

Service and Repair Manual

Serial Number Range

 S®-40 XC[™]
 from \$40XCH-104

 S®-40 HF
 \$8-40 TraX[™]

 S®-40 TraX[™]
 from \$45XCH-101

 S®-45 XC[™]
 \$8-45 HF

 S®-45 TraX[™]
 \$8-45 TraX[™]

This manual includes: Repair procedures Fault Codes Electrical and Hydraulic Schematics

For detailed maintenance procedures, refer to the appropriate Maintenance Manual for your machine.

Part No. 1286829GT Rev B October 2019

Introduction

Important

Read, understand and obey the safety rules and operating instructions in the appropriate Operator's Manual on your machine before attempting any procedure.

This manual provides troubleshooting and repair procedures for qualified service professionals.

Basic mechanical, hydraulic and electrical skills are required to perform most procedures. However, several procedures require specialized skills, tools, lifting equipment and a suitable workshop. In these instances, we strongly recommend that maintenance and repair be performed at an authorized Genie dealer service center.

Compliance

Machine Classification

Group B/Type 3 as defined by ISO 16368

Machine Design Life

Unrestricted with proper operation, inspection and scheduled maintenance.

Technical Publications

Genie has endeavored to deliver the highest degree of accuracy possible. However, continuous improvement of our products is a Genie policy. Therefore, product specifications are subject to change without notice.

Readers are encouraged to notify Genie of errors and send in suggestions for improvement. All communications will be carefully considered for future printings of this and all other manuals.

Contact Us:

Internet: www.genielift.com E-mail: awp.techpub@terex.com

Find a Manual for this Model

Go to http://www.genielift.com

Use the links to locate Service Manuals, Maintenance Manuals, Service and Repair Manuals, Parts Manuals and Operator's Manuals.

Copyright © 2019 by Terex Corporation

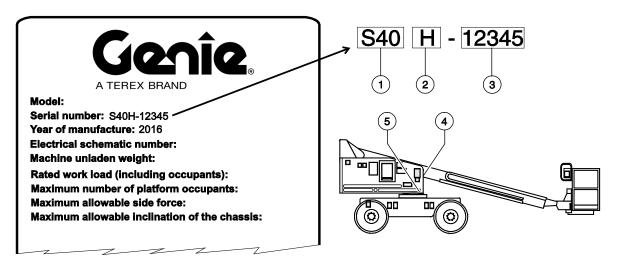
1286829 Rev B, October 2019

First Edition, Second Printing

Genie and "S" are registered trademarks of Terex South Dakota, Inc. in the U.S.A. and many other countries.

"XC" and "TraX" are trademarks of Terex South Dakota, Inc.

Introduction


Revision	Date	Section	Procedure / Page / Description	
А	2/2019		Initial Release	
A1	7/2019	Repair	Display Menu	
В	10/2019		Add S-40/45 HF	
		Specifications	Machine Specifications	
		Repair	2-3, 7-6	
		Fault Codes	Ford MSG-425	
		Schematics	Limit Switch Legend	
Deferences				
Reference Examples:		~ 1_2	Electronic Version	
Section – Repair Procedure, 4-2			Click on any content or procedure in the Table of Contents to view	
Section – Fault Codes, All charts Section – Schematics, Legends and schematics			the update.	

Revision History

Introduction

Serial Number Legend

- 1 Model
- 2 Facility code
- 3 Sequence number
- 4 Serial label (located under cover)
- 5 Serial number (stamped on chassis)

Safety Rules

Danger

Failure to obey the instructions and safety rules in this manual and the appropriate Operator's Manual on your machine will result in death or serious injury.

Many of the hazards identified in the operator's manual are also safety hazards when maintenance and repair procedures are performed.

Do Not Perform Maintenance Unless:

- You are trained and qualified to perform maintenance on this machine.
- \square You read, understand and obey:
 - manufacturer's instructions and safety rules
 - employer's safety rules and worksite regulations
 - applicable governmental regulations
- You have the appropriate tools, lifting equipment and a suitable workshop.

Safety Rules

Personal Safety

Any person working on or around a machine must be aware of all known safety hazards. Personal safety and the continued safe operation of the machine should be your top priority.

Read each procedure thoroughly. This manual and the decals on the machine, use signal words to identify the following:

Safety alert symbol—used to alert personnel to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

Indicates a imminently hazardous situation which, if not avoided, will result in death or serious injury.

Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.

Indicates a potentially hazardous situation which, if not avoided, may cause minor or moderate injury.

Indicates a potentially hazardous situation which, if not avoided, may result in property damage.

Be sure to wear protective eye wear and other protective clothing if the situation warrants it.

Be aware of potential crushing hazards such as moving parts, free swinging or unsecured components when lifting or placing loads. Always wear approved steel-toed shoes.

Workplace Safety

Any person working on or around a machine must be aware of all known safety hazards. Personal safety and the continued safe operation of the machine should be your top priority.

Be sure to keep sparks, flames and lighted tobacco away from flammable and combustible materials like battery gases and engine fuels. Always have an approved fire extinguisher within easy reach.

Be sure that all tools and working areas are properly maintained and ready for use. Keep work surfaces clean and free of debris that could get into machine components and cause damage.

Be sure any forklift, overhead crane or other lifting or supporting device is fully capable of supporting and stabilizing the weight to be lifted. Use only chains or straps that are in good condition and of ample capacity.

Be sure that fasteners intended for one time use (i.e., cotter pins and self-locking nuts) are not reused. These components may fail if they are used a second time.

Be sure to properly dispose of old oil or other fluids. Use an approved container. Please be environmentally safe.

Be sure that your workshop or work area is properly ventilated and well lit.

Introduction	Introduction Important Information	
	Find a Manual for this Model	ii
	Revision History	iii
	Serial Number Legend	iv
Section 1	Safety Rules General Safety Rules	
Section 2	Specifications	1
	Machine Specifications	1
	Performance Specifications	2
	Hydraulic Oil Specifications	2
	Hydraulic Component Specifications	5
	Manifold Component Specifications	6
	Ford MSG-425 EFI Engine Specifications	7
	Deutz D2011 L03i Engine Specifications	8
	Deutz D 2.9 L4 Engine Specifications	9
	Perkins 404F-E22T Engine Specifications	10
	Machine Torque Specifications	11
	TRAX Torque Specifications	11
	Hydraulic Hose and Fitting Torque Specifications	12
	Torque Procedure	13

Section 3	Repair Procedures	15
	Introduction	15
	Control System	17
	1-1 ALC-600 Platform Control Module	17
	1-2 ALC-600 Service Mode	17
	1-3 Full Machine Calibration	18
	1-4 Machine Functions	19
	How to Adjust the Machine Maximum Speed Setting	19
	How to Adjust the Joystick Ramp Rate Setting	20
	How to Adjust the Joystick Threshold Setting	21
	1-5 How to Enter ALC600 Software Update Mode	21
	1-6 Display Module Menus	22
	1-7 How to Replace the Display Controller (DISCON) Module	27
	1-8 How to Replace the Ground Control Overlay	28
	Platform Components	31
	2-1 Platform Leveling Slave Cylinder	31
	2-2 Platform Rotator	32
	2-3 Platform Overload System	35
	How to Calibrate the Platform Overload System	35
	How to Calibrate the Platform Overload System - HF Models	36
	How to Perform a Zero Load Platform Overload Calibration	37
	How to Replace the Platform Overload Load Cell	38
	2-4 Platform	
	Jib Boom Components	40
	3-1 Jib Boom	
	3-2 Jib Boom Lift Cylinder	41

Primary Boom Components	42
4-1 Cable Track	42
How to Remove the Cable Track	42
How to Repair the Cable Track	43
4-2 Boom	43
4-3 Boom Lift Cylinder	46
4-4 Boom Extension Cylinder	47
4-5 Platform Leveling Master Cylinder	48
4-6 Primary Boom Angle Sensor Calibration	49
4-7 Boom Length Sensor	50
Engines	51
5-1 RPM adjustment - Deutz Models	51
5-2 RPM adjustment - Perkins Models	51
5-3 Flex Plate	51
How to install the Pump and Bell Housing Assembly	54
5-4 Ford MSG-425 Engine Fault Codes	55
5-5 Engine Fault Codes - Deutz D 2.9 L4 and Perkins 404F-22 Models	56
Hydraulic Pump	57
6-1 Function Pump	57
6.2 Drive Pump	59
6-2 Drive Pump	

Manifolds	60
7-1 Function Manifold Components	60
7-2 Valve Adjustments - Function Manifold	64
How to Adjust the System Relief Valve	64
How to Adjust the Boom Down Relief Valve	64
How to Adjust the Boom Extend Relief Valve	65
7-3 Jib Boom and Platform Rotate Manifold Components	66
7-4 Traction Manifold Components, 4WD	67
7-5 Valve Adjustments, Traction Manifold	69
7-6 Valve Adjustment - Oscillate Relief Valve	70
How to Set Up the Oscillate Directional Valve	70
7-7 Generator Manifold Components	72
7-8 Valve Coils	73
How to Test a Coil Diode	74
Turntable Rotation Components	75
8-1 Turntable Rotation Assembly	75
How to Adjust the Turntable Rotation Gear Backlash	76
How to Calibrate the Turntable Tilt Sensor	77
Axle Components	79
9-1 Oscillating Axle Cylinders	79
Track Components	80
10-1 Track Assembly	80

Section 4	Fault Codes8	2
	Introduction82	2
	Control System Fault Codes8	3
	How to Retrieve Control System Fault Codes8	3
	Control System Fault Codes - Models with Revision H Software or Higher84	4
	Engine Fault Codes10	1
	Deutz D 2.9 L4 Engine Fault Codes10	2
	Perkins 404F-E22T Engine Fault Codes11	3
	Ford MSG-425 Engine Fault Codes11	5

Section 5	Schematics	120
	Introduction	120
	Electrical Symbol Legend	121
	Hydraulic Symbols Legend	122
	Limit Switch Location Legend	123
	Engine Relay Layout - All engines except Perkins 404F	124
	Engine Relay Layout - Perkins 404F-22T	125
	3 kW Generator Receptacle Wiring	126
	7 kW Generator Receptacle Wiring	127
	12 kW Generator Receptacle Wiring	128
	Connector Pin Legend	129
	Electrical Schematics	131
	Electrical Schematic - Turntable Controls	132
	Electrical Schematic - Platform Controls	133
	Electrical Schematic - Deutz D 2.9 L4 Models	136
	Electrical Schematic - Deutz D2011 L03i Models	137
	Electrical Schematic - Perkins 404F-E22T Models	140
	Electrical Schematic - Ford MSG425 Models	141
	Hydraulic Schematics	143
	Hydraulic Schematic	

Machine Specifications

Tires and wheels	
Tire size, rough terrain (Foam filled)	315/55D20 12 ply 20 in x 11 in wheel 50.8 cm x 27.9 cm wheel
Tire weight, rough terrain (minimum)	290 lbs 312 kg
Tire size, high flotation	33/16LL 500 10 ply 19.5 in x 14 in wheel 49.5 cm x 35.6 cm wheel
Tire pressure	38 psi / 2.6 bar
Tire weight, high flotation (minimum)	145 lbs 66 kg
Wheel lugs	9 @ 5/8 - 18
Lug nut torque, dry	240 ft-lbs 325 Nm
Lug nut torque, lubricated	180 ft-lbs 244 Nm

Track Components, TraX option	
Track material	Rubber
Weight (each)	480 lbs 218 kg
Fluid capacities	
LPG tank	33.5 pounds 15.2 kg
Fuel tank (standard)	20 gallons 75.7 liters
Fuel tank (optional)	30 gallons 113.6 liters
Hydraulic tank	45 gallons 170 liters
Hydraulic system (including tank)	55 gallons 208 liters
Drive hubs	20 fl oz 592 cc
Turntable rotation drive hub	8 fl oz 237 cc
Drive hub oil type: SAE 90 multipurpose API service classification GL5	hypoid gear oil

For operational specifications, refer to the Operator's Manual.

Performance Specifications

Drive speeds, 2WD and 4WD	
Stowed	40 ft / 6.8 - 7.4 sec 12.2 m / 6.8 - 7.4 sec
Raised or extended	40 ft / 40 - 45 sec 12.2 m / 40 - 45 sec
Drive speeds, TraX option	
Stowed	40 ft / 9 - 11 sec 12.2 m / 9 - 11 sec
Raised or extended	40 ft / 40 - 45 sec 12.2 m / 40 - 45 sec
Gradeability	See Operator's Manual
Braking distance, maximum	
High range on paved surface	3 - 4 ft 0.9 - 1.2 m
Boom function speeds, maxir from platform controls	num
Jib boom up, S-45 models	48 - 53 seconds
Jib boom down, S-45 models	28 - 33 seconds
Platform level (10° range of motion)	3 - 5 seconds
Boom up	50 - 60 seconds
Boom down	50 - 60 seconds
Boom extend	30 - 60 seconds
Boom retract	15 - 35 seconds
Turntable rotate, 360° Stowed	70 - 100 seconds
Turntable rotate, 360° Not stowed	120 - 140 seconds

For operational specifications, refer to the

Operator's Manual.

Hydraulic Oil Specifications

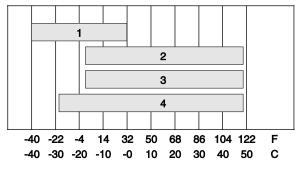
Hydraulic Fluid Specifications

Genie specifications require hydraulic oils which are designed to give maximum protection to hydraulic systems, have the ability to perform over a wide temperature range, and the viscosity index should exceed 140. They should provide excellent antiwear, oxidation prevention, corrosion inhibition, seal conditioning, and foam and aeration suppression properties.			
Cleanliness level, minimum	ISO 15/13		
Water content, maximum	250 ppm		
Recommended Hydraulic Fluid			
Hydraulic oil type Chevron Rando HD Premium			
viscosity grade 32			
viscosity index 200			
Optional Hydraulic Fluids			
Mineral based Shell Tellus S2 V 32 Shell Tellus S2 V 46 Shell Tellus S4 VX 32 Shel Shell Donax TG (Dexron III Chevron 5606A			
Biodegradable Petro Canada Environ MV 46			
Fire resistant	Fire resistant UCON Hydrolube HP-5046		
Noto: Conio anosificat	iono roquiro additional		

Note: Genie specifications require additional equipment and special installation instructions for the approved optional fluids. Consult Genie Product Support before use.

Optional fluids may not have the same hydraulic lifespan and may result in component damage.

Note: Extended machine operation can cause the hydraulic fluid temperature to increase beyond it's maximum allowable range. If the hydraulic fluid temperature consistently exceeds 200°F / 90°C an optional oil cooler may be required.


S[®]-40/45 XC[™] • S[®]-40/45 HF • S[®]-40/45 TraX[™]

NOTICE

Do not top off with incompatible hydraulic fluids. Hydraulic fluids may be incompatible due to the differences in base additive chemistry. When incompatible fluids are mixed, insoluble materials may form and deposit in the hydraulic system, plugging hydraulic lines, filters, control valves and may result in component damage.

Note: Do not operate the machine when the ambient air temperature is consistently above $120^{\circ}F / 49^{\circ}C$.

Hydraulic Fluid Temperature Range

Ambient air temperature

- 1 Chevron hydraulic oil 5606A
- 2 Petro-Canada Environ MV 46
- 3 UCON Hydrolube HP-5046D
- 4 Chevron Rando HD premium oil MV

Chevron Rando HD Premium Oil MV Fluid Properties

ISO Grade	32
Viscosity index	200
Kinematic Viscosity cSt @ 200°F / 100°C cSt @ 104°F / 40°C	7.5 33.5
Brookfield Viscosity cP @ -4°F / -20°C cP @ -22°F / -30°C	1040 3310
Flash point	375°F / 190°C
Pour point	-58°F / -50°C
Maximum continuous operating temperature	171°F / 77°C

Note: A hydraulic oil heating system is recommended when the ambient temperature is consistently below $0^{\circ}F$ / -18°C.

Note: Do not operate the machine when the ambient temperature is below -20°F / -29°C with Rando HD Premium MV.

Chevron 5606A Hydraulic Oil Fluid Properties

ISO Grade	15
Viscosity index	300
Kinematic Viscosity cSt @ 200°F / 100°C cSt @ 104°F / 40°C cSt @ -40°F / -40°C	5.5 15.0 510
Flash point	180°F / 82°C
Pour point	-81°F / -63°C
Maximum continuous operating temperature	124°F / 51°C

Note: Use of Chevron 5606A hydraulic fluid, or equivalent, is required when ambient temperatures are consistently below 0°F / -17°C unless an oil heating system is used.

NOTICE

Continued use of Chevron 5606A hydraulic fluid, or equivalent, when ambient temperatures are consistently above 32°F / 0°C may result in component damage

Petro-Canada Environ MV 46 Fluid Properties

ISO Grade	46
Viscosity index	154
Kinematic Viscosity cSt @ 200°F / 100°C cSt @ 104°F / 40°C	8.0 44.4
Flash point	482°F / 250°C
Pour point	-49°F / -45°C
Maximum continuous operating temperature	180°F / 82°C

Shell Tellus S4 VX Fluid Properties

ISO Grade	32
Viscosity index	300
Kinematic Viscosity cSt @ 200°F / 100°C cSt @ 104°F / 40°C	9 33.8
Brookfield Viscosity cSt @ -4°F / -20°C cSt @ -13°F / -25°C cSt @ -40°F / -40°C	481 702.4 2624
Flash point	>100
Pour point	-76°F / -60°C
Maximum continuous operating temperature	103°F / 75°C

UCON Hydrolube HP-5046 Fluid Properties

ISO Grade	46
Viscosity index	192
Kinematic Viscosity cSt @ 149°F / 65°C cSt @ 104°F / 40°C cSt @ 0°F / -18°C	22 46 1300
Flash point	None
Pour point	-81°F / -63°C
Maximum continuous operating temperature	189°F / 87°C

Hydraulic Component Specifications

Drive Pump	
Type: bi-directional variable displacement piston pump	
Flow rate @ 2500 rpm	0 - 28 gpm 0 - 122.6 L/min
Drive pressure, maximum	3625 psi 250 bar
Charge Pump	
Туре	gerotor
Displacement per revolution	0.85 cu in 13.9 cc
Flow rate @ 2500 rpm	9 gpm 34 L/min
Charge pressure @ 2500 rpm	310 psi 21.4 bar
Function Pump	
Туре	gear, pressure balanced
Displacement	1.04 cu in 17 cc
Flow rate @ 2500 rpm	10.69 gpm 40.5 L/min
Auxiliary Pump	
Type: fixed displacement gear pump	
Displacement per revolution	1.75 gpm 6.62 L/min
Auxiliary pump relief pressure	3200 psi 220.6 bar

Function manifold	
Function relief valve pressure	3200 psi / 220.6 bar
Boom extend relief valve pressure	1950 psi 134 bar
Steer regulator all models	2 gpm / 7.6 lpm
Oscillate relief valve pressure (@2500 rpm)	650 psi 49 bar
Traction Manifold	
Hot oil relief pressure	280 psi 19.3 bar
Two-speed drive motors, 2WD	and 4WD models
Two-speed drive motors, 2WD Displacement per revolution low speed	and 4WD models 0.99 cu in / 16.3 cc
Displacement per revolution	
Displacement per revolution low speed Displacement per revolution	0.99 cu in / 16.3 cc
Displacement per revolution low speed Displacement per revolution high speed	0.99 cu in / 16.3 cc
Displacement per revolution low speed Displacement per revolution high speed Hydraulic Filters	0.99 cu in / 16.3 cc 1.83 cu in / 30 cc

Manifold Component Specifications

Plug torque	
SAE No. 4	13 ft-lbs / 18 Nm
SAE No. 6	18 ft-lbs / 24 Nm
SAE No. 8	50 ft-lbs / 68 Nm
SAE No.10	55 ft-lbs / 75 Nm
SAE No. 12	56 ft-lbs / 75.9 Nm

Ford MSG-425 EFI Engine

Displacement	153 cu in
	2.5 liters
Number of cylinders	4
Bore & stroke	3.5 x 3.9 inches
	89 x 100 mm
Horsepower	60 @ 2500 rpm
	45 kW @ 2500 rpm
Firing order	1 - 3 - 4 - 2
Low engine idle (computer	1000 rpm
controlled)	33.3 Hz
Low function idle (computer	1600 rpm
controlled)	53.3 Hz
High function idle (computer	2500 rpm
controlled)	83.3 Hz
Compression ratio	9.7:1
Compression pressure (approx	.)
Pressure (psi or bar) of lowest cyli 75% of highest cylinder	inder must be at least
Lubrication system	
Oil pressure (operating	29 to 39 psi
temperature @ 2000 rpm)	2.75 to 4.1 bar
Oil capacity (including filter)	6.7 quarts
	6.4 liters
<u>.</u>	

Oil pressure switch

Oil pressure switch point	7.5 psi
	0.51 bar

Oil viscosity requirements

Extreme operating temperatures may require the use of alternative engine oils. For oil requirements, refer to the Engine Operator Handbook on your machine.

Electronic fuel pump	
Fuel pressure, static	60 psi 4.1 bar
Fuel flow rate	0.58 gpm 2.2 L/min

Fuel requirement For fuel requirements, refer to the engine Operator's Manual on your machine. Ignition system Spark plug type Motorcraft AYFS-32Y-R Spark plug gap 0.049 to 0.053 inches 1.25 to 1.35 mm **Engine coolant** Capacity 11.5 quarts 10.9 liters **Coolant temperature switch** 230°F Temperature switch point 110°C Starter motor Normal engine cranking speed 200 to 250 rpm Current draw, normal load 140-200A Current draw, maximum load 800A Alternator Output 95A, 13.8V DC Battery 12V DC, Group 34/78 Туре Quantity 1 Cold cranking ampere @ 0°F 900A Reserve capacity @ 25A rate 200 minutes

Deutz D2011 L03i Engine

Displacement	142 cu in 2.33 liters
Number of cylinders	3
Bore and stroke	3.7 x 4.4 inches 94 x 112 mm
Horsepower	48 @ 2800 rpm 36 kW @ 2800 rpm
Firing order	1 - 2 - 3
Low idle	1500 rpm 313 Hz
High idle	2500 rpm 521.7 Hz
Compression ratio	19:01
Compression pressure	362 to 435 psi 25 to 30 bar
Governor	centrifugal mechanical
Valve clearance, cold	
Intake	0.012 in 0.3 mm
Exhaust	0.020 in 0.5 mm
Lubrication system	
Oil pressure	20 to 44 psi 1.4 to 3 bar
Oil capacity (including filter)	9.5 quarts 9 liters
Oil viscosity requirements	
-22° F to 86° F/ -30° C to 30° C	5W-30 (synthetic)
-4° F to 90° F / -20° C to 32° C	10W-40
Above 23° F / -5° C	20W-50
Units ship with 15W-40.	may require the use of

Extreme operating temperatures may require the use of alternative engine oils. For oil requirements, refer to the Engine Operator Handbook on your machine.

Oil temperature switch	
Temperature switch point	300°F 149°C
Oil pressure switch	
Oil pressure switch point	22 psi 1.5 bar
Fuel injection system	
Injection pump make	Bosch
Injection pump pressure, maximum	15000 psi 1034 bar
Injector opening pressure	3046 psi 210 bar
Fuel requirement	
For fuel requirements, refer to the Manual on your machine.	ne engine Operator's
Starter motor	
Current draw, no load	90A
Brush length, new	0.72 in 18.5 mm
Brush length, minimum	0.27 in 7 mm
Battery	
Туре	12V DC, Group 34/78
Quantity	1
Cold cranking ampere	900A
Reserve capacity @ 25A rate	200 minutes
Alternator output	60A @ 14V DC
Fan belt deflection	3/8 to 1/2 inch

9 to 12 mm

Deutz D 2.9 L4 Engine

Displacement	177 cu in 2.9 liters
Number of cylinders	4
Bore and stroke	3.6 x 4.3 inches 92 x 110 mm
Horsepower	48.8 @ 2600 rpm 37 kW @ 2600 rpm
Firing order	1 - 3 - 4 - 2
Low idle	1500 rpm 313 Hz
High idle	2500 rpm 521.7 Hz
Compression ratio	18.4:1
Compression pressure	362 to 435 psi 25 to 30 bar
Governor	electronic
Lubrication system	
Oil pressure (@ 2000 rpm)	40 to 60 psi 1.4 to 3 bar
Oil capacity (including filter)	9.4 quarts 9 liters
Oil viscosity requirements	
-22° F to 86° F/ -30° C to 30° C	5W-30 (synthetic)
-4° F to 90° F / -20° C to 32° C	10W-40
Above 23° F / -5° C	20W-50
Units ship with 15W-40. Extreme operating temperatures n alternative engine oils. For oil requ Engine Operator Handbook on you	uirements, refer to the
Oil temperature switch	
Temperature switch point	257°F

Temperature switch point	257°F 125°C
Oil pressure switch	
Oil pressure switch point	20 psi 1.4 bar

Engine coolant	
Capacity	10 quarts 9.4 liters
Fuel injection system	
Injection pump make	Bosch
Injection pump pressure, maximum	15000 ps 1034 bar
Injector opening pressure	3046 ps 210 bar
Fuel requirement	
For fuel requirements, refer to the e Manual on your machine.	ngine Operator's
Starter motor	
Cranking speed	150-250 RPM
Current draw, normal load	250A to 400A
Output	3.2kW
Battery	
Туре	12V DC
Quantity	1
Cold cranking ampere	1000A
Reserve capacity @ 25A rate	200 minutes
Alternator output	95A @ 14V DC
Fan belt deflection	3/8 to 1/2 inch 9 to 12 mm

Perkins 404F-E22T Engine

134 cu in 2.2 liters
4
3.31 x 3.94 inches 84 x 100 mm
48 @ 2800 rpm 38 kW @ 2500 rpm
1 - 3 - 4 - 2
1500 rpm 313 Hz
2500 rpm 441.7 Hz
18:1
426 psi 29.4 bar

Pressure (psi) of lowest cylinder must be within 50 psi / 3.45 bar of highest cylinder

Governor	electronic
Valve Clearance, cold	
Intake	0.008 in 0.2 mm
Exhaust	0.008 in 0.2 mm
Lubrication system	
Oil pressure (@ 2000 rpm)	40 to 60 psi 1.4 to 3 bar
Oil capacity (including filter)	9.4 - 11.2 quarts 8.9 - 10.6 liters
Oil viscosity requirements	
Below 86°F / 30°C	5W-20
-4°F to 104°F / -20°C to 40°C	10W-30
Above 14°F / -10°C	15W-40
Unit ships with 15W-40. Extreme of temperatures may require the use oils. For oil requirements, refer to Manual for your engine.	of alternative engine

Oil pressure sending unit	
Oil pressure switch point	14.2 psi 1 bar

Zexel
33 psi 7 bar
V DC
3/8 in 0 mm
200A
80 in 9 mm
0.5 in 7 mm
V DC
1
000A
nutes
luarts liters
21° F 05° C
2

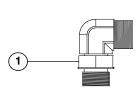
Machine Torque Specifications

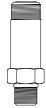
Platform rotator	
1-8 center bolt, GR 5	
Dry	615 ft-lbs 834 Nm
3/8 -16 bolts, GR 8	
Dry *(use blue thread locking compound)	35 ft-lbs* 47.5 Nm*
Turntable rotate assembly	
Rotate bearing mounting bolts, lubricated	160 ft-lbs 217 Nm
Drive motor/brake mounting bolts, dry *(use blue thread locking compound)	49 ft-lbs* 66.4 Nm*
Drive motor/brake mounting bolts, lubricated	37 ft-lbs 50 Nm
Drive motor and hubs	
Drive hub mounting bolts, dry	210 ft-lbs 284 Nm
Drive hub mounting bolts, lubricated	160 ft-lbs 217 Nm

TraX[™] Torque Specifications

Hub adapter to drive hub fasteners	
Lug nut torque, dry	230 ft-lbs 312 Nm
Lug nut torque, lubricated	170 ft-lbs 230 Nm
Idler and bogey wheel fasteners	
3/4-10 bolts, GR 8, dry	375 ft-lbs 508 Nm
3/4-10 bolts, GR 8, lubricated	281 ft-lbs 381 Nm

Hydraulic Hose and Fitting Torque Specifications


Your machine is equipped with Parker Seal-Lok™ ORFS or 37° JIC fittings and hose ends. Genie specifications require that fittings and hose ends be torqued to specification when they are removed and installed or when new hoses or fittings are installed.


Seal-Lok™ Fittings	
(hose end - ORFS)	
SAE Dash Size	Torque
-4	18 ft-lbs / 25 Nm
-6	30 ft-lbs / 41 Nm
-8	40 ft-lbs / 55 Nm
-10	60 ft-lbs / 81 Nm
-12	85 ft-lbs / 115 Nm
-16	110 ft-lbs / 150 Nm
-20	150 ft-lbs / 205 Nm
-24	230 ft-lbs / 315 Nm

SAE O-ring Boss Port

(tube fitting - installed into Aluminum) (all types)

SAE Dash Size	Torque
-4	14 ft-lbs / 19 Nm
-6	23 ft-lbs / 31,2 Nm
-8	36 ft-lbs / 54,2 Nm
-10	62 ft-lbs / 84 Nm
-12	84 ft-lbs / 114 Nm
-16	125 ft-lbs / 169,5 Nm
-20	151 ft-lbs / 204,7 Nm
-24	184 ft-lbs / 249,5 Nm

Adjustable Fitting

Non-adjustable fitting

1 jam nut

SAE O-ring Boss Port (tube fitting - installed into Steel)

SAE	Dash Size	Torque
-4	ORFS / 37° (Adj) ORFS (Non-adj) 37° (Non-adj)	15 ft-lbs / 20,3 Nm 26 ft-lbs / 35,3 Nm 22 ft-lbs / 30 Nm
-6	ORFS (Adj / Non-adj) 37° (Adj / Non-adj)	35 ft-lbs / 47,5 Nm 29 ft-lbs / 39,3 Nm
-8	ORFS (Adj / Non-adj) 37° (Adj / Non-adj)	60 ft-lbs / 81,3 Nm 52 ft-lbs / 70,5 Nm
-10	ORFS (Adj / Non-adj) 37° (Adj / Non-adj)	100 ft-lbs / 135,6 Nm 85 ft-lbs / 115,3 Nm
-12	(All types)	135 ft-lbs / 183 Nm
-16	(All types)	200 ft-lbs / 271,2 Nm
-20	(All types)	250 ft-lbs / 339 Nm
-24	(All types)	305 ft-lbs / 413,5 Nm

JIC 37° Fittings

(Swiver flut of flose connection)				
SAE Dash Size	Thread Size	Flats		
-4	7/16-20	2		
-6	9/16-18	1 1/2		
-8	3/4-16	1 1/2		
-10	7/8-14	1 1/2		
-12	1 1/16-12	1 1/4		
-16	1 5/16-12	1		
-20	1 5/8-12	1		
-24	1 7/8-12	1		

Torque Procedure

Seal-Lok[™] fittings

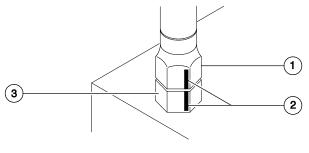
 Replace the O-ring. The O-ring must be replaced anytime the seal has been broken. The O-ring cannot be re-used if the fitting or hose end has been tightened beyond finger tight.

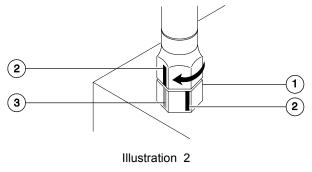
Note: The O-ring in Parker Seal Lok[™] fittings and hose end are custom-size O-rings. They are not standard size O-rings. They are available in the O-ring field service kit (Genie part number 49612).

- 2 Lubricate the O-ring before installation.
- 3 Be sure the O-ring face seal is seated and retained properly.
- 4 Position the tube and nut squarely on the face seal end of the fitting, and tighten the nut finger tight.
- 5 Tighten the nut or fitting to the appropriate torque. Refer to the appropriate torque chart in this section.
- 6 Operate all machine functions and inspect the hose, fittings and related components to confirm there are no leaks.

JIC 37° fittings

- 1 Align the tube flare (hex nut) against the nose of the fitting body (body hex fitting) and tighten the hex nut to the body hex fitting to hand tight, approximately 30 in-lbs / 3.4 Nm.
- 2 Using a permanent ink marker, make a reference mark on one the flats of the hex nut and continue the mark onto the body of the hex fitting. Refer to Illustration 1.




Illustration 1

- 1 hex nut
- 2 reference mark
- 3 body hex fitting

3 Working clockwise on the body hex fitting, make a second mark with a permanent ink marker to indicate the proper tightening position. Refer to Illustration 2.

Note: Use the JIC 37° Fitting table in this section to determine the correct number of flats, for the proper tightening position.

Note: The marks indicate the correct tightening positions have been determined. Use the second mark on the body hex fitting to properly tighten the joint after it has been loosened.

- 1 body hex fitting
- 2 reference mark
- 3 second mark
- 4 Tighten the hex nut until the mark on the hex nut is aligned with the second mark on the body hex fitting.
- 5 Operate all machine functions and inspect the hose, fittings and related components to confirm there are no leaks.

Repair Procedures

Observe and Obey:

- Repair procedures shall be completed by a person trained and qualified on the repair of this machine.
- Immediately tag and remove from service a damaged or malfunctioning machine.
- Repair any machine damage or malfunction before operating the machine.

Before Repairs Start:

- Read, understand and obey the safety rules and operating instructions in the appropriate operator's manual on your machine.
- Be sure that all necessary tools and parts are available and ready for use.
- ☑ Use only Genie approved replacement parts.
- Read each procedure completely and adhere to the instructions. Attempting shortcuts may produce hazardous conditions.

Machine Configuration:

- ☑ Unless otherwise specified, perform each repair procedure with the machine in the following configuration:
 - Machine parked on a firm, level surface
 - Key switch in the off position with the key removed
 - The red Emergency Stop button in the off position at both the ground and platform controls
 - Wheels chocked
 - All external AC power supply disconnected from the machine
 - Boom in the stowed position
 - Turntable secured with the turntable rotation lock

Repair Procedures

About This Section

Most of the procedures in this section should only be performed by trained service professional in a suitably equipped workshop. Select the appropriate repair procedure after troubleshooting the problem.

Perform disassembly procedures to the point where repairs can be completed. Then to re-assemble, perform the disassembly steps in reverse order.

Symbols Legend

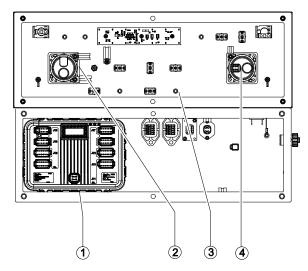
Safety alert symbol—used to alert personnel to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

A DANGER

Indicates a imminently hazardous situation which, if not avoided, will result in death or serious injury.

AWARNING Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.

Indicates a potentially hazardous situation which, if not avoided, may cause minor or moderate injury.


Indicates a potentially hazardous situation which, if not avoided, may result in property damage.

- Indicates that a specific result is expected after performing a series of steps.
- Indicates that an incorrect result has occurred after performing a series of steps.

1-1 ALC-600 Control Module

Platform Controls

The platform control box contains the ALC-600 platform Control Module. The platform Control Module receives all signals from the platform switches, joysticks and foot switch, and provides operator feedback through an Indicator Module. The joystick controllers at the platform controls utilize Hall Effect technology and require no calibration. Automatic calibration of center voltage occurs on power up if the signal value is in the valid range. Each joystick controller should operate smoothly and provide proportional speed control over its entire range of motion. The remaining boom functions operate by on/off toggle switches.

- 1 ALC-600 platform control module
- 2 primary boom up/down and turntable rotate left/right joystick controller
- 3 LED indicator module
- 4 drive/steer joystick controller

1-2 How to Enter ALC-600 Service Mode

ALC-600 Control System Display

- 1 Number 1 or Escape
- 2 Number 2 or UP arrow
- 3 Number 3 or DOWN arrow
- 4 Number 4 or OK
- 5 Settings menu
- 6 (not implemented)
- 7 Faults menu
- 8 Fault LED Indicator
- 9 Engine hours
- 10 Maintenance LED indicator
- 11 Maintenance menu
- 12Home menu

The Control System on this machine allows access to calibrations through the Service Mode. The procedures that follow may require the operator to already be in the Service Mode. The Service Mode can only be entered at machine start up and requires a special code.

- 1 At the ground controls, select the ground control mode using the key switch.
- 2 Push and hold buttons numbered **2** and **3** underneath the display screen.
- 3 Pull out the red Emergency Stop button.
- 4 You will be prompted for a password. Enter **3 3 2 4**.
- 5 Press the Gear button to access the settings menu.

Note: There will be a delay while the menu is being loaded on the display screen.

6 The machine will now operate normally and allow the viewing and modification of calibrations and parameters.

Note: When a parameter is changed in Service Mode, the change is effective immediately when button 4 (OK) is pushed. Machine restart is not required. A confirmation beep accompanies every save (button 4).

Note: Pushing in the red Emergency Stop button will exit the Service Mode.

Note: If there has been no input for 10 minutes while in Service Mode, the ALC-600 will power down and the Service Mode will be exited, unless the engine is running.

1-3 Full Machine Calibration

Full machine calibration must be completed in the proper sequence when the ALC-600 controller (TCON) in the ground control box has been replaced.

How to Fully Calibrate the Machine

Calibration procedures shall only be completed by qualified technicians that have Genie factory service training.

Tip-over hazard. Failure to calibrate the machine in the proper sequence could cause the machine to tip over resulting in death or serious injury.

Note: A digital level will be required to perform this procedure.

Note: Start this procedure with the boom in the stowed position.

Full machine calibration must be completed in the following sequence:

- Select model, engine, tires, and region, then cycle power. Refer to Repair Section Display Module.
- Turntable level sensor. Refer to Repair Procedure, *How to Calibrate the Turntable Level Sensor*.
- Load cell sensor. Refer to Repair Procedure, How to Calibrate the Load Cell Sensor.
- Primary boom angle sensor. Refer to Repair Procedure, *How to Calibrate the Primary Boom Angle Sensor.*
- Primary boom length sensor. Refer to Repair Procedure, *How to Calibrate the Primary Boom Length Sensor.*
- Select option configuration. Refer to Repair Section, Display Module, *Options.*

1-4 Machine Functions

How to Adjust the Joystick Maximum Speed Setting

The maximum speed of a joystick controlled machine function can be modified from the ground controls display. Whenever a hydraulic cylinder, drive motor or hydraulic pump is replaced, the maximum speed setting should be adjusted to maintain optimum performance. The maximum speed settings on the joystick can be changed to compensate for hydraulic pump wear to maintain peak performance from the machine.

Note: Perform this procedure with the boom in the stowed position.

- 1 Enter the Service Mode. See Repair Procedure, *How to Enter the Service Mode*.
- 2 Press the **SETTINGS** button above the display screen.
- 3 Select **SPEEDS** from the display screen.
- 4 Navigate to the desired function's Maximum Speed setting.
- 5 Select the desired setting to change and press **OK**.
- 6 In the parameter adjustment screen, use the display buttons to change the parameter. Note that the factory default speed is considered 100% for maximum speeds.
- 7 Scroll and press **OK**. The change is effective immediately.
- 8 Start the engine from the ground controls.
- 9 Start a timer and activate the machine function that needs to be adjusted. Using the ground control functions is the same as asking for full joystick deflection at the platform.

- 10 Record the time it takes for that function to complete a full cycle (ie; boom up).
- 11 Compare the machine function time with the function times listed in Refer to Specifications, *Performance Specifications*. Determine whether the function time needs to increase or decrease.
- 12 Adjust the parameter in the ground display to achieve the proper function cycle time.

How to Adjust the Joystick Ramp Rate Setting

The ramp rate setting is an adjustment that controls the way boom functions start and stop. There are two types of ramp rates to adjust on separate menus:

Ramp Up Time -- the amount of time it takes to accelerate to speed.

Ramp Down Time -- the amount of time it takes to decelerate to a stop

The ramp rate settings of a joystick can be changed to compensate for hydraulic pump wear to maintain peak performance from the machine.

Note: Perform this procedure with the boom in the stowed position.

- 1 Enter the Service Mode. See Repair Procedure, *How to Enter the Service Mode*.
- 2 Press the **SETTINGS** button above the display screen.
- 3 Select SPEEDS from the display screen.
- 4 Navigate to the desired function's Ramp setting.
- 5 Select the desired setting to change and press **OK**.
- 6 In the parameter adjustment screen, use the display buttons to change the parameter. Note that the ramp rate is expressed in seconds to complete the ramp.
- 7 Scroll and press **OK**. The change is effective immediately.

- 8 Start the engine from the ground controls.
- 9 Start a timer and activate the machine function that needs to be adjusted. Using the ground control functions is the same as asking for full joystick deflection at the platform.
- 10 Record the time it takes for that function to complete the ramp.
- 11 Compare the machine function time with the function times listed in Specifications, *Performance Specifications*. Determine whether the ramp time needs to increase or decrease.
- 12 Adjust the parameter in the ground display to achieve the proper ramp time.

Note: Refer to *Repair Procedure, Display Module Menus* for ramp rates.

How to Adjust the Joystick Threshold Setting

The threshold setting of a joystick is the minimum output at which a function proportional valve can open and allow the function to operate.

The boom function threshold current should be operating at near zero speed, smoothly with no vibrations.

Note: Perform this procedure with the boom in the stowed position.

- 1 Enter the Service Mode.
- 2 Press the **SETTINGS** button above the display screen.
- 3 Select **SPEEDS** from the display screen.
- 4 Navigate to the desired function's Threshold setting.
- 5 Select the desired setting to change and press **OK**.
- 6 In the parameter adjustment screen, use the display buttons to change the parameter. Note that the factory default speed is considered 100% for threshold values.
- 7 Scroll and press **OK**. The change is effective immediately.
- 8 Switch the machine control to platform control and start the engine from the platform controls..
- 9 Using the joystick, verify that the function engages smoothly and without sudden movement or excessive joystick dead spots.
- 10 Adjust the parameter in the ground display to achieve a smooth function threshold.

1-5 How to Enter ALC600 Software Update Mode

- 1 Go to the Genie website http://firmware.genielift.com, select your machine and ALC600 controller type. Enter the machine serial number and part number for the software.
- 2 Download the software to a USB flash drive. If zipped, extract the files to the USB flash drive.
- 3 With the machine off, open the GBOX (ground box) lid and then remove the four Torx head screws securing the Display Controller (DISCON) door and remove the door to expose the USB port.
- 4 Insert the flash drive into the USB port.
- 5 Set key switch to ground and pull out the red ground ESTOP while holding buttons 1 and 4.
- 6 The Display Controller will go into the bootloader mode.
- 7 Browse and select the desired software. Follow the on-screen guidance to start the update procedure.
- 8 When complete, turn off machine.
- 9 Remove USB flash drive, re-install the Display Controller door and close the GBOX (ground box).
- 10 Power up normally.
- 11 As the display controller starts, operator shall verify on the start-up screen that the proper software and revision are displayed.
- 12 Perform a function check.

1-6 Display Module Menus

Screen or Menu	ltem	Selection	Default
Display Settings	Backlight	0 - 100%	
	Contrast	0 - 100%	
	Display Inversion	On / Off	Off
Screen or Menu	ltem	Selection	Default
Model Configuration	Model	S-40 / S-45 / S-60 / S-65 / S-60J / S-80 / S-85	Select Model
	Tires	Rough Terrain / High Float / Trax	Select Tires
(These are locked unless factory defaults are restored)	Engine	Deutz 2.9L / Deutz Turbo 2.9L / Deutz D2011 L03i / Deutz TD2011 L04i / Ford MSG425 EFI / GM 3.0L / Kubota D1105 / Kubota D1803 / Perkins 404D-22 / Perkins 404D-22T / Perkins 404F E22T / Perkins 404F E22TA	Select Engine
	Platform	Standard Platform 4m / 13 ft. Platform	Select Platform
	Region	ANSI/CSA / AUS / CE	Select Region
Screen or Menu	ltem	Selection	Default
Options	Footswitch Timeout	10 sec / 2 min / 30 min	2 min
Note: Some options	Drive Priority	10 sec / 2 min / 30 min On / Off	2 min Off
•			
Note: Some options may not be visible with earlier software	Drive Priority	On / Off	Off
Note: Some options may not be visible with earlier software	Drive Priority Drive Cutout	On / Off On / Off	Off Off
Note: Some options may not be visible with earlier software	Drive Priority Drive Cutout Platform Level	On / Off On / Off On / Priority / Cutout	Off Off On
Note: Some options may not be visible with earlier software	Drive Priority Drive Cutout Platform Level Generator	On / Off On / Off On / Priority / Cutout No Generator / Generator Installed	Off Off On No Generator
Note: Some options may not be visible with earlier software	Drive Priority Drive Cutout Platform Level Generator Contact Alarm	On / Off On / Off On / Priority / Cutout No Generator / Generator Installed On / Off	Off Off On No Generator On
Note: Some options may not be visible with earlier software	Drive Priority Drive Cutout Platform Level Generator Contact Alarm Platform Recirculation	On / Off On / Off On / Priority / Cutout No Generator / Generator Installed On / Off On / Off	Off Off On No Generator On Off
Note: Some options may not be visible with earlier software	Drive Priority Drive Cutout Platform Level Generator Contact Alarm Platform Recirculation Units	On / Off On / Off On / Priority / Cutout No Generator / Generator Installed On / Off On / Off US Customary / Metric	Off Off On No Generator On Off US Customary
Note: Some options may not be visible with earlier software	Drive Priority Drive Cutout Platform Level Generator Contact Alarm Platform Recirculation Units Aircraft Proximity	On / Off On / Off On / Priority / Cutout No Generator / Generator Installed On / Off On / Off US Customary / Metric On / Off	Off Off On No Generator On Off US Customary Off
Note: Some options may not be visible with earlier software	Drive Priority Drive Cutout Platform Level Generator Contact Alarm Platform Recirculation Units Aircraft Proximity Fuel Level Sensor	On / Off On / Off On / Priority / Cutout No Generator / Generator Installed On / Off On / Off US Customary / Metric On / Off Not Installed / Installed	Off Off On No Generator On Off US Customary Off Not Installed

Screen or Menu	Item	Default
Sensor Calibration	Chassis Tilt	Select OK to calibrate
	Load Sense	Select OK to calibrate
	Load Sense	Select OK to calibrate
	Boom Length	Select OK to calibrate
Screen or Menu	Item	Default
Auto Threshold Calibration	Boom Up / Down Threshold	Select OK to calibrate
	Boom Extend / Retract Threshold	Select OK to calibrate
Screen or Menu	Item	Default
Drive Speeds XC and HF	Forward Threshold	128% max, 1% min, 100% = 723 mA
	Reverse Threshold	131% max, 1% min, 100% = 690 mA
	Forward Max	150% max, 74% min, 100% = 1556 mA
	Reverse Max	150% max, 74% min, 100% = 1129 mA
	Forward Out of Stow Max	150% max, 82% min, 100% = 1140 mA
	Reverse Out of Stow Max	150% max, 81% min, 100% = 1129 mA
Screen or Menu	Item	Default
Drive Speeds TraX	Forward Threshold	149% max, 1% min, 100% = 730 mA
	Reverse Threshold	152% max, 1% min, 100% = 708 mA
	Forward Max	150% max, 64% min, 100% = 2700 mA
	Reverse Max	150% max, 65% min, 100% = 2500 mA
	Forward Out of Stow Max	150% max, 76% min, 100% = 1455 mA
	Reverse Out of Stow Max	150% max, 75% min, 100% = 1451 mA
Screen or Menu	ltem	Default
Drive Ramps	Standard Acceleration	5000 ms max, 100 ms min, 4000 ms
	Standard Deceleration	5000 ms max, 100 ms min, 1000 ms
	Torque Switching Deceleration	5000 ms max, 500 ms min, 4000 ms
Screen or Menu	Item	Default
Deutz D2.9 Anti-Stall	Threshold	2375 rpm
	Drive Minimum	50%
	Range	125 rpm
	Hysteresis	100 rpm

Screen or Menu	Item	Default
Deutz D2011 Anti-Stall	Threshold	2500 rpm
	Drive Minimum	60 %
	Range	700 rpm
	Hysteresis	200 rpm
Screen or Menu	Item	Default
Perkins 404F Anti-Stall	Threshold	2350 rpm
	Drive Minimum	50%
	Range	125 rpm
	Hysteresis	100 rpm
Screen or Menu	Item	Default
Ford MSG425 Anti-Stall	Threshold	2375 rpm
	Drive Minimum	85%
	Range	125 rpm
	Hysteresis	170 rpm
Screen or Menu	ltem	Default
Primary Lift Speeds	Extend Thresholds	140% max, 1% min, 100% = 483 mA
	Retract Threshold	150% max, 1% min, 100% = 441 mA
	Up Threshold	147% max, 1% min, 100% = 846 mA
	Down Threshold	149% max, 1% min, 100% = 861 mA
	Extend Max	150% max, 78% min, 100% = 877 mA
	Retract Max	150% max, 75% min, 100% = 889 mA
	Up Max	150% max, 76% min, 100% = 1657 mA
	Down Max	150% max, 76% min, 100% = 1720 mA
Screen or Menu	ltem	Default
Primary Lift Ramps	Extend Accelerating Rate	5000 ms max, 1000 ms min, 2500 ms
	Extend Decelerating Rate	5000 ms max, 250 ms min, 1000 ms
	Retract Accelerating Rate	5000 ms max, 1000 ms min, 2500 ms
	Retract Decelerating Rate	5000 ms max, 500 ms min, 1000 ms
	Up Accelerating Rate	5000 ms max, 1000 ms min, 3000 ms
	Up Decelerating Rate	5000 ms max, 500 ms min, 3000 ms
	Down Accelerating Rate	5000 ms max, 1000 ms min, 3000 ms
	Down Decelerating Rate	5000 ms max, 1000 ms min, 1000 ms

Screen or Menu	Item	Default		
Turntable Speeds	Rotate CW Max	150% max, 75% min, 100% = 1150 mA		
	Rotate CCW Max	150% max, 75% min, 100% = 1150 mA		
	Rotate CW Threshold	139% max, 1% min, 100% = 560 mA		
	Rotate CCW Threshold	139% max, 1% min, 100% = 560 mA		
	CW Out of Stow Max	150% max, 78% min, 100% = 1005 mA		
	CCW Out of Stow Max	150% max, 78% min, 100% = 1005 mA		
Screen or Menu	ltem	Default		
Turntable Ramps	CW Accelerating	5000 ms max, 1000 ms min, 3000 ms		
	CW Decelerating	5000 ms max, 500 ms min, 2000 ms		
	CCW Accelerating	5000 ms max, 1000 ms min, 3000 ms		
	CCW Decelerating	5000 ms max, 500 ms min, 2000 ms		
Screen or Menu	Item	Default		
Jib Boom and Platform Speeds	Jib Up Threshold	max 120% / min 1% / default 550 mA		
	Jib Down Threshold	max 123% / min 1% / default 506 mA = 100%		
	Platform Level Up Threshold	max 130% / min 1% / default 433 mA = 100%		
	Platform Level Down Threshold	max 121% / min 1% / default 446 mA =100%		
	Platform Rotate CW Threshold	max 111% / min 1% / default 545 mA = 100%		
	Platform Rotate CCW Threshold	max 113% / min 1% / default 561 mA = 100%		
	Jib Up Max Output	max 150% / min 86% / default 776 mA = 100%		
	Jib Down Max Output	max 150% / min 85% / default 741 mA = 100%		
	Platform Level Up Max Output	max 150% / min 81% / default 700 mA = 100%		
	Platform Level Down Max Output	max 150% / min 86% / default 637 mA = 100%		
	Platform Rotate CW Max Output	max 150% / min 91% / default 671 mA = 100%		
	Platform Rotate CCW Max Output	max 150% / min 90% / default 716 mA = 100%		

Screen or Menu	Item	Default		
Jib and Platform Ramps	Jib Up/Down Ramp	max 2000 ms / min 200 ms / default 750 ms		
	Platform Level Ramp	max 2000 ms / min 200 ms / default 750 ms		
	Platform Rotate Ramp	max 2000 ms / min 200 ms / default 600 ms		
Screen or Menu	ltem	Default		
Machine Disable Options	Drive Disable	On / Off		
	Machine Disable	On / Off		
	Remote Disable	Disable Engine Start / Drive Speed Cripple / Lift Speed Cripple		
Reset to Defaults		OK to reset Model Configuration and Options		
Software Update		OK to enter Software Update Mode		

1-7 How to Replace the Display Controller (DISCON) Module

- 1 Push in the red Emergency Stop button to the off position at both the ground and platform controls.
- 2 Disconnect the negative terminal from the start battery and auxiliary battery, if equipped.

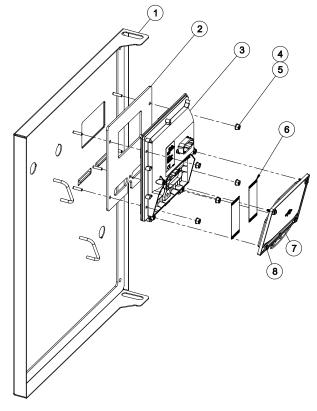


Illustration 1

- 1 ground box lid
- 2 DISCON gasket
- 3 DISCON
- 4 8/32 nylock nuts
- 5 #8 flat washers
- 6 ribbon cable
- 7 DISCON door
- 8 Torx head screws

- 3 Open the ground box lid (1) and disconnect the wire harness going to the display controller (DISCON).
- 4 Remove the DISCON door from the back by loosening the four Torx head screws (8) and remove the two ribbon cables (6) connecting the ground box overlay to the DISCON.

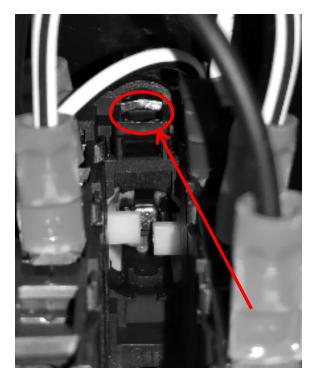
Note the orientation of the cables for reassembly.

5 Remove the DISCON from the ground control box lid by removing the five hex nuts and washers (4, 5). Discard the nuts and washers.

Note the lanyard attachment point for reassembly.

6 Remove the old DISCON gasket (2) from the ground box lid and clean the lid surface from any dirt, oil or old adhesive residue. Use a 99% solution of isopropyl alcohol to clean the surface. Allow the surface to completely dry.

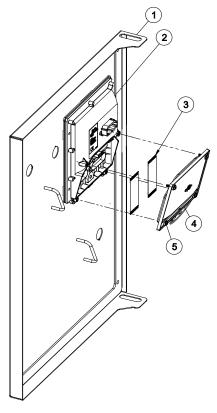
Note: Both the ground box lid and new gasket must be 70° F / 21° C or higher at the time of application. Application of the new gasket at lower temperatures is not recommended.


7 Peel the adhesive protective film from the back of the new gasket. Carefully line up the new gasket over the ground box lid, making sure the cutouts for the LCD screen, ribbon cables and mounting studs are centered and lining up with the gasket. Apply the new gasket to the ground box lid and work from the center out to eliminate air bubbles and make sure all the gasket edges are securely fixed.

Note: Once applied it is not recommended to lift the gasket and attempt to reposition it.

- 8 Install the new DISCON onto the ground box lid and fasten it using the new hex nuts and washers. All five fastening points must be used. Attach the DISCON door's lanyard to the DISCON's mounting stud.
- 9 Evenly tighten the nuts, beginning with the lower center nut, working out and then up.
- 10 Install the new ribbon cables, connecting the ground box overlay to the DISCON and reinstall the DISCON door, using the Torx head screws removed in step 4. Be sure to fully lock the tabs after the ribbon calbes have been fully inserted.
- 11 Reconnect the wire harness going to the DISCON, then close and fasten the ground box lid.
- 12 Reconnect the negative terminal to the start battery and auxiliary batteries, if equipped.

1-8 How to Replace the Ground Box Control Overlay


- 1 Push in the red Emergency Stop button to the off position at both the ground and platform controls.
- 2 Disconnect the negative terminal from the start battery and auxiliary battery, if equipped.
- 3 Open the ground control box and remove the switch contacts from the function enable switch, key switch and the red emergency stop button. Do not disconnect the wires. Insert a small screwdriver into the loop at the base of the contacts and engage the release mechanism.

4 Unscrew the nut holding the buttons and key switch and remove the key switch and buttons.

Note the orientation of the key switch so it can be reassembled in the same position.

- 5 Disconnect the wire harness connected to the DISCON and cut the zip ties securing the harness to the ground box lid. Do not remove the wire harness from the ground box.
- 6 Remove the DISCON door (4) and disconnect the ribbon cables (3) from the Display Controller (DISCON) (2). Note the orientation of the cables for reassembling.

- 1 ground box lid
- 2 DISCON
- 3 ribbon cables
- 4 DISCON door
- 5 Torx head screws

- 7 Remove the ground box lid (1) from the ground box.
- 8 Remove the old overlay and clean the ground box lid surface from any dirt, oils or old adhesive residue. Clean the lid with 99% isopropyl alcohol. Allow the surface to completely dry.
- 9 Before placing the new overlay, make sure the temperature of the lid and overlay is between 80-100° F / 26-38° C. Application below 80° F / 26° C is not recommended.
- 10 Peel the adhesive protective film from the back of the overlay. Carefully align the overlay, making sure the LCD screen cutout, push buttons and key switch are centered. Apply the overlay to the ground box, applying pressure evenly to eliminate any air bubbles.

Note: Pay particular attention to the outside edges, the LCD cutout edges and the area around the ribbon cables, making sure there is complete contact between the overlay and the ground box.

Note: It is not recommended peeling and reapplying the overlay, so take time to align the overlay before making contact with the ground box.

- 11 Maintain the temperature of 80-100° F / 26-38° C for a minimum of 20 minutes to allow the adhesive to cure.
- 12 Install the provided ribbon cables, first to the overlay and then the DISCON. Be sure the connectors are applied evenly in the sockets and the tabs are fully locked.
- 13 Reinstall the DISCON door using the Torx head screws (5). Tighten, but do not overtighten.
- 14 Reinstall the ground box door to the ground box, using the fasteners removed in step 7. Tighten the fasteners securely.

- 15 Reinstall the E-Stop button, function enable button and key switch and the contact assemblies.
- 16 Reinstall the wire harness from the ground box to the DISCON. Secure the harness to the ground box lid using zip ties.
- 17 Close and fasten the ground box lid.
- 18 Reconnect the negative terminal to the start battery and auxiliary batteries, if equipped.

2-1 Platform Leveling Cylinder

The slave cylinder and the rotator pivot are the two primary supports for the platform. The slave cylinder keeps the platform level through the entire range of boom motion. It operates in a closed-circuit hydraulic loop with the master cylinder. The slave cylinder is equipped with counterbalance valves to prevent movement in the event of a hydraulic line failure.

How to Remove the Platform Leveling Cylinder

Note: Before cylinder removal is considered, bleed the slave cylinder to be sure there is no air in the closed loop.

Note: When removing a hose assembly or fitting, the O-ring (if equipped) on the fitting and/or hose end must be replaced. All connections must be torqued to specification during installation. Refer to Specifications, *Hydraulic Hose and Fitting Torque Specifications*.

- 1 Extend the primary boom until the slave cylinder barrel-end pivot pin is accessible.
- 2 Raise the jib boom slightly and place blocks under the platform for support.
- 3 Lower the jib boom until the platform is resting on the blocks just enough to support the platform.

Note: Do not rest the entire weight of the jib boom on the blocks.

- 4 Tag, disconnect and cap the hydraulic hoses from the slave cylinder. Plug the union hoses from the master cylinder together using a connector.
- **AWARNING** Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.
- 5 Remove the pin retaining fastener from the slave cylinder rod-end pivot pin. Do not remove the pin.
- 6 Remove the external snap rings from the slave cylinder barrel-end pivot pin. Do not remove the pin.
- 7 Place a block under the slave cylinder for support. Protect the cylinder rod from damage.
- 8 Use a soft metal drift to drive the rod-end pivot pin out.

AWARNING Crushing hazard. The platform could fall when the slave cylinder rod-end pivot pin is removed if not properly supported.

Component damage hazard. The slave cylinder rod may become damaged if it is allowed to fall if not properly supported by the lifting device.

- 9 Use a soft metal drift and drive the barrel-end pin out.
- 10 Carefully pull the cylinder out of the primary boom.

How to Bleed the Slave Cylinder

- 1 Simultaneously activate the primary boom up function and the platform level up function until the boom is fully raised.
- 2 Simultaneously activate the primary boom down function and the platform level down function until the boom is fully lowered.

2-2 Platform Rotator

The platform rotator is a hydraulically activated helical gear assembly used to rotate the platform 160 degrees.

How to Remove the Platform Rotator

NOTICE

Component damage hazard. Mark the platform mounting weldment and the rotator flange before removing the platform mounting weldment. The platform mounting weldment must be replaced in the exact same position on the rotator flange as it was before removal. If a new rotator is installed or the rotator is disassembled, proper alignment can be achieved by rotating the rotator all the way to the left and then installing the platform mounting weldment all the way in the left position.

Note: When removing a hose assembly or fitting, the O-ring (if equipped) on the fitting and/or hose end must be replaced. All connections must be torqued to specification during installation. Refer to Specifications, *Hydraulic Hose and Fitting Torque Specifications*.

1 Remove the platform and platform support.

Note: If the load sense components are disassembled and/or removed from the platform support, the platform load sense system will need to be calibrated. Refer to Repair Procedure, *Platform Load Sense System.*

- 2 Tag, disconnect and plug the hydraulic hoses from the platform rotator manifold. Cap the fittings on the rotator.
- 3 Tag, disconnect and plug the hydraulic hoses from the platform rotator manifold. Cap the fittings on the rotator.

AWARNING

Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.

S-65 XC:

- 4 Support the jib boom leveling arms and the platform mounting weldment with an appropriate lifting device. Do not apply any lifting pressure.
- 5 Remove the mounting bolts from the platform mounting weldment. Remove the center bolt and slide the platform mounting weldment off of the platform rotator.
- **AWARNING** Crushing hazard. The platform mounting weldment may become unbalanced and fall if it is not properly supported.
- 6 Support the platform rotator with an appropriate lifting device. Do not apply any lifting pressure.

S-60 XC:

- 7 Support the rod end of the platform leveling slave cylinder. Protect the cylinder rod from damage.
- 8 Remove the pivot pin retaining fasteners from both the slave cylinder rod-end pivot pin and the rotator pivot pin.
- 9 Use a soft metal drift to remove both pivot pins. Remove the platform rotator from the machine.
- **AWARNING** Crushing hazard. The platform rotator may become unbalanced and fall if not properly supported.

Note: When installing the platform rotator fasteners, torque the fasteners to specifications.

10 Lower the jib boom leveling arms.

AWARNING Crushing hazard. The platform rotator may become unbalanced and fall if not properly supported.

Note: When installing the platform rotator fasteners, torque the fasteners to specifications.

S-65 XC:

- 11 Remove the pin retaining fasteners from the jib boom and jib boom leveling arms to platform rotator pivot pins. Do not remove the pins.
- 12 Support the jib boom leveling arms.
- 13 Use a soft metal drift to drive both pins out, then remove the platform rotator from the machine.

ACAUTION

Bodily injury hazard. The jib boom leveling arms may fall if not properly supported.

14 Lower the jib boom leveling arms.

Crushing hazard. The platform rotator could fall when removed from the machine if not properly supported.

Note: When installing the platform rotator fasteners, torque the fasteners to specifications.

How to Bleed the Platform Rotator

Note: This procedure will require two people. Do not start the engine. Use auxiliary power for this procedure.

- 1 Move the function enable toggle switch to either side and activate the platform rotate toggle switch to the right then the left through two platform rotation cycles, then hold the switch to the right position until the platform is fully rotated to the right.
- 2 Place a suitable container underneath the platform rotator.
- 3 Open the top bleed screw on the rotator, but do not remove it.
- **AWARNING** Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.
- 4 Move the function enable toggle switch to either side and hold the platform rotate toggle switch to the left position until the platform is fully rotated to the left. Continue holding the toggle switch until air stops coming out of the bleed screw. Close the bleed screw.

Crushing hazard. Keep clear of the platform during rotation.

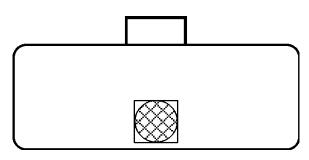
- 5 Open the bottom bleed screw on the rotator, but do not remove it.
- ▲ WARNING Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.
- 6 Move the function enable toggle switch to either side and hold the platform rotate toggle switch to the right position until the platform is fully rotated to the right. Continue holding the toggle switch until air stops coming out of the bleed screw. Close the bleed screw.

Crushing hazard. Keep clear of the platform during rotation.

- 7 Clean up any hydraulic oil that may have spilled.
- 8 Rotate the platform fully in both directions and inspect the bleed screws for leaks.

2-3 Platform Overload System

Proper calibration of the platform overload system is essential to safe machine operation. Continued use of an improperly calibrated platform overload system could result in the system failing to sense an overloaded platform.


How to Calibrate the Platform Overload System

Note: Perform this procedure with the machine on a firm, level surface.

Note: The turntable level sensor must be calibrated before performing this procedure.

- 1 Fully retract the boom. Level the platform.
- 2 Remove all material, tools and equipment from the platform. Remove the welder (if equipped).
- **A** DANGER
- Tip-over hazard. Failure to remove all factory and non-factory accessories could result in the machine tipping over, causing death or serious injury.
- 3 Enter Service Mode. Refer to Repair Procedure, *How to Enter the Service Mode*.
- 4 Press the settings button above the display and select the Calibrations menu.
- 5 Navigate to the Sensor calibration screen.
- 6 Navigate to the Load Sense calibration screen.
- 7 Select and start the calibration procedure.
- 8 Follow the on-screen instructions to set the zero load.
- 9 Continue with the on screen prompts to set the maximum load.

10 Place a 1,000 lb / 454 kg test weight on the platform floor using a suitable lifting device. Place the weight near the center entry point of the platform, as far away from the operator controls as possible.

- 11 Now continue to follow the prompts to accept the weight.
- 12 The calibration is now complete.
- 13 Exit the Service Mode

Confirm the setting:

- 14 Lift the test weight off the platform floor using a suitable lifting device.
- 15 Start the engine from the ground control.
- 16 Place a 1,000 lb / 454 kg test weight and an additional 50 lbs / 23 kg on the platform floor.
- Result: The alarm sounds. The platform overload indicator light flashes at the platform controls and *platform overload* is displayed on the LCD screen at the ground controls. The engine shuts down.

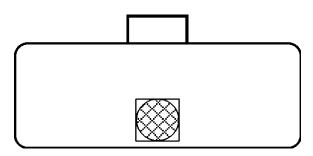
Note: There may be a 2 second delay before the overload indicator lights flash and the alarm sounds.

- 17 Test all machine functions from the ground controls.
- Result: Engine does not start or run. Limited APU functionality. Primary boom up and extend does not operate.
- Remove the weight from the platform.

How to Calibrate the Platform Overload System - HF Models

Note: Perform this procedure with the machine on a firm, level surface.

Note: The turntable level sensor must be calibrated before performing this procedure.


- 1 Fully retract the boom. Level the platform.
- 2 Remove all material, tools and equipment from the platform. Remove the welder (if equipped).

A DANGER

Tip-over hazard. Failure to remove all factory and non-factory accessories could result in the machine tipping over, causing death or serious injury.

- 3 Enter Service Mode. Refer to Repair Procedure, *How to Enter the Service Mode*.
- 4 Press the settings button above the display and select the Calibrations menu.
- 5 Navigate to the Sensor calibration screen.
- 6 Navigate to the Load Sense calibration screen.
- 7 Select and start the calibration procedure.
- 8 Follow the on-screen instructions to set the zero load.
- 9 Continue with the on screen prompts to set the maximum load.

10 Place a 600 lb / 272 kg test weight on the platform floor using a suitable lifting device. Place the weight near the center entry point of the platform, as far away from the operator controls as possible.

- 11 Now continue to follow the prompts to accept the weight.
- 12 The calibration is now complete.
- 13 Exit the Service Mode

Confirm the setting:

- 14 Lift the test weight off the platform floor using a suitable lifting device.
- 15 Start the engine from the ground control.
- 16 Place a 600 lb / 272 kg test weight and an additional 30 lbs / 14 kg on the platform floor.
- Result: The alarm sounds. The platform overload indicator light flashes at the platform controls and *platform overload* is displayed on the LCD screen at the ground controls. The engine shuts down.

Note: There may be a 2 second delay before the overload indicator lights flash and the alarm sounds.

- 17 Test all machine functions from the ground controls.
- Result: Engine does not start or run. Limited APU functionality. Primary boom up and extend does not operate.
- 18 Remove the weight from the platform.

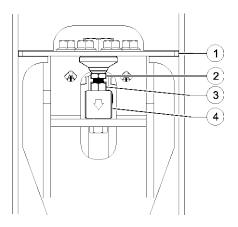
How to Perform a Zero Load Platform Calibration

Perform this procedure when the required weight for full load calibration is not available. This procedure will re-calibrate the zero load point without affecting a previous full load calibration. The platform load capacity will be reduced until a full load calibration has been performed. A full load calibration is required for rated load performance.

Note: Perform this procedure with the machine on a firm, level surface.

Note: The turntable level sensor must be calibrated before performing this procedure.

- 1 Fully retract the boom. Level the platform.
- 2 Remove all material, tools and equipment from the platform. Remove the welder, if equipped.

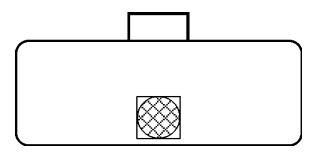

Tip-over hazard. Failure to remove all factory and non-factory accessories could result in the machine tipping over, causing death or serious injury.

- 3 Enter Service Mode. Refer to Repair Procedure, *How to Enter the Service Mode*.
- 4 Press the settings button above the display and navigate to the Sensor Calibrations menu.
- 5 Navigate to the Load Sense calibration screen.
- 6 Select and start the calibration procedure.
- 7 Follow the on-screen instructions to set the zero load.
- 8 Continue to follow the prompts to accept the weight.
- 9 The calibration is now complete.
- Exit the Service Mode

How to Replace the Load Cell Sensor

Note: The preload adjustment should only be performed after the load cell sensor has been replaced.

- 1 Remove all equipment or tools from the platform. Remove the welder if equipped.
- 2 At the platform, remove the plastic instruction holder from the document mount plate.
- 3 Tag and disconnect the load cell sensor harness.


- 1 flex plate
- 2 load cell sensor foot
- 3 jam nut
- 4 load cell sensor
- 4 Loosen the jam nut securing the load cell sensor foot and rotate the foot screw clockwise to remove the preload.
- 5 Remove the fasteners securing the load cell sensor and remove the sensor.

Install the new Load Cell Sensor

- 6 Screw the foot with jam nut into the top of the load cell sensor until the foot bolt extends out of the bottom of the sensor. The foot should not contact the flex plate when assembling onto the platform support.
- 7 Assemble the load cell and foot assembly to the platform and securely tighten the two mounting screws. Torque the bolts to 101 ft-lbs / 137 Nm.

Set the Load Cell Sensor Preload

- 8 Rotate the foot screw counter clockwise until the foot just contacts the flex plate (finger tight).
- 9 Using an open end wrench, continue to rotate the foot counter clockwise an additional 1/2 turn (180°). Then, while holding the foot bolt, securely tighten the jam nut. Torque the jam nut to 55 ft-lbs / 75 Nm.
- 10 Attach the load cell sensor harness.
- 11 Install the plastic instruction holder.
- 12 Place a 1,000 lb / 454 kg test weight on the platform floor using a suitable lifting device. Place the weight near the center entry point of the platform, farthest away from the operator controls as possible, as shown in Illustration 2

- 13 Lift the weight off the platform and place it back on in the same position two more times to settle the platform overload assembly.
- 14 Perform a full platform overload system calibration. Refer to Repair Procedure, *How to Calibrate the Platform Overload System*.

2-4 Platform

How to Remove the Platform

- 1 Remove the cable clamp from the top of the platform mounting weldment.
- 2 Remove the mounting fasteners from the power to platform outlet box bracket. Lay the outlet box and bracket assembly off to the side. Do not disconnect the wiring.
- 3 Remove the foot switch mounting fasteners.
- 4 Remove the cover plate from the bottom of the foot switch to access the foot switch wire terminals.
- 5 Tag and disconnect the foot switch wiring from the foot switch. Remove the cable from the back of the platform.

AWARNING Electrocution/burn hazard. Contact with electrically charged circuits could result in death or serious injury. Remove all rings, watches and other jewelry.

6 Remove the platform control box mounting fasteners. Lower the control box and set it aside.

Component damage hazard. Cables can be damaged if they are kinked or pinched.

Note: If your machine is equipped with an airline to platform option, the airline must be disconnected from the platform before removal.

- 7 Support and secure the platform to an appropriate lifting device.
- 8 Remove the platform mounting fasteners and remove the platform from the machine.

Crushing hazard. The platform could become unstable and fall when it is removed from the machine if not properly supported.

Jib Boom Components

3-1 Jib Boom

How to Remove the Jib Boom

Note: Perform this procedure with the boom in the stowed position.

Note: When removing a hose assembly or fitting, the O-ring (if equipped) on the fitting and/or hose end must be replaced. All connections must be torqued to specification during installation. Refer to Specifications, *Hydraulic Hose and Fitting Torque Specifications*.

- 1 Remove the platform and platform support.
- 2 Disconnect the electrical connector from the jib boom/platform rotate select valve manifold mounted to the platform support.
- 3 Tag, disconnect and plug all of the hydraulic hoses from the jib boom/platform rotate select valve manifold. Cap the fittings on the manifold.
- **AWARNING** Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.
- 4 Remove the platform rotator. Refer to Repair Procedure, *How to Remove the Platform rotator*.
- 5 Remove the pin retaining fastener from the jib boom lift cylinder rod-end pivot pin. Do not remove the pin.

- 6 Slide both of the jib boom leveling arms off of the jib boom cylinder rod-end pivot pin.
- 7 Remove the hose and cable cover from the side of the jib boom. Remove the hose and cable separators.
- 8 Attach a lifting strap from an overhead crane to the jib boom.
- 9 Support the barrel end of the jib boom lift cylinder with a suitable lifting device.
- 10 Tag, disconnect and plug the jib boom lift cylinder hydraulic hoses. Cap the fittings on the cylinder.
- **AWARNING** Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.
- 11 Remove the pin retaining fastener from the jib boom lift cylinder barrel-end pivot pin.
- 12 Use a soft metal drift to remove the pin and let the cylinder hang down.
- Crushing hazard. The jib boom could fall when the barrel-end pivot pin is removed if not properly supported by the overhead crane.
- 13 Remove the pin retaining fastener from the jib boom pivot pin. Use a soft metal drift to remove the pin, then remove the jib boom.
- **AWARNING** Crushing hazard. The jib boom may become unbalanced and fall when it is removed from the machine if it is not properly supported by the overhead crane.

Jib Boom Components

3-2 Jib Boom Lift Cylinder

How to Remove the Jib Boom Lift Cylinder

Note: Perform this procedure with the boom in the stowed position.

Note: When removing a hose assembly or fitting, the O-ring (if equipped) on the fitting and/or hose end must be replaced. All connections must be torqued to specification during installation. Refer to Specifications, *Hydraulic Hose and Fitting Torque Specifications*.

1 Raise the jib boom slightly and place blocks under the platform support. Lower the jib boom until the platform is resting on the blocks just enough to support the platform.

Note: Do not rest the entire weight of the boom on the blocks.

- 2 Tag, disconnect and plug the jib boom lift cylinder hydraulic hoses. Cap the fittings on the cylinder.
- **AWARNING** Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.
- 3 Remove the pin retaining fasteners from the jib boom lift cylinder rod-end pivot pin. Do not remove the pin.

- 4 Use a soft metal drift to tap the jib boom lift cylinder rod-end pivot pin out enough to lower one of the leveling arms to the ground. Tap the pin the other direction and lower the opposite leveling arm. Do not remove the pin.
- 5 Support the jib boom lift cylinder with a suitable lifting device.
- 6 Remove the pin retaining fastener from the jib boom lift cylinder barrel-end pivot pin. Use a soft metal drift to remove the barrel-end pin and let the cylinder hang down.
- **AWARNING** Crushing hazard. The jib boom may become unbalanced and fall when it is removed from the machine if it is not properly supported by the overhead crane.
- 7 Attach a lifting strap from an overhead crane to the lug on the rod end of the jib boom lift cylinder.
- 8 Use a soft metal drift to remove the jib boom lift cylinder rod-end pin. Remove the jib boom lift cylinder from the machine.
- **AWARNING** Crushing hazard. The jib boom lift cylinder may become unbalanced and fall when it is removed from the machine if it is not properly supported by the overhead crane.

4-1 Cable Track

The primary boom cable track guides the cables and hoses running up the boom. It can be repaired link by link without removing the cables and hoses that run through it. Removing the entire primary boom cable track is only necessary when performing major repairs that involve removing the primary boom.

How to Remove the Cable Track

Note: When removing a hose assembly or fitting, the O-ring (if equipped) on the fitting and/or hose end must be replaced. All connections must be torqued to specification during installation. Refer to Specifications, Hydraulic Hose and Fitting Torque Specifications.

1 Disconnect the wire connectors from the bottom of the platform control box.

Note: When installing the wire connectors to the bottom of the platform control box, match the color of the connectors to those on the control box to be sure they are installed in the correct location.

- 2 Disconnect the power to plat cable from the AC outlet box.
- 3 Remove the hose and cable clamps from the platform support.

- Tag, disconnect and plug the platform leveling 4 slave cylinder hydraulic hoses from the bulkhead fittings on the top of the primary boom. Cap the bulkhead fittings.
- AWARNING
- Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.
- 5 Tag, disconnect and plug ports V1 and V2 on the platform rotate/jib manifold. Cap the fittings.
- Bodily injury hazard. Spraying **A**WARNING hydraulic oil can penetrate and burn skin. Loosen hvdraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.
- Remove the hose and cable cover from the 6 side of the jib boom.
- 7 Remove the retaining fasteners securing the cable track to the upper tube.
- 8 Pull the cable track back from the upper tube.
- 9 Remove the hose and cable clamps from inside the cable track at both ends.
- 10 Pull the hoses and cables out of the upper tube.
- 11 Pull the hoses and cables out of the cable track.
- 12 Remove the retaining fasteners that attach the cable track to the lower tube.
- 13 Remove the cable track from the machine.

How to Repair the Cable Track

Component damage hazard. The boom cable track can be damaged if it is twisted.

Note: A cable track repair kit is available through the Genie Service Parts Department.

- 1 Visually inspect the cable track and determine which 4-link section needs to be replaced.
- 2 Carefully remove the snap rings and pins from each end of the damaged section of cable track.
- 3 Remove the retaining fasteners from the upper black rollers from the 4-link section of cable track to be replaced. Remove the rollers.
- 4 Lift up the hoses and cables and carefully remove the damaged 4-link section of cable track.

Component damage hazard. Hoses and cables can be damaged if they are kinked or pinched.

- 5 Remove the upper rollers from the replacement section of cable track.
- 6 Lift up the hoses and cables and carefully insert the new 4-link section of cable track.

Component damage hazard. Hoses and cables can be damaged if they are kinked or pinched.

- 7 Connect the ends of the replacement cable track section to the existing cable track using the pins and snap rings.
- 8 Install the rollers onto the new section of cable track.
- 9 Operate the boom extend/retract function through a full cycle to ensure smooth operation of the new section of cable track.

4-2 Primary Boom

How to Remove the Primary Boom

AWARNING Bodily injury hazard. This procedure requires specific repair skills, lifting equipment and a suitable workshop. Attempting this procedure without these skills and tools could result in death or serious injury and significant component damage. Dealer service is strongly recommended.

Note: When removing a hose assembly or fitting, the O-ring (if equipped) on the fitting and/or hose end must be replaced. All connections must be torqued to specification during installation. Refer to Specifications, *Hydraulic Hose and Fitting Torque Specifications*.

- 1 Remove the jib boom, if equipped. Refer to Repair Procedure, *How to Remove the Jib Boom*.
- 2 Remove the cable track. Refer to Repair Procedure, *How to Remove the Cable Track*.
- 3 Raise the primary boom to the horizontal position.
- 4 Attach lifting straps from a 5 ton / 5000 kg overhead crane to the center point of the boom. Support the boom. Do not apply lifting pressure.
- 5 Remove the turntable end cover.

6 Remove the retaining fasteners from the master cylinder rod-end pivot pin. Use a soft metal drift to remove the pin. Lower the master cylinder against the primary lift cylinder.

Component damage hazard. When lowering the master cylinder down, be sure not to damage the master cylinder hoses or fittings.

- 7 Remove the fasteners from the limit switch mounted to the turntable riser at the pivot end of the boom. Do not disconnect the wiring.
- 8 Tag, disconnect and plug the primary boom extension cylinder hydraulic hoses. Cap the fittings on the cylinder.
- **AWARNING** Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.
- 9 Using an overhead supporting device, attach a strap to the rod-end of the primary boom lift cylinder.
- 10 Remove the retaining fasteners from the primary boom lift cylinder rod-end pivot pin. Use a soft metal drift to remove the pin.

AWARNING Crushing hazard. The boom lift cylinder and primary boom will fall if not properly supported.

- 11 Place a support block across the turntable and lower the lift cylinder on it.
- 12 Remove the retaining fasteners from the primary boom pivot pin.

- 13 Remove the primary boom pivot pin with a soft metal drift, then carefully remove the primary boom from the machine and place it on a structure capable of supporting it.
- **A**WARNING

Crushing hazard. The primary boom could become unbalanced and fall when removed from the machine if not properly attached to the overhead crane.

How to Disassemble the Primary Boom

Complete disassembly of the boom is only necessary if the outer or inner boom tube must be replaced. The extension cylinder can be removed without completely disassembling the boom. Refer to Repair Procedure, *How to Remove the Primary Boom Extension Cylinder*.

- 1 Remove the primary boom. Refer to Repair Procedure, *How to Remove the Primary Boom*.
- 2 Place blocks under the extension cylinder for support.
- 3 Remove the external snap rings from the extension cylinder barrel-end pivot pin at the pivot end of the primary end of the primary boom tube. Use a soft metal drift to remove the pin.
- 4 Remove and label the wear pads from the top side of the primary boom tube at the platform end of the boom.

Note: Pay careful attention to the location and amount of shims used with each wear pad.

- 5 Attach a lifting strap from an overhead crane to the secondary boom tube at the platform end of the boom for support.
- 6 Support and slide the secondary boom tube out of the primary boom tube. Place the secondary boom tube on blocks for support.
- **AWARNING** Crushing hazard. The secondary boom tube may become unbalanced and fall when removed if it is not properly supported when it is removed from the machine.

Note: During removal, the overhead crane strap will need to be carefully adjusted for proper balancing.

- 7 Remove and label the wear pads from the top side of the secondary boom tube at the platform end of the boom.
- 8 Remove the trunnion pin retaining fasteners at the base end of the secondary boom tube. Use a slide hammer to remove the trunnion pins.
- 9 Carefully rotate the base end of the extension cylinder until the pin mounting bore is in a vertical position.
- 10 Remove the external snap rings from the extension cylinder rod-end pivot pin at the platform end of the secondary boom tube. Use a soft metal drift to remove the pin.
- 11 Support and slide the extension cylinder out of the base end of the secondary boom tube. Place the extension cylinder on blocks for support.
- **AWARNING** Crushing hazard. The extension cylinder could become unbalanced and fall when removed from primary boom extension tube if not properly supported.

Note: During removal, the overhead crane strap will need to be carefully adjusted for proper balancing.

12 Remove and label the wear pads from each extension cylinder.

Note: Pay careful attention to the location of each wear pad.

4-3 Primary Boom Lift Cylinder

The primary boom lift cylinder raises and lowers the primary boom. The primary boom lift cylinder is equipped with a counterbalance valve to prevent movement in the event of a hydraulic line failure.

How to Remove the Primary Boom Lift Cylinder

AWARNING Bodily injury hazard. This

procedure requires specific repair skills, lifting equipment and a suitable workshop. Attempting this procedure without these skills and tools could result in death or serious injury and significant component damage. Dealer service is strongly recommended.

- 1 Raise the primary boom to a horizontal position.
- 2 Place support blocks across the turntable under the boom lift cylinder
- 3 Attach a 5 ton / 5000 kg overhead crane to the primary boom for support.
- 4 Raise the primary boom with the overhead crane slightly to take the pressure off the primary boom lift cylinder pivot pins.
- 5 Support the rod end and the barrel end of the primary boom lift cylinder with a second overhead crane or similar lifting device.

- 6 Tag, disconnect and plug the primary boom lift cylinder hydraulic hoses. Cap the fittings on the cylinder.
- **AWARNING** Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.
- 7 Remove the retaining fasteners from the primary boom lift cylinder rod-end pivot pin. Use a soft metal drift to remove the pin. Lower the lift cylinder onto the blocks. Protect the cylinder rod from damage.
- ▲ WARNING Crushing hazard. The primary boom will fall if not properly supported when the primary boom rod-end pivot pin is removed.
- 8 Remove the four mounting fasteners from the lift cylinder barrel-end pivot pin mounting plate.
- A WARNING Crubo bou unl pro

Crushing hazard. The primary boom lift cylinder could become unbalanced and fall if not properly supported by the lifting device.

9 With the lift cylinder being supported by the overhead crane, carefully pull the lift cylinder toward the platform to remove it from the machine.

Crushing hazard. The lift cylinder could become unbalanced and fall if not properly supported and secured to the lifting device.

4-4 Primary Boom Extension Cylinder

The primary boom extension cylinder extends and retracts the primary boom extension tube. The primary boom extension cylinder is equipped with counterbalance valves to prevent movement in the event of a hydraulic line failure.

How to Remove the Primary Boom Extension Cylinder

AWARNING Bodily injury hazard. This

procedure requires specific repair skills, lifting equipment and a suitable workshop. Attempting this procedure without these skills and tools could result in death or serious injury and significant component damage. Dealer service is strongly recommended.

Note: When removing a hose assembly or fitting, the O-ring (if equipped) on the fitting and/or hose end must be replaced. All connections must be torqued to specification during installation. Refer to Specifications, *Hydraulic Hose and Fitting Torque Specifications*.

- 1 Extend the boom until the extension cylinder rod-end pivot pins are accessible in the extension tube.
- 2 Remove the master cylinder. See the repair procedure, *How to Remove the Master Cylinder*.
- 3 Raise the primary boom to a horizontal position.
- 4 At the pivot end of the boom, remove the cover from the end of the #1 boom tube.
- 5 At the pivot end of the boom, remove the retaining fasteners and blocks securing the extend cylinder to the #2 boom tube through the access holes in the #1 boom tube.

- 6 Tag, disconnect and plug the primary boom extension cylinder hydraulic hoses. Cap the fittings on the cylinder.
- **AWARNING** Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.
- 7 At the platform end of the boom, remove the external snap rings from the extension cylinder rod-end pivot pin. Use a soft metal drift to remove the pin.
- 8 At the pivot end of the boom, remove the retaining fasteners and blocks securing the extend cylinder to the #1 boom tube'
- 9 Support and slide the extension cylinder out of the primary boom.

AWARNING

Crushing hazard. The extension cylinder could fall when removed from the extension boom if not properly supported.

Component damage hazard. Be careful not to damage the counterbalance valves on the primary boom extension cylinder when removing the cylinder from the primary boom.

Component damage hazard. Hoses and cables can be damaged if the primary boom extension cylinder is dragged across them.

Note: Note the length of the cylinder after removal. The cylinder must be at the same length for installation.

4-5 Platform Leveling Master Cylinder

The master cylinder acts as a pump for the slave cylinder. It's part of the closed circuit hydraulic loop that keeps the platform level through the entire range of boom motion. The master cylinder is located at the base of the primary boom.

How to Remove the Platform Leveling Master Cylinder

Note: When removing a hose assembly or fitting, the O-ring (if equipped) on the fitting and/or hose end must be replaced. All connections must be torqued to specification during installation. Refer to Specifications, *Hydraulic Hose and Fitting Torque Specifications*.

- 1 Raise the secondary boom until both the rod-end and barrel-end pivot pins on the master cylinder are accessible.
- 2 Use an overhead supporting device to support the platform. Do not apply lifting pressure.
- 3 Tag, disconnect and plug the master cylinder hydraulic hoses. Cap the fittings on the cylinder.

AWARNING

Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.

4 Attach overhead crane or similar lifting device to the master cylinder.

- 5 Remove the retaining fasteners from the master cylinder barrel-end pivot pin.
- 6 Use a soft metal drift to remove the pin.
- 7 Remove the retaining fastener from the rod-end pivot pin.
- 8 Use a soft metal drift to remove the pin.
- 9 Remove the master cylinder from the machine.

Crushing hazard. The master cylinder could become unbalanced and fall if not properly attached to the overhead crane.

4-6 Primary Boom Angle Sensor

The primary boom angle sensor is used to limit the angle of the primary boom relative to the angle of the turntable and gravity.

How to Calibrate the Primary Boom Angle Sensor

Note: Perform this procedure with the machine on a firm, level surface with the boom in the stowed position.

Note: The turntable level sensor and platform load sensor must be calibrated prior to calibrating the primary boom angle sensor.

Note: This procedure will establish the cross-check angle with the boom limit switch LST3S. If LST3S does not switch its state properly during the calibration, the calibration will be invalidated.

- 1 Fully retract and lower the boom. Ensure the boom is in contact with the boom rest pad.
- 2 Enter Service Mode. Refer to Repair Procedure, *How to Enter the Service Mode*.
- 3 Press the settings button above the display and navigate to the Sensor Calibrations menu.
- 4 Navigate to the Boom Angle Sensor calibration screen.
- 5 Select and start the calibration procedure.
- 6 Start the engine.
- 7 When the display prompts the operator to lower the boom, press and hold the function enable button and the boom down buttons until the display indicates that the lower calibration point has been obtained. This may require holding the buttons for several seconds after the boom has touched the rest pad.

- 8 Press **OK** on the display to continue with the procedure to capture the maximum angle point.
- 9 Operate the boom up function until the boom reaches its maximum angle. Continue holding the function enable and boom up buttons for several seconds until the display indicates that the upper calibration point has been obtained. This may require holding the buttons for several seconds after the boom reaches its maximum angle.
- 10 Follow the on-screen prompts to lower the boom until the display indicates the calibration is complete. If this step isn't done, the boom will be in the safety envelope when the calibration procedure ends
- 11 The calibration is now complete.
- 12 Exit the Service Mode.

4-7 Boom Length Sensor

How to Calibrate the Primary Boom Length Sensor

Note: The turntable level sensor and platform load sensor must be calibrated prior to calibrating the primary boom angle sensor.

Note: The turntable level sensor, platform load sensor and primary boom angle sensor must be calibrated before calibrating the boom length sensor.

Note: This procedure will establish the cross-check angle with the boom limit switch LSB1RS. If LSB1RS does not switch its state properly during calibration, the calibration will be invalidated.

- 1 Fully retract the boom. Ensure the boom angle is above 65°.
- 2 Enter Service Mode. See Repair Procedure, How to Enter Service Mode.
- 3 Press the settings button above the display and navigate to Sensor Calibrations.
- 4 Navigate to the Boom Length Sensor calibration screen.
- 5 Select and start the calibration procedure.
- 6 Start the engine.
- 7 When the display prompts the operator to retract the boom, press and hold the function enable and boom retract buttons until the display indicates the retracted calibration point has been obtained. This may require holding the buttons for several seconds after the boom has fully retracted.

- 8 Press the **OK** button to continue to capture the maximum extension point.
- 9 Press the function enable and boom extend buttons until the boom reaches its maximum extension. Continue holding the buttons for several seconds after the boom reaches its maximum extension until the display indicates the calibration point has been captured.
- 10 The calibration is complete.
- 11 Exit the Service Mode.

5-1 RPM Adjustment -Deutz Models

Refer to Maintenance Procedure in the appropriate Service or Maintenance Manual for your machine, *Check and Adjust the Engine RPM*.

5-2 RPM Adjustment -Perkins Models

Refer to Maintenance Procedure in the appropriate Service or Maintenance Manual for your machine, *Check and Adjust the Engine RPM*.

5-3 Flex Plate

The flex plate acts as a coupler between the engine and the pump. It is bolted to the engine flywheel and has a splined center to drive the pump.

How to Remove the Flex Plate

Deutz models:

- 1 Remove the tailpipe bracket mounting fasteners from the engine bell housing.
- 2 Support the drive pump assembly with an appropriate lifting device.
- 3 Remove all of the engine bell housing fasteners.
- 4 Carefully pull the pump and bell housing assembly away from the engine and secure it from moving.

Component damage hazard. Hoses can be damaged if they are kinked or pinched.

5 Remove the flex plate mounting fasteners. Remove the flex plate from the flywheel.

Ford models:

- 1 Disconnect the electrical connectors from both oxygen sensors at the tailpipe and exhaust manifold. Do not remove the oxygen sensors.
- 2 Remove the exhaust pipe fasteners at the muffler.
- 3 Support the muffler and bracket assembly with a suitable lifting device.
- 4 Remove the muffler bracket mounting fasteners from the bell housing. Carefully remove the muffler and bracket assembly from the engine.

- 5 Support the engine with an overhead crane or other suitable lifting device. Do not lift it.
- 6 Remove the engine mounting plate to bell housing fasteners.
- 7 Raise the engine slightly using the overhead crane and place a block of wood under the oil pan for support.
- 8 Support the drive pump assembly with an overhead crane or other suitable lifting device.
 Do not apply any lifting pressure.
- 9 Remove all of the engine bell housing retaining fasteners.
- 10 Carefully pull the pump and bell housing assembly away from the engine and secure it from moving.

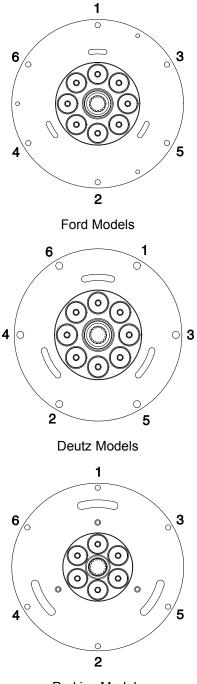
Perkins models:

- 1 Remove the fuel filter/water separator mounting fasteners.
- 2 Remove the fuel filter/water separator and lay it to the side. Do not disconnect the hoses.
- 3 Support the drive pump assembly with an appropriate lifting device.
- 4 Remove all of the engine bell housing fasteners.
- 5 Carefully pull the pump and bell housing assembly away from the engine and secure it from moving.

Component damage hazard. Hoses can be damaged if they are kinked or pinched.

- 6 Remove the flex plate mounting fasteners.
- 7 Remove the flex plate from the flywheel.

How to Install the Flex Plate


- 1 Install the flex plate onto the engine flywheel with the rubber vibration isolators towards the pump.
- 2 Apply Loctite[®] removable thread sealant to the flex plate fasteners and loosely install the fasteners.
- 3 **Deutz models:** Torque the flex plate mounting bolts in sequence to 28 ft-lbs / 38 Nm. Then torque the flex plate mounting bolts in sequence to 40 ft-lbs / 54 Nm.

Ford and Perkins models: Torque the flex plate mounting bolts in sequence to 14 ft-lbs / 19 Nm. Then torque the flex plate mounting bolts in sequence to 20 ft-lbs / 27 Nm.

4 Apply a high viscosity coupling grease (Genie part number 128025) to the splines of the pump shaft and flex plate.

Grease Specification

Shell Alvania® Grease CG, NLGI 0/1 or equivalent.

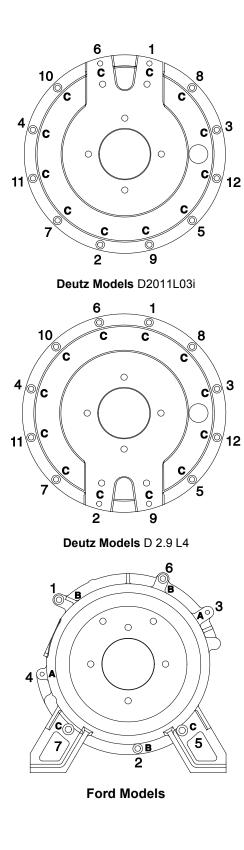
Perkins Models

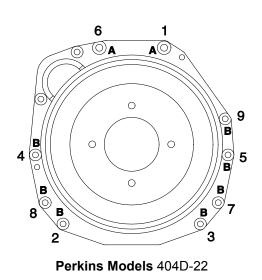
How to Install the Pump and Bell Housing Assembly

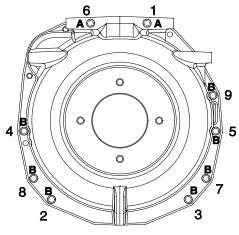
1 Install the pump and bell housing assembly.

Deutz models: Torque the bell housing mounting bolts labeled "C" in sequence to 28 ft-lbs / 38 Nm. Then torque the bell housing mounting bolts labeled "C" in sequence to 40 ft-lbs / 54 Nm.

Ford models: Torque the bell housing mounting bolts labeled "A" and "B" in sequence to 28 ft-lbs / 38 Nm and the mounting bolts labeled "C" to 49 ft-lbs / 66 Nm. Then torque the bell housing mounting bolts labeled "A" and "B" in sequence to 40 ft-lbs / 54 Nm and the mounting bolts labeled "C" to 70 ft-lbs / 95 Nm.


Perkins models: Torque the bell housing mounting bolts labeled "B" in sequence to 28 ft-lbs / 38 Nm and the mounting bolts labeled "A" to 49 ft-lbs / 66 Nm. Then torque the bell housing mounting bolts labeled "B" in sequence to 40 ft-lbs / 54 Nm and the mounting bolts labeled "A" to 70 ft-lbs / 95 Nm.


NOTICE


Component damage hazard. When installing the pump, do not force the pump coupler into the flexplate or damage to the pump shaft seal may occur.

NOTICE

Component damage hazard. Do not force the drive pump during installation or the flex plate teeth may become damaged.

Perkins Models 404F-22

5-4 Engine Fault Codes -Ford MSG-425 Models

How to Retrieve Engine Fault Codes

The ECM constantly monitors the engine by the use of sensors on the engine. The ECM also uses signals from the sensors to initiate sequential fuel injection and make constant and instantaneous changes to ignition timing, fuel delivery and throttle position to maintain the engine's running condition at its highest efficiency while at the same time keeping exhaust emissions to a minimum. When a sensor fails or returns signals that are outside of set parameters, the ECM will store a fault code in memory that relates to the appropriate sensor and will turn on the Check Engine Light.

Refer to Fault Code Section, *How to Retrieve Ford Engine Fault Codes*. Use the Fault Code Chart to aid in identifying the fault.

5-5 Engine Fault Codes -Deutz D 2.9 L4 and Perkins 404F-22 Models

How to Retrieve Engine Fault Codes

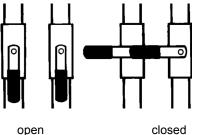
The ECM constantly monitors the engine by the use of sensors on the engine. The ECM also uses signals from the sensors to initiate sequential fuel injection and make constant and instantaneous changes to ignition timing, fuel delivery and throttle position to maintain the engine's running condition at its highest efficiency while at the same time keeping exhaust emissions to a minimum. When a sensor fails or returns signals that are outside of set parameters, the ECM will store a fault code in memory that relates to the appropriate sensor. One or more fault LED's will illuminate on the display located at the ground control box. The active fault code will also be displayed on the LCD screen.

If a fault occurs that does not result in an engine shutdown, the engine rpm will go into limp home mode resulting in the loss of high rpm.

Refer to Fault Code Section, *How to Retrieve Active Engine Fault Codes* for your specific engine model. Use the Fault Code Chart to aid in identifying the fault.

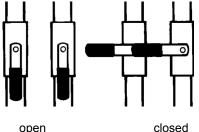
Hydraulic Pump

6-1 **Function Pump**


How to Remove the Function Pump

Note: When removing a hose assembly or fitting, the O-ring (if equipped) on the fitting and/or hose end must be replaced. All connections must be torqued to specification during installation. Refer to Specifications, Hydraulic Hose and Fitting Torque Specifications.

Locate the two hydraulic tank valves at the 1 hydraulic tank. Close the valves.


Component damage hazard. The engine must not be started with the hydraulic tank shut-off valves in the closed position or component damage will occur. If the tank valves are closed, remove the key from the key switch and tag the machine to inform personnel of the condition.

- 2 Tag, disconnect and plug the function pump hydraulic hoses. Cap the fittings on the pump.
- Bodily injury hazard. Spraying **A**WARNING hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.
- Support the pump with a suitable lifting device. 3
- 4 Remove the pump mounting bolts. Carefully remove the pump.

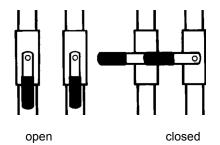
Component damage hazard. Be sure to open the two hydraulic tank valves and prime the pump after installing the pump.

Hydraulic Pump

6-2 Drive Pump

The drive pump is a bi-directional variable displacement piston pump. The pump output is controlled by the electro-proportional controller, located on the pump. The only adjustment that can be made to the pump is the neutral or null adjustment. Any internal service to the pump should only be performed at an authorized Eaton Hydraulics center. Call Genie Product Support to locate your local authorized service center.

How to Remove the Drive Pump


Component damage hazard. The work area and surfaces where this procedure will be performed must be clean and free of debris that could get into the hydraulic system and cause severe component damage. Dealer service is recommended.

Note: When removing a hose assembly or fitting, the O-ring (if equipped) on the fitting and/or hose end must be replaced. All connections must be torqued to specification during installation. Refer to Specifications, *Hydraulic Hose and Fitting Torque Specifications.*

1 Disconnect the electrical connectors at the electrical proportional controller located on the drive pump. 2 Locate the two hydraulic tank valves at the hydraulic tank. Close the valves.

Component damage hazard. The engine must not be started with the hydraulic tank shut-off valves in the closed position or component damage will occur. If the tank valves are closed, remove the key from the key switch and tag the machine to inform personnel of the condition.

- 3 Tag and disconnect and plug the hydraulic hoses from the drive and function pumps. Cap the fittings on the pumps.

G Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.

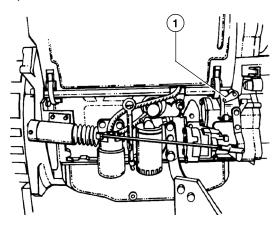
4 Support the pump with a lifting device and remove the pump mounting fasteners.

Hydraulic Pump

- 5 Carefully pull the drive pump out until the pump coupler separates from the flex plate.
- 6 Remove the drive pump from the machine.

Component damage hazard. The pump(s) may become unbalanced and fall if not properly supported.

Component damage hazard. When installing the pump, do not force the pump coupler into the flexplate or damage to the pump shaft seal may occur.


Component damage hazard. Be sure to open the two hydraulic tank valves and prime the pump after installing the pump.

How to Prime the Drive Pump

- 1 Connect a 0 to 600 psi / 0 to 41 bar pressure gauge to the test port on the drive pump.
- 2 **Ford models:** Close the valve on the LPG tank then disconnect the hose from the tank. Then move the fuel select switch to the LPG position.

Perkins 404D-22 models: Disconnect the engine wiring harness from the fuel solenoid at the injector pump.

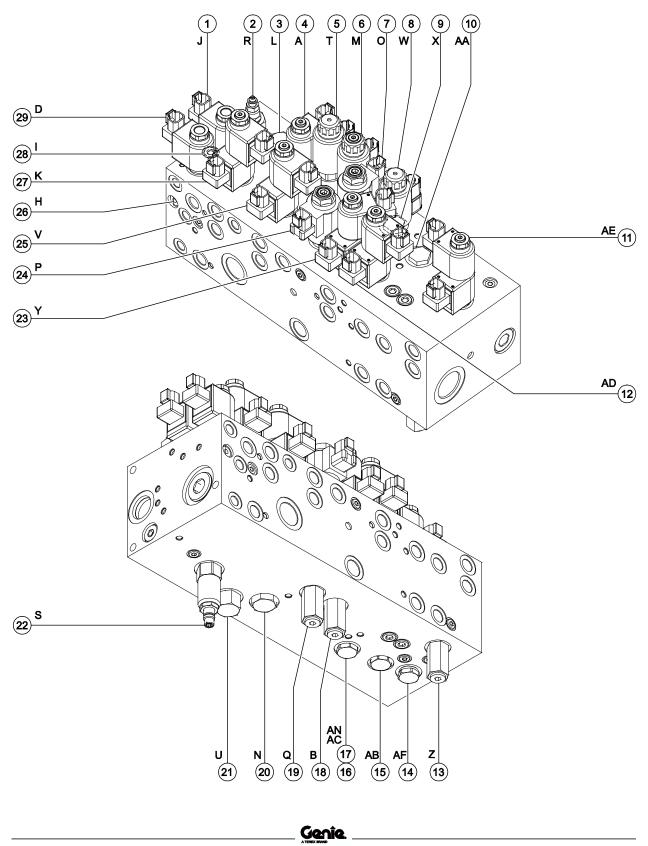
Deutz D2011 L03i models: Hold the manual fuel shutoff valve clockwise to the closed position.

1 manual fuel shutoff valve

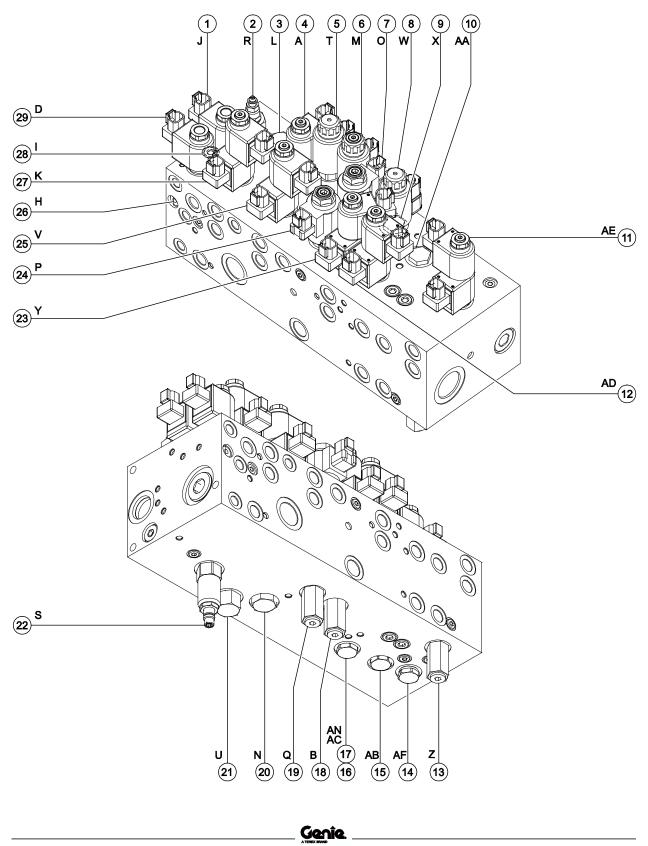
- Have another person crank the engine with the starter motor for 15 seconds, wait 15 seconds, then crank the engine an additional 15 seconds or until the pressure reaches 310 psi / 21 bar.
- 4 **Ford models:** Connect the LPG hose to the LPG tank and open the valve on the tank.

Perkins 404D-22 models: Connect the engine wiring harness to the fuel solenoid.

Deutz D2011 L03i models: Release the manual fuel shutoff valve.


5 Start the engine from the ground controls and check for hydraulic leaks.

Manifolds


7-1 Function Manifold Components

The function manifold is located underneath the ground controls side turntable cover.

Index No.	^C Description	Schematic Item	Function	Torque
1	Solenoid Valve, 2 position 3 way	J	Release brake when on	26-30 ft-lbs / 35-40 Nm
2	Pressure reducing valve	R	Oscillate circuit pressure control	33-37 ft-lbs / 45-50 Nm
3	Flow control valve	L	Steer actuator fixed speed control	30-35 ft-lbs / 41-47 Nm
4	Solenoid valve, 2 position 2 way	A	Enable full pressure to functions when on	26-30 ft-lbs / 35-40 Nm
5	Proportional solenoid valve	Т	Turntable rotate variable speed control	20-25 ft-lbs / 27-34 Nm
6	Flow control valve	М	Boom extension variable speed control	30-35 ft-lbs / 41-47 Nm
7	Solenoid Valve, NO, poppet	0	Boom retract selector	33-37 ft-lbs / 45-50 Nm
8	Proportional solenoid valve	W	Boom variable speed control	20-25 ft-lbs / 27-34 Nm
9	Pressure compensator valve	Х	Compensate for pressure variation	30-35 ft-lbs / 41-47 Nm
10	Check valve, 65 psi / 4.5 bar	AA	Isolate Platform level circuit	20-25 ft-lbs / 27-34 Nm
11	Proportional solenoid valve, 3 position 4 way	AE	Select flow direction and speed for jib and rotate	26-30 ft-lbs / 35-40 Nm
12	Proportional solenoid valve, 3 position 4 way	AD	Select flow direction and speed for level adjust	26-30 ft-lbs / 35-40 Nm
13	Relief valve, 3500 psi / 241 bar	Z	limit pressure in Platform level circuit	20-25 ft-lbs / 27-34 Nm
14	Check valve, 30 psi / 2 bar	AF	Prevent jib select tank line from evacuating	20-25 ft-lbs / 27-34 Nm
15	Shuttle valve	AB	Select highest pressure in Platform level circuit	20-25 ft-lbs / 27-34 Nm
16	Check valve. 65 psi / 4.5 bar	AC	Isolate Platform level circuit	20-25 ft-lbs / 27-34 Nm
17	Piston	AN	Pilot open check valve for level adjust	
18	Relief valve, 3200 psi / 221 bar	В	Limit auxiliary pump pressure	20-25 ft-lbs / 27-34 Nm

Index No.	Description	Schematic Item	Function	Torque
19	Relief valve 1950 psi / 134 bar	Q	Limit boom extend pressure	20-25 ft-lbs / 27-34 Nm
20	Flow control valve	Ν	Compensate for pressure variation	33-37 ft-lbs / 45-50 Nm
21	Differential sensing valve	U	Compensate for pressure variation	30-35 ft-lbs / 41-47 Nm
22	Sequence valve	S	Redundant pressure limit for oscillate circuit	50-55 ft-lbs / 68-75 Nm
23	Solenoid Valve. spool type	Y	Primary boom up/down selector	26-30 ft-lbs / 35-40 Nm
24	Solenoid Valve. NO, poppet	Р	Boom extend selector	33-37 ft-lbs / 45-50 Nm
25	Solenoid Valve, spool type	V	Turntable rotate left/right selector	26-30 ft-lbs / 35-40 Nm
26	Check valve	Н	Back flow preventer	8-10 ft-lbs / 10-15 Nm
27	Solenoid Valve, spool type	К	Steer left/right selector	26-30 ft-lbs / 35-40 Nm
28	Orifice Plug, 0.6mm	I	Brake set delay	5-7 ft-lbs / 7-9.5 Nm
29	Solenoid Valve, 2 position 3 way	D	Motor displacement control	26-30 ft-lbs / 35-40 Nm

7-2 Valve Adjustments -Function Manifold

How to Adjust the System Relief Valve

Note: Perform this procedure with the machine in the stowed position.

Note: Refer to Function Manifold Component list to locate the system relief valve.

- 1 Connect a 0 to 5000 psi / 0 to 350 bar pressure gauge to the test port on the function manifold.
- 2 Start the engine from the ground controls.
- 3 Press and hold the function enable button. Activate and hold the primary boom retract switch with the boom fully retracted.
- 4 Observe the pressure reading on the pressure gauge. Refer to Specifications, *Hydraulic Component Specifications*.
- 5 Turn the engine off. Use a wrench to hold the relief valve and remove the cap.
- 6 Adjust the internal hex socket. Turn it clockwise to increase the pressure or counterclockwise to decrease the pressure. Install the relief valve cap.

AWARNING Tip-over hazard. Do not adjust the relief valve higher than specified.

- 7 Repeat this procedure beginning with step 2 to confirm the relief valve pressure.
- 8 Remove the pressure gauge.

How to Adjust the Boom Down Relief Valve

Note: Perform this procedure with the machine in the stowed position.

Note: Refer to the Function Manifold Component list to locate the Boom Down relief valve.

- 1 Connect a 0 to 5000 psi / 0 to 350 bar pressure gauge to the LS test port of the function manifold.
- 2 Start the engine from the ground controls.
- 3 Press and hold the function enable button. Activate and hold the primary boom down switch with the boom in a fully stowed position.
- 4 Observe the pressure reading on the pressure gauge. Refer to Specifications, *Hydraulic Component Specifications*.
- 5 Turn the engine off. Use a wrench to hold the relief valve and remove the cap. Refer to Repair Procedures, *Function Manifold Components,* item BD.
- 6 Adjust the internal hex socket. Turn it clockwise to increase the pressure or counterclockwise to decrease the pressure. Install the relief valve cap.
- **AWARNING** Tip-over hazard. Do not adjust the relief valve higher than specified.

Repeat this procedure beginning with step 2 to confirm the relief valve pressure.

7 Remove the pressure gauge.

How to Adjust the Boom Extend Relief Valve

Note: Perform this procedure with the machine in the stowed position.

Note: Refer to the Function Manifold Component list to locate the Boom Extend Relief valve.

- 1 Connect a 0 to 5000 psi / 0 to 350 bar pressure gauge to the ptest port on the function manifold.
- 2 Start the engine from the ground controls.
- 3 Press and hold the function enable button. Activate and hold the primary boom extend switch with the boom fully extended.
- 4 Observe the pressure reading on the pressure gauge. Refer to Specifications, *Hydraulic Component Specifications*.
- 5 Turn the engine off. Use a wrench to hold the relief valve and remove the cap. Refer to Repair Procedures, *Function Manifold Components,* item BG.
- 6 Adjust the internal hex socket. Turn it clockwise to increase the pressure or counterclockwise to decrease the pressure. Install the relief valve cap.

AWARNING Tip-over hazard. Do not adjust the relief valve higher than specified.

- 7 Repeat this procedure beginning with step 2 to confirm the relief valve pressure.
- 8 Remove the pressure gauge.

7-3 Jib Boom / Platform Rotate and Generator Manifold Components

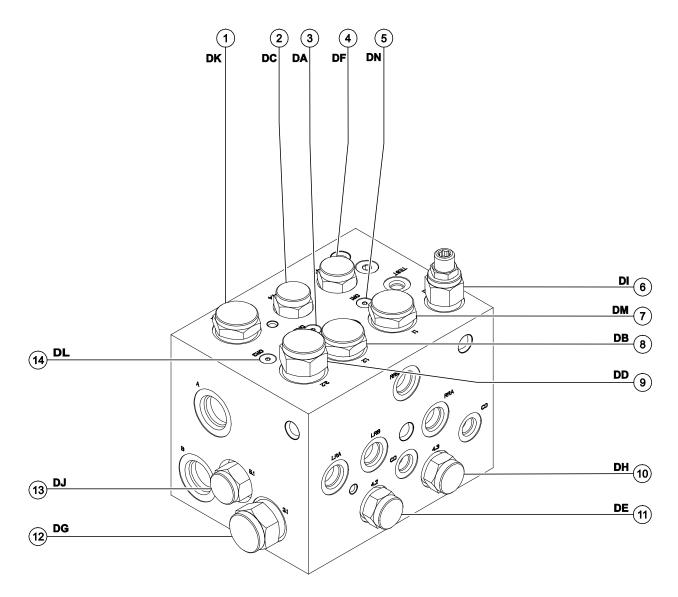
The jib boom / platform rotate manifold is mounted to the platform support.

Index No.	^C Description	Schematic Item	Function	Torque
1	Solenoid Valve, 2 position 3 way	FC	Platform rotate/jib boom select	18-20 ft-lbs / 25-27 Nm
2	Counterbalance valve	FA	Platform rotate right	30-35 ft-lbs / 41-47 Nm
3	Counterbalance valve	FB	Platform rotate left	30-35 ft-lbs / 41-47 Nm
3 <u>-</u>	- <u>B</u>			FC 1
	0			

Genîe.

Platform Rotate Manifold

Jib Select Manifold


2 FA

7-4 Traction Manifold Components, 4WD

The traction manifold is mounted inside the drive chassis at the non-steer end of the machine.

Index No.	Description	Schematie Item	^C Function	Torque
1	Flow divider/combiner valve	DK	Divides flow between diagonal pairs of motors: LF+RR=50%, LR+RF=50%	80-90 ft-lbs / 108-122 Nm
2	Check valve, 5 psi / 0.34 bar	DC	Prevents cavitation in LF motor	35-40 ft-lbs / 14-16 Nm
3	Orifice, 0.040 inch / 1 mm	DA	Prevents scrub at high steer angles by allowing some bypass flow around the left flow divider	
4	Check valve, 5 psi / 0.34 bar	DF	Prevents cavitation in RF motor	35-40 ft-lbs / 14-16 Nm
5	Orifice, 0.040 inch / 1 mm	DN	Prevents scrub at high steer angles by allowing some bypass flow around the left flow divider	
6	Relief valve, 280 psi / 19.3 bar	DI	Hot oil shuttle relief	35-40 ft-lbs / 14-16 Nm
7	Flow divider/combiner valve, 24 gpm / 91 lpm	DM	Combines return flow from RF and RR motors	80-90 ft-lbs / 108-122 Nm
8	Flow divider/combiner valve, 24 gpm / 91 lpm	DB	Combines return flow from LF and LR motors	80-90 ft-lbs / 108-122 Nm
9	Check valve	DD	Prevents cavitation in LF and RR motors	60-70 ft-lbs / 81-95 Nm
10	Check valve, 5 psi / 0.34 bar	DH	Prevents cavitation in RR motor	35-40 ft-lbs / 14-16 Nm
11	Check valve, 5 psi / 0.34 bar	DE	Prevents cavitation in LR motor	35-40 ft-lbs / 14-16 Nm
12	Check valve	DG	Prevents cavitation in RF and LR motors	60-70 ft-lbs / 81-95 Nm
13	Shuttle valve, fixed	DJ	Directs oil from low pressure side to hot oil relief valve	80-90 ft-lbs / 108-122 Nm
14	Orifice, 0.40 inch / 1 mm	DL	Prevents scrub at high steer angles by allowing some bypass flow around the left flow divider	

7-5 Valve Adjustments - Traction Manifold

How to Adjust the Charge Pressure Relief Valve

- 1 Connect a 0 to 600 psi / 0 to 50 bar pressure gauge to the test port on the drive pump.
- 2 2WD models: Hold the charge pressure relief valve located on the traction manifold and remove the cap (item GA).
 4WD models: Hold the charge pressure relief valve located on the traction manifold and loosen the jam nut (item KA).
- 3 2WD models: Turn the internal hex socket clockwise fully until it stops. Install the cap.
 4WD models: Turn the external stem clockwise fully until it stops. Tighten the jam nut.
- 4 Start the engine and move and hold the function enable/rpm select toggle switch to the high rpm (rabbit symbol) position. Note the reading on the pressure gauge.
- 5 Turn the engine off.
- 6 Remove the pressure gauge from the drive pump. Connect the gauge to the test port located on the traction manifold.

- 7 2WD models: Hold the charge pressure relief valve and remove the cap (item GA).
 4WD models: Hold the charge pressure relief valve and loosen the jam nut. (item KA).
- 8 Start the engine and move and hold the function enable/rpm select toggle switch to the high rpm (rabbit symbol) position.
- 9 Adjust the relief valve until the pressure reading on the gauge is 30 psi / 2 bar less than the pressure reading on the pump. Turn it clockwise to increase the pressure or counterclockwise to decrease the pressure. Install the valve cap or tighten the jam nut.
- 10 Turn the engine off and remove the pressure gauge.

7-6 Valve Adjustments - Oscillate Relief Valve

How to Adjust the Oscillate Relief Valve

- 1 Connect a 0 to 1500 psi / 0 to 100 bar pressure gauge to the diagnostic nipple located on the OSC-TEST port on the function manifold.
- 2 Start the engine from the Ground Control box and press the enable button.
- 3 Continue pressing the enable button and observe the pressure reading on the pressure gauge. Refer to Specifications, *Hydraulic Specifications*.
- 4 Loosen the nut of the pressure reducing valve on the function manifold.
- 5 Adjust the hex screw. Turn it clockwise to increase the pressure or counterclockwise to decrease the pressure. Tighten the jamb nut.

AWARNING Tip-over hazard. Do not adjust the pressure reducing valve higher than specified.

- 6 Repeat step 3 to confirm the valve pressure.
- 7 Turn the engine off, remove the pressure gauge.

How to Set Up the Directional Valve Linkage

Note: Adjustment of the oscillate directional valve linkage is only necessary when the linkage or valve has been replaced.

Note: Perform this procedure with the machine on a firm, level surface with the boom in the stowed position.

- 1 Use a "bubble type" level to verify the working surface is completely level.
- **AWARNING** Tip-over hazard. Failure to perform this procedure on a level floor could compromise the stability of the machine resulting in the machine tipping over.
- 2 Check the tire pressure in all four tires and add air if needed to specification.

Note: The tires on some machines are foam-filled and do not need air added to them.

- 3 Remove the non-steer end drive chassis cover and axle covers.
- 4 Disconnect the directional valve linkage from the axle.
- 5 To level the drive chassis, start the engine and use a floor jack to raise the right or left side of the steer axle until the drive chassis is level.

Example: Standing at the non-steer end of the machine, if the drive chassis is leaning to the left, jack up the right side of the steer axle.

6 Verify the drive chassis is level to the working surface.

- 7 Measure the gap between the drive chassis and the non-steer axle on both sides (from the inside of the drive chassis).
- Result: The gap is between 0.15 to 0.17 inches / 3,8 to 4,3 mm.
- **&** Result: The gap is not within specification. Add or remove shims from the axle stop bars.
- 8 Adjust the ball joint and secure the linkage to the axle. Tighten the jam nut.

7-7 Generator Manifold

The generator manifold is mounted on the turntable tray by the fuel tank.

Index No.	Description	Schematic Item	Function	Torque
1	Relief valve	GA	Generator relief valve	50 ft-lbs / 67 Nm
2	Solenoid Valve	GB	Charge pressure circuit	60-65 ft lbs / 81-88 Nm
3	Needle valve	GD	Charge pressure circuit	50 ft-lbs / 67 Nm
4	Differential sensing valve	GC	Pilot valve to diverter valve	50 ft-lbs / 67 Nm
5	Counterbalance valve	CF	Adds backpressure to generator circuit	
6	Check valve	GE	Prevents oil to generator	24-26 ft-lbs / 32.5-35.3 Nm
(6)	SE			GB 2
				GD (3)

7-8 Valve Coils

How to Test a Coil

A properly functioning coil provides an electromotive force which operates the solenoid valve. Critical to normal operation is continuity within the coil that provides this force field.

Since coil resistance is sensitive to temperature, resistance values outside specification can produce erratic operation. When coil resistance decreases below specification, amperage increases. As resistance rises above specification, voltage increases.

While valves may operate when coil resistance is outside specification, maintaining coils within specification will help ensure proper valve function over a wide range of operating temperatures.

AWARNING Electrocution/burn hazard. Contact with electrically charged circuits could result in death or

circuits could result in death or serious injury. Remove all rings, watches and other jewelry.

- 1 Tag and disconnect the wiring from the coil to be tested.
- 2 Test the coil resistance.
- Result: The resistance should be within specification, plus or minus 30%.
- Result: If the resistance is not within specification, plus or minus 30%, replace the coil.

Valve Coil Resistance Specification

Note: The following coil resistance specifications are at an ambient temperature of $68^{\circ}F / 20^{\circ}C$. As valve coil resistance is sensitive to changes in air temperature, the coil resistance will typically increase or decrease by 4% for each $18^{\circ}F / 10^{\circ}C$ that your air temperature increases or decreases from $68^{\circ}F / 20^{\circ}C$.

Valve Coil Resistance Specification	
Solenoid valve, 3 position 4 way, 10V DC	4Ω
schematic item (BT)	
Solenoid Valve, 2 position 3 way, 10V DC	4Ω
schematic items (BU, BV, BX, and BZ)	
Solenoid valve, 3 position 4 way, 10V DC	5Ω
schematic items (CD and CF)	
Proportional solenoid valve, 12V DC	5Ω
schematic items(BI and CH)	
Solenoid Valve, 2 position 3 way, 10V DC	6.8Ω
schematic item (CC)	
Solenoid Valve, 2 position 3 way, 12V DC	4.8Ω
(schematic item CE)	

How to Test a Coil Diode


Properly functioning coil diodes protect the electrical circuit by suppressing voltage spikes. Voltage spikes naturally occur within a function circuit following the interruption of electrical current to a coil. Faulty diodes can fail to protect the electrical system, resulting in a tripped circuit breaker or component damage.

- **AWARNING** Electrocution/burn hazard. Contact with electrically charged circuits could result in death or serious injury. Remove all rings, watches and other jewelry.
- 1 Test the coil for resistance. Refer to Repair Procedure, *How to Test a Coil.*
- 2 Connect a 10W resistor to the negative terminal of a known good 9V DC battery. Connect the other end of the resistor to a terminal on the coil.

Resistor 10Ω

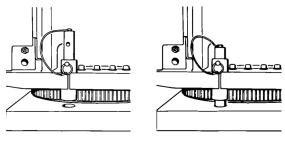
Genie part number 27287

Note: The battery should read 9V DC or more when measured across the terminals.

Note: Dotted lines in illustration indicate a reversed connection as specified in step 6.

3 Set a multimeter to read DC current.

Note: The multimeter, when set to read DC current, should be capable of reading up to 800 mA.

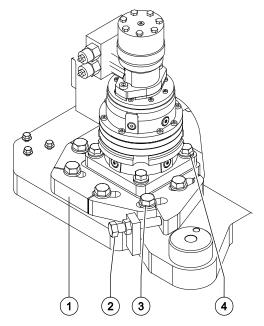

- 4 Connect the negative lead to the other terminal on the coil.
- 5 Momentarily connect the positive lead from the multimeter to the positive terminal on the 9V DC battery. Note and record the current reading.
- 6 At the battery or coil terminals, reverse the connections. Note and record the current reading.
- Result: Both current readings are greater than 0 mA and are different by a minimum of 20%. The coil is good.
- 7 Result: If one or both of the current readings are 0 mA, or if the two current readings do not differ by a minimum of 20%, the coil and/or its internal diode are faulty and the coil should be replaced.

8-1 Turntable Rotation Assembly

How to Remove the Turntable Rotation Drive Hub Assembly

Note: When removing a hose assembly or fitting, the O-ring (if equipped) on the fitting and/or hose end must be replaced. All connections must be torqued to specification during installation. Refer to Specifications, *Hydraulic Hose and Fitting Torque Specifications*.

1 Secure the turntable from rotating with the turntable rotation lock pin.



unlocked

locked

- 2 Tag, disconnect and plug the hydraulic hoses from the drive motor. Cap the fittings on the motor.
- **A**WARNING

Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray. 3 Attach a suitable lifting device to the turntable rotator assembly.

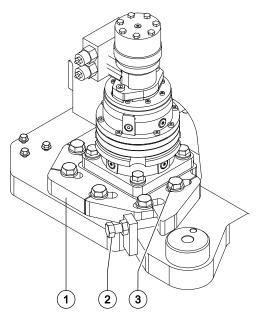
- 1 backlash pivot plate
- 2 adjustment bolt with locknut
- 3 backlash pivot plate mounting bolts
- 4 drive hub mounting bolts
- 4 Back off the locknut and loosen the adjustment bolt.
- 5 Loosen the backlash pivot plate mounting fasteners and slide the assembly away from the turntable rotate gear.
- 6 Remove the turntable drive hub mounting fasteners.

- 7 Carefully remove the drive hub assembly from the machine.
- **AWARNING** Crushing hazard. The turntable rotate drive hub assembly could become unbalanced and fall when removed from the machine if not properly supported by the lifting device.

When installing the drive hub assembly:

8 Install the turntable rotator assembly. Apply removable thread locking compound to fastener threads. Torque the backlash pivot plate mounting fasteners to 160 ft-lbs / 217 Nm.

How to Adjust the Turntable Rotation Gear Backlash


The turntable rotation drive hub is mounted on an adjustable plate that controls the gap between the rotation motor pinion gear and the turntable bearing ring gear.

Note: Perform this procedure with the boom between the non-steer end tires and with the machine on a firm and level surface.

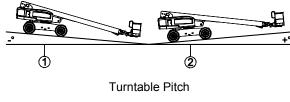
1 Secure the turntable from rotating with the turntable rotation lock pin.

Note: The turntable rotation lock pin is located next to the boom rest pad.

2 Loosen the backlash pivot plate mounting fasteners.

- 1 backlash pivot plate
- 2 adjustment bolt with lock nut
- 3 backlash pivot plate mounting bolts

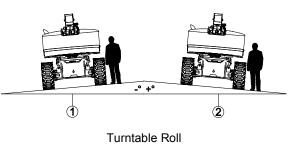
- 3 Push the backlash pivot plate towards the turntable as far as possible (this will push the rotation gear into the turntable bearing ring gear).
- 4 Loosen the lock nut on the adjustment bolt.
- 5 Turn the adjustment bolt clockwise until it contacts the backlash pivot plate.
- 6 Turn the adjustment bolt 1/2 turn counterclockwise. Tighten the lock nut on the adjustment bolt.
- 7 Rotate the backlash pivot plate away from the turntable until it contacts the adjustment bolt. Then torque the mounting fasteners on the backlash pivot plate to specification. Refer to Specifications, *Machine Torque Specifications*.
- 8 Rotate the turntable through an entire rotation. Check for tight spots that could cause binding. Readjust if necessary.


How to Calibrate the Turntable Tilt Sensor

Note: Perform this procedure on a firm, level surface with the machine in the stowed position.

Note: A digital level will be required to perform this procedure.

- 1 Enter Service Mode. Refer to Repair Procedure, *How to Enter the Service Mode*.
- 2 Press the settings button above the display and navigate to the Sensor Calibrations menu.
- 3 Navigate to the Chassis Tilt Sensor calibration screen.
- 4 Select and start the calibration procedure.
- 5 If the machine is not sufficiently level, the procedure will fail with the message that the chassis no not sufficiently level. Move the machine to a more level location if this occurs.
- 6 The first calibration is machine pitch. This is the pitch of the machine from the platform end to the counterweight end of the machine.
- 7 Place the digital level onto the swing chassis bearing plate, which is located to the left of the fuel tank. Orient the level along the pitch axis of the machine.
- 8 Enter the value as seen on the digital level into the ground control display. If the digital level is showing a negative value, enter it as a positive number. Press **OK** when the value on the ground control display matches the value of the digital level (excluding the plus/minus sign).


9 A graphic of the machine pitch will now be shown on the display. By pressing the UP or DOWN buttons, the graphic will change to show the counterweight being uphill or downhill. Select the image that corresponds to the current pitch of the machine and press OK.

¹ uphill 2 downhill

- 10 The next calibration of the machine is the machine roll. This is the angle of the machine from side to side.
- 11 Place the digital level onto the swing chassis bearing plate, which is located to the left of the fuel tank. Orient the level along the roll axis of the machine.
- 12 Enter the value as seen on the digital level onto the ground control display. If the level is showing a negative value, enter it as a positive number. Press **OK** when the value on the ground control display matches the value of the digital level sensor (excluding the plus/minus sign).

13 A graphic of the machine roll will now be shown on the display. By pressing the UP and DOWN buttons, the graphic will change to show whether the operator is on the uphill or downhill side of the machine.. Select the image that corresponds to the current roll of the machine and press OK.

- 2 downhill
- 14 The calibration is now complete.
- 15 Exit the Service Mode.

Axle Components

9-1 Oscillating Axle Cylinders

The oscillating axle cylinders extend and retract between the drive chassis and the oscillating axle. The cylinders are equipped with counterbalance valves to prevent movement in the event of a hydraulic line failure. The valves are not adjustable.

How to Remove an Oscillating Axle Cylinder

Note: Perform this procedure with the machine on a firm, level surface with the boom in the stowed position.

Note: When removing a hose assembly or fitting, the O-ring (if equipped) on the fitting and/or hose end must be replaced. All connections must be torqued to specification during installation. Refer to Specifications, *Hydraulic Hose and Fitting Torque Specifications*.

- 1 Rotate the turntable until the boom is between the steer tires or tracks.
- 2 Tag, disconnect and plug the oscillating axle cylinder hydraulic hoses. Cap the fittings on the oscillate cylinder.
- **AWARNING** Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.
- 3 Remove the pin retaining fasteners from the rod-end pivot pin. Use a soft metal drift to remove the pin.

- 4 Attach a lifting strap from an overhead crane to the barrel end of the oscillating cylinder.
- 5 Remove the pin retaining fasteners from the barrel-end pivot pin. Use a soft metal drift to remove the pin.
- 6 Remove the oscillate cylinder from the machine.

Crushing hazard. The oscillate cylinder may become unbalanced and fall when removed from the machine if not properly attached to the overhead crane.

Track Components

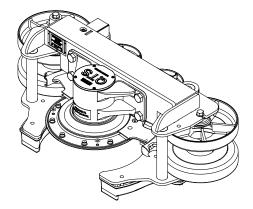
10-1 Track Assembly

How to Remove a Track Assembly

Note: Perform this procedure with the machine on a firm, level surface with the boom in the stowed position.

- 1 Chock the tracks at the opposite end of the machine to prevent the machine from rolling.
- 2 Center a lifting jack of ample capacity (20,000 lbs / 10,000 kg) under the drive chassis between the tracks.
- 3 Lift the machine until the tracks are off the ground and then place jack stands under the drive chassis for support.
- 4 Remove the lug nut bolts holding each half sprocket on the drive hub. Rotate the sprockets until only one sprocket is contacting the track. Remove the lower half sprocket from the track assembly.
- 5 Rotate the remaining half sprocket 180° so that it is free of the track.
- 6 Attach a lifting strap from an overhead crane to the center-point of the track assembly, above the sprocket.
- 7 Remove the fasteners holding the TRAX mounting pin located underneath the axle. Remove the pin supporting the TRAX assembly.
- 8 Carefully remove the track assembly from the drive hub and set aside.

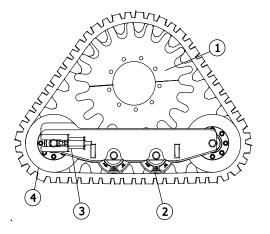
ACAUTION


Crushing hazard. The track assembly could become unbalanced and fall when removed from the machine if not properly supported by the overhead crane.

How to Replace the Track

1 Remove the track assembly from the machine. See How to Remove a Track Assembly.

Note: The sprocket is comprised of two halves. Before removing the track assembly from the machine and to ease the removal of the sprocket, drive the machine until one complete half of the sprocket is located above the undercarriage of the track assembly.


- 2 Loosen the grease plug on the track tension cylinder to relieve the track tension. Clean up any grease that has spilled.
- 3 Remove the 2 sprocket retaining fasteners. Remove the sprocket half from the track assembly.
- 4 Carefully remove the track from the undercarriage.
- 5 Use an overhead crane to lay the undercarriage on its side with the drive sprocket bearing assembly facing upward and the track tension cylinder towards the ground.

Track Components

- 6 Install the new track onto the undercarriage.
- 7 Attach a lifting strap from an overhead crane to the center-point of the track, above the sprocket.
- 8 Use the overhead crane to raise the track assembly to an upright position. Rest the assembly on the floor or ground to remove any slack in the lower portion of the track.

Note: Be sure the idler and bogey wheels are aligned with the inside surface of the track

- 1 half sprocket
- 2 bogey wheel
- 3 tensioner assembly
- 4 idler wheel
- 9 Rotate the sprocket half until the split tooth of the sprocket is lower than the other side.
- 10 Using an overhead crane or other suitable lifting device, lift up on the rubber track to create enough room to install the other sprocket half.
- 11 Install the sprocket half, removed in step 3, while engaging the sprocket teeth with the rubber track.

Note: Be sure to align the split tooth in both of the sprocket halves.

- 12 Insert a pin or rod through the wheel stud hole closest to the split tooth to hold the sprocket in place.
- 13 Insert a pointed pry bar into the wheel stud hole near the top of the sprocket. Insert another pointed pry bar into the wheel stud hole at the opposite side of the split tooth.
- 14 Using the pry bars, lift the sprocket half into position. Install the 2 sprocket retaining fasteners and torque to specification. Refer to Section 2, Specifications.
- 15 Attach a lifting strap from an overhead crane to the center-point of the track assembly, above the sprocket.
- 16 Install the track assembly onto the drive hub. Install the lug nuts and torque to specification. Refer to Specifications.

Crushing hazard. The track assembly could become unbalanced and fall when installed onto the machine if not properly supported by the overhead crane.

17 Adjust the track tension. Tighten the tensioner nut on both sides of the idler wheel until there is about 0.75-1.0 inch / 19-25 mm of droop between the inside of the rubber track and the bottom surface of the bogey wheels.

Fault Codes

Observe and Obey:

- ✓ Troubleshooting and repair procedures shall be completed by a person trained and qualified on the repair of this machine
- ☑ Immediately tag and remove from service a damaged or malfunctioning machine.
- Repair any machine damage or malfunction before operating the machine.
- ✓ Unless otherwise specified, perform each procedure with the machine in the following configuration:
 - Machine parked on a firm, level surface
 - Key switch in the off position with the key removed
 - The red Emergency Stop button in the off position at both the ground and platform controls
 - Wheels chocked
 - All external AC power supply disconnected from the machine
 - Boom in the stowed position
 - Turntable secured with the turntable rotation lock
 - Welder disconnected from the machine (if equipped with the weld cable to platform option)

Before Troubleshooting:

- Read, understand and obey the safety rules and operating instructions in the appropriate operator's manual on your machine.
- Be sure that all necessary tools and test equipment are available and ready for use.
- Read each appropriate fault code thoroughly. Attempting short cuts may produce hazardous conditions.
- Be aware of the following hazards and follow generally accepted safe workshop practices.

Electrocution/burn hazard. Contact with electrically charged circuits could result in death or serious injury. Remove all rings, watches and other jewelry.

Note: Two persons will be required to safely perform some troubleshooting procedures.

Control System

How to Retrieve Control System Fault Codes

The machine control system contains two different types of fault codes

Active Faults: These faults have been detected in the current operating session. The presence of an active fault will be reflected by the System Fault Indicator lights and the alarm.

Logged Faults: The faults contained in the fault log have occurred in the past and may or may not still be in effect.

Both faults may be viewed by pressing the Fault Button above the ground display and navigating to either the Active Machine Faults screen or the Machine Fault Log screen. The list of faults will by shown by fault code and the hour meter of when it occurred.

The fault lists can be browsed. To learn more about a fault entry, select it and press OK. A screen will be shown that describes the fault in more detail.

ID	Component	ID	Name	Cause	Effect	Solution
1	Engine Can Bus	13	Not detected	Engine CANBUS CAN+ or CAN- shorted to supply.	Disable engine start for tier 4F engines	*Verify with a voltmeter that CAN+ and CAN- lines are not shorted.* Measure the resistance between D228CAN+ (YL, TCON J9-3) and D228CAN- (GR, TCON J9-4); should be between 55 and 65 ohms. * D228CAN+ (YL, TCON J9-3) should be between 1V and 5V. * D228CAN- (GR, TCON J9-4) should be between 1V and 5V. Remove short(s) and cycle power.
7	Engine Warning	21	Fault	The engine has triggered the Engine Warning Lamp condition.	Machine will function as normal.	* Check the engine fault codes with an engine diagnostic tool.
8	Engine Stop	21	Fault	The engine has triggered the Engine Stop Lamp condition.	Control system will not allow engine restart until power cycle. Engine may stop itself, depending on the engine option.	* Check the engine fault codes with an engine diagnostic tool. Note: The control system shuts off the engine immediately upon receiving this fault from the engine.
10	Ground Controls Engine Start Switch	27	Active at startup	Engine start button held at startup.	Engine start is disabled	Release engine start button, check DISCON overlay and ribbon cable if issue persists.
11	Platform Controls Engine Start Switch	27	Active at startup	Platform controls engine start switch active at startup.	Engine start switch will not operate.	*Verify with a voltmeter that the Engine Start Toggle Switch (TS2) is operating properly. * C33STR (BK, PCON J16-3) should be 0 V with the switch OFF and 12 V with the switch ON. *Cycle power to allow the machine to re-test the fault.
12	Machine CAN Bus	13	Not detected	Machine CANBUS CAN+ or CAN- shorted to supply	Machine will not be functional.	*Verify with a voltmeter that CAN+ and CAN- lines are not shorted. *Measure the resistance between D82CAN+ (YL, TCON J5-3) and D81CAN- (GR, TCON J5-4); should be between 55 and 65 ohms. *D81CAN+ (YL, TCON J5-3) should be between 1V and 5V. *D81CAN- (GR, TCON J5-4) should be between 1V and 5V. *Remove short(s) and cycle power.

ID	Component	ID	Name	Cause	Effect	Solution
13	Jib Up/Down Switch	27	Active at startup	Toggle switch input was detected as HIGH at start-up.	The Jib Up or Down functions will not operate.	*Verify with a voltmeter that the Jib Up/Down Toggle Switch (TS8) is operating properly. * C43JU (BL, PCON J17-6) should be 0 V with the switch OFF and 12 V with the switch held in the UP position. * C44JD (BL/BK, PCON J17-8) should be 0 V with the switch OFF and 12 V with the switch held in the DOWN position. *Cycle power to allow the machine to re-test the fault.
15	Foot Switch	27	Active at startup	Foot switch input was detected as HIGH at start-up, or the footswitch was held for too long and caused the footswitch timer to elapse.	Machine will not be functional.	* Release foot switch and cycle power. * If problem persists, with a voltmeter verify that C24FS (WH, PCON J12-2) is LOW when foot switch is released and 12 V when held down.
		28	Timeout	Foot switch depressed too long without action	Machine will not be functional.	
17	Aux Pump Coil	11	Shorted to supply voltage	TCON detected that C27AUX circuit is shorted to 12V.	Machine will not be functional.	*Check C27AUX (RD, TCON J3-3) wiring. *With a voltmeter verify that C27AUX (RD, TCON J3-3) is 0 V when the Auxiliary Power toggle switch is OFF and 12 V when switch is ON. *Verify the terminals of the APU solenoid have a resistance greater than 5 ohms. If not, replace the solenoid.
19	Aux Enable Switch	27	Active at startup	Aux button held at startup.	Machine will not be functional.	Release Aux button, check DISCON overlay and ribbon cable if issue persists.
20	Pri Boom Ext / Ret Joystick	11	Shorted to supply voltage	Circuit C163PER is above 4.5 V.	Boom Extend and Retract functions will not operate.	 * Leave joystick in neutral position and cycle power. * If fault persists, with a voltmeter check that C163PER (BL/WH, PCON
		27	Active at startup	Circuit C163PER voltage was not within the startup voltage range of 2.5 V +/- 0.2 V.		J18-4) is at 2. 5V +/- 0.2 V at startup and does not go above 4.5 V or below 0.5 V when fully stroked in each direction. * Replace joystick if voltage check fails.

ID	Component	ID	Name	Cause	Effect	Solution
21	Pri Boom Up / Down Joystick	11	Shorted to supply voltage	Circuit C164PUD is above 4.5 V.	Boom Up and Down functions will not operate.	 * Leave joystick in neutral position and cycle power. * If fault persists, with a voltmeter check that C164PUD (RD/WH, PCON)
		28	Active at startup	Circuit C164PUD voltage was not within the startup voltage range of 2.5 V +/- 0.2 V.		J18-3) is at 2. 5V +/- 0.2 V at startup and does not go above 4.5 V or below 0.5 V when fully stroked in each direction. * Replace joystick if voltage check fails.
22	Pri Boom Up coil	11	Shorted to supply voltage	TCON detected that C1PBU circuit is shorted to 12 V.	Boom Up function will not operate. Boom Down will also not operate if short is to 12 V.	 * With a voltmeter, measure Y22. Proper resistance should be between 5 - 60 ohms. Replace Y22 if resistance is outside of those values. * Verify wiring for C1PBU (RD, TCON J4-10) and check for open or short circuits.
23	Pri Boom Down Coil	11	Shorted to supply voltage	TCON detected that C2PBD circuit is shorted to 12 V or GND.	Boom Up and Down functions will not operate.	 * With a voltmeter, measure Y21. Proper resistance should be between 5 - 60 ohms. Replace Y21 if resistance is outside of those values. * Verify wiring for C2PBD (RD/BK, TCON J4-9) and check for open or short circuits. * Verify resistance between Recovery Module pins J37-2 and J37-11 is zero ohms.

ID	Component	ID	Name	Cause	Effect	Solution
24	Pri Boom Angle	13	Not detected	No CAN messages have been received by the TCON from the Angle Sensor.	Machine limited to recovery functions	 * Verify sensor power P85PWR (GR, TCON J6-7) is at 12 V while the system is running. * Verify the sensor is receiving power. Unplug the sensor and verify 12 V across pins 2 (+) and 1 (-) on the harness connector. * Verify the CAN bus wiring. With the sensor still unplugged, measure resistance across harness connector pins 3 and 4. If resistance is not between 55 and 65 ohms, check CAN wire harnesses. * Replace sensor if necessary.
		14	Cross check failed	Boom stowed crosscheck switch value not as expected		*Verify that with the boom stowed C68LS (BL, TCON J7-3) is 12V and that the boom is making contact with the LST3S limit switch arm. *Verify that with the boom above 12 degrees C68LS (BL, TCON J7-3) is 0V and that the boom is not making contact with the LST3S limit switch arm. *Check LST3S limit switch for physical damage.
		17	Not calibrated	Sensor has been replaced and requires calibration, or calibration in memory has been erased.		Run the boom angle calibration process and verify fault is no longer active.
		19	Value out of expected range	Min or max boom angle out of expected range.	Machine limited to recovery functions	 * Calibrate boom angle snesor. * Check boom angle sensor mount, ensure all fasteners are tightened to spec. * Replace sensor if issue persists.
25	Cable tension	21	Fault	Boom cable tension limit switch LSB2S indicates that the tension is loose on the boom cables.	Boom Up and Extend functions will not operate.	 * Return boom to stowed position as quickly as possible. * Verify both boom cables are properly tensioned and that LST3S is properly centered in the bracket. * Verify LSB2S (C59CNK, BL/WH, TCON J7-5) operates properly. Signal should normally by 12 V. If cable tension is loose, signal should be 0 V.

ID	Component	ID	Name	Cause	Effect	Solution
26	Pri Boom Ext Coil	11	Shorted to supply voltage	TCON detected that C7PBE circuit is shorted to 12 V or GND.	Boom Extend and Retract functions will not operate.	* With a voltmeter, measure Y26. Proper resistance should be between 5 - 60 ohms. Replace Y26 if resistance is outside of those values. * Verify wiring for C7PBE (BK, TCON J4-7) and check for open or short circuits.
27	Pri Boom Ret Coil	11	Shorted to supply voltage	TCON detected that C8PBR circuit is shorted to 12 V or GND.	Boom Extend and Retract functions will not operate.	 * With a voltmeter, measure Y25. Proper resistance should be between 5 - 60 ohms. Replace Y25 if resistance is outside of those values. * Verify wiring for C8PBR (BK/WH, TCON J4-8) and check for open or short circuits. * Verify resistance between Recovery Module pins J37-5 and J37-8 is zero ohms.
35	Ground Control Button	27	Active at startup	Buttons were held at system start, or are shorted on the ground control panel.	The function associated with the stuck button will not operate.	*Release the ground control buttons and cycle power. *If problem persists, open ground control box and open the Display Controller access door, being careful to keep water out. Verify the ribbon cables are properly seated and dry. *Re-seat and/or replace ribbon cables if necessary. *Replace ground control overlay.
36	Jib Up Coil	11	Shorted to supply voltage	PCON detected that V43JU circuit is shorted to 12 V or GND.	Jip Up function will not operate.	 * With a voltmeter, measure Y68. Proper resistance should be between 5 - 60 ohms. Replace Y68 if resistance is outside of those values. * Verify wiring for V43JU (BL, PCON J12-8) and check for open or short circuits.
37	Jib Down Coil	11	Shorted to supply voltage	PCON detected that V44JD circuit is shorted to 12 V or GND.	Jib Down function will not operate.	 * With a voltmeter, measure Y69. Proper resistance should be between 5 - 60 ohms. Replace Y69 if resistance is outside of those values. * Verify wiring for V44JD (BL/BK, PCON J12-9) and check for open or short circuits.

ID	Component	ID	Name	Cause	Effect	Solution
40	Jib Select Coil	11	Shorted to supply voltage	PCON detected V18PRR is short to supply	Jib and platform functions will not operate	*With a voltmeter, measure Y18. Proper resistance should be between 5 - 60 ohms. Replace Y18 if resistance is outside of those values. *Verify wiring for V18PRR (GR/BK, PCON J12-4) and check for short circuits.
41	Turntable Rotate Joystick	11	Shorted to supply voltage	Circuit C165TTR is above 4.5 V.	Turntable Rotate functions will not operate.	 * Leave joystick in neutral position and cycle power. * If fault persists, with a voltmeter check that C165TTR (WH/RD, PCON
		27	Active at startup	Circuit C165TTR voltage was not within the startup voltage range of 2.5 V +/- 0.2 V.		J18-2) is at 2. 5V +/- 0.2 V at startup and does not go above 4.5 V or below 0.5 V when fully stroked in each direction. * Replace joystick if voltage check fails.
42	Turntable Rotate CW Coil	11	Shorted to supply voltage	TCON detected that C4TRL circuit is shorted to 12 V or GND.	Turntable Rotate functions will not operate.	 * With a voltmeter, measure Y24. Proper resistance should be between 5 - 60 ohms. Replace Y24 if resistance is outside of those values. * Verify wiring for C4TRL (WH, TCON J3-12) and check for open or short circuits.
43	Turntable Rotate CCW Coil	11	Shorted to supply voltage	TCON detected that C5TRR circuit is shorted to 12 V or GND.	Turntable Rotate functions will not operate.	* With a voltmeter, measure Y23. Proper resistance should be between 5 - 60 ohms. Replace Y23 if resistance is outside of those values. * Verify wiring for C5TRR (WH/BK, TCON J3-1) and check for open or short circuits.
44	Drive Enable Toggle Switch	27	Active at startup	Toggle switch input was detected as HIGH at start-up.	Drive Enable switch will not operate, possibly preventing drive while the turntable is rotated.	*Verify with a voltmeter that the Drive Enable Toggle Switch (TS15) is operating properly. * C143DEL (BL/RD, PCON J16-7) should be 0 V with the switch OFF and 12 V with the switch held in the ON position. *Cycle power to allow the machine to re-test the fault.

ID	Component	ID	Name	Cause	Effect	Solution
45	Platform Level Toggle Switch	27	Active at startup	Toggle switch input was detected as HIGH at start-up.	Platform Level Up or Down functions may not operate, depending on which direction the switch fault occurred.	*Verify with a voltmeter that the Platform Level Up/Down Toggle Switch (TS9) is operating properly. * C14PLU (OR, PCON J17-2) should be 0 V with the switch OFF and 12 V with the switch held in the UP position. * C15PLD (OR/BK, PCON J17-3) should be 0 V with the switch OFF and 12 V with the switch held in the DOWN position. *Cycle power to allow the machine to re-test the fault.
46	Platform Rotate CW Coil	11	Shorted to supply voltage	PCON detected that V17PRL circuit is shorted to 12 V or GND.	Platform Rotate CW function will not operate.	 * With a voltmeter, measure Y70. Proper resistance should be between 5 - 60 ohms. Replace Y70 if resistance is outside of those values. * Verify wiring for V17PRL (GR, PCON J12-5) and check for open or short circuits.
47	Platform Rotate CCW Coil	11	Shorted to supply voltage	PCON detected that V18PRR circuit is shorted to 12 V or GND.	Platform Rotate CCW function will not operate.	* With a voltmeter, measure Y71. Proper resistance should be between 5 - 60 ohms. Replace Y71 if resistance is outside of those values. * Verify wiring for V18PRR (GR/BK, PCON J12-4) and check for open or short circuits.
51	Drive Joystick	11	Shorted to supply voltage	Circuit C160DRV is above 4.5 V.	Drive Forward and Reverse functions will not operate.	 * Leave joystick in neutral position and cycle power. * If fault persists, with a voltmeter check that C160DRV (WH/RD, PCON
	27		Active at startup	Circuit C160DRV voltage was not within the startup voltage range of 2.5 V +/- 0.2 V.		J18-10) is at 2. 5V +/- 0.2 V at startup and does not go above 4.5 V or below 0.5 V when fully stroked in each direction. * Replace joystick if voltage check fails.

ID	Component	ID	Name	Cause	Effect	Solution
52	Drive Forward Pump Coil	11	Shorted to supply voltage	TCON detected that C30FWD circuit is shorted to 12 V or GND.	Drive Forward, Brake Release and possibly Engine will not operate.	* With a voltmeter, measure Y6. Proper resistance should be between 5 - 60 ohms. Replace Y6 if resistance is outside of those values. * Verify wiring for C30FWD (WH, TCON J2-6) and check for open or short circuits.
53	Drive Reverse Pump Coil	11	Shorted to supply voltage	TCON detected that C31REV circuit is shorted to 12 V or GND.	Drive Reverse, Brake Release and possibly Engine will not operate.	* With a voltmeter, measure Y5. Proper resistance should be between 5 - 60 ohms. Replace Y5 if resistance is outside of those values. * Verify wiring for C31REV (WH/BK, TCON J2-7) and check for open or short circuits.
54	Brake Release Coil	11	Shorted to supply voltage	TCON detected that C32BRK circuit is shorted to 12 V or GND.	Machine will not be functional.	 * With a voltmeter, measure Y2. Proper resistance should be between 5 - 60 ohms. Replace Y2 if resistance is outside of those values. * Verify wiring for C32BRK (WH/RD, TCON J2-9) and check for open or short circuits.
55	High Drive Speed Coil	11	Shorted to supply voltage	TCON detected that C29MS circuit is shorted to 12 V or GND.	Drive functions will not operate.	 * With a voltmeter, measure Y27. Proper resistance should be between 5 - 60 ohms. Replace Y27 if resistance is outside of those values. * Verify wiring for C29MS (RD/WH, TCON J2-8) and check for open or short circuits.
56	Telematics Device	13	Not detected	M7 telematics device not detected.	Information only	Cycle power. If fault persists, check telematics ready connector wiring. If there are no wiring issues replace M7.

ID	Component	ID	Name	Cause	Effect	Solution
	Steer Joystick	11	Shorted to supply voltage	Circuit C159STD or C159STA is above 4.5 V.	Drive and steer functions will not operate.	 * Leave joystick in neutral position and cycle power. * If fault persists, identify which circuit is the steer circuit. Check C159STA
	27 Active at startup Circuit C159STD or C159STA voltage was not within the startup voltage range of 2.5 V +/- 0.2 V.	(BL/WH, PCON J18-11) for a joystick steer option. Check C159STD (BL/RD, PCON J18-9) for the rocker joystick steer option. With a voltmeter check that the circuit is at 2. 5V +/- 0.2 V at startup and does not go above 4.5 V of below 0.5 V when fully stroked in each direction. * Replace joystick if voltage check fails.				
62	Prox Override Togggle Switch	27	Active at startup	Toggle switch input was detected as HIGH at start-up.	The Jib Up or Down functions will not operate.	*Verify with a voltmeter that the Jib Up/Down Toggle Switch (TS8) is operating properly. * C43JU (BL, PCON J17-6) should be 0 V with the switch OFF and 12 V with the switch held in the UP position. * C44JD (BL/BK, PCON J17-8) should be 0 V with the switch OFF and 12 V with the switch held in the DOWN position. Cycle power to allow the machine to re-test the fault.
68	Ground Function Enable Button	27	Active at startup	Button was held at system start, or is shorted on the ground control panel.	The function associated with the stuck button will not operate.	* Release the ground control buttons and cycle power. * If problem persists, open ground control box and open the Display Controller access door, being careful to keep water out. Verify the ribbon cables are properly seated and dry. * Re-seat and/or replace ribbon cables if necessary. * Replace ground control overlay.

ID	Component	ID	Name	Cause	Effect	Solution
69	AC Generator Output	11	Shorted to supply voltage	TCON detected that C45GEN circuit is shorted to 12 V.	Generator function will not operate.	* With a voltmeter, measure Y29. Proper resistance should be between 5 - 60 ohms. Replace Y29 if resistance is outside of those values. * Verify wiring for C45GEN (GR/WH, TCON J3-2) and check for open or short circuits.
72	Lift Guard Contact Alarm Switch		Cross check failed	PCON detected that inputs from SW30 (contact alarm proximity sensor) are the same voltage.	Boom Up and Extend functions will not operate.	 * Using a voltmeter, verify that the voltage on C248CA (OR/BK, PCON J12-1) is always the opposite of C247CA (OR, PCON J12-11). * Check wiring for open or short circuits. * Verify SW30 is receiving power and ground by verifying 12 V across C31 pins 1 and 3. * Replace SW30 if necessary.
		21	Fault			
73	Engine Oil Pressure	12	Sensor value too high	Engine oil pressure sender is shorted to 12V.	Engine will not operate.	* With a voltmeter, check that C25PSR (WH/BK, TCON J6P9) is not shorted to 12V and voltage is between 0.1-11.5V * Replace sender if necessary
		24	Too low	The engine oil pressure is measured as too low, potentially damaging the engine.	Engine may not attempt to start until system power cycle. Engine may be turned off by control system immediately.	 * Stop engine as soon as possible. * Verify the engine oil level. * Verify the engine oil pump. * Power on the machine and start the engine. At the ground controls display, view the engine oil pressure gauge for proper operation. * If engine uses an analog oil pressure sensor, verify it is sending an analog voltage on C25PSR (WH/BK, TCON J6-9).

ID	Component	ID	Name	Cause	Effect	Solution
74	Engine Temperature	15	Sensor value too low	Engine temperature sensor is shorted to ground	Engine will not operate	* With a voltmeter, check that C26TSR (WH/RD, TCON J6P8) is not shorted to ground and voltage is between 0.1-11.5V * Replace sensor if necessary
		23	Too high	The engine coolant temperature is measured as too high, potentially damaging the engine.	Engine will not restart until machine power is cycled. Engine may stop itself, depending on the engine option.	 * Stop engine as soon as possible. * Verify the engine coolant level. * Verify the engine coolant/water pump. * Power on the machine and start the engine. At the ground controls display, view the engine temperature gauge for proper operation. * If engine uses an analog temperature sensor, verify it is sending an analog voltage on C26TSR (WH/RD, TCON J6-10).
76	Platform Load Sensor	13	Not detected	TCON has not detected the DISCON on the communications bus.	Boom Up, Extend and Turntable Rotate functions will not operate.	 * Verify sensor power P26PWR (BK, PCON J13-9) is at 12 V while the system is running. * Verify 12 V across pins on C27-2 (+) and C27-3 (-) on the harness connector. * Measure resistance across C27 pins 4 and 5 on the harness connector. If resistance is not between 55 and 65 ohms, check CAN wire harnesses. * Replace sensor if necessary.
		14	Cross check failed	TCON has not detected the DISCON on the communications bus.	Boom Up, Extend and Turntable Rotate functions will not operate.	 * Check that the load sensor is mounted correctly and all fasteners are tightened to spec. * Calibrate load sensor. * Replace sensor if issue persists.
		15	Value to low	Platform load sensor out of calibration	Machine limited to recovery functions	 * Make sure the platform is not touching the ground or an overhead obstruction. Cycle power and check that fault is no longer reported. * Perform the platform overload calibration procedure. * Replace sensor if necessary.
		17	Not calibrated	Platform load sensor out of calibration		* Calibrate load sensor. * Replace sensor if issue persists.
		21	Fault	Platform load sensor out of calibration		 * Check that the load sensor is mounted correctly and all fasteners are tightened to spec. * Calibrate load sensor. * Replace sensor if issue persists.

ID	Component	ID	Name	Cause	Effect	Solution
78	· ·	13	Not detected	TCON has not detected the PCON primary processor on the communications bus.	Controls from the platform will not operate.	* Verify PCON is receiving power. Check for 12 V on J15-2 (+) and J15-1 (-). * Verify PCON is receiving ESTOP signals. With ground ESTOP pulled out and keyswitch set to Platform, verify 12 V is reaching PCON J15-10. * Verify CAN bus is functional. Pull out connector J15 from the PCON and with a voltmeter set to resistance verify that pins 3 and 4 on the harness connector measure between 110 and 130 Ohms. Check wiring and boom cable for open or short circuits if resistance check fails. * Replace PCON if necessary.
		29	Software version mismatch	PCON software is out of date.	Machine limited to recovery functions	Download latest software from firmware site and update machine.
79	Display Controller (DISCON)	13	Not detected	TCON has not detected the DISCON on the communications bus.	Controls from the ground will not operate.	 Verify DISCON is operating by checking that the display on the front is operating properly. If there is no display, try to power up the DISCON by setting the keyswitch to Ground, pull out the ground ESTOP and press the Ground Function Enable button. The display should start. If there is still no display, check DISCON power on J10 pins 2 (+) and 1 (-). If DISCON operates but fault persists, check the CAN bus wiring. Disconnect J10 and with a voltmeter set to resistance verify that the resistance between pins 3 and 4 on the harness connector are between 55 and 65 ohms. Check CAN wiring if resistance check fails. Replace DISCON if required.
		29	Software version mismatch	DISCON software is out of date.	Machine limited to recovery functions	Download latest software from firmware site and update machine.

ID	Component	ID	Name	Cause	Effect	Solution
80	Turntable Controller (TCON)	13	Not detected	The DISCON has not detected the TCON on the CAN bus.	Machine limited to recovery functions	 * Verify TCON is receiving power. Check for 12 V on J5-2 (+) and J5-1 (-). * Verify TCON is receiving ESTOP signals. With ground ESTOP pulled out and keyswitch set to Ground, verify 12 V is reaching TCON J5-9 and J5-12. * Verify CAN bus is functional. Pull out connector J5 from the TCON and with a voltmeter set to resistance verify that pins 3 and 4 on the harness connector measure between 55 and 65 Ohms. Check wiring and boom cable for open or short circuits if resistance check fails. * Replace TCON if necessary.
		29	Software version mismatch	TCON software is out of date		Download latest software from firmware site and update machine.
82	Overload	21	Recovery	This is a flag that indicates that the platform was overloaded and that auxiliary function enable was used while overloaded.	Advisory condition. Machine is fully functional.	Power up the machine in service mode and clear the flag in the service menu on the ground control display.
83	Disabled	21	By owner	The telematics module has locked out machine operation.	Machine will not be functional, or have limited functionality, depending on the telematics option.	Call machine owner to re-enable machine functions.
84	Chassis Angle	13	Not detected	The tilt sensor S80 has not been detected on the CAN bus.	Boom Up, Extend and Drive functions will not operate.	 * Verify S8O is receiving power. Disconnect sensor connector and verify harness connector pins 1 and 2 measure 12 V. * Verify CAN bus wiring. With a voltmeter set to resistance, check the resistance between pins 3 and 4 on the harness connector (not the sensor's integrated connector). Resistance should be between 55 and 65 ohms. Check CAN wiring if resistance check fails. * Replace sensor if required.
		17	Not calibrated	Tilt sensor not calibrated	Machine limited to recovery functions	Calibrate tilt sensor.

ID	Component	ID	Name	Cause	Effect	Solution
85	Chassis Angle Safety	13	Not detected	Tilt sensor not calibrated	Machine limited to recovery functions	Calibrate tilt sensor.
88	Function Enable Coil	11	Shorted to supply voltage	TCON detected that C155PCE circuit is shorted to 12 V or GND.	Only Auxiliary Power is available.	* With a voltmeter, measure Y74. Proper resistance should be between 5 - 60 ohms. Replace Y74 if resistance is outside of those values. * Verify wiring for C155PCE (OR/RD, TCON J2-5) and check for open or short circuits.
89	Fuel Level Sensor	12	Value to high	Fuel sensor shorted to B+	Information only	With a voltmeter, check voltage on C65FLI (BL/WH, TCON J7-11). The voltage should be between 1V and 5V. Check for shorts to B+.
		15	Value to low	Fuel sensor shorted to GND		With a voltmeter, check voltage on C65FLI (BL/WH, TCON J7-11). The voltage should be between 1V and 5V. Check for shorts to ground.
92	Turntable Rotate Flow Coil	11	Shorted to supply voltage	TCON detected that C6TRF circuit is shorted to 12 V or GND.	Turntable Rotate functions will not operate.	* With a voltmeter, measure Y13. Proper resistance should be between 5 - 60 ohms. Replace Y13 if resistance is outside of those values. * Verify wiring for C6TRF (WH/RD, TCON J4-1) and check for open or short circuits.

ID	Component	ID	Name	Cause	Effect	Solution
94	Primary Boom Length	13	Not detected	No CAN messages have been received by the TCON from the Length Sensor.	Boom Up, Extend and Turntable Rotate functions will not operate.	 * Verify sensor power P85PWR (GR, TCON J6-7) is at 12 V while the system is running. * Verify the sensor is receiving power. Unplug the sensor and verify 12 V across pins 1 (+) and 2 (-) on the harness connector. * Verify the CAN bus wiring. With the sensor still unplugged, measure resistance across harness connector pins 3 and 4. If resistance is not between 55 and 65 ohms, check CAN wire harnesses. * Replace sensor if necessary.
		14	Cross check failed	The two internal sensing channels inside the Length Sensor have registered a significant difference.	Machine limited to recovery functions	 * Ensure that the boom angle sensor cord is hooked up to the bracket on the boom and that the cord extends and retracts smoothly. * Calibrate boom length sensor. * Replace sensor if necessary.
		17	Not calibrated	Boom length sensor not calibrated.		Calibrate boom length sensor.
		19	Value out of expected range	Min or max length out of expected range.		* Verify that with the boom retracted C24LS (OR/RD TCON J7-4) is 12V and that the boom is making contact with the LSB1RS limit switch arm.
						 * Verify that when the boom is extended at least 10" C24LS (OR/RD, TCON J7-4) is OV and that the boom is not making contact with the LSB1RS limit switch arm. * Check LSB1RS limit switch for physical damage.
99	Primary Boom Extend / Retract Flow Coil	11	Shorted to supply voltage	TCON detected that C9PEF circuit is shorted to 12 V or GND.	Boom Extend and Retract functions will not operate.	 * With a voltmeter, measure Y15. Proper resistance should be between 5 - 60 ohms. Replace Y15 if resistance is outside of those values. * Verify wiring for C9PEF (BK/RD, TCON J4-5) and check for open or short circuits. * Verify resistance between Recovery Module pins J37-6 and J37-7 is zero

ID	Component	ID	Name	Cause	Effect	Solution
100	Platform Level Up Coil	11	Shorted to supply voltage	PCON detected that V14PLU circuit is shorted to 12 V or GND.	Platform Level Up and possibly Level Down functions will not operate.	* With a voltmeter, measure Y20. Proper resistance should be between 5 - 60 ohms. Replace Y20 if resistance is outside of those values. * Verify wiring for V14PLU (OR, PCON J12-6) and check for open or short circuits.
101	Platform Level Down Coil	11	Shorted to supply voltage	PCON detected that V15PLD circuit is shorted to 12 V or GND.	Platform Level Down and possibly Level Up functions will not operate.	* With a voltmeter, measure Y19. Proper resistance should be between 5 - 60 ohms. Replace Y19 if resistance is outside of those values. * Verify wiring for V15PLD (OR/BK, PCON J12-7) and check for open or short circuits.
110	Platform Rotate Toggle Switch @PC	27	Active at startup	Toggle switch input was detected as HIGH at start-up.	Platform Rotate Left or Right will not operate, depending on which side of the switch was faulted.	*Verify with a voltmeter that the Platform Rotate Toggle Switch (TS7) is operating properly. * C17PRL (GR, PCON J16-4) and C18PRR (GR/BK, PCON J17-5) should be 12 V when the switch is pressed in their respective directions. *Cycle power to allow the machine to re-test the fault.
116	Model Configuration	31	Setup invalid.	Machine is not fully configured or set to wrong model.	Machine will not operate.	Navigate to Settings -> Model Configuration and ensure model, engine, tires, and region are set and correct.
141	Boom	10	Safety Envelope Exceeded	The system has determined that the platform position has exceeded the safety envelope boundary.	All functions will not operate except for the recovery procedure.	Use Auxiliary Power and the boom retract and/or down functions to bring the platform back within the operational envelope.
150	Sensor Power P26PWR	11	Shorted to supply voltage	PCON detected that P26PWR circuit is shorted to 12 V or GND.	Boom Up and Extend functions will not operate.	* Turn on machine and verify sensor power P26PWR (BK, PCON J13-9) is at 12 V. * Inspect wiring for open or shorts circuits.
152	Primary Boom Up/Down Flow Coil	11	Shorted to supply voltage	TCON detected that C3PBF circuit is shorted to 12 V or GND.	Boom Up and Down functions will not operate.	* With a voltmeter, measure Y12. Proper resistance should be between 5 - 60 ohms. Replace Y12 if resistance is outside of those values. * Verify wiring for C3PBF (RD/WH, TCON J4-4) and check for open or short circuits. * Verify resistance between Recovery Module pins J37-3 and J37-10 is zero ohms.

ID	Component	ID	Name	Cause	Effect	Solution
160	LF Steer (L or R) Coil	11	Shorted to supply voltage	TCON detected that C37STL circuit is shorted to 12 V or GND.	Steer Left function will not operate.	* With a voltmeter, measure Y3. Proper resistance should be between 5 - 60 ohms. Replace Y3 if resistance is outside of those values. * Verify wiring for C37STL (BL/BK, TCON J4-11) and check for open or short circuits.
161	RF Steer (L or R) Coil	11	Shorted to supply voltage	TCON detected that C36STR circuit is shorted to 12 V or GND.	Steer Right function will not operate.	 * With a voltmeter, measure Y4. Proper resistance should be between 5 - 60 ohms. Replace Y4 if resistance is outside of those values. * Verify wiring for C36STR (BL, TCON J4-12) and check for open or short circuits.
185	ESTOP Source	11	Shorted to supply voltage	TCON detected that ESTOP 1 is at 12 V but ESTOP 3 is at 0 V.	ESTOP circuit cannot complete, preventing machine functions.	* Using a voltmeter and with the system turned OFF, check the resistance between TCON J5 pins 9 and 10. Replace TCON if resistance is more than 5 ohms. * Check P79PWR (BK, TCON J5-9) and P23PWR (RD, TCON J5-10) for open or short circuits.
186	ESTOP Return	11	Shorted to supply voltage	Mistmatched signals detected on ESTOP Return circuits. Either: * PCON ESTOP 2 and ESTOP 4 do not match, or * TCON ESTOP 2 and ESTOP 4 do not match.	ESTOP circuit cannot complete, preventing machine functions.	* Inspect PCON J15 pins 11 and 12 for open or short circuits. Using a voltmeter, set to diode test mode and make sure the diode tests ok with the anode at pin 12 and cathode at pin 11. If test fails, replace the PCON. * Inspect TCON J5 pins 11 and 12 for open or short circuits. Using a voltmeter, set to diode test mode and make sure the diode tests ok with the anode at pin 12 and cathode at pin 11. If test fails, replace the PCON. * Check P23RET (BK) for shorts to ground or power.

Engine Fault Codes

Engine Fault Codes

Some engine options have their own Electronic Control Module that contains more detailed fault information that is specific to the engine. This system can be accessed by using the engine's dedicated service tool. This service tool may be connected to the Engine Service Connector, located to the right of the battery tray.

The ground controls display and fault menu will show basic engine faults, such as low oil pressure and high coolant temperature. It will also show faults for engine warning and engine stop, which correspond to the engine warning lamp and engine stop lamp indicators that the engine may require.

More advanced faults specific to the engine will require the use of a corresponding engine service tool.

SPN =	SPN = Suspect Parameter Number					
FMI =	FMI = Failure Mode Identifier					
KWP	= Keyw	ord Protoc	col			
SPN	FMI	KWP	Description			
51	3	1019	EGR-Valve, short circuit to battery			
51	3	1024	Position concor orror of act			

			battery
51	3	1024	Position sensor error of actuator EGR-Valve; signal range check high
51	3	1226	EGR-Valve; short circuit to battery (A02)
51	3	1227	EGR-Valve; short circuit to battery (A67)
51	4	1020	EGR-Valve; short circuit to ground
51	4	1025	Position sensor error actuator EGR-Valve; signal range check low
51	4	1228	EGR-Valve; short circuit to ground (A02)
51	4	1229	EGR-Valve; short circuit to ground (A67)
1	4	1232	Actuator error EGR-Valve; Voltage below threshold
51	5	1015	Actuator error EGR-Valve; signal range check low
51	5	1017	Actuator EGR-Valve; open load
51	5	1023	Actuator error EGR-Valve; signal range check low
51	5	1223	Actuator EGR-Valve; open load
51	6	1014	Actuator error EGR-Valve; signal range check high
51	6	1022	Actuator error EGR-Valve; signal range check high
51	6	1224	Actuator EGR-Valve; over current
51	6	1230	Actuator error EGR-Valve; Overload by short-circuit
51	7	1016	Actuator position for EGR-Valve not plausible

SPN	FMI	KWP	Description
51	11	1231	Actuator error EGR-Valve; Power stage over temp due to high current
51	12	1018	Actuator EGR-Valve; powerstage over temperature
51	12	1021	Mechanical actuator defect EGR-Valve
51	12	1225	Actuator EGR-Valve; over temperature
94	1	474	Low fuel pressure; warning threshold exceeded
94	1	475	Low fuel pressure; shut off threshold exceeded
94	3	472	Sensor error low fuel pressure; signal range check high
94	4	473	Sensor error low fuel pressure; signal range check low
97	3	464	Sensor error water in fuel; signal range check high
97	4	465	Sensor error water in fuel; signal range check low
97	12	1157	Water in fuel level prefilter; maximum value exceeded
100	0	734	High oil pressure; warning threshold exceeded
100	0	735	High oil pressure; shut off threshold exceeded
100	1	736	Low oil pressure; warning threshold exceeded
100	1	737	Low oil pressure; shut off threshold exceeded
100	3	732	Sensor error oil pressure; signal range check high
100	4	733	Sensor error oil pressure sensor; signal range check low
102	2	88	Charged air pressure above warning threshold
102	2	89	Charged air pressure above shut off threshold
102	4	777	Sensor error charged air press.; signal range check low

SPN = Suspect Parameter Number

FMI = Failure Mode Identifier

KWP = Keyword Protocol

SPN	FMI	KWP	Description
105	0	996	High charged air cooler temperature; warning threshold exceeded
105	0	997	High charged air cooler temperature; shut off threshold exceeded
105	3	994	Sensor error charged air temperature; signal range check high
105	4	995	Sensor error charged air temperature; signal range check low
108	3	412	Sensor error ambient air press.; signal range check high
108	4	413	Sensor error ambient air press.; signal range check low
110	0	98	High coolant temperature; warning threshold exceeded
110	0	99	High coolant temperature; shut off threshold exceeded
110	3	96	Sensor error coolant temp.; signal range check high
110	4	97	Sensor error coolant temp.; signal range check low
111	1	101	Coolant level too low
132	11	1	Air flow sensor load correction factor exceeding the maximum drift limit; plausibility error
132	11	2	Air flow sensor load correction factor exceeding drift limit; plausibility error
132	11	3	Air flow sensor low idle correction factor exceeding the maximum drift limit
132	11	4	Air flow sensor load correction factor exceeding the maximum drift limit
157	3	877	Sesnor error rail pressure; signal range check high
157	4	878	Sensor error rail pressure; signal range check low

SPN	FMI	KWP	Description
168	0	1180	Physical range check high for battery voltage
168	1	1181	Physical range check low for battery voltage
168	2	47	High battery voltage; warning threshold exceeded
168	2	48	Low battery voltage; warning threshold exceeded
168	3	45	Sensor error battery voltage; signal range check high
168	4	46	Sensor error battery voltage; signal range check low
171	3	417	Sensor error environment temperature; signal range check high
171	4	418	Sensor error environment temperature; signal range check low
172	0	1182	Physical range check high for intake air temperature
172	1	1183	Physical range check low for intake air temperature
172	2	9	Sensor ambient air temperature; plausibility error
172	2	983	Intake air sensor; plausibility error
172	3	981	Sensor error intake air; signal range check high
172	4	982	Sensor error intake air sensor; signal range check low
174	0	481	High low fuel temperature; warning threshold exceeded
174	0	482	High Low fuel temperature; shut off threshold exceeded
175	0	740	Physical range check high for oil temperature
175	0	745	High oil temperature; warning threshold exceeded
175	0	746	High oil temperature; shut off threshold exceeded
175	1	741	Physical range check low for oil temperature

		ect Para e Mode I	meter Number dentifier
		word Prof	
SPN	FMI	KWP	Description
175	2	738	Sensor oil temperature; plausibility error
175	2	739	Sensor oil temperature; plausibility error oil temperature too high
175	3	743	Sensor error oil temperature; signal range check high
175	4	744	Sensor error oil temperature; signal range check low
190	0	389	Engine speed above warning threshold (FOC-Level 1)
190	2	421	Offset angle between crank- and camshaft sensor is too large
190	8	419	Sensor camshaft speed; disturbed signal
190	8	422	Sensor crankshaft speed; disturbed signal
190	11	390	Engine speed above warning threshold (FOC-Level 2)
190	12	420	Sensor camshaft speed; no signal
190	12	423	Sensor crankshaft speed; no signal
190	14	391	Engine speed above warning threshold (Overrun Mode)
190	14	1222	Camshaft- and Crankshaft speed sensor signal not available on CAN
411	0	791	Physical range check high for differential pressure Venturiunit (EGR)
411	1	792	Physical range check low for differential pressure Venturiunit (EGR)
411	3	795	Sensor error differential pressure Venturiunit (EGR); signal range check high
411	4	381	Physical range check low for EGR differential pressure
411	4	796	Sensor error differential pressure Venturiunit (EGR); signal range check low

SPN	FMI	KWP	Description
412	3	1007	Sensor error EGR cooler downstream temperature; signal range check high
412	4	1008	Sensor error EGR cooler downstream temperature; signal range check low
520	9	306	Timeout Error of CAN-Receive-Frame TSC1TR; Setpoint
597	2	49	Break lever mainswitch and break lever redundancy switch status not plausible
624	3	971	SVS lamp; short circuit to batt.
624	4	972	SVS lamp; short circuit to grd.
624	5	969	SVS lamp; open load
624	12	970	SVS lamp; powerstage over temperature
630	12	376	Access error EEPROM memory (delete)
630	12	377	Access error EEPROM memory (read)
630	12	378	Access error EEPROM memory (write)
639	14	84	CAN-Bus 0 "BusOff-Status"
651	3	580	Injector 1 (in firing order); short circuit
651	4	586	High side to low side short circuit in the injector 1 (in firing order)
651	5	568	Injector 1 (in firing order); interruption of electric connectior
652	3	581	Injector 2 (in firing order); short circuit
652	4	587	High side to low side short circui in the injector 2 (in firing order)
652	5	569	Injector 2 (in firing order); interruption of electric connectior
653	3	582	Injector 3 (in firing order); short circuit
653	4	588	High side to low side short circui in the injector 3 (in firing order)
653	5	570	Injector 3 (in firing order); interruption of electric connectior

SPN = Suspect Parameter Number

FMI =	FMI = Failure Mode Identifier					
KWP	= Key	word Pro	tocol			
SPN	FMI	KWP	Description			
654	3	583	Injector 4 (in firing order); short circuit			
654	4	589	High side to low side short circuit in the injector 4 (in firing order)			
654	5	571	Injector 4 (in firing order); interruption of electric connection			
676	11	543	Cold start aid relay error.			
676	11	544	Cold start aid relay open load			
677	3	956	Starter relay high side; short circuit to battery			
677	3	960	Starter relay low side; short circuit to battery			
677	4	957	Starter relay high side; short circuit to ground			
677	4	961	Starter relay low side; short circuit to ground			
677	5	958	Starter relay; no load error			
677	12	959	Starter relay; powerstage over temperature			
703	3	426	Engine running lamp; short circuit to battery			
703	4	427	Engine running lamp; short circuit to ground			
703	5	424	Engine running lamp; open load			
703	12	425	Engine running lamp; powerstage over temperature			
729	5	545	Cold start aid relay open load			
729	12	547	Cold start aid relay; over temperature error			
898	9	305	Timeout Error of CAN-Receive-Frame TSC1TE; Setpoint			
1079	13	946	Sensor supply voltage monitor 1 error (ECU)			
1080	13	947	Sensor supply voltage monitor 2 error (ECU)			

SPN	FMI	KWP	Description
1109	2	121	Engine shut off demand ignored
1136	0	1398	Physikal range check high for ECU temperature
1136	1	1399	Physikal range check low for ECU temperature
1136	3	1400	Sensor error ECU temperature; signal range check high
1136	4	1401	Sensor error ECU temperature; signal range check low
1176	3	849	Sensor error pressure sensor upstream turbine; signal range check high
1176	4	850	Sensor error pressure sensor downstream turbine; signal range check high
1180	0	1193	Physical range check high for exhaust gas temperature upstream turbine
1180	0	1460	Turbocharger Wastegate CAN feedback; warning threshold exceeded
1180	0	1462	Exhaust gas temperature upstream turbine; warning threshold exceeded
1180	1	1194	Physical range check low for exhaust gas temperature upstream turbine
1180	1	1461	Turbocharger Wastegate CAN feedback; shut off threshold exceeded
1180	1	1463	Exhaust gas temperature upstream turbine; shut off threshold exceeded
1180	3	1067	Sensor error exhaust gas temperature upstream turbine; signal range check high
1180	11	1066	Sensor exhaust gas temperature upstream turbine; plausibility error
1188	2	1414	Wastegate; status message from ECU missing

SPN = Suspect Parameter Number FMI = Failure Mode Identifier KWP = Keyword Protocol				
SPN	FMI	KWP	Description	
1188	7	1415	Wastegate actuator; blocked	
1188	11	1411	Wastegate actuator; internal error	
1188	11	1412	Wastegate actuator; EOL calibration not performed correctly	
1188	11	1416	Wastegate actuator; over temperature (> 145øC)	
1188	11	1417	Wastegate actuator; over temperature (> 135øC)	
1188	11	1418	Wastegate actuator; operating voltage error	
1188	13	1413	Wastegate actuator calibration deviation too large, recalibration required	
1231	14	85	CAN-Bus 1 "BusOff-Status"	
1235	14	86	CAN-Bus 2 "BusOff-Status"	
1237	2	747	Override switch; plausibility error	
1322	12	610	Too many recognized misfires in more than one cylinder	
1323	12	604	Too many recognized misfires in cylinder 1 (in firing order)	
1324	12	605	Too many recognized misfires in cylinder 2 (in firing order)	
1325	12	606	Too many recognized misfires in cylinder 3 (in firing order)	
1326	12	607	Too many recognized misfires in cylinder 4 (in firing order)	
2659	0	1524	Physical range check high for EGR exhaust gas mass flow	
2659	1	1525	Physical range check low for EGR exhaust gas mass flow	
2659	2	1523	Exhaust gas recirculation AGS sensor; plausibility error	

SPN	FMI	KWP	Description
2659	2	1527	AGS sensor temperature exhaust gas mass flow; plausibility error
2659	12	1526	Exhaust gas recirculation; AGS sensor has "burn off" not performed
2797	4	1337	Injector diagnostics; timeout error of short circuit to ground measurement cyl. Bank 0
2798	4	1338	Injector diagnostics; timeout error of short circuit to ground measurement cyl. Bank 1
2798	4	1339	Injector diagnostics; short circuit to ground monitoring Test in Cyl. Bank 0
2798	4	1340	Injector diagnostics; short circuit to ground monitoring Test in Cyl. Bank 1
3224	2	127	DLC Error of CAN-Receive-Frame AT1IG1 NOX Sensor (SCR-system upstream cat; DPF-system downstream cat); length of frame incorrect
3224	9	128	Timeout Error of CAN-Receive-Frame AT1IG1; NOX sensor upstream
3248	4	1047	Sensor error particle filter downstream temperature; signal range check low
3699	2	1616	DPF differential pressure sensor and a further sensor or actuator CRT system defective
3699	2	1617	Temperature sensor us. and ds. DOC simultaneously defect
3699	14	1615	Maximum stand-still-duration reached; oil exchange required
4765	0	1039	Physical range check high for exhaust gas temperature upstream (DOC)
4765	1	1042	Physical range check low for exhaust gas temperature upstream (DOC)

-	FMI = Failure Mode Identifier KWP = Keyword Protocol			
SPN	FMI	KWP	Description	
4766	0	1029	Physical range check high for exhaust gas temperature downstream (DOC)	
4766	1	1032	Physical range check low for exhaust gas temperature downstream (DOC)	
4768	2	1036	Sensor exhaust gas temperature upstream (DOC); plausibility error	
4768	3	1044	Sensor error exhaust gas temperature upstream (DOC); signal range check high	
4768	4	1045	Sensor error exhaust gas temperature upstream (DOC) signal range check low	
4769	2	1026	Sensor exhaust gas temperature downstream (DOC); plausibility error	
4769	3	1034	Sensor error exhaust gas temperature downstream (DOC); signal range check high	
4769	4	1035	Sensor error exhaust gas temperature downstream (DOC); signal range check low	
523006	3	34	Controller mode switch; short circuit to battery	
523006	4	35	Controller mode switch; short circuit to ground	
523008	1	648	Manipulation control was triggered	
523008	2	649	Timeout error in Manipulation control	
523009	9	825	Pressure Relief Valve (PRV) reached maximun allowed opening count	
523009	10	833	Pressure relief valve (PRV) reached maximun allowed open time	

SPN	FMI	KWP	Description
523212	9	171	Timeout Error of CAN-Receive-Frame ComEngPrt; Engine Protection
523216	9	198	Timeout Error of CAN-Receive-Frame PrHtEnCmd; pre-heat command, engine command
523240	9	179	Timeout CAN-message FunModCtl; Function Mode Control
523350	4	565	Injector cylinder-bank 1; short circuit
523352	4	566	Injector cylinder-bank 2; short circuit
523354	12	567	Injector powerstage output defect
523470	2	826	Pressure Relief Valve (PRV) forced to open; performed by pressure increase
523470	2	827	Pressure Relief Valve (PRV) forced to open; performed by pressure shock
523470	7	876	Maximum rail pressure in limp home mode exceeded (PRV)
523470	11	831	The PRV can not be opened at this operating point with a pressure shock
523470	11	832	Rail pressure out of tolerance range
523470	12	828	Open Pressure Relief Valve (PRV); shut off condition
523470	12	829	Open Pressure Relief Valve (PRV); warning condition
523470	14	830	Pressure Relief Valve (PRV) is open
523550	12	980	T50 start switch active for too long
523601	13	948	Sensor supply voltage monitor 3 error (ECU)
523603	9	126	Timeout Error of CAN-Receive-Frame AMB; Ambient Temperature Sensor

SPN = Suspect Parameter Number FMI = Failure Mode Identifier KWP = Keyword Protocol

SPN	FMI	KWP	Description
523605	9	300	Timeout Error of CAN-Receive-Frame TSC1AE; Traction Control
523606	9	301	Timeout Error of CAN-Receive-Frame TSC1AR; Retarder
523612	12	387	Internal software error ECU; injection cut off
523612	12	612	Internal ECU monitoring detection reported error
523612	12	613	Internal ECU monitoring detection reported error
523612	12	614	Internal ECU monitoring detection reported error
523612	12	615	Internal ECU monitoring detection reported error
523612	12	616	Internal ECU monitoring detection reported error
523612	12	617	Internal ECU monitoring detection reported error
523612	12	618	Internal ECU monitoring detection reported error
523612	12	619	Internal ECU monitoring detection reported error
523612	12	620	Internal ECU monitoring detection reported error
523612	12	621	Internal ECU monitoring detection reported error
523612	12	623	Internal ECU monitoring detection reported error
523612	12	624	Internal ECU monitoring detection reported error
523612	12	625	Internal ECU monitoring detection reported error
523612	12	627	Internal ECU monitoring detection reported error
523612	12	628	Internal ECU monitoring detection reported error

SPN	FMI	KWP	Description
523612	12	637	Internal ECU monitoring detection reported error
523612	12	1170	Internal software error ECU
523612	14	973	Softwarereset CPU SWReset_0
523612	14	974	Softwarereset CPU SWReset_1
523612	14	975	Softwarereset CPU SWReset_2
523613	0	856	Maximum positive deviation of rail pressure exceeded (RailMeUn0)
523613	0	857	Maximum positive deviation of rail pressure in metering unit exceeded (RailMeUn1)
523613	0	858	Railsystem leakage detected (RailMeUn10)
523613	0	859	Maximum negative deviation of rail pressure in metering unit exceeded (RailMeUn2)
523613	0	860	Negative deviation of rail pressure second stage (RailMeUn22)
523613	0	862	Maximum rail pressure exceeded (RailMeUn4)
523613	1	861	Minimum rail pressure exceeded (RailMeUn3)
523613	2	864	Setpoint of metering unit in overrun mode not plausible
523615	3	594	Metering unit (Fuel-System); short circuit to battery highside
523615	3	596	Metering unit (Fuel-System); short circuit to battery low side
523615	4	595	Metering unit (Fuel-System); short circuit to ground high side
523615	4	597	Metering Unit (Fuel-System); short circuit to ground low side
523615	5	592	Metering unit (Fuel-System); open load
523615	12	593	Metering unit (Fuel-System); powerstage over temperature
523619	2	488	Physical range check high for exhaust gas temperature upstrem (SCR-CAT)
523698	11	122	Shut off request from supervisory monitoring function

SPN = Suspect Parameter Number

KWP = k	(eywo	rd Prote	ocol
SPN	FMI	KWP	Description
523717	12	125	Timeout Error of CAN-Transmit-Frame AmbCon; Weather environments
523718	3	1488	SCR mainrelay; short circuit to battery (only CV56B)
523718	4	1489	SCR mainrelay; short circuit to ground (only CV56B)
523718	5	1486	SCR mainrelay; open load (only CV56B)
523718	12	1487	SCR mainrelay; powerstage over temperature (only CV56B)
523766	9	281	Timeout Error of CAN-Receive-Frame Active TSC1AE
523767	9	282	Timeout Error of CAN-Receive-Frame Passive TSC1AE
523768	9	283	Timeout Error of CAN-Receive-Frame Active TSC1AR
523769	9	284	Timeout Error of CAN-Receive-Frame Passive TSC1AR
523770	9	285	Timeout Error of CAN-Receive-Frame Passive TSC1DE
523776	9	291	Timeout Error of CAN-Receive-Frame TSC1TE - active
523777	9	292	Passive Timeout Error of CAN-Receive-Frame TSC1TE; Setpoint
523778	9	293	Active Timeout Errorof CAN-Receive-Frame TSC1TR
523779	9	294	Passive Timeout Error of CAN-Receive-Frame TSC1TR

SPN	FMI	KWP	Description
523788	12	299	Timeout Error of CAN-Transmit-Frame TrbCH; Status Wastegate
523793	9	202	Timeout Error of CAN-Receive-Frame UAA10; AGS sensor service message
523794	9	203	Timeout Error of CAN-Receive-Frame UAA11; AGS sensor data
523895	13	559	Check of missing injector adjustment value programming (IMA) injector 1 (in firing order)
523896	13	560	check of missing injector adjustment value programming (IMA) injector 2 (in firing order)
523897	13	561	check of missing injector adjustment value programming (IMA) injector 3 (in firing order)
523898	13	562	check of missing injector adjustment value programming (IMA) injector 4 (in firing order)
523910	6	1261	Air Pump; over current
523913	3	74	Sensor error glow plug control diagnostic line voltage; signal range check high
523913	4	75	Sensor error glow plug control diagnostic line voltage; signal range check low
523914	3	78	Glow plug control; short circuit to battery
523914	4	79	Glow plug control; short circuit to ground
523914	5	76	Glow plug control; open load
523914	5	1216	Glow plug control release line; short circuit error
523914	11	1217	Glow plug control; internal error
523914	12	77	Glow plug control; powerstage over temperature
523919	2	1378	Sensor air pump airpressure; plausibility error
523920	2	1379	Sensor exhaust gas back pressure burner; plausibility erro

SPN = Suspect Parameter Number
FMI = Failure Mode Identifier
KWP = Keyword Protocol

SPN	FMI	KWP	Description
523922	7	1262	Burner Shut Off Valve; blocked closed
523922	7	1264	Burner Shut Off Valve; blocked closed
523929	0	109	Fuel Balance Control integrator injector 1 (in firing order); maximum value exceeded
523929	1	115	Fuel Balance Control integrator injector 1 (in firing order); minimum value exceeded
523930	0	110	Fuel Balance Control integrator injector 2 (in firing order); maximum value exceeded
523930	1	116	Fuel Balance Control integrator injector 2 (in firing order); minimum value exceeded
523931	0	111	Fuel Balance Control integrator injector 3 (in firing order); maximum value exceeded
523931	1	117	Fuel Balance Control integrator injector 3 (in firing order); minimum value exceeded
523932	0	112	Fuel Balance Control integrator injector 4 (in firing order); maximum value exceeded
523932	1	118	Fuel Balance Control integrator injector 4 (in firing order); minimum value exceeded
523935	12	168	Timeout Error of CAN-Transmit-Frame EEC3VOL1; Engine send messages
523936	12	169	Timeout Error of CAN-Transmit-Frame EEC3VOL2; Engine send messages
523946	0	1158	Zero fuel calibration injector 1 (in firing order); maximum value exceeded

SPN	FMI	KWP	Description	
523946	1	1164	Zero fuel calibration injector 1 (in firing order); minimum value exceeded	
523947	0	1159	Zerofuel calibration injector 2 (in firing order); maximum value exceeded	
523947	1	1165	Zerofuel calibration injector 2 (in firing order); minimum value exceeded	
523948	0	1160	Zerofuel calibration injector 3 (in firing order); maximum value exceeded	
523948	1	1166	Zerofuel calibration injector 3 (in firing order); minimum value exceeded	
523949	0	1161	Zerofuel calibration injector 4 (in firing order); maximum value exceeded	
523949	1	1167	Zerofuel calibration injector 4 (in firing order); minimum value exceeded	
523960	0	1011	Physical range check high for EGR cooler downstream temp.	
523960	0	1458	High exhaust gas temperature EGR cooler downstream; warning threshold exceeded	
523960	1	1012	Physical range check low for EGR cooler downstream temp.	
523960	1	1459	High exhaust gas temperature EGR cooler downstream; shut off threshold exceeded	
523980	14	1187	Bad quality of reduction agent detected	
523981	11	918	Urea-tank without heating function (heating phase)	
523982	0	360	Powerstage diagnosis disabled; high battery voltage	
523982	1	361	Powerstage diagnosis disabled; low battery voltage	

SPN = Suspect Parameter Number
FMI = Failure Mode Identifier
KWP = Keyword Protocol

	· , · · ·		
SPN	FMI	KWP	Description
523988	3	1245	Charging lamp; short circuit to battery
523988	4	1246	Charging lamp; short circuit to ground
523988	5	1243	Charging lamp; open load
523988	12	1244	Charging lamp; over temp.
523998	4	1327	Injector cylinder bank 2 slave; short circuit
523999	12	1328	Injector powerstage output Slave defect
524014	1	1254	Air pressure glow plug flush line; below limit
524016	2	1259	Amount of air is not plausible to pump speed
524016	2	1260	Calculated amount of air is not plausible to HFM reading
524016	11	1258	HFM sensor; electrical fault
524021	11	1263	Burner fuel line pipe leak behind Shut Off Valve
524024	11	1302	Deviation of the exhaust gas temp. setpoint to actual value downstream (DOC) too high
524028	2	1431	CAN message PROEGRActr; plausibility error
524029	2	1432	Timeout Error of CAN-Receive-Frame ComEGRActr - exhaust gas recirculation positioner
524030	7	1440	EGR actuator; internal error
524031	13	1441	EGR actuator; calibration error

SPN	FMI	KWP	Description	
524032	2	1442	EGR actuator; status message EGRCust is missing	
524033	7	1443	EGR actuator; due to overload in Save Mode	
524034	3	1438	Disc separator; short circuit to battery	
524034	4	1439	Disc separator; short circuit to ground	
524034	5	1436	Disc Separator; open load	
524034	12	1437	Disc Separator; powerstage over temperature	
524035	12	1341	Injector diagnostics; time out error in the SPI communication	
524057	2	1505	Electric fuel pump; fuel pressure build up error	
524097	9	1663	Timeout error of CAN-Transmit-Frame DPFBrnAirPmpCtl	
524098	9	1664	Timeout error of CAN-Transmit-Frame ComDPFBrnPT	
524099	9	1665	Timeout error of CAN-Transmit-Frame ComDPFC1	
524100	9	1666	Timeout error of CAN-Transmit-Frame ComDPFHisDat	
524101	9	1667	Timeout error of CAN-Transmit-Frame ComDPFTstMon	

	SPN = Suspect Parameter Number FMI = Failure Mode Identifier			SPN	FMI	KWP	Description
KWP = K	KWP = Keyword Protocol			524114	9	1659	Timeout error CAN-Transmit
SPN 524102	FMI 9	KWP 1674	Description Timeout error of	524115	9	1660	Timeout error CAN-Transmit
	-	-	CAN-Receive-Frame ComRxDPFBrnAirPmpCtl	524116	9	1661	Timeout error CAN-Transmit
524103	9	1675	Timeout error of CAN-Receive-Frame ComRxDPFBrnAirPmp	524117	9	1662	Timeout error CAN-Transmit
524104	9	1676	Timeout error of CAN-Receive-Frame ComRxDPFCtl	524118	9	1672	Timeout error CAN-Receive ComRxCM1
524105	9	1668	Timeout error of CAN-Transmit-Frame ComEGRMsFlw	524119	9	1673	Timeout error CAN-Receive ComRxCustS
524106	9	1677	Timeout error of CAN-Receive-Frame ComRxEGRMsFlw1	524120	9	1682	Timeout error CAN-Receive ComRxSCRH
524107	9	1678	Timeout error of CAN-Receive-Frame ComRxEGRMsFlw2	524121	9	1683	Timeout error CAN-Receive ComRxTrbCh
524108	9	1669	Timeout error of CAN-Transmit-Frame ComEGRTVActr	524122	9	1684	Timeout error CAN-Receive ComRxUQSer
524109	9	1679	Timeout error of CAN-Receive-Frame ComRxEGRTVActr	524123	9	1685	Timeout error CAN-Receive ComSCRHtCt
524110	9	1670	Timeout error of CAN-Transmit-Frame ComETVActr	524124	9	1686	Timeout error CAN-Receive- ComTxAT1IM
524111	9	1680	Timeout error of CAN-Receive-Frame ComRxETVActr	524125	9	1687	Timeout error CAN-Receive- ComTxTrbCh/
524112	9	1671	Timeout ComITVActr				
524113	9	1681	Timeout error of CAN-Receive-Frame ComRxITVActr				

524114	9	1659	Timeout error of CAN-Transmit-Frame A1DOC
524115	9	1660	Timeout error of CAN-Transmit-Frame AT1S
524116	9	1661	Timeout error of CAN-Transmit-Frame SCR2
524117	9	1662	Timeout error of CAN-Transmit-Frame SCR3
524118	9	1672	Timeout error of CAN-Receive-Frame ComRxCM1
524119	9	1673	Timeout error of CAN-Receive-Frame ComRxCustSCR3
524120	9	1682	Timeout error of CAN-Receive-Frame ComRxSCRHtDiag
524121	9	1683	Timeout error of CAN-Receive-Frame ComRxTrbChActr
524122	9	1684	Timeout error of CAN-Receive-Frame ComRxUQSens
524123	9	1685	Timeout error of CAN-Receive-Frame ComSCRHtCtl
524124	9	1686	Timeout error of CAN-Receive-Frame ComTxAT1IMG
524125	9	1687	Timeout error of CAN-Receive-Frame ComTxTrbChActr

Perkins 404F-E22T Engine Fault Codes

SPN = Suspect Parameter Number
FMI = Failure Mode Identifier

SPN	FMI	Description
29	3	Accelerator Pedal Position 2: Voltage Above Normal
29	4	Accelerator Pedal Position 2: Voltage Below Normal
91	3	Accelerator Pedal Position 1: Voltage Above Normal
91	4	Accelerator Pedal Position 1: Voltage Below Normal
100	1	Engine Oil Pressure :Low- most severe (3)
108	3	Barometric Pressure : Voltage Above Normal
108	4	Barometric Pressure : Voltage Below Normal
110	3	Engine Coolant Temperature : Voltage Above Normal
110	4	Engine Coolant Temperature : Voltage Below Normal
110	15	Engine Coolant Temperature : High -least severe (1)
168	0	Battery Potential/ Power Input 1 : High- most severe (3)
168	3	Battery Potential/ Power Input 1: Voltage Above Normal
168	4	Battery Potential/ Power Input 1: Voltage Below Normal
172	3	Engine Air Inlet Temperature: Voltage Above Normal
172	4	Engine Air Inlet Temperature: Voltage Below Normal
190	0	Engine Speed : High- most severe (3)
190	8	Engine Speed : Abnormal Frequency, Pulse Width or Period
558	3	Accelerator Pedal1 Low Idle Switch: Voltage Above Normal
558	4	Accelerator Pedal1 Low Idle Switch: Voltage Below Normal
638	6	Engine Fuel Rack Actuator: Current Above Normal
639	14	J1939 Network#1: Special Instruction

SPN	FMI	Description	
723	3	Engine Speed Sensor #2: Voltage Above Normal	
723	4	Engine Speed Sensor #2: Voltage Below Normal	
723	8	Engine Speed Sensor#2: Abnormal Frequency, Pulse Width or Period"	
723	10	Engine Speed Sensor #2: Abnormal Rate of Change	
733	3	Engine Rack Position Sensor: Voltage Above Normal	
733	4	Engine Rack Position Sensor: Voltage Below Normal	
1485	7	ECU Main Relay : Not Responding Property	
2840	11	ECU Instance: Other Failure Mode	
2840	12	ECU Instance: Failure	
2840	13	ECU Instance: Out of Calibration	
2970	3	Accelerator Pedal 2 Low Idle Switch Voltage Above Normal	
2970	4	Accelerator Pedal 2 Low Idle Switch Voltage Below Normal	
3241	1	Exhaust Gas Temperature 1: Low- most severe (3)	
3241	3	Exhaust Gas Temperature 1: Voltage Above Normal	
241	4	Exhaust Gas Temperature 1: Voltage Below Normal	
3241	15	Exhaust Gas Temperature 1: High- least severe (1)	
3241	16	Exhaust Gas Temperature 1: High- moderate severity (2)	
3242	1	Particulate Trap Intake Gas Temp: Low- most severe(3)"	
3242	3	Particulate Trap Intake Gas Temp: Voltage Above Normal"	
3242	4	Particulate Trap Intake Gas Temp: Voltage Below Normal"	
3242	15	Particulate Trap Intake Gas Temp: High - least severe(1)"	
3242	16	Particulate Trap Intake Gas Temp: High-moderate severity (2)	

Perkins 404F-E22T Engine Fault Codes

SPN = Suspect Parameter Number
FMI = Failure Mode Identifier

SPN	FMI	Description
3251	3	Particulate Trap Differential Pressure: Voltage Above Normal
3251	4	Particulate Trap Differential Pressure: Voltage Below Normal
3473	7	Aftertreatmert #1 Failed to Ignite: Not Responding Properly
3473	11	Aftertreatmert #1 Failed to Ignite : Other Failure Mode
3484	0	Aftertreatmert #1 Ignition : High-most severe (3)
3484	3	Aftertreatmert #1 Ignition : Voltage Above Normal
3484	4	Aftertreatmert #1 Ignition : Voltage Below Normal
3556	6	Aftertreatmert 1 Hydrocarbon Doser 1: Current Above Normal
3610	3	Diesel Particulate Filter Outlet Pressure or 1: Voltage Above Normal"
3610	4	DieselParticulate Filter Outlet Pressure Sensor 1: Voltage Below Normal
3713	7	DPF Active Regeneration Inhibited Due to System Timeout: Not Responding Properly
3713	31	DPF Active Regeneration Inhibited Due to System Timeout
3719	0	Particulate Trap #1 Soot Load Percent: High- most severe (3)
3719	16	Particulate Trap #1 Soot Load Percent: High-moderate severity (2)
4016	6	High Current Auxiliary Power Relay 1: Current Above Normal
4201	3	Engine Speed Sensor #1: Voltage Above Normal

SPN	FMI	Description	
4201	4	Engine Speed Sensor #1: Voltage Below Normal	
4201	8	Engine Speed Sensor #1: Abnormal Frequency, Pulse \Nidth, or Period	
4201	10	Engine Speed Sensor #1: Abnormal Rate of Change	
4765	1	Aftertreatmert #1 Diesel Oxidation Catalyst Intake Gas Temperature: Low-most severe (3)	
4765	3	Aftertreatmert #1 Diesel Oxidation Catalyst Intake Gas Temperature: Voltage Above Normal	
4765	4	Aftertreatmert #1 Diesel Oxidation Catalyst Intake Gas Temperature: Voltage Below Normal	
4765	15	Aftertreatmert #1Diesel Oxidation Catalyst Intake Gas Temperature: High-least severe (1)	
4765	16	Aftertreatmert #1 Diesel Oxidation Catalyst Intake Gas Temperature: High-moderate severity (2)	
5487	3	Aftertreatmert 1 Burner Unit Combustion Chamber Temperature: Voltage Above Normal	
5487	4	Aftertreatmert 1 Burner Unit Combustion Chamber Temperature: Voltage Below Normal	
6581	6	Aftertreatmert 1 Hydrocarbon Doser 2 : Current Above Normal	

	Description		
16	Never crank synced at start		
91	FP low voltage		
92	FP high voltage		
107	MAP Low Voltage		
108	MAP High Pressure		
111	IAT higher than expected 1		
112	IAT low voltage		
113	IAT high voltage		
116	ECT higher than expected 1		
117	ECT/CHT Low Voltage		
118	ECT/CHT High Voltage		
121	TPS1 lower than TPS2		
122	TPS1 low voltage		
123	TPS1 high voltage		
127	IAT higher than expected 2		
129	BP low pressure		
134	EGO open/lazy pre-cat 1		
140	EGO open/lazy post-cat 1		
154	EGO open/lazy pre-cat 2/post-cat 1		
160	EGO open/lazy post-cat 2		
171	AL high gasoline bank1		
172	AL low gasoline bank1		
174	AL high gasoline bank2		
175	AL low gasoline bank2		
182	FT Gasoline Low Voltage		
183	FT Gasoline High Voltage		
187	FT Gaseaous fuel low voltage		
188	FT Gaseaous fuel high voltage		
217	ECT higher than expected 2		
219	Max govern speed override		
221	TPS1 higher than TPS2		
222	TPS2 low voltage		
223	TPS2 high voltage		
236	TIP Active		

Code	Description	
237	TIP Low Voltage	
238	TIP High Voltage	
261	Injector Loop Open or Low-side short to Ground	
262	Injector Coil Shorted	
264	Injector Loop Open or Low-side short to Ground	
265	Injector Coil Shorted	
267	Injector Loop Open or Low-side short to Ground	
268	Injector Coil Shorted	
270	Injector Loop Open or Low-side short to Ground	
271	Injector Coil Shorted	
273	Injector Loop Open or Low-side short to Ground	
274	Injector Coil Shorted	
276	Injector Loop Open or Low-side short to Ground	
277	Injector Coil Shorted	
279	Injector Loop Open or Low-side short to Ground	
280	Injector Coil Shorted	
282	Injector Loop Open or Low- side short to Ground	
283	Injector Coil Shorted	
285	Injector Loop Open or Low-side short to Ground	
286	Injector Coil Shorted	
288	Injector Loop Open or Low-side short to Ground	
289	Injector Coil Shorted	
Ford MSG-425 EFI Diagnostic Manual		
Genie part	number 162067GT	

Code	Description	
301	Emissions/catalyst damaging misfire	
302	Emissions/catalyst damaging misfire	
303	Emissions/catalyst damaging misfire	
304	Emissions/catalyst damaging misfire	
305	Emissions/catalyst damaging misfire	
306	Emissions/catalyst damaging misfire	
307	Emissions/catalyst damaging misfire	
308	Emissions/catalyst damaging misfire	
326	Knock 1 Excessive Signal	
327	Knock 1 sensor Open	
331	Knock 2 Excessive Signal	
332	Knock 2 sensor Open	
336	Crank sync noise	
337	Crank loss	
341	Cam sync noise	
342	Cam loss	
420	Gasoline cat monitor	
430	Gasoline cat monitor	
524	Oil pressure low	
562	Battery Voltage Low	
563	Battery Voltage High	
601	Flash checksum invalid	
604	RAM failure	
606	COP failure	
615	Start relay coil open	
616	Start relay control ground short	
617	Start relay coil short to power	
627	Fpump relay coil open	
628	FPump motor loop open or high-side shorted to ground	
628	Fpump relay control ground short	
629	FPump motor high-side shorted to power	
629	Fpump relay coil short to power	

Code	Description	
642	5VE1 low voltage	
643	5VE1 high voltage	
650	MIL open	
652	5VE2 low voltage	
653	5VE2 high voltage	
685	Relay Coil Open	
686	Relay Control ground short	
687	Relay coil short to power	
1111	Fuel rev limit	
1112	Spark rev limit	
1121	FPP1/2 simultaneous voltages out of range	
1122	FPP1/2 do not match each other or the IVS	
1151	CL high LPG	
1152	CL low LPG	
1153	CL high NG	
1154	CL low NG	
1155	CL high gasoline bank1	
1156	CL low gasoline bank1	
1157	CL high gasoline bank2	
1158	CL low gasoline bank2	
1161	AL high LPG	
1162	AL low LPG	
1163	AL high NG	
1164	AL low NG	
1165	LPG cat monitor	
1166	NG cat monitor	
1171	Megajector delivery pressure higher than expected	
1172	Megajector delivery pressure lower than expected	
Ford MS	G-425 EFI Diagnostic Manual	
Genie pa	art number 162067GT	

Code	Description
1173	Megajector comm lost
1174	Megajector voltage supply high
1175	Megajector voltage supply low
1176	Megajector internal actuator fault detection
1177	Megajector internal circuitry fault detection
1178	Megajector internal comm fault detection
1311	Misfire detected
1312	Misfire detected
1313	Misfire detected
1314	Misfire detected
1315	Misfire detected
1316	Misfire detected
1317	Misfire detected
1318	Misfire detected
1511	AUX analog PU1 high
1512	AUX analog PU1 low
1513	AUX analog PU2 high
1514	AUX analog PU2 low
1515	AUX analog PD1 high
1516	AUX analog PD1 low
1517	AUX analog PU3 high
1518	AUX analog PU3 low
1521	CHT higher than expected 1
1522	CHT higher than expected 2
1531	IVS/Brake/Trans-Park interlock failure
1541	AUX analog PUD1 high
1542	AUX analog PUD1 low
1543	AUX analog PUD2 high
1544	AUX analog PUD2 low
1545	AUX analog PUD3 high

Code	Description	
1551	AUX DIG1 high	
1552	AUX DIG1 low	
1553	AUX DIG2 high	
1554	AUX DIG2 low	
1555	AUX DIG3 high	
1556	AUX DIG3 low	
1561	AUX analog PD2 high	
1562	AUX analog PD2 low	
1563	AUX analog PD3 high	
1564	AUX analog PD3 low	
1611	5VE 1/2 simultaneous out of range	e
1612	RTI 1 loss	
1613	RTI 2 loss	
1614	RTI 3 loss	
1615	A/D loss	
1616	Invalid interrupt	
1621	Rx Inactive	
1622	Rx Noise	
1623	Invalid Packet Format	
1624	Shutdown Request	
1625	Shutdown Request	
1626	CAN Tx failure	
1627	CAN Rx failure	
1628	CAN addresss conflict failure	
Ford MS	G-425 EFI Diagnostic Manual	
Genie pa	art number	162067GT

Code	Description
1629	J1939 TSC1 message receipt lost
1630	J1939 ETC message receipt lost
1631	PWM1-Gauge1 open / ground short
1632	PWM1-Gauge1 short to power
1633	PWM2-Gauge2 open /ground short
1634	PWM2-Gauge2 short to power
1635	PWM3-Gauge3 open / ground short
1636	PWM3-Gauge3 short to power
1641	Buzzer control ground short
1642	Buzzer open
1643	Buzzer control short to power
1644	MIL control ground short
1645	MIL control short to power
2111	Unable to reach lower TPS
2112	Unable to reach higher TPS
2115	FPP1 higher than IVS limit
2116	FPP2 higher than IVS limit
2120	FPP1 invalid voltage and FPP2 disagrees with IVS
2121	FPP1 lower than FPP2
2122	FPP1 high voltage
2123	FPP1 low voltage
2125	FPP2 invalid voltage and FPP1 disagrees with IVS
2126	FPP1 higher than FPP2
2127	FPP2 low voltage
2128	FPP2 high voltage

Code	Description
2130	IVS stuck at-idle, FPP1/2 match
2131	IVS stuck off-idle, FPP1/2 match
2135	TPS1/2 simultaneous voltages out of range
2139	FPP1 lower than IVS limit
2140	FPP2 lower than IVS limit
2229	BP high pressure
2300	Primary Loop Open or Low-side Short to Ground
2301	Primary Coil Shorted
2303	Primary Loop Open or Low-side Short to Ground
2304	Primary Coil Shorted
2306	Primary Loop Open or Low-side Short to Ground
2307	Primary Coil Shorted
Ford MS	G-425 EFI Diagnostic Manual
Genie pa	rt number 162067GT

Code	Description	
2309	Primary Loop Open or Low-side Short to Ground	
2310	Primary Coil Shorted	
2312	Primary Loop Open or Low-side Short to Ground	
2313	Primary Coil Shorted	
2315	Primary Loop Open or Low-side Short to Ground	
2316	Primary Coil Shorted	
2318	Primary Loop Open or Low-side Short to Ground	
2319	Primary Coil Shorted	
2321	Primary Loop Open or Low-side Short to Ground	
2322	Primary Coil Shorted	
2618	Tach output ground short	
2619	Tach output short to power	
Ford MS	G-425 EFI Diagnostic Manual	
Genie part number 162067G		

Schematics

Observe and Obey:

- ✓ Troubleshooting and repair procedures shall be completed by a person trained and qualified on the repair of this machine
- ☑ Immediately tag and remove from service a damaged or malfunctioning machine.
- Repair any machine damage or malfunction before operating the machine.

Before Troubleshooting:

- Read, understand and obey the safety rules and operating instructions in the appropriate operator's manual on your machine.
- Be sure that all necessary tools and test equipment are available and ready for use.

About This Section

There are two groups of schematics in this section.

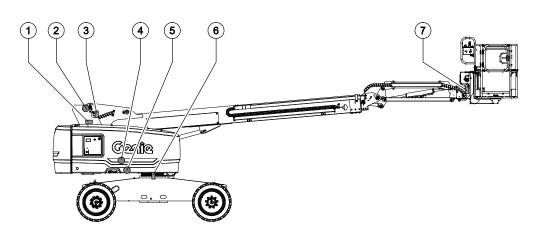
Electrical Schematics

Electrocution/burn hazard. Contact with electrically charged circuits could result in death or serious injury. Remove all rings, watches and other jewelry.

Hydraulic Schematics

A WARNING Bodi hydr burn conr the o

Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.

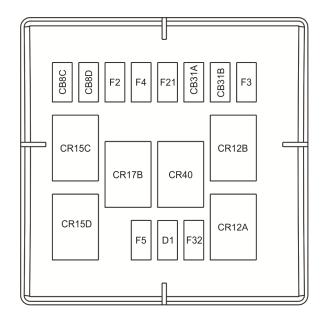

Electrical Symbol Legend

		H1	, FB	G1
Battery	Coil, solenoid or relay	Horn or alarm	Flashing beacon	Gauge
¥	(E)	L3	F1 →∽→→ 25A	BK , Je
Diode	Hour meter	LED	Fuse with amperage	Foot switch
	N.O.H.C. N.C.H.O.	PR1		
T-circuits connect	Limit Switch	Power relay	Coil with suppression	Fuel or RPM solenoid
	— • ТВ21		вк Ж	CB1 → ↑ → 15A
Connection - no terminal	nnection - no terminal T-circuits connect at Circuit		Quick disconnect terminal	Circuit breaker with amperage
		Si LENGINE 1 START		
Key switch	Toggle Switch DPDT	Toggle Switch SPDT	Pump or Motor	Tilt sensor
GH_P3		510Ω		
Horn button - normally open	Emergency Stop button - normally closed	Resistor with ohm value	Battery separator	Gauge sending unit
-\ [*] SW3 N.O.	-7⊾-7 <mark>+</mark> SW1 + N.O.	D— * SW2 ★ N.C.	CR4 N.O./	
Oil temperature switch normally open	Coolant temperature switch - normally open	Oil pressure switch normally closed	Control relay contact normally open	Diode starting aid, glow plug or flame ignitor

Hydraulic Symbols Legend

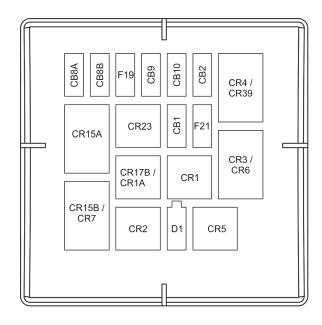
0.037 Incn 0.94 mm		X	
Orifice with size	Check valve	Shut off valve	Brake
Pump, fixed displacement	Pump, bi-directional variable displacement	Motor, bi-directional	Motor, 2 speed bi-directional
	E		
Cylinder, double acting	Pump, prime mover (engine or motor)	Shuttle valve. 2 position, 3 way	Differential sensing valve
	200 psi 13.8 bar		
Filter with bypass relief valve	Relief valve with pressure setting	Priority flow regulator valve	Solenoid operated proportional valve
Directional valve (mechanically activated)	Flow divider/combiner valve	Pilot operated 3 position, 3 way shuttle valve	Solenoid operated 2 position, 3 way directional valve
3000 psi 206.8 bar 3:1 			
Counterbalance valve with pressure and pilot ratio	Solenoid operated 3 position 4 way directional valve	Solenoid operated 3 position, 4 way proportional directional valve	Solenoid valve, 2 position 2 way

Limit Switch Location Legend



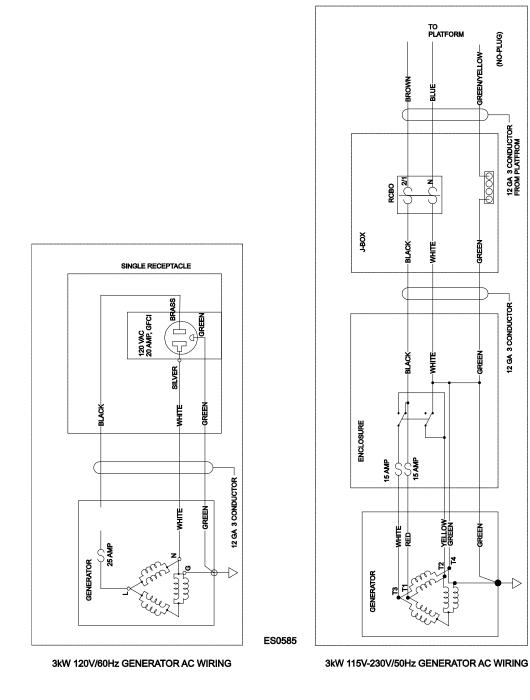
- 1 LSB1RS
- 2 String Potentiometer
- 3 LST3S
- 4 S17
- 5 S8O, S8S
- 6 LST10
- 7 S24

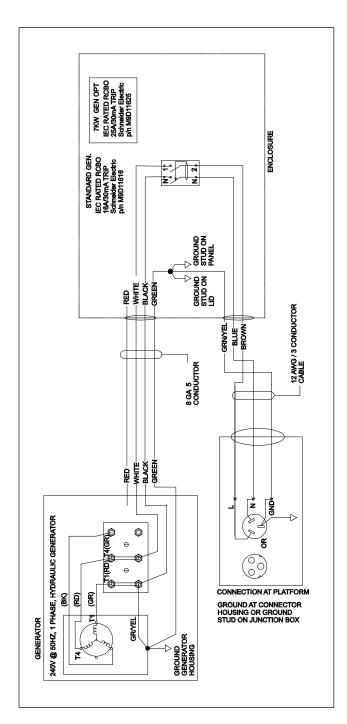
Limit Switches and Sensors


LSB1RS	Limit switch boom fully retracted - safety
String pot	Measures boom extension
LST3S	Limit switch boom angle - safety
S17	Boom angle sensor
S8O	Universal tilt sensor - operational
S8S	Universal tilt sensor - safety
LST1O	Limit switch turntable - operational
S24	Load cell - platform overload

Engine Relay Layout - All engines except Perkins 404F

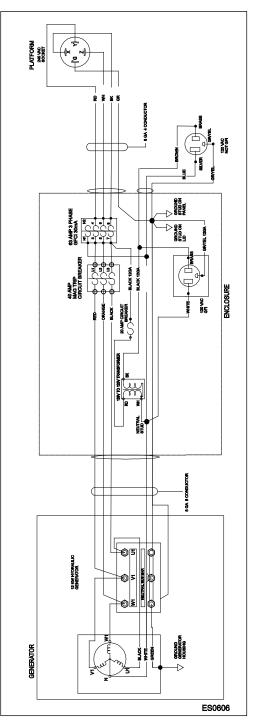
All engines				
Fuses				
F19	10A	Drive light		
F21	5A	Telematic option		
CB1	30A	Engine control power		
CB2	15A	System control logic power		
CB8A	30A	Glow plug 1		
CB8B	30A	Glow plug 2		
CB9	30A	Engine run / options/ acc		
CB10	20A	System control driver power		
Diode				
D1	6A	Alternator Ext.		
Relays				
CR1	Engine start			
CR2	Engine run			
CR3 / CR6	low RPM / Fuel pump			
CR4 / CR39	High RPM / Aux shut down			
CR5	Horn			
C15A	Engin	e glow plug A		
CR15B / CR7	Engine glow plug B / LPG solenoid			
CR17	Hydraulic oil cooler (option)			
CR23	Drive light			
CR39	Aux shut down			


Engine Relay Layout - Perkins 404F-22T



Perkins 404F-22T only (second relay box)				
Fuses				
F2	25A	Hyd / Start		
F3	1A	Relay power		
F4	5A	Eng ECU power		
F5	1A	Spare		
F21	10A	Fuel / Alt exct		
F32	15A	Heater		
Circuit Breakers				
CB8C	30A	Glow plug 1		
CB8D	30A	Glow plug 2		
CB31A	20A	Eng ECU 1		
CB32B	20A	Eng ECU 2		
Diode				
D1	6A	Alternator Ext.		
Relays				
CR12A	Engin	Engine ECU 1		
CR12B	Engin	Engine ECU 2		
CR15C	Glow	Glow plug 1		
CR15D	Glow	Glow plug 2		
CR17B / CR1A	Hyd fa	an / Start		
CR40	Fuel p	pump		

3 kW Generator Receptacle Wiring



7 kW Generator Receptacle Wiring

7KW WELDER GENERATOR AC WIRING, ES0605

12 kW Generator Receptacle Wiring

12kW WELDER GENERATOR AC SCHEMATIC AND WIRING

Connector Pin Legend

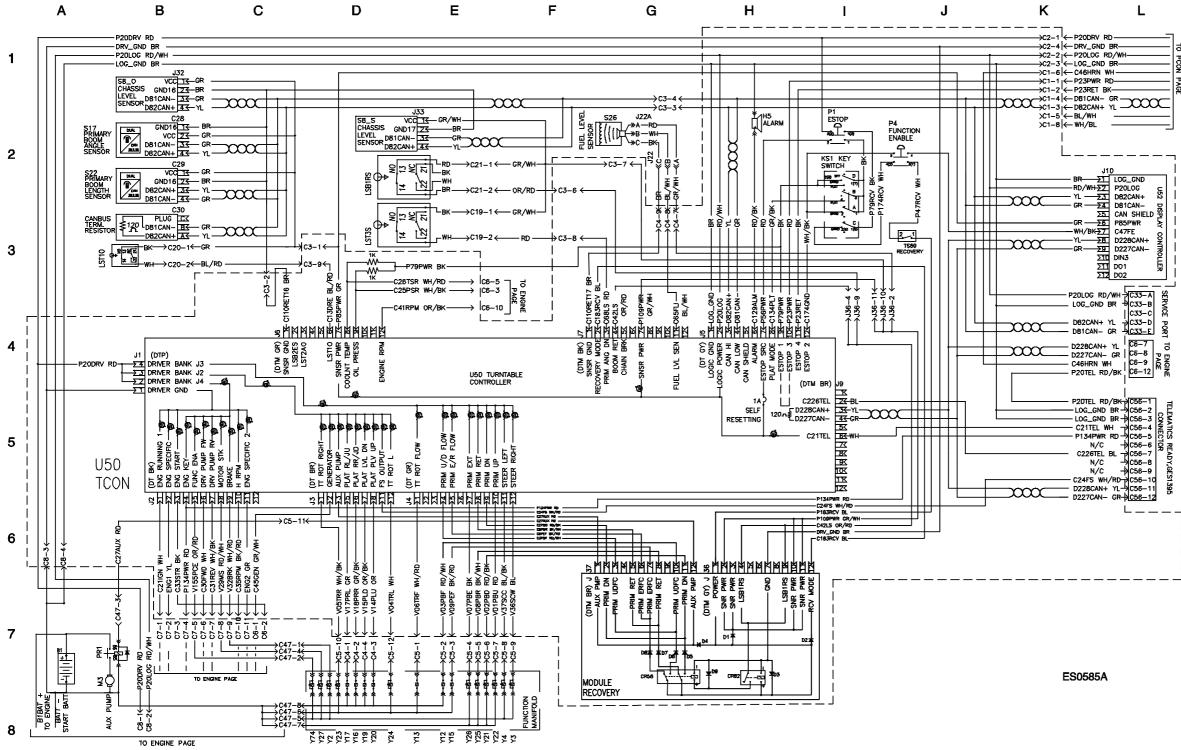
Number	Description	C43	VEC - blue - 8 pin
C1	Boom cable - Controls	C44	VEC - green - 8 pin
C2	Boom cable - Power	C45	VEC- gray - 2 pin
C3	Boom sensors	C46	VEC - black - 2 pin
C4	Function manifold	C47	Function enable
C5	Function manifold	C48	Brake
C6	Engine	C49	Motor stroke
C7	Engine	C50	Drive pump
C8	Engine - Power	C51	Engine ECG
C9	Footswitch	C52	Engine ECG
C10	Platform options	C53	Platform recirculation valve
C11	Platform manifold	C56	Telematics
C12	Boom cable (platform) - Controls	C57	ACP
C13	Drive lights	C61	VEC2-black- 8 pin
C14	Hydraulic oil cooler	C62	VEC2-black- 8 pin
C15	Flashing beacons	C63	VEC2-blue- 8 pin
C16	Engine diagnostic port	C64	VEC2-green- 8 pin
C17	Boom cable (platform) - power	C65	VEC2-gray- 8 pin
C18	D2.9 engine connector	C66	VEC2-black- 8 pin
C19	LST3S	C72	ECU
C20	LST10		
C21	LSB1RS		
C22	LSB2S		
C23	Generator from engine harness		
C24	Welder encloser		
C25	GM3.0 vehicle interface conn. 1		
C26	GM3.0 vehicle interface conn. 2		
C27	Load sense		
C28	Boom angle sensor		
C29	Boom extension string pot		
C30	Canbus terminating resistor		
C31	Crew alarm proximity switch		
C32	Crew alarm lights		
C33	GBOX service port		
C34	PBOX service port		
C35	404D speed sensor		
C36	404D fuel solenoid		
C37	Work lights		
C41	VEC - black - 8 pin		
C 4 0			

C42 VEC - gray - 8 pin

Connector Pin Legend

Number Description

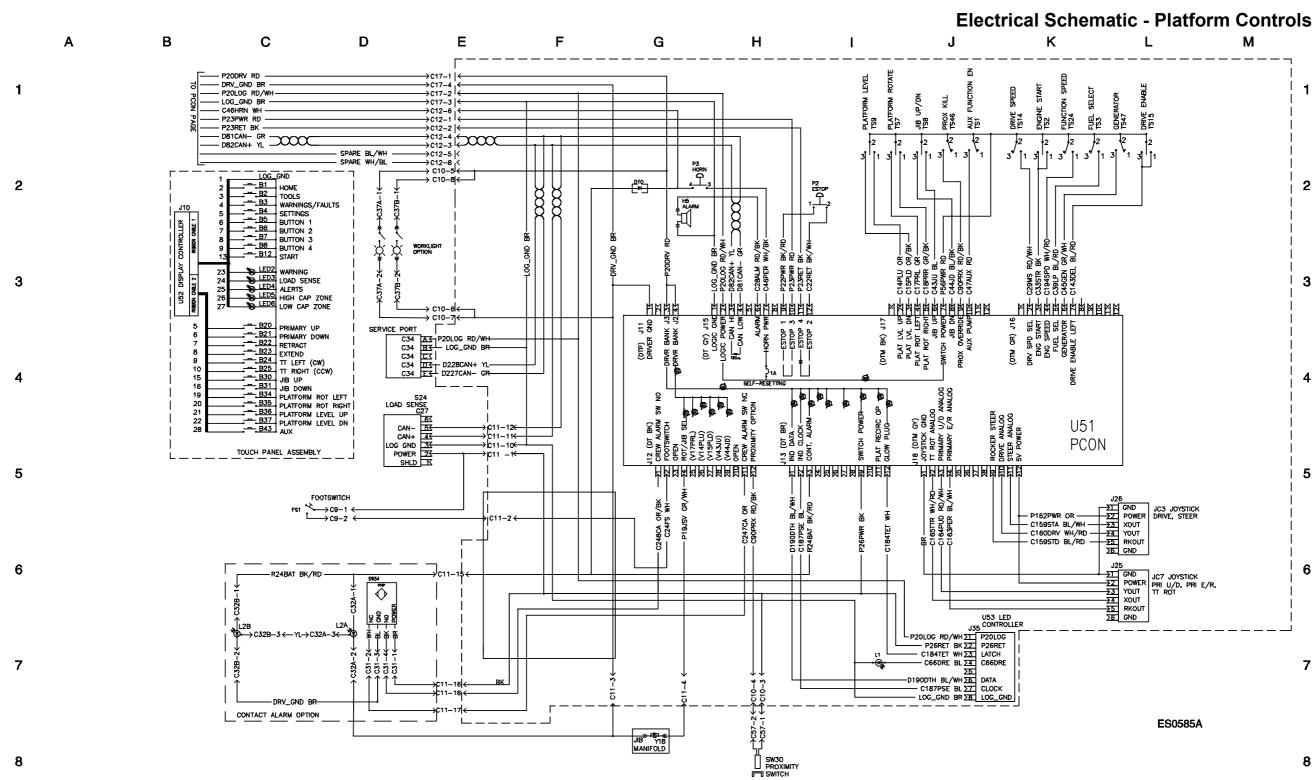
J1	TCON power
J2	TCON engine
J3	TCON functions
J4	TCON functions
J5	TCON logic
J6	TCON limit switches
J7	TCON limit switches
J8	TCON unused
J9	TCON communication
J10	DISCON
J12	PCON power
J13	PCON functions
J14	PCON functions
J15	PCON logic
J16	PCON toggles
J17	PCON toggles
J18	PCON joysticks
J19	PCON unused
J20	Boom angle sensor operational- not used
J21	Boom angle sensor safety- not used
J22	Fuel level sensor
J23	Platform level sensor operational- not used
J24	Platform level sensor safety- not used
J25	Boom function- joystick
J26	Drive function- joystick
J27	404D ECG - black
J28	404D ECG - gray
J29	D2.9 ECU 1
J30	D2.9 ECU 2
J31	D2.9 engine interface
J32	Chassis tilt sensor operational
J33	Chassis tilt sensor safety
J34	D2011 engine interface
J35	LED PCB
J36	Recovery module power
J37	Recovery module I/O


October 2019

Electrical Schematic - Turntable Controls

October 2019

Electrical Schematic - Turntable Controls

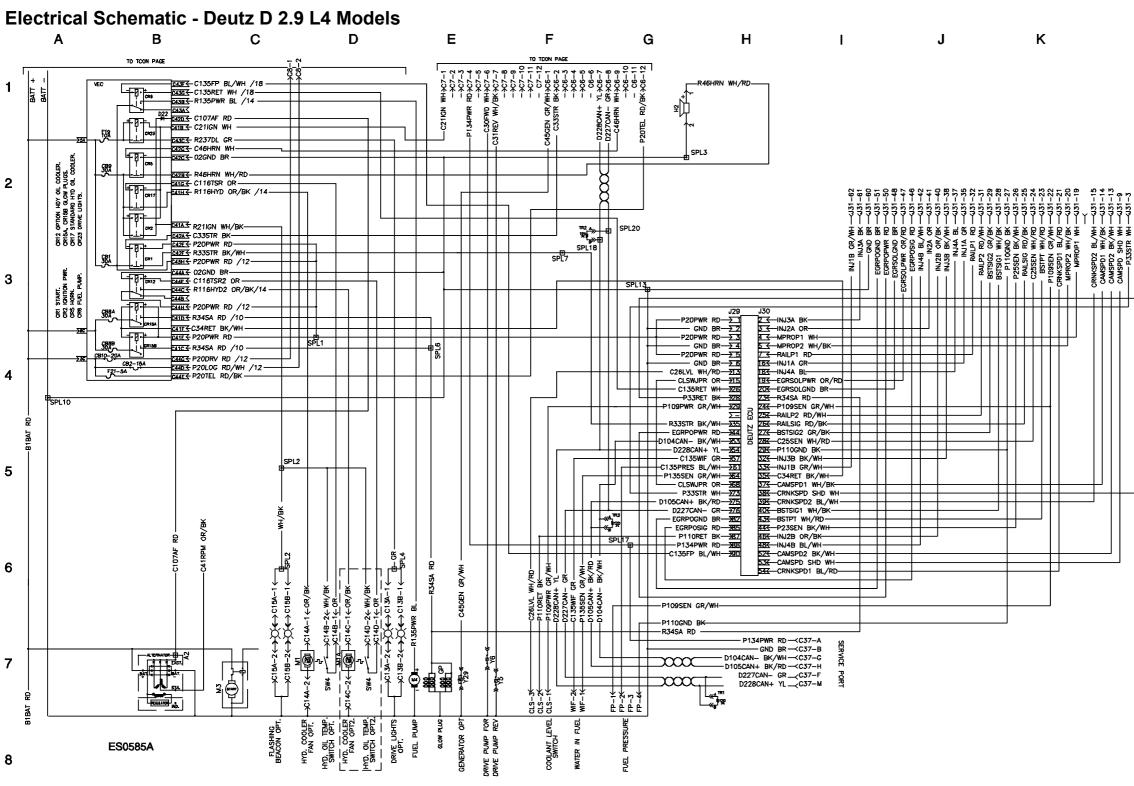

М

5

6

7

8



Electrical Schematic - Platform Controls

Electrical Schematic - Deutz D 2.9 L4 Models

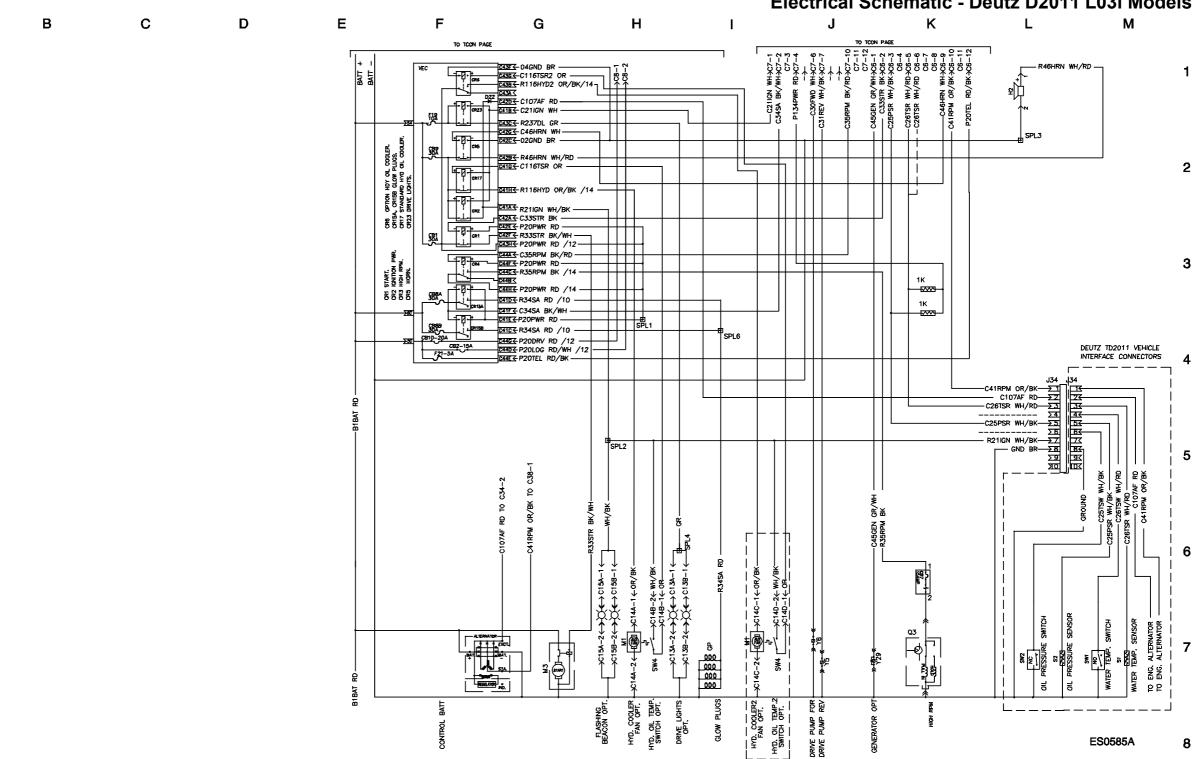
L	м		
		1	
		2	
		3	
		4	
		5	
		6	
		7	
		8	

Α

1

2

З

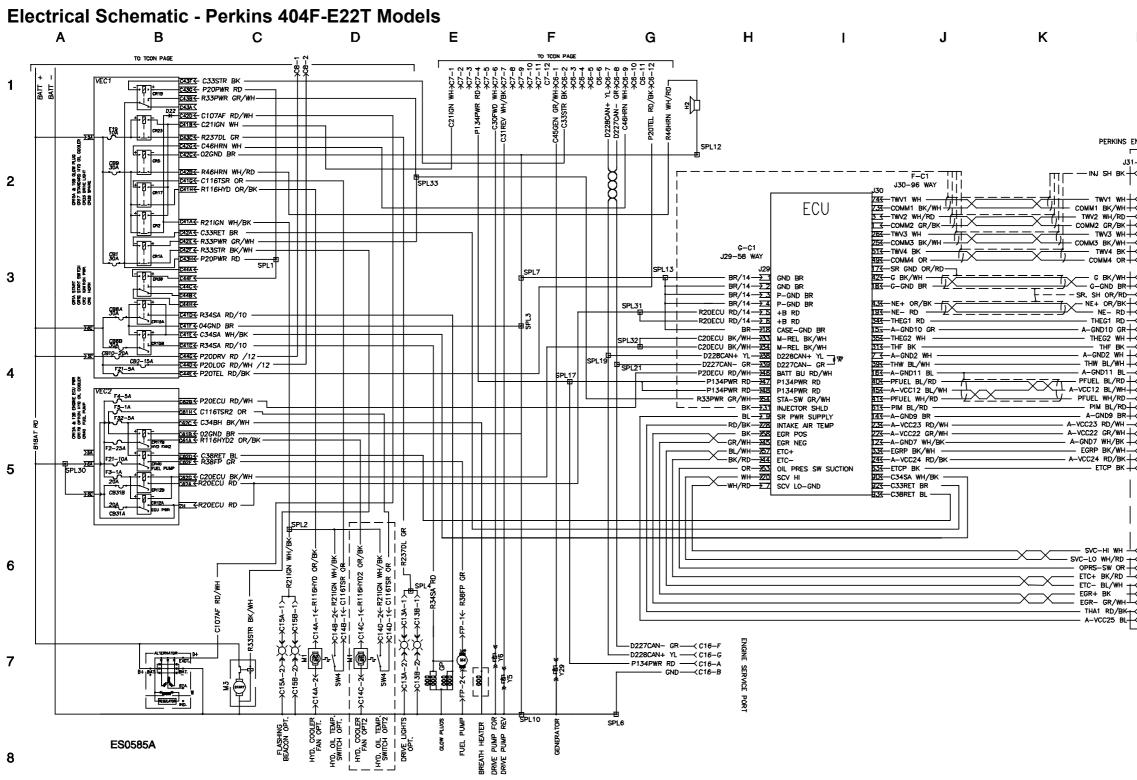

4

5

6

7

8


Electrical Schematic - Deutz D2011 L03i Models

Electrical Schematic - Deutz D2011 L03i Models

Electrical Schematic - Perkins 404F-E22T Models

140

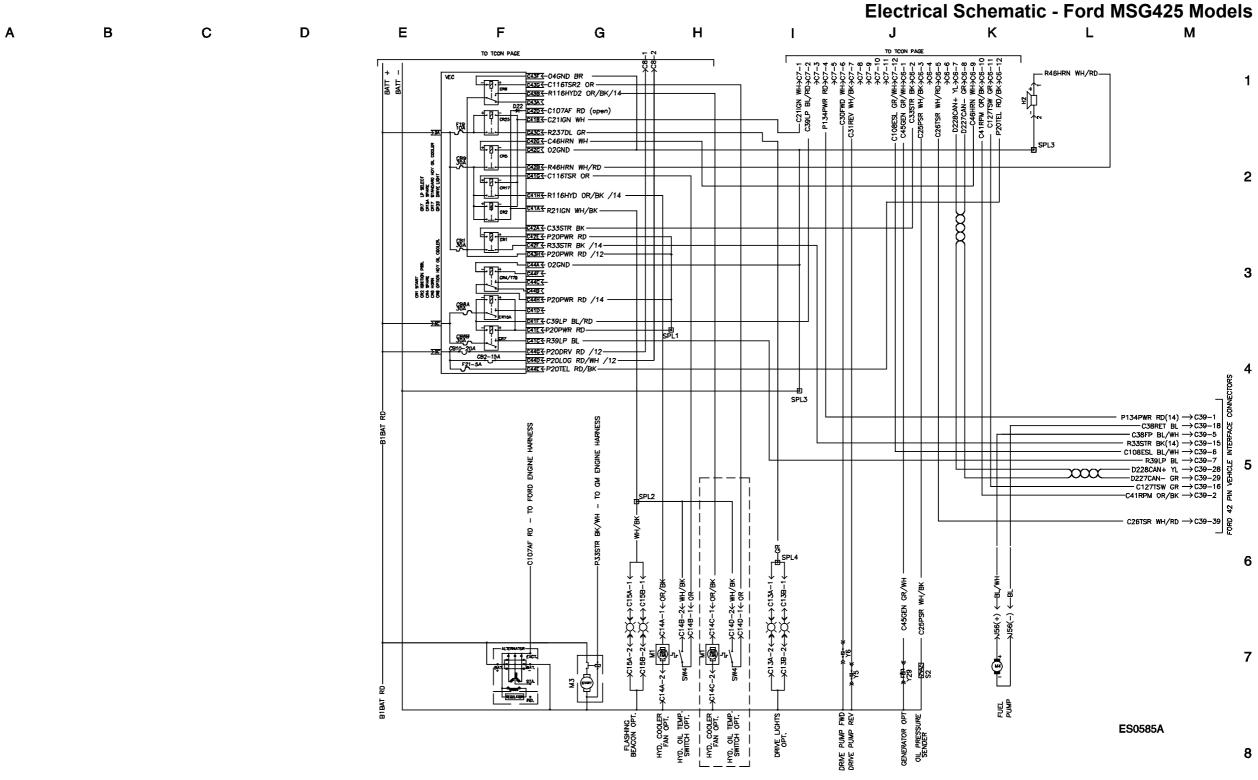
L

Μ

NGINE CONN F-C2 -47 WAY	IECTOR
-47 ₩AY ≺J31-38	
<j31-33 <j31-28 <j31-2 <j31-1 <j31-1 <j31-16 <j31-15 <j31-29 <j31-32< td=""><td> </td></j31-32<></j31-29 </j31-15 </j31-16 </j31-1 </j31-1 </j31-2 </j31-28 </j31-33 	
<131-25 <131-10 <131-9 <131-9 <131-16 <131-19 <131-7 <131-7 <131-7 <131-7 <131-7 <131-3 <131-22 <131-8 <131-8 <131-8 <131-8 <131-23	
<j31-27 <j31-24 <j31-30 <j31-6 <j31-6 <j31-13 <j31-12 <j31-15 <j31-18 <j31-14 <j31-31< td=""><td></td></j31-31<></j31-14 </j31-18 </j31-15 </j31-12 </j31-13 </j31-6 </j31-6 </j31-30 </j31-24 </j31-27 	
< J31-35 < J31-34 < J31-44 < J31-41 < J31-39 < J31-39 < J31-42 < J31-40 < J31-37 < J31-45 	

_		
3		
4		

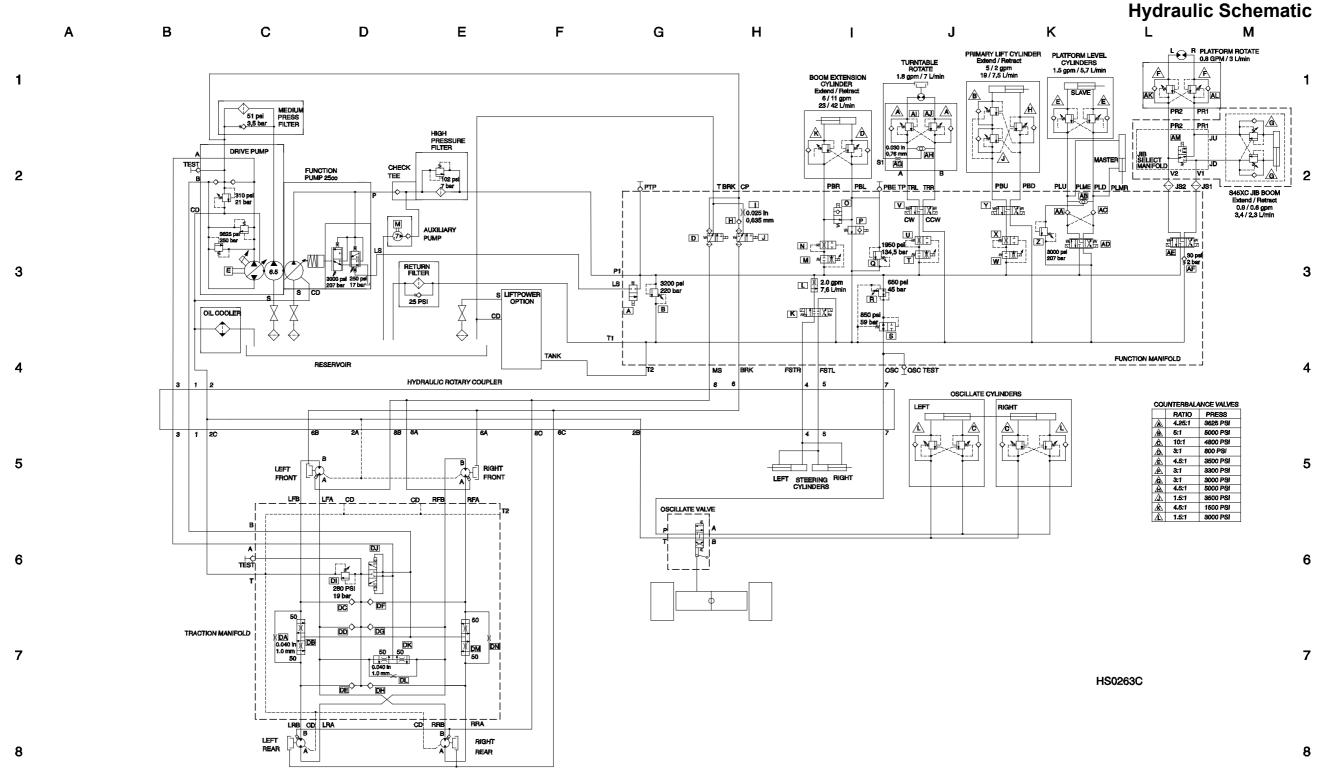
1


2

5

7

6


8

Genîe.

Electrical Schematics - Ford MSG425 Models

	RATIO	PRESS
	4.25:1	3625 PSI
A	5:1	5000 PSI
Â	10:1	4800 PSI
Â	3:1	800 PSI
Æ	4.5:1	3500 PSI
Æ	3:1	3300 PSI
Â	3:1	3000 PSI
A	4.5:1	5000 PSI
	1.5:1	3500 PSI
<u>∕</u> k	4.5.1	1500 PSI
Â	1.5:1	3000 PSI

Hydraulic Schematic

California Proposition 65

Operating, servicing and maintaining this equipment can expose you to chemicals including engine exhaust, carbon monoxide, phthalates, and lead, which are known to the State of California to cause cancer and birth defects or other reproductive harm. These chemicals can be emitted from or contained in other various parts and systems, fluids and some component wear by-products. To minimize exposure, avoid breathing exhaust, do not idle the engine except as necessary, service your equipment and vehicle in a well-ventilated area and wear gloves or wash your hands frequently when servicing your equipment or vehicle and after operation. For more information go to www.P65Warnings.ca.gov/passenger-vehicle.

Breathing diesel engine exhaust exposes you to chemicals known to the State of California to cause cancer and birth defects or other reproductive harm.

• Always start and operate the engine in a well-ventilated area.

• If in an enclosed area, vent the exhaust to the outside.

• Do not modify or tamper with the exhaust system.

• Do not idle the engine except as necessary. For more information go to

www.P65warnings.ca.gov/diesel.

www.genielift.com

Distributed By: