
�

�

�

�

�

�

�

�

3

Rely-Guarantee-Based Simulation for Compositional Verification
of Concurrent Program Transformations

HONGJIN LIANG, XINYU FENG, and MING FU, University of Science and Technology of China

Verifying program transformations usually requires proving that the resulting program (the target) re-
fines or is equivalent to the original one (the source). However, the refinement relation between individual
sequential threads cannot be preserved in general with the presence of parallel compositions, due to in-
struction reordering and the different granularities of atomic operations at the source and the target. On
the other hand, the refinement relation defined based on fully abstract semantics of concurrent programs
assumes arbitrary parallel environments, which is too strong and cannot be satisfied by many well-known
transformations.

In this article, we propose a Rely-Guarantee-based Simulation (RGSim) to verify concurrent program
transformations. The relation is parametrized with constraints of the environments that the source and the
target programs may compose with. It considers the interference between threads and their environments,
thus is less permissive than relations over sequential programs. It is compositional with respect to parallel
compositions as long as the constraints are satisfied. Also, RGSim does not require semantics preservation
under all environments, and can incorporate the assumptions about environments made by specific program
transformations in the form of rely/guarantee conditions. We use RGSim to reason about optimizations and
prove atomicity of concurrent objects. We also propose a general garbage collector verification framework
based on RGSim, and verify the Boehm et al. concurrent mark-sweep GC.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verification—
Correctness proofs, Formal methods; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying
and Reasoning about Programs

General Terms: Theory, Verification

Additional Key Words and Phrases: Concurrency, program transformation, rely-guarantee reasoning,
simulation

ACM Reference Format:
Liang, H., Feng, X., and Fu, M. 2014. Rely-guarantee-based simulation for compositional verification of con-
current program transformations. ACM Trans. Program. Lang. Syst. 36, 1, Article 3 (March 2014), 55 pages.
DOI:http://dx.doi.org/10.1145/2576235

1. INTRODUCTION

Many verification problems can be reduced to verifying program transformations,
that is, proving the target program of the transformation has no more observable

This work is supported in part by grants from National Natural Science Foundation of China (NSFC) under
grant nos. 61379039, 61229201, 61103023, and 91318301, Program for New Century Excellent Talents in
Universities (grant no. NCET-2010-0984), and the Fundamental Research Funds for the Central Universi-
ties (grant no. WK0110000031).
Authors’ address: H. Liang, X. Feng (corresponding author), and M. Fu, School of Computer Science and
Technology, University of Science and Technology of China, Hefei, Anhui 230026, China and Suzhou In-
stitute for Advanced Study, University of Science and Technology of China, Suzhou, China 215123; email:
xyfeng@ustc.edu.cn.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© 2014 ACM 0164-0925/2014/03-ART3 $15.00
DOI:http://dx.doi.org/10.1145/2576235

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

3:2 H. Liang et al.

behaviors than the source. Next we give some typical examples in concurrent
settings.

— Correctness of compilation and optimizations of concurrent programs. In this most
natural program transformation verification problem, every compilation phase does
a program transformation T, which needs to preserve the semantics of the inputs.

— Atomicity of concurrent objects. A concurrent object or library provides a set of meth-
ods that allow clients to manipulate the shared data structure with abstract atomic
behaviors [Herlihy and Shavit 2008]. Their correctness can be reduced to the cor-
rectness of the transformation from abstract atomic operations to concrete and exe-
cutable programs in a concurrent context.

— Verifying implementations of Software Transactional Memory (STM). Many lan-
guages supporting STM provide a high-level atomic block atomic{C}, so that
programmers can assume the atomicity of the execution of C. Atomic blocks are
implemented using some STM protocol (e.g., TL2 [Dice et al. 2006]) that allows very
fine-grained interleavings. Verifying that the fine-grained program respects the se-
mantics of atomic blocks gives us the correctness of the STM implementation.

— Correctness of concurrent Garbage Collectors (GCs). High-level garbage-collected
languages (e.g., Java) allow programmers to work at an abstract level without
knowledge of the underlying GC algorithm. However, the concrete and executable
low-level program involves interactions between the mutators and the collector. If
we view the GC implementation as a transformation from high-level mutators to
low-level ones with a concrete GC thread, the GC safety can be reduced naturally to
the semantics preservation of the transformation.

To verify the correctness of a program transformation T, we follow Leroy’s ap-
proach [Leroy 2009] and define a refinement relation � between the target and the
source programs, which says the target has no more observable behaviors than the
source. Then we can formalize the correctness of the transformation as follows.

Correct(T) � ∀C,C. C = T(C) =⇒ C � C . (1.1)

That is, for any source program C acceptable by T, T(C) is a refinement of C. When the
source and the target are shared-state concurrent programs, the refinement � needs
to satisfy the following requirements to support effective proof of Correct(T).

— Since the target T(C) may be in a different language from the source, the refinement
should be general and independent of the language details.

— To verify fine-grained implementations of abstract operations, the refinement should
support different views of program states and different granularities of state ac-
cesses at the source and the target levels.

— When T is syntax-directed (and it is usually the case for parallel compositions, i.e.,
T(C‖C′) = T(C)‖T(C′)), a compositional refinement is of particular importance for
modular verification of T.

However, existing refinement (or equivalence) relations cannot satisfy all these re-
quirements at the same time. Contextual equivalence, the canonical notion for com-
paring program behaviors, fails to handle different languages since the contexts of
the source and the target will be different. Simulations and logical relations have
been used to verify compilation [Benton and Hur 2009; Hur and Dreyer 2011; Leroy
2009; Lochbihler 2010], but they are usually designed for sequential programs (ex-
cept Lochbihler [2010] and Ševčı́k et al. [2011], which we will discuss in Section 8).
Since the refinement or equivalence relation between sequential threads cannot be
preserved in general with parallel compositions, we cannot simply adapt existing work
on sequential programs to verify transformations of concurrent programs. Refinement

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

Rely-Guarantee-Based Simulation for Verification of Program Transformations 3:3

relations based on fully abstract semantics of concurrent programs are compositional,
but they assume arbitrary program contexts, which is too strong for many practical
transformations. We will explain the challenges in detail in Section 2.

In this article, we propose a Rely-Guarantee-based Simulation (RGSim) for compo-
sitional verification of concurrent transformations. By addressing the preceding prob-
lems, we make the following contributions.

— RGSim parametrizes the simulation between concurrent programs with rely/
guarantee conditions [Jones 1983] which specify the interactions between the pro-
grams and their environments. This makes the corresponding refinement relation
compositional with respect to parallel compositions, allowing us to decompose refine-
ment proofs for multithreaded programs into proofs for individual threads. On the
other hand, the rely/guarantee conditions can incorporate the assumptions about
environments made by specific program transformations, so RGSim can be applied
to verify many practical transformations.

— Based on the simulation technique, RGSim focuses on comparing externally observ-
able behaviors (e.g., I/O events) only, which gives us considerable leeway in the
implementations of related programs. The relation is mostly independent of the lan-
guage details. It can be used to relate programs in different languages with different
views of program states and different granularities of atomic state accesses.

— RGSim makes relational reasoning about optimizations possible in parallel contexts.
We present a set of relational reasoning rules to characterize and justify common
optimizations in a concurrent setting, including hoisting loop invariants, strength
reduction and induction variable elimination, dead code elimination, redundancy
introduction, etc.

— RGSim gives us a refinement-based proof method to verify fine-grained implemen-
tations of abstract algorithms and concurrent objects. We successfully apply RGSim
to verify concurrent counters, the concurrent GCD algorithm, Treiber’s nonblocking
stack, and the lock-coupling list.

— We reduce the problem of verifying concurrent garbage collectors to verifying
transformations, and present a general GC verification framework which combines
unary rely-guarantee-based verification [Jones 1983] with relational proofs based
on RGSim.

— We verify the Boehm et al. concurrent garbage collection algorithm [Boehm et al.
1991] using our framework. As far as we know, it is the first time to formally prove
the correctness of this algorithm.

— We give a mechanized formulation of RGSim, and prove its soundness and composi-
tionality in the Coq proof assistant [2010]. Both the manual and mechanized proofs
are available online1.

This article extends the conference paper in POPL 2012 [Liang et al. 2012]. First,
we add more examples, including strength reduction and induction variable elimina-
tion, the nonblocking concurrent counter, Treiber’s stack algorithm, and the concur-
rent GCD algorithm. Second, we significantly expand the details for the concurrent
GC verification, demonstrating that RGSim is a powerful proof technique for verifying
program transformations which involve concurrent runtime systems.

In the rest of this article, we first analyze the challenges for compositional verifi-
cation of concurrent program transformations, and explain our approach informally
in Section 2. Then we give the basic technical settings in Section 3 and present the
formal definition of RGSim in Section 4. We show the use of RGSim to reason about

1http://kyhcs.ustcsz.edu.cn/relconcur/rgsim

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

3:4 H. Liang et al.

local r1;

x := 1;

r1 := y;

if (r1 = 0) then

critical region

‖

local r2;

y := 1;

r2 := x;

if (r2 = 0) then

critical region

(a) Dekker’s mutual exclusion algorithm

x := x+1; ‖ x := x+1;

vs.

local r1;

r1 := x;

x := r1 + 1;

‖
local r2;

r2 := x;

x := r2 + 1;

(b) different granularities of atomic operations

Fig. 1. Equivalence lost after parallel composition.

optimizations in Section 5, verify fine-grained algorithms and atomicity of concurrent
objects in Section 6, and prove the correctness of concurrent GCs in Section 7. Finally
we discuss related work and conclude in Section 8.

2. CHALLENGES AND OUR APPROACH

The major challenge we face is to have a compositional refinement relation � between
concurrent programs, that is, we should be able to know T(C1)‖T(C2) � C1 ‖C2 if we
have T(C1) � C1 and T(C2) � C2.

2.1. Sequential Refinement Loses Parallel Compositionality

Observable behaviors of sequential imperative programs usually refer to their
control effects (e.g., termination and exceptions) and final program states. How-
ever, refinement relations defined correspondingly cannot be preserved after parallel
compositions. It has been a well-known fact in the compiler community that sound op-
timizations for sequential programs may change the behaviors of multithreaded pro-
grams [Boehm 2005]. The Dekker’s algorithm shown in Figure 1(a) has been widely
used to demonstrate the problem. Reordering the first two assignment statements of
the thread on the left preserves its sequential behaviors, but the whole program can
no longer ensure exclusive access to the critical region.

In addition to instruction reordering, the different granularities of atomic operations
between the source and the target programs can also break the compositionality of
program equivalence in a concurrent setting. In Figure 1(b), the target program at
the bottom behaves differently from the source at the top (assuming each statement
is executed atomically), although the individual threads at the target and the source
have the same behaviors.

2.2. Assuming Arbitrary Environments is Too Strong

The problem with the refinement for sequential programs is that it does not consider
the effects of threads’ intermediate state accesses on their parallel environments.
People have given fully abstract semantics to concurrent programs (e.g., [Abadi and
Plotkin 2009; Brookes 1996]). The semantics of a program is modeled as a set of

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

Rely-Guarantee-Based Simulation for Verification of Program Transformations 3:5

execution traces. Each trace is an interleaving of state transitions made by the pro-
gram itself and arbitrary transitions made by the environment. Then the refinement
between programs can be defined as the subset relation between the corresponding
trace sets. Since it considers all possible environments, the refinement relation has
very nice compositionality, but unfortunately is too strong to formulate the correctness
of many well-known transformations, including the four classes of transformations
mentioned before.

— Many concurrent languages (e.g., C++ [Boehm and Adve 2008]) do not give seman-
tics to programs with data races (like the examples shown in Figure 1). Therefore
the compilers only need to guarantee the semantics preservation of data-race-free
programs.

— When we prove that a fine-grained implementation of a concurrent object is a re-
finement of an abstract atomic object, we can assume that all accesses to the object
are made through the object’s methods only, for example, a stack object can only be
accessed through push and pop methods, and its internal data cannot be arbitrarily
updated.

— Usually the implementation of STM (e.g., TL2 [Dice et al. 2006]) ensures the atom-
icity of a transaction atomic{C} only when there are no data races. Therefore, the
correctness of the transformation from high-level atomic blocks to fine-grained con-
current code assumes data-race freedom in the source.

— Many garbage-collected languages are type-safe and prohibit operations such as
pointer arithmetic. Therefore the garbage collector could make corresponding as-
sumptions about the mutators that run in parallel.

In all these cases, the transformations of individual threads are allowed to make
various assumptions about the environments. They do not have to ensure semantics
preservation within all contexts.

2.3. Languages at Source and Target May Be Different

The use of different languages at the source and the target levels makes the formu-
lation of the transformation correctness more difficult. If the source and the target
languages have different views of program states and different atomic primitives, we
cannot directly compare the state transitions made by the source and the target pro-
grams. This is another reason that makes the aforementioned subset relation between
sets of program traces in fully abstract semantics infeasible. For the same reason,
many existing techniques for proving refinement or equivalence of programs in the
same language cannot be applied either.

2.4. Different Observers Make Different Observations

Concurrency introduces tensions between two kinds of observers: human beings (as
external observers) and the parallel program contexts. External observers do not
care about the implementation details of the source and the target programs. For
them, intermediate state accesses (such as memory reads and writes) are silent steps
(unobservable), and only external events (such as I/O operations) are observable. On
the other hand, state accesses have effects on the parallel program contexts, and are
not silent to them.

If the refinement relation relates externally observable event traces only, it cannot
have parallel compositionality, as we explained in Section 2.1. On the other hand, re-
lating all state accesses of programs is too strong. Any reordering of state accesses or
change of atomicity would fail the refinement.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

3:6 H. Liang et al.

2.5. Our Approach

In this article we propose a Rely-Guarantee-based Simulation (RGSim) � between the
target and the source programs. It establishes a weak simulation, ensuring that for
every externally observable event made by the target program there is a corresponding
one in the source. We choose to view intermediate state accesses as silent steps, thus
we can relate programs with different implementation details. This also makes our
simulation independent of language details.

To support parallel compositionality, our relation takes into account explicitly the
expected interference between threads and their parallel environments. Inspired by
the rely-guarantee (R-G) verification method [Jones 1983], we specify the interference
using rely/guarantee conditions. In rely-guarantee reasoning, the rely condition R of
a thread specifies the permitted state transitions that its environment may have, and
its guarantee G specifies the possible transitions made by the thread itself. To ensure
parallel threads can collaborate, we need to check the interference constraint, that is,
the guarantee of each thread is permitted in the rely of every other. Then we can verify
their parallel composition by separately verifying each thread, showing its behaviors
under the rely condition indeed satisfy its guarantee. After parallel composition, the
threads should be executed under their common environment (i.e., the intersection of
their relies) and guarantee all the possible transitions made by them (i.e., the union of
their guarantees).

Parametrized with rely/guarantee conditions for the two levels, our relation
(C,R,G) � (C,R,G) talks about not only the target C and the source C, but also the in-
terference R and G between C and its target-level environment, and R and G between C

and its environment at the source level. Informally, (C,R,G) � (C,R,G) says the execu-
tions of C under the environment R do not exhibit more observable behaviors than the
executions of C under the environment R, and the state transitions of C and C satisfy G
and G respectively. RGSim is now compositional, as long as the threads are composed
with well-behaved environments only. The parallel compositionality lemma is in the
following form. If we know (C1,R1,G1) � (C1,R1,G1) and (C2,R2,G2) � (C2,R2,G2),
and also the interference constraints are satisfied, that is, G2 ⊆ R1, G1 ⊆ R2, G2 ⊆ R1
and G1 ⊆ R2, we could get

(C1 ‖C2,R1 ∩R2,G1 ∪ G2) � (C1 ‖C2,R1 ∩ R2,G1 ∪G2) .

The compositionality of RGSim gives us a proof theory for concurrent program trans-
formations.

Also different from fully abstract semantics for threads, which assumes arbitrary be-
haviors of environments, RGSim allows us to instantiate the interference R, G, R and
G differently for different assumptions about environments, therefore it can be used
to verify the aforementioned four classes of transformations. For instance, if we want
to prove that a transformation preserves the behaviors of data-race-free programs, we
can specify the data-race freedom in R and G. Then we are no longer concerned with
the examples in Figure 1, both of which have data races.

Example. Next we give an example of loop invariant hoisting to illustrate how
RGSim works. The formal proofs are shown in Section 5.2.1.

Target Code (C1)

local t;

t := x + 1;

while(i < n) {

i := i + t;

}

⇐

Source Code (C)

local t;

while(i < n) {

t := x + 1;

i := i + t;

}

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

Rely-Guarantee-Based Simulation for Verification of Program Transformations 3:7

(Events) e ::= . . . (Labels) o ::= e | τ

(a) events and transition labels

(LState) σ ::= . . .

(LExpr) E ∈ LState → Int⊥
(LBExp) B ∈ LState → {true, false}⊥
(LInstr) c ∈ LState ⇀ P((Labels× LState) ∪ {abort})
(LStmt) C ::= skip | c | C1; C2 | if (B) C1 else C2 | while (B) C | C1 ‖C2

(LStep) −→L ∈ P((LStmt\{skip} × LState)× Labels× ((LStmt× LState) ∪ {abort}))

(b) the low-level language

(HState) � ::= . . .

(HExpr) E ∈ HState → Int⊥
(HBExp) B ∈ HState → {true, false}⊥
(HInstr) c ∈ HState ⇀ P((Labels×HState) ∪ {abort})
(HStmt) C ::= skip | c | C1; ;C2 | if B then C1 else C2 | while B do C | C1�C2

(HStep) −→H ∈ P((HStmt\{skip} ×HState)× Labels× ((HStmt×HState) ∪ {abort}))

(c) the high-level language

Fig. 2. Generic languages at target and source levels.

Benton [2004] has proved that the optimized code C1 preserves the sequential be-
haviors of the source C. In a concurrent setting, this optimization is incorrect within
arbitrary environments. For instance, if other threads may update x, the final values
of i might be different at the two levels. In fact, this optimization works only when
the environments R at both levels do not update x nor t. The guarantees G of both C1
and C can be specified as arbitrary transitions. Then we can prove the RGSim relation
(C1,R,G) � (C,R,G) and conclude the correctness of the transformation.

3. BASIC TECHNICAL SETTINGS

In this section, we present the source and the target programming languages. Then we
define a basic refinement �, which naturally says the target has no more externally
observable event traces than the source. We use � as an intuitive formulation of the
correctness of transformations. Our RGSim relation, which will be formally defined in
Section 4, is proposed as a proof technique for �.

3.1. The Languages

Following standard simulation techniques, we model the semantics of target and
source programs as labeled transition systems. Before showing the languages, we first
define events and labels in Figure 2(a). We leave the set of events unspecified here. It

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

3:8 H. Liang et al.

(o, �′) ∈ c �

(c, �)
o−→ (skip, �′)

abort ∈ c �

(c, �) −→ abort
� �∈ dom(c)

(c, �) −→ (c, �)

(skip�skip, �) −→ (skip, �)

(C1, �)
o−→ (C′1, �′)

(C1�C2, �)
o−→ (C′1�C2, �′)

(C2, �)
o−→ (C′2, �′)

(C1�C2, �)
o−→ (C1�C

′
2, �′)

(C1, �) −→ abort or (C2, �) −→ abort
(C1�C2, �) −→ abort

Fig. 3. Selected operational semantics rules of the high-level language.

can be instantiated by program verifiers, depending on their interest (e.g., input/output
events). A label that will be associated with a state transition is either an event or τ ,
which means the corresponding transition does not generate any event (i.e., a silent
step).

The target language, which we also call the low-level language, is shown in
Figure 2(b). We abstract away the forms of states, expressions, and primitive instruc-
tions in the language. An arithmetic expression E is modeled as a function from states
to integers lifted with an undefined value ⊥. Boolean expressions Bs are modeled sim-
ilarly. An instruction c is a partial function from states to sets of label and state pairs,
describing the state transitions and the events it generates. We use P() to denote the
power set. Unsafe executions lead to abort. Note that the semantics of an instruction
could be nondeterministic. Moreover, it might be undefined on some states, making it
possible to model blocking operations such as acquiring a lock.

Statements are either primitive instructions or compositions of them. skip is a spe-
cial statement used as a flag to show the end of executions. When it is sequentially
composed with other statements, it has no computational effects. A single-step execu-
tion of statements is modeled as a labeled transition −→L , which is a triple of an
initial program configuration (a pair of statement and state), a label and a resulting
configuration. It is undefined when the initial statement is skip. The step aborts if an
unsafe instruction is executed.

The high-level language (source language) is defined similarly in Figure 2(c), but it
is important to note that its states and primitive instructions may be different from
those in the low-level language. The compound statements are almost the same as
their low-level counterparts. C1; ;C2 and C1�C2 are sequential and parallel composi-
tions of C1 and C2 respectively. Note that we choose to use the same set of compound
statements in the two languages for simplicity only. This is not required by our simu-
lation relation, although the analogous program constructs of the two languages (e.g.,
parallel compositions C1 ‖ C2 and C1 �C2) make it convenient for us to discuss the
compositionality later.

Figure 3 shows part of the definition of −→H , which gives the high-level opera-
tional semantics of statements. We often omit the subscript H (or L) in −→H (or
−→L) and the label on top of the arrow when it is τ . The semantics is mostly stan-

dard. We only show the rules for primitive instructions and parallel compositions here.
Note that when a primitive instruction c is blocked at state � (i.e., � �∈ dom(c)), we let
the program configuration reduce to itself. For example, the instruction lock(l) would
be blocked when l is not 0, making it be repeated until l becomes 0; whereas unlock(l)
simply sets l to 0 at any time and would never be blocked. Primitive instructions in the
high-level and low-level languages are atomic in the interleaving semantics. Shortly

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

Rely-Guarantee-Based Simulation for Verification of Program Transformations 3:9

we use −→ ∗ for zero or multiple-step transitions with no events generated, and
e−→∗ for multiple-step transitions with only one event e generated.

3.2. The Event Trace Refinement

Now we can formally define the refinement relation � that relates the set of externally
observable event traces generated by the target and the source programs. A trace is a
sequence of events e, and may end with a termination marker done or a fault marker
abort.

(EvtTrace) E ::= ε | done | abort | e ::E
Definition 3.1 (Event Trace Set). ETrSetn(C, σ) represents a set of external event

traces produced by C in n steps from the state σ .

(1) ETrSet0(C, σ) � {ε} ;
(2) ETrSetn+1(C, σ) �

{E | (C, σ) −→ (C′, σ ′) ∧ E ∈ETrSetn(C′, σ ′)
∨ (C, σ)

e−→ (C′, σ ′) ∧ E ′ ∈ETrSetn(C′, σ ′) ∧ E=e ::E ′
∨ (C, σ) −→ abort ∧ E=abort
∨ C=skip ∧ E=done} .

We define ETrSet(C, σ) as
⋃

n ETrSetn(C, σ).

We overload the notation and use ETrSet(C, �) for the high-level language. Note that
we treat abort as a specific behavior instead of undefined arbitrary behaviors. The
choices should depend on applications. The ideas in the article should also apply for
the latter setting, though we need to change our refinement and simulation relations
defined shortly.

Then we define an event trace refinement as the subset relation between event trace
sets, which is similar to Leroy’s refinement property [Leroy 2009].

Definition 3.2 (Event Trace Refinement). We say (C, σ) is an e-trace refinement of
(C, �), that is, (C, σ) � (C, �), if and only if

ETrSet(C, σ) ⊆ ETrSet(C, �) .

The refinement is defined for program configurations instead of for code only because
the initial states may affect the behaviors of programs. In this case, the transformation
T should translate states as well as code. We overload the notation and use T(�) to
represent the state transformation, and use C �T C for

∀σ , �. σ = T(�) =⇒ (C, σ) � (C, �) ,

then Correct(T) defined in Eq. (1.1) can be reformulated as

Correct(T) � ∀C,C. C = T(C) =⇒ C �T C . (3.1)

From the aforesaid e-trace refinement definition, we can derive an e-trace equiva-
lence relation by requiring both directions hold

(C, σ) ≈ (C, �) � (C, σ) � (C, �) ∧ (C, �) � (C, σ) ,

and use C ≈T C for ∀σ , �. σ = T(�) =⇒ (C, σ) ≈ (C, �).

4. THE RGSIM RELATION

The e-trace refinement is defined directly over the externally observable behaviors of
programs. It is intuitive, and also abstract in that it is independent of language details.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

3:10 H. Liang et al.

σ

σ ′

�

�′

α

�
R

α �
R

σ

σ ′

θ

θ ′

�

�′

α β

�
R

�
RM

�
R

∗
α β

(a) α-related transitions (b) the side condition of TRANS

Fig. 4. Related transitions.

However, as we explained before, it is not compositional with respect to parallel com-
positions. In this section we propose RGSim, which can be viewed as a compositional
proof technique that allows us to derive the simple e-trace refinement and then verify
the corresponding transformation T.

4.1. The Definition

Our co-inductively defined RGSim relation is in the form of (C, σ ,R,G) �α;γ
(C, �,R,G), which is a simulation between program configurations (C, σ) and (C, �).
It is parametrized with the rely and guarantee conditions at the low level and the high
level, which are binary relations over states.

R,G ∈ P(LState× LState) , R,G ∈ P(HState×HState) .

The simulation also takes two additional parameters: the step invariant α and the
postcondition γ , which are both relations between the low-level and the high-level
states.

α, γ ∈ P(LState×HState) .

Before we formally define RGSim in Definition 4.2, we first introduce the α-related
transitions as follows.

Definition 4.1 (α-Related Transitions).
〈R,R〉α � {((σ , σ ′), (�, �′)) | (σ , σ ′) ∈ R ∧ (�, �′) ∈ R ∧ (σ , �) ∈ α ∧ (σ ′, �′) ∈ α} .

〈R,R〉α represents a set of the α-related transitions in R and R, putting together
the corresponding transitions in R and R that can be related by α, as illustrated in
Figure 4(a). 〈G,G〉α is defined in the same way.

Definition 4.2 (RGSim). Whenever (C, σ ,R,G) �α;γ (C, �,R,G), then (σ , �) ∈ α

and the following are true.

(1) If (C, σ) −→ (C′, σ ′), then there exist C′ and �′ such that
(C, �) −→∗ (C′, �′), ((σ , σ ′), (�, �′)) ∈ 〈G,G∗〉α and (C′, σ ′,R,G) �α;γ (C′, �′,R,G).

(2) If (C, σ)
e−→ (C′, σ ′), then there exist C′ and �′ such that

(C, �)
e−→∗ (C′, �′), ((σ , σ ′), (�, �′)) ∈ 〈G,G∗〉α and (C′, σ ′,R,G) �α;γ (C′, �′,R,G).

(3) If C = skip, then there exists �′ such that
(C, �) −→∗ (skip, �′), ((σ , σ), (�, �′)) ∈ 〈G,G∗〉α, (σ , �′) ∈ γ and γ ⊆ α.

(4) If (C, σ) −→ abort, then (C, �) −→∗ abort.
(5) If ((σ , σ ′), (�, �′)) ∈ 〈R,R∗〉α, then (C, σ ′,R,G) �α;γ (C, �′,R,G).

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

Rely-Guarantee-Based Simulation for Verification of Program Transformations 3:11

(C, σ)

(C′, σ ′)

(C, �)

(C′, �′)

α

�
G

�
e

α

�
�

G

∗
e

(C, σ)

(C, σ ′)

(C, �)

(C, �′)

α

�

�
R

α

�
�

R

∗

(a) program steps (b) environment steps

Fig. 5. Simulation diagrams of RGSim.

Then, (C,R,G) �α;ζ�γ (C,R,G) iff
for all σ and �, if (σ , �) ∈ ζ , then (C, σ ,R,G) �α;γ (C, �,R,G). Here the precondition
ζ ∈ P(LState×HState) is used to relate the initial states σ and �.

Informally, (C, σ ,R,G) �α;γ (C, �,R,G) says the low-level configuration (C, σ) is sim-
ulated by the high-level configuration (C, �) with behaviors G and G respectively, no
matter how their environments R and R interfere with them. It requires the following
hold for every execution of C.

— Starting from α-related states, each step of C corresponds to zero or multiple steps
of C, and the resulting states are α-related too. If an external event is produced in
the step of C, the same event should be produced by C. We show the simulation
diagram with events generated by the program steps in Figure 5(a), where solid
lines denote hypotheses and dashed lines denote conclusions, following Leroy’s no-
tations [Leroy 2009].

— The α relation reflects the abstractions from the low-level machine model to the
high-level one, and is preserved by the related transitions at the two levels (so it is
an invariant). For instance, when verifying a fine-grained implementation of sets,
the α relation may relate a concrete representation in memory (e.g., a linked-list)
at the low level to the corresponding abstract mathematical set at the high level.

— The corresponding transitions of C and C need to be in 〈G,G∗〉α. That is, for each
step of C, its state transition should satisfy the guarantee G, and the corresponding
transition made by the multiple steps of C should be in the transitive closure of
G. The guarantees are abstractions of the programs’ behaviors. As we will show
later in the PAR rule in Figure 7, they will serve as the rely conditions of the sibling
threads at the time of parallel compositions. Note that we do not need each step
of C to be in G, although we could do so. This is because we only care about the
coarse-grained behaviors (with mumbling) of the source that are used to simulate
the target. We will explain more by the example (4.1) in Section 4.2.

— If C terminates, then C terminates as well, and the final states should be related by
the postcondition γ . We require γ ⊆ α, that is, the final state relation is not weaker
than the step invariant.

— C is not safe only if C is not safe either. This means the transformation should not
make a safe high-level program unsafe at the low level.

— Whatever the low-level environment R and the high-level one R do, as long as the
state transitions are α-related, they should not affect the simulation between C and
C, as shown in Figure 5(b). Here a step in R may correspond to zero or multiple
steps of R. Note that different from the program steps, some steps of R may not
correspond to steps of R. On the other hand, only requiring that R be simulated by
R (see (4.2) in Section 4.2) is not sufficient for parallel compositionality, which we
will explain later in Section 4.2.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

3:12 H. Liang et al.

InitRelT(ζ) � ∀σ , �. σ = T(�) =⇒ (σ , �) ∈ ζ

B⇔⇔B � {(σ , �) | B σ = B �} B∧∧B � {(σ , �) | B σ ∧ B �}
Intuit(α) � ∀σ , �, σ ′, �′. (σ , �) ∈ α ∧ σ ⊆ σ ′ ∧� ⊆ �′ =⇒ (σ ′, �′) ∈ α

α � β � {(σ1 � σ2, �1 ��2) | (σ1, �1) ∈ α ∧ (σ2, �2) ∈ β} η # α � (η ∩ α) ⊆ (η � α)

β ◦ α � {(σ , �) | ∃θ . (σ , θ) ∈ α ∧ (θ , �) ∈ β} α−1 � {(�, σ) | (σ , �) ∈ α}
Id � {(σ , σ) | σ ∈ LState} True � {(σ , σ ′) | σ , σ ′ ∈ LState}
RM isMidOf (α, β;R,R) � ∀σ , σ ′, �, �′. ((σ , σ ′), (�, �′)) ∈ 〈R,R〉β◦α

=⇒ ∀θ . (σ , θ) ∈ α ∧ (θ , �) ∈ β

=⇒ ∃θ ′. ((σ ,σ ′), (θ ,θ ′))∈〈R, RM〉α ∧ ((θ ,θ ′), (�,�′))∈〈RM,R〉β
Fig. 6. Auxiliary definitions for RGSim.

Then based on the simulation, we hide the states by the precondition ζ and define
the RGSim relation between programs only. By the definition we know ζ ⊆ α if
(C,R,G) �α;ζ�γ (C,R,G), that is, the precondition needs to be no weaker than the
step invariant. Usually in practice α is very weak and naturally implied by the pre-
and postconditions ζ and γ , for example, ζ and γ are the same as α in examples in
Section 6.

RGSim is sound with respect to the e-trace refinement (Definition 3.2). That is,
(C, σ ,R,G) �α;γ (C, �,R,G) ensures that (C, σ) does not have more observable be-
haviors than (C, �).

THEOREM 4.3 (SOUNDNESS/ADEQUACY). If there exist R, G, R, G, α and γ such
that (C, σ ,R,G) �α;γ (C, �,R,G), then (C, σ) � (C, �).

The soundness theorem shows that RGSim is a proof technique for the simple and
natural refinement �, which is what we ultimately care about. The theorem can be
proved by first strengthening the relies to the identity transitions and weakening the
guarantees to the universal relations. Then we prove that the resulting simulation
under identity environments implies the e-trace refinement. The mechanized proof in
the Coq proof assistant [2010] is available online.

For program transformations, since the initial state for the target program is trans-
formed from the initial state for the source, we use InitRelT(ζ) (defined in Figure 6) to
say the transformation T over states ensures the binary precondition ζ .

COROLLARY 4.4. If there exist R, G, R, G, α, ζ and γ such that InitRelT(ζ) and
(C,R,G) �α;ζ�γ (C,R,G), then C �T C.

4.2. Compositionality Rules

RGSim is compositional with respect to various program constructs, including paral-
lel compositions. We present the compositionality rules in Figure 7, which gives us a
relational proof method for concurrent program transformations.

As in the R-G logic [Jones 1983], we require that the pre- and postconditions be
stable under the interference from the environments. Here we introduce the concept
of stability of a relation ζ with respect to a set of transition pairs
 ∈ P((LState ×
LState)× (HState×HState)).

Definition 4.5 (Stability). Sta(ζ ,
) holds iff
for all σ , σ ′, � and �′, if (σ , �) ∈ ζ and ((σ , σ ′), (�, �′)) ∈
, then (σ ′, �′) ∈ ζ .

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

Rely-Guarantee-Based Simulation for Verification of Program Transformations 3:13

ζ ⊆ α

(skip,R, Id) �α;ζ�ζ (skip,R, Id)
(SKIP)

(C1,R,G) �α;ζ�γ (C1,R,G) (C2,R,G) �α;γ�η (C2,R,G)

(C1; C2,R,G) �α;ζ�η (C1; ;C2,R,G)
(SEQ)

(C1,R,G) �α;ζ1�γ (C1,R,G) (C2,R,G) �α;ζ2�γ (C2,R,G)

ζ ⊆ (B⇔⇔B) ζ1 = (ζ ∩ (B∧∧B)) ζ2 = (ζ ∩ (¬B∧∧¬B)) ζ ⊆ α

(if (B) C1 else C2,R,G) �α;ζ�γ (if B then C1 else C2,R,G)
(IF)

(C,R,G) �α;γ1�γ (C,R,G)

γ ⊆ (B⇔⇔B) γ1 = (γ ∩ (B∧∧B)) γ2 = (γ ∩ (¬B∧∧¬B))

(while (B) C,R,G) �α;γ�γ2
(while B do C,R,G)

(WHILE)

(C1,R1,G1) �α;ζ�γ1
(C1,R1,G1) (C2,R2,G2) �α;ζ�γ2

(C2,R2,G2)

G1 ⊆ R2 G2 ⊆ R1 G1 ⊆ R2 G2 ⊆ R1

(C1 ‖C2,R1 ∩R2,G1 ∪ G2) �
α;ζ�(γ1∩γ2)

(C1�C2,R1 ∩ R2,G1 ∪G2)
(PAR)

(C,R,G) �α;ζ�γ (C,R,G) (ζ ∪ γ) ⊆ α′ ⊆ α Sta(α′, 〈G,G∗〉α)

(C,R,G) �
α′;ζ�γ

(C,R,G)
(STREN-α)

(C,R,G) �α;ζ�γ (C,R,G) α ⊆ α′ Sta(α, 〈R,R∗〉α′)
(C,R,G) �

α′;ζ�γ
(C,R,G)

(WEAKEN-α)

(C,R,G) �α;ζ�γ (C,R,G)

ζ ′ ⊆ ζ γ ⊆ γ ′ ⊆ α R′ ⊆ R R
′ ⊆ R G ⊆ G′ G ⊆ G

′

(C,R′,G′) �
α;ζ ′�γ ′ (C,R′,G′) (CONSEQ)

(C,R,G) �α;ζ�γ (C,R,G) η ⊆ β η # {ζ , γ , α}
Intuit({α, ζ , γ , β, η,R,R,R1,R1}) Sta(η, {〈G,G∗〉α , 〈R1,R∗1〉β })

(C,R �R1,G � G1) �
α�β;(ζ�η)�(γ�η)

(C,R � R1,G �G1)
(FRAME)

(C,R,G) �α;ζ�γ (M, RM, GM)

(M, RM, GM) �β;δ�η (C,R,G) RM isMidOf (α, β;R,R∗)
(C,R,G) �

β◦α;(δ◦ζ)�(η◦γ)
(C,R,G)

(TRANS)

Fig. 7. Compositionality rules for RGSim. At each proof rule, we implicitly assume that the pre- and
postconditions are stable under the environments’ interference (Definition 4.5), and the relies and
guarantees are closed over identity transitions.

Usually we need Sta(ζ , 〈R,R∗〉α), which says whenever ζ holds initially and R and
R
∗ perform related actions, the resulting states still satisfy ζ . By unfolding 〈R,R∗〉α,

we could see that α itself is stable with respect to any α-related transitions, that is,

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

3:14 H. Liang et al.

Sta(α, 〈R,R∗〉α). Another simple example is given next, where both environments could
increment x and the unary stable assertion x ≥ 0 is lifted to the relation ζ .

ζ � {(σ , �) | σ(x) = �(x) ∧ σ(x) ≥ 0} α � {(σ , �) | σ(x) = �(x)}
R � {(σ , σ ′) | σ ′ = σ {x � σ(x)+ 1}} R � {(�, �′) | �′ = �{x � �(x)+ 1}}

We can prove Sta(ζ , 〈R,R∗〉α). Stability of the pre- and postconditions under the en-
vironments’ interference is assumed as an implicit side condition at every proof rule
in Figure 7, for example, we assume Sta(ζ , 〈R,R∗〉α) in the SKIP rule. We also require
implicitly that the relies and guarantees are closed over identity transitions, since
stuttering steps will not affect observable event traces.

In Figure 7, the rules SKIP, SEQ, IF and WHILE reveal a high degree of similarity
to the corresponding inference rules in Hoare logic. In the SEQ rule, γ serves as the
postcondition of C1 and C1 and the precondition of C2 and C2 at the same time. The
IF rule requires the boolean conditions of both sides to be evaluated to the same value
under the precondition ζ . The definitions of the sets B ⇔⇔ B and B∧∧B are given in
Figure 6. The rule also requires the precondition ζ to imply the step invariant α. In
the WHILE rule, the γ relation is viewed as a loop invariant preserved at the loop entry
point, and needs to ensure B⇔⇔B.

Parallel compositionality. The PAR rule shows parallel compositionality of RGSim.
The interference constraints say that two threads can be composed in parallel if one
thread’s guarantee implies the rely of the other. After parallel composition, they are
expected to run in the common environment and their guaranteed behaviors contain
each single thread’s behaviors.

Note that, although RGSim does not require every step of the high-level program
to be in its guarantee (see the first two conditions in Definition 4.2), this relaxation
does not affect the parallel compositionality. This is because the target could have less
behaviors than the source. To let C1�C2 simulate C1 ‖C2, we only need a subset of the
interleavings of C1 and C2 to simulate those of C1 and C2. Thus the high-level relies
and guarantees need to ensure the existence of those interleavings only. Next we give
a simple example to explain this subtle issue. We can prove

(x:=x+2,R,G) �α;ζ�γ (x:=x+1;x:=x+1,R,G) , (4.1)

where the relies and the guarantees say x can be increased by 2 and α, ζ and γ relate
x of the two sides.

R = G � {(σ , σ ′) | σ ′ = σ ∨ σ ′ = σ {x � σ(x)+ 2}} ;
R = G � {(�, �′) | �′ = � ∨�′ = �{x � �(x)+ 2}} ;
α = ζ = γ � {(σ , �) | σ(x) = �(x)} .

Note that the high-level program is actually finer grained than its guarantee, but
to prove Eq. (4.1) we only need the execution in which it goes two steps to the end
without interference from its environment. Also we can prove (print(x),R,G) �α;ζ�γ

(print(x),R,G). Here we use the instruction print(E) to observe the value of x, which
will produce an external event out(n) if E evaluates to n. Then by the PAR rule, we get

(x:=x+2‖print(x),R,G) �α;ζ�γ ((x:=x+1;x:=x+1)�print(x),R,G) ,

which does not violate the natural meaning of refinements. That is, all the possible
external events produced by the low-level side can also be produced by the high-
level side, although the latter could have more external behaviors due to its finer
granularity.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

Rely-Guarantee-Based Simulation for Verification of Program Transformations 3:15

Another subtlety in the RGSim definition is with the fifth condition over the envi-
ronments, which is crucial for parallel compositionality. One may think a more natural
alternative to this condition is to require that R be simulated by R.

If (σ , σ ′) ∈ R, then there exists �′ such that
(�, �′) ∈ R

∗ and (C, σ ′,R,G) �′α;γ (C, �′,R,G) .
(4.2)

We refer to this modified simulation definition as �′. Unfortunately, �′ does not have
parallel compositionality. As a counter-example, if the invariant α says the left side x
is not greater than the right side x, that is,

α � {(σ , �) | σ(x) ≤ �(x)} ,

we could prove the following.

(x:=x+1, Id, True) �′α;α�α (x:=x+2, Id, True) ; (4.3)

(x:=0;print(x), True, Id) �′α;α�α (x:=0;print(x), True, Id) . (4.4)

Here we use Id and True (defined in Figure 6) for the sets of identity transitions and
arbitrary transitions respectively, and overload the notations at the low level to the
high level. However, the following refinement does not hold after parallel composition.

(x:=x+1‖(x:=0;print(x)), Id, True) �′α;α�α (x:=x+2�(x:=0;print(x)), Id, True) .

This is because the rely R (or R) is an abstraction of all the permitted behaviors in the
environment of a thread t. Any thread t′ whose behaviors are allowed in R (or R) can
run in parallel with t. Thus to obtain parallel compositionality, we have to ensure that
the simulation is preserved with any possible sibling thread t′. With our definition �,
the refinement of Eq. (4.4) is not provable, because after some α-related transitions of
environments, the target may print a value smaller than the one printed by the source.

Other rules. We also develop some other useful rules about RGSim. For example,
the STREN-α rule allows us to replace the invariant α by a stronger invariant α′. We
need to check that α′ is indeed an invariant preserved by the related program steps,
that is, Sta(α′, 〈G,G∗〉α) holds. Symmetrically, the WEAKEN-α rule requires α to be pre-
served by environment steps related by the weaker invariant α′. As usual, the pre- and
postconditions, the relies and the guarantees can be strengthened or weakened by the
CONSEQ rule.

The FRAME rule allows us to use local specifications [Reynolds 2002]. When verifying
the simulation between C and C, we need to only talk about the locally used resource
in α, ζ and γ , and the local relies and guarantees R, G, R and G. Then the proof
can be reused in contexts where some extra resource η is used, and the accesses of it
respect the invariant β and R1, G1, R1 and G1. We give the auxiliary definitions in
Figure 6. The disjoint union � between states is lifted to state pairs. A state relation
α is intuitionistic, denoted by Intuit(α), if it is monotone with respect to the extension
of states. The disjointness η # α says that any state pair satisfying both η and α can
be split into two disjoint state pairs satisfying η and α respectively. For example, let
η � {(σ , �) | σ(y) = �(y)} and α � {(σ , �) | σ(x) = �(x)} where x and y are two distinct
variables, then both η and α are intuitionistic and η # α holds. We also require η to
be stable under interference from the programs (i.e., the programs do not change the
extra resource) and the extra environments. We use η # {ζ , γ , α} as a shorthand for
(η # ζ) ∧ (η # γ) ∧ (η # α). Similar representations are used in this rule.

Finally, the transitivity rule TRANS allows us to verify a transformation by using an
intermediate level as a bridge. The intermediate environment RM should be chosen

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

3:16 H. Liang et al.

with caution so that the (β ◦ α)-related transitions can be decomposed into β-related
and α-related transitions, as illustrated in Figure 4(b). Here ◦ defines the composition
of two relations and isMidOf defines the side condition over the environments, as shown
in Figure 6. We use θ for a middle-level state.

Soundness. All the rules in Figure 7 are sound, that is, for each rule the premises
imply the conclusion. We prove their soundness by co-induction, directly following the
definition of RGSim. The proofs are checked in the Coq proof assistant [2010].

Instantiations of relies and guarantees. We can derive the sequential refinement and
the fully-abstract-semantics-based refinement by instantiating the rely conditions in
RGSim. For example, the refinement of Eq. (4.5) over closed programs assumes identity
environments, making the interference constraints in the PAR rule unsatisfiable. This
confirms the observation in Section 2.1 that the sequential refinement loses parallel
compositionality.

(C, Id, True) �α;ζ�γ (C, Id, True) (4.5)

The refinement of Eq. (4.6) assumes arbitrary environments, which makes the inter-
ference constraints in the PAR rule trivially true. But this assumption is too strong:
usually (4.6) cannot be satisfied in practice.

(C, True, True) �α;ζ�γ (C, True, True) (4.6)

4.3. A Simple Example

Shortly we give a simple example to illustrate the use of RGSim and its parallel compo-
sitionality in verifying concurrent program transformations. The high-level program
C1 �C2 is transformed to C1 ‖ C2, using a lock l to synchronize the accesses of the
shared variable x. We aim to prove C1 ‖C2 �T C1�C2. That is, although x:=x+2 is im-
plemented by two steps of incrementing x in C2, the parallel observer C1 will not print
unexpected values. Here we view output events as externally observable behaviors.

print(x); � x := x + 2;

⇓
lock(l);

print(x);

unlock(l);

‖
lock(l);

x := x+1; x := x+1;

〈unlock(l); X := x; 〉
To facilitate the proof, we introduce an auxiliary shared variable X at the low level

to record the value of x at the time when releasing the lock. It specifies the value of
x outside every critical section, thus should match the value of the high-level x after
every corresponding action. Here 〈C〉 means C is executed atomically. Its semantics
follows RGSep [Vafeiadis 2008] (or see Section 6.2). The auxiliary variable is write-
only and would not affect the external behaviors of the program [Abadi and Lamport
1991]. Thus in what follows we can focus on the instrumented target program with the
auxiliary code.

By the soundness and compositionality of RGSim, we only need to prove simulations
over individual threads, providing appropriate relies and guarantees. We first define
the invariant α, which only cares about the value of x when the lock is free.

α � {(σ , �) | σ(X) = �(x) ∧ (σ (l)=0 =⇒ σ(x) = σ(X))} .

We let the pre- and postconditions be α as well.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

Rely-Guarantee-Based Simulation for Verification of Program Transformations 3:17

The high-level threads can be executed in arbitrary environments with arbitrary
guarantees: R = G � True. The transformation uses the lock to protect every access
of x, thus the low-level relies and guarantees are not arbitrary.

R � {(σ , σ ′) | σ(l)=cid =⇒
σ(x)=σ ′(x) ∧ σ(X)=σ ′(X) ∧ σ(l)=σ ′(l)} ;

G � {(σ , σ ′) | σ ′ =σ ∨ σ(l)=0 ∧ σ ′ =σ {l � cid}
∨ σ(l)=cid ∧ σ ′ =σ {x � }
∨ σ(l)=cid ∧ σ ′ =σ {l � 0, X � }} .

Every low-level thread guarantees that it updates x only when the lock is acquired.
Its environment cannot update x or l if the current thread holds the lock. Here cid is
the identifier of the current thread. When acquired, the lock holds the identifier of the
owner thread.

Following the definition, we can prove (C1,R,G) �α;α�α (C1,R,G) and (C2,R,G)

�α;α�α (C2,R,G). By applying the PAR rule and from the soundness of RGSim
(Corollary 4.4), we know C1 ‖C2 �T C1�C2 holds for any T that respects α.

Perhaps interestingly, if we omit the lock and unlock operations in C1, then C1 ‖C2
would have more externally observable behaviors than C1�C2. This does not indicate
the unsoundness of our PAR rule (which is sound!). The reason is that x might have
different values on the two levels after the environments’ α-related transitions, so that
we cannot have (print(x),R,G) �α;α�α (print(x),R,G) with the current definitions
of α, R and G, even though the code of the two sides is syntactically identical.

The use of the auxiliary variable. The auxiliary variable X helps us define the invari-
ant α and do the proof. It is difficult to prove the refinement without this auxiliary
variable. One may wish to prove

(C1,R′,G′) �α′;α′�α′ (C1,R,G), (4.7)

where α′, R′ and G′ are defined as follows by eliminating X from α, R and G.

α′ � {(σ , �) | σ(l)=0 =⇒ σ(x) = �(x)} ;
R′ � {(σ , σ ′) | σ(l)=cid =⇒ σ(x)=σ ′(x) ∧ σ(l)=σ ′(l)} ;
G′ � {(σ , σ ′) | σ ′ =σ ∨ σ(l)=0 ∧ σ ′ =σ {l � cid}

∨ σ(l)=cid ∧ σ ′ =σ {x � }
∨ σ(l)=cid ∧ σ ′ =σ {l � 0}} .

But Eq. (4.7) does not hold because 〈R′,R∗〉α′ (which is used in Definition 4.2(5)) per-
mits unexpected transitions. For instance, we allow ((σ , σ ′), (�, �′)) ∈ 〈R′,R∗〉α′ for the
following σ , σ ′, � and �′.

σ = σ ′ � {x � 0, l � cid} ; � � {x � 0} ; �′ � {x � 1}
The high-level environment is allowed to change x even if the thread holds the lock
at the low level. Then the left thread may print out different values at the two levels,
breaking the simulation (4.7).

It is possible to define the RGSim relation in another way that allows us to get rid
of the auxiliary variable for this example. Instead of defining separate rely/guarantee
relations at the two levels and using α to relate them, we can directly define “relational
rely/guarantee” relations r, g ∈ P((LState×LState)× (HState×HState)) The new sim-
ulation is in the form of C �α;ζ�γ ;r;g C and defined by substituting r and g for 〈R,R∗〉α

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

3:18 H. Liang et al.

and 〈G,G∗〉α in Definition 4.2. It has all the nice properties of our current RGSim re-
lation (including parallel compositionality) and we no longer need auxiliary variables
to prove the simple example. We can prove the new simulations C1 �α′;α′�α′;r;g C1 and
C′

2 �
α′;α′�α′;r;g C2. Here C′

2 results from removing X from C2, α′ is defined as given
before, and r and g are as follows.

r � {((σ , σ ′), (�, �′)) | σ(l)=cid =⇒ σ(x)=σ ′(x) ∧ σ(l)=σ ′(l) ∧�(x)=�′(x)} ;
g � {((σ , σ ′), (�, �′)) | σ ′ =σ ∧�′ =� ∨ σ(l)=0 ∧ σ ′ =σ {l � cid} ∧�′ =�

∨ σ(l)=cid ∧ σ ′ =σ {x � } ∧�′ =�

∨ σ(l)=cid ∧ σ ′ =σ {l � 0} ∧�′ = �{x � σ(x)}} .

We can see that if the thread holds the lock at the low level, neither the high-level or
the low-level environment can change x. This relational r does not permit the unex-
pected transitions discussed before. It is more expressive than 〈R′,R∗〉α′ , but is also
much heavier. We choose to present the current RGSim relation because in practice it
is usually easier to define separate rely/guarantee conditions at the two levels.

More discussions. RGSim ensures that the target program preserves safety proper-
ties (including the partial correctness) of the source, but allows a terminating source
program to be transformed to a target having infinite silent steps. In the previous ex-
ample, this allows the low-level programs to be blocked forever (e.g., at the time when
the lock is held but never released by some other thread). Proving the preservation of
the termination behavior would require liveness proofs in a concurrent setting (e.g.,
proving the absence of deadlock), which we leave as future work.

In the next three sections, we show more serious examples to demonstrate the ap-
plicability of RGSim.

5. RELATIONAL REASONING ABOUT OPTIMIZATIONS

As a general correctness notion of concurrent program transformations, RGSim estab-
lishes a relational approach to justify compiler optimizations on concurrent programs.
In the following we adapt Benton’s work [2004] on sequential optimizations to the
concurrent setting.

5.1. Optimization Rules

Usually optimizations depend on particular contexts, for example, the assignment
x := E can be eliminated only in the context that the value of x is never used after
the assignment. In a shared-state concurrent setting, we should also consider the par-
allel context for an optimization. RGSim enables us to specify various sophisticated
requirements for the parallel contexts by rely/guarantee conditions. Based on RGSim,
we provide a set of inference rules to characterize and justify common optimizations
(e.g., dead code elimination) with information of both the sequential and the paral-
lel contexts. Note in this section the target and the source programs are in the same
language.

Sequential Unit Laws

(C1,R1,G1) �α;ζ�γ (C2,R2,G2)

(skip; C1,R1,G1) �α;ζ�γ (C2,R2,G2)

(C1,R1,G1) �α;ζ�γ (C2,R2,G2)

(C1,R1,G1) �α;ζ�γ (skip; C2,R2,G2)

Plus the variants with skip after the code C1 or C2. That is, skips could be arbitrarily
introduced and eliminated.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

Rely-Guarantee-Based Simulation for Verification of Program Transformations 3:19

Common Branch

∀σ1, σ2. (σ1, σ2) ∈ ζ =⇒ B σ2 �=⊥
(C,R,G) �α;ζ1�γ (C1,R′,G′) ζ1 = (ζ ∩ (true∧∧B))

(C,R,G) �α;ζ2�γ (C2,R′,G′) ζ2 = (ζ ∩ (true∧∧¬B))

(C,R,G) �α;ζ�γ (if (B) C1 else C2,R′,G′)

This rule says that, when the if-condition can be evaluated and both branches can be
optimized to the same code C, we can transform the whole if-statement to C without
introducing new behaviors.

Known Branch

(C,R,G) �α;ζ�γ (C1,R′,G′) ζ = (ζ ∩ (true∧∧B))

(C,R,G) �α;ζ�γ (if (B) C1 else C2,R′,G′)

(C,R,G) �α;ζ�γ (C2,R′,G′) ζ = (ζ ∩ (true∧∧¬B))

(C,R,G) �α;ζ�γ (if (B) C1 else C2,R′,G′)

Since the if-condition B is true (or false) initially, we can consider the then-branch (or
the else-branch) only. These rules can be derived from the common-branch rule.

Dead While

ζ = (ζ ∩ (true∧∧¬B)) ζ ⊆ α Sta(ζ , 〈R1,R∗
2〉α)

(skip,R1, Id) �α;ζ�ζ (while (B){C},R2, Id)

We can eliminate the loop, if the loop condition is false (no matter how the environ-
ments update the states) at the loop entry point.

Loop Peeling

(while (B){C},R1,G1) �α;ζ�γ (while (B){C},R2,G2)

(if (B) {C; while (B){C}} else skip,R1,G1) �α;ζ�γ (while (B){C},R2,G2)

Loop Unrolling

(while (B){C},R1,G1) �α;ζ�γ (while (B){C},R2,G2)

(while (B){C; if (B) C else skip},R1,G1) �α;ζ�γ (while (B){C},R2,G2)

Dead Code Elimination

(skip, Id, Id) �α;ζ�γ (C, Id,G) Sta({ζ , γ }, 〈R1,R∗
2〉α)

(skip,R1, Id) �α;ζ�γ (C,R2,G)

Intuitively (skip, Id, Id) �α;ζ�γ (C, Id,G) says that the code C can be eliminated in a
sequential context where the initial and the final states satisfy ζ and γ respectively. If
both ζ and γ are stable with respect to the interference from the environments R1 and
R2, then the code C can be eliminated in such a parallel context as well.

Redundancy Introduction

(c, Id,G) �α;ζ�γ (skip, Id, Id) Sta({ζ , γ }, 〈R1,R∗
2〉α)

(c,R1,G) �α;ζ�γ (skip,R2, Id)

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

3:20 H. Liang et al.

As we lifted sequential dead code elimination, we can also lift sequential redundant
code introduction to the concurrent setting, so long as the pre- and postconditions are
stable with respect to the environments. Note that here c is a single instruction, be-
cause we should consider the interference from the environments at every intermedi-
ate state when introducing a sequence of redundant instructions.

5.2. Examples

With these rules, we can prove the correctness of many traditional compiler optimiza-
tions performed on concurrent programs in appropriate contexts. In this section, we
give some examples of hoisting loop invariants, strength reduction, and induction vari-
able elimination.

5.2.1. Invariant Hoisting. We first formally prove the example in Section 2.5. As we dis-
cussed, safely hoisting the invariant code t:=x+1 requires that the environment should
not update x nor t.

R � {(σ , σ ′) | σ(x) = σ ′(x) ∧ σ(t) = σ ′(t)}
The guarantee of the program can be specified as arbitrary transitions. Since we only
care about the values of i, n and x, the invariant relation α can be defined as

α � {(σ1, σ) | σ1(i) = σ(i) ∧ σ1(n) = σ(n) ∧ σ1(x) = σ(x)} .

We do not need special pre- and postconditions, thus the correctness of the optimization
is formalized as follows.

(C1,R, True) �α;α�α (C,R, True) (5.1)

We could prove Eq. (5.1) directly by the RGSim definition and the operational seman-
tics of the code. But shortly we give a more convenient proof using the optimization
rules and the compositionality rules instead. We first prove the following by the dead-
code-elimination and redundancy-introduction rules.

(t:=x+1,R, True) �α;α�γ (skip,R, True) ;
(skip,R, True) �α;γ�η (t:=x+1,R, True) ,

Here γ and η specify the states at the specific program points.

γ � α ∩ {(σ1, σ) | σ1(t) = σ1(x)+ 1} ;
η � γ ∩ {(σ1, σ) | σ(t) = σ(x)+ 1} .

Then by the compositionality rules SEQ and WHILE, we can get (C′
1,R, True) �α;α�α

(C′,R, True) where C′
1 and C′ result from adding skips to C1 and C.

C′1 :
t := x + 1;

while(i < n) {

skip;

i := i + t;

}

C′ :
skip;

while(i < n) {

t := x + 1;

i := i + t;

}

Besides, from sequential-unit laws and compositionality rules SEQ and WHILE, we can
prove (C1,R, True) �α;α�α (C′

1,R, True) and (C′,R, True) �α;α�α (C,R, True). Finally, by
the TRANS rule, we can conclude Eq. (5.1), that is, the correctness of the optimization
in appropriate contexts. Since the rely conditions only prohibit updates of x and t, we

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

Rely-Guarantee-Based Simulation for Verification of Program Transformations 3:21

can execute C1 and C concurrently with other threads which update i and n or read x,
still ensuring semantics preservation.

5.2.2. Strength Reduction and Induction Variable Elimination

Target-Level C2
local k, r;

k := 0;

r := 6*n;

while(k<r) {

x := x+k;

k := k+6;

}

⇐

Middle-Level C1
local i, k;

i := 0;

k := 0;

while(i<n) {

x := x+k;

i := i+1;

k := k+6;

}

⇐

Source-Level C
local i;

i := 0;

while(i<n) {

x := x+6*i;

i := i+1;

}

The source program C is first transformed to C1 by strength reduction which intro-
duces a local variable k and replaces multiplication by addition. The original induction
variable i and the introduced local variable k cannot be updated by the environments.
Then C1 is transformed to the target C2 by eliminating i and using the new induction
variable k in the while-condition. We assume n and r will not be updated by the target
environment, so we can compute the new boundary outside the loop. Next, we give the
environments R, R1 and R2 at the source, intermediate, and target levels respectively.

R � {(σ , σ ′) | σ(i) = σ ′(i)}
R1 � {(σ1, σ ′1) | σ1(i) = σ ′1(i) ∧ σ1(k) = σ ′1(k)}
R2 � {(σ2, σ ′2) | σ2(k) = σ ′2(k) ∧ σ2(r) = σ ′2(r) ∧ σ2(n) = σ ′2(n)}

For both transformations, we require that the common variables in the source and
target have the same values. This is shown in the invariant relations α (for the trans-
formation from C to C1) and β (for the transformation from C1 to C2) next.

α � {(σ1, σ) | σ1(i) = σ(i) ∧ σ1(n) = σ(n) ∧ σ1(x) = σ(x)} ;
β � {(σ2, σ1) | σ2(k) = σ1(k) ∧ σ2(n) = σ1(n) ∧ σ2(x) = σ1(x)} .

Thus we formalize the correctness of the two transformations as follows.

(C2,R2, True) �β;β�β (C1,R1, True) , (C1,R1, True) �α;α�α (C,R, True)

They can be proved directly by the RGSim definition or by applying the optimization
rules (the dead-code-elimination and redundancy-introduction rules). The proofs are
similar to those for the previous example of invariant hoisting, and hence omitted
here.

Afterwards, we can compose the proofs of these two transformations by the TRANS
rule, and get

(C2,R2, True) �α◦β;α◦β�α◦β (C,R, True) ,

where α◦β = {(σ2, σ) | σ2(n) = σ(n)∧σ2(x) = σ(x)} . That is, the optimization phases are
correct when the source program is executed in an environment that does not change
i nor n (as shown in R and R2).

6. REFINEMENT-BASED VERIFICATION FOR CONCURRENT ALGORITHMS

The implementation of an abstract algorithm can be viewed as a transformation from
an abstract operation to a concrete and executable program [Hoare 1972]. Verifying
that the executable program refines the abstract operation gives us the correctness

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

3:22 H. Liang et al.

A1 : A2 :
local d1;

d1 := 0;

while (d1 = 0) {

0 atom{

if (a = b)

d1 := 1;

if (a > b)

a := a - b;

}

}

�

local d2;

d2 := 0;

while (d2 = 0) {

0 atom{

if (b = a)

d2 := 1;

if (b > a)

b := b - a;

}

}

(a) source code

C1 : C2 :
local d1, t11, t12;

d1 := 0;

while (d1 = 0) {

0 t11 := a;

1 t12 := b;

2 if (t11 = t12)

3 d1 := 1;

4 if (t11 > t12)

5 a := t11 - t12;

}

‖

local d2, t21, t22;

d2 := 0;

while (d2 = 0) {

0 t21 := b;

1 t22 := a;

2 if (t21 = t22)

3 d2 := 1;

4 if (t21 > t22)

5 b := t21 - t22;

}

(b) target code

Fig. 8. Concurrent GCD.

of the implementation. In a concurrent setting, we can use RGSim to verify the fine-
grained implementation of an algorithm.

Similarly, RGSim also gives us a refinement-based proof method to verify the atomic-
ity of concurrent object implementations. A concurrent object provides a set of methods
which can be called in parallel by clients as the only way to access the object. We can
define abstract atomic operations in a high-level language as specifications, and prove
the concrete fine-grained implementations refine the corresponding atomic operations
when executed in appropriate environments.

In this section, we discuss four examples to illustrate how we use RGSim to verify
the concurrent objects and fine-grained implementation of abstract algorithms: a con-
current GCD algorithm (calculating greatest common divisors) [Feng 2009], the lock-
coupling list [Herlihy and Shavit 2008], the nonblocking concurrent counter [Turon
and Wand 2011], and Treiber’s stack algorithm [Treiber 1986].

6.1. Concurrent GCD

We first prove the correctness of a concurrent GCD program in Figure 8(b). The pro-
gram uses two threads to compute the Greatest Common Divisor (GCD) of the shared
variables a and b. One thread executes C1 which reads the values of a and b, but only
updates a if a > b. The other thread executes C2 which does the reverse. When a = b,
the two threads terminate. This fine-grained GCD program is transformed from the

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

Rely-Guarantee-Based Simulation for Verification of Program Transformations 3:23

program in Figure 8(a), where two threads atomically update a and b respectively.
Here we use atom{C} to execute C atomically. Its semantics follows RGSep [Vafeiadis
2008] (or see Section 6.2).

Our goal is to prove that the concrete and abstract GCD programs always obtain the
same result, that is, (C1 ‖C2); print(a) and (A1� A2); print(a) have the same outputs.
We use print(a) at the two levels to print out the results after both threads complete
their computations.

By soundness of RGSim and its compositionality, we only need to prove that the core
computations for updating a (or b) are equivalent in C1 and A1 (or C2 and A2), that is,
C0

1 is equivalent to A0
1 (and C0

2 is equivalent to A0
2), where C0

1 (or C0
2) denotes the code

from line 0 to line 5 in C1 (or C2), and A0
1 (or A0

2) denotes the atomic block in A1 (or A2).
It is natural to define the α relation as

α � {(σ , �) | σ(a) = �(a) ∧ σ(b) = �(b) ∧ σ(d1) = �(d1) ∧ σ(d2) = �(d2)} .

The threads’ rely and guarantee conditions can be specified as follows, where the rely
of one thread is just the guarantee of the other.

R1 = G2 � {(σ , σ ′) | σ ′(t11) = σ(t11) ∧ σ ′(t12) = σ(t12) ∧ σ ′(d1) = σ(d1) ∧ σ ′(a) = σ(a)

∧ (σ (a) ≥ σ(b) ⇒ σ ′(b) = σ(b))}
R2 = G1 � {(σ , σ ′) | σ ′(t21) = σ(t21) ∧ σ ′(t22) = σ(t22) ∧ σ ′(d2) = σ(d2) ∧ σ ′(b) = σ(b)

∧ (σ (b) ≥ σ(a) ⇒ σ ′(a) = σ(a))}
R1 = G2 � {(�, �′) | �′(d1) = �(d1) ∧�′(a) = �(a) ∧ (�(a) ≥ �(b) ⇒ �′(b) = �(b))}
R2 = G1 � {(�, �′) | �′(d2) = �(d2) ∧�′(b) = �(b) ∧ (�(b) ≥ �(a) ⇒ �′(a) = �(a))}

Then we can operationally prove the RGSim relations between C0
1 and A0

1 (here α−1

is the inverse relation of α, as defined in Figure 6).

(C0
1,R1,G1) �α;α�α (A0

1,R1,G1) , (A0
1,R1,G1) �

α−1;α−1�α−1 (C0
1,R1,G1).

By the rules WHILE and SEQ, we get the RGSim relations between C1 and A2.

(C1,R1,G1) �α;α�α (A1,R1,G1) , (A1,R1,G1) �
α−1;α−1�α−1 (C1,R1,G1)

Similarly, the relations hold between C2 and A2.

(C2,R2,G2) �α;α�α (A2,R2,G2) , (A2,R1,G1) �
α−1;α−1�α−1 (C2,R1,G1)

When C1 and C2 (or A1 and A2) are parallel composed to compute the GCD together, the
environment of the whole GCD program should be the identity transition set Id because
the shared variables a and b cannot be modified when C1 ‖C2 is computing their GCD.
Its guarantee is just specified as True, a set of all the possible state transitions. We can
prove that both (print(a), Id, True) �α;α�α (print(a), Id, True) and the reverse direction
hold. Then by the rules PAR and SEQ, we can get

((C1 ‖C2); print(a), Id, True) �α;α�α ((A1� A2); print(a), Id, True),

and also the reverse direction. By the soundness of RGSim (Theorem 4.3) we obtain
the final result.

(C1 ‖C2); print(a) ≈T (A1� A2); print(a),

This is for any T that respects α.
Thus we have proved that the concrete fine-grained and the abstract coarse-grained

GCD programs can obtain the same results from the same inputs. It is not difficult to
find that the abstract program really computes the GCD of a and b. So we can conclude

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

3:24 H. Liang et al.

ADD(e) : RMV(e) :
0 atom {

S := S ∪ {e};

}

0 atom {

S := S\{e};
}

(a) an abstract set

add(e) : rmv(e) :

local x,y,z,u;

0 <x := Head;>

1 lock(x);

2 <z := x.next;>

3 <u := z.data;>

4 while (u < e) {

5 lock(z);

6 unlock(x);

7 x := z;

8 <z := x.next;>

9 <u := z.data;>

}

10 if (u != e) {

11 y := new();

12 y.lock := 0;

13 y.data := e;

14 y.next := z;

15 <x.next := y;>

}

16 unlock(x);

local x,y,z,v;

0 <x := Head;>

1 lock(x);

2 <y := x.next;>

3 <v := y.data;>

4 while (v < e) {

5 lock(y);

6 unlock(x);

7 x := y;

8 <y := x.next;>

9 <v := y.data;>

}

10 if (v = e) {

11 lock(y);

12 <z := y.next;>

13 <x.next := z;>

14 unlock(x);

15 free(y);

} else {

16 unlock(x);

}

(b) the lock-coupling list-based set

Fig. 9. The set object.

that the concrete program computes their GCD as well. This example shows a way to
verify a complicated program by proving that it is equivalent to a simpler program and
then verifying the simpler program.

6.2. Lock-Coupling List

In this section, we prove the atomicity of the lock-coupling list-based implementation
for the set object. In Figure 9(a) we define two atomic set operations, ADD(e) and RMV(e).
Figure 9(b) gives a concrete implementation of the set object using a lock-coupling list.
Partial correctness and atomicity of the algorithm has been verified before [Vafeiadis
2008; Vafeiadis and Parkinson 2007]. Here we show that its atomicity can also be
verified using our RGSim by proving the low-level methods refine the corresponding
abstract operations. We will discuss the key difference between the previous proofs
and ours in Section 8.

To support dynamically allocated memory and ownership transfers, we split the
states into shared and thread-local parts. We first take the generic languages in

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

Rely-Guarantee-Based Simulation for Verification of Program Transformations 3:25

Figure 2, and instantiate the high-level program states as follows. The state � con-
sists of shared memory Ms (where the object resides) and a thread pool �, which is a
mapping from thread identifiers (t ∈ ThrdID) to their memory Ml. The low-level state
σ is defined similarly. We use ms, ml and π to represent the low-level shared memory,
thread-local memory, and the thread pool respectively.

We show the high-level and low-level languages and the operational semantics in
Figure 10. To allow ownership transfers between the shared memory and thread-local
memory, we use atom{C}A (or 〈C〉A at the low level) to convert the shared memory to
local and then execute C (or C) atomically. Following RGSep [Vafeiadis and Parkinson
2007], an abstract transition A ∈ P(HMem×HMem) (or A ∈ P(LMem×LMem)) is used
to specify the effects of the atomic operation over the shared memory, which allows us
to split the resulting state back into shared and local when we exit the atomic block.2
The atomic blocks are instantiations of the generic primitive operations c (or c) in
Figure 2. We omit the annotations A and A in Figure 9, which are the same as the
corresponding guarantees in Figure 11, as we will explain next.

In Figure 9, the abstract set is implemented by an ordered singly-linked list pointed
to by a shared variable Head, with two sentinel nodes at the two ends of the list con-
taining the values MIN VAL and MAX VAL respectively. Each list node is associated with
a lock. Traversing the list uses “hand-over-hand” locking: the lock on one node is not
released until its successor is locked. add(e) inserts a new node with value e in the
appropriate position while holding the lock of its predecessor. rmv(e) redirects the pre-
decessor’s pointer while both the node to be removed and its predecessor are locked.
Note that lock(x) and unlock(x) are instantiations of c. Their semantics has been
explained in Section 3.1.

We define the α relation, the guarantees and the relies in Figure 11. The predicate
list(x, A)(ms) represents a singly-linked list in the shared memory ms at the location
x, whose values form the sequence A. Then the mapping shared map between the low-
level and the high-level shared memory is defined by only concerning about the value
sequence on the list: the concrete list should be sorted and its elements constitute the
abstract set. For a thread t’s local memory of the two levels, we require that the values
of e are the same and enough local space is provided for add(e) and rmv(e), as defined
in the mapping local map. Then α relates the shared memory by shared map and the
local memory of each thread t by local map.

Before defining the rely and guarantee relations, we first introduce some syntactic

sugar in Figure 11(b). We use x �→ (n, v, y) and x
l�−→ (n, v, y) for nodes in the low-

level shared memory ms and the local memory ml of the current thread respectively.
ltrue means the thread-local memory ml is arbitrary. The separating conjunction p ∗ q
means p and q hold on disjoint memory. The action p �t q represents the update of
some memory (ml, ms) satisfying p to some memory satisfying q, and the memory of
the threads other than the current thread t is unchanged. We overload the notations
to the high-level machine, and use x �⇒ v to mean the value of x is v in the high-level
shared memory Ms.

The atomic actions of the algorithm are specified by Glock, Gunlock, Gadd, Grmv and Glocal
respectively, which are all parametrized with a thread identifier t. For example, Grmv(t)
says that when holding the locks of the node y and its predecessor x, we can transfer
the node y from the shared memory to the thread’s local memory. This corresponds

2It is easy to prove that if the program W (or W) does not abort, then the event trace set of W (or W) under
the instrumented semantics is the same as the event trace set of W (or W) under a standard (flat) operational
semantics where we erase the annotations A (or A) and merge the local and shared memory. Thus by proving
the event-trace refinement under the instrumented semantics, we can get the event-trace refinement under
the flat semantics.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

3:26 H. Liang et al.

(HStmts) C ::= skip | c | atom{C}A | C1; ;C2
| if B then C1 else C2 | while B do C

(HProg) W ::= t1.C1�. . .�tn.Cn (ThrdID) t ∈ Nat

(HMem) Ms, Ml ∈ (Loc ∪ PVar) ⇀ HVal

(HThrds) � ∈ ThrdID → HMem

(HState) � ∈ HThrds×HMem

(HAtomG) A ∈ P(HMem×HMem)

(a) the high-level language for abstract operations

(LStmts) C ::= skip | c | 〈C〉A | C1; C2
| if (B) C1 else C2 | while (B) C

(LProg) W ::= t1.C1 ‖ . . .‖ tn.Cn

(LMem) ms, ml ∈ (Loc ∪ PVar) ⇀ LVal

(LThrds) π ∈ ThrdID → LMem

(LState) σ ∈ LThrds× LMem

(LAtomG) A ∈ P(LMem× LMem)

(b) the low-level language for concrete implementations

(C, (� � {t � (Ml �Ms)},∅)) −→∗
t (skip, (� � {t � M′′

l },∅)) M′′
l =M′

l�M′
s (Ms,M′

s)∈A
(atom{C}A, (� � {t � Ml}, Ms)) −→ t (skip, (� � {t � M′

l}, M′
s))

(C, (� � {t � (Ml �Ms)},∅)) −→∗
t (skip, (� � {t � M′′

l },∅))
¬∃M′

l, M′
s. (M′′

l = M′
l �M′

s ∧ (Ms, M′
s) ∈ A)

(atom{C}A, (� � {t � Ml}, Ms)) −→ t abort

(C, (� � {t � (Ml �Ms)},∅)) −→∗
t abort

(atom{C}A, (� � {t � Ml}, Ms)) −→ t abort

(Ci, �) −→ ti abort

(t1.C1�. . . ti.Ci . . .�tn.Cn, �) −→ abort

(Ci, �)
o−→ ti (C′i, �

′)

(t1.C1�. . . ti.Ci . . .�tn.Cn, �)
o−→ (t1.C1�. . . ti.C′i . . .�tn.Cn, �′)

(c) selected operational semantics rules of the high-level language

Fig. 10. The languages for concurrent objects.

to the action performed by the code of line 13 in rmv(e) in Figure 9. Every thread t
is executed in the environment that any other thread t′ can only perform those five
actions, as defined in R(t). Similarly, the high-level G(t) and R(t) are defined according
to the abstract ADD(e) and RMV(e). The relies and guarantees are almost the same as
those in the proofs in RGSep [Vafeiadis 2008].

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

Rely-Guarantee-Based Simulation for Verification of Program Transformations 3:27

list(x, A) � λms. (ms = ∅ ∧ x = null ∧ A = ε)

∨ (∃m′
s, v, y, A′. ms = m′

s � {x � (, v, y)} ∧ A = v ::A′ ∧ list(y, A′)(m′
s))

sorted(A) �
{

true if A = ε ∨ A = a ::ε
(a < b) ∧ sorted(b ::A′) if A = a ::b ::A′

elems(A) �
{
∅ if A = ε

{a} ∪ elems(A′) if A = a ::A′
shared map(ms, Ms) � ∃m′

s, A, x. ms = m′
s � {Head � x} ∧ list(x, MIN VAL ::A ::MAX VAL)(m′

s)

∧ sorted(A) ∧ (elems(A)=Ms(S))

local map(ml, Ml) � ml(e) = Ml(e) ∧ ∃m′
l. ml = m′

l � {x � , y � , z � , u � , v � }
α � {((π , ms), (�, Ms)) | shared map(ms, Ms) ∧ ∀t ∈ dom(�). local map(π(t), �(t))}

(a) the α relation

x �→ (n, v, y) � λ(ml, ms). (dom(ml) = ∅) ∧ (ms = {x � (n, v, y)})
x

l�−→ (n, v, y) � λ(ml, ms). (ml = {x � (n, v, y)}) ∧ (dom(ms) = ∅)
ltrue � λ(ml, ms). (dom(ms) = ∅)
p ∗ q � λ(ml, ms). ∃m′

l, m′
s, m′′

l , m′′
s . p(m′

l, m′
s) ∧ q(m′′

l , m′′
s) ∧ (ml = m′

l �m′′
l) ∧ (ms = m′

s �m′′
s)

p �t q � {((π � {t � ml}, ms), (π � {t � m′
l}, m′

s))

| ∃ml1, ms1, ml2, ms2, m′
l1, m′

s1. p(ml1, ms1) ∧ q(m′
l1, m′

s1)

∧ (ml = ml1 �ml2) ∧ (ms = ms1 �ms2) ∧ (m′
l = m′

l1 �ml2) ∧ (m′
s = m′

s1 �ms2)}
x �⇒ v � λ(Ml, Ms). (dom(Ml) = ∅) ∧ (Ms = {x � v})
ltrue � λ(Ml, Ms). (dom(Ms) = ∅)

(b) syntactic sugar (where p, q ∈ LMem× LMem → Prop)

Glock(t) � ∃x, v, y. (x �→ (0, v, y)) �t (x �→ (t, v, y))

Gunlock(t) � ∃x, v, y. (x �→ (t, v, y)) �t (x �→ (0, v, y))

Gadd(t) � ∃x, y, z, u, v, w, n, z′. (x �→ (t, u, z) ∗ y
l�−→ (0, v, z) ∗ z �→ (n, w, z′) ∧ u < v < w)

�t (x �→ (t, u, y) ∗ y �→ (0, v, z) ∗ z �→ (n, w, z′))
Grmv(t) � ∃x, y, z, u, v. (x �→ (t, u, y) ∗ y �→ (t, v, z) ∧ v < MAX VAL) �t (x �→ (t, u, z) ∗ y

l�−→ (t, v, z))
Glocal(t) � ltrue �t ltrue
G(t) � Glock(t) ∪ Gunlock(t) ∪ Gadd(t) ∪ Grmv(t) ∪ Glocal(t) R(t) �

⋃
t′ �=t G(t′)

Gadd(t) � ∃S, e. (S �⇒ S) �t (S �⇒ S∪{e}) Grmv(t) � ∃S, e. (S �⇒ S∪{e}) �t (S �⇒ S)

Glocal(t) � ltrue �t ltrue G(t) � Gadd(t) ∪Grmv(t) ∪Glocal(t) R(t) �
⋃

t′ �=t G(t′)

(c) rely and guarantee relations

Fig. 11. Auxiliary definitions and specifications for the lock-coupling list.

We can prove that for any thread t, the following hold.

(add(e),R(t),G(t)) �t
α;α�α (ADD(e),R(t),G(t)) ;

(rmv(e),R(t),G(t)) �t
α;α�α (RMV(e),R(t),G(t)) .

Here �t
α;α�α is the RGSim relation in Definition 4.2 with the transitions −→ being

replaced by −→ t (defined in Figure 10(c)). The proofs are done operationally based

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

3:28 H. Liang et al.

atom{ x := x+1; }

(a) source code INC(x)

local d, t;

d := 0;

while (d = 0) {

<t := x;>

d := cas(&x,t,t+1);

}

(b) target code inc(x)

Fig. 12. The atomic and nonblocking counters.

on the definition of RGSim. We analyze the implementation step by step and find
out the instructions which correspond to the high-level single atomic steps (i.e., the
linearization points). For the add(e) operation, since we require the elements in the
concrete list are those in the abstract set, we can pick line 15 as the linearization point
of a successful call where the new node containing the value e is inserted into the list.
For unsuccessful calls (e is already in the set), we choose lines 3 and 9 where the value
e is read from an existing list node. Similarly, for rmv(e), we choose line 13 (for success-
ful calls) and lines 3 and 9 (for unsuccessful calls) as linearization points. We omit the
detailed proofs here.

By the compositionality and the soundness of RGSim, we know that the fine-grained
operations (under the parallel environment R) are simulated by the corresponding
atomic operations (under the high-level environment R), while R and R say all accesses
to the set must be done through the add and remove operations. This gives us the
atomicity of the concurrent implementation of the set object.

6.3. Nonblocking Counter

The next example (in Figure 12) is counters which increase the value of a shared vari-
able x atomically. The basic requirement is that the counter should not miss any in-
crement when several threads update x concurrently. A simple abstract counter INC(x)
increases the value of x in a coarse-grained atomic block. The concrete implementa-
tion inc(x) uses the Compare-And-Swap (CAS) instruction cas(&x, t1, t2), which reads
the value from the location of x, compares it with an expected value t1, writes out a
new value t2 if the two match, and returns whether the update succeeds. Next we use
RGSim to prove the atomicity of inc(x).

We first define the α relation between low-level and high-level states, where only the
values of x are concerned.

α � {((π , ms), (�, Ms)) | ms(x) = Ms(x)}
We let the pre- and postconditions be the same as the invariant α. Both inc(x) and
INC(x) guarantee that a thread t only updates its local variables and/or increases the
values of x. The rely conditions of thread t allow any other thread t′ to update x and
thread-local variables of t′. Here we use the syntactic sugar in Figure 11 to define the
rely and guarantee relations.

G(t) � (∃n. (x �→ n ∗ ltrue) �t (x �→ n+ 1 ∗ ltrue)) ∨ Glocal(t) R(t) �
⋃

t′ �=t G(t′)
G(t) � (∃n. (x �→ n) �t (x �→ n+ 1)) ∨Glocal(t) R(t) �

⋃
t′ �=t G(t′)

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

Rely-Guarantee-Based Simulation for Verification of Program Transformations 3:29

Then we can prove the RGSim relation holds.

(inc(x),R(t),G(t)) �t
α;α�α (INC(x),R(t),G(t))

It says that the fine-grained inc(x) does not have more behaviors than the atomic
INC(x) in any environment, that is, inc(x) has atomicity. The proof is done opera-
tionally based on the RGSim definition. We find out the corresponding program points
in inc(x) and INC(x), and prove they are related no matter what the environments do.

Also we can prove (INC(x),R(t),G(t)) �t
α−1;α−1�α−1 (inc(x),R(t),G(t)), which says the

implementation inc(x) has all the behaviors of INC(x). Thus inc(x) and INC(x) behave
just the same.

As a simple illustration of the atomicity, we go on to show that the nonblock-
ing inc(x) can be used by two threads concurrently without missing any increment,
as if x was updated by the threads one after the other. Formally, we prove that
(inc(x); print(x)) ‖ (inc(x); print(x)) and (INC(x); print(x)) � (INC(x); print(x)) have
the same observable event traces when the initial values of x are the same.

We can prove that (print(x),R(t),G(t)) �α;α�α (print(x),R(t),G(t)) and the reverse
direction holds. Then by the rules SEQ, PAR and CONSEQ, we can get both

((inc(x); print(x))‖(inc(x); print(x)), Id, True)

�α;α�α ((INC(x); print(x))�(INC(x); print(x)), Id, True)

and the reverse direction. By the soundness of RGSim (Theorem 4.3), we know they
are e-trace equivalent, and hence the transformation is correct.

(inc(x); print(x))‖(inc(x); print(x)) ≈T (INC(x); print(x))�(INC(x); print(x))

This is for any T that respects α. That is, no matter how the two nonblocking threads
interleave, they complete their operations as if both of them were executing the ab-
stract atomic counter.

Incrementing several shared variables. We have verified the transformation from
INC(x) to inc(x) without caring about other shared resource. The FRAME rule allows
us to combine several verified transformations together which work on disjoint parts
of states without redoing the proofs.

For example, suppose we have another shared variable y which can be incremented
as well as x. It is easy to see: (inc(y),R1(t),G1(t)) �t

α1;α1�α1
(INC(y),R1(t),G1(t)), where

α1 � {((π , ms), (�, Ms)) | ms(y) = Ms(y)} and R1(t), G1(t), R1(t) and G1(t) are defined
similarly as R(t), G(t), R(t) and G(t) except all the occurrences of x are replaced by y.

By the rules FRAME and SEQ, we can get

(inc(x); inc(y); print(x),R(t) �R1(t),G(t) � G1(t))
�t

β;β�β (INC(x); INC(y); print(x),R(t) � R1(t),G(t) �G1(t))
(6.1)

where β � α � α1 = {((π , ms), (�, Ms)) | ms(x) = Ms(x) ∧ ms(y) = Ms(y)}, the rely
conditions ensure that the environments cannot update any local variable used in in-
crementing x nor y, and the guarantees just say that the programs increment x or y or
update local variables.

Similarly, we can get the reverse direction of Eq. (6.1). Then by the soundness of
RGSim, we can conclude the combined transformation is correct

inc(x); inc(y); print(x) ≈T INC(x); INC(y); print(x) ,

for any T that respects β.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

3:30 H. Liang et al.

PUSH(v) : POP() :

0 atom {

A := v::A;

}

local r;

0 atom {

if (A = ε) {

r := EMPTY;

}else {

r := head(A);

A := tail(A);

}

}

return r;

(a) an abstract stack

push(v) : pop() :

local d, x, t;

0 x := new Cell();

1 x.data := v;

2 d := 0;

3 while (d = 0) {

4 <t := S;>

5 x.next := t;

6 d := cas(&S,t,x);

}

local r, d, x, t;

0 d := 0;

1 while (d = 0) {

2 <t := S;>

3 if (t = null) {

4 r := EMPTY;

5 d := 1;

}else {

6 r := t.data;

7 x := t.next;

8 d := cas(&S,t,x);

}

}

return r;

(b) Treiber’s nonblocking implementation

Fig. 13. The stack object.

6.4. Treiber’s Nonblocking Stack

The last example is to verify the atomicity of Treiber’s nonblocking stack. The stack
object provides two operations in its interface. The abstract PUSH(v) and POP(), defined
in Figure 13(a), atomically operate on a value sequence. We implement the abstract
stack by a singly-linked list pointed to by a shared variable S, and PUSH(v) and POP()
by the nonblocking code push(v) and pop() respectively. As shown in Figure 13(b), the
nonblocking implementation uses CAS instructions to obtain fine-grained atomicity.

We use RGSim to prove the atomicity of the nonblocking stack, that is, push(v)
refines PUSH(v) and pop() refines POP() when they are executed in appropriate
environments.

We define the α relation, the guarantees and the relies in Figure 14. The mapping
shared map between the low-level and the high-level shared memory is defined by only
considering the value sequence on the stack. It requires that the concrete shared mem-
ory ms contains a submemory m̂s of a linked list as the stack, and the concrete stack
has the same value sequence as the abstract one. As in the lock-coupling list example

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

Rely-Guarantee-Based Simulation for Verification of Program Transformations 3:31

shared map(ms, Ms) � ∃m̂s. list(ms(S), Ms(A))(m̂s) ∧ m̂s ⊆ ms\{S}
local map(ml, Ml) � ml(v) = Ml(v) ∧ ∃m′

l. ml = m′
l � {d � , x � , t � , r � }

α � {((π , ms), (�, Ms)) | shared map(ms, Ms) ∧ ∀t ∈ dom(�). local map(π(t), �(t))}

Gpush(t) � ∃v, x, y. (S �→ y ∗ x
l�−→ (v, y) ∗ ltrue) �t (S �→ x ∗ x �→ (v, y) ∗ ltrue)

Gpop(t) � ∃x, v, y. (S �→ x ∗ x �→ (v, y) ∗ ltrue) �t (S �→ y ∗ x �→ (v, y) ∗ ltrue)

G(t) � Gpush(t) ∪ Gpop(t) ∪ Glocal(t) R(t) �
⋃

t′ �=t G(t′)

Gpush(t) � ∃A, v. ((A �→ A) ∗ ltrue) �t ((A �→ v ::A) ∗ ltrue)

Gpop(t) � ∃A, v. ((A �→ v ::A) ∗ ltrue) �t ((A �→ A) ∗ ltrue)

G(t) � Gpush(t) ∪Gpop(t) ∪Glocal(t) R(t) �
⋃

t′ �=t G(t′)

Fig. 14. Auxiliary definitions and specifications for the nonblocking stack.

in Section 6.2, we use the predicate list(x, A)(m̂s) to represent a singly-linked list in
the shared memory m̂s whose head node’s address is x and values form a sequence A.
Since S is a shared variable containing the address of the top node, it itself is not in
the domain of m̂s. For the local memory, local map defines the mapping of each thread.
The value of v in the low-level local memory should be the same as in the high-level
local memory, and the low-level local memory should provide enough additional space
needed by the object operations (i.e., the local variables d, x, t and r). Then α relates
the shared memory by shared map and the local memory of each thread t by local map.

Each thread guarantees that it performs push, pop, and local operations only, and
its environment includes the operations made by all the other threads. The guarantees
reflect the ownership transfers in push and pop operations. For example, Gpush(t) says
that the node x is transferred from the thread-local memory to the shared memory.
The definitions use the syntactic sugar in Figure 11.

We could prove the nonblocking stack operations are simulated by the corresponding
atomic operations.

(push(v),R(t),G(t)) �t
α;α�α (PUSH(v),R(t),G(t));

(r := pop(),R(t),G(t)) �t
α;α�α (r := POP(),R(t),G(t)).

This gives us the atomicity of the nonblocking implementation of the stack object.

7. VERIFYING CONCURRENT GARBAGE COLLECTORS

In this section, we explain in detail how to reduce the problem of verifying concurrent
garbage collectors to transformation verification, and use RGSim to develop a general
GC verification framework. We apply the framework to prove the correctness of the
Boehm et al. concurrent GC algorithm [Boehm et al. 1991].

7.1. Correctness of Concurrent GCs

A concurrent GC is executed by a dedicated thread and performs the collection work
in parallel with user threads (mutators), which access the shared heap via read, write,
and allocation operations. To ensure that the GC and the mutators share a coherent
view of the heap, the heap operations from mutators may be instrumented with extra
operations, which provide an interaction mechanism to allow arbitrary mutators to
cooperate with the GC. These instrumented heap operations are called barriers (e.g.,
read barriers, write barriers, and allocation barriers).

The GC thread and the barriers constitute a concurrent garbage collecting system,
which provides a higher-level user-friendly programming model for garbage-collected
languages (e.g., Java). In this high-level model, programmers feel they access the heap

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

3:32 H. Liang et al.

using regular memory operations, and are freed from manually disposing objects that
are no longer in use. They do not need to consider the implementation details of the
GC and the existence of barriers.

We could verify the GC system by using a Hoare-style logic to prove that the GC
thread and the barriers satisfy their specifications. However, we say this is an indirect
approach because it is unclear if the specified correct behaviors would indeed preserve
the mutators’ intended behaviors and generate the abstract view for high-level pro-
grammers. Usually this part is examined by experts and then trusted.

Here we propose a more direct approach. We view a concurrent garbage collecting
system as a transformation T from a high-level garbage-collected language to a low-
level language. A standard atomic memory operation at the source level is transformed
into the corresponding barrier code at the target level. In the source level, we assume
there is an abstract GC thread that magically turns unreachable objects into reusable
memory. The abstract collector AbsGC is transformed into the concrete GC code Cgc
running concurrently with the target mutators. That is,

T(tgc.AbsGC�t1.C1�. . .�tn.Cn) � tgc.Cgc ‖ t1.T(C1)‖ . . .‖ tn.T(Cn) ,

where T(C) simply translates some memory access instructions in C into the corre-
sponding barriers, and leaves the rest unchanged. Note that here we introduce an
abstract GC and assume a finite memory at the source level. This is because at the
target level we assume a finite memory to model the real machine; and if the source-
level memory is infinite, the bijective mapping between the memory at the two levels
would become much complicated.

Then we reduce the correctness of the concurrent garbage collecting system to
Correct(T), saying that any mutator program will not have unexpected behaviors when
executed using this system.

7.2. A General Verification Framework

The compositionality of RGSim allows us to develop a general framework to prove
Correct(T), which is much more difficult using monolithic proof methods. By the par-
allel compositionality of RGSim (the PAR rule in Figure 7), we can decompose the re-
finement proofs into proofs for the GC thread and each mutator thread. For a mutator
thread, we can further decompose the refinement proof into proof for each primitive
instruction, using the compositionality of RGSim (the rules SEQ, IF and WHILE in
Figure 7).

Verifying the GC. The semantics of the abstract GC thread can be defined by a binary
state predicate AbsGCStep.

(�, �′) ∈ AbsGCStep
(tgc.AbsGC, �) −→ (tgc.AbsGC, �′)

That is, the abstract GC thread always makes AbsGCStep to change the high-level
state. We can choose different AbsGCStep for different GCs, but usually AbsGCStep
guarantees not modifying reachable objects in the heap.

Thus for the GC thread, we need to show that Cgc is simulated by AbsGC when ex-
ecuted in their environments. This can be reduced to unary rely-guarantee reasoning
about Cgc by proving Rgc;Ggc {pgc}Cgc{qgc} in a standard rely-guarantee logic with
proper Rgc, Ggc, pgc and qgc, as long as Ggc is a concrete representation of AbsGCStep.
The judgment says given an initial state satisfying the precondition pgc, if the environ-
ment’s behaviors satisfy Rgc, then each step of Cgc satisfies Ggc, and the postcondition
qgc holds at the end if Cgc terminates. In general, the collector never terminates, thus

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

Rely-Guarantee-Based Simulation for Verification of Program Transformations 3:33

we can let qgc be false. Ggc and pgc should be provided by the verifier, where pgc needs
to be general enough so that it can be satisfied by any possible low-level initial state.
Rgc encodes the possible behaviors of mutators, which can be derived, as we will show
shortly.

Verifying mutators. For the mutator thread, since T is syntax-directed on C, we can
reduce the refinement problem for arbitrary mutators to the refinement on each prim-
itive instruction only, following the compositionality of RGSim. The proof needs proper
rely/guarantee conditions. Let G

t
c and Gt

T(c) denote the guarantees of the source in-
struction c and the target code T(c) for the mutator thread t respectively. Then we can
define the general guarantees for the thread.

G(t) �
⋃

c Gt
T(c) ; G(t) �

⋃
c G

t
c . (7.1)

Its rely conditions should include all the possible guarantees made by other threads,
and the GC’s abstract and concrete behaviors respectively.

R(t) � Ggc ∪⋃
t′ �=t G(t′) ; R(t) � AbsGCStep ∪⋃

t′ �=t G(t′) . (7.2)

The Rgc used to verify the GC code can now be defined.

Rgc �
⋃

t G(t) (7.3)

The refinement proof also needs definitions of binary relations α, ζ and γ . The in-
variant α relates the low-level and the high-level states and needs to be preserved by
each low-level step. In general, a high-level state � can be mapped to a low-level state
σ by giving a concrete local store for the GC thread, adding additional structures in
the heap (to record information for collection), renaming heap cells (for copying GCs),
etc. The relations ζ and γ are parametrized over the thread id t. For each mutator
thread t, ζ(t) and γ (t) need to hold at the beginning and the end of each basic trans-
formation unit (every high-level primitive instruction in this case) respectively. We let
γ (t) be the same as ζ(t) to support sequential compositions. We require InitRelT(ζ(t))
(see Figure 6), that is, ζ(t) holds over the initial states. In addition, the target and
the source boolean expressions should be evaluated to the same value under ζ -related
states, as required in the IF and WHILE rules in Figure 7.

GoodT(ζ(t)) � InitRelT(ζ(t)) ∧ ∀B. ζ(t) ⊆ (T(B)⇔⇔B) (7.4)

THEOREM 7.1 (VERIFYING CONCURRENT GARBAGE COLLECTING SYSTEMS). If
there exist G

t
c, Gt

T(c), ζ(t), α, Ggc and pgc (for any c and t) such that the following hold
(where G(t), G(t), R(t), R(t) and Rgc are defined in (7.1), (7.2) and (7.3), and GoodT(ζ(t))
defined in (7.4) holds):

(1) (Correctness of T on mutator instructions)
∀t, c. (T(c),R(t),G(t)) �t

α;ζ(t)�ζ(t) (c,R(t),G(t));

(2) (Verification of the GC code)
Rgc;Ggc {pgc}Cgc{false};

(3) (Side conditions)
Ggc ◦ α−1 ⊆ α−1 ◦ (AbsGCStep)∗; and ∀σ , �. σ = T(�) =⇒ pgc σ ;

then Correct(T).

That is, to verify a concurrent garbage collecting system, we need to do the following.

— Define the α and ζ(t) relations, and prove the correctness of T on high-level primi-
tive instructions. Since T preserves the syntax on most instructions, it’s often im-
mediate to prove the target instructions are simulated by their sources. But for

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

3:34 H. Liang et al.

instructions that are transformed to barriers, we need to verify that the barriers
implement both the source instructions (by RGSim) and the interaction mechanism
(shown in their guarantees).

— Find some proper Ggc and pgc, and verify the GC code by R-G reasoning. We require
the GC’s guarantee Ggc should not contain more behaviors than AbsGCStep (the
first side condition), and Cgc can start its execution from any state σ transformed
from a high-level one (the second side condition).

To prove Theorem 7.1, we first prove the following from (2) and (3).

(Cgc,Rgc,Ggc) �α;ζgc�ζgc
(AbsGC, True, AbsGCStep)

Here ζgc � {(σ , �) | σ = T(�)}. The proof directly follows the RGSim definition. Then
with (1) and the compositionality of RGSim, we can get the following by induction over
the program structure.

∀C1, . . . ,Cn. (tgc.Cgc ‖ t1.T(C1)‖ . . .‖ tn.T(Cn), Id, True)

�α;ζ�ζ (tgc.AbsGC�t1.C1�. . .�tn.Cn, Id, True)

Here ζ � ζgc ∩ ⋂
t ζ(t). Finally, from the soundness of RGSim (Corollary 4.4), we can

conclude Correct(T).

7.3. Application: Boehm et al. Concurrent GC Algorithm

We illustrate the applications of the framework (Theorem 7.1) by proving the correct-
ness of a mostly concurrent mark-sweep garbage collector proposed by Boehm et al.
[1991]. Variants of the algorithm have been used in practice (e.g., by IBM [Barabash
et al. 2005]).

7.3.1. Overview of the GC Algorithm. The GC runs both the mark and sweep phases con-
currently with the mutators. In the mark phase, it does a depth-first tracing and marks
the objects which are reachable from the roots (i.e., the mutators’ local pointer vari-
ables that may contain references to the heap objects). Later in the sweep phase, it
scans the heap and reclaims unmarked objects. During the tracing, the connectivity
between objects might be changed by the mutators, thus a write barrier is required to
notify the collector of those modified objects. Boehm et al.’s algorithm gives each object
a dirty bit (called a card) and its write barrier dirties the card of the object being up-
dated. Then, between the mark and sweep phases, the GC runs a short stop-the-world
phase, where it suspends all the mutators and retraces from the dirty objects which
have been marked (called card-cleaning). Thus all reachable objects have been marked
before the sweep phase, ensuring the correctness of the GC.

We show the code of the GC thread in Figure 15. We assume each object contains m
pointer fields pt1, . . . , ptm, a data field, and two auxiliary color and dirty fields. The
color field has three possible values and is used for two purposes: for marking, we use
BLACK for a marked object and WHITE for an unmarked one; and for allocation, we use
BLUE for an unallocated object which will neither be traced nor be reclaimed, but can
be allocated later. New objects are created BLACK, and when reclaiming an object, we
just set its color to BLUE. The dirty field is the card bit whose value can be 0 (not dirty)
or 1 (dirty). We also assume the total number of threads is N and the heap domain
is [1..M].

To make the GC code more readable, we divide it into several methods in Figure 15,
which should be viewed as macros. The GC thread executes Collection() and repeats
the collection cycle (the loop body in the method) forever. In each collection cycle,
it first clears the dirty cards and resets the colors of all the objects (the method

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

Rely-Guarantee-Based Simulation for Verification of Program Transformations 3:35

1 constant int WHITE, BLACK, BLUE; // colors 50 MarkAndPush(i) {

2 constant int N; // total number of threads 51 local c;

3 constant int M; // size of heap 52 if (i != 0) {

4 53 c := i.color;

5 Collection() { 54 if (c = WHITE) {

6 local mstk; 55 i.color := BLACK;

7 while (true) { 56 push(i, mstk);

8 Initialize(); 57 }

9 Trace(); 58 }

10 CleanCard(); 59 }

11 atomic{ ScanRoot(); CleanCard(); } 60

12 Sweep(); 61 CleanCard() {

13 } 62 local i, c, d;

14 } 63 i := 1;

15 64 while (i <= M) {

16 Initialize() { 65 c := i.color;

17 local i, c; 66 d := i.dirty;

18 i := 1; 67 if (d = 1) {

19 while (i <= M) { 68 i.dirty := 0;

20 i.dirty := 0; 69 if (c = BLACK) {

21 c := i.color; 70 push(i, mstk);

22 if (c = BLACK) { i.color := WHITE; } 71 }

23 i := i + 1; 72 }

24 } 73 i := i + 1;

25 } 74 }

26 75 TraceStack();

27 Trace() { 76 }

28 local t, rt, i; 77

29 t := 1; 78 ScanRoot() {

30 while (t <= N) { 79 local t, rt, i;

31 rt := get_root(t); 80 t := 1;

32 foreach i in rt do { 81 while (t <= N) {

33 MarkAndPush(i); 82 rt := get_root(t);

34 } 83 foreach i in rt do {

35 t := t + 1; 84 MarkAndPush(i);

36 TraceStack(); 85 }

37 } 86 t := t + 1;

38 } 87 }

39 88 }

40 TraceStack() { 89

41 local i, j; 90 Sweep() {

42 while (!is_empty(mstk)) { 91 local i, c;

43 i := pop(mstk); 92 i := 1;

44 j := i.pt1; MarkAndPush(j); 93 while (i <= M) {

45 ... 94 c := i.color;

46 j := i.ptm; MarkAndPush(j); 95 if (c = WHITE) { free(i); }

47 } 96 i := i + 1;

48 } 97 }

49 98 }

Fig. 15. The code of Boehm et al. GC.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

3:36 H. Liang et al.

update(x, fd, E) { // fd ∈ {pt1, ..., ptm}

atomic{ x.fd := E; aux := x; }

atomic{ x.dirty := 1; aux := 0; }

}

Fig. 16. The write barrier for Boehm et al. GC.

call of Initialize()). After the initialization, the GC enters the mark phase by call-
ing Trace(). The command rt := get root(t) (line 31) allows the GC to read the
values of all the pointer variables in the thread t’s store at once to a set rt, and
foreach i in rt do C allows to execute C for every value i in rt. Our atomic get root
tries to reflect the real-world GC implementation [Barabash et al. 2005], where the
GC stops a mutator thread to scan its roots. A mark stack mstk is used to do the
depth-first tracing in the method TraceStack(). For simplicity, we assume there are
primitive commands push(x, mstk) and x := pop(mstk) to manipulate mstk. The stop-
the-world phase (line 11) is implemented by atomic{C}. Here the roots are re-scanned
in ScanRoot(), because the write barrier is not applied to the roots and we should
assume conservatively that they have been modified. In the sweep phase (the call of
Sweep() at line 12), the GC can use free(x) to reclaim the object x. Usually in practice,
there is also a concurrent card-cleaning phase (the call of CleanCard() at line 10) before
the stop-the-world card-cleaning (at line 11) to reduce the pause time of the latter.

The write barrier is shown in Figure 16, where the dirty field is set after modify-
ing the object’s pointer field. Here we use a write-only auxiliary variable aux for each
mutator thread to record the current object that the mutator is updating. We add aux
for the purpose of verification only, which can be safely deleted after the proof is com-
pleted. We use aux to help specify some fine-grained and temporal property of the write
barrier in the guarantees. For instance, a mutator should ensure that after it sets a
pointer field of an object x to another object y, it must first set x’s dirty field before
updating other pointers (in particular, those pointing to y). Otherwise, the GC may
not know that y is newly reachable from x and may finally reclaim y. In Figure 16 we
set aux to the object x when its pointer field is updated, and specify in the mutator’s
guarantee (Gt

set dirty in Figure 25(b)) that when aux = x, it must set x’s dirty field. The
GC does not use read barriers nor allocation barriers. Allocation can be implemented
using a standard concurrent list algorithm. To be more focused on verifying the GC
algorithm itself, we model allocation as an abstract instruction x := new() which can
magically find an unallocated (BLUE) object in the heap.

7.3.2. The Transformation. We first present the detailed high-level and low-level lan-
guages and state models in Figures 17 and 18 respectively, which are instantiations of
the generic languages in Figure 2.

— An object has m pointer fields and a data field from the high-level view, whereas a
concrete object also has two auxiliary fields color and dirty for the collection.

— The behaviors of the high-level abstract GC thread are defined in Figure 19(a),
saying that the mutator stores and the reachable objects in the heap remain un-
modified. Here Reachable(l)(�, H) means the object at the location l is reachable in
H from the roots in �.

— The low-level concrete GC thread could use privileged commands, such as x :=
get root(y) and free(x), to control the mutator threads and manage the heap.

— High-level mutators can use x := y.fd to read a field of an object, x.fd := E to write
the value of E to a field of an object and x := new() to allocate a new object. If

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

Rely-Guarantee-Based Simulation for Verification of Program Transformations 3:37

(HExpr) E ::= x | n | nil | E+E | E−E | . . .
(HBExp) B ::= true | false | E=E | !B | . . .
(HInstr) c ::= print(E) | x :=E | x := y.fd | x.fd := E | x := new()

(HStmts) C ::= skip | c | C1; ;C2 | if B then C1 else C2 | while B do C

(HProg) W ::= tgc.AbsGC�t1.C1�. . .�tn.Cn

(HField) fd ∈ {pt1, . . . , ptm, data}
(MutID) t ∈ [1..N]

(a) the language

(Loc) l ∈ {L1, . . . , LM, nil}
(HVal) V ∈ Int ∪ Loc

(HStore) S ∈ PVar ⇀ HVal

(HObj) O ∈ HField ⇀ HVal

(HHeap) H ∈ Loc ⇀ HObj

(HThrds) � ∈ MutID ⇀ HStore

(HState) � ∈ HThrds×HHeap

(b) program states

Fig. 17. The high-level language and state model.

the instruction x.fd := E updates a pointer field (i.e., fd ∈ {pt1, . . . , ptm}), then it
will be transformed to the write barrier in Figure 16. Note here E is restricted to
be either nil (null pointers) or pointer variables.

— The high-level language is typed in the sense that heap locations and integers are
regarded as distinct kinds (or types) of values. We present the high-level opera-
tional semantics in Figure 19(b). Here we use SameType(V, V′) to mean that the
two values V and V′ are of the same type.

— On the low-level machine, we allow the GC to perform pointer arithmetic, so we do
not distinguish locations and integers. A low-level value v can be an integer, a set,
or a sequence of integers. We use P() for the power set and Seq() for the set of
sequences. Every low-level variable is given an extra bit to preserve its high-level
type information (0 for nonpointers and 1 for pointers), so that the GC can easily
get the roots. The low-level mutators are still prohibited from pointer arithmetic.
An expression E is evaluated (shown in Figure 20) under the store with an extra
tag tag to indicate whether it is used as an object location in the heap (tag = 1
if E is used as a heap location; and tag = 0 otherwise). When tag = 2, we do not
care about the usage of the expression, and such an expression will be used in the
GC code since the GC has the privilege to use an integer as an address and vice
versa. We present part of the low-level operational semantics rules in Figure 21. To
formulate the semantics of foreach x in y do C, we assume x and y are temporary
variables and not updated by C. At the beginning of each iteration, we set x to an

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

3:38 H. Liang et al.

(LExpr) E ::= x | n | E+E | E−E | . . .
(LBExp) B ::= true | false | E=E | ! B | is empty(x) | . . .
(LInstr) c ::= print(E) | x :=E | x := y.fd | x.fd := E | x := new()

| x := get root(y) | free(x) | push(x, y) | x := pop(y)

(LStmts) C ::= skip | c | C1; C2 | if (B) C1 else C2 | while (B) C

| atomic{C} | foreach x in y do C

(LProg) W ::= tgc.Cgc ‖ t1.C1 ‖ . . .‖ tn.Cn

(LField) fd ∈ {pt1, . . . , ptm, data, color, dirty}

(a) the language

(LVal) v ∈ Int ∪ P(Int) ∪ Seq(Int)

(LStore) s ∈ PVar ⇀ LVal× {0, 1}
(LObj) o ∈ LField ⇀ LVal

(LHeap) h ∈ [1..M] ⇀ LObj

(LThrds) π ∈ (MutID ∪ {tgc}) ⇀ LStore

(LState) σ ∈ LThrds× LHeap

(b) program states

Fig. 18. The low-level language and state model.

arbitrary item in the set y, and after executing C we remove that item from y. The
foreach loop terminates when y becomes empty.

— We do not provide infinite heaps; instead there are only M valid high-level locations
and the low-level heap domain is [1..M]. High-level mutators can use nil for null
pointers and it will be translated to 0 on the low-level machine. We assume there
is a bijective function from high-level locations to low-level integers

Loc2Int : Loc ↔ [0..M]

which satisfies Loc2Int(nil) = 0.

The transformation T is defined as follows. For code, the high-level abstract GC
thread is transformed to the GC thread shown in Figure 15. Each instruction x.fd := E

in mutators is transformed to the write barrier update(x, fd, T(E)), where fd is a pointer
field of x. T over expressions E returns 0 if E is nil, and keeps the syntax otherwise.
Other instructions and the program structures of mutators are unchanged.

We also need to transform the initial high-level state to the low level. The transfor-
mation T(�) is defined in Figure 22.

— First we require the high-level initial state to be well-formed (WfState(�)), that is,
reachable locations cannot be dangling pointers.

— High-level locations are transformed to integers by the bijective function Loc2Int.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

Rely-Guarantee-Based Simulation for Verification of Program Transformations 3:39

Root(t, S) � λ�. � = (� � {t � St}, H) ∧ S = {l | ∃x.St(x) = l}
Edge(l1, l2) � λ�. � = (�, H) ∧ ∃fd ∈ {pt1, . . . , ptm}. H(l1)(fd) = l2

Pathk(l1, l2) �
{

l1 = l2 if k = 0
∃l3. Edge(l1, l3) ∧ Pathk−1(l3, l2) if k > 0

Path(l1, l2) � ∃k. Pathk(l1, l2)

Reachable(t, l) � ∃S, l′. Root(t, S) ∧ l′ ∈ S ∧ Path(l′, l) ∧ l �= nil
Reachable(l) � ∃t ∈ [1..N] . Reachable(t, l)
AbsGCStep � {((�, H), (�, H′)) | ∀l. Reachable(l)(�, H) =⇒ H(l) = H′(l)}

(a) definition of AbsGCStep

S(x) = l H(l) = O �E�S = V O(fd) = V′ SameType(V, V′)
(x.fd := E, (� � {t � S}, H)) −→ t (skip, (� � {t � S}, H{l � O{fd � V}}))

x �∈ dom(S) or S(x) �∈ dom(H) or �E�S =⊥ or ¬SameType(H(S(x))(fd), �E�S)

(x.fd := E, (� � {t � S}, H)) −→ t abort

l �∈ dom(H) l �= nil S(x) = l′ S′ = S{x � l} H′ = H � {l � {pt1 � nil, . . . , ptm � nil, data � 0}}
(x := new(), (� � {t � S}, H)) −→ t (skip, (� � {t � S′}, H′))

¬(∃l.l �∈ dom(H) ∧ l �= nil) S(x) = l′ S′ = S{x � nil}
(x := new(), (� � {t � S}, H)) −→ t (skip, (� � {t � S′}, H))

x �∈ dom(S) or ¬∃l.S(x) = l
(x := new(), (� � {t � S}, H)) −→ t abort

(Ci, �) −→ ti abort

(tgc.AbsGC�t1.C1�. . . ti.Ci . . .�tn.Cn, �) −→ abort

(Ci, �) −→ ti (C′i, �
′) or (�, �′) ∈ AbsGCStep ∧ C

′
i = Ci

(tgc.AbsGC�t1.C1�. . . ti.Ci . . .�tn.Cn, �) −→ (tgc.AbsGC�t1.C1�. . . ti.C
′
i . . .�tn.Cn, �′)

(b) selected operational semantics rules

Fig. 19. A high-level garbage-collected machine.

�n�(s,tag) =

⎧⎪⎨⎪⎩
n if tag = 0 or tag = 2
0 if tag = 1 and n = 0
⊥ otherwise

�x�(s,tag) =
{

n if s(x) = (n, b) and (tag = b ∨ tag = 2)

⊥ otherwise

�E1 + E2�(s,tag) =
{

n1 + n2 if �E1�(s,tag) = n1 and �E2�(s,tag) = n2 and (tag = 0 ∨ tag = 2)

⊥ otherwise

�is empty(x)�(s,tag) =

⎧⎪⎨⎪⎩
true if tag = 0 and s(x) = (ε, 0)

false if tag = 0 and s(x) = (n ::A, 0)

⊥ otherwise

Fig. 20. Expression evaluation on the low-level machine.

— Variables are transformed to the low level using an extra bit to preserve the high-
level type information (0 for nonpointers and 1 for pointers). Usually we use vnp

and vp short for (v, 0) and (v, 1) respectively.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

3:40 H. Liang et al.

t ∈ [1..N] s(x) = (, b) �E�(s,b) = n s′ = s{x � (n, b)}
(x := E, (π � {t � s}, h)) −→ t (skip, (π � {t � s′}, h))

s(x) = (, b) �E�(s,2) = n s′ = s{x � (n, b)}
(x := E, (π � {tgc � s}, h)) −→ tgc (skip, (π � {tgc � s′}, h))

s(y) = (ny, 1) h(ny)(fd) = n s(x) = (, b)

fd ∈ {pt1, . . . , ptm} =⇒ b = 1 fd ∈ {data} =⇒ b = 0 s′ = s{x � (n, b)}
(x := y.fd, (π � {t � s}, h)) −→ t (skip, (π � {t � s′}, h))

s(x) = (n, 1) h(n) = o fd ∈ {pt1, . . . , ptm} =⇒ �E�(s,1) = n′
fd ∈ {data} =⇒ �E�(s,0) = n′ fd ∈ {color, dirty} =⇒ �E�(s,2) = n′

(x.fd := E, (π � {t � s}, h)) −→ t (skip, (π � {t � s}, h{n � o{fd � n′}}))

s(y) = (t, 0) s(x) = (, 0) π(t) = st S = {n | ∃x.st(x) = (n, 1)} s′ = s{x � (S, 0)}
(x := get root(y), (π � {tgc � s}, h)) −→ tgc (skip, (π � {tgc � s′}, h))

x ∈ dom(s) s(y) = (∅, 0)

(foreach x in y do C, (π � {tgc � s}, h)) −→ tgc (skip, (π � {tgc � s}, h))

s(x) = (, b) s(y) = ({n1, . . . , nk}, 0) s′ = s{x � (n1, b)}
(foreach x in y do C, (π � {tgc � s}, h)) −→ tgc (C; y := y\{x}; foreach x in y do C, (π � {tgc � s′}, h))

(C, (π � {t � s}, h)) −→∗
t (skip, (π � {t � s′}, h′))

(atomic{C}, (π � {t � s}, h)) −→ t (skip, (π � {t � s′}, h′))
(C, (π � {t � s}, h)) −→∗

t abort

(atomic{C}, (π � {t � s}, h)) −→ t abort

t ∈ [1..N] s(x) = (, 1) h(n)(color) = BLUE s′ = s{x � (n, 1)}
h′ = h{n � {pt1 � 0, . . . , ptm � 0, data � 0, color � BLACK, dirty � 0}}

(x := new(), (π � {t � s}, h)) −→ t (skip, (π � {t � s′}, h′))

t ∈ [1..N] s(x) = (, 1) ¬(∃n. h(n)(color) = BLUE) s′ = s{x � (0, 1)}
(x := new(), (π � {t � s}, h)) −→ t (skip, (π � {t � s′}, h))

s(x) = (n, 1) h(n) = o
(free(x), (π � {tgc � s}, h)) −→ tgc (skip, (π � {tgc � s}, h{n � o{color � BLUE}}))

s(x) = (n′, b) s(y) = (A, 0) s′ = s{y � (n′ ::A, 0)}
(push(x, y), (π � {tgc � s}, h)) −→ tgc (skip, (π � {tgc � s′}, h))

s(x) = (, b) s(y) = (n ::A, 0) s′ = s{x � (n, b), y � (A, 0)}
(x := pop(y), (π � {tgc � s}, h)) −→ tgc (skip, (π � {tgc � s′}, h))

Fig. 21. Selected operational semantics rules on the low-level machine.

— High-level objects are transformed to the low level by adding the color and dirty
fields with initial values WHITE and 0 respectively. Other addresses in the low-level
heap domain [1..M] are filled out using unallocated objects whose colors are BLUE
and all the other fields are initialized by 0.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

Rely-Guarantee-Based Simulation for Verification of Program Transformations 3:41

T(�) �
{

({t � T(S) | (t � S) ∈ �} � {tgc � sgc init}, T(H)) if � = (�, H) ∧WfState(�)

⊥ otherwise

where
WfState(�, H) � ∀l. Reachable(l)(�, H) =⇒ l ∈ dom(H)

sgc init � {mstk � εnp, rt � ∅np, i � 0p, j � 0p, c � 0np, d � 0np, t � 0np}

T(S)(x) �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
nnp if S(x) = n
np if S(x) = l ∧ Loc2Int(l) = n
0p if x = aux

⊥ if x �∈ dom(S) ∧ x �= aux

T(H)(i) �

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{pt1 � n1, . . . , ptm � nm, data � n, color � WHITE, dirty � 0}
if ∃l. l ∈ dom(H) ∧ Loc2Int(l) = i ∧ 1 ≤ i ≤ M
∧ H(l) = {pt1 � l1, . . . , ptm � lm, data � n}
∧ Loc2Int(l1) = n1 ∧ . . . ∧ Loc2Int(lm) = nm

{pt1 � 0, . . . , ptm � 0, data � 0, color � BLUE, dirty � 0}
if ∃l. l �∈ dom(H) ∧ Loc2Int(l) = i ∧ 1 ≤ i ≤ M

Fig. 22. The transformation T on initial states for Boehm et al. GC.

store map(s, S) � ∀x �= aux. (∀n. s(x) = nnp ⇐⇒ S(x) = n)

∧ (∀n. s(x) = np ⇐⇒ ∃l. Loc2Int(l) = n ∧ S(x) = l)

obj map(o, O) � ∃n1, . . . , nm, n, c, l1, . . . , lm. Loc2Int(l1) = n1 ∧ . . . ∧ Loc2Int(lm) = nm
∧ o = {pt1 � n1, . . . , ptm � nm, data � n, color � c, dirty � } ∧ c �= BLUE

∧ O = {pt1 � l1, . . . , ptm � lm, data � n})
unalloc(o, H, l) � (o = {pt1 � , . . . , ptm � , data � , color � BLUE, dirty � }) ∧ l �∈ dom(H)

heap map(h, H) � ∀i, l. 1 ≤ i ≤ M ∧ Loc2Int(l) = i =⇒ obj map(h(i), H(l)) ∨ unalloc(h(i), H, l)

α � {((π � {tgc � }, h), (�, H)) | ∀t. store map(π(t), �(t)) ∧ heap map(h, H) ∧WfState(�, H)}

Fig. 23. The α relation for Boehm et al. GC.

— The concrete GC thread is given an initial store sgc init where its local variables are
initialized by 0 (for integer and pointer variables), ε (for the mark stack mstk) or ∅
(for the root set rt).

To prove Correct(T) in our framework, we apply Theorem 7.1, prove the refinement
between low-level and high-level mutators, and verify the GC code using a unary Rely-
Guarantee-based logic.

7.3.3. Refinement Proofs for Mutator Instructions. We first define the α and ζ(t) relations. In
α (see Figure 23), the relations between low-level and high-level stores and heaps are
enforced by store map and heap map respectively. Their definitions reflect the state
transformations we describe before, ignoring the values of those high-level-invisible
structures (e.g., the GC’s local variables, the color and dirty fields for nonblue objects
and all the fields of blue objects). α also requires the well-formedness of high-level
states. Here we still use Loc2Int to relate integers and locations.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

3:42 H. Liang et al.

For each mutator thread t, the ζ(t) relation enforced at the beginning and the end of
each transformation unit (each high-level instruction) is stronger than α. It requires
that the value of the auxiliary variable aux (see Figure 16) be a null pointer (0p).

ζ(t) � α ∩ {((π , h), (�, H)) | π(t)(aux) = 0p} .

To define the guarantees of the mutator instructions, we first introduce some separa-
tion logic assertions in Figure 24 to describe states. Following Parkinson et al. [2006],
we treat program variables as resource and use ownp(x) and ownnp(x) for the current
thread’s ownerships of pointers and nonpointers respectively. They are interpreted un-
der (π , s, h), where s is the store of the current thread, π consists of the stores of all
the other threads and h is the shared heap. We use E1.fd �→ E2 to specify a single-
object single-field heap with E2 stored in the field fd of the object E1. The separating
conjunction p ∗ q means p and q hold on disjoint states. We define the disjoint union of
states in Figure 24(c). We use f1 � f2 as usual to denote the union of two partial func-
tions when their domains are disjoint. Since heaps are curried functions that first map
locations to objects, which then map field names to values, they can be transformed to
an uncurried form by the uncurry operator. We then use h1 ⊕ h2 to denote the union
when their domains of uncurry(h1) and uncurry(h2) are disjoint. The disjoint union of
states is defined based on the disjoint unions of the shared heaps and the stores for
each thread. We use E1.fd ↪→ E2 for E1.fd �→ E2 ∗ true and �x∈S.p(x) for iterated sepa-
rating conjunction over the set S. We overload the notations to the high-level machine
and use E1.fd �⇒ E2 for a single-object single-field heap at the high level.

In Figure 24(d), we define two forms of actions. p �t q represents the update over
the current thread t’s store and the shared heap, which is defined similarly as in
Figure 11(b). p�t q provided p′ ensures that the context p′ is not changed by the action.

In Figure 25, we give the guarantees of the high-level mutator instructions and the
transformed code, which are defined following their operational semantics. We use
(xp = n) short for (x = n) ∧ ownp(x) and (xnp = n) for (x = n) ∧ ownnp(x). When the
context is clear, we omit the superscript. The predicates blueobj and newobj denote a
blue object and a newly allocated object, which are defined in Figure 27. Each action
just accesses the local store of the mutator and will not touch the GC store.

The refinement between the write barrier at the low level and the pointer update
instruction at the high level is formulated as

(update(x, fd, E),R(t),Gt
write barrier) �t

α;ζ(t)�ζ(t) (x.fd := E,R(t),Gt
write pt) ,

where Gt
write barrier � Gt

write pt∪Gt
set dirty, that is, the guarantee of the low-level two-step

write barrier. Gt
write pt is the guarantee of the high-level atomic write operation. Recall

R(t) and R(t) are defined in Eq. (7.2) in Section 7.2. Since the transformation of other
high-level instructions is identity, the corresponding refinement proofs are simple. For
example, we can prove

(x := new(),R(t),Gt
new ∪ Gt

assgn pt) �t
α;ζ(t)�ζ(t) (x := new(),R(t),Gt

new ∪G
t
assgn pt) .

7.3.4. Rely-Guarantee Reasoning about the GC Code. We use a unary logic to verify the
GC thread. The proof details here are orthogonal to our simulation-based proof (but it
is RGSim that allows us to derive Theorem 7.1, which then links proofs in the unary
logic with relational proofs). Thus shortly we only give a sketch of the assertion lan-
guage, the unary logic, the precondition and the guarantee of the GC thread, the key
invariants, and the proof structure.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

Rely-Guarantee-Based Simulation for Verification of Program Transformations 3:43

(PVarList) O ::= • | x, O
(StateAssert) p, q ∈ LThrds× LStore× LHeap → Prop

(a) state assertions

B � λ(π , s, h). �B�(s,2) = true
emph � λ(π , s, h). dom(h) = ∅
ownnp(x) � λ(π , s, h). dom(s) = {x} ∧ s(x) = (, 0)

ownp(x) � λ(π , s, h). dom(s) = {x} ∧ s(x) = (, 1)

own(x) � λ(π , s, h). dom(s) = {x}
p ∗ q � λ(π , s, h). ∃π1, s1, h1, π2, s2, h2. p(π1, s1, h1) ∧ q(π2, s2, h2)

∧π = π1 ⊕ π2 ∧ s = s1 � s2 ∧ h = h1 ⊕ h2
t.x = E � λ(π , s, h). ∃n, b. π(t)(x) = (n, b) ∧ �E�(s,2) = n
E1.fd �→ E2 � λ(π , s, h). ∃n, n′. �E1�(s,2) = n′ ∧ dom(h) = {n′}

∧h(n′)(fd) = n ∧ dom(h(n′)) = {fd} ∧ �E2�(s,2) = n
E1.fd ↪→ E2 � (E1.fd �→ E2) ∗ true
Onp; Op � p � (ownnp(x1) ∗ . . . ∗ ownnp(xi) ∗ ownp(y1) ∗ . . . ∗ ownp(yj)) ∧ p

where Onp = x1, . . . , xi, • and Op = y1, . . . , yj, •
x ∈ S � ∃X.S = X � {x}
�x∈S.p(x) � (S = φ ∧ emp) ∨ (∃z, S′. (S = {z} � S′) ∧ (�x∈S′ .p(x)) ∗ p(z))

(b) shorthand notations for some state assertions (� and ⊕ defined below)

f1⊥f2 � dom(f1) ∩ dom(f2) = ∅
f1 � f2 �

{
f1 ∪ f2 if f1⊥ f2
⊥ otherwise

h1 ⊕ h2 �
{

curry(uncurry(h1) ∪ uncurry(h2)) if uncurry(h1)⊥uncurry(h2)

⊥ otherwise

π1 ⊕ π2 �

⎧⎪⎨⎪⎩
{t � (π1(t) � π2(t)) | t ∈ dom(π1)}

if dom(π1) = dom(π2) ∧ ∀t ∈ dom(π1). π1(t)⊥π2(t)
⊥ otherwise

σ1 ⊕ σ2 �
{

(π , h) if σ1 = (π1, h1) ∧ σ2 = (π2, h2) ∧ π1 ⊕ π2 = π ∧ h1 ⊕ h2 = h
⊥ otherwise

(c) disjoint unions

p �t q � {((π � {t � s}, h), (π � {t � s′}, h′)) | ∃s1, h1, s2, h2, s′1, h′1. p(π , s1, h1) ∧ q(π , s′1, h′1)

∧ (s = s1 � s2) ∧ (h = h1 � h2) ∧ (s′ = s′1 � s2) ∧ (h′ = h′1 � h2)}
p �t q provided p′ � (p �t q) ∩ ((p ∗ p′) �t (q ∗ p′))

(d) actions

Fig. 24. Semantics of basic assertions.

The unary program logic we use to verify the GC thread is a standard rely-guarantee
logic adapted to the target language. The assertions are defined in Figure 24 and dis-
cussed before. We show the inference rules in Figure 26. Rules on the top half are for

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

3:44 H. Liang et al.

G
t
assgn int � ∃x, n, n′. (x = n ∧ emph) �t (x = n′ ∧ emph)

G
t
assgn pt � ∃x, l, l′. (x = l ∧ emph) �t (x = l′ ∧ emph)

provided (l′ = nil ∨ ∃y. y = l′ ∨ ∃y, fd. y.fd �⇒ l′)
G

t
write data � ∃x, n, n′. (x.data �⇒ n) �t (x.data �⇒ n′)

G
t
write pt � ∃x, fd, l, l′. (x.fd �⇒ l) �t (x.fd �⇒ l′) provided (l′ = nil ∨ ∃y. y = l′)

G
t
new � ∃x. (x = ∧ emph) �t (x = l ∧ l.pt1 �⇒ nil ∗ . . . ∗ l.ptm �⇒ nil ∗ l.data �⇒ 0)

G(t) � G
t
assgn int ∪G

t
assgn pt ∪G

t
write data ∪G

t
write pt ∪G

t
new

(a) high-level guarantees

Gt
assgn int � ∃x, n, n′. (xnp = n ∧ emph) �t (xnp = n′ ∧ emph) provided (auxp = 0)

Gt
assgn pt � ∃x, n, n′. (xp = n ∧ emph) �t (xp = n′ ∧ emph) provided

(auxp = 0 ∗ (n′ = 0 ∨ ∃y. yp = n′ ∨ ∃y, fd. fd ∈ {pt1, . . . , ptm} ∧ y.fd �→ n′ ∨ n = n′))
Gt

write data � ∃x, n, n′. (x.data �→ n) �t (x.data �→ n′) provided (auxp = 0)

Gt
write pt � ∃x, fd, n, n′. (auxp = 0 ∗ x.fd �→ n) �t (auxp = x ∗ x.fd �→ n′)

provided ((n′ = 0 ∨ ∃y. yp = n′) ∧ fd ∈ {pt1, . . . , ptm})
Gt

set dirty � ∃n. (auxp = n ∗ n.dirty �→) �t (auxp = 0 ∗ n.dirty �→ 1)

Gt
new � ∃x, n, n′. (xp = n ∗ blueobj(n′)) �t (xp = n′ ∗ newobj(n′)) provided (auxp = 0)

G(t) � Gt
assgn int ∪ Gt

assgn pt ∪ Gt
write data ∪ Gt

write pt ∪ Gt
set dirty ∪ Gt

new

(b) low-level guarantees

Fig. 25. Guarantees of mutator instructions.

sequential reasoning. Most are exactly the same as separation logic [Reynolds 2002]
and omitted here. The figure only shows some rules we added for the GC-specific com-
mands (e.g., x := get root(y)) and some particular heap manipulation rules adapted
to our low-level machine model (e.g., free(x) just sets the object’s color to BLUE). The
concurrency rules in the bottom half follow standard rely-guarantee reasoning. The
soundness of the logic with respect to the operational semantics is straightforward
and we omit the proofs here.

To verify the GC code, we first give the precondition and the guarantee of the GC.
The GC starts its executions from a low-level well-formed state, that is, pgc � wfstate.
Just corresponding to the high-level WfState definition (see Figure 22), the low-level
wfstate predicate says that none of the reachable objects is BLUE, as

wfstate � �x∈[1..M].obj(x) ∧ (∀x. reachable(x) ⇒ not blue(x)) ,

where obj(x) means x is a low-level heap location with the pt1, . . . , ptm, data, color and
dirty fields, reachable(x) is defined similarly to the high-level definition in Figure 19,
and not blue(x) is defined in Figure 27. We define Ggc as follows.

Ggc � {((π � {tgc � s}, h), (π � {tgc � s′}, h′))
| ∀n. reachable(n)(π , h)

=⇒ #h(n)$ = #h′(n)$ ∧ h(n).color �= BLUE ∧ h′(n).color �= BLUE}

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

Rely-Guarantee-Based Simulation for Verification of Program Transformations 3:45

{(xnp = X ′) ∗ (1 ≤ ynp ≤ N)}x := get root(y){(xnp = X) ∗ (1 ≤ ynp ≤ N ∧ root(y, X))} (RT)

{x.color �→ }free(x){x.color �→ BLUE} (FREE)

{y, Onp; Op � x = X ∧ y = Y}push(x, y){y, Onp; Op � x = X ∧ y = X ::Y} (PUSH)

{y, Onp; Op � x = X ∧ y = X ′ ::Y}x := pop(y){y, Onp; Op � x = X ′ ∧ y = Y} (POP)

{p}C{q} (p � q) ⇒ G
Id;G {p}atomic{C}{q} (ATOM)

Id;G {p}atomic{C}{q} Sta({p, q},R)

R;G {p}atomic{C}{q} (ATOM-R)

p ⇒ ownnp(y) ∗ true R;G {p ∗ own(x) ∧ x ∈ y}C; y := y\{x} {p ∗ own(x)}
R;G {p ∗ own(x)}foreach x in y do C{p ∗ own(x) ∧ y = ∅} (P-FOREACH)

Fig. 26. Selected inference rules for GC verification.

The GC guarantees not modifying the mutator stores. For any mutator-reachable ob-
ject, the GC does not update its fields coming from the high-level mutator, nor does it
reclaim the object. Here # $ lifts a low-level object to a new one that contains mutator
data only.

#o$ � {pt1 � o(pt1), . . . , ptm � o(ptm), data � o(data)}
We could prove that Ggc does not contain more behaviors than AbsGCStep.

Ggc ◦ α−1 ⊆ α−1 ◦ AbsGCStep

We present the proof of the top-level collection cycle in Figure 28. One of the key
invariants used in the proofs is reach inv (defined in Figure 27). It says, if a reachable
BLACK object x points to a WHITE object y, then either x is dirty or a mutator is going to
dirty x (the predicate todirty(x, y) holds). The latter occurs when the mutator thread t
has done the first step of its write barrier update(x, fd, y). We have t.aux = x and from
the mutator’s guarantees (Figure 25(b)), we know t must be going to dirty x.

Since each instruction in the GC code is executed atomically, we need to stabilize the
pre- and postconditions when verifying it (e.g., see the ATOM-R rule in Figure 26). For
example, when reading a pointer field of an object to a local variable, the postcondition
should be stabilized since mutators might update the field.

Rgc;Ggc
{ ∃X, Y. (j = Y) ∗ (i.pt1 ↪→ X)

}
j := i.pt1;{ ∃X. (j = X) ∗ ptfd sta(i.pt1, X)

}
Here ptfd sta(i.pt1, X) says either the pt1 field of i is X, or i is (or is going to be) marked
as dirty. Similarly, when reading the color of an object, the postcondition should take

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

3:46 H. Liang et al.

obj(x) � x.pt1 �→ ∗ . . . ∗ x.ptm �→ ∗ x.data �→ ∗ x.color �→ ∗ x.dirty �→ ∗ true
blueobj(x) � x.pt1 �→ ∗ . . . ∗ x.ptm �→ ∗ x.data �→ ∗ x.color �→ BLUE ∗ x.dirty �→
newobj(x) � x.pt1 �→ 0 ∗ . . . ∗ x.ptm �→ 0 ∗ x.data �→ 0 ∗ x.color �→ BLACK ∗ x.dirty �→ 0
black(x) � x.color ↪→ BLACK

white(x) � x.color ↪→ WHITE

dirty(x) � x.dirty ↪→ 1
not blue(x) � ∃c. (x.color ↪→ c ∧ c �= BLUE)

not white(x) � ∃c. (x.color ↪→ c ∧ c �= WHITE)

not dirty(x) � x.dirty ↪→ 0
root(t, S) � λ(π , s, h). ∃st. st = π(t) ∧ S = {n | ∃x. st(x) = (n, 1) ∧ x �= aux}
edge(x, y) � ∃fd ∈ {pt1, . . . , ptm}. (x.fd ↪→ y)

pathk(x, y) �
{

x = y if k = 0
∃z. edge(x, z) ∧ pathk−1(z, y) if k > 0

path(x, y) � ∃k. pathk(x, y)

reachable(t, x) � ∃S, y. root(t, S) ∧ y ∈ S ∧ path(y, x) ∧ x �= 0
reachable(x) � ∃t ∈ [1..N] . reachable(t, x)

wfstate � �x∈[1..M].obj(x) ∧ (∀x. reachable(x) =⇒ not blue(x))

white edge(x, fd, y) � (x.fd ↪→ y) ∧ white(y) ∧ fd ∈ {pt1, . . . , ptm}
white edge(x, y) � ∃fd. white edge(x, fd, y)

todirty(x, n) � ∃t, S. (t.aux = x ∧ root(t, S) ∧ n ∈ S)

instk(n, A) � ∃n′, A′. A = n′ :: A′ ∧ (n = n′ ∨ instk(n, A′))
stk black(A) � ∀x. instk(x, A) =⇒ black(x)

reach inv � ∀x, y. reachable(x) ∧ black(x) ∧ white edge(x, y)

=⇒ dirty(x) ∨ todirty(x, y)

reach stk(A) � ∀x, y. reachable(x) ∧ black(x) ∧ white edge(x, y)

=⇒ dirty(x) ∨ todirty(x, y) ∨ instk(x, A)

reach tomk(A, xp, Sf , xn) � ∀x, fd, y. reachable(x) ∧ black(x) ∧ white edge(x, fd, y)

=⇒ dirty(x) ∨ todirty(x, y) ∨ instk(x, A) ∨ (x = xp ∧ fd ∈ Sf) ∨ (y = xn)

reach black � ∀x. reachable(x) =⇒ black(x)

ptfd sta(x.fd, y) � ∃n. (x.fd ↪→ n) ∧ (y = n ∨ dirty(x) ∨ n = 0 ∨ todirty(x, n))

newobj sta(x) � obj(x) ∧ black(x) ∧ ∀fd ∈ {pt1, . . . , ptm}. ptfd sta(x.fd, 0)

rt black(t) � ∃S. root(t, S) ∧ ∀n ∈ S. black(n)

rt black � ∀t ∈ [1..N] . rt black(t)
mark rt till(n) � ∀t ∈ [1..n] . rt black(t)
clear color till(n) � ∀x ∈ [1..n] . (x.color ↪→ BLACK =⇒ newobj sta(x))

clear dirty till(n) � ∀x ∈ [1..n] . not dirty(x)

reclaim till(n) � ∀x ∈ [1..n] . not white(x)

Fig. 27. Useful assertions for verifying Boehm et al. GC.

into account the mutators’ possible update of the color field in allocation and the up-
dates of pointer fields after allocation.

Rgc;Ggc

{ ∃X, Y. (c = X) ∗ (i.color ↪→ Y)
}

c := i.color;{ ∃X, Y. (c = X) ∗ (i.color ↪→ Y)

∧ (X = Y ∨ X = BLUE ∧ newobj sta(i))

}
Here newobj sta(i) says i points to a new object whose color field is BLACK, and each
pointer field is either 0 or the object is dirty. Both the predicates ptfd sta and newobj sta
are defined in Figure 27.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

Rely-Guarantee-Based Simulation for Verification of Program Transformations 3:47

{wfstate}
Collection() {
local mstk: Seq(Int);

Loop Invariant: {wfstate ∗ (ownnp(mstk) ∧ mstk = ε)}
while (true) {
Initialize();
{(wfstate ∧ reach inv) ∗ (ownnp(mstk) ∧ mstk = ε)}
Trace();
{(wfstate ∧ reach inv) ∗ (ownnp(mstk) ∧ mstk = ε)}
CleanCard();
{(wfstate ∧ reach inv) ∗ (ownnp(mstk) ∧ mstk = ε)}
atomic{
ScanRoot();
{∃X.(wfstate ∧ reach stk(X) ∧ stk black(X) ∧ rt black) ∗ (ownnp(mstk) ∧ mstk = X)}
CleanCard();

}
{(wfstate ∧ reach black) ∗ (ownnp(mstk) ∧ mstk = ε)}
Sweep();

}
}
{false}

Fig. 28. Proof outline of Collection().

The module MarkAndPush(i) will be called several times in the GC code, so we first
give its general specification here. When the object i is white, MarkAndPush(i) colors
it black and pushes it onto the mark stack.

Rgc;Ggc

{ ∃A. wfstate ∧ reach tomk(A, xp, Sf , i)
∧ stk black(A) ∧ (i = 0 ∨ obj(i))

}
MarkAndPush(i);{ ∃A. wfstate ∧ reach tomk(A, xp, Sf , 0)

∧ stk black(A) ∧ (i = 0 ∨ not white(i))

} (7.5)

Here as defined in Figure 27, reach tomk(A, xp, Sf , xn) means, if a reachable BLACK ob-
ject x points to a WHITE object y via the field fd, then one of the following cases holds.

(1) dirty(x)∨ todirty(x): x is (or is going to be) marked as dirty, as required in reach inv;
(2) instk(x, A): x is on the stack A;
(3) x = xp ∧ fd ∈ Sf : x is xp, and fd is a field in Sf ;
(4) y = xn: y is xn.

The case (2) will be useful during tracing when some objects have been colored black
and pushed onto the stack. We define reach stk to express that only cases (1) and (2)
are satisfied. We will discuss the uses of the last two cases later.

Every collection cycle in Figure 28 begins from a well-formed state with an empty
mark stack in the GC’s local store. Then the GC does the following in order.

(1) Concurrent Initializing (Initialize(), shown in Figure 29). We use
clear color till(n) to mean that the GC has done color-clearing from locations
1 to n in the heap, but there might still be black objects since the mutators could
allocate an black object after the GC’s clearing. We could prove reach inv holds
when the GC has cleared the colors of all the objects in the heap, as shown in the
following lemma.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

3:48 H. Liang et al.

{wfstate}
Initialize() {
local i: [1..M], c: {BLACK, WHITE, BLUE};
i := 1;

Loop Invariant: {(wfstate ∧ clear color till(i− 1) ∧ 1 ≤ i ≤ M + 1) ∗ ownnp(c)}
while (i <= M) { ... } // See Figure 15 for the full code

}
{wfstate ∧ reach inv} // using Lemma 7.2

Fig. 29. Proof outline of Initialize().

{(wfstate ∧ reach inv) ∗ (ownnp(mstk) ∧ mstk = ε)}
Trace() {
local t: [1..N], rt: Set(Int), i: [0..M];
t := 1;

Loop Invariant:

{
(wfstate ∧ reach inv) ∗ (ownnp(mstk) ∧ mstk = ε)

∗ (ownnp(t) ∧ 1 ≤ t ≤ N + 1) ∗ ownnp(rt) ∗ ownp(i)

}
while (t <= N) {

rt := get_root(t);

Foreach Invariant: {FInv}
foreach i in rt do {
{FInv ∧ i ∈ rt} // using Lemma 7.3
MarkAndPush(i);
{FInv ∧ i ∈ rt} // using Lemma 7.4
}
t := t + 1;{
∃X. (wfstate ∧ reach stk(X) ∧ stk black(X)) ∗ (ownnp(mstk) ∧ mstk = X)

∗ (ownnp(t) ∧ 1 ≤ t ≤ N + 1) ∗ ownnp(rt) ∗ ownp(i)

}
TraceStack();{
(wfstate ∧ reach inv) ∗ (ownnp(mstk) ∧ mstk = ε) ∗ (ownnp(t) ∧ 1 ≤ t ≤ N + 1)

∗ ownnp(rt) ∗ ownp(i)

}
}

}
{(wfstate ∧ reach inv) ∗ (ownnp(mstk) ∧ mstk = ε)}

where FInv � ∃X. (wfstate ∧ reach stk(X) ∧ stk black(X)) ∗ (ownnp(mstk) ∧ mstk = X)
∗ (ownnp(t) ∧ 1 ≤ t ≤ N) ∗ (ownnp(rt) ∧ ∀n ∈ rt. 0 ≤ n ≤ M) ∗ ownp(i)

Fig. 30. Proof outline of Trace().

LEMMA 7.2. wfstate ∧ clear color till(M) =⇒ reach inv.

That is, after initialization, if a BLACK reachable object x points to a WHITE object y,
then x must be a newly allocated object whose pointer field is updated and dirty bit
is (or is going to be) set to 1.

(2) Concurrent mark phase (Trace(), shown in Figure 30).
(a) The GC first calls MarkAndPush(i) to mark and push every root object. We

need the following two lemmas to relate the unified pre- and postconditions
of MarkAndPush(i) in (7.5) and the actual pre- and postconditions when calling
the module.

LEMMA 7.3. reach stk(X) =⇒ reach tomk(X, 0,∅, i).
LEMMA 7.4. reach tomk(X, 0,∅, 0) =⇒ reach stk(X).

Then by the CONSEQ rule, we can reuse the proof of MarkAndPush(i).

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

Rely-Guarantee-Based Simulation for Verification of Program Transformations 3:49

{∃X. (wfstate ∧ reach stk(X) ∧ stk black(X)) ∗ (ownnp(mstk) ∧ mstk = X)}
TraceStack() {
local i: [1..M], j: [0..M];

Loop Invariant:

{
∃X. (wfstate ∧ reach stk(X) ∧ stk black(X))

∗ (ownnp(mstk) ∧ mstk = X) ∗ ownp(i) ∗ ownp(j)

}
while (!is_empty(mstk)) {
i := pop(mstk);{
∃X ′. (wfstate ∧ reach stk(i :: X ′) ∧ stk black(X ′) ∧ obj(i))
∗ (ownnp(mstk) ∧ mstk = X ′) ∗ ownp(j)

}
j := i.pt1;{
∃X ′. (wfstate ∧ reach stk(i :: X ′) ∧ stk black(X ′) ∧ obj(i)

∧ ptfd sta(i.pt1, j) ∧ (j = 0 ∨ obj(j))) ∗ (ownnp(mstk) ∧ mstk = X ′)

}
{
∃X ′. (wfstate ∧ reach tomk(X ′, i, {pt2, . . . , ptm}, j) ∧ stk black(X ′) ∧ (j = 0 ∨ obj(j))

∧ 1 ≤ i ≤ M) ∗ (ownnp(mstk) ∧ mstk = X ′)

}
// using Lemma 7.5

MarkAndPush(j);{
∃X ′. (wfstate ∧ reach tomk(X ′, i, {pt2, . . . , ptm}, 0) ∧ stk black(X ′) ∧ (j = 0 ∨ not white(j))

∧ 1 ≤ i ≤ M) ∗ (ownnp(mstk) ∧ mstk = X ′)

}
...
j := i.ptm; MarkAndPush(j);{
∃X ′. (wfstate ∧ reach tomk(X ′, i,∅, 0) ∧ stk black(X ′) ∧ (j = 0 ∨ not white(j)))

∗ (ownnp(mstk) ∧ mstk = X ′)

}
}

}
{(wfstate ∧ reach inv) ∗ (ownnp(mstk) ∧ mstk = ε)}

Fig. 31. Proof outline of TraceStack().

(b) Then the GC calls the module TraceStack() (Figure 31) to perform the depth-
first traversal. The loop invariant reach stk holds at each time before the GC
pops an object from the mark stack. Suppose the top object i on the mark stack
points to a white object x. The GC does the following in order.
(i) Pop i. Then the black object i that points to x is not on the stack now.

(ii) Read the pt1 field of i to a local variable j. As we explained before, i.pt1
might not equal j since mutators could update this field. We only know
that ptfd sta(i.pt1, j) holds. Then, x might be either j, or pointed to by i via
fields pt2, . . . , ptm. Thus we get reach tomk(mstk, i, {pt2, . . . , ptm}, j) holds.
Formally, the following lemma holds.

LEMMA 7.5.
(A) reach stk(i :: X) ⇐⇒ reach tomk(X, i, {pt1, . . . , ptm}, 0);
(B) reach tomk(X, i, Sf , 0) =⇒ reach tomk(X, i, Sf , j);
(C) reach tomk(X, i, Sf , j) ∧ ptfd sta(i.fd, j) ∧ fd ∈ Sf=⇒ reach tomk(X, i, Sf \{fd}, j).

(iii) MarkAndPush(j). We can reuse the proof of this module again.
(iv) Mark and push other children. The proof is similar to the preceding two

steps, so we omit the discussions. Finally, reach stk holds because no reach-
able white object needs to rely on the reachability from i (it could be reach-
able from a child of i which is on the stack now).

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

3:50 H. Liang et al.

{(wfstate ∧ reach inv) ∗ (ownnp(mstk) ∧ mstk = ε)}
CleanCard() {
local i: [1..M], c: {BLACK, WHITE, BLUE}, d: {1, 0};
i := 1;

Loop Invariant:

{
∃X. (wfstate ∧ reach stk(X) ∧ stk black(X)) ∗ (ownnp(mstk) ∧ mstk = X)

∗ (ownp(i) ∧ 1 ≤ i ≤ M + 1) ∗ ownnp(c) ∗ ownnp(d)

}
while (i <= M) { ... } // See Figure 15 for the full code{
∃X. (wfstate ∧ reach stk(X) ∧ stk black(X)) ∗ (ownnp(mstk) ∧ mstk = X)

∗ ownp(i) ∗ ownnp(c) ∗ ownnp(d)

}
TraceStack();

{(wfstate ∧ reach inv) ∗ (ownnp(mstk) ∧ mstk = ε) ∗ ownp(i) ∗ ownnp(c) ∗ ownnp(d)}
}
{(wfstate ∧ reach inv) ∗ (ownnp(mstk) ∧ mstk = ε)}

Fig. 32. Proof outline of CleanCard().

{(wfstate ∧ reach inv) ∗ (ownnp(mstk) ∧ mstk = ε)}
ScanRoot() {
local t: [1..N], rt: Set(Int), i: [0..M];
t := 1;

Loop Invariant:{
∃X. (wfstate ∧ reach stk(X) ∧ stk black(X) ∧mark rt till(t− 1) ∧ 1 ≤ t ≤ N + 1)

∗ (ownnp(mstk) ∧ mstk = X) ∗ ownp(i) ∗ ownnp(rt)

}
while (t <= N) {

rt := get_root(t);
Foreach Invariant:{
∃X, Y. (wfstate ∧ reach stk(X) ∧ stk black(X) ∧mark rt till(t− 1) ∧ 1 ≤ t ≤ N ∧ root(t, Y)

∧ ∀n ∈ (Y\rt). black(n) ∧ rt ⊆ Y) ∗ (ownnp(mstk) ∧ mstk = X) ∗ ownp(i)

}
foreach i in rt do { MarkAndPush(i); }
t := t + 1;

}
}
{∃X. (wfstate ∧ reach stk(X) ∧ stk black(X) ∧ rt black) ∗ (ownnp(mstk) ∧ mstk = X)}

Fig. 33. Proof outline of ScanRoot() in an atomic block.

After tracing, we can ensure reach inv still holds. That is, if a black object x points
to a white object, then x must be (or is going to be) dirty and its pointer field is
updated by the mutators.

(3) Concurrent card-cleaning (CleanCard(), as shown in Figure 32). We reuse the proof
of TraceStack() via the frame rule. We can conclude reach inv is maintained at the
end of this phase.

(4) Stop-the-world card-cleaning.
(a) The GC first rescans the roots (ScanRoot(), shown in Figure 33) as if they

were dirty. Then reach stk and rt black hold. rt black says all the root objects are
black. Moreover, all the objects on the stack are black (stk black). The atomic
MarkAndPush(i) is proved similarly to the concurrent one (7.5) with the same
pre- and postconditions.

(b) Then the GC cleans the cards (the atomic CleanCard(), shown in Figure 34)
without the interference from the mutators. At the end, the mark stack is
empty and all the reachable objects are black (denoted by reach black). The

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

Rely-Guarantee-Based Simulation for Verification of Program Transformations 3:51

{∃X. (wfstate ∧ reach stk(X) ∧ stk black(X) ∧ rt black) ∗ (ownnp(mstk) ∧ mstk = X)}
CleanCard() {
local i: [1..M], c: {BLACK, WHITE, BLUE}, d: {1, 0};
i := 1;

Loop Invariant:{
∃X. (wfstate ∧ reach stk(X) ∧ stk black(X) ∧ rt black ∧ clear dirty till(i− 1)

∧ 1 ≤ i ≤ M + 1) ∗ (ownnp(mstk) ∧ mstk = X) ∗ ownnp(c) ∗ ownnp(d)

}
while (i <= M) { ... } // See Figure 15 for the full code{
∃X. (wfstate ∧ reach stk(X) ∧ stk black(X) ∧ rt black ∧ clear dirty till(M))

∗ (ownnp(mstk) ∧ mstk = X) ∗ ownnp(c) ∗ ownnp(d)

}
TraceStack();{
(wfstate ∧ reach inv ∧ rt black ∧ clear dirty till(M))

∗ (ownnp(mstk) ∧ mstk = ε) ∗ ownnp(c) ∗ ownnp(d)

}
}
{(wfstate ∧ reach black) ∗ (ownnp(mstk) ∧ mstk = ε)}

Fig. 34. Verification of CleanCard() in an atomic block.

{wfstate ∧ reach black}
Sweep() {
local i: [1..M], c: {BLACK, WHITE, BLUE};
i := 1;

Loop Invariant: {(wfstate ∧ reach black ∧ reclaim till(i− 1) ∧ 1 ≤ i ≤ M + 1) ∗ ownnp(c)}
while (i <= M) { ... } // See Figure 15 for the full code

}
{wfstate ∧ reach black ∧ reclaim till(M)}

Fig. 35. Proof outline of Sweep().

proof for the atomic TraceStack() is similar to the proof of the concurrent one
and omitted here.

(5) Concurrent sweep phase (Sweep(), shown in Figure 35). No matter how the mu-
tators interleave with the GC, all the white objects remain unreachable. Thus the
reclamation is safe that guarantees Ggc. After sweep, the state is still well-formed.

8. RELATED WORK AND CONCLUSION

There is a large body of work on refinements and verification of program transforma-
tions. Here we only focus on the work most closely related to the typical applications
discussed in this article.

Verifying compilation and optimizations of concurrent programs. Compiler verifica-
tion for concurrent programming languages can date back to work in Wand [1995]
and Gladstein and Wand [1996], which is about functional languages using message-
passing mechanisms. Recently, Lochbihler [2010] presented a verified compiler for
Java threads and proved semantics preservation by a weak bisimulation. He views ev-
ery heap update as an observable move, thus does not allow the target and the source
to have different granularities of atomic updates. To achieve parallel compositionality,
he requires the relation to be preserved by any transitions of shared states, that is,
the environments are assumed arbitrary. As we explained in Section 2.2, this is a too
strong requirement in general for many transformations, including the examples in
this article.

Burckhardt et al. [2010] present a proof method for verifying concurrent program
transformations on relaxed memory models. The method relies on a compositional

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

3:52 H. Liang et al.

trace-based denotational semantics, where the values of shared variables are always
considered arbitrary at any program point. In other words, they also assume arbitrary
environments.

Following Leroy’s CompCert project [Leroy 2009], Ševčı́k et al. [2011] verify compi-
lation from a C-like concurrent language to x86 by simulations. They focus on correct-
ness of a particular compiler, and there are two phases in their compiler whose proofs
are not compositional. Here we provide a general, compiler-independent compositional
proof technique to verify concurrent transformations.

We apply RGSim to justify concurrent optimizations, following Benton [2004] who
presents a declarative set of rules for sequential optimizations. Also the proof rules
of RGSim for sequential compositions, conditional statements, and loops coincide with
those in relational Hoare logic [Benton 2004] and relational separation logic [Yang
2007].

Proving linearizability or atomicity of concurrent objects. Filipović et al. [2010] show
linearizability can be characterized in terms of an observational refinement, where the
latter is defined similarly to our Correct(T). There is no proof method given to verify
the linearizability of fine-grained object implementations.

Turon and Wand [2011] propose a refinement-based proof method to verify concur-
rent objects. They first propose a simple refinement based on Brookes’ fully abstract
trace semantics [Brookes 1996], which is compositional but cannot handle complex
algorithms (as discussed in Section 2.2). Their fenced refinement then uses rely condi-
tions to filter out illegal environment transitions. The basic idea is similar to ours, and
the refinement can also be used to verify Treiber’s stack algorithm. However, it is “not a
congruence for parallel composition”. In their settings, both the concrete (fine-grained)
and the abstract (atomic) versions of object operations need to be expressed in the
same language. They also require that the fine-grained implementation should have
only one update action over the shared state to correspond to the high-level atomic op-
eration. These requirements and the lack of parallel compositionality limit the appli-
cability of their method. It is unclear if the method can be used for general verification
of transformations, such as concurrent GCs.

Elmas et al. [2010] prove linearizability by incrementally rewriting the fine-grained
implementation to the atomic abstract specification. Their behavioral simulation used
to characterize linearizability is an event-trace subset relation with requirements on
the orders of method invocations and returns. Their rules heavily rely on movers (i.e.,
operations that can commute over any operation of other threads) and always rewrite
programs to instructions, thus are designed specifically for atomicity verification. Com-
positionality is not considered in their work.

In his thesis [2008], Vafeiadis proves linearizability of concurrent objects in RGSep
logic by introducing abstract objects and abstract atomic operations as auxiliary vari-
ables and code. The refinement between the concrete implementation and the abstract
operation is implicitly embodied in the unary verification process, but is not spelled
out formally in the metatheory (e.g., the soundness).

Verifying concurrent GCs. Vechev et al. [2006] define transformations to generate
concurrent GCs from an abstract collector. Afterwards, Pavlovic et al. [2010] present
refinements to derive concrete concurrent GCs from specifications. These methods fo-
cus on describing the behaviors of variants (or instantiations) of a correct abstract
collector (or a specification) in a single framework, assuming all the mutator opera-
tions are atomic. By comparison, we provide a general correctness notion and a proof
method for verifying concurrent GCs and the interactions with mutators (where the
barriers could be fine grained). Furthermore, the correctness of their transformations

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

Rely-Guarantee-Based Simulation for Verification of Program Transformations 3:53

or refinements is expressed in a GC-oriented way (e.g., the target GC should mark no
less objects than the source), which cannot be used to justify other transformations.

Kapoor et al. [2011] verify Dijkstra’s GC using concurrent separation logic. To vali-
date the GC specifications, they also verify a representative mutator in the same sys-
tem. In contrast, we reduce the problem of verifying a concurrent GC to verifying a
transformation, ensuring semantics preservation for all mutators. Our GC verifica-
tion framework is inspired by McCreight et al. [2007], who propose a framework for
separate verification of stop-the-world and incremental GCs and their mutators, but
their framework does not handle concurrency.

Conclusion and future work. We propose RGSim to verify concurrent program trans-
formations. By describing explicitly the interference with environments, RGSim is
compositional, and can support many widely used transformations. We have applied
RGSim to reason about optimizations, prove atomicity of fine-grained concurrent algo-
rithms, and verify concurrent garbage collectors.

The compositionality of RGSim allows us to decompose the refinement for a large
program to refinements for basic transformation units (which are usually instruc-
tions). However, for those transformation units, we have to refer to the semantics of
RGSim (Definition 4.2) rather than syntactic rules to verify them, since Figure 7 pro-
vides only compositionality rules, with no rules for primitive instructions. This makes
the proofs a bit tedious and complicated. Also, RGSim cannot verify the atomicity of
concurrent algorithms with helping mechanism or speculations, such as the RDCSS
algorithm [Vafeiadis 2008]. Finally, as we mentioned in Section 4.3, RGSim cannot
ensure preservation of termination when establishing refinements. In the future, we
would like to extend RGSim with a more complete set of proof rules and with the sup-
port of liveness verification. We also hope to further test its applicability with more
applications, such as verifying STM implementations and compilers. It is also inter-
esting to explore the possibility of building tools to automate the verification process.

ACKNOWLEDGMENTS

We would like to thank Matthew Parkinson and anonymous referees for their suggestions and comments
on earlier versions of this article; Pierre Castéran and Sandrine Blazy for their generous help on the Coq
implementation and understanding co-induction; Aaron Turon for the insightful discussions on comparing
their and our work.

REFERENCES

Martı́n Abadi and Leslie Lamport. 1991. The existence of refinement mappings. Theor. Comput. Sci. 82, 2,
253–284.

Martı́n Abadi and Gordon Plotkin. 2009. A model of cooperative threads. In Proceedings of the 36th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’09). ACM Press, New
York, 29–40.

Katherine Barabash, Ori Ben-Yitzhak, Irit Goft, Elliot K. Kolodner, Victor Leikehman, Yoav Ossia, Avi
Owshanko, and Erez Petrank. 2005. A parallel, incremental, mostly concurrent garbage collector for
servers. ACM Trans. Program. Lang. Syst. 27, 6, 1097–1146.

Nick Benton. 2004. Simple relational correctness proofs for static analyses and program transformations. In
Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL’04). ACM Press, New York, 14–25.

Nick Benton and Chung-Kil Hur. 2009. Biorthogonality, step-indexing and compiler correctness. In Proceed-
ings of the 14th ACM SIGPLAN International Conference on Functional Programming (ICFP’09). ACM
Press, New York, 97–108.

Hans-Juergen Boehm. 2005. Threads cannot be implemented as a library. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI’05). ACM Press,
New York, 261–268.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

3:54 H. Liang et al.

Hans-Juergen Boehm and Sarita V. Adve. 2008. Foundations of the C++ concurrency memory model. In
Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI’08). ACM Press, New York, 68–78.

Hans-Juergen Boehm, Alan J. Demers, and Scott Shenker. 1991. Mostly parallel garbage collection. In
Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI’91). ACM Press, New York, 157–164.

Stephen D. Brookes. 1996. Full abstraction for a shared-variable parallel language. Inf. Comput. 127, 2,
145–163.

Sebastian Burckhardt, Madanlal Musuvathi, and Vasu Singh. 2010. Verifying local transformations on re-
laxed memory models. In Proceedings of the 19th Joint European Conference on Theory and Practice
of Software and the International Conference on Compiler Construction (CC’10/ETAPS’10). Springer,
104–123.

Coq Development Team. 2010. The Coq proof assistant reference manual. The Coq release v8.3.
http://coq.inria.fr/V8.3/refman/

David Dice, Ori Shalev, and Nir Shavit. 2006. Transactional locking ii. In Proceedings of the 20th Interna-
tional Conference on Distributed Computing (DISC’06). Springer, 194–208.

Tayfun Elmas, Shaz Qadeer, Ali Sezgin, Omer Subasi, and Serdar Tasiran. 2010. Simplifying linearizability
proofs with reduction and abstraction. In Proceedings of the 16th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’10). Springer, 296–311.

Xinyu Feng. 2009. Local rely-guarantee reasoning. In Proceedings of the 36th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL’09). ACM Press, New York, 315–327.

Ivana Filipović, Peter O’Hearn, Noam Rinetzky, and Hongseok Yang. 2010. Abstraction for concurrent
objects. Theor. Comput. Sci. 411, 51–52, 4379–4398.

David S. Gladstein and Mitchell Wand. 1996. Compiler correctness for concurrent languages. In Proceed-
ings of the 1st International Conference on Coordination Languages and Models (COORDINATION’96).
Lecture Notes in Computer Science, vol. 1061, Springer, 231–248.

Maurice Herlihy and Nir Shavit. 2008. The Art of Multiprocessor Programming. Morgan Kaufmann, San
Fransisco.

Charles A. R. Hoare. 1972. Proof of correctness of data representations. Acta Inf. 1, 4, 271–281.
Chung-Kil Hur and Derek Dreyer. 2011. A Kripke logical relation between ML and assembly. In Proceed-

ings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL’11). ACM Press, New York, 133–146.

Cliff B. Jones. 1983. Tentative steps toward a development method for interfering programs. ACM Trans.
Program. Lang. Syst. 5, 4, 596–619.

Kalpesh Kapoor, Kamal Lodaya, and Uday Reddy. 2011. Fine-grained concurrency with separation logic.
J. Philos. Logic 40, 5, 583–632.

Xavier Leroy. 2009. A formally verified compiler back-end. J. Autom. Reason. 43, 4, 363–446.
Hongjin Liang, Xinyu Feng, and Ming Fu. 2012. A rely-guarantee-based simulation for verifying concurrent

program transformations. In Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL’12). ACM Press, New York, 455–468.

Andreas Lochbihler. 2010. Verifying a compiler for java threads. In Proceedings of the 19th European
Conference on Programming Languages and Systems (ESOP’10). Springer, 427–447.

Andrew McCreight, Zhong Shao, Chunxiao Lin, and Long Li. 2007. A general framework for certifying
garbage collectors and their mutators. In Proceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI’07). ACM Press, New York, 468–479.

Matthew Parkinson, Richard Bornat, and Cristiano Calcagno. 2006. Variables as resource in hoare logics.
In Proceedings of the 21st Annual IEEE Symposium on Logic in Computer Science (LICS’06). IEEE
Computer Society, 137–146.

Dusko Pavlovic, Peter Pepper, and Douglas R. Smith. 2010. Formal derivation of concurrent garbage col-
lectors. In Proceedings of the 10th International Conference on Mathematics of Program Construction
(MPC’10). 353–376.

John C. Reynolds. 2002. Separation logic: A logic for shared mutable data structures. In Proceedings of
the 17th Annual IEEE Symposium on Logic in Computer Science (LICS’02). IEEE Computer Society,
55–74.

Jaroslav Ševčı́k, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagannathan, and Peter Sewell.
2011. Relaxed-memory concurrency and verified compilation. In Proceedings of the 38th ACM
SIGPLANSIGACT Symposium on Principles of Programming Languages (POPL’11). ACM Press, New
York, 43–54.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

�

�

�

�

�

�

�

�

Rely-Guarantee-Based Simulation for Verification of Program Transformations 3:55

R. Kent Treiber. 1986. System programming: Coping with parallelism. Tech. rep. RJ 5118, IBM Almaden
Research Center.

Aaron Turon and Mitchell Wand. 2011. A separation logic for refining concurrent objects. In Proceedings
of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’11).
ACM Press, New York, 247–258.

Viktor Vafeiadis. 2008. Modular fine-grained concurrency verification. Tech. rep. UCAM-CL-TR-726,
University of Cambridge, Computer Laboratory.

Viktor Vafeiadis and Matthew J. Parkinson. 2007. A marriage of rely/guarantee and separation logic.
In Proceedings of the 18th International Conference on Concurrency Theory (CONCUR’07). Springer,
256–271.

Martin T. Vechev, Eran Yahav, and David F. Bacon. 2006. Correctness-preserving derivation of concur-
rent garbage collection algorithms. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’06). ACM Press, New York, 341–353.

Mitchell Wand. 1995. Compiler correctness for parallel languages. In Proceedings of the 7th International
Conference on Functional Programming Languages and Computer Architecture (FPCA’95). ACM Press,
New York, 120–134.

Hongseok Yang. 2007. Relational separation logic. Theor. Comput. Sci. 375, 1–3, 308–334.

Received January 2013; revised September 2013; accepted November 2013

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 3, Publication date: March 2014.

