(12) United States Patent

Naik et al.
(10) Patent No.: US 9,620,104 B2
(45) Date of Patent:

Apr. 11, 2017
(58) Field of Classification Search

USPC \qquad 704/235, 246, 247, 251, 252
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

1,559,320 A 10/1925 Hirsh
 2,180,522 A 11/1939 Henne
 (Continued)

FOREIGN PATENT DOCUMENTS

CA	2666438 C	$6 / 2013$
CH	681573 A5	$4 / 1993$

(Continued)

OTHER PUBLICATIONS

"Interactive Voice", available at <http://www.helloivee.com/company $/>$, retrieved on Feb. 10, 2014, 2 pages

(Continued)

Primary Examiner - Leonard Saint Cyr
(74) Attorney, Agent, or Firm - Morrison \& Foerster LLP

(57)

ABSTRACT
The method is performed at an electronic device with one or more processors and memory storing one or more programs for execution by the one or more processors. A first speech input including at least one word is received. A first phonetic representation of the at least one word is determined, the first phonetic representation comprising a first set of phonemes selected from a speech recognition phonetic alphabet. The first set of phonemes is mapped to a second set of phonemes to generate a second phonetic representation, where the second set of phonemes is selected from a speech synthesis phonetic alphabet. The second phonetic representation is stored in association with a text string corresponding to the at least one word.

23 Claims, 10 Drawing Sheets

Int. Cl.	
G10L 13/08	(2013.01)
G10L 15/06	(2013.01)
G10L 15/26	(2006.01)
G10L 13F/04	(2013.01)
G10L 15/22	(2006.01)

U.S. Cl.

CPC ...
\qquad G10L 15/26 (2013.01); G10L 15/265
(2013.01); G10L 15/22 (2013.01); G10L 2015/0631 (2013.01); G10L 2015/0638
(2013.01)

References Cited

U.S. PATENT DOCUMENTS

2,495,222	A	1/1950	Bierig
3,704,345	A	11/1972	Coker et al.
3,710,321	A	1/1973	Rubenstein
3,787,542	A	1/1974	Gallagher et al.
3,828,132	A	8/1974	Flanagan et al.
3,979,557	A	9/1976	Schulman et al.
4,013,085	A	3/1977	Wright
4,081,631	A	3/1978	Feder
4,090,216	A	5/1978	Constable
4,107,784	A	8/1978	Van Bemmelen
4,108,211	A	8/1978	Tanaka
4,159,536	A	6/1979	Kehoe et al.
4,181,821	A	1/1980	Pirz et al.
4,204,089	A	5/1980	Key et al.
4,241,286	A	12/1980	Gordon
4,253,477	A	3/1981	Eichman
4,278,838	A	7/1981	Antonov
4,282,405	A	8/1981	Taguchi
4,310,721	A	1/1982	Manley et al.
4,332,464	A	6/1982	Bartulis et al.
4,348,553	A	9/1982	Baker et al.
4,384,169	A	5/1983	Mozer et al.
4,386,345	A	5/1983	Narveson et al.
4,433,377	A	2/1984	Eustis et al
4,451,849	A	5/1984	Fuhrer
4,485,439	A	11/1984	Rothstein
4,495,644	A	1/1985	Parks et al.
4,513,379	A	4/1985	Wilson et al.
4,513,435	A	4/1985	Sakoe et al.
4,555,775	A	11/1985	Pike
4,577,343	A	3/1986	Oura
4,586,158	A	4/1986	Brandle
4,587,670	A	5/1986	Levinson et al.
4,589,022	A	5/1986	Prince et al.
4,611,346	A	9/1986	Bednar et al.
4,615,081	A	10/1986	Lindahl
4,618,984	A	10/1986	Das et al.
4,642,790	A	2/1987	Minshull et al.
4,653,021	A	3/1987	Takagi
4,654,875	A	3/1987	Srihari et al.
4,655,233	A	4/1987	Laughlin
4,658,425	A	4/1987	Julstrom
4,670,848	A	6/1987	Schramm
4,677,570	A	6/1987	Taki
4,680,429	A	7/1987	Murdock et al.
4,680,805	A	7/1987	Scott
4,686,522	A	8/1987	Hernandez et al.
4,688,195	A	8/1987	Thompson et al.
4,692,941	A	9/1987	Jacks et al.
4,698,625	A	10/1987	McCaskill et al.
4,709,390	A	11/1987	Atal et al.
4,713,775	A	12/1987	Scott et al.
4,718,094	A	1/1988	Bahl et al.
4,724,542	A	2/1988	Williford
4,726,065	A	2/1988	Froessl
4,727,354	A	2/1988	Lindsay
RE32,632	E	3/1988	Atkinson
4,736,296	A	4/1988	Katayama et al.
4,750,122	A	6/1988	Kaji et al.
4,754,489	A	6/1988	Bokser
4,755,811	A	7/1988	Slavin et al.

4,759,070	A	7/1988	Voroba et al.
4,776,016	A	10/1988	Hansen
4,783,804	A	11/1988	Juang et al.
4,783,807	A	11/1988	Marley
4,785,413	A	11/1988	Atsumi
4,790,028	A	12/1988	Ramage
4,797,930	A	1/1989	Goudie
4,802,223	A	1/1989	Lin et al.
4,803,729	A	2/1989	Baker
4,807,752	A	2/1989	Chodorow
4,811,243	A	3/1989	Racine
4,813,074	A	3/1989	Marcus
4,819,271	A	4/1989	Bahl et al.
4,827,518	A	5/1989	Feustel et al.
4,827,520	A	5/1989	Zeinstra
4,829,576	A	5/1989	Porter
4,829,583	A	5/1989	Monroe et al.
4,831,551	A	5/1989	Schalk et al.
4,833,712	A	5/1989	Bahl et al.
4,833,718	A	5/1989	Sprague
4,837,798	A	6/1989	Cohen et al.
4,837,831	A	6/1989	Gillick et al.
4,839,853	A	6/1989	Deerwester et al.
4,852,168	A	7/1989	Sprague
4,862,504	A	8/1989	Nomura
4,875,187	A	10/1989	Smith
4,878,230	A	10/1989	Murakami et al.
4,887,212	A	12/1989	Zamora et al.
4,896,359	A	1/1990	Yamamoto et al.
4,903,305	A	2/1990	Gillick et al.
4,905,163	A	2/1990	Garber et al.
4,908,867	A	3/1990	Silverman
4,914,586	A	4/1990	Swinehart et al.
4,914,590	A	4/1990	Loatman et al.
4,918,723	A	4/1990	Iggulden et al.
4,926,491	A	5/1990	Maeda et al
4,928,307	A	5/1990	Lynn
4,931,783	A	6/1990	Atkinson
4,935,954	A	6/1990	Thompson et al.
4,939,639	A	7/1990	Lee et al.
4,941,488	A	7/1990	Marxer et al.
4,944,013	A	7/1990	Gouvianakis et al.
4,945,504	A	7/1990	Nakama et al.
4,953,106	A	8/1990	Gansner et al.
4,955,047	A	9/1990	Morganstein et al.
4,965,763	A	10/1990	Zamora
4,972,462	A	11/1990	Shibata
4,974,191	A	11/1990	Amirghodsi et al.
4,975,975	A	12/1990	Filipski
4,977,598	A	12/1990	Doddington et al.
4,980,916	A	12/1990	Zinser
4,985,924	A	1/1991	Matsuura
4,992,972	A	2/1991	Brooks et al.
4,994,966	A	2/1991	Hutchins
4,994,983	A	2/1991	Landell et al.
5,001,774	A	3/1991	Lee
5,003,577	A	3/1991	Ertz et al.
5,007,095	A	4/1991	Nara et al.
5,007,098	A	4/1991	Kumagai
5,010,574	A	4/1991	Wang
5,016,002	A	5/1991	Levanto
5,020,112	A	5/1991	Chou
5,021,971	A	6/1991	Lindsay
5,022,081	A	6/1991	Hirose et al.
5,027,110	A	6/1991	Chang et al.
5,027,406	A	6/1991	Roberts et al.
5,027,408	A	6/1991	Kroeker et al.
5,029,211	A	7/1991	Ozawa
5,031,217	A	7/1991	Nishimura
5,032,989	A	7/1991	Tornetta
5,033,087	A	7/1991	Bahl et al.
5,040,218	A	8/1991	Vitale et al.
5,046,099	A	9/1991	Nishimura
5,047,614	A	9/1991	Bianco
5,047,617	A	9/1991	Shepard et al.
5,050,215	A	9/1991	Nishimura
5,053,758	A	10/1991	Cornett et al.
5,054,084	A	10/1991	Tanaka et al.
5,057,915		10/1991	Von Kohorn

References Cited

U.S. PATENT DOCUMENTS

5,067,158	A	11/1991	Arjmand
5,067,503	A	11/1991	Stile
5,072,452	A	12/1991	Brown et al.
5,075,896	A	12/1991	Wilcox et al.
5,079,723	A	1/1992	Herceg et al.
5,083,119	A	1/1992	Trevett et al.
5,083,268	A	1/1992	Hemphill et al.
5,086,792	A	2/1992	Chodorow
5,090,012	A	2/1992	Kajiyama et al.
5,091,790	A	2/1992	Silverberg
5,091,945	A	2/1992	Kleijn
5,103,498	A	4/1992	Lanier et al.
5,109,509	A	4/1992	Katayama et al.
5,111,423	A	5/1992	Kopec, Jr. et al.
5,119,079	A	6/1992	Hube et al.
5,122,951	A	6/1992	Kamiya
5,123,103	A	6/1992	Ohtaki et al.
5,125,022	A	6/1992	Hunt et al.
5,125,030	A	6/1992	Nomura et al.
5,127,043	A	6/1992	Hunt et al.
5,127,053	A	6/1992	Koch
5,127,055	A	6/1992	Larkey
5,128,672	A	7/1992	Kaehler
5,133,011	A	7/1992	McKiel, Jr.
5,133,023	A	7/1992	Bokser
5,142,584	A	8/1992	Ozawa
5,144,875	A	9/1992	Nakada
5,148,541	A	9/1992	Lee et al.
5,153,913	A	10/1992	Kandefer et al.
5,157,610	A	10/1992	Asano et al.
5,157,779	A	10/1992	Washburn et al.
5,161,102	A	11/1992	Griffin et al.
5,163,809	A	11/1992	Akgun et al.
5,164,900	A	11/1992	Bernath
5,164,982	A	11/1992	Davis
5,165,007	A	11/1992	Bahl et al.
5,167,004	A	11/1992	Netsch et al.
5,175,536	A	12/1992	Aschliman et al.
5,175,803	A	12/1992	Yeh
5,175,814	A	12/1992	Anick et al.
5,179,627	A	1/1993	Sweet et al.
5,179,652	A	1/1993	Rozmanith et al.
5,194,950	A	3/1993	Murakami et al.
5,195,034	A	3/1993	Garneau et al.
5,195,167	A	3/1993	Bahl et al.
5,197,005	A	3/1993	Shwartz et al.
5,199,077	A	3/1993	Wilcox et al.
5,201,034	A	4/1993	Matsuura et al.
5,202,952	A	4/1993	Gillick et al.
5,208,862	A	5/1993	Ozawa
5,210,689	A	5/1993	Baker et al.
5,212,638	A	5/1993	Bernath
5,212,821	A	5/1993	Gorin et al.
5,216,747	A	6/1993	Hardwick et al.
5,218,700	A	6/1993	Beechick
5,220,629	A	6/1993	Kosaka et al.
5,220,639	A	6/1993	Lee
5,220,657	A	6/1993	Bly et al.
5,222,146	A	6/1993	Bahl et al.
5,230,036	A	7/1993	Akamine et al.
5,231,670	A	7/1993	Goldhor et al.
5,235,680	A	8/1993	Bijnagte
5,237,502	A	8/1993	White et al
5,241,619	A	8/1993	Schwartz et al.
5,252,951	A	10/1993	Tannenbaum et al
5,253,325	A	10/1993	Clark
5,255,386	A	10/1993	Prager
5,257,387	A	10/1993	Richek et al.
5,260,697	A	11/1993	Barrett et al.
5,266,931	A	11/1993	Tanaka
5,266,949	A	11/1993	Rossi
5,267,345	A	11/1993	Brown et al.
5,268,990	A	12/1993	Cohen et al.
5,274,771	A	12/1993	Hamilton et al.
5,274,818	A	12/1993	Vasilevsky et al.

5,276,616	A	1/1994	Kuga et al.
5,276,794	A	1/1994	Lamb, Jr.
5,278,980	A	1/1994	Pedersen et al.
5,282,265	A	1/1994	Rohra Suda et al.
5,283,818	A	2/1994	Klausner et al.
5,287,448	A	2/1994	Nicol et al.
5,289,562	A	2/1994	Mizuta et al.
RE34,562	E	3/1994	Murakami et al.
5,291,286	A	3/1994	Murakami et al.
5,293,254	A	3/1994	Eschbach
5,293,448	A	3/1994	Honda
5,293,452	A	3/1994	Picone et al.
5,296,642	A	3/1994	Konishi
5,297,170	A	3/1994	Eyuboglu et al.
5,297,194	A	3/1994	Hunt et al.
5,299,125	A	3/1994	Baker et al.
5,299,284	A	3/1994	Roy
5,301,109	A	4/1994	Landauer et al.
5,303,406	A	4/1994	Hansen et al.
5,305,205	A	4/1994	Weber et al
5,305,421	A	4/1994	Li
5,305,768	A	4/1994	Gross et al.
5,309,359	A	5/1994	Katz et al.
5,315,689	A	5/1994	Kanazawa et al.
5,317,507	A	5/1994	Gallant
5,317,647	A	5/1994	Pagallo
5,325,297	A	6/1994	Bird et al.
5,325,298	A	6/1994	Gallant
5,325,462	A	6/1994	Farrett
5,326,270	A	7/1994	Ostby et al.
5,327,342	A	7/1994	Roy
5,327,498	A	7/1994	Hamon
5,329,608	A	7/1994	Bocchieri et al.
5,333,236	A	7/1994	Bahl et al.
5,333,266	A	7/1994	Boaz et al.
5,333,275	A	7/1994	Wheatley et al.
5,335,011	A	8/1994	Addeo et al.
5,335,276	A	8/1994	Thompson et al.
5,341,293	A	8/1994	Vertelney et al.
5,341,466	A	8/1994	Perlin et al.
5,345,536	A	9/1994	Hoshimi et al.
5,349,645	A	9/1994	Zhao
5,353,374	A	10/1994	Wilson et al.
5,353,376	A	10/1994	Oh et al.
5,353,377	A	10/1994	Kuroda et al.
5,353,408	A	10/1994	Kato et al.
5,353,432	A	10/1994	Richek et al.
5,357,431	A	10/1994	Nakada et al.
5,367,640	A	11/1994	Hamilton et al.
5,369,575	A	11/1994	Lamberti et al
5,369,577	A	11/1994	Kadashevich et
5,371,853	A	12/1994	Kao et al.
5,371,901	A	12/1994	Reed et al.
5,373,566	A	12/1994	Murdock
5,377,103	A	12/1994	Lamberti et al.
5,377,301	A	12/1994	Rosenberg et al.
5,377,303	A	12/1994	Firman
5,384,671	A	1/1995	Fisher
5,384,892	A	1/1995	Strong
5,384,893	A	1/1995	Hutchins
5,386,494	A	1/1995	White
5,386,556	A	1/1995	Hedin et al.
5,390,236	A	2/1995	Klausner et al.
5,390,279	A	2/1995	Strong
5,390,281	A	2/1995	Luciw et al.
5,392,419	A	2/1995	Walton
5,396,625	A	3/1995	Parkes
5,400,434	A	3/1995	Pearson
5,404,295	A	4/1995	Katz et al.
5,406,305	A	4/1995	Shimomura et al.
5,408,060	A	4/1995	Muurinen
5,412,756	A	5/1995	Bauman et al.
5,412,804	A	5/1995	Krishna
5,412,806	A	5/1995	Du et al.
5,418,951	A	5/1995	Damashek
5,422,656	A	6/1995	Allard et al.
5,424,947	A	6/1995	Nagao et al.
5,425,108	A	6/1995	Hwang et al.
5,428,731	A	6/1995	Powers, III

References Cited

U.S. PATENT DOCUMENTS

5,434,777	A	7/1995	Luciw
5,440,615	A	8/1995	Caccuro et al.
5,442,598	A	8/1995	Haikawa et al.
5,442,780	A	8/1995	Takanashi et al.
5,444,823	A	8/1995	Nguyen
5,449,368	A	9/1995	Kuzmak
5,450,523	A	9/1995	Zhao
5,455,888	A	10/1995	Iyengar et al.
5,457,768	A	10/1995	Tsuboi et al.
5,459,488	A	10/1995	Geiser
5,463,696	A	10/1995	Beernink et al.
5,463,725	A	10/1995	Henckel et al.
5,465,401	A	11/1995	Thompson
5,469,529	A	11/1995	Bimbot et al.
5,471,611	A	11/1995	McGregor
5,473,728	A	12/1995	Luginbuhl et al.
5,475,587	A	12/1995	Anick et al.
5,475,796	A	12/1995	Iwata
5,477,447	A	12/1995	Luciw et al.
5,477,448	A	12/1995	Golding et al.
5,477,451	A	12/1995	Brown et al.
5,479,488	A	12/1995	Lennig et al.
5,481,739	A	1/1996	Staats
5,483,261	A	1/1996	Yasutake
5,485,372	A	1/1996	Golding et al.
5,485,543	A	1/1996	Aso
5,488,204	A	1/1996	Mead et al.
5,488,727	A	1/1996	Agrawal et al.
5,490,234	A	2/1996	Narayan
5,491,758	A	2/1996	Bellegarda et al.
5,491,772	A	2/1996	Hardwick et al.
5,493,677	A	2/1996	Balogh et al.
5,495,604	A	2/1996	Harding et al.
5,497,319	A	3/1996	Chong et al.
5,500,903	A	3/1996	Gulli
5,500,905	A	3/1996	Martin et al.
5,500,937	A	3/1996	Thompson-Rohrlich
5,502,774	A	3/1996	Bellegarda et al.
5,502,790	A	3/1996	Yi
5,502,791	A	3/1996	Nishimura et al.
5,515,475	A	5/1996	Gupta et al.
5,521,816	A	5/1996	Roche et al.
5,524,140	A	6/1996	Klausner et al.
5,533,182	A	7/1996	Bates et al.
5,535,121	A	7/1996	Roche et al.
5,536,902	A	7/1996	Serra et al.
5,537,317	A	7/1996	Schabes et al.
5,537,618	A	7/1996	Boulton et al.
5,537,647	A	7/1996	Hermansky et al.
5,543,588	A	8/1996	Bisset et al.
5,543,897	A	8/1996	Altrieth, III
5,544,264	A	8/1996	Bellegarda et al.
5,548,507	A	8/1996	Martino et al.
5,555,343	A	9/1996	Luther
5,555,344	A	9/1996	Zunkler
5,559,301	A	9/1996	Bryan, Jr. et al.
5,559,945	A	9/1996	Beaudet et al.
5,564,446	A	10/1996	Wiltshire
5,565,888	A	10/1996	Selker
5,568,536	A	10/1996	Tiller et al.
5,568,540	A	10/1996	Greco et al.
5,570,324	A	10/1996	Geil
5,572,576	A	11/1996	Klausner et al.
5,574,823	A	11/1996	Hassanein et al.
5,574,824	A	11/1996	Slyh et al.
5,577,135	A	11/1996	Grajski et al.
5,577,164	A	11/1996	Kaneko et al.
5,577,241	A	11/1996	Spencer
5,578,808	A	11/1996	Taylor
5,579,037	A	11/1996	Tahara et al.
5,579,436	A	11/1996	Chou et al.
5,581,484	A	12/1996	Prince
5,581,652	A	12/1996	Abe et al.
5,581,655	A	12/1996	Cohen et al.
5,583,993	A	12/1996	Foster et al.

5,584,024	A	12/1996	Shwartz
5,586,540	A	12/1996	Marzec et al.
5,594,641	A	1/1997	Kaplan et al.
5,596,260	A	1/1997	Moravec et al.
5,596,676	A	1/1997	Swaminathan et a
5,596,994	A	1/1997	Bro
5,608,624	A	3/1997	Luciw
5,608,698	A	3/1997	Yamanoi et al.
5,608,841	A	3/1997	Tsuboka
5,610,812	A	3/1997	Schabes et al.
5,613,036	A	3/1997	Strong
5,613,122	A	3/1997	Burnard et al.
5,615,378	A	3/1997	Nishino et al.
5,615,384	A	3/1997	Allard et al.
5,616,876	A	4/1997	Cluts
5,617,386	A	4/1997	Choi
5,617,507	A	4/1997	Lee et al.
5,617,539	A	4/1997	Ludwig et al.
5,619,583	A	4/1997	Page et al.
5,619,694	A	4/1997	Shimazu
5,621,859	A	4/1997	Schwartz et al.
5,621,903	A	4/1997	Luciw et al.
5,627,939	A	5/1997	Huang et al.
5,634,084	A	5/1997	Malsheen et al.
5,636,325	A	6/1997	Farrett
5,638,425	A	6/1997	Meador, III et al.
5,638,489	A	6/1997	Tsuboka
5,638,523	A	6/1997	Mullet et al.
5,640,487	A	6/1997	Lau et al.
5,642,464	A	6/1997	Yue et al.
5,642,466	A	6/1997	Narayan
5,642,519	A	6/1997	Martin
5,644,656	A	7/1997	Akra et al
5,644,727	A	7/1997	Atkins
5,644,735	A	7/1997	Luciw et al.
5,649,060	A	7/1997	Ellozy et al.
5,652,828	A	7/1997	Silverman
5,652,884	A	7/1997	Palevich
5,652,897	A	7/1997	Linebarger et al.
5,661,787	A	8/1997	Pocock
5,664,055	A	9/1997	Kroon
5,664,206	A	9/1997	Murow et al.
5,670,985	A	9/1997	Cappels, Sr. et al.
5,675,704	A	10/1997	Juang et al.
5,675,819	A	10/1997	Schuetze
5,678,039	A	10/1997	Hinks et al.
5,682,475	A	10/1997	Johnson et al.
5,682,539	A	10/1997	Conrad et al.
5,684,513	A	11/1997	Decker
5,687,077	A	11/1997	Gough, Jr.
5,689,287	A	11/1997	Mackinlay et al.
5,689,616	A	11/1997	Li
5,689,618	A	11/1997	Gasper et al.
5,692,205	A	11/1997	Berry et al.
5,696,962	A	12/1997	Kupiec
5,699,082	A	12/1997	Marks et al.
5,701,400	A	12/1997	Amado
5,706,442	A	1/1998	Anderson et al.
5,708,659	A	1/1998	Rostoker et al.
5,708,822	A	1/1998	Wical
5,710,886	A	1/1998	Christensen et al.
5,710,922	A	1/1998	Alley et al.
5,712,949	A	1/1998	Kato et al.
5,712,957	A	1/1998	Waibel et al.
5,715,468	A	2/1998	Budzinski
5,717,877	A	2/1998	Orton et al.
5,721,827	A	2/1998	Logan et al.
5,721,949	A	2/1998	Smith et al.
5,724,406	A	3/1998	Juster
5,724,985	A	3/1998	Snell et al.
5,726,672	A	3/1998	Hernandez et al.
5,727,950	A	3/1998	Cook et al.
5,729,694	A	3/1998	Holzrichter et al.
5,729,704	A	3/1998	Stone et al.
5,732,216	A	3/1998	Logan et al.
5,732,390	A	3/1998	Katayanagi et al.
5,732,395	A	3/1998	Silverman
5,734,750	A	3/1998	Arai et al.
5,734,791		3/1998	Acero et al.

References Cited
U.S. PATENT DOCUMENTS

5,736,974	A	4/1998	Selker
5,737,487	A	4/1998	Bellegarda et al.
5,737,609	A	4/1998	Reed et al.
5,737,734	A	4/1998	Schultz
5,739,451	A	4/1998	Winksy et al.
5,740,143	A	4/1998	Suetomi
5,742,705	A	4/1998	Parthasarathy
5,742,736	A	4/1998	Haddock
5,745,116	A	4/1998	Pisutha-Arnond
5,745,843	A	4/1998	Wetters et al.
5,745,873	A	4/1998	Braida et al.
5,748,512	A	5/1998	Vargas
5,748,974	A	5/1998	Johnson
5,749,071	A	5/1998	Silverman
5,749,081	A	5/1998	Whiteis
5,751,906	A	5/1998	Silverman
5,757,358	A	5/1998	Osga
5,757,979	A	5/1998	Hongo et al.
5,758,079	A	5/1998	Ludwig et al.
5,758,083	A	5/1998	Singh et al.
5,758,314	A	5/1998	McKenna
5,758,318	A	5/1998	Kojima et al.
5,759,101	A	6/1998	Von Kohorn
5,761,640	A	6/1998	Kalyanswamy et al
5,765,131	A	6/1998	Stentiford et al.
5,765,168	A	6/1998	Burrows
5,771,276	A	6/1998	Wolf
5,774,834	A	6/1998	Visser
5,774,855	A	6/1998	Foti et al.
5,774,859	A	6/1998	Houser et al.
5,777,614	A	7/1998	Ando et al.
5,778,405	A	7/1998	Ogawa
5,790,978	A	8/1998	Olive et al.
5,794,050	A	8/1998	Dahlgren et al.
5,794,182	A	8/1998	Manduchi et al.
5,794,207	A	8/1998	Walker et al.
5,794,237	A	8/1998	Gore, Jr.
5,797,008	A	8/1998	Burrows
5,799,268	A	8/1998	Boguraev
5,799,269	A	8/1998	Schabes et al.
5,799,276	A	8/1998	Komissarchik et al.
5,801,692	A	9/1998	Muzio et al.
5,802,466	A	9/1998	Gallant et al.
5,802,526	A	9/1998	Fawcett et al.
5,812,697	A	9/1998	Sakai et al.
5,812,698	A	9/1998	Platt et al.
5,815,142	A	9/1998	Allard et al.
5,815,225	A	9/1998	Nelson
5,818,142	A	10/1998	Edleblute et al.
5,818,451	A	10/1998	Bertram et al.
5,818,924	A	10/1998	King et al.
5,822,288	A	10/1998	Shinada
5,822,720	A	10/1998	Bookman et al.
5,822,730	A	10/1998	Roth et al.
5,822,743	A	10/1998	Gupta et al.
5,825,349	A	10/1998	Meier et al.
5,825,352	A	10/1998	Bisset et al.
5,825,881	A	10/1998	Colvin, Sr.
5,826,261	A	10/1998	Spencer
5,828,768	A	10/1998	Eatwell et al.
5,828,999	A	10/1998	Bellegarda et al.
5,832,433	A	11/1998	Yashchin et al.
5,832,435	A	11/1998	Silverman
5,833,134	A	11/1998	Ho et al.
5,835,077	A	11/1998	Dao et al.
5,835,079	A	11/1998	Shieh
5,835,721	A	11/1998	Donahue et al.
5,835,732	A	11/1998	Kikinis et al.
5,835,893	A	11/1998	Ushioda
5,839,106	A	11/1998	Bellegarda
5,841,902	A	11/1998	Tu
5,842,165	A	11/1998	Raman et al.
5,845,255	A	12/1998	Mayaud
5,848,410	A	12/1998	Walls et al.
5,850,480	A	12/1998	Scanlon

5,850,629 A	12/1998 Holm et al.
5,854,893 A	12/1998 Ludwig et al.
5,855,000 A	12/1998 Waibel et al.
5,857,184 A	1/1999 Lynch
5,859,636 A	1/1999 Pandit
5,860,063 A	1/1999 Gorin et al.
5,860,064 A	1/1999 Henton
5,860,075 A	1/1999 Hashizume et al.
5,862,223 A	1/1999 Walker et al.
5,862,233 A	1/1999 Poletti
5,864,806 A	1/1999 Mokbel et al.
5,864,815 A	1/1999 Rozak et al.
5,864,844 A	1/1999 James et al.
5,864,855 A	1/1999 Ruocco et al.
5,864,868 A	1/1999 Contois
5,867,799 A	2/1999 Lang et al.
5,870,710 A	2/1999 Ozawa et al.
5,873,056 A	2/1999 Liddy et al.
5,873,064 A	2/1999 De Armas et al.
5,875,427 A	2/1999 Yamazaki
5,875,429 A	2/1999 Douglas
5,875,437 A	2/1999 Atkins
5,876,396 A	3/1999 Lo et al.
5,877,751 A	3/1999 Kanemitsu et al.
5,877,757 A	3/1999 Baldwin et al.
5,878,393 A	3/1999 Hata et al.
5,878,394 A	3/1999 Muhling
5,878,396 A	3/1999 Henton
5,880,411 A	3/1999 Gillespie et al.
5,880,731 A	3/1999 Liles et al.
5,884,039 A	3/1999 Ludwig et al.
5,884,323 A	3/1999 Hawkins et al.
5,890,117 A	3/1999 Silverman
5,890,122 A	3/1999 Van et al.
5,891,180 A	4/1999 Greeninger et al.
5,893,126 A	4/1999 Drews et al.
5,893,132 A	4/1999 Huffman et al.
5,895,448 A	4/1999 Vysotsky et al.
5,895,464 A	4/1999 Bhandari et al.
5,895,466 A	4/1999 Goldberg et al.
5,896,321 A	$4 / 1999$ Miller et al.
5,896,500 A	4/1999 Ludwig et al.
5,899,972 A	5/1999 Miyazawa et al.
5,905,498 A	5/1999 Diament
5,909,666 A	6/1999 Gould et al.
5,912,951 A	6/1999 Checchio et al.
5,912,952 A	6/1999 Brendzel
5,913,193 A	6/1999 Huang et al.
5,915,001 A	6/1999 Uppaluru
5,915,236 A	6/1999 Gould et al.
5,915,238 A	6/1999 Tjaden
5,915,249 A	6/1999 Spencer
5,917,487 A	6/1999 Ulrich
5,918,303 A	6/1999 Yamaura et al.
5,920,327 A	7/1999 Seidensticker, Jr.
5,920,836 A	7/1999 Gould et al.
5,920,837 A	7/1999 Gould et al.
5,923,757 A	7/1999 Hocker et al.
5,924,068 A	7/1999 Richard et al.
5,926,769 A	7/1999 Valimaa et al.
5,926,789 A	7/1999 Barbara et al.
5,930,408 A	7/1999 Seto
5,930,751 A	7/1999 Cohrs et al.
5,930,754 A	7/1999 Karaali et al.
5,930,769 A	7/1999 Rose
5,930,783 A	7/1999 Li et al.
5,933,477 A	8/1999 Wu
5,933,806 A	8/1999 Beyerlein et al.
5,933,822 A	8/1999 Braden-Harder et al
5,936,926 A	8/1999 Yokouchi et al.
5,937,163 A	8/1999 Lee et al.
5,940,811 A	8/1999 Norris
5,940,841 A	8/1999 Schmuck et al.
5,941,944 A	8/1999 Messerly
5,943,043 A	8/1999 Furuhata et al.
5,943,049 A	8/1999 Matsubara et al.
5,943,052 A	8/1999 Allen et al.
5,943,429 A	8/1999 Haendel et al.
5,943,443 A	8/1999 Itonori et al.

References Cited

U.S. PATENT DOCUMENTS

5,943,670	A	8/1999	Prager
5,946,647	A	8/1999	Miller et al.
5,948,040	A	9/1999	DeLorme et al.
5,949,961	A	9/1999	Sharman
5,950,123	A	9/1999	Schwelb et al.
5,952,992	A	9/1999	Helms
5,953,541	A	9/1999	King et al.
5,956,021	A	9/1999	Kubota et al.
5,956,699	A	9/1999	Wong et al.
5,960,394	A	9/1999	Gould et al.
5,960,422	A	9/1999	Prasad
5,963,208	A	10/1999	Dolan et al.
5,963,924	A	10/1999	Williams et al.
5,963,964	A	10/1999	Nielsen
5,966,126	A	10/1999	Szabo
5,970,446	A	10/1999	Goldberg et al.
5,970,474	A	10/1999	LeRoy et al.
5,973,612	A	10/1999	Deo et al.
5,973,676	A	10/1999	Kawakura
5,974,146	A	10/1999	Randle et al.
5,977,950	A	11/1999	Rhyne
5,982,352	A	11/1999	Pryor
5,982,370	A	11/1999	Kamper
5,982,891	A	11/1999	Ginter et al.
5,982,902	A	11/1999	Terano
5,983,179	A	11/1999	Gould et al.
5,983,216	A	11/1999	Kirsch et al.
5,987,132	A	11/1999	Rowney
5,987,140	A	11/1999	Rowney et al.
5,987,401	A	11/1999	Trudeau
5,987,404	A	11/1999	Della Pietra et al.
5,987,440	A	11/1999	O'Neil et al.
5,990,887	A	11/1999	Redpath et al.
5,991,441	A	11/1999	Jourjine
5,995,460	A	11/1999	Takagi et al.
5,995,590	A	11/1999	Brunet et al.
5,995,918	A	11/1999	Kendall et al.
5,998,972	A	12/1999	Gong
5,999,169	A	12/1999	Lee
5,999,895	A	12/1999	Forest
5,999,908	A	12/1999	Abelow
5,999,927	A	12/1999	Tukey et al.
6,006,274	A	12/1999	Hawkins et al.
6,009,237	A	12/1999	Hirabayashi et al.
6,011,585	A	1/2000	Anderson
6,014,428	A	1/2000	Wolf
6,016,471	A	1/2000	Kuhn et al.
6,017,219	A	1/2000	Adams, Jr. et al.
6,018,705	A	1/2000	Gaudet
6,018,711	A	1/2000	French-St. George et al.
6,020,881	A	2/2000	Naughton et al.
6,023,536	A	2/2000	Visser
6,023,676	A	2/2000	Erell
6,023,684	A	2/2000	Pearson
6,024,288	A	2/2000	Gottlich et al.
6,026,345	A	2/2000	Shah et al.
6,026,375	A	2/2000	Hall et al.
6,026,388	A	2/2000	Liddy et al.
6,026,393	A	2/2000	Gupta et al.
6,029,132	A	2/2000	Kuhn et al.
6,029,135	A	2/2000	Krasle
6,035,267	A	3/2000	Watanabe et al.
6,035,303	A	3/2000	Baer et al.
6,035,336	A	3/2000	Lu et al.
6,038,533	A	3/2000	Buchsbaum et al.
6,040,824	A	3/2000	Maekawa et al.
6,041,023	A	3/2000	Lakhansingh
6,047,255	A	4/2000	Williamson
6,047,300	A	4/2000	Walfish et al.
6,052,654	A	4/2000	Gaudet et al.
6,052,656	A	4/2000	Suda et al.
6,054,990	A	4/2000	Tran
6,055,514	A	4/2000	Wren
6,055,531	A	4/2000	Bennett et al.
6,064,767	A	5/2000	Muir et al.

6,064,951 A	5/2000	Park et al.
6,064,959 A	5/2000	Young et al.
6,064,960 A	5/2000	Bellegarda et al.
6,064,963 A	5/2000	Gainsboro
6,067,519 A	5/2000	Lowry
6,069,648 A	5/2000	Suso et al.
6,070,138 A	5/2000	Iwata
6,070,139 A	5/2000	Miyazawa et al.
6,070,140 A	5/2000	Tran
6,070,147 A	5/2000	Harms et al.
6,073,033 A	6/2000	Campo
6,073,036 A	6/2000	Heikkinen et al.
6,073,097 A	6/2000	Gould et al.
6,076,051 A	6/2000	Messerly et al.
6,076,060 A	$6 / 2000$	Lin et al.
6,076,088 A	6/2000	Paik et al.
6,078,885 A *	6/2000	Beutnagel G10L 15/063
		704/231
6,078,914 A	6/2000	Redfern
6,081,750 A	6/2000	Hoffberg et al.
6,081,774 A	6/2000	de Hita et al.
6,081,780 A	6/2000	Lumelsky
6,085,204 A	7/2000	Chijiwa et al.
6,088,671 A	7/2000	Gould et al.
6,088,731 A	7/2000	Kiraly et al.
6,092,036 A	7/2000	Hamann et al.
6,092,043 A	7/2000	Squires et al.
6,094,649 A	7/2000	Bowen et al.
6,097,391 A	8/2000	Wilcox
6,101,468 A	8/2000	Gould et al.
6,101,470 A	8/2000	Eide et al.
6,105,865 A	8/2000	Hardesty
6,108,627 A	8/2000	Sabourin
6,108,640 A	8/2000	Slotznick
6,111,562 A	8/2000	Downs et al.
6,111,572 A	8/2000	Blair et al.
6,115,686 A	9/2000	Chung et al.
6,116,907 A	9/2000	Baker et al.
6,119,101 A	9/2000	Peckover
6,121,960 A	9/2000	Carroll et al.
6,122,340 A	9/2000	Darley et al.
6,122,614 A	9/2000	Kahn et al.
6,122,616 A	9/2000	Henton
6,122,647 A	9/2000	Horowitz et al.
6,125,284 A	9/2000	Moore et al.
6,125,346 A	9/2000	Nishimura et al.
6,125,356 A	9/2000	Brockman et al.
6,129,582 A	10/2000	Wilhite et al.
6,138,098 A	10/2000	Shieber et al.
6,138,158 A	10/2000	Boyle et al.
6,141,642 A	10/2000	Oh
6,141,644 A	10/2000	Kuhn et al.
6,144,377 A	11/2000	Oppermann et al.
6,144,380 A	11/2000	Shwarts et al.
6,144,938 A	11/2000	Surace et al.
6,144,939 A	11/2000	Pearson et al.
6,151,401 A	11/2000	Annaratone
6,154,551 A	11/2000	Frenkel
6,154,720 A	11/2000	Onishi et al.
6,157,935 A	12/2000	Tran et al.
6,161,084 A	12/2000	Messerly et al.
6,161,087 A	12/2000	Wightman et al.
6,161,944 A	12/2000	Leman
6,163,769 A	12/2000	Acero et al.
6,163,809 A	12/2000	Buckley
6,167,369 A	12/2000	Schulze
6,169,538 B1	1/2001	Nowlan et al.
6,172,948 B1	1/2001	Keller et al.
6,173,194 B1	1/2001	Vanttila
6,173,251 B1	1/2001	Ito et al.
6,173,261 B1	1/2001	Arai et al.
6,173,263 B1	1/2001	Conkie
6,173,279 B1	1/2001	Levin et al.
6,177,905 B1	1/2001	Welch
6,177,931 B1	1/2001	Alexander et al.
6,179,432 B1	1/2001	Zhang et al.
6,182,028 B1	1/2001	Karaali et al.
6,185,533 B1	2/2001	Holm et al.
6,188,391 B1	2/2001	Seely et al.

(56)

References Cited
U.S. PATENT DOCUMENTS

6,188,967	B1	2/2001	Kurtzberg et al.
6,188,999	B1	2/2001	Moody
6,191,939	B1	2/2001	Burnett
6,192,253	B1	2/2001	Charlier et al.
6,192,340	B1	2/2001	Abecassis
6,195,641	B1	2/2001	Loring et al.
6,199,076	BI	3/2001	Logan et al.
6,205,456	B1	3/2001	Nakao
6,208,044	B1	3/2001	Viswanadham et al.
6,208,932	B1	3/2001	Ohmura et al.
6,208,956	B1	3/2001	Motoyama
6,208,964	B1	3/2001	Sabourin
6,208,967	B1	3/2001	Pauws et al.
6,208,971	BI	3/2001	Bellegarda et al.
6,212,564	B1	4/2001	Harter et al.
6,216,102	B1	4/2001	Martino et al.
6,216,131	B1	4/2001	Liu et al.
6,217,183	B1	4/2001	Shipman
6,222,347	B1	4/2001	Gong
6,226,403	B1	5/2001	Parthasarathy
6,226,533	B1	5/2001	Akahane
6,226,614	B1	5/2001	Mizuno et al.
6,226,655	B1	5/2001	Borman et al.
6,230,322	B1	5/2001	Saib et al.
6,232,539	B1	5/2001	Looney et al.
6,232,966	B1	5/2001	Kurlander
6,233,545	B1	5/2001	Datig
6,233,547	B1	5/2001	Denber et al.
6,233,559	B1	5/2001	Balakrishnan
6,233,578	B1	5/2001	Machihara et al.
6,237,025	B1	5/2001	Ludwig et al.
6,240,303	B1	5/2001	Katzur
6,243,681	B1	6/2001	Guji et al.
6,246,981	B1	6/2001	Papineni et al.
6,248,946	B1	6/2001	Dwek
6,249,606	B1	6/2001	Kiraly et al.
6,259,436	B1	7/2001	Moon et al.
6,259,826	B1	7/2001	Pollard et al.
6,260,011	B1	7/2001	Heckerman et al.
6,260,013	B1	7/2001	Sejnoha
6,260,016	B1	7/2001	Holm et al.
6,260,024	B1	7/2001	Shkedy
6,266,098	B1	7/2001	Cove et al.
6,266,637	B1	7/2001	Donovan et al.
6,268,859	B1	7/2001	Andresen et al.
6,269,712	B1	8/2001	Zentmyer
6,271,835	B1	8/2001	Hoeksma
6,272,456	B1	8/2001	De Campos
6,272,464	B1	8/2001	Kiraz et al.
6,275,795	B1	8/2001	Tzirkel-Hancock
6,275,824	B1	8/2001	O'Flaherty et al.
6,278,443	B1	8/2001	Amro et al.
6,278,970	B1	8/2001	Milner
6,282,507	B1	8/2001	Horiguchi et al.
6,282,511	B1	8/2001	Mayer et al.
6,285,785	B1	9/2001	Bellegarda et al.
6,285,786	B1	9/2001	Seni et al.
6,289,085	B1	9/2001	Miyashita et al.
6,289,124	B1	9/2001	Okamoto
6,289,301	B1	9/2001	Higginbotham et al.
6,289,353	B1	9/2001	Hazlehurst et al.
6,292,772	B1	9/2001	Kantrowitz
6,292,778	B1	9/2001	Sukkar
6,295,390	B1	9/2001	Kobayashi et al.
6,295,541	B1	9/2001	Bodnar et al.
6,297,818	B1	10/2001	Ulrich et al.
6,298,314	B1	10/2001	Blackadar et al.
6,298,321	B1	10/2001	Karlov et al.
6,300,947	B1	10/2001	Kanevsky
6,304,844	B1	10/2001	Pan et al.
6,304,846	B1	10/2001	George et al.
6,307,548	B1	10/2001	Flinchem et al.
6,308,149	B1	10/2001	Gaussier et al.
6,310,610	B1	10/2001	Beaton et al.
6,311,157	B1	10/2001	Strong

6,311,189	B1	10/2001	al.
6,317,237	B1	11/2001	Nakao et al.
6,317,594	B1	11/2001	Gossman et al.
6,317,707	B1	11/2001	Bangalore et al.
6,317,831	B1	11/2001	King
6,321,092	B1	11/2001	Fitch et al.
6,321,179	B1	11/2001	Glance et al.
6,323,846	B1	11/2001	Westerman et al.
6,324,499	B1	11/2001	Lewis et al.
6,324,502	B1	11/2001	Handel et al.
6,324,512	B1	11/2001	Junqua et al.
6,324,514	B2	11/2001	Matulich et al.
6,330,538	B1	12/2001	Breen
6,331,867	B1	12/2001	Eberhard et al.
6,332,175	B1	12/2001	Birrell et al.
6,334,103	B1	12/2001	Surace et al
6,335,722	B1	1/2002	Tani et al.
6,336,365	B1	1/2002	Blackadar et al.
6,336,727	B1	1/2002	Kim
6,340,937	B1	1/2002	Stepita-Klauco
6,341,316	B1	1/2002	Kloba et al.
6,343,267	B1	1/2002	Kuhn et al.
6,345,240	B1	2/2002	Havens
6,345,250	B1	2/2002	Martin
6,351,522	B1	2/2002	Vitikainen
6,351,762	B1	2/2002	Ludwig et al.
6,353,442	B1	3/2002	Masui
6,353,794	B1	3/2002	Davis et al.
6,356,287	B1	3/2002	Ruberry et al.
6,356,854	B1	3/2002	Schubert et al.
6,356,864	B1	3/2002	Foltz et al.
6,356,905	B1	3/2002	Gershman et al.
6,357,147	B1	3/2002	Darley et al
6,359,572	B1	3/2002	Vale
6,359,970	B1	3/2002	Burgess
6,360,227	B1	3/2002	Aggarwal et al.
6,360,237	B1	3/2002	Schulz et al.
6,363,348	B1	3/2002	Besling et al.
6,366,883	B1	4/2002	Campbell et al.
6,366,884	B1	4/2002	Bellegarda et al.
6,374,217	B1	4/2002	Bellegarda
6,374,226	B1	4/2002	Hunt et al.
6,377,530	B1	4/2002	Burrows
6,377,925	B1	4/2002	Greene, Jr. et al.
6,377,928	B1	4/2002	Saxena et al.
6,381,593	B1	4/2002	Yano et al.
6,385,586	B1	5/2002	Dietz
6,385,662	B1	5/2002	Moon et al.
6,389,114	B1	5/2002	Dowens et al.
6,397,183	B1	5/2002	Baba et al.
6,397,186	B1	5/2002	Bush et al.
6,400,806	B1	6/2002	Uppaluru
6,400,996	B1	6/2002	Hoffberg et al.
6,401,065	B1	6/2002	Kanevsky et al.
6,401,085	B1	6/2002	Gershman et al.
6,405,169	B1	6/2002	Kondo et al.
6,405,238	B1	6/2002	Votipka
6,408,272	B1	6/2002	White et al.
6,411,924	B1	6/2002	De Hita et al.
6,411,932	B1	6/2002	Molnar et al.
6,415,250	B1	7/2002	Van den Akker
6,417,873	B1	7/2002	Fletcher et al.
6,421,305	B1	7/2002	Gioscia et al.
6,421,672	B1	7/2002	McAllister et al.
6,421,707	B1	7/2002	Miller et al.
6,424,944	B1	7/2002	Hikawa
6,430,551	B1	8/2002	Thelen et al.
6,434,522	B1	8/2002	Tsuboka
6,434,524	B1	8/2002	Weber
6,434,529	B1	8/2002	Walker et al.
6,434,604	B1	8/2002	Harada et al.
6,437,818	B1	8/2002	Ludwig et al.
6,438,523	B1	8/2002	Oberteuffer et al.
6,442,518	B1	8/2002	Van Thong et al.
6,442,523	B1	8/2002	Siegel
6,446,076	B1	9/2002	Burkey et al.
6,448,485	B1	9/2002	Barile
6,448,986	B1	9/2002	Smith
6,449,620	B1	9/2002	Draper et al.

References Cited

U.S. PATENT DOCUMENTS

6,453,281	B1	9/2002	Walters et al.
6,453,292	B2	9/2002	Ramaswamy et al.
6,453,312	B1	9/2002	Goiffon et al.
6,453,315	B1	9/2002	Weissman et al.
6,456,616	B1	9/2002	Rantanen
6,456,972	B1	9/2002	Gladstein et al.
6,460,015	B1	10/2002	Hetherington et al.
6,460,029	B1	10/2002	Fries et al.
6,462,778	B1	10/2002	Abram et al.
6,463,128	B1	10/2002	Elwin
6,463,413	B1	10/2002	Applebaum et al.
6,466,654	B1	10/2002	Cooper et al.
6,467,924	B2	10/2002	Shipman
6,469,712	B1	10/2002	Hilpert, Jr. et al.
6,469,722	B1	10/2002	Kinoe et al.
6,469,732	B1	10/2002	Chang et al.
6,470,347	B1	10/2002	Gillam
6,473,630	B1	10/2002	Baranowski et al.
6,477,488	B1	11/2002	Bellegarda
6,477,494	B2	11/2002	Hyde-Thomson et al.
6,487,533	B2	11/2002	Hyde-Thomson et al.
6,487,534	B1	11/2002	Thelen et al.
6,487,663	B1	11/2002	Jaisimha et al.
6,489,951	B1	12/2002	Wong et al.
6,490,560	B1	12/2002	Ramaswamy et al.
6,493,006	B1	12/2002	Gourdol et al.
6,493,428	B1	12/2002	Hillier
6,493,652	B1	12/2002	Ohlenbusch et al.
6,493,667	B1	12/2002	De Souza et al.
6,499,013	B1	12/2002	Weber
6,499,014	B1	12/2002	Chihara
6,499,016	B1	12/2002	Anderson et al.
6,501,937	B1	12/2002	Ho et al.
6,502,194	B1	12/2002	Berman et al.
6,505,158	B1	1/2003	Conkie
6,505,175	B1	1/2003	Silverman et al.
6,505,183	B1	1/2003	Loofbourrow et al.
6,507,829	B1	1/2003	Richards et al.
6,510,406	B1	1/2003	Marchisio
6,510,412	B1	1/2003	Sasai et al.
6,510,417	B1	1/2003	Woods et al.
6,513,006	B2	1/2003	Howard et al.
6,513,008	B2	1/2003	Pearson et al.
6,513,063	B1	1/2003	Julia et al.
6,519,565	B1	2/2003	Clements et al.
6,519,566	B1	2/2003	Boyer et al.
6,523,026	B1	2/2003	Gillis
6,523,061	B1	2/2003	Halverson et al.
6,523,172	B1	2/2003	Martinez-Guerra et al.
6,526,351	B2	2/2003	Whitham
6,526,382	B1	2/2003	Yuschik
6,526,395	B1	2/2003	Morris
6,529,592	B1	3/2003	Khan
6,529,608	B2	3/2003	Gersabeck et al.
6,532,444	B1	3/2003	Weber
6,532,446	B1	3/2003	King
6,535,610	B1	3/2003	Stewart
6,535,852	B2	3/2003	Eide
6,535,983	B1	3/2003	McCormack et al.
6,536,139	B2	3/2003	Darley et al.
6,538,665	B2	3/2003	Crow et al.
6,542,171	B1	4/2003	Satou et al.
6,542,584	B1	4/2003	Sherwood et al.
6,546,262	B1	4/2003	Freadman
6,546,367	B2	4/2003	Otsuka
6,546,388	B1	4/2003	Edlund et al.
6,549,497	B2	4/2003	Miyamoto et al.
6,553,343	B1	4/2003	Kagoshima et al.
6,553,344	B2	4/2003	Bellegarda et al.
6,556,971	B1	4/2003	Rigsby et al.
6,556,983	B1	4/2003	Altschuler et al.
6,560,903	B1	5/2003	Darley
6,563,769	B1	5/2003	Van Der Meulen
6,564,186	B1	5/2003	Kiraly et al.
6,567,549	B1	5/2003	Marianetti et al.

6,570,557	B1	5/2003	Westerman et al.
6,570,596	B2	5/2003	Frederiksen
6,582,342	B2	$6 / 2003$	Kaufman
6,583,806	B2	6/2003	Ludwig et al.
6,584,464	B1	6/2003	Warthen
6,587,403	B1	7/2003	Keller et al.
6,587,404	B1	7/2003	Keller et al.
6,590,303	B1	7/2003	Austin et al.
6,591,379	B1	7/2003	LeVine et al.
6,594,673	B1	7/2003	Smith et al.
6,594,688	B2	7/2003	Ludwig et al.
6,597,345	B2	7/2003	Hirshberg
6,598,021	B1	7/2003	Shambaugh et al.
6,598,022	B2	7/2003	Yuschik
6,598,039	B1	7/2003	Livowsky
6,598,054	B2	7/2003	Schuetze et al.
6,601,026	B2	7/2003	Appelt et al.
6,601,234	B1	7/2003	Bowman-Amuah
6,603,837	B1	8/2003	Kesanupalli et al.
6,604,059	B2	8/2003	Strubbe et al
6,606,101	B1	8/2003	Malamud et al.
6,606,388	B1	8/2003	Townsend et al.
6,606,632	B1	8/2003	Saulpaugh et al.
6,611,789	B1	8/2003	Darley
6,615,172	B1	9/2003	Bennett et al
6,615,175	B1	9/2003	Gazdzinski
6,615,176	B2	9/2003	Lewis et al.
6,615,220	B1	9/2003	Austin et al.
6,621,768	B1	9/2003	Keller et al.
6,621,892	B1	9/2003	Banister et al.
6,622,121	B1	9/2003	Crepy et al.
6,622,136	B2	9/2003	Russell
6,623,529	B1	9/2003	Lakritz
6,625,583	B1	9/2003	Silverman et al.
6,628,808	B1	9/2003	Bach et al.
6,631,186	B1	10/2003	Adams et al.
6,631,346	B1	10/2003	Karaorman et al.
6,633,741	B1	10/2003	Posa et al.
6,633,846	B1	10/2003	Bennett et al.
6,633,932	B1	10/2003	Bork et al.
6,642,940	B1	11/2003	Dakss et al.
6,643,401	B1	11/2003	Kashioka et al.
6,643,824	B1	11/2003	Bates et al.
6,647,260	B2	11/2003	Dusse et al.
6,650,735	B2	11/2003	Burton et al.
6,651,042	B1	11/2003	Field et al.
6,651,218	B1	11/2003	Adler et al.
6,654,740	B2	11/2003	Tokuda et al.
6,658,389	B1	12/2003	Alpdemir
6,658,408	B2	12/2003	Yano et al.
6,658,577	B2	12/2003	Huppi et al.
6,661,438	B1	12/2003	Shiraishi et al.
6,662,023	B1	12/2003	Helle
6,665,639	B2	12/2003	Mozer et al.
6,665,640	B1	12/2003	Bennett et al.
6,665,641	B1	12/2003	Coorman et al.
6,671,672	B1	12/2003	Heck
6,671,683	B2	12/2003	Kanno
6,671,856	B1	12/2003	Gillam
6,675,169	B1	1/2004	Bennett et al
6,675,233	B1	1/2004	Du et al.
6,677,932	B1	1/2004	Westerman
6,680,675	B1	1/2004	Suzuki
6,684,187	B1	1/2004	Conkie
6,684,376	B1	1/2004	Kerzman et al.
6,690,387	B2	2/2004	Zimmerman et al.
6,690,800	B2	2/2004	Resnick
6,690,828	B2	2/2004	Meyers
6,691,064	B2	2/2004	Vroman
6,691,090	B1	2/2004	Laurila et al.
6,691,111	B2	2/2004	Lazaridis et al.
6,691,151	B1	2/2004	Cheyer et al.
6,694,295	B2	2/2004	Lindholm et al.
6,694,297	B2	2/2004	Sato
6,697,780	B1	2/2004	Beutnagel et al.
6,697,824	B1	2/2004	Bowman-Amuah
6,701,294	B1	3/2004	Ball et al.
6,701,305	B1	3/2004	Holt et al.
6,701,318	B2	3/2004	Fox et al.

References Cited

U.S. PATENT DOCUMENTS

6,704,015	B1	3/2004	Bovarnick et al.
6,704,034	B1	3/2004	Rodriguez et al.
6,704,698	B1	3/2004	Paulsen, Jr. et al.
6,704,710	B2	3/2004	Strong
6,708,153	B2	3/2004	Brittan et al.
6,711,585	B1	3/2004	Copperman et al.
6,714,221	B1	3/2004	Christie et al.
6,716,139	B1	4/2004	Hosseinzadeh-Dolkhani et al.
6,718,324	B2	4/2004	Edlund et al.
6,718,331	B2	4/2004	Davis et al.
6,720,980	B1	4/2004	Lui et al.
6,721,728	B2	4/2004	McGreevy
6,721,734	B1	4/2004	Subasic et al.
6,724,370	B2	4/2004	Dutta et al.
6,725,197	B1	4/2004	Wuppermann et al.
6,728,675	B1	4/2004	Maddalozzo, Jr. et al.
6,728,681	B2	4/2004	Whitham
6,728,729	B1	4/2004	Jawa et al.
6,731,312	B2	5/2004	Robbin
6,732,142	B1	5/2004	Bates et al.
6,735,632	B1	5/2004	Kiraly et al.
6,738,738	B2	5/2004	Henton
6,741,264	B1	5/2004	Lesser
6,742,021	B1	5/2004	Halverson et al.
6,751,592	B1	6/2004	Shiga
6,751,595	B2	6/2004	Busayapongchai et al.
6,751,621	B1	6/2004	Calistri-Yeh et al.
6,754,504	B1	6/2004	Reed
6,757,362	B1	6/2004	Cooper et al.
6,757,365	B1	6/2004	Bogard
6,757,646	B2	6/2004	Marchisio
6,757,653	B2	6/2004	Buth et al.
6,757,718	B1	6/2004	Halverson et al.
6,760,412	B1	7/2004	Loucks
6,760,700	B2	7/2004	Lewis et al.
6,760,754	B1	7/2004	Isaacs et al.
6,762,741	B2	7/2004	Weindorf
6,762,777	B2	7/2004	Carroll
6,763,089	B2	7/2004	Feigenbaum
6,766,294	B2	7/2004	MacGinite et al.
6,766,320	B1	7/2004	Wang et al.
6,766,324	B2	7/2004	Carlson et al.
6,768,979	B1	7/2004	Menendez-Pidal et al.
6,771,982	B1	8/2004	Toupin et al.
6,772,123	B2	8/2004	Cooklev et al.
6,772,195	B1	8/2004	Hatlelid et al.
6,772,394	B1	8/2004	Kamada
6,775,358	B1	8/2004	Breitenbach et al.
6,778,951	B1	8/2004	Contractor
6,778,952	B2	8/2004	Bellegarda
6,778,962	B1	8/2004	Kasai et al.
6,778,970	B2	8/2004	Au
6,778,979	B2	8/2004	Grefenstette et al.
6,782,510	B1	8/2004	Gross et al.
6,784,901	B1	8/2004	Harvey et al.
6,789,094	B2	9/2004	Rudoff et al.
6,789,231	B1	9/2004	Reynar et al.
6,790,704	B2	9/2004	Doyle et al.
6,792,082	B1	9/2004	Levine
6,792,083	B2	9/2004	Dams et al.
6,792,086	B1	9/2004	Saylor et al.
6,792,407	B2	9/2004	Kibre et al.
6,794,566	B2	9/2004	Pachet
6,795,059	B2	9/2004	Endo
6,799,226	B1	9/2004	Robbin et al.
6,801,604	B2	10/2004	Maes et al.
6,801,964	B1	10/2004	Mahdavi
6,803,905	B1	10/2004	Capps et al.
6,804,649	B2	10/2004	Miranda
6,804,677	B2	10/2004	Shadmon et al.
6,807,536	B2	10/2004	Achlioptas et al.
6,807,574	B1	10/2004	Partovi et al.
6,809,724	B1	10/2004	Shiraishi et al.
6,810,379	B1	10/2004	Vermeulen et al.
6,813,218	B1	11/2004	Antonelli et al.

6,813,491 B1	11/2004	McKinney
6,813,607 B1	11/2004	Faruquie et al.
6,816,578 B1	11/2004	Kredo et al.
6,820,055 B2	11/2004	Saindon et al.
6,829,018 B2	12/2004	Lin et al.
6,829,603 B1	12/2004	Chai et al.
6,832,194 B1	12/2004	Mozer et al.
6,832,381 B1	12/2004	Mathur et al.
6,836,651 B2	12/2004	Segal et al.
6,836,760 B1	12/2004	Bellegarda et al.
6,839,464 B2	1/2005	Hawkins et al.
6,839,669 B1	1/2005	Gould et al.
6,839,670 B1	1/2005	Stammler et al.
6,839,742 B1	1/2005	Dyer et al.
6,842,767 B1	1/2005	Partovi et al.
6,847,966 B1	1/2005	Sommer et al.
6,847,979 B2	1/2005	Allemang et al.
6,850,775 B1	2/2005	Berg
6,850,887 B2	2/2005	Epstein et al.
6,851,115 B1	2/2005	Cheyer et al.
6,856,259 B1	2/2005	Sharp
6,857,800 B2	2/2005	Zhang et al.
6,859,931 B1	2/2005	Cheyer et al.
6,862,568 B2	3/2005	Case
6,862,710 B1	3/2005	Marchisio
6,865,533 B2	3/2005	Addison et al.
6,868,045 B1	3/2005	Schroder
6,868,385 B1	3/2005	Gerson
6,870,529 B1	3/2005	Davis
6,871,346 B1	3/2005	Kumbalimutt et al.
6,873,986 B2	3/2005	McConnell et al.
6,876,947 B1	4/2005	Darley et al.
6,877,003 B2	4/2005	Ho et al.
6,879,957 B1	4/2005	Pechter et al.
6,882,335 B2	4/2005	Saarinen
6,882,337 B2	4/2005	Shetter
6,882,747 B2	4/2005	Thawonmas et al.
6,882,955 B1	4/2005	Ohlenbusch et al.
6,882,971 B2	4/2005	Craner
6,885,734 B1	4/2005	Eberle et al.
6,889,361 B1	5/2005	Bates et al.
6,895,084 B1	5/2005	Saylor et al.
6,895,257 B2	5/2005	Boman et al.
6,895,380 B2	5/2005	Sepe, Jr.
6,895,558 B1	5/2005	Loveland
6,898,550 B1	5/2005	Blackadar et al.
6,901,364 B2	5/2005	Nguyen et al.
6,901,399 B1	5/2005	Corston et al.
6,904,405 B2	6/2005	Suominen
6,907,112 B1	$6 / 2005$	Guedalia et al.
6,907,140 B2	$6 / 2005$	Matsugu et al.
6,910,004 B2	$6 / 2005$	Tarbouriech et al.
6,910,007 B2	6/2005	Stylianou et al.
6,910,012 B2	$6 / 2005$	Hartley et al.
6,910,186 B2	$6 / 2005$	Kim
6,911,971 B2	6/2005	Suzuki et al.
6,912,407 B1	$6 / 2005$	Clarke et al.
6,912,498 B2	$6 / 2005$	Stevens et al.
6,912,499 B1	6/2005	Sabourin et al.
6,915,138 B2	7/2005	Kraft
6,915,246 B2	7/2005	Gusler et al.
6,915,294 B1	7/2005	Singh et al.
6,917,373 B2	7/2005	Vong et al.
6,918,677 B2	7/2005	Shipman
6,924,828 B1	8/2005	Hirsch
6,925,438 B2	8/2005	Mohamed et al.
6,928,149 B1	8/2005	Panjwani et al.
6,928,614 B1	8/2005	Everhart
6,931,255 B2	8/2005	Mekuria
6,931,384 B1	8/2005	Horvitz et al.
6,932,708 B2	8/2005	Yamashita et al.
6,933,928 B1	8/2005	Lilienthal
6,934,394 B1	8/2005	Anderson
6,934,684 B2	8/2005	Alpdemir et al.
6,934,756 B2	8/2005	Maes
6,934,812 B1	8/2005	Robbin et al.
6,937,975 B1	8/2005	Elworthy
6,937,986 B2	8/2005	Denenberg et al.
6,944,593 B2	9/2005	Kuzunuki et al.

References Cited

U.S. PATENT DOCUMENTS

94	B2	9/2005	Schultz et al.
6,950,087	B2	9/2005	Knox et al.
6,950,502	B1	9/2005	Jenkins
6,952,799	B2	10/2005	Edwards et al.
6,954,755	B2	10/2005	Reisman
6,954,899	B1	10/2005	Anderson
6,956,845	B2	10/2005	Baker et al.
6,957,076	B2	10/2005	Hunzinger
6,957,183	B2	10/2005	Malayath et al.
6,960,734	B1	11/2005	Park
6,961,699	B1	11/2005	Kahn et al.
6,961,912	B2	11/2005	Aoki et al.
6,963,759	B1	11/2005	Gerson
6,963,841	B2	11/2005	Handal et al.
6,964,023	B2	11/2005	Maes et al.
6,965,376	B2	11/2005	Tani et al.
6,965,863	B1	11/2005	Zuberec et al.
6,968,311	B2	11/2005	Knockeart et al.
6,970,820	B2	11/2005	Junqua et al.
6,970,881	B1	11/2005	Mohan et al.
6,970,915	B1	11/2005	Partovi et al.
6,970,935	B1	11/2005	Maes
6,976,090	B2	12/2005	Ben-Shaul et al.
6,978,127	B1	12/2005	Bulthuis et al
6,978,239	B2	12/2005	Chu et al.
6,980,949	B2	12/2005	Ford
6,980,953	B1	12/2005	Kanevsky et al.
6,980,955	B2	12/2005	Okutani et al.
6,983,251	B1	1/2006	Umemoto et al.
6,985,858	B2	1/2006	Frey et al.
6,985,865	B1	1/2006	Packingham et al.
6,985,958	B2	1/2006	Zwiegincew et al.
6,988,071	B1	1/2006	Gazdzinski
6,990,450	B2	1/2006	Case et al.
6,996,520	B2	2/2006	Levin
6,996,531	B2	2/2006	Korall et al.
6,996,575	B2	2/2006	Cox et al.
6,999,066	B2	2/2006	Litwiller
6,999,914	B1	2/2006	Boerner et al.
6,999,925	B2	2/2006	Fischer et al.
6,999,927	B2	2/2006	Mozer et al.
7,000,189	B2	2/2006	Dutta et al.
7,002,556	B2	2/2006	Tsukada et al.
7,003,099	B1	2/2006	Zhang et al.
7,003,463	B1	2/2006	Maes et
7,003,522	B1	2/2006	Reynar et al.
7,006,969	B2	2/2006	Atal
7,006,973	B1	2/2006	Genly et al.
7,007,026	B2	2/2006	Wilkinson et al.
7,007,239	B1	2/2006	Hawkins et al.
7,010,581	B2	3/2006	Brown et al.
7,013,289	B2	3/2006	Horn et al.
7,013,308	B1	3/2006	Tunstall-Pedoe
7,013,429	B2	3/2006	Fujimoto et al.
7,015,894	B2	3/2006	Morohoshi
7,020,685	B1	3/2006	Chen et al.
7,024,363	B1	4/2006	Comerford et al.
7,024,364	B2	4/2006	Guerra et al.
7,024,366	B1	4/2006	Deyoe et al.
7,024,460	B2	4/2006	Koopmas et al.
7,027,568	B1	4/2006	Simpson et al.
7,027,974	B1	4/2006	Busch et al.
7,027,990	B2	4/2006	Sussman
7,028,252	B1	4/2006	Baru et al.
7,030,861	B1	4/2006	Westerman et al.
7,031,530	B2	4/2006	Driggs et al.
7,031,909	B2	4/2006	Mao et al.
7,035,794	B2	4/2006	Sirivara
7,035,801	B2	4/2006	Jimenez-Feltstrom
7,035,807	B1	4/2006	Brittain et al.
7,036,128	B1	4/2006	Julia et al.
7,036,681	B2	5/2006	Suda et al.
7,038,659	B2	5/2006	Rajkowski
7,039,588	B2	5/2006	Okutani et al.
7,043,420	B2	5/2006	Ratnaparkhi

References Cited

U.S. PATENT DOCUMENTS

7,159,174	B2	1/2007	Johnson et al.
7,162,412	B2	1/2007	Yamada et al.
7,162,482	B1	1/2007	Dunning
7,165,073	B2	1/2007	Vandersluis
7,166,791	B2	1/2007	Robbin et al.
7,171,350	B2	1/2007	Lin et al.
7,171,360	B2	1/2007	Huang et al.
7,174,042	B1	2/2007	Simmons et al.
7,174,295	B1	2/2007	Kivimaki
7,174,297	B2	2/2007	Guerra et al.
7,174,298	B2	2/2007	Sharma
7,177,794	B2	2/2007	Mani et al.
7,177,798	B2	2/2007	Hsu et al.
7,177,817	B1	2/2007	Khosla et al.
7,181,386	B2	2/2007	Mohri et al.
7,181,388	B2	2/2007	Tian
7,184,064	B2	2/2007	Zimmerman et al.
7,185,276	B2	2/2007	Keswa
7,188,085	B2	3/2007	Pelletier
7,190,351	B1	3/2007	Goren
7,190,794	B2	3/2007	Hinde
7,191,118	B2	3/2007	Bellegarda
7,191,131	B1	3/2007	Nagao
7,193,615	B2	3/2007	Kim et al.
7,194,186	B1	3/2007	Strub et al.
7,194,413	B2	3/2007	Mahoney et al.
7,194,471	B1	3/2007	Nagatsuka et al.
7,194,611	B2	3/2007	Bear et al.
7,194,699	B2	3/2007	Thomson et al.
7,197,120	B2	3/2007	Luehrig et al.
7,197,460	B1	3/2007	Gupta et al.
7,200,550	B2	4/2007	Menezes et al.
7,200,558	B2	4/2007	Kato et al.
7,200,559	B2	4/2007	Wang
7,203,297	B2	4/2007	Vitikainen et al.
7,203,646	B2	4/2007	Bennett
7,206,809	B2	4/2007	Ludwig et al.
7,216,008	B2	5/2007	Sakata
7,216,073	B2	5/2007	Lavi et al.
7,216,080	B2	5/2007	Tsiao et al.
7,218,920	B2	5/2007	Hyon
7,218,943	B2	5/2007	Klassen et al.
7,219,063	B2	5/2007	Schalk et al.
7,219,123	B1	5/2007	Fiechter et al.
7,225,125	B2	5/2007	Bennett et al.
7,228,278	B2	6/2007	Nguyen et al.
7,231,343	B1	6/2007	Treadgold et al.
7,231,597	B1	6/2007	Braun et al.
7,233,790	B2	6/2007	Kjellberg et al.
7,233,904	B2	6/2007	Luisi
7,234,026	B2	6/2007	Robbin et al.
7,236,932	B1	6/2007	Grajski
7,240,002	B2	7/2007	Minamino et al.
7,243,130	B2	7/2007	Horvitz et al.
7,243,305	B2	7/2007	Schabes et al.
7,246,118	B2	7/2007	Chastain et al.
7,246,151	B2	7/2007	Isacs et al.
7,248,900	B2	7/2007	Deeds et al.
7,251,313	B1	7/2007	Miller et al.
7,251,454	B2	7/2007	White
7,254,773	B2	8/2007	Bates et al.
7,257,537	B2	8/2007	Ross et al.
7,259,752	B1	8/2007	Simmons
7,260,529	B1	8/2007	Lengen
7,260,567	B2	8/2007	Parikh et al.
7,263,373	B2	8/2007	Mattisson
7,266,189	B1	9/2007	Day
7,266,495	B1	9/2007	Beaufays et al.
7,266,496	B2	9/2007	Wang et al.
7,266,499	B2	9/2007	Surace et al.
7,269,544	B2	9/2007	Simske
7,269,556	B2	9/2007	Kiss et al
7,272,224	B1	9/2007	Normile et al.
7,275,063	B2	9/2007	Horn
7,277,088	B2	10/2007	Robinson et al.

References Cited

U.S. PATENT DOCUMENTS

7,447,360	B2	11/2008	Li et al.
7,447,624	B2	11/2008	Fuhrmann et al.
7,447,635	B1	11/2008	Konopka et al.
7,447,637	B1	11/2008	Grant et al.
7,451,081	B1	11/2008	Gajic et al.
7,454,351	B2	11/2008	Jeschke et al.
7,460,652	B2	12/2008	Chang
7,461,043	B2	12/2008	Hess
7,467,087	B1	12/2008	Gillick et al.
7,467,164	B2	12/2008	Marsh
7,472,061	B1	12/2008	Alewine et al.
7,472,065	B2	12/2008	Aaron et al.
7,475,010	B2	1/2009	Chao
7,475,063	B2	1/2009	Datta et al.
7,477,238	B2	1/2009	Fux et al.
7,477,240	B2	1/2009	Yanagisawa
7,478,037	B2	1/2009	Strong
7,478,091	B2	1/2009	Mojsilovic et al.
7,478,129	B1	1/2009	Chemtob
7,479,948	B2	1/2009	Kim et al.
7,479,949	B2	1/2009	Jobs et al.
7,483,832	B2	1/2009	Tischer
7,483,894	B2	1/2009	Cao
7,487,089	B2	2/2009	Mozer
7,487,093	B2	2/2009	Mutsuno et al.
7,490,034	B2	2/2009	Finnigan et al.
7,490,039	B1	2/2009	Shaffer et al.
7,493,560	B1	2/2009	Kipnes et al.
7,496,498	B2	2/2009	Chu et al.
7,496,512	B2	2/2009	Zhao et al.
7,499,923	B2	3/2009	Kawatani
7,502,738	B2	3/2009	Kennewick et al.
7,505,795	B1	3/2009	Lim et al.
7,508,324	B2	3/2009	Suraqui
7,508,373	B2	3/2009	Lin et al.
7,516,123	B2	4/2009	Betz et al.
7,519,327	B2	4/2009	White
7,519,398	B2	4/2009	Hirose
7,522,927	B2	4/2009	Fitch et al.
7,523,036	B2	4/2009	Akabane et al.
7,523,108	B2	4/2009	Cao
7,526,466	B2	4/2009	Au
7,526,738	B2	4/2009	Ording et al.
7,528,713	B2	5/2009	Singh et al.
7,529,671	B2	5/2009	Rockenbeck et al.
7,529,676	B2	5/2009	Koyama
7,535,997	B1	5/2009	McQuaide, Jr. et al
7,536,029	B2	5/2009	Choi et al.
7,536,565	B2	5/2009	Girish et al.
7,538,685	B1	5/2009	Cooper et al.
7,539,619	B1	5/2009	Seligman et al.
7,539,656	B2	5/2009	Fratkina et al.
7,541,940	B2	6/2009	Upton
7,542,967	B2	6/2009	Hurst-Hiller et al.
7,542,971	B2	6/2009	Thione et al.
7,543,232	B2	6/2009	Easton, Jr. et al.
7,546,382	B2	6/2009	Healey et al.
7,546,529	B2	6/2009	Reynar et al.
7,548,895	B2	6/2009	Pulsipher
7,552,045	B2	6/2009	Barliga et al.
7,552,055	B2	6/2009	Lecoeuche
7,555,431	B2	6/2009	Bennett
7,555,496	B1	6/2009	Lantrip et al.
7,558,381	B1	7/2009	Ali et al.
7,558,730	B2	7/2009	Davis et al.
7,559,026	B2	7/2009	Girish et al.
7,561,069	B2	7/2009	Horstemeyer
7,562,007	B2	7/2009	Hwang
7,562,032	B2	7/2009	Abbosh et al.
7,565,104	B1	7/2009	Brown et al.
7,565,380	B1	7/2009	Venkatachary
7,571,106	B2	8/2009	Cao et al.
7,577,522	B2	8/2009	Rosenberg
7,580,551	B1	8/2009	Srihari et al.
7,580,576	B2	8/2009	Wang et al.

7,580,839	B2	8/2009	Tamura et al.
7,584,093	B2	9/2009	Potter et al.
7,584,278	B2	9/2009	Rajarajan et al.
7,584,429	B2	9/2009	Fabritius
7,593,868	B2	9/2009	Margiloff et al.
7,596,269	B2	9/2009	King et al.
7,596,499	B2	9/2009	Anguera et al.
7,596,606	B2	9/2009	Codignotto
7,596,765	B2	9/2009	Almas
7,599,918	B2	10/2009	Shen et al.
7,603,381	B2	10/2009	Burke et al.
7,606,444	B1	10/2009	Erol et al.
7,609,179	B2	10/2009	Diaz-Gutierrez et al
7,610,258	B2	10/2009	Yuknewicz et al.
7,613,264	B2	11/2009	Wells et al.
7,614,008	B2	11/2009	Ording
7,617,094	B2	11/2009	Aoki et al.
7,620,407	B1	11/2009	Donald et al.
7,620,549	B2	11/2009	Di Cristo et al.
7,620,894	B1	11/2009	Kahn
7,623,119	B2	11/2009	Autio et al.
7,624,007	B2	11/2009	Bennett
7,627,481	B1	12/2009	Kuo et al.
7,630,901	B2	12/2009	Omi
7,633,076	B2	12/2009	Huppi et al.
7,634,409	B2	12/2009	Kennewick et al.
7,634,413	B1	12/2009	Kuo et al.
7,634,718	B2	12/2009	Nakajima
7,634,732	B1	12/2009	Blagsvedt et al.
7,636,657	B2	12/2009	Ju et al.
7,640,158	B2	12/2009	Detlef et al.
7,640,160	B2	12/2009	Di Cristo et al.
7,643,990	B1	1/2010	Bellegarda
7,647,225	B2	1/2010	Bennett et al.
7,649,454	B2	1/2010	Singh et al.
7,649,877	B2	1/2010	Vieri et al.
7,653,883	B2	1/2010	Hotelling et al.
7,656,393	B2	2/2010	King et al.
7,657,424	B2	2/2010	Bennett
7,657,828	B2	2/2010	Lucas et al.
7,657,844	B2	2/2010	Gibson et al.
7,657,849	B2	2/2010	Chaudhri et al.
7,663,607	B2	2/2010	Hotelling et al.
7,664,558	B2	2/2010	Lindahl et al.
7,664,638	B2	2/2010	Cooper et al.
7,669,134	B1	2/2010	Christie et al.
7,672,841	B2	3/2010	Bennett
7,672,952	B2	3/2010	Isaacson et al.
7,673,238	B2	3/2010	Girish et al.
7,673,340	B1	3/2010	Cohen et al.
7,676,026	B1	3/2010	Baxter, Jr.
7,676,365	B2	3/2010	Hwang et al.
7,676,463	B2	3/2010	Thompson et al.
7,679,534	B2	3/2010	Kay et al.
7,680,649	B2	3/2010	Park
7,681,126	B2	3/2010	Roose
7,683,886	B2	3/2010	Willey
7,683,893	B2	3/2010	Kim
7,684,985	B2	3/2010	Dominach et al.
7,684,990	B2	3/2010	Caskey et al.
7,684,991	B2	3/2010	Stohr et al.
7,689,245	B2	3/2010	Cox et al.
7,689,408	B2	3/2010	Chen et al.
7,689,409	B2	3/2010	Heinecke
7,689,421	B2	3/2010	Li et al.
7,693,715	B2	4/2010	Hwang et al.
7,693,717	B2	4/2010	Kahn et al.
7,693,719	B2	4/2010	Chu et al.
7,693,720	B2	4/2010	Kennewick et al.
7,698,131	B2	4/2010	Bennett
7,702,500	B2	4/2010	Blaedow
7,702,508	B2	4/2010	Bennett
7,703,091	B1	4/2010	Martin et al.
7,706,510	B2	4/2010	Ng
7,707,026	B2	4/2010	Liu
7,707,027	B2	4/2010	Balchandran et al.
7,707,032	B2	4/2010	Wang et al.
7,707,221	B1	4/2010	Dunning et al.
7,707,267	B2	4/2010	Lisitsa et al.

(56)

References Cited
U.S. PATENT DOCUMENTS

7,710,262	B2	5/2010	Ruha
7,711,129	B2	5/2010	Lindahl et al.
7,711,550	B1	5/2010	Feinberg et al.
7,711,565	B1	5/2010	Gazdzinski
7,711,672	B2	5/2010	Au
7,712,053	B2	5/2010	Bradford et al.
7,716,056	B2	5/2010	Weng et al.
7,716,216	B1	5/2010	Harik et al.
7,720,674	B2	5/2010	Kaiser et al.
7,720,683	B1	5/2010	Vermeulen et al.
7,721,226	B2	5/2010	Barabe et al.
7,721,301	B2	5/2010	Wong et al.
7,724,242	B2	5/2010	Hillis et al.
7,724,696	B1	5/2010	Parekh
7,725,307	B2	5/2010	Bennett
7,725,318	B2	5/2010	Gavalda et al.
7,725,320	B2	5/2010	Bennett
7,725,321	B2	5/2010	Bennett
7,725,838	B2	5/2010	Williams
7,729,904	B2	6/2010	Bennett
7,729,916	B2	6/2010	Coffman et al.
7,734,461	B2	6/2010	Kwak et al.
7,735,012	B2	6/2010	Naik
7,739,588	B2	6/2010	Reynar et al.
7,742,953	B2	6/2010	King et al.
7,743,188	B2	6/2010	Haitani et al.
7,747,616	B2	6/2010	Yamada et al.
7,752,152	B2	7/2010	Paek et al
7,756,708	B2	7/2010	Cohen et al.
7,756,868	B2	7/2010	Lee
7,756,871	B2	7/2010	Yacoub et al.
7,757,173	B2	7/2010	Beaman
7,757,182	B2	7/2010	Elliott et al.
7,761,296	B1	7/2010	Bakis et al.
7,763,842	B2	7/2010	Hsu et al.
7,774,204	B2	8/2010	Mozer et al.
7,774,388	B1	8/2010	Runchey
7,777,717	B2	8/2010	Fux et al.
7,778,432	B2	8/2010	Larsen
7,778,595	B2	8/2010	White et al.
7,778,632	B2	8/2010	Kurlander et al.
7,778,830	B2	8/2010	Davis et al.
7,779,353	B2	8/2010	Grigoriu et al.
7,779,356	B2	8/2010	Griesmer
7,779,357	B2	8/2010	Naik
7,783,283	B2	8/2010	Kuusinen et al.
7,783,486	B2	8/2010	Rosser et al.
7,788,590	B2	8/2010	Taboada et al.
7,796,980	B1	9/2010	Mckinney et al.
7,797,265	B2	9/2010	Brinker et al.
7,797,269	B2	9/2010	Rieman et al
7,797,331	B2	9/2010	Theimer et al.
7,797,629	B2	9/2010	Fux et al.
7,801,721	B2	9/2010	Rosart et al.
7,801,728	B2	9/2010	Ben-David et al.
7,801,729	B2	9/2010	Mozer
7,805,299	B2	9/2010	Coifman
7,809,565	B2	10/2010	Coifman
7,809,569	B2	10/2010	Attwater et al.
7,809,570	B2	10/2010	Kennewick et al.
7,809,610	B2	10/2010	Cao
7,809,744	B2	10/2010	Nevidomski et al
7,818,165	B2	10/2010	Carlgren et al.
7,818,176	B2	10/2010	Freeman et al.
7,818,215	B2	10/2010	King et al.
7,818,291	B2	10/2010	Ferguson et al.
7,818,672	B2	10/2010	Mccormack et al.
7,822,608	B2	10/2010	Cross, Jr. et al.
7,823,123	B2	10/2010	Sabbouh
7,826,945	B2	11/2010	Zhang et al.
7,827,047	B2	11/2010	Anderson et al.
7,831,423	B2	11/2010	Schubert
7,831,426	B2	11/2010	Bennett
7,831,432	B2	11/2010	Bodin et al.
7,836,437	B2	11/2010	Kacmarcik et al.

7,840,400 B2 11/2010 Lavi et al. 7,840,447 B2 11/2010 Kleinrock et al 7,840,581 B2 11/2010 Ross et al. 7,840,912 B2 11/2010 Elias et al. 7,848,924 B2 $12 / 2010$ Nurminen et al. 7,848,926 B2 12/2010 Goto et al. 7,853,444 B2 12/2010 Wang et al. 7,853,445 B2 12/2010 Bachenko et al. 7,853,574 B2 12/2010 Kraenzel et al. 7,853,577 B2 $\quad 12 / 2010$ Sundaresan et al. 7,853,664 B1 12/2010 Wang et al. 7,853,900 B2 $12 / 2010$ Nguyen et al.

1/2011 Ryan et al.
1/2011 Amato et al.
1/2011 Jiang et al.
1/2011 Krishnamoorthy et al.
1/2011 Bennett
1/2011 Bernard
1/2011 Chambers et al.
2/2011 Robinson et al.
2/2011 Cormier et al.
2/2011 Longe et al.
2/2011 Chaudhuri et al.
2/2011 Cohen et al.
2/2011 Rainisto et al.
2/2011 Blumenberg et al.
2/2011 Blumenberg et al.
2/2011 Ozkaragoz et al.
$2 / 2011$ Bull et al.
2/2011 Radtke et al.
3/2011 Varone
3/2011 Katragadda
3/2011 Kansal et al.
3/2011 Saraclar et al.
3/2011 Bennett
3/2011 Hakkani-Tur et al.
3/2011 Bonnet et al.
3/2011 Benson et al.
3/2011 Simmons
3/2011 Di Cristo et al.
3/2011 Harrison et al.
4/2011 Cooper et al.
4/2011 Byrne et al.
4/2011 Lau et al.
4/2011 Chin
4/2011 Elbaz et al.
4/2011 Wang et al.
4/2011 Weng et al.
4/2011 Odell et al.
4/2011 Ozzie et al.
5/2011 Marggraff et al.
5/2011 Martin et al.
5/2011 Li et al.
5/2011 Zhang et al.
5/2011 Cohen et al.
5/2011 Weider et al.
$5 / 2011$ Davis et al.
5/2011 Chidlovskii et al.
6/2011 Burns et al.
$6 / 2011$ Huang
7/2011 Sumita
7/2011 Cao
7/2011 Woolf et al.
7/2011 Liu et al.
7/2011 Knight et al.
$7 / 2011$ Kennewick et al.
7/2011 Conkie
7/2011 Allen et al.
$7 / 2011$ Dunning et al.
7/2011 Emori et al.
7/2011 Schott et al.
7/2011 Lewis et al.
8/2011 Washio et al.
$8 / 2011$ Wang-Aryattanwanich et al.
$8 / 2011$ Miller et al.
8/2011 Schultz et al.
8/2011 Fux et al.
8/2011 Anzures et al.
8/2011 Singh et al.
(56)

References Cited

U.S. PATENT DOCUMENTS

8,000,453	B2	8/2011	Cooper et al.
8,005,664	B2	8/2011	Hanumanthappa
8,005,679	B2	8/2011	Jordan et al.
8,006,180	B2	8/2011	Tunning et al.
8,014,308	B2	9/2011	Gates et al.
8,015,006	B2	9/2011	Kennewick et al.
8,015,011	B2	9/2011	Nagano et al.
8,015,144	B2	9/2011	Zheng et al.
8,018,431	B1	9/2011	Zehr et al.
8,019,271	B1	9/2011	Izdepski
8,024,195	B2	9/2011	Mozer et al.
8,027,836	B2	9/2011	Baker et al.
8,031,943	B2	10/2011	Chen et al.
8,032,383	B1	10/2011	Bhardwaj et al.
8,036,901	B2	10/2011	Mozer
8,037,034	B2	10/2011	Plachta et al.
8,041,557	B2	10/2011	Liu
8,041,570	B2	10/2011	Mirkovic et al.
8,041,611	B2	10/2011	Kleinrock et al.
8,042,053	B2	10/2011	Darwish et al.
8,046,363	B2	10/2011	Cha et al.
8,046,374	B1	10/2011	Bromwich et al.
8,050,500	B1	11/2011	Batty et al.
8,055,502	B2	11/2011	Clark et al.
8,055,708	B2	11/2011	Chitsaz et al.
8,056,070	B2	11/2011	Goller et al.
8,060,824	B2	11/2011	Brownrigg, Jr. et al.
8,064,753	B2	11/2011	Freeman
8,065,143	B2	11/2011	Yanagihara
8,065,155	B1	11/2011	Gazdzinski
8,065,156	B2	11/2011	Gazdzinski
8,068,604	B2	11/2011	Leeds et al.
8,069,046	B2	11/2011	Kennewick et al.
8,069,422	B2	11/2011	Sheshagiri et al.
8,073,681	B2	12/2011	Baldwin et al.
8,077,153	B2	12/2011	Benko et al.
8,078,473	B1	12/2011	Gazdzinski
8,082,153	B2	12/2011	Coffman et al.
8,082,498	B2	12/2011	Salamon et al.
8,090,571	B2	1/2012	Elshishiny et al.
8,095,364	B2	1/2012	Longe et al.
8,099,289	B2	1/2012	Mozer et al.
8,099,395	B2	1/2012	Pabla et al.
8,099,418	B2	1/2012	Inoue et al.
8,103,510	B2	1/2012	Sato
8,107,401	B2	1/2012	John et al.
8,112,275	B2	2/2012	Kennewick et al.
8,112,280	B2	2/2012	Lu
8,117,037	B2	2/2012	Gazdzinski
8,117,542	B2	2/2012	Radtke et al.
8,121,413	B2	2/2012	Hwang et al.
8,121,837	B2	2/2012	Agapi et al.
8,122,094	B1	2/2012	Kotab
8,122,353	B2	2/2012	Bouta
8,131,557	B2	3/2012	Davis et al.
8,135,115	B1	3/2012	Hogg, Jr. et al.
8,138,912	B2	3/2012	Singh et al.
8,140,335	B2	3/2012	Kennewick et al.
8,140,567	B2	3/2012	Padovitz et al.
8,150,694	B2	4/2012	Kennewick et al.
8,150,700	B2	4/2012	Shin et al.
8,155,956	B2	4/2012	Cho et al.
8,156,005	B2	4/2012	Vieri
8,160,883	B2	4/2012	Lecocuche
8,165,321	B2	4/2012	Paquier et al.
8,165,886	B1	4/2012	Gagnon et al.
8,166,019	B1	4/2012	Lee et al.
8,166,032	B2	4/2012	Sommer et al.
8,170,790	B2	5/2012	Lee et al.
8,179,370	B1	5/2012	Yamasani et al.
8,188,856	B2	5/2012	Singh et al.
8,190,359	B2	5/2012	Bourne
8,195,467	B2	6/2012	Mozer et al.
8,195,468	B2	6/2012	Kennewick et al.
8,200,495	B2	6/2012	Braho et al.

8,201,109 B2 8,204,238 B2 8,205,788 B1 8,209,183 B1 $8,219,115$ B1
$8,219,406$ B2 8,219,407 B1 8,219,608 B2 $8,224,649$ B2
8,239207 B2 $8,239,207$ B2
$8,244,712$ B2 8,255,217 B2 8,260,617 B2 8,270,933 B2 $8,275,621$
$8,279,171$
B2
8,275 $8,279,171$
$8,285,546$
B2 8,285,551 B2 $8,285,553$ B2
$8,290,777$ B1 $8,290,777$ B1
$8,290,778$
B2 $8,290,781$
8,290
8
8 $8,296,145$
B2
$8,296,146$
B2 $8,296,146$
B2
$8,296,153$
B2
$8,296,380$ $\begin{array}{ll}8,296,380 & \text { B1 } \\ 8,296,383 & \text { B2 }\end{array}$ $8,296,383 \mathrm{~B} 2$
$8,300,801 \mathrm{~B} 2$ 8,301,456 B2 $8,311,834$ B1
$8,311,835$ B2 $8,311,835$
$8,311,838$
B2 $\begin{array}{llll}8,311,838 & \text { B2 } & 11 / 2012 & \text { Lindahl et al. } \\ 8,312,017 & \text { B2 } & 11 / 2012 & \text { Martin et al. }\end{array}$ $\begin{array}{llll}8,312,017 & \text { B2 } & 11 / 2012 & \text { Martin } \\ 8,321,786 & \text { B2 } & 11 / 2012 & \text { Lunati }\end{array}$ 8,332,218 B2 $\quad 12 / 2012$ Cross et al. $8,332,224$ B2 $12 / 2012$ Di Cristo et al. 8,332,748 B1 12/2012 Karam 8,340,975 B1 12/2012 Rosenberger $8,345,665$ B2 $\quad 1 / 2013$ Vieri et al. $8,352,183$ B2 $1 / 2013$ Thota et al. $\begin{array}{llll}8,352,183 & \text { B2 } & 1 / 2013 & \text { Thota et al. } \\ 8,352,268 & \text { B2 } & 1 / 2013 & \text { Naik et al. }\end{array}$ $8,352,272$ B2 $\quad 1 / 2013$ Rogers et al. 8,355,919 B2 1/2013 Silverman et al. 8,359,234 B2 $1 / 2013$ Vieri 8,370,158 B2 $2 / 2013$ Gazdzinski 8,371,503 B2 2/2013 Gazdzinski 8,374,871 B2 2/2013 Ehsani et al. $\begin{array}{llll}8,374,871 & \text { B2 } & 2 / 2013 & \text { Ehsani et al. } \\ 8,375,320 & \text { B2 } & 2 / 2013 & \text { Kotler et al. }\end{array}$ 8,380,504 B1 2/2013 Peden et al. $8,380,507 \mathrm{~B} 2 \quad 2 / 2013$ Herman et al. $8,381,107 \mathrm{~B} 2 \quad 2 / 2013$ Rottler et al. $8,381,135$ B2 $2 / 2013$ Hotelling et al. 8,386,485 B2 2/2013 Kerschberg et al. 8,386,926 B1 $2 / 2013$ Matsuoka $8,391,844 \mathrm{~B} 2 \quad 3 / 2013$ Lamiraux et al. 8,396,714 B2 3/2013 Rogers et al. $8,406,745$ B1 $3 / 2013$ Upadhyay et al. 8,423,288 B2 4/2013 Stah1 et al. $8,428,758$ B2 $4 / 2013$ Naik et al. 8,447,612 B2 5/2013 Gazdzinski $8,452,597$ B2 $\quad 5 / 2013$ Bringert et al. $8,458,115$ B2 $6 / 2013$ Cai et al. 8,458,278 B2 $6 / 2013$ Christie et al. $8,479,122$ B2 $\quad 7 / 2013$ Hotelling et al. 8,489,599 B2 $7 / 2013$ Bellotti 8,498,857 B2 $7 / 2013$ Kopparapu et al. $8,515,750$ B1 $\quad 8 / 2013$ Lei et al. $8,521,513 \mathrm{~B} 2 \quad 8 / 2013$ Millett et al. 8,560,229 B1 10/2013 Park et al. $8,583,416$ B2 $11 / 2013$ Huang et al. 8,589,869 B2 11/2013 Wolfram 8,595,004 B2 11/2013 Koshinaka 8,606,568 B1 12/2013 Tickner et al. 8,620,659 B2 12/2013 Di Cristo et al. 8,620,662 B2 12/2013 Bellegarda 8,626,681 B1 1/2014 Jurca et al. 8,645,137 B2 2/2014 Bellegarda et al. $\begin{array}{lll}8,645,137 & \mathrm{~B} 2 & 2 / 2014 \\ \text { Bellegarda et al. } \\ \text { 8,654,936 B1 } & 2 / 2014 & \text { Tofighbakhsh et al. }\end{array}$ 8,655,901 B1 2/2014 Li et al.

6/2012 Van Os et al. 6/2012 Mozer 6/2012 Gazdzinski et al. $6 / 2012$ Patel et al.
$7 / 2012$ Nelissen
$7 / 2012$ Yu et al.
7/2012 Roy et al.
$7 / 2012$ alsafadi et al.
7/2012 Chaudhari et al.
$8 / 2012$ Seligman et al.
$8 / 2012$ Serlet et al.
9/2012 $\begin{aligned} & \text { Dhanakshirur et al }\end{aligned}$
9/2012 Riemer et al.
9/2012 Alewine et al.
10/2012 Hirai et al.
10/2012 Reich
10/2012 Gazdzinski
10/2012 Gazdzinski
10/2012 Nguyen et al.
10/2012 Gazdzinski
10/2012 Gazdzinski
10/2012 Clark et al.
10/2012 Gazdzinski
10/2012 Gazdzinski
10/2012 Kelly et al
10/2012 Lindah1
10/2012 Sweeney et al.
10/2012 Gazdzinski
11/2012 Gazdzinski
11/2012 Lecoeuche
11/2012 Martin et al.

2/2013 Gazdzinski

2013 Kotelling et al.

3/2013 Stahl et al.

1/2013 Huang et 2/2013 Di Cristo et al.
1/2014 Jurca et al.

References Cited

U.S. PATENT DOCUMENTS

8,660,849	B2	2/2014	Gruber et al.
8,660,970	B1	2/2014	Fiedorowicz
8,661,112	B2	2/2014	Creamer et al.
8,675,084	B2	3/2014	Bolton et al.
8,676,904	B2	3/2014	Lindahl et al.
8,677,377	B2	3/2014	Cheyer et al.
8,682,667	B2	3/2014	Haughay et al.
8,688,446	B2	4/2014	Yanagihara et al.
8,696,364	B2	4/2014	Cohen
8,706,472	B2	4/2014	Ramerth et al.
8,713,119	B2	4/2014	Lindahl et al.
8,713,418	B2	4/2014	King et al.
8,719,006	B2	5/2014	Bellegarda et al.
8,719,014	B2	5/2014	Wagner et al.
8,731,610	B2	5/2014	Appaji
8,731,912	B1	5/2014	Tickner et al.
8,739,208	B2	5/2014	Rodriguez et al.
8,744,852	B1	6/2014	Seymour et al.
8,760,537	B2	6/2014	Johnson et al.
8,762,145	B2	6/2014	Ouchi et al.
8,762,156	B2	6/2014	Chen et al.
8,762,469	B2	6/2014	Lindahl et al.
8,768,693	B2	7/2014	Lempel et al.
8,768,702	B2	7/2014	Boettcher et al.
8,775,931	B2	7/2014	Fux et al.
8,798,995	B1	8/2014	Edara et al.
8,838,457	B2	9/2014	Cerra et al.
8,861,925	B1	10/2014	Ohme et al.
8,880,405	B2	11/2014	Cerra et al.
8,886,540	B2	11/2014	Cerra et al.
8,930,191	B2	1/2015	Gruber et al.
8,943,423	B2	1/2015	Merrill et al.
8,972,878	B2	3/2015	Mohler et al.
8,983,383	B1	3/2015	Haskin
8,996,381	B2	3/2015	Mozer et al.
9,070,366	B1	6/2015	Mathias et al.
9,081,411	B2	7/2015	Kalns et al.
9,098,467	B1	8/2015	Blanksteen et al.
2001/0005859	A1	6/2001	Okuyama et al.
2001/0020259	A1	9/2001	Sekiguchi et al.
2001/0027396	A1	10/2001	Sato
2001/0029455	A1	10/2001	Chin et al.
2001/0030660	A1	10/2001	Zainoulline
2001/0032080	A1	10/2001	Fukada
2001/0041021	A1	11/2001	Boyle et al.
2001/0042107	A1	11/2001	Palm
2001/0044724	A1	11/2001	Hon et al.
2001/0047264	A1	11/2001	Roundtree
2001/0055963	A1	12/2001	Cloutier
2001/0056342	A1	12/2001	Piehn et al.
2001/0056347	A1	12/2001	Chazan et al.
2002/0001395	A1	1/2002	Davis et al.
2002/0002039	A1	1/2002	Qureshey et al.
2002/0002413	A1	1/2002	Tokue
2002/0002461	A1	1/2002	Tetsumoto
2002/0004703	A1	1/2002	Gaspard, II
2002/0010581	A1	1/2002	Euler et al.
2002/0010584	A1	1/2002	Schultz et al.
2002/0010726	A1	1/2002	Rogson
2002/0010798	A1	1/2002	Ben-Shaul et al.
2002/0013707	A1	1/2002	Shaw et al.
2002/0013784	A1	1/2002	Swanson
2002/0013852	A1	1/2002	Janik
2002/0015024	A1	2/2002	Westerman et al.
2002/0015064	A1	2/2002	Robotham et al.
2002/0021278	A1	2/2002	Hinckley et al.
2002/0026315	A1	2/2002	Miranda
2002/0026456	A1	2/2002	Bradford
2002/0031254	A1	3/2002	Lantrip et al.
2002/0031262	A1	3/2002	Imagawa et al.
2002/0032048	A1	3/2002	Kitao et al.
2002/0032564	A1	3/2002	Ehsani et al.
2002/0032591	A1	3/2002	Mahaffy et al.
2002/0032751	A1	3/2002	Bharadwaj
2002/0035467	A1	3/2002	Morimoto et al.

3/2002 Morimoto

2002/0035469 A1	3/2002	Holzapfel
2002/0035474 A1	3/2002	Alpdemir
2002/0040297 A1	4/2002	Tsiao et al.
2002/0040359 A1	4/2002	Green et al.
2002/0042707 A1	4/2002	Zhao et al.
2002/0045438 A1	4/2002	Tagawa et al.
2002/0045961 A1	4/2002	Gibbs et al.
2002/0046025 A1	4/2002	Hain
2002/0046315 A1	4/2002	Miller et al.
2002/0052730 A1	5/2002	Nakao
2002/0052740 Al	5/2002	Charlesworth et al.
2002/0052747 A1	5/2002	Sarukkai
2002/0052913 A1	5/2002	Yamada et al.
2002/0054094 A1	5/2002	Matsuda
2002/0055844 A1	5/2002	L'Esperance et al.
2002/0055934 A1	5/2002	Lipscomb et al.
2002/0059066 A1	5/2002	O'hagan
2002/0059068 Al	5/2002	Rose et al.
2002/0065659 A1	5/2002	Isono et al.
2002/0065797 A1	5/2002	Meidan et al.
2002/0067308 A1	6/2002	Robertson
2002/0069063 A1	6/2002	Buchner et al.
2002/0069071 A1	6/2002	Knockeart et al.
2002/0069220 Al	6/2002	Tran
2002/0072816 A1	6/2002	Shdema et al.
2002/0072908 A1	6/2002	Case et al.
2002/0072914 A1	6/2002	Alshawi et al.
2002/0073177 A1	6/2002	Clark et al.
2002/0077082 A1	6/2002	Cruickshank
2002/0077817 A1	6/2002	Atal
2002/0078041 A1	6/2002	Wu
2002/0080163 A1	6/2002	Morey
2002/0083068 A1	6/2002	Quass et al.
2002/0085037 A1	7/2002	Leavitt et al.
2002/0087508 A1	7/2002	Hull et al.
2002/0091511 A1	7/2002	Hellwig et al.
2002/0091529 A1	7/2002	Whitham
2002/0095286 A1	7/2002	Ross et al.
2002/0095290 A1	7/2002	Kahn et al.
2002/0099547 A1	7/2002	Chu et al.
2002/0099552 A1	7/2002	Rubin et al.
2002/0101447 A1	8/2002	Carro
2002/0103641 A1	8/2002	Kuo et al.
2002/0103644 A1	8/2002	Brocious et al.
2002/0103646 A1	8/2002	Kochanski et al.
2002/0107684 A1	8/2002	Gao
2002/0109709 A1	8/2002	Sagar
2002/0110248 A1	8/2002	Kovales et al.
2002/0111198 A1	8/2002	Heie et al.
2002/0111810 A1	8/2002	Khan et al.
2002/0116082 A1	8/2002	Gudorf
2002/0116171 A1	8/2002	Russell
2002/0116185 A1	8/2002	Cooper et al.
2002/0116189 A1	8/2002	Yeh et al.
2002/0116420 A1	8/2002	Allam et al.
2002/0120697 Al	8/2002	Generous et al.
2002/0120925 A1	8/2002	Logan
2002/0122053 A1	9/2002	Dutta et al.
2002/0123891 A1	9/2002	Epstein et al.
2002/0123894 A1	9/2002	Woodward
2002/0126097 A1	9/2002	Savolainen
2002/0128827 A1	9/2002	Bu et al.
2002/0128840 A1	9/2002	Hinde et al.
2002/0129057 A1	9/2002	Spielberg
2002/0133347 A1	9/2002	Schoneburg et al.
2002/0133348 A1	9/2002	Pearson et al.
2002/0135565 A1	9/2002	Gordon et al.
2002/0135618 A1	9/2002	Maes et al.
2002/0137505 A1	9/2002	Eiche et al.
2002/0138254 A1	9/2002	Isaka et al.
2002/0138265 A1	9/2002	Stevens et al.
2002/0138270 A1	9/2002	Bellegarda et al.
2002/0138616 A1	9/2002	Basson et al.
2002/0140679 A1	10/2002	Wen
2002/0143533 A1	10/2002	Lucas et al.
2002/0143542 A1	10/2002	Eide
2002/0143551 A1	10/2002	Sharma et al.
2002/0143826 A1	10/2002	Day et al.
2002/0151297 Al	10/2002	Remboski et al.

References Cited

U.S. PATENT DOCUMENTS

2002/0152045	A1	10/2002	Dowling et al.
2002/0152255	A1	10/2002	Smith et al.
2002/0154160	A1	10/2002	Hosokawa
2002/0161865	A1	10/2002	Nguyen
2002/0163544	A1	11/2002	Baker et al.
2002/0164000	A1	11/2002	Cohen et al.
2002/0165918	A1	11/2002	Bettis
2002/0167534	A1	11/2002	Burke
2002/0169592	A1	11/2002	Aityan
2002/0169605	A1	11/2002	Damiba et al.
2002/0173273	A1	11/2002	Spurgat et al.
2002/0173889	A1	11/2002	Odinak et al.
2002/0173961	A1	11/2002	Guerra
2002/0173962	A1	11/2002	Tang et al.
2002/0173966	A1	11/2002	Henton
2002/0177993	A1	11/2002	Veditz et al.
2002/0184003	A1	12/2002	Hakkinen et al.
2002/0184015	A1	12/2002	Li et al.
2002/0184027	A1	12/2002	Brittan et al.
2002/0184189	A1	12/2002	Hay et al.
2002/0189426	A1	12/2002	Hirade et al.
2002/0191029	A1	12/2002	Gillespie et al.
2002/0193996	A1	12/2002	Squibbs et al.
2002/0196911	A1	12/2002	Gao et al.
2002/0198714	A1	12/2002	Zhou
2002/0198715	A1	12/2002	Belrose
2003/0001881	A1	1/2003	Mannheimer et al.
2003/0002632	A1	1/2003	Bhogal et al.
2003/0003897	A1	1/2003	Seung-Taek
2003/0009459	A1	1/2003	Chastain et al.
2003/0013483	A1	1/2003	Ausems et al.
2003/0016770	A1	1/2003	Trans et al.
2003/0018475	A1	1/2003	Basu et al.
2003/0020760	A1	1/2003	Takatsu et al.
2003/0026392	A1	2/2003	Brown et al.
2003/0026402	A1	2/2003	Clapper
2003/0028380	A1	2/2003	Freeland et al.
2003/0030645	A1	2/2003	Ribak et al.
2003/0033148	A1	2/2003	Silverman et al.
2003/0033152	A1	2/2003	Cameron
2003/0033153	A1	2/2003	Olson et al.
2003/0033214	A1	2/2003	Mikkelsen et al.
2003/0037073	A1	2/2003	Tokuda et al.
2003/0037254	A1	2/2003	Fischer et al.
2003/0040908	A1	2/2003	Yang et al.
2003/0046075	A1	3/2003	Stone
2003/0046401	A1	3/2003	Abbott et al.
2003/0046434	A1	3/2003	Flanagin et al.
2003/0048881	A1	3/2003	Trajkovic et al.
2003/0050781	A1	3/2003	Tamura et al.
2003/0051136	A1	3/2003	Curtis et al
2003/0055537	A1	3/2003	Odinak et al.
2003/0055623	A1	3/2003	Epstein et al.
2003/0061317	A1	3/2003	Brown et al.
2003/0061570	A1	3/2003	Hatori et al.
2003/0063073	A1	4/2003	Geaghan et al.
2003/0074195	A1	4/2003	Bartosik et al.
2003/0074198	A1	4/2003	Sussman
2003/0074457	A1	4/2003	Kluth
2003/0076301	A1	4/2003	Tsuk et al.
2003/0078766	A1	4/2003	Appelt et al.
2003/0078779	A1	4/2003	Desai et al.
2003/0078780	A1	4/2003	Kochanski et al.
2003/0078969	A1	4/2003	Sprague et al.
2003/0079024	A1	4/2003	Hough et al.
2003/0079038	A1	4/2003	Robbin et al.
2003/0080991	A1	5/2003	Crow et al.
2003/0083113	A1	5/2003	Chua et al.
2003/0083878	A1	5/2003	Lee et al.
2003/0083884	A1	5/2003	Odinak et al.
2003/0084350	A1	5/2003	Eibach et al.
2003/0085870	A1	5/2003	Hinckley
2003/0086699	A1	5/2003	Benyamin et al.
2003/0088414	A1	5/2003	Huang et al.
2003/0088421	A1	5/2003	Maes et al.

References Cited

U.S. PATENT DOCUMENTS

2003/0212961	A1	11/2003	Soin et al.
2003/0214519	A1	11/2003	Smith et al.
2003/0221198	A1	11/2003	Sloo et al.
2003/0224760	A1	12/2003	Day
2003/0228863	A1	12/2003	Vander Veen et al.
2003/0228909	A1	12/2003	Tanaka et al.
2003/0229490	A1	12/2003	Etter
2003/0229616	A1	12/2003	Wong
2003/0233230	A1	12/2003	Ammicht et al.
2003/0233237	A1	12/2003	Garside et al.
2003/0233240	A1	12/2003	Kaatrasalo
2003/0234824	A1	12/2003	Litwiller
2003/0236663	A1	12/2003	Dimitrova et al.
2004/0001396	A1	1/2004	Keller et al.
2004/0006467	A1	1/2004	Anisimovich et al.
2004/0010484	A1	1/2004	Foulger et al.
2004/0012556	A1	1/2004	Yong et al.
2004/0013252	A1	1/2004	Craner
2004/0021676	A1	2/2004	Chen et al.
2004/0022369	A1	2/2004	Vitikainen et al.
2004/0022373	A1	2/2004	Suder et al.
2004/0023643	A1	2/2004	Vander Veen et al.
2004/0030554	A1	2/2004	Boxberger-Oberoi et al.
2004/0030556	A1	2/2004	Bennett
2004/0030559	A1	2/2004	Payne et al.
2004/0030996	A1	2/2004	Van Liempd et al.
2004/0036715	A1	2/2004	Warren
2004/0048627	A1	3/2004	Olvera-Hernandez
2004/0049388	A1	3/2004	Roth et al.
2004/0049391	A1	3/2004	Polanyi et al.
2004/0051729	A1	3/2004	Borden, IV
2004/0052338	A1	3/2004	Celi, Jr. et al.
2004/0054530	A1	3/2004	Davis et al.
2004/0054533	A1	3/2004	Bellegarda
2004/0054534	A1	3/2004	Junqua
2004/0054535	A1	3/2004	Mackie et al.
2004/0054541	A1	3/2004	Kryze et al.
2004/0054690	A1	3/2004	Hillerbrand et al.
2004/0055446	A1	3/2004	Robbin et al.
2004/0056899	A1	3/2004	Sinclair, II et al.
2004/0059577	A1	3/2004	Pickering
2004/0059790	A1	3/2004	Austin-Lane et al.
2004/0061717	A1	4/2004	Menon et al.
2004/0062367	A1	4/2004	Fellenstein et al.
2004/0064593	A1	4/2004	Sinclair et al.
2004/0069122	A1	4/2004	Wilson
2004/0070567	A1	4/2004	Longe et al.
2004/0070612	A1	4/2004	Sinclair et al.
2004/0073427	A1	4/2004	Moore
2004/0073428	A1	4/2004	Zlokarnik et al.
2004/0076086	A1	4/2004	Keller et al.
2004/0078382	A1	4/2004	Mercer et al.
2004/0085162	A1	5/2004	Agarwal et al.
2004/0085368	A1	5/2004	Johnson, Jr. et al.
2004/0086120	A1	5/2004	Akins, III et al.
2004/0093213	A1	5/2004	Conkie
2004/0093215	A1	5/2004	Gupta et al.
2004/0093328	A1	5/2004	Damle
2004/0094018	A1	5/2004	Ueshima et al.
2004/0096105	A1	5/2004	Holtsberg
2004/0098250	A1	5/2004	Kimchi et al.
2004/0100479	A1	5/2004	Nakano et al.
2004/0106432	A1	6/2004	Kanamori et al.
2004/0107169	A1	6/2004	Lowe
2004/0111266	A1	6/2004	Coorman et al.
2004/0111332	A1	6/2004	Baar et al.
2004/0114731	A1	6/2004	Gillett et al.
2004/0120476	A1	6/2004	Harrison et al.
2004/0122656	A1	6/2004	Abir
2004/0122664	A1	6/2004	Lorenzo et al.
2004/0122673	A1	6/2004	Park et al.
2004/0124583	A1	7/2004	Landis
2004/0125088	A1	7/2004	Zimmerman et al.
2004/0125922	A1	7/2004	Specht
2004/0127198	A1	7/2004	Roskind et al.

2004/0127241	A1	7/2004	Shostak
2004/0128137	A1	7/2004	Bush et al.
2004/0128614	A1	7/2004	Andrews et al.
2004/0133817	A1	7/2004	Choi
2004/0135701	A1	7/2004	Yasuda et al.
2004/0135774	A1	7/2004	La Monica
2004/0136510	A1	7/2004	Vander Veen
2004/0138869	A1	7/2004	Heinecke
2004/0145607	A1	7/2004	Alderson
2004/0153306	A1*	8/2004	Tanner G06F 17/273
			704/4
2004/0155869	A1	8/2004	Robinson et al.
2004/0160419	A1	8/2004	Padgitt
2004/0162741	A1	8/2004	Flaxer et al.
2004/0174399	A1	9/2004	Wu et al.
2004/0174434	A1	9/2004	Walker et al.
2004/0176958	A1	9/2004	Salmenkaita et al.
2004/0177319	A1	9/2004	Horn
2004/0178994	A1	9/2004	Kairls, Jr.
2004/0181392	A1	9/2004	Parikh et al.
2004/0183833	A1	9/2004	Chua
2004/0186713	A1	9/2004	Gomas et al.
2004/0186714	A1	9/2004	Baker
2004/0186777	A1	9/2004	Margiloff et al.
2004/0186857	A1	9/2004	Serlet et al.
2004/0193398	A1	9/2004	Chu et al.
2004/0193420	A1	9/2004	Kennewick et al.
2004/0193421	A1	9/2004	Blass
2004/0193426	A1	9/2004	Maddux et al.
2004/0196256	A1	10/2004	Wobbrock et al.
2004/0198436	A1	10/2004	Alden
2004/0199375	A1	10/2004	Ehsani et al.
2004/0199387	A1	10/2004	Wang et al.
2004/0199663	A1	10/2004	Horvitz et al.
2004/0203520	A1	10/2004	Schirtzinger et al.
2004/0205151	A1	10/2004	Sprigg et al.
2004/0205671	A1	10/2004	Sukehiro et al.
2004/0208302	A1	10/2004	Urban et al.
2004/0210442	A1	10/2004	Glynn et al.
2004/0210634	A1	10/2004	Ferrer et al.
2004/0213419	A1	10/2004	Varma et al.
2004/0215731	A1	10/2004	Tzann-en Szeto
2004/0216049	A1	10/2004	Lewis et al.
2004/0218451	A1	11/2004	Said et al.
2004/0220798	A1	11/2004	Chi et al.
2004/0221235	A1	11/2004	Marchisio et al.
2004/0223485	A1	11/2004	Arellano et al.
2004/0223599	A1	11/2004	Bear et al.
2004/0224638	A1	11/2004	Fadell et al.
2004/0225501	A1	11/2004	Cutaia et al.
2004/0225504	A1	11/2004	Junqua et al.
2004/0225650	A1	11/2004	Cooper et al.
2004/0225746	A1	11/2004	Niell et al.
2004/0230420	A1	11/2004	Kadambe et al.
2004/0230637	A1	11/2004	Lecoueche et al.
2004/0236778	A1	11/2004	Junqua et al.
2004/0242286	A1	12/2004	Benco et al.
2004/0243412	A1	12/2004	Gupta et al.
2004/0243419	A1	12/2004	Wang
2004/0249629	A1	12/2004	Webster
2004/0249637	A1	12/2004	Baker et al.
2004/0249667	A1	12/2004	Oon
2004/0252119	A1	12/2004	Hunleth et al.
2004/0252604	A1	12/2004	Johnson et al.
2004/0252966	A1	12/2004	Holloway et al.
2004/0254791	A1	12/2004	Coifman et al.
2004/0254792	A1	12/2004	Busayapongchai et al.
2004/0257432	A1	12/2004	Girish et al.
2004/0259536	Al	12/2004	Keskar et al.
2004/0260438	A1	12/2004	Chernetsky et al.
2004/0260718	A1	12/2004	Fedorov et al.
2004/0261023	A1	12/2004	Bier
2004/0262051	A1	12/2004	Carro
2004/0263636	A1	12/2004	Cutler et al.
2004/0267825	A1	12/2004	Novak et al.
2004/0268253	A1	12/2004	Demello et al.
2004/0268262	A1	12/2004	Gupta et al.
2005/0002507	A1	1/2005	Timmins et al.
2005/0010409	A1	1/2005	Hull et al.

References Cited

U.S. PATENT DOCUMENTS

2005/0012723	A1	1/2005	Pallakoff
2005/0015254	A1	1/2005	Beaman
2005/0015751	A1	1/2005	Grassens
2005/0015772	A1	1/2005	Saare et al.
2005/0021330	A1	1/2005	Mano et al.
2005/0022114	A1	1/2005	Shanahan et al.
2005/0024341	A1	2/2005	Gillespie et al.
2005/0024345	A1	2/2005	Eastty et al.
2005/0027385	A1	2/2005	Yueh
2005/0030175	A1	2/2005	Wolfe
2005/0031106	A1	2/2005	Henderson
2005/0033582	A1	2/2005	Gadd et al.
2005/0033771	A1	2/2005	Schmitter et al.
2005/0034164	A1	2/2005	Sano et al.
2005/0038657	A1	2/2005	Roth et al.
2005/0039141	A1	2/2005	Burke et al.
2005/0042591	A1	2/2005	Bloom et al.
2005/0043946	A1	2/2005	Ueyama et al.
2005/0043949	A1	2/2005	Roth et al.
2005/0044569	A1	2/2005	Marcus
2005/0045373	A1	3/2005	Born
2005/0049862	A1	3/2005	Choi et al.
2005/0049880	A1	3/2005	Roth et al.
2005/0055212	A1	3/2005	Nagao
2005/0055403	A1	3/2005	Brittan
2005/0058438	A1	3/2005	Hayashi
2005/0060155	A1	3/2005	Chu et al.
2005/0071165	A1	3/2005	Hofstader et al.
2005/0071332	A1	3/2005	Ortega et al.
2005/0071437	A1	3/2005	Bear et al.
2005/0074113	A1	4/2005	Mathew et al.
2005/0080613	A1	4/2005	Colledge et al.
2005/0080620	A1	4/2005	Rao et al.
2005/0080625	A1	4/2005	Bennett et al.
2005/0080632	A1	4/2005	Endo et al.
2005/0080780	A1	4/2005	Colledge et al.
2005/0086059	A1	4/2005	Bennett
2005/0086255	A1	4/2005	Schran et al.
2005/0086605	A1	4/2005	Ferrer et al.
2005/0091118	A1	4/2005	Fano
2005/0094475	A1	5/2005	Naoi
2005/0099398	A1	5/2005	Garside et al.
2005/0100214	A1	5/2005	Zhang et al.
2005/0102144	A1	5/2005	Rapoport
2005/0102614	A1	5/2005	Brockett et al.
2005/0102625	A1	5/2005	Lee et al.
2005/0105712	A1	5/2005	Williams et al.
2005/0108001	A1	5/2005	Aarskog
2005/0108017	A1	5/2005	Esser et al.
2005/0108074	A1	5/2005	Bloechl et al.
2005/0108338	A1	5/2005	Simske et al.
2005/0108344	A1	5/2005	Tafoya et al.
2005/0108642	A1	5/2005	Sinclair et al.
2005/0114124	A1	5/2005	Liu et al.
2005/0114140	A1	5/2005	Brackett et al.
2005/0114306	A1	5/2005	Shu et al.
2005/0114791	A1	5/2005	Bollenbacher et al.
2005/0119890	A1	6/2005	Hirose
2005/0119897	A1	6/2005	Bennett et al.
2005/0125216	A1	6/2005	Chitrapura et al.
2005/0125235	A1	6/2005	Lazay et al.
2005/0131951	A1	6/2005	Zhang et al.
2005/0132301	A1	6/2005	Ikeda
2005/0136949	A1	6/2005	Barnes, Jr.
2005/0138305	A1	6/2005	Zellner
2005/0140504	A1	6/2005	Marshall et al.
2005/0143972	A1	6/2005	Gopalakrishnan et al.
2005/0144003	A1	6/2005	Iso-Sipila
2005/0144070	A1	6/2005	Cheshire
2005/0144568	A1	6/2005	Gruen et al.
2005/0148356	A1	7/2005	Ferguson et al.
2005/0149214	A1	7/2005	Yoo et al.
2005/0149330	A1	7/2005	Katae
2005/0149332	A1	7/2005	Kuzunuki et al.
2005/0149510	A1	7/2005	Shafrir

2005/0152558	A1	7/2005	Van Tassel
2005/0152602	Al	7/2005	Chen et al.
2005/0154578	A1	7/2005	Tong et al.
2005/0154591	A1	7/2005	Lecoeuche
2005/0159939	A1	7/2005	Mohler et al.
2005/0159957	A1*	7/2005	Roth G10L 15/22
			704/276
2005/0162395	A1	7/2005	Unruh
2005/0165015	A1	7/2005	Ncube et al.
2005/0165607	A1	7/2005	Di Fabbrizio et al.
2005/0166153	A1	7/2005	Eytchison et al.
2005/0177445	A1	8/2005	Church
2005/0181770	A1	8/2005	Helferich
2005/0182616	A1	8/2005	Kotipalli
2005/0182627	A1	8/2005	Tanaka et al.
2005/0182628	A1	8/2005	Choi
2005/0182629	A1	8/2005	Coorman et al.
2005/0182630	A1	8/2005	Miro et al.
2005/0182765	A1	8/2005	Liddy
2005/0187770	A1	8/2005	Kompe et al.
2005/0187773	A1	8/2005	Filoche et al.
2005/0190970	A1	9/2005	Griffin
2005/0192801	A1	9/2005	Lewis et al.
2005/0192812	A1	9/2005	Buchholz et al.
2005/0195077	A1	9/2005	Mcculloch et al.
2005/0195429	A1	9/2005	Archbold
2005/0196733	A1	9/2005	Budra et al.
2005/0201572	Al	9/2005	Lindahl et al.
2005/0202854	A1	9/2005	Kortum et al.
2005/0203738	Al*	9/2005	Hwang G10L 15/063
			704/243
2005/0203747	A1	9/2005	Lecoeuche
2005/0203991	A1	9/2005	Kawamura et al.
2005/0209848	A1	9/2005	Ishii
2005/0210394	A1	9/2005	Crandall et al.
2005/0216331	A1	9/2005	Ahrens et al.
2005/0222843	A1	10/2005	Kahn et al.
2005/0222973	A1	10/2005	Kaiser
2005/0228665	A1	10/2005	Kobayashi et al.
2005/0245243	A1	11/2005	Zuniga
2005/0246350	A1	11/2005	Canaran
2005/0246365	A1	11/2005	Lowles et al.
2005/0246726	A1	11/2005	Labrou et al.
2005/0251572	A1	11/2005	McMahan et al.
2005/0261901	A1	11/2005	Davis et al.
2005/0262440	A1	11/2005	Stanciu et al.
2005/0267738	A1	12/2005	Wilkinson et al.
2005/0267757	A1	12/2005	Iso-Sipila et al.
2005/0271216	A1	12/2005	Lashkari
2005/0273337	A1	12/2005	Erell et al.
2005/0273626	A1	12/2005	Pearson et al.
2005/0278297	A1	12/2005	Nelson
2005/0278643	A1	12/2005	Ukai et al.
2005/0278647	A1	12/2005	Leavitt et al.
2005/0283364	A1	12/2005	Longe et al.
2005/0283726	A1	12/2005	Lunati
2005/0283729	A1	12/2005	Morris et al.
2005/0288934	A1	12/2005	Omi
2005/0288936	A1	12/2005	Busayapongchai et al.
2005/0289463	A1	12/2005	Wu et al.
2006/0001652	A1	1/2006	Chiu et al.
2006/0004570	A1	1/2006	Ju et al.
2006/0004744	A1	1/2006	Nevidomski et al.
2006/0007174	A1	1/2006	Shen
2006/0009973	A1	1/2006	Nguyen et al.
2006/0013414	A1	1/2006	Shih
2006/0015341	A1	1/2006	Baker
2006/0015819	A1	1/2006	Hawkins et al.
2006/0018446	A1	1/2006	Schmandt et al.
2006/0018492	A1	1/2006	Chiu et al.
2006/0020890	A1	1/2006	Kroll et al.
2006/0025999	A1	2/2006	Feng et al.
2006/0026233	A1	2/2006	Tenembaum et al.
2006/0026521	A1	2/2006	Hotelling et al.
2006/0026535	A1	2/2006	Hotelling et al.
2006/0026536	A1	2/2006	Hotelling et al.
2006/0033724	A1	2/2006	Chaudhri et al.
2006/0035632	A1	2/2006	Sorvari et al.
2006/0036946	Al	2/2006	Radtke et al.

References Cited

U.S. PATENT DOCUMENTS

2006/0041424	A1	2/2006	Todhunter et al.
2006/0041431	A1	2/2006	Maes
2006/0041590	A1	2/2006	King et al.
2006/0047632	A1	3/2006	Zhang
2006/0050865	A1	3/2006	Kortum et al.
2006/0052141	A1	3/2006	Suzuki
2006/0053007	A1	3/2006	Niemisto et al.
2006/0053365	A1	3/2006	Hollander et al.
2006/0053379	A1	3/2006	Henderson et al.
2006/0053387	A1	3/2006	Ording
2006/0058999	A1	3/2006	Barker et al.
2006/0059437	A1	3/2006	Conklin
2006/0060762	A1	3/2006	Chan et al.
2006/0061488	A1	3/2006	Dunton
2006/0067535	A1	3/2006	Culbert et al.
2006/0067536	A1	3/2006	Culbert et al.
2006/0069567	A1	3/2006	Tischer et al.
2006/0069664	A1	3/2006	Ling et al.
2006/0072248	A1	4/2006	Watanabe et al.
2006/0072716	A1	4/2006	Pham
2006/0074628	A1	4/2006	Elbaz et al.
2006/0074660	A1	4/2006	Waters et al.
2006/0074674	A1	4/2006	Zhang et al.
2006/0074750	A1	4/2006	Clark et al.
2006/0074898	A1	4/2006	Gavalda et al.
2006/0075429	A1	4/2006	Istvan et al.
2006/0077055	A1	4/2006	Basir
2006/0080098	A1	4/2006	Campbell
2006/0085187	A1	4/2006	Barquilla
2006/0085465	A1	4/2006	Nori et al.
2006/0085757	A1	4/2006	Andre et al.
2006/0093998	A1	5/2006	Vertegaal
2006/0095265	A1	5/2006	Chu et al.
2006/0095790	A1	5/2006	Nguyen et al.
2006/0095846	A1	5/2006	Nurmi
2006/0095848	A1	5/2006	Naik
2006/0097991	A1	5/2006	Hotelling et al.
2006/0100848	A1	5/2006	Cozzi et al.
2006/0100849	A1	5/2006	Chan
2006/0101354	A1	5/2006	Hashimoto et al.
2006/0103633	A1	5/2006	Gioeli
2006/0106592	A1	5/2006	Brockett et al.
2006/0106594	A1	5/2006	Brockett et al.
2006/0106595	A1	5/2006	Brockett et al.
2006/0111906	A1	5/2006	Cross et al.
2006/0111909	A1	5/2006	Maes et al.
2006/0116874	A1	6/2006	Samuelsson et al.
2006/0116877	A1	6/2006	Pickering et al.
2006/0117002	A1	6/2006	Swen
2006/0119582	A1	6/2006	Ng et al.
2006/0122834	A1	6/2006	Bennett
2006/0122836	A1	6/2006	Cross et al.
2006/0129379	A1	6/2006	Ramsey et al.
2006/0129929	A1	6/2006	Weber et al.
2006/0132812	A1	6/2006	Barnes et al.
2006/0135214	A1	6/2006	Zhang et al.
2006/0136213	A1	6/2006	Hirose et al.
2006/0136352	A1	6/2006	Brun et al.
2006/0141990	A1	6/2006	Zak et al.
2006/0142576	A1	6/2006	Meng et al.
2006/0143007	A1	6/2006	Koh et al.
2006/0143559	A1	6/2006	Spielberg et al.
2006/0143576	A1	6/2006	Gupta et al.
2006/0148520	A1	7/2006	Baker et al.
2006/0149557	A1	7/2006	Kaneko et al.
2006/0149558	A1	7/2006	Kahn et al.
2006/0150087	A1	7/2006	Cronenberger et al.
2006/0152496	A1	7/2006	Knaven
2006/0153040	A1	7/2006	Girish et al.
2006/0156252	A1	7/2006	Sheshagiri et al.
2006/0156307	A1	7/2006	Kunjithapatham et al
2006/0161870	A1	7/2006	Hotelling et al.
2006/0161871	A1	7/2006	Hotelling et al.
2006/0161872	A1	7/2006	Rytivaara et al.
2006/0165105	A1	7/2006	Shenfield et al.

References Cited

U.S. PATENT DOCUMENTS

2007/0025704	A1	2/2007	Tsukazaki et al.
2007/0026852	A1	2/2007	Logan et al.
2007/0027732	A1	2/2007	Hudgens
2007/0028009	A1	2/2007	Robbin et al.
2007/0032247	A1	2/2007	Shaffer et al.
2007/0033003	A1	2/2007	Morris
2007/0033026	A1	2/2007	Bartosik et al.
2007/0036117	A1	2/2007	Taube et al.
2007/0036286	A1	2/2007	Champlin et al.
2007/0036294	A1	2/2007	Chaudhuri et al.
2007/0038436	A1	2/2007	Cristo et al.
2007/0038609	A1	2/2007	Wu
2007/0040813	A1	2/2007	Kushler et al.
2007/0041361	A1	2/2007	Iso-Sipila
2007/0042812	A1	2/2007	Basir et al.
2007/0043568	A1	2/2007	Dhanakshirur et al.
2007/0043687	A1	2/2007	Bodart et al.
2007/0044038	A1	2/2007	Horentrup et al.
2007/0046641	A1	3/2007	Lim
2007/0047719	A1	3/2007	Dhawan et al.
2007/0050184	A1	3/2007	Drucker et al.
2007/0050191	A1	3/2007	Weider et al.
2007/0050393	A1	3/2007	Vogel et al.
2007/0050712	A1	3/2007	Hull et al.
2007/0052586	A1	3/2007	Horstemeyer
2007/0055493	A1	3/2007	Lee
2007/0055508	A1	3/2007	Zhao et al.
2007/0055514	A1	3/2007	Beattie et al.
2007/0055525	A1	3/2007	Kennewick et al.
2007/0055529	A1	3/2007	Kanevsky et al.
2007/0058832	A1	3/2007	Hug et al.
2007/0060107	A1	3/2007	Day
2007/0061487	A1	3/2007	Moore et al.
2007/0061712	A1	3/2007	Bodin et al.
2007/0061754	A1	3/2007	Ardhanari et al.
2007/0067173	A1	3/2007	Bellegarda
2007/0067272	A1	3/2007	Flynt et al.
2007/0073540	A1	3/2007	Hirakawa et al.
2007/0073541	A1	3/2007	Tian
2007/0073745	A1	3/2007	Scott et al.
2007/0075965	A1	4/2007	Huppi et al.
2007/0079027	A1	4/2007	Marriott et al.
2007/0080936	A1	4/2007	Tsuk et al.
2007/0083467	A1	4/2007	Lindahl et al.
2007/0083623	A1	4/2007	Nishimura et al.
2007/0088556	A1	4/2007	Andrew
2007/0089132	A1	4/2007	Qureshey et al.
2007/0089135	A1	4/2007	Qureshey et al.
2007/0093277	A1	4/2007	Cavacuiti et al.
2007/0094026	A1	4/2007	Ativanichayaphong et al.
2007/0098195	A1	5/2007	Holmes
2007/0100206	A1	5/2007	Lin et al.
2007/0100602	A1	5/2007	Kim
2007/0100619	A1	5/2007	Purho et al.
2007/0100635	A1	5/2007	Mahajan et al.
2007/0100709	A1	5/2007	Lee et al.
2007/0100790	A1	5/2007	Cheyer et al.
2007/0100883	A1	5/2007	Rose et al.
2007/0106491	A1	5/2007	Carter et al.
2007/0106512	A1	5/2007	Acero et al.
2007/0106513	A1	5/2007	Boillot et al.
2007/0106657	A1	5/2007	Brzeski et al.
2007/0106674	A1	5/2007	Agrawal et al.
2007/0112562	A1	5/2007	Vainio et al.
2007/0116195	A1	5/2007	Thompson et al.
2007/0118377	A1	5/2007	Badino et al.
2007/0118378	A1	5/2007	Skuratovsky
2007/0121846	A1	5/2007	Altberg et al.
2007/0124132	A1	5/2007	Takeuchi et al.
2007/0124149	A1	5/2007	Shen et al.
2007/0124676	A1	5/2007	Amundsen et al.
2007/0127888	A1	6/2007	Hayashi et al.
2007/0128777	A1	6/2007	Yin et al.
2007/0129059	A1	6/2007	Nadarajah et al.
2007/0130014	A1	6/2007	Altberg et al.

2007/0130128 A1 2007/0132738 Al 2007/0133771 A1 2007/0135187 A1 2007/0135949 A1 2007/0136064 A1 2007/0136778 A1 2007/0143163 A1 2007/0149252 Al 2007/0150842 A1 2007/0152978 A1 2007/0152980 A1 2007/0155346 A1 2007/0156410 A1 2007/0156627 Al 2007/0157089 Al 2007/0157268 A1 2007/0162274 A1 2007/0162296 Al 2007/0162414 A1 2007/0168922 A1 2007/0173233 Al 2007/0173267 A1 2007/0174188 A1 2007/0174350 A1 2007/0174396 A1 2007/0179776 A1 2007/0179778 A1 2007/0180383 A1 2007/0182595 A1 2007/0185551 A1 2007/0185754 A1 2007/0185831 A1 2007/0185917 A1 2007/0188901 A1 2007/0192026 A1 2007/0192027 Al 2007/0192105 Al 2007/0192179 A1 2007/0192293 A1 2007/0192403 A1 2007/0192744 A1 2007/0198267 A1 2007/0198269 A1 2007/0198273 A1 2007/0198566 A1 2007/0203955 A1 2007/0207785 A1 2007/0208555 Al 2007/0208569 Al 2007/0208579 A1 2007/0208726 A1 2007/0211071 A1 2007/0213099 A1 2007/0213857 A1 2007/0213984 Al 2007/0217693 A1 2007/0219645 A1 2007/0219777 Al 2007/0219801 Al 2007/0219803 A1 2007/0219983 Al 2007/0225980 A1 2007/0225984 A1 2007/0226652 A1 2007/0229323 A1 2007/0230729 A1 2007/0233484 A1 2007/0233490 Al 2007/0233497 A1 2007/0233692 A1 2007/0233725 A1 2007/0238488 A1 2007/0238489 A1 2007/0238520 A1 2007/0239429 A1 2007/0240043 A1 2007/0240044 A1 2007/0240045 A1

6/2007 Garg et al. 6/2007 Lowles et al. 6/2007 Stifelman et al 6/2007 Kreiner et al. 6/2007 Snover et al. 6/2007 Carroll $6 / 2007$ Birger et al. 6/2007 Weiss et al. 6/2007 Jobs et al. 6/2007 Chaudhri et al. $7 / 2007$ Kocienda et al. 7/2007 Kocienda et al. 7/2007 Mijatovic et al. $7 / 2007$ Stohr et al. $7 / 2007$ D'Alicandro 7/2007 Van Os et al. $7 / 2007$ Girish et al. $7 / 2007$ Ruiz et al. 7/2007 Altberg et al.
$7 / 2007$ Horowitz et al.
$7 / 2007$ Kaiser et al.
$7 / 2007$ Vander Veen et al.
$7 / 2007$ Klassen et al.
$7 / 2007$ Fish
$7 / 2007$ Pell et al.
7/2007 Kumar et al.
8/2007 Segond et al.
$8 / 2007$ Gong et al.
8/2007 Naik
8/2007 Ghasabian
$8 / 2007$ Meadows et al.
8/2007 Schmidt
8/2007 Churcher
8/2007 Prahlad et al.
8/2007 Heckerman et al.
8/2007 Lee et al
$8 / 2007$ Lee et al.
$8 / 2007$ Neeracher et al.
$8 / 2007$ Van et al.
8/2007 Swen
8/2007 Heine et al.
8/2007 Reponen
$8 / 2007$ Jones et al
8/2007 Braho et al.
8/2007 Hennecke
8/2007 Sustik
8/2007 Pomerantz
9/2007 Chatterjee et al.
9/2007 Blass et al.
9/2007 Subramanian et al.
9/2007 Peterson
9/2007 Krishnaprasad et al.
9/2007 Slotznick et al.
9/2007 Bast
9/2007 Bodin et al.
9/2007 Ativanichayaphong et al
9/2007 Kretzschmar, Jr.
9/2007 Thomas et al.
9/2007 Chu et al.
9/2007 Sundaram et al.
9/2007 Chiu et al.
9/2007 Fish
9/2007 Sumita
9/2007 Milstein et al.
9/2007 Kikuchi et al.
10/2007 Plachta et al.
10/2007 Naylor et al.
10/2007 Coelho et al.
10/2007 Yao
10/2007 Paek et al.
10/2007 Lisa et al.
10/2007 Michmerhuizen et al.
10/2007 Scott
10/2007 Scott
10/2007 Kacmarcik
10/2007 Johnson et al.
10/2007 Fux et al.
10/2007 Fux et al
10/2007 Fux et al.

References Cited

U.S. PATENT DOCUMENTS

2007/0241885	A1	10/2007	Clipsham et al.
2007/0244702	A1	10/2007	Kahn et al.
2007/0247441	A1	10/2007	Kim et al.
2007/0255435	A1	11/2007	Cohen et al.
2007/0255979	A1	11/2007	Deily et al.
2007/0257890	A1	11/2007	Hotelling et al.
2007/0258642	A1	11/2007	Thota
2007/0260460	A1	11/2007	Hyatt
2007/0260595	A1	11/2007	Beatty et al.
2007/0260822	A1	11/2007	Adams
2007/0261080	A1	11/2007	Saetti
2007/0265831	A1	11/2007	Dinur et al.
2007/0265850	A1	11/2007	Kennewick et al.
2007/0271104	A1	11/2007	McKay
2007/0271510	A1	11/2007	Grigoriu et al.
2007/0274468	A1	11/2007	Cai
2007/0276651	A1	11/2007	Bliss et al.
2007/0276714	A1	11/2007	Beringer
2007/0276810	A1	11/2007	Rosen
2007/0277088	A1	11/2007	Bodin et al
2007/0282595	A1	12/2007	Tunning et al.
2007/0285958	A1	12/2007	Platchta et al.
2007/0286363	A1	12/2007	Burg et al.
2007/0286399	A1	12/2007	Ramamoorthy et al.
2007/0288241	A1	12/2007	Cross et al.
2007/0288449	A1	12/2007	Datta et al.
2007/0291108	A1	12/2007	Huber et al.
2007/0294077	A1	12/2007	Narayanan et al.
2007/0294263	A1	12/2007	Punj et al.
2007/0299664	A1	12/2007	Peters et al
2007/0299831	A1	12/2007	Williams et al.
2007/0300140	A1	12/2007	Makela et al.
2008/0010355	A1	1/2008	Vieri et al.
2008/0012950	A1	1/2008	Lee et al.
2008/0013751	A1	1/2008	Hiselius
2008/0015863	A1	1/2008	Agapi et al.
2008/0015864	A1	1/2008	Ross et al.
2008/0016575	A1	1/2008	Vincent et al.
2008/0021708	A1	1/2008	Bennett et al.
2008/0022208	A1	1/2008	Morse
2008/0027726	A1	1/2008	Hansen et al.
2008/0031475	A1	2/2008	Goldstein
2008/0033719	A1	2/2008	Hall et al.
2008/0034032	A1	2/2008	Healey et al.
2008/0034044	A1	2/2008	Bhakta et al.
2008/0036743	A1	2/2008	Westerman et al.
2008/0040339	A1	2/2008	Zhou et al.
2008/0042970	A1	2/2008	Liang et al.
2008/0043936	A1	2/2008	Liebermann
2008/0043943	A1	2/2008	Sipher et al.
2008/0046239	A1	2/2008	Boo
2008/0046250	A1	2/2008	Agapi et al.
2008/0046422	A1	2/2008	Lee et al.
2008/0046820	A1	2/2008	Lee et al.
2008/0046948	A1	2/2008	Verosub
2008/0048908	A1	2/2008	Sato
2008/0052063	A1	2/2008	Bennett et al.
2008/0052073	A1	2/2008	Goto et al.
2008/0052077	A1	2/2008	Bennett et al.
2008/0052080	A1	2/2008	Narayanan et al.
2008/0052262	A1	2/2008	Kosinov et al.
2008/0055194	A1	3/2008	Baudino et al.
2008/0056459	A1	3/2008	Vallier et al.
2008/0056579	A1	3/2008	Guha
2008/0057922	A1	3/2008	Kokes et al.
2008/0059190	A1	3/2008	Chu et al.
2008/0059200	A1	3/2008	Puli
2008/0059876	A1	3/2008	Hantler et al.
2008/0062141	A1	3/2008	Chaudhri
2008/0065382	A1	3/2008	Gerl et al.
2008/0065387	A1	3/2008	Cross et al.
2008/0071529	A1	3/2008	Silverman et al.
2008/0071544	A1	3/2008	Beaufays et al.
2008/0075296	A1	3/2008	Lindahl et al.
2008/0076972	A1	3/2008	Dorogusker et al.

References Cited

U.S. PATENT DOCUMENTS

2008/0165144	A1	7/2008	Forstall et al.
2008/0165980	A1	7/2008	Pavlovic et al.
2008/0165994	A1	7/2008	Caren et al.
2008/0167013	A1	7/2008	Novick et al.
2008/0167858	A1	7/2008	Christie et al.
2008/0168366	A1	7/2008	Kocienda et al.
2008/0183473	A1	7/2008	Nagano et al.
2008/0189099	A1	8/2008	Friedman et al.
2008/0189106	A1	8/2008	Low et al.
2008/0189110	A1	8/2008	Freeman et al.
2008/0189114	A1	8/2008	Fail et al.
2008/0189606	A1	8/2008	Rybak
2008/0195312	A1	8/2008	Aaron et al.
2008/0195388	A1	8/2008	Bower et al.
2008/0195391	A1*	8/2008	Marple \qquad G10L 13/10 704/260
2008/0195601	A1	8/2008	Ntoulas et al.
2008/0195630	A1	8/2008	Exartier et al.
2008/0195940	A1	8/2008	Gail et al.
2008/0200142	A1	8/2008	Abdel-Kader et al.
2008/0201306	A1	8/2008	Cooper et al.
2008/0201375	A1	8/2008	Khedouri et al.
2008/0204379	A1	8/2008	Perez-Noguera
2008/0207176	A1	8/2008	Brackbill et al.
2008/0208585	A1	8/2008	Ativanichayaphong et al.
2008/0208587	A1	8/2008	Ben-David et al.
2008/0212796	A1	9/2008	Denda
2008/0219641	A1	9/2008	Sandrew et al.
2008/0221866	A1	9/2008	Katragadda et al.
2008/0221879	A1	9/2008	Cerra et al.
2008/0221880	A1	9/2008	Cerra et al.
2008/0221887	A1	9/2008	Rose et al.
2008/0221889	A1	9/2008	Cerra et al.
2008/0221903	A1	9/2008	Kanevsky et al.
2008/0222118	A1	9/2008	Scian et al.
2008/0228463	A1	9/2008	Mori et al.
2008/0228485	A1	9/2008	Owen
2008/0228490	A1	9/2008	Fischer et al.
2008/0228495	A1	9/2008	Cross et al.
2008/0228496	A1	9/2008	Yu et al.
2008/0228928	A1	9/2008	Donelli et al.
2008/0229185	A1	9/2008	Lynch
2008/0229218	A1	9/2008	Maeng
2008/0235017	A1	9/2008	Satomura et al.
2008/0235024	A1	9/2008	Goldberg et al.
2008/0235027	A1	9/2008	Cross
2008/0240569	A1	10/2008	Tonouchi
2008/0242280	A1	10/2008	Shapiro et al.
2008/0244390	A1	10/2008	Fux et al.
2008/0244446	A1	10/2008	Lefevre et al.
2008/0247519	A1	10/2008	Abella et al.
2008/0247529	A1	10/2008	Barton et al.
2008/0248797	A1	10/2008	Freeman et al.
2008/0249770	A1	10/2008	Kim et al.
2008/0249778	A1	10/2008	Barton et al.
2008/0253577	A1	10/2008	Eppolito
2008/0254425	A1	10/2008	Cohen
2008/0255837	A1	10/2008	Kahn et al.
2008/0255845	A1	10/2008	Bennett
2008/0256613	A1	10/2008	Grover
2008/0259022	A1	10/2008	Mansfield et al.
2008/0262838	A1	10/2008	Nurminen et al.
2008/0262846	A1	10/2008	Burns et al.
2008/0263139	A1	10/2008	Martin
2008/0270118	A1	10/2008	Kuo et al.
2008/0270138	A1	10/2008	Knight et al.
2008/0270139	A1	10/2008	Shi et al.
2008/0270140	A1	10/2008	Hertz et al.
2008/0270151	A1	10/2008	Mahoney et al.
2008/0277473	A1	11/2008	Kotlarsky et al.
2008/0281510	A1	11/2008	Shahine
2008/0292112	A1	11/2008	Valenzuela et al.
2008/0294418	A1	11/2008	Cleary et al.
2008/0294651	A1	11/2008	Masuyama et al.
2008/0294981	A1	11/2008	Balzano et al.

2008/0298563	A1	12/2008	Rondeau et al.
2008/0298766	A1	12/2008	Wen et al.
2008/0299523	A1	12/2008	Chai et al.
2008/0300871	A1	12/2008	Gilbert
2008/0300878	A1	12/2008	Bennett
2008/0306727	A1	12/2008	Thurmair et al.
2008/0312909	A1	12/2008	Hermansen et al.
2008/0313335	A1	12/2008	Jung et al.
2008/0316183	A1	12/2008	Westerman et al.
2008/0319753	A1	12/2008	Hancock
2008/0319763	A1	12/2008	Di Fabbrizio et al.
2009/0003115	A1	1/2009	Lindahl et al.
2009/0005012	A1	1/2009	Van Heugten
2009/0005891	A1	1/2009	Batson et al.
2009/0006097	A1	1/2009	Etezadi et al.
2009/0006099	A1	1/2009	Sharpe et al.
2009/0006100	A1	1/2009	Badger et al.
2009/0006343	A1	1/2009	Platt et al.
2009/0006345	A1	1/2009	Platt et al.
2009/0006488	A1	1/2009	Lindahl et al.
2009/0006671	A1	1/2009	Batson et al.
2009/0007001	A1	1/2009	Morin et al.
2009/0011709	A1	1/2009	Akasaka et al.
2009/0012748	A1	1/2009	Beish et al.
2009/0012775	A1	1/2009	El Hady et al.
2009/0018828	A1	1/2009	Nakadai et al.
2009/0018834	A1	1/2009	Cooper et al.
2009/0018835	A1	1/2009	Cooper et al.
2009/0018839	A1	1/2009	Cooper et al.
2009/0018840	A1	1/2009	Lutz et al.
2009/0022329	A1	1/2009	Mahowald
2009/0028435	A1	1/2009	Wu et al.
2009/0030800	A1	1/2009	Grois
2009/0030978	A1	1/2009	Johnson et al.
2009/0043580	A1	2/2009	Mozer et al.
2009/0043583	A1	2/2009	Agapi et al.
2009/0043763	A1	2/2009	Peng
2009/0048821	A1	2/2009	Yam et al.
2009/0048845	A1	2/2009	Burckart et al.
2009/0049067	A1	2/2009	Murray
2009/0055179	A1	2/2009	Cho et al.
2009/0055186	A1	2/2009	Lance et al.
2009/0058823	A1	3/2009	Kocienda
2009/0058860	A1	3/2009	Fong et al.
2009/0060472	A1	3/2009	Bull et al.
2009/0063974	Al	3/2009	Bull et al.
2009/0064031	A1	3/2009	Bull et al.
2009/0070097	A1	3/2009	Wu et al.
2009/0070102	A1	3/2009	Maegawa
2009/0070109	Al	3/2009	Didcock et al.
2009/0070114	A1	3/2009	Staszak
2009/0074214	A1	3/2009	Bradford et al.
2009/0076792	A1	3/2009	Lawson-Tancred
2009/0076796	A1	3/2009	Daraselia
2009/0076819	A1*	3/2009	Wouters G10L 13/07
			704/260
2009/0076821	A1*	3/2009	Brenner G06F 17/30053
			704/260
2009/0076825	A1	3/2009	Bradford et al.
2009/0077165	A1	3/2009	Rhodes et al.
2009/0083034	A1	3/2009	Hernandez et al.
2009/0083035	A1	3/2009	Huang et al.
2009/0083036	A1	3/2009	Zhao et al.
2009/0083037	Al	3/2009	Gleason et al.
2009/0083047	A1	3/2009	Lindahl et al.
2009/0089058	A1	4/2009	Bellegarda
2009/0092239	Al	4/2009	Macwan et al.
2009/0092260	A1	4/2009	Powers
2009/0092261	Al	4/2009	Bard
2009/0092262	Al	4/2009	Costa et al.
2009/0094029	A1	4/2009	Koch et al.
2009/0094033	Al	4/2009	Mozer et al.
2009/0097634	A1	4/2009	Nambiar et al.
2009/0097637	A1	4/2009	Boscher et al.
2009/0100049	A1	4/2009	Cao
2009/0100454	Al	4/2009	Weber
2009/0104898	A1	4/2009	Harris
2009/0106026	A1	4/2009	Ferrieux
2009/0106376	Al	4/2009	Tom et al.

References Cited

U.S. PATENT DOCUMENTS

2009/0106397	A1	4/2009	O'Keefe
2009/0112572	A1	4/2009	Thorn
2009/0112592	A1	4/2009	Candelore et al.
2009/0112677	A1	4/2009	Rhett
2009/0112892	A1	4/2009	Cardie et al.
2009/0119587	A1	5/2009	Allen et al.
2009/0123021	A1	5/2009	Jung et al.
2009/0123071	A1	5/2009	Iwasaki
2009/0125477	A1	5/2009	Lu et al.
2009/0128505	A1	5/2009	Partridge et al.
2009/0132253	A1	5/2009	Bellegarda
2009/0132255	A1	5/2009	Lu
2009/0137286	A1	5/2009	Luke et al.
2009/0138736	A1	5/2009	Chin
2009/0138828	A1	5/2009	Schultz et al.
2009/0144049	A1	6/2009	Haddad et al.
2009/0144428	A1	6/2009	Bowater et al.
2009/0144609	A1	6/2009	Liang et al.
2009/0146848	A1	6/2009	Ghassabian
2009/0150147	A1	6/2009	Jacoby et al.
2009/0150156	A1	6/2009	Kennewick et al.
2009/0152349	A1	6/2009	Bonev et al.
2009/0153288	A1	6/2009	Hope et al.
2009/0154669	A1	6/2009	Wood et al.
2009/0157382	A1	6/2009	Bar
2009/0157384	A1	6/2009	Toutanova et al.
2009/0157401	A1	6/2009	Bennett
2009/0158423	A1	6/2009	Orlassino et al.
2009/0160803	A1	6/2009	Hashimoto
2009/0164301	A1	6/2009	O'Sullivan et al.
2009/0164441	A1	6/2009	Cheyer
2009/0164655	A1	6/2009	Pettersson et al.
2009/0164937	A1	6/2009	Alviar et al.
2009/0167508	A1	7/2009	Fadell et al.
2009/0167509	A1	7/2009	Fadell et al.
2009/0171578	A1	7/2009	Kim et al.
2009/0171664	A1	7/2009	Kennewick et al.
2009/0172108	A1	7/2009	Singh
2009/0172542	A1	7/2009	Girish et al.
2009/0174667	A1	7/2009	Kocienda et al.
2009/0174677	A1	7/2009	Gehani et al.
2009/0177300	A1	7/2009	Lee
2009/0177461	A1	7/2009	Ehsani et al.
2009/0182445	A1	7/2009	Girish et al.
2009/0187402	A1	7/2009	Scholl
2009/0187577	A1	7/2009	Reznik et al.
2009/0191895	A1	7/2009	Singh et al.
2009/0192782	A1	7/2009	Drewes
2009/0198497	A1	8/2009	Kwon
2009/0204409	A1	8/2009	Mozer et al.
2009/0204596	A1	8/2009	Brun et al.
2009/0204620	A1	8/2009	Thione et al.
2009/0210230	A1	8/2009	Schwarz et al.
2009/0210232	A1	8/2009	Sanchez et al.
2009/0213134	A1	8/2009	Stephanick et al.
2009/0215503	A1	8/2009	Zhang et al.
2009/0216540	A1	8/2009	Tessel et al.
2009/0216704	A1	8/2009	Zheng et al.
2009/0221274	A1	9/2009	Venkatakrishnan et al.
2009/0222270	A2	9/2009	Likens et al.
2009/0222488	A1	9/2009	Boerries et al.
2009/0228126	A1	9/2009	Spielberg et al.
2009/0228273	A1	9/2009	Wang et al.
2009/0228281	A1	9/2009	Singleton et al.
2009/0228792	A1	9/2009	Van Os et al.
2009/0228842	A1	9/2009	Westerman et al.
2009/0234638	A1	9/2009	Ranjan et al.
2009/0234655	A1	9/2009	Kwon
2009/0239202	A1	9/2009	Stone
2009/0239552	A1	9/2009	Churchill et al.
2009/0240485	A1	9/2009	Dalal et al.
2009/0241054	A1	9/2009	Hendricks
2009/0241760	A1	10/2009	Georges
2009/0247237	A1	10/2009	Mittleman et al.
2009/0248182	A1	10/2009	Logan et al.

2009/0248395	A1*	10/2009	Alewine G10L 13/08
			704/7
2009/0248420	A1	10/2009	Basir et al.
2009/0249198	A1	10/2009	Davis et al.
2009/0252350	A1	10/2009	Seguin
2009/0253457	A1	10/2009	Seguin
2009/0253463	Al	10/2009	Shin et al.
2009/0254339	A1	10/2009	Seguin
2009/0254345	A1	10/2009	Fleizach et al.
2009/0259969	A1	10/2009	Pallakoff
2009/0265368	Al	10/2009	Crider et al.
2009/0271109	A1	10/2009	Lee et al.
2009/0271175	A1	10/2009	Bodin et al.
2009/0271176	A1	10/2009	Bodin et al.
2009/0271178	A1	10/2009	Bodin et al.
2009/0274315	A1	11/2009	Carnes et al.
2009/0281789	A1	11/2009	Waibel et al.
2009/0284482	A1	11/2009	Chin
2009/0286514	A1	11/2009	Lichorowic et al.
2009/0287583	A1	11/2009	Holmes
2009/0290718	Al	11/2009	Kahn et al.
2009/0292987	A1	11/2009	Sorenson
2009/0296552	A1	12/2009	Hicks et al.
2009/0298474	A1	12/2009	George
2009/0299745	A1	12/2009	Kennewick et al.
2009/0299849	A1	12/2009	Cao et al.
2009/0300391	A1	12/2009	Jessup et al.
2009/0300488	A1	12/2009	Salamon et al.
2009/0304198	A1	12/2009	Herre et al.
2009/0306967	A1	12/2009	Nicolov et al.
2009/0306969	Al	12/2009	Goud et al.
2009/0306979	A1	12/2009	Jaiswal et al.
2009/0306980	A1	12/2009	Shin
2009/0306981	A1	12/2009	Cromack et al.
2009/0306985	Al	12/2009	Roberts et al.
2009/0306988	A1	12/2009	Chen et al.
2009/0306989	A1	12/2009	Kaji
2009/0307162	A1	12/2009	Bui et al.
2009/0307201	A1	12/2009	Dunning et al.
2009/0307584	A1	12/2009	Davidson et al.
2009/0313014	A1	12/2009	Shin et al.
2009/0313023	A1	12/2009	Jones
2009/0313026	A1	12/2009	Coffman et al.
2009/0313544	A1	12/2009	Wood et al.
2009/0313564	Al	12/2009	Rottler et al.
2009/0316943	A1	12/2009	Frigola Munoz et al.
2009/0318119	A1	12/2009	Basir et al.
2009/0318198	A1	12/2009	Carroll
2009/0319266	A1	12/2009	Brown et al.
2009/0326936	A1	12/2009	Nagashima
2009/0326938	A1	12/2009	Marila et al.
2009/0326949	A1	12/2009	Douthitt et al.
2009/0327977	A1	12/2009	Bachfischer et al.
2010/0004931	A1	1/2010	Ma et al.
2010/0005081	Al	1/2010	Bennett
2010/0013760	A1	1/2010	Hirai et al.
2010/0013796	A1	1/2010	Abileah et al.
2010/0017212	Al	1/2010	Attwater et al.
2010/0019834	A1	1/2010	Zerbe et al.
2010/0023318	A1	1/2010	Lemoine
2010/0023320	A1	1/2010	Di Cristo et al.
2010/0026526	Al	2/2010	Yokota
2010/0030928	A1	2/2010	Conroy et al.
2010/0031143	A1	2/2010	Rao et al.
2010/0036655	A1	2/2010	Cecil et al.
2010/0036660	A1	2/2010	Bennett
2010/0037183	A1	2/2010	Miyashita et al.
2010/0042400	A1	2/2010	Block et al.
2010/0046842	A1	2/2010	Conwell et al.
2010/0049514	A1	2/2010	Kennewick et al.
2010/0050064	A1	2/2010	Liu et al.
2010/0054512	A1	3/2010	Solum
2010/0057457	A1	3/2010	Ogata et al.
2010/0057461	A1*	3/2010	Neubacher G10L 15/063
			704/243
2010/0057643	A1	3/2010	Yang
2010/0060646	A1	3/2010	Unsal et al.
2010/0063804	A1	3/2010	Sato et al.
2010/0063825	A1	3/2010	Williams et al.

References Cited

U.S. PATENT DOCUMENTS

2010/0063961	A1	3/2010	Guiheneuf et al.
2010/0064113	A1	3/2010	Lindahl et al.
2010/0064218	A1	3/2010	Bull et al.
2010/0067723	A1	3/2010	Bergmann et al.
2010/0067867	A1	3/2010	Lin et al.
2010/0070281	A1	3/2010	Conkie et al.
2010/0070899	A1	3/2010	Hunt et al.
2010/0076760	A1	3/2010	Kraenzel et al.
2010/0077350	A1	3/2010	Lim et al.
2010/0079501	A1	4/2010	Ikeda et al.
2010/0080398	A1	4/2010	Waldmann
2010/0080470	A1	4/2010	Deluca et al.
2010/0081456	A1	4/2010	Singh et al.
2010/0081487	A1	4/2010	Chen et al.
2010/0082327	A1	4/2010	Rogers et al.
2010/0082328	A1	4/2010	Rogers et al.
2010/0082329	A1	4/2010	Silverman et al.
2010/0082346	A1	4/2010	Rogers et al.
2010/0082347	A1	4/2010	Rogers et al.
2010/0082348	A1	4/2010	Silverman et al.
2010/0082349	A1	4/2010	Bellegarda et al.
2010/0082970	A1	4/2010	Lindahl et al.
2010/0086152	A1	4/2010	Rank et al.
2010/0086153	A1	4/2010	Hagen et al.
2010/0086156	A1	4/2010	Rank et al.
2010/0088020	A1	4/2010	Sano et al.
2010/0088093	A1	4/2010	Lee et al.
2010/0088100	A1	4/2010	Lindahl
2010/0098231	A1	4/2010	Wohlert et al.
2010/0100212	A1	4/2010	Lindahl et al.
2010/0100384	A1	4/2010	Ju et al.
2010/0103776	A1	4/2010	Chan
2010/0106498	A1	4/2010	Morrison et al.
2010/0106500	A1	4/2010	McKee et al.
2010/0106503	A1	4/2010	Farrell et al.
2010/0114856	A1	5/2010	Kuboyama
2010/0121637	A1	5/2010	Roy et al.
2010/0125456	A1	5/2010	Weng et al.
2010/0125458	A1	5/2010	Franco et al.
2010/0125460	A1	5/2010	Mellott et al.
2010/0125811	A1	5/2010	Moore et al.
2010/0131273	A1	5/2010	Aley-Raz et al.
2010/0131498	A1	5/2010	Linthicum et al.
2010/0131899	A1	5/2010	Hubert
2010/0138215	A1	6/2010	Williams
2010/0138224	A1	6/2010	Bedingfield, Sr.
2010/0138416	A1	6/2010	Bellotti
2010/0138680	A1	6/2010	Brisebois et al.
2010/0138759	A1	6/2010	Roy
2010/0142740	A1	6/2010	Roerup
2010/0145694	A1	6/2010	Ju et al.
2010/0145700	A1	6/2010	Kennewick et al.
2010/0146442	A1	6/2010	Nagasaka et al.
2010/0150321	A1	6/2010	Harris et al.
2010/0153115	A1	6/2010	Klee et al.
2010/0161313	A1	6/2010	Karttunen
2010/0161554	A1	6/2010	Datuashvili et al.
2010/0164897	A1	7/2010	Morin et al.
2010/0169075	A1	7/2010	Raffa et al.
2010/0169097	A1	7/2010	Nachman et al.
2010/0169098	A1	7/2010	Patch
2010/0171713	A1	7/2010	Kwok et al.
2010/0174544	A1	7/2010	Heifets
2010/0179932	A1	7/2010	Yoon et al.
2010/0179991	A1	7/2010	Lorch et al.
2010/0185448	A1	7/2010	Meisel
2010/0185949	A1	7/2010	Jaeger
2010/0197359	A1	8/2010	Harris
2010/0199215	A1	8/2010	Seymour et al.
2010/0204986	A1	8/2010	Kennewick et al.
2010/0211199	A1	8/2010	Naik et al.
2010/0216509	A1	8/2010	Riemer et al.
2010/0217604	A1	8/2010	Baldwin et al.
2010/0222033	A1	9/2010	Scott et al.
2010/0222098	A1	9/2010	Garg

2010/0223055	A1	9/2010	McLean
2010/0223056	Al	9/2010	Kadirkamanathan et al
2010/0223131	A1	9/2010	Scott et al.
2010/0228540	A1	9/2010	Bennett
2010/0228691	A1	9/2010	Yang et al.
2010/0229082	A1	9/2010	Karmarkar et al.
2010/0231474	A1	9/2010	Yamagajo et al.
2010/0235167	A1	9/2010	Bourdon
2010/0235341	A1	9/2010	Bennett
2010/0235729	A1	9/2010	Kocienda et al.
2010/0235770	A1	9/2010	Ording et al.
2010/0241418	A1	9/2010	Maeda et al.
2010/0250542	A1	9/2010	Fujimaki
2010/0250599	A1	9/2010	Schmidt et al.
2010/0255858	A1	10/2010	Juhasz
2010/0257160	Al	10/2010	Cao
2010/0257478	A1	10/2010	Longe et al.
2010/0262599	A1	10/2010	Nitz
2010/0268539	A1	10/2010	Xu et al.
2010/0274753	A1	10/2010	Liberty et al.
2010/0277579	A1	11/2010	Cho et al.
2010/0278320	A1	11/2010	Arsenault et al.
2010/0278453	A1	11/2010	King
2010/0280983	A1	11/2010	Cho et al.
2010/0281034	A1	11/2010	Petrou et al.
2010/0286985	A1	11/2010	Kennewick et al.
2010/0287514	A1	11/2010	Cragun et al.
2010/0293460	A1	11/2010	Budelli
2010/0299133	A1	11/2010	Kopparapu et al.
2010/0299138	A1	11/2010	Kim
2010/0299142	A1	11/2010	Freeman et al.
2010/0302056	A1	12/2010	Dutton et al.
2010/0304705	A1	12/2010	Hursey et al.
2010/0305807	A1	12/2010	Basir et al.
2010/0305947	A1	12/2010	Schwarz et al.
2010/0312547	A1	12/2010	Van Os et al.
2010/0312566	A1	12/2010	Odinak et al.
2010/0318576	A1	12/2010	Kim
2010/0322438	A1	12/2010	Siotis
2010/0324709	A1	12/2010	Starmen
2010/0324895	A1	12/2010	Kurzweil et al.
2010/0324896	A1	12/2010	Attwater et al.
2010/0324905	A1	12/2010	Kurzweil et al.
2010/0325573	A1	12/2010	Estrada et al.
2010/0325588	A1	12/2010	Reddy et al.
2010/0332224	Al	12/2010	Mäkelä et al.
2010/0332235	A1	12/2010	David
2010/0332280	A1	12/2010	Bradley et al.
2010/0332348	A1	12/2010	Cao
2010/0332428	Al	12/2010	Mchenry et al.
2010/0332976	A1	12/2010	Fux et al.
2010/0333030	A1	12/2010	Johns
2011/0002487	A1	1/2011	Panther et al.
2011/0010178	A1	1/2011	Lee et al.
2011/0010644	A1	1/2011	Merrill et al.
2011/0016150	A1	1/2011	Engstrom et al.
2011/0018695	A1	1/2011	Bells et al.
2011/0021213	A1	1/2011	Carr
2011/0022292	A1	1/2011	Shen et al.
2011/0022394	A1	1/2011	Wide et al.
2011/0022472	A1	1/2011	Zon et al.
2011/0022952	A1	1/2011	Wu et al.
2011/0029616	A1	2/2011	Wang et al.
2011/0033064	A1	2/2011	Johnson et al.
2011/0035144	A1	2/2011	Okamoto et al.
2011/0035434	A1	2/2011	Lockwood
2011/0038489	Al	2/2011	Visser et al.
2011/0047072	A1	2/2011	Ciurea
2011/0047161	A1	2/2011	Myaeng et al.
2011/0050591	A1	3/2011	Kim et al.
2011/0054647	A1	3/2011	Chipchase
2011/0054894	A1	3/2011	Phillips et al.
2011/0054901	A1	3/2011	Qin et al.
2011/0055256	A1	3/2011	Phillips et al.
2011/0060584	A1	3/2011	Ferrucci et al.
2011/0060587	A1	3/2011	Phillips et al.
2011/0060589	A1	3/2011	Weinberg et al.
2011/0060807	A1	3/2011	Martin et al.
2011/0065456	Al	3/2011	Brennan et al.

References Cited

U.S. PATENT DOCUMENTS

2011/0066468	A1	3/2011	Huang et al.
2011/0072492	A1	3/2011	Mohler et al.
2011/0076994	A1	3/2011	Kim et al.
2011/0082688	A1	4/2011	Kim et al.
2011/0083079	A1	4/2011	Farrell et al.
2011/0087491	A1	4/2011	Wittenstein et al.
2011/0090078	A1	4/2011	Kim et al.
2011/0093261	A1	4/2011	Angott
2011/0093265	A1	4/2011	Stent et al.
2011/0093271	A1	4/2011	Bernard et al.
2011/0099000	A1	4/2011	Rai et al.
2011/0103682	A1	5/2011	Chidlovskii et al.
2011/0106736	A1	5/2011	Aharonson et al.
2011/0110502	A1	5/2011	Daye et al.
2011/0112827	A1	5/2011	Kennewick et al.
2011/0112837	A1	5/2011	Kurki-Suonio et al.
2011/0112921	A1	5/2011	Kennewick et al.
2011/0116610	A1	5/2011	Shaw et al.
2011/0119049	A1	5/2011	Ylonen
2011/0119051	A1	5/2011	Li et al.
2011/0119715	A1	5/2011	Chang et al.
2011/0125498	A1	5/2011	Pickering et al.
2011/0125540	A1	5/2011	Jang et al.
2011/0130958	A1	6/2011	Stahl et al.
2011/0131036	A1	6/2011	DiCristo et al.
2011/0131038	A1	6/2011	Oyaizu et al.
2011/0131045	A1	6/2011	Cristo et al.
2011/0141141	A1	6/2011	Kankainen
2011/0143811	A1	6/2011	Rodriguez
2011/0144857	A1	6/2011	Wingrove et al.
2011/0144901	A1	6/2011	Wang
2011/0144973	A1	6/2011	Bocchieri et al.
2011/0144999	A1	6/2011	Jang et al.
2011/0145718	A1	6/2011	Ketola et al.
2011/0151830	A1	6/2011	Blanda et al.
2011/0153209	A1	6/2011	Geelen
2011/0153330	A1	6/2011	Yazdani et al.
2011/0153373	A1	6/2011	Dantzig et al.
2011/0157029	A1	6/2011	Tseng
2011/0161076	A1	6/2011	Davis et al.
2011/0161079	A1	6/2011	Gruhn et al.
2011/0161309	A1	6/2011	Lung et al.
2011/0161852	A1	6/2011	Vainio et al.
2011/0167350	A1	7/2011	Hoellwarth
2011/0175810	A1	7/2011	Markovic et al.
2011/0179002	A1	7/2011	Dumitru et al.
2011/0179372	A1	7/2011	Moore et al.
2011/0183650	A1	7/2011	Mckee et al.
2011/0184721	A1	7/2011	Subramanian et al.
2011/0184730	A1	7/2011	LeBeau et al.
2011/0191271	A1	8/2011	Baker et al.
2011/0191344	A1	8/2011	Jin et al.
2011/0195758	A1	8/2011	Damale et al.
2011/0201385	A1	8/2011	Higginbotham et al.
2011/0201387	A1	8/2011	Paek et al.
2011/0202526	A1	8/2011	Lee et al.
2011/0205149	A1	8/2011	Tom et al.
2011/0208511	A1	8/2011	Sikstrom et al.
2011/0209088	A1	8/2011	Hinckley et al.
2011/0212717	A1	9/2011	Rhoads et al.
2011/0218806	Al^{*}	9/2011	Alewine G10L 13/08
			704/251
2011/0218855	A1	9/2011	Cao et al.
2011/0219018	A1	9/2011	Bailey et al.
2011/0224972	A1	9/2011	Millett et al.
2011/0228913	A1	9/2011	Cochinwala et al.
2011/0231182	A1	9/2011	Weider et al.
2011/0231184	A1	9/2011	Kerr
2011/0231188	A1	9/2011	Kennewick et al.
2011/0231474	A1	9/2011	Locker et al.
2011/0238407	A1	9/2011	Kent
2011/0238408	A1	9/2011	Larcheveque et al.
2011/0238676	A1	9/2011	Liu et al.
2011/0242007	A1	10/2011	Gray et al.
2011/0246471	A1	10/2011	Rakib et al.

[^0]| 2011/0249144 | A1 | 10/2011 | Chang |
| :---: | :---: | :---: | :---: |
| 2011/0250570 | A1 | 10/2011 | Mack et al. |
| 2011/0258188 | A1 | 10/2011 | Abdalmageed et al. |
| 2011/0260861 | A1 | 10/2011 | Singh et al. |
| 2011/0264643 | A1 | 10/2011 | Cao |
| 2011/0274303 | A1 | 11/2011 | Filson et al. |
| 2011/0276598 | A1 | 11/2011 | Kozempel |
| 2011/0279368 | A1 | 11/2011 | Klein et al. |
| 2011/0282888 | A1 | 11/2011 | Koperski et al. |
| 2011/0288861 | A1 | 11/2011 | Kurzweil et al. |
| 2011/0298585 | A1 | 12/2011 | Barry |
| 2011/0302162 | A1 | 12/2011 | Xiao et al. |
| 2011/0306426 | A1 | 12/2011 | Novak et al. |
| 2011/0307241 | A1 | 12/2011 | Waibel et al. |
| 2011/0307491 | A1 | 12/2011 | Fisk et al. |
| 2011/0307810 | A1 | 12/2011 | Hilerio et al. |
| 2011/0313775 | A1 | 12/2011 | Laligand et al. |
| 2011/0314032 | A1 | 12/2011 | Bennett et al. |
| 2011/0314404 | A1 | 12/2011 | Kotler et al. |
| 2012/0002820 | A1 | 1/2012 | Leichter |
| 2012/0008754 | A1 | 1/2012 | Mukherjee et al. |
| 2012/0011138 | A1 | 1/2012 | Dunning et al. |
| 2012/0013609 | A1 | 1/2012 | Reponen et al. |
| 2012/0015629 | A1 | 1/2012 | Olsen et al. |
| 2012/0016678 | A1 | 1/2012 | Gruber et al. |
| 2012/0019400 | A1 | 1/2012 | Patel et al. |
| 2012/0020490 | A1 | 1/2012 | Leichter |
| 2012/0022787 | A1 | 1/2012 | LeBeau et al. |
| 2012/0022857 | A1 | 1/2012 | Baldwin et al. |
| 2012/0022860 | A1 | 1/2012 | Lloyd et al |
| 2012/0022868 | A1 | 1/2012 | LeBeau et al. |
| 2012/0022869 | A1 | 1/2012 | Lloyd et al. |
| 2012/0022870 | Al | 1/2012 | Kristjansson et al. |
| 2012/0022872 | A1 | 1/2012 | Gruber et al. |
| 2012/0022874 | A1 | 1/2012 | Lloyd et al. |
| 2012/0022876 | A1 | 1/2012 | LeBeau et al. |
| 2012/0023088 | A1 | 1/2012 | Cheng et al. |
| 2012/0034904 | A1 | 2/2012 | LeBeau et al. |
| 2012/0035907 | A1 | 2/2012 | Lebeau et al. |
| 2012/0035908 | A1 | 2/2012 | Lebeau et al. |
| 2012/0035924 | A1 | 2/2012 | Jitkoff et al. |
| 2012/0035925 | A1 | 2/2012 | Friend et al. |
| 2012/0035926 | A1* | 2/2012 | Ambler G10L 15/26 |
| | | | 704/235 |
| 2012/0035931 | A1 | 2/2012 | LeBeau et al. |
| 2012/0035932 | A1 | 2/2012 | Jitkoff et al. |
| 2012/0036556 | A1 | 2/2012 | LeBeau et al. |
| 2012/0042343 | A1 | 2/2012 | Laligand et al. |
| 2012/0053815 | A1 | 3/2012 | Montanari et al. |
| 2012/0053945 | A1 | 3/2012 | Gupta et al. |
| 2012/0056815 | A1 | 3/2012 | Mehra |
| 2012/0066581 | A1 | 3/2012 | Spalink et al. |
| 2012/0078627 | A1 | 3/2012 | Wagner |
| 2012/0082317 | A1 | 4/2012 | Pance et al. |
| 2012/0084086 | A1 | 4/2012 | Gilbert et al. |
| 2012/0084634 | A1 | 4/2012 | Wong et al. |
| 2012/0108221 | A1 | 5/2012 | Thomas et al. |
| 2012/0116770 | A1 | 5/2012 | Chen et al. |
| 2012/0124126 | A1 | 5/2012 | Alcazar et al. |
| 2012/0128322 | A1 | 5/2012 | Shaffer et al. |
| 2012/0136572 | A1 | 5/2012 | Norton |
| 2012/0136985 | A1 | 5/2012 | Popescu et al. |
| 2012/0137367 | A1 | 5/2012 | Dupont et al. |
| 2012/0149394 | A1 | 6/2012 | Singh et al. |
| 2012/0150580 | A1 | 6/2012 | Norton |
| 2012/0158293 | A1 | 6/2012 | Burnham |
| 2012/0158422 | A1 | $6 / 2012$ | Burnham et al. |
| 2012/0159380 | A1 | 6/2012 | Kocienda et al. |
| 2012/0163710 | A1 | 6/2012 | Skaff et al. |
| 2012/0173464 | A1 | 7/2012 | Tur et al. |
| 2012/0174121 | A1 | 7/2012 | Treat et al. |
| 2012/0185237 | A1 | 7/2012 | Gajic et al. |
| 2012/0192096 | A1 | 7/2012 | Bowman et al. |
| 2012/0197743 | A1 | 8/2012 | Grigg et al. |
| 2012/0197995 | A1 | 8/2012 | Caruso |
| 2012/0197998 | Al | 8/2012 | Kessel et al. |
| 2012/0201362 | Al | 8/2012 | Crossan et al. |
| 2012/0209853 | Al | 8/2012 | Desai et al. |
| 2012/0209874 | Al | 8/2012 | Wong et al. |

References Cited

U.S. PATENT DOCUMENTS

2012/02	A1	8/2012	Raya et al.
2012/0214517	A1	8/2012	Singh et al.
2012/0221339	A1	8/2012	Wang et al.
2012/0221552	A1	8/2012	Reponen et al.
2012/0223936	A1	9/2012	Aughey et al.
2012/0232886	A1	9/2012	Capuozzo et al.
2012/0232906	A1	9/2012	Lindahl et al.
2012/0242482	A1	9/2012	Elumalai et al.
2012/0245719	A1	9/2012	Story, Jr. et al.
2012/0245941	A1	9/2012	Cheyer
2012/0245944	A1	9/2012	Gruber et al.
2012/0246064	A1	9/2012	Balkow
2012/0252367	A1	10/2012	Gaglio et al.
2012/0252540	A1	10/2012	Kirigaya
2012/0254143	A1	10/2012	Varma et al.
2012/0254152	A1	10/2012	Park et al.
2012/0254290	A1	10/2012	Naaman
2012/0265528	A1	10/2012	Gruber et al.
2012/0265535	A1	10/2012	Bryant-Rich et al.
2012/0271625	A1	10/2012	Bernard
2012/0271635	A1	10/2012	Ljolje
2012/0271640	A1	10/2012	Basir
2012/0271676	A1	10/2012	Aravamudan et al.
2012/0275377	A1	11/2012	Lehane et al.
2012/0284027	A1	11/2012	Mallett et al.
2012/0290300	A1	11/2012	Lee et al.
2012/0295708	A1	11/2012	Hernandez-Abrego et al.
2012/0296649	A1	11/2012	Bansal et al.
2012/0296654	A1	11/2012	Hendrickson et al.
2012/0296891	A1	11/2012	Rangan
2012/0303369	A1	11/2012	Brush et al.
2012/0304124	A1	11/2012	Chen et al.
2012/0309363	A1	12/2012	Gruber et al.
2012/0310642	A1	12/2012	Cao et al.
2012/0310649	A1	12/2012	Cannistraro et al.
2012/0310652	A1	12/2012	O'Sullivan
2012/0311478	A1	12/2012	Van Os et al.
2012/0311583	A1	12/2012	Gruber et al.
2012/0311584	A1	12/2012	Gruber et al.
2012/0311585	A1	12/2012	Gruber et al.
2012/0317498	A1	12/2012	Logan et al.
2012/0330660	A1	12/2012	Jaiswal
2012/0330661	A1	12/2012	Lindahl
2013/0005405	A1	1/2013	Prociw
2013/0006633	A1	1/2013	Grokop et al.
2013/0006637	A1	1/2013	Kanevsky et al.
2013/0006638	A1	1/2013	Lindahl
2013/0007648	A1	1/2013	Gamon et al.
2013/0041654	A1	2/2013	Walker et al.
2013/0041661	A1	2/2013	Lee et al.
2013/0041968	A1	2/2013	Cohen et al.
2013/0054609	A1	2/2013	Rajput et al.
2013/0054706	A1	2/2013	Graham et al.
2013/0055099	A1	2/2013	Yao et al.
2013/0073286	A1	3/2013	Bastea-Forte et al.
2013/0080162	A1	3/2013	Chang et al.
2013/0080167	A1	3/2013	Mozer
2013/0080177	A1	3/2013	Chen
2013/0085761	A1	4/2013	Bringert et al.
2013/0091090	A1	4/2013	Spivack et al.
2013/0097566	A1	4/2013	Berglund
2013/0103391	A1	4/2013	Millmore et al.
2013/0110505	A1	5/2013	Gruber et al.
2013/0110515	A1	5/2013	Guzzoni et al.
2013/0110518	A1	5/2013	Gruber et al.
2013/0110519	A1	5/2013	Cheyer et al.
2013/0110520	A1	5/2013	Cheyer et al.
2013/0111348	A1	5/2013	Gruber et al.
2013/0111487	A1	5/2013	Cheyer et al.
2013/0115927	A1	5/2013	Gruber et al.
2013/0117022	A1	5/2013	Chen et al.
2013/0124189	A1	5/2013	Baldwin et al.
2013/0144616	A1	6/2013	Bangalore et al.
2013/0152092	A1	6/2013	Yadgar et al.
2013/0158977	A1	6/2013	Senior

2013/0170738	A1	7/2013	Capuozzo et al.
2013/0176592	A1	7/2013	Sasaki
2013/0185059	A1	7/2013	Riccardi et al.
2013/0185074	A1	7/2013	Gruber et al.
2013/0185081	A1	7/2013	Cheyer et al.
2013/0191117	A1	7/2013	Atti et al.
2013/0218553	A1	8/2013	Fujii et al.
2013/0218560	A1	8/2013	Hsiao et al.
2013/0225128	Al	8/2013	Gomar
2013/0231917	A1*	9/2013	Naik G10L 13/08
			704/9
2013/0238647	A1	9/2013	Thompson
2013/0244615	A1	9/2013	Miller et al.
2013/0246048	A1	9/2013	Nagase et al.
2013/0275117	A1	10/2013	Winer
2013/0289991	A1	10/2013	Eshwar et al.
2013/0289994	A1	10/2013	Newman et al.
2013/0304479	A1	11/2013	Teller et al.
2013/0304758	A1	11/2013	Gruber et al.
2013/0325443	A1	12/2013	Begeja et al.
2013/0325979	A1	12/2013	Mansfield et al.
2013/0332168	A1	12/2013	Kim et al.
2013/0346068	A1	12/2013	Solem et al.
2014/0028735	A1	1/2014	Williams et al.
2014/0059030	A1	2/2014	Hakkani-Tur et al.
2014/0067371	A1	3/2014	Liensberger
2014/0068751	A1	3/2014	Last et al.
2014/0074472	A1	3/2014	Lin et al.
2014/0080428	A1	3/2014	Rhoads et al.
2014/0081633	A1	3/2014	Badaskar et al.
2014/0082501	A1	3/2014	Bae et al.
2014/0086458	A1	3/2014	Rogers et al.
2014/0098247	A1	4/2014	Rao et al.
2014/0122086	A1	5/2014	Kapur et al.
2014/0136195	A1	5/2014	Abdossalami et al.
2014/0136212	A1	5/2014	Kwon et al.
2014/0142923	A1	5/2014	Jones et al.
2014/0152577	A1	6/2014	Yuen et al.
2014/0155031	A1	$6 / 2014$	Lee et al.
2014/0157422	A1	6/2014	Livshits et al.
2014/0195251	A1	7/2014	Zeinstra et al.
2014/0203939	A1	7/2014	Harrington et al.
2014/0244257	A1	8/2014	Colibro et al.
2014/0244258	A1	8/2014	Song et al.
2014/0247926	A1	9/2014	Gainsboro et al.
2014/0249817	A1	9/2014	Hart et al.
2014/0278435	A1	9/2014	Ganong et al.
2014/0282743	A1	9/2014	Howard et al.
2014/0316585	A1	10/2014	Boesveld et al.
2014/0337266	A1	11/2014	Wolverton et al.
2014/0337814	A1	11/2014	Kalns et al.
2014/0365895	A1	12/2014	Paulson et al.
2015/0046537	A1	2/2015	Rakib
2015/0066516	A1	3/2015	Nishikawa et al.
2015/0148013	A1	5/2015	Baldwin et al.
2015/0170664	A1	6/2015	Doherty et al.
2015/0172463	A1	$6 / 2015$	Quast et al.
2015/0234800	A1	8/2015	Ehlen et al.

FOREIGN PATENT DOCUMENTS

CN	1263385	A	$8 / 2000$
CN	1274440	A	$11 / 2000$
CN	1369858	A	$9 / 2002$
CN	1383109	A	$12 / 2002$
CN	1494695	A	$5 / 2004$
CN	1673939	A	$9 / 2005$
CN	1864204	A	$11 / 2006$
CN	1898721	A	$1 / 2007$
CN	1959628	A	$5 / 2007$
CN	1975715	A	$6 / 2007$
CN	1995917	A	$7 / 2007$
CN	101162153	A	$4 / 2008$
CN	101183525	A	$5 / 2008$
CN	101297541	A	$10 / 2008$
CN	101535983	A	$9 / 2009$
CN	101636736	A	$1 / 2010$
CN	101847405	A	$9 / 2010$
CN	101939740	A	$1 / 2011$

（56）

OREIGN PATENT DOCUMENTS

$\begin{array}{rrr}19841541 & \text { B4 } & 12 / 2007 \\ 0030390 & \text { A1 } & 6 / 1981\end{array}$
0057514 A1 $\quad 8 / 1982$
$\begin{array}{lll}0059880 \text { A2 } & 9 / 1982 \\ 0138061 & \text { A1 } & 4 / 1985\end{array}$
0140777 A1
0218859 A2 4／1987
0262938 A1
0283995 A2
0293259 A2 $11 / 1988$
$\begin{array}{lll}0299572 & \text { A2 } & 1 / 1989 \\ 0313975 & \text { A2 } & 5 / 1989\end{array}$
0314908 A2 $5 / 1989$
$\begin{array}{lll}0327408 & \text { A2 } & 8 / 1989 \\ 0389271 & \text { A2 } & 9 / 1990\end{array}$
$\begin{array}{lll}0389271 & \text { A2 } & 9 / 1990 \\ 0411675 & \text { A2 } & 2 / 1991\end{array}$
$\begin{array}{lll}0441089 & \text { A2 } & 8 / 1991 \\ 0464712 & \text { A2 } & 1 / 1992\end{array}$
$\begin{array}{lll}0464712 & \text { A2 } & 1 / 1992 \\ 0476972 & \text { A2 } & 3 / 1992 \\ 053410 & \text { A2 } & 3 / 1993\end{array}$
$\begin{array}{lll}0534410 \text { A2 } & 3 / 1993 \\ 0558312 \text { A1 } & 9 / 1993\end{array}$
0559349 A1 9／1993
$\begin{array}{lll}0570660 \text { A1 } & 11 / 1993 \\ 0575146 & \text { A2 } & 12 / 1993\end{array}$
0578604 A1 $1 / 1994$
$\begin{array}{ll}0586996 \text { A2 } & 3 / 1994 \\ 0609030 \text { A1 } & 8 / 1994\end{array}$
0651543 A2 $5 / 1995$
$\begin{array}{llr}0679005 & \text { A1 } & 10 / 1995 \\ 0795811 & \text { Al } & 9 / 1997\end{array}$
$\begin{array}{lll}0476972 & \text { B1 } & 5 / 1998 \\ 0845894 & \text { A2 } & 6 / 1998\end{array}$
$\begin{array}{lll}0863453 & \text { A1 } & 9 / 1998 \\ 0863469 \text { A2 } & 9 / 1998\end{array}$
$\begin{array}{ll}0863469 \text { A2 } & 9 / 1998 \\ 0867860 \text { A2 } & 9 / 1998\end{array}$
$\begin{array}{lrr}0869697 & \text { A2 } & 10 / 1998 \\ 0559349 & \text { B1 } & 1 / 1999\end{array}$
0889626 A1 $1 / 1999$
$\begin{array}{lll}0917077 & \text { A2 } & 5 / 1999 \\ 0691023 & \text { B1 } & 9 / 1999\end{array}$
0946032 A2 $9 / 1999$
$\begin{array}{ll}0981236 \text { A1 } & 2 / 2000 \\ 0982732 \text { A1 } & 3 / 2000\end{array}$
0984430 A2 $3 / 2000$
1001588 A2 $\quad 5 / 2000$
$\begin{array}{ll}1014277 \text { A1 } & 6 / 2000 \\ 1028425 \text { A2 } & 8 / 2000\end{array}$
1028426 A2 $8 / 2000$
$\begin{array}{lll}1047251 & \text { A2 } 2 & 10 / 2000 \\ 1052566 \text { A1 } & 11 / 2000\end{array}$
$\begin{array}{lll}1076302 \text { A1 } & 2 / 2001 \\ 1091615 & \text { A1 } & 4 / 2001\end{array}$
1094406 A2 $4 / 2001$
1107229 A2 6／2001
$\begin{array}{ll}1229496 \text { A2 } & 8 / 2002 \\ 1233600 \text { A2 } & 8 / 2002\end{array}$
1245023 A1 $10 / 2002$
1246075 A2 10／2002
1280326 A1 1／2003
$\begin{array}{ll}1281848 \text { A2 } & 3 / 2003 \\ 1311102 \text { A1 } & 5 / 2003\end{array}$
1315084 A1 $5 / 2003$
1315086 Al 5／2003
1347361 A1 9／2003

EP	1368961 A2	12／2003
EP	1379061 A2	1／2004
EP	1432219 Al	6／2004
EP	1435620 A1	7／2004
EP	1480421 Al	11／2004
EP	1517228 A2	3／2005
EP	1536612 A1	6／2005
EP	1566948 A1	8／2005
EP	1650938 Al	4／2006
EP	1693829 A1	8／2006
EP	1699042 A1	9／2006
EP	1739546 A2	1／2007
EP	1181802 B1	2／2007
EP	1818786 A1	8／2007
EP	1892700 A1	2／2008
EP	1912205 A2	4／2008
EP	1939860 A1	7／2008
EP	651543 B1	9／2008
EP	1909263 B1	1／2009
EP	1335620 B1	3／2009
EP	2069895 A1	6／2009
EP	2094032 Al	8／2009
EP	2109295 Al	10／2009
EP	1720375 B1	7／2010
EP	2205010 A1	7／2010
EP	2309491 Al	4／2011
EP	2400373 A1	12／2011
EP	2431842 A2	3／2012
EP	2551784 Al	1／2013
EP	2575128 A2	4／2013
EP	2733598 A2	5／2014
GB	2293667 A	4／1996
GB	2310559 A	8／1997
GB	2342802 A	4／2000
GB	2343285 A	5／2000
GB	2346500 A	8／2000
GB	2352377 A	1／2001
GB	2384399 A	7／2003
GB	2402855 A	12／2004
GB	2445436 A	7／2008
IT	Fi20010199 A1	4／2003
JP	55－80084 A	6／1980
JP	54－41731 A	3／1982
JP	59－57336 A	4／1984
JP	62－153326 A	7／1987
JP	12－54742 A	10／1989
JP	2－86397 A	3／1990
JP	2－153415 A	6／1990
JP	3－113578 A	5／1991
JP	4－236624 A	8／1992
JP	$5-79951 \mathrm{~A}$	3／1993
JP	5－165459 A	7／1993
JP	5－293126 A	11／1993
JP	6－19965 A	1／1994
JP	6－69954 A	3／1994
JP	6－274586 A	9／1994
JP	6－332617 A	12／1994
JP	7－199379 A	8／1995
JP	$7-320051 \mathrm{~A}$	12／1995
JP	7－320079 A	12／1995
JP	$8-63330$ A	3／1996
JP	8－185265 A	7／1996
JP	08－223281 A	8／1996
JP	8－227341 A	9／1996
JP	9－18585 A	1／1997
JP	$9-55792 \mathrm{~A}$	2／1997
JP	9－259063 A	10／1997
JP	9－265457 A	10／1997
JP	10－31497 A	2／1998
JP	10－105324 A	4／1998
JP	11－6743 A	1／1999
JP	15－00631 A	1／1999
JP	11－45241 A	2／1999
JP	11－265400 A	9／1999
JP	2000－90119 A	3／2000
JP	2000－99225 A	4／2000
JP	2000－134407 A	5／2000
JP	2000－163031 A	6／2000
JP	2000－207167 A	7／2000

(56)	References Cited		JP	2008-39928 A	2/2008
			JP	2008-058813 A	3/2008
	FOREIGN PATENT DOCUMENTS		JP	2008-90545 A	4/2008
			JP	2008-97003 A	4/2008
JP	2000-224663 A	8/2000	JP	2008-134949 A	6/2008
JP	2000-272349 A	10/2000	JP	2008-526101 A	7/2008
JP	2000-331004 A	11/2000	JP	2008-198022 A	8/2008
JP	2000-339137 A	12/2000	JP	2008-217468 A	9/2008
JP	2001-22498 A	1/2001	JP	2008-233678 A	10/2008
JP	2001-34289 A	2/2001	JP	2008-236448 A	10/2008
JP	2001-034290 A	2/2001	JP	2008-252161 A	10/2008
JP	2001-56233 A	2/2001	JP	2008-268684 A	11/2008
JP	2001-125896 A	5/2001	JP	2008-271481 A	11/2008
JP	2001-148899 A	5/2001	JP	2009-503623 A	1/2009
JP	2001-273283 A	10/2001	JP	2009-036999 A	2/2009
JP	2002-14954 A	1/2002	JP	2009-47920 A	3/2009
JP	2002-024212 A	1/2002	JP	2009-98490 A	5/2009
JP	2002-030676 A	1/2002	JP	209-186989 A	8/2009
JP	2002-41276 A	2/2002	JP	2009-193448 A	8/2009
JP	2002-041624 A	2/2002	JP	2009-205367 A	9/2009
JP	2002-082748 A	3/2002	JP	2009-294913 A	12/2009
JP	2002-82893 A	3/2002	JP	2009-294946 A	12/2009
JP	2002-132804 A	5/2002	JP	2010-78979 A	4/2010
JP	2002-524806 A	8/2002	JP	2010-518526 A	5/2010
JP	2002-281562 A	9/2002	JP	2010-157207 A	$7 / 2010$
JP	2002-342033 A	11/2002	JP	2010-224236 A	10/2010
JP	2002-344880 A	11/2002	JP	2010-535377 A	11/2010
JP	2002-542501 A	12/2002	JP	2010-287063 A	12/2010
JP	2003-15682 A	1/2003	JP	2011-041026 A	2/2011
JP	2003-44091 A	2/2003	JP	2011-45005 A	3/2011
JP	2003-84877 A	3/2003	JP	2011-059659 A	3/2011
JP	2003-517158 A	5/2003	JP	2013-511214 A	3/2013
JP	2003-233568 A	8/2003	JP	2013-517566 A	5/2013
JP	2003-244317 A	$8 / 2003$	KR	10-1999-0073234 A	10/1999
JP	2003-288356 A	10/2003	KR	11-2002-0013984 A	2/2002
JP	2004-48804 A	2/2004	KR	10-2002-0057262 A	7/2002
JP	2004-054080 A	2/2004	KR	10-2002-0064149 A	8/2002
JP	2004-505322 A	2/2004	KR	10-2002-0069952 A	9/2002
JP	2004-505525 A	2/2004	KR	10-2003-0016993 A	3/2003
JP	2004-86356 A	3/2004	KR	10-2004-0014835 A	2/2004
JP	2004-152063 A	5/2004	KR	10-2004-0044632 A	5/2004
JP	2004-523004 A	7/2004	KR	10-2005-0083561 A	8/2005
JP	2004-295837 A	10/2004	KR	10-2005-0090568 A	9/2005
JP	2004-534268 A	11/2004	KR	10-2006-0011603 A	2/2006
JP	2005-55782 A	3/2005	KR	10-2006-0012730 A	2/2006
JP	2005-63257 A	3/2005	KR	10-2006-0073574 A	6/2006
JP	2005-070645 A	3/2005	KR	10-2006-0091469 A	8/2006
JP	2005-80094 A	3/2005	KR	10-2007-0024262 A	3/2007
JP	2005-86624 A	3/2005	KR	10-2007-0071675 A	7/2007
JP	2005-506602 A	3/2005	KR	10-0757496 B1	9/2007
JP	2005-92441 A	4/2005	KR	10-2007-0100837 A	10/2007
JP	2005-149481 A	$6 / 2005$	KR	10-0776800 B1	11/2007
JP	2005-181386 A	7/2005	KR	10-0801227 B1	2/2008
JP	2005-189454 A	7/2005	KR	10-0810500 B1	3/2008
JP	2005-221678 A	8/2005	KR	10-2008-0049647 A	6/2008
JP	2005-283843 A	10/2005	KR	10-2008-0059332 A	6/2008
JP	2005-311864 A	11/2005	KR	10-2008-0109322 A	12/2008
JP	2005-332212 A	12/2005	KR	10-2009-0001716 A	1/2009
JP	2006-023860 A	1/2006	KR	10-2009-0086805 A	8/2009
JP	2006-031092 A	2/2006	KR	10-0920267 B1	10/2009
JP	2006-059094 A	3/2006	KR	10-2009-0122944 A	12/2009
JP	2006-080617 A	3/2006	KR	10-2010-0048571 A	5/2010
JP	2006-107438 A	4/2006	KR	10-2010-0119519 A	11/2010
JP	2006-146008 A	6/2006	KR	10-1032792 B1	5/2011
JP	2006-195637 A	7/2006	KR	10-2011-0113414 A	10/2011
JP	2006-208696 A	8/2006	KR	10-1193668 B1	12/2012
JP	2006-302091 A	11/2006	NL	1014847 Cl	10/2001
JP	2006-526185 A	11/2006	RU	2273106 C 2	3/2006
JP	2007-4633 A	1/2007	RU	2349970 C2	3/2009
JP	2007-17990 A	1/2007	RU	2353068 C2	4/2009
JP	2007-500903 A	1/2007	TW	468323 B	12/2001
JP	2007-053796 A	3/2007	TW	200643744 A	12/2006
JP	2007-079690 A	3/2007	TW	200801988 A	1/2008
JP	2007-171534 A	7/2007	TW	I301373 B	9/2008
JP	2007-193794 A	8/2007	TW	200943903 A	10/2009
JP	2007-206317 A	8/2007	TW	201227715 A	7/2012
JP	2007-264471 A	10/2007	WO	93/20640 Al	10/1993
JP	2007-299352 A	11/2007	WO	94/16434 Al	7/1994
JP	2008-26381 A	2/2008	WO	94/29788 Al	12/1994

wo	95/02221 A1	1/1995
WO	95/16950 A1	6/1995
WO	95/17746 A1	6/1995
WO	97/10586 A1	3/1997
WO	97/26612 A1	7/1997
WO	97/29614 A1	8/1997
wo	97/38488 A1	10/1997
WO	97/49044 A1	12/1997
WO	$98 / 09270$ A1	3/1998
WO	98/33111 A1	7/1998
WO	98/41956 A1	9/1998
wo	99/01834 A1	1/1999
WO	99/08238 A1	2/1999
WO	99/16181 A1	4/1999
WO	99/56227 A1	11/1999
Wo	00/14727 A1	3/2000
WO	00/14728 A1	3/2000
WO	00/19697 A1	4/2000
WO	00/22820 A1	4/2000
wo	00/29964 A1	5/2000
WO	00/30070 A2	5/2000
WO	00/38041 A1	6/2000
WO	00/44173 A1	7/2000
wo	00/60435 A2	10/2000
WO	00/63766 A1	10/2000
WO	00/68936 A1	11/2000
WO	01/06489 A1	1/2001
WO	01/30046 A2	4/2001
WO	01/30047 A2	4/2001
WO	01/60435 A3	4/2001
WO	01/33569 A1	5/2001
WO	01/35391 A1	5/2001
WO	01/46946 A1	6/2001
WO	01/65413 A1	9/2001
WO	01/67753 A1	9/2001
WO	02/10900 A2	2/2002
wo	02/25610 A1	3/2002
WO	02/31814 A1	4/2002
WO	02/37469 A2	5/2002
WO	02/49253 A2	6/2002
WO	02/071259 Al	9/2002
WO	02/073603 A1	9/2002
WO	03/003152 A2	1/2003
WO	03/003765 Al	1/2003
WO	03/023786 A2	3/2003
WO	03/041364 A2	5/2003
WO	03/049494 A1	6/2003
WO	03/056789 Al	7/2003
WO	03/067202 A2	8/2003
WO	03/084196 A1	10/2003
WO	03/094489 Al	11/2003
WO	2004/008801 A1	1/2004
WO	2004/025938 A1	3/2004
WO	2004/047415 Al	6/2004
WO	2004/055637 A2	7/2004
WO	2004/057486 A1	7/2004
WO	2004/061850 A1	7/2004
wo	2004/084413 A2	9/2004
WO	2005/003920 A2	1/2005
wo	2005/008505 A1	1/2005
WO	2005/008899 Al	1/2005
WO	2005/010725 A2	2/2005
WO	2005/027472 A2	3/2005
WO	2005/027485 A1	3/2005
WO	2005/031737 Al	4/2005
WO	2005/034085 A1	4/2005
WO	2005/041455 A1	5/2005
wo	2005/059895 Al	6/2005
WO	2005/064592 A1	7/2005
WO	2005/069171 A1	7/2005
WO	2005/101176 A2	10/2005
wo	2006/020305 A2	2/2006
wo	2006/037545 A2	4/2006
Wo	2006/054724 Al	5/2006
WO	2006/056822 Al	6/2006

WO	$2006 / 078246$	A1	$7 / 2006$
WO	$2006 / 084144$	A2	$8 / 2006$
WO	$2006 / 101649$	A	$9 / 2006$
WO	$2006 / 129967$	A1	$12 / 2006$
WO	$2006 / 133571$	A1	$12 / 2006$
WO	$2007 / 002753$	A2	$1 / 2007$
WO	$2007 / 080559$	A2	$7 / 2007$
WO	$2007 / 083894$	A1	$7 / 2007$
WO	$2008 / 030970$	A2	$3 / 2008$
WO	$2008 / 071231$	A1	$6 / 2008$
WO	$2008 / 085742$	A2	$7 / 2008$
WO	$2008 / 098900$	A2	$8 / 2008$
WO	$2008 / 109835$	A2	$9 / 2008$
WO	$2008 / 120036$	A1	$10 / 2008$
WO	$2008 / 130095$	A1	$10 / 2008$
WO	$2008 / 140236$	A1	$11 / 2008$
WO	$2008 / 142472$	A1	$11 / 2008$
WO	$2008 / 153639$	A1	$12 / 2008$
WO	$2009 / 009240$	A2	$1 / 2009$
WO	$2009 / 016631$	A2	$2 / 2009$
WO	$2009 / 017280$	A1	$2 / 2009$
WO	$2009 / 104126$	A	$8 / 2009$
WO	$2009 / 156438$	A1	$12 / 2009$
WO	$2009 / 156978$	A1	$12 / 2009$
WO	$2010 / 075623$	A1	$7 / 2010$
WO	$2011 / 057346$	A1	$5 / 2011$
WO	$2011 / 060106$	A1	$5 / 2011$
WO	$2011 / 088053$	A2	$7 / 2011$
WO	$2011 / 093025$	A1	$8 / 2011$
WO	$2011 / 116309$	A1	$9 / 2011$
WO	$2011 / 133543$	A1	$10 / 2011$
WO	$2011 / 150730$	A1	$12 / 2011$
WO	$2011 / 163350$	A1	$12 / 2011$
WO	$2011 / 154317$	A1	$11 / 2012$
WO	$2012 / 155079$	A2	$11 / 2012$
WO	$2012 / 167168$	A2	$12 / 2012$
WO	$2013 / 048880$	A1	$4 / 2013$
WO	$2013 / 169842$	A2	$11 / 2013$
WO	$2014 / 028797$	A1	$2 / 2014$
WO	$2014 / 031505$	A1	$2 / 2014$
WO	$2014 / 078965$	A1	$5 / 2014$
WO	$2014 / 197336$	A1	$12 / 2014$
WO	$2015 / 084659$	A1	$6 / 2015$
WO			
		20	
WO		208	

OTHER PUBLICATIONS

[^1]
References Cited

OTHER PUBLICATIONS

Cheyer et al., "Demonstration Video of Multimodal Maps Using an Agent Architecture", published by SRI International no later than 1996, as depicted in Exemplary Screenshots from video entitled Demonstration Video of Multimodal Maps Using an Agent Architecture, 1996, 6 pages.
Cheyer et al., "Demonstration Video of Multimodal Maps Using an Open-Agent Architecture", published by SRI International no later than 1996, as depicted in Exemplary Screenshots from video entitled Demonstration Video of Multimodal Maps Using an OpenAgent Architecture, 6 pages.
Cheyer, A., "Demonstration Video of Vanguard Mobile Portal", published by SRI International no later than 2004, as depicted in 'Exemplary Screenshots from video entitled Demonstration Video of Vanguard Mobile Portal', 2004, 10 pages.
Choi et al., "Acoustic and Visual Signal based Context Awareness System for Mobile Application", IEEE Transactions on Consumer Electronics, vol. 57, No. 2, May 2011, pp. 738-746.
Kickstarter, "Ivee Sleek: Wi-Fi Voice-Activated Assistant", available at https://www.kickstarter.com/projects/ivee/ivee-sleek-wi-fi-voice-activated-assistant, retrieved on Feb. 10, 2014, 13 pages. Navigli, Roberto, "Word Sense Disambiguation: A Survey", ACM Computing Surveys, vol. 41, No. 2, Feb. 2009, 70 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/015418, mailed on Aug. 26, 2014, 17 pages.
Guim, Mark, "How to Set a Person-Based Reminder with Cortana", available at http://www.wpcentral.com/how-to-person-based-re-minder-cortana, Apr. 26, 2014, 15 pages.
Miller, Chance, "Google Keyboard Updated with New Personalized Suggestions Feature", available at <http://9to5google.com/2014/03/ 19/google-keyboard-updated-with-new-personalized-suggestionsfeature/>, Mar. 19, 2014, 4 pages.
Roddy et al., "Interface Issues in Text Based Chat Rooms", SIGCHI Bulletin, vol. 30, No. 2, Apr. 1998, pp. 119-123.
Viegas et al., "Chat Circles", SIGCHI Conference on Human Factors in Computing Systems, May 15-20, 1999, pp. 9-16.
Davis et al., "A Personal Handheld Multi-Modal Shopping Assistant", International Conference on Networking and Services, IEEE, 2006, 9 pages.
SRI, "SRI Speech: Products: Software Development Kits: EduSpeak", available at <http://web.archive.org/web/ 20090828084033/http://www.speechatsri.com/products/ eduspeak>shtml, retrieved on Jun. 20, 2013, 2 pages.
"Mel Scale", Wikipedia the Free Encyclopedia, Last modified on Oct. 13, 2009 and retrieved on Jul. 28, 2010, available at <http:// en.wikipedia.org/wiki/Mel_scale>, 2 pages.
"Minimum Phase", Wikipedia the free Encyclopedia, Last modified on Jan. 12, 2010 and retrieved on Jul. 28, 2010, available at <http://en.wikipedia.org/wiki/Minimum phase>, 8 pages.
Acero et al., "Environmental Robustness in Automatic Speech Recognition", International Conference on Acoustics, Speech and Signal Processing (ICASSP'90), Apr. 1990, 4 pages.
Acero et al., "Robust Speech Recognition by Normalization of the Acoustic Space", International Conference on Acoustics, Speech and Signal Processing, 1991, 4 pages.
Agnas et al., "Spoken Language Translator: First-Year Report", SICS (ISSN 0283-3638), SRI and Telia Research AB, Jan. 1994, 161 pages.
Ahlbom et al., Modeling Spectral Speech Transitions Using Temporal Decomposition Techniques, IEEE International Conference of Acoustics, Speech and Signal Processing (ICASSP'87), vol. 12, Apr. 1987, 4 pages.
Alfred App, "Alfred", available at http://www.alfredapp.com/, retrieved on Feb. 8, 2012, 5 pages.
Allen, J., "Natural Language Understanding", 2nd Edition, The Benjamin/Cummings Publishing Company, Inc., 1995, 671 pages.

Alshawi et al., "CLARE: A Contextual Reasoning and Co-operative Response Framework for the Core Language Engine", SRI International, Cambridge Computer Science Research Centre, Cambridge, Dec. 1992, 273 pages.
Alshawi et al., "Declarative Derivation of Database Queries from Meaning Representations", Proceedings of the BANKAI Workshop on Intelligent Information Access, Oct. 1991, 12 pages.
Alshawi et al., "Logical Forms in the Core Language Engine", Proceedings of the 27th Annual Meeting of the Association for Computational Linguistics, 1989, pp. 25-32.
Alshawi et al., "Overview of the Core Language Engine", Proceedings of Future Generation Computing Systems,Tokyo, 13 pages.
Alshawi, H., "Translation and Monotonic Interpretation/Generation", SRI International, Cambridge Computer Science Research Centre, Cambridge, available at <http://www.cam.sri.com/tr/ crc024/paper.ps.Z1992>, Jul. 1992, 18 pages.
Ambite et al., "Design and Implementation of the CALO Query Manager", American Association for Artificial Intelligence, 2006, 8 pages.
Ambite et al., "Integration of Heterogeneous Knowledge Sources in the CALO Query Manager", The 4th International Conference on Ontologies, Databases and Applications of Semantics (ODBASE), 2005, 18 pages.
Anastasakos et al., "Duration Modeling in Large Vocabulary Speech Recognition", International Conference on Acoustics, Speech and Signal Processing (ICASSP'95), May 1995, pp. 628-631.
Anderson et al., "Syntax-Directed Recognition of Hand-Printed Two-Dimensional Mathematics", Proceedings of Symposium on Interactive Systems for Experimental Applied Mathematics: Proceedings of the Association for Computing Machinery Inc. Symposium, 1967, 12 pages.
Ansari et al., "Pitch Modification of Speech using a Low-Sensitivity Inverse Filter Approach", IEEE Signal Processing Letters, vol. 5, No, 3, Mar. 1998, pp. 60-62.
Anthony et al., "Supervised Adaption for Signature Verification System", IBM Technical Disclosure, Jun. 1, 1978, 3 pages.
Appelt et al., "Fastus: A Finite-State Processor for Information Extraction from Real-world Text", Proceedings of IJCAI, 1993, 8 pages.
Appelt et al., "SRI International Fastus System MUC-6 Test Results and Analysis", SRI International, Menlo Park, California, 1995, 12 pages.
Apple Computer, "Guide Maker User's Guide", Apple Computer, Inc., Apr. 27, 1994, 8 pages.
Apple Computer, "Introduction to Apple Guide", Apple Computer, Inc., Apr. 28, 1994, 20 pages.
Archbold et al., "A Team User's Guide", SRI International, Dec. 21, 1981, 70 pages.
Asanovic et al., "Experimental Determination of Precision Requirements for Back-Propagation Training of Artificial Neural Networks", Proceedings of the 2nd International Conference of Microelectronics for Neural Networks, 1991, www.ICSI.Berkelev.EDU, 1991, 7 pages.
Atal et al., "Efficient Coding of LPC Parameters by Temporal Decomposition", IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'83), Apr. 1983, 4 pages. Bahl et al., "A Maximum Likelihood Approach to Continuous Speech Recognition", IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. PAMI-5, No. 2, Mar. 1983, 13 pages. Bahl et al., "A Tree-Based Statistical Language Model for Natural Language Speech Recognition", IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 37, No. 7, Jul. 1989, 8 pages. Bahl et al., "Acoustic Markov Models Used in the Tangora Speech Recognition System", Proceeding of International Conference on Acoustics, Speech and Signal Processing (ICASSP'88), vol. 1, Apr. 1988, 4 pages.
Bahl et al., "Large Vocabulary Natural Language Continuous Speech Recognition", Proceedings of 1989 International Conference on Acoustics, Speech and Signal Processing, vol. 1, May 1989, 6 pages.
Bahl et al., "Multonic Markov Word Models for Large Vocabulary Continuous Speech Recognition", IEEE Transactions on Speech and Audio Processing, vol. 1, No. 3, Jul. 1993, 11 pages.

References Cited

OTHER PUBLICATIONS

Bah1 et al., "Speech Recognition with Continuous-Parameter Hidden Markov Models", Proceeding of International Conference on Acoustics, Speech and Signal Processing (ICASSP'88), vol. 1, Apr. 1988, 8 pages.
Banbrook, M., "Nonlinear Analysis of Speech from a Synthesis Perspective", A Thesis Submitted for the Degree of Doctor of Philosophy, The University of Edinburgh, Oct. 15, 1996, 35 pages. Bear et al., "A System for Labeling Self-Repairs in Speech", SRI International, Feb. 22, 1993, 9 pages.
Bear et al., "Detection and Correction of Repairs in HumanComputer Dialog", SRI International, May 1992, 11 pages.
Bear et al., "Integrating Multiple Knowledge Sources for Detection and Correction of Repairs in Human-Computer Dialog", Proceedings of the 30th Annual Meeting on Association for Computational Linguistics (ACL), 1992, 8 pages.
Bear et al., "Using Information Extraction to Improve Document Retrieval", SRI International, Menlo Park, California, 1998, 11 pages.
Belaid et al., "A Syntactic Approach for Handwritten Mathematical Formula Recognition", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-6, No. 1, Jan. 1984, 7 pages.
Bellegarda et al., "A Latent Semantic Analysis Framework for Large-Span Language Modeling", 5th European Conference on Speech, Communication and Technology (EUROSPEECH'97), Sep. 1997, 4 pages.
Bellegarda et al., "A Multispan Language Modeling Framework for Large Vocabulary Speech Recognition", IEEE Transactions on Speech and Audio Processing, vol. 6, No. 5, Sep. 1998, 12 pages. Bellegarda et al., "A Novel Word Clustering Algorithm Based on Latent Semantic Analysis", Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'96), vol. 1, 1996, 4 pages.
Bellegarda et al., "Experiments Using Data Augmentation for Speaker Adaptation", International Conference on Acoustics, Speech and Signal Processing (ICASSP'95), May 1995, 4 pages.
Bellegarda, Jerome R., "Exploiting Latent Semantic Information in Statistical Language Modeling", Proceedings of the IEEE, vol. 88, No. 8, Aug. 2000, 18 pages.
Bellegarda, Jerome R., "Interaction-Driven Speech Input-A DataDriven Approach to the Capture of both Local and Global Language Constraints", available at <http://old.sig.chi.ora/bulletin/1998.2/ bellegarda.html>, 1992, 7 pages.
Bellegarda, Jerome R., "Large Vocabulary Speech Recognition with Multispan Statistical Language Models", IEEE Transactions on Speech and Audio Processing, vol. 8, No. 1, Jan. 2000, 9 pages. Bellegarda et al., "On-Line Handwriting Recognition using Statistical Mixtures", Advances in Handwriting and Drawings: A Multidisciplinary Approach, Europia, 6th International IGS Conference on Handwriting and Drawing, Paris, France, Jul. 1993, 11 pages. Appelt et al., "SRI: Description of the JV-FASTUS System used for MUC-5", SRI International, Artificial Intelligence Center, 1993, 19 pages.
Bellegarda, Jerome R., "Exploiting both Local and Global Constraints for Multi-Span Statistical Language Modeling", Proceeding of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing (1CASSP'98), vol. 2, May 1998, 5 pages.
"Top 10 Best Practices for Voice User Interface Design" available at http://www.developer.com/voice/article.php/1567051/Top-10-Best-Practices-for-Voice-UserInterface-Design.htm, Nov. 1, 2002, 4 pages.
Combined Search Report and Examination Report under Sections 17 and 18(3) received for GB Patent Application No. 1009318.5, mailed on Oct. 8, 2010, 5 pages.
Combined Search Report and Examination Report under Sections 17 and 18(3) received for GB Patent Application No. 1217449.6, mailed on Jan. 17, 2013, 6 pages.
Aikawa et al., "Speech Recognition Using Time-Warping Neural Networks", Proceedings of the 1991, IEEE Workshop on Neural Networks for Signal Processing, 1991, 10 pages.

Bellegarda et al., "Performance of the IBM Large Vocabulary Continuous Speech Recognition System on the ARPA Wall Street Journal Task", Signal Processing VII: Theories and Applications, European Association for Signal Processing, 1994, 4 pages.
Bellegarda et al., "The Metamorphic Algorithm: A Speaker Mapping Approach to Data Augmentation", IEEE Transactions on Speech and Audio Processing, vol. 2, No. 3, Jul. 1994, 8 pages.
Belvin et al., "Development of the HRL Route Navigation Dialogue System", Proceedings of the First International Conference on Human Language Technology Research, Paper, 2001, 5 pages.
Berry et al., "PTIME: Personalized Assistance for Calendaring", ACM Transactions on Intelligent Systems and Technology, vol. 2, No. 4, Article 40, Jul. 2011, pp. 1-22.
Berry et al., "Task Management under Change and Uncertainty Constraint Solving Experience with the CALO Project", Proceedings of CP'05 Workshop on Constraint Solving under Change, 2005, 5 pages.
Black et al., "Automatically Clustering Similar Units for Unit Selection in Speech Synthesis", Proceedings of Eurospeech, vol. 2, 1997, 4 pages.
Blair et al., "An Evaluation of Retrieval Effectiveness for a FullText Document-Retrieval System", Communications of the ACM, vol. 28, No. 3, Mar. 1985, 11 pages.
Bobrow et al., "Knowledge Representation for Syntactic/Semantic Processing", From: AAA-80 Proceedings, Copyright 1980, AAAI, 1980, 8 pages.
Bouchou et al., "Using Transducers in Natural Language Database Query", Proceedings of 4th International Conference on Applications of Natural Language to Information Systems, Austria, Jun. 1999, 17 pages.
Bratt et al., "The SRI Telephone-Based ATIS System", Proceedings of ARPA Workshop on Spoken Language Technology, 1995, 3 pages.
Briner, L. L., "Identifying Keywords in Text Data Processing", In Zelkowitz, Marvin V., ED, Directions and Challenges, 15th Annual Technical Symposium, Gaithersbury, Maryland, Jun. 17, 1976, 7 pages.
Bulyko et al., "Error-Correction Detection and Response Generation in a Spoken Dialogue System", Speech Communication, vol. 45, 2005, pp. 271-288.
Bulyko et al., "Joint Prosody Prediction and Unit Selection for Concatenative Speech Synthesis", Electrical Engineering Department, University of Washington, Seattle, 2001, 4 pages.
Burke et al., "Question Answering from Frequently Asked Question Files", AI Magazine, vol. 18, No. 2, 1997, 10 pages.
Burns et al., "Development of a Web-Based Intelligent Agent for the Fashion Selection and Purchasing Process via Electronic Commerce", Proceedings of the Americas Conference on Information System (AMCIS), Dec. 31, 1998, 4 pages.
Bussey, et al., "Service Architecture, Prototype Description and Network Implications of a Personalized Information Grazing Service", INFOCOM'90, Ninth Annual Joint Conference of the IEEE Computer and Communication Societies, Available at <http:// slrohall.com/oublications/>, Jun. 1990, 8 pages.
Bussler et al., "Web Service Execution Environment (WSMX)", retrieved from Internet on Sep. 17, 2012, available at <http://www. w3.org/Submission/WSMX>, Jun. 3, 2005, 29 pages.
Butcher, Mike, "EVI Arrives in Town to go Toe-to-Toe with Siri", TechCrunch, Jan. 23, 2012, 2 pages.
Buzo et al., "Speech Coding Based Upon Vector Quantization", IEEE Transactions on Acoustics, Speech and Signal Processing, vol. Assp-28, No. 5, Oct. 1980, 13 pages.
Caminero-Gil et al., "Data-Driven Discourse Modeling for Semantic Interpretation", Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, May 1996, 6 pages.
Car Working Group, "Hands-Free Profile 1.5 HFP1.5_SPEC", Bluetooth Doc, available at <www.bluetooth.org>, Nov. 25, 2005, 93 pages.
Carter, D., "Lexical Acquisition in the Core Language Engine", Proceedings of the Fourth Conference of the European Chapter of the Association for Computational Linguistics, 1989, 8 pages.

References Cited

OTHER PUBLICATIONS

Carter et al., "The Speech-Language Interface in the Spoken Language Translator", SRI International, Nov. 23, 1994, 9 pages.
Cawley, Gavin C. "The Application of Neural Networks to Phonetic Modelling", PhD . Thesis, University of Essex, Mar. 1996, 13 pages. Chai et al., "Comparative Evaluation of a Natural Language Dialog Based System and a Menu Driven System for Information Access: A Case Study", Proceedings of the International Conference on Multimedia Information Retrieval (RIAO), Paris, Apr. 2000, 11 pages.
Chang et al., "A Segment-Based Speech Recognition System for Isolated Mandarin Syllables", Proceedings TEN CON '93, IEEE Region 10 Conference on Computer, Communication, Control and Power Engineering, vol. 3, Oct. 1993, 6 pages.
Chen, Yi, "Multimedia Siri Finds and Plays Whatever You Ask For", PSFK Report, Feb. 9, 2012, 9 pages.
Cheyer, Adam, "A Perspective on AI \& Agent Technologies for SCM", VerticalNet Presentation, 2001, 22 pages.
Cheyer, Adam, "About Adam Cheyer", available at <http://www. adam.cheyer.com/about.html>, retrieved on Sep. 17, 2012, 2 pages. Cheyer et al., "Multimodal Maps: An Agent-Based Approach", International Conference on Co-operative Multimodal Communication, 1995, 15 pages.
Cheyer et al., "Spoken Language and Multimodal Applications for Electronic Realties", Virtual Reality, vol. 3, 1999, pp. 1-15.
Cheyer et al., "The Open Agent Architecture", Autonomous Agents and Multi-Agent Systems, vol. 4, Mar. 1, 2001, 6 pages.
Cheyer et al., "The Open Agent Architecture: Building Communities of Distributed Software Agents", Artificial Intelligence Center, SRI International, Power Point Presentation, Available online at http://www.ai.sri.com/-oaa/, retrieved on Feb. 21, 1998, 25 pages.
Codd, E. F., "Databases: Improving Usability and Responsive-ness-How About Recently", Copyright 1978, Academic Press, Inc., 1978, 28 pages.
Cohen et al., "An Open Agent Architecture", available at <http:// citeseerx.ist.psu.edu/viewdoc/summary?doi=1 0.1.1.30.480>, 1994, 8 pages.
Cohen et al., "Voice User Interface Design,", Excerpts from Chapter 1 and Chapter 10, 2004, 36 pages.
Coles et al., "Chemistry Question-Answering", SRI International, Jun. 1969, 15 pages.
Coles et al., "Techniques for Information Retrieval Using an Inferential Question-Answering System with Natural-Language Input", SRI International, Nov. 1972, 198 Pages.
Coles et al., "The Application of Theorem Proving to Information Retrieval", SRI International, Jan. 1971, 21 pages.
Conklin, Jeff, "Hypertext: An Introduction and Survey", Computer Magazine, Sep. 1987, 25 pages.
Connolly et al., "Fast Algorithms for Complex Matrix Multiplication Using Surrogates", IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 37, No. 6, Jun. 1989, 13 pages.
Constantinides et al., "A Schema Based Approach to Dialog Control", Proceedings of the International Conference on Spoken Language Processing, 1998, 4 pages.
Cox et al., "Speech and Language Processing for Next-Millennium Communications Services", Proceedings of the IEEE, vol. 88, No. 8, Aug. 2000, 24 pages.
Craig et al., "Deacon: Direct English Access and Control", AFIPS Conference Proceedings, vol. 19, San Francisco, Nov. 1966, 18 pages.
Cutkosky et al., "PACT: An Experiment in Integrating Concurrent Engineering Systems", Journal \& Magazines, Computer, vol. 26, No. 1, Jan. 1993, 14 pages.
Dar et al., "DTL's DataSpot: Database Exploration Using Plain Language", Proceedings of the 24th VLDB Conference, New York, 1998, 5 pages.
Decker et al., "Designing Behaviors for Information Agents", The Robotics Institute, Carnegie-Mellon University, Paper, Jul. 1996, 15 pages.

Decker et al., "Matchmaking and Brokering", The Robotics Institute, Carnegie-Mellon University, Paper, May 1996, 19 pages.
Deerwester et al., "Indexing by Latent Semantic Analysis", Journal of the American Society for Information Science, vol. 41, No. 6, Sep. 1990, 19 pages.
Deller, Jr. et al., "Discrete-Time Processing of Speech Signals", Prentice Hall, ISBN: 0-02-328301-7, 1987, 14 pages.
Digital Equipment Corporation, "Open VMS Software Overview", Software Manual, Dec. 1995, 159 pages.
Domingue et al., "Web Service Modeling Ontology (WSMO)—An Ontology for Semantic Web Services", Position Paper at the W3C Workshop on Frameworks for Semantics in Web Services, Innsbruck, Austria, Jun. 2005, 6 pages.
Donovan, R. E., "A New Distance Measure for Costing Spectral Discontinuities in Concatenative Speech Synthesisers", available at <http://citeseerx.ist.osu.edu/viewdoc/summarv?doi=1 0.1.1.21. 6398>, 2001, 4 pages.
Dowding et al., "Gemini: A Natural Language System for SpokenLanguage Understanding", Proceedings of the Thirty-First Annual Meeting of the Association for Computational Linguistics, 1993, 8 pages.
Dowding et al., "Interleaving Syntax and Semantics in an Efficient Bottom-Up Parser", Proceedings of the 32nd Annual Meeting of the Association for Computational Linguistics, 1994, 7 pages.
Elio et al., "On Abstract Task Models and Conversation Policies", Proc. Workshop on Specifying and Implementing Conversation Policies, Autonomous Agents'99 Conference, 1999, pp. 1-10.
Epstein et al., "Natural Language Access to a Melanoma Data Base", SRI International, Sep. 1978, 7 pages.
Ericsson et al., "Software Illustrating a Unified Approach to Multimodality and Multilinguality in the In-Home Domain", Talk and Look: Tools for Ambient Linguistic Knowledge, Dec. 2006, 127 pages.
Evi, "Meet Evi: The One Mobile Application that Provides Solutions for your Everyday Problems", Feb. 2012, 3 pages.
Exhibit 1, "Natural Language Interface Using Constrained Intermediate Dictionary of Results", List of Publications Manually Reviewed for the Search of U.S. Pat. No. 7,177,798, Mar. 22, 2013, 1 page.
Feigenbaum et al., "Computer-Assisted Semantic Annotation of Scientific Life Works", Oct. 15, 2007, 22 pages.
Ferguson et al., "TRIPS: An Integrated Intelligent Problem-Solving Assistant", Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI-98) and Tenth Conference on Innovative Applications of Artificial Intelligence (IAAI-98), 1998, 7 pages.
Fikes et al., "A Network-Based Knowledge Representation and its Natural Deduction System", SRI International, Jul. 1977, 43 pages. Frisse, M. E., "Searching for Information in a Hypertext Medical Handbook", Communications of the ACM, vol. 31, No. 7, Jul. 1988, 8 pages.
Gamback et al., "The Swedish Core Language Engine", NOTEX Conference, 1992, 17 pages.
Gannes, Liz, "Alfred App Gives Personalized Restaurant Recommendations", AllThingsD, Jul. 18, 2011, pp. 1-3.
Gautier et al., "Generating Explanations of Device Behavior Using Compositional Modeling and Causal Ordering", CiteSeerx, 1993, pp. 89-97.
Gervasio et al., "Active Preference Learning for Personalized Calendar Scheduling Assistance", CiteSeerx, Proceedings of IUI'05, Jan. 2005, pp. 90-97.
Glass, Alyssa, "Explaining Preference Learning", CiteSeerx, 2006, pp. 1-5.
Glass et al., "Multilingual Language Generation Across Multiple Domains", International Conference on Spoken Language Processing, Japan, Sep. 1994, 5 pages.
Glass et al., "Multilingual Spoken-Language Understanding in the Mit Voyager System", Available online at <http://groups.csail.mit. edu/sls/publications/1995/speechcomm95-voyager.pdf>, Aug. 1995, 29 pages.
Goddeau et al., "A Form-Based Dialogue Manager for Spoken Language Applications", Available online at <http://phasedance. com/pdf!icslp96.pdf>, Oct. 1996, 4 pages.

References Cited

OTHER PUBLICATIONS

Goddeau et al., "Galaxy: A Human-Language Interface to On-Line Travel Information", International Conference on Spoken Language Processing, Yokohama, 1994, pp. 707-710.
Goldberg et al., "Using Collaborative Filtering to Weave an Information Tapestry", Communications of the ACM, vol. 35, No. 12, Dec. 1992, 10 pages.
Gong et al., "Guidelines for Handheld Mobile Device Interface Design", Proceedings of DSI 2004 Annual Meeting, 2004, pp. 3751-3756.
Gorin et al., "On Adaptive Acquisition of Language", International Conference on Acoustics, Speech and Signal Processing (ICASSP'90), vol. 1, Apr. 1990, 5 pages.
Gotoh et al., "Document Space Models Using Latent Semantic Analysis", In Proceedings of Eurospeech, 1997, 4 pages.
Gray, R. M., "Vector Quantization", IEEE ASSP Magazine, Apr. 1984, 26 pages.
Green, C., "The Application of Theorem Proving to QuestionAnswering Systems", SRI Stanford Research Institute, Artificial Intelligence Group, Jun. 1969, 169 pages.
Gregg et al., "DSS Access on the WWW: An Intelligent Agent Prototype", Proceedings of the Americas Conference on Information Systems, Association for Information Systems, 1998, 3 pages. Grishman et al., "Computational Linguistics: An Introduction", Cambridge University Press, 1986, 172 pages.
Grosz et al., "Dialogic: A Core Natural-Language Processing System", SRI International, Nov. 1982, 17 pages.
Grosz et al., "Research on Natural-Language Processing at SRI", SRI International, Nov. 1981, 21 pages.
Grosz, B., "Team: A Transportable Natural-Language Interface System", Proceedings of the First Conference on Applied Natural Language Processing, 1983, 7 pages.
Grosz et al., "TEAM: An Experiment in the Design of Transportable Natural-Language Interfaces", Artificial Intelligence, vol. 32, 1987, 71 pages.
Gruber, Tom, "(Avoiding) the Travesty of the Commons", Presentation at NPUC, New Paradigms for User Computing, IBM Almaden Research Center, Jul. 24, 2006, 52 pages.
Gruber, Thomas R., "A Translation Approach to Portable Ontology Specifications", Knowledge Acquisition, vol. 5, No. 2, Jun. 1993, pp. 199-220.
Gruber et al., "An Ontology for Engineering Mathematics", Fourth International Conference on Principles of Knowledge Representation and Reasoning, Available online at <http://www-ksl.stanford. edu/knowledge-sharing/papers/engmath.html>, 1994, pp. 1-22.
Gruber, Thomas R., "Automated Knowledge Acquisition for Strategic Knowledge", Machine Learning, vol. 4, 1989, pp. 293-336. Gruber, Tom, "Big Think Small Screen: How Semantic Computing in the Cloud will Revolutionize the Consumer Experience on the Phone", Keynote Presentation at Web 3.0 Conference, Jan. 2010, 41 pages.
Gruber et al., "Generative Design Rationale: Beyond the Record and Replay Paradigm", Knowledge Systems Laboratory, Technical Report KSL 92-59, Dec. 1991, Updated Feb. 1993, 24 pages.
Gruber, Thomas R., "Interactive Acquisition of Justifications: Learning "Why" by Being Told "What"", Knowledge Systems Laboratory, Technical Report KSL 91-17, Original Oct. 1990, Revised Feb. 1991, 24 pages.
Gruber et al., "Machine-Generated Explanations of Engineering Models: A Compositional Modeling Approach", Proceedings of International Joint Conference on Artificial Intelligence, 1993, 7 pages.
Gruber et al., "NIKE: A National Infrastructure for Knowledge Exchange", A Whitepaper Advocating and ATP Initiative on Technologies for Lifelong Learning, Oct. 1994, pp. 1-10.
Gruber et al., "Toward a Knowledge Medium for Collaborative Product Development", Proceedings of the Second International Conference on Artificial Intelligence in Design, Jun. 1992, pp. 1-19.

Gruber, Thomas R., "Toward Principles for the Design of Ontologies used for Knowledge Sharing", International Journal of HumanComputer Studies, vol. 43, No. 5-6, Nov. 1995, pp. 907-928.
Gruber, Tom, "2021: Mass Collaboration and the Really New Economy", TNTY Futures, vol. 1, No. 6, Available online at http://tomgruber.org/writing/tnty2001.htm, Aug. 2001, 5 pages. Gruber, Tom, "Collaborating Around Shared Content on the WWW, W3C Workshop on WWW and Collaboration", available at <http:// www.w3.org/Collaboration/Workshop/Proceedings/P9.html>, Sep. 1995, 1 page.
Gruber, Tom, "Collective Knowledge Systems: Where the Social Web Meets the Semantic Web", Web Semantics: Science, Services and Agents on the World Wide Web, 2007, pp. 1-19.
Gruber, Tom, "Despite Our Best Efforts, Ontologies are not the Problem", AAAI Spring Symposium, Available online at <http:// tomgruber.org/writing/aaai-ss08.htm>, Mar. 2008, pp. 1-40.
Gruber, Tom, "Enterprise Collaboration Management with Intraspect", Intraspect Technical White Paper, Jul. 2001, pp. 1-24. Gruber, Tom, "Every Ontology is a Treaty-A Social AgreementAmong People with Some Common Motive in Sharing", Official Quarterly Bulletin of AIS Special Interest Group on Semantic Web and Information Systems, vol. 1, No. 3, 2004, pp. 1-5.
Gruber, Tom, "Helping Organizations Collaborate, Communicate, and Learn", Presentation to NASA Ames Research, Available online at <http://tomgruber.org/writing/organizational-intelligence-talk. htm>, Mar.-Oct. 2003, 30 pages.
Gruber, Tom, "Intelligence at the Interface: Semantic Technology and the Consumer Internet Experience", Presentation at Semantic Technologies Conference, Available online at <http://tomgruber. org/writing/semtech08.htm>, May 20, 2008, pp. 1-40.
Gruber, Tom, "It Is What It Does: The Pragmatics of Ontology for Knowledge Sharing", Proceedings of the International CIDOC CRM Symposium, Available online at http://tomgruber.org/writ-ing/cidoc-ontology.htm, Mar. 26, 2003, 21 pages.
Gruber, Tom, "Ontologies, Web 2.0 and Beyond", Ontology Summit, Available online at http://tomgruber.org/writing/ontolog-so-cial-web-keynote.htm, Apr. 2007, 17 pages.
Gruber, Tom, "Ontology of Folksonomy: A Mash-Up of Apples and Oranges", Int'1 Journal on Semantic Web \& Information Systems, vol. 3, No. 2, 2007, 7 pages.
Gruber, Tom, "Siri, A Virtual Personal Assistant-Bringing Intelligence to the Interface", Semantic Technologies Conference, Jun. 16, 2009, 21 pages.
Gruber, Tom, "TagOntology", Presentation to Tag Camp, Oct. 29, 2005, 20 pages.
Gruber, Tom, "Where the Social Web Meets the Semantic Web", Presentation at the 5th International Semantic Web Conference, Nov. 2006, 38 pages.
Guida et al., "NLI: A Robust Interface for Natural Language Person-Machine Communication", International Journal of ManMachine Studies, vol. 17, 1982, 17 pages.
Guzzoni et al., "A Unified Platform for Building Intelligent Web Interaction Assistants", Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, Computer Society, 2006, 4 pages.
Guzzoni et al., "Active, A Platform for Building Intelligent Operating Rooms", Surgetica 2007 Computer-Aided Medical Interventions: Tools and Applications, 2007, pp. 191-198.
Guzzoni et al., "Active, A platform for Building Intelligent Software", Computational Intelligence, available at <http://www. informatik.uni-trier.del-ley/pers/hd/g/Guzzoni:Didier $>, 2006,5$ pages.
Guzzoni et al., "Active, A Tool for Building Intelligent User Interfaces", ASC 2007, Palma de Mallorca, Aug. 2007, 6 pages. Guzzoni, D., "Active: A Unified Platform for Building Intelligent Assistant Applications", Oct. 25, 2007, 262 pages.
Guzzoni et al., "Many Robots Make Short Work", AAAI Robot Contest, SRI International, 1996, 9 pages.
Guzzoni et al., "Modeling Human-Agent Interaction with Active Ontologies", AAAI Spring Symposium, Interaction Challenges for Intelligent Assistants, Stanford University, Palo Alto, California, 2007, 8 pages.

References Cited

OTHER PUBLICATIONS

Haas et al., "An Approach to Acquiring and Applying Knowledge", SRI international, Nov. 1980, 22 pages.
Hadidi et al., "Student's Acceptance of Web-Based Course Offerings: An Empirical Assessment", Proceedings of the Americas Conference on Information Systems(AMCIS), 1998, 4 pages.
Hardwar, Devindra, "Driving App Waze Builds its own Siri for Hands-Free Voice Control", Available online at <http://venturebeat. com/2012/02/09/driving-app-waze-builds-its-own-siri-for-hands-free-voice-control/>, retrieved on Feb. 9, 2012, 4 pages.
Harris, F. J., "On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform", In Proceedings of the IEEE, vol. 66, No. 1, Jan. 1978, 34 pages.
Hawkins et al., "Hierarchical Temporal Memory: Concepts, Theory and Terminology", Numenta, Inc., Mar. 27, 2007, 20 pages.
He et al., "Personal Security Agent: KQML-Based PKI", The Robotics Institute, Carnegie-Mellon University, Paper, 1997, 14 pages.
Helm et al., "Building Visual Language Parsers", Proceedings of CHI'91, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 1991, 8 pages.
Hendrix et al., "Developing a Natural Language Interface to Complex Data", ACM Transactions on Database Systems, vol. 3, No. 2, Jun. 1978, pp. 105-147.
Hendrix, Gary G., "Human Engineering for Applied Natural Language Processing", SRI International, Technical Note 139, Feb. 1977, 27 pages.
Hendrix, Gary G., "Klaus: A System for Managing Information and Computational Resources", SRI International, Technical Note 230, Oct. 1980, 34 pages.
Hendrix, Gary G., "Lifer: A Natural Language Interface Facility", SRI Stanford Research Institute, Technical Note 135, Dec. 1976, 9 pages.
Hendrix, Gary G., "Natural-Language Interface", American Journal of Computational Linguistics, vol. 8, No. 2, Apr.-Jun. 1982, pp. 56-61.
Hendrix, Gary G., "The Lifer Manual: A Guide to Building Practical Natural Language Interfaces", SRI International, Technical Note 138, Feb. 1977, 76 pages.
Hendrix et al., "Transportable Natural-Language Interfaces to Databases", SRI International, Technical Note 228, Apr. 30, 1981, 18 pages.
Hermansky, H., "Perceptual Linear Predictive (PLP) Analysis of Speech", Journal of the Acoustical Society of America, vol. 87, No. 4, Apr. 1990, 15 pages.
Hermansky, H., "Recognition of Speech in Additive and Convolutional Noise Based on Rasta Spectral Processing", Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'93), Apr. 1993, 4 pages.
Hirschman et al., "Multi-Site Data Collection and Evaluation in Spoken Language Understanding", Proceedings of the Workshop on Human Language Technology, 1993, pp. 19-24.
Hobbs et al., "Fastus: A System for Extracting Information from Natural-Language Text", SRI International, Technical Note 519, Nov. 19, 1992, 26 pages.
Hobbs et al., "Fastus: Extracting Information from Natural-Language Texts", SRI International, 1992, pp. 1-22.
Hobbs, Jerry R., "Sublanguage and Knowledge", SRI International, Technical Note 329, Jun. 1984, 30 pages.
Hodjat et al., "Iterative Statistical Language Model Generation for use with an Agent-Oriented Natural Language Interface", Proceedings of HCI International, vol. 4, 2003, pp. 1422-1426.
Hoehfeld et al., "Learning with Limited Numerical Precision Using the Cascade-Correlation Algorithm", IEEE Transactions on Neural Networks, vol. 3, No. 4, Jul. 1992, 18 pages.
Holmes, J. N., "Speech Synthesis and Recognition-Stochastic Models for Word Recognition", Published by Chapman \& Hall, London, ISBN 0412 534304, 1998, 7 pages.

Hon et al., "CMU Robust Vocabulary-Independent Speech Recognition System", IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP-91), Apr. 1991, 4 pages. Horvitz et al., "Handsfree Decision Support: Toward a Non-invasive Human-Computer Interface", Proceedings of the Symposium on Computer Applications in Medical Care, IEEE Computer Society Press, 1995, p. 955.
Horvitz et al., "In Pursuit of Effective Handsfree Decision Support: Coupling Bayesian Inference, Speech Understanding, and User Models", 1995, 8 pages.
Huang et al., "The SPHINX-II Speech Recognition System: An Overview", Computer, Speech and Language, vol. 7, No. 2, 1993, 14 pages.
IBM, "Speech Editor", IBM Technical Disclosure Bulletin, vol. 29, No. 10, Mar. 10, 1987, 3 pages.
IBM, "Integrated Audio-Graphics User Interface", IBM Technical Disclosure Bulletin, vol. 33, No. 11, Apr. 1991, 4 pages.
IBM, "Speech Recognition with Hidden Markov Models of Speech Waveforms", IBM Technical Disclosure Bulletin, vol. 34, No. 1, Jun. 1991, 10 pages.
Intraspect Software, "The Intraspect Knowledge Management Solution: Technical Overview", available at http://tomgruber.org/writ-ing/intraspect-whitepaper-1998.pdf, 1998, 18 pages.
Iowegian International, "FIR Filter Properties, DSPGuru, Digital Signal Processing Central", available at <http://www.dspguru.com/ dsp/faq/fir/properties> retrieved on Jul. 28, 2010, 6 pages.
Issar et al., "CMU's Robust Spoken Language Understanding System", Proceedings of Eurospeech, 1993, 4 pages.
Issar, Sunil, "Estimation of Language Models for New Spoken Language Applications", Proceedings of 4th International Conference on Spoken language Processing, Oct. 1996, 4 pages.
Jacobs et al., "Scisor: Extracting Information from On-Line News", Communications of the ACM, vol. 33, No. 11, Nov. 1990, 10 pages. Janas, Jurgen M., "The Semantics-Based Natural Language Interface to Relational Databases", Chapter 6, Cooperative Interfaces to Information Systems, 1986, pp. 143-188.
Jelinek, F., "Self-Organized Language Modeling for Speech Recognition", Readings in Speech Recognition, Edited by Alex Waibel and Kai-Fu Lee, Morgan Kaufmann Publishers, Inc., ISBN: 1-55860-124-4, 1990, 63 pages.
Jennings et al., "A Personal News Service Based on a User Model Neural Network", IEICE Transactions on Information and Systems, vol. E75-D, No. 2, Mar. 1992, 12 pages.
Ji et al., "A Method for Chinese Syllables Recognition Based upon Sub-syllable Hidden Markov Model", 1994 International Symposium on Speech, Image Processing and Neural Networks, Hong Kong, Apr. 1994, 4 pages.
Johnson, Julia Ann., "A Data Management Strategy for Transportable Natural Language Interfaces", Doctoral Thesis Submitted to the Department of Computer Science, University of British Columbia, Canada, Jun. 1989, 285 pages.
Jones, J., "Speech Recognition for Cyclone", Apple Computer, Inc., E.R.S. Revision 2.9, Sep. 10, 1992, 93 pages.

Julia et al., "http://www.speech.sri.com/demos/atis.html", Proceedings of AAAI, Spring Symposium, 1997, 5 pages.
Julia et al., "Un Editeur Interactif De Tableaux Dessines a Main Levee (An Interactive Editor for Hand-Sketched Tables)", Traitement du Signal, vol. 12, No. 6, 1995, pp. 619-626.
Kahn et al., "CoABS Grid Scalability Experiments", Autonomous Agents and Multi-Agent Systems, vol. 7, 2003, pp, 171-178.
Kamel et al., "A Graph Based Knowledge Retrieval System", IEEE International Conference on Systems, Man and Cybernetics, 1990, pp. 269-275.
Karp, P. D., "A Generic Knowledge-Base Access Protocol", Available online at <http://lecture.cs.buu.ac.th/-f50353/Document/gfp. pdf $>$, May 12, 1994, 66 pages.
Katz, Boris, "A Three-Step Procedure for Language Generation", Massachusetts Institute of Technology, A.I. Memo No. 599, Dec. 1980, pp. 1-40.
Katz, Boris, "Annotating the World Wide Web Using Natural Language", Proceedings of the 5th RIAO Conference on Computer Assisted Information Searching on the Internet, 1997, 7 pages.

References Cited

OTHER PUBLICATIONS

Katz, S. M., "Estimation of Probabilities from Sparse Data for the Language Model Component of a Speech Recognizer", IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-35, No. 3, Mar. 1987, 3 pages.
Katz et al., "Exploiting Lexical Regularities in Designing Natural Language Systems", Proceedings of the 12th International Conference on Computational Linguistics, 1988, pp. 1-22.
Katz et al., "REXTOR: A System for Generating Relations from Natural Language", Proceedings of the ACL Workshop on Natural Language Processing and Information Retrieval (NLP\&IR), Oct. 2000, 11 pages.
Katz, Boris, "Using English for Indexing and Retrieving", Proceedings of the 1st RIAO Conference on User-Oriented Content-Based Text and Image Handling, 1988, pp. 314-332.
Kitano, H., "PhiDM-Dialog, An Experimental Speech-to-Speech Dialog Translation System", Computer, vol. 24, No. 6, Jun. 1991, 13 pages.
Klabbers et al., "Reducing Audible Spectral Discontinuities", IEEE Transactions on Speech and Audio Processing, vol. 9, No. 1, Jan. 2001, 13 pages.
Klatt et al., "Linguistic Uses of Segmental Duration in English: Acoustic and Perpetual Evidence", Journal of the Acoustical Society of America, vol. 59, No. 5, May 1976, 16 pages.
Knownav, "Knowledge Navigator", YouTube Video available at http://www.youtube.com/watch?v=QRH8eimU_20, Apr. 29, 2008, 1 page.
Kominek et al., "Impact of Durational Outlier Removal from Unit Selection Catalogs", 5th ISCA Speech Synthesis Workshop, Jun. 14-16, 2004, 6 pages.
Konolige, Kurt, "A Framework for a Portable Natural-Language Interface to Large Data Bases", SRI International, Technical Note 197, Oct. 12, 1979, 54 pages.
Kubala et al., "Speaker Adaptation from a Speaker-Independent Training Corpus", International Conference on Acoustics, Speech and Signal Processing (ICASSP'90), Apr. 1990, 4 pages.
Kubala et al., "The Hub and Spoke Paradigm for CSR Evaluation", Proceedings of the Spoken Language Technology Workshop, Mar. 1994, 9 pages.
Laird et al., "SOAR: An Architecture for General Intelligence", Artificial Intelligence, vol. 33, 1987, pp. 1-64.
Langley et al,, "A Design for the ICARUS Architechture", SIGART Bulletin, vol. 2, No. 4, 1991, pp. 104-109.
Larks, "Intelligent Software Agents", available at <http://www.cs. cmu.edu/~softagents/larks.html> retrieved on Mar. 15, 2013, 2 pages.
Lee et al., "A Real-Time Mandarin Dictation Machine for Chinese Language with Unlimited Texts and Very Large Vocabulary", International Conference on Acoustics, Speech and Signal Processing, vol. 1, Apr. 1990, 5 pages.
Lee et al., "Golden Mandarin (II) -An Improved Single-Chip Real-Time Mandarin Dictation Machine for Chinese Language with Very Large Vocabulary", IEEE International Conference of Acoustics, Speech and Signal Processing, vol. 2, 1993, 4 pages.
Lee et al., "Golden Mandarin (II) - An Intelligent Mandarin Dictation Machine for Chinese Character Input with Adaptation/Learning Functions", International Symposium on Speech, Image Processing and Neural Networks, Hong Kong, Apr. 1994, 5 pages.
Lee, K. F., "Large-Vocabulary Speaker-Independent Continuous Speech Recognition: The SPHINX System", Partial Fulfillment of the Requirements for the Degree of Doctorof Philosophy, Computer Science Department, Carnegie Mellon University, Apr. 1988, 195 pages.
Lee et al., "System Description of Golden Mandarin (I) Voice Input for Unlimited Chinese Characters", International Conference on Computer Processing of Chinese \& Oriental Languages, vol. 5, No. 3 \& 4, Nov. 1991, 16 pages.
Lemon et al., "Multithreaded Context for Robust Conversational Interfaces: Context-Sensitive Speech Recognition and Interpreta-
tion of Corrective Fragments", ACM Transactions on ComputerHuman Interaction, vol. 11, No. 3, Sep. 2004, pp. 241-267.
Leong et al., "CASIS: A Context-Aware Speech Interface System", Proceedings of the 10th International Conference on Intelligent User Interfaces, Jan. 2005, pp. 231-238.
Lieberman et al., "Out of Context: Computer Systems that Adapt to, and Learn from, Context", IBM Systems Journal, vol. 39, No. 3 \& 4, 2000, pp. 617-632.
Lin et al., "A Distributed Architecture for Cooperative Spoken Dialogue Agents with Coherent Dialogue State and History", Available on line at <http://citeseerx.ist.psu.edu/viewdoc/summary? doi=10.1.1.42.272>, 1999, 4 pages.
Lin et al., "A New Framework for Recognition of Mandarin Syllables with Tones Using Sub-syllabic Unites", IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP-93), Apr. 1993, 4 pages.
Linde et al., "An Algorithm for Vector Quantizer Design", IEEE Transactions on Communications, vol. 28, No. 1, Jan. 1980, 12 pages.
Liu et al., "Efficient Joint Compensation of Speech for the Effects of Additive Noise and Linear Filtering", IEEE International Conference of Acoustics, Speech and Signal Processing, ICASSP-92, Mar. 1992, 4 pages.
Logan et al., "Mel Frequency Cepstral Co-efficients for Music Modeling", International Symposium on Music Information Retrieval, 2000, 2 pages.
Lowerre, B. T., "The-Harpy Speech Recognition System", Doctoral Dissertation, Department of Computer Science, Carnegie Mellon University, Apr. 1976, 20 pages.
Maghbouleh, Arman, "An Empirical Comparison of Automatic Decision Tree and Linear Regression Models for Vowel Durations", Revised Version of a Paper Presented at the Computational Phonology in Speech Technology Workshop, 1996 Annual Meeting of the Association for Computational Linguistics in Santa Cruz, California, 7 pages.
Markel et al., "Linear Prediction of Speech", Springer-Verlag, Berlin, Heidelberg, New York, 1976, 12 pages.
Martin et al., "Building and Using Practical Agent Applications", SRI International, PAAM Tutorial, 1998, 78 pages.
Martin et al., "Building Distributed Software Systems with the Open Agent Architecture", Proceedings of the Third International Conference on the Practical Application of Intelligent Agents and Multi-Agent Technology, Mar. 1998, pp. 355-376.
Martin et al., "Development Tools for the Open Agent Architecture", Proceedings of the International Conference on the Practical Application of Intelligent Agents and Multi-Agent Technology, Apr. 1996, pp. 1-17.
Martin et al., "Information Brokering in an Agent Architecture", Proceedings of the Second International Conference on the Practical Application of Intelligent Agents and Multi-Agent Technology, Apr. 1997, pp. 1-20.
Martin et al., "Transportability and Generality in a Natural-Language Interface System", Proceedings of the Eighth International Joint Conference on Artificial Intelligence, Technical Note 293, Aug. 1983, 21 pages.
Martin et al., "The Open Agent Architecture: A Framework for Building Distributed Software Systems", Applied Artificial Intelligence: An International Journal, vol. 13, No. 1-2, available at http://adam.cheyer.com/papers/oaa.pdf>, retrieved from internet on Jan.-Mar. 1999.
Matiasek et al., "Tamic-P: A System for NL Access to Social Insurance Database", 4th International Conference on Applications of Natural Language to Information Systems, Jun. 1999, 7 pages. McGuire et al., "SHADE: Technology for Knowledge-Based Collaborative Engineering", Journal of Concurrent Engineering Applications and Research (CERA), 1993, 18 pages.
Meng et al., "Wheels: A Conversational System in the Automobile Classified Domain", Proceedings of Fourth International Conference on Spoken Language, ICSLP 96, vol. 1, Oct. 1996, 4 pages. Michos et al., "Towards an Adaptive Natural Language Interface to Command Languages", Natural Language Engineering, vol. 2, No. 3, 1996, pp. 191-209.

References Cited

OTHER PUBLICATIONS

Milstead et al., "Metadata: Cataloging by Any Other Name", available at <http://www.iicm.tugraz.at/thesis/cguetl_diss/literatur/ Kapite106/References/Milstead_et_al._1999/metadata.html>, Jan. 1999, 18 pages.
Milward et al., "D2.2: Dynamic Multimodal Interface Reconfiguration, Talk and Look: Tools for Ambient Linguistic Knowledge", available at <http://www.ihmc.us/users/nblaylock!Pubs/Files/talk d2.2.pdf>, Aug. 8, 2006, 69 pages.
Minker et al., "Hidden Understanding Models for Machine Translation", Proceedings of ETRW on Interactive Dialogue in MultiModal Systems, Jun. 1999, pp. 1-4.
Mitra et al., "A Graph-Oriented Model for Articulation of Ontology Interdependencies", Advances in Database Technology, Lecture Notes in Computer Science, vol. 1777, 2000, pp. 1-15.
Modi et al., "CMRadar: A Personal Assistant Agent for Calendar Management", AAAI, Intelligent Systems Demonstrations, 2004, pp. 1020-1021.
Moore et al., "Combining Linguistic and Statistical Knowledge Sources in Natural-Language Processing for ATIS", SRI International, Artificial Intelligence Center, 1995, 4 pages.
Moore, Robert C., "Handling Complex Queries in a Distributed Data Base", SRI International, Technical Note 170, Oct. 8, 1979, 38 pages.
Moore, Robert C., "Practical Natural-Language Processing by Computer", SRI International, Technical Note 251, Oct. 1981, 34 pages.
Moore et al., "SRI's Experience with the ATIS Evaluation", Proceedings of the Workshop on Speech and Natural Language, Jun. 1990, pp. 147-148.
Moore et al., "The Information Warfare Advisor: An Architecture for Interacting with Intelligent Agents Across the Web", Proceedings of Americas Conference on Information Systems (AMCIS), Dec. 31, 1998, pp. 186-188.
Moore, Robert C., "The Role of Logic in Knowledge Representation and Commonsense Reasoning", SRI International, Technical Note 264, Jun. 1982, 19 pages.
Moore, Robert C., "Using Natural-Language Knowledge Sources in Speech Recognition", SRI International, Artificial Intelligence Center, Jan. 1999, pp. 1-24.
Moran et al., "Intelligent Agent-Based User Interfaces", Proceedings of International Workshop on Human Interface Technology, Oct. 1995, pp. 1-4.
Moran et al., "Multimodal User Interfaces in the Open Agent Architecture", International Conference on Intelligent User Interfaces (IUI97), 1997, 8 pages.
Moran, Douglas B., "Quantifier Scoping in the SRI Core Language Engine", Proceedings of the 26th Annual Meeting on Association for Computational Linguistics, 1988, pp. 33-40.
Morgan, B., "Business Objects (Business Objects for Windows) Business Objects Inc.", DBMS, vol. 5, No. 10, Sep. 1992, 3 pages. Motro, Amihai, "Flex: A Tolerant and Cooperative User Interface to Databases", IEEE Transactions on Knowledge and Data Engineering, vol. 2, No. 2, Jun. 1990, pp. 231-246.
Mountford et al., "Talking and Listening to Computers", The Art of Human-Computer Interface Design, Apple Computer, Inc., Addi-son-Wesley Publishing Company, Inc., 1990, 17 pages.
Mozer, Michael C., "An Intelligent Environment must be Adaptive", IEEE Intelligent Systems, 1999, pp. 11-13.
Murty et al., "Combining Evidence from Residual Phase and MFCC Features for Speaker Recognition", IEEE Signal Processing Letters, vol. 13, No. 1, Jan. 2006, 4 pages.
Murveit et al., "Integrating Natural Language Constraints into HMM-Based Speech Recognition", International Conference on Acoustics, Speech and Signal Processing, Apr. 1990, 5 pages.
Murveit et al., "Speech Recognition in SRI's Resource Management and ATIS Systems", Proceedings of the Workshop on Speech and Natural Language, 1991, pp. 94-100.

Nakagawa et al., "Speaker Recognition by Combining MFCC and Phase Information", IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Mar. 2010, 4 pages. Naone, Erica, "TR10: Intelligent Software Assistant", Technology Review, Mar.-Apr. 2009, 2 pages.
Neches et al., "Enabling Technology for Knowledge Sharing", Fall, 1991, pp. 37-56.
Niesler et al., "A Variable-Length Category-Based N-Gram Language Model", IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'96), vol. 1, May 1996, 6 pages.
Noth et al., "Verbmobil: The Use of Prosody in the Linguistic Components of a Speech Understanding System", IEEE Transactions on Speech and Audio Processing, vol. 8, No. 5, Sep. 2000, pp. 519-532.
Odubiyi et al., "SAIRE-A Scalable Agent-Based Information Retrieval Engine", Proceedings of the First International Conference on Autonomous Agents, 1997, 12 pages.
Owei et al., "Natural Language Query Filtration in the Conceptual Query Language", IEEE, 1997, pp. 539-549.
Pannu et al., "A Learning Personal Agent for Text Filtering and Notification", Proceedings of the International Conference of Knowledge Based Systems, 1996, pp. 1-11.
Papadimitriou et al., "Latent Semantic Indexing: A Probabilistic Analysis", Available online at http://citeseerx.ist.psu.edu/messaqes/downloadsexceeded.html, Nov. 14, 1997, 21 pages.
Parson, T. W., "Voice and Speech Processing", Pitch and Formant Estimation, McGraw-Hill, Inc., ISBN: 0-07-0485541-0, 1987, 15 pages.
Parsons, T. W., "Voice and Speech Processing", Linguistics and Technical Fundamentals, Articulatory Phonetics and Phonemics, McGraw-Hill, Inc., ISBN: 0-07-0485541-0, 1987, 5 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US1993/012637, issued on Apr. 10, 1995, 7 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US1993/012666, issued on Mar. 1, 1995, 5 pages.
International Search Report received for PCT Patent Application No. PCT/US 1993/012666, mailed on Nov. 9, 1994, 8 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US1994/011011, issued on Feb. 28, 1996, 4 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US1994/11011, mailed on Feb. 8, 1995, 7 pages.
Shimazu et al., "CAPIT: Natural Language Interface Design Tool with Keyword Analyzer and Case-Based Parser", NEG Research \& Development, vol. 33, No. 4, Oct. 1992, 11 pages.
Shinkle, L., "Team User's Guide", SRI International, Artificial Intelligence Center, Nov. 1984, 78 pages.
Shklar et al., "InfoHarness: Use of Automatically Generated Metadata for Search and Retrieval of Heterogeneous Information", Proceedings of CAiSE'95, Finland, 1995, 14 pages.
Sigurdsson et al., "Mel Frequency Cepstral Co-efficients: An Evaluation of Robustness of MP3 Encoded Music", Proceedings of the 7th International Conference on Music Information Retrieval, 2006, 4 pages.
Silverman et al., "Using a Sigmoid Transformation for Improved Modeling of Phoneme Duration", Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Mar. 1999, 5 pages.
Simonite, Tom, "One Easy Way to Make Sin Smarter", Technology Review, Oct. 18, 2011, 2 pages.
Singh, N., "Unifying Heterogeneous Information Models", Communications of the ACM, 1998, 13 pages.
SRI International, "The Open Agent Architecture TM 1.0 Distribution", Open Agent Architecture (OAA), 1999, 2 pages.
Starr et al., "Knowledge-Intensive Query Processing", Proceedings of the 5th KRDB Workshop, Seattle, May 31, 1998, 6 pages.
Stent et al., "The CommandTalk Spoken Dialogue System", SRI International, 1999, pp. 183-190.

References Cited

OTHER PUBLICATIONS

Stern et al., "Multiple Approaches to Robust Speech Recognition", Proceedings of Speech and Natural Language Workshop, 1992, 6 pages.
Stickel, Mark E., "A Nonclausal Connection-Graph Resolution Theorem-Proving Program", Proceedings of AAAI'82, 1982, 5 pages.
Sugumaran, V., "A Distributed Intelligent Agent-Based Spatial Decision Support System", Proceedings of the Americas Conference on Information systems (AMCIS), Dec. 31, 1998, 4 pages.
Sycara et al., "Coordination of Multiple Intelligent Software Agents", International Journal of Cooperative Information Systems (IJCIS), vol. 5, No. $2 \& 3,1996,31$ pages.
Sycara et al., "Distributed Intelligent Agents", IEEE Expert, vol. 11, No. 6, Dec. 1996, 32 pages.
Sycara et al., "Dynamic Service Matchmaking among Agents in Open Information Environments", SIGMOD Record, 1999, 7 pages. Sycara et al., "The RETSINA MAS Infrastructure", Autonomous Agents and Multi-Agent Systems, vol. 7, 2003, 20 pages.
Tenenbaum et al., "Data Structure Using Pascal", Prentice-Hall, Inc., 1981, 34 pages.
TextnDrive, "Text'nDrive App Demo-Listen and Reply to your Messages by Voice while Driving!", YouTube Video available at http://www.youtube.com/watch?v=WaGfzoHsAMw, Apr. 27, 2010, 1 page.
Tofel, Kevin C., "SpeakTolt: A Personal Assistant for Older iPhones, iPads", Apple News, Tips and Reviews, Feb. 9, 2012, 7 pages.
Tsai et al., "Attributed Grammar-A Tool for Combining Syntactic and Statistical Approaches to Pattern Recognition", IEEE Transactions on Systems, Man and Cybernetics, vol. SMC-10, No. 12, Dec. 1980, 13 pages.
Tucker, Joshua, "Too Lazy to Grab Your TV Remote? Use Siri Instead", Engadget, Nov. 30, 2011, 8 pages.
Tur et al., "The CALO Meeting Assistant System", IEEE Transactions on Audio, Speech and Language Processing, vol. 18, No. 6, Aug. 2010, pp. 1601-1611.
Tur et al., "The CALO Meeting Speech Recognition and Understanding System", Proc. IEEE Spoken Language Technology Workshop, 2008, 4 pages.
Tyson et al., "Domain-Independent Task Specification in the TACITUS Natural Language System", SRI International, Artificial Intelligence Center, May 1990, 16 pages.
Udell, J., "Computer Telephony", BYTE, vol. 19, No. 7, Jul. 1994, 9 pages.
Van Santen, J. P.H., "Contextual Effects on Vowel Duration", Journal Speech Communication, vol. 11, No. 6, Dec. 1992, pp. 513-546.
Vepa et al., "New Objective Distance Measures for Spectral Discontinuities in Concatenative Speech Synthesis", Proceedings of the IEEE 2002 Workshop on Speech Synthesis, 2002, 4 pages.
Verschelde, Jan, "MATLAB Lecture 8, Special Matrices in MATLAB", UIC, Dept. of Math, Stat. \& CS, MCS 320, Introduction to Symbolic Computation, 2007, 4 pages.
Vingron, Martin, "Near-Optimal Sequence Alignment", Current Opinion in Structural Biology, vol. 6, No. 3, 1996, pp. 346-352.
Vlingo, "Vlingo Launches Voice Enablement Application on Apple App Store", Press Release, Dec. 3, 2008, 2 pages.
Vlingo InCar, "Distracted Driving Solution with Vlingo InCar", YouTube Video, Available online at <http://www.youtube.com/ watch?v=Vqs8XfXxgz4>, Oct. 2010, 2 pages.
Voiceassist, "Send Text, Listen to and Send E-Mail by Voice", YouTube Video, Available online at <http://www.youtube.com/ watch?v=0tEU61nHHA4>, Jul. 30, 2009, 1 page.
VoiceontheGo, "Voice on the Go (BlackBerry)", YouTube Video, available online at <http://www.youtube.com/ watch?v=pJqWgQS98w>, Jul. 27, 2009, 1 page.
Wahlster et al., "Smartkom: Multimodal Communication with a Life-Like Character", Eurospeech-Scandinavia, 7th European Conference on Speech Communication and Technology, 2001, 5 pages.

Waldinger et al., "Deductive Question Answering from Multiple Resources", New Directions in Question Answering, Published by AAAI, Menlo Park, 2003, 22 pages.
Walker et al., "Natural Language Access to Medical Text", SRI International, Artificial Intelligence Center, Mar. 1981, 23 pages. Waltz, D., "An English Language Question Answering System for a Large Relational Database", ACM, vol. 21, No. 7, 1978, 14 pages. Ward et al., "A Class Based Language Model for Speech Recognition", IEEE, 1996, 3 pages.
Ward et al., "Recent Improvements in the CMU Spoken Language Understanding System", ARPA Human Language Technology Workshop, 1994, 4 pages.
Ward, Wayne, "The CMU Air Travel Information Service: Understanding Spontaneous Speech", Proceedings of the Workshop on Speech and Natural Language, HLT '90, 1990, pp. 127-129.
Warren et al., "An Efficient Easily Adaptable System for Interpreting Natural Language Queries", American Journal of Computational Linguistics, vol. 8, No. 3-4, 1982, 11 pages.
Weizenbaum, J., "ELIZA - A Computer Program for the Study of Natural Language Communication Between Man and Machine", Communications of the ACM, vol. 9, No. 1, Jan. 1966, 10 pages. Werner et al., "Prosodic Aspects of Speech, Universite de Lausanne", Fundamentals of Speech Synthesis and Speech Recognition: Basic Concepts, State of the Art and Future Challenges, 1994, 18 pages.
Winiwarter et al., "Adaptive Natural Language Interfaces to FAQ Knowledge Bases", Proceedings of 4th International Conference on Applications of Natural Language to Information Systems, Austria, Jun. 1999, 22 pages.
Wolff, M., "Post Structuralism and the ARTFUL Database: Some Theoretical Considerations", Information Technology and Libraries, vol. 13, No. 1, Mar. 1994, 10 pages.
Wu, M., "Digital Speech Processing and Coding", Multimedia Signal Processing, Lecture-2 Course Presentation, University of Maryland, College Park, 2003, 8 pages.
Wu et al., "KDA: A Knowledge-Based Database Assistant", Proceeding of the Fifth International Conference on Engineering (IEEE Cat.No. 89CH2695-5), 1989, 8 pages.
Wu, M., "Speech Recognition, Synthesis, and H.C.I.", Multimedia Signal Processing, Lecture-3 Course Presentation, University of Maryland, College Park, 2003, 11 pages.
Wyle, M. F., "A Wide Area Network Information Filter", Proceedings of First International Conference on Artificial Intelligence on Wall Street, Oct. 1991, 6 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US 1995/008369, issued on Oct. 9, 1996, 4 pages.
International Search Report received for PCT Patent Application No. PCT/US1995/008369, mailed on Nov. 8, 1995, 6 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2010/037378, mailed on Aug. 25, 2010, 14 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2011/020861, mailed on Nov. 29, 2011, 12 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/040571, mailed on Nov. 16, 2012, 14 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/056382, mailed on Dec. 20, 2012, 11 pages.
Pereira, Fernando, "Logic for Natural Language Analysis", SRI International, Technical Note 275, Jan. 1983, 194 pages.
Perrault et al., "Natural-Language Interfaces", SRI International, Technical Note 393, Aug. 22, 1986, 48 pages.
Phoenix Solutions, Inc., "Declaration of Christopher Schmandt Regarding the MIT Galaxy System", West Interactive Corp., A Delaware Corporation, Document 40, Jul. 2, 2010, 162 pages.
Picone, J., "Continuous Speech Recognition using Hidden Markov Models", IEEE ASSP Magazine, vol. 7, No. 3, Jul. 1990, 16 pages. Pulman et al., "Clare: A Combined Language and Reasoning Engine", Proceedings of JFIT Conference, available at <http:// www.cam.sri.com/tr/crc042/paper.ps. $Z>$, 1993, 8 pages.

References Cited

OTHER PUBLICATIONS

Rabiner et al., "Fundamental of Speech Recognition", AT\&T, Published by Prentice-Hall, Inc., ISBN: 0-13-285826-6, 1993, 17 pages.
Rabiner et al., "Note on the Properties of a Vector Quantizer for LPC Coefficients", Bell System Technical Journal, vol. 62, No. 8, Oct 1983, 9 pages.
Ratcliffe, M., "ClearAccess 2.0 Allows SQL Searches Off-Line (Structured Query Language) (ClearAccess Corp. Preparing New Version of Data-Access Application with Simplified User Interface, New Features) (Product Announcement)", MacWeek, vol. 6, No. 41, Nov. 16, 1992, 2 pages.
Ravishankar, Mosur K., "Efficient Algorithms for Speech Recognition", Doctoral Thesis Submitted to School of Computer Science, Computer Science Division, Carnegie Mellon University, Pittsburgh, May 15, 1996, 146 pages.
Rayner, M., "Abductive Equivalential Translation and its Application to Natural Language Database Interfacing", Dissertation Paper, SRI International, Sep. 1993, 162 pages.
Rayner et al., "Adapting the Core Language Engine to French and Spanish", Cornell University Library, available at <http:1/arxiv.org/ abs/cmp-lg/9605015>, May 10, 1996, 9 pages.
Rayner et al., "Deriving Database Queries from Logical Forms by Abductive Definition Expansion", Proceedings of the Third Conference on Applied Natural Language Processing, ANLC, 1992, 8 pages.
Rayner, Manny, "Linguistic Domain Theories: Natural-Language Database Interfacing from First Principles", SRI International, Cambridge, 1993, 11 pages.
Rayner et al., "Spoken Language Translation with Mid-90's Technology: A Case Study", Eurospeech, ISCA, Available online at <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.
8608>, 1993, 4 pages.
Remde et al., "SuperBook: An Automatic Tool for Information Exploration-Hypertext?", In Proceedings of Hypertext, 87 Papers, Nov. 1987, 14 pages.
Reynolds, C. F., "On-Line Reviews: A New Application of the HICOM Conferencing System", IEEE Colloquium on Human Factors in Electronic Mail and Conferencing Systems, Feb. 3, 1989, 4 pages.
Rice et al., "Monthly Program: Nov. 14, 1995", The San Francisco Bay Area Chapter of ACM SIGCHI, available at <http://www. baychi.org/calendar/19951114>, Nov. 14, 1995, 2 pages.
Rice et al., "Using the Web Instead of a Window System", Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI'96, 1996, pp. 1-14.
Rigoll, G., "Speaker Adaptation for Large Vocabulary Speech Recognition Systems Using Speaker Markov Models", International Conference on Acoustics, Speech and Signal Processing (ICASSP'89), May 1989, 4 pages.
Riley, M D., "Tree-Based Modelling of Segmental Durations", Talking Machines Theories, Models and Designs, Elsevier Science Publishers B.V., North-Holland, ISBN: 08-444-89115.3, 1992, 15 pages.
Rivlin et al., "Maestro: Conductor of Multimedia Analysis Technologies", SRI International, 1999, 7 pages.
Rivoira et al., "Syntax and Semantics in a Word-Sequence Recognition System", IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’79), Apr. 1979, 5 pages.
Roddy et al., "Communication and Collaboration in a Landscape of B2B eMarketplaces", VerticalNet Solutions, White Paper, Jun. 15, 2000, 23 pages.
Rosenfeld, R., "A Maximum Entropy Approach to Adaptive Statistical Language Modelling", Computer Speech and Language, vol. 10, No. 3, Jul. 1996, 25 pages.
Roszkiewicz, A., "Extending your Apple", Back Talk-Lip Service, A+ Magazine, The Independent Guide for Apple Computing, vol. 2, No. 2, Feb. 1984, 5 pages.

Rudnicky et al., "Creating Natural Dialogs in the Carnegie Mellon Communicator System", Proceedings of Eurospeech, vol. 4, 1999, pp. 1531-1534.
Russell et al., "Artificial Intelligence, A Modern Approach", Prentice Hall, Inc., 1995, 121 pages.
Sacerdoti et al., "A Ladder User's Guide (Revised)", SRI International Artificial Intelligence Center, Mar. 1980, 39 pages.
Sagalowicz, D., "AD-Ladder User's Guide", SRI International, Sep. 1980, 42 pages.
Sakoe et al., "Dynamic Programming Algorithm Optimization for Spoken Word Recognition", IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-26, No. 1, Feb. 1978, 8 pages.
Salton et al., "On the Application of Syntactic Methodologies in Automatic Text Analysis", Information Processing and Management, vol. 26, No. 1, Great Britain, 1990, 22 pages.
Sameshima et al., "Authorization with Security Attributes and Privilege Delegation Access control beyond the ACL", Computer Communications, vol. 20, 1997, 9 pages.
San-Segundo et al., "Confidence Measures for Dialogue Management in the CU Communicator System", Proceedings of Acoustics, Speech and Signal Processing (ICASSP'00), Jun. 2000, 4 pages.
Sato, H., "A Data Model, Knowledge Base and Natural Language Processing for Sharing a Large Statistical Database", Statistical and Scientific Database Management, Lecture Notes in Computer Science, vol. 339, 1989, 20 pages.
Savoy, J., "Searching Information in Hypertext Systems Using Multiple Sources of Evidence", International Journal of ManMachine Studies, vol. 38, No. 6, Jun. 1996, 15 pages.
Scagliola, C., "Language Models and Search Algorithms for RealTime Speech Recognition", International Journal of Man-Machine Studies, vol. 22, No. 5, 1985, 25 pages.
Schmandt et al., "Augmenting a Window System with Speech Input", IEEE Computer Society, Computer, vol. 23, No. 8, Aug. 1990, 8 pages.
Schnelle, Dirk, "Context Aware Voice User Interfaces for Workflow Support", Dissertation paper, Aug. 27, 2007, 254 pages.
Schütze, H., "Dimensions of Meaning", Proceedings of Supercomputing'92 Conference, Nov. 1992, 10 pages.
Seneff et al., "A New Restaurant Guide Conversational System: Issues in Rapid Prototyping for Specialized Domains", Proceedings of Fourth International Conference on Spoken Language, vol. 2, 1996, 4 pages.
Sharoff et al., "Register-Domain Separation as a Methodology for Development of Natural Language Interfaces to Databases", Proceedings of Human-Computer Interaction (INTERACT'99), 1999, 7 pages.
Sheth et al., "Evolving Agents for Personalized Information Filtering", Proceedings of the Ninth Conference on Artificial Intelligence for Applications, Mar. 1993, 9 pages.
Sheth et al., "Relationships at the Heart of Semantic Web: Modeling, Discovering, and Exploiting Complex Semantic Relationships", Enhancing the Power of the Internet: Studies in Fuzziness and Soft Computing, Oct. 13, 2002, pp. 1-38.
Shikano et al., "Speaker Adaptation through Vector Quantization", IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'86), vol. 11, Apr. 1986, 4 pages.
Apple Computer, Inc., "iTunes 2: Specification Sheet", 2001, 2 pages.
Apple Computer, Inc., "iTunes, Playlist Related Help Screens", iTunes v1.0, 2000-2001, 8 pages.
Apple Computer, Inc., "QuickTime Movie Playback Programming Guide", Aug. 11, 2005, pp. 1-58.
Apple Computer, Inc., "QuickTime Overview", Aug. 11, 2005, pp. 1-34.
Apple Computer, Inc., "Welcome to Tiger", available at <http:// www.maths.dundee.ac.uk/software/Welcome_to_Mac_OS_X_ v10.4_Tiger.pdf>, 2005, pp. 1-32.
"Corporate Ladder", BLOC Publishing Corporation, 1991, 1 page. Arango et al., "Touring Machine: A Software Platform for Distributed Multimedia Applications", 1992 IFIP International Conference on Upper Layer Protocols, Architectures, and Applications, May 1992, pp. 1-11.

References Cited

OTHER PUBLICATIONS

Arons, Barry M., "The Audio-Graphical Interface to a Personal Integrated Telecommunications System", Thesis Submitted to the Department of Architecture at the Massachusetts Institute of Technology, Jun. 1984, 88 pages.
Badino et al., "Language Independent Phoneme Mapping for Foreign TTS", 5th ISCA Speech Synthesis Workshop, Pittsburgh, PA, Jun. 14-16, 2004, 2 pages.
Baechtle et al., "Adjustable Audio Indicator", IBM Technical Disclosure Bulletin, Jul. 1, 1984, 2 pages.
Baeza-Yates, Ricardo, "Visualization of Large Answers in Text Databases", AVI '96 Proceedings of the Workshop on Advanced Visual Interfaces, 1996, pp. 101-107.
Bahl et al., "Recognition of a Continuously Read Natural Corpus", IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 3, Apr. 1978, pp. 422-424.
Bajarin, Tim, "With Low End Launched, Apple Turns to Portable Future", PC Week, vol. 7, Oct. 1990, p. 153(1).
Barthel, B., "Information Access for Visually Impaired Persons: Do We Still Keep a "Document" in "Documentation"?", Professional Communication Conference, Sep. 1995, pp. 62-66.
Baudel et al., " 2 Techniques for Improved HC Interaction: Toolglass \& Magic Lenses: The See-Through Interface", Apple Inc., Video Clip, CHI'94 Video Program on a CD, 1994.
Beck et al., "Integrating Natural Language, Query Processing, and Semantic Data Models", COMCON Spring '90. IEEE Computer Society International Conference, 1990, Feb. 26-Mar. 2, 1990, pp. 538-543.
Bederson et al., "Pad++: A Zooming Graphical Interface for Exploring Alternate Interface Physics", UIST'94 Proceedings of the 7th Annual ACM symposium on User Interface Software and Technology, Nov. 1994, pp. 17-26.
Bederson et al., "The Craft of Information Visualization", Elsevier Science, Inc., 2003, 435 pages.
"Diagrammaker", Action Software, 1989.
"Diagram-Master", Ashton-Tate, 1989.
Benel et al., "Optimal Size and Spacing of Touchscreen Input Areas", Human-Computer Interaction-INTERACT, 1987, pp. 581-585.
Beringer et al., "Operator Behavioral Biases Using High-Resolution Touch Input Devices", Proceedings of the Human Factors and Ergonomics Society 33rd Annual Meeting, 1989, 3 pages.
Beringer, Dennis B., "Target Size, Location, Sampling Point and Instruction Set: More Effects on Touch Panel Operation", Proceedings of the Human Factors and Ergonomics Society 34th Annual Meeting, 1990, 5 pages.
Bernabei et al., "Graphical I/O Devices for Medical Users", 14th Annual International Conference of the IEEE on Engineering in Medicine and Biology Society, vol. 3, 1992, pp. 834-836.
Bernstein, Macrophone, "Speech Corpus", IEEE/ICASSP, Apr. 22, 1994, pp. 1-81 to 1-84.
Berry et al., "Symantec", New version of more.tm, Apr. 10, 1990, 1 page.
Best Buy, "When it Comes to Selecting a Projection TV, Toshiba Makes Everything Perfectly Clear", Previews of New Releases, available at <http://www.bestbuy.com/HomeAudioVideo/Specials/ ToshibaTVFeatures.asp>, retrieved on Jan. 23, 2003, 5 pages. Betts et al., "Goals and Objectives for User Interface Software", Computer Graphics, vol. 21, No. 2, Apr. 1987, pp. 73-78.
Biemann, Chris, "Unsupervised Part-of-Speech Tagging Employing Efficient Graph Clustering", Proceeding COLING ACL '06 Proceedings of the 21 st International Conference on computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop, 2006, pp. 7-12. Bier et al., "Toolglass and Magic Lenses: The See-Through Interface", Computer Graphics (SIGGRAPH '93 Proceedings), vol. 27, 1993, pp. 73-80.
Birrell, Andrew, "Personal Jukebox (PJB)", available at <http:// birrell.org/andrew/talks/pjb-overview.ppt>, Oct. 13, 2000, 6 pages.

Black et al., "Multilingual Text-to-Speech Synthesis", Acoustics, Speech and Signal Processing (ICASSP'04) Proceedings of the IEEE International Conference, vol. 3, May 17-21, 2004, 4 pages. Bleher et al., "A Graphic Interactive Application Monitor", IBM Systems Journal, vol. 19, No. 3, Sep. 1980, pp. 382-402.
Bluetooth PC Headsets, "'Connecting' Your Bluetooth Headset with Your Computer", Enjoy Wireless VoIP Conversations, available at http://www.bluetoothpcheadsets.com/connect.htm>, retrieved on Apr. 29, 2006, 4 pages.
Bocchieri et al., "Use of Geographical Meta-Data in ASR Language and Acoustic Models", IEEE International Conference on Acoustics Speech and Signal Processing, 2010, pp. 5118-5121.
Bociurkiw, Michael, "Product Guide: Vanessa Matz", available at http://www.forbes.com/asap/2000/1127/vmartz_print.html, retrieved on Jan. 23, 2003, 2 pages.
"Glossary of Adaptive Technologies; Word Prediction", available at http://www.utoronto.ca/atrc/reference/techwordpred.html, retrieved on Dec. 6, 2005, 5 pages.
Borenstein, Nathaniel S., "Cooperative Work in the Andrew Message System", Information Technology Center and Computer Science Department, Carnegie Mellon University; Thyberg, Chris A. Academic Computing, Carnegie Mellon University, 1988, pp. 306323.

Boy, Guy A., "Intelligent Assistant Systems", Harcourt Brace Jovanovicy, 1991, 1 page.
"iAP Sports Lingo 0x09 Protocol V1.00", May 1, 2006, 17 pages. Brown et al., "Browing Graphs Using a Fisheye View", Apple Inc., Video Clip, Systems Research Center, CHI '92 Continued Proceedings on a CD, 1992.
Brown et al., "Browsing Graphs Using a Fisheye View", CHI '93 Proceedings of the INTERACT '93 and CHI '93 Conference on Human Factors in Computing Systems, 1993, p. 516.
Burger, D., "Improved Access to Computers for the Visually Handicapped: New Prospects and Principles", IEEE Transactions on Rehabilitation Engineering, vol. 2, No. 3, Sep. 1994, pp. 111-118. "IEEE 1394 (Redirected from Firewire", Wikipedia, The Free Encyclopedia, available at <http://www.wikipedia.org/wiki/ Firewire>, retrieved on Jun. 8, 2003, 2 pages.
Butler, Travis, "Archos Jukebox 6000 Challenges Nomad Jukebox", available at http://tidbits.com/article/6521, Aug. 13, 2001, 5 pages.
Butler, Travis, "Portable MP3: The Nomad Jukebox", available at $<$ http://tidbits.com/article/6261>, Jan. 8, 2001, 4 pages.
Buxton et al., "EuroPARC's Integrated Interactive Intermedia Facility (IIIF): Early Experiences", Proceedings of the IFIP WG 8.4 Conference on Multi-User Interfaces and Applications, 1990, pp. 11-34.
CALL Centre, "Word Prediction", The CALL Centre \& Scottish Executive Education Dept., 1999, pp. 63-73.
Campbell et al., "An Expandable Error-Protected 4800 BPS CELP Coder (U.S. Federal Standard 4800 BPS Voice Coder)", (Proceedings of IEEE Int'1 Acoustics, Speech, and Signal Processing Conference, May 1983), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 328-330.
Card et al., "Readings in Information Visualization Using Vision to Think", Interactive Technologies, 1999, 712 pages.
Carpendale et al., "3-Dimensional Pliable Surfaces: For the Effective Presentation of Visual Information", UIST '95 Proceedings of the 8th Annual ACM Symposium on User Interface and Software Technology, Nov. 14-17, 1995, pp. 217-226.
Carpendale et al., "Extending Distortion Viewing from 2D to 3D", IEEE Computer Graphics and Applications, Jul./Aug. 1997, pp. 42-51.
Carpendale et al., "Making Distortions Comprehensible", IEEE Proceedings of Symposium on Visual Languages, 1997, 10 pages. Casner et al., "N-Way Conferencing with Packet Video", The Third International Workshop on Packet Video, Mar. 22-23, 1990, pp. 1-6. Chakarova et al., "Digital Still Cameras-Downloading Images to a Computer", Multimedia Reporting and Convergence, available at <http://journalism.berkeley.edu/multimedia/tutorials/stillcams/ downloading.html>, retrieved on May 9, 2005, 2 pages.

References Cited

OTHER PUBLICATIONS

Chartier, David, "Using Multi-Network Meebo Chat Service on Your iPhone", available at http://www.tuaw.com/2007/07/04/us-ing-multi-network-meebo-chat-service-on-your-iphone/, Jul. 4, 2007, 5 pages.
Extended European Search Report (includes European Search Report and European Search Opinion) received for European Patent Application No. 06256215.2 , mailed on Feb. 20, 2007, 6 pages. Extended European Search Report (includes Supplementary European Search Report and Search Opinion) received for European Patent Application No. 07863218.9, mailed on Dec. 9, 2010, 7 pages.
Extended European Search Report (includes European Search Report and European Search Opinion) received for European Patent Application No. 12186113.2, mailed on Apr. 28, 2014, 14 pages. Abcom Pty. Ltd. "12.1" 925 Candela Mobile PC", LCDHardware. com, available at <http://www.lcdhardware.com/panel/12_1 panel/default.asp.>, retrieved on Dec. 19, 2002, 2 pages.
Cisco Systems, Inc., "Cisco Unity Unified Messaging User Guide", Release 4.0(5), Apr. 14, 2005, 152 pages.
Cisco Systems, Inc., "Installation Guide for Cisco Unity Unified Messaging with Microsoft Exchange 2003/2000 (With Failover Configured)", Release 4.0(5), Apr. 14, 2005, 152 pages.
Cisco Systems, Inc., "Operations Manager Tutorial, Cisco's IPC Management Solution", 2006, 256 pages.
Coleman, David W., "Meridian Mail Voice Mail System Integrates Voice Processing and Personal Computing", Speech Technology, vol. 4, No. 2, Mar./Apr. 1988, pp. 84-87.
Compaq, "Personal Jukebox", available at $<\mathrm{http}: / /$ research compaq. com/SRC/pjb/>, 2001, 3 pages.
Compaq Inspiration Technology, "Personal Jukebox (PJB)-Systems Research Center and PAAD", Oct. 13, 2000, 25 pages
Conkie et al., "Preselection of Candidate Units in a Unit SelectionBased Text-to-Speech Synthesis System", ISCA, 2000, 4 pages. Conklin, Jeffrey, "A Survey of Hypertext" MCC Software Technology Program, Dec. 1987, 40 pages.
Copperi et al., "CELP Coding for High Quality Speech at $8 \mathrm{kbits} / \mathrm{s}$ ", Proceedings of IEEE International Acoustics, Speech and Signal Processing Conference, Apr. 1986), as reprinted in Vector Quantization (IEEE Press), 1990, pp. 324-327.
Corr, Paul, "Macintosh Utilities for Special Needs Users", available at <http://homepage.mac.com/corrp/macsupt/columns/specneeds. html>, Feb. 1994 (content updated Sep. 19, 1999), 4 pages.
Creative, "Creative NOMAD MuVo", available at <http://web. archive.org/web/20041024075901/www.creative.com/products/ product.asp?category $=213 \&$ subcategory $=216 \&$ product $=4983>$, retrieved on Jun. 7, 2006, 1 page.
Creative, "Creative NOMAD MuVo TX", available at <http://web. archive.org/web/20041024175952/www.creative.com/products/ pfriendly.asp?product $=9672>$, retrieved on Jun. $6,2006,1$ page. Creative, "Digital MP3 Player", available at <http://web.archive. org/web/20041024074823/www.creative.com/products/product. asp?category=213\&subcategory=216\&product=4983, 2004, 1 page.
Creative Technology Ltd., "Creative NOMAD®: Digital Audio Player: User Guide (On-Line Version)", available at <http://ec1. images-amazon.com/media/i3d/01/A/man-migrate/
MANUAL000010757.pdf $>$, Jun. 1999, 40 pages.
Creative Technology Ltd., "Creative NOMAD® II: Getting Started-User Guide (On Line Version)", available at <http://ec1. images-amazon.com/media/i3d/01/A/man-migrate/
MANUAL000026434.pdf>, Apr. 2000, 46 pages.
Creative Technology Ltd., "Nomad Jukebox", User Guide, Version 1.0, Aug. 2000, 52 pages.

Croft et al., "Task Support in an Office System", Proceedings of the Second ACM-SIGOA Conference on Office Information Systems, 1984, pp. 22-24.
Crowley et al., "MMConf: An Infrastructure for Building Shared Multimedia Applications", CSCW 90 Proceedings, Oct. 1990, pp. 329-342.

Cuperman et al., "Vector Predictive Coding of Speech at 16 kbit s / s ", (IEEE Transactions on Communications, Jul. 1985), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 300-311
ABF Software, "Lens-Magnifying Glass 1.5", available at <http:// download.com/3000-2437-10262078.html?tag=1st-0-1>, retrieved on Feb. 11, 2004, 1 page.
Davis et al., "Stone Soup Translation", Department of Linguistics, Ohio State University, 2001, 11 pages.
De Herrera, Chris, "Microsoft ActiveSync 3.1", Version 1.02, available at http://www.cewindows.net/wce/activesync3.1.htm, Oct. 13, 2000, 8 pages.
Degani et al., "'Soft' Controls for Hard Displays: Still a Challenge", Proceedings of the 36th Annual Meeting of the Human Factors Society, 1992, pp. 52-56.
Del Strother, Jonathan, "Coverflow", available at <http://www. steelskies.com/coverflow>, retrieved on Jun. 15, 2006, 14 pages.
Diamond Multimedia Systems, Inc., "Rio PMP300: User's Guide", available at <http://ec1.images-amazon.com/media/i3d/01/A/manmigrate/MANUAL000022854.pdf $>$, 1998, 28 pages.
Dickinson et al., "Palmtips: Tiny Containers for All Your Data", PC Magazine, vol. 9, Mar. 1990, p. 218(3).
Digital Equipment Corporation, "OpenVMS RTL DECtalk (DTK\$) Manual", May 1993, 56 pages.
Donahue et al., "Whiteboards: A Graphical Database Tool", ACM Transactions on Office Information Systems, vol. 4, No. 1, Jan. 1986, pp. 24-41.
Dourish et al., "Portholes: Supporting Awareness in a Distributed Work Group", CHI 1992;, May 1992, pp. 541-547.
Abut et al., "Low-Rate Speech Encoding Using Vector Quantization and Subband Coding", (Proceedings of the IEEE International Acoustics, Speech and Signal Processing Conference, Apr. 1986), as reprinted in Vector Quantization IEEE Press, 1990, pp. 312-315.
dyslexic.com, "AlphaSmart 3000 with CoWriter SmartApplet: Don Johnston Special Needs", available at <http://www.dyslexic.com/ procuts.php?catid-2\&pid $=465 \&$ PHPSESSID $=2511 \mathrm{~b} 800000 \mathrm{f} 7 \mathrm{da}>$, retrieved on Dec. 6, 2005, 13 pages.
Edwards, John R., "Q\&A: Integrated Software with Macros and an Intelligent Assistant", Byte Magazine, vol. 11, No. 1, Jan. 1986, pp. 120-122.
Egido, Carmen, "Video Conferencing as a Technology to Support Group Work: A Review of its Failures", Bell Communications Research, 1988, pp. 13-24.
Elliot, Chip, "High-Quality Multimedia Conferencing Through a Long-Haul Packet Network", BBN Systems and Technologies, 1993, pp. 91-98.
Elliott et al., "Annotation Suggestion and Search for Personal Multimedia Objects on the Web", CIVR, Jul. 7-9, 2008, pp. 75-84. Elofson et al., "Delegation Technologies: Environmental Scanning with Intelligent Agents", Jour. of Management Info. Systems, Summer 1991, vol. 8, No. 1, 1991, pp. 37-62.
Eluminx, "Illuminated Keyboard", available at <http://www. elumix.com/>, retrieved on Dec. 19, 2002, 1 page.
Engst, Adam C., "SoundJam Keeps on Jammin"", available at http://db.tidbits.com/getbits.acgi?tbart=05988, Jun. 19, 2000, 3 pages.
Ericsson Inc., "Cellular Phone with Integrated MP3 Player", Research Disclosure Journal No. 41815, Feb. 1999, 2 pages.
Eslambolchilar et al., "Making Sense of Fisheye Views", Second Dynamics and Interaction Workshop at University of Glasgow, Aug. 2005, 6 pages.
Eslambolchilar et al., "Multimodal Feedback for Tilt Controlled Speed Dependent Automatic Zooming", UIST'04, Oct. 24-27, 2004, 2 pages.
Fanty et al., "A Comparison of DFT, PLP and Cochleagram for Alphabet Recognition", IEEE, Nov. 1991.
Findlater et al., "Beyond QWERTY: Augmenting Touch-Screen Keyboards with Multi-Touch Gestures for Non-Alphanumeric Input", CHI '12, Austin, Texas, USA, May 5-10, 2012, 4 pages. Fisher et al., "Virtual Environment Display System", Interactive 3D Graphics, Oct. 23-24, 1986, pp. 77-87.

References Cited

OTHER PUBLICATIONS

Forsdick, Harry, "Explorations into Real-Time Multimedia Conferencing", Proceedings of the Ifip Tc 6 International Symposium on Computer Message Systems, 1986, 331 pages.
Furnas et al., "Space-Scale Diagrams: Understanding Multiscale Interfaces", CHI '95 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 1995, pp. 234-241.
Furnas, George W., "Effective View Navigation", Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, Mar. 1997, pp. 367-374.
Furnas, George W., "Generalized Fisheye Views", CHI '86 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, vol. 17, No. 4, Apr. 1986, pp. 16-23.
Furnas, George W., "The Fisheye Calendar System", Bellcore Technical Memorandum, Nov. 19, 1991.
Gardner, Jr., P. C., "A System for the Automated Office Environment", IBM Systems Journal, vol. 20, No. 3, 1981, pp. 321-345.
Garretson, R., "IBM Adds 'Drawing Assistant' Design Tool to Graphic Series", PC Week, vol. 2, No. 32, Aug. 13, 1985, 1 page. Gaver et al., "One Is Not Enough: Multiple Views in a Media Space", INTERCHI, Apr. 24-29, 1993, pp. 335-341.
Gaver et al., "Realizing a Video Environment: EuroPARC's RAVE System", Rank Xerox Cambridge EuroPARC, 1992, pp. 27-35.
Giachin et al., "Word Juncture Modeling Using Inter-Word ContextDependent Phone-Like Units", Cselt Technical Reports, vol. 20, No. 1, Mar. 1992, pp. 43-47.
Gillespie, Kelly, "Adventures in Integration", Data Based Advisor, vol. 9, No. 9, Sep. 1991, pp. 90-92.
Gillespie, Kelly, "Internationalize Your Applications with Unicode", Data Based Advisor, vol. 10, No. 10, Oct. 1992, pp. 136-137. Gilloire et al., "Innovative Speech Processing for Mobile Terminals: An Annotated Bibliography", Signal Processing, vol. 80, No. 7, Jul. 2000, pp. 1149-1166.
Glinert-Stevens, Susan, "Microsoft Publisher: Desktop Wizardry", PC Sources, vol. 3, No. 2, Feb. 1992, 1 page.
Gmail, "About Group Chat", available at <http://mail.google.com/ support/bin/answer.py?answer=81090>, Nov. 26, 2007, 2 pages.
Goldberg, Cheryl, "IBM Drawing Assistant: Graphics for the EGA", PC Magazine, vol. 4, No. 26, Dec. 24, 1985, 1 page.
Good et al., "Building a User-Derived Interface", Communications of the ACM; (Oct. 1984) vol. 27, No. 10, Oct. 1984, pp. 1032-1043 Gray et al., "Rate Distortion Speech Coding with a Minimum Discrimination Information Distortion Measure", (IEEE Transactions on Information Theory, Nov. 1981), as reprinted in Vector Quantization (IEEE Press), 1990, pp. 208-221.
Greenberg, Saul, "A Fisheye Text Editor for Relaxed-WYSIWIS Groupware", CHI '96 Companion, Vancouver, Canada, Apr. 13-18, 1996, 2 pages.
Griffin et al., "Signal Estimation From Modified Short-Time Fourier Transform", IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-32, No. 2, Apr. 1984, pp. 236-243.
Gruhn et al., "A Research Perspective on Computer-Assisted Office Work", IBM Systems Journal, vol. 18, No. 3, 1979, pp. 432-456.
Hain et al., "The Papageno TTS System", Siemens AG, Corporate Technology, Munich, Germany TC-STAR Workshop, 2006, 6 pages.
Halbert, D. C., "Programming by Example", Dept. Electrical Engineering and Comp. Sciences, University of California, Berkley, Nov. 1984, pp. 1-76.
Hall, William S., "Adapt Your Program for Worldwide Use with Windows.TM. Internationalization Support", Microsoft Systems Journal, vol. 6, No. 6, Nov./Dec. 1991, pp. 29-58.
Haoui et al., "Embedded Coding of Speech: A Vector Quantization Approach", (Proceedings of the IEEE International Acoustics, Speech and Signal Processing Conference, Mar. 1985), as reprinted in Vector Quantization (IEEE Press, 1990), pp. 297-299.
Hartson et al., "Advances in Human-Computer Interaction", Chapters 1, 5, and 6, vol. 3, 1992, 121 pages.

Heger et al., "KNOWBOT: An Adaptive Data Base Interface", Nuclear Science and Engineering, V. 107, No. 2, Feb. 1991, pp. 142-157.
Hendrix et al., "The Intelligent Assistant: Technical Considerations Involved in Designing Q\&A's Natural-Language Interface", Byte Magazine, Issue 14, Dec. 1987, 1 page.
Heyer et al., "Exploring Expression Data: Identification and Analysis of Coexpressed Genes", Genome Research, vol. 9, 1999, pp. 1106-1115.
Hill, R. D., "Some Important Features and Issues in User Interface Management System", Dynamic Graphics Project, University of Toronto, CSRI, vol. 21, No. 2, Apr. 1987, pp. 116-120.
Hinckley et al., "A Survey of Design Issues in Spatial Input", UIST '94 Proceedings of the 7th Annual ACM Symposium on User Interface Software and Technology, 1994, pp. 213-222.
Hiroshi, "Team Work Station: Towards a Seamless Shared Workspace", NTT Human Interface Laboratories, CSCW 90 Proceedings, Oct. 1990, pp. 13-26.
Holmes, "Speech System and Research", 1955, pp. 129-135, 152153.

Hon et al., "Towards Large Vocabulary Mandarin Chinese Speech Recognition", Conference on Acoustics, Speech, and Signal Processing, ICASSP-94, IEEE International, vol. 1, Apr. 1994, pp. 545-548.
Hopper, Andy, "Pandora-An Experimental System for Multimedia Applications", Olivetti Research Laboratory, Apr. 1990, pp. 19-34. Howard, John H., "(Abstract) An Overview of the Andrew File System", Information Technology Center, Carnegie Mellon University; (CMU-ITC-88-062) to Appear in a future issue of the ACM Transactions on Computer Systems, 1988, pp. 1-6.
Huang et al., "Real-Time Software-Based Video Coder for Multimedia Communication Systems", Department of Computer Science and Information Engineering, 1993, 10 pages.
Hukin, R. W., "Testing an Auditory Model by Resynthesis", European Conference on Speech Communication and Technology, Sep. 26-29, 1989, pp. 243-246.
Hunt, "Unit Selection in a Concatenative Speech Synthesis System Using a Large Speech Database", Copyright 1996 IEEE. "To appear in Proc. ICASSP-96, May 7-10, Atlanta, GA" ATR Interpreting Telecommunications Research Labs, Kyoto Japan, 1996, pp. 373376.

IBM, "Why Buy: ThinkPad", available at <http://www.pc.ibm.com/ us/thinkpad/easeofuse.html>, retrieved on Dec. 19, 2002, 2 pages. IBM Corporation, "Simon Says Here's How", Users Manual, 1994, 3 pages.
iChat AV, "Video Conferencing for the Rest of Us", Apple-Mac OS X—iChat AV, available at http://www.apple.com/macosx/features/ichat/, retrieved on Apr. 13, 2006, 3 pages.
iPhone Hacks, "Native iPhone MMS Application Released", available at <http://www.iphonehacks.com/2007/12/iphone-mms-app. html>, retrieved on Dec. 25, 2007, 5 pages.
iPhoneChat, "iChat for iPhone in JavaScript", available at <http:// www.publictivity.com/iPhoneChat/>, retrieved on Dec. 25, 2007, 2 pages.
Jabra, "Bluetooth Headset; User Manual", 2005, 17 pages.
Jabra, "Bluetooth Introduction", 2004, 15 pages.
Jabra Corporation, "FreeSpeak: BT200 User Manual", 2002, 42 pages.
Jaybird, "Everything Wrong with AIM: Because We've All Thought About It", available at <http://www.psychonoble.com/archives/articles $/ 82$ html $>$, May 24, 2006, 3 pages.
Jeffay et al., "Kernel Support for Live Digital Audio and Video", In Proc. of the Second Int'l. Workshop on Network and Operating System Support for Digital Audio and Video, vol. 614, Nov. 1991, pp. 10-21.
Jelinek et al., "Interpolated Estimation of Markov Source Parameters from Sparse Data", In Proceedings of the Workshop on Pattern Recognition in Practice,, May 1980, pp. 381-397.
Johnson, Jeff A., "A Comparison of User Interfaces for Panning on a Touch-Controlled Display", CHI '95 Proceedings, 1995, 8 pages. Kaeppner et al., "Architecture of HeiPhone: A Testbed for Audio/ Video Teleconferencing", IBM European Networking Center, 1993.

References Cited

OTHER PUBLICATIONS

Kamba et al., "Using Small Screen Space More Efficiently", CHI '96 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Apr. 13-18, 1996, pp. 383-390.
Kang et al., "Quality Improvement of LPC-Processed Noisy Speech by Using Spectral Subtraction", IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 37, No. 6, Jun. 1989, pp. 939-942.
Keahey et al., "Non-Linear Image Magnification", Apr. 24, 1996, 11 pages.
Keahey et al., "Nonlinear Magnification Fields", Proceedings of the 1997 IEEE Symposium on Information Visualization, 1997, 12 pages.
Keahey et al., "Techniques for Non-Linear Magnification Transformations", IEEE Proceedings of Symposium on Information Visualization, Oct. 1996, pp. 38-45.
Keahey et al., "Viewing Text With Non-Linear Magnification: An Experimental Study", Department of Computer Science, Indiana University, Apr. 24, 1996, pp. 1-9.
Kennedy, P J., "Digital Data Storage Using Video Disc", IBM Technical Disclosure Bulletin, vol. 24, No. 2, Jul. 1981, p. 1171.
Kerr, "An Incremental String Search in C: This Data Matching Algorithm Narrows the Search Space with each Keystroke", Computer Language, vol. 6, No. 12, Dec. 1989, pp. 35-39.
Abut et al., "Vector Quantization of Speech and Speech-Like Waveforms", (IEEE Transactions on Acoustics, Speech, and Signal Processing, Jun. 1982), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 258-270.
Kim, E.A. S., "The Structure and Processing of Fundamental Frequency Contours", University of Cambridge, Doctoral Thesis, Apr. 1987, 378 pages.
Kirstein et al., "Piloting of Multimedia Integrated Communications for European Researchers', Proc. INET '93, 1993, pp. 1-12.
Kjelldahl et al., "Multimedia-Principles, Systems, and Applications", Proceedings of the 1991 Eurographics Workshop on Multimedia Systems, Applications, and Interaction, Apr. 1991.
Kline et al., "Improving GUI Accessibility for People with Low Vision", CHI '95 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, May 7-11, 1995, pp. 114-121.
Kline et al., "UnWindows 1.0: X Windows Tools for Low Vision Users", ACM SIGCAPH Computers and the Physically Handicapped, No. 49, Mar. 1994, pp. 1-5.
Knight et al., "Heuristic Search", Production Systems, Artificial Intelligence, 2nd ed., McGraw-Hill, Inc., 1983-1991.
Kroon et al., "Quantization Procedures for the Excitation in CELP Coders", (Proceedings of IEEE International Acoustics, Speech, and Signal Processing Conference, Apr. 1987), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 320-323.
Kuo et al., "A Radical-Partitioned coded Block Adaptive Neural Network Structure for Large-Volume Chinese Characters Recognition", International Joint Conference on Neural Networks, vol. 3, Jun. 1992, pp. 597-601.
Kuo et al., "A Radical-Partitioned Neural Network System Using a Modified Sigmoid Function and a Weight-Dotted Radical Selector for Large-Volume Chinese Character Recognition VLSI", IEEE Int. Symp. Circuits and Systems, Jun. 1994, pp. 3862-3865.
Kurlander et al., "Comic Chat", [Online], 1996 [Retrieved on: Feb. 4, 2013], SIGGRAPH '96 Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, [Retrieved from: http://delivery.acm.org/10.1145/240000/237260/p225kurlander.pdf], 1996, pp. 225-236.
Laface et al., "A Fast Segmental Viterbi Algorithm for Large Vocabulary Recognition", International Conference on Acoustics, Speech, and Signal Processing, vol. 1, May 1995, pp. 560-563.
Lafferty et al., "Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data", Proceedings of the 18 th International Conference on Machine Learning, 2001, 9 pages. Adium, "AboutAdium—Adium X—Trac", available at <http://web. archive.org/web/20070819113247/http://trac.adiumx.com/wiki/ AboutAdium>, retrieved on Nov. 25, 2011, 2 pages.

Lamping et al., "Laying Out and Visualizing Large Trees Using a Hyperbolic Space", Proceedings of the ACM Symposium on User Interface Software and Technology, Nov. 1994, pp. 13-14.
Lamping et al., "Visualizing Large Trees Using the Hyperbolic Browser", Apple Inc., Video Clip, MIT Media Library, on a CD, 1995.

Lantz et al., "Towards a Universal Directory Service", Departments of Computer Science and Electrical Engineering, Stanford University, 1985, pp. 250-260.
Lantz, Keith. "An Experiment in Integrated Multimedia Conferencing", 1986, pp. 267-275.
Lauwers et al., "Collaboration Awareness in Support of Collaboration Transparency: Requirements for the Next Generation of Shared Window Systems", CHI'90 Proceedings, 1990, pp. 303-311.
Lauwers et al., "Replicated Architectures for Shared Window Systems: A Critique", COCS '90 Proceedings of the ACM SIGOIS and IEEE CS TC-OA conference on Office information systems, ACM SIGOIS Bulletin, 1990, pp. 249-260.
Lazzaro, Joseph J., "Adapting Desktop Computers to Meet the Needs of Disabled Workers is Easier Than You Might Think", Computers for the Disabled, Byte Magazine, Jun. 1993, 4 pages.
Leahy et al., "Effect of Touch Screen Target Location on User Accuracy", Proceedings of the Human Factors Society 34th Annual Meeting, 1990, 5 pages.
Lee, Kai-Fu, "Automatic Speech Recognition", 1989, 14 pages (Table of Contents).
Leung et al., "A Review and Taxonomy of Distortion-Oriented Presentation Techniques", ACM Transactions on Computer-Human Interaction (TOCHI), vol. 1, No. 2, Jun. 1994, pp. 126-160.
Levinson et al., "Speech synthesis in telecommunications", IEEE Communications Magazine, vol. 31, No. 11, Nov. 1993, pp. 46-53. Lewis, "Speech synthesis in a computer aided learning environment", UK IT, Mar. 19-22, 1990, pp. 294-298.
Lewis, Peter, "Two New Ways to Buy Your Bits", CNN Money, available at <http://money.cnn.com/2003/12/30/commentary/ ontechnology/download/>,, Dec. 31, 2003, 4 pages.
Lieberman, Henry, "A Multi-Scale, Multi-Layer, Translucent Virtual Space", Proceedings of IEEE Conference on Information Visualization, Aug. 1997, pp. 124-131.
Lieberman, Henry, "Powers of Ten Thousand: Navigating in Large Information Spaces", Proceedings of the ACM Symposium on User Interface Software and Technology, Nov. 1994, pp. 1-2.
Lyon, R., "A Computational Model of Binaural Localization and Separation", Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Apr. 1983, pp. 1148-1151. Ahlberg et al., "The Alphaslider: A Compact and Rapid Selector", CHI '94 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Apr. 1994, pp. 365-371.
Lyons, Richard F., "CCD Correlators for Auditory Models", Proceedings of the Twenty-Fifth Asilomar Conference on Signals, Systems and Computers, Nov. 4-6, 1991, pp. 785-789.
Mackenzie et al., "Alphanumeric Entry on Pen-Based Computers", International Journal of Human-Computer Studies, vol. 41, 1994, pp. 775-792.
Mackinlay et al., "The Perspective Wall: Detail and Context Smoothly Integrated", ACM, 1991, pp. 173-179.
Ahlberg et al., "Visual Information Seeking: Tight Coupling of Dynamic Query Filters with Starfield Displays", Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Apr. 24-28, 1994, pp. 313-317.
Mactech, "KeyStrokes 3.5 for Mac OS X Boosts Word Prediction", available at http://www.mactech.com/news/?p=1007129, retrieved on Jan. 7, 2008, 3 pages.
Mahedero et al., "Natural Language Processing of Lyrics", In Proceedings of the 13th Annual ACM International Conference on Multimedia, ACM, Nov. 6-11, 2005, 4 pages.
Marcus et al., "Building a Large Annotated Corpus of English: The Penn Treebank", Computational Linguistics, vol. 19, No. 2, 1993, pp. 313-330.
Markel et al., "Linear Production of Speech", Reviews, 1976, pp. xii, 288.

References Cited

OTHER PUBLICATIONS

Masui, Toshiyuki, "POBox: An Efficient Text Input Method for Handheld and Ubiquitous Computers", Proceedings of the 1st International Symposium on Handheld and Ubiquitous Computing, 1999, 12 pages.
Matsui et al., "Speaker Adaptation of Tied-Mixture-Based Phoneme Models for Text-Prompted Speaker Recognition", 1994 IEEE International Conference on Acoustics, Speech and Signal Processing, Apr. 19-22, 1994, 1-125-1-128.
Matsuzawa, A, "Low-Voltage and Low-Power Circuit Design for Mixed Analog/Digital Systems in Portable Equipment", IEEE Journal of Solid-State Circuits, vol. 29, No. 4, 1994, pp. 470-480.
Mellinger, David K., "Feature-Map Methods for Extracting Sound Frequency Modulation", IEEE Computer Society Press, 1991, pp. 795-799.
Menico, Costas, "Faster String Searches", Dr. Dobb's Journal, vol. 14, No. 7, Jul. 1989, pp. 74-77.
Menta, Richard, " 1200 Song MP3 Portable is a Milestone Player", available at <http://www.mp3newswire.net/stories/personaljuke. html>, Jan. 11, 2000, 4 pages.
Meyer, Mike, "A Shell for Modern Personal Computers", University of California, Aug. 1987, pp. 13-19.
Meyrowitz et al., "Bruwin: An Adaptable Design Strategy for Window Manager/Virtual Terminal Systems", Department of Computer Science, Brown University, 1981, pp. 180-189.
Miastkowski, Stan, "paperWorks Makes Paper Intelligent", Byte Magazine, Jun. 1992.
Microsoft, "Turn on and Use Magnifier", available at <http://www. microsoft.com/windowsxp/using/accessibility/magnifierturnon.
mspx>, retrieved on Jun. 6, 2009
Microsoft Corporation, Microsoft Office Word 2003 (SP2), Microsoft Corporation, SP3 as of 2005, pages MSWord 2003 Figures 1-5, 1983-2003.
Microsoft Corporation, "Microsoft MS-DOS Operating System User's Guide", Microsoft Corporation, 1982, pp. 4-1 to 4-16, 5-1 to 5-19.
Microsoft Press, "Microsoft Windows User's Guide for the Windows Graphical Environment", version 3.0, 1985-1990, pp. 33-41 \& 70-74.
Microsoft Windows XP, "Magnifier Utility", Oct. 25, 2001, 2 pages. Microsoft Word 2000 Microsoft Corporation, pages MSWord Figures 1-5, 1999.
Microsoft/Ford, "Basic Sync Commands", www.SyncMyRide.com, Sep. 14, 2007, 1 page.
Milner, N. P., "A Review of Human Performance and Preferences with Different Input Devices to Computer Systems", Proceedings of the Fourth Conference of the British Computer Society on People and Computers, Sep. 5-9, 1988, pp. 341-352.
Miniman, Jared, "Applian Software's Replay Radio and Player v1.02", pocketnow.com-Review, available at <http://www. pocketnow.com/reviews/replay/replay.htm>, Jul. 31, 2001, 16 pages.
Moberg et al., "Cross-Lingual Phoneme Mapping for Multilingual Synthesis Systems", Proceedings of the 8th International Conference on Spoken Language Processing, Jeju Island, Korea, INTERSPEECH 2004, Oct. 4-8, 2004, 4 pages.
Moberg, M., "Contributions to Multilingual Low-Footprint TTS System for Hand-Held Devices", Doctoral Thesis, Tampere University of Technology, Aug. 17, 2007, 82 pages.
Mobile Tech News, "T9 Text Input Software Updated", available at http://www.mobiletechnews.com/info/2004/11/23/122155.html, Nov. 23, 2004, 4 pages.
Mok et al., "Media Searching on Mobile Devices", IEEE EIT 2007 Proceedings, 2007, pp. 126-129.
Morland, D. V., "Human Factors Guidelines for Terminal Interface Design", Communications ofthe ACM vol. 26, No. 7, Jul. 1983, pp. 484-494.
Morris et al., "Andrew: A Distributed Personal Computing Environment", Communications of the ACM, (Mar. 1986); vol. 29 No. 3,, Mar. 1986, pp. 184-201.

Muller et al., "CSCW'92 Demonstrations", 1992, pp. 11-14.
Musicmatch, "Musicmatch and Xing Technology Introduce Musicmatch Jukebox"; Press Releases, available at <http://www. musicmatch.com/info/company/press/releases/?year=1998\&release $=2>$, May 18, 1998, 2 pages.
Muthesamy et al., "Speaker-Independent Vowel Recognition: Spectograms versus Cochleagrams"; IEEE, Apr. 1990.
My Cool Aids, "What's New", available at <http://www. mycoolaids.com $>$, 2012, 1 page.
Myers, Brad A., "Shortcutter for Palm", available at <http://www. cs.cmu.edu/~pebbles/v5/shortcutter/palm/index.html>, retrieved on Jun. 18, 2014, 10 pages.
Nadoli et al., "Intelligent Agents in the Simulation of Manufacturing Systems", Proceedings of the SCS Multiconference on AI and Simulation, 1989, 1 page.
Nakagawa et al., "Unknown Word Guessing and Part-of-Speech Tagging Using Support Vector Machines", Proceedings of the 6th NLPRS, 2001, pp. 325-331.
Ahlstrom et al., "Overcoming Touchscreen User Fatigue by Workplace Design', CHI '92 Posters and Short Talks of the 1992 SIGCHI Conference on Human Factors in Computing Systems, 1992, pp. 101-102.
NCIP, "NCIP Library: Word Prediction Collection", available at http://www2.edc.org/ncip/library/wp/toc.htm, 1998, 4 pages.
NCIP, "What is Word Prediction?", available at <http://www2.edc. org/NCIP/library/wp/what_is.htm>, 1998, 2 pages.
NCIP Staff, "Magnification Technology", available at <http:// www2.edc.org/ncip/library/vi/magnifi.htm>, 1994, 6 pages.
Newton, Harry, "Newton's Telecom Dictionary", Mar. 1998, pp. 62, 155, 610-611, 771.
Nguyen et al., "Generic Manager for Spoken Dialogue Systems", In DiaBruck: 7th Workshop on the Semantics and Pragmatics of Dialogue, Proceedings, 2003, 2 pages.
Nilsson, B. A., "Microsoft Publisher is an Honorable Start for DTP Beginners", Computer Shopper, Feb. 1, 1992, 2 pages.
Noik, Emanuel G., "Layout-Independent Fisheye Views of Nested Graphs", IEEE Proceedings of Symposium on Visual Languages, 1993, 6 pages.
Nonhoff-Arps et al., "StraBenmusik: Portable MP3-Spieler mit USB Anschluss", CT Magazin Fuer Computer Technik, Verlag Heinz Heise GMBH, Hannover DE, No. 25, 2000, pp. 166-175.
Northern Telecom, "Meridian Mail PC User Guide", 1988, 17 Pages.
Notenboom, Leo A., "Can I Retrieve Old MSN Messenger Conversations?", available at <http://ask-leo.com/can_i_retrieve_ old_msn_messenger_conversations.html>, Mar. 11, 2004, 23 pages.
O'Connor, Rory J., "Apple Banking on Newton's Brain", San Jose Mercury News, Apr. 22, 1991.
Ohsawa et al., "A computational Model of an Intelligent Agent Who
Talks with a Person", Research Reports on Information Sciences, Series C, No. 92, Apr. 1989, pp. 1-18.
Ohtomo et al., "Two-Stage Recognition Method of Hand-Written Chinese Characters Using an Integrated Neural Network Model", Denshi Joohoo Tsuushin Gakkai Ronbunshi, D-II, vol. J74, Feb. 1991, pp. 158-165.
Okazaki et al., "Multi-Fisheye Transformation Method for LargeScale Network Maps", IEEE Japan, vol. 44, No. 6, 1995, pp. 495-500.
Omologo et al., "Microphone Array Based Speech Recognition with Different Talker-Array Positions", IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 1, Apr. 21-24, 1997, pp. 227-230.
Oregon Scientific, " 512 MB Waterproof MP3 Player with FM Radio \& Built-in Pedometer", available at <http://www2.oregonscientific. com/shop/product.asp?cid=4\&scid=11\&pid=581>, retrieved on Jul. 31, 2006, 2 pages.
Oregon Scientific, "Waterproof Music Player with FM Radio and Pedometer (MP121)-User Manual", 2005, 24 pages.
Padilla, Alfredo, "Palm Treo 750 Cell Phone Review-Messaging", available at http://www.wirelessinfo.com/content/palm-Treo-750-Cell-Phone-Review/Messaging.htm, Mar. 17, 2007, 6 pages.

References Cited

OTHER PUBLICATIONS

Palay et al., "The Andrew Toolkit: An Overview", Information Technology Center, Carnegie-Mellon University, 1988, pp. 1-15. Palm, Inc., "User Guide: Your Palm(®) Treo.TM. 755p Smartphone", 2005-2007, 304 pages.
Panasonic, "Toughbook 28: Powerful, Rugged and Wireless", Panasonic: Toughbook Models, available at <http://www.panasonic com/computer/notebook/html/01a_s8.htm>, retrieved on Dec. 19, 2002, 3 pages.
Parks et al., "Classification of Whale and Ice Sounds with a cochlear Model", IEEE, Mar. 1992.
Patterson et al., "Rendezvous: An Architecture for Synchronous Multi-User Applications", CSCW '90 Proceedings, 1990, pp. 317328.

International Search Report received for PCT Patent Application No. PCT/US2002/033330, mailed on Feb. 4, 2003, 6 pages.
Ahmed et al., "Intelligent Natural Language Query Processor", TENCON '89, Fourth IEEE Region 10 International Conference, Nov. 22-24, 1989, pp. 47-49.
Ahuja et al., "A Comparison of Application Sharing Mechanisms in Real-Time Desktop Conferencing Systems", At\&T Bell Laboratories, 1990, pp. 238-248.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2005/038819, mailed on Apr. 5, 2006, 12 pages.
International Search Report received for PCT Patent Application No. PCT/US2005/046797, mailed on Nov. 24, 2006, 6 pages.
Invitation to Pay Additional Fees and Partial Search Report received for PCT Application No. PCT/US2005/046797, mailed on Jul. 3, 2006, 6 pages.
Written Opinion received for PCT Patent Application No. PCT/ US2005/046797, mailed on Nov. 24, 2006, 9 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2006/048669, mailed on Jul. 2, 2007, 12 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2006/048670, mailed on May 21, 2007, 11 pages.
Invitation to Pay Addition Fees and Partial International Search Report received for PCT Patent Application No. PCT/US2006/ 048738, mailed on Jul. 10, 2007, 4 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2006/048753, mailed on Jun. 19, 2007, 15 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2007/026243, mailed on Mar. 31, 2008, 10 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2007/088872, mailed on May 8, 2008, 8 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2007/088873, mailed on May 8, 2008, 7 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/000032, mailed on Jun. 12, 2008, 7 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/000042, mailed on May 21, 2008, 7 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/000043, mailed on Oct. 10, 2008, 12 pages.
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2008/000043, mailed on Jun. 27, 2008, 4 pages. International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/000045, mailed on Jun. 12, 2008, 7 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/000047, mailed on Sep. 11, 2008, 12 pages.

Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2008/000047, mailed on Jul. 4, 2008, 4 pages. International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/000059, mailed on Sep. 19, 2008, 18 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/000061, mailed on Jul. 1, 2008, 13 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2011/020350, mailed on Jun. 30, 2011, 17 pages.
Invitation to Pay Additional Fees and Partial International Search Report received for PCT Patent Application No. PCT/US2011/ 020350, mailed on Apr. 14, 2011, 5 pages.
International Preliminary Report on Patentability received for PCT
Patent Application No. PCT/US2011/020861, mailed on Aug. 2, 2012, 11 pages.
Aikawa, K. "Time-Warping Neural Network for Phoneme Recognition", IEEE International Joint Conference on Neural Networks, vol. 3, Nov. 18-21, 1991, pp. 2122-2127.
Allen et al., "Automated Natural Spoken Dialog", Computer, vol. 35, No. 4, Apr. 2002, pp. 51-56.
Alleva et al., "Applying SPHINX-II to DARPA Wall Street Journal CSR Task", Proceedings of Speech and Natural Language Workshop, Feb. 1992, pp. 393-398.
Amrel Corporation, "Rocky Matrix BackLit Keyboard", available at http://www.amrel.com/asi_matrixkeyboard.html, retrieved on Dec. 19, 2002, 1 page.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/034028, mailed on Jun. 11, 2012, 9 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/040931, mailed on Feb. 1, 2013, 4 pages. (International Search Report only).
Apple, "VoiceOver", available at <http://www.apple.com/accessibility/voiceover $/>$, Feb. 2009, 5 pages.
Apple Computer, Inc., "Apple iPod-Technical Specifications, iPod 20 GB and $60 \mathrm{~GB} \mathrm{Mac}+\mathrm{PC} "$, available at <http://www.apple. com/ipod/color/specs.html>, 2005, 3 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/041225, mailed on Aug. 23, 2013, 3 pages (International Search Report only).
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2013/047659, mailed on Feb. 27, 2014, 7 pages. Invitation to Pay Additional Fees received for PCT Application No. PCT/US2013/052558, mailed on Nov. 7, 2013, 6 pages.
Pearl, Amy, "System Support for Integrated Desktop Video Conferencing", Sunmicrosystems Laboratories, Dec. 1992, pp. 1-15.
Penn et al., "Ale for Speech: A Translation Prototype", Bell Laboratories, 1999, 4 pages.
Phillipps, Ben, "Touchscreens are Changing the Face of Comput-ers-Today's Users Have Five Types of Touchscreens to Choose from, Each with its Own Unique Characteristics", Electronic Products, Nov. 1994, pp. 63-70.
Phillips, Dick, "The Multi-Media Workstation", SIGGRAPH '89 Panel Proceedings, 1989, pp. 93-109.
Pickering, J. A., "Touch-Sensitive Screens: The Technologies and Their Application", International Journal of Man-Machine Studies, vol. 25, No. 3, Sep. 1986, pp. 249-269.
Pingali et al., "Audio-Visual Tracking for Natural Interactivity", ACM Multimedia, Oct. 1999, pp. 373-382.
Plaisant et al., "Touchscreen Interfaces for Alphanumeric Data Entry", Proceedings of the Human Factors and Ergonomics Society 36th Annual Meeting, 1992, pp. 293-297.
Plaisant et al., "Touchscreen Toggle Design", CHI'92, May 3-7, 1992, pp. 667-668.
Poly-Optical Products, Inc., "Poly-Optical Fiber Optic Membrane Switch Backlighting", available at <http://www.poly-optical.com/ membrane_switches.html>, retrieved on Dec. 19, 2002, 3 pages. Poor, Alfred, "Microsoft Publisher", PC Magazine, vol. 10, No. 20, Nov. 26, 1991, 1 page.

References Cited

OTHER PUBLICATIONS

Potter et al., "An Experimental Evaluation of Three Touch Screen Strategies within a Hypertext Database", International Journal of Human-Computer Interaction, vol. 1, No. 1, 1989, pp. 41-52.
Potter et al., "Improving the Accuracy of Touch Screens: An Experimental Evaluation of Three Strategies', CHI ' 88 ACM, 1988, pp. 27-32.
Public Safety Technologies, "Tracer 2000 Computer", available at http://www.pst911.com/tracer.html, retrieved on Dec. 19, 2002, 3 pages.
Apple Computer, Inc., "Apple Announces iTunes 2", Press Release, Oct. 23, 2001, 2 pages.
Rabiner et al., "Digital Processing of Speech Signals", Prentice Hall, 1978, pp. 274-277.
Rampe et al., "SmartForm Designer and SmartForm Assistant", News release, Claris Corp., Jan. 9, 1989, 1 page.
Rao et al., "Exploring Large Tables with the Table Lens", Apple Inc., Video Clip, Xerox Corp., on a CD, 1994.
Rao et al., "Exploring Large Tables with the Table Lens", CHI'95 Mosaic of Creativity, ACM, May 7-11, 1995, pp. 403-404.
Rao et al., "The Table Lens: Merging Graphical and Symbolic Representations in an Interactive Focus+Context Visualization for Tabular Information", Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, Apr. 1994, pp. 1-7. Raper, Larry K.,"The C-MU PC Server Project", (CMU-ITC-86051), Dec. 1986, pp. 1-30.

Ratcliffe et al., "Intelligent Agents Take U.S. Bows", MacWeek, vol. 6, No. 9, Mar. 2, 1992, 1 page.
Reddy, D. R., "Speech Recognition by Machine: A Review", Proceedings of the IEEE, Apr. 1976, pp. 501-531.
Reininger et al., "Speech and Speaker Independent Codebook Design in VQ Coding Schemes", (Proceedings of the IEEE International Acoustics, Speech and Signal Processing Conference, Mar. 1985), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 271-273.
Ren et al., "Efficient Strategies for Selecting Small Targets on Pen-Based Systems: An Evaluation Experiment for Selection Strategies and Strategy Classifications", Proceedings of the IFIP TC2/ TC13 WG2.7/WG13.4 Seventh Working Conference on Engineering for Human-Computer Interaction, vol. 150, 1998, pp. 19-37.
Ren et al., "Improving Selection Performance on Pen-Based Systems: A Study of Pen-Based Interaction for Selection Tasks", ACM Transactions on Computer-Human Interaction, vol. 7, No. 3, Sep. 2000, pp. 384-416.
Ren et al., "The Best among Six Strategies for Selecting a Minute Target and the Determination of the Minute Maximum Size of the Targets on a Pen-Based Computer", Human-Computer Interaction INTERACT, 1997, pp. 85-92.
Apple Computer, Inc., "Apple Introduces iTunes-World's Best and Easiest to Use Jukebox Software", Macworld Expo, Jan. 9, 2001, 2 pages.
Riecken, R D., "Adaptive Direct Manipulation", IEEE Xplore, 1991, pp. 1115-1120.
Rioport, "Rio 500: Getting Started Guide", available at <http://ec 1 . images-amazon.com/media/i3d/01/A/man-migrate/
MANUAL000023453.pdf $>$, 1999, 2 pages.
Robbin et al., "MP3 Player and Encoder for Macintosh!", SoundJam MP Plus, Version 2.0, 2000, 76 pages.
Robertson et al., "Information Visualization Using 3D Interactive Animation", Communications of the ACM, vol. 36, No. 4, Apr 1993, pp. 57-71.
Robertson et al., "The Document Lens", UIST '93, Nov. 3-5, 1993, pp. 101-108.
Root, Robert, "Design of a Multi-Media Vehicle for Social Browsing", Bell Communications Research, 1988, pp. 25-38.
Roseberry, Catherine, "How to Pair a Bluetooth Headset \& Cell Phone", available at <http://mobileoffice.about.com/od/ usingyourphone/ht/blueheadset_p.htm>, retrieved on Apr. 29, 2006, 2 pages.

Rosenberg et al., "An Overview of the Andrew Message System", Information Technology Center Carnegie-Mellon University, Jul. 1987, pp. 99-108.
Rosner et al., "In Touch: A Graphical User Interface Development Tool", IEEE Colloquium on Software Tools for Interface Design, Nov. 8, 1990, pp. 12/1-12/7.
Rossfrank, "Konstenlose Sprachmifteilungins Festnetz", XP002234425, Dec. 10, 2000, pp. 1-4.
Roucos et al., "A Segment Vocoder at $150 \mathrm{~B} / \mathrm{S}$ ", (Proceedings of the IEEE International Acoustics, Speech and Signal Processing Conference, Apr. 1983), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 246-249.
Roucos et al., "High Quality Time-Scale Modification for Speech", Proceedings of the 1985 IEEE Conference on Acoustics, Speech and Signal Processing, 1985, pp. 493-496.
Sabin et al., "Product Code Vector Quantizers for Waveform and Voice Coding", (IEEE Transactions on Acoustics, Speech and Signal Processing, Jun. 1984), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 274-288.
Apple Computer, Inc., "Apple's iPod Available in Stores Tomorrow", Press Release, Nov. 9, 2001, 1 page.
Santen, Jan P., "Assignment of Segmental Duration in Text-toSpeech Synthesis", Computer Speech and Language, vol. 8, No. 2, Apr. 1994, pp. 95-128.
Sarawagi, Sunita, "CRF Package Page", available at <http://crf. sourceforge.net/>, retrieved on Apr. 6, 2011, 2 pages.
Sarkar et al., "Graphical Fisheye Views", Communications of the ACM, vol. 37, No. 12, Dec. 1994, pp. 73-83.
Sarkar et al., "Graphical Fisheye Views of Graphs", Systems Research Center, Digital Equipment Corporation, Mar. 17, 1992, 31 pages.
Sarkar et al., "Graphical Fisheye Views of Graphs", CHI '92 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, May 3-7, 1992, pp. 83-91.
Sarkar et al., "Stretching the Rubber Sheet: A Metaphor for Viewing Large Layouts on Small Screens", UIST'93, ACM, Nov. 3-5, 1993, pp. 81-91.
Sastry, Ravindra W., "A Need for Speed: A New Speedometer for Runners", submitted to the Department of Electrical Engineering and Computer Science at the Massachusetts Institute of Technology, 1999, pp. 1-42.
Schafer et al., "Digital Representations of Speech Signals", Proceedings of the IEEE, vol. 63, No. 4, Apr. 1975, pp. 662-677.
Schaffer et al., "Navigating Hierarchically Clustered Networks through Fisheye and Full-Zoom Methods", ACM Transactions on Computer-Human Interaction, vol. 3, No. 2, Jun. 1996, pp. 162-188. Scheifler, R. W., "The X Window System", MIT Laboratory for Computer Science and Gettys, Jim Digital Equipment Corporation and MIT Project Athena; ACM Transactions on Graphics, vol. 5, No. 2, Apr. 1986, pp. 79-109.
Schluter et al., "Using Phase Spectrum Information for Improved Speech Recognition Performance", IEEE International Conference on Acoustics, Speech, and Signal Processing, 2001, pp. 133-136. Schmandt et al., "A Conversational Telephone Messaging System", IEEE Transactions on Consumer Electronics, vol. CE-30, Aug. 1984, pp. xxi-xxiv.
Schmandt et al., "Phone Slave: A Graphical Telecommunications Interface", Society for Information Display, International Symposium Digest of Technical Papers, Jun. 1984, 4 pages.
Schmandt et al., "Phone Slave: A Graphical Telecommunications Interface", Proceedings of the SID, vol. 26, No. 1, 1985, pp. 79-82. Schmid, H., "Part-of-speech tagging with neural networks", COLING '94 Proceedings of the 15 th conference on Computational linguistics-vol. 1, 1994, pp. 172-176.
Schooler et al., "A Packet-switched Multimedia Conferencing System"', by Eve Schooler, et al; ACM SIGOIS Bulletin, vol. I, No. 1, Jan. 1989, pp. 12-22.
Schooler et al., "An Architecture for Multimedia Connection Management", Proceedings IEEE 4th Comsoc International Workshop on Multimedia Communications, Apr. 1992, pp. 271-274.
Schooler et al., "Multimedia Conferencing: Has it Come of Age?", Proceedings 24th Hawaii International Conference on System Sciences, vol. 3, Jan. 1991, pp. 707-716.

References Cited

OTHER PUBLICATIONS

Schooler et al., "The Connection Control Protocol: Architecture Overview", USC/Information Sciences Institute, Jan. 28, 1992, pp. 1-6.
Schooler, Eve, "A Distributed Architecture for Multimedia Conference Control", ISI Research Report, Nov. 1991, pp. 1-18.
Schooler, Eve M., "Case Study: Multimedia Conference Control in a Packet-Switched Teleconferencing System", Journal of Internetworking: Research and Experience, vol. 4, No. 2, Jun. 1993, pp. 99-120.
Schooler, Eve M., "The Impact of Scaling on a Multimedia Connection Architecture", Multimedia Systems, vol. 1, No. 1, 1993, pp. 2-9.
Schütze, H., "Distributional part-of-speech tagging", EACL '95 Proceedings of the seventh conference on European chapter of the Association for Computational Linguistics, 1995, pp. 141-148.
Schütze, Hinrich, "Part-of-speech induction from scratch", ACL '93 Proceedings of the 31st annual meeting on Association for Computational Linguistics, 1993, pp. 251-258.
Schwartz et al., "Context-Dependent Modeling for Acoustic-Phonetic Recognition of Continuous Speech", IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 10, Apr. 1985, pp. 1205-1208.
Schwartz et al., "Improved Hidden Markov Modeling of Phonemes for Continuous Speech Recognition", IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 9, 1984, pp. 21-24.
Schwartz et al., "The N-Best Algorithm: An Efficient and Exact Procedure for Finding the N Most Likely Sentence Hypotheses", IEEE, 1990, pp. 81-84.
Scott et al., "Designing Touch Screen Numeric Keypads: Effects of Finger Size, Key Size, and Key Spacing", Proceedings of the Human Factors and Ergonomics Society 41st Annual Meeting, Oct. 1997, pp. 360-364.
Seagrave, Jim, "A Faster Way to Search Text", EXE, vol. 5, No. 3, Aug. 1990, pp. 50-52.
Sears et al., "High Precision Touchscreens: Design Strategies and Comparisons with a Mouse", International Journal of Man-Machine Studies, vol. 34, No. 4, Apr. 1991, pp. 593-613.
Sears et al., "Investigating Touchscreen Typing: The Effect of Keyboard Size on Typing Speed", Behavior \& Information Technology, vol. 12, No. 1, 1993, pp. 17-22.
Sears et al., "Touchscreen Keyboards", Apple Inc., Video Clip, Human-Computer Interaction Laboratory, on a CD, Apr. 1991.
Seide et al., "Improving Speech Understanding by Incorporating Database Constraints and Dialogue History", Proceedings of Fourth International Conference on Philadelphia,, 1996, pp. 1017-1020.
Shiraki et al., "LPC Speech Coding Based on Variable-Length Segment Quantization", (IEEE Transactions on Acoustics, Speech and Signal Processing, Sep. 1988), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 250-257.
Shneiderman, Ben, "Designing the User Interface: Strategies for Effective Human-Computer Interaction", Second Edition, 1992, 599 pages.
Shneiderman, Ben, "Designing the User Interface: Strategies for Effective Human-Computer Interaction", Third Edition, 1998, 669 pages.
Shneiderman, Ben, "Direct Manipulation for Comprehensible, Predictable and Controllable User Interfaces", Proceedings of the 2nd International Conference on Intelligent User Interfaces, 1997, pp. 33-39.
Shneiderman, Ben, "Sparks of Innovation in Human-Computer Interaction", 1993, (Table of Contents, Title Page, Ch. 4, Ch. 6 and List of References).
Shneiderman, Ben, "The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations", IEEE Proceedings of Symposium on Visual Languages, 1996, pp. 336-343.
Shneiderman, Ben, "Touch Screens Now Offer Compelling Uses", IEEE Software, Mar. 1991, pp. 93-94.

Shoham et al., "Efficient Bit and Allocation for an Arbitrary Set of Quantizers", (IEEE Transactions on Acoustics, Speech, and Signal Processing, Sep. 1988) as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 289-296
Simkovitz, Daniel, "LP-DOS Magnifies the PC Screen", IEEE, 1992, pp. 203-204.
Singh et al., "Automatic Generation of Phone Sets and Lexical Transcriptions", Acoustics, Speech and Signal Processing (ICASSP'00), 2000, 1 page.
Sinitsyn, Alexander, "A Synchronization Framework for Personal Mobile Servers", Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications Workshops, Piscataway, 2004, pp. 1, 3 and 5.
Slaney et al., "On the Importance of Time-A Temporal Representation of Sound", Visual Representation of Speech Signals, 1993, pp. 95-116.
Smeaton, Alan F., "Natural Language Processing and Information Retrieval", Information Processing and Management, vol. 26, No. 1, 1990, pp. 19-20.
Smith et al., "Guidelines for Designing User Interface Software", User Lab, Inc., Aug. 1986, pp. 1-384.
Smith et al., "Relating Distortion to Performance in Distortion Oriented Displays", Proceedings of Sixth Australian Conference on Computer-Human Interaction, Nov. 1996, pp. 6-11.
Sony Eiicsson Corporate, "Sony Ericsson to introduce Auto pairing. TM. to Improve Bluetooth.TM. Connectivity Between Headsets and Phones", Press Release, available at <http://www.sonyericsson. $\mathrm{com} / \mathrm{spg} . \mathrm{jsp}$?cc=$=$ global\&lc=en\&ver=4001\&template=pc3_1_1\&z
$>$, Sep. 28, 2005, 2 pages.
Soong et al., "A High Quality Subband Speech Coder with Backward Adaptive Predictor and Optimal Time-Frequency Bit Assignment", (Proceedings of the IEEE International Acoustics, Speech, and Signal Processing Conference, Apr. 1986), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 316-319.
Spiller, Karen, "Low-Decibel Earbuds Keep Noise at a Reasonable Level", available at <http://www.nashuatelegraph.com/apps/pbcs. dll/article? Date $=20060813 \&$ Cate $\ldots>$, Aug. 13, 2006, 3 pages.
Apple Computer, Inc., "Inside Macintosh", vol. VI, 1985.
Srinivas et al., "Monet: A Multi-Media System for Conferencing and Application Sharing in Distributed Systems", CERC Technical Report Series Research Note, Feb. 1992.
Stealth Computer Corporation, "Peripherals for Industrial Keyboards \&.Pointing Devices", available at <http://www. stealthcomputer.com/peripherals_oem.htm>, retrieved on Dec. 19, 2002, 6 pages.
Steinberg, Gene, "Sonicblue Rio Car (10 GB , Reviewed: 6 GB)", available at http://electronics.cnet.com/electronics/0-6342420-1304-4098389.htrnl, Dec. 12, 2000, 2 pages.
Stent et al., "Geo-Centric Language Models for Local Business Voice Search", AT\&T Labs-Research, 2009, pp. 389-396.
Stone et al., "The Movable Filter as a User Interface Tool", CHI '94 Human Factors in Computing Systems, 1994, pp. 306-312.
Su et al., "A Review of ZoomText Xtra Screen Magnification Program for Windows 95", Journal of Visual Impairment \& Blindness, Feb. 1998, pp. 116-119.
Su, Joseph C., "A Review of Telesensory's Vista PCI Screen Magnification System", Journal of Visual Impairment \& Blindness, Oct. 1998, pp. 705, 707-710.
Sullivan, Danny, "How Google Instant's Autocomplete Suggestions Work", available at http://searchengineland.com/how-google-in-stant-autocomplete-suggestions-work-62592, Apr. 6, 2011, 12 pages.
Summerfield et al., "ASIC Implementation of the Lyon Cochlea Model", Proceedings of the 1992 International Conference on Acoustics, Speech and Signal Processing, IEEE, vol. V, 1992, pp. 673-676.
T3 Magazine, "Creative MuVo TX 256MB", available at <http:// www.t3.co.uk/reviews/entertainment/mp3_player/creative_
muvo_tx_256mb>, Aug. 17, 2004, 1 page.
TAOS, "TAOS, Inc. Announces Industry's First Ambient Light Sensor to Convert Light Intensity to Digital Signals", News Release, available at <http://www.taosinc.com/presssrelease_ $090902 . \mathrm{htm}>$, Sep. 16, 2002, 3 pages.

References Cited

OTHER PUBLICATIONS

Apple Computer, Inc., "iTunes 2, Playlist Related Help Screens", iTunes v2.0, 2000-2001, 8 pages.
Tello, Ernest R., "Natural-Language Systems", Mastering AI Tools and Techniques, Howard W. Sams \& Company, 1988.
TG3 Electronics, Inc., "BL82 Series Backlit Keyboards", available at http://www.tg3electronics.com/products/backlit/backlit.htm, retrieved on Dec. 19, 2002, 2 pages.
The HP 150, "Hardware: Compact, Powerful, and Innovative", vol. 8, No. 10, Oct. 1983, pp. 36-50.
Tidwell, Jenifer, "Animated Transition", Designing Interfaces, Patterns for effective Interaction Design, Nov. 2005, First Edition, 4 pages.
Touch, Joseph, "Zoned Analog Personal Teleconferencing", USC/ Information Sciences Institute, 1993, pp. 1-19.
Toutanova et al., "Feature-Rich Part-of-Speech Tagging with a Cyclic Dependency Network", Computer Science Dept., Stanford University, Stanford CA 94305-9040, 2003, 8 pages.
Trigg et al., "Hypertext Habitats: Experiences of Writers in NoteCards", Hypertext '87 Papers; Intelligent Systems Laboratory, Xerox Palo Alto Research Center, 1987, pp. 89-108.
Trowbridge, David, "Using Andrew for Development of Educational Applications", Center for Design of Educational Computing, Carnegie-Mellon University (CMU-ITC-85-065), Jun. 2, 1985, pp. 1-6.
Tsao et al., "Matrix Quantizer Design for LPC Speech Using the Generalized Lloyd Algorithm", (IEEE Transactions on Acoustics, Speech and Signal Processing, Jun. 1985), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 237-245.
Turletti, Thierry, "The INRIA Videoconferencing System (IVS)", Oct. 1994, pp. 1-7.
Uslan et al., "A Review of Henter-Joyce's MAGic for Windows NT", Journal of Visual Impairment and Blindness, Dec. 1999, pp. 666-668.
Uslan et al., "A Review of Supernova Screen Magnification Program for Windows", Journal of Visual Impairment \& Blindness, Feb. 1999, pp. 108-110.
Uslan et al., "A Review of Two Screen Magnification Programs for Windows 95: Magnum 95 and LP-Windows", Journal of Visual Impairment \& Blindness, Sep.-Oct. 1997, pp. 9-13.
Veiga, Alex, "AT\&T Wireless Launching Music Service", available at <http://bizyahoo.com/ap/041005/at_t_mobile_music_5. html?printer $=1>$, Oct. 5, 2004, 2 pages.
Vogel et al., "Shift: A Technique for Operating Pen-Based Interfaces Using Touch", CHI '07 Proceedings, Mobile Interaction Techniques I, Apr. 28-May 3, 2007, pp. 657-666.
W3C Working Draft, "Speech Synthesis Markup Language Specification for the Speech Interface Framework", available at <http:// www.w3org./TR/speech-synthesis>, retrieved on Dec. 14, 2000, 42 pages.
Wadlow, M. G., "The Role of Human Interface Guidelines in the Design of Multimedia Applications", Carnegie Mellon University (To be Published in Current Psychology: Research and Reviews, Summer 1990 (CMU-ITC-91-101), 1990, pp. 1-22.
Walker et al., "The LOCUS Distributed Operating System 1", University of California Los Angeles, 1983, pp. 49-70.
Wang et al., "An Initial Study on Large Vocabulary Continuous Mandarin Speech Recognition with Limited Training Data Based on Sub-Syllabic Models", International Computer Symposium, vol. 2, 1994, pp. 1140-1145.
Wang et al., "Tone Recognition of Continuous Mandarin Speech Based on Hidden Markov Model", International Journal of Pattern Recognition and Artificial Intelligence, vol. 8, 1994, pp. 233-245.
Ware et al., "The DragMag Image Magnifier", CHI '95 Mosaic of Creativity, May 7-11, 1995, pp. 407-408.
Ware et al., "The DragMag Image Magnifier Prototype I", Apple Inc., Video Clip, Marlon, on a CD, Applicant is not Certain about the Date for the Video Clip., 1995.
Watabe et al., "Distributed Multiparty Desktop Conferencing System: MERMAID", CSCW 90 Proceedings, Oct. 1990, pp. 27-38.

White, George M., "Speech Recognition, Neural Nets, and Brains", Jan. 1992, pp. 1-48.
Wikipedia, "Acoustic Model", available at <http://en.wikipedia.org/ wiki/AcousticModel>, retrieved on Sep. 14, 2011, 2 pages.
Wikipedia, "Language Model", available at <http://en.wikipedia. org/wiki/Language_model>, retrieved on Sep. 14, 2011, 3 pages. Wikipedia, "Speech Recognition", available at $<$ http://en.wikipedia. org/wiki/Speech recognition>, retrieved on Sep. 14, 2011, 10 pages.
Wilensky et al., "Talking to UNIX in English: An Overview of UC", Communications of the ACM, vol. 27, No. 6, Jun. 1984, pp. 574-593.
Wilson, Mark, "New iPod Shuffle Moves Buttons to Headphones, Adds Text to Speech", available at <http://gizmodo.com/5167946/ new-ipod-shuffle-moves-buttons-to-headphones-adds-text-tospeech>, Mar. 11, 2009, 13 pages.
Wirelessinfo, "SMS/MMS Ease of Use (8.0)", available at <http:// www.wirelessinfo.com/content/palm-Treo-750-Cell-Phone-Review/Messaging.htm>, Mar. 2007, 3 pages.
Wong et al., "An $800 \mathrm{Bit} / \mathrm{s}$ Vector Quantization LPC Vocoder", (IEEE Transactions on Acoustics, Speech and Signal Processing, Oct. 1982), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 222-232.
Wong et al., "Very Low Data Rate Speech Compression with LPC Vector and Matrix Quantization", (Proceedings of the IEEE Int'l Acoustics, Speech and Signal Processing Conference, Apr. 1983), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 233-236.
Wu et al., "Automatic Generation of Synthesis Units and Prosodic Information for Chinese Concatenative Synthesis", Speech Communication, vol. 35, No. 3-4, Oct. 2001, pp. 219-237.
Yang et al., "Auditory Representations of Acoustic Signals", IEEE Transactions of Information Theory, vol. 38, No. 2, Mar. 1992, pp. 824-839.
Yang et al., "Hidden Markov Model for Mandarin Lexical Tone Recognition", IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 36, No. 7, Jul. 1988, pp. 988-992.
Yiourgalis et al., "Text-to-Speech system for Greek", ICASSP 91, vol. 1, May 14-17, 1991., pp. 525-528.
Zainab, "Google Input Tools Shows Onscreen Keyboard in Multiple Languages [Chrome]" available at <http://www.addictivetips.com/ internet-tips/google-input-tools-shows-multiple-language-
onscreen-keyboards-chrome/>, Jan. 3, 2012, 3 pages.
Zelig, "A Review of the Palm Treo 750 v ", available at <http://www. mtekk.com.au/Articles/tabid/54/articleType/ArticleView/articleId/
769/A-Review-of-the-Palm-Treo-750v.aspx>, Feb. 5, 2007, 3 pages.
Zhang et al., "Research of Text Classification Model Based on Latent Semantic Analysis and Improved HS-SVM", Intelligent Systems and Applications (ISA), 2010 2nd International Workshop, May 22-23, 2010, 5 pages.
Ziegler, K, "A Distributed Information System Study", IBM Systems Journal, vol. 18, No. 3, 1979, pp. 374-401.
Zipnick et al., "U.S. Appl. No. 10/859,661, filed Jun. 2, 2004".
"2004 Chrysler Pacifica: U-Connect Hands-Free Communication System", The Best and Brightest of 2004, Brief Article, Automotive Industries, Sep. 2003, 1 page.
"2007 Lexus GS 450h 4dr Sedan (3.5L 6cyl Gas/Electric Hybrid CVT)", available at <http://review.cnet.com/4505-10865_1631833144 html $>$, retrieved on Aug. 3, 2006, 10 pages.
"All Music Website", available at http://www.allmusic.com/, retrieved on Mar. 19, 2007, 2 pages.
"BluePhoneElite: About", available at <http://www.reelintelligence. com/BluePhoneElite>, retrieved on Sep. 25, 2006, 2 pages.
"BluePhoneElite: Features", available at http://www.reelintelligence.com/BluePhoneElite/features.shtml,, retrieved on Sep. 25, 2006, 2 pages.
"Digital Audio in the New Era", Electronic Design and Application, No. 6, Jun. 30, 2003, 3 pages.
"Mobile Speech Solutions, Mobile Accessibility", SVOX AG Product Information Sheet, available at <http://www.svox.com/site/ bra840604/con782768/mob965831936.aSQ?osLang=1>, Sep. 27, 2012, 1 page.

References Cited

OTHER PUBLICATIONS

"N200 Hands-Free Bluetooth Car Kit", available at <www. wirelessground.com>, retrieved on Mar. 19, 2007, 3 pages.
"PhatNoise", Voice Index on Tap, Kenwood Music Keg, available at http://www.phatnoise.com/kenwood/kenwoodssamail.html, retrieved on Jul. 13, 2006, 1 page.
"What is Fuzzy Logic?", available at http://www.cs.cmu.edu, retrieved on Apr. 15, 1993, 5 pages.
"Windows XP: A Big Surprise!-Experiencing Amazement from Windows XP", New Computer, No. 2, Feb. 28, 2002, 8 pages.
Aikawa et al., "Generation for Multilingual MT", available at http://mtarchive.info/MTS-2001-Aikawa.pdf, retrieved on Sep. 18, 2001, 6 pages.
Anhui USTC IFL YTEK Co. Ltd., "Flytek Research Center Information Datasheet", available at <http://www.iflttek.com/english/ Research.htm>, retrieved on Oct. 15, 2004, 3 pages.
Borden IV, G.R., "An Aural User Interface for Ubiquitous Computing", Proceedings of the 6th International Symposium on Wearable Computers, IEEE, 2002, 2 pages.
Brain, Marshall, "How MP3 Files Work", available at <http://www. howstuffworks.com>, retrieved on Mar. 19, 2007, 4 pages.
Busemann et al., "Natural Language Diaglogue Service for Appointment Scheduling Agents", Technical Report RR-97-02, Deutsches Forschungszentrum fur Kunstliche Intelligenz GmbH 1997, 8 pages.
Dusan et al., "Multimodal Interaction on PDA's Integrating Speech and Pen Inputs", Eurospeech Geneva, 2003, 4 pages.
Lamel et al., "Generation and synthesis of Broadcast Messages", Proceedings of ESCA-NATO Workshop: Applications of Speech Technology, Sep. 1, 1993, 4 pages.
Lyons et al., "Augmenting Conversations Using Dual-Purpose Speech", Proceedings of the 17th Annual ACM Symposium on User interface Software and Technology, 2004, 10 pages.
Macsimum News, "Apple Files Patent for an Audio Interface for the iPod", available at <http://www.macsimumnews.com/index.php/archive/apple_files_patent_for_an_audio_interface_for_the_ ipod $>$, retrieved on Jul. 13, 2006, 8 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2004/016519, mailed on Nov. 3, 2005, 6 pages.
Invitation to Pay Additional Fees and Partial International Search Report received for PCT Patent Application No. PCT/US2004/ 016519 , mailed on Aug. 4, 2005, 6 pages.
International Search Report received for PCT Patent Application No. PCT/US2011/037014, mailed on Oct. 4, 2011, 6 pages.
Invitation to Pay Additional Search Fees received for PCT Application No. PCT/US2011/037014, mailed on Aug. 2, 2011, 6 pages. International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/043098, mailed on Nov. 14, 2012, 9 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/040971, mailed on Nov. 12, 2013, 11 pages.
Quazza et al., "Actor: A Multilingual Unit-Selection Speech Synthesis System", Proceedings of 4th ISCA Tutorial and Research Workshop on Speech Synthesis, Jan. 1, 2001, 6 pages.
Ricker, Thomas, "Apple Patents Audio User Interface", Engadget, available at <http://www.engadget.com/2006105/04/apple-patents-audio-user-interface $/>$, May 4, 2006, 6 pages.
Santaholma, Marianne E., "Grammar Sharing Techniques for Rulebased Multilingual NLP Systems", Proceedings of the 16th Nordic Conference of Computational Linguistics, NODALIDA 2007, May 25, 2007, 8 pages.
Taylor et al., "Speech Synthesis by Phonological Structure Matching", International Speech Communication Association, vol. 2, Section 3, 1999, 4 pages.
Xu et al., "Speech-Based Interactive Games for Language Learning: Reading, Translation, and Question-Answering", Computational Linguistics and Chinese Language Processing, vol. 14, No. 2, Jun. 2009, pp. 133-160.

Yunker, John, "Beyond Borders: Web Globalization Strategies", New Riders, Aug. 22, 2002, 11 pages.
Yang et al., "Smart Sight: A Tourist Assistant System", Proceedings of Third International Symposium on Wearable Computers, 1999, 6 pages.
Yankelovich et al., "Intermedia: The Concept and the Construction of a Seamless Information Environment", Computer Magazine, IEEE, Jan. 1988, 16 pages.
Yoon et al., "Letter-to-Sound Rules for Korean", Department of Linguistics, The Ohio State University, 2002, 4 pages.
Zeng et al., "Cooperative Intelligent Software Agents", The Robotics Institute, Carnegie-Mellon University, Mar. 1995, 13 pages.
Zhao, V., "An Acoustic-Phonetic-Based Speaker Adaptation Technique for Improving Speaker-Independent Continuous Speech Recognition", IEEE Transactions on Speech and Audio Processing, vol. 2, No. 3, Jul. 1994, pp. 380-394.
Zhao et al., "Intelligent Agents for Flexible Workflow Systems", Proceedings of the Americas Conference on Information Systems (AMCIS), Oct. 1998, 4 pages.
Zovato et al., "Towards Emotional Speech Synthesis: A Rule based Approach", Proceedings of 5th ISCA Speech Synthesis Work-shop-Pittsburgh, 2004, pp. 219-220.
Zue, Victor, "Conversational Interfaces: Advances and Challenges", Spoken Language System Group, Sep. 1997, 10 pages.
Zue et al., "From Interface to Content: Translingual Access and Delivery of On-Line Information", Eurospeech, 1997, 4 pages.
Zue et al., "Jupiter: A Telephone-Based Conversational Interface for Weather Information", IEEE Transactions on Speech and Audio Processing, Jan. 2000, 13 pages.
Zue et al., "Pegasus: A Spoken Dialogue Interface for On-Line Air Travel Planning", Speech Communication, vol. 15, 1994, 10 pages. Zue et al., "The Voyager Speech Understanding System: Preliminary Development and Evaluation", Proceedings of IEEE, International Conference on Acoustics, Speech and Signal Processing, 1990, 4 pages.
Zue, Victor W., "Toward Systems that Understand Spoken Language", ARPA Strategic Computing Institute, Feb. 1994, 9 pages. International Search Report received for PCT Patent Application No. PCT/GB2009/051684, mailed on Mar. 12, 2010, 4 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/GB2009/051684, mailed on Jun. 23, 2011, 10 pages.
Cucerzan et al., "Bootstrapping a Multilingual Part-of-Speech Tagger in One Person-Day", In Proceedings of the 6th Conference on Natural Language Learning, vol. 20, 2002, pp. 1-7.
Schone et al., "Knowledge-Free Induction of Morphology Using Latent Semantic Analysis", Proceedings of the 2nd Workshop on Learning Language in Logic and the 4th Conference on Computational Natural Language Learning, vol. 7, 2000, pp. 67-72.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2005/030234, issued on Mar. 20, 2007, 9 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2005/030234, mailed on Mar. 17, 2006, 11 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/040801, mailed on Dec. 19, 2013, 16 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/040801, mailed on Oct. 22, 2012, 20 pages.
International Search Report \& Written Opinion received for PCT Patent Application No. PCT/US2013/028412, mailed on Sep. 26, 2013, 17 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/028920, mailed on Jun. 27, 2013, 14 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/029156, mailed on Jul. 15, 2013, 9 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/058916, mailed on Sep. 8, 2014, 10 pages.

References Cited

OTHER PUBLICATIONS

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/029050, mailed on Jul. 31, 2014, 9 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/029562, mailed on Sep. 18, 2014, 21 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/040401, mailed on Sep. 4, 2014, 10 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/040403, mailed on Sep. 23, 2014, 9 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/041159, mailed on Sep. 26, 2014, 10 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/041173, mailed on Sep. 10, 2014, 11 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/23822, mailed on Sep. 25, 2014, 14 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/056382, mailed on Apr. 10, 2014, 9 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/028412, mailed on Sep. 12, 2014, 12 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/028920, mailed on Sep. 18, 2014, 11 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/029156, mailed on Sep. 9, 2014, 7 pages.
Biemann et al., "Disentangling from Babylonian Confusion-Unsupervised Language Identification", CICLing'05 Proceedings of the 6th international conference on Computational Linguistics and Intelligent Text Processing, vol. 3406, Feb. 2005, pp. 773-784.
Choularton et al., "User Responses to Speech Recognition Errors: Consistency of Behaviour Across Domains", Proceedings of the 10th Australian International Conference on Speech Science \& Technology, Dec. 8-10, 2004, pp. 457-462.
Jiang et al., "A Syllable-based Name Transliteration System", Proc. of the 2009 Named Entities Workshop, Aug. 7, 2009, pp. 96-99. Kazemzadeh et al., "Acoustic Correlates of User Response to Error in Human-Computer Dialogues", Automatic Speech Recognition and Understanding, 2003, pp. 215-220.
Kikui, Gen-Itiro, "Identifying the Coding System and Language of On-Line Documents on the Internet", International Conference on Computational, Aug. 1996, pp. 652-657.
Meng et al., "Generating Phonetic Cognates to Handle Named Entities in English-Chinese Cross-Language Spoken Document Retrieval", Automatic Speech Recognition and Understanding, Dec. 2001, pp. 311-314.
Russo et al., "Urgency is a Non-Monotonic Function of Pulse Rate", Journal of the Acoustical Society of America, vol. 122, No. 5, 2007, 6 pages.
Sethy et al., "A Syllable Based Approach for Improved Recognition of Spoken Names", ITRW on Pronunciation Modeling and Lexicon Adaptation for Spoken language Technology (PMLA2002), Sep. 14-15, 2002, pp. 30-35.
Strom et al., "Intelligent Barge-In in Conversational Systems", MIT laboratory for Computer Science, 2000, 4 pages.
Henrich et al., "Language Identification for the Automatic Graph-eme-to-Phoneme Conversion of Foreign Words in a German Text-to-Speech System", Proceedings of the European Conference on Speech Communication and Technology, vol. 2, Sep. 1989, pp. 220-223.

International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/040571, mailed on Dec. 19, 2013, 10 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/041233, issued on Nov. 18, 2014, 8 pages.
International Search Report received for PCT Patent Application No. PCT/US2013/041233, mailed on Nov. 22, 2013, 3 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/028785, mailed on Oct. 17, 2014, 23 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/049568, mailed on Nov. 14, 2014, 12 pages.
Extended European Search Report (includes Supplementary European Search Report and Search Opinion) received for European Patent Application No. 12727027.0, mailed on Sep. 26, 2014, 7 pages.
Guay, Matthew, "Location-Driven Productivity with Task Ave", available at http://iphone.appstorm.net/reviews/productivity/loca-tion-driven-productivity-with-task-ave/, Feb. 19, 2011, 7 pages.
Waibel, Alex, "Interactive Translation of Conversational Speech", Computer, vol. 29, No. 7, Jul. 1996, pp. 41-48.
Amano et al., "A User-friendly Multimedia Book Authoring System", The Institute of Electronics, Information and Communication Engineers Technical Report, vol. 103, No. 416, Nov. 2003, pp. 33-40.
AppleEvent Manager, which is described in the publication Inside Macintosh vol. VI, available from Addison-Wesley Publishing Company, 1985.
Dual Rate Speech Coder for Multimedia Communications Transmitting at 5.3 and $6.3 \mathrm{kbit} / \mathrm{s}$, International Telecommunication Union Recommendation G.723, 7 pages.
Quick Search Algorithm, Communications of the ACM, 33(8), 1990, pp. 132-142.
Worldwide Character Encoding, Version 2.0, vols. 1,2 by Unicode, Inc., 12 pages.
Extended European Search Report (includes Partial European Search Report and European Search Opinion) received for European Patent Application No. 13169672.6, mailed on Aug. 14, 2013, 11 pages.
Barrett et al., "How to Personalize the Web", 1997 in proceddings of the ACM SIGCHI Conference on Human Factors in Computer Systems, Mar. 22-27, 1997, pp. 75-82.
Boyer et al., "A Fast String Searching Algorithm", Communications of the ACM, vol. 20, 1977, pp. 762-772.
Cao et al., "Adapting Ranking SVM to Document Retrieval", SIGIR '06, Seattle, WA, Aug. 6-11, 2006, 8 pages.
Chomsky et al., "The Sound Pattern of English", New York, Harper and Row, 1968, 242 pages.
Church, Kenneth W., "Phonological Parsing in Speech Recognition", Kluwer Academic Publishers, 1987.
Erol et al., "Multimedia Clip Generation From Documents for Browsing on Mobile Devices", IEEE Transactions on Multimedia, vol. 10, No. 5, Aug. 2008, 13 pages.
Evermann et al., "Posterior Probability Decoding, Confidence Estimation and System Combination", Proceedings Speech Transcription Workshop, 2000, 4 pages.
Fiscus, J. G., "A Post-Processing System to Yield Reduced Word Error Rates: Recognizer Output Voting Error Reduction (ROVER)", IEEE Proceedings, Automatic Speech Recognition and Understanding, Dec. 14-17, 1997, pp. 347-354.
Gonnet et al., "Handbook of Algorithms and Data Structures: in Pascal and C. (2nd ed.)", Addison-Wesley Longman Publishing Co., 1991, 17 pages.
Gruber, Thomas R., et al., U.S. Appl. No. 61/186,414, filed Jun. 12, 2009 titled "System and Method for Semantic Auto-Completion" 13 pages.
Gruber, Thomas R., et al., U.S. Appl. No. 61/493, 201, filed Jun. 3, 2011 titled "Generating and Processing Data Items That Represent Tasks to Perform", 68 pages.

References Cited

OTHER PUBLICATIONS

Gruber, Thomas R., et al., Unpublished U.S. Appl. No. 61/657,744, filed Jun. 9, 2012 titled "Automatically Adapting User Interfaces for Hands-Free Interaction", 40 pages.
Gruber, Thomas R., et al., U.S. Appl. No. 07/976,970, filed Nov. 16, 1992 titled "Status Bar for Application Windows".
Haitsma et al., "A Highly Robust Audio Fingerprinting System", In Proceedings of the International Symposium on Music Information Retrieval (ISMIR), 2002, 9 pages.
Hendrickson, Bruce, "Latent Semantic Analysis and Fiedler Retrieval", Discrete Algorithms and Mathematics Department, Sandia National Labs, Albuquerque, NM, Sep. 21, 2006, 12 pages. id3.org, "id3v2.4.0-Frames", available at http://id3.org/id3v2.4.0frames?action=print, retrieved on Jan. 22, 2015, 41 pages.
Jawaid et al., "Machine Translation with Significant Word Reordering and Rich Target-Side Morphology", WDS' 11 Proceedings of Contributed Papers, Part I, 2011, pp. 161-166.
Kane et al., "Slide Rule: Making Mobile Touch Screens Accessible to Blind People Using Multi-Touch Interaction Techniques", ASSETS, Oct. 13-15, 2008, pp. 73-80.
Kohler, Joachim, "Multilingual Phone Models for VocabularyIndependent Speech Recognition Tasks", Speech Communication, vol. 35, No. 1-2, Aug. 2001, pp. 21-30.
Kroon et al., "Pitch Predictors with High Temporal Resolution", IEEE, vol. 2, 1990, pp. 661-664.
Ladefoged, Peter, "A Course in Phonetics", New York, Harcourt, Brace, Jovanovich, Second Edition, 1982.
Lau et al., "Trigger-Based Language Models: A Maximum Entropy Approach", IC ASSP'93 Proceedings of the 1993 IEEE international conference on Acoustics, speech, and signal processing: speech processing-vol. II, 1993, pp. 45-48.
Lee et al., "On URL Normalization", Proceedings of the International Conference on Computational Science and its Applications, ICCSA 2005, pp. 1076-1085.
Leveseque et al., "A Fundamental Tradeoff in Knowledge Representation and Reasoning", Readings in Knowledge Representation, 1985, 30 pages.
Mangu et al., "Finding Consensus in Speech Recognition: Word Error Minimization and Other Applications of Confusion Networks", Computer Speech and Language, vol. 14, No. 4, 2000, pp. 291-294.
Manning etal, "Foundations of Statistical Natural Language Processing", The MIT Press, Cambridge Massachusetts, 1999, pp. 10-11.
International Preliminary Examination Report on received for PCT Patent Application No. PCT/US1993/12637, mailed on Apr. 10, 1995, 7 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2009/051954, issued on Mar. 24, 2011, 8 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2009/051954, mailed on Oct. 30, 2009, 10 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/043100, mailed on Nov. 15, 2012, 8 pages.
Reddi, "The Parser".
Rose et al., "Inside Macintosh", vols. I, II, and III, Addison-Wesley Publishing Company, Inc., Jul. 1988, 1284 pages.
Sankar, Ananth, "Bayesian Model Combination (BAYCOM) for Improved Recognition", IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Mar. 18-23, 2005, pp. 845-848.
Stifleman, L., "Not Just Another Voice Mail System", Proceedings of 1991 Conference, American Voice, Atlanta GA, Sep. 24-26, 1991, pp. 21-26.
Stuker et al., "Cross-System Adaptation and Combination for Continuous Speech Recognition: The Influence of Phoneme Set and Acoustic Front-End", Influence of Phoneme Set and Acoustic Front-End, Interspeech, Sep. 17-21, 2006, pp. 521-524.

Sundaram et al., "Latent Perceptual Mapping with Data-Driven Variable-Length Acoustic Units for Template-Based Speech Recognition", ICASSP 2012, Mar. 2012, pp. 4125-4128.
Wang et al., "An Industrial-Strength Audio Search Algorithm", In Proceedings of the International Conference on Music Information Retrieval (ISMIR), 2003, 7 pages.
Young, S. J., "The HTK Book", Available on <http://htk.eng.cam. ac.uk>, 4 pages.
Amano, Junko, "A User-Friendly Authoring System for Digital Talking Books", IEICE Technical Report, The Institute of Electronics, Information and Communication Engineers, vol. 103 No. 418, Nov. 6, 2003, pp. 33-40.
Extended European Search Report (inclusive of the Partial European Search Report and European Search Opinion) received for European Patent Application No. 12729332.2, mailed on Oct. 31, 2014, 6 pages.
adobe.com, "Reading PDF Documents with Adobe Reader 6.0—A Guide for People with Disabilities", Available online at "https:// www.adobe.com/enterprise/accessibility/pdfs/acro6_cg_ue.pdf", Jan. 2004, 76 pages.
Bertulucci, Jeff, "Google Adds Voice Search to Chrome Browser", PC World, Jun. 14, 2011.
Dobrisek et al., "Evolution of the Information-Retrieval System for Blind and Visually-Impaired People", International Journal of Speech Technology, Kluwer Academic Publishers, Bo, vol. 6, No. 3, pp. 301-309.
Lee et al., "A Multi-Touch Three Dimensional Touch-Sensitive Tablet", CHI '85 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Apr. 1985, pp. 21-25.
Martins et al., "Extracting and Exploring the Geo-Temporal Semantics of Textual Resources", Semantic Computing, IEEE International Conference, 2008, pp. 1-9.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2009/055577, completed on Aug. 6, 2010, 12 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2009/055577, mailed on Jan. 26, 2010, 9 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/041225, mailed on Nov. 27, 2014, 9 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/047668, mailed on Jan. 8, 2015, 13 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/052558, mailed on Feb. 12, 2015, 12 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/058916, mailed on Mar. 19, 2015, 8 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/060121, mailed on Apr. 2, 2015, 6 pages.
Rubine, Dean Harris, "Combining Gestures and Direct Manipulation", CHI '92, May 3-7, 1992, pp. 659-660.
Rubine, Dean Harris, "The Automatic Recognition of Gestures", CMU-CS-91-202, Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Computer Science at Carnegie Mellon University, Dec. 1991, 285 pages.
Sen et al., "Indian Accent Text-to-Speech System for Web Browsing", Sadhana, vol. 27, No. 1, Feb. 2002, pp. 113-126.
Tombros et al., "Users" Perception of Relevance of Spoken Documents", Journal of the American Society for Information Science, New York, Aug. 2000, pp. 929-939.
Westerman, Wayne, "Hand Tracking, Finger Identification and Chordic Manipulation on a Multi-Touch Surface", Doctoral Dissertation, 1999, 363 Pages.
Youtube, "New bar search for Facebook", Available at "https:// www.youtube.com/watch? $\mathrm{v}=\mathrm{vwgN1WbvCas"}$,1 page.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/047668, mailed on Feb. 13, 2014, 17 pages.

References Cited

OTHER PUBLICATIONS

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/052558, mailed on Jan. 30, 2014, 15 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/060121, mailed on Dec. 6, 2013, 8 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/040961, mailed on Mar. 10, 2015, 5 pages.
Invitation to Pay Additional Fees received for PCT Application No PCT/US2014/040961, mailed on Jan. 14, 2015, 3 pages.
Invitation to Pay Additional Fees and Partial Search Report received for PCT Patent Application No. PCT/US2015/023089, mailed on Jun. 17, 2015, 7 pages.
Chen et al., "An Improved Method for Image Retrieval Using Speech Annotation", The 9th International Conference on MultiMedia Modeling, Jan. 2003, pp. 1-17.
Haga et al., "A Usability Survey of a Contents-Based Video Retrieval System by Combining Digital Video and an Electronic Bulletin Board", The Internet and Higher Education, vol. 8, No. 3, 2005, pp. 251-262.
Jouvet et al., "Evaluating Grapheme-to-phoneme Converters in Automatic Speech Recognition Context", IEEE,, 2012,, pp. 48214824.

Kazmucha, Allyson, "How to Send Map Locations Using iMessage", iMore.com, Available at http://www.imore.com/how-use-imessage-share-your-location-your-iphone, Aug. 2, 2012, 6 pages. Lewis, Cameron, "Task Ave for iPhone Review", Mac Life, Available at <http://www.maclife.com/article/reviews/task_ave_ iphone_review>, Mar. 3, 2011, 5 pages.
Ng, Simon, "Google's Task List Now Comes to Iphone", SimonBlog, Available at <http://www.simonblog.com/2009/02/04/ googles-task-list-now-comes-to-iphone/>, Feb. 4, 2009, 33 pages.
Osxdaily, "Get a List of Siri Commands Directly from Siri", Available at http://osxdaily.com/2013/02/05/list-siri-commands/, Feb. 5, 2013, 15 pages.
Extended European Search Report (includes Partial European Search Report and European Search Opinion) received for European Patent Application No. 15169349.6, mailed on Jul. 28, 2015, 8 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/044574, mailed on Sep. 27, 2013, 12 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/044834, issued on Dec. 9, 2014, 9 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/044834, mailed on Dec. 20, 2013, 13 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/047659, mailed on Jul. 7, 2014, 25 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/023826, mailed on Oct. 9, 2014, 13 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/026871, mailed on Jul. 23, 2014, 9 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/026873, mailed on Jan. 5, 2015, 11 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/028950, mailed on Nov. 25, 2014, 10 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/040393, mailed on Dec. 8, 2014, 23 pages.

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/040394, mailed on Aug. 8, 2014, 11 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/040397, mailed on Aug. 27, 2014, 12 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/023097, mailed on Jul. 7, 2015, 15 pages.
Sarvas et al., "Metadata Creation System for Mobile Images", Conference Proceedings, The Second International Conference on Mobile Systems, Applications and Services, Jun. 6, 2004, pp. 36-48. Srihari, R. K.., "Use of Multimedia Input in Automated Image Annotation and Content-based Retrieval", Proceedings of Spie, International Society for Optical Engineering, vol. 2420, Feb. 9, 1995., pp. 249-260.

Timothy et al., "Speech-Based Annotation and Retrieval of Digital Photographs", Interspeech. 8th Annual Conference of the International Speech Communication Association, Aug. 27, 2007, pp. 2165-2168.
Viikki et al., "Speaker- and Language-Independent Speech Recognition in Mobile Communication Systems", IEEE, vol. 1, 2001, pp. 5-8.
Xiang et al., "Correcting Phoneme Recognition Errors in Learning Word Pronunciation through Speech Interaction", Speech Communication, vol. 55, No. 1, Jan. 1, 2013, pp. 190-203.
Database WPI Section Ch, Week 8733, Derwent Publications Ltd., London, GB; AN 87-230826 \& JP, A, 62153326 (Sanwa Kako KK (SANS) Sanwa Kako Co), Jul. 8, 1987.
Database WPI Section Ch, Week 8947, Derwent Publications Ltd., London, GB; AN 89-343299 \& JP, A, 1254742 (Sekisui Plastics KK), Oct. 11, 1989.
Dragon Naturally Speaking Version 11 Users Guide, Nuance Communications, Inc., Copyright @2002-2010, 132 pages.
Headset Button Controller v7.3 APK Full APP Download for Android, Blackberry, iPhone, 11 pages.
Patent Abstracts of Japan, vol. 014, No. 273 (E-0940)Jun. 13, 1990 (Jun. 13, 1990)-\& JP 02086057 A (Japan Storage Battery Co Ltd), Mar. 27, 1990 (Mar. 27, 1990).
European Search Report received for European Patent Application No. 01201774.5 , mailed on Sep. 14, 2001, 3 pages.
Extended European Search Report received for European Patent Application No. 11159884.3, mailed on May 20, 2011, 8 pages.
European Search Report received for European Patent Application No. 99107544.1 , mailed on Jul. 8, 1999, 4 pages.
European Search Report received for European Patent Application No. 99107545.8, mailed on Jul. 1, 1999, 3 pages.
API.AI, "Android App Review-Speaktoit Assistant", Available at https://www.youtube.com/watch?v=myE498nyfGw, Mar. 30, 2011, 3 pages.
Apple, "iPhone User's Guide", Available at <http://mesnotices. 20minutes.fr/manuel-notice-mode-emploi/APPLE/
IPHONE\%2D\%5FE\#>, Retrieved on Mar. 27, 2008, Jun. 2007, 137 pages.
Bergmann et al., "An adaptable man-machine interface using con-nected-word recognition", 2nd European Conference on Speech Communication and Technology (Eurospeech 91), vol. 2, XP002176387, Sep. 24-26, 1991, pp. 467-470.
Chamberlain, Kim, "Quick Start Guide Natural Reader", available online at <http://atre.colostate.edu/files/quickstarts/Natural_ Reader_Quick_Start_Guide.>, Apr. 2008, 5 pages.
Colt, Sam, "Here's One Way Apple's Smartwatch Could Be Better Than Anything Else", Business Insider, Aug. 21, 2014, pp. 1-4. Dittenbach et al., "A Natural Language Query Interface for Tourism Information", In: Information and Communication Technologies in Tourism 2003, XP055114393, Feb. 14, 2003, pp. 152-162.
Fuji Film, "Taking Pictures Remotely: Free iPhone/Android App Fuji Film Camera Remote", Available at <http://app.fujifilm-dsc. com/en/camera remote/guide05.html>, Apr. 22, 2014, 3 pages.
Gurevych et al., "Semantic Coherence Scoring Using an Ontology", North American Chapter of the Association for Computational Linguistics Archive, Proceedings of the 2003 Conference of the

References Cited

OTHER PUBLICATIONS

North American Chapter of the Association for Computational Linguistics on Human Language Technology, May 27, 2003, 8 pages.
Morton, Philip, "Checking If an Element Is Hidden", StackOverflow, Available at <http://stackoverflow.com/questions/ 178325/checking-if-an-element-is-hidden>, Oct. 7, 2008, 12 pages. NDTV, "Sony SmartWatch 2 Launched in India for Rs. 14,990", available at http://gadgets.ndtv.com/others/news/sony-smartwatch-2-launched-in-india-for-rs-14990-420319, Sep. 18, 2013, 4 pages.
Pan et al., "Natural Language Aided Visual Query Building for Complex Data Access", In proceeding of: Proceedings of the Twenty-Second Conference on Innovative Applications of Artificial Intelligence, XP055114607, Jul. 11, 2010.
International Search Report received for PCT Application No. PCT/US 1994/000687, mailed on Jun. 3, 1994, 1 page.
International Search Report received for PCT Application No. PCT/US1994/00077, mailed on May 25, 1994, 2 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US1994/11011, issued on Feb. 28, 1996, 4 pages.
International Search Report received for PCT Application No. PCT/US 1995/013076, mailed on Feb. 2, 1996, 1 page.
International Search Report received for PCT Application No. PCT/US1996/01002, mailed on Oct. 30, 1996, 4 pages.
International Search Report received for PCT Application No. PCT/US2002/024669, mailed on Nov. 5, 2002, 3 pages.
International Search Report received for PCT Application No PCT/US2002/024670, mailed on Sep. 26, 2002, 3 pages.
International Preliminary Report on Patentability received for PCT Application No. PCT/US2004/002873, dated Feb. 1, 2006, 5 pages. International Search Report received and written opinion for PCT Application No. PCT/US2004/002873, mailed on Oct. 13, 2005, 7 pages.
International Preliminary report on Patentability received for PCT Application No. PCT/US2004/016519, issued on Jan. 23, 2006, 12 pages.
International Preliminary Report on Patentability received for PCT Application No. PCT/US2008/000042, issued on Jul. 7, 2009, 6 pages.
International Preliminary Report on Patentability received for PCT Application No. PCT/US2008/000043, issued on Jul. 7, 2009, 8 pages.
International Preliminary Report on Patentability received for PCT Application No. PCT/US2008/000047, issued on Jul. 7, 2009, 8 pages.
International Preliminary Report on Patentability received for PCt Application No. PCT/US2010/037378, issued on Dec. 6, 2011, 9 pages.
International Preliminary Report on Patentability received for PCT Application No. PCT/US2011/020350, issued on Jul. 17, 2012, 12 pages.
International Preliminary Report on Patentability received for PCT Application No. PCT/US2011/020825, dated Jan. 13, 2012, 17 pages.
International Search Report and Written Opinion received for PCT Application No. PCT/US2011/020825, mailed on Mar. 18, 2011.
International Preliminary Report on Patentability received for PCT
Application No. PCT/US2011/037014, mailed on Dec. 13, 2012, 10 pages.
International Preliminary Report on Patentability received for PCT Application No. PCT/US2012/034028, mailed on Oct. 31, 2013, 7 pages.
International Preliminary Report on Patentability received for PCT Application No. PCT/US2012/040931, mailed on Dec. 18, 2014, 9 pages.
International Preliminary Report on Patentability received for PCT Application No. PCT/US2012/043098, mailed on Jan. 9, 2014, 8 pages.

International Preliminary Report on Patentability received for PCT Application No. PCT/US2012/043100, mailed on Jan. 9, 2014, 7 pages.
International Preliminary Report on Patentability received for PCT/ US2013/047659, issued on Dec. 31, 2014, 15 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/015418, mailed on Aug. 20, 2015, 12 pages.
International Preliminary Report on Patentability received for PCT Application No. PCT/US2014/016988, mailed on Sep. 3, 2015, 8 pages.
International Search Report and Written Opinion received for PCT Application No. PCT/US2014/016988, mailed on Apr. 29, 2014, 10 pages.
International Preliminary Report on Patentability received for PCT
Patent Application No. PCT/US2014/023822, mailed on Sep. 24, 2015, 12 pages.
International Preliminary Report on Patentability received for PCT Application No. PCT/US2014/023826, mailed on Sep. 24, 2015, 9 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/026871, mailed on Sep. 24, 2015, 7 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/026873, mailed on Sep. 24, 2015, 9 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/028785, mailed on Sep. 24, 2015, 15 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/028950, mailed on Sep. 24, 2015, 8 pages.
International Preliminary Report on Patentability received for PCT Application No. PCT/US2014/029050, mailed on Sep. 24, 2015, 7 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/029562, mailed on Sep. 24, 2015, 16 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/053951, mailed on Dec. 8, 2014, 11 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/053957, mailed on Feb. 19, 2015, 11 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/053958, mailed on Feb. 19, 2015, 10 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/019298, mailed on Jul. 13, 2015, 17 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/019320, mailed on Jul. 2, 2015, 14 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/019321, mailed on Jun. 3, 2015, 11 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/019322, mailed on Jun. 18, 2015, 16 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/023593, mailed on Aug. 14, 2015, 16 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/025188, mailed on Jun. 23, 2015, 11 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/032470, mailed on Oct. 1, 2015, 13 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/032724, mailed on Jul. 27, 2015, 11 pages.

References Cited

OTHER PUBLICATIONS

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/033051, mailed on Aug. 5, 2015, 14 pages.
Playmemories Camera Apps, "PlayMemories Camera Apps Help Guide", Available at <https://www.playmemoriescameraapps.com/ portal/manual/IS9104-NPIA09014_00-F00002/en/index.html>, 2012, 3 pages.
Techsmith, "Snagit 11-Snagit 11.4 Help", Available at <http:// assets.techsmith.com/Downloads/ua-tutorials-snagit-11/Snagit_11. pdf $>$, Jan. 2014, 146 pages.
Xperia Blog, "Action Camera Extension Gives Smartwatch/ Smartband Owners Ability to Control Sony Wireless Cameras", Available at http://www.xperiablog.net/2014/06/13/action-cam-era-extension-gives-smartwatchsmartband-owners-ability-to-con-trol-sony-wireless-cameras/, Jun. 13, 2014, 10 pages.
International Search Report and Written Opinion received for PCT Application No. PCT/US2015/023089, mailed on Aug. 20, 2015. 16 pages.
Zhong et al., "JustSpeak: Enabling Universal Voice Control on Android", W4A'14, Proceedings of the 11th Web for All Conference, No. 36, Apr. 7-9, 2014, 4 pages.
Hear voice from Google translate, Available on URL:https:// youtube.com/watch?v=18AvMhFqD28, Jan. 28, 2011.
Iso-Sipila et al., "Multi-Lingual Speaker-Independent Voice User Interface for Mobile Devices", ICASSP 2006 Proceedings, IEEE

International Conference on Acoustics, Speech and Signal Processing May 14, 2006, pp. 1-1081.
Kitaoka et al., "Detection and Recognition of Correction Utterances on Misrecognition of Spoken Dialog System", Systems and Computers in Japan, vol. 36, No. 11 Oct. 2005, pp. 24-33.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/044574, issued on Dec. 9, 2014, 8 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/040393, issued on Dec. 8, 2015, 15 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/047062, mailed on Jan. 13, 2016, 25 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/047281, mailed on Dec. 17, 2015, 19 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/047553, mailed on Jan. 5, 2016, 10 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/040401, issued on Dec. 8, 2015, 6 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/040403 mailed on Dec. 23, 2015, 7 pages.

* cited by examiner
FIG. 1

FIG. 2

FIG. 3A

FIG. 3 C

User Specified Pronunciation:
Recognition: $1-11$-ee-p-ay r^{404}
Synthesis: fil -- eep - ay ${ }^{406}$
Standard Pronunciation:
Recogntion: f-ill - ee-p-r
Synthesis: fill - eep r^{410}

FIG. 4

FIG. 5A

FIG. 5B

FiG. 6

FiG. 7

SYSTEM AND METHOD FOR USER-SPECIFIED PRONUNCIATION OF WORDS FOR SPEECH SYNTHESIS AND RECOGNITION

CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority from U.S. Provisional Ser. No. 61/832,753, filed on Jun. 7, 2013, entitled SYSTEM AND METHOD FOR USER-SPECIFIED PRONUNCIATION OF WORDS FOR SPEECH SYNTHESIS AND RECOGNITION, which is hereby incorporated by reference in its entirety for all purposes.

TECHNICAL FIELD

The disclosed implementations relate generally to digital assistants, and more specifically, to digital assistants that make use of user-specified pronunciations of words for speech synthesis and recognition.

BACKGROUND

Just like human personal assistants, digital assistants or virtual assistants can perform requested tasks and provide requested advice, information, or services. An assistant's ability to fulfill a user's request is dependent on the assistant's correct comprehension of the request or instructions. Recent advances in natural language processing have enabled users to interact with digital assistants using natural language, in spoken or textual forms, rather than employing a conventional user interface (e.g., menus or programmed commands). Such digital assistants can interpret the user's input to infer the user's intent, translate the inferred intent into actionable tasks and parameters, execute operations or deploy services to perform the tasks, and produce outputs that are intelligible to the user. Ideally, the outputs produced by a digital assistant should fulfill the user's intent expressed during the natural language interaction between the user and the digital assistant.

Digital assistants that interact with users via speech inputs and outputs typically employ speech-to-text processing techniques to convert speech inputs to textual forms that can be further processed, and speech synthesis techniques to convert textual outputs to speech. In both cases, accurate conversion between speech and text is important to the usefulness of the digital assistant. For example, if the words in a speech input are incorrectly identified by a speech-totext process, the digital assistant may not be able to properly infer the user's intent, or may provide incorrect or unhelpful responses. On the other hand, if the words in a speech output are incorrectly pronounced by the digital assistant, the user may have difficulty understanding the digital assistant. Moreover, incorrect pronunciations by the digital assistant make the assistant seem less polished and less capable, and may reduce users' interest and confidence in the digital assistant.

For many words, accurate recognition and synthesis are relatively easy, because their pronunciations are fairly standard, at least between people with similar accents or from similar geographical regions. However, certain words or classes of words may be subject to many different pronunciations, making accurate recognition and synthesis more difficult. For example, proper names are often subject to different pronunciations by different people, and it is often not possible to discern the correct pronunciation based only
on the spelling of the name. This ambiguity in the correct (or preferred) pronunciation of names is a possible source of recognition and synthesis errors by a digital assistant.

Accordingly, there is a need for systems and methods to allow users to specify pronunciations of words for recognition and synthesis by a digital assistant.

SUMMARY

The implementations described herein allow users to specify a correct or a preferred pronunciation of words, such as proper names, so that a digital assistant can both recognize and synthesize the word based on the specified pronunciation. (The term "correct" does not necessarily refer to a single, universally correct pronunciation, as several different pronunciations of a word may be considered "correct" by various individuals and/or in various dialects, accents, languages, etc.) For example, a user can speak a word or name to a digital assistant, and the digital assistant will adjust its speech recognition process to associate the specified pronunciation with the word, and adjust its speech synthesis process so that, when the word is spoken by the digital assistant, it conforms to the user-specified pronunciation. In many cases, however, speech recognition and speech synthesis are performed by different processes using different phonetic representations of the word. Specifically, speech recognition phonetic alphabets are often different from speech synthesis phonetic alphabets, because the phonemes used to generate speech are typically different from those used to recognize speech. More specifically, a speech recognizer may not be able to (or may not need to) detect as many phonemes as a speech synthesizer can produce. And though a digital assistant can detect phonemes in a speech input in order to learn a user-specified pronunciation, those phonemes may not be suitable for use by a speech synthesizer. Accordingly, separate phonetic representations of the word must be used for speech recognition and synthesis processes.

Some implementations described herein generate phonetic representations for both speech recognition and synthesis based on a single spoken input. By using only a single spoken input to train speech recognition and speech synthesis processes, the number of interactions necessary to train the digital assistant can be reduced, making the digital assistant appear smarter and more human. Moreover, accepting a spoken input instead of requiring the user to type or otherwise select a textual phonetic representation in a phonetic alphabet allows a more human-like interaction with the digital assistant, thus enhancing the user experience and potentially increasing the user's confidence in the capabilities of the digital assistant.

Using a single speech input also offers several benefits over techniques that require a user to type in or otherwise select textual phonetic representations of a word. For example, users may be unfamiliar with the particular phonetic alphabet used to train the digital assistant. And if the textual phonetic representations are simplified so that users can use a standard alphabet (e.g., the Latin alphabet) to provide a phonetic representation, differences in accents may result in further confusion and lead to the selection of incorrect pronunciations. As a specific example, for the name "Philippe," a user may represent the first syllable as "fill" in an effort to teach the digital assistant the preferred pronunciation. But even the word "fill" may be pronounced differently by different people (e.g., a person with a French accent may understand "fill" to be pronounced similar to "feel"). Thus, attempting to specify word pronunciations
using textual inputs often fail to solve, and can even increase, pronunciation errors. Accordingly, accepting a spoken input of a word simplifies the process of teaching a digital assistant how to recognize and synthesize a word, and increases the accuracy of the teaching process.

Also described herein are techniques whereby a digital assistant detects when its assumption about a word or name pronunciation is incorrect, and engages in a conversation with the user to acquire the correct pronunciation. For example, if a user asks a digital assistant to "send a text message to Philippe" (pronouncing the name "fill-eep-ay") the digital assistant may not properly recognize the name, and may tell the user that it doesn't understand the input. The user may then bypass the digital assistant altogether and manually send a text message to a contact named Philippe. The digital assistant can detect that the user took this action, infer that there was problem in its recognition of the name "Philippe," and engage the user in a dialogue to acquire a correct pronunciation.

If the digital assistant correctly recognizes a word, though, it may still mispronounce the name when it uses the name in a synthesized speech output. When this occurs, a user can indicate that the name was mispronounced, such as by saying "you said that wrong," prompting the digital assistant to engage in a dialogue to acquire a correct pronunciation.

The implementations disclosed herein provide methods, systems, computer readable storage medium and user interfaces for a digital assistant to correctly and conveniently acquire correct word pronunciations for speech recognition and synthesis.

According to some implementations, a method is performed at an electronic device with one or more processors and memory storing one or more programs for execution by the one or more processors. A first speech input including at least one word is received. A first phonetic representation of the at least one word is determined, the first phonetic representation comprising a first set of phonemes selected from a speech recognition phonetic alphabet. The first set of phonemes is mapped to a second set of phonemes to generate a second phonetic representation, where the second set of phonemes are selected from a speech synthesis phonetic alphabet. The second phonetic representation is stored in association with a text string corresponding to the at least one word.

In some implementations, the text string is a name in a contact list associated with a user. In some implementations, the text string is input by a user via a keyboard. In some implementations, the text string is from a webpage displayed by the electronic device.

In some implementations, after updating the speech recognizer, a second speech input including the at least one word is received. A third phonetic representation of the at least one word is determined. It is determined that the at least one word corresponds to the text string based on a determination that the third phonetic representation is substantially similar to the first phonetic representation.

According to some implementations, a method is performed at an electronic device with one or more processors and memory storing one or more programs for execution by the one or more processors. An error is detected in a speech based interaction with a digital assistant. In response to detecting the error, a speech input is received from a user, the speech input including a pronunciation of one or more words. The pronunciation is stored in association with a text string corresponding to the one or more words.

According to some implementations, a method is performed at an electronic device with one or more processors and memory storing one or more programs for execution by the one or more processors. A user-specified pronunciation of a first user's name is received from the first user. The pronunciation of the first user's name is stored in association with the first user's name and a unique identifier of the first user. It is detected that a second user has created a contact item including the first user's name and the unique identifier of the first user. The user-specified pronunciation is used for one or both of recognizing the first user's name in speech inputs by the second user, and synthesizing the first user's name in speech outputs to the second user by the digital assistant.

In accordance with some implementations, an electronic device includes a display, a touch-sensitive surface, optionally one or more sensors to detect intensity of contacts with the touch-sensitive surface, one or more processors, memory, and one or more programs; the one or more programs are stored in the memory and configured to be executed by the one or more processors and the one or more programs include instructions for performing the operations of any of the methods described above. In accordance with some implementations, a computer readable storage medium has stored therein instructions which when executed by an electronic device with a display, a touch-sensitive surface, and optionally one or more sensors to detect intensity of contacts with the touch-sensitive surface, cause the device to perform the operations of any of the methods referred described above. In accordance with some implementations, an electronic device includes: a display, a touch-sensitive surface, and optionally one or more sensors to detect intensity of contacts with the touch-sensitive surface; and means for performing the operations of any of the methods described above. In accordance with some implementations, an information processing apparatus, for use in an electronic device with a display and a touch-sensitive surface, optionally one or more sensors to detect intensity of contacts with the touch-sensitive surface, includes means for performing the operations of any of the methods described above.

The details of one or more implementations of the subject matter described in this specification are set forth in the accompanying drawings and the description below. Other features, aspects, and advantages of the subject matter will become apparent from the description, the drawings, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating an environment in which a digital assistant operates in accordance with some implementations.

FIG. 2 is a block diagram illustrating a digital assistant client system in accordance with some implementations.

FIG. 3A is a block diagram illustrating a digital assistant system or a server portion thereof in accordance with some implementations.

FIG. 3B is a block diagram illustrating functions of the digital assistant shown in FIG. 3A in accordance with some implementations.

FIG. 3C is a diagram of a portion of an ontology in accordance with some implementations.

FIG. 4 illustrates a portion of a contact list item in accordance with some implementations.

FIGS. 5A-7 are flow diagrams of an exemplary method implemented by a digital assistant for learning word pronunciations, in accordance with some implementations.

Like reference numerals refer to corresponding parts throughout the drawings.

DESCRIPTION OF IMPLEMENTATIONS

FIG. $\mathbf{1}$ is a block diagram of an operating environment 100 of a digital assistant according to some implementations. The terms "digital assistant," "virtual assistant," "intelligent automated assistant," or "automatic digital assistant," refer to any information processing system that interprets natural language input in spoken and/or textual form to infer user intent, and performs actions based on the inferred user intent. For example, to act on a inferred user intent, the system can perform one or more of the following: identifying a task flow with steps and parameters designed to accomplish the inferred user intent, inputting specific requirements from the inferred user intent into the task flow; executing the task flow by invoking programs, methods, services, APIs, or the Like; and generating output responses to the user in an audible (e.g. speech) and/or visual form.

Specifically, a digital assistant is capable of accepting a user request at least partially in the form of a natural language command, request, statement, narrative, and/or inquiry. Typically, the user request seeks either an informational answer or performance of a task by the digital assistant. A satisfactory response to the user request is either provision of the requested informational answer, performance of the requested task, or a combination of the two. For example, a user may ask the digital assistant a question, such as "Where am I right now?" Based on the user's current location, the digital assistant may answer, "You are in Central Park near the west gate." The user may also request the performance of a task, for example, "Please invite my friends to my girlfriend's birthday party next week." In response, the digital assistant may acknowledge the request by saying "Yes, right away," and then send a suitable calendar invite on behalf of the user to each of the user' friends listed in the user's electronic address book. During performance of a requested task, the digital assistant sometimes interacts with the user in a continuous dialogue involving multiple exchanges of information over an extended period of time. There are numerous other ways of interacting with a digital assistant to request information or performance of various tasks. In addition to providing verbal responses and taking programmed actions, the digital assistant also provides responses in other visual or audio forms, e.g., as text, alerts, music, videos, animations, etc.

An example of a digital assistant is described in Applicant's U.S. Utility application Ser. No. 12/987,982 for "Intelligent Automated Assistant," filed Jan. 10, 2011, the entire disclosure of which is incorporated herein by reference.

As shown in FIG. 1, in some implementations, a digital assistant is implemented according to a client-server model. The digital assistant includes a client-side portion $102 a$, $102 b$ (hereafter "DA client 102") executed on a user device $104 a, 104 b$, and a server-side portion 106 (hereafter "DA server $\mathbf{1 0 6 ")}$) executed on a server system 108 . The DA client 102 communicates with the DA server 106 through one or more networks 110. The DA client $\mathbf{1 0 2}$ provides client-side functionalities such as user-facing input and output processing and communications with the DA-server 106. The DA server $\mathbf{1 0 6}$ provides server-side functionalities for any number of DA-clients 102 each residing on a respective user device 104.

In some implementations, the DA server 106 includes a client-facing I/O interface 112, one or more processing
modules 114, data and models 116, and an I/O interface to external services 118. The client-facing I/O interface facilitates the client-facing input and output processing for the digital assistant server 106. The one or more processing modules 114 utilize the data and models 116 to determine the user's intent based on natural language input and perform task execution based on inferred user intent. In some implementations, the DA-server 106 communicates with external services $\mathbf{1 2 0}$ through the network(s) 110 for task completion or information acquisition. The I/O interface to external services $\mathbf{1 1 8}$ facilitates such communications.

Examples of the user device $\mathbf{1 0 4}$ include, but are not limited to, a handheld computer, a personal digital assistant (PDA), a tablet computer, a laptop computer, a desktop computer, a cellular telephone, a smart phone, an enhanced general packet radio service (EGPRS) mobile phone, a media player, a navigation device, a game console, a television, a remote control, or a combination of any two or more of these data processing devices or other data processing devices. More details on the user device 104 are provided in reference to an exemplary user device 104 shown in FIG. 2.

Examples of the communication network(s) $\mathbf{1 1 0}$ include local area networks ("LAN") and wide area networks ("WAN"), e.g., the Internet. The communication network(s) 110 may be implemented using any known network protocol, including various wired or wireless protocols, such as e.g., Ethernet, Universal Serial Bus (USB), FIREWIRE, Global System for Mobile Communications (GSM), Enhanced Data GSM Environment (EDGE), code division multiple access (CDMA), time division multiple access (TDMA), Bluetooth, Wi-Fi, voice over Internet Protocol (VoIP), Wi-MAX, or any other suitable communication protocol.

The server system 108 is implemented on one or more standalone data processing apparatus or a distributed network of computers. In some implementations, the server system 108 also employs various virtual devices and/or services of third party service providers (e.g., third-party cloud service providers) to provide the underlying computing resources and/or infrastructure resources of the server system 108.

Although the digital assistant shown in FIG. 1 includes both a client-side portion (e.g., the DA-client 102) and a server-side portion (e.g., the DA-server 106), in some implementations, the functions of a digital assistant is implemented as a standalone application installed on a user device. In addition, the divisions of functionalities between the client and server portions of the digital assistant can vary in different implementations. For example, in some implementations, the DA client is a thin-client that provides only user-facing input and output processing functions, and delegates all other functionalities of the digital assistant to a backend server.

FIG. 2 is a block diagram of a user-device 104 in accordance with some implementations. The user device 104 includes a memory interface 202, one or more processors 204, and a peripherals interface 206. The various components in the user device 104 are coupled by one or more communication buses or signal lines. The user device 104 includes various sensors, subsystems, and peripheral devices that are coupled to the peripherals interface 206. The sensors, subsystems, and peripheral devices gather information and/or facilitate various functionalities of the user device 104.

For example, a motion sensor 210, a light sensor 212, and a proximity sensor 214 are coupled to the peripherals
interface 206 to facilitate orientation, light, and proximity sensing functions. One or more other sensors 216, such as a positioning system (e.g., GPS receiver), a temperature sensor, a biometric sensor, a gyro, a compass, an accelerometer, and the like, are also connected to the peripherals interface 206, to facilitate related functionalities.

In some implementations, a camera subsystem 220 and an optical sensor 222 are utilized to facilitate camera functions, such as taking photographs and recording video clips. Communication functions are facilitated through one or more wired and/or wireless communication subsystems 224, which can include various communication ports, radio frequency receivers and transmitters, and/or optical (e.g., infrared) receivers and transmitters. An audio subsystem 226 is coupled to speakers 228 and a microphone $\mathbf{2 3 0}$ to facilitate voice-enabled functions, such as voice recognition, voice replication, digital recording, and telephony functions.

In some implementations, an I/O subsystem 240 is also coupled to the peripheral interface 206. The I/O subsystem 240 includes a touch screen controller 242 and/or other input controller(s) 244. The touch-screen controller 242 is coupled to a touch screen 246. The touch screen 246 and the touch screen controller 242 can, for example, detect contact and movement or break thereof using any of a plurality of touch sensitivity technologies, such as capacitive, resistive, infrared, surface acoustic wave technologies, proximity sensor arrays, and the like. The other input controller(s) 244 can be coupled to other input/control devices 248, such as one or more buttons, rocker switches, thumb-wheel, infrared port, USB port, and/or a pointer device such as a stylus.

In some implementations, the memory interface 202 is coupled to memory 250 . The memory 250 can include high-speed random access memory and/or non-volatile memory, such as one or more magnetic disk storage devices, one or more optical storage devices, and/or flash memory (e.g., NAND, NOR).

In some implementations, the memory $\mathbf{2 5 0}$ stores an operating system 252, a communication module 254, a user interface module 256, a sensor processing module 258, a phone module 260, and applications 262. The operating system 252 includes instructions for handling basic system services and for performing hardware dependent tasks. The communication module 254 facilitates communicating with one or more additional devices, one or more computers and/or one or more servers. The user interface module 256 facilitates graphic user interface processing and output processing using other output channels (e.g., speakers). The sensor processing module $\mathbf{2 5 8}$ facilitates sensor-related processing and functions. The phone module 260 facilitates phone-related processes and functions. The application module 262 facilitates various functionalities of user applications, such as electronic-messaging, web browsing, media processing, Navigation, imaging and/or other processes and functions.

As described in this specification, the memory 250 also stores client-side digital assistant instructions (e.g., in a digital assistant client module 264) and various user data 266 (e.g., user-specific vocabulary data, preference data, and/or other data such as the user's electronic address book, to-do lists, shopping lists, user-specified name pronunciations, etc.) to provide the client-side functionalities of the digital assistant.

In various implementations, the digital assistant client module 264 is capable of accepting voice input (e.g., speech input), text input, touch input, and/or gestural input through various user interfaces (e.g., the I/O subsystem 244) of the user device 104. The digital assistant client module 264 is
also capable of providing output in audio (e.g., speech output), visual, and/or tactile forms. For example, output can be provided as voice, sound, alerts, text messages, menus, graphics, videos, animations, vibrations, and/or combinations of two or more of the above. During operation, the digital assistant client module 264 communicates with the digital assistant server using the communication subsystems 224.

In some implementations, the digital assistant client module 264 includes a speech synthesis module $\mathbf{2 6 5}$. The speech synthesis module 265 synthesizes speech outputs for presentation to the user. The speech synthesis module 265 synthesizes speech outputs based on text provided by the digital assistant. For example, the digital assistant generates text to provide as an output to a user, and the speech synthesis module 265 converts the text to an audible speech output. The speech synthesis module 265 uses any appropriate speech synthesis technique in order to generate speech outputs from text, including but not limited to concatenative synthesis, unit selection synthesis, diphone synthesis, domain-specific synthesis, formant synthesis, articulatory synthesis, hidden Markov model (HMM) based synthesis, and sinewave synthesis.
In some implementations, the speech synthesis module 265 stores canonical pronunciations for certain words. For example, the speech synthesis module 265 may store a sequence of phonemes for the word "the" that is known to produce a correct pronunciation when synthesized. In some implementations, multiple possible pronunciations are stored for a given word, including user-specified pronunciations. As described herein, the pronunciation that is ultimately selected for synthesis is determined based on any of several possible factors or combinations thereof (e.g., the most common user-specified pronunciation, the most common user-specified pronunciation in a geographical area, etc.).

In some implementations, where a user has provided a correct or preferred pronunciation for a word (e.g., a proper name), the speech synthesis module $\mathbf{2 6 5}$ uses the userspecified pronunciation for those words to the exclusion of other possible pronunciations. (Techniques for acquiring and processing user-specified pronunciations are discussed herein.) In some implementations, user-specified pronunciations for use by the speech synthesis module 265 are represented using a speech synthesis phonetic alphabet (e.g., an alphabet or other symbolic linguistic representation used by the speech synthesis module 265 to synthesize speech outputs).

In some implementations, the user-specified pronunciations are stored in the user data 266. For example, userspecified pronunciations of the names of contacts in a user's electronic address book or contact list are stored in association with the respective contacts. User-specified pronunciations may be visible or hidden to the user. When they are visible and/or accessible to the user, they may be manually correctable through the electronic address book. For example, a user can select a user-specified pronunciation and modify, alter, or replace it, using text or speech inputs.

In some implementations, user-specified pronunciations of other words (e.g., words that are not names of a user's contacts) are stored in user-specific vocabularies in the user data 266. Thus, in some implementations, any words for which the user wishes to specify a particular pronunciation are accessible by the speech synthesis module 265.

In some implementations, user-specified pronunciations are stored remotely from the user device 104, such as in a remote server or cloud-based service (e.g., server system

108, FIG. 1). In such cases, the user-specified pronunciations are still associated with the user, and may be encrypted or otherwise secured so that only an authorized user and/or the authorized user's devices can access the information. Accordingly, user-specified pronunciations of words are accessible to a user via multiple user devices. This also helps increase the perceived intelligence of the digital assistant, because once a user specifies a particular pronunciation of a word or name, the digital assistant can use the correct pronunciation regardless of whether the user is interacting with the digital assistant on her smart phone or other computing device, e.g., laptop computer or tablet.

In some implementations, user-specified pronunciations are stored both locally (e.g., on one or more user devices 104) and remotely (e.g., on the server system 108). In some implementations, user-specified pronunciations for a particular user are copied to a user device upon authentication of the device to access an account associated with the user. For example, user-specified pronunciations stored on the server system 108 may be associated with a particular user account, and when a device becomes associated with that user account (e.g., because the user logged into his or her account on that device), user data (e.g., user data 266) for that account is sent to or otherwise becomes accessible by the device.

In some implementations, instead of (or in addition to) using the local speech synthesis module $\mathbf{2 6 5}$, speech synthesis is performed on a remote device (e.g., the server system 108), and the synthesized speech is sent to the user device $\mathbf{1 0 4}$ for output to the user. For example, this occurs in some implementations where outputs for a digital assistant are generated at a server system. And because server systems generally have more processing power or resources than a user device, it may be possible to obtain higher quality speech outputs than would be practical with client-side synthesis.

In some implementations, the digital assistant client module 264 utilizes the various sensors, subsystems and peripheral devices to gather additional information from the surrounding environment of the user device $\mathbf{1 0 4}$ to establish a context associated with a user, the current user interaction, and/or the current user input. In some implementations, the digital assistant client module 264 provides the context information or a subset thereof with the user input to the digital assistant server to help infer the user's intent. In some implementations, the digital assistant also uses the context information to determine how to prepare and delivery outputs to the user.

In some implementations, the context information that accompanies the user input includes sensor information, e.g., lighting, ambient noise, ambient temperature, images or videos of the surrounding environment, etc. In some implementations, the context information also includes the physical state of the device, e.g., device orientation, device location, device temperature, power level, speed, acceleration, motion patterns, cellular signals strength, etc. In some implementations, information related to the software state of the user device 106, e.g., running processes, installed programs, past and present network activities, background services, error logs, resources usage, etc., of the user device 104 are provided to the digital assistant server as context information associated with a user input.

In some implementations, the DA client module 264 selectively provides information (e.g., user data 266) stored on the user device 104 in response to requests from the digital assistant server. In some implementations, the digital assistant client module 264 also elicits additional input from
the user via a natural language dialogue or other user interfaces upon request by the digital assistant server 106. The digital assistant client module 264 passes the additional input to the digital assistant server 106 to help the digital assistant server $\mathbf{1 0 6}$ in intent deduction and/or fulfillment of the user's intent expressed in the user request.

In various implementations, the memory 250 includes additional instructions or fewer instructions. Furthermore, various functions of the user device $\mathbf{1 0 4}$ may be implemented in hardware and/or in firmware, including in one or more signal processing and/or application specific integrated circuits.

FIG. 3A is a block diagram of an example digital assistant system 300 in accordance with some implementations. In some implementations, the digital assistant system 300 is implemented on a standalone computer system. In some implementations, the digital assistant system 300 is distributed across multiple computers. In some implementations, some of the modules and functions of the digital assistant are divided into a server portion and a client portion, where the client portion resides on a user device (e.g., the user device 104) and communicates with the server portion (e.g., the server system 108) through one or more networks, e.g., as shown in FIG. 1. In some implementations, the digital assistant system $\mathbf{3 0 0}$ is an implementation of the server system 108 (and/or the digital assistant server 106) shown in FIG. 1. It should be noted that the digital assistant system 300 is only one example of a digital assistant system, and that the digital assistant system $\mathbf{3 0 0}$ may have more or fewer components than shown, may combine two or more components, or may have a different configuration or arrangement of the components. The various components shown in FIG. 3A may be implemented in hardware, software instructions for execution by one or more processors, firmware, including one or more signal processing and/or application specific integrated circuits, or a combination of thereof.

The digital assistant system 300 includes memory 302, one or more processors 304, an input/output (I/O) interface 306, and a network communications interface 308. These components communicate with one another over one or more communication buses or signal lines 310 .

In some implementations, the memory $\mathbf{3 0 2}$ includes a non-transitory computer readable medium, such as highspeed random access memory and/or a non-volatile computer readable storage medium (e.g., one or more magnetic disk storage devices, flash memory devices, or other nonvolatile solid-state memory devices).

In some implementations, the I/O interface 306 couples input/output devices $\mathbf{3 1 6}$ of the digital assistant system 300, such as displays, keyboards, touch screens, and microphones, to the user interface module 322. The I/O interface 306, in conjunction with the user interface module 322, receives user inputs (e.g., voice input, keyboard inputs, touch inputs, etc.) and processes them accordingly. In some implementations, e.g., when the digital assistant is implemented on a standalone user device, the digital assistant system 300 includes any of the components and I/O and communication interfaces described with respect to the user device 104 in FIG. 2. In some implementations, the digital assistant system $\mathbf{3 0 0}$ represents the server portion of a digital assistant implementation, and interacts with the user through a client-side portion residing on a user device (e.g., the user device 104 shown in FIG. 2).

In some implementations, the network communications interface 308 includes wired communication port(s) 312 and/or wireless transmission and reception circuitry 314. The wired communication port(s) receive and send commu-
nication signals via one or more wired interfaces, e.g., Ethernet, Universal Serial Bus (USB), FIREWIRE, etc. The wireless circuitry $\mathbf{3 1 4}$ receives and sends RF signals and/or optical signals from/to communications networks and other communications devices. The wireless communications may use any of a plurality of communications standards, protocols and technologies, such as GSM, EDGE, CDMA, TDMA, Bluetooth, Wi-Fi, VoIP, Wi-MAX, or any other suitable communication protocol. The network communications interface 308 enables communication between the digital assistant system $\mathbf{3 0 0}$ with networks, such as the Internet, an intranet and/or a wireless network, such as a cellular telephone network, a wireless local area network (LAN) and/or a metropolitan area network (MAN), and other devices.

In some implementations, memory 302, or the computer readable storage media of memory $\mathbf{3 0 2}$, stores programs, modules, instructions, and data structures including all or a subset of: an operating system 318, a communications module 320, a user interface module 322, one or more applications 324, and a digital assistant module 326. The one or more processors 304 execute these programs, modules, and instructions, and reads/writes from/to the data structures.

The operating system 318 (e.g., Darwin, RTXC, LINUX, UNIX, OS X, WINDOWS, or an embedded operating system such as VxWorks) includes various software components and/or drivers for controlling and managing general system tasks (e.g., memory management, storage device control, power management, etc.) and facilitates communications between various hardware, firmware, and software components.

The communications module $\mathbf{3 2 0}$ facilitates communications between the digital assistant system $\mathbf{3 0 0}$ with other devices over the network communications interface 308. For example, the communication module $\mathbf{3 2 0}$ may communicate with the communication interface 254 of the device 104 shown in FIG. 2. The communications module 320 also includes various components for handling data received by the wireless circuitry 314 and/or wired communications port 312.

The user interface module $\mathbf{3 2 2}$ receives commands and/or inputs from a user via the I/O interface 306 (e.g., from a keyboard, touch screen, pointing device, controller, and/or microphone), and generates user interface objects on a display. The user interface module $\mathbf{3 2 2}$ also prepares and delivers outputs (e.g., speech, sound, animation, text, icons, vibrations, haptic feedback, and light, etc.) to the user via the I/O interface 306 (e.g., through displays, audio channels, speakers, and touch-pads, etc.).

The applications 324 include programs and/or modules that are configured to be executed by the one or more processors 304. For example, if the digital assistant system is implemented on a standalone user device, the applications 324 may include user applications, such as games, a calendar application, a navigation application, or an email application. If the digital assistant system $\mathbf{3 0 0}$ is implemented on a server farm, the applications $\mathbf{3 2 4}$ may include resource management applications, diagnostic applications, or scheduling applications, for example.

The memory 302 also stores the digital assistant module (or the server portion of a digital assistant) 326. In some implementations, the digital assistant module 326 includes the following sub-modules, or a subset or superset thereof: an input/output processing module 328, a speech-to-text (STT) processing module 330, a phonetic alphabet conversion module 331, a natural language processing module 332,
a dialogue flow processing module 334, a task flow processing module 336, a service processing module 338, and a speech interaction error detection module 339. Each of these modules has access to one or more of the following data and models of the digital assistant 326, or a subset or superset thereof: ontology $\mathbf{3 6 0}$, vocabulary index 344 , user data 348, task flow models 354, and service models 356.

In some implementations, using the processing modules, data, and models implemented in the digital assistant module 326, the digital assistant performs at least some of the following: identifying a user's intent expressed in a natural language input received from the user; actively eliciting and obtaining information needed to fully infer the user's intent (e.g., by disambiguating words, names, intentions, etc.); determining the task flow for fulfilling the inferred intent; and executing the task flow to fulfill the inferred intent.
In some implementations, as shown in FIG. 3B, the I/O processing module 328 interacts with the user through the I/O devices 316 in FIG. 3A or with a user device (e.g., a user device 104 in FIG. 1) through the network communications interface 308 in FIG. 3A to obtain user input (e.g., a speech input) and to provide responses (e.g., as speech outputs) to the user input. The I/O processing module $\mathbf{3 2 8}$ optionally obtains context information associated with the user input from the user device, along with or shortly after the receipt of the user input. The context information includes userspecific data, vocabulary, and/or preferences relevant to the user input. In some implementations, the context information also includes software and hardware states of the device (e.g., the user device 104 in FIG. 1) at the time the user request is received, and/or information related to the surrounding environment of the user at the time that the user request was received. In some implementations, the I/O processing module 328 also sends follow-up questions to, and receives answers from, the user regarding the user request. When a user request is received by the I/O processing module 328 and the user request contains a speech input, the I/O processing module 328 forwards the speech input to the speech-to-text (STT) processing module 330 for speech-to-text conversions.
The speech-to-text processing module 330 (or speech recognizer) receives speech input (e.g., a user utterance captured in a voice recording) through the I/O processing module 328. In some implementations, the STT processing module 330 uses various acoustic and language models to recognize the speech input as a sequence of phonemes, and ultimately, a sequence of words or tokens written in one or more languages. The STT processing module $\mathbf{3 3 0}$ can be implemented using any suitable speech recognition techniques, acoustic models, and language models, such as Hidden Markov Models, Dynamic Time Warping (DTW)based speech recognition, and other statistical and/or analytical techniques. In some implementations, the speech-totext processing can be performed at least partially by a third party service or on the user's device. Once the STT processing module 330 obtains the result of the speech-to-text processing, e.g., a sequence of words or tokens, it passes the result to the natural language processing module 332 for intent deduction. In some implementations, the STT module 330 resides on a server computer (e.g., the server system 108), while in some implementations, it resides on a client device (e.g., the user device 104).

In some implementations, the STT processing module 330 includes and/or accesses a vocabulary of recognizable words. Each word is associated with one or more candidate pronunciations of the word represented in a speech recognition phonetic alphabet. For example, the vocabulary may
include the word "tomato" in association with the candidate pronunciations of "tuh-may-doe" and "tuh-mah-doe." In some implementations, the candidate pronunciations for words are determined based on the spelling of the word and one or more linguistic and/or phonetic rules. In some implementations, the candidate pronunciations are manually generated, e.g., based on known canonical pronunciations.

In some implementations, the candidate pronunciations are ranked based on the commonness of the candidate pronunciation. For example, the candidate pronunciation "tuh-may-doe" may be ranked higher than "tuh-mah-doe," because the former is a more commonly used pronunciation in the user's geographic region. In some implementations, one of the candidate pronunciations is selected as a predicted pronunciation (e.g., the most likely pronunciation).

When an utterance is received, the STT processing module $\mathbf{3 3 0}$ attempts to identify the phonemes in the utterance (e.g., using an acoustic model), and then attempts to identify words that match the phonemes (e.g., using a language model). For example, if the STT processing module 330 first identifies the sequence of phonemes "tuh-may-doe" in an utterance, it then determines, based on the vocabulary 344, that this sequence corresponds to the word "tomato."

In some implementations, the STT processing module 330 uses approximate matching techniques to determine words in an utterance. Thus, for example, the STT processing module 330 can determine that the sequence of phonemes "duh-may-doe" corresponds to the word "tomato," even if that particular sequence of phonemes is not one of the candidate pronunciations for that word.

As described herein, in some implementations, the STT processing module $\mathbf{3 3 0}$ identifies phonemes in an utterance of a known word for the purpose of generating a userspecified pronunciation of the word. Thus, for example, a user can add a user-specified pronunciation for the word "tomato" by simply speaking the preferred pronunciation to the digital assistant. The STT processing module 330 processes the utterance containing the preferred pronunciation to identify the phonemes in the utterance. For example, the STT processing module $\mathbf{3 3 0}$ may identify the phonemes "tuh-may-duh" in the utterance, and store that set of phonemes (e.g., in the vocabulary index 344 and/or user data 348) as a user-specified pronunciation for the word "tomato."

In some implementations, the speech-to-text processing module $\mathbf{3 3 0}$ uses user-specified pronunciations to help recognize certain words in user utterances. For example, a user may discover that the digital assistant cannot accurately recognize a particular contact's name. By specifying a preferred pronunciation for the name, the digital assistant, and specifically the speech-to-text processing module 330, will thereafter accurately recognize the name in user utterances.

In some implementations, user-specified pronunciations for speech recognition by the speech-to-text processing module $\mathbf{3 3 0}$ are stored in the vocabulary index 344. In some implementations, user-specified pronunciations are also or instead stored in association with words in user data 348. For example, if a user specifies a pronunciation for a name in her contact list (which is stored in user data 348), the userspecified pronunciation is stored in association with the contact and/or the name in user data 348 or 266 . In some implementations, user-specified name pronunciations are visible to the user, while in implementations they are not.

In some implementations, all user-specified pronunciations are stored in user data $\mathbf{3 4 8}$ or 266, and are accessed by the STT processing module $\mathbf{3 3 0} \mathrm{and} /$ or incorporated into the
vocabulary index $\mathbf{3 4 4}$ when appropriate. Thus, user data for specific users is stored in association with a user account, and is used to augment and/or customize a generic STT processing module and/or vocabulary index, for example, when a user authorizes a new device to access his account.

In some implementations, user-specified pronunciations for use by the speech-to-text processing module $\mathbf{3 3 0}$ are represented using a speech recognition phonetic alphabet (e.g., an alphabet or other symbolic linguistic representation used by the speech-to-text processing module 330 to recognize speech inputs). In some implementations, the speech recognition phonetic alphabet corresponds to the set of phonemes that the STT processing module $\mathbf{3 3 0}$ is capable of identifying in a recording of a spoken utterance. In some implementations, the speech recognition alphabet is the International Phonetic Alphabet ("IPA"), or a subset of the IPA that contains phonemes likely to be used by users in a particular geographical region or by speakers of a particular language.
The phonetic alphabet conversion module $\mathbf{3 3 1}$ converts phonetic representations of words between different phonetic alphabets. Specifically, in some implementations, a speech recognizer (e.g., the STT processing module 330) uses a speech recognition phonetic alphabet to determine the phonemes in an utterance, while a speech synthesizer (e.g., the speech synthesis module 265, FIG. 2) uses a speech synthesis phonetic alphabet that is different from the speech recognition phonetic alphabet to synthesize a speech output. Speech synthesizers and speech recognizers, therefore, cannot share a single phonetic representation because they use different phonetic alphabets. Thus, in some implementations, the phonetic alphabet conversion module 331 converts phonetic representations from one phonetic alphabet (e.g., a speech recognition phonetic alphabet) into a second phonetic alphabet that is different than the first (e.g., a speech synthesis phonetic alphabet). Accordingly, as described herein, a phonetic representation of a word that is determined using the STT processing module $\mathbf{3 3 0}$ can be converted or mapped to a phonetic alphabet that is usable by the speech synthesis module 265.

The natural language processing module 332 ("natural language processor") of the digital assistant takes the sequence of words or tokens ("token sequence") generated by the speech-to-text processing module $\mathbf{3 3 0}$, and attempts to associate the token sequence with one or more "actionable intents" recognized by the digital assistant. An "actionable intent" represents a task that can be performed by the digital assistant, and has an associated task flow implemented in the task flow models 354. The associated task flow is a series of programmed actions and steps that the digital assistant takes in order to perform the task. The scope of a digital assistant's capabilities is dependent on the number and variety of task flows that have been implemented and stored in the task flow models 354, or in other words, on the number and variety of "actionable intents" that the digital assistant recognizes. The effectiveness of the digital assistant, however, is also dependent on the assistant's ability to infer the correct "actionable intent(s)" from the user request expressed in natural language.
In some implementations, in addition to the sequence of words or tokens obtained from the speech-to-text processing module 330, the natural language processor 332 also receives context information associated with the user request, e.g., from the I/O processing module 328. The natural language processor $\mathbf{3 3 2}$ optionally uses the context information to clarify, supplement, and/or further define the information contained in the token sequence received from
the speech-to-text processing module 330. The context information includes, for example, user preferences, hardware and/or software states of the user device, sensor information collected before, during, or shortly after the user request, prior interactions (e.g., dialogue) between the digital assistant and the user, and the like. As described in this specification, context information is dynamic, and can change with time, location, content of the dialogue, and other factors.

In some implementations, the natural language processing is based on e.g., ontology 360 . The ontology 360 is a hierarchical structure containing many nodes, each node representing either an "actionable intent" or a "property" relevant to one or more of the "actionable intents" or other "properties". As noted above, an "actionable intent" represents a task that the digital assistant is capable of performing, i.e., it is "actionable" or can be acted on. A "property" represents a parameter associated with an actionable intent or a sub-aspect of another property. A linkage between an actionable intent node and a property node in the ontology 360 defines how a parameter represented by the property node pertains to the task represented by the actionable intent node.

In some implementations, the ontology $\mathbf{3 6 0}$ is made up of actionable intent nodes and property nodes. Within the ontology $\mathbf{3 6 0}$, each actionable intent node is linked to one or more property nodes either directly or through one or more intermediate property nodes. Similarly, each property node is linked to one or more actionable intent nodes either directly or through one or more intermediate property nodes. For example, as shown in FIG. 3C, the ontology 360 may include a "restaurant reservation" node (i.e., an actionable intent node). Property nodes "restaurant," "date/time" (for the reservation), and "party size" are each directly linked to the actionable intent node (i.e., the "restaurant reservation" node). In addition, property nodes "cuisine," "price range," "phone number," and "location" are sub-nodes of the property node "restaurant," and are each linked to the "restaurant reservation" node (i.e., the actionable intent node) through the intermediate property node "restaurant." For another example, as shown in FIG. 3C, the ontology $\mathbf{3 6 0}$ may also include a "set reminder" node (i.e., another actionable intent node). Property nodes "date/time" (for the setting the reminder) and "subject" (for the reminder) are each linked to the "set reminder" node. Since the property "date/time" is relevant to both the task of making a restaurant reservation and the task of setting a reminder, the property node "date/ time" is linked to both the "restaurant reservation" node and the "set reminder" node in the ontology $\mathbf{3 6 0}$.

An actionable intent node, along with its linked concept nodes, may be described as a "domain." In the present discussion, each domain is associated with a respective actionable intent, and refers to the group of nodes (and the relationships therebetween) associated with the particular actionable intent. For example, the ontology $\mathbf{3 6 0}$ shown in FIG. 3C includes an example of a restaurant reservation domain 362 and an example of a reminder domain $\mathbf{3 6 4}$ within the ontology 360 . The restaurant reservation domain includes the actionable intent node "restaurant reservation," property nodes "restaurant," "date/time," and "party size," and sub-property nodes "cuisine," "price range," "phone number," and "location." The reminder domain 364 includes the actionable intent node "set reminder," and property nodes "subject" and "date/time." In some implementations, the ontology 360 is made up of many domains. Each domain may share one or more property nodes with one or more other domains. For example, the "date/time" property node
may be associated with many different domains (e.g., a scheduling domain, a travel reservation domain, a movie ticket domain, etc.), in addition to the restaurant reservation domain 362 and the reminder domain 364

While FIG. 3C illustrates two example domains within the ontology 360, other domains (or actionable intents) include, for example, "initiate a phone call," "find directions," "schedule a meeting," "send a message," and "provide an answer to a question," "read a list", "providing navigation instructions," "provide instructions for a task" and so on. A "send a message" domain is associated with a "send a message" actionable intent node, and may further include property nodes such as "recipient(s)", "message type", and "message body." The property node "recipient" may be further defined, for example, by the sub-property nodes such as "recipient name" and "message address."
In some implementations, the ontology $\mathbf{3 6 0}$ includes all the domains (and hence actionable intents) that the digital assistant is capable of understanding and acting upon. In some implementations, the ontology $\mathbf{3 6 0}$ may be modified, such as by adding or removing entire domains or nodes, or by modifying relationships between the nodes within the ontology 360.

In some implementations, nodes associated with multiple related actionable intents may be clustered under a "super domain" in the ontology $\mathbf{3 6 0}$. For example, a "travel" super-domain may include a cluster of property nodes and actionable intent nodes related to travels. The actionable intent nodes related to travels may include "airline reservation," "hotel reservation," "car rental," "get directions," "find points of interest," and so on. The actionable intent nodes under the same super domain (e.g., the "travels" super domain) may have many property nodes in common. For example, the actionable intent nodes for "airline reservation," "hotel reservation," "car rental," "get directions," "find points of interest" may share one or more of the property nodes "start location," "destination," "departure date/time," "arrival date/time," and "party size."

In some implementations, each node in the ontology $\mathbf{3 6 0}$ is associated with a set of words and/or phrases that are relevant to the property or actionable intent represented by the node. The respective set of words and/or phrases associated with each node is the so-called "vocabulary" associated with the node. The respective set of words and/or phrases associated with each node can be stored in the vocabulary index 344 in association with the property or actionable intent represented by the node. For example, returning to FIG. 3B, the vocabulary associated with the node for the property of "restaurant" may include words such as "food," "drinks," "cuisine," "hungry," "eat," "pizza," "fast food," "meal," and so on. For another example, the vocabulary associated with the node for the actionable intent of "initiate a phone call" may include words and phrases such as "call," "phone," "dial," "ring," "call this number," "make a call to," and so on. The vocabulary index 344 optionally includes words and phrases in different languages.

The natural language processor $\mathbf{3 3 2}$ receives the token sequence (e.g., a text string) from the speech-to-text processing module 330, and determines what nodes are implicated by the words in the token sequence. In some implementations, if a word or phrase in the token sequence is found to be associated with one or more nodes in the ontology 360 (via the vocabulary index 344), the word or phrase will "trigger" or "activate" those nodes. Based on the quantity and/or relative importance of the activated nodes, the natural language processor $\mathbf{3 3 2}$ will select one of the
actionable intents as the task that the user intended the digital assistant to perform. In some implementations, the domain that has the most "triggered" nodes is selected. In some implementations, the domain having the highest confidence value (e.g., based on the relative importance of its various triggered nodes) is selected. In some implementations, the domain is selected based on a combination of the number and the importance of the triggered nodes. In some implementations, additional factors are considered in selecting the node as well, such as whether the digital assistant has previously correctly interpreted a similar request from a user.

In some implementations, the digital assistant also stores names of specific entities in the vocabulary index 344, so that when one of these names is detected in the user request, the natural language processor 332 will be able to recognize that the name refers to a specific instance of a property or sub-property in the ontology. In some implementations, the names of specific entities are names of businesses, restaurants, people, movies, and the like. In some implementations, the digital assistant searches and identifies specific entity names from other data sources, such as the user's address book, a movies database, a musicians database, and/or a restaurant database. In some implementations, when the natural language processor 332 identifies that a word in the token sequence is a name of a specific entity (such as a name in the user's address book), that word is given additional significance in selecting the actionable intent within the ontology for the user request.

For example, when the words "Mr. Santo" are recognized from the user request, and the last name "Santo" is found in the vocabulary index $\mathbf{3 4 4}$ as one of the contacts in the user's contact list, then it is likely that the user request corresponds to a "send a message" or "initiate a phone call domain. For another example, when the words "ABC Cafe"" are found in the user request, and the term " ABC Café" is found in the vocabulary index $\mathbf{3 4 4}$ as the name of a particular restaurant in the user's city, then it is likely that the user request corresponds to a "restaurant reservation" domain.

User data 348 includes user-specific information, such as user-specific vocabulary, user preferences, user address, user's default and secondary languages, user's contact list, and other short-term or long-term information for each user. In some implementations, the natural language processor 332 uses the user-specific information to supplement the information contained in the user input to further define the user intent. For example, for a user request "invite my friends to my birthday party," the natural language processor 332 is able to access user data 348 to determine who the "friends" are and when and where the "birthday party" would be held, rather than requiring the user to provide such information explicitly in his/her request.

Other details of searching an ontology based on a token string is described in U.S. Utility application Ser. No. 12/341,743 for "Method and Apparatus for Searching Using An Active Ontology," filed Dec. 22, 2008, the entire disclosure of which is incorporated herein by reference.

In some implementations, once the natural language processor 332 identifies an actionable intent (or domain) based on the user request, the natural language processor 332 generates a structured query to represent the identified actionable intent. In some implementations, the structured query includes parameters for one or more nodes within the domain for the actionable intent, and at least some of the parameters are populated with the specific information and requirements specified in the user request. For example, the user may say "Make me a dinner reservation at a sushi place
at $7 .{ }^{\prime \prime}$ In this case, the natural language processor $\mathbf{3 3 2}$ may be able to correctly identify the actionable intent to be "restaurant reservation" based on the user input. According to the ontology, a structured query for a "restaurant reservation" domain may include parameters such as \{Cuisine\}, $\{$ Time $\},\{$ Date $\},\{$ Party Size $\}$, and the like. In some implementations, based on the information contained in the user's utterance, the natural language processor $\mathbf{3 3 2}$ generates a partial structured query for the restaurant reservation domain, where the partial structured query includes the parameters \{Cuisine="Sushi" $\}$ and \{Time=" $7 \mathrm{pm} "\}$. However, in this example, the user's utterance contains insufficient information to complete the structured query associated with the domain. Therefore, other necessary parameters such as $\{$ Party Size $\}$ and $\{$ Date $\}$ are not specified in the structured query based on the information currently available. In some implementations, the natural language processor 332 populates some parameters of the structured query with received context information. For example, in some implementations, if the user requested a sushi restaurant "near me," the natural language processor $\mathbf{3 3 2}$ populates a \{location\} parameter in the structured query with GPS coordinates from the user device 104.
In some implementations, the natural language processor 332 passes the structured query (including any completed parameters) to the task flow processing module 336 ("task flow processor"). The task flow processor 336 is configured to receive the structured query from the natural language processor 332, complete the structured query, if necessary, and perform the actions required to "complete" the user's ultimate request. In some implementations, the various procedures necessary to complete these tasks are provided in task flow models 354. In some implementations, the task flow models include procedures for obtaining additional information from the user, and task flows for performing actions associated with the actionable intent.

As described above, in order to complete a structured query, the task flow processor 336 may need to initiate additional dialogue with the user in order to obtain additional information, and/or disambiguate potentially ambiguous utterances. When such interactions are necessary, the task flow processor 336 invokes the dialogue processing module 334 ("dialogue processor 334") to engage in a dialogue with the user. In some implementations, the dialogue processor 334 determines how (and/or when) to ask the user for the additional information, and receives and processes the user responses. The questions are provided to and answers are received from the users through the I/O processing module 328. In some implementations, the dialogue processor 334 presents dialogue output to the user via audio and/or visual output, and receives input from the user via spoken or physical (e.g., clicking) responses. Continuing with the example above, when the task flow processor 336 invokes the dialogue flow processor $\mathbf{3 3 4}$ to determine the "party size" and "date" information for the structured query associated with the domain "restaurant reservation," the dialogue flow processor 335 generates questions such as "For how many people?" and "On which day?" to pass to the user. Once answers are received from the user, the dialogue flow processor 334 can then populate the structured query with the missing information, or pass the information to the task flow processor $\mathbf{3 3 6}$ to complete the missing information from the structured query.
In some cases, the task flow processor $\mathbf{3 3 6}$ may receive a structured query that has one or more ambiguous properties. For example, a structured query for the "send a message" domain may indicate that the intended recipient is "Bob,"
and the user may have multiple contacts named "Bob." The task flow processor 336 will request that the dialogue processor 334 disambiguate this property of the structured query. In turn, the dialogue processor $\mathbf{3 3 4}$ may ask the user "Which Bob?", and display (or read) a list of contacts named "Bob" from which the user may choose

Once the task flow processor 336 has completed the structured query for an actionable intent, the task flow processor 336 proceeds to perform the ultimate task associated with the actionable intent. Accordingly, the task flow processor $\mathbf{3 3 6}$ executes the steps and instructions in the task flow model according to the specific parameters contained in the structured query. For example, the task flow model for the actionable intent of "restaurant reservation" may include steps and instructions for contacting a restaurant and actually requesting a reservation for a particular party size at a particular time. For example, using a structured query such as: \{restaurant reservation, restaurant $=\mathrm{ABC}$ Café, date=Mar. 12, 2012, time $=7 \mathrm{pm}$, party size $=5\}$, the task flow processor 336 may perform the steps of: (1) logging onto a server of the ABC Café or a restaurant reservation system such as OPENTABLE®, (2) entering the date, time, and party size information in a form on the website, (3) submitting the form, and (4) making a calendar entry for the reservation in the user's calendar.

In some implementations, the task flow processor 336 employs the assistance of a service processing module 338 ("service processor") to complete a task requested in the user input or to provide an informational answer requested in the user input. For example, the service processor $\mathbf{3 3 8}$ can act on behalf of the task flow processor $\mathbf{3 3 6}$ to make a phone call, set a calendar entry, invoke a map search, invoke or interact with other user applications installed on the user device, and invoke or interact with third party services (e.g. a restaurant reservation portal, a social networking website, a banking portal, etc.). In some implementations, the protocols and application programming interfaces (API) required by each service can be specified by a respective service model among the services models $\mathbf{3 5 6}$. The service processor $\mathbf{3 3 8}$ accesses the appropriate service model for a service and generates requests for the service in accordance with the protocols and APIs required by the service according to the service model.

For example, if a restaurant has enabled an online reservation service, the restaurant can submit a service model specifying the necessary parameters for making a reservation and the APIs for communicating the values of the necessary parameter to the online reservation service. When requested by the task flow processor 336, the service processor 338 can establish a network connection with the online reservation service using the web address stored in the service model, and send the necessary parameters of the reservation (e.g., time, date, party size) to the online reservation interface in a format according to the API of the online reservation service.

In some implementations, the natural language processor 332, dialogue processor 334, and task flow processor 336 are used collectively and iteratively to infer and define the user's intent, obtain information to further clarify and refine the user intent, and finally generate a response (i.e., an output to the user, or the completion of a task) to fulfill the user's intent.

In some implementations, after all of the tasks needed to fulfill the user's request have been performed, the digital assistant 326 formulates a confirmation response, and sends the response back to the user through the I/O processing module 328. If the user request seeks an informational
answer, the confirmation response presents the requested information to the user. In some implementations, the digital assistant also requests the user to indicate whether the user is satisfied with the response produced by the digital assistant 326.

The error detection module 339 detects errors in interactions between a user and the digital assistant. In some implementations, to detect errors, the error detection module 339 monitors interactions between a user and the digital assistant, and/or between a user and a user device. For example, the error detection module $\mathbf{3 3 9}$ monitors any of the following types of interactions, or a subset thereof: a user's speech inputs to the digital assistant (e.g., if a user says "you got that wrong" or "you are pronouncing that wrong"), button presses (e.g., if a user selects a lock-screen or "home" button (or any other affordance) to cancel an action), movements of the device (e.g., shaking the device, setting the device down in a certain orientation, such as screen-down), termination of actions or suggested actions on the user device (e.g., cancelling a telephone call, email, text message, etc. after the digital assistant initiates or suggests it), initiation of an action shortly after a digital assistant fails to successfully infer an intent or adequately respond to a user, etc. In some implementations, the error detection module 339 monitors other types of interactions to detect errors as well.

In order to detect such errors, in some implementations, the error detection module 339 communicates with or otherwise receives information from various modules and components of the digital assistant system 300 and/or the user device 104, such as the I/O processing module 328 (and/or the I/O devices 316), the STT processing module 330, natural language processing module 332, the dialogue flow processing module 334, the task flow processing module $\mathbf{3 3 6}$, the service processing module $\mathbf{3 3 8}$, the phone module $\mathbf{2 6 0}$, the sensor processing module 258, the I/O subsystem $\mathbf{2 4 0}$, and/or any of the sensors or I/O devices associated therewith.
In some implementations, the error detection module 339 monitors actions taken by the user on the user device 104 after the user cancels an action and/or dialogue with the digital assistant prior to the completion of the action or dialogue. In particular, actions taken by the user after such an occurrence often indicate both that the digital assistant did not accurately infer the user's intent (or did not understand the user's speech input), and what the digital assistant should have done based on the user's input. As a specific example, a user may ask the digital assistant to "Call Philippe," and the digital assistant may respond by saying "Calling Phil." The user may quickly cancel the telephone call to Phil, exit the dialogue with the digital assistant, and proceed to manually initiate a telephone call with a contact named Philippe. Accordingly, the error detection module 339 detects that because the telephone call to Phil was canceled, an error was made, and that the speech input to call "Philippe" should be associated with the contact that was manually selected by the user.

More details on the digital assistant can be found in the U.S. Utility application Ser. No. 12/987,982, entitled "Intelligent Automated Assistant", filed Jan. 10, 2011, U.S. Utility Application No. 61/493,201, entitled "Generating and Processing Data Items That Represent Tasks to Perform", filed Jun. 3, 2011, the entire disclosures of which are incorporated herein by reference.

In most scenarios, when the digital assistant receives a user input from a user, the digital assistant attempts to provide an appropriate response to the user input with as
little delay as possible. For example, suppose the user requests certain information (e.g., current traffic information) by providing a speech input (e.g., "How does the traffic Look right now?"). Right after the digital assistant receives and processes the speech input, the digital assistant optionally provides a speech output (e.g., "Looking up traffic information . . ") acknowledging receipt of the user request. After the digital assistant obtains the requested information in response to the user request, the digital assistant proceeds to provide the requested information to the user without further delay. For example, in response to the user's traffic information request, the digital assistant may provide a series of one or more discrete speech outputs separated by brief pauses (e.g., "There are 2 accidents on the road. <Pause> One accident is on 101 north bound near Whipple Avenue. <Pause> And a second accident is on 85 north near 280 ."), immediately after the speech outputs are generated.

For the purpose of this specification, the initial acknowledgement of the user request and the series of one or more discrete speech outputs provided in response to the user request are all considered sub-responses of a complete response to the user request. In other words, the digital assistant initiates an information provision process for the user request upon receipt of the user request, and during the information provision process, the digital assistant prepares and provides each sub-response of the complete response to the user request without requiring further prompts from the user.

Sometimes, additional information or clarification (e.g., route information) is required before the requested information can be obtained. In such scenarios, the digital assistant outputs a question (e.g., "Where are you going?") to the user asking for the additional information or clarification. In some implementations, the question provided by the digital assistant is considered a complete response to the user request because the digital assistant will not take further actions or provide any additional response to the user request until a new input is received from the user. In some implementations, once the user provides the additional information or clarification, the digital assistant initiates a new information provision process for a "new" user request established based on the original user request and the additional user input.

In some implementations, the digital assistant initiates a new information provision process upon receipt of each new user input, and each existing information provision process terminates either (1) when all of the sub-responses of a complete response to the user request have been provided to the user or (2) when the digital assistant provides a request for additional information or clarification to the user regarding a previous user request that started the existing information provision process.

In general, after a user request for information or performance of a task is received by the digital assistant, it is desirable that the digital assistant provides a response (e.g., either an output containing the requested information, an acknowledgement of a requested task, or an output to request a clarification) as promptly as possible. Real-time responsiveness of the digital assistant is one of the key factors in evaluating performance of the digital assistant. In such cases, a response is prepared as quickly as possible, and a default delivery time for the response is a time immediately after the response is prepared.

Sometimes, however, after an initial sub-response provided immediately after receipt of the user input, the digital assistant provides the remaining one or more sub-responses one at a time over an extended period of time. In some
implementations, the information provision process for a user request is stretched out over an extended period of time that is longer than the sum of the time required to provide each sub-response individually. For example, in some implementations, short pauses (i.e., brief periods of silence) are inserted between an adjacent pair of sub-responses (e.g., a pair of consecutive speech outputs) when they are delivered to the user through an audio-output channel.

In some implementations, a sub-response is held in abeyance after it is prepared and is delivered only when a predetermined condition has been met. In some implementations, the predetermined condition is met when a predetermined trigger time has been reached according to a system clock and/or when a predetermined trigger event has occurred. For example, if the user says to the digital assistant "set me a timer for 5 minutes," the digital assistant initiates an information provision process upon receipt of the user request. During the information provision process, the digital assistant provides a first sub-response (e.g., "OK, timer started.") right away, and does not provide a second and final sub-response (e.g., "OK, five minutes are up") until 5 minutes later. In such cases, the default delivery time for the first sub-response is a time immediately after the first sub-response is prepared, and the default delivery time for the second, final sub-response is a time immediately after the occurrence of the trigger event (e.g., the elapse of 5 minutes from the start of the timer). The information provision process is terminated when the digital assistant finishes providing the final sub-response to the user. In various implementations, the second sub-response is prepared any time (e.g., right after the first sub-response is prepared, or until shortly before the default delivery time for the second sub-response) before the default delivery time for the second sub-response.

FIG. 4 illustrates a portion of a contact list entry 400, according to some implementations. The contact list entry 400 includes a user-specified pronunciation for a name and a standard pronunciation for the name, each stored in association with the name. While FIG. 4 depicts a contact list entry, the figure and associated description applies equally to words from other lists, databases, vocabularies, etc., such as the vocabulary index $\mathbf{3 4 4}$. In some implementations, the contact list entry 400 is stored in user data $\mathbf{3 4 8}$ or 266.

The contact list entry 400 includes a name 402 ("Philippe"). The contact list entry 400 also includes a user-specified pronunciation for the name. The user-specified pronunciations for this name may be obtained and/or generated as described elsewhere in this application. Because, in some implementations, the STT processing module 330 and the speech synthesis module 265 use different phonetic alphabets, the user-specified pronunciation includes a phonetic representation of the name 402 in a speech recognition alphabet (phonetic representation 404), as well as a phonetic representation of the name 402 in a speech synthesis alphabet (phonetic representation 406). Both the representation 404 in the recognition alphabet and the representation 406 in the synthesis alphabet are based on the same pronunciation, and, therefore, the user's preferred pronunciation will both be accurately recognized by the STT processing module 330 and accurately synthesized by the speech synthesis module 265.

The phonetic representations in FIG. 4 are used herein merely to illustrate that, although they represent the same pronunciation, phonetic representations for recognition and synthesis are different from one another, and that the phonemes are selected from different phonetic alphabets and/or
sets of phonemes. The particular phonetic representations in FIG. 4 do not necessarily reflect any particular phonetic alphabet, any particular phonemes for use by speech synthesizers or recognizers, nor any particular phoneme sequences that may be associated with the word shown. Rather, they are intended to help illustrate the differences between different pronunciations (e.g., standard and userspecified pronunciations) and between phoneme sequences for speech recognition and speech synthesis.

The contact list entry $\mathbf{4 0 0}$ also includes a standard pronunciation including a phonetic representation of the name 402 in a speech recognition alphabet (phonetic representation 408), as well as a phonetic representation of the name 402 in a speech synthesis alphabet (phonetic representation 410). The standard pronunciation represents a default pronunciation for recognition and synthesis that is used by the digital assistant absent any user-specified pronunciations for that word. In some implementations, the digital assistant maintains the standard pronunciation in addition to any user-specified pronunciations.

In some implementations, contact list entries (or any word in the vocabulary 344 and/or user data $\mathbf{3 4 8}$) include more or less information than depicted in FIG. 4. Moreover, the user-specified pronunciation and the standard pronunciation (and their respective recognition and synthesis phonetic representations) need not be stored in a common location or device. For example, in some implementations, the speech recognition phonetic representations 404 and 408 are stored on a server (e.g., the server system 108) in association with a STT processing module (e.g., the STT processing module 330), while the speech synthesis phonetic representations 406 and 410 are stored on a user device (e.g., user device 104) in association with a speech synthesis module (e.g., the speech synthesis module 265). In some implementations, all of the phonetic representations are stored on a both a server and a user device. In some implementations, the speech recognition phonetic representations 404 and 408 and the speech synthesis phonetic representations 406 and 410 are stored in any appropriate combination on either or both of a server and a user device.

Furthermore, in some implementations, user-specified pronunciations are stored in association with a user's contacts (or other user-specific data), while standard pronunciations are not stored in association with the user, but are part of the generic STT processing and speech synthesis modules used by multiple different instances of a digital assistant.

FIGS. $\mathbf{5 A}-5 \mathrm{~B}$ are flow diagrams of an exemplary method 500 implemented by a digital assistant for learning word pronunciations. In some implementations, the method 500 is performed at an electronic device with one or more processors and memory storing one or more programs for execution by the one or more processors. For example, in some implementations, the method $\mathbf{5 0 0}$ is performed at the user device 104 and/or the server system 108. In some implementations, the method 500 is performed by the digital assistant system 300 (FIG. 3A), which, as noted above, may be implemented on a standalone computer system (e.g., either the user device 104 or the server system 108) or distributed across multiple computers (e.g., the user device 104, the server system 108, and/or additional or alternative devices or systems). While the following discussion describes the method 500 as being performed by a digital assistant (e.g., the digital assistant system 300), the method is not limited to performance by any particular device or combination of devices. Moreover, the individual steps of
the method may be distributed among the one or more computers, systems, or devices in any appropriate manner.

The digital assistant receives a first speech input including at least one word (502). In some implementations, the speech input corresponds to a user utterance recorded and/or received by the user device 104. In some implementations, the first input is received in the course of an interaction with the digital assistant. In some implementations, the word is a name, such as a name of a contact associated with a user. As a specific example, the utterance may be "Call Philippe Martin," corresponding to a request by the user to initiate a telephone call with a contact named Philippe Martin. In some implementations, the first input is received during an interaction in which the user is specifically training the digital assistant how to pronounce a particular word. As a specific example, the utterance may be "Please pronounce that 'Philippe,"' or, if the digital assistant has already prompted the user to provide a preferred pronunciation for a particular word, the utterance may simply be "Philippe."

The digital assistant determines a first phonetic representation of the at least one word (504), the first phonetic representation comprising a first set of phonemes selected from a speech recognition phonetic alphabet. In some implementations, the first phonetic representation of the at least one word is determined by a speech-to-text processor (e.g., the STT processing module 330, FIG. 3A). The speech recognition phonetic alphabet is an alphabet or other symbolic linguistic representation used by the speech-to-text processor to recognize speech inputs. For example, in some implementations, the speech recognition phonetic alphabet is the International Phonetic Alphabet.

In some implementations, the speech-to-text processor determines the first phonetic representation by processing the speech input using an acoustic model to determine the phonemes in the utterance. For example, the set of phonemes for the word "Philippe" in above example above may be represented as "f-ill-ee-p-ay."

The digital assistant maps the first set of phonemes to a second set of phonemes to generate a second phonetic representation (e.g., with the phonetic alphabet conversion module 331, FIG. 3A), wherein the second set of phonemes are selected from a speech synthesis phonetic alphabet (506). In some implementations, the speech recognition phonetic alphabet is different than the speech synthesis phonetic alphabet. For example, the first set of phonemes in the speech recognition alphabet "f-ill-ee-p-ay" may be converted to the second set of phonemes "fill-eep-ay." By converting the first set of phonemes in a speech recognition alphabet to a speech synthesis alphabet, the pronunciation of the one or more words that were actually used by the user is capable of being used by both the speech recognizer and the speech synthesizer of the digital assistant, i.e., to recognize spoken words and to synthesize speech output.

In some implementations, the digital assistant includes conversion tables, maps, or equivalency lists to convert phonetic representations between different phonetic alphabets. Exemplary systems and methods for converting words and/or phonetic representations from one alphabet to another are described in Applicant's U.S. Utility application Ser. No. 13/469,047 for "Generalized Phonetic Transliteration Engine," filed May 10, 2012, the entire disclosure of which is incorporated herein by reference. In some implementations, the mapping includes using a weighted finite state transducer to map the first set of phonemes to the second set of phonemes. In some implementations, the mapping includes using a statistical model to map the first set of phonemes to the second set of phonemes.

The digital assistant stores the second phonetic representation in association with a text string corresponding to the at least one word (508). For example, the second phonetic representation "fill-eep-ay" is stored in a contact list in association with a contact having the name "Philippe" (e.g., as a user-specified pronunciation for a name in a contact list of a user). In some implementations, the second phonetic representation is stored in the user data 348 and/or the vocabulary index 344.

In some implementations, prior to receiving the first speech input, the text string is provided (501). In some implementations, the text string is a name in a contact list associated with a user. In some implementations, the name in the contact list is selected by a user, such as by navigating to a contact list application and selecting a name in the contact list for which to supply a preferred pronunciation. In some implementations, the text string is input by a user via a keyboard. For example, the user may type one or more words into a device (e.g., the user device 104) and then provide the first speech input (step $\mathbf{5 0 2}$) to specify a preferred pronunciation for one or more of the typed words. As another example, the user can select a contact (e.g., by pressing and holding a contact item in a contact list) and concurrently speak the preferred pronunciation for the name of the contact.

In some implementations, the text string is from a webpage displayed by an electronic device. For example, a user can select a word in a webpage (e.g., by touching, pressing, or clicking on the word), and then provide a speech input such as "pronounce this word as [word]."

Rather than requiring the user to manually identify the text string, the digital assistant may identify the text string automatically. In some implementations, the digital assistant determines the text string using the first phonetic representation (505). This may be accomplished by determining that the utterance corresponds to a certain sequence of letters, even if the digital assistant does not recognize that sequence of letters as a word. For example, a speech recognizer can determine that the phonemes "tuh-may-doe" correspond to the letters "t o mat o," even if that word is not in the speech recognizer's vocabulary. In some implementations, the digital assistant uses fuzzy matching and/or approximate matching techniques to determine the text string from the first phonetic representation. For example, if a user provides a speech input to a digital assistant asking to call "f-ill-ee-pay," but this particular phonetic sequence has not been associated with the name "Philippe," the digital assistant uses fuzzy matching to determine that "f-ill-ee-p-ay" is sufficiently close to the sequence "f-ill-ee-p," which is a candidate pronunciation for the name Philippe. Thus, the digital assistant determines that the text string "Philippe" corresponds to the word in the utterance, even though the user's pronunciation of that word was not one of the candidate pronunciations.

In some implementations, the digital assistant updates a speech recognizer (e.g., the STT processing module 330) to associate the first phonetic representation with the text string (510). In some implementations, the first phonetic representation is stored as a candidate phonetic representation for the text string, for example, in a user-specific speech recognition vocabulary (e.g., the vocabulary index 344), or in a contact item in a contact list or address book (e.g., in the user data 348).

By associating the first phonetic representation of the word with the text string, the speech recognizer is able to identify the word when that particular pronunciation is used. For example, in some implementations, after updating the
speech recognizer, the digital assistant receives a second speech input including the at least one word (512). In some implementations, the second speech input is any input received after the first input that includes the word. The digital assistant determines a third phonetic representation of the at Least one word (514) (e.g., using the STT processing module 330), and determines that the at Least one word corresponds to the text string based on a determination that the third phonetic representation is substantially similar to the first phonetic representation (516). Thus, the first phonetic representation reflecting the user's preferred pronunciation of a word is used to detect the word in later utterances.
Turning to FIG. 5B, by storing the second phonetic representation (for speech synthesis) in association with the text string, the digital assistant is able to use the userspecified pronunciation in speech outputs that include the word. For example, in some implementations, after storing the second phonetic representation in association with the text string, the digital assistant synthesizes a speech output corresponding to the text string using the second phonetic representation (518). Accordingly, the synthesized speech output will sound substantially similar to the word in the speech input (e.g., the word as spoken by the user). As a specific example, after storing a second phonetic representation "fill-eep-ay" (corresponding to the user-specified pronunciation of the word in a speech synthesis phonetic alphabet), the digital assistant synthesizes a speech output using the user-specified pronunciation of the word "Philippe" (e.g., "Okay, I'm placing a telephone call to fill-eep-ay.")

In some implementations, the digital assistant stores a plurality of additional first phonetic representations in association with the text string (520), wherein the plurality of additional first phonetic representations includes the first phonetic representation. For example, the plurality of additional first phonetic representations may be the candidate phonetic representations described above. In particular, the first phonetic representation and a number of other candidate phonetic representations may be stored in association with the text string for use by a speech recognizer (e.g., the STT processing module 330) when identifying words in speech inputs. In some implementations, the candidate representations are specific to a particular user (e.g., they are stored in association with a particular user and/or user identifier), while in some implementations, they are not specific to any particular user (e.g., they are part of a generic vocabulary for use by multiple digital assistants and/or STT processors). By storing a plurality of first representations, the digital assistant provides more robust recognition functionality, because it will successfully recognizer more pronunciations of the word.

In some implementations, the digital assistant selects a predicted phonetic representation for the text string from the plurality of additional first phonetic representations (522). A predicted phonetic representation is one that is selected by the digital assistant as the most probable pronunciation for that word. In some implementations, the predicted phonetic representation is a user-specified pronunciation. In some implementations, the predicted phonetic representation is a generic or global pronunciation for that word. In some implementations, all of the phonetic representations of the plurality of additional first phonetic representations are ranked in order of their likelihood of use, and the predicted phonetic representation ranked the highest.
In some implementations, where the candidate phonetic representations (including one or more user-specified pro-
nunciations) are included in or are part of a generic vocabulary used by a plurality of digital assistants, the predicted phonetic representation is selected in for each user in accordance with a selection metric. In some implementations, the predicted phonetic representation is a most frequently detected phonetic representation.

In some implementations, the predicted phonetic representation is the most frequently detected phonetic representation for a particular region. For example, many users of digital assistants in a given region may specify the same pronunciation for the same word. Thus, the digital assistant (e.g., a digital assistant server or other centralized system that communicates with or otherwise interacts with many digital assistant clients) can determine the pronunciation that is most frequently specified by users in various geographical areas. Once a predicted phonetic representation is selected, it can be used for both speech recognition as well as speech synthesis (e.g., so that the digital assistant will recognize that pronunciation in speech inputs, as well as produce that pronunciation in speech outputs). The geographical region may be any appropriate geographical region(s), defined by any appropriate geographical, geopolitical, or cultural boundaries. For example, the predicted pronunciation for the word "tomato" may be "tuh-may-doe" for users in the Western portion of the United States, and "tuh-mah-doe" for users in the Eastern portion of the United States

While the above discussion relates to selecting a predicted phonetic representation from a plurality of first representations (e.g., phonetic representations in a speech recognition phonetic alphabet), the discussion applies equally to selecting from among phonetic representations in any phonetic alphabet (e.g., phonetic representations in a speech synthesis phonetic alphabet).

FIG. 6 is a flow diagram of an exemplary method $\mathbf{6 0 0}$ implemented by a digital assistant for learning word pronunciations. In some implementations, the method 600 is performed at an electronic device with one or more processors and memory storing one or more programs for execution by the one or more processors. For example, in some implementations, the method $\mathbf{6 0 0}$ is performed at the user device $\mathbf{1 0 4}$ or the server system 108. In some implementations, the method 600 is performed by the digital assistant system 300 (FIG. 3A), which, as noted above, may be implemented on a standalone computer system (e.g., either the user device $\mathbf{1 0 4}$ or the server system 108) or distributed across multiple computers (e.g., the user device 104, the server system 108, and/or additional or alternative devices or systems). While the following discussion describes the method 600 as being performed by a digital assistant (e.g., the digital assistant system 300), the method is not limited to performance by any particular device or combination of devices. Moreover, the individual steps of the method may be distributed among the one or more computers, systems, or devices in any appropriate manner.

The method 600 relates to detecting errors in speech based interactions in order to determine that the digital assistant should request user-specified pronunciations for one or more words. Various types of errors may arise in speech based interactions. For example, errors in speech recognition can prevent the digital assistant from accurately inferring the user's intent. Specifically, a STT processor might select the wrong word based on a speech input (e.g., detecting the word "potato" when the user actually said "tomato"), or might simply fail to identify a suitable word for a portion of a text string (e.g., failing to transcribe a last name of a contact). Moreover, the digital assistant might mispronounce a word (such as a contact name) during a
speech interaction, which can confuse the user. This is especially problematic when the digital assistant is used in an "eyes-free" mode, where the user cannot simply read a text version of the speech output on a display screen to determine whether the digital assistant has identified the wrong name, or simply mispronounced a correctly identified name. For example, while driving, a user may say to a digital assistant "Call Philippe," and the digital assistant responds by saying "Calling [fill-up]." Upon hearing the mispronounced name, the user may not trust that the digital assistant is placing a call to the correct person, and may unnecessarily cancel the telephone call. Accordingly, when an error is detected, it is often possible for the digital assistant to infer that the error was likely caused by either an inability to recognize a user's pronunciation of a word, or an incorrect pronunciation in a speech output by the digital assistant. In some implementations, errors are detected automatically by the digital assistant (e.g., based on certain patterns of use or interactions with the digital assistant or a user device that are indicative of an error), or are manually indicated by a user (e.g., when a user provides a speech input that indicates an error, or selects an affordance indicating that an error has occurred). Various specific ways of detecting errors are described herein.

Returning to the method 600, the digital assistant detects an error in a speech based interaction with a digital assistant (608). In some implementations, the error is an error in speech recognition of one or more words that were received in a speech input provided by the user. In some implementations, the error is an error in speech synthesis of one or more words that were output in a speech output by the electronic device (e.g., a mispronunciation of one or more words). Specific examples of errors in speech recognition and synthesis, and how they are detected, are provided below.

In response to detecting the error, the digital assistant receives a speech input from a user, the speech input including a pronunciation of one or more words (612). In some implementations, prior to receiving the speech input from the user, the digital assistant prompts the user to provide a speech input including a preferred pronunciation after detecting an error (610). For example, in some implementations, after detecting an error in recognizing the name "Philippe," the digital assistant will display or say "I'm sorry I didn't understand you just now- can you please tell me how you pronounce "Philippe" that so I can remember it?" The user can then speak the word to the digital assistant.

In some implementations, when the digital assistant prompts the user to provide a pronunciation of one or more words, the digital assistant only requests a pronunciation of one word at a time, so as to avoid detecting or incorporating erroneous phonemes from other words in the utterance. Specifically, if the user provides a speech input such as "please pronounce that as 'Philippe' from now on," the speech recognizer may have difficulty parsing what syllables should be associated with the name "Philippe."

In some implementations, when user-specified pronunciations are requested for more than one word (e.g., a first name and a last name of a contact item), the digital assistant provides separate prompts, and receives separate inputs, for each name. Specifically, the digital assistant may say "How shall I pronounce 'Philippe'?" After receiving a response, the digital assistant may then say "Thanks. How shall I pronounce 'Martin'?"

In some implementations, the digital assistant determines a first phonetic representation of the one or more words (614), the first phonetic representation comprising a first set
of phonemes selected from a speech recognition phonetic alphabet. In some implementations, the first phonetic representation of the at least one word is determined by a speech-to-text processor (e.g., the STT processing module 330, FIG. 3A).

In some implementations, the digital assistant maps the first set of phonemes to a second set of phonemes to generate a second phonetic representation (e.g., with the phonetic alphabet conversion module 331, FIG. 3A), wherein the second set of phonemes are selected from a speech synthesis phonetic alphabet (616). In some implementations, the speech recognition phonetic alphabet is different than the speech synthesis phonetic alphabet. Mapping phonemes from one phonetic alphabet to another is discussed in greater detail with respect to step (506) in FIG. 5A, above.

The digital assistant stores the pronunciation (including either or both of the first phonetic representation and the second phonetic representation) in association with a text string corresponding to the one or more words (614). In some implementations, receiving and storing the pronunciation in association with the text string includes performing one or more of the steps of the method $\mathbf{5 0 0}$, described above.

One type of error that the digital assistant detects is a low confidence in the recognition of a word in a speech input. Thus, in some implementations, the digital assistant receives (prior to detecting the error at step (608)) a speech input including one or more words (602). The digital assistant performs speech recognition on the speech input (e.g., with the STT processing module 330) to generate a text string corresponding to the one or more words (604). The digital assistant determines a confidence metric of the text string (606). In some implementations, the confidence metric reflects how closely the phoneme set generated for a particular word (e.g., by the STT processing module 330) corresponds to one or more of the candidate phoneme sets for that word. The digital assistant then detects the error (608) based on a determination that the confidence metric does not meet a predetermined threshold.

The digital assistant can also detect errors in speech synthesis, such as pronunciation errors made by the digital assistant in a synthesized speech output. In some implementations, the digital assistant synthesizes (prior to detecting the error at step (608)) a speech output including one or more words (607). For example, the speech output may be used to indicate to the user what action the digital assistant is taking in response to a request from the user, such as when the digital assistant says "Calling Philippe Martin" in response to a request to initiate a phone call to that person. The digital assistant then detects the error (608) based on an indication from the user that the one or more words were pronounced incorrectly by the digital assistant. In some implementations, the indication from the user is a speech input where the user indicates that the digital assistant's pronunciation was incorrect, such as "You said that name wrong" or "That's pronounced [f-ill-ee-p-ay]." In some implementations, the indication is a selection of an affordance to cancel a telephone call that was initiated by the digital assistant.

In some implementations, the digital assistant detects the error (608) based on detecting a user selection of the affordance. An affordance that a user can select to indicate an error may be displayed to the user during interactions with the digital assistant. For example, in some implementations, when providing a synthesized speech output, the digital assistant also displays a textual version of the speech output to the user on a display. This may be helpful, for example, so that if a word is mispronounced by the digital
assistant, the user can simply refer to the displayed text of the output to determine what the digital assistant was trying to speak. In some implementations, the digital assistant provides the affordance (e.g., a touchscreen button, a physical button, etc.) along with the displayed text so that the user can indicate that a speech output includes a mispronounced word. In some implementations, the affordance is labeled "Did I mispronounce something?" or "Click here to correct pronunciation mistakes."

In some implementations, the digital assistant also determines confidence values for speech synthesis, and determines whether a speech output is likely to be misunderstood by a user and/or be likely to cause a user to correct the digital assistant's pronunciation. In particular, speech synthesizers may be very confident that it will correctly pronounce common words and/or words that are in a vocabulary of known (e.g., pre-recorded) pronunciations. For example, speech synthesizers will be very confident that it will correctly pronounce the words "call" and "the" and "sure," among a multitude of possible examples. However, for words that are not in the vocabulary or for which no user-specified pronunciation has been provided, the digital assistant can identify that its pronunciation of those words are more likely to be incorrect. Accordingly, in some implementations, the digital assistant determines confidence values for words in speech synthesis outputs. The digital assistant can then monitor user interactions with the digital assistant and/or a user device to infer whether the pronunciation was correct or not. For example, if the digital assistant receives an input such as "what was that?" after synthesizing one or more words with a low pronunciation confidence value, the digital assistant responds (either immediately or at a later time) with a response that better informs the user of the intended word (either by spelling it or displaying it), requests correction by the user, or both. For example, the digital assistant may provide an output such as "Sorry, I may have said that wrong. Here's what I was trying to say p-h-i-1-i-p-p-e. Can you tell me how to pronounce that?" Providing a speech output that spells the word having a low confidence score is also beneficial when the digital assistant is being used in an eyes-free mode, where the user cannot (or should not) look at a display to read text. In particular, the user can easily and quickly understand what the digital assistant was trying to say, and the dialogue between the user and the digital assistant can continue once the pronunciation error is resolved (or dismissed by the user).

In some implementations, when an error is detected in a speech output (e.g., by detecting a user interaction indicative of a mistake after synthesizing a word with a low pronunciation confidence level, as described above), the digital assistant does not immediately prompt the user to provide a correct pronunciation, but instead spells the word for the user and attempts to continue to take appropriate actions to satisfy the user's intent. For example, if, after synthesizing the phrase "Calling Philippe Martin," the digital assistant receives an input such as "who?", the digital assistant may respond by saying "Sorry, I must have mispronounced that. Would you like me to call [philippe] Martin?" In some implementations, after the user's intent is satisfied (or if the user dismisses or cancels the action), the digital assistant will request that the user provide a user-specified pronunciation for the word that it believes to have been mispronounced.

FIG. 7 is a flow diagram of an exemplary method 700 implemented by a digital assistant for learning word pronunciations. In some implementations, the method 700 is
performed at an electronic device with one or more processors and memory storing one or more programs for execution by the one or more processors. For example, in some implementations, the method 700 is performed at the user device 104 (or a plurality of user devices) or the server system 108. In some implementations, the method 700 is performed by the digital assistant system 300 (FIG. 3A), which, as noted above, may be implemented on a standalone computer system (e.g., either the user device $\mathbf{1 0 4}$ or the server system 108) or distributed across multiple computers (e.g., the user device 104, the server system 108, and/or additional or alternative devices or systems). While the following discussion describes the method 700 as being performed by a digital assistant (e.g., the digital assistant system 300), the method is not limited to performance by any particular device or combination of devices. Moreover, the individual steps of the method may be distributed among the one or more computers, systems, or devices in any appropriate manner.

In accordance with some implementations, the method 700 allows a pronunciation specified by one user to be used by other users for both speech recognition and synthesis. For example, once a user of a digital assistant and/or a digital assistant service specifies how his or her own name is pronounced, that pronunciation can be provided to other users' digital assistants and/or devices (with appropriate permissions by the first user) so that those digital assistants will recognize and pronounce the name correctly. In some implementations, a user's own name pronunciation is only shared if the user specifically authorizes it.

In some implementations, a user-specified pronunciation for a first user's name is shared with a second user (subject to authorization) when the second user creates a contact item (e.g., in a contact list or address book) for the first user. The contact item may be provided to the second user by the first user directly (e.g., by sharing an electronic business card or contact file), or may be manually created by the second user (e.g., when the second user types in a name, phone number, or email address, etc., of the user into a contact list or address book on the second user's device).

Returning to FIG. 7 and method 700, the digital assistant receives from a first user, a user-specified pronunciation of the first user's name (702). The digital assistant stores the pronunciation of the first user's name in association with the first user's name and a unique identifier of the first user (704). In some implementations, the first user's name is a textual representation of the first user's name. In some implementations, the unique identifier is an email address of the first user. In some implementations, the unique identifier is a telephone number of the first user

In some implementations, the first user's name and the unique identifier of the first user are stored in an electronic business card. In some implementations, the electronic business card is in a vCard format.

In some implementations, the pronunciation, the name (e.g., a textual representation of the name), and the unique identifier are stored on a device associated with the first user (e.g., the user device 104). In some implementations, the pronunciation, the name, and the unique identifier are stored on a central server system associated with digital assistants of a plurality of users (e.g., the server system 108). In some implementations, the pronunciation, the name, and the unique identifier are stored on a central server system and on the user devices of one or more individual users (including, for example, the first user and other users authorized by the first user to access the pronunciation, as discussed below).

The digital assistant detects that a second user has created a contact item including the first user's name and the unique identifier of the first user (706). The digital assistant uses the user-specified pronunciation for one or both of recognizing the first user's name in speech inputs by the second user, and synthesizing the first user's name in speech outputs to the second user by the digital assistant (708).

In some implementations, when the second user creates and/or stores a new contact item, the second user's device communicates with the server system to determine if the user identified by the contact item is associated with a user-specified pronunciation, and, if so, whether the second user is authorized to access it. In some implementations, if the second user is not authorized to access the user-specified pronunciation, an authorization request is provided to the first user to authorize the second user to receive and/or access the user-specified pronunciation. In some implementations, the second user is not made aware that it is accessing a user-specified pronunciation of the first user's name. Thus, once the second user's digital assistant gains access to the user-specified pronunciation, it can be adopted and used by the second user's digital assistant, making it more accurate and making it appear even more intelligent and useful.

While the method 700 is described above for user-specified pronunciations of names, the method also applies to other words as well. For example, a first user may specify a pronunciation of a business name, city, street name, or the like. These user-specified pronunciations can then be used by other users' digital assistants (subject to authorization) to correctly recognize and pronounce these words in speech inputs and outputs.

The operations described above with reference to FIGS. 5A-7 are, optionally, implemented by components depicted in FIG. 2 and/or FIG. 3. Similarly, it would be clear to a person having ordinary skill in the art how other processes can be implemented based on the components depicted in FIG. 2 and/or FIG. 3.

It should be understood that the particular order in which the operations have been described above is merely exemplary and is not intended to indicate that the described order is the only order in which the operations could be performed. One of ordinary skill in the art would recognize various ways to reorder the operations described herein.
The foregoing description, for purpose of explanation, has been described with reference to specific implementations. However, the illustrative discussions above are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The implementations were chosen and described in order to best explain the principles of the invention and its practical applications, to thereby enable others skilled in the art to best utilize the invention and various implementations with various modifications as are suited to the particular use contemplated.

What is claimed is:

1. A method for learning word pronunciations, comprising:
at an electronic device with one or more processors and memory storing one or more programs for execution by the one or more processors:
receiving a first speech input including at least one word; determining a first phonetic representation of the at least one word, the first phonetic representation comprising a first set of phonemes selected from a speech recognition phonetic alphabet;
mapping the first set of phonemes to a second set of phonemes to generate a second phonetic representation,
the second set of phonemes selected from a speech synthesis phonetic alphabet that is different from the speech recognition phonetic alphabet, wherein the speech recognition phonetic alphabet and the speech synthesis phonetic alphabet are phonetic alphabets of a same language; and
storing the second phonetic representation in association with a text string corresponding to the at least one word.
2. The method of claim 1, further comprising, prior to receiving the first speech input, providing the text string.
3. The method of claim 2, wherein the text string is a name in a contact list associated with a user.
4. The method of claim 2 , wherein the text string is input by a user via a keyboard.
5. The method of claim 2 , wherein the text string is from a webpage displayed by the electronic device.
6. The method of claim 1, further comprising determining the text string using the first phonetic representation.
7. The method of claim 1, further comprising updating a speech recognizer to associate the first phonetic representation with the text string.
8. The method of claim 7, further comprising:
after updating the speech recognizer, receiving a second speech input including the at least one word;
determining a third phonetic representation of the at least one word; and
determining that the at least one word corresponds to the text string based on a determination that the third phonetic representation is substantially similar to the first phonetic representation.
9. The method of claim 1, further comprising, after storing the second phonetic representation in association with the text string, synthesizing a speech output corresponding to the text string using the second phonetic representation.
10. A non-transitory computer readable storage medium storing one or more programs, the one or more programs comprising instructions, which when executed by an electronic device with a display, cause the device to perform: receiving a first speech input including at least one word;
determining a first phonetic representation of the at least one word, the first phonetic representation comprising a first set of phonemes selected from a speech recognition phonetic alphabet;
mapping the first set of phonemes to a second set of phonemes to generate a second phonetic representation, the second set of phonemes selected from a speech synthesis phonetic alphabet that is different from the speech recognition phonetic alphabet, wherein the speech recognition phonetic alphabet and the speech synthesis phonetic alphabet are phonetic alphabets of a same language; and
storing the second phonetic representation in association with a text string corresponding to the at least one word.
11. The computer readable storage medium of claim $\mathbf{1 0}$, further comprising instructions for causing the device to perform, prior to receiving the first speech input, providing the text string.
12. The computer readable storage medium of claim 11, wherein the text string is a name in a contact list associated with a user.
13. The computer readable storage medium of claim 11, wherein the text string is input by a user via a keyboard.
14. The computer readable storage medium of claim 11, wherein the text string is from a webpage displayed by the electronic device.
15. The computer readable storage medium of claim $\mathbf{1 0}$, further comprising instructions for causing the processor to perform determining the text string using the first phonetic representation.
16. The computer readable storage medium of claim 10, further comprising instructions for causing the processor to perform updating a speech recognizer to associate the first phonetic representation with the text string.
17. An electronic device, comprising:
one or more processors;
memory; and
one or more programs, wherein the one or more programs are stored in the memory and configured to be executed by the one or more processors, the one or more programs including instructions for performing:
receiving a first speech input including at least one word; determining a first phonetic representation of the at least one word, the first phonetic representation comprising a first set of phonemes selected from a speech recognition phonetic alphabet;
mapping the first set of phonemes to a second set of phonemes to generate a second phonetic representation, the second set of phonemes selected from a speech synthesis phonetic alphabet that is different from the speech recognition phonetic alphabet, wherein the speech recognition phonetic alphabet and the speech synthesis phonetic alphabet are phonetic alphabets of a same language; and
storing the second phonetic representation in association with a text string corresponding to the at least one word.
18. The device of claim 17, further comprising instructions for performing, prior to receiving the first speech input, providing the text string.
19. The device of claim 18 , wherein the text string is a name in a contact list associated with a user.
20. The device of claim 18, wherein the text string is input by a user via a keyboard.
21. The device of claim 18, wherein the text string is from a webpage displayed by the electronic device.
22. The device of claim $\mathbf{1 7}$, further comprising instructions for performing determining the text string using the first phonetic representation.
23. The device of claim 17, further comprising instructions for performing updating a speech recognizer to associate the first phonetic representation with the text string.

[^0]: 10/2011 Rakib et al.

[^1]: "Meet Ivee, Your Wi-Fi Voice Activated Assistant", available at http://www.helloivee.com/, retrieved on Feb. 10, 2014, 8 pages. "Speaker Recognition", Wikipedia, The Free Enclyclopedia, Nov. 2, 2010, 4 pages.
 International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/029810, mailed on Oct. 3, 2013, 9 pages.
 International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/029810, mailed on Aug. 17, 2012, 11 pages.
 Extended European Search Report and Search Opinion received for European Patent Application No. 12185276.8, mailed on Dec. 18, 2012, 4 pages.
 Extended European Search Report received for European Patent Application No. 12186663.6, mailed on Jul. 16, 2013, 6 pages.
 Apple Computer, "Knowledge Navigator", published by Apple Computer no later than 2008, as depicted in Exemplary Screenshots from video entitled ‘Knowledge Navigator’, 2008, 7 pages.
 Applebaum et al., "Enhancing the Discrimination of Speaker Independent Hidden Markov Models with Corrective Training", International Conference on Acoustics, Speech, and Signal Processing, May 23, 1989, pp. 302-305.
 Bellegarda, Jerome R. "Latent Semantic Mapping", IEEE Signal Processing Magazine, vol. 22, No. 5, Sep. 2005, pp. 70-80.
 Bellegarda et al., "Tied Mixture Continuous Parameter Modeling for Speech Recognition", IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 38, No. 12, Dec. 1990, pp. 2033-2045. Chang et al., "Discriminative Training of Dynamic Programming based Speech Recognizers", IEEE Transactions on Speech and Audio Processing, vol. 1, No. 2, Apr. 1993, pp. 135-143.

