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Abstract. Automatic detection and localization of vertebrae in medical
images are highly sought after techniques for computer-aided diagnosis
systems of the spine. However, the presence of spine pathologies and sur-
gical implants, and limited field-of-view of the spine anatomy in these im-
ages, make the development of these techniques challenging. This paper
presents an automatic method for detection and localization of vertebrae
in volumetric computed tomography (CT) scans. The method makes no
assumptions about which section of the vertebral column is visible in the
image. An efficient approach based on deep feed-forward neural networks
is used to predict the location of each vertebra using its contextual infor-
mation in the image. The method is evaluated on a public data set of 224
arbitrary-field-of-view CT scans of pathological cases and compared to
two state-of-the-art methods. Our method can perform vertebrae detec-
tion at a rate of 96% with an overall run time of less than 3 seconds. Its
fast and comparably accurate detection makes it appealing for clinical
diagnosis and therapy applications.
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1 Introduction

Automatic vertebrae detection and localization in spinal imaging is a crucial com-
ponent for image-guided diagnosis, surgical planning, and follow-up assessment of
spine disorders such as disc/vertebra degeneration, vertebral fractures, scoliosis,
and spinal stenosis. It can also be used for automatic mining of archived clinical
data (PACS systems in particular). Furthermore, it can be a pre-processing step for
approaches in spine segmentation, multi-modal registration, and statistical shape
analysis.

The challenges associated with building an automated system for robust de-
tection and localization of vertebrae in the spine images arise from: 1) restrictions
in field-of-view; 2) repetitive nature of the spinal column; 3) high inter-subject
variability in spine curvature and shape due to spine disorders and pathologies;
and 4) image artifacts caused by metal implants.
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Several methods have been proposed in the literature for automatic vertebrae
detection and localization in Computed Tomography (CT) [8,9,11,16,10] and
Magnetic Resonance Imaging (MRI) volumes [10,15,14,1]. Several studies either
concentrate on a specific region of the spine, or make assumptions about the visi-
ble part of the vertebral column in the image. A few recent studies claim handling
arbitrary-field-of-view scans in a fully-automatic system [8,9,11,16]. The methods
proposed in [8] and [16] rely on a generative model of shape and/or appearance
of vertebrae. As a result, these methods may be challenged with pathological
subjects, especially when metal implants produce artifacts in the image. The
most promising method reported [9], uses classification forests to probabilisti-
cally classify each voxel of the image as being part of a particular vertebra. Based
on predicted probabilities, the centroid of these points are obtained using the
mean-shift algorithm. Although excellent results are obtained on a challenging
data set, this method requires an additional post-processing step for removing
false positives. This step adds to the computation time. In fact, this approach [9],
which is the fastest method reported to-date, has a computation time of about a
minute. Slow computation time can limit the application of automatic methods
for image-guided tasks in clinics. A method with a faster computation time, on
the order of seconds, has the potential to be used during guided interventions
and may broaden the scope of such automatic analysis techniques.

In this work, we aim to find a faster solution to the problem of vertebra
localization in general clinical CT scans by using deep neural networks [2]. No
assumptions are made about which and how many vertebrae are visible in the
images. The computation of image features is adopted from [8,9]. To allow for
low computation times, our method does not require computationally expensive
post-processing steps. We evaluate our method on a publicly-available data set,
and compare it against the methods proposed by Glocker et al. [8,9] that use
the same data set.

2 Methods

The vertebrae localization problem is parametrized as a multi-variate non-linear
regression. Similar to [8,9] intensity-based features are extracted from voxels in
the image. The features represent the short-range contextual information of the
reference voxel. The targets of the regression are the relative distances between
the center of each vertebral body and the reference voxel. In other words, the
vector from the reference voxel to the center of the vertebral body is considered
as one target in the regression.

The number of observations in our regression problem is equal to the number
of selected voxels from the image. Since the images of our CT data set are labeled
with 26 landmarks (26 vertebral bodies), the target of our regression includes 26
three-dimensional vectors for each observation. Therefore, the vertebrae local-
ization problem is parametrized as a multi-variate regression with 500 features
and 26× 3 = 78 targets.

For a test image, we first extract intensity-based features from all the voxels.
We then use a deep neural network to predict the relative distance vector of
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Fig. 1. Left: The vertebrae localization problem is parametrized as a regression prob-
lem. The targets of the regression are the vectors from the reference voxel to the center
of each vertebral body (The orange arrow). The reference voxel is described by 500
intensity-based features which are extracted from the area around it. The green point
is considered as the vote of the red voxel for a specific vertebra. Right: Location of each
vertebra is estimated by getting the centroid of the votes of the voxels. This centroid
may or may not be located inside the field of view of the image. In this case, C3 is
considered as a true positive, and C6 is considered as a true negative.

each vertebral body with respect to the reference voxel. Knowing the location
of the reference voxel and the relative distance vector to the center of a specific
vertebral body, we can compute the predicted absolute location of the vertebral
body on the test image. This absolute location is considered the vote of that
voxel for the location of a vertebral body. Note that these votes might be either
inside or outside of the field-of-view of the image. Each voxel in the image votes
for the location of each vertebral body, so for each specific vertebral body, we
compute the centroid of these votes to obtain a single prediction for the location
of the vertebral body.

2.1 Point Selection

In our method, each vertebra is localized by aggregating the votes of the points in
the image. However, in most of the images there are certain regions, like those in
the background, that do not help with the prediction of vertebrae. Disregarding
these points increases the accuracy and decreases the computational time. To
this end, we use the Canny edge detector [5] and disregard points that are not
close to the extracted edges.

2.2 Feature Extraction

The value of each feature is the mean intensity over a three-dimensional cuboid
displaced with respect to the reference voxel position. The cuboid dimensions
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and the displacement of each feature are chosen randomly. For the reference
voxel p, the feature vector v(p) = (v1, ..., vj , ..., vm) is computed as follows:

vj =
1

|Fp;j |
∑

q∈Fp;j

I(q), (1)

where I(q) is the image intensity at position q in the image, and q ∈ Fp;j are
the image voxels within the cuboid. Fp;j denotes the feature cuboid j displaced
in respect to voxel p. Similar features are used in [8,7,6] for object detection and
localization. Extracting mean intensity over cuboidal regions can be computed
very quickly by using an integral image (introduced in [18]). These features are
then used to train a regressor for vertebra localization.

2.3 Deep Neural Network

In recent years, state-of-the-art results have been produced by applying deep
learning to various tasks in computer vision [12,17]. In this work, a deep feed-
forward neural network with six layers is used for solving the multi-variate non-
linear regression problem. The parameters of the network were set as an input
layer holding 500 neurons, and four hidden layers with 200, 300, 200, and 150
neurons, followed by 78 neurons in the output layer. The intensity-based features
of each selected voxel are given as the input to the network. The network output
is the estimated relative distances of the voxel to the center of each vertebral
body. These relative distances are then converted to absolute voxel positions
in the image. We use a rectifier function, ghidden(x) = max(0, x), to activate
the hidden layers, and a linear function, goutput(x) = x, to activate the output
layer. The deep neural network is trained by using layerwise pre-training [3] and
then, by fine-tuning the connection weights using conventional backpropagation.
Layerwise pre-training involves breaking down the deep network into several
shallow networks and training each of them greedily. Stochastic gradient descent
(SGD) is used for minimizing the cost function in both pre-training and fine-
tuning steps.

2.4 Centroid Estimation

In our approach, we used an adaptive kernel density estimation method [4] to
obtain a fast and reliable density function for the voxel votes for each vertebral
body. The global maximum of this density function is considered as the predicted
location of the centroid of the vertebral body in the image. The main advantage
of using this method as opposed to e.g. the popular Gaussian kernel density
estimation is its lower sensitivity to outliers and its fast, automatic data-driven
bandwidth selection that does not make any assumptions about normality of the
input data [4,13].
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2.5 Refinement

The predicted vertebra locations are refined by estimating the centroid of only
the votes which are close to the predicted location. For each visible vertebra
(according to the prediction of the previous step) in the image, the points around
itself and its adjacent vertebrae (if present) are aggregated using kernel density
estimation. The previously-localized points are then replaced by the points that
are obtained from this step.

3 Experiments and Results

The performance of our method is evaluated on a publicly-available data set1

consisting of 224 spine-focused CT scans of patients with varying types of patholo-
gies. The pathologies include fractures, high-grade scoliosis, and kyphosis. Many
cases are post-operative scans where severe image artifacts are caused by sur-
gical implants. Various sections of the spine are visible in different images. The
field-of-view is mostly limited to 5-15 vertebrae while the whole spine is visible
in only a few cases.

In this work, detection records whether or not the input image contains a
specific vertebra while localization determines the center of a specific vertebra in
the image. After estimating the centroid of the votes of the voxels, our system
may conclude that a specific vertebra is outside of the field-of-view of the image.
If expert annotation confirms that the vertebra is not visible in the image, we
consider it as a true negative (TN). Otherwise, if the image contains the vertebra,
it will be a false negative (FN). Similarly, if our system concludes that the
vertebra is in the field-of-view of the image and the expert annotations confirm,
it is considered as a true positive (TP). Otherwise, it will be a false positive
(FP). Based on these parameters, the detection rates are evaluated in terms of
accuracy, precision, sensitivity, and specificity. Localization error is defined as the
Euclidean distance between the estimated centroid of a vertebral body and its
expert annotation. The mean and standard deviation of these localization errors
are reported for each region and also for the whole vertebral column. Two-fold
cross-validation is performed on two non-overlapping sets of volumetric CT scans
with 112 images each. The results on data from fold 1 were obtained after training
the deep neural network on fold 2, and vice versa. The folds are selected exactly
as in [9] to enable comparing the results. All deep network parameters were set
the same for this two-fold cross-validation. This approach also mitigates the risk
of overfitting, as the training and testing are performed on two independent data
sets.

Our final detection and localization results are presented in Table 1. Figure 2
illustrates exemplary localization results. The results show the capability of our
method for detecting the vertebrae present in the image.

We compared our results to [8] and [9] and evaluated their methods on the
same data set with a two-fold cross validation with exactly the same fold sepa-
ration. The results of this comparison is summarized in Table 2.

1 http://spineweb.digitalimaginggroup.ca/

http://spineweb.digitalimaginggroup.ca/
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Table 1. Detection rates and localization error for different regions of the vertebral
column.

Accuracy Precision Sensitivity Specificity Mean error Std

All 96.0% 94.4% 97.2% 95.0% 18.2 mm 11.4 mm

Cervical 96.0% 91.2% 97.8% 95.0% 17.1 mm 8.7 mm

Thoracic 95.1% 93.9% 95.9% 94.5% 17.2 mm 11.8 mm

Lumbar 98.1% 97.5% 99.4% 96.1% 20.3 mm 12.2 mm

Table 2. Comparison of the detection rates and the mean localization error of our
method with prior works. The same training and test sets are used in evaluations of
all three methods.

Accuracy Precision Sensitivity Specificity Mean error Std

Ours 96.0% 94.4% 97.2% 95.0% 18.2 mm 11.4 mm

CF [9] 93.9% 93.7% 92.9% 94.7% 12.4 mm 11.2 mm

RF+HMM [8] - - - - 20.9 mm 20.0 mm

Fig. 2. Visual representation of the refinement step are shown on the mid-sagittal
plane of three example images. The localization points before refinement are shown in
red while the points after refinement by local centroid estimation are shown in cyan.
Refined points have a better representation of the spine curvatures.

For evaluating the influence of Kernel Density Estimation (KDE) for centroid
estimation, we repeated the experiments and used the mean and median of the
points instead of the maximum of the density function. Using the median of the
points instead of KDE reduced the overall accuracy from 96% to 93%, while
using the mean of the points reduced it further to 88%.

4 Discussion

We proposed an approach for automatic and simultaneous detection and local-
ization of vertebrae in three-dimensional CT scans using deep neural networks.
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We evaluated our algorithm on a large publicly-available data set and compared
it against two state-of-the-art methods. We achieved a localization accuracy of
96% which is comparable to results achieved by these methods. Detection and lo-
calization of all visible vertebrae can be performed in less then 3 seconds per CT
volume which is significantly faster than reported for the methods of comparison
that run in the order of minutes.

The key differences between the proposed method and the approaches intro-
duced by Glocker et al. [8,9] are in the choice of the estimator (deep neural
networks vs. random forests) and the method used for estimating the vertebra
centroid (KDE vs. mean shift clustering). The deep learning approach allowed
us to achieve comparably high localization accuracies while reducing the amount
of post-processing needed. The influence of KDE in this matter can be regarded
relatively low, as even a simple centroid estimation method using the median
instead of the maximum of the density function achieves only slightly worse lo-
calization accuracies (93% using median vs. 96% using KDE) that are still in the
range of the ones reported in [9]. While our results with deep neural networks are
highly promising, deep neural networks has a very large number of parameters
that need to be optimized preferably on very large data sets. We mitigate this
issue in this work by using the greedy layerwise pre-training algorithm [3], which
helps with tuning the network parameters layer-by-layer within a much smaller
search space.

In [8], a voting framework based on regression forests is used to obtain a
rough localization, and then a graphical model based on a hidden Markov model
is used for refinement. The results of their method on this public data set is
provided in [9]. They have reported lower localization errors on a data set of
non-pathological cases. However, the performance of their method degrades sig-
nificantly in this public pathological data set. A possible reason is that the
graphical model cannot accommodate high variations in pathological cases and
consequently fails to refine the predictions in this data set. Using a deep learning
technique, we can eliminate the need for model-refinement which has relatively
high computational cost and did not prove to be robust in pathological cases.
The method presented in [9] uses a method based on classification forests that
does not require any model-based refinements. While their approach has a lower
mean error, our method shows higher accuracy, precision, sensitivity, and speci-
ficity. The computational cost of their method is adversely affected by adding
extra steps such as a semi-automatic framework to provide dense annotations for
the training data, mean shift clustering, and a post-processing step for removing
false positives. The algorithms presented in [8] and [9] take about 2 minutes
and 1 minute per image, respectively, on a desktop machine. In [8] a joint shape
and appearance model in several scales is used to refine the predictions. In [9]
centroid density estimates based on vertebra appearance are combined with a
shape support term to remove false positives. Our method does not require any
post-processing step and runs in less than 3 seconds on a desktop machine.

Combining the advantages of a deep neural network for regression and KDE
for final centroid estimation allows us to efficiently detect and localize vertebrae
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in CT volumes with high accuracy. The low computational cost of our approach
makes it appealing for clinical diagnosis and therapy applications.
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