Programming in Haskell — Homework Assignment 5

UNIZG FER, 2017/2018

Handed out: December 8, 2017. Due: December 15, 2017 at 23:00

1 Instructions

1. To submit your homework you need to have a folder named after your JMBAG.
In that folder there should be two files, Homework.hs for homework problems and
Exercises.hs for all in-class exercises (yes, you need to submit those as well). You
should ZIP that whole folder and submit it through Ferko.

Example folder structure:

e 0036461143

— Homework.hs
— Exercises.hs

You can download the homework template file from the FER web repository.

2. If you need some help with your homework or have any questions, ask them on our
Google group.

3. Define each function with the exact name and type specified. You can (and in most
cases you should) define each function using a number of simpler functions.

4. Unless said otherwise, a function may not cause runtime errors and must be defined
for all of its input values (must be total). Use the error function for cases in which
a function should terminate with an error message.

5. Problems marked with a star (x) are optional.

2 Grading

Each problem is worth a certain number of points. The points are given at the beginning
of each problem or sub-problem (if they are scored independently).

These points are scaled, together with a score for the in-class exercises, if any, to 10.
Problems marked with a star (x) are scored on top of the mandatory problems, before

scaling. The score is capped at 10, but this allows for a perfect score even with some
problems remaining unsolved.

https://ferko.fer.hr/ferko/Login.action
http://www.fer.unizg.hr/predmet/puh/materijali
https://groups.google.com/forum/#!forum/haskell-fer

Programming in Haskell — Homework Assignment 5 3 PROBLEMS

3 Problems

1. (8 points) A robot factory’s test facility needs a program to verify robot movements.
The robots have three possible movements:

e turn right
e turn left

e advance

Robots are placed on a hypothetical infinite grid, facing a particular direction (north,
east, south, or west) at a set of {x,y} coordinates, e.g., {3,8}, with coordinates
increasing to the north and east.

The robot then receives a number of instructions, at which point the testing facility
verifies the robot’s new position, and in which direction it is pointing.

The letter-string "RAALAL” means:

Turn right
Advance twice

Turn left

Advance once

Turn left yet again

Say a robot starts at {7, 3} facing north. Then running this stream of instructions
should leave it at {9, 4} facing west.

To complete this exercise, you need to create the data type Robot, and implement
the following functions and data types:

data Bearing

data Robot
bearing :: Robot -> Bearing
coordinates :: Robot -> (Integer, Integer)

mkRobot :: Bearing -> (Integer, Integer) -> Robot

simulate :: Robot -> String -> Robot
-- simulate should be implemented in terms of fold

advance :: Bearing -> (Integer, Integer) -> (Integer, Integer)
turnleft :: Bearing -> Bearing
turnRight :: Bearing -> Bearing

Programming in Haskell — Homework Assignment 5 3 PROBLEMS

2. (2 point) Determine if a triangle is equilateral, isosceles, scalene, or degenerate.
An Equilateral triangle has all three sides the same length.

An Isosceles triangle has at least two sides the same length. (It is sometimes
specified as having exactly two sides the same length, but for the purposes of this
exercise we'll say at least two.)

A Scalene triangle has all sides of different lengths.

A Degenerate triangle has zero area and looks like a single line. The sum of the
lengths of two sides equals that of the third.

For a shape to be a triangle at all, all sides have to be of length ; 0, and the sum of
the lengths of any two sides must be greater than or equal to the length of the third
side. See Triangle Inequality.

All triangles that aren’t any of the above are I1legal triangles.
Create a new data type Triangle and write a function that determines it’s type.

Function should have following type signature:

triangleType :: (Ord a, Num a) => a -> a -> a -> TriangleType

https://en.wikipedia.org/wiki/Triangle_inequality

Programming in Haskell — Homework Assignment 5 3 PROBLEMS

3. (3 points) In this problem you will have to implement a utility for splitting lists on
sub lists. This can be quite useful for splitting delimited strings (and will be useful
in the next homework so make sure you solve this exercise :).

It’s not very hard to solve this problem with standard recursions but this time you
have to use folds. Also, keep in mind that not all folds are equal. There is clearly
a better and worse choice so make sure you pick the right one for the job.

In case you need to return more than one value from the fold function, remember
that you can use tuples for that (even though it is not necessary in this case).

You should implement a function with a following type signature:
splitter :: Eq a => [a] -> [a] -> [[al]

The First argument is a sub list (which is used as a delimiter) and the second
argument is the delimited list that we want to split up.

Here are some test examples (you don’t have to cover the case of splitting on an
empty list):

splitter " > " " > " => [nn]]
splitter " > " "123 > " => ["123", ""]
Splitter noson n123 > 456 > 789" => [n123||’ "456", "789"]

As a final tip, this is not a one liner but it can be solved in about 5 short lines of
code (give or take), you also might find some functions from ‘Data.List‘ useful (one
in particular).

Programming in Haskell — Homework Assignment 5 3 PROBLEMS

4. (4 points(x)) While playing with the third problem we have concluded it is not
possible to make the splitter function work on infinite lists (unless we implement
it with standard recursions instead of fold).

This conclusion was based more on a “feeling” rather than hard science and so,
because our time is precious, we have decided to let you try to prove us wrong (or
right).

If you think we are wrong, then try to make splitter work on infinite lists. If you
think we are right, then try to explain why.

If you need an infinite list to test your function with you can try this :

cycle "123 > 456 > "

Programming in Haskell — Homework Assignment 5 3 PROBLEMS

Corrections

	Instructions
	Grading
	Problems

