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Figure 1: The Visual DSD user interface.

1 Introduction

Visual DSD is a programming language and software tool for designing computational devices made of DNA. It was
originally proposed in [1] and has since been extended with a broad range of modelling and analysis capabilities
[2–14]. The main computational mechanism that underpins Visual DSD is DNA strand displacement [15], whose
systematic use was pioneered in [16]. DNA strand displacement can implement a broad range of computation,
including any computation that can be expressed as a chemical reaction network [17]. It involves an invading single
strand of DNA displacing an incumbent strand hybridized to a template strand. The process is mediated by a short,
single-stranded region of DNA referred to as a toehold. We assume that the reader is familiar with the basics of DNA
strand displacement. Additional technical details on the Visual DSD programming language can be found in [6].

Visual DSD compiles a collection of DNA molecules into a chemical reaction network (CRN). It also includes a
stochastic simulator, which computes a possible trajectory of the system and plots the populations of species over
time, together with a deterministic simulator, which forms and solves an Ordinary Differential Equation (ODE)
representation of the dynamics of the system. The reachable state space of the system can also be constructed as a
continuous time Markov chain (CTMC).

Visual DSD is available as a web-based graphical application, which runs entirely in a web browser on the
user’s device. Information entered into the tool by the user remains on the user’s device and is not transmit-
ted to the server. Visual DSD is compatible with most modern web browsers, and has been tested on recent
versions of Edge, Firefox, Safari and Chrome. It is also compatible with smart phones and tablets running the
Chrome browser, though it has not been customised for these devices. To access the user interface, browse to
https://classicdsd.azurewebsites.net. The tool should load within a few seconds. Note that when a new version of
the tool is released online, the web page may need to be refreshed in order to access the latest version. A download-
able version is also available from https://dsd.azurewebsites.net/server.

2 User Interface

A screen shot of the Visual DSD user interface is shown in Figure 1. The top right contains a link to the License
agreement, together with an Options menu for customising the user interface. The top left displays a row of buttons
that perform actions on user inputs, referred to as Action buttons. The tabs on the left display inputs that are edited
by the user, referred to as Input tabs. They follow a left-to-right progression, such that information is propagated
between tabs from left to right. The tabs on the right display outputs that are generated when an Action button is
pressed, referred to as Output tabs. We refer to specific tabs by their name and to nested tabs by their name preceded
by the name of their parent, for example the DSD/Code tab. In this section we illustrate the main functionality of
the user interface tabs, using a running example.
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(a) Library/Sequences tab (b) Library/Data tab

Figure 2: The Library tab.

2.1 Library
The Library tab (Figure 2) contains DNA sequences and experimental data that are used as inputs to a Visual DSD
program. These stored in two nested tabs, described below.

2.1.1 Library/Sequences

The Sequences tab (Figure 2a) contains two lists of DNA sequences, which are used to assign a default DNA sequence
to each domain in a given Visual DSD program. The first list specifies default sequences for toehold domains, which
are assumed to be short enough such that they bind reversibly to their complementary sequence. The second list
specifies default sequences for recognition domains, which are assumed to be long enough such that they bind
irreversibly to their complementary sequence. The list of recognition domains was kindly provided by Erik Winfree
and Lulu Qian, based on sequences published in [18]. Both lists can be edited by the user.

2.1.2 Library/Data

The Data tab (Figure 2b) contains tables of experimental data, which can be compared against model simulations in
order to infer model parameters. A number of tables are provided by default, and additional tables can be added
by the user, in either comma separated values (csv) format or tab separated values (tsv) format. To load a table,
either click the Load button to open a file navigation window and browse to the file, or drag the file onto the list of
existing tables. The table is added to the list using the name of the file with the extension removed, and can then
be referenced by this name within a Visual DSD program. Each file loaded by the user must conform to a standard
format. It should contain a single row of headers, which are used as labels for the various columns but do not affect
the program behaviour. Subsequent rows contain data points. The first column is reserved for specifying the time
at which each row of data was collected. Each file is assumed to contain a single time column.

2.2 DSD
The DSD tab (Figure 3) contains five nested tabs that follow a left-to-right progression, such that the contents of the
Directives, Parameters, Species and Reaction tabs are obtained from the contents of the Code tab. When one of the
nested tabs is modified by the user, an asterisk is displayed next to the tab name. Below we briefly describe the
contents of the nested tabs for our running example, where the first four nested tabs are displayed in Figure 3. The
Reactions tab is omitted, since it is empty in this example.
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(a) DSD/Code tab (b) DSD/Directives tab

(c) DSD/Parameters tab (d) DSD/Species tab

Figure 3: The DSD tab. (a) The code for this example is provided in the Examples menu of the DSD/Code tab, under the
heading Manual/Join. This is used as a running example for the remainder of this document.

2.2.1 DSD/Code

The Code tab (Figure 3a) contains a textual editor for Visual DSD programs. Standard text editing functionality
is provided, including syntax highlighting, loading and saving of files, find and replace, copy and paste, undo
and redo, and display of line numbers. The font size of the editor is adjusted by holding the control (Ctrl) key
while scrolling with a mouse or other input device. Several example programs are also provided in the Examples
drop-down menu. The full syntax of Visual DSD programs is summarised in Section 4. For illustration, we briefly
describe the Join program from the Manual section of the Examples menu (Figure 3a). The code for this program can
be divided into four sections: directives, domains, modules and initial conditions:

Directives are defined using the directive keyword and determine how the DSD program should be executed.
The simulation directive determines how the program should be simulated, where final = 600 sets the
final simulation time to 600, and plots = [Input1(); Input2(); Output(); Signal()] defines the DNA
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species to be plotted during simulation. Since no time units are specified explicitly, seconds (s) are used by
default. The simulator directive defines the type of simulator to be used. In this example the simulator
is set to deterministic, which means that the program will be compiled to a set of ordinary differential
equations and simulated deterministically by numerical integration. The parameters directive defines the
global parameters of the program, which are assumed to be floating point numbers. In this example there are
two parameters, k = 0.003 and u = 0.1. The compilation directive defines the method to be used when
compiling a DSD program to a chemical reaction network. In this example, the infinite compilation method
is used, which assumes that the concentration of DNA species is low enough such that toehold unbinding
and branch migration happen significantly faster than binding and are assumed to be effectively infinite.
Additional details on compilation methods are provided in Section 4.3.1.

Domains are defined using the dom keyword, where each domain is assumed to represent a unique DNA sequence.
We assume that a domain can bind to its complement but cannot interact with any other domains in the sys-
tem. As a result, care must be taken to ensure that non-interfering DNA sequences are used when performing
the corresponding biological experiments, for instance by relying on appropriate DNA coding strategies [18].
The code dom tb = {bind = k; unbind = u; colour = "red"} defines a domain tb with binding rate k,
unbinding rate u, and colour red. The domains tx and to are defined in a similar fashion. Binding rates are
assumed to have units of concentration−1time−1, while unbinding rates are assumed to have units of time−1.
The default concentration units are nanomolar (nM), while the default time units are seconds (s). If no rates
are specified then default rates are used, and if no colour is specified then each toehold domain is assigned a
distinct colour. If a domain is not declared using the dom keyword then default domain properties are used.

Modules are defined using the def keyword, where a given module can have zero or more arguments enclosed
in parentheses. The code def Input1() = <tbˆ b> defines a module Input1 with no arguments, equal to
the DNA strand <tbˆ b>. The modules Input2, Output and Signal are defined in a similar fashion. The
code def Join() = {tbˆ*}[b txˆ]:[x toˆ] defines a module Join with no arguments, equal to the DNA
complex {tbˆ*}[b txˆ]:[x toˆ]. The Reporter module is defined in a similar fashion. The syntax of DNA
strands and complexes for this example is briefly described in Section 2.2.4.

Initial conditions are defined by initialising one or more DNA species, separated by the parallel composition op-
erator (|). The code 100 Input1() initialises the species Input1 to 100. Since the simulator is set to determin-
istic, the number 100 represents a concentration, with default units of nM. If the simulator is set to stochastic
then this number represents a population of individuals.

2.2.2 DSD/Directives

The Directives tab (Figure 3b) displays a table representation of the program directives from the Code tab, with
the exception of directives related to parameters. In this example, when the user selects the Directives tab, the
simulation and simulator directives are parsed from the Code tab (Figure 3a) and displayed in table form. Default
values are also displayed for those directives that are not explicitly declared in the program. For example, the default
initial time of the simulation is displayed as 0 and the default number of points for plotting the simulation results
is displayed as 1000. Note that the table display of the compilation directive is not yet supported.

2.2.3 DSD/Parameters

The Parameters tab (Figure 3c) displays a table representation of the program directives that relate to parameters.
In this example, when the user selects the Parameters tab, the parameters directive is parsed from the program
and displayed in table form. Default values are also displayed for those parameter directives that are not explicitly
declared in the program.

2.2.4 DSD/Species

The Species tab (Figure 3d) displays a table representation of the DNA species from the program. Definitions for
domains and modules are inlined, resulting in a list of DNA species with their associated attributes, including
the species name, population, initialisation time, and corresponding graphical representation. In this example, the
species name is obtained from the name of the module in which it is defined. There are two types of species in this
example, strands and complexes:

DNA strands are represented as a sequence of domains enclosed in angle brackets, where the 3’ end of the strand
is assumed to be on the right. Toehold domains are represented by appending the (ˆ) character to the domain
name. For example, <tbˆ b> represents a strand consisting of the toehold domain tbˆ followed by the domain
b, defined in Figure 3d as the Input1 strand. Note that DNA strands can also be represented as a sequence
of domains enclosed in curly brackets, where the 3’ end of the strand is instead assumed to be on the left.
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For example, the strand <tbˆ b> can also be written as {b tbˆ}. This is because strands are identical up to
rotation symmetry, such that we can write the same strand either from left to right or from right to left.

DNA complexes are represented as a sequence of segments, where each segment is either a DNA strand as de-
fined above, or a double stranded duplex with overhanging or underhanging strands to the left or right.
Complementary domains are represented by appending the (*) character to the domain name. For example,
the code {tbˆ*}[b txˆ]:[x toˆ] represents a complex consisting of two segments, defined in Figure 3d as
the Join complex. The first segment {tbˆ*}[b txˆ] represents a double stranded duplex consisting of the
strand <b txˆ> bound to its complementary strand {b* txˆ*}, with an additional single stranded underhang
{tbˆ*} to the left of the duplex. The second segment [x toˆ] represents a double stranded duplex consisting
of the strand <x toˆ> bound to its complementary strand {x* toˆ*}. These two segments are joined together
along the bottom strand by the segment connection operator (:). Note that although the textual representation
of complexes is defined as a connection of segments, in reality the connection results in a single continuous
bottom strand, as can be seen by the graphical representation of the Join complex (Figure 3d). The Reporter
complex is represented in a similar fashion.

2.2.5 DSD/Reactions

The Reactions tab displays a table representation of the DNA reactions defined in the program. In this example the
Reactions tab is empty, since there are no reactions defined explicitly in the program, so the tab is not displayed in
Figure 3.

2.3 CRN
The CRN tab (Figure 4) is populated by pressing the CRN button when the DSD tab is selected. This parses the
DSD program to produce a set of initial DNA species, which is then processed using a built-in reaction enumerator
to generate the corresponding chemical reaction network. Additional details about the reaction enumerator are
described in [6]. The generated chemical reaction network is then used to populate all of the nested CRN tabs,
which follow a left-to-right progression similar to the nested DSD tabs. Below we briefly describe the contents of
the nested CRN tabs for our running example. The Code, Species and Reactions tabs are displayed in Figure 4. We
omit the Directives and Parameters tabs, since in this example they are similar to the corresponding nested DSD
tabs of the same name.

2.3.1 CRN/Code

The Code tab (Figure 4a) is a textual editor for Visual CRN programs, and has the same functionality as the DSD/-
Code tab. The full syntax of Visual CRN programs is summarised in Section 3. For illustration, we briefly describe
the CRN program generated from our running example (Figure 4a), which consists of three sections: directives, initial
conditions and reactions:

Directives are defined using the directive keyword and determine how the CRN program should be executed.
Directives that are specific to the DSD program are not included in the generated CRN program, since they
are not applicable to a CRN. For the running example, the compilation directive from the DSD program is
not included.

Initial conditions are defined by initialising one or more CRN species, separated by the parallel composition oper-
ator (|). For example, the code 100 Input1 initialises the species Input1 to 100.

Reactions are defined by declaring one or more reactant species, one or more product species and a reaction
rate. Reactions are separated by the parallel composition operator (|). The reaction Reporter + Output -
>{k} sp2 + Signal defines a reaction with two reactants, Reporter and Output, two products, sp2 and
Signal, and rate k. Note that the Reporter, Output and Signal species are present in the original DSD pro-
gram, however the species sp2 was generated during reaction enumeration, along with species sp1, sp3 and
sp4. The reaction Join + Input1 <->{k}{k} sp4 + sp3 defines a reversible reaction, where the forward
and reverse reaction both take place at rate k. Note that species and reaction definitions can be interleaved in
the CRN program using the parallel composition operator (|), but are here written in two separate groups for
clarity.

2.3.2 CRN/Species

The Species tab (Figure 4b) displays a table representation of the CRN species present in the CRN program. This
includes all of the species present in the original DSD program, together with the new species sp1,...,sp4 generated
during reaction enumeration.
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(a) CRN/Code tab (b) CRN/Species tab

(c) CRN/Reactions tab

Figure 4: The CRN tab.

2.3.3 CRN/Reactions

The Reactions tab (Figure 4c) displays a table representation of the chemical reactions present in the CRN program.
Species are represented graphically, consistent with their representation in the Species tab. We briefly summarise
how the reactions in this tab were enumerated for the running example, and refer the reader to [6] for a more
detailed description of the reaction enumeration algorithm. The first reaction in the Reactions table corresponds
to Reporter + Output ->{k} sp2 + Signal. In this reaction, the toˆ domain of the Output strand binds to the
toˆ* domain of the Reporter complex and displaces the Signal strand. This also results in a new species sp2,
which corresponds to the duplex [x toˆ]. The reaction occurs at rate k, which is the rate associated with the
domain to, as defined in the DSD program. The second reaction in the table corresponds to Join + Input1 <-
>{k}{k} sp4 + sp3. In this reaction, the tbˆ domain of the Input1 strand binds to the tbˆ* domain of the Join
complex and displaces the sp3 strand to produce the sp4 complex. The displacement reaction takes place at rate k,
which is the rate associated with the domain tb, as defined in the DSD program. Note that the reaction is reversible,
since the txˆ domain of the sp3 strand can in turn bind to the txˆ* domain of the sp4 complex, to displace the
Input1 strand and restore the Join complex. This reverse reaction takes place at rate k, which is the rate associated
with the domain tx. Similarly, the Input2 strand can bind the sp4 complex to displace the Output strand. Together,
these two reactions define a Join operation, where the Output strand is produced only if both Input1 and Input2
are present. The Output strand then displaces a Signal strand, which is assumed to be measurable experimentally.
This is represented by and additional fl domain, which represents a fluorescent molecule attached to the end of the
Signal strand and is used quantify the amount of Signal being produced via fluorescence.
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(a) Export/Network tab (b) Export/Reactions tab

Figure 5: The Export tab.

2.4 Export
The Export tab (Figure 5) is populated by pressing the Export button when either the DSD or CRN tab is selected.
This parses the DSD or CRN program, and produces a range of graphical and textual formats that can be saved as
files. The Export tab is also automatically populated by pressing the CRN button when the DSD tab is selected. We
briefly summarise the contents of the Export tab for the running example when the DSD/Code tab is selected and
the CRN button is pressed:

Export/Network displays a Network representation of the CRN/Reactions tab (Figure 5a). The network consists
of two types of nodes, representing species and reactions. Each species node contains a DNA species from
the CRN/Species tab, together with the name of the species. For species with a non-zero initial population,
the node is highlighted with a bold outline. Each reaction node contains either a single rate, denoting an
irreversible reaction, or two rates, denoting a reversible reaction, with the forward rate on top and the reverse
rate on the bottom. Edges with an empty arrowhead from a reaction node to a species node denote the
products of a reaction, while edges with no arrowhead denote the reactants. If the reaction is reversible, a
solid arrowhead is used to denote the reactants. For example, the reaction represented in the top right of the
network in Figure 5a corresponds to the reversible reaction Join + Input1 <->{k}{k} sp4 + sp3.

Export/Code displays an automatically formatted version of the CRN/Code tab.

Export/Initials displays the contents of the CRN/Species tab in a format that can be saved as a scalable vector
graphics (SVG) file.

Export/Finals displays the DNA species present at the end of a simulation, though this feature is still under devel-
opment and currently only supports stochastic simulation.

Export/Reactions displays the contents of the CRN/Reactions tab in a format that can be saved as a scalable vector
graphics (SVG) file (Figure 5b).

Export/SBML displays a Systems Biology Markup Language [19] representation of the CRN/Code tab.

Export/Matlab displays a Matlab representation of the ordinary differential equations corresponding to the CRN/-
Code tab. This export is only generated if the simulator directive is set to deterministic or sundials.

2.5 Simulation
The Simulation tab (Figure 6) is populated by pressing the Simulate button when either the DSD or CRN tabs are
selected. If the DSD/Code tab is selected, pressing the Simulate button parses the DSD code and generates a
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(a) Time series chart (b) Time series table

Figure 6: The Simulation tab. Simulation results obtained by pressing the Simulate button for the running example in Figure 3.
The results are displayed in the form of (a) a time series chart and (b) a time series table.

corresponding CRN, which is used to run the simulation and also to populate the CRN and Export tabs. Below
we summarise the contents of the Simulation tab when the running example (Figure 3) is selected and the Simulate
button is pressed.

2.5.1 Simulation/Time series

The Time series tab (Figure 6a) displays the results of the simulation as a chart, which is updated dynamically over
time as the simulation progresses. Double-clicking on the chart resizes it to fit the tab. The chart zoom is adjusted by
holding the ctrl key while scrolling with a mouse or other input device. If the pointer is over the central region of the
chart then this adjusts the zoom for both the horizontal and vertical directions. If the pointer is over the horizontal
axis then this adjusts the zoom in the horizontal direction only. Similarly, if the pointer is over the vertical axis then
this adjusts the zoom in the vertical direction only. The chart can be saved to a file by pressing the Save button.

2.5.2 Simulation/Table

The Table tab (Figure 6b) displays the simulation results in table form. The results are split over multiple pages by
default, to improve the user interface performance for large tables. The number of pages can be adjusted by the
user. In addition, the simulation results can be saved to a file by pressing the Save button.

2.6 Inference
The Inference tab (Figure 7) is populated by pressing the Infer button when either the DSD or CRN tabs are selected.
If the DSD/Code tab is selected, pressing the Infer button parses the DSD code and generates a corresponding CRN,
which is used to run parameter inference and also to populate the CRN and Export tabs.

For the running example (Figure 3) there is a single parameter k with a fixed value of 0.003. If corresponding
experimental data is provided, the parameter can instead be allowed to vary so that it can be inferred directly from
the data. This is achieved by explicitly referencing a data table from the Library/Data tab. For the running exam-
ple, we add directive data [Join_data] to specify that the Join data table in the Library/Data tab should be
used. Note that this data was generated artificially for the purposes of the example. Parameters are allowed to vary
by specifying a prior for the parameter. For the running example we replace k = 0.003 with k = 0.003, {in-
terval = Log; distribution = Uniform(0.0001, 1)}. This specifies that the parameter k is assumed to vary
uniformly between the values of 0.0001 and 1, on a logarithmic scale. This revised example is available in the DSD/-
Code tab under Examples/Manual/Join - Inference. Below we summarise the contents of the Inference tab when
the revised example is selected and the Infer button is pressed.
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(a) Inference/Time Series tab (b) Inference/Parameters tab

(c) Inference/Posterior/Density tab (d) Inference/Posterior/Scatter Plot tab

Figure 7: The Inference tab. (a,b) Inference results obtained by pressing the Infer button for the running example in Figure 3,
modified by adding directive data [Join data] to specify the data to use for inference, and replacing k = 0.003 with k
= 0.003, {interval = Log; distribution = Uniform(0.0001, 1)} to specify the prior distribution of the parameter k.
This revised example is available in the DSD/Code tab, under Examples/Manual/Join - Inference. (a) Time series plot of the
simulation obtained using the inferred value of parameter k. (b) Table representation of the inferred value of parameter k,
along with the inferred noise parameter sigma. (c,d) Posterior distribution of the parameter k obtained by running 1000 burnin
and 5000 sample iterations, achieved by adding directive inference { burnin = 1000; samples = 1000;}. This revised
example is available in the DSD/Code tab under Examples/Manual/Join - Inference - Samples. (c) Histogram of the probability
density of parameter k. (d) Scatter plot of the values of parameter k for different simulation runs.

2.6.1 Inference/Time Series

The Time Series tab (Figure 7a) displays the simulation results for the different values of the parameter k. The results
are updated for each new value of k that reduces the deviation between the simulation and the data.

12



2.6.2 Inference/Parameters

The Parameters tab (Figure 7b) displays the current value of parameter k. A noise parameter sigma is also displayed,
which models the noise in the experimental data (see Section 3.7).

2.6.3 Inference/Posterior

The Posterior tab (Figure 7c,d) displays the posterior distributions of the parameters as the inference progresses.
The Posterior/Density tab (Figure 7c) displays a histogram of the parameter values, and the Posterior/Scatter
Plot tab (Figure 7d) displays the parameter values for individual simulation runs. More accurate parameter dis-
tributions are obtained by using a larger number of samples. This is achieved by adding directive infer-
ence { burnin = 1000; samples = 1000;} to the example, where burnin = 1000 specifies that an initial 1000
simulations will be run by randomly varying the inference parameters, while samples = 5000 specifies that a fur-
ther 5000 simulations will be run and used to estimate the posterior distributions of the parameters. This produces
the plots displayed in Figure 7c,d. By default, burnin = 100 and samples = 100, which gives rise to much coarser
distributions. Additional information about parameter inference is provided in Section 3.7.

2.7 CTMC
The CTMC tab (Figure 8) is populated by pressing the CTMC button when either the DSD or CRN tabs are selected.
If the DSD/Code tab is selected, pressing the CTMC button parses the DSD code and generates a corresponding
Continuous Time Markov Chain (CTMC). This essentially represents the reachable states of the system starting from
its initial conditions, which are assumed to specify discrete populations of species. If fractions of populations are
specified, these are rounded down to the nearest whole number. Each state in the CTMC corresponds to a distinct
multiset of species. Transitions from a source state to a target state are determined from the reactions that are
possible for the species present in the source state, and are annotated with the rate of the transition. It is important
to note that the CTMC can become very large as the species populations increase. Care should be taken to ensure
that the species populations are sufficiently low before the CTMC is generated. The computation of the CTMC
can be stopped by pressing the Stop button. Below we briefly summarise the contents of the CTMC tab when the
running example (Figure 3) is selected and the CTMC button is pressed.

2.7.1 CTMC/Text

The Text tab (Figure 8a) summarises various properties of the CTMC, including the number of states and transitions,
the initial and terminal states, and the upper and lower bounds of the species. For the running example, the CTMC
has 286 states and 1100 transitions. One of the states is terminal, meaning that it has no outgoing transitions. The
initial state contains 10 Input1, 10 Input2, 100 Join and 100 Reporter species, while the terminal state contains 90
Join, 90 Reporter and 10 Signal species, together with 10 sp1, sp2 and sp3 species. This terminal state is reached by
consuming all of the Input1 and Input2 species, together with 10 of the Join and Reporter species, to produce 10
Signal species.

2.7.2 CTMC/Summary

The Summary tab (Figure 8b) displays a graphical representation of the initial and terminal states. Note that the
species are consistent with those displayed in the CRN, DSD and Export tabs.

2.7.3 CTMC/Graph

The Graph tab (Figure 8c) displays the full CTMC as a graph, where each node in the graph represents a reachable
state, and each edge represents a transition between two states. For the running example, the visualisation takes
several seconds to render, due to the relatively large numbers of states and transitions. The large size of the CTMC
stems from the fact that the different interactions between species can happen in different orders, starting from the
given initial state. Here we have zoomed in on the top portion of the CTMC by using the mouse scroll wheel,
to focus on the initial transitions. We observe that the first transition consumes one Input1 and one Join species,
and produces one sp3 and one sp4 species. The transition happens with rate k*10*100 since there are 10 Input1
species and 100 Join species that can interact, with each individual interaction occurring at rate k. The transition is
reversible, since sp3 and sp4 can interact to produce the original Input1 and Join species. We note that the second
state in the figure has two other possible transitions. One of these transitions involves Input2 interacting with sp4
to produce Output and sp1. The other transition is only partially displayed, but involves one of the 9 remaining
Input1 species interacting with one of the 99 remaining Join species. Note that all of these transitions are consistent
with the reactions present in the CRN (Figure 4), with the rate of a single reaction scaled by the number of ways in
which that reaction can take place.
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(a) CTMC/Text tab (b) CTMC/Summary tab

(c) CTMC/Graph tab (d) CTMC/Probabilities tab

Figure 8: The CTMC tab. (a-c) Results obtained by pressing the CTMC button for the running example in Figure 3. (a) A
summary of various properties of the CTMC. (b) The initial and terminal states of the CTMC. (c) A zoomed in portion of the
CTMC, starting from the initial state. (d) Probability map of the Signal species over time, obtained by replacing directive
simulator deterministic with directive simulator cme in the running example and pressing the Simulate button. This
revised example is available in the DSD/Code tab, under Examples/Manual/Join - CTMC.

2.7.4 CTMC/Probabilities

The Probabilities tab (Figure 8c) requires a Chemical Master Equation (CME) simulation to be run. This is achieved
by replacing directive simulator deterministic with directive simulator cme and pressing the Simulate
button. Additional details about this simulation method are provided in Section 3.5.4. Running the CME simulator
generates the CTMC and at the same time computes the probabilities of a given species having a given value at a
given time. The probabilities are shown as a heat map, which is always scaled between 0 and 1 for a given time
point. For the running example, the probabilities of the Signal species are shown, and different species can be
selected via a drop-down menu. A histogram of the probability distribution for a given time point is shown on the
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right hand side of the heat map. The histogram shows the probability of the chosen species having a given discrete
value at the chosen time point. The final time point is selected by default, and earlier time points can be selected
by clicking on the heat map. For the running example, we observe that the Signal species has a high probability of
having a population of either 9 or 10 at the final time point, and a much lower probability of having a population
of 8. The probability of the Signal species having a population less than 8 at this time point is effectively zero.
However, we can see from the heat map that this probability is much higher near the beginning of the simulation,
since this species is initialised with a population of 0.
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3 Visual CRN Language

This section provides a detailed description of the Visual CRN language. Most of the language features are also
shared with the Visual DSD language. We use the Visual CRN program generated in Figure 4A as the basis for a
running example.

3.1 Syntax Conventions
We first summarise the main syntax conventions of the Visual CRN language. Terminal symbols are written in
teletype font and non-terminal symbols are written in italics. Comments begin with (* and end with *) and may
be nested. Single line comments are written using // at the start of the comment. We use a standard syntax for
Records, Lists and Maps, and assume that N ≥ 0 unless stated otherwise:

Records are written as {Name1 = Field1; . . . ; NameN = FieldN}, where N ≥ 1. We assume that each Name in the
record is unique and that each Field can potentially have a different type. We allow a Field to be omitted, in
which case a default value is used.

Lists are written as List〈Value〉, which is short for the syntax [Value1; . . . ; ValueN]. We assume that every Value is of
the same type.

Maps are written as Map〈Key, Value〉, which is short for the syntax [Key1 = Value1; . . . ; KeyN = ValueN]. We assume
that each Key in the map is unique and that every Value is of the same type.

We use the following syntax for Integers, Names, Strings, Floats and Keywords:

Integers are non-empty sequences of digits, where a digit denotes a single character in the range 0-9,

Names are sequences of characters, where the first character must either be a letter, which is a character in the range
A-Z or a-z, or the underscore character ( ). This is followed by a possibly-empty sequence of characters which
may be letters, digits, underscores or apostrophes (’).

Strings are possibly-empty sequences of characters enclosed by quotation marks ("). Any quotation marks appear-
ing within the string must be escaped by a preceding backslash (\).

Floats can be written in three different ways: (i) One or more digits followed by a decimal point (.), followed by
zero or more digits. For example 3.141. (ii) One or more digits followed by an uppercase E or lowercase e,
followed by a plus (+) or minus (-) sign, followed by one or more digits. For example 3e-5. (iii) One or more
digits followed by a decimal point, followed by zero or more digits, followed by an uppercase E or lowercase
e, followed by a plus or minus sign, followed by one or more digits. For example 1.4324e+2.

Keywords are reserved words that cannot be used as a Name. The list of keywords is as follows: constant direc-
tive def dom else false float of int if init int of float log new not prod rxn sum tether then
time true

3.2 CRN Programs
A Program in the Visual CRN language consists of multiple Settings, followed by multiple Modules, followed by a
Process. The Settings are parameterised by the type of Species and are defined in Section 3.3. For the Visual CRN
language the Species is simply a Name, however for the Visual DSD language it is a more complex structure made up
of DNA strands. A Module associates a module Name and multiple arguments (Name1, . . . , NameN) with a Process,
which can be an Initial condition, a Reaction, a module Name instantiated with multiple values, or multiple parallel
processes, separated by the parallel composition operator (|). Example CRN programs are described in Figure 9.

Program ::= Settings〈Species〉Modules Process CRN Program
Settings〈S〉 ::= directive Setting〈S〉1 . . . directive Setting〈S〉N Multiple settings
Modules ::= module Module1 . . . module ModuleN Multiple modules
Module ::= Name(Name1, . . . , NameN) = {Process} Module definition
Species ::= Name CRN species
Process ::=
| Initial〈Species〉 Initial condition
| Reaction〈Species〉 Reaction
| Name(Value1, . . . , ValueN) Module instance
| Process1| . . . |ProcessN Multiple parallel processes
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A

1 directive simulation {
2 final=600;
3 plots=[Input1; Input2; Output; Signal];
4 }
5 directive simulator deterministic
6 directive parameters [ k = 0.003; u = 0.1 ]
7 | 100 Reporter
8 | 100 Join
9 | 10 Input2

10 | 10 Input1
11 | Reporter + Output ->{k} sp2 + Signal
12 | Join + Input1 <->{k}{k} sp4 + sp3
13 | sp4 + Input2 <->{k}{k} sp1 + Output

B

1 directive simulation {
2 final=600;
3 plots=[Input1; Input2; Output; Signal];
4 }
5 directive simulator deterministic
6 directive parameters [ k = 0.003; u = 0.1 ]
7 module Reversible(A,B,f,r,C,D) = {
8 | A + B <->{forward}{reverse} C + D
9 }

10 | 100 Reporter
11 | 100 Join
12 | 10 Input2
13 | 10 Input1
14 | Reporter + Output ->{k} sp2 + Signal
15 | Reversible(Join,Input1,k,k,sp4,sp3)
16 | Reversible(sp4,Input2,k,k,sp1,Output)

Figure 9: Example CRN programs. A CRN program from Figure 4A, which was automatically generated from the DSD program
in Figure 3A. Lines 1-6 contain CRN Settings, while lines 7-13 contain a Process, consisting of four Initial conditions (lines 7-10),
and three Reactions (lines 11-13). B CRN program with modules that is equivalent to the program in (A). The Reversible module
takes arguments A,B,f,r,C,D and creates a reaction with reactants A+B, products C+D, forward rate f and reverse rate r . The
two instances of this module on lines 15 and 16 are equivalent to the reactions on lines 12 and 13 of program (A), respectively,
since the arguments of the instances replace the arguments of the module.

A

1 directive simulation {
2 final=600;
3 plots=[Input1; Input2; Output; Signal];
4 }
5 directive simulator deterministic
6 directive parameters [ k = 0.003; u = 0.1 ]
7 | constant 100 Reporter
8 | constant 100 Join
9 | 10 Input2 @ 50

10 | 10 Input1 @ 50
11 | Reporter + Output ->{k} sp2 + Signal
12 | Join + Input1 <->{k}{k} sp4 + sp3
13 | sp4 + Input2 <->{k}{k} sp1 + Output

B

0

5

10

0 200 400 600
Time (s)

Input1

Input2

Output

Signal

Figure 10: Example initial conditions. A CRN program from Figure 9, updated with constant and delayed initial conditions.
The Reporter and Join species are assumed to be in excess, however they will be consumed over time if they are not fixed as
constant, slowing down the release of the Signal strand. Fixing these species as constant is a convenient way to study the
effect of species loss over time on system kinetics. In additiona, in a laboratory experiment the Reporter and Join species will
typically be mixed in solution beforehand, prior to adding the Input1 and Input2 species a short time later. This can be modelled
by delaying the addition of the two input species. In this example both species are added after 50 time units. B Simulation results
for the CRN program in (A). We observe a discrete spike in the concentrations of both inputs after 50 time units. The Reporter
and Join species remain constant at 100 throughout the duration of the simulation (not shown), however this does not seem to
significantly alter the system dynamics, suggesting that species loss does not play a key role in this particular simulation.

3.2.1 Initial Conditions

A species can be initialised with a value, whereValue S initialises species S with the given Value. The initialisation can
also be delayed, where Value1 S @Value2 initialises species S with Value1 after time Value2 . In addition, a species can
be fixed as constant, where constant Value S ensures that species S remains constant at the given Value throughout
the duration of the simulation. A more general syntax can also be used to initialise a species, where S = Attributes
initialises species S with the specified Attributes. For example, Value1 S @Value2 can be written as S = {value =
Value1; time = Value2}, and constant Value S can be written as S = {value = Value; constant = true}. Additional
attributes can also be used for spatial placement of species, defined in Section 3.6.

Initial〈S〉 ::=
| Value S Initial species population
| Value1 S @Value2 Delayed species population
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| constant Value S Constant species population
| S = Attributes Species with attributes

Attributes ::= { Attributes record
value = Value; Species value (1)
time = Value; Species delay (0)
constant = Boolean; Species is constant (false)
spatial = Placement; Species placement
}

3.2.2 Reactions

The syntax of reactions is defined as follows:

Reaction〈S〉 ::=
| Reactants〈S〉 ->{Value}Multiset〈S〉 Mass-action reaction
| Reactants〈S〉 <->{Value}{Value}Multiset〈S〉 Reversible mass-action reaction
| Reactants〈S〉 ->[Functional〈S〉] Multiset〈S〉 Functional rate reaction
| Reactants〈S〉 <->[Functional〈S〉][Functional〈S〉] Multiset〈S〉 Reversible functional rate reaction

Reactants〈S〉 ::=
|Multiset〈S〉 Multiset of reactants
|Multiset〈S〉∼Multiset〈S〉 Multisets of catalysts and reactants

Multiset〈S〉 ::= Value1 S1 + · · ·+ ValueN SN Multiset of species

3.2.3 Expressions

The syntax of expressions is defined as follows:

Value ::= Expression〈Name〉 Expression over parameters
Functional〈S〉 ::= Expression〈Key〈S〉〉 Expression over species and parameters

Key〈S〉 ::=
| [S] Species
| [time] Simulation time
| [Name] Functional rate
| Name Parameter name

Expression〈T〉 ::=
| T Expression variable
| Float Floating point number
| Expression〈T〉+ Expression〈T〉 Addition
| Expression〈T〉 − Expression〈T〉 Subtraction
| Expression〈T〉 ∗ Expression〈T〉 Multiplication
| Expression〈T〉/Expression〈T〉 Division
| Expression〈T〉%Expression〈T〉 Modulo
| Expression〈T〉∧Expression〈T〉 Power
| Expression〈T〉 ∗ ∗Expression〈T〉 Power
| sum(List〈Expression〈T〉〉) Sum
| prod(List〈Expression〈T〉〉) Product
| log(Expression〈T〉) Logarithm
| if Condition〈T〉 Conditional
then Expression〈T〉
else Expression〈T〉

Condition〈T〉 ::=
| true Logical True
| false Logical False
| Expression〈T〉 <= Expression〈T〉 Less than or equal
| Expression〈T〉 < Expression〈T〉 Less than
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| Expression〈T〉 = Expression〈T〉 Equal
| Expression〈T〉 > Expression〈T〉 Greater than
| Expression〈T〉 >= Expression〈T〉 Greater than or equal
| Condition〈T〉&&Condition〈T〉 Logical AND
| Condition〈T〉||Condition〈T〉 Logical OR
| not Condition〈T〉 Negation

3.3 CRN Settings
Settings are defined in terms of records, maps and lists:

Setting〈S〉 ::=
| parameters Map〈Name, Parameter〉 Parameter definitions
| sweeps Map〈Name, List〈Assignment〉〉 Sweep definitions
| rates Map〈Name, Functional〈S〉〉 Rate expressions
| plot settings Plotting Plot format settings
| simulation Simulation〈S〉 Simulation settings
| simulations Map〈Name, Simulation〈S〉〉 Settings for multiple simulations
| simulator Simulator Simulator method (stochastic)
| deterministic Deterministic Deterministic simulation settings
| stochastic Stochastic Stochastic simulation settings
| spatial Spatial〈S〉 Spatial simulation settings
| moments Moments〈S〉 Moment closure simulation settings
| inference Inference Inference settings
| data List〈Name〉 Data files for inference
| units Units Units settings

3.3.1 Parameters

Parameters are assigned a value and an optional prior:

Parameter ::=
| Value Parameter value
| Value, Prior Parameter value and associated prior

3.3.2 Sweeps

Sweeps are used to assign values to parameters:

Assignment ::=
| Name = Value Assign a value to a parameter name
| (Name1, . . . , NameN) = (Value1, . . . , ValueN) Assign a set of values to a set of names

3.3.3 Units

Units for time, space and concentration are used in a consistent manner for rate constants and simulation plots.
These units can be modified using the following settings:

Units ::= { Units record
time = Time; Time units (s)
space = Space; Space units (m)
concentration = Concentration; Concentration units (nM)
}

Time ::=
| h hours (3600s)
| min minutes (60s)
| s seconds (s)
| ms milliseconds (10−3 s)
| us microseconds (10−6 s)
| ns nanoseconds (10−9 s)

Space ::=
| m metres (m)
| mm millimetres (10−3 m)
| um micrometres (10−6 m)
| nm nanometres (10−9 m)
| pm picometres (10−12 m)
| fm femtometres (10−15 m)

Concentration ::=
| M molar (M)
| mM millimolar (10−3 M)
| uM micromolar (10−6 M)
| nM nanomolar (10−9 M)
| pM picomolar (10−12 M)
| fM femtomolar (10−15 M)
| aM attomolar (10−18 M)
| zM zeptomolar (10−21 M)
| yM yoctomolar (10−24 M)19



3.3.4 Simulation

The simulation directive specifies the simulation settings to be used when the Simulate button is pressed. The
Simulation settings are defined below, with default values shown in parentheses.

Simulation〈S〉 ::= { Simulation record
initial = Float; Initial simulation time (0)
final = Float; Final simulation time (1000)
points = Integer; Number of simulation points to plot (1000)
plots = Map〈Plot〈S〉〉; Species to plot. Plots all species if empty ([])
kinetics = Kinetics; Kinetic rate convention for homomultimer formation (Contextual)
prune = Boolean; Remove unreachable reactions prior to simulation (false)
multicore = Boolean; Use multiple CPU cores to run simulation, if present (false)
data = List〈Name〉; List of Datasets to compare with simulation results ([])
sweeps = List〈Name〉; List of sweeps to use for simulation ([])
}

Plot〈S〉 ::=
| S Single species
| Functional〈S〉 Function of species, parameters or rates

Kinetics ::=
| Contextual Kinetic convention depends on simulator directive
| Stochastic Stochastic kinetic convention
| Deterministic Deterministic kinetic convention

The kinetics setting defines the kinetic rate law to be used for simulation. This is needed due to an important
difference between the kinetic rate laws of stochastic and deterministic systems, specifically in the case of homomul-
timer formation, which is the formation of complexes involving multiple copies of the same molecular species. The
stochastic rate law includes a k! divisor, where k is the multiplicity of the species, which is not present in the deter-
ministic rate law. For example, the reaction A + A→k B has a deterministic rate law of k[A]2, where [A] represents
the concentration of species A, but a stochastic rate law of k[A]([A] − 1)/2, where [A] represents the population of
species A. This difference means that the limiting behaviour of the stochastic mean with increasing copy numbers
does not converge to the deterministic rate equations, as is commonly thought. Only when the stochastic rate laws
are equal to the deterministic rate laws will this be the case. By default, kinetics is set to Contextual, which means
that a deterministic rate law is assumed for the deterministic simulator, while a stochastic rate law is assumed
for the stochastic, cme, lna and mc simulators. Alternatively, the kinetic law can be fixed to either the Stochastic
or Deterministic convention, so that it is the same for all simulators.

3.3.5 Simulator

The simulator directive specifies the simulator to be used when the Simulate button is pressed. The Simulator
settings are defined below. The default simulator is stochastic.

Simulator ::=
| deterministic Deterministic simulation of ordinary differential equations (OSLO solvers)
| sundials Deterministic simulation of ordinary differential equations (SUNDIALs solvers)
| stochastic Stochastic simulation using the Gillespie Stochastic Simulation Algorithm (SSA)
| lna Mean and variance over time of a stochastic system (Linear Noise Approximation)
| cme Probability distribution over time of a stochastic system (Chemical Master Equation)
| pde Deterministic spatiotemporal simulation of reaction-diffusion equations

Deterministic simulation can be performed using two different solvers for numerical integration. Selecting the
deterministic simulator uses the Oslo Solving Library for ODEs (OSLO) solver. When using the downloadable
version it is possible to use the SUNDIALs integrators [20] by selecting the sundials simulator. SUNDIALs is a
C-based library, and consequently simulations run faster than when using OSLO.
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Figure 11: Comparison of stochastic and deterministic simulation.

3.4 Deterministic Simulation

3.4.1 Deterministic Settings

The Deterministic settings are defined below:

Deterministic ::= { Deterministic record
stiff = Boolean; Enable stiff solver (false)
abstolerance = Float; Relative tolerance (1E-5)
reltolerance = Float; Absolute tolerance (1E-6)
}

We note that the stiff solver is more efficient for stiff problems, which are those that incorporate different
timescales in their dynamics. The deterministic solver uses Gear’s method when stiff = true and Runge-
Kutta 5(4) when stiff=false. The stiff solver is disabled by default, since it is more sensitive to numerical error
than the non-stiff solver. For more information on tolerances, see the documentation for OSLO or SUNDIALs di-
rectly.

3.4.2 Deterministic Simulation Method

By specifying directive simulator deterministic, a CRN system is converted to a system of ordinary differ-
ential equations (ODEs) describing its rate equations. For each reaction i, a velocity vi is computed. For mass action
reactions, the velocities are defined by

vi = ki ∏
j
[cj]

rij (1)

where [ci] is the concentration of species i, rij is the multiplicity of the jth species in reaction i, and k j is the rate
constant. Note that the matrix R := (rij) is known as the reaction stoichiometry matrix. For functional reactions, the
velocity function is simply taken as the function specified in the reaction syntax.

By storing the stoichiometry S ∈ RnS ,nR of the species updates of each reaction (i.e. how many copies are
gained/lost from the reaction firing), the rate equations can be defined as

dc
dt

= S.v (2)

where c is the vector containing the concentrations of each molecule ci.

3.5 Stochastic Simulation

3.5.1 Stochastic Settings

The Stochastic settings are defined below:

Stochastic ::= { Stochastic record
scale = Float; Scale volume while fixing concentrations (1)
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seed = Option〈Integer〉; Random number generator seed (∅, uses random seed)
steps = Option〈Integer〉; Number of simulation steps to take (∅, does not limit steps)
trajectories = Integer; Number of simulation repeats, plotting mean and variance (1)
}

In order to perform a stochastic simulation, concentrations must be converted to numbers of individuals. This
can be achieved using the following equation:

n = dc.V.NAe (3)

where n is the number of individuals, c is the concentration, V is the volume and NA is Avogadro’s constant, which
denotes the number of individuals per mole of substance (approximately 6.02214× 1023 molecules). The function
dxe denotes the rounding up of x to its nearest natural number. Thus, in order to convert a concentration into a
number of individuals, it is sufficient to multiply the concentration by a scale factor s = V.NA, which denotes the
number of individuals per unit concentration. Essentially, this corresponds to choosing a volume V such that the
number of individuals is equal to s for one unit of concentration. For example, a scale factor of 50 corresponds to
a volume that is 50 times the volume occupied by a single individual. The units of the scale factor are therefore
assumed to be the inverse of the unit of concentration. Note that the conversion from concentrations to individuals
is achieved using a scale factor s rather than specifying a volume V directly, since it is difficult to choose a volume
such that the number of individuals is a natural number. The scale factor can be set by the scale directive, where the
default scale factor is 1.0.

Note that the units for rate constants are assumed to be consistent with the units for time and concentration.
For example, if the unit for time are s and the unit for concentration are nM, then the unit for the bimolecular rate
constants are assumed to be nM−1 s−1, and the unit for the unimolecular rate constants are assumed to be s−1. Once
a suitable scale factor has been selected, in order to perform a stochastic simulation the molar concentrations are
multiplied by the scale factor, while the concentration-dependent rates are divided by the scale factor. For example,
if the scale factor is 100 nM−1 then a concentration-dependent rate of 0.4 nM−1 s−1 is converted to a stochastic rate
of 0.004 s−1 for simulation. Additional details on converting between populations and concentrations can be found
in Section 4.2 of [21], including specific conversion rules for homodimerization reactions.

3.5.2 Stochastic Simulation Algorithm (SSA)

The stochastic simulator uses Gillespie’s stochastic simulation algorithm (SSA) to generate a possible trajectory
of the system over time. The stochastic dynamics is equivalent to the deterministic ODEs in the limit where the
population counts approach infinity. The difference between the plots can be seen by comparing the plots produced
for the running example by the stochastic (left) and deterministic (right) simulators below.

3.5.3 Linear Noise Approximation (LNA)

The linear noise approximation (LNA) is the simplest approximation of a stochastic simulation that is supported.
The LNA approximates the mean and standard deviation of the copy number distribution for each species, under
the assumption that the distribution is Gaussian. Therefore, this is not appropriate when the distribution is expected
to be bimodal, or strongly skewed. Since only the mean and standard deviation are computed, the marginal distri-
bution plot (Probability tab) is not used. However, by default, the mean is plotted with a single standard deviation
area plot (Figure 12).

To evaluate an approximate mean and variance of a CRN, we can use the linear noise approximation (LNA),
which evaluates the first and second order statistics in the limit as the copy number goes to infinity. The solution
can be obtained numerically, by integrating the following system of equations

d (4)

Here, J is the Jacobian matrix of first-order partial derivatives of the ODEs f , with respect to each species. This is
given by

J =
∂

∂x
(S.v(x)) = S.

∂v(x)
∂x

(5)

The (i, j)th entry of
∂v(x)

∂x
is given by

∂vi
∂xj

= ki.rij.x
rij−1
j . ∏

k 6=j
[xk]

rik (6)
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Figure 12: Comparison of lna and deterministic simulation.

3.5.4 Chemical Master Equation (CME)

Stochastic simulations can be thought of as being random samples from a probability distribution. The distribution
of molecule copy numbers can be described by the chemical master equation (CME), which can be evaluated directly.
By selecting the cme simulator, the CME is integrated numerically, producing the probability of each state (specific
molecule numbers of each species) over time. The simulator returns the mean (µS) and standard deviation (σS)
of the marginal distribution of each species S, plotted as a solid line for µS and an area plot containing the region
bounded by µ± σS (Figure 13a). Additionally, the cme simulator enables the full marginal distributions to be plotted
(Figure 13c-f ).

The fundamental limitation of the CME is that all discrete states of the system must be enumerated. The number
of states grows very quickly, and is sometimes unbounded, for instance when there are reactions that create mass,
such as ∅ → X. When unbounded, state space enumeration will not terminate, and therefore the software will
crash when it runs out of memory. When bounded, but large, the simulator will take a long time.

3.5.5 Comparison of Stochastic Simulation Methods

A comparison of stochastic, LNA and CME simulations is provided in Figure 14.
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Figure 13: Comparison of cme and deterministic simulation.
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Figure 14: Effect of the number of molecules on simulation noise. Simulation results are shown for stochastic, Linear Noise
Approximation (LNA) and Chemical Master Equation (CME) simulations.
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A

1 directive simulation {
2 final=600;
3 plots=[Signal];
4 }
5 directive simulator pde
6 directive spatial {
7 boundary = ZeroFlux;
8 dimensions = 2;
9 diffusibles = [Input1 = 0.5; Input2 = 0.5];

10 xmax = 50;
11 nx = 101;
12 dt = 1;
13 }
14 directive parameters [ k = 0.003; u = 0.1 ]
15 | 100 Reporter
16 | 100 Join
17 | Input1 = { spatial = { points =
18 [ {x=0.3; y=0.3; width=0.4; value=10.0}]
19 } }
20 | Input2 = { spatial = { points =
21 [ {x=0.7; y=0.7; width=0.4; value=10.0}]
22 } }
23 | Reporter + Output ->{k} sp2 + Signal
24 | Join + Input1 <->{k}{k} sp4 + sp3
25 | sp4 + Input2 <->{k}{k} sp1 + Output

B

C

Figure 15: Example with spatial simulation. A Program code. We modify the running example (Figure 9) by replacing 10
Input1 and 10 Input2 with code to specify the initial placement of these two species. The Input1 species is initialised with a
value of 10 in a circular region of width 0.4 located at coordinates (0.3,0.3), while the Input2 species is initialised in a similar
fashion at coordinates (0.7,0.7). We also include additional spatial directives, which specify zero flux boundary conditions, and
that the Input1 and Input2 species diffuse at rate 0.5. The spatial domain is over two dimensions, and is a square of edge 50mm,
with a grid size of 100 and a simulation time step of 1s. B Simulation results of (A) using the 1 dimensional PDE solver by setting
dimensions = 1. C Simulation results of (A) using the 2 dimensional PDE solver.

3.6 Spatial Simulation
We also provide simple capabilities for simulating spatio-temporal dynamics for CRNs, when these can be described
by reaction-diffusion equations. The pde simulator has solvers for 1d and 2d spatial domains, and uses a Crank-
Nicolson scheme to integrate the reaction-diffusion equations over time. The time series plot shows heatmaps for
spatial simulator outputs, with x position and time on the axes for 1d (Figure 15A), and x position and y position
on the axes for 2d, with the plot updating at each output time (Figure 15B).

3.6.1 Spatial Simulation Method

By specifying directive simulator pde, a CRN system is converted to reaction-diffusion (RD) equations, which
are an extension of the deterministic rate equations that includes isotropic diffusion:

∂c
∂t

= f(c) + D∇2c (7)

Here, ∇2 is the laplacian operator, which describes the sum of the second partial derivatives over each spatial co-
ordinate. In 1d,∇2 = ∂2

∂x2 , whereas in 2d,∇2 = ∂2

∂x2 +
∂2

∂y2 . The vector function f contains precisely the deterministic
rate equations described above, e.g. f(c) = S.v(c).

In 2d, the RD equations are considered in a square domain (on a line in 1d), with (x, y) ∈ [0, L]× [0, L]. Either
periodic or Neumann (zero-flux) boundary conditions can be imposed (see below). For both 1d and 2d problems,
the RD equations are solved numerically using the Crank-Nicolson method. A detailed derivation of the update
schemes is presented in appendix B. In using this method, we are limited to solving on a square regular grid (spacing
∆x), with a fixed time-step ∆t.
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3.6.2 Spatial settings

The solver settings can be changed using directive spatial.

Spatial〈S〉 ::= { Spatial record
diffusibles = Map〈S, Value〉; Assigns diffusion rates to species ([])
default diffusion = Float; Default diffusion rate for all species (0)
dimensions = Integer; Number of spatial dimensions (1)
random = Float; Relative random perturbation to initial conditions (0)
xmax = Float; Maximum length of spatial domain (1)
nx = Integer; Number of spatial grid points, including boundary (20)
dt = Float; Time step for spatial simulations ( 0.2dx2

maxdi f f usibles )
boundary = Boundary; Boundary conditions for spatial simulation (Periodic)
}

Bloundary ::=
| Periodic Periodic boundary conditions
| ZeroFlux Zero flux boundary conditions

3.6.3 Spatial initial conditions

The initial conditions are specified using the attribute syntax for species initialisation. A spatial field can be
assigned, which takes a record as argument. This record contains three fields that correspond to generators of initial
conditions for the species in question. A centralcore creates a circle at the centre of the domain with a specified
width, then separate concentrations can be assigned to the internal and external regions. A point is a circle at
a specified (x, y) position with a specified width and internal concentration. Multiple points can be assigned to
the points field, using a list syntax. To apply the random setting, all centralcore and points are summed to any
non-spatial initial condition assignment, and then the values at each grid-point are corrupted by a multiplicative
perturbation with strength r, the value assigned to the random field. This perturbation is defined by drawing a
uniform random number u ∼ U (0, 1), and perturbing species S at co-ordinates x = xi, y = yj according to

si,j max{0,→ si,j × (1 + r ∗ (u− 0.5))} (8)

Placement ::= { Placement record
centralcore = Core; Central core
points = List〈Point〉; A list of points ([])
random = Float; Add random noise to initial population (0)
}

Core ::= { Core record
width = Float; Diameter of central core, in relative units (0)
inner = Float; Concentration inside central core (0)
outer = Float; Concentration outside central core (0)
}

Point ::= { Point record
x = Float; Relative x position of point (0)
y = Float; Relative y position of point (0)
width = Float; Diameter of point, in relative units (0)
value = Float; Concentration of species inside point (0)
}

An example with spatial simulation is shown in Figure 15.
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3.7 Inference
The inference module enables parameter values of a model to be inferred from observation data. Markov chain
Monte Carlo (MCMC) is the methodology used, as implemented in the Filzbach software (https://github.com/
predictionmachines/Filzbach). Filzbach uses a variation of the Metropolis-Hastings (MH) algorithm to perform
Bayesian parameter inference. The MH algorithm is used to approximate the posterior probability of a parameter
set from a hypothesised model taking on certain values, constrained by a likelihood function. The probability of
each parameter value is then approximated by constructing a Markov chain of sampled parameter sets, such that
a proposed parameter set is accepted with some probability, based on the ratio of the likelihood function evalu-
ated at current and proposal parameter sets. A burn-in phase is used to enable the algorithm to determine suitable
coefficients for the proposal distributions of each parameter. Burn-in samples are not stored in the list of poste-
rior samples, but are instead discarded. For more information on MCMC methods, see [22]. MCMC methods,
such as simulated annealing, have also been shown to efficiently find solutions to combinatorial optimisation prob-
lems [23], taking a stochastic search approach similar to the MH algorithm. Stochastic search can provide benefits
over gradient-based optimisers by maintaining a nonzero probability of making up-hill moves, protecting against
getting stuck in poor local optima. Eventually, an MCMC algorithm will converge, and the samples of the chain will
represent the joint posterior distribution P(θ|data). As such, the more samples that are used, the more accurately
will the samples numerically approximate this distribution.

3.7.1 The likelihood function and noise model

The likelihood function is formed by taking all data specified in the program, and comparing corresponding simu-
lations in a probabilistic way. Each data-point contributes a term to the likelihood function. Each are assumed to be
independent and Gaussian distributed, centred on the corresponding simulated value and with some variance σ2.
As there are potentially multiple datasets, each with potentially multiple input treatments and output species, there
could be several time-courses being bundled into this single function. Nevertheless, their composition is straight-
forward. For each time-series with measured values ηk corresponding to times tk, k = 1, . . . , n, corresponding
simulated values yk are obtained. Then, the likelihood function is defined as

L(θ|data) = ∏
datasets, inputs, outputs, k

{
P(ηk; yk, σ2)

}
(9)

A noise model can be applied to the variance σ2. We currently support two such models. The default model
is a constant noise model, in which the variance is independent of signal intensity, and is treated as an inference
parameter. An alternative proportional-error model can also be specified, which assumes that σ2 = α × yk, with α
treated as an inference parameter. Since each species being measured may have different noise characteristics, the
noise parameters can be specialised to each species, or assumed to be homogenous.

3.7.2 Inference settings

Inference has a number of settings that can be used to adapt the parameter inference problem. Most of these settings
are propagated directly to the underlying Filzbach library. The inference settings can be specified as record entries
of the inference directive. The definition of inference settings is given below, where default values are shown in
parentheses.

Inference ::= { Inference record
name = Name; Name of inference run (default)
burnin = Integer; Number of discarded initial iterations (100)
samples = Integer; Number of samples stored in posterior (100)
thin = Integer; Ratio of posterior samples to discard (10)
noise model = Noise; Noise model (constant)
prune = Boolean; Remove reactions involving species that are never produced (false)
seed = Integer; Seed of random number generator (0)
timer = Boolean; Collect timing statistics for simulations (false)
partial = Boolean; Only run simulations affected by changed parameters (false)
}

Noise ::=
| constant Error is constant
| proportional Error is proportional to measured value
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3.7.3 Priors

A parameter can be supplied with an optional prior, which is used during inference to determine how parameter
sampling is performed. If no prior is provided then the parameter is assumed to be fixed. The definition of priors is
given below, where default values are shown in parentheses.

Prior ::= { Prior record
interval = Interval; Scale used to vary the parameter
distribution = Distribution; Prior distribution of the parameter
variation = Variation; Method used to vary the parameter
}

Interval ::=
| Real Vary the parameter on a linear scale
| Log Vary the parameter on a logarithmic scale

Distribution ::=
| Uniform(Float1, Float2) Uniform distribution between Float1 and Float2
| Normal(Float1, Float2) Normal distribution, mean Float1, standard deviation Float2
| TruncatedNormal Truncated Normal distribution, mean Float1,
(Float1, Float2, Float3, Float4) standard deviation Float2, between Float3 and Float4

Variation ::=
| Random Randomly vary parameter
| Fixed Keep parameter fixed
| Initial Use default value as initial estimate
|Multiple Use a unique parameter in each sweep instance

3.7.4 Datasets

Multiple time-courses with different time-points must be imported as separate files. When multiple species are
measured simultaneously, their columns must be placed adjacent to another, in the order that is specified in the
plots field of directive simulation. If multiple measurements are conducted simultaneously (for example, di-
rect repeats, or responses to different treatments), blocks of measurements (potentially containing multiple species)
can be placed adjacently to one another, so long as they can use the same time column, as mentioned earlier. To
ensure that the simulations are compared with the correct columns, the sweeps must be defined so that the ordering
of simulation instances is the same as the ordering of measurement columns in the data file.
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4 Visual DSD Language

This section presents a detailed description of the Visual DSD language, following the brief language overview
presented in Section 2.2. We illustrate the main features of the language by making a series of modifications to the
running example from Section 2.2.1, reproduced for convenience in Figure 16A. Subsequent modifications to the
running example are highlighted in grey.

4.1 DSD Programs
A Program in the Visual DSD language consists of multiple Settings, followed by multiple Declarations, followed by
a Process, where the Settings are defined in Section 4.3.

Program ::= Settings Declarations Process DSD program
Settings ::= directive Setting1 . . . directive SettingN Multiple settings
Declarations ::= Declaration1 . . . DeclarationN Multiple declarations

A Declaration can be for a module, a variable, or a domain, where a module declaration associates a module
Name and multiple arguments (Name1, . . . , NameN) with a Process, a variable declaration associates a variable Name
with a Value, and a domain declaration associates a domain Identifier with a set of domain Properties. An Identifier
uniquely identifies a domain and can be a Name or a positive number.

Declaration ::=
| def Name(Name1, . . . , NameN) = Process Module declaration
| def Name = Value Variable declaration
| dom Identifier = Properties Domain declaration

The domain Properties include the sequence seq, the colour, the bind rate, the unbind rate, and a list of consec-
utive subdomains that make up the domain. If a given domain property is not specified explicitly then a default
property is used. In particular, if no sequence is provided then a unique sequence is automatically assigned to the
domain from a library of sequences. If no colour is provided then a unique colour is automatically assigned to toe-
hold domains, while all recognition domains are represented in grey. The default bind and unbind rates are 0.0003
and 0.1126, respectively, and the list of subdomains is assumed to be empty by default.

Properties ::= { Domain properties record (with default values)
seq =Name; DNA sequence (assigned by compiler)
colour =String; Colour (assigned by compiler)
bind =Value; Binding rate (0.0003)
unbind =Value; Unbinding rate (0.1126)
subdomains =List〈Domain〉; Consecutive subdomains ([])
}

An example with nucleotide sequences is shown in Figure 16B and an example with subdomains is shown in Fig-
ure 17.

A Process can be an Initial species, a user-defined Reaction, a domain Identifier unique to a Process, a module Name
instantiated with multiple values, or multiple processes in parallel, separated by the parallel composition operator
(|).

Process ::=
| Initial〈Species〉 Initial species
| Reaction〈Species〉 User-defined reaction
| new Identifier = Properties Process Domain with properties unique to a process
| new Identifier Process Domain with default properties unique to a process
| Name(Value1, . . . , ValueN) Module instance
| (Process1| . . . |ProcessN) Multiple parallel processes

The syntax of an Initial species and a user-defined Reaction is the same as the corresponding syntax in the Visual
CRN language, defined in Section 3.2, except that a DSD Species, defined in Section 4.2, is used instead of a CRN
Species.

Each user-defined Reaction is added to the set of automatically generated reactions and can encode behaviours
that are not currently supported by the reaction enumeration process. For example, user-defined reactions can
encode the effects of DNA or RNA enzymes, or hypotheses about the rates of interaction of particular species
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A

1 directive simulation {
2 final=600;
3 plots=[Input1();Input2();Output();Signal()];
4 }
5 directive simulator deterministic
6 directive parameters [k=0.003;u=0.1]
7 directive compilation infinite
8 dom tb = {bind=k;unbind=u;colour="red"}
9 dom tx = {bind=k;unbind=u;colour="green"}

10 dom to = {bind=k;unbind=u;colour="blue"}
11 def Input1() = <tbˆ b>
12 def Input2() = <txˆ x>
13 def Output() = <x toˆ>
14 def Join() = {tbˆ*}[b txˆ]:[x toˆ]
15 def Reporter() = <flˆ>[x]{toˆ*}
16 def Signal() = <flˆ x>
17 ( 10 Input1()
18 | 10 Input2()
19 | 0 Output()
20 | 100 Join()
21 | 100 Reporter()
22 | 0 Signal()
23 )

D

1 directive simulation {
2 final=600;
3 plots=[Input1();Input2();Output();Signal()];
4 }
5 directive simulator deterministic
6 directive parameters [k=0.003;u=0.1]
7 directive compilation infinite
8 directive rendering {classic = {mode = nucleotides}}
9 dom tb = {bind=k;unbind=u;colour="red";seq=CTGCTA}

10 dom tx = {bind=k;unbind=u;colour="green";seq=TTCCAC}
11 dom to = {bind=k;unbind=u;colour="blue";seq=TCCTAC}
12 dom b = {seq=CATTGCTTCTACGAGTCATCC}
13 dom x = {seq=CATTGCACCTTAGAGTCCGAA}
14 dom fl = {seq=T}
15 def Input1() = <tbˆ b>
16 def Input2() = <txˆ x>
17 def Output() = <x toˆ>
18 def Join() = {tbˆ*}[b txˆ]:[x toˆ]
19 def Reporter() = <flˆ>[x]{toˆ*}
20 def Signal() = <flˆ x>
21 ( 10 Input1()
22 | 10 Input2()
23 | 0 Output()
24 | 100 Join()
25 | 100 Reporter()
26 | 0 Signal()
27 )
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Figure 16: Example with nucleotide sequences. A Program code of the running example from Section 2.2.1. B Initial conditions
generated from (A). C CRN generated from (A), where species that are present initially are outlined in bold. D Program code of
an example with nucleotide sequences, where differences from the running example are highlighted in grey. Short sequences are
assigned to toehold domains tb, tx and to (lines 9-11), while longer sequences are assigned to recognition domains b and x (lines
12-13). The toehold domain fl does not correspond to a physical DNA sequence, but instead represents a fluorophore. However,
since the Visual DSD language does not currently support the representation of fluorophores, we use a domain assigned with the
arbitrary DNA sequence T (line 14). To display the nucleotide sequences we write directive rendering {classic = {mode
= nucleotides}} (line 8). E Initial conditions generated from (D). F Reaction graph generated from (D). The initials conditions
and the reaction graph are the same as in (B-C) but with the domain names replaced by their corresponding DNA sequences.
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A

1 directive simulation {
2 final=600;
3 plots=[Input1();Input2();Threshold();Signal()];
4 }
5 directive simulator deterministic
6 directive parameters [k=0.003;u=0.1]
7 directive compilation infinite
8 dom tb = {bind=k;unbind=u;colour="red"}
9 dom tx = {bind=k;unbind=u;colour="green"}

10 dom to = {bind=k;unbind=u;colour="blue"}
11 dom t = {bind=k; unbind=u; colour="red"}
12 dom th = {bind=100*k; unbind=u; subdomains=[t;tb]}
13 def Input1() = <tˆ tbˆ b>
14 def Input2() = <txˆ x>
15 def Output() = <x toˆ>
16 def Join() = {tbˆ*}[b txˆ]:[x toˆ]
17 def Threshold() = {tˆ* tbˆ*}[b]
18 def Reporter() = <flˆ>[x]{toˆ*}
19 def Signal() = <flˆ x>
20 ( 10 Input1()
21 | 10 Input2()
22 | 0 Output()
23 | 100 Join()
24 | 2 Threshold()
25 | 100 Reporter()
26 | 0 Signal()
27 )

B

b

tb*t* b*

Threshold

fl x

Signal

fl x

x* to*

Reporter

x to

Output

x to

tb* to*x*tx*b*

b tx

Join

tx x

Input2

t tb b

Input1

tx x

x*tx*b*tb* to*

t tb b

sp1

b

sp2

t tb b

b*tb*t*

sp3

x to

to*x*

sp4

b tx

sp5

x to

to*x*tx*b*tb*

t tb b

sp6

C

0

2

4

6

8

10

0 100 200 300 400 500 6
Time (s)

Input1

Input2

Threshold

Signal

Figure 17: Example with subdomains. (A) Program code, where differences from the running example are highlighted in grey.
Two new toehold domains t and th are defined (lines 11-12), where th has toeholds t and tb consecutively as subdomains,
and the binding rate of these consecutive toeholds is assumed to be 100 times the binding rate of just the tb toehold on its own.
The Input1 strand is extended with the toehold t (line 13) and a new Threshold complex is defined (line 17), which contains a
single-stranded region that is complementary to t tb. Essentially, the Threshold complex out-competes the Join complex for
binding to the Input1 strand, due to its longer region of complementarity to Input1. This approach can be used to consume
input strands that are inadvertently produced, for example through leak reactions, in order to prevent any leaked inputs from
generating a downstream output, up to a certain threshold [18]. In this example, we set the concentration of Threshold at 2nM
(line 24) and plot this concentration over time instead of the concentration of Output (line 3). Note that currently the domain
th cannot be used directly in the program code, since it is not expanded automatically into its consecutive subdomains. The
implementation of this expansion is left for future work. B CRN generated from (A). We observe that the Input1 strand can
interact with the Join complex on toehold tb at rate k, and with the Threshold complex on consecutive toeholds t tb at rate
100*k. C Simulation results for (A). We observe that the Threshold is consumed preferentially at the beginning of the simulation,
and that the level of Signal is approximately 2nM less than the initial concentration of Input1, due to consumption of Input1
by the Threshold.

[7]. The products of a user-defined reaction can themselves potentially interact with other species to produce new
reactions, and are therefore included in the reaction enumeration process. In cases where a user-defined reaction
has the same reactants and products as an automatically generated reaction, the user-defined reaction replaces the
automatically generated one. This allows custom kinetic rates to be defined for specific reactions. By default,
the kinetic rate of a strand displacement reaction is determined by the toehold that mediates the displacement.
However, in some cases we may wish to allow different interactions mediated by the same toehold to take place at
different rates [8]. In these cases it is necessary to override the automatically generated rate with a reaction-specific
one. If needed, the rate of every reaction can be manually overridden. In such cases, the automatic generation of
reactions still provides a useful means of checking that no reactions have been inadvertently omitted. An example
with user-defined reactions is shown in Figure 18.

The declaration of domains using new is similar to the declaration using dom, except that the domain Identifier
is assumed to be unique to a given Process. As a result, if the same domain Identifier is declared multiple times
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A

1 directive simulation {
2 final=600;
3 plots=[Input1();Input2();Output();Signal()];
4 }
5 directive simulator deterministic
6 directive parameters [k=0.003;u=0.1;r=0.01]
7 directive compilation infinite
8 dom tb = {bind=k;unbind=u;colour="red"}
9 dom tx = {bind=k;unbind=u;colour="green"}

10 dom to = {bind=k;unbind=u;colour="blue"}
11 def Input1() = <tbˆ b>
12 def Input2() = <txˆ x>
13 def Output() = <x toˆ>
14 def Join() = {tbˆ*}[b txˆ]:[x toˆ]
15 def Reporter() = <flˆ>[x]{toˆ*}
16 def Signal() = <flˆ x>
17 ( 0 Input1()
18 | ->{0.1} Input1()
19 | Input1() ->{0.01}
20 | Output() + Reporter() ->{r} [x toˆ] + Signal()
21 | 10 Input2()
22 | 0 Output()
23 | 100 Join()
24 | 100 Reporter()
25 | 0 Signal()
26 )
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Figure 18: Example with user-defined reactions. A Program code, where differences from the running example are highlighted
in grey. An additional kinetic parameter r is declared (line 6) and used to constrain the rate of interaction between the Output and
the Reporter (line 20). By default, the rate of this interaction is equal to the rate k associated with the toehold to that mediates
the interaction. However, in practice we may wish to allow different interactions mediated by the same toehold to take place at
different rates. We also use reactions to model the assumption that the Input1 strand is produced at rate 0.1 and consumed at
rate 0.01 by enzymatic synthesis and degradation (lines 18 - 19). Since Visual DSD does not support an explicit representation
of enzymes, their effects can be modelled at an abstract level using reactions. B CRN generated from (A). We observe that the
rate of interaction between the Output and the Reporter has been set to r, and that the production and degradation reactions
for Input1 have been added to the generated CRN. C Simulation results for (A). We observe that the concentration of Input1
increases over time, since new strands are continually being produced by the additionally specified reactions.

then it will be automatically renamed each time to ensure that it is globally unique. In principle, a process using
new can always be converted to an equivalent process using dom. However, this places a burden on the user to
ensure that a globally unique Identifier is used for each dom declaration. The use of new is particularly helpful when
implementing translation schemes, such as those that convert a high-level chemical reaction network to a Visual
DSD program. For example, in [6] a collection of modules was defined such that each module represented a strand
displacement encoding of a high-level chemical reaction. The encoding required intermediate DNA species to be
created using domains that were unique to each reaction. The use of new allowed these unique domains to be created
automatically instead of being individually named by the user. This allowed modules to be directly composed
without the need for global renaming. An example with domains unique to a process is shown in Figure 19.
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A

1 directive simulation {
2 final=600;
3 plots=[<tbˆ b>;<txˆ x>;<x toˆ>;<flˆ x>];
4 }
5 directive simulator deterministic
6 directive parameters [k=0.003;u=0.1]
7 directive compilation infinite
8 dom tb = {bind=k;unbind=u;colour="red"}
9 dom tx = {bind=k;unbind=u;colour="green"}

10 dom to = {bind=k;unbind=u;colour="blue"}
11 def Input1(b) = <tbˆ b>
12 def Input2(x) = <txˆ x>
13 def Output(x) = <x toˆ>
14 def Join(b,x) = {tbˆ*}[b txˆ]:[x toˆ]
15 def Reporter(x) = <flˆ>[x]{toˆ*}
16 def Signal(x) = <flˆ x>
17 def System() =
18 new b new x
19 ( 10 Input1(b)
20 | 10 Input2(x)
21 | 0 Output(x)
22 | 100 Join(b,x)
23 | 100 Reporter(x)
24 | 0 Signal(x)
25 )
26 ( System() | System() )
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Figure 19: Example with domains unique to a process. A Program code, where differences from the running example are
highlighted in grey. Each module definition is updated by adding the recognition domains used within the module as arguments
(lines 11-16). An additional System module is defined, which declares two recognition domains b and x that are unique to the
module, and then instantiates the remaining modules with these domains as arguments (lines 17-24). In addition, the plots are
updated by replacing any module instances with their corresponding DSD species (line 3). This allows the plots to match all
occurrences of domains defined using new. Finally, two copies of the System module are instantiated in parallel (line 26). Note
that an equivalent program could be defined by declaring distinct domains b, x, b1, x1 globally, and then using b, x in the first
system and b1, x1 in the second. B CRN generated from (A). The Visual DSD compiler has automatically generated unique
names b.1, x.1 for the second system, resulting in two distinct CRNs, one for each system. Note that the toehold domains tb,
tx, to are still shared between the two systems.
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4.2 DSD Species
A Species in the Visual DSD language can be a Strand, a Complex, a Tile, or a module Name instantiated with multiple
values:

Species ::=
| Strand Single DNA strand
| Complex Complex consisting of multiple DNA strands bound to each other
| Tile Tile containing tethered species
| Name(Value1, . . . , ValueN) Module instance

The remainder of this section presents definitions for the different types of species, together with illustrative exam-
ples.

4.2.1 Strands

A Strand represents a single-stranded DNA molecule, consisting of a Sequence of domains enclosed in either angle
brackets or curly braces:

Strand ::=
| <Sequence> Upper strand
| {Sequence} Lower strand

A Sequence enclosed in angle brackets represents a strand with the 3’ end on the right, also referred to as an Upper
strand, while a Sequence enclosed in curly braces represents a strand with the 3’ end on the left, also referred to as
a Lower strand. Strands are identical up to rotation symmetry, such that an Upper strand with a given sequence is
identical to a Lower strand with this sequence reversed. This captures the fact that the same physical DNA strand
can be represented textually in two different orientations: from left to right and from right to left.

A Sequence can be a Domain, a domain complement represented by appending the (∗) character to the domain, a
tether with multiple location tags, or multiple sequences separated by spaces:

Sequence ::=
| Domain Domain
| Domain∗ Domain complement
| tether(Name1, . . . , NameN) Tether with multiple location tags, N ≥ 1
| Sequence1 . . . SequenceN Multiple sequences, N ≥ 1

A strand is assumed to be tethered if it contains at least one tether in its sequence, and a species is assumed to be
tethered if it contains at least one tethered strand.

A Domain can be a recognition domain represented by an Identifier, a toehold domain represented by appending
the (∧) character to the identifier, or a Wildcard domain, which matches any domain and is only used for plotting:

Domain ::=
| Identifier Recognition domain
| Identifier∧ Toehold domain
| Wildcard, used for plotting only

Recognition domains are assumed to be long enough to bind irreversibly to their complement, while toehold do-
mains are assumed to be short enough to bind reversibly to their complement. We assume that only species inside
the list of plots in the simulation settings can contain a Wildcard domain _. This matches a single domain, causing
multiple species to be plotted. For example, the pattern <_ x> matches <txˆ x> and <tbˆ x> but not <tˆ txˆ x>.

For examples of single strands, consider the program in Figure 16A. The strand <txˆ x> consists of the toehold
domain txˆ following by the domain x, while the strand <tbˆ b> consists of the toehold domain tbˆ following by
the domain b. These strands are represented graphically as follows:

tb btx x

They are called Upper strands since their 3’ end is on the right and they are represented graphically on the upper
region of a double-stranded complex. Since strands are identical up to rotation symmetry, they are also identical to
the strands {x txˆ} and {b tbˆ}, respectively. These strands are represented graphically as follows:

tbbtxx
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They are called Lower strands since their 3’ end is on the left and they are represented graphically on the lower
region of a double-stranded complex.

We can also add tethers to a strand, associated with one or more location tags. The strand <txˆ x tether(l)>
adds a tether to the 3’ end of strand <txˆ x>, associated with location tag l. The tethered strand is represented
graphically as follows:

tx x (l)

The tethers denote attachment points for a strand to a tile, and the location tags associated with a tether encode
hypotheses about whether tethered strands are physically close enough to interact with each other, without the
need to explicitly define the geometry of the strands [10]. Additional explanations for species tethered to a tile are
described in Section 4.2.3.

4.2.2 Complexes

A Complex can be one or more Segments, connected using the connection operator O. It can also be a Left hairpin
connected to multiple segments on the right, a Right hairpin connected to multiple segments on the left, or a Left
hairpin connected to multiple segments followed by a Right hairpin:

Complex ::=
| Segment O1 Segment1 . . . ON SegmentN Segments
| Left O1 Segment1 . . . ON SegmentN Segments with left hairpin
| Segment1 O1 . . . SegmentN ON Right Segments with right hairpin
| Left O Segment1 O1 . . . SegmentN ON Right Segments with left and right hairpins

The connection operator O can connect a segment along its lower strand (:) or along its upper strand (::):

O ::=
| : Connection along lower strand
| :: Connection along upper strand

A Segment is a double stranded region of DNA, referred to as a duplex, with single-stranded Overhangs to the
left and right. A Left hairpin is a duplex with a hairpin loop to the left and single-stranded overhangs to the right,
while a Right hairpin is a duplex with a hairpin loop to the right and single-stranded overhangs to the left:

Segment ::= Overhangs [Sequence] Overhangs Duplex with left and right overhangs
Left ::= <Sequence}[Sequence]Overhangs Left hairpin with right overhangs
Right ::= Overhangs[Sequence]{Sequence> Right hairpin with left overhangs

Overhangs can be a single strand, an upper and a lower strand, or empty:

Overhangs ::=
| Strand Single strand overhang
| {Sequence1} <Sequence2> Lower and upper strand overhangs
| <Sequence1> {Sequence2} Upper and lower strand overhangs
| ∅ No overhangs

If both lower and upper strand overhangs are present, the order of the strands is not significant.
For examples of complexes, consider the program from Figure 16A. The complex {tbˆ*}[b txˆ]:[x toˆ] is

formed by connecting two segments. The first segment {tbˆ*}[b txˆ] represents a duplex consisting of the strand
<b txˆ> bound to its complementary strand {b* txˆ*}, with a lower strand overhang {tbˆ*} to the left of the
duplex. The second segment [x toˆ] represents a duplex consisting of the strand <x toˆ> bound to its comple-
mentary strand {x* toˆ*}. These two segments are connected along the bottom strand by the connection operator
(:). Although the textual representation of complexes is defined as a connection of segments, in reality the connec-
tion results in a single continuous bottom strand, as shown in the graphical representation of the complex:

x to

tb* to*x*tx*b*

b tx

The above complex can be modified to contain a right hairpin, resulting in the complex {tbˆ*}[b txˆ]:[x]{toˆ>.
The complex contains a right hairpin [x]{toˆ> with stem [x] and loop {toˆ> and is represented graphically as
follows:
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tb*

x
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x*tx*b*

b tx

4.2.3 Tiles

A Tile contains multiple tethered Species that cannot themselves be tiles, and is represented by enclosing the set of
tethered species in double brackets:

Tile ::= [[Species1| . . . |SpeciesN]] Each Species is tethered and cannot be a Tile, N ≥ 1

The tile represents a surface such as a DNA origami, to which species are attached using tethers. Each species in
a tile contains at least one tether, and each tether is associated with one or more location tags. We assume that all of
the species that share a particular tag are tethered sufficiently close to each other to interact, and that two tethered
species can only interact if they have at least one tag in common. We also associate each tag with a local concen-
tration, which denotes the fact that tethered species may interact at a faster rate compared to species in solution.
For example, to associate locations tags l1 and l2 with local concentrations c1 and c2 we write directive loca-
tions [l1 = c1; l2 = c2]. An example with species tethered to a tile is shown in Figure 20.

4.3 DSD Settings
The settings for the Visual DSD language are summarised below, together with their default values. The settings
also include the Visual CRN settings, instantiated with the Visual DSD Species:

Setting ::=
| compilation Compilation Compilation method (default)
| unproductive Enable unproductive reactions
| jit Enable just-in-time simulation
| leaks Enable leak reactions
| declare Require all domains to be declared
| polymers Allow polymers to form
| locations Map〈Name, Value〉 Assign local concentrations to location tags ([])
| rendering Rendering Strand visualization mode
| leak Value Global rate of leak reactions (1e-9)
| tau Value Global rate of fast reactions (0.1126)
| migrate Value Global rate of migration per nucleotide (8000)
| lengths Integer Integer Default toehold and recognition domain lengths, respectively (6, 20)
| toeholds Float Float Default toehold binding and unbinding rates, respectively (0.0003, 0.1126)
| Crn.Setting〈Species〉 CRN setting

We briefly describe each setting below.

compilation sets the method that is used to compile a Visual DSD program to a CRN (see Section 4.3.1).

unproductive enables the generation of unproductive reactions, which involve spurious toehold binding and un-
binding reactions that are not able to trigger a subsequent displacement reaction. Since these reactions in-
crease the computational cost of compilation and simulation, they are disabled by default. An example of an
unproductive reaction is the following:

x to

to*x*tx*b*tb*

b txtb x
tb x

x to

tb* to*x*tx*b*

b tx

The reaction is unproductive since the toehold binding does not give rise to any subsequent reaction other than
an immediate unbinding. This is because the domain x does not match the domain b and therefore cannot
cause a displacement. In practice, removing these unproductive reactions often has little effect on model
simulation, however in some cases these effects are non-negligible, depending on the concentration of species
in solution. Note that unproductive is not possible for the infinite compilation method (see Section 4.3.1).

jit enables just-in-time simulation, by generating the CRN dynamically during simulation instead of of up-front
before the simulation is started. This is necessary for systems for which the CRN has a potentially unbounded
number of reactions. Note that jit is currently only supported for stochastic simulation.

leaks enables the generation of leak reactions, which are spurious strand displacement reactions initiated with-
out a toehold, and take place at much lower rates than toehold-mediated strand displacement reactions (see
Section 4.3.3).
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A

1 directive simulation {
2 final=600;
3 plots = [Input1(); Input2(); Signal()];
4 }
5 directive simulator deterministic
6 directive parameters [k=0.003;u=0.1]
7 directive compilation infinite
8 directive polymers
9 directive locations [l=10000]

10 dom tb = {bind=k;unbind=u;colour="red"}
11 dom tx = {bind=k;unbind=u;colour="green"}
12 dom to = {bind=k;unbind=u;colour="blue"}
13 def Input1() = <tbˆ b>
14 def Input2() = <txˆ x>
15 def Output() = <x toˆ>
16 def Join() = {tether(l) tbˆ*}[b txˆ]:[x]{toˆ>
17 def Reporter() = <flˆ>[x]{toˆ* tether(l)}
18 def Signal() = <flˆ x>
19 ( 10 Input1()
20 | 10 Input2()
21 | 100 [[ Join() | Reporter() ]]
22 | 0 Signal()
23 )
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Figure 20: Example with species tethered to a tile. A Program code, where differences from the running example are highlighted
in grey. The Join species is modified so that it contains a hairpin with domain toˆ in the loop and a tether with location tag
l on the 3’ end of the tbˆ* overhang (line 16). In addition, the reporter is modified so that it contains a tether with the same
location tag l on the 5’ end of the toˆ* overhang (line 17). The initial conditions are modified so that they contain 100nM of a
tile with tethered Join and Reporter species (line 21). A local concentration of 10000nM is associated to the location tag l (line
9). This models the assumption that the two species are tethered close to each other, such that their effective concentration is
substantially increased. In practice, these local concentrations can be estimated from data using parameter inference [13]. Since
the two species can interact to form a polymer, directive polymers is needed to enable polymer formation (line 8). Polymer
formation is disabled by default, since polymers can potentially be of unbounded length, which may result in the Visual DSD
compiler getting stuck in an infinite loop. Enabling the formation of polymers means that such infinite loops could potentially
occur. Finally, since no Output strand is produced, the plots are modified so that only Input1, Input2 and Signal are plotted
(line 3). B CRN generated from (A). The freely diffusing Input1 strand binds to the Join complex tethered to the tile and
displaces the <b txˆ> strand. The freely diffusing Input2 strand then opens the hairpin, exposing the toˆ toehold. This then
binds to the exposed toˆ* toehold of the tethered Reporter complex and displaces the Signal. The interaction is scaled by
the local concentration l, since the Reporter and Join complex are tethered in close proximity to each other. Importantly,
the resulting scaled rate 10000*k of this reaction is unimolecular with units s−1, since it involves two complexes tethered to
the same origami at fixed locations, and therefore the interaction between these two tethered complexes is not affected by the
concentration of strands in solution.

declare allows the user to enable stricter syntax checking, by producing an error if a domain is used without having
first been declared. This can be helpful when debugging large programs, since a mis-spelled domain can be
hard to detect and can significantly alter the behaviour of the system.

polymers enables complexes to bind together to form polymers of potentially unbounded length.

leak sets the rate of all leak reactions (default is 10−9 nM1s1).

tau sets the rate of all fast reactions in the finite compilation method (default is 0.1126 s1).

migrate sets the migration rate of a single nucleotide (default is 8000 s1). The branch migration rate for a domain
of length L is given by r/L2, where r is the single nucleotide migration rate.

lengths sets default values for the lengths of toeholds and recognition domains. For the purpose of computing rate
constants, all long domains are assumed to have the same length. For example, the code directive lengths 5 15
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assigns a length of 5nt to toeholds and 15nt to recognition domains. The default values are 6nt for toeholds
and 20nt for recognition domains. The value provided for toeholds must be greater than that provided for
recognition domains or the system will raise an error. Currently the assigned default length for toehold do-
mains is not used to calculate toehold binding and unbinding rates. Instead the user may set toehold binding
and unbinding rates directly on a per-toehold basis. Note that specific nucleotide sequences are not currently
used when computing rate constants. The implementation of this functionality is left for future work.

toeholds sets the default binding and unbinding rates, respectively, for domains which are declared without ex-
plicit rates. The default values are 0.0003nM1s1, for the binding rate and 0.1126 s1 for the unbinding rate.

Additional explanations and examples for the settings are provided in the remainder of this section.

4.3.1 Compilation

Compilation can be set to one of four methods, infinite, default, finite and detailed:

Compilation ::=
| infinite Migration and unbinding are infinite
| default Migration is infinite
| finite Migration and unbinding are merged and finite
| detailed Migration and unbinding are finite

Each method specifies a different set of assumptions that are used when compiling a Visual DSD program to a CRN.
If no compilation method is provided then the default method is used. The different methods are summarised
below.

Infinite The concentration of species is assumed to be sufficiently low that the rates of unbinding and migration
reactions are infinite compared to the rates of binding reactions. As a result, strand displacement is assumed
to take place in single step that merges binding, migration and unbinding. Since branch migration is infi-
nite, complexes are considered equal up to branch migration. An example of a one step strand displacement
compiled using the infinite method is as follows:

b tx
x to

to*x*tx*b*tb*

tb b
tb b

x to

tb* to*x*tx*b*

b tx

This method is used for the running example in Figure 16A. Note that unproductive reactions are not pro-
duced by this method, since the toehold will unbind immediately if no displacement is possible. This means
that certain programming idioms such as cooperative strand displacement are not possible using this method.

Default The concentration of species is assumed to be sufficiently low that the rate of migration reactions is infinite,
however the rate of unbinding reactions is finite. As a result, strand displacement is assumed to take place in
two steps, binding followed by unbinding. Since branch migration is infinite, complexes are considered equal
up to branch migration. The unbinding rate is determined by the rate associated with the toehold on which
the unbinding takes place. An example of a two step strand displacement compiled using the default method
is as follows:

b tx
x to

to*x*tx*b*tb*

tb bx to

to*x*tx*b*tb*

b
txtb b

x to

to*x*tx*b*tb*

b
txtb btb b

x to

tb* to*x*tx*b*

b tx

Finite The concentration of species is assumed to be sufficiently low that the rates of unbinding and migration
reactions are fast but finite, where consecutive fast reactions are merged into a single reaction with rate tau.
As a result, strand displacement is assumed to take place in two steps, binding followed by a fast step that
merges migration and unbinding. Since branch migration is fast, complexes are considered equal up to branch
migration. An example of a two step strand displacement compiled using the finite method is as follows:

b tx
x to

to*x*tx*b*tb*

tb bx to

to*x*tx*b*tb*

b
txtb b

x to

to*x*tx*b*tb*

b
txtb btb b

x to

tb* to*x*tx*b*

b tx
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Detailed This method is the most detailed and assumes that binding, migration and unbinding have finite rates. As
a result, complexes are not considered equal up to branch migration. The branch migration rates are calculated
from the migration rate per nucleotide and the number of nucleotides in the domain. An example of a three
step strand displacement compiled using the detailed method is as follows:

b tx
x to

to*x*tx*b*tb*

tb bx to

to*x*tx*b*tb*

b
txtb b

x to

to*x*tx*b*tb*

b
txtb bx to

to*x*tx*b*tb*

b txtb b

x to

to*x*tx*b*tb*

b txtb b
tb b

x to

tb* to*x*tx*b*

b tx

Moving from the Infinite through to the Detailed compilation method causes the number of generated reactions
to increase substantially. As a result, the computational cost of compilation also increases. An example with the
same system compiled using the different methods is shown in Figure 21.

The CRN generated from a given Visual DSD program can vary substantially depending on the compilation
method used. However, in cases where the concentration of species in solution is sufficiently low, the binding rate
is the limiting step, such that the additional reactions for migration and unbinding to not substantially affect the sys-
tem kinetics. An example with the same system compiled using different methods and simulated deterministically
is shown in Figure 22.

4.3.2 Just In Time Simulation

Enabling just-in-time simulation (JIT) allows the CRN of a Visual DSD program to be generated dynamically during
the course of a simulation, rather than before the simulation is started. The rationale behind the JIT simulator is
that some systems can become very large, with many thousands of possible reactions. This means that the full
compilation process can take a very long time. This is particularly true for the larger example programs when
leaks are enabled. However, since leak reactions have a low probability of actually happening we can spend a large
amount of time computing reactions that will probably never happen during a particular simulation run.

The JIT simulator alleviates this problem by compiling new reactions dynamically during the simulation run.
When the CRN button is clicked in JIT mode, only the Initial tab is populated with the initial species. The other
output tabs are populated when the simulation is paused or reaches the end of its run. When the JIT simulator is
running, it checks after each reaction to see if the products of that reaction have been seen before. If not, a single
compilation step occurs which augments the system with the new species and the new reactions which are made
possible by the introduction of those species. Thus the reaction graph and list of species is gradually built up over
the course of a simulation run. Running the same program multiple times in JIT mode may produce a different final
reaction graph, depending on which species were produced during each run.

Using the JIT simulator offers significant practical advantages when handling large-scale systems such as those
which include leak reactions. In many cases, simulating a system with leaks using the JIT simulator is comparable
in speed to simulating that system without leaks using the stochastic simulator. Furthermore, the JIT simulator is
essential when working with systems which have the potential to form DNA polymer molecules of unbounded
size. In these cases the JIT simulator only compiles the subset of reactions which are reachable from a species that
has been created during the simulation run, as opposed to the full (infinite) reaction graph. Thus the JIT simulator
may be the only way to run DNA polymer programs without causing the compiler to loop forever. An example
with JIT simulation is shown in Figure 23.

4.3.3 Leaks

The leak directive instructs the Visual DSD compiler to automatically generate leak reactions, defined as DNA strand
displacement reactions that occur in the absence of a toehold, albeit at very low rates. Generating leak reactions
automatically produces a more realistic model of system behaviour, but increases the computational cost of both
compilation and simulation. A leak reaction occurs when the nucleotides at one extremity of a bound strand spon-
taneously unbind, creating a short toehold that facilitates a strand displacement reaction. Consider the running
example from Figure 16A. The Input2 strand <txˆ x> can displace a bound Output strand <x toˆ> from the Join
complex, even in absence of the Input1 strand. This happens when one or two nucleotides at the 5’ end of the
bound Output strand spontaneously unbind, creating a short toehold that allows the x domain of the Input2 strand
to displace the Output, where the default leak rate is 10−9nM−1s−1:
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(d) Finite compilation mode

Figure 21: Chemical reaction networks for the different DSD compilation methods.
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Figure 22: Deterministic simulations for the different DSD compilation methods.

x to

tx
x

tb* x*tx*b* to*

b txtx x
x to

tb* to*x*tx*b*

b tx

The reverse reaction takes place at a much higher rate k since it is mediated by the toehold to. Note that a leak
reaction cannot occur along a given domain if both ends of the domain are clamped in place by additional domains
flanked on either side of the domain. For example, the Input2 strand <txˆ x> cannot take part in a leak reaction
with the complex [tbˆ x toˆ] since the domain x is flanked by two toeholds on either side that clamp the domain
in place.

tb x to

to*x*tb*

Note that these flanking toeholds can themselves still fray and give rise to leak reactions, provided they also match
the invading strand. For example, the Input2 strand <txˆ x> can take part in a leak reaction with the complex
[txˆ x toˆ]:

tx x to
tx x

x*tx* to*
tx x

tx x to

to*x*tx*

Enabling leak reactions can cause the number of reactions in the system to increase substantially. This is particu-
larly apparent when the Finite or Detailed compilation modes are used. In these cases compilation can produce
many thousands of reactions and take a long time to compute. To mitigate this, the system automatically filters out
duplicate leak reactions with the same reactants and products as existing leak and non-leak reactions. These simpli-
fications can reduce the number of reactions without significantly affecting system behaviour. However, in general
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A

1 directive simulation {final=600}
2 directive simulator stochastic
3 directive jit
4 directive polymers
5 directive parameters [k=0.003;u=0.1]
6 directive compilation infinite
7 dom tb = {bind=k;unbind=u;colour="red"}
8 dom tx = {bind=k;unbind=u;colour="green"}
9 dom to = {bind=k;unbind=u;colour="blue"}

10 def Input1() = <tbˆ x>
11 def Input2() = <txˆ x>
12 def Join() = {tbˆ*}[x txˆ]:[x]{toˆ>
13 def Reporter() = <tbˆ}[x]{toˆ*}
14 ( 10 Input1()
15 | 10 Input2()
16 | 10 Join()
17 | 5 Reporter()
18 )

B
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Figure 23: Example with just-in-time simulation.

it is still possible to derived large numbers of leak reactions from a seemingly small system. Note that Visual DSD
does not currently support leak reactions which create DNA polymers by binding two gate molecules together. An
example with leak reactions is shown in Figure 24. In many cases leak reactions have no noticeable effect on system
behaviour, though this is difficult to determine a priori. A check can be performed by enabling leaks and, if no
noticeable effects are observed, disabling leaks for subsequent analysis.
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A

1 directive simulation {
2 final=72000;
3 plots=[Input1();Input2();Output();Signal()];
4 }
5 directive simulator deterministic
6 directive parameters [k=0.003;u=0.1]
7 directive compilation infinite
8 directive leaks
9 dom tb = {bind=k;unbind=u;colour="red"}

10 dom tx = {bind=k;unbind=u;colour="green"}
11 dom to = {bind=k;unbind=u;colour="blue"}
12 def Input1() = <tbˆ b>
13 def Input2() = <txˆ x>
14 def Output() = <x toˆ>
15 def Join() = {tbˆ*}[b txˆ]:[x toˆ]
16 def Reporter() = <flˆ>[x]{toˆ*}
17 def Signal() = <flˆ x>
18 ( 0 Input1()
19 | 10 Input2()
20 | 0 Output()
21 | 100 Join()
22 | 100 Reporter()
23 | 0 Signal()
24 )
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Figure 24: Example with leaks. A Program code, where differences from the running example are highlighted in grey. The
automatic generation of leak reactions is enabled by writing directive leaks (line 8). To observe the effects of leaks, we
increase the simulation time to 20 hours (line 2) and remove the presence of Input1. B CRN generated from (A), shown as
a list of reactions from the Export/Reactions tab, including leak reactions. C Simulation results for (A). We observe that a
small amount of Signal is produced after 20 hours, even in absence of Input1. This is achieved via a leak reaction between
Input2 and the Reporter, and also via a leak reaction between Input2 and the Join complex that produces Output, which
in turn produces Signal via a toehold mediated reaction with the Reporter. D Simulation results for (A) but for 200 hours,
with final = 720000. We observe more substantial production of Signal but only minimal levels of Output, due to its slow
production via a leak reaction and its much faster consumption via a toehold mediated reaction. E Simulation results for (A)
but with the leak rate increased by two orders of magnitude. This is achieved by writing directive leak 1e-7, which allows
a custom rate to be set for all leaks. Custom rates can also be set for individual leak reactions using user-defined reactions
(Figure 18).
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A Visual CRN Language Summary

This appendix summarises all of the syntax definitions for the Visual CRN language that are present in the main
text.

A.1 Syntax Conventions
We first summarise the main syntax conventions of the Visual CRN language. Terminal symbols are written in
teletype font and non-terminal symbols are written in italics. Comments begin with (* and end with *) and may
be nested. Single line comments are written using // at the start of the comment. We use a standard syntax for
Records, Lists and Maps, and assume that N ≥ 0 unless stated otherwise:

Records are written as {Name1 = Field1; . . . ; NameN = FieldN}, where N ≥ 1. We assume that each Name in the
record is unique and that each Field can potentially have a different type. We allow a Field to be omitted, in
which case a default value is used.

Lists are written as List〈Value〉, which is short for the syntax [Value1; . . . ; ValueN]. We assume that every Value is of
the same type.

Maps are written as Map〈Key, Value〉, which is short for the syntax [Key1 = Value1; . . . ; KeyN = ValueN]. We assume
that each Key in the map is unique and that every Value is of the same type.

We use the following syntax for Integers, Names, Strings, Floats and Keywords:

Integers are non-empty sequences of digits, where a digit denotes a single character in the range 0-9,

Names are sequences of characters, where the first character must either be a letter, which is a character in the range
A-Z or a-z, or the underscore character ( ). This is followed by a possibly-empty sequence of characters which
may be letters, digits, underscores or apostrophes (’).

Strings are possibly-empty sequences of characters enclosed by quotation marks ("). Any quotation marks appear-
ing within the string must be escaped by a preceding backslash (\).

Floats can be written in three different ways: (i) One or more digits followed by a decimal point (.), followed by
zero or more digits. For example 3.141. (ii) One or more digits followed by an uppercase E or lowercase e,
followed by a plus (+) or minus (-) sign, followed by one or more digits. For example 3e-5. (iii) One or more
digits followed by a decimal point, followed by zero or more digits, followed by an uppercase E or lowercase
e, followed by a plus or minus sign, followed by one or more digits. For example 1.4324e+2.

Keywords are reserved words that cannot be used as a Name. The list of keywords is as follows: constant direc-
tive def dom else false float of int if init int of float log new not prod rxn sum tether then
time true

A.2 CRN Programs

Program ::= Settings〈Species〉Modules Process CRN Program
Settings〈S〉 ::= directive Setting〈S〉1 . . . directive Setting〈S〉N Multiple settings
Modules ::= module Module1 . . . module ModuleN Multiple modules
Module ::= Name(Name1, . . . , NameN) = {Process} Module definition
Species ::= Name CRN species
Process ::=
| Initial〈Species〉 Initial condition
| Reaction〈Species〉 Reaction
| Name(Value1, . . . , ValueN) Module instance
| Process1| . . . |ProcessN Multiple parallel processes

A.3 Initial Conditions

Initial〈S〉 ::=
| Value S Initial species population
| Value1 S @Value2 Delayed species population
| constant Value S Constant species population
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| S = Attributes Species with attributes

Attributes ::= { Attributes record
value = Value; Species value (1)
time = Value; Species delay (0)
constant = Boolean; Species is constant (false)
spatial = Placement; Species placement
}

A.4 Reactions

Reaction〈S〉 ::=
| Reactants〈S〉 ->{Value}Multiset〈S〉 Mass-action reaction
| Reactants〈S〉 <->{Value}{Value}Multiset〈S〉 Reversible mass-action reaction
| Reactants〈S〉 ->[Functional〈S〉] Multiset〈S〉 Functional rate reaction
| Reactants〈S〉 <->[Functional〈S〉][Functional〈S〉] Multiset〈S〉 Reversible functional rate reaction

Reactants〈S〉 ::=
|Multiset〈S〉 Multiset of reactants
|Multiset〈S〉∼Multiset〈S〉 Multisets of catalysts and reactants

Multiset〈S〉 ::= Value1 S1 + · · ·+ ValueN SN Multiset of species

A.5 Expressions

Value ::= Expression〈Name〉 Expression over parameters
Functional〈S〉 ::= Expression〈Key〈S〉〉 Expression over species and parameters

Key〈S〉 ::=
| [S] Species
| [time] Simulation time
| [Name] Functional rate
| Name Parameter name

Expression〈T〉 ::=
| T Expression variable
| Float Floating point number
| Expression〈T〉+ Expression〈T〉 Addition
| Expression〈T〉 − Expression〈T〉 Subtraction
| Expression〈T〉 ∗ Expression〈T〉 Multiplication
| Expression〈T〉/Expression〈T〉 Division
| Expression〈T〉%Expression〈T〉 Modulo
| Expression〈T〉∧Expression〈T〉 Power
| Expression〈T〉 ∗ ∗Expression〈T〉 Power
| sum(List〈Expression〈T〉〉) Sum
| prod(List〈Expression〈T〉〉) Product
| log(Expression〈T〉) Logarithm
| if Condition〈T〉 Conditional
then Expression〈T〉
else Expression〈T〉

Condition〈T〉 ::=
| true Logical True
| false Logical False
| Expression〈T〉 <= Expression〈T〉 Less than or equal
| Expression〈T〉 < Expression〈T〉 Less than
| Expression〈T〉 = Expression〈T〉 Equal
| Expression〈T〉 > Expression〈T〉 Greater than
| Expression〈T〉 >= Expression〈T〉 Greater than or equal
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| Condition〈T〉&&Condition〈T〉 Logical AND
| Condition〈T〉||Condition〈T〉 Logical OR
| not Condition〈T〉 Negation

A.6 CRN Settings

Setting〈S〉 ::=
| parameters Map〈Name, Parameter〉 Parameter definitions
| sweeps Map〈Name, List〈Assignment〉〉 Sweep definitions
| rates Map〈Name, Functional〈S〉〉 Rate expressions
| plot settings Plotting Plot format settings
| simulation Simulation〈S〉 Simulation settings
| simulations Map〈Name, Simulation〈S〉〉 Settings for multiple simulations
| simulator Simulator Simulator method (stochastic)
| deterministic Deterministic Deterministic simulation settings
| stochastic Stochastic Stochastic simulation settings
| spatial Spatial〈S〉 Spatial simulation settings
| moments Moments〈S〉 Moment closure simulation settings
| inference Inference Inference settings
| data List〈Name〉 Data files for inference
| units Units Units settings

A.6.1 Parameters

Parameter ::=
| Value Parameter value
| Value, Prior Parameter value and associated prior

A.6.2 Sweeps

Assignment ::=
| Name = Value Assign a value to a parameter name
| (Name1, . . . , NameN) = (Value1, . . . , ValueN) Assign a set of values to a set of names

A.6.3 Plotting

Plotting ::= { Plot settings record
x label = String; X axis plot label
y label = String; Y axis plot label
title = String; Plot title
label font size = Integer; Font size of labels
tick font size = Integer; Font size of axis numbers
x ticks = List〈Integer〉; Specific X axis numbers
y ticks = List〈Integer〉; Specific Y axis numbers
}

A.6.4 Units

Units ::= { Units record
time = Time; Time units (s)
space = Space; Space units (m)
concentration = Concentration; Concentration units (nM)
}

Time ::=
| h hours (3600s)
| min minutes (60s)
| s seconds (s)
| ms milliseconds (10−3 s)
| us microseconds (10−6 s)
| ns nanoseconds (10−9 s)

Space ::=
| m metres (m)
| mm millimetres (10−3 m)
| um micrometres (10−6 m)
| nm nanometres (10−9 m)
| pm picometres (10−12 m)
| fm femtometres (10−15 m)48



Concentration ::=
| M molar (M)
| mM millimolar (10−3 M)
| uM micromolar (10−6 M)
| nM nanomolar (10−9 M)
| pM picomolar (10−12 M)
| fM femtomolar (10−15 M)
| aM attomolar (10−18 M)
| zM zeptomolar (10−21 M)
| yM yoctomolar (10−24 M)

A.6.5 Simulation

Simulation〈S〉 ::= { Simulation record
initial = Float; Initial simulation time (0)
final = Float; Final simulation time (1000)
points = Integer; Number of simulation points to plot (1000)
plots = Map〈Plot〈S〉〉; Species to plot. Plots all species if empty ([])
kinetics = Kinetics; Kinetic rate convention for homomultimer formation (Contextual)
prune = Boolean; Remove unreachable reactions prior to simulation (false)
multicore = Boolean; Use multiple CPU cores to run simulation, if present (false)
data = List〈Name〉; List of Datasets to compare with simulation results ([])
sweeps = List〈Name〉; List of sweeps to use for simulation ([])
}

Plot〈S〉 ::=
| S Single species
| Functional〈S〉 Function of species, parameters or rates

Kinetics ::=
| Contextual Kinetic convention depends on simulator directive
| Stochastic Stochastic kinetic convention
| Deterministic Deterministic kinetic convention

A.6.6 Simulator

Simulator ::=
| deterministic Deterministic simulation of ordinary differential equations (OSLO solvers)
| sundials Deterministic simulation of ordinary differential equations (SUNDIALs solvers)
| stochastic Stochastic simulation using the Gillespie Stochastic Simulation Algorithm (SSA)
| lna Mean and variance over time of a stochastic system (Linear Noise Approximation)
| cme Probability distribution over time of a stochastic system (Chemical Master Equation)
| pde Deterministic spatiotemporal simulation of reaction-diffusion equations

A.6.7 Deterministic

Deterministic ::= { Deterministic record
stiff = Boolean; Enable stiff solver (false)
abstolerance = Float; Relative tolerance (1E-5)
reltolerance = Float; Absolute tolerance (1E-6)
}

A.6.8 Stochastic

Stochastic ::= { Stochastic record
scale = Float; Scale volume while fixing concentrations (1)
seed = Option〈Integer〉; Random number generator seed (∅, uses random seed)
steps = Option〈Integer〉; Number of simulation steps to take (∅, does not limit steps)
trajectories = Integer; Number of simulation repeats, plotting mean and variance (1)
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}

A.6.9 Spatial

Spatial〈S〉 ::= { Spatial record
diffusibles = Map〈S, Value〉; Assigns diffusion rates to species ([])
default diffusion = Float; Default diffusion rate for all species (0)
dimensions = Integer; Number of spatial dimensions (1)
random = Float; Relative random perturbation to initial conditions (0)
xmax = Float; Maximum length of spatial domain (1)
nx = Integer; Number of spatial grid points, including boundary (20)
dt = Float; Time step for spatial simulations ( 0.2dx2

maxdi f f usibles )
boundary = Boundary; Boundary conditions for spatial simulation (Periodic)
}

Bloundary ::=
| Periodic Periodic boundary conditions
| ZeroFlux Zero flux boundary conditions

Placement ::= { Placement record
centralcore = Core; Central core
points = List〈Point〉; A list of points ([])
random = Float; Add random noise to initial population (0)
}

Core ::= { Core record
width = Float; Diameter of central core, in relative units (0)
inner = Float; Concentration inside central core (0)
outer = Float; Concentration outside central core (0)
}

Point ::= { Point record
x = Float; Relative x position of point (0)
y = Float; Relative y position of point (0)
width = Float; Diameter of point, in relative units (0)
value = Float; Concentration of species inside point (0)
}

A.6.10 Moments

Moment〈S〉 ::= { Moment record
order = Integer; Moment closure order
initial minimum = Float; Initial minimal value for all species
log evaluation = Boolean; Enable log evaluation near zero populations
plots = List〈Monomial〈S〉1 ∗ · · · ∗Monomial〈S〉N〉; Moment closure plots, N ≥ 1
}

Monomial〈S〉 ::= S∧Integer Moment monomial

A.6.11 Inference

Inference ::= { Inference record
name = Name; Name of inference run (default)
burnin = Integer; Number of discarded initial iterations (100)
samples = Integer; Number of samples stored in posterior (100)
thin = Integer; Ratio of posterior samples to discard (10)
noise model = Noise; Noise model (constant)
prune = Boolean; Remove reactions involving species that are never produced (false)
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seed = Integer; Seed of random number generator (0)
timer = Boolean; Collect timing statistics for simulations (false)
partial = Boolean; Only run simulations affected by changed parameters (false)
}

Noise ::=
| constant Error is constant
| proportional Error is proportional to measured value

Prior ::= { Prior record
interval = Interval; Scale used to vary the parameter
distribution = Distribution; Prior distribution of the parameter
variation = Variation; Method used to vary the parameter
}

Interval ::=
| Real Vary the parameter on a linear scale
| Log Vary the parameter on a logarithmic scale

Distribution ::=
| Uniform(Float1, Float2) Uniform distribution between Float1 and Float2
| Normal(Float1, Float2) Normal distribution, mean Float1, standard deviation Float2
| TruncatedNormal Truncated Normal distribution, mean Float1,
(Float1, Float2, Float3, Float4) standard deviation Float2, between Float3 and Float4

Variation ::=
| Random Randomly vary parameter
| Fixed Keep parameter fixed
| Initial Use default value as initial estimate
|Multiple Use a unique parameter in each sweep instance

51



B Spatial Simulation Methods

Here we describe how numerical solutions are obtained to reaction-diffusion equations of the form:

∂u
dt

(x, t) = f (u(x, t)) + D∇2u(x, t) (10)

where u(x, t) is a vector of concentrations at time t and position x ∈ Rn, f describes the fluxes of the reactions,
and is equivalent to deterministic simulation. The diagonal matrix D expresses the diffusion rates of the species in
u. The Crank-Nicolson method is used to provide numerical solutions, and currently supports 1d domains with
periodic or zero-flux boundary conditions, and 2d domains with periodic boundaries.

B.1 The 1d problem
The description of this method is based on the slides from Douglas Wilhelm Harder (University of Waterloo,
Ontario), which are available from https://ece.uwaterloo.ca/˜ne217/Laboratories/03/3.CrankNicolson.
pptx.

The 1d version of (10) is given by

∂u
dt

(x, t) = f (u(x, t)) + D
∂2u
∂x2 (x, t) (11)

We consider the 1d problem on a domain x ∈ [a, b].
The Crank-Nicolson method uses a combination of the explicit and implicit finite differences applied to a regular

grid of m + 1 gridpoints such that u(a, tk) = u0,k and u(b, tk) = unx ,k. The explicit scheme uses the following finite
difference approximations

∂u
dt

(xi, tk) =
ui,k+1 − ui,k

∆t
(12a)

∂2u
∂x2 (xi, tk) =

ui−1,k − 2ui,k + ui+1,k

h2 (12b)

This leads to a recurrence relation

ui,k+1 = ui,k + ∆t. f (ui,k) +
D.∆t

h2 (ui−1,k − 2ui,k + ui+1,k) (13)

The implicit scheme attempts to match grid-points at the next time interval rather than the current on. Accordingly,
the finite difference approximations used are

∂u
dt

(xi, tk+1) =
ui,k+1 − ui,k

∆t
(14a)

∂2u
∂x2 (xi, tk+1) =

ui−1,k − 2ui,k + ui+1,k

h2 (14b)

This leads to a recurrence relation

ui,k+1 = ui,k + ∆t. f (ui,k) +
D.∆t

h2 (ui−1,k+1 − 2ui,k+1 + ui+1,k+1) (15)

Adding together the explicit and implicit schemes leads to a centred time-evolution. In principle, it is possible
to add together the schemes in a bias-weighted way, for instance doing θ ∗ implicit + (1− θ) ∗ explicit, but we omit
details here for simplicity. A even weighting corresponds summing equations (13) and (15), which after bringing
time k + 1 terms to the left and k terms to the right, gives

− rui−1,k+1 + 2(r + 1)ui,k+1 − rui+1,k+1 = 2ui,k + 2∆t. f (ui,k) + r(ui−1,k − 2ui,k + ui+1,k) (16)

where
r =

D.∆t
h2 (17)

is a quantity we now refer to as the flux constant.
To complete the problem setup, we must consider the boundary conditions that will be used.
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B.1.1 Zero-flux boundary conditions (1st order)

For a 1d domain x ∈ [a, b], zero-flux (or insulated) boundaries are defined by

∂u
∂x

(a, tk+1) = 0 (18a)

∂u
∂x

(b, tk+1) = 0 (18b)

Using a 1st order approximation, we assign

∂u
∂x

(a, tk+1) ≈
u(a, t)− u(a + h, t)

h
(19a)

∂u
∂x

(b, tk+1) ≈
u(b, t)− u(b− h, t)

h
(19b)

which leads to the recurrence relations

u0,k+1 − u−1,k+1 = 0 (20a)
unx ,k+1 − unx+1,k+1 = 0 (20b)

This enables us to account for the points u−1,k+1 and unx+1,k+1 that lie outside of the grid.
With these corrections, we can define a linear system to be solved over the ui,k, as

Azuk+1 = Bzuk + 2 f (uk) (21)

where

Az =


2 + r −r
−r 2(1 + r) −r

. . . . . . . . .
−r 2(1 + r) −r

−r 2 + r

 , Bz =


2− r r

r 2(1− r) r
. . . . . . . . .

r 2(1− r) r
r 2− r


As Az is a tridiagonal matrix, we can use the Thomas’ tridiagonal algorithm [24] to solve for uk+1 efficiently.

B.1.2 Zero-flux boundary conditions (2nd order)

Using a 2nd order approximation, we obtain

∂u
∂x

(a, tk+1) ≈
−3u(a, t) + 4u(a + h, t)− u(a + 2h, t)

2h
(22a)

∂u
∂x

(b, tk+1) ≈
u(b− 2h, t)− 4u(b− h, t) + 3u(b, t)

2h
(22b)

which leads to the recurrence relations

−u2,k+1 + 4u1,k+1 − 3u0,k+1 = 0 (23a)
unx ,k+1 − 4unx−1,k+1 + unx−2,k+1 = 0 (23b)

These conditions can be used to eliminate u0,k+1 and unx ,k+1 from a system of nx − 1 equations for the internal
points, which becomes:

Azu1:nx−1,k+1 = Bzu0:nx ,k + 2 f (u1:nx ,k) (24)

where

Az =


2 + 2

3 r − 2
3 r

−r 2(1 + r) −r
. . . . . . . . .

−r 2(1 + r) −r
− 2

3 r 2 + 2
3 r

 , Bz =


2− r r

r 2(1− r) r
. . . . . . . . .

r 2(1− r) r
r 2− r


As before, we can use Thomas’ tridiagonal algorithm to solve for u1:nx−1,k+1, but this time fill in the end-points

with corrections according to (23).
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B.1.3 Periodic boundary conditions

For periodic boundaries in 1d, the idea is to equate u0,k to unx ,k. Starting from equation (16), we seek to form a
matrix equation, analogous to (21). Instead, we seek to wrap around a solution for the grid-points 0, . . . , nx − 1.
Accordingly, we obtain

Apu0:nx−1,k+1 = Bpu0:nx−1,k + 2 f (u0:nx−1,k) (25)

where

Ap =


2(1 + r) −r −r
−r 2(1 + r) −r

. . . . . . . . .
−r 2(1 + r) −r

−r −r 2(1 + r)

 , Bp =


2(1− r) r r

r 2(1− r) r
. . . . . . . . .

r 2(1− r) r
r r 2(1− r)


Unfortunately, as Ap is not completely tridiagonal, and so we must solve the matrix equation using a more

general technique. As Ap is unchanged over time, an efficient (yet numerically unstable) method is to simply
calculate A−1

p upfront, then use matrix multiplication at each time-step to evaluate

u0:nx−1,k+1 = A−1
p
(

Bpu0:nx−1,k + 2 f (u0:nx−1,k)
)

To complete the solution for u at time tk+1, we simply copy the value at x = a into the storage for x = b, ensuring
periodicity.

An alternative approach is to use the Sherman-Morrison formula (see Section B.3.2).

B.2 The 2d problem
To solve the 2d problem, we make use of alternating direction implicit (ADI) methods, as described by Peaceman
and Rachford in 1955 [25]. A nice discussion on the use of ADI methods is provided by Taras Lakoba (University
of Vermont) in his teaching materials, which are available at the time of writing from http://www.cems.uvm.edu/

˜tlakoba/math337/notes_15.pdf.
The 2d version of (10) is given by

∂u
dt

(x, y, t) = f (u(x, y, t)) + D
(

∂2u
∂x2 (x, y, t) +

∂2u
∂y2 (x, y, t)

)
(26)

We consider the 2d problem on a domain (x, y) ∈ [a, b]× [a, b]. Accordingly, we extend our previous notation such
that u(a + ih, a + jh, tk) = ui,j,k.

B.2.1 Simple approaches

We begin by introducing the explicit update scheme for the 2d problem, which gives

ui,j,k+1 − ui,j,k

∆t
= f (ui,j,k) + D

(ui−1,j,k − 2ui,j,k + ui+1,j,k

∆x2 +
ui,j−1,k − 2ui,j,k + ui,j+1,k

∆y2

)
(27)

which can immediately be simplified by imposing ∆x = ∆y = h and defining

r =
D∆t
h2 (28)

as in the 1d case. Accordingly, we obtain the recurrence relation

ui,j,k+1 = f (ui,j,k)∆t + ui,j,k + r
(

ui−1,j,k + ui+1,j,k + ui,j−1,k + ui,j+1,k − 4ui,j,k

)
(29)

The implicit scheme is similar, but the space derivatives are considered at the next time-step, rather than the
current one. As such,

ui,j,k+1 − ui,j,k

∆t
= f (ui,j,k) + D

(ui−1,j,k+1 − 2ui,j,k+1 + ui+1,j,k+1

∆x2 +
ui,j−1,k+1 − 2ui,j,k+1 + ui,j+1,k+1

∆y2

)
(30)

Rearranging the terms gives a recurrence relation

ui−1,j,k+1 + ui+1,j,k+1 + ui,j−1,k+1 + ui,j+1,k+1 − (4 +
1
r
)ui,j,k+1 = −1

r

(
ui,j,k + f (ui,j,k)∆t

)
(31)
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B.2.2 Alternating direction implicit (ADI) method

In both the explicit and implicit space derivatives, and also in a similar Crank-Nicolson scheme, one obtains a
recurrence relation involving a block tridiagonal system of equations, for which no efficient solution exists [25].
However, the ADI methods circumvent this problem, producing an approximate tridiagonal system. The ADI
method uses two difference equations, essentially performing an implicit update in the x-direction in the first half
of a step, and an update in the y-direction in the second half of a step. Therefore, adapting equations (29) and (31)
derived above, we have

ui,j,2k+1 = ui,j,2k +
∆t
2

. f (ui,j,2k) + r̂.
(

ui−1,j,2k+1 − 2ui,j,2k+1 + ui+1,j,2k+1 + ui,j−1,2k − 2ui,j,2k + ui,j+1,2k

)
(32a)

ui,j,2k+2 = ui,j,2k+1 +
∆t
2

. f (ui,j,2k+1) + r̂.
(

ui−1,j,2k+1 − 2ui,j,2k+1 + ui+1,j,2k+1 + ui,j−1,2k+2 − 2ui,j,2k+2 + ui,j+1,2k+2

)
(32b)

where an alternative flux constant r2 is defined as

r̂ =
D∆t
2h2 =

r
2

(33)

Rearranging to separate 2k, 2k + 1 and 2k + 2 terms, we obtain

−r̂.
(

ui−1,j,2k+1 − 2ui,j,2k+1 + ui+1,j,2k+1

)
+ ui,j,2k+1 = ui,j,2k +

∆t
2

. f (ui,j,2k) + r̂.
(

ui,j−1,2k − 2ui,j,2k + ui,j+1,2k

)
(34a)

−r̂.
(

ui,j−1,2k+2 − 2ui,j,2k+2 + ui,j+1,2k+2

)
+ ui,j,2k+2 = ui,j,2k+1 +

∆t
2

. f (ui,j,2k+1) + r̂.
(

ui−1,j,2k+1 − 2ui,j,2k+1 + ui+1,j,2k+1

)
(34b)

Therefore, we can solve these equations by first iterating over j = 1 . . . ny − 1, solving

ApU∗;,j =
∆t
2

f (u0:nx ,j,2k) + r̂U;,j−1 + (1− 2r̂)U;,j + r̂U;,j+1 (35)

where U;,j is the jth column of ui,j,2k and U∗;,j is the jth column of ui,j,2k+1. For j = 0 and j = ny, we do something that
depends on the boundary conditions.

In the second step, we iterate over i = 1 . . . nx − 1, solving

ApUi,; =
∆t
2

f (ui,0:ny ,2k) + r̂U∗i−1,; + (1− 2r̂)U∗i,; + r̂U∗i+1,; (36)

at which point Ui,; describes the ith row of the solution having gone through both steps. Again, we must handle
i = 0 and i = nx as special cases.

Furthermore, the precise form of Ap depends on the boundary conditions. As for the 1d case, we can collect the
coefficients of U and U∗ of the right-hand sides into a matrix Bp. Then, we can compactly represent the equations
to solve as

ApU∗ =
∆t
2

f (u0:nx ,j,2k) + BpU (37a)

ApU =
∆t
2

f (ui,0:ny ,2k) + BpU∗ (37b)

B.2.3 Neumann boundary conditions

To apply zero-flux boundary conditions to equations (37), we can adopt a first order approximation, equivalent to
that done in 1d (Section B.1.1). This gives rise to the relationships

u0,j,k+1 − u−1,j,k+1 = 0 (∀j) (38a)

unx ,j,k+1 − unx+1,j,k+1 = 0 (∀j) (38b)

ui,0,k+1 − ui,−1,k+1 = 0 (∀i) (38c)
ui,ny ,k+1 − ui,nx+1,k+1 = 0 (∀i) (38d)

This leads us to define the triadiagonal matrices

Ap =


1 + r −r
−r 1 + 2r −r

. . . . . . . . .
−r 1 + 2r −r

−r 1 + r

 , Bp =


1− r r

r 1− 2r r
. . . . . . . . .

r 1− 2r r
r 1− r


As the matrices are tridiagonal, we use the Thomas algorithm (see Section B.3.1) to solve ApU = x at each step.
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B.2.4 Periodic boundary conditions

To apply periodic boundary conditions to equations (37), we wrap around the edges of domains in each direction.
So, we replace the terms at i = nx with those at i = 0, and similarly for i = −1 with i = nx − 1, and then the
equivalent replacements for j = ny and j = −1. This leads us to define the cyclic tridiagonal matrix

Ap =


1 + 2r −r −r
−r 1 + 2r −r

. . . . . . . . .
−r 1 + 2r −r

−r −r 1 + 2r

 , Bp =


1− 2r r r

r 1− 2r r
. . . . . . . . .

r 1− 2r r
r r 1− 2r


As the matrices are cyclic tridiagonal, we use the Sherman-Morrison algorithm (see Section B.3.2) to solve ApU =

x at each step.

B.3 Useful algorithms

B.3.1 Thomas’ tridiagonal algorithm

B.3.2 Sherman-Morrison Formula

Consider the problem
Ax = u (39)

where A is a cyclic tridiagonal matrix

A =


b1 c1 0 . . . 0 0 aN
a1 b2 c2 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . aN−2 bN−1 cN−1
cN 0 0 . . . 0 aN−1 bN


The idea is to separate A into the sum of a tridiagonal matrix and an outer product of two vectors according to

A = Q + v⊗ w

where

v =


β
0
...
0

cN

 , w =


1
0
...
0

aN/β


Accordingly, the bottom-left and top-right corners of Q become 0. By assigning β = −b1, the top-left and bottom-
right corners become

A11 = 2b1, ANN = bN + aN cN/b1

Finally, we solve (39) by solving the two equations

Qy = u, Qz = v

using the Thomas algorithm (Q tridiagonal). Accordingly,

x = y−
(

w · y
1 + (w · z)

)
z (40)
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