment for ControlWord
Request Data 04 00 Size of Masks (shall be 4)

04 00 00 00 Array of OR modify masks

DF FF FF FF Array of AND modify masks

Message Reply Field Bytes (in hex) Description

Reply Service CE Read Modify Write Tag Service (Reply)

Reserved 00

Read Modify Write
Tag Service

Service Request
Parameters

Example

Chapter 1 CIP services

 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020 31

General Status 00 Success
Extended Status Size 00 No extended status

See also

Read Modify Write Tag Service on page 30

These are the Read Modify Write Tag Service error codes.

Error Code
(Hex)

Extended Error
(Hex)

Description of Error

0x03 N/A Bad parameter, size > 12 or size greater than size of element.

0x04 0x0000 A syntax error was detected decoding the Request Path.
0x05 0x0000 Request Path destination unknown: Probably instance number is not present.
0x10 0x2101 Device state conflict: keyswitch position: The requestor is attempting to change

force information in HARD RUN mode.
0x10 0x2802 Device state conflict: Safety Status: The controller is in a state in which Safety

Memory cannot be modified.
0x13 N/A Insufficient Request Data: Data too short for expected parameters.

0x26 N/A The Request Path Size received was shorter or longer than expected.

See also

Read Modify Write Tag Service on page 30

The Multiple Service Packet Service conducts more than one CIP request in a
single CIP explicit-message frame. Use this service to optimize CIP reads and
writes by grouping service requests together for faster request processing.

For details on this service, see the CIP Networks Library, Volume 1, Appendix A.

See also

Read Modify Write Tag Service on page 30

CIP services on page 11

This is an example for Multiple Service Packets.

Message Request Field Bytes (in hex) Description

Request Service 0A Multiple Service Packet Service (Request)

Request Path Size 02 Request Path is 2 words (4 bytes) long
Request Path 20 02 24 01 Logical Segment: CLass 0x02, Instance 01 (Message Router)

Request Data 02 00 Number of Services contained in this request

06 00
12 00

Offsets for each Service; from the start of the Request Data

Read Modify Write Tag
Service Error Codes

Multiple Service
Packet Service

Example

Chapter 1 CIP services

32 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020

Message Request Field Bytes (in hex) Description

4C
04 91 05 70 61 72 74
73 00
01 00

First Request: Read Tag Service
Tag name: parts
Read 1 element

4C
07 91 0B 43 6F 6E 74 72 6F 6C
57 6F 72 64 00
01 00

Second Request: Read Tag Service
Tag name: ControlWord

Read 1 element

The Multiple Service Packet Request Path contains the Message Router object
(Class 2, Instance 1). This is the destination of the Multiple Service Packet’s
Request Path. The Request Data field contains the Number of Services
followed by byte offsets to the start of each service, followed by each of the CIP
requests, each following the standard Message Router Request format.

Observe this example

Message Reply Field Bytes (in hex) Description

Reply Service 8A Multiple Service Packet Service (Reply)

Reserved 00
General Status 00 Success
Extended Status Size 00 No extended status
Reply Data 02 00 Number of Service Replies

06 00
10 00

Offsets for each Service Reply; from the start of the Reply Data

CC 00 00 00
C4 00
2A 00 00 00

Read Tag Service Reply, Status: Success
DINT Tag Type Value
Value: 0x0000002A (42 decimal)

CC 00 00 00
C4 00
DC 01 00 00

Read Tag Service Reply, Status: Success
DINT Tag Type Value
Value: 0x000001DC (476 decimal)

The Multiple Service Packet response follows the same Message Router
Response format as all CIP services; therefore, the General Status, Ext Status
Size fields are in the same CIP Service Request/Response Format as described
in previous examples. The Reply Data field contains the number of service
replies followed by the byte offset to the start of each reply, followed by each of
the CIP responses. Each of the responses follows the standard Message Router
Response format.

See also

Read Modify Write Tag Service on page 30

Multiple Service Packet Service on page 31

A structure is a compound data type that stores a group of possibly different
data types that function as a single unit and serve a specific purpose. (For
example, a combination of values.)

Logix Data Structures

Chapter 1 CIP services

 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020 33

• A structure contains one or more members.
• Each member can be an:

• Atomic data type.
• Another structured data type.
• A single dimension array of an atomic or structure data type.

The controller contains these basic types of structures:

• Module-Defined data types - created by adding modules to the I/O tree
• Predefined data types - created by default in the controller (for

example, TON, CTU, and Motion)
• Add-On-Defined data types
• User-Defined data types (UDT) - created by the user

Group most structures into arrays or use them in other structures.

For more information on data types and creating structures Logix 5000
Controllers Design Considerations Reference Manual, publication 1756-
RM094.

The Predefined, Add-On-Defined, and Module-Defined types, and Booleans
within these structures, are difficult to deal with for various reasons and are
beyond the scope of this publication. For alternatives for working with
Predefined, Add-On-Defined, and Module-Defined types, and Booleans
within these structures see the following topics in this chapter.

See also

Work with Data Structures on page 33

CIP services on page 11

For these guidelines for working with data structures.

• Complete user-defined structure tags, or individual members are
accessed. Access to complete structure Tags requires an understanding
of the organization and alignment of structure members, which
follows rules. The UDT organization are described in the structure
Template in CIP Services and User-created Tags. Do not access
complete UDT tags that contain nested system structures, such as
Module-Defined, Predefined, or Add-On Defined.

• Predefined, Module-Defined, and Add-On-Defined structure tags have
a more complex set of rules than user-defined data types (UDT). Do
not access complete structure tags of these types, or complete UDTs
with nested tags of these types. Instead, access atomic members of
these tags that are visible in the Logix Designer application Data
Monitor, using one of the methods that follow.

• Create an alias of the atomic member and access the alias instead of
the structure.

Work with Data Structures

http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm094_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm094_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm094_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm094_-en-p.pdf

Chapter 1 CIP services

34 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020

• Create an atomic tag or UDT structure tag with an atomic member,
and then have the user program copy the data to and from the tag or
atomic member. Access the new tag or atomic member instead.

• In the Logix Designer, version 21 and later, and in RSLogix 5000
software, version 18 and later, external access to controller scope tags
is user-selectable. If an External Access tag attribute is set to None, the
tag cannot be accessed from outside of the controller. Therefore,
structures that contain members whose external access is set
to None cannot be accessed as a whole (that is, by reading or writing
the entire structure). Similarly, structures that have one or more
members whose External Access is set to Read Only cannot be written
to as a whole (that is, by reading or writing the entire structure), but
the members that are not restricted in access can be accessed by using
symbolic segment addressing to the specific member.

Further information on data access control and the effect it has on structure
access can be found in Logix 5000 Controllers I/O and Tag Data Programming
Manual, publication 1756-PM004.

• To improve tag access performance and to simplify the task of
accessing structured tags through a network, create UDTs for the data
that needs to be accessed through the network with members of the
types listed following only, and access the UDTs as a whole.

• Atomic tags
• Arrays of atomic tags
• Other UDTs of atomic tags
• Arrays of UDTs of atomic tags

See also

CIP Services and User-created Tags on page 37

Structures use a Tag Type Service Parameter that is different from the one
used with atomic tags. Like atomic tags, writing to UDT-based tags as a whole
(that is, the whole structure, not just individual members) requires supplying
the proper value for this parameter in the service request to successfully write
to the tag. The value is also returned when the structure is read.

The Tag Type Service Parameter for structures is a 4-byte sequence. The first
two bytes are the values A0 and 02, followed by the latter two bytes, which
contain a 16-bit calculated field called a Structure Handle. When transmitted
on the wire, it looks like this:

A0 02 Structure Handle Low Byte Structure Handle High Byte

The Structure Handle comes from Template instance attribute 1 of the
template instance associated with the tag. It is a calculated field, but generally
it is not necessary to calculate the value. Reading and understanding the

Tag type service
parameters for structure

http://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm004_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm004_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm004_-en-p.pdf/n

Chapter 1 CIP services

 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020 35

template information provides all the required information about the
structure makeup to unambiguously access it. With that understanding, the
client application can use the Structure Handle value read from the template
instance attribute 1, rather than calculating it. For more information about
structure templates, see Chapter 2, CIP services and user-created tags.

When choosing to calculate a Structure Handle, the process used to calculate
this value can be found on this website:

https://www.rockwellautomation.com/resources/downloads/rockwellautomat
ion/pdf/sales-partners/technology-licensing/TypeEncode_CIPRW.pdf

In Logix controllers, arrays report the data type of its members. An array of an
atomic type reports the corresponding 2 byte Tag Type Service Parameter,
while an array of structures reports the corresponding 4 byte Tag Type Service
Parameter.

IMPORTANT Reading a structure before writing to it is one way to obtain the value for this
parameter, but that does not provide any understanding of the structure makeup,
which is critical information when manipulating structure data. Also, the Structure
Handle value is not unique among structures. Some positional changes of members
within an otherwise identical structure yield the same value.
The correct way to access structures as a whole is to first read their template
information and understand the data packing. This assures that the application
knows what data type is in what position.

When reading the structure to get the Structure Handle value before writing
to it, be aware that the results may be ambiguous. Reserve this method only in
cases where the control system development is complete and no further data
structure changes will be made.

See also

CIP Services and user-created tags on page 37

https://www.rockwellautomation.com/resources/downloads/rockwellautomation/pdf/sales-partners/technology-licensing/TypeEncode_CIPRW.pdf
https://www.rockwellautomation.com/resources/downloads/rockwellautomation/pdf/sales-partners/technology-licensing/TypeEncode_CIPRW.pdf

 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020 37

Chapter 2

CIP Services and User-created Tags

This chapter describes processes that CIP clients use when interacting with
Logix 5000 controller data. The processes are:

• Finding the controller-scope tags that are created in a Logix 5000
controller

• Isolating user created tags from system tags and identify structured
tags

• Locating the structure template for a specific structure
• Determining the structure makeup of a specific structure
• Determining the data packing of the members of a structure when

accessed as a whole and not member by a member.
• Determining when to refresh the list of tags and structure information

See also

How tags are organized in the controller on page 37

Symbol object on page 38

Template object on page 38

Creating and maintaining a symbol object list on page 40

A client application interacts with the symbol and template objects associated
with tags in Logix 5000 controllers. Through this interaction, the client
application determines:

• What tags are created
• If a tag is structure
• The structure members
• How the data is packed in a message when reading a structure

This diagram shows the two objects in the Logix 5000 controller that are
associated with tags. A client application must use the attributes and services

How tags are organized
in the controller

Chapter 2 CIP Services and User-created Tags

38 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020

of these objects to understand the tag data makeup when reading or writing
to tags.

See also

CIP Services and User-created Tags on page 37

Creating a tag creates an instance of the Symbol class (Class ID 0x6B) in the
controller. The name of the tag is stored in attribute 1 of the instance. The
data type of the tag is stored in attribute 2.

Instances of the Symbol class defines a class-specific service with the name
Get_Instance_Attribute_List. This service helps find an instance of the class,
and enables retrieving the name and type attributes for each instance of the
class.

The member names for structures only exist in the template definition. It is
acceptable for a user-defined data type template definition to contain
members with the same names as other tags in the controller.

See also

CIP Services and User-created Tags on page 37

How tags are organized in the controller on page 37

When creating a user-defined data type, an instance of the Template object
(Class ID 0x6C) is created to hold information about the structure makeup.
This instance of the template object provides information about the template
structure such as:

• Its name.
• The member list.
• The number of members.
• The size of the structure when read or written.
• The Structure Handle.

The Get_Attribute_List service directed to the Template object allows the
client application to retrieve one or more attributes from an instance of the
Template class. Template instance attributes provide information about the

Symbol object

Template object

Chapter 2 CIP Services and User-created Tags

 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020 39

template structure itself so the application can interpret what it receives when
using the Template_Read service.

The Template Read service is used to retrieve the template structure
information that describes the members of the structure, their ordering, and
data types. This information is required when accessing a structured tag as an
entire structure to understand the data packing in the message frame.

Other structures in the Logix 5000 controller, including Module-Defined,
Add-On-Defined, and Predefined data types, are also described in instances of
the Template object. Use the Logix Designer application to implement one of
the following indirect methods to access individual member tags.

Access atomic or arrayed atomic members of Module-Defined, Add-On-
Defined, or Predefined structure tags using one of the following methods:

• Create a corresponding atomic tag (or atomic member of a structured
tag) and use ladder logic to periodically copy the atomic member of the
structure to the atomic tag.

• Create an alias tag for the atomic member that needs to be accessed.

These tags are present in the Symbol object instances and can be accessed like
any other atomic tag.

The previous methods are also used with structured tags of a user-defined
data type that contain a nested Module-Defined, Add-On-Defined, or
Predefined type member.

IMPORTANT The information described in this manual about accessing and understanding
structures should not be used to access complete Module-Defined structures,
Predefined structures, Add-On-Defined structures, or system tags, whether they are
stand alone, an alias, or nested within another user created tag. Tags of these types
have rules for dealing with host members and mapping of BOOLS, which are beyond
the scope of this document. If such structures are manipulated or accessed, results
can be unpredictable.

The STRING data type is a form of Predefined structure that would normally
be excluded after executing steps that are described later. It is also acceptable
to create user-defined data type string structures, including Strings of the
same format as the standard STRING. This allows external access to the string
and avoids the issues of Predefined structures.

To access any atomic tag that is visible in the Logix Designer application Data
Monitor, it is also acceptable to manually enter the full symbolic tag address
(NAME in the Data Monitor) in the client software. This includes atomic
members of any structure that are visible in Data Monitor. This only applies to
visible atomic tags and atomic members of structured tags.

See also

CIP Services and User-created Tags on page 37

Chapter 2 CIP Services and User-created Tags

40 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020

How tags are organized in the controller on page 37

Client applications access atomic tags or atomic members of structured tags
by:

• Identifying the name of the tags for accessing
• Learning what tags are present in the controller and enabling users to

select the desired data.

Tip: In certain scenarios, it is not necessary to read all symbol instances or interpret
template information. For example, if the name of the tags are recognized and the Symbolic
Segment Addressing method is used to access only atomic tags or atomic members of
structured tags, it is not necessary to read all symbol instances or interpret the template
information.

Client applications identifying the available tags or accessing structures must
identify the required tags for access before manipulating tag data. This
information is used to identify the data type of each tag and enable the
application to interpret the data value associated with the tag.

Update the list of information as required. User program changes frequently
create or delete tags, and add, delete, and modify user-defined data types.

This procedure:

• Creates and maintain a list of controller-scope symbol objects in an
Logix 5000 controller

• Associates each instance with a template object instance if it is a
structured tag

• Eliminates the symbol instances of data that the client application does
not access or manipulate

To create and maintain a symbol object list:

1. Find all controller-scope tags.
2. Isolate user-created tags from system tags.
3. Determine the makeup of the structures. Structure members are not

separate Symbol instances.
4. Determine the data packing of structure members in a message.
5. Determine when Symbol Instances have changed.

See also

Step 1: Find user-created controller scope tags in a Logix 5000
controller on page 41

Step 2: Isolate user-created tags from system tags/identifying
structured tags on page 44

Step 3: Determine the structure makeup for a specific structure
on page 47

Create and maintain a
symbol object list

Chapter 2 CIP Services and User-created Tags

 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020 41

Step 4: Determine the data packing of the members of a structure
on page 53

Step 5: Determine when the tags list and structure information need
refreshing on page 54

This section describes the process used to learn what controller-scoped tags
are located in the Logix 5000 controller by retrieving the Symbol Name and
Symbol Type attributes for each instance of the Symbol Object.

The Get_Instance_Attribute_List (0x55) service returns instance IDs for each
created instance of the Symbol class, along with a list of the attribute data
associated with the requested attributes.

See also

CIP Services and User-created Tags on page 37

Retrieve all symbol object instances on page 41

Example of retrieving the first group of tags on page 42

Analysis on page 42

The maximum size of a packet does not return all instances and attributes in
a single request. To retrieve all instances, the client application must issue a
series of requests to the controller and adjust the starting instance with each
request.

This sequence describes how client application retrieves all the instances:

1. Set initial instance to zero.
2. Send request.
3. When General Status = 06 is returned, there is more data to read. To

determine the last instance sent in the reply, parse the data received
from the Logix 5000 controller to find the last instance ID returned.

4. Add one to the instance number determined in step 3.
5. Send the request again using the new instance value in the Request

Path.

When General Status = 00 Success, then all the symbol instances that are
created have been returned.

See also

CIP Services and User-created Tags on page 37

Step 1: Finding user-created controller scope tags in a Logix 5000
controller on page 41

Step 1: Find user-created
controller scope tags in a
Logix 5000 controller

Retrieve all symbol
object instances

Chapter 2 CIP Services and User-created Tags

42 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020

The table shows the format of the initial service request, which starts with
Symbol Object, Instance 0. This returns as much of the requested data as will
fit in the reply. Most controller programs require multiple attempts to get all
the tags.

Message Request Field Bytes (in hex) Description

Request Service 55 Get_Instance_Attribute_List Service (Request)
Request Path Size 03 Request Path is 3 words (6 bytes) long
Request Path 20 6B 25 00 00 00 Logical Segments: Class 0x6B, Instance 0 (starting instance)
Request Data 02 00 Number of attributes to retrieve

01 00 Attribute 1 – Symbol Name

02 00 Attribute 2 – Symbol Type

Message Reply Field Bytes (in hex) Description

Reply Service D5 Get_Instance_Attribute_List Service (Reply))

Reserved 00
General Status 06 Status of 06 means: Too Much Data
Extended Status Size 00 No extended status

Reply Data 12 03 00 00 First 32-bit Instance ID
(The 1st Instance ID after the instance specified in the Request Path)

0D 00
43 69 70 52 65 61 64 44 61 74 61 31
30

16-bit Symbol Name Length
Characters in the symbol name

FF 8F Symbol Type

51 0E 00 00 Second 32-bit Instance ID

06 00
63 6F 75 6E 74 73

16-bit Symbol Name Length
Characters in the symbol name

82 CF Symbol Type

… Next …

34 5D 00 00 Last 32-bit Instance ID in this reply

0A 00
50 61 72 74 73 5F 44 65 73 74

16-bit Symbol Name Length
Characters in the symbol name

C3 00 Symbol Type

See also

CIP Services and User-created Tags on page 37

Step 1: Finding user-created controller scope tags in a Logix 5000
controller on page 41

Observe the analysis:

• The Reply Data includes the Instance ID along with the data values for
attributes 1 and 2.

Example of retrieving the
first group of tags

Analysis

Chapter 2 CIP Services and User-created Tags

 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020 43

• The Symbol Name attribute is a variable length structure of type
STRING that consists of a UINT character count followed by the single
octet characters (ASCII encoded) in the name.

• The Symbol Type attribute is a WORD, which is a 16-bit string,
representing the symbol data type that is described in the next step.

The example previously returned number of instances, starting with instance
0x0312 and ending with instance 0x5D34. Only instances that are created are
returned. Gaps in the instance numbers will occur.

Any symbol instances that represent tags whose External Access is set to
None are not included in the reply data.

See also

Continue the retrieval process on page 43

In this example, assume that the controller has too many symbols to fit in one
reply. The last instance number shown in the previous example is 0x5D34, and
incremented to 0x5D35.

This table shows the request for the next set of instances or attribute data. The
value 0x5D35 is the starting instance ID in the path.

Message Request Field Bytes Description

Request Service 55 Get_Instance_Attribute_List Service (Request)

Request Path Size 03 Request Path is 3 words (6 bytes) long
Request Path 20 6B 25 00 35 5D Logical Segments: Class 0x6B, Instance 0 x5D35(starting instance)
Request Data 02 00 Number of attributes to retrieve

01 00 Attribute 1 – Symbol Name

02 00 Attribute 2 – Symbol Type

The Logix 5000 controller retrieves data beginning with instance 0x5D35 and
returns all of the data that fits in the message frame. The table lists examples
of subsequent responses.

Message Reply Field Bytes (in hex) Description

Reply Service D5 Get_Instance_Attribute_List Service (Reply)

Reserved 00
General Status 06 Status of 06 means: Too Much Data
Extended Status Size 00 No extended status

Reply Data 43 63 00 00 First 32-bit Instance ID
(The 1st Instance ID after the instance specified in the Request Path)

0C 00
43 69 70 52 65 61 64 44 61 74 61 33

16-bit Symbol Name Length
Characters in the symbol name

FF 8F Symbol Type

54 72 00 00 Second 32-bit Instance ID

0F 00
73 61 6D 70 6C 65 54 69 6D 65 5F 44 65 73 74

16-bit Symbol Name Length
Characters in the symbol name

Continue the
retrieval process

Chapter 2 CIP Services and User-created Tags

44 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020

Message Reply Field Bytes (in hex) Description

83 8F Symbol Type

… Next …

E8 08 00 00 Last 32-bit Instance ID in this reply

13 00
50 72 65 67 72 61 6D 3A 4D 61 69 6E 50 72 6F 67 72 61
6D

16-bit Symbol Name Length
Characters in the symbol name

68 10 Symbol Type

The retrieval process is repeated until the General Status of 00 is received
from the Logix 5000 controller, indicating the last of the data has been sent.

When the retrieval process is complete, the client has a list of these items.

• All the controller scope tags in the controller, including atomics,
structures, arrays, and aliases

• Which instance of the Symbol class is associated with each controller
scope tag

• Information about the data type of each controller scope tag, including
whether it is a structured tag

See also

Analysis on page 42

Once the application has retrieved the last of the data, the next step is to
remove the system tags, Predefined tags, Add-On-Defined tags, and Module-
Defined tags. This is accomplished by interpreting the Symbol Type, Symbol
Name, and structure Template Name, structure first Member Name, and the
Type of each structure member.

See also

CIP Services and User-created Tags on page 37

Symbol Type Attribute on page 44

Eliminate tags by applying rules on page 46

Step 2: Isolate user-created
tags from system
tags/identifying
structured tags

Symbol Type Attribute

Chapter 2 CIP Services and User-created Tags

 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020 45

The Symbol Type value is decoded as follows:

Atomic and structured tags are differentiated by the value of bit 15. Do not
access Symbols where bit 12 =1 is a system tag.

Tag Type Symbol Type Attribute Description

Atomic tag Bit 15 = 0, Bit 12 = 0 The value of bits 0-11 of the Symbol Type attribute
is the Tag Type Service Parameter used in the
Read/Write Tag services.

Structured tag Bit 15 = 1, Bit 12 = 0 Bits 0-11 of the SymbolType attribute are the
instance ID of the template object that contains the
structure definition for this tag.

For any tag type, the value of bits 13 and 14 indicates the dimensions of the tag
as shown in this table:

Bit 14 Bit 13 Meaning

0 0 0 dimensions (not an array)

0 1 1 dimension array
1 0 2 dimension array
1 1 3 dimension array

The Template object contains information about structures and many
instances of the object class created to hold structures associated with data
inside the Logix 5000 controller. When creating new user-defined types
creates a new instance of the object class. The instance ID numbers do not
follow any order.

Structured tags are linked to the template object instance through the Symbol
Type attribute. For this reason, it is not necessary to read all the instances of
the Template class. Simply view the Symbol Type attribute. When Bit 12=0;
Bit15=1, then Bits 0-11 represent the instance ID of the template associated
with this tag.

For example, assume a MachineSummary tag exists in the controller the tag is a
structure of type STRUCT_B. The Symbol Type attribute (attribute 2) for this
tag has the value 0x82E9. Bit 15 is set, indicating this tag is a structured tag
and Bit 12 is reset so it is not a reserved tag. The value of bits 0-11 is 0x2E9 is
the instance ID of the Template object where the structure makeup of the tag
is defined and the value is in the range of values that are accessed.

Chapter 2 CIP Services and User-created Tags

46 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020

Use instance ID 0x2E9 in the Step 3 example to retrieve the structure
information for a tag of this type.

After gaining an understanding of interpreting the Symbol Type attribute,
identify tags that are not user-created from those that are user-created.

See also

Step 2: Isolate user-created tags from system tags/identifying
structured tags on page 44

Beginning with the full list of symbol instances, eliminate tags that should
not be accessed or manipulated by applying the following rules.

1. Discard tags that are not in these ranges (eliminates Predefined and
String)

• The Symbol Type, Bit 12=0, Bit 15=0, and Bits 0-11 range from 0x001-
0x0FF (atomics)

• The Symbol Type, Bit 12=0, Bit 15=1, and Bits 0-11 range from 0x100-
0xEFF (structures, not including Predefined)

2. Discard tags that contain these characters

• The Symbol Name contains leading double underscores (for
example, __ABC) (eliminates some system tags)

• The Symbol Name contains a colon (:) (for example, eliminates
Module-Defined tags)

3. For the structure tags that remain (bit 15=1), access the Templates and
discard tags where the Template Name, or the name of the first
member of the structure, contains leading double underscores or a
colon (:) This eliminates Add-On-Defined tags and aliases of Module-
Defined tags.

For template details, see Step 3: Determining the structure makeup for a
specific structure.

4. Locate any nested member structures within the remaining structures,
by checking the Type of each member. For any nested structures,
repeat the checks earlier for Type in valid range, Template Name and
first Member Name, and discard the total structure if a check fails.
Continue until all nested structures are checked.

See also

Step 3: Determining the structure makeup for a specific structure
on page 47

Eliminate tags by
applying rules

Chapter 2 CIP Services and User-created Tags

 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020 47

Any remaining tag with the Symbol Type Bit 15 = 1 is a structured data type.
The client application must read information from the Template object
Instance ID associated with this tag. This Instance ID is the value of Symbol
Type, Bits 0-11. Four attributes of this instance contain information about
structured data types for a client application that interacts with a UDT-based
tag.

Read these Template Instance attributes, using the instance ID in the Request
Path of the Get_Attribute_List service (0x03) to the Template class (0x6C).

Attribute Description/Characteristics

1 • This is the Tag Type Parameter used in Read/Write Tag service
• Structure Handle
• Data Type: UINT

2 • This is the number of structure members
• Template Member Count
• Data Type: UINT

4 • This is the number of 32-bit words
• Template Object Definition Size
• Data Type: UDINT

5 • This is the number of bytes of the structure data
• Template Structure Size
• Data Type: UDINT

The table that follows shows how to read the list of attributes for an instance
of the Template Object associated with the STRUCT_B example.

See also

Example of reading template attributes on page 47

This is an example of reading template attributes.

Message Request Field Bytes (in hex) Description

Request Service 03 Get Attributes, List Service (Request)

Request Path Size 03 Request Path is 3 words (6 bytes) long
Request Path 20 6C 25 00 E9 02 Logical Segment Class 0x6C, Instance ID 0x02E9
Request Data 04 00 Attribute Count
Request Data

04 00
05 00
02 00
01 00

Attribute List: Attributes 4, 5, 2 and 1 are requested

The response in the table contains a count of the items requested, followed by
a structured response for each item consisting of the attribute ID (16-bits),
status of retrieval (16-bits), and the attribute data (size varies).

Message Reply Field Bytes (in hex) Description

Reply Service 83 Get_Attributes_List Service (Reply)

Step 3: Determine the
structure makeup for a
specific structure

Example of reading
template attributes

Chapter 2 CIP Services and User-created Tags

48 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020

Reserved 00
General Status 00 Success
Extended Status Size 00 No extended status
Reply Data 04 00 Count of Items returned

04 00
00 00
IE 00 00 00

Attribute 4, Template Object Definition Size
Status: 0000 = success
Size of the template definition structure in 32-bit words

05 00
00 00
20 00 00 00

Attribute 5, Template Structure Size
Status: 0000 = success
Number of bytes transferred on the wire when the structure is read using the Read Tag service

02 00
00 00
04 00

Attribute 2, Member Count
Status: 0000 = success
Number of members defined in the structure

01 00
00 00
CD 9E

Attribute 1, Structure Handle
Status: 0000 = success
Calculated CRC value for members of the structure.

The error codes may be returned by the Get_Attribute_List service to the
Template object.

Error Code (Hex) Extended Error (Hex) Description of Error

0x04 0x0000 A syntax error was detected decoding the Request Path.

0x05 0x0000 Request Path destination unknown: probably instance number is not present.
0x06 N/A Insufficient Packet Space: Not enough room in the response buffer for all the data.
0x0A N/A Attribute list error, generally attribute not supported. The status of the unsupported

attribute is 0x14.
0x1C N/A Attribute List Shortage: The list of attribute numbers was too few for the number of

attributes parameter.
0x26 N/A The Request Path Size received was shorter than expected.

See also

CIP Services and User-created Tags on page 37

Step 3: Determining the structure makeup for a specific structure
on page 47

With the information returned in the previous example, the client application
now has all the information necessary to use the Template Read service to
retrieve the template member information.

• Attribute 4 (Template Object Definitions Size) will be used to calculate
how much data to read when using the Template Read service (0x4C)
to get the template definition structure from the Template instance.
The service data includes the starting byte offset (initially = 0) and the
number of bytes to read.

The number of bytes to read is calculated as:
(Template Object Definition Size * 4) – 23.

Analysis

Chapter 2 CIP Services and User-created Tags

 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020 49

Use the entire size calculated here in the request, regardless of how big
it is.

• The service handler in the Logix 5000 controller will only return as
much data as will fit in the message frame, and uses the General Status
= 06 to indicate more to read. The client can adjust the starting offset
(that is, new starting offset = bytes received +1) and reissue this
request, repeating the process until General Status = 0 is returned,
indicating that all data has been read. For smaller structures, these
extra steps may not be required, as all the data will fit in a single reply.

• The structure data returned by the Template Read service has the
format shown in Structure data format.

See also

Structure data format on page 49

The structure data returned by the Template Read service has this format:

The response to the Template Read service is the Member Information in
Contents of the member information.

See also

Contents of the member information on page 50

Structure data format

Chapter 2 CIP Services and User-created Tags

50 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020

The first 32-bit value contains:

• The lower 16-bits are the INFO value, which is one of these value:

• If the member is an atomic data type, the value is zero.
• If the member is an array data type, the value is the array size (max

65535).
• If the member is a Boolean data type, the value is the bit location

(0-31; 0-7 if mapped to a SINT).

• The upper 16-bits represent the data type.
• The second 32-bit value is the offset location of the member in the UDT

structure.

The offset given in the Member n offset value in the Example of retrieving
member information topic is where the member is located in the stream of
bytes returned from reading a tag of this type in the controller.

See also

Analysis on page 13

Example of retrieving member information on page 50

This example uses the Template Read service to retrieve the member
information for an instance of the Template object. This examples explains
how to interpret the member information stored in the template instance.

The structure that is accessed in this example is a user defined structure
named STRUCT_B that was defined with the following members:

• BOOL named pilot_on
• INT array of 12 elements named hourlyCount
• REAL named rate

A tag of the type STRUCT_B was created and given the name
MachineSummary. This tag name is used in the following example. The
instance ID used in this example was determined by examining the Symbol
Type attribute of the tag MachineSummary, as described in Step 2: Isolating
user-created tags from system tags/identifying structured tags. The Template
Read service request and response to that instance is shown in the following
examples.

See also

Step 2: Isolating user-created tags from system tags/identifying
structured tags on page 44

Read the structure information for the MachineSummary tag, which is the
STRUCT_B user-defined type

Contents of the
member information

Example of retrieving
member information

Example

Chapter 2 CIP Services and User-created Tags

 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020 51

Message Request Field Bytes Description

Request Service 4C Read Template Service (Request)

Request Path Size 03 Request Path is 3 words (6 bytes) long
Request Path 20 6C 25 00 E9 02 Logical Segment: Class 0x6C, Instance 0x02E9
Request Data 00 00 00 00

61 00
Offset to start reading from (should be zero, initially)
The number of bytes to be read.

Message Reply Field Bytes Description

Reply Service CC Read Template Service (Reply)

Reserved 00
General Status 00 Success
Extended Status Size 00 No Extended Status
Reply Data

00 00
C2 00
00 00 00 00

Member 1 info, type, offset:
non-array (0000)
SINT (00C2)
Offset (00000000)

00 00
C1 00
00 00 00 00

Member 2 info, type, offset:
bit 0 (0000)
BOOL (00C1)
Offset (00000000) (bit 0 in the previous SINT)

0C 00
C3 20
04 00 00 00

Member 3 info, type, offset:
12 element array (000c)
INT (C3 20)
Offset (00000004)

00 00
CA 00
1C 00 00 00

Member 4 info, type, offset:
non-array (0000)
REAL (00CA)

Offset (0000001C)
53 54 52 55 43 54 5F 42
3B 6E 45 42 45 43 45 41 48 41
00

Template Name (STRUCT_B)
The structure name precedes the 0x3B in the stream of bytes. All remaining
bytes are outside the scope of this document.

 5A 5A 5A 5A 5A 5A 5A 5A 5A 5A
53 54 52 55 43 54 5F 42 30 00

Member 1 Name: The Logix Designer application selects the name of the
member for one or more members. The host member for the BOOL (Member
2) follows. Member 1 is sent on the wire but is not visible to the user in the
Logix Designer application Data Monitor view. As indicated by the offset value
for Member 3, three bytes of pad are inserted after the SINT for this host
member, for data alignment. When reading or writing the structure, the pad
bytes are sent on the wire.

 70 69 6C 6F 74 5F 6F 6E 00 Member 2 Name is the first member of the structure that is visible to the
user in the Logix Designer application Data Monitor view. This is the pilot_on
member. The Member 2 information from earlier in the packet indicates this
is a BOOL type and the data offset is zero. The client identifies that the BOOL
is part of the Member_1 at the zero data offset, and that this is bit 0 of that
member. The other 7 bits of Member_1 are not used and are not visible.
Member 2 is not sent separately on the wire because it is part of Member_1.

68 6F 75 72 6C 79 43 6F 75 6E
74 00

Member 3 Name: This is the hourlyCount member.
It is a DINT data type and is at offset 4.

72 61 74 65 00 Member 4 Name: This is the rate member. It is a REAL data type and is at
offset 1C.

Chapter 2 CIP Services and User-created Tags

52 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020

The user-defined data type (UDT) Template Name string and structure
member names, stored as null-terminated strings follow the member
information. For a UDT structure, the Template Name string contains the
Template Name followed by the characters ;n plus additional characters. This
may also apply for some non-UDT structures. For other non-UDT structures,
the semi-colon may be followed by other characters, or just a NULL instead of
the semi-colon and characters. Non-UDT structures are beyond the scope of
this publication and should not be accessed as whole structures.

In this example, the first and second members have the same offset. This is
typical of how BOOL members are mapped into UDTs. The first member is the
host member for the data described by the second member. The second
member, which is the visible member, is seen in the Logix Designer
application Data Monitor.

See also

Analysis on page 48

This description applies only to UDTs, not Module-Defined, Add-On-Defined
or Predefined structures.

BOOLs in UDTs are typically mapped to a previous SINT (whose name begins
with the prefix ZZZZZZZZZZ) in the structure data stream. This SINT does not
appear in the Logix Designer application Data Monitor view. With SINT host
members, if more than eight contiguous BOOLs are defined, multiple
adjacent SINTs are created to hold them. The bits are mapped into each SINT
beginning with bit 0 thru bit 7 for contiguous BOOLS. If BOOLS are defined
non-contiguously in a UDT, they are mapped to more than one host member.
The Member Offset in the Template identifies where the host SINT is located
and the bit order of the BOOL in the SINT is determined by the order of the bit
in the structure. The host member is sent on the wire when the tag is accessed,
but the visible BOOL is only present in the structure definition to enumerate
the value and is not part of what is sent on the wire.

Logix BOOL arrays are multiples of BOOL[32] and are implemented as a
DWORD array.

To better understand structure encoding, see the information on structured
definitions in the Logix 5000 Controllers Import/Export Manual, publication
1756-RM084.

See also

Analysis on page 13

More about BOOLS in UDTs

https://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm084_-en-p.pdf
https://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm084_-en-p.pdf

Chapter 2 CIP Services and User-created Tags

 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020 53

This example illustrates reading a structure to understand how data
transmits. This example also shows the value for the accessed tag.

The MachineSummary structured tag is a STRUCT_B type tag. The members of
the MachineSummary tag have these values:

• pilot_on = 1
• hourlyCount[0] = 0x00
• hourlyCount[1] = 0x01
• hourlyCount[2] = 0x02
• …
• hourlyCount[11] = 0x0b
• rate = 1.0

See also

Example of reading an entire structure on page 53

The following is an example of reading an entire structure.

Message Request Field Bytes Description

Request Service 4C Read Tag Service (Request)

Request Path Size 08 Request Path is 8 words (16 bytes) long
Request Path 91 0E 4D 61 63 68 69 6E

65 53 75 6D 6D 61 72 79
ANSI Ext. Symbol Segment for Machine Summary

Request Data 01 00 Number of elements to read (1)

The data returned would be packed like this:

Message Reply Field Bytes Description

Reply Service CC Read Tag Service (Reply)

Reserved 00
General Status 00 Success
Extended Status Size 00 No Extended Status
Reply Data A0 02 CD 9E =Tag Type Service Parameter (The Structure Handle, Template Instance

Attribute 1. See Step 3.)
01 = host SINT (for BOOLs)

 00 = Pad byte

00 = Pad byte

00 = Pad byte
00 00 = hourlyCount[0] (array of INT)
01 00 = hourlyCount[1]
02 00 = hourlyCount[2]
03 00 = hourlyCount[3]
04 00 = hourlyCount[4]
05 00 = hourlyCount[5]
06 00 = hourlyCount[6]

Step 4: Determine the data
packing of the members of
a structure when accessed
as a whole

Example of reading an
entire structure

Chapter 2 CIP Services and User-created Tags

54 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020

Message Reply Field Bytes Description

07 00 = hourlyCount[7]
08 00 = hourlyCount[8]
09 00 = hourlyCount[9]
0a 00 = hourlyCount[10]
0b 00 = hourlyCount[11]
00 00 80 3F = rate (REAL)

The amount of data returned (0x20 bytes) agrees with the value of Attribute 5
(Template Structure Size = 0x20 as determined in Step 3) using the
Get_Attributes_List service.

See also

Step 4: Determining the data packing of the members of a structure
when accessed as a whole on page 53

CIP Services and User-created Tags on page 37

The client application should periodically check for changes in the controller
to determine if it must repeat the process outlined in this chapter. Once
controller program development is complete, tags and UDT definitions
generally remain constant; however, it is possible that a PLC program
developer may create or delete tags from time to time, or change a UDT
definition. When that happens, the symbol object instance associated with a
tag may change, the relationship between the template instance and the
symbol instance may change, or the data makeup of a UDT-based tag can
change.

See also

How to detect changes on page 54

Controller object attributes indicate changes made to the controller. A change
in these values indicates changes to symbol instances, template instances, or
both. These are not the only changes indicated by these attributes, but these
provide the most straightforward way to determine when the client
application should refresh the list of created tags, while keeping the number
of false indications to a minimum.

For client applications, use the Get_Attribute_List service to periodically
retrieve attributes 1, 2, 3, 4 and 10 of class 0xAC in the controller. If the value of
these attributes changes between reads, the client application must refresh
the:

• List of symbols
• Association between symbols and templates
• Template information.

Step 5: Determine when the
tags list and structure
information need refreshing

How to detect changes

Chapter 2 CIP Services and User-created Tags

 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020 55

To verify these attributes, use the Multi Service Packet Service (0x0a) to group
the Get_Attribute_List service with the Read Tag services. If the situations
occur, discard the Tag Read reply data and refresh the symbol and template
information:

• The values returned for these attributes are different than the last time
they were read.

• The General Status 0x05 (Path Not Known) is returned, which
indicates that a project download is in progress.

IMPORTANT Do not use the Multi Service Packet service to group the attribute check with
the Tag Write service, as this would allow data to be written before
determining whether the tag information needs to be re-read.

When writing to tags, prepare the tags to be written and then check the
attributes. If no change is indicated and the General Status of the request is
Success, proceed with writing the tag data. If a change is indicated, refresh the
tag and template information as described. The tag write is followed by the
attribute reads to confirm that the tag did not change before the write. If the
attribute check fails, check the tag to confirm it did not change.

The client application should refresh this information after re-establishing the
CIP network connection with the Logix 5000 controller, or if a General Status
of 0x05 occurs when reading these attributes.

The service request and reply are shown as:

Message Request Field Bytes (in hex) Description

Request Service 03 Get_Attribute_List Service (Request)

Request Path Size 03 Request Path is 3 words (6 bytes) long
Request Path 20 AC 25 00 01 00 Logical Segments: Class 0xAC, Instance 0x0001
Request Data 05 00 Number of attribute IDs that follow(5)

01 00
02 00
03 00
04 00
0A 00

Attribute list:
Attribute 1
Attribute 2
Attribute 3
Attribute 4
Attribute 10

Message Reply Field Bytes (in hex) Description

Reply Service 83 Get_Attributes_List Service (Reply)

Reserved 00 Reserved
General Status 00 Success
Extended Status Size 00 No extended status
Reply Data 02 00 Number of attribute responses that follow
 01 00 Attribute number (attribute 1)

00 00 Success

05 00 Attribute value (INT)
02 00 Attribute number (attribute 2)
00 00 Success

Chapter 2 CIP Services and User-created Tags

56 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020

Message Reply Field Bytes (in hex) Description

01 00 Attribute value (INT)
03 00 Attribute Number (Attribute 3)
00 00 Success
03 B2 80 C5 Attribute value (DINT)
04 00 Attribute Number (Attribute 4)
00 00 Success
03 B2 80 C5 Attribute value (DINT)
0A 00 Attribute Number (Attribute 10)
00 00 Success
F8 DE 47 B8 Attribute value (DINT)

The CPU Lock feature of Logix 5000 controllers causes this service request to
return a General Status 0x10, Device State Conflict when the controller is
password locked. In this state, controller memory can not be altered. Rockwell
Automation suggests after receipt of the Device State Conflict for the first
time, the client application should refresh the tag information one time. The
client application should refresh again if the connection lost. The client
application should reconnect after receipt of General Status 0x05, or a
successful response to the service that indicates the CPU is unlocked.

See also

Step 5: Determining when the tags list and structure information need
refreshing on page 54

 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020 57

Chapter 3

CIP Addressing Examples

The examples in this chapter show:

• Request Path strings for various data accesses using native CIP service
requests and addressing.

• Only a portion of a message frame for requests and responses.
• How various references to atomic data types, arrays, and portions of

arrays are constructed.

Visit http://www.rockwellautomation.com/enabled/guides.html to download:

• The traffic capture files that contain these services.
• The controller project file used as the target in these examples.

See also

Atomic Members of Predefined Data Types on page 57

Accessing User-Defined Structures on page 63

The examples access tags that return atomic data types.

Read a single integer tag named parts. The tag has a data type of INT and a
value of 42.

Message Request Field Bytes (in hex) Description - Symbolic Segment Addressing

Request Service 4C Read Tag Service (Request)

Request Path Size 04 Request Path is 4 words (8 bytes) long
Request Path 91 05 70 61 72 74 73 00 ANSI Ext. Symbolic Segment for parts
Request Data 01 00 Number of elements to read (1)

Message Reply Field Bytes (in hex) Description - Symbolic Segment Addressing

Reply Service CC Read Tag Service (Reply)

Reserved 00
General Status 00 Success
Extended Status Size 00 No extended status
Reply Data C3 00 INT Tag Type Value

Atomic Members of
Predefined Data Types

Example 1 (Symbolic
Segment Addressing
Method)

http://www.rockwellautomation.com/rockwellautomation/solutions-services/oem/design-develop-deliver/information-enabled-solutions.page

Chapter 3 CIP Addressing Examples

58 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020

Message Reply Field Bytes (in hex) Description - Symbolic Segment Addressing

2A 00 0x002A= 42 decimal

See also

Atomic Members of Predefined Data Types on page 57

Read a single integer tag named parts.The tag has a data type of INT and a
value of 42.

Message Request Field Bytes (in hex) Description - Symbol Instance Addressing

Request Service 4C Read Tag Service (Request)

Request Path Size 03 Request Path is 3 words (6 bytes) long
Request Path 20 6B

25 00 82 25
Logical Segment for Symbol Class ID
Logical Segment for Instance ID for tag parts

Request Data 01 00 Number of elements to read (1)

Message Reply Field Bytes (in hex) Description - Symbol Instance Addressing

Reply Service CC Read Tag Service (Reply)

Reserved 00
General Status 00 Success
Extended Status Size 00 No extended status
Reply Data C3 00 INT Tag Type Value

2A 00 002A = 42 decimal

See also

Atomic Members of Predefined Data Types on page 57

Write the value of 14.5 to the 6th element of an array of REALs named
setpoints(setpoints[5]).

Message Request Field Bytes (in hex) Description - Symbolic Segment Addressing

Request Service 4D Write Tag Service (Request)

Request Path Size 07 Request Path is 7 words (14 bytes) long
Request Path 91 09 73 65 74 70 6F 69 6E 74 73 00 28 05 ANSI Ext. Symbolic Segment for setpoints and

…the Member segment for 5
Request Data CA 00 REAL Tag Type Value

01 00 Number of elements to write (1)

00 00 68 41 0x41680000 = 14.5 decimal

Example 2 (Symbol
Instance Addressing
Method)

Example 3 (Symbolic
Segment Addressing
Method)

Chapter 3 CIP Addressing Examples

 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020 59

Message Reply Field Bytes (in hex) Description - Symbolic Segment Addressing

Reply Service CD Write Tag Service (Reply)

Reserved 00
General Status 00 Success
Extended Status Size 00 No extended status

See also

Atomic Members of Predefined Data Types on page 57

Read two elements of profile[0,1,257], which is a three dimensional DINT array
The values of the tag are 572 and 50988.

Message Request Field Bytes (in hex) Description - Symbolic Segment Addressing

Request Service 4C Read Tag Service (Request)

Request Path Size 09 Request Path is 9 words (18 bytes) long
Request Path 91 07 70 72 6f 66 69 6c 65 00

28 00
28 01
29 00 01 01

ANSI Ext. Symbolic Segment for profile
Member Segment for 0
Member Segment for 1
Member Segment for 257

Request Data 02 00 Number of elements to read (2)

Message Reply Field Bytes (in hex) Description - Symbolic Segment Addressing

Reply Service CC Read Tag Service (Reply)

Reserved 00
General Status 00 Success
Extended Status Size 00 No extended status
Reply Data C4 00 DINT Tag Type Value

F0 02 00 00
2C C7 00 00

0x000002F0 = 752 decimal
0x0000C72C=50988 decimal

See also

Atomic Members of Predefined Data Types on page 57

Read one element of profile[0,1,257] which is a three dimensional array of
DINTs.

Message Request Field Bytes (in hex) Description

Request Service 4C Read Tag Service (Request)

Request Path Size 07 Request Path is 7 words (14 bytes) long

Example 4 (Symbolic
Segment Addressing
Method)

Example 5 (Symbol
Instance Addressing
Method)

Chapter 3 CIP Addressing Examples

60 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020

Message Request Field Bytes (in hex) Description

Request Path

20 6B
25 00 97 8A
28 00
28 01
29 00 01 01

Logical Segment for Symbol Class ID
Logical Segment for Instance ID for tag profile
Member Segment for 0
Member Segment for 1
Member Segment of 257

Request Data 01 00 Number of elements to read (1)

Message Reply Field Bytes (in hex) Description

Reply Service CC Read Tag Service (Reply)

Reserved 00
General Status 00 Success
Extended Status Size 00 No extended status
Reply Data C4 00 DINT Tag Type Value

F0 02 00 00 0x000002F0 = 752 decimal

See also

Atomic Members of Predefined Data Types on page 57

Read the accumulated value of a timer named dwell3 (dwell3.ACC).

Message Request Field Bytes (in hex) Description - Symbolic Segment Addressing

Request Service 4C Read Tag Service (Request)

Request Path Size 07 Request Path is 7 words (14 bytes) long
Request Path 91 06 64 77 65 6C 6C 33

91 03 61 63 63 00
ANSI Ext. Symbolic Segment for dwell3
ANSI Ext. Symbolic Segment for ACC

Request Data 01 00 Number of elements to read (1)

Message Reply Field Bytes (in hex) Description - Symbolic Segment Addressing

Reply Service CC Read Tag Service (Reply)

Reserved 00
General Status 00 Success
Extended Status Size 00 No extended status
Reply Data C4 00 DINT Tag Type Value

25 02 00 00 0x00000252 = 549 decimal

See also

Atomic Members of Predefined Data Types on page 57

Example 6 (Symbolic
Segment Addressing
Method)

Chapter 3 CIP Addressing Examples

 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020 61

Write a preset value of 50 to the .PRE member of the counter ErrorLimit
(ErrorLimit.PRE).

Message Request Field Bytes (in hex) Description - Symbolic Segment Addressing

Request Service 4D Read Tag Service (Request)

Request Path Size 09 Request Path is 9 words (18 bytes) long
Request Path 91 0A 45 7272 6F 72 4C 69 60 69 74

91 03 50 52 45 00
ANSI Ext. Symbolic Segment for ErrorLimit
ANSI Ext. Symbolic Segment for PRE

Request Data C4 00
01 00
32 00 00 00

DINT Tag Type Value
Number of elements to write (1)
0x00000032 = 50 decimal

Message Reply Field Bytes (in hex) Description - Symbolic Segment Addressing

Reply Service CC Read Tag Service (Reply)

Reserved 00
General Status 00 Success
Extended Status Size 00 No extended status

See also

Atomic Members of Predefined Data Types on page 57

Read the tag struct3.today.rate, which is a structure of type STRUCT_C, using
both the Symbol Instance and Symbolic Segment Addressing methods.

Message Request Field Bytes (in hex) Description- Symbol Instance and Symbolic Segment Addressing

Request Service 4C Read Tag Service (Request)

Request Path Size 0A Request Path is 9 words (18 bytes) long
Request Path 20 6B

25 00 D1 18
91 05 74 6F 64 61 79 00
91 04 72 61 74 65

Logical Segment for Symbol Class ID
Logical Segment for Instance ID for tag struct3
ANSI Ext. Symbolic Segment for member today
ANSI Ext. Symbolic Segment for member rate

Request Data 01 00 Number of elements to read (1)

Message Reply Field Bytes (in hex) Description - Symbol Instance and Symbolic Segment Addressing

Reply Service CC Read Tag Service (Reply)

Reserved 00
General Status 00 Success
Extended Status Size 00 No extended status
Reply Data CA 00 REAL Tag Type Service Parameter

00 00 80 41 16.0 decimal

Example 7 (Symbolic
Segment Addressing
Method)

Example 8 (Both
Addressing Methods)

Chapter 3 CIP Addressing Examples

62 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020

See also

Atomic Members of Predefined Data Types on page 57

Read the tag my2Dstruct4[1].today.hourlyCount[3] using both Symbolic Instance
and Symbolic Segment Addressing methods.

Message Request Field Bytes (in hex) Description - Symbol Instance and Symbolic Segment Addressing

Request Service 4C Read Tag Service (Request)

Request Path Size 16 Request Path is 22 words (44 bytes) long
Request Path 20 6B 25 00 4B 0D

28 00
91 07 6D 79 61 72 72 61 79 00
28 01
91 05 74 6F 64 61 79 00
91 0B 68 6F 75 72 6C 79 43 6F 75 6E 74 00
28 03

Logical Segments for Symbol Class ID and Instance ID for myDstruct4
Element ID for element 0
ANSI Ext. Symbolic Segment for myarray
Element ID for element 1
ANSI Ext. Symbolic Segment for today
ANSI Ext. Symbolic Segment for hourlyCount
Element ID for element 3

Request Data 01 00 Number of elements to read (1)

Message Reply Field Bytes (in hex) Description- Symbol Instance and Symbolic Segment Addressing

Reply Service CC Read Tag Service (Reply)

Reserved 00
General Status 00 Success
Extended Status Size 00 No extended status
Reply Data C3 00 Data Type for INT

D0 5C 0x5CD0 = 23760 decimal

See also

Atomic Members of Predefined Data Types on page 57

Read the value of a BOOL named struct2.pilot_on using Symbolic Segment
Addressing. The value of the BOOL is 1.

The values for BOOL 0 and 1 returned by the controller are 0x00 and 0xFF
respectively.

Message Request Field Bytes (in hex) Description - Symbolic Segment Addressing

Request Service 4C Read Tag Service (Request)

Request Path Size 0A Request Path is 10 words (20 bytes) long

Example 9 (Both
Addressing Methods)

Example 10 (Symbolic
Segment Addressing
Method) with BOOLs

Chapter 3 CIP Addressing Examples

 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020 63

Message Request Field Bytes (in hex) Description - Symbolic Segment Addressing

Request Path 91 07 73 74 72 75 63 74 32 00
91 08 70 69 6C 6F 74 5F 6F 6E

Symbolic Segment for struct2
Symbolic Segment for pilot_on

Request Data 01 00 Number of elements to read (1)

Message Reply Field Bytes (in hex) Description - Symbolic Segment Addressing

Reply Service CC Read Tag Service (Reply)

Reserved 00
General Status 00 Success
Extended Status Size 00 No extended status
Reply Data C1 00 BOOL Tag Type Value

FF BOOL value for 1

See also

Atomic Members of Predefined Data Types on page 57

This topic shows examples of accessing simple structures to help illustrate the
message formats needed. The examples all use the Symbolic Segment
Addressing method. The four structure examples are defined and various
members of the structures are accessed in the examples that follow.

Structure Name: STRUCT_A Structure Name: STRUCT_B

Member Data Type Member Data Type

limit4 BOOL pilot_on BOOL

limit7 BOOL hourlyCount INT [12]

travel DINT rate REAL

errors SINT

wear REAL

Structure Name: STRUCT_C Structure Name: STRUCT_D

Member Data Type Member Data Type

hours_full BOOL myint INT

today STRUCT_B myfloat REAL
sampleTime DINT myarray STRUCT_C[8]
shipped DINT mypid REAL

For the controller project file and EtherNet/IP traffic capture files examples
shown here, go to http://www.rockwellautomation.com/enabled/guides.html.

See also

Example 1 on page 64

Example 2 on page 64

Access User-Defined
Structures

http://www.rockwellautomation.com/rockwellautomation/solutions-services/oem/design-develop-deliver/information-enabled-solutions.page

Chapter 3 CIP Addressing Examples

64 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020

Example 3 on page 65

Example 4 on page 65

Example 5 on page 66

Read the tag struct1 that is a tag of type STRUCT_A. This reads the entire
structure.

Message Request Field Bytes (in hex) Description - Symbolic Segment Addressing

Request Service 4C Read Tag Service (Request)

Request Path Size 05 Request Path is 5 words (10 bytes) long
Request Path 91 07 73 74 72 75 63 74 31 00 ANSI Ext. Symbolic Segment for struct1
Request Data 01 00 Number of elements to read (1)

Message Reply Field Bytes (in hex) Description - Symbolic Segment Addressing

Reply Service CC Read Tag Service (Reply)

Reserved 00
General Status 00 Success
Extended Status Size 00 No extended status
Reply Data A0 02 C1 FA Tag Type for STRUCT_A

03 00 00 00
55 00 00 00
77 00 00 00
33 33 2B 41

limit4 and limit7 members (bits 0 and 1 respectively) (BOOL) = 1,
travel member (DINT) = 0x55 (85 decimal),
errors member (SINT) = 0x77 (119 decimal),
wear member (REAL) = 10.7 decimal

See also

Access User-Defined Structures on page 63

Read the tag struct1.wear.

Message Request Field Bytes (in hex) Description - Symbolic Segment Addressing

Request Service 4C Read Tag Service (Request)

Request Path Size 08 Request Path is 8 words (16 bytes) long
Request Path 91 07 73 74 72 75 63 74 31 00

91 04 77 65 61 72
ANSI Ext. Symbolic Segment for struct1,
ANSI Ext. Symbolic Segment for wear

Request Data 01 00 Number of elements to read (1)

Message Reply Field Bytes (in hex) Description

Reply Service CC Read Tag Service (Reply)

Reserved 00
General Status 00 Success
Extended Status Size 00 No extended status
Reply Data CA 00 REAL Tag Type Value

Example 1

Example 2

Chapter 3 CIP Addressing Examples

 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020 65

Message Reply Field Bytes (in hex) Description

33 33 2b 41 0x412B3333=10.7 decimal

See also

Access User-Defined Structures on page 63

Read the tag str1Array[8].travel which is a one dimensional array of
STRUCT_A.

Message Request Field Bytes (in hex) Description - Symbolic Segment Addressing

Request Service 4C Read Tag Service (Request)

Request Path Size 0B Request Path is 11 words (22 bytes) long
Request Path 91 09 73 74 72 31 41 72 72 61 79 00

28 08
91 06 74 72 61 76 65 6c

ANSI Ext. Symbolic Segment for str1Array,
Member ID for element 8,
ANSI Ext. Symbolic Segment for travel

Request Data 01 00 Number of elements to read (1)

Message Reply Field Bytes (in hex) Description - Symbolic Segment Addressing

Reply Service CC Read Tag Service (Reply)

Reserved 00
General Status 00 Success
Extended Status Size 00 No extended status
Reply Data C4 00 DINT Tag Type Value

0F 27 00 00 0x0000270F=9999 decimal

See also

Access User-Defined Structures on page 63

Read two elements of the tag struct2.hourlyCount[4], which is a structure of
type STRUCT_B.

Message Request Field Bytes (in hex) Description - Symbolic Segment Addressing

Request Service 4C Read Tag Service (Request)

Request Path Size 0D Request Path is 13 words (26 bytes) long
Request Path 91 07 73 74 72 75 63 74 32 00

91 0B 68 6f 75 72 6c 79 43 6F 75 6E 74 00
28 04

ANSI Ext. Symbolic Segment for struct2,
ANSI Ext. Symbolic Segment for hourlyCount,
Member Segment for element 4

Request Data 02 00 Number of elements to read (2)

Message Reply Field Bytes (in hex) Description - Symbolic Segment Addressing

Reply Service CC Read Tag Service (Reply)

Reserved 00
General Status 00 Success

Example 3

Example 4

Chapter 3 CIP Addressing Examples

66 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020

Message Reply Field Bytes (in hex) Description - Symbolic Segment Addressing

Extended Status Size 00 No extended status
Reply Data C3 00 INT Type Value

05 00
06 00

0x0005=5 decimal
0x0006=6 decimal

See also

Access User-Defined Structures on page 63

Read the tag struct3.today.rate, which is a structure of type STRUCT_C.

Message Request Field Bytes (in hex) Description - Symbolic Segment Addressing

Request Service 4C Read Tag Service (Request)

Request Path Size 0C Request Path is 12 words (24 bytes) long
Request Path 91 07 73 74 72 75 63 74 33 00

91 05 74 6F 64 61 79 00
91 04 72 61 74 65

ANSI Ext. Symbolic Segment for struct3,
ANSI Ext. Symbolic Segment for today,
ANSI Ext. Symbolic Segment for rate

Request Data 01 00 Number of elements to read (1)

Message Reply Field Bytes (in hex) Description - Symbolic Segment Addressing

Reply Service CC Read Tag Service (Reply)

Reserved 00
General Status 00 Success
Extended Status Size 00 No extended status
Reply Data CA 00 REAL Tag Type Value

00 00 80 41 0x41800000=16.0 decimal

See also

Access User-Defined Structures on page 63

Read the tag myDstruct4[0].myarray[1].today.hourlyCount[3] in the controller,
which is a one dimensional array of type STRUCT_D.

Message Request Field Bytes (in hex) Description - Symbolic Segment Addressing

Request Service 4C Read Tag Service (Request)

Request Path Size 19 Request Path is 25 words (50 bytes) long
Request Path 91 0A 6D 79 44 73 74 72 75 63 74 34

28 00
91 07 6D 79 61 72 72 61 79 00
28 01
91 05 74 6F 64 61 79 00
91 0B 68 6F 75 72 6C 79 43 6F 75 6E 74 00
28 03

ANSI Ext. Symbolic Segment for myDstruct4,
Element ID for element 0
ANSI Ext. Symbolic Segment for myarray
Element ID for element 1
ANSI Ext. Symbolic Segment for today
ANSI Ext. Symbolic Segment for hourlyCount
Element ID for element 3

Request Data 01 00 Number of elements to read (1)

Example 5

Example 6

Chapter 3 CIP Addressing Examples

 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020 67

Message Reply Field Bytes (in hex) Description - Symbolic Segment Addressing

Reply Service CC Read Tag Service (Reply)

Reserved 00
General Status 00 Success
Extended Status Size 00 No extended status
Reply Data C3 00 INT Tag Type Value

D0 5C 0x5CD0=23760 decimal

See also

Access User-Defined Structures on page 63

 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020 69

Chapter 4

CIP Over the Controller Serial Port

The information in this chapter provides guidelines for communicating with
ControlLogix controllers that use CIP over the serial port. For more
information about DFI, see the DF1 Protocol and Command Set Reference
Manual, publication 1770-6.5.16. For more information about CIP services
used with Logix 5000 controllers, see CIP services.

The serial port of the controller supports the DF1 protocol and PCCC
commands. Also deliver CIP messages and CIP services by encapsulating CIP
explicit messages inside of the PCCC commands 0x0A and 0x0B.

PCCC has an inherent format limit of 244 bytes of application data. If an
application sends a message larger than 244 bytes, it returns an error. The
PCCC commands support a PCCC fragmentation protocol to allow the
transmission of larger CIP messages (up to 510 bytes). For more information,
see Fragmentation Protocol.

See also

CIP services on page 11

Unconnected Messaging (UCMM) through PCCC on page 69

Connected Explicit Messages through PCCC on page 70

Fragmentation Protocol on page 72

PCCC Command Code 0B provides CIP unconnected explicit-message
capability over the controller's serial port. Use this for infrequent requests to
the controller (for example, to read or write ControlLogix tags) or to establish
an explicit message connection with the controller. See Connected Explicit
Messages through PCCC for connected communication.

The content of this PCCC message is a CIP explicit-message service request or
response, such as those described earlier in this manual.

Name Type Description of Request Parameter Semantics of Values

CMD USINT Command = 0x0B

STS USINT Status (0 in request) See the DF1 Protocol and Command Set
Reference Manual, publication 1770-6.5.16. TNSW UINT Used to match response with request

FNC USINT Fragmentation protocol function See CIP Services on page 11.

Unconnected Messaging
(UCMM) through PCCC

http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf

Chapter 4 CIP Over the Controller Serial Port

70 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020

Name Type Description of Request Parameter Semantics of Values

Extra USINT Additional information for fragmentation protocol

Request Service USINT CIP Service Code
Request Path Size USINT Number of 16-bit words in the Request Path
Request Path EPATH Logical or Symbolic Segments, or both
Service Request Data Service data as defined by the service. Size and type

varies

Similarly, the CIP service response is returned in a PCCC command reply, as
shown in the following table.

Name Type Description of Request Parameter Semantics of Values

CMD USINT Response = 0x0B + 0x40 See the DF1 Protocol and Command Set
Reference Manual, publication 1770-6.5.16. STS USINT Status (0 == Success)

TNSW UINT Used to match response with request
FNC USINT Fragmentation protocol function See Fragmentation Protocol

Extra USINT Additional information for fragmentation protocol

Reply Service USINT CIP Service Code + 0x80 See CIP Services.

Reserved USINT 00

General Status USINT ss
Extended Status Size USINT nn
Extended Status Only present if Size > 0
Service Response Data Service determines whether present or not, and the

size/ data type

See also

Connected Explicit Messages through PCCC on page 70

CIP Services on page 11

Fragmentation Protocol on page 72

PCCC Command Code 0A provides CIP explicit-message connection
behavior. The services are used within these commands. For example, the
only difference between connected explicit messages through PCCC and an
EtherNet/IP explicit message connection is the wrapper that the CIP service
is carried in. EtherNet/IP network uses Ethernet and TCP/IP technology and
this uses DF1 and PCCC.

Tip: Rockwell Automation assumes that you are familiar with CIP and the information related to CIP
that is discussed here. The details of the CIP portions of the frame are not fully described here.
References to where more detailed information can be found are provided later. If you are not
familiar with CIP, a tutorial is available for purchase at
http://www.rockwellautomation.com/enabled/cipetraining.html.

The table shows the fields used and where more information can be found
about specific fields of the command structure.

Connected Explicit
Messages through PCCC

http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf

Chapter 4 CIP Over the Controller Serial Port

 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020 71

Name Type Description of Request Parameter Semantics of Values

CMD USINT Command = 0x0A See the DF1 Protocol and Command Set Reference
Manual, publication 1770-6.5.16. STS(1) USINT Status (0 in request)

TNSW UINT Transaction sequence number
FNC USINT Fragmentation protocol function See Fragmentation Protocol

Extra USINT Additional information for fragmentation
protocol

CID(2) UINT Connection ID Determined in the Forward_Open request or reply.
One unique ID for requests and another for replies.
Refer to the CIP Specification.

Trans. Header ** UINT Transport class 3 Sequence Count Increments with each new data request, echoed in
response. Refer to the CIP Specification.

Data - CIP Explicit Message See CIP services.

Establish the CIP explicit message connection before using the 0A command.
This is accomplished by sending the 0B command to the controller with the
CIP Forward_Open service request. The successful Forward_Open response
provides the information for the fields shown later. The Forward_Open
service is described in the CIP Specification and in the CIP tutorial.

The 0A command only supports Transport Class 3 connections to the Message
Router object. No other transport classes are supported. The contents of the
data field are CIP services that follow the CIP Service Request/Response Format.

Like all CIP connections, an RPI value associated with the connection
establishes the rate at which messages must be sent. If they are not sent at this
rate, timeouts occur. Rest the RPI timer should be reset when a message is
sent. When the timer reaches the RPI value, the re-transmit the connection to
the last sent message and keep the same sequence count. The target does not
reprocess the message after it detects the same sequence count. The target
resends the same response previously sent. The connection timeout has a
short duration, and the recovery time from a noise or a temporary disconnect
also has a short duration. It is recommended to scale the timeout for noise
recovery to 20 seconds and then set the RPI rate productions to avoid allowing
connections to time out repeatedly.

The PCCC status (STS) in the PCCC response indicates the success or failure
of the PCCC system to deliver the data across the PCCC link. It does not
indicate the success or failure of the CIP service in the reply. The status for
that presents in the CIP service response, within the data field. See the CIP
services for details.

Connections are usually kept open for very long periods of time. However, it
may be necessary for the client to close the connection from time to time. In
that case, the client application must close the connection using the 0B
command with a CIP Forward_Close service request in it. It is not acceptable
to allow connections to timeout naturally and clean themselves up.

http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf

Chapter 4 CIP Over the Controller Serial Port

72 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020

The following is an example of the fields for a CIP explicit message connection
using a Class 3 Transport encapsulated in PCCC sent unfragmented, using
DF1 Full Duplex on RS-232.

Name Type Description of Request Parameter Semantics of Values

DLE USINT ASCII escape character See the DF1 Protocol and Command Set Reference
Manual, publication 1770-6.5.16. STX USINT Start of message

DST USINT Address of destination
SRC USINT Address of source
CMD USINT Command = 0Ahex

STS USINT Status (0 in request) See the DF1 Protocol and Command Set Reference
Manual, publication 1770-6.5.16. TNSW UINT Transaction sequence number

FNC USINT Fragmentation protocol function Fragmentation Protocol
00hex (Only function)

Extra USINT Additional information for fragmentation protocol Fragmentation Protocol
00hex (Only has no Extra)

CID UINT O-T Connection ID Refer to the CIP Specification

Transport Header UINT Transport class 3 Sequence Count

Request Service USINT CIP Service Code See CIP Services.

Request Path Size USINT Number of 16-bit words in the Request Path
Request Path EPATH Logical or Symbolic Segments, or both
Service Data Service data
DLE USINT ASCII escape character See the DF1 Protocol and Command Set Reference

Manual, publication 1770-6.5.16. ETX USINT End of message

BCC or CRC USINT or UINT Block Check Character

Cyclic Redundancy Check See the DF1 Protocol and
Command Set Reference
Manual, publication 1770-
6.5.16.

See also

Fragmentation Protocol on page 72

CIP Service Request/Response Format on page 15

CIP services on page 11

The fragmentation protocol allows messages up to 510 bytes to be sent over
PCCC/DF1, which has an inherent limit of 240 bytes. It allows each fragment
to be identified as it is transferred, with each fragment being acknowledged
(Ack or Nak) before the next fragment is sent, and provides the ability for the
client device to abort the fragmentation sequence if necessary. This
fragmentation protocol is used only with the 0A and 0B PCCC commands.

For more information on the PCCC fragmentation protocol, go to
http://www.rockwellautomation.com/enabled/guides.html.

Fragmentation Protocol

http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf
http://www.rockwellautomation.com/rockwellautomation/solutions-services/oem/design-develop-deliver/information-enabled-solutions.page

Chapter 4 CIP Over the Controller Serial Port

 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020 73

See also

CIP Over the Controller Serial Port on page 69

PCCC Commands
PCCC commands are carried within DF1 packets to the serial port of the Logix
5000 controller. This option for accessing data table mappings inside the
Logix 5000 controller is provided for backward compatibility with legacy
controllers that do not understand CIP. CIP is the native language of a Logix
5000 controller. Other applications that worked with our legacy controllers
over serial port could, with proper mapping of Logix 5000 tags to data tables,
be used to access information in the Logix 5000 controller.

IMPORTANT For details on mapping of tags to PLC/SLC data files or data tables, see the Logix
5000 Controllers Design Considerations Reference Manual, publication 1756-RM094.
To avoid data mismatch, use an array tag of the same data type as the PLC/SLC file.

CIP messaging is the preferred method of interacting with Logix 5000
controllers, but PCCC messaging is serviceable for many applications,
especially where the legacy communications product is not able to be
modified, and where the Logix 5000 customer is willing to do the extra
configuration of data table mappings in the Logix 5000 controller. Remote
applications that depend on serial communication over a modem or serial
radio link can also use this method.

PCCC commands can also arrive at the controller in these ways:

• Through the RS-232 serial port
• Encapsulated inside a ControlNet message
• Encapsulated inside a EtherNet/IP message

This chapter identifies the PCCC commands supported by Logix and the
formatting required. A license from ODVA is not required for you to use the
PCCC commands described in this chapter.

See also

Supported Subset of PCCC Commands on page 73

Logix controllers support these subset of PCCC commands.

• PLC-2 Communication Commands on page 75

• Unprotected Read
• Protected Write
• Unprotected Write
• Protected Bit Write

Supported Subset of
PCCC Commands

http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm094_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm094_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm094_-en-p.pdf

Chapter 4 CIP Over the Controller Serial Port

74 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020

• Unprotected Bit Write

• PLC-5 Communication Commands on page 77

• Read Modify Write
• Read Modify Write N
• Typed Read
• Typed Write
• Word Range Read
• Word Range Write
• Bit Write

• SLC Communication Commands on page 81

• SLC Protected Typed Logical Read with 3 Address Fields
• SLC Protected Typed Logical Write with 3 Address Fields
• SLC Protected Typed Logical Read with 2 Address Fields
• SLC Protected Typed Logical Write with 2 Address Fields

See also

PCCC Commands on page 73

This topic describes the initial fields present in all PCCC commands. These
fields are followed by command-specific fields

The name of each command is listed in this format:

Command Name (CMD=xx,yy; FNC=zz), where:

• xx= CMD code in the Request
• yy= CMD code in the Reply
• zz = Function code

All Requests Start with these Fields: [CMD] [STS] [TNS] [FNC]

• [CMD] 1-byte, Request command code
• 0x0F in PLC-5 and SLC commands
• 0x0N in PLC2 commands (N is the hex value for the command)

• [STS] 1-byte, status code, 0x00 in commands
• [TNS] 16-bits, transaction identifier
• [FNC] 1 byte, function code (not included in some PLC2 commands)
All Replies Start with these Fields: [CMD] [STS] [TNS]+[EXT STS]

• [CMD] 1-byte, Reply command code
• 0x4F in PLC-5 and SLC commands
• 0x4N in PLC2 commands (N is the same hex value in the corresponding Request CMD)

• [STS] 1-byte, status code
• 0x00 (success)
• 0xNN is error code (N is any hex value)
• 0xF0 means fourth field present (EXT STS] See following.

• [TNS] 16-bits, unique transaction identifier
• [EXT STS] 1-byte, extended status error code
• only present if [STS]=0xF0

Initial Fields of All
PCCC Commands

Chapter 4 CIP Over the Controller Serial Port

 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020 75

See also

PCCC Commands on page 73

Use the PLC-2 commands to access one tag in a Logix 5000 controller. After
sending the command, it is acceptable to map the message to an INT(16 bit
integer) tag in the Logix 5000 controller. All the PLC2 commands access the
same tag, typically an INT array.

Logix Designer handles protected and unprotected commands the same way,
whether the access for the data is set to Read/Write, Read Only, or None.

See also

PCCC Commands on page 73

This command provides the read capability for the PLC-2 commands.

Request Format: [PLC-2 address] [size]

• [PLC-2 address] 2-bytes; byte offset from start of file, on 16-bit boundary, low byte first
• [size] 1-byte; must be an even number of bytes
Reply Format: [data]

[data] is up to 244 bytes

See also

PLC-2 Communication Commands on page 75

This Protected Write command provides a protected write capability for the
PLC-2 commands.

Request Format: [PLC-2 address] [data]

• [PLC-2 address] 2-bytes; byte offset from start of file, on 16-bit boundary, low byte first
• [data]
Reply Format:

no data-only status

See also

PCCC Commands on page 73

PLC-2 Communication Commands on page 75

This command provides a basic write capability for the PLC-2 commands.

Request Format: [PLC-2 address] [data]

• [PLC-2 address] 2-bytes; byte offset from start of file, on 16-bit boundary, low byte first
• [data]
Reply Format:

PLC-2 Communication
Commands

Unprotected Read (CMD=01,
41; FNC not present)

Protected Write (CMD=00,
40; FNC not present)

Unprotected Write (CMD=08,
48; FNC not present)

Chapter 4 CIP Over the Controller Serial Port

76 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020

Request Format: [PLC-2 address] [data]

no data-only status

See also

PLC-2 Communication Commands on page 75

The Protected Bit Write (CMD=02, 42; FNC not present) command provides a
protected bit write capability for the PLC-2 commands.

For each 3-field set, the command performs this sequence:

1. Copy the specified byte from limited areas of memory
2. Set the bits specified in the [SET mask]
3. Reset the bits specified in the [RESET mask]
4. Write the byte back.

Request Format: [PLC-2 address][SET mask] [RESET mask] + repeats(1)

• [PLC-2 address] 2-bytes; byte offset from start of file, on 16-bit boundary, low byte first
• [SET mask] is 1 byte (1=set to 1)
• [RESET mask] is 1 byte (1=reset to 0)
Reply Format:

no data-only status

See also

PCCC Commands on page 73

PLC-2 Communication Commands on page 75

This command provides a bit write capability for the PLC-2 commands. For
each 3-field set, this command performs this sequence:

1. Copy the specified byte from limited areas of memory
2. Set the bits specified in the [SET mask]
3. Reset the bits specified in the [RESET mask]
4. Write the byte back.

Request Format: [PLC-2 address] [SET mask][RESET mask] + repeats(1)

• [PLC-2 address] 2-bytes; byte offset from start of file, on 16-bit boundary, low byte first
• [SET mask] is 1 byte (1=set to 1)
• [RESET mask] is 1 byte (1=reset to 0)
Reply Format:

no data-only status

See also

PLC-2 Communication Commands on page 75

Protected Bit Write
(CMD=02, 42; FNC not
present)

Unprotected Bit Write
(CMD=05, 45; FNC not
present)

Chapter 4 CIP Over the Controller Serial Port

 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020 77

Each PLC-5 command requires a system address in one of these forms:

• Logical binary or logical ASCII, which addresses data by file and element.

• The first level of the logical binary must be 0. This is required to
access controller-scoped tags.

• The second level is the file number. This is also the level following
the letters in the logical ASCII form.

• The next 1, 2, or 3 levels correspond to the array dimension indices
as follows: data[1][2][3].

• Any subsequent levels of logical address access parts of the complex
types. See CIP data types

IMPORTANT Logical addressing requires use of data table mapping. Use a Logix array
tag that matches the data type of the PLC5 file. Members of SINT, INT,
DINT, and REAL arrays are contiguous in Logix memory. For more
information on Logical addressing, see the DF1 Protocol and Command Set
Manual, publication 1770-6.5.16.

• Symbolic, which addresses data directly by a tag name.

• The symbol string starts with a NULL character and ends with a
NULL character.

• In the simplest case, the symbol string consists of just the tag name.
• To address an array, delimit the array indices with square brackets.

The examples depict symbolic addresses.
EXAMPLE Symbolic addresses:

tag_name
tag_name[x]
tag_name[x,y,z]
tag_name[x][y][z]

IMPORTANT The PLC-5 TYPED READ and TYPED WRITE commands access tags (elements)

of SINT, INT, DINT, or REAL only. The other PLC-5 commands access only INTs,
that is, 16-bit words.
Use the PLC-5 file data type that matches the data type of the Logix tag.

See also

CIP data types on page 11

This table lists the addressing examples for PLC-5 PCCC Messages.

To access This entry is specified (1)

Single integer tag named parts PCCCsymbolic parts

The sixth element of the array of REALs named
setpoints

PCCC Logical ASCII $F8:6

PCCC symbolic setpoints[5]

Single integer [2,5,257] of three dimensional
array named profile

PCCC Logical ASCII

$N7:2:5:257

PCCC symbolic profile[2,5,257]

PLC-5 Communication
Commands

Addressing examples

http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf

Chapter 4 CIP Over the Controller Serial Port

78 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020

Read Modify Write (CMD=0F, 4F; FNC=26)

For each 3-field sequence (address, AND mask, OR mask), this RMW
command performs this procedure.

1. Copy the specified word.
2. Reset the bits specified in the [AND mask].
3. Set the bits specified in the [OR mask].
4. Write the word back.

Request Format: [PLC-5 system address] [AND mask] [OR mask] + repeats(1)

• [PLC-5 system address] specifies the word to be modified
• [AND mask] 2 bytes (low byte first) specifying which bits in the word to reset (0=reset to 0)
• [OR mask] 2 bytes (low byte first) specifying which bits in the word to set (1=set to 1)
Reply Format:

no data-only status

See also

Read Modify Write N (CMD=0F, 4F; FNC=79) on page 78

Typed Read (CMD=0F, 4F; FNC=68) on page 79

Typed Write (CMD=0F, 4F; FNC=67) on page 79

Word Range Read (CMD=0F, 4F; FNC=01) on page 79

Word Range Write (CMD=0F, 4F; FNC=00) on page 80

For each 4-field sequence, this RMW-N command performs this procedure:

1. Copy the specified word.
2. Reset the bits specified in the [AND mask].
3. Set the bits specified in the [OR mask].
4. Write the word back.

Request Format: [no of sets][PLC-5 system address] [mask length][AND mask][OR mask]
+repeats(1)
• [no of sets] indicates the number of sets of the following four fields.
• [PLC-5 system address] specifies the word to be modified
• [mask length] specifies 2 or 4 byte masks. For this command, most Logix controllers only support

4-byte mask; use RMW command (FNC=26) for 2-byte mask
• [AND mask] 2 or 4 bytes (low byte first) specifying which bits in the word to reset (0=reset to 0)
• [OR mask] 2 or 4 bytes (low byte first) specifying which bits in the word to set (1= set to 1)
Reply Format: [data]

[data]
• For a successful command ([STS]=0x00), data may be returned, but the Logix data format is not

documented
• For an unsuccessful command ([STS]=0xF0), a byte (error code) occurs; data may be returned, but

the Logix data format is not documented.

Read Modify Write N
(CMD=0F, 4F; FNC=79)

Chapter 4 CIP Over the Controller Serial Port

 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020 79

See also

PCCC Commands on page 73

PLC-5 Communication Commands on page 77

The typed read command reads a block of data starting at the PLC-5 system
address plus the packet offset.

Request Format: [packet offset][total transaction][PLC-5 system address][size]

• [packet offset] 2 bytes, offset in number of elements
• [total transaction] 2 bytes, number of elements in complete transaction
• [PLC-5 system address]
• [size] is 2 bytes; number of elements to return in this reply
Reply Format: [Type/ID][data]

• [Type/ID] 1 byte, (for integers) or 2 bytes (for float) type and size of elements
• SINT, INT, DINT (type: integer; size 1,2,4 bytes) REAL (type: float, size 4 bytes)
• For details about Type/ID encoding, see the DF1 Protocol and Command Set Reference Manual,

publication 1770-6.5.16.
[data]

See also

PLC-5 Communication Commands on page 77

The typed write command writes a block of data starting at the PLC-5 system
address plus the packet offset.

Request Format: [packet offset] [total transaction][PLC-5 system address] [type/ID] [data]

• [packet offset] 2 bytes, offset in number of elements
• [total transaction] 2 bytes, number of elements in complete transaction
• [PLC-5 system address]
• [type/ID] 1 byte (for integers) or by 2 bytes (for float), type and size of elements.
• SINT, INT, DINT (type: integer; size 1,2,4 bytes) REAL (type: float, size 4 bytes)
• Integer conversion; error if data value too large for target integer type (SINT or INT)
• For details about Type/ID encoding, see the DF1 Protocol and Command Set Reference Manual,

publication 1770-6.5.16.
• [data]
Reply Format:

no data, only status

See also

PLC-5 Communication Commands on page 77

The word range read command reads a block of words starting at the PLC-5
system address plus the word offset.

Typed Read (CMD=0F,
4F; FNC=68)

Typed Write (CMD=0F,
4F; FNC=67)

Word Range Read (CMD=0F,
4F; FNC=01)

http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf

Chapter 4 CIP Over the Controller Serial Port

80 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020

Request Format: [packet offset] [total transaction][PLC-5 system address] [size]

• [packet offset] 2 bytes, offset in number of 16-bit words
• [total transaction] 2 bytes, number of 16-bit words in complete transaction
• [PLC-5 system address]
• [size] is 1 byte, number of bytes and must be even in number
Reply Format: [data]

[data] up to 244 bytes

See also

PLC-5 Communication Commands on page 77

The word range write command writes a block of words starting at the PLC-5
system address plus the word offset.

Request Format: [packet offset] [total transaction][PLC-5 system address] [data]

• [packet offset] 2 bytes, offset in number of 16-bit words
• [total transaction] 2 bytes, number of 16-bit words in complete transaction
• [PLC-5 system address]
• [data]
Reply Format:

no data; only status

See also

PLC-5 Communication Commands on page 77

The Bit Write (CMD=0F, 4F; FNC=02) command sets and resets bits in a
single word specified by the PLC-5 logical address. It changes a single word in
a command.

For the 3-field sequence, the Bit Write (CMD=0F, 4F; FNC=02) command:

• Copies the specified word.
• Sets the bits specified in the [SET mask].
• Resets the bits specified in the [RESET mask].
• Writes the word back.

Request Format: [PLC-5 system address][SET mask][RESET mask]

• [PLC-5 system address] specifies the word to be modified.
• [SET mask] is 2 bytes (low byte first) specifying which bits in the word to set (1=set to 1)
• [RESET mask] is 2 bytes (low byte first) specifying which bits in the word to reset (1=reset to 0)
Reply Format:

no data; only status

See also

PLC-2 Communication Commands on page 75

Word Range Write (CMD=0F,
4F; FNC=00)

Bit Write (CMD=0F, 4F;
FNC=02)

Chapter 4 CIP Over the Controller Serial Port

 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020 81

The SLC commands use strictly a logical form of addressing (for example,
file/element/sub-element). For details about mapping the SLC files to Logix
5000 tags, see the Logix 5000 Controllers Design Considerations Reference
Manual, publication 1756-RM094.

Logix handles protected and unprotected commands the same way, whether the
access for data is set to Read/Write, Read Only, or None.

IMPORTANT For the SLC Typed Read and Typed Write commands, map the data files to Logix tags
of types INT, DINT, or REAL only. Use an SLC or MicroLogix file data type that matches
the data type of the Logix tag.
For INT tags, use file type 85hex (Binary) or 89hex (Integer)
For DINT tags, use file type 91hex (Long - MicroLogix only)
For REAL tags, use file type 8Ahex (Float)
For more information on SLC file types, see the DF1 Protocol and Command Set
Reference Manual, publication 1770-6.5.16.

SLC logical addressing has a limited number of logical address levels so there
are some special concerns.

In a The element number is used as the

One-dimension array Dimension index for addressing (data[elem])

Two-dimensional array Index of the second dimension and the first dimension index is 0
(data[0][elem])

Three-dimensional array Index of the third dimension and the first and second dimension
indices are both 0 (data[0][0][elem])

See also

SLC Protected Typed Logical Read with 3 Address Fields (CMD=0F, 4F;
FNC=A2) on page 81

SLC Protected Typed Logical Write with 3 Address Fields(CMD=0F, 4F,
FNC=AA) on page 82

SLC Protected Typed Logical Read with 2 Address Fields (CMD=0F, 4F;
FNC=A1) on page 82

SLC Protected Typed Logical Write with 2 Address Fields (CMD=0F, 4F;
FNC=A9) on page 83

PCCC Commands on page 73

The service is supported for compatibility with SLC modules. It reads data
from the logical address.

SLC Communication
Commands

SLC Protected Typed
Logical Read with 3 Address
Fields (CMD=0F, 4F;
FNC=A2)

http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm094_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm094_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm094_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf

Chapter 4 CIP Over the Controller Serial Port

82 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020

Request Format: [byte size][file number][file type][element number][sub-element number]

• [byte size] 1 byte, number of data bytes to be read
• [file number]1 byte for 0-254; for >=255, 3 bytes, 0xFF followed by 2-byte number, low byte first
• [file type] 1 byte. For file types and codes, see the DF1 Protocol and Command Set Reference Manual,

publication 1770-6.5.16.
Refer to SLC Communication Command.

• [element number] 1 byte, 0-254; 3 bytes for >=255, first byte=0xFF then 2-byte number, low byte first
• [sub-element number] 1 byte, 0-254; 3 bytes for >=255, first byte=0xFF then 2-byte number, low byte

first
Reply Format: [data]

[data]

See also

SLC Communication Commands on page 81

PCCC Commands on page 73

This service is supported for compatibility with older modules. It writes to the
logical address.

Request Format: [byte size][file number][file type][element number][sub-element number]

• [byte size] 1 byte, number of data bytes to be written
• [file number]1 byte for 0-254; for >=255, 3 bytes, 0xFF followed by 2-byte number, low byte first
• [file type] 1 byte. For file types and codes, see the DF1 Protocol and Command Set Reference Manual,

publication 1770-6.5.16.
Refer to SLC Communication Command.

• [element number] 1 byte, 0-254; 3 bytes for >=255, first byte=0xFF then 2-byte number, low byte first
• [sub-element number] 1 byte, 0-254; 3 bytes for >=255, first byte=0xFF then 2-byte number, low byte

first
Reply Format:

no data-only access

See also

SLC Communication Commands on page 81

PCCC Commands on page 73

This read command provides a simpler version for reading data.

Request Format: [byte size][file number][file type][element number]

• [byte size] 1 byte, number of data bytes to be read
• [file number]1 byte for 0-254; for >=255, 3 bytes, 0xFF followed by 2-byte number, low byte first
• [file type] 1 byte. For file types and codes, see the DF1 Protocol and Command Set Reference Manual,

publication 1770-6.5.16.
Refer to SLC Communication Command.

• [element number] 1 byte, 0-254; 3 bytes for >=255, first byte=0xFF then 2-byte number, low byte first
Reply Format: [data]

[data]

SLC Protected Typed
Logical Write with 3
Address Fields(CMD=0F,
4F, FNC=AA)

SLC Protected Typed
Logical Read with 2 Address
Fields (CMD=0F, 4F; FNC=A1)

http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf

Chapter 4 CIP Over the Controller Serial Port

 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020 83

See also

SLC Communication Commands on page 81

PCCC Commands on page 73

This write command provides a simpler version for writing data.

Request Format: [byte size][file number][file type][element number]

• [byte size] 1 byte, number of data bytes to be written
• [file number]1 byte for 0-254; for >=255, 3 bytes, 0xFF followed by 2-byte number, low byte first
• [file type] 1 byte. For file types and codes, see the DF1 Protocol and Command Set Reference Manual,

publication 1770-6.5.16.
Refer to SLC Communication Command.

• [element number] 1 byte, 0-254; 3 bytes for >=255, first byte=0xFF then 2-byte number, low byte first
• [data]
Reply Format:

no data-only access

See also

SLC Communication Commands on page 81

PCCC Commands on page 73

SLC Protected Typed
Logical Write with 2
Address Fields (CMD=0F, 4F;
FNC=A9)

http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf

Index

 Rockwell Automation Publication 1756-PM020G-EN-P - September 2020 85

Index

A

Atomic members 57, 58, 59, 60, 61, 62

C

CIP 11, 15, 37, 57, 69
CIP Addressing Examples 57, 58, 59, 60,

61, 62
CIP, data types 12

D

Data structures, Logix 33

P

PCC Commands 73, 74, 75
PLC-2 Communication Commands 75, 76
PLC-5 Communication Commands 78, 79,

80

R

Read Modify Write Tag Service 30, 31
Read Modify Write Tag Service, error codes

31
Read tag error codes 19
Read Tag Fragmented Service Error Codes

23
Read Tag Fragmented Service, examples

20, 21
Read Tag Service 18

S

Segment encoding 14
Services supported by Logix5000

Controllers 16, 18, 19, 24, 25, 30
SLC Communicatino Commands 81, 82, 83
Structures, user-defined 63, 64, 65, 66
Symbol object list, create 41, 44, 47, 53,

54
Symbol object list, maintain 41, 44, 47,

53, 54

T

Tags 37, 38

U

User-defined structures, access 63, 64,
65, 66

W

Write Tag Fragmented Service Error Codes
29

Write Tag Fragmented Service, examples
26, 27

Write tag service error codes 25
Write Tag Servie, Examples 24

Allen-Bradley, expanding human possibility, Logix, Rockwell Automation, and Rockwell Software are trademarks of Rockwell Automation, Inc.

EtherNet/IP is a trademark of ODVA, Inc.

Trademarks not belonging to Rockwell Automation are property of their respective companies.

Rockwell Otomayson Ticaret A.Ş. Kar Plaza İş Merkezi E Blok Kat:6 34752, İçerenkÖy, İstanbul, Tel: +90 (216) 5698400 EEE YÖnetmeliğine Uygundur

Rockwell Automation Publication 1756-PM020G-EN-P - September 2020
Supersedes Publication 1756-PM020F-EN-P - January 2019 Copyright © 2020 Rockwell Automation Technologies, Inc. All Rights Reserved. Printed in the U.S.A.

Rockwell Automation support
Use these resources to access support information.

Technical Support Center Find help with how-to videos, FAQs, chat, user forums, and product notification
updates.

rok.auto/support

Knowledgebase Access Knowledgebase articles. rok.auto/knowledgebase
Local Technical Support Phone Numbers Locate the telephone number for your country. rok.auto/phonesupport

Literature Library Find installation instructions, manuals, brochures, and technical data publications. rok.auto/literature
Product Compatibility and Download Center
(PCDC)

Get help determining how products interact, check features and capabilities, and
find associated firmware.

rok.auto/pcdc

Documentation feedback
Your comments help us serve your documentation needs better. If you have any suggestions on how to improve our content, complete the form
at rok.auto/docfeedback.

Waste Electrical and Electronic Equipment (WEEE)

At the end of life, this equipment should be collected separately from any unsorted municipal waste.

Rockwell Automation maintains current product environmental information on its website at rok.auto/pec.

http://rok.auto/support
http://rok.auto/knowledgebase
http://rok.auto/phonesupport
http://rok.auto/literature
http://rok.auto/pcdc
http://rok.auto/docfeedback
http://rok.auto/pec

	Logix 5000 Controllers Data Access
	Important User Information
	Summary of Changes
	Table of Contents
	Preface
	Studio 5000 environment
	Additional resources
	Legal notices

	1 - CIP services
	CIP Services Overview
	CIP Data Types
	Atomic data type sizes
	Logix 5000 data
	Tag type service parameter
	Tag type service parameter values used with Logix controllers

	Analysis
	Segment Encoding
	Logical Segments
	Symbolic Segments

	CIP Service Request/Response Format
	Services Supported by Logix 5000 Controllers
	Read Tag Service
	Example Using Symbolic Segment Addressing
	Example Using Symbol Instance Addressing
	Read Tag Service Error Codes

	Read Tag Fragmented Service
	Example Using Symbolic Segment Addressing
	Example Using Symbol Instance Addressing
	Read Tag Fragmented Service Error Codes

	Write Tag Service
	Example Using Symbolic Segment Addressing
	Example Using Symbol Instance Addressing
	Write Tag Service Error Codes

	Write Tag Fragmented Service
	Example Using Symbolic Segment Addressing
	Example Using Symbol Instance Addressing
	Write Tag Fragmented Service Error Codes

	Read Modify Write Tag Service
	Service Request Parameters
	Example
	Read Modify Write Tag Service Error Codes
	Multiple ServicePacket Service
	Example

	Logix Data Structures
	Work with Data Structures
	Tag type service parameters for structure

	2 - CIP Services and User-created Tags
	How tags are organized in the controller
	Symbol object
	Template object
	Create and maintain a symbol object list
	Step 1: Find user-created controller scope tags in a Logix 5000 controller
	Retrieve all symbol object instances
	Example of retrieving the first group of tags
	Analysis
	Continue the retrieval process
	Step 2: Isolate user-created tags from system tags/identifying structured tags
	Symbol Type Attribute
	Eliminate tags by applying rules

	Step 3: Determine the structure makeup for a specific structure
	Example of reading template attributes
	Analysis
	Structure data format
	Contents of the member information
	Example of retrieving member information
	Example
	More about BOOLS in UDTs

	Step 4: Determine the data packing of the members of a structure when accessed as a whole
	Example of reading an entire structure
	Step 5: Determine when the tags list and structure information need refreshing
	How to detect changes

	3 - CIP Addressing Examples
	Atomic Members of Predefined Data Types
	Example 1 (Symbolic Segment Addressing Method)
	Example 2 (Symbol Instance Addressing Method)
	Example 3 (Symbolic Segment Addressing Method)
	Example 4 (Symbolic Segment Addressing Method)
	Example 5 (Symbol Instance Addressing Method)
	Example 6 (Symbolic Segment Addressing Method)
	Example 7 (Symbolic Segment Addressing Method)
	Example 8 (Both Addressing Methods)
	Example 9 (Both Addressing Methods)
	Example 10 (Symbolic Segment Addressing Method) with BOOLs
	Access User-Defined Structures
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6

	4 - CIP Over the Controller Serial Port
	Unconnected Messaging (UCMM) through PCCC
	Connected Explicit Messages through PCCC
	Fragmentation Protocol
	PCCC Commands
	Supported Subset of PCCC Commands
	Initial Fields of All PCCC Commands
	PLC-2 Communication Commands
	Unprotected Read (CMD=01, 41; FNC not present)
	Protected Write (CMD=00, 40; FNC not present)
	Unprotected Write (CMD=08, 48; FNC not present)
	Protected Bit Write (CMD=02, 42; FNC not present)
	Unprotected Bit Write (CMD=05, 45; FNC not present)
	PLC-5 Communication Commands
	Addressing examples
	Read Modify Write N (CMD=0F, 4F; FNC=79)
	Typed Read (CMD=0F, 4F; FNC=68)
	Typed Write (CMD=0F, 4F; FNC=67)
	Word Range Read (CMD=0F, 4F; FNC=01)
	Word Range Write (CMD=0F, 4F; FNC=00)
	Bit Write (CMD=0F, 4F; FNC=02)
	SLC Communication Commands
	SLC Protected Typed Logical Read with 3 Address Fields (CMD=0F, 4F; FNC=A2)
	SLC Protected Typed Logical Write with 3 Address Fields(CMD=0F, 4F, FNC=AA)
	SLC Protected Typed Logical Read with 2 Address Fields (CMD=0F, 4F; FNC=A1)
	SLC Protected Typed Logical Write with 2 Address Fields (CMD=0F, 4F; FNC=A9)

	Index

	Back cover

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

