
 AVR 8-bit Microcontrollers

 AVR053: Internal RC Oscillator Calibration for
tinyAVR and megaAVR Devices

 APPLICATION NOTE

Introduction

This application note describes a fast and accurate method to calibrate the
internal RC oscillator of the Atmel® tinyAVR® and megaAVR® devices that
have ISP or JTAG interfaces. It offers firmware source code that allows
calibration using the AVRISP mkII, JTAGICE mkII, JTAGICE3, or Atmel-ICE
programming tools. It could also be adapted to production programmers.
These are covered in the “AT06015: Production Programming of Atmel
Microcontrollers” application note.

Many tinyAVR and megaAVR devices offer the possibility to run from an
internal RC oscillator. Typically, this oscillator can be user calibrated to within
±1% of the frequency specified in the datasheet. This feature offers
significant cost savings compared to using an external oscillator.

Factory calibration is performed at a fixed operating voltage and
temperature. The calibration technique in this application note can be
performed by the user to achieve higher accuracy than the standard
calibration offers, to match a specific operating voltage or temperature, or
even to tune the oscillator to a different frequency.

In some systems it may be necessary to perform run-time calibration of the
oscillator using an external crystal. This is covered in the “AVR055: Using a
32kHz XTAL for run-time calibration of the internal RC” application note.

Features

• Calibration using the following programming tools: AVRISP mkII,
JTAGICE mkII, JTAGICE3, and Atmel-ICE

• Support for tinyAVR and megaAVR devices with tunable RC oscillator
and ISP, or JTAG interface

• Adjustable internal RC oscillator frequency with ±1% accuracy typical
• Tune RC oscillator to any frequency at any operating voltage and

temperature within specification
• No external components required for calibration

Atmel-2555H-Internal-RC-Oscillator-Calibration-for-tinyAVR-and-megaAVR-Devices_AVR053_Application Note-09/2016

http://www.atmel.com/tools/avrispmkii.aspx
http://www.atmel.com/tools/avrjtagicemkii.aspx
http://www.atmel.com/tools/JTAGICE3.aspx
http://www.atmel.com/tools/atatmel-ice.aspx
http://www.atmel.com/images/atmel-42215-production-programming-of-atmel-microcontroller_ap-note_at06015.pdf
http://www.atmel.com/images/atmel-42215-production-programming-of-atmel-microcontroller_ap-note_at06015.pdf
http://www.atmel.com/images/doc8002.pdf
http://www.atmel.com/images/doc8002.pdf

Table of Contents

Introduction..1

Features.. 1

1. Internal RC Oscillator...3
1.1. User Calibration of the Internal RC Oscillator...3
1.2. Base Frequency... 3
1.3. Clock Selection...3
1.4. Tunable RC Oscillator.. 3
1.5. Oscillator Characteristics..4
1.6. RC Oscillator Revision History... 5

1.6.1. Version 1.x Oscillators... 6
1.6.2. Version 2.x Oscillators... 6
1.6.3. Version 3.x Oscillators... 6
1.6.4. Version 4.x Oscillators... 6
1.6.5. Version 5.x Oscillators... 6

2. Calibration..7
2.1. Calibration Protocol.. 7
2.2. Steps Involved in the Calibration Procedure.. 7
2.3. Calibration Firmware.. 8

2.3.1. File Organization..8
2.4. Binary Search...8

2.4.1. Binary Search of OSCCAL.. 9
2.4.2. Determining Oscillator Frequency... 9
2.4.3. Correcting Timing Inaccuracies..11

3. Steps to Calibrate Device Using AVR Tools.. 12
3.1. Assembling the Calibration Firmware...12
3.2. Command Line Tool..12
3.3. Batch Files..12
3.4. Performance of the Calibration Firmware...12
3.5. Calibration Clock Accuracy...13
3.6. Quick Start guide..13
3.7. Adding Support for New Devices..15

4. References.. 16

5. Revision History...17

Atmel AVR053: Internal RC Oscillator Calibration for tinyAVR and megaAVR Devices [APPLICATION
NOTE]

Atmel-2555H-Internal-RC-Oscillator-Calibration-for-tinyAVR-and-megaAVR-Devices_AVR053_Application Note-09/2016

2

1. Internal RC Oscillator
Most tinyAVR and megaAVR devices include a factory-calibrated internal RC oscillator. This is usually the
default clock source for the CPU and does not require any external components.

1.1. User Calibration of the Internal RC Oscillator
In production the internal RC oscillator is calibrated at a specific supply voltage, typically 5V or 3.3V.
Refer to the datasheet of the individual device for information about the operating voltage used during
calibration. The accuracy of the factory calibration is typically within ±3% or ±10%, depending on the
device (refer to the datasheet). If a design needs accuracy beyond what can be offered by the standard
factory calibration, it is possible to perform a secondary calibration of the RC oscillator. By doing this it is
possible to obtain a frequency accuracy typically within ±1% (±2% for devices that have a ±10% accuracy
from factory calibration). It is also possible to shift the frequency of the oscillator as part of the user
calibration procedure.

1.2. Base Frequency
The base frequency of an oscillator is defined as the oscillator frequency prior to any prescaling. Some
AVR® devices feature a system clock prescaler. The prescaler register (CLKPR) can be used to scale the
system clock with predefined factors. Also, the prescaler can typically be preset through the AVR device
fuses. For example, programming the CKDIV8 fuse on devices that offer this option will set up the CLKPR
to divide the system clock by eight. This can be done to make sure that the device is operated below a
maximum frequency specification. The CLKPR can be modified at run-time to change the frequency of
the system clock internally.

1.3. Clock Selection
The AVR device fuse settings control the system clock source being used. To calibrate the internal RC
oscillator, it is required to use the internal RC oscillator as the CPU clock source by setting the
appropriate fuse. An overview of the fuses is available in the datasheet of the specific device.

1.4. Tunable RC Oscillator
An RC oscillator whose frequency can be trimmed by software is called a tunable RC oscillator. In AVR
devices, the Oscillator Calibration Register (OSCCAL) is used for this purpose. It can be used to trim the
calibrated internal RC oscillator to remove process variations from the oscillator frequency, as shown in
the figure below. The OSCCAL register is one byte wide.

Atmel AVR053: Internal RC Oscillator Calibration for tinyAVR and megaAVR Devices [APPLICATION
NOTE]

Atmel-2555H-Internal-RC-Oscillator-Calibration-for-tinyAVR-and-megaAVR-Devices_AVR053_Application Note-09/2016

3

Figure 1-1. Calibrated 8MHz RC Oscillator Frequency vs. OSCCAL Value (ATmega8)

When an RC oscillator in a device is factory calibrated, the calibration byte is stored in the Signature Row
of the device. The calibration byte can vary from one device to the other, as the RC oscillator frequency is
process dependent. If a device has more than one oscillator, a calibration byte for each of the RC
oscillators is stored in the Signature Row.

In most devices, the default RC oscillator calibration byte is automatically loaded from the Signature Row
and copied into the OSCCAL register at start-up. For example, the default ATmega8 clock setting is the
internal 1MHz RC oscillator; for this device the calibration byte corresponding to the 1MHz RC oscillator is
automatically loaded at start-up. If the fuses are altered so that the 4MHz oscillator is used instead of the
default setting, the calibration byte must be loaded into the OSCCAL register manually. A programming
tool can be used to read the 4MHz calibration byte from the Signature Row and hence store it in a Flash
or EEPROM location, which is read by the main program and copied into OSCCAL at run-time.

1.5. Oscillator Characteristics
The frequency of the internal RC oscillator depends on the temperature and operating voltage. An
example of this dependency is in the figure below, which shows the frequency of the 8MHz RC oscillator
of the ATmega8. The frequency increases with increasing voltage, and decreases with increasing
operating temperature. These characteristics will vary from device to device. For details on a specific
device, refer to its datasheet.

Atmel AVR053: Internal RC Oscillator Calibration for tinyAVR and megaAVR Devices [APPLICATION
NOTE]

Atmel-2555H-Internal-RC-Oscillator-Calibration-for-tinyAVR-and-megaAVR-Devices_AVR053_Application Note-09/2016

4

Figure 1-2. Calibrated 8MHz RC Oscillator Frequency vs. VCC (ATmega8)

1.6. RC Oscillator Revision History
Different RC oscillators have been utilized in the AVR microcontroller throughout its history. An overview
of the RC oscillators with device examples is provided in the table below. The list is sorted by oscillator
type, which is also roughly equivalent to sorting by release date. Only tunable oscillators are listed in the
table. For oscillator details on a specific device, refer to the device datasheet.

Table 1-1. Oscillator Versions

Oscillator version Example device RC oscillator frequency [MHz] CKDIV PRSCK

1.1 ATtiny12 1.2 - -

1.2 ATtiny15 1.6 - -

2.0 ATmega163 1.0 - -

3.0 ATmega16 1.0, 2.0, 4.0, and 8.0 - -

3.1 ATmega128 1.0, 2.0, 4.0, and 8.0 XDIV (1) -

4.0 ATmega169 (2) 8.0 Yes Yes

4.1 ATtiny13 4.8 and 9.6 Yes Yes

4.2 ATtiny2313 4.8 and 9.6 Yes Yes

5.0 ATmega169P (2) 8.0 Yes Yes

1. The prescaler register is in these devices is named XDIV.
2. ATmega169 revision A-E uses oscillator version 4.0, while ATmega169P uses oscillator version 5.0.

Atmel AVR053: Internal RC Oscillator Calibration for tinyAVR and megaAVR Devices [APPLICATION
NOTE]

Atmel-2555H-Internal-RC-Oscillator-Calibration-for-tinyAVR-and-megaAVR-Devices_AVR053_Application Note-09/2016

5

1.6.1. Version 1.x Oscillators
This version is the earliest internal RC oscillator for AVR that can be calibrated. It is offered with
frequencies ranging from 1.2 to 1.6MHz. The calibration byte is stored in the Signature Row, but is not
automatically loaded at start-up. The loading of the OSCCAL register must be handled at run-time by the
firmware. The oscillator frequency is highly dependent on operating voltage and temperature in this
version.

1.6.2. Version 2.x Oscillators
This oscillator version has a nominal frequency of 1MHz. The dependency of oscillator frequency on
operating voltage and temperature is reduced significantly compared to version 1.x.

1.6.3. Version 3.x Oscillators
This version of the oscillator system offers multiple oscillator frequencies. Four different RC oscillators
with nominal frequencies 1, 2, 4, and 8MHz are present in the device. This version features automatic
loading of the 1MHz calibration byte from the Signature Row. Because four different RC oscillators are
present, four different calibration bytes are stored in the Signature Row. If frequencies other than the
default 1MHz are desired, the OSCCAL register should be loaded with the corresponding calibration byte
at run-time.

1.6.4. Version 4.x Oscillators
A single oscillator frequency of 8MHz is offered in version 4.0. For later 4.x versions, two frequencies are
offered: 4 and 8MHz for ATtiny2313, and 4.8 and 9.6MHz for the ATtiny13. The OSCCAL register is
changed so that only seven bits are used to tune the frequency for the selected oscillator. The MSB is not
used. Auto-loading of the default calibration value and system clock prescaler is present.

1.6.5. Version 5.x Oscillators
A single oscillator frequency of 8MHz is offered in version 5.0. Auto loading of the default calibration value
and system clock prescaler is present. All eight bits in the OSCCAL register are used to tune the oscillator
frequency. The OSCCAL register is split in two parts. The MSB of OSCCAL selects one of two
overlapping frequency ranges, while the seven least significant bits are used to tune the frequency within
this range. The ATmega406 has a frequency of 4MHz but is otherwise the same.

Atmel AVR053: Internal RC Oscillator Calibration for tinyAVR and megaAVR Devices [APPLICATION
NOTE]

Atmel-2555H-Internal-RC-Oscillator-Calibration-for-tinyAVR-and-megaAVR-Devices_AVR053_Application Note-09/2016

6

2. Calibration
This chapter is divided into calibration protocol and calibration firmware. The protocol can be adapted into
any test or programming tool to support calibration. The AVRISP mkII, JTAGICE mkII, JTAGICE3, and
Atmel-ICE programming tools support the implemented calibration protocol. The usage of these tools to
calibrate a device is described in later sections.

2.1. Calibration Protocol
The protocol for calibration is simple and fast to ensure that it can be used in production environments.
The pins used for programming the device, either the ISP interface or the JTAG interface, are also used
for calibration since they are most likely to be available in a final product (or on the PCB).

Two pins are used for calibration: MOSI and MISO on the ISP interface, or TDI and TDO on the JTAG
interface. To simplify the following explanations, only MOSI and MISO are mentioned, although these can
be replaced with TDI and TDO for the case of the JTAG interface.

The overall concept is that the programming tool generates the calibration clock (C-clock), and the device
uses this as a reference to calibrate its internal RC oscillator. When the device has completed the
calibration it signals “OK” to the programming tool on the MISO line.

The device is responsible for enabling a pull-up on the MOSI line, and the programming tool is
responsible for enabling a pull-up on the MISO line. Unfortunately the programming tool is in many cases
behind level converters, so the device sets also the MOSI line high. This is done to make sure that noise
is unlikely to corrupt the calibration.

The programming tool can use 1024 C-cycles (cycles on the C-clock) as a time-out period, as the
calibration routine is guaranteed to be completed within this number of C-cycles.

2.2. Steps Involved in the Calibration Procedure
1. The programming tool writes the calibration firmware into the device and possibly enables the

MISO pull-up, and releases the reset line. If the JTAG interface is used, the JTAG disable bit in
MCUCSR is set by the calibration firmware in the device. The calibration clock (approximately
32kHz) is applied on the MOSI line by the programming tool.

2. The device enables the internal pull-up on the MOSI line, sets the MISO line high, and starts
listening for the calibration clock on MOSI.

3. When the device detects the calibration clock a binary search is performed to find an OSCCAL
value that meets the criteria of 1% accuracy. If the binary search does not reveal a value that meets
this requirement, the neighboring values of the outcome of the binary search are tested to identify
one that does. If calibration fails the MISO line is set low and program flow goes to step 6.

4. The calibration value is stored in EEPROM (skipped if calibration fails).
5. The MISO line is toggled 8 times/4 cycles by the device. The toggling of the MISO line is performed

on the falling edge of the clock on the MOSI line (C-clock), but 5 to 10 CPU cycles delayed. In the
case of failing calibration the MISO line is not toggled.

6. If necessary, the JTAG interface is re-enabled and the device goes into an infinite loop.
7. If the device does not have an EESAVE fuse, the programmer must read back the calibration byte

from EEPROM, for later restoring when the calibration firmware has been erased from the flash
memory. If the device has an EESAVE fuse, this fuse can be set so that erasing the Flash does not
also erase the EEPROM. It is necessary to copy the calibration byte from EEPROM or FLASH to

Atmel AVR053: Internal RC Oscillator Calibration for tinyAVR and megaAVR Devices [APPLICATION
NOTE]

Atmel-2555H-Internal-RC-Oscillator-Calibration-for-tinyAVR-and-megaAVR-Devices_AVR053_Application Note-09/2016

7

the OSCCAL register at run-time. A routine for this must therefore be implemented in the final
firmware.

2.3. Calibration Firmware
The calibration code is written in AVRASM2 assembly, for Atmel Studio 7.0 (or later). The calibration
firmware is structured in a way so that it can easily be updated to support new tinyAVR or megaAVR
devices that have an ISP or JTAG interface. Also, the interface for calibration can be configured.

2.3.1. File Organization

File type File path and name(s) Description

Atmel Studio
solution file

rc_calib.atsln Solution file that should be opened in Atmel
Studio to begin working with the project

Root code file rc_calib/RC_Calibration.asm Root assembly file that includes all the other
files

Device specific
file

rc_calib/Device specific/all.asm Uses the device setting in Atmel Studio to
determine additional parameters for the
device, such as the oscillator version

Interface
specific files

rc_calib/Interface specific/
isp_atmelice_interface.inc,
jtag_jtagice3_interface.inc, etc.

Specify additional parameters that are specific
to a tool. Only one should be included in
RC_Calibration.asm and the others should
be commented out.

Common files rc_calib/Common/macros.inc,
main.asm, and memoryMap.inc

The root file, RC_Calibration.asm, refers to (includes) the following files:
1. A device specific file that defines additional parameters depending on which device is selected in

Atmel Studio. This file further includes the following:
1.1. A memory map file that defines where the code is located.
1.2. An oscillator version number. This parameter determines the initial step size used in the

binary search to account for the fact that some OSCCAL registers are 7 and some are 8
bits wide.

1.3. Redefinitions of bit and register names may also be present in the device specific file.
2. A calibration interface specific file. This file assigns the ISP or JTAG port, and pins with names

(labels) used in the main code. The calibration clock frequency is specified in this file.
3. The file defining the macros used, macros.inc.
4. The common calibration code file, main.asm.

The calibration code is structured to make it easy to change, in order to match a desired target device
and programming tool. Furthermore, the extensive use of macros ensures that the code has the smallest
possible footprint. Finally, the way devices and calibration interfaces are designed ensures that support
for new devices or interfaces can be implemented with minimal effort.

2.4. Binary Search
A binary search algorithm finds the position of a specified input value within an array sorted by values.
The sorted array space is repeatedly cut in half according to how the required value compares with the

Atmel AVR053: Internal RC Oscillator Calibration for tinyAVR and megaAVR Devices [APPLICATION
NOTE]

Atmel-2555H-Internal-RC-Oscillator-Calibration-for-tinyAVR-and-megaAVR-Devices_AVR053_Application Note-09/2016

8

middle element. The figure below explains this algorithm with an example to find value t = 11 from a
sorted array A.

Figure 2-1. Binary Search

2.4.1. Binary Search of OSCCAL
The search is based on a binary search method, a divide-and-conquer method:

1. The OSCCAL register is loaded with the initial value, which is half the maximum value of OSCCAL.
The initial value of OSCCAL is defined as the initial step size.

2. The frequency of the system clock is then compared to an external reference, the calibration clock.
2.1. If the frequency is within 1% accuracy limit, go to step 5.
2.2. If the system clock is found to be too fast the OSCCAL value is reduced, and if the clock is

too slow OSCCAL is increased, go to step 3.
3. The step size is assigned the value of half the previous step size.

3.1. If the step size is zero, the binary search has been unsuccessful. Go to step 4.
3.2. If the step size is not zero, the step size is added to or subtracted from the current value in

the OSCCAL register to increase or decrease the oscillator frequency, then go to step 2.
4. Test the four nearest neighbor-values of OSCCAL. This is done to compensate for the lack of a

strictly monotonic relationship between OSCCAL and oscillator frequency.
5. If a tested OSCCAL value is within the accuracy limits, continue to store value in EEPROM, signal

success and stop calibration.
6. If none of the tested OSCCAL values are within the limits (not expected), signal on MISO that the

calibration has failed by driving the line low and go to stop calibration.

2.4.2. Determining Oscillator Frequency
The comparison between the calibration clock (C-clock) and the internal RC oscillator is performed using
the 8-bit Timer/Counter0 (TC0). The 8-bit timer is used since it is present in all devices that have a
tunable RC oscillator. The idea is to time the duration of 40 C-clock cycles and compare the number of
timer ticks to predefined limits. The C-frequency is specified in the interface specific include file. The
method for determining the oscillator frequency is described in the flowchart below.

Atmel AVR053: Internal RC Oscillator Calibration for tinyAVR and megaAVR Devices [APPLICATION
NOTE]

Atmel-2555H-Internal-RC-Oscillator-Calibration-for-tinyAVR-and-megaAVR-Devices_AVR053_Application Note-09/2016

9

Figure 2-2. Flowchart of Algorithm Determining Relationship Between the C-clock and Internal RC Frequency

To cover the full range of oscillator frequencies from 1MHz to 9.6MHz, inspection of the TC0 overflow
(OVF) flag is used to expand the timer range by eight bits, effectively providing a 16-bit timer. The OVF
flag is inspected once every half-cycle (of the C-clock), which is sufficiently often to ensure that all TC0
OVF events are detected. In relation to the range of the 16-bit timer implemented, the worst-case for
overflow is at 9.6MHz where the OSCCAL register is loaded with 0xFF. In this case, the oscillator can be
100% above the specified frequency. The timer will in this case count to 23,541, which is still within the
range of the 16-bit timer.

Going in the other direction, the lowest oscillator frequency must also be considered. The lowest
obtainable frequency occurs when writing 0x00 to OSCCAL. In that case the frequency may be 50%
lower than the specified one. Since the TC0 OVF flag is inspected every half-cycle, there is potentially no
more than seven CPU-cycles to handle the OVF flag and detect the next C-clock edge - at a specified
frequency of 1MHz. This timing constraint can be met when the OVF flag is not set, but when the flag is
set eight cycles are required. This will cause a small error in the detection of the timing, but will not affect
the overall outcome: the oscillator will correctly be determined as too slow. However, these extremes are
very unlikely to be encountered due to the binary search method used.

Atmel AVR053: Internal RC Oscillator Calibration for tinyAVR and megaAVR Devices [APPLICATION
NOTE]

Atmel-2555H-Internal-RC-Oscillator-Calibration-for-tinyAVR-and-megaAVR-Devices_AVR053_Application Note-09/2016

10

2.4.3. Correcting Timing Inaccuracies
Since it is not possible to use interrupt driven detection for the C-clock edges in all devices, a polling
method is implemented. The consequence of this implementation is that edge detection can be delayed
by up to two CPU cycles. Potentially this can make the calibration fail to reach the desired accuracy of
1%. To compensate for this potential timing error, the limits are tightened by two timer-ticks (two CPU-
cycles). All calculations of limits and constants are performed by the preprocessor, which uses 64-bit
accuracy in AVRASM2. All values that cannot be represented (floats) are rounded towards a tighter
accuracy and will therefore not endanger the goal of ±1% accuracy for the oscillator.

Atmel AVR053: Internal RC Oscillator Calibration for tinyAVR and megaAVR Devices [APPLICATION
NOTE]

Atmel-2555H-Internal-RC-Oscillator-Calibration-for-tinyAVR-and-megaAVR-Devices_AVR053_Application Note-09/2016

11

3. Steps to Calibrate Device Using AVR Tools
The following sections explain how to calibrate the device using Atmel AVR programming tools.

3.1. Assembling the Calibration Firmware
The root assembly file for the calibration firmware is RC_Calibration.asm. This file is pointed to by the
Atmel Studio solution file rc_calib.atsln. In the RC_Calibration.asm file it is possible to specify the
desired calibration interface: Atmel-ICE, AVRISP mkII, JTAGICE3, or JTAGICE mkII. In addition, it is
possible to specify the desired calibration accuracy. Once these choices have been made, the project
should be built to produce the binary file rc_calib.hex in the default sub-directory. This file is downloaded
to the device through the programming tool.

Important:  It is important to ensure that the fuses are set up correctly before calibrating the
device. It is not possible to calibrate a device to 8.0MHz if the 1MHz RC oscillator is selected by
the fuse settings.

3.2. Command Line Tool
Calibration support in the Atmel-ICE, AVRISP mkII, JTAGICE3, and JTAGICE mkII tools is only supported
in the command-line tool atprogram. In the Batch file sub-directory, batch files are provided that use
atprogram to program the calibration code into the target device, perform the calibration and then
reprogram the device with the final firmware. The batch files perform calibration of the device through the
Atmel-ICE, AVRISP mkII, JTAGICE3, and JTAGICE mkII.

3.3. Batch Files
Since multiple commands are executed to perform various operations pertaining to calibration, typing
individual commands manually is a tedious process. Batch files are therefore used to automate the
process. Based on the programming tool and interface used, the batch file naming convention is:

atprogram_<toolname>_<interface>_rc_calib.bat

Example: atprogram_ATMELICE_ISP_rc_calib.bat

If the tool used is JTAGICE3 and interface is JTAG, for example, the file name would be:

atprogram_JTAGICE3_JTAG_rc_calib.bat

3.4. Performance of the Calibration Firmware
The code has been written with a focus on efficiency, since the entire calibration should be performed
quickly. The performance therefore depends on the size of the calibration firmware and the time it takes to
complete the calibration. The calibration firmware is typically a few hundred bytes, depending on the
target device and the interface used for calibration. The required time to program the firmware is thus
short. The calibration routine is completed in less than 1024 calibration cycles. The shortest duration is,
however, dependent on how fast the binary search algorithm can find a suitable OSCCAL value.

Atmel AVR053: Internal RC Oscillator Calibration for tinyAVR and megaAVR Devices [APPLICATION
NOTE]

Atmel-2555H-Internal-RC-Oscillator-Calibration-for-tinyAVR-and-megaAVR-Devices_AVR053_Application Note-09/2016

12

3.5. Calibration Clock Accuracy
The accuracy of the calibration is highly dependent on the accuracy of the external calibration clock. The
calibration clock frequency generated by AVR tools may vary. It is therefore important to measure the
exact frequency of the tool used and enter it into the interface-specific source file. Since resonators are
dependent on both operating voltage and temperature, the calibration frequency should be measured
when these parameters equal the conditions desired during calibration.

3.6. Quick Start guide
To quickly get started performing calibration on a supported device, follow these steps:

1. Download and install Atmel Studio 7.0 (or later) from http://www.atmel.com.
2. Download and unzip the code for this application note, AVR053 (any location can be used, here

called \AVR053).
3. Open the rc_calib.atsln project/solution in Atmel Studio.
4. Select the target device in Atmel Studio (the default device is ATmega168PB). Many, but not all,

tinyAVR and megaAVR devices are supported.
5. Click on the RC_Calibration.asm icon to open the file.
6. Select the desired interface by removing the semicolon from one of the include lines in

RC_Calibration.asm as shown in the figure below.
Figure 3-1. Selecting the Interface in RC_Calibration.asm

7. Measure the frequency of the calibration clock with a frequency counter or an oscilloscope.
7.1. The calibration clock is generated on the MOSI pin on an ISP tool or the TDI pin on a JTAG

tool.
7.2. To obtain this signal on the tool, connect the tool to a PC and open a command shell

window (a DOS prompt) and navigate to the directory C:\Program Files (x86)\Atmel
\Studio\7.0\atbackend. Note that the exact path to the atbackend directory may vary
slightly from this depending on the versions of Atmel Studio and Windows® and how Atmel
Studio was installed. Type in “atprogram –t <toolname> -d <devicename> calibrate”, and
press enter. An example command line is shown in the figure below. This will cause the
calibration clock to be generated for a few seconds.

Atmel AVR053: Internal RC Oscillator Calibration for tinyAVR and megaAVR Devices [APPLICATION
NOTE]

Atmel-2555H-Internal-RC-Oscillator-Calibration-for-tinyAVR-and-megaAVR-Devices_AVR053_Application Note-09/2016

13

Figure 3-2. Command to Obtain Calibration Clock on the Tool

7.3. The error “no response from target” may occur, but it is OK in this case because the
purpose of the command is to force the tool to generate the calibration clock so it can be
measured accurately.

8. Change the line in the interface specific file “.EQU CALIB_CLOCK_FREQ = XXXX” to reflect the
measured frequency in Hz. An example is shown in the figure below for the measured frequency of
32092Hz.
Figure 3-3. Updating Calibration Clock Frequency

9. In the RC_Calibration.asm file, specify the desired target frequency (.EQU TARGET_FREQ =
XXXX) and the desired accuracy (.EQU ACCURACY = XX).
Note:  If the accuracy is too tight it may not be possible to calibrate the device and the calibration
will fail. Refer to the device data sheet for achievable accuracy.

10. Save all modified files in Atmel Studio by clicking on "File" then "Save All".
11. Click on "Build" then "Build rc_calib" to assemble the project and generate the hex file that should

be programmed into the device.
12. Exit Atmel Studio.
13. Using any text editor, open the batch file corresponding to the chosen programming tool and

interface.
14. Edit the file to match the desired device, by modifying the "@SET CPU=xxxx" line, for example

"@SET CPU=atmega168pb".
15. If the JTAG interface is going to be used for calibration, note that the reset line must be available for

the Atmel-ICE, JTAGICE3, or JTAGICE mkII.
16. Edit the fuse settings to the desired settings for the device as shown in the figure below by

modifying the argument to CAL_FUSES. Make sure that the settings correspond with the desired
calibration frequency: select 8MHz internal RC if calibrating the device to 8MHz. Verify that the
"Watchdog Timer always on" fuse is not set.

Atmel AVR053: Internal RC Oscillator Calibration for tinyAVR and megaAVR Devices [APPLICATION
NOTE]

Atmel-2555H-Internal-RC-Oscillator-Calibration-for-tinyAVR-and-megaAVR-Devices_AVR053_Application Note-09/2016

14

Figure 3-4. Fuse Settings

17. If the install path for Atmel Studio differs from the one used in the batch file, change the path to the
relevant atprogram.exe file as shown in the figure below.
Figure 3-5. Tool Path

18. For production calibration the @PAUSE command at successful calibration can be removed.
19. Save the batch file.
20. Connect the tool to the target board. Power the target board and tool. Verify that the serial or USB

cable is attached between the tool and the PC.
21. Open a command shell window (a DOS prompt), navigate to the directory “rc_calib\Batch file\”,

and execute the appropriate batch file (atprogram_ATMELICE_ISP_rc_calib.bat,
atprogram_JTAGICE3_ISP_rc_calib.bat, etc.).

22. Wait several seconds for the calibration to complete. The batch file can also be modified to program
custom firmware rather than the calib_test.hex firmware after the calibration. Be aware that the new
calibration value should be loaded into the OSCCAL register at run-time by the firmware.

3.7. Adding Support for New Devices
To add support for a new device, it is necessary to add appropriate definitions for the device to the
all.asm file. The "#ifdef #endif" block for an old device can be copied, pasted, and edited in the all.asm
file to adapt it to the new device's characteristics. The checklist below can be used when adapting a file to
a new device. The checklist uses the ATmega8535 as an example:

Copy the "#ifdef #endif" block for a pin and feature compatible device.

The ATmega8535 is pin compatible with the ATmega16, though the ATmega8535 has no JTAG interface.
The "#ifdef _M16DEF_INC #endif" block in all.asm is copied and renamed "#ifdef _M8535DEF_INC
#endif”.

Change the oscillator version to match the oscillator version of the new device.

Verify that it assembles correctly. If it does not, this is most likely due to changed register or bit names of
ports, pins, or timers. ATtiny13 is implemented as a reassignment of ATtiny12, and can be used as a
reference for reassigning names.

Atmel AVR053: Internal RC Oscillator Calibration for tinyAVR and megaAVR Devices [APPLICATION
NOTE]

Atmel-2555H-Internal-RC-Oscillator-Calibration-for-tinyAVR-and-megaAVR-Devices_AVR053_Application Note-09/2016

15

4. References
AVR054: Run-time Calibration of the Internal RC Oscillator

http://www.atmel.com/Images/doc2563.pdf

AVR055: Using a 32kHz XTAL for Run-time Calibration of the Internal RC

http://www.atmel.com/Images/doc8002.pdf

Atmel AVR053: Internal RC Oscillator Calibration for tinyAVR and megaAVR Devices [APPLICATION
NOTE]

Atmel-2555H-Internal-RC-Oscillator-Calibration-for-tinyAVR-and-megaAVR-Devices_AVR053_Application Note-09/2016

16

http://www.atmel.com/Images/doc2563.pdf
http://www.atmel.com/Images/doc8002.pdf

5. Revision History
Doc Rev. Date Comments

H 09/2016 Complete modernization and refurbishing of document.

G 05/2006

F 03/2006

E 01/2006 Updated details on handshaking and removed duplicate info in 2.7.1

Atmel AVR053: Internal RC Oscillator Calibration for tinyAVR and megaAVR Devices [APPLICATION
NOTE]

Atmel-2555H-Internal-RC-Oscillator-Calibration-for-tinyAVR-and-megaAVR-Devices_AVR053_Application Note-09/2016

17

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2016 Atmel Corporation. / Rev.: Atmel-2555H-Internal-RC-Oscillator-Calibration-for-tinyAVR-and-megaAVR-Devices_AVR053_Application Note-09/2016

Calibration of internal RC oscillator
Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, AVR®, tinyAVR®, megaAVR®, and others are registered trademarks or trademarks of
Atmel Corporation in U.S. and other countries. Windows® is a registered trademark of Microsoft Corporation in U.S. and or other countries. Other terms and product
names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND
CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to
update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive
applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any
applications where the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without
an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the
operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments
unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically
designated by Atmel as automotive-grade.

https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
http://www.atmel.com

	Introduction
	Features
	Table of Contents
	1. Internal RC Oscillator
	1.1. User Calibration of the Internal RC Oscillator
	1.2. Base Frequency
	1.3. Clock Selection
	1.4. Tunable RC Oscillator
	1.5. Oscillator Characteristics
	1.6. RC Oscillator Revision History
	1.6.1. Version 1.x Oscillators
	1.6.2. Version 2.x Oscillators
	1.6.3. Version 3.x Oscillators
	1.6.4. Version 4.x Oscillators
	1.6.5. Version 5.x Oscillators

	2. Calibration
	2.1. Calibration Protocol
	2.2. Steps Involved in the Calibration Procedure
	2.3. Calibration Firmware
	2.3.1. File Organization

	2.4. Binary Search
	2.4.1. Binary Search of OSCCAL
	2.4.2. Determining Oscillator Frequency
	2.4.3. Correcting Timing Inaccuracies

	3. Steps to Calibrate Device Using AVR Tools
	3.1. Assembling the Calibration Firmware
	3.2. Command Line Tool
	3.3. Batch Files
	3.4. Performance of the Calibration Firmware
	3.5. Calibration Clock Accuracy
	3.6. Quick Start guide
	3.7. Adding Support for New Devices

	4. References
	5. Revision History

