TMS320C674x DSP
CPU and Instruction Set

Reference Guide

I3 TExXAS

INSTRUMENTS

Literature Number: SPRUFESB
July 2010

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

l '{EXAS

NSTRUMENTS
Contents
=T =T = 17
1 0T LU 1 o T 19
1.1 L YT 1= 20
1.2 DSP Features and OPtiONS . .uueuuseisueerssssssersessss sttt sanesassssastsraretanrsraisesannerns 20
1.3 D 1] o] 11 (= od B = 22
1.3.1 Central Processing Unit (CPU)uuiiuiiiieeiiiiieiiteriessissssssssnssasssian s siassssssansssansssas 23
TG 307 11 (= 1 o /1= 0 T o 23
1.3.3 Memory and Peripheral OptiONSuueeeirsueeesrsistesirastesssaissesssaasessssinrssssaannressannnresins 23
2 CPU Data Paths and CONLIOl ...uuieiiiiiiiiiii s e e 25
21 0o [Tox 1T 26
2.2 General-Purpose RegISIEr FIlESuiiiiiiiiiii i st r s s s e s s rr e s s aa i n e s annnes 26
23 0 T g o g 29
2.4 Register File CroSS PathSuiiiueiiieiieiiie i s aas 30
25 Memory, Load, and StOre Pathis e 31
2.6 Data AdAreSS PathS .uuuuiuseiseiisiisiiiserrsrs s 31
2.7 (7= 110 1= 1T o 31
2.7.1 Special TIMiNg CONSIAEIrAtIONS . ..ueiiiuueeiiiiie st s raasae s saassessaaannessaaannrssaaannnes 33
2.8 (T a1 0 IR LYo 153 =1 gl 1= P 34
2.8.1 Register Addresses for Accessing the Control REJISIErS ...uvviiuiiiiiiiiiiriiiiriri e 35
2.8.2 Pipeline/Timing of CoNtrol REQIStEr ACCESSES . .uiiiiiuuuteirriitreriaitresiraistessaaisrssaaaanrssaaannnes 35
2.8.3 Addressing Mode Register (AMR)uueeiiiiiieesisineesaaaanressaantesseaanneessaanneessssnnnessensnnnes 36
2.8.4 Control Status RegIStEr (CSR) .uuuuuutiietirteiaterassssirs s ass s ae s sareransranns 38
2.8.5 Galois Field Polynomial Generator Function Register (GFPGFR)ciiiiiiiiiiiiiiiiiiinniiaeess 40
2.8.6 Interrupt Clear REQISIEr (ICR) 1.uuueeiiiieesisaineessasannesssaaneeessaanneessaansnesssssnnesssssnneessssnnnes 41
2.8.7 Interrupt Enable RegiSter (IER) ..uuuueiieiiiiiiriiri e s sar s s s annes 42
2.8.8 Interrupt Flag RegiSter (IFR) ..uuueeiiiiiieiiiiite st e raatse s sraase s ssaaae s ssaanan s s saannesaaannnes 43
2.8.9 Interrupt Return Pointer RegIiSter (IRP) ..uviiiiieeiiiiie s siee s seaeee s sssnnee s sannnessaannneesannnnnes 43
2.8.10 Interrupt Set RegIStEr (ISR) wuuueiuseiieiiiteiterasisa s s sa e s s aaar e aanns 44
2.8.11 Interrupt Service Table Pointer Register (ISTP) .o ernnnes 45
2.8.12 Nonmaskable Interrupt (NMI) Return Pointer Register (NRP) ...viiiiieiiiiii i siinneeennnnes 45
2.8.13 E1 Phase Program Counter (PCEL) ..uuiiuutirueiiteiisserintssneisssiasssanssansssnnsisnnssannsiannens 46
29 Control Register File EXIENSIONS .. .uiiiiieeiiitsetiiiee s iaaate s saaa s e ssaan s e s ssannesssannnasssaannnsssnnnns 46
2.9.1 Debug Interrupt Enable Register (DIER) ..uiiiiieiiiiiiiieiiiieessasseessssnnnesssssnneessssnnnesssnnnnes a7
2.9.2 DSP Core Number Register (DNUM) . .uuiiuseiiieiissirinsrineisisssassssiansassssnssssiss s sasesanns 48
2.9.3 Exception Clear RegiSter (ECR) ..uuuiiiuueeiiiiiieeiriitssasiaatssssaaasesssaanssssssaansssssaanssssannnnnes 48
2.9.4 Exception Flag RegiSter (EFR) ..uueiiiiiueeeiiiintesssaanneessaannsessaanneessssnnnesssssnnnesssssnnessssnnnes 49
2.9.5 GMPY Polynomial—A Side RegiSter (GPLYA) .uuiiuteiiiiritiiineiiissiiiss it 50
2.9.6 GMPY Polynomial—B Side RegiSter (GPLYB) ...iiiiiuiiiiiiiiieiiiiitesiranessisaisssssaainnsssaannness 50
2.9.7 Internal Exception Report Register (IERR) ...uueiiiiiiiiiiiiii s iiseessasseesssssnneessannneesannnnnes 51
2.9.8 SPLOOP Inner Loop Count REGISLEr (ILC) wuuvuuriruueirunrirseiannerissssinssrsesanssransssanneranssannns 52
2.9.9 Interrupt Task State RegiSter (ITSR) 1.uuueeiiiiiiiiiiiiieiirii i s ssainns s saaaaessaaannns 52
2.9.10 NMI/Exception Task State RegiSter (NTSR) ..uueiiiiiiutieriiinnrerraansressssnnnesssssnneesssssnneessnnnnes 53
2.9.11 Restricted Entry Point Register (REP) ...iuiiiisiiiiiii i e n e 53
2.9.12 SPLOOP Reload Inner Loop Count Register (RILC) ..uviiiiiiiiiiiiiesiiiiieeiriinssnsiineessnnnnees 54
2.9.13 Saturation Status REQISIEr (SSR) +iuuureeiiiiteetiaineeraaanrersaannterseaanneesraanneessassnnessessnnees 54
SPRUFE8B-July 2010 Contents 3

Copyright © 2010, Texas Instruments Incorporated

I3 TEXAS
INSTRUMENTS
www.ti.com
2.9.14 Time Stamp Counter Registers (TSCL and TSCH) ..uvuiiiiiiiiiiiiiiiii i rneenaes 55
2.9.15 Task State RegIStEr (TSR) ..iuuuueetiiieteiaaiateeraaatressaattessaanressaaannessaaannessaaanneessannnes 57
2.10 Control Register File Extensions for Floating-Point OPerationscivviieeiiiiinreiriiesiiinesiaainnes 58
2.10.1 Floating-Point Adder Configuration Register (FADCR) ...vvuuiiiuiirisiirinririssiiirriisssinseransiainess 59
2.10.2 Floating-Point Auxiliary Configuration Register (FAUCR)ciiiiiiiiiiiiiiiie s iiiinessaaineesanannees 61
2.10.3 Floating-Point Multiplier Configuration Register (FMCR)uvieiiiiiieiiiiiiieiiiisninnesessnnns 63
S T 0 Y TS T 65
3.1 Instruction Operation and EXecution NOtAtIONSueiiueeiiusiiisiriirirs i rar s sanreras 66
3.2 Instruction Syntax and OPCOde NOLALIONSeeeiiieteeiriitee s ra e s saaine s saaanresaaanressrannneesss 68
3.2.1 32-Bit OPCOUE MAPS +tetunreesiiannnessannnnessesnneessaanneessaanneesseansnessessnnesssssnneessssnnnessssnnes 69
3.2.2 16-Bit OPCOUE MBPS tuueeuuteiunnerseisuntssss e sas s sss e rasssaanssaas st sasssasesanssanns 69
3.3 Overview of IEEE Standard Single- and Double-Precision FOrMatsScoccvviiiiiiiniiiiiiiiiiieennianes 70
B T T Y [To [[= =T od [(o g T o T = L P 71
3.3.2 DOUDIE-PreciSion FOIMALS ..uuiuueirseiseeinseiaeerassssar e s s sian s ss s ss s aanrerannesnns 72
3.4 3= = Y] 0] £ 73
35 L 1= 111 @] o 1T = o] g 1 74
3.5.1 Example Parallel COOEuuiiuiiretiieiinte i ratsss s s sian s s r s 76
3.5.2 Branching Into the Middle of an EXeCUte PACKELeiiiiiiiiiiiiiii i i inre e annns 76
3.6 [©F0] g o 11 0T aF= U @] o =T - {0 g 1= 77
3.7 ST RN =T B =T -1 1T 77
3.8 RESOUICE CONSIIAINTS . uuuteiiiaeeeisaeeessra s e e st e et s aaa s s et saaaa s e s sa s e st aann e s s saaannesssannnnsssannnnnssn 78
3.8.1 Constraints on Instructions Using the Same Functional Unitccovviiiiiiniiiiiiiiieranannnes 78
3.8.2 Constraints on the Same Functional Unit Writing in the Same Instruction Cyclec.ccvvuen. 78
3.8.3 Constraints on Cross Paths (1X @nd 2X) ..uuvueeeiiiiiiiiiiiieei i irasne s saisss s ssaanessaannnnes 78
3.8.4 Cross Path StallS ..uuuiseisiisiiiiisriiii s 79
3.8.5 Constraints 0N LOAAS and SEOMES ...uiueeriutsiiseerneisserrseiase it arsssarsrasssinns 80
3.8.6 Constraints on LoNg (40-Bit) DAta ...uuueeeiiiiiiieiiiiieiriise s saaess s rraae s saainss s aaaanr e aaaanns 80
3.8.7 Constraints 0N ReQISIEr REAUS ...uvviiiiiieeiiiiiessiiinessaanreessaanseessaanneessaannnessessnneessnnnnes 81
3.8.8 CoNstraints 0N REQISIEr WIILES .uuuueiiueiiiteiitrisia s r e ra s aanes 81
3.8.9 Constraints 0N AMR WIIEES ..uuuueiiiiiiite it s aatre s sraase s saaae st saaaan s s aaannnsssaannresaannnes 82
3.8.10 Constraints 0N MUIICYCIE NOPS ...uiiiiiieiiiii i s aanree s saannressaannnessaannessaannneessnnnnes 82
3.8.11 Constraints on UNitleSS INSIIUCHIONS 1.uuiusiiiseiiie i s naaeens 82
3.8.12 Constraints on Floating-Point INSIIUCLIONSeeiiiiiiiiii i v aaanns 85
3.9 X Lo 1LY] o 1Y, Yo 1= 87
3.9.1 Linear AddresSiNg MOOEuuiuuiiiteiieiiite i et s e s s 87
3.9.2 Circular ADdresSiNG MOOEuuueeeiiiiieeiaaiteeraateesraasse s saaaaassssassessaaannnssaaannnesssannnes 88
3.9.3 Syntax for Load/Store Address GENEIatiONeeiieeieresrsssnreessaanreessaanneessaarneessessnnesssnnnnes 90
3.10 Compact INStructions 0N the CPU ...uiuiiiiiiiiii i s r s s e e asnns 91
3.10.1 Compact INSrUCHON OVEIVIEW ...ueiiuseesiiieeessaaatesssaasssessaaasasssaassessaaannnssaaannsssssnnnnes 91
3.10.2 Header WOrd FOMMEAL ..uuueiueisersersinsereiserserassaseresasssasrsssse s rarrassrnesassnns 92
3.10.3 Processing Of FEtCh PaCKetS ..uiureiieiiiiii i s s n e 96
3.10.4 EXxecute Packet RESIICHONSueeiiiiieiiiiiie s s e ssaaasas s saanase s saannessaannessanannnes 96
3.10.5 Available Compact INSIIUCHIONS .. .uveeiiireesiiineesseaineessaasnneessaannressasnnneessannneessssnnnessnnnns 96
3.11 INStruction CoOmMPALIDIIILY w.uuesisseites e 97
0 o [T3 B T4 o DT o o] (0 L 98
[T =] T PP PPPTRE 575
4.1 Pipeline OPeration OVEIVIEWuuiissiseiseesiats st tae e sass st rasstaaa s sasssannerannasnnns 576
OB R (o o 577
N I T o 0T [578
R T (=T o1 1 | 579
4.1.4 Pipeline Operation SUMIMAIYeeeeiraeeesaaaneesaaaanreeaaaanseesaaanseessaanssestaaannesssssnnsessnns 580
4.2 Pipeline Execution Of INSrUCHION TYPES 1.uuuueriiiiitteiriittesraante s ssaiste s taaaessasanrsssaanrssssannnnnsss 585
4.2.1 Single-CyCle INSIUCHIONS 1.uuutiseiiiti it s e s s e s a s sr s s s n s raneanaes 588
Contents SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

I3 TEXAS
INSTRUMENTS
www.ti.com
4.2.2 Two-Cycle Instructions and .M Unit Nonmultiply Operationsccevviiiiriieiniriiirinieia, 589
e B (o] 1= |] 0T (0] LN 590
4.2.4 Extended MUltiply INSTIUCHONS +.uuuuuseiiieesiriiesisair s srsiar e ss e s saaarae s saanssesaaannesannns 592
S S o T To I 1] 1 0 1o T N 593
T = - 1 Tod o T [£ 1 0T (o g N 594
4.2.7 TWO-CYCle DP INSIIUCHIONS .uvteiiisstesiiiunesisssssssaissesssasnssessaasssessaassnesisassnesisssnnssssnns 596
4.2.8 FOUr-CYCIE INSITUCTIONS . uuuseisssnatssasisserasessaatssaesrsesae s sastssansssaasaanssansssanrssnnsinnns 597
e B 1 I 1= (0T o) o N 598
4.2.10 Double-Precision (DP) Compare INSrUCHONS ...uueiiiiusereisiinresrsiinrssiriinssesiaiissssisainnssians 598
4.2.11 ADDDP/SUBDP INStrUCHONS +.uuuuttesssenseessssnneessasnneesssannnesssasnnesssaannnessmsnnnesssssnnesssnns 599
0 |V 1 = I 1 1 i (1 o 1T N 599
4.2.13 MPYID INSIIUCTION 4 uuttinatesssistnsssassse s ssasssesssansesssaaanssssaasnsesssanntesssannsnssssssnnssssnns 600
4.2.14 MPYDP INSITUCHON L utteiiittetteaeeesssaannesssaaaneessaannneesaanneessaannnessaannnessaannnesssssnneessnnn 600
4.2.15 MPYSPDP INSIIUCLION 1 .uueettiiiittetiaaaaessaaase s saaaase s ssaaan e e s saan s s s s sannesssaansnessaannnessnnns 601
4.2.16 MPYSP2DP INSIIUCHION uuutteiiiuntesissunesisnssesssaissesssaansssssaassssssassnnsssaassnssisssnnssssnns 601
4.3 FUNCtional UnNit CONSITAINTS 1. uutiussitesstisaterse s s rae s s a e s s s e e s e s s s n s sa e sa s e raneranes 602
T AN T U o @0 13 =1) N 602
4.3.2 M-UNit CONSIFAINTS utttiiuttesiisasesirnsae s ssaiseessaasn e s ssaas s et saaasssssaanssestaannesssssnnssssnns 606
4.3.3 L-UNit CONSITAINTS . uuteeiieeeessaanneesssannnesssanneesaasnneessaannnessaaannnessaannenssesnnnesssssnnessnnns 614
4.3.4 D-Unit INStruction CONSIIAINTSuueseiiieesiaeineesaaanr e ssaanr e e saaanra st saannasssaansnessaannnsssnnns 618
4.4 Performance CONSIAEIAtIONS ...ueuiiuueeiiisieeesra i raaare s s aare st saae st aaaa e s s aaannsssaannnsssannnnesss 621
4.4.1 Pipeline Operation With Multiple Execute Packets in a Fetch Packetccvcvvviiiiiiiiiiinnnns 621
V01 o3 o 1= 0 L@ TN 623
4.4.3 Memory CONSIAEIALIONS t.uuuusetiinasesissnesssaisnesssaasnesssaanssessaasssesssansnestsassnssssssnnssssnns 624
5 L= U 0 =P 627
5.1 (O YT 1= N 628
5.1.1 Types of Interrupts and SigNals USEdiviieeiiiiiiiiiiiiiieriie s sriaes s aaanns 628
5.1.2 Interrupt Service Table (IST) tiuuueeeiiiiieeeesianteessaaneeessaanneessaannnessassnneessssnneessesnnnersennnes 630
5.1.3 Summary of Interrupt Control REGISIEIS ...uuiieiiiiieiiiii i s raes 634
5.2 Globally Enabling and Disabling INteITUPLS ...uueeeeiiiiiieiiiiie e iri i r e s r s rare s s raanae s s saaanesannns 634
5.3 Individual INterrupt CONTIOl ... ueees it e s i e e s e s e e e s s sanee e s saanneesaaannnessaannneessannnnessannnnnssn 637
5.3.1 Enabling and Disabling INTEITUDPLS . .uevuueiretirieiineiirire s s sa s e ranesanes 637
TR S = 1 (1 LS 30) T 1 (= U 0] £ 637
5.3.3 Setting and Clearing INtEITUPLS ..uveuiieiueesresieeesssanresssannnesssannresssasnneessasnnnesssssnneessnnnnes 638
5.3.4 Returning From INtErruUPt SEIVICING «uuueeruusirnrirneiiee i iareasssiar s ranssanns 638
5.4 Interrupt Detection and PrOCESSINGuieiiiettetiiites e aaaiaae e ssain s s saaa s e s saantassaannsssaaannness 639
5.4.1 Setting the Nonreset INterrupt FIag ..ooueeeiiiii i i i e reasee e s seanee s saannnessannnnresaannnes 639
5.4.2 Conditions for Processing a NONreset INTEITUPLuueiieeriesiriiie i raneaanes 640
5.4.3 Saving TSR Context in Nonreset INterrupt ProCeSSING «.vuuueieiiiieteriiiireeiraieessrainnresaaanns 642
5.4.4 Actions Taken During Nonreset INterrupt ProCESSING «evvvriineterresneerrssneesssssnneessssnneessssnnnes 643
5.4.5 Conditions for Processing a Nonmaskable INterruptooevvieiiiiiiiiiiini s 643
5.4.6 Saving of Context in Nonmaskable Interrupt ProCeSSIiNgevvviiiieiniiiiiiiiiiiirniineennaness 646
5.4.7 Actions Taken During Nonmaskable Interrupt ProCeSSiNgevveerreiiiieeeriiiineesraninneesesnnness 646
5.4.8 Setting the RESET INEITUPE FIAQ - euueueneineeieineeraeeeaeeaeeeaeeaesaeaneanrsaneaeensansanrneanennans 646
5.4.9 Actions Taken During RESET Interrupt ProCeSSINGevviiieisririiineiiiiineiiaiinessaiinnsessanns 647
55 Performance CONSIAEIAtIONS ...uuiussiuersirstis st s e raranas 648
5.5.1 General PerfOrManCeooiiiiieiiiii e it ea s e s s et e e ssanne e ssanne et aaannnessannnneraaannnes 648
I o= 1T T (=T = ot 1o) o 648
5.6 Programming CONSIOEIAtiONS . .ueeiiiieeesesianteeseaaneeessaanneessaannnessassnnesssasnneessssnnnessesnnnessssnnnnns 648
5.6.1 Single ASSIgNMENt ProgramImMing . ..eu.ueessssssussssuseisseesmssssinsssnnsiannesasssissssaneiannerarsainns 648
TG0 N (=] (=0 T =T (1) 649
5.6.3 Manual Interrupt Processing (POING) ..ueeeieeieiesiiiieeiiisesssannresssasnneessasnneessaannneessnnnnes 650
ST T 01 651
SPRUFE8B-July 2010 Contents 5

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

(01 S U I ot =T o} 110 1 [PPSR
6.1 (O YT 1=
6.1.1 Types of Exceptions and Signals Usedccceviiiiiiiiiiiiiinniiiiinenaans
6.1.2 EXCEPLION SErVICE VECION wuviiiireeeiseineessaisneesssaanneessannnesssennneessnnns
6.1.3 Summary of Exception Control RegiSterscevviveririiiiinriiiiinnennnnns
6.2 [y Cot= o] (o] o I @0 11 o)
6.2.1 Enabling and Disabling External EXCEPLIONScvvviierreriiinnerriinnneessnnns
6.2.2 Pending EXCEPLONS ..uuuiiiuteiitiristiriaiie i risiar s ranesnnns
6.2.3 Exception Event ContexXt SAVING ..viviieeeiriiireiiiiireeirainessiaannnesaanns
6.2.4 Returning From EXCeption SErviCiNgeevvviverreriiineeerissnneersesnnnesennns
6.3 Exception Detection and ProCeSSING ..vvvueriveeiiteiineirinirinsiiireisinesineraneens
6.3.1 Setting the Exception Pending Flagcovieeiiiiiiiiiiiiiiiiiiians
6.3.2 Conditions for Processing an External EXCEPLioNcviviveveriiiineeninnnns
6.3.3 Actions Taken During External Exception (EXCEP) Processing
6.3.4 NesSted EXCEPLONS .ouiuueieiiiiiesiiiite s ssaiers s saanare s raannaesaanes
6.4 Performance ConSIderationSsiveeivevisissrisinseiiaserirnaa s
6.4.1 General PerformancCecuvvieeiiiiiiiiiiiini i
6.4.2 Pipeline INteractionc.eeeiiiiieieiiiii i rrire e raaas
6.5 Programming COoNSiderationsiiiveeeesieiererisnnneesieanneessssnnnesssssnneessnnnnes
6.5.1 Internal EXCEPLIONS .iuuuiiiuieiintiriitisintinse e raessia s
6.5.2 Internal Exception Report Register (IERR)coviiiiiiiiiiiiieiiiiieiinnns
6.5.3 Software EXCEPLION .oviiieeiiiiiieisiiintesessnneessannneessaanneessannnnesaanns
Software Pipelined Loop (SPLOOP) Buffer ..o
7.1 Software PIPeliNiNg «ovueivieiiiiiiiir i
7.2 Software PIPelining ..uoeeeeiiiiieiiiiii i s
7.3 IS 1011 To (oo)
7.4 SPLOOP Hardware SUPPOIT «..uueisstiissesiaseiaseisisssssssansesasssasssnsssannsianes
42 0 R I To o 1 = U 1=
7.4.2 Loop Buffer Count Register (LBC) ..uvvveiiiiiiiieiiiiiinisiiieeiinesnnnss
7.4.3 Inner Loop Count Register (ILC) ..uiiiieieiiiiiiiiiiiineesiaanessrnanneeaanns
7.4.4 Reload Inner Loop Count Register (RILC) ...uuueiiiiiiniriiiiiiineiiianennnns

7.45 Task State Register (TSR), Interrupt Task State Register (ITSR), and
NMI/Exception Task State Register (NTSR)vvvvviiiiiiiiiiiiniiine,
7.5 SPLOOP-Related INSIIUCIONS .uuueeiiiiaeeiiiiieessniieessaisse s sannssssaannesannns
7.5.1 SPLOOP, SPLOOPD, and SPLOOPW INStrUCLIONS +...vvvvueriinnerinnernnenns
7.5.2 SPKERNEL and SPKERNELR INStrUCIONS ...coiiiiieiiiiiiiiieiiiinneainnnes
7.5.3 SPMASK and SPMASKR INSIrUCHONS ..viiiiiuieiiiiiieeiiiiineiininnnenianes
7.6 Basic SPLOOP EXamMPIe ..ovuueeiiniiiiiiiie i s s es s nsnssnneenas
7.6.1 Some Points About the Basic SPLOOP Examplecccoivviiiiiinninnnnns
7.6.2 Same Example Using the SPLOOPW INStrUCIONcvvvviiuiieiiiinnneiinnnns
7.6.3 Some Points About the SPLOOPW Exampleccvvievviiiiiiiiiinninnenn.
7.7 [o 10 =01
7.7.1 Software Pipeline Execution From the Loop Bufferccevvviiiinniiinnns
7.7.2 Stage Boundary TEIMINOIOGY ..evvuerivueriieeiiierieiiiniiieiinrerineaainnss
7.7.3 Loop BUffer Operationcuvceieeeiiiiiieiiiieiiiane s reanee s raanneaanns
7.8 EXECULION PalterNS .uuuueseiiiiiee i st ss s as s aannes
7.8.1 Prolog, Kernel, and Epilog Execution Patternsccvvveviiineninninnnnss
7.8.2 Early-Exit EXecUtion Patternoiciieeiiiiii i rninne s anaas
7.8.3 Reload EXecution Patterncceeeiviiieesiiiiieiiiiesiinssirainneeaaanns
7.9 Loop Buffer Control Using the Unconditional SPLOOP(D) Instruction
7.9.1 Initial Termination Condition Test and ILC Decrementcvvvveneinnnns
7.9.2 Stage Boundary Termination Condition Test and ILC Decrement
7.9.3 Using SPLOOPD for Loops with Known Minimum lIteration Counts

Contents

Copyright © 2010, Texas Instruments Incorporated

SPRUFE8B-July 2010

I3 TEXAS
INSTRUMENTS
www.ti.com
7.9.4 Program Memory Fetch Enable Delay During EPilOgvveeivieiiiiiiiiniiiinie i enineanness 686
7.9.5 Stage Boundary and SPKERNEL(R) POSItION ..uvviuiiiisiiiiiiiiiiiiinisis s s naes 686
SN ST I Yo I =101 =T gl =1 o T 686
7.9.7 Restrictions on Accessing ILC and RILC ...viiuuiiiiiiiiiini i i ss s annes 690
7.10 Loop Buffer Control Using the SPLOOPW INSIIUCLIONuuueeiiiiiiiieiiiitesrrinres s srannee s snannee s anannnees 690
7.10.1 Initial Termination Condition Using the SPLOOPW CoNditioNevvviiiuiniiiiiniesiiiiinsinninness 691
7.10.2 Stage Boundary Termination Condition Using the SPLOOPW Conditioncvvevvieeinineinness 691
7.10.3 Interrupting the Loop Buffer When Using SPLOOPW ... rrrieeeennnees 691
7.10.4 Under-Execution of Early Stages of SPLOOPW When Termination Condition Becomes True
WHhile INtErruPt DIaINING . .eeuueessuseseeieesaste s erassae s sasss s st aaa s aastarsrannssanrsransins 692
7.11 UsiNg the SPMASK INSIUCHION . .uiitteiiiieeiaasaatesasaate e ssaana e s saanse s ssannessaaannnsssnnnnnessaannnes 692
7.11.1 Using SPMASK to Merge Setup Code EXampPleceiiiiiiieiiiiinieriiiiiisiissessinnnesasannns 693
7.11.2 Some Points About the SPMASK to Merge Setup Code Examplecoovvviiiiiiiiinininieninnnn, 694
7.11.3 Using SPMASK to Merge Reset Code EXamplevveeiiiiiiiiiiiiiiiinii e 695
7.11.4 Some Points About the SPMASK to Merge Reset Code EXamplecccevviiiinieiiiiiinneinniinnss 696
7.11.5 Returning from an INEITUPE .. .ueieeiie e r s s s s rar e raneaanns 696
7.12 Program Memory FetCh CONIOluuiuseiieeiiiii i s r s aaes 696
7.12.1 Program Memory Fetch DiSable ...ic.ueiiiiiiiiiii i s s 697
7.12.2 Program Memory FetCh ENADIEicueiiieiiiiiiiiiii it s s e e 697
00 T | 01T 00 £ 697
7.13.1 Interrupting the LOOP BUTfer . ..uuuiiiiie i e s s r s anaanees 697
7.13.2 Returning to an SPLOOP(D/W) After an INterrupt ..ovueevieeiiieiniteiierieisiersaee e saneaanees 698
45 TR T o= o) o) 698
7.13.4 Branch to Interrupt, Pipe-DOWN SEQUENCEeiiiiietiiiiiiieeiriinisssranssesisiissssssainnsssaainnns 698
7.13.5 Return from Interrupt, Pipe-Up SEQUENCE ...uuiiiuiiiiiiiiiiiitiiie it risssinrsssesansrannasnnss 698
7.13.6 Disabling Interrupts During Loop Buffer Operationcccevviiiisiiiiiiieeiiiiieeiraiinesaannneess 698
7.14 BranCh INSIUCHONS ...uuiistiiiseiiitinteii i e a e st e s e s e s s aanenanes 699
7.15 Instruction Resource Conflicts and SPMASK OpPerationuveeeivieriiisiinerieiriirisins i 699
7.15.1 Program Memory and Loop Buffer Resource ConfliCtScviiiiiiiiiiiiiiiiiiiiiie e 700
7.15.2 Restrictions on Stall Detection Within SPLOOP Operationoceeesiviissssissinesismiinneimiinnns 700
7.16 Restrictions on Cross Path STallSuvueeiiiiiiiiii i s 700
7.17 Restrictions on AMR-Related StallSueiiuseiiseiiiiiiiri i s 700
7.18 Restrictions on Instructions Placed in the Loop BUfer ...uvieeiiiiiiiiiii e e 701
8 L1 U I V] 1T T P PPN 703
8.1 L0 = T 704
8.2 (ST o1 1 o T 1Y o T[T 704
8.2.1 Privilege Mode After RESELiriiiiiiiieitiiaeetsaantee s sasnteessaanseessasnnessaaanneessannnnessnnnnes 704
8.2.2 EXecution MOOE TranSItiONS ..ueuuuseiseerssssssssseiasessassssiasssasssanssansssassssasstannssanssinns 704
S 20 TS U o 1= V7= 1/ o T [704
S0 S O 1= g 1V o[705
8.3 Interrupts and EXCeption HaNAIiNG «...eevueeiieiiieiin i r e s s rs s s n s e aanes 706
8.3.1 Inhibiting INterrupts iN USEr MOOEuuueiiiiiiiiiiiiiie i s ra e s s s e s araane e ssann e e s sanns 706
8.3.2 Privilege and INtEITUPLS . .uueetiiieestesieeeseasneessaanneesssannnesssannneessasnnnessasnnnessssnnneesssnnnes 706
8.3.3 Privilege and EXCEPLIONS .uuuiuutiruseiseeiassessnerseisns s sians s sas e st 706
8.3.4 Privilege and Memory ProteCHONeeeiiiiieeiiiiiesiaite s sraste s ssaae s saaanasssaaannssaaannnes 706
8.4 (@0 T=T= 11T S35 G =1 S 706
8.4.1 Entering User Mode from SUperviSor MOOEvviueiiieiiiiiiie i nsnesanes 707
8.4.2 Entering Supervisor Mode from USEr MOOEeviiiieiiiiiiiiie i ssaine s snaannnesaanns 707
A INSTrUCTiON CoMPaAtiDIlITY tuiniiiiiiii et e e eas 709
B Mapping Between Instruction and Functional Unitccoiiiiiiiiiiiiiicr e 715
C .D Unit InStructions and OPCOAE MaPS ..cueuiiuinieie it e et ee e e e e e e e eaeenenanens 721
Ccl1 Instructions Executing in the .D Functional UNitooeiiiiiiiiiii e rr e e s anne e 722
C.2 Opcode Map Symbols and MEaANINGS . ..ueeiiiiuuteiiniieiriitesiiaate s taaissssaaasnrssssaanrressannnns 722
SPRUFE8B-July 2010 Contents 7

Copyright © 2010, Texas Instruments Incorporated

I3 TEXAS

INSTRUMENTS

www.ti.com

O T 7 2 1 @] o Yoo o[- Y =T o1 724
C.4 16-Bit OPCOUE MaAPS .uuuuuteiiinteetaaaaeessaaaat e s saaaan e s s saannte s ssansa st saannessaaannnessaannnesssannnesssannnes 725
.L Unit Instructions and OPCOdE MaAPScuieiuiniiieieieeiee ettt e e et e e ee e e aneneaens 733
D.1 Instructions Executing in the .L FUuNCtional Unitceiiiiiiiiiiii i sesee s sesnnee s ssnnnneessnnnnneann 734
D.2 Opcode Map Symbols and MEANINGS . .euuueiruuriruseirneiiserire i irisr s rae s rasssanns 735
[20 T 1 2 @ o0 o L= /= L 735
D.4 16-Bit OPCOUE MaAPS tuuueteiiiineeetiainteeseaanntessaanntessaannesssasnneessssnnnesssssnneessssnnnessesnneessesnnnens 736
M Unit InStructions and OPCOAE MAPS ..vivieiiiiiiee et e e e e e e e eaenenens 741
E.l Instructions Executing in the .M Functional UNitooieiiiiiiii i e rr e s enneee s 742
E.2 Opcode Map Symbols and MEANINGS +..uuuueetiiuunesirisnesisaisresaaianressraasrastsaassessiaassnestaainnssssans 743
E.3 B2 = 1 @ o T Yo = /=T o £ 743
E.4 G T =71 oo Yo (= 1V o o1 744
.S Unit INStructions and OPCOTE MaPSuiuiiieiiiiei et et e e e et ae e e e e eeeeaeenns 745
F.1 Instructions Executing in the .S FUNCLoNal UNiteiiiiiiiiiiii i i s eiine e s s sssnr e sennnnee e sannnnenss 746
F.2 Opcode Map Symbols and MEANINGS +.ueuuutiiineiiteiieerits st ra s sais e i saneanaes 747
F.3 RG22 =T @ o Ta Lo [1V = o N 747
F.4 G 71 @ o Yot Yo (= 1V - o1 PP 750
D, L, 08 .S UNIt OPCOUE MAPS tuttieiiniitititiat ettt sttt ettt taetaeastaaaeaeanatrneneaennnes 757
G.1 Opcode Map Symbols and MEANINGSeeiiuiiiiiiieiiiaare s iaaaare s saaaase s saaaneesaaannressaaanreesaannnes 758
L b 1 oo 0 To L= 1o oL 758
L N G T = 1 @] oo Lo = Y =T o1 759
No Unit Specified Instructions and OPCOde MaPS ..c.cueiiiinii e e e e e areens 763
H.1 Instructions Executing With No Unit SPecifiedeeiiiiiiiiiii i e e 764
H.2 Opcode Map Symbols and MEaNINGS ...viuiieeteriiineesssaneesssasnneessasnneessssanressssnnneesssannnessesnnnesss 764
[PR G 1 = 1 A oo 0 o [1V T o 1 765
[PR T = @ o0 o L= /= L 765
RS AV A=Y Lo g T = 113 o] Y/ PP 769
Contents SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

I3 TEXAS
INSTRUMENTS
www.ti.com
List of Figures

1-1. TMS320C674X DSP BlOCK DIiagram uueuuseiseesssissssissseiassssassssissssssiassrassssisssrasssansesansssaneins 22
A O o B I =1 = B o 1 27
2-2. Storage Scheme for 40-Bit Data in @ RegISter Pailc.uuvieiiiieiiiiiii i sae 28
2-3. Addressing Mode RegiSter (AMR)eeiiiieiiiiiateerraae et s et et saaae e s saaan s s aaann e s aaaann e araannreraan 36
2-4. Control Status ReQiStEr (CSR) . uuuuiiuuteiiiiiieiirii i s r st rr e st as i n s as e saannneras 38
2-5. PWRD Field of Control Status RegiSter (CSR) ...u.uuttiiueiiiesiiieiiteiitiriasisss it rasssaasssinssannsiaeens 38
2-6. Galois Field Polynomial Generator Function Register (GFPGFR)ciiiiiiiiiiiii i naeee e 40
2-7. Interrupt Clear REGISIEr (ICR) ... uuuiieesiiieeesssiiate st ssaassee s saase et saaae s s asaanssssaannrsssannnnessns 41
2-8. Interrupt Enable RegiSter (IER)uueiiueiriitiite i riat st s s r s s s s s s s s s r s raae e rnns 42
2-9. Interrupt Flag ReGISIEr (IFR)ueeii ittt iia e e s e e s s s e s s s s e st s an e e s asann e s ssannnaessannnnessn 43
2-10. Interrupt Return Pointer RegiSter (IRP) ...uuuueiiiiiieiiies s ira e ss s s s s s s ann s sanneenss 43
2-11. Interrupt Set REGISIEr (ISR) «uuuuiiutiiteiiiteiie s et s r s s s et s s e s s an e aannens 44
2-12. Interrupt Service Table Pointer RegiSter (ISTP)uuuiiseiiieiiirie i raaeens 45
2-13. NMI Return Pointer Register (NRP)uu i s s s s s s s s s e s rannnaenss 45
2-14. E1 Phase Program CouNter (PCEL) ..uuuuuutireeiiteiaueerstssssssssissssansssassssassssnsssasssannssanessnnns 46
2-15. Debug Interrupt Enable Register (DIER)ttt r e e s s e e s s e e s s n e sranne e ens a7
2-16. DSP Core Number RegiSter (DNUM) . .uuiieeeiiiiteiisistesssassesssssssessssiassssssannssssannnssssannsnssss 48
2-17. Exception Flag RegiSter (EFR) ..uuueiiueiiiiiiiiie s s ss s s ss s sraa s raan s raaeaanns 49
2-18. GMPY Polynomial A-Side RegiSter (GPLY A) ...t iiiiiiteeiiaaee st s s raane s s r s asanreesaaanneesann 50
2-19. GMPY Polynomial B-Side (GPLYB) ..uuetiiiuuuteeiiuttessainssesiansssesisassssissinsssssainnnssssannnssssasnsnssss 50
2-20. Internal Exception Report Register (IERR) ..uvuuiieeiiiiiiiii s s assan e s rnns 51
2-21. Inner Loop Count REGISTEr (ILC) 1.uuuuueeiiiieeeiaiianeeeaaaaate s ssaaass et saansnessaannessaannssssanneessannnnessnn 52
2-22. Interrupt Task State ReGIStEr (ITSR) .. .uueuuruueeeiiiitteiraites s iraisse s tsaisrssaainnrssssannrressannsnssss 52
2-23. NMI/Exception Task State RegiSter (NTSR) ..uuuuiuteiiueiriiiiiieiisiirisis s sareraasssiasssanssanness 53
2-24. Reload Inner Loop Count ReIStEr (RILC) ..uuueiiietiiiiiitee it raaas e s saains e s saanne s ssannesssaanneessnn 54
2-25. Saturation Status ReGISIEr (SSR) «.uuuuuesiiiiiutieiiiie it iraire s taaanr s aaaasresssaannrsssannnnesss 54
2-26. Time Stamp Counter Register - LOW Half (TSCL)..uuuiuueiiiiiiiiiiiteiiirieisie s rseesissssiassnaesaneens 55
2-27. Time Stamp Counter Register - High Half (TSCH) ...ivviiiiiiiiiiiii i e e 55
2-28. Task State ReQIStEr (TSR) tuuuuutetiiuuteeisnnesssaiasesssastestsaassaessaassressaassnssaaaannssssaannrsssasnnnsssns 57
2-29. Floating-Point Adder Configuration Register (FADCR)uutiitiiiteiiiiiisis it raessissssnassanns e 59
2-30. Floating-Point Auxiliary Configuration Register (FAUCR)cuiiiiiiiiiiiie i rriie e er s e rnaanneeeas 61
2-31. Floating-Point Multiplier Configuration Register (FMCR).....uuiiiiiuiseiiiiieeiiiiis i sniinnssssaannsesas 63
3-1 Single-Precision Floating-Point Fieldsueiieiriiiiii i s s e raes 71
3-2. Double-Precision FIoating-Point FIeldS ... s e s r e s e e ranneeeas 72
3-3. Basic Format of a FetCh PacKetvveiiiiiiiiiiiiiiiiiiiiiiiii i e 74
3-4. Examples of the Detectability of Write Conflicts by the AssembIer.......ccveiiiiiii i raaaeeens 81
3-5. Compact INStruction Header FOIMALieieiiiiie i r e e s e e s sa e e saaanr e e saann e e saannneess 92
3-6. Layout Field in Compact Header WOrdc..ueeiiiiiteiiiitesirisesssasse s sssissssssainnssssaannnssssannsnssss 92
3-7. Expansion Field in Compact Header WOrdiieeiiiiiiiiiiirieinies i s sass s sssssnnns e ssnnes 93
3-8. P-bits Field in Compact Header WOId ... iiiiiteerrase s s ra e s s s ans s s saanr e s sannn e s ssanneeess 95
O 0 T= [T TS = o = 576
4-2. Fetch Phases Of the PIpelingciueirieeiiiii i e e e r s n e saneenas 577
4-3. Decode Phases Of the PIpeliNe ...t r e s rrane e s s r e s annnns 578
4-4. Execute Phases of the Pipelingovueeiiiii i s s ananns 579
-5, PIPEINE PRaSES oottt e 580
4-6. Pipeline Operation: One Execute Packet per Fetch Packet.......cooviiiiiiiiiiiiiii i eaniaes 580
4-7. Pipeline Phases BlOCK Diagramu s .uesesirssesisissesississssssainressaassssssasssssssaisssssssinnsssssinnnes 583
SPRUFE8B-July 2010 List of Figures 9

Copyright © 2010, Texas Instruments Incorporated

I3 TEXAS
INSTRUMENTS
www.ti.com
4-8. Single-Cycle INStrUCtION PRaSESuuiiiueiiiiiiiiii i r s s e s saneeaas 588
4-9. Single-Cycle Instruction Execution BIOCK DIiagramvessivisssriseinisiiiseiineiisississsiseaisesanneas 588
4-10. TWO-CyCle INSIIUCHION PRASES ... uutsiiiiteiiiiietssie st s aats et saaaaa et saaas e s asaanesasannressannnes 589
4-11. Single 16 x 16 Multiply Instruction Execution BIOCK Diagrami......cuvveeriueiriuiiriieiiiieninenneiainnnans 589
4-12. Store INSIUCHON PRaSES .. uuuisiiiisiiiieii i e e s s s r e e s n e e aannnns 590
4-13. Store Instruction Execution BIOCK DIiagrameeiseieeeiisiiisessiissssssaisssesiassssssssisnssssasnnsessannnes 590
4-14. Extended Multiply INStrUCtiON PRaSES .. .uuiietiiiiiii i s e s raneeaas 592
4-15. Extended Multiply Instruction Execution BIOCK Diagramccvviiieiiiiiiiieeiiiinesaniiansssnannnseanannss 592
4-16. Load INSIIUCHION PRASES t1uuuiistiiistirissiiistiiseiiterasstrssssase et sassesaanerassssistssassranneraisesinnsins 593
4-17. Load Instruction EXecution BIOCK DIagramvseisesirusssinssiisessistssnsssseiaisssansssassesansiannssannsins 593
4-18. Branch INSIrUCHON PhaSES ..uuuseiiiiiiseiiiire e s s ra e naneenas 594
4-19. Branch Instruction Execution BIOCK Diagrameuueseeeeiriiiseiiainnesisissssisaissssisainnsessaannssssannnes 595
4-20. Two-Cycle DP INSIrUCHON PRASES 1.uiiuuteiieiiiaiiiitinieiriessras s s s s s e s s s sann e saaeaaannaans 596
4-21. Four-Cycle INStrUCHION PRaSEsuuiiiiiiiiiie i r st r st e s s aaare e s ra e e s saann e s aannneeanannns 597
4-22. INTDP INSIIUCHON PRASES uutiuutiiisterissiiistisseiineiisssnisseriseisistsasssanesassssiansrassiaineraiesinnsins 598
4-23. DP Compare INStrUCtON PhaSEsSuueiiueiiiiiiiiiiiiiie it sa s aan e raneeaas 598
4-24. ADDDP/SUBDP INStrUCION PRASES . vuuustiissiiseiineiasssnisssrassssisssssssisesassssaasssassssnsssasesansssas 599
4-25. MPYI] INStrUCON PhaSeS . uuuiiisiiiisiiiiieiiiiiir i e a s ra e aanenaas 599
4-26. MPYID INSIrUCHON PRaSES . uuiuutiisiiiintiiatire it i sa e s s s s s s s s s san s sa s san e saneaanneras 600
4-27. MPYDP INStrUCHON PRaSES .uuusiiteiistiiite it s s ra st raa e e aaneeaas 600
4-28. MPYSPDP INStruCtion PhaSES .uuiiuiiiisiiiistiiiiiiiiiiiiissisi i it rasesanssnas 601
4-29. MPYSP2DP INStIUCHON PRaSES . s uutistiietirteiiterastssisre s sasssareas s s sasssannesaisssannsras 601
4-30. Pipeline Operation: Fetch Packets With Different Numbers of Execute Packets.........cooeeviiiiiiiiiininnns 622
4-31. Multicycle NOP in an EXECULE PACKEL.uiiiueeiiiiiiiiiiiiiieiriise i ss e s ssann e asannes 623
4-32. Branching and MUIICYCIE NOPSuuiiiueiiit i s s a e ra e e saneeaas 624
4-33. Pipeline Phases Used DUriNg MEMOIY ACCESSES ...uuuurrrrrunreerraantaetraanseessaansesssaannssssannnsessannnes 624
4-34. Program and Data Memory StallSeeeiiiiieiiiii s s s 625
o I 101 1= 0T 01 ARST=T 1o I Lo 630
5-2. Interrupt Service FEtCN PacCKet ...ttt et e st e s rraan e s s s n e s aannr e e aaannaeeas 631
5-3. Interrupt Service Table With Branch to Additional Interrupt Service Code Located Outside the IST......... 632
5-4. Nonreset Interrupt Detection and Processing: Pipeline Operationcvvviiiieiiiiieiiiiriinnneiaaes 641
5-5. Return from Interrupt Execution and Processing: Pipeline Operationuveveeeiiiiiieriiinneriaainness 642
5-6. CPU Nonmaskable Interrupt Detection and Processing: Pipeline Operationvviveiiiiiineiiniinnnenn. 644
5-7. CPU Return from Nonmaskable Interrupt Execution and Processing: Pipeline Operation..................... 645
5-8. RESET Interrupt Detection and Processing: Pipeline Operationo.veeveierierenerieineaeraeaeaesaeanss 647
6-1. Interrupt Service Table With Branch to Additional Exception Service Code Located Outside the IST 656
6-2. External Exception (EXCEP) Detection and Processing: Pipeline Operation.........cevvveiviniiinrinnneinnes 660
6-3. Return from Exception Processing: Pipeline OPeration.c.vveeeeeiiiiineriaiiieesaainresraannsesiaannneess 661
6-4. NMI Exception Detection and Processing: Pipeline Operationcivviiesiiriiieeiniieiiiisesainnenss 663
6-5. Double Exception Detection and Processing: Pipeline Operation........ccvvviivieiiiiieiniiirinneinaes 664
7-1. Software Pipelined EXECULION FIOWuiiiseiieiiiiir i s s r e aaes 668
7-2. General Prolog, Kernel, and Epilog EXecution Patternc.evuviiiiiiiiiiiii i nsiinesssnnnnes 681
7-3. Single Kernel Stage EXECULION Patternueiiueirietiiieiiieeiieris i r s saassass s s sansaanes 681
7-4. Early-EXit EXECULION Patlerncoii ittt et e s s e s s s e e s saann e s ss i n e e ssannne s saannnenss 682
7-5. Single Loop Iteration EXECULION PatterN ..u....eseiiiieieiiiieesisiise s sssinressaasressaansessaannnesss 682
7-6. Reload EXECULION Paltlerm . .u sttt ss s s st s e s s a s s s e s tae s san s s aannsraneannns 683
7-7. Reload Early-EXit EXECULION PAEIM ...iieeiiiiiiiteiraiatesssaaase s ssaanae st saannne s ssannsssaannressaannnanssn 683
7-8. Instruction FIow USING Rel0Adiuuueeiiiiiiiiii i s s e s s rannee e 689
7-9. Instruction Flow for strepy() Of NUIL SENG uvevueeiiiiiin i s e rae s 692
10 List of Figures SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

I3 TEXAS

INSTRUMENTS

www.ti.com
C-1. 1 0r 2 Sources INStrUCION FOMMIAL ... uueeeeiseeeesseaeeeessaanneessaanneessaanneesssannnesssaannnesssannnessnnnnnees 724
C-2. Extended .D Unit 1 or 2 Sources INStruCtion FOrMAat........eeiiiiiie i rannnaeeas 724
C-3. ADDAB/ADDAH/ADDAW Long-Immediate OperationSuseiveiusssiisissnssiiiinnssssiinnressannnnesiannnesss 724
C-4. L0oad/Store BasSiC OPEratiONS «.uuuuessuseiutessesssssrsstass s saats s ssassssisssatstanesansssansssnneianes 724
C-5. Load/Store Long-Immediate OPEratioNSueieseesisssrseirssisisssisseiasserassssisrsrass e asssanrsraeianns 724
C-6. Load/Store Doubleword INStruCtioN FOIMALuuiueesiiiiseiriies i issinessssinnrssssannresssannnnesss 724
C-7. Load/Store Nonaligned Doubleword INStruction FOrMAtcvviieeeiiiiieeisiaieesessnrrereannnnessannnneess 724
C-8. DOff4 INSIrUCHION FOIMAL ...settiii et it e et e e e s s ae e s sr e e s saa s e s ss s e e s sann e e s sannnessaannnesss 725
C-9. DOffADW INSEIUCHION FOIMAL ... uuetiiiseeeisiiiaeeiss e sr s et s aae st saiaae st ss e e s s s an e s s s sann s s ssannnnnsss 725
C-10. Dind INStIUCHION FOMMAL «vteteesseeeeesseasneessaaaneeessaanneessaanneessaannnessaannnessasnneessannnnessannnnnsss 726
C-11. DINADW INSErUCHION FOMMAL ... ueeeiiiaeeeisa et e ss s aatee s s s aae e s sa e e s saaan e s ssaane s saaanneessannnnessaannnesss 727
(Ot I I 1 Tl [TS £ B od 1T o 0 0 T 727
C-13. DINCDW INStrUCHON FOIMAL ... ueeetsieieeessesaeeesssaaeeessaanneessaannnessaannnessaaanneessaannnessannnnessannnnnsss 728
(O To =T o | £ 1o 1o o T o T o - 728
C-15. DdeCDW INSIIUCHION FOMMAL 1. uuuetisseseissseesssanesssaates s saasse st ssasae et ssaaanssssannesssannnnsssannnnnsss 729
C-16. DSt INSIrUCHION FOMMAL «veeeetseeneeesssaaneessssaneeesssanneessannneessaannnessaannnessasnnneessannnnesssnnnnnsss 729
C-17. DX20P INSHUCHON FOIMMAL ... aeeei ittt it rr e et e et e e s rsaae e s sa e e s saann e s ssann e e saannnaessannnnnsss 729
C-18. DX5 INSIIUCTION FOMMIAL . uttttisaseissiaessssasesssase s ssaasee s saaaae et saaaan st asaan s s ssaanressannnnessannnnnsss 730
C-19. DX5P INSIIUCHON FOMMAL. 1. utt sttt ate s r e e e s e s e e s e s e e s s e s sa e e sa e s san s s sn e sanneannes 730
C-20. DXL INSIIUCTION FOMMAL . .eteiiieeeise e ieee e st e ss e e e e s s aee e s ssaaae et saaan e s saann e s ssan s e e ssannnnessannnesss 730
L@ T I o I 1 1 (1 Tox 10 TN o 10 - 731
D-1. 1 0r 2 Sources INStrUCHON FOMMAL ...ueeiieeeeseeeeees s aanee s ssaneeessannessaasnnnessasnnnessaannneessannnnersnn 735
D-2. Unary INSIIUCION FOMMIAL. ... eeee i ete it e e st e e s s e e s ss e e s saa s e s s aan e e s ssannn s ssannnaessannnnssn 735
D-3. 1 or 2 Sources, Nonconditional INStruCtioN FOrMat. . ..uiuiiiiiieiiiirisiiireisressissssatsressssrsnssresssssrnns 735
[S e B | =) o £ o] o T o T o - P 736
[R T IC T [1S3 (T o o] 4 - | N 736
D-6. Ltbd INStrUCHON FOIMAL. .. sseesiiseeeieseee st e e s s aae e s ss e e s ss s ae s ssaan e s s s s ann e s s s anan e s sannnnsss 737
[R R 2o [1] 1 8o o o 4 g = | 737
D-8. LX5 INSIIUCLION FOMMAL ..eeeiisiieeeaaiete e ss e e e s saaaee s ssaaa e s saann e s saann e e s s sannne s s sannnasssannnnnsss 738
D-9 (5T T [TS £ 14 1T o 0 T 738
D-10. LX1C INSIrUCHON FOMMAL 1. uueeesseeee e seeseeesseanee e ssaanneessaannnessaannnessaasnnnessasnnnesssannnnnssannnnnsss 739
[O I 1 1] 10T o o = 739
E-1. Extended M-Unit with COmpOoUNd OPerationNSeeseiriuteesiiinesirinnesiraieressainnresssannrsessaannnesss 743
E-2. Extended .M-Unit Unary INStruction FOIMAtoueeiiueiiieiiiiieiiieiiie it siar s anness 743
E-3. Extended .M Unit 1 or 2 Sources, Nonconditional INStruction FOrmMatvvviviiiriiiiiiiiiiirrrrrennnannanss 743
S Y G 1 =1 T 1o o T o T = 743
L T Y e 3 1) o 1 o TN o g = 744
F-1. 1 0r 2 Sources INStrUCHION FOMMAL ...t e e s e et s a e e s s saan e s s saan e e s aaanneesrannnnensnn 747
F-2. ADDDP/ADDSP and SUBDP/SUBSP INStruCtion FOrMAL ...uvviiueseiiiiiinesiniinnneissinnessninnsssssannnnesss 747
F-3. ADDK INStrUCHON FOMMAL 11 uuueeetteeeesseseeessaaneeessaannnessaannnessaannnessaanneessaannnesssannnnnssannnnnsss 747
F-4. ADDKPC INStUCHON FOIMMAL. ...ttt e eraiate e rs e st sa e et saaaa e s saann e e s saann e e s saannnessaannnnnssn 748
F-5. Extended .S Unit 1 or 2 Sources INStrUCtioN FOMMAt ... uuuseiiiiieesiiiiees s ssaiaresssaaansessannneesss 748
F-6. Branch Using a Displacement INStruCtioN FOMMALuueiuiiiisririeisieeiiesinerinsssiessaasianeranessinnss 748
F-7. Branch Using a Register INStruCtion FOIMALueeiieiiiiee e ra e e raa e s ssanr e s srannne s raannaess 748
F-8. Branch Using a Pointer INStruCtion FOIMALvvuuursiiiiineiiiiees i issierssssisrssssannrssssannnnesss 748
F-O. BDEC/BPOS INStrUCHON FOMIAL «.uuueeesisseeeessaneeessaasnnesssasnnessaasnneesaasnnnesssannneessaannnnsssnnnnnsss 748
F-10. Branch Using a Displacement with NOP INStruction FOrmMat.......c.uviiiiieiiiiiiiiiiiii s eesanneens 748
F-11. Branch Using a Register with NOP INStruCtion FOrMALvviiiiuueeiiiiieiiiiieissiirsssniinrssssannnness 748
F-12. Call Nonconditional, Immediate with Implied NOP 5 Instruction FOrmatcccevviiiirerrsinneerrnnnnnenss 749

SPRUFE8B-July 2010 List of Figures 11

Copyright © 2010, Texas Instruments Incorporated

I3 TEXAS
INSTRUMENTS
www.ti.com
F-13. Move Constant INStrUCHION FOIMAL. .. .cuieetieieeessaanreeesaanene s saannnessaannnessaasnnressaannnnesaannnnnsns 749
F-14. Extended .S Unit 1 or 2 Sources, Nonconditional INStruction FOrmat.......uevviiiirrriiiniiiiierrernnnnennss 749
F-15. UNary INSIrUCHION FOMMIAt. ... useesiiieeeeisatsessaatee s ssaaase s ssaaae s saaaae st ssaan e s s san s e st sannnnessannnnnsss 749
L I T 1= (o @ o1 U1) 0 749
F-17. SDS7 INSIIUCHION FOMMIAL. ...ttt et et r e e e s e e e s s aae et saaan e s saa s e e s saann e e s saannnasssannnnnssn 750
LR TR ST 01U o 1 1 1 Tox 10 TN o g0 - 750
F-19. SCS10 INStrUCHON FOMMAL 1 1uuueeeeseeeeesesneeessaanneessaanneessaannnessaannneesaasnnnessaannnesssannnnnssannnnnsss 750
F-20. SDS7C INSIUCHION FOMMAL .. uueeeeii et e it e e et e et s ae e s ssaae e s saa s e s saann e e s saannn e s ssannnasssannnnsss 751
F-21. SbUu8C INStrUCTION FOIMAL 1. uuueeesiisieeeiii it e s et s s e s sra s e s ss s an s s s s s aann e s s sannn e e s sannnesss 751
F-22. S3 INStrUCHON FOMMIAt. .ttt tieesteeseesee st e e ssaanee e ssaannnessaannnessaannnessaannnessaannnesssannnnnssannnnnsss 751
G T ST T [1S3 (BTt o) o 0] 0T N 752
F-24. SMVK8 INSIIUCHION FOMMIAt. 1. uuutetiseeeissetetssate st saaaee s ss e et ssaaa e s saaan e s s s annn e s saannnnsssannnnnsss 752
F-25. SShS INStrUCTON FOMMIAt. ..ttt s se e s e e s e anee e ssaaanee s saannne s saannnessaannnessaannnensaannnnnssannnnnsss 753
F-26. S2Sh INSIIUCTION FOMMIAL. ...ttt e e ra e e s s are et saaaae et saa s e s saann e e s saann e e s saannnasssannnnnssn 753
F-27. SC5 INSIIUCHION FOMMAL 4 auisaeet it sss et r st e e s s e et ss e e s ss e e s s s an e e s s s aann e st sannnnessannnnsss 754
F-28. S2eXt INStIUCHON FOMMAL .. . ueeeeiseeeessee e e se s e e s saaanee s s sannnnessaannesssaannnessasnnneessannnneseannnnensnn 754
F-29. SX20P INSIUCHON FOIMMAL 41 uuuatiuteiiseeristesas et ra s s s e s a s s s e s a s s s e taar e ran e e snns 755
F-30. SX5 INSIIUCHION FOMMIAL 4 auiiseesiiseeesss e s s st e et s s aae et ss e e s saaaa e s saaaan e s s s an s e s s sannnessannnnsss 755
F-31. SXL INSIrUCHON FOMMIAL «eeeesseseeessesaneeessaaneee s saannnesssannnessaaannnesaaannnessaannnnessannnnnssannnnnsss 756
F-32. SX1D INSIIUCTION FOMMIAL. e eetei it it e e e e e e e s e e e s saasae et saaa s e s sa s e e s ssann e e s saannnasssannnnnssn 756
G-1. LSDMVLO INStrUCHION FOMMAL ... uustiiseeeiiiaeesssiaere s aatse s saasaes s ssasae st asaan s s ssann s s ssannnnsssannnnnsss 759
G-2. LSDMVIT INSIIUCION FOMMIAL .. .uteeisiieeessesseeesssanee e ssaaneee s saannn e s saannnessaannnessasnneessannnnessannnnnsss 759
LT T S B)t Ko [1S3 (U o T o - | 760
G-4. LSDXL INSIUCHON FOIMAL .. useseiiiiaeetisiiaee s iates s ee e s sa e et sa e st ss e e s s saan e s s sannnessannnnnsss 761
H-1. DINT and RINT, SWE and SWENR INStruction FOIMatvveeeuiiiirrreeieesiiirreseesrennnnnsssrrersennnnnnnns 765
H-2. IDLE and NOP INStrUCHON FOMMALciiieiiiiiiiteeaiate e ss e e s saaase s ssaann s s ssann e s saanneessannnaensnn 765
H-3. Loop Buffer, Nonconditional INStruction FOrMALeuiiiuineiiiieiiiiii i saannaenss 765
H-4. Loop Buffer INStruCtioN FOMMAL.....cuueeiitiiieiie i s r e s s s r s s r e ae s snns 765
[ST U] o I [1S3 (U0 o] 3= 765
H-6. USPIdr INSrUCHION FOMMAL 1. . uesei i it ssa e s ss e et s s e et ss s e s ssaan e s s s s aann e s s sannn e s s sannnnnsss 766
H-7. USPK INSEIUCHION FOMMAE. .t iuuteiateiseisatessesee s e e s s s s s e e s e s s e s s s s s a e ta e s s na s s n s s aeananns 766
H-8. USPM INSrUCHON FOIMAL eeeeiieee it e te e e s e e s ss e ase s sa e n e s s aaann e s ssannn s s sannnnessannnessn 766
L S TR U1 T o N T3 £ BTt o o 0 4= 767
12 List of Figures SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

I3 TEXAS
INSTRUMENTS
www.ti.com
List of Tables
2-1. 40-Bit/B4-Bit REQISIEr PaUIS 1uuuuiistirseiiitiisrie i s 28
2-2. Functional Units and Operations Performedvueeiriiiiesiiiesiiiis s ssainnr s ssinnnssssannnnsnss 29
P2 T /T To 01 o R g o 01T T 31
2 /[To 0 o TR S 11 g 0 01T T 32
2-5. Modulo Arithmetic fOr FIEld GF(23) «.uuuiieiitie it e ettt st e s e e e s e e e aasaeaeaasaeaneansanannanens 33
P22 T O o g1 10 =0 £) 1= £ 34
2-7. Addressing Mode Register (AMR) Field DeSCHPLONSueiiiiiiiieiiiiieeraiie e saaaire s ananre e arannneeens 36
2-8. BIOCK Size CalCUlatioNS ... uutiissiiiteiieisiaiiis st 37
2-9. Control Status Register (CSR) Field DeSCHPLONS . .uuiueeiiuiirintiriieiiieeiitesire i sareraesainns 38
2-10. Galois Field Polynomial Generator Function Register (GFPGFR) Field Descriptions.........ovvveeveiiiinnnnn. 40
2-11. Interrupt Clear Register (ICR) Field DeSCIPLONS . .uuueeiiieteeisisnnesiainsnssssiissssasiinessssannnesssannnessas 41
2-12. Interrupt Enable Register (IER) Field DESCHPONS .uuiuueeiietirstirseiiieeritesirernssisiesasssansraneaaanns 42
2-13. Interrupt Flag Register (IFR) Field DeSCHPIONS uuetetiiieteetaaaeeesaaaneessaaanre s asaanreessannnaessaannnesss 43
2-14. Interrupt Set Register (ISR) Field DeSCIPlONS .. uuuuueteiriitresriires s issinesssainrsssaannressaannrnssss 44
2-15. Interrupt Service Table Pointer Register (ISTP) Field DeSCHPONS ...vvueiiiiiiiiieiiiniris i raeeenees 45
2-16. Control Register File EXIENSIONS ...uuueeiiiieeraattessaansessaansesssaanneesaaanneesaaannsessaannneessannsnssss 46
2-17. Debug Interrupt Enable Register (DIER) Field DeSCHPONS .uvviiiueieiiiiiieeiiiiinrsirniinnsessinnrsessannnnenss 47
2-18. Exception Flag Register (EFR) Field DeSCrIPtONS .uuvueiiiuiiiiiiiiiieiiieris i rissssies s snnnssane e 49
2-19. Internal Exception Report Register (IERR) Field DeSCPtiONSuieiiiiiiieiiiiieeirainreersannnresrannneeens 51
2-20. Interrupt Task State Register (ITSR) Field DeSCIPLONS +.uuuutetiiiueteiiiiinesisiinrsissisressainnnssrsaanrneess 52
2-21. NMI/Exception Task State Register (NTSR) Field DeSCriptioNS.....cuevveiriuiiriiiiieiiieisrirernneaniness 53
2-22. Saturation Status Register Field DeSCPLIONS 1uutvuseiisetristirisririseiaissrarirrasisr s rareaessanns 54
2-23. Task State Register (TSR) Field DeSCIPUONS +.uuuuereiiiietreiristnesiiitnessaisessssiisnssssaaneessaannesias 57
2-24. Control Register File Extensions for Floating-Point Operationsvvveeiviiiiiiiiiiiiri i ieennes 58
2-25. Floating-Point Adder Configuration Register (FADCR) Field DeSCriptionsccevviiiiieieiiiiieeriiinneeanns 59
2-26. Floating-Point Auxiliary Configuration Register (FAUCR) Field DeSCriptionscueviviiierriirinneseirinnnness 61
2-27. Floating-Point Multiplier Configuration Register (FMCR) Field DeSCriptionscivvvivieiiiiisiiireinnnininnss 63
3-1. Instruction Operation and EXeCUtion NOTAtIONSueteiiiitei i ra e ar e s ra e srannne s rannneeess 66
3-2. Instruction Syntax and OPCOde NOLALIONS . ..uueeeiruuuererriitresrranres s isainrssaaisrsssaaanrssssannsnssss 68
3-3. |EEE Floating-Point NOTALIONS ... uutiiseiiteiieesits e ssas s ss s ssasssa s st st e s s asessn s sannsaanness 70
3-4. Special SiNgle-PrecCiSioN ValUBSuuiueiiisiieiie i s ra s aanes 71
3-5. Hexadecimal and Decimal Representation for Selected Single-Precision Values.........cccvvviiiiiiiiiinnnnnn. 71
3-6. Special DoUDIE-PreCiSION ValUBSuuueiieeiistisite st sr s s st s s s r s s saeeaannens 72
3-7. Hexadecimal and Decimal Representation for Selected Double-Precision Values........c.vvveiviniiiineinnnnn. 72
3-8. Delay Slot and Functional Unit LAtENCY ..uuuueeeiiiieeeeiniitsessaassesisassesisaisnssssainsssssainnnssssannrsssss 73
3-9. Registers That Can Be Tested by Conditional Operationscvvveeivieriiisriteriiriiisineaaainns 77
3-10. Indirect Address Generation for LOAd/STOreueiuseiissirisiirisriiie i aanns 90
3-11. Address Generator Options fOr LOAA/STOIE ...ueuisiueeeiiiiitseiriitseiriites s sasisessssaanrssssaannressas 90
3-12. CPU FetCh PaCKel TYPES utiuutiunteistersttsat et rasss st s tra s saasssaar e saassaaa s saassaresanessanns 91
3-13. Layout Field Description in Compact Instruction Packet Headercoviiiiiiiiiiiiiii e eas 92
3-14. Expansion Field Description in Compact Instruction Packet Header........ccvvviiiiiiiiiiiiiiiiiiiiniineens 93
3-15. LD/ST Data Size SelECON . uuuuettteiiisiatere et s s s s s s et sa e s aa s tanr e ranearnns 94
3-16. P-bits Field Description in Compact Instruction Packet Header.........oviiiiiiiiiiiiiiiiiriie e aaeeeees 95
3-17. Available CompPAact INSIIUCHIONS wuuuueeeiiiiieeissiite st aaase s tr e s tsaaae s ssan s s s saannnesssanrnnsss 96
3-18. Relationships Between Operands, Operand Size, Functional Units, and Opfields for Example Instruction
(N) 100
3-19. Program Counter Values for Branch Using a Displacement Examplec.ccvviiiiiiiiiiiiiiniiiieiieeens 152
SPRUFE8B-July 2010 List of Tables 13

Copyright © 2010, Texas Instruments Incorporated

I3 TEXAS
INSTRUMENTS
www.ti.com
3-20. Program Counter Values for Branch Using a Register EXampleccoviiiiiiiiiiiiiiiiiinieeinaes 154
3-21. Program Counter Values for B IRP INStruction EXampleooiieiiiiiiiiiii i reiinne s anaaeees 156
3-22. Program Counter Values for B NRP Instruction EXamplecoviiiueiiiiiiiiiiiii i snaaee e 158
3-23. Data Types Supported by LDB(U) INSIIUCHON ... u ettt iier s s ssessansssinnsrnasannes 279
3-24. Data Types Supported by LDB(U) Instruction (15-Bit OffSet)uueeiiiiiiii i naeeee 282
3-25. Data Types Supported by LDH(U) INSIFUCHION ...uuuuuesiiiiissiiiiissssiissessssisessssinnsssssannnssssannnnesss 288
3-26. Data Types Supported by LDH(U) Instruction (15-Bit OffSEt)cvueeeiiiiineiiiiierssiireernnnnnresnnnnnness 290
3-27. Register Addresses for Accessing the Control REQISLEISuviiiieeiiiiii i raanaaeeas 378
3-28. Field Allocation in StG/CYC Fild .uuunuueeeiiiiie i r e s s s st s s aaannees 482
3-29. Bit Allocations to Stage and Cycle in Stg/CYC Fieldvueiiieeiiiiiii i 482
4-1. Operations Occurring During Pipeling PhaSesiieiiiiiiiiiiiii i rr e sa e e aanns 581
4-2. Execution Stage Length Description for Each Instruction Type - Part Aeviiiiiiiiiiiiiiiiiiinnaes 585
4-3. Execution Stage Length Description for Each Instruction Type - Part Boovvviiiiiiiiiiiiiiiiinineens 586
4-4. Execution Stage Length Description for Each Instruction Type - Part Ceviiiiiiiiiiiiiiiiiiiieeniaees 586
4-5. Execution Stage Length Description for Each Instruction Type - Part Dc.uvviiiiiiiiiiiiiiiniiienninees 587
4-6. Single-Cycle INStruCtiON EXECULION . .uuuuuiietsiseiiitsissssiteraasssiatsssssssesasssans s sassesaaessanssanssaas 588
4-7. Multiply INSTFUCHION EXECULION ... uuesiiiiieeiiae e e et e ss e e et saaase e s saaann e s ssann e s saannessaannnesaannnns 589
4-8. Store INStrUCHON EXECULION «.uuuueeseiiittetiiite i e s ss it e s s e s s s e s sa s s e s sa s e s asann e s aaannnes 590
4-9. Extended Multiply INStruCtioN EXECULION ...uuuttiuseiiieeiiesite it s s e s s s s ss e aan e saneeans 592
4-10. Load INSIIUCHION EXE@CULION. 1. eteetsateetaa e e s s ae e s ssan s e s ssann e s s saansa s s saanna et saannnessannnnnessannnes 593
4-11. Branch INStrUCHION EXECULION ... uueetistetissaeessaaeesss s e s ss e e ss s se et saanse et saannnessaannnssssannnes 594
4-12. Two-Cycle DP INStrUCtON EXECULION +.uuueiisteiseisississssatesaessassssassssesssssansssansesaasssinrsannssns 596
4-13. Four-Cycle INStrUuCtION EXECULIONueetseiiiiieeisaaieesasaaas e s ssaanse s ssaanne st saannnsssaannnsssaannnsssnannnes 597
4-14. INTDP INSIrUCLION EXECULION uuuuutetisatesisssesssassessssinsesssansesssaansssssanssssssasnnnsssssnnnsssssnnnes 598
4-15. DP Compare INStrUCtiON EXECULION .. u sttt isiesirsesate s ss s sassra e sa s s s s saas s saaesanesaneeaas 598
4-16. ADDDP/SUBDP INStruCtion EXECULION .uuuussisseiiseiassssssesseisisssssssaasesassssansssasssannesassesannssns 599
4-17. MPY] INSIrUCHON EXECULION 1 uuuuattetisttetsasaeesssiaee st s s ss s e s s s s s e s saaaa s st ssanan e s asannssssannnns 599
4-18. MPYID INSIrUCHION EXECULION 11 uuttistesssisssssatetaeesass s sas s sas s s s ssaassaan s s e s san s s sa s san s sanneaannssas 600
4-19. MPYDP INStrUCHION EXE@CULION .. uutettiaeeisaiaee e s aate e ssaaas s e s saaase e s saaann e s saannnessaannessaannnessannnes 600
4-20. MPYSPDP INStrUCHION EXE@CULION 4 tutuusteeissssessssesssssnesssassssssanssssssaassnsssssnnnssssssnnsssssnnnns 601
4-21. MPYSP2DP INStrUCHON EXECULION 1. vt stisuasisaseitesssssasssasssn s saasssasnesaasssanrssasssanssaessannssns 601
4-22. Single-Cycle .S-Unit INStruCtion CONSTIAINTS. .. uuuseiiseerissiiisrriseisisierire i ranreaeaannsras 602
4-23. DP Compare .S-Unit INStruction CONSIIAINTS .. uueeiiiueeeiisiinneesriisssssiaissssiasssssssiinnssssainnressannnes 603
4-24. 2-Cycle DP .S-Unit INStruction CONSIIAINTS +.uvuuuseiieeiinserisserneisissssas s sasessanrssisssannssasesanessas 604
4-25. ADDSP/SUBSP .S-Unit INStruction CONSIIAINTS ... uuussissssiisseriseisisssrisssisesaissrassssassasinsiainssanneias 604
4-26. ADDDP/SUBDP .S-Unit INStruction CONSIIAINTS +.uuuuueesissisnssrsinsssisanssssssaisssssssisnssssinnnssssannnes 605
4-27. Branch .S-Unit INStruCtion CONSIIAINTS . .uuuuutiseiieeiisterisserias s s e s sannsrasssanseras 605
4-28. 16 x 16 Multiply .M-Unit INStrucCtion CONSIIAINTSuuueeeiiiieeeaaiateereaaares s saannesssaannssanannrssaaannnes 606
4-29. 4-Cycle .M-Unit INStrucCtion CONSIFAINTS . .uuuiisseeiisiaeeessiinressaiassesraassssisassesasassnssssaannressannnes 607
4-30. MPYI .M-Unit INStruCtion CONSIIAINTS .. uuusuutsiseinasirse st srse st sar s s sanesias 608
4-31. MPYID .M-Unit INStruCtioN CONSIrAINTS ... uiieteeiiaiieesaaiansessaaanre e ssaanse st saansasssaanneesaaannnsssannnnes 609
4-32. MPYDP .M-Unit INStruCtioN CONStraINTS .. uuuuissessssiueeessisnrsssassssesiaasssssisaissssisaisnssssaannressannnns 610
4-33. MPYSP .M-Unit INStruCtion CONSIIAINTS .. uuuuussiseinssissesnsesasessasts s s s sansssasresanssainrsanesias 611
4-34. MPYSPDP .M-Unit INStruction CONSIIAINTS +.uvuuseiiuseiassessneriseisissirss i s aaneraisesannsias 612
4-35. MPYSP2DP .M-Unit INStruction CONSIraINTS. .. uuuesisiseesissinnessainsesssanssesssassssssssissssasannnssssannnes 613
4-36. Single-Cycle .L-Unit INStruCtion CONSIIAINTS .. uuueiiueeiistisisseriseisissrsssane i s e saeesannsras 614
4-37. 4-Cycle .L-Unit INStrUCtION CONSIIAINTS . .uueiiteeiaiieeesasaaeee s saaanse s ssaaase st saannasssaannnssaaannnsssaannnes 615
4-38. INTDP .L-Unit INStruCtion CONSIIAINTS . uuussissseesssaessssianssssassssssansssessasnssssasasnnssssasnnrsssannnes 616
4-39. ADDDP/SUBDP .L-Unit INStruction CONSIIAINTS ... uuuuesiusesiateiiseisisnssissssseiasssansssassssinsisinrsassias 617
14 List of Tables SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

I3 TEXAS

INSTRUMENTS

www.ti.com
4-40. Load .D-Unit INStruCtiON CONSIIAINTS. .. uusiiettrse it iaatesiate s srassare e s s s saassaaaeaainesaneeras 618
4-41. Store .D-Unit INStruCtion CONSIIAINTS +.uuusisssssseiiseesiseirs e s siar s sase s e s rareaaannsans 619
4-42. Single-Cycle .D-Unit INStruction CONSIIAINTS . .uuuesiiiieeeinsiineerrirasrsiiaisssssiasssssasainnsssaaannressannnes 620
4-43. LDDW Instruction With Long Write INStruction CONSLIAINTS ...vviueirieiiiiriiieiiie i risiaeisiersaeeas 620
4-44. Program Memory Accesses Versus Data LOad ACCESSES ..uuuriirriereririanrrriiaatrsssaanrssaaannressaannnes 625
o O 101 0= 1] o 70 111 629
oL 10117 (0T 01 A @] o] B (T L] 1= £ 634
5-3. TSR Field Behavior When an INterrupt iS TAKENueeiiiie i i saiaee s inr e s s nanr e e asnnnaeeas 643
5-4. TSR Field Behavior When an NMI INterrupt iS Taken...ov.eeeiiiiiiesiiiiiiiiis i s rsanneeeas 646
6-1. Exception-Related CONtrol REGISIEIS .. .uuiut ettt i sareranes 655
6-2. NTSR Field Behavior When an EXCeption iS TaKeN.....uuiiieeiisiiririiiseiniiisinerasiasssiassasenanes 658
6-3. TSR Field Behavior When an Exception is Taken (EXC = 0)..uiiuuueeiiiiiuneiiiiinnreriiinrsssainsesiannnnenss 661
7-1. SPLOOP INStruction FIOW fOr @Nndueeiieeiiseiiiirie st s e s ss s s n s s s s s s sanaeaanes 674
7-2. SPLOOPW INSIrUCHION FIOW fOF 1uuuuiisiiiseiieisie s s e s r s s s s r e s s na e rneaaaes 675
7-3. Software Pipeline Instruction Flow Using the Loop BUffer.......vvviiiiiiiiiiiiii i naee 677
7-4. SPLOOPD MIinimum LOOP IHEFatiONS 1.uuueeissisatisasiatesassesias s rss s s ssasssanassanessan s ssassannsaanes 685
7-5. SPLOORP Instruction Flow for First Three CyCleS Of .uvuuiiiieiiiiiiiiiiiiiiiniini s 694
7-6. SPLOOP INSrUCHION FIOW TOF uuuiuiiiissiiiseiiiiiiiiisissi i ras s s s rassannns 696
A-1. Instruction Compatibility Between C62x, C64x, C64x+, C67x, C67x+, and C674X DSPScvvvvvvnnnnnns 709
B-1. Instruction to Functional Unit Mappingeeeeoooeeeeiinaesiraanee s saaase s saannnesssaannressaannrassaannnanssns 715
C-1. Instructions Executing in the .D Functional Unitcoviiiiniiiiiiiiiii i s rannnenas 722
C-2. .D Unit Opcode Map Symbol DefinitioNS.eueueereeeiieeiiieeisie it sar i sransanaes 722
C-3. Address Generator Options fOr LOAA/SIOrE. .. .uuuiissiiseiiiseiii i i s s aaaes 723
D-1. Instructions Executing in the .L FUNCiONal UNit......veiiiiiieiiiii i nsiies s s s s ssnnnneeneas 734
D-2. .L Unit Opcode Map Symbol DefinitioNS ...uvuueirseiieeiiinie i ranns 735
E-1. Instructions Executing in the .M Functional Unit.........oooeiiiiiiii i rrnr e e e rnnneee s 742
E-2 .M Unit Opcode Map Symbol DefiNitioNSeeiiiiireiiiiiii i s r s s s anneenas 743
F-1. Instructions Executing in the .S FUNCtional UNitoieeiiiiiiiiiii i i s e s aes 746
F-2. .S Unit Opcode Map Symbol DefinitioNSuvseivseiieeiiinirisi i rans 747
G-1. D, .L, and .S Units Opcode Map Symbol DefinitioNsovuueeiiiiieeiiiii i s sanneenas 758
H-1. Instructions Executing With No Unit SPecCifiedvieiiieiiiiiiiii i 764
H-2. No Unit Specified Instructions Opcode Map Symbol Definitionsoevvvieiiiiiiiiiiiineae 764
I-1. DocumMeENt REVISION HISTOMY 1. uuuesiiiuteiisiatsesss e s ssaste s ssasae s ssa e e s s s aa e s s s saan s s ssannaessannnnenss 769

SPRUFE8B-July 2010 List of Tables 15

Copyright © 2010, Texas Instruments Incorporated

16 List of Tables SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

I3 TEXAS
INSTRUMENTS

Preface
SPRUFE8B-July 2010

Read This First

About This Manual

The TMS320C674x™ DSP is the new generation floating-point DSP that combines the TMS320C67x+™
DSP and the TMS320C64x+™ DSP instruction set architectures into one core. This document describes
the CPU architecture, pipeline, instruction set, and interrupts of the C674x™ DSP.

Notational Conventions

This document uses the following conventions.

» Hexadecimal numbers are shown with the suffix h. For example, the following number is 40
hexadecimal (decimal 64): 40h.

Related Documentation From Texas Instruments

The following documents describe the C6000 devices and related support tools. Copies of these
documents are available on the Internet at www.ti.com. Tip: Enter the literature number in the search box
provided at www.ti.com.

The current documentation that describes the C6000 devices, related peripherals, and other technical
collateral, is available in the C6000 DSP product folder at: www.ti.com/c6000.

SPRUFK9 — TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. Provides
an overview and briefly describes the peripherals available on the TMS320C674x Digital Signal
Processors (DSPs) and OMAP-L1x Applications Processors.

SPRUFK5 — TMS320C674x DSP Megamodule Reference Guide. Describes the TMS320C674x digital
signal processor (DSP) megamodule. Included is a discussion on the internal direct memory access
(IDMA) controller, the interrupt controller, the power-down controller, memory protection, bandwidth
management, and the memory and cache.

SPRUG82 — TMS320C674x DSP Cache User's Guide. Explains the fundamentals of memory caches
and describes how the two-level cache-based internal memory architecture in the TMS320C674x
digital signal processor (DSP) can be efficiently used in DSP applications. Shows how to maintain
coherence with external memory, how to use DMA to reduce memory latencies, and how to
optimize your code to improve cache efficiency. The internal memory architecture in the C674x
DSP is organized in a two-level hierarchy consisting of a dedicated program cache (L1P) and a
dedicated data cache (L1D) on the first level. Accesses by the CPU to the these first level caches
can complete without CPU pipeline stalls. If the data requested by the CPU is not contained in
cache, it is fetched from the next lower memory level, L2 or external memory.

TMS320C674x, TMS320C67x+, TMS320C64x+, C674x, TMS320C67x+, TMS320C64x+, XDS510, XDS560 are trademarks of Texas
Instruments.
Windows is a registered trademark of Microsoft Corporation.

SPRUFE8B-July 2010 Read This First 17

Copyright © 2010, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/c6000
http://www.ti.com/lit/pdf/sprufk9
http://www.ti.com/lit/pdf/sprufk5
http://www.ti.com/lit/pdf/sprug82

18 Read This First SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

] Chapter 1
l TEXAS SPRUFES8B Jp
—July 2010
INSTRUMENTS
Introduction
Topic Page
N @ V= Y= S 20
1.2 DSP Features and OPtiONScucuiuieieieieieeeeeneneeieieieaeaeeeaenenae e e aeaeaeeaenananreanaens 20
1.3 (DS A o] 11 (=03 U 22
SPRUFE8B-July 2010 Introduction 19

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Overview www.ti.com

1.1 Overview

The TMS320C674x™ DSP is the new generation floating-point DSP that combines the TMS320C67x+™
DSP and the TMS320C64x+™ DSP instruction set architectures into one core.

The C674x™ megamodule is the name used to designate the CPU together with the hardware providing
memory, bandwidth management, interrupt, memory protection, and power-down support. This document
describes the CPU architecture, pipeline, instruction set, and interrupts of the C674x DSP. The C674x
megamodule is not described in this document since it is fully covered in the TMS320C674x DSP
Megamodule Reference Guide (SPRUFKS5).

1.2 DSP Features and Options

The C6000 devices execute up to eight 32-bit instructions per cycle. The C674x CPU consists of 64
general-purpose 32-bit registers and eight functional units. These eight functional units contain:

* Two multipliers
» Six ALUs
The C6000 generation has a complete set of optimized development tools, including an efficient
C compiler, an assembly optimizer for simplified assembly-language programming and scheduling, and a
Windows® operating system-based debugger interface for visibility into source code execution
characteristics. A hardware emulation board, compatible with the TI XDS510™ and XDS560™ emulator
interface, is also available. This tool complies with IEEE Standard 1149.1-1990, IEEE Standard Test
Access Port and Boundary-Scan Architecture.
Features of the C6000 devices include:
* Advanced VLIW CPU with eight functional units, including two multipliers and six arithmetic units
— Executes up to eight instructions per cycle for up to ten times the performance of typical DSPs
— Allows designers to develop highly effective RISC-like code for fast development time
» Instruction packing
— Gives code size equivalence for eight instructions executed serially or in parallel
— Reduces code size, program fetches, and power consumption
» Conditional execution of most instructions
— Reduces costly branching
— Increases parallelism for higher sustained performance
» Efficient code execution on independent functional units
— Industry's most efficient C compiler on DSP benchmark suite
— Industry's first assembly optimizer for fast development and improved parallelization
» 8/16/32-bit data support, providing efficient memory support for a variety of applications

e 40-bit arithmetic options add extra precision for vocoders and other computationally intensive
applications

e Saturation and normalization provide support for key arithmetic operations

» Field manipulation and instruction extract, set, clear, and bit counting support common operation found
in control and data manipulation applications.

20 Introduction SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/sprufk5

13 TEXAS
INSTRUMENTS

www.ti.com

DSP Features and Options

The C674x devices include these additional features:

Each multiplier can perform two 16 x 16-bit or four 8 x 8 bit multiplies every clock cycle.
Quad 8-bit and dual 16-bit instruction set extensions with data flow support
Support for non-aligned 32-bit (word) and 64-bit (double word) memory accesses

Special communication-specific instructions have been added to address common operations in
error-correcting codes.

Bit count and rotate hardware extends support for bit-level algorithms.

Compact instructions: Common instructions (AND, ADD, LD, MPY) have 16-bit versions to reduce
code size.

Protected mode operation: A two-level system of privileged program execution to support higher
capability operating systems and system features such as memory protection.

Exceptions support for error detection and program redirection to provide robust code execution
Hardware support for modulo loop operation to reduce code size
Each multiplier can perform 32 x 32 bit multiplies

Additional instructions to support complex multiplies allowing up to eight 16-bit multiply/add/subtracts
per clock cycle

The C674x devices are enhanced for code size improvement and floating-point performance. These
additional features include:

Hardware support for single-precision (32-bit) and double-precision (64-bit) IEEE floating-point
operations.

Execute packets can span fetch packets.

Register file size is increased to 64 registers (32 in each datapath).
Floating-point addition and subtraction capability in the .S unit.
Mixed-precision multiply instructions.

32 x 32-bit integer multiply with 32-bit or 64-bit result.

The VelociTl architecture of the C6000 platform of devices make them the first off-the-shelf DSPs to use
advanced VLIW to achieve high performance through increased instruction-level parallelism. A traditional
VLIW architecture consists of multiple execution units running in parallel, performing multiple instructions
during a single clock cycle. Parallelism is the key to extremely high performance, taking these DSPs well
beyond the performance capabilities of traditional superscalar designs. VelociTl is a highly deterministic
architecture, having few restrictions on how or when instructions are fetched, executed, or stored. It is this
architectural flexibility that is key to the breakthrough efficiency levels of the TMS320C6000 Optimizing
compiler. VelociTl's advanced features include:

Instruction packing: reduced code size

All instructions can operate conditionally: flexibility of code
Variable-width instructions: flexibility of data types

Fully pipelined branches: zero-overhead branching.

SPRUFE8B-July 2010 Introduction 21

Copyright © 2010, Texas Instruments Incorporated

DSP Architecture

13 TEXAS
INSTRUMENTS

www.ti.com

1.3 DSP Architecture
Figure 1-1 is the block diagram for the C674x DSP. The C6000 devices come with program memory,
which, on some devices, can be used as a program cache. The devices also have varying sizes of data
memory. Peripherals such as a direct memory access (DMA) controller, power-down logic, and external
memory interface (EMIF) usually come with the CPU, while peripherals such as serial ports and host ports
are on only certain devices. Check the data sheet for your device to determine the specific peripheral
configurations you have.
Figure 1-1. TMS320C674x DSP Block Diagram
L1P Cache/SRAM
= Program Memory Controller (PMC)
Unified :
L2 Memory <—>| IDMA I Instruction Fetch
Cache/ [T Controller | I SPLOOP Buffer
SRAM (UMC) - ——
16/32-Bit Instruction Dispatch
Instruction Decode
Data Path A Data Path B
][.L1|.81]|.m1|.D1(|| .D2|.M2| .82 .L2
| Register File A | | Register File B |
External
Memory 0 4 1[1[
Controller
(EMC) Interrupt
—> Data Memory & Exception
> Controller Controller
. (DMC) Power
) i’ Control
L1D Cache/SRAM
22 Introduction SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

I

TEXAS
INSTRUMENTS

www.ti.com DSP Architecture

13.1

1.3.2

133

Central Processing Unit (CPU)

The C674x CPU, in Figure 1-1 , contains:

» Program fetch unit

» 16/32 bit instruction dispatch unit, advanced instruction packing

* Instruction decode unit

» Two data paths, each with four functional units

* 64 32-bit registers

» Control registers

» Control logic

» Test, emulation, and interrupt logic

« Internal DMA (IDMA) for transfers between internal memories

The program fetch, instruction dispatch, and instruction decode units can deliver up to eight 32-bit
instructions to the functional units every CPU clock cycle. The processing of instructions occurs in each of
the two data paths (A and B), each of which contains four functional units (.L, .S, .M, and .D) and 32 32-bit
general-purpose registers. The data paths are described in more detail in Chapter 2. A control register file

provides the means to configure and control various processor operations. To understand how instructions
are fetched, dispatched, decoded, and executed in the data path, see Chapter 4.

Internal Memory

The DSP has a 32-bit, byte-addressable address space. Internal (on-chip) memory is organized in
separate data and program spaces. When off-chip memory is used, these spaces are unified on most
devices to a single memory space via the external memory interface (EMIF).

The DSP has a 256-bit read-only port to access internal program memory and two 256-bit ports (read and
write) to access internal data memory.

Memory and Peripheral Options

For an overview of the peripherals available on the C674x DSPs and OMAP-L1x Applications Processors,
refer to the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide (SPRUFK9) or
to your device-specific data manual.

SPRUFE8B-July 2010 Introduction 23

Copyright © 2010, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/sprufk9

24 Introduction SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

. Chapter 2
I3 TEXAS SPRUFESB—July 2010

INSTRUMENTS
CPU Data Paths and Control

This chapter focuses on the CPU, providing information about the data paths and control registers. The
two register files and the data cross paths are described.

Topic Page
P22 S | 1o o [[1 o 26
2.2 General-Purpose ReGISIEr FIlEScuiuiiuieii it ettt e e e e eenenns 26
P22 N o o 1 o = 0 P 29
2.4 Register File Cross Patnsc.ieiiiiiiiiii e e e e e aas 30
2.5 Memory, Load, and Store Paths ... e 31
2.6 Data Address Paths ... 31
2 A - 1o S =1 o 31
P2 S B oY o o B =T o] €= 1 = 34
2.9 Control Register File EXTENSIONScuiuiuiuinieieieieieiieeeneeee e e e eeaenenen e seaeeaenenes 46
2.10 Control Register File Extensions for Floating-Point Operationsccocveveveienenenes 58

SPRUFE8B-July 2010 CPU Data Paths and Control 25

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
Introduction www.ti.com
2.1 Introduction
The components of the data path for the CPU are shown in Figure 2-1. These components consist of:
» Two general-purpose register files (A and B)
» Eight functional units (.L1, .L2, .S1, .S2, .M1, .M2, .D1, and .D2)
» Two load-from-memory data paths (LD1 and LD2)
e Two store-to-memory data paths (ST1 and ST2)
e Two data address paths (DAL and DA2)
» Two register file data cross paths (1X and 2X)
2.2 General-Purpose Register Files
There are two general-purpose register files (A and B) in the CPU data paths. Each of these files contains
32 32-bit registers (A0—A31 for file A and BO—B31 for file B), as shown in Table 2-1. The general-purpose
registers can be used for data, data address pointers, or condition registers.
The DSP general-purpose register files support data ranging in size from packed 8-bit through 64-bit
fixed-point data. Values larger than 32 bits, such as 40-bit and 64-bit quantities, are stored in register
pairs. The 32 LSBs of data are placed in an even-numbered register and the remaining 8 or 32 MSBs in
the next upper register (that is always an odd-numbered register). Packed data types store either four 8-bit
values or two 16-bit values in a single 32-bit register, or four 16-bit values in a 64-bit register pair.
There are 32 valid register pairs for 40-bit and 64-bit data in the DSP cores. In assembly language syntax,
a colon between the register names denotes the register pair, and the odd-numbered register is specified
first.
Figure 2-2 shows the register storage scheme for 40-bit long data. Operations requiring a long input
ignore the 24 MSBs of the odd-numbered register. Operations producing a long result zero-fill the 24
MSBs of the odd-numbered register. The even-numbered register is encoded in the opcode.
26 CPU Data Paths and Control SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

General-Purpose Register Files

Figure 2-1. CPU Data Paths
srcl M 0odd E\{en
register register
file A file A
IE src2 0 (A1,A3, A(QO'/Q,’Z(;)
¢ A5...A31)
odd dst »
dst R See note 4
even >
long src < 8
ST1b ¢ 32 MSB
32LSB
ST1a <«
long src |« 8
even dst >
dd dst | Seenote 4
Data path A s1° g
srcl f¢
src2 {
<
dst2 3 1 Seenote 1
- dst1 32 | See note 2
: src1 [«
<+—0
src2 64
LD1b 32 MSB < T See note 3
LD1a 32LSB »
dst >
DA1 .D1 src1 [¢ j
src2 : 2x
—
1x Even
0Odd register
src2)
DAz D2 E < register file B
. srcl ¢ file B (B0, B2,
dst > (B1, B3, B4...B30)
LD2a —32LSB > B5...B31)
LD2b 32 MSB >
src2 64
M2 < 1 See note 3
. srcl |4
dst1 32] Seenote 2
dst2 32 ${ Seenote 1
src2 {
srcl |«
82 odd dst »
Data path B even dst _ | Seenote4
« 8 e
long src |« 1
ST2a < 32 MSB
ST2b ¢ 32LSB
8
long src |«
even dst »
4d dst . See note 4
L2 0% >
src2
‘_
srcl
] Control
) Register

On .M unit, dst2 is 32 MSB.

On .M unit, dst1 is 32 MSB.

On .M unit, src2 is 64 bits.

On .L and .S units, odd dst connects to odd register files and even dst connects to even register files.

BwN -~

SPRUFE8B-July 2010 CPU Data Paths and Control 27

Copyright © 2010, Texas Instruments Incorporated

General-Purpose Register Files

13 TEXAS
INSTRUMENTS

www.ti.com

Table 2-1. 40-Bit/64-Bit Register Pairs

Register Files

A B
A1:A0 B1:BO
A3:A2 B3:B2
A5:A4 B5:B4
AT:A6 B7:B6
A9:A8 B9:B8

A11:A10 B11:B10
Al13:A12 B13:B12
Al15:Al14 B15:B14
Al7:Al6 B17:B16
A19:A18 B19:B18
A21:A20 B21:B20
A23:A22 B23:B22
A25:A24 B25:B24
A27:A26 B27:B26
A29:A28 B29:B28
A31:A30 B31:B30

Figure 2-2. Storage Scheme for 40-Bit Data in a Register Pair

31 Odd register 8 7 0 31 Even register 0
Ignoreed | i
|
Read from registers l :
39 | 32 31 0l
! 40-bit data
|
Write to registers i :
Odd register 39 32 31 Even register 0 :

Zero filled

! 40-bit data

28 CPU Data Paths and Control

Copyright © 2010, Texas Instruments Incorporated

SPRUFE8B-July 2010

I

www.ti.com

TEXAS

INSTRUMENTS

Functional Units

2.3 Functional Units
The eight functional units in the C6000 data paths can be divided into two groups of four; each functional
unit in one data path is almost identical to the corresponding unit in the other data path. The functional
units are described in Table 2-2.
Most data lines in the CPU support 32-bit operands, and some support long (40-bit) and doubleword
(64-bit) operands. Each functional unit has its own 32-bit write port, so all eight units can be used in
parallel every cycle, into a general-purpose register file (refer to Figure 2-1). All units ending in 1 (for
example, .L1) write to register file A, and all units ending in 2 write to register file B. Each functional unit
has two 32-bit read ports for source operands srcl and src2. Four units (.L1, .L2, .S1, and .S2) have an
extra 8-bit-wide port for 40-bit long writes, as well as an 8-bit input for 40-bit long reads. Since each DSP
multiplier can return up to a 64-bit result, an extra write port has been added from the multipliers to the
register file.
See Appendix B for a list of the instructions that execute on each functional unit.
Table 2-2. Functional Units and Operations Performed
Functional Unit Fixed-Point Operations Floating-Point Operations
.L unit (.L1, .L2) 32/40-bit arithmetic and compare operations Arithmetic operations
32-bit logical operations DP — SP conversion operations
Leftmost 1 or O counting for 32 bits INT — DP conversion operations
Normalization count for 32 and 40 bits INT — SP conversion operations
Byte shifts
Data packing/unpacking
5-bit constant generation
Dual 16-bit arithmetic operations
Quad 8-bit arithmetic operations
Dual 16-bit minimum/maximum operations
Quad 8-bit minimum/maximum operations
.S unit (.S1, .S2) 32-bit arithmetic operations Compare
32/40-bit shifts and 32-bit bit-field operations Reciprocal and reciprocal square-root operations
32-bit logical operations Absolute value operations
Branches SP — DP conversion operations
Constant generation SP and DP adds and subtracts
Register transfers to/from control register file SP and DP reverse subtracts (src2 - srcl)
(.S2 only)
Byte shifts
Data packing/unpacking
Dual 16-bit compare operations
Quad 8-bit compare operations
Dual 16-bit shift operations
Dual 16-bit saturated arithmetic operations
Quad 8-bit saturated arithmetic operations
SPRUFE8B-July 2010 CPU Data Paths and Control 29

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Register File Cross Paths www.ti.com

24

Table 2-2. Functional Units and Operations Performed (continued)

Functional Unit Fixed-Point Operations Floating-Point Operations

.M unit (M1, .M2) 32 x 32-bit multiply operations Floating-point multiply operations
16 x 16-bit multiply operations Mixed-precision multiply operations
16 x 32-bit multiply operations

Quad 8 x 8-bit multiply operations

Dual 16 x 16-bit multiply operations

Dual 16 x 16-bit multiply with add/subtract
operations

Quad 8 x 8-bit multiply with add operation
Bit expansion

Bit interleaving/de-interleaving

Variable shift operations

Rotation

Galois Field Multiply

.D unit (.D1, .D2) 32-bit add, subtract, linear and circular address Load doubleword with 5-bit constant offset
calculation

Loads and stores with 5-bit constant offset

Loads and stores with 15-bit constant offset
(.D2 only)

Load and store doublewords with 5-bit constant
Load and store nonaligned words and doublewords
5-bit constant generation

32-bit logical operations

Register File Cross Paths

Each functional unit reads directly from and writes directly to the register file within its own data path. That
is, the .L1, .S1, .D1, and .M1 units write to register file A and the .L2, .S2, .D2, and .M2 units write to
register file B. The register files are connected to the opposite-side register file's functional units via the 1X
and 2X cross paths. These cross paths allow functional units from one data path to access a 32-bit
operand from the opposite side register file. The 1X cross path allows the functional units of data path A to
read their source from register file B, and the 2X cross path allows the functional units of data path B to
read their source from register file A.

On the DSP, all eight of the functional units have access to the register file on the opposite side, via a
cross path. The src2 inputs of .M1, .M2, .S1, .S2, .D1, and .D2 units are selectable between the cross
path and the same-side register file. In the case of .L1 and .L2, both srcl and src2 inputs are selectable
between the cross path and the same-side register file.

Only two cross paths, 1X and 2X, exist in the C6000 architecture. Thus, the limit is one source read from
each data path’s opposite register file per cycle, or a total of two cross path source reads per cycle. In the
DSP, two units on a side may read the same cross path source simultaneously.

On the DSP, a delay clock cycle is introduced whenever an instruction attempts to read a register via a
cross path that was updated in the previous cycle. This is known as a cross path stall. This stall is inserted
automatically by the hardware, no NOP instruction is needed. It should be noted that no stall is introduced
if the register being read is the destination for data placed by an LDx instruction. For more information see
Section 3.8.4. Techniques for avoiding this stall are discussed in the TMS320C6000 Programmers Guide

(SPRU198).

30

CPU Data Paths and Control SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/spru198

13 TEXAS
INSTRUMENTS

www.ti.com Memory, Load, and Store Paths

2.5 Memory, Load, and Store Paths

The DSP supports doubleword loads and stores. There are four 32-bit paths for loading data from memory
to the register file. For side A, LD1a is the load path for the 32 LSBs and LD1b is the load path for the 32
MSBs. For side B, LD2a is the load path for the 32 LSBs and LD2b is the load path for the 32 MSBs.
There are also four 32-bit paths for storing register values to memory from each register file. For side A,
STla is the write path for the 32 LSBs and ST1b is the write path for the 32 MSBs. For side B, ST2a is
the write path for the 32 LSBs and ST2b is the write path for the 32 MSBs.

On the C6000 architecture, some of the ports for long and doubleword operands are shared between
functional units. This places a constraint on which long or doubleword operations can be scheduled on a
data path in the same execute packet. See Section 3.8.6.

2.6 Data Address Paths

The data address paths (DA1 and DA2) are each connected to the .D units in both data paths. This allows
data addresses generated by any one path to access data to or from any register.

The DAL and DA2 resources and their associated data paths are specified as T1 and T2, respectively. T1
consists of the DA1 address path and the LD1 and ST1 data paths. For the DSP, LD1 is comprised of
LD1la and LD1b to support 64-bit loads; ST1 is comprised of ST1la and ST1b to support 64-bit stores.
Similarly, T2 consists of the DA2 address path and the LD2 and ST2 data paths. For the DSP, LD2 is
comprised of LD2a and LD2b to support 64-bit loads; ST2 is comprised of ST2a and ST2b to support
64-bit stores.

The T1 and T2 designations appear in the functional unit fields for load and store instructions. For
example, the following load instruction uses the .D1 unit to generate the address but is using the LD2 path
resource from DA2 to place the data in the B register file. The use of the DA2 resource is indicated with
the T2 designation.

LDW . D1T2 *AQ[3], Bl

2.7 Galois Field

Modern digital communication systems typically make use of error correction coding schemes to improve
system performance under imperfect channel conditions. The scheme most commonly used is the
Reed-Solomon code, due to its robustness against burst errors and its relative ease of implementation.

The DSP contains Galois field multiply hardware that is used for Reed-Solomon encode and decode
functions. To understand the relevance of the Galois field multiply hardware, it is necessary to first define
some mathematical terms.

Two kinds of number systems that are common in algorithm development are integers and real humbers.
For integers, addition, subtraction, and multiplication operations can be performed. Division can also be
performed, if a nonzero remainder is allowed. For real numbers, all four of these operations can be
performed, even if there is a nonzero remainder for division operations.

Real numbers can belong to a mathematical structure called a field. A field consists of a set of data
elements along with addition, subtraction, multiplication, and division. A field of integers can also be
created if modulo arithmetic is performed.

An example is doing arithmetic using integers modulo 2. Perform the operations using normal integer
arithmetic and then take the result modulo 2. Table 2-3 illustrates addition, subtraction, and multiplication

modulo 2.
Table 2-3. Modulo 2 Arithmetic
Addition Subtraction Multiplication
+ 0 1 0 1 X 0 1
0 0 1 0 0 1 0 0 0
1 1 0 1 1 0 1 0 1
SPRUFE8B-July 2010 CPU Data Paths and Control 31

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Galois Field www.ti.com

Note that addition and subtraction results are the same, and in fact are equivalent to the XOR
(exclusive-OR) operation in binary. Also, the multiplication result is equal to the AND operation in binary.
These properties are unique to modulo 2 arithmetic, but modulo 2 arithmetic is used extensively in error
correction coding. Another more general property is that division by any nonzero element is now defined.
Division can always be performed, if every element other than zero has a multiplicative inverse:

xxxl=1

Another example, arithmetic modulo 5, illustrates this concept more clearly. The addition, subtraction, and
multiplication tables are given in Table 2-4.

Table 2-4. Modulo 5 Arithmetic

Addition Subtraction Multiplication
+ 0 1 2 3 4 - 0 1 2 3 4 x 0 1 2 3 4
0 0 1 2 3 4 0 0 4 3 2 1 0 0 0 0 0 0
1 1 2 3 4 0 1 1 0 4 3 2 1 0 1 2 3 4
2 2 3 4 0 1 2 2 1 0 4 3 2 0 2 4 1 3
3 3 4 0 1 2 3 3 2 1 0 4 3 0 3 1 4 2
4 4 0 1 2 3 4 4 3 2 1 0 4 0 4 3 2 1

In the rows of the multiplication table, element 1 appears in every nonzero row and column. Every nonzero
element can be multiplied by at least one other element for a result equal to 1. Therefore, division always
works and arithmetic over integers modulo 5 forms a field. Fields generated in this manner are called finite
fields or Galois fields and are written as GF(X), such as GF(2) or GF(5). They only work when the
arithmetic performed is modulo a prime number.

Galois fields can also be formed where the elements are vectors instead of integers if polynomials are
used. Finite fields, therefore, can be found with a number of elements equal to any power of a prime
number. Typically, we are interested in implementing error correction coding systems using binary
arithmetic. All of the fields that are dealt with in Reed Solomon coding systems are of the form GF(2™).
This allows performing addition using XORs on the coefficients of the vectors, and multiplication using a
combination of ANDs and XORs.

A final example considers the field GF(22), which has 8 elements. This can be generated by arithmetic
modulo the (irreducible) polynomial P(x) = x* + x + 1. Elements of this field look like vectors of three bits.
Table 2-5 shows the addition and multiplication tables for field GF(23).

Note that the value 1 (001) appears in every nonzero row of the multiplication table, which indicates that
this is a valid field.

The channel error can now be modeled as a vector of bits, with a one in every bit position that an error
has occurred, and a zero where no error has occurred. Once the error vector has been determined, it can
be subtracted from the received message to determine the correct code word.

The Galois field multiply hardware on the DSP is named GMPY4. The GMPY4 instruction performs four
parallel operations on 8-bit packed data on the .M unit. The Galois field multiplier can be programmed to
perform all Galois multiplies for fields of the form GF(2™), where m can range between 1 and 8 using any
generator polynomial. The field size and the polynomial generator are controlled by the Galois field
polynomial generator function register (GFPGFR).

In addition to the GMPY4 instruction, the C674x DSP has the GMPY instruction that uses either the
GPLYA or GPLYB control register as a source for the polynomial (depending on whether the A or B side
functional unit is used) and produces a 32-bit result.

The GFPGFR, shown in Figure 2-6 and described in Table 2-10, contains the Galois field polynomial
generator and the field size control bits. These bits control the operation of the GMPY4 instruction.
GFPGFR can only be set via the MVC instruction. The default function after reset for the GMPY4
instruction is field size = 7h and polynomial = 1Dh.

32

CPU Data Paths and Control SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS

www.ti.com

Galois Field

2.7.1 Special Timing Considerations

If the next execute packet after an MVC instruction that changes the GFPGFR value contains a GMPY4
instruction, then the GMPY4 is controlled by the newly loaded GFPGFR value.

Table 2-5. Modulo Arithmetic for Field GF(2°)

Addition

+ 000 001 010 011 100 101 110 111
000 000 001 010 011 100 101 110 111
001 001 000 011 010 101 100 111 110
010 010 011 000 001 110 111 100 101
011 011 010 001 000 111 110 101 100
100 100 101 110 111 000 001 010 011
101 101 100 111 110 001 000 011 010
110 110 111 100 101 010 011 000 001
111 111 110 101 100 011 010 001 000

Multiplication

X 000 001 010 011 100 101 110 111
000 000 000 000 000 000 000 000 000
001 000 001 010 011 100 101 110 111
010 000 010 100 110 011 001 111 101
011 000 011 110 101 111 100 001 010
100 000 100 011 111 110 010 101 001
101 000 101 001 100 010 111 011 110
110 000 110 111 001 101 011 010 100
111 000 111 101 010 001 110 100 011

SPRUFE8B-July 2010 CPU Data Paths and Control 33

Copyright © 2010, Texas Instruments Incorporated

Control Register File

I

TEXAS

INSTRUMENTS

www.ti.com

2.8 Control Register File

Table 2-6 lists the control registers contained in the control register file.

Table 2-6. Control Registers

Acronym Register Name Section

AMR Addressing mode register Section 2.8.3
CSR Control status register Section 2.8.4
GFPGFR Galois field multiply control register Section 2.8.5
ICR Interrupt clear register Section 2.8.6
IER Interrupt enable register Section 2.8.7
IFR Interrupt flag register Section 2.8.8
IRP Interrupt return pointer register Section 2.8.9
ISR Interrupt set register Section 2.8.10
ISTP Interrupt service table pointer register Section 2.8.11
NRP Nonmaskable interrupt return pointer register Section 2.8.12
PCE1 Program counter, E1 phase Section 2.8.13

Control Register File Extensions
DIER Debug interrupt enable register Section 2.9.1
DNUM DSP core number register Section 2.9.2
ECR Exception clear register Section 2.9.3
EFR Exception flag register Section 2.9.4
GPLYA GMPY A-side polynomial register Section 2.9.5
GPLYB GMPY B-side polynomial register Section 2.9.6
IERR Internal exception report register Section 2.9.7
ILC Inner loop count register Section 2.9.8
ITSR Interrupt task state register Section 2.9.9
NTSR NMI/Exception task state register Section 2.9.10
REP Restricted entry point address register Section 2.9.11
RILC Reload inner loop count register Section 2.9.12
SSR Saturation status register Section 2.9.13
TSCH Time-stamp counter (high 32) register Section 2.9.14
TSCL Time-stamp counter (low 32) register Section 2.9.14
TSR Task state register Section 2.9.15
Control Register File Extensions for Floating-point Operations

FADCR Floating-point adder configuration register Section 2.10.1
FAUCR Floating-point auxiliary configuration register Section 2.10.2
FMCR Floating-point multiplier configuration register Section 2.10.3

34

CPU Data Paths and Control

Copyright © 2010, Texas Instruments Incorporated

SPRUFE8B-July 2010

I

TEXAS

INSTRUMENTS

www.ti.com Control Register File

28.1

2.8.2

Register Addresses for Accessing the Control Registers

Table 3-27 lists the register addresses for accessing the control register file. One unit (.S2) can read from
and write to the control register file. Each control register is accessed by the MVC instruction. See the
MVC instruction description (see MVC) for information on how to use this instruction.

Additionally, some of the control register bits are specially accessed in other ways. For example, arrival of
a maskable interrupt on an external interrupt pin, INTm, triggers the setting of flag bit IFRm. Subsequently,
when that interrupt is processed, this triggers the clearing of IFRm and the clearing of the global interrupt
enable bit, GIE. Finally, when that interrupt processing is complete, the B IRP instruction in the interrupt
service routine restores the pre-interrupt value of the GIE. Similarly, saturating instructions like SADD set
the SAT (saturation) bit in the control status register (CSR).

On the CPU, access to some of the registers is restricted when in User mode. See Chapter 8 for more
information.

Pipeline/Timing of Control Register Accesses

All MVC instructions are single-cycle instructions that complete their access of the explicitly named
registers in the E1 pipeline phase. This is true whether MVC is moving a general register to a control
register, or conversely. In all cases, the source register content is read, moved through the .S2 unit, and
written to the destination register in the E1 pipeline phase.

Pipeline Stage E1l

Read src2
Written dst
Unit in use .S2

Even though MVC modifies the particular target control register in a single cycle, it can take extra clocks
to complete modification of the non-explicitly named register. For example, the MVC cannot modify bits in
the IFR directly. Instead, MVC can only write 1's into the ISR or the ICR to specify setting or clearing,
respectively, of the IFR bits. MVC completes this ISR/ICR write in a single (E1) cycle but the modification
of the IFR bits occurs one clock later. For more information on the manipulation of ISR, ICR, and IFR, see
Section 2.8.10, Section 2.8.6, and Section 2.8.8 .

Saturating instructions, such as SADD, set the saturation flag bit (SAT) in CSR indirectly. As a result,
several of these instructions update the SAT bit one full clock cycle after their primary results are written to
the register file. For example, the SMPY instruction writes its result at the end of pipeline stage E2; its
primary result is available after one delay slot. In contrast, the SAT bit in CSR is updated one cycle later
than the result is written; this update occurs after two delay slots. (For the specific behavior of an
instruction, refer to the description of that individual instruction).

The B IRP and B NRP instructions directly update the GIE and NMIE bits, respectively. Because these
branches directly modify CSR and IER, respectively, there are no delay slots between when the branch is
issued and when the control register updates take effect.

SPRUFE8B-July 2010 CPU Data Paths and Control 35

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Control Register File www.ti.com

2.8.3

Addressing Mode Register (AMR)

For each of the eight registers (A4-A7, B4-B7) that can perform linear or circular addressing, the
addressing mode register (AMR) specifies the addressing mode. A 2-bit field for each register selects the
address modification mode: linear (the default) or circular mode. With circular addressing, the field also
specifies which BK (block size) field to use for a circular buffer. In addition, the buffer must be aligned on a
byte boundary equal to the block size. The mode select fields and block size fields are shown in

Figure 2-3 and described in Table 2-7.

Figure 2-3. Addressing Mode Register (AMR)

31 26 25 21 20 16
] Reserved [BK1 | BKO \
R-0 RIW-0 RIW-0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| B7 MODE B6 MODE B5 MODE | B4 MODE A7MODE | A6MODE | A5MODE A4 MODE |
RIW-0 RIW-0 RIW-0 RIW-0 RIW-0 RIW-0 RIW-0 RIW-0

LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

Table 2-7. Addressing Mode Register (AMR) Field Descriptions

Bit Field Value |Description
31-26 | Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
25-21 | BK1 0-1Fh | Block size field 1. A 5-bit value used in calculating block sizes for circular addressing. Table 2-8 shows
block size calculations for all 32 possibilities.
Block size (in bytes) = 289 | where N is the 5-bit value in BK1
20-16 | BKO 0-1Fh | Block size field 0. A 5-bit value used in calculating block sizes for circular addressing. Table 2-8 shows
block size calculations for all 32 possibilities.
Block size (in bytes) = 2™ | where N is the 5-bit value in BKO
15-14 | B7 MODE 0-3h | Address mode selection for register file B7.
0 Linear modification (default at reset)
1h Circular addressing using the BKO field
2h Circular addressing using the BK1 field
3h Reserved
13-12 | B6 MODE 0-3h | Address mode selection for register file B6.
0 Linear modification (default at reset)
1h Circular addressing using the BKO field
2h Circular addressing using the BK1 field
3h Reserved
11-10 |B5 MODE 0-3h | Address mode selection for register file B5.
0 Linear modification (default at reset)
1h Circular addressing using the BKO field
2h Circular addressing using the BK1 field
3h Reserved
9-8 B4 MODE 0-3h | Address mode selection for register file B4.
0 Linear modification (default at reset)
1h Circular addressing using the BKO field
2h Circular addressing using the BK1 field
3h Reserved
7-6 | A7 MODE 0-3h | Address mode selection for register file A7.
0 Linear modification (default at reset)
1h Circular addressing using the BKO field
2h Circular addressing using the BK1 field
3h Reserved
36 CPU Data Paths and Control SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com Control Register File

Table 2-7. Addressing Mode Register (AMR) Field Descriptions (continued)

Bit Field Value | Description
5-4 | A6 MODE 0-3h | Address mode selection for register file A6.
0 Linear modification (default at reset)

1h Circular addressing using the BKO field

2h Circular addressing using the BK1 field

3h Reserved

3-2 A5 MODE 0-3h | Address mode selection for register file a5.
0 Linear modification (default at reset)

1h Circular addressing using the BKO field

2h Circular addressing using the BK1 field

3h Reserved

1-0 | A4 MODE 0-3h | Address mode selection for register file A4.
0 Linear modification (default at reset)

1h Circular addressing using the BKO field
2h Circular addressing using the BK1 field

3h Reserved

Table 2-8. Block Size Calculations

BKn Value Block Size BKn Value Block Size
00000 2 10000 131072
00001 4 10001 262144
00010 8 10010 524 288
00011 16 10011 1048576
00100 32 10100 2097 152
00101 64 10101 4194 304
00110 128 10110 8388 608
00111 256 10111 16 777 216
01000 512 11000 33554432
01001 1024 11001 67 108 864
01010 2048 11010 134217728
01011 4096 11011 268 435 456
01100 8192 11100 536 870912
01101 16 384 11101 1073741824
01110 32768 11110 2147 483 648
01111 65 536 11111 4294 967 296

SPRUFE8B-July 2010 CPU Data Paths and Control 37

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Control Register File www.ti.com

2.8.4 Control Status Register (CSR)

The control status register (CSR) contains control and status bits. The CSR is shown in Figure 2-4 and
described in Table 2-9. For the PWRD, EN, PCC, and DCC fields, see the device-specific datasheet to
see if it supports the options that these fields control. The PCC and DCC fields are ignored on the
C674x CPU.

The power-down modes and their wake-up methods are programmed by the PWRD field (bits 15-10) of
CSR. The PWRD field of CSR is shown in Figure 2-5. When writing to CSR, all bits of the PWRD field
should be configured at the same time. A logic 0 should be used when writing to the reserved bit (bit 15)
of the PWRD field.

The PWRD, PCC, DCC, and PGIE fields cannot be written in User mode. The PCC and DCC fields can
only be modified in Supervisor mode. See Chapter 8 for more information.

Figure 2-4. Control Status Register (CSR)

31 24 23 16
\ CPU ID | REVISION ID |
R-x® R-x®
15 10 9 8 7 5 4 2 1 0
] PWRD SAT [EN | PCC DCC PGIE | GIE |
RISW-0 RIWC-0 R-x RISW-0 RISW-0 RISW-0 R/W-0

LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; SW = Writeable by the MVC instruction only in
supervisor mode; WC = Bit is cleared on write; -n = value after reset; -x = value is indeterminate after reset

@ See the device-specific datasheet for the default value of this field.

Figure 2-5. PWRD Field of Control Status Register (CSR)

15 14 13 12 11 10
Reserved Enabled or nonenabled interrupt wake ‘ Enabled interrupt wake | PD3 | PD2 PD1
R/SW-0 R/SW-0 R/SW-0 R/SW-0 R/SW-0 R/SW-0

LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset; SW = Writeable by the MVC
instruction only in supervisor mode; -n = value after reset

Table 2-9. Control Status Register (CSR) Field Descriptions

Bit Field Value Description
31-24 |CPUID 0-FFh Identifies the CPU of the device. Not writable by the MVC instruction.
0-13h Reserved
14h C674x CPU
15h-FFh | Reserved

23-16 | REVISION ID 0-FFh Identifies silicon revision of the CPU. For the most current silicon revision information, see the
device-specific datasheet. Not writable by the MVC instruction.

38 CPU Data Paths and Control SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com Control Register File

Table 2-9. Control Status Register (CSR) Field Descriptions (continued)

Bit Field Value Description
15-10 | PWRD 0-3Fh Power-down mode field. See Figure 2-5. Writable by the MVC instruction only in Supervisor
mode.
0 No power-down.
1h-8h Reserved
9h Power-down mode PD1; wake by an enabled interrupt.
Ah-10h Reserved
11h Power-down mode PD1; wake by an enabled or nonenabled interrupt.
12h-19h | Reserved
1Ah Power-down mode PD2; wake by a device reset.
1Bh Reserved
1Ch Power-down mode PD3; wake by a device reset.
1D-3Fh Reserved
9 SAT Saturate bit. Can be cleared only by the MVC instruction and can be set only by a functional

unit. The set by a functional unit has priority over a clear (by the MVC instruction), if they occur
on the same cycle. The SAT bit is set one full cycle (one delay slot) after a saturate occurs. The
SAT bit will not be modified by a conditional instruction whose condition is false.

No functional units generated saturated results.

1 One or more functional units performed an arithmetic operation which resulted in saturation.
8 EN Endian mode. Not writable by the MVC instruction.
0 Big endian
1 Little endian
7-5 pPCC 0-7h Program cache control mode. This field is ignored on the C674x CPU.
0-7h Reserved
4-2 DCC 0-7h Data cache control mode. This field is ignored on the C674x CPU.
0-7h Reserved
1 PGIE Previous GIE (global interrupt enable). This bit contains a copy of the GIE bit at the point when

interrupt is taken. It is physically the same bit as GIE bit in the interrupt task state register
(ITSR). Writeable by the MVC instruction only in Supervisor mode; not writable in User mode.

Interrupts will be disabled after return from interrupt.
1 Interrupts will be enabled after return from interrupt.

0 GIE Global interrupt enable. Physically the same bit as GIE bit in the task state register (TSR).
Writable by the MVC instruction in Supervisor and User mode. See Section 5.2 for details on
how the GIE bit affects interruptibility.

Disables all interrupts, except the reset interrupt and NMI (nonmaskable interrupt).

1 Enables all interrupts.

SPRUFE8B-July 2010 CPU Data Paths and Control 39

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Control Register File www.ti.com

2.8.5 Galois Field Polynomial Generator Function Register (GFPGFR)

The Galois field polynomial generator function register (GFPGFR) controls the field size and the Galois
field polynomial generator of the Galois field multiply hardware. The GFPGFR is shown in Figure 2-6 and
described in Table 2-10. The Galois field is described in Section 2.7.

Figure 2-6. Galois Field Polynomial Generator Function Register (GFPGFR)

31 27 26 24 23 16
\ Reserved \ SIZE \ Reserved \
R-0 R/W-7h R-0
15 8 7 0
‘ Reserved ‘ POLY ‘
R-0 R/W-1Dh

LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

Table 2-10. Galois Field Polynomial Generator Function Register (GFPGFR) Field Descriptions

Bit Field Value | Description
31-27 | Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
26-24 | SIZE 0-7h | Field size.
23-8 | Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
7-0 POLY 0-FFh | Polynomial generator.
40 CPU Data Paths and Control SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

Control Register File

2.8.6 Interrupt Clear Register (ICR)

The interrupt clear register (ICR) allows you to manually clear the maskable interrupts (INT15-INT4) in the
interrupt flag register (IFR). Writing a 1 to any of the bits in ICR causes the corresponding interrupt flag
(IFn) to be cleared in IFR. Writing a 0 to any bit in ICR has no effect. Incoming interrupts have priority and
override any write to ICR. You cannot set any bit in ICR to affect NMI or reset. The ISR is shown in
Figure 2-7 and described in Table 2-11. See Chapter 5 for more information on interrupts.

NOTE: Any write to ICR (by the MVC instruction) effectively has one delay slot because the results
cannot be read (by the MVC instruction) in IFR until two cycles after the write to ICR.

Any write to ICR is ignored by a simultaneous write to the same bit in the interrupt set
register (ISR).

Figure 2-7. Interrupt Clear Register (ICR)

31 16
’ Reserved ‘
R-0
15 14 13 12 11 10 9 8 7 6 5 4 3 0
ic15 | 1c14 [ic13 [ici2 | icit [icio | ico | ic8 [ic7 | ice | ics | ica | Reserved
W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 R-0
LEGEND: R = Read only; W = Writeable by the MVC instruction; -n = value after reset
Table 2-11. Interrupt Clear Register (ICR) Field Descriptions
Bit Field Value | Description
31-16 | Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
15-4 |ICn Interrupt clear.
Corresponding interrupt flag (IFn) in IFR is not cleared.
Corresponding interrupt flag (IFn) in IFR is cleared.
3-0 Reserved Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
CPU Data Paths and Control 41

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

I

Control Register File

TEXAS

INSTRUMENTS

www.ti.com

2.8.7 |Interrupt Enable Register (IER)

The interrupt enable register (IER) enables and disables individual interrupts. The IER is shown in

Figure 2-8 and described in Table 2-12.

The IER is not accessible in User mode. See Section 8.2.4.1 for more information. See Chapter 5 for

more information on interrupts.

Figure 2-8. Interrupt Enable Register (IER)

31 16
‘ Reserved ‘
R-0
15 14 12 11 10 9 8 7 6 5 4 3 2 1 0
| E15 | 1E14 [1E13 [1E12 | 1E11 [E10 | 1EQ | IE8 [1IE7 | 1IE6 | IES | IE4 | Reserved |[NMIE| 1 |
RW-0 RW-0 RMW-0 RMW-0 RW-O RW-0 RMW-0 RW-0 RW-0 RMW-0 RMW-0 RW-0 R-0 RW-0 R-1

LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

Table 2-12. Interrupt Enable Register (IER) Field Descriptions

Bit Field Value | Description
31-16 | Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
15-4 |IEn Interrupt enable. An interrupt triggers interrupt processing only if the corresponding bit is set to 1.
Interrupt is disabled.
Interrupt is enabled.
3-2 Reserved Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
1 NMIE Nonmaskable interrupt enable. An interrupt triggers interrupt processing only if the bit is set to 1.
The NMIE bit is cleared at reset. After reset, you must set the NMIE bit to enable the NMI and to allow
INT15-INT4 to be enabled by the GIE bit in CSR and the corresponding IER bit. You cannot manually
clear the NMIE bit; a write of O has no effect. The NMIE bit is also cleared by the occurrence of an NMI.
All nonreset interrupts are disabled.
All nonreset interrupts are enabled. The NMIE bit is set only by completing a B NRP instruction or by a
write of 1 to the NMIE bit.
0 1 1 Reset interrupt enable. You cannot disable the reset interrupt.
42 CPU Data Paths and Control SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com Control Register File

2.8.8 Interrupt Flag Register (IFR)

The interrupt flag register (IFR) contains the status of INT4-INT15 and NMI interrupt. Each corresponding
bit in the IFR is set to 1 when that interrupt occurs; otherwise, the bits are cleared to 0. If you want to
check the status of interrupts, use the MVC instruction to read the IFR. (See the MVC instruction
description (see MVC) for information on how to use this instruction.) The IFR is shown in Figure 2-9 and
described in Table 2-13. See Chapter 5 for more information on interrupts.

Figure 2-9. Interrupt Flag Register (IFR)

31 16
‘ Reserved ‘
R-0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| iF15 | IF14 [k23 | k12 | k11 | F1o | F9 | iF8 [IF7 | IF6 | IF5 | IF4 | Reseved | NMIF| 0 |
RO RO RO RO RO RO RO RO RO RO RO RO R-0 RO R0

LEGEND: R = Readable by the MVC instruction; -n = value after reset

Table 2-13. Interrupt Flag Register (IFR) Field Descriptions

Bit Field Value | Description
31-16 | Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
15-4 | IFn Interrupt flag. Indicates the status of the corresponding maskable interrupt. An interrupt flag may be

manually set by setting the corresponding bit (ISn) in the interrupt set register (ISR) or manually cleared
by setting the corresponding bit (ICn) in the interrupt clear register (ICR).

Interrupt has not occurred.
Interrupt has occurred.

3-2 Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
1 NMIF Nonmaskable interrupt flag.
0 Interrupt has not occurred.

Interrupt has occurred.

0 0 0 Reset interrupt flag.

2.8.9 Interrupt Return Pointer Register (IRP)

The interrupt return pointer register (IRP) contains the return pointer that directs the CPU to the proper
location to continue program execution after processing a maskable interrupt. A branch using the address
in IRP (B IRP) in your interrupt service routine returns to the program flow when interrupt servicing is
complete. The IRP is shown in Figure 2-10.

The IRP contains the 32-bit address of the first execute packet in the program flow that was not executed
because of a maskable interrupt. Although you can write a value to IRP, any subsequent interrupt
processing may overwrite that value.

See Chapter 5 for more information on interrupts.

Figure 2-10. Interrupt Return Pointer Register (IRP)
31 0
IRP
R/W-x
LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -x = value is indeterminate after reset

SPRUFE8B-July 2010 CPU Data Paths and Control 43

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Control Register File www.ti.com

2.8.10 Interrupt Set Register (ISR)

The interrupt set register (ISR) allows you to manually set the maskable interrupts (INT15-INT4) in the
interrupt flag register (IFR). Writing a 1 to any of the bits in ISR causes the corresponding interrupt flag
(IFn) to be set in IFR. Writing a 0 to any bit in ISR has no effect. You cannot set any bit in ISR to affect
NMI or reset. The ISR is shown in Figure 2-11 and described in Table 2-14. See Chapter 5 for more
information on interrupts.

NOTE: Any write to ISR (by the MVC instruction) effectively has one delay slot because the results
cannot be read (by the MVC instruction) in IFR until two cycles after the write to ISR.

Any write to the interrupt clear register (ICR) is ignored by a simultaneous write to the same

bit in ISR.
Figure 2-11. Interrupt Set Register (ISR)
31 16
’ Reserved ‘
R-0

15 14 13 12 11 10 9 8 7 6 5 4 3 0
| 1515 | 1s14 | 1s13 | 1s12 | 1s11 [is10 | 1s9 | 1s8 [is7 | 1s6 | 1s5 | is4 | Reserved |
WO WO W0 W-0 W0 W0 W0 W0 W0 W0 W0 WO R-0

LEGEND: R = Read only; W = Writeable by the MVC instruction; -n = value after reset

Table 2-14. Interrupt Set Register (ISR) Field Descriptions

Bit Field Value | Description
31-16 | Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
15-4 |ISn Interrupt set.

Corresponding interrupt flag (IFn) in IFR is not set.
Corresponding interrupt flag (IFn) in IFR is set.

3-0 Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.

44 CPU Data Paths and Control SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com Control Register File
2.8.11 Interrupt Service Table Pointer Register (ISTP)

The interrupt service table pointer register (ISTP) is used to locate the interrupt service routine (ISR). The
ISTB field identifies the base portion of the address of the interrupt service table (IST) and the HPEINT
field identifies the specific interrupt and locates the specific fetch packet within the IST. The ISTP is shown
in Figure 2-12 and described in Table 2-15. See Section 5.1.2.2 for a discussion of the use of the ISTP.

The ISTP is not accessible in User mode. See Section 8.2.4.1 for more information. See Chapter 5 for
more information on interrupts.

Figure 2-12. Interrupt Service Table Pointer Register (ISTP)

31 16
] ISTB \
RIW-S
15 10 9 5 4 3 2 1 0
\ ISTB HPEINT | o] o | o | o | o |
RIW-S R-0 RO RO RO RO RO

LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset; S = See the device-specific
data manual for the default value of this field after reset

Table 2-15. Interrupt Service Table Pointer Register (ISTP) Field Descriptions

Bit Field Value Description

31-10 |ISTB 0-3F FFFFh Interrupt service table base portion of the IST address. This field is cleared to a device-specific
default value on reset; therefore, upon startup the IST must reside at this specific address. See
the device-specific data manual for more information. After reset, you can relocate the IST by
writing a new value to ISTB. If relocated, the first ISFP (corresponding to RESET) is never
executed via interrupt processing, because reset clears the ISTB to its default value. See
Example 5-1.

9-5 HPEINT 0-1Fh Highest priority enabled interrupt that is currently pending. This field indicates the number
(related bit position in the IFR) of the highest priority interrupt (as defined in Table 5-1) that is
enabled by its bit in the IER. Thus, the ISTP can be used for manual branches to the highest
priority enabled interrupt. If no interrupt is pending and enabled, HPEINT contains the value 0.
The corresponding interrupt need not be enabled by NMIE (unless it is NMI) or by GIE.

4-0 |0 0 Cleared to 0 (fetch packets must be aligned on 8-word (32-byte) boundaries).

2.8.12 Nonmaskable Interrupt (NMI) Return Pointer Register (NRP)

The NMI return pointer register (NRP) contains the return pointer that directs the CPU to the proper
location to continue program execution after NMI processing. A branch using the address in NRP (B NRP)
in your interrupt service routine returns to the program flow when NMI servicing is complete. The NRP is
shown in Figure 2-13.

The NRP contains the 32-bit address of the first execute packet in the program flow that was not executed
because of a nonmaskable interrupt. Although you can write a value to NRP, any subsequent interrupt
processing may overwrite that value.

See Chapter 5 for more information on interrupts. See Chapter 6 for more information on exceptions.

Figure 2-13. NMI Return Pointer Register (NRP)
31 0
NRP
R/W-x
LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -x = value is indeterminate after reset

SPRUFE8B-July 2010 CPU Data Paths and Control 45

Copyright © 2010, Texas Instruments Incorporated

Control Register File Extensions

I

TEXAS

INSTRUMENTS

www.ti.com

2.8.13 E1 Phase Progra

m Counter (PCE1)

The E1 phase program counter (PCE1), shown in Figure 2-14, contains the 32-bit address of the fetch

packet in the E1 pipeli

31

ne phase.

Figure 2-14. E1 Phase Program Counter (PCE1)

PCE1

LEGEND: R = Readable by the MVC instruction; -x = value is indeterminate after reset

2.9 Control Register Fi

Table 2-16 lists the additional control registers in the DSP.

R-x

le Extensions

Table 2-16. Control Register File Extensions

Acronym Register Name Section
DIER Debug interrupt enable register Section 2.9.1
DNUM DSP core number register Section 2.9.2
ECR Exception clear register Section 2.9.3
EFR Exception flag register Section 2.9.4
GPLYA GMPY polynomial for A side register Section 2.9.5
GPLYB GMPY polynomial for B side register Section 2.9.6
IERR Internal exception report register Section 2.9.7
ILC Inner loop count register Section 2.9.8
ITSR Interrupt task state register Section 2.9.9
NTSR NMI/Exception task state register Section 2.9.10
REP Restricted entry point register Section 2.9.11
RILC Reload inner loop count register Section 2.9.12
SSR Saturation status register Section 2.9.13
TSCH Time stamp counter register—high half of 64 bit Section 2.9.14
TSCL Time stamp counter register—low half of 64 bit Section 2.9.14
TSR Task state register Section 2.9.15

46 CPU Data Paths and Control

Copyright © 2010, Texas Instruments Incorporated

SPRUFE8B-July 2010

13 TEXAS
INSTRUMENTS

www.ti.com Control Register File Extensions

2.9.1 Debug Interrupt Enable Register (DIER)

The debug interrupt enable register (DIER) is used to designate which interrupts and exceptions are
treated as high-priority interrupts when operating in real-time emulation mode. The DIER is shown in
Figure 2-15 and described in Table 2-17.

Figure 2-15. Debug Interrupt Enable Register (DIER)

31 30 29 16
| NMI_| EXCEP | Reserved |
RW-0 R/W-0 R-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[INT15 [INT14 [INT23 [INT22 [INT22 [INT20 | INTQ [INT8 [INT7 | INT6 | INTS | INT4 | Reserved | WSEL | Rsvd |
RW-0 RW-0 RMW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RMW-0 RW-0 R/MW-0 R-0 RIW-0 R/W-0

LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

Table 2-17. Debug Interrupt Enable Register (DIER) Field Descriptions

Bit Field Value | Description
31 NMI Nonmaskable interrupt (NMI).
1 Designate NMI as high-priority interrupt.
30 EXCEP Maskable external exception (EXCEP).
Designate EXCEP as high-priority interrupt.
29-16 | Reserved 0 Reserved
15 INT15 Maskable interrupt 15 (INT15).
1 Designate INT15 as high-priority interrupt.
14 INT14 Maskable interrupt 14 (INT14).
1 Designate INT14 as high-priority interrupt.
13 INT13 Maskable interrupt 13 (INT13).
1 Designate INT13 as high-priority interrupt.
12 INT12 Maskable interrupt 12 (INT12).
1 Designate INT12 as high-priority interrupt.
11 INT11 Maskable interrupt 11 (INT11).
1 Designate INT11 as high-priority interrupt.
10 INT10 Maskable interrupt 10 (INT10).
1 Designate INT10 as high-priority interrupt.
9 INT9 Maskable interrupt 9 (INT9).
1 Designate INT9 as high-priority interrupt.
8 INT8 Maskable interrupt 8 (INT8).
1 Designate INT8 as high-priority interrupt.
7 INT7 Maskable interrupt 7 (INT7).
1 Designate INT7 as high-priority interrupt.
6 INT6 Maskable interrupt 6 (INT6).
1 Designate INT6 as high-priority interrupt.
5 INT5 Maskable interrupt 5 (INT5).
1 Designate INT5 as high-priority interrupt.
4 INT4 Maskable interrupt 4 (INT4).
Designate INT4 as high-priority interrupt.
3-2 Reserved 0 Reserved
1 WSEL Write control select. This bit must be cleared to 0 to modify bits 31-2.
Bits 31-2 can be modified.
0 Reserved 0 Reserved
SPRUFE8B-July 2010 CPU Data Paths and Control 47

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Control Register File Extensions www.ti.com

2.9.2 DSP Core Number Register (DNUM)

Multiple CPUs may be used in a system. The DSP core number register (DNUM), provides an identifier to
shared resources in the system which identifies which CPU is accessing those resources. The contents of
this register are set to a specific value (depending on the device) at reset. See your device-specific data
manual for the reset value of this register. The DNUM is shown in Figure 2-16.

Figure 2-16. DSP Core Number Register (DNUM)
31 16
\ Reserved
R-0

15 8 7 0
’ Reserved DSP number ‘
R-0 R-S

LEGEND: R = Readable by the MVC instruction; -n = value after reset; S = See the device-specific data manual for the default value of this
field after reset

2.9.3 Exception Clear Register (ECR)

The exception clear register (ECR) is used to clear individual bits in the exception flag register (EFR).
Writing a 1 to any bit in ECR clears the corresponding bit in EFR.

The ECR is not accessible in User mode. See Section 8.2.4.1 for more information. See Chapter 6 for
more information on exceptions.

48 CPU Data Paths and Control SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS

www.ti.com

Control Register File Extensions

2.9.4 Exception Flag Register (EFR)

The exception flag register (EFR) contains bits that indicate which exceptions have been detected.
Clearing the EFR bits is done by writing a 1 to the corresponding bit position in the exception clear register
(ECR). Writing a 0 to the bits in this register has no effect. The EFR is shown in Figure 2-17 and
described in Table 2-18.

The EFR is not accessible in User mode. See Section 8.2.4.1 for more information. See Chapter 6 for

more information on exceptions.

Figure 2-17. Exception Flag Register (EFR)

31 30
[NXF | ExF | Reserved \
RIW-0 R/W-0 R-0
15 2 1
\ Reserved | IXF [sxF |
R-0 RIW-0 R/W-0

LEGEND: R = Readable by the MVC EFR instruction only in Supervisor mode; W = Clearable by the MVC ECR instruction only in
Supervisor mode; -n = value after reset

Table 2-18. Exception Flag Register (EFR) Field Descriptions

Bit

Field

Value

Description

31

NXF

NMI exception flag.
NMI exception has not been detected.
NMI exception has been detected.

30

EXF

EXCEP flag.
Exception has not been detected.
Exception has been detected.

29-2

Reserved

Reserved. Read as 0.

IXF

Internal exception flag.
Internal exception has not been detected.
Internal exception has been detected.

SXF

Software exception flag (set by SWE or SWENR instructions).
Software exception has not been detected.
Software exception has been detected.

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

CPU Data Paths and Control

49

13 TEXAS
INSTRUMENTS

Control Register File Extensions www.ti.com

2.9.5 GMPY Polynomial—A Side Register (GPLYA)

The GMPY instruction (see GMPY) uses the 32-bit polynomial in the GMPY polynomial—A side register
(GPLYA), Figure 2-18, when the instruction is executed on the M1 unit.

Figure 2-18. GMPY Polynomial A-Side Register (GPLYA)
31 0
32-bit polynomial
R/W-0
LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

2.9.6 GMPY Polynomial—B Side Register (GPLYB)

The GMPY instruction (see GMPY) uses the 32-bit polynomial in the GMPY polynomial—B side register
(GPLYB), Figure 2-19, when the instruction is executed on the M2 unit.

Figure 2-19. GMPY Polynomial B-Side (GPLYB)
31 0
32-bit polynomial
R/W-0
LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

50 CPU Data Paths and Control SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com Control Register File Extensions

2.9.7 Internal Exception Report Register (IERR)

The internal exception report register (IERR) contains flags that indicate the cause of the internal
exception. In the case of simultaneous internal exceptions, the same flag may be set by different
exception sources. In this case, it may not be possible to determine the exact causes of the individual
exceptions. The IERR is shown in Figure 2-20 and described in Table 2-19.

The IERR is not accessible in User mode. See Section 8.2.4.1 for more information. See Chapter 6 for
more information on exceptions.

Figure 2-20. Internal Exception Report Register (IERR)

31 16
’ Reserved ‘
R-0
15 9 8 7 6 5 4 3 2 1 0
\ Reserved | mMsx | Bx | PRX | RAX | Rex | opx | EPX | FPX | IFX |
R0 RW-0 RW-0 RW-0 RMW-0 RW-0 RW-0 RMW-0 RW-0 R/MW-0

LEGEND: R = Readable by the MVC instruction only in Supervisor mode; W = Writeable by the MVC instruction only in Supervisor mode;
-n = value after reset

Table 2-19. Internal Exception Report Register (IERR) Field Descriptions

Bit Field Value | Description
31-9 | Reserved 0 Reserved. Read as 0.
8 MSX Missed stall exception

Missed stall exception is not the cause.
Missed stall exception is the cause.

7 LBX SPLOOP buffer exception

SPLOOP buffer exception is not the cause.

SPLOOP buffer exception is the cause.

6 PRX Privilege exception
Privilege exception is not the cause.
Privilege exception is the cause.

5 RAX Resource access exception
Resource access exception is not the cause.
Resource access exception is the cause.

4 RCX Resource conflict exception
Resource conflict exception is not the cause.
Resource conflict exception is the cause.

3 OPX Opcode exception
Opcode exception is not the cause.
Opcode exception is the cause.

2 EPX Execute packet exception
Execute packet exception is not the cause.
Execute packet exception is the cause.

1 FPX Fetch packet exception
Fetch packet exception is not the cause.
Fetch packer exception is the cause.

0 IFX Instruction fetch exception
Instruction fetch exception is not the cause.
Instruction fetch exception is the cause.

SPRUFE8B-July 2010 CPU Data Paths and Control 51

Copyright © 2010, Texas Instruments Incorporated

Control Register File Extensions

13 TEXAS

INSTRUMENTS

www.ti.com

2.9.8 SPLOOP Inner Loop Count Register (ILC)

The SPLOOP or SPLOOPD instructions use the SPLOOP inner loop count register (ILC), Figure 2-21, as
the count of the number of iterations left to perform. The ILC content is decremented at each stage

boundary until the ILC content reaches 0.

Figure 2-21. Inner Loop Count Register (ILC)
31

32-bit inner loop count

R/W-0
LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

2.9.9 Interrupt Task State Register (ITSR)

The interrupt task state register (ITSR) is used to store the contents of the task state register (TSR) in the
event of an interrupt. The ITSR is shown in Figure 2-22 and described in Table 2-20. For detailed bit

descriptions, see Section 2.9.15.
The GIE bit in ITSR is physically the same bit as the PGIE bit in CSR.

The ITSR is not accessible in User mode. See Section 8.2.4.1 for more information.

Figure 2-22. Interrupt Task State Register (ITSR)

31 16
’ Reserved ‘
R-0
15 14 13 11 10 9 8 7 6 5 4 3 2 1 0
| B | spPx| Reserved | ExXC | INT [Rsvd | oxM | Rsvd |DBGM | XEN | GEE | SGIE | GIE |
RIW-0 R/W-0 R0 RW-0 RW-0 R-0 R/W-0 RO RW-0 RMW-0 RW-0 RW-0 R/MW-0

LEGEND: R = Readable by the MVC instruction only in Supervisor mode; W = Writeable by the MVC instruction only in Supervisor mode;

-n = value after reset

Table 2-20. Interrupt Task State Register (ITSR) Field Descriptions

Bit Field Description
31-16 | Reserved Reserved. Read as 0.
15 1B Interrupt occurred while interrupts were blocked.
14 SPLX Interrupt occurred during an SPLOOP.
13-11 |Reserved Reserved. Read as 0.
10 EXC Contains EXC bit value in TSR at point of interrupt.
9 INT Contains INT bit value in TSR at point of interrupt.
8 Reserved Reserved. Read as 0.
7-6 CXM Contains CXM bit value in TSR at point of interrupt.
5 Reserved Reserved. Read as 0.
4 DBGM Contains DBGM bit value in TSR at point of interrupt.
3 XEN Contains XEN bit value in TSR at point of interrupt.
2 GEE Contains GEE bit value in TSR at point of interrupt.
1 SGIE Contains SGIE bit value in TSR at point of interrupt.
0 GIE Contains GIE bit value in TSR at point of interrupt.

52 CPU Data Paths and Control

Copyright © 2010, Texas Instruments Incorporated

SPRUFE8B-July 2010

13 TEXAS
INSTRUMENTS

www.ti.com Control Register File Extensions

2.9.10 NMI/Exception Task State Register (NTSR)

The NMI/exception task state register (NTSR) is used to store the contents of the task state register (TSR)
and the conditions under which an exception occurred in the event of a nonmaskable interrupt (NMI) or an
exception. The NTSR is shown in Figure 2-23 and described in Table 2-21. For detailed bit descriptions
(except for the HWE bit), see Section 2.9.15. The HWE bit is set by taking a hardware exception (NMI,
EXCEP, or internal) and is cleared by either SWE or SWENR instructions.

The NTSR is not accessible in User mode. See Section 8.2.4.1 for more information.

Figure 2-23. NMI/Exception Task State Register (NTSR)

31 17 16
’ Reserved | HWE ‘
R-0 RIW-0

15 14 13 11 10 9 8 7 6 5 4 3 2 1 0
| B | spPx| Reserved | EXC | INT [Rsvd | oxM | Rsvd |DBGM | XEN | GEE | SGIE | GIE |
RIW-0 R/W-0 R0 RW-0 RW-0 R-0 RIW-0 RO RW-0 RMW-0 RMW-0 RW-0 R/MW-0

LEGEND: R = Readable by the MVC instruction only in Supervisor mode; W = Writeable by the MVC instruction only in Supervisor mode;
-n = value after reset

Table 2-21. NMI/Exception Task State Register (NTSR) Field Descriptions

Bit Field Description
31-17 | Reserved Reserved. Read as 0.
16 HWE Hardware exception taken (NMI, EXCEP, or internal).
15 1B Exception occurred while interrupts were blocked.
14 SPLX Exception occurred during an SPLOOP.
13-11 |Reserved Reserved. Read as 0.
10 EXC Contains EXC bit value in TSR at point exception taken.
9 INT Contains INT bit value in TSR at point exception taken.
8 Reserved Reserved. Read as 0.
7-6 CXM Contains CXM bit value in TSR at point exception taken.
5 Reserved Reserved. Read as 0.
4 DBGM Contains DBGM bit value in TSR at point exception taken.
3 XEN Contains XEN bit value in TSR at point exception taken.
2 GEE Contains GEE bit value in TSR at point exception taken.
1 SGIE Contains SGIE bit value in TSR at point exception taken.
0 GIE Contains GIE bit value in TSR at point exception taken.

2.9.11 Restricted Entry Point Register (REP)

The restricted entry point register (REP) is used by the SWENR instruction as the target of the change of
control when an SWENR instruction is issued. The contents of REP should be preinitialized by the
processor in Supervisor mode before any SWENR instruction is issued. See Section 8.2.4.1 for more
information. REP cannot be modified in User mode.

SPRUFE8B-July 2010 CPU Data Paths and Control 53

Copyright © 2010, Texas Instruments Incorporated

Control Register File Extensions

13 TEXAS
INSTRUMENTS

www.ti.com

2.9.12 SPLOOP Reload Inner Loop Count Register (RILC)

Predicated SPLOOP or SPLOOPD instructions used in conjunction with a SPMASKR or SPKERNELR
instruction use the SPLOOP reload inner loop count register (RILC), Figure 2-24, as the iteration count
value to be written to the SPLOOP inner loop count register (ILC) in the cycle before the reload operation
begins. See Chapter 7 for more information.

31

Figure 2-24. Reload Inner Loop Count Register (RILC)

32-bit inner loop count reload

R/W-0

LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

2.9.13 Saturation Status Register (SSR)

The saturation status register (SSR) provides saturation flags for each functional unit, making it possible
for the program to distinguish between saturations caused by different instructions in the same execute
packet. There is no direct connection to the SAT bit in the control status register (CSR); writes to the SAT
bit have no effect on SSR and writes to SSR have no effect on the SAT bit. Care must be taken when
restoring SSR and the SAT bit when returning from a context switch. Since the SAT bit cannot be written
to a value of 1 using the MVC instruction, restoring the SAT bit to a 1 must be done by executing an
instruction that results in saturation. The saturating instruction would affect SSR; therefore, SSR must be
restored after the SAT bit has been restored. The SSR is shown in Figure 2-25 and described in

Table 2-22.

Instructions resulting in saturation set the appropriate unit flag in SSR in the cycle following the writing of

the result to the register file. The setting of the flag from a functional unit takes precedence over a write to
the bit from an MVC instruction. If no functional unit saturation has occurred, the flags may be setto 0 or 1
by the MVC instruction, unlike the SAT bit in CSR.

The bits in SSR can be set by the MVC instruction or by a saturation in the associated functional unit. The
bits are cleared only by a reset or by the MVC instruction. The bits are not cleared by the occurrence of a
nonsaturating instruction.

Figure 2-25. Saturation Status Register (SSR)

31 16
’ Reserved ‘
R-0
15 5 4 3 2 1 0
\ Reserved M2 [w1 | s2 [st | 2 | 11|
R-0 RW-0 RMW-0 RW-0 RW-0 RW-0 RW-0

LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

Table 2-22. Saturation Status Register Field Descriptions

Bit Field Value | Description
31-6 |Reserved 0 Reserved. Read as 0.
5 M2 M2 unit.
Saturation did not occur on M2 unit.
Saturation occurred on M2 unit.
4 M1 M1 unit.
Saturation did not occur on M1 unit.
Saturation occurred on M1 unit.

54

CPU Data Paths and Control

Copyright © 2010, Texas Instruments Incorporated

SPRUFE8B-July 2010

13 TEXAS
INSTRUMENTS

www.ti.com Control Register File Extensions

Table 2-22. Saturation Status Register Field Descriptions (continued)

Bit Field Value | Description
3 S2 S2 unit.
Saturation did not occur on S2 unit.
1 Saturation occurred on S2 unit.
2 S1 S1 unit.
Saturation did not occur on S1 unit.
1 Saturation occurred on S1 unit.
1 L2 L2 unit.
Saturation did not occur on L2 unit.
1 Saturation occurred on L2 unit.
0 L1 L1 unit.

Saturation did not occur on L1 unit.

1 Saturation occurred on L1 unit.

2.9.14 Time Stamp Counter Registers (TSCL and TSCH)

The CPU contains a free running 64-bit counter that advances each CPU clock under normal operation.
The counter is accessed as two 32-bit read-only control registers, TSCL (Figure 2-26) and TSCH
(Figure 2-27).

Figure 2-26. Time Stamp Counter Register - Low Half (TSCL)
31 0
CPU clock count (32 LSBs of 64-bit value)
R-0
LEGEND: R = Readable by the MVC instruction; -n = value after reset

Figure 2-27. Time Stamp Counter Register - High Half (TSCH)
31 0
CPU clock count (32 MSBs of 64-bit value)
R-0
LEGEND: R = Readable by the MVC instruction; -n = value after reset

SPRUFE8B-July 2010 CPU Data Paths and Control 55

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Control Register File Extensions www.ti.com

2.9.14.1 Initialization

The counter is cleared to 0 after reset, and counting is disabled.

2.9.14.2 Enabling Counting

The counter is enabled by writing to TSCL. The value written is ignored. Counting begins in the cycle after
the MVC instruction executes. If executed with the count disabled, the following code sequence shows the
timing of the count starting (assuming no stalls occur in the three cycles shown).

M/C BO, TSCL ; Start TSC
MVC TSCL, BO ; BO 0
WC TSCL, B1 ; Bl 1

2.9.143 Disabling Counting
Once enabled, counting cannot be disabled under program control. Counting is disabled in the following
cases:
» After exiting the reset state.
* When the CPU is fully powered down.

2.9.14.4 Reading the Counter

Reading the full 64-bit count takes two sequential MVC instructions. A read from TSCL causes the upper
32 bits of the count to be copied into TSCH. In normal operation, only this snapshot of the upper half of
the 64-bit count is available to the programmer. The value read will always be the value copied at the
cycle of the last MVC TSCL, reg instruction. If it is read with no TSCL reads having taken place since
reset, then the reset value of 0 is read.

CAUTION

Reading TSCL in the cycle before a cross path stall may give an inaccurate
value in TSCH.

When reading the full 64-bit value, it must be ensured that no interrupts are serviced between the two
MVC instructions if an ISR is allowed to make use of the time stamp counter. There is no way for an ISR
to restore the previous value of TSCH (snapshot) if it reads TSCL, since a new snapshot is performed.

Two methods for reading the 64-bit count value in an uninterruptible manner are shown in Example 2-1
and Example 2-2. Example 2-1 uses the fact that interrupts are automatically disabled in the delay slots of
a branch to prevent an interrupt from happening between the TSCL read and the TSCH read.

Example 2-2 accomplishes the same task by explicitly disabling interrupts.

Example 2-1. Code to Read the 64-Bit TSC Value in Branch Delay Slot

BNOP TSC _Read_Done, 3
MC TSCL, BO ; Read the low half first; high half copied to TSCH
wC TSCH, B1 ; Read the snapshot of the high half

TSC_Read_Done:

Example 2-2. Code to Read the 64-Bit TSC Value Using DINT/RINT

DI NT

| wC TSCL, BO ; Read the low half first; high half copied to TSCH
RI NT

| wC TSCH, B1 ; Read the snapshot of the high half

TSC_Read_Done:

56 CPU Data Paths and Control SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com Control Register File Extensions

2.9.15 Task State Register (TSR)

The task state register (TSR) contains all of the status bits that determine or indicate the current execution
environment. TSR is saved in the event of an interrupt or exception to the ITSR or NTSR, respectively. All
bits are readable by the MVC instruction. The TSR is shown in Figure 2-28 and described in Table 2-23.
The SGIE bit in TSR is used by the DINT and RINT instructions to globally disable and reenable
interrupts.

The GIE and SGIE bits may be written in both User mode and Supervisor mode. The remaining bits all
have restrictions on how they are written. See Section 8.2.4.2 for more information.

The GIE bit in TSR is physically the same bit as the GIE bit in CSR. It is retained in CSR for compatibility
reasons, but placed in TSR so that it will be copied in the event of either an exception or an interrupt.

Figure 2-28. Task State Register (TSR)

31 16
‘ Reserved ‘
R-0
15 14 13 11 10 9 8 7 6 5 4 3 2 1 0
| B | sPLx | Reserved | EXC | INT [Rswd | cxM | Rsvd [DBGM | XEN | GEE [SGIE | GIE |
RO RO R-0 RICO RO RO RIW-0 RO RW-0 RMW-0 RSO RW-0 R/MW-0

LEGEND: R = Readable by the MVC instruction; W = Writeable in Supervisor mode; C = Clearable in Supervisor mode; S = Can be set in
Supervisor mode; -n = value after reset

Table 2-23. Task State Register (TSR) Field Descriptions

Bit Field Value | Description
31-16 | Reserved 0 Reserved. Read as 0.
15 1B Interrupts blocked. Not writable by the MVC instruction; set only by hardware.
0 Interrupts not blocked in previous cycle (interruptible point).

Interrupts were blocked in previous cycle.

14 SPLX SPLOOP executing. Not writable by the MVC instruction; set only by hardware.
0 Not currently executing SPLOOP

Currently executing SPLOOP

13-11 | Reserved 0 Reserved. Read as 0.

10 EXC Exception processing. Clearable by the MVC instruction in Supervisor mode. Not clearable by the MVC
instruction in User mode.

Not currently processing an exception.
Currently processing an exception.

9 INT Interrupt processing. Not writable by the MVC instruction.
Not currently processing an interrupt.
Currently processing an interrupt.

8 Reserved 0 Reserved. Read as 0.

7-6 CXM 0-3h | Current execution mode. Not writable by the MVC instruction; these bits reflect the current execution
mode of the execute pipeline. CXM is set to 1 when you begin executing the first instruction in User
mode. See Chapter 8 for more information.

0 Supervisor mode
1h User mode
2h-3h | Reserved (an attempt to set these values is ignored)

Reserved 0 Reserved. Read as 0.

DBGM Emulator debug mask. Writable in Supervisor and User mode. Writable by emulator.
Enables emulator capabilities.

Disables emulator capabilities.

SPRUFE8B-July 2010 CPU Data Paths and Control 57

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Control Register File Extensions for Floating-Point Operations www.ti.com

Table 2-23. Task State Register (TSR) Field Descriptions (continued)

Bit

Field

Value

Description

XEN

Maskable exception enable. Writable only in Supervisor mode.
Disables all maskable exceptions.
Enables all maskable exceptions.

GEE

Global exception enable. Can be set to 1 only in Supervisor mode. Once set, cannot be cleared except
by reset.

Disables all exceptions except the reset interrupt.
Enables all exceptions.

SGIE

Saved global interrupt enable. Contains previous state of GIE bit after execution of a DINT instruction.
Writable in Supervisor and User mode.

Global interrupts remain disabled by the RINT instruction.
Global interrupts are enabled by the RINT instruction.

GIE

Global interrupt enable. Same physical bit as the GIE bit in the control status register (CSR). Writable in
Supervisor and User mode. See Section 5.2 for details on how the GIE bit affects interruptibility.

Disables all interrupts except the reset interrupt and NMI (nonmaskable interrupt).
Enables all interrupts.

2.10 Control Register File Extensions for Floating-Point Operations

The C674x DSP has three additional configuration registers to support floating-point operations. The
registers specify the desired floating-point rounding mode for the .L and .M units. They also contain fields
to warn if srcl and src2 are NaN or denormalized numbers, and if the result overflows, underflows, is
inexact, infinite, or invalid. There are also fields to warn if a divide by 0 was performed, or if a compare
was attempted with a NaN source. Table 2-24 lists the additional registers used. The OVER, UNDER,
INEX, INVAL, DENn, NANnN, INFO, UNORD and DIVO bits within these registers will not be modified by a
conditional instruction whose condition is false.

Table 2-24. Control Register File Extensions for Floating-Point Operations

Acronym Register Name Section
FADCR Floating-point adder configuration register Section 2.10.1
FAUCR Floating-point auxiliary configuration register Section 2.10.2
FMCR Floating-point multiplier configuration register Section 2.10.3

58 CPU Data Paths and Control SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com Control Register File Extensions for Floating-Point Operations

2.10.1 Floating-Point Adder Configuration Register (FADCR)

The floating-point adder configuration register (FADCR) contains fields that specify underflow or overflow,
the rounding mode, NaNs, denormalized numbers, and inexact results for instructions that use the .L
functional units. FADCR has a set of fields specific to each of the .L units: .L2 uses bits 31-16 and .L1
uses bits 15-0. FADCR is shown in Figure 2-29 and described in Table 2-25.

NOTE: The ADDSP, ADDDP, SUBSP, and SUBDP instructions executing in the .S functional unit
use the rounding mode from and set the warning bits in FADCR. The warning bits in FADCR
are the logical-OR of the warnings produced on the .L functional unit and the warnings
produced by the ADDSP/ADDDP/SUBSP/SUBDP instructions on the .S functional unit (but
not other instructions executing on the .S functional unit).

Figure 2-29. Floating-Point Adder Configuration Register (FADCR)

31 27 26 25 24 23 2 21 20 19 18 17 16
] Reserved | RMODE [UNDER][INEX | OVER | INFO [INVAL | DEN2 | DEN1 [NAN2 | NANL |
R-0 RIW-0 RW-0 RMW-0 RMW-0 RMW-0 RW-0 RW-0 RW-0 RW-0 R/MW-0

15 11 10 9 8 7 6 5 4 3 2 1 0
\ Reserved | RMODE [UNDER| INEX | OVER | INFO | INVAL | DEN2 | DEN1 | NAN2 | NANL |
R-0 RIW-0 RW-0 RMW-0 RMW-0 RMW-0 RW-0 RW-0 RW-0 RW-0 R/MW-0

LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

Table 2-25. Floating-Point Adder Configuration Register (FADCR) Field Descriptions

Bit Field Value | Description
31-27 | Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
26-25 | RMODE 0-3h | Rounding mode select for .L2.
0 Round toward nearest representable floating-point number

1h Round toward 0 (truncate)

2h Round toward infinity (round up)

3h Round toward negative infinity (round down)
24 UNDER Result underflow status for .L2.

0 Result does not underflow.

Result underflows.

23 INEX Inexact results status for .L2.

Result differs from what would have been computed had the exponent range and precision been
unbounded; never set with INVAL.

22 OVER Result overflow status for .L2.
Result does not overflow.

Result overflows.
21 INFO Signed infinity for .L2.
Result is not signed infinity.

Result is signed infinity.

20 INVAL
A signed NaN (SNaN) is not a source.
A signed NaN (SNaN) is a source. NaN is a source in a floating-point to integer conversion or when
infinity is subtracted from infinity.

19 DEN2 Denormalized number select for .L2 src2.

0 src2 is not a denormalized number.
src2 is a denormalized number.
SPRUFE8B-July 2010 CPU Data Paths and Control 59

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Control Register File Extensions for Floating-Point Operations www.ti.com

Table 2-25. Floating-Point Adder Configuration Register (FADCR) Field Descriptions (continued)

Bit

Field

Value

Description

18

DEN1

Denormalized number select for .L2 srcl.
srcl is not a denormalized number.
srcl is a denormalized number.

17

NAN2

NaN select for .L2 src2.
src2 is not NaN.
src2 is NaN.

16

NAN1

NaN select for .L2 srcl.
srcl is not NaN.
srcl is NaN.

15-11

Reserved

Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.

10-9

RMODE

1h
2h
3h

Rounding mode select for .L1.

Round toward nearest representable floating-point number
Round toward 0 (truncate)

Round toward infinity (round up)

Round toward negative infinity (round down)

UNDER

Result underflow status for .L1.
Result does not underflow.
Result underflows.

INEX

Inexact results status for .L1.

Result differs from what would have been computed had the exponent range and precision been
unbounded; never set with INVAL.

OVER

Result overflow status for .L1.
Result does not overflow.
Result overflows.

INFO

Signed infinity for .L1.
Result is not signed infinity.
Result is signed infinity.

INVAL

A signed NaN (SNaN) is not a source.

A signed NaN (SNaN) is a source. NaN is a source in a floating-point to integer conversion or when
infinity is subtracted from infinity.

DEN2

Denormalized number select for .L1 src2.
src2 is not a denormalized number.
src2 is a denormalized number.

DEN1

Denormalized number select for .L1 srcl.
srcl is not a denormalized number.
srcl is a denormalized number.

NAN2

NaN select for .L1 src2.
src2 is not NaN.
src2 is NaN.

NAN1

NaN select for .L1 srcl.
srcl is not NaN.
srcl is NaN.

60

CPU Data Paths and Control SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com Control Register File Extensions for Floating-Point Operations

2.10.2 Floating-Point Auxiliary Configuration Register (FAUCR)

The floating-point auxiliary register (FAUCR) contains fields that specify underflow or overflow, the
rounding mode, NaNs, denormalized numbers, and inexact results for instructions that use the .S
functional units. FAUCR has a set of fields specific to each of the .S units: .S2 uses bits 31-16 and .S1
uses bits 15-0. FAUCR is shown in Figure 2-30 and described in Table 2-26.

NOTE: The ADDSP, ADDDP, SUBSP, and SUBDP instructions executing in the .S functional unit
use the rounding mode from and set the warning bits in the floating-point adder configuration
register (FADCR). The warning bits in FADCR are the logical-OR of the warnings produced
on the .L functional unit and the warnings produced by the ADDSP/ADDDP/SUBSP/SUBDP
instructions on the .S functional unit (but not other instructions executing on the .S functional
unit).

Figure 2-30. Floating-Point Auxiliary Configuration Register (FAUCR)

31 27 26 25 24 23 22 21 20 19 18 17 16
\ Reserved | DIVO [UNORD | UND | INEX | OVER | INFO [INVAL | DEN2 | DEN1 | NAN2 | NAN1 |
R-0 RW-0 RW-0 RMW-0 RW-0 RMW-0 RMW-0 RMW-0 RMW-0 RW-0 RMW-0 RW-0

15 11 10 9 8 7 6 5 4 3 2 1 0
] Reserved [DIvo [UNORD | UND | INEX [OVER | INFO [INVAL [DEN2 | DEN1 [NAN2 | NAN1 |
R-0 RW-0 RW-0 RMW-0 RW-0 RMW-0 RW-0 RMW-0 RMW-0 RW-0 RMW-0 RAW-0

LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

Table 2-26. Floating-Point Auxiliary Configuration Register (FAUCR) Field Descriptions

Bit Field Value | Description
31-27 | Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
26 DIVO Source to reciprocal operation for .S2.

0 is not source to reciprocal operation.
0 is source to reciprocal operation.

25 UNORD Source to a compare operation for .S2

NaN is not a source to a compare operation.
NaN is a source to a compare operation.

24 UND Result underflow status for .S2.

Result does not underflow.

Result underflows.

23 INEX Inexact results status for .S2.

Result differs from what would have been computed had the exponent range and precision been
unbounded; never set with INVAL.

22 OVER Result overflow status for .S2.
Result does not overflow.

Result overflows.
21 INFO Signed infinity for .S2.
Result is not signed infinity.

Result is signed infinity.

20 INVAL
A signed NaN (SNaN) is not a source.
A signed NaN (SNaN) is a source. NaN is a source in a floating-point to integer conversion or when
infinity is subtracted from infinity.
SPRUFE8B-July 2010 CPU Data Paths and Control 61

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Control Register File Extensions for Floating-Point Operations www.ti.com

Table 2-26. Floating-Point Auxiliary Configuration Register (FAUCR) Field Descriptions (continued)

Bit

Field

Value

Description

19

DEN2

Denormalized number select for .S2 src2.
src2 is not a denormalized number.
src2 is a denormalized number.

18

DEN1

Denormalized number select for .S2 srcl.
srcl is not a denormalized number.
srcl is a denormalized number.

17

NAN2

NaN select for .S2 src2.
src2 is not NaN.
src2 is NaN.

16

NAN1

NaN select for .S2 srcl.
srcl is not NaN.
srcl is NaN.

15-11

Reserved

Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.

10

DIVO

Source to reciprocal operation for .S1.
0 is not source to reciprocal operation.
0 is source to reciprocal operation.

UNORD

Source to a compare operation for .S1
NaN is not a source to a compare operation.
NaN is a source to a compare operation.

UND

Result underflow status for .S1.
Result does not underflow.
Result underflows.

INEX

Inexact results status for .S1.

Result differs from what would have been computed had the exponent range and precision been
unbounded; never set with INVAL.

OVER

Result overflow status for .S1.
Result does not overflow.
Result overflows.

INFO

Signed infinity for .S1.
Result is not signed infinity.
Result is signed infinity.

INVAL

A signed NaN (SNaN) is not a source.

A signed NaN (SNaN) is a source. NaN is a source in a floating-point to integer conversion or when
infinity is subtracted from infinity.

DEN2

Denormalized number select for .S1 src2.
src2 is not a denormalized number.
src2 is a denormalized number.

DEN1

Denormalized number select for .S1 srcl.
srcl is not a denormalized number.
srcl is a denormalized number.

NAN2

NaN select for .S1 src2.
src2 is not NaN.
src2 is NaN.

NAN1

NaN select for .S1 srcl.
srcl is not NaN.

srcl is NaN.

62

CPU Data Paths and Control SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com Control Register File Extensions for Floating-Point Operations

2.10.3 Floating-Point Multiplier Configuration Register (FMCR)

The floating-point multiplier configuration register (FMCR) contains fields that specify underflow or
overflow, the rounding mode, NaNs, denormalized numbers, and inexact results for instructions that use
the .M functional units. FMCR has a set of fields specific to each of the .M units: .M2 uses bits 31-16 and
.M1 uses bits 15-0. FMCR is shown in Figure 2-31 and described in Table 2-27.

Figure 2-31. Floating-Point Multiplier Configuration Register (FMCR)

31 27 26 25 24 23 2 21 20 19 18 17 16
\ Reserved | RMODE [UNDER | INEX | OVER | INFO | INVAL | DEN2 | DEN1 | NAN2 | NANL |
R-0 RIW-0 RW-0 RMW-0 RMW-0 RMW-0 RW-0 RW-0 RW-0 RW-0 R/MW-0

15 11 10 9 8 7 6 5 4 3 2 1 0
] Reserved | RMODE [UNDER| INEX | OVER | INFO [INVAL [DEN2 | DEN1 [NAN2 | NANL |
R-0 RIW-0 RW-0 RMW-0 RMW-0 RMW-0 RW-0 RW-0 RW-0 RW-0 R/MW-0

LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

Table 2-27. Floating-Point Multiplier Configuration Register (FMCR) Field Descriptions

Bit Field Value | Description
31-27 | Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
26-25 | RMODE 0-3h | Rounding mode select for .M2.
0 Round toward nearest representable floating-point number

1h Round toward 0 (truncate)

2h Round toward infinity (round up)

3h Round toward negative infinity (round down)
24 UNDER Result underflow status for .M2.

0 Result does not underflow.

Result underflows.

23 INEX Inexact results status for .M2.

Result differs from what would have been computed had the exponent range and precision been
unbounded; never set with INVAL.

22 OVER Result overflow status for .M2.
Result does not overflow.

1 Result overflows.
21 INFO Signed infinity for .M2.
Result is not signed infinity.

1 Result is signed infinity.

20 INVAL
A signed NaN (SNaN) is not a source.

1 A signed NaN (SNaN) is a source. NaN is a source in a floating-point to integer conversion or when
infinity is subtracted from infinity.

19 DEN2 Denormalized number select for .M2 src2.
0 src2 is not a denormalized number.
src2 is a denormalized number.

18 DEN1 Denormalized number select for .M2 srcl.
0 srcl is not a denormalized number.

srcl is a denormalized number.

17 NAN2 NaN select for .M2 src2.

0 src2 is not NaN.

src2 is NaN.

SPRUFE8B-July 2010 CPU Data Paths and Control 63

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Control Register File Extensions for Floating-Point Operations www.ti.com

Table 2-27. Floating-Point Multiplier Configuration Register (FMCR) Field Descriptions (continued)

Bit

Field

Value

Description

16

NAN1

NaN select for .M2 srcl.
srcl is not NaN.
srcl is NaN.

15-11

Reserved

Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.

10-9

RMODE

1h
2h
3h

Rounding mode select for .M1.

Round toward nearest representable floating-point number
Round toward 0 (truncate)

Round toward infinity (round up)

Round toward negative infinity (round down)

UNDER

Result underflow status for .M1.
Result does not underflow.
Result underflows.

INEX

Inexact results status for .M1.

Result differs from what would have been computed had the exponent range and precision been
unbounded; never set with INVAL.

OVER

Result overflow status for .M1.
Result does not overflow.
Result overflows.

INFO

Signed infinity for .M1.
Result is not signed infinity.
Result is signed infinity.

INVAL

A signed NaN (SNaN) is not a source.

A signed NaN (SNaN) is a source. NaN is a source in a floating-point to integer conversion or when
infinity is subtracted from infinity.

DEN2

Denormalized number select for .M1 src2.
src2 is not a denormalized number.
src2 is a denormalized number.

DEN1

Denormalized number select for .M1 srcl.
srcl is not a denormalized number.
srcl is a denormalized number.

NAN2

NaN select for .M1 src2.
src2 is not NaN.
src2 is NaN.

NAN1

NaN select for .M1 srcl.
srcl is not NaN.

srcl is NaN.

64

CPU Data Paths and Control SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

. Chapter 3
I3 TEXAS SPRUFESB—July 2010

INSTRUMENTS

Instruction Set

This chapter describes the assembly language instructions of the TMS320C674x DSP. Also described are
parallel operations, conditional operations, resource constraints, and addressing modes.

The C674x DSP uses all of the instructions available to the TMS320C62x, TMS320C64x, TMS320C64x+,
TMS320C67x%, and TMS320C67x+ DSPs. The C674x DSP instructions include 8-bit and 16-bit extensions,
nonaligned word loads and stores, data packing/unpacking operations.

Topic Page
3.1 Instruction Operation and Execution NOtatiONSoeieieiiiiiiiiinieieieieieaeieieenanens 66
3.2 Instruction Syntax and Opcode NOtAtIONSc.euiuiieiniiiiit et eeaeeaees 68
3.3 Overview of IEEE Standard Single- and Double-Precision Formatscccceeeun... 70
G I T =] () £ PP 73
ST &= U= | =) B 0 L= = o g P 74
3.6 ConditioNal OPEratiONSeeiuieeeuee ettt een e e ettt e e eaenan e e e e aeaeeaenananens 77
3.7 SPMASKEA OPEIaAtiONS .uieieitieeeueueueuanieiereieeeeaeaesaa e e e e eeaeaeaenserarereaeaeaeaensnss 77
3.8 RESOUICE CONSIIAINTS 1uiuiuitititieiiiiaie e ie et e s e s rara e s e e s e eaeasararere s e eenenenanss 78
3.9 AdAreSSIiNG MOOES uiuiiitiiiiiiititi ettt a s et e et e e e et aas 87
3.10 Compact Instructions 0N the CPU ...t et e e e e e 91
3.11 Instruction CompatiDilitycocieiiiii e 97
3.12 INStruCtioN DESCIIPLIONS .vueiineieueuinen ettt e e een e e ee e e e e e e eaeaeneaseenreaeaeenenenenanens 98

SPRUFE8B-July 2010 Instruction Set 65

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
Instruction Operation and Execution Notations www.ti.com
3.1 Instruction Operation and Execution Notations
Table 3-1 explains the symbols used in the instruction descriptions.
Table 3-1. Instruction Operation and Execution Notations
Symbol Meaning
abs(x) Absolute value of x
and Bitwise AND
-a Perform 2s-complement subtraction using the addressing mode defined by the AMR
+a Perform 2s-complement addition using the addressing mode defined by the AMR
b, Select bit i of source/destination b
bit_count Count the number of bits that are 1 in a specified byte
bit_reverse Reverse the order of bits in a 32-bit register
byte0 8-bit value in the least-significant byte position in 32-bit register (bits 0-7)
bytel 8-bit value in the next to least-significant byte position in 32-bit register (bits 8-15)
byte2 8-bit value in the next to most-significant byte position in 32-bit register (bits 16-23)
byte3 8-bit value in the most-significant byte position in 32-bit register (bits 24-31)
bv2 Bit vector of two flags for s2 or u2 data type
bv4 Bit vector of four flags for s4 or u4 data type
by , Selection of bits y through z of bit string b
cond Check for either creg equal to 0 or creg not equal to 0
creg 3-bit field specifying a conditional register, see Section 3.6
cstn n-bit constant field (for example, cst5)
dint 64-bit integer value (two registers)
dp Double-precision floating-point register value
dst_e Isb32 of 64-hit dst (placed in even-numbered register of a 64-bit register pair)
dst_h msb8 of 40-bit dst (placed in odd-numbered register of 64-bit register pair)
dst_| Isb32 of 40-hit dst (placed in even-numbered register of a 64-bit register pair)
dst o msb32 of 64-bit dst (placed in odd-numbered register of 64-bit register pair)
dws4 Four packed signed 16-bit integers in a 64-bit register pair
dwu4 Four packed unsigned 16-bit integers in a 64-bit register pair
gmpy Galois Field Multiply
i2 Two packed 16-bit integers in a single 32-bit register
i4 Four packed 8-bit integers in a single 32-bit register
int 32-bit integer value
ImbO(x) Leftmost 0 bit search of x
Imb1(x) Leftmost 1 bit search of x
long 40-bit integer value
Isbn or LSBn n least-significant bits (for example, Isb16)
msbn or MSBn n most-significant bits (for example, msh16)
nop No operation
norm(x) Leftmost nonredundant sign bit of x
not Bitwise logical complement
op Opfields
or Bitwise OR
R Any general-purpose register
ROTL Rotate left
sat Saturate
shyte0 Signed 8-bit value in the least-significant byte position in 32-bit register (bits 0-7)
shytel Signed 8-bit value in the next to least-significant byte position in 32-bit register (bits 8-15)
shyte2 Signed 8-bit value in the next to most-significant byte position in 32-bit register (bits 16-23)
66 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com Instruction Operation and Execution Notations

Table 3-1. Instruction Operation and Execution Notations (continued)

Symbol Meaning

sbyte3 Signed 8-bit value in the most-significant byte position in 32-bit register (bits 24-31)
scstn n-bit signed constant field

sdint Signed 64-bit integer value (two registers)

se Sign-extend

sint Signed 32-bit integer value

slong Signed 40-bit integer value

sllong Signed 64-bit integer value

slsb16 Signed 16-bit integer value in lower half of 32-bit register

smsb16 Signed 16-bit integer value in upper half of 32-bit register

sp Single-precision floating-point register value that can optionally use cross path

srcl_e or src2_e
srcl_h or src2_h

srcl_| or src2_|

srcl_o or src2_o

Ish32 of 64-bit src (placed in even-numbered register of a 64-bit register pair)
msb8 of 40-bit src (placed in odd-numbered register of 64-bit register pair)
Isb32 of 40-bit src (placed in even-numbered register of a 64-bit register pair)
msb32 of 64-bit src (placed in odd-numbered register of 64-bit register pair)

s2 Two packed signed 16-bit integers in a single 32-bit register

s4 Four packed signed 8-bit integers in a single 32-bit register

-S Perform 2s-complement subtraction and saturate the result to the result size, if an overflow occurs
+s Perform 2s-complement addition and saturate the result to the result size, if an overflow occurs
ubyteO Unsigned 8-bit value in the least-significant byte position in 32-bit register (bits 0-7)

ubytel Unsigned 8-bit value in the next to least-significant byte position in 32-bit register (bits 8-15)
ubyte2 Unsigned 8-bit value in the next to most-significant byte position in 32-bit register (bits 16-23)
ubyte3 Unsigned 8-bit value in the most-significant byte position in 32-bit register (bits 24-31)

ucstn n-bit unsigned constant field (for example, ucst5)

uint Unsigned 32-bit integer value

ulong Unsigned 40-bit integer value

ullong Unsigned 64-bit integer value

ulsb16 Unsigned 16-bit integer value in lower half of 32-bit register

umsb16 Unsigned 16-bit integer value in upper half of 32-bit register

u2 Two packed unsigned 16-bit integers in a single 32-bit register

usd Four packed unsigned 8-bit integers in a single 32-bit register

X clear b,e Clear a field in x, specified by b (beginning bit) and e (ending bit)

x extl,r Extract and sign-extend a field in x, specified by | (shift left value) and r (shift right value)

x extu l,r Extract an unsigned field in x, specified by | (shift left value) and r (shift right value)

x setb,e Set field in x to all 1s, specified by b (beginning bit) and e (ending bit)

xdp Double-precision floating-point register value that can optionally use cross path

xint 32-bit integer value that can optionally use cross path

xor Bitwise exclusive-ORs

xsint Signed 32-bit integer value that can optionally use cross path

xslsb16 Signed 16 LSB of register that can optionally use cross path

xsmsh16 Signed 16 MSB of register that can optionally use cross path

Xsp Single-precision floating-point register value that can optionally use cross path

Xs2 Two packed signed 16-bit integers in a single 32-bit register that can optionally use cross path
xs4 Four packed signed 8-bit integers in a single 32-bit register that can optionally use cross path
xuint Unsigned 32-bit integer value that can optionally use cross path

xulsb16 Unsigned 16 LSB of register that can optionally use cross path

xumsb16 Unsigned 16 MSB of register that can optionally use cross path

xu2 Two packed unsigned 16-bit integers in a single 32-bit register that can optionally use cross path

SPRUFE8B-July 2010

Instruction Set

Copyright © 2010, Texas Instruments Incorporated

67

Instruction Syntax and Opcode Notations

13 TEXAS
INSTRUMENTS

www.ti.com

Table 3-1. Instruction Operation and Execution Notations (continued)

Symbol Meaning

xu4d Four packed unsigned 8-bit integers in a single 32-bit register that can optionally use cross path
— Assignment

+ Addition

++ Increment by 1

X Multiplication

- Subtraction

== Equal to

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

<< Shift left

>> Shift right

>>s Shift right with sign extension
>>7 Shift right with a zero fill

~ Logical inverse

& Logical AND

3.2 Instruction Syntax and Opcode Notations

Table 3-2 explains the syntaxes and opcode fields used in the instruction descriptions.

Table 3-2. Instruction Syntax and Opcode Notations

Symbol Meaning

baseR base address register

creg 3-hbit field specifying a conditional register, see Section 3.6

cst constant

csta constant a

cstb constant b

cstn n-bit constant field

dst destination

dw doubleword; 0 = word, 1 = doubleword

feyc SPLOOP fetch cycle

fstg SPLOOP fetch stage

h MVK or MVKH instruction

i, bit n of the constant ii

Id/st load or store; 0 = store, 1 = load

mode addressing mode, see Section 3.9

na nonaligned; O = aligned, 1 = nonaligned

N3 3-bit field

offsetR register offset

op opfield; field within opcode that specifies a unique instruction

op, bit n of the opfield

p parallel execution; O = next instruction is not executed in parallel, 1 = next instruction is executed in
parallel

ptr offset from either A4-A7 or B4-B7 depending on the value of the s bit. The ptr field is the 2

least-significant bits of the src2 (baseR) field—bit 2 of register address is forced to 1.

68 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRUFE8B-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com Instruction Syntax and Opcode Notations
Table 3-2. Instruction Syntax and Opcode Notations (continued)
Symbol Meaning
r LDDW/LDNDW/LDNW instruction
rsv reserved
s side A or B for destination; 0 = side A, 1 = side B.
sc scaling mode; 0 = nonscaled, offsetR/ucst5 is not shifted; 1 = scaled, offsetR/ucst5 is shifted
scstn n-bit signed constant field
scst, bit n of the signed constant field
sn sign
src source
srcl source 1
src2 source 2
stg, bit n of the constant stg
sz data size select; 0 = primary size, 1 = secondary size (see Section 3.10.2.2)
t side of source/destination (src/dst) register; 0 = side A, 1 = side B
ucstn n-bit unsigned constant field
ucst, bit n of the unsigned constant field
unit unit decode
X cross path for src2; 0 = do not use cross path, 1 = use cross path
y .D1 or .D2 unit; 0 = .D1 unit, 1 = .D2 unit
z test for equality with zero or nonzero

3.2.1 32-Bit Opcode Maps
The 32-bit opcodes are mapped in Appendix C through Appendix H.

3.2.2 16-Bit Opcode Maps

The 16-bit opcodes used for compact instructions are mapped in Appendix C through Appendix H. See
Section 3.10 for more information about compact instructions.

SPRUFE8B-July 2010 Instruction Set 69

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
Overview of IEEE Standard Single- and Double-Precision Formats www.ti.com
3.3 Overview of IEEE Standard Single- and Double-Precision Formats
Floating-point operands are classified as single-precision (SP) and double-precision (DP). Single-precision
floating-point values are 32-bit values stored in a single register. Double-precision floating-point values are
64-bit values stored in a register pair. The register pair consists of consecutive even and odd registers
from the same register file. The 32 least-significant-bits are loaded into the even register; the 32
most-significant-bits containing the sign bit and exponent are loaded into the next register (that is always
the odd register). The register pair syntax places the odd register first, followed by a colon, then the even
register (that is, A1:A0Q, B1:B0, A3:A2, B3:B2, etc.).
Instructions that use DP sources fall in two categories: instructions that read the upper and lower 32-bit
words on separate cycles, and instructions that read both 32-bit words on the same cycle. All instructions
that produce a double-precision result write the low 32-bit word one cycle before writing the high 32-bit
word. If an instruction that writes a DP result is followed by an instruction that uses the result as its DP
source and it reads the upper and lower words on separate cycles, then the second instruction can be
scheduled on the same cycle that the high 32-bit word of the result is written. The lower result is written on
the previous cycle. This is because the second instruction reads the low word of the DP source one cycle
before the high word of the DP source.
IEEE floating-point numbers consist of normal numbers, denormalized numbers, NaNs (not a number),
and infinity numbers. Denormalized numbers are nonzero numbers that are smaller than the smallest
nonzero normal number. Infinity is a value that represents an infinite floating-point number. NaN values
represent results for invalid operations, such as (+infinity + (-infinity)).
Normal single-precision values are always accurate to at least six decimal places, sometimes up to nine
decimal places. Normal double-precision values are always accurate to at least 15 decimal places,
sometimes up to 17 decimal places.
Table 3-3 shows notations used in discussing floating-point numbers.
Table 3-3. IEEE Floating-Point Notations
Symbol Meaning
s Sign bit
e Exponent field
f Fraction (mantissa) field
X Can have value of 0 or 1 (don't care)
NaN Not-a-Number (SNaN or QNaN)
SNaN Signal NaN
QNaN Quiet NaN
NaN_out QNaN with all bits in the f field = 1
Inf Infinity
LFPN Largest floating-point number
SFPN Smallest floating-point number
LDFPN Largest denormalized floating-point number
SDFPN Smallest denormalized floating-point number
signed Inf +infinity or -infinity
signed NaN_out NaN_out with s =0 or 1
70 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

Overview of IEEE Standard Single- and Double-Precision Formats

3.3.1 Single-Precision Formats

Figure 3-1 shows the fields of a single-precision floating-point number represented within a 32-bit register.

Figure 3-1. Single-Precision Floating-Point Fields

31 30 23 22 0
Ls | e | f
LEGEND: s = sign bit (0O = positive, 1 = negative); e = 8-bit exponent (0 < e < 255);
f=23-bit fraction (0 <f<1x2t+1x22+ . +1x2%0r0<f<((2%)-1)/(2%)
The floating-point fields represent floating-point numbers within two ranges: normalized (e is between 0O
and 255) and denormalized (e is 0). The following formulas define how to translate the s, e, and f fields
into a single-precision floating-point number.
Normalized: -18 x 2@ 120 % 1 f 0<e<255
Denormalized (Subnormal): 215 x 2126 x O f e = 0; f is nonzero
Table 3-4 shows the s, e, and f values for special single-precision floating-point numbers.
Table 3-4. Special Single-Precision Values
Symbol Sign (s) Exponent (e) Fraction (f)
+0 0 0 0
-0 1 0 0
+Inf 0 255 0
-Inf 1 255 0
NaN X 255 nonzero
QNaN X 255 1xx..xX
SNaN X 255 Oxx..x and nonzero
Table 3-5 shows hexadecimal and decimal values for some single-precision floating-point numbers.
Table 3-5. Hexadecimal and Decimal Representation for Selected
Single-Precision Values
Symbol Hex Value Decimal Value
NaN_out 7FFF FFFF QNaN
0 0000 0000 0.0
-0 8000 0000 -0.0
1 3F80 0000 1.0
2 4000 0000 2.0
LFPN 7F7F FFFF 3.40282347e+38
SFPN 0080 0000 1.17549435e-38
LDFPN 007F FFFF 1.17549421e-38
SDFPN 0000 0001 1.40129846e-45
SPRUFE8B-July 2010 Instruction Set 71

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Overview of IEEE Standard Single- and Double-Precision Formats www.ti.com

3.3.2 Double-Precision Formats

Figure 3-2 shows the fields of a double-precision floating-point number represented within a pair of 32-bit
registers.

Figure 3-2. Double-Precision Floating-Point Fields
31 30 20 19 0 31 0
Ls] e | f | f

‘ Odd register ‘ Even register

LEGEND: s = sign bit (0 = positive, 1 = negative); e = 11-bit exponent (0 < e < 2047);
f=52-bit fraction (0 <f<1x21+1x22+ . +1x2%0r0<f<((2%)-1)/(2%)

The floating-point fields represent floating-point numbers within two ranges: normalized (e is between 0
and 2047) and denormalized (e is 0). The following formulas define how to translate the s, e, and f fields
into a double-precision floating-point number.

Normalized: 218 x 261023 % 1 f 0 < e <2047

Denormalized (Subnormal): 218 x 271022 % O f e = 0; fis nonzero

Table 3-6 shows the s, e, and f values for special double-precision floating-point numbers.

Table 3-6. Special Double-Precision Values

Symbol Sign (s) Exponent (e) Fraction (f)

+0 0 0 0

-0 1 0 0

+Inf 0 2047 0

-Inf 1 2047 0

NaN X 2047 nonzero

QNaN X 2047 IxX..X

SNaN X 2047 0xx..x and nonzero

Table 3-7 shows hexadecimal and decimal values for some double-precision floating-point numbers.

Table 3-7. Hexadecimal and Decimal Representation for Selected
Double-Precision Values

Symbol Hex Value Decimal Value

NaN_out 7FFF FFFF FFFF FFFF QNaN

0 0000 0000 0000 0000 0.0

-0 8000 0000 0000 0000 -0.0

1 3FF0 0000 0000 0000 1.0

2 4000 0000 0000 0000 2.0

LFPN 7FEF FFFF FFFF FFFF 1.7976931348623157e+308

SFPN 0010 0000 0000 0000 2.2250738585072014e-308

LDFPN 000F FFFF FFFF FFFF 2.2250738585072009e-308

SDFPN 0000 0000 0000 0001 4.9406564584124654e-324
72 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

I3 TEXAS
INSTRUMENTS
www.ti.com Delay Slots
3.4 Delay Slots
The execution of floating-point instructions can be defined in terms of delay slots and functional unit
latency. The number of delay slots is equivalent to the number of additional cycles required after the
source operands are read for the result to be available for reading. For a single-cycle type instruction,
operands read in cycle i produce a result that can be read in cycle i + 1. For a 4-cycle instruction,
operands read in cycle i produce a result that can be read in cycle i + 4. Table 3-8 shows the number of
delay slots associated with each type of instruction.
The functional unit latency is equivalent to the number of cycles that must pass before the functional unit
can start executing the next instruction. The double-precision floating-point addition, subtraction,
multiplication, compare, and the 32-bit integer multiply instructions have a functional unit latency that is
greater than 1. Most instructions have a functional unit latency of 1, meaning that the next instruction can
begin execution in cycle i + 1. The ADDDP instruction has a functional unit latency of 2. Operands are
read on cycle i and cycle i + 1. Therefore, a new instruction cannot begin until cycle i + 2, rather than
cyclei + 1. ADDDP produces a result that can be read in cycle i + 7, because it has six delay slots.
Table 3-8. Delay Slot and Functional Unit Latency
Functional Unit
Instruction Type Delay Slots Latency Read Cycles @ Write Cycles @
Single cycle 0 1 i i
2-cycle DP 1 1 i i,i+1
DP compare 1 2 ,i+1 i+1
4-cycle 3 1 i i+3
INTDP 4 1 [i+3,i+4
Load 4 1 i i,i+4@
MPYSP2DP 4 2 [i+3,i+4
ADDDP/SUBDP 6 2 ii+1 i+5,i+6
MPYSPDP 6 3 ii+1 i+5,i+6
MPYI 8 4 Li+1,1+2,i+3 i+8
MPYID 9 4 Li+1,1+2,i+3 i+8,i+9
MPYDP 9 4 Li+1,1+2,i+3 i+8,i+9
@ Cycle i is in the E1 pipeline phase.
@ A write on cycle i + 4 uses a separate write port from other .D unit instructions.
SPRUFE8B-July 2010 Instruction Set 73

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Parallel Operations www.ti.com

3.5

Parallel Operations

Instructions are always fetched eight words at a time. This constitutes a fetch packet. On the CPU, this
may be as many as 14 instructions due to the existence of compact instructions in a header based fetch
packet. The basic format of a fetch packet is shown in Figure 3-3. Fetch packets are aligned on 256-bit
(8-word) boundaries.

Figure 3-3. Basic Format of a Fetch Packet
31 0 31 0 31 0 31 0 31 0 31 0 31 0 31 0
'p 'p 'p 'p 'p 'p 'p 'p

Instruction Instruction Instruction Instruction Instruction Instruction Instruction Instruction
A B C D E F G H
LSBs of
the byte 00000b 00100b 01000b 01100b 10000b 10100b 11000b 11100b
address

The CPU supports compact 16-bit instructions. Unlike the normal 32-bit instructions, the p-bit information
for compact instructions is not contained within the instruction opcode. Instead, the p-bit is contained
within the p-bits field within the fetch packet header. See Section 3.10 for more information.

The execution of the individual noncompact instructions is partially controlled by a bit in each instruction,
the p-bit. The p-bit (bit 0) determines whether the instruction executes in parallel with another instruction.
The p-bits are scanned from left to right (lower to higher address). If the p-bit of instruction | is 1, then
instruction | + 1 is to be executed in parallel with (in the same cycle as) instruction I. If the p-bit of
instruction | is 0, then instruction | + 1 is executed in the cycle after instruction I. All instructions executing
in parallel constitute an execute packet. An execute packet can contain up to eight instructions. Each
instruction in an execute packet must use a different functional unit.

On the CPU, the execute packet can cross fetch packet boundaries, but will be limited to no more than
eight instructions in a fetch packet. The last instruction in an execute packet will be marked with its p-bit
cleared to zero. There are three types of p-bit patterns for fetch packets. These three p-bit patterns result
in the following execution sequences for the eight instructions:

* Fully serial
e Fully parallel
e Partially serial

Example 3-1 through Example 3-3 show the conversion of a p-bit sequence into a cycle-by-cycle
execution stream of instructions.

74

Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com Parallel Operations

Example 3-1. Fully Serial p-Bit Pattern in a Fetch Packet

The eight instructions are executed sequentially.
This p-bit pattern:

31 0 31 0 31 0 31 0 31 0 31 0 31 0 31 0
io io io io io io io io

Instruction Instruction Instruction Instruction Instruction Instruction Instruction Instruction
A B C D E F G H

results in this execution sequence:

Cycle/Execute Packet Instructions
1 A

© N o N W N
I G MM mOOw

Example 3-2. Fully Parallel p-Bit Pattern in a Fetch Packet

All eight instructions are executed in parallel.
This p-bit pattern:

31 0 31 0 31 0 31 0 31 0 31 0 31 0 31 0
11 i1| i1| 11 11 11 11 11
| | | | | | |

Instruction Instruction Instruction Instruction Instruction Instruction Instruction Instruction
A B C D E F G H

results in this execution sequence:

Cycle/Execute
Packet Instructions
1 A B C D E F G H
SPRUFE8B-July 2010 Instruction Set 75

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
Parallel Operations www.ti.com
Example 3-3. Partially Serial p-Bit Pattern in a Fetch Packet
This p-bit pattern:
31 0 31 0 31 0 31 0 31 0 31 0 31 0 31 0
i 0 i 0 i 1 i 1 i 0 i 1 i1 i 0

Instruction Instruction Instruction Instruction Instruction Instruction Instruction Instruction
A B C D E F G H

results in this execution sequence:

Cycle/Execute Packet Instructions
1 A
2 B
3 C D E
4 F G H

3.5.1 Example Parallel Code

The vertical bars || signify that an instruction is to execute in parallel with the previous instruction. The
code for the fetch packet in Example 3-3 would be represented as this:
instruction A

instruction B
instruction

instruction
instruction

mooO

instruction
instruction
instruction

Ieom

3.5.2 Branching Into the Middle of an Execute Packet

If a branch into the middle of an execute packet occurs, all instructions at lower addresses are ignored. In
Example 3-3, if a branch to the address containing instruction D occurs, then only D and E execute. Even
though instruction C is in the same execute packet, it is ignored. Instructions A and B are also ignored
because they are in earlier execute packets. If your result depends on executing A, B, or C, the branch to
the middle of the execute packet will produce an erroneous result.

76 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

I3 TEXAS
INSTRUMENTS
www.ti.com Conditional Operations
3.6 Conditional Operations
Most instructions can be conditional. The condition is controlled by a 3-bit opcode field (creg) that
specifies the condition register tested, and a 1-bit field (z) that specifies a test for zero or nonzero. The
four MSBs of every opcode are creg and z. The specified condition register is tested at the beginning of
the E1 pipeline stage for all instructions. For more information on the pipeline, see Chapter 4. If z = 1, the
test is for equality with zero; if z = 0, the test is for nonzero. The case of creg = 0 and z = 0 is treated as
always true to allow instructions to be executed unconditionally. The creg field is encoded in the
instruction opcode as shown in Table 3-9.
Compact (16-bit) instructions on the DSP do not contain a creg field and always execute unconditionally.
See Section 3.10 for more information.
Table 3-9. Registers That Can Be Tested by Conditional Operations
Specified creg z
Conditional
Register Bit: 31 30 29 28
Unconditional 0 0 0 0
Reserved 0 0 0 1
BO 0 0 1 z
B1 0 1 0 z
B2 0 1 1 z
Al 1 0 0 z
A2 1 0 1 z
A0 1 1 0 z
Reserved 1 1 1 x®
@ x can be any value.
Conditional instructions are represented in code by using square brackets, [], surrounding the condition
register name. The following execute packet contains two ADD instructions in parallel. The first ADD is
conditional on BO being nonzero. The second ADD is conditional on BO being zero. The character !
indicates the inverse of the condition.
[BO] ADD L Al, A2, A3
[[!BO] ADD L2 B1, B2, B3
The above instructions are mutually exclusive, only one will execute. If they are scheduled in parallel,
mutually exclusive instructions are constrained as described in Section 3.8. If mutually exclusive
instructions share any resources as described in Section 3.8, they cannot be scheduled in parallel (put in
the same execute packet), even though only one will execute.
The act of making an instruction conditional is often called predication and the conditional register is often
called the predication register.
3.7 SPMASKed Operations
On the CPU, the SPMASK and SPMASKR instructions can be used to inhibit the execution of instructions
from the SPLOOP buffer. The selection of which instruction to inhibit can be specified by the SPMASK or
SPMASKR instruction argument or can be marked by the addition of a caret (*) next to the parallel code
marker as shown below:
SPMVASK
||~ LDW .DL *A0, Al ; This instruction is SPMASKed
||~ LDW . D2 *B0, B1 ;This instruction is SPMASKed
| MPY .ML A3, A4, A5 ; This instruction is Not SPMASKed
See Chapter 7 for more information.
SPRUFE8B-July 2010 Instruction Set 77

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Resource Constraints www.ti.com

3.8

3.8.1

3.8.2

3.8.3

Resource Constraints

No two instructions within the same execute packet can use the same resources. Also, no two instructions
can write to the same register during the same cycle. The following sections describe how an instruction
can use each of the resources.

Constraints on Instructions Using the Same Functional Unit
Two instructions using the same functional unit cannot be issued in the same execute packet.

The following execute packet is invalid:

ADD . S1 A0, Al, A2 ;.S1 is used for
|] SHR .S1 A3, 15, M ;...both instructions

The following execute packet is valid:

ADD . L1 A0, Al, A2 ; Two different functional
|] SHR .S1 A3, 15, A4 ;...units are used

Constraints on the Same Functional Unit Writing in the Same Instruction Cycle

The .M unit has two 32-bit write ports; so the results of a 4-cycle 32-bit instruction and a 2-cycle 32-hit
instruction operating on the same .M unit can write their results on the same instruction cycle. Any other
combination of parallel writes on the .M unit will result in a conflict. On the C674x DSP this will result in an
exception.

On the C674x DSP, this will result in erroneous values being written to the destination registers.

For example, the following sequence is valid and results in both A2 and A5 being written by the .M1 unit
on the same cycle.

DOTP2 . ML AO, Al, A2 ; This instruction has 3 delay slots

NOP

AV&R2 ML A4, A5 ; This instruction has 1 del ay sl ot

NOP ;Both A2 and A5 get written on this cycle

The following sequence is invalid. The attempt to write 96 bits of output through 64-bits of write port will
fail.

SWPY2 .M A5, A6, A9: A8 ;This instruction has 3 delay slots; but generates a 64 bit
resul t

NOP

MPY . ML Al, A2, A3 ; This instruction has 1 delay slot

NOP

Constraints on Cross Paths (1X and 2X)

Up to two units (.S, .L, .D, or .M unit) per data path, per execute packet, can read a source operand from
its opposite register file via the cross paths (1X and 2X) provided that each unit is reading the same
operand.

For example, the .S1 unit can read both its operands from the A register file; or it can read an operand
from the B register file using the 1X cross path and the other from the A register file. The use of a cross
path is denoted by an X following the functional unit name in the instruction syntax (as in S1X).

The following execute packet is invalid because the 1X cross path is being used for two different B
register operands:

M/ .S1X BO, A0 ; Invalid. Instructions are using the 1X cross path
|] MW .L1X Bl, Al ; with different B registers

78

Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com Resource Constraints

The following execute packet is valid because all uses of the 1X cross path are for the same B register
operand, and all uses of the 2X cross path are for the same A register operand:
ADD . L1X AO,B1,Al ; Instructions use the 1X with Bl

|] SUB .S1X A2,B1, A2 ; 1X cross paths using Bl

[| AND .D1 A4, Al A3 ;

[| MPY .ML A6, Al A4 ;

|| ADD .L2 BO,B4,B2 ;

|| SUB .S2X B4, A4,B3 ; 2X cross paths using A4

|| AND .D2X B5, A4, B4 ; 2X cross paths using A4

|| MPY .M2 BS6,B4,B5 ;

The following execute packet is invalid because more than two functional units use the same cross path
operand:

MV .L2X A0, BO ; 1st cross path nove
|] MV .S2X A0, Bl ; 2nd cross path nove
|| MV .D2X A0, B2 ; 3rd cross path nove

The operand comes from a register file opposite of the destination, if the x bit in the instruction field is set.

3.8.4 Cross Path Stalls

The DSP introduces a delay clock cycle whenever an instruction attempts to read a register via a cross
path that was updated in the previous cycle. This is known as a cross path stall. This stall is inserted
automatically by the hardware, no NOP instruction is needed. It should be noted that no stall is introduced
if the register being read has data placed by a load instruction, or if an instruction reads a result one cycle
after the result is generated.

Here are some examples:

ADD .S1 A0, A0, Al ; / Stall is introduced; Al is updated
; 1 cycle before it is used as a

ADD .S2X Al, BO, BL ; \ cross path source

ADD .Sl A0, A0, Al ; / No stall is introduced; A0 not updated
; 1 cycle before it is used as a cross
ADD .S2X A0, BO, BL ; \ path source

LDW .D1 *++A0[1], AL ; / No stall is introduced; Al is the |oad
; destination

NOP 4 ; NOP 4 represents 4 instructions to
ADD .S2X Al, BO, Bl ; \ be executed between the |oad and add.
LDW .D1 *++A0[1], Al ; / Stall is introduced; AO is updated
ADD .S2X A0, BO, Bl ; 1 cycle before it is used as a

; \ cross path source

It is possible to avoid the cross path stall by scheduling an instruction that reads an operand via the cross
path at least one cycle after the operand is updated. With appropriate scheduling, the DSP can provide
one cross path operand per data path per cycle with no stalls. In many cases, the TMS320C6000
Optimizing Compiler and Assembly Optimizer automatically perform this scheduling.

SPRUFE8B-July 2010 Instruction Set 79

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Resource Constraints www.ti.com

3.8.5 Constraints on Loads and Stores

The data address paths named DALl and DA2 are each connected to the .D units in both data paths. Load
and store instructions can use an address pointer from one register file while loading to or storing from the
other register file. Two load and store instructions using a destination/source from the same register file
cannot be issued in the same execute packet. The address register must be on the same side as the .D
unit used.

The DAL and DA2 resources and their associated data paths are specified as T1 and T2, respectively. T1
consists of the DAL address path and the LD1 and ST1 data paths. LD1 is comprised of LD1a and LD1b
to support 64-bit loads; ST1 is comprised of ST1a and ST1b to support 64-bit stores. Similarly, T2 consists
of the DA2 address path and the LD2 and ST2 data paths. LD2 is comprised of LD2a and LD2b to support
64-bit loads; ST2 is comprised of ST2a and ST2b to support 64-bit stores. The T1 and T2 designations
appear in the functional unit fields for load and store instructions.

The DSP can access words and doublewords at any byte boundary using nonaligned loads and stores. As
a result, word and doubleword data does not need alignment to 32-bit or 64-bit boundaries. No other
memory access may be used in parallel with a nonaligned memory access. The other .D unit can be used
in parallel, as long as it is not performing a memory access.

The following execute packet is invalid:;

LDNW . D2T2 *B2[B12],B13 ; \ Two nenory operations,
|| LDB . D1T1 *A2, Al4 ; | one non-aligned

The following execute packet is valid:
LDNW . D2T2 *B2[B12], A13 ; \ One non-aligned nenory
; operati on,
|| ADD .Dix Al2, B13, Al4 ; one non-nenory .D unit
;| operation

3.8.6 Constraints on Long (40-Bit) Data

Both the C62x and C67x device families had constraints on the number of simultaneous reads and writes
of 40-bit data due to shared data paths.

The C674x CPU maintains separate datapaths to each functional unit, so these constraints are removed.

The following, for example, is valid:

DDOTPL2 . ML Al: AO, A2, A5: A4
DDOTPL2 Y B1: BO, B2, B5: B4

I
|| STDW .D1 A9: A8, * A6
|| STDwW .D2 B9: B8, *B6
|| SuB . L1 A25: A24, A20, A31: A30
|| SuB . L2 B25: B24, B20, B31: B30
|| SHL .S1 All: A10, 5, A13: A12
|] SHL . S2 B11: B10, 8, B13: B12
80 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

I

WWW.1i

TEXAS
INSTRUMENTS

i.com Resource Constraints

3.8.7

Constraints on Register Reads

More than four reads of the same register cannot occur on the same cycle. Conditional registers are not
included in this count.

The following execute packets are invalid:

wPY . ML Al, Al, AA ; five reads of register Al
[| ADD .L1 Al, Al, A5
[| SUB .DL Al, A2, A3

MPY . ML Al, Al, AA ; five reads of register Al
|| ADD .L1 Al, Al, A5
|| SuB .D2x Al, B2, B3

The following execute packet is valid:

MPY ML Al, Al, A4 ; only four reads of Al
[| [Al]] ADD .L1 A0, Al, A5
[SUB .DL Al, A2, A3

3.8.8 Constraints on Register Writes

Two instructions cannot write to the same register on the same cycle. Two instructions with the same
destination can be scheduled in parallel as long as they do not write to the destination register on the
same cycle. For example, an MPY issued on cycle | followed by an ADD on cycle | + 1 cannot write to the
same register because both instructions write a result on cycle | + 1. Therefore, the following code
sequence is invalid unless a branch occurs after the MPY, causing the ADD not to be issued.
MPY . ML A0, Al, A2
ADD .L1 A4, A5, A2
However, this code sequence is valid:

MPY ML A0, Al, A2
[ADD .L1 A4, A5, A2
Figure 3-4 shows different multiple-write conflicts. For example, ADD and SUB in execute packet L1 write
to the same register. This conflict is easily detectable.
MPY in packet L2 and ADD in packet L3 might both write to B2 simultaneously; however, if a branch
instruction causes the execute packet after L2 to be something other than L3, a conflict would not occur.
Thus, the potential conflict in L2 and L3 might not be detected by the assembler. The instructions in L4 do
not constitute a write conflict because they are mutually exclusive. In contrast, because the instructions in
L5 may or may not be mutually exclusive, the assembler cannot determine a conflict. If the pipeline does
receive commands to perform multiple writes to the same register, the result is undefined.

Figure 3-4. Examples of the Detectability of Write Conflicts by the Assembler

L1: ADD .L2 BS5, B6, B7 ; \ detectable, conflict

[SUB .S2 B8, B9, BY 0
L2: MPY . M2 BO, B1, B2 ; \ not detectable
L3: ADD .L2 B3, B4,B2 0
L4: [tBO] ADD .L2 B5,B6,B7 ; \ detectable, no conflict

|| [BO] SUB .S2 B8, B9, B7 0
L5: [tB1] ADD .L2 B5,B6,B7 ; \ not detectable

|| [BO] SUB .S2 B8, B9, B7 0

SPRUFE8B-July 2010 Instruction Set 81

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Resource Constraints www.ti.com

3.8.9 Constraints on AMR Writes

A write to the addressing mode register (AMR) using the MVC instruction that is immediately followed by a
LD, ST, ADDA, or SUBA instruction causes a 1 cycle stall, if the LD, ST, ADDA, or SUBA instruction
uses the A4-A7 or B4-B7 registers for addressing.

3.8.10 Constraints on Multicycle NOPs

Two instructions that generate multicycle NOPs cannot share the same execute packet. Instructions that
generate a multicycle NOP are:

e NOP n (where n>1)

 IDLE

» BNORP target, n (for all values of n, regardless of predication)

» ADDKPC label, reg, n (for all values of n, regardless of predication)

3.8.11 Constraints on Unitless Instructions

3.8.11.1 SPLOOP Restrictions

The NOP, NOP n, and BNOP instructions are the only unitless instructions allowed to be used in an
SPLOOP(D/W) body. The assembler disallows the use of any other unitless instruction in the loop body.

See Chapter 7 for more information.

3.8.11.2 BNOP <disp>,n

A BNORP instruction cannot be placed in parallel with the following instructions if the BNOP has a non-zero

NOP count:
« ADDKPC
e CALLP

e NOPnN

3.8.11.3 DINT

A DINT instruction cannot be placed in parallel with the following instructions:
* MVCreg, TSR
e MVCreg, CSR

* BIRP

« BNRP

» IDLE

* NOPnN (fn>1)
* RINT

« SPKERNEL(R)
« SPLOOP(D/W)
« SPMASK(R)

. SWE

- SWENR

A DINT instruction can be placed in parallel with the NOP instruction.

82 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com Resource Constraints

3.8.11.4 IDLE

An IDLE instruction cannot be placed in parallel with the following instructions:
 DINT

e NOPnN (ifn>1)

* RINT

* SPKERNEL(R)

* SPLOOP(D/W)

» SPMASK(R)

« SWE

+ SWENR

An IDLE instruction can be placed in parallel with the NOP instruction.

3.8.11.5 NOPn

A NOP n (with n > 1) instruction cannot be placed in parallel with other multicycle NOP counts (ADDKPC,
BNOP, CALLP) with the exception of another NOP n where the NOP count is the same. A NOP n (with
n > 1) instruction cannot be placed in parallel with the following instructions:

« DINT
. IDLE

« RINT

« SPKERNEL(R)
« SPLOOP(D/W)
« SPMASK(R)

. SWE

- SWENR

3.8.11.6 RINT

A RINT instruction cannot be placed in parallel with the following instructions:
* MVCreg, TSR
* MVCreg, CSR
* BIRP

« BNRP

* DINT

 IDLE

* NOPnN (fn>1)
* SPKERNEL(R)
* SPLOOP(D/W)
* SPMASK(R)

* SWE

e SWENR

A RINT instruction can be placed in parallel with the NOP instruction.

3.8.11.7 SPKERNEL(R)

An SPKERNEL(R) instruction cannot be placed in parallel with the following instructions:
* DINT

* IDLE

e NOPnN (ifn>1)

* RINT

* SPLOOP(D/W)

SPRUFE8B-July 2010 Instruction Set 83

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS

Resource Constraints www.ti.com

« SPMASK(R)

« SWE

» SWENR

An SPKERNEL(R) instruction can be placed in parallel with the NOP instruction.
3.8.11.8 SPLOOP(D/W)

An SPLOOP(D/W) instruction cannot be placed in parallel with the following instructions:

* DINT

 IDLE

e NOPnN(ifn>1)

« RINT

« SPKERNEL(R)

* SPMASK(R)

« SWE

» SWENR

An SPLOOP(D/W) instruction can be placed in parallel with the NOP instruction:
3.8.11.9 SPMASK(R)

An SPMASK(R) instruction cannot be placed in parallel with the following instructions:

* DINT

« |IDLE

* NOPnN (fn>1)

* RINT

 SPLOOP(D/W)

* SPKERNEL(R)

« SWE

« SWENR

An SPMASK(R) instruction can be placed in parallel with the NOP instruction.
3.8.11.10 SWE

An SWE instruction cannot be placed in parallel with the following instructions:

* DINT

 IDLE

e NOPnN(ifn>1)

* RINT

* SPLOOP(D/W)

« SPKERNEL(R)

« SWENR

An SWE instruction can be placed in parallel with the NOP instruction.
3.8.11.11 SWENR

An SWENR instruction cannot be placed in parallel with the following instructions:

* DINT

 IDLE

e NOPnN(ifn>1)

* RINT

* SPLOOP(D/W)
84 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

Resource Constraints

« SPKERNEL(R)
. SWE

An SWENR instruction can be placed in parallel with the NOP instruction.

3.8.12 Constraints on Floating-Point Instructions

If an instruction has a multicycle functional unit latency, it locks the functional unit for the necessary
number of cycles. Any new instruction dispatched to that functional unit during this locking period causes
undefined results. If an instruction with a multicycle functional unit latency has a condition that is evaluated

as false during E1,

it still locks the functional unit for subsequent cycles.

An instruction of the following types scheduled on cycle | has the following constraints:

DP compare
ADDDP/SUBDP
MPYI

MPYID

MPYDP

No other instruction can use the functional unit on cycles | and | + 1.
No other instruction can use the functional unit on cycles | and | + 1.
No other instruction can use the functional unit on cycles I, | + 1,1 + 2, and | + 3.
No other instruction can use the functional unit on cycles I, 1 + 1,1+ 2, and | + 3.
No other instruction can use the functional unit on cycles I, I + 1, I + 2, and | + 3.

If a cross path is used to read a source in an instruction with a multicycle functional unit latency, you must
ensure that no other instructions executing on the same side uses the cross path.

An instruction of the following types scheduled on cycle | using a cross path to read a source, has the
following constraints:

DP compare
ADDDP/SUBDP
MPYI

MPYID

MPYDP

No other instruction on the same side can used the cross path on cycles | and | + 1.
No other instruction on the same side can use the cross path on cycles | and | + 1.
No other instruction on the same side can use the cross path on cycles |, | + 1, | + 2,
and | + 3.

No other instruction on the same side can use the cross path oncycles |, | + 1, | + 2,
and | + 3.

No other instruction on the same side can use the cross path oncycles I, | + 1, | + 2,
and | + 3.

Other hazards exist because instructions have varying numbers of delay slots, and need the functional
unit read and write ports of varying numbers of cycles. A read or write hazard exists when two instructions
on the same functional unit attempt to read or write, respectively, to the register file on the same cycle.

SPRUFE8B-July 2010

Instruction Set 85

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
Resource Constraints www.ti.com
An instruction of the following types scheduled on cycle | has the following constraints:
2-cycle DP A single-cycle instruction cannot be scheduled on that functional unit on cycle | + 1

due to a write hazard on cycle | + 1.

Another 2-cycle DP instruction cannot be scheduled on that functional unit on cycle
| + 1 due to a write hazard on cycle | + 1.

4-cycle A single-cycle instruction cannot be scheduled on that functional unit on cycle | + 3
due to a write hazard on cycle | + 3.

A multiply (16 16-bit) instruction cannot be scheduled on that functional unit on cycle
| + 2 due to a write hazard on cycle | + 3.

INTDP A single-cycle instruction cannot be scheduled on that functional unit on cycle | + 3 or
| + 4 due to a write hazard on cycle | + 3 or | + 4, respectively.
An INTDP instruction cannot be scheduled on that functional unit on cycle | + 1 due to
a write hazard on cycle | + 1.

A 4-cycle instruction cannot be scheduled on that functional unit on cycle | + 1 due to a
write hazard on cycle | + 1.

MPYI A 4-cycle instruction cannot be scheduled on that functional unit on cycle | + 4,1 + 5,
orl+6.
A MPYDP instruction cannot be scheduled on that functional unit on cycle | + 4, | + 5,
orl+6.

A multiply (16 16-bit) instruction cannot be scheduled on that functional unit on cycle
| + 6 due to a write hazard on cycle | + 7.

MPYID A 4-cycle instruction cannot be scheduled on that functional unit on cycle | + 4, | + 5,
orl+6.
A MPYDP instruction cannot be scheduled on that functional unit on cycles | + 4, | + 5,
orl+6.

A multiply (16 16-bit) instruction cannot be scheduled on that functional unit on cycle |
+ 7 or | + 8 due to a write hazard on cycle | + 8 or | + 9, respectively.

MPYDP A 4-cycle instruction cannot be scheduled on that functional unit on cycle | + 4,1 + 5,
orl+6.
A MPYI instruction cannot be scheduled on that functional unit on cycle | + 4, 1 + 5, or
| + 6.
A MPYID instruction cannot be scheduled on that functional unit on cycle | + 4, | + 5,
orl+6.

A multiply (16 x 16-bit) instruction cannot be scheduled on that functional unit on cycle

| +7 or | + 8 due to a write hazard on cycle | + 8 or | + 9, respectively.
ADDDP/SUBDP A single-cycle instruction cannot be scheduled on that functional unit on cycle | + 5 or

| + 6 due to a write hazard on cycle | + 5 or | + 6, respectively.

A 4-cycle instruction cannot be scheduled on that functional uniton cycle | + 2 or | + 3

due to a write hazard on cycle | + 5 or | + 6, respectively.

An INTDP instruction cannot be scheduled on that functional unit on cycle | + 2 or | + 3
due to a write hazard on cycle | + 5 or | + 6, respectively.

86 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com Addressing Modes

All of the previous cases deal with double-precision floating-point instructions or the MPYI| or MPYID
instructions except for the 4-cycle case. A 4-cycle instruction consists of both single- and double-precision
floating-point instructions. Therefore, the 4-cycle case is important for the following single-precision
floating-point instructions:

« ADDSP

» SUBSP

* SPINT

» SPTRUNC
* INTSP

« MPYSP

3.9 Addressing Modes

The addressing modes on the DSP are linear, circular using BKO, and circular using BK1. The addressing
mode is specified by the addressing mode register (AMR), described in Section 2.8.3.

All registers can perform linear addressing. Only eight registers can perform circular addressing: A4-A7
are used by the .D1 unit, and B4-B7 are used by the .D2 unit. No other units can perform circular
addressing. LDB(U)/LDH(U)/LDW, STB/STH/STW, LDNDW, LDNW, STNDW, STNW, LDDW, STDW,
ADDAB/ADDAH/ADDAW/ADDAD, and SUBAB/SUBAH/SUBAW instructions all use AMR to determine
what type of address calculations are performed for these registers. There is no SUBAD instruction.

3.9.1 Linear Addressing Mode

3.9.1.1 LD and ST Instructions

For load and store instructions, linear mode simply shifts the offsetR/cst operand to the left by 3, 2, 1, or 0
for doubleword, word, halfword, or byte access, respectively; and then performs an add or a subtract to
baseR (depending on the operation specified). The LDNDW and STNDW instructions also support
nonscaled offsets. In nonscaled mode, the offsetR/cst is not shifted before adding or subtracting from the
baseR.

For the preincrement, predecrement, positive offset, and negative offset address generation options, the
result of the calculation is the address to be accessed in memory. For postincrement or postdecrement
addressing, the value of baseR before the addition or subtraction is the address to be accessed from
memory.

3.9.1.2 ADDA and SUBA Instructions

For integer addition and subtraction instructions, linear mode simply shifts the srcl/cst operand to the left
by 3, 2, 1, or 0 for doubleword, word, halfword, or byte data sizes, respectively, and then performs the add
or subtract specified.

SPRUFE8B-July 2010 Instruction Set 87

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Addressing Modes www.ti.com

3.9.2 Circular Addressing Mode
The BKO and BK1 fields in AMR specify the block sizes for circular addressing, see Section 2.8.3.

3.9.2.1 LD and ST Instructions

As with linear address arithmetic, offsetR/cst is shifted left by 3, 2, 1, or 0 according to the data size, and
is then added to or subtracted from baseR to produce the final address. Circular addressing modifies this
slightly by only allowing bits N through 0 of the result to be updated, leaving bits 31 through N + 1
unchanged after address arithmetic. The resulting address is bounded to 2™ * ¥ range, regardless of the
size of the offsetR/cst.

The circular buffer size in AMR is not scaled; for example, a block-size of 8 is 8 bytes, not 8 times the data
size (byte, halfword, word). So, to perform circular addressing on an array of 8 words, a size of 32 should
be specified, or N = 4. Example 3-4 shows an LDW performed with register A4 in circular mode and

BKO = 4, so the buffer size is 32 bytes, 16 halfwords, or 8 words. The value in AMR for this example is
0004 0001h.

Example 3-4. LDW Instruction in Circular Mode

LDW . DL *++A4[9], AL
Before LDW 1 cycle after LDW @ 5 cycles after LDW
A4 0000 0100h A4 0000 0104h A4 0000 0104h
Al XXXX XXXXh Al XXXX XXXXh Al 1234 5678h
mem 104h 1234 5678h mem 104h 1234 5678h mem 104h 1234 5678h

@ Note: 9h words is 24h bytes. 24h bytes is 4 bytes beyond the 32-byte (20h) boundary 100h-11Fh; thus, it is wrapped around to

(124h - 20h = 104h).

3.9.2.2 ADDA and SUBA Instructions

As with linear address arithmetic, offsetR/cst is shifted left by 3, 2, 1, or 0 according to the data size, and
is then added to or subtracted from baseR to produce the final address. Circular addressing modifies this
slightly by only allowing bits N through 0 of the result to be updated, leaving bits 31 through N + 1
unchanged after address arithmetic. The resulting address is bounded to 2™ * Y range, regardless of the
size of the offsetR/cst.

The circular buffer size in AMR is not scaled; for example, a block size of 8 is 8 bytes, not 8 times the data
size (byte, halfword, word). So, to perform circular addressing on an array of 8 words, a size of 32 should
be specified, or N = 4. Example 3-5 shows an ADDAH performed with register A4 in circular mode and

BKO = 4, so the buffer size is 32 bytes, 16 halfwords, or 8 words. The value in AMR for this example is
0004 0001h.

Example 3-5. ADDAH Instruction in Circular Mode

ADDAH . D1 Ad, AL, A4
Before ADDAH 1 cycle after ADDAH @
A4 0000 0100h A4 0000 0106h
Al 0000 0013h Al 0000 0013h

@ Note: 13h halfwords is 26h bytes. 26h bytes is 6 bytes beyond the 32-byte (20h) boundary 100h-11Fh; thus, it is wrapped

around to (126h - 20h = 106h).

88 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com Addressing Modes

3.9.2.3 Circular Addressing Considerations with Nonaligned Memory

Circular addressing may be used with nonaligned accesses. When circular addressing is enabled, address
updates and memory accesses occur in the same manner as for the equivalent sequence of byte
accesses.

On the CPU, the circular buffer size must be at least 32 bytes. Nonaligned access to circular buffers that
are smaller than 32 bytes will cause undefined results.

Nonaligned accesses to a circular buffer apply the circular addressing calculation to logically adjacent
memory addresses. The result is that nonaligned accesses near the boundary of a circular buffer will
correctly read data from both ends of the circular buffer, thus seamlessly causing the circular buffer to
“wrap around” at the edges.

Consider, for example, a circular buffer size of 16 bytes. A circular buffer of this size at location 20h, would
look like this in physical memory:

111111111222 2222222222222 3333131333233
7 8 9 ABCDETFO12 3 45678 9 ABCDETFO12 3 456 7 8
X X X X X X X X x|a b c de f g h i j k I mnop x x X X X X X X X

The effect of circular buffering is to make it so that memory accesses and address updates in the 20h-2Fh
range stay completely inside this range. Effectively, the memory map behaves in this manner:

o AN
- 01N
> NN

© N

© N
x >N
o AN
- 0N
> NN

o N

2
B
|

> NN
o N

© N
~ >N
EREQINN]
5 O N
omnmN
D O N
T kN
o NN
o w N

2
B
|

30N

2
D
n

o mNnmN
T TN
QO N
oL, N
o NN
o w N
Q o N
T TN
Q o N

Example 3-6 shows an LDNW performed with register A4 in circular mode and BKO = 4, so the buffer size
is 32 bytes, 16 halfwords, or 8 words. The value in AMR for this example is 0004 0001h. The buffer starts
at address 0020h and ends at 0040h. The register A4 is initialized to the address 003Ah.

Example 3-6. LDNW in Circular Mode

LDN\W .D1 *++Ad[2], AL
Before LDNW 1 cycle after LDNW @ 5 cycles after LDNW
A4 0000 003Ah A4 0000 0022h A4 0000 0022h
Al XXXX XXXxh Al XXXX Xxxxh Al 5678 9ABCh
mem 0022h 5678 9ABCh mem 0022h 5678 9ABCh mem 0022h 5678 9ABCh

@ Note: 2h words is 8h bytes. 8h bytes is 2 bytes beyond the 32-byte (20h) boundary starting at address 003Ah; thus, it is
wrapped around to 0022h (003Ah + 8h = 0022h).

SPRUFE8B-July 2010 Instruction Set 89

Copyright © 2010, Texas Instruments Incorporated

Addressing Modes

13 TEXAS
INSTRUMENTS

www.ti.com

3.9.3 Syntax for Load/Store Address Generation

The DSP has a load/store architecture, which means that the only way to access data in memory is with a
load or store instruction. Table 3-10 shows the syntax of an indirect address to a memory location.

Sometimes a large offset is required for a load/store. In this case, you can use the B14 or B15 register as
the base register, and use a 15-bit constant (ucstl15) as the offset.

Table 3-11 describes the addressing generator options. The memory address is formed from a base
address register (baseR) and an optional offset that is either a register (offsetR) or a 5-bit unsigned

constant (ucstb).

Table 3-10. Indirect Address Generation for Load/Store

No Modification of
Address Register

Addressing Type

Preincrement or
Predecrement of
Address Register

Postincrement or
Postdecrement of
Address Register

Register indirect *R *++R
* R
Register relative *+R[ucstb] *++R[ucst5]
*-R[ucst5] *- -R[ucst5]
Register relative with *+B14/B15[ucst15] not supported
15-bit constant offset
Base + index *+R[offsetR] *++R[offsetR]
*-R[offsetR] *- -R[offsetR]

*R++

*R- -
*R++[ucst5]
*R- -[ucst5]
not supported

*R++[offsetR]
*R- -[offsetR]

Table 3-11. Address Generator Options for Load/Store

Mode Field Syntax Modification Performed
0 0 0 0 *-R[ucst5] Negative offset
0 0 0 1 *+R[ucst5] Positive offset
0 1 0 0 *-R[offsetR] Negative offset
0 1 0 1 *+R[offsetR] Positive offset
1 0 0 0 *- -R[ucst5] Predecrement
1 0 0 1 *++R[ucstb] Preincrement
1 0 1 0 *R- -[ucst5] Postdecrement
1 0 1 1 *R++[ucstb] Postincrement
1 1 0 0 *--R[offsetR] Predecrement
1 1 0 1 *++R[offsetR] Preincrement
1 1 1 0 *R- -[offsetR] Postdecrement
1 1 1 1 *R++[offsetR] Postincrement

90

Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRUFE8B-July 2010

13 TEXAS
INSTRUMENTS

www.ti.com

Compact Instructions on the CPU

3.10 Co

mpact Instructions on the CPU

The CPU supports a header based set of 16-bit-wide compact instructions in addition to the normal 32-bit
wide instructions.

3.10.1 Compact Instruction Overview

The availability of compact instructions is enabled by the replacement of the eighth word of a fetch packet
with a 32-bit header word. The header word describes which of the other seven words of the fetch packet
contain compact instructions, which of the compact instructions in the fetch packet operate in parallel, and
also contains some decoding information which supplements the information contained in the 16-bit
compact opcode. Table 3-12 compares the standard fetch packet with a header-based fetch packet
containing compact instructions.

Table 3-12. CPU Fetch Packet Types

Standard C6000 Fetch Packet Header-Based Fetch Packet

Wit

Word Word

0 32-bit opcode 0 16-bit opcode 16-bit opcode
1 32-bit opcode 1 32-bit opcode

2 32-bit opcode 2 16-bit opcode 16-bit opcode
3 32-bit opcode 3 32-bit opcode

4 32-bit opcode 4 16-bit opcode 16-bit opcode
5 32-bit opcode 5 32-bit opcode

6 32-bit opcode 6 16-bit opcode 16-bit opcode
7 32-bit opcode 7 Header

hin the other seven words of the fetch packet, each word may be composed of a single 32-bit opcode

or two 16-bit opcodes. The header word specifies which words contain compact opcodes and which
contain 32-bit opcodes.

The compiler will automatically code instructions as 16-bit compact instructions when possible.

There are a number of restrictions to the use of compact instructions:

No dedicated predication field
3-bit register address field

Very limited 3 operand instructions
Subset of 32-bit instructions

SPRUFE8B-July 2010

Instruction Set 91

Copyright © 2010, Texas Instruments Incorporated

Compact Instructions on the CPU

13 TEXAS
INSTRUMENTS

www.ti.com

3.10.2 Header Word Format

Figure 3-5 describes the format of the compact instruction header word.

Figure 3-5. Compact Instruction Header Format
31 30 29 28 27 21 20 14 13

’ 1 ’ 1 ’ 1 | 0 | Layout | Expansion ’ p-bits

7 7 14

Bits 27-21 (Layout field) indicate which words in the fetch packet contain 32-bit opcodes and which words

contain two 16-bit opcodes.

Bits 20-14 (Expansion field) contain information that contributes to the decoding of all compact

instructions in the fetch packet.
Bits 13-0 (p-bits field) specify which compact instructions are run in parallel.

3.10.2.1 Layout Field in Compact Header Word

Bits 27-21 of the compact instruction header contains the layout field. This field specifies which of the
other seven words in the current fetch packet contain 32-bit full-sized instructions and which words contain

two 16-bit compact instructions.

Figure 3-6 shows the layout field in the compact header word and Table 3-13 describes the bits.

Figure 3-6. Layout Field in Compact Header Word
27 26 25 24 23 22

21

L7 \ L6 \ L5 \ L4 \ L3 \ L2

Table 3-13. Layout Field Description in Compact Instruction Packet Header

Bit Field Value | Description
27 L7 0 Seventh word of fetch packet contains a single 32-bit opcode.

1 Seventh word of fetch packet contains two 16-bit compact instructions.
26 L6 0 Sixth word of fetch packet contains a single 32-bit opcode.

1 Sixth word of fetch packet contains two 16-bit compact instructions.
25 L5 0 Fifth word of fetch packet contains a single 32-bit opcode.

1 Fifth word of fetch packet contains two 16-bit compact instructions.
24 L4 0 Fourth word of fetch packet contains a single 32-bit opcode.

1 Fourth word of fetch packet contains two 16-bit compact instructions.
23 L3 0 Third word of fetch packet contains a single 32-bit opcode.

1 Third word of fetch packet contains two 16-bit compact instructions.
22 L2 0 Second word of fetch packet contains a single 32-bit opcode.

1 Second word of fetch packet contains two 16-bit compact instructions.
21 L1 0 First word of fetch packet contains a single 32-bit opcode.

1 First word of fetch packet contains two 16-bit compact instructions.

92 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com Compact Instructions on the CPU

3.10.2.2 Expansion Field in Compact Header Word

Bits 20-14 of the compact instruction header contains the opcode expansion field. This field specifies
properties that apply to all compact instructions contained in the current fetch packet.

Figure 3-7 shows the expansion field in the compact header word and Table 3-14 describes the bits.

Figure 3-7. Expansion Field in Compact Header Word
20 19 18 16 15 14

PROT \ RS \ DSZ \ BR \ SAT

Table 3-14. Expansion Field Description in Compact Instruction Packet Header

Bit Field Value |Description
20 PROT 0 Loads are nonprotected (NOPs must be explicit).
1 Loads are protected (4 NOP cycles added after every LD instruction).
19 RS 0 Instructions use low register set for data source and destination.
1 Instructions use high register set for data source and destination.
18-16 | DSz 0-7h Defines primary and secondary data size (see Table 3-15)
15 BR 0 Compact instructions in the S unit are not decoded as branches
1 Compact Instructions in the S unit are decoded as branches.
14 SAT 0 Compact instructions do not saturate.
1 Compact instructions saturate.

Bit 20 (PROT) selects between protected and nonprotected mode for all LD instructions within the fetch
packet. When PROT is 1, four cycles of NOP are added after each LD instruction within the fetch packet

whether the LD is in 16-bit compact format or 32-bit format.
Bit 19 (RS) specifies which register set is used by compact instructions within the fetch packet. The

register set defines which subset of 8 registers on each side are data registers. The 3-bit register field in
the compact opcode indicates which one of eight registers is used. When RS is 1, the high register set

(A16-A23 and B16-B23) is used; when RS is 0, the low register set (A0-A7 and B0-B7) is used.

Bits 18-16 (DSZ) determine the two data sizes available to the compact versions of the LD and ST
instructions in a fetch packet. Bit 18 determines the primary data size that is either word (W) or

doubleword (DW). In the case of DW, an opcode bit selects between aligned (DW) and nonaligned (NDW)

accesses. Bits 17 and 16 determine the secondary data size: byte unsigned (BU), byte (B), halfword

unsigned (HU), halfword (H), word (W), or nonaligned word (NW). Table 3-15 describes how the bits map

to data size.
Bit 15 (BR). When BR is 1, instructions in the S unit are decoded as branches.

Bit 14 (SAT). When SAT is 1, the ADD, SUB, SHL, MPY, MPYH, MPYLH, and MPYHL instructions are

decoded as SADD, SUBS, SSHL, SMPY, SMPYH, SMPYLH, and SMPYHL, respectively.

SPRUFE8B-July 2010 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

93

Compact Instructions on the CPU

13 TEXAS
INSTRUMENTS

www.ti.com

Table 3-15. LD/ST Data Size Selection

DSZ Bits

Primary Secondary

18 17 16 Data Size © Data Size @
0 0 0 w BU

0 0 1 w B

0 1 0 w HU

0 1 1 w H

1 0 0 DW/NDW w

1 0 1 DW/NDW B

1 1 0 DW/NDW NW

1 1 1 DW/NDW H

@ Primary data size is word W) or doubleword (DW). In the case of DW, aligned (DW) or nonaligned (NDW).
@ Secondary data size is byte unsigned (BU), byte (B), halfword unsigned (HU), halfword (H), word (W), or nonaligned word (NW).

94

Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRUFE8B-July 2010

13 TEXAS

www.ti.com

INSTRUMENTS

Compact Instructions on the CPU

3.10.2.3 P-bit Field in Compact Header Word

Figure 3-8. P-bits Field in Compact Header Word

Figure 3-8 shows the p-bits field in the compact header word and Table 3-16 describes the bits.

Unlike normal 32-bit instructions in which the p-bit filed in each opcode determines whether the instruction
executes in parallel with other instructions; the parallel/nonparallel execution information for compact
instructions is contained in the compact instruction header word.

Bits 13-0 of the compact instruction header contain the p-bit field. This field specifies which of the compact
instructions within the current fetch packet are executed in parallel. If the corresponding bit in the layout
field is O (indicating that the word is a noncompact instruction), then the bit in the p-bit field must be zero;
that is, 32-bit instructions within compact fetch packets use their own p-bit field internal to the 32-bit
opcode; therefore, the associated p-bit field in the header should always be zero.

13 12 11 10 9 8 7 6 5 4 3 2 1 0
Pi3 | P12 [Pir | Ppo [po | P8 | PT [Pe | Ps [P4 | P3| P2 | P1 PO
Table 3-16. P-bits Field Description in Compact Instruction Packet Header
Bit Field Value |Description
13 P13 0 Word 6 (16 most-significant bits) of fetch packet has parallel bit cleared.
1 Word 6 (16 most-significant bits) of fetch packet has parallel bit set.
12 P12 0 Word 6 (16 least-significant bits) of fetch packet has parallel bit cleared.
1 Word 6 (16 least-significant bits) of fetch packet has parallel bit set.
11 P11 0 Word 5 (16 most-significant bits) of fetch packet has parallel bit cleared.
1 Word 5 (16 most-significant bits) of fetch packet has parallel bit set.
10 P10 0 Word 5 (16 least-significant bits) of fetch packet has parallel bit cleared.
1 Word 5 (16 least-significant bits) of fetch packet has parallel bit set.
9 P9 0 Word 4 (16 most-significant bits) of fetch packet has parallel bit cleared.
1 Word 4 (16 most-significant bits) of fetch packet has parallel bit set.
8 P8 0 Word 4 (16 least-significant bits) of fetch packet has parallel bit cleared.
1 Word 4 (16 least-significant bits) of fetch packet has parallel bit set.
7 P7 0 Word 3 (16 most-significant bits) of fetch packet has parallel bit cleared.
1 Word 3 (16 most-significant bits) of fetch packet has parallel bit set.
6 P6 0 Word 3 (16 least-significant bits) of fetch packet has parallel bit cleared.
1 Word 3 (16 least-significant bits) of fetch packet has parallel bit set.
5 P5 0 Word 2 (16 most-significant bits) of fetch packet has parallel bit cleared.
1 Word 2 (16 most-significant bits) of fetch packet has parallel bit set.
4 P4 0 Word 2 (16 least-significant bits) of fetch packet has parallel bit cleared.
1 Word 2 (16 least-significant bits) of fetch packet has parallel bit set.
3 P3 0 Word 1 (16 most-significant bits) of fetch packet has parallel bit cleared.
1 Word 1 (16 most-significant bits) of fetch packet has parallel bit set.
2 P2 0 Word 1 (16 least-significant bits) of fetch packet has parallel bit cleared.
1 Word 1 (16 least-significant bits) of fetch packet has parallel bit set.
1 P1 0 Word 0 (16 most-significant bits) of fetch packet has parallel bit cleared.
1 Word 0 (16 most-significant bits) of fetch packet has parallel bit set.
0 PO 0 Word 0 (16 least-significant bits) of fetch packet has parallel bit cleared.
1 Word 0 (16 least-significant bits) of fetch packet has parallel bit set.
SPRUFE8B-July 2010 Instruction Set 95

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Compact Instructions on the CPU www.ti.com

3.10.3 Processing of Fetch Packets

The header information is used to fully define the 32-bit version of the 16-bit instructions. In the case
where an execute packet crosses fetch packet boundaries, there are two headers in use simultaneously.
Each instruction uses the header information from its fetch packet header.

3.10.4 Execute Packet Restrictions

Execute packets that span fetch packet boundaries may not be the target of branches in the case where
one of the two fetch packets involved are header-based. The only exception to this is where an interrupt is
taken in the cycle before a spanning execute packet reaches E1. The target of the return may be a
normally disallowed target.

If the execute packet contains eight instructions, then neither of the two fetch packets may be
header-based.

3.10.5 Available Compact Instructions
Table 3-17 lists the available compact instructions and their functional unit.

Table 3-17. Available Compact Instructions

Instruction L Unit M Unit S Unit D Unit
ADD v v v
ADDAW v
ADDK v

AND v

BNOP displacement v

CALLP v

CLR v

CMPEQ
CMPGT
CMPGTU
CMPLT
CMPLTU
EXT v
EXTU v
LDB

LDBU

LDDW

LDH

LDHU

LDNDW

LDNW

LDW

LDW (15-bit offset)
MPY

MPYH

MPYHL

MPYLH

MV v v v
MvC v

MVK v v v
NEG v

NIENENENEN

NN NN SRS NEN

AN NN

96 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS

www.ti.com

Instruction Compatibility

Table 3-17. Available Compact Instructions (continued)

Instruction

L Unit M Unit

S Unit

D Unit

NOP

OR

SADD
SET

SHL

SHR
SHRU
SMPY
SMPYH
SMPYHL
SMPYLH
SPKERNEL
SPLOOP
SPLOOPD
SPMASK
SPMASKR
SSHL
SSUB
STB
STDW
STH
STNDW
STNW
STW

STW (15-bit offset)
SuUB
SUBAW
XOR

No unit
v
v

IENENIEN

No unit
No unit
No unit
No unit
No unit

NN NENEN

NN N N SENENENEN

3.11 Instruction Compatibility
See Appendix A for a list of the instructions that are common to the C62x, C64x, C64x+, C67x, C67x+,

and C674x DSPs.

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set 97

13 TEXAS
INSTRUMENTS

Instruction Descriptions www.ti.com

3.12 Instruction Descriptions
This section gives detailed information on the instruction set. Each instruction may present the following
information:
* Assembler syntax
* Functional units
e Operands
e Opcode
» Description
» Execution
* Pipeline
* Instruction type
e Delay slots
e Functional Unit Latency
» Examples
The ADD instruction is used as an example to familiarize you with the way each instruction is described.

The example describes the kind of information you will find in each part of the individual instruction
description and where to obtain more information.

98 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com Example — The way each instruction is described.

Example The way each instruction is described.

Syntax EXAMPLE (.unit) src, dst
.unit = .11, L2, .S1, .S2, .D1, .D2

src and dst indicate source and destination, respectively. The (.unit) dictates which
functional unit the instruction is mapped to (.L1, .L2, .S1, .S2, .M1, .M2, .D1, or .D2).

A table is provided for each instruction that gives the opcode map fields, units the
instruction is mapped to, types of operands, and the opcode.

The opcode shows the various fields that make up each instruction. These fields are
described in Table 3-2.

There are instructions that can be executed on more than one functional unit. Table 3-18
shows how this is documented for the ADD instruction. This instruction has three opcode
map fields: srcl, src2, and dst. In the fifth group, the operands have the types cst5,
long,and long for srcl, src2, and dst, respectively. The ordering of these fields implies
cst5 + long — long, where + represents the operation being performed by the ADD. This
operation can be done on .L1 or .L2 (both are specified in the unit column). The s in front
of each operand signifies that srcl (scst5), src2 (slong), and dst (slong) are all signed
values.

In the ninth group, srcl, src2, and dst are int, cst5, and int, respectively. The u in front of
the cst5 operand signifies that srcl (ucst5) is an unsigned value. Any operand that
begins with x can be read from a register file that is different from the destination register
file. The operand comes from the register file opposite the destination, if the x bit in the
instruction is set (shown in the opcode map).

Description Instruction execution and its effect on the rest of the processor or memory contents are
described. Any constraints on the operands imposed by the processor or the assembler
are discussed. The description parallels and supplements the information given by the
execution block.

Execution The execution describes the processing that takes place when the instruction is
executed. The symbols are defined in Table 3-1. For example:

Execution for .L1, .L2 and .S1, .S2 Opcodes

if (cond) srcl + src2 — dst
else nop

Execution for .D1, .D2 Opcodes

if (cond) src2 + srcl — dst
else nop

Pipeline This section contains a table that shows the sources read from, the destinations written
to, and the functional unit used during each execution cycle of the instruction.

Instruction Type This section gives the type of instruction. See Section 4.2 for information about the
pipeline execution of this type of instruction.

Delay Slots This section gives the number of delay slots the instruction takes to execute See
Section 3.4 for an explanation of delay slots.

SPRUFE8B-July 2010 Instruction Set 99

Copyright © 2010, Texas Instruments Incorporated

Example — The way each instruction is described.

13 TEXAS
INSTRUMENTS

www.ti.com

Functional Unit Latency This section gives the number of cycles that the functional unit is in use during the
execution of the instruction.

Example Examples of instruction execution. If applicable, register and memory values are given
before and after instruction execution.
Table 3-18. Relationships Between Operands, Operand Size, Functional Units,
and Opfields for Example Instruction (ADD)
Opcode map field used... For operand type... Unit Opfield
srcl sint L1, .L2 000 0011
src2 xsint
dst sint
srcl sint L1, .L2 0100011
src2 xsint
dst slong
srcl xsint L1, .L2 010 0001
src2 slong
dst slong
srcl scstb L1, L2 000 0010
src2 xsint
dst sint
srcl scstb L1, L2 010 0000
src2 slong
dst slong
srcl sint .81, .S2 000111
src2 xsint
dst sint
srcl scstb .S1, .82 000110
src2 xsint
dst sint
src2 sint .D1, .D2 01 0000
srcl sint
dst sint
src2 sint .D1, .D2 010010
srcl ucst5
dst sint
100 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

ABS — Absolute Value With Saturation

ABS Absolute Value With Saturation
Syntax ABS (.unit) src2, dst
or
ABS (.unit) src2_h:src2_l,dst_h:dst_|
unit=.L1 or .L2
Opcode
31 29 28 27 23 22 18 17 16 15 14 13 12 11 5 4 3 2 1 0
‘ creg |z| dst src2 |O‘O‘O‘O‘O|x| op |1|1‘0|s‘p‘
3 1 5 5 1 7 1 1
Opcode map field used... For operand type... Unit Opfield
src2 xsint L1, .L2 0011010
dst sint
src2 slong L1, L2 011 1000
dst slong
Description The absolute value of src2 is placed in dst.
The absolute value of src2 when src2 is an sint is determined as follows:
1. If src2 > 0, then src2 — dst
2. If src2 < 0 and src2# -2%, then -src2 — dst
3. If src2 = -2%, then 2! - 1 — dst
The absolute value of src2 when src2 is an slong is determined as follows:
1. If src2 > 0, then src2 — dst_h:dst_|
2. If src2 < 0 and src2# -2%, then -src2 — dst_h:dst_|
3. Ifsrc2 = -2%, then 2% - 1 — dst_h:dst_|
Execution
if (cond) abs(src2) — dst
else nop
Pipeline
Pipeline Stage El
Read src2
Written dst
Unit in use L
SPRUFE8B-July 2010 Instruction Set 101

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
ABS — Absolute Value With Saturation www.ti.com
Instruction Type Single-cycle
Delay Slots 0
See Also ABS2
Examples Example 1
ABS . L1 Al, A5
Before instruction 1 cycle after instruction
Al \ 8000 4E3Dh | -2,147,463,619 Al \ 8000 4E3Dh \
A5 \ X3 Xxxxh | A5] 7FFF B1C3h \ 2,147,463,619
Example 2
ABS . L1 Al, A5
Before instruction 1 cycle after instruction
Al \ 3FF6 0010h | 1,073,086,480 Al \ 3FF6 0010h \
A5 \ xxxx xxxxh | A5 \ 3FF6 0010h \ 1,073,086,480
Example 3
ABS . L1 Al: AQ, A5: Ad
Before instruction 1 cycle after instruction
A0 \ FFFF FFFFh | 1,073,086,480 A0] FFFF FFFFh \ 1,073,086,480
Al \ 0000 00FFh | Al \ 0000 00FFh \
A4 ‘ XXXX XXXXh | A4 ’ 0000 0001h ‘
A5 \ 006 30xxxh | A5 \ 0000 0000h \
102 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com ABS2 — Absolute Value With Saturation, Signed, Packed 16-Bit
ABS2 Absolute Value With Saturation, Signed, Packed 16-Bit
Syntax ABS2 (.unit) src2, dst
unit=.L1 or .L2
Opcode
31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[creg [z] dst src2 loJo[1]oJo[xJofJof1]1]o[2]Jo]1][1]o]s]p]
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
src2 Xs2 L1, .L.2
dst s2
Description The absolute values of the upper and lower halves of the src2 operand are placed in the
upper and lower halves of the dst.
31 16 15 0
a_hi ‘ a_lo ‘ «— src2
ABS2
! !
31 16 15 0
abs(a_hi) \ abs(a_lo) ‘ — dst
Specifically, this instruction performs the following steps for each halfword of src2, then
writes its result to the appropriate halfword of dst:
1. If the value is between 0 and 2*°, then value — dst
2. If the value is less than 0 and not equal to -2'°, then -value — dst
3. If the value is equal to -2'°, then 2% -1 — dst
NOTE: This operation is performed on each 16-bit value separately. This
instruction does not affect the SAT bit in the CSR.
Execution
if (cond) {
abs(Isb16(src2)) — Isb16(dst)
abs(msb16(src2)) — msb16(dst)
}
else nop
SPRUFE8B-July 2010 Instruction Set 103

Copyright © 2010, Texas Instruments Incorporated

ABS2 — Absolute Value With Saturation, Signed, Packed 16-Bit

13 TEXAS
INSTRUMENTS

www.ti.com

Pipeline

Instruction Type
Delay Slots
See Also

Examples

Pipeline Stage El
Read src2
Written dst
Unit in use L

Single-cycle

0

ABS

Example 1

ABS2 . L1 AO, A2

Before instruction

AO | FF68 4E3Dh

-152 20029

A2 | XXXX XXXXh

1 cycle after instruction

A0 | FF68 4E3Dh \

A2 | 0098 4E3Dh \ 152 20029

Example 2
ABS2 . L1 AQ, A2

Before instruction

AQ | 3FF6 F105h

‘16374-3835

A2 | XXXX XXXXh

1 cycle after instruction

AQ | 3FF6 F105h \

A2 | 3FF6 OEFBh \ 16374 3835

104 Instruction Set

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com ABSDP — Absolute Value, Double-Precision Floating-Point
ABSDP Absolute Value, Double-Precision Floating-Point
Syntax ABSDP (.unit) src2, dst
unit = .S1 or .S2
Opcode
31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[creg [z] dst src2 loJofoJoJo[x[1]o][1]1]ofo]1]o]o]o]s][p]
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
src2 xdp .51, .82
dst dp
Description The absolute value of src2 is placed in dst. The 64-bit double-precision operand is read
in one cycle by using the src2 port for the 32 MSBs and the srcl port for the 32 LSBs.
The absolute value of src2 is determined as follows:
1. If src2 2 0, then src2 —dst
2. If src2 <0, then -src2 — dst
NOTE:
1. If scr2 is SNaN, NaN_out is placed in dst and the INVAL and NAN2
bits are set.
2. If src2 is QNaN, NaN_out is placed in dst and the NAN2 bit is set.
3. If src2 is denormalized, +0 is placed in dst and the INEX and DEN2
bits are set.
4. |If src2 is +infinity or —infinity, +infinity is placed in dst and the INFO bit
is set.
Execution
if (cond) abs(src2) — dst
else nop
Pipeline
Pipeline Stage El E2
Read src2_1, src2_h
Written dst_| dst_h
Unit in use .S
If dst is used as the source for the ADDDP, CMPEQDP, CMPLTDP, CMPGTDP,
MPYDP, or SUBDP instruction, the number of delay slots can be reduced by one,
because these instructions read the lower word of the DP source one cycle before the
upper word of the DP source.
SPRUFE8B-July 2010 Instruction Set 105

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
ABSDP — Absolute Value, Double-Precision Floating-Point www.ti.com
Instruction Type Two-cycle DP
Delay Slots 1
Functional Unit Latency 1
See Also ABS, ABSSP
Example ABSDP . S1 Al: A0, A3: A2
Before instruction 2 cycles after instruction

AL:AO | C004 0000h | 0000 0000h |-25 AL:AO [C004 0000h | 0000 0000h |

AZA2 | xoox xooch | x000¢ x000ch | A3:A2 | 4004 0000h | 0000 0000h |25
106 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com ABSSP — Absolute Value, Single-Precision Floating-Point
ABSSP Absolute Value, Single-Precision Floating-Point
Syntax ABSSP (.unit) src2, dst
unit = .S1 or .S2
Opcode
31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[creg [z] dst src2 loJofoJoJo[x[r[1]1]1]ofo]r]o]o]o]s][p]
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
src2 Xsp .51, .82
dst sp
Description The absolute value of src2 is placed in dst.
The absolute value of src2 is determined as follows:
1. If src2 2 0, then src2 —dst
2. If src2 <0, then -src2 — dst
NOTE:
1. If scr2 is SNaN, NaN_out is placed in dst and the INVAL and NAN2
bits are set.
2. If src2 is QNaN, NaN_out is placed in dst and the NAN2 bit is set.
3. If src2 is denormalized, +0 is placed in dst and the INEX and DEN2
bits are set.
4. |If src2 is +infinity or —infinity, +infinity is placed in dst and the INFO bit
is set.
Execution
if (cond) abs(src2) — dst
else nop
Pipeline
Pipeline Stage E1l
Read src2
Written dst
Unit in use .S
Instruction Set 107

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

ABSSP — Absolute Value, Single-Precision Floating-Point

13 TEXAS
INSTRUMENTS

www.ti.com

Instruction Type Single-cycle
Delay Slots 0

Functional Unit Latency 1

See Also ABS, ABSDP

Example ABSSP . S1X B1, A5

Before instruction

B1 \ €020 0000h 25

A5 ’ XXXX Xxxxh ‘

B1

A5

1 cycle after instruction

| €020 0000h |

| 4020 0000h | 2.5

108 Instruction Set

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com ADD — Add Two Signed Integers Without Saturation
ADD Add Two Signed Integers Without Saturation
Syntax ADD (.unit) srcl, src2, dst
or
ADD (.L1 or .L2) srcl, src2_h:src2_|, dst_h:dst_|
or

ADD (.D1 or .D2) src2, srcl, dst (if the cross path form is not used)

or

ADD (.D1 or .D2) srcl, src2, dst (if the cross path form is used)

or

ADD (.D1 or .D2) src2, srcl, dst (if the cross path form is used with a constant)
unit =.D1, .D2, .L1, .L2, .51, .S2

Compact Instruction Format

Unit Opcode Format Figure
L L3 Figure D-4
L3i Figure D-5
Lx1 Figure D-11
.S S3 Figure F-22
Sx2op Figure F-29
Sx1 Figure F-31
.D Dx2op Figure C-17
L, .S, D LSDx1 Figure G-4
SPRUFE8B-July 2010 Instruction Set 109

Copyright © 2010, Texas Instruments Incorporated

ADD — Add Two Signed Integers Without Saturation

13 TEXAS
INSTRUMENTS

www.ti.com

Opcode .L unit
31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0
’ creg |z| dst ’ src2 srcl |x| op |1|l‘0|s‘p‘
3 1 5 5 5 1 7 1 1
Opcode map field used... For operand type... Unit Opfield
srcl sint L1, .L2 000 0011
src2 xsint
dst sint
srcl sint L1, .L2 010 0011
src2 xsint
dst slong
srcl xsint L1, .L2 010 0001
src2 slong
dst slong
srcl scst5 L1, L2 000 0010
src2 xsint
dst sint
srcl scst5 L1, L2 010 0000
src2 slong
dst slong
Opcode .S unit
31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0
\ creg |z| dst \ src2 srcl |x| op \1|0|0\0|s\p\
3 1 5 5 5 1 6 1 1
Opcode map field used... For operand type... Unit Opfield
srcl sint .81, .S2 000111
src2 xsint
dst sint
srcl scstb .S1, .52 000110
src2 xsint
dst sint

Description for .L1, .L2 and .S1, .S2 Opcodes src2 is added to srcl. The result is placed in dst.

Execution for .L1, .L2 and .S1, .S2 Opcodes

if (cond)
else nop

srcl + src2 — dst

110 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRUFE8B-July 2010

13 TEXAS
INSTRUMENTS

www.ti.com

ADD — Add Two Signed Integers Without Saturation

Opcode .D unit (if the cross path form is not used)
31 29 28 27 23 22 18 17 13 12 7 6 5 4 3 2 1 O
’ creg |z| dst ’ src2 | srcl | op ’l’0|0|0‘0|s‘p‘
3 1 5 5 5 6 1 1
Opcode map field used... For operand type... Unit Opfield
src2 sint .D1, .D2 01 0000
srcl sint
dst sint
src2 sint .D1, .D2 010010
srcl ucst5
dst sint
Opcode .D unit (if the cross path form is used)
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
\ creg |z| dst \ src2 | srcl |x|l\0|1\0\1\0\1|1|0\0|s\p\
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl sint .D1, .D2
src2 xsint
dst sint
Opcode .D unit (if the cross path form is used with a constant)
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
’ creg |z| dst ’ src2 | srcl |x|1‘0|1‘0‘1’1’1|1|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl scstb .D1, .D2
src2 xsint
dst sint
Description for .D1, .D2 Opcodes srcl is added to src2. The result is placed in dst.
Execution for .D1, .D2 Opcodes
if (cond) src2 + srcl — dst
else nop
SPRUFE8B-July 2010 Instruction Set 111

Copyright © 2010, Texas Instruments Incorporated

ADD — Add Two Signed Integers Without Saturation

13 TEXAS
INSTRUMENTS

www.ti.com

Pipeline

Pipeline Stage El
Read srcl, src2
Written dst
Unit in use .L,.S,or.D
Instruction Type Single-cycle
Delay Slots 0
See Also ADDU, ADD2, SADD
Examples Example 1
ADD . L2X Al, B, B2
Before instruction 1 cycle after instruction
Al 0000 325Ah | 12,890 Al 0000 325Ah |
B1 | FFFF FF12h \ 238 B1 | FFFF FF12h \
B2 | xx000000ch | B2 | 0000 316Ch | 12,652
Example 2
ADD . L1 Al, A3: A2, A5: A4
Before instruction 1 cycle after instruction
Al 0000 325Ah 12,890 Al 0000 325Ah
A3:A2 \ 0000 00FFh \ FFFF FF12h 228® A3:A2 \ 0000 0OFFh] FFFF FF12h \
A5:A4 \ 0000 0000h] 0000 0000h] A5:A4 \ 0000 0000h] 0000 316Ch \ 12,6520
@ Signed 40-bit (long) integer
Example 3
ADD . L1 -13, AL, A6
Before instruction 1 cycle after instruction
Al 0000 325Ah 12,890 Al 0000 325Ah |
A6 | 0 xxxxh \ A | 0000 324Dh \ 12,877
Example 4
ADD . DL Al, 26, A6
Before instruction 1 cycle after instruction
Al | 0000 325Ah \ 12,890 Al | 0000 325Ah \
A6 | xx000000ch | A6 0000 3274h | 12,916

112 Instruction Set

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com ADD — Add Two Signed Integers Without Saturation
Example 5
ADD . D1 BO, 5, A2
Before instruction 1 cycle after instruction
BO 0000 0007h | BO 0000 0007h |
A2 | 0000 000h | A2 0000 000Ch |12
SPRUFE8B-July 2010 Instruction Set 113

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
ADDAB — Add Using Byte Addressing Mode www.ti.com
ADDAB Add Using Byte Addressing Mode
Syntax ADDAB (.unit) src2, srcl, dst
or
ADDAB (.unit) B14/B15, ucst15, dst
unit = .D1 or .D2
Opcode
31 29 28 27 23 22 18 17 13 12 7 6 5 4 3 2 1 0
‘ creg |z| dst src2 srcl op ‘1‘0|0|0‘0|s‘p‘
3 1 5 5 5 6 1 1
Opcode map field used... For operand type... Unit Opfield
src2 sint .D1, .D2 11 0000
srcl sint
dst sint
src2 sint .D1, .D2 110010
srcl ucsts
dst sint
Description srcl is added to src2 using the byte addressing mode specified for src2. The addition
defaults to linear mode. However, if src2 is one of A4-A7 or B4-B7, the mode can be
changed to circular mode by writing the appropriate value to the AMR (see
Section 2.8.3).The result is placed in dst.
Execution
if (cond) src2 + srcl — dst
else nop
Pipeline

Pipeline Stage El
Read srcl, src2
Written dst
Unit in use .D

114 Instruction Set

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com ADDAB — Add Using Byte Addressing Mode
Opcode
31 30 29 28 27 23 22 8 7 6 5 4 3 2 1 0
’0’0’0|1| dst ucstl5 ‘y’0’1|1|l‘1|s‘p‘
5 15 1 1 1
Description This instruction reads a register (baseR), B14 (y = 0) or B15 (y = 1), and adds a 15-bit
unsigned constant (ucst15) to it, writing the result to a register (dst). This instruction is
executed unconditionally, it cannot be predicated.
The offset, ucstl5, is added to baseR. The result of the calculation is written into dst.
The addressing arithmetic is always performed in linear mode.
The s bit determines the unit used (D1 or D2) and the file the destination is written to:
s = 0 indicates the unit is D1 and dst is in the A register file; and s = 1 indicates the unit
is D2 and dst is in the B register file.
Execution B14/B15 + ucstl5 — dst
Pipeline
Pipeline Stage E1l
Read B14/B15
Written dst
Unit in use .D
Instruction Type Single-cycle
Delay Slots 0
See Also ADDAD, ADDAH, ADDAW
Examples Example 1
ADDAB . DL A4, A2, Ad
Before instruction @ 1 cycle after instruction
A2 0000 000Bh | A2 | 0000 000Bh \
A4 0000 0100h | A4 | 0000 0103h \
AMR | 0002 0001h | AMR | 0002 0001h \

™ BKO = 2: block size = 8
A4 in circular addressing mode using BKO

Example 2
ADDAB . DLX B14, 42h, A4

Before instruction @ 1 cycle after instruction

B14 0020 1000h A4 0020 1042h

@ Using linear addressing.

SPRUFE8B-July 2010 Instruction Set 115

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
ADDAB — Add Using Byte Addressing Mode www.ti.com
Example 3
ADDAB . D2 B14, 7FFFh, B4
Before instruction @ 1 cycle after instruction
B14 0010 0000h B4 0010 7FFFh
@ Using linear addressing.
116 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

ADDAD — Add Using Doubleword Addressing Mode

ADDAD Add Using Doubleword Addressing Mode
Syntax ADDAD (.unit) src2, srcl, dst
unit=. D1 or .D2
Opcode
31 29 28 27 23 22 18 17 13 12 7 6 5 4 3 2 1 0
’ creg |z| dst src2 srcl op ’1’0|0|0‘0|s‘p‘
3 1 5 5 5 6 1 1
Opcode map field used... For operand type... Unit Opfield
src2 sint .D1, .D2 11 1100
srcl sint
dst sint
src2 sint .D1, .D2 111101
srcl ucst5
dst sint
Description srcl is added to src2 using the doubleword addressing mode specified for src2. The
addition defaults to linear mode. However, if src2 is one of A4-A7 or B4-B7, the mode
can be changed to circular mode by writing the appropriate value to the AMR (see
Section 2.8.3). srcl is left shifted by 3 due to doubleword data sizes. The result is placed
in dst.
NOTE: There is no SUBAD instruction.
Execution
if (cond) src2 + srcl <<3 — dst
else nop
Pipeline

Instruction Type
Delay Slots

See Also

Pipeline Stage El

Read srcl, src2

Written dst

Unit in use .D
Single-cycle

0
ADDAB, ADDAH, ADDAW

SPRUFE8B-July 2010

Instruction Set

Copyright © 2010, Texas Instruments Incorporated

117

ADDAD — Add Using Doubleword Addressing Mode

I

TEXAS

INSTRUMENTS

www.ti.com

Example ADDAD . D1 Al, A2, A3

Before instruction

1 cycle after instruction

Al \ 0000 1234h | 4660 Al] 0000 1234h
A2 \ 0000 0002h | 2 A2 \ 0000 0002h
A3 \ X0 xxxxh | A3] 0000 1244h \ 4676

118

Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRUFE8B-July 2010

13 TEXAS
INSTRUMENTS

www.ti.com

ADDAH — Add Using Halfword Addressing

Mode

ADDAH Add Using Halfword Addressing Mode
Syntax ADDAH (.unit) src2, srcl, dst
or
ADDAH (.unit) B14/B15, ucst15, dst
unit = .D1 or .D2
Opcode
31 29 28 27 23 22 18 17 13 12 7 6 5 4 3 2 1 0
‘ creg |z| dst src2 srcl op ‘1‘0|0|0‘0|s‘p‘
3 1 5 5 5 6 1 1
Opcode map field used... For operand type... Unit Opfield
src2 sint .D1, .D2 11 0100
srcl sint
dst sint
src2 sint D1, .D2 110110
srcl ucsts
dst sint
Description srcl is added to src2 using the halfword addressing mode specified for src2. The
addition defaults to linear mode. However, if src2 is one of A4-A7 or B4-B7, the mode
can be changed to circular mode by writing the appropriate value to the AMR (see
Section 2.8.3). srcl is left shifted by 1. The result is placed in dst.
Execution
if (cond) src2 + srcl <<1 — dst
else nop
Pipeline

Pipeline Stage El
Read srcl, src2
Written dst
Unit in use .D

SPRUFE8B-July 2010

Instruction Set

Copyright © 2010, Texas Instruments Incorporated

119

13 TEXAS

INSTRUMENTS
ADDAH — Add Using Halfword Addressing Mode www.ti.com
Opcode
31 30 29 28 27 23 22 8 7 6 5 4 3 2 1 0
’0’0’0|1| dst ucstl5 ‘y’l’0|1|l‘1|s‘p‘
5 15 1 1 1
Description This instruction reads a register (baseR), B14 (y = 0) or B15 (y = 1), and adds a scaled
15-bit unsigned constant (ucst15) to it, writing the result to a register (dst). This
instruction is executed unconditionally, it cannot be predicated.
The offset, ucstl5, is scaled by a left-shift of 1 and added to baseR. The result of the
calculation is written into dst. The addressing arithmetic is always performed in linear
mode.
The s bit determines the unit used (D1 or D2) and the file the destination is written to:
s = 0 indicates the unit is D1 and dst is in the A register file; and s = 1 indicates the unit
is D2 and dst is in the B register file.
Execution B14/B15 + (ucstl5 << 1) — dst
Pipeline
Pipeline Stage El
Read B14/B15
Written dst
Unit in use .D
Instruction Type Single-cycle
Delay Slots 0
See Also ADDAB, ADDAD, ADDAW
Examples Example 1
ADDAH . D1 A4, A2, Ad
Before instruction @ 1 cycle after instruction
A2 | 0000 000Bh | A2 | 0000 000Bh |
A4 0000 0100h | A4 | 0000 0106h |
AMR 0002 0001h | AMR | 0002 0001h |

@ BKO = 2: block size = 8
A4 in circular addressing mode using BKO

Example 2
ADDAH . D1X B14, 42h, A4

Before instruction @ 1 cycle after instruction

B14 0020 1000h A4 0020 1084h

@ Using linear addressing.

120 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com ADDAH — Add Using Halfword Addressing Mode
Example 3
ADDAH . D2 B14, 7FFFh, B4
Before instruction @ 1 cycle after instruction
B14 0010 0000h B4 0010 FFFEh

@ Using linear addressing.

SPRUFE8B-July 2010 Instruction Set 121

Copyright © 2010, Texas Instruments Incorporated

ADDAW — Add Using Word Addressing Mode

13 TEXAS
INSTRUMENTS

www.ti.com

ADDAW Add Using Word Addressing Mode
Syntax ADDAW (.unit) src2, srcl, dst
or

ADDAW (.unit) B14/B15, ucst15, dst
unit = .D1 or .D2

Compact Instruction Format

Unit Opcode Format Figure
.D Dx5 Figure C-18
Dx5p Figure C-19
Opcode
31 29 28 27 23 22 18 17 13 12 7 6 5 4 3 2 1 0
‘ creg |z| dst src2 srcl op ‘1‘0|0|0‘0|s‘p‘
3 1 5 5 5 6 1 1
Opcode map field used... For operand type... Unit Opfield
src2 sint .D1, .D2 11 1000
srcl sint
dst sint
src2 sint .D1, .D2 11 1010
srcl ucsts
dst sint
Description srcl is added to src2 using the word addressing mode specified for src2. The addition
defaults to linear mode. However, if src2 is one of A4-A7 or B4-B7, the mode can be
changed to circular mode by writing the appropriate value to the AMR (see
Section 2.8.3). srcl is left shifted by 2. The result is placed in dst.
Execution
if (cond) src2 + srcl <<2 — dst
else nop
Pipeline
Pipeline Stage El
Read srcl, src2
Written dst
Unit in use .D

122 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRUFE8B-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com ADDAW — Add Using Word Addressing Mode
Opcode
31 30 29 28 27 23 22 8 7 6 5 4 3 2 1 0
[o]ofo]1] dst ucst15 Iy[afJaf1]1]2]s]p]
5 15 1 1 1
Description This instruction reads a register (baseR), B14 (y = 0) or B15 (y = 1), and adds a scaled
15-bit unsigned constant (ucst15) to it, writing the result to a register (dst). This
instruction is executed unconditionally, it cannot be predicated.
The offset, ucstl5, is scaled by a left-shift of 2 and added to baseR. The result of the
calculation is written into dst. The addressing arithmetic is always performed in linear
mode.
The s bit determines the unit used (D1 or D2) and the file the destination is written to:
s = 0 indicates the unit is D1 and dst is in the A register file; and s = 1 indicates the unit
is D2 and dst is in the B register file.
Execution B14/B15 + (ucstl5 << 2) — dst
Pipeline
Pipeline Stage El
Read B14/B15
Written dst
Unit in use .D
Instruction Type Single-cycle
Delay Slots 0
See Also ADDAB, ADDAD, ADDAH
Examples Example 1
ADDAW . D1 A4, 2, Ad
Before instruction @ 1 cycle after instruction
A4 | 0002 0000h | A4 | 0002 0000h |
AMR 0002 0001h | AMR | 0002 0001h

@ BKO = 2: block size =8
A4 in circular addressing mode using BKO

Example 2
ADDAW . D1X B14, 42h, A4

Before instruction @ 1 cycle after instruction

B14 0020 1000h A4 0020 1108h

@ Using linear addressing.

SPRUFE8B-July 2010 Instruction Set 123

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
ADDAW — Add Using Word Addressing Mode www.ti.com
Example 3
ADDAW . D2 B14, 7FFFh, B4
Before instruction @ 1 cycle after instruction
B14 0010 0000h B4 0011 FFFCh
@ Using linear addressing.
124 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com ADDDP — Add Two Double-Precision Floating-Point Values
ADDDP Add Two Double-Precision Floating-Point Values
Syntax ADDDP (.unit) srcl, src2, dst
unit = .L1, .L2, .S1, .S2
Opcode
31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0
’ creg |z| dst src2 srcl |x| op |l|1‘0|s‘p‘
3 1 5 5 5 1 7 1 1
Opcode map field used... For operand type... Unit Opfield
srcl dp L1, L2 001 1000
src2 xdp
dst dp
srcl dp .81, .S2 111 0010
src2 xdp
dst dp
Description src2 is added to srcl. The result is placed in dst.
NOTE:
1. This instruction takes the rounding mode from and sets the warning
bits in the floating-point adder configuration register (FADCR), not in
the floating-point auxiliary configuration register (FAUCR) as for
other .S unit instructions.
2. If rounding is performed, the INEX bit is set.
3. If one source is SNaN or QNaN, the result is NaN_out. If either
source is SNaN, the INVAL bit is also set.
4. If one source is +infinity and the other is —infinity, the result is
NaN_out and the INVAL bit is set.
5. If one source is signed infinity and the other source is anything
except NaN or signed infinity of the opposite sign, the result is
signed infinity and the INFO bit is set.
6. If overflow occurs, the INEX and OVER bits are set and the results
are rounded as follows (LFPN is the largest floating-point number):
Overflow Output Rounding Mode
Result Sign Nearest Even Zero +Infinity Infinity
+ +infinity +LFPN +infinity +LFPN
- -infinity -LFPN -LFPN -infinity
7. If underflow occurs, the INEX and UNDER bits are set and the
results are rounded as follows (SPFN is the smallest floating-point
number):
Underflow Output Rounding Mode
Result Sign Nearest Even Zero +Infinity Infinity
+ +0 +0 +SFPN +0
- -0 -0 -0 -SFPN
SPRUFE8B-July 2010 Instruction Set 125

Copyright © 2010, Texas Instruments Incorporated

ADDDP — Add Two Double-Precision Floating-Point Values

13 TEXAS
INSTRUMENTS

www.ti.com

Execution

if (cond)
else nop

Pipeline

Instruction Type

Delay Slots

Functional Unit Latency
See Also

Example

8. If the sources are equal numbers of opposite sign, the result is +0
unless the rounding mode is —infinity, in which case the result is 0.

9. If the sources are both 0 with the same sign or both are
denormalized with the same sign, the sign of the result is negative
for negative sources and positive for positive sources.

10. A signed denormalized source is treated as a signed 0 and the
DENR bit is set. If the other source is not NaN or signed infinity, the

INEX bit is set.

srcl + src2 — dst

Pipeline Stage El E4 E5 E6 E7
Read srcl_|, srcl_h,

src2_| src2_h
Written dst_| dst_h
Unit in use .Lor.S Lor.S

The low half of the result is written out one cycle earlier than the high half. If dst is used
as the source for the ADDDP, CMPEQDP, CMPLTDP, CMPGTDP, MPYDP, MPYSPDP,
MPYSP2DP, or SUBDP instruction, the number of delay slots can be reduced by one,
because these instructions read the lower word of the DP source one cycle before the

upper word of the DP source.
ADDDP/SUBDP

6

2

ADD, ADDSP, ADDU, SUBDP

ADDDP . L1X Bl: BO, A3: A2, A5: A4

Before instruction

B1:BO \ 4021 3333h

| 3333 3333h |

A3:A2 \ C004 0000h

| 0000 0000h |

A5:A4 ‘ XXXX XXxxh

| XXXX XXxxh |

B1:BO

A3:A2

A5:A4

7 cycles after instruction

\ 4021 3333h \ 4021 3333h \ 8.6
] C004 0000h] 0000 0000h 25
\ 4018 6666h \ 6666 6666h \ 6.1

126 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRUFE8B-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com ADDK — Add Signed 16-Bit Constant to Register
ADDK Add Signed 16-Bit Constant to Register
Syntax ADDK (.unit) cst, dst

unit = .S1 or .S2

Compact Instruction Format

Unit Opcode Format Figure
.S Sx5 Figure F-30
Opcode
31 29 28 27 23 22 7 6 5 4 3 2 1 O
’ creg |z| dst cstl6 ’1’0|l|0‘0|s‘p‘
3 1 5 16 1 1
Opcode map field used... For operand type... Unit
cstl6 scstl6 .S1,.S2
dst uint
Description A 16-bit signed constant, cstl6, is added to the dst register specified. The result is
placed in dst.
Execution
if (cond) cstl6 + dst — dst
else nop
Pipeline
Pipeline Stage El
Read cstl6
Written dst
Unit in use .S
Instruction Type Single-cycle
Delay Slots 0
Example ADDK . S1 15401, Al
Before instruction 1 cycle after instruction
Al 0021 37E1lh 2,176,993 Al 0021 740Ah 2,192,394

SPRUFE8B-July 2010 Instruction Set 127

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
ADDKPC — Add Signed 7-Bit Constant to Program Counter www.ti.com
ADDKPC Add Signed 7-Bit Constant to Program Counter
Syntax ADDKPC (.unit) srcl, dst, src2
unit = .S2
Opcode
31 29 28 27 23 22 16 15 13 12 11 10 9 8 7 6 5 4 3 2 1 0
’ creg |z| dst srcl src2 |O|O‘0|O‘1‘0’1’1|0|0‘0|s‘p‘
3 1 7 3 1 1
Opcode map field used... For operand type... Unit
srcl scst7 .S2
src2 ucst3
dst uint
Description A 7-bit signed constant, srcl, is shifted 2 bits to the left, then added to the address of the
first instruction of the fetch packet that contains the ADDKPC instruction (PCE1). The
result is placed in dst. The 3-bit unsigned constant, src2, specifies the number of NOP
cycles to insert after the current instruction. This instruction helps reduce the number of
instructions needed to set up the return address for a function call.
The following code:
B . S2 func
MVKL .S2 LABEL, B3
MVKH .S2 LABEL, B3
NOP 3
LABEL
could be replaced by:
B . S2 func
ADDKPC . S2 LABEL, B3, 4
LABEL
The 7-bit value coded as srcl is the difference between LABEL and PCEL1 shifted right
by 2 bits. The address of LABEL must be within 9 bits of PCEL1.
Only one ADDKPC instruction can be executed per cycle. An ADDKPC instruction
cannot be paired with any relative branch instruction in the same execute packet. If an
ADDKPC and a relative branch are in the same execute packet, and if the ADDKPC
instruction is executed when the branch is taken, behavior is undefined.
The ADDKPC instruction cannot be paired with any other multicycle NOP instruction in
the same execute packet. Instructions that generate a multicycle NOP are: IDLE, BNOP,
and the multicycle NOP.
Execution
if (cond) (scst7 << 2) + PCE1 — dst
else nop
128 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

ADDKPC — Add Signed 7-Bit Constant to Program Counter

Pipeline

Instruction Type
Delay Slots
See Also

Example

Pipeline Stage El
Read srcl, src2
Written dst
Unit in use .S

Single-cycle

0

B, BNOP

ADDKPC . S2 LABEL, B3, 4
LABEL:

Before instruction @

PCE1 \ 0040 13DCh \

B3 ‘ XXXX XXxxh ‘

B3

1 cycle after instruction

0040 13EOh

@ LABEL is equal to 0040 13DCh.

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set

129

ADDSP — Add Two Single-Precision Floating-Point Values

13 TEXAS

INSTRUMENTS

www.ti.com

ADDSP Add Two Single-Precision Floating-Point Values
Syntax ADDSP (.unit) srcl, src2, dst
unit = .L1, .L2, .S1, .S2
Opcode
31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0
’ creg |z| dst src2 srcl |x| op |1|1‘0|s‘p‘
3 1 5 5 5 1 7 1 1
Opcode map field used... For operand type... Unit Opfield
srcl sp L1, L2 001 0000
src2 Xsp
dst sp
srcl sp .81, .S2 111 0000
src2 Xsp
dst sp
Description src2 is added to srcl. The result is placed in dst.
NOTE:
1. This instruction takes the rounding mode from and sets the warning
bits in the floating-point adder configuration register (FADCR), not in
the floating-point auxiliary configuration register (FAUCR) as for
other .S unit instructions.
2. Ifrounding is performed, the INEX bit is set.
3. If one source is SNaN or QNaN, the result is NaN_out. If either
source is SNaN, the INVAL bit is also set.
4. If one source is +infinity and the other is —infinity, the result is
NaN_out and the INVAL bit is set.
5. If one source is signed infinity and the other source is anything
except NaN or signed infinity of the opposite sign, the result is
signed infinity and the INFO bit is set.
6. If overflow occurs, the INEX and OVER bits are set and the results
are rounded as follows (LFPN is the largest floating-point number):
Overflow Output Rounding Mode
Result Sign Nearest Even Zero +Infinity Infinity
+ +infinity +LFPN +infinity +LFPN
- -infinity -LFPN -LFPN -infinity
7. If underflow occurs, the INEX and UNDER bits are set and the
results are rounded as follows (SPFN is the smallest floating-point
number):
Underflow Output Rounding Mode
Result Sign Nearest Even Zero +Infinity Infinity
+ +0 +0 +SFPN +0
- -0 -0 -0 -SFPN

130 Instruction Set

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

ADDSP — Add Two Single-Precision Floating-Point Values

Execution

if (cond)
else nop

Pipeline

Instruction Type

Delay Slots

8. If the sources are equal numbers of opposite sign, the result is +0
unless the rounding mode is —infinity, in which case the result is 0.

9. If the sources are both 0 with the same sign or both are
denormalized with the same sign, the sign of the result is negative

for negative sources and positive for positive sources.

10. A signed denormalized source is treated as a signed 0 and the
DENR bit is set. If the other source is not NaN or signed infinity, the

INEX bit is set.

srcl + src2 — dst

Pipeline Stage El E2 E3 E4
Read srcl, src2
Written dst
Unit in use .Lor.S

4-cycle

3

Functional Unit Latency 1

See Also ADD, ADDSP, ADDU, SUBSP
Example ADDSP . L1 Al, A2, A3
Before instruction 4 cycles after instruction
Al | C020 0000h | Al | C020 0000h |25
A2 | 4109 999Ah | A2 | 4109 999Ah 8.6
A3 [000 x000¢h | A3 | 40C3 3334h 6.1

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set

131

13 TEXAS

INSTRUMENTS
ADDSUB — Parallel ADD and SUB Operations On Common Inputs www.ti.com
ADDSUB Parallel ADD and SUB Operations On Common Inputs
Syntax ADDSUB (.unit) srcl, src2, dst_o:dst_e
unit=.L1 or .L2
Opcode
31 30 29 28 27 24 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o]ofo]1] dst o] src2 srcl [x]ofoJol1]1]ofJo]1][1]o]s]p]
4 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl sint L1, L2
src2 xsint
dst dint
Description The following is performed in parallel:
1. src2is added to srcl. The result is placed in dst_o.
2. src2 is subtracted from srcl. The result is placed in dst_e.
Execution

srcl +src2 — dst_o
srcl - src2 — dst_e

Instruction Type Single-cycle

Delay Slots 0

See Also ADDSUB2, SADDSUB
Examples Example 1

ADDSUB . L1 AQ, Al, A3: A2

Before instruction 1 cycle after instruction
A0 | 0700 C005h \ A2] 0700 CO06h \
Al | FFFF FFFFh \ A3 \ 0700 C004h \
Example 2

ADDSUB . L2X BO, Al, B3: B2

Before instruction

BO | 7FFF FFFFh |

Al | 0000 0001h \

1 cycle after instruction

B2 | 7FFFFFFEh |

B3] 8000 0000h \

132 Instruction Set

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com ADDSUB2 — Parallel ADD2 and SUB2 Operations On Common Inputs
ADDSUB2 Parallel ADD2 and SUB2 Operations On Common Inputs
Syntax ADDSUB2 (.unit) srcl, src2, dst_o:dst_e
unit=.L1 or .L2
Opcode
31 30 29 28 27 24 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o]ofo]1] dst o] src2 srcl [x]ofoJols]1]ofar][1]1]o]s]p]
4 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl sint L1, L2
src2 xsint
dst dint
Description For the ADD2 operation, the upper and lower halves of the src2 operand are added to
the upper and lower halves of the srcl operand. The values in srcl and src2 are treated
as signed, packed 16-bit data and the results are written in signed, packed 16-bit format
into dst_o.
For the SUB2 operation, the upper and lower halves of the src2 operand are subtracted
from the upper and lower halves of the srcl operand. The values in srcl and src2 are
treated as signed, packed 16-bit data and the results are written in signed, packed 16-bit
format into dst_e.
Execution

Isb16(srcl) + Isb16(src2) — Ish16(dst_0)
msh16(srcl) + msbh16(src2) — msb16(dst o)
Isb16(srcl) - Isb16(src2) — Isb16(dst_e)
mshb16(srcl) - msb16(src2) — msh16(dst_e)

Instruction Type Single-cycle

Delay Slots 0

See Also ADDSUB, SADDSUB2
Examples Example 1

ADDSUB2 . L1 AQ, Al, A3: A2

Before instruction 1 cycle after instruction
A0 | 0700 CO05h | A2 | 0701 C004h |
Al \ FFFF 0001h | A3 \ 06FF C006h
Example 2

ADDSUB2 . L2X BO, Al, B3: B2

SPRUFE8B-July 2010 Instruction Set 133

Copyright © 2010, Texas Instruments Incorporated

ADDSUB2 — Parallel ADD2 and SUB2 Operations On Common Inputs

13 TEXAS
INSTRUMENTS

www.ti.com

Before instruction 1 cycle after instruction
BO \ 7FFF 8000h | B2 \ 8000 8001h
Al |FFFF FFFFh | B3 | 7FFE 7FFFh
Example 3

ADDSUB2 . L1 AQ, Al, A3: A2

Before instruction 1 cycle after instruction
A0 \ 9000 9000h | A2 \ 1000 1000h
Al \ 8000 8000h | A3 \ 1000 1000h
Example 4

ADDSUB2 . L1 AQ, Al, A3: A2

Before instruction 1 cycle after instruction
A0 | 9000 8000h | A2 | 1000 FOOOh
Al \ 8000 9000h | A3 \ 1000 1000h

134 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRUFE8B-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com ADDU — Add Two Unsigned Integers Without Saturation
ADDU Add Two Unsigned Integers Without Saturation
Syntax ADDU (.unit) srcl, src2, dst
unit=.L1 or .L2
Opcode
31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0
’ creg |z| dst src2 srcl |x| op |1|1‘0|s‘p‘
3 1 5 5 5 1 7 1 1
Opcode map field used... For operand type... Unit Opfield
srcl uint L1, .L2 0101011
src2 xuint
dst ulong
srcl xuint L1, .L2 010 1001
src2 ulong
dst ulong
Description src2 is added to srcl. The result is placed in dst.
Execution
if (cond) srcl + src2 — dst
else nop
Pipeline
Pipeline Stage E1l
Read srcl, src2
Written dst
Unit in use L
Instruction Type Single-cycle
Delay Slots 0
See Also ADD, SADD
Instruction Set 135

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
ADDU — Add Two Unsigned Integers Without Saturation www.ti.com
Examples Example 1
ADDU . L1 Al, A2, A5: Ad
Before instruction 1 cycle after instruction
Al 0000 325Ah 12,890® Al 0000 325Ah
A2 FFFF FF12h 4,294,967,058" A2 FFFF FF12h
A5:A4 A5:A4 [0000 0001h | 0000 316Ch 4,294,979,948?
@ Unsigned 32-bit integer
@ Unsigned 40-bit (long) integer
Example 2
ADDU . L1 Al, A3: A2, AS: Ad
Before instruction 1 cycle after instruction
Al 0000 325Ah 12,890® Al 0000 325Ah
A3:A2 \ 0000 00FFh | FFFF FF12h \ 1,099,511,627,538@ A3:A2 | 0000 OOFFh] FFFF FF12h |
A5:A4 0000 0000h | 00000000h |0 A5:A4 |00000000h | 0000316Ch |12,652?
@ Unsigned 32-bit integer
@ Unsigned 40-bit (long) integer
136 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

ADD2 — Add Two 16-Bit Integers on Upper and Lower Register Halves

ADD2 Add Two 16-Bit Integers on Upper and Lower Register Halves
Syntax ADD?2 (.unit) srcl, src2, dst
unit = .S1, .S2, .L1, .L2, .D1, .D2
Opcode .S unit
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
’ creg |z| dst ’ src2 srcl |x|0‘0|0‘0‘0’l’1|0|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl i2 .81, .82
src2 Xi2
dst i2
Opcode .L Unit
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
\ creg |z| dst \ src2 srcl |x|0\0|0\0\1\0\1|1|1\0|s\p\
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl i2 L1, L2
src2 Xi2
dst i2
Opcode .D unit
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
’ creg |z| dst ’ src2 srcl |x|l‘0|0‘1‘0’0’1|1|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl i2 .D1, .D2
src2 Xi2
dst i2

SPRUFE8B-July 2010

Instruction Set 137

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
ADD2 — Add Two 16-Bit Integers on Upper and Lower Register Halves www.ti.com
Description The upper and lower halves of the src1 operand are added to the upper and lower
halves of the src2 operand. The values in srcl and src2 are treated as signed, packed
16-bit data and the results are written in signed, packed 16-bit format into dst.
For each pair of signed packed 16-bit values found in the src1 and src2, the sum
between the 16-bit value from srcl and the 16-bit value from src2 is calculated to
produce a 16-bit result. The result is placed in the corresponding positions in the dst.
The carry from the lower half add does not affect the upper half add.
31 16 15 0
‘ a_hi ‘ a_lo ‘ «—srcl
+ +
ADD2
\ b_hi \ b_lo | src2
31 16 15 0
\ a_hi+b_hi \ alo+b_lo \ < dst
Execution
if (cond) {
msb16(srcl) + msb16(src2) — msb16(dst);
Isb16(srcl) + Isb16(src2) — Isb16(dst)
}
else nop
Pipeline
Pipeline Stage E1l
Read srcl, src2
Written dst
Unit in use S, .L,.D
Instruction Type Single-cycle
Delay Slots 0
See Also ADD, ADD4, SADD2, SUB2
Examples Example 1
ADD2 . S1X Al, Bl1, A2
Before instruction 1 cycle after instruction
Al |002137Elh | 33 14305 Al |002137E1h |
A2 |00 xo0oh | A2 [03BB1C99h | 955 7321
Bl |039A E4BSh | 922 58552 Bl [039A E4Bsh |

138 Instruction Set

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com ADD2 — Add Two 16-Bit Integers on Upper and Lower Register Halves

Example 2
ADD2 . L1 AO, AL, A2

Before instruction 1 cycle after instruction
A0 \ 0021 37E1h \ 33 14305 A0 \ 0021 37E1h
signed
Al \ 039A E4B8h \ 922 -6984 Al \ 039A E4B8h
signed
A2 oo oo A2 |03BB 1C99h | 955 7321
signed

SPRUFE8B-July 2010 Instruction Set 139

Copyright © 2010, Texas Instruments Incorporated

ADD4 — Add Without Saturation, Four 8-Bit Pairs for Four 8-Bit Results

13 TEXAS
INSTRUMENTS

www.ti.com

ADD4 Add Without Saturation, Four 8-Bit Pairs for Four 8-Bit Results

Syntax ADDA4 (.unit) srcl, src2, dst
unit=.L1 or .L2

Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
\ creg |z| dst src2 srcl |x|1\1|0\0\1\0\1|1|1\0|s\p\
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl i4 L1, .12
src2 xi4
dst i4
Description Performs 2s-complement addition between packed 8-bit quantities. The values in srcl

and src2 are treated as packed 8-bit data and the results are written into dst in a packed

8-bit format.

For each pair of packed 8-bit values in src1 and src2, the sum between the 8-bit value
from srcl and the 8-bit value from src2 is calculated to produce an 8-bit result. No
saturation is performed. The carry from one 8-bit add does not affect the add of any
other 8-bit add. The result is placed in the corresponding positions in dst:

» The sum of srcl byte0 and src2 byteO is placed in byteO of dst.

» The sum of srcl bytel and src2 bytel is placed in bytel of dst.

» The sum of srcl byte2 and src2 byte2 is placed in byte2 of dst.

e The sum of srcl byte3 and src2 byte3 is placed in byte3 of dst.

31 24 23 16 15 8 0
‘ a_3 ‘ a_2 ‘ a_l a0 ‘ «—srcl
+ + + +
ADD4
\ b 3 | b 2 | b1 b 0 | sre2
31 24 23 16 15 8 0
\ a3+b.3 \ a2+b2 \ al+b.1 a0+b0 \ — dst

140 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRUFE8B-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com ADD4 — Add Without Saturation, Four 8-Bit Pairs for Four 8-Bit Results
Execution
if (cond) {
byteO(srcl) + byteO(src2) — byteO(dst);
bytel(srcl) + bytel(src2) — bytel(dst);
byte2(srcl) + byte2(src2) — byte2(dst);
byte3(srcl) + byte3(src2) — byte3(dst)
}
else nop
Pipeline
Pipeline Stage E1l
Read srcl, src2
Written dst
Unit in use L
Instruction Type Single-cycle
Delay Slots 0
See Also ADD, ADD2, SADDU4, SUB4
Examples Example 1
ADD4 . L1 AO, AL, A2
Before instruction 1 cycle after instruction
AQ \ FF 68 4E 3Dh \ 1104 78 61 A0 \ FF 68 4E 3Dh \
Al] 3F F6 F1 05h \ 63-10-155 Al] 3F F6 F1 05h \
A2 \ 00K Xxxxh \ A2 \ 3E 5E 3F 42h \ 62 94 63 66
Example 2
ADD4 . L1 AO, Al, A2
Before instruction 1 cycle after instruction
A0 \ 4A E2 D3 1Fh \ 74226 211 31 A0 \ 4A E2 D3 1Fh \
Al \ 32 1A C1 28h \ 50 26 -63 40 Al] 32 1A C1 28h \
A2 \ x0xx xxxxh \ A2 \ 7C FC 94 47h \ 124 252 148 71
SPRUFE8B-July 2010 Instruction Set 141

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
AND — Bitwise AND www.ti.com
AND Bitwise AND
Syntax AND (.unit) srcl, src2, dst

unit = .L1, .L2, .S1, .S2, .D1, .D2

Compact Instruction Format

Unit Opcode Format Figure
.L L2c Figure D-7
Opcode .L unit
31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0
‘ creg |z| dst ‘ src2 srcl |x| op |1|1‘0|s‘p‘
3 1 5 5 5 1 7 1 1
Opcode map field used... For operand type... Unit Opfield
srcl uint L1, L2 1111011
src2 xuint
dst uint
srcl scst5 L1, L2 111 1010
src2 xuint
dst uint
Opcode .S unit
31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0
\ creg |z| dst \ src2 srcl |x| op \1|0|0\0|s\p\
3 1 5 5 5 1 6 1 1
Opcode map field used... For operand type... Unit Opfield
srcl uint .81, .82 011111
src2 xuint
dst uint
srcl scst5 .81, .82 011110
src2 xuint
dst uint

142 Instruction Set

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

AND — Bitwise AND

Opcode .D unit
31 29 28 27 23 22 18 17 13 12 11 10 9 6 5 4 3 2 1 0
’ creg |z| dst ’ src2 srcl |x|1‘0| op ’1|1|0‘0|s‘p‘
3 1 5 5 5 1 4 1 1
Opcode map field used... For operand type... Unit Opfield
srcl uint .D1, .D2 0110
src2 xuint
dst uint
srcl scst5 .D1, .D2 0111
src2 xuint
dst uint
Description Performs a bitwise AND operation between srcl and src2. The result is placed in dst.
The scst5 operands are sign extended to 32 bits.
Execution
if (cond) srcl AND src2 — dst
else nop
Pipeline
Pipeline Stage E1l
Read srcl, src2
Written dst
Unit in use .L,.S,or.D
Instruction Type Single-cycle
Delay Slots 0
See Also ANDN, OR, XOR
Examples Example 1
AND . L1X Al, B1, A2
Before instruction 1 cycle after instruction
Al | F7A1302Ah | Al | F7A1302Ah
A2 | 000 x000¢h | A2 | 02A0 2020h
B1 | 0286 E724h | B1 0286 E724h
Instruction Set 143

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
AND — Bitwise AND www.ti.com
Example 2
AND . L1 15, A1, A3
Before instruction 1 cycle after instruction
Al | 32E4 6936h | Al | 32E4 6936h |
A3 [000 x000¢h | A3 | 0000 0006h |
144 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

ANDN — Bitwise AND Invert

ANDN Bitwise AND Invert
Syntax ANDN (.unit) srcl, src2, dst
unit = .L1, .L2, S1, .S2, .D1, .D2
Opcode .L unit
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
’ creg |z| dst ’ src2 srcl |x|l‘1|1‘1‘1’0’0|1|1‘0|s‘p‘
3 1 5 5 1 1

Opcode map field used... For operand type... Unit

srcl uint L1, L2

src2 xuint

dst uint
Opcode .S unit
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
\ creg |z| dst \ src2 srcl |x|1\1|0\1\1\0\1|1|0\0|s\p\

3 1 5 5 1 1

Opcode map field used... For operand type... Unit

srcl uint .81, .82

src2 xuint

dst uint
Opcode .D unit
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
’ creg |z| dst ’ src2 srcl |x|l‘0|0‘0‘0’0’1|1|O‘0|s‘p‘

3 1 5 5 1 1

Opcode map field used... For operand type... Unit
srcl uint .D1, .D2
src2 xuint
dst uint
Description Performs a bitwise logical AND operation between srcl and the bitwise logical inverse of

src2. The result is placed in dst.

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set 145

13 TEXAS

INSTRUMENTS
ANDN — Bitwise AND Invert Www.ti.com
Execution
if (cond) srcl AND ~src2 — dst
else nop
Pipeline
Pipeline Stage El
Read srcl, src2
Written dst
Unit in use .L,.S,or.D
Instruction Type Single-cycle
Delay Slots 0
See Also AND, OR, XOR
Example ANDN . L1 A0, Al, A2
Before instruction 1 cycle after instruction
AO \ 1957 21ABh A0 | 1957 21ABh
Al \ 081C 17E6h \ F7E3 E819h Al | 081C 17E6h \
A2 \ XX Xx0xxh \ A2 | 1143 2009h \
146 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com AVG2 — Average, Signed, Packed 16-Bit
AVG2 Average, Signed, Packed 16-Bit
Syntax AVG2 (.unit) srcl, src2, dst
unit = .M1 or .M2
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
’ creg |z| src2 srcl |x|0‘1|0‘0‘1’l’1|1|0‘0|s‘p‘
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl s2 M1, .M2
src2 Xs2
dst s2
Description Performs an averaging operation on packed 16-bit data. For each pair of signed 16-bit
values found in srcl and src2, AVG2 calculates the average of the two values and
returns a signed 16-bit quantity in the corresponding position in the dst.
The averaging operation is performed by adding 1 to the sum of the two 16-bit numbers
being averaged. The result is then right-shifted by 1 to produce a 16-bit result.
No overflow conditions exist.
31 16 15 0
‘ sa_1 ‘ sa_0 ‘ «— srcl
AVG2
‘ sb 1 ‘ sb 0 ‘ « src2
! !
31 16 15 0
(sal+sh 1+1)>>1 \ (sa 0+sh 0+1)>>1 \ — dst
Execution
if (cond) {
((Isb16(srcl) + Isb16(src2) + 1) >> 1) — Isb16(dst);
((msb16(srcl) + msb16(src2) + 1) >> 1) — msb16(dst)
}
else nop

SPRUFE8B-July 2010

Instruction Set 147

Copyright © 2010, Texas Instruments Incorporated

AVG2 — Average, Signed, Packed 16-Bit

13 TEXAS
INSTRUMENTS

www.ti.com

Pipeline

Instruction Type
Delay Slots
See Also

Example

Pipeline Stage El E2
Read srcl, src2
Written dst
Unit in use M

Two-cycle

1

AVGU4

AVG . ML AO, Al, A2

Before instruction

AQ \ 6198 4357h

\ 24984 17239

Al \ 7582 AE15

\30082-20971

A2 ‘ XXXX XXxxh

2 cycles after instruction

AO \ 6198 4357h |

AL \ 7582 AE15h |

A2 \ 6B8D F8B6h | 27533 -1866

148 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRUFE8B-July 2010

13 TEXAS

INSTRUMENTS

www.ti.com

AVGU4 — Average, Unsigned, Packed 8-Bit

AVGU4 Average, Unsigned, Packed 8-Bit
Syntax AVGU4 (.unit) srcl, src2, dst
unit = .M1 or .M2
Opcode
31 29 28 27 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
’ creg |z| dst src2 |x|0‘1|0‘0‘1’0’1|1|0‘0|s‘p‘
1 5 5 1 1 1

Description

Opcode map field used... For operand type... Unit
srcl us4 M1, .M2
src2 xu4
dst ud
Performs an averaging operation on packed 8-bit data. The values in srcl and src2 are
treated as unsigned, packed 8-bit data and the results are written in unsigned, packed
8-bit format. For each unsigned, packed 8-bit value found in srcl and src2, AVGU4
calculates the average of the two values and returns an unsigned, 8-bit quantity in the
corresponding positions in the dst.
The averaging operation is performed by adding 1 to the sum of the two 8-bit numbers
being averaged. The result is then right-shifted by 1 to produce an 8-bit result.
No overflow conditions exist.
31 24 23 16 15 0
‘ ua_3 ‘ ua_2 ‘ ua_1 ua_0 ‘ «—srcl
AVGU4
\ ub_3 \ ub_2 \ ub_1 ub_0 ‘ < src2
l ! !
31 24 23 16 15 0
‘ (ua_3+ub_3+1)>>1 ‘ (ua_2+ub_2+1)>>1 ‘ (ua_l+ub_1+1)>>1 (ua 0O+ub 0+1)>>1 ‘ « dst

Execution

if (cond)

else nop

{

((ubyteO(srcl) + ubyteO(src2) + 1) >> 1) — ubyte0O(dst);
((ubytel(srcl) + ubytel(src2) + 1) >> 1) — ubytel(dst);
((ubyte2(srcl) + ubyte2(src2) + 1) >> 1) — ubyte2(dst);
((ubyte3(srcl) + ubyte3(src2) + 1) >> 1) — ubyte3(dst)

}

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set 149

AVGU4 — Average, Unsigned, Packed 8-Bit

13 TEXAS
INSTRUMENTS

www.ti.com

Pipeline

Instruction Type
Delay Slots
See Also

Example

Pipeline Stage El E2
Read srcl, src2
Written dst
Unit in use M

Two-cycle

1

AVG2

AVGU4 . ML AO, Al, A2

Before instruction

AQ | 1A 2E SF 4Eh

‘26 46 95 78

unsigned

Al | 9E F2 6E 3Fh

\ 158 242 110 63

A2 | XXXX XXxxh

unsigned
|

2 cycles after instruction

AO \ 1A 2E 5F 4Eh \

Al [9E F2 6E 3Fh |

A2 \ 5C 90 67 47h \

92 144 103 71
unsigned

150 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRUFE8B-July 2010

13 TEXAS
INSTRUMENTS

www.ti.com

B — Branch Using a Displacement

B Branch Using a Displacement
Syntax B (.unit) label
unit = .S1 or .S2
Opcode
31 29 28 27 7 6 5 4 3 2 0
’ creg |z| cst21 ’0’0|1|0‘0|s‘p‘
3 1 21 1
Opcode map field used... For operand type... Unit
cst21 scst21 .51, .82
Description A 21-bit signed constant, cst21, is shifted left by 2 bits and is added to the address of the
first instruction of the fetch packet that contains the branch instruction. The result is
placed in the program fetch counter (PFC). The assembler/linker automatically computes
the correct value for cst21 by the following formula:
cst21 = (label - PCE1) >> 2
If two branches are in the same execute packet and both are taken, behavior is
undefined.
Two conditional branches can be in the same execute packet if one branch uses a
displacement and the other uses a register, IRP, or NRP. As long as only one branch
has a true condition, the code executes in a well-defined way.
NOTE:
PCEL1 (program counter) represents the address of the first
instruction in the fetch packet in the E1 stage of the pipeline.
PFC is the program fetch counter.
The execute packets in the delay slots of a branch cannot be
interrupted. This is true regardless of whether the branch is taken.
See Section 3.5.2 for information on branching into the middle of an
execute packet.
A branch to an execute packet that spans two fetch packets will
cause a stall while the second fetch packet is fetched.
A relative branch instruction cannot be in the same execute packet
as an ADDKPC instruction.
Execution
if (cond) (cst21 << 2) + PCE1 — PFC
else nop

SPRUFE8B-July 2010

Instruction Set

Copyright © 2010, Texas Instruments Incorporated

151

B — Branch Using a Displacement

13 TEXAS
INSTRUMENTS

www.ti.com

Pipeline

Target Instruction

Pipeline Stage E1l PS PW PR DP DC E1l
Read

Written

Branch taken v
Unit in use .S

Instruction Type Branch
Delay Slots 5
Example Table 3-19 gives the program counter values and actions for the following code example.
0000 0000 B .S1 LOOP
0000 0004 ADD .L1 Al, A2, A3
0000 0008 | ADD .L2 B1, B2, B3
0000 000C LOOP: MPY .MLX A3, B3, A4
0000 0010 | SUB .D1 A5, A6, A6
0000 0014 MPY .ML A3, A6, A5
0000 0018 MPY . ML A6, A7, A8
0000 001C SHR .S1 A4, 15, A4
0000 0020 ADD .D1 A4, A6, A4
Table 3-19. Program Counter Values for Branch Using a Displacement Example
Cycle Program Counter Value Action
Cycle 0 0000 0000h Branch command executes (target code fetched)
Cycle 1 0000 0004h
Cycle 2 0000 000Ch
Cycle 3 0000 0014h
Cycle 4 0000 0018h
Cycle 5 0000 001Ch
Cycle 6 0000 000Ch Branch target code executes
Cycle 7 0000 0014h
152 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS

www.ti.com

B — Branch Using a Register

B Branch Using a Register
Syntax B (.unit) src2
unit = .S2
Opcode
31 29 28 27 26 25 24 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 ©
| _creg |z]o]o]o]o]o] src2 loJofoJoJo[x[ofJo][1]1]of2]1]o]o]o1]p]
3 1 5 1 1
Opcode map field used... For operand type... Unit
src2 xuint .S2
Description src2 is placed in the program fetch counter (PFC).
If two branches are in the same execute packet and are both taken, behavior is
undefined.
Two conditional branches can be in the same execute packet if one branch uses a
displacement and the other uses a register, IRP, or NRP. As long as only one branch
has a true condition, the code executes in a well-defined way.
NOTE:
1. This instruction executes on .S2 only. PFC is program fetch counter.
2. The execute packets in the delay slots of a branch cannot be
interrupted. This is true regardless of whether the branch is taken.
3. See Section 3.5.2 for information on branching into the middle of an
execute packet.
4. A branch to an execute packet that spans two fetch packets will
cause a stall while the second fetch packet is fetched.
Execution
if (cond) src2 — PFC
else nop
Pipeline
Target Instruction
Pipeline Stage El PS PW PR DP DC E1l
Read src2
Written
Branch taken v
Unit in use .S2
SPRUFE8B-July 2010 Instruction Set 153

Copyright © 2010, Texas Instruments Incorporated

B — Branch Using a Register

13 TEXAS
INSTRUMENTS

www.ti.com

Instruction Type Branch
Delay Slots 5
Example Table 3-20 gives the program counter values and actions for the following code example.
In this example, the B10 register holds the value 1000 000Ch.
1000 0000 B . S2 B10
1000 0004 ADD L1 AL, A2, A3
1000 0008 [ADD .L2 B1, B2, B3
1000 000C MPY .MLX A3, B3, A4
1000 0010 [SuB .DL A5, AB, A6
1000 0014 MPY .ML A3, A6, A5
1000 0018 MPY .ML A6, A7, A8
1000 001C SHR .S1 A4, 15, A4
1000 0020 ADD .DL A4, A6, A4
Table 3-20. Program Counter Values for Branch Using a Register Example
Cycle Program Counter Value Action
Cycle 0 1000 0000h Branch command executes (target code fetched)
Cycle 1 1000 0004h
Cycle 2 1000 000Ch
Cycle 3 1000 0014h
Cycle 4 1000 0018h
Cycle 5 1000 001Ch
Cycle 6 1000 000Ch Branch target code executes
Cycle 7 1000 0014h

154 Instruction Set

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com B IRP — Branch Using an Interrupt Return Pointer
B IRP Branch Using an Interrupt Return Pointer
Syntax B (.unit) IRP
unit = .S2
Opcode
31 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| creg |z[ofo]o]oJofJoJo[1][1]o]o]ofo]o]ofofofo]o]o]1[2]1][o]o]o1]p]
3 1 1
Description IRP is placed in the program fetch counter (PFC). This instruction also moves the PGIE
bit value to the GIE bit. The PGIE bit is unchanged.
If two branches are in the same execute packet and are both taken, behavior is
undefined.
Two conditional branches can be in the same execute packet if one branch uses a
displacement and the other uses a register, IRP, or NRP. As long as only one branch
has a true condition, the code executes in a well-defined way.
NOTE:
1. This instruction executes on .S2 only. PFC is the program fetch
counter.
2. Refer to Chapter 5 for more information on IRP, PGIE, and GIE.
3. The execute packets in the delay slots of a branch cannot be
interrupted. This is true regardless of whether the branch is taken.
4. See Section 3.5.2 for information on branching into the middle of an
execute packet.
5. A branch to an execute packet that spans two fetch packets will
cause a stall while the second fetch packet is fetched.
Execution
if (cond) IRP — PFC
else nop
Pipeline
Target Instruction
Pipeline Stage El PS PW PR DP DC E1l
Read IRP
Written
Branch taken v
Unit in use .S2
SPRUFE8B-July 2010 Instruction Set 155

Copyright © 2010, Texas Instruments Incorporated

B IRP — Branch Using an Interrupt Return Pointer

13 TEXAS
INSTRUMENTS

www.ti.com

Instruction Type Branch
Delay Slots 5
Example Table 3-21 gives the program counter values and actions for the following code example.
Given that an interrupt occurred at
PC = 0000 1000 | RP = 0000 1000
0000 0020 B .S2 IRP
0000 0024 ADD .S1 A0, A2, Al
0000 0028 MPY ML Al, A0, Al
0000 002C NOP
0000 0030 SHR S1 Al, 15, Al
0000 0034 ADD L1 AL, A2, Al
0000 0038 ADD L2 B1, B2, B3
Table 3-21. Program Counter Values for B IRP Instruction Example
Cycle Program Counter Value Action
Cycle O 0000 0020 Branch command executes (target code fetched)
Cycle 1 0000 0024
Cycle 2 0000 0028
Cycle 3 0000 002C
Cycle 4 0000 0030
Cycle 5 0000 0034
Cycle 6 0000 1000 Branch target code executes

156 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRUFE8B-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com B NRP — Branch Using NMI Return Pointer
B NRP Branch Using NMI Return Pointer
Syntax B (.unit) NRP
unit = .S2
Opcode
31 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| creg |z[ofo]o]oJofJoJo[1][1]1]o]ofo]o]ofofofo]o]o]1[2]1]o]o]o1]p]
3 1 1
Description NRP is placed in the program fetch counter (PFC). This instruction also sets the NMIE
bit. The PGIE bit is unchanged.
If two branches are in the same execute packet and are both taken, behavior is
undefined.
Two conditional branches can be in the same execute packet if one branch uses a
displacement and the other uses a register, IRP, or NRP. As long as only one branch
has a true condition, the code executes in a well-defined way.
NOTE:
1. This instruction executes on .S2 only. PFC is program fetch counter.
2. Refer to Chapter 5 for more information on NRP and NMIE.
3. The execute packets in the delay slots of a branch cannot be
interrupted. This is true regardless of whether the branch is taken.
4. See Section 3.5.2 for information on branching into the middle of an
execute packet.
5. A branch to an execute packet that spans two fetch packets will
cause a stall while the second fetch packet is fetched.
Execution
if (cond) NRP — PFC
else nop
Pipeline
Target Instruction
Pipeline Stage El PS PW PR DP DC E1l
Read NRP
Written
Branch taken v
Unit in use .S2
SPRUFE8B-July 2010 Instruction Set 157

Copyright © 2010, Texas Instruments Incorporated

B NRP — Branch Using NMI Return Pointer

13 TEXAS
INSTRUMENTS

www.ti.com

Instruction Type Branch
Delay Slots 5
Example Table 3-22 gives the program counter values and actions for the following code example.
Given that an interrupt occurred at
PC = 0000 1000 | RP = 0000 1000
0000 0020 B .S2 NRP
0000 0024 ADD .S1 A0, A2, Al
0000 0028 MPY ML Al, A0, Al
0000 002C NOP
0000 0030 SHR S1 Al, 15, Al
0000 0034 ADD L1 AL, A2, Al
0000 0038 ADD L2 B1, B2, B3
Table 3-22. Program Counter Values for B NRP Instruction Example
Cycle Program Counter Value Action
Cycle O 0000 0020 Branch command executes (target code fetched)
Cycle 1 0000 0024
Cycle 2 0000 0028
Cycle 3 0000 002C
Cycle 4 0000 0030
Cycle 5 0000 0034
Cycle 6 0000 1000 Branch target code executes

158 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRUFE8B-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com BDEC — Branch and Decrement
BDEC Branch and Decrement
Syntax BDEC (.unit) src, dst
unit = .S1 or .S2
Opcode
31 29 28 27 23 22 13 12 11 10 9 8 7 6 5 4 3 2 1 O
’ creg |z| dst src |1|0‘0|0‘0‘0’0’1|O|O‘0|s‘p‘
3 1 5 10 1 1
Opcode map field used... For operand type... Unit
src scst10 .51, .82

dst

int

Description

If the predication and decrement register (dst) is positive (greater than or equal to 0), the

BDEC instruction performs a relative branch and decrements dst by 1. The instruction

performs the relative branch using a 10-bit signed constant, scst10, in src. The constant

is shifted 2 bits to the left, then added to the address of the first instruction of the fetch
packet that contains the BDEC instruction (PCE1). The result is placed in the program

fetch counter (PFC).

This instruction helps reduce the number of instructions needed to decrement a register
and conditionally branch based upon the value of the register. Note also that any register
can be used that can free the predicate registers (A0-A2 and BO-B2) for other uses.

The following code:
CWPLT .L1 Al0,0,Al

. L1 Al0, 1, A10
.S1 func
5

. S1 func, Al0
5

['A1] SUB
[I['A1] B
NOP
could be replaced by:
BDEC
NOP
NOTE:
1.

Only one BDEC instruction can be executed per cycle. The BDEC
instruction can be predicated by using any conventional condition
register. The conditions are effectively ANDed together. If two
branches are in the same execute packet, and if both are taken,
behavior is undefined.

See Section 3.5.2 for information on branching into the middle of an
execute packet.

A branch to an execute packet that spans two fetch packets will
cause a stall while the second fetch packet is fetched.

The BDEC instruction cannot be in the same execute packet as an
ADDKPC instruction.

SPRUFE8B-July 2010

Instruction Set

Copyright © 2010, Texas Instruments Incorporated

159

13 TEXAS

INSTRUMENTS
BDEC — Branch and Decrement Www.ti.com
Execution
if (cond) {
if (dst >= 0), PFC = ((PCE1 + se(scst10)) << 2);
if (dst >=0), dst = dst - 1;
else nop
}
else nop
Pipeline
Target Instruction
Pipeline Stage El PS PW PR DP DC El
Read dst
Written dst, PC
Branch taken v
Unit in use .S
Instruction Type Branch
Delay Slots 5
Examples Example 1
BDEC . S1 100h, A10
Before instruction After branch has been taken
PCE1 | 0100 0000h |
PC [0000 x00h | PC |0100 0400h |
A10 | 0000 000Ah | A10 |0000 0009h |
Example 2
BDEC . S1 300h, A10 ; 300h is sign extended
Before instruction After branch has been taken
PCE1 |0100 0000h |
PC [0000 x00xxh | PC | 0OFF FCOOh \
A10 | 0000 0010h | A10 | 0000 000Fh \
160 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com BITC4 — Bit Count, Packed 8-Bit
BITC4 Bit Count, Packed 8-Bit
Syntax BITC4 (.unit) src2, dst
unit = .M1 or .M2
Opcode
31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
’ creg |z| dst src2 |1‘1‘1’l’0|x|0‘0|0‘0‘1’1’1|1|0‘0|s‘p‘
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
src2 xu4d M1, .M2
dst usd
Description Performs a bit-count operation on 8-bit quantities. The value in src2 is treated as packed
8-bit data, and the result is written in packed 8-bit format. For each of the 8-bit quantities
in src2, the count of the number of 1 bits in that value is written to the corresponding
position in dst.
31 24 23 16 15 8 7 0
ub_3 \ ub_2 ub_1 ub_0 \ < src2
BITC4
! I I I
31 24 23 16 15 8 7 0
bit_count(ub_3) ‘ bit_count(ub_2) ‘ bit_count(ub_1) | bit_count(ub_0) ‘ « dst
Execution
if (cond) {
bit_count(src2(ubyte0)) — ubyte0(dst);
bit_count(src2(ubytel)) — ubytel(dst);
bit_count(src2(ubyte2)) — ubyte2(dst);
bit_count(src2(ubyte3)) — ubyte3(dst)
}
else nop
Pipeline
Pipeline Stage El E2
Read src2
Written dst
Unit in use .M
SPRUFE8B-July 2010 Instruction Set 161

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
BITC4 — Bit Count, Packed 8-Bit www.ti.com
Instruction Type Two-cycle
Delay Slots 1
Example BITC4 . ML Al, A2
Before instruction 2 cycles after instruction

Al \ 9E 52 6E 30h | Al \ 9E 52 6E 30h \

A2 \ X000 Xxxxh | A2 \ 05 03 05 02h \
162 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

BITR — Bit Reverse

BITR Bit Reverse
Syntax BITR (.unit) src2, dst
unit = .M1 or .M2
Opcode
31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
’ creg |z| src2 |1‘1‘1’l’1|x|0‘0|0‘0‘1’1’1|1|0‘0|s‘p‘
3 1 5 1 1 1
Opcode map field used... For operand type... Unit
src2 xuint M1, .M2
dst uint
Description Implements a bit-reversal function that reverses the order of bits in a 32-bit word. This
means that bit 0 of the source becomes bit 31 of the result, bit 1 of the source becomes
bit 30 of the result, bit 2 becomes bit 29, and so on.
31 0
abcd efgh ijkl mnop grst uvwx yzAB CDEF ‘ « src2
BITR
!
31 0
FEDC BAzy xwvu tsrq ponm Ikji hgfe dcba «— dst
Execution
if (cond) bit_reverse(src2) — dst
else nop
Pipeline

Instruction Type

Delay Slots

Pipeline Stage El E2
Read src2
Written dst
Unit in use M

Two-cycle

1

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set 163

BITR — Bit Reverse

13 TEXAS
INSTRUMENTS

www.ti.com

Example BITR . M2 B4, B5

Before instruction

B4 \ AGE2 C179h \

B5 ‘ XXXX XXxxh ‘

2 cycles after instruction

B4 \ ABE2 C179h |

B5 \ 9E83 4765h |

164

Instruction Set

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com BNOP — Branch Using a Displacement With NOP
BNOP Branch Using a Displacement With NOP
Syntax BNOP (.unit) src2, srcl

unit = .S1, .S2, or none

Compact Instruction Format

Unit Opcode Format Figure
.S Sbs7 Figure F-17
Sbu8 Figure F-18
Sbs7c Figure F-20
Sbu8c Figure F-21
Sx1b Figure F-32
Opcode
31 29 28 27 16 15 13 12 11 10 9 8 7 6 5 4 3 2 1 O
’ creg |z| src2 srcl |0|0‘0|0‘1‘0’0’1|0|0‘0|s‘p‘
3 1 12 3 1 1
Opcode map field used... For operand type... Unit
src2 scstl2 .81, .82
srcl ucst3
Description The constant displacement form of the BNOP instruction performs a relative branch with

NOP instructions. The instruction performs the relative branch using the 12-bit signed
constant specified by src2. The constant is shifted 2 bits to the left, then added to the
address of the first instruction of the fetch packet that contains the BNOP instruction
(PCE1). The result is placed in the program fetch counter (PFC).

The 3-bit unsigned constant specified in srcl gives the number of delay slot NOP
instructions to be inserted, from 0 to 7. With srcl = 0, no NOP cycles are inserted.

This instruction helps reduce the number of instructions to perform a branch when NOP
instructions are required to fill the delay slots of a branch.

The following code:

B . S1 LABEL
NOP N
LABEL: ADD

could be replaced by:

BNOP .S1 LABEL, N
LABEL: ADD

SPRUFE8B-July 2010 Instruction Set 165

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

BNOP — Branch Using a Displacement With NOP www.ti.com

NOTE:

1. BNOP instructions may be predicated. The predication condition
controls whether or not the branch is taken, but does not affect the
insertion of NOPs. BNOP always inserts the number of NOPs
specified by N, regardless of the predication condition.

2. The execute packets in the delay slots of a branch cannot be
interrupted. This is true regardless of whether the branch is taken.

3. See Section 3.5.2 for information on branching into the middle of an
execute packet.

4. A branch to an execute packet that spans two fetch packets will
cause a stall while the second fetch packet is fetched.

Only one branch instruction can be executed per cycle. If two branches are in the same
execute packet, and if both are taken, the behavior is undefined. It should also be noted
that when a predicated BNOP instruction is used with a NOP count greater than 5, the
CPU inserts the full delay slots requested when the predicated condition is false.

For example, the following set of instructions will insert 7 cycles of NOPs:

ZERO .L1 A0
[AO] BNOP .Sl LABEL,7 ; branch is not taken and
7 cycles of NOPs are inserted

Conversely, when a predicated BNOP instruction is used with a NOP count greater than
5 and the predication condition is true, the branch will be taken and the multi-cycle NOP
is terminated when the branch is taken.

For example in the following set of instructions, only 5 cycles of NOP are inserted:

MVK .D1 1,A0
[AO] BNOP .S1 LABEL,7 ; branch is taken and
5 cycles of NOPs are inserted

The BNOP instruction cannot be paired with any other multicycle NOP instruction in the
same execute packet. Instructions that generate a multicycle NOP are: IDLE, ADDKPC,
CALLP, and the multicycle NOP.

The BNOP instruction does not require the use of the .S unit. If no unit is specified, then
it may be scheduled in parallel with instructions executing on both the .S1 and .S2 units.
If either the .S1 or .S2 unit is specified for BNOP, then the .S unit specified is not
available for another instruction in the same execute packet. This is enforced by the
assembler.

It is possible to branch into the middle of a 32-bit instruction. The only case that will be
detected and result in an exception is when the 32-bit instruction is contained in a
compact header-based fetch packet. The header cannot be the target of a branch
instruction. In the event that the header is the target of a branch, an exception will be
raised.

166 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS

www.ti.com

BNOP — Branch Using a Displacement With NOP

Execution (if instruction is within compact instruction fetch packet)

if (cond)

else nop

Execution (if instruction is not within compact instruction fetch packet)

{
PFC = (PCE1 + (se(scst12) << 1));
nop (srcl)

}
(srcl +1)

if (cond) {
PFC = (PCEL1 + (se(scst12) << 2));
nop (srcl)
}
else nop (srcl +1)
Pipeline
Target Instruction
Pipeline Stage El PS PW PR DP DC E1l
Read src2
Written PC
Branch taken v
Unit in use .S
Instruction Type Branch
Delay Slots 5
See Also ADDKPC, B, NOP
Example BNOP . S1 30h, 2

Before instruction

PCE1 | 0100 0500h \

PC | XXXX XXxxh

\ PC

After branch has been taken

0100 1100h

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set

167

13 TEXAS

INSTRUMENTS
BNOP — Branch Using a Register With NOP www.ti.com
BNOP Branch Using a Register With NOP
Syntax BNOP (.unit) src2, srcl
unit = .S2
Opcode
31 29 28 27 26 25 24 23 22 18 17 16 15 13 12 11 10 9 8 7 6 5 4 3 2 1 0
’ creg |z|0‘0|0‘0‘1’ src2 |O‘O‘ srcl |x|0‘0|1‘1‘0’1’1|0|0‘0|1‘p‘
1 5 3 1 1
Opcode map field used... For operand type... Unit
src2 xuint .S2
srcl ucst3
Description The register form of the BNOP instruction performs an absolute branch with NOP

instructions. The register specified in src2 is placed in the program fetch counter (PFC).

For branch targets residing in compact header-based fetch packets, the 31
most-significant bits of the register are used to determine the branch target. For branch
targets not residing in compact header-based fetch packets, the 30 most-significant bits
of the register are used to determine the branch target.

The 3-bit unsigned constant specified in srcl gives the number of delay slots NOP
instructions to be inserted, from 0 to 7. With src1 = 0, no NOP cycles are inserted.

This instruction helps reduce the number of instructions to perform a branch when NOP
instructions are required to fill the delay slots of a branch.

The following code:

B .S2 B3

NOP N

could be replaced by:
BNOP . S2 B3, N

NOTE:

1. BNOP instructions may be predicated. The predication condition
controls whether or not the branch is taken, but does not affect the
insertion of NOPs. BNOP always inserts the number of NOPs
specified by N, regardless of the predication condition.

2. The execute packets in the delay slots of a branch cannot be
interrupted. This is true regardless of whether the branch is taken.

3. See Section 3.5.2 for information on branching into the middle of an
execute packet.

4. A branch to an execute packet that spans two fetch packets will
cause a stall while the second fetch packet is fetched.

Only one branch instruction can be executed per cycle. If two branches are in the same
execute packet, and if both are taken, the behavior is undefined. It should also be noted
that when a predicated BNOP instruction is used with a NOP count greater than 5, the
CPU inserts the full delay slots requested when the predicated condition is false.

168

Instruction Set

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com BNOP — Branch Using a Register With NOP
For example, the following set of instructions will insert 7 cycles of NOPs:
ZERO .L1 A0
[AO] BNOP .S2 B3,7 ; branch is not taken and 7 cycles of NOPs are inserted
Conversely, when a predicated BNOP instruction is used with a NOP count greater than
5 and the predication condition is true, the branch will be taken and multi-cycle NOP is
terminated when the branch is taken.
For example, in the following set of instructions only 5 cycles of NOP are inserted:
MK .DL 1,A0
[AO] BNOP .S2 B3,7 ; branch is taken and 5 cycles of NOPs are inserted
The BNOP instruction cannot be paired with any other multicycle NOP instruction in the
same execute packet. Instructions that generate a multicycle NOP are: IDLE, ADDKPC,
CALLP, and the multicycle NOP.
Execution
if (cond) {
src2 — PFC;
nop (srcl)
}
else nop (srcl + 1)
Pipeline
Target Instruction
Pipeline Stage El PS PW PR DP DC E1l
Read src2
Written PC
Branch taken v
Unit in use .S2
Instruction Type Branch
Delay Slots 5
See Also ADDKPC, B, NOP
Example BNOP . S2 A5, 2

Before instruction After branch has been taken

PCE1 \ 0010 0000h |

PC ‘ XXXX XXXXh | PC ’ 0100 FOOOh ‘

A5 \ 0100 FOOOh | A5 \ 0100 FOOOh \

SPRUFE8B-July 2010

Instruction Set 169

Copyright © 2010, Texas Instruments Incorporated

BPOS — Branch Positive

13 TEXAS
INSTRUMENTS

www.ti.com

BPOS Branch Positive
Syntax BPOS (.unit) src, dst
unit = .S1 or .S2
Opcode
31 29 28 27 23 22 13 12 11 10 9 8 7 6 5 4 3 2 1 0
] |z] dst src lofofo]o]oJofo]1][o]o]o]s][p]
1 5 10 1 1
Opcode map field used... For operand type... Unit
src scst10 .51, .82
dst int
Description If the predication register (dst) is positive (greater than or equal to 0), the BPOS
instruction performs a relative branch. If dst is negative, the BPOS instruction takes no
other action.
The instruction performs the relative branch using a 10-bit signed constant, scst10, in
src. The constant is shifted 2 bits to the left, then added to the address of the first
instruction of the fetch packet that contains the BPOS instruction (PCE1). The result is
placed in the program fetch counter (PFC).
Any register can be used that can free the predicate registers (A0-A2 and B0-B2) for
other uses.
NOTE:
1. Only one BPOS instruction can be executed per cycle. The BPOS
instruction can be predicated by using any conventional condition
register. The conditions are effectively ANDed together. If two
branches are in the same execute packet, and if both are taken,
behavior is undefined.
2. The execute packets in the delay slots of a branch cannot be
interrupted. This is true regardless of whether the branch is taken.
3. See Section 3.5.2 for information on branching into the middle of an
execute packet.
4. A branch to an execute packet that spans two fetch packets will
cause a stall while the second fetch packet is fetched.
5. The BPOS instruction cannot be in the same execute packet as an
ADDKPC instruction.
Execution
if (cond) {
if (dst >= 0), PFC = (PCEL1 + (se(scst10) << 2));
else nop
}
else nop

170

Instruction Set

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com BPOS — Branch Positive
Pipeline
Target Instruction

Pipeline Stage El PS PW PR DP DC E1l

Read dst

Written PC

Branch taken v

Unit in use .S
Instruction Type Branch
Delay Slots 5
Example BPOS . S1 200h, A10

Before instruction After branch has been taken

PCE1 \ 0010 0000h |

PC \ X0 xxxxh | PC \ 0100 0800h \
A10 \ 0000 000Ah | A10] 0000 000Ah \
SPRUFE8B-July 2010 Instruction Set 171

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
CALLP — Call Using a Displacement www.ti.com
CALLP Call Using a Displacement
Syntax CALLP (.unit) label, A3/B3
unit = .S1 or .S2
Compact Instruction Format
Unit Opcode Format Figure
.S Scs10 Figure F-19
Opcode
31 30 29 28 27 7 6 5 4 3 2 1 O
[o]oJo]1] cst21 [oJo[1]ofo[s]p]
21 1 1
Opcode map field used... For operand type... Unit
cst21 scst21 .51, .82
Description A 21-bit signed constant, cst21, is shifted left by 2 bits and is added to the address of the

first instruction of the fetch packet that contains the branch instruction. The result is
placed in the program fetch counter (PFC). The assembler/linker automatically computes
the correct value for cst21 by the following formula:

cst21 = (label - PCE1) >> 2

The address of the execute packet immediately following the execute packet containing
the CALLP instruction is placed in A3, if the S1 unit is used; or in B3, if the S2 unit is
used. This write occurs in E1. An implied NOP 5 is inserted into the instruction pipeline
occupying E2-E6.

Since this branch is taken unconditionally, it cannot be placed in the same execute
packet as another branch. Additionally, no other branches should be pending when the
CALLP instruction is executed.

CALLP, like other relative branch instructions, cannot have an ADDKPC instruction in
the same execute packet with it.

NOTE:

1. PCE1 (program counter) represents the address of the first
instruction in the fetch packet in the E1 stage of the pipeline. PFC is
the program fetch counter. retPC represents the address of the first
instruction of the execute packet in the DC stage of the pipeline.

2. The execute packets in the delay slots of a branch cannot be
interrupted. This is true regardless of whether the branch is taken.

172 Instruction Set

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS

www.ti.com

CALLP — Call Using a Displacement

Execution

(cst21 << 2) + PCE1 — PFC
if (unit = S2), retPC — B3
else if (unit = S1), retPC — A3

nop 5

Pipeline

Target Instruction

Pipeline Stage El PS PW PR DP DC E1l
Read

Written A3/B3

Branch taken v
Unit in use .S

Instruction Type

Delay Slots

Branch

5

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set

173

CLR — Clear a Bit Field

13 TEXAS
INSTRUMENTS

www.ti.com

CLR

Syntax

Clear a Bit Field

CLR (.unit) src2, csta, cstb, dst

or

CLR (.unit) src2, srcl, dst

unit =.S1 or .S2

Compact Instruction Format
Unit Opcode Format Figure
.S Sch Figure F-27
Opcode Constant form
31 29 28 27 23 22 18 17 13 12 8 7 6 5 4 3 2 1 0
‘ creg |z| dst ‘ src2 csta cstb ‘1‘1‘0|0|1‘0|s‘p‘
3 1 5 5 5 5 1 1
Opcode map field used... For operand type... Unit
src2 uint .S1,.S2
csta ucst5
cstb ucsts
dst uint
Opcode Register form
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| dst ‘ src2 srcl |x|1‘1|1‘1‘1‘1‘1|0|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
src2 xuint .S1, .S2
srcl uint
dst uint
Description For cstb = csta, the field in src2 as specified by csta to cstb is cleared to all Os in dst.
The csta and cstb operands may be specified as constants or in the 10 LSBs of the srcl
register, with cstb being bits 0-4 (srcl , ,) and csta being bits 5-9 (srcl 4 ¢). csta is the
LSB of the field and cstb is the MSB of the field. In other words, csta and cstb represent
the beginning and ending bits, respectively, of the field to be cleared to all Os in dst. The
LSB location of src2 is bit 0 and the MSB location of src2 is bit 31.
174 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

CLR — Clear a Bit Field

In the following example, csta is 15 and cstb is 23. For the register version of the
instruction, only the 10 LSBs of the srcl register are valid. If any of the 22 MSBs are
non-zero, the result is invalid.

i: cstb ;i

: « csta >

| | |
sre2 [XXX x| x[x]x|xPrJol1fofo]1[1+]o]1Ix]x]|x|x]x]x[x]x]x|[x]x]|x|x]x]x]

31 30 29 28 27 26 25 24 23 22 21 2019 18 1716 151413121110 9 8 7 6 5 4 3 2 1 O

ast [x[x[x]x]x]x]x|xfofofofoJoJoJoJofolx|x[x]x]|x]x]x]x|x|x[x]x]x]|x]x]

31 30 29 28 27 26 25 24 23 22 21 2019 1817 16 151413121110 9 8 7 6 5 4 3 2 1 0

For cstb < csta, the src2 register is copied to dst. The csta and cstb operands may be
specified as constants or in the 10 LSBs of the srcl register, with cstb being bits 0-4
(srcl , ,) and csta being bits 5-9 (srcl g 5).

Execution If the constant form is used when cstb = csta:
if (cond) src2 clear csta, cstb — dst
else nop
If the register form is used when cstb = csta:
if (cond) src2 clear srcl 4 g, srcl , o — dst
else nop
Pipeline
Pipeline Stage El
Read srcl, src2
Written dst
Unit in use .S
Instruction Type Single-cycle
Delay Slots 0
See Also SET
Examples Example 1
CLR .Sl A1, 4,19, A2
Before instruction 1 cycle after instruction
Al | 074 3F2AN | Al | 07A4 3F2Ah \
A2 [0000 x00x¢h | A2 07A0 000Ah \

SPRUFE8B-July 2010

Instruction Set

Copyright © 2010, Texas Instruments Incorporated

175

13 TEXAS

INSTRUMENTS
CLR — Clear a Bit Field www.ti.com
Example 2
CLR . S2 B1, B3, B2
Before instruction 1 cycle after instruction
B1 \ 03B6 E7D5h | B1 \ 03B6 E7D5h
B2 \ xxxx xxxxh | B2] 03B0 0001h
B3 | 0000 0052h | B3 | 0000 0052h
176 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com CMPEQ — Compare for Equality, Signed Integer
CMPEQ Compare for Equality, Signed Integer
Syntax CMPEQ (.unit) srcl, src2, dst

unit = .L1 or .L2

Compact Instruction Format

Unit Opcode Format Figure
.L L2c Figure D-7
Lx3c Figure D-9
Opcode
31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0
’ creg |z| dst src2 srcl |x| op |l|1‘0|s‘p‘
3 1 5 5 5 1 7 1 1
Opcode map field used... For operand type... Unit Opfield
srcl sint L1, L2 101 0011
src2 xsint
dst uint
srcl scst5 L1, L2 101 0010
src2 xsint
dst uint
srcl xsint L1, L2 101 0001
src2 slong
dst uint
srcl scst5 L1, L2 101 0000
src2 slong
dst uint
Description Compares srcl to src2. If srcl equals src2, then 1 is written to dst; otherwise, 0 is written
to dst.
Execution
if (cond) {
if (srcl == src2), 1 — dst
else 0 — dst
}
else nop
Pipeline
Pipeline Stage E1l
Read srcl, src2
Written dst
Unit in use L
SPRUFE8B-July 2010 Instruction Set 177

Copyright © 2010, Texas Instruments Incorporated

CMPEQ — Compare for Equality, Signed Integer

13 TEXAS
INSTRUMENTS

www.ti.com

Instruction Type Single-cycle
Delay Slots 0
See Also CMPEQ2, CMPEQ4
Examples Example 1
CWMPEQ . L1X A1, B1, A2
Before instruction 1 cycle after instruction
Al | 0000 04B8h | 1208 Al |
A2 | XXXX XXxXh | A2 ‘ false
Bl 0000 04B7h | 1207 B1 |
Example 2
CMPEQ . L1 Ch, Al, A2
Before instruction 1 cycle after instruction
Al | 0000 000Ch 12 Al |
A2 | XXXX XXxXh | A2 ‘ true
Example 3
CWVPEQ . L2X Al, B3: B2, B1
Before instruction 1 cycle after instruction
Al | F23A378%h \ Al |
B1 | XXXX XxxXh ‘ Bl ‘ true
B3:B2 |0000 00FFh | F23A 378%h B3:B2 | F23A 3789h

178 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRUFE8B-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com CMPEQ2 — Compare for Equality, Packed 16-Bit
CMPEQ?2 Compare for Equality, Packed 16-Bit
Syntax CMPEQ?2 (.unit) srcl, src2, dst
unit = .S1 or .S2
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
’ creg |z| dst src2 srcl |x|0‘1|1‘1‘0’l’1|0|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl s2 .S1,.S2
src2 Xs2
dst bv2
Description Performs equality comparisons on packed 16-bit data. Each 16-bit value in srcl is
compared against the corresponding 16-bit value in src2, returning either a 1 if equal or
a 0 if not equal. The equality results are packed into the two least-significant bits of dst.
The result for the lower pair of values is placed in bit 0, and the results for the upper pair
of values are placed in bit 1. The remaining bits of dst are cleared to O.
31 16 15 0
a_hi ‘ a_lo ‘ «— srcl
CMPEQ2
i i
31 16 15 0
b_hi b_lo « src2

a_lo==b_lo

a_hi==b_hi

A A 4
0 00000000 O0O0OO0O0O0OO0O0O0O0O0O0O0O0UO0O0O0GO0O0 0f[=[=]edst

31

210

Execution

if (cond)

else nop

{
if (Isb16(src1) == Isb16(src2)), 1 — dst

else 0 — dst ;
if (msb16(srcl) == msb16(src2)), 1 — dst;
else 0 — dst

SPRUFE8B-July 2010

Instruction Set 179

Copyright © 2010, Texas Instruments Incorporated

CMPEQ2 — Compare for Equality, Packed 16-Bit

13 TEXAS
INSTRUMENTS

www.ti.com

Pipeline

Pipeline Stage El
Read srcl, src2
Written dst
Unit in use .S
Instruction Type Single-cycle
Delay Slots 0
See Also CMPEQ, CMPEQ4, CMPGT2, XPND2
Examples Example 1
CMPEQ . S1 A3, A4, A5
Before instruction 1 cycle after instruction
A3 | 1105 6E30h | A3 | 1105 6E30h |
A4 [1105 6980h | A4 [1105 6980h |
A5 | xoo0x xoocxh | A5 | 0000 0002h | true, false
Example 2
CMPEQ2 . S2 B2, B8, B15
Before instruction 1 cycle after instruction
B2 |F23A378%h | B2 |F23A3780h |
B8 |04B8 378%h | B8 |04B8 378%h |
B15 | XXXX XXxxh ‘ B15 ‘ 0000 0001h ‘ false, true
Example 3
CMPEQ . S2 B2, B8, B15
Before instruction 1 cycle after instruction
B2 |01B6 2451h | B2 |01B6 2451h |
BS | 01B6 2451h \ BS \ 01B6 2451h \
B15 | XXXX XXxxh ‘ B15 ‘ 0000 0003h ‘ true, true
180 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRUFE8B-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com CMPEQ4 — Compare for Equality, Packed 8-Bit
CMPEQ4 Compare for Equality, Packed 8-Bit
Syntax CMPEQ4 (.unit) srcl, src2, dst
unit = .S1 or .S2
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
’ creg |z| dst src2 srcl |x|0‘1|1‘1‘0’0’1|0|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl s4 .S1,.S2
src2 xs4
dst bv4
Description Performs equality comparisons on packed 8-bit data. Each 8-bit value in srcl is
compared against the corresponding 8-bit value in src2, returning either a 1 if equal or a
0 if not equal. The equality comparison results are packed into the four least-significant
bits of dst.
The 8-bit values in each input are numbered from 0 to 3, starting with the
least-significant byte, then working towards the most-significant byte. The comparison
results for byte 0 are written to bit O of the result. Likewise the results for byte 1 to 3 are
written to bits 1 to 3 of the result, respectively, as shown in the diagram below. The
remaining bits of dst are cleared to 0.
31 24 23 16 15 8 7 0
sa_3 ‘ sa_2 ‘ sa_1 sa_ 0 «—srcl
CMPEQ4
n n n "
31 24 23 16 15 8 7 0
sb_3 sh_2 sb_1 sb_0 « src2
sa_0==sb 0
sa_1==sb 1
sa_2==sb 2
sa_3==sb_3
AR A A
0 0000O0O0O0O0OOO0O0O0OOO0O0O0O0O0O0O0O00O0O0O0O0[=[=[=]=]east
31 4 3210

SPRUFE8B-July 2010

Instruction Set 181

Copyright © 2010, Texas Instruments Incorporated

CMPEQ4 — Compare for Equality, Packed 8-Bit

13 TEXAS
INSTRUMENTS

www.ti.com

Execution
if (cond) {
if (sbyteO(srcl) == sbyteO(src2)), 1 — dst,
else 0 — dst ;
if (sbytel(srcl) == sbytel(src2)), 1 — dst ,
else 0 — dst ,;
if (sbyte2(srcl) == sbyte2(src2)), 1 — dst,
else 0 — dst ,;
if (sbyte3(srcl) == sbyte3(src2)), 1 — dst
else 0 — dst ,
}
else nop
Pipeline
Pipeline Stage El
Read srcl, src2
Written dst
Unit in use .S
Instruction Type Single-cycle
Delay Slots 0
See Also CMPEQ, CMPEQ2, CMPGTU4, XPND4
Examples Example 1
CMPEQ4 . S1 A3, A4, A5
Before instruction 1 cycle after instruction
A3 02 3A 4E 1Ch | A3 02 3A 4E 1Ch \
A4 | 02 B8 4E 76h | A4 02 B8 4E 76h \
A5 | XXXX XXXXh | A5 | 0000 000Ah ‘ true, false, false, false
Example 2
CMPEQ4 . S2 B2, B8, B13
Before instruction 1 cycle after instruction
B2 | F23A37 89h | B2 | F23A37 8%h \
B8 | 04 B8 37 89h | B8 |04 B8 37 89h |
B13 | XXXX XXXXh | B13 | 0000 0003h ‘ false, false, true, true

182 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRUFE8B-July 2010

13 TEXAS
INSTRUMENTS

www.ti.com

CMPEQ4 — Compare for Equality, Packed 8-Bit

Example 3

CVWPEQY . S2 B2, B8, B13

Before instruction

B2 | 01 B6 24 51h | B2
B8 | 05 B6 24 51h | B8
B13 | XXXX XXXxh | B13

1 cycle after instruction

| 01 B6 24 51h \

| 05 B6 24 51h \

| 0000 0007h ‘ false, true, true, true

SPRUFE8B-July 2010

Instruction Set 183

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
CMPEQDP — Compare for Equality, Double-Precision Floating-Point Values www.ti.com
CMPEQDP Compare for Equality, Double-Precision Floating-Point Values
Syntax CMPEQDP (.unit) src1, src2, dst
unit = .S1 or .S2
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
’ creg |z| dst src2 srcl |x|l‘0|1‘0‘0’0’1|O|O‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl dp .81, .82
src2 xdp
dst sint
Description Compares srcl to src2. If srcl equals src2, then 1 is written to dst; otherwise, 0 is written
to dst.
Special cases of inputs:
Input FAUCR Bits
srcl src2 Output UNORD INVAL
NaN don't care 0 1 0
don't care NaN 0 1 0
NaN NaN 0 1 0
+/-denormalized +/-0 1 0 0
+/-0 +/-denormalized 1 0 0
+/-0 +/-0 1 0 0
+/-denormalized +/-denormalized 1 0 0
+infinity +infinity 1 0 0
+infinity other 0 0 0
-infinity -infinity 1 0 0
-infinity other 0 0 0
NOTE:
1. Inthe case of NaN compared with itself, the result is false.
2. No configuration bits other than those in the preceding table are set,
except the NaNn and DENn bits when appropriate.
184 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com CMPEQDP — Compare for Equality, Double-Precision Floating-Point Values
Execution
if (cond) {
if (srcl == src2), 1 — dst
else 0 — dst
}
else nop
Pipeline
Pipeline Stage El E2
Read srcl_|, src2_| srcl_h, src2_h
Written dst
Unit in use .S .S
Instruction Type DP compare
Delay Slots 1

Functional Unit Latency 2

See Also CMPEQ, CMPEQSP, CMPGTDP, CMPLTDP
Example CVPEQDP . S1 Al: A0, A3: A2, Ad
Before instruction 7 cycles after instruction
AL:A0 [40213333h | 3333 3333h | AL:A0 | 4021 3333h | 3333 3333h |8.6
A3:A2 \ €004 0000h | 0000 0000h \ A3:A2 | C004 0000h \ 0000 0000h | 25
A4 | x000¢ x000ch | A4 | 0000 0000h | false
SPRUFE8B-July 2010 Instruction Set 185

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
CMPEQSP — Compare for Equality, Single-Precision Floating-Point Values www.ti.com
CMPEQSP Compare for Equality, Single-Precision Floating-Point Values
Syntax CMPEQSP (.unit) srcl, src2, dst
unit = .S1 or .S2
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
’ creg |z| dst src2 srcl |x|l‘1|1‘0‘0’0’1|0|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl sp .S1,.S2
src2 Xsp
dst sint
Description Compares srcl to src2. If srcl equals src2, then 1 is written to dst; otherwise, 0 is written
to dst.
Special cases of inputs:
Input FAUCR Bits
srcl src2 Output UNORD INVAL
NaN don't care 0 1 0
don't care NaN 0 1 0
NaN NaN 0 1 0
+/-denormalized +/-0 1 0 0
+/-0 +/-denormalized 1 0 0
+/-0 +/-0 1 0 0
+/-denormalized +/-denormalized 1 0 0
+infinity +infinity 1 0 0
+infinity other 0 0 0
-infinity -infinity 1 0 0
-infinity other 0 0 0
NOTE:
1. Inthe case of NaN compared with itself, the result is false.
2. No configuration bits other than those in the preceding table are set,
except the NaNn and DENn bits when appropriate.
186 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com CMPEQSP — Compare for Equality, Single-Precision Floating-Point Values
Execution
if (cond) {
if (srcl == src2), 1 — dst
else 0 — dst
}
else nop
Pipeline
Pipeline Stage E1l
Read srcl, src2
Written dst
Unit in use .S
Instruction Type Single-cycle
Delay Slots 0
Functional Unit Latency 1
See Also CMPEQ, CMPEQDP, CMPGTSP, CMPLTSP
Example CMPEQSP . S1 Al, A2, A3

Before instruction

Al \ C020 0000h
A2 \ 4109 999Ah
A3 ‘ XXXX XXXxh

Al

A2

A3

1 cycle after instruction

\ €020 0000h 25
] 4109 999Ah \ 8.6
\ 0000 0000h \ false

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set

187

13 TEXAS

INSTRUMENTS
CMPGT — Compare for Greater Than, Signed Integers www.ti.com
CMPGT Compare for Greater Than, Signed Integers
Syntax CMPGT (.unit) srcl, src2, dst
unit=.L1 or .L2

Compact Instruction Format

Unit Opcode Format Figure

.L L2c Figure D-7

Lx1lc Figure D-10
Opcode
31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0
’ creg |z| dst src2 srcl |x| op |l|1‘0|s‘p‘
3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

srcl sint L1, L2 100 0111

src2 xsint

dst uint

srcl scst5 L1, L2 100 0110

src2 xsint

dst uint

srcl xsint L1, L2 100 0101

src2 slong

dst uint

srcl scst5 L1, L2 100 0100

src2 slong

dst uint
Description Performs a signed comparison of srcl to src2. If srcl is greater than src2, then a 1 is

written to dst; otherwise, a 0 is written to dst.

188 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com CMPGT — Compare for Greater Than, Signed Integers
NOTE: The CMPGT instruction allows using a 5-bit constant as srcl. If src2 is a
5-bit constant, as in
CMPGT . L1 A4, 5 A0
Then to implement this operation, the assembler converts this instruction
to
CWPLT . L1 5, A4, AO
These two instructions are equivalent, with the second instruction using
the conventional operand types for srcl and src2.
Similarly, the CMPGT instruction allows a cross path operand to be used
as src2. If srcl is a cross path operand as in
CMPGT . L1x B4, A5, A0
Then to implement this operation the assembler converts this instruction
to
CWPLT . L1x A5, B4, A0
In both of these operations the listing file (.Ist) will have the first
implementation, and the second implementation will appear in the
debugger.
Execution
if (cond) {
if (srcl > src2), 1 — dst
else 0 — dst
}
else nop
Pipeline
Pipeline Stage El
Read srcl, src2
Written dst
Unit in use L
Instruction Type Single-cycle
Delay Slots 0
See Also CMPGT2, CMPGTU, CMPGTU4
Examples Example 1
CMPGT . L1X Al, B1, A2
Before instruction 1 cycle after instruction
Al | 0000 01B6h | 438 Al 0000 01B6h |
A2 | 0000000 | A2 | 0000 0000h | false
B1 | 0000 08BDh | 2237 B1 0000 08BDh |
SPRUFE8B-July 2010 Instruction Set 189

Copyright © 2010, Texas Instruments Incorporated

I} TEXAS
INSTRUMENTS
CMPGT — Compare for Greater Than, Signed Integers www.ti.com
Example 2
CVPGT . L1X Al, B1, A2
Before instruction 1 cycle after instruction
Al | FFFF FE91h | -367 Al | FFFF FE91h
A2 ‘ XXXX XXXxh | A2 ’ 0000 0001h ‘ true
B1 | FFFF FDC4h 572 B1 | FFFF FDC4h
Example 3
CVWPGT . L1 8, Al, A2
Before instruction 1 cycle after instruction
Al | 0000 0023h 35 Al | 0000 0023h
A2 [0000 x000¢h | A2 | 0000 0000h | false
Example 4
CVPGT . L1X Al, B1, A2
Before instruction 1 cycle after instruction
Al | 0000 00EBh | 235 Al 0000 00EBh \
A2 ‘ XXXX XXxxh | A2 ’ 0000 0000h ‘ false
B1 | 0000 00EBh | 235 B1 0000 00EBh \

190 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRUFE8B-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com CMPGT2 — Compare for Greater Than, Packed 16-Bit
CMPGT2 Compare for Greater Than, Packed 16-Bit
Syntax CMPGT?2 (.unit) srcl, src2, dst
unit = .S1 or .S2
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
’ creg |z| dst src2 srcl |x|0‘1|0‘1‘0’0’1|0|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl s2 .S1,.S2
src2 Xs2
dst bv2
Description Performs comparisons for greater than values on signed, packed 16-bit data. Each

signed 16-bit value in srcl is compared against the corresponding signed 16-bit value in
src2, returning a 1 if srcl is greater than src2 or returning a 0 if it is not greater. The
comparison results are packed into the two least-significant bits of dst. The result for the

lower pair of values is placed in bit 0, and the results for the upper pair of values are

placed in bit 1. The remaining bits of dst are cleared to 0.

«—srcl

«— src2

31 16 15 0
a_hi ‘ a_lo
CMPGT2
i1 i1
31 16 15 0
b_hi b_lo
a_lo>b_lo
a_hi>b_hi

000O0OOOOOOOOOOOOOQOTQODO

A
00000000O0O0O0O0Of>[>]east

31 210
Execution
if (cond) {
if (Isb16(srcl) > Isb16(src2)), 1 — dst ,
else 0 — dst ;
if (msb16(src1) > msh16(src2)), 1 — dst ,
else 0 — dst,
}
else nop

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set

191

CMPGT2 — Compare for Greater Than, Packed 16-Bit

13 TEXAS
INSTRUMENTS

www.ti.com

Pipeline

Pipeline Stage E1l
Read srcl, src2
Written dst
Unit in use .S
Instruction Type Single-cycle
Delay Slots 0
See Also CMPEQ2, CMPGT, CMPGTU, CMPGTU4, CMPLT2, XPND2

Examples Example 1

CWPGT2 . S1 A3, A4, A5

Before instruction

1 cycle after instruction

A3 | 1105 6E30h | 4357 28208 A3 | 1105 6E30h |
A4 \ 1105 6980h | 4357 27008 A4 \ 1105 6980h |
A5 | xoo0x xoocxh | A5 | 0000 0001h | false, true
Example 2
CMPGT2 . S2 B2, B8, B15
Before instruction 1 cycle after instruction
B2 | F348 3789h -3526 14217 B2 \ F348 3789h \
B8 | 04B8 4975h \ 1208 18805 B8 \ 04B8 4975h \
B15 | XXXX XXxxh ‘ B15 ‘ 0000 0000h ‘ false, false
Example 3
CMPGT2 .S2 B2, B8, B15
Before instruction 1 cycle after instruction
B2 | 01A6 2451h \ 422 9297 B2 \ 01A6 2451h \
B8 | 0124 AO51h \ 292 -24495 B8 \ 0124 A051h \
B15 | XXXX XXxxh ‘ B15 ‘ 0000 0003h ‘ true, true

192 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRUFE8B-July 2010

13 TEXAS
INSTRUMENTS

www.ti.com

CMPGTDP — Compare for Greater Than, Double-Precision Floating-Point Values

CMPGTDP Compare for Greater Than, Double-Precision Floating-Point Values
Syntax CMPGTDRP (.unit) srcl, src2, dst
unit = .S1 or .S2
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
’ creg |z| dst src2 srcl |x|l‘0|1‘0‘0’l’1|0|0‘0|s‘p‘
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl dp .81, .82
src2 xdp
dst sint
Description Compares srcl to src2. If srcl is greater than src2, then 1 is written to dst; otherwise, O
is written to dst.
Special cases of inputs:
Input FAUCR Bits
srcl src2 Output UNORD INVAL
NaN don't care 0 1 1
don't care NaN 0 1 1
NaN NaN 0 1 1
+/-denormalized +/-0 0 0 0
+/-0 +/-denormalized 0 0 0
+/-0 +/-0 0 0 0
+/-denormalized +/-denormalized 0 0 0
+infinity +infinity 0 0 0
+infinity other 1 0 0
-infinity -infinity 0 0 0
-infinity other 0 0 0
NOTE: No configuration bits other than those in the preceding table are set,
except the NaNn and DENn bits when appropriate.
Execution
if (cond) {
if (srcl > src2), 1 — dst
else 0 — dst
}
else nop

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set

193

13 TEXAS

INSTRUMENTS
CMPGTDP — Compare for Greater Than, Double-Precision Floating-Point Values www.ti.com
Pipeline
Pipeline Stage El E2
Read srcl_|, src2_| srcl_h, src2_h
Written dst
Unit in use .S .S
Instruction Type DP compare
Delay Slots 1
Functional Unit Latency 2
See Also CMPEQDP, CMPGT, CMPGTSP, CMPGTU, CMPLTDP
Example CMPGIDP . S1 Al: A0, A3: A2, M
Before instruction 7 cycles after instruction
AL:AO | 40213333h | 3333 3333h |86 ALAO | 40213333h | 3333 3333h |
A3:A2 | C004 0000h | 0000 0000h |-25 A3:A2 [C004 0000h | 0000 0000h
A4 | 0000 x000¢h | A4 | 0000 0001h | true
194 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

CMPGTSP — Compare for Greater Than, Single-Precision Floating-Point Values

CMPGTSP Compare for Greater Than, Single-Precision Floating-Point Values
Syntax CMPGTSP (.unit) srcl, src2, dst
unit = .S1 or .S2
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
’ creg |z| dst src2 srcl |x|l‘1|1‘0‘0’l’1|0|0‘0|s‘p‘
3 1 5 5 5 1 11

Opcode map field used... For operand type... Unit
srcl sp .S1,.S2
src2 Xsp
dst sint
Description Compares srcl to src2. If srcl is greater than src2, then 1 is written to dst; otherwise, O
is written to dst.
Special cases of inputs:
Input FAUCR Bits
srcl src2 Output UNORD INVAL
NaN don't care 0 1 1
don't care NaN 0 1 1
NaN NaN 0 1 1
+/-denormalized +/-0 0 0 0
+/-0 +/-denormalized 0 0 0
+/-0 +/-0 0 0 0
+/-denormalized +/-denormalized 0 0 0
+infinity +infinity 0 0 0
+infinity other 1 0 0
-infinity -infinity 0 0 0
-infinity other 0 0 0
NOTE: No configuration bits other than those in the preceding table are set,
except the NaNn and DENn bits when appropriate.
Execution
if (cond) {
if (srcl > src2), 1 — dst
else 0 — dst
}
else nop

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set

195

CMPGTSP — Compare for Greater Than, Single-Precision Floating-Point Values

13 TEXAS
INSTRUMENTS

www.ti.com

Pipeline
Pipeline Stage E1l
Read srcl, src2
Written dst
Unit in use .S
Instruction Type Single-cycle
Delay Slots 0
Functional Unit Latency 1
See Also CMPEQSP, CMPGT, CMPGTDP, CMPGTU, CMPLTSP
Example CMPGTSP . S1X Al, B2, A3
Before instruction 1 cycle after instruction
Al | C020 0000h 2.5 Al | C020 0000h |
B2 | 4109 999AN 8.6 B2 | 4109 999AN |
A3 | 0000000 | A3 | 0000 0000h | false

196 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRUFE8B-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com CMPGTU — Compare for Greater Than, Unsigned Integers
CMPGTU Compare for Greater Than, Unsigned Integers
Syntax CMPGTU (.unit) srcl, src2, dst

unit = .L1 or .L2

Compact Instruction Format

Unit Opcode Format Figure
.L L2c Figure D-7
Lx1lc Figure D-10
Opcode
31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0
’ creg |z| dst src2 srcl |x| op |l|1‘0|s‘p‘
3 1 5 5 5 1 7 1 1
Opcode map field used... For operand type... Unit Opfield
srcl uint L1, L2 100 1111
src2 xuint
dst uint
srcl ucst4 L1, L2 100 1110
src2 xuint
dst uint
srcl xuint L1, L2 100 1101
src2 ulong
dst uint
srcl ucstb L1, L2 100 1100
src2 ulong
dst uint
Description Performs an unsigned comparison of srcl to src2. If srcl is greater than src2, thena 1 is
written to dst; otherwise, a 0 is written to dst.
Execution
if (cond) {
if (srcl > src2), 1 — dst
else 0 — dst
}
else nop

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set 197

CMPGTU — Compare for Greater Than, Unsigned Integers

13 TEXAS
INSTRUMENTS

www.ti.com

Pipeline

Instruction Type
Delay Slots
See Also

Examples

Pipeline Stage El

Read srcl, src2

Written dst

Unit in use L
Single-cycle

0
CMPGT, CMPGT2, CMPGTU4

Example 1
CMPGTU . L1 Al, A2, A3

Al

A2

A3

Before instruction

| 0000 0128h \ 296®

| FFFF FFDER | 4,294,967,262

| XXXX Xxxxh ‘

1 cycle after instruction

Al \ 0000 0128h \

A2| FFFF FFDEh |

A3 \ 0000 0000h \ false

@ Unsigned 32-bit integer

Example 2
CMPGTU . L1 0Ah, Al, A2

Al

A2

Before instruction

| 0000 0005h \ 50

| XXXX XxXxXh ‘

1 cycle after instruction

Al \ 0000 0005h \

A2 \ 0000 0001h] true

@ Unsigned 32-bit integer

Example 3
CMPGTU . L1 OEh, A3: A2, A4

Before instruction

A3:A2 |

0000 0000h | 0000 000Ah 100

A4|

XXXX XXxXXh |

1 cycle after instruction

A3:A2 | 0000 0000h \ 0000 000Ah

A4 | 0000 0001h \ true

@ Unsigned 40-bit (long) integer

198 Instruction Set

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com CMPGTU4 — Compare for Greater Than, Unsigned, Packed 8-Bit
CMPGTU4 Compare for Greater Than, Unsigned, Packed 8-Bit
Syntax CMPGTU4 (.unit) srcl, src2, dst
unit = .S1 or .S2
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
’ creg |z| dst src2 srcl |x|0‘1|0‘1‘0’l’1|0|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl us4 .S1,.S2
src2 xu4
dst bv4
Description Performs comparisons for greater than values on packed 8-bit data. Each unsigned 8-bit
value in srcl is compared against the corresponding unsigned 8-bit value in src2,
returning a 1 if the byte in srcl is greater than the corresponding byte in src2 or a 0 if is
not greater. The comparison results are packed into the four least-significant bits of dst.
The 8-bit values in each input are numbered from 0 to 3, starting with the
least-significant byte, then working towards the most-significant byte. The comparison
results for byte 0 are written to bit O of the result. Likewise, the results for byte 1 to 3 are
written to bits 1 to 3 of the result, respectively, as shown in the diagram below. The
remaining bits of dst are cleared to 0.
31 24 23 16 15 8 7 0
ua_3 ‘ ua_2 ‘ ua_1 ua_0 «—srcl
CMPGTU4
n n n "
31 24 23 16 15 8 7 0
ub_3 ub_2 ub_1 ub_0 « src2
ua_0>ub_0
ua_1>ub_1
ua_2>ub_2
ua_3>ub_3

y v V. Vv
0 000000O0O0OO0OOO0O0O0O0O0O0O0O0O0O0O0O0O0O0O0O0[>]>[>]>]edst
31 4 3210

SPRUFE8B-July 2010 Instruction Set 199

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
CMPGTU4 — Compare for Greater Than, Unsigned, Packed 8-Bit www.ti.com
Execution
if (cond) {
if (ubyteO(srcl) > ubyteO(src2)), 1 — dst ,
else 0 — dst ;
if (ubytel(srcl) > ubytel(src2)), 1 — dst
else 0 — dst ,;
if (ubyte2(src1) > ubyte2(src2)), 1 — dst ,
else 0 — dst ,;
if (ubyte3(srcl) > ubyte3(src2)), 1 — dst
else 0 — dst ,
}
else nop
Pipeline
Pipeline Stage El
Read srcl, src2
Written dst
Unit in use .S
Instruction Type Single-cycle
Delay Slots 0
See Also CMPEQ4, CMPGT, CMPGT2, CMPGTU, CMPLT, XPND4
Examples Example 1
CMPGTU4 . S1 A3, A4, A5
Before instruction 1 cycle after instruction
A3 |253A1C E4h | 37 58 28 228 A3 |25 3A1C E4h |
A4 02 B8 4E 76h 218478 118 A4 02 B8 4E 76h |
A5 | XXXX XXXXh ‘ A5 | 0000 0009h | true, false, false, true
Example 2
CVMPGTU4 . S2 B2, B8, B13
Before instruction 1 cycle after instruction
B2 89 F2 3A 37h | 137 242 58 55 B2 89 F2 3A 37h |
B8 04 8F 17 89h | 414323137 B8 04 8F 17 89h |
B13 | XXXX XXXXh ‘ B13 | 0000 000Eh | true, true, true, false
200 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS

www.ti.com

CMPGTU4 — Compare for Greater Than, Unsigned, Packed 8-Bit

Example 3
CMPGTU4 . S2 B2, B8, B13

B2

B8

B13

Before instruction

1233 9D 51h | 1851157 81 B2
| 75 67 24 C5h \ 117 103 36 197 B8
| XXXX XXXXh ‘ B13

1 cycle after instruction

| 12 33 9D 51h

| 75 67 24 C5h

| 0000 0002h

| false, false, true, false

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set

201

CMPLT — Compare for Less Than, Signed Integers

13 TEXAS
INSTRUMENTS

www.ti.com

CMPLT Compare for Less Than, Signed Integers

Syntax CMPLT (.unit) srcl, src2, dst
unit=.L1 or .L2

Compact Instruction Format

Unit Opcode Format Figure
.L L2c Figure D-7
Lx1lc Figure D-10
Opcode
31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0
’ creg |z| dst src2 srcl |x| op |l|1‘0|s‘p‘
3 1 5 5 5 1 7 1 1
Opcode map field used... For operand type... Unit Opfield
srcl sint L1, L2 1010111
src2 xsint
dst uint
srcl scsts L1, L2 101 0110
src2 xsint
dst uint
srcl xsint L1, L2 1010101
src2 slong
dst uint
srcl scsts L1, L2 101 0100
src2 slong
dst uint
Description Performs a signed comparison of srcl to src2. If srcl is less than src2, then 1 is written

to dst; otherwise, 0O is written to dst.

202 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRUFE8B-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com CMPLT — Compare for Less Than, Signed Integers
NOTE: The CMPLT instruction allows using a 5-bit constant as srcl. If src2 is a
5-bit constant, as in
CMPLT . L1 A4, 5, A0
Then to implement this operation, the assembler converts this instruction
to
CWMPGT . L1 5, A4, AO
These two instructions are equivalent, with the second instruction using
the conventional operand types for srcl and src2.
Similarly, the CMPLT instruction allows a cross path operand to be used
as src2. If srcl is a cross path operand as in
CMPLT . L1x B4, A5, A0
Then to implement this operation, the assembler converts this instruction
to
CMPGT . L1x A5, B4, A0
In both of these operations the listing file (.Ist) will have the first
implementation, and the second implementation will appear in the
debugger.
Execution
if (cond) {
if (srcl < src2), 1 — dst
else 0 — dst
}
else nop
Pipeline
Pipeline Stage El
Read srcl, src2
Written dst
Unit in use L
Instruction Type Single-cycle
Delay Slots 0
See Also CMPLTZ2, CMPLTU, CMPLTU4
Examples Example 1
CVPLT . L1 Al, A2, A3
Before instruction 1 cycle after instruction
Al | 0000 07E2h | 2018 Al | 0000 07E2h |
A2 | 0000 0F6Bh | 3947 A2 | 0000 OF6Bh |
A3 ‘ XXXX XXXXh | A3 ’ 0000 0001h ‘ true
SPRUFE8B-July 2010 Instruction Set 203

Copyright © 2010, Texas Instruments Incorporated

CMPLT — Compare for Less Than, Signed Integers

13 TEXAS
INSTRUMENTS

www.ti.com

Example 2
CMVPLT . L1 Al, A2, A3

Before instruction 1 cycle after instruction
Al | FFFF FED6h | -298 Al | FFFF FED6h |
A2 | 0000 000Ch 12 A2 | 0000 000Ch |
A3 | 0000000 | A3 | 0000 0001h | true
Example 3
CVPLT . L1 9, AL, A2
Before instruction 1 cycle after instruction
Al | 0000 0005h 5 Al | 0000 0005h |
A2 [0000 x000¢h | A2 | 0000 0000h | false

204 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRUFE8B-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com CMPLT2 — Compare for Less Than, Packed 16-Bit
CMPLT2 Compare for Less Than, Packed 16-Bit
Syntax CMPLT2 (.unit) src2, srcl, dst
unit = .S1 or .S2
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
’ creg |z| dst src2 srcl |x|0‘1|0‘1‘0’0’1|0|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl s2 .S1,.S2
src2 Xs2
dst bv2
Description The CMPLT2 instruction is a pseudo-operation used to perform less-than comparisons
on signed, packed 16-bit data. Each signed 16-bit value in src2 is compared against the
corresponding signed 16-bit value in srcl, returning a 1 if src2 is less than srcl or
returning a 0 if it is not less than. The comparison results are packed into the two
least-significant bits of dst. The result for the lower pair of values is placed in bit 0, and
the results for the upper pair of values are placed in bit 1. The remaining bits of dst are
cleared to 0.
The assembler uses the operation CMPGT2 (.unit) srcl, src2, dst to perform this task
(see CMPGT2).
Execution
if (cond) {
if (Isb16(src2) < Isb16(srcl)), 1 — dst
else 0 — dst ;
if (msb16(src2) < msh16(srcl)), 1 — dst ;
else 0 — dst
}
else nop
Pipeline
Pipeline Stage El
Read srcl, src2
Written dst
Unit in use .S
Instruction Type Single-cycle
Delay Slots 0
See Also CMPEQ2, CMPGT2, CMPLT, CMPLTU, CMPLTU4, XPND2
SPRUFE8B-July 2010 Instruction Set 205

Copyright © 2010, Texas Instruments Incorporated

CMPLT2 — Compare for Less Than, Packed 16-Bit

13 TEXAS
INSTRUMENTS

www.ti.com

Examples Example 1
CMPLT2 . S1 A4, A3, A5; assenbler treats as CMPGI2 A3, A4, A5
Before instruction 1 cycle after instruction
A3 | 1105 6E30h | 4357 28208 A3 |1105 6E30h |
A4] 1105 6980h | 4357 27008 A4 \ 1105 6980h \
A5 | 00 xoooch | A5 | 0000 0001h | false, true
Example 2
CMPLT2 . S2 B8, B2, B15; assenbler treats as CWPGI2 B2, B8, B15
Before instruction 1 cycle after instruction
B2 \ F23A 3789h | -3526 14217 B2 \ F23A 3789h \
B8 \ 04B8 4975h | 1208 18805 B8 \ 04B8 4975h \
B15 | x0x xxxxh | B15 | 0000 0000h | false, false
Example 3
CMPLT2 .S2 B8, B2, B12; assenbler treats as CWPGI2 B2, B8, B15
Before instruction 1 cycle after instruction
B2] 01A6 2451h | 422 9297 B2 \ 01A6 2451h \
B8 \ 0124 AO51h | 292 -24495 B8 \ 0124 AO51h \
B12 ’ XXXX XXXxh | B12 ‘ 0000 0003h ‘ true, true

206 Instruction Set

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

CMPLTDP — Compare for Less Than, Double-Precision Floating-Point Values

CMPLTDP Compare for Less Than, Double-Precision Floating-Point Values
Syntax CMPLTDP (.unit) srcl, src2, dst
unit = .S1 or .S2
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
’ creg |z| dst src2 srcl |x|l‘0|1‘0‘1’0’1|0|0‘0|s‘p‘
3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit
srcl dp .81, .82
src2 xdp
dst sint
Description Compares srcl to src2. If srcl is less than src2, then 1 is written to dst; otherwise, 0 is
written to dst.
Special cases of inputs:
Input FAUCR Bits
srcl src2 Output UNORD INVAL
NaN don't care 0 1 1
don't care NaN 0 1 1
NaN NaN 0 1 1
+/-denormalized +/-0 0 0 0
+/-0 +/-denormalized 0 0 0
+/-0 +/-0 0 0 0
+/-denormalized +/-denormalized 0 0 0
+infinity +infinity 0 0 0
+infinity other 0 0 0
-infinity -infinity 0 0 0
-infinity other 1 0 0
NOTE: No configuration bits other than those in the preceding table are set,
except the NaNn and DENn bits when appropriate.
Execution
if (cond) {
if (srcl < src2), 1 — dst
else 0 — dst
}
else nop

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set

207

13 TEXAS

INSTRUMENTS
CMPLTDP — Compare for Less Than, Double-Precision Floating-Point Values www.ti.com
Pipeline
Pipeline Stage El E2
Read srcl_|, src2_| srcl_h, src2_h
Written dst
Unit in use .S .S
Instruction Type DP compare
Delay Slots 1
Functional Unit Latency 2
See Also CMPEQDP, CMPGTDP, CMPLT, CMPLTSP, CMPLTU
Example CMVPLTDP . S1X Al: A0, B3: B2, A4
Before instruction 2 cycles after instruction
AL:AO | 40213333h | 3333 3333h |86 ALAO | 40213333h | 3333 3333h |
B3:B2 [C004 0000h | 0000 0000h |-25 B3B2 [C004 0000 | 0000 0000h
A4 | 0000 x000¢h | A4 | 0000 0000h | false
208 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

CMPLTSP — Compare for Less Than, Single-Precision Floating-Point Values

CMPLTSP Compare for Less Than, Single-Precision Floating-Point Values
Syntax CMPLTSP (.unit) srcl, src2, dst
unit = .S1 or .S2
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
’ creg |z| dst src2 srcl |x|l‘1|1‘0‘1’0’1|0|0‘0|s‘p‘
3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit
srcl sp .S1,.S2
src2 Xsp
dst sint
Description Compares srcl to src2. If srcl is less than src2, then 1 is written to dst; otherwise, 0 is
written to dst.
Special cases of inputs:
Input FAUCR Bits
srcl src2 Output UNORD INVAL
NaN don't care 0 1 1
don't care NaN 0 1 1
NaN NaN 0 1 1
+/-denormalized +/-0 0 0 0
+/-0 +/-denormalized 0 0 0
+/-0 +/-0 0 0 0
+/-denormalized +/-denormalized 0 0 0
+infinity +infinity 0 0 0
+infinity other 0 0 0
-infinity -infinity 0 0 0
-infinity other 1 0 0
NOTE: No configuration bits other than those in the preceding table are set,
except the NaNn and DENn bits when appropriate.
Execution
if (cond) {
if (srcl < src2), 1 — dst
else 0 — dst
}
else nop

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set

209

13 TEXAS

CMPLTSP — Compare for Less Than, Single-Precision Floating-Point Values

INSTRUMENTS

www.ti.com

Pipeline
Pipeline Stage E1l
Read srcl, src2
Written dst
Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

Functional Unit Latency 1

See Also CMPEQSP, CMPGTSP, CMPLT, CMPLTDP, CMPLTU

Example CWPLTSP . S1 Al, A2, A3

Before instruction

1 cycle after instruction

Al \ €020 0000h | 25 Al \ €020 0000h \
A2 \ 4109 999Ah | 8.6 A2] 4109 999Ah \
A3 \ X0 xxxxh | A3 \ 0000 0001h \ true

210 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRUFE8B-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com CMPLTU — Compare for Less Than, Unsigned Integers
CMPLTU Compare for Less Than, Unsigned Integers
Syntax CMPLTU (.unit) srcl, src2, dst

unit = .L1 or .L2

Compact Instruction Format

Unit Opcode Format Figure
.L L2c Figure D-7
Lx1c Figure D-10
Opcode
31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0
’ creg |z| dst src2 srcl |x| op |l|1‘0|s‘p‘
3 1 5 5 1 7 1 1
Opcode map field used... For operand type... Unit Opfield
srcl uint L1, L2 101 1111
src2 xuint
dst uint
srcl ucst4 L1, L2 101 1110
src2 xuint
dst uint
srcl xuint L1, L2 101 1101
src2 ulong
dst uint
srcl ucstb L1, L2 101 1100
src2 ulong
dst uint
Description Performs an unsigned comparison of srcl to src2. If srcl is less than src2, then 1 is
written to dst; otherwise, 0 is written to dst.
Execution
if (cond) {
if (srcl < src2), 1 — dst
else 0 — dst
else nop
Pipeline
Pipeline Stage E1l
Read srcl, src2
Written dst
Unit in use L
SPRUFE8B-July 2010 Instruction Set 211

Copyright © 2010, Texas Instruments Incorporated

CMPLTU — Compare for Less Than, Unsigned Integers

13 TEXAS
INSTRUMENTS

www.ti.com

Instruction Type

Delay Slots

See Also

Examples

Single-cycle
0
CMPLT, CMPLT2, CMPLTU4

Example 1
CMPLTU . L1 A1, A2, A3

Before instruction

AL \ 0000 289Ah

| 10,394®

A2 \ FFFF F35Eh

| 4,294,964,0620

A3 ‘ XXXX XxXxxh |

1 cycle after instruction

Al \ 0000 289Ah \

A2] FFFF F35Eh \

A3 \ 0000 0001h \ true

@ Unsigned 32-bit integer

Example 2
CMPLTU . L1 14, Al, A2

Before instruction

Al \ 0000 000Fh

| 150

A2 ‘ XXXX XXXxh |

1 cycle after instruction

Al \ 0000 000Fh \

A2 \ 0000 0001h \ true

@ Unsigned 32-bit integer

Example 3
OMPLTU . L1 Al, A5: A4, A2

Before instruction

Al | 003B 8260

h | 3,900,000®

A2 | XXXX XXxXh

A5:A4 | 0000 0000h

| 003A 0002h

3,801,090®

1 cycle after instruction

Al \ 003B 8260h \

A2 \ 0000 0000h \

false

A5:A4 \ 0000 0000h]

003A 0002h

@ Unsigned 32-bit integer
@ Unsigned 40-bit (long) integer

212

Instruction Set

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

CMPLTU4 — Compare for Less Than, Unsigned, Packed 8-Bit

CMPLTU4 Compare for Less Than, Unsigned, Packed 8-Bit
Syntax CMPLTU4 (.unit) src2, srcl, dst
unit = .S1 or .S2
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
’ creg |z| dst src2 srcl |x|0‘1|O‘1‘0’l’1|0|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl us4 .51, .82
src2 xu4
dst bv4
Description The CMPLTUA4 instruction is a pseudo-operation that performs less-than comparisons on
packed 8-bit data. Each unsigned 8-bit value in src2 is compared against the
corresponding unsigned 8-bit value in srcl, returning a 1 if the byte in src2 is less than
the corresponding byte in srcl or a 0 it if is not less than. The comparison results are
packed into the four least-significant bits of dst.
The 8-bit values in each input are numbered from 0 to 3, starting with the
least-significant byte, and moving towards the most-significant byte. The comparison
results for byte 0 are written to bit O of the result. Similarly, the results for byte 1 to 3 are
written to bits 1 to 3 of the result, respectively, as shown in the diagram below. The
remaining bits of dst are cleared to 0.
The assembler uses the operation CMPGTU4 (.unit) srcl, src2, dst to perform this task
(see CMPGTUA4).
Execution
if (cond) {
if (ubyteO(src2) < ubyteO(srcl)), 1 — dst ,
else 0 — dst ;
if (ubytel(src2) < ubytel(srcl)), 1 — dst,
else 0 — dst 4;
if (ubyte2(src2) < ubyte2(src2)), 1 — dst ,
else 0 — dst ,;
if (ubyte3(src2) < ubyte3(srcl)), 1 — dst,
else 0 — dst 4
}
else nop

SPRUFE8B-July 2010

Instruction Set 213

Copyright © 2010, Texas Instruments Incorporated

CMPLTU4 — Compare for Less Than, Unsigned, Packed 8-Bit

13 TEXAS
INSTRUMENTS

www.ti.com

Pipeline
Pipeline Stage El
Read srcl, src2
Written dst
Unit in use .S
Instruction Type Single-cycle
Delay Slots 0
See Also CMPEQ4, CMPGT, CMPLT, CMPLT2, CMPLTU, XPND4
Examples Example 1
CVMPLTU4 . S1 A4, A3, A5; assenbler treats as CVMPGTW A3, A4, A5
Before instruction 1 cycle after instruction
A3 253A1C E4h | 3758 28 228 A3 |25 3A 1C E4h \
A4 | 02 B8 4E 76h 218478118 A4 02 B8 4E 76h \
A5 ’ XXXX XXXXh | A5 | 0000 0009h ‘ true, false, false, true
Example 2
CWMPLTU4 . S2 B8, B2, B13; assenbler treats as CMWPGTW B2, B8, B13
Before instruction 1 cycle after instruction
B2 89 F2 3A 37h | 137 242 58 55 B2 89 F2 3A 37h |
BS | 04 8F 17 89h | 4143 23137 B8 |04 8F 17 8%h |
B13 ‘ XX XX XX XXh | B13 | 0000 000Eh ‘ true, true, true, false
Example 3
CWMPLTU4 . S2 B8, B2, B13; assenbler treats as CMPGTW B2, B8, B13
Before instruction 1 cycle after instruction
B2 (1233 9D 51h | 1851157 81 B2 (1233 9D 51h |
B8 | 75 67 24 C5h 117 103 36 197 B8 | 75 67 24 C5h |
B13 ‘ XX XX XX XXh | B13 | 0000 0002h ‘ false, false, true, false

214 Instruction Set

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com CMPY — Complex Multiply Two Pairs, Signed, Packed 16-Bit
CMPY Complex Multiply Two Pairs, Sighed, Packed 16-Bit
Syntax CMPY (.unit) srcl, src2, dst_o:dst_e
unit = .M1 or .M2
Opcode
31 30 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o]ofo]1] dst src2 srcl [x]ofo]1]of1]of1][1]o]o]s]p]
5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl s2 M1, .M2
src2 Xs2
dst dint
Description Returns two dot-products between two pairs of signed, packed 16-bit values. The values
in srcl and src2 are treated as signed, packed 16-bit quantities. The signed results are
written to a 64-bit register pair.
The product of the lower halfwords of srcl and src2 is subtracted from the product of the
upper halfwords of src1 and src2. The result is written to dst_o.
The product of the upper halfword of srcl and the lower halfword of src2 is added to the
product of the lower halfword of src1 and the upper halfword of src2. The result is written
to dst_e.
If the result saturates, the M1 or M2 bit in SSR and the SAT bit in CSR are written one
cycle after the result is written to dst_e.
This instruction executes unconditionally.
NOTE: In the overflow case, where all four halfwords in srcl and src2 are
8000h, the saturation value 7FFF FFFFh is written into the 32-bit dst_e
register.
Execution

sat((Isb16(srcl) x msb16(src2)) + (msb16(srcl) x Isb16(src2))) — dst_e
(msb16(srcl) x msh16(src2)) - (Isb16(srcl) x Isb16(src2)) — dst o

Instruction Type Four-cycle

Delay Slots 3

See Also CMPYR, CMPYR1, DOTP2, DOTPN2

SPRUFE8B-July 2010 Instruction Set 215

Copyright © 2010, Texas Instruments Incorporated

CMPY — Complex Multiply Two Pairs, Signed, Packed 16-Bit

13 TEXAS
INSTRUMENTS

www.ti.com

Examples Example 1
CMPY . ML AQ, AL, A3: A2
Before instruction 4 cycles after instruction @
A0 | 0008 0004h | A2 |0000 0034h |
Al | 0009 0002h \ A3] 0000 0040h \

@ CSR.SAT and SSR.M1 unchanged by operation

Example 2
CMPY . M2X BO, Al, B3: B2

Before instruction

BO | 7FFF 7FFFh \ B2

Al | 7FFF 8000h \ B3

4 cycles after instruction @

\ FFFF 8001h \

\ 7FFE 8001h \

@ CSR.SAT and SSR.M2 unchanged by operation

Example 3
OVPY . ML AQ, AL, A3: A2

Before instruction

AO | 8000 8000h \ A2

Al | 8000 8000h \ A3

4 cycles after instruction @

| 7FFF FFFFh \

\ 0000 0000h \

@ CSR.SAT and SSR.M1 unchanged by operation

216 Instruction Set

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

CMPYR — Complex Multiply Two Pairs, Signed, Packed 16-Bit With Rounding

CMPYR

Syntax

Opcode

31 30 29 28 27

Complex Multiply Two Pairs, Sighed, Packed 16-Bit With Rounding

CMPYR (.unit) srcl, src2, dst
unit = .M1 or .M2

23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O

[olofof1]

src2 srcl |x|0‘0|1‘0‘1’1’1|1|0‘0|s‘p‘

5 5 1 1 1

Opcode map field used... For operand type... Unit

srcl
src2
dst

s2 M1, .M2
Xs2
s2

Description

Execution

Performs two dot-products between two pairs of signed, packed 16-bit values. The
values in srcl and src2 are treated as signed, packed 16-bit quantities. The signed
results are rounded with saturation, shifted, packed and written to a 32-bit register.

The product of the lower halfwords of srcl and src2 is subtracted from the product of the
upper halfwords of src1 and src2. The result is rounded by adding 2'° to it. The 16
most-significant bits of the rounded value are written to the upper half of dst.

The product of the upper halfword of srcl and the lower halfword of src2 is added to the
product of the lower halfword of srcl and the upper halfword of src2. The result is
rounded by adding 2*° to it. The 16 most-significant bits of the rounded value are written
to the lower half of dst.

If either result saturates, the M1 or M2 bit in SSR and the SAT bit in CSR are written one
cycle after the result is written to dst.

This instruction executes unconditionally.

sat((Isb16(srcl) x msb16(src2)) + (msb16(srcl) x Isb16(src2))) — tmp_e
msb16(sat(tmp_e + 0000 8000h)) — Isb16(dst)

sat((msb16(srcl) x msb16(src2)) - (Isb16(srcl) x Isb16(src2))) — tmp_o
mshb16(sat(tmp_o + 0000 8000h)) — msb16(dst)

Instruction Type
Delay Slots

See Also

Four-cycle
3
CMPY, CMPYR1, DOTP2, DOTPN2

SPRUFE8B-July 2010

Instruction Set 217

Copyright © 2010, Texas Instruments Incorporated

CMPYR — Complex Multiply Two Pairs, Signed, Packed 16-Bit With Rounding

13 TEXAS
INSTRUMENTS

www.ti.com

Examples Example 1
CMPYR . ML AO, AL, A2
Before instruction 4 cycles after instruction @
A0 | 0800 0400h | A2 0040 0034h
Al \ 0900 0200h \
@ CSR.SAT and SSR.M1 unchanged by operation
Example 2
CVPYR . M2X BO, Al, B2
Before instruction 4 cycles after instruction @
BO \ 7FFF 7FFFh \ B2 7FFF 0000h
Al \ 7FFF 8000h \
@ CSR.SAT and SSR.M2 unchanged by operation
Example 3
CMPYR . ML AQ, Al, A2
Before instruction 4 cycles after instruction
A0 \ 8000 8000h \ A2 | 0000 7FFFh |
Al \ 8000 8000h \
CSR \ 0001 0100h \ CSR® | 0001 0300h |
SSR \ 0000 0000h \ SSR® | 0000 0010h |
@ CSR.SAT and SSR.M1 set to 1, 5 cycles after instruction
Example 4
CMPYR . M2 BO, B1, B2
Before instruction 4 cycles after instruction
BO \ 8000 8000h \ B2 | 0001 7FFFh |
B1 | 8000 8001h |
CSR \ 0001 0100h \ CSR® | 0001 0300h |
SSR | 0000 0000h | SSR® | 0000 0020h |

@ CSR.SAT and SSR.M2 set to 1, 5 cycles after instruction

218 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRUFE8B-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com CMPYR1 — Complex Multiply Two Pairs, Signed, Packed 16-Bit With Rounding
CMPYR1 Complex Multiply Two Pairs, Sighed, Packed 16-Bit With Rounding
Syntax CMPYRZ1 (.unit) srcl, src2, dst
unit = .M1 or .M2
Opcode
31 30 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o]ofo]1] dst src2 srcl [x]ofo]1]1]ofof1][1]o]o]s]p]
5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl s2 M1, .M2
src2 Xs2
dst s2
Description Performs two dot-products between two pairs of signed, packed 16-bit values. The
values in srcl and src2 are treated as signed, packed 16-bit quantities. The signed
results are rounded with saturation to 31 bits, shifted, packed and written to a 32-hbit
register.
The product of the lower halfwords of srcl and src2 is subtracted from the product of the
upper halfwords of srcl and src2. The intermediate result is rounded by adding 2 to it.
This value is shifted left by 1 with saturation. The 16 most-significant bits of the shifted
value are written to the upper half of dst.
The product of the upper halfword of srcl and the lower halfword of src2 is added to the
product of the lower halfword of srcl and the upper halfword of src2. The intermediate
result is rounded by adding 2 to it. This value is shifted left by 1 with saturation. The 16
most-significant bits of the shifted value are written to the lower half of dst.
If either result saturates in the rounding or shifting process, the M1 or M2 bit in SSR and
the SAT bit in CSR are written one cycle after the results are written to dst.
This instruction executes unconditionally.
Execution

sat((Isb16(srcl) x msb16(src2)) + (msb16(srcl) x Isb16(src2))) — tmp_e
msb16(sat((tmp_e + 0000 4000h) << 1)) — Isb16(dst)

sat((msb16(srcl) x msb16(src2)) - (Isb16(srcl) x Isb16(src2))) — tmp_o
msb16(sat((tmp_e + 0000 4000h) << 1)) — msb16(dst)

Instruction Type Four-cycle

Delay Slots 3

See Also CMPY, CMPYR, DOTP2, DOTPN2

SPRUFE8B-July 2010 Instruction Set 219

Copyright © 2010, Texas Instruments Incorporated

CMPYR1 — Complex Multiply Two Pairs, Signed, Packed 16-Bit With Rounding

13 TEXAS
INSTRUMENTS

www.ti.com

Examples Example 1
CMPYRL . ML AO, AL, A2
Before instruction 4 cycles after instruction @
A0 | 0800 0400h | A2 0080 0068h
Al \ 0900 0200h \
@ CSR.SAT and SSR.M1 unchanged by operation
Example 2
CMPYRL . M2X BO, Al, B2
Before instruction 4 cycles after instruction
BO \ 7FFF 7FFFh \ B2 | 7FFF FFFFh |
Al \ 7FFF 8000h \
CSR 0001 0100h | CSR® | 0001 0300h |
SSR \ 0000 0000h \ SSR® | 0000 0020h |
@ CSR.SAT and SSR.M2 set to 1, 5 cycles after instruction
Example 3
CMPYRL . ML AQ, Al, A2
Before instruction 4 cycles after instruction
AO \ 8000 8000h \ A2 | 0000 7FFFh |
Al \ 8000 8000h \
CSR \ 0001 0100h \ CSR® | 0001 0300h |
SSR \ 0000 0000h \ SSR® | 0000 0010h |
@ CSR.SAT and SSR.M1 set to 1, 5 cycles after instruction
Example 4
CMPYRL . M2 BO, B1, B2
Before instruction 4 cycles after instruction
BO \ C000 CO00h \ B2 | 0001 7FFFh |
B1 | 8000 8001h |
CSR \ 0001 0100h \ CSRW® | 0001 0300h |
SSR | 0000 0000h | SSR® | 0000 0020h |

@ CSR.SAT and SSR.M2 set to 1, 5 cycles after instruction

220

Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRUFE8B-July 2010

13 TEXAS
INSTRUMENTS

www.ti.com

DDOTP4 — Double Dot Product, Signed, Packed 16-Bit and Signed, Packed 8-Bit

DDOTP4 Double Dot Product, Signed, Packed 16-Bit and Signed, Packed 8-Bit
Syntax DDOTP4 (.unit) srcl, src2, dst_o:dst_e
unit = .M1 or .M2
Opcode
31 30 29 28 27 23 22 18 17 13 12 11 10 9 8 7 4 3 2 0
[o]ofo]1] src2 srcl [x]of[1]1]oJofof1][1]o]o]s]p]
5 5 1 1
Opcode map field used... For operand type... Unit
srcl ds2 M1, .M2
src2 xs4
dst dint
Description Performs two DOTP2 operations simultaneously.

The lower byte of the lower halfword of src2 is sign-extended to 16 bits and multiplied by
the lower halfword of srcl. The upper byte of the lower halfword of src2 is sign-extended

to 16 bits and multiplied by the upper halfword of srcl1. The two products are added

together and the result is then written to dst_e.

The lower byte of the upper halfword of src2 is sign-extended to 16 bits and multiplied by
the lower halfword of srcl. The upper byte of the upper halfword of src2 is sign-extended

to 16 bits and multiplied by the upper halfword of srcl. The two products are added

together and the result is then written to dst_o.

There are no saturation cases possible.

This instruction executes unconditionally.

src
d1 do

MSB16 | LSB16 |

src2
c3 c2

c1 c0

| MsBga

MSB8b

LSB8a

LSB8b
T

d1xc3+d0xc2

dst o

dst_e

d1xc1+d0xcO

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set

221

13 TEXAS

INSTRUMENTS
DDOTP4 — Double Dot Product, Signed, Packed 16-Bit and Signed, Packed 8-Bit www.ti.com
Execution
(msb16(srcl) x msh8(Ish16(src2))) + (Isb16(srcl) x Isb8(Isb16(src2))) — dst e
(msb16(srcl) x msh8(msb16(src2))) + (Isb16(srcl) x Ish8(msbl16(src2))) — dst o
Instruction Type Four-cycle
Delay Slots 3
Examples Example 1
DDOTP4 . ML A4, A5, A9: A8
Before instruction 4 cycles after instruction
A4 | 0005 0003h | 53 A8 | 0000 001Bh | Gx3+@xa=27
A5 | 0102 0304h | 1,234 A9 | 0000 000Bh | Gx1+@Ex2)=11
Example 2
DDOTP4 . MLX A4, B5, A9: A8
Before instruction 4 cycles after instruction
A4 | 8000 8000h | A8 | FF81 0000h \
B5 8080 7F7Fh | A9 | 0080 0000h \
222 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com DDOTPH2 — Double Dot Product, Two Pairs, Signed, Packed 16-Bit
DDOTPH2 Double Dot Product, Two Pairs, Signed, Packed 16-Bit
Syntax DDOTPH2 (.unit) srcl_o:srcl_e, src2, dst_o:dst e
unit = .M1 or .M2
Opcode
31 30 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
’0’0’0|1| dst src2 srcl |x|0‘1|0‘1‘1’l’1|1|0‘0|s‘p‘
5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl ds2 M1, .M2
src2 Xs2
dst dint
Description Returns two dot-products between two pairs of signed, packed 16-bit values. The values
in srcl_e, srcl o, and src2 are treated as signed, packed 16-bit quantities. The signed
results are written to a 64-bit register pair.
The product of the lower halfwords of srcl_o and src2 is added to the product of the
upper halfwords of srcl_o and src2. The result is then written to dst_o.
The product of the upper halfword of src2 and the lower halfword of src1_o is added to
the product of the lower halfword of src2 and the upper halfword of srcl1_e. The result is
then written to dst_e.
If either result saturates, the M1 or M2 bit in SSR and the SAT bit in CSR are written one
cycle after the results are written to dst_o:dst_e.
This instruction executes unconditionally.
src1_o srcl_e src2
d3 d2 d1 do c1 c0
| vsB16 | LsB16 | | msB16 [LsB16 | | MsB16 | LSB16
L
| |
,,,,, I '
|
T
+®¢ I
|
|
32 | | 32 |
dst_o dst_e
d3xc1+d2xc0 d2xc1+d1xc0
SPRUFE8B-July 2010 Instruction Set 223

Copyright © 2010, Texas Instruments Incorporated

DDOTPH2 — Double Dot Product, Two Pairs, Signed, Packed 16-Bit

13 TEXAS

INSTRUMENTS

www.ti.com

Execution

sat((msb16(srcl_o) x msh16(src2)) + (Isb16(srcl_o) x Ish16(src2))) — dst o
sat((Isb16(srcl_o) x msb16(src2)) + (msb16(srcl_e) x Isb16(src2))) — dst_e

Instruction Type Four-cycle
Delay Slots 3
See Also DDOTPLZ2, DDOTPH2R, DDOTPL2R
Examples Example 1
DDOTPH2 . ML AS: A4, AG, A9: A8
Before instruction 4 cycles after instruction @
A4 | 0005 0003h | 5,3 A8 | 0000 0021h | (4x7)+(5x1)=33
A5 | 0002 0004h | 2,4 A9 | 0000 0012h | (2x7)+(@x1)=18
A6 | 0007 0001h | 7.1
@ CSR.SAT and SSR.M1 unchanged by operation
Example 2
DDOTPH2 . ML AS: Ad, A6, A9: A8
Before instruction 4 cycles after instruction
A4 8000 5678h | A8 | 7FFF FFFFh |
A5 | 1234 8000h | A9 | 36E6 0000h |
A6 | 8000 8000h |
CSR | 0001 0100h | CSR® | 0001 0300h |
SSR | 0000 0000h | SSR® 0000 0010h |
@ CSR.SAT and SSR.M1 set to 1, 5 cycles after instruction
Example 3
DDOTPH2 . M2X BS: B4, A6, B9: BS
Before instruction 4 cycles after instruction @
B4 | 46B4 16BAN | B8 | F41B 4AFFh |
B5 | BBAE D169h | B9 | F3B4 FAADN |
A6 | 340B F73Bh |

(6]

CSR.SAT and SSR.M2 unchanged by operation

224 Instruction Set

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com DDOTPH2R — Double Dot Product With Rounding, Two Pairs, Signed, Packed 16-Bit
DDOTPH2R Double Dot Product With Rounding, Two Pairs, Signed, Packed 16-Bit
Syntax DDOTPH2R (.unit) srcl_o:srcl_e, src2, dst
unit = .M1 or .M2
Opcode
31 30 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
’0’0’0|1| dst src2 srcl |x|0‘1|O‘1‘0’l’1|1|0‘0|s‘p‘
5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl ds2 M1, .M2
src2 Xs2
dst s2
Description Returns two dot-products between two pairs of signed, packed 16-bit values. The values
in srcl_e, srcl o, and src2 are treated as signed, packed 16-bit quantities. The signed
results are rounded, shifted right by 16 and packed into a 32-bit register.
The product of the lower halfwords of srcl_o and src2 is added to the product of the
upper halfwords of src1_o and src2. The result is rounded by adding 2% to it and
saturated if appropriate. The 16 most-significant bits of the result are written to the 16
most-significant bits of dst.
The product of the upper halfword of src2 and the lower halfword of srcl_o is added to
the product of the lower halfword of src2 and the upper halfword of srcl_e. The result is
rounded by adding 2*° to it and saturated if appropriate. The 16 most-significant bits of
the result are written to the 16 least-significant bits of dst.
If either result saturates, the M1 or M2 bit in SSR and the SAT bit in CSR are written one
cycle after the results are written to dst.
This instruction executes unconditionally.
Execution

msbh16(sat((msb16(srcl_o) x msb16(src2)) +
(Isb16(srcl_o) x Ish16(src2)) + 0000 8000h)) — msb16(dst)

msh16(sat((Isb16(srcl_o) x msbh16(src2)) +
(msb16(srcl_e) x Isb16(src2)) + 0000 8000h)) — Isb16(dst)

Instruction Type Four-cycle

Delay Slots 3

See Also DDOTPH2, DDOTPL2, DDOTPL2R

SPRUFE8B-July 2010 Instruction Set 225

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
DDOTPH2R — Double Dot Product With Rounding, Two Pairs, Signed, Packed 16-Bit www.ti.com
Examples Example 1
DDOTPH2R . ML A5: A4, A6, A8
Before instruction 4 cycles after instruction @
A4 | 46B4 16BAh | A8 F3B5 F41Bh
A5 | BBAE D169h |
A6 | 340B F73Bh |

(€}

CSR.SAT and SSR.M1 unchanged by operation

Example 2
DDOTPH2R . ML AS: Ad, A6, A8

A4

A5

A6

CSR

SSR

Before instruction

\ 8000 5678h

\ 1234 8000h

\ 0001 0100h

|
|
\ 8000 8001h |
|
|

\ 0000 0000h

4 cycles after instruction

A8 36E6 7FFFh
CSR® | 0001 0300h |
SSR® \ 0000 0010h \

1)

CSR.SAT and SSR.M1 set to 1, 5 cycles after instruction

Example 3

DDOTPH2R . M2 B5: B4, B6, B8

B4
B5
B6
CSR

SSR

Before instruction

] 8000 8000h

\ 8000 8000h

\ 0001 0100h

|
|
] 8000 8001h |
|
|

] 0000 0000h

4 cycles after instruction

B8 7FFF 7FFFh
CSR® \ 0001 0300h \
SSR® \ 0000 0020h \

(6]

CSR.SAT and SSR.M2 set to 1, 5 cycles after instruction

226

Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRUFE8B-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com DDOTPL2 — Double Dot Product, Two Pairs, Signed, Packed 16-Bit
DDOTPL2 Double Dot Product, Two Pairs, Signed, Packed 16-Bit
Syntax DDOTPL2 (.unit) srcl_o:srcl_e, src2, dst_o:dst_e
unit = .M1 or .M2
Opcode
31 30 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
’0’0’0|1| dst src2 srcl |x|0‘1|0‘1‘1’0’1|1|0‘0|s‘p‘
5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl ds2 M1, .M2
src2 Xs2
dst dint
Description Returns two dot-products between two pairs of signed, packed 16-bit values. The values
in srcl_e, srcl o, and src2 are treated as signed, packed 16-bit quantities. The signed
results are written to a 64-bit register pair.
The product of the lower halfwords of srcl_e and src2 is added to the product of the
upper halfwords of srcl_e and src2. The result is then written to dst_e.
The product of the upper halfword of src2 and the lower halfword of src1_o is added to
the product of the lower halfword of src2 and the upper halfword of src1_e. The result is
then written to dst_o.
If either result saturates, the M1 or M2 bit in SSR and the SAT bit in CSR are written one
cycle after the results are written to dst_o:dst_e.
src1_o srcl_e src2
d3 d2 d1 do cl1 c0
MsB16 | LSB16 | | MSB16 | LSB16 | | msB16 | LsB16
T |
' |
|
T
|
32 | | 32 |
dst o dst e
d2xc1+d1xc0 d1xc1+d0xcO
SPRUFE8B-July 2010 Instruction Set 227

Copyright © 2010, Texas Instruments Incorporated

DDOTPL2 — Double Dot Product, Two Pairs, Signed, Packed 16-Bit

13 TEXAS
INSTRUMENTS

www.ti.com

Execution

sat((msb16(srcl_e) x msh16(src2)) + (Isb16(srcl_e) x Ish16(src2))) — dst_e
sat((Isb16(srcl_o) x msb16(src2)) + (msb16(srcl_e) x Isb16(src2))) — dst_o

Instruction Type Four-cycle

Delay Slots 3

See Also DDOTPH2, DDOTPL2R, DDOTPH2R
Examples Example 1

DDOTPL2 . ML AS5: A4, A6, A9: A8

Before instruction

4 cycles after instruction @

A4 | 0005 0003h | 5,3 A8 | 0000 0026h | (4x7)+(5x1)=33
A5 | 0002 0004h | 2,4 A9 | 0000 0021h | (2x7)+(@x1)=18
A6 | 0007 0001h | 7.1
@ CSR.SAT and SSR.M1 unchanged by operation
Example 2
DDOTPL2 . ML AS: Ad, AB, A9: A8
Before instruction 4 cycles after instruction @
A4 | 46B4 16BAN | A8 | 0D98 4C9AN |
A5 | BBAE D169h | A9 | FA1B 4AFFh |
AG | 3408 F73Bh |
@ CSR.SAT and SSR.M1 unchanged by operation
Example 3
DDOTPL2 . ML AS: Ad, AB, A9: A8
Before instruction 4 cycles after instruction
A4 | 8000 5678h | A8 | 14C4 0000h |
A5 | 1234 8000h | A9 | 7FFF FFFFh |
A6 | 8000 8000h |
CSR | 0001 0100h | CSR® [00010300h |
SSR | 0000 0000h | SSR® | 00000010h |

@ CSR.SAT and SSR.M1 set to 1, 5 cycles after instruction

228 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRUFE8B-July 2010

13 TEXAS
INSTRUMENTS

www.ti.com

DDOTPL2R — Double Dot Product With Rounding, Two Pairs, Signed Packed 16-Bit

DDOTPL2R

Syntax

Opcode

31 30 29 28 27

Double Dot Product With Rounding, Two Pairs, Signed Packed 16-Bit

DDOTPL2R (.unit) srcl_o:srcl_e, src2, dst
unit = .M1 or .M2

23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O

[olofof1]

src2 srcl |x|0‘1|O‘1‘0’0’1|1|0‘0|s‘p‘

5 5 1 1 1

Opcode map field used... For operand type... Unit

srcl
src2
dst

ds2 M1, .M2
Xs2
s2

Description

Execution

Returns two dot-products between two pairs of signed, packed 16-bit values. The values
in srcl_e, srcl o, and src2 are treated as signed, packed 16-bit quantities. The signed
results are rounded, shifted right by 16 and packed into a 32-bit register.

The product of the lower halfwords of srcl_e and src2 is added to the product of the
upper halfwords of src1_e and src2. The result is rounded by adding 2% to it and
saturated if appropriate. The 16 most-significant bits of the result are written to the 16
least-significant bits of dst.

The product of the upper halfword of src2 and the lower halfword of srcl_o is added to
the product of the lower halfword of src2 and the upper halfword of srcl_e. The result is
rounded by adding 2*° to it and saturated if appropriate. The 16 most-significant bits of
the result are written to the 16 most-significant bits of dst.

If either result saturates, the M1 or M2 bit in SSR and the SAT bit in CSR are written one
cycle after the results are written to dst.

msh16(sat((msb16(srcl_e) x msb16(src2)) +
(Isb16(srcl_e) x Ish16(src2)) + 0000 8000h)) — Isb16(dst)

msh16(sat((Isb16(srcl_o) x msbh16(src2)) +
(msb16(srcl_e) x Isb16(src2)) + 0000 8000h)) — msbh16(dst)

Instruction Type
Delay Slots

See Also

Four-cycle
3
DDOTPH2R, DDOTPL2, DDOTPH2

SPRUFE8B-July 2010

Instruction Set 229

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
DDOTPL2R — Double Dot Product With Rounding, Two Pairs, Signed Packed 16-Bit www.ti.com
Examples Example 1
DDOTPL2R . ML A5: A4, A6, A8
Before instruction 4 cycles after instruction @
A4 | 46B4 16BAh | A8 F41B 0D98h
A5 | BBAE D169h |
A6 | 340B F73Bh |

@ CSR.SAT and SSR.M1 unchanged by operation

Example 2
DDOTPL2R . ML AS: Ad, A6, A8

A4

A5

A6

CSR

SSR

Before instruction 4 cycles after instruction
8000 5678h | A8 7FFF 14C4h
| 1234 8000h |
8000 8001h |
| 0001 0100h | CSR® | 0001 0300h |
| 0000 0000h | SSR® [00000010h |

@ CSR.SAT and SSR.M1 set to 1, 5 cycles after instruction

Example 3
DDOTPL2R . M2 BS: B4, B6, B8

B4
B5
B6
CSR

SSR

Before instruction 4 cycles after instruction
| 8000 8000h | B8 7FFF 7FFFh
| 8000 8000h |
| 8000 8001h |
| 0001 0100h | CSR® [00010300h |
| 0000 0000h | SSR® | 0000 0020h |

@ CSR.SAT and SSR.M2 set to 1, 5 cycles after instruction

230 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRUFE8B-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com DEAL — Deinterleave and Pack
DEAL Deinterleave and Pack
Syntax DEAL (.unit) src2, dst
unit = .M1 or .M2
Opcode
31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
’ creg |z| dst src2 |1‘1‘1’0’1|x|0‘0|0‘0‘1’1’1|1|0‘0|s‘p‘
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
src2 xuint M1, .M2
dst uint
Description Performs a deinterleave and pack operation on the bits in src2. The odd and even bits of
src2 are extracted into two separate, 16-bit quantities. These 16-bit quantities are then
packed such that the even bits are placed in the lower halfword, and the odd bits are
placed in the upper halfword.
As a result, bits 0, 2, 4, ..., 28, 30 of src2 are placed in bits 0, 1, 2, ..., 14, 15 of dst.
Likewise, bits 1, 3, 5, ... , 29, 31 of src2 are placed in bits 16, 17, 18, ..., 30, 31 of dst.
31 0
aAbB cCdD eEfF gGhH iljJ kKIL mMnN oOpP « src2
DEAL
! !
31 0
abcd efgh ijkl mnop ABCD EFGH 1JKL MNOP «— dst
NOTE: The DEAL instruction is the exact inverse of the SHFL instruction
(see SHFL).
Execution
if (cond) {
SIC2 3109271 — dSt 31302016
SIC2 3028260 — USt 151413.0
}
else nop
SPRUFE8B-July 2010 Instruction Set 231

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
DEAL — Deinterleave and Pack www.ti.com
Pipeline
Pipeline Stage El E2
Read src2
Written dst
Unit in use M
Instruction Type Two-cycle
Delay Slots 1
See Also SHFL
Example DEAL . ML Al, A2
Before instruction 2 cycles after instruction
AL [9E52 6E30h | Al |9E52 6E30h |
A2 | xooo xooch | A2 |B174 6CA4h |
232 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com DINT — Disable Interrupts and Save Previous Enable State
DINT Disable Interrupts and Save Previous Enable State
Syntax DINT
unit = none
Opcode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[ofojofsfofofofofofofofolofofofofo[1]ofofo]o[ofofofofofofofo]o]p]
1

Description Disables interrupts in the current cycle, copies the contents of the GIE bit in TSR into the
SGIE bit in TSR, and clears the GIE bit in both TSR and CSR. The PGIE bit in CSR is
unchanged.

The CPU will not service a maskable interrupt in the cycle immediately following the
DINT instruction. This behavior differs from writes to GIE using the MVC instruction. See
section 5.2 for details.

The DINT instruction cannot be placed in parallel with the following instructions: MVC
reg, TSR; MVC reg, CSR; B IRP; B NRP; NOP n; RINT; SPKERNEL; SPKERNELR;
SPLOOP; SPLOOPD; SPLOOPW; SPMASK; or SPMASKR.

This instruction executes unconditionally.

NOTE: The use of the DINT and RINT instructions in a nested manner, like the
following code:

DI NT
DI NT
RI NT
RI NT

leaves interrupts disabled. The first DINT leaves TSR.GIE cleared to 0,
so the second DINT leaves TSR,.SGIE cleared to 0. The RINT
instructions, therefore, copy zero to TSR.GIE (leaving interrupts
disabled).

Execution Disable interrupts in current cycle

GIE bit in TSR — SGIE bitin TSR
0 — GIE bitin TSR
0 — GIE bitin CSR

Instruction Type Single-cycle

Delay Slots 0

See Also RINT

SPRUFE8B-July 2010 Instruction Set 233

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
DMV — Move Two Independent Registers to Register Pair www.ti.com
DMV Move Two Independent Registers to Register Pair
Syntax DMV (.unit) srcl, src2, dst_o:dst e
unit = .S1 or .S2
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
’ creg |z| dst src2 srcl |x|l‘1|1‘0‘1’l’1|1|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl sint .81, .82
src2 xsint
dst dint
Description The srcl operand is written to the odd register of the register pair specified by dst and
the src2 operand is written to the even register of the register pair specified by dst.
Execution
if (cond) {
src2 — dst_e
srcl — dst_o
}
else nop
Instruction Type Single-cycle
Delay Slots 0
Examples Example 1

DW . S1 AQ, Al, A3: A2

Before instruction

AO | 8765 4321h \

Al | 1234 5678h \

1 cycle after instruction

A2 | 1234 5678h \

A3 | 8765 4321h \

Example 2
DW . S2X BO, Al, B3: B2

Before instruction

BO | 0007 0009h \

Al | 1234 5678h \

1 cycle after instruction

B2 | 1234 5678h \

B3 | 0007 0009h \

234 |Instruction Set

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com DOTP2 — Dot Product, Signed, Packed 16-Bit
DOTP2 Dot Product, Signed, Packed 16-Bit
Syntax DOTP2 (.unit) srcl, src2, dst
or
DOTP2 (.unit) srcl, src2, dst_o:dst_e
unit = .M1 or .M2
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 6 5 4 3 2 1 0
\ creg |z| dst src2 srcl |x|0\ op \1|1|0\0|s\p\
3 1 5 5 5 1 5 1 1
Opcode map field used... For operand type... Unit Opfield
srcl s2 M1, .M2 01100
src2 Xs2
dst int
srcl s2 M1, .M2 01011
src2 Xs2
dst sllong
Description Returns the dot-product between two pairs of signed, packed 16-bit values. The values
in srcl and src2 are treated as signed, packed 16-bit quantities. The signed result is
written either to a single 32-bit register, or sign-extended into a 64-bit register pair.
The product of the lower halfwords of srcl and src2 is added to the product of the upper
halfwords of srcl and src2. The result is then written to the dst.
If the result is sign-extended into a 64-bit register pair, the upper word of the register pair
always contains either all Os or all 1s, depending on whether the result is positive or
negative, respectively.
31 16 15 0
| a_hi | a_lo ‘ «— srcl
DOTP2
| b_hi | b_lo \ < src2
63 32 31 0
OorF | a_hixb_hi+a_loxb_lo ‘ «— dst_o:dst_e
SPRUFE8B-July 2010 Instruction Set 235

Copyright © 2010, Texas Instruments Incorporated

DOTP2 — Dot Product, Signed, Packed 16-Bit

13 TEXAS
INSTRUMENTS

www.ti.com

The 32-bit result version returns the same results that the 64-bit result version does in
the lower 32 bits. The upper 32-bits are discarded.

31 16 15 0
‘ a_hi ‘ a_lo ‘ « srcl
DOTP2
\ b_hi \ b_lo \ < src2
31 0
\ a hixb_hi+a_loxb_lo \ — dst
NOTE: In the overflow case, where all four halfwords in srcl and src2 are
8000h, the value 8000 0000h is written into the 32-bit dst and
0000 0000 8000 0000h is written into the 64-bit dst.
Execution
if (cond) (Isb16(srcl) x Isb16(src2)) + (msb16(srcl) x msb16(src2)) — dst
else nop
Pipeline
Pipeline Stage El E2 E3 E4
Read srcl, src2
Written dst
Unit in use M
Instruction Type Four-cycle
Delay Slots 3
See Also DOTPN2
Examples Example 1
DOTP2 . ML A5, A6, A8
Before instruction 4 cycles after instruction
A5 | 6A32 1193h | 27186 4499 A5 | 6A32 1193h |
A | B174 6CA4h -20108 27812 A | B174 6CA4h \
A8 | 000 x000ch | A8 | E6DF F6D4h | -421,529,900

236 Instruction Set

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS

www.ti.com

DOTP2 — Dot Product, Signed, Packed 16-Bit

Example 2
DOTP2 . ML A5, AB, A9: A8

Before instruction 4 cycles after instruction
A5 | 6A32 1193h | 27186 4499 A5 | 6A32 1193h |
AG | B174 6CA4h | -20108 27812 AG | B174 6CA4h |
A9:A8 | x00x x000¢h | 0000 x000¢h A9:AS | FFFF FFFFh | E6DF F6D4h
-421,529,900
Example 3
DOTP2 . M2 B2, B5, BS
Before instruction 4 cycles after instruction
B2 1234 3497h | 4660 13463 B2 1234 3497h |
B5 | 21FF 50A7h | 8703 20647 B5 | 21FF 50A7h |
B8 | x000¢ x000ch | B8 | 12FC 544Dh | 318,526,541
Example 4
DOTP2 . M2 B2, B5, B9: B8
Before instruction 4 cycles after instruction
B2 1234 3497h | 4660 13463 B2 | 1234 3497h |
B5 | 21FF 50A7h | 8703 20647 B5 | 21FF 50A7h |
B9:BS | 000 xch | xoxx x000ch BY:BS | 0000 0000h | 12FC 544Dh
318,526,541

SPRUFE8B-July 2010

Instruction Set

Copyright © 2010, Texas Instruments Incorporated

237

13 TEXAS

INSTRUMENTS
DOTPN2 — Dot Product With Negate, Signed, Packed 16-Bit www.ti.com
DOTPN2 Dot Product With Negate, Signed, Packed 16-Bit
Syntax DOTPN2 (.unit) srcl, src2, dst
unit = .M1 or .M2
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
’ creg |z| src2 srcl |x|0‘0|1‘0‘0’l’1|1|0‘0|s‘p‘
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl s2 M1, .M2
src2 Xs2
dst int
Description Returns the dot-product between two pairs of signed, packed 16-bit values where the
second product is negated. The values in srcl and src2 are treated as signed, packed
16-bit quantities. The signed result is written to a single 32-bit register.
The product of the lower halfwords of srcl and src2 is subtracted from the product of the
upper halfwords of src1 and src2. The result is then written to dst.
31 16 15 0
‘ a_hi ‘ a_lo ‘ «— srcl
DOTPN2
\ b_hi \ b_lo \ < src2
31 0
‘ a_hixb_hi-a_loxb_lo ‘ «— dst
Execution Note that unlike DOTP2, no overflow case exists for this instruction.
if (cond) (msb16(srcl) x msb16(src2)) - (Isb16(srcl) x Isb16(src2)) — dst
else nop
Pipeline

Instruction Type
Delay Slots

See Also

Pipeline Stage El E2 E3 E4
Read srcl, src2
Written dst
Unit in use .M

Four-cycle

3

DOTP2

238 Instruction Set

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

DOTPN2 — Dot Product With Negate, Signed, Packed 16-Bit

Examples Example 1
DOTPN2 . ML A5, A6, A8

Before instruction 4 cycles after instruction
A5 3629 274Ah | 13865 10058 A5 |3629 274Ah
A6 [325C 8036h | 12892 32714 A6 | 325C 8036h
A8 | xooox xooxh A8 | 1E44 2F20h | 507,784,992
Example 2
DOTPN2 . M2 B2, B5, B8
Before instruction 4 cycles after instruction
B2 |3FF65010h | 16374 20496 B2 |3FF65010h
B5 |BI1C30244h | -20029 580 B5 |BI1C30244h
B8 | xxxx xxooch B8 | EBBE 6A22h -339,842,526

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set

239

13 TEXAS

INSTRUMENTS
DOTPNRSU2 — Dot Product With Negate, Shift and Round, Signed by Unsigned, Packed 16-Bit www.ti.com
DOTPNRSU2 Dot Product With Negate, Shift and Round, Signed by Unsigned, Packed 16-Bit
Syntax DOTPNRSUZ2 (.unit) srcl, src2, dst
unit = .M1 or .M2
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
’ creg |z| src2 srcl |x|0‘0|0‘1‘1’1’1|1|0‘0|s‘p‘
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl s2 M1, .M2
src2 Xu2
dst int
Description Returns the dot-product between two pairs of packed 16-bit values, where the second
product is negated. This instruction takes the result of the dot-product and performs an
additional round and shift step. The values in srcl are treated as signed, packed 16-bit
guantities; whereas, the values in src2 are treated as unsigned, packed 16-bit quantities.
The results are written to dst.
The product of the lower halfwords of srcl and src2 is subtracted from the product of the
upper halfwords of srcl and src2. The value 2% is then added to this sum, producing an
intermediate 33-bit result. The intermediate result is signed shifted right by 16, producing
a rounded, shifted result that is sign extended and placed in dst.
The intermediate results of the DOTPNRSU2 instruction are maintained to a 33-bit
precision, ensuring that no overflow may occur during the subtracting and rounding
steps.
31 16 15 0
‘ sa_hi ‘ sa_lo ‘ «— srcl
DOTPNRSU2
‘ ub_hi ‘ ub_lo ‘ « src2
31 0
\ (((sa_hi x ub_hi) - (sa_lo x ub_lo)) + 8000h) >> 16 \ — dst
Execution
if (cond) {
int33 = (smsh16(srcl) x umsb16(src2)) -
(slsb16(srcl) x ulsb16(src2)) + 8000h;
int33 >> 16 — dst
}
else nop

240 Instruction Set

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com DOTPNRSU2 — Dot Product With Negate, Shift and Round, Signed by Unsigned, Packed 16-Bit
Pipeline
Pipeline Stage El E2 E3 E4
Read srcl, src2
Written dst
Unit in use M
Instruction Type Four-cycle
Delay Slots 3
See Also DOTP2, DOTPN2, DOTPRSU2
Examples Example 1
DOTPNRSU2 . ML A5, A6, A8
Before instruction 4 cycles after instruction
A5 3629 274Ah | 13865 10058 A5 3629 274Ah
signed
A6 |325C 8036h | 12892 32822 A6 |325C 8036h |
unsigned
A8 | w00k xooxxh | A8 | FFFF F6FAh -2310 (signed)
Example 2
DOTPNRSU2 . M2 B2, B5, B8
Before instruction 4 cycles after instruction
B2 |3FF65010h | 16374 20496 B2 | 3FF65010h |
signed
B5 |BI1C30244h | 45507 580 B5 |BI1C30244h |
unsigned
B8 ‘ XXXX XXxxh B8 ‘ 0000 2BB4h ‘ 11188 (signed)
Example 3
DOTPNRSU2 . M2 B12, B23, Bl1
Before instruction 4 cycles after instruction
B12 | 7FFF 8000h | 32767 -32768 B12 | 7FFF 8000h |
signed
B23 | FFFF FFFFh | 65535 65535 B23 | FFFF FFFFh |
unsigned
B11 ‘ XXXX XXxxh ‘ B11 ‘ XXXX XXxxh ‘ Overflow occurs;
result undefined
SPRUFE8B-July 2010 Instruction Set 241

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
DOTPNRUS2 — Dot Product With Negate, Shift and Round, Unsigned by Signed, Packed 16-Bit www.ti.com
DOTPNRUS2 Dot Product With Negate, Shift and Round, Unsigned by Signed, Packed 16-Bit
Syntax DOTPNRUS?2 (.unit) src2, srcl, dst
unit = .M1 or .M2
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
’ creg |z| dst src2 srcl |x|0‘0|0‘1‘1’1’1|1|0‘0|s‘p‘
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl s2 M1, .M2
src2 Xu2
dst int
Description The DOTPNRUS2 pseudo-operation performs the dot-product between two pairs of
packed 16-bit values, where the second product is negated. This instruction takes the
result of the dot-product and performs an additional round and shift step. The values in
srcl are treated as signed, packed 16-bit quantities; whereas, the values in src2 are
treated as unsigned, packed 16-bit quantities. The results are written to dst. The
assembler uses the DOTPNRSU2 srcl, src2, dst instruction to perform this task (see
DOTPNRSU?2).
The product of the lower halfwords of src1 and src2 is subtracted from the product of the
upper halfwords of srcl and src2. The value 2*° is then added to this sum, producing an
intermediate 32 or 33-bit result. The intermediate result is signed shifted right by 16,
producing a rounded, shifted result that is sign extended and placed in dst.
The intermediate results of the DOTPNRUS2 pseudo-operation are maintained to a
33-bit precision, ensuring that no overflow may occur during the subtracting and
rounding steps.
Execution
if (cond) {
int33 = (smsb16(srcl) x umsbh16(src2)) -
(slsb16(srcl) x ulsb16(src2)) + 8000h;
int33 >> 16 — dst
}
else nop
Pipeline
Pipeline Stage El E2 E3 E4
Read srcl, src2
Written dst
Unit in use .M

242 Instruction Set

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

DOTPNRUS2 — Dot Product With Negate, Shift and Round, Unsigned by Signed, Packed 16-Bit
Instruction Type Four-cycle

Delay Slots 3

See Also DOTP2, DOTPN2, DOTPNRSUZ2, DOTPRUS2

SPRUFE8B-July 2010 Instruction Set 243

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
DOTPRSU2 — Dot Product With Shift and Round, Signed by Unsigned, Packed 16-Bit www.ti.com
DOTPRSU2 Dot Product With Shift and Round, Signed by Unsigned, Packed 16-Bit
Syntax DOTPRSU2 (.unit) srcl, src2, dst
unit = .M1 or .M2
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
’ |z| src2 srcl |x|0‘0|1‘1‘0’1’1|1|0‘0|s‘p‘
1 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl s2 M1, .M2
src2 Xu2
dst int
Description Returns the dot-product between two pairs of packed 16-bit values. This instruction
takes the result of the dot-product and performs an additional round and shift step. The
values in srcl are treated as signed packed 16-bit quantities; whereas, the values in
src2 are treated as unsigned packed 16-bit quantities. The results are written to dst.
The product of the lower halfwords of srcl and src2 is added to the product of the upper
halfwords of srcl and src2. The value 2%is then added to this sum, producing an
intermediate 32 or 33-bit result. The intermediate result is signed shifted right by 16,
producing a rounded, shifted result that is sign extended and placed in dst.
The intermediate results of the DOTPRSU2 instruction are maintained to a 33-bit
precision, ensuring that no overflow may occur during the subtracting and rounding
steps.
31 16 15 0
‘ sa_hi ‘ sa_lo ‘ «— srcl
DOTPRSU2
‘ ub_hi ‘ ub_lo ‘ «— src2
31 0
\ (((sa_hi x ub_hi) + (sa_lo x ub_lo)) + 8000h) >> 16 | dst

NOTE: Certain combinations of operands for the DOTPRSU2 instruction results
in an overflow condition. If an overflow does occur, the result is
undefined. Overflow can be avoided if the sum of the two products plus
the rounding term is less than or equal to 2** — 1 for a positive sum and
greater than or equal to —2* for a negative sum.

The intermediate results of the DOTPRSU2 instruction are maintained to
33-bit precision, ensuring that no overflow may occur during the adding
and rounding steps.

244

Instruction Set

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com DOTPRSU2 — Dot Product With Shift and Round, Signed by Unsigned, Packed 16-Bit
Execution
if (cond) {
int33 = (smsb16(srcl) x umsb16(src2)) +
(slsb16(srcl) x ulsb16(src2)) + 8000h;
int33 >> 16 — dst
}
else nop
Pipeline
Pipeline Stage El E2 E3 E4
Read srcl, src2
Written dst
Unit in use .M
Instruction Type Four-cycle
Delay Slots 3
See Also DOTP2, DOTPN2, DOTPNRSU2
Examples Example 1
DOTPRSU2 . ML A5, A6, A8
Before instruction 4 cycles after instruction
A5 3629 274Ah | 13865 10058 A5 |3629 274Ah |
signed
A6 |325C 8036h | 12892 32822 A6 |325C 8036h |
unsigned
A8 | xooox xoooxh | A8 | 0000 1E55h | 7765 (signed)
Example 2
DOTPRSU2 . M2 B2, B5, B8
Before instruction 4 cycles after instruction
B2 |B1C30244h -20029 580 B2 |B1C30244h | 20029 580
signed signed
B5 ‘ 3FF6 5010h ‘ 16374 20496 B5 ‘ 3FF6 5010h 16374 20496
unsigned unsigned
B8 | xxx xxooch | B8 | FFFF ED20h -4823 (signed)
SPRUFE8B-July 2010 Instruction Set 245

Copyright © 2010, Texas Instruments Incorporated

DOTPRSU2 — Dot Product With Shift and Round, Signed by Unsigned, Packed 16-Bit

13 TEXAS
INSTRUMENTS

www.ti.com

Example 3
DOTPRSU2 . M2 B12, B23, Bl1

Before instruction

B12 [7FFF 7FFFh | 32767 32767
signed

B23 | FFFF FFFFh | 65535 65535
unsigned

B11 ‘ XXXX XXXXh ‘

B12

B23

B11

4 cycles after instruction

| 7FFF 7FFFh

| FFFF FFFFh

‘ XXXX XXxxh

‘ Overflow occurs;

result undefined

246

Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRUFE8B-July 2010

13 TEXAS
INSTRUMENTS

www.ti.com

DOTPRUS2 — Dot Product With Shift and Round, Unsigned by Signed, Packed 16-Bit

DOTPRUS2 Dot Product With Shift and Round, Unsigned by Signed, Packed 16-Bit
Syntax DOTPRUS2 (.unit) src2, srcl, dst
unit = .M1 or .M2
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
’ creg |z| dst src2 srcl |x|0‘0|1‘1‘0’1’1|1|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl s2 M1, .M2
src2 Xu2
dst int
Description The DOTPRUS2 pseudo-operation returns the dot-product between two pairs of packed
16-bit values. This instruction takes the result of the dot-product, and performs an
additional round and shift step. The values in srcl are treated as signed packed 16-bit
guantities; whereas, the values in src2 are treated as unsigned packed 16-bit quantities.
The results are written to dst. The assembler uses the DOTPRSU2 (.unit) srcl, src2, dst
instruction to perform this task (see DOTPRSU2).
The product of the lower halfwords of src1 and src2 is added to the product of the upper
halfwords of src1 and src2. The value 2%%is then added to this sum, producing an
intermediate 32-bit result. The intermediate result is signed shifted right by 16, producing
a rounded, shifted result that is sign extended and placed in dst.
The intermediate results of the DOTPRUS2 pseudo-operation are maintained to a 33-bit
precision, ensuring that no overflow may occur during the subtracting and rounding
steps.
Execution
if (cond) {
int33 = (umsb16(src2) x smsb16(srcl)) +
(ulsb16(src2) x slsb16(srcl)) + 8000h;
int33 >> 16 — dst
}
else nop
Pipeline
Pipeline Stage El E2 E3 E4
Read srcl, src2
Written dst
Unit in use .M

SPRUFE8B-July 2010

Instruction Set

Copyright © 2010, Texas Instruments Incorporated

247

13 TEXAS

INSTRUMENTS
DOTPRUS2 — Dot Product With Shift and Round, Unsigned by Signed, Packed 16-Bit www.ti.com
Instruction Type Four-cycle
Delay Slots 3
See Also DOTP2, DOTPN2, DOTPNRUS2, DOTPRSUZ2
248 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com DOTPSU4 — Dot Product, Signed by Unsigned, Packed 8-Bit
DOTPSU4 Dot Product, Signed by Unsigned, Packed 8-Bit
Syntax DOTPSU4 (.unit) srcl, src2, dst
unit = .M1 or .M2
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
’ creg |z| dst src2 srcl |x|0‘0|0‘0‘1’0’1|1|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl s4 M1, .M2
src2 xu4
dst int
Description Returns the dot-product between four sets of packed 8-bit values. The values in srcl are
treated as signed packed 8-bit quantities; whereas, the values in src2 are treated as
unsigned 8-bit packed data. The signed result is written into dst.
For each pair of 8-bit quantities in srcl and src2, the signed 8-bit value from srcl is
multiplied with the unsigned 8-bit value from src2. The four products are summed
together, and the resulting dot product is written as a signed 32-bit result to dst.
31 24 23 16 15 8 7 0
‘ sa_3 ‘ sa_2 ‘ sa_1 | sa_0 ‘ < srcl
DOTPSU4
‘ ub_3 ‘ ub_2 ‘ ub_1 | ub_0 ‘ « src2
31 0
‘ (sa_3xub_3)+ (sa_2xub_2) +(sa_1 x ub_1) + (sa_0 x ub_0) ‘ «— dst
Execution
if (cond) {
(sbyteO(srcl) x ubyteO(src2)) +
(sbytel(srcl) x ubytel(src2)) +
(sbyte2(srcl) x ubyte2(src2)) +
(sbyte3(srcl) x ubyte3(src2)) — dst
}
else nop
SPRUFE8B-July 2010 Instruction Set 249

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
DOTPSU4 — Dot Product, Signed by Unsigned, Packed 8-Bit www.ti.com
Pipeline
Pipeline Stage El E2 E3 E4
Read srcl, src2
Written dst
Unit in use .M
Instruction Type Four-cycle
Delay Slots 3
See Also DOTPU4
Examples Example 1
DOTPSW . ML A5, A6, A8
Before instruction 4 cycles after instruction
A5 | 6A321193h 106 50 17 -109 A5 | 6A3211093h |
signed
A6 | B1746C Adh 177 116 108 164 A6 | B1746C Adh |
unsigned
A8 | xo00x xooxxh | A8 | 0000 214Ah | 8522 (signed)
Example 2
DOorPsSWw4 . M2 B2, B5, B8
Before instruction 4 cycles after instruction
B2 |3F F65010h 63 -10 80 16 B2 |3FF65010h \
signed
B5 | C3560244h 195 86 2 68 BS [C3560244h \
unsigned
B8 | XXXX XxXxxh | B8 | 0000 3181h ‘ 12,673 (signed)
250 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

DOTPUS4 — Dot Product, Unsigned by Signed, Packed 8-Bit

DOTPUS4 Dot Product, Unsigned by Signed, Packed 8-Bit
Syntax DOTPUS4 (.unit) src2, srcl, dst
unit = .M1 or .M2
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
’ creg |z| dst src2 srcl |x|0‘0|0‘0‘1’0’1|1|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl s4 M1, .M2
src2 xu4
dst int
Description The DOTPUS4 pseudo-operation returns the dot-product between four sets of packed
8-bit values. The values in srcl are treated as signed packed 8-bit quantities; whereas,
the values in src2 are treated as unsigned 8-bit packed data. The signed result is written
into dst. The assembler uses the DOTPSU4 (.unit) srcl, src2, dst instruction to perform
this task (see DOTPSU4).
For each pair of 8-bit quantities in src1 and src2, the signed 8-bit value from srcl is
multiplied with the unsigned 8-bit value from src2. The four products are summed
together, and the resulting dot-product is written as a signed 32-bit result to dst.
Execution
if (cond) {
(ubyteO(src2) x shyteO(srcl)) +
(ubytel(src2) x shytel(srcl)) +
(ubyte2(src2) x sbyte2(srcl)) +
(ubyte3(src2) x sbyte3(srcl)) — dst
}
else nop
Pipeline
Pipeline Stage El E2 E3 E4
Read srcl, src2
Written dst
Unit in use M
Instruction Type Four-cycle

Delay Slots

See Also

3
DOTPU4, DOTPSU4

SPRUFE8B-July 2010

Instruction Set 251

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
DOTPU4 — Dot Product, Unsigned, Packed 8-Bit www.ti.com
DOTPU4 Dot Product, Unsigned, Packed 8-Bit
Syntax DOTPU4 (.unit) srcl, src2, dst
unit = .M1 or .M2
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
’ creg |z| dst src2 srcl |x|0‘0|0‘1‘1’0’1|1|0‘0|s‘p‘
3 1 5 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl us4 M1, .M2
src2 xu4
dst uint
Description Returns the dot-product between four sets of packed 8-bit values. The values in both
srcl and src2 are treated as unsigned, 8-bit packed data. The unsigned result is written
into dst.
For each pair of 8-bit quantities in src1 and src2, the unsigned 8-bit value from srcl is
multiplied with the unsigned 8-bit value from src2. The four products are summed
together, and the resulting dot-product is written as a 32-bit result to dst.
31 24 23 16 15 8 7 0
‘ ua_3 ‘ va_2 ‘ va_1 | ua_0 ‘ < srcl
DOTPU4
‘ ub_3 ‘ ub_2 ‘ ub_1 | ub_0 ‘ « src2
31 0
(Ua_3x ub_3) + (ua_2 x ub_2) + (ua_1 x ub_1) + (ua_0 x ub_0) ‘ — dst
Execution
if (cond) {
(ubyteO(srcl) x ubyteO(src2)) +
(ubytel(srcl) x ubytel(src2)) +
(ubyte2(srcl) x ubyte2(src2)) +
(ubyte3(srcl) x ubyte3(src2)) — dst
}
else nop
252 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com DOTPU4 — Dot Product, Unsigned, Packed 8-Bit
Pipeline
Pipeline Stage El E2 E3 E4
Read srcl, src2
Written dst
Unit in use M
Instruction Type Four-cycle
Delay Slots 3
See Also DOTPSU4
Example DOTPU4 . ML A5, A6, A8
Before instruction 4 cycles after instruction
A5 [6A321193h | 106 50 17 147 A5 [6A321193h |
unsigned
A6 [B1746C Adn 177 116 108 164 A6 |B1746C Adh |
unsigned
A8 [o0k xooah A8 0000 C54Ah | 50,506 (unsigned)
SPRUFE8B-July 2010 Instruction Set 253

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
DPACK2 — Parallel PACK2 and PACKH2 Operations www.ti.com
DPACK?2 Parallel PACK2 and PACKH2 Operations
Syntax DPACK?2 (.unit) srcl, src2, dst_o:dst_e
unit=.L1 or .L2
Opcode
31 30 29 28 27 24 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o]ofo]1] dst o] src2 srcl I xJof[1]1]of1]ofJo]1][1]o]s]p]
4 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl sint L1, L2
src2 xsint
dst dint
Description Executes a PACK2 instruction in parallel with a PACKH2 instruction.

Execution

The PACK2 function of the DPACK?2 instruction takes the lower halfword from srcl and
the lower halfword from src2, and packs them both into dst_e. The lower halfword of
srcl is placed in the upper halfword of dst_e. The lower halfword of src2 is placed in the
lower halfword of dst_e.

The PACKH2 function of the DPACK2 instruction takes the upper halfword from srcl
and the upper halfword from src2, and packs them both into dst_o. The upper halfword
of srcl is placed in the upper halfword of dst_o. The upper halfword of src2 is placed in
the lower halfword of dst_o.

This instruction executes unconditionally.

src src2
MSB16 | LSB16 MSB16 | LSB16
MsB16 | LsB16 | | MsB16 [LsB16
dst o dst e

Isb16(srcl) — msb16(dst_e)
Isb16(src2) — Ish16(dst_e)
msb16(srcl) — msb16(dst_o)
msh16(src2) — Isb16(dst_o)

254 Instruction Set

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com DPACK2 — Parallel PACK2 and PACKH2 Operations
Instruction Type Single-cycle
Delay Slots 0
Example DPACK2 . L1 AQ, Al, A3: A2

Before instruction 1 cycle after instruction

A0 |87654321h \ A2 |43215678h \

Al |12345678h \ A3 |8765 1234h \

SPRUFE8B-July 2010 Instruction Set 255

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
DPACKX2 — Parallel PACKLH2 Operations www.ti.com
DPACKX2 Parallel PACKLH2 Operations
Syntax DPACKX2 (.unit) srcl, src2, dst_o:dst_e
unit=.L1 or .L2
Opcode
31 30 29 28 27 24 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
’0’0’0|1| dst ‘0’ src2 srcl |x|0‘1|1‘0‘0’l’1|1|1‘0|s‘p‘
4 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl sint L1, L2
src2 xsint
dst dint
Description Executes two PACKLH2 instructions in parallel.

Execution

One PACKLH2 function of the DPACKX2 instruction takes the lower halfword from srcl

and the upper halfword from src2, and packs them both into dst_e. The lower halfword of
srcl is placed in the upper halfword of dst_e. The upper halfword of src2 is placed in the
lower halfword of dst_e.

The other PACKLH2 function of the DPACKX2 instruction takes the upper halfword from
srcl and the lower halfword from src2, and packs them both into dst_o. The upper
halfword of srcl is placed in the lower halfword of dst_o. The lower halfword of src2 is
placed in the upper halfword of dst_o.

This instruction executes unconditionally.

src src2
MSB16 | LSB16 MSB16 | LSB16
MsB16 | LsB16 | | MsB16 [LsB16
dst o dst e

Isb16(srcl) — msb16(dst_e)
msb16(src2) — Ish16(dst_e)
msb16(srcl) — Isb16(dst_o)
Isb16(src2) — msb16(dst_o)

256 Instruction Set

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com DPACKX2 — Parallel PACKLH2 Operations
Instruction Type Single-cycle
Delay Slots 0
Examples Example 1
DPACKX2 . L1 AQ, Al, A3: A2
Before instruction 1 cycle after instruction
A0 |87654321h | A2 [43211234h \
Al |12345678h | A3 | 56788765h |
Example 2
DPACKX2 . L1X A0, BO, A3: A2
Before instruction 1 cycle after instruction
A0 | 3FFF 8000h | A2 | 8000 4000h \
BO [40007777h | A3 | 7777 3FFFh \
SPRUFE8B-July 2010 Instruction Set 257

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
DPINT — Convert Double-Precision Floating-Point Value to Integer www.ti.com
DPINT Convert Double-Precision Floating-Point Value to Integer
Syntax DPINT (.unit) src2, dst
unit=.L1 or .L2
Opcode
31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 ©
| creg | z] src2 loJofoJoJo[x[ofo]Jo]1]ofofJo][1][1]o]s][p]
3 1 5 1 1 1
Opcode map field used... For operand type... Unit
src2 dp L1, L2
dst sint
Description The 64-bit double-precision value in src2 is converted to an integer and placed in dst.
The operand is read in one cycle by using the src2 port for the 32 MSBs and the srcl
port for the 32 LSBs.
NOTE:
If src2 is NaN, the maximum signed integer (7FFF FFFFh or
8000 0000h) is placed in dst and the INVAL bit is set.
If src2 is signed infinity or if overflow occurs, the maximum signed
integer (7FFF FFFFh or 8000 0000h) is placed in dst and the INEX
and OVER bits are set. Overflow occurs if src2 is greater than
2% -1 or less than -2*.
If src2 is denormalized, 0000 0000h is placed in dst and the INEX
and DEN2 bits are set.
If rounding is performed, the INEX bit is set.
Execution
if (cond) int(src2) — dst
else nop
Pipeline

Instruction Type

Delay Slots

Pipeline Stage El E2 E3 E4
Read src2_|l,
src2_h
Written dst
Unit in use L
Four-cycle

3

Functional Unit Latency 1

See Also

DPSP, DPTRUNC, INTDP, SPINT

258 Instruction Set

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com DPINT — Convert Double-Precision Floating-Point VValue to Integer
Example DPI NT . L1 Al: A0, A4
Before instruction 4 cycles after instruction
AL:AQ \ 4021 3333h \ 3333 3333h 86 ALAO | 4021 3333h \ 3333 3333h
A4 | x000x x000¢h | A4 | 0000 0009h 9
SPRUFE8B-July 2010 Instruction Set 259

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
DPSP — Convert Double-Precision Floating-Point Value to Single-Precision Floating-Point Value www.ti.com
DPSP Convert Double-Precision Floating-Point Value to Single-Precision Floating-Point
Value
Syntax DPSP (.unit) src2, dst
unit = .L1 or .L2
Opcode
31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ creg |z| dst src2 |O‘0‘0‘0‘0|x|0‘0|0‘1‘0‘0‘1|1|1‘0|s‘p‘
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
src2 dp L1, .L2
dst sp
Description The double-precision 64-bit value in src2 is converted to a single-precision value and
placed in dst. The operand is read in one cycle by using the src2 port for the 32 MSBs
and the srcl port for the 32 LSBs.
NOTE:
1. If rounding is performed, the INEX bit is set.
If src2 is SNaN, NaN_out is placed in dst and the INVAL and NAN2
bits are set.
3. If src2 is QNaN, NaN_out is placed in dst and the NAN2 bit is set.
4. If src2 is a signed denormalized number, signed 0 is placed in dst
and the INEX and DEN2 bits are set.
5. If src2 is signed infinity, the result is signed infinity and the INFO bit is
set.
6. If overflow occurs, the INEX and OVER bits are set and the results
are set as follows (LFPN is the largest floating-point number):
Overflow Output Rounding Mode
Result Sign Nearest Even Zero +Infinity Infinity
+ +infinity +LFPN +infinity +LFPN
- -infinity -LFPN -LFPN -infinity
7. If underflow occurs, the INEX and UNDER bits are set and the results
are set as follows (SPFN is the smallest floating-point number):
Underflow Output Rounding Mode
Result Sign Nearest Even Zero +Infinity Infinity
+ +0 +0 +SFPN +0
- -0 -0 -0 -SFPN
260 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS

www.ti.com

DPSP — Convert Double-Precision Floating-Point Value to Single-Precision Floating-Point Value

Execution
if (cond) sp(src2) — dst
else nop
Pipeline
Pipeline Stage El E2 E3 E4
Read src2_1,
src2_h
Written dst
Unit in use L
Instruction Type Four-cycle
Delay Slots 3
Functional Unit Latency 1
See Also DPINT, DPTRUNC, INTSP, SPDP
Example DPSP . L1 Al: A0, A4
Before instruction 4 cycles after instruction
ALAO [40213333h 3333 3333h 86 ALAO |40213333h 3333 3333h
A4 | x000x x000¢h | A4 | 4109 999Ah 8.6

SPRUFE8B-July 2010

Instruction Set 261

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
DPTRUNC — Convert Double-Precision Floating-Point Value to Integer With Truncation www.ti.com
DPTRUNC Convert Double-Precision Floating-Point Value to Integer With Truncation
Syntax DPTRUNC (.unit) src2, dst
unit=.L1 or .L2
Opcode
31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| creg | z] dst src2 loJofoJoJo[x[ofo]o]oJofJo]1][1][1]0o]s][p]
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
src2 dp L1, L2
dst sint
Description The 64-bit double-precision value in src2 is converted to an integer and placed in dst.
This instruction operates like DPINT except that the rounding modes in the floating-point
adder configuration register (FADCR) are ignored; round toward zero (truncate) is
always used. The 64-bit operand is read in one cycle by using the src2 port for the
32 MSBs and the srcl port for the 32 LSBs.
NOTE:
1. |If src2 is NaN, the maximum signed integer (7FFF FFFFh or
8000 0000h) is placed in dst and the INVAL bit is set.
2. If src2 is signed infinity or if overflow occurs, the maximum signed
integer (7FFF FFFFh or 8000 0000h) is placed in dst and the INEX
and OVER bits are set. Overflow occurs if src2 is greater than
2% -1 or less than -2,
3. If src2 is denormalized, 0000 0000h is placed in dst and the INEX
and DEN2 bits are set.
4. |If rounding is performed, the INEX bit is set.
Execution
if (cond) int(src2) — dst
else nop
Pipeline
Pipeline Stage El E2 E3 E4
Read src2_|,
src2_h
Written dst
Unit in use L
Instruction Type Four-cycle
Delay Slots 3
Functional Unit Latency 1
262 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com DPTRUNC — Convert Double-Precision Floating-Point Value to Integer With Truncation
See Also DPINT, DPSP, SPTRUNC
Example DPTRUNC . L1 Al: AQ0, A4
Before instruction 4 cycles after instruction
AL:AQ \ 4021 3333h \ 3333 3333h 86 ALAO | 4021 3333h \ 3333 3333h
A4 \ Xxxx Xxxxh \ A4 | 0000 0008h \ 8

SPRUFE8B-July 2010 Instruction Set 263

Copyright © 2010, Texas Instruments Incorporated

EXT — Extract and Sign-Extend a Bit Field

13 TEXAS
INSTRUMENTS

www.ti.com

EXT

Syntax

or

Extract and Sign-Extend a Bit Field

EXT (.unit) src2, csta, cstb, dst

EXT (.unit) src2, srcl, dst

unit =.S1 or .S2

Compact Instruction Format

Unit Opcode Format Figure
.S S2ext Figure F-28
Opcode Constant form
31 29 28 27 23 22 18 17 13 12 8 7 6 5 4 3 2 1 0
creg |z| dst src2 csta cstb ‘0‘1‘0|0|1‘0|s‘p‘
3 1 5 5 5 5 1 1
Opcode map field used... For operand type... Unit
src2 sint .S1,.S2
csta ucst5
cstb ucstb
dst sint
Opcode Register form
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
‘ creg |z| dst ‘ src2 srcl |x|1‘0|1‘1‘1‘1‘1|0|0‘0|s‘p‘
3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit
src2 xsint .S1, .82
srcl uint

dst sint

264 Instruction Set

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

EXT — Extract and Sign-Extend a Bit Field

Description

The field in src2, specified by csta and cstb, is extracted and sign-extended to 32 bits.
The extract is performed by a shift left followed by a signed shift right. csta and cstb are
the shift left amount and shift right amount, respectively. This can be thought of in terms
of the LSB and MSB of the field to be extracted. Then csta = 31 - MSB of the field and
cstb = csta + LSB of the field. The shift left and shift right amounts may also be specified
as the ten LSBs of the srcl register with cstb being bits 0-4 and csta bits 5-9. In the
example below, csta is 12 and cstb is 11 + 12 = 23. Only the ten LSBs are valid for the
register version of the instruction. If any of the 22 MSBs are non-zero, the result is
invalid.

|:

csta g — cstb-csta ———y

] | | |
sre2 [x]x]x]x]x Ix ExIx Ix] x]xxPafolJolol a1 ol IxIx]x]x]x]x]x|x[x]x]x]

31 30 29 28 27 26 25 24 23 22 21 2019 1817 16 151413121110 9 8 7 6 5 4 3 2 1 0

Shifts left by 12 to produce:

glafofifofola]aoltIxIx{xx x| x|x|x|x|x[x]ofofofofofoJo]o]ofofo]o]

31 30 29 28 27 26 25 24 23 22 21 2019 1817 16 151413121110 9 8 7 6 5 4 3 2 1 0

Then shifts right by 23 to produce:

v
ast 3y[1|1l alafala o]l [a]1alo]1]ofol1]1 o]}

31 30 29 28 27 26 25 24 23 22 21 2019 18 17 16 151413121110 9 8 7 6 5 4 3 2 1 O

Execution

if (cond)
else nop

if (cond)
else nop

Pipeline

Instruction Type
Delay Slots

See Also

If the constant form is used:

src2 ext csta, cstb — dst

If the register form is used:

src2 ext srcl 4 ¢, srcl , , — dst

Pipeline Stage El
Read srcl, src2
Written dst
Unit in use .S

Single-cycle

0

EXTU

SPRUFE8B-July 2010

Instruction Set 265

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
EXT — Extract and Sign-Extend a Bit Field www.ti.com
Examples Example 1
EXT .S1 Al, 10, 19, A2
Before instruction 1 cycle after instruction
Al \ 07A4 3F2Ah | Al \ 07A4 3F2Ah \
A2 \ X0 xxxxh | A2] FFFF F21Fh
Example 2
EXT .Sl Al, A2, A3
Before instruction 1 cycle after instruction
Al \ 03B6 E7D5h | Al \ 03B6 E7D5h \
A2 | 0000 0073h | A2 0000 0073h |
A3 \ %0 xxxxh | A3 \ 0000 03B6h \
266 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com EXTU — Extract and Zero-Extend a Bit Field
EXTU Extract and Zero-Extend a Bit Field
Syntax EXTU (.unit) src2, csta, cstb, dst
or
EXTU (.unit) src2, srcl, dst
unit = .S1 or .S2
Compact Instruction Format
Unit Opcode Format Figure
.S Sch Figure F-27
S2ext Figure F-28
Opcode Constant form:
31 29 28 27 23 22 18 17 13 12 8 7 6 5 4 3 2 1 0
‘ creg |z| dst ‘ src2 csta cstb ‘0‘0‘0|0|1‘0|s‘p‘
3 1 5 5 5 5 1 1
Opcode map field used... For operand type... Unit
src2 uint .S1,.S2
csta ucst5
cstb ucstb
dst uint
Opcode Register form:
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 O
‘ creg |z| dst ‘ src2 srcl |x|1‘0|1‘0‘1‘1‘1|0|0‘0|s‘p‘
3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit
src2 xuint .S1, .S2
srcl uint

dst uint

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set 267

13 TEXAS
INSTRUMENTS

EXTU — Extract and Zero-Extend a Bit Field

www.ti.com

Description

The field in src2, specified by csta and cstb, is extracted and zero extended to 32 bits.
The extract is performed by a shift left followed by an unsigned shift right. csta and cstb
are the amounts to shift left and shift right, respectively. This can be thought of in terms
of the LSB and MSB of the field to be extracted. Then csta = 31 - MSB of the field and
cstb = csta + LSB of the field. The shift left and shift right amounts may also be specified
as the ten LSBs of the srcl register with cstb being bits 0-4 and csta bits 5-9. In the
example below, csta is 12 and cstb is 11 + 12 = 23. Only the ten LSBs are valid for the
register version of the instruction. If any of the 22 MSBs are non-zero, the result is

invalid.

< csta g — cstb-csta ———y

] | | |
sre2 [x]x]x]x]x Ix ExIx Ix] x]xxPafolJolol a1 ol IxIx]x]x]x]x]x|x[x]x]x]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 1312110 9 8 7 6 5 4 3 2 1 0

Shifts left by 12 to produce:

glafofifofolr]afofefxx[x|x[x{x[x|x|x[x[x]o]oJoJo[ofofofofoofofo]
3130 29 28 27 26 25 24 23 22 21 20 1918 17 16 15141312 1110 9 8 7 6 5 4 3 2 1 0

Then shifts right by 23 to produce:

v
dst 3)[o]o]ofofo]ofofo]olo]o]ofofo]ofo]o]ofofo]ofo]of1]o1]ofof1]1[o]1]
31 30 29 28 27 26 25 24 23 22 21 2019 1817 1615141312110 9 8 7 6 5 4 3 2 1 0

Execution

if (cond)
else nop

if (cond)
else nop

Pipeline

Instruction Type
Delay Slots

See Also

If the constant form is used:

src2 extu csta, cstb — dst

If the register form is used:

src2 extu srcl 4 ¢, srcl , , — dst

Pipeline Stage El
Read srcl, src2
Written dst
Unit in use .S

Single-cycle

0

EXT

268 Instruction Set

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com EXTU — Extract and Zero-Extend a Bit Field
Examples Example 1
EXTU . S1 Al, 10, 19, A2
Before instruction 1 cycle after instruction
Al \ 07A4 3F2Ah | Al \ 07A4 3F2Ah \
A2 \ X3 Xxxxh | A2] 0000 121Fh \
Example 2
EXTU . S1 Al, A2, A3
Before instruction 1 cycle after instruction
Al \ 03B6 E7D5h | Al \ 03B6 E7D5h \
A2 | 0000 0156h | A2 | 0000 0156h |
A3 \ XX xxxxh | A3 \ 0000 036Eh \
SPRUFE8B-July 2010 Instruction Set 269

Copyright © 2010, Texas Instruments Incorporated

GMPY — Galois Field Multiply

13 TEXAS
INSTRUMENTS

www.ti.com

GMPY Galois Field Multiply
Syntax GMPY (.unit) srcl, src2, dst
unit = .M1 or .M2
Opcode
31 30 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
’0’0’0|1| src2 srcl |x|0‘1|1‘1‘1’l’1|1|0‘0|s‘p‘
5 5 1 1 1

Opcode map field used... For operand type... Unit
srcl uint M1, .M2
src2 uint
dst uint
Description Performs a Galois field multiply, where srcl is 32 bits and src2 is limited to 9 bits. This

utilizes the existing hardware and produces a 32-bit result. This multiply connects all
levels of the gmpy4 together and only extends out by 8 bits, the resulting data is XORed

down by the 32-bit polynomial.

The polynomial used comes from either the GPLYA or GPLYB control register
depending on which side (A or B) the instruction executes. If the A-side M1 unit is used,
the polynomial comes from GPLYA,; if the B-side M2 unit, the polynomial comes from

GPLYB.

This instruction executes unconditionally.
uword gnpy(uword srcl, uword src2,uword pol ynom al)

/1 the nultiply is always between GF(27"9) and GF(2"32)

/1 so no size information is needed

ui nt pp;

ui nt mask, tpp;

uint I;
pp = 0;))
mask = 0x00000100; // multiply by conputing

/] partial products.
for (1=0; i<8; I++){
if (src2 & mask) pp "= srcl;
mask >>= 1;
tpp = pp << 1
if (pp & 0x80000000) pp = polynomial " tpp;

el se pp t pp;
}
if (src2 & 0x1) pp "= srcil;
return (pp) ; /Il leave it asserted left.

270 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRUFE8B-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com GMPY — Galois Field Multiply
Execution
if (unit = M1)

GMPY_poly = GPLYA

Isb9(src2) gmpy srcl — dst
else if (unit = M2)

GMPY_poly = GPLYB

Isb9(src2) gmpy srcl — dst

Instruction Type Four-cycle
Delay Slots 3
See Also GMPY4, XORMPY, XOR
Example GWY . ML A0, Al, A2 GPLYA = 87654321
Before instruction 4 cycles after instruction
A0 [12345678h | A2 [C721 AOEFh

Al | 0000 0126h \

SPRUFE8B-July 2010 Instruction Set 271

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
GMPY4 — Galois Field Multiply, Packed 8-Bit www.ti.com
GMPY4 Galois Field Multiply, Packed 8-Bit
Syntax GMPY4 (.unit) srcl, src2, dst
unit = .M1 or .M2
Opcode
31 29 28 27 23 22 18 17 13 12 11 10 9 8 7 6 5 4 3 2 1 0
’ creg |1| dst src2 srcl |x|0‘1|0‘0‘0’l’1|1|0‘0|s‘p‘
3 5 5 1 1 1
Opcode map field used... For operand type... Unit
srcl us4 M1, .M2
src2 xu4
dst ud
Description Performs the Galois field multiply on four values in srcl with four parallel values in src2.
The four products are packed into dst. The values in both srcl and src2 are treated as
unsigned, 8-bit packed data.
For each pair of 8-bit quantities in srcl and src2, the unsigned, 8-bit value from srcl is
Galois field multiplied (gmpy) with the unsigned, 8-bit value from src2. The product of
srcl byte 0 and src2 byte 0 is written to byte0O of dst. The product of srcl byte 1 and src2
byte 1 is written to bytel of dst. The product of srcl byte 2 and src2 byte 2 is written to
byte2 of dst. The product of srcl byte 3 and src2 byte 3 is written to the most-significant
byte in dst.
31 24 23 16 15 8 7 0
‘ ua_3 ‘ ua_2 ‘ ua_1 | ua_0 ‘ «—srcl
GMPY4
\ ub_3 \ ub_2 \ ub_1 | ub_0 ‘ < src2
31 0
‘ ua_3 gmpy ub_3 ‘ ua_2 gmpy ub_2 ‘ ua_1gmpy ub_1 | ua_0 gmpy ub_0 ‘ « dst

The size and polynomial are controlled by the Galois field polynomial generator function
register (GFPGFR). All registers in the control register file can be written using the MVC
instruction (see MVC).

The default field generator polynomial is 1Dh, and the default size is 7. This setting is
used for many communications standards.

Note that the GMPY4 instruction is commutative, so:
GWPY4 . ML A10, A12, A13

is equivalent to:
GWPY4 . ML Al2, A10, A13

272 Instruction Set

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

GMPY4 — Galois Field Multiply, Packed 8-Bit

Execution
if (cond) {
(ubyteO(src1) gmpy ubyteO(src2)) — ubyteO(dst);
(ubytel(srcl) gmpy ubytel(src2)) — ubytel(dst);
(ubyte2(srcl) gmpy ubyte2(src2)) — ubyte2(dst);
(ubyte3(srcl) gmpy ubyte3(src2)) — ubyte3(dst)
}
else nop
Pipeline
Pipeline Stage El E2 E3 E4
Read srcl, src2
Written dst
Unit in use M
Instruction Type Four-cycle
Delay Slots 3
See Also GMPY, MVC, XOR
Examples Example 1
GWY4 . ML A5, A6, A7; pol ynom al = 0x1d
Before instruction 4 cycles after instruction
A5 [45230001h (693501 A5 [45230001h \
unsigned
A6 [57340001h 875201 A6 |57340001h \
unsigned
A7 [x0xooh | A7 729200 01h 114146 0 1
unsigned
Example 2
GWPY4 . ML A5, A6, A7; field size is Ox7
Before instruction 4 cycles after instruction
A5 | FFFE 02 1Fh | 255 254 231 A5 | FFFE 02 1Fh
unsigned
A6 | FF FE0201h | 25525421 A6 |FFFE0201h |
unsigned
AT | w00 xoooh A7 |E2E3041Fh | 226 227 4 31
unsigned

SPRUFE8B-July 2010

Instruction Set

Copyright © 2010, Texas Instruments Incorporated

273

13 TEXAS

INSTRUMENTS
IDLE — Multicycle NOP With No Termination Until Interrupt www.ti.com
IDLE Multicycle NOP With No Termination Until Interrupt
Syntax IDLE
unit = none
Opcode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[ofojofofofojofofofofofofofofofs]1[1[r]ofofoofofofofofofofo]o]p]

1
Description Performs an infinite multicycle NOP that terminates upon servicing an interrupt, or a
branch occurs due to an IDLE instruction being in the delay slots of a branch.
The IDLE instruction cannot be paired with any other multicycle NOP instruction in the
same execute packet. Instructions that generate a multicycle NOP are: ADDKPC,
BNOP, and the multicycle NOP.
Instruction Type NOP
Delay Slots 0
274 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com INTDP — Convert Signed Integer to Double-Precision Floating-Point Value
INTDP Convert Signed Integer to Double-Precision Floating-Point Value
Syntax INTDP (.unit) src2, dst
unit=.L1 or .L2
Opcode
31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
’ creg |z| dst src2 |O‘0‘0’0’0|x|0‘1|1‘1‘0’0’1|1|1‘0|s‘p‘
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
src2 xsint L1, L2
dst dp
Description The signed integer value in src2 is converted to a double-precision value and placed in
dst.
You cannot set configuration bits with this instruction.
Execution
if (cond) dp(src2) — dst
else nop
Pipeline
Pipeline Stage El E2 E3 E4 E5
Read src2
Written dst_| dst_h
Unit in use L
If dst is used as the source for the ADDDP, CMPEQDP, CMPLTDP, CMPGTDP,
MPYDP, or SUBDP instruction, the number of delay slots can be reduced by one,
because these instructions read the lower word of the DP source one cycle before the
upper word of the DP source.
Instruction Type INTDP
Delay Slots 4

Functional Unit Latency 1

See Also DPINT, INTDPU, INTSP, INTSPU
Example I NTDP . L1X B4, Al: AO
Before instruction 4 cycles after instruction
B4 1965 1127h | 426,053,927 B4 1965 1127h |
AL1:A0 ‘ XXXX XXxxh ‘ XXXX XXxxh Al:A0 ‘ 41B9 6511h ‘ 2700 0000h
4.2605393 E08
SPRUFE8B-July 2010 Instruction Set 275

Copyright © 2010, Texas Instruments Incorporated

INTDPU — Convert Unsigned Integer to Double-Precision Floating-Point Value

13 TEXAS

INSTRUMENTS

www.ti.com

INTDPU Convert Unsigned Integer to Double-Precision Floating-Point Value
Syntax INTDPU (.unit) src2, dst
unit=.L1 or .L2
Opcode
31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
’ creg |z| dst src2 |O‘0‘0’0’0|x|0‘1|1‘1‘0’l’1|1|1‘0|s‘p‘
3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit
src2 xuint L1, L2
dst dp
Description The unsigned integer value in src2 is converted to a double-precision value and placed
in dst.
You cannot set configuration bits with this instruction.
Execution
if (cond) dp(src2) — dst
else nop
Pipeline

Instruction Type
Delay Slots

Functional Unit Latency

Pipeline Stage El E2 E3 E4 E5
Read src2

Written dst_| dst_h
Unit in use L

If dst is used as the source for the ADDDP, CMPEQDP, CMPLTDP, CMPGTDP,
MPYDP, or SUBDP instruction, the number of delay slots can be reduced by one,
because these instructions read the lower word of the DP source one cycle before the
upper word of the DP source.

INTDP
4
1

See Also DPINT, INTDP, INTSP, INTSPU
Example INTDPU . L1 A4, Al: AO
Before instruction 4 cycles after instruction
A4 | FFFF FFDEN | 4,294,967,262 A4 | FFFF FFDEN |
ALAD | oo xocch | 0000 x000¢h AL:AO | 41EF FFFFh | FBCO 0000h
4.2949673 E09

276 Instruction Set

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

INTSP — Convert Signed Integer to Single-Precision Floating-Point Value

INTSP Convert Signed Integer to Single-Precision Floating-Point Value
Syntax INTSP (.unit) src2, dst
unit=.L1 or .L2
Opcode
31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
’ creg |z| dst src2 |O‘0‘0’0’0|x|1‘0|0‘1‘0’1’0|1|1‘0|s‘p‘
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
src2 xsint L1, L2
dst dp
Description The signed integer value in src2 is converted to a single-precision value and placed in
dst.
The only configuration bit that can be set is the INEX bit and only if the mantissa is
rounded.
Execution
if (cond) sp(src2) — dst
else nop
Pipeline

Instruction Type

Delay Slots

Pipeline Stage El E2 E3 E4
Read src2
Written dst
Unit in use L

Four-cycle

3

Functional Unit Latency 1

See Also INTDP, INTDPU, INTSPU
Example INTSP . L1 AL, A2
Before instruction 4 cycles after instruction
Al \ 1965 1127h | 426,053,927 Al \ 1965 1127h \
A2 \ %000 x00xh | A2 \ 4DCB 2889h \ 4.2605393 E08

SPRUFE8B-July 2010

Instruction Set 277

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
INTSPU — Convert Unsigned Integer to Single-Precision Floating-Point Value www.ti.com
INTSPU Convert Unsigned Integer to Single-Precision Floating-Point Value
Syntax INTSPU (.unit) src2, dst
unit=.L1 or .L2
Opcode
31 29 28 27 23 22 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
’ creg |z| dst src2 |O‘0‘0’0’0|x|1‘0|0‘1‘0’0’1|1|1‘0|s‘p‘
3 1 5 5 1 1 1
Opcode map field used... For operand type... Unit
src2 xuint L1, L2
dst dp
Description The unsigned integer value in src2 is converted to a single-precision value and placed in
dst.
The only configuration bit that can be set is the INEX bit and only if the mantissa is
rounded.
Execution
if (cond) sp(src2) — dst
else nop
Pipeline

Instruction Type
Delay Slots

Functional Unit Latency

Pipeline Stage El E2 E3 E4
Read src2
Written dst
Unit in use L

Four-cycle

3

1

See Also INTDP, INTDPU, INTSP
Example I NTSPU . L1X B1, A2
Before instruction 4 cycles after instruction
B1 \ FFFF FFDEh | 4,294,967,262 B1 \ FFFF FFDEh \
A2 | x000x x000¢h | A2 | 4F80 0000h | 4.2949673 E09

278 Instruction Set

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

LDB(U) — Load Byte From Memory With a 5-Bit Unsigned Constant Offset or Register Offset

LDB(U)
Syntax

Register Offset

Load Byte From Memory With a 5-Bit Unsigned Constant Offset or Register Offset

Unsigned Constant Offset

LDB (.unit) *+baseRJ[offsetR], dst LDB (.unit) *+baseR[ucst5], dst
or or
LDBU (.unit) *+baseR[offsetR], dst LDBU (.unit) *+baseR[ucst5], dst

unit = .D1 or .D2

Compact Instruction Format

Unit Opcode Format Figure
.D Doff4 Figure C-8
Dind Figure C-10
Dinc Figure C-12
Ddec Figure C-14
Opcode
31 29 28 27 23 22 18 17 13 12 9 8 7 6 4 3 2 1 0
\ creg | z | dst baseR offsetR/ucst5 mode \ 0 \ y \ op | 0 \ 1 | S \ p \
3 1 5 5 5 4 1 3 1 1
Description Loads a byte from memory to a general-purpose register (dst). Table 3-23 summarizes
the data types supported by loads. Table 3-11 describes the addressing generator
options. The memory address is formed from a base address register (baseR) and an
optional offset that is either a register (offsetR) or a 5-bit unsigned constant (ucstb). If an
offset is not given, the assembler assigns an offset of zero.
Table 3-23. Data Types Supported by LDB(U) Instruction
Mnemonic op Field Load Data Type Slze Left Shift of Offset
LDB 0 1 0 Load byte 8 0 bits
LDBU 0 0 1 Load byte unsigned 8 0 bits

offsetR and baseR must be in the same register file and on the same side as the .D unit
used. The y bit in the opcode determines the .D unit and register file used: y = 0 selects
the .D1 unit and baseR and offsetR from the A register file, and y = 1 selects the .D2 unit
and baseR and offsetR from the B register file.

offsetR/ucst5 is scaled by a left-shift of O bits. After scaling, offsetR/ucst5 is added to or
subtracted from baseR. For the preincrement, predecrement, positive offset, and
negative offset address generator options, the result of the calculation is the address to
be accessed in memory. For postincrement or postdecrement addressing, the value of
baseR before the addition or subtraction is the address to be accessed in memory.

The addressing arithmetic that performs the additions and subtractions defaults to linear
mode. However, for A4-A7 and for B4-B7, the mode can be changed to circular mode by
writing the appropriate value to the AMR (see Section 2.8.3).

SPRUFE8B-July 2010

Instruction Set 279

Copyright © 2010, Texas Instruments Incorporated

LDB(U) — Load Byte From Memory With a 5-Bit Unsigned Constant Offset or Register Offset

13 TEXAS
INSTRUMENTS

www.ti.com

Execution

if (cond)
else nop

Pipeline

Instruction Type

For LDB(U), the values are loaded into the 8 LSBs of dst. For LDB, the upper 24 bits of
dst values are sign-extended; for LDBU, the upper 24 bits of dst are zero-filled. The s bit
determines which file dst will be loaded into: s = 0 indicates dst will be loaded in the A
register file and s = 1 indicates dst will be loaded in the B register file.

Increments and decrements default to 1 and offsets default to O when no bracketed
register or constant is specified. Loads that do no modification to the baseR can use the
syntax *R. Square brackets, [], indicate that the ucst5 offset is left-shifted by 0.
Parentheses, (), can be used to set a nonscaled, constant offset. You must type either
brackets or parentheses around the specified offset, if you use the optional offset

parameter.

mem — dst

Pipeline Stage El E2 E3 E4 E5
Read baseR, offsetR

Written baseR dst
Unit in use .D
Load

Delay Slots 4 for loaded value
0 for address modification from pre/post increment/decrement
For more information on delay slots for a load, see Chapter 4.
See Also LDH, LDW
Examples Example 1
LDB . DL *-AS[4], A7
Before instruction 1 cycle fafter 5 cycles after
instruction instruction
A5 | 0000 0204h | As | 0000 0204h s | 0000 0204h |
A7 1951 1970h | A7 | 1951 1970h | A7 | FFFF FFE1h |
AMR | 0000 0000h | AMR | 0000 0000h | AMR | 0000 0000h |
mem 200h | E1h | mem 200h | E1h | mem 200h E1h |

280 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRUFE8B-July 2010

13 TEXAS
INSTRUMENTS

www.ti.com LDB(U) — Load Byte From Memory With a 5-Bit Unsigned Constant Offset or Register Offset

Example 2
LDB . DL *++A4[5], A8

Before instruction 1 cycle after 5 cycles after
instruction instruction
A4 \ 0000 0400h | A4 \ 0000 4005h \ A4 | 0000 4005h \
A8 | 0000 0000h | A8 | 0000 0000h | As 0000 0067h |
AMR \ 0000 0000h | AMR \ 0000 0000h \ AMR | 0000 0000h \
mem 4000h \ 0112 2334h | mem 4000h \ 0112 2334h \ mem 4000h | 0112 2334h \
mem 4004h \ 4556 6778h | mem 4004h \ 4556 6778h \ mem 4004h | 4556 6778h \
Example 3
LDB . Dl *Ad++[5], A8
Before instruction 1 cycle after 5 cycles after
instruction instruction
A4 | 0000 0400h | A4 | 0000 4005h | A4 | 0000 4005h |
A8 \ 0000 0000h | A8 \ 0000 0000h \ A8 | 0000 0034h \
AMR | 0000 0000h | AMR | 0000 0000h | AMR | 0000 0000h |
mem 4000h \ 0112 2334h | mem 4000h \ 0112 2334h \ mem 4000h | 0112 2334h \
mem 4004h \ 4556 6778h | mem 4004h \ 4556 6778h \ mem 4004h | 4556 6778h \
Example 4
LDB . Dl *++A4[Al2], A8
Before instruction 1 cycle after 5 cycles after
instruction instruction
A4 \ 0000 0400h | A4 \ 0000 4006h \ A4 | 0000 4006h \
A8 \ 0000 0000h | A8 \ 0000 0000h \ A8 | 0000 0056h \
A12 \ 0000 0006h | A12 \ 0000 0006h \ A12 | 0000 0006h \
AMR \ 0000 0000h | AMR \ 0000 0000h \ AMR | 0000 0000h \
mem 4000h \ 0112 2334h | mem 4000h \ 0112 2334h \ mem 4000h | 0112 2334h \
mem 4004h \ 4556 6778h | mem 4004h \ 4556 6778h \ mem 4004h | 4556 6778h \

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set

281

13 TEXAS
INSTRUMENTS

LDB(U) — Load Byte From Memory With a 15-Bit Unsigned Constant Offset www.ti.com

LDB(U)

Syntax

Opcode

31 29 28 27

Load Byte From Memory With a 15-Bit Unsigned Constant Offset

LDB (.unit) *+B14/B15[ucst15], dst
or

LDBU (.unit) *+B14/B15[ucst15], dst
unit = .D2

23 22 8 7 6 4 3 2 1 O

\ creg |z|

ucst1s [y oo J1]1[s][p]

3 1

Description

15 1 3 1 1

Loads a byte from memory to a general-purpose register (dst). Table 3-24 summarizes
the data types supported by loads. The memory address is formed from a base address
register B14 (y = 0) or B15 (y = 1) and an offset, which is a 15-bit unsigned constant
(ucstl15). The assembler selects this format only when the constant is larger than five
bits in magnitude. This instruction operates only on the .D2 unit.

The offset, ucst15, is scaled by a left shift of O bits. After scaling, ucst15 is added to
baseR. Subtraction is not supported. The result of the calculation is the address sent to
memory. The addressing arithmetic is always performed in linear mode.

For LDB(U), the values are loaded into the 8 LSBs of dst. For LDB, the upper 24 bits of
dst values are sign-extended; for LDBU, the upper 24 bits of dst are zero-filled. The s bit
determines which file dst will be loaded into: s = 0 indicates dst will be loaded in the A
register file and s = 1 indicates dst will be loaded in the B register file.

Square brackets, [], indicate that the ucstl50ffset is left-shifted by 0. Parentheses, (),
can be used to set a nonscaled, constant offset. You must type either brackets or
parentheses around the specified offset, if you use the optional offset parameter.

Table 3-24. Data Types Supported by LDB(U) Instruction (15-Bit Offset)

Mnemonic

op Field Load Data Type Slze Left Shift of Offset

LDB
LDBU

0 1 0 Load byte 8 0 bits
0 0 1 Load byte unsigned 8 0 bits

Execution

if (cond)
else nop

mem — dst

NOTE: This instruction executes only on the B side (.D2).

282 Instruction Set

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com LDB(U) — Load Byte From Memory With a 15-Bit Unsigned Constant Offset
Pipeline
Pipeline Stage El E2 E3 E4 E5
Read B14/B15
Written dst
Unit in use .D2
Instruction Type Load
Delay Slots 4
See Also LDH, LDW
Example LDB . D2 *+B14[36], Bl
Before instruction 1 cycle after instruction
B1 | XXXX Xxxxh ‘ B1 ‘ XXXX XXxxh ‘
B14 0000 0100h | B14 | 0000 0100h |
mem 124-127h | AETAFF12h | mem 124-127h | AE7AFF12h |
mem 124h | 12h | mem 124n [12n |
5 cycles after instruction
B1 | 0000 0012h |
B14 | 0000 0100h |
mem 124-127h | AE7AFF12h |
mem 124h [12n |

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set

283

13 TEXAS

INSTRUMENTS
LDDW — Load Doubleword From Memory With a 5-Bit Unsigned Constant Offset or Register Offset www.ti.com
LDDW Load Doubleword From Memory With a 5-Bit Unsigned Constant Offset or
Register Offset
Syntax

Register Offset

Unsigned Constant Offset

LDDW (.unit) *+baseR[offsetR], dst LDDW (.unit) *+baseR[ucst5], dst

unit = .D1 or .D2

Compact Instruction Format

Unit Opcode Format Figure
.D DoffADW Figure C-9
DindDW Figure C-11
DincDW Figure C-13
DdecDW Figure C-15
Dpp Figure C-21
Opcode
31 29 28 27 23 22 18 17 13 12 9 8 7 6 5 4 3 2 1 O
\ creg | z | baseR offsetR/ucst5 mode \ 1 \ y \ 1 \ 1 | 0 | 0 \ 1 | s \ p \
3 1 5 5 4 1 1 1
Description Loads a 64-bit quantity from memory into a register pair dst_o:dst_e. Table 3-11

describes the addressing generator options. The memory address is formed from a base
address register (baseR) and an optional offset that is either a register (offsetR) or a
5-bit unsigned constant (ucst5).

Both offsetR and baseR must be in the same register file and on the same side as the .D
unit used. The y bit in the opcode determines the .D unit and the register file used: y =0
selects the .D1 unit and the baseR and offsetR from the A register file, and y = 1 selects
the .D2 unit and baseR and offsetR from the B register file. The s bit determines the
register file into which the dst is loaded: s = 0 indicates that dst is in the A register file,
and s = 1 indicates that dst is in the B register file. The dst field must always be an even
value because the LDDW instruction loads register pairs. Therefore, bit 23 is always
zero.

The offsetR/ucst5 is scaled by a left-shift of 3 to correctly represent doublewords. After
scaling, offsetR/ucst5 is added to or subtracted from baseR. For the preincrement,
predecrement, positive offset, and negative offset address generator options, the result
of the calculation is the address to be accessed in memory. For postincrement or
postdecrement addressing, the shifted value of baseR before the addition or subtraction
is the address to be accessed in memory.

Increments and decrements default to 1 and offsets default to O when no bracketed
register, bracketed constant, or constant enclosed in parentheses is specified. Square
brackets, [], indicate that ucst5 is left shifted by 3. Parentheses, (), indicate that ucst5 is
not left shifted. In other words, parentheses indicate a byte offset rather than a
doubleword offset. You must type either brackets or parenthesis around the specified
offset if you use the optional offset parameter.

284 Instruction Set

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

LDDW — Load Doubleword From Memory With a 5-Bit Unsigned Constant Offset or Register Offset

The addressing arithmetic that performs the additions and subtractions defaults to linear
mode. However, for A4-A7 and for B4-B7, the mode can be changed to circular mode by
writing the appropriate value to the AMR (see Section 2.8.3).

The destination register pair must consist of a consecutive even and odd register pair
from the same register file. The instruction can be used to load a double-precision
floating-point value (64 bits), a pair of single-precision floating-point words (32 bits), or a
pair of 32-bit integers. The 32 least-significant bits are loaded into the even-numbered
register and the 32 most-significant bits (containing the sign bit and exponent) are
loaded into the next register (which is always odd-numbered register). The register pair
syntax places the odd register first, followed by a colon, then the even register (that is,
A1:A0, B1:BO, A3:A2, B3:B2, etc.).

All 64 bits of the double-precision floating point value are stored in big- or little-endian
byte order, depending on the mode selected. When the LDDW instruction is used to load
two 32-bit single-precision floating-point values or two 32-bit integer values, the order is
dependent on the endian mode used. In little-endian mode, the first 32-bit word in
memory is loaded into the even register. In big-endian mode, the first 32-bit word in
memory is loaded into the odd register. Regardless of the endian mode, the doubleword
address must be on a doubleword boundary (the three LSBs are zero).

Execution
if (cond) mem — dst
else nop
Pipeline
Pipeline Stage El E2 E3 E4 E5
Read baseR, offsetR
Written baseR dst
Unit in use .D
Instruction Type Load
Delay Slots 4
Functional Unit Latency 1
Examples Example 1
LDDW . D2 *+B10[1], Al: AO
Before instruction 5 cycles after instruction
Al1:A0 ‘ XXXX XXXXh ‘ XXXX XXxXh | Al1:A0 | 4021 3333h ‘ 3333 3333h ‘
B10 0000 0010h 16 B10 0000 0010h
mem 18h | 33333333h | 4021 3333h 8.6 mem 18h 33333333h | 4021 3333h |
Little-endian mode

SPRUFE8B-July 2010

Instruction Set 285

Copyright © 2010, Texas Instruments Incorporated

LDDW — Load Doubleword From Memory With a 5-Bit Unsigned Constant Offset or Register Offset

13 TEXAS
INSTRUMENTS

www.ti.com

Example 2
LDDW . D1 *++A10[1], Al: AO

Before instruction

1 cycle after instruction

Al:A0 ‘ XXXX XXXxh ‘ XXXX XXxXh | Al:A0 | XXXX Xxxxh ‘ XXXX Xxxxh ‘
A10 0000 0010h 16 A10 0000 0018h 24
mem 18h | 40213333h | 33333333h 8.6 mem18h | 40213333h 3333 3333h |
5 cycles after instruction
AL:A0 4021 3333h | 3333 3333h |
A10 (o000 00180 | 24
mem 18h | 4021 3333h | 3333 3333h |
Big-endian mode
Example 3
LDDW . DL *Ad++[5] , A9: A8
Before instruction 1 cycle after instruction
A9:A8 ‘ XXXX XXxXh | XXXX Xxxxh ‘ A9:A8 | XXXX Xxxxh ‘ XXXX XXxXh |
A4 | 0000 40B0h | A4 0000 40B0h |
mem 40B0h | 0112 2334h | 4556 6778h | mem 40B0h 0112 2334h | 4556 6778h |
5 cycles after instruction
A9:A8 | 4556 6778h | 0112 2334h |
A4 | 0000 40B0h |
mem 40B0h 0112 2334h | 4556 6778h |

Little-endian mode

286

Instruction Set

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com LDDW — Load Doubleword From Memory With a 5-Bit Unsigned Constant Offset or Register Offset
Example 4
LDDW . D1 *++A4[A12], A9: A8
Before instruction 1 cycle after instruction
A9:A8 ‘ XXXX XXXXh ‘ XXXX XXXXh A9:A8 ‘ XXXX XXXXh ‘ XXXX XXXXh
A4 \ 0000 40B0h \ A4 \ 0000 40E0Oh \
A12 | 0000 0006h | A12 | 0000 0006h |
mem 40EOh \ 0112 2334h \ 4556 6778h 8 mem 40EOh \ 0112 2334h \ 4556 6778h \
5 cycles after instruction
AQ:A8 \ 4556 6778h \ 0112 2334h \
A4 \ 0000 40E0Oh \
A12 | 0000 0006h |
mem 40EOh \ 0112 2334h \ 4556 6778h
Little-endian mode
Example 5
LDDW . D1 *++A4(16), A9: A8
Before instruction 1 cycle after instruction
A9:A8 ‘ XXXX XXXXh ‘ XXXX XXXXh ‘ A9:A8 | XXXX XXXXh | XXXX XXXXh ‘
A4 \ 0000 40B0h \ A4 | 0000 40C0h |
mem 40COh | 4556 6778h | 899A ABBCh | memad4ocoh | 4556 6778h | 899A ABBCh |
5 cycles after instruction
A9:A8 | 899A ABBCh | 4556 6778h \
A4 | 0000 40COh |
mem 40C0h | 4556 6778h | 899A ABBCh \
Little-endian mode
SPRUFE8B-July 2010 Instruction Set 287

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
LDH(U) — Load Halfword From Memory With a 5-Bit Unsigned Constant Offset or Register Offset www.ti.com
LDH(V) Load Halfword From Memory With a 5-Bit Unsigned Constant Offset or
Register Offset
Syntax
Register Offset Unsigned Constant Offset
LDH (.unit) *+baseR][offsetR], dst LDH (.unit) *+baseR[ucst5], dst
or or
LDHU (.unit) *+baseR[offsetR], dst LDHU (.unit) *+baseR[ucst5], dst
unit = .D1 or .D2
Compact Instruction Format
Unit Opcode Format Figure
.D Doff4 Figure C-8
Dind Figure C-10
Dinc Figure C-12
Ddec Figure C-14
Opcode
31 29 28 27 23 22 18 17 13 12 9 8 7 6 4 3 2 1 0
‘ creg | z | dst baseR offsetR/ucst5 mode ‘ 0 ‘ y ‘ op | 0 ‘ 1 | S ‘ p ‘
3 1 5 5 5 4 1 3 1 1
Description Loads a halfword from memory to a general-purpose register (dst). Table 3-25
summarizes the data types supported by halfword loads. Table 3-11 describes the
addressing generator options. The memory address is formed from a base address
register (baseR) and an optional offset that is either a register (offsetR) or a 5-bit
unsigned constant (ucstb). If an offset is not given, the assembler assigns an offset of
zero.
Table 3-25. Data Types Supported by LDH(U) Instruction
Mnemonic op Field Load Data Type Slze Left Shift of Offset
LDH 1 0 0 Load halfword 16 1 bit
LDHU 0 0 0 Load halfword unsigned 16 1 bit
offsetR and baseR must be in the same register file and on the same side as the .D unit
used. The y bit in the opcode determines the .D unit and register file used: y = 0 selects
the .D1 unit and baseR and offsetR from the A register file, and y = 1 selects the .D2 unit
and baseR and offsetR from the B register file.
offsetR/ucst5 is scaled by a left-shift of 1 bit. After scaling, offsetR/ucst5 is added to or
subtracted from baseR. For the preincrement, predecrement, positive offset, and
negative offset address generator options, the result of the calculation is the address to
be accessed in memory. For postincrement or postdecrement addressing, the value of
baseR before the addition or subtraction is the address to be accessed in memory.
288 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

LDH(U) — Load Halfword From Memory With a 5-Bit Unsigned Constant Offset or Register Offset

Execution

if (cond)
else nop

Pipeline

Instruction Type

The addressing arithmetic that performs the additions and subtractions defaults to linear
mode. However, for A4-A7 and for B4-B7, the mode can be changed to circular mode by
writing the appropriate value to the AMR (see Section 2.8.3).

For LDH(U), the values are loaded into the 16 LSBs of dst. For LDH, the upper 16 bits of
dst are sign-extended; for LDHU, the upper 16 bits of dst are zero-filled. The s bit
determines which file dst will be loaded into: s = 0 indicates dst will be loaded in the A
register file and s = 1 indicates dst will be loaded in the B register file.

Increments and decrements default to 1 and offsets default to O when no bracketed
register or constant is specified. Loads that do no modification to the baseR can use the
syntax *R. Square brackets, [], indicate that the ucst5 offset is left-shifted by 1.
Parentheses, (), can be used to set a nonscaled, constant offset. You must type either
brackets or parentheses around the specified offset, if you use the optional offset
parameter.

Halfword addresses must be aligned on halfword (LSB is 0) boundaries.

mem — dst

Pipeline Stage El E2 E3 E4 E5
Read baseR, offsetR

Written baseR dst
Unit in use .D
Load

Delay Slots 4 for loaded value
0 for address modification from pre/post increment/decrement
For more information on delay slots for a load, see Chapter 4.
See Also LDB, LDW
Example LDH . D1 *++A4[Al], A8
Before ' 1 cycle after instruction 5 cycles after
instruction instruction
Al | 0000 0002h A1 | 0000 0002h A1 | 0000 0002h |
A4 | 0000 0020h | A4 | 0000 0024h | A4 | 0000 0024h |
A8 | 1103 51FFh | As | 1103 51FFh | As | FFFF A21Fh |
AMR | 0000 0000h | AMR | 0000 0000h | AMR | 0000 0000h |
mem 24h | A21Fh | mem24h |A21Fh | mem24h |A21Fh |

SPRUFE8B-July 2010

Instruction Set 289

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

LDH(U) — Load Halfword From Memory With a 15-Bit Unsigned Constant Offset www.ti.com

LDH(U)

Syntax

Opcode

31 29 28 27

Load Halfword From Memory With a 15-Bit Unsigned Constant Offset

LDH (.unit) *+B14/B15[ucst15], dst
or

LDHU (.unit) *+B14/B15[ucst15], dst
unit = .D2

23 22 8 7 6 4 3 2 1 O

\ creg |z|

ucst1s [y oo J1]1[s][p]

3 1

Description

15 1 3 1 1

Loads a halfword from memory to a general-purpose register (dst). Table 3-26
summarizes the data types supported by loads. The memory address is formed from a
base address register B14 (y = 0) or B15 (y = 1) and an offset, which is a 15-bit
unsigned constant (ucstl5). The assembler selects this format only when the constant is
larger than five bits in magnitude. This instruction operates only on the .D2 unit.

The offset, ucst15, is scaled by a left shift of 1 bit. After scaling, ucst15 is added to
baseR. Subtraction is not supported. The result of the calculation is the address sent to
memory. The addressing arithmetic is always performed in linear mode.

For LDH(U), the values are loaded into the 16 LSBs of dst. For LDH, the upper 16 bits of
dst are sign-extended; for LDHU, the upper 16 bits of dst are zero-filled. The s bit
determines which file dst will be loaded into: s = 0 indicates dst will be loaded in the A
register file and s = 1 indicates dst will be loaded in the B register file.

Square brackets, [], indicate that the ucstl50ffset is left-shifted by 1. Parentheses, (),
can be used to set a nonscaled, constant offset. You must type either brackets or
parentheses around the specified offset, if you use the optional offset parameter.

Halfword addresses must be aligned on halfword (LSB is 0) boundaries.

Table 3-26. Data Types Supported by LDH(U) Instruction (15-Bit Offset)

Mnemonic

op Field Load Data Type Slze Left Shift of Offset

LDH
LDHU

1 0 0 Load halfword 16 1 bit
0 0 0 Load halfword unsigned 16 1 bit

Execution

if (cond)
else nop

mem — dst

NOTE: This instruction executes only on the B side (.D2).

290 Instruction Set

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com LDH(U) — Load Halfword From Memory With a 15-Bit Unsigned Constant Offset
Pipeline
Pipeline Stage El E2 E3 E4 E5
Read B14/B15
Written dst
Unit in use .D2
Instruction Type Load
Delay Slots 4
See Also LDB, LDW

SPRUFE8B-July 2010 Instruction Set 291

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
LDNDW — Load Nonaligned Doubleword From Memory With Constant or Register Offset www.ti.com
LDNDW Load Nonaligned Doubleword From Memory With Constant or Register Offset
Syntax

Register Offset

Unsigned Constant Offset

LDNDW (.unit) *+baseR[offsetR], dst LDNDW (.unit) *+baseR[ucst5], dst

unit = .D1 or .D2

Compact Instruction Format

Unit Opcode Format Figure
.D DoffADW Figure C-9
DindDW Figure C-11
DincDW Figure C-13
DdecDW Figure C-15
Opcode
31 29 28 27 24 23 22 18 17 13 12 9 8 7 6 5 4 3 2 1 O
‘ creg | z | dst ‘sc‘ baseR offsetR/ucst5 mode ‘ 1 ‘ y ‘ 0 ‘ 1 | 0 | 0 ‘ 1 | S ‘ p ‘
3 1 4 1 5 5 4 1 1 1
Opcode map field used... For operand type... Unit
baseR uint .D1, .D2
offsetR uint
dst ullong
baseR uint .D1, .D2
offsetR ucsts
dst ullong
Description Loads a 64-bit quantity from memory into a register pair, dst_o:dst_e. Table 3-11

describes the addressing generator options. The LDNDW instruction may read a 64-bit
value from any byte boundary. Thus alignment to a 64-bit boundary is not required. The
memory address is formed from a base address register (baseR) and an optional offset
that is either a register (offsetR) or a 5-bit unsigned constant (ucstb).

Both offsetR and baseR must be in the same register file, and on the same side, as the
.D unit used. The y bit in the opcode determines the .D unit and register file used: y = 0
selects the .D1 unit and baseR and offsetR from the A register file, and y = 1 selects the
.D2 unit and baseR and offsetR from the B register file.

The LDNDW instruction supports both scaled offsets and nonscaled offsets. The sc field
is used to indicate whether the offsetR/ucst5 is scaled or not. If sc is 1 (scaled), the
offsetR/ucst5 is shifted left 3 bits before adding or subtracting from the baseR. If sc is 0
(nonscaled), the offsetR/ucst5 is not shifted before adding or subtracting from the baseR.
For the preincrement, predecrement, positive offset, and negative offset address
generator options, the result of the calculation is the address to be accessed in memory.
For postincrement or postdecrement addressing, the value of baseR before the addition
or subtraction is the address to be accessed from memory.

292 Instruction Set

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

LDNDW — Load Nonaligned Doubleword From Memory With Constant or Register Offset

Assembler Notes

Execution

if (cond)
else nop

Pipeline

Instruction Type

Delay Slots

See Also

The addressing arithmetic that performs the additions and subtractions defaults to linear
mode. However, for A4-A7 and for B4-B7, the mode can be changed to circular mode by
writing the appropriate value to the AMR (see Section 2.8.3).

The dst field of the instruction selects a register pair, a consecutive even-numbered and
odd-numbered register pair from the same register file. The instruction can be used to
load a pair of 32-bit integers. The 32 least-significant bits are loaded into the
even-numbered register and the 32 most-significant bits are loaded into the next register
(that is always an odd-numbered register).

The dst can be in either register file, regardless of the .D unit or baseR or offsetR used.
The s bit determines which file dst will be loaded into: s = 0 indicates dst will be in the A
register file and s = 1 indicates dst will be loaded in the B register file.

NOTE: No other memory access may be issued in parallel with a nonaligned
memory access. The other .D unit can be used in parallel as long as it is
not performing a memory access.

When no bracketed register or constant is specified, the assembler defaults increments
and decrements to 1 and offsets to 0. Loads that do no modification to the baseR can
use the assembler syntax *R. Square brackets, [], indicate that the ucst5 offset is
left-shifted by 3 for doubleword loads.

Parentheses, (), can be used to tell the assembler that the offset is a non-scaled offset.

For example, LDNDW (.unit) *+baseR (14), dst represents an offset of 14 bytes, and the
assembler writes out the instruction with offsetC = 14 and sc = 0.

LDNDW (.unit) *+baseR [16], dst represents an offset of 16 doublewords, or 128 bytes,
and the assembler writes out the instruction with offsetC = 16 and sc = 1.

Either brackets or parentheses must be typed around the specified offset if the optional
offset parameter is used.

mem — dst

Pipeline Stage El E2 E3 E4 E5
Read baseR, offsetR

Written baseR dst
Unit in use .D
Load

4 for loaded value
0 for address modification from pre/post increment/decrement

LDNW, STNDW, STNW

SPRUFE8B-July 2010

Instruction Set 293

Copyright © 2010, Texas Instruments Incorporated

LDNDW — Load Nonaligned Doubleword From Memory With Constant or Register Offset

13 TEXAS
INSTRUMENTS

www.ti.com

Examples Example 1
LDNDW . D1 *AO++, A3: A2

Before instruction

AO | 0000 1001h | A0
A3:A2 ‘ XXXX XXXXh ‘ XXXX XXXXh A3:A2
mem 1000h | 12B6 C5D4h | mem 1000h
mem 1004h | 1C4F 29A8h | mem 1004h
mem 1008h | 0569 345Eh | mem 1008h
A0
A3:A2
mem 1000h
mem 1004h
mem 1008h

1 cycle after instruction

| 0000 1009h

| XXXX XXXXh

| XXXX XXxXXh

| 12B6 C5D4h

| 1C4F 29A8h

| 0569 345Eh

5 cycles after instruction

| 0000 1009h

| 5E1C 4F29h

|A812 B6CSh

Little-endian mode

| 12B6 C5D4h

| 1C4F 29A8h

| 0569 345Eh

Byte Memory 100C 100B
Address

Data Value 11 05

100A 1009 1008 1007 1006 1005 1004 1003

69 34 5E 1C 4F 29

A8 12

1002 1001 1000

B6 C5 D4

294

Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRUFE8B-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com LDNDW — Load Nonaligned Doubleword From Memory With Constant or Register Offset
Example 2
LDNDW . D1 *AQ++, A3: A2
Before instruction 1 cycle after instruction

AO | 0000 1003h | A0 | 0000 100Bh |

A3:A2 ‘ XXXX XXXXh ‘ XXXX XXXXh A3:A2 | XXXX XXXXh | XXXX XXxXXh

mem 1000h | 12B6 C5D4h | mem 1000h | 12B6 C5D4h |

mem 1004h | 1C4F 29A8h | mem 1004h | 1C4F 29A8h |

mem 1008h | 0569 345Eh | mem 1008h | 0569 345Eh |

5 cycles after instruction

AO | 0000 100Bh |

A3:A2 | 6934 5E1Ch | 4F29 A812h
Little-endian mode

mem 1000h | 12B6 C5D4h |
mem 1004h | 1C4F 29A8h |
mem 1008h | 0569 345Eh |

Byte Memory 100C 100B 100A 1009 1008 1007 1006 1005 1004 1003 1002 1001 1000

Address
Data Value 11 05 69 34 5E 1C 4F 29 A8 12 B6 C5 D4
SPRUFE8B-July 2010 Instruction Set 295

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
LDNW — Load Nonaligned Word From Memory With Constant or Register Offset www.ti.com
LDNW Load Nonaligned Word From Memory With Constant or Register Offset
Syntax

Register Offset

Unsigned Constant Offset

LDNW (.unit) *+baseR[offsetR], dst LDNW (.unit) *+baseR[ucst5], dst

unit = .D1 or .D2

Compact Instruction Format

Unit Opcode Format Figure
.D Doff4 Figure C-8
Dind Figure C-10
Dinc Figure C-12
Ddec Figure C-14
Opcode
31 29 28 27 23 22 18 17 13 12 9 8 7 6 5 4 3 2 1 0
‘ creg | z | baseR offsetR/ucst5 mode ‘ 1 ‘ y ‘ 0 ‘ 1 | 1 | 0 ‘ 1 | S ‘ p ‘
1 5 5 4 1 1 1
Opcode map field used... For operand type... Unit
baseR uint .D1, .D2
offset uint
dst int
baseR uint .D1, .D2
offset ucst5
dst int
Description Loads a 32-bit quantity from memory into a 32-bit register, dst. Table 3-11 describes the
addressing generator options. The LDNW instruction may read a 32-bit value from any
byte boundary. Thus alignment to a 32-bit boundary is not required. The memory
address is formed from a base address register (baseR), and an optional offset that is
either a register (offsetR) or a 5-bit unsigned constant (ucst5). If an offset is not given,
the assembler assigns an offset of zero.
Both offsetR and baseR must be in the same register file, and on the same side, as the
.D unit used. The y bit in the opcode determines the .D unit and register file used: y = 0
selects the .D1 unit and baseR and offsetR from the A register file, and y = 1 selects the
.D2 unit and baseR and offsetR from the B register file.
The offsetR/ucst5 is scaled by a left shift of 2 bits. After scaling, offsetR/ucst5 is added
to, or subtracted from, baseR. For the preincrement, predecrement, positive offset, and
negative offset address generator options, the result of the calculation is the address to
be accessed in memory. For postincrement or postdecrement addressing, the value of
baseR before the addition or subtraction is the address to be accessed from memory.
296 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

LDNW — Load Nonaligned Word From Memory With Constant or Register Offset

Assembler Notes

Execution

if (cond)
else nop

Pipeline

Instruction Type

Delay Slots

See Also

The addressing arithmetic that performs the additions and subtractions defaults to linear
mode. However, for A4-A7 and for B4-B7, the mode can be changed to circular mode by
writing the appropriate value to the AMR (see Section 2.8.3).

The dst can be in either register file, regardless of the .D unit or baseR or offsetR used.
The s bit determines which file dst will be loaded into: s = 0 indicates dst will be in the A
register file and s = 1 indicates dst will be loaded in the B register file.

NOTE: No other memory access may be issued in parallel with a nonaligned
memory access. The other .D unit can be used in parallel, as long as it is
not doing a memory access.

When no bracketed register or constant is specified, the assembler defaults increments
and decrements to 1 and offsets to 0. Loads that do no modification to the baseR can
use the assembler syntax *R. Square brackets, [], indicate that the ucst5 offset is
left-shifted by 2 for word loads.

Parentheses, (), can be used to tell the assembler that the offset is a nonscaled,
constant offset. The assembler right shifts the constant by 2 bits for word loads before
using it for the ucst5 field. After scaling by the LDNW instruction, this results in the same
constant offset as the assembler source if the least-significant two bits are zeros.

For example, LDNW (.unit) *+baseR (12), dst represents an offset of 12 bytes (3 words),
and the assembler writes out the instruction with ucst5 = 3.

LDNW (.unit) *+baseR [12], dst represents an offset of 12 words, or 48 bytes, and the
assembler writes out the instruction with ucst5 = 12.

Either brackets or parentheses must be typed around the specified offset if the optional
offset parameter is used.

mem — dst

Pipeline Stage El E2 E3 E4 E5
Read baseR, offsetR

Written baseR dst
Unit in use .D
Load

4 for loaded value
0 for address modification from pre/post increment/decrement

LDNDW, STNDW, STNW

SPRUFE8B-July 2010

Instruction Set 297

Copyright © 2010, Texas Instruments Incorporated

LDNW — Load Nonaligned Word From Memory With Constant or Register Offset

13 TEXAS
INSTRUMENTS

www.ti.com

Examples Example 1
LDNW . D1 *AQ++, A2
Before instruction 1 cycle after 5 cycles after
instruction instruction
AQ \ 0000 1001h | AO \ 0000 1005h AQ | 0000 1005h \
A2 ‘ XXXX XXxxh | A2 ‘ XXXX XXxXh A2 | A812 B6C5h
Little-endian mode

mem 1000h \ 12B6 C5D4h | mem 1000h \ 12B6 C5D4h mem 1000h | 12B6 C5D4h \
mem 1004h \ 1C4F 29A8h | mem 1004h \ 1C4F 29A8h mem 1004h | 1C4F 29A8h \
Byte Memory Address 1007 1006 1005 1004 1003 1002 1001 1000
Data Value 1C 4F 29 A8 12 B6 C5 D4

Example 2

LDNW . D1 *AQ++, A2

Before instruction 1 cycle after 5 cycles after
instruction instruction
AQ \ 0000 1003h | AO \ 0000 1007h AO | 0000 1007h \
A2 ‘ XXXX XXxxh | A2 ‘ XXXX XXxXh A2 | 4F29 A812h ‘
Little-endian mode

mem 1000h \ 12B6 C5D4h | mem 1000h \ 12B6 C5D4h mem 1000h | 12B6 C5D4h \
mem 1004h \ 1C4F 29A8h | mem 1004h \ 1C4F 29A8h mem 1004h | 1C4F 29A8h \
Byte Memory Address 1007 1006 1005 1004 1003 1002 1001 1000
Data Value 1C 4F 29 A8 12 B6 C5 D4

298

Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRUFE8B-July 2010

13 TEXAS
INSTRUMENTS

www.ti.com LDW — Load Word From Memory With a 5-Bit Unsigned Constant Offset or Register Offset

LDW Load Word From Memory With a 5-Bit Unsigned Constant Offset or Register Offset
Syntax

Register Offset Unsigned Constant Offset
LDW (.unit) *+baseR][offsetR], dst LDW (.unit) *+baseR[ucst5], dst

unit = .D1 or .D2

Compact Instruction Format

Unit Opcode Format Figure
.D Doff4 Figure C-8
Dind Figure C-10
Dinc Figure C-12
Ddec Figure C-14
Opcode
31 29 28 27 23 22 18 17 13 12 9 8 7 6 5 4 3 2 1 O
‘ creg | z | dst baseR offsetR/ucst5 mode ‘ 0 ‘ y ‘ 1 ‘ 1 | 0 | 0 ‘ 1 | S ‘ p ‘
3 1 5 5 5 4 1 1 1
Description Loads a word from memory to a general-purpose register (dst). Table 3-11 describes the

addressing generator options. The memory address is formed from a base address
register (baseR) and an optional offset that is either a register (offsetR) or a 5-bit
unsigned constant (ucstb). If an offset is not given, the assembler assigns an offset of
zero.

offsetR and baseR must be in the same register file and on the same side as the .D unit
used. The y bit in the opcode determines the .D unit and register file used: y = 0 selects
the .D1 unit and baseR and offsetR from the A register file, and y = 1 selects the .D2 unit
and baseR and offsetR from the B register file.

offsetR/ucst5 is scaled by a left-shift of 2 bits. After scaling, offsetR/ucst5 is added to or
subtracted from baseR. For the preincrement, predecrement, positive offset, and
negative offset address generator options, the result of the calculation is the address to
be accessed in memory. For postincrement or postdecrement addressing, the value of
baseR before the addition or subtraction is the address to be accessed in memory.

The addressing arithmetic that performs the additions and subtractions defaults to linear
mode. However, for A4-A7 and for B4-B7, the mode can be changed to circular mode by
writing the appropriate value to the AMR (see Section 2.8.3).

For LDW, the entire 32 bits fills dst. dst can be in either register file, regardless of the .D
unit or baseR or offsetR used. The s bit determines which file dst will be loaded into:

s = 0 indicates dst will be loaded in the A register file and s = 1 indicates dst will be
loaded in the B register file.

Increments and decrements default to 1 and offsets default to O when no bracketed
register or constant is specified. Loads that do no modification to the baseR can use the
syntax *R. Square brackets, [], indicate that the ucst5 offset is left-shifted by 2.
Parentheses, (), can be used to set a nonscaled, constant offset. For example,

LDW (.unit) *+baseR (12), dst represents an offset of 12 bytes; whereas, LDW (.unit)
*+baseR [12], dst represents an offset of 12 words, or 48 bytes. You must type either

SPRUFE8B-July 2010 Instruction Set 299

Copyright © 2010, Texas Instruments Incorporated

LDW — Load Word From Memory With a 5-Bit Unsigned Constant Offset or Register Offset

13 TEXAS
INSTRUMENTS

www.ti.com

Execution

if (cond)
else nop

Pipeline

Instruction Type

brackets or parentheses around the specified offset, if you use the optional offset

parameter.

Word addresses must be aligned on word (two LSBs are 0) boundaries.

mem — dst

Pipeline Stage El E2 E3 E4 E5
Read baseR, offsetR

Written baseR dst
Unit in use .D

Load

Delay Slots 4 for loaded value
0 for address modification from pre/post increment/decrement
For more information on delay slots for a load, see Chapter 4.
See Also LDB, LDH
Examples Example 1
LDW . D1 *A10, Bl
Before instruction 1 cycle _after 5 cycles after
instruction instruction
B1 | 0000 0000h | B1 | 0000 0000h | B1 | 21F3 1996h |
A10 | 0000 0100h | A0 | 0000 0100h | A0 | 0000 0100h |
mem 100h | 21F3 1996h | mem 100h | 21F3 1996h | mem 100h | 21F3 1996h |
Example 2
LDW. DL *Ad++[1], A6
Before instruction 1 cycle _after 5 cycles_ after
instruction instruction
A4 | 0000 0100h A4 | 0000 0104h | A4 | 0000 0104h |
A6 1234 4321h | A6 | 1234 4321h | A6 | 0798 F25Ah |
AMR | 0000 0000h | AMR | 0000 0000h | AMR | 0000 0000h |
mem 100h | 0798 F25Ah | mem 100h | 0798 F25Ah | mem 100h | 0798 F25Ah |
mem 104h | 1970 19F3h | mem 104h | 1970 19F3h | mem 104h 1970 19F3h |
300 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

LDW — Load Word From Memory With a 5-Bit Unsigned Constant Offset or Register Offset

Example 3

LDW . D1 *++A4[1], A6

Before instruction 1 cycle after 5 cycles after
instruction instruction
A4 \ 0000 0100h | A4 \ 0000 0104h \ A4 | 0000 0104h \
A6 \ 1234 5678h | A6 \ 1234 5678h \ A6 | 0217 6991h \
AMR \ 0000 0000h | AMR \ 0000 0000h \ AMR | 0000 0000h \
mem 104h \ 0217 6991h | mem 104h \ 0217 6991h \ mem 104h | 0217 6991h \
Example 4
LDW . DL *++A4[A12] , A8
Before instruction 1 cycle after 5 cycles after
instruction instruction
A4 \ 0000 40B0h | A4 \ 0000 40C8h \ A4 | 0000 40C8h \
A8 | 0000 0000h | As | 0000 0000h | As | DCCB BAASh |
A12 \ 0000 0006h | A12 \ 0000 0006h \ A12 | 0000 0006h \
AMR | 0000 0000h | AMR | 0000 0000h | AMR | 0000 0000h |
mem 40C8h \ DCCB BAASh | mem 40C8h \ DCCB BAA8h \ mem 40C8h | DCCB BAASh \
Example 5
LDW . DL *++A4(8), A8
Before instruction 1 cycle after 5 cycles after
instruction instruction
A4 \ 0000 40B0h | A4 \ 0000 40B8h \ A4 | 0000 40B8h \
A8 \ 0000 0000h | A8 \ 0000 0000h \ A8 | 9AAB BCCDh \
AMR \ 0000 0000h | AMR \ 0000 0000h \ AMR | 0000 0000h \
mem 40Bgh \ 9AAB BCCDh | mem 40Bgh \ 9AAB BCCDh \ mem 40Bgh | 9AAB BCCDh \

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set

301

LDW — Load Word From Memory With a 15-Bit Unsigned Constant Offset

13 TEXAS
INSTRUMENTS

www.ti.com

LDW

Syntax

Load Word From Memory With a 15-Bit Unsigned Constant Offset

LDW (.unit) *+B14/B15[ucst15], dst
unit = .D2

Compact Instruction Format

Unit

Opcode Format Figure

.D

Dstk
Dpp

Figure C-16
Figure C-21

Opcode

31 29 28 27

23 22 8 7 6 5 4 3 2 1 O

’ creg | z |

dst

ucst15 ‘YI1’1|0|1‘1|5‘F"

3 1

Description

Execution

if (cond)
else nop

15 1 1 1

Load a word from memory to a general-purpose register (dst). The memory address is
formed from a base address register B14 (y = 0) or B15 (y = 1) and an offset, which is a
15-bit unsigned constant (ucst15). The assembler selects this format only when the
constant is larger than five bits in magnitude. This instruction operates only on the .D2
unit.

The offset, ucstl5, is scaled by a left shift of 2 bits. After scaling, ucstl5 is added to
baseR. Subtraction is not supported. The result of the calculation is the address sent to
memory. The addressing arithmetic is always performed in linear mode.

For LDW, the entire 32 bits fills dst. dst can be in either register file. The s bit determines
which file dst will be loaded into: s = 0 indicates dst will be loaded in the A register file
and s = 1 indicates dst will be loaded in the B register file.

Square brackets, [], indicate that the ucstl50ffset is left-shifted by 2. Parentheses, (),
can be used to set a nonscaled, constant offset. For example,

LDW (.unit) *+B14/B15(60), dst represents an offset of 60 bytes; whereas,

LDW (.unit) *+B14/B15[60], dst represents an offset of 60 words, or 240 bytes. You must
type either brackets or parentheses around the specified offset, if you use the optional
offset parameter.

Word addresses must be aligned on word (two LSBs are 0) boundaries.

mem — dst

NOTE: This instruction executes only on the B side (.D2).

302

Instruction Set

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com LDW — Load Word From Memory With a 15-Bit Unsigned Constant Offset
Pipeline
Pipeline Stage E1l E2 E3 E4 E5
Read B14/B15
Written dst
Unit in use .D2
Instruction Type Load
Delay Slots 4
See Also LDB, LDH

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

Instruction Set

303

13 TEXAS

INSTRUMENTS
LMBD — Leftmost Bit Detection www.ti.com
LMBD Leftmost Bit Detection
Syntax LMBD (.unit) srcl, src2, dst
unit=.L1 or .L2
Opcode
31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0
’ creg | z | dst src2 srcl/cst5 | X | op | 1 | 1 ‘ 0 | S ‘ p ‘
3 1 5 5 5 1 7 1 1
Opcode map field used... For operand type... Unit Opfield
srcl uint L1, L2 110 1011
src2 xuint
dst uint
srcl cstb L1, L2 1101010
src2 xuint
dst uint
Description The LSB of the srcl operand determines whether to search for a leftmost 1 or 0 in src2.

The number of bits to the left of the first 1 or 0 when searching for a 1 or 0, respectively,
is placed in dst.

The following diagram illustrates the operation of LMBD for several cases.
When searching for 0 in src2, LMBD returns 0O:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Lol e D [x Db [x D o fx P fx Pox D [x D [fx [[fx [[x [x D [x [[[x [[x [x]

When searching for 1 in src2, LMBD returns 4:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Lofofofofa [x]x]xx]xx]xlx[x[x[x]x[x[x[x[x]x[x[x[x]x]x[x[x][x]x]x]

When searching for 0 in src2, LMBD returns 32:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[afa]

304 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
www.ti.com LMBD — Leftmost Bit Detection
Execution
if (cond) {
if (srcl , == 0), ImbO(src2) — dst
if (srcl o == 1), Imb1(src2) — dst
}
else nop
Pipeline
Pipeline Stage E1l
Read srcl, src2
Written dst
Unit in use L
Instruction Type Single-cycle
Delay Slots 0
Example LMBD . L1 Al, A2, A3
Before instruction 1 cycle after instructio