

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Regarding the change of names mentioned in the document, such as Hitachi
Electric and Hitachi XX, to Renesas Technology Corp.

The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas

Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog

and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)

Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand

names are mentioned in the document, these names have in fact all been changed to Renesas

Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and

corporate statement, no changes whatsoever have been made to the contents of the document, and

these changes do not constitute any alteration to the contents of the document itself.

Renesas Technology Home Page: http://www.renesas.com

Renesas Technology Corp.

Customer Support Dept.

April 1, 2003

To all our customers

Cautions

Keep safety first in your circuit designs!

1. Renesas Technology Corporation puts the maximum effort into making semiconductor products better
and more reliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or a third party.

2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or
circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements or
other reasons. It is therefore recommended that customers contact Renesas Technology Corporation
or an authorized Renesas Technology Corporation product distributor for the latest product information
before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data, diagrams,
charts, programs, and algorithms, please be sure to evaluate all information as a total system before
making a final decision on the applicability of the information and products. Renesas Technology
Corporation assumes no responsibility for any damage, liability or other loss resulting from the
information contained herein.

5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device
or system that is used under circumstances in which human life is potentially at stake. Please contact
Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor
when considering the use of a product contained herein for any specific purposes, such as apparatus or
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in
whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must be
exported under a license from the Japanese government and cannot be imported into a country other
than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

8. Please contact Renesas Technology Corporation for further details on these materials or the products
contained therein.

I2C Bus Interface
Application Note

A
pplication N

ote

Rev.2.0 2001.11

Renesas Single-Chip
Microcomputer

Cautions

1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s
patent, copyright, trademark, or other intellectual property rights for information contained in
this document. Hitachi bears no responsibility for problems that may arise with third party’s
rights, including intellectual property rights, in connection with use of the information
contained in this document.

2. Products and product specifications may be subject to change without notice. Confirm that you
have received the latest product standards or specifications before final design, purchase or
use.

3. Hitachi makes every attempt to ensure that its products are of high quality and reliability.
However, contact Hitachi’s sales office before using the product in an application that
demands especially high quality and reliability or where its failure or malfunction may directly
threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear
power, combustion control, transportation, traffic, safety equipment or medical equipment for
life support.

4. Design your application so that the product is used within the ranges guaranteed by Hitachi
particularly for maximum rating, operating supply voltage range, heat radiation characteristics,
installation conditions and other characteristics. Hitachi bears no responsibility for failure or
damage when used beyond the guaranteed ranges. Even within the guaranteed ranges,
consider normally foreseeable failure rates or failure modes in semiconductor devices and
employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi
product does not cause bodily injury, fire or other consequential damage due to operation of
the Hitachi product.

5. This product is not designed to be radiation resistant.

6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document
without written approval from Hitachi.

7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi
semiconductor products.

Rev. 2.0, 11/01, page i of vi

Contents

Section 1 Overview of the I2C Bus.. 1
1.1 Overview of the I2C Bus.. 1

1.1.1 Features of the I2C Bus... 1
1.1.2 Differences with the Serial Communications Interface (SCI) 1
1.1.3 Connection Type of the I2C bus Interface .. 2

1.2 Method of Data Transfer over an I2C Bus ... 3
1.2.1 Basic Concepts and Elements of Data Transfer over an I2C Bus 3
1.2.2 Procedure for Data Transfer (Example: master transmission, slave reception).... 6

1.3 The Single-Master and Multi-Master Configurations ... 8
1.3.1 Single-Master ... 8
1.3.2 Multi-Master .. 8

1.4 Procedure for Adjusting Communications .. 9

Section 2 Explanation of the Interface Functions of the I2C Bus 11
2.1 Lineup of Products that Incorporate the I2C Bus Interface.. 11
2.2 Specifications of the I2C Bus Interfaces Incorporated in H8/300 Series and

H8/300L Series Products [H8 Series].. 13
2.2.1 Specifications of the I2C Bus Interfaces Incorporated in H8/300 Series

and H8/300L Series Products... 13
2.2.2 Configuration of the I2C Bus Interfaces Incorporated in H8/300 Series

and H8/300L Series Products... 14
2.2.3 Data Transfer Format of the I2C Bus Interfaces Incorporated in H8/300 Series

and H8/300L Series Products... 15
2.2.4 Explanation of Functions of the Registers of the I2C Bus Interfaces

Incorporated in H8/300 Series and H8/300L Series Products 17
2.3 Specifications of the I2C Bus Interfaces Incorporated in H8S Series Products 19

2.3.1 Features of the I2C Bus Interfaces Incorporated in H8S Series Products 19
2.3.2 Internal Block Configuration of the H8S Series I2C Bus Interface 21
2.3.3 Data Format for the H8S Series I2C Bus .. 22
2.3.4 Description of Functions of the H8S Series I2C Bus Interface Incorporated

Registers... 24
2.3.5 Relationship between Flags of On-chip I2C Bus Interface and Transfer State in

H8S Series (H8S/2138 Series) ... 42
2.4 Description of I2C Bus Interface Usage... 43
2.5 Synchronization of the I2C Bus Communication... 54
2.6 Description of Data Transfer in H8/300 and H8/300L Series [H8 Series] 56

2.6.1 Master transmission.. 56
2.6.2 Master Reception.. 58
2.6.3 Slave Reception.. 60

Rev. 2.0, 11/01, page ii of vi

2.6.4 Slave Transmission .. 63
2.7 Description of Data Transfer in H8S Series (H8/2138 Series) [H8S Series]..................... 65

2.7.1 Master Transmission .. 65
2.7.2 Master Reception.. 70
2.7.3 Slave Reception.. 75
2.7.4 Slave Transmission .. 78

Section 3 Examples of Application to the H8/300 and H8/300L Series......... 83
3.1 System Specifications.. 83
3.2 Circuit for Multi-Master Evaluation System... 87
3.3 Design of Software.. 88

3.3.1 Description of Modules.. 88
3.3.2 Master... 88
3.3.3 Slave...90

3.4 Flowcharts ... 92
3.4.1 Master Program.. 92
3.4.2 Slave Program .. 95

3.5 Program Listings ... 98
3.5.1 Master Program.. 98
3.5.2 Slave Program .. 105

Section 4 Example Applications for the H8S Series... 113
4.1 Usage Guide to the Example Applications for the H8S Series.. 113

4.1.1 The Structure of the Example Applications for the H8S Series 113
4.1.2 Description of the Definition File for the Vector Table 114
4.1.3 Description of the Definition File for the Registers ... 118
4.1.4 Description of the Inclusion of Assembler Files in C Language Programs.......... 148
4.1.5 Description of the Linkage of Files.. 149

4.2 Single-Master Transmission.. 150
4.2.1 Specification... 150
4.2.2 Description of the Operation .. 152
4.2.3 Description of the Software.. 153
4.2.4 Flowchart.. 157
4.2.5 Program List... 162

4.3 Single-Master Reception ... 167
4.3.1 Specifications ... 167
4.3.2 Operation Descriptions... 169
4.3.3 Software Descriptions .. 172
4.3.4 Flowchart.. 175
4.3.5 Program List... 183

4.4 One-Byte Data Transmission by Single-Master Transmission.. 189
4.4.1 Specifications ... 189
4.4.2 Operation Descriptions... 191

Rev. 2.0, 11/01, page iii of vi

4.4.3 Software Descriptions .. 192
4.4.4 Flowchart.. 195
4.4.5 Program List... 200

4.5 One-Byte Data Reception by Single-Master Reception .. 204
4.5.1 Specifications ... 204
4.5.2 Operation Description .. 205
4.5.3 Software Description.. 207
4.5.4 Flowchart.. 210
4.5.5 Program List... 217

4.6 Single-Master Transmission by DTC.. 222
4.6.1 Specifications ... 222
4.6.2 Operation Description .. 229
4.6.3 Software Description.. 229
4.6.4 Flowchart.. 235
4.6.5 Program List... 240

4.7 Single-Master Reception by DTC ... 245
4.7.1 Specifications ... 245
4.7.2 Description of Operation.. 252
4.7.3 Description of Software ... 253
4.7.4 Flowchart.. 258
4.7.5 Program List... 266

4.8 Slave Transmission... 272
4.8.1 Specifications ... 272
4.8.2 Description of Operation.. 273
4.8.3 Description of Software ... 275
4.8.4 Flowcharts .. 279
4.8.5 Program List... 282

4.9 Slave Reception... 286
4.9.1 Specifications ... 286
4.9.2 Description of Operation.. 288
4.9.3 Description of Software ... 289
4.9.4 Flowcharts .. 293
4.9.5 Program List... 297

4.10 Example of Processing Bus Disconnection ... 301
4.10.1 Specification... 301
4.10.2 Description of Operation.. 303
4.10.3 Description of Software ... 304
4.10.4 Flowcharts .. 308
4.10.5 Program List... 317

4.11 Bus Conflict... 324
4.11.1 Specifications ... 324
4.11.2 Operation Description .. 330
4.11.3 Description of Software ... 331

Rev. 2.0, 11/01, page iv of vi

4.11.4 Flowchart.. 335
4.11.5 Master-1 program List.. 344
4.11.6 Master-2 program List.. 351

Rev. 2.0, 11/01, page v of vi

Introduction

In recent times, the peripheral interfaces for all fields of application have been being unified and
standardized because of the need for lower costs and greater utility. The I2C bus* interface covered
by this application note is one such standardized interface. It is for use as an interface with the
control ICs of home appliances, and in controlling the battery packs of notebook-sized PCs, PC
monitors, etc.

The I2C bus is the standardized form of a bi-directional serial bus system which was developed by
Philips in the Netherlands. In products based on this standard, two wires (a clock line and data
line) are used to carry mutual data communications among multiple peripheral ICs.

The I2C bus interfaces incorporated in Hitachi’s 8-bit/16-bit H8/300-series, H8/300L-series, and
H8S-series single-chip microcomputers are an implementation of a sub-set of the standard
functions and conform to the I2C bus interface method proposed by Philips, Ltd. (that is, note that
some specifications of the I2C bus interface are not completely implemented depending on the
condition used).

In sections 1 and 2 of this application note, an outline of the I2C bus is given and the specifications
and functions of our I2C bus-interface module are described. Examples of systems in multi-master
configurations are introduced in section 3 and examples of the application of the I2C bus interface
with H8S-series products are given in section 4.

The operation of the examples of hardware and software described in this application note has
been confirmed. However, when they are actually used, be sure to base this usage on a
confirmation of their operation.

Note: * I2C Bus: Inter-IC Bus

Rev. 2.0, 11/01, page vi of vi

Rev. 2.0, 11/01, page 1 of 358

Section 1 Overview of the I2C Bus

1.1 Overview of the I2C Bus

1.1.1 Features of the I2C Bus

Features of the I2C bus are shown below.

• An I2C bus is made up of two bus lines; a serial data line (SDA) and a serial clock line (SCL).
It is easy to extend an I2C bus so that it serves more devices.

• In the I2C bus, the master-slave relationships among devices is always set up and each device
has a particular address. Specifying the particular address of the object of the communication
forms a path along which data communications is enabled.

• Any device is able to act as a master (i.e., construction of a multi-master system is possible). A
system to avoid competition for bus rights and thus prevent the loss of data has thus been
defined for the I2C bus interface.

• The maximum data transfer rates are 100 kbps in normal mode and 400 kbps in high-speed
mode (up to 3.4 Mbps is defined in version 2.0 of the I2C bus specification).

• The limit on the attachment of devices to an I2C bus system is defined as 400 pF, which is the
upper limit of the bus-load capacity of the system.

• Examples of the standard's application are the SMBus*1 and Access.bus*2.

Notes: *1 SMBus is a form of serial bus devised by Duracell and Intel.

*2 ACCESS.bus is a form of serial bus devised by Digital Equipment.

1.1.2 Differences with the Serial Communications Interface (SCI)

Hitachi's serial interface is referred to as the serial communications interface (SCI). The
differences between this interface and the standard I2C interface are listed in the table below.

As listed in table 1.1, an SCI is connected to two data lines, one for transmission and one for
reception. Data communications is generally on a one-to-one basis.

On the other hand, communications on an I2C bus are bi-directional over a single data line by the
equipment to a master. An object is selected for a communication by specifying that object's
particular address. This allows the transmission and reception of data between any pair among
multiple connected devices. The mechanism for avoiding conflicts over bus access that has been
defined for the I2C bus means that the bus supports the operation of multi-master systems, in
which any device is able to act as the master. The maximum transfer rates are 100 kbps in normal
mode and 400 kbps in high-speed mode.

Rev. 2.0, 11/01, page 2 of 358

Table 1.1 Differences from SCI

SCI I2C bus

Clock synchronous Asynchronous

Used pins Three-line method Two-line method Two-line method

Transmission data output Transmission data output Transmission/reception
data (input/output)

Reception data input Reception data input

Serial clock Serial clock (when an
external clock is used)

Serial clock

Transfer rate 100 bps to 4 Mbps 110 bps to 38.4 kpbs 100 kbps (normal mode)

400 kbps (high-speed
mode)*

Transmission/rec
eption with
multiple ICs

Impossible Impossible Possible;

slave devices have
individual addresses

Note: * Hs mode (maximum transfer speed: 3.4 Mbps) which is defined in the I2C Bus
Specifications Ver. 2.0 is not supported.

1.1.3 Connection Type of the I2C bus Interface

Figure 1.1 shows the form of a connection between I2C bus interfaces. As shown in the drawing,
the I2C bus is made up of clock line SCL and data line SDA, and they are connected to the power
source of the bus, VBB, via pull-up resistors. The SCL and SDA pins of devices 1 and 2 have
wired-AND connections with the SCL and SDA lines, respectively.

In the figure, device 2 has been monitoring the state of the SCL line and thus confirms that another
device is using the bus when device 1 drives the SCL line low. Furthermore, even while device 1
is using the bus and thus driving the SCL line, device 2 is able to drive SCL low and place the
device 1 in its wait state, in terms of communications operations (for details, see the I2C bus
specification).

Rev. 2.0, 11/01, page 3 of 358

Pull-up resistors

Clock input 1 Data input 1 Data input 2Clock input 2

VBB

SDA

SCL

Device 2Device 1

 drives the bus low

Monitors the state of SCL
 device 1 has driven SCL

low, so device 2 waits.

Figure 1.1 Form of a Connection between I2C Bus Interfaces
(when device 1 initiates the connection by driving SCL low)

1.2 Method of Data Transfer over an I2C Bus

1.2.1 Basic Concepts and Elements of Data Transfer over an I2C Bus

To start with, the basic concepts and elements of data transfer over an I2C bus are given below.

(1) Master device

The master device generates the clock signals that synchronize data communications and sets the
start and stop conditions that indicate the beginning and end of each data communication.

(2) Slave device

The slave device is a device other than a master device which is on the I2C bus.

(3) Transmission device

The transmission device is a device which is transmitting data. It may be a master device or a
slave device.

(4) Reception device

Rev. 2.0, 11/01, page 4 of 358

The reception device is a device which is receiving data. It may be a master device or a slave
device.

(5) Start condition

The start condition is set by changing the level on the SDA line from high to low while the SCL
line is high. This is shown in figure 1.2. A data communication is initiated by this operation. The
start condition is set by the master device.

Start condition

SCL

SDA

Figure 1.2 Start Condition

(6) Stop condition

The stop condition is set by changing the level on the SDA line from low to high while the SCL
line is high. This is shown in figure 1.3. A data communication is stopped by this operation. The
stop condition is set by the master device.

SCL

SDA

Stop condition

Figure 1.3 Stop Condition

(7) Output timing of the data

Figure 1.4 shows the timing of data output. The data on the SDA line is updated while the SCL
line is low and the data on the SDA line is settled for placement on the SDA line while the SCL
line is high. The signal on the SDA line only changes while the SCL line is high, that is, only from
the setting of the start condition to the setting of the stop condition.

Rev. 2.0, 11/01, page 5 of 358

SCL

SDA

Setting of data for placement

Updating of data

Figure 1.4 Timing of Data Output

(8) Master transmission

Master transmission is the activity when a master device is a transmission device. This is the
activity when a slave address is transmitted after the start condition has been issued or a command
is transmitted to the slave device, etc.

(9) Master reception

Master reception is the activity when a master device is a reception device.

(10) Slave transmission

Slave transmission is the activity when a slave device is a transmission device.

(11) Slave reception

Slave reception is the activity when a slave device is a reception device. A master device transmits
a slave address after the start condition is in place to initiate slave-reception activity in the selected
slave device.

(12) Bus-released state

This is the state in which no I2C bus devices are in communication. While this state applies, both
the SCL and SDA lines stay at the logic-high level.

(13) Bus-occupied state

This is the state in which something is communicated over the I2C bus device. The system returns
to the bus-released state after the transmission master device has set a stop condition.

(14) Format for data transfer

Figure 1.5 shows the format for the transfer of data over the I2C bus. The start and stop condition
signals and the SCL clock are generated by the master device. The first data after the start

Rev. 2.0, 11/01, page 6 of 358

condition carry the slave address. The eighth bit indicates the direction of communication. A zero
value for this bit indicates that the subsequent data is transmitted from a master device while a one
indicates that the communication after the second byte is for reception by a master device. The
slave address is defined by 7 bits*1, and is set between B'0000000 and H'1111111 by the user.
However, address B'0000000 (referred to as the general call address) and certain other addresses
are reserved.

Data is transferred in 1-byte (8-bit) units. The ninth bit is an acknowledge bit from the reception
device. For example, when a slave address is transmitted from the master device, the
corresponding slave device drives SDA low on the ninth clock cycle to return an
acknowledgement to the master.

There is no limit on the number of bytes of data that can be transferred between the setting of a
start condition and of the corresponding stop condition. A communication is completed when the
stop condition is set.

Notes: *1 The I2C bus specification describes 10-bit addresses. Hitachi's I2C bus interface module
does not support this 10-bit address specification.

*2 The general call address, B'0000000, is used to specify all slave addresses that are
connected to the bus.

S : Start bit (start condition)
R/ : Data-direction bit
ACK : Acknowledge bit
P : Stop bit (stop condition)

Legend:

S

1 7

First byte Second byte

1 1 8 1 1 1

R/ ACK ACK ACK PDataSlave address

Figure 1.5 Format for Data Transfer

1.2.2 Procedure for Data Transfer (Example: master transmission, slave reception)

Figure 1.6 shows an example when the master device transmits 1 byte of data to the slave device.

In the first place, the master device sets the start condition by changing the level on the SDA line
from high to low while the SCL line is high. Next, the master outputs a clock signal on the SCL
line and outputs, on the SDA line, the address of the slave that will be the target of this
communication. The address of the slave is defined by 7 bits. A bit to indicate the direction of the
communication is added as an eighth bit.

Rev. 2.0, 11/01, page 7 of 358

The master device releases the SDA line in the ninth clock cycle so that it is able to receive an
acknowledgement of selection from the slave device. The selected slave device drives the SDA
line low during this clock cycle to return the acknowledgement.

The master device receives the acknowledgement from the slave at the specified address and keeps
the SCL line low until the first byte of data is ready for transmission. When the first byte is ready,
the master device outputs the data on the SDA line while outputting a clock signal on the SCL
line. In the same way as for the slave address, the selected slave device returns an
acknowledgement to the master device in the ninth clock cycle. This signal acknowledges that the
slave device has received the data without problems.

The master device keeps the SCL line low while receiving this acknowledgement from the slave
device. To set the stop condition, the level on the SDA line is then changed from low to high while
the SCL line is high.

During the transmission of data, the slave device may become unable to receive the data because it
is busy with some other processing. In this case, the slave device keeps the SCL line at its low
level so that the master device stays in its wait state. The timing with which the slave device is
able to drive SCL low is at the same time as the master device is driving SCL low.

Start condition

1 2 3 ··· ···7 8 9 1 2 3 7 8 9

During this period, the SDA line is kept high by the
master while it waits for the arrival of the ACK bit.

Legend:
 ACK : Acknowledgement bit
 R/ : Bit to indicate the direction of transmission/reception

“0”

SCL

SDA ACK ACKSlave address

Master

Slave

Direction of data
transfer

Transmission data

Stop condition

R/

Master

Slave

Master

Slave

Master

Slave

Figure 1.6 Format for Data Transfer (Master Transmission, Slave Reception)

Rev. 2.0, 11/01, page 8 of 358

1.3 The Single-Master and Multi-Master Configurations

1.3.1 Single-Master

The master device sets start and stop conditions to control data communications. It also outputs
the synchronizing clock signal on the SCL line and slave addresses so that data can be transmitted
and received. The system configuration shown in figure 1.7, in which a set device is always the
master, is a single-master configuration.

Slave
1

Master
1

Slave
2

Slave
3

I2C bus
SCL

SDA

Figure 1.7 A Single-Master Configuration

1.3.2 Multi-Master

A configuration in which two or more devices are included as masters in one system is called a
multi-master configuration.

The master device is only able to start the transfer of data after the bus has been released.
However, in the multi-master configuration, multiple master devices may simultaneously attempt
to start to transfer data. There is then a conflict over bus rights. The specifications of the I2C bus
thus include a procedure for adjusting communications when there is a conflict over bus rights.
For details, see 1.4, Procedure for Adjusting Communications.

Rev. 2.0, 11/01, page 9 of 358

Slave
1

Slave
2

Slave
3

I2C bus
SCL

SDA

Master 1
(slave 5)

Slave 4
(master 2)

Figure 1.8 A Multi-Master Configuration

1.4 Procedure for Adjusting Communications

The specification of the I2C bus interface includes a procedure for adjusting communications to
prevent conflicts over bus rights. This supports systems in multi-task configurations.

Master devices monitor the bus line to confirm that the bus has been released before they set the
start condition. When the bus is released, multiple master devices may attempt to set the start
condition. A single valid master device is thus defined by the procedure shown in figure 1.9.

In the I2C bus, the data is settled for placement on the SDA line while the SCL line is at its high
level. Therefore, each device monitors for the rising edge of the SCL line after the start condition
has been set and compares the state of the SDA line with the bit of data that each device is
attempting to send (this initial data will be the slave address). If device 1 is driving SDA high
while device 2 is driving SDA low, the actual SDA line will be low because of the wired-AND
connection, so device 1 confirms that this differs from the bit which is attempting to output.
Device 1 then switches the data output stage off. In this example, device 2 continues its operation
as a master device (see figure 1.9). When all masters are trying to specify the address of the same
slave device, the operation will proceed to the next step and the first bit of data will be compared,
and so on.

For example, when the data to be transferred transfer data are H'01 and H'02 as shown in
figure1.10, the datum H'01 is low over a longer period, and its transmission thus continues to be
enabled. In the same way, the general call address (H'00) has the highest priority.

Rev. 2.0, 11/01, page 10 of 358

SCL1

SDA1

SCL2

SDA2

SCL

SDA

The bus signals output
by each master

The output stage is switched off
because the desired output differs
from the state of the bus line.

Start condition

Gets the bus right

The SCL output is suspended.
M

as
te

r
1

M
as

te
r

2
B

us
 li

ne

Figure 1.9 Procedure for Adjusting Communications
(Detection of the Loss of Bus Arbitration)

SCL

H' 01

1

0 0 0 1

2 7···

···

8 9

SDA

SCL 1

0 0 1 0

2 7···

···

8 9

SDA

H' 02

Figure 1.10 A Specific Example of the Adjustment of Communications

Rev. 2.0, 11/01, page 11 of 358

Section 2 Explanation of the Interface Functions of the
I2C Bus

2.1 Lineup of Products that Incorporate the I2C Bus Interface

Our I2C bus interface modules may be roughly classified into two groups.

(1) H8 family: The models which feature the first I2C bus interface module to have been
manufactured by Hitachi.

(2) H8S family: An enhanced version of the H8 family.

Table 2.1 lists Hitachi's products that incorporate the I2C bus interface and the types of the I2C bus
interface modules.

Table 2.1 Products that Incorporate the I2C Bus Interface

Series Product
name

Number
of pins

Channel MASK * 1 F-ZTATTM ZTAT® I2C
module

H8/3217 2ch —

H8/3216 2ch — —

H8/3214 2ch —

H8/3212 2ch — —

H8/3217

series

H8/3202

64, 80

1ch — —

H8/3337Y 1ch —

H8/3337YF 1ch — —

H8/3337SF 1ch — —

H8/3336Y 1ch — —

H8/3334Y 1ch —

H8/3337

series

H8/3334YF

80, 84

1ch — —

H8/3437 1ch —

H8/3437YF 1ch — —

H8/3437SF 1ch — —

H8/3436 1ch — —

H8/3434 1ch —

H8/300

series

H8/3437

series

H8/3434F

100

1ch — —

H8 series

Rev. 2.0, 11/01, page 12 of 358

Table 2.1 Products that Incorporate the I2C Bus Interface (continued)

Series Product
name

Number
of pins

Channel MASK * 1 F-ZTATTM ZTAT® I2C
module

H8/3567 2ch —

H8/3564 2ch — —

H8/3561 2ch — —

H8/3567U 2ch —

H8/3567

series

H8/3564U

42, 44

2ch — —

H8/3577 2ch —

H8/300

series

H8/3577

series H8/3574

64

2ch —

H8S
series

H8/3947 2ch —

H8/3946 2ch — —

H8/300L

series

H8/3947

series

H8/3945

100

2ch — —

H8 series

H8/300H

Tiny series* 2

H8/3664

series

H8/3664 42, 64 1ch — H8S
series

H8S/2127 2ch — —

H8S/2126 2ch — —

H8S/2128F

64, 80

2ch — —

H8S/2138 2ch — —

H8S/2137 2ch — —

H8S/2138F

80

2ch — —

H8S/2148 2ch — —

H8S/2147 2ch — —

H8S/2148F 2ch — —

H8S/2147NF 2ch — —

H8S/2149YV
F

100

2ch — —

H8S/2169YV
F

144 2ch — —

H8S/2194 1ch — —

H8S/2193 1ch — —

H8S/2192 1ch — —

H8S/2191 1ch — —

H8S series H8S/2100

series

H8S/2194F

112

1ch — —

H8S
series

Rev. 2.0, 11/01, page 13 of 358

Table 2.1 Products that Incorporate the I2C Bus Interface (continued)

Series Product
name

Number
of pins

Channel MASK * 1 F-ZTATTM ZTAT® I2C
module

H8S/2199 2ch — —

H8S/2198 2ch — —

H8S/2197 2ch — —

H8S/2196 2ch — —

H8S/2199F 2ch — —

H8S/2238 2ch * 2 * 2 —

H8S/2236 2ch * 2 — —

H8S/2258 2ch * 2 * 2 —

H8S/2200

series

H8S/2256

100

2ch * 2 — —

H8S/2633 120,128 2ch — —

H8S series

H8S/2600

series H8S/2643* 2 144 2ch — —

H8S
series

Notes: *1 MASK versions are available.
*2 For details on the specification/usage of the I2C bus interface which is included in the

H8/300H Tiny series, see the additional volume.

2.2 Specifications of the I2C Bus Interfaces Incorporated in H8/300 Series
and H8/300L Series Products [H8 Series]

2.2.1 Specifications of the I2C Bus Interfaces Incorporated in H8/300 Series and H8/300L

Series Products

The main specifications of the I2C bus interfaces incorporated in Hitachi's H8/300 series and
H8/300L series 8-bit microcomputers are shown below. For the groups of products that
incorporate this module, see table 2.1.

• Units for data transfer

number of bits on each transfer:1 to 8 bits

number of frames to be transferred: unlimited

• Automatic setting of start/stop conditions

• Automatic loading of acknowledge bits

• Wait function

• Internal clock signals can be selected from among eight types.

• Acknowledgement and serial modes are available.

• Selectable order of output for the data to be transmitted (selection of MSB/LSB first)

Rev. 2.0, 11/01, page 14 of 358

• The on-chip filter (noise canceller) keeps the data reliable.

2.2.2 Configuration of the I2C Bus Interfaces Incorporated in H8/300 Series and

H8/300L Series Products

Figure 2.1 is an internal block diagram of the I2C bus interface. It consists of a prescaler (PS),
clock controller, data control circuit, bus-state decision circuit, bus-arbitration decision circuit,
address comparator, interrupt controller, and a group of registers that store the bus information and
data.

Noise
canceller

Noise
canceller

Legend:

PS

ICCR

ICMR

ICSR

ICDR

SAR

øP

SCL

SDA

ICCR : I2C control register
ICMR : I2C mode register
ICSR : I2C status register
ICDR : I2C data register
SAR : Slave address register
PS : Prescaler

Clock
controller

Bus-state
decision circuit

Arbitration
decision circuit

Output data
control circuit

Address
comparator

Interrupt
generator Interrupt request

In
te

rn
al

 d
at

a
bu

s

Figure 2.1 Block Diagram of I2C Bus Interface

Rev. 2.0, 11/01, page 15 of 358

Table 2.2 is a list of the registers.

Table 2.2 Internal Registers of the I2C Bus Interface

Name Abbrev. Function

I2C bus control register ICCR Register for setting transfer mode

I2C bus status register ICSR The various state flags are set here

I2C bus data register ICDR Stores data for transmission/reception

I2C bus mode register ICMR Register to set the transfer format

Slave address register SAR Register to set the slave address

2.2.3 Data Transfer Format of the I2C Bus Interfaces Incorporated in H8/300 Series and

H8/300L Series Products

The I2C bus interface handles the following three formats for the transfer of data. There is no limit
on the number of frames transferred.

(1) Addressing format

S

1 7 1 1 1 1 1 Number of transmission bits:
n = 1 to 8
Number of transmission frames:
m = 1 or more

n

1 m

SLA A A PDATAR/ A/

(2) Addressing format (with resending of the start condition signal)

Number of transmission bits: n1 and n2 = 1 to 8
Number of transmission frames: m1 and m2 = 1 or more

A/ A/S

1 7 1 1 1 1 1 1 1n2 17n1

1 m1 1 m2

SLA A SDATA R/R/ SLA A PDATA

The addressing format with resending of the start condition is used in cases where the direction of the
transfer must be changed during the transfer (structuring of the data transfer). After the resending start
condition is sent, the slave address is made the same as that when the first start condition was set.

Rev. 2.0, 11/01, page 16 of 358

(3) Non-addressing format

S

1 8 1 1 1 1
Number of transmission bits:
n = 1 to 8

Number of transmission frames:
m = 1 or more

n

1 m

Legend:
S : Start condition
SLA : Slave address
R/ : Indicates the direction of transmission/reception
A : Acknowledge (the reception device drives SDA low)
DATA : Transmission/reception data
P : Stop condition

The slave address and R/W bit are not recognized in this format.

DATA A A PDATA A/

Rev. 2.0, 11/01, page 17 of 358

2.2.4 Explanation of Functions of the Registers of the I2C Bus Interfaces Incorporated in

H8/300 Series and H8/300L Series Products

Table 2.3 lists the function of each bit of the registers of this I2C bus interface.

Table 2.3 Functions of the Incorporated Registers of the I2C Bus Interface

Register
name

Bit
name

Function Master Slave Site and Properties of
this Setting

WSCR* 1 CKDBL Selects whether or not the
frequency of the input clock to the
peripheral module is divided by
two.

IICE Enables access to the registers of
the I2C bus interface.

STCR* 1

IICX Selects the transfer clock's
frequency according to the
settings of CSK2 to 0 in ICCR.

FS Selects whether or not
the slave address of this
interface is recognized

SAR

SLV6 to
0

When
ICE = 0

Hold the slave address.
Only enabled when FS
=0.

A: Set in the initial setting
routine. The values are
retained. Confirm the
completion of processing
by the I2C bus interface
when changing the
settings in this register.

MLS Selects MSB or LSB
first.

WAIT Selects whether a wait is
inserted between the
data and
acknowledgement by the
transmission equipment.

ICMR

BC2 to 0

When
ICE = 1

Specify the transfer bit.
Set immediately before
transfers other than 8
bits.

B: Set while the SCL clock
has stopped (when the
bus is released, and the
transmission/reception of
data is complete). The
values are retained.

Rev. 2.0, 11/01, page 18 of 358

Register
name

Bit
name

Function Master Slave Site and Properties of
this Setting

ICE* 2 1 is set after SAR is set. The I2C
bus interface enters the transfer-
enabled state.

IEIC Disables/enables the interrupt.

MST

TRS

Sets master/slave and
transmission/reception. The
communications mode
(transmission/reception) of the
slave is automatically set
according to the TRS bit setting in
the master's interface.

ACK Specifies whether the
acknowledge bit is or is not
inserted after 8-bit serial data has
been transmitted.

ICCR

CKS2
to 0

Specify the transfer rate.

BBSY

SCP

BBSY monitors the bus state.

Sets the start/stop condition.

⋅The start condition is set by
setting BBSY = 1 and SCP = 0.

⋅The stop condition is set by
setting BBSY = 0 and SCP = 0.

IRIC Set to 1 when this interface is an
interrupt source.

AL Set to 1 when losing in bus
arbitration.

AAS Set to 1 when the slave address
transmitted by the master
matches the value in SAR.

ADZ Set to 0 when the general call
address (H'00) is recognized.

C: Flags that are
automatically set during
the process of data
communication. Clear
them in order according to
the communications
protocol (BBSY and SCP
are also used to set the
start/stop conditions).

ICSR

ACKB Sets/recognizes the acknowledge
bit.

As described under B
above.

ICDR ICDR7
to 0

Data register for
transmission/reception.

Accessed in the
transmission and
reception of data.

Rev. 2.0, 11/01, page 19 of 358

Notes: *1 Only applies to H8/3337 series, H8/3437 series, and H8/3217 series products.
*2 The ICE bit is used to control the switching of the I/O port between operation as an I2C

bus module and as a general-purpose I/O port. When the ICE bit is switched, a clock
signal or start/stop condition may be generated as a pseudo-state according to the state
of the setting of the general-purpose I/O port. As a result, there is the possibility that a
defect will be caused in some other device. When this bit is manipulated, the
corresponding port is recommended to be set in the input state or to output a high level.

2.3 Specifications of the I2C Bus Interfaces Incorporated in H8S Series
Products

2.3.1 Features of the I2C Bus Interfaces Incorporated in H8S Series Products

The main features of the I2C bus interface incorporated in H8S series products are illustrated with
Hitachi's 16-bit single chip H8S/2138 series microprocessor as an example.

• Selection of format as addressing or non-addressing

 I2C bus format: addressing format with acknowledge bit, for master/slave operation.

 Serial format: non-addressing format without acknowledgement bit, for master operation
only

• The I2C bus format conforms to the specification of the Philips I2C bus interface.

• There are two ways of setting the slave address in the I2C bus format.

• Start and stop conditions are generated automatically in master mode in the I2C bus format.

• Selection of acknowledge output levels when receiving in the I2C bus format.

• Automatic loading of acknowledge bit when transmitting in the I2C bus format

• Wait function in master mode in the I2C bus format

 A wait can be inserted by driving the SCL pin low after transfers of data other than
acknowledgement bits. The wait request is cleared when the next transfer becomes
possible.

• Wait function in slave mode in the I2C bus format

 A wait request can be generated by driving the SCL after the transfers of data other than
acknowledgement bits. The wait request is cleared when the next transfer becomes
possible.

• Five interrupt sources

 Detection of start condition (in master mode)

 End of data transfer : at the rising edge of the ninth clock of the SCL, including
transmission mode transitions with I2C bus format and address reception after loss of the
master arbitration.

Rev. 2.0, 11/01, page 20 of 358

 Address match: when any slave address matches the address of this unit or the general call
address is received while the unit is in the I2C bus format's slave reception mode.

 Detection of stop condition (in slave mode)

 When the internal flag TDRE or RDRF is set to 1 (when data is transferred from ICDRT to
ICDRS or from ICDRS to ICDRR)

• Selection from among 16 internal clocks while in master mode

• Direct bus drive (SCL/SDA pins)

 Two pins, P52/SCL0 and P97/SDA0, normally function as NMOS push-pull outputs and
function as NMOS open-drain outputs when the bus-drive function is selected.

 Two pins, P86/SCL1 and P42/SDA1, normally function as CMOS pins and only function
as NMOS outputs when the bus-drive function is selected.

• An on-chip-filter (noise canceller) is provided to maintain the reliability of data.

• The control function is supported in the standard DDC (display data channel) for PC monitors.

 Automatic switching from format-less to I2C bus format is possible (only on channel 0).

 Format-less operation (i.e., without start/stop condition, non-addressing) in slave mode

 Operation in the pin configuration of common data pin (SDA) and independent clock pins
(VSYNCI and SCL).

 Automatic switching from format-less mode to I2C bus mode on the falling edge of SCL.

Rev. 2.0, 11/01, page 21 of 358

2.3.2 Internal Block Configuration of the H8S Series I2C Bus Interface

Figure 2.2 shows the internal block diagram of the I2C bus interface for H8S/2138 series products.

Noise
canceller

Noise
canceller

Legend:

PS ICCR

ICMR

ICSR

ICDRT

ICDRS

ICDRR

SAR, SARX

ø

SCL

SDA

ICCR : I2C control register
ICMR : I2C mode register
ICSR : I2C status register
ICDR : I2C data register
SAR : Slave address register
SARX : Slave address register X
PS : Prescaler

Clock
control

Clock for format-less transfer only
(only on channel 0)

Bus-state
decision circuit

Arbitration
decision circuit

Output data
control circuit

Address
comparator

Interrupt
generator

Interrupt
request

In
te

rn
al

 d
at

a
bu

s

Figure 2.2 Block Diagram of the H8S/2138 Series I2C Bus Interface

Rev. 2.0, 11/01, page 22 of 358

The registers are described in table 2.4.

Table 2.4 The Registers of the H8S/2138 Series I2C Bus Interface

Name Abbrev. Function

I2C bus control register ICCR Register for setting transfer mode

I2C bus status register ICSR Each state flag is set.

I2C bus data register ICDR Stores received data and data for transmission

I2C bus mode register ICMR Register to set the transfer format

Slave address register SAR Register to set the slave address

Slave address register SARX Register to set the second slave address

2.3.3 Data Format for the H8S Series I2C Bus

Figures 2.3 shows the format for the I2C bus of H8S series products. The I2C bus format is made
up of the start condition, the slave address field (7-bit addressing) that specifies the slave device's
address, the R/W-bit field that indicates the direction of communications, the acknowledge-bit
field, data field, and stop condition (for a description of the symbols, see table 2.5).

This I2C bus interface module allows the use of format-less and serial formats, as well as the I2C
bus format itself (this is so for IIC channel 0 in H8S/2138 series products; for other products,
confirm the details on this point in the respective hardware manuals). The additional modes are
shown in figure 2.3, (c) and (d).

Rev. 2.0, 11/01, page 23 of 358

S

1 1 1 1 1 1n7

1 m

(a) I2C bus format (FS = 0 or FSX = 0)

(b) I2C bus format, when the start condition is resent (FS = 0 or FSX = 0)

Number of transmission bits: n = 1 to 8
Number of transmission frames:
m = 1 or more

SLA A A PDATAR

S SLA A DATAR/ S SLA A PDATAR/

A/

A/ A/

1 7 1 1 n1 1 1 7 1 1 n2 1 1

1 m1 1 m2

Upper: Number of transmission bits:
n1 and n2 = 1 to 8

Lower: Number of transmission frames:
m1 and m2 = 1 or more

Figure 2.3 The I2C Bus Data Format

(c) Format-less (IIC channel 0 only, FS = 0 or FSX = 0)

(d) Serial format (FS = 1 and FSX = 1)

Number of transmission bits: n = 1 to 8

Format-less transfer applies to the standard DDC (display-data channel)
of the PC-monitor system.

The serial format is a clock-synchronous format with neither slave address
nor acknowledge-bit field.

Number of transmission frames: m = 1 or more

Number of transmission bits: n = 1 to 8

Number of transmission frames:
m = 1 or more

A/

8 1

DATA DATAA

DATA DATAS P

A

n 1 1

1 m

1 1

1 m

8 n

Figure 2.3 Other Data Formats

Table 2.5 lists the description of symbols in the I2C bus data format and I2C bus timing.

Rev. 2.0, 11/01, page 24 of 358

Table 2.5 Symbols

Symbol Function

S Start condition. The master device drives SDA from high to low while SCL is high.

SLA Slave address, by which the master device selects a slave device.

R/: Indicates the direction of transmission/reception: from the slave device to the master
device when the R/: bit is 1, or from the master device to the slave device when the
R/: bit is 0.

A Acknowledge. The reception device (the slave in master-transmit mode or the
master in master-receive mode) drives SDA to its low level to acknowledge a
transfer.

DATA The data being transferred. The number of bits of data to be transmitted and
received is set by bits BC2 to BC0 in ICMR. Either the MSB-first or LSB-first format
is selected by the MLS bit in ICMR.

P Stop condition. The master device drives SDA from low to high level while SCL is
high.

Figure 2.4 shows the timing of the I2C bus.

Start condition (S): Operation in which SDA is changed from high to low while SCL is
high.

Stop condition (P): Operation in which SDA is changed from low to high while SCL is
in its high state

Data (SLA/R/:/DATA): Settled for placement on SDA while SCL is high.

For the ac characteristics of the bus, see the hardware manuals for the individual products.

SDA

SCL 1-7 8 9 8 91-7 8 91-7

S A ADATA DATA PSLA A/R/

Figure 2.4 I2C Bus Timing

2.3.4 Description of Functions of the H8S Series I2C Bus Interface Incorporated

Registers

Table 2.6 lists the functions of the H8S series I2C bus interface incorporated registers of H8S
series (H8S/2138 series).

Rev. 2.0, 11/01, page 25 of 358

Table 2.6 Description of functions of built-in registers

Register
name

Bit
name

Functions R/W Initial
value

ICDR ICDR7
to 0

ICDR is an 8-bit readable/writable register that is used as a
transmit data register when transmission and reception data
register when receiving. ICDR is divided internally into a shift
register (ICDRS), receive buffer (ICDRR), and transmit buffer
(ICDRT). ICDRS cannot be read or written to by the CPU,
ICDRR is read-only, and ICDRT is write-only. Data transfer
among the three registers is performed automatically in
coordination with changes in the bus state, and affect the status
of internal flags such as TDRE and RDRF.

If IIC is in transmit mode and the next data is in ICDRT (the
TDRE flag is 0) following transmission/reception of one frame of
data using ICDRS, data is transferred automatically from ICDRT
to ICDRS. If IIC is in receive mode and no previous data remains
in ICDRR (the RDRF flag is 0) following reception of one frame
of data using ICDRS, data is transferred automatically from
ICDRS to ICDRR.

ICDR is assigned to the same address as SARX, and can be
written and read only when the ICE bit is set to 1 in ICCR.

R/W —

— TDRE TDRE is a one bit internal flag that cannot be read/written.

• TDRE = 0 indicates that transmission cannot be started or
the next transmit data is in ICDR (ICDRT).

[Clear conditions]

(1) When transmit data is written in ICDR (ICDRT) in
transmit mode (TRS = 1)

(2) When a stop condition establishment is detected in the
bus line state after a stop condition is set with the I2C
bus format or serial format selected

(3) When a stop condition is detected with the I2C bus
format selected

(4) In receive mode (TRS = 0)
(A0 write to TRS during transfer is valid after reception
of a frame containing an acknowledge bit.)

• TDRE = 1 indicates that the next transmit data can be written
in ICDR (ICDRT).

 [Set conditions]

(1) In transmit mode (TRS = 1), when a start condition is
detected in the bus line state after a start condition is
set in master mode with the I2C bus format or serial
format selected

— 0

Rev. 2.0, 11/01, page 26 of 358

Register
name

Bit
name

Functions R/W Initial
value

(2) When using formatless mode in transmit mode (TRS =
1)

(3) When data is transferred from ICDRT to ICDRS (Data
transfer from ICDRT to ICDRS when TRS = 1 and
TDRE = 0, and ICDRS is empty)

(4) When a switch is made from receive mode (TRS = 0) to
transmit mode (TRS = 1) after detection of a start
condition

— RDRF RDRF is a one bit internal flag that cannot be read/written.

• RDRF = 0 indicates that the data in ICDR (ICDRR) is invalid.

• RDRF = 1 indicates that the receive data in ICDR (ICDRR)
can be read.

[Clearing conditions]

When ICDR (ICDRR) receive data is read in receive mode

[Setting conditions]

When data is transferred from ICDRS to ICDRR (Data
transfer from ICDRS to ICDRR in case of normal
transmission termination with TRS = 0 and RDRF = 0)

— 0

SAR SAR is an 8-bit readable/writable register that selects the format
and stores the slave address. When the chip is in slave mode
(and the addressing mode is selected), if the upper 7 bits of SAR
match the upper 7 bits of the first frame received after a start
condition, the chip operates as the slave device specified by the
master device. SAR is assigned to the same address as ICMR,
and can be written and read only when the ICE bit is cleared to 0
in ICCR.

R/W H'00

SVA6
to 0

A unique address is set in bits SVA6 to SVA0, differing from the
addresses of other slave devices connected to the I2C bus.

R/W 0

Rev. 2.0, 11/01, page 27 of 358

Register
name

Bit
name

Functions R/W Initial
value

FS Used together with the FSX bit in SARX and the SW bit in
DDCSWR to select the transfer format.

• SW = 0, FS = 0, FSX = 0

I2C bus format (SAR and SARX slave address are
recognizes)

• SW = 0, FS = 0, FSX = 1

I2C bus format (SAR slave address is recognized and SARX
slave address is ignored)

• SW = 0, FS = 1, FSX = 0

I2C bus format (SAR slave address is ignored and SARX
slave address is recognized)

• SW = 0, FS = 1, FSX = 1

Clock synchronous serial format (SAR and SARX slave
addresses ignored)

• SW = 1, FS = 0, FSX = 0

• SW = 1, FS = 0, FSX = 1

• SW = 1, FS = 1, FSX = 0

Formatless (start condition/stop condition is not detected,
with acknowledge bit)

• SW = 1, FS = 1, FSX = 1

Formatless (start condition/stop condition is not detected,
without acknowledge bit)

R/W 0

SARX SARX is an 8-bit readable/writable register that selects the
format and stores the second slave address. When the chip is in
slave mode (and the addressing format is selected), if the upper
7 bits of the first frame received after a start condition and the
upper 7 bits of SARX match, the chip operates as the slave
device specified by the master device. SARX is assigned to the
same address as ICDR, and can be written and read only when
the ICE bit is cleared to 0 in ICCR.

R/W H'01

SVAX6
to 0

A unique address differing from the addresses of other slave
devices connected to the I2C bus is set in bits SVAX6 to SVAX0.

R/W 0

FSX The FSX bit selects whether or not SARX slave address is
recognized in slave mode. For details, see the description of the
FS bit in SAR.

R/W 1

Rev. 2.0, 11/01, page 28 of 358

Register
name

Bit
name

Functions R/W Initial
value

ICMR ICMR is an 8-bit readable/writable register that selects whether
the MSB or LSB is transferred first, performs master mode wait
control, and selects the master mode transfer clock frequency,
and the transfer bit count. ICMR is assigned to the same
address as SAR. ICMR can be written and read only when the
ICE bit is set to 1 in ICCR.

R/W H'00

MLS MLS selects whether data is transferred MSB-first or LSB-first (if
the number of bits in a frame, excluding the acknowledge bit, is
less than 8, transmit data and receive data are stored differently.
Transmit data should be written justified toward the MSB side
when MLS = 0, and toward the LSB side when MLS = 1.
Receive data bits read from the LSB side should be treated as
valid when MLS = 0, and bits read from the MSB side when MLS
= 1). MLS should not be set to 1 when they are used in the I2C
bus format.

• MLS = 0

MSB-first

• MLS = 1

LSB-first

R/W 0

WAIT WAIT selects whether to insert a wait between the transfer of
data and the acknowledge bit, in master mode with the I2C bus
format. When WAIT is set to 1, after the fall of the clock for the
final data bit, the IRIC flag is set to 1 in ICCR, and a wait state
begins (with SCL at the low level). When the IRIC flag is cleared
to 0 in ICCR, the wait ends and the acknowledge bit is
transferred. If WAIT is cleared to 0, data and acknowledge bits
are transferred consecutively with no wait inserted.

The IRIC flag in ICCR is set to 1 on completion of the
acknowledge bit transfer, regardless of the WAIT setting.

• WAIT = 0

Data and acknowledge bits transferred consecutively

• WAIT = 1

Wait inserted between data and acknowledge bits

R/W 0

Rev. 2.0, 11/01, page 29 of 358

Register
name

Bit
name

Functions R/W Initial
value

CKS2
to
CKS0

Bits CKS2 to CKS0, together with the IICX1 (channel 1) or IICX0
(channel 0) bit in the STCR register, select the transfer clock
frequency in master mode. They should be set according to the
required transfer rate.

• IICX = 0, CKS2 = 0, CKS1 = 0, CKS0 = 0

The transfer clock is set to φ/28.

• IICX = 0, CKS2 = 0, CKS1 = 0, CKS0 = 1

The transfer clock is set to φ/40.

• IICX = 0, CKS2 = 0, CKS1 = 1, CKS0 = 0

The transfer clock is set to φ/48.

• IICX = 0, CKS2 = 0, CKS1 = 1, CKS0 = 1

The transfer clock is set to φ/64.

• IICX = 0, CKS2 = 1, CKS1 = 1, CKS0 = 0

The transfer clock is set to φ/80.

• IICX = 0, CKS2 = 1, CKS1 = 0, CKS0 = 1

The transfer clock is set to φ/100.

• IICX = 0, CKS2 = 1, CKS1 = 1, CKS0 = 0

The transfer clock is set to φ/112.

• IICX = 0, CKS2 = 1, CKS1 = 1, CKS0 = 1

The transfer clock is set to φ/128.

• IICX = 1, CKS2 = 0, CKS1 = 0, CKS0 = 0

The transfer clock is set to φ/56.

• IICX = 1, CKS2 = 0, CKS1 = 0, CKS0 = 1

The transfer clock is set to φ/80.

• IICX = 1, CKS2 = 0, CKS1 = 1, CKS0 = 0

The transfer clock is set to φ/96.

• IICX = 1, CKS2 = 0, CKS1 = 1, CKS0 = 1

The transfer clock is set to φ/128.

• IICX = 1, CKS2 = 1, CKS1 = 0, CKS0 = 0

The transfer clock is set to φ/160.

• IICX = 1, CKS2 = 1, CKS1 = 0, CKS0 = 1

The transfer clock is set to φ/200.

• IICX = 1, CKS2 = 1, CKS1 = 1, CKS0 = 0

The transfer clock is set to φ/224.

• IICX = 1, CKS2 = 1, CKS1 = 1, CKS0 = 1

The transfer clock is set to φ/256.

R/W 0

Rev. 2.0, 11/01, page 30 of 358

Register
name

Bit
name

Functions R/W Initial
value

BC2
to
BC0

Bits BC2 to BC0 specify the number of bits to be transferred next
time. With the I2C bus format (when the FS bit in SAR or the FSX
bit in SARX is 0), the data is transferred with one additional
acknowledge bit. Bit BC2 to BC0 settings should be made during
an interval between transfer frames. If bits BC2 to BC0 are set to
a value other than 000, the setting should be made while the
SCL line is low.

Bits BC2 to BC0 are initialized to 000 by a reset and when a
start condition is detected. The value returns to 000 at the end of
a data transfer, including the acknowledge bit.

• BC2 = 0, BC1 = 0, BC0 = 0

Clock synchronous serial = 8 bits/frame

I2C bus = 9 bits/frame

• BC2 = 0, BC1 = 0, BC0 = 1

Clock synchronous serial = 1 bit/frame

I2C bus = 2 bits/frame

• BC2 = 0, BC1 = 1, BC0 = 0

Clock synchronous serial = 2 bits/frame

I2C bus = 3 bits/frame

• BC2 = 0, BC1 = 1, BC0 = 1

Clock synchronous serial = 3 bits/frame

I2C bus = 4 bits/frame

• BC2 = 1, BC1 = 0, BC0 = 0

Clock synchronous serial = 4 bits/frame

I2C bus = 5 bits/frame

• BC2 = 1, BC1 = 0, BC0 = 1

Clock synchronous serial = 5 bits/frame

I2C bus = 6 bits/frame

• BC2 = 1, BC1 = 1, BC0 = 0

Clock synchronous serial = 6 bits/frame

I2C bus = 7 bits/frame

• BC2 = 1, BC1 = 1, BC0 = 1

Clock synchronous serial = 7 bits/frame

I2C bus = 8 bits/frame

R/W 0

Rev. 2.0, 11/01, page 31 of 358

Register
name

Bit
name

Functions R/W Initial
value

AAS In I2C bus format slave receive mode, AAS is set to 1 if the first
frame following a start condition matches bits SVA6 to SVA0 in
SAR, or if the general call address (H'00) is detected.

AAS is cleared by reading AAS after it has been set to 1, then
writing 0 in AAS. In addition, AAS is reset automatically by write
access to ICDR in transmit mode, or read access to ICDR in
receive mode.

• AAS = 0

Slave address or general call address is not recognized.

[Clear conditions]

(1) When ICDR data is written (transmit mode) or read
(receive mode)

(2) When 0 is written in AAS after reading AAS = 1

(3) In master mode

• AAS = 1

Slave address or general call address is recognized.

[Setting condition]

When the slave address or general call address is detected
in slave receive mode and FS = 0

R/(W)* 1 0

ADZ In I2C bus format slave receive mode, ADZ is set to 1 if the first
frame following a start condition is the general call address
(H'00).

ADZ is cleared by reading ADZ after it has been set to 1, then
writing 0 in ADZ. In addition, ADZ is reset automatically by write
access to ICDR in transmit mode, or read access to ICDR in
receive mode.

• ADZ = 0

General call address is not recognized.

[Clearing conditions]

(1) When ICDR data is written (transmit mode) or read
(receive mode)

(2) When 0 is written in ADZ after reading ADZ =1

(3) In master mode

• ADZ = 1

General call address is recognized.

[Setting condition]

When the general call address is detected in slave receive
mode and (FS = 0 or FSX = 0)

R/(W)* 1 0

Rev. 2.0, 11/01, page 32 of 358

Register
name

Bit
name

Functions R/W Initial
value

ACKB ACKB stores acknowledge data. In transmit mode, after the
reception device receives data, it returns acknowledge data, and
this data is loaded into ACKB. In receive mode, after data has
been received, the acknowledge data set in this bit is sent to the
transmission device.

When this bit is read, in transmission (when TRS = 1), the value
loaded from the bus line (returns by the reception device) is
read. In reception (when TRS = 0), the value set is read.

• ACKB = 0

• In receive mode, 0 is output at acknowledge output timing

• In transmit mode, indicates that the reception device has
acknowledged the data (signal is 0).

• ACKB = 1

• In receive mode, 1 is output at acknowledge output
timing.

• In transmit mode, indicates that the reception device has
not acknowledge the data (signal is 1).

R/W 0

ICCR ICCR is an 8-bit readable/writable register that enables or
disables the I2C bus interface operation, enables or disables
interrupts, selects master or slave mode and transmission or
reception, enables or disables acknowledgement, confirms the
I2C bus interface bus status, sets start/stop conditions, and
performs interrupt flag confirmation.

R/W H'01

ICE ICE selects whether or not the I2C bus interface is to be used.
When ICE is set to 1, port pins function as SCL and SDA
input/output pins and transfer operations are enabled in the I2C
bus interface module. When ICE is cleared to 0, the I2C bus
interface module is halted and its internal states are cleared.

The SAR and SARX registers can be accessed when ICE is 0.
The ICMR and ICDR registers can be accessed when ICE is 1.

• ICE = 0

I2C bus interface module is disabled (SCL and SDA signal
pins set to port function).

I2C bus interface module internal states are initialized.

SAR and SARX can be accessed.

• ICE = 1

I2C bus interface module is enabled for transfer operation
(pins SCL and SCA are driving the bus).

ICMR and ICDR can be accessed.

R/W 0

Rev. 2.0, 11/01, page 33 of 358

Register
name

Bit
name

Functions R/W Initial
value

IEIC IEIC enables or disables interrupts from the I2C bus interface to
the CPU.

• IEIC = 0

I2C bus interface interrupts are disabled.

• IEIC = 1

I2C bus interface interrupts are enabled.

R/W 0

MST MST selects whether the I2C bus interface operates in master
mode or slave mode.

• MST = 0

Slave mode

[Clearing conditions]

(1) When 0 is written by software

(2) When bus arbitration is lost after transmission is started
in I2C bus format master mode

• MST = 1

Master mode

[Setting conditions]

(1) When 1 is written by software (in cases other than
clearing condition 2)

(2) When 1 is written in MST after reading MST = 0

R/W 0

TRS TRS selects whether the I2C bus interface operates in transmit
mode or receive mode.

• TRS = 0

Reception mode

[Clearing conditions]

(1) When 0 is written by software (in cases other than
setting condition 3)

(2) When 0 is written in TRS after reading TRS = 1 (in case
of setting condition 3)

(3) When bus arbitration is lost after transmission is started
in I2C bus format master mode

(4) When the SW bit in DDCSWR changes from 1 to 0

• TRS = 1

Transmit mode

[Setting conditions]

(1) When 1 is written by software (in cases other than
clearing conditions 3 and 4)

R/W 0

Rev. 2.0, 11/01, page 34 of 358

Register
name

Bit
name

Functions R/W Initial
value

(2) When 1 is written in TRS after reading TRS = 0 (in case
of clearing conditions 3 and 4)

(3) When 1 is received as the R/: bit of the first frame in
I2C bus format slave mode

ACKE ACKE specifies whether the value of the acknowledge bit
returned from the reception device when using the I2C bus
format is to be ignored and continuous transfer is performed, or
transfer is to be aborted and error handling will be performed if
the acknowledge bit is 1. When the ACKE bit is 0, the value of
the received acknowledge bit is not indicated by the ACKB bit,
which is always 0.

• ACKE = 0

The value of the acknowledge bit is ignored, and continuous
transfer is performed.

• ACKE = 1

If the acknowledge bit is 1, continuous transfer is aborted.

R/W 0

BBSY The BBSY flag can be read to check whether the I2C bus (SCL,
SDA) is busy or free. In master mode, this bit is also used to set
start and stop conditions.

A high-to-low transition of SDA while SCL is high is recognized
as a start condition, setting BBSY to 1. A low-to-high transition of
SDA while SCL is high is recognized as a stop condition,
clearing BBSY to 0.

To set a start condition, write 1 in BBSY and 0 in SCP. A
retransmit start condition is set in the same way. To set a stop
condition, write 0 in BBSY and 0 in SCP. It is not possible to
write to BBSY in slave mode: the I2C bus interface must be set to
master transmit mode before issuing a start condition. MST and
TRS should both be set to 1 before writing 1 in BBSY and 0 in
SCP.

• BBSY = 0

Bus is free.

[Clearing condition]

When a stop condition is detected

• BBSY = 1

Bus is busy.

[Setting condition]

When a start condition is detected

R/W 0

Rev. 2.0, 11/01, page 35 of 358

Register
name

Bit
name

Functions R/W Initial
value

IRIC IRIC indicates that the I2C bus interface has issued an interrupt
request to the CPU. IRIC is set to 1 at the end of a data transfer,
when a slave address or general call address is detected in
slave receive mode, when bus arbitration is lost in master
transmit mode, and when a stop condition is detected. IRIC is
set at different times depending on the FS bit in SAR and the
WAIT bit in ICMR. The conditions under which IRIC is set also
differ depending on the setting of the ACKE bit in ICCR.

IRIC is cleared by reading IRIC after it has been set to 1, then
writing 0 in IRIC.

When the DTC is used, IRIC is cleared automatically and
transfer can be performed continuously without CPU
intervention.

• IRIC = 0

Waiting for transfer, or transfer in progress

[Clear conditions]

(1) When 0 is written in IRIC after reading IRIC = 1

(2) When ICDR is written or read by the DTC (when the
TDRE or RDFR flag is cleared to 0)

• IRIC = 1

Interrupt requested.

[Setting conditions]

1. I2C bus format master mode

(1) When a start condition is detected in the bus line state
after a start condition is set (when the TDRE flag is set
to 1 because of first frame transmission)

(2) When a wait is inserted between the data and
acknowledge bit when WAIT = 1

(3) At the end of data transfer (at the rise of the 9th
transmit/receive clock pulse, or at the fall of the 8th
transmit/receive clock pulse when using wait insertion)

(4) When a slave address is received after bus arbitration
is lost (when the AL flag is set to 1)

(5) When 1 is received as the acknowledge bit when the
ACKE bit is 1 (when the ACKE bit is set to 1)

R/(W)* 1 0

Rev. 2.0, 11/01, page 36 of 358

Register
name

Bit
name

Functions R/W Initial
value

2. I2C bus format slave mode

(1) When the slave address (SVA, SVAX) matches (when
the AAS and AASX flags are set to 1) and at the end of
data transfer up to the subsequent retransmission start
condition or stop condition detection (when the TDRE
or RDRF flag is set to 1)

(2) When the general call address is detected (when FS =
0 and the ADZ flag is set to 1) and at the end of data
transfer up to the subsequent retransmission start
condition or stop condition detection (when the TDRE
or RDRF flag is set to 1)

(3) When 1 is received as the acknowledge bit when the
ACKE bit is 1 (when the ACKB bit is set to 1)

(4) When a stop condition is detected (when the STOP or
ESTP flag is set to 1)

3. Synchronous serial format and formatless

(1) At the end of data transfer (when the TDRE or RDRF
flag is set to 1)

(2) When a start condition is detected with serial format
selected

(3) When the SW bit of DDCSWR is set to 1

(4) When any other condition arises in which the TDRE or
RDRF flag is set to 1

SCP The SCP bit controls the issuing of start and stop conditions in
master mode. To set a start condition, write 1 in BBSY and 0 in
SCP. A retransmit start condition is set in the same way. To set
a stop condition, write 0 in BBSY and 0 in SCP. This SCP bit is
always read as 1. If 1 is written, the data is not stored.

• SCP = 0

Writing 0 sets a start or stop condition, in combination with
the BBSY flag.

• SCP = 1

Reading always returns a value of 1.

Writing is ignored.

W 1

Rev. 2.0, 11/01, page 37 of 358

Register
name

Bit
name

Functions R/W Initial
value

ICSR ICSR is an 8-bit readable/writable register that performs flag
confirmation and acknowledge confirmation and control.

R/W H'00

ESTP The ESTP flag indicates that a stop condition has been detected
during frame transfer in I2C bus format slave mode.

• ESTP = 0

No error stop condition

[Clearing conditions]

(1) When 0 is written in ESTP after reading ESTP = 1

(2) When the IRIC flag is cleared to 0

• ESTP = 1

In I2C bus format slave mode, error stop condition is
detected.

[Setting condition]

When a stop condition is detected during frame transfer

• In I2C bus format slave mode

No meaning

R/(W)* 1 0

STOP The STOP flag indicates that a stop condition has been detected
after completion of frame transfer in I2C bus format slave mode.

• STOP = 0

No normal stop condition

[Clearing conditions]

(1) When 0 is written in STOP after reading STOP = 1

(2) When the IRIC flag is cleared to 0

• STOP = 1

• In I2C bus format slave mode

Normal stop condition is detected.

[Setting condition]

When a stop condition is detected after completion of frame
transfer

• In mode other than slave mode in I2C bus format

No meaning

R/(W)* 0

Rev. 2.0, 11/01, page 38 of 358

Register
name

Bit
name

Functions R/W Initial
value

IRTR The IRTR flag indicates that the I2C bus interface has issued an
interrupt request to the CPU, and the source is completion of
reception/transmission of one frame in continuous
transmission/reception operation for which DTC activation is
possible. When the IRTR flag is set to 1, the IRIC flag is also set
to 1 at the same time.

IRTR flag setting is performed when the TDRE or RDRF flag is
set to 1. IRTR is cleared by reading IRTR after it has been set to
1, then writing 0 in IRTR. IRTR is also cleared automatically
when the IRIC flag is cleared to 0.

• IRTR = 0

Waiting for transfer, or transfer in progress

[Clearing conditions]

(1) When 0 is written in IRTR after reading IRTR = 1

(2) When the IRIC flag is cleared to 0

• IRTR = 1

Continuous transfer state

[Setting condition]

• In I2C bus format slave mode

When the TDRE or RDRF flag is set to 1 when AASX = 1

• In modes other than slave mode in I2C bus format

When the TDRE or RDRF flag is set to 1

R/(W)* 1 0

AASX In I2C bus format slave receive mode, the AASX flag is set to 1 if
the first frame following a start condition matches bits SVAX6 to
SVAX0 in SARX.

AASX is cleared by reading AASX after it has been set to1, then
writing 0 in AASX. AASX is also cleared automatically when a
start condition is detected.

• AASX = 0

The second slave address is not recognized.

[Clearing conditions]

(1) When 0 is written in AASX after reading AASX = 1

(2) When a start condition is detected

(3) In master mode

• AASX = 1

The second slave address is recognized.

R/(W)* 0

Rev. 2.0, 11/01, page 39 of 358

Register
name

Bit
name

Functions R/W Initial
value

[Setting condition]

When the second slave address is detected in slave receive
mode and FSX = 0

AL The AL flag indicates that arbitration was lost in master mode.
The I2C bus interface monitors the bus. When two or more
master devices attempt to seize the bus at nearly the same time,
if the I2C bus interface detects data differing from the data it sent,
it sets AL to 1 to indicate that the bus has been taken by another
master.

AL is cleared by reading AL after it has been set to 1, then
writing 0 in AL. In addition, AL is reset automatically by write
access to ICDR (transmit mode), or read access to ICDR
(receive mode).

• AL = 0

Bus arbitration won

[Clearing condition]

(1) When ICDR data is written (transmit mode) or read
(receive mode)

(2) When 0 is written in AL after reading AL= 1

• AL = 1

Arbitration lost

[Set flag conditions]

(1) If the internal SDA and SDA pin disagree at the rise of
SCL in master transmit mode

(2) If the internal SCL line is high at the fall of SCL in
master transmit mode

R/(W)* 1 0

STCR STCR is an 8-bit readable/writable register that controls register
access, the I2C interface operating mode (when the on-chip IIC
option is included), and on-chip flash memory control (F-ZTAT
version), and selects the input clock of TCNT. Details other than
the I2C bus interface are omitted. If a module controlled by STCR
is not used, do not write 1 to the corresponding bit.

R/W H'00

IICX1 The IICX1 bit, together with bits CKS2 to CKS0 in ICMR, selects
the transfer rate in master mode of IIC channel 1. For details,
see CSK2 to CSK0 in ICMR.

R/W 0

IICX0 The IICX0 bit, together with bits CKS2 to CKS0 in ICMR, selects
the transfer rate in master mode of IIC channel 0. For details,
see CSK2 to CSK0 in ICMR.

R/W 0

Rev. 2.0, 11/01, page 40 of 358

Register
name

Bit
name

Functions R/W Initial
value

IICE The IICE bit controls CPU access to the I2C bus interface data
and control registers (ICCR, ICSR, ICDR/SARX, ICMR/SAR).

• IICE = 0

CPU access to I2C bus interface data and control registers is
disabled.

• IICE = 1

CPU access to I2C bus interface data and control registers is
enabled.

R/W 0

DDCSWR DDCSWR is an 8-bit readable/writable register that is used to
control the format automatic switching of IIC channel 0 and
controls the internal latch clear of IIC.

R/W H'0F

SWE The SWE bit selects the automatic switching function from
formatless to I2C bus format.

• SWE = 0

Disables automatic switching of IIC channel 0 from
formatless to I2C bus format.

• SWE = 1

Enables automatic switching of IIC channel 0 from formatless
to I2C bus format.

R/W 0

SW The SW bit selects formatless and I2C bus format in IIC channel
0.

• SW = 0

IIC channel 0 is used in I2C bus format.

[Clearing conditions]

(1) When 0 is written by software

(2) When a falling edge is detected in SCL when SWE = 1

• SW = 1

IIC channel 0 is used by formatless.

[Setting conditions]

When 1 is written after read in SW = 0

R/W 0

Rev. 2.0, 11/01, page 41 of 358

Register
name

Bit
name

Functions R/W Initial
value

IE The IE bit enables/disables the interrupt request from CPU when
the format's automatic switching is performed in IIC channel 0.

• IE = 0

Interrupt when the format is automatically switched is
disabled.

• IE = 1

Interrupt when the format is automatically switched is
enabled.

R/W 0

IF The IF bit is an interrupt request flag when the format is
automatically switched in IIC channel 0.

• IF = 0

Interrupt is not requested when format's automatic switching
is carried out.

[Clearing condition]

When 0 is written after reading the sate of IF = 1

• IF = 1

Interrupt is requested when the format is automatically
switched.

[Setting condition]

When a falling edge is detected in SCL when SWE = 1

R/W 0

CLR3
to 0

Bits CLR3 to CLR0 control initialization of the internal state of
IIC0 and IIC1.

These bits can only be written to; if read, they will always return
to a value of 1.

When a write operation is performed on these bits, a clear signal
is generated for the internal latch circuit of the corresponding
module, and the internal state of the IIC module is initialized.

The write data for these bits is not retained. To perform IIC
clearance, bits CLR3 to CLR0 must be written to simultaneously
using an MOV instruction. Do not use a bit manipulation
instruction such as BCLR.

When clearing is required again, all the bits must be written to in
accordance with the setting.

• CLR3 = 0, CLR2 = 0, CLR1 = * , CLR0 = * ,
setting is prohibited.

• CLR3 = 0, CLR2 = 1, CLR1 = 0, CLR0 = 1,
IIC0 internal latch is cleared.

W* 1 1

Rev. 2.0, 11/01, page 42 of 358

Register
name

Bit
name

Functions R/W Initial
value

• CLR3 = 0, CLR2 = 1, CLR1 = 1, CLR0 = 0,
IIC1 internal latch is cleared.

• CLR3 = 0, CLR2 = 1, CLR1 = 1, CLR0 = 1,
IIC0 and IIC1 internal latch is cleared

• CLR3 = 1, CLR2 = * , CLR1 = * , CLR0 = * ,
setting is invalid.

Note * : 0 or 1

MSTPCR
L

MSTP4 The MSTP4 bit specifies the module of IIC channel 0.

• MSTP4 = 0

IIC channel 0 module stop mode is cleared.

• MSTP4 = 1

IIC channel 0 module stop mode is set.

R/W 1

MSTP3 The MSTP3 bit specifies IIC channel 1 module.

• MSTP3 = 0

IIC channel 1 module stop mode is cleared.

• MSTP3 = 1

IIC channel 1 module stop mode is set.

R/W 1

Note: *1 Always read as 1.

2.3.5 Relationship between Flags of On-chip I2C Bus Interface and Transfer State in H8S

Series (H8S/2138 Series)

When an interruption occurs after the IRIC flag in ICCR has been set to 1 with the I2C bus format,
it is necessary to check other flags to determine the cause of the IRIC flag being set to 1. Although
each cause has its corresponding flag, special care must be taken at the end of a data transfer.

When the internal flags TDRE or RDRF are set, the readable IRTR flag can be either set or not
set. Between the moment that the slave address (SVA) or general call address is matched and the
moment that the restart condition or stop condition is detected in the slave mode of the I2C bus
format, the IRTR flag, which is a DTC start request flag, is not set at the end of data transfer.

Even if the IRIC or IRTR flags are set, the internal flags TDRE or RDRF cannot be set. In the case
of a continuous transfer using the DTC, the IRIC or IRTR flags are not cleared when the specified
number of transfers has been completed. On the other hand, the flags TDRE or RDRF are cleared
because the specified number of read/write actions of ICDR have been completed.

Table 2.7 shows the relationship between transfer states and flags.

Rev. 2.0, 11/01, page 43 of 358

Table 2.7 Relationship between Transfer States and Flags

MST TRS BBSY ESTP STOP IRTR AASX AL AAS ADZ ACKB State

1/0 1/0 0 0 0 0 0 0 0 0 0 Idle state (flags
must be cleared)

1 1 0 0 0 0 0 0 0 0 0 Setting the start
condition

1 1 1 0 0 1 0 0 0 0 0 Start condition is
satisfied

1 1/0 1 0 0 0 0 0 0 0 0/1 Master mode wait

1 1/0 1 0 0 1 0 0 0 0 0/1 Master mode
transmit/receive
end

0 0 1 0 0 0 1/0 1 1/0 1/0 0 Arbitration lost

0 0 1 0 0 0 0 0 1 0 0 Coincident with
SAR in slave mode
frame

0 0 1 0 0 0 0 0 1 1 0 Coincident with
general call
address

0 0 1 0 0 0 1 0 0 0 0 Coincident with
SARX

0 1/0 1 0 0 0 0 0 0 0 0/1 End of slave mode
transmission/recept
ion (except for after
SARX coincidence)

0

0

1/0

1

1

1

0

0

0

0

1

0

1

1

0

0

0

0

0

0

0

1

End of slave mode
transmission/recept
ion (after SARX
coincidence)

0 1/0 0 1/0 1/0 0 0 0 0 0 0/1 Stop condition
detected

2.4 Description of I2C Bus Interface Usage

(1) How to confirm the bus state [H8 Series, H8S Series]

In the I2C bus, the master device must confirm whether or not the bus is in the open state (both
SCL and SDA lines are constantly high) before starting to transfer data. This confirmation of the
bus state can be performed by reading the BBSY bit in the ICSR register in the H8 series or in the
ICCR register in the H8S series. When the BBSY bit is 0, which means that the bus is in the open
state, the master device can start the data transfer.

Rev. 2.0, 11/01, page 44 of 358

(2) How to issue the start or stop conditions [H8 Series, H8S Series]

The start condition is the change from high to low in SDA when SCL is high. The stop condition
is the change from low to high in SDA when SCL is high. The start condition can be generated by
simultaneously writing BBSY=1 and SCP=0 into the register (ICSR in H8 series, ICCR in H8S
series). Simultaneous writing BBSY=0 and SCP=0 allows the stop condition to be generated.
Therefore, use the MOV instruction to issue the start/stop conditions.

Refer to section 2.4 (6), (7) “Continuous issuing of instructions”, and (8) “Notes on re-sending the
start condition”.

(3) How to transmit data [H8 Series, H8S Series]

Master operation

Data transmission is started by writing data into the ICDR register. After the completion of the
transmission (or after the start condition has been generated), the SCL line must be held low to
generate the communication waiting state.

Slave operation

The low drive of the SCL line can be released by writing data into the ICDR register to prepare
data transmission. Data must be transmitted to the master device by synchronizing the SCL
clock that is sent from the master device. After the completion of the transmission, the SCL
line must be held low to indicate the waiting state to the master device. After the completion of
the last data transmission, release the SCL line by writing H'FF into the ICDR. This lets the
master device issue the stop condition.

(4) How to receive data (H8 Series I2C module) [H8 Series]

Master operation

Reading the ICDR register enables the SCL clock to be output and the data reception can be
started. The first data reading is a dummy run. The actual data reception starts after the
confirmation of the completion of the dummy data reception. After the completion of the data
reception, the SCL line must be held low until the next read operation of ICDR to generate the
communication waiting state. The last data must be read by setting TRS to 1 to enter transmit
mode after confirming the end of the last data reception.

Slave operation

In the I2C bus system, devices other than the master device start operation from slave reception
mode. Since the first byte is a slave address + R/W bit, the SCL is made to be in high-
impedance state and the slave address data is loaded in the data register (ICDR). When the
eighth bit is loaded, the slave address register (SAR) is compared to the data register (ICDR).
When addresses match, an acknowledge is returned to the master device at the ninth clock. At
this time, if the IRIC flag is set and an I2C bus interrupt is enabled (IEIC = 1), an interrupt
occurs. When addresses do not match, the IRIC flag is not set and this I2C module enters a wait
state in slave mode.

Rev. 2.0, 11/01, page 45 of 358

The eighth bit in the slave address phase means an R/W bit. When this bit is 1, subsequent
operations seen from the slave side are in transmit mode. When this bit is 0, subsequent
operations are in receive mode. The eighth bit is automatically reflected to the TRS bit.

When the TRS bit is 0, slave reception mode is still entered. The SCL is driven to low until the
CPU reads ICDR to indicate the waiting state to the master device (When the TRS bit is 1,
slave transmission mode is entered. The SCL is driven to low until the CPU sets data in ICDR
to indicate the waiting state to the master device).

(5) How to receive data (H8S Series I2C module) [H8S Series]

For the H8S series I2C module, a data reception buffer is composed of ICDRR (register which can
be read by CPU, ICDR) and ICDRS (shift register). 2-byte-long data can be received after the data
reception trigger (dummy reading of ICDR register) has been issued. The load on the CPU is thus
reduced in application programs that read multiple data continuously.

Master operation

Reading the ICDR register enables the SCL clock to be output and the data reception can be
started. The first data reading is a dummy run. The actual data reception starts after the
confirmation of the completion of the dummy data reception. As the data buffer structure is
doubled, the next data reception takes place when the ICDRR (ICDR) register is empty or
when the CPU is reading the ICDRR (ICDR) register. When the data is stored in ICDRR
(ICDR) and ICDRS, the SCL line is held low until the next read operation of ICDR to generate
the communication waiting state. The last data must be received in the way shown below.

(a) For reception of multiple data (3 bytes or more)

• Store 2-byte data before receiving the last data in ICDRR (ICDR) and ICDRS.

• After setting the WAIT bit to 1, continuously read the 2-byte data mentioned above to
make the buffer empty.

• Set the TRS bit to 1 (set the transmission mode) after IRIC interruption occurred at the
falling edge of the eighth clock in the SCL for the last data reception. Set the ACKB bit to
1. Then clear the IRIC flag to output the ninth clock.

• After an IRIC interruption occurred for the last data reception, read the last data.

• Clear the WAIT bit, then the ACKB bit, and finally the IRIC flag to issue the stop
condition.

(b) For reception of a datum (2 bytes or less)

• Set the WAIT bit to 1 before starting the data reception.

• Read the ICDRR (ICDR) register for the dummy run to start the data reception.

• Clear the IRIC flag after IRIC interruption occurred at the falling edge of the eighth clock
in the SCL to output the ninth clock of the SCL.

• The data reception completes at the rising edge of the ninth clock.

• Read the ICDRR (ICDR) register to receive the data.

Rev. 2.0, 11/01, page 46 of 358

• Set the TRS bit to 1 (set the transmission mode) after IRIC interruption occurred at the
falling edge of the eighth clock in the SCL for the second byte data reception. Set the
ACKB bit to 1. Then clear the IRIC flag to output the ninth clock.

• After an IRIC interruption occurred for the last data reception, read the last data.

• Clear the WAIT bit, then the ACKB bit, and finally the IRIC flag to issue the stop
condition.

For an example for the master reception, refer to section 4 “Example Applications for the H8S
series”.

Slave operation:

In this I2C module, the data register is a double-buffer configuration (ICDRS and
ICDRR/ICDR). Therefore after a slave address which is the first data, the second data can be
continuously received. First, a slave address after the start condition by the master device is
input to the buffer (ICDRS), and the buffer is compared to the value of the slave address
register (SAR or SARX). When addresses match, an acknowledge is returned to the master
device at the ninth clock and the address data is loaded in the data register (ICDRR/ICDR). At
this time, if the IRIC flag is set and an I2C bus interrupt is enabled (IEIC = 1), an interrupt
occurs. When addresses do not match, the address data is not loaded in ICDRR/ICDR and a
wait state is entered in slave mode.

The eighth bit in the slave address phase means an R/W bit. When this bit is 1, subsequent
operations seen from the slave side are in transmit mode. When this bit is 0, subsequent
operations are in receive mode. The eighth bit is automatically reflected to the TRS bit.

When the TRS bit is 0, slave reception mode is still entered. ICDRS is now empty, therefore
the next data is received continuously by outputting the SCL clock of the master device. When
an acknowledge is returned to the master device at the ninth clock and the CPU reads slave
address data from ICDR, data is shifted from ICDRS to ICDRR/ICDR. At this time, if the
IRIC flag is set to 1 and an I2C bus interrupt is enabled (IEIC = 1), an interrupt occurs. Then
ICDRS is empty again and the next data is received continuously.

In the operation described above, if the I2C bus interrupt processing is delayed since another
interrupt processing is executed, and the CPU does not read the previously received data from
ICDR (internal RDRF flag = 1), the next data is held by ICDRS at the end of the reception, the
SCL is driven low, and the communication enters a waiting state for the master device.
Therefore the received data is protected. The receive end interrupt of the first data is erased by
the receive end interrupt of the second data. After the CPU reads the first data in
ICDRR/ICDR, the second data in ICDRS is immediately shifted to ICDRR/ICDRS. Then IRIC
is set again. When the I2C bus interrupt is enabled (IEIC = 1), an interrupt occurs. A procedure
for interrupts in slave reception is described below.

Example of procedure for interrupts in slave reception (H8S series)

(a) Confirms the contents of the status register (ICSR).

Rev. 2.0, 11/01, page 47 of 358

 Confirms the slave address matching (AAS or AASX = 1).

 Detects the stop condition (STOP = 1).

 Detects the error stop condition (ESTOP = 1).

 Detects the arbitration lost (AL = 1).

 Detects the general call address (b’0000000) (ADZ = 1).

(b) Clears the IRIC flag.

(c) Reads ICDR and fetches data.

(d) Judges the TRS bit in ICCR and confirms the subsequent operation mode
(receive/transmit mode) after the slave address is received (When TRS = 1, the
subsequent operations are in slave transmission mode. The SCL is driven to low until the
CPU sets data in ICDR to indicate the waiting state to the master device).

(6) Continuous issuing of instructions (H8 Series I2C module) [H8 Series]

A program that continuously issues instructions for start condition issuing, data
transmission/reception, and stop condition issuing often does not work well. This is because
internal competition often occurs among the data transmission instructions and an instruction is
ignored, when the generation for the start condition by setting the start condition instruction is
delayed due to the instruction timing and the load on the bus line. Some programming notes are
shown below.

(a) Timing for issuing the data transmission instruction after the start condition has been
issued:
after the instruction for setting the start condition has been issued, insert a wait time of
one clock for the data transfer rate if any before executing the data transmit instruction.

(b) To issue the stop condition after the start condition has been issued:
confirm that BBSY = 1 and that bus authority has been obtained.

(c) To change the communication mode after the start condition has been issued:
confirm that BBSY = 1 and that bus authority has been obtained.

(d) To set the start condition after the stop condition has been issued:
confirm that BBSY = 0 and that the bus has been released.

(e) To change the communication mode after the stop condition has been issued:
confirm that BBSY = 0 and that the bus has been released.

(f) To start the next data transmission/reception after the completion of the current data
transmission/reception:
For data transmission: confirm the completion of data transfer (IRIC = 1) and clear the
IRIC to 0; then write the next data to ICDR.
For data reception: confirm the completion of data transfer (IRIC = 1) and read the
ICDR; then clear the IRIC to 0. When TRS = 0, reading the ICDR acts as a trigger for the
next data reception. To read the last data, set the TRS to 1 and read the ICDR to receive
the reception data.

Rev. 2.0, 11/01, page 48 of 358

(g) To set the start condition again after the completion of data transmission/reception (to
issue start condition for re-transmission):
this operation is applied when the master transmission is exchanged with the master
reception. Confirm first that the data transmission has been ended (IRIC = 1), then clear
the IRIC to 0, and finally execute the instruction for setting the start condition.

(h) To issue the stop condition after the completion of data transmission/reception:
For master transmission: confirm the completion of data transmission (IRIC = 1) and
clear the IRIC to 0; then issue the stop condition.
For master reception: confirm the completion of data reception (IRIC = 1) and set the
TRS to 1 (master transmission mode); then read the final data. After that, clear the IRIC
to 0 and issue the stop condition.

(7) Continuous issuing of instructions (H8S Series I2C module) [H8S Series]

(a) Timing for issuing data transmission instruction after the start condition has been issued:
after the instruction for setting the start condition has been executed, confirm that the
start condition has been generated, by checking the IRIC flag; then execute the data
transmission instruction.

(b) To issue the stop condition after the start condition has been issued:
after the instruction for setting the start condition has been executed, confirm that the
start condition has been generated by checking the IRIC flag. After confirming that
BBSY = 1, issue the stop condition.

(c) To change the communication mode after the start condition has been issued:
after the instruction for setting the start condition has been executed, confirm that the
start condition has been generated by checking the IRIC flag. After confirming that
BBSY = 1 and that the bus right is acquired, change the communication mode.

(d) To issue the start condition after the stop condition has been issued:
confirm that BBSY = 0 and that the bus has been released.

(e) To change the communication mode after the stop condition has been issued:
confirm that BBSY = 0 and that the bus has been released.

(f) To start the next data transmission/reception after the completion of data
transmission/reception:
For data transmission: confirm the completion of data transfer (IRIC = 1) and write the
next datum to ICDR. To confirm that the next data transfer is completed, clear the IRIC
flag to 0.
For data reception: confirm the completion of data transfer (IRIC = 1) and read the
ICDR; then clear the IRIC to 0. As the buffer for data reception has a two-stage structure
in the H8S series I2C module, 2-byte-long data is continuously received after reading the
ICDRR (ICDR). To terminate the data reception, you must change the TRS bit to 1
(transmitting mode) during the last data reception (during the time period between the
rising edge of the SCL first clock and the rising edge of the ninth clock). How to set this
TRS bit is described in section 2.4 (13).

Rev. 2.0, 11/01, page 49 of 358

(g) To issue the start condition again after the completion of data transmission/reception (to
issue the start condition for re-transmission):
this operation is applied when the master transmission is exchanged with the master
reception. First, confirm that the data transmission has been ended (IRIC = 1), then clear
the IRIC to 0, and finally execute the instruction for issuing the start condition.

(h) To issue the stop condition after the completion of data transmission/reception:
For master transmission: confirm the completion of data transmission (IRIC = 1) and
clear the IRIC to 0; then issue the stop condition.
For master reception: confirm the completion of data reception (IRIC = 1) and set the
TRS to 1 (master transmission mode); then read the final data. After that, clear the IRIC
to 0 and issue the stop condition.

(8) Notes on re-sending the start condition [H8 Series, H8S Series]

When data is going to be transferred after the restart condition has been issued, the transfer
instruction for the next byte should be executed by confirming that the SCL rose (point (A) in
figure 2.5 after issuing the restart condition.

SCL 9 (A) 1

SDA ACK Bit 7

Restart condition

Period for generating
the restart condition

Period for transferring
the next byte

Bit 6

IRIC

Standard
clock

Execution of the instruction
for issuing restart condition

Execution of a transfer
instruction for the next byte

Figure 2.5 Execution Timing for Transfer Instruction for the Next Byte
in the case of Resending the Start condition

The execution takes place as follows:

In the I2C bus, the waiting state of a transfer operation in the case of the bus-occupied
state is shown by SCL = low and SDA = high. Therefore, the instruction for issuing

Rev. 2.0, 11/01, page 50 of 358

the restart condition should be executed after confirming that SCL = low. Then
confirm that the SCL = high (because the SCL is changed from low to high by the
generation of the restart condition) and execute a transfer instruction for the next byte.
In the H8S series, when the restart condition is satisfied, an interrupt is generated.
Then the transfer instruction for the next byte must be executed.

(9) Confirmation of the coincidence of slave addresses [H8 Series, H8S Series]

Each bit of a slave address that was transmitted from the master device is compared with the
corresponding bit of the SAR (in the H8S series I2C module, two slave addresses, SAR and
SARX, are available). If the slave address matches the SAR, the AAS bit (in the H8S series I2C
module: AAS or AASX bit) is set, and you can thus know that this device is the slave device that
was specified by the master device in the IRIC interruption at the rising edge of the ninth SCL
clock.

(10) Recognition of general call address [H8 Series, H8S Series]

The master device uses the general call address H'00 to specify all the I2C devices as slave devices.
The I2C module sets the ADZ flag to 1 after recognizing the general call address. This flag is
confirmed during the IRIC interruption at the rising edge of the ninth SCL clock.

(11) Recognition and setting of the acknowledge bit [H8 Series, H8S Series]

A data transmitting device receives the acknowledge bit from the data receiving device at the ninth
SCL clock. This value is loaded in the ACKB bit and can be confirmed during the IRIC
interruption at the rising edge of the ninth SCL clock. The data receiving device (TRS = “0”)
outputs the value set in the ACKB bit to the SDA line at the ninth SCL clock. Note that when the
TRS bit is set to 1, the value set in the ACKB bit in transmit mode is output. There are two
internal ACKB bits according to whether the TRS bit is set to 1 or cleared to 0.

(12) Setting the transmit/receive mode in slave operation [H8 Series, H8S Series]

The R/: bit is automatically reflected to the TRS bit. If the R/: bit is 1 (read operation from the
viewpoint of the master device) after the slave address sent out from the master device, the TRS
bit is automatically set to 1 and slave transmit mode is entered.

(13) Wait operation [H8 Series, H8S Series]

A wait can be inserted between the eighth and ninth SCL clocks by setting the WAIT bit to 1 in
master mode. An I2C module holds the SCL line low after outputting the eighth clock. The ninth
clock is sent out by clearing the IRIC flag to 0. In an I2C bus and SMBus, a protocol that does not
return an acknowledgment to slave devices upon receiving the last data in master operation is also
available. Changing the ACKB bit from 0 to 1 by stopping the SCL clock at the eighth clock using
this wait operation makes it easy to control the acknowledge bit.
This wait operation can be applied to the master receiving operation in a byte-wise manner in the

Rev. 2.0, 11/01, page 51 of 358

I2C module for the H8S series. The SCL clock can be stopped because the transmit mode becomes
valid at the output timing of the SCL ninth clock after the IRIC flag was cleared by setting the
transmit mode (TRS = 1) during this wait operation. Refer to (f) in section 2.4 (5) and 2.4 (7).

(14) How to confirm the number of transferred bits [H8 Series, H8S Series]

The bits BC2 to BC0 in the ICMR register are the bit counter that controls the number of SCL
clocks. This counter decrements by 1 with each output of a clock. Reading the counter bits enables
you to know how many bits were sent out. Writing back a value to the counter bits, however,
needs special care. For example, when the same value as before is written back to the bits BC2 to
BC0 immediately after the SCL clock has been output by the I2C module, an excess SCL clock is
output. This generates a discrepancy among the bits for the slave device.

(15) Clearing the bits AL, AAS (AASX), and ADZ [H8 Series, H8S Series]

The bits AL (arbitration lost flag), AAS (AASX) (slave address recognition flag), and ADZ
(general call address recognition flag) can be cleared by writing 0 to the respective bit after
reading it. Reading from or writing to the ICDR automatically clears bits AAS and ADZ.
Detecting the start condition automatically clears the AASX bit.

(16) Bus arbitration [H8 Series, H8S Series]

The I2C bus corresponds to multiple masters and has the structure for bus arbitration (refer to
figure 1.9 for details). When multiple master devices simultaneously issue a start condition, each
device compares the data of the SDA line and the internal SDA data at the rising edge of the SCL
line clock. If these data are different from each other, the device stops the driving of the bus. In
other words, the device that continues to output the low level to the SDA line until the final time
can become the master device.
This I2C module sets the AL flag to 1 and turns the bus output off when the bus right is lost (bus
arbitration lost). Also this I2C module automatically changes the operation mode from master
transmission to slave reception, because the master device that got the bus right may specify the
H8 as a slave device. When the slave addresses match (AAS or AASX = 1), an interrupt occurs at
the rising edge of the ninth clock of the SCL. Therefore the AL flag can be confirmed to be 1.
When the slave addresses do not match, an interrupt occurs by detecting the stop condition. Then
the AL flag can be confirmed to be 1. Figure 2.6 shows an example of this bus arbitration
processing flow.

Rev. 2.0, 11/01, page 52 of 358

Start of I2C master operation

BBSY = 1 ?

IRIC = 1 ?

Set the master transmission mode
and execute the start condition

Set the slave address in ICDR
and clear the IRIC flag

The next master
operation

Slave reception

Yes

Yes

Yes

Yes

Yes

IRIC = 1 ?

AL = 1 ?

AAS(AASX)
 = 1 ?

Confirm that the bus is available

Confirm that the start condition
has been satisfied
(in the case of H8S/2138)

Confirm the rising edge of the ninth
SCL clock

Confirm the coincidence of the
slave addresses

Read the ICDR register to receive the data

Confirm the bus arbitration loss

No

No

No

No

No

Figure 2.6 Bus Arbitration Processing

(17) The controllable ranges of the ICE bit [H8 Series, H8S Series]

The ICE bit controls:

(a) assignment of I/O addresses (changing the SAR or ICMR registers), and

(b) changing the pin functions of the SCL and SDA ports to general purpose I/O ports (in
H8/3947 series: changing to the Hi-Z state).

Clearing the ICE bit can initialize the internal state of an H8S series I2C module. This can be used
to return the state to normal when the bus line of the microprocessor is stuck at low as a result of,
for example, a communication malfunction.

Rev. 2.0, 11/01, page 53 of 358

(18) Using the serial communication interface together with the I2C bus [H8 Series]
(H8/3337 Series and H8/3437 Series)

H8/3337 series and H8/3437 series have two serial communication interfaces (SCI0 and SCI1).
SCI0 shares part of the register addresses with the I2C bus interface. The SCK1 pin (clock pin) of
the SCI1 is also used as the SCL pin*1. When SCI (serial communication interface) is used as two
channels and the I2C bus is used as one channel, care should be taken about the following points.

(a) As SCK1 shares pins with the SCL, use the SCI1 in the asynchronous mode (UART).

(b) When SCI0 and the I2C bus are used, set SCI0 to the state in which IICE = 0. The
registers SMR and BBR share the addresses with the I2C bus interface register. These
registers are used for the initial setting, so there is no need to set them again once they
have been set unless the communication mode is changed. Then set the IICE to 1 and
change to the accessing for I2C bus interface register to set the I2C bus.

Note: In the case of the H8/3217 series, two SCIs (one SCI in H8/3212) and two I2C bus
interface (one I2C bus interface in H8/3202) are independently available.

(19) Using the serial communication interface together with the I2C bus [H8S Series]
(H8S/2138 Series and H8S/2148 Series)

The H8S/2138 series and H8S/2148 series have three serial communication interfaces (SCI0,
SCI1, and SCI2) and two I2C bus interfaces (IIC0 and IIC1). (SCI0 and SCI1 share part of the
register addresses with the I2C bus interface). When SCI (serial communication interface) is used
as three channels and I2C bus is used as two channels, care should be taken about the following
points.

(a) As SCK (pins SCK0, SCK1, and SCK2) of the SCI shares pins with the I2C bus, use the
SCI in the asynchronous mode (UART).

(b) When SCI and the I2C bus are used, set SCI0, SCI1, and SCI2 to the state in which IICE
= 0. The registers SCMR and BRR are shared with the I2C bus interface register. These
registers are used for initial setting. Therefore once these registers are set, resetting is not
necessary unless the communication mode is changed. Then set IICE to 1 and change to
the accessing for the I2C bus interface register to set the I2C bus.

Rev. 2.0, 11/01, page 54 of 358

2.5 Synchronization of the I2C Bus Communication

The format of the output port of the I2C bus is an open-drain. Therefore, the time taken to change
from low to high depends on the load on a bus line. In the I2C bus specification, the rise time of
the SCL line is decided to 1000 ns in normal mode (maximum data transfer rate is 100 kbps) and
300 ns in high-speed mode (maximum data transfer rate is 100 kbps). In the I2C bus, data must be
fixed during the time period when the SCL line (clock line) is high. The actual data transfer rate is
changed (synchronized communication) for the purpose of performing normal data transfer if the
bus line load capacity and the value of the pull-up resistance connected between the bus line and
power supply are inadequate.
Figure 2.7 shows an example of synchronized communication. This I2C module outputs the SCL
clock on the SCL line in its master operation according to the internal standard clock that has the
prescribed data transfer rate. Monitor the SCL line at the prescribed timing (refer to table 2.8) after
the SCL line has risen from low to high to confirm that each bit of the SCL line has become high.
If the rising edge of the SCL line is delayed or another device drives the SCL line to the low level,
then the voltage level may not reach VIH (threshold voltage for recognizing the high level of I/O).
In this case, delay the timing that drives the SCL line to the low level so that normal data
communication takes place. After confirming that the SCL line has become high, drive the SCL
line to the low level. As a result, the period of high level in the SCL line is prolonged and the data
transfer rate becomes lower.
In other words, to get the prescribed data transfer rate, the pull-up resistance or bus line load
capacity should be adjusted to adequate values.

SCL

VIH

tSr tSr

[1] Drive the SCL line to high

[5] Drive the SCL line to low at this timing

As a result, the data transfer rate becomes half the prescribed rate in this example

[4] Recognize the high level of the SCL line at this timing

[2] Monitor the SCL line to check
that it has became low at this timing
(voltage level is lower than VIH)

Internal standard
clock

[3] Do not drive the SCL line to low

Figure 2.7 When the Rising Edge of the SCL Line is Delayed

Rev. 2.0, 11/01, page 55 of 358

Table 2.8 Monitoring Timing for Rising Edge of the SCL Line (H8S/2138 Series)

tSr Time expression

IICX bit

Monitoring
timing for rising
edge of the SCL
Line tSr (tcyc
expression)

Modes Specificatio
n of I 2C bus
(max)

φφφφ=5MHz 8MHz 10MHz 6MHz 20MHz

Normal
mode

1000 ← 937 750 468 3750 7.5×tcyc*

High-speed
mode

300 ← ← ← ← ←

Normal
mode

1000 ← ← ← ← 8751 17.5×tcyc*

High-speed
mode

300 ← ← ← ← ←

Note: * The tcyc is the system clock period of this microprocessor.

(For reference only)

An example of the calculation for the pull-up resistance on the I2C bus (H8S/2138 Series)

This is an example of the calculation for the pull-up resistance that connects the I2C bus to the
power supply.

• load capacity of the SCL line CB = 100 pF

• rise time of the SCL line tSr = 300 ns

• power supply voltage Vcc = 5.0 V

• voltage level for judging the high level of I/O VIH = Vcc x 0.7 = 3.5 V

using the calculation formula, Vcc x (1- exp(-t/(CB x R)) = VIH, gives the value of R as follows:
∴ R ≅ 2.5 kΩ.

Rev. 2.0, 11/01, page 56 of 358

2.6 Description of Data Transfer in H8/300 and H8/300L Series [H8 Series]

Data transfer should be done in the following conditions:

• Operation mode: addressing mode (a mode to recognize the slave address: FS = 0)

• Data transmission: MSB first (MLS = 0), no wait (WAIT = 0), and acknowledgement
mode (a mode to recognize the acknowledgement: ACK = 0)

2.6.1 Master transmission

In the master transmission mode, the master device outputs the transmission clock (SCL line) and
transmission data (SDA line), and slave devices return acknowledgments. Figure 2.8 describes the
setting procedures and operation of the master transmission mode.

1

7 6 5 4 3 2 1 0 7 6 ···

···

···

A

2 3 4 5 6 7 8 9 1 2 ···

SDA
 (Master output)

SDA
(Slave output)

IRIC

SCL

[1] to [7] [8] [9] [10] [11] [12] [14]

Interrupt request occurs

Figure 2.8 Operation Timing of the Master Transmission Mode
(for MLS=WAIT=ACK=0)

Example of setting procedures of master transmission mode

[1] *

Software processing: Sets CKDBL.

Objective: Selects the system clock (φ) or clock of ½ division ratio (φ/2) for the
peripheral clock.

[2] *

Software processing: Sets the IICE bit to 1.

Objective: Enables access to the I2C bus interface registers.

Note: * This setting is only for the H8/3337, H8/3437, and H8/3217 series.

Rev. 2.0, 11/01, page 57 of 358

[3]

Software processing: Sets the SAR register. The uppermost 7 bits of the SAR are a slave
address and the lowermost 1 bit (FS bit) are 0. This setting should be
done in the case of a single master operation.

Objective: Sets the SAR register, because a slave mode may be set even in master
mode when the system is in multi master mode.

[4]

Software processing: Sets the ICE bit to 1.

Objective: The SAR shares the address with the ICMR. An access to the SAR can
thus be changed to an access to the ICMR by sharing the address. This
change enables data transfer.

[5]

Software processing: Sets the ACKB bit.

Objective: Be sure to set the ACKB bit, because the mode automatically is shifted to
slave reception by the bus arbitration even if the device is used in master
mode.

[6]

Software processing: Clears the bits MLS, WAIT, and ACK to 0. Sets the bits CKS2 to 0,
IICX, and IEIC so as to suit the operation mode.

Objective: Be sure to set the ACKB bit, because the mode automatically is shifted to
slave reception by the bus arbitration even if the device is used in master
mode.

[7]

Software processing: Reads the BBSY bit.

Objective: Confirms whether the bus has been released or is in use. If it has been
released, BBSY equals 0. Then proceed to the next setting step.

[8]

Software processing: Sets the bits MSB and TRS to 1, writes 1 to the BBSY bit, and writes 0
to the SCP bit. The MOV instruction must be used to set these bits,
because they must be simultaneously set.

Objective: Switches to the master transmission mode and sets the start condition.

Hardware processing: The SDA changes from high to low, when the SCL is high.

[9]

Software processing: Writes data to the ICDR register. The first data is a slave address and the
R/W bit (= 0).

Objective: Starts the data transfer.

Hardware processing: The master device sequentially sends the transmission clock and the data
written in the ICDR with the timing shown in figure 2.8.

Rev. 2.0, 11/01, page 58 of 358

[10]

Software processing: Sets the IRIC bit to 1 at the ninth clock when one byte of data has been
transmitted. The master device receives an acknowledgment from the
slave device, and sets the ACKB bit to 0. Fixes the SCL to low by
synchronizing with the internal clock after transferring one frame of data.

Objective: The state in which the IRIC bit equals 1 means the end of a data transfer
or bus arbitration. An interrupt request is issued to the CPU when the
IEIC bit has been set to 1. The ACKB bit is used to confirm whether the
acknowledge from the slave device has been received or not.

[11]

Software processing: Clears the IRIC bit.

Objective: Clears the IRIC bit for the subsequent data transmission.

[12]

Software processing: Writes data to the ICDR register.

Objective: Starts the data transfer.

[13]

Software processing: Repeats procedures [10] to [12].

Objective: Continues to transmit data.

[14]

Software processing: Writes 0 to the bits BBSY and SCP in the ICSR register. The MOV
instruction must be used to set these bits, because they must be
simultaneously set.

Objective: Issues the stop condition to terminate the transmission.

Hardware processing: The SDA changes from low to high, when the SCL is high.

2.6.2 Master Reception

In the master reception mode, the master device outputs the reception clock (SCL line) and
receives data from slave devices. The master device returns acknowledgments to slave devices.
In addressing mode, a slave address is firstly output with master transmission mode. The operation
is the same as shown in “2.6.1 Master transmission mode” when the data transmission
subsequently takes place. When data is going to be received, the mode should be switched to
master reception after the first frame (one byte of data including the slave address) has been
transferred. Figure 2.9 describes the setting procedures and operation of the master reception
mode.

Rev. 2.0, 11/01, page 59 of 358

19 2 1 2 ···3 4 5 6 7 8 9

7A 6 5 4 3 2 1 0 7 6 ···

SDA
(Master
output)

SDA
(Slave
output)

IRIC

SCL

A

[9][7][6][5][4][3][2][1]

Interrupt request occurs

···

···

Figure 2.9 Operation Timing of the Master Reception Mode (for MLS=WAIT=ACKB=0)

Example of setting procedures of master reception mode

[1]

Hardware processing: The master device sets the start condition in the master transmission
mode, and sends out the first byte including the slave address. The IRIC
bit is set to 1 at the ninth clock. The master device receives an
acknowledge from the slave device, and sets the ACCB bit to 0.

Objective: The state in which IRIC = 1 means the matching of the slave address.

[2]

Software processing: Clears the IRIC bit by the software.

Objective: Prepares for the subsequent data reception.

[3]

Software processing: Sets the TRS bit to 0.

Objective: Switches to the master reception mode.

[4]

Software processing: Reads the ICDR register (dummy reading).

Objective: This reading starts the reception of data.

Hardware processing: The master device outputs the reception clock by synchronizing with the
internal clock and receives data.

Rev. 2.0, 11/01, page 60 of 358

[5]

Hardware processing: Sets the IRIC bit to 1 at the ninth clock, when one-byte data reception
has ended. The master device simultaneously makes the SDA low and
returns an acknowledgment. After transferring the one-frame data, the
SCL is automatically fixed to low by synchronizing with the internal
clock.

Objective: The state in which the IRIC bit equals 1 means the end of a data transfer.
An interrupt request is issued to the CPU when the IEIC bit has been set
to 1.

[6]

Software processing: Clears the IRIC bit to 0 by the software

Objective: Prepares the subsequent data reception

[7]

Software processing: Reads the ICDR register

Objective: The subsequent data reception is started by synchronizing with the
internal clock. Set the ACKB bit to 1 before starting data reception, when
an acknowledgment is not returned after the reception of the last byte.

[8]

Software processing: Repeats procedures [5] to [7]

Objective: Continues to receive data

[9]

Software processing: To stop the data reception, set the TRS bit to 1 and write 0 to bits BBSY
and SCP after reading the ICDR register.

Objective: Switches the communication mode to the transmission mode so that the
data is not received again. Issues the stop condition after releasing the
SCL and SDA lines by reading the ICDR register.

Hardware processing: The SDA changes from low to high, when the SCL is high.

2.6.3 Slave Reception

In the slave reception mode, the master device outputs the transmission clock and transmission
data, and slave devices receive the data and return acknowledgments.
Figure 2.10 describes the setting procedures and operation of the slave reception mode.

Rev. 2.0, 11/01, page 61 of 358

1

7 6 5 4 3 2 1 0 7 6 ···

···

···

A

2 3 4 5 6 7 8 9 1 2 ···

SDA
(Master output)

SDA
(Slave output)

SCL
(Slave output)

IRIC

SCL
(Master output)

[14][11][10][9][8][1] to [7]

Interrupt request occurs

Figure 2.10 Operation Timing of the Slave Reception Mode (for MLS=WAIT=ACKB=0)

Example of setting procedures of slave reception mode

[1]

Software processing: Sets CKDBL.

Objective: Selects the system clock (φ) or clock of ½ division ratio (φ/2) for the
peripheral clock.

[2]

Software processing: Sets the IICE bit to 1.

Objective: Enables access to the I2C bus interface registers.

[3]

Software processing: Sets the SAR register. Writes the slave address to the uppermost 7 bits of
the SAR, and 0 to the lowermost 1 bit (FS bit) (in addressing format).

Objective: Assigns an address to the slave device because the mode is an addressing
mode.

[4]

Software processing: Sets the ICE bit to 1.

Objective: The SAR shares the address with the ICMR. An access to the SAR can
thus be changed to an access to the ICMR by sharing the address. This
change enables data transfer.

Rev. 2.0, 11/01, page 62 of 358

[5]

Software processing: Clears the bits MLS, WAIT, and ACK to 0. Sets the bits CKS2 to CKS0,
IICX, and IEIC.

Objective: Sets the MSB first mode with the MLS bit, the no-wait mode with the
WAIT bit, and the acknowledgement mode with the ACK bit. Defines
the transfer clock frequency by the combination of the bits CKS2 to
CKS0, and IICX. The IEIC bit defines the interrupt request of the I2C bus
interface as being enabled or disabled.

[6]

Software processing: Sets the bits MST and TRS to 0.

Objective: Sets the slave reception mode.

[7]

Software processing: Sets the ACKB bit to 0.

Objective: Sets the ACKB bit to 0 so that the master device will return an
acknowledgment after receiving the data.

[8]

Hardware processing: After the start condition that was issued by the master device has been
detected, the BBSY bit is set to 1.

Objective: Shows that the bus is in use (The master device outputs the first byte).

[9]

Hardware processing: The slave device confirms the matching of the slave address by reading
the first byte after the start condition, and sets the IRIC bit to 1 at the
ninth clock. It simultaneously makes the SDA low and returns an
acknowledgment. It fixes the SCL to low from the falling edge of the
ninth reception clock to the moment of reading data into the ICDR.

Objective: The state in which the IRIC bit equals 1 means the matching of the slave
address. An interrupt request is issued to the CPU when the IEIC bit has
been set to 1.

[10]

Software processing: Clears the IRIC bit by software.

Objective: Prepares for the subsequent data reception.

[11]

Software processing: Reads the ICDR register.

Objective: The slave device releases the SCL line, and the subsequent data reception
starts.

[12]

Software processing: Repeats procedures [9] to [11].

Objective: Continues to receive data.

Rev. 2.0, 11/01, page 63 of 358

[13]

Software processing: The SDA changes from low to high when the SCL is high in response to
the stop condition issued from the master device, and the BBSY bit is
automatically cleared to 0 after the stop condition has been detected.

Objective: Terminates the data reception.

2.6.4 Slave Transmission

In slave transmission mode, a slave device outputs the reception data. The master device outputs
the reception clock and returns an acknowledgment to the slave device.
In addressing mode, a slave address is first transferred from the master device to the slave device.
At that time, the operation mode of the slave device is thus set to slave reception. The operation is
the same as shown in “2.6.3 Slave reception” when the data reception subsequently takes place.
When the slave device is going to transmit data to the master device, the mode should be switched
to slave transmission mode.
Figure 2.11 describes the setting procedures and operation of slave transmission mode.

198

7A

[7][6][5][4][3][2][1]

6 5 4 3 2 1 0 7 6 ···

···

···

···

2 3 4 5 6 7 8 9 1 2 ···

SCL
(Slave
output)

SDA
(Slave
output)

IRIC

SCL
(Master
output)

Slave reception mode Slave transmission mode

SCL
(Master
output)

Interrupt request
occurs

A

Interrupt request occurs

R/

Figure 2.11 Operation Timing of Slave Transmission Mode (for MLS=WAIT=ACK=0)

Rev. 2.0, 11/01, page 64 of 358

Example of setting procedures of slave transmission mode

[1]

Hardware processing: The slave device confirms that the slave address matches by reading the
first byte after detecting the start condition, and sets the IRIC bit to 1 at
the ninth clock. The slave device simultaneously sets the SDA line to low
and returns an acknowledgment. When the R/: bit (the eighth bit of the
received data) is 1, the TRS bit is set to 1 and the operation mode
automatically switches to slave transmission mode. The slave device
fixes the SCL line to low from the falling edge of the ninth transmission
clock to the start of writing data to the ICDR.

Objective: When IRIC bit equals 1, it means the slave address matches.

[2]

Software processing: Clears the IRIC bit to 0.

Objective: Prepares the subsequent data transmission.

[3]

Software processing: Writes the data in the ICDR register.

Objective: Starts the data transmission.

Hardware processing The slave device releases the SCL line by changing it to high and
sequentially sends the data written in the ICDR according to the clock
that is output by the master device with the timing shown in figure 2.8.

[4]

Hardware processing: After one byte of data has been transmitted, sets the IRIC bit to 1 at the
rising edge of the ninth clock. The slave device receives an
acknowledgment from the master device, and sets the ACKB bit to 0.
The slave device automatically fixes the SCL line to low during the
period from the falling edge of the ninth transmission clock to the start of
writing data to the ICDR.

Objective: The state in which the IRIC bit equals 1 means the end of a data transfer.
An interrupt request is issued to the CPU when the IEIC bit has been set
to 1. The ACKB bit indicates whether or not the acknowledgment has
been received from the master device.

[5]

Software processing: Clears the IRIC bit by software.

Objective: Prepares the subsequent data transmission.

[6]

Software processing: Writes the subsequent transmission data to the ICDR register.

Objective: The slave device releases the SCL line by changing it to high and starts
the data transmission.

Rev. 2.0, 11/01, page 65 of 358

[7]

Software processing: Repeats procedures [4] to [6].

Objective: Continues the data transmission.

[8]

Software processing: Writes H'FF in the ICDR register.

Objective: Releases the SCL line so that the master device can issue the stop
condition.

Hardware processing: The SCL line is released and allowed to go high. The SDA line changes
from low to high when the SCL line is high by the issuing of the stop
condition from the master device, and the BBSY bit is automatically
cleared to 0 after the stop condition is detected.

2.7 Description of Data Transfer in H8S Series (H8/2138 Series) [H8S
Series]

2.7.1 Master Transmission

In the master transmission mode using the I2C bus format, the master device outputs the
transmission clock and transmission data, and slave devices return acknowledgments. The setting
procedures and operation of the master transmission mode are described below.

Rev. 2.0, 11/01, page 66 of 358

1

[15]

[19]

[17]

[18] [23]

[24]
[16]

[1] to [14] [25] to [28]

bit7 bit6 bit5 bit4 bit3 bit2

R/W

bit1 bit0 bit7 bit6

[21]

[22]
[20]

Address + R/W

Address + R/W

2 3 4 5 6 7 8 9

A

1 2

SDA
(Master output)

SDA
(Slave output)

IRIC

TDRE

ICDRT

ICDRS

SCL
(Master output)

Slave address Data 1

Data 1

Data 1

Figure 2.12 Operation Timing of Master Transmission Mode
(for MLS=WAIT=0)

Example of setting procedures of master transmission mode

[1] Initial setting 1

Software setting: Clears the MSTP4 or MSTP3 bit in the MSTPCRL to 0.

Objective: Cancels the module stop mode of IIC channel 0 or IIC channel 1.

[2] Initial setting 2

Software setting: Sets the IICE bit in the STCR to 1.

Objective: Enables the CPU to access the data register and control register of the I2C
bus interface.

[3] Initial setting 3

Software setting: Sets the DDCSWR.

Objective: Selects enable/disable for the automatic switching function between
format-less and I2C bus format in IIC channel 0.
Selects format-less or I2C bus format in IIC channel 0.
Selects enable/disable for interrupt requests to the CPU when automatic
switching of the format takes place in IIC channel 0.

Rev. 2.0, 11/01, page 67 of 358

[4] Initial setting 4

Software setting: Clears the ICE bit in the ICCR to 0.

Objective: Enables access to the SAR and SARX.

[5] Initial setting 5

Software setting: Sets the SAR and SARX.

Objective: Sets the SW bit in the DDCSWR, the transfer format, and the slave
address.

Note: Sets the slave address, because slave mode may be set even in master
mode when the system is in multi-master mode.

[6] Initial setting 6

Software setting: Sets the ICE bit in the ICCR to 1.

Objective: Enables access to the ICMR and ICDR.
Puts the I2C module in the transfer-enabled state.

[7] Initial setting 7

Software setting: Sets the ACKB bit in the ICSR.

Objective: Sets the acknowledgment data that is output during data reception.

Note: Be sure to set the ACKB bit, because the mode automatically shifts to
slave reception if bus arbitration is lost even if the device was being used
in master mode.

[8] Initial setting 8

Software setting: Sets the bits IICX1 or IICX0 in the STCR, and the bits CKS2 to
CKS0 in the ICMR.

Objective: Selects the transfer clock frequency to be used.

[9] Initial setting 9

Software setting: Sets the bits MLS and WAIT in the ICMR to 0.

Objective: Sets the MSB-first mode and the no-wait mode in data transfer.

[10] Initial setting 10

Software setting: Sets the ACKE bit in the ICCR.

Objective: Selects one of the following two actions:
Transfer data continuously by ignoring the contents of the
acknowledgment bit returned from the reception device in the I2C bus
format.
Perform the error processing by discontinuing the transfer operation
when the acknowledgment bit equals 1.

[11] Initial setting 11

Software setting: Sets the IEIC bit in the IICR.

Objective: Selects enable/disable for interrupt request to the CPU from the I2C bus
interface.

Rev. 2.0, 11/01, page 68 of 358

[12] Confirmation of the bus state

Software setting: Reads the BBSY bit.

Objective: Confirms whether the bus is released or in use.

Hardware behavior: If the bus is released, the BBSY bit is equal to 0.

[13] Setting the master transmission mode

Software setting: Sets the bits MST and TRS in ICCR to 1.

Objective: Sets the operation mode of the I2C bus interface to master transmission
mode.

[14] Clearing the IRIC

Software setting: Clears the IRIC bit in the ICCR to 0.

Objective: Judges whether the start condition was detected.

[15] Setting the start condition

Software setting: Sets the BBSY bit to 1, and clears the SCP bit to 0 in ICCR.

Objective: Sets the start condition.

Note: The MOV instruction must be used to set the BBSY bit to 1 and clear
the SCP bit to 0, because these two bits must be simultaneously set.

Hardware behavior: The SDA changes from high to low, when the SCL is high.

[16] Confirmation that start condition has been satisfied

Software setting: Reads the IRIC bit.

Objective: Confirms that the start condition is detected from the bus line state.

Hardware behavior: If the start condition is detected, the bits IRIC and TDRE are equal to 1.

[17] Setting the slave address + R/W data

Software setting: Writes the slave address + R/W data to the ICDR.

Objective: Starts the data transfer.

Hardware behavior: If the data to be transmitted is written to the ICDR in transmission
mode, the TDRE flag is cleared to 0.

[18] Data transfer from the ICDRT to the ICDRS

Hardware behavior: Clears the TDRE flag to 0.

Objective: Transfers data to be transmitted from the ICDRT to the ICDRS.

[19] Clearing the IRIC

Software setting: Clears the IRIC bit in the ICCR to 0.

Objective: Judges the termination of the data transmission.

Rev. 2.0, 11/01, page 69 of 358

[20] Termination of one-byte data transmission

Hardware behavior: Sets the IRIC bit in the ICCR to 1 at the rising edge of the ninth
transmission clock.

Objective: The state in which the IRIC bit equals 1 means the end of data
transmission or that bus arbitration has been lost. An interrupt request
is issued to the CPU when the IEIC bit in the ICCR has been set to 1.

[21] Confirmation of the acknowledgment

Software setting: Reads the ACKB bit in the ICSR.

Objective: Confirms the acknowledgment from the slave device.

Hardware behavior: Loads the acknowledgment, returned from the slave device, to the
ACKB bit.

[22] Setting the transmit data

Software setting: Writes the transmit data to the ICDR.

Objective: Starts data transmission.

Hardware behavior: If the transmit data is written to the ICDR in transmission mode, the
TDRE flag is cleared to 0.

[23] Data transfer from the ICDRT to the ICDRS

Hardware behavior: Clears the TDRE flag to 0.

Objective: Transfers transmit data from the ICDRT to the ICDRS.

[24] Clearing the IRIC

Software setting: Clears the IRIC bit in the ICCR to 0.

Objective: Judges the termination of the data transfer.

[25] Termination of one-byte data transfer

Hardware behavior: Sets the IRIC bit in the ICCR to 1 at the rising edge of the ninth
transmission clock.

Objective: The state in which the IRIC bit equals 1 means the end of data
transmission or that bus arbitration has been lost. An interrupt request
is issued to the CPU when the IEIC bit in the ICCR has been set to 1.

[26] Confirmation of the acknowledgment

Software setting: Reads the ACKB bit in the ICSR.

Objective: Confirms the acknowledgment from the slave device.

Hardware behavior: Loads the acknowledgment, returned from the slave device, to the
ACKB bit.

[27] Continuation of the data transmission

Software setting: Repeats procedures [22] to [26].

Objective: Continues to transmit data.

Rev. 2.0, 11/01, page 70 of 358

[28] Issuing the stop condition

Software setting: Clears the bits BBSY and SCP to 0 in ICCR.

Objective: Issues the stop condition.

Note: The MOV instruction must be used to clear the bits BBSY and SCP to
0, because these two bits must be simultaneously set.

Hardware behavior: If the stop condition is detected from the bus line state, the TDRE flag
is cleared to 0. If the bus is released, the BBSY bit is cleared to 0.

2.7.2 Master Reception

In master reception mode using the I2C bus format, the master device outputs the reception clock,
receives data, and returns an acknowledgment. The slave device transmits data. The setting
procedures and operation of the master reception mode are described below.

SDA
(Slave output)

SDA
(Master output)

IRIC

RDRF

ICDRS

ICDRR

SCL
(Master output)

19

A

A

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 bit7 bit6

2 3 4 5 6 7 8 9 1 2

Data 2

[1] to [21]
[22]

[23], [24]

[25] [26]

Data 1

Master transmission mode Master reception mode

Data 1

[27]
[29]
to [32]

[28]

Data 1

Figure 2.13 Operation Timing of Master Reception Mode
(for MLS=WAIT=ACKB=0)

Rev. 2.0, 11/01, page 71 of 358

Example of setting procedures of master transmission mode

[1] Initial setting 1

Software setting: Clears the MSTP4 or MSTP3 bit in the MSTPCRL to 0.

Objective: Cancels the module stop mode of IIC channel 0 or IIC channel 1.

[2] Initial setting 2

Software setting: Sets the IICE bit in the STCR to 1.

Objective: Enables the CPU to access the data register and control register of the I2C
bus interface.

[3] Initial setting 3

Software setting: Sets the DDCSWR.

Objective: Selects enable/disable for the automatic switching function between
format-less and I2C bus format in IIC channel 0.
Selects format-less or I2C bus format in IIC channel 0.
Selects enable/disable for interrupt request to the CPU when automatic
switching of the format takes place in IIC channel 0.

[4] Initial setting 4

Software setting: Clears the ICE bit in the ICCR to 0.

Objective: Enables access to the SAR and SARX.

[5] Initial setting 5

Software setting: Sets the SAR and SARX.

Objective: Sets the SW bit in the DDCSWR, the transfer format, and the slave
address.

Note: Sets the slave address, because slave mode may be set even in master
mode when the system is in multi-master mode.

[6] Initial setting 6

Software setting: Sets the ICE bit in the ICCR to 1.

Objective: Enables access to the ICMR and ICDR.
Puts the I2C module in the transfer-enabled state.

[7] Initial setting 7

Software setting: Sets the ACKB bit in the ICSR.

Objective: Sets the acknowledgment data that is output during data reception.

Note: Be sure to set the ACKB bit, because the mode automatically shifts to
slave reception if bus arbitration is lost even if the device was being used
in master mode.

Rev. 2.0, 11/01, page 72 of 358

[8] Initial setting 8

Software setting: Sets the bits IICX1 or IICX0 in the STCR, and the bits CKS2 to 0 in the
ICMR.

Objective: Selects the transfer clock frequency to be used.

[9] Initial setting 9

Software setting: Sets the bits MLS and WAIT in the ICMR to 0.

Objective: Sets the MSB-first mode and the no-wait mode in data transfer.

[10] Initial setting 10

Software setting: Sets the ACKE bit in the ICCR.

Objective: Selects one of the following two actions:
Transfer data continuously by ignoring the contents of the
acknowledgment bit returned from the reception device in the I2C bus
format.
Perform the error processing by discontinuing the transfer operation
when the acknowledgment bit equals 1.

[11] Initial setting 11

Software setting: Sets the IEIC bit in the IICR.

Objective: Selects enable/disable for interrupt request to the CPU from the I2C bus
interface.

[12] Confirmation of the bus state

Software setting: Reads the BBSY bit.

Objective: Confirms whether the bus is released or in use.

Hardware behavior: If the bus is released, the BBSY bit is equal to 0.

[13] Setting the master transmission mode

Software setting: Sets the bits MST and TRS in ICCR to 1.

Objective: Sets the operation mode of the I2C bus interface to master transmission
mode.

[14] Clearing the IRIC

Software setting: Clears the IRIC bit in the ICCR to 0.

Objective: Judges the detection for the start condition.

[15] Setting the start condition

Software setting: Sets the BBSY bit to 1, and clears the SCP bit to 0 in ICCR.

Objective: Sets the start condition.

Note: The MOV instruction must be used to set the BBSY bit to 1 and clear
the SCP bit to 0, because these two bits must be simultaneously set.

Hardware behavior: The SDA changes from high to low, when the SCL is high.

Rev. 2.0, 11/01, page 73 of 358

[16] Confirmation that the start condition has been satisfied

Software setting: Reads the IRIC bit.

Objective: Confirms that the start condition is detected from the bus line state.

Hardware behavior: If the start condition is detected, the bits IRIC and TDRE are equal to 1.

[17] Setting the slave address + R/W data

Software setting: Writes the slave address + R/W data to the ICDR.

Objective: Starts the data transfer.

Hardware behavior: If the transmit data is written to the ICDR in transmission mode, the
TDRE flag is cleared to 0.

[18] Data transfer from the ICDRT to the ICDRS

Hardware behavior: Clears the TDRE flag to 0.

Objective: Transfers transmit data from the ICDRT to the ICDRS.

[19] Clearing the IRIC

Software setting: Clears the IRIC bit in the ICCR to 0.

Objective: Judges the termination of the data transmission.

[20] Termination of one-byte data transmission

Hardware behavior: Sets the IRIC bit in the ICCR to 1 at the rising edge of the ninth
transmission clock.

Objective: The state in which the IRIC bit equals 1 means the end of data
transmission or that bus arbitration has been lost. An interrupt request
is issued to the CPU when the IEIC bit in the ICCR has been set to 1.

[21] Confirmation of the acknowledgment

Software setting: Reads the ACKB bit in the ICSR.

Objective: Confirms the acknowledgment from the slave device.

Hardware behavior: Loads the acknowledgment, returned from the slave device, to the
ACKB bit.

[22] Setting the master reception mode

Software setting: Clears the TRS bit in the ICCR to 0.

Objective: Switches from master transmission mode to master reception mode

[23] ACKB=0

Software setting: Clears the ACKB bit in the ICSR to 0.

Objective: Outputs 0 at the acknowledgment output timing.

[24] Dummy reading

Software setting: Reads the ICDR.

Objective: Starts the data reception.

Rev. 2.0, 11/01, page 74 of 358

[25] Clearing the IRIC

Software setting: Clears the IRIC bit in the ICCR to 0.

Objective: Judges the termination of the data reception.

[26] Termination of one-byte data reception

Hardware behavior: Sets the IRIC bit in the ICCR and the RDRF flag to 1 at the rising edge
of the ninth reception clock.

Objective: The state in which the IRIC bit equals 1 means the end of data transfer.
An interrupt request is issued and sent to the CPU when the IEIC bit
has been set to 1. Data reception will continue after setting the internal
RDRF flag to 1, when the flag has been cleared to 0.

[27] Reading the received data

Software setting: Reads the ICDR.

Objective: Starts data reception.

Hardware behavior: Clears the RDRF flag to 0.

Note: Sets the ACKB bit to 1 before reading the ICDR when an
acknowledgment is not returned after reception of the last byte.

[28] Clearing the IRIC

Software setting: Clears the IRIC bit in the ICCR to 0.

Objective: Judges the termination of the data reception.

[29] Continuation of data reception

Software setting: Repeats procedures [26] to [28].

Objective: Continues to receive data.

[30] Termination of reception

Software setting: Sets the TRS bit in the ICCR to 1.

Objective: To terminate the data reception, sets the TRS bit in the ICCR to 1
before the rise up of the reception clock for the subsequent frame.

Hardware behavior: Sets the TDRE flag to 1.

[31] Reading the last data

Software setting: Reads the ICDR.

Objective: Reads the last byte of the reception data.

[32] Issuing the stop condition

Software setting: Clears the bits BBSY and SCP to 0 in ICCR.

Objective: Issues the stop condition.

Note: The MOV instruction must be used to clear the bits BBSY and SCP to
0, because these two bits must be simultaneously set.

Hardware behavior: If the stop condition is detected from the bus line state, the TDRE flag
is cleared to 0. If the bus is released, the BBSY bit is cleared to 0.

Rev. 2.0, 11/01, page 75 of 358

2.7.3 Slave Reception

In slave reception mode using the I2C bus format, the master device outputs the transmission clock
and transmission data, and slave devices return acknowledgments.
The setting procedures and operation of the slave reception mode are described below.

SDA
(Slave output)

SDA
(Master output)

IRIC

RDRF

ICDRS

ICDRR

SCL
(Master output)

SCL
(Slave output)

1 2 3 4 5 6 7 8 9 1 2

A

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 bit7 bit6

Slave address

[13]

[14]

R/W

[15]

Slave address
+ R/W

Slave address
+ R/W

[17]

[16] [18] to [22]
[1] to [12]

Data 1

Figure 2.14 Operation Timing of Slave Reception Mode (for MLS=ACKB=0)

Example of setting procedures of the slave reception mode

[1] Initial setting 1

Software setting: Clears the MSTP4 or MSTP3 bit in the MSTPCRL to 0.

Objective: Cancels the module stop mode of IIC channel 0 or IIC channel 1.

[2] Initial setting 2

Software setting: Sets the IICE bit in the STCR to 1.

Objective: Enables the CPU to access the data register and control register of the I2C
bus interface.

Rev. 2.0, 11/01, page 76 of 358

[3] Initial setting 3

Software setting: Sets the DDCSWR.

Objective: Selects enable/disable for the automatic switching function between
format-less and I2C bus format in IIC channel 0.
Selects format-less or I2C bus format in IIC channel 0.
Selects enable/disable for interrupt request to the CPU when automatic
switching of the format takes place in IIC channel 0.

[4] Initial setting 4

Software setting: Clears the ICE bit in the ICCR to 0.

Objective: Enables access to the SAR and SARX.

[5] Initial setting 5

Software setting: Sets the SAR and SARX.

Objective: Sets the SW bit in the DDCSWR, the transfer format, and the slave
address.

[6] Initial setting 6

Software setting: Sets the ICE bit in the ICCR to 1.

Objective: Enables access to the ICMR and ICDR.
Puts the I2C module in the transfer-enabled state.

[7] Initial setting 7

Software setting: Sets the ACKB bit in the ICSR.

Objective: Sets the acknowledgment data that is output during data reception.

Note: Be sure to set the ACKB bit, because the mode automatically shifts to
slave reception if bus arbitration is lost even if the device was being used
in master mode.

[8] Initial setting 8

Software setting: Sets the bits IICX1 or IICX0 in the STCR, and the bits CKS2 to 0 in the
ICMR.

Objective: Selects the transfer clock frequency to be used.

[9] Initial setting 9

Software setting: Sets the bits MLS and WAIT in the ICMR to 0.

Objective: Sets the MSB-first mode and the no-wait mode in data transfer.

[10] Initial setting 10

Software setting: Sets the ACKE bit in the ICCR.

Objective: Selects one of the following two actions:
Transfer data continuously by ignoring the contents of the
acknowledgment bit returned from the reception device in the I2C bus
format.
Perform the error processing by discontinuing the transfer operation
when the acknowledgment bit equals 1.

Rev. 2.0, 11/01, page 77 of 358

[11] Initial setting 11

Software setting: Sets the IEIC bit in the IICR.

Objective: Selects enable/disable for interrupt request to the CPU from the I2C bus
interface.

[12] Initial setting 12

Software setting: Sets the bits MST and TRS to 0.

Objective: Sets the slave reception mode.

[13] Detecting the start condition

Hardware behavior: Sets the BBSY bit in the ICCR to 1.

Objective: Detects the start condition issued by the master device.

[14] Reception of the slave address

Hardware behavior: Clears the TRS bit in the ICCR to 0.

Objective: Acts as the slave device that is specified by the master device when the
slave address has been matched at the first frame after the starting
condition. When the eighth data (R/W) is equal to 0, the TRS bit in the
ICCR remains 0 (unchanged), and slave reception operation takes
place.

[15] Matching the slave address

Hardware behavior: The slave device sets the SDA to low and returns an acknowledgment
at the ninth clock of the reception frame. The slave device
simultaneously sets the IRIC bit in the ICCR and the RDRF flag to 1.

Objective: The state in which the IRIC bit equals 1 means the matching of the
slave address. An interrupt request is issued to the CPU when the IEIC
bit in the ICCR has been set to 1.

[16] Dummy reading

Software setting: Reads the ICDR (dummy reading).

Objective: Starts the data reception.

[17] Clearing the IRIC

Software setting: Clears the IRIC bit in the ICCR to 0.

Objective: Judges the termination of the data reception.

[18] Termination of data reception

Hardware behavior: The slave device sets the SDA to low and returns an acknowledgment
at the ninth clock of the reception frame. The slave device
simultaneously sets the IRIC bit in the ICCR and the RDRF flag to 1.

Objective: The state in which the IRIC bit equals 1 means the termination of the
data transfer. An interrupt request is issued and sent to the CPU when
the IEIC bit in the ICCR has been set to 1.

Rev. 2.0, 11/01, page 78 of 358

[19] Reading the received data

Software setting: Reads the ICDR.

Objective: Reads the received data.

Hardware behavior: Clears the RDRF flag to 0 by reading the received data in the ICDR
(ICDRR).

[20] Clearing the IRIC

Software setting: Clears the IRIC bit in the ICCR to 0.

Objective: Judges the termination of the data reception.

[21] Continuation of the data reception

Software setting: Repeats procedures [18] to [20].

Objective: Continues to receive data.

[22] Termination of reception

Hardware behavior: The SDA changes from low to high when the SCL is high. Clears the
BBSY bit in the ICCR to 0.

Objective: Detects the stop condition issued by the master device.

2.7.4 Slave Transmission

In slave transmission mode using the I2C bus format, a slave device outputs the transmission data.
The master device outputs the reception clock and returns acknowledgment. The setting
procedures and operation of the slave transmission mode are described below.

Rev. 2.0, 11/01, page 79 of 358

A

A

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 bit7 bit6

Data 2

Slave reception mode Slave transmission mode

Data 2Data 1

Data 1

[14]
[1] to [13] [24]

to [26]

[15]

[16] [18]

[17]

[19]

[20]

[21]
[22]

[23]

Data 1

SDA
(Slave output)

SDA
(Master output)

IRIC

TDRE

ICDRT

ICDRS

SCL
(Master output)

SCL
(Slave output)

19 2 3 4 5 6 7 8 9 1 2

Data 2

Figure 2.15 Operation Timing of Slave Transmission Mode (for MLS=0)

Example of setting procedures of the slave transmission mode

[1] Initial setting 1

Software setting: Clears the MSTP4 or MSTP3 bit in the MSTPCRL to 0.

Objective: Cancels the module stop mode of IIC channel 0 or IIC channel 1.

[2] Initial setting 2

Software setting: Sets the IICE bit in the STCR to 1.

Objective: Enables the CPU to access the data register and control register of the I2C
bus interface.

[3] Initial setting 3

Software setting: Sets the DDCSWR.

Objective: Selects enable/disable for the automatic switching function between
format-less and I2C bus format in IIC channel 0.
Selects format-less or I2C bus format in IIC channel 0.
Selects enable/disable for interrupt request to the CPU when the
automatic switching of the format takes place in IIC channel 0.

Rev. 2.0, 11/01, page 80 of 358

[4] Initial setting 4

Software setting: Clears the ICE bit in the ICCR to 0.

Objective: Enables access to the SAR and SARX.

[5] Initial setting 5

Software setting: Sets the SAR and SARX.

Objective: Sets the SW bit in the DDCSWR, the transfer format, and the slave
address.

[6] Initial setting 6

Software setting: Sets the ICE bit in the ICCR to 1.

Objective: Enables access to the ICMR and ICDR.
Puts the I2C module in the transfer-enabled state.

[7] Initial setting 7

Software setting: Sets the ACKB bit in the ICSR.

Objective: Sets the acknowledgment data that is output during data reception.

Note: Be sure to set the ACKB bit, because the mode automatically shifts to
slave reception if bus arbitration is lost even if the device was being used
in master mode.

[8] Initial setting 8

Software setting: Sets the bits IICX1 or IICX0 in the STCR, and the bits CKS2 to 0 in the
ICMR.

Objective: Selects the transfer clock frequency to be used.

[9] Initial setting 9

Software setting: Sets the bits MLS and WAIT in the ICMR to 0.

Objective: Sets the MSB-first mode and the no-wait mode in data transfer.

[10] Initial setting 10

Software setting: Sets the ACKE bit in the ICCR.

Objective: Selects one of the following two actions:
Transfer data continuously by ignoring the contents of the
acknowledgment bit returned from the reception device in the I2C bus
format.
Perform the error processing by discontinuing the transfer operation
when the acknowledgment bit equals 1.

[11] Initial setting 11

Software setting: Sets the IEIC bit in the IICR.

Objective: Selects enable/disable for interrupt request to the CPU from the I2C bus
interface.

Rev. 2.0, 11/01, page 81 of 358

[12] Initial setting 12

Software setting: Sets the bits MST and TRS to 0.

Objective: Sets the slave reception mode.

[13] Detecting the start condition

Hardware behavior: Sets the BBSY bit in the ICCR to 1.

Objective: Detects the start condition issued by the master device.

[14] Reception of the slave address

Hardware behavior: Clears the TRS bit in the ICCR to 0, and sets the TDRE flag to 1.

Objective: Acts as the slave device that is specified by the master device when the
slave address has been matched at the first frame after the starting
condition. When the eighth data (R/W) equals 1, sets the TRS bit in the
ICCR to 1, and automatically changes to slave transmission mode.

[15] Matching the slave address

Hardware behavior: The slave device sets the SDA to low and returns an acknowledgment
at the ninth clock of the reception frame. The slave device
simultaneously sets the IRIC bit in the ICCR to 1. The slave device
fixes the SCL to low during the period from the falling edge of the
transmission clock to the start of writing data to the ICDR.

Objective: The state in which the IRIC bit equals 1 means the matching of the
slave address. An interrupt request is issued and sent to the CPU when
the IEIC bit in the ICCR has been set to 1.

[16] Clearing the IRIC

Software setting: Clears the IRIC bit in the ICCR to 0.

Objective: Judges the data transfer from the ICDRT to the ICDRS.

[17] Writing the first byte of the transmission data

Software setting: Writes the first byte of the transmission data to the ICDR.

Objective: Starts the data transmission.

Hardware behavior: Clears the TDRE flag to 0.

[18] Data transfer from the ICDRT to the ICDRS

Hardware behavior: Sets the TDRE flag, the IRIC bit in the ICCR, and the IRTR in the
ICSR to 1.

Objective: Transfers the data written in the ICDRT to the ICDRS.

[19] Clearing the IRIC

Software setting: Clears the IRIC bit in the ICCR to 0.

Objective: Judges the termination of the data transmission.

Rev. 2.0, 11/01, page 82 of 358

[20] Writing the transmission data

Software setting: Writes the transmission data to the ICDR.

Objective: Starts the data transmission.

Hardware behavior: Clears the TDRE flag to 0.

[21] Termination of transmission

Hardware behavior: After one-frame data transmission ended, sets the IRIC bit in the ICCR
to 1 at the rising edge of the ninth transmission clock. The slave device
receives an acknowledgment from the master device, and stores it in
the ACKB bit. The slave device automatically fixes the SCL to low
during the period from the falling edge of the ninth transmission clock
to the start of writing data to the ICDR.

Objective: The state in which the IRIC bit equals 1 means the end of a data
transfer. An interrupt request is issued and sent to the CPU when the
IEIC bit in the ICCR has been set to 1. The acknowledgment from the
master device can be confirmed by reading the ACKB bit.

[22] Clearing the IRIC

Software setting: Clears the IRIC bit in the ICCR to 0.

Objective: Judges the termination of the data transmission.

[23] Writing the transmission data

Software setting: Writes the transmission data to the ICDR.

Objective: The slave device releases the SCL and allows it to go high, and starts
the data transmission.

[24] Continuation of the data transmission

Software setting: Repeats procedures [21] to [23].

Objective: Continues to transmit data.

[25] Termination of transmission

Software setting: Clears the TRS bit in the ICCR to 0, and reads the ICDR (dummy
reading).

Objective: Sets the slave reception mode by clearing the TRS bit to 0. Releases the
SCL line by the dummy reading of the ICDR.

[26] Detecting the stop condition

Hardware behavior: The SDA changes from low to high when the SCL is high. Clears the
BBSY bit in the ICCR to 0.

Objective: Detects the stop condition issued by the master device.

Rev. 2.0, 11/01, page 83 of 358

Section 3 Examples of Application to the H8/300 and
H8/300L Series

3.1 System Specifications

The system specifications are described below. Figure 3.1 illustrates the system configuration.

• The system has a multi-master configuration comprising two masters and one slave. The
H8/3434F, which has an on-chip flash memory, is used as a device.

• The 8-segment LED displays on its screen: ‘CPU1’ when switch-1 (SW1: master-1 side) is
pressed and ‘CPU2’ when switch-2 (SW2: master-2 side) is pressed.

(1) Master-1 sends H'01 to the slave when switch-1 is pressed, and the master-2 sends H'02
when the switch-2 is pressed.

(2) The slave distinguishes the received data and displays on the screen of the 8-segment
LED: ‘CPU1’ when the data is H'01 and ‘CPU2’ when the data is H'02.

• The transfer rate of the I2C bus is 200 kbps.

Rev. 2.0, 11/01, page 84 of 358

SW1
Master-1

H8/3434F

H8/3434F

SW2
Master-2

Slave

LED display

SCL

SDA

I2C bus

H8/3434F

Figure 3.1 System for Evaluating the Multi-Master configuration

• In the on-chip I2C bus interface of the H8/300 and H8/300L series, the adjustment procedures
shown in figure 3.2 are performed as well as the communication adjustment procedures
described in “1.4 Procedure for Communication Adjustment”. Each master device monitors the
bus line at the falling edge of the SCL line, and switches off its output gates if the monitored
level does not coincide with its own level.

Rev. 2.0, 11/01, page 85 of 358

The bus signals that each
master is going to output

Start condition

SDA1

SCL1

SDA2

SCL2

SDA

SCL

Obtains the bus authority.

Switches off its output gates
because the SCL line is high.

M
as

te
r-

1
M

as
te

r-
2

B
us

 li
ne

Figure 3.2 How to detect the bus arbitration

• When master-1 and master-2 start data transmission simultaneously (multi-master operation)

(1) When a collision is detected, master-1 obtains the bus authority, because the period when
the SDA line (data line) is low is longer for master-1 (transmitted data is H'01) than for
master-2 (transmitted data is H'02). Refer to figure 3.3.

Rev. 2.0, 11/01, page 86 of 358

SCL 1

0 0

H'01

(a) Master-1

H'02

(b) Master-2

0 1

2

··· 0 0 1 0···

7 8 9··· 1 2 7 8 9···

SDA

SCL

SDA

Figure 3.3 Why master-1 obtains the bus authority

(2) Master-2 loses the bus arbitration and automatically transits to slave reception mode. To
use master-2 in master transmission mode again, the system must perform a reset. The
data that was not transmitted must be written to the ICDR again. This system, therefore,
calls the data transmission routine again regardless of the switch input, after confirming
the bus arbitration loss of master-2.

Rev. 2.0, 11/01, page 87 of 358

3.2 Circuit for Multi-Master Evaluation System

Figure 3.4 illustrates the circuit diagram for evaluating a multi-master system that has the multi-
master configuration.

Circuit for reset

Master-2 Master-1

Vcc

Vcc

Vcc

P60

Vss

SCL

SDA
SW1

Vcc Vcc Vcc Vcc Vcc

H8/3434F

Slave
8-segment LED

H8/3434F

Vcc

P60

Vss

SCL

SDA

H8/3434F

SW2

Vcc

P20
to

Vss

P27

P10
P11
P12
P13

SCL

SDA

Figure 3.4 Circuit diagram of the system for performing a simple evaluation of the I2C bus

Rev. 2.0, 11/01, page 88 of 358

3.3 Design of Software

3.3.1 Description of Modules

This section presents an example of the software of the system that has the multi-master
configuration. The divided program modules and their functions are listed in table 3.1.

Table 3.1 Description of modules

Module name Label name Functions

Master main program Main (1) Initial setting (stack pointer, I2C bus interface, and 8-
bit timer)

(2) Enables interruption

(3) Watches the switch and calls the master subroutine

Key scanning program
(interruption program)

Compare Reads the bit of I/O port 6 every 8 ms using the
compare-match interruption for the 8-bit timer.

Data transmitting program Master Watches the bus and transmits the data

Slave main program _Main (1) Initial setting (stack pointer, I2C bus interface, and 8-
bit timer)

(2) Enables interruption

(3) Calls the slave subroutine

Program to display data on
the 8-segment LED

_Display Displays data on the 8-segment LED.

Data receiving program
(interruption program)

_Receive Receives data to make a decision.

3.3.2 Master

(1) Description of internal registers used by the master

Table 3.2 Description of internal registers used by the master

Registers Functions Names of modules
using the registers

STCR Selects the input clock for the 8-bit timer.

ICCR Enables the I2C bus interface.

Sets for interruptions.

Selects the communication mode.

Selects the acknowledgment mode.

Selects the frequency of the input clock.

Data transmitting
program

Rev. 2.0, 11/01, page 89 of 358

Registers Functions Names of modules
using the registers

ICSR Issues starting/stopping conditions.

Recognizes and controls the acknowledgment.

ICDR Stores the transmission/reception data.

ICMR Selects MSB-first or LSB-first.

SAR Stores the slave address and selects the format.

TCR Selects the clock input.

Selects the condition for clearing the counter.

Enables compare-match interruption A.

TCSR Clears the flag for the compare-match.

TCORA Sets the time for the compare-match.

P6DR Switches input port.

P6DDR Sets the port mode.

Main program

(2) Description of the general-purpose registers used by the master

Table 3.3 Description of the general-purpose registers used by the master

Registers Functions Names of module
using the registers

R1L,R2L Working registers Main program

R3L Stores the transmission data temporarily. Data transmitting
program

R5L Counts the bytes of transmitted data. Data transmitting
program

CCR Checks the interruption flags. Main program

(3) Description of the RAM used by the master

Table 3.4 Description of the RAM used by the master

Registers Functions Data length Names of modules using the
registers

Switch Counts the jitter. 1 byte Key scanning program
(interruption program)

Rev. 2.0, 11/01, page 90 of 358

(4) Description of the ROM used by the master

Table 3.5 Description of the ROM used by the master

Label
names

Functions Data length Names of modules using the
registers

Table Stores the transmission data. 2 bytes Data transmitting program

3.3.3 Slave

(1) Description of internal registers used by the slave

Table 3.6 Description of internal registers used by the slave

Registers Functions Names of module
using the registers

STCR Selects the input clock for the 8-bit timer.

ICCR Enables the I2C bus interface.

Sets for interruptions.

Selects the communication mode.

Selects the acknowledgment mode.

Selects the frequency of the input clock.

Main program

ICSR Watches the data transmission/reception and checks
whether or not an interruption occurred.

ICDR Stores the transmission/reception data.

ICMR Selects MSB-first or LSB-first.

SAR Stores the slave address and selects the format.

Data receiving
program (interruption
program)

TCR Selects the clock input.

Selects the clearing condition for the counter (clears the
counter by compare-match interruption A).

TCSR Checks the state of the flag for the compare-match.

TCORA Sets the time for compare-match A.

TCORB Sets the time for compare-match B.

P1DDR Sets the mode for port 1.

Main program

P1DR Digit data of the 8-segment LED Program for displaying
data on the 8-segment
LED

P2DDR Sets the mode for port 2. Main program

P2DR Segment data of the 8-segment LED Program for displaying
data on the 8-segment
LED

Rev. 2.0, 11/01, page 91 of 358

(2) Description of the general-purpose registers used by the slave

Table 3.7 Description of the general-purpose registers used by the slave

Registers Functions Names of module
using the registers

R1L Working register Main program

R1L Working register

R6 Temporary area for exchanging the data

Program for displaying
data on the 8-segment
LED

R1L Working register

R4 Sets the data table.

Data receiving
program (interruption
program)

CCR Checks the interruption flags. Main program

(3) Description of the RAM used by the slave

Table 3.8 Description of the RAM used by the slave

Label
names

Functions Data length Names of module using the
registers

_TABLE Stores the starting address of the
data table.

1 word Data receiving program
(interruption program)

_Count Manages the display time for the
LED.

1 byte

_Count2 Manages the display time for the
LED.

1 byte

_D_DATA Initial value of the digit data 1 byte

Program for displaying data on
the 8-segment LED

_First Stores the first byte of the reception
data.

1 byte

_Second Stores the second byte of the
reception data.

1 byte

Data receiving program
(interruption program)

(4) Description of the ROM used by the slave

Table 3.9 Description of the ROM used by the slave

Label
names

Functions Data length Names of module using the
registers

_Table1 Stores the data for 8-segment. 1 byte

_Table2 Stores the data for 8-segment. 1 byte

_Table3 Stores the data for 8-segment. 1 byte

_Table4 Stores the data for 8-segment. 1 byte

Data receiving program
(interruption program)

Rev. 2.0, 11/01, page 92 of 358

3.4 Flowcharts

3.4.1 Master Program

(1) Main Program

Main

Initial setting

Set the TCNT to 0 and start the
8-bit timer

Check the switch flag

Disable the compare-match interruption

Data transmitting program (master)

Enable the compare-match interruption

Clear the switch flag

Switch 3 ?
No

Yes

Initial setting
Set the interruption vector
Reserve the variable region
Set the stack pointer
Initialize the I2C bus interface
Initialize the 8-bit timer
Initialize the I/O ports
Enable the interruptions

Rev. 2.0, 11/01, page 93 of 358

(2) Key scanning program (interruption program)

Compare

RTE

Store the contents of the working registers

Clear the CMFA

Read the I/O port P6o

Increment the switch counter (Switch)

Recover the contents of the working registers

No

Yes

P6o = 0 ?

Read the state of the key switch.

Clear the switch counter (Switch)

Rev. 2.0, 11/01, page 94 of 358

(3) Data transmitting program

Master

Read the BBSY bit in the ICSR

Set the bits MST and TRS in the ICCR to 1

Write 1 to the BBSY bit, and 0
to the SCP bit in the ICSR

Write the transmission data to the ICDR

Read the IRIC bit in the ICSR

Clear the IRIC bit in the ICSR

Read the AL bit in the ICSR

Read the ACKB bit in the ICSR

Write 0 to the bits BBSY and SCP
in the ICSR

IRIC = 1 ?

AL = 0 ?

ACKB = 0 ?

RTS

BBSY = 0 ?
No

No

No

No

Yes

Is the bus free?

Set the master transmission mode.

Set the start condition.

Wait for the termination of the
master transmission.

Bus arbitration lost?

Did an acknowledgment return?

 Issue the stop condition.

Yes

Yes

Yes

Rev. 2.0, 11/01, page 95 of 358

3.4.2 Slave Program

(1) Main Program

_Main

Initial setting

Program for displaying data on the 8-segment LED

Initial setting
Set the interruption vector
Reserve the variable region
Set the stack pointer
Initialize the I2C bus interface
Initialize the 8-bit timer
Initialize the I/O ports
Enable the interruptions
Set the data table (_Table) for the 8-segment LED to 000

Rev. 2.0, 11/01, page 96 of 358

(2) Program for displaying data on the 8-segment LED

_Display

RTS

CMFB = 1 ?

CMFA = 1 ?

Is the digit data
H'00?

COUNT = 500 ?

No

Yes

Yes

Yes

Yes

Set the data table for the 8-segment LED

Clear the COUNT to 0

Set the first digit (H'01)

Clear the CMFB

Clear the CMFA

Increment the COUNT

Output the digit data to the I/O port
Output the segment data to the I/O port

Shift the digit data and
set the next segment data

Set the digit data to 0 and
output it to the I/O port

No

No

No

Adjust the display time.

Is compare-match A?

Is compare-match B?

Rev. 2.0, 11/01, page 97 of 358

(3) Data receiving program

_Receive

RTS

IRIC = 1 ?

_Second = H'01 ?

_Second = H'02 ?

Yes

Yes

Yes

Store the contents of the working registers

Set the bits MST and TRS in the ICCR to 0

Read the ICDR

Clear the IRIC bit in the ICSR

Set the ACKB bit in the ICSR to 1

Read the IRIC bit in the ICSR

Clear the IRIC bit in the ICSR

Set the data table to "E---" (_Table3)

Recover the contents of the working registers

Read the ICDR
_Second = ICDR

No

No

No

Read the second byte.

Wait for reception of the second byte.

Set the ACKB bit so that
an acknowledgment will not return.

Read the first byte.
(dummy reading)

Set the slave reception mode.

Set the data table to
"CPU1" (_Table1)

Set the data table to
"CPU2" (_Table2)

Rev. 2.0, 11/01, page 98 of 358

3.5 Program Listings

3.5.1 Master Program

.cpu 300

.output dbg

;**

; Master program of the evaluation system for the I
2
C bus

; Key scanning

; Data transmission

;**

;**

; Vector addresses

;**

.section VECT,CODE,LOCATE=H'0000

Res .DATA.W Main

.ORG H'0006

NMI .DATA.W Main

IRQ0 .DATA.W Main

IRQ1 .DATA.W Main

IRQ2 .DATA.W Main

IRQ3 .DATA.W Main

IRQ4 .DATA.W Main

IRQ5 .DATA.W Main

IRQ6 .DATA.W Main

IRQ7 .DATA.W Main

ICIA .DATA.W Main

ICIB .DATA.W Main

ICIC .DATA.W Main

ICID .DATA.W Main

OCIA .DATA.W Main

OCIB .DATA.W Main

FOVI .DATA.W Main

Rev. 2.0, 11/01, page 99 of 358

CMI0A .DATA.W Compare

CMI0B .DATA.W Main

OVI0 .DATA.W Main

CMI1A .DATA.W Main

CMI1B .DATA.W Main

OVI1 .DATA.W Main

MREI .DATA.W Main

MWEI .DATA.W Main

ERI .DATA.W Main

RXI .DATA.W Main

TXI .DATA.W Main

RDI .DATA.W Main

;

;**

; Definitions of the various interfaces

;**

;---

; Definition of the I
2
C bus registers

;---

_STCR .EQU H'FFC3 ; Serial timer control register

_ICCR .EQU H'FFD8 ; I
2
C bus control register

_ICSR .EQU H'FFD9 ; I
2
C bus state register

_ICDR .EQU H'FFDE ; I
2
C bus data register

_ICMR .EQU H'FFDF ; I
2
C bus mode register

_SAR .EQU H'FFDF ; Slave-address register

;---

; Definition of the I/O registers

;---

_KMPCR .EQU H'FFF2 ; Port 6 input pull-up MOS control

; register

_P6DDR .EQU H'FFB9 ; Data-direction register

_P6DR .EQU H'FFBB ; Data register (connects the switch)

;---

; Definition of the 8-bit timer register

;---

Rev. 2.0, 11/01, page 100 of 358

_TCR .EQU H'FFC8

_TCSR .EQU H'FFC9

_TCORA .EQU H'FFCA

_TCORB .EQU H'FFCB ; Unused

_TCNT .EQU H'FFCC

;---

; Definition of the variables in RAM variables

;---

.section RAM,DATA,LOCATE=H'FB80

_Switch .RES 1 ; Variable to designate the switch's state

;**

; Start of the main program

;**

.section program,data,locate=H'1000

Main MOV.W #H'FEFE,SP ; Set the stack pointer.

;---

; Initialization of the I
2
C bus registers

;---

MOV.B #H'10,R1L

MOV.B R1L,@_STCR ; IICE = 1

MOV.B #H'B4,R1L

MOV.B R1L,@_ICCR ; ICE = 1,MST = 1,TRS = 1

; Set the transfer clock to 200 bps.

;---

; Initialization of the I/O registers

;---

MOV.B #H'00,R1L

MOV.B R1L,@_P6DDR

 MOV.B #H'00,R1L

MOV.B R1L,@_KMPCR

Rev. 2.0, 11/01, page 101 of 358

;---

; Initialization of the 8-bit timer register

;---

MOV.B #H'4B,R1L

MOV.B R1L,@_TCR

MOV.B #H'7D,R1L

MOV.B R1L,@_TCORAe

;---

; Initialization of the switch counter

;---

MOV.B #H'00,R1L

MOV.B R1L,@_Switch ; Initialize the switch counter to 0.

MOV.B #H'00,R1L ; Reset the internal 8-bit counter to 0.

MOV.B R1L,@_TCNT ; Start counting.

ANDC #H'7F,CCR ; Clear the interrupt flag.

;---

; Judgement of the switch's state, ON or OFF

;---

MOV.B #H'03,R2L

SwOn MOV.B @_Switch,R1L

CMP.B R2L,R1L

BLT SwOn

MOV.B #H'00,R1L

MOV.B R1L,@_Switch ; Clear the switch counter.

;---

; Data transmission

;---

MOV.B #H'0B,R1L

MOV.B R1L,@_TCR ; Disable the CMPA interrupt.

JSR @Master ; Jump to the data-transmission program.

Rev. 2.0, 11/01, page 102 of 358

MOV.B #H'4B,R1L

MOV.B R1L,@_TCR ; Enable the CMFA interrupt.

BRA SwOn

;---

; Key-scanning routine (interrupt routine)

;---

Compare .EQU $

PUSH R1

BCLR #6,@_TCSR ; Clear the CMFA bit.

BTST #0,@_P6DR ; Check the switch flag.

BNE Off ; Clear the switch counter.

MOV.B @_Switch,R1L ; When the switch is off

INC R1L ; Increment the switch counter.

MOV.B R1L,@_Switch

BRA Clear

Off MOV.B #H'00,R1L ; When the switch is off

MOV.B R1L,@_Switch ; Clear the switch counter.

Clear POP R1

RTE ; Return from the key-scanning routine.

.include "master.asm" ; Combine the files.

;---

; Set the initial value to the ROM

;---

_Table .DATA.B H'EE ; The slave address (=H'77) and the R/W bit

; (=H'0) > B'11101110

.DATA.B H'01 ; The data to distinguish this master (master

; 2 is H'02)

Rev. 2.0, 11/01, page 103 of 358

 .END

;**

; Data-transmission program for the master

; The first byte is the slave's address.

; The second byte is the data that distinguishes this master.

;**

Master BTST #7,@_ICSR ; Is the I
2
C bus free?

BNE Master

BSET #5,@_ICCR ; Set the master-transmission mode.

BSET #4,@_ICCR ;(MST = 0,TRS = 0)

MOV.B #H'90,R1L ; Issue the start condition for

; transmission.

MOV.B R1L,@_ICSR ; ICSR : 1001 0000

MOV.B #H'00,R5L

Transmit MOV.B @(_Table,R5),R3L ; Write the first byte (the slave address)

; and the second byte (the data that

; distinguishes the master).

MOV.B R3L,@_ICDR

INC R5L

ChkIRIC1 BTST #6,@_ICSR

BEQ ChkIRIC1 ; IRIC = 1? (transmission completed?)

BCLR #6,@_ICSR ; Clear the IRIC bit for the subsequent

; transmission.

BTST #3,@_ICSR ; AL = 0?

BNE Master

BTST #0,@_ICSR ; ACKB = 0?

BEQ Transmit

Rev. 2.0, 11/01, page 104 of 358

MOV.B #H'10,R1L ; Issue the stop condition for transmission

MOV.B R1L,@_ICS ; ICSR : 0001 0000

RTS ; Return subroutine

Rev. 2.0, 11/01, page 105 of 358

3.5.2 Slave Program

.cpu 300

.output dbg

;**

; Slave program of the evaluation system for the I
2
C bus

; (1) LED display

; (2) Data reception

;**

;**

; Definition of the on-chip registers

;**

_STCR .EQU H'FFC3 ; Serial timer control register

_ICCR .EQU H'FFD8 ; I
2
C bus control register

_ICSR .EQU H'FFD9 ; I
2
C bus state register

_ICDR .EQU H'FFDE ; I
2
C bus data register

_ICMR .EQU H'FFDF ; I
2
C mode register

_SAR .EQU H'FFDF ; Slave-address register

_TCR .EQU H'FFC8 ; Timer control register

_TCSR .EQU H'FFC9 ; Timer control/state register

_TCORA .EQU H'FFCA ; Time constant register

_TCORB .EQU H'FFCB ; Time constant register

_P1DDR .EQU H'FFB0 ; Port 1 data-direction register

_P2DDR .EQU H'FFB1 ; Port 2 data-direction register

_P1DR .EQU H'FFB2 ; Port 1 data register

_P2DR .EQU H'FFB3 ; Port 2 data register

.section VECT,CODE,LOCATE=H'0000

;**

; Vector Address

;**

Res .DATA.W _Main

.ORG H'0006

NMI .DATA.W _Main

IRQ0 .DATA.W _Main

IRQ1 .DATA.W _Main

IRQ2 .DATA.W _Main

Rev. 2.0, 11/01, page 106 of 358

IRQ3 .DATA.W _Main

IRQ4 .DATA.W _Main

IRQ5 .DATA.W _Main

IRQ6 .DATA.W _Main

IRQ7 .DATA.W _Main

ICIA .DATA.W _Main

ICIB .DATA.W _Main

ICIC .DATA.W _Main

ICID .DATA.W _Main

OCIA .DATA.W _Main

OCIB .DATA.W _Main

FOVI .DATA.W _Main

CMI0A .DATA.W _Main

CMI0B .DATA.W _Main

OVI0 .DATA.W _Main

CMI1A .DATA.W _Main

CMI1B .DATA.W _Main

OVI1 .DATA.W _Main

IBF1 .DATA.W _Main

IBF2 .DATA.W _Main

ERI0 .DATA.W _Main

RXI0 .DATA.W _Main

TXI0 .DATA.W _Main

TEI0 .DATA.W _Main

ERI1 .DATA.W _Main

RXI1 .DATA.W _Main

TXI1 .DATA.W _Main

TEI1 .DATA.W _Main

ADI .DATA.W _Main

WOVF .DATA.W _Main

IICI .DATA.W _Receive

 .SECTION RAM,DATA,LOCATE=H'FB80

;---

; Initialization of the RAM area

;---

_TABLE .RES.W 1 ; H'FB80<- The place to store the received

Rev. 2.0, 11/01, page 107 of 358

; data

_Count .RES.B 1 ; H'FB82<- The time period for illuminating

; the LED

_Count2 .RES.B 1 ; H'FB83<- The time period for illuminating

; the LED

_D_DATA .RES.B 1 ; H'FB84<- Keep the digit data here.

_First .RES.B 1 ; H'FB85<- Data for transmission 1

_Second .RES.B 1 ; H'FB86<- Data for transmission 2

.SECTION PROGRAM,CODE,LOCATE=H'1000

;**

; Start of the main program

;**

_Main MOV.W #H'FEFE,SP ; Set the stack pointer.

; Settings for the program to use in

;---

; Settings for the program to use in displaying data on the LED

;---

MOV.B #H'0A,R1L ; Set the condition for clearing the counter.

MOV.B R1L,@_TCR

MOV.B #H'F0,R1L ; Compare-match B

MOV.B R1L,@_TCORB

MOV.B #H'FF,R1L ; Compare-match A

MOV.B R1L,@_TCORA

MOV.B #H'FF,R1L

MOV.B R1L,@_P1DDR ; All pins are outputs.

MOV.B R1L,@_P2DDR ; All pins are outputs.

;---

; Initialization of the I
2
C bus interface registers

;---

MOV.B #H'11,R1L ; IICE = 1

MOV.B R1L,@_STCR ; 0001 0001

Rev. 2.0, 11/01, page 108 of 358

MOV.B #H'EE,R1L

MOV.B R1L,@_SAR ; Set the slave address.

MOV.B #H'C4,R1L ; ICE = 1,IEIC = 1, Transfer clock : 400 MHz

MOV.B R1L,@_ICCR ; B'1100 0100

;---

; Cancellation of the interruption mask

;---

ANDC #H'7F,CCR

;---

; Swapping the data tables

;---

MOV.W #_Table4,R0

MOV.W R0,@_TABLE

LOOP JSR @_Display ; Jump to the routine for displaying data on

; the LED.

BRA LOOP

;**

; Subroutine for displaying data on the LED

;**

_Display MOV.W @_TABLE,R6 ; Exchanging the data tables.

MOV.B R1L,@_Count2 ; Count2 = 0

MORE2 MOV.B #H'00,R1L

MOV.B R1L,@_Count ; Count = 0

MORE1 MOV.W @_TABLE,R6 ; Set the starting address of the data table.

MOV.B #H'08,R1L

MOV.B R1L,@_D_DATA ; Set the digit data, H'01.

NEXT1 MOV.B @_D_DATA,R1L

NOT R1L

MOV.B R1L,@_P1DR ; Output the digit data.

MOV.B @R6,R1L

MOV.B R1L,@_P2DR ; Output the segment data.

Rev. 2.0, 11/01, page 109 of 358

CMFB1 BTST #7,@_TCSR ; CMFB = 1?

BEQ CMFB1

BCLR #7,@_TCSR

MOV.B #H'FF,R1L

MOV.B R1L,@_P1DR ; Output the digit data, H'FF.

CMFA1 BTST #6,@_TCSR ; CMFA = 1?

BEQ CMFA1

BCLR #6,@_TCSR

MOV.B @_D_DATA,R1L ; Shift the digit data.

SHLR R1L

MOV.B R1L,@_D_DATA

ADDS #1,R6 ; Prepare the next data for the LED.

CMP.B #H'00,R1L

BNE NEXT1

MOV.B @_Count,R1L

INC R1L

MOV.B R1L,@_Count

MOV.B @_Count,R1L

CMP.B #H'FF,R1L

BNE MORE1

MOV.B @_Count2,R1L

INC R1L

MOV.B R1L,@_Count2

MOV.B @_Count2,R1L

CMP.B #H'02,R1L

BNE MORE2

RTS

Rev. 2.0, 11/01, page 110 of 358

;**

; The interrupt handler for the I
2
C bus interface

; Data reception and judgement

; Exchanging the data tables

;**

_Receive PUSH R1

PUSH R4 ; Store the contents of the registers.

BCLR #6,@_ICSR ; Clear the IRIC.

MOV.B @_ICDR,R1L ; Read the data (a dummy read).

MOV.B R1L,@_First ; Store the data in memory.

BSET #0,@_ICSR ; ACKB = 1

LOOP1 BTST #6,@_ICSR ; Has reception of the second byte (the data

; to distinguish the master) finished?

BEQ LOOP1 ;

BCLR #6,@_ICSR ; Clear the IRIC.

MOV.B @_ICDR,R1L

MOV.B R1L,@_Second ; Store the received data in memory.

BCLR #0,@_ICSR ; ACKB = 0

; Set the conditions for the subsequent

; reception of data.

MOV.B #H'00,R1L

MOV.B R1L,@_ICMR ; Set the condition that specifies 9 bits per

; 1 frame.

;---

; Judgement

;---

MOV.B @_Second,R1L ; Read the data that distinguishes the master.

_Judge CMP.B #H'01,R1L ; Judgement of the reception data

BEQ EXIT1

Rev. 2.0, 11/01, page 111 of 358

CMP.B #H'02,R1L

BEQ EXIT2

EXIT3 MOV.W #_Table3,R4

MOV.W R4,@_TABLE

BRA Clear

EXIT1 MOV.W #_Table1,R4

MOV.W R4,@_TABLE

BRA Clear

EXIT2 MOV.W #_Table2,R4

MOV.W R4,@_TABLE

BRA Clear

Clear POP R1

POP R2

POP R4 ; Recover the contents of the registers.

RTE

;---

; The data table for the 8-segment LED

;---

_Table1 .DATA.B H'9C ;H'004B LED DATA of "C"

.DATA.B H'CE ;H'004C LED DATA of "P"

.DATA.B H'7C ;H'004D LED DATA of "U"

.DATA.B H'60 ;H'004E LED DATA of "1"

_Table2 .DATA.B H'9C ;H'004F LED DATA of "C"

.DATA.B H'CE ;H'0050 LED DATA of "P"

.DATA.B H'7C ;H'0051 LED DATA of "U"

.DATA.B H'DA ;H'0052 LED DATA of "2"

_Table3 .DATA.B H'9F ;H'0053 LED DATA of "E"

.DATA.B H'02 ;H'0054 LED DATA of "-"

.DATA.B H'02 ;H'0055 LED DATA of "-"

.DATA.B H'02 ;H'0056 LED DATA of "-"

_Table4 .DATA.B H'FC ;H'0053 LED DATA of "0"

.DATA.B H'FC ;H'0054 LED DATA of "0"

.DATA.B H'FC ;H'0055 LED DATA of "0"

Rev. 2.0, 11/01, page 112 of 358

.DATA.B H'FC ;H'0056 LED DATA of "0"

.END

Rev. 2.0, 11/01, page 113 of 358

Section 4 Example Applications for the H8S Series

4.1 Usage Guide to the Example Applications for the H8S Series

4.1.1 The Structure of the Example Applications for the H8S Series

The chapter, ‘Example Applications for the H8S series’, has the structure shown in the figure 4.1.
The example applications for the H8S series product’s I2C bus interface are described in this
chapter.

The H8S/2138 is used as the device.

Example applications Specification

Description of behavior

Description of the
software

Description of the modules

Description of the on-chip register usage

Description of variables

Description of the RAM usage

Flowchart

Programming lists

Figure 4.1 The structure of the example applications for the H8S Series

(1) Specification

Describes the system specification for these example tasks.

(2) Description of behavior

Uses timing charts to describe the behavior of these example tasks.

(3) Description of the software

(1) Description of the modules
Describes the modules of the software of this example task.

(2) Description of the on-chip register usage
Describes the settings of the I2C bus interface in the modules and of the on-chip registers

(3) Description of the variables
Describes the variables of the software that are used in the task examples.

(4) Description of the RAM usage
Describes the label names and functions of RAM locations that are used by the modules.

Rev. 2.0, 11/01, page 114 of 358

(4) Flowchart

Uses flowcharts to describe the software that carries out the task examples.

(5) Program listings

Gives the program listings of the software that carries out the task examples.

4.1.2 Description of the Definition File for the Vector Table

The definition file for the vector table, in the C language, is described below. The file that defines
the starting addresses of the interrupt handling routines is shown in figure 4.2. To use an interrupt
handling routine, a label that gives the starting address of that routine should be written to the
corresponding position in the vector table. Figure 4.2 gives an example that uses the IIC’s
channel-0 interrupt. The starting address (IIC0INT) is referred to by ‘external reference’ (refer to
figure 4.2-A). The label that shows the position of the IICI0 handler should be named IIC0INT
(refer to figure 4.2-B).

The label name ‘IIC0INT’ is referred to by ‘external reference’.

/**

* H8S/2138 Series vector table

* for mode3(normal,single-chip mode)

***/

extern void main(void);

extern void IIC0INT (void);

const void (*vect_tbl[])(void) =

{

 main, /* H’0000 Reset */

 main, /* H’0002 Reserve */

 main, /* H’0004 Reserve */

 main, /* H’0006 Reserve */

 main, /* H’0008 Reserve */

 main, /* H’000A Reserve */

 main, /* H’000C Direct transfer */

 main, /* H’000E NMI */

 main, /* H’0010 Trap */

 main, /* H’0012 Trap */

 main, /* H’0014 Trap */

Figure 4.2 Definition file for the vector table

The label name ‘IIC0INT’ is referred to by ‘external reference’.
A

Rev. 2.0, 11/01, page 115 of 358

 main, /* H’0016 Trap */

 main, /* H’0018 Reserve */

 main, /* H’001A Reserve */

 main, /* H’001C Reserve */

 main, /* H’001E Reserve */

 main, /* H’0020 IRQ0 */

 main, /* H’0022 IRQ1 */

 main, /* H’0024 IRQ2 */

 main, /* H’0026 IRQ3 */

 main, /* H’0028 IRQ4 */

 main, /* H’002A IRQ5 */

 main, /* H’002C IRQ6,KIN7-KIN0 */

 main, /* H’002E IRQ7 */

 main, /* H’0030 SWDTEND */

 main, /* H’0032 WOVI0 */

 main, /* H’0034 WOVI1 */

 main, /* H’0036 PC break */

 main, /* H’0038 ADI */

 main, /* H’003A Reserve */

 main, /* H’003C Reserve */

 main, /* H’003E Reserve */

 main, /* H’0040 Reserve */

 main, /* H’0042 Reserve */

 main, /* H’0044 Reserve */

 main, /* H’0046 Reserve */

 main, /* H’0048 Reserve */

 main, /* H’004A Reserve */

 main, /* H’004C Reserve */

 main, /* H’004E Reserve */

 main, /* H’0050 Reserve */

 main, /* H’0052 Reserve */

 main, /* H’0054 Reserve */

 main, /* H’0056 Reserve */

 main, /* H’0058 Reserve */

 main, /* H’005A Reserve */

 main, /* H’005C Reserve */

Figure 4.2 Definition file for the vector table (cont)

Rev. 2.0, 11/01, page 116 of 358

 main, /* H’005E Reserve */

 main, /* H’0060 ICIA */

 main, /* H’0062 ICIB */

 main, /* H’0064 ICIC */

 main, /* H’0066 ICID */

 main, /* H’0068 OCIA */

 main, /* H’006A OCIB */

 main, /* H’006C FOVI */

 main, /* H’006E Reserve */

 main, /* H’0070 Reserve */

 main, /* H’0072 Reserve */

 main, /* H’0074 Reserve */

 main, /* H’0076 Reserve */

 main, /* H’0078 Reserve */

 main, /* H’007A Reserve */

 main, /* H’007C Reserve */

 main, /* H’007E Reserve */

 main, /* H’0080 CMIA0 */

 main, /* H’0082 CMIB0 */

 main, /* H’0084 OVI0 */

 main, /* H’0086 Reserve */

 main, /* H’0088 CMIA1 */

 main, /* H’008A CMIB1 */

 main, /* H’008C OVI1 */

 main, /* H’008E Reserve */

 main, /* H’0090 CMIAY */

 main, /* H’0092 CMIBY */

 main, /* H’0094 OVIY */

 main, /* H’0096 ICIX */

 main, /* H’0098 IBF1 */

 main, /* H’009A IBF2 */

 main, /* H’009C Reserve */

 main, /* H’009E Reserve */

 main, /* H’00A0 ERI0 */

 main, /* H’00A6 TEI0 */

 main, /* H’00A8 ERI1 */

Figure 4.2 Definition file for the vector table (cont)

Rev. 2.0, 11/01, page 117 of 358

 main, /* H’00AA RXI1 */

 main, /* H’00AC TXI1 */

 main, /* H’00AE TEI1 */

 main, /* H’00B0 ERI2 */

 main, /* H’00B2 RXI2 */

 main, /* H’00B4 TXI2 */

 IIC0INT, /* H’00B6 TEI2 */

 main, /* H’00B8 IICI0 */

 main, /* H’00BA DDCSWI */

 main, /* H’00BC IICI1 */

 main, /* H’00BE Reserve */

 main, /* H’00C0 Reserve */

 main, /* H’00C2 Reserve */

 main, /* H’00C4 Reserve */

 main, /* H’00C6 Reserve */

 main, /* H’00C8 Reserve */

 main, /* H’00CA Reserve */

 main, /* H’00CC Reserve */

 main, /* H’00CE Reserve */

};

Figure 4.2 Definition file for the vector table (cont)

Describes the label

name ‘IIC0INT’.

B

Rev. 2.0, 11/01, page 118 of 358

4.1.3 Description of the Definition File for the Registers

The definition file for the registers of H8S/2138 series products is given below.

The definition file for the registers of H8S/2138 Series products (1) <2138s.h>

/**/

/* H8S/2138 Series Include File */

/**/

union un_kbcomp {/* union KBCOMP */

unsigned char BYTE; /* */

struct { /* Bit Access */

unsigned char IrE :1; /* IrE */

unsigned char IrCKS:3; /* IrCKS */

unsigned char KBADE:1; /* KBADE */

unsigned char KBCH :3; /* KBCH */

} BIT; /* */

}; /* */

struct st_iic { /* struct IIC */

union { /* ICCR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char ICE :1; /* ICE */

unsigned char IEIC:1; /* IEIC */

unsigned char MST :1; /* MST */

unsigned char TRS :1; /* TRS */

nsigned char ACKE:1; /* ACKE */

unsigned char BBSY:1; /* BBSY */

unsigned char IRIC:1; /* IRIC */

unsigned char SCP :1; /* SCP */

} BIT; /* */

} ICCR; /* */

union { /* ICSR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char ESTP:1; /* ESTP */

unsigned char STOP:1; /* STOP */

unsigned char IRTR:1; /* IRTR */

Rev. 2.0, 11/01, page 119 of 358

unsigned char AASX:1; /* AASX */

unsigned char AL :1; /* AL */

unsigned char AAS :1; /* AAS */

unsigned char ADZ :1; /* ADZ */

unsigned char ACKB:1; /* ACKB */

} BIT; /* */

} ICSR; /* */

char wk[4]; /* */

union { /* */

struct { /* */

union { /* SARX */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char SVAX:7; /* SVAX */

unsigned char FSX :1; /* FSX */

} BIT; /* */

} UN_SARX; /* */

union { /* SAR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char SVA:7; /* SVA */

unsigned char FS :1; /* FS */

} BIT; /* */

} UN_SAR; /* */

} ICE0; /* */

struct { /* */

unsigned char UN_ICDR; /* ICDR */

union { /* ICMR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char MLS :1; /* MLS */

unsigned char WAIT:1; /* WAIT */

unsigned char CKS :3; /* CKS */

unsigned char BC :3; /* BC */

} BIT; /* */

} UN_ICMR; /* */

} ICE1; /* */

Rev. 2.0, 11/01, page 120 of 358

} EQU; /* */

}; /* */

union un_ddcswr { /* union DDCSWR */

unsigned char BYTE; /* */

struct { /* Bit Access */

unsigned char SWE:1; /* SWE */

unsigned char SW :1; /* SW */

unsigned char IE :1; /* IE */

unsigned char IF :1; /* IF */

} BIT; /* */

}; /* */

struct st_intc { /* struct INTC */

union { /* ICRA */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char B7:1; /* IRQ0 */

unsigned char B6:1; /* IRQ1 */

unsigned char B5:1; /* IRQ2,IRQ3 */

unsigned char B4:1; /* IRQ4,IRQ5 */

unsigned char B3:1; /* IRQ6,IRQ7 */

unsigned char B2:1; /* DTC */

unsigned char B1:1; /* WDT0 */

unsigned char B0:1; /* WDT1 */

} BIT; /* */

} ICRA; /* */

union { /* ICRB */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char B7:1; /* A/D */

unsigned char B6:1; /* FRT */

unsigned char :2; /* */

unsigned char B3:1; /* TMR0 */

unsigned char B2:1; /* TMR1 */

unsigned char B1:1; /* TMRX,Y */

unsigned char B0:1; /* HIF */

} BIT; /* */

} ICRB; /* */

Rev. 2.0, 11/01, page 121 of 358

union { /* ICRC */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char B7:1; /* SCI0 */

unsigned char B6:1; /* SCI1 */

unsigned char B5:1; /* SCI2 */

unsigned char B4:1; /* IIC0 */

unsigned char B3:1; /* IIC1 */

} BIT; /* */

} ICRC; /* */

union { /* ISR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char IRQ7F:1; /* IRQ7F */

unsigned char IRQ6F:1; /* IRQ6F */

unsigned char IRQ5F:1; /* IRQ5F */

unsigned char IRQ4F:1; /* IRQ4F */

unsigned char IRQ3F:1; /* IRQ3F */

unsigned char IRQ2F:1; /* IRQ2F */

unsigned char IRQ1F:1; /* IRQ1F */

unsigned char IRQ0F:1; /* IRQ0F */

} BIT; /* */

} ISR; /* */

union { /* ISCR */

unsigned int WORD; /* Word Access */

struct { /* Byte Access */

unsigned char H; /* ISCRH */

unsigned char L; /* ISCRL */

} BYTE; /* */

struct { /* Bit Access */

unsigned char IRQ7SC:2; /* IRQ7SC */

unsigned char IRQ6SC:2; /* IRQ6SC */

unsigned char IRQ5SC:2; /* IRQ5SC */

unsigned char IRQ4SC:2; /* IRQ4SC */

unsigned char IRQ3SC:2; /* IRQ3SC */

unsigned char IRQ2SC:2; /* IRQ2SC */

unsigned char IRQ1SC:2; /* IRQ1SC */

Rev. 2.0, 11/01, page 122 of 358

unsigned char IRQ0SC:2; /* IRQ0SC */

} BIT; /* */

} ISCR; /* */

char wk1[6]; /* */

union { /* ABRKCR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char CMF:1; /* CMF */

unsigned char :6; /* */

unsigned char BIE:1; /* BIE */

} BIT; /* */

} ABRKCR; /* */

unsigned char BARA; /* BARA */

unsigned char BARB; /* BARB */

unsigned char BARC; /* BARC */

char wk2[202]; /* */

union { /* IER */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char IRQ7E:1; /* IRQ7E */

unsigned char IRQ6E:1; /* IRQ6E */

unsigned char IRQ5E:1; /* IRQ5E */

unsigned char IRQ4E:1; /* IRQ4E */

unsigned char IRQ3E:1; /* IRQ3E */

unsigned char IRQ2E:1; /* IRQ2E */

unsigned char IRQ1E:1; /* IRQ1E */

unsigned char IRQ0E:1; /* IRQ0E */

} BIT; /* */

} IER; /* */

char wk3[46]; /* */

union { /* KMIMR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char B7:1; /* Bit 7 */

unsigned char B6:1; /* Bit 6 */

unsigned char B5:1; /* Bit 5 */

unsigned char B4:1; /* Bit 4 */

Rev. 2.0, 11/01, page 123 of 358

unsigned char B3:1; /* Bit 3 */

unsigned char B2:1; /* Bit 2 */

unsigned char B1:1; /* Bit 1 */

unsigned char B0:1; /* Bit 0 */

} BIT; /* */

} KMIMR; /* */

char wk4; /* */

union { /* KMIMRA */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char B15:1; /* Bit 7 */

unsigned char B14:1; /* Bit 6 */

unsigned char B13:1; /* Bit 5 */

unsigned char B12:1; /* Bit 4 */

unsigned char B11:1; /* Bit 3 */

unsigned char B10:1; /* Bit 2 */

unsigned char B9 :1; /* Bit 1 */

unsigned char B8 :1; /* Bit 0 */

} BIT; /* */

} KMIMRA; /* */

}; /* */

struct st_dtc { /* struct DTC */

union { /* EA */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char B7:1; /* IRQ0 */

unsigned char B6:1; /* IRQ1 */

unsigned char B5:1; /* IRQ2 */

unsigned char B4:1; /* IRQ3 */

unsigned char B3:1; /* A/D */

unsigned char B2:1; /* FRT ICIA */

unsigned char B1:1; /* FRT ICIB */

unsigned char B0:1; /* FRT OCIA */

} BIT; /* */

} EA; /* */

union { /* EB */

unsigned char BYTE; /* Byte Access */

Rev. 2.0, 11/01, page 124 of 358

struct { /* Bit Access */

unsigned char B7:1; /* FRT OCIB */

unsigned char :4; /* */

unsigned char B2:1; /* TMR0 CMIA */

unsigned char B1:1; /* TMR0 CMIB */

unsigned char B0:1; /* TMR1 CMIA */

} BIT; /* */

} EB; /* */

union { /* EC */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char B7:1; /* TMR1 CMIB */

unsigned char B6:1; /* TMRY CMIA */

unsigned char B5:1; /* TMRY CMIB */

unsigned char B4:1; /* HIF1 */

unsigned char B3:1; /* HIF2 */

unsigned char B2:1; /* SCIO RXI */

unsigned char B1:1; /* SCIO TXI */

unsigned char B0:1; /* SCI1 RXI */

} BIT; /* */

} EC; /* */

union { /* ED */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char B7:1; /* SCI1 TXI */

unsigned char B6:1; /* SCI2 RXI */

unsigned char B5:1; /* SCI2 TXI */

unsigned char B4:1; /* IIC0 */

unsigned char B3:1; /* IIC1 */

} BIT; /* */

} ED; /* */

char wk; /* */

union { /* VECR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char SWDTE:1; /* SWDTE */

unsigned char DTVEC:7; /* DTVEC */

Rev. 2.0, 11/01, page 125 of 358

} BIT; /* */

} VECR; /* */

}; /* */

struct st_flash { /* struct FLASH */

union { /* FLMCR1 */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char FWE:1; /* FWE */

unsigned char SWE:1; /* SWE */

unsigned char :2; /* */

unsigned char EV :1; /* EV */

unsigned char PV :1; /* PV */

unsigned char E :1; /* E */

unsigned char P :1; /* P */

} BIT; /* */

} FLMCR1; /* */

union { /* FLMCR2 */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char FLER:1; /* FLER */

unsigned char :5; /* */

unsigned char ESU :1; /* ESU */

unsigned char PSU :1; /* PSU */

} BIT; /* */

} FLMCR2; /* */

union { /* EBR1 */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char wk :6; /* */

unsigned char EB9:1; /* EB9 */

unsigned char EB8:1; /* EB8 */

} BIT; /* */

} EBR1; /* */

union { /* EBR2 */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char EB7:1; /* EB7 */

Rev. 2.0, 11/01, page 126 of 358

unsigned char EB6:1; /* EB6 */

unsigned char EB5:1; /* EB5 */

unsigned char EB4:1; /* EB4 */

unsigned char EB3:1; /* EB3 */

unsigned char EB2:1; /* EB2 */

unsigned char EB1:1; /* EB1 */

unsigned char EB0:1; /* EB0 */

} BIT; /* */

} EBR2; /* */

}; /* */

struct st_pwm { /* struct PWM */

union { /* PCSR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char wk :5; /* */

unsigned char PWCKB:1; /* PWCKB */

unsigned char PWCKA:1; /* PWCKA */

} BIT; /* */

} PCSR; /* */

char wk[79]; /* */

union { /* PWOER */

unsigned int WORD; /* Word Access */

struct { /* Byte Access */

unsigned char B; /* PWOERB */

unsigned char A; /* PWOERA */

} BYTE; /* */

struct { /* Bit Access */

unsigned char OE15:1; /* OE15 */

unsigned char OE14:1; /* OE14 */

unsigned char OE13:1; /* OE13 */

unsigned char OE12:1; /* OE12 */

unsigned char OE11:1; /* OE11 */

unsigned char OE10:1; /* OE10 */

unsigned char OE9 :1; /* OE9 */

unsigned char OE8 :1; /* OE8 */

unsigned char OE7 :1; /* OE7 */

unsigned char OE6 :1; /* OE6 */

Rev. 2.0, 11/01, page 127 of 358

unsigned char OE5 :1; /* OE5 */

unsigned char OE4 :1; /* OE4 */

unsigned char OE3 :1; /* OE3 */

unsigned char OE2 :1; /* OE2 */

unsigned char OE1 :1; /* OE1 */

unsigned char OE0 :1; /* OE0 */

} BIT; /* */

} OER; /* */

union { /* PWDPR */

unsigned int WORD; /* Word Access */

struct { /* Byte Access */

unsigned char B; /* PWDPRB */

unsigned char A; /* PWDPRA */

} BYTE; /* */

struct { /* Bit Access */

unsigned char OS15:1; /* OS15 */

unsigned char OS14:1; /* OS14 */

unsigned char OS13:1; /* OS13 */

unsigned char OS12:1; /* OS12 */

unsigned char OS11:1; /* OS11 */

unsigned char OS10:1; /* OS10 */

unsigned char OS9 :1; /* OS9 */

unsigned char OS8 :1; /* OS8 */

unsigned char OS7 :1; /* OS7 */

unsigned char OS6 :1; /* OS6 */

unsigned char OS5 :1; /* OS5 */

unsigned char OS4 :1; /* OS4 */

unsigned char OS3 :1; /* OS3 */

unsigned char OS2 :1; /* OS2 */

unsigned char OS1 :1; /* OS1 */

unsigned char OS0 :1; /* OS0 */

} BIT; /* */

} DPR; /* */

union { /* PWSL */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char PWCKE:1; /* PWCKE */

Rev. 2.0, 11/01, page 128 of 358

unsigned char PWCKS:1; /* PWCKE */

unsigned char :2; /* */

unsigned char RS :4; /* RS */

} BIT; /* */

} SL; /* */

unsigned char DR; /* PWDR0-PWDR15 */

}; /* */

struct st_hif { /* struct HIF */

union { /* SYSCR2 */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char wk :7; /* */

unsigned char HI12E:1; /* HI12E */

} BIT; /* */

} SYSCR2; /* */

char wk[108]; /* */

union { /* HICR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char wk :5; /* */

unsigned char IBFIE2:1; /* IBFIE2 */

unsigned char IBFIE1:1; /* IBFIE1 */

unsigned char FGA2OE:1; /* FGA2OE */

} BIT; /* */

} HICR; /* */

}; /* */

struct st_hif1 { /* struct HIF1 */

unsigned char IDR; /* IDR */

unsigned char ODR; /* ODR */

union { /* STR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char DBU7:1; /* DBU */

unsigned char DBU6:1; /* DBU */

unsigned char DBU5:1; /* DBU */

unsigned char DBU4:1; /* DBU */

unsigned char CD :1; /* C/D */

Rev. 2.0, 11/01, page 129 of 358

unsigned char DBU2:1; /* DBU */

unsigned char IBF :1; /* IBF */

unsigned char OBF :1; /* OBF */

} BIT; /* */

char wk2[5]; /* */

}; /* */

union un_sbycr { /* union SBYCR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char SSBY :1; /* SSBY */

unsigned char STS :3; /* STS */

unsigned char :1; /* */

unsigned char SCK :3; /* SCK */

} BIT; /* */

}; /* */

union un_lpwrcr { /* union LPWRCR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char DTON :1; /* DTON */

unsigned char LSON :1; /* LSON */

unsigned char NESEL:1; /* NESEL */

unsigned char EXCLE:1; /* EXCLE */

} BIT; /* */

}; /* */

union un_mstpcr { /* union MSTPCR */

unsigned int WORD; /* Word Access */

struct { /* Byte Access */

unsigned char H; /* MSTPCRH */

unsigned char L; /* MSTPCRL */

} BYTE; /* */

struct { /* Bit Access */

unsigned char wk :1; /* */

unsigned char B14:1; /* DTC */

unsigned char B13:1; /* FRT */

unsigned char B12:1; /* TMR0,TMR1 */

unsigned char B11:1; /* PWM,PWMX */

unsigned char B10:1; /* D/A */

Rev. 2.0, 11/01, page 130 of 358

unsigned char B9 :1; /* A/D */

unsigned char B8 :1; /* TMRX,TMRY */

unsigned char B7 :1; /* SCI0 */

unsigned char B6 :1; /* SCI1 */

unsigned char B5 :1; /* SCI2 */

unsigned char B4 :1; /* IIC0 */

unsigned char B3 :1; /* IIC1 */

unsigned char B2 :1; /* HIF */

} BIT; /* */

}; /* */

union un_stcr { /* union STCR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char IICS :1; /* IICS */

unsigned char IICX1:1; /* IICX1 */

unsigned char IICX0:1; /* IICX0 */

unsigned char IICE :1; /* IICE */

unsigned char FLSHE:1; /* FLSHE */

unsigned char :1; /* */

unsigned char ICKS1:1; /* ICKS1 */

unsigned char ICKS0:1; /* ICKS0 */

} BIT; /* */

}; /* */

union un_syscr { /* union SYSCR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char CS2E :1; /* CS2E */

unsigned char IOSE :1; /* IOSE */

unsigned char INTM :2; /* INTM */

unsigned char XRST :1; /* XRST */

unsigned char NMIEG:1; /* NMIEG */

unsigned char HIE :1; /* HIE */

unsigned char RAME :1; /* RAME */

} BIT; /* */

}; /* */

union un_mdcr { /* union MDCR */

unsigned char BYTE; /* Byte Access */

Rev. 2.0, 11/01, page 131 of 358

struct { /* Bit Access */

unsigned char EXPE:1; /* EXPE */

unsigned char :5; /* */

unsigned char MDS :2; /* MDS */

} BIT; /* */

}; /* */

union st_sci { /* struct SCI */

union { /* SMR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char CA :1; /* C/A */

unsigned char CHR :1; /* CHR */

unsigned char PE :1; /* PE */

unsigned char OE :1; /* O/E */

unsigned char STOP:1; /* STOP */

unsigned char MP :1; /* MP */

unsigned char CKS :2; /* CKS */

} BIT; /* */

} SMR; /* */

unsigned char BRR; /* BRR */

union { /* SCR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char TIE :1; /* TIE */

unsigned char RIE :1; /* RIE */

unsigned char TE :1; /* TE */

unsigned char RE :1; /* RE */

unsigned char MPIE:1; /* MPIE */

unsigned char TEIE:1; /* TEIE */

unsigned char CKE :2; /* CKE */

} BIT; /* */

} SCR; /* */

unsigned char TDR; /* TDR */

union { /* SSR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char TDRE:1; /* TDRE */

Rev. 2.0, 11/01, page 132 of 358

unsigned char RDRF:1; /* RDRF */

unsigned char ORER:1; /* ORER */

unsigned char FER :1; /* FER */

unsigned char PER :1; /* PER */

unsigned char TEND:1; /* TEND */

unsigned char MPB :1; /* MPB */

unsigned char MPBT:1; /* MPBT */

} BIT; /* */

} SSR; /* */

unsigned char RDR; /* RDR */

union { /* SCMR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char wk :4; /* */

unsigned char SDIR:1; /* SDIR */

unsigned char SINV:1; /* SINV */

unsigned char :1; /* */

unsigned char SMIF:1; /* SMIF */

} BIT; /* */

} SCMR; /* */

}; /* */

union st_frt { /* struct FRT */

union { /* TIER */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char ICIAE:1; /* ICIAE */

unsigned char ICIBE:1; /* ICIBE */

unsigned char ICICE:1; /* ICICE */

unsigned char ICIDE:1 /* ICIDE */

unsigned char OCIAE:1; /* OCIAE */

unsigned char OCIBE:1; /* OCIBE */

unsigned char OVIE :1; /* OVIE */

} BIT; /* */

} TIER; /* */

union { /* TCSR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

Rev. 2.0, 11/01, page 133 of 358

unsigned char ICFA :1; /* ICFA */

unsigned char ICFB :1; /* ICFB */

unsigned char ICFC :2; /* ICFC */

unsigned char ICFD :1; /* ICFD */

unsigned char OCFA :1; /* OCFA */

unsigned char OCFB :1; /* OCFB */

unsigned char OVF :1; /* OVF */

unsigned char CCLRA:1; /* CCLRA */

} BIT; /* */

} TCSR; /* */

unsigned int FRC; /* FRC */

unsigned int OCRA; /* OCRA or OCRB */

union { /* TCR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char IEDGA:1; /* IEDGA */

unsigned char IEDGB:1; /* IEDGB */

unsigned char IEDGC:1; /* IEDGC */

unsigned char IEDGD:1; /* IEDGD */

unsigned char BUFEA:1; /* BUFEA */

unsigned char BUFEB:1; /* BUFEB */

unsigned char CKS :2; /* CKS */

} BIT; /* */

} TCR; /* */

union { /* TOCR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char ICRDMS:1; /* ICRDMS */

unsigned char OCRAMS:1; /* OCRAMS */

unsigned char ICRS :1; /* ICRS */

unsigned char OCRS :1; /* OCRS */

unsigned char OEA :1; /* OEA */

unsigned char OEB :1; /* OEB */

unsigned char OLVLA :1; /* OLVLA */

unsigned char OLVLB :1; /* OLVLB */

} BIT; /* */

} TOCR; /* */

Rev. 2.0, 11/01, page 134 of 358

unsigned int ICRA; /*ICRA or OCRAR */

unsigned int ICRB; /*ICRB or OCRAF */

unsigned int ICRC; /*ICRC or OCRDM */

unsigned int ICRD; /* ICRD */

}; /* */

union un_pwmx { /* struct PWMX */

struct { /* */

union { /* DACR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char TEST :1; /* TEST */

unsigned char PWME :1; /* PWME */

unsigned char char :2; /* */

unsigned char char OEB :1; /* OEB */

unsigned char char OEA :1; /* OEA */

unsigned char char OS :1; /* OS */

unsigned char char CKS :1; /* CKS */

} BIT; /* */

} ST_DACR; /* */

char wk[5]; /* */

union { /* DACNT */

unsigned int WORD; /* Word Access */

struct { /* Bit Access */

unsigned int wk :15; /* */

unsigned int REGS: 1; /* REGS */

} BIT; /* */

} ST_DACNT; /* */

} REGS1; /* */

struct { /* */

union { /* DADRA */

unsigned int WORD; /* Word Access */

struct { /* Bit Access */

unsigned int wk :14; /* */

unsigned int CFS: 1; /* CFS */

} BIT; /* */

} ST_DADRA; /* */

char wk[4]; /* */

Rev. 2.0, 11/01, page 135 of 358

union { /* DADRB */

unsigned int WORD; /* Word Access */

struct { /* Bit Access */

unsigned int wk :14; /* */

unsigned int CFS : 1; /* CFS */

unsigned int REGS: 1; /* REGS */

} BIT; /* */

} ST_DADRB; /* */

} REGSO; /* */

}; /* */

struct st_p1 { /* struct P1 */

union { /* P1PCR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char B7:1; /* Bit 7 */

unsigned char B6:1; /* Bit 6 */

unsigned char B5:1; /* Bit 5 */

unsigned char B4:1; /* Bit 4 */

unsigned char B3:1; /* Bit 3 */

unsigned char B2:1; /* Bit 2 */

unsigned char B1:1; /* Bit 1 */

unsigned char B0:1; /* Bit 0 */

} BIT; /* */

} PCR; /* */

char wk1[3]; /* */

unsigned char DDR; /* P1DDR */

char wk2; /* */

union { /* P1DR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char B7:1; /* Bit 7 */

unsigned char B6:1; /* Bit 6 */

unsigned char B5:1; /* Bit 5 */

unsigned char B4:1; /* Bit 4 */

unsigned char B3:1; /* Bit 3 */

unsigned char B2:1; /* Bit 2 */

unsigned char B1:1; /* Bit 1 */

Rev. 2.0, 11/01, page 136 of 358

unsigned char B0:1; /* Bit 0 */

} BIT; /* */

} DR; /* */

}; /* */

struct st_p3 { /* struct P3 */

union { /* P3PCR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char B7:1; /* Bit 7 */

unsigned char B6:1; /* Bit 6 */

unsigned char B5:1; /* Bit 5 */

unsigned char B4:1; /* Bit 4 */

unsigned char B3:1; /* Bit 3 */

unsigned char B2:1; /* Bit 2 */

unsigned char B1:1; /* Bit 1 */

unsigned char B0:1; /* Bit 0 */

} BIT; /* */

} PCR; /* */

char wk1[5]; /* */

unsigned char DDR; /* P3DDR */

char wk2; /* */

union { /* P3DR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char B7:1; /* Bit 7 */

unsigned char B6:1; /* Bit 6 */

unsigned char B5:1; /* Bit 5 */

unsigned char B4:1; /* Bit 4 */

unsigned char B3:1; /* Bit 3 */

unsigned char B2:1; /* Bit 2 */

unsigned char B1:1; /* Bit 1 */

unsigned char B0:1; /* Bit 0 */

} BIT; /* */

} DR; /* */

}; /* */

struct st_p4 { /* struct P4 */

unsigned char DDR; /* P4DDR */

Rev. 2.0, 11/01, page 137 of 358

char wk; /* */

union { /* P4DR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char B7:1; /* Bit 7 */

unsigned char B6:1; /* Bit 6 */

unsigned char B5:1; /* Bit 5 */

unsigned char B4:1; /* Bit 4 */

unsigned char B3:1; /* Bit 3 */

unsigned char B2:1; /* Bit 2 */

unsigned char B1:1; /* Bit 1 */

unsigned char B0:1; /* Bit 0 */

} BIT; /* */

} DR; /* */

}; /* */

struct st_p5 { /* struct P5 */

unsigned char DDR; /* P5DDR */

char wk; /* */

union { /* P5DR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char wk:5; /* Bit 7-3 */

unsigned char B2:1; /* Bit 2 */

unsigned char B1:1; /* Bit 1 */

unsigned char B0:1; /* Bit 0 */

} BIT; /* */

} DR; /* */

}; /* */

struct st_p6 { /* struct P6 */

unsigned char DDR; /* P6DDR */

char wk1; /* */

union { /* P6DR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char B7:1; /* Bit 7 */

unsigned char B6:1; /* Bit 6 */

unsigned char B5:1; /* Bit 5 */

Rev. 2.0, 11/01, page 138 of 358

unsigned char B4:1; /* Bit 4 */

unsigned char B3:1; /* Bit 3 */

unsigned char B2:1; /* Bit 2 */

unsigned char B1:1; /* Bit 1 */

unsigned char B0:1; /* Bit 0 */

} BIT; /* */

} DR; /* */

char wk2[54]; /* */

union { /* P6PCR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char B7:1; /* Bit 7 */

unsigned char B6:1; /* Bit 6 */

unsigned char B5:1; /* Bit 5 */

unsigned char B4:1; /* Bit 4 */

unsigned char B3:1; /* Bit 3 */

unsigned char B2:1; /* Bit 2 */

unsigned char B1:1; /* Bit 1 */

unsigned char B0:1; /* Bit 0 */

} BIT; /* */

} PCR; /* */

}; /* */

struct st_p7 { /* struct P7 */

union { /* P7PIN */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char B7:1; /* Bit 7 */

unsigned char B6:1; /* Bit 6 */

unsigned char B5:1; /* Bit 5 */

unsigned char B4:1; /* Bit 4 */

unsigned char B3:1; /* Bit 3 */

unsigned char B2:1; /* Bit 2 */

unsigned char B1:1; /* Bit 1 */

unsigned char B0:1; /* Bit 0 */

} BIT; /* */

} PIN; /* */

}; /* */

Rev. 2.0, 11/01, page 139 of 358

struct st_p8 { /* struct P8 */

unsigned char DDR; /* P8DDR */

char wk; /* */

union { /* P8DR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char wk:1; /* Bit 7 */

unsigned char B6:1; /* Bit 6 */

unsigned char B5:1; /* Bit 5 */

unsigned char B4:1; /* Bit 4 */

unsigned char B3:1; /* Bit 3 */

unsigned char B2:1; /* Bit 2 */

unsigned char B1:1; /* Bit 1 */

unsigned char B0:1; /* Bit 0 */

} BIT; /* */

} DR; /* */

}; /* */

struct st_p9 { /* struct P9 */

unsigned char DDR; /* P9DDR */

union { /* P9DR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char B7:1; /* Bit 7 */

unsigned char B6:1; /* Bit 6 */

unsigned char B5:1; /* Bit 5 */

unsigned char B4:1; /* Bit 4 */

unsigned char B3:1; /* Bit 3 */

unsigned char B2:1; /* Bit 2 */

unsigned char B1:1; /* Bit 1 */

unsigned char B0:1; /* Bit 0 */

} BIT; /* */

} DR; /* */

}; /* */

struct st_bsc { /* struct BSC */

union { /* BCR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

Rev. 2.0, 11/01, page 140 of 358

unsigned char ICIS1 :1; /* ICIS1 */

unsigned char ICIS0 :1; /* ICIS0 */

unsigned char BRSTRM:1; /* BRSTRM */

unsigned char BRSTS1:1; /* BRSTS1 */

unsigned char BRSTS0:1; /* BRSTS0 */

unsigned char :1; /* */

unsigned char IOS :2; /* IOS */

} BIT; /* */

} BCR; /* */

union { /* WSCR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char RAMS:1; /* RAMS */

unsigned char RAM0:1; /* RAM0 */

unsigned char ABW :1; /* ABW */

unsigned char AST :1; /* AST */

unsigned char WMS :2; /* WMS */

unsigned char WC :2; /* WC */

} BIT; /* */

} WSCR; /* */

}; /* */

struct st_tmr { /* struct TMR */

union { /* TCR0 */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char CMIEB:1; /* CMIEB */

unsigned char CMIEA:1; /* CMIEA */

unsigned char OVIE :1; /* OVIE */

unsigned char CCLR :2; /* CCLR */

unsigned char CKS :3; /* CKS */

} BIT; /* */

} TCR0; /* */

union { /* TCR1 */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char CMIEB:1; /* CMIEB */

unsigned char CMIEA:1; /* CMIEA */

Rev. 2.0, 11/01, page 141 of 358

unsigned char OVIE :1; /* OVIE */

unsigned char CCLR :2; /* CCLR */

unsigned char CKS :3; /* CKS */

} BIT; /* */

} TCR1; /* */

union { /* TCSR0 */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char CMFB:1; /* CMFB */

unsigned char CMFA:1; /* CMFA */

unsigned char OVF :1; /* OVF */

unsigned char ADTE:1; /* ADTE */

unsigned char OS :4; /* OS */

} BIT; /* */

} TCSR0; /* */

union { /* TCSR1 */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char CMFB:1; /* CMFB */

unsigned char CMFA:1; /* CMFA */

unsigned char OVF :1; /* OVF */

unsigned char :1; /* */

unsigned char OS :4; /* OS */

} BIT; /* */

} TCSR1; /* */

unsigned int TCORA; /* TCORA */

unsigned int TCORB; /* TCORB */

unsigned int TCNT; /* TCNT */

}; /* */

struct st_tmr0 { /* struct TMR0 */

union { /* TCR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char CMIEB:1; /* CMIEB */

unsigned char CMIEA:1; /* CMIEA */

unsigned char OVIE :1; /* OVIE */

unsigned char CCLR :2; /* CCLR */

Rev. 2.0, 11/01, page 142 of 358

unsigned char CKS :3; /* CKS */

} BIT; /* */

} TCR; /* */

char wk; /* */

union { /* TCSR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char CMFB:1; /* CMFB */

unsigned char CMFA:1; /* CMFA */

unsigned char OVF :1; /* OVF */

unsigned char ADTE:1; /* ADTE */

unsigned char OS :4; /* OS */

} BIT; /* */

} TCSR; /* */

char wk2; /* */

unsigned char TCORA; /* TCORA */

char wk3; /* */

unsigned char TCORB; /* TCORB */

char wk4; /* */

unsigned char TCNT; /* TCNT */

}; /* */

struct st_tmr1 { /* struct TMR1 */

union { /* TCR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char CMIEB:1; /* CMIEB */

unsigned char CMIEA:1; /* CMIEA */

unsigned char OVIE :1; /* OVIE */

unsigned char CCLR :2; /* CCLR */

unsigned char CKS :3; /* CKS */

} BIT; /* */

} TCR; /* */

char wk1; /* */

union { /* TCSR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char CMFB:1; /* CMFB */

Rev. 2.0, 11/01, page 143 of 358

unsigned char CMFA:1; /* CMFA */

unsigned char OVF :1; /* OVF */

unsigned char :1; /* */

unsigned char OS :4; /* OS */

} BIT; /* */

} TCSR; /* */

char wk2; /* */

unsigned char TCORA; /* TCORA */

char wk3; /* */

unsigned char TCORB; /* TCORB */

char wk4; /* */

unsigned char TCNT; /* TCNT */

}; /* */

struct st_tmrx { /* struct TMRX */

union { /* TCR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char CMIEB:1; /* CMIEB */

unsigned char CMIEA:1; /* CMIEA */

unsigned char OVIE :1; /* OVIE */

unsigned char CCLR :2; /* CCLR */

unsigned char CKS :3; /* CKS */

} BIT; /* */

} TCR; /* */

union { /* TCSR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char CMFB:1; /* CMFB */

unsigned char CMFA:1; /* CMFA */

unsigned char OVF :1; /* OVF */

unsigned char ICF :1; /* ICF */

unsigned char OS :4; /* OS */

} BIT; /* */

} TCSR; /* */

unsigned char TICRR; /* TICRR */

unsigned char TICRF; /* TICRF */

unsigned char TCNT; /* TCNT */

Rev. 2.0, 11/01, page 144 of 358

unsigned char TCORC; /* TCORC */

unsigned char TCORA; /* TCORA */

unsigned char TCORB; /* TCORB */

}; /* */

struct st_tmry { /* struct TMRY */

union { /* TCR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char CMIEB:1; /* CMIEB */

unsigned char CMIEA:1; /* CMIEA */

unsigned char OVIE :1; /* OVIE */

unsigned char CCLR :2; /* CCLR */

unsigned char CKS :3; /* CKS */

} BIT; /* */

} TCR; /* */

union { /* TCSR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char CMFB:1; /* CMFB */

unsigned char CMFA:1; /* CMFA */

unsigned char OVF :1; /* OVF */

unsigned char ICIE:1; /* ICIE */

unsigned char OS :4; /* OS */

} BIT; /* */

} TCSR; /* */

unsigned char TCORA; /* TCORA */

unsigned char TCORB; /* TCORB */

unsigned char TCNT; /* TCNT */

union { /* TISR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char wk:7; /* */

unsigned char IS:1; /* IS */

} BIT; /* */

} TISR; /* */

}; /* */

struct st_ad { /* struct A/D */

Rev. 2.0, 11/01, page 145 of 358

unsigned int DRA; /* ADDRA */

unsigned int DRB; /* ADDRB */

unsigned int DRC; /* ADDRC */

unsigned int DRD; /* ADDRD */

union { /* ADCSR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char ADF :1; /* ADF */

unsigned char ADIE:1; /* ADIE */

unsigned char ADST:1; /* ADST */

unsigned char SCAN:1; /* SCAN */

unsigned char CKS :1; /* CKS */

unsigned char CH :3; /* CH */

} BIT; /* */

} CSR; /* */

union { /* ADCR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char TRGS:2; /* TRGS */

} BIT; /* */

} CR; /* */

}; /* */

struct st_da { /* struct D/A */

unsigned char DR0; /* DADR0 */

unsigned char DR1; /* DADR1 */

union { /* DACR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char DA0E1:1; /* DA0E1 */

unsigned char DA0E0:1; /* DA0E0 */

unsigned char DAE :1; /* DAE */

} BIT; /* */

} CR; /* */

}; /* */

struct st_tc { /* struct TC */

union { /* TCONRI */

unsigned char BYTE; /* Byte Access */

Rev. 2.0, 11/01, page 146 of 358

struct { /* Bit Access */

unsigned char SIMOD:2; /* SIMOD */

unsigned char SCONE:1; /* SCONE */

unsigned char ICST :1; /* ICST */

unsigned char HFINV:1; /* HFINV */

unsigned char VFINV:1; /* VFINV */

unsigned char HIINV:1; /* HIINV */

unsigned char VIINV:1; /* VIINV */

} BIT; /* */

} TCONRI; /* */

union { /* TCONR0 */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char HOE :1; /* HOE */

unsigned char VOE :1; /* VOE */

unsigned char CLOE :1; /* CLOE */

unsigned char CBOE :1; /* CBOE */

unsigned char HOINV :1; /* HOINV */

unsigned char VOINV :1; /* VOINV */

unsigned char CLOINV:1; /* CLOINV */

unsigned char CBOINV:1; /* CBOINV */

} BIT; /* */

} TCONR0; /* */

union { /* TCONRS */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char TMRXY :1; /* TMRXY */

unsigned char ISGENE:1; /* ISGENE */

unsigned char HOMOD :2; /* HOMOD */

unsigned char VOMOD :2; /* VOMOD */

unsigned char CLMOD :2; /* CLMOD */

} BIT; /* */

} TCONRS; /* */

union { /* SEDGR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char VEDG :1; /* VEDG */

Rev. 2.0, 11/01, page 147 of 358

unsigned char HEDG :1; /* HEDG */

unsigned char CEDG :1; /* CEDG */

unsigned char HFEDG:1; /* HFEDG */

unsigned char VFEDG:1; /* VFEDG */

unsigned char PREQF:1; /* PREQF */

unsigned char IHI :1; /* IHI */

unsigned char IVI :1; /* IVI */

} BIT; /* */

} SEDGR; /* */

}; /* */

#define KBCOMP (*(volatile union un_kbcomp*)0xFFFEE4) /* KBCOMP Address */

#define IIC0 (*(volatile struct st_iic0 *)0xFFFFD8) /* IIC0 Address */

#define IIC1 (*(volatile struct st_iic1 *)0XFFFF88) /* IIC1 Address */

#define ICDR EQU.ICE1.UN_ICDR /* ICDR Change */

#define ICMR EQU.ICE1.UN_ICMR /* ICDR Change */

#define SAR EQU.ICE0.UN_SAR /* SAR Change */

#define SARX EQU.ICE0.UN_SARX /* SARX Change */

#define DDCSWR (*(volatile union un_ddcswr*)0xFFFEE6) /* DDCSWR A ddress */

#define INTC (*(volatile struct st_intc *)0xFFFEE8) /* INTC Address */

#define DTC (*(volatile struct st_dtc *)0xFFFEEE) /* DTC Address */

#define FLASH (*(volatile struct st_flash *)0xFFFF80) /* FLASH Address */

#define PWM (*(volatile struct st_pwm *)0xFFFF82) /* PWM Address */

#define HIF (*(volatile struct st_hif *)0xFFFF83) /* HIF Address */

#define HIF1 (*(volatile struct st_hif1 *)0xFFFFF4) /* HIF1 Address */

#define HIF2 (*(volatile struct st_hif2 *)0xFFFFFC) /* HIF1 Address */

#define SBYCR (*(volatile union un_sbycr *)0xFFFF84) /* SBYCR Address */

#define LPWRCR (*(volatile union un_lpwrcr*)0xFFFF85) /* LPWRCR Address */

#define MSTPCR (*(volatile union un_mstpcr*)0xFFFF86) /* MSTPCR Address */

#define STCR (*(volatile union un_stcr *)0xFFFFC3) /* STCR Address */

#define SYSCR (*(volatile union un_syscr *)0xFFFFC4) /* SYSCR Address */

#define MDCR (*(volatile union un_mdcr *)0xFFFFC5) /* MDCR Address */

#define SCI0 (*(volatile struct st_sci0 *)0xFFFFD8) /* SCI0 Address */

#define SCI1 (*(volatile struct st_sci1 *)0xFFFF88) /* SCI1 Address */

#define SCI2 (*(volatile struct st_sci2 *)0xFFFFA0) /* SCI2 Address */

#define FRT (*(volatile struct st_frt *)0xFFFF90) /* FRT Address */

#define OCRB OCRA /* OCRB Change */

#define OCRAR ICRA /* OCRAR Change */

Rev. 2.0, 11/01, page 148 of 358

#define OCRAF ICRB /* OCRAF Change */

#define OCRDM ICRC /* OCRDM Change */

#define PWMX (*(volatile union un_pwmx *)0xFFFFA0) /* PWMX Address */

#define DACR REGS1.ST_DACR /* DACR Change */

#define DACNT REGS1.ST_DACNT /* DACNT Change */

#define DADRA REGS0.ST_DADRA /* DADRA Change */

#define DADRB REGS0.ST_DADRB /* DADRB Change */

#define P1 (*(volatile struct st_p1 *)0xFFFFAC) /* P1 Address */

#define P2 (*(volatile struct st_p2 *)0xFFFFAD) /* P2 Address */

#define P3 (*(volatile struct st_p3 *)0xFFFFAE) /* P3 Address */

#define P4 (*(volatile struct st_p4 *)0xFFFFB5) /* P4 Address */

#define P5 (*(volatile struct st_p5 *)0xFFFFB8) /* P5 Address */

#define P6 (*(volatile struct st_p6 *)0xFFFFB9) /* P6 Address */

#define P7 (*(volatile struct st_p7 *)0xFFFFBE) /* P7 Address */

#define P8 (*(volatile struct st_p8 *)0xFFFFBD) /* P8 Address */

#define P9 (*(volatile struct st_p9 *)0xFFFFC0) /* P9 Address */

#define BSC (*(volatile struct st_bsc *)0xFFFFC6) /* BSC Address */

#define TMR (*(volatile struct st_tmr *)0xFFFFC8) /* TMR Address */

#define TMR0 (*(volatile struct st_tmr0 *)0xFFFFC8) /* TMR0 Address */

#define TMR1 (*(volatile struct st_tmr1 *)0xFFFFC9) /* TMR1 Address */

#define TMRX (*(volatile struct st_tmrx *)0xFFFFF0) /* TMRX Address */

#define TMRY (*(volatile struct st_tmry *)0xFFFFF0) /* TMRY Address */

#define AD (*(volatile struct st_ad *)0xFFFFE0) /* A/D Address */

#define DA (*(volatile struct st_da *)0xFFFFF8) /* D/A Address */

#define TC (*(volatile struct st_tc *)0xFFFFFC) /* TC Address */

#define st_hif2 st_hif1 /* Change Struct HIF2 */

#define st_p2 st_p1 /*Change Struct P2->P1 */

4.1.4 Description of the Inclusion of Assembler Files in C Language Programs

The technique of including assembler files in C language programs enables us, within a C-
language program, to carry out such processes as initializing the contents of the stack by using
assembly language. This technique is used in the program listings of the example applications.

The C-compiler (CH38.EXE) is unable to directly generate object files from assembly language.
Assembling an assembly-language file, therefore, must generate the object file. The assembly-
language file is generated by using the assembler (ASM38.EXE) with the correct code option.
The file’s name is “sub-file name.src”.

Rev. 2.0, 11/01, page 149 of 358

The code option must be specified as “-c=a” to generate the object file for the CH38.EXE. Refer
to the manual of the compiler for more details.

4.1.5 Description of the Linkage of Files

Figure 4.3 shows the submit-file used in the linkage process. The definition file for the vector
table, definition file for the registers, and each task file is linked according to the information in
the submit-file. Figure 4.3 shows an example of a submit-file.

··
 ···

···
··

···········

input SMRxd, 2138vec [1]
Iib c : ¥ch38¥Iib¥c8s26n.Iib [2]
output SMRxd [3]
print SMRxd [4]
start VECT(00000), P(01000), Bramerea(0E100) [5]
exit

[1]: The object file versions of the definition file for the vector table (2138vec.obj) and task files
(SMRxd.obj) are selected as the objects of the linkage.

[2]: Specifies the library (c8s26n.lib) for the H8S/2600 in its normal mode.
[3]: Specifies the object file's name (the output file is called SMRxd.abs).
[4]: Specifies the map file's name (the output file is called SMRxd.map).
[5]: Specifies the starting addresses (in this example, the vector (VECT) is allocated from H'0000,

program (P) from H'1000, and data region that has not been initialized (Bramerea) from H'E100,
respectively in this example).

Figure 4.3 A submit-file

Rev. 2.0, 11/01, page 150 of 358

4.2 Single-Master Transmission

4.2.1 Specification

• Writes 10 bytes of data to the EEPROM (HN58X2408), using channel 0 of the I2C bus
interface for the H8S/2138.

• The data is written to the memory area in the address range from H'00 to H'09 in the connected
EEPROM that has a slave address of [1010000].

• The data written is [H'01, H'02, H'03, H'04, H'05, H'06, H'07, H'08, H'09, and H'0A].

• The device that is connected to the I2C bus of this system has a single-master configuration.
Along with the one master device (H8S/2138), there is one slave device (EEPROM).

• The frequency of the transfer clock is 100 kHz.

• Figure 4.4 illustrates the connection of the H8S/2138 with the EEPROM.

VCC

VSS

SCL0 SCL

SDASDA0

VCC

H8S/2138

Master

VCC

VSS

SCL

SDA

A0

WP

A1

A2

EEPROM

Slave

VCC VCC

VCC

Figure 4.4 Example of the connection of the H8S/2138 with the EEPROM

• Figure 4.5 shows the I2C bus format used in the task example.

Rev. 2.0, 11/01, page 151 of 358

S SLA A MEA A DATA A

71 1 1 1

1 1

8

A P

1 1 1

10

8

R/

Number of
transmission bits

Number of
transmission frames

Legend:
S
SLA
R/
A
MEA
DATA
P

: Start condition
: Slave address of the EEPROM
: Direction of transmission/reception
: Acknowledge
: Memory address of the EEPROM
: Data being transmitted
: Stop condition

Figure 4.5 Transfer format used in the task example

Rev. 2.0, 11/01, page 152 of 358

4.2.2 Description of the Operation

Figure 4.6 illustrates the principle of operation of single-master transmission.

10µs Transmission clock frequency = 100 kHz.

···

···

···

···

···

Start condition
Ack Ack Ack Ack Ack Ack Stop

condition

10th transmission
data = H'0A

Second
transmission
data = H'02

First transmission
data = H'01

Memory address
= H'00

Slave address
+ R/ = H'A0

SCL

SDA

TDRE

IRIC

[4]

[5]

[4] [4]

[3]

[4] [4]

[6]

TDRE=0 (writes data to ICDRT with TRS=1)
TDRE=1 (transmits data from ICDRT to ICDRS)
IRIC=1 (ends data transmission (at rising of ninth clock
of transmission clocks))
No action

IRIC=1 and TDRE=1 (detects start conditions from
the bus line state)
TDRE=0 (detects the stop conditions from the bus line
state)

Software processing Hardware processing
[1] Writes data for transmission to ICDR0
[2] No action
[3] No action

[4] Clears IRIC to 0 to judge transmission
 end
[5] Sets start conditions (BBSY=1, SCP=0)

[6] Issues stop conditions
 (BBSY=0, SCP=0)

[2] [2]

[3]

[1]

[2]

[3]

[1]

[2]

[3]

[1]

[2]

[3]

[1]

[2]

[3]

[1] [1]

Figure 4.6 Single-Master Transmission Operation Principle

Rev. 2.0, 11/01, page 153 of 358

4.2.3 Description of the Software

(1) Description of the Module

Table 4.1 describes the modules of this example task.

Table 4.1 Description of the modules

Module name Label name Functions

Main routine main Sets the stack pointer, and the MCU mode. Enables
interrupts.

Initial setting Intialize Initial setting for the IIC0.

Single-master
transmission

mst_trs Uses single-master transmission to transmit 10-bytes of
data to the EEPROM.

Setting the start
condition

set_start Sets the start condition.

Issuing the stop
condition

set_stop Issues the stop condition.

Transmission of the
slave address + W

trs_slvadr_a0 Transmits the slave address of the EEPROM + W data
(H'A0).

Transmission of the
memory address of
the EEPROM

trs_memadr Transmits the memory address data of the EEPROM
(H'00).

Rev. 2.0, 11/01, page 154 of 358

(2) Description of the on-chip registers to be used

Table 4.2 describes the on-chip registers that are used in this example task.

Table 4.2 Description of the on-chip registers

Registers Functions Addresses Settings

ICDR0 Stores the data for transmission. H'FFDE —

SAR0 FS Sets the FSX bit in the SARX0, the SW bit in the
DDCSWR, and the transfer format.

H'FFDF bit0 0

SARX0 FSX Sets the FS bit in the SAR0, the SW bit in the
DDCSWR, and the transfer format.

H'FFDE bit01

MLS Sets the data transfer as in the MSB-first mode. H'FFDF bit7 0

WAIT Sets the continuous transfer of the data and
acknowledge.

H'FFDF bit6 0

CKS2

to

CKS0

Set the frequency of the transfer clock to 100 kHz
by the combination of the values in bits CKS2 to
CKS0 and the IICX0 bit in the STCR.

H'FFDF

bit5 to

bit3

CKS2=1

CKS1=0

CKS0=1

ICMR0

BC2

to

BC0

Set the number of bits per frame for the subsequent
transfer of data in the I2C bus format to nine.

H'FFDF

bit2 to

bit0

BC2=0

BC1=0

BC0=0

ICE Selects the access control for the registers ICMR0,
ICDR0/SAR and SARX. Selects the activation
(SCL0/SDA0 have port functions) or non-activation
of the I2C bus interface (the SCL/SDA pins are in
the bus-driven state).

H'FFD8 bit7 0/1

IEIC Disables the generation of interrupt requests by the
I2C bus interface.

H'FFD8 bit6 0

ICCR0

MST Uses the I2C bus interface in the master mode. H'FFD8 bit5 1

TRS Uses the I2C bus interface in the transmission
mode.

H'FFD8 bit4 1

ACKE Ceases the continuous transfer if the acknowledge
bit equals 1.

H'FFD8 bit3 1

BBSY Determines whether or not the I2C bus is occupied.
Uses the combination of the bits BBSY and SCP to
issue the start or stop condition.

H'FFD8 bit2 0/1

IRIC Detects the start condition. Judges the end of data
transmission. Detects the condition that
acknowledge = 1.

H'FFD8 bit1 0/1

ICCR0

SCP Uses the combination of the bits SCP and BBSY to
issue the start or stop condition.

H'FFD8 bit0 0

Rev. 2.0, 11/01, page 155 of 358

Table 4.2 Descriptions of Registers (cont)

Registers Functions Addresses Settings

ICSR0 ACKB Stores the acknowledge data transmitted from the
EEPROM.

H'FFD9 bit0 —

IICX0 Sets the combination of values in the IICX0 bit and
the bits CKS2 to CKS0 of the ICMR0 to make the
frequency of the transfer clock 100 kHz.

H'FFC3 bit5 1

IICE Enables access to the data register and control
registers of the I2C bus interface by the CPU.

H'FFC3 bit4 1

STCR

FLSHE Sets the control registers for the flash memory to
their non-selected state.

H'FFC3 bit3 0

SWE Inhibits automatic switching from format-less to I2C
bus format for IIC channel 0.

H'FEE6 bit7 0

SW Uses IIC channel 0 in the I2C bus format. H'FEE6 bit6 0

IE Inhibits an interrupt in automatic format switching. H'FEE6 bit5 0

DDCSWR

CLR3

to

CLR0

Control initialization of the internal state of IIC0. H'FEE6

bit3 to

bit0

CLR3=1

CLR2=1

CLR1=1

CLR0=1

MSTP7 Cancels module stop mode of SCI channel 0. H'FF87 bit7 0MSTPCRL

MSTP4 Cancels module stop mode of IIC channel 0. H'FF87 bit4 0

SCR0 CKE1, 0 Set the P52/SCK0/SCL0 pin to an I/O port. H'FFDA

bit1, 0

CKE1=0

CKE0=0

SMR0 C/$ Sets SCI0 operating mode to asynchronous mode. H'FFD8 bit7 0

SYSCR INTM1, 0 Set interrupt control mode of the interrupt controller
to control by bit 1.

H'FFC4

bit5, 4

INTM1=0

INTM0=0

MDCR MDS1, 0 Set MCU operating mode to mode 3 by latching the
input level of pins MD1 and MD0.

H'FFC5

bit1, 0

MDS1=1

MDS0=1

Rev. 2.0, 11/01, page 156 of 358

(3) Descriptions of variables

Table 4.3 shows the descriptions of variables in this task example.

Table 4.3 Descriptions of Variables

Variable Function Data
Length

Initial
Value

Used Module
Name

dt_trs[0] First-byte transmission data 1 byte H'01 mst_trs

dt_trs[1] Second-byte transmission data 1 byte H'02 mst_trs

dt_trs[2] Third-byte transmission data 1 byte H'03 mst_trs

dt_trs[3] Fourth-byte transmission data 1 byte H'04 mst_trs

dt_trs[4] Fifth-byte transmission data 1 byte H'05 mst_trs

dt_trs[5] Sixth-byte transmission data 1 byte H'06 mst_trs

dt_trs[6] Seventh-byte transmission data 1 byte H'07 mst_trs

dt_trs[7] Eighth-byte transmission data 1 byte H'08 mst_trs

dt_trs[8] Ninth-byte transmission data 1 byte H'09 mst_trs

dt_trs[9] Tenth-byte transmission data 1 byte H'0A mst_trs

i Transmission-data counter 1 byte H'00 mst_trs

dummy MDCR read value 1 byte — main

(4) Used RAM descriptions

RAM for other than variables is not used in this task example.

Rev. 2.0, 11/01, page 157 of 358

4.2.4 Flowchart

(1) Main routine

main

SP H'F000 Set stack pointer (SP) to H'F000.

Call initial-setting subroutine.

Clear bit 1 to 0 to enable an interrupt.

Call single master transmission subroutine.

Latch the input level of pins MD1 and MD0
in bits MDS1 and MDS0 by reading MDCR.

Set interrupt control mode of the interrupt
controller to interrupt control by bit 1.

SYSCR H'09

Initialize

CCR 1bit 0

mst_trs

dummy MDCR

············

············

············

············

············

············

Rev. 2.0, 11/01, page 158 of 358

(2) Initial-setting subroutine

STCR H'00

MSTPCRL H'7F

DDCSWR H'0F

MSTPCRL H'EF

ICMR0 H'28

ICCR0 H'01

SAR0 H'00

ICSR0 H'00

STCR H'30

ICCR0 H'89

SARX0 H'01

ICCR0 H'81

SMR0 H'00

SCR0 H'00

STCR H'10

Set bit FLSHE of STCR to 0 to set the control register of
flash memory to non-select state.

Set bit MSTP7 of MSTPCRL to 0 to cancel module stop
mode of SCI0.

Set ICE of ICCR0 to 0 to enable access to SAR0 and SARX0.

Set ICE of ICCR0 to 1 to enable access to ICMR0 and ICDR0.

Set ACKB of ICSR0 to 0.

Set SWE, SW, and IE of DDCSWR to 0. Inhibit automatic switch
from format-less of IIC0 to I2C bus format, use IIC0 in I2C bus format,
and inhibit an interrupt in automatic format switching.

Set bit MSTP7 of MSTPCRL to 1 and bit MSTP4 to 0 to set
module stop mode of SCI0 and cancel module stop mode of IIC0.

Set bit C/ of SMR to 0 to set SCI0 operating mode
to asynchronous mode.

Set bit IICE of STCR to 1 to enable CPU access to the data register
and control register of the I2C bus interface.

Set bits CKE1 and CKE of SMR to 0 to set pin SCK0 to an I/O port.

Set FS of SAR0 and FSX of SARX0 to 0 to select I2C bus format
for IIC0 transmission format (recognize SAR slave address and
ignore SARX slave address).

Set IICX0 of STCR and CKS2 and CKS0 of ICMR0 to 1 and CKS1 to 0.
Set IIC0 transmission clock frequency to 100 kHz, set WAI to 0, and
continuously transfer data and acknowledge.

Set IEIC ICCR0 to 0 to inhibit IIC0 interrupt request.
Set ACKE to 1 to halt continuous transmission when the acknowledge
bit is 1.

initialize

rts

············

············

············

············

············

············

············

············

·······

············

············

············

·······

Rev. 2.0, 11/01, page 159 of 358

(3) Single-master transmission subroutine

setstart

mst_trs

MST 1

TRS 1

trs_slvadr_a0

trs_memadr

i 0

ICDR0 A[i]

IRIC 0

set_start

ACKB = 0 ?

No

No

No

Yes

Yes

Yes

Yes

Yes

BBSY = 0 ?

No

Yes

IRIC = 1 ?

i = 0 ?>

i++

···············

···············

·········

···············

···············

···············

·········

···············

·········

············

······

Call the slave address + W transmission subroutine.

·········

···············

Bus release state?

Set MST and TRS of ICCR0 to 1 to set IIC0 mode
to master transmission mode.

Call the subroutine that sets the start condition.

Are there acknowledge from EEPROM?

Call the EEPROM memory address transmission subroutine.

Are there acknowledge from EEPROM?

Initially set the transmission data counter.

10-byte transmission end?

Write ith-byte transmission data in ICDR0.

Clear IRIC to 0 to decide data-transmission end
(at rising of ninth clock of transmission clocks).

Data transmission end?

Are there acknowledge from EEPROM?

Increment the transmission data counter.

1

No
ACKB = 0 ? 1

1

ACKB = 0 ?
No

1

Rev. 2.0, 11/01, page 160 of 358

rts

·····················

·········
BBSY = 0 ?

No

Yes

Bus release state?

Call the subroutine that sets the start condition.set_stop

1

(4) Subroutine that sets the start condition

set_start

rts

IRIC 0

ICCR0 H'BC

··················

··················

······IRIC = 1 ?
No

Yes

Clear IRIC to decide start condition detection.

Set BBSY of ICCR0 to 1 and SCP to 0 to issue the start condition.

Is the start condition detected from the bus line state?

(5) Subroutine that sets the stop condition

set_stop

rts

ICCR0 H'B8 ··················

······
BBSY = 0 ?

No

Yes

Set BBSY and SCP of ICCR0 to 0 to issue the stop condition.

Bus release state?

Rev. 2.0, 11/01, page 161 of 358

(6) Slave address + W transmission subroutine

trs_slvadr_a0

rts

ICCR0 H'A0

IRIC 0

··················

··················

·······IRIC = 1 ?
No

Yes

Transmit the EEPROM slave address + W data (H'A0).

Clear IRIC to 0 to decide data-transmission end
(at rising of ninth clock of transmission clocks).

EEPROM slave address + W data transmission end?

(7) EEPROM memory address transmission subroutine

trs_memadr

rts

ICCR0 H'00

IRIC 0

··················

··················

······IRIC = 1 ?
No

Yes

Transmit EEPROM memory address data (H'00).

Clear IRIC to 0 to decide data-transmission end
(at rising of ninth clock of transmission clocks).

EEPROM memory address data transmission end?

Rev. 2.0, 11/01, page 162 of 358

4.2.5 Program List

/***

* H8S/2138 IIC bus application note *

* 1.Single master transmit to EEPROM *

* File name : SMTxd.c *

* Fai : 20MHz *

* Mode : 3 *

**/

#include <stdio.h>

#include <machine.h>

#include "2138s.h"

/***

* Prototype *

**/

void main(void); /* Main routine */

void initialize(void); /* IIC0 initialize */

void mst_trs(void); /* Master transmit to EEPROM */

void set_start(void); /* Start condition set */

void set_stop(void); /* Stop condition set */

void trs_slvadr_a0(void); /* Slave address + W data transmit */

void trs_memadr(void); /* EEPROM memory address data transmit */

/***

* Data table *

**/

const unsigned char dt_trs[10] = /* Transmit data (10 byte) */

{

0x01, /* 1st transmit data */

0x02, /* 2nd transmit data */

0x03, /* 3rd tranmist data */

0x04, /* 4th tranmist data */

0x05, /* 5th tranmist data */

0x06, /* 6th tranmist data */

0x07, /* 7th tranmist data */

0x08, /* 8th tranmist data */

Rev. 2.0, 11/01, page 163 of 358

0x09, /* 9th tranmist data */

0x0a /* 10th tranmist data */

};

/***

* main : Main routine *

**/

void main(void)

#pragma asm

mov.l #h'f000,sp ;Stack pointer initialize

#pragma endasm

{

unsigned char dummy;

dummy = MDCR.BYTE; /* MCU mode set */

SYSCR.BYTE = 0x09; /* Interrupt control mode set */

initialize(); /* Initialize */

set_imask_ccr(0); /* Interrupt enable */

mst_trs(); /* Master transmit to EPROM */

while(1); /* End */

}

/***

* initialize : IIC0 Initialize *

**/

void initialize(void)

{

STCR.BYTE = 0x00; /* FLSHE = 0 */

MSTPCR.BYTE.L = 0x7f; /* SCI0 module stop mode reset */

SCI0.SMR.BYTE = 0x00; /* SCL0 pin function set */

SCI0.SCR.BYTE = 0x00;

MSTPCR.BYTE.L = 0xef; /* IIC0 module stop mode reset */

STCR.BYTE = 0x10; /* IICE = 1 */

DDCSWR.BYTE = 0x0f; /* IIC bus format initialize */

IIC0.ICCR.BYTE = 0x01; /* ICE = 0 */

IIC0.SAR.BYTE = 0x00; /* FS = 0 */

IIC0.SARX.BYTE = 0x01; /* FSX = 1 */

Rev. 2.0, 11/01, page 164 of 358

IIC0.ICCR.BYTE = 0x81; /* ICE = 1 */

IIC0.ICSR.BYTE = 0x00; /* ACKB = 0 */

STCR.BYTE = 0x30; /* IICX0 = 1 */

IIC0.ICMR.BYTE = 0x28; /* Transfer rate = 100kHz */

IIC0.ICCR.BYTE = 0x89; /* IEIC = 0, ACKE = 1 */

}

/***

* mst_trs : Master transmit to EEPROM *

**/

void mst_trs(void)

{

unsigned char i; /* Tranmit data counter */

while(IIC0.ICCR.BIT.BBSY == 1); /* Bus empty (BBSY=0) ? */

IIC0.ICCR.BIT.MST = 1; /* Master transmit mode set */

IIC0.ICCR.BIT.TRS = 1; /* MST = 1, TRS = 1 */

set_start(); /* Start condition set */

trs_slvadr_a0(); /* Slave address + W data transmit */

if(IIC0.ICSR.BIT.ACKB == 0)

{

trs_memadr(); /* EEPROM memory address data transmit */

if(IIC0.ICSR.BIT.ACKB == 0)

{

for(i=0; i<10; i++)

{

IIC0.ICDR = dt_trs[i]; /* Transmit data write */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

while(IIC0.ICCR.BIT.IRIC == 0); /* Transmit end (IRIC=1) ? */

if(IIC0.ICSR.BIT.ACKB == 1) /* ACKB = 0 ? */

{

break; /* ACKB = 1 */

}

}

Rev. 2.0, 11/01, page 165 of 358

}

}

set_stop(); /* Stop condition set */

}

/***

* set_start : Start condition set *

**/

void set_start(void)

{

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

IIC0.ICCR.BYTE = 0xbc; /* Start condition set (BBSY=1,SCP=0) */

while(IIC0.ICCR.BIT.IRIC == 0); /* Start condition set (IRIC=1) ? */

}

/***

* set_stop : Stop condition set *

**/

void set_stop(void)

{

IIC0.ICCR.BYTE = 0xb8; /* Stop condition set (BBSY=0,SCP=0) */

while(IIC0.ICCR.BIT.BBSY == 1); /* Bus empty (BBSY=0) ? */

}

/***

* trs_slvadr_a0 : Slave addres + W data transmit *

**/

void trs_slvadr_a0(void)

{

IIC0.ICDR = 0xa0; /* Slave address + W data(H'A0) write */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

while(IIC0.ICCR.BIT.IRIC == 0); /* Transmit end (IRIC=1) ? */

}

Rev. 2.0, 11/01, page 166 of 358

/***

* trs_memadr : EEPROM memory address data transmit *

**/

void trs_memadr(void)

{

IIC0.ICDR = 0x00; /* EEPROM memory address data(H'00) write */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

while(IIC0.ICCR.BIT.IRIC == 0); /* Transmit end (IRIC=1) ? */

}

Rev. 2.0, 11/01, page 167 of 358

4.3 Single-Master Reception

4.3.1 Specifications

• The I2C bus interface of channel 0 in H8S/2138 is used to read 10-byte data from EEPROM
(HN58X2408).

• The slave address of EEPROM to be connected is “1010000”, and data is read from H'00 to
H'09 of EEPROM memory addresses.

• Read data is stored in H'E100 to H'E1009 of RAM.

• Devices connected to the I2C bus of this system consist of a master device (H8S/2138) and a
slave device (EEPROM) (single-master configuration).

• The frequency of a transmission clock is 100 kHz.

• Figure 4.7 shows the connection example of H8S/2138 and EEPROM.

VCC

VSS

SCL0 SCL

SDASDA0

VCC

H8S/2138

Master

VCC

VSS

SCL

SDA

A0

WP

A1

A2

EEPROM

Slave

VCC VCC

VCC

Figure 4.7 Connection Example of H8S/2138 and EEPROM

• Figure 4.8 shows the I2C bus format used in this task example.

Rev. 2.0, 11/01, page 168 of 358

S SLA A MEA A DATA A
71 1 1

SLAS
1 1

1

7 1 1

11

8
A P

1 1 1

10

8
R/ AR/

Number of
transmission
bits
Number of
transmission
frames

Legend:
S
SLA
R/
A
MEA
DATA
P

: Start condition
: EEPROM slave address
: Transmission/reception direction
: Acknowledge
: EEPROM memory address
: Reception data
: Stop condition

Figure 4.8 Transmission Format Used in this Task Example

Rev. 2.0, 11/01, page 169 of 358

4.3.2 Operation Descriptions

Figures 4.9 and 4.10 show the operation principle.

Rev. 2.0, 11/01, page 170 of 358

10µs Transmission/reception clock frequency = 100 kHz

Start condition

Software Processing Hardware Processing

IRIC = 1, TDRE = 1 (detects start conditions from the bus line state)

TDRE = 0 (writes data to ICDRT when TRS = 1)

TDRE = 1 (transmits data to ICDRS from ICDRT)

IRIC = 1 (ends data transmission

(at rising of 9th transmission clock))

No processing

No processing

TDRE = 0 (when TRS = 0)

IRIC = 1 (ends data reception (at rising of 9th reception

clock))

RDRF = 0 (reads reception data of ICDRR in reception mode)

No processing

Start
condition

Ack Ack Ack Ack Ack

2nd
reception

data

3rd
reception

data

1st
reception

data

Memory address
=H'00

Slave address
+ R/ =H'A0

Slave address
+ R/ =H'A1

SCL

SDA

TDRE

IRIC

RDRF

[1] [5] [5] [5][1]

[2]
[6]

[2]

[3][3] [3]

[4] [4]

[7] [10] [10] [10]

[9] [9]

[8] [8]

[4]

···

···

···

···

···

[2]

Issues start conditions (BBSY = 1, SCP = 0)

Writes transmission data to ICDR0

No processing

No processing

Clears IRIC to 0 to judge transmission end

Clears IRIC to 0 to judge start condition detection

Sets master reception mode (MST = 1, TRS = 0)

No processing

Reads reception data from ICDR0

Clears IRIC to 0 to judge reception end

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Figure 4.9 Single-Master Reception Operation Principle (1)

Rev. 2.0, 11/01, page 171 of 358

10µs Transmission/reception clock frequency = 100 kHz

Software Processing Hardware Processing

Stop condition
Ack Ack Ack Ack Ack

6th reception
 data

7th reception
data

8th reception
data

9th reception
data

10th reception
data

SCL

SDA

TDRE

IRIC

RDRF

[11]

[13]

[14]

[11]

[13]

[14]

[11]

[13]

[14]

[11]

[18]

[14]

[12]

[17]

[15]

[16]

···

···

···

···

···

No processing

No processing

Reads reception data from ICDR0

Clears IRIC to 0 to judge reception end

Clears IRIC to 0 to judge output end of

the 9th reception clock

Sets master transmission mode

(MST = 1, TRS = 0)

Issues stop conditions

(BBSY = 0, SCP = 0)

[11]

[12]

[13]

[14]

[15]

[16]

[17]

IRIC = 1, RDRF = 1 (WAIT = 0) (ends data reception

(at rising of 9th reception clock))

IRIC = 1, RDRF = 1 (WAIT = 1) (ends data reception

(at rising of 8th reception clock))

RDRF = 0 (reads reception data of ICDRR in reception mode)

No processing

Starts output of 9th reception clock

IRIC = 1 (at rising of 9th reception clock)

TDRE = 1 (when TRS = 0 is switched to TRS = 1

after start condition detection)

TDRE = 0 (detects stop conditions from the bus line

state after stop condition issue)

Figure 4.10 Single-Master Reception Operation Principle (2)

Rev. 2.0, 11/01, page 172 of 358

4.3.3 Software Descriptions

(1) Descriptions of modules

Table 4.4 shows the descriptions of modules in this task example.

Table 4.4 Descriptions of Modules

Module Name Label Name Function

Main routine main Sets stack pointer, sets MCU mode, and enables an
interrupt.

Initial setting intialize Initially sets IIC0 and RAM area to be used.

Single master
reception

mst_rec Receives 10-byte data from EEPROM by single master
reception.

Start condition issue set_start Issues start conditions.

Stop condition issue set_stop Issues stop conditions.

Slave address + W
transmission

trs_slvadr_a0 Transmits slave address + W data (H'A0) of EEPROM.

Slave address + R
transmission

trs_slvadr_a1 Transmits slave address + R data (H'A1) of EEPROM.

EEPROM memory
address transmission

trs_memadr Transmits memory address data (H'00) of EEPROM.

Data reception rec_data Receives 10-byte data.

Rev. 2.0, 11/01, page 173 of 358

(2) Descriptions of internal registers

Table 4.5 shows the descriptions of internal registers to be used in this task example.

Table 4.5 Descriptions of Registers

Register Function Address Set Value

ICDR0 Stores reception data. H'FFDE —

SAR0 FS Sets transmission format by using bit FSX of SAR0
and bit SW of DDCSWR.

H'FFDF bit0 0

SARX0 FSX Sets transmission format by using bit FS of SAR0
and bit SW of DDCSWR.

H'FFDE bit01

MLS Sets data transmission by MSB-first. H'FFDF bit7 0

WAIT Sets whether waits are inserted between data and
acknowledge.

H'FFDF bit6 0/1

CKS2

to

CKS0

Set transmission clock frequency to 100 kHz by
using bit IICX0 of STCR.

H'FFDF

bit5 to

bit3

CKS2=1

CKS1=0

CKS0=1

ICMR0

BC2

to

BC0

Set 9 bits/frame to the number of bits of data to be
transmitted next in I2C bus format.

H'FFDF

bit2 to

bit0

BC2=0

BC1=0

BC0=0

ICE Selects access control of registers ICMR0,
ICDR0/SAR, and SARX, and I2C bus interface
operation (port function for pin SCL0/SDA0)/non-
operation (bus drive state for pin SCL/SDA).

H'FFD8 bit7 0/1

IEIC Inhibits I2C bus interface interrupt requests. H'FFD8 bit6 0

MST Uses the I2C bus interface in master mode. H'FFD8 bit5 1

TRS Sets transmission/reception mode of the I2C bus
interface.

H'FFD8 bit4 1/0

ACKE Halts continuous transmission when the
acknowledge bit is 1.

H'FFD8 bit3 1

BBSY Confirms that the I2C bus is occupied or released,
and issues start and stop conditions by using bit
SCP.

H'FFD8 bit2 0/1

IRIC Detects start conditions, decides data transmission
end, and detects acknowledge = 1.

H'FFD8 bit1 0/1

ICCR0

SCP Issues start and stop conditions by using bit BBSY. H'FFD8 bit0 0

ICSR0 ACKB Stores acknowledge received from EEPROM at
transmission, and sets acknowledge to be
transmitted to EEPROM at reception.

H'FFD9 bit0 —

Rev. 2.0, 11/01, page 174 of 358

Table 4.5 Descriptions of Registers (cont)

Register Function Address Set Value

IICX0 Sets transmission clock frequency to 100 kHz by
using CKS2 to CKS0 of ICMR0.

H'FFC3 bit5 1

IICE Enables CPU access to the data register and
control register of the I2C bus interface.

H'FFC3 bit4 1

STCR

FLSHE Sets a non-select state to the control register of
flash memory.

H'FFC3 bit3 0

SWE Inhibits automatic switching from format-less to I2C
bus format for IIC channel 0.

H'FEE6 bit7 0

SW Uses IIC channel 0 in the I2C bus format. H'FEE6 bit6 0

IE Inhibits an interrupt in automatic format switching. H'FEE6 bit5 0

DDCSWR

CLR3

to

CLR0

Control initialization of the internal state of IIC0. H'FEE6

bit3 to

bit0

CLR3=1

CLR2=1

CLR1=1

CLR0=1

MSTP7 Cancels module stop mode of SCI channel 0. H'FF87 bit7 0MSTPCRL

MSTP4 Cancels module stop mode of IIC channel 0. H'FF87 bit4 0

SCR0 CKE1, 0 Set the P52/SCK0/SCL0 pin to an I/O port. H'FFDA

bit1, 0

CKE1=0

CKE0=0

SMR0 C/$ Sets SCI0 operating mode to asynchronous mode. H'FFD8 bit7 0

SYSCR INTM1, 0 Set interrupt control mode of the interrupt controller
to control by bit 1.

H'FFC4

bit5, 4

INTM1=0

INTM0=0

MDCR MDS1, 0 Set MCU operating mode to mode 3 by latching the
input level of pins MD1 and MD0.

H'FFC5

bit1, 0

MDS1=1

MDS0=1

(3) Descriptions of variables

Table 4.6 shows the descriptions of variables in this task example.

Table 4.6 Descriptions of Variables

Variable Function Data
Length

Initial
Value

Used Module
Name

dummy MDCR read value 1 byte — Main

i Transmission-data counter 1 byte H'00 initialize rec_data

Rev. 2.0, 11/01, page 175 of 358

(4) Used RAM descriptions

Table 4.7 shows the descriptions of used RAM in this task example.

Table 4.7 Descriptions of Used RAM

Label Function Data
Length

Address Used Module
Name

dt_rec[i] Stores received data 10 bytes H'E100

to

H'E109

initialize

rec_data

4.3.4 Flowchart

(1) Main routine

main

SP H'F000 Set stack pointer (SP) to H'F000.

Call initial-setting subroutine.

Clear bit 1 to 0 to enable an interrupt.

Call single master transmission subroutine.

Latch the input level of pins MD1 and MD0
in bits MDS1 and MDS0 by reading MDCR.

Set interrupt control mode of the interrupt
controller to interrupt control by bit 1.

SYSCR H'09

initialize

CCR Ibit 0

mst_rec

Read MDCR

············

············

············

············

············

············

Rev. 2.0, 11/01, page 176 of 358

(2) Initial-setting subroutine

STCR H'00

MSTPCRL H'7F

DDCSWR H'0F

MSTPCRL H'EF

ICMR0 H'28

ICCR0 H'01

SAR0 H'00

ICSR0 H'00

STCR H'30

ICCR0 H'89

SARX0 H'01

ICCR0 H'81

SMR0 H'00

SCR0 H'00

STCR H'10

initialize

rts

············

············

············

············

············

············

············

············

······

············

············

············

······

Set bit FLSHE of STCR to 0 to set the control register
of flash memory to non-select state.

Set bit MSTP7of MSTPCRL to 0 to cancel module stop mode of SCI0.

Set bit C/ of SMR to 0 to set SCI0 operating mode to asynchronous mode.

Set bits CKE1 and CKE of SMR to 0 to set pin SCK0 to an I/O port.

Set bit MSTP7 of MSTPCRL to 1 and bit MSTP4 to 0 to set module
stop mode of SCI0 and cancel module stop mode of IIC0.

Set bit IICE of STCR to 1 to enable CPU access to the data register
and control register of the I2C bus interface.

Set ICE of ICCR0 to 0 to enable access to SAR0 and SARX0.

Set SWE, SW, and IE of DDCSWR to 0. Inhibit automatic switch from
format-less of IIC0 to I2C bus format, use IIC0 in I2C bus format,
and inhibit an interrupt in automatic format switching.

Set FS of SAR0 and FSX of SARX0 to 0 to select I2C bus format
for IIC0 transmission format (recognize SAR slave address and
ignore SARX slave address).

Set ICE of ICCR0 to 1 to enable access to ICMR0 and ICDR0.

Set ACKB of ICSR0 to 0.

Set IICX0 of STCR and CKS2 and CKS0 of ICMR0 to 1 and
CKS1 to 0. Set IIC0 transmission clock frequency to 100 kHz,
set WAI to 0, and continuously transfer data and acknowledge.

Set IEIC ICCR0 to 0 to inhibit IIC0 interrupt request.
Set ACKE to 1 to halt continuous transmission when
the acknowledge bit is 1.

Rev. 2.0, 11/01, page 177 of 358

(3) Single master reception subroutine

set_start

mst_rec

rts

MST 1

TRS 1

trs_slvadr_a0

trs_memadr

trs_slvadr_a1

set_stop

set_start

rec_data

ACKB 0

WAIT 0

set_start

ACKB = 0 ?

No

No

No

No

Yes

Yes

Yes

Yes

BBSY = 0 ?

············

············

············

············

············

······

······

Transmit the EEPROM slave address + W data.

Bus release state?

Set MST and TRS of ICCR0 to 1 to set IIC0 mode
to master transmission mode.

Issue the start condition.

Are there acknowledge from EEPROM?

Transmit the EEPROM memory address data.

Are there acknowledge from EEPROM?

············Issue the restart condition.

············Transmit the EEPROM slave address + R data.

············Are there acknowledge from EEPROM?

············Receive 10-byte data.

············ACKB = 0

············WAIT = 0

············Issue the stop condition.

ACKB = 0 ?

set_startACKB = 0 ?

Rev. 2.0, 11/01, page 178 of 358

(4) Subroutine that sets the start condition

set_start

rts

IRIC 0

ICCR0 H'BC

············

············

······IRIC = 1 ?
No

Yes

Clear IRIC to decide start condition detection.

Set BBSY of ICCR0 to 1 and SCP to 0 to issue the start condition.

Is the start condition detected from the bus line state?

(5) Subroutine that sets the stop condition

set_stop

rts

ICCR0 H'B8 ····················

·········
BBSY = 0 ?

No

Yes

Set BBSY and SCP of ICCR0 to 0 to issue the stop condition.

Bus release state?

Rev. 2.0, 11/01, page 179 of 358

(6) Slave address + W transmission subroutine

trs_slvadr_a0

rts

ICCR0 H'A0

IRIC 0

············

············

······IRIC = 1 ?
No

Yes

Transmit the EEPROM slave address + W data (H'A0).

Clear IRIC to 0 to decide data-transmission end
(at rising of ninth clock of transmission clocks).

EEPROM slave address + W data transmission end?

(7) Slave address + R transmission subroutine

trs_memadr

rts

ICCR0 H'A1

IRIC 0

···············

···············

·········IRIC = 1 ?
No

Yes

Transmit the EEPROM slave address + R data (H'A1).

Clear IRIC to 0 to decide data-transmission end
(at rising of ninth clock of transmission clocks).

EEPROM memory address data transmission end?

Rev. 2.0, 11/01, page 180 of 358

(8) EEPROM memory address transmission subroutine

trs_memadr

rts

ICCR0 H'00

IRIC 0

···············

···············

·········IRIC = 1 ?
No

Yes

Transmit EEPROM memory address data (H'00).

Clear IRIC to 0 to decide data-transmission end
(at rising of ninth clock of transmission clocks).

EEPROM memory address data transmission end?

Rev. 2.0, 11/01, page 181 of 358

(9) Data reception subroutine

ACKB 0

rec_data

i 0

i 0

TRS 0

WAIT 0

dt_rec[i] ICDR0

IRIC 0

dt_rec[i] ICDR0

IRIC 0

IRIC = 1 ?

No

Yes

Yes

No

No

Yes

IRIC = 1 ?

i 8 ?

i++

···············

············

············

Clear IRIC to 0 to decide data-reception end
(at rising of ninth clock of reception clocks).

Dummy read (start reception)

Data reception end?

···············

···············

···············

···············

···············

···············

···············

···············

···············

···············

Initially set the reception data counter.

TRS = 0 (set master reception mode)

ACKB = 0 (output 0 at acknowledge output timing in reception)

WAIT = 0 (continuously transmit data and acknowledge)

Initially set the reception data counter.

8-byte reception end?

Read reception data and store it in RAM.

Clear IRIC to 0 to decide data-reception end
(at rising of ninth clock of reception clocks).

Data reception end?

Increment the reception data counter.

1

Rev. 2.0, 11/01, page 182 of 358

dt_rec[i] ICDR0

WAIT 1

TRS 1

ACKB 1

IRIC 0

IRIC 0

i++

dt_rec[i] ICDR0

IRIC = 1 ?

No

No

Yes

Yes

IRIC = 1 ?

··················

··················

··················

··················

···············

···············

Clear IRIC to 0 to decide data-reception end
(at falling of eighth clock of reception clocks).

··················

Read ninth-byte reception data and store it in RAM.

Data reception end?

··················WAIT = 1 (Insert wait between data and acknowledge)

··················ACKB = 1 (output 1 at acknowledge output timing in reception)

TRS = 1 (set master transmission mode)

IRIC = 0 (start output of ninth reception clock)

Is output of ninth reception clock completed
(at rising of ninth clock of reception clocks)?

Read tenth-byte reception data and store it in RAM.

·················· Increment the reception data counter.

1

rts

Rev. 2.0, 11/01, page 183 of 358

4.3.5 Program List

/***

* H8S/2138 IIC bus application note *

* 2.Single master receive from EEPROM *

* File name : SMRxd.c *

* Fai : 20MHz *

* Mode : 3 *

**/

#include <stdio.h>

#include <machine.h>

#include "2138s.h"

/***

* Prototype *

**/

void main(void); /* Main routine */

void initialize(void); /* RAM & IIC0 initialize */

void mst_rec(void); /* Matser receive from EEPROM */

void set_start(void); /* Start condition set */

void set_stop(void); /* Stop condition set */

void trs_slvadr_a0(void); /* Slave address + W data transmit */

void trs_slvadr_a1(void); /* Slave address + R data transmit */

void trs_memadr(void); /* EEPROM memory address data transmit */

void rec_data(void); /* 10-byte data receive */

/***

* RAM allocation *

**/

#pragma section ramarea

unsigned char dt_rec[10]; /* Receive data store area */

/***

* main : Main routine *

**/

#pragma section

void main(void)

Rev. 2.0, 11/01, page 184 of 358

#pragma asm

mov.l #h'f000,sp /* Stack pointer initialize */

#pragma endasm

{

unsigned char dummy;

dummy = MDCR.BYTE; /* MCU mode set */

SYSCR.BYTE = 0x09; /* Interrupt control mode set */

initialize(); /* Initialize */

set_imask_ccr(0); /* Interrupt enable */

mst_rec(); /* Master receive from EPROM */

while(1); /* End */

}

/***

* initialize : RAM & IIC0 Initialize *

**/

void initialize(void)

{

unsigned char i=0;

for(i=0; i<10; i++) /* Receive data store area initialize */

{

dt_rec[i] = 0x00;

}

/* IIC0 module initialize */

STCR.BYTE = 0x00; /* FLSHE = 0 */

MSTPCR.BYTE.L = 0x7f; /* SCI0 module stop mode reset */

SCI0.SMR.BYTE = 0x00; /* SCL0 pin function set */

SCI0.SCR.BYTE = 0x00;

MSTPCR.BYTE.L = 0xef; /* IIC0 module stop mode reset */

STCR.BYTE = 0x10; /* IICE = 1 */

DDCSWR.BYTE = 0x0f; /* IIC bus format initialize */

IIC0.ICCR.BYTE = 0x01; /* ICE = 0 */

IIC0.SAR.BYTE = 0x00; /* FS = 0 */

IIC0.SARX.BYTE = 0x01; /* FSX = 1 */

IIC0.ICCR.BYTE = 0x81; /* ICE = 1 */

Rev. 2.0, 11/01, page 185 of 358

IIC0.ICSR.BYTE = 0x00; /* ACKB = 0 */

STCR.BYTE = 0x30; /* IICX0 = 1 */

IIC0.ICMR.BYTE = 0x28; /* Transfer rate = 100kHz */

IIC0.ICCR.BYTE = 0x89; /* IEIC = 0, ACKE = 1 */

}

/***

* mst_rec : Master receive from EEPROM *

**/

void mst_rec(void)

{

while(IIC0.ICCR.BIT.BBSY == 1); /* Bus empty (BBSY=0) ? */

IIC0.ICCR.BIT.MST = 1; /* Mster transmit mode set */

IIC0.ICCR.BIT.TRS = 1; /* MST = 1, TRS = 1 */

set_start(); /* Start condition set */

trs_slvadr_a0(); /* EEPROM slave address + W data transmit */

if(IIC0.ICSR.BIT.ACKB == 0) /* ACKB = 0 ? */

{

trs_memadr(); /* EEPROM memory address data transmit */

if(IIC0.ICSR.BIT.ACKB == 0) /* ACKB = 0 ? */

{

set_start(); /* Re-start condition set */

trs_slvadr_a1(); /* EEPROM slave address + R data transmit */

if(IIC0.ICSR.BIT.ACKB == 0) /* ACKB = 0 ? */

{

rec_data(); /* Data recieve */

}

}

}

set_stop();

}

/***

* set_start : Start condition set *

**/

Rev. 2.0, 11/01, page 186 of 358

void set_start(void)

{

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

IIC0.ICCR.BYTE = 0xbc; /* Start condition set (BBSY=1,SCP=0) */

while(IIC0.ICCR.BIT.IRIC == 0); /* Start condition set (IRIC=1) ? */

}

/***

* set_stop : Stop condition set *

**/

void set_stop(void)

{

IIC0.ICCR.BYTE = 0xb8; /* Stop condition set (BBSY=0,SCP=0) */

while(IIC0.ICCR.BIT.BBSY == 1); /* Bus empty (BBSY=0) ? */

}

/***

* trs_slvadr_a0 : Slave address + W data transmit *

**/

void trs_slvadr_a0(void)

{

IIC0.ICDR = 0xa0; /* Slave address + W data(H'A0) write */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

while(IIC0.ICCR.BIT.IRIC == 0); /* Transmit end (IRIC=1) ? */

}

/***

* trs_slvadr_a1 : Slave address + R data transmit *

**/

void trs_slvadr_a1(void)

{

IIC0.ICDR = 0xa1; /* Slave address + R data(H'A1) write */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

while(IIC0.ICCR.BIT.IRIC == 0); /* Transmit end (IRIC=1) ? */

}

Rev. 2.0, 11/01, page 187 of 358

/***

* trs_memadr : EEPROM memory address data transmit *

**/

void trs_memadr(void)

{

IIC0.ICDR = 0x00; /* EEPROM memory address data(H'00) write */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

while(IIC0.ICCR.BIT.IRIC == 0); /* Transmit end (IRIC=1) ? */

}

/***

* rec_data : 10-byte data receive *

**/

void rec_data(void)

{

unsigned char i=0; /* Receive data counter initialize */

IIC0.ICCR.BIT.TRS = 0; /* Master transmit mode set (MST=1,TRS=0) */

IIC0.ICSR.BIT.ACKB = 0; /* ACKB = 0 */

IIC0.ICMR.BIT.WAIT = 0; /* WAIT = 0 */

dt_rec[i] = IIC0.ICDR; /* Dummy read */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

while(IIC0.ICCR.BIT.IRIC == 0); /* receive end (IRIC=1) ? */

for(i=0; i<8; i++) /* 1st to 8th data receive */

{

dt_rec[i] = IIC0.ICDR; /* Receive data read */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

while(IIC0.ICCR.BIT.IRIC == 0); /* Receive end ? */

}

IIC0.ICMR.BIT.WAIT = 1; /* WAIT = 1 */

IIC0.ICSR.BIT.ACKB = 1; /* ACKB = 1 */

dt_rec[i] = IIC0.ICDR; /* 9th receive data read */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

while(IIC0.ICCR.BIT.IRIC == 0); /* Receive end (IRIC=1) ? */

Rev. 2.0, 11/01, page 188 of 358

IIC0.ICCR.BIT.TRS = 1; /* Master transmit mode set (MST=1,TRS=1) */

IIC0.ICCR.BIT.IRIC = 0; /* 9th clock transmit (IRIC=0) */

while(IIC0.ICCR.BIT.IRIC == 0); /* 9th clock transmit end (IRIC=1) ? */

dt_rec[++i] = IIC0.ICDR; /* 10th (last) receive data read */

IIC0.ICSR.BIT.ACKB = 0; /* ACKB = 0 */

IIC0.ICMR.BIT.WAIT = 0; /* WAIT = 0 */

}

Rev. 2.0, 11/01, page 189 of 358

4.4 One-Byte Data Transmission by Single-Master Transmission

4.4.1 Specifications

• The I2C bus interface of channel 0 in H8S/2138 is used to write 1-byte data to EEPROM
(HN58X2408).

• The slave address of EEPROM to be connected is “1010000”, and data is written to H'00 of
EEPROM memory addresses.

• Devices connected to the I2C bus of this system consist of a master device (H8S/2138) and a
slave device (EEPROM) (single master configuration).

• The frequency of a transmission clock is 100 kHz.

• Figure 4.11 shows the connection example of H8S/2138 and EEPROM.

VCC

VSS

SCL0 SCL

SDASDA0

VCC

H8S/2138

Master

VCC

VSS

SCL

SDA

A0

WP

A1

A2

EEPROM

Slave

VCC VCC

VCC

Figure 4.11 Connection Example of H8S/2138 and EEPROM

• Figure 4.12 shows the I2C bus format used in this task example.

Rev. 2.0, 11/01, page 190 of 358

S SLA A MEA A DATA A

71 1 1 1

1 1 1

8

P

1 18

R/

Number of transmission bits

Number of transmission frames

Legend:
S
SLA
R/
A
MEA
DATA
P

: Start condition
: EEPROM slave address
: Transmission/reception direction
: Acknowledge
: EEPROM memory address
: Transmission data
: Stop condition

Figure 4.12 Transmission Format Used in this Task Example

Rev. 2.0, 11/01, page 191 of 358

4.4.2 Operation Descriptions

Figure 4.13 shows an operation principle.

10µs Transmission clock frequency = 100 kHz

Start condition Stop conditionAck Ack

1st transmission data
=H'38

Memory address
=H'00

Slave address
+ R/ =H'A0

SCL

SDA

TDRE

IRIC

[5]

[4]

Ack

[1]

[2]

[3]

[4]

[1]

[2]

[3] [3] [6]

[4]

[1]

[2]

Writes transmission data to ICDR0

No processing

No processing

Clears IRIC to 0 to judge transmission end

Issues start conditions (BBSY = 1, SCP = 0)

Issues stop conditions (BBSY = 0, SCP = 0)

Software Processing Hardware Processing

[1]

[2]

[3]

[4]

[5]

[6]

TDRE = 0 (writes data to ICDRT when TRS = 1)

TDRE = 1 (transmits data to ICDRS from ICDRT)

IRIC = 1 (ends data transmission

(at rising of 9th reception clock))

No processing

IRIC = 1, TDRE = 1

(detects start conditions from the bus line state)

TDRE = 0 (detects stop conditions from the bus line state)

Figure 4.13 One-byte Data Transmission Operation Principle by Single Master
Transmission

Rev. 2.0, 11/01, page 192 of 358

4.4.3 Software Descriptions

(1) Descriptions of modules

Table 4.8 shows the descriptions of modules in this task example.

Table 4.8 Descriptions of Modules

Module Name Label Name Function

Main routine main Sets stack pointer, sets MCU mode, and enables an
interrupt.

Initial setting Intialize Initially sets IIC0.

Single master
transmission

mst_trs Transmits 1-byte data to EEPROM by single master
transmission.

Start condition issue set_start Issues start conditions.

Stop condition issue set_stop Issues stop conditions.

Slave address + W
transmission

trs_slvadr_a0 Transmits slave address + W data (H'A0) of EEPROM.

EEPROM memory
address transmission

trs_memadr Transmits memory address data (H'00) of EEPROM.

(2) Descriptions of internal registers

Table 4.9 shows the descriptions of internal registers to be used in this task example.

Rev. 2.0, 11/01, page 193 of 358

Table 4.9 Descriptions of Registers

Register Function Address Set Value

ICDR0 Stores transmission data. H’FFDE —

SAR0 FS Sets transmission format by using bit FSX of SAR0
and bit SW of DDCSWR.

H’FFDF bit00

SARX0 FSX Sets transmission format by using bit FS of SAR0
and bit SW of DDCSWR.

H’FFDE bit01

MLS Sets data transmission by MSB-first. H’FFDF bit70

WAIT Sets continuous transmission of data and
acknowledge.

H’FFDF bit60

CKS2

to

CKS0

Set transmission clock frequency to 100 kHz by
using bit IICX0 of STCR.

H’FFDF

bit5 to

bit3

CKS2=1

CKS1=0

CKS0=1

ICMR0

BC2

to

BC0

Set 9 bits/frame to the number of bits of data to be
transmitted next in I2C bus format.

H’FFDF

bit2 to

bit0

BC2=0

BC1=0

BC0=0

ICE Selects access control of registers ICMR0,
ICDR0/SAR, and SARX, and I2C bus interface
operation (port function for pin SCL0/SDA0)/non-
operation (bus drive state for pin SCL/SDA).

H’FFD8 bit7 0/1

IEIC Inhibits I2C bus interface interrupt requests. H’FFD8 bit6 0

ICCR0

MST Uses the I2C bus interface in master mode. H’FFD8 bit5 1

TRS Sets transmission mode of the I2C bus interface. H’FFD8 bit4 1/0

ACKE Halts continuous transmission when the
acknowledge bit is 1.

H’FFD8 bit3 1

BBSY Confirms that the I2C bus is occupied or released,
and issues start and stop conditions by using bit
SCP.

H’FFD8 bit2 0/1

IRIC Detects start conditions, decides data transmission
end, and detects acknowledge = 1.

H’FFD8 bit1 0/1

ICCR0

SCP Issues start and stop conditions by using bit BBSY. H’FFD8 bit0 0

ICSR0 ACKB Stores acknowledge transmitted from EEPROM. H’FFD9 bit0 —

IICX0 Sets transmission clock frequency to 100 kHz by
using CKS2 to CKS0 of ICMR0.

H’FFC3 bit5 1

IICE Enables CPU access to the data register and
control register of the I2C bus interface.

H’FFC3 bit4 1

STCR

FLSHE Sets a non-select state to the control register of
flash memory.

H’FFC3 bit3 0

Rev. 2.0, 11/01, page 194 of 358

Table 4.9 Descriptions of Registers (cont)

Register Function Address Set Value

SWE Inhibits automatic switching from format-less to I2C
bus format for IIC channel 0.

H’FEE6 bit7 0

SW Uses IIC channel 0 in the I2C bus format. H’FEE6 bit6 0

IE Inhibits an interrupt in automatic format switching. H’FEE6 bit5 0

DDCSWR

CLR3

to

CLR0

Control initialization of the internal state of IIC0. H’FEE6

bit3 to

bit0

CLR3=1

CLR2=1

CLR1=1

CLR0=1

MSTP7 Cancels module stop mode of SCI channel 0. H’FF87 bit7 0MSTPCRL

MSTP4 Cancels module stop mode of IIC channel 0. H’FF87 bit4 0

SCR0 CKE1,0 Sets the P52/SCK0/SCL0 pin to an I/O port. H’FFDA

bit1,0

CKE1=0

CKE0=0

SMR0 C/$ Sets SCI0 operating mode to asynchronous mode. H’FFD8 bit7 0

SYSCR INTM1,0 Set interrupt control mode of the interrupt controller
to control by bit 1.

H’FFC4

bit5,4

INTM1=0

INTM0=0

MDCR MDS1,0 Set MCU operating mode to mode 3 by latching the
input level of pins MD1 and MD0.

H’FFC5

bit1,0

MDS1=1

MDS0=1

(3) Descriptions of variables

Table 4.10 shows the descriptions of variables in this task example.

Table 4.10 Descriptions of Variables

Variable Function Data
Length

Initial
Value

Used Module
Name

dt_trs One-byte transmission data 1 byte H’38 mst_trs

dummy MDCR read value 1 byte — main

(4) Used RAM descriptions

RAM for other than variables is not used in this task example.

Rev. 2.0, 11/01, page 195 of 358

4.4.4 Flowchart

(1) Main routine

main

SP H'F000 Set stack pointer (SP) to H'F000.

Call initial-setting subroutine.

Clear bit 1 to 0 to enable an interrupt.

Call single master transmission subroutine.

Latch the input level of pins MD1 and MD0

in bits MDS1 and MDS0 by reading MDCR.

Set interrupt control mode of the interrupt

controller to interrupt control by bit 1.
SYSCR H'09

initialize

CCR 1bit 0

mst_rec

MDCR read

············

············

············

············

············

············

Rev. 2.0, 11/01, page 196 of 358

(2) Initial-setting subroutine

STCR H'00

MSTPCRL H'7F

DDCSWR H'0F

MSTPCRL H'EF

ICMR0 H'28

ICCR0 H'01

SAR0 H'00

ICSR0 H'00

STCR H'30

ICCR0 H'89

SARX0 H'01

ICCR0 H'81

SMR0 H'00

SCR0 H'00

STCR H'10

initialize

rts

············

············

············

············

············

············

············

············

······

············

············

············

······

Set bit FLSHE of STCR to 0 to set the control register of
flash memory to non-select state.

Set bit MSTP7of MSTPCRL to 0 to cancel module stop
mode of SCI0.

Set bit C/ of SMR to 0 to set SCI0 operating mode to asy
nchronous mode.

Set bits CKE1 and CKE of SMR to 0 to set pin
SCK0 to an I/O port.

Set bit IICE of STCR to 1 to enable CPU access to the data
register and control register of the I2C bus interface.

Set IEIC ICCR0 to 0 to inhibit IIC0 interrupt request.
Set ACKE to 1 to halt continuous transmission when the
acknowledge bit is 1.

Set ICE of ICCR0 to 0 to enable access to SAR0 and SARX0.

Set ICE of ICCR0 to 1 to enable access to ICMR0 and ICDR0.

Set ACKB of ICSR0 to 0.

Set SWE, SW, and IE of DDCSWR to 0. Inhibit automatic switch from
format-less of IIC0 to I2C bus format, use IIC0 in I2C bus format,
and inhibit an interrupt in automatic format switching.

Set FS of SAR0 and FSX of SARX0 to 0 to select I2C bus
format for IIC0 transmission format (recognize SAR slave
address and ignore SARX slave address).

Set IICX0 of STCR and CKS2 and CKS0 of ICMR0 to 1 and CKS1 to 0.
Set IIC0 transmission clock frequency to 100 kHz, set WAI to 0,
and continuously transfer data and acknowledge.

Set bit MSTP7 of MSTPCRL to 1 and bit MSTP4 to 0 to set module
stop mode of SCI0 and cancel module stop mode of IIC0.

Rev. 2.0, 11/01, page 197 of 358

(3) Single master transmission subroutine

set_start

mst_trs

rts

MST 1

TRS 1

trs_slvadr_a0

trs_memadr

IRIC 0

set_stop

ICCR0 dt_trs

set_start

ACKB = 0 ?

No

No

No

No

Yes

Yes

Yes

Yes

BBSY = 0 ?

···············

···············

···············

···············

···············

············

············

············

Transmit the EEPROM slave address + W data.

Bus release state?

Set MST and TRS of ICCR0 to 1 to set IIC0
mode to master transmission mode.

Issue the start condition.

Are there acknowledge from EEPROM?

Transmit the EEPROM memory address data.

Are there acknowledge from EEPROM?

···············Transmit 1-byte data (H'38).

···············Clear IRIC to 0 to decide data-transmission end
(at rising of ninth clock of transmission clocks).

One-byte data transmission end?

···············Issue the stop condition.

ACKB = 0 ?

set_startIRIC = 1?

Rev. 2.0, 11/01, page 198 of 358

(4) Subroutine that sets the start condition

set_start

rts

IRIC 0

ICCR0 H'BC

··················

··················

············IRIC = 1 ?
No

Yes

Clear IRIC to decide start condition detection.

Set BBSY of ICCR0 to 1 and SCP to
0 to issue the start condition.

Is the start condition detected from the bus line state?

(5) Subroutine that sets the stop condition

set_stop

rts

ICCR0 H'B8 ··················

············BBSY = 0 ?
No

Yes

Set BBSY and SCP of ICCR0 to 0 to issue the stop condition.

Bus release state?

Rev. 2.0, 11/01, page 199 of 358

(6) Slave address + W transmission subroutine

trs_slvadr_a0

rts

ICCR0 H'A0

IRIC 0

··················

··················

············IRIC = 1 ?
No

Yes

Transmit the EEPROM slave address + W data (H'A0).

Clear IRIC to 0 to decide data-transmission end
(at rising of ninth clock of transmission clocks).

EEPROM slave address + W data transmission end?

(7) EEPROM memory address transmission subroutine

trs_memadr

rts

ICCR0 H'00

IRIC 0

··················

··················

············
IRIC = 1 ?

No

Yes

Transmit EEPROM memory address data (H'00).

Clear IRIC to 0 to decide data-transmission end
(at rising of ninth clock of transmission clocks).

EEPROM memory address data transmission end?

Rev. 2.0, 11/01, page 200 of 358

4.4.5 Program List

/***

* H8S/2138 IIC bus application note *

* 3.Single master transmit 1byte data to EEPROM *

* File name : BYTxd.c *

* Fai : 20MHz *

* Mode : 3 *

**/

#include <stdio.h>

#include <machine.h>

#include "2138s.h"

/***

* Prototype *

**/

void main(void); /* Main routine */

void initialize(void); /* IIC0 initialize */

void mst_trs(void); /* Master transmit to EEPROM */

void set_start(void); /* Start condition set */

void set_stop(void); /* Stop condition set */

void trs_slvadr_a0(void); /* Slave address + W data transmit */

void trs_memadr(void); /* EEPROM memory address data transmit */

unsigned char dt_trs = 0x38; /* Transmit data (1byte) */

/***

* main : Main routine *

**/

void main(void)

#pragma asm

mov.l #h'f000,sp ;Stack pointer initialize

#pragma endasm

{

unsigned char dummy;

dummy = MDCR.BYTE; /* MCU mode set */

Rev. 2.0, 11/01, page 201 of 358

SYSCR.BYTE = 0x09; /* Interrupt control mode set */

initialize(); /* Initialize */

set_imask_ccr(0); /* Interrupt enable */

mst_trs(); /* Master transmit to EPROM */

while(1); /* End */

}

/***

* initialize : IIC0 initialize *

**/

void initialize(void)

{

STCR.BYTE = 0x00; /* FLSHE = 0 */

MSTPCR.BYTE.L = 0x7f; /* SCI0 module stop mode reset */

SCI0.SMR.BYTE = 0x00; /* SCL0 pin function set */

SCI0.SCR.BYTE = 0x00;

MSTPCR.BYTE.L = 0xef; /* IIC0 module stop mode reset */

STCR.BYTE = 0x10; /* IICE = 1 */

DDCSWR.BYTE = 0x0f; /* IIC bus format initialize */

IIC0.ICCR.BYTE = 0x01; /* ICE = 0 */

IIC0.SAR.BYTE = 0x00; /* FS = 0 */

IIC0.SARX.BYTE = 0x01; /* FSX = 1 */

IIC0.ICCR.BYTE = 0x81; /* ICE = 1 */

IIC0.ICSR.BYTE = 0x00; /* ACKB = 0 */

STCR.BYTE = 0x30; /* IICX0 = 1 */

IIC0.ICMR.BYTE = 0x28; /* Transfer rate = 100kHz */

IIC0.ICCR.BYTE = 0x89; /* IEIC = 0, ACKE = 1 */

}

/***

* mst_trs : Master transmit to EEPROM *

**/

void mst_trs(void)

{

while(IIC0.ICCR.BIT.BBSY == 1); /* Bus empty (BBSY=0) ? */

IIC0.ICCR.BIT.MST = 1; /* Master transmit mode set */

Rev. 2.0, 11/01, page 202 of 358

IIC0.ICCR.BIT.TRS = 1; /* MST = 1, TRS = 1 */

set_start(); /* Start condition set */

trs_slvadr_a0(); /* Slave address + W data transmit */

if (IIC0.ICSR.BIT.ACKB == 0)

{

trs_memadr(); /* EEPROM memory address data transmit */

if (IIC0.ICSR.BIT.ACKB == 0)

{

IIC0.ICDR = dt_trs; /* 1 byte data transmit */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

while(IIC0.ICCR.BIT.IRIC == 0); /* transmit end (IRIC=1) ? */

}

}

set_stop(); /* Stop condition set */

}

/***

* set_start : Start condition set *

**/

void set_start(void)

{

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

IIC0.ICCR.BYTE = 0xbc; /* Start condition set (BBSY=1,SCP=0) */

while(IIC0.ICCR.BIT.IRIC == 0); /* Start condition set (IRIC=1) ? */

}

/***

* set_stop : Stop condition set *

**/

void set_stop(void)

{

IIC0.ICCR.BYTE = 0xb8; /* Stop condition set (BBSY=0,SCP=0) */

while(IIC0.ICCR.BIT.BBSY == 1); /* Bus empty (BBSY=0) ? */

}

Rev. 2.0, 11/01, page 203 of 358

/***

* trs_slvadr_a0 : Slave address + W data transmit *

**/

void trs_slvadr_a0(void)

{

IIC0.ICDR = 0xa0; /* Slave address + W data(H'A0) write */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

while(IIC0.ICCR.BIT.IRIC == 0); /* Transmit end (IRIC=1) ? */

}

/***

* trs_memadr : EEPROM memory address data transmit *

**/

void trs_memadr(void)

{

IIC0.ICDR = 0x00; /* EEPROM memory address data(H'00) write */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

while(IIC0.ICCR.BIT.IRIC == 0); /* Transmit end (IRIC=1) ? */

}

Rev. 2.0, 11/01, page 204 of 358

4.5 One-Byte Data Reception by Single-Master Reception

4.5.1 Specifications

• One-byte data is read from EEPROM (HN58X2408) using channel 0 of the I2C bus interface in
the H8S/2138.

• The slave address of EEPROM to be connected is 1010000, and data in address H'00 of the
EEPROM memory address is read.

• Data to be read is stored at address H'E100 in RAM.

• The device connected to the I2C bus in this system is a single–master configurationone
master device (H8S/2138) and one slave device (EEPROM).

• The transfer clock frequency is 100 kHz.

• Figure 4.14 shows an example of the H8S/2138 and EEPROM connection.

VCC

VSS

SCL0 SCL

SDASDA0

VCC

H8S/2138

Master

VCC

VSS

SCL

SDA

A0

WP

A1

A2

EEPROM

Slave

VCC VCC

VCC

Figure 4.14 Example of H8S/2138 and EEPROM Connection

• Figure 4.15 shows the I2C bus format used in this task example.

Rev. 2.0, 11/01, page 205 of 358

S SLA A MEA A

71 1 1 1 1

1 1

8

S SLA DATAA A P

1 1 11

1 1

7 8

R/ R/

Number of
transmission bits
Number of
transmission frames

Legend:
S
SLA
R/
A
MEA
DATA
P

: Start condition
: EEPROM slave address
: Transmission/reception destination
: Acknowledge
: EEPROM memory address
: Reception data
: Stop condition

Figure 4.15 Transfer Format Used in This Task Example

4.5.2 Operation Description

Figure 4.16 shows the operation principle.

Rev. 2.0, 11/01, page 206 of 358

10µs Transmission/reception clock frequency = 100 kHz

Stop
condition

Ack Ack Ack AckStart
condition

Start condition

1st reception data

SCL

SDA

TDRE

IRIC

RDRF

[3]

[5] [5] [5] [12]

Memory address
=H'00

Slave address
+ R/ =H'A0

Slave address
+ R/ =H'A1

[1]

[2] [2]

[3]

[4] [4] [4] [11]

[1]

[2] [10][6]

[3] [9]

[7] [8]

Hardware processingSoftware processing

Issues start conditions

(BBSY = 1, SCP = 0)

Writes transfer data to ICDR0

No processing

No processing

Clears IRIC to 0 to judge transfer end

Clears IRIC to 0 to judge detection of

start conditions

Sets in master reception mode (MST = 1, TRS = 0)

Clears IRIC to 0 to judge reception end

No processing

Clears IRIC to 0 to judge output end of 9th

reception clock

Sets in master transfer mode

(MST = 1, TRS = 1)

Issues stop conditions

(BBSY = 0, SCP = 0)

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

IRIC = 1, TDRE = 1 (detects start condition from the bus

line state)

TDRE = 0 (writes data to ICDRT while TRS = 1)

TDRE = 1 (transmits data from ICDRT to ICDRS)

IRIC = 1 (ends data transmission (at rising of 9th

transmission clock))

No processing

No processing

TDRE = 0 (when TRS = 0)

No processing

IRIC = 1, RDRF = 1 (WAIT = 1) (ends data reception

(at falling of 8th reception clock))

Starts output at 9th reception clock

IRIC = 1 (at rising of 9th reception clock)

TDRE = 1 (after detecting start conditions, when switching

from TRS = 0 to TRS = 1)

TDRE = 0 (after issuing stop condition, detects stop

conditions from the bus line state)

Figure 4.16 Principle of Reception Operation in One-Byte Data by Single-Master Reception

Rev. 2.0, 11/01, page 207 of 358

4.5.3 Software Description

(1) Module Description

Table 4.11 describes the module in this task example.

Table 4.11 Module Description

Module Name Label Name Function

Main routine main Sets stack pointer and MCU mode, and enables interrupts.

Initial setting initialize Initial settings of using RAM area and IIC0.

Single-master
reception

mst_rec Receives one-byte data from EEPROM by single-master
reception.

Start condition
issuance

set_start Issues start condition.

Stop condition
issuance

set_stop Issues stop condition.

Slave address + W
transmission

trs_slvadr_a0 Transmits slave address + W data (H’A0) in EEPROM.

Slave address + R
transmission

trs_slvadr_a1 Transmits slave address + R data (H’A1) in EEPROM.

EEPROM memory
address transmission

trs_memadr Transmits memory address data (H’00) in EEPROM.

Data reception rec_data Receives one-byte data.

(2) On-Chip Register Description

Table 4.12 describes the on-chip register in this task example.

Rev. 2.0, 11/01, page 208 of 358

Table 4.12 On-Chip Register Description

Register Function Address Setting
Value

ICDR0 Stores transmission/reception data. H'FFDE —

SAR0 FS Sets transfer format with the FSX bit in SARX0 and
the SW bit in DDCSWR.

H'FFDF bit0 0

SARX0 FSX Sets transfer format with the FS bit in SAR0 and the
SW bit in DDCSWR.

H'FFDE bit01

MLS Sets data transfer by MSB first. H'FFDF bit7 0

WAIT Sets whether wait is input or not between data and
acknowledge bit.

H'FFDF bit6 0/1

CKS2

to

CKS0

Set transfer clock frequency to 100 kHz in
conjunction with the IICX0 bit in STCR.

H'FFDF

Bit5 to

Bit3

CKS2=1

CKS1=0

CKS0=1

ICMR0

BC2

to

BC0

Set number of data bits to be transferred next to 9
bits/frame by the I2C bus format.

H'FFDF

Bit2 to

Bit0

BC2=0

BC1=0

BC0=0

ICE Controls access to ICMR0, ICDR0/SAR, SARX, and
selects the I2C bus interface to operate (SCL0 and
SDA0 pins function as port) or not to operate
(SCL/SDA pins are in the bus drive state).

H'FFD8 bit7 0/1

IEIC Disables an interrupt request of the I2C bus
interface.

H'FFD8 bit6 0

MST Uses the I2C bus interface in master mode. H'FFD8 bit5 1

TRS Sets transmission/reception mode in the I2C bus
interface.

H'FFD8 bit4 0/1

ACKE Suspends continuous transfer when an
acknowledge bit is 1.

H'FFD8 bit3 1

BBSY Confirms the I2C bus is occupied or released, and
issues start or stop condition in conjunction with the
SCP bit.

H'FFD8 bit2 0/1

IRIC Detects start condition, judges end of data transfer,
and detects an acknowledge bit = 1.

H'FFD8 bit1 0/1

ICCR0

SCP Issues start or stop condition in conjunction with the
BBSY bit.

H'FFD8 bit0 0

ICSR0 ACKB Stores an acknowledge bit received from EEPROM
in transmitting.

Sets an acknowledge bit to be transferred to
EEPROM in reception.

H'FFD9 bit0 -

Rev. 2.0, 11/01, page 209 of 358

Table 4.12 On-chip Register Description (cont)

Register Function Address Setting
Value

IICX0 Sets the transfer clock frequency to 100 kHz in
conjunction with CKS2 to CKS0 bits in ICMR0.

H'FFC3 bit5 1

IICE Enables access to CPU by the data and control
registers of the I2C bus interface.

H'FFC3 bit4 1

STCR

FLSHE Sets the control register in flash memory to be in
non-selectable state.

H'FFC3 bit3 0

SWE Disables automatic switching from formatless of
channel 0 in IIC to the I2C bus format.

H'FEE6 bit7 0

SW Uses channel 0 in IIC in the I2C bus format. H'FEE6 bit6 0

IE Disables interrupts when format is switched
automatically.

H'FEE6 bit5 0

DDCSWR

CLR3

to

CLR0

Control initialization of an internal state in IIC0. H'FEE6

bit3 to

bit0

CLR3=1

CLR2=1

CLR1=1

CLR0=1

MSTP7 Cancels module stop mode in channel 0 in SCI. H'FF87 bit7 0MSTPCRL

MSTP4 Cancels module stop mode in channel 0 in IIC. H'FF87 bit4 0

SCR0 CKE1,0 Set P52/SCK0/SCL0 pin as I/O port. H'FFDA

bit1, 0

CKE1=0

CKE0=0

SMR0 C/$ Sets operating mode in SCI0 to synchronous mode. H'FFD8 bit7 0

SYSCR INTM1, 0 Set interrupt control mode in interrupt controller to
be controlled by the 1 bit.

H'FFC4

bit5, 4

INTM1=0

INTM0=0

MDCR MDS1, 0 Set MCU operating mode to mode 3 by latching
input levels of MD1 and MD0 pins.

H'FFC5

bit1, 0

MDS1=1

MDS0=1

(3) Variable Description

Table 4.13 describes the variable in this task example.

Table 4.13 Variable Description

Variable Function Data
Length

Initial
Value

Module in Use

dummy MDCR read value 1 byte — main

Rev. 2.0, 11/01, page 210 of 358

(4) Using RAM Description

Table 4.14 describes the RAM used in this task example.

Table 4.14 Description of RAM Used

Label Function Data
Length

Address Module in Use

dt_rec[0] Stores received data. 1 byte H'E100 Initialize

rec_data

4.5.4 Flowchart

(1) Main Routine

main

SP H'F000 Set SP (stack pointer) to H'F000.

Call subroutine in initial setting.

Enable interrupts by clearing the 1 bit to 0.

Call subroutine in single-master reception.

Latch input levels of the MD1 to MD0 pins

to the MDS1 to MDS0 bits by reading MDCR.

Set interrupt control mode in the interrupt

controller to control interrupts by the 1 bit.
SYSCR H'09

initialize

CCR 1bit 0

mst_rec

Read MDCR

············

············

············

············

············

············

Rev. 2.0, 11/01, page 211 of 358

(2) Initial Setting Subroutine

dt_rec[0] H'00

STCR H'00

STCR H'10

SCR0 H'00

STCR H'30

DDCSWR H'0F

ICCR0 H'01

ICCR0 H'81

ICCR0 H'89

ICSR0 H'00

ICMR0 H'28

SAR0 H'00

SARX0 H'01

MSTPCRL H'7F

SMR0 H'00

MSTPCRL H'EF

Initialize RAM area for storing received data.

Clear the FLSHE bit in STCR to 0 and set the control
register in flash memory to be in non-selectable state.

Set the IICE bit in STCR to 1 and enable access to CPU
by the data register and control register in the I2C bus interface.

Clear the ICE bit in ICCR0 to 0 and enable access to SAR0
and SARX0.

Set the ICE bit in ICCR0 to 1 and enable access to ICMR0 and ICDR0.

Clear the IEIC bit in ICCR to 0, disable the IIC0 interrupt
request, set ACKE to 1, and suspend continuous transfer
when acknowledge bit is 1.

Clear the ACKB bit in ICSR0 to 0.

Clear the SWE, SW, and IE bits in DDCSWR to 0, disable
automatic switching from IIC0 formatless to the I2C bus format,
use IIC0 in the I2C bus format, and disable interrupts when
format is switched automatically.

Clear the CKE1 and CKE bits in SCR to 0 and
set the SCK0 pin as I/O port.

Clear the MSTP7 bits in MSTPCRL to 0 and cancel
module stop mode in SCI0.

Set the MSTP7 bit to 1, clear the MSTP4 bit to 0 in
MSTPCRL, set module stop mode in SCI0, and
cancel module stop mode in IIC0.

Clear the C/ bit in SMR to 0 and set operating
mode in SCI0 to synchronous mode.

Clear the FS bit in SAR0 and the FSX bit in SARX0 to 0 and
select the I2C bus format as the transfer format in IIC0
(confirm a slave address in SAR and ignore a slave address in SARX).

Set the IICX0 bit in STCR and the CKS2 and CKS0 bits in
ICMR0 to 1, clear the CKS1 bit to 0, set the transfer clock
frequency in IIC0 to 100 kHz, clear WAIT to 0, and transfer
data and acknowledge bits continuously.

initialize

rts

············

············

············

············

············

············

············

············

············

······

············

············

······

············

Rev. 2.0, 11/01, page 212 of 358

(3) Single-Master Reception Subroutine

set_start

trs_slvadr_a0

mst_rec

MST 1

TRS 1

trs_slvadr_a1

set_start

ACKB = 0 ?

ACKB = 0 ?

No

No

No

No

Yes

Yes

Yes

Yes

BBSY = 0 ?

ACKB = 0 ?

trs_memadr

set_stop

rts

rec_data

············

···············

···············

··················

··················

·····················

··················

··················

·····················

··················

··················

········Bus release state?

Set the MST and TRS bits in ICCR0 to 1 and
set IIC0 mode to master transmission mode.

Call start condition issuance subroutine.

Call EEPROM slave address + W data transmission subroutine.

Acknowledge from EEPROM?

Call subroutine of EEPROM memory address data transmission.

Acknowledge from EEPROM?

Acknowledge from EEPROM?

Call EEPROM slave address + R data transmission subroutine.

Call data reception subroutine.

Call stop condition issuance subroutine.

Call start condition issuance subroutine.

Rev. 2.0, 11/01, page 213 of 358

(4) Start Condition Issuance Subroutine

set_start

rts

IRIC 0

ICCR0 H'BC

·····················

·····················

··········IRIC = 1 ?
No

Yes

Clear IRIC to 0 for judging detection of start condition.

Set the BBSY bit in ICCR0 to 1, clear the SCP bit to 0,
and issue the start condition

Detect the start condition from the bus line state?

(5) Stop Condition Issuance Subroutine

set_stop

rts

ICCR0 H'B8 ·····················

··········
BBSY = 0 ?

No

Yes

Bus release state?

Clear the BBSY and SCP bits in ICCR0 to 0,
and issue the stop condition.

Rev. 2.0, 11/01, page 214 of 358

(6) Slave Address + W Transmission Subroutine

trs_slvadr_a0

rts

ICCR0 H'A0

IRIC 0

·····················

·····················

··········IRIC = 1 ?
No

Yes

Transmit EEPROM slave address + W data (H'A0).

Clear IRIC to 0 for judging end of data transmission
(at rising of 9th transmission clock).

EEPROM slave address + W data has been transmitted?

(7) Slave Address + R Transmission Subroutine

trs_slvadr_a1

rts

ICCR0 H'A1

IRIC 0

·····················

·····················

·········
IRIC = 1 ?

No

Yes

Transmit EEPROM slave address + R data (H'A1).

Clear IRIC to 0 for judging end of data transmission
(at rising of 9th transmission clock).

EEPROM slave address + R data has been transmitted?

Rev. 2.0, 11/01, page 215 of 358

(8) Subroutine of EEPROM Memory Address Transmission

trs_memadr

rts

ICCR0 H'00

IRIC 0

·····················

·····················

·········IRIC = 1 ?
No

Yes

Transmit EEPROM memory address data (H'00).

Clear IRIC to 0 for judging end of data transmission
(at rising of 9th transmission clock).

EEPROM memory address data has been transmitted?

Rev. 2.0, 11/01, page 216 of 358

(9) Data Reception Subroutine

rec_data

TRS 0

WAIT 1

ACKB 1

dt_rec[0] ICDR0

IRIC 0

WAIT 0

dt_rec[0] ICDR0

IRIC = 1 ?

IRIC = 1 ?

No

No

Yes

Yes

IRIC 0

TRS 1

rts

ACKB 0

············

············

············

············

············

············

············

············

············

············

······Data reception ended?

TSR = 1 (Set to master transmission mode)

IRIC = 0 (Start output at 9th reception clock)

TRS = 0 (Set to master reception mode)

WAIT = 1 (Insert wait between data and acknowledge bit)

ACKB = 1 (Output 1 at acknowledge output timing in reception)

Dummy read (Start reception)

Clears IRIC to 0 for judging end of data reception
(at falling of 8th reception clock).

·····
Ends output at 9th reception clock
(at rising of 9th reception clock)?

Read received data in first-byte and store the data in RAM.

WAIT = 0

ACKB = 0

Rev. 2.0, 11/01, page 217 of 358

4.5.5 Program List

/***

* H8S/2138 IIC bus application note *

* 4.Single master receive 1byte data from EEPROM *

* File name : BYRxd.c *

* Fai : 20MHz *

* Mode : 3 *

**/

#include <stdio.h>

#include <machine.h>

#include "2138s.h"

/***

* Prototype *

**/

void main(void); /* Main routine */

void initialize(void); /* RAM & IIC0 initialize */

void mst_rec(void); /* Master receive from EEPROM */

void set_start(void); /* Start condition set */

void set_stop(void); /* Stop condition set */

void trs_slvadr_a0(void); /* Slave address + W data transmit */

void trs_slvadr_a1(void); /* Slave address + R data transmit */

void trs_memadr(void); /* EEPROM memory address data transmit */

void rec_data(void); /* 1-byte data receive */

/***

* RAM allocation *

**/

#pragma section ramerea

unsigned char dt_rec[1]; /* Receive data store area */

/***

* main : Main routine *

**/

#pragma section

void main(void)

Rev. 2.0, 11/01, page 218 of 358

#pragma asm

mov.l #h'f000,sp ;Stack pointer initialize

#pragma endasm

{

unsigned char dummy;

dummy = MDCR.BYTE; /* MCU mode set */

SYSCR.BYTE = 0x09; /* Interrupt control mode set */

initialize(); /* Initialize */

set_imask_ccr(0); /* Interrupt enable */

mst_rec(); /* Master receive from EPROM */

while(1); /* End */

}

/***

* initialize : RAM & IIC0 Initialize *

**/

void initialize(void)

{

dt_rec[0] = 0x00; /* Receive data store area initialize */

STCR.BYTE = 0x00; /* FLSHE = 0 */

MSTPCR.BYTE.L = 0x7f; /* SCI0 module stop mode reset */

SCI0.SMR.BYTE = 0x00; /* SCL0 pin function set */

SCI0.SCR.BYTE = 0x00;

MSTPCR.BYTE.L = 0xef; /* IIC0 module stop mode reset */

STCR.BYTE = 0x10; /* IICE = 1 */

DDCSWR.BYTE = 0x0f; /* IIC bus format initialize */

IIC0.ICCR.BYTE = 0x01; /* ICE = 0 */

IIC0.SAR.BYTE = 0x00; /* FS = 0 */

IIC0.SARX.BYTE = 0x01; /* FSX = 1 */

IIC0.ICCR.BYTE = 0x81; /* ICE = 1 */

IIC0.ICSR.BYTE = 0x00; /* ACKB = 0 */

STCR.BYTE = 0x30; /* IICX0 = 1 */

IIC0.ICMR.BYTE = 0x28; /* Transfer rate = 100kHz */

IIC0.ICCR.BYTE = 0x89; /* IEIC = 0, ACKE = 1 */

}

Rev. 2.0, 11/01, page 219 of 358

/***

* mst_rec : Master receive from EEPROM *

**/

void mst_rec(void)

{

while(IIC0.ICCR.BIT.BBSY == 1); /* Bus empty (BBSY=0) ? */

IIC0.ICCR.BIT.MST = 1; /* Master transmit mode set */

IIC0.ICCR.BIT.TRS = 1; /* MST = 1, TRS = 1 */

set_start(); /* Start condition set */

trs_slvadr_a0(); /* Slave address + W data transmit */

if(IIC0.ICSR.BIT.ACKB == 0) /* ACKB = 0 ? */

{

trs_memadr(); /* EEPROM memory address data transmit */

if(IIC0.ICSR.BIT.ACKB == 0) /* ACKB = 0 ? */

{

set_start(); /* Re-start condition set */

trs_slvadr_a1(); /* Slave address + R data transmit */

if(IIC0.ICSR.BIT.ACKB == 0) /* ACKB = 0 ? */

{

rec_data(); /* 1-byte data receive */

}

}

}

set_stop(); /* Stop condition set */

}

/***

* set_start : Start condition set *

**/

void set_start(void)

{

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

IIC0.ICCR.BYTE = 0xbc; /* Start condition set (BBSY=1,SCP=0) */

while(IIC0.ICCR.BIT.IRIC == 0); /* Start condition set (IRIC=1) ? */

Rev. 2.0, 11/01, page 220 of 358

}

/***

* set_stop : Stop condition set *

**/

void set_stop(void)

{

IIC0.ICCR.BYTE = 0xb8; /* Stop condition set (BBSY=0,SCP=0) */

while(IIC0.ICCR.BIT.BBSY == 1); /* Bus empty (BBSY=0) ? */

}

/***

* trs_slvadr_a0 : Slave addres + W data transmit *

**/

void trs_slvadr_a0(void)

{

IIC0.ICDR = 0xa0; /* Slave address + W data(H'A0) write */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

while(IIC0.ICCR.BIT.IRIC == 0); /* Transmit end (IRIC=1) ? */

}

/***

* trs_slvadr_a1 : Slave addres + R data transmit *

**/

void trs_slvadr_a1(void)

{

IIC0.ICDR = 0xa1; /* Slave address + R data(H'A1) write */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

while(IIC0.ICCR.BIT.IRIC == 0); /* Transmit end (IRIC=1) ? */

}

/***

* trs_memadr : EEPROM memory address data transmit *

**/

void trs_memadr(void)

{

Rev. 2.0, 11/01, page 221 of 358

IIC0.ICDR = 0x00; /* EEPROM memory address data(H'00) write */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

while(IIC0.ICCR.BIT.IRIC == 0); /* Transmit end (IRIC=1) ? */

}

/***

* rec_data : 1-byte data receive *

**/

void rec_data(void)

{

IIC0.ICCR.BIT.TRS = 0; /* Master receive mode set (MST=1,TRS=0) */

IIC0.ICMR.BIT.WAIT = 1; /* WAIT = 1 */

IIC0.ICSR.BIT.ACKB = 1; /* ACKB = 1 */

dt_rec[0] = IIC0.ICDR; /* Dummy read (Receive start) */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

while(IIC0.ICCR.BIT.IRIC == 0); /* Receive end (IRIC=1) ? */

IIC0.ICCR.BIT.TRS = 1; /* Master transmit mode set (MST=1,TRS=1) */

IIC0.ICCR.BIT.IRIC = 0; /* 9th clock transmit start (IRIC=0) */

while(IIC0.ICCR.BIT.IRIC == 0); /* 9th clock transmit end (IRIC=1) ? */

dt_rec[0] = IIC0.ICDR; /* 1-byte receive data read */

IIC0.ICMR.BIT.WAIT = 0; /* WAIT = 0 */

IIC0.ICSR.BIT.ACKB = 0; /* ACKB = 0 */

}

Rev. 2.0, 11/01, page 222 of 358

4.6 Single-Master Transmission by DTC

4.6.1 Specifications

• 10-byte data is written to EEPROM (HN58X2408) using channel 0 of the I2C bus interface in
the H8S/2138 and the data transfer controller (DTC).

• The slave address of EEPROM to be connected is 1010000, and data is written to addresses
H'00 to H'09 of the EEPROM memory.

• 10-byte data to be written is stored at addresses H'E102 to H'E10B in RAM.

• The device connected to the I2C bus in this system is a single–master configurationone
master device (H8S/2138) and one slave device (EEPROM).

• The transfer clock frequency is 100 kHz.

• Figure 4.17 shows an example of the H8S/2138 and EEPROM connection.

VCC

VSS

SCL0 SCL

SDASDA0

VCC

H8S/2138

Master

VCC

VSS

SCL

SDA

A0

WP

A1

A2

EEPROM

Slave

VCC VCC

VCC

Figure 4.17 Example of H8S/2138 and EEPROM Connection

• Figure 4.18 shows the I2C bus format used in this task example.

Rev. 2.0, 11/01, page 223 of 358

S SLA A MEA A DATA A

71 1 1 1

1 1

8

A P

1 1 1

10

8

R/

Number of
transmission bits

Number of
transmission frames

Legend:
S
SLA
R/
A
MEA
DATA
P

: Start condition
: EEPROM slave address
: Transmission/reception destination
: Acknowledge
: EEPROM memory address
: Reception data
: Stop condition

Figure 4.18 Transfer Format Used in This Task Example

• An example usage of the data transfer controller (DTC) in the H8S/2138 series used in this
task example is described below.

(a) The DTC is activated by an interrupt request of channel 0 in the I2C bus interface (IICI0) and
transmission data is transferred.

(b) Normal mode is used for the DTC transfer mode.

(c) Figure 4.19 shows a block diagram of the DTC used in this task example.

Rev. 2.0, 11/01, page 224 of 358

IICI0
(IIC0 interrupt request)

CPU interrupt request

Legend:
MRA, MRB
CRA, CRB
SAR
DAR
DTCERA to DTCERE
DTVECR

: DTC mode register A, B
: DTC count register A, B
: DTC source address register
: DTC destination register
: DTC enables registers A to E
: DTC vector register

Interrupt
controller

DTCERA
to

DTCERE

DTVECR

DTC

Control logic

MRA
CRA
CRB MRB

DAR
SAR

MRB

On-chip RAM

I2C bus data register 0 (ICDR0)

Internal I/O register

Internal address bus

Internal data bus

DTC
activate
request R

eg
is

te
r

in
fo

rm
at

io
n

Tr
an

sf
er

 d
at

a

Figure 4.19 Block Diagram of DTC in This Task Example

Rev. 2.0, 11/01, page 225 of 358

(d) Figure 4.20 shows the location of transfer data on on-chip RAM.

Address

H'E100
H'E101
H'E102
H'E103
H'E104
H'E105
H'E106
H'E107
H'E108
H'E109
H'E10A
H'E10B

H'A0
H'00
H'01
H'23
H'45
H'67
H'89
H'98
H'76
H'54
H'32
H'10

Slave address + R/W data
EEPROM memory address data
1st-byte transmission data
2nd-byte transmission data
3rd-byte transmission data
4th-byte transmission data
5th-byte transmission data
6th-byte transmission data
7th-byte transmission data
8th-byte transmission data
9th-byte transmission data
10th-byte transmission data

On-chip RAM Transfer data

Figure 4.20 Location of Transfer Data on On-Chip RAM

(e) Figure 4.21 shows the location of DTC vector table and register information on the on-chip
RAM in this task example. DTC register information is provided from address H'EC00 to the
MRA, SAR, MRB, DAR, CRA, and CRB registers in that order.

Address Address

H'EC00
H'EC01
H'EC02
H'EC03
H'EC04
H'EC05
H'EC06
H'EC07
H'EC08
H'EC09
H'EC0A
H'EC0B

H'80
H'00
H'E1
H'00
H'00
H'00
H'FF
H'DE
H'00
H'0C
H'00
H'00

MRA register information (MRA1)

SAR register information (SAR1)

MRB register information (MRB1)

DAR register information (DAR1)

CRA register information (CRA1)

CRB register information (CRB1)

DTC vector table On-chip RAM

H'04B8
H'04B9

H'EC
H'00

Figure 4.21 Location of DTC Vector Table and Register Information on On-Chip RAM

Rev. 2.0, 11/01, page 226 of 358

(f) Table 4.15 describes the register of the DTC used in this task example.

Table 4.15 DTC Register Description

Register Function

MRA DTC mode register A

Controls DTC operating mode.

SM1, 0

(bit7, 6)

Source address mode 1, 0

Specify whether SAR is incremented, decremented, or fixed after data
transfer is performed.

When SM1 =0 and SM0 = * , SAR is fixed (* : 0 or 1)

When SM1 =1 and SM0 = 0, SAR is incremented after transfer (when Sz = 0:
+ 1, when Sz = 1: + 2)

When SM1 =1 and SM0 = 1, SAR is decremented after transfer (when Sz =
0: − 1, when Sz = 1: − 2)

DM1, 0

(bit5, 4)

Destination address mode 1, 0

Specify whether DAR is incremented, decremented, or fixed after data
transfer is performed.

When DM1 =0 and DM0 = * , DAR is fixed (* : 0 or 1)

When DM1 =1 and DM0 = 0, DAR is incremented after transfer (when Sz =
0: + 1, when Sz = 1: + 2)

When DM1 =1 and DM0 = 1, DAR is decremented after transfer (when Sz =
0: − 1, when Sz = 1: − 2)

MD1, 0

(bit3, 2)

DTC mode 1, 0

Specify DTC transfer mode.

When MD1 = 0 and MD0 = 0, normal mode

When MD1 = 0 and MD0 = 1, repeat mode

When MD1 = 1 and MD0 = 0, block transfer mode

When MD1 = 1 and MD0 = 1, setting prohibited

DTS

(bit1)

DTC transfer mode select

Specifies either source side or destination side becomes repeat area or block
area in repeat mode or block.

When DTS = 0, destination side becomes repeat area or block area.

When DTS = 1, source side becomes repeat area or block area.

Sz

(bit0)

DTC data transfer size

Specifies data size in data transfer.

Rev. 2.0, 11/01, page 227 of 358

Table 4.15 DTC Register Description (cont)

Register Function

MRB DTC mode register B

Controls DTC mode.

CHEN

(bit7)

DTC chain transfer enable

Specifies chain transfer

When CHEN = 0, DTC data transfer is ended.

When CHEN = 1, DTC chain transfer.

MRB DISEL

(bit6)

DTC interrupt select

Specifies an interrupt request to CPU is disabled or enabled after one data
transfer is performed.

When DISEL = 0, an interrupt to CPU is disabled if transfer counter is not 0
after the DTC data transfer is ended.

When DISEL = 1, an interrupt to CPU is enabled after the DTC data transfer
is ended.

SAR DTC source address register

Specifies the transfer source address of data to be transferred by the DTC.

DAR DTC destination address register

Specifies the transfer destination address of data to be transferred by the
DTC.

CRA DTC transfer count register A

Specifies the number of data transfers by the DTC.

CRB DTC transfer count register B

Specifies the number of block data transfers by the DTC in block transfer
mode.

DTVECR(H’FEF3) DTC vector register

Sets the DTC activation to be enabled or disabled by software and sets the
vector address for the software activation interrupt.

SWDTE

(bit7)

DTC software activation enable

Sets the DTC software activation to be enabled or disabled.

When SWDTE = 0, the DTC software activation is disabled.

When SWDTE = 1, the DTC software activation is enabled.

DTVEC
6-0

(bit6-0)

DTC software activation vectors 6 to 0

Set the vector address for the DTC software activation.

Rev. 2.0, 11/01, page 228 of 358

Table 4.15 DTC Register Description (cont)

Register Function

DTCERD(H’FEF1) DTC enable register

Controls the enabling or disabling of DTC activation by each interrupt source.

DTCED4

(bit4)

DTC activation enable D4

When DTCED4 = 0, the DTC activation is disabled by the IICI0 interrupt.

When DTCED4 = 2, the DTC activation is enabled by the IICI0 interrupt.

(g) The I2C bus format provides for selection of the slave device and transfer direction by means
of the slave address and the R/: bit, confirmation of reception with the acknowledge bit,
indication of the last frame, and so on. Therefore, continuous data transfer using the DTC
must be carried out in conjunction with CPU processing by means of interrupts. Table 4.16
shows an example of processing using the DTC in master transmission mode in this task
example.

Table 4.16 Operation Example by DTC (master transmission mode)

Item Master Transmission Mode

Slave address + R/: bit
transmission

Transmission by DTC (ICDR write)

Dummy data read —

Actual data transmission Transmission by DTC (ICDR write)

Dummy data (H’FF) write —

Last frame processing Not necessary

Transfer request processing after
last frame processing

1st time: Clearing by CPU

2nd time: End condition issuance by CPU

Setting of number of DTC transfer
data frames

Transmission: Actual data count + 1(+ 1 equivalent to slave
address + R/W bits)

Rev. 2.0, 11/01, page 229 of 358

4.6.2 Operation Description

Figure 4.22 shows the operation principle.

SCL

SDA

[1]
[2]
[3]
[4]
[5]

[1] [2] [2] [2] [3] [4] [5]

10µs Transmission clock frequency = 100 kHz

AckStart
condition

Slave address
+ R/ = H’A0

Memory address
= H’00

1st transmission
data = H’01

9th transmission
data = H’32

10th transmission
data = H’10

Stop
condition

Ack Ack Ack Ack Ack

Issues start condition (BBSY = 1, SCP = 0)
No processing
Clears IRIC to 0 (1st IICI0 interrupt processing)
Clears IRIC to 0 (2nd IICI0 interrupt processing)
Issues stop condition (BBSY = 0, SCP = 0)

No processing
Writes transmission data to ICDR and clears IRIC to 0
Writes transmission data to ICDR
No processing
No processing

CPU processing DTC processing

···

···

···

Figure 4.22 Principle of Transmission Operation in Single Master by DTC

4.6.3 Software Description

(1) Module Description

Table 4.17 describes the module in this task example.

Table 4.17 Module Description

Module Name Label Name Function

Main routine main Sets the stack pointer and MCU mode, and enables
interrupts.

Initial setting initialize Initial settings of using RAM area, IIC0 and the DTC

Transmission setup trs_stup Sets master transmission mode and issues start condition.

IIC0 interrupt
processing

iici0 Clears IRIC and issues stop condition.

Rev. 2.0, 11/01, page 230 of 358

(2) On-Chip Register Description

Table 4.18 shows an on-chip register description in this task example.

Table 4.18 On-Chip Register Description

Register Function Address Setting
Value

ICDR0 Stores transmission/reception data. H'FFDE —

SAR0 FS Sets transfer format with the FSX bit in SARX0 and
the SW bit in DDCSWR.

H'FFDF bit0 0

SARX0 FSX Sets transfer format with the FS bit in SAR0 and the
SW bit in DDCSWR.

H'FFDE bit01

MLS Sets data transfer by MSB first. H'FFDF bit7 0

WAIT Sets whether wait is input or not between data and
acknowledge bit.

H'FFDF bit6 0

CKS2

to

CKS0

Set transfer clock frequency to 100 kHz in
conjunction with the IICX0 bit in STCR.

H'FFDF

bit5 to

bit3

CKS2=1

CKS1=0

CKS0=1

ICMR0

BC2

to

BC0

Set number of data bits to be transferred next to 9
bits/frame by the I2C bus format.

H'FFDF

bit2 to

bit0

BC2=0

BC1=0

BC0=0

ICE Controls access to ICMR0, ICDR0/SAR, SARX, and
selects the I2C bus interface to operate (SCL0 and
SDA0 pins function as port) or not to operate
(SCL/SDA pins are in the bus drive state).

H'FFD8 bit7 0/1

IEIC Disables an interrupt request of the I2C bus
interface.

H'FFD8 bit6 0

MST Uses the I2C bus interface in master mode. H'FFD8 bit5 1

TRS Sets transmission/reception mode in the I2C bus
interface.

H'FFD8 bit4 1

ACKE Suspends continuous transfer when an
acknowledge bit is 1.

H'FFD8 bit3 1

ICCR0

BBSY Confirms the I2C bus is occupied or released, and
issues start or stop condition in conjunction with the
SCP bit.

H'FFD8 bit2 0/1

Rev. 2.0, 11/01, page 231 of 358

Table 4.18 On-Chip Register Description (cont)

Register Function Address Setting
Value

IRIC Detects start condition, judges end of data transfer,
and detects an acknowledge bit = 1.

H'FFD8 bit1 0/1ICCR0

SCP Issues start or stop condition in conjunction with the
BBSY bit.

H'FFD8 bit0 0

ICSR0 ACKB Stores an acknowledge bit received from EEPROM
in transmitting.

Sets an acknowledge bit to be transferred to
EEPROM in reception.

H'FFD9 bit0 -

IICX0 Sets the transfer clock frequency to 100 kHz in
conjunction with CKS2 to CKS0 bits in ICMR0.

H'FFC3 bit5 1

IICE Enables access to CPU by the data and control
registers of the I2C bus interface.

H'FFC3 bit4 1

STCR

FLSHE Sets the control register in flash memory to be in
non-selectable state.

H'FFC3 bit3 0

SWE Disables automatic switching from formatless of
channel 0 in IIC to the I2C bus format.

H'FEE6 bit7 0

SW Uses channel 0 in IIC in the I2C bus format. H'FEE6 bit6 0

IE Disables interrupts when format is switched
automatically.

H'FEE6 bit5 0

DDCSWR

CLR3

to

CLR0

Control initialization of an internal state in IIC0. H'FEE6

bit3 to

bit0

CLR3=1

CLR2=1

CLR1=1

CLR0=1

MSTP7 Cancels module stop mode in channel 0 in SCI. H'FF87 bit7 0MSTPCRL

MSTP4 Cancels module stop mode in channel 0 in IIC. H'FF87 bit4 0

SCR0 CKE1, 0 Set P52/SCK0/SCL0 pin as I/O port. H'FFDA

bit1, 0

CKE1=0

CKE0=0

SMR0 C/$ Sets operating mode in SCI0 to synchronous mode. H'FFD8 bit7 0

SYSCR INTM1, 0 Set interrupt control mode in interrupt controller to
be controlled by the 1 bit.

H'FFC4

bit5, 4

INTM1=0

INTM0=0

MDCR MDS1, 0 Set MCU operating mode to mode 3 by latching
input levels of MD1 and MD0 pins.

H'FFC5

bit1, 0

MDS1=1

MDS0=1

Rev. 2.0, 11/01, page 232 of 358

Table 4.18 On-Chip Register Description (cont)

Register Function Address Setting
Value

SM1, 0 Set SAR to be incremented after data transfer. H'EC00

bit7, 6

SM1=1

SM0=0

DM1, 0 Set DAR to be fixed after data transfer. H'EC00

bit5, 4

DM1=0

DM0=0

MD1, 0 Set DTC transfer mode to normal mode. H'EC00

bit3, 2

MD1=0

MD0=0

DTS Sets the destination source to be repeat area or
block area.

H'EC00

bit1

DTS=0

MRA

Sz Sets data size in data transfer to be in byte size. H'EC00

bit0

Sz=0

CHNE Sets the DTC chain transfer to be disabled. H'EC04

bit7

CHNE=0MRB

DISEL Sets an interrupt to CPU to be disabled if the
transfer counter is not 0 after one data transfer is
performed.

H'EC04

bit6

DISSEL=
0

SAR Sets the transfer source address of data transferred
by the DTC to H’E100.

H'EC01 H'00E100

DAR Sets the transfer destination address of data
transferred by the DTC to H’FFDE.

H'EC05 H'00FFDE

CRA Sets the number of data transfers by the DTC to 12. H'EC08 H'000C

CRB Sets the number of block data transfers by the DTC
in block transfer mode to 0.

H'EC0A H'0000

SWDTE Sets the DTC software activation to be disabled. H'FEF3 bit7 0DTVECR

DTVEC6

to

DTVEC0

Set the vector address of the DTC software
activation to H’00.

H'FEF3

bit6 to

bit0

H'00

DTCERD DTCED4 Enables the DTC activation by the IICI0 interrupt. H'FEF1 bit4 1

MSTPCR
H

MSTP14 Cancels module stop mode of the DTC. H'FF86 bit6 0

Rev. 2.0, 11/01, page 233 of 358

(3) Variable Description

Table 4.19 describes the variable in this task example.

Table 4.19 Variable Description

Variable Function Data
Length

Initial
Value

Module in Use

dummy MDCR read value 1 byte — main

i Transmit data counter 1 byte H'00 initialize

dt_trs[0] Slave address + W data 1 byte H'A0 initialize

dt_trs[1] EEPROM memory address data 1 byte H'00 initialize

dt_trs[2] 1st-byte transmission data 1 byte H'01 initialize

dt_trs[3] 2nd-byte transmission data 1 byte H'23 initialize

dt_trs[4] 3rd-byte transmission data 1 byte H'45 initialize

dt_trs[5] 4th-byte transmission data 1 byte H'67 initialize

dt_trs[6] 5th-byte transmission data 1 byte H'89 initialize

dt_trs[7] 6th-byte transmission data 1 byte H'98 initialize

dt_trs[8] 7th-byte transmission data 1 byte H'76 initialize

dt_trs[9] 8th-byte transmission data 1 byte H'54 initialize

dt_trs[10] 9th-byte transmission data 1 byte H'32 initialize

dt_trs[11] 10th-byte transmission data 1 byte H'10 initialize

Rev. 2.0, 11/01, page 234 of 358

(4) Description of RAM Used

Table 4.20 describes the RAM used in this task example.

Table 4.20 Description of RAM Used

Label Function Data
Length

Address Module in Use

MRA1 DTC mode register A (MRA) 1 byte H'EC00 initialize

SAR1 DTC source address register (SAR) 4 bytes H'EC00 initialize

MRB1 DTC mode register B (MRB) 1 byte H'EC04 initialize

DAR1 DTC destination address register (DAR) 4 bytes H'EC04 initialize

CRA1 DTC transfer count register A (CRA) 2 bytes H'EC08 initialize

CRB1 DTC transfer count register B (CRB) 2 bytes H'EC0A initialize

txedf Transmission end judgement flag 1 byte H'E200 main

iici0

dt_trs_ram

[0]

Stores slave address + R/W data. 1 byte H'E100 initialize

dt_trs_ram

[1]

Stores EEPROM memory address data. 1 byte H'E101 initialize

dt_trs_ram

[2]

to

dt_trs_ram

[11]

Stores 10-byte transmission data. 10 bytes H'E102

or

H’E10B

initialize

Rev. 2.0, 11/01, page 235 of 358

4.6.4 Flowchart

(1) Main Routine

main

SP H'F000 Set SP (stack pointer) to H'F000.

Call subroutine in initial setting.

Call subroutine in transmission setup.

Enable an interrupt request by the IIC0.

Latch input levels of the MD1 to MD0 pins
to the MDS1 to MDS0 bits by reading MDCR.

Set interrupt control mode in the interrupt
controller to control interrupts by the 1 bit.

SYSCR H'09

initialize

trs_stup

IEIC 1

CCR 1bit 0

Read MDCR

·····················

·····················

·····················

·····················

·····················

·····················

Enable interrupts by clearing the 1 bit to 0.·····················

txedf < 2 ?
No

Yes

·············Transmission end?

Rev. 2.0, 11/01, page 236 of 358

(2) Initial Setting Subroutine

i 0

i++

dt_trs_ram[i]
dt_trs[i]

Initialize the transmission data counter.

Clear the FLSHE bit in STCR to 0 and set the control register
in flash memory to be in non-selectable state.

Set MRA to H'80 and set SAR to be incremented, DAR to be fixed,
the DTC transfer mode to normal mode, and data size of data
transfer to be in byte size after data is transferred.
Set DAR to H'00FFDE and set the transfer destination address
of data transferred by the DTC to H'FFDE (ICDR0).

Set DTVECR to H'00 and disable the DTC software activation.

Set DTCDE4 to 1 and enable the DTC activation by the IICI0
interrupt.

Increment the transmission data counter.

Initialize the transmission end judgement flag.

Transmission data counter < 12?

Copy transmission data on ROM to RAM.

Set the MSTP14 bits in MSTPCRH to 0 and cancel module
stop mode in the DTC.

Set SAR to H'00E100 and set the transfer source address
of data transferred by the DTC to H'E100.

Set MRB to H'00 and the DTC chain transfer to be disabled.
Set an interrupt to CPU to be disabled if the transfer counter
is not 0 after the DTC data transfer is ended.
Set CRA to H'000C and set the number of data transfers by the
DTC to 12.

Set CRB to H'0000 and set the number of block data transfers
by the DTC to 0.

initialize

·····················

···············

···············

···············

·····················

·····················

·····················

·····················

·····················

·····················

·····················

·····················

·····················

·····················

·····················

i < 12 ?
No

Yes

MRB1 H'00

txedf H'00

STCR H'00

MRA1 H'80

CRB1 H'0000

DAR1 H'0000FFDE

CRA1 H'000C

DTCED4 1

DTVECR H'00

MSTPCRH H'3F

SAR1 H'0000E100

1

Rev. 2.0, 11/01, page 237 of 358

SMR0 H'00

ICCR0 H'01

STCR H'10

ICCR0 H'89

SAR0 H'00

SARX0 H'01

STCR H'30

ICMR0 H'28

ICCR0 H'81

ICSR0 H'00

SCR0 H'00

MSTPCRL H'EF

DDCSWR H'0F

Clear the MSTP7 bits in MSTPCRL to 0 and
cancel module stop mode in SCI0.

Clear the C/ bit in SMR to 0 and set operating
mode in SCI0 to synchronous mode.

Clear the ICE bit in ICCR0 to 0 and enable access to SAR0
and SARX0.

Clear the ACKB bit in ICSR0 to 0.

Set the IICX0 bit in STCR and the CKS2 and CKS0 bits in ICMR0
to 1, clear the CKS1 bit to 0, set the transfer clock frequency in
IIC0 to 100 kHz, clear WAIT to 0, and transfer data and acknowledge
bits continuously.

Clear the IEIC bit in ICCR to 0, disable the IIC0 interrupt request,
set ACKE to 1, and suspend continuous transfer when acknowledge
bit is 1.

Clear the FS bit in SAR0 and the FSX bit in SARX0 to 0 and select the
I2C bus format as the transfer format in IIC0 (confirm a slave address
in SAR and ignore a slave address in SARX).

Set the IICE bit in STCR to 1 and enable access to CPU
by the data register and control register in the I2C bus interface.

Clear the CKE1 and CKE bits in SCR to 0 and
set the SCK0 pin as I/O port.

Clear the SWE, SW, and IE bits in DDCSWR to 0, disable automatic
switching from IIC0 formatless to the I2C bus format, use IIC0 in the
I2C bus format, and disable interrupts when format is switched
automatically.

Set the MSTP7 bit to 1, clear the MSTP4 bit to 0
in MSTPCRL, set module stop mode in SCI0, and
cancel module stop mode in IIC0.

Set the ICE bit in ICCR0 to 1 and enable access to ICMR0 and ICDR0.

rts

·················

·················

·················

·················

·················

·················

·················

·············

·················

·················

·················

·············

1

MSTPCRL H'7F

Rev. 2.0, 11/01, page 238 of 358

(3) Transmission Setup Subroutine

IRIC 0

ICCR0 H’BC

trs_stup

rts

MST 1

TRS 1

No

No

Yes

Yes

BBSY = 0 ?

IRIC = 1 ?

·········

··················

··················

·········

·········

Set the MST and TRS bits in ICCR0 to 1
and set IIC0 mode to master transmission mode.

Clear IRIC to 0 for judging detection of start condition.

Set the BBSY bit in ICCR0 to 1, clear the SCP bit to 0,
and issue the start condition.

Detect the start condition from the bus line state?

Bus release state?

Rev. 2.0, 11/01, page 239 of 358

(4) IIC0 Interrupt Processing Routine

IEIC 0

ICCR0 H'BC

iici0

rts

IRIC 0

txedf++

No

No

Yes

Yes

BBSY = 0 ?

No

Yes

IRIC = 1 ?

txedf > 1 ?

·········

··················

··················

··················

··················

··················

·········

Increment the transmission end judgement flag.

Second IICI0 interrupt request?

Disable the IICI0 interrupt request.

Wait for the last transmission data to be transferred.

Bus release state?

Clear the BBSY and SCP bits in ICCR0 to 0,
and issue the stop condition

Clear the interrupt request flag (IRIC) to 0.

Rev. 2.0, 11/01, page 240 of 358

4.6.5 Program List

/***

* H8S/2138 IIC bus application note *

* 5.Single master transmit by DTC *

* File name : DTCtx.c *

* Fai : 20MHz *

* Mode : 3 *

**/

#include <stdio.h>

#include <machine.h>

#include "2138s.h"

/***

* Prototype *

**/

void main(void); /* Main routine */

void initialize(void); /* RAM & DTC & IIC0 initialize */

void trs_stup(void); /* Master transmit by DTC set up */

/***

* RAM allocation *

**/

#define MRA1 (*(volatile unsigned char *)0xec00) /* DTC mode register A */

#define SAR1 (*(volatile unsigned long *)0xec00) /* DTC source address register */

#define MRB1 (*(volatile unsigned char *)0xec04) /* DTC mode register B */

#define DAR1 (*(volatile unsigned long *)0xec04) /* DTC destination address register */

#define CRA1 (*(volatile unsigned short *)0xec08) /* DTC transfer count register A */

#define CRB1 (*(volatile unsigned short *)0xec0a) /* DTC transfer count register B */

#define txedf (*(volatile unsigned char *)0xe200) /* Transmit end flag */

#pragma section ramerea

unsigned char dt_trs_ram[12]; /* Transmit data store area */

#pragma section

Rev. 2.0, 11/01, page 241 of 358

/***

* Data table *

**/

const unsigned char dt_trs[12] =

{

0xa0, /* Slave address + W data */

 0x00, /* EEPROM memory address data */

0x01, /* 1st transmit data */

0x23, /* 2nd transmit data */

0x45, /* 3rd transmit data */

0x67, /* 4th transmit data */

0x89, /* 5th transmit data */

0x98, /* 6th transmit data */

0x76, /* 7th transmit data */

0x54, /* 8th transmit data */

0x32, /* 9th transmit data */

0x10 /* 10th transmit data */

};

/***

* main : Main routine *

**/

void main(void)

#pragma asm

mov.l #h'f000,sp ;Stack pointer initialize

#pragma endasm

{

unsigned char dummy;

dummy = MDCR.BYTE; /* MCU mode set */

SYSCR.BYTE = 0x09; /* Interrupt control mode set */

initialize(); /* Initialize */

trs_stup(); /* Master transmit by DTC set up */

IIC0.ICCR.BIT.IEIC = 1; /* IIC0 interrupt enable */

set_imask_ccr(0); /* Interrupt enable */

Rev. 2.0, 11/01, page 242 of 358

while(txedf < 2); /* Transmit end ? */

while(1); /* End */

}

/***

* initialize : RAM & IIC0 Initialize *

**/

void initialize(void)

{

unsigned char i; /* Transmit data counter */

for(i=0; i<12; i++) /* Transmit data copy ROM -> RAM */

{

dt_trs_ram[i] = dt_trs[i];

}

txedf = 0x00; /* Transmit end flag initialize */

STCR.BYTE = 0x00; /* FLSHE = 0 */

MSTPCR.BYTE.H = 0x3f; /* DTC module stop mode reset */

SAR1 = 0x0000e100; /* SAR = H'00E100 */

MRA1 = 0x80; /* MRA = H'80 */

DAR1 = 0x0000ffde; /* DAR = H'00FFED (ICDR0) */

MRB1 = 0x00; /* MRB = H'00 */

CRA1 = 0x000c; /* CRA = H'000C */

CRB1 = 0x0000; /* CRB = H'0000 */

DTC.VECR.BYTE = 0x00; /* SWDTE = 0, DTVEC = H'00 */

DTC.ED.BIT.B4 = 1; /* DTCED4 = 1 */

MSTPCR.BYTE.L = 0x7f; /* SCI0 module stop mode reset */

SCI0.SMR.BYTE = 0x00; /* SCL0 pin function set */

SCI0.SCR.BYTE = 0x00;

MSTPCR.BYTE.L = 0xef; /* IIC0 module stop mode reset */

STCR.BYTE = 0x10; /* IICE = 1 */

DDCSWR.BYTE = 0x0f; /* IIC bus format initialize */

IIC0.ICCR.BYTE = 0x01; /* ICE = 0 */

Rev. 2.0, 11/01, page 243 of 358

IIC0.SAR.BYTE = 0x00; /* FS = 0 */

IIC0.SARX.BYTE = 0x01; /* FSX = 1 */

IIC0.ICCR.BYTE = 0x81; /* ICE = 1 */

IIC0.ICSR.BYTE = 0x00; /* ACKB = 0 */

STCR.BYTE = 0x30; /* IICX0 = 1 */

IIC0.ICMR.BYTE = 0x28; /* Transfer rate = 100kHz */

IIC0.ICCR.BYTE = 0x89; /* IEIC = 0, ACKE = 1 */

}

/***

* trs_stup : Master transmit by DTC set up *

**/

void trs_stup(void)

{

while(IIC0.ICCR.BIT.BBSY == 1); /* Bus empty (BBSY=0) ? */

IIC0.ICCR.BIT.MST = 1; /* Matser transmit mode set */

IIC0.ICCR.BIT.TRS = 1; /* MST = 1, TRS = 1 */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

IIC0.ICCR.BYTE = 0xbc; /* Start condition set (BBSY=1,SCP=0) */

while(IIC0.ICCR.BIT.IRIC == 0); /* Start condition set (IRIC=1) ? */

}

/***

* iici0 : IIC0 interrupt routine *

**/

#pragma interrupt(iici0)

void iici0(void)

{

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

txedf++;

if(txedf > 1)

{

IIC0.ICCR.BIT.IEIC = 0; /* IIC0 interrupt disable */

while(IIC0.ICCR.BIT.IRIC == 0); /* Transmit end (IRIC=0) ? */

Rev. 2.0, 11/01, page 244 of 358

IIC0.ICCR.BYTE = 0xb8; /* Stop condition set (BBSY=0,SCP=0) */

while(IIC0.ICCR.BIT.BBSY == 1); /* Bus empty (BBSY=0) ? */

}

}

Rev. 2.0, 11/01, page 245 of 358

4.7 Single-Master Reception by DTC

4.7.1 Specifications

• 10-byte data is read from EEPROM (HN58X2408) using channel 0 of the I2C bus interface in
the H8S/2138 and the data transfer controller (DTC).

• The slave address of EEPROM to be connected is 1010000, and data is read from addresses
H'00 to H'09 of the EEPROM memory.

• 10-byte data to be read is stored at addresses H'E100 to H'E109 in RAM.

• The device connected to the I2C bus in this system is a single–master configurationone
master device (H8S/2138) and one slave device (EEPROM).

• The transfer clock frequency is 100 kHz.

• Figure 4.23 shows an example of the H8S/2138 and EEPROM connection.

VCC

VSS

SCL0 SCL

SDASDA0

VCC

H8S/2138

Master

VCC

VSS

SCL

SDA

A0

WP

A1

A2

EEPROM

Slave

VCC VCC

VCC

Figure 4.23 Example of H8S/2138 and EEPROM Connection

• Figure 4.24 shows the I2C bus format used in this task example.

Rev. 2.0, 11/01, page 246 of 358

S SLA

7 11 1 1 18

1 1 1 10

7 81 1 1 1 1 Number of
transmission bits

Number of
transmission frames

Legend:
S
SLA
R/
A
MEA
DATA
P

: Start condition
: EEPROM slave address
: Transmission/reception destination
: Acknowledge
: EEPROM memory address
: Reception data
: Stop condition

A MEA A S SLA A A A PDATAR/ R/

Figure 4.24 Transfer Format Used in This Task Example

• An example usage of the data transfer controller (DTC) in the H8S/2138 Series used in this
task example is described below.

(a) The DTC is activated by an interrupt request of channel 0 in the I2C bus interface (IICI0) and
reception data is transferred.

(b) Normal mode is used for the DTC transfer mode.

(c) Figure 4.25 shows a block diagram of the DTC used in this task example.

Rev. 2.0, 11/01, page 247 of 358

IICI0
 (IIC0 interrupt request)

CPU interrupt request

Legend:
MRA, MRB
CRA, CRB
SAR
DAR
DTCERA to DTCERE
DTVECR

: DTC mode register A, B
: DTC count register A, B
: DTC source address register
: DTC destination register
: DTC enables registers A to E
: DTC vector register

Interrupt
controller

DTCERA
to

DTCERE

DTVECR

DTC

Control logic

MRA
CRA
CRB MRB

DAR
SAR

MRB

On-chip RAM

I2C bus data register 0 (ICDR0)

Internal I/O register

Internal address bus

Internal data bus

DTC
activate
request R

eg
is

te
r

in
fo

rm
at

io
n

T
ra

ns
fe

r
da

ta

Figure 4.25 Block Diagram of DTC in This Task Example

Rev. 2.0, 11/01, page 248 of 358

(d) Figure 4.26 shows the location of transfer data on on-chip RAM.

Address

H'E100
H'E101
H'E102
H'E103
H'E104
H'E105
H'E106
H'E107
H'E108
H'E109

—
—
—
—
—
—
—
—
—
—

1st-byte reception data
2nd-byte reception data
3rd-byte reception data
4th-byte reception data
5th-byte reception data
6th-byte reception data
7th-byte reception data
8th-byte reception data
9th-byte reception data
10th-byte reception data

On-chip RAM Transfer data

Figure 4.26 Location of Transfer Data on On-Chip RAM

(e) Figure 4.27 shows the location of DTC vector table and register information on the on-chip
RAM in this task example. DTC register information is provided from address H'EC00 to the
MRA, SAR, MRB, DAR, CRA, and CRB registers in that order.

Address Address

H'EC00
H'EC01
H'EC02
H'EC03
H'EC04
H'EC05
H'EC06
H'EC07
H'EC08
H'EC09
H'EC0A
H'EC0B

H'20
H'00
H'FF
H'DE
H'00
H'00
H'E1
H'00
H'00
H'09
H'00
H'00

MRA register information (MRA1)

SAR register information (SAR1)

MRB register information (MRB1)

DAR register information (DAR1)

CRA register information (CRA1)

CRB register information (CRB1)

DTC vector table On-chip RAM

H’04B8
H’04B9

H'EC
H'00

Figure 4.27 Location of DTC Vector Table and Register Information on On-Chip RAM

Rev. 2.0, 11/01, page 249 of 358

(f) Table 4.21 describes the register of the DTC used in this task example.

Table 4.21 DTC Register Description

Register Function

MRA DTC mode register A

Controls DTC operating mode.

SM1, 0

(bit7, 6)

Source address mode 1, 0

Specify whether SAR is incremented, decremented, or fixed after data
transfer is performed.

When SM1 =0 and SM0 = * , SAR is fixed (* : 0 or 1).

When SM1 = 1 and SM0 = 0, SAR is incremented after transfer (when Sz =
0: + 1, when Sz = 1: + 2).

When SM1 =1 and SM0 = 1, SAR is decremented after transfer (when Sz =
0: − 1, when Sz = 1: − 2).

DM1, 0

(bit5, 4)

Destination address mode 1, 0

Specify whether DAR is incremented, decremented, or fixed after data
transfer is performed.

When DM1 = 0 and DM0 = * , DAR is fixed (* : 0 or 1).

When DM1 = 1 and DM0 = 0, DAR is incremented after transfer (when Sz
= 0: + 1, when Sz = 1: + 2).

When DM1 = 1 and DM0 = 1, DAR is decremented after transfer (when Sz
= 0: − 1, when Sz = 1: − 2).

MD1, 0

(bit3, 2)

DTC mode 1, 0

Specify DTC transfer mode.

When MD1 = 0 and MD0 = 0, normal mode.

When MD1 = 0 and MD0 = 1, repeat mode.

When MD1 = 1 and MD0 = 0, block transfer mode.

When MD1 = 1 and MD0 = 1, setting prohibited.

DTS

(bit1)

DTC transfer mode select

Specifies either source side or destination side becomes repeat area or
block area in repeat mode or block transfer mode.

When DTS = 0, destination side becomes repeat area or block area.

When DTS = 1, source side becomes repeat area or block area.

Sz

(bit0)

DTC data transfer size

Specifies data size in data transfer.

Rev. 2.0, 11/01, page 250 of 358

Table 4.21 DTC Register Description (cont)

Register Function

MRB DTC mode register B

Controls DTC mode.

CHEN

(bit7)

DTC chain transfer enable

Specifies chain transfer.

When CHEN = 0, DTC data transfer is ended.

When CHEN = 1, DTC chain transfer.

MRB DISEL

(bit6)

DTC interrupt select

Specifies an interrupt request to CPU is disabled or enabled after one data
transfer is performed.

When DISEL = 0, an interrupt to CPU is disabled if transfer counter is not 0
after the DTC data transfer is ended.

When DISEL = 1, an interrupt to CPU is enabled after the DTC data transfer
is ended.

SAR DTC source address register

Specifies the transfer source address of data to be transferred by the DTC.

DAR DTC destination address register

Specifies the transfer destination address of data to be transferred by the
DTC.

CRA DTC transfer count register A

Specifies the number of data transfers by the DTC.

CRB DTC transfer count register B

Specifies the number of block data transfers by the DTC in block transfer
mode.

DTVECR (H'FEF3) DTC vector register

Sets the DTC activation to be enabled or disabled by software and sets the
vector address for the software activation interrupt.

SWDTE

(bit7)

DTC software activation enable

Sets the DTC software activation to be enabled or disabled.

When SWDTE = 0, the DTC software activation is disabled.

When SWDTE = 1, the DTC software activation is enabled.

DTVEC
6-0

(bit6-0)

DTC software activation vectors 6 to 0

Set the vector address for the DTC software activation.

Rev. 2.0, 11/01, page 251 of 358

Table 4.21 DTC Register Description (cont)

Register Function

DTCERD (H'FEF1) DTC enable register

Controls the enabling or disabling of DTC activation by each interrupt source.

DTCED4

(bit4)

DTC activation enable D4

When DTCED4 = 0, the DTC activation is disabled by the IICI0 interrupt.

When DTCED4 = 2, the DTC activation is enabled by the IICI0 interrupt.

(g) The I2C bus format provides for selection of the slave device and transfer direction by means
of the slave address and the R/: bit, confirmation of reception with the acknowledge bit,
indication of the last frame, and so on. Therefore, continuous data transfer using the DTC must
be carried out in conjunction with CPU processing by means of interrupts. Table 4.22 shows
an example of processing using the DTC in master transmission mode in this task example.

Table 4.22 Operation Example by DTC (master reception mode)

Item Master Transmission Mode

Slave address + R/W bit
transmission

Transmission by CPU (ICDR write)

Dummy data read Processing by CPU (ICDR read)

Actual data transmission Reception by DTC (ICDR read)

Dummy data (H’FF) write —

Last frame processing Not necessary

Transfer request processing after
last frame processing

Not necessary

Setting of number of DTC transfer
data frames

Reception: Actual data count

Rev. 2.0, 11/01, page 252 of 358

4.7.2 Description of Operation

Figure 4.28 shows the principle of operation.

SCL

SDA

SCL

SDA

[1] [2] [3] [4] [5] [5]

[5] [5] [5] [6] [7] [8]

10µs Transmission/reception clock frequency= 100kHz

AckStart
condition

Slave address
+ R/ =H'A0

Slave address
+ R/ =H'A1

Memory address
=H'00

1st reception
data

6th reception
data

7th reception
data

8th reception
data

9th reception
data

10th reception
data

2nd reception
data

3rd reception
data

Start
condition

Ack

···

···

···

···

No operation

No operation

No operation

No operation, IRIC = 0

Reading of the data for reception

No operation

No operation

No operation

CPU processing DTC processing

Stop condition

Ack Ack Ack

Ack Ack Ack Ack

Ack

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

IRIC=0, Setting of start condition (BBSY=1, SCP

=0), transmission of slave address + W bit, IRIC=0

EEPROM address transmission, IRIC=0

IRIC=0, Setting of start condition (BBSY=1, SCP

=0), transmission of slave address + R bit, IRIC=0

Dummy read, IRIC=0, IEIC=1

No operation

IEIC=1, ACKB=1, WAIT=1 Reading of the

9th byte of data for reception, IRIC=0

TRS=1 Reading of the 10th byte of data

for reception, IRIC=0

Setting of the stop condition (BBSY=1, SCP=0)

Figure 4.28 Principle of a Single-Master Receive Operation by DTC

Rev. 2.0, 11/01, page 253 of 358

4.7.3 Description of Software

(1) Description of Modules

Table 4.23 describes the modules of this example of a task.

Table 4.23 Description of Modules

Module Name Label Name Function

Main routine main Sets the stack pointer and the MCU mode, and enables the
interrupt.

Initial settings initialize Sets the RAM area to be used, and makes initial settings
for IIC0 and DTC.

Setting of start
condition

set_start Sets the start condition.

Setting of stop
condition

set_stop Sets the stop condition.

Transmission of
slave address + W

trs_slvadr_a0 Transmits the EEPROM’s slave address and W data
(H’A0).

Transmission of
slave address + R

trs_slvadr_a1 Transmits the EEPROM’s slave address and W data
(H’A1).

Transmission of the
EEPROM memory
address

trs_memadr Transmits the EEPROM’s address in memory (H’00).

Processing of the
IIC0 interrupt

iici0 Clears IrIC, disables the IICI0 interrupt, and sets the
reception-completed flag.

Rev. 2.0, 11/01, page 254 of 358

(2) Description of the On-chip Registers

Table 4.24 describes the on-chip registers used in this example of a task.

Table 4.24 Description of the On-chip Registers

Register Function Address Setting

ICDR0 Stores the received data. H'FFDE —

SAR0 FS Along with the settings of the FSX bit of SARX0 and
the SW bit of DDCSWR, sets the transfer format.

H'FFDF bit0 0

SARX0 FSX Along with the settings of the FS bit of SAR0 and
the SW bit of DDCSWR, sets the transfer format.

H'FFDE bit01

MLS Sets the transfer of data as MSB first. H'FFDF bit7 0

WAIT Selects insertion and non-insertion of wait cycles
between the data and the acknowledge bit.

H'FFDF bit6 0/1

CKS2

to

CKS0

Along with the setting in the IICX0 bit of STCR, set
the frequency of the transfer clock to 100 kHz.

H'FFDF

bit5 to

bit3

CKS2=1

CKS1=0

CKS0=1

ICMR0

BC2

to

BC0

Set the number of bits of data for the next transfer
in the I2C bus format to 9 bits/frame.

H'FFDF

bit2 to

bit0

BC2=0

BC1=0

BC0=0

ICE Controls access to the ICMR0, ICDR0/SAR, and
SARX registers, and selects operation (port function
for the SCL0/SDA0 pin) or non-operation (bus-drive
state for the SCL/SDA pin) of the I2C bus interface.

H'FFD8 bit7 0/1ICCR0

IEIC Disables the generation of interrupt requests by the
I2C bus interface.

H'FFD8 bit6 0/1

MST Uses the I2C bus interface in the master mode. H'FFD8 bit5 1

TRS Sets transmission/reception mode for the I2C bus
interface.

H'FFD8 bit4 0/1

ACKE Suspends continuous transfer when the
acknowledge bit is 1.

H'FFD8 bit3 1

BBSY Confirms whether or not the I2C bus is occupied,
and uses the SCP bit to set the start and stop
conditions.

H'FFD8 bit2 0/1

IRIC Detects the start condition, determines the end of
data transfer, and detects acknowledge = 1.

H'FFD8 bit1 0/1

ICCR0

SCP Along with the BBSY bit, sets the start/stop
conditions.

H'FFD8 bit0 0

Rev. 2.0, 11/01, page 255 of 358

Table 4.24 Description of On-chip Registers (cont)

Register Function Address Setting

ICSR0 ACKB Stores the acknowledgement received from the
EEPROM during transmission. Sets the
acknowledge bit for transmission to the EEPROM
during reception.

H'FFD9 bit0 —

IICX0 Along with the settings in CKS2 to CKS0 of ICMR0,
selects the frequency of the transfer clock.

H'FFC3 bit5 1

IICE Enables CPU access to the data and control
registers of the I2C bus interface.

H'FFC3 bit4 1

STCR

FLSHE Sets the control registers of the flash memory to
non-selected.

H'FFC3 bit3 0

SWE Prohibits automatic change from format-less
transfer to transfer in the I2C bus format on the
channel 0 I2C interface.

H'FEE6 bit7 0

SW Uses the channel 0 I2C interface in the I2C bus
format.

H'FEE6 bit6 0

IE Prohibits interrupts during automatic changes of
format.

H'FEE6 bit5 0

DDCSWR

CLR3

to

CLR0

Control the initialization of the internal state of the
I2C interface

H'FEE6

bit3 to

bit0

CLR3=1

CLR2=1

CLR1=1

CLR0=1

MSTP7 Cancels the module-stopped mode for SCI channel
0.

H'FF87 bit7 0MSTPCRL

MSTP4 Cancels the module stopped mode for I2C channel
0.

H'FF87 bit4 0

SCR0 CKE1, 0 Makes the I/O port setting for the P52/SCK0/SCL0
pin.

H'FFDA

bit1, 0

CKE1=0

CKE0=0

SMR0 C/$ Sets the mode for SCI transfer on channel 0 as
asynchronous.

H'FFD8 bit7 0

SYSCR INTM1, 0 Set the interrupt control mode of the interrupt
controller to 1-bit control.

H'FFC4

bit5, 4

INTM1=0

INTM0=0

MDCR MDS1, 0 Set the MCU’s operating mode to mode 3 by
latching the input levels on the MD1 and 0 pins.

H'FFC5

bit1, 0

MDS1=1

MDS0=1

Rev. 2.0, 11/01, page 256 of 358

Table 4.24 Description of On-chip Registers (cont)

Register Function Address Setting

SM1, 0 Set SAR to remain fixed after data has been
transferred.

H'EC00

bit7, 6

SM1=0

SM0=0

DM1, 0 Set DAR to be incremented after data has been
transferred.

H'EC00

bit5, 4

DM1=1

DM0=0

MRA

MD1, 0 Set the DTC transfer mode to normal. H'EC00

bit3, 2

MD1=0

MD0=0

DTS Sets the destination area to the repeat area or the
block area.

H'EC00

bit1

DTS=0MRA

Sz Sets bytes as the unit for data transfer. H'EC00

bit0

Sz=0

CHNE Disables DTC-chain transfer. H'EC04

bit7

CHNE=0MRB

DISEL Prohibits the generation of an interrupt signal for the
CPU after a single transfer of data unless the
transfer counter is 0.

H'EC04

bit6

DISEL=0

SAR Sets the transfer source address transferred by the
DTC to H’FFDE.

H'EC01 H'00FFDE

DAR Sets the transfer destination address transferred by
the DTC to H’E100.

H'EC05 H'00E100

CRA Sets the DTC transfer count to 12. H'EC08 H'000C

CRB Sets the DTC block-data transfer count to 0 during
transfer in block-transfer mode.

H'EC0A H'0000

SWDTE Prohibits the activation of the DTC software. H'FEF3 bit7 0DTVECR

DTVEC6

to

DTVEC0

Set the vector number of for the activation of the
DTC software to H’00.

H'FEF3

bit6 to

bit0

H'00

DTCERD DTCED4 Enables DTC activation by the I2CI0 interrupt. H'FEF1 bit4 1

MSTPCR
H

MSTP14 Removes the DTC from its module-stopped mode. H'FF86 bit6 0

Rev. 2.0, 11/01, page 257 of 358

(3) Description of Variables

Table 4.25 describes the variables used in this task.

Table 4.25 Description of Variables

Variable Function Size Initial
Value

Module Name

dummy MDCR read value 1 byte — Main

i Received data counter 1 byte H'00 Initialize

(4) Description of RAM Usage

Table 4.26 describes the usage of RAM in this example of a task.

Table 4.26 Description of RAM Usage

Label Function Size Address Module Name

MRA1 DTC mode register 1 byte H'EC00 initialize

SAR1 DTC source address register 4 bytes H'EC00 initialize

MRB1 DTC mode register B 1 byte H'EC04 initialize

DAR1 DTC destination address register 4 bytes H'EC04 initialize

CRA1 DTC transfer count register A 2 bytes H'EC08 initialize

CRB1 DTC transfer count register B 2 bytes H'EC0A initialize

rxedf Reception-completed flag 1 byte H'E200 main

iici0

dt_rec_ram

[0]

to

dt_rec_ram

[9]

Stores 10 bytes of received data. 10 bytes H'E100

to

H'E109

main

initialize

Rev. 2.0, 11/01, page 258 of 358

4.7.4 Flowchart

(1) Main Routine

initalize

main

SYSCR H'09

MST 1

TRS 1

SP H'F000

trs_memadr

trs_slvadr_a0

set_start

ACKB = 0 ?

No

No

No

Yes

Yes

Yes

Yes

BBSY = 0 ?

ACKB = 0 ?

ACKB 0

trs_slvadr_a1

set_start

············

··············

··············

············

··············

············

······ Bus released?

Set the MST and TRS bits of ICCR0 to 1 to select
the master transmission mode for IIC0.

Acknowledgement received from the EEPROM?

Call the subroutine for transmitting the slave address + W bit.

Call the subroutine to transmit the EEPROM memory-address.

Acknowledgement received from the EEPROM?

··············Call the subroutine that sends the start-condition signal.

··············Call the subroutine for transmitting the slave address + R bit.

············ Acknowledgement received from the EEPROM?

··············ACKB = 0 (0 output in the time slot for output of the acknowledge
bit during a receive operation).

Call the subroutine that sends the start-condition signal.

··············Set SP (stack pointer) to H'F000.

··············

··············

Latch the input levels on the MD1 and MD0 pins to
the MDS1 and MDS0 bits by reading MDCR.

··············

Set the interrupt-control mode of the interrupt
controller to 1-bit interrupt control.

Call the subroutine that makes the initial settings.

2

1

No
ACKB = 0 ? 1

1

Read MDCR

Rev. 2.0, 11/01, page 259 of 358

IRIC 0

IEIC 1

CCR 1bit 0

WAIT 1

TRS 0

dt_rec_ram[8]
ICDR0

dt_rec_ram[0]
 ICDR0

ACKB 1

No

Yes

rxedf ! = 0 ?

No

Yes

IRIC = 1 ?

No

Yes

IRIC = 1 ?

TRS 1

IRIC 0

IRIC 0

··············

··············

··············

··············

··· Receiving of data by the DTC complete?

WAIT = 1 (insert a wait cycle between the data and acknowledge bits)

··· Receiving of data completed?

···
Output of the 9th cycle of the receive clock completed
(on the rising edge of the 9th cycle of the receive clock)?

Clear IRIC to 0 to determine whether or not the data has been
completely received (on the falling edge of the 8th cycle of the
receive clock).

Read the 9th byte of received data and store the data in RAM.

··············TRS = 1 (set to the master transmission mode)

··············IRIC = 0 (start outputting the 9th cycle of the receive clock)

ACKB = 1 (1 output in the time slot for output of the acknowledge bit
during a receive operation)

··············TRS = 0 (set this interface to run in the master-receive mode)

··············

··············

Dummy read (start of the receive operation)

··············

Clear IRIC to determine whether or not the data has been completely
received (on the rising edge of the 9th cycle of the receive clock).

IEIC = 1 (enable the IICI0 interrupt request)

··············Clear the 1 bit to 0 to enable interrupts.

2

2

Rev. 2.0, 11/01, page 260 of 358

dt_rec_ram[9]
ICDR0 Read the 10th byte of received data and store the data in the RAM.

Set the stop condition.

ACKB = 0

WAIT = 0WAIT 0

ACKB 0

··············

··············

··············

··············set_stop

3

1

Rev. 2.0, 11/01, page 261 of 358

(2) Subroutine for Making Initial Settings

i 0

i++

dt_rec_ram[i] 0

Initialize the received-data counter.

Set the FLSHE bit of STCR to 0 to set the control register
of the flash memory to non-selective.

Set MRA to H'20, SAR to "fixed" after data has been transferred,
DAR to increment, the DTC transfer mode to normal, and the
unit for the transfer of data to bytes.
Set DAR to H'00E100 and the destination address for data
transfer by the DTC to H'E100.

Set DTVECR to H'00 to disable initiation of the DTC software.

Set DTCED4 to 1 to allow the IICI0 interrupt to activate the DTC.

Increment the received-data counter.

Initialize the reception-completed flag.

Received-data counter < 10?

Initialize the received-data storage area.

Set the MSTP14 bit of MSTPCRH to 0 to take the DTC out
of its module-stopped mode.

Set SAR to H'00FFDE and the source address of the data
for transfer by the DTC to H'FFDE (ICDR0).

Set MRB to H'00 and disable DTC chain transfer. Prohibit the
generation of an interrupt for the CPU after data has been
transferred by the DTC unless the transfer counter is at 0.

Set CRA to H'000C and the DTC data transfer count to nine.

Set CRB to H'0000 and the DTC block data transfer count to 0.

initialize

···················

·············

···················

·············

·············

···················

···················

···················

···················

···················

···················

···················

···················

···················

···················

i < 10 ?
No

Yes

MRB1 H'00

rxedf H'00

STCR H'00

MRA1 H'20

CRB1 H'0000

DAR1 H'0000E100

CRA1 H'0009

DTCED4 1

DTVECR H'00

MSTPCRH H'3F

SAR1 H'0000FFDE

4

Rev. 2.0, 11/01, page 262 of 358

MSTPCRL H'7F

SMR0 H'00

ICCR0 H'01

STCR H'10

ICCR0 H'89

SAR0 H'00

SARX0 H'01

STCR H'30

ICMR0 H'28

ICCR0 H'81

ICSR0 H'00

SCR0 H'00

MSTPCRL H'EF

DDCSWR H’0F

Set the MSTP7 bit of MSTPCRL to 0 to take the SC10 out of its
module-stopped mode.

Set the SMR's C/ bit to 0 to set the SCI0 to operate in its
asynchronous mode.

Set ICCR0's ICE bit to 0 to enable access to SAR0 and SARX0.

Set ICSR0's ACKB bit to 0.

Set IICX0 in STR to 1, ICMR0's CKS2 bit to 1, TCKS1 bit to 0, and CKS0
bit to 1 so that the frequency of the IIC0 transfer clock is set to 100 kHz.
Set WAIT to 0 for the continuous transfer of data and acknowledge bits.

Set IEIC in ICCR0 to 0 to disable the generation of IIC0 interrupt requests,
and set ACKE to 1 to suspend continuous transfer when the acknowledge
bit is 1.

Set FS in SAR0 and FSX in SARX0 to 0 to select the I2C bus format
(enables the SAR slave address and disables the SARX slave address)
as the format for transfer on IIC0.

Set the STCR's IICE bit to 1 so that the data and control registers
of the I2C bus interface are accessible by the CPU.

Set the SCR's CKE1 bit to 0 and CKE bit to 0 to set the SCK0 pin
for use as an I/O port.

Set the SWE, SW, and IE bits of DDCSWR to 0 to disable automatic
changeover from IIC0 format-less to I2C bus format, select use of IIC0
in the I2C bus format, and disable interrupts during the execution
of automatic format changeover.

Set the MSTPCRL's MSTP7 bit to 1 and MSTP4 bit to 0 to put SCI0
in its module-stopped mode and take IIC0 out of its module-stopped mode.

Set ICCR0's ICE bit to 1 to enable access to ICMR0 and ICDR0.

rts

················

················

················

················

················

················

················

··········

················

················

················

··········

4

Rev. 2.0, 11/01, page 263 of 358

(3) Subroutine for Setting the Start Condition

set_start

rts

IRIC 0

ICCR0 H'BC

················

················

·······IRIC = 1 ?
No

Yes

Clear IRIC to determine detection of the start condition.

Set ICCR0's BBSY bit to 1 and SCP bit to 0 to set the start condition.

Detect the start condition from the bus-line state?

(4) Subroutine for Setting the Stop Condition

set_stop

rts

ICCR0 H'B8 ················

·······
BBSY = 0 ?

No

Yes

Set ICCR0's BBSY bit to 0 and SCP bit to 0 to set the
stop condition.

Bus-released state?

Rev. 2.0, 11/01, page 264 of 358

(5) Subroutine for Transmitting the Slave Address + W

trs_slvadr_a0

rts

ICCR0 H'A0

IRIC 0

················

················

·······IRIC = 1 ?
No

Yes

Transmit the EEPROM's slave address + the W bit (H'A0)

Clear IRIC to 0 to determine whether or not the data has been
transmitted (on the rising edge of the 9th cycle of the
transmission clock).

End of the transmission of the EEPROM slave address + W?

(6) Subroutine for Transmitting the Slave Address + R

trs_memadr

rts

ICCR0 H'A1

IRIC 0

················

················

·······IRIC = 1 ?
No

Yes

Transmit the EEPROM's slave address + the R bit (H'A1)

Clear IRIC to 0 to determine whether data has been transmitted
(at the rising edge of the 9th clock of the transmission clock).

Transmission of the EEPROM memory address complete?

Rev. 2.0, 11/01, page 265 of 358

(7) Subroutine for Transmitting the EEPROM memory address

trs_memadr

rts

ICCR0 H'00

IRIC 0

················

················

·······IRIC = 1 ?
No

Yes

Transmit EEPROM memory address data (H'00).

Clear IRIC to 0 to determine whether data has been transmitted
(on the rising edge of the 9th cycle of the transmission clock).

Transmission of EEPROM memory address as data complete?

(8) IIC0 Interrupt-Processing Routine

iici0

IRIC 0 IRIC = 0 (clearing of the interrupt request flag)

IEIC = 0 (prohibition of IICI0 interrupt requests)

Set reception-completed flag.rxedf++

IEIC 0

················

················

················

rts

Rev. 2.0, 11/01, page 266 of 358

4.7.5 Program List

/***

* H8S/2138 IIC bus application note *

* 6.Single master receive by DTC *

* File name : DTCrx.c *

* Fai : 20MHz *

* Mode : 3 *

**/

#include <stdio.h>

#include <machine.h>

#include "2138s.h"

/***

* Prototype *

**/

void main(void); /* Main routine */

void initialize(void); /* RAM & DTC & IIC0 initialize */

void set_start(void); /* Start condition set */

void set_stop(void); /* Stop condition set */

void trs_slvadr_a0(void); /* Slave address + W data transmit */

void trs_slvadr_a1(void); /* Slave address + R data transmit */

void trs_memadr(void); /* EEPROM memory address data transmit */

/***

* RAM allocation *

**/

#define MRA1 (*(volatile unsigned char *)0xec00) /* DTC mode register A */

#define SAR1 (*(volatile unsigned long *)0xec00) /* DTC source address register */

#define MRB1 (*(volatile unsigned char *)0xec04) /* DTC mode register B */

#define DAR1 (*(volatile unsigned long *)0xec04) /* DTC destination address register */

#define CRA1 (*(volatile unsigned short *)0xec08) /* DTC transfer count register A */

#define CRB1 (*(volatile unsigned short *)0xec0a) /* DTC transfer count register B */

#define rxedf (*(volatile unsigned char *)0xe200) /* Receive end flag */

#pragma section ramarea

Rev. 2.0, 11/01, page 267 of 358

unsigned char dt_rec_ram[10]; /* Receive data store erea */

#pragma section

/***

* main : Main routine *

**/

void main(void)

#pragma asm

mov.l #h'f000,sp ;Stack pointer initialize

#pragma endasm

{

unsigned char dummy;

dummy = MDCR.BYTE; /* MCU mode set */

SYSCR.BYTE = 0x09; /* Interrupt control mode set */

initialize(); /* Initialize */

while(IIC0.ICCR.BIT.BBSY == 1); /* Bus empty (BBSY=0) ? */

IIC0.ICCR.BIT.MST = 1; /* Master transmit mode set */

IIC0.ICCR.BIT.TRS = 1; /* MST=1, TRS=1 */

set_start(); /* Start condition set */

trs_slvadr_a0(); /* Slave address + W data transmit */

if(IIC0.ICSR.BIT.ACKB == 0) /* ACKB = 0 ? */

{

trs_memadr(); /* EEPROM memory address data transmit */

if(IIC0.ICSR.BIT.ACKB == 0) /* ACKB = 0 ? */

{

set_start(); /* Re-start condition set */

trs_slvadr_a1(); /* Slave address + R data transmit */

if(IIC0.ICSR.BIT.ACKB == 0) /* ACKB = 0 ? */

{

IIC0.ICSR.BIT.ACKB = 0; /* ACKB = 0 */

IIC0.ICCR.BIT.TRS = 0; /* Master receive mode set */

dt_rec_ram[0] = IIC0.ICDR; /* Dummy read */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

IIC0.ICCR.BIT.IEIC = 1; /* IEIC = 1 (IICI0 interrupt enable) */

Rev. 2.0, 11/01, page 268 of 358

set_imask_ccr(0); /* Interrupt enable */

while(rxedf == 0x00); /* rxedf != 0 ? */

IIC0.ICMR.BIT.WAIT = 1; /* WAIT = 1 */

IIC0.ICSR.BIT.ACKB = 1; /* ACKB = 1 */

dt_rec_ram[8] = IIC0.ICDR; /* 9th receive data read */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

while(IIC0.ICCR.BIT.IRIC == 0); /* Receieve end (IRIC=1) ? */

IIC0.ICCR.BIT.TRS = 1; /* Master transmit mode set */

IIC0.ICCR.BIT.IRIC = 0; /* 9th clock transmit (IRIC=0) */

while(IIC0.ICCR.BIT.IRIC == 0); /* 9th clock transmit end (IRIC=1) ? */

dt_rec_ram[9] = IIC0.ICDR; /* 10th (last) receive data read */

IIC0.ICSR.BIT.ACKB = 0; /* ACKB = 0 */

IIC0.ICMR.BIT.WAIT = 0; /* WAIT = 0 */

}

}

}

set_stop(); /* Stop condition set */

while(1); /* End */

}

/***

* initialize : RAM & IIC0 Initialize *

**/

void initialize(void)

{

unsigned char i; /* Receive data counter */

for(i=0; i<10; i++) /* Receive data store area initialize */

{

Rev. 2.0, 11/01, page 269 of 358

dt_rec_ram[i] = 0x00;

}

rxedf = 0x00; /* Receive end flag initialize */

STCR.BYTE = 0x00; /* FLSHE = 0 */

MSTPCR.BYTE.H = 0x3f; /* DTC module stop mode reset */

SAR1 = 0x0000ffde; /* SAR = H'00FFDE (ICDR0) */

MRA1 = 0x20; /* MRA = H'20 */

DAR1 = 0x0000e100; /* DAR = H'00E100 */

MRB1 = 0x00; /* MRB = H'00 */

CRA1 = 0x0009; /* CRA = H'0009 */

CRB1 = 0x0000; /* CRB = H'0000 */

DTC.VECR.BYTE = 0x00; /* SWDTE = 0, DTVEC = H'00 */

DTC.ED.BIT.B4 = 1; /* DTCED4 = 1 */

MSTPCR.BYTE.L = 0x7f; /* SCI0 module stop mode reset */

SCI0.SMR.BYTE = 0x00; /* SCL0 pin function set */

SCI0.SCR.BYTE = 0x00;

MSTPCR.BYTE.L = 0xef; /* IIC0 module stop mode reset */

STCR.BYTE = 0x10; /* IICE = 1 */

DDCSWR.BYTE = 0x0f; /* IIC bus format initialize */

IIC0.ICCR.BYTE = 0x01; /* ICE = 0 */

IIC0.SAR.BYTE = 0x00; /* FS = 0 */

IIC0.SARX.BYTE = 0x01; /* FSX = 1 */

IIC0.ICCR.BYTE = 0x81; /* ICE = 1 */

IIC0.ICSR.BYTE = 0x00; /* ACKB = 0 */

STCR.BYTE = 0x30; /* IICX0 = 1 */

IIC0.ICMR.BYTE = 0x28; /* Transfer rate = 100kHz */

IIC0.ICCR.BYTE = 0x89; /* IEIC = 0, ACKE = 1 */

}

/***

* set_start : Start condition set *

**/

void set_start(void)

Rev. 2.0, 11/01, page 270 of 358

{

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

IIC0.ICCR.BYTE = 0xbc; /* Start condition set (BBSY=1,SCP=0) */

while(IIC0.ICCR.BIT.IRIC == 0); /* Start condition set (IRIC=1) ? */

}

/***

* set_stop : Stop condition set *

**/

void set_stop(void)

{

IIC0.ICCR.BYTE = 0xb8; /* Stop condition set (BBSY=0,SCP=0) */

while(IIC0.ICCR.BIT.BBSY == 1); /* Bus empty (BBSY=0) ? */

}

/***

* trs_slvadr_a0 : Slave address + W data transmit *

**/

void trs_slvadr_a0(void)

{

IIC0.ICDR = 0xa0; /* Slave address + W data(H'A0) write */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

while(IIC0.ICCR.BIT.IRIC == 0); /* Transmit end (IRIC=1) ? */

}

/***

* trs_slvadr_a1 : Slave address + R data transmit *

**/

void trs_slvadr_a1(void)

{

IIC0.ICDR = 0xa1; /* Slave address + R data(H'A1) write */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

while(IIC0.ICCR.BIT.IRIC == 0); /* Transmit end (IRIC=1) ? */

}

Rev. 2.0, 11/01, page 271 of 358

/***

* trs_memadr : EEPROM memory address data transmit *

**/

void trs_memadr(void)

{

IIC0.ICDR = 0x00; /* EEPROM memory address data(H'00) write */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

while(IIC0.ICCR.BIT.IRIC == 0); /* Transmit end (IRIC=1) ? */

}

/***

* iici0 : IIC0 interrupt routine *

**/

#pragma interrupt(iici0)

void iici0(void)

{

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

IIC0.ICCR.BIT.IEIC = 0; /* IEIC = 0 (IICI0 interrupt disable) */

rxedf++; /* rxedf flag set */

}

Rev. 2.0, 11/01, page 272 of 358

4.8 Slave Transmission

4.8.1 Specifications

• Channel 0 of the I2C bus interface is used to transmit, from one H8S/2138 in the slave-
transmission mode, 10 bytes of data to the master H8S/2138.

• The slave address of the H8S/2138 that acts as the slave transmitter is [0011100].

• The data to be transmitted is H'00, H'11, H'22, H'33, H'44, H'55, H'66, H'77, H'88, and H'99.

• The connection of devices to the I2C bus in this system is in the single-master configuration:
there is one master device (H8S/2138) and one slave device (H8S/2138).

• The frequency of the transfer clock is 100 kHz.

• Figure 4.29 shows an example of such a connection between two H8S/2138s.

VCC

VCC

SCL

SDA

SCL0

SDA0

H8S/2138

VSS

VCC

SCL0

SDA0

H8S/2138

VSS

Slave

Master

VCC

VCC

VCC

Figure 4.29 Example of Two H8S/2138s Connected in a Single-Master Configuration

• The I2C bus format used in this example of a task is shown in Fig. 4.30.

Rev. 2.0, 11/01, page 273 of 358

R/S

1 7 1

1

1 8 1 8

10

1 1 1 Number of
transmission bits
Number of
transmission frames

SLA A A A A PDATA DATA

Legend:

: Start condition
: Slave address
: Direction, as transmission/reception
: Acknowledge
: Transmitted data
: Stop condition

S
SLA
R/
A
DATA
P

Figure 4.30 Transfer Format used in this Example of a Task

4.8.2 Description of Operation

Figure 4.31 shows this example's principle of operation.

Rev. 2.0, 11/01, page 274 of 358

SCL

SDA

TDRE

IRIC

[1]

[5] [5]

[3]

[2]

10µs Reception clock frequency

Slave-reception mode

Start condition

Slave address
+ R/ = H'39

1st transmission
data = H'00

2nd transmission
data = H' 11

3rd transmission
data = H'22

10th transmission
data = H'99

Stop
condition

Ack

Slave-transmission mode

No operation

IRIC = 1 (at rising of 9th clock)

TDRE =1 (TRS = 0 TRS = 1)

TDRE = 0 (writes data to ICDRT with TRS being 1)

TDRE = 1 (transfers data from ICDRT to ICDRS)

No operation

IRIC=1, TDRE=0 (detects stop condition from the bus line

state)

Software processing Hardware processing

···

···

···

···

···

AckAck

[5]

Ack Ack Ack

[4] [4] [4]

[6] [6] [6]

[5]

[4]

[6]

[5] [7]

[4] [4]

[6] [6]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

No operation

No operation

No operation

Writes the data for transmission

to ICDR0

No operation

Clear IRIC to 0.

Clear IRIC to 0.

Figure 4.31 Slave Transmission: Principle of Operation

Rev. 2.0, 11/01, page 275 of 358

4.8.3 Description of Software

(1) Description of Modules

Table 4.27 describes the details of the modules used in this example of a task.

Table 4.27 Description of Modules

Name Label Function

Main routine main Sets stack pointers and the MCU mode, and enables an
interrupt.

Initial settings initialize Makes initial settings of IIC0.

Slave transmission slv_trs Uses slave transmission to transmit 10 bytes of data to
the other H8S/2138.

(2) Description of On-chip Registers

Table 4.28 describes the usage of on-chip registers in this example of a task.

Table 4.28 On-chip Registers

Register Function Address Setting

ICDR0 Stores the data for transmission. H'FFDE —

FS Along with the settings in the FSX bit of SARX0 and
the SW bit of DDCSWR, sets the format for transfer.

H'FFDF bit0 0SAR0

SVA6

to

SVA0

Hold the slave address of the slave H8S/2138. H'FFDF

bit7 to

bit1

SVA6=0

SVA5=0

SVA4=1

SVA3=1

SVA2=1

SVA1=0

SVA0=0

SARX0 FSX Along with the settings in the FS bit of SAR0 and
the SW bit of DDSWR, sets the format for transfer.

H'FFDE bit01

Rev. 2.0, 11/01, page 276 of 358

Table 4.28 On-chip Registers (Continued)

Register Function Address Setting

MLS Sets data transfer as MSB first. H'FFDF bit7 0

WAIT Sets continuous transfer of data and acknowledge
bits.

H'FFDF bit6 0

CKS2

to

CKS0

Along with the setting in the IICX0 bit of STCR, set
the frequency of the transfer clock to 100 kHz.

H'FFDF

bit5 to

bit3

CKS2=1

CKS1=0

CKS0=1

ICMR0

BC2

to

BC0

Set the number of bits for the next transfer in the I2C
bus format to 9 (9 bits/frame).

H'FFDF

bit2 to

bit0

BC2=0

BC1=0

BC0=0

ICE Controls access to the ICMR0, ICDR0/SAR, and
SARX registers, and selects the operation (the port
function for the SCL0/SDA0 pin) or non-operation
(bus-drive state for the SCL/SDA pin) of the I2C bus
interface.

H'FFD8 bit7 0/1ICCR0

IEIC Disables the generation of interrupt requests by the
I2C bus interface.

H'FFD8 bit6 0

MST Uses the I2C bus interface in its slave mode. H'FFD8 bit5 1

TRS Uses the I2C bus interface in its transmission mode. H'FFD8 bit4 1

ACKE Suspends the continuous transfer of data when the
acknowledge bit is 1.

H'FFD8 bit3 1

BBSY Confirms whether or not the I2C bus is occupied,
and, in combination with the SCP bit, sets the start
and stop conditions.

H'FFD8 bit2 0/1

IRIC Detects the start condition, determines the end of
data transfer, and detects acknowledge = 1.

H'FFD8 bit1 0/1

ICCR0

SCP Along with the BBSY bit, sets the start/stop
conditions.

H'FFD8 bit0 0

ICSR0 ACKB Stores the acknowledgement received from the
EEPROM during transmission. Sets the
acknowledge bit for transmission to the EEPROM
during reception.

H'FFD9 bit0 -

IICX0 Along with the settings in CKS2 to CKS0 of ICMR0,
selects the frequency of the transfer clock.

H'FFC3 bit5 1

IICE Enables CPU access to the data and control
registers of the I2C bus interface.

H'FFC3 bit4 1

STCR

FLSHE Sets the control registers of the flash memory to
non-selected.

H'FFC3 bit3 0

Rev. 2.0, 11/01, page 277 of 358

Table 4.28 On-chip Registers (Continued)

Register Function Address Setting

SWE Prohibits automatic change from format-less
transfer to transfer in the I2C bus format on the
channel 0 I2C interface.

H'FEE6 bit7 0

SW Uses the channel 0 I2C interface in the I2C bus
format.

H'FEE6 bit6 0

IE Prohibits interrupts during automatic changes of
format.

H'FEE6 bit5 0

DDCSWR

CLR3

to

CLR0

Control the initialization of the internal state of the
I2C interface

H'FEE6

bit3 to

bit0

CLR3=1

CLR2=1

CLR1=1

CLR0=1

MSTP7 Cancels the module-stopped mode for SCI channel
0.

H'FF87 bit7 0MSTPCRL

MSTP4 Cancels the module stopped mode for I2C channel
0.

H'FF87 bit4 0

SCR0 CKE1, 0 Make the I/O port setting for the P52/SCK0/SCL0
pin.

H'FFDA

bit1, 0

CKE1=0

CKE0=0

SMR0 C/$ Sets the mode for SCI transfer on channel 0 as
asynchronous.

H'FFD8 bit7 0

SYSCR INTM1, 0 Set the interrupt control mode of the interrupt
controller to 1-bit control.

H'FFC4

bit5, 4

INTM1=0

INTM0=0

MDCR MDS1, 0 Set the MCU’s operating mode to mode 3 by
latching the input levels on the MD1 and 0 pins.

H'FFC5

bit1, 0

MDS1=1

MDS0=1

Rev. 2.0, 11/01, page 278 of 358

(3) Description of Variables

Table 4.29 describes the variables used in this task.

Table 4.29 Description of Variables

Variable Function Size Initial
Value

Module Name

dt_trs[0] Stores first byte of data for transmission. 1 byte H'00 slv_trs

dt_trs[1] Stores second byte of data for transmission. 1 byte H'11 slv_trs

dt_trs[2] Stores third byte of data for transmission. 1 byte H'22 slv_trs

dt_trs[3] Stores fourth byte of data for transmission. 1 byte H'33 slv_trs

dt_trs[4] Stores fifth byte of data for transmission. 1 byte H'44 slv_trs

dt_trs[5] Stores sixth byte of data for transmission. 1 byte H'55 slv_trs

dt_trs[6] Stores seventh byte of data for transmission. 1 byte H'66 slv_trs

dt_trs[7] Stores eighth byte of data for transmission. 1 byte H'77 slv_trs

dt_trs[8] Stores nineth byte of data for transmission. 1 byte H'88 slv_trs

dt_trs[9] Stores tenth byte of data for transmission. 1 byte H'99 slv_trs

i Transmission data counter 1 byte H'00 slv_trs

dummy Stores the MDCR value. 1 byte — main

dmyrd Storage for the value obtained by the dummy
read.

1 byte — slv_trs

(4) Description of RAM Usage

In this example of a task, the only RAM used is that required for the variables.

Rev. 2.0, 11/01, page 279 of 358

4.8.4 Flowcharts

(1) Main Routine

main

SP H'F000

dummy MDCR

SYSCR H’09

initialize

CCR 1bit 0

MST 0

TRS 0

ACKB 0

IRIC 0

IRIC = 1 ? No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

AAS = 1 ?

ADZ = 0 ?

TRS = 1 ?

BBSY = 0 ?

slv_trs

···················Set SP (stack pointer) to H'F000.

Call the subroutine that makes the initial settings.

Enable an interrupt by clearing the 1 bit to 0.

Slave address = general-call address?

Transmission mode?

Call the slave-transmission subroutine.

Bus-released state?

Has receiving of this device's slave address + the R/W bit been
completed?

···················

···················

···················

·············

···················

·············

···················

·············

···················Read MDCR to latch the input levels on the MD1 and MD0 pins
to the bits MDS1 and MDS0.

·············Set the MST and TRS bits of ICCR9 to 0 to set the mode of the
channel 0 I2C interface to slave reception.

···················Set the interrupt-control mode of the interrupt controller
to 1-bit interrupt control.

ACKB = 0 (while receiving, zeroes are output with the
acknowledge-output timing)

···················Clear IRIC to 0 so that the bit indicates whether or not the slave
address + R/W data have been received.

Rev. 2.0, 11/01, page 280 of 358

(2) Subroutine for Making Initial Settings

initialize

STCR H'00

·············

·············

·············

·············MSTPCRL H'7F

SMR0 H'00

SCR0 H'00

MSTPCRL H'EF

STCR H'10

DDCSWR H'0F

ICCR0 H'01

SAR0 H'38

SARX0 H'01

ICCR0 H'81

ICSR0 H'00

STCR H'30

ICMR0 H'28

ICCR0 H'89

rts

Set the MSTP7 bit of MSTPCRL to 0 to take SCI0 out of its
module-stopped mode.

·············Set the FLSHE bit of STCR to 0 to set the control register of the
flash memory to non-selective.

·············
Set the STCR's IICE bit to 1 so that the data and control registers
of the I2C bus interface are accessible by the CPU.

Set ICCR0's ICE bit to 0 to enable access to SAR0 and SARX0.

Set ICCR0's ICE bit to 1 to enable access to ICMR0 and ICDR0.

Set the ACKB bit in ICSR0 to 0.

·············
Set the SWE, SW, and IE bits of DDCSWR to 0 to disable automatic
changeover from IIC0 format-less to I2C bus format, select use of IIC0
in the I2C bus format, and disable interrupts during the execution of
automatic format changeover.

Set FS in SAR0 and FSX in SARX0 to 0 to select the I2C bus format
(enables the SAR slave address and disables the SARX slave address)
as the format for transfer on IIC0.

·············Set the SMR's C/ bit to 0 to set the SCI0 to operate in its
asynchronous mode.

·············Set the SCR's CKE1 bit to 0 and CKE bit to 0 to set the
SCK0 pin for use as an I/O port.

·············
Set the MSTPCRL's MSTP7 bit to 1 and MSTP4 bit to 0 to put
SCI0 in its module-stopped mode and take IIC0 out of its
module-stopped mode.

········

Set IICX0 in STR to 1, ICMR0's CKS2 bit to 1, CKS1 bit to 0, and
CKS0 bit to 1 so that the frequency of the IIC0 transfer clock is set
to 100 kHz. Set WA1 to 0 for the continuous transfer of data and
acknowledge bits.

·········

Set IEIC in ICCR0 to 0 to disable the generation of IIC0 interrupt
requests, and set ACKE to 1 to suspend continuous transfer when
the acknowledge bit is 1.

·············

Rev. 2.0, 11/01, page 281 of 358

(3) Slave Transmission Subroutine

slv_trs

i 0 ······················

······················

······················

·············

······················

······················

······················

······················

······················

·············

·············

ICDR0 dt_trs[i]

i++

rts

TRS 0

dmyrd ICDR0

IRIC 0

IRIC 0

i++

ICDR0 dt_trs[i]

IRIC 0

IRIC = 1 ?

No

Yes

Yes

Yes

ACKB = 0 ?

IRIC = 1 ?

······················Clear IRIC to 0 so that the bit indicates, at rising edge
of the 9th cycle of the transmission clock, whether or not
data has been transmitted.

Initialize the transmitted-data counter.

Write the 1st byte of data for transmission

Increment the transmitted-data counter.

Has the data been transmitted?

Continue with transmission (ACKB = 0)?

Write next byte for transmission to ICDR0.

Increment the transmitted-data counter.

Has all data been transmitted?

TRS = 0 (set this device in the slave-reception mode)

Dummy read (to release the SCL line)

IRIC = 0

······················
Clear IRIC to 0 so that the bit indicates, at rising edge
of the 9th cycle of the transmission clock, whether or not
data has been transmitted.

No

1

1

Rev. 2.0, 11/01, page 282 of 358

4.8.5 Program List

/***

* H8S/2138 IIC bus application note *

* 7.Slave transmit to H8S/2138 *

* File name : SVTxd.c *

* Fai : 20MHz *

* Mode : 3 *

**/

#include <stdio.h>

#include <machine.h>

#include "2138s.h"

/***

* Prototype *

**/

void main(void); /* Main routine */

void initialize(void); /* IIC0 initialize */

void slv_trs(void); /* Slave transmit to H8S/2138 */

/***

* Data table *

**/

const unsigned char dt_trs[10] =

{

0x00, /* 1st transmit data */

0x11, /* 2nd transmit data */

0x22, /* 3rd transmit data */

0x33, /* 4th transmit data */

0x44, /* 5th transmit data */

0x55, /* 6th transmit data */

0x66, /* 7th transmit data */

0x77, /* 8th transmit data */

0x88, /* 9th transmit data */

0x99 /* 10th transmit data */

};

Rev. 2.0, 11/01, page 283 of 358

/***

* main : Main routine *

**/

void main(void)

#pragma asm

mov.l #h'f000,sp ;Stack pointer initialize

#pragma endasm

{

unsigned char dummy;

dummy = MDCR.BYTE; /* MCU mode set */

SYSCR.BYTE = 0x09; /* Interrupt control mode set */

initialize(); /* Initialize */

set_imask_ccr(0); /* Interrupt enable */

IIC0.ICCR.BIT.MST = 0; /* Slave receive mode set */

IIC0.ICCR.BIT.TRS = 0; /* MST = 0, TRS = 0 */

IIC0.ICSR.BIT.ACKB = 0; /* ACKB = 0 */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

while(IIC0.ICCR.BIT.IRIC == 0); /* Receive end (IRIC=1) ? */

if(IIC0.ICSR.BIT.AAS == 1) /* General call address receive ? */

{

if(IIC0.ICSR.BIT.ADZ == 0)

{

if(IIC0.ICCR.BIT.TRS == 1) /* Transmit mode (TRS=1) ? */

{

slv_trs(); /* Slave transmit */

}

}

}

while(IIC0.ICCR.BIT.BBSY == 1); /* Bus empty (BBSY=0) ? */

while(1); /* End */

}

Rev. 2.0, 11/01, page 284 of 358

/***

* initialize : IIC0 Initialize *

**/

void initialize(void)

{

STCR.BYTE = 0x00; /* FLSHE = 0 */

MSTPCR.BYTE.L = 0x7f; /* SCI0 module stop mode reset */

SCI0.SMR.BYTE = 0x00; /* SCL0 pin function set */

SCI0.SCR.BYTE = 0x00;

MSTPCR.BYTE.L = 0xef; /* IIC0 module stop mode reset */

STCR.BYTE = 0x10; /* IICE = 1 */

DDCSWR.BYTE = 0x0f; /* IIC bus format initialize */

IIC0.ICCR.BYTE = 0x01; /* ICE = 0 */

IIC0.SAR.BYTE = 0x38; /* FS = 0 */

IIC0.SARX.BYTE = 0x01; /* FSX = 1 */

IIC0.ICCR.BYTE = 0x81; /* ICE = 1 */

IIC0.ICSR.BYTE = 0x00; /* ACKB = 0 */

STCR.BYTE = 0x30; /* IICX0 = 1 */

IIC0.ICMR.BYTE = 0x28; /* Transfer rate = 100kHz */

IIC0.ICCR.BYTE = 0x89; /* IEIC = 0, ACKE = 1 */

}

/***

* slv_trs : Slave transmit to H8S/2138 *

**/

void slv_trs(void)

{

unsigned char i = 0; /* Transmit data counter initialize */

unsigned char dmyrd; /* Dummy read data store */

IIC0.ICDR = dt_trs[i++]; /* 1st transmit data write */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

while(IIC0.ICCR.BIT.IRIC == 0); /* Transmit end (IRIC=1) ? */

while(IIC0.ICSR.BIT.ACKB == 0) /* Transmit continue (ACKB=0) ? */

{

IIC0.ICDR = dt_trs[i++]; /* Transmit data write */

Rev. 2.0, 11/01, page 285 of 358

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

while(IIC0.ICCR.BIT.IRIC == 0); /* Transmit end (IRIC=1) ? */

}

IIC0.ICCR.BIT.TRS = 0; /* Slave receive mode set (MST=0,TRS=0) */

dmyrd = IIC0.ICDR; /* Dummy read */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

}

Rev. 2.0, 11/01, page 286 of 358

4.9 Slave Reception

4.9.1 Specifications

• One H8S/2138 in slave receive mode receives, through channel 0 of its I2C bus interface, 10
bytes of data from another H8S/2138.

• The slave address of the H8S/2138 that acts as the slave receiver is [0011100].

• The connection of devices to the I2C bus in this system is in the single-master configuration:
there is one master device (H8S/2138) and one slave device (H8S/2138).

• The frequency of the transfer clock is 100 kHz.

• The slave receiver uses the output of its acknowledge bit to control the number of bytes it
receives.

• Figure 4.32 shows an example of such a connection between two H8S/2138s.

VCC

VCC

SCL

SDA

SCL0

SDA0

H8S/2138

VSS

VCC

SCL0

SDA0

H8S/2138

VSS

Slave

Master

VCC

VCC

VCC

Figure 4.32 Example of Two H8S/2138s Connected in a Single-Master Configuration

• The I2C bus format used in this example of a task is shown in Fig. 4.33.

Rev. 2.0, 11/01, page 287 of 358

R/S

1 7 1

1

1 8 1 8

10

1 1 1 Number of
transmission bits

Number of
transmission frames

SLA A A A A PDATA DATA

Legend:

: Start condition
: Slave address
: Direction, as transmission/reception
: Acknowledge
: Transmitted data
: Stop condition

S
SLA
R/
A
DATA
P

Figure 4.33 Transfer Format Used in this Example of a Task

Rev. 2.0, 11/01, page 288 of 358

4.9.2 Description of Operation

Figure 4.34 shows this example's principle of operation.

SCL

SDA

RDRF

IRIC

[1] [2] [3]

[4] [4]

[5]

10µs Reception clock frequency

Ack
Start condition

Slave address
+ R/ = H'38

1st reception
data

2nd reception
data

3rd reception
data

10th reception
data

Stop
condition

···

···

···

···

···

Ack Ack Ack Ack Ack

[2]

[4]

[5]

[2]

[4]

[5]

[2]

[4]

[5] [6]

[2] [2]

[4]

Software processing Hardware processing
No operation

No operation

Dummy read of ICDR0

(start of the receive operation)

Clears IRIC to 0.

Reads the receive data from ICDR0.

No operation

[1]

[2]

[3]

[4]

[5]

[6]

No operation

RDRF = 1, IRIC = 1 (at rising of 9th clock)

RDRF = 0

No operation

RDRF = 0

IRIC = 1 (detects stop condition from the bus line state)

Figure 4.34 Slave Reception: Principle of Operation

Rev. 2.0, 11/01, page 289 of 358

4.9.3 Description of Software

(1) Descriptions of modules

Table 4.30 describes the functions of the modules used in this example of a task.

Table 4.30 Descriptions of Modules

Name Label Function

Main Routine main Sets stack pointers and the MCU mode, and enables an
interrupt.

Initial Settings initialize Sets the RAM area to be used and makes initial settings of
IIC0.

Slave reception slv_rec Uses slave reception to receive 10 bytes of data from the
other H8S/2138.

(2) Description of On-chip Registers

Table 4.31 describes the usage of on-chip registers in this example of a task.

Table 4.31 On-chip Registers

Register Function Address Setting

ICDR0 Stores the received data. H'FFDE —

SVA6

to

SVA0

Hold the slave address of the slave H8S/2138. H'FFDF

bit7 to

bit1

SVA6=0

SVA5=0

SVA4=1

SVA3=1

SVA2=1

SVA1=0

SVA0=0

SAR0

FS Along with the settings in the FSX bit of SARX0 and
the SW bit of DDCSWR, sets the format for transfer.

H'FFDF bit0 0

SARX0 FSX Along with the settings in the FS bit of SAR0 and
the SW bit of DDSWR, sets the format for transfer.

H'FFDE bit01

Rev. 2.0, 11/01, page 290 of 358

Table 4.31 On-chip Registers (Continued)

Register Function Address Setting

MLS Sets data transfer as MSB first. H'FFDF bit7 0

WAIT Sets continuous transfer of data and acknowledge
bits.

H'FFDF bit6 0

CKS2

to

CKS0

Along with the setting in the IICX0 bit of STCR, set
the frequency of the transfer clock to 100 kHz.

H'FFDF

bit5 to

bit3

CKS2=1

CKS1=0

CKS0=1

ICMR0

BC2

to

BC0

Set the number of bits for the next transfer in the I2C
bus format to 9 (9 bits/frame).

H'FFDF

bit2 to

bit0

BC2=0

BC1=0

BC0=0

ICE Controls access to the ICMR0, ICDR0/SAR, and
SARX registers, and selects the operation (the port
function for the SCL0/SDA0 pin) or non-operation
(bus-drive state for the SCL/SDA pin) of the I2C bus
interface.

H'FFD8 bit7 0/1ICCR0

IEIC Disables the generation of interrupt requests by the
I2C bus interface.

H'FFD8 bit6 0

MST Uses the I2C bus interface in its slave mode. H'FFD8 bit5 1

TRS Uses the I2C bus interface in its reception mode. H'FFD8 bit4 1

ACKE Suspends the continuous transfer of data when the
acknowledge bit is 1.

H'FFD8 bit3 1

BBSY Confirms whether or not the I2C bus is occupied,
and, in combination with the SCP bit, sets the start
and stop conditions.

H'FFD8 bit2 0/1

IRIC Detects the start condition, determines the end of
data transfer, and detects acknowledge = 1.

H'FFD8 bit1 0/1

ICCR0

SCP Along with the BBSY bit, sets the start/stop
conditions.

H'FFD8 bit0 0

ICSR0 ACKB Stores the data that has, in accordance with the
timing of the output of the slave device’s
acknowledge bit, been output by the other device.

H'FFD9 bit0 0/1

IICX0 Along with the settings in CKS2 to CKS0 of ICMR0,
selects the frequency of the transfer clock.

H'FFC3 bit5 1

IICE Enables CPU access to the data and control
registers of the I2C bus interface.

H'FFC3 bit4 1

STCR

FLSHE Sets the control registers of the flash memory to
non-selected.

H'FFC3 bit3 0

Rev. 2.0, 11/01, page 291 of 358

Table 4.31 On-chip Registers (Continued)

Register Function Address Setting

SWE Prohibits automatic change from format-less
transfer to transfer in the I2C bus format on the
channel 0 I2C interface.

H'FEE6 bit7 0

SW Uses the channel 0 I2C interface in the I2C bus
format.

H'FEE6 bit6 0

IE Prohibits interrupts during automatic changes of
format.

H'FEE6 bit5 0

DDCSWR

CLR3

to

CLR0

Control the initialization of the internal state of the
I2C interface

H'FEE6

bit3 to

bit0

CLR3=1

CLR2=1

CLR1=1

CLR0=1

MSTP7 Cancels the module-stopped mode for SCI channel
0.

H'FF87 bit7 0MSTPCRL

MSTP4 Cancels the module stopped mode for I2C channel
0.

H'FF87 bit4 0

SCR0 CKE1, 0 Make the I/O port setting for the P52/SCK0/SCL0
pin.

H'FFDA

bit1, 0

CKE1=0

CKE0=0

SMR0 C/$ Sets the mode for SCI transfer on channel 0 as
asynchronous.

H'FFD8 bit7 0

SYSCR INTM1, 0 Set the interrupt control mode of the interrupt
controller to 1-bit control.

H'FFC4

bit5, 4

INTM1=0

INTM0=0

MDCR MDS1, 0 Set the MCU’s operating mode to mode 3 by
latching the input levels on the MD1 and 0 pins.

H'FFC5

bit1, 0

MDS1=1

MDS0=1

(3) Description of Variables

Table 4.32 describes the variables used in this task example.

Table 4.32 Description of Variables

Variables Function Size Initial
Value

Name of Using
Module

i Received data counter 1 byte H'00 initialize

dummy Value read from MDCR 1 byte — main

dmyrd ICDR0 dummy-read value 1 byte — slv_trs

Rev. 2.0, 11/01, page 292 of 358

(4) Description of RAM Usage

Table 4.33 describes the RAM used in this task example.

Table 4.33 Description of RAM Usage

Label Function Size Address Name of Using
Module

dt_rec[i] Stores the received data. 10 bytes H'E100

to

H'E109

initialize

slv_rec

Rev. 2.0, 11/01, page 293 of 358

4.9.4 Flowcharts

(1) Main Routine

main

SP H'F000

dummy MDCR

SYSCR H’09

initialize

CCR 1bit 0

MST 0

TRS 0

ACKB 0

IRIC 0

IRIC = 1 ? No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

AAS = 1 ?

ADZ = 0 ?

TRS = 1 ?

BBSY = 0 ?

slv_trs

···················Set SP (stack pointer) to H'F000.

Call the subroutine that makes the initial settings.

Enable an interrupt by clearing the 1 bit to 0.

Slave address = general-call address?

Transmission mode?

Call the slave reception subroutine.

Bus-released state?

Has receiving of this device's slave address + the R/W bit been
completed?

···················

···················

···················

·············

···················

·············

···················

·············

···················Read MDCR to latch the input levels on the MD1 and MD0 pins
to the bits MDS1 and MDS0.

·············Set the MST and TRS bits of ICCR9 to 0 to set the mode of the
channel 0 I2C interface to slave reception.

···················Set the interrupt-control mode of the interrupt controller to
1-bit interrupt control.

ACKB = 0 (while receiving, zeroes are output with the
acknowledge-output timing)

···················Clear IRIC to 0 so that the bit provides an indication of whether or
not the slave address + R/W data have been received.

Rev. 2.0, 11/01, page 294 of 358

(2) Subroutine for Making Initial Settings

initialize

i 0

···················

 dt_rec[i] 0

i++

STCR H'00

MSTPCRL H'7F

SMR0 H'00

SCR0 H'00

MSTPCRL H'EF

STCR H'10

DDCSWR H'0F

ICCR0 H'01

SAR0 H'38

SARX0 H'01

ICCR0 H'81

1

···················

···················
Set the MSTP7 bit of MSTPCRL to 0 to take SCI0 out of its
module-stopped mode.

···················Set the SMR's C/ bit to 0 to set the SCI0 to operate in its
asynchronous mode.

···················Set the SCR's CKE1 bit to 0 and CKE bit to 0 to set the SCK0
pin for use as an I/O port.

···················

···················

Set the STCR's IICE bit to 1 so that the data and control
registers of the I2C bus interface are accessible by the CPU.

Set ICCR0's ICE bit to 0 to enable access to SAR0 and SARX0.

Set ICCR0's ICE bit to 1 to enable access to ICMR0 and ICDR0.

Set the MSTPCRL's MSTP7 bit to 1 and MSTP4 bit to 0 to put
SCI0 in its module-stopped mode and take IIC0 out of its
module-stopped mode.

···············

···············

···················
Set the FLSHE bit of STCR to 0 to set the control register of the
flash memory to non-selective.

Initialize the received data counter.

Received data counter < 10?

Initialize the received-data storage area.

Increment the received data counter.

Set the SWE, SW, and IE bits of DDCSWR to 0 to disable
automatic changeover from IIC0 format-less to I2C bus format,
select use of IIC0 in the I2C bus format, and disable interrupts
during the execution of automatic format changeover.

···················

Set FS in SAR0 and FSX in SARX0 to 0 to select the I2C bus
format (enables the SAR slave address and disables the SARX
slave address) as the format for transfer on IIC0.

···········

···················

···················

i<10?
No

Rev. 2.0, 11/01, page 295 of 358

rts

ICSR0 H'00

1

···················

··············
STCR H'30

ICMR0 H'28

ICCR0 H'89

Set IICX0 in STR to 1, ICMR0's CKS2 bit to 1, CKS1 bit to 0, and
CKS0 bit to 1 so that the frequency of the IIC0 transfer clock is
set to 100 kHz. Set WA1 to 0 for the continuous transfer of data
and acknowledge bits.

Set the ACKB bit in ICSR0 to 0.

···················Set IEIC in ICCR0 to 0 to disable the generation of IIC0 interrupt
requests, and set ACKE to 1 to suspend continuous transfer when
the acknowledge bit is 1.

(3) Slave Reception Subroutine

slv_rec

ACKB 0 ···················

···················

···················

················

···················

···················

···················

············

dmyrd ICDR0

IRIC 0

i 0

(2)

IRIC 0

i++

dt_rec[i] ICDR0

IRIC = 1 ?

No

Yes

Yes

Yes

i < 8 ?

IRIC = 1 ?

············This byte of data fully received?

Initialize the received-data counter

Continue to receive?

Read the received byte from ICDR0 and store the byte in RAM.

This byte of data fully received?

Increment the received-data counter.

ACKB = 0 (while receiving, zeroes are output with the
acknowledge-output timing)

Dummy read (start of reception)

···················Clear IRIC to 0 so that the bit indicates, on the rising edge of the
9th cycle of the transmission clock, whether or not data has
been transmitted.

Clear IRIC to 0 so that the bit indicates, on the rising edge of the
9th cycle of the transmission clock, whether or not data has
been transmitted.

No

No

Rev. 2.0, 11/01, page 296 of 358

rts

ACKB 1

2

···················

···················

···················

···················

···················

···················

dt_rec[8] ICDR0

IRIC 0

i 0

dt_rec[9] ICDR0

IRIC 0

IRIC = 1 ?

Yes

············Has all data been received?

ACKB = 0 (while receiving, zeroes are output with the
acknowledge-output timing)

Read the 9th byte of the received data (to start receiving the
10th byte).

Initialize the received-data counter.

Read the 10th byte of the received data and store the byte in RAM.

IRIC = 0

Clear IRIC to 0 so that the bit indicates, on the rising edge of the
9th cycle of the receiving clock, whether or not data has been
received.

No

Rev. 2.0, 11/01, page 297 of 358

4.9.5 Program List

/***

* H8S/2138 IIC bus application note *

* 8.Slave receive from H8S/2138 *

* File name : SVRxd.c *

* Fai : 20MHz *

* Mode : 3 *

**/

#include <stdio.h>

#include <machine.h>

#include "2138s.h"

/***

* Prototype *

**/

void main(void); /* Main routine */

void initialize(void); /* RAM & IIC0 initialize */

void slv_rec(void); /* Slave transmit to H8S/2138 */

/***

* RAM allocation *

**/

#pragma section ramarea

unsigned char dt_rec[10]; /* Receive data store area */

#pragma section

/***

* main : Main routine *

**/

void main(void)

#pragma asm

mov.l #h'f000,sp ;Stack pointer initialize

#pragma endasm

{

unsigned char dummy;

dummy = MDCR.BYTE; /* MCU mode set */

Rev. 2.0, 11/01, page 298 of 358

SYSCR.BYTE = 0x09; /* Interrupt control mode set */

initialize(); /* Initialize */

set_imask_ccr(0); /* Interrupt enable */

IIC0.ICCR.BIT.MST = 0; /* Slave receive mode set */

IIC0.ICCR.BIT.TRS = 0; /* MST = 0, TRS = 0 */

IIC0.ICSR.BIT.ACKB = 0; /* ACKB = 0 */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

while(IIC0.ICCR.BIT.IRIC == 0); /* Slave address receive end ? */

if(IIC0.ICSR.BIT.AAS == 1) /* General call address receive ? */

{

if(IIC0.ICSR.BIT.ADZ == 0)

{

if(IIC0.ICCR.BIT.TRS == 0) /* Slave receive mode (TRS=0) ? */

{

slv_rec(); /* Slave receive */

}

}

}

while(IIC0.ICCR.BIT.BBSY == 1); /* Bus empty (BBSY=0) ? */

while(1); /* End */

}

/***

* initialize : RAM & IIC0 Initialize *

**/

void initialize(void)

{

unsigned char i=0; /* Receive data counter initialize */

for(i=0; i<10; i++) /* Receive data store area initialize */

{

dt_rec[i] = 0x00;

}

Rev. 2.0, 11/01, page 299 of 358

STCR.BYTE = 0x00; /* FLSHE = 0 */

MSTPCR.BYTE.L = 0x7f; /* SCI0 module stop mode reset */

SCI0.SMR.BYTE = 0x00; /* SCL0 pin function set */

SCI0.SCR.BYTE = 0x00;

MSTPCR.BYTE.L = 0xef; /* IIC0 module stop mode reset */

STCR.BYTE = 0x10; /* IICE = 1 */

DDCSWR.BYTE = 0x0f; /* IIC bus format initialize */

IIC0.ICCR.BYTE = 0x01; /* ICE = 0 */

IIC0.SAR.BYTE = 0x38; /* FS = 0 , Slave address = b'0011100*/

IIC0.SARX.BYTE = 0x01; /* FSX = 1 */

IIC0.ICCR.BYTE = 0x81; /* ICE = 1 */

IIC0.ICSR.BYTE = 0x00; /* ACKB = 0 */

STCR.BYTE = 0x30; /* IICX0 = 1 */

IIC0.ICMR.BYTE = 0x28; /* Transfer rate = 100kHz */

IIC0.ICCR.BYTE = 0x89; /* IEIC = 0, ACKE = 1 */

}

/***

* slv_rec : Slave receive from H8S/2138 *

**/

void slv_rec(void)

{

unsigned char i; /* Receive data counter initialize */

unsigned char dmyrd; /* Dummy read data store area */

IIC0.ICSR.BIT.ACKB = 0; /* ACKB = 0 */

dmyrd = IIC0.ICDR; /* Dummy read (Receive start) */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

while(IIC0.ICCR.BIT.IRIC == 0); /* Receive end (IRIC=1) ? */

for(i=0; i<8; i++)

{

dt_rec[i] = IIC0.ICDR; /* Receive data read */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

while(IIC0.ICCR.BIT.IRIC == 0); /* Receive end (IRIC=1) ? */

}

Rev. 2.0, 11/01, page 300 of 358

IC0.ICSR.BIT.ACKB = 1; /* ACKB = 1 */

dt_rec[8] = IIC0.ICDR; /* 10th data receive start */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

while(IIC0.ICCR.BIT.IRIC == 0); /* Receive end (IRIC=1) ? */

dt_rec[9] = IIC0.ICDR; /* 10th receive data read */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

}

Rev. 2.0, 11/01, page 301 of 358

4.10 Example of Processing Bus Disconnection

4.10.1 Specification

• Writes 5 bytes of data to the EEPROM (HN58X2408) by having the H8S/2138 transmit, as the
master device, on its channel 0 I2C bus interface.

• The slave address of the EEPROM to be connected is [1010000]; the data is written to
addresses H'00 to H'04 in the EEPROM's memory.

• The data to be written is [H'A1, H'B2, H'C3, H'D4, and H'E5].

• If the bus is disconnected during the transfer of data, the program stops the transfer clock
(from the transmitting master device) is stopped 8 cycles into the transmission of the third
byte, clears the ICE bit of ICCR0 to 0, and places the IIC0 module in its non-operational state
(i.e., the SCL0/SDA0 pin is set to have a port function). After the period of an EEPROM write
cycle has elapsed, the process of writing the 5 bytes of data to the EEPROM starts again, from
the beginning.

• The devices are connected to the I2C bus of this system in a single-master configuration with
one master device (H8S/2138) and one slave device (H8S/2138).

• The transfer clock frequency is 100 kHz.

• Figure 4.35 shows an example of such a connection between a H8S/2138 and an EEPROM.

Rev. 2.0, 11/01, page 302 of 358

VCC

VCC

SCL

SDA

SCL0

SDA0

H8S/2138

VSS

EEPROM

VCC

VCC

VCC

VCC

SCL

SDA

VSS

A0

A1

A2

WP

Figure 4.35 An Example of the Connection of a H8S/2138 and an EEPROM.

• The I2C bus format used in this example of a task is shown in figure 4.36.

R/S

1 7 1

1 1

1 8 1 8

5

1 1 1

SLA A A A A PMEA DATA

Number of
transmission bits
Number of
transmission frames

Legend:

: Start condition
: Slave address
: Direction, as transmission/reception
: Acknowledge
: Address of a location in the EEPROM
: Transmitted data
: Stop condition

S
SLA
R/
A
MEA
DATA
P

Figure 4.36 Transfer Format Used in this Example of a Task

Rev. 2.0, 11/01, page 303 of 358

4.10.2 Description of Operation

Figure 4.37 describes this example's principle of operation.

SCL

SDA

SCL

SDA

[9] [3] [3] [3] [3] [3] [3]

[2]

[3] [3] [3] [3] [4] [5] [6]
[8]

10µs Reception clock frequency

AckStart
condition

Slave address
+ R/ = H'40

Slave address
+ R/ = H'40

Memory address
= H'00

2nd transmission
data = H'B2

1st transmission
data = H'A1

Memory address
= H'00

1st transmission
data = H'A1

5th transmission
data = H'E5

3rd transmission
data = H'C3

EEPROM write
cycle = 10ms

EEPROM write
cycle = 10ms

Stop
condition

Sets the start condition (BBSY = 1, SCP = 0)

Sets the stop condition (BBSY=0, SCP=0)

Writes the data for transmission to ICDR0 and clears IRIC to 0 (at rising of 9th clock)

Write the data for transmission to ICDR0 and clears IRIC to 0 (at rising of 9th clock)

Outputs logic-low on the P52 (SCL0) and P97 (SDA0) pins (at falling of 8th clock).

Outputs logic-low on the P52 (SCL0) and P97 (SDA0) pins to generate 9th clock.

Outputs logic-high on the P52 (SCL0) pin to generate the stop condition.

Outputs logic-low on the P97 (SDA0) pin to generate the stop condition.

Initially sets the IIC0 module.

Software processing

······

······

···

···

Start
condition

Stop
condition

Ack Ack Ack Ack Ack

Ack Ack Ack Ack

[1]
[6]

[7]

[1]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Figure 4.37 Principle of Operation when the Bus is Temporarily Disconnected

Rev. 2.0, 11/01, page 304 of 358

4.10.3 Description of Software

(1) Description of Modules

Table 4.33 describes the modules used in this example of a task.

Table 4.33 Module Description

Name Label Function

Main routine main Sets the stack pointer and the MCU mode, and enables an
interrupt.

Initial setting initialize Makes initial settings of IIC0.

Master transmission
1

mst_trs_1 Uses master transmission to transmit 5 bytes of data to the
EEPROM.

Master transmission
2

mst_trs_2 Uses master transmission to transmit 5 bytes of data to the
EEPROM.

Start-condition
setting

set_start Sets the start condition.

Stop-condition
setting

set_stop Sets the stop condition.

Transmission of
slave address + W

trs_slvadr_a0 Transmits the EEPROM’s slave address + W bit as data
(H’A0).

Transmission of
location in EEPROM

trs_memadr Transmits the address of a location within the EEPROM
(H’00) as data.

Wait1 wait_1 Waits for 5 µs (in 20-MHz operation).

Wait2 wait_2 Waits for 10 µs (in 20-MHz operation).

(2) Description of On-chip Registers

Table 4.34 the usage of on-chip registers in this example of a task.

Table 4.34 On-chip Registers

Register Function Address Setting

ICDR0 Stores the data for transmission. H'FFDE —

SAR0 FS Along with the settings in the FSX bit of SARX0 and
the SW bit of DDCSWR, sets the format for transfer.

H'FFDF bit0 0

SARX0 FSX Along with the settings in the FS bit of SAR0 and
the SW bit of DDSWR, sets the format for transfer.

H'FFDE bit01

Rev. 2.0, 11/01, page 305 of 358

Table 4.34 On-chip Registers (cont)

Register Function Address Setting

MLS Sets data transfer as MSB first. H'FFDF bit7 0

WAIT Sets whether to insert wait cycles between the data
bits and the acknowledge bit.

H'FFDF bit6 0/1

CKS2

to

CKS0

Along with the setting in the IICX0 bit of STCR, set
the frequency of the transfer clock to 100 kHz.

H'FFDF

bit5 to

bit3

CKS2=1

CKS1=0

CKS0=1

ICMR0

BC2

to

BC0

Set the number of bits for the next transfer in the I2C
bus format to 9 (9 bits/frame).

H'FFDF

bit2 to

bit0

BC2=0

BC1=0

BC0=0

ICE Controls access to the ICMR0, ICDR0/SAR, and
SARX registers, and selects the operation (the port
function for the SCL0/SDA0 pin) or non-operation
(bus-drive state for the SCL/SDA pin) of the I2C bus
interface.

H'FFD8 bit7 0/1

IEIC Disables the generation of interrupt requests by the
I2C bus interface.

H'FFD8 bit6 0

MST Uses the I2C bus interface in its master mode. H'FFD8 bit5 1

TRS Uses the I2C bus interface in its transmission mode. H'FFD8 bit4 1

ACKE Suspends the continuous transfer of data when the
acknowledge bit is 1.

H'FFD8 bit3 1

BBSY Confirms whether or not the I2C bus is occupied,
and, in combination with the SCP bit, sets the start
and stop conditions.

H'FFD8 bit2 0/1

IRIC Detects the start condition, determines the end of
data transfer, and detects acknowledge = 1.

H'FFD8 bit1 0/1

ICCR0

SCP Along with the BBSY bit, sets the start/stop
conditions.

H'FFD8 bit0 0

ICSR0 ACKB Stores the acknowledgement to be transmitted to
the EEPROM during the receive operation.

H'FFD9 bit0 —

IICX0 Along with the settings in CKS2 to CKS0 of ICMR0,
selects the frequency of the transfer clock.

H'FFC3 bit5 1

IICE Enables CPU access to the data and control
registers of the I2C bus interface.

H'FFC3 bit4 1

STCR

FLSHE Sets the control registers of the flash memory to
non-selected.

H'FFC3 bit3 0

Rev. 2.0, 11/01, page 306 of 358

Table 4.34 On-chip Registers (cont)

Register Function Address Setting

SWE Prohibits automatic changeover from format-less
transfer to transfer in the I2C bus format on the
channel 0 I2C interface.

H'FEE6 bit7 0

SW Uses the channel 0 I2C interface in the I2C bus
format.

H'FEE6 bit6 0

IE Prohibits interrupts during automatic changes of
format.

H'FEE6 bit5 0

DDCSWR

CLR3

to

CLR0

Control the initialization of the internal state of the
channel 0 I2C interface

H'FEE6

bit3 to

bit0

CLR3=1

CLR2=1

CLR1=1

CLR0=1

MSTP7 Cancels the module-stopped mode for SCI channel
0.

H'FF87 bit7 0MSTPCRL

MSTP4 Cancels the module stopped mode for I2C channel
0.

H'FF87 bit4 0

SCR0 CKE1, 0 Make the I/O port setting for the P52/SCK0/SCL0
pin.

H'FFDA

bit1, 0

CKE1=0

CKE0=0

SMR0 C/$ Sets the mode for SCI transfer on channel 0 as
asynchronous.

H'FFD8 bit7 0

SYSCR INTM1, 0 Set the interrupt-control mode of the interrupt
controller to 1-bit control.

H'FFC4

bit5, 4

INTM1=0

INTM0=0

MDCR MDS1, 0 Set the MCU’s operating mode to mode 3 by
latching the input levels on the MD1 and 0 pins.

H'FFC5

bit1, 0

MDS1=1

MDS0=1

P5DDR P52DDR Sets the P52 pin to act as an output pin. H'FFB8 bit2 1

P5DR P52DR Sets the data for output on the P52 pin. H'FFBA bit2 0/1

P9DDR P97DDR Sets the P97 pin to act as an output pin. H'FFC0 bit7 1

P9DR P97DR Sets the data for output on the P97 pin. H'FFC1 bit7 0/1

Rev. 2.0, 11/01, page 307 of 358

(3) Description of Variables

Table 4.35 describes the variables used in this task.

Table 4.35 Description of Variables

Variable Function Size Initial
Value

Name of Using
Module

i Transmission data counter 1 byte H'00 mst_trs_1

mst_trs_2

dummy Stores the MDCR value. 1 byte — main

dt_trs[i] 5 bytes transmission data 5 bytes — mst_trs_1

mst_trs_2

(4) Description of RAM Usage

In this example of a task, the only RAM used is that required for the variables.

Rev. 2.0, 11/01, page 308 of 358

4.10.4 Flowcharts

(1) Main Routine

main

SP H'F000

dummy MDCR

SYSCR H'09

ini t ia l ize

CCR 1bit 0

P5DR H'00

P5DDR H'04

P9DR H'00

P9DDR H'80

P5DR H'04

P9DR H'80

P5DR H'00

·············

·············

·············

·············

·············

·············

·············

·············

·············

·············

·············

·············

·············

·········

Set SP (stack pointer) to H'F000.

Read MDCR to latch the input levels on the MD1 and MD0 pins to the
bits MDS1 and MDS0.

Set the interrupt control mode of the interrupt controller to 1-bit
interrupt control.

Call the subroutine that makes the initial settings.

Enable an interrupt by clearing the 1 bit to 0.

Call the master transmission 1 subroutine.

Call the WAIT1 subroutine.

Call the WAIT1 subroutine.

Output logic-high on P52.

Call the WAIT1 subroutine.

Output logic-high on P97 (generate the stop condition), high on P52,
and a low-to-high transition on P97.

Call the WAIT1 subroutine.

Output logic-low on P52.

Generate the 9th clock cycle for the frame currently being
transmitted from the port output.

mst_trs_1

wait_1

wait_1

wait_1

wait_1

1

Rev. 2.0, 11/01, page 309 of 358

·············

·············

·············

·············

Output logic-low on P97.

Call the WAIT2 subroutine.

Call the subroutine that makes the initial settings.

Call the master transmission 2 subroutine.

P9DR H'00

wait_2

ini t ia l ize

mst_trs_2

1

Rev. 2.0, 11/01, page 310 of 358

(2) Subroutine for Making Initial Settings

in i t ia l ize

rts

STCR H'00

MSTPCRL H'7F

SMR0 H'00

SCR0 H'00

MSTPCRL H'EF

STCR H'10

DDCRWR H'0F

ICCR0 H'01

SAR0 H'00

SARX0 H'01

ICCR0 H'81

ICMR0 H'28

ICCR0 H'89

·············

·············

·············

·············

·············

·············

·············

·············

·············

·············

··········

··········

·············

Set the FLSHE bit of STCR to 0 to set the control register of the flash
memory to non-selective.

Set the MSTP7 bit of MSTPCRL to 0 to take SCI0 out of its
module-stopped mode.

Set the SMR's C/ bit to 0 to set the SCI0 to operate in its
asynchronous mode.

Set the SCR's CKE1 bit to 0 and CKE bit to 0 to set the SCK0 pin
for use as an I/O port.

Set the STCR's IICE bit to 1 so that the data and control registers of the
I2C bus interface are accessible by the CPU.

Set the SWE, SW, and IE bits of DDCSWR to 0 to disable automatic
changeover from IIC0 format-less to I2C bus format, select use of IIC0
in the I2C bus format, and disable interrupts during the execution of
automatic format changeover.

Set ICCR0's ICE bit to 0 to enable access to SAR0 and SARX0.

Set ICCR0's ICE bit to 1 to enable access to ICMR0 and ICDR0.

Set the ACKB bit in ICSR0 to 0.

Set the MSTPCRL's MSTP7 bit to 1 and MSTP4 bit to 0 to put SCI0
in its module-stopped mode and take IIC0 out of its module-stopped mode.

Set FS in SAR0 and FSX in SARX0 to 0 to select the I2C bus format
(enables the SAR slave address and disables the SARX slave address)
as the format for transfer on IIC0.

Set IICX0 in STR to 1, ICMR0's CKS2 bit to 1, CKS1 bit to 0, and CKS0 bit
to 1 so that the frequency of the IIC0 transfer clock is set to 100 kHz.
Set WA1 to 0 for the continuous transfer of data and acknowledge bits.

Set IEIC in ICCR0 to 0 to disable the generation of IIC0 interrupt requests,
and set ACKE to 1 to suspend continuous transfer when the acknowledge
bit is 1.

STCR H'30

ICSR0 H'00

Rev. 2.0, 11/01, page 311 of 358

(3) Master transmission 1 subroutine

mst_trs_1

No

Yes

·············

················

··························

··························

··························

··························

··························

·············

·············

··························

··························

Bus released?

Set the MST and TRS bits of ICCR0 to 1 to select the master
transmission mode for IIC0.

Call the subroutine that sets the start condition.

Call the subroutine for transmitting the slave address + W bit.

Call the subroutine that transmits the address of a location
in EEPROM.

Initialize the transmitted-data counter

Increment the transmitted-data counter.

2 bytes of transmission completed?

Transmission of the current byte completed?

Write the ith byte of the data for transmission data to ICDR0.

Clear IRIC to 0 so that the bit indicates whether or not the
transmission of this byte has been completed on the rising edge
of the 9th cycle of the transmission clock.

IRIC = 1 ?

No

No

Yes

i < 2 ?

Yes

BBSY = 0 ?

i 0

ICDR0 dt_trs[i]

IRIC 0

i++

MST 1

TRS 1

set_start

trs_slvadr_a0

trs_memadr

2

Rev. 2.0, 11/01, page 312 of 358

rts

WAIT 1

ICDR0 dt_trs[i]

IRIC 0

wait_1

····················

····················

····················

··········

····················

····················

WAIT = 1 (insert wait cycles between the data bits and acknowledge bit)

Write the 3rd byte of the data for transmission to ICRD0.

Clear IRIC to 0 so that it indicates whether or not the transmission
of this byte has been completed on the falling edge of the 8th cycle
of the transmission clock).

Transmission of the 3rd byte of data completed?

Call the WAIT1 subroutine.

Call the WAIT1 subroutine.

No

Yes

IRIC = 1 ?

wait_1

2

Rev. 2.0, 11/01, page 313 of 358

(4) Master Transmission 2 Subroutine

mst_trs_2

rts

No

Yes

···········

····················

····················

····················

···········

····················

····················

····················

···········

···········

··············

····················

IRIC = 1 ?

No

Yes

ACKB = 0 ?

···········

i 0

ICDR0 dt_trs[i]

IRIC 0

i++

MST 1

TRS 1

trs_memadr

set_start

trs_slvadr_a0

set_stop

3

3

No

Yes

i < 5 ? 3

No

Yes

ACKB = 0 ? 3

No

Yes

ACKB = 0 ? 3

····················

Acknowledge bit received from the EEPROM?

Call the subroutine for transmitting the slave address + W bit.

Call the subroutine that sets the start condition.

Call EEPROM memory address transmission subroutine.

Acknowledge received from the EEPROM?

Initializes the transmission data counter.

Increment the transmitted-data counter.

Call the subroutine that sets the stop condition.

Acknowledge bit received from the EEPROM?

Have all 5 bytes of data been transmitted?

Set the MST and TRS bits of ICCR0 to 1 to select the master
transmission mode for IIC0.

Write the ith byte of the data for transmission to ICDR0.

Transmission of data completed?

Clear IRIC to 0 so that it indicates whether or not the transmission
of data has been completed at rising of the 9th transmission clock.

Rev. 2.0, 11/01, page 314 of 358

(5) Subroutine for Setting the Start Condition

set_stop

rts

IRIC 0

ICCR0 H'BC

No

Yes

·······················

·······················

·············

Clear IRIC to 0 so that it indicates whether or not the
start condition has been detected.

Set ICCR0's BBSY to 1 and SCP to 0 to issue the
start condition.

Has the start condition been detected on the bus lines?IRIC = 1 ?

(6) Subroutine for Setting the Stop Condition

set_stop

rts

No

Yes

·······················

···········

Set ICCR0's BBSY and SCP bits to 0 to set the start
condition.

Bus released?
BBSY = 0 ?

ICCR0 H'B8

(7) Subroutine for transmitting the slave address + W bit

trs_slvadr_a0

rts

No

Yes

·······················

·······················

···········

Transmit the EEPROM's slave address + W bit as data (H'A0)

Clear IRIC to 0 so that it indicates whether or not data has been
transmitted (at rising of 9th transmission clock).

Transmission of the EEPROM's slave address + W data completed?
IRIC = 1 ?

ICCR0 H'A0

IRIC 0

Rev. 2.0, 11/01, page 315 of 358

(8) Subroutine for transmitting the location within the EEPROM

trs_memadr

rts

No

Yes

·······················

·······················

···········

Transmit the address of a location within the EEPROM as data (H'00)

Clear IRIC to 0 so that it indicates whether or not data has been
transmitted (at rising of 9th transmission clock).

Transmission of the address of a location within the EEPROM
completed?IRIC = 1 ?

ICCR0 H'00

IRIC 0

(9) WAIT1 subroutine

wait_1

rts

PUSH R0

R0L H’1A

P0P R0

R0L R0L - 1

No

Yes

·······················

·······················

··············

··············

·······················

Place the R0 register on the stack.

An initial setting for a loop that decrements R0.

Decrementing completed?

Decremented R0.

Restore the original value of the R0 register.

R0L = 0 ?

Rev. 2.0, 11/01, page 316 of 358

(10) WAIT2 subroutine

wait_2

rts

PUSH ER0

ER0 H'00010800

P0P ER0

ER0 ER0 - 1

No

Yes

····················

····················

·············

·············

····················

Place the ER0 register on the stack.

An initial setting for a loop that decrements ER0.

Decrementing completed?

Decrement ER0.

Restore the original value of the ER0 register.

ER0 = 0 ?

Rev. 2.0, 11/01, page 317 of 358

4.10.5 Program List

/***

* H8S/2138 IIC bus application note *

* 9.Error process in single master transmit *

* File name : Error.c *

* Fai : 20MHz *

* Mode : 3 *

**/

#include <stdio.h>

#include <machine.h>

#include "2138s.h"

/***

* Prototype *

**/

void main(void); /* Main routine */

void initialize(void); /* IIC0 initialize */

void mst_trs_1(void); /* Master transmit 1 */

void mst_trs_2(void); /* Master transmit 2 */

void set_start(void); /* Start condition set */

void set_stop(void); /* Stop condition set */

void trs_slvadr_a0(void); /* Slave address + W data transmit */

void trs_memadr(void); /* EEPROM memory address data transmit */

void wait_1(void); /* Wait 1 (5 µs) */

void wait_2(void); /* Wait 2 (10ms) */

/***

* Data table *

**/

const unsigned char dt_trs[5] = /* Transmit data (5 byte) */

{

0xa1, /* 1st transmit data */

0xb2, /* 2nd transmit data */

0xc3, /* 3rd transmit data */

0xd4, /* 4th transmit data */

0xe5 /* 5th transmit data */

Rev. 2.0, 11/01, page 318 of 358

};

/***

* main : Main routine *

**/

void main(void)

#pragma asm

mov.l #h'f000,sp ;Stack pointer initialize

#pragma endasm

{

unsigned char dummy;

dummy = MDCR.BYTE; /* MCU mode set */

SYSCR.BYTE = 0x09; /* Interrupt control mode set */

initialize(); /* Initialize */

set_imask_ccr(0); /* Interrupt enable */

mst_trs_1(); /* Master transmit to EEPROM 1 */

wait_1(); /* 5 µs wait */

P5.DR.BYTE = 0x00; /* P52DR = 0 */

P5.DDR = 0x04; /* P52DDR = 1 */

P9.DR.BYTE = 0x00; /* P97DR = 0 */

P9.DDR = 0x80; /* P97DDR = 1 */

wait_1(); /* 5 µs wait */

P5.DR.BYTE = 0x04; /* P52DR = 1 */

wait_1(); /* 5 µs wait */

P9.DR.BYTE = 0x80; /* P92DR = 1 */

wait_1(); /* 5 µs wait */

P5.DR.BYTE = 0x00; /* P52DR = 0 */

P9.DR.BYTE = 0x00; /* P97DR = 0 */

wait_2(); /* 10ms wait (EEPROM write cycle) */

initialize(); /* IIC0 initialzie */

mst_trs_2(); /* Master transmit to EEPROM 2 */

Rev. 2.0, 11/01, page 319 of 358

while(1); /* End */

}

/***

* initialize : IIC0 Initialize *

**/

void initialize(void)

{

STCR.BYTE = 0x00; /* FLSHE = 0 */

MSTPCR.BYTE.L = 0x7f; /* SCI0 module stop mode reset */

SCI0.SMR.BYTE = 0x00; /* SCL0 pin function set */

SCI0.SCR.BYTE = 0x00;

BSC.WSCR.BYTE = 0x33; /* SDA0 pin function set */

MSTPCR.BYTE.L = 0xef; /* IIC0 module stop mode reset */

STCR.BYTE = 0x10; /* IICE = 1 */

DDCSWR.BYTE = 0x0f; /* IIC bus format initialize */

IIC0.ICCR.BYTE = 0x01; /* ICE = 0 */

IIC0.SAR.BYTE = 0x00; /* FS = 0 */

IIC0.SARX.BYTE = 0x01; /* FSX = 1 */

IIC0.ICCR.BYTE = 0x81; /* ICE = 1 */

IIC0.ICSR.BYTE = 0x00; /* ACKB = 0 */

STCR.BYTE = 0x30; /* IICX0 = 1 */

IIC0.ICMR.BYTE = 0x28; /* Transfer rate = 100kHz */

IIC0.ICCR.BYTE = 0x89; /* IEIC = 0, ACKE = 1 */

}

/***

* mst_trs_1 : Master transmit to EEPROM 1 *

**/

void mst_trs_1(void)

{

unsigned char i; /* Transmit data counter */

while(IIC0.ICCR.BIT.BBSY == 1); /* Bus empty (BBSY=0) ? */

IIC0.ICCR.BIT.MST = 1; /* Master transmit mode set */

IIC0.ICCR.BIT.TRS = 1; /* MST = 1, TRS = 1 */

set_start(); /* Start condition set */

Rev. 2.0, 11/01, page 320 of 358

trs_slvadr_a0(); /* Slave address + W data transmit */

trs_memadr(); /* EEPROM memory address data transmit */

for(i=0; i<2; i++)

{

IIC0.ICDR = dt_trs[i]; /* Transmit data write */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

while(IIC0.ICCR.BIT.IRIC == 0); /* Transmit end (IRIC=1) ? */

}

IIC0.ICMR.BIT.WAIT = 1; /* WAIT = 1 */

IIC0.ICDR = dt_trs[i]; /* 3rd transmit data write */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

while(IIC0.ICCR.BIT.IRIC == 0); /* Transmit end (IRIC=1) ? */

wait_1() /* 5 µs wait */

wait_1(); /* 5 µs wait */

IIC0.ICCR.BIT.ICE = 0; /* ICE = 0 */

}

/***

* mst_trs_2 : Master transmit to EEPROM 2 *

**/

void mst_trs_2(void)

{

unsigned char i; /* Transmit data counter */

IIC0.ICCR.BIT.MST = 1; /* Matser transmit mode set */

IIC0.ICCR.BIT.TRS = 1; /* MST = 1, TRS = 1 */

set_start(); /* Start condition set */

trs_slvadr_a0(); /* Slave address + W data transmit */

if(IIC0.ICSR.BIT.ACKB == 0) /* ACKB = 0 ? */

{

trs_memadr(); /* EEPROM memory address data transmit */

if(IIC0.ICSR.BIT.ACKB == 0) /* ACKB = 0 ? */

{

for(i=0; i<5; i++)

{

Rev. 2.0, 11/01, page 321 of 358

IIC0.ICDR = dt_trs[i]; /* Transmit data write */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

while(IIC0.ICCR.BIT.IRIC == 0); /* Transmit end (IRIC=1) ? */

if(IIC0.ICSR.BIT.ACKB == 1) /* ACKB = 0 ? */

{

break;

}

}

}

}

set_stop(); /* Stop condition set */

}

/***

* set_start : Start condition set *

**/

void set_start(void)

{

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

IIC0.ICCR.BYTE = 0xbc; /* Start condition set (BBSY=1,SCP=0) */

hile(IIC0.ICCR.BIT.IRIC == 0); /* Start condition set (IRIC=1) ? */

}

/***

* set_stop : Stop condition set *

**/

void set_stop(void)

{

IIC0.ICCR.BYTE = 0xb8; /* Stop condition set (BBSY=0,SCP=0) */

while(IIC0.ICCR.BIT.BBSY == 1); /* Bus empty (BBSY=0) ? */

}

/***

* trs_slvadr_a0 : Slave addres + W data transmit *

**/

void trs_slvadr_a0(void)

Rev. 2.0, 11/01, page 322 of 358

{

IC0.ICDR = 0xa0; /* Slave address + W data(H'A0) write */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

while(IIC0.ICCR.BIT.IRIC == 0); /* Transmit end (IRIC=1) ? */

}

/***

* trs_memadr : EEPROM memory address data transmit *

**/

void trs_memadr(void)

{

IIC0.ICDR = 0x00; /* EEPROM memory address data(H'00) write */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

while(IIC0.ICCR.BIT.IRIC == 0); /* Transmit end (IRIC=1) ? */

}

/***

* wait_1 : xxms wait *

**/

void wait_1(void)

{

#pragma asm

push.w r0 ;Push R0

mov.b #h'1a,r0l ;Decrement data set

wait1_1:

dec.b r0l ;Decrement

bne wait1_1 ;Decrement end ?

pop.w r0 ;Pop R0

#pragma endasm

}

/***

* wait_2 : 10ms wait *

**/

void wait_2(void)

{

#pragma asm

Rev. 2.0, 11/01, page 323 of 358

push.l er0 ;Push ER0

mov.l #h'00010800,er0 ;Decrement data set

wait2_1:

dec.l #1,er0 ;Decrement

bne wait2_1 ;Decrement end ?

pop.l er0 ;Pop ER0

#pragma endasm

}

Rev. 2.0, 11/01, page 324 of 358

4.11 Bus Conflict

4.11.1 Specifications

• The system is in a multiple-task configuration with master devices 1 and 2 (H8S/2138) and a
slave device (EEPROM: HN58X2408).

• When the IRQ interrupt switch which is connected to masters 1 and 2 is pressed, masters 1 and
2 write 2 bytes of data to the slave device.

• The data transmitted from master 1 displays “10” in the 7-segment LED.

• The data transmitted from master 2 displays “20” in the 7-segment LED.

• Since masters 1 and 2 attempt to start the transmission of data at the same time, a bus conflict
occurs. In this case, the master that has acquired the bus right continues to write data to the
EEPROM and lights up the LED. The master that failed to acquire the bus right reads the data
written by the other master from the EEPROM and displays the data on the 7-segment LED
after the other master has finished writing to the EEPROM.

• The slave address of the EEPROM, which is the slave device in this example, is [1010000].
Data is read from and written to the locations at addresses H'00 and H'01 in the EEPROM.

• The frequency of the transfer clock, for both receiving and transmission, is 100 kHz.

• Figure 4.38 shows the configuration of the system used in this example of a task.

Rev. 2.0, 11/01, page 325 of 358

Master 1

Vcc

Vcc

Vcc

Vcc

LED

P20
to

P27

P40
to

P47

IRQ6

SG1 SG2

7-segment

IRQ interrupt switch

LED

VCC

SCL0

SDA0

SCL

SDA

P10

VSS

H8S/2138

Master 2

Vcc

Vcc

IRQ6

P40
to

P20
to

P27

P47

VCC

SCL0

SDA0

P10

VSS

H8S/2138

EEPROM

Slave

VCC A0

A1

A2

WP

SCL

SDA

VSS

Vcc Vcc

Vcc

SG1 SG2

7-segment LED
LED

Vcc

Figure 4.38 System Configuration

The I2C bus format used in this example of a task is shown in figure 4.39.

Rev. 2.0, 11/01, page 326 of 358

Master transmission

Master receive

Legend:
S
SLA
R/
A
MEA
DATA
P

: Start condition
: EEPROM slave address
: Direction, as transmission/reception
: Acknowledge
: Address of a location in the EEPROM
: Data for transmission
: Stop condition

S SLA

7 11 1 18 8 1 1 1

1 1 5

Number of
bits transferred
Number of
frames transferred

A MEA A A A PDATAR/

S SLA

7 1

1 1 1 5
1

1 1 18 7 81 1 1 1 1 Number of
transmission bits
Number of
transmission frames

A MEA A S SLA A A A PDATAR/ R/

Figure 4.39 The Formats for Transfer Used in this Example of a Task

• The I2C bus interface that is incorporated in H8S Series products includes the procedure for
adjusting communications shown in figure 4.40 as well as the procedures described in section
1.4, Procedures for Adjusting Communications. Each master device monitors the bus line on
the falling edge of SCL. When the level on the bus line does not match the level a master is
attempting to put out, that master's output stage is cutoff.

Rev. 2.0, 11/01, page 327 of 358

The bus signal output
from each master

SDA1

SCL1

SDA2

SCL2

SDA

SCL

Master 2 acquires
the bus right.

The output stage
of master 1 is cutoff.

M
as

te
r

1
M

as
te

r
2

B
us

 li
ne

Figure 4.40 Method of Detecting Bus Arbitration

In this example, masters 1and 2 are attempting to simultaneously transmit data to the same slave
device. Since the first lot of data sent (first frame) is the slave address plus the W bit, and this is
immediately followed by the address of a location within the EEPROM's memory, both masters
are initially sending the same data. The conflict thus does not arise until the third frame, the data
to be stored at the first location in the EEPROM, is sent. The third frame of the data for
transmission (the first byte is a transmission data) by master 1 is H'F9 while the third from master
2 is H'A4, so the first difference that appears is when master 2 sets SDA to its low level. For
reasons that are explained in more detail in section 1.4, master 2 thus acquires bus mastership (see
figure 4.41).

Rev. 2.0, 11/01, page 328 of 358

The bus signal output from each master

SDA1

SCL1

SDA2

SCL2

SDA

SCL

Slave address+ W

H'A0

Ack Ack Ack

H'00

Memory address

Master 2 acquires
the bus right.

The output stage of
master 1 is cutoff. ···

···

···

···

···

···

H'F9

1st transmission
data

2nd transmission
data

H'C0

H'A0 H'00 H'A4 H'C0

H'A0 H'00 H'A4 H'C0

Start
condition

M
as

te
r

1
M

as
te

r
2

B
us

 li
ne

Figure 4.41 How Master 2 Becomes the Bus Master

• The connections between the 7-segment LED and the H8S/2138 used in this example of a task
is shown in figure 4.42. The segments of each of the LEDs are lit by the output of low levels
from ports 2 or 4.

Rev. 2.0, 11/01, page 329 of 358

Vcc

SG2

P40

P41

P42

P43

P44

P45

P46

P47

hgfedcba

Vcc

SG1

P20

P21

P22

P23

P24

P25

P26

P27

hgfedcba

The display on SG1 and the data output from port 2

a

g

d h

f b

e c

Display

0

1

2

3

4

5

6

7

P20

1

1

1

1

1

1

1

1

P21

1

1

0

0

0

0

0

1

P22

0

1

1

1

0

0

0

0

P23

0

1

0

1

1

1

0

1

P24

0

1

0

0

1

0

0

1

P25

0

0

1

0

0

0

0

0

P26

0

0

0

0

0

1

1

0

P27

0

1

0

0

1

0

0

0

P20

1

1

1

1

1

1

1

1

P21

0

0

0

0

1

0

0

0

P22

0

0

0

0

0

1

0

0

P23

0

1

0

0

0

0

0

0

P24

0

0

1

0

0

0

0

1

P25

0

0

0

0

1

0

1

1

P26

0

0

0

1

1

0

1

1

P27

0

0

0

1

0

1

0

0

Display

8

9

A

B

C

D

E

F

Figure 4.42 7-segment LED Connection Diagram

Rev. 2.0, 11/01, page 330 of 358

4.11.2 Operation Description

Figure 4.43 shows this example's principle of operation.

10µs Reception clock frequency

Stop
condition

···

···

···

···

Ack
Start
condition Stop

condition

Start
condition

Start
condition

1st transmission
data = H'A4

2nd transmission
data = H'C0

The EEPROM's
write cycle = 10ms

SCL

SDA

SCL

SDA

[1] [5]
[2] [3]

[7]
[13]

[7][8] [9] [10] [11]

[3] [4]

Memory address
= H'00

Slave address
+ R/ = H'A0

1st reception
data = H'A4

2nd reception
data = H'C0

The EEPROM's
write cycle = 10ms

Memory address
= H'00

Slave address
+ R/ = H'A0

Slave address
+ R/ = H'A1

Ack Ack Ack Ack Ack

Ack Ack Ack

[6] [6] [12]

Processing by master 1 Processing by master 2
Sets the start condition
Detects the start condition (IRIC = 1), writes the data for
transmission to ICDR0, and clears IRIC to 0.
Writes the data for transmission to ICDR0 at rising of 9th clock
(IRIC = 1) and clears IRIC to 0.
Fails to acquire the bus (AL = 1) and enters the slave-reception
mode (MST = 0, TRS = 0)
No operation
Sets the start condition (BBSY = 0, SCP = 1)
Detects the start condition (IRIC = 1), writes the data for
transmission to ICDR0, and clears IRIC to 0.
Writes the data for transmission to ICDR0 at rising of 9th clock
(IRIC = 1) and clears IRIC to 0.
Detects the start condition (IRC = 1), dummy-reads ICDR0,
and clears IRIC to 0.
Reads the 1st byte of the received data from ICDR0 at rising of 9th
clock (IRIC = 1) ACKB = WAIT = 1, IRIC = 0
Moves to the master receive mode (TRS = 0) and clears IRIC
to 0 at falling of 8th clock (IRIC = 1).
Reads the 2nd byte of received data from ICDR0 on the falling
edge of a 1 clock cycle (IRIC = 1).
Sets the start condition (BBSY = 0, SCP = 1)

[1]
[2]

[3]

[4]

[5]
[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

Sets the start condition
Detects the start condition (IRIC = 1), writes the data for
transmission to ICDR0, and clears IRIC to 0.
Writes the data for transmission to ICDR0 at rising
of 9th clock (IRIC = 1) and clears IRIC to 0.
Sets the start condition (BBSY = 0, SCP = 1)

No operation
No operation
No operation

No operation

No operation

No operation

No operation

No operation

No operation

Figure 4.43 Operation in a Bus Conflict

Rev. 2.0, 11/01, page 331 of 358

4.11.3 Description of Software

(1) Description of Modules

Table 4.36 describes the modules used in this example of a task.

Table 4.36 Description of Modules

Name Label Function

Main routine main Sets the stack pointer, MCU mode, and IRQ6 interrupt, and
enables interrupts. When this device has acquired bus
mastership, transmits 2 bytes of data by master
transmission and lights the LED. When it is unable to
acquire the bus, it acts as a master receiver to receive 2
bytes of data and displays the data on the 7-segment LED
to which this master is attached.

Initial setting initialize Makes initial settings for the RAM, ports, and IIC0.

Start-condition
setting

set_start Sets the start condition.

Stop-condition
setting

set_stop Sets the stop condition.

Transmission of
slave address + W

trs_slvadr_a0 Transmits the EEPROM’s slave address + W bit as data
(H’A0).

Transmission of
slave address + R

trs_slvadr_a1 Transmits the EEPROM’s slave address + R bit as data
(H’A1).

Transmission of
location in EEPROM

trs_memadr Transmits the address of a location within the EEPROM as
data (H’00).

Wait wait_1 Waits for completion of the EEPROM-write cycle (10 ms: in
20-MHz operation)

(2) Description of the On-chip Registers

Table 4.37 describes the usage of on-chip registers in this example of a task.

Table 4.37 On-chip Registers

Register Function Address Setting

ICDR0 Stores the data for transmission/received data H'FFDE —

SAR0 FS Along with the settings in the FSX bit of SARX0 and
the SW bit of DDCSWR, sets the format for transfer.

H'FFDF bit0 0

SARX0 FSX Along with the settings in the FS bit of SAR0 and
the SW bit of DDSWR, sets the format for transfer.

H'FFDE bit01

Rev. 2.0, 11/01, page 332 of 358

Table 4.37 On-chip Registers (cont)

Register Function Address Setting

MLS Sets data transfer as MSB first. H'FFDF bit7 0

WAIT Sets whether to insert wait cycles between the data
bits and the acknowledge bit.

H'FFDF bit6 0/1

CKS2

to

CKS0

Along with the setting in the IICX0 bit of STCR, set
the frequency of the transfer clock to 100 kHz.

H'FFDF

bit5 to

bit3

CKS2=1

CKS1=0

CKS0=1

ICMR0

BC2

to

BC0

Set the number of bits for the next transfer in the I2C
bus format to 9 (9 bits/frame).

H'FFDF

bit2 to

bit0

BC2=0

BC1=0

BC0=0

ICE Controls access to the ICMR0, ICDR0/SAR, and
SARX registers, and selects the operation (the port
function for the SCL0/SDA0 pin) or non-operation
(bus-drive state for the SCL/SDA pin) of the I2C bus
interface.

H'FFD8 bit7 0/1

IEIC Disables the generation of interrupt requests by the
I2C bus interface.

H'FFD8 bit6 0

MST Uses the I2C bus interface in its master mode. H'FFD8 bit5 1

TRS Uses the I2C bus interface in its transmission or
reception mode.

H'FFD8 bit4 0/1

ACKE Suspends the continuous transfer of data when the
acknowledge bit is 1.

H'FFD8 bit3 1

BBSY Confirms whether or not the I2C bus is occupied,
and, in combination with the SCP bit, sets the start
and stop conditions.

H'FFD8 bit2 0/1

IRIC Detects the start condition, determines the end of
data transfer, and detects acknowledge = 1.

H'FFD8 bit1 0/1

ICCR0

SCP Along with the BBSY bit, sets the start/stop
conditions.

H'FFD8 bit0 0

ICSR0 ACKB Stores the acknowledgement that is transmitted
from the EEPROM during transmission, and sets
the acknowledge data for output to the EEPROM
during a receive operation.

H'FFD9 bit0 —

IICX0 Sets the frequency of the transfer clock to 100 kHz
with the CKS2 to CKS0 of ICMR0.

H'FFC3 bit5 1

IICE Enables CPU access to the data register and the
control register of the I2C bus interface.

H'FFC3 bit4 1

STCR

FLSHE Sets the control register of the flash memory to non-
selected.

H'FFC3 bit3 0

Rev. 2.0, 11/01, page 333 of 358

Table 4.37 On-chip Registers (cont)

Register Function Address Setting

SWE Prohibits automatic changeover from format-less
transfer to transfer in the I2C bus format on the
channel 0 I2C interface.

H'FEE6 bit7 0

SW Uses the channel 0 I2C interface in the I2C bus
format.

H'FEE6 bit6 0

IE Prohibits interrupts during automatic changes of
format.

H'FEE6 bit5 0

DDCSWR

CLR3

to

CLR0

Control the initialization of the internal state of the
channel 0 I2C interface.

H'FEE6

bit3 to

bit0

CLR3=1

CLR2=1

CLR1=1

CLR0=1

MSTP7 Cancels the module-stopped mode for SCI channel
0.

H'FF87 bit7 0MSTPCRL

MSTP4 Cancels the module-stopped mode for I2C channel
0.

H'FF87 bit4 0

SCR0 CKE1, 0 Make the I/O port setting for the P52/SCK0/SCL0
pin.

H'FFDA

bit1, 0

CKE1=0

CKE0=0

SMR0 C/$ Sets the mode for SCI transfer on channel 0 as
asynchronous.

H'FFD8 bit7 0

SYSCR INTM1, 0 Set the interrupt-control mode of the interrupt
controller to 1-bit control.

H'FFC4

bit5, 4

INTM1=0

INTM0=0

MDCR MDS1, 0 Set the MCU’s operating mode to mode 3 by
latching the input levels on the MD1 and 0 pins.

H'FFC5

bit1, 0

MDS1=1

MDS0=1

P1DDR P10DDR Sets the P10 pin to act as an output pin. H'FFB0 bit0 1

P1DR P10DDR Sets the data for output on the P10 pin. H'FFB2 bit0 0/1

P2DDR Sets port 2 to act as an output port. H'FFB1 H'FF

P2DR Sets the data for output on port 2. H'FFB3 —

P4DDR Sets port 4 to act as an output pin. H'FFB5 H'FF

P4DR Sets the data for output on port 4. H'FFB7 —

ISCRH Generates an interrupt request at the falling edge of
the IRQ6 input.

H'FEEC H'10

ISR IRQ6F Displays the state of the IRQ6-interrupt request. H'FEEB bit60/1

Rev. 2.0, 11/01, page 334 of 358

(3) Description of Variables

Table 4.38 describes the variables used in this example of a task.

Table 4.38 Description of Variables

Variable Function Size Initial
Value

Name of Using
Module

dummy MDCR read value 1 byte — main

dt_trs[0] 1st byte of data for transmission 1 byte H'F9/A4 main

dt_trs[1] 2nd byte of data for transmission 1 byte H'C0 main

(4) Description of RAM Usage

Table 4.39 describes the usage of RAM in this example of a task.

Table 4.39 Description of RAM Usage

Label Function Size Address Name of Using
Module

dt_rec[0] Stores the 1st byte of received data 1 byte H'E100 main, initialize

dt_rec[1] Stores the 2nd byte of received data 1 byte H'E101 main, initialize

Rev. 2.0, 11/01, page 335 of 358

4.11.4 Flowchart

(1) Main routine

main

SP H'F000

dummy MDCR

set_start

TRS 1

MST 1

CCR 1bit 0

IRQ6F 0

ISCRH H'F000

ini t ia l ize

SYSCR H'F09

No

No

No

No

Yes

Yes

··························

··························

··························

··························

··························

··························

··························

·················

··························

·················

··························

·················

·············

·················

Set SP (stack pointer) to H'F000.

Read MDCR to latch the input levels on the MD1 and MD0
pins to the bits MDS1 and MDS0.

Call the subroutine that makes the initial settings.

Set the interrupt control mode of the interrupt controller to
1-bit interrupt control.

Set ISCRH so that an interrupt request is generated on the
falling edge of the IRQ6 input.

Clear the IRQ6 interrupt-request flag (IRQ6F = 0)

Clear the 1 bit to enable interrupts.

Bus-released state (BBSY = 0)?

Call the start-condition setting subroutine.

AL = 0 ?

Call transmission of slave address + W subroutine

AL = 0 ?

IRQ interrupt triggered (IRQ6F = 1)?

Set master transmission mode (MST = 1, TRS = 1).

AL = 0 ?

AL = 0 ?

BBSY = 0 ?

IRQ6F = 1 ?

trs_slvadr_a0

1

2

2

2

Rev. 2.0, 11/01, page 336 of 358

trs_memadr

set_stop

P10DR 0

IRIC 0 ?

ICDR0 dt_trs[1]

IRIC 0 ?

ICDR0 dt_trs[0]

No

Yes

Yes

Yes

No

·······················

···············

·······················

·······················

···············

·······················

·······················

·······················

·······················

···········

···········

Output logic-low on P97.

AL = 0 ?

Write the 1st byte of the data for transmission to ICDR0.

Clear IRIC to 0 so that this bit indicates, at rising of 9th transmission
clock, whether or not the transmission of data has been completed.

AL = 0 ?

Write the 2nd byte of the data for transmission to ICDR0.

Call the stop-condition setting subroutine.

Light up the LED.

Clear IRIC to 0 so that this bit indicates, at rising of 9th transmission
clock, whether or not the transmission of data has been completed.

Transmission completed?

Transmission completed?

AL = 0 ?

IRIC = 1 ?

NoIRIC = 1 ?

1

2

No
AL = 0 ? 2

Rev. 2.0, 11/01, page 337 of 358

AL = 0

wait_1

set_start

trs_slvadr_a0

trs_memadr

set_start

trs_slvadr_a1

TRS 1

MST 1

Yes

Yes

Yes

Yes

Yes

·······················

·······················

·······················

·······················

················

·······················

················

·······················

·······················

················

··········· Bus released (BBSY = 0)?

··········· Bus released (BBSY = 0)?

················

AL = 0

Call the wait subroutine?

Call the start-condition setting subroutine.

Transmission of slave address + W subroutine.

ACKB = 0 ?

Transmission of slave address + W subroutine.

ACKB = 0 ?

Call the start-condition setting subroutine.

Transmission of slave address + R subroutine.

ACKB = 0 ?

Set the master-transmission mode.

BBSY = 0 ?

BBSY = 0 ?

2

No
ACKB = 0 ? 3

No

No

No

ACKB = 0 ? 3

No
ACKB = 0 ? 3

4

Rev. 2.0, 11/01, page 338 of 358

TRS 0

ACKB 0

dt_rec[0] CDR0

IRIC 0

ACKB 1

WAIT 1

TRS 1

IRIC 0

dt_rec[1] ICDR0

ACKB 0

dt_rec[0] ICDR0

IRIC 0

Yes

Yes

····················

····················

····················

····················

····················

····················

····················

····················

····················

·········

····················

····················

····················

·········

·········

ACKB = 0 (output 0 with the timing for the output of an acknowledge bit)

Dummy read (start of receive)

Clear IRIC to 0 so that this bit indicates, at rising of 9th receive clock,
whether or not data has been received.

Clear IRIC to 0 so that this bit indicates, at rising of 9th receive clock,
whether or not data has been received.

ACKB = 1 (output 0 with the timing for the output of an acknowledge bit)

ACKB = 0

WAIT = 1 (Insert wait cycles between the data bits and acknowledge bit)

Read the 1st byte of the received data (to start receiving the 2nd byte).

Read the 2nd byte of the received data.

 Has the 9th cycle of the reception clock already been output
(at rising of the 9th receive clock)?

Set master-reception mode.

Set this device to master-transmission mode

IRIC = 0 (start outputting the 9th clock cycle)

Receiving of data completed?

Receiving of data completed?

IRIC = 1 ?

4

No

5

IRIC = 1 ? No

IRIC = 1 ? No

Rev. 2.0, 11/01, page 339 of 358

············

············

············

············

············

WAIT = 0

IRIC = 0

Call the stop-condition setting subroutine.

Place the 1st byte of received data on P2DR to light up one of the
7-segment LEDs (SG1).

Place the 2nd byte of the receive data on P4DR to light up the other
7-segment LED (SG2).

3

WAIT 0

IRIC 0

set_stop

P2DR dt_rec[0]

P4DR dt_rec[1]

5

Rev. 2.0, 11/01, page 340 of 358

(2) Initial Setting Subroutine

initialize

dt_rec[0] H'00

dt_rec[1] H'00

P1DR H'01

P1DDR H'01

P2DR H'FF

P2DDR H'FF

P4DR H'FF

P4DDR H'FF

STCR H'00

MSTPCRL H'7F

SMR0 H'00

STCR H'10

DDCSWR H'0F

ICCR0 H'01

SAR0 H'00

SARX0 H'01

············

············

············

············

············

············

············

············

············

············

············

············

············

············

············

······

············

Initialize the location used to store the 1st byte of received data.

Initialize the location used to store the 2nd byte of received data.

Set a high level for output on P10.

Set the data on P20 to P27 to high level.

Set pins P20 to P27 as outputs.

Set the data on P40 to P47 to high level.

Set pins P40 to P47 as outputs.

Set the FLSHE bit of STCR to 0 to set the control register of the flash
memory to non-selective.

Set the MSTP7 bit of MSTPCRL to 0 to take SCI0 out of its
module-stopped mode.

Set the SMR's C/ bit to 0 to set the SCI0 to operate in its asynchronous
mode.

Set the SCR's CKE1 bit to 0 and CKE bit to 0 to set the SCK0 pin for use
as an I/O port.

Set the STCR's IICE bit to 1 so that the data and control registers of the
I2C bus interface are accessible by the CPU.

Set the MSTPCRL's MSTP7 bit to 1 and MSTP4 bit to 0 to put SCI0 in its
module-stopped mode and take IIC0 out of its module-stopped mode.

Set the SWE, SW, and IE bits of DDCSWR to 0 to disable automatic
changeover from IIC0 format-less to I2C bus format, select use of IIC0
in the I2C bus format, and disable interrupts during the execution of
automatic format changeover.
Set ICCR0's ICE bit to 0 to enable access to SAR0 and SARX0.

Set FS in SAR0 and FSX in SARX0 to 0 to select the I2C bus format
(enables the SAR slave address and disables the SARX slave address)
as the format for transfer on IIC0.

Set the P10 pin as an output.

6

MSTPCRL H'EF

SCR0 H'00

Rev. 2.0, 11/01, page 341 of 358

rts

ICCR0 H'81

ICSR0 H'00

STCR H'30

ICMR0 H'28

ICCR0 H'89

···············

···············

···············

··········

Set ICCR0's ICE bit to 1 to enable access to ICMR0 and ICDR0.

Set the ACKB bit in ICSR0 to 0.

Set IEIC in ICCR0 to 0 to disable the generation of IIC0 interrupt
requests, and set ACKE to 1 to suspend continuous transfer when
the acknowledge bit is 1.

Set IICX0 in STR to 1, ICMR0's CKS2 bit to 1, CKS1 bit to 0, and CKS0
bit to 1 so that the frequency of the IIC0 transfer clock is set to 100 kHz.
Set WAIT to 0 for the continuous transfer of data and acknowledge bits.

6

(3) Subroutine for Setting the Start Condition

set_start

rts

No

Yes

··················

··················

·······

Clear IRIC to 0 so that it indicates whether or not the start
condition has been detected.

Set the start condition by setting ICCR0's BBSY bit to 1
and SCP bit to 0.

Has the start condition been detected on the bus lines?
IRIC = 1 ?

IRIC 0

ICCR0 H'BC

(4) Subroutine for Setting the Stop Condition

set_stop

rts

No

Yes

··················

·······

Set the stop condition by setting ICCR0's BBSY and SCP bits to 0.

Bus released?
BBSY = 0 ?

ICCR0 H'B8

Rev. 2.0, 11/01, page 342 of 358

(5) Subroutine for transmitting the slave address + W bit

trs_slvadr_a0

rts

No

Yes

··················

··················

·······

Transmit the EEPROM's slave address + W bit as data (H'A0)

Clear IRIC to 0 so that it indicates whether or not data has been
transmitted (at rising of the 9th transmission clock).

Transmission of the EEPROM's slave address + W data completed?
IRIC = 1 ?

ICCR0 H'A0

IRIC 0

(6) Subroutine for transmitting the slave address + R bit

trs_slvadr_a1

rts

No

Yes

··················

··················

·······

Transmit the EEPROM's slave address + R bit as data (H'A0)

Clear IRIC to 0 so that it indicates whether or not data has been
transmitted (at rising of the 9th transmission clock).

Transmission of the EEPROM's slave address + R data completed?
IRIC = 1 ?

ICCR0 H'A1

IRIC 0

Rev. 2.0, 11/01, page 343 of 358

(7) Subroutine for transmitting the location within the EEPROM

trs_memadr

rts

No

Yes

··················

··················

·······

Transmit the address of a location within the EEPROM as data (H'00).

Clear IRIC to 0 so that it indicates whether or not data has been
transmitted (at rising of the 9th transmission clock).

Transmission of the address of a location within the EEPROM
completed?IRIC = 1 ?

ICCR0 H'00

IRIC 0

(8) WAIT2 subroutine

wait_2

rts

PUSH ER0

ER0 H'00010800

P0P ER0

ER0 ER0 - 1

No

Yes

··················

··················

··········

··········

··················

Place the ER0 register on the stack.

An initial setting for a loop that decrements ER0.

Decrementing completed?

Decrement ER0.

Restore the original value of the ER0 register.

ER0 = 0 ?

Rev. 2.0, 11/01, page 344 of 358

4.11.5 Master-1 program List

/***

* H8S/2138 IIC bus application note *

* 10.Multi master transmit/receive 1 *

* File name : Mltx1.c *

* Fai : 20MHz *

* Mode : 3 *

**/

#include <stdio.h>

#include <machine.h>

#include "2138s.h"

/***

* Prototype *

**/

void main(void); /* Main routine */

void initialize(void); /* RAM & port & IIC0 initialize */

void set_start(void); /* Start condition set */

void set_stop(void); /* Stop condition set */

void trs_slvadr_a0(void); /* Slave address + W data transmit */

void trs_slvadr_a1(void); /* Slave address + R data transmit */

void trs_memadr(void); /* EEPROM memry address data transmit */

void wait_1(void); /* EEPROM write cycle(10ms) wait */

/***

* Data table *

**/

const unsigned char dt_trs[2] = /* Transmit data (2 byte) */

{

0xf9, /* Master 1 1st transmit data */

0xc0 /* Master 1 2nd transmit data */

};

/***

* RAM allocation *

**/

Rev. 2.0, 11/01, page 345 of 358

#pragma section ramarea

unsigned char dt_rec[2]; /* Receive data store area (2 byte) */

#pragma section

/***

* main : Main routine *

**/

void main(void)

#pragma asm

mov.l #h'f000,sp ;Stack pointer initialize

#pragma endasm

{

unsigned char dummy;

dummy = MDCR.BYTE; /* MCU mode set */

SYSCR.BYTE = 0x09; /* Interrupt control mode set */

initialize(); /* Initialize */

INTC.ISCR.BYTE.H = 0x10; /* IRQ6 edge sense set (faling edge) */

INTC.ISR.BIT.IRQ6F = 0; /* IRQ6 interrupt request flag clear */

set_imask_ccr(0); /* Interrupt enable */

while(INTC.ISR.BIT.IRQ6F == 0); /* IRQ interrupt switch on ? */

INTC.ISR.BIT.IRQ6F = 0; /* IRQ6F = 0 */

if(IIC0.ICCR.BIT.BBSY == 0) /* Bus empty (BBSY=0) ? */

{

IIC0.ICCR.BIT.MST = 1; /* Master transmit mode set */

IIC0.ICCR.BIT.TRS = 1; /* MST = 1, TRS = 1 */

set_start(); /* Start condition set */

if(IIC0.ICSR.BIT.AL == 0) /* AL = 0 ? */

{

trs_slvadr_a0(); /* Slave address + W data transmit */

if(IIC0.ICSR.BIT.AL == 0) /* AL = 0 ? */

{

trs_memadr(); /* EEPROM memory address transmit */

Rev. 2.0, 11/01, page 346 of 358

if(IIC0.ICSR.BIT.AL == 0) /* AL = 0 ? */

{

IIC0.ICDR = dt_trs[0]; /* 1st transmit data write */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

while(IIC0.ICCR.BIT.IRIC == 0); /* Transmit end (IRIC=1) ? */

if(IIC0.ICSR.BIT.AL == 0) /* AL = 0 ? */

{

IIC0.ICDR = dt_trs[1]; /* 2nd transmit data write */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

while(IIC0.ICCR.BIT.IRIC == 0); /* Transmit end (IRIC=1) ? */

set_stop(); /* Stop condition set */

P1.DR.BIT.B0 = 0; /* LED on */

while(1); /* End */

}

}

}

}

}

IIC0.ICSR.BIT.AL = 0; /* AL= 0 */

while(IIC0.ICCR.BIT.BBSY == 1); /* Transmit end (BBSY=0) ? */

wait_1(); /* 10ms wait */

while(IIC0.ICCR.BIT.BBSY == 1); /* Bus empty (BBSY=0) ? */

IIC0.ICCR.BIT.MST = 1; /* Master transmit mode set */

IIC0.ICCR.BIT.TRS = 1; /* MST = 1, TRS = 1 */

set_start(); /* Start condition set */

trs_slvadr_a0(); /* Slave address + W data transmit */

if(IIC0.ICSR.BIT.ACKB == 0) /* ACKB = 0 ? */

{

trs_memadr(); /* EEPROM memory address data transmit */

if(IIC0.ICSR.BIT.ACKB == 0) /* ACKB = 0 ? */

{

set_start(); /* Re-start condition set */

trs_slvadr_a1(); /* Slave address + R data transmit */

Rev. 2.0, 11/01, page 347 of 358

if(IIC0.ICSR.BIT.ACKB == 0) /* ACKB = 0 ? */

{

IIC0.ICCR.BIT.TRS = 0; /* Master receive mode set (TRS=0) */

IIC0.ICSR.BIT.ACKB = 0; /* ACKB = 0 */

dt_rec[0] = IIC0.ICDR; /* Dummy read */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

while(IIC0.ICCR.BIT.IRIC == 0); /* Receive end (IRIC=1) ? */

IIC0.ICSR.BIT.ACKB = 1; /* ACKB = 1 */

IIC0.ICMR.BIT.WAIT = 1; /* WAIT = 1 */

dt_rec[0] = IIC0.ICDR; /* 1st receive data read */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

while(IIC0.ICCR.BIT.IRIC == 0); /* Receive end (IRIC=1) ? */

IIC0.ICCR.BIT.TRS = 1; /* Master transmit mode set (TRS=1) */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

while(IIC0.ICCR.BIT.IRIC == 0); /* IRIC = 1 ? */

dt_rec[1] = IIC0.ICDR; /* 2nd receive data read */

IIC0.ICSR.BIT.ACKB = 0; /* ACKB = 0 */

IIC0.ICMR.BIT.WAIT = 0; /* WAIT = 0 */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

}

}

}

set_stop(); /* Stop condition set */

P2.DR.BYTE = dt_rec[0]; /* SG1 on */

P4.DR.BYTE = dt_rec[1]; /* SG2 on */

while(1); /* End */

}

/***

* initialize : RAM & Port & IIC0 Initialize *

**/

void initialize(void)

Rev. 2.0, 11/01, page 348 of 358

{

dt_rec[0] = 0x00; /* Receive data store area initialize */

dt_rec[1] = 0x00;

P1.DR.BYTE = 0x01; /* Port 1 initialize */

P1.DDR = 0x01;

P2.DR.BYTE = 0xff; /* Port 2 initialize */

P2.DDR = 0xff;

P4.DR.BYTE = 0xff; /* Port 4 initialize */

P4.DDR = 0xff;

STCR.BYTE = 0x00; /* FLSHE = 0 */

MSTPCR.BYTE.L = 0x7f; /* SCI0 module stop mode reset */

SCI0.SMR.BYTE = 0x00; /* SCL0 pin function set */

SCI0.SCR.BYTE = 0x00;

MSTPCR.BYTE.L = 0xef; /* IIC0 module stop mode reset */

STCR.BYTE = 0x10; /* IICE = 1 */

DDCSWR.BYTE = 0x0f; /* IIC bus format initialize */

IIC0.ICCR.BYTE = 0x01; /* ICE = 0 */

IIC0.SAR.BYTE = 0x38; /* FS = 0 */

IIC0.SARX.BYTE = 0x01; /* FSX = 1 */

IIC0.ICCR.BYTE = 0x81; /* ICE = 1 */

IIC0.ICSR.BYTE = 0x00; /* ACKB = 0 */

STCR.BYTE = 0x30; /* IICX0 = 1 */

IIC0.ICMR.BYTE = 0x28; /* Transfer rate = 100kHz */

IIC0.ICCR.BYTE = 0x89; /* IEIC = 0, ACKE = 1 */

}

/***

* set_start : Start condition set *

**/

void set_start(void)

{

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

IIC0.ICCR.BYTE = 0xbc; /* Start condition set (BBSY=1,SCP=0) */

while(IIC0.ICCR.BIT.IRIC == 0); /* Start condition set (IRIC=1) ? */

}

Rev. 2.0, 11/01, page 349 of 358

/***

* set_stop : Stop condition set *

**/

void set_stop(void)

{

IIC0.ICCR.BYTE = 0xb8; /* Stop condition set (BBSY=0,SCP=0) */

while(IIC0.ICCR.BIT.BBSY == 1); /* Bus empty (BBSY=0) ? */

}

/***

* trs_slvadr_a0 : Slave addres + W data transmit *

**/

void trs_slvadr_a0(void)

{

IIC0.ICDR = 0xa0; /* Slave address + W data(H'A0) write */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

while(IIC0.ICCR.BIT.IRIC == 0); /* Transmit end (IRIC=1) ? */

}

/***

* trs_slvadr_a1 : Slave addres + R data transmit *

**/

void trs_slvadr_a1(void)

{

IIC0.ICDR = 0xa1; /* Slave address + R data(H'A1) write */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

while(IIC0.ICCR.BIT.IRIC == 0); /* Transmit end (IRIC=1) ? */

}

/***

* trs_memadr : EEPROM memory address data transmit *

**/

void trs_memadr(void)

{

IIC0.ICDR = 0x00; /* EEPROM memory address data(H'00) write */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

while(IIC0.ICCR.BIT.IRIC == 0); /* Transmit end (IRIC=1) ? */

}

Rev. 2.0, 11/01, page 350 of 358

/***

* wait_1 : 10ms wait *

**/

void wait_1(void)

{

#pragma asm

push.l er0 ;Push ER0

mov.l #h'00010800,er0 ;Decrement data set

wait1_1:

dec.l #1,er0 ;Decrement

bne wait1_1 ;Decrement end ?

pop.l er0 ;Pop ER0

#pragma endasm

}

Rev. 2.0, 11/01, page 351 of 358

4.11.6 Master-2 program List

/***

* H8S/2138 IIC bus application note *

* 10.Multi master transmit/receive 2 *

* File name : Mltx2.c *

* Fai : 20MHz *

* Mode : 3 *

**/

#include <stdio.h>

#include <machine.h>

#include "2138s.h"

/***

* Prototype *

**/

void main(void); /* Main routine */

void initialize(void); /* RAM & port & IIC0 initialize */

void set_start(void); /* Start condition set */

void set_stop(void); /* Stop condition set */

void trs_slvadr_a0(void); /* Slave address + W data transmit */

void trs_slvadr_a1(void); /* Slave address + R data transmit */

void trs_memadr(void); /* EEPROM memry address data transmit */

void wait_1(void); /* EEPROM write cycle(10ms) wait */

/***

* Data table *

**/

const unsigned char dt_trs[2] = /* Transmit data (2 byte) */

{

0xa4, /* Master 2 1st transmit data */

0xc0 /* Master 2 2nd transmit data */

};

Rev. 2.0, 11/01, page 352 of 358

/***

* RAM allocation *

**/

#pragma section ramarea

unsigned char dt_rec[2]; /* Receive data store area (2 byte) */

#pragma section

/***

* main : Main routine *

**/

void main(void)

#pragma asm

mov.l #h'f000,sp ;Stack pointer initialize

#pragma endasm

{

unsigned char dummy;

dummy = MDCR.BYTE; /* MCU mode set */

SYSCR.BYTE = 0x09; /* Interrupt control mode set */

initialize(); /* Initialize */

INTC.ISCR.BYTE.H = 0x10; /* IRQ6 edge sense set (faling edge) */

INTC.ISR.BIT.IRQ6F = 0; /* IRQ6 interrupt request flag clear */

set_imask_ccr(0); /* Interrupt enable */

while(INTC.ISR.BIT.IRQ6F == 0); /* IRQ interrupt switch on ? */

INTC.ISR.BIT.IRQ6F = 0; /* IRQ6F = 0 */

if(IIC0.ICCR.BIT.BBSY == 0) /* Bus empty (BBSY=0) ? */

{

IIC0.ICCR.BIT.MST = 1; /* Master transmit mode set */

IIC0.ICCR.BIT.TRS = 1; /* MST = 1, TRS = 1 */

set_start(); /* Start condition set */

if(IIC0.ICSR.BIT.AL == 0) /* AL = 0 ? */

{

trs_slvadr_a0(); /* Slave address + W data transmit */

Rev. 2.0, 11/01, page 353 of 358

if(IIC0.ICSR.BIT.AL == 0) /* AL = 0 ? */

{

trs_memadr(); /* EEPROM memory address transmit */

if(IIC0.ICSR.BIT.AL == 0) /* AL = 0 ? */

{

IIC0.ICDR = dt_trs[0]; /* 1st transmit data write */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

while(IIC0.ICCR.BIT.IRIC == 0); /* Transmit end (IRIC=1) ? */

if(IIC0.ICSR.BIT.AL == 0) /* AL = 0 ? */

{

IIC0.ICDR = dt_trs[1]; /* 2nd transmit data write */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

while(IIC0.ICCR.BIT.IRIC == 0); /* Transmit end (IRIC=1) ? */

set_stop(); /* Stop condition set */

P1.DR.BIT.B0 = 0; /* LED on */

while(1); /* End */

}

}

}

}

}

IIC0.ICSR.BIT.AL = 0; /* AL= 0 */

while(IIC0.ICCR.BIT.BBSY == 1); /* Transmit end (BBSY=0) ? */

wait_1(); /* 10ms wait */

while(IIC0.ICCR.BIT.BBSY == 1); /* Bus empty (BBSY=0) ? */

IIC0.ICCR.BIT.MST = 1; /* Master transmit mode set */

IIC0.ICCR.BIT.TRS = 1; /* MST = 1, TRS = 1 */

set_start(); /* Start condition set */

trs_slvadr_a0(); /* Slave address + W data transmit */

if(IIC0.ICSR.BIT.ACKB == 0) /* ACKB = 0 ? */

{

trs_memadr(); /* EEPROM memory address data transmit */

if(IIC0.ICSR.BIT.ACKB == 0) /* ACKB = 0 ? */

Rev. 2.0, 11/01, page 354 of 358

{

set_start(); /* Re-start condition set */

trs_slvadr_a1(); /* Slave address + R data transmit */

if(IIC0.ICSR.BIT.ACKB == 0) /* ACKB = 0 ? */

{

IIC0.ICCR.BIT.TRS = 0; /* Master receive mode set (TRS=0) */

IIC0.ICSR.BIT.ACKB = 0; /* ACKB = 0 */

dt_rec[0] = IIC0.ICDR; /* Dummy read */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

while(IIC0.ICCR.BIT.IRIC == 0); /* Receive end (IRIC=1) ? */

IIC0.ICSR.BIT.ACKB = 1; /* ACKB = 1 */

IIC0.ICMR.BIT.WAIT = 1; /* WAIT = 1 */

dt_rec[0] = IIC0.ICDR; /* 1st receive data read */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

while(IIC0.ICCR.BIT.IRIC == 0); /* Receive end (IRIC=1) ? */

IIC0.ICCR.BIT.TRS = 1; /* Master transmit mode set (TRS=1) */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

while(IIC0.ICCR.BIT.IRIC == 0); /* IRIC = 1 ? */

dt_rec[1] = IIC0.ICDR; /* 2nd receive data read */

IIC0.ICSR.BIT.ACKB = 0; /* ACKB = 0 */

IIC0.ICMR.BIT.WAIT = 0; /* WAIT = 0 */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

}

}

}

set_stop(); /* Stop condition set */

P2.DR.BYTE = dt_rec[0]; /* SG1 on */

P4.DR.BYTE = dt_rec[1]; /* SG2 on */

while(1); /* End */

}

Rev. 2.0, 11/01, page 355 of 358

/***

* initialize : RAM & Port & IIC0 Initialize *

**/

void initialize(void)

{

dt_rec[0] = 0x00; /* Receive data store area initialize */

dt_rec[1] = 0x00;

P1.DR.BYTE = 0x01; /* Port 1 initialize */

P1.DDR = 0x01;

P2.DR.BYTE = 0xff; /* Port 2 initialize */

P2.DDR = 0xff;

P4.DR.BYTE = 0xff; /* Port 4 initialize */

P4.DDR = 0xff;

STCR.BYTE = 0x00; /* FLSHE = 0 */

MSTPCR.BYTE.L = 0x7f; /* SCI0 module stop mode reset */

SCI0.SMR.BYTE = 0x00; /* SCL0 pin function set */

SCI0.SCR.BYTE = 0x00;

MSTPCR.BYTE.L = 0xef; /* IIC0 module stop mode reset */

STCR.BYTE = 0x10; /* IICE = 1 */

DDCSWR.BYTE = 0x0f; /* IIC bus format initialize */

IIC0.ICCR.BYTE = 0x01; /* ICE = 0 */

IIC0.SAR.BYTE = 0x38; /* FS = 0 */

IIC0.SARX.BYTE = 0x01; /* FSX = 1 */

IIC0.ICCR.BYTE = 0x81; /* ICE = 1 */

IIC0.ICSR.BYTE = 0x00; /* ACKB = 0 */

STCR.BYTE = 0x30; /* IICX0 = 1 */

IIC0.ICMR.BYTE = 0x28; /* Transfer rate = 100kHz */

IIC0.ICCR.BYTE = 0x89; /* IEIC = 0, ACKE = 1 */

}

/***

* set_start : Start condition set *

**/

void set_start(void)

{

Rev. 2.0, 11/01, page 356 of 358

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

IIC0.ICCR.BYTE = 0xbc; /* Start condition set (BBSY=1,SCP=0) */

while(IIC0.ICCR.BIT.IRIC == 0); /* Start condition set (IRIC=1) ? */

}

/***

* set_stop : Stop condition set *

**/

void set_stop(void)

{

IIC0.ICCR.BYTE = 0xb8; /* Stop condition set (BBSY=0,SCP=0) */

while(IIC0.ICCR.BIT.BBSY == 1); /* Bus empty (BBSY=0) ? */

}

/***

* trs_slvadr_a0 : Slave addres + W data transmit *

**/

void trs_slvadr_a0(void)

{

IIC0.ICDR = 0xa0; /* Slave address + W data(H'A0) write */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

while(IIC0.ICCR.BIT.IRIC == 0); /* Transmit end (IRIC=1) ? */

}

/***

* trs_slvadr_a1 : Slave addres + R data transmit *

**/

void trs_slvadr_a1(void)

{

IIC0.ICDR = 0xa1; /* Slave address + R data(H'A1) write */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

while(IIC0.ICCR.BIT.IRIC == 0); /* Transmit end (IRIC=1) ? */

}

/***

* trs_memadr : EEPROM memory address data transmit *

**/

void trs_memadr(void)

{

Rev. 2.0, 11/01, page 357 of 358

IIC0.ICDR = 0x00; /* EEPROM memory address data(H'00) write */

IIC0.ICCR.BIT.IRIC = 0; /* IRIC = 0 */

while(IIC0.ICCR.BIT.IRIC == 0); /* Transmit end (IRIC=1) ? */

}

/***

* wait_1 : 10ms wait *

**/

void wait_1(void)

{

#pragma asm

push.l er0 ;Push ER0

mov.l #h'00010800,er0 ;Decrement data set

wait1_1:

dec.l #1,er0 ;Decrement

bne wait1_1 ;Decrement end ?

pop.l er0 ;Pop ER0

#pragma endasm

}

Rev. 2.0, 11/01, page 358 of 358

I2C Bus Interface Application Note

Publication Date: 1st Edition, March 1994
2nd Edition, November 2001

Published by: Business Planning Division
 Semiconductor & Integrated Circuits
 Hitachi, Ltd.
Edited by: Technical Documentation Group
 Hitachi Kodaira Semiconductor Co., Ltd.
Copyright Hitachi, Ltd., 1994. All rights reserved. Printed in Japan.

	Cover
	Cautions
	Contents
	Introduction
	Section 1 Overview of the I2C Bus
	1.1 Overview of the I2C Bus
	1.1.1 Features of the I2C Bus
	1.1.2 Differences with the Serial Communications Interface (SCI)
	1.1.3 Connection Type of the I2C bus Interface

	1.2 Method of Data Transfer over an I2C Bus
	1.2.1 Basic Concepts and Elements of Data Transfer over an I2C Bus
	1.2.2 Procedure for Data Transfer (Example: master transmission, slave reception)

	1.3 The Single-Master and Multi-Master Configurations
	1.3.1 Single-Master
	1.3.2 Multi-Master

	1.4 Procedure for Adjusting Communications

	Section 2 Explanation of the Interface Functions of the I2C Bus
	2.1 Lineup of Products that Incorporate the I2C Bus Interface
	2.2 Specifications of the I2C Bus Interfaces Incorporated in H8/300 Series and H8/300L Series Products [H8 Series]
	2.2.1 Specifications of the I2C Bus Interfaces Incorporated in H8/300 Series and H8/300L Series Products
	2.2.2 Configuration of the I2C Bus Interfaces Incorporated in H8/300 Series and H8/300L Series Products
	2.2.3 Data Transfer Format of the I2C Bus Interfaces Incorporated in H8/300 Series and H8/300L Series Products
	2.2.4 Explanation of Functions of the Registers of the I2C Bus Interfaces Incorporated in H8/300 Series and H8/300L Series Produ

	2.3 Specifications of the I2C Bus Interfaces Incorporated in H8S Series Products
	2.3.1 Features of the I2C Bus Interfaces Incorporated in H8S Series Products
	2.3.2 Internal Block Configuration of the H8S Series I2C Bus Interface
	2.3.3 Data Format for the H8S Series I2C Bus
	2.3.4 Description of Functions of the H8S Series I2C Bus Interface Incorporated Registers
	2.3.5 Relationship between Flags of On-chip I2C Bus Interface and Transfer State in H8S Series (H8S/2138 Series)

	2.4 Description of I2C Bus Interface Usage
	2.5 Synchronization of the I2C Bus Communication
	2.6 Description of Data Transfer in H8/300 and H8/300L Series [H8 Series]
	2.6.1 Master transmission
	2.6.2 Master Reception
	2.6.3 Slave Reception
	2.6.4 Slave Transmission

	2.7 Description of Data Transfer in H8S Series (H8/2138 Series) [H8S Series]
	2.7.1 Master Transmission
	2.7.2 Master Reception
	2.7.3 Slave Reception
	2.7.4 Slave Transmission

	Section 3 Examples of Application to the H8/300 and H8/300L Series
	3.1 System Specifications
	3.2 Circuit for Multi-Master Evaluation System
	3.3 Design of Software
	3.3.1 Description of Modules
	3.3.2 Master
	3.3.3 Slave

	3.4 Flowcharts
	3.4.1 Master Program
	3.4.2 Slave Program

	3.5 Program Listings
	3.5.1 Master Program
	3.5.2 Slave Program

	Section 4 Example Applications for the H8S Series
	4.1 Usage Guide to the Example Applications for the H8S Series
	4.1.1 The Structure of the Example Applications for the H8S Series
	4.1.2 Description of the Definition File for the Vector Table
	4.1.3 Description of the Definition File for the Registers
	4.1.4 Description of the Inclusion of Assembler Files in C Language Programs
	4.1.5 Description of the Linkage of Files

	4.2 Single-Master Transmission
	4.2.1 Specification
	4.2.2 Description of the Operation
	4.2.3 Description of the Software
	4.2.4 Flowchart
	4.2.5 Program List

	4.3 Single-Master Reception
	4.3.1 Specifications
	4.3.2 Operation Descriptions
	4.3.3 Software Descriptions
	4.3.4 Flowchart
	4.3.5 Program List

	4.4 One-Byte Data Transmission by Single-Master Transmission
	4.4.1 Specifications
	4.4.2 Operation Descriptions
	4.4.3 Software Descriptions
	4.4.4 Flowchart
	4.4.5 Program List

	4.5 One-Byte Data Reception by Single-Master Reception
	4.5.1 Specifications
	4.5.2 Operation Description
	4.5.3 Software Description
	4.5.4 Flowchart
	4.5.5 Program List

	4.6 Single-Master Transmission by DTC
	4.6.1 Specifications
	4.6.2 Operation Description
	4.6.3 Software Description
	4.6.4 Flowchart
	4.6.5 Program List

	4.7 Single-Master Reception by DTC
	4.7.1 Specifications
	4.7.2 Description of Operation
	4.7.3 Description of Software
	4.7.4 Flowchart
	4.7.5 Program List

	4.8 Slave Transmission
	4.8.1 Specifications
	4.8.2 Description of Operation
	4.8.3 Description of Software
	4.8.4 Flowcharts
	4.8.5 Program List

	4.9 Slave Reception
	4.9.1 Specifications
	4.9.2 Description of Operation
	4.9.3 Description of Software
	4.9.4 Flowcharts
	4.9.5 Program List

	4.10 Example of Processing Bus Disconnection
	4.10.1 Specification
	4.10.2 Description of Operation
	4.10.3 Description of Software
	4.10.4 Flowcharts
	4.10.5 Program List

	4.11 Bus Conflict
	4.11.1 Specifications
	4.11.2 Operation Description
	4.11.3 Description of Software
	4.11.4 Flowchart
	4.11.5 Master-1 program List
	4.11.6 Master-2 program List

	Colophone

