
Section 24. Inter-Integrated Circuit (I2C)
This section of the manual contains the following topics:

24.1 Overview.. 24-2

24.2 Control and Status Registers ... 24-4

24.3 I2C Bus Characteristics ... 24-15

24.4 Enabling I2C Operation.. 24-18

24.5 Communicating as a Master in a Single Master Environment 24-22

24.6 Communicating as a Master in a Multi-Master Environment 24-36

24.7 Communicating as a Slave.. 24-38

24.8 I2C Bus Connection Considerations .. 24-54

24.9 I2C Operation in Power-Saving Modes.. 24-56

24.10 Effects of a Reset .. 24-57

24.11 Pin Configuration In I2C Mode... 24-57

24.12 Using An External Buffer With The I2C Module... 24-57

24.13 Related Application Notes ... 24-58

24.14 Revision History... 24-59
© 2007-2016 Microchip Technology Inc. DS60001116G-page 24-1

PIC32 Family Reference Manual
24.1 OVERVIEW

The Inter-Integrated Circuit (I2C) module is a serial interface useful for communicating with other
peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, dis-
play drivers, analog-to-digital converters, etc.

The I2C module can operate in any one of the following I2C systems:

• As a slave device

• As a master device in a single master system (slave may also be active)

• As a master or slave device in a multi-master system (bus collision detection and arbitration
available)

The I2C module contains independent I2C master logic and I2C slave logic, each generating
interrupts based on their events. In multi-master systems, the software is simply partitioned into
a master controller and a slave controller.

When the I2C master logic is active, the slave logic also remains active, detecting the state of the
bus and potentially receiving messages from itself in a single master system or from other
masters in a multi-master system. No messages are lost during multi-master bus arbitration.

In a multi-master system, bus collision conflicts with other masters in the system are detected
and reported to the application (BCOL interrupt). The software can terminate, and then restart
the message transmission.

The I2C module contains a Baud Rate Generator (BRG). The I2C BRG does not consume other
timer resources in the device.

Key features of the I2C module include the following:

• Independent master and slave logic

• Multi-master support, which prevents message losses in arbitration

• Detects 7-bit and 10-bit device addresses with configurable address masking in Slave
mode

• Detects general call addresses as defined in the I2C protocol

• Automatic SCLx clock stretching provides delays for the processor to respond to a slave
data request

• Supports 100 kHz and 400 kHz bus specifications

• Supports strict I2C reserved address rule

Note: This family reference manual section is meant to serve as a complement to device
data sheets. Depending on the device variant, this manual section may not apply to
all PIC32 devices.

Please consult the note at the beginning of the “Inter-Integrated Circuit (I2C)”
chapter in the current device data sheet to check whether this document supports
the device you are using.

Device data sheets and family reference manual sections are available for
download from the Microchip Worldwide Web site at: http://www.microchip.com
DS60001116G-page 24-2 © 2007-2016 Microchip Technology Inc.

http://www.microchip.com
http://www.microchip.com

Section 24. Inter-Integrated Circuit (I2C)
Figure 24-1 shows the I2C module block diagram.

Figure 24-1: I2C Block Diagram

I2CxRSR

I2CxRCV

Internal
Data Bus

SCKx

SDAx

Shift

Match Detect

I2CxADD

Start and
Stop bit Detect

Clock

Addr_Match

Clock
Stretching

I2CxTRN

LSbShift
Clock

Write

Read

BRG Down Counter I2CxBRG

Reload
Control

Peripheral Bus Clock (PBCLK)

Start, Restart,
Stop bit Generate

Write

Read

Acknowledge
Generation

Collision
Detect

Write

Read

Write

ReadI2
C

xC
O

N

Write

ReadI2
C

xS
TA

T

co
n

tr
o

l l
o

g
ic

Read

LSb

I2CxMSK
© 2007-2016 Microchip Technology Inc. DS60001116G-page 24-3

PIC32 Family Reference Manual
24.2 CONTROL AND STATUS REGISTERS

The I2C module consists of the following Special Function Registers (SFRs):

• I2CxCON: I2C Control Register

This register enables operational control of the I2C module.

• I2CxSTAT: I2C Status Register

This register contains status flags indicating the state of the I2C module during operation.

• I2CxADD: I2C Slave Address Register

This register holds the slave device address.

• I2CxMSK: I2C Address Mask Register

This register designates the bit positions in the I2CxADD register that can be ignored, which
allows for multiple address support.

• I2CxBRG: I2C Baud Rate Generator Register

This register holds the Baud Rate Generator (BRG) reload value for the I2C module Baud
Rate Generator.

• I2CxTRN: I2C Transmit Data Register

This read-only register is the transmit register. Bytes are written to this register during a
transmit operation.

• I2CxRCV: I2C Receive Data Register

This read-only register is the buffer register from which data bytes can be read.

Table 24-1 summarizes all registers related to the I2C module. Corresponding registers appear
after the summary, which include detailed bit descriptions for each register.

Note: The PIC32 family of devices may have one or more I2C modules. An ‘x’ used in the
pin names, Control/Status bits, and registers denotes the particular module. Refer
to the “Inter-Integrated Circuit (I2C)” chapter in the specific device data sheet for
more details.
DS60001116G-page 24-4 © 2007-2016 Microchip Technology Inc.

©
 2

0
0

7
-2

0
1

6
 M

icro
ch

ip
 T

e
ch

n
o

lo
g

y In
c.

D
S

6
0

0
0

111
6

G
-p

a
g

e
 2

4
-5

S
ectio

n
 24. In

ter-In
teg

rated
 C

ircu
it (I 2C

)

T

Bit 20/4 Bit 19/3 Bit 118/2 Bit 17/1 Bit 16/0

BOEN SDAHT SBCDE AHEN DHEN

CKEN RCEN PEN RSEN SEN

— — — — —

P S R/W RBF TBF

— — — — —

:0>

— — — — —

:0>

— — — — —

— — — — —

2CxTXDATA<7:0>

— — — — —

2CxRXDATA<7:0>

 0x8, and 0xCbytes, respectively. These registers
y bit position in these registers will clear valid bits
able 24-1: I2C SFR Summary

Register

Name(1)
Bit

Range
Bit 31/15 Bit 30/14 Bit 29/13 Bit 28/12 Bit 27/11 Bit 26/10 Bit 25/9 Bit 24/8 Bit 23/7 Bit 22/6 Bit 21/5

I2CxCON 31:16 — — — — — — — — — PCIE SCIE

15:0 ON — SIDL SCLREL STRICT A10M DISSLW SMEN GCEN STREN ACKDT A

I2CxSTAT 31:16 — — — — — — — — — — —

15:0 ACKSTAT TRSTAT ACKTIM — — BCL GCSTAT ADD10 IWCOL I2COV D/A

I2CxADD 31:16 — — — — — — — — — — —

15:0 — — — — — — ADD<9

I2CxMSK 31:16 — — — — — — — — — — —

15:0 — — — — — — MSK<9

I2CxBRG 31:16 — — — — — — — — — — —

15:0 I2CxBRG<15:0>

I2CxTRN 31:16 — — — — — — — — — — —

15:0 — — — — — — — — I

I2CxRCV 31:16 — — — — — — — — — — —

15:0 — — — — — — — — I

Note 1: With the exception of the I2CxRCV register, all registers have an associated Clear, Set, and Invert register at an offset of 0x4,
have the same name with CLR, SET, or INV appended to the end of the register name (e.g., I2CxCONCLR). Writing a ‘1’ to an
in the associated register. Reads from these registers should be ignored.

PIC32 Family Reference Manual
Register 24-1: I2CXCON: I2C Control Register

Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

31:24
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

23:16
U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

— PCIE(1) SCIE(1) BOEN(1,3) SDAHT(1) SBCDE(1,3) AHEN(1) DHEN(1)

15:8
R/W-0 U-0 R/W-0 R/W-1 R/W-0 R/W-0 R/W-0 R/W-0

ON(2) — SIDL SCLREL STRICT(3) A10M(3) DISSLW SMEN

7:0
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

GCEN(3) STREN(3) ACKDT ACKEN(4) RCEN(4) PEN(4) RSEN(4) SEN(4)

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31-23 Unimplemented: Read as ‘0’

bit 22 PCIE: Stop Condition Interrupt Enable bit (I2C Slave mode only)(1)

1 = Enable interrupt on detection of Stop condition
0 = Stop detection interrupts are disabled

bit 21 SCIE: Start Condition Interrupt Enable bit (I2C Slave mode only)(1)

1 = Enable interrupt on detection of Start or Restart conditions
0 = Start detection interrupts are disabled

bit 20 BOEN: Buffer Overwrite Enable bit (I2C Slave mode only)(1,3)

This bit determines the automatic acknowledgment response of the slave with respect to the receive buffer
state when receiving a byte from the master, unless receiving an address byte. When receiving an address
byte, the acknowledgment response is determine by the values of ADD and MSK.

1 = Ignore the value of the receive overflow status bit, I2COV. ACK the received byte if RBF = 0. NACK the
received byte if RBF = 1.

0 = Use both RBF and I2COV to determine the acknowledgment response. ACK the received byte if both
RBF and I2COV = 0. NACK the byte if either RBF or I2COV = 1.

bit 19 SDAHT: SDAx Hold Time Selection bit (1)

1 = Minimum of 300 ns hold time on SDAx after the falling edge of SCLx (required to support SMBus v2.0)
0 = Minimum of 100 ns hold time on SDAx after the falling edge of SCLx

bit 18 SBCDE: Slave Mode Bus Collision Detect Enable bit (I2C Slave mode only)(1,3)

If on the rising edge of SCLx, SDAx is sampled low when the module is outputting a high state, the BCL bit
is set, and the bus goes idle. This detection mode is only valid during data bit transmission on a read and
during acknowledgment bit transmission on a write (data byte). Slave mode collision detection is not enabled
during acknowledgment bit transmission on the address, as the slave ignores addresses that do not trigger
an address match.
1 = Enable slave bus collision interrupts
0 = Slave bus collision interrupts are disabled

Note 1: This bit is not available on all devices, refer to the “Inter-Integrated Circuit (I2C)” chapter in the specific
device data sheet for availability.

2: When using the 1:1 PBCLK divisor, the user’s software should not read or write the peripheral’s SFRs in
the SYSCLK cycle immediately following the instruction that clears the module’s ON bit.

3: The value of this bit must not be changed when the I2C module is active. It is safe to change the value of
this bit when ON = 0 when idle, or waiting in master mode, or when the SCLx clock is held low after receiv-
ing an address or data byte in slave mode (when AHEN or DHEN = 1, respectively).

4: Because queuing of events is not allowed, writing to this bit is not allowed when the module is busy. In
Master mode, the module is busy whenever any of the five least-significant bits of the I2CxCON register
are set. Software should verify that the five least-significant bits of the I2CxCON register are all cleared
(zero) before initiating a new event. The the I2C module is idle when it is waiting for an I2C transfer to
begin (SDAx and SCLx are both high) and the module is waiting between byte operations, when SCL = 0.
DS60001116G-page 24-6 © 2007-2016 Microchip Technology Inc.

Section 24. Inter-Integrated Circuit (I2C)
bit 17 AHEN: Address Hold Enable bit (I2C Slave mode only)(1)

1 = Following the eighth falling edge of SCLx for a matching received address byte; the SCLREL bit will be
cleared and the SCLx will be held low.

0 = Address holding is disabled

bit 16 DHEN: Data Hold Enable bit (I2C Slave mode only)(1)

1 = Following the eighth falling edge of SCLx for a received data byte; slave hardware clears the SCLREL
bit and SCLx is held low.

0 = Data holding is disabled

bit 15 ON: I2C Enable bit(2)

1 = Enables the I2C module and configures the SDAx and SCLx pins as serial port pins
0 = Disables I2C module; all I2C pins are controlled by PORT functions

bit 14 Unimplemented: Read as ‘0’

bit 13 SIDL: Stop in Idle Mode bit
1 = Discontinue module operation when the device enters Idle mode
0 = Continue module operation when the device enters Idle mode

bit 12 SCLREL: SCLx Release Control bit
In I2C Slave mode only; module Reset and (ON = 0) sets SCLREL = 1.
If STREN = 0:
1 = Release clock
0 = Has no effect
Bit is automatically cleared to ‘0’ at beginning of slave transmission.

If STREN = 1:
1 = Release clock
0 = Holds clock low (clock stretch). The user application may program this bit to ‘0’ after the ninth falling

edge (and before the ninth rising edge) of the SCLx pin to force the clock to stretch.
Bit is automatically cleared to ‘0’ at beginning of slave transmission; automatically cleared to ‘0’ at end of
slave reception.
Slave software is responsible for waiting the appropriate setup time before setting the SCLREL bit to
release the SCL clock. This requirement occurs after writing either the ACKDT bit to ACK or NACK a
receive byte and after writing the I2CxTRN register to transmit a byte. Slave hardware does not guarantee
the appropriate setup time before releasing the clock.

bit 11 STRICT: Strict I2C Reserved Address Rule Enable bit(3)

This bit only operates in I2C Slave mode.

1 = Strict reserved addressing is enforced. Device does not respond to reserved address space.
0 = Strict I2C Reserved Address Rule is not enabled

bit 10 A10M: 10-bit Slave Address Flag bit(3)

1 = I2CxADD register is a 10-bit slave address
0 = I2CxADD register is a 7-bit slave address

bit 9 DISSLW: Slew Rate Control Disable bit
1 = Slew rate control disabled for Standard Speed mode (100 kHz); also disabled for 1 MHz mode
0 = Slew rate control enabled for High Speed mode (400 kHz)

Register 24-1: I2CXCON: I2C Control Register (Continued)

Note 1: This bit is not available on all devices, refer to the “Inter-Integrated Circuit (I2C)” chapter in the specific
device data sheet for availability.

2: When using the 1:1 PBCLK divisor, the user’s software should not read or write the peripheral’s SFRs in
the SYSCLK cycle immediately following the instruction that clears the module’s ON bit.

3: The value of this bit must not be changed when the I2C module is active. It is safe to change the value of
this bit when ON = 0 when idle, or waiting in master mode, or when the SCLx clock is held low after receiv-
ing an address or data byte in slave mode (when AHEN or DHEN = 1, respectively).

4: Because queuing of events is not allowed, writing to this bit is not allowed when the module is busy. In
Master mode, the module is busy whenever any of the five least-significant bits of the I2CxCON register
are set. Software should verify that the five least-significant bits of the I2CxCON register are all cleared
(zero) before initiating a new event. The the I2C module is idle when it is waiting for an I2C transfer to
begin (SDAx and SCLx are both high) and the module is waiting between byte operations, when SCL = 0.
© 2007-2016 Microchip Technology Inc. DS60001116G-page 24-7

PIC32 Family Reference Manual
bit 8 SMEN: SMBus Input Levels Disable bit

1 = Enable input logic so that thresholds are compliant with the SMBus specification
0 = Disable SMBus specific inputs

bit 7 GCEN: General Call Enable bit(3)
In I2C Slave mode only.

1 = Enable interrupt when a general call address is received in I2CSR. Module is enabled for 
reception

0 = General call address disabled

bit 6 STREN: SCLx Clock Stretch Enable bit(3)

This bit, which operates in I2C Slave mode only, determines if software is allowed to stretch the I2C clock in
Slave mode by clearing the SCLREL bit. Also, when clock stretching is enabled, the I2C module will auto-
matically stretch the SCL clock and clear the SCLREL bit on the ninth falling edge of SCL after receiving the
acknowledgment bit when the receiver buffer is full (RBF = 1). Software will then need to set the SCLREL
bit to continue I2C activity.

1 = Enable clock stretching
0 = Disable clock stretching

bit 5 ACKDT: Acknowledge Data bit 
This bit determines the value of the acknowledgment bit that will be transmitted during acknowledge
sequence (the ninth clock cycle) after receiving a byte in either slave or master operation. In Master mode,
the value of this bit will be transmitted after setting the ACKEN bit. In Slave mode, if AHEN or DHEN = 1,
software must wait the appropriate setup time after writing this bit before setting the SCLREL bit to begin
the acknowledge sequence.

1 = A NACK is sent
0 = ACK is sent

bit 4 ACKEN: Acknowledge Sequence Enable bit(4)
In I2C Master mode only; applicable during master receive.

1 = Initiate Acknowledge sequence on SDAx and SCLx pins, and transmit ACKDT data bit; automatically
cleared by the I2C module when completed.

0 = Acknowledge sequence idle

bit 3 RCEN: Receive Enable bit (4)

In I2C Master mode only

1 = Enables Receive mode for I2C, automatically cleared by the I2C module after reception of the eighth bit
of the received data byte

0 = Receive sequence not in progress

bit 2 PEN: Stop Condition Enable bit(4)
In I2C Master mode only.

1 = Initiate Stop condition on SDAx and SCLx pins; automatically cleared by the I2C module when
completed.

0 = Stop condition is idle

Register 24-1: I2CXCON: I2C Control Register (Continued)

Note 1: This bit is not available on all devices, refer to the “Inter-Integrated Circuit (I2C)” chapter in the specific
device data sheet for availability.

2: When using the 1:1 PBCLK divisor, the user’s software should not read or write the peripheral’s SFRs in
the SYSCLK cycle immediately following the instruction that clears the module’s ON bit.

3: The value of this bit must not be changed when the I2C module is active. It is safe to change the value of
this bit when ON = 0 when idle, or waiting in master mode, or when the SCLx clock is held low after receiv-
ing an address or data byte in slave mode (when AHEN or DHEN = 1, respectively).

4: Because queuing of events is not allowed, writing to this bit is not allowed when the module is busy. In
Master mode, the module is busy whenever any of the five least-significant bits of the I2CxCON register
are set. Software should verify that the five least-significant bits of the I2CxCON register are all cleared
(zero) before initiating a new event. The the I2C module is idle when it is waiting for an I2C transfer to
begin (SDAx and SCLx are both high) and the module is waiting between byte operations, when SCL = 0.
DS60001116G-page 24-8 © 2007-2016 Microchip Technology Inc.

Section 24. Inter-Integrated Circuit (I2C)
bit 1 RSEN: Restart Condition Enable bit(4)
In I2C Master mode only.

1 = Initiate Restart condition on SDAx and SCLx pins; automatically cleared by the I2C module when
completed.

0 = Restart condition is idle

bit 0 SEN: Start Condition Enable bit(4)
In I2C Master mode only.

1 = Initiate Start condition on SDAx and SCLx pins; automatically cleared by the I2C module when
completed.

0 = Start condition is idle

Register 24-1: I2CXCON: I2C Control Register (Continued)

Note 1: This bit is not available on all devices, refer to the “Inter-Integrated Circuit (I2C)” chapter in the specific
device data sheet for availability.

2: When using the 1:1 PBCLK divisor, the user’s software should not read or write the peripheral’s SFRs in
the SYSCLK cycle immediately following the instruction that clears the module’s ON bit.

3: The value of this bit must not be changed when the I2C module is active. It is safe to change the value of
this bit when ON = 0 when idle, or waiting in master mode, or when the SCLx clock is held low after receiv-
ing an address or data byte in slave mode (when AHEN or DHEN = 1, respectively).

4: Because queuing of events is not allowed, writing to this bit is not allowed when the module is busy. In
Master mode, the module is busy whenever any of the five least-significant bits of the I2CxCON register
are set. Software should verify that the five least-significant bits of the I2CxCON register are all cleared
(zero) before initiating a new event. The the I2C module is idle when it is waiting for an I2C transfer to
begin (SDAx and SCLx are both high) and the module is waiting between byte operations, when SCL = 0.
© 2007-2016 Microchip Technology Inc. DS60001116G-page 24-9

PIC32 Family Reference Manual
Register 24-2: I2CXSTAT: I2C Status Register

Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

31:24
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

23:16
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

15:8
R-0 R-0 R-0, HS, HC U-0 U-0 R/W-0 R-0 R-0

ACKSTAT TRSTAT ACKTIM(1) — — BCL GCSTAT ADD10

7:0
R/W-0 R/W-0 R-0 R/W-0 R/W-0 R-0 R-0 R-0

IWCOL I2COV D/A P S R/W RBF TBF

Legend: HS = Set by hardware HC = Cleared by hardware

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as ‘0’

bit 15 ACKSTAT: Acknowledge Status bit 
In both I2C Master and Slave modes; applicable to both transmit and receive.
1 = Not Acknowledge (NACK) was received
0 = Acknowledge (ACK) was received

Note: When in Slave mode, the value of the ACKSTAT bit is only valid while the I2C module is the active
slave on the bus. The ACKSTAT bit value is not valid at other times when in Slave mode.

bit 14 TRSTAT: Transmit Status bit 
In I2C Master mode only; applicable to Master Transmit mode.

1 = Master transmission is in progress (includes eight data or address bits and one acknowledge bit)
0 = Master transmission is not in progress

bit 13 ACKTIM: Acknowledge Time Status bit (Valid in I2C Slave mode only)(1)

1 = Indicates I2C bus is in an Acknowledge sequence, set on the eighth falling edge of SCLx clock
0 = Not an Acknowledge sequence, cleared on the ninth falling edge of SCLx clock

bit 12-11 Unimplemented: Read as ‘0’

bit 10 BCL: Master Bus Collision Detect bit 
Cleared when the I2C module is disabled (ON = 0).

1 = A bus collision has been detected during a master or slave transmit operation
0 = No collision has been detected

bit 9 GCSTAT: General Call Status bit 
Cleared after Stop detection.

1 = General call address was received
0 = General call address was not received

bit 8 ADD10: 10-bit Address Status bit 
Cleared after Stop detection.

1 = 10-bit address was matched
0 = 10-bit address was not matched

bit 7 IWCOL: Write Collision Detect bit

1 = An attempt to write the I2CxTRN register collided because the I2C module is busy. 
This bit must be cleared by software.

0 = No collision

Note 1: This bit is not available on all devices, refer to the “Inter-Integrated Circuit (I2C)” chapter in the specific
device data sheet for availability.
DS60001116G-page 24-10 © 2007-2016 Microchip Technology Inc.

Section 24. Inter-Integrated Circuit (I2C)
bit 6 I2COV: I2C Receive Overflow Status bit

1 = A byte was received while the I2CxRCV register was still holding the previous byte. 
This bit must be cleared in software.

0 = No overflow

bit 5 D/A: Data/Address bit 
Valid only for Slave mode operation.

1 = Indicates that the last byte received or transmitted was data
0 = Indicates that the last byte received or transmitted was address

bit 4 P: Stop bit 
Updated when a Start, Restart, or Stop is detected; cleared when the I2C module is disabled (ON = 0).

1 = Indicates that a Stop bit has been detected last
0 = Stop bit was not detected last

bit 3 S: Start bit 
Updated when a Start, Restart, or Stop is detected; cleared when the I2C module is disabled (ON = 0).

1 = Indicates that a start (or restart) bit has been detected last
0 = Start bit was not detected last

bit 2 R/W: Read/Write Information bit 
Valid only for Slave mode operation.

1 = Read – indicates data transfer is output from slave
0 = Write – indicates data transfer is input to slave

bit 1 RBF: Receive Buffer Full Status bit

1 = Receive complete; the I2CxRCV register is full
0 = Receive not complete; the I2CxRCV register is empty

bit 0 TBF: Transmit Buffer Full Status bit

1 = Transmit in progress; the I2CxTRN register is full (8-bits of data)
0 = Transmit complete; the I2CxTRN register is empty

Register 24-2: I2CXSTAT: I2C Status Register (Continued)

Note 1: This bit is not available on all devices, refer to the “Inter-Integrated Circuit (I2C)” chapter in the specific
device data sheet for availability.
© 2007-2016 Microchip Technology Inc. DS60001116G-page 24-11

PIC32 Family Reference Manual
Register 24-3: I2CXADD: I2C Slave Address Register

Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

31:24
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

23:16
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

15:8
U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0

— — — — — — ADD<9:8>(1)

7:0
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

ADD<7:0>(1)

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31-10 Unimplemented: Read as ‘0’

bit 9-0 ADD<9:0>: I2C Slave Device Address bits(1)

Either Master or Slave mode.

Note 1: The value of these bits must not be changed when the I2C module is active. It is safe to change the value
when ON = 0, when idle or waiting in master mode, or when the SCLx clock is held low after receiving an
address or data byte in Slave mode (when AHEN or DHEN = 1, respectively).

Register 24-4: I2CXMSK: I2C Address Mask Register

Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

31:24
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

23:16
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

15:8
U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0

— — — — — — MSK<9:8>(1,2)

7:0
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

MSK<7:0>(1,2)

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31-10 Unimplemented: Read as ‘0’

bit 9-0 MSK<9:0>: I2C Address Mask bits(1,2)

1 = Forces a “don’t care” in the particular bit position on the incoming address match sequence.
0 = Address bit position must match the incoming I2C address match sequence.

Note 1: MSK<9:8> and MSK<0> are only used in I2C 10-bit mode.

2: The value of these bits must not be changed when the I2C module is active. It is safe to change the value
when ON = 0, when idle or waiting in master mode, or when the SCLx clock is held low after receiving an
address or data byte in Slave mode (when AHEN or DHEN = 1, respectively).
DS60001116G-page 24-12 © 2007-2016 Microchip Technology Inc.

Section 24. Inter-Integrated Circuit (I2C)
Register 24-5: I2CXBRG: I2C Baud Rate Generator Register

Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

31:24
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

23:16
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

15:8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

I2CxBRG<15:8>(1,2)

7:0
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

I2CxBRG<7:0>(1,2)

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as ‘0’

bit 15-0 I2CxBRG<15:0>: I2C Baud Rate Generator Value bits(1,2)

These bits control the divider function of the Peripheral Clock.

Note 1: I2CxBRG<15:12> are not available on all devices, refer to the “Inter-Integrated Circuit (I2C)” chapter in
the specific device data sheet for availability.

2: The value of these bits must not be changed when the I2C module is active. It is safe to change the value
when ON = 0, when idle or waiting in master mode.

3: I2CxBRG values of 0x0 through 0x3 are expressly prohibited. Do not program the I2CxBRG register to
any of these values, as indeterminate results may occur.
© 2007-2016 Microchip Technology Inc. DS60001116G-page 24-13

PIC32 Family Reference Manual
Register 24-6: I2CXTRN: I2C Transmit Data Register

Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

31:24
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

23:16
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

15:8
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

7:0
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

I2CxTXDATA<7:0>(1)

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31-8 Unimplemented: Read as ‘0’

bit 7-0 I2CxTXDATA<7:0>: I2C Transmit Data Buffer bits(1)

Note 1: In Slave mode, after writing the I2CxTXDATA register, software is responsible for waiting the appropriate
setup time before setting the SCLREL bit to begin data transmission (see 24.8.3 “Rise and Setup Time
Considerations” for additional information).

Register 24-7: I2CxRCV: I2C Receive Data Register

Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

31:24
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

23:16
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

15:8
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

7:0
R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

I2CxRXDATA<7:0>

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31-8 Unimplemented: Read as ‘0’

bit 7-0 I2CxRXDATA<7:0>: I2C Receive Data Buffer bits
DS60001116G-page 24-14 © 2007-2016 Microchip Technology Inc.

Section 24. Inter-Integrated Circuit (I2C)
24.3 I2C BUS CHARACTERISTICS

The I2C bus is a two-wire serial interface. Figure 24-2 shows a schematic of an I2C connection
between a PIC32 device and a 24LC256 I2C serial EEPROM, which is a typical example for any
I2C interface.

Figure 24-2: Typical I2C Interconnection Block Diagram

The interface employs a comprehensive protocol to ensure reliable transmission and reception
of data. When communicating, one device is the “master” which initiates transfer on the bus and
generates the clock signals to permit that transfer, while the other device(s) acts as the “slave”
responding to the transfer. The clock line, SCLx, is output from the master and input to the slave,
although occasionally the slave drives the SCLx line to stretch the clock. The data line, SDAx,
may be output and input from both the master and the slave.

Because the SDAx and SCLx lines are bidirectional, the output stages of the devices driving the
SDAx and SCLx lines must have an open drain in order to perform the wired AND function of the
bus. External pull-up resistors are used to ensure a high level when no device is pulling the line
down.

In the I2C interface protocol, each device has an address. When a master wishes to initiate a
data transfer, it first transmits the address of the device that it wants to “talk” to. All devices “listen”
to see if this is their address. Within this address, bit 0 specifies if the master wants to read from
or write to the slave device. The master and slave are always in opposite modes of operation
(transmitter/receiver) during a data transfer. That is, they can be thought of as operating in either
of the following two relations:

• Master-transmitter and slave-receiver

• Slave-transmitter and master-receiver

In both cases, the master originates the SCLx clock signal.

The following modes and features specified in the V2.1 I2C specifications are not supported:

• HS mode and switching between F/S modes and HS mode

• Start byte

• CBUS compatibility

• Second byte of the general call address

SCLX

SDAX

PIC32

SDAX

SCLX

VDD VDD

2.4 k 24LC256
(typical)

I2C Slave
Device
© 2007-2016 Microchip Technology Inc. DS60001116G-page 24-15

PIC32 Family Reference Manual
24.3.1 Bus Protocol

The following I2C bus protocol has been defined:

• Data transfer may be initiated only when the bus is not busy

• During data transfer, the data line must remain stable whenever the SCLx clock line is high.
Changes in the data line while the SCLx clock line is high will be interpreted as a Start or
Stop condition.

Accordingly, the following bus conditions have been defined and are shown in Figure 24-3.

Figure 24-3: I2C Bus Protocol States

24.3.1.1 START DATA TRANSFER (S)

After a bus Idle state, a high-to-low transition of the SDAx line while the clock (SCLx) is high
determines a Start condition. All data transfers must be preceded by a Start condition.

24.3.1.2 STOP DATA TRANSFER (P)

A low-to-high transition of the SDAx line while the clock (SCLx) is high determines a Stop
condition. All data transfers must end with a Stop condition.

24.3.1.3 REPEATED START (R)

After a wait state, a high-to-low transition of the SDAx line while the clock (SCLx) is high deter-
mines a Repeated Start condition. Repeated Starts allow a master to change bus direction of
addressed slave device without relinquishing control of the bus.

24.3.1.4 DATA VALID (D)

The state of the SDAx line represents valid data when, after a Start condition, the SDAx line is
stable for the duration of the high period of the clock signal. There is one bit of data per SCLx
clock.

24.3.1.5 ACKNOWLEDGE (A) OR NOT ACKNOWLEDGE (N)

All data byte transmissions must be Acknowledged (ACK) or Not Acknowledged (NACK) by the
receiver. The receiver will pull the SDAx line low for an ACK or release the SDAx line for a NACK.
The Acknowledge is a one-bit period using one SCLx clock.

24.3.1.6 WAIT/DATA INVALID (Q)

The data on the line must be changed during the low period of the clock signal. Devices may also
stretch the clock low time by asserting a low on the SCLx line, causing a wait on the bus.

24.3.1.7 BUS IDLE (I)

Both data and clock lines remain high at those times after a Stop condition and before a Start
condition.

Address
Valid

Data
Allowed

to Change

Stop
Condition

Start
Condition

SCLx

SDAx

(I) (S) (D) (A) or (N) (P) (I)

Data or

(Q)

ACK/NACK
Valid

NACK

ACK
DS60001116G-page 24-16 © 2007-2016 Microchip Technology Inc.

Section 24. Inter-Integrated Circuit (I2C)
24.3.2 Message Protocol

A typical I2C message is shown in Figure 24-4. In this example, the message will read a specified
byte from a 24LC256 I2C serial EEPROM. The PIC32 device will act as the master and the
24LC256 device will act as the slave.

Figure 24-4 indicates the data as driven by the master device and the data as driven by the slave
device, considering the combined SDAx line is a wired AND of the master and slave data. The
master device controls and sequences the protocol. The slave device will only drive the bus at
specifically determined times.

Figure 24-4: A Typical I2C Message: Read of Serial EEPROM (Random Address Mode)

24.3.2.1 START MESSAGE
Each message is initiated with a Start condition and terminated with a Stop condition. The num-
ber of data bytes transferred between the Start and Stop conditions is determined by the master
device. As defined by the system protocol, the bytes of the message may have special meaning,
such as device address byte or data byte.

24.3.2.2 ADDRESS SLAVE
In Figure 24-4, the first byte is the device address byte, that must be the first part of any I2C
message. It contains a device address and a R/W bit (IC2xSTAT<2>). Note that R/W = 0 for this
first address byte, indicating that the master will be a transmitter and the slave will be a receiver.

24.3.2.3 SLAVE ACKNOWLEDGE
The receiving device is obliged to generate an Acknowledge signal, ACK, after the reception of
each byte. The master device must generate an extra SCLx clock which is associated with this
Acknowledge bit.

24.3.2.4 MASTER TRANSMIT
The next two bytes, sent by the master to the slave, are data bytes containing the location of the
requested EEPROM data byte. The slave must Acknowledge each of the data bytes.

24.3.2.5 REPEATED START
The slave EEPROM now has the address information necessary to return the requested data
byte to the master. However, the R/W bit from the first device address byte specified master
transmission and slave reception. The bus must be turned in the other direction for the slave to
send data to the master.

To perform this function without ending the message, the master sends a Repeated Start. The
Repeated Start is followed with a device address byte containing the same device address as
before and with the R/W = 1 to indicate slave transmission and master reception.

24.3.2.6 SLAVE REPLY
Now, the slave transmits the data byte by driving the SDAx line, while the master continues to
originate clocks but releases its SDAx drive.

24.3.2.7 MASTER ACKNOWLEDGE
During reads, a master must terminate data requests to the slave by Not Acknowledging (gener-
ating a “NACK”) on the last byte of the message. Data is “Acked” for each byte, except for the
last byte.

24.3.2.8 STOP MESSAGE
The master sends a Stop to terminate the message and return the bus to an Idle state.

X

Bus

Master
SDAx

S
ta

rt Address
Byte

EEPROM Address
High Byte

EEPROM Address
Low Byte

Address
Byte

Data
Byte

S 1 0 1 0 A A A 0
2 1 0

R 1 0 1 0 A A A 1
2 1 0

P

Slave
SDAx

Activity

N

AAAA

Output

Output

Id
le

R
/W

A
C

K

A
C

K

A
C

K
R

es
ta

rt

R
/W

A
C

K

N
A

C
K

S
to

p
Id

le
© 2007-2016 Microchip Technology Inc. DS60001116G-page 24-17

PIC32 Family Reference Manual
24.4 ENABLING I2C OPERATION
The I2C module fully implements all master and slave functions and is enabled by setting the
ON bit (I2CxCON<15>). When the module is enabled, the master and slave functions are active
simultaneously and will respond according to the software or bus events.

When initially enabled, the module will release the SDAx and SCLx pins, putting the bus into the
Idle state. The master functions will remain in the Idle state unless software sets a control bit to
initiate a master event. The slave functions will begin to monitor the bus. If the slave logic detects
a Start event and a valid address on the bus, the slave logic will begin a slave transaction.

24.4.1 Enabling I2C I/O

Two pins are used for bus operation: the SCLx pin, which is the clock, and the SDAx pin, which
is the data. When the I2C module is enabled, assuming no other module with higher priority has
control, the module will assume control of the SDAx and SCLx pins. The module software need
not be concerned with the state of the port I/O of the pins, the module overrides, the port state,
and direction. At initialization, the pins are tri-state (released).

24.4.2 I2C Interrupts

The I2C module generates three interrupt signals:

• Master interrupt
• Slave interrupt
• Bus collision interrupt

These three signals will set the corresponding interrupt flag bits and will interrupt the CPU if the
corresponding interrupt enable bits are set and the corresponding interrupt priorities are high
enough.

24.4.2.1 MASTER INTERRUPTS

Master mode operations that generate a master interrupt are:

• Start Condition – 1 BRG time after falling edge of SDAx
• Repeated Start Sequence – 1 BRG time after falling edge of SDAx
• Stop Condition – 1 BRG time after the rising edge of SDAx
• Data transfer byte received – eighth falling edge of SCLx (after receiving eight bits of data

from slave)
• During send ACK sequence – ninth falling edge of SCLx (after sending ACK or NACK to

slave)
• Data transfer byte transmitted – ninth falling edge of SCLx (regardless of receiving ACK from

slave)
• During a slave-detected Stop – When slave sets the P bit (I2CxSTAT<4>)

24.4.2.2 SLAVE INTERRUPTS

Slave mode operations that generate a slave interrupt are:

• Detection of a valid device address (including general call) – Ninth falling edge of SCLx 
(after sending ACK to master. Address must match unless the STRICT bit = 1 (I2Cx-
CON<11>) or the GCEN bit = 1 (I2CxCON<7>)

• Reception of data – Ninth falling edge of SCLx (after sending the ACK to master)

• Request to transmit data – Ninth falling edge of SCLx (regardless of receiving an ACK from
the master)

For devices with the PCIE (I2CxCON<22>), SCIE (I2CxCON<21>), AHEN (I2CxCON<17>), and
DHEN (I2CxCON<16>) bits, the following Slave mode operations generate a slave interrupt:

• During Start sequence (if SCIE = 1) – 1 BRG time after falling edge of SDAx

• During Restart sequence (if SCIE = 1) – 1 BRG time after falling edge of SDAx

• During Stop sequence (if PCIE = 1) – 1 BRG time after the Rising edge of SDAx

• During Receive Address sequence (AHEN = 1) – eighth falling edge of SCLx (address must
match unless STRICT = 1 or GCEN = 1)

• During Receive Data sequence (DHEN = 1) – eighth falling edge of SCLx
DS60001116G-page 24-18 © 2007-2016 Microchip Technology Inc.

Section 24. Inter-Integrated Circuit (I2C)
24.4.2.3 BUS COLLISION INTERRUPTS

Bus Collision events that generate an interrupt can occur during master transmission of any one
of the following:

• Start condition

• Repeated Start condition

• Address bit

• Data bit

• Acknowledge bit

• Stop condition

24.4.3 I2C Transmit and Receive Registers

I2CxTRN is the register to which transmit data is written. This register is used when the I2C
module operates as a master transmitting data to the slave, or as a slave sending reply data to
the master. As the message progresses, the I2CxTRN register shifts out the individual bits. As a
result, the I2CxTRN register may not be written to while the transmitter is busy (TBF bit
(I2CxSTAT<0>) = 1) or a write collision will occur setting the IWCOL bit (I2CxStat<7>).

Data being received by either the master or the slave is shifted into a non-accessible shift
register, I2CxRSR. When a complete byte is received, the byte transfers to the I2CxRCV register.
In receive operations, the I2CxRSR and I2CxRCV registers create a double-buffered receiver.
This allows reception of the next byte to begin before the current byte of received data is read.

If the I2C module receives another complete byte before the software reads the previous byte
from the I2CxRCV register, a receiver overflow occurs, the module sets the I2COV bit
(I2CxSTAT<6>), and the data in the I2CxRSR register is lost. The I2CCOV bit must be cleared
by software.

Acknowledge bit generation may occur automatically in some situations when operating in Slave
mode or manually, under software control (see 24.7.4.1 “Acknowledge Generation”).
Acknowledge bit generation always occurs under software control in master mode (see
24.5.4 “Acknowledge Generation”). Additionally, acknowledge bit behavior may be modified
for devices with the BOEN bit (I2CxCON<20>). Setting BOEN = 1 causes the state of the I2COV
bit to be ignored when determining the value of the acknowledge bit.

The I2CxADD register holds the slave device address. In 10-bit Addressing mode, all bits are
relevant. In 7-bit Addressing mode, only the I2CxADD<6:0> bits are relevant. The A10M bit
(I2CxCON<10>) specifies the expected mode of the slave address. By using the I2CxMSK
register with the I2CxADD register in either Slave Addressing mode, one or more bit positions
can be removed from exact address matching, allowing the module in Slave mode to respond to
multiple addresses.

24.4.4 I2C Baud Rate Generator

The Baud Rate Generator (BRG) used for I2C Master mode operation is used to set the SCLx
clock frequency for 100 kHz, 400 kHz, and 1 MHz. The BRG reload value is contained in the
I2CxBRG register. The BRG will automatically begin counting on a write to the I2CxTRN register
or by setting any one of the five Least Significant bits of the I2CxCON register. After the given
operation is complete (including transmission of the acknowledgment bit following the last bit of
an address or data byte) the internal clock will automatically stop counting and the SCLx pin will
remain in its last state.

The BRG is not used in Slave mode operations as the slave state machine is driven by the
external SCL clock.
© 2007-2016 Microchip Technology Inc. DS60001116G-page 24-19

PIC32 Family Reference Manual
24.4.5 Baud Rate Generator in I2C Master Mode

In I2C Master mode, the reload value for the BRG is located in the I2CxBRG register. When the
BRG is loaded with this value, the BRG counts down to zero and stops until another reload has
taken place. In I2C Master mode, the BRG reload may not occur immediately. If clock arbitration
is taking place, for instance, the BRG will be reloaded when the SCLx pin is sampled high (see
Figure 24-6). Table 24-2 shows device frequency versus the I2CxBRG setting for standard baud
rates.

To compute the BRG reload value, use the formula in Equation 24-1:

Equation 24-1: Baud Rate Generator Reload Value Calculation

Note: I2CxBRG values of 0x0 through 0x3 are expressly prohibited. Do not program the
I2CxBRG register to any of these values, as indeterminate results may occur.

Table 24-2: I2C Clock Rate with BRG

PBCLK
FSCK

(Two Rollovers of I2CxBRG)
Calculated

I2CxBRG<15:0>

200 MHz 1000 kHz 0x0056

200 MHz 400 kHz 0x00EC

200 MHz 100 kHz 0x03DA

120 MHz 1000 kHz 0x0034

120 MHz 400 kHz 0x008E

120 MHz 100 kHz 0x0250

100 MHz 1 MHz 0x002B

100 MHz 400 kHz 0x0076

100 MHz 100 kHz 0x01ED

80MHz 1000 kHz 0x0022

80MHz 400 kHz 0x005E

80MHz 100 kHz 0x018A

60MHz 1000 kHz 0x001A

60MHz 400 kHz 0x0047

60MHz 100 kHz 0x0128

50 MHz 1 MHz 0x0015

50 MHz 400 kHz 0x003A

50 MHz 100 kHz 0x00F6

40 MHz 1 MHz 0x0011

40 MHz 400 kHz 0x002F

40 MHz 100 kHz 0x00C5

30 MHz 1 MHz 0x000C

30 MHz 400 kHz 0x0022

30 MHz 100 kHz 0x0093

20 MHz 1 MHz 0x0008

20 MHz 400 kHz 0x0017

20 MHz 100 kHz 0x0062

10 MHz 1 MHz 0x0004

10 MHz 400 kHz 0x000B

10 MHz 100 kHz 0x0031

FPBCLK

2 FSCK
-------------------- 1–

FPBCLK TPGOB
2

---–=I2CxBRG<15:0>

Note 1: TPGOB is nominally 130 ns.

(see Note 1)
DS60001116G-page 24-20 © 2007-2016 Microchip Technology Inc.

Section 24. Inter-Integrated Circuit (I2C)
Equation 24-1 and Table 24-2 are provided as design guidelines. Due to system-dependent
parameters, the actual baud rate may differ slightly. Testing is required to confirm that the actual
baud rate meets the system requirements.

Equation 24-2: SCK Frequency

Figure 24-5: Baud Rate Generator Block Diagram

Figure 24-6: Baud Rate Generator Timing with Clock Arbitration

FSCK

FPBCLK

2 I2CxBRG<15:0>  2 FPBCLK TPGOB + +
---=

BRG Down CounterSCL_OUT

I2CxBRG<15:0>

SCLx

Reload

Control

Reload

PBCLK

SDAx

SCLx

SCLx deasserted but slave holds

DX-1DX

BRG

SCLx is sampled high, reload takes
place, and BRG starts its count.

03 02 01 00 (hold off) 03 02

Reload

BRG
Value

SCLx low (clock arbitration)
SCLx allowed to transition high

BRG counts
down

BRG counts
down

BRG counts
down

TPBLCK/2
© 2007-2016 Microchip Technology Inc. DS60001116G-page 24-21

PIC32 Family Reference Manual
24.5 COMMUNICATING AS A MASTER IN A SINGLE MASTER ENVIRONMENT

Typical operation of an I2C module in a system is using the module to communicate with an I2C
peripheral, such as an I2C serial memory. In an I2C system, the master controls the sequence of
all data communication on the bus. In this example, the PIC32 device and its I2C module have
the role of the single master in the system. As the single master, it is responsible for generating
the SCLx clock and controlling the message protocol.

In the I2C module, the module controls individual portions of the I2C message protocol; however,
sequencing of the components of the protocol to construct a complete message is a software
task.

For example, a typical operation in a single master environment may be to read a byte from an
I2C serial EEPROM is shown in Figure 24-7.

To accomplish this message, the software will sequence through the following steps:

1. Turn on the I2C module by setting the ON bit (I2CxCON<15>) to ‘1’.

2. Assert a Start condition on SDAx and SCLx.

3. Send the I2C device address byte to the slave with a write indication.

4. Wait for and verify an Acknowledge from the slave.

5. Send the serial memory address high byte to the slave.

6. Wait for and verify an Acknowledge from the slave.

7. Send the serial memory address low byte to the slave.

8. Wait for and verify an Acknowledge from the slave.

9. Assert a Repeated Start condition on SDAx and SCLx.

10. Send the device address byte to the slave with a read indication.

11. Wait for and verify an Acknowledge from the slave.

12. Enable master reception to receive serial memory data.

13. Generate an ACK or NACK condition at the end of a received byte of data.

14. Generate a Stop condition on SDAx and SCLx.

Figure 24-7: Typical I2C Message: Read of Serial EEPROM (Random Address Mode)

The I2C module supports Master mode communication with the inclusion of Start and Stop
generators, data byte transmission, data byte reception, an Acknowledge generator and a BRG.
Generally, the software will write to a control register to start a particular step, and then wait for
an interrupt or poll status to wait for completion. Subsequent sections detail each of these
operations.

Bus

Master
SDAx

S
ta

rt Address
Byte

EEPROM Address
High Byte

EEPROM Address
Low Byte

Address
Byte

Data
Byte

S A A A 0
2 1 0

R 1 P

Slave
SDAx

Activity

N

AAAA

Output

Output

Id
le

R
/W

A
C

K

A
C

K

A
C

K
R

es
ta

rt

R
/W

A
C

K

N
A

C
K

S
to

p
Id

le

A
3

A
4

A
5

A
6

A A A
2 1 0

A
3

A
4

A
5

A
6

Note: The I2C module does not allow queuing of events. For instance, the software is not
allowed to initiate a Start condition and then immediately write the I2CxTRN register
to initiate transmission before the Start condition is complete. In this case, the
I2CxTRN register will not be written to and the IWCOL bit (I2CxSTAT<7>) will be
set, indicating that this write to the I2CxTRN register did not occur.
DS60001116G-page 24-22 © 2007-2016 Microchip Technology Inc.

Section 24. Inter-Integrated Circuit (I2C)
24.5.1 Generating a Start Bus Event

To initiate a Start event, the software sets the Start Enable bit, SEN (I2CxCON<0>). Prior to
setting the Start (S) bit (I2CxSTAT<3>), the software can check the Stop (P) bit (I2CxSTAT<4>)
to ensure that the bus is in an Idle state.

Figure 24-8 shows the timing of the Start condition.

• Slave logic detects the Start condition, sets the S bit and clears the P bit

• The SEN bit is automatically cleared at completion of the Start condition

• A master interrupt is generated at completion of the Start condition

• After the Start condition, the SDAx line and SCLx line are left low (Q state)

24.5.1.1 IWCOL STATUS FLAG

If the software writes to the I2CxTRN register when a Start sequence is in progress, the IWCOL
bit (I2CxSTAT<7>) is set and the contents of the transmit buffer are unchanged (the write does
not occur).

Figure 24-8: Master Start Timing Diagram

24.5.2 Sending Data to a Slave Device

Figure 24-9 shows the timing diagram of master to slave transmission. Transmission of a data
byte or address byte is accomplished by writing the appropriate value to the I2CxTRN register.
Loading this register will start the following process:

1. The software loads the I2CxTRN register with the byte to transmit.

2. Writing the I2CxTRN register sets the buffer full flag bit, TBF (I2CxSTAT<0>).

3. The byte is shifted out the SDAx pin until all eight bits are transmitted. Each bit will be
shifted out onto the SDAx pin after the falling edge of SCLx.

4. On the ninth SCLx clock, the I2C master shifts in the acknowledgment bit from the slave
device and writes its value into the ACKSTAT bit (I2CxSTAT<15>).

5. The I2C master generates the master interrupt at the end of the ninth SCLx clock cycle.

Note: Because queuing of events is not allowed, writing to the five Least Significant bits
of the I2CxCON register is disabled until the Start condition is complete.

Note: The I2C master does not generate or validate the bytes. The contents and usage of
the bytes are dependent on the state of the message protocol maintained by the
software.

SCLx (Master)

SDAx (Master)

S

SEN

Master Interrupt

TBRG

1 2 3 4

1

TBRG

2

3

4

I2C Bus State (I) (Q)

P

(S) Writing SEN = 1 initiates a master Start
event. Baud Rate Generator starts.

Baud Rate Generator times out. Master
module drives SDAx low. Baud Rate
Generator restarts.

Slave module detects Start and sets S = 1
and P = 0.

Baud Rate Generator times out. Master
module drives SCLx low, generates
interrupt and clears SEN.
© 2007-2016 Microchip Technology Inc. DS60001116G-page 24-23

PIC32 Family Reference Manual
24.5.2.1 SENDING A 7-BIT ADDRESS TO THE SLAVE

Sending a 7-bit device address involves sending one byte to the slave. A 7-bit address byte must
contain the 7 bits of the I2C device address and a R/W bit that defines if the message will be a
write to the slave (master transmission and slave reception) or a read from the slave (slave
transmission and master reception).

24.5.2.2 SENDING A 10-BIT ADDRESS TO THE SLAVE

Sending a 10-bit device address involves sending two bytes to the slave. The first byte contains
five bits of the I2C device address reserved for 10-bit Addressing modes and two bits of the 10-bit
address. Because the next byte, which contains the remaining eight bits of the 10-bit address,
must be received by the slave, the R/W bit in the first byte must be ‘0’, indicating master
transmission and slave reception. If the message data is also directed toward the slave, the
master can continue sending the data. However, if the master expects a reply from the slave, a
Repeated Start sequence with the R/W bit at ‘1’ will change the R/W state of the message to a
read of the slave.

24.5.2.3 RECEIVING ACKNOWLEDGE FROM THE SLAVE

On the falling edge of the eighth SCLx clock, the TBF bit (I2CxSTAT<0>) is cleared and the mas-
ter will deassert the SDAx pin, allowing the slave to respond with an Acknowledge. The master
will then generate a ninth SCLx clock.

This allows the slave device being addressed to respond with an ACK during the ninth bit time if
an address match occurs or data was received properly. A slave sends an Acknowledge when it
has recognized its device address (including a general call) or when the slave has properly
received its data.

The status of ACK is written into the Acknowledge Status bit, ACKSTAT (I2CxSTAT<15>), on the
falling edge of the ninth SCLx clock. After the ninth SCLx clock, the I2C master generates the
master interrupt and enters an Idle state until the next data byte is loaded into the I2CxTRN
register or the next I2C bus event is started by software.

24.5.2.4 ACKSTAT STATUS FLAG

The ACKSTAT bit (I2CxSTAT<15>) is updated in both Master and Slave modes on the ninth
SCLx clock irrespective of Transmit or Receive modes. ACKSTAT is cleared when a transmitted
byte is acknowledged by the receiver (SDAx is ‘0’ on the ninth clock pulse), and is set when a
transmitted byte is not acknowledged by the receiver (SDAx is ‘1’ on the ninth clock pulse) by the
receiver of the byte transmitted.

24.5.2.5 TBF STATUS FLAG

When transmitting, the TBF bit is set when the CPU writes to the I2CxTRN register, and is cleared
when all eight bits are shifted out.

Note 1: When using 7-bit Addressing mode, each slave device using the I2C protocol
should be configured with a unique address.

2: While transmitting the address byte, the master must shift the address bits <7:0>
left by one bit, and configure bit 0 as the R/W bit, as shown in Figure 24-21.

Note 1: When using 10-bit Addressing mode, each slave device using the I2C 10-bit
addressing protocol should be configured with a unique 10-bit address.

2: While transmitting the address byte, the master must shift the address bits <9:8>
left by one bit, and configure bit 0 as the R/W bit, as shown in Figure 24-25.
DS60001116G-page 24-24 © 2007-2016 Microchip Technology Inc.

Section 24. Inter-Integrated Circuit (I2C)
24.5.2.6 IWCOL STATUS FLAG

If the software writes to the I2CxTRN register when a transmit is already in progress (i.e., when
TBF = 1, because the I2C module is still shifting out a data byte), the IWCOL bit (I2CxSTAT<7>)
is set and the contents of the buffer are unchanged (the write does not occur). The IWCOL bit
must be cleared in software.

Figure 24-9: Master Transmission Timing Diagram

Note: Because queuing of events is not allowed, writing to the five Least Significant bits
of the I2CxCON register is disabled until the transmit condition is complete. It is not
cleared automatically.

D7 D6 D5 D4 D3 D2 D1 D0

SCLx (Master)

SCLx (Slave)

SDAx (Master)

SDAx (Slave)

TBF

I2CxTRN

Master Interrupt

TBRG TBRG

5 6 7 81 2 3 4

Writing the I2CxTRN register will start a master transmission event. TBF bit is set.1

Baud Rate Generator starts. The MSb of the I2CxTRN drives SDAx. SCLx remains low. TRSTAT bit is set.2

Baud Rate Generator times out. SCLx released. Baud Rate Generator restarts.3

Baud Rate Generator times out. SCLx driven low. After SCLx detected low, the next bit of I2CxTRN drives SDAx.4

While SCLx is low, the slave can also pull SCLx low to initiate a wait (clock stretch).5

Master has already released SCLx and slave can release to end wait. Baud Rate Generator restarts.6

At falling edge of eighth SCLx clock, master releases SDAx. TBF bit is cleared. Slave drives ACK/NACK.7

At falling edge of ninth SCLx clock, master generates interrupt. SCLx remains low until next event. 8
Slave releases SDAx. TRSTAT bit is clear.

I2C Bus State (Q) (D) (Q) (A) (Q)(D) (Q)

TRSTAT

ACKSTAT ACK = 0 ACK = 0
© 2007-2016 Microchip Technology Inc. DS60001116G-page 24-25

PIC32 Family Reference Manual
24.5.3 Receiving Data from a Slave Device

Figure 24-10 shows the timing diagram of master reception. The master can receive data from a
slave device after the master has transmitted the slave address with an R/W bit value of ‘1’.
Reception of a byte is enabled by setting the Receive Enable bit, RCEN (I2CxCON<3>). The
master logic begins to generate clocks, and before each falling edge of the SCLx, the SDAx line
is sampled and data is shifted into the I2CxRSR register.

After the falling edge of the eighth SCLx clock, the following events occur:

• The RCEN bit is automatically cleared

• The contents of the I2CxRSR register transfer into the I2CxRCV register

• The RBF flag bit (I2CxSTAT<1>) is set

• The I2C master generates the master interrupt

When the CPU reads the I2CxRCV register, the RBF flag bit is automatically cleared. The
software can then process the data and perform an Acknowledge sequence.

24.5.3.1 RBF STATUS FLAG

When receiving data, the RBF bit (I2CxSTAT<1>) is set when a device address or data byte is
loaded into the I2CxRCV register from the I2CxRSR register. It is cleared when software reads
the I2CxRCV register.

24.5.3.2 I2COV STATUS FLAG

If another byte is received in the I2CxRSR register while the RBF bit remains set and the previous
byte remains in the I2CxRCV register, the I2COV bit (I2CxSTAT<6>) is set and the data in the
I2CxRSR register is lost.

Leaving the I2COV bit set does not inhibit further reception. If the RBF bit is cleared by reading
the I2CxRCV register and the I2CxRSR register receives another byte, that byte will be
transferred to the I2CxRCV register.

For devices with the BOEN bit (I2CxCON<20>), the master's ACK or NACK response to receiv-
ing a byte when I2COV = 1 depends on the value of the BOEN bit. If BOEN = 1, the module
ignores the value of the I2COV bit and ACKs the byte if RBF = 0 or NACKs the byte if RBF = 1.
If BOEN = 0, the module ACKs the byte if both RBF and I2COV = 0 and it NACKs the byte if
either RBF or I2COV = 1.

24.5.3.3 IWCOL STATUS FLAG

If the software writes the I2CxTRN register when a receive is already in progress (i.e., the
I2CxRSR register is still shifting in a data byte), the IWCOL bit (I2CxSTAT<7>) is set and the
contents of the buffer are unchanged (the write does not occur).

Note: The five Least Significant bits of I2CxCON must be ‘0’ before attempting to set the
RCEN bit. This ensures the master logic is inactive.

Note: The I2CxRCV register is only updated when RBF = 0, hence its value is never lost.
Only the hidden I2CxRSR register is allowed to overflow and lose newly received
bytes when RBF = 1.

Note: Since queuing of events is not allowed, writing to the five Least Significant bits of
the I2CxCON register is disabled until the data reception condition is complete. The
IWCOL bit must be cleared by software, as it is not cleared automatically.
DS60001116G-page 24-26 © 2007-2016 Microchip Technology Inc.

Section 24. Inter-Integrated Circuit (I2C)
Figure 24-10: Master Reception Timing Diagram

D7 D6 D5 D4 D3 D2 D1 D0

SCLx (Master)

SCLx (Slave)

SDAx (Slave)

SDAx (Master)

RBF

I2C Bus State

Master Interrupt

TBRG

5 62 3 4

Writing the RCEN bit will start a master reception event. The Baud Rate Generator starts. SCLx remains low.2

Baud Rate Generator times out. Master attempts to release SCLx. 3

When slave releases SCLx, Baud Rate Generator restarts.4

Baud Rate Generator times out. MSb of response shifted to I2CxRSR. SCLx driven low for next baud interval. 5

At falling edge of eighth SCLx clock, I2CxRSR transferred to I2CxRCV. I2C master clears RCEN bit. 6

TBRG

RCEN

(D) (Q) (Q)(D)(Q)

I2CxRCV

RBF bit is set. Master generates interrupt.

(Q)

1

Typically, the slave can pull SCLx low (clock stretch) to request a wait to prepare data response. 1
The slave will drive the MSb of the data response on SDAx when ready.

(Q)
© 2007-2016 Microchip Technology Inc. DS60001116G-page 24-27

PIC32 Family Reference Manual
24.5.4 Acknowledge Generation

Setting the Acknowledge Enable bit, ACKEN (I2CxCON<4>), enables generating a master
Acknowledge sequence.

Figure 24-11 shows an ACK sequence and Figure 24-12 shows a NACK sequence. The
Acknowledge Data bit, ACKDT (I2CxCON<5>), specifies ACK or NACK. If ACKDT = 0, an ACK
is sent. If ACKDT = 1, a NACK is sent.

After two baud periods, the ACKEN bit is automatically cleared and the I2C master generates the
master interrupt.

24.5.4.1 IWCOL STATUS FLAG

If the software writes to the I2CxTRN register when an Acknowledge sequence is in progress,
the IWCOL bit (I2CxSTAT<7>) is set and the contents of the buffer are unchanged (the write does
not occur).

Figure 24-11: Master Acknowledge (ACK) Timing Diagram

Figure 24-12: Master Not Acknowledge (NACK) Timing Diagram

Note: The five Least Significant bits of I2CxCON must be ‘0’ (master logic inactive) before
attempting to set the ACKEN bit.

Note: Because queuing of events is not allowed, writing to the five Least Significant bits of
the I2CxCON register is disabled until the Acknowledge condition is complete.

SCLx (Master)

SDAx (Master)

ACKEN

Master Interrupt

TBRG

1 2 3

 Writing ACKEN = 1 initiates a master Acknowledge event.
1

TBRG

Writing ACKDT = 0 specifies sending an ACK.

When SCLx detected low, I2C master drives SDAx low. 2

Baud Rate Generator times out. I2C master releases SCLx.3

Baud Rate Generator times out. 4

I2C Bus State (A) (Q)(Q)

4

Baud Rate Generator restarts.

Baud Rate Generator starts. SCLx remains low.

I2C master drives SCLx low, then releases SDAx.
I2C master clears ACKEN. Master generates interrupt.

(Q)

ACKDT = 0

SCLx (Master)

SDAx (Master)

ACKEN

Master Interrupt

TBRG

1 2 3

Writing ACKEN = 1 initiates a master Acknowledge event.
1

TBRG

Writing ACKDT = 1 specifies sending a NACK.

When SCLx detected low, I2C master releases SDAx.2

Baud Rate Generator times out. I2C master releases SCLx.3

Baud Rate Generator times out. 4

I2C Bus State (A) (I)(Q)

4

Baud Rate Generator restarts.

Baud Rate Generator starts.

I2C master drives SCLx low, then releases SDAx.
I2C master clears ACKEN. Master generates interrupt.

ACKDT = 1
DS60001116G-page 24-28 © 2007-2016 Microchip Technology Inc.

Section 24. Inter-Integrated Circuit (I2C)
24.5.5 Generating Stop Bus Event

Setting the Stop Enable bit, PEN (I2CxCON<2>), enables generating a master Stop sequence.

When the PEN bit is set, the master generates the Stop sequence as shown in Figure 24-13.

• The slave detects the Stop condition, sets the Stop (P) bit (I2CxSTAT<4>) and clears the
Start (S) bit (I2CxSTAT<3>)

• The PEN bit is automatically cleared

• The I2C master generates the master interrupt

24.5.5.1 IWCOL STATUS FLAG

If the software writes to the I2CxTRN register when a Stop sequence is in progress, the IWCOL
bit (I2CxSTAT<7>) is set and the contents of the buffer are unchanged (the write does not occur).

Figure 24-13: Master Stop Timing Diagram

24.5.6 Generating a Repeated Start Bus Event

Setting the Repeated Start Enable bit, RSEN (I2CxCON<1>), enables generating a master
Repeated Start sequence (see Figure 24-14).

To generate a repeated Start condition, software sets the RSEN bit (I2CxCON<1>) when the
master is in a state where it is waiting after having previously completed a byte transfer. The I2C
master asserts the SCLx pin low. When the I2C master samples the SCLx pin low, the module
releases the SDAx pin for one BRG count (TBRG). When the BRG times out and the I2C master
samples the SDAx pin high, the I2C master deasserts the SCLx pin. When the I2C master sam-
ples the SCLx pin high, the BRG reloads and begins counting. The SDAx and SCLx pins must
be sampled high for one TBRG. This action is then followed by assertion of the SDAx pin low for
one TBRG while the SCLx pin is high.

The following is the Repeated Start sequence:

1. The slave detects the Start condition, sets the S bit (I2CxSTAT<3>) and clears the P bit
(I2CxSTAT<4>).

2. The RSEN bit is automatically cleared.

3. The I2C master generates the master interrupt.

Note: The five Least Significant bits of the I2CxCON register must be ‘0’ (master logic
inactive) before attempting to set the PEN bit.

Note: Because queuing of events is not allowed, writing to the five Least Significant bits of
the I2CxCON register is disabled until the Stop condition is complete.

SCLx (Master)

SDAx (Master)

S

PEN

Master Interrupt

TBRG

1 2 3 5

Writing PEN = 1 initiates a master Stop event. Baud Rate1

TBRG

Generator starts. I2C master drives SDAx low.

Baud Rate Generator times out. I2C master releases SCLx.2
Baud Rate Generator restarts.

Baud Rate Generator times out. I2C master releases SDAx.3

Slave logic detects Stop. I2C master sets P = 1, S = 0.4

I2C Bus State (I)

P

TBRG

(Q)

4

Baud Rate Generator restarts.

The Baud Rate Generator times out. I2C master clears PEN. 5
Master generates interrupt.

(Q) (P)

Note: The five Least Significant bits of I2CxCON must be ‘0’ (master logic inactive) before
attempting to set the RSEN bit.
© 2007-2016 Microchip Technology Inc. DS60001116G-page 24-29

PIC32 Family Reference Manual
24.5.6.1 IWCOL STATUS FLAG

If the software writes to the I2CxTRN register when a Repeated Start sequence is in progress,
the IWCOL bit (I2CxSTAT<7>) is set and the contents of the buffer are unchanged (the write does
not occur).

Figure 24-14: Master Repeated Start Timing Diagram

Note: Because queuing of events is not allowed, writing of the five Least Significant bits of
the I2CxCON register is disabled until the Repeated Start condition is complete.

SCLx (Master)

SDAx (Master)

S

RSEN

Master Interrupt

TBRG

1 2 3 5

Writing RSEN = 1 initiates a master Repeated Start event. 1

TBRG

Baud Rate Generator starts. I2C master drives SCLx low and

Baud Rate Generator times out. I2C master releases SCLx. 2
Baud Rate Generator restarts.

Baud Rate Generator times out. I2C master drives SDAx low.3

Slave logic detects Start. I2C master sets S = 1 and P = 0.4

I2C Bus State (Q)

P

TBRG

(Q)

4

Baud Rate Generator restarts.

The Baud Rate Generator times out. I2C master drives SCLx low.5
I2C master clears RSEN. Master generates interrupt.

(Q)
releases SDAx.

(S)
DS60001116G-page 24-30 © 2007-2016 Microchip Technology Inc.

Section 24. Inter-Integrated Circuit (I2C)
24.5.7 Building Complete Master Messages

As described in the 24.5 “Communicating as a Master in a Single Master Environment”,
the software is responsible for constructing messages with the correct message protocol. The
I2C master controls individual portions of the I2C protocol; however, sequencing of the
components of the protocol to correctly constructing messages is a software responsibility.

The software can use polling or interrupt methods while using the I2C master. The examples
shown use interrupts.

The software can use the SEN, RSEN, PEN, RCEN and ACKEN bits (five Least Significant bits
of the I2CxCON register) and the TRSTAT bit as “state” flags when progressing through a
message. Table 24-3 provides some example state numbers associated with bus states.

The software will begin a message by issuing a Start command. The software will record the state
number corresponding to the Start.

As each event completes and generates an interrupt, the interrupt handler may check the state
number. Therefore, for a Start state, the interrupt handler will confirm execution of the Start
sequence and then start a master transmission event to send the I2C device address, changing
the state number to correspond to the master transmission.

On the next interrupt, the interrupt handler will again check the state, determining that a master
transmission just completed. The interrupt handler will confirm successful transmission of the
data, then move on to the next event, depending on the contents of the message. In this manner,
on each interrupt, the interrupt handler will progress through the message protocol until the
complete message is sent.

Figure 24-15 provides a more detailed examination of the same message sequence shown in
Figure 24-7.

Figure 24-16 shows some simple examples of messages using 7-bit addressing format.

Figure 24-17 shows an example of a 10-bit addressing format message sending data to a
slave.

Figure 24-18 shows an example of a 10-bit addressing format message receiving data from a
slave.

Table 24-3: Master Message Protocol States

Example
State Number

I2CxCON<4:0>
TRSTAT

(I2CxSTAT<14>)
State

0 00000 0 Bus Idle or Wait

1 00001 N/A Sending Start Event

2 00000 1 Master Transmitting

3 00010 N/A Sending Repeated Start Event

4 00100 N/A Sending Stop Event

5 01000 N/A Master Reception

6 10000 N/A Master Acknowledgment

Note: Example state numbers are for reference only. User software may assign state 
numbers as desired.
© 2007-2016 Microchip Technology Inc. DS60001116G-page 24-31

P
IC

32 F
am

ily R
eferen

ce M
a

n
u

al

D
S

6
0

0
0

111
6

G
-p

a
g

e
 2

4
-3

2
©

 2
0

0
7

-2
0

1
6

 M
icro

ch
ip

 T
e

ch
n

o
lo

g
y In

c.

9

A

1 2 3 4 5 6 7 8

D3 D2 D1 D0D7 D6 D5 D4

9

N

7 8 9

ts a master transmission. The data is a resend of

ter reception. On interrupt, the software reads

cknowledge event. ACKDT = 1 to send NACK.

r Stop event.

ss byte, but with R/W bit set, indicating a read.

rs the RBF flag.
Figure 24-15: Master Message (Typical I2C Message: Read of Serial EEPROM)

1 Setting the SEN bit starts a Start event.

ACKDT

ACKEN

SEN

SCLx

SDAx

SCLx

SDAx

I2CxTRN

TBF

I2CxRCV

RBF

Master

ACKSTAT

1 2 3 4 5 6 7 8

A1 A0

9

A

PEN

RCEN

1 2 3 4 5 6 7 8

A
11

A
10 A
9

A
8

1 2 3 4 5 6 7 8 9

W1 1

RSEN

1 2 3 4 5 6 7 8 9

1 32

AA

4 5

2 Writing the I2CxTRN register starts a master transmission. The data is the serial

3 Writing the I2CxTRN register starts a master transmission. The data is the first

4 -

5

Writing the I2CxTRN register star6

Setting the RCEN bit starts a mas7

9

Setting the ACKEN bit starts an A

Setting the PEN bit starts a maste

EEPROM device address byte, with R/W clear, indicating a write.

byte of the EEPROM data address.

the serial EEPROM device addre

the I2CxRCV register, which clea

0 0 A2 A7 A6 A5 A4 A2 A1 A0 A1 A0 R1 10 0 A20 0 0 0

6

Writing the I2CxTRN register starts a master transmission. The data is the second
byte of the EEPROM data address.

8

Setting the RSEN bit starts a Repeated Start event.

(Master)

(Master)

(Slave)

(Slave)

A3

Master interrupt cleared

Interrupt
by user software.

©
 2

0
0

7
-2

0
1

6
 M

icro
ch

ip
 T

e
ch

n
o

lo
g

y In
c.

D
S

6
0

0
0

111
6

G
-p

a
g

e
 2

4
-3

3

S
ectio

n
 24. In

ter-In
teg

rated
 C

ircu
it (I 2C

)

F

1 2 3 4 5 6 7 8

D3 D2 D1 D0D7 D6 D5 D4

9

N

97 8

aster transmission. The data is the

eception.

wledge event. ACKDT = 1 to send NACK.

p event.
igure 24-16: Master Message (7-bit Address: Transmission and Reception)

1 Setting the SEN bit starts a Start event.

ACKDT

ACKEN

SEN

SCLx

SDAx

SCLx

SDAx

I2CxTRN

TBF

I2CxRCV

RBF

Master

ACKSTAT

1 2 3 4 5 6 7 8

A2 A1

9

A

PEN

RCEN

1 2 3 4 5 6 7 8

D7 D6 D5 D4 D3 D2 D1 D0

1 2 3 4 5 6 7 8 9

W

RSEN

1 32

9

A

4 5 6

2 Writing the I2CxTRN register starts a master transmission. The data is the

3 Writing the I2CxTRN register starts a master transmission. The data is the

4 Setting the PEN bit starts a master Stop event.

5 Setting the SEN bit starts a Start event.

6 Writing the I2CxTRN register starts a m

7 Setting the RCEN bit starts a master r

8 Setting the ACKEN bit starts an Ackno

Setting the PEN bit starts a master Sto

address byte with R/W bit clear.

message byte.

A7 A6 A5 A4 A3

A

A2 A1 RA7 A6 A5 A4 A3

address byte with R/W bit set.

9

(Master)

(Master)

(Slave)

(Slave)

Master interrupt cleared

Interrupt
by user software.

P
IC

32 F
am

ily R
eferen

ce M
a

n
u

al

D
S

6
0

0
0

111
6

G
-p

a
g

e
 2

4
-3

4
©

 2
0

0
7

-2
0

1
6

 M
icro

ch
ip

 T
e

ch
n

o
lo

g
y In

c.

1 2 3 4 5 6 7 8 9

6 7

er Stop event.

D3 D2 D1 D0D7 D6 D5 D4

A

rts a master transmission. The data is the second

rts a master transmission. The data is the third
Figure 24-17: Master Message (10-bit Transmission)

1 Setting the SEN bit starts a Start event.

ACKDT

ACKEN

SEN

SCLx

SDAx

SCLx

SDAx

I2CxTRN

TBF

I2CxRCV

RBF

Master

ACKSTAT

1 2 3 4 5 6 7 8

A9 A8

9

A

PEN

RCEN

1 2 3 4 5 6 7 8

D3 D2 D1 D0D7 D6 D5 D4A7 A6 A5 A4 A3 A2 A1 A0

1 2 3 4 5 6 7 8 9

W01 1 1 1

RSEN

1 2 3 4 5 6 7 8 9

1 32

9

AAA

4 5

2 Writing the I2CxTRN register starts a master transmission. The data is the first

3 Writing the I2CxTRN register starts a master transmission. The data is the second

4 Writing the I2CxTRN register starts a master transmission. The data is the first

Setting the PEN bit starts a mast

byte of the address.

byte of the address.

byte of the message data.

D3 D2 D1 D0D7 D6 D5 D4

5 Writing the I2CxTRN register sta
byte of the message data.

6 Writing the I2CxTRN register sta
byte of the message data.

7

(Master)

(Master)

(Slave)

(Slave)

Master interrupt cleared

Interrupt

by user software.

©
 2

0
0

7
-2

0
1

6
 M

icro
ch

ip
 T

e
ch

n
o

lo
g

y In
c.

D
S

6
0

0
0

111
6

G
-p

a
g

e
 2

4
-3

5

S
ectio

n
 24. In

ter-In
teg

rated
 C

ircu
it (I 2C

)

F

1 2 3 4 5 6 7 8

D3 D2 D1 D0D7 D6 D5 D4

9

N

8 9 10

eception. On interrupt, the software reads

wledge event. ACKDT = 0 to send ACK.

eception.

wledge event. ACKDT = 1 to send NACK.

p event.

 RBF flag.
igure 24-18: Master Message (10-bit Reception)

1 Setting the SEN bit starts a Start event.

ACKDT

ACKEN

SEN

SCLx

SDAx

SCLx

SDAx

I2CxTRN

TBF

I2CxRCV

RBF

Master

ACKSTAT

1 2 3 4 5 6 7 8

A9 A8

9

A

PEN

RCEN

1 2 3 4 5 6 7 8

D3 D2 D1 D0D7 D6 D5 D4

A7 A6 A5 A4 A3 A2 A1 A0

1 2 3 4 5 6 7 8 9

W01 1 1 1

RSEN

A9 A801 1 1 1 R

1 2 3 4 5 6 7 8 9

1 32

9

A

AA

4 5 6 7

2 Writing the I2CxTRN register starts a master transmission. The data is the first

3 Writing the I2CxTRN register starts a master transmission. The data is the second

4 Setting the RSEN bit starts a master Restart event.

5 Writing the I2CxTRN register starts a master transmission. The data is a resend

6 Setting the RCEN bit starts a master r

7 Setting the ACKEN bit starts an Ackno

8 Setting the RCEN bit starts a master r

9 Setting the ACKEN bit starts an Ackno

Setting the PEN bit starts a master Sto

byte of the address with the R/W bit cleared.

byte of the address.

of the first byte with the R/W bit set.

the I2CxRCV register, which clears the

(Slave)

(Slave)

(Master)

(Master)

Master interrupt cleared

10

Interrupt
by user software.

PIC32 Family Reference Manual
24.6 COMMUNICATING AS A MASTER IN A MULTI-MASTER ENVIRONMENT

The I2C protocol allows for more than one master to be attached to a system bus. Considering
that a master can initiate message transactions and generate clocks for the bus, the protocol
has methods to account for situations where more than one master is attempting to control the
bus. Clock synchronization ensures that multiple nodes can synchronize their SCLx clocks to
result in one common clock on the SCLx line. Bus arbitration ensures that if more than one
node attempts a message transaction, one node, and only one node, will be successful in
completing the message. The other nodes will lose bus arbitration and will be left with a bus
collision.

24.6.1 Multi-Master Operation

The Master module has no special settings to enable multi-master operation. The module
performs clock synchronization and bus arbitration at all times. If the module is used in a single
master environment, clock synchronization will only occur between the master and slaves, and
bus arbitration will not occur.

24.6.2 Master Clock Synchronization

In a multi-master system, different masters may have different baud rates. Clock synchronization
will ensure that their clocks will be coordinated.

Clock synchronization occurs when the master deasserts the SCLx pin (SCLx intended to float
high). When the SCLx pin is released, the BRG is suspended from counting until the SCLx pin is
actually sampled high. When the SCLx pin is sampled high, the BRG is reloaded with the
contents of I2CxBRG<15:0> and begins counting. This ensures that the SCLx high time will
always be at least one BRG rollover count in the event that the clock is held low by an external
device, as shown in Figure 24-6.

24.6.3 Bus Arbitration and Bus Collision

Bus arbitration supports multi-master system operation.

The wired AND nature of the SDAx line permits arbitration. Arbitration takes place when the first
master outputs a ‘1’ on SDAx by letting SDAx float high and simultaneously, the second master
outputs a ‘0’ on SDAx by driving SDAx low. The SDAx signal will go low. In this case, the second
master has won bus arbitration. The first master has lost bus arbitration.

For the first master, the expected data on SDAx is a ‘1’, but the data sampled on SDAx is a ‘0’.
This is the definition of a bus collision. When a bus collision occurs, the first master will set the
Bus Collision bit, BCL (I2CxSTAT<10>), and generate a bus collision interrupt. The Master
module will reset the I2C port to its Idle state.

In multi-master operation, the SDAx line must be monitored for arbitration to see if the signal level
is the expected output level. This check is performed by the Master module, with the result placed
in the BCL bit.

The states where arbitration can be lost are:

• A Start condition

• A Repeated Start condition

• An Address, Data or Acknowledge bit

• A Stop condition

24.6.4 Detecting Bus Collisions and Resending Messages

When a bus collision occurs, the I2C master sets the BCL bit and generates a bus collision inter-
rupt. If bus collision occurs during a byte transmission, the transmission is halted, the TBF bit
(I2CxSTAT<0>) is cleared and the SDAx and SCLx pins are deasserted. If bus collision occurs
during a Start, Repeated Start, Stop or Acknowledge condition, the condition is aborted, the
respective control bits in the I2CxCON register are cleared and the SDAx and SCLx lines are
deasserted.
DS60001116G-page 24-36 © 2007-2016 Microchip Technology Inc.

Section 24. Inter-Integrated Circuit (I2C)
The software is expecting an interrupt at the completion of the master event. The software can
check the BCL bit to determine whether the master event completed successfully or a collision
occurred. If a collision occurs, the software must abort sending the rest of the pending message
and prepare to resend the entire message sequence, beginning with the Start condition, after the
bus returns to an Idle state. The software can monitor the S (I2CxSTAT<3>) and P
(I2CxSTAT<4>) bits to wait for an Idle bus. When the software services the bus collision Interrupt
Service Routine and the I2C bus is free, the software can resume communication by asserting a
Start condition.

24.6.5 Bus Collision During a Start Condition

Before issuing a Start command, the software should verify an Idle state of the bus using the S
and P Status bits. Two masters may attempt to initiate a message simultaneously. Typically, the
masters will synchronize clocks and continue arbitration into the message until one loses arbitra-
tion. However, certain conditions can cause a bus collision to occur during a Start. In this case,
the master that loses arbitration during the Start (S) bit generates a bus collision interrupt.

24.6.6 Bus Collision During a Repeated Start Condition

Should two masters not collide throughout an address byte, a bus collision may occur when one
master attempts to assert a Repeated Start while another transmits data. In this case, the master
generating the Repeated Start will lose arbitration and generate a bus collision interrupt.

24.6.7 Bus Collision During Message Bit Transmission

The most typical case of data collision occurs while the master is attempting to transmit the
device address byte, a data byte, or an Acknowledge bit.

If the software is checking the bus state, it is unlikely that a bus collision will occur on a Start
condition. However, because another master can, at a very similar time, check the bus and
initiate its own Start condition, it is likely that SDAx arbitration will occur and synchronize the Start
of two masters. In this condition, both masters will begin and continue to transmit their messages
until one master loses arbitration on a message bit. Remember that the SCLx clock
synchronization will keep the two masters synchronized until one loses arbitration. Figure 24-19
shows an example of message bit arbitration.

Figure 24-19: Bus Collision During Message Bit Transmission

24.6.8 Bus Collision During a Stop Condition

If the master software loses track of the state of the I2C bus, there are conditions that cause a
bus collision during a Stop condition. In this case, the master generating the Stop condition will
lose arbitration and generate a bus collision interrupt.

SCLx (Master)

SDAx (Master)

TBF

TBRG

1 2 3

Master transmits bit value of ‘1’ in next SCLx clock.1

TBRG

I2C master releases SDAx.

Another master on bus transmits bit value of ‘0’ 2
in next SCLx clock. Another master drives SDAx low.

Baud Rate Generator times out. I2C master attempts to verify3

I2C Bus State

BCL

(D)

SCLx (Bus)

SDAx (Bus)

SDAx high. Bus collision detected.
I2C master releases SDAx, SCLx. I2C master sets BCL bit
and clears TBF bit. Master generates interrupt.

(D)(Q)(Q) (Q)

Master Interrupt
© 2007-2016 Microchip Technology Inc. DS60001116G-page 24-37

PIC32 Family Reference Manual
24.7 COMMUNICATING AS A SLAVE

In some systems, particularly where multiple processors communicate with each other, the
PIC32 device may communicate as a slave, see Figure 24-20. When the I2C slave is enabled,
the Slave module is active. The slave may not initiate a message, it can only respond to a
message sequence initiated by a master. The master requests a response from a particular slave
as defined by the device address byte in the I2C protocol. The Slave module replies to the master
at the appropriate times as defined by the protocol.

As with the Master module, sequencing the components of the protocol for the reply is a software
task. However, the Slave module detects when the device address matches the address
specified by the software for that slave.

Figure 24-20: A Typical Slave I2C Message: Multiprocessor Command/Status

After a Start condition, the Slave module will receive and check the device address. The slave
may match either a 7-bit address or a 10-bit address. When a device address is matched, the
I2C slave will generate an interrupt to notify the software that its device is selected. Based on the
R/W bit (IC2xSTAT<2>) sent by the master, the slave will either receive or transmit data. If the
slave is to receive data, the Slave module automatically generates the Acknowledge (ACK),
loads the I2CxRCV register with the received value currently in the I2CxRSR register, and then
notifies the software through an interrupt. For devices with address hold enable option the AHEN
bit (I2CxCON<17>) should be clear for automatic generation of ACK.

Refer to 24.7.4.1 “Acknowledge Generation” for more information on the acknowledge
sequence when the I2C module is a slave and on the AHEN and DHEN bits. If the slave is to
transmit data, user software must load the I2CxTRN register.

24.7.1 Sampling Receive Data

All incoming bits are sampled with the rising edge of the clock (SCLx) line.

24.7.2 Detecting Start and Stop Conditions

The Slave module will detect Start and Stop conditions on the bus and indicate that status on the
S bit (I2CxSTAT<3>) and P bit (I2CxSTAT<4>). The Start (S) and Stop (P) bits are cleared when
a Reset occurs or when the I2C slave is disabled. After detection of a Start or Repeated Start
event, the S bit is set and the P bit is cleared. After detection of a Stop event, the P bit is set and
the S bit is cleared.

The Slave module can also generate interrupts to notify the Start and Stop conditions. These
Start and Stop detection interrupts can be enabled using the SCIE bit (I2CxCON<21>) and the
PCIE bit (I2CxCON<22>).

Bus

Master
SDAx

S
ta

rt

First
Address Address

Byte

S 1 1 1 0 A A 0
9 8

R P

Slave
SDAx

Activity

N

AAAA

Output

Output

R
/W

A
C

K

A
C

K

A
C

K
R

es
ta

rt

R
/W

A
C

K

N
A

C
K

S
to

p

1

Byte

Second
Address

Byte

A A
7 6

A A
5 4

A A
3 2

A A
1 0

Command
Data
Byte

1 1 1 0 A A 1
9 8

1

Status
Data
Byte

10-bit
Address

R

DS60001116G-page 24-38 © 2007-2016 Microchip Technology Inc.

Section 24. Inter-Integrated Circuit (I2C)
24.7.3 Detecting the Address

Once the ON bit (I2CxCON<15>) is set, the Slave module waits for a Start condition to occur.
After a Start, depending on the A10M bit (I2CxCON<10>), the slave will attempt to detect a 7-bit
or 10-bit address. The Slave module will compare one received byte for a 7-bit address or two
received bytes for a 10-bit address. The first address byte contains a R/W bit that specifies the
direction of data transfer of any bytes that follow it. If R/W = 0, a write is specified and the slave
will receive data from the master. If R/W = 1, a read is specified and the slave will send data to
the master. The first byte of a 10-bit address contains an R/W bit; however, by definition, it is
always R/W = 0 because the slave must receive the second byte of the 10-bit address.

24.7.3.1 SLAVE ADDRESS MASKING

The I2CxMSK register masks address bit positions, designating them as “don’t care” bits for both
10-bit and 7-bit Addressing modes. When a bit in the I2CxMSK register is set (= 1), it means
“don’t care”. The Slave module will respond when the bit in the corresponding location of the
address is a ‘0’ or ‘1’. For example, in 7-bit Slave mode with the I2CxMSK register = 0110000,
the I2C slave will Acknowledge addresses ‘0010000’ and ‘0100000’ as valid.

24.7.3.2 LIMITATIONS OF ADDRESS MASK

By default, the device will respond to addresses in the reserved address space with the address
mask enabled (see Table 24-4 for the reserved address spaces). When using the address mask
and the STRICT bit (I2CxCON<11>) is cleared, reserved addresses may be acknowledged. If
the user wants to enforce the reserved address space, the STRICT bit must be set to a ‘1’.
Once the bit is set, the device will not acknowledge reserved addresses regardless of the
address mask settings.

24.7.3.3 7-BIT ADDRESS AND SLAVE WRITE

Following the Start condition, the I2C slave shifts eight bits into the I2CxRSR register (see
Figure 24-21). The value of the I2CxRSR<7:1> bits are evaluated against that of the
I2CxADD<6:0> and I2CxMSK<6:0> bits on the falling edge of the eighth clock (SCLx). If the
address is valid (i.e., an exact match between unmasked bit positions), the following events
occur:

1. An ACK is generated (for devices with the AHEN bit (I2CxCON<17>), an ACK is
generated if the AHEN bit is clear).

2. The D/A (IC2xSTAT<5>) bit and the R/W bit (IC2xSTAT<2>) are cleared.

3. The I2C slave generates the slave interrupt on the falling edge of the ninth SCLx clock.

4. The I2C slave will wait for the master to send data.

Figure 24-21: Slave Write 7-bit Address Detection Timing Diagram

SCLx (Master)

SDAx (Master)

SDAx (Slave)

Slave Interrupt

3 41 2

Detecting Start bit enables1

I2C Bus State (D) (D) (A)(D)

A5A6A7 A4 A3 A2 A1

D/A

ADD10

SCLREL

R/W

address detection.

R/W = 0 indicates that slave 2
receives data bytes.

Valid match of address byte clears 3
D/A bit. Slave generates ACK.

R/W bit cleared. Slave generates 4
interrupt.

5

Bus waiting. Slave ready to 5
receive data.

R/W = 0

(S) (Q)
© 2007-2016 Microchip Technology Inc. DS60001116G-page 24-39

PIC32 Family Reference Manual
24.7.3.4 7-BIT ADDRESS AND SLAVE READ

When a slave read is specified by having R/W (IC2xSTAT<2>) = 1 in a 7-bit address byte, the
process of detecting the device address is similar to that for a slave write (see Figure 24-22). If
the addresses match, the following events occur:

1. An ACK is generated (for devices with the AHEN bit (I2CxCON<17>), an ACK is
generated if the AHEN bit = 0).

2. The D/A bit (I2CxSTAT<5>) is cleared and the R/W bit (I2CxSTAT<2>) is set.

3. The I2C slave generates the slave interrupt on the falling edge of the ninth SCLx clock.

Since the Slave module is now expected to reply with data, it is necessary to suspend the
operation of the I2C bus to allow the software to prepare a response. This is done automatically
when the I2C slave clears the SCLREL bit (I2CxCON<12>). With SCLREL low, the Slave module
will pull down the SCLx clock line, causing a wait on the I2C bus. The Slave module and the I2C
bus will remain in this state until the software writes the I2CxTRN register with the response data
and sets the SCLREL bit.

Figure 24-22: Slave Read 7-bit Address Detection Timing Diagram

When a slave read occurs with address hold enabled (AHEN = 1), the I2C module stretches the
SCLx clock after the eighth falling edge when it has received a matching address byte. The I2C
module clears the SCLREL bit and the clock is asserted low. Slave software is responsible for
clearing the ACKDT bit to acknowledge the byte and for waiting the appropriate setup time before
setting the SCLREL bit. This sequence is shown in Figure 24-23. Refer to 24.8.3 “Rise and
Setup Time Considerations” for additional information.

Note: The SCLREL bit will automatically clear after detection of a slave read address,
regardless of the state of the STREN bit.

SCLx (Master)

SDAx (Master)

SDAx (Slave)

Slave Interrupt

3 41 2

Detecting Start bit enables1

I2C Bus State (D) (D) (A)(D)

A5A6A7 A4 A3 A2 A1

D/A

ADD10

SCLREL

R/W

address detection.

R/W = 1 indicates that slave 2
sends data bytes.

Valid address of first byte clears 3
D/A bit. Slave generates ACK.

R/W bit set. Slave generates 4
interrupt. SCLREL cleared.

5

Bus waiting. Slave prepares to 5
send data.

SCLx (Slave)

Slave pulls SCLx low while
SCLREL = 0.

(S) (Q)

R/W = 1
DS60001116G-page 24-40 © 2007-2016 Microchip Technology Inc.

©
 2

0
0

7
-2

0
1

6
 M

icro
ch

ip
 T

e
ch

n
o

lo
g

y In
c.

D
S

6
0

0
0

111
6

G
-p

a
g

e
 2

4
-4

1

S
ectio

n
 24. In

ter-In
teg

rated
 C

ircu
it (I 2C

)

F

 Data

(P)

3 D2 D1 D0

6 7 8

Master sends
stop condition

9

ACK=1

ta from I2CxRCV and updates the ACKDT bit

are and SCLx is released.

d by software (see Note 1).

ware on the eighth falling edge of SCLx.

KDT to not ACK.

CK from Slave (see Note 1).

10 11 12

or NACKs the byte (see Note 1).

the SCLREL bit. Refer to 24.8.3 “Rise and
igure 24-23: Slave Read with AHEN = 1 AND DHEN = 1

Receiving Address Receiving Data Received

A7 A6 A5 A4 A3 A2 A1 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D
SDAx

SCLx

RBF

SCLREL

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5

(S)

ACK

Master Releases SDAx
to slave for ACK sequence

ACK

ACKDT

ACKTIM

Slave Interrupt

If AHEN = 1, slave interrupt is set, SCLREL is cleared by hardware and SCLx is1

RBF address is read from I2CxRCV.2

Slave software clears ACKDT to ACK the received byte (see Note 1).3

ACKTIM cleared by hardware on the ninth rising edge of SCLx. SCLREL is set by software4

Slave interrupt is set on ninth falling edge of SCLx, after ACK.5

When DHEN = 1, SCLREL is cleared by hardware on the eighth falling edge of SCLx.6

Software reads RBF da7

SCLREL is set by softw8

Slave interrupt is cleare9

ACKTIM is set by hard10

Slave software sets AC11

No interrupt after not A12

3 41 2 5 8 96 7

and SCLx is released (see Note 1).

stretched. ACKTIM is set by hardware on the eighth falling edge of SCLx. to determine if it ACKs

Note 1: After setting or clearing the ACKDT bit, software is responsible for waiting the appropriate setup time before setting
Setup Time Considerations” for additional information.

PIC32 Family Reference Manual
24.7.3.5 10-BIT ADDRESSING MODE

Figure 24-24 shows the sequence of address bytes on the bus in 10-bit Address mode when the
A10M bit (I2CxCON<10>) is set. In this mode, the slave must receive two device address bytes
(see Figure 24-25). The five Most Significant bits of the first address byte specify a 10-bit
address. The R/W bit of the address must specify a write, causing the slave device to receive the
second address byte. For a 10-bit address, the first byte would equal ‘11110 A9 A8 0’, where
‘A9’ and ‘A8’ are the two Most Significant bits of the address.

The I2CxMSK register can mask any bit position in a 10-bit address. The two Most Significant
bits of the I2CxMSK register are used to mask the Most Significant bits of the incoming address
received in the first byte. The remaining byte of the register is then used to mask the lower byte
of the address received in the second byte.

Following the Start condition, the I2C slave shifts eight bits into the I2CxRSR register. The value
of the I2CxRSR<2:1> bits are evaluated against the value of the I2CxADD<9:8> and
I2CxMSK<9:8> bits, while the value of the I2CxRSR<7:3> bits are compared to ‘11110’.
Address evaluation occurs on the falling edge of the eighth clock (SCLx). For the address to be
valid, the I2CxRSR<7:3> bits must equal ‘11110’, while the I2CxRSR<2:1> bits must exactly
match any unmasked bits in the I2CxADD<9:8> bits. (If both bits are masked, a match is not
needed.) If the address is valid, the following events occur:

1. An ACK is generated (for devices with the AHEN bit (I2CxCON<17>), an ACK is
generated if the AHEN bit is clear).

2. The D/A bit (I2CxSTAT<5>) bit and the R/W bit (IC2xSTAT<2>) are cleared.

3. The I2C slave generates the slave interrupt on the falling edge of the ninth SCLx clock.

The I2C slave does generate an interrupt after the reception of the first byte of a 10-bit address
and software must read the I2CxRCV register to clear the buffer and obtain the value of the two
high-order address bits.

The I2C slave will continue to receive the second byte into the I2CxRSR register. This time, the
I2CxRSR<7:0> bits are evaluated against the I2CADD<7:0> and I2CxMSK<7:0> bits. If the lower
byte of the address is valid as previously described, the following events occur:

1. An ACK is generated (for devices with the AHEN bit (I2CxCON<17>), an ACK is
generated if the AHEN bit is clear).

2. The ADD10 bit (I2CxSTAT<8>) is set.

3. The I2C slave generates the slave interrupt on the falling edge of the ninth SCLx clock.

4. The I2C slave will wait for the master to send data or initiate a Repeated Start condition.

Figure 24-24: 10-bit Address Sequence

Note: Following a Repeated Start condition in 10-bit Addressing mode, the Slave module
only matches the first 7-bit address, ‘11110 A9 A8 0’.

s 1 1 1 1 0 A9 A8 R/W ACK A7 A6 A5 A4 A3 A2 A1 A0 ACK

= 0 for write

sent by slave
DS60001116G-page 24-42 © 2007-2016 Microchip Technology Inc.

Section 24. Inter-Integrated Circuit (I2C)
Figure 24-25: 10-bit Address Detection Timing Diagram

24.7.3.6 GENERAL CALL OPERATION

The addressing procedure for the I2C bus is such that the first byte (or first two bytes in case of
10-bit Addressing mode) after a Start condition usually determines which slave device the master
is addressing. The exception is the general call address, which can address all devices. When
this address is used, all enabled devices should respond with an Acknowledge. The general call
address is one of eight addresses reserved for specific purposes by the I2C protocol. It consists
of all zeros with R/W (IC2xSTAT<2>) = 0. The general call is always a slave write operation.

The general call address is recognized when the General Call Enable bit, GCEN (I2CxCON<7>),
is set, see Figure 24-26. Following a Start (S) bit (I2CxSTAT<3>) detect, eight bits are shifted into
the I2CxRSR register and the address is compared against the I2CxADD register and the
general call address. If the general call address matches, the following events occur:

1. An ACK is generated (for devices with the AHEN bit (I2CxCON<17>), an ACK is
generated if the AHEN bit is clear).

2. The Slave module will set the GCSTAT bit (I2CxSTAT<9>).

3. The D/A (IC2xSTAT<5>) and R/W bits are cleared.

4. The I2C slave generates the slave interrupt on the falling edge of the ninth SCLx clock.

5. The I2CxRSR register is transferred to the I2CxRCV register and the RBF flag bit (I2Cx-
STAT<1>) is set (on the falling edge of the eighth SCLx clock).

6. The I2C slave will wait for the master to send data.

When the interrupt is serviced, the cause for the interrupt can be checked by reading the contents
of the GCSTAT bit to determine whether the device address was device-specific or a general call
address.

SCLx (Master)

SDAx (Master)

SDAx (Slave)

Slave Interrupt

2 4 51 3

Detecting Start bit enables address detection.1

Address match of first byte clears D/A bit and causes slave logic to generate ACK.2

Reception of first byte clears R/W bit. Slave logic generates interrupt.3

Address match of first and second byte sets ADD10 and causes slave logic to generate ACK.4

Reception of second byte completes 10-bit address. Slave logic generates interrupt.5

I2C Bus State (D) (D) (A)(D)

111 1 0 A9 A8
R/W = 0

D/A

ADD10

SCLREL

A5A6A7 A4 A3 A2 A1 A0

R/W

(D) (D) (A)(D)

6

Bus waiting. Slave ready to receive data.6

(S) (Q)

Note: General call addresses are 7-bit addresses. If configuring the Slave module for
10-bit addresses and the A10M bit (I2CxCON<10>) and the GCEN bit are set, the
Slave module will continue to detect the 7-bit general call address.
© 2007-2016 Microchip Technology Inc. DS60001116G-page 24-43

PIC32 Family Reference Manual
Figure 24-26: General Call Address Detection Timing Diagram (GCEN = 1)

24.7.3.7 STRICT ADDRESS SUPPORT

When the STRICT bit (I2CxCON<11>) is set, it enables the I2C slave to enforce all reserved
addressing and will not acknowledge any addresses if they fall within the reserved address table.

24.7.3.8 WHEN AN ADDRESS IS INVALID

If a 7-bit address does not match the contents of the I2CxADD<6:0> bits, the Slave module will
return to an Idle state and ignore all bus activity until after the Stop condition.

If the first byte of a 10-bit address does not match the contents of the I2CxADD<9:8> bits, the
Slave module will return to an Idle state and ignore all bus activity until after the Stop condition.

If the first byte of a 10-bit address matches the contents of the I2CxADD<9:8> bits, but the sec-
ond byte of the 10-bit address does not match the I2CxADD<7:0> bits, the Slave module will
return to an Idle state and ignore all bus activity until after the Stop condition.

24.7.3.9 STRICT SUPPORT FOR RESERVED ADDRESSES

When the STRICT bit (I2CxCON<11>) is set, several addresses are excluded in hardware from
masking. For these addresses, an Acknowledge will not be issued independent of the mask set-
ting. These addresses are listed in Table 24-4.

SCLx (Master)

SDAx (Master)

SDAx (Slave)

Slave Interrupt

3 41 2

Detecting Start bit enables1

I2C Bus State (D) (D) (A)(D)

000 0 0 0 0

D/A

I2CRCV

RBF

R/W

address detection.

All ‘0’s and R/W = 0 indicates2
general call.

Valid address clears D/A bit3
and sets GCSTAT.

R/W bit cleared. Slave generates 4
interrupt.

5

Bus waiting. Slave ready to 5
receive data.

GCSTAT

Slave generates ACK.
Address loaded into I2CxRCV.

R/W = 0

(S) (Q)

Table 24-4: Reserved I2C Bus Addresses(1)

7-bit Address Mode:

Slave Address R/W bit (IC2xSTAT<2>) Description

0000 000 0 General Call Address(1)

0000 000 1 Start Byte(3)

0000 001 x CBUS Address
0000 010 x Reserved
0000 011 x Reserved
0000 1xx x HS Mode Master Code

1111 1xx x Reserved
1111 0xx x 10-bit Slave Upper Byte(2)

Note 1: The Address will be Acknowledged only if GCEN (I2CxCON<7>) = 1, regardless of
the value of the STRICT bit (I2CxCON<11>).

2: The match on this address can only occur as the upper byte in the 10-bit Addressing
mode, regardless of the setting of the STRICT bit.

3: The Start Byte will never be acknowledged, regardless of the setting of the STRICT
bit.
DS60001116G-page 24-44 © 2007-2016 Microchip Technology Inc.

Section 24. Inter-Integrated Circuit (I2C)
24.7.4 Receiving Data from a Master Device

When the R/W bit of the device address byte is zero and an address match occurs, the R/W bit
(I2CxSTAT<2>) is cleared. The Slave module enters a state waiting for data to be sent by the
master. After the device address byte, the contents of the data byte are defined by the system
protocol and are only received by the Slave module; they are not interpreted in any way.

The Slave module shifts eight bits into the I2CxRSR register. On the falling edge of the eighth
clock (SCLx), the following events occur:

1. The I2C slave begins to generate an ACK or NACK.

2. The RBF bit (I2CxSTAT<1>) is set to indicate received data.

3. The I2CxRSR register byte is transferred to the I2CxRCV register for access by the
software.

4. The D/A bit (I2CxSTAT<5>) is set.

5. A slave interrupt is generated. Software may check the status of the I2CxSTAT register to
determine the cause of the event, and then clear the slave interrupt flag.

6. The I2C slave will wait for the next data byte.

24.7.4.1 ACKNOWLEDGE GENERATION

Normally, the Slave module will Acknowledge all received bytes by sending an ACK on the ninth
SCLx clock.

For devices with the BOEN bit (I2CxCON<20>), if this bit is set, the state of the I2COV bit
(I2CxSTAT<6>) is ignored and the acknowledge is generated for the received data/address if the
RBF bit is clear. When the BOEN bit is clear, and if the receive buffer is overrun, the Slave module
does not generate this ACK. Overrun is indicated if either (or both):

• The buffer full bit, RBF (I2CxSTAT<1>), was set before the transfer was received

• The overflow bit, I2COV (I2CxSTAT<6>), was set before the transfer was received

Table 24-5 summarizes the actions taken when a data byte is received, based upon the values
of the BOEN bit (I2CxCON<20>), the RBF bit (I2CxSTAT<1>), and the I2COV bit (I2CxSTAT<6>.
In all cases, a slave interrupt is generated (if enabled). The data byte is transferred from the
I2CxRSR register to the I2CxRCV register only if the RBF bit is clear. The BOEN bit has no affect
on the transfer of data to the I2CxRCV register, as it only affects automatic ACK or NACK
generation. And, unless the DHEN bit is set, the slave automatically generates an ACK only if
both RBF and I2COV = 0 (when BOEN = 0). However, when BOEN = 1, ACK or NACK
generation is determined by the value of the RBF bit.

Reading the I2CxRCV register clears the RBF bit. The I2COV bit is cleared by writing to a ‘0’
through software.

Some devices have the Acknowledge Sequence Status bit, ACKTIM. During an acknowledge
sequence of a Slave I2C device, the ACKTIM bit is set. The Acknowledge sequence for I2C
communication is from the eighth falling edge to the ninth falling edge of SCLx. This Status bit
will allow the user software to determine the source of an I2C interrupt, and how far the
communication has progressed.

Table 24-5: Data Transfer Received Byte Actions

Control & Status Bits I2CxRSR
Transferred
To I2CxRCV

ACK
or

NACK

Set
RBF

Set
I2COVBOEN RBF I2COV

0 0 0 Yes ACK Yes No Change

0 0 1 Yes NACK Yes No Change

0 1 0 No NACK No Change Yes

0 1 1 No NACK No Change Yes

1 0 0 Yes ACK Yes No Change

1 0 1 Yes ACK Yes No Change

1 1 0 No NACK No Change Yes

1 1 1 No NACK No Change Yes
© 2007-2016 Microchip Technology Inc. DS60001116G-page 24-45

PIC32 Family Reference Manual
24.7.4.2 ADDRESS AND DATA HOLD

In some devices, the AHEN bit (I2CxCON<17>) and the DHEN bit (I2CxCON<16>) are available
to allow the software to determine the ACK or NACK response to bytes received.

When the AHEN and DHEN bits are set, the Slave module automatically stretches the SCLx
clock after bytes are received. When the AHEN bit is set, after the eighth falling edge of SCLx,
the clock is stretched by hardware when a matching address byte is received. Following the
eighth falling edge, the SCLREL bit is cleared and the clock is asserted low until the user sets
the SCLREL bit, releasing SCLx. This will allow the user software to choose which incoming
addresses to ACK or NACK. When the DHEN bit is set, after the eighth falling edge of SCLx, the
clock is stretched by hardware when a data byte is received. The received data must be
preceded by a matching address byte that was acknowledged. For both data and address
holding, the slave software can set or clear the ACKDT bit (I2CxCON<5>). To control the
acknowledgment bit value, the master will clock in once SCLx is released by the slave. Software
is responsible for waiting an appropriate setup and/or rise time after setting or clearing the
ACKDT bit, before setting the SCLREL bit to allow the master to correctly clock and latch the
acknowledgment bit. If software NACKs a data byte, that is the signal to the master that the slave
intends to end the transfer and the slave will release the bus and wait for the next matching
address.

When the AHEN and DHEN bits are clear, the Slave module will automatically generate the
acknowledgment response, as shown in Table 24-5.

24.7.4.3 CLOCK STRETCHING

In Slave mode, clock stretching allows the slave to synchronize transfers to the master to avoid
overflows or underflows when transmitting or receiving data. Software can initiate clock stretch-
ing by clearing the SCLREL bit after the ninth falling edge of the previous byte, but clock
stretching will occur automatically in specific circumstances.

When transmitting, if the Slave module detects that the TBF bit (I2CxSTAT<0>) is clear on the
falling edge of the ninth clock of the previous byte, no data is available to transmit the next byte
and it will automatically clear the SCLREL bit (I2CxCON<12>) and drive the SCLx line low to
stretch the clock and allow software time to provide the data. When this occurs, software is
responsible for writing the I2CxTRN register and (after doing so) for waiting the appropriate rise
and setup time (see 24.8.3 “Rise and Setup Time Considerations”) before setting the
SCLREL bit to release the SCLx line. When polling, user software must ensure the SCLREL bit
is cleared before setting it to release the SCLx line. However, the SCLREL bit is cleared before
the interrupt is triggered, so that is not a concern when responding to the slave interrupt.

When receiving bytes in Slave mode, software can enable clock stretching by setting the STREN
bit (I2CxCON<6>). When STREN = 1, the Slave module will automatically clear the SCLREL bit
(I2CxCON<12>) and drive the SCLx line low to stretch the clock if the RBF bit (I2CxSTAT<1>) is
set on the falling edge of the ninth clock of the previously received byte. This allows software time
to read the I2CxRCV register before the master can send another byte, preventing overflow
conditions from occurring. If software reads the I2CxRCV register while SCLREL = 0 (before the
falling edge of the ninth clock), the SCLREL bit will not be cleared and clock stretching will not
occur. Software can set the SCLREL bit regardless of the value of the RBF bit. However, it must
take care to read the I2CxRCV register to clear the RBF bit before the falling edge of the eighth
clock of the next byte to avoid an overflow condition.

The clock stretching described in this section occurs on the ninth falling edge of the clock, after
a byte and its acknowledgment bit have both been transferred. It is independent of the clock
stretching that occurs after the eighth falling edge of the clock when the AHEN bit and/or the
DHEN bit are set, as described in 24.7.4.2 “Address and Data Hold”.
DS60001116G-page 24-46 © 2007-2016 Microchip Technology Inc.

Section 24. Inter-Integrated Circuit (I2C)
24.7.4.4 EXAMPLE MESSAGES OF SLAVE RECEPTION

Receiving a slave message is a rather automatic process. The software handling the slave
protocol can use the slave interrupt to synchronize to the events.

When the slave detects the valid address, the associated interrupt will notify the software to
expect a message. On receive data, as each byte transfers to the I2CxRCV register, an interrupt
notifies the software to unload the buffer.

Figure 24-27 shows a receive message. Because it is a 7-bit address message, only one inter-
rupt occurs for the address byte. Then, interrupts occur for each of four data bytes. At an inter-
rupt, the software may monitor the RBF, D/A (IC2xSTAT<5>) and R/W (IC2xSTAT<2>) bits to
determine the condition of the byte received.

Figure 24-28 shows a similar message using a 10-bit address. In this case, two bytes are
required for the address.

Figure 24-29 shows a message where the software does not respond to the received byte and
the buffer overruns. On receipt of the second byte, the I2C slave will automatically NACK the
master transmission. Generally, this causes the master to resend the previous byte. The I2COV
bit (I2CxSTAT<6>) indicates that the buffer has overrun. The I2CxRCV register buffer retains the
contents of the first byte. On receipt of the third byte, the buffer is still full, and again, the I2C slave
will NACK the master. After this, the software finally reads the buffer. Reading the buffer will clear
the RBF bit (I2CxSTAT<1>); however, the I2COV bit remains set. The software must clear the
I2COV bit. The next received byte will be moved to the I2CxRCV register buffer and the I2C slave
will respond with an ACK.

24.7.5 Slave Bus Collision Detect

For devices with the SBCDE bit (I2CxCON<18>), this bit when enabled, will set the BCL bit
(I2CxSTAT<10>) interrupt flag any time the SDAx pin is sampled low when the slave is driving a
high (see the following Note). This allows the slave module to detect a bus collision. The two sce-
narios when a bus collision can occur for a slave are during a data acknowledge sequence and
a read request to the master. This may be a useful feature to be used when a slave is responding
to a General Call address.

Note: The Slave module ignores addresses that do not trigger an address match, allowing
SDA to be pulled high externally. It does not actively drive SDA high, and therefore,
does not enable collision detection during the address NACK bit time.
© 2007-2016 Microchip Technology Inc. DS60001116G-page 24-47

P
IC

32 F
am

ily R
eferen

ce M
a

n
u

al

D
S

6
0

0
0

111
6

G
-p

a
g

e
 2

4
-4

8
©

 2
0

0
7

-2
0

1
6

 M
icro

ch
ip

 T
e

ch
n

o
lo

g
y In

c.

ICT = 0)

3 3 5

9

A

D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7 8 9

A

4 4

rflow.

D0
Figure 24-27: Slave Message (Write Data to Slave: 7-bit Address; Address Matches; A10M = 0; GCEN = 0; STR

1 Slave recognizes Start event; S and P bits set/clear accordingly.

SCLx (Master)

SDAx (Master)

SCLx (Slave)

SDAx (Slave)

I2CxRCV

RBF

Slave Interrupt

STREN

1 2 3 4 5 6 7 8

A2 A1

9

A

D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7 8 9

1 32

A

4 3

2 Slave receives address byte. Address matches. Slave Acknowledges

3 Next received byte is message data. Byte moved to I2CxRCV register sets RBF.

4 Software reads I2CxRCV register. RBF bit clears.

5 Slave recognizes Stop event; S and P bits set/clear accordingly.

Slave generates interrupt. Slave Acknowledges reception.

A7 A6 A5 A4 A3

S

P

I2COV

R/W

D/A

D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7 8 9

A

D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7 8

SCLREL

4

 and generates interrupt. Address byte is moved to I2CxRCV register and must be read by user software to prevent buffer ove

D0D0D0W

Slave interrupt cleared

ACKSTAT

by user software.

©
 2

0
0

7
-2

0
1

6
 M

icro
ch

ip
 T

e
ch

n
o

lo
g

y In
c.

D
S

6
0

0
0

111
6

G
-p

a
g

e
 2

4
-4

9

S
ectio

n
 24. In

ter-In
teg

rated
 C

ircu
it (I 2C

)

F T = 0)

4 6

te moved to the I2CxRCV register sets RBF.

BF bit clears.

its set/clear accordingly.

rrupt.

D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7 8 9

A

5 5

D0
igure 24-28: Slave Message (Write Data to Slave: 10-bit Address; Address Matches; A10M = 1; GCEN = 0; STRIC

1 Slave recognizes Start event; S and P bits set/clear accordingly.

SCLx (Master)

SDAx (Master)

SCLx (Slave)

SDAx (Slave)

I2CxRCV

RBF

Slave

STREN

1 2 3 4 5 6 7 8

A9 A8

9

A

A7 A6 A5 A4 A3 A2 A1

1 2 3 4 5 6 7 8 9

1 32

A

4 4

2 Slave receives address byte. High-order address matches.

3 Slave receives address byte. Low-order address matches.

4 Next received byte is message data. By

5 Software reads the I2CxRCV register. R

6 Slave recognizes Stop event; S and P b

Slave Acknowledges and generates interrupt. Address byte is

Slave Acknowledges and generates inte

S

P

I2COV

R/W

D/A

D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7 8 9

A

D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7 8 9

A

SCLREL

5

1 1 1 1 0

Slave Acknowledges and generates interrupt. Address byte is

moved to the I2CxRCV register.

moved to the I2CxRCV register.

A0 D0W D0

Slave interrupt cleared

ACKSTAT

Interrupt

by user software.

P
IC

32 F
am

ily R
eferen

ce M
a

n
u

al

D
S

6
0

0
0

111
6

G
-p

a
g

e
 2

4
-5

0
©

 2
0

0
7

-2
0

1
6

 M
icro

ch
ip

 T
e

ch
n

o
lo

g
y In

c.

T = 0)

2

 register. RBF bit clears.

it.

9

D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7 8 9

5 5

N A

6

before I2CxRCV read by software.

eception.
nged. Slave generates interrupt.

D0
Figure 24-29: Slave Message (Write Data to Slave: 7-bit Address; Buffer Overrun; A10M = 0; GCEN = 0; STRIC

SCLx (Master)

SDAx (Master)

SCLx (Slave)

SDAx (Slave)

I2CxRCV

RBF

Slave

STREN

1 2 3 4 5 6 7 8

A2 A1

9

A

D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7 8 9

21

A

3 4

1 Slave receives address byte. Address matches. Slave generates interrupt.

2 Next received byte is message data. Byte moved to I2CxRCV register sets RBF.
5 Software reads I2CxRCV

6 Software clears I2COV b

Address byte is moved to I2CxRCV register.

Slave generates interrupt. Slave Acknowledges reception.

A7 A6 A5 A4 A3

S

P

I2COV

R/W

D/A

D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7 8 9

N

D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7 8

SCLREL

3 Next byte received before I2CxRCV read by software. I2CxRCV register unchanged.
I2COV overflow bit set. Slave generates interrupt. Slave sends NACK for reception.

4 Next byte also received

 Slave sends NACK for r
I2CxRCV register uncha

D0 D0W D0

Slave interrupt cleared

ACKSTAT

Interrupt
by user software.

Section 24. Inter-Integrated Circuit (I2C)
24.7.6 Sending Data to a Master Device

When the R/W bit of the incoming device address byte is ‘1’ and an address match occurs, the
R/W bit (I2CxSTAT<2>) is set. Now, the master device is expecting the slave to respond by
sending a byte of data. The contents of the byte are defined by the system protocol and are only
transmitted by the Slave module.

When the interrupt from the address detection occurs, the software can write a byte to the I2Cx-
TRN register to start the data transmission.

The Slave module sets the TBF bit (I2CxSTAT<0>). The eight data bits are shifted out on the fall-
ing edge of the SCLx input. This ensures that the SDAx signal is valid during the SCLx high time.
When all eight bits have been shifted out, the TBF bit will be cleared.

The Slave module detects the Acknowledge from the master-receiver on the rising edge of the
ninth SCLx clock.

If the SDAx line is low, indicating an Acknowledge (ACK), the master is expecting more data and
the message is not complete. The I2C slave generates a slave interrupt to signal more data is
requested.

A slave interrupt is generated on the falling edge of the ninth SCLx clock. Software must check
the status of the I2CxSTAT register and clear the slave interrupt flag.

If the SDAx line is high, indicating a Not Acknowledge (NACK), then the data transfer is complete.
The Slave module resets and does not generate an interrupt. The Slave module will wait for
detection of the next Start (S) bit (I2CxSTAT<3>).

24.7.6.1 WAIT STATES DURING SLAVE TRANSMISSIONS

During a slave transmission message, the master expects return data immediately after
detection of the valid address with R/W = 1. Because of this, the Slave module will automatically
generate a bus wait whenever the slave returns data.

The automatic wait occurs at the falling edge of the ninth SCLx clock of a valid device address
byte or transmitted byte Acknowledged by the master, indicating expectation of more transmit
data.

The Slave module clears the SCLREL bit (I2CxCON<12>). Clearing the SCLREL bit causes the
Slave module to pull the SCLx line low, initiating a wait. The SCLx clock of the master and slave
will synchronize as shown in 24.6.2 “Master Clock Synchronization”.

When the software loads the I2CxTRN register and is ready to resume transmission, the software
sets the SCLREL bit. This causes the Slave module to release the SCLx line and the master
resumes clocking.

24.7.6.2 EXAMPLE MESSAGES OF SLAVE TRANSMISSION

Slave transmissions for 7-bit address messages are shown in Figure 24-30. When the address
matches and the R/W bit of the address indicates a slave transmission, the I2C slave will
automatically initiate clock stretching by clearing the SCLREL bit and generates an interrupt to
indicate a response byte is required. The software will write the response byte into the I2CxTRN
register. As the transmission completes, the master will respond with an Acknowledge. If the
master replies with an ACK, the master expects more data and the I2C slave will again clear the
SCLREL bit and generate another interrupt. If the master responds with a NACK, no more data
is required and the I2C slave will not stretch the clock nor generate an interrupt.

Slave transmissions for 10-bit address messages require the slave to first recognize a 10-bit
address. Because the master must send two bytes for the address, the R/W bit in the first byte
of the address specifies a write. To change the message to a read, the master will send a
Repeated Start and repeat the first byte of the address with the R/W bit specifying a read. The
slave transmission begins as shown in Figure 24-31.

Note: The user software must provide a delay between writing to the Transmit buffer and
setting the SCLREL bit. This delay must be greater than the minimum set up time
for slave transmissions, as specified in the “Electrical Characteristics” section of
the specific device data sheet. Also refer to 24.8.3 “Rise and Setup Time Consid-
erations”.
© 2007-2016 Microchip Technology Inc. DS60001116G-page 24-51

P
IC

32 F
am

ily R
eferen

ce M
a

n
u

al

D
S

6
0

0
0

111
6

G
-p

a
g

e
 2

4
-5

2
©

 2
0

0
7

-2
0

1
6

 M
icro

ch
ip

 T
e

ch
n

o
lo

g
y In

c.

3 8

nt ACK, I2C slave clears SCLREL to suspend clock.

nd P bits set/clear accordingly.

4

D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7 8 9

N

5 7

 bit, indicating buffer is available for next byte.

nt NACK, no more data expected. I2C slave does not
n interrupt.

D0
Figure 24-30: Slave Message (Read Data from Slave: 7-bit Address)

1 Slave recognizes Start event; S and P bits set/clear accordingly.

SCLx (Master)

SDAx (Master)

SCLx (Slave)

SDAx (Slave)

I2CxTRN

TBF

I2CxRCV

Slave

STREN

1 2 3 4 5 6 7 8

A2 A1

9

A D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7 8 9

R

1 42

A

5 3 5

2 Slave receives address byte. Address matches. Slave generates interrupt.

3 Software writes I2CxTRN with response data. TBF = 1 indicates that buffer is full.

6 At end of ninth clock, if master se

8 Slave recognizes Stop event; S a

Address byte is moved to I2CxRCV register. R/W = 1 to indicate read from slave.

Writing I2CxTRN sets D/A, indicating data byte.

A7 A6 A5 A4 A3

S

P

I2COV

R/W

D/A

SCLREL

4

D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7 8 9

A

3 6 6

SCLREL = 0 to suspend master clock.

4 Software sets SCLREL to release clock hold. Master resumes clocking and
slave transmits data byte. Software must wait the appropriate rise and setup time

5 After last bit, I2C slave clears TBF

Slave generates interrupt.

7 At end of ninth clock, if master se
suspend clock and will generate a

D0 D0

ACKSTAT

Interrupt

before setting SCLREL. Refer to 24.8.3 “Rise and Setup Time Considerations”.

©
 2

0
0

7
-2

0
1

6
 M

icro
ch

ip
 T

e
ch

n
o

lo
g

y In
c.

D
S

6
0

0
0

111
6

G
-p

a
g

e
 2

4
-5

3

S
ectio

n
 24. In

ter-In
teg

rated
 C

ircu
it (I 2C

)

F

8

K, I2C slave clears SCLREL to suspend clock.

its set/clear accordingly.

6

D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7 8 9

N

97

 hold. Master resumes clocking and

CK, no more data expected. I2C slave does not

9

A

10

D0
igure 24-31: Slave Message (Read Data from Slave: 10-bit Address)

1 Slave recognizes Start event; S and P bits set/clear accordingly.

SCLx (Master)

SDAx (Master)

SCLx (Slave)

SDAx (Slave)

I2CxTRN

TBF

I2CxRCV

Slave

STREN

1 2 3 4 5 6 7 8 9

A

1 42 7

2 Slave receives first address byte. Write indicated. Slave Acknowledges and

6 Software writes I2CxTRN with response data. Software must wait the appropriate

8 At end of ninth clock, if master sent AC

Slave recognizes Stop event; S and P b

S

P

ADD10

R/W

D/A

SCLREL

53 6

7 Software sets SCLREL to release clock
slave transmits data byte.

Slave generates interrupt.

9 At end of ninth clock, if master sent NA
suspend clock or generate interrupt.

A7 A6 A5 A4 A3 A2 A1

1 2 3 4 5 6 7 8 9

A

A9 A81 1 1 1 0

1 2 3 4 5 6 7 8 9

A

A9 A81 1 1 1 0

D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7 8

3 Slave receives address byte. Address matches. Slave Acknowledges and

10

4 Master sends a Repeated Start to redirect the message.

5 Slave receives resend of first address byte. Read indicated. Slave suspends clock.

R

 generates interrupt.

 generates interrupt.

A0W

D0

ACKSTAT

Interrupt

rise and setup time before setting SCLREL. Refer to 24.8.3 “Rise and Setup Time Considerations”.

PIC32 Family Reference Manual
24.8 I2C BUS CONNECTION CONSIDERATIONS

Because the I2C bus is a wired Boolean AND bus connection, pull-up resistors on the bus are
required, shown as RP in Figure 24-32. Series resistors, shown as RS, are optional and are used to
improve Electrostatic Discharge (ESD) susceptibility. The values of the RP and RS resistors depend
on the following parameters:

• Supply voltage

• Bus capacitance

• Number of connected devices (input current + leakage current)

• Input level selection (I2C or SMBus)

To get an accurate SCLx clock, the rise time should be as small as possible. The limitation factor
is the maximum current sink available on the SCLx pad. Equation 24-3 calculates the minimum
value for RP, which is based on a 3.3V supply and a 6.6 mA sink current at VOLMAX = 0.4V.

Equation 24-3: RPMIN Calculation

The maximum value for RS is determined by the desired noise margin for the low level. RS cannot
drop enough voltage to make the device VOL plus the voltage across RS more than the maximum
VIL. This is expressed mathematically in Equation 24-3.

Equation 24-4: RSMAX Calculation

The SCLx clock input must have a minimum high and low time for proper operation. The high and
low times of the I2C specification, and the requirements of the I2C module, are provided in the
“Electrical Characteristics” chapter in the specific device data sheet.

Figure 24-32: Sample Device Configuration for I2C Bus

RPMIN
VDDMAX VOLMAX– 

IOL
-- 3.3V 0.4V– 

6.6mA
--------------------------------- 439===

RSMAX
VILMAX VOLMAX– 

IOLMAX
--- 0.3VDD 0.4V– 

6.6mA
--- 89===

RPRP

VDD + 10%

SDAx

SCLx

Device

CB = 10-400 pF

RSRS

Note: I2C devices with input levels related to VDD must have one common supply line to which the
pull-up resistor is also connected.
DS60001116G-page 24-54 © 2007-2016 Microchip Technology Inc.

Section 24. Inter-Integrated Circuit (I2C)
24.8.1 Integrated Signal Conditioning and Slope Control

The SCLx and SDAx pins have an input glitch filter. The I2C bus requires this filter in both the
100 kHz and 400 kHz systems.

When operating on a 400 kHz bus, the I2C specification requires a slew rate control of the device
pin output. This slew rate control is integrated into the device. If the DISSLW bit (I2CxCON<9>)
is cleared, the slew rate control is active. For other bus speeds, the I2C specification does not
require slew rate control and the DISSLW bit should be set.

Some system implementations of I2C busses require different input levels for VILMAX and VIHMIN.
In a normal I2C system, VILMAX is 0.3 VDD; VIHMIN is 0.7 VDD. By contrast, in a System
Management Bus (SMBus) system, VILMAX is set at 0.8V, while VIHMIN is set at 2.1V.

The SMEN bit (I2CxCON<8>) controls the input levels. Setting the SMEN bit (= 1) changes the
input levels to SMBus specifications.

24.8.2 SDAx Hold Time Selection

For devices with the SDAHT bit (I2CxCON<19>), the user can configure the hold time on the
SDAx pin after the falling edge of SCLx pin using the SDAHT bit. When the SDAHT bit is set, the
hold time on the SDAx pin after the falling edge of the SCLx pin will be set to a minimum of 300
ns. The hold time will be set to a minimum of 100 ns if the SDAHT bit is clear.

24.8.3 Rise and Setup Time Considerations

When operating in Master mode, the I2C module automatically manages I2C bus SDAx signal
rise and setup (and other) timing. However, in slave mode the I2C module's internal state
machine is driven from the SCLx clock generated by the master, and therefore, when clock
stretching, software must ensure that the appropriate SDAx rise and setup times are respected.

It is necessary for user software to delay a minimum appropriate amount between taking the
action that determines the value of the SDAx line and setting of the SCLREL bit (I2CxCON<12>)
to allow the master to continue driving the SCLx line. This occurs in two different situations. The
first is when receiving an address or data byte and the clock is stretched when after the eighth
falling edge of the SCLx line when AHEN or DHEN = 1, as described in 24.7.4.2 “Address and
Data Hold”. The second is when transmitting a byte and the clock is stretched on the ninth falling
edge of SCLx if user software clears the SCLREL bit or if the slave module does so automatically
because of an impending overflow or underflow, as described in 24.7.3 “Detecting the
Address”.

When stretching the clock on the eighth falling edge (when AHEN or DHEN = 1), user software
must delay the appropriate rise time plus setup time after setting the ACKDT bit (I2CxCON<5>),
or just the setup time after clearing the ACKDT bit, and before setting the SCLREL bit. When
stretching the clock after the ninth falling edge of SCLx, software must delay the appropriate rise
plus setup time after writing the I2CxTRN register and before setting the SCLREL bit.

The rise and setup times that are appropriate depend upon the I2C baud rate, as shown in Table
24-6: “Rise and Setup Times” and upon whether the SDAx signal is being driven low or is
allowed to float high. If the SDAx signal is being driven low, only the setup delay time is required.
However, if the signal may be allowed to float high (for example, if it is unknown because the
value of the SDAx line is data dependent), the delay must be at least the sum of both the
maximum rise time and minimum setup time. Refer to the I2C Specification for additional I2C
timing information.

Table 24-6: Rise and Setup Times

Parameter 100 kHz 400 kHz 1 MHz

Minimum Data Setup Time (TSU;DAT)(1) 250 ns 100 ns 50 ns

Maximum Rise Time (TR) 1000 ns 300 ns 120 ns

Note 1: When the slave stretches the clock, software is responsible for waiting the rise and
setup time (TR + TSU;DAT) before setting the SCLREL bit (I2CxCON<12>) to
release the SCL line. Refer to the I2C Bus Specification and User Manual (Rev. 6-4
or later) for additional information.
© 2007-2016 Microchip Technology Inc. DS60001116G-page 24-55

PIC32 Family Reference Manual
24.9 I2C OPERATION IN POWER-SAVING MODES

Two power-saving modes are available to the I2C module in PIC32 devices:

• Idle – when the device is in Idle mode, the core and selected peripherals are shut down

• Sleep – when the device is in Sleep mode, the entire device is shut down

24.9.1 Sleep in Master Mode Operation

When the device enters Sleep mode, all clock sources to the I2C master are shut down. The
BRG stops because the clocks stop. It may have to be reset to prevent partial clock detection.

If Sleep occurs in the middle of a transmission, and the master state machine is partially into a
transmission as the clocks stop, the Master mode transmission is aborted.

There is no automatic way to prevent entry into Sleep mode if a transmission or reception is
pending. The user software must synchronize Sleep mode entry with I2C operation to avoid
aborted transmissions.

Register contents are not affected by going into Sleep mode or coming out of Sleep mode.

24.9.2 Sleep in Slave Mode Operation

The I2C module can still function in Slave mode operation while the device is in Sleep mode.

When operating in Slave mode and the device is put into Sleep mode, the master-generated
clock will run the slave state machine. This feature provides an interrupt to the device upon
reception of the address match to wake-up the device.

Register contents are not affected by entering into Sleep mode or coming out of Sleep mode.

It is an error condition to set Sleep mode in the middle of a slave data transmit operation, as
indeterminate results may occur.

24.9.3 Idle Mode

When the device enters Idle mode, all PBCLK clock sources remain functional. If the I2C
module intends to power down, it disables its own clocks.

For the I2C module, the I2CxSIDL bit (I2CxCON<13>) selects whether the module will stop on
Idle mode or continue on Idle. If I2CxSIDL = 0, the module will continue operation in Idle mode.
If I2CxSIDL = 1, the module will stop on Idle.

The I2C module will perform the same procedures for stop on Idle mode as for Sleep mode. The
module state machines must be reset.

Note: As per the slave I2C behavior, a slave interrupt is generated only on an address
match. Therefore, when an I2C slave is in Sleep mode and it receives a message
from the master, the clock required to match the received address is derived from
the master. Only on an address match will the interrupt be generated and the device
can wake up, provided the interrupt has been enabled and an Interrupt Service
Request (ISR) has been defined.
DS60001116G-page 24-56 © 2007-2016 Microchip Technology Inc.

Section 24. Inter-Integrated Circuit (I2C)
24.10 EFFECTS OF A RESET

A Reset (Power-on Reset, Watchdog Timer, etc.) disables the I2C module and terminates any
active or pending message activity. Refer to the I2CxCON (Register 24-1) and I2CxSTAT
(Register 24-2) register definitions for the Reset conditions of those registers.

24.11 PIN CONFIGURATION IN I2C MODE

In I2C mode, the SCLx pin is the clock and the SDAx pin is data. The I2C module will override
the data direction bits (TRISx bits) for these pins. The pins that are used for I2C modes are
configured as open drain. Table 24-7 lists the pin usage in different modes.

Table 24-7: Required I/O Pin Resources

24.12 USING AN EXTERNAL BUFFER WITH THE I2C MODULE

It is not recommended to use external buffers on the I2C pins. However, if the external buffer must
be used, the application firmware must adhere to the following software flow:

On the slave acknowledgment bit clock cycle, issue a dummy write using the I2CxTRN
register buffer, ensuring that the MSB of the data is set. This will cause a collision (IWCOL
bit = 1), which must be cleared within the acknowledgment clock cycle.

This can be done using one of the following methods:

• Enable an available timer immediately when the data is written to the I2CxTRN register
buffer. On a timer interrupt designed to coincide with the slave acknowledgment bit clock
cycle, perform a dummy write to the I2CxTRN register buffer, ensuring that the MSB of the
data is set. Clear the collision status bit, IWCOL, before leaving the timer Interrupt Service
Routine. Because the I2C rate is known, the user software can calculate the timer period
required to intersect the slave ACK/NACK cycle near the rising edge of the ninth SCLx
clock cycle after data is written to the I2CxTRN register buffer.

• Alternately, the user software can poll for the TBF status bit, and then perform the dummy
write to the I2CxTRN register with the MSB of the data set, followed by clearing IWCOL bit.

Note: Idle refers to the CPU Power-Saving mode. The word idle in all lowercase letters
refers to the time when the I2C module is not transferring data on the bus.

I/O Pin Name Master Mode Slave Mode

SDAx Yes Yes

SCLx Yes Yes
© 2007-2016 Microchip Technology Inc. DS60001116G-page 24-57

PIC32 Family Reference Manual
24.13 RELATED APPLICATION NOTES

This section lists application notes that are related to this section of the manual. These
application notes may not be written specifically for the PIC32 device family, but the concepts are
pertinent and could be used with modification and possible limitations. The current application
notes related to the Inter-Integrated Circuit (I2C) module include the following:

Title Application Note #

Use of the SSP Module in the I2C Multi-Master Environment AN578

Using the PIC® Microcontroller SSP for Slave I2C Communication AN734

Using the PIC® Microcontroller MSSP Module for Master I2C Communications AN735

An I2C Network Protocol for Environmental Monitoring AN736

Note: Please visit the Microchip web site (www.microchip.com) for additional application
notes and code examples for the PIC32 family of devices.
DS60001116G-page 24-58 © 2007-2016 Microchip Technology Inc.

http://www.microchip.com
http://www.microchip.com

Section 24. Inter-Integrated Circuit (I2C)
24.14 REVISION HISTORY

Revision A (October 2007)

This is the initial released version of this document.

Revision B (October 2007)

Updated document to remove Confidential status.

Revision C (April 2008)

Revised status to Preliminary; Revised U-0 to r-x.

Revision D (July 2008)

Revised Figure 24-1; Section 24.2; Register 24-1; Revised Register 24-26-24-29; Revised Table
24-1, I2CxCON; Change Reserved bits from “Maintain as” to “Write”; Added Note to ON bit (I2CX-
CON Register); Deleted Section 24.12 (Electrical Characteristics).

Revision E (October 2011)

This revision includes the following updates:

• Updated the I2C Block Diagram (see Figure 24-1)

• I2C Special Function Register Summary (see Table 24-1):

- Removed the Clear, Set, and Invert registers and their references

- Updated the name for bits <7:0> in the I2CxTRN and I2CxRCV registers to I2CxTX-
DATA and I2CxRXDATA, respectively

- Removed the interrupt registers (IFS0, IEC0, IPC6, and IPC8) and their references

- Added Notes 3, 4, and 5, which describe the Clear, Set, and Invert registers

• Changed all occurrences of r-x to U-0 in all registers

• Updated the name for bits <7:0> in the I2CxTRN and I2CxRCV registers to I2CxTXDATA
and I2CxRXDATA, respectively (see Register 24-6 and Register 24-7)

• Updated the Baud Rate Generator Reload Value Calculation (see Equation 24-1)

• Updated all I2CxBRG values and added the PTG column and Note 1 to I2C Clock Rate with
BRG (see Table 24-2)

• Added a note (or notes) to the following sections:

- 24.5.2.1 “Sending a 7-bit Address to the Slave”

- 24.5.2.2 “Sending a 10-bit Address to the Slave”

- 24.7.6.1 “Wait States During Slave Transmissions”

- 24.9.2 “Sleep in Slave Mode Operation”

• Updated Master Message (7-bit Address: Transmission and Reception) (see Figure 24-16)

• Removed 24.12 “Design Tips”

• The Preliminary document status was removed

• Additional updates to text and formatting were incorporated throughout the document
© 2007-2016 Microchip Technology Inc. DS60001116G-page 24-59

PIC32 Family Reference Manual
Revision F (March 2013)

This revision includes the following updates:

• Added new bits to the I2CxCON, I2CxSTAT, and I2CxBRG registers and updated the
footnotes in the SFR Summary (see Table 24-1)

• Updated the following registers: I2CxCON (Register 24-1), I2CxSTAT (Register 24-2), and
I2CxBRG (Register 24-5)

• Updated 24.4.2 “I2C Interrupts”

• Updated the third paragraph in 24.4.3 “I2C Transmit and Receive Registers”

• Updated 24.5.3.2 “I2COV Status Flag”

• Updated the third paragraph in 24.7 “Communicating as a Slave”

• Updated 24.7.2 “Detecting Start and Stop Conditions”

• Updated Step 1 in 24.7.3.3 “7-bit Address and Slave Write”

• Updated Step 1 in 24.7.3.4 “7-bit Address and Slave Read”

• Added the I2C Slave, 7-Bit Address, Reception (STREN = 0, AHEN = 1, DHEN = 1) timing
diagram (see Figure 24-24)

• Updated Step 1 in both processes shown in 24.7.3.5 “10-bit Addressing Mode”

• Updated Step 1 in 24.7.3.6 “General Call Operation”

• Updated 24.7.4.1 “Acknowledge Generation”

• Added 24.7.4.2 “Address and Data Hold”

• Updated 24.7.4.3 “Wait States During Slave Receptions”

• Added 24.7.5 “Slave Bus Collision Detect”

• Added 24.8.2 “SDAx Hold Time Selection”

• Added 24.12 “Using An External Buffer With The I2C Module”

• All instances of “lower 5 bits” and “lower five bits” were changed to: five Least Significant bits

• Minor updates to text and formatting were incorporated throughout the document

Revision G (August 2016)

This revision includes the following updates:

• All instances of SCKREL were changed to SCLREL throughout the document

• Some instances of ACK were changed to acknowledgment for clarification purposes

• The following registers were updated:

- I2C Control (Register 24-1)

- I2C Status (Register 24-2)

- I2C Slave Address (Register 24-3)

- I2C Address Mask (Register 24-4)

• 24.4.2 “I2C Interrupts” was updated

• 24.4.2.3 “Bus Collision Interrupts” was updated

• 24.4.3 “I2C Transmit and Receive Registers” was updated

• 24.4.4 “I2C Baud Rate Generator” was updated

• 24.4.5 “Baud Rate Generator in I2C Master Mode” was updated

• 24.5.2 “Sending Data to a Slave Device” was updated

• 24.5.3 “Receiving Data from a Slave Device” was updated

• 24.7.3 “Detecting the Address” was updated

• 24.7.4 “Receiving Data from a Master Device” was updated

• Table 24-5 was updated

• Figure 31 was removed

• 24.8.3 “Rise and Setup Time Considerations” was added

• Minor updates to text and formatting were incorporated throughout the document
DS60001116G-page 24-60 © 2007-2016 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights unless otherwise stated.
 2007-2016 Microchip Technology Inc.

Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

== ISO/TS 16949 ==
Trademarks

The Microchip name and logo, the Microchip logo, AnyRate,
dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq,
KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST,
MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo,
RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O
are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company,
ETHERSYNCH, Hyper Speed Control, HyperLight Load,
IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are
registered trademarks of Microchip Technology Incorporated
in the U.S.A.

Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut,
BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM,
dsPICDEM.net, Dynamic Average Matching, DAM, ECAN,
EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip
Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi,
motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB,
MPLINK, MultiTRAK, NetDetach, Omniscient Code
Generation, PICDEM, PICDEM.net, PICkit, PICtail,
PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker,
Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total
Endurance, TSHARC, USBCheck, VariSense, ViewSpan,
WiperLock, Wireless DNA, and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

Silicon Storage Technology is a registered trademark of
Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology
Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their
respective companies.

© 2007-2016, Microchip Technology Incorporated, Printed in
the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0851-2
DS60001116G-page 24 -61

DS60001116G-page 24-62  2007-2016 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110

Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon

Hong Kong
Tel: 852-2943-5100
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Dongguan
Tel: 86-769-8702-9880

China - Guangzhou
Tel: 86-20-8755-8029

China - Hangzhou
Tel: 86-571-8792-8115
Fax: 86-571-8792-8116

China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

ASIA/PACIFIC
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-3019-1500

Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310

Japan - Tokyo
Tel: 81-3-6880- 3770
Fax: 81-3-6880-3771

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955

Taiwan - Kaohsiung
Tel: 886-7-213-7828

Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Dusseldorf
Tel: 49-2129-3766400

Germany - Karlsruhe
Tel: 49-721-625370

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Venice
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Poland - Warsaw
Tel: 48-22-3325737

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

06/23/16

http://support.microchip.com
http://support.microchip.com
http://www.microchip.com

	24.1 Overview
	Figure 24-1: I2C Block Diagram

	24.2 Control and Status Registers
	Table 24-1: I2C SFR Summary
	Register 24-1: I2CxCON: I2C Control Register (Continued)
	Register 24-2: I2CxSTAT: I2C Status Register (Continued)
	Register 24-3: I2CxADD: I2C Slave Address Register
	Register 24-4: I2CxMSK: I2C Address Mask Register
	Register 24-5: I2CxBRG: I2C Baud Rate Generator Register
	Register 24-6: I2CxTRN: I2C Transmit Data Register
	Register 24-7: I2CxRCV: I2C Receive Data Register

	24.3 I2C Bus Characteristics
	Figure 24-2: Typical I2C Interconnection Block Diagram
	24.3.1 Bus Protocol
	Figure 24-3: I2C Bus Protocol States

	24.3.2 Message Protocol
	Figure 24-4: A Typical I2C Message: Read of Serial EEPROM (Random Address Mode)

	24.4 Enabling I2C Operation
	24.4.1 Enabling I2C I/O
	24.4.2 I2C Interrupts
	24.4.3 I2C Transmit and Receive Registers
	24.4.4 I2C Baud Rate Generator
	24.4.5 Baud Rate Generator in I2C Master Mode
	Equation 24-1: Baud Rate Generator Reload Value Calculation
	Table 24-2: I2C Clock Rate with BRG
	Equation 24-2: SCK Frequency
	Figure 24-5: Baud Rate Generator Block Diagram
	Figure 24-6: Baud Rate Generator Timing with Clock Arbitration

	24.5 Communicating as a Master in a Single Master Environment
	Figure 24-7: Typical I2C Message: Read of Serial EEPROM (Random Address Mode)
	24.5.1 Generating a Start Bus Event
	Figure 24-8: Master Start Timing Diagram

	24.5.2 Sending Data to a Slave Device
	Figure 24-9: Master Transmission Timing Diagram

	24.5.3 Receiving Data from a Slave Device
	Figure 24-10: Master Reception Timing Diagram

	24.5.4 Acknowledge Generation
	Figure 24-11: Master Acknowledge (ACK) Timing Diagram
	Figure 24-12: Master Not Acknowledge (NACK) Timing Diagram

	24.5.5 Generating Stop Bus Event
	Figure 24-13: Master Stop Timing Diagram

	24.5.6 Generating a Repeated Start Bus Event
	Figure 24-14: Master Repeated Start Timing Diagram

	24.5.7 Building Complete Master Messages
	Table 24-3: Master Message Protocol States
	Figure 24-15: Master Message (Typical I2C Message: Read of Serial EEPROM)
	Figure 24-16: Master Message (7-bit Address: Transmission and Reception)
	Figure 24-17: Master Message (10-bit Transmission)
	Figure 24-18: Master Message (10-bit Reception)

	24.6 Communicating as a Master in a Multi-Master Environment
	24.6.1 Multi-Master Operation
	24.6.2 Master Clock Synchronization
	24.6.3 Bus Arbitration and Bus Collision
	24.6.4 Detecting Bus Collisions and Resending Messages
	24.6.5 Bus Collision During a Start Condition
	24.6.6 Bus Collision During a Repeated Start Condition
	24.6.7 Bus Collision During Message Bit Transmission
	Figure 24-19: Bus Collision During Message Bit Transmission

	24.6.8 Bus Collision During a Stop Condition

	24.7 Communicating as a Slave
	Figure 24-20: A Typical Slave I2C Message: Multiprocessor Command/Status
	24.7.1 Sampling Receive Data
	24.7.2 Detecting Start and Stop Conditions
	24.7.3 Detecting the Address
	Figure 24-21: Slave Write 7-bit Address Detection Timing Diagram
	Figure 24-22: Slave Read 7-bit Address Detection Timing Diagram
	Figure 24-23: Slave Read with AHEN = 1 and DHEN = 1
	Figure 24-24: 10-bit Address Sequence
	Figure 24-25: 10-bit Address Detection Timing Diagram
	Figure 24-26: General Call Address Detection Timing Diagram (GCEN = 1)
	Table 24-4: Reserved I2C Bus Addresses(1)

	24.7.4 Receiving Data from a Master Device
	Table 24-5: Data Transfer Received Byte Actions

	24.7.5 Slave Bus Collision Detect
	Figure 24-27: Slave Message (Write Data to Slave: 7-bit Address; Address Matches; A10M = 0; GCEN = 0; STRICT = 0)
	Figure 24-28: Slave Message (Write Data to Slave: 10-bit Address; Address Matches; A10M = 1; GCEN = 0; STRICT = 0)
	Figure 24-29: Slave Message (Write Data to Slave: 7-bit Address; Buffer Overrun; A10M = 0; GCEN = 0; STRICT = 0)

	24.7.6 Sending Data to a Master Device
	Figure 24-30: Slave Message (Read Data from Slave: 7-bit Address)
	Figure 24-31: Slave Message (Read Data from Slave: 10-bit Address)

	24.8 I2C Bus Connection Considerations
	Equation 24-3: Rpmin Calculation
	Equation 24-4: RSmax Calculation
	Figure 24-32: Sample Device Configuration for I2C Bus
	24.8.1 Integrated Signal Conditioning and Slope Control
	24.8.2 SDAx Hold Time Selection
	24.8.3 Rise and Setup Time Considerations
	Table 24-6: Rise and Setup Times

	24.9 I2C Operation in Power-Saving Modes
	24.9.1 Sleep in Master Mode Operation
	24.9.2 Sleep in Slave Mode Operation
	24.9.3 Idle Mode

	24.10 Effects of a Reset
	24.11 Pin Configuration In I2C Mode
	Table 24-7: Required I/O Pin Resources

	24.12 Using An External Buffer With The I2C Module
	24.13 Related Application Notes
	24.14 Revision History
	Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MIC...
	Trademarks
	The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST L...
	ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.
	Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker,...
	SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.
	Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.
	GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.
	All other trademarks mentioned herein are property of their respective companies.
	© 2007-2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.
	ISBN: 978-1-5224-0851-2
	AMERICAS
	Corporate Office
	Atlanta
	Austin, TX
	Boston
	Chicago
	Cleveland
	Dallas
	Detroit
	Houston, TX
	Indianapolis
	Los Angeles
	New York, NY
	San Jose, CA
	Canada - Toronto

	ASIA/PACIFIC
	Asia Pacific Office
	Hong Kong
	Australia - Sydney
	China - Beijing
	China - Chengdu
	China - Chongqing
	China - Dongguan
	China - Guangzhou
	China - Hangzhou
	China - Hong Kong SAR
	China - Nanjing
	China - Qingdao
	China - Shanghai
	China - Shenyang
	China - Shenzhen
	China - Wuhan
	China - Xian

	ASIA/PACIFIC
	China - Xiamen
	China - Zhuhai
	India - Bangalore
	India - New Delhi
	India - Pune
	Japan - Osaka
	Japan - Tokyo
	Korea - Daegu
	Korea - Seoul
	Malaysia - Kuala Lumpur
	Malaysia - Penang
	Philippines - Manila
	Singapore
	Taiwan - Hsin Chu
	Taiwan - Kaohsiung
	Taiwan - Taipei
	Thailand - Bangkok

	EUROPE
	Austria - Wels
	Denmark - Copenhagen
	France - Paris
	Germany - Dusseldorf
	Germany - Karlsruhe
	Germany - Munich
	Italy - Milan
	Italy - Venice
	Netherlands - Drunen
	Poland - Warsaw
	Spain - Madrid
	Sweden - Stockholm
	UK - Wokingham

