Chockfast ### **Printing this Manual** If you would like to print a copy of this Technical Manual, please review the following instructions: This manual is already formatted for printing on the front and back sides of each page. #### **Color Printer** When printing from a color printer, enter the properties dialog box for your printer and select the appropriate settings for two-sided printing and follow be sure to follow your printer's instructions for two-sided printing. ### **Professional Print Shops** You may also take this pdf file on CD or flash drive to a print shop to make copies. Be sure to instruct the attendant to provide the following: - Designate the number of manual sets desired. - Print color copies - Two-sided printing - If you plan to use your own three-ring binder, request the document be three-hole punched only - If you would like the print shop to bind the document with a front and back cover, request clear plastic covers front and back and coil bound. # **Engineering Manual / Table of Contents** | Section 1 - Machinery Basics | 1 | |--|----| | Definitions | | | ■ Section 2 – Mathematics | 5 | | Units Metric Prefixes Area Calculations Volume Calculations Conversions Section 3 – Engineering | 13 | | Force Stress Strain Modulus of Elasticity Torque Thermal Expansion Stress Concentration Friction Creep | | | Section 4 – Applications | 26 | | Chocks Grouts Expansion Joints Repairs Secondary Containment Fairing Materials Bearings | | | ■ Section 5 – Testing | 33 | | ASTM | | | Section 6 - Chemistry | 38 | ### **Section 1 / Machinery Basics** ### **Alignment** The precise placing of one or more pieces of connected equipment relative to each other in order to obtain dependable operation. Proper alignment insures any bearing surfaces will be loaded to design levels. #### **Base Plate** A metal fabrication on which machinery components are mounted. A pump base plate typically holds a motor, reduction gear, and the pump. ### **Bearing** A support for a mechanism that transmits force through motion. The motion can be rotating or reciprocating. Typical bearings can be journal (sleeve) bearings, ball bearings, or pads. #### Chock A spacer that is placed between the mounting surface of a piece of machinery and the foundation on which it sits. Chocks compensate for any differences between the elevations of the two surfaces and, as a result, each chock is individually manufactured to fit in its intended location. Chocks can be made from a variety of materials with steel and poured epoxy being the most common. #### **Foundation** A supporting structure usually made from concrete poured in place or a metal fabrication. #### **Hold Down Bolts** Fasteners which secure a piece of machinery to a foundation. There are several types of hold down bolts. #### Anchor Bolts Bolts that are cast into a foundation. Machinery is set down over the exposed threads and nuts are installed and tightened. #### Fitted Bolts Bolts installed in precisely machined holes so there is no possibility of the machine moving in any side-to-side direction. #### Clearance Bolts Bolts installed in holes larger than the body of the bolt. Studs Bolts that have threads at each end. Jack Screws (or Jack Bolts) Bolts that are used to position a piece of machinery prior to final chocking. They are usually removed before the holds down bolts are tightened. ### **Reciprocating Equipment** Machinery in which the principle moving part operates in a back and forth motion. Examples: - Compressors - Diesel Engines - Gasoline Engines ### **Rotating Equipment** Machinery in which the principle moving part operates in a circular motion. Examples: - Centrifugal Pumps - Turbines - Electric Motors - Lathes #### **Shim** A thin piece of material which is placed between the mounting surface of a piece of machinery and the foundation on which it sits. Shims are available in fixed sizes and can be stacked to obtain the desired thickness. Shims are made from a variety of materials with steel and brass being the most common. #### **Sole Plate** A steel plate on which machinery is mounted. Usually a sole plate is imbedded in a foundation with concrete or grout. #### Stern Tube A steel tube built into a ship's structure for the purpose of supporting and enclosing the propulsion shafting where it pierces the hull of the ship. ### **Stern Tube Bearing** A bearing located at either end of a stern tube that supports the propeller shaft. ### Section 2 / Mathematics ### **Units** | | English | Metric | |-------------|------------------------------|---------------------------| | Length | Inch
Foot
Yard
Mile | Meter | | Weight | Pound
Ounce
Ton | Newton | | Mass | Slug | Gram | | Capacity | Gallon | Liter | | Temperature | Fahrenheit | Centigrade | | Pressure | Lb / in² | Kg / cm²
Pascal
Bar | ### **Metric Prefixes** | Decimal Form | Exponent or Power | | Prefix | Symbol | Meaning | |---------------------|--------------------------|----------------|--------|--------|------------| | 1 000 000 000 | 1 | 0 9 | Giga | G | Billion | | 1 000 000 | 1 | 0 6 | Mega | M | Million | | 1 000 | 1 | 03 | Kilo | k | Thousand | | 100 | 1 | 0 ² | hecto | h | Hundred | | 1 | | | | | Base Unit | | 0.1 | 10 | 0 -1 | Deci | d | Tenth | | 0.01 | 10 | 0 -2 | Centi | С | Hundredth | | 0.001 | 10 | 0 -3 | Milli | m | Thousandth | | 0.000 001 | 10 | 0 -6 | Micro | m | Millionth | | Most commonly used | | | | | | ### **Area Calculations** Area (A); is a two-dimensional (2-D) number. As a result two dimensions are needed to calculate area. ### **Common Formulas:** Square $$A = a \times a$$ Rectangle $$A = a \times b$$ **Triangle** $$A = \frac{1}{2}bxh$$ Circle $$A = \frac{\pi \times d^2}{4} = \pi r^2$$ Where, $\pi = 3.14159$ ### **Area Units** Area can be expressed in: - Square Feet ft ² Square Inches in ² - Square Centimeters cm² Square Millimeters mm² ### **Volume Calculations** Volume (V); is a three-dimensional (3-D) number. It is an area times its height or thickness which means three dimensions are needed. #### **Common Formulas:** #### Cube $$V = a x a x a$$ Box $$V = a x b x c$$ Flat Bottomed, Cylindrical Tank $$V = \frac{\pi \ x \ d^2}{4} \ x \ h$$ Where, $\pi = 3.14159$ #### **Volume Units** Volume can be expressed in: - Cubic Feet ft ³ - Cubic Inches in ³ - Cubic Centimeters cm³ - Cubic Millimeters mm³ - Gallons - Liters ### **Example** What volume of coating is needed to cover a floor 100 ft. by 350 ft at a thickness of 0.005 in (5 mils)? Solution: The calculation can be done in either ft ³ or in ³. $V = a \times b \times c$, where we let: a = 100 ft b = 350 ftc = 0.005 in. Let's change feet to inches so the answer will be in cubic inches: $$V = (100 \times 12) \times (350 \times 12) \times 0.005 = 25 \times 200 \text{ in}^3$$ This can now be converted to gallons: $$V = 25 200 = 109 Gallons$$ 231 ### Conversions gallons of water grams grams | atmospheres | x 1.033 | = | kg/sq. cm | |----------------------|------------------|---|----------------------| | atmospheres | x 1.47 | = | pounds/sq. in. | | bars | x 0.9869 | = | atmospheres | | bars | x 1.02 | = | kg/sq. cm. | | bars | x 14.5 | = | pounds/sq. in. | | centigrade(degrees) | (° C x 9/5) + 32 | | fahrenheit (degrees) | | centimeters | x 0.03281 | = | feet | | centimeters | x 0.3937 | = | inches | | centimeters | | = | kilometers | | | x 0.00001 | = | | | centimeters | x 0.01 | = | meters | | centimeters | x 10 | = | millimeters | | centimeters | x 393.7 | = | mils | | cubic centimeters | x 0.00003531 | = | cubic feet | | cubic centimeters | x 0.06102 | = | cubic inches | | cubic centimeters | x 0.000001 | = | cubic meters | | cubic centimeters | x 0.0002642 | = | gallons | | cubic centimeters | x 0.001 | = | liters | | cubic feet | x 28320 | = | cubic centimeters | | cubic feet | x 1728 | = | cubic inches | | cubic feet | x 0.02832 | = | cubic meters | | cubic feet | x 7.48052 | = | gallons | | cubic feet | x 28.32 | = | liters | | cubic inches | x 16.39 | = | cubic centimeters | | cubic inches | x 0.0005787 | = | cubic feet | | cubic inches | x 0.00001639 | = | cubic meters | | cubic inches | x 0.004329 | = | gallons | | cubic inches | x 0.01639 | = | liters | | cubic meters | x 10000 | = | cubic centimeters | | cubic meters | x 35.31 | = | cubic feet | | cubic meters | x 61023 | = | cubic inches | | cubic meters | x 264.2 | = | gallons | | cubic meters | x 1000 | = | liters | | fahrenheit (degrees) | (° F - 32) x 5/9 | = | centigrade (degrees) | | fathoms | x 6 | = | feet | | feet | x 30.48 | = | centimeters | | feet | x 0.0003048 | = | kilometers | | feet | x 0.3048 | = | meters | | feet | x 304.8 | = | millimeters | | feet | x 12000 | = | mils | | foot-pounds | x 0.1383 | = | kilogram-meters | | gallons | x 3785 | = | cubic centimeters | | gallons | x 0.1337 | = | cubic feet | | gallons | x 231 | = | cubic inches | | gallons | x 0.003785 | = | cubic meters | | gallons | x 3.785 | | liters | | yalions | A 0.700 | = | 111019 | x 8.337 x 0.001 x 0.002205 pounds of water kilograms pounds ### **Conversions** | inches | x 2.54 | = | centimeters | |-------------------|-------------|---|----------------------| | inches | x 0.0254 | = | meters | | inches | x 25.4 | = | millimeters | | inches | x 0.001 | = | mils | | kilograms | x 1000 | = | grams | | kilograms | x 2.2 | = | pounds | | kilograms/sq. cm. | x 0.9678 | = | atmospheres | | kilograms/sq. cm. | x 14.22 | = | pounds/sq. in. | | kilogram-meters | x 7.233 | = | foot-pounds | | kilometers | x 100000 | = | centimeters | | kilometers | x 3281 | = | feet | | kilometers | x 39370 | = | inches | | kilometers | x 1000 | = | meters | | kilometers | x 1000000 | = | millimeters | | kilopascals | x 0.145 | = | pounds/sq. in. | | knots | x 1.151 | = | mile/hour | | liters | x 1000 | = | cubic centimeter | | liters | x 0.03531 | = | cubic feet | | liters | x 61.02 | = | cubic inches | | liters | x 0.001 | = | cubic meters | | liters | x 0.2642 | = | gallons | | liters | x 1.06 | = | quarts | | megapascals | x 145 | = | pounds/sq. in. | | meters | x 100 | = | centimeters | | meters | x 0.54681 | = | fathoms | | meter | x 3.281 | = | feet | | meters | x 0.3937 | = | inches | | meters | x 0.001 | = | kilometers | | meters | x 1000 | = | millimeters | | microns | x 0.000001 | = | meters | | milligrams | x 0.000 | | | | millimeters | x 0.1 | = | grams
centimeters | | | | = | | | millimeters | x 0.003281 | = | feet | | millimeters | x 0.03937 | = | inches | | millimeters | x 0.000001 | = | kilometers | | millimeters | x 0.001 | = | meters | | millimeters | x 39.37 | = | mils | | mils | x 0.00254 | = | centimeters | | mils | x 0.0000833 | = | feet | | mils | x 0.001 | = | inches | | newtons | x 0.2248 | = | pounds | | ounces | x 28.349 | = | grams | | ounces | x 0.0625 | = | pounds | | pounds | x 4.448 | = | newtons | | pounds | x 453.6 | = | grams | | pounds | x 0.4536 | = | kilograms | | pounds | x 16 | = | ounces | | pounds of water | x 0.01602 | = | cubic feet | | | | | | ### **Conversions** | | 07.00 | | | |--------------------|-------------|---|--------------------| | pounds of water | x 27.68 | = | cubic inches | | pounds of water | x 0.1198 | = | gallons | | pounds/sq. in. | x 0.06804 | = | atmospheres | | pounds/sq. in. | x 0.0703 | = | kg /sq. cm. | | pounds/sq. in. | x 6.895 | = | kilopascals | | pounds/sq. in. | x 0.006895 | = | megapascals | | square centimeters | x 0.001076 | = | square feet | | square centimeters | x 0.155 | = | square inches | | square centimeters | x 0.0001 | = | square meters | | square centimeters | x 100 | = | square millimeters | | square feet | x 929 | = | square centimeters | | square feet | x 144 | = | square inches | | square feet | x 0.0929 | = | square meters | | square feet | x 92900 | = | square millimeters | | square inches | x 6.452 | = | square centimeters | | square inches | x 0.006944 | = | square feet | | square inches | x 645.2 | = | square millimeters | | square meters | x 10000 | = | square centimeters | | square meters | x 10.76 | = | square feet | | square meters | x 1550 | = | square inches | | square meters | x 1000000 | = | square millimeters | | square millimeters | x 0.01 | = | square centimeters | | square millimeters | x 0.0000108 | = | square feet | | square millimeters | x 0.00155 | = | square inches | | tons (metric) | x 1000 | = | kilograms | | tons (metric) | x 2205 | = | pounds | | tons | x 2000 | = | pounds | | | | | • | ### **Section 3 / Engineering** ### **Engineering** The science concerned with putting scientific knowledge to practical use. #### **Force** A push or pull on a body. There are different types of forces: - Weight - Gravity - Magnetic - Electrical Force is represented by an arrow showing magnitude and direction (also called a vector quantity). If we want to indicate a table which has a book on it is subjected to the weight of the book we can represent it as such: #### **Stress** Stress is the effect of an external force applied upon a solid material. The solid material has an internal resistance that absorbs the external force. This internal resistance is expressed in pounds per square inch (lb/in ² or psi). The level of stress in a solid depends upon the amount of force and the surface on which the force acts. There are several types of stress: *Compressive Stress* - Compressive stress occurs when a force acts on a solid so as to squeeze the solid. This is the type of stress grouting materials normally see. It is equal to the applied force divided by the surface area. Or $$Stress = \frac{Force}{Area} = \frac{F}{A}$$ What is the effect of weight and material size on compressive stress? Less stress found on the bottom block here More stress found on the bottom block here but Less stress found on the bottom block here More stress found on the bottom block here Note that force by itself will not give a true picture of an application in regard to its strength. By saying a foundation has a load of 20 tons on it does not imply weather the structure is strong enough or not. It is necessary to know the area on which the force is acting. ### **Example:** A load of 16,000 lb is placed on a **CHOCKFAST Orange** chock that is 12 inches long and 8 inches deep. What is the compressive stress on the chock? Stress = $$\frac{F}{A}$$ Where: $$F = 16,000 \text{ lb}$$ $$A = 12 \text{ in } \times 8 \text{ in } = 96 \text{ in }^2$$ Stress = $$\frac{16,000}{96}$$ = $\frac{166.6 \text{ psi}}{96}$ ### **Example:** Suppose the chock is reduced in size to only 9 inches long. What is the new stress level? Stress = $$\frac{F}{A}$$ Where: $$F = 16,000 \text{ lb}$$ $$A = 9 \text{ in } x 8 \text{ in } = 72 \text{ in }^2$$ Stress = $$\frac{16,000}{72}$$ = $\frac{222.2 \text{ psi}}{72}$ Tensile Stress - Tensile stress occurs when a force acts on a solid so as to stretch the solid Stress = $$\frac{Force}{Area}$$ = $\frac{F}{A}$ = $\frac{F}{A}$ **Shear Stress** - Shear or Shearing Stress occurs when a force causes one side of a solid to "slide" in relation to the other side. For grouts or chocking materials, shear stresses occur when the machinery imposes sideways forces on the epoxy. These forces can be caused by the machine when it's operating or if it grows or shrinks with temperature changes. Hold-down Bolts running through the chocks can also be put into shear. Like Compressive and Tensile Stress, the formula for Shear Stress is: ### **Example:** What is the shear stress on a 1 in. diameter bolt subjected to a shear force of 8,000 lbs.? Stress = $$\frac{F}{A}$$ Where: $$F = 8,000 \text{ lb}$$ $$A = \pi \times (1 \text{ in})^2 / 4 = 3.1415 / 4 = 0.785 \text{ in}^2 \text{ (Area of a Circle)}$$ Stress = $$\frac{8,000}{0.785}$$ = $\frac{10,191 \text{ psi}}{0.785}$ Note that a shearing stress placed on a cross-sectional area of a solid is parallel to the surface, not perpendicular, as in the case of compressive or tensile stress. #### **Strain** Strain is the deformation per unit length of a solid under stress. Deformation is a change in dimension. In Engineering a change is a difference or delta. Delta is a Greek letter represented as, For example a change in length is delta L or, L Therefore: $$\begin{array}{ccc} \text{Strain} & = & L & \text{or} & \underline{\text{Change in Length}} \\ & L & & \text{Original Length} \end{array}$$ ### **Example:** Due to a tensile stress placed on it, a 25 in. long metal rod assumes a length of 25.025 inches. What is the strain on the rod? Where: $$L = 25.025 - 25.0 = 0.025$$ in. and $L = 25$ in. Strain = $$\frac{0.025 \text{ in}}{25.0 \text{ in}} = \frac{0.001}{25.0 \text{ in}}$$ ### **Modulus of Elasticity** The relationship between stress and strain is a term called the modulus. The modulus of elasticity of a material is an index of its elasticity or the ability of a solid material to deform when an external force is applied to it, then return to its original shape after the removal of the external force. For a certain level of stress placed on a material there will be a certain amount of strain depending upon the modulus of elasticity. The modulus of elasticity of a material is represented by E for Tension and Compression and ES for Shear. The units are lb/in ². | Material | Modulus of Elasticity in PSI | | | |------------------|------------------------------|------------|--| | Material | Tension & Compression | Shear | | | Steel | 30,000,000 | 12,000,000 | | | Copper | 13,000,000 | 6,000,000 | | | Aluminum | 10,000,000 | 4,000,000 | | | Concrete | 3,000,000 - 6,000,000 | - | | | PVC | 300,000 | - | | | CHOCKFAST Orange | 533,000 | 100,000 | | | CHOCKFAST Gray | 520,000 | - | | If we know the modulus of elasticity of a material we can calculate how much it will deflect for a given load. Another way to say this is for a given material we can calculate the strain if we know the stress. The relationship between stress and strain is: ### **Example:** A **CHOCKFAST Orange** chock will have a load of 25,000 lbs placed on it. The chock is 18 inches long and 16 inches deep. The thickness before it is loaded is 1-1/4 inches. How much will the chock deflect due to the load? We want to calculate L (which in this example is thickness). From an earlier page we know: Strain = $$\underline{L}$$ or L = Strain x L We know $L = 1 \frac{1}{4}$ or 1.25 inches, but we need to calculate strain. From above: $$Strain = \underbrace{Stress}_{E}$$ For **CHOCKFAST Orange**, $E = 533,000 \text{ lb/in}^2$ Now calculate stress on the chock: Stress = $$\frac{F}{A}$$ Where: $$F = 25,000 \text{ lb}$$ $A = 18 \times 16 = 288 \text{ in}^2$ Therefore: Stress = $$\frac{F}{A}$$ = $\frac{25,000}{288}$ = 86.8 psi Strain = $$\frac{\text{Stress}}{\text{E}}$$ = $\frac{86.8}{533,000}$ = 0.000163 Now substitute back into the original equation: $$L = Strain \times L = 0.000163 \times 1.25 in = 0.0002 in$$ Stress and Strain for a particular material may be represented graphically as shown: #### CHOCKFAST ORANGE STRESS vs. STRAIN **Linear Section** - the straight-line portion of the curve is where the material still follows the formula: #### $Stress = E \times Strain$ **Yield Point or Yield Stress** - the portion of the curve where the linear section stops. It is at this point where the material begins to permanently deform under the load. **Ultimate Stress** - the portion of the curve that is flat. The material has completely failed and cannot withstand additional load. For epoxy compounds, the yield stress and ultimate stress are nearly equal. For other materials (for example: steel) the yield stress and ultimate stress can be quite different. | Typical Stress Values for Selected Materials | | | | |----------------------------------------------|--------------------|-----------------------|--| | Material | Yield Stress (PSI) | Ultimate Stress (PSI) | | | Cast Iron | 40,000 | 60,000 | | | Steel | 40,000 | 70,000 | | | Aluminum | 21,000 | 24,000 | | | Copper | 5,000 | 32,000 | | | Chockfast Orange | 19,000 | | | | Chockfast Red | 15,250 | | | | Chockfast Black | 17,300 | | | | ESCOWELD 7505E/7530 | 14,000 | | | ### **Torque** Torque is the product of force times the distance from the axis around which it acts. Torque causes a solid to twist. The units for torque are Ft.-Lbs. Here is one example of Torque. The most common application we encounter regarding torque is tightening bolts. ### **Thermal Expansion** The dimensions of most materials change with a change in temperature. If the temperature increases, the material will increase in size; and if the temperature goes down the material shrinks. A good example is often seen in the summertime when the pavement buckles because of the heat. The change in dimension of a material due to a change in the temperature can be determined by the following formula: L = COTExLx T #### Where: L = Change in length COTE = Coefficient of Thermal Expansion L = Original length T = Change in temperature, final – initial The COTE is a number that can be measured experimentally. Some typical values for various materials are as follows: | Material | COTE (in/in-°F) | |---------------------|-------------------------| | Cast Iron | 5.9 x 10 ⁻⁶ | | Steel | 5.9 x 10 ⁻⁶ | | Aluminum | 9.4 x 10 ⁻⁶ | | Copper | 10.7 x 10 ⁻⁶ | | Chockfast Orange | 17.1 x 10 ⁻⁶ | | Chockfast Red | 11.2 x 10 ⁻⁶ | | Chockfast Black | 15.0 x 10 ⁻⁶ | | ESCOWELD 7505E/7530 | 14.0 x 10 ⁻⁶ | Notice if the change in temperature (final temperature - initial temperature) is positive, the change in length is positive. If the change is negative (meaning the material is cooling) the length change is negative. ### **Example:** A **CHOCKFAST Black** chock 1-1/4 inches high cools from 125 ° F down to 70 ° F. What will be the change in height? $$L = COTE \times L \times T$$ #### For **CHOCKFAST Black**: COTE = 15 x 10-6 in/in - ° F L = 1.25 in. T = 70 - 125 = -55 ° F L = 15 x $$10^{-6}$$ x 1.25 x -55 = - 0.001 in. ### **Some Additional Engineering Concepts** *Creep* - The gradual and permanent deformation of a material that is subjected to a stress less than yield stress. This phenomenon usually occurs over periods of years. A good example is the springs in your car. We generally say they are "worn out" when the car starts to bottom out on bumps even though it is not fully loaded. It is usually because of creep considerations that epoxies are loaded far below their yield points. *Friction* - That force which opposes the motion of one material across another. The formula for friction is: $$F_f = \mu N$$ #### Where: F_f = Friction Force P = Pulling (or Pushing) Force N = Normal Force (weight) $\mu = (Mu)$ Coefficient of Friction The coefficient of friction is an experimental number and is dependent upon both surfaces. The coefficient of friction of **CHOCKFAST Orange** on steel is different from the coefficient of friction of **CHOCKFAST Orange** on wood. **Stress Concentration** - an irregularity in stress distribution caused by an abrupt change of form. As the temperature cools and the epoxy contracts around corners of an embedded steel soleplate, a stress concentration occurs at each sharp corner. This could cause cracks to develop if the stress is high enough. # **Section 4 / Applications** #### **Chocks** In order for a piece of rotating machinery to operate correctly it needs to be properly positioned and supported on its foundation. After the machine has been aligned there is always a gap between the bottom mounting surface and the top of the foundation. A chock is used to fill this space. Note that the machine supporting foot is typically not completely parallel to the foundation. The chock must still fit as close as possible to both surfaces. If the chocks were made of steel, each chock would have to be fitted by hand. Epoxy can be poured into the gap and create nearly a 100% fit. Products typically used for chocking: - CHOCKFAST Orange - CHOCKFAST Black - CHOCKFAST Gray #### **Grouts** A grout is a flowable mixture of materials used to fill void areas when installing machinery. After a given period of time the material hardens and helps the machinery retain its position. Grouts differ from chocks in the volume of material used. Where chocks are discreet units of material, grouts tend to be one large volume. Grouts are also used to fill inside machinery foundations and not just underneath. In the case of a machinery base plate, oftentimes the complete inside is filled with grout when the equipment is installed. The grout provides complete contact for the base plate to the foundation itself. When machinery is installed on sole plates, the soleplates are grouted into the concrete foundation, and then the machinery is chocked to the soleplate. In many cases the grout application can be very deep. Most grouts get too hot when they cure and therefore contract too much when they cool, causing cracks and poor bonds. The solution for these grouts is to pour in layers. Epoxy Grout products typically used for grouting: CHOCKFAST Red – Large volume, single pours of 2" to 18" (51 mm to 457 mm). ESCOWELD® 7505/7530 - Large volume, single pours of 2" to 18" (51 mm to 457 mm). CWC 604 Machine Bond - Large volume, single pours of 2" to 18" (51 mm to 457 mm). CHOCKFAST Red HF - Large volume, single pours of 1" to 4" (25 mm to 102 mm) CHOCKFAST Red SG – Medium to small volume; single pours of 1" to 3 "(25 mm to 76 mm) CHOCKFAST Blue – Smaller volume pours of 1" to 1 ½" (25 mm to 38 mm). ## **Control Joints** Epoxy grouts develop heat during the curing process (Also refer to "Curing" under Section 6). During this time, they will typically phase from a plastic, workable material to an eventual solid material as the chemical reaction taking place enables the grout develop its structural strength & integrity. This is considered the "gel" time; and it is also the point where the maximum temperature is attained. The maximum temperature reached is dependent on a number of variables: - Amount or mass of epoxy grout used, (I x w x d) - Temperatures: - Epoxy grout components at the time of mixing - Ambient air - Adjacent surfaces that come in contact with the curing grout All of these variables can affect the temperature and rate of cure of an epoxy grout. The higher the temperature value for one or more of these variables; the higher the maximum exothermic temperature becomes as well. After the gel point is reached and the epoxy grout becomes a solid material, the temperature goes down. As the temperature decreases, the epoxy grout will contract. As the material cracks, increasing stresses develop and are locked into the epoxy grout until its physical limits are reached. This concludes in the form of a thermal stress crack. The differential between initial peak exothermic temperature during installation and lower potential temperatures that may be experienced in the environment later; will influence the probability and frequency of crack development. Cracks can develop as soon as the epoxy grout cools down after the initial exothermic episode. They can also occur weeks, months and even years after installation if ambient conditions in the immediate area drop far enough to continue building stresses to where the physical limits of the cured grout are overcome. This is a known occurrence and is common in many materials that react chemically and undergo a heat-related cure. Concrete is a most common example. Thermal cracks can and will occur, but they can be anticipated and planned for through the considerate and intentional placement of prefabricated control joints (sometimes more commonly referred to as expansion joints) in the epoxy grout. Control joints can also be thought of as an "engineered crack". Joint placement and frequency may be determined with careful consideration to the following variables: - Initial cure environment of the epoxy grout - Equipment type and configuration - Operating temperatures of the equipment and its environment. - Magnitude and frequency of possible thermal changes that may occur within the operating environment. - Coefficient of Thermal Expansion of the Epoxy Grout. Also, the thermal coefficients of epoxy grout, concrete and steel can contribute to the potential for grout cracking due to the differential in expansion and contraction rates of each. However, strategically control joints can help to reduce this possibility as well. Joints may be constructed as shown: Products typically used for sealing control & expansion joints: ## ITW PRC Expansion Joint Compound Vertical thermal cracks do not affect the structural integrity and the ability of the epoxy grout to counter imposed static and dynamic loads. The major shortcoming of a crack is it becomes a direct path for oils, water and other chemicals to reach, attack and weaken the porous concrete substrate. ## Repairs ## Foundation Repairs: All concrete foundations have cracks particularly in large pours where the amount of concrete shrinkage is significant. These cracks are not serious except from an esthetic point of view. However, cracks that occur because of equipment vibration must be repaired. If not the crack will continue to grow until the foundation becomes structurally inadequate. Injecting epoxy into the cracks is a proven repair method. There are many ways to inject epoxy. Here, injection ports have been placed to be used as injection points. Products typically used for injection repairs: - ITW Quickset - CHOCKFAST Red Liquids only #### Hairline Cracks: Cracks that occur on the surface of either epoxy or steel are usually repaired in the same manner but with different materials. In order to give the repair compound a large enough surface to adhere to, the crack is "Vee'd" out and the repair compound placed into it. In the case of a metal casting such as a pump casing, small holes are first drilled at the ends of the crack to relieve the stress and stop the crack from moving any farther. Products typically used for hairline surface crack repair: Concrete and Epoxy Repairs: - ITW PRC Expansion Joint Compound - ITW PRC Repair Compound Metal: - Phillybond #6 - Super Alloy Titanium Repair # **Secondary Containment** A catch basin built around a tank (or tanks) sized to contain all of the contents of the tank in the event of a leak or rupture. The secondary containment system must be able to contain the contents for a minimum period of time of 24 hours even if the materials are corrosive. Products typically used for secondary containment coating systems: - PolySpec NovoRez 351 High Solids Novolac Epoxy - PolySpecTuff Rez 200CR Acid Resistant Epoxy Floor Resurfacer ## **Fairing Materials** Fairing is a marine term that means to make smooth or streamlined. An abrupt change in shape of a surface can create turbulence as it moves through the water causing erosion. A fairing material is basically a filling material. Products typically used for a fairing material: # ITW PRC Repair Compound # **Bearings** Bearings are usually held in place by an *interference* fit – the bearing is a little bit bigger than the structure that holds it. The problem arises when the bearing needs to be located off-center from the bore that was made for it. The answer is to make the bore larger than necessary, position the bearing where it needs to be, and fill the gap with epoxy. This will work for any size bearing but is particularly helpful for the large applications where it is very expensive and difficult to precisely machine the components. Bearings, which can be done this way range in size from $\frac{1}{2}$ inch to 24 feet (or more) in diameter. Products typically used to chock bearings are: - CHOCKFAST Orange - CHOCKFAST Black # **Section 5 / Testing** **ASTM** - American Society for Testing and Materials. - The headquarters is in Conshohocken, PA. - Organized in 1898 - Voluntary standards development organization - Not-for-Profit - 134 standards-writing committees, 8,500 standards, organized by discipline. - Has no technical or testing facility. All work is done voluntarily by 33,000 ASTM members located throughout the world ## **Philosophy behind ASTM Testing** Some tests produce results of a practical nature that can be used as actual design criteria: - Compressive Tests - Tensile Tests - Coefficient of Thermal Expansion Some tests produce results of a comparative nature. The results cannot be used for actual design, but can be helpful to compare different materials to each other: - Shrink on cure - Gel Time - Creep # **Commonly Used Tests** Compressive Tests These tests require a 2-inch cube for a test specimen. The cube is then loaded by a test machine (e.g. Tinius Olsen) until it breaks. Typical ASTM test methods used: **ASTM C 579** - Chemical Resistant Mortars, Grouts, Polymer Concrete **ASTM D 695** - Rigid Plastics Tensile Tests These tests require specimens be prepared according to specific dimensions. They are placed in a test machine and pulled until they break. Typical ASTM test methods used: **ASTM C 307** - Chemical Resistant Mortars, Grouts, Polymer Concrete **ASTM D 638** - Plastics Shrinkage and Linear Coefficient of Thermal Expansion Typical ASTM test methods used: ## **ASTM C 531** - Shrinkage and Linear Coefficient of Thermal Expansion For shrinkage this test requires a test specimen be poured to an exact length. After cure, the length is measured. The difference between the lengths before and after is the shrinkage. This test is best used for comparative purposes. For the Coefficient of Thermal Expansion the bar is heated to a specified temperature and the length is measured. The change in length for the specified change in temperature results in the coefficient. The results from this test can be used in actual applications. ## ASTM D 696 - Coefficient of Linear Thermal Expansion This test determines the change in length of a specimen due to a change in temperature without removing the specimen from the elevated temperature environment. The specimen is placed into an environmental chamber and an extension rod, called a dilatometer, is placed so it sits on top of the specimen. The dilatometer extends outside the chamber and a dial indicator shows the change in length. ## Gel Time and Peak Exothermic Temperature This test determines the time from initial mixing of the material components to the time when solidification commences. It also provides a means for measuring the maximum temperature reached during the reaction. This temperature is best used for comparison purposes. ## Creep Typical ASTM test methods used: ## ASTM C 1181 - Compressive Creep This test is only a comparative test which determines the creep of a material for a given stress level and temperature. A specimen in the shape of a doughnut is cast and constant load is maintained using a torqued bolt and spring washers. The change in height of the specimen is measured over a time period of 28 days. ## **ASTM D 648** - Deflection Temperature This test is a means to determine the temperature at which a material begins to lose its strength properties. The size of the specimen is 5" long x $\frac{1}{2}$ " high x $\frac{1}{2}$ " wide. It is placed on supports 4" apart in a temperature-controlled bath. A load is applied to the middle of the bar as the temperature of the bath is slowly increased. The temperature of the bath when the bar has deflected 0.010" is the deflection temperature. ## **Curing of Test Samples** It is essential that test specimens be completely cured before performing any tests for physical properties otherwise the results will be misleading. The problem is test specimens that have been cast in molds, normally do not develop a high enough exothermic heat needed for complete cure with a 24-hour period (or longer). Small test specimens should always be placed in an oven and heated to 170 ° F for four hours. After complete cooling, the test may be performed. # **Section 6 / Epoxy Chemistry** ## **Epoxy** Epoxy is of Greek derivation: - "Epi" on the outside of - "Oxy" oxygen atom in the molecular group It is basically a description of the chemical symbol for the family of epoxies. Atom - the smallest particle of an element Molecule - smallest particle of a compound For example: a water molecule is made of 2 Hydrogen atoms and one Oxygen atom Epoxy Resin - a material containing epoxy groups When an epoxy resin is combined with a catalyst (hardener), the epoxy groups combine with each other to form long molecular chains. This material is called a polymer. The process is called "Polymerization". The molecular chains form in all directions. This is called "cross-linking". Epoxies can have many characteristics: - High heat resistance - Flexibility - Those that cure at room temperature, high heat, or even with light ## Curing The epoxy groups are like chemical springs storing energy. The hardener releases the spring causing the chain reaction that forms the long molecular chains. The release of energy is in the form of heat. A reaction that releases heat is called "exothermic". The practical amount of heat that is experienced as the temperature rises depends upon several things: - The amount (mass) of epoxy - The ambient (surrounding) temperature - The ability of the surrounding surfaces to absorb the heat (heat sink) *Mass* - the larger the mass of epoxy there is; the higher the maximum exothermic temperature. As the polymerization process continues and heat is released, the epoxy begins to turn from a liquid to a solid. This is the gel point. It is also the point at which the maximum temperature is reached. After the gel point is reached, the temperature goes down. Complete curing is accomplished by ambient heat, or if it is too low, by externally applied heat. A high exothermic cure temperature can both help and hurt an epoxy grout installation. The higher the exothermic cure temperature, the faster the epoxy grout will cure. Also, the higher the exothermic cure temperature, the more the epoxy grout will contract and shrink as it cools to ambient temperature. # **Application Techniques** Because of the nature in which epoxy cures, there are some application techniques which minimize the effects of shrinkage. ## Chocking materials Because curing is dependent upon the mass, an epoxy chock will begin curing from the center (where the mass is concentrated) out. This is why we use an "Over-pour" or liquid reservoir when pouring the chocking materials. Because it is the last to cure, the over-pour will act as a reservoir from which the chock can pull additional epoxy. #### Grouts Some epoxy grouts (CHOCKFAST Red, for example) have very low exothermic cure temperatures and as a result, do not contract or shrink as much as the temperature returns to ambient. However, for any large volume pours that go deeper than 4 inches under critical alignment conditions; it is a good rule of thumb to perform an initial pour that fills all but the last 4 inches from the equipment base. The final 4 inches is poured when the initial pour has cooled.) This is because the deepness of pour and large volume of grout used creates increased mass. This can cause excess heat buildup even in grouts that typically exhibit lower exothermic cure temperatures. # Chockfast 130 Commerce Drive Montgomeryville, PA 18936 P 215.855.8450 / F 215.855.4688