
Manual | EN

TF3600
TwinCAT 3 Condition Monitoring

11/12/2020 | Version: 1.5

Table of contents

TF3600 3Version: 1.5

Table of contents
1 Foreword .. 7

1.1 Notes on the documentation.. 7
1.2 Safety instructions ... 8

2 Overview... 9
2.1 Introduction.. 11

2.1.1 Fourier analysis ... 11
2.1.2 Analysis of data streams.. 16
2.1.3 Triggered analysis of a time period.. 23
2.1.4 Scaling of spectra .. 25
2.1.5 Statistical analysis ... 27

2.2 Application concepts.. 32
2.2.1 Vibration assessment .. 33
2.2.2 Frequency analysis.. 34
2.2.3 Bearing monitoring... 38
2.2.4 Gearbox monitoring ... 46

2.3 Literature notes.. 50

3 Installation.. 52
3.1 System requirements... 52
3.2 Compatibility .. 52
3.3 Installation ... 53
3.4 Licensing ... 56

4 Technical introduction .. 59
4.1 Memory Management.. 59
4.2 Task Setting... 60
4.3 NaN values .. 62
4.4 Parallel processing with Transfer Tray .. 63
4.5 MultiArray Handling ... 65

5 PLC API... 70
5.1 Function blocks.. 73

5.1.1 FB_CMA_AnalyticSignal.. 75
5.1.2 FB_CMA_ArgSort .. 79
5.1.3 FB_CMA_BufferConverting ... 82
5.1.4 FB_CMA_CrestFactor ... 85
5.1.5 FB_CMA_CrestFactorPlus .. 89
5.1.6 FB_CMA_ComplexFFT ... 93
5.1.7 FB_CMA_DiscreteClassification.. 97
5.1.8 FB_CMA_Downsampling... 101
5.1.9 FB_CMA_EmpiricalExcess.. 103
5.1.10 FB_CMA_EmpiricalMean .. 108
5.1.11 FB_CMA_EmpiricalSkew... 112
5.1.12 FB_CMA_EmpiricalStandardDeviation.. 117
5.1.13 FB_CMA_Envelope ... 122
5.1.14 FB_CMA_EnvelopeSpectrum.. 126

Table of contents

TF36004 Version: 1.5

5.1.15 FB_CMA_HistArray ... 130
5.1.16 FB_CMA_InstantaneousFrequency... 135
5.1.17 FB_CMA_InstantaneousPhase ... 139
5.1.18 FB_CMA_IntegratedRMS .. 143
5.1.19 FB_CMA_MagnitudeSpectrum .. 147
5.1.20 FB_CMA_MomentCoefficients .. 151
5.1.21 FB_CMA_MultiBandRMS .. 156
5.1.22 FB_CMA_PowerCepstrum .. 161
5.1.23 FB_CMA_PowerSpectrum... 165
5.1.24 FB_CMA_Quantiles ... 169
5.1.25 FB_CMA_RealFFT .. 174
5.1.26 FB_CMA_RMS .. 178
5.1.27 FB_CMA_SparseSpectrum ... 182
5.1.28 FB_CMA_Sink ... 186
5.1.29 FB_CMA_Source... 193
5.1.30 FB_CMA_VibrationAssessment .. 199
5.1.31 FB_CMA_WatchUpperThresholds .. 203

5.2 Functions ... 207
5.2.1 F_MA_IsNAN... 207
5.2.2 F_CM_CalculateRecommendedOverlap ... 207

5.3 Data types ... 208
5.3.1 E_CM_MCoefOrder ... 208
5.3.2 E_CM_ScalingType ... 208
5.3.3 E_CM_SpectrumType ... 208
5.3.4 E_CM_UnwrapMethod .. 209
5.3.5 E_CM_WindowType .. 209
5.3.6 E_MA_ElementTypeCode ... 209
5.3.7 T_CM_WindowParameters.. 210
5.3.8 Error codes .. 211
5.3.9 InitPars structures.. 216

5.4 Global constants .. 233
5.4.1 GVL_CM .. 233
5.4.2 GVL_CM_Base.. 234
5.4.3 Global_Version .. 234
5.4.4 Param .. 235

6 Samples.. 236
6.1 FFT with real-value input signal... 236
6.2 FFT with complex-value input signal ... 238
6.3 Magnitude spectrum: ... 240
6.4 Multi-channel magnitude spectrum.. 243
6.5 Calculation of individual spectral values.. 244
6.6 Window functions .. 247
6.7 Scaling of spectra .. 249
6.8 Time-based RMS... 250
6.9 Multi-band RMS... 252
6.10 Histogram .. 254

Table of contents

TF3600 5Version: 1.5

6.11 Statistical methods .. 257
6.12 Vibration assessment according to ISO 10816-3 .. 258
6.13 Vibration assessment according to ISO 10816-3 (compact) ... 261
6.14 Schwingungsbeurteilung nach ISO 10816-3 (erweitert) .. 264
6.15 Condition Monitoring with frequency analysis ... 266
6.16 Threshold value consideration for averaged magnitude spectra... 271
6.17 Crest factor .. 272
6.18 Envelope spectrum.. 275
6.19 Power cepstrum... 277
6.20 Event-based frequency analysis.. 278

7 Appendix .. 281
7.1 Error Codes Overview ... 281
7.2 ADS Return Codes .. 281
7.3 Spectrum Scaling Options ... 286

Glossary ... 289

Table of contents

TF36006 Version: 1.5

Foreword

TF3600 7Version: 1.5

1 Foreword

1.1 Notes on the documentation
This description is only intended for the use of trained specialists in control and automation engineering who
are familiar with applicable national standards.
It is essential that the documentation and the following notes and explanations are followed when installing
and commissioning the components.
It is the duty of the technical personnel to use the documentation published at the respective time of each
installation and commissioning.

The responsible staff must ensure that the application or use of the products described satisfy all the
requirements for safety, including all the relevant laws, regulations, guidelines and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.
We reserve the right to revise and change the documentation at any time and without prior announcement.
No claims for the modification of products that have already been supplied may be made on the basis of the
data, diagrams and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, Safety over EtherCAT®,
TwinSAFE®, XFC®, XTS® and XPlanar® are registered trademarks of and licensed by Beckhoff Automation
GmbH.
Other designations used in this publication may be trademarks whose use by third parties for their own
purposes could violate the rights of the owners.

Patent Pending

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents:
EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702
with corresponding applications or registrations in various other countries.

EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.
The reproduction, distribution and utilization of this document as well as the communication of its contents to
others without express authorization are prohibited.
Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a
patent, utility model or design.

Foreword

TF36008 Version: 1.5

1.2 Safety instructions

Safety regulations

Please note the following safety instructions and explanations!
Product-specific safety instructions can be found on following pages or in the areas mounting, wiring,
commissioning etc.

Exclusion of liability

All the components are supplied in particular hardware and software configurations appropriate for the
application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation and drive engineering who are
familiar with the applicable national standards.

Description of symbols

In this documentation the following symbols are used with an accompanying safety instruction or note. The
safety instructions must be read carefully and followed without fail!

 DANGER
Serious risk of injury!
Failure to follow the safety instructions associated with this symbol directly endangers the life and health of
persons.

 WARNING
Risk of injury!
Failure to follow the safety instructions associated with this symbol endangers the life and health of per-
sons.

 CAUTION
Personal injuries!
Failure to follow the safety instructions associated with this symbol can lead to injuries to persons.

NOTE
Damage to the environment or devices
Failure to follow the instructions associated with this symbol can lead to damage to the environment or
equipment.

Tip or pointer
This symbol indicates information that contributes to better understanding.

Overview

TF3600 9Version: 1.5

2 Overview
Beckhoff offers a toolbox consisting of hardware and software components for implementing a Condition
Monitoring system that is integrated in the control system. The benefit of the Beckhoff solution is integration
into the standard machine control system, thereby avoiding additional subsystems with complex cross
communication. Machine control and Condition Monitoring run on the same platform and can be
programmed with the same engineering tools, and they both use EtherCAT as common fieldbus system.

The TwinCAT Condition Monitoring Library forms a significant part of the software toolbox. Various
mathematical algorithms are available as PLC function blocks.

Product information

The current version of the TwinCAT 3 Condition Monitoring library is available as download. The PLC library
provides different algorithms for data analysis.
Multi task applications are recommended. The data communication between different tasks and CPU cores
are done by the mechanism of the library.

Product components

The TF360x Condition Monitoring product consists of the following components:

• PLC libraries: Tc3_CM.compiled-library, Tc3_CM_Base.compiled-library and
Tc3_MultiArray.compiled-library

• Driver: TcCM.sys and TcMultiArray.sys

In addition, the product contains the components of TF3680 TC3 Filter. The TF3600 Condition Monitoring
Level 1 license contains the TF3680 license, so that all constituent parts of the TC3 Filter product can be
used.

Product features

This table shows the functions of the Condition Monitoring library for the corresponding product level.

http://www.beckhoff.de/forms/twincat3/warenkorb2.aspx?id=1890111418901120160&lg=de&Title=TF36xx%2520%7C%2520TC3%2520Condition%2520Monitoring
https://infosys.beckhoff.com/content/1033/tf3680_tc3_filter/index.html?id=7631144946606782773

Overview

TF360010 Version: 1.5

Algorithms/Features: TF3600 Condition Monitoring Level 1
Signal frame processing and inter-task
communication
Power Spectrum

Magnitude Spectrum

Sparse Spectrum

Signal envelope

Envelope Spectrum

Power Cepstrum

Fast-Fourier-Transform of real signal

Fast-Fourier-Transform of complex signal

Instantaneous Frequency

Instantaneous Phase

Analytic Signal

Crest Factor

Crest Factor Plus

Moment Coefficients (mean, standard deviation,
skewness, excess kurtosis)
Histogram

Time based RMS

(Time-)Integrated RMS

Multiband RMS

Quantiles

Discrete Classification

Watch Upper Thresholds

ArgSort

Downsampling

Vibration assessment (according to ISO 10816-3)

Digital filter
 (component TC3 Filter)

Overview

TF3600 11Version: 1.5

2.1 Introduction
For users without previous experience of Condition Monitoring and signal processing, we strongly
recommend consulting additional reference material, to complement this documentation. See list of
references at the end of this section.

Basic signal processing concepts, in particular Fourier analysis and statistics, are introduced below. This
does not include programming details and is limited to a description of the interfaces and functions of the
algorithms used in the Condition Monitoring library.

What you will learn:

• How does a frequency analysis work?
• How does a seamless analysis of a continuous data stream work?
• How do I analyze a time segment, and how do I trigger an analysis?
• How to scale a spectrum, and why is this important?
• How to obtain statistically resilient results when measuring signals are affected by noise or

interference?

2.1.1 Fourier analysis

Introduction

The most important frequency analysis method is the Fourier analysis. The fundamental significance of the
Fourier analysis arises from the fact that it decomposes a signal x(t) into superimposed sine and cosine
vibrations. The result of this transformation is referred to as signal spectrum or simply spectrum. Definition of
the Fourier transformation:

In terms of information content, the signal spectrum is equivalent to the original signal. In addition, it provides
information on the origin of vibrations, for example. If two machine components give rise to vibrations with
different periods (frequencies) that are additively superposed, the Fourier transform makes these two
components visible. The combination of sine and cosine for each frequency also enables phase angles to be
mapped.

For example, superimposition of two sine waves with different frequencies and amplitudes results in the
diagram shown below. From the variation over time it is difficult or impossible to glean the composition of the
resulting signal. Conversely, from the magnitude spectrum |X(w)|, i.e. the magnitude of the Fourier-
transformed, it is easy to see with appropriate scaling (see Scaling of spectra [} 25]), that there are two
oscillations – one with a frequency of 0.2 kHz and an amplitude of 2.6 and one with a frequency of 1 kHz and
an amplitude of 3.8. The phase information is hidden due to the absolute value calculation.

In the Magnitude spectrum: [} 240] sample, the magnitude spectrum is calculated and displayed for a signal
of this form.

Overview

TF360012 Version: 1.5

There are two processes that influence the vibration signals originating in a machine during sound transfer.
Firstly transfer via machine components that attenuate the vibrations to different degrees depending on the
frequency, and secondly superposition with vibrations from other machine components, with amplitudes
adding up without interaction. Both factors are separated due to the properties of the Fourier transformation:

• Delays only affect the phase of the Fourier transform
• Frequency-selective attenuation and constructive superposition of vibration amplitudes show up in the

magnitude of the Fourier transform.

Processing of time-discrete signals and the discrete Fourier transform

A very important aspect in the application of Fourier analysis is temporal sampling of the signal. The Fourier
transform is mathematically defined for continuous, temporally unlimited signals.

However, in practice the discrete Fourier transformation (DFT) is used. It is defined for a discrete, periodic
signal with a finite number of discrete frequency components. "Discrete" means that the signal is scanned at
equal intervals, usually directly with an analog/digital converter, e.g. an EL3xxx or ELM3xxx.

If a time-continuous signal with a period of T is sampled, the resulting value string is:

Using DFT, this series, which consists of N values, can be transformed to a discrete spectrum.

The variable k represents a frequency channel, which also referred to as frequency bin. Like the variable n, it
runs from 0 to N ––1.

Overview

TF3600 13Version: 1.5

Discretization of time and quantization of values (digitization)

Two operations are required for digital processing of analog signals: Quantization from analog to digital value
representation, and sampling of the temporally continuous physical signal to form a discrete sequence of
quantized values.

The analog-to-digital converter digitizes the measured values in the I/O terminal. Quantization of the values
generally takes the form of an integer signal with signed 16-bit representation or 24-bit representation.
Processing in the TwinCAT 3 Condition Monitoring Library consistently takes place in the 64-bit IEEE double
floating point format, which is hard-wired in advanced processors. The temporal sampling also takes place in
the I/O terminal, through sampling of the input signal with a defined sampling frequency. The sampling
frequency can be calculated from the task cycle time Tc and the oversampling factor cs:

Sample: With a task cycle time of 1 ms and an oversampling factor of 10, the resulting sampling rate is fs =
10 * 1 / (10-3 * 1s) = 10 kHz.

Pay particular attention to the sampling frequency
In TwinCAT the sampling frequency results from the task cycle time and the oversampling factor of
the terminal used: fs := Oversamples*1000.0/TaskCycleTime_ms. Caution: The unit mil-
liseconds is used for the task cycle time, as usual in TwinCAT.
The Task Cycle Time can be queried in the PLC via the global data type PlcTaskSystemInfo.
See: INFOSYS Global Data Types

Sampling theorem

The main practical limitation in the application of the DFT is the restriction of uniquely representable
frequencies. According to the Nyquist theorem or sampling theorem, only signals whose highest frequency
fmax is less than half the sampling frequency fs can be represented unambiguously (slightly simplified
description). Accordingly, the sampling frequency must be greater than the highest frequency occurring in
the analog signal.

The presence of higher frequencies in the analog signal leads to an undesirable effect referred to as aliasing
in the spectrum. The analog signal is then no longer correctly represented in the discrete signal. Before the
analog-to-digital conversion, higher frequencies should therefore be removed from the analog signal using
configurable analog filters.

Anti-aliasing filter
The EL3xxx and ELM3xxx EtherCAT Terminals provide various filters, depending on the terminal
type. The EL3632 EtherCAT Terminal, for example, features a parameterizable analog 5th order
low-pass filter, which is used to avoid aliasing. The EL3751 and the ELM3xxx modules have several
filter levels that can be designed for anti-aliasing filtering as well as for wanted-signal filtering, see
also TC3 Filter Designer.

Frequency resolution

Since the frequency resolution (discrete resolution based on frequency components in the signal) enables
different signal components to be allocated to certain machine elements and defects, in many cases it will be
of advantage to achieve a resolution of the discrete frequency axis that is as high as possible.

Generally, the length of the Fourier transformation N determines the step size Δf of the discrete frequency
axis k .Δf. A basic consideration facilitates understanding: In order to be able to represent the frequency of a
sine wave in the frequency range, the measuring time must be at least one full period of this vibration. This
results in the following relationship between the resolution Δf and the measuring time Tm:

https://infosys.beckhoff.de/content/1033/globaldatatypes/18014399224303243.html
https://infosys.beckhoff.com/content/1033/te131x_tc3_filterdesigner/index.html?id=5652809856245334333

Overview

TF360014 Version: 1.5

Typical PLC code syntax, e.g. in the MAIN routine of the Magnitude spectrum: [} 240] sample:

fSampleRate := cOversamples * (1000.0 / fSampleTaskCycleTime);

fResolution := fSampleRate / cFFTLength;

A high frequency resolution therefore requires a long measuring time. It is possible to extend the input data
for the DFT through symmetric addition of zeros before and after the input signal (zero padding). This
increases the length N of the signal sequence at constant sampling rate fs, thereby refining the discrete
resolution Δf. Zero padding does not add additional information to the signal. A distinction is made between
two different types of resolution when zero padding is used: on the one hand the step size between one
frequency bin to the next on the discrete frequency axis, i.e. the transition from k.Δf to (k +1).Δf , on the other
hand the resolution for distinguishing between two adjacent frequencies of the input signal.

Although zero padding reduces the discrete resolution Δf, it does not change the measuring resolution. A
refinement of the measuring resolution can only be realized through a correspondingly long measuring time
(often called WindowLength in the Condition Monitoring library for FFT-based algorithms). For practical
applications, the key factor is usually the frequency resolution of the measurement, which influences the
differentiability between two closely adjacent signal frequencies.

Zero padding
Zero padding does not add any information to the signal to be analyzed. For distinguishing between
two adjacent signal frequencies, it is therefore not the frequency resolution that is refined, only the
numeric resolution of the frequency axis.

Illustration based on an example:

With a task cycle time Tc = 1 ms and an oversampling factor of 10 (i.e. fs = 10 kHz), a buffer with a length of
3200 is filled. The resulting measuring time is Tm = Tc * 3200 / 10 = 320 ms, with a measuring resolution of Δf
= 1 / 320 ms = 3.125 Hz. Using FFT for further analyses/calculations, the buffer is symmetrically expanded
with 2*448 zeros to reach a length N of 2^12 = 4096 > 3200 (N must be a power of 2, see next section). Zero
padding therefore refines the numerical resolution to Δf = 10 kHz / 4096 = 2,44140625 Hz.

The discrete frequency axis is limited by the zero frequency (off-set) and the Nyquist frequency fnyq, which
corresponds to half the sampling frequency. According to the Nyquist theorem, it corresponds to the highest
representable frequency of the recorded signal. If the discrete spectrum X[k] is saved in a PLC array with the
index m, which runs from 1.. N, the following frequency axis results for X[k]

fFrequency := (m-1) * fResolution; // m = 1..N/2+1

m = 1 represents the off-set, m = N/2+1 represents the Nyquist frequency. The indices for m from N/2+2 to N
form the so-called negative frequencies, which are only relevant in practice if the input signal x[n] for the FFT
has a complex value. See section Image frequencies [} 15].

The following diagram illustrates the configuration of the frequency axis for a DFT of length N (with N an
even number).

Overview

TF3600 15Version: 1.5

Efficient calculation through FFT algorithms

Strictly speaking, the fast Fourier transformation (FFT) is a family of algorithms for discrete Fourier
transformation (DFT) which are implemented particularly efficiently and lead to the same numerical result.
While the complexity of a naïvely implemented DFT with N time values is O(N 2), for a FFT it is only O (N *
logN). For larger values of N, the difference is substantial. For N=1024, for example, it is already a factor of
around one hundred. Generally FFT algorithms are defined for values of N (the length of the FFT) that
represent a power of two, i.e. 256, 512, 1024 etc.

Complex valued result

The FFT (and the DFT) splits the incoming signal x[n] into a number of sine and cosine oscillations. Each
frequency is associated with a coefficient for the sine and cosine components. Both factors are represented
together as a complex number. The decomposition is expressed in Euler's formula:

The real part Re{..} of each Fourier coefficient corresponds to the cosine component, the imaginary part
Im{..} to the sine component. The ratio of the two components reflects the phase angle of the frequency
components.

In many cases it is not the precise temporal characteristic of the signal that is of interest, but the magnitude
spectrum. This can be determined from the Fourier transform by calculating the absolute value of the
complex number:

Complex data type
The result of the FFT of a real-valued or complex-valued input signal is complex-valued. The data
types LREAL and LCOMPLEX are used for the signal representation. If a function block is used for
calculating the magnitude spectrum [} 147] or power spectrum [} 165], the result is directly real-val-
ued.

Image frequencies

Overview

TF360016 Version: 1.5

In the Fourier transform of a real signal the coefficients for negative frequencies are equal to the complex
conjugate coefficients for positive frequencies. If X[k] is the Fourier-transform of x[n] and X*[k] the complex
conjugated, the following applies for a Fourier transformation with N points:

For real-valued signals a time reversal of the input signal corresponds to complex conjugation of the Fourier
transform. It follows that the spectral value for frequencies below the Nyquist frequency occur mirrored in the
values above the Nyquist frequency. Since the values with k > N/2 are therefore redundant for real input
sequences, the Fourier-transformed for real sequences is usually limited to the first n/2 values (applies to k =
0..N––1).

Function blocks in the Condition Monitoring Library

The Condition Monitoring Library offers various function blocks that facilitate a Fourier analysis.

• FB_CMA_RealFFT [} 174]: Calculating the FFT of a real-valued input signal.

• FB_CMA_ComplexFFT [} 93]: Calculating the FFT of a complex-valued input signal.

• FB_CMA_MagnitudeSpectrum [} 147]: Calculating the magnitude spectrum of a real-valued input
signal, including windowing of the input signal with overlapping windows [} 16] and different scaling
options [} 25].

• FB_CMA_PowerSpectrum [} 165]: Calculating the power spectrum (periodogram) of a real-valued input
signal, including windowing of the input signal with overlapping windows [} 16] and different scaling
options [} 25].

2.1.2 Analysis of data streams

Block-by-block FFT analysis from a data stream

The DFT/FFT is defined on a continued cyclic, periodic signal. This leads to an initially surprising conclusion:
If an FFT analysis for a long signal is required, the input signal cannot simply be subdivided into sections and
transformed with DFT. Because if the last value in such a section does not match the first, the FFT interprets
this as a discontinuity in the cyclic sequence, which clearly shows up in the spectrum (spectral leakage). The
following diagram illustrates the principle. A partial signal (blue) is cut from the total signal (black). The FFT
implies a cyclic continuation of the partial signal (lower diagram) and assumes step changes in the signal to
be transformed, as clearly indicated in the spectrum.

Overview

TF3600 17Version: 1.5

The situation can be rectified by weighting the signal sections before the transformation with a suitable
window function (for details see next section). In a suitable window, time values near the start and the end
are multiplied with a factor zero or closed to zero. The following diagram shows the same scenario, but now
with a window function (red). Windowing removes the step changes in the cyclic continuation, although
please note that the properties of the window show up in the spectrum of the windowed partial signal.
However, the window property generally affects the spectrum to a significantly lower degree.

Overview

TF360018 Version: 1.5

A problematic aspect of windowing is that values at the edge of the window are hardly taken into account in
the spectrum. In situations where this region contains signal characteristics that indicate possible damage,
key information may be lost. In order to prevent the loss of information, the TwinCAT Condition Monitoring
Library uses overlapping signal sections for the windowing procedure. A 50% overlap is recommended with
the Hann window, which is used as standard. As a result, samples that are at the edge of one window
section are in the center of the next window section.

The following picture schematically illustrates the procedure for an FFT analysis from a data stream with
50% overlap.

Overview

TF3600 19Version: 1.5

Initially, buffers with a defined length of 1600 values are filled from the data stream. The previous buffer is
included in the evaluation of the data from buffer n, so that the data packet that is windowed now contains
3200 values. The maximum of the window function is precisely in the middle between the two buffers and
falls to zero towards the edges of the two buffers. Zero padding extends the data packet to a length of 4096
values, so that the length is a power of 2 and can therefore be efficiently calculated with an FFT algorithm.
The result of the FFT is a data packet with 4096 values, which can be reduced to 2049 values if required,
provided the input data are all real-valued (see Fourier analysis [} 15]).

During the evaluation of buffer n, buffer n+1 is filled, and buffer n is included in its evaluation. This approach
always results in a 50% overlap of the windowed time ranges.

Analysis of a data stream in TwinCAT 3
The signal analysis scheme shown in the diagram above is implemented in the Condition Monitor-
ing Library through FB_CMA_MagnitudeSpectrum and FB_CMA_PowerSpectrum. As user, only a
configuration of the parameters (length of the buffer, length of the FFT, window function, overlap,
etc.) and the provision of the data buffer are necessary. See for example: ST_CM_PowerSpec-
trum_InitPars [} 227].

Window functions

The properties of the window functions used are shown in the result of the transformation. It is not the signal
x[n] that is Fourier-transformed, but the signal x[n].w[n], with w[n] as time values of the window function. Note
the basic characteristics of window functions.

If "no" window function is used, i.e. if a signal section is taken from a longer overall signal, this corresponds
to the application of a rectangular window. An example is used to compare the properties of window
functions with a rectangular window: A harmonic sine with an amplitude of 13 and a frequency of 500 Hz is
sampled with a rate of 10 kHz and windowed with a window function with a length of 3200 samples, followed
by calculation of the magnitude spectrum (with the scaling option [} 286] eCM_PeakAmplitude). In the
following illustration, the magnitude spectrum is compared when using the available window functions.

A sample for the reconstruction of the following graphic can be found here: Window functions [} 247]

Overview

TF360020 Version: 1.5

It illustrates two key features of window functions:

• The width of the main lobe, in this case around 500 Hz.
• The attenuation of the side lobes, relative to the maximum of the main lobe.
• The amplitude accuracy of harmonic signals, compare the maximum values when specifying a

vibration with an amplitude of 13.

The different window types each form a trade-off between these three essential properties.

The width of the main lobe affects the achievable frequency resolution. The height of the side lobes indicates
the spectral leakage, since it is caused solely by the window and not by the signal to be analyzed. The
curvature of the mainlobes in the range -0.5 bins to +0.5 bins around the maximum characterizes the
maximum amplitude error that can occur with harmonic signals (scalloping losses).

Note that the rectangular window enables very good frequency resolution but results in strong spectral
leakage, which becomes problematic if a frequency component with an amplitude of 0.5 occurs at 550 Hz, in
addition to the peak at 500 Hz, for example. In addition, the maximum possible amplitude error is very high
at -36.34%. The Hann window considerably reduces the sidelobes, but it also reduces the attainable
frequency resolution, which nevertheless represents a good compromise as long as no exact determination
of the amplitudes of sinusoidal signals is required. The maximum possible amplitude error here is -15.12%.
The Hann window is one of the best-known window functions and is therefore set by default in the Condition
Monitoring library. If amplitude accuracy is required with harmonic signals, a flat-top window (SFT5M) is to
be used with the flattest possible curvature in the central main lobe area (maximum amplitude error
-0.045%). However, the mainlobe is very wide here, as a result of which this window is only recommended
for the analysis of purely harmonic signals.

An important parameter of the frequency resolution, if a window function is used, is the equivalent noise
bandwidth (ENBW).

The value Δf is derived from the FFT-length N and the sampling rate fs (see Fourier analysis [} 11]). The
expression in the equation before the Δf is defined via the properties of the window and is 1 for a rectangular
window and, for example, 1.5 for the Hann window and 3.885 for the SFT5M.

The selection of the window to be used, the associated parameters and the overlap to be used is realized for
the function block concerned via the respective function block-specific structure with initialization parameters,
e.g. ST_CM_MagnitudeSpectrum_InitPars [} 223].

Overview

TF3600 21Version: 1.5

Available window functions

For a window of the length N, the following window functions are available in the Condition Monitoring library.
Here, I0 designates the modified Bessel function of the first type and zero order. The eCM_KaiserWindow
and the eCM_FlatTopWindow are parameterized via T_CM_WindowParameters [} 210] in the initPars
structures. The last column specifies the recommended overlap in percent of the window length. By way of
example, the Kaiser-4 window with

has been selected for eCM_KaiserWindow

and the SFT5M window with

for eCM_FlatTopWindow.

Identifier PID Definition Overlapping
eCM_HannWindow 16#05300

901
50%

eCM_Rectangular
Window

16#05300
902

0%

eCM_BartlettWin
dow

16#05300
905

50%

eCM_HammingWind
ow

16#05300
906

50%

eCM_KaiserWindo
w

16#05300
907

67% (Kaiser-4)

eCM_FlatTopWind
ow

16#05300
917

76% (SFT5M)

Calculation of the recommended overlap

The recommended overlap of the windowed signal sections results from the consideration of the following
properties of the window function:

• amplitude flatness: flatness of the overlapping window function. i.e. the weighting of the individual
samples.

• overlap correlation: correlation between the individual samples of the overlapping functions.

The recommended overlap lies at the point where the difference between the two properties is largest. In
other words, the best possible flatness is achieved with the smallest possible correlation. This is shown in
the following graphic for the SFT5M window (eCM_FlatTopWindow).

Overview

TF360022 Version: 1.5

Window function (black), amplitude flatness (red), overlap correlation (green), recommended overlap (blue).

For further information, see:

• G. Heinzel et.al.: Spectrum and spectral density estimation by the Discrete Fourier transform (DFT),
including a comprehensive list of window functions and some new flat-top windows. 2002.

• In the Condition Monitoring library the calculation of the recommended overlap takes place via
F_CM_CalculateRecommendedOverlap [} 207]. The function can be used explicitly; if configured
appropriately, the algorithms also use it implicitly depending on the set window function. Of course, a
freely selectable overlap can also be set. Compare, for example, eWindowType,
eWindowTypeParameters and nOverlap in ST_CM_PowerSpectrum_InitPars [} 227].

Overlap-Add Method

Some function blocks of the Condition Monitoring library work by manipulating the spectrum of the input
signal, i.e. as described above, the input signal is first decomposed into overlapping partial signals and
Fourier-transformed. A manipulation of the spectrum is then carried out and an inverse Fourier
transformation is calculated. Depending on the window function used, a correction function is required to
compensate for the influence of the window. The individual results, which also overlap, are then summed at
the output of the function block, so that a data stream is created again at the output of the function block.
This procedure is called the overlap-add method and is shown in the following graphic as an example on the
basis of the calculation of the signal envelope (FB_CMA_Envelope [} 122]).

Overview

TF3600 23Version: 1.5

Overlap-Add in TwinCAT 3
The procedure is used within some function blocks of the library and does not have to be imple-
mented by the user himself. All that is required is a configuration of the parameters (length of the
buffers, length of the FFT, …) and provision of the data buffers.

2.1.3 Triggered analysis of a time period

Motivation

In addition to the continuous time analysis of a process, e.g. the vibration behavior of a continuously rotating
shaft, another frequent application is the analysis of a defined timeframe. Application examples include
analysis of vibration signals on a drill head, a milling unit or a shaft which only rotates during certain periods
of time.

The advantage of an analysis integrated into the controller is particularly apparent in this case. The control
usually initiates a certain process step, e.g. drilling. Accordingly, the sequential machine control can be used
to trigger not only the process step but also the corresponding analysis step.

Overview

TF360024 Version: 1.5

Implementation in the Condition Monitoring Library

With regard to the analysis functions, there is virtually no difference between the evaluation of a defined
timeframe and the continuous analysis of a data stream. The only difference is that each triggered analysis is
independent, i.e. not in a continuous context. Accordingly, all analysis function blocks of the TC3 Condition
Monitoring Library can be used for continuous and triggered time window analyses. Only two points need to
be observed when configuring the analysis chain:

• Sufficient data (a sufficiently large window of data) must be sent to the analysis chain via the
FB_CMA_Source in order for a valid result to be calculated. For example, the window length of an
FFT-based algorithm must be observed.

• In order to clearly separate the individual analyses from each other, it is only necessary to ensure that
all analysis function blocks with memory properties (see the respective documentation for the individual
algorithms; section Memory Properties) are reset once an analysis has been completed. The
FB_CMA_Source offers the method ResetAnalysisChain() for this. Alternatively, the method
ResetData() can be used on every individual analysis function block; the method then works only on
the individual analysis function block.

Sample implementation

A sample based on a synthetic signal is described below. The synthetic signal consists of a background
noise and an additively superimposed sinusoidal signal with a frequency of 200 Hz and an amplitude of 2.
The sinusoidal signal is always switched on and off for 2 seconds in alternation.

If continuous evaluation is selected for such a signal, it is not possible to determine in which time intervals
the signal segments used for the evaluation lie. Accordingly, it is advisable to always start an evaluation
window for a defined measuring time when the sinusoidal signal is switched on. The schematic diagram
below shows the described synthetic signal and the amplitude spectrum based on the indicated evaluation
window.

Overview

TF3600 25Version: 1.5

The source code and a more detailed description of the sample can be found here: Event-based frequency
analysis [} 278].

2.1.4 Scaling of spectra

Magnitude and power spectrum

There are several common ways of evaluating the spectrum:

• The magnitude spectrum [} 147], which uses linearly scaled magnitude values of the complex-valued
spectral values |X[k]|. It is also called the amount spectrum or amplitude spectrum.

• The power spectrum [} 165], whose values represent the squares of the magnitude values |X[k]|2.

Using the power spectrum makes sense if power values are added up or consolidated, since the squared
spectral values |X[k]|2 relate exactly to the RMS value of the time signal via Parseval's theorem.

According to Parseval’s theorem, the power of signal x[n] in the time representation equals the power of the
signal in the Fourier transform:

If one now calculates the RMS value of the signal x[n], this can be realized in the time range or in the
frequency range, since both representations are identical with regard to the power:

In practice this allows RMS values, for example, to be calculated for limited frequency ranges of a signal.
Practical scaling options [} 286] of the Condition Monitoring Library, which relate to the properties referred to
in this section, include eCM_ROOT_POWER_SUM and eCM_RMS.

The power spectral density

Another important concept for spectral analysis is the Power Spectral Density (PSD). It refers to the output
value based on the effective frequency resolution, as indicated by the Equivalent Noise Bandwidth (ENBW)

A look at the physical units for the signal, magnitude spectrum and PSD illustrates the relationships. If a
signal x[n] is measured in volt (V), the discrete magnitude spectrum |X[k]| is also stated in V. Squaring
means that the power spectrum is stated in V2. By definition, the power density spectrum is a power value
(V2) based on the frequency in Hz. Relating the power spectrum to the effective frequency resolution in hertz
(Hz) results in the unit V2/Hz.

This representation can also be used for magnitude values. Correspondingly, the linear spectral density
(LSD) is

Overview

TF360026 Version: 1.5

Decibel scale

In vibration analysis and machine acoustics, it is common practice to convert values from the linear scale to
the logarithmic decibel scale. The decibel scale facilitates interpretation in cases where very large and very
small values occur in the same spectrum, and the analysis should cover both large and small values. The
magnitude spectrum can be converted to the decibel scale via:

The decibel scale can be expressed as 10 times the logarithm of the power spectrum and 20 times the
logarithm of the magnitude spectrum. The result of a calculation from FB_CMA_MagnitudeSpectrum [} 147]
and FB_CMA_PowerSpectrum [} 165] is therefore identical in the decibel scale.

The conversion of results to the decibel scale can conveniently activated in the Condition Monitoring Library
via a Boolean variable in the function block initialization parameters, see ST_CM_PowerSpectrum_InitPars
[} 227], for example.

Scaling options according to signal type

By selecting a suitable scaling option [} 286], the spectral values calculated by the Power spectrum [} 165]
or Magnitude spectrum [} 147] function block can be automatically adjusted to a desired reference variable.
The correct interpretation of the reference variable is of particular importance here.

In practice, and assuming a stationary signal, it is important first of all with scaling options to distinguish
between deterministic and stochastic signals.

Deterministic signals consist of periodic vibrations with a defined frequency. Decisive here is that the
frequency resolution (ENBW) is wider than a harmonic frequency. Thus, the entire power of this frequency
component of the signal is consolidated in this frequency channel. Therefore, the spectral values are directly
scalable to an amplitude (scaling option [} 286] eCM_PeakAmplitude) or an RMS value of an equivalent
sinusoidal signal. If the signal does not fall in the center of the frequency channel, so-called scalloping losses
occur, compare section Analysis of data streams [} 19], which reduce the observed maximum amplitude.
Apart from the use of a flat-top window, this can be compensated retroactively by the use of a Hann window,
for example, in which the power values from neighboring frequency channels are evaluated as a sum, see
Scaling option [} 286] eCM_ROOT_POWER_SUM and eCM_RMS.

Stochastic or broadband signals necessitate the evaluation of Power Spectral Densities (PSD) or Linear
Spectral Densities (LSD), since all frequencies contain signal power over a defined frequency range. In this
case the determined power values depend on the effective width of the frequency channels of the FFT.
Logically, they must be referenced to this bandwidth in order to obtain results that are independent of the
evaluation parameters. Because the effective width of the frequency channels when using window functions
depends on the length and form of the window function, the Equivalent Noise Bandwidth (ENBW) mentioned
above must be used in this case, see Scaling option [} 286] eCM_PowerSpectralDensity or
eCM_UnitaryScaling.

Scaling on the basis of the PSD does not enable consistent scaling of the "DC component". If required this
should be determined by low-pass filtering or averaging.

If a signal contains both deterministic portions and wide-band portions, both scalings must be used
independently of each other in order to obtain values that are independent of the processing parameters.
One example would be the evaluation of a signal that is composed of a harmonic sine wave and band-limited
noise. If the amplitude of the harmonic sine wave is to be evaluated, then scaling for deterministic signals
must be carried out. If one strives to assess the stochastic background noise, then scaling must be carried
out as PSD or LSD.

Scaling of spectra with the Condition Monitoring library
Various scaling options are already implemented in the Condition Monitoring library and can be pa-
rameterized via the function-block-specific structure with initialization parameters. See E_CM_Scal-
ingType [} 208] and Spectrum Scaling Options [} 286]. A tutorial on this can be found here: Scaling
of spectra [} 249].

Overview

TF3600 27Version: 1.5

Referencing

Classification of the scaling

While comparison of absolute measured values is very important for measurement technology, for vibration
assessment [} 33] according to ISO 10816-3 and for machine protection, absolute calibration is not required
for trend-based or comparative condition monitoring.

In many cases, generic limit values that are not tailored to a specific machine, are less suitable for early
diagnostic detection of damage. Since the choice of measuring point (location of the measurement, coupling
of the sensor etc.) has significant influence on the attenuation factors of the transmission link, for trend
monitoring it is much more important to consistently maintain the selected test point and the coupling
conditions. In many cases signal components with initially low signal level can be important. If they are
periodic, they appear particularly clearly and early when using high-resolution FFT spectra with the
narrowest possible bandwidth and suitable statistical functions. In condition monitoring trend observations
over long periods and relative comparisons at the decibel scale usually play a much more important role than
individual absolute values. For the sensors this means that expensive, high-precision absolute calibration
and smooth frequency response are generally less important than high long-term stability and sufficiently low
temperature dependence, although this does not mean that a calibration can be neglected completely.

Scaling on the basis of reference signals

In many cases, mathematical referencing (scaling by means of a reference) of measured values be much
more complex than would appear at first glance. As soon as the processing involves several steps that are
non-linearly dependent on diverse parameters, it is in many cases simpler and above all less prone to error
to carry out the scaling with the aid of a calibration device. Here we make use of the fact that the magnitude
values of the calculated spectra are always linear to the input values. In order to scale the signal correctly,
therefore, we only need to determine the associated linear factor on the basis of a well-known reference
input value. Professionally this is done by generating a physical signal with a defined amplitude (or a defined
RMS value) using a calibration device, measuring the output value and determining the required correction
factor as the quotient of input and output. The big advantage of scaling on the basis of a reference signals is
that physical defects such as damage to an accelerometer as well as incorrect configurations of the
measuring system can be reliably discovered. This method has its limits if a large number of parameter
combinations are to be tested when evaluating.

2.1.5 Statistical analysis
Condition monitoring is used for monitoring of limit values. Value transgressions cause messages and
warnings. In practice the individual values of the FFT often fluctuate strongly, so that averaging or other
statistical analysis is required. An analysis of individual values would result in a high value leading to a
transgression of the limits.

Basic concepts

If a quantity (e.g. temperature, pressure, voltage etc.) is measured in an actual process, for a repeated
measurement it is very likely that the previous measured value does not match the value determined in the
repeat measurement. Since the sequence of randomly fluctuating quantities cannot be determined
deterministic (i.e. via a concrete equation), statistical parameters are used for describing such signals. The
fact that in practice deterministic and stochastic signals are often superimposed (e.g. a direct voltage
superimposed by measurement noise) is irrelevant. The summary result is random and therefore a
stochastic signal.

An individual measurement of a randomly fluctuating quantity is a random event. Each individual
measurement is referred to as realization of a random experiment. If N random samples are taken from the
random experiment, this number of realizations describes the sample size.

Histograms

A central property of random events is the probability that the measured parameter assumes a certain value.
This is described via the absolute or relative frequency distribution, which is represented in a histogram.

Overview

TF360028 Version: 1.5

Simple example: Suppose a measured variable of 10 V is superimposed with normal distribution noise
(average value 0 V, standard deviation 4 V). Repeating the measurement for this parameter 1 million times
results in the diagram below (upper part). The 1 million realization of the random experiment can be shown
in a histogram for a better overview. The absolute frequency distribution can be generated such that the
range of the measured variable is subdivided into classes (bins). The upper part of the diagram shows the
measured variable over each individual measurement, the lower part only shows the first 250 measurements
and the class limits for the histogram.

The absolute frequency distribution is then simply results from the number of measured values that lie within
a class (bin), see diagram below, left. The distribution is parameterized based on the number of considered
classes – the more classes, the finer the distribution. The relative frequency distribution can be calculated
from the absolute frequency distribution through referencing of the sample size; see diagram below, right.
This is then independent of the number of measurements and shows the probability with which a value was
measured, e.g. values in the class around 10 V were measured with a probability of 0.157=15.7%.

Overview

TF3600 29Version: 1.5

An experimentally investigated process can initially be visually assessed quite easily on the basis of a
frequency distribution. Three questions can be explored:

• How strong is the scattering of the measured value?
• Is the measured value scattered around a single value (as above around 10 V), or around further

values?
• How are the values distributed? - normal distribution, Student's t-distribution, chi-square distribution?

Calculation of absolute frequency distribution in TwinCAT 3
The Condition Monitoring Library can be used to calculate the absolute frequency distribution con-
veniently via the function block FB_CMA_HistArray [} 130]. Only the range under consideration and
the number of classes are required for parameterizing the function block. A graphic display is possi-
ble with the array bar chart in TwinCAT Scope View. A sample is available for download from here
[} 254].
The Statistical methods [} 257] sample illustrates further Condition Monitoring Library options for
statistical data evaluation.

Ordinary and central moments

A value that is as close as possible to the actual value can be estimated based on multiple observations of a
random process. It is referred to as best estimate. Different estimators (e.g. the arithmetic mean) with
different properties can be used for this purpose. In addition to the calculation of the best estimate, in many
cases it is important to also express the uncertainty of the estimate, which is usually calculated via the
experimental standard deviation (also referred to as empirical standard deviation).

For example, the moments are very well suited for calculating statistical variables from a given sample:
average value, variance, skew, kurtosis etc. are particularly suitable for calculating statistical parameters
from a given number of operations. While the average value provides a suitable estimate, the other moments
provide insight into the distribution of the values around this estimated value.

Overview

TF360030 Version: 1.5

Illustration based on a sample:

The sample described above under histogram has a "true value" of 10 V and was retrospectively subjected
to noise. From the given sample of 1 million realization the average value can be calculated as 9.9977 V.
This is the best estimate of the true value. The variance around this average value is 16.01 V2. The root of
the variance corresponds to the standard deviation and is 4.0013 V. If the distribution of the measured
values is normally distributed as in this case, then the distribution of the measured values is completely
described with these two moments, i.e. the skew and kurtosis are (theoretically) zero. The skew describes
the symmetry of the distribution around the average value, the kurtosis describes the steepness (peakiness)
of a distribution function.

Assessing the uncertainty of an estimated result:

In 1995 the Joint Committee for Guides in Metrology (JCGM) published a guide on stating measurement
uncertainty. The JCGM is composed of central umbrella organizations such as BIPM, IEC; IFC, ISO etc.,
who developed this guide as a joint effort. The basic paper "Guide to the Expression of Uncertainty in
Measurement" (GUM) is available for download free of charge from the BIPM website. A brief introduction
into the central idea is provided below.

As described above, a best estimate can be calculated from a given set of N observations (average value =
sample mean). The variance of the best estimate is calculated and used as uncertainty value, rather than the
variance of the set of observations (standard deviation). This makes sense, because the aim is to assess the
uncertainty of the estimated value. The variance of the best estimate can simply be calculated from the
standard deviation of the set of observations by dividing this value by the root of N. If the sample size is
sufficiently large, the uncertainty value can be multiplied by 2 (otherwise a larger factor), in order to
calculated the extended uncertainty. The average value plus/minus this extended uncertainty will then
contain the true measured value with a probability of 95%.

Accordingly, the algorithms of the Condition Monitoring Library can be used to make GUM-compliant
statements on the measurement uncertainty.

Calculation of moments in TwinCAT 3
With the Condition Monitoring library, the function block FB_CMA_MomentCoefficients [} 151] can
be used to calculate the first to fourth order moments (mean, variance, skew, kurtosis) of a sample.
The function block only has to be parameterized in terms of the sample size used.

Quantile

The p-quantile Qp of a random variable x is the value for which Qp is greater than x for the portion p of all
realizations of x. A little more descriptively formulated: If a finite number of values is given, then the p-
quantile divides the data into two areas. The 50%-quantile (median), for example, marks the value below
which at least 50% of all the values lie. This value should not be confused with the mean of a sample.

The value of p can lie between zero and one. If p is specified in percent, then percentiles are concerned. Q0.5
thus corresponds exactly to the median, while Q0.9 is the 90% percentile and Q1 is the maximum of an
observed sequence of values.

The closer p approaches the value of one, the more Qp is determined by outliers and extreme individual
values, and the closer p approaches the value of 0.5, the more Qp approaches the median, which is very
robust against outliers. The value of p, which can be configured in TwinCAT at runtime, can be used to
dynamically change the sensitivity of the evaluation of a sample to individual values.

To illustrate the basic idea of quantiles, the following graphic shows a sequence of 1000 values scattered
around a mean value of 13.

Overview

TF3600 31Version: 1.5

From the value sequence, a histogram can be calculated that indicates how often a value occurs in the
sequence under consideration (sample). By integrating the absolute frequency shown in the histogram and
referencing to the total number of values in the sequence under consideration (in this case 1000), the
empirical sum frequency distribution can be calculated, on the basis of which the quantiles can easily be
read. In this case, for example, the 25% quantile is 11.8, i.e. at least 25% of the individual values of the
sample of 1000 values under consideration lie below this value.

Overview

TF360032 Version: 1.5

The library function block for calculating quantiles [} 169] works in two sub-steps, which can be called
together or in separate sub-steps. In the first step values are added to an internal histogram, whose
parameters can be configured in advance. This step requires very little computational effort. In the second
step, the previously selected quantiles are calculated from the stored histogram. Depending on the
configuration this second operation is computationally much more intensive, because it is defined by more
complex operations, but it needs to be performed much less frequently.

Calculation of quantiles in TwinCAT 3
The function block FB_CMA_Quantiles [} 169] can be used for the calculation of quantiles. Several
quantiles can be calculated with just one function block call. The function block is parameterized like
the histogram function block, as well as the quantiles to be calculated and the sample size to be
used.

2.2 Application concepts
This part of the introduction provides an overview of basic application patterns and solutions for Condition
Monitoring tasks. The overview focuses on some underlying strategies and solutions, without providing
programming and interface details. At the end of each concept an implementation scheme based on the
Condition Monitoring Library is provided, thereby building up an overview of the library options.

You will learn the following:

• How does vibration monitoring according to ISO 10816-3 work?
• How does threshold value monitoring in the frequency range work?
• How is Condition Monitoring for a roller bearing configured?
• How is Condition Monitoring for a gear unit configured?

Overview

TF3600 33Version: 1.5

2.2.1 Vibration assessment

Introductory disambiguation

Vibration assessment aims to ensure reliable and safe operation of a machine, based on evaluation of the
machine operating state by means of vibration measurements. Local diagnostics/analysis of machine
components is outside the scope of this documentation. Solutions for diagnostic condition monitoring of
components such as roller bearings and gear units are described separately below.

References to common standards

A number of standards exist for assessing machine vibrations, including the following:

• ISO 5348, Mechanical vibration and shock - Mechanical mounting of accelerometers
• ISO 10816, Mechanical vibration - Evaluation of machine vibration by measurements on non-rotating

parts (previously VDI Guideline 2056). This standard consists of several parts.
◦ ISO 10816-3 refers to industrial machines with a rated capacity of more than 15 kW and rated

speeds between 120 rpm and 15000 rpm, measured on site.
◦ ISO 10816-7 refers to centrifugal pumps for industrial application
◦ ISO 10816-21 refers to wind turbines with horizontal axis and gearbox

• ISO 7919, Mechanical vibration - Evaluation of machine vibration by measurements on rotating shafts.
This standard consists of several parts.

◦ ISO 7919-3 refers to coupled industrial machines
◦ ISO 7919-2 refers to stationary steam turbines and generators with a capacity of more than 50

MW an nominal operating speeds of 1500 min-1, 1800 min-1, 3000 min-1 and 3600 min-1

• ISO 20816-1, Mechanical vibration - Measurement and evaluation of machine vibration. Consolidation
of ISO 7919-1 and ISO 10816-1.

Evaluation of machine vibrations based on DIN ISO 10816-3

The scope of this standard includes steam turbines up to 50 MW, electric motors and fans. Because the
scope is quite wide, the standard is explained in more detail below. The standard aims to classify the
machine state in four different classes by means of vibration data for acceptance measurements and
operational monitoring.

Assessment criteria according to the standard are the RMS value of the vibration velocity and the RMS value
of the vibration displacement. Usually it is sufficient to measure the vibration velocity. The additional
evaluation of the vibration displacement is recommended if low frequency components are encountered. If
both vibration parameters are logged and analyzed, the poorer of the two determined classes is applied.

The frequency range of the vibrations to be captured depends on the machine speed:

• 10 Hz to 1000 Hz for speeds of more than 600 rpm
• 2 Hz to 1000 Hz for speeds of less than 600 rpm

Suitable measuring points are characterized by the fact that they reflect the dynamic forces of the machine
as purely as possible. For example, locations where local resonances occur are not suitable. Suitable
locations tend to be bearing stands and bearing covers; measurements are usually carried out in two
orthogonal directions.

The classification also takes into account the machine substructure, subdivided into rigid and elastic
substructures. If the lowest natural frequency of the whole system consisting of machine and substructure is
at least 25% higher than the main exciting frequency (generally the rotational frequency), the substructure
can be regarded as rigid, otherwise as elastic. This evaluation should be carried out separately for each
measuring direction (two orthogonal directions, see above).

DIN ISO 10816-3:2009 describes four evaluation zones (A, B, C, D), with limit values as listed in the
following table.

Overview

TF360034 Version: 1.5

Machine group 1 2
Installation rigid elastic rigid elastic

RMS value of the vi-
bration velocity in mm/

s

11.00 .. ∞ D D D D
7.10 .. 11.00 D C D D
4.50 .. 7.10 C B D C
3.50 .. 4.50 B B C B
2.80 .. 3.50 B A C B
2.30 .. 2.80 B A B B
1.40 .. 2.30 A A B A
0.00 .. 1.40 A A A A

Machine group 1 2
Installation rigid elastic rigid elastic

RMS value of the vi-
bration displacement

in µm

140 .. ∞ D D D D
113 .. 140 D C D D
90 .. 113 D C D C
71 .. 90 C B D C
57 .. 71 C B C B
45 .. 57 B B C B
37 .. 45 B A B B
29 .. 37 B A B A
22 .. 29 A A B A
0 .. 22 A A A A

Zone A The vibrations of recently commissioned machines tend to be in this zone.
Zone B Machines with vibrations in this zone are usually regarded as suitable for

continuous operation without restrictions.
Zone C Machines with vibrations in this zone are usually regarded as unsuitable for

continuous operation. The machine may generally be operated in this state for a
limited period, until a suitable opportunity for remedial measures arises.

Zone D Vibration values in this zone are usually regarded as dangerous in the sense
that damage to the machine may occur.

Machine group 1 Large machines with a rated output of 300 kW to 50 MW and electrical
machines with a shaft height of more than 315 mm

Machine group 2 Medium-sized machines with a rated output of 15 kW to 300 kW and electrical
machines with a shaft height between 160 mm and 315 mm

The implementation of the described vibration assessment according to ISO 10816-3 is implemented in two
examples. See:

• Vibration assessment according to ISO 10816-3 [} 258]

• Vibration assessment according to ISO 10816-3 (compact) [} 261]

2.2.2 Frequency analysis

Motivation

One of the main techniques for diagnostic/analytical machine monitoring is logging of vibrations with
accelerometers and corresponding frequency analysis. This is based on the fact that machines are made of
metal and therefore elastically resilient structures that are nearly always subjected to periodic forces. This
leads to vibrations in which the excitation frequencies and forces and the characteristic frequencies of the
respective structures are reflected. Vibration measurements therefore enable conclusions to be drawn
regarding the structures and forces in the machine. Damage and structural changes of machine elements,
such as bearings, result in changes to the vibration pattern.

Overview

TF3600 35Version: 1.5

The vibrations spread in the form of sound waves (structure-borne noise) in the machine components. Since
machines consist of a large number of parts, which on the one hand elastically transfer vibrations originating
from other parts and on the other hand oscillate themselves, the vibration patterns are characterized by
filtering and superimpositions of the individual vibration components. Accordingly, a vibration signal consists
of several components, which add up to the total signal based on different delays and attenuation that
depend on the travelled path. Individual vibration components may therefore no longer be recognizable in
the total signal curve. The power of frequency analysis is that it can split the linearly superimposed vibrations
into frequency components. These frequency components can then be more readily allocated to a particular
machine state, component or process.

The concept of frequency-selective monitoring of components is split into:

• Calculation of the spectrum
• Statistical evaluation of the result
• Threshold value monitoring.

Practical elements of frequency analysis

The key aspects of Fourier analysis were are already discussed in section Fourier analysis [} 11]. The main
practical aspects are repeated here.

The following questions are of central importance for the configuration of the parameters for the function
block for Fourier analysis (e.g. FB_CMA_MagnitudeSpectrum [} 147] or FB_CMA_PowerSpectrum [} 165]).

• What is the highest frequency to be analyzed?
The sampling frequency should be set accordingly via the oversampling factor for the terminal and the
corresponding task cycle time. An anti-aliasing filter should also be set. See section on Fourier analysis
[} 13].

• What are the requirements for frequency resolution?
The measuring time (length of the input array) should be as long as required, see Fourier analysis
[} 13]. The deterioration of the frequency resolution when applying a window function should also be
taken into account, see Analysis of data streams [} 19].

• The FFT length must be larger than the length of the input array, and it must be a power of two. The
remaining elements are filled with zeros, see zero padding or Fourier analysis [} 13].

• Select a suitable scaling for the spectrum, see Scaling of spectra [} 25].

Statistical assessment

The Fourier spectrum is very sensitive to noise and interference in the signal. Therefore, the Fourier-
transformed real noisy signals are usually not well suited for direct analysis or evaluation. To compensate for
this, the magnitude spectrum is usually averaged or evaluated by quantiles, see Statistical analysis [} 27].
This approach presupposes the temporal stability or cyclic repetition of the signal to be analyzed. The
parameters determined in this way are significantly more robust against interference and easier to assess
visually. In the following, an evaluation based on the mean of several spectra is considered as an example.

Statistical evaluation of the magnitude spectrum
It makes sense to form several magnitude spectra and analyze them statistically, e.g. via averaging
or quantile calculation. This reduces the uncertainty of the determined values and makes a thresh-
old analysis more reliable.

An alternative method is the averaging of the calculated Fourier coefficients via the frequency, i.e. the
averaging of adjacent frequency bins. For this purpose, the FFT should understandably be calculated at a
higher frequency resolution than in the method of successive averaging of spectra over time described
above. The averaging of adjacent frequency bins is largely equivalent to the averaging of spectra over time,
but more computationally complex.

Overview

TF360036 Version: 1.5

Threshold value monitoring

The last step of the concept explained here consists of automatic threshold value monitoring. For each
frequency channel threshold values are defined that are allocated to several categories of different priority,
e.g. "normal operation", "warning" and "alarm". These threshold values can be set based on experiences and
adjusted during operation.

Processing concept

The concept described above can be implemented conveniently with the TwinCAT Condition Monitoring
Library through parameterization of the function blocks provided. A sample configuration is described below.

Threshold value monitoring of averaged magnitude spectra is to be implemented. The following components
of the Condition Monitoring Library with the described functions are used:

• FB_CMA_Source
◦ Buffers of the input data

• FB_CMA_MagnitudeSpectrum
◦ Arrangement of the input buffers into overlapping sections
◦ Windowing of the calculation sections
◦ Calculation of the Fourier transformation
◦ Calculation of the absolute value of the Fourier coefficients
◦ Scaling of the result (RMS)

• FB_CMA_MomentCoefficients
◦ Formation of the arithmetic mean value

• FB_CMA_BufferConverting
◦ Adjustment of the buffer dimensions for transfer between FB_CMA_MomentCoefficients and

FB_CMA_DiscreteClassification
• FB_CMA_DiscreteClassification

◦ Monitoring of each calculated frequency for threshold value violation

Overview

TF3600 37Version: 1.5

In a representation of the above diagram that is closer to the source code, a possible implementation is as
follows:

The sample project for the concept shown here can be downloaded from here: download [} 271].

Parameterization of the calculation of a magnitude spectrum

The cycle time and the oversampling factor are set such that the resulting sampling rate is 10 kHz. The
following settings are used in the sample for parameterization of the MagnitudeSpectrum function block and
the source function block
// constant for input
cOversamples : UDINT := 10; // number of oversamples
cFSample : UDINT := 10000; // 1ms task with 10 oversamples = 10kHz

// constants for FFT (Magnitude Spectrum)
cBufferLength : UDINT := 3200; // buffer size
cWindowLength : UDINT := 2*cBufferLength; // 50% overlap
cFFTLength : UDINT := 8192; // length of FFT for mag. spectrum, power of 2
cFFTResult : UDINT := cFFTLength/2+1; // result of mag. spectrum

The numerical frequency resolution is 10 kHz / 8192 = 1.22 Hz. As described in the context of zero padding
and Fourier analysis [} 13], this does not correspond to the frequency resolution, which enables two adjacent
frequencies to be distinguished. In this case this is 10 kHz / (2*3200) * 1.5 = 2.34 Hz; 2*3200 corresponds to
the length of the signal section used for calculating the FFT (measuring time in sampling values). The
expansion factor of 1.5 is defined through the choice of the Hann window (windowing in the
MagnitudeSpectrum function block). The FFT-length of 8192 is the smallest number greater than 2*3200
representing a power of two. The length of the result array from the calculation of magnitude spectrum is
4097. It is defined through the symmetry property of the FFT.

Averaging of the magnitude spectra

The result of the MagnitudeSpectrum function block is transferred to FB_CMA_MomentCoefficients, which is
configured such that it returns the average value (first central moment) as result. By default, the function
block also provides the sample size that was used for calculating the central moment. For this reason the
result array becomes two-dimensional. The present sample uses the CallEx() method of the function block to
average 25 magnitude spectra and then reset the function block. Since in this case the sample size is always

Overview

TF360038 Version: 1.5

25, this information is no longer required. The corresponding sink function block is therefore parameterized
such that only the mean values are copied from the function block result to the context of the PLC task. In
addition, a buffer conversion (FB_CMA_BufferConverting) is applied between the classification function
block and the MomentCoefficients function block, which also omits the column containing the sample size
information.

Classification

In the present case, the function block FB_CMA_DiscreteClassification is used as simple threshold value
classifier. Accordingly, only two classes are defined (nMaxClasses = 1). The configuration of the threshold
values, which is applied individually for each discrete frequency, takes place at runtime. In the sample the
threshold value for array indices 30 to 50 (corresponding to approx. 36 Hz to 61 Hz) is set to 6 VRMS, for the
remaining frequencies it is set to 2 VRMS. If the value falls below the threshold value, -1 is returned as result
for the corresponding frequency. If the threshold value is exceeded, 0 is output.

Further information on the sample code

The project includes an measurement project, which contains a scope array project with three axes. The
upper diagram shows the result of FB_CMA_MagnitudeSpectrum, i.e. the magnitude spectrum of the input
signal. The input signal is generated by a function generator and represents a noisy sine wave with a
frequency of 50 Hz and an amplitude of 25 V. Accordingly, the result of the non-averaged magnitude
spectrum is time-variable (uncertain). Averaging stabilizes the result noticeably. The averaged magnitude
spectrum is shown in the center of the Scope Array Project. The lower diagram shows the classification
result; for each frequency -1 is shown if the value is below the threshold, 0 is shown if the defined threshold
value is exceeded.

Further example for Condition Monitoring with frequency analysis

The Examples section contains several code examples. Section Condition Monitoring with frequency
analysis [} 266] contains an example that is similar to the one described in this section. It is intended to
illustrate the flexibility your individual solution, which you can create with the Condition Monitoring Library.

Overview: Various function blocks for frequency analysis

The TwinCAT 3 Condition Monitoring library offers various function blocks for frequency analysis. The
following table provides an overview of the differences in the algorithms.

Function block Input data
type

Output data
type

Window-
ing

Comment

FB_CMA_RealFFT [} 174] LREAL LCOMPLEX No Pure FFT formation for real input
signals

FB_CMA_ComplexFFT [} 93] LCOMPLEX LCOMPLEX No Pure FFT formation for complex
input signals

FB_CMA_MagnitudeSpectrum
[} 147]

LREAL LREAL Yes FFT analysis with overlapping
buffering and windowing, and
formation of the magnitude
spectrum.

FB_CMA_PowerSpectrum [} 165] LREAL LREAL Yes FFT analysis with overlapping
buffering and windowing, and
formation of the power spectrum.

2.2.3 Bearing monitoring

Motivation

Bearings are among the commonest and most highly stressed machine elements. In many cases they can
be of critical importance for the operation of a plant. While the downtime alone can cause high costs for the
procurement of spare parts for large bearings, the failure of small bearings can also cause costs that far
exceed the costs of the spare part.

Overview

TF3600 39Version: 1.5

Causes of damage

There are many different possible causes of the failure of roller bearings:

• The ‘natural’ cause of the failure of roller bearings is material fatigue due to the high stresses that occur
on the contact surfaces of the rolling elements during operation. After a certain time these lead to
cracks in the material and to break-outs on the running surface. Small defects result that initially grow
very slowly and become larger with increasing speed towards the end of the service life. The
mechanisms of material fatigue are understood well in theory and can be statistically described; they
are a component of normal wear. In designing a normal bearing the dimensions are selected such that
the probability of serious damage within the service life of the machine is low. Under normal
circumstances, therefore, it can be expected that correctly dimensioned and maintained bearings will
have a very long service life. The service life actually attained is often considerably shorter, but not
accurately predictable and can vary considerably due to the following causes.

• The stress on rolling elements and running surfaces is significantly increased by incorrect lubrication,
since the lubricant distributes part of the stress and also prevents the bearing from overheating.

• A further cause of damage is contamination, for example due to faulty seals or metal swarf. The
penetration of water can also lead to the failure of the lubrication, since even small amounts of water
render lubricants unusable.

• Further, not unimportant sources of error are inaccuracies in the alignment or damaging stresses
during the installation.

• Excessive stresses lead to plastic deformations of the running surface (brinelling). A similar situation
can be caused by vibrations when the bearing is at a standstill, which are not mitigated by a lubricant
film (false brinelling).

• In electrical machines the flow of current can destroy the running surfaces.
• Corrosion can be the cause of the initial surface damage.

The common factor in all these causes is that damage to the contact surfaces of the roller bearing can be
detected at an early stage. From the fact that, in the overwhelming majority of cases, bearing failures are not
caused by material fatigue, it follows that the early recognition of damage and the analysis and tracing of the
primary causes (Root Cause Failure Analysis (RCFA)) make it possible in the mid-term to preventively avoid
many types of damage and to significantly prolong the service lives of bearings, in addition to reducing
downtime costs.

Consequences of damage

Following the initial damage to the running surfaces, the increasing stresses result in the spreading of
defects. Apart from the running surface other components can also be affected, such as the cage of the
rolling elements. Vibrations do not necessarily indicate the first stages of the damage process, since they
usually represent a symptom rather than a cause of the damage. Nevertheless, all damage processes lead
sooner or later to defects at the points of contact, which express themselves in the form of increasing
vibrations.

Monitoring strategies

Since the direct recognition of the first causes may be difficult, the focus is placed on the early recognition of
the consequential damage to the running surface of the bearing. The earlier this is noticed and investigated,
the greater the chances are of finding the initial damage and rectifying it on the basis of the causes. This
strategy often leads to sustainable savings in the long run. Furthermore, early recognition facilitates the
planning of maintenance, which is an advantage above all for plant operators. Another strategy is to identify
the elements concerned by analyzing the vibration signals.

To aid understanding of the following signal analysis options, a short phenomenological introduction into the
formation of vibrations in defective roller bearings is provided.

Schematic cross-section of a roller bearing:

Overview

TF360040 Version: 1.5

The critical parts of a roller bearing are moving surfaces in contact with each other. These are the rolling
element surface, the contact surface of the inner race and the contact surface of the outer race. Rolling over
local damage in a contact surface results in a shock pulse, which can be picked up by an accelerometer. The
more severe the damage, the stronger the shock pulse.

Evaluation of the vibration in the time range

A simple method for evaluating the state of a roller bearing is to analyze the pulse content of the vibration
signal. Common methods are the calculation of the crest factor of the kurtosis value.

The crest factor

The crest factor is defined as the ratio between the maximum amplitude and the RMS value of the signal. It
is specified in decibel and is a number greater than or equal to zero. The crest factor thus determines the
relationship between maximum amplitude and the effective mean measured oscillation amplitude. Shock
pulses resulting from incipient damage lead to an increase in the crest factor. The following diagram shows
the increase in crest factor with increasing pulse content of the signals.

The bottom diagram shows the typical strong increase in the crest factor when acute shock pulses are
encountered. An increase in the crest factor is usually a good indicator for damage. That makes this variable
a suitable tool for the early recognition of damage and for trend analyses.

Signals from a roller bearing can be interpreted as follows.

Overview

TF3600 41Version: 1.5

The diagram above shows two vibration signals from bearings with different wear, in each case with the
corresponding crest factor. The signal sequence at the bottom clearly shows peaks resulting from damage.
While the undamaged bearing has a crest factor of 4.8 dB, the damaged component has a value of 11.4 dB,
clearly indicating the presence of damage.

The crest factor has the advantage that it is very efficient to calculate and easy to interpret. In addition, it can
easily be displayed in a diagram over the time. In order to be able to use it correctly, it is important to
understand the fundamental limits of this type of evaluation:

• The crest factor is strongly influenced by the signal maximum and is therefore not a robust parameter
in a statistical sense.

• The crest factor increases with increasing local damage. However, above a certain degree of damage,
the peak values of the shock pulses will no longer increase significantly, although the number of local
defects will increase. As a result, the signal maxima will not increase, while the RMS value of the signal
continues to increase. Consequently, for heavily damaged bearings the crest factor will fall again.

For this reason it is advisable to measure the crest factor continuously and analyze the results in terms of the
trend.

The kurtosis value

In some cases the limited statistical robustness of the crest factor can be problematic. A more robust, yet
somewhat more computationally demanding parameter is the kurtosis value (also referred to as curvature,
fourth central moment). Like the average value and the variance, the kurtosis is a so-called moment
coefficient, with can be used to describe parameters statistically. The kurtosis describes the ratio between
the extreme values (far away from the mean value) of a distribution and the mean variation. Since occasional
outliers in a measurement series have no significant effect on the result, the kurtosis is statistically much
more robust than the crest factor.

In practice, the kurtosis tends to be used similar to the crest factor. The kurtosis (or the excess) and other
common statistical moment coefficients are calculated in the TwinCAT 3 Condition Monitoring Library using
the MomentCoefficients [} 151] function block.

Processing concepts

Overview

TF360042 Version: 1.5

The above diagram shows the function blocks available for calculating the crest factor and kurtosis. The
CrestFactor [} 85] function block can evaluate data from several sensors at the same time, provided that the
number of individual values is the same for each channel. The return value consists of an individual value for
each channel. The individual values are returned in a vector. In the above diagram this is indicated by the
arrows in horizontal and vertical direction. The crest factor function block in each case contains 5 individual
values (vertical) for 7 channels (horizontal) and returns the crest factor for each of the 7 channels.

The kurtosis can be evaluated with the MomentCoefficients [} 151] function block. Here the values are
transferred alternatively for all channels and individual time steps, or block-by-block for several time steps,
which is more efficient for single-channel signals due to the smaller overhead.

Envelope spectrum

Theory

The determination of the crest factor or kurtosis provides early pointers to the presence of damage with very
little expenditure. Since the dismantling and inspection of components always entails expense – in some
cases considerable – and in view of the fact that there may be a large number of bearings, additional
diagnostic possibilities are of interest with which damaged bearings or even individual components can be
more accurately identified. The identification of defects is based on the evaluation of shocks which can be
traced back to damage to the contact surfaces. In case of damage to a rotating part, the shock pulses occur
periodically, wherein the length of the period depends on the frequency with which a defect touches the
contact surface. This shock pulse period depends on the speed of rotation of the bearing on the one hand
and on the geometry of the element on the other. Hence, the period of the shock pulses can identify the
defective component.

The shock pulses contain a high-frequency signal component, which is due to the vibrations of the activated
machine component, and a superimposed (folded) and possibly also a modulated low-frequency component,
which contains information about the periodic repetitions of the shocks. These low-frequency portions of the
signal can be determined by the calculation of the envelope. The envelope can be calculated efficiently by
applying the Hilbert transformation in the frequency range. Prior filtering by a high-pass filter, such as that
provided by the TwinCAT 3 Controller Toolbox, may be useful, but is not absolutely necessary. Following the
calculation of the envelope the power spectrum of the envelope signal is determined. The distinctive
frequencies of this envelope spectrum identify the shock periods.

Application

The envelope spectrum is helpful in particular for diagnosing which units or which components of a bearing
may be defective. In addition to that, the possibility of evaluating specific important portions of the signal and
excluding interfering parts is of interest for the early recognition of damage. If they are to be used for early
recognition, then the damage frequencies in question must be determined from the bearing geometry and
monitored.

Overview

TF3600 43Version: 1.5

The above diagram shows the envelope of the signal of a damaged roller bearing already used before. The
time signal is marked by the blue points, the envelope by the red line. For better understanding a green
dotted line plots the sliding mean value of the time signal, which is not exactly zero, and the light blue line
plots the amounts of the negative values in the time signal. It can be seen that the envelope always lies very
close to the maximum values of the time signal or the amount of the time values. Peaks or negative
deflections in the time signal lead to peaks in the envelope, whilst ‘background noise’ in the time signal is
changed very little by the envelope formation.

Analysis of the envelope spectrum

Since a sequence of periodic shocks (pulse train) corresponds to a signal with many harmonics, the
envelope spectrum contains the base frequency on the one hand and the integer multiples of the base
frequency on the other. Just like for a power or magnitude spectrum, the frequency associated with the
spectral values is derived from the index of the result array multiplied with the frequency resolution of the
FFT; see Fourier analysis [} 13]. with the length of the FFT N and the sampling rate fs it follows: Δf = fs ⁄ N and
therefore for the frequency of the frequency bin with index m : fm = (m-1) Δf (assuming the array index m
starts with 1).

For diagnosis the base frequency of the pulse train must be identified. The harmonics are recognizable by a
comb-like sequence of sharp maxima with an even spacing. The base frequency is the distance between
these maxima, i.e. usually the frequency of the first maximum of this series. Their inverse value results in the
period of the shocks; the unit of the inverse value is thus a time difference. Together with the rotational
speed of the axis, which has to be measured, and the speed ratios of the damage frequencies, which can be
determined from the bearing geometry, components from which the damage may have originated can be
determined.

Characteristic damage frequencies in roller bearings

The illustration below shows by way of example the speed ratios that can occur in a simple roller bearing. In
principle, shock pulses occur at the frequency with which the point of contact between two bearing elements
passes a point with a damaged surface (on the upper side of the rolling element at the very bottom in the
picture). This point of contact also moves due to the movement of the elements relative to each other. The
rotary speed or angular speed of the point of contact can be determined based on the rule that there is
hardly any slip in a correctly functioning bearing, which means that the elements roll off one another almost
completely.

Roller bearing geometry parameter

Overview

TF360044 Version: 1.5

Assuming the speed frot of an axis that is connected to the inner race is measured and the diameters of the
bearing parts behave as follows: Diameter of the inner race DI, diameter of the balls DB, diameter of the outer
race DA. Suppose the number of balls is Z. DI and DA can be used to determine the pitch diameter: DP = (DI
+ DA)/2 If the inner race rotates with a speed of frot, this can be used to determine the pulse frequency. The
following acronyms are common for the designation of the frequencies:

• BPFO (Rolling element pass frequency outer race): Frequency with which the roller elements pass the
outer race.

• BPFI (Rolling element pass frequency inner race): Frequency with which the roller elements pass the
inner race.

• BSF (Bearing spin frequency rolling elements): Frequency with which the balls/rolling elements roll
relative to a running surface.

• BPF (Ball pass frequency): Rolling element frequency, the frequency with which a defect on a ball
passes a running surface.

• FTF (Fundamental Train frequency): Speed of rotation of the cage or the bearing element modulation
frequency

Angle of contact:

For an accurate calculation in the case of bearings that bear axial loads, the diameter of the balls is to be
corrected with the angle of contact α with which the balls touch the running surface: Db = cos(α) DB. For
radial bearings this angle is 0°.This results in the following formulas used in practice:

BPFO = Z * frot /2 * (1 - Db / DP)
BPFI = Z * frot /2 * (1 + Db / DP)
BSF = frot /2 * DP/DB * (1 - (Db/DP)2)
BPF = 2 * BSF
Rotating inner race:
FTF = frot /2 * (1 - Db/DP)
Rotating outer race:
FTF = frot /2 * (1 + Db/DP) (BPFI + BPFO) / frot always equals the number of roller elements Z. Slight deviations
result from these formulas in practice because, for example, the angle of contact α can vary under load. As a
simple rule of thumb, the value

Overview

TF3600 45Version: 1.5

f BPFI = 0.6 * frot * Z

is often used as indicator frequency for a defective inner race, while

fBPFO = 0.4 * frot * Z

is used as indicator for a defective outer race. For the determination of the bearing geometry it is useful to
refer to the bearing manufacturer’s data. It may be helpful to use calculation programs made available for
download by some manufacturer.

Praktischer Hinweis: The type number of a roller bearing does not allow any clear conclusion to be drawn
with regard to the bearing geometry; parameters such as the number of rolling elements can by all means
change.

Processing concept

Frequency analysis processing steps

Analysis steps:

The above diagram shows the processing steps for the envelope spectrum as well as the function blocks
that can be used here. First of all the envelope is calculated using the Envelope [} 122] function block.
Subsequently the power spectrum is calculated (PowerSpectrum [} 165]) function block, in the same way as
the spectrum for any time signal. Since the envelope spectrum obtained fluctuates relatively strongly with
non-stationary signals, it is recommended to evaluate it statistically using the quantile calculation method
(Quantiles) as described above in the section Frequency analysis [} 34]. The values obtained can be
automatically checked for adherence to certain threshold values by means of limit value monitoring using the
WatchUpperThreshold [} 203] function block.

Overview

TF360046 Version: 1.5

2.2.4 Gearbox monitoring

Motivation

This section describes the concept of the monitoring of gearboxes. Like roller bearings, gearboxes are
among the commonest machine elements. Since they are used in a wide range of drives, they usually play a
key role for the reliable function of a system. Typical gearbox damage differs from damage in roller bearings.
This is due on the one hand to the fact that in gearboxes highly stressed parts slide directly on top of one
another, which places particular demands both on the lubrication and on the quality of the surface. Due to
the forces resulting from normal operation that have to be absorbed, gearboxes are relatively large and thus
expensive and a replacement may be necessary during the service life of the machine even if maintenance
has been performed correctly. Adequate lubrication and correct assembly are also important here. However,
the damage patterns that occur are by no means exclusively attributable to errors in these points. Excessive
voltages at the contact points or interaction between corrosion and overheating can lead to incipient surface
damage (pitting, micropitting, spalling, wear) right up to chipping and deformation of the tooth surfaces.
Mechanical shocks and overload can cause the direct breakage of gear wheels. Compared with roller
bearings, gear unit defects tend to result in abrupt failure and significant consequential costs. This is due to
the fact that in gearwheels the greatest tension is at the tooth base – see diagram below (red surfaces).
Consequently, fatigue symptoms occur at an early stage there, which lead in the course of the time to deep
cracks and ultimately to the breaking off of teeth. The latter leads in extreme cases to the whole gearbox
blocking apparently without preliminary warning and causing extensive consequential damage, for example
due to the breakage of axles. The causes just mentioned and the consequential behavior give rise to two
objectives for the monitoring of gearboxes:

• Firstly, it is of interest to monitor symptoms of wear on a long-term basis and to recognize problems at
an early stage through trend observations and to rectify them promptly, before damage occurs.

• Secondly, acute damage can be recognized immediately by monitoring, whereby repair measures can
be initiated earlier and failures and downtime can be reduced.

Theory

The theoretical background of the early detection for gearbox damage is briefly outlined below.

Meshing oscillations

In a gearbox the gear wheels roll off one another, in the course of which the individual teeth periodically
come into contact, transfer force and then separate from each another again. While it is possible for this to
take place with a precisely constant transmission ratio and largely constant force in a new, well-designed
gearbox (involute toothing), it is not feasible for this roll-off to take place without a portion of sliding
movement. As the above picture shows, a predominantly rotary motion takes place in the center of the tooth
surface, with a growing portion of sliding movement as the distance from the center increases. In addition,
the speed ratio is largely constant with such toothing, but the transmitted torque varies. Since the teeth are
made of hard, elastic material and therefore deform slightly, they are excited to oscillate with the period of
the meshing – the so-called meshing frequency.

Harmonics of the meshing frequency

Overview

TF3600 47Version: 1.5

Since the meshing oscillation is a forced oscillation that does not have a sinusoidal appearance, but is based
on the comparatively sudden occurrence and abatement of the forces, it consists in the spectrum of
numerous harmonics whose frequencies are integer multiples of the meshing frequency. The oscillations
depend on the load on the gear wheel, since the torque deforms the teeth elastically. Gear wheel oscillations
are thus load-dependent.

Consequences of wear

With increasing wear the tooth profiles deviate more and more from the ideal shape, since material is
removed by the sliding of the surfaces over one another. This happens more and more intensively the further
away the surface is from the center of the tooth flank, as the diagram above shows. The sliding motion itself
therefore increases and the torque varies more strongly, whereby the meshing oscillations and in particularly
the harmonics they contain are amplified. The analysis of the harmonics is thus the key to the evaluation of
the condition of the gearbox. Note that the sudden reduction in the harmonics in an already clearly damaged
gearbox must be taken as an alarm signal: The breakage of a tooth flank may be so advanced that the
elasticity of the toothing has increased. In this case the total failure of the gearbox can be expected soon.

The cepstrum

The cepstrum is the most important tool for the analysis of gearbox oscillations as well as harmonics and
modulations. This is an operation that highlights periodicities in the signal spectrum.

The power cepstrum for a signal x(t) is defined as:

Interpretation

While a Fourier analysis indicates periodicities in the time range of a signal, the cepstrum indicates
periodicities in the frequency range. An inverse Fourier transformation maps the result back into the time
domain. However, the associated value index does not represent the original time axis relating to t, but the
spectrum periods that have occurred. The parameter has the unit of time and is referred to quefrency, to
indicate that it is a combination of inversion and inverse transformation. There are similar differentiating
designations, for example, for entities and operations such as harmonic, filtering and phase analysis. The
longer the length N of the two Fourier transforms employed is, the more input values are referred to for the
calculation of the cepstrum, which reduces the influence of noise and (non-systematic) fluctuations. The time
resolution can only be enlarged if the sampling rate is increased.

As an example, the following diagram shows the power spectrum and power cepstrum of a so-called
harmonic sound complex. The time domain of the signal shows a repeated pulse every 2 ms. Each individual
pulse is made up of superimposed harmonics, which means the situation is similar (coarse model) to the
case of the gear unit damage described above. The diagram in the center shows the power spectrum. The
periodicity of the power spectrum is clearly visible; the maxima are 0.5 kHz apart. The bottom diagram shows
the magnitude the power cepstrum. The largest (global) maximum is at a quefrency of 0 ms, what has no
relevance in practice (it merely shows the average value of the power spectrum). Apart from this maximum,
the largest maximum can be seen at 2 ms, which precisely corresponds to the temporal repetition of the time
signal or the reciprocal value of the distance of the local maxima in the power spectrum 1/0.5 kHz = 2 ms.

Overview

TF360048 Version: 1.5

Overview

TF3600 49Version: 1.5

Processing concept (calculation steps)

Calculating the power cepstrum

The calculation of the cepstrum is based, as follows from the definition, on the "normal" frequency analysis.
Accordingly, as described in section Analysis of data streams [} 16], initially the signal has to be split into
sections, followed by multiplication with a window function, also referred to as "windowing". The power
cepstrum is then calculated based on the calculation steps described about, i.e. Fourier transformation,
absolute value calculation, logarithmic calculation and further Fourier transformation. It is important here to
avoid exceeding value ranges because, similar to division by zero, the logarithm of zero is not defined.

The initial calculation result has a complex value. Typically, the magnitude or the square of the magnitude is
used for the further analysis.

Overview

TF360050 Version: 1.5

A sample is available for download from here: Power cepstrum [} 277]

Calculation of quantiles

The short-term values of the cepstrum usually fluctuate quite strongly like those of the FFT from which they
are derived. Therefore the next recommended processing step is the calculation of quantiles for each period
obtained, i.e. each quefrency. For monitoring tasks, for example, the 95% quantile will often be determined.
This is the value that will not be exceeded by the measured values in 95% of all cases. This calculation takes
place as with the frequency analysis using the Quantiles [} 169] function block.

Threshold value monitoring

Further processing depends on the specific objective:

• For trend analysis, it is useful to save the values obtained and to display their development over long
periods.

• For automatic machine monitoring, a classification with configurable thresholds or limit values is useful.
This is done by the DiscreteClassification function block [} 97] sketched in here.

• For tasks such as machine protection with limited scope for individual analysis, the
WatchUpperThreshold function block [} 203] can be used, which automatically calculates the number
of the highest limit category. If, for example, the state ‘Everything OK’ is assigned to category 0, the
state ‘Warning’ to category 1 and the state ‘Alarm’ to category 2, then a warning can be sent by a text
message when Level 1 is the output and the plant can be switched off automatically if Level 2 is the
output.

2.3 Literature notes
Information - not recommendations - on secondary literature is provided below. The list is not all-embracing,
and only provides a small subset of the relevant literature.

Digitale Signalverarbeitung, Fourier-Analyse, Fensterung (Deutsch)
• A.V. Oppenheim, R.W. Schafer, J.R. Buck: Zeitdiskrete Signalverarbeitung. Pearson Studium, 2004.

ISBN 3-8273-7077-9
• K.-D. Kammeyer, K. Kroschel: Digitale Signalverarbeitung – Filterung und Spektralanalyse mit

MATLAB-Übungen. Teubner, 2002. ISBN 3-519-46122-6

Discrete-Time signal processing, Fourier-analysis, windowing (English)
• A.V. Oppenheim, R.W. Schafer, J.R. Buck: Discrete-Time Signal Processing. Pearson Education,

2009. ISBN 987-0131988422
• J.G. Proakis, D.K. Manolakis: Digital Signal Processing. Pearson Education, 2013.

ISBN 978-0131988422

Zustandsüberwachung (Deutsch)
• J. Kolerus, J. Wassermann: Zustandsüberwachung von Maschinen. Expert Verlag, 2008.

ISBN: 978-3-8169-2597-2
• DIN ISO 10816, Mechanische Schwingungen – Bewertung der Schwingungen von Maschinen durch

Messung an nicht-rotierenden Teilen (vorher VDI-Richtlinie 2056). Die Norm besteht aus mehreren
Bestandteilen

◦ DIN ISO 10816-3 bezieht sich auf industrielle Maschinen mit einer Nennleistung über 15 kW und
Nenndrehzahlen zwischen 120 U/min und 15000 U/min bei Messung am Aufstellungsort.

◦ DIN ISO 10816-7 bezieht sich auf Kreiselpumpen für den industriellen Einsatz
◦ DIN ISO 10816-21 Windenergieanlagen mit horizontaler Drehachse und Getriebe beziehen

• DIN ISO 7919, Mechanische Schwingungen - Bewertung der Schwingungen von Maschinen durch
Messungen an rotierenden Wellen. Die Norm besteht aus mehreren Teilen

◦ DIN ISO 7919-3 bezieht sich auf Gekuppelte industrielle Maschinen

Overview

TF3600 51Version: 1.5

◦ DIN ISO 7919-2 bezieht sich auf Stationäre Dampfturbinen und Generatoren über 50 MW mit
Nenn-Betriebsdrehzahlen von 1500 min-1, 1800 min-1, 3000 min-1 und 3600 min-1

• DIN ISO 20816-1, Mechanische Schwingungen – Messung und Bewertung der Schwingungen von
Maschinen. Zusammenfassung von DIN ISO 7919-1 und DIN ISO 10816-1.

• DIN ISO 13373-1, Zustandsüberwachung und -diagnostik von Maschinen - Schwingungs-
Zustandsüberwachung - Teil 1: Allgemeine Anleitungen

• DIN ISO 13373-2, Zustandsüberwachung und -diagnostik von Maschinen - Schwingungs-
Zustandsüberwachung - Teil 2: Verarbeitung, Analyse und Darstellung von Schwingungsmesswerten

• DIN ISO 17359, Zustandsüberwachung und -diagnostik von Maschinen - Allgemeine Anleitungen

Condition Monitoring (English)
• R.B. Randall: Vibration-based Condition Monitoring. Wiley, 2011. ISBN: 978-0-470-7485-8
• ISO 10816, Mechanical vibration -- Evaluation of machine vibration by measurements on non-rotating

parts.
◦ ISO 10816-3 Industrial machines with nominal power above 15 kW and nominal speeds between

120 U/min and 15000 U/min when measured in situ.
◦ ISO 10816-7 Rotodynamic pumps for industrial applications, including measurements on rotating

shafts
◦ DIN ISO 10816-21 Horizontal axis wind turbines with gearbox

• ISO 7919, Mechanical vibration -- Evaluation of machine vibration by measurements on rotating shafts.
◦ ISO 7919-3 Coupled industrial machines
◦ ISO 7919-2 Land-based steam turbines and generators in excess of 50 MW with normal operating

speeds of 1 500 r/min, 1 800 r/min, 3 000 r/min and 3 600 r/min
• ISO 13373-1, Condition monitoring and diagnostics of machines - Vibration condition monitoring -Part

1: General procedures
• ISO 13373-2, Condition monitoring and diagnostics of machines - Vibration condition monitoring - Part

2: Processing, analysis and presentation of vibration data
• ISO 17359:2011, Condition monitoring and diagnostics of machines - General guidelines

Installation

TF360052 Version: 1.5

3 Installation

3.1 System requirements
The following article describes the minimum system requirements for the Condition Monitoring product for
engineering and/or runtime systems. The Condition Monitoring installation must be carried out on the
engineering and the runtime system.

Version-dependent range of functions
The full range of functions described (see section PLC API) is only ensured with the installation of
the current versions of the driver and PLC libraries. The use of previous versions is possible with a
limited range of functions. A detailed overview of the functionality extended by Version CM3.2 can
be found in the section Compatibility [} 52].

The Overview [} 9] also contains a list of library functions that depends on the product level.

Engineering

Engineering system is the term used to describe a computer that is used for the development of program
code, but does not run any program code. An engineering system must meet the following requirements:

• TwinCAT 3.1 XAE (engineering installation) build 4022.25 or higher*

Runtime

Runtime system is the term used to describe an Industrial or Embedded PC on which the program code is
run. A runtime system must meet the following requirements:

• TwinCAT 3.1 XAR (runtime installation) build 4022.25 or higher*
• Operating systems: Win 7, Win 10, Windows Embedded Standard 7
• A license for TC1200 PLC and for TF360x Condition Monitoring
• Note: A 7-day trial license can be activated repeatedly for testing purposes

Engineering and runtime on the same system

In the case where engineering and runtime are to be used on one system, the following system requirements
must be met:

• TwinCAT 3.1 XAE (engineering installation) build 4022.25 or higher*
• A license for TC1200 PLC and for TF360x Condition Monitoring
• Note: A 7-day trial license can be activated repeatedly for testing purposes

*: Use with a limited range of functions is possible from TwinCAT 3.1 Build 4018.

3.2 Compatibility
The TwinCAT Condition Monitoring library has been on the market for many years. The CM version 3.1.x has
been used successfully in many applications. In order to meet the latest requirements and options in the
areas of algorithmics and TwinCAT, a new version 3.2.x is available. In its development we have paid
particular attention to compatibility with existing applications. It is thus possible that you will have to adapt
your existing application for the use of the version 3.2.x in very few special cases.

• The Enums used in the InitPars structures are externalTypes and can only be used without library
namespace.

• CM Enum values may not be used without type qualifiers in libraries implemented by the user.

Overview of released version of the Condition Monitoring library

Installation

TF3600 53Version: 1.5

TcCM 3.1.x 3.1.16 3.1.17 3.1.18
TcCM 3.2.x 3.2.20

Changes with Version CM 3.2 (CM Setup Version)

The changes/extensions to the Condition Monitoring library explained below require the following minimum
versions of the PLC libraries and drivers:

Tc3_CM Tc3_CM_Base Tc3_MultiArray TcCM.sys TcMultiAr-
ray.sys

2.0.30.0 2.1.18.0 2.0.14.0 3.4.17.0 3.4.17.0

Fundamental changes
• Multichannel capability of the algorithms, i.e. sequential processing of several channels by means of a

single instance. This simplifies the implementation of PLC applications.
• Extension of the choice of window functions by eCM_BartlettWindow, eCM_KaiserWindow and
eCM_FlatTopWindow as well as the option to freely set the overlap when using the Welch method.
Refer here to the section Analysis of data streams [} 19].

• Use of the TC3 EventLogger for outputting errors and information. Refer here to the section PLC API
[} 71].

• Results on most function blocks can now be viewed directly in the Tc3 Scope View. Refer here to the
section PLC API [} 71].

• Overall increase in the performance and improvement of the numerics.

Application-oriented algorithms

• Vibration assessment [} 33] on the basis of ISO 10816-3 for the vibration-based classification of the
machine state with the function block FB_CMA_VibrationAssessment [} 199].

Extension of existing function blocks

• FB_CMA_Source [} 193]: Simplified methods for the supply of single and multi-channel input data. The
function block also offers the option of triggering a reset of the complete analysis chain.

• FB_CMA_Sink [} 186]: Method for outputting 3D data, required for the function blocks FB_CMA_ArgSort
[} 79] and FB_CMA_IntegratedRMS [} 143], as well as simplified variants of the methods for outputting
results.

• FB_CMA_IntegratedRMS [} 143]: Calculation (optional) of integrated RMS values on configured
frequency bands.

• FB_CMA_MomentCoefficients [} 151]: Option to calculate the excess in two variants: If
bExcessKurtosis := TRUE, the kurtosis is reduced by three.

3.3 Installation
The following section describes how to install the TwinCAT 3 Function for Windows-based operating
systems.

ü The TwinCAT 3 Function setup file was downloaded from the Beckhoff website.
1. Run the setup file as administrator. To do this, select the command Run as administrator in the context

menu of the file.
ð The installation dialog opens.

Installation

TF360054 Version: 1.5

2. Accept the end user licensing agreement and click Next.

3. Enter your user data.

Installation

TF3600 55Version: 1.5

4. If you want to install the full version of the TwinCAT 3 Function, select Complete as installation type. If
you want to install the TwinCAT 3 Function components separately, select Custom.

5. Select Next, then Install to start the installation.

ð A dialog box informs you that the TwinCAT system must be stopped to proceed with the installation.

Installation

TF360056 Version: 1.5

6. Confirm the dialog with Yes.

7. Select Finish to exit the setup.

ð The TwinCAT 3 Function has been successfully installed and can be licensed (see Licensing [} 56]).

3.4 Licensing
The TwinCAT 3 function can be activated as a full version or as a 7-day test version. Both license types can
be activated via the TwinCAT 3 development environment (XAE).

Licensing the full version of a TwinCAT 3 Function

A description of the procedure to license a full version can be found in the Beckhoff Information System in
the documentation "TwinCAT 3 Licensing".

Licensing the 7-day test version of a TwinCAT 3 Function

A 7-day test version cannot be enabled for a TwinCAT 3 license dongle.

1. Start the TwinCAT 3 development environment (XAE).
2. Open an existing TwinCAT 3 project or create a new project.

https://infosys.beckhoff.de/content/1033/tc3_licensing/117093592658046731.html?id=5546616718344501207

Installation

TF3600 57Version: 1.5

3. If you want to activate the license for a remote device, set the desired target system. To do this, select
the target system from the Choose Target System drop-down list in the toolbar.
ð The licensing settings always refer to the selected target system. When the project is activated on

the target system, the corresponding TwinCAT 3 licenses are automatically copied to this system.
4. In the Solution Explorer, double-click License in the SYSTEM subtree.

ð The TwinCAT 3 license manager opens.
5. Open the Manage Licenses tab. In the Add License column, check the check box for the license you

want to add to your project (e.g. "TF6420: TC3 Database Server").

6. Open the Order Information (Runtime) tab.
ð In the tabular overview of licenses, the previously selected license is displayed with the status

“missing”.

Installation

TF360058 Version: 1.5

7. Click 7-Day Trial License... to activate the 7-day trial license.

ð A dialog box opens, prompting you to enter the security code displayed in the dialog.

8. Enter the code exactly as it is displayed and confirm the entry.
9. Confirm the subsequent dialog, which indicates the successful activation.

ð In the tabular overview of licenses, the license status now indicates the expiry date of the license.
10. Restart the TwinCAT system.
ð The 7-day trial version is enabled.

Technical introduction

TF3600 59Version: 1.5

4 Technical introduction

4.1 Memory Management
The Condition Monitoring library internally uses TcCOM objects provided by the installed drivers. These are
created dynamically using the TwinCAT AMS router memory.

Necessity for dynamic memory management

All memory requests and initializations are accomplished during the initialization phase. Since the number of
elements of the input data and the internal structures depend on the configuration of the respective function
blocks, the memory space for them is allocated dynamically as a matter of principle. This is done
automatically by using the PLC Condition Monitoring Library.

Since all memory assignments take place during the initialization and the initialization of function blocks may
therefore take up a relatively large quantity of memory, it can also fail at this point – but not later – due to a
lack of memory space.
The allocated memory is released again once the object is deleted.

TwinCAT router memory for dynamically created objects

The buffers reserved by the TwinCAT 3 Condition Monitoring Library are created during the initialization of
function blocks in the TwinCAT AMS router memory, so that they are available for execution under real-time
conditions. Certain functions, such as high-resolution histograms and quantiles as well as the calculation of
spectra with very high resolutions, require considerably more router memory than conventional control
programs. Therefore it may be necessary to increase the size of the router memory.

Adapting the router memory

The standard size is 32 MB (2 MB up to TwinCAT 3.1.4016). The current setting can be displayed with the
AMS Router Information dialog box.

To increase the router memory capacity, a value in MB is entered in the TwinCAT configuration under
System\ Real-Time\ Settings and the configuration is activated.

Technical introduction

TF360060 Version: 1.5

Up to TwinCAT 3.1.4022.4, a reboot of the target device was required for adaptation of the router memory.

4.2 Task Setting

Applications with several real-time tasks

A Condition Monitoring analysis chain is made up of the data collection, usually several algorithms and the
provision of the results. The further processing of the results as well as the reactions of the program to these
depend on the application.

Since the scope of the input data, e.g. the length of input vectors, strongly depends on the respective
application, signal processing software requires arrays with different lengths and different element types.
Therefore the TwinCAT 3 Condition Monitoring Library uses a flexible data structure throughout for numerical
arrays. This allows numerical data to be saved, transferred and evaluated block by block. It can represent
both multi-dimensional and one-dimensional data.

The Condition Monitoring algorithms are very CPU-intensive depending on the configuration. The algorithms
are therefore preferentially outsourced to a separate task. In this case the analysis chain extends over
several tasks. The associated difficulties of synchronous data exchange and thread security are internally
encapsulated by the library function blocks in order to enable flexibly manipulable analysis chains.

Further information on data exchange can be found in section “Parallel processing” [} 63].

Tip: Of course, the program can also be implemented as an application of a single task. This is
recommended if the required algorithms can be processed fast enough, depending on the CPU and the task
cycle time.

Task cycle times

The analysis steps and the corresponding buffer sizes represent a condition for the task cycle time. The
calculation must be performed often enough to be able to process all input data.

Sample: The data collection is stored in buffers, the size of which was declared as 1600 elements. With an
oversampling rate of 10x, a buffer takes 160 cycles to fill. If the signal collection is triggered by a 1 ms task,
the task calculation must be triggered with a cycle time of less than 160 ms.

It is recommended to set the calculation cycle time to a lower value, in order to realize a faster response (at
least a factor of 0.5). On the other hand, the smallest possible calculation cycle time depends on the
complexity of the algorithms to be calculated and the performance of the CPU used.

Guide value for the upper limit of the calculation cycle time
Calculation cycle time < 0.5 * signal collection cycle time * buffer size / oversampling rate

Most algorithms (spectrum, cepstrum,...) contain computationally intensive mathematical operations. They
should be called in a task context with sufficient cycle time. The required execution point also depends on
the hardware platform. The above equation represents an upper guide value for the calculation cycle time.
For example, a profiler is provided for each function block for estimating a lower guide value, which can be
activated during online monitoring. You can find this profiler in the instance of the function block under

Technical introduction

TF3600 61Version: 1.5

fbImplementation → fbExecutionTimeMonitoring. By manually setting
bMeasureMeasureMaxExecTime you activate the profiler. As usual, you do not want to access internal
variables of a function block programmatically.

The displayed values are maximum execution times. The task settings should provide a small reserve for
possible combinations of parameters and input values that could lead to longer execution points.

Exceptions to the above considerations are some statistical function blocks (quantiles, histograms,...). As a
rule, these function blocks initially only add data for several task cycles to the internal memory. Only the
subsequent calculation (collecting data after N cycles) takes time. The corresponding task cycle time can be
adapted to the simple call without calculation. While this leads to exceeding of the cycle time in the event of
calls with calculation, it ensures fast response times. This is a special case for PLC programming. Normally,
a task cycle time should never be exceeded.

Note the cycle time
The cycle time of tasks, which only call Condition Monitoring algorithms, can be adjusted in such a
way that the cycle time is rarely exceeded. Program blocks, which are called by this task, should not
contain other program code! And the priority of these slower tasks should, of course, be lower than
that of other tasks.

Floating point exceptions

These exceptions can be disabled separately for each task. They are enabled by default.

Technical introduction

TF360062 Version: 1.5

Some algorithm calls can lead to a NaN (not a number) result. If NaNs are to be processed in the
application, the FP exceptions have to be disabled for this task. Then, you must verify that the whole
program code and all functions can handle NaNs.
Further information regarding the handling of NaN values can be found in the separate section “NaN
values” [} 62].

 CAUTION
Execution stop
Floating point exceptions are active by default. Comparisons with NaN (Not a Number) can cause such an
exception that leads to an execution stop and may possibly cause machine damage. It is urgently recom-
mended to check the result for NaN before it is processed. (see section “NaN values”)

4.3 NaN values
In some cases error handling by error codes [} 281] is not the best choice, in particular if operations return
undefined values on account of unusual, but in principle possible input data, or if values are to be excluded
from the processing.

The IEC 745 standard defines symbolic values of the category NaN (Not a Number) for these purposes. In
the following situations these are generated or taken into account in the TwinCAT 3 Condition Monitoring
library:

• If insufficient valid values are available for a statistical evaluation, the result is output with NaN.
• If certain values are to be excluded from a statistical evaluation, this is achieved by the function block

ignoring NaN values at the input.
• If the input vector of the frequency analysis of a time series contains one or more NaN values, the

entire output vector is filled with NaN. This property can be used to mark results as undefined in case a
gap in the input signal leads to jumps in the time series. Because it is not possible to calculate correct
spectra on the basis of fragmented time series.

The ability of a function block to create NaN values is noted in its description.

The following points rank among the main features of NaN values:

• All arithmetic operations that use NaN as input data return NaN as the result.
• All relational operators =, !=, > < >= <= always return the value False if at least one of the operands is

NaN.

Technical introduction

TF3600 63Version: 1.5

• The standard C function isnan() or _isnan() or the PLC function LrealIsNaN() (Tc2_Utilities library)
returns the value True if the argument has the value NaN.

• The expression isnan(a) is equivalent to the expression !(a == a) or NOT(a = a).

The fact that NaN values reproduce themselves when used in further calculations is advantageous in that
invalid values cannot be overlooked.

 CAUTION
Software malfunctions
NaN values may only be used in PLC libraries, in particular as control values in functions for Motion Control
and for drive control, if they are expressly approved! Otherwise NaN values can lead to potentially danger-
ous malfunctions of the software concerned!

 CAUTION
Floating point exceptions
If NaNs are to be used and processed in the application, the FP exceptions must be switched off. Other-
wise, comparisons with NaN can lead to an exception, which will cause a stop of the runtime and possible
machine damage.

Further explanations on the option to switch the FP exceptions off and on can be found in chapter Task
settings [} 60].

4.4 Parallel processing with Transfer Tray
The following section deals with thread-safe and multi-core capable data transmission, which is provided
by the TwinCAT 3 Condition Monitoring Library.

Asynchronous communication and parallel execution of computationally intensive steps

Condition Monitoring applications often require data sets of several megabytes in size, which increase the
demands on computing time and power. The maximum permissible computing time is based on the cycle
time, which must never be exceeded for drive controllers, for example. For this reason, multi-task software
architectures for TwinCAT 3 Condition Monitoring applications are recommended in the case of
computationally intensive algorithms. See Chapter "Task settings [} 60]".

Idea of the transfer tray

This requires thread-safe implementations of the algorithms. The TwinCAT 3 Condition Monitoring Library
offers a very efficient and easy-to-use communication mechanism that eliminates typical problems with
locking and unlocking data as far as possible. The library offers a very efficient mechanism for parallel
processing of data, e.g. with different data rates. This allows for error-free transfer of array data between
multiple tasks for exclusive synchronized access - using queues based on the transfer tray. This also allows
the use of multi-core CPUs without synchronization problems and prevents hard to diagnose errors such as
blockages and inconsistencies caused by not synchronized overrides of numerical data.

The library function blocks may not be declared as global instances in the list of global variables because
parallel write access to MultiArray buffers (see section MultiArray Handling [} 65]) and parallel execution of
the same function blocks are expressly prohibited.

Example of the necessity of cycle time transitions

In some circumstances, a sequential concept is not sufficient. This is always the case when the processing
of a data set takes more time than the cycle time of a control task allows.

For example, the control task has a cycle time of 1 millisecond and data oversampling of 20 samples per
cycle (equivalent to a sampling rate of 20 kHz). For signal processing, a frequency resolution of 0.16 Hz is
required, which may be necessary for the analysis of large roller bearings, for example, in order to
distinguish between deficiencies in the inner and outer raceway, which run at only slightly different speeds.

Technical introduction

TF360064 Version: 1.5

The relationship between FFT-length N, frequency resolution Δf and sampling rate fs is: N = fs / Δf (for
simplification, a rectangular window is assumed here). The result is an FFT length of
N = 125000. In addition, the FFT length N' must be a power of two; hence, with log2(125000) = 16.93, it
follows that the signal of length N to N' = 217 = 131072 is filled with zeros.

The required computing time depends on the performance of the CPU, but the calculation in the control task
is definitely not possible. The required amount of input data corresponds to a signal segment of several
seconds, so that the calculation is therefore rarely necessary.

Solution concept with the transfer tray

The high-performance solution provided by the Condition Monitoring Library is shown in the diagram below.
The control task collects data in "packets" of 20 samples via the oversampling terminal (shown in blue in the
diagram). These are stored in a buffer whose size corresponds to the length of the input buffer of the
amplitude spectrum function block (125000 / 20 = 6250, shown in green in the diagram). Once the buffer is
full, i.e. after 3125 cycles of the control task, its object reference is transferred to a second task (processing
task) with the aid of an asynchronous communication mechanism (FIFO principle), which has a much longer
cycle time of 20 milliseconds. According to the rule of thumb described in Task Setting [} 60], a maximum
cycle time of 1,562.5 ms is allowed for the calculating task. This requirement is clearly met with the value of
20 ms.

This communication mechanism uses hardware-secured, so-called atomic operations to guarantee that only
one of the tasks has access to the corresponding buffer (hereinafter also referred to as MultiArray) at the
same time. This is similar to a transfer tray at a bank counter, which ensures that either the customer or the
cashier (but not both simultaneously) can access its contents.

Response latency
The FIFO principle applies to queues. Therefore, and because of asynchronous communication, the
result is not immediately available. Responses with variable latency are possible.

The calculation result (the magnitude spectrum) is returned to the control task via a further queue with the
same communication mechanism, which can then further evaluate it. Of course, communication to another,
third task and the provision of the result in the computing task itself is also possible.

Technical introduction

TF3600 65Version: 1.5

In general, compared to motion applications the computing task is not subject to hard real-time conditions
and can therefore be executed with a lower priority than the control task. The task management of the
TwinCAT 3 system ensures that the task with the highest priority is always executed first, so that these real-
time conditions can be fulfilled even with complex calculations.

The presented concept can be used on both single-core and multi-core CPUs. Distribution over many cores
is possible without the central locks causing bottlenecks.

Timeout
The internal communication commands for the transfer tray may fail in rare cases, e.g. depending
on the properties of the hardware. If, for example, there is an empty buffer in the queue that cannot
be removed, because another task is currently accessing it. A synchronous timeout is specified and
may occur as a result of a timeout error. The program must therefore always be prepared for the
possible error state to the effect that a buffer required for the continuity of the signal data is not
available. Consequential errors such as data overflow and discontinuities of analyzed time series
must be processed in a consistent manner. As long as the input signal data of an analysis chain can
be collected without errors, discontinuities do not occur. If a single timeout occurred in a down-
stream algorithm function block, or if no result MultiArray buffer was available for the downstream
algorithm function block, neither input data nor result data are lost. They are transferred during the
next call.

How the transfer tray works

The transfer tray itself is displayed using an internal function block provided by the Tc3_CM library. This
function block is initialized with initial parameters that are defined in the global structure instance.

The typical use of queues is that buffers from exactly one task are added to the queue with a fixed data
stream identifier, and these buffers are removed from a specific other task for processing. These buffers are
then sent back via another queue with a different binding identifier and reused. However, it is also no
problem if several tasks have read or write access to the same queues, e.g. when analyzing statistical data.

The MultiArray buffers

So-called MultiArray buffers are used to communicate data via the transfer tray from one task to the next.
These are explained in the chapter "Using the MultiArray feature [} 65]".

4.5 MultiArray Handling
A MultiArray is a multidimensional data buffer that is used in the Condition Monitoring Library in
combination with the transfer tray. It enables an application to easily exchange multidimensional data
between several PLC tasks. During communication between the tasks, no memory is copied, only references
to the data buffers are transferred, making communication extremely efficient. Communication requires only
a very low overhead with execution times in the microsecond range.

The MultiArray communication ring

The filling (writing of content) and sending (transfer of access rights) of MultiArrays for input or result data
streams have the consequence that "free" MultiArrays are constantly required. For this reason, the evaluated
MultiArrays are returned as "empty" data containers to the task that filled them. This creates a continuous
cycle of MultiArrays, see the diagram in section Parallel processing with Transfer Tray [} 63].

Normally, at least three MultiArrays are required per circuit: The first MultiArray "belongs" to the control task
and is about to be filled with new data. The process task accesses the second MultiArray and processes it. A
third MultiArray must be kept in reserve, so that it is available if the control task has filled the current
MultiArray, but remaining oversampling data has to be written into a next MultiArray in exactly this cycle.
Therefore, the minimum number is three.

Number of MultiArrays
For safety, four MultiArrays per circuit are recommended as a worst-case requirement. If more than
one algorithm accesses the data of a MultiArray, it is recommended to provide an additional MultiAr-
ray for each further accessing algorithm.

Technical introduction

TF360066 Version: 1.5

The number of MultiArrays provided is set via the input parameters nResultBuffers of the function blocks
of the Condition Monitoring Library. The default value is 4.

Number of MultiArrays in the communication ring
More than four MultiArrays are only required if the result buffers (= MultiArrays) are to be processed
directly by several algorithms. In other words, if more than two analysis modules in the communica-
tion ring participate for these results. It is recommended to increase the number of result buffers by
one with each additional analysis module. The number of MultiArray buffers used in an asynchro-
nous communication ring can be configured in each analysis function block.

These additional buffers are created and managed internally. They require a certain amount of additional
memory in the AMS router.

Basically, the dimension of a MultiArray can be configured separately in terms of length, size and even data
type. The parameters together define the shape of the MultiArray for its entire lifecycle.

Note that the internal structure of the MultiArray is automatically managed and does not require any
programming. The service life of the MultiArray is the same as that of the application, i.e. from PLC start to
PLC stop; the MultiArrays are transferred from one task to another using the so-called transfer tray.

The concept is very flexible. Changing and redistributing the calculation to other tasks and/or CPUs is simple
and uncomplicated.

Configuration of MultiArrays

MultiArrays are configured with the ST_MA_MultiArray_InitPars [} 233] structure. This is part of the
Tc3_MultiArray library, which is installed with the Condition Monitoring Setup.

Example configuration of a MultiArray:
cInitSource : ST_MA_MultiArray_InitPars:= (eTypeCode := eMA_TypeCode_LREAL,
 nDims := 2,
 aDimSizes := [cChannels, cBufferLength]);

If the MultiArray is used with the FB_CMA_Source function block, then a configured MultiArray instance (or
several) is required by the source instance fbSource. The MultiArray described above has 2 dimensions
(nDims = 2, nDims = 1 is also allowed); the size of the dimensions is described with aDimSizes.
Accordingly, the described MultiArray is of dimension cChannels x cBufferLength with data type LREAL
for each element.
Example of using MultiArrays with FB_CMA_Source:
fbSource : FB_CMA_Source := (stInitPars := cInitSource,
 nOwnId := eID_Source,
 aDestIDs := [eID_Rms],
 nResultBuffers := 4);

MultiArrays are flexible in terms of data storage management. For example, in the above case, the rows and
columns are completely interchangeable. If the dimensions are correctly assigned/identified (as shown in the
example below), this has no effect on the results.

Advanced configuration options

As you can see in the example below, FB_CMA_Source [} 193] (or FB_CMA_Sink [} 186],
FB_CMA_BufferConverting [} 82]) provides parameters such as nWorkDim, pStartIndex or
nElementsDim. These parameters can be used to:

• Describe/read out a certain segment of the MultiArray
• Write/read/copy from a specific location
• Copy a certain number of elements from a specific point onwards

A combination of these parameters not only guarantees memory optimization, but also guarantees selectivity
in multi-channel, multi-task applications. See the example below.

Application scenario

Technical introduction

TF3600 67Version: 1.5

This application scenario is only valid within the TwinCAT Condition Monitoring application area. As
mentioned above, the MultiArrays are managed automatically, but they must first be initialized. This is done
in the PLC declaration with the help of ST_MA_MultiArray_InitPars and is passed to the
FB_CMA_Source instance.

Each algorithm function block transfers its results using the MultiArrays configured with stInitPars. Their
shapes are defined with the initialization parameters (see respective explanations of the function blocks),
with the exception of FB_CMA_Sink. It is also possible to copy only a part of the MultiArray into a PLC array
for further processing or evaluation. This is done with FB_CMA_BufferConverting.

The function blocks have methods with which PLC variables can be written or read in MultiArrays. For more
information on the methods and their parameters, see the descriptions of the function blocks.

Note:
• The FB_CMA_Sink function block does not require any initialization of a MultiArray. The shape of the

MultiArrays used by FB_CMA_Sink is specified internally.
• Each dimension of a MultiArray, called WorkDim, has an index beginning with 0.
• In the case of two-dimensional MultiArrays, the working dimension 0 is normally linked to the number of

channels in the Condition Monitoring Library (see "Example configuration of a MultiArray" in the text
above)

Examples for handling MultiArrays

For a better understanding of how to use a MultiArray in a Condition Monitoring application, we consider the
following case study.

Three signals from an acceleration sensor with an oversampling factor of 10 are recorded, e.g. with two
EL3632s. The input data is collected in a MultiArray with the length 1000 and transferred to a function block.
In this case it is the function block for calculating the moment coefficients [} 151].
FB_CMA_MomentCoefficients calculates different statistical parameters of the input data for each
channel, depending on the configuration. Our goal is now to configure the MultiArray at the output of the
FB_CMA_MomentCoefficient so that only a certain part of the result, for example the mean value and the
standard deviation, is output.

The input and output variables are declared and initialized as follows:
cInitSource : ST_CM_MultiArray_InitPars := (eTypeCode := eMA_TypeCode_LREAL,
 nDims := 2,
 aDimSizes := [3,1000]);

aBuffer : ARRAY [1..3] OF ARRAY [1..cOverSamples] OF LREAL;
fbSource : FB_CMA_Source := (stInitPars := cInitSource,
 nOwnID := eID_Source,
 aDestIDs := [eID_MomentCoeffs]);

// MultiArray indices begin with 0, not 1!
// aStartIndex := [0,0],[0,1],[0,2],[1,0],[1,1],[1,2],[2,0],...
aStartIndex : ARRAY [1..2] OF UDINT := [0, 1];

// Select channels := 1: one, 2: one and two, 3: one, two and three and so on
// Select moments := 0: count, 1: mean, 2: standard deviation, 3: skew, 4: kurtosis
aMomentCoef : ARRAY [1..3, 1..2] OF LREAL;

As shown above, the fbSource gets a MultiArray with 2 dimensions and should pass the data from
aBuffer to the FB_CMA_MomentCoefficients after appropriate buffering. As a function of the
initialization parameters, you can either save the data:

• by saving the channels via the rows and the samplings via the columns,
• or by saving the samples via the rows and the channels via the columns.

Technical introduction

TF360068 Version: 1.5

Because the MultiArray is two-dimensional, this is done by calling the Input2D() method.
fbSource.Input2D(pDataIn := ADR(aBuffer),
 nDataInSize := SIZEOF(aBuffer),
 eElementType := eMA_TypeCode_LREAL,
 nWorkDim0 := 0, (* aBuffer stores channels across first dim*)
 nWorkDim1 := 1, (* aBuffer stores samples across second dim*)
 pStartIndex := 0,
 nOptionPars := 0);

Let's go through this method call step by step:

• The local PLC variable aBuffer is passed as reference.
• The data type to be transferred is specified.
• The method assigns the first working dimension of the MultiArray to the first dimension of aBuffer

(cChannels) and the second working dimension to the sampled values (cOversamples).
Alternatively, the variable aBuffer : ARRAY [1.. cOversamples] OF ARRAY [1..
3] OF LREAL could be declared and the necessary transposition could be realized by
nWorkDim0 =1 and nWorkDim1 =0.

• pStartIndex=0 copies the entire aBuffer to the MultiArray, which is the default setting. How to
copy only parts of an array is shown below using FB_CMA_Sink .

All the above settings completely configure the MultiArray to store the channels along its first dimension
(rows) and the sampled values along its second dimension (columns) up to the length cBufferLength.

Similarly, a FB_CMA_Sink instance can write the contents of the MultiArray to the local PLC variable
aMomentCoef.
fbSink.Output2D(pDataOut := ADR(aMomentCoef),
 nDataOutSize := SIZEOF(aMomentCoef),
 eElementType := E_MA_ElementTypeCode.eMA_TypeCode_LREAL,
 nWorkDim0 := 0, (* aMomentCoef stores channels across first dim *)
 nWorkDim1 := 1, (* aMomentCoef stores moments across second dim *)
 nElementsDim0 := 3, (* aMomentCoef stores all 3 channels *)
 nElementsDim1 := 2, (* aMomentCoef stores mean and deviation*)
 pStartIndex := ADR(aStartIndex),
 nOptionPars := 0);

Again, let's go through this method call step by step:

• The local PLC variable aMomentCoef (to which write access is now required) is passed as reference.
• The data type is specified.
• The first working dimension of the MultiArray is assigned to the first working dimension of the variable
aMomentCoef, i.e. to the channels. The second dimension is transferred analogously and corresponds
to the statistical parameters count, mean, deviation, skew, kurtosis.

• The parameters nElementsDim0 and nElementsDim1 specify how many elements of the MultiArray
are to be copied in WorkDim0 direction and WorkDim1 direction. In this case, 3 elements in WorkDim0
direction (all three channels) and 2 elements in WorkDim1 direction.

Technical introduction

TF3600 69Version: 1.5

• The parameter pStartIndex defines the first element in the 2x3 rectangle to be copied. The
parameter is a pointer to a 2D array (here aStartIndex).

In the configuration shown, the Output2D() method will only copy one segment of the MultiArray into the PLC
variable aMomentCoef. The segment to be copied is configured with the parameters nWorkDim0,
nWorkDim1, nElementsDim0, nElementsDim1 and pStartIndex as explained above.

PLC API

TF360070 Version: 1.5

5 PLC API
The TwinCAT3 Condition Monitoring Library provides analysis options in a TwinCAT PLC application. Please
refer to our product description [} 9] and the technical introductions for an overview and important
background information on the product.

The PLC API sets consist of three PLC libraries. These libraries have to be integrated in a Condition
Monitoring PLC project:

• Tc3_CM
• Tc3_CM_Base
• Tc3_MultiArray

Condition Monitoring analysis

In addition to programming, which includes logging of the measured data, processing based on different
algorithms and evaluation of the results, each signal processing relies on an appropriate analysis chain. For
that reason the TwinCAT 3 Condition Monitoring Library supports you with function blocks that turn the
implementation of the planned analysis chain into virtually pure parameterization work.

Analysis chain as diagram

It makes sense to create a diagram (example see below) regarding the analysis steps before programming
the Condition Monitoring application!
It includes a representation of each PLC function block. Usually at least two tasks are used, one task for the
regular control program and another (slower and lower priority) task for the computationally intensive
operations of Condition Monitoring.

Each analysis function block uses a special way of communicating with each other. This internal
implementation also enables cross-communication across multiple tasks. Internally, one TransferTray object
and several MultiArrays are used (see chapter Parallel processing [} 63]). However, a function block or its
methods may only be called from a task context in the application!
The analysis function blocks can be placed in different task contexts. The sequence of the analysis steps is
assigned using transfer IDs (green values in the figure below). Each function block receives its own arbitrary
ID and the target ID(s) to which the results are to be sent. The transfer IDs are best defined as enumeration.

The diagram below shows four different data buffers: gray, orange, blue and red. The shape of all
corresponding buffers (PLC arrays, MultiArrays) and the algorithm parameters must match these buffer
sizes.

PLC API

TF3600 71Version: 1.5

Cyclic call
As long as the functionality of FB_CMA_Source is called and signal data is transferred to a target
function block, all other modules of the analysis chain must be called cyclically. See description of
the internal communication principle in chapter Parallel processing. If not all target blocks are to be
processed during a particular phase, their call is still necessary, but the PassInputs() method can be
used to pass only the input buffers without producing results.

Note consequential errors
A cyclically recurring error in an analysis function block can cause consequential errors in the analy-
sis chain.

Online View

The function blocks of the Condition Monitoring library hold significant information about the current state of
the function block in the Online View. These can be used for the programming of the application (initialization
and configuration of the function blocks, adjustment of the buffer sizes in the analysis chain, etc.) as well as
the analysis and evaluation (error analysis, graphic display).

The graphic below shows the Online View of the function block FB_CMA_MagnitudeSpectrum. Some nodes
and their possible uses are explained in more detail below.

PLC API

TF360072 Version: 1.5

Fig. 1:

Return values

In case of error, bError := TRUE is set and the return value hrErrorCode contains the error code; see
Error Codes Overview [} 281].

When processing several channels (nChannels > 1), there is a possibility of each channel having different
return values. In this case, return values can be queried separately on the function block. If the results from
one or more channels are impermissible, but not all channels, the value on the function block corresponds to
eCM_InfRTime_AmbiguousChannelResults. If the results of all channels are impermissible, then the
value on the function block corresponds to eCM_ErrRTime_ErrornousChannelResults.

The reading of the error list and an example of the handling can be found in the example Multi-channel
magnitude spectrum [} 243].

Error description and information

More detailed information about the current return value can be found in ipErrorMessage. sEventText
shows the text description of an error that has occurred. Depending on the setting of TcEventSeverity (initial
parameter eTraceLevel, see also Param [} 235] setting), this message is output via the TC3 EventLogger.

Initial parameters

The initial parameters of the function block, which are adopted in the course of the initialization phase of the
PLC, are stored under the node stInitPars.

For all function blocks that have an adjustable overlap (nOverlap parameter), the calculated recommended
value (in the case of nOverlap := cCM_OverlapRecommended) can be read in the named node after the
login of the PLC. This can subsequently be used for the adjustment of the data buffer (Input/Output Shape)
in the analysis chain. It is not necessary to start an application for this.

ADS access to result data

Each analysis function block has the sub-node pResultData, which is only visible in the TwinCAT Target
Browser. The results (MultiArrays) sent between various function blocks in an analysis chain can thus be
read via ADS. This enables the simple graphic display of the results of a function block by means of the
TwinCAT 3 Scope View without the results first having to be converted from a multi-array into a PLC array
via a sink function block.

PLC API

TF3600 73Version: 1.5

The function described requires TC3 Scope View from Version 1.4.3141 (available among other
things with TwinCAT from Version 3.1.4024.7).

5.1 Function blocks
In the list below, the available function blocks are sorted based on different criteria, to make them easier to
find.

Entire Condition Monitoring library

Algorithms and tools for the processing of signals in the range:

PLC API

TF360074 Version: 1.5

Signal processing Statistics Classification Buffer handling
FB_CMA_AnalyticSignal
[} 75]

FB_CMA_HistArray [} 130] FB_CMA_DiscreteClassific
ation [} 97]

FB_CMA_BufferConvertin
g [} 82]

FB_CMA_ArgSort [} 79] FB_CMA_MinersRule FB_CMA_RainflowCounti
ng

FB_CMA_Sink [} 186]

FB_CMA_ComplexFFT
[} 93]

FB_CMA_MomentCoeffici
ents [} 151]

FB_CMA_VibrationAssess
ment [} 199]

FB_CMA_Source [} 193]

FB_CMA_CrestFactor
[} 85]

FB_CMA_Quantiles
[} 169]

FB_CMA_WatchUpperThr
esholds [} 203]

FB_CMA_CrestFactorPlus
[} 89]

FB_CMA_EmpiricalMean
[} 108]

FB_CMA_Downsampling
[} 101]

FB_CMA_EmpiricalStandar
dDeviation [} 117]

FB_CMA_Envelope [} 122] FB_CMA_EmpiricalSkew
[} 112]

FB_CMA_EnvelopeSpectru
m [} 126]

FB_CMA_EmpiricalExcess
[} 103]

FB_CMA_InstantaneousFr
equency [} 135]
FB_CMA_InstantaneousPh
ase [} 139]
FB_CMA_IntegratedRMS
[} 143]
FB_CMA_MagnitudeSpect
rum [} 147]
FB_CMA_MultiBandRMS
[} 156]
FB_CMA_PowerCepstrum
[} 161]
FB_CMA_PowerSpectrum
[} 165]
FB_CMA_RealFFT [} 174]
FB_CMA_RMS [} 178]
FB_CMA_SparseSpectrum
[} 182]

Thematic structuring of the signal processing

Algorithms for signal analysis in the:

PLC API

TF3600 75Version: 1.5

time range Frequency range time/frequency range Further
FB_CMA_AnalyticSignal
[} 75]

FB_CMA_ComplexFFT
[} 93]

FB_CMA_InstantaneousFr
equency [} 135]

FB_CMA_ArgSort [} 79]

FB_CMA_CrestFactor
[} 85]

FB_CMA_EnvelopeSpectru
m [} 126]

FB_CMA_Downsampling
[} 101]

FB_CMA_CrestFactorPlus
[} 89]

FB_CMA_IntegratedRMS
[} 143]

FB_CMA_Envelope [} 122] FB_CMA_MagnitudeSpect
rum [} 147]

FB_CMA_InstantaneousPh
ase [} 139]

FB_CMA_MultiBandRMS
[} 156]

FB_CMA_RMS [} 178] FB_CMA_PowerSpectrum
[} 165]

FB_CMA_PowerCepstrum
[} 161]

FB_CMA_RealFFT [} 174]

FB_CMA_SparseSpectrum
[} 182]

5.1.1 FB_CMA_AnalyticSignal

Calculation of the analytical signal of a time series.

The analytical signal is the complex-valued complement of the incoming real signal, whereby the imaginary
part is phase-shifted by 90 degrees relative to the unchanged real part. The imaginary part is formed via the
Hilbert transform of the incoming real signal. In a time-continuous representation, the analytical signal
xanalytic(t) of the real signal x(t) is described by

The function block calculates the analytical signal via a discrete Hilbert transformation in the frequency
range. The result is a complex-valued vector of length nWindowLength/2.

The input vector is combined with a 50% overlapping preceding input vector based on the Welch method. It
is subsequently multiplied by a window function (window type used: eCM_HannWindow). Subsequently an
FFT for real input values is applied. In the frequency range the Hilbert transform is applied to the signal. It
delivers a complex-valued result. Subsequently, the result is transformed back into the time range with an
inverse FFT. The time signal obtained in this way is added up overlapped with the help of the Overlap-Add
method. During the signal synthesis, a windowing is carried out again (window type used:
eCM_HannWindow). The result is thus a continuous output signal without jumps.

Note the window length
The value of nWindowLength must be less or equal the value of nFFT_Length. The length of the
FFT can orient itself to the required frequency resolution. Typically a value of about 4/5 of the FFT-
length is often used as the window length.

If nFFT_Length is greater than nWindowLength, the frequency resolution of the FFT (and therefore also
the length of the return values vector) is increased. The length difference is filled with zeros before the
Fourier transform. This can be useful for achieving a higher frequency resolution, or for avoiding circular
aliasing in calculations with inverse transformation in the time domain. Despite the higher frequency
resolution, however, the result contains no more information.

Memory properties

PLC API

TF360076 Version: 1.5

Since the Overlap-Add method is used, in each case the current input buffer together with the two last
transferred buffers is used for the calculation.

NaN occurrence

If the input vector contains one or more NaN (Not a Number) values, the entire output sector is filled with
NaN. See separate section for further information on NaN values [} 62].

Handling of NaN values
If the situations described above, which lead to NaN values, cannot be ruled out or safely ne-
glected, the application program must be able to handle these error values.

Behavior when processing multi-channel input data

When processing several channels (nChannels > 1), there is a possibility of each channel having different
return values. In this case, return values can be queried separately on the function block. If the results from
one or more channels are impermissible, but not all channels, the value on the function block corresponds to
eCM_InfRTime_AmbiguousChannelResults. If the results of all channels are impermissible, then the
value on the function block corresponds to eCM_ErrRTime_ErrornousChannelResults.

A list of return values of all channels can be queried using the method GetChannelErrors().

Inputs and outputs

The input and output buffers correspond to one of the following definitions (input / output shape). The
variable parameters are part of the function block input stInitPars.

Versions Input buffer (MultiArray input
stream)
Element type, number of dimen-
sions, dimension sizes

Output buffer (MultiArray output
stream)
Element type, number of dimen-
sions, dimension sizes

Standard version
(nChannels = 1)

LREAL, 1,
nWindowLength/2

LCOMPLEX, 1,
nWindowLength/2

Multi-channel version
(nChannels > 1)

LREAL, 2,
nChannels x nWindowLength/2

LCOMPLEX, 2,
nChannels x nWindowLength/2

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (Alternatively: Init() method). They may only be assigned once. A
change at runtime is not possible.
VAR_INPUT
 stInitPars : ST_CM_AnalyticSignal_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be ini
tialized for results (0 for no initialization)
 tTransferTimeout : LTIME := LTIME#500US; // timeout checking off during access to int
er-task FIFOs
END_VAR

• stInitPars: Function-block-specific structure with initialization parameters of the type
ST_CM_AnalyticSignal_InitPars [} 216]. The parameters must correlate to the above definition of the
input and output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

• tTransferTimeout: Setting of the synchronous timeout for internal MultiArray forwardings. See
section Parallel processing [} 63].

PLC API

TF3600 77Version: 1.5

Output parameters
VAR_OUTPUT
 bError : BOOL; // TRUE if an error occurs. Reset by next metho
d call.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/
info
 ipErrorMessage : I_TcMessage := fbErrorMessage; // Shows detailed information about occurred er
rors, warnings and more.
 nCntResults : ULINT; // Counts outgoing results (MultiArrays were ca
lculated and sent to transfer tray).
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281].
• ipErrorMessage: Contains more detailed information on the current return value. Refer here to the

section PLC API [} 72]. This special interface pointer is internally secured so that it is always valid/
assigned.

Methods

Call():

The method is called each cycle in order to apply the algorithm to the current input data. The function block
waits for input data if the method indicates neither new results nor an error. This is a regular behavior in the
process of the analysis chain.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD Call : HRESULT
VAR_OUTPUT
 bNewResult : BOOL; // TRUE every time when outgoing MultiArray was calculated and sent t
o transfer tray.
 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no MultiArray buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

Init():

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the
PLC. It cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
'call_after_init' (see TwinCAT PLC reference). In addition, this facilitates the function block
encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD Init : HRESULT
VAR_INPUT
 stInitPars : ST_CM_AnalyticSignal_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be ini
tialized for results (0 for no initialization)
END_VAR

PLC API

TF360078 Version: 1.5

• stInitPars: Function-block-specific structure with initialization parameters of the type
ST_CM_AnalyticSignal_InitPars [} 216]. The parameters must correlate to the above definition of the
input and output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

ResetData():

The method deletes all data records that have already been added, see Memory property of the function
block. If the Call() method is called again after a ResetData(), the internal memory must be replenished
in order to calculate a valid result.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD ResetData : HRESULT
VAR_INPUT
END_VAR

PassInputs():

As long as an FB_CMA_Source instance is called and signal data are thus transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically as explained in the API PLC Reference
[} 70].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. The function block must be called cyclically, but
it is sufficient for the data arriving at the function block to be forwarded in the communication ring [} 63]. This
is done using the PassInputs() method in place of the Call() method. The algorithm itself is not called
here, and accordingly no result is calculated and no output buffer generated.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

GetChannelErrors():

The method enables the querying of a list of the channel-specific return values when processing several
channels (nChannels > 1). A call is useful in the case that the return value of the function block
corresponds to one of the values eCM_InfRTime_AmbiguousChannelResults or
eCM_ErrRTime_ErrornousChannelResults.

• Return value: Information on the reading process of the list of error codes. The value is set to TRUE if
the query was successful, otherwise to FALSE.

METHOD GetChannelErrors : BOOL
VAR_IN_OUT
 aChannelErrors : ARRAY[*] OF HRESULT;
END_VAR

• aChannelErrors: Error list of the type HRESULT of the length nChannels.

Similar function blocks

The function block FB_CMA_Envelope [} 122] calculates the envelope of a time series.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base

PLC API

TF3600 79Version: 1.5

Limited functional scope already available with CM 3.1. See section Compatibility [} 52].

5.1.2 FB_CMA_ArgSort

Sorts the incoming arguments

The incoming arguments are sorted optionally in ascending or descending order. In the process, any NaN
values occurring in the input data are moved to the end of the output data. A one-dimensional array such as
the output from a power spectrum is supplied as the input data stream. A two-dimensional array is obtained
as the output data. in the first dimension the amplitude and in second the index where this amplitude is to be
found in the input array. Via a scaling factor, the frequency can be displayed directly, for example, instead of
the index. The function block calculates internally with “0”-based arrays. This must be taken into account in
the evaluation.

NaN occurrence

Possible NaN values in the input data are sorted at the end of the output data in order to obtain a sorting
result that is always valid.

Handling of NaN values
If the situations described above, which lead to NaN values, cannot be ruled out or safely ne-
glected, the application program must be able to handle these error values.

Behavior when processing multi-channel input data

When processing several channels (nChannels > 1), there is a possibility of each channel having different
return values. In this case, return values can be queried separately on the function block. If the results from
one or more channels are impermissible, but not all channels, the value on the function block corresponds to
eCM_InfRTime_AmbiguousChannelResults. If the results of all channels are impermissible, then the
value on the function block corresponds to eCM_ErrRTime_ErrornousChannelResults.

A list of return values of all channels can be queried using the method GetChannelErrors().

Inputs and outputs

The input and output buffers correspond to one of the following definitions (input / output shape). The
variable parameters are part of the function block input stInitPars.

Versions Input buffer (MultiArray input
stream)
Element type, number of dimen-
sions, dimension sizes

Output buffer (MultiArray output
stream)
Element type, number of dimen-
sions, dimension sizes

Standard version
(nChannels = 1)

LREAL, 1,
nInLength

LREAL, 2,
nInLength x 2

Multi-channel version
(nChannels > 1)

LREAL, 2,
nChannels x nInLength

LREAL, 3,
nChannels x nInLength x 2

VAR_INPUT
 stInitPars : ST_CM_ArgSort_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be in
itialized for results (0 for no initialization)
 tTransferTimeout : LTIME := LTIME#500US; // timeout checking off during access to in
ter-task FIFOs
END_VAR

Input parameters

PLC API

TF360080 Version: 1.5

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (Alternatively: Init() method). They may only be assigned once. A
change at runtime is not possible.

• stInitPars: Function-block-specific structure with initialization parameters of the type
ST_CM_ArgSort_InitPars [} 216]. The parameters must correlate to the above definition of the input and
output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

• tTransferTimeout: Setting of the synchronous timeout for internal MultiArray forwardings. See
section Parallel processing [} 63].

Output parameters
VAR_OUTPUT
 bError : BOOL; // TRUE if an error occurs. Reset by next metho
d call.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/
info
 ipErrorMessage : I_TcMessage := fbErrorMessage; // Shows detailed information about occurred er
rors, warnings and more.
 nCntResults : ULINT; // Counts outgoing results (MultiArrays were ca
lculated and sent to transfer tray).
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281].
• ipErrorMessage: Contains more detailed information on the current return value. Refer here to the

section PLC API [} 72]. This special interface pointer is internally secured so that it is always valid/
assigned.

Methods
METHOD Init : HRESULT
VAR_INPUT
 stInitPars : ST_CM_ArgSort_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be ini
tialized for results (0 for no initialization)
END_VAR

Call():

The method is called each cycle in order to apply the algorithm to the current input data. The function block
waits for input data if the method indicates neither new results nor an error. This is a regular behavior in the
process of the analysis chain.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD Call : HRESULT
VAR_OUTPUT
 bNewResult : BOOL; // TRUE every time when outgoing MultiArray was calculated and sent t
o transfer tray.
 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError: The output is TRUE if an error occurs.

PLC API

TF3600 81Version: 1.5

• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no MultiArray buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

Init():

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the
PLC. It cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
'call_after_init' (see TwinCAT PLC reference). In addition, this facilitates the function block
encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

• stInitPars: Function-block-specific structure with initialization parameters of the type
ST_CM_ArgSort_InitPars [} 216]. The parameters must correlate to the above definition of the input and
output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

• tTransferTimeout: Setting of the synchronous timeout for internal MultiArray forwardings. See
section Parallel processing [} 63].

PassInputs():

As long as an FB_CMA_Source instance is called and signal data are thus transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically as explained in the API PLC Reference
[} 70].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. The function block must be called cyclically, but
it is sufficient for the data arriving at the function block to be forwarded in the communication ring [} 63]. This
is done using the PassInputs() method in place of the Call() method. The algorithm itself is not called
here, and accordingly no result is calculated and no output buffer generated.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

GetChannelErrors():

The method enables the querying of a list of the channel-specific return values when processing several
channels (nChannels > 1). A call is useful in the case that the return value of the function block
corresponds to one of the values eCM_InfRTime_AmbiguousChannelResults or
eCM_ErrRTime_ErrornousChannelResults.

• Return value: Information on the reading process of the list of error codes. The value is set to TRUE if
the query was successful, otherwise to FALSE.

METHOD GetChannelErrors : BOOL
VAR_IN_OUT
 aChannelErrors : ARRAY[*] OF HRESULT;
END_VAR

PLC API

TF360082 Version: 1.5

• aChannelErrors: Error list of the type HRESULT of the length nChannels.

Similar function blocks

None.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base

Limited functional scope already available with CM 3.1. See section Compatibility [} 52].

5.1.3 FB_CMA_BufferConverting

Copies data from one MultiArray to another MultiArray.

If the defined input buffer of an algorithm function block does not match the output buffer of the preceding
function block of the analysis chain, the transfer can be achieved with this functionality. A different number of
dimensions can be converted accordingly.

Another option is to use only a subset of the data for further processing, for example in order to take into
account only relevant frequency ranges of a spectrum.

Inputs and outputs

The input and output buffers correspond to one of the following definitions (input / output shape). The
variable parameters are part of the function block input stInitPars.

MultiArray in the Element type Dimensions Dimensional variables
output stream eTypeCode nDims aDimSizes

VAR_INPUT
 stInitPars : ST_MA_MultiArray_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be ini
tialized for results (0 for no initialization)
 tTransferTimeout : LTIME := LTIME#500US; // timeout checking off during access to int
er-task FIFOs
END_VAR

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (Alternatively: Init() method). They may only be assigned once. A
change at runtime is not possible.

• stInitPars: Function-block-specific structure with initialization parameters of the type
ST_MA_MultiArray_InitPars [} 233]. The parameters must correlate to the above definition of the input
and output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

PLC API

TF3600 83Version: 1.5

• tTransferTimeout: Setting of the synchronous timeout for internal MultiArray forwardings. See
section Parallel processing [} 63].

Output parameters
VAR_OUTPUT
 bError : BOOL; // TRUE if an error occurs. Reset by next metho
d call.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/
info
 ipErrorMessage : I_TcMessage := fbErrorMessage; // Shows detailed information about occurred er
rors, warnings and more.
 nCntResults : ULINT; // Counts outgoing results (MultiArrays were ca
lculated and sent to transfer tray).
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281].
• ipErrorMessage: Contains more detailed information on the current return value. Refer here to the

section PLC API [} 72]. This special interface pointer is internally secured so that it is always valid/
assigned.

Methods

Copy1D():

Copies one-dimensional data from one MultiArray to another MultiArray.
METHOD Copy1D : HRESULT
VAR_INPUT
 nWorkDimIn : UDINT; // It designates the dimension in the input MultiArray be
ing processed.
 nWorkDimOut : UDINT; // It designates the dimension in the output MultiArray b
eing processed.
 nElements : UDINT; // optional: default:0-
>full copy; It designates the number of elements to be copied out of the MultiArray.
 pStartIndexIn : POINTER TO UDINT; (* optional: default:0-
>internally handled as [0,0,..]; It designates the index of the first element to be copied out of th
e MultiArray.
 If allocated it must point to a onedimensional array of UDINT with so many
elements as dimensions of the MultiArray. *)
 pStartIndexOut : POINTER TO UDINT; (* optional: default:0-
>internally handled as [0,0,..]; It designates the index of the first MultiArray element to be copie
d.
 If allocated it must point to a onedimensional array of UDINT with so many
elements as dimensions of the MultiArray. *)
 nOptionPars : DWORD; // option mask
END_VAR
VAR_OUTPUT
 bNewResult : BOOL; // TRUE every time when outgoing MultiArray was calculated
 and sent to transfer tray.
 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• nWorkDimIn: If the input MultiArray is multi-dimensional, you can select the dimension whose data
you want to copy. The first dimension would be 0 (0-based).

• nWorkDimOut: If the output MultiArray is multi-dimensional, you can select the dimension to which you
want to copy data. The first dimension would be 0 (0-based).

• nElements: To copy the complete data of a MultiArray dimension, this parameter can be set to 0. The
total number is determined internally in this case. Alternatively, you can specify the number of elements
to be copied.

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no MultiArray buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

PLC API

TF360084 Version: 1.5

Transpose():

Transposes two dimensions so that the output buffer is the transposition of the input buffer. This operation is
only possible for one and two-dimensional input buffers.
METHOD Transpose : HRESULT
VAR_INPUT
 nOptionPars : DWORD; // option mask
END_VAR
VAR_OUTPUT
 bNewResult : BOOL; // TRUE every time when outgoing MultiArray was calculated and sent to
transfer tray.
 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bNewResult: The output is TRUE every time an output MultiArray is calculated and sent to the
TransferTray.

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no MultiArray buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

METHOD Init : HRESULT
VAR_INPUT
 stInitPars : ST_MA_MultiArray_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be initi
alized for results (0 for no initialization)
END_VAR

Init():

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the
PLC. It cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
'call_after_init' (see TwinCAT PLC reference). In addition, this facilitates the function block
encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

• stInitPars: Function-block-specific structure with initialization parameters of the type
ST_MA_MultiArray_InitPars [} 233]. The parameters must correlate to the above definition of the input
and output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

PassInputs():

As long as an FB_CMA_Source instance is called and signal data are thus transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically as explained in the API PLC Reference
[} 70].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. The function block must be called cyclically, but

PLC API

TF3600 85Version: 1.5

it is sufficient for the data arriving at the function block to be forwarded in the communication ring [} 63]. This
is done using the PassInputs() method in place of the Call() method. The algorithm itself is not called
here, and accordingly no result is calculated and no output buffer generated.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base,

Tc3_MultiArray

5.1.4 FB_CMA_CrestFactor

Calculates the crest factor for each channel for single and multi-channel time series.

This is defined as the ratio between the peak value of a signal and the RMS value.

The crest factor is calculated in the logarithmic unit decibel. A sine wave, for example, has a crest factor of
3.01 dB (=1,414). It allows, for example, conclusions to be drawn about the condition of roller bearings. In
general the crest factor increases at the start of damage to a roller bearing and can decrease again as the
damage progresses.

To avoid value range errors, each calculated value is compared to a minimum value before the logarithm is
applied and, if it is less than that, replaced by that minimum value.

Since the crest factor is defined by the ratio between peak value and RMS value, this means that the result
is strongly influenced by the individual maxima, which can lead to unexpected results.

Memory properties

For the calculation of the RMS value, nBufferLength values of the time series are stored internally per
channel/subchannel. In a call with smaller input buffer size, fewer values can be transferred. In this case the
buffer content is shifted, and the signal length is filled with the corresponding number of newly transferred
values. If the input buffer is larger than the internal buffer, the latter is filled with the latest values for the
calculation.

NaN occurrence

If the input vector contains one or more NaN (Not a Number) values, the entire output sector is filled with
NaN. See separate section for further information on NaN values [} 62].

The output vector is filled with NaN until the internal buffer has been completely filled with new, valid values.

Handling of NaN values
If the situations described above, which lead to NaN values, cannot be ruled out or safely ne-
glected, the application program must be able to handle these error values.

Behavior when processing multi-channel input data

PLC API

TF360086 Version: 1.5

When processing several channels (nChannels > 1), there is a possibility of each channel having different
return values. In this case, return values can be queried separately on the function block. If the results from
one or more channels are impermissible, but not all channels, the value on the function block corresponds to
eCM_InfRTime_AmbiguousChannelResults. If the results of all channels are impermissible, then the
value on the function block corresponds to eCM_ErrRTime_ErrornousChannelResults.

A list of return values of all channels can be queried using the method GetChannelErrors().

When processing several subchannels (nSubChannels > 0), particular attention must be paid to the
formatting of the input and output data. If the input data consist of a multi-channel result of an upstream
function block, the value of nChannels must be adopted; further configuration takes place in this case via
the parameter nSubChannels.

Sample: In the statistical consideration (e.g. by FB_CMA_Quantiles) of the frequency channels of a multi-
channel spectrum (e.g. FB_CMA_MagnitudeSpectrum), the value of nChannels must be identical to the
number of input signals; the number of subchannels nSubChannels corresponds to the length of the
spectrum.

Sample implementation

A sample implementation is available under the following link: Crest factor [} 272].

Inputs and outputs

The input and output buffers correspond to one of the following definitions (input / output shape). The
variable parameters are part of the function block input stInitPars.

Versions Input buffer (MultiArray input
stream)
Element type, number of dimen-
sions, dimension sizes

Output buffer (MultiArray output
stream)
Element type, number of dimen-
sions, dimension sizes

Standard version for several data
sets
(nSubChannels = 0)

LREAL, 2,
nChannels x not specified*

LREAL, 1,
nChannels

Multi-channel version for several
data sets
(nSubChannels > 0)

LREAL, 3,
nChannels x nSubChannels x not
specified*

LREAL, 2,
nChannels x nSubChannels

*: The length of this dimension can be selected as desired and can thus adapt itself to the application or to
the output buffer of the preceding algorithm.
VAR_INPUT
 stInitPars : ST_CM_CrestFactor_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be ini
tialized for results (0 for no initialization)
 tTransferTimeout : LTIME := LTIME#500US; // timeout checking off during access to int
er-task FIFOs
END_VAR

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (Alternatively: Init() method). They may only be assigned once. A
change at runtime is not possible.

• stInitPars: Function-block-specific structure with initialization parameters of the type
ST_CM_CrestFactor_InitPars [} 217]. The parameters must correlate to the above definition of the input
and output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

PLC API

TF3600 87Version: 1.5

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

• tTransferTimeout: Setting of the synchronous timeout for internal MultiArray forwardings. See
section Parallel processing [} 63].

Output parameters
VAR_OUTPUT
 bError : BOOL; // TRUE if an error occurs. Reset by next metho
d call.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/
info
 ipErrorMessage : I_TcMessage := fbErrorMessage; // Shows detailed information about occurred er
rors, warnings and more.
 nCntResults : ULINT; // Counts outgoing results (MultiArrays were ca
lculated and sent to transfer tray).
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281].
• ipErrorMessage: Contains more detailed information on the current return value. Refer here to the

section PLC API [} 72]. This special interface pointer is internally secured so that it is always valid/
assigned.

Methods
METHOD Init : HRESULT
VAR_INPUT
 stInitPars : ST_CM_CrestFactor_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be initi
alized for results (0 for no initialization)
END_VAR

Call():

The method is called each cycle in order to apply the algorithm to the current input data. The function block
waits for input data if the method indicates neither new results nor an error. This is a regular behavior in the
process of the analysis chain.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD Call : HRESULT
VAR_OUTPUT
 bNewResult : BOOL; // TRUE every time when outgoing MultiArray was calculated and sent t
o transfer tray.
 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no MultiArray buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

Init():

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the
PLC. It cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
'call_after_init' (see TwinCAT PLC reference). In addition, this facilitates the function block
encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.

PLC API

TF360088 Version: 1.5

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

• stInitPars: Function-block-specific structure with initialization parameters of the type
ST_CM_CrestFactor_InitPars [} 217]. The parameters must correlate to the above definition of the input
and output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

ResetData():

The method deletes all data records that have already been added, see Memory property of the function
block. If the Call() method is called again after a ResetData(), the internal memory must be replenished
in order to calculate a valid result.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD ResetData : HRESULT
VAR_INPUT
END_VAR

PassInputs():

As long as an FB_CMA_Source instance is called and signal data are thus transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically as explained in the API PLC Reference
[} 70].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. The function block must be called cyclically, but
it is sufficient for the data arriving at the function block to be forwarded in the communication ring [} 63]. This
is done using the PassInputs() method in place of the Call() method. The algorithm itself is not called
here, and accordingly no result is calculated and no output buffer generated.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

GetChannelErrors():

The method enables the querying of a list of the channel-specific return values when processing several
channels (nChannels > 1). A call is useful in the case that the return value of the function block
corresponds to one of the values eCM_InfRTime_AmbiguousChannelResults or
eCM_ErrRTime_ErrornousChannelResults.

• Return value: Information on the reading process of the list of error codes. The value is set to TRUE if
the query was successful, otherwise to FALSE.

METHOD GetChannelErrors : BOOL
VAR_IN_OUT
 aChannelErrors : ARRAY[*] OF HRESULT;
END_VAR

• aChannelErrors: Error list of the type HRESULT of the length nChannels.

Similar function blocks

The FB_CMA_HistArray [} 130] function block calculates the histograms of input value distributions.

The FB_CMA_Quantiles [} 169] block calculates the quantiles of an empirical distribution, which enable the
frequency of outliers to be assessed.

PLC API

TF3600 89Version: 1.5

The FB_CMA_MomentCoefficients [} 151] block provides the kurtosis as an alternative measure for the
peakiness of a signal that is less sensitive to outliers.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base

Limited functional scope already available with CM 3.1. See section Compatibility [} 52].

5.1.5 FB_CMA_CrestFactorPlus

Calculates the crest factor plus for each channel for single and multi-channel time series.

This is defined as a linear combination of the magnitude of the peak value of a signal, the RMS value and
the ratio between the two variables:

The default values of the constants are selected such that the crest factor plus corresponds to the crest
factor without a separate configuration of the parameters.

In contrast to the crest factor, the value increases with appropriate configuration in the progressive course of
damage to a roller bearing. Thus, a retrospective knowledge of the bearing condition is not required.
Compare FB_CMA_CrestFactor [} 85].

To avoid value range errors in the calculation, each calculated value is compared to a minimum value before
the logarithm is applied and, if it is less than that, replaced by that minimum value.

Since the crest factor plus depends on the ratio of the peak value to the RMS mean value, the result can be
strongly influenced by individual maxima. This can lead to unexpected results.

Memory properties

For the calculation of the RMS value, nBufferLength values of the time series are stored internally per
channel/subchannel. In a call with smaller input buffer size, fewer values can be transferred. In this case the
buffer content is shifted, and the signal length is filled with the corresponding number of newly transferred
values. If the input buffer is larger than the internal buffer, the latter is filled with the latest values for the
calculation.

NaN occurrence

If the input vector contains one or more NaN (Not a Number) values, the entire output sector is filled with
NaN. See separate section for further information on NaN values [} 62].

The output vector is filled with NaN until the internal buffer has been completely filled with new, valid values.

Handling of NaN values
If the situations described above, which lead to NaN values, cannot be ruled out or safely ne-
glected, the application program must be able to handle these error values.

Behavior when processing multi-channel input data

When processing several channels (nChannels > 1), there is a possibility of each channel having different
return values. In this case, return values can be queried separately on the function block. If the results from
one or more channels are impermissible, but not all channels, the value on the function block corresponds to
eCM_InfRTime_AmbiguousChannelResults. If the results of all channels are impermissible, then the
value on the function block corresponds to eCM_ErrRTime_ErrornousChannelResults.

PLC API

TF360090 Version: 1.5

A list of return values of all channels can be queried using the method GetChannelErrors().

When processing several subchannels (nSubChannels > 0), particular attention must be paid to the
formatting of the input and output data. If the input data consist of a multi-channel result of an upstream
function block, the value of nChannels must be adopted; further configuration takes place in this case via
the parameter nSubChannels.

Sample: In the statistical consideration (e.g. by FB_CMA_Quantiles) of the frequency channels of a multi-
channel spectrum (e.g. FB_CMA_MagnitudeSpectrum), the value of nChannels must be identical to the
number of input signals; the number of subchannels nSubChannels corresponds to the length of the
spectrum.

Inputs and outputs

The input and output buffers correspond to one of the following definitions (input / output shape). The
variable parameters are part of the function block input stInitPars.

Versions Input buffer (MultiArray input
stream)
Element type, number of dimen-
sions, dimension sizes

Output buffer (MultiArray output
stream)
Element type, number of dimen-
sions, dimension sizes

Standard version for several data
sets
(nSubChannels = 0)

LREAL, 2,
nChannels x not specified*

LREAL, 1,
nChannels

Multi-channel version for several
data sets
(nSubChannels > 0)

LREAL, 3,
nChannels x nSubChannels x not
specified*

LREAL, 2,
nChannels x nSubChannels

*: The length of this dimension can be selected as desired and can thus adapt itself to the application or to
the output buffer of the preceding algorithm.

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (Alternatively: Init() method). They may only be assigned once. A
change at runtime is not possible.
VAR_INPUT
 stInitPars : ST_CM_CrestFactorPlus_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be ini
tialized for results (0 for no initialization)
 tTransferTimeout : LTIME := LTIME#500US; // timeout checking off during access to int
er-task FIFOs
END_VAR

• stInitPars: Function block-specific structure with initialization parameters of the type
ST_CM_CrestFactorPlus_InitPars [} 217]. The parameters must correlate to the above definition of the
input and output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

• tTransferTimeout: Setting of the synchronous timeout for internal MultiArray forwardings. See
section Parallel processing [} 63].

Output parameters
VAR_OUTPUT
 bError : BOOL; // TRUE if an error occurs. Reset by next metho
d call.

PLC API

TF3600 91Version: 1.5

 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/
info
 ipErrorMessage : I_TcMessage := fbErrorMessage; // Shows detailed information about occurred er
rors, warnings and more.
 nCntResults : ULINT; // Counts outgoing results (MultiArrays were ca
lculated and sent to transfer tray).
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281].
• ipErrorMessage: Contains more detailed information on the current return value. Refer here to the

section PLC API [} 72]. This special interface pointer is internally secured so that it is always valid/
assigned.

Methods

Call():

The method is called each cycle in order to apply the algorithm to the current input data. The function block
waits for input data if the method indicates neither new results nor an error. This is a regular behavior in the
process of the analysis chain.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD Call : HRESULT
VAR_OUTPUT
 bNewResult : BOOL; // TRUE every time when outgoing MultiArray was calculated and sent t
o transfer tray.
 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no MultiArray buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

Configure() :

By calling this method, the weights of the magnitude of the peak value, the RMS value and the ratio between
the two variables can be reconfigured. The corresponding PLC array must be defined as follows.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes.

METHOD Configure : HRESULT
VAR_INPUT
 pArg : POINTER TO LREAL; // pointer to 2-dimensional array (LREAL) of arguments
 nArgSize : UDINT; // size of arguments buffer in bytes
END_VAR

The input buffers correspond to one of the following definitions (input shape). The variable parameters are
part of the function block input stInitPars. The three parameters to be configured per channel and
subchannel are c1; c2; c3.

PLC API

TF360092 Version: 1.5

Versions Input buffer (MultiArray input stream)
Element type, number of dimensions, dimension
sizes

Identical configuration of all channels and
subchannels

LREAL, 1,
3

Channel-specific configuration
(nSubChannels = 0)

LREAL, 2,
nChannels x 3

Subchannel-specific configuration
(nSubChannels > 0)

LREAL, 2,
nSubChannels x 3

Channel and subchannel-specific configuration
(nSubChannels > 0)

LREAL, 3,
nChannels x nSubChannels x 3

Init():

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the
PLC. It cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
'call_after_init' (see TwinCAT PLC reference). In addition, this facilitates the function block
encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD Init : HRESULT
VAR_INPUT
 stInitPars : ST_CM_CrestFactorPlus_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be initi
alized for results (0 for no initialization)
END_VAR

• stInitPars: Function block-specific structure with initialization parameters of the type
ST_CM_CrestFactorPlus_InitPars [} 217]. The parameters must correlate to the above definition of the
input and output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

ResetData():

The method deletes all data records that have already been added, see Memory property of the function
block. If the Call() method is called again after a ResetData(), the internal memory must be replenished
in order to calculate a valid result.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD ResetData : HRESULT
VAR_INPUT
END_VAR

PassInputs():

As long as an FB_CMA_Source instance is called and signal data are thus transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically as explained in the API PLC Reference
[} 70].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. The function block must be called cyclically, but

PLC API

TF3600 93Version: 1.5

it is sufficient for the data arriving at the function block to be forwarded in the communication ring [} 63]. This
is done using the PassInputs() method in place of the Call() method. The algorithm itself is not called
here, and accordingly no result is calculated and no output buffer generated.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

GetChannelErrors():

The method enables the querying of a list of the channel-specific return values when processing several
channels (nChannels > 1). A call is useful in the case that the return value of the function block
corresponds to one of the values eCM_InfRTime_AmbiguousChannelResults or
eCM_ErrRTime_ErrornousChannelResults.

• Return value: Information on the reading process of the list of error codes. The value is set to TRUE if
the query was successful, otherwise to FALSE.

METHOD GetChannelErrors : BOOL
VAR_IN_OUT
 aChannelErrors : ARRAY[*] OF HRESULT;
END_VAR

• aChannelErrors: Error list of the type HRESULT of the length nChannels.

Similar function blocks

The function block FB_CMA_CrestFactor [} 85] calculates the standard variant of the crest factor.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base

Limited functional scope already available with CM 3.1. See section Compatibility [} 52].

Also see about this
2 FB_CMA_CrestFactor [} 85]

5.1.6 FB_CMA_ComplexFFT

Calculation of the Fast Fourier Transform (FFT) for complex-valued input signals.

The function block FB_CMA_ComplexFFT calculates the Fourier transform of the complex-valued input
signal x[n] present at the function block. A high-performance FFT algorithm is used. It is possible to calculate
both the forward and inverse transformation. The setting is made via the input stInitPars (see inputs and
outputs).

Definition of the forward Fourier transform in DFT notation:

Definition of the inverse Fourier transform in DFT notation:

PLC API

TF360094 Version: 1.5

The highest frequency of a component in the input signal should be at the most around half of the sampling
rate of the input signal so that aliasing effects are avoided.

The FFT is defined as the transformation of a cyclically continued signal. This can lead to the determination of
jumps as soon as the cyclically continued signal is not exactly continuous, i.e. the same at the beginning and
end. The function blocks FB_CMA_PowerSpectrum [} 165] and FB_CMA_MagnitudeSpectrum [} 147] avoid
these difficulties by an analysis in overlapping sections multiplied by a window function.

Scaling

For the quantitative evaluation of the spectrum by measurement means, the calculated spectrum is to be
weighted with 1/nFFT_Length for the DC component, i.e. the first array element of the output, and with 2/
nFFT_Length for all other elements of the output. The function block scales during the forward and inverse
transformation in such a way that, in the case of successive forward and inverse transformations, the original
input signal is directly calculated again at the output.

Memory properties

The function block result is only determined by the current input values, i.e. no past values are taken into
account.

NaN occurrence

If the input vector contains one or more NaN (Not a Number) values, the entire output sector is filled with
NaN. See separate section for further information on NaN values [} 62].

Handling of NaN values
If the situations described above, which lead to NaN values, cannot be ruled out or safely ne-
glected, the application program must be able to handle these error values.

Behavior when processing multi-channel input data

When processing several channels (nChannels > 1), there is a possibility of each channel having different
return values. In this case, return values can be queried separately on the function block. If the results from
one or more channels are impermissible, but not all channels, the value on the function block corresponds to
eCM_InfRTime_AmbiguousChannelResults. If the results of all channels are impermissible, then the
value on the function block corresponds to eCM_ErrRTime_ErrornousChannelResults.

A list of return values of all channels can be queried using the method GetChannelErrors().

Sample implementation

A sample implementation is available under the following link: FFT with complex-value input signal [} 238].

Inputs and outputs

The input and output buffers correspond to one of the following definitions (input / output shape). The
variable parameters are part of the function block input stInitPars.

Versions Input buffer (MultiArray input
stream)
Element type, number of dimen-
sions, dimension sizes

Output buffer (MultiArray output
stream)
Element type, number of dimen-
sions, dimension sizes

Standard version
(nChannels = 1)

LCOMPLEX, 1,
nFFT_Length

LCOMPLEX, 1,
nFFT_Length

Multi-channel version
(nChannels > 1)

LCOMPLEX, 2,
nChannels x nFFT_Length

LCOMPLEX, 2,
nChannels x nFFT_Length

PLC API

TF3600 95Version: 1.5

VAR_INPUT
 stInitPars : ST_CM_ComplexFFT_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be ini
tialized for results (0 for no initialization)
 tTransferTimeout : LTIME := LTIME#500US; // timeout checking off during access to int
er-task FIFOs
END_VAR

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (Alternatively: Init() method). They may only be assigned once. A
change at runtime is not possible.

• stInitPars: Function-block-specific structure with initialization parameters of the type
ST_CM_ComplexFFT_InitPars [} 218]. The parameters must correlate to the above definition of the input
and output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

• tTransferTimeout: Setting of the synchronous timeout for internal MultiArray forwardings. See
section Parallel processing [} 63].

Output parameters
VAR_OUTPUT
 bError : BOOL; // TRUE if an error occurs. Reset by next metho
d call.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/
info
 ipErrorMessage : I_TcMessage := fbErrorMessage; // Shows detailed information about occurred er
rors, warnings and more.
 nCntResults : ULINT; // Counts outgoing results (MultiArrays were ca
lculated and sent to transfer tray).
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281].
• ipErrorMessage: Contains more detailed information on the current return value. Refer here to the

section PLC API [} 72]. This special interface pointer is internally secured so that it is always valid/
assigned.

Methods
METHOD Init : HRESULT
VAR_INPUT
 stInitPars : ST_CM_ComplexFFT_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be initi
alized for results (0 for no initialization)
END_VAR

Call():

The method is called each cycle in order to apply the algorithm to the current input data. The function block
waits for input data if the method indicates neither new results nor an error. This is a regular behavior in the
process of the analysis chain.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

PLC API

TF360096 Version: 1.5

METHOD Call : HRESULT
VAR_OUTPUT
 bNewResult : BOOL; // TRUE every time when outgoing MultiArray was calculated and sent t
o transfer tray.
 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no MultiArray buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

Init():

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the
PLC. It cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
'call_after_init' (see TwinCAT PLC reference). In addition, this facilitates the function block
encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

• stInitPars: Function-block-specific structure with initialization parameters of the type
ST_CM_ComplexFFT_InitPars [} 218]. The parameters must correlate to the above definition of the input
and output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

PassInputs():

As long as an FB_CMA_Source instance is called and signal data are thus transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically as explained in the API PLC Reference
[} 70].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. The function block must be called cyclically, but
it is sufficient for the data arriving at the function block to be forwarded in the communication ring [} 63]. This
is done using the PassInputs() method in place of the Call() method. The algorithm itself is not called
here, and accordingly no result is calculated and no output buffer generated.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

GetChannelErrors():

The method enables the querying of a list of the channel-specific return values when processing several
channels (nChannels > 1). A call is useful in the case that the return value of the function block
corresponds to one of the values eCM_InfRTime_AmbiguousChannelResults or
eCM_ErrRTime_ErrornousChannelResults.

• Return value: Information on the reading process of the list of error codes. The value is set to TRUE if
the query was successful, otherwise to FALSE.

PLC API

TF3600 97Version: 1.5

METHOD GetChannelErrors : BOOL
VAR_IN_OUT
 aChannelErrors : ARRAY[*] OF HRESULT;
END_VAR

• aChannelErrors: Error list of the type HRESULT of the length nChannels.

Similar function blocks

The function block FB_CMA_RealFFT [} 174] calculates the Fourier transform of a real-valued signal.

The function block FB_CMA_PowerSpectrum [} 165] calculates the power spectrum of a continuous time
signal.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base

Limited functional scope already available with CM 3.1. See section Compatibility [} 52].

5.1.7 FB_CMA_DiscreteClassification

Classification of multi-channel data based on configurable threshold values

The function block assigns the individual channels of a multi-channel signal to a fixed number of discrete
categories based on configurable threshold values. The number of channels and the number of categories
are specified during instantiation. The function block can be configured at runtime by specifying the threshold
value for each channel and each threshold value category.

During the operation phase an input vector is adopted for each time step, and the number of applicable
category is calculated for each channel. The return value is a one-dimensional array, which for each input
channel contains a signed integer value, i.e. the index of the allocated category.

If the input value is less than the threshold value for the first category, the value -1 is returned for this
channel. If an input value is greater than or equal the threshold value for a category, the zero-based index for
this category is returned. If several threshold values are configured in the same way, the value with the
largest index is used.

Configuration

The function block must be configured based on parameters such as the number of classification classes.
The classification threshold values for each channel can be assigned individually. These threshold values
must be monotonically increasing (but not strictly monotonically). Accordingly, no threshold value must be
smaller than the previous value.

Memory properties

The function block only takes into account the values stored during configuration and training. The values
transferred during classification have no influence on later calls.

NaN occurrence

If the input value is NaN, the result is -2. No NaN values are expected at the output.

Behavior when processing multi-channel input data

PLC API

TF360098 Version: 1.5

When processing several channels (nChannels > 1), there is a possibility of each channel having different
return values. In this case, return values can be queried separately on the function block. If the results from
one or more channels are impermissible, but not all channels, the value on the function block corresponds to
eCM_InfRTime_AmbiguousChannelResults. If the results of all channels are impermissible, then the
value on the function block corresponds to eCM_ErrRTime_ErrornousChannelResults.

A list of return values of all channels can be queried using the method GetChannelErrors().

When processing several subchannels (nSubChannels > 0), particular attention must be paid to the
formatting of the input and output data. If the input data consist of a multi-channel result of an upstream
function block, the value of nChannels must be adopted; further configuration takes place in this case via
the parameter nSubChannels.

Sample: In the statistical consideration (e.g. by FB_CMA_Quantiles) of the frequency channels of a multi-
channel spectrum (e.g. FB_CMA_MagnitudeSpectrum), the value of nChannels must be identical to the
number of input signals; the number of subchannels nSubChannels corresponds to the length of the
spectrum.

Sample implementation

A sample implementation is available under the following link: Threshold value consideration for averaged
magnitude spectra [} 271] and Condition Monitoring with frequency analysis [} 266].

Inputs and outputs

The input and output buffers correspond to one of the following definitions (input / output shape). The
variable parameters are part of the function block input stInitPars.

Versions Input buffer (MultiArray input
stream)
Element type, number of dimen-
sions, dimension sizes

Output buffer (MultiArray output
stream)
Element type, number of dimen-
sions, dimension sizes

Standard version
(nSubChannels = 0)

LREAL, 1,
nChannels

DINT (32bit), 1,
nChannels

Multi-channel version
(nSubChannels > 0)

LREAL, 2,
nChannels x nSubChannels

DINT (32bit), 2,
nChannels x nSubChannels

VAR_INPUT
 stInitPars : ST_CM_DiscreteClassification_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should
 be initialized for results (0 for no initialization)
 tTransferTimeout : LTIME := LTIME#500US; // timeout checking off during access
 to inter-task FIFOs
END_VAR

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (Alternatively: Init() method). They may only be assigned once. A
change at runtime is not possible.

• stInitPars: Function-block-specific structure with initialization parameters of the type
ST_CM_DiscreteClassification_InitPars [} 218]. The parameters must correlate to the above definition of
the input and output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

PLC API

TF3600 99Version: 1.5

• tTransferTimeout: Setting of the synchronous timeout for internal MultiArray forwardings. See
section Parallel processing [} 63].

Output parameters
VAR_OUTPUT
 bError : BOOL; // TRUE if an error occurs. Reset by next metho
d call.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/
info
 ipErrorMessage : I_TcMessage := fbErrorMessage; // Shows detailed information about occurred er
rors, warnings and more.
 nCntResults : ULINT; // Counts outgoing results (MultiArrays were ca
lculated and sent to transfer tray).
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281].
• ipErrorMessage: Contains more detailed information on the current return value. Refer here to the

section PLC API [} 72]. This special interface pointer is internally secured so that it is always valid/
assigned.

Methods

Call():

The method is called each cycle in order to apply the algorithm to the current input data. The function block
waits for input data if the method indicates neither new results nor an error. This is a regular behavior in the
process of the analysis chain.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD Call : HRESULT
VAR_OUTPUT
 bNewResult : BOOL; // TRUE every time when outgoing MultiArray was calculated and sent t
o transfer tray.
 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no MultiArray buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

Configure():

The classification arguments must be configured at the beginning with the call of this method. The
corresponding PLC array must be defined as follows. The Configure() method can also be used for a new
configuration with a different set of arguments.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD Configure : HRESULT
VAR_INPUT
 pArg : POINTER TO LREAL; // pointer to array (LREAL) of arguments
 nArgSize : UDINT; // size of arguments buffer in bytes
END_VAR

The input buffers correspond to one of the following definitions (input shape). The variable parameters are
part of the function block input stInitPars.

PLC API

TF3600100 Version: 1.5

Versions Input buffer (MultiArray input stream)
Element type, number of dimensions, dimension
sizes

Identical configuration of all channels and
subchannels

LREAL, 1,
nMaxClasses

Channel-specific configuration
(nSubChannels = 0)

LREAL, 2,
nChannels x nMaxClasses

Subchannel-specific configuration
(nSubChannels > 0)

LREAL, 2,
nSubChannels x nMaxClasses

Channel and subchannel-specific configuration
(nSubChannels > 0)

LREAL, 3,
nChannels x nSubChannels x nMaxClasses

METHOD Init : HRESULT
VAR_INPUT
 stInitPars : ST_CM_DiscreteClassification_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should b
e initialized for results (0 for no initialization)
END_VAR

Init():

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the
PLC. It cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
'call_after_init' (see TwinCAT PLC reference). In addition, this facilitates the function block
encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

• stInitPars: Function-block-specific structure with initialization parameters of the type
ST_CM_DiscreteClassification_InitPars [} 218]. The parameters must correlate to the above definition of
the input and output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

PassInputs():

As long as an FB_CMA_Source instance is called and signal data are thus transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically as explained in the API PLC Reference
[} 70].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. The function block must be called cyclically, but
it is sufficient for the data arriving at the function block to be forwarded in the communication ring [} 63]. This
is done using the PassInputs() method in place of the Call() method. The algorithm itself is not called
here, and accordingly no result is calculated and no output buffer generated.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

GetChannelErrors():

PLC API

TF3600 101Version: 1.5

The method enables the querying of a list of the channel-specific return values when processing several
channels (nChannels > 1). A call is useful in the case that the return value of the function block
corresponds to one of the values eCM_InfRTime_AmbiguousChannelResults or
eCM_ErrRTime_ErrornousChannelResults.

• Return value: Information on the reading process of the list of error codes. The value is set to TRUE if
the query was successful, otherwise to FALSE.

METHOD GetChannelErrors : BOOL
VAR_IN_OUT
 aChannelErrors : ARRAY[*] OF HRESULT;
END_VAR

• aChannelErrors: Error list of the type HRESULT of the length nChannels.

Similar function blocks

The function block FB_CMA_WatchUpperThresholds [} 203] calculates the highest category of multi-channel
input data and returns it together with the number of the associated channel.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base

Limited functional scope already available with CM 3.1. See section Compatibility [} 52].

5.1.8 FB_CMA_Downsampling

Downsampling of signal data through copying of the signal data from one PLC buffer to another PLC
buffer (array).

A signal that is present as a buffer (e.g. an oversampling array), can be scanned with a rate that is reduced
by an individual factor. Downsampling is a way of analyzing lower frequencies without having to increase the
FFT length to maintain a high resolution.

Usually, a downsampling block is inserted in the Condition Monitoring analysis chain before an
FB_CMA_Source [} 193].

Inputs and outputs

Input parameters
VAR_INPUT
 nDivider : UDINT := 1; // given input signal is sampled down by the specified divider. (1 =
 no downsampling)
 nChannels : UDINT; // number of channels in data buffer (=1:onedimensional dataset, >1:
twodimensional dataset)
END_VAR

• nDivider: Specifies the downsampling factor as an integer divisor. For example, a sample rate of 10
kHz can be converted to a sample rate of 2 kHz with nDivider=5.

• nChannels: For downsampling a multi-channel data set, the number of channels is specified at input
nChannels.

Output parameters
VAR_OUTPUT
 bError : BOOL; // TRUE if an error occurs. Reset by next metho
d call.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/

PLC API

TF3600102 Version: 1.5

info
 ipErrorMessage : I_TcMessage := fbErrorMessage; // Shows detailed information about occurred er
rors, warnings and more.
 nCntResults : ULINT; // Counts outgoing results (MultiArrays were ca
lculated and sent to transfer tray).
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281].
• ipErrorMessage: Contains more detailed information on the current return value. Refer here to the

section PLC API [} 72]. This special interface pointer is internally secured so that it is always valid/
assigned.

Methods

Call():

Writes data from the input data buffer into the output data buffer. The output data buffer is full when
bNewResult is set.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD Call : HRESULT
VAR_INPUT
 pDataIn : POINTER TO BYTE; // address of data buffer (e.g. oversampling data)
 nDataInSize : UDINT; // size of data buffer in bytes
 pDataOut : POINTER TO BYTE; // address of result buffer
 nDataOutSize : UDINT; // size of data buffer in bytes
 nElementSize : UDINT; // Size of element type in bytes
END_VAR
VAR_OUTPUT
 bNewResult : BOOL; // TRUE every time when outgoing data buffer was calculated.
 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• pDataIn: The assigned input buffer.
• nDataInSize: Specifies the size of the PLC input buffer and must meet the following condition:
nChannels * nElementSize * "Number of elements per channel".

• pDataOut: The assigned output buffer must remain unchanged until the output bNewResult is set.
Usually, input and output buffers are always maintained.

• nDataOutSize: Specifies the size of the PLC output buffer and must meet the following condition:
nDataOutSize = n * nDataInSize. If the quotient is divisible by the parameter nDivider
without remainder, the following condition can be used as an alternative: nDataOutSize =
n * (nDataInSize/nDivider).

• nElementSize: Specifies the size of an element in bytes. For an array of LREAL elements the size is
8, for example.

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no MultiArray buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

A copy action is executed if an error occurs.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base

PLC API

TF3600 103Version: 1.5

Limited functional scope already available with CM 3.1. See section Compatibility [} 52].

5.1.9 FB_CMA_EmpiricalExcess

Calculates the excess for single- and multi-channel real-valued time series.

The function block treats the input signal as a time series, if necessary with several independent channels.
For each channel, the empirical excess is calculated according to equation,

where s is the empirical standard deviation. The excess is the value of the empirical kurtosis reduced by the
value 3, where 3 corresponds to the kurtosis of a normal distribution. This results in the interpretation of the
excess:

excess > 0: Distribution more acute than normal distribution; indicates frequent peaks in the sample

excess < 0: Flattened distribution compared to normal distribution

The excess offers, for example, the possibility of assessing shocks in the vibration signal as they occur when
rolling over local damage in the roller bearing.

A single sample per channel (see Inputs and Outputs, first table) can be added in each cycle, and several
samples per channel can be added to the sample quantity in one cycle (see Inputs and Outputs, second
table).

Further comments

4 values must be available for calculating an initial result. Furthermore, the standard deviation must not be
zero. Results may become inaccurate if the input values are many orders of magnitude apart.

Memory properties

The sample quantity N, which is used to calculate the current result, automatically increases with each new
incoming data set, i.e. the function block uses all input values since its instantiation. Resetting of the sample
quantity to zero (deleting the internal memory of the FB) is provided by a ResetData() method or, if the
CallEx() method is used, by the variable bResetData.

NaN occurrence

If the number of input values is insufficient for calculating a result for a particular channel or the variance is
zero, the value NaN (not a number) according to IEC 754 is returned for this channel. The presence of this
error value can be checked with the function LrealIsNaN(). The reason may be that so far not enough input
data were transferred or that only NaNs were transferred as input values for individual channels. A variance
of zero may occur if the time series of the values is constant, for example if no sensor data were transferred
due to a broken wire or switching errors.

If a set of input values contains the special constant NaN, no value is added to the statistics for this channel
for this time step, i.e. it is treated as indicator for missing values.

Handling of NaN values
If the situations described above, which lead to NaN values, cannot be ruled out or safely ne-
glected, the application program must be able to handle these error values.

Behavior when processing multi-channel input data

PLC API

TF3600104 Version: 1.5

When processing several channels (nChannels > 1), there is a possibility of each channel having different
return values. In this case, return values can be queried separately on the function block. If the results from
one or more channels are impermissible, but not all channels, the value on the function block corresponds to
eCM_InfRTime_AmbiguousChannelResults. If the results of all channels are impermissible, then the
value on the function block corresponds to eCM_ErrRTime_ErrornousChannelResults.

A list of return values of all channels can be queried using the method GetChannelErrors().

When processing several subchannels (nSubChannels > 0), particular attention must be paid to the
formatting of the input and output data. If the input data consist of a multi-channel result of an upstream
function block, the value of nChannels must be adopted; further configuration takes place in this case via
the parameter nSubChannels.

Sample: In the statistical consideration (e.g. by FB_CMA_Quantiles) of the frequency channels of a multi-
channel spectrum (e.g. FB_CMA_MagnitudeSpectrum), the value of nChannels must be identical to the
number of input signals; the number of subchannels nSubChannels corresponds to the length of the
spectrum.

Sample implementation

A sample implementation is available under the following link: Statistical methods [} 257]

Inputs and outputs

The input and output buffers correspond to the following definition (Shape). The variable parameters are part
of the function block input stInitPars.

Versions Input buffer (MultiArray input
stream)
Element type, number of dimen-
sions, dimension sizes

Output buffer (MultiArray output
stream)
Element type, number of dimen-
sions, dimension sizes

Standard version
(nSubChannels = 0)

LREAL, 1,
nChannels

LREAL, 1,
nChannels

Standard version for several data
sets
(nSubChannels = 0)

LREAL, 2,
nChannels x not specified*

LREAL, 1,
nChannels

Multi-channel version
(nSubChannels > 0)

LREAL, 2,
nChannels x nSubChannels

LREAL, 2,
nChannels x nSubChannels

Multi-channel version for several
data sets
(nSubChannels > 0)

LREAL, 3,
nChannels x nSubChannels x not
specified*

LREAL, 2,
nChannels x nSubChannels

*: The length of this dimension can be selected as desired and can thus adapt itself to the application or to
the output buffer of the preceding algorithm.
VAR_INPUT
 stInitPars : ST_CM_EmpiricalMoments_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs: ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be in
itialized for results (0 for no initialization)
 tTransferTimeout : LTIME := LTIME#500US; // timeout checking off during access to in
ter-task FIFOs
END_VAR

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (Alternatively: Init() method). They may only be assigned once. A
change at runtime is not possible.

• stInitPars: Function block-specific structure with initialization parameters of type
ST_CM_EmpiricalMoments_InitPars [} 218]. The parameters must correlate to the above definition of the
input and output buffers.

PLC API

TF3600 105Version: 1.5

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

• tTransferTimeout: Setting of the synchronous timeout for internal MultiArray forwardings. See
section Parallel processing [} 63].

Output parameters
VAR_OUTPUT
 bError : BOOL; // TRUE if an error occurs. Reset by next metho
d call.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/
info
 ipErrorMessage : I_TcMessage := fbErrorMessage; // Shows detailed information about occurred er
rors, warnings and more.
 nCntResults : ULINT; // Counts outgoing results (MultiArrays were ca
lculated and sent to transfer tray).
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281].
• ipErrorMessage: Contains more detailed information on the current return value. Refer here to the

section PLC API [} 72]. This special interface pointer is internally secured so that it is always valid/
assigned.

Methods

Call():

The method is called each cycle in order to apply the algorithm to the current input data. The function block
waits for input data if the method indicates neither new results nor an error. This is a regular behavior in the
process of the analysis chain.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD Call : HRESULT
VAR_OUTPUT
 bNewResult : BOOL; // TRUE every time when outgoing MultiArray was calculated and sent t
o transfer tray.
 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no MultiArray buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

CallEx():

The method is called in each cycle in order to update the internal memory from the input signal. A result is
output only every nAppendData cycles. An alternative method is Call().

The function block waits for input data if the method indicates neither new results nor an error. This is a
regular behavior in the process of the analysis chain.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

PLC API

TF3600106 Version: 1.5

METHOD CallEx : HRESULT
VAR_INPUT
 nAppendData : UDINT; // count of data buffers which are appended until calculation (1= cal
culate always)
 bResetData : BOOL; // automatic reset of dataset buffer after each calculation
END_VAR
VAR_OUTPUT
 bNewResult : BOOL; // TRUE every time when outgoing MultiArray was calculated and sent
to transfer tray.
 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• nAppendData: Defines how many input data buffers are to be collected before a calculation is carried
out, because several data blocks are preferably added in order to achieve a precise result.

• bResetData: If set, the internal data buffer is completely deleted after calculation.
• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281]. This output is identical to the return value of the
method.

If a timeout occurs or no MultiArray buffer is available for the result, then neither the input data nor
the result data are lost. They are forwarded on the next call.

METHOD Init : HRESULT
VAR_INPUT
 stInitPars : ST_CM_EmpiricalMoments_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers: UDINT := 4; // number of MultiArrays which should be ini
tialized for results (0 for no initialization)
END_VAR

Init():

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the
PLC. It cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
'call_after_init' (see TwinCAT PLC reference). In addition, this facilitates the function block
encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

• stInitPars: Function block-specific structure with initialization parameters of type
ST_CM_EmpiricalMoments_InitPars [} 218]. The parameters must correlate to the above definition of the
input and output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

ResetData():

The method deletes all data records that have already been added, see Memory property of the function
block. If the Call() method is called again after a ResetData(), the internal memory must be replenished
in order to calculate a valid result.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

PLC API

TF3600 107Version: 1.5

METHOD ResetData : HRESULT
VAR_INPUT
END_VAR

Alternatively the automatic reset in the method CallEx() can be used.

PassInputs():

As long as an FB_CMA_Source instance is called and signal data are thus transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically as explained in the API PLC Reference
[} 70].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. The function block must be called cyclically, but
it is sufficient for the data arriving at the function block to be forwarded in the communication ring [} 63]. This
is done using the PassInputs() method in place of the Call() method. The algorithm itself is not called
here, and accordingly no result is calculated and no output buffer generated.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

GetChannelErrors():

The method enables the querying of a list of the channel-specific return values when processing several
channels (nChannels > 1). A call is useful in the case that the return value of the function block
corresponds to one of the values eCM_InfRTime_AmbiguousChannelResults or
eCM_ErrRTime_ErrornousChannelResults.

• Return value: Information on the reading process of the list of error codes. The value is set to TRUE if
the query was successful, otherwise to FALSE.

METHOD GetChannelErrors : BOOL
VAR_IN_OUT
 aChannelErrors : ARRAY[*] OF HRESULT;
END_VAR

• aChannelErrors: Error list of the type HRESULT of the length nChannels.

Similar function blocks

The function block FB_CMA_EmpiricalMean [} 108] calculates the empirical average of input values.

The function block FB_CMA_EmpiricalStandardDeviation [} 117] calculates the empirical standard deviation of
input values.

The function block FB_CMA_EmpiricalSkew [} 112] calculates the empirical skew of input values.

The function block FB_CMA_MomentCoefficients [} 151] calculates the empirical mean value, i.e. standard
deviation, skew and excess, depending on the parameterization.

The FB_CMA_HistArray [} 130] function block calculates the histograms of input value distributions.

The FB_CMA_Quantiles [} 169] function block calculates the quantiles of an empirical distribution, which
enable the frequency of outliers to be assessed.

As an alternative to the kurtosis the FB_CMA_CrestFactor [} 85] function block calculates a different measure
for peakiness (Crest Factor) of a signal, although this is more sensitive to outliers.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base

PLC API

TF3600108 Version: 1.5

Limited functional scope already available with CM 3.1. See section Compatibility [} 52].

5.1.10 FB_CMA_EmpiricalMean

Calculates the mean value for single- and multi-channel real-valued time series.

The function block treats the input signal as a time series, if necessary with several independent channels.
For each channel, the empirical (arithmetic) mean value according to equation

. A single sample per channel (see Inputs and Outputs, first table) can be added in each cycle, and several
samples per channel can be added to the sample quantity in one cycle (see Inputs and Outputs, second
table).

Memory properties

The sample quantity N, which is used to calculate the current result, automatically increases with each new
incoming data set, i.e. the function block uses all input values since its instantiation. Resetting of the sample
quantity to zero (deleting the internal memory of the FB) is provided by a ResetData() method or, if the
CallEx() method is used, by the variable bResetData.

NaN occurrence

If the number of input values is insufficient for calculating a result for a particular channel or the variance is
zero, the value NaN (not a number) according to IEC 754 is returned for this channel. The presence of this
error value can be checked with the function LrealIsNaN(). The reason may be that so far not enough input
data were transferred or that only NaNs were transferred as input values for individual channels. A variance
of zero may occur if the time series of the values is constant, for example if no sensor data were transferred
due to a broken wire or switching errors.

If a set of input values contains the special constant NaN, no value is added to the statistics for this channel
for this time step, i.e. it is treated as indicator for missing values.

Handling of NaN values
If the situations described above, which lead to NaN values, cannot be ruled out or safely ne-
glected, the application program must be able to handle these error values.

Behavior when processing multi-channel input data

When processing several channels (nChannels > 1), there is a possibility of each channel having different
return values. In this case, return values can be queried separately on the function block. If the results from
one or more channels are impermissible, but not all channels, the value on the function block corresponds to
eCM_InfRTime_AmbiguousChannelResults. If the results of all channels are impermissible, then the
value on the function block corresponds to eCM_ErrRTime_ErrornousChannelResults.

A list of return values of all channels can be queried using the method GetChannelErrors().

When processing several subchannels (nSubChannels > 0), particular attention must be paid to the
formatting of the input and output data. If the input data consist of a multi-channel result of an upstream
function block, the value of nChannels must be adopted; further configuration takes place in this case via
the parameter nSubChannels.

Sample: In the statistical consideration (e.g. by FB_CMA_Quantiles) of the frequency channels of a multi-
channel spectrum (e.g. FB_CMA_MagnitudeSpectrum), the value of nChannels must be identical to the
number of input signals; the number of subchannels nSubChannels corresponds to the length of the
spectrum.

PLC API

TF3600 109Version: 1.5

Sample implementation

A sample implementation is available under the following link: Statistical methods [} 257]

Inputs and outputs

The input and output buffers correspond to the following definition (Shape). The variable parameters are part
of the function block input stInitPars.

Versions Input buffer (MultiArray input
stream)
Element type, number of dimen-
sions, dimension sizes

Output buffer (MultiArray output
stream)
Element type, number of dimen-
sions, dimension sizes

Standard version
(nSubChannels = 0)

LREAL, 1,
nChannels

LREAL, 1,
nChannels

Standard version for several data
sets
(nSubChannels = 0)

LREAL, 2,
nChannels x not specified*

LREAL, 1,
nChannels

Multi-channel version
(nSubChannels > 0)

LREAL, 2,
nChannels x nSubChannels

LREAL, 2,
nChannels x nSubChannels

Multi-channel version for several
data sets
(nSubChannels > 0)

LREAL, 3,
nChannels x nSubChannels x not
specified*

LREAL, 2,
nChannels x nSubChannels

*: The length of this dimension can be selected as desired and can thus adapt itself to the application or to
the output buffer of the preceding algorithm.
VAR_INPUT
 stInitPars : ST_CM_EmpiricalMoments_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs: ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be in
itialized for results (0 for no initialization)
 tTransferTimeout : LTIME := LTIME#500US; // timeout checking off during access to in
ter-task FIFOs
END_VAR

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (Alternatively: Init() method). They may only be assigned once. A
change at runtime is not possible.

• stInitPars: Function block-specific structure with initialization parameters of type
ST_CM_EmpiricalMoments_InitPars [} 218]. The parameters must correlate to the above definition of the
input and output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

• tTransferTimeout: Setting of the synchronous timeout for internal MultiArray forwardings. See
section Parallel processing [} 63].

Output parameters
VAR_OUTPUT
 bError : BOOL; // TRUE if an error occurs. Reset by next metho
d call.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/
info
 ipErrorMessage : I_TcMessage := fbErrorMessage; // Shows detailed information about occurred er
rors, warnings and more.

PLC API

TF3600110 Version: 1.5

 nCntResults : ULINT; // Counts outgoing results (MultiArrays were ca
lculated and sent to transfer tray).
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281].
• ipErrorMessage: Contains more detailed information on the current return value. Refer here to the

section PLC API [} 72]. This special interface pointer is internally secured so that it is always valid/
assigned.

Methods
METHOD Init : HRESULT
VAR_INPUT
 stInitPars : ST_CM_EmpiricalMoments_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers: UDINT := 4; // number of MultiArrays which should be ini
tialized for results (0 for no initialization)
END_VAR

Call():

The method is called each cycle in order to apply the algorithm to the current input data. The function block
waits for input data if the method indicates neither new results nor an error. This is a regular behavior in the
process of the analysis chain.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD Call : HRESULT
VAR_OUTPUT
 bNewResult : BOOL; // TRUE every time when outgoing MultiArray was calculated and sent t
o transfer tray.
 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no MultiArray buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

CallEx():

The method is called in each cycle in order to update the internal memory from the input signal. A result is
output only every nAppendData cycles. An alternative method is Call().

The function block waits for input data if the method indicates neither new results nor an error. This is a
regular behavior in the process of the analysis chain.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD CallEx : HRESULT
VAR_INPUT
 nAppendData : UDINT; // count of data buffers which are appended until calculation (1= cal
culate always)
 bResetData : BOOL; // automatic reset of dataset buffer after each calculation
END_VAR
VAR_OUTPUT
 bNewResult : BOOL; // TRUE every time when outgoing MultiArray was calculated and sent
to transfer tray.
 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• nAppendData: Defines how many input data buffers are to be collected before a calculation is carried
out, because several data blocks are preferably added in order to achieve a precise result.

PLC API

TF3600 111Version: 1.5

• bResetData: If set, the internal data buffer is completely deleted after calculation.
• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281]. This output is identical to the return value of the
method.

If a timeout occurs or no MultiArray buffer is available for the result, then neither the input data nor
the result data are lost. They are forwarded on the next call.

Init():

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the
PLC. It cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
'call_after_init' (see TwinCAT PLC reference). In addition, this facilitates the function block
encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

• stInitPars: Function block-specific structure with initialization parameters of type
ST_CM_EmpiricalMoments_InitPars [} 218]. The parameters must correlate to the above definition of the
input and output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

ResetData():

The method deletes all data records that have already been added, see Memory property of the function
block. If the Call() method is called again after a ResetData(), the internal memory must be replenished
in order to calculate a valid result.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD ResetData : HRESULT
VAR_INPUT
END_VAR

Alternatively the automatic reset in the method CallEx() can be used.

PassInputs():

As long as an FB_CMA_Source instance is called and signal data are thus transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically as explained in the API PLC Reference
[} 70].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. The function block must be called cyclically, but
it is sufficient for the data arriving at the function block to be forwarded in the communication ring [} 63]. This
is done using the PassInputs() method in place of the Call() method. The algorithm itself is not called
here, and accordingly no result is calculated and no output buffer generated.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

PLC API

TF3600112 Version: 1.5

METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

GetChannelErrors():

The method enables the querying of a list of the channel-specific return values when processing several
channels (nChannels > 1). A call is useful in the case that the return value of the function block
corresponds to one of the values eCM_InfRTime_AmbiguousChannelResults or
eCM_ErrRTime_ErrornousChannelResults.

• Return value: Information on the reading process of the list of error codes. The value is set to TRUE if
the query was successful, otherwise to FALSE.

METHOD GetChannelErrors : BOOL
VAR_IN_OUT
 aChannelErrors : ARRAY[*] OF HRESULT;
END_VAR

• aChannelErrors: Error list of the type HRESULT of the length nChannels.

Similar function blocks

The function block FB_CMA_EmpiricalStandardDeviation [} 117] calculates the empirical standard deviation of
input values.

The function block FB_CMA_EmpiricalSkew [} 112] calculates the empirical skew of input values.

The function block FB_CMA_EmpiricalExcess [} 103] calculates the empirical excess of input values.

The function block FB_CMA_MomentCoefficients [} 151] calculates the empirical mean value, i.e. standard
deviation, skew and excess, depending on the parameterization.

The FB_CMA_HistArray [} 130] function block calculates the histograms of input value distributions.

The FB_CMA_Quantiles [} 169] function block calculates the quantiles of an empirical distribution, which
enable the frequency of outliers to be assessed.

As an alternative to the kurtosis the FB_CMA_CrestFactor [} 85] function block calculates a different measure
for peakiness (Crest Factor) of a signal, although this is more sensitive to outliers.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base

Limited functional scope already available with CM 3.1. See section Compatibility [} 52].

5.1.11 FB_CMA_EmpiricalSkew

Calculates the empirical skew for single- and multi-channel real-valued time series.

The function block treats the input signal as a time series, if necessary with several independent channels.
For each channel, the empirical skew according to equation

PLC API

TF3600 113Version: 1.5

where s is the empirical standard deviation. The skew quantifies the asymmetry of a sample. It offers a
possibility to assess impacts (e.g. by rolling over local damage in the roller bearing) in a vibration signal. The
calculated skew is a more robust criterion than the kurtosis/excess, although local damage does not
necessarily lead to asymmetrical signal distributions.

A single sample per channel (see Inputs and Outputs, first table) can be added in each cycle, and several
samples per channel can be added to the sample quantity in one cycle (see Inputs and Outputs, second
table).

Further comments

3 values must be available for calculating an initial result. Furthermore, the standard deviation must not be
zero. Results may become inaccurate if the input values are many orders of magnitude apart.

Memory properties

The sample quantity N, which is used to calculate the current result, automatically increases with each new
incoming data set, i.e. the function block uses all input values since its instantiation. Resetting of the sample
quantity to zero (deleting the internal memory of the FB) is provided by a ResetData() method or, if the
CallEx() method is used, by the variable bResetData.

NaN occurrence

If the number of input values is insufficient for calculating a result for a particular channel or the variance is
zero, the value NaN (not a number) according to IEC 754 is returned for this channel. The presence of this
error value can be checked with the function LrealIsNaN(). The reason may be that so far not enough input
data were transferred or that only NaNs were transferred as input values for individual channels. A variance
of zero may occur if the time series of the values is constant, for example if no sensor data were transferred
due to a broken wire or switching errors.

If a set of input values contains the special constant NaN, no value is added to the statistics for this channel
for this time step, i.e. it is treated as indicator for missing values.

Handling of NaN values
If the situations described above, which lead to NaN values, cannot be ruled out or safely ne-
glected, the application program must be able to handle these error values.

Behavior when processing multi-channel input data

When processing several channels (nChannels > 1), there is a possibility of each channel having different
return values. In this case, return values can be queried separately on the function block. If the results from
one or more channels are impermissible, but not all channels, the value on the function block corresponds to
eCM_InfRTime_AmbiguousChannelResults. If the results of all channels are impermissible, then the
value on the function block corresponds to eCM_ErrRTime_ErrornousChannelResults.

A list of return values of all channels can be queried using the method GetChannelErrors().

When processing several subchannels (nSubChannels > 0), particular attention must be paid to the
formatting of the input and output data. If the input data consist of a multi-channel result of an upstream
function block, the value of nChannels must be adopted; further configuration takes place in this case via
the parameter nSubChannels.

Sample: In the statistical consideration (e.g. by FB_CMA_Quantiles) of the frequency channels of a multi-
channel spectrum (e.g. FB_CMA_MagnitudeSpectrum), the value of nChannels must be identical to the
number of input signals; the number of subchannels nSubChannels corresponds to the length of the
spectrum.

Sample implementation

A sample implementation is available under the following link: Statistical methods [} 257]

PLC API

TF3600114 Version: 1.5

Inputs and outputs

The input and output buffers correspond to the following definition (Shape). The variable parameters are part
of the function block input stInitPars.

Versions Input buffer (MultiArray input
stream)
Element type, number of dimen-
sions, dimension sizes

Output buffer (MultiArray output
stream)
Element type, number of dimen-
sions, dimension sizes

Standard version
(nSubChannels = 0)

LREAL, 1,
nChannels

LREAL, 1,
nChannels

Standard version for several data
sets
(nSubChannels = 0)

LREAL, 2,
nChannels x not specified*

LREAL, 1,
nChannels

Multi-channel version
(nSubChannels > 0)

LREAL, 2,
nChannels x nSubChannels

LREAL, 2,
nChannels x nSubChannels

Multi-channel version for several
data sets
(nSubChannels > 0)

LREAL, 3,
nChannels x nSubChannels x not
specified*

LREAL, 2,
nChannels x nSubChannels

*: The length of this dimension can be selected as desired and can thus adapt itself to the application or to
the output buffer of the preceding algorithm.
VAR_INPUT
 stInitPars : ST_CM_EmpiricalMoments_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs: ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be in
itialized for results (0 for no initialization)
 tTransferTimeout : LTIME := LTIME#500US; // timeout checking off during access to in
ter-task FIFOs
END_VAR

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (Alternatively: Init() method). They may only be assigned once. A
change at runtime is not possible.

• stInitPars: Function block-specific structure with initialization parameters of type
ST_CM_EmpiricalMoments_InitPars [} 218]. The parameters must correlate to the above definition of the
input and output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

• tTransferTimeout: Setting of the synchronous timeout for internal MultiArray forwardings. See
section Parallel processing [} 63].

Output parameters
VAR_OUTPUT
 bError : BOOL; // TRUE if an error occurs. Reset by next metho
d call.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/
info
 ipErrorMessage : I_TcMessage := fbErrorMessage; // Shows detailed information about occurred er
rors, warnings and more.
 nCntResults : ULINT; // Counts outgoing results (MultiArrays were ca
lculated and sent to transfer tray).
END_VAR

• bError: The output is TRUE if an error occurs.

PLC API

TF3600 115Version: 1.5

• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

• ipErrorMessage: Contains more detailed information on the current return value. Refer here to the
section PLC API [} 72]. This special interface pointer is internally secured so that it is always valid/
assigned.

Methods
METHOD Init : HRESULT
VAR_INPUT
 stInitPars : ST_CM_EmpiricalMoments_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers: UDINT := 4; // number of MultiArrays which should be ini
tialized for results (0 for no initialization)
END_VAR

Call():

The method is called each cycle in order to apply the algorithm to the current input data. The function block
waits for input data if the method indicates neither new results nor an error. This is a regular behavior in the
process of the analysis chain.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD Call : HRESULT
VAR_OUTPUT
 bNewResult : BOOL; // TRUE every time when outgoing MultiArray was calculated and sent t
o transfer tray.
 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no MultiArray buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

CallEx():

The method is called in each cycle in order to update the internal memory from the input signal. A result is
output only every nAppendData cycles. An alternative method is Call().

The function block waits for input data if the method indicates neither new results nor an error. This is a
regular behavior in the process of the analysis chain.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD CallEx : HRESULT
VAR_INPUT
 nAppendData : UDINT; // count of data buffers which are appended until calculation (1= cal
culate always)
 bResetData : BOOL; // automatic reset of dataset buffer after each calculation
END_VAR
VAR_OUTPUT
 bNewResult : BOOL; // TRUE every time when outgoing MultiArray was calculated and sent
to transfer tray.
 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• nAppendData: Defines how many input data buffers are to be collected before a calculation is carried
out, because several data blocks are preferably added in order to achieve a precise result.

• bResetData: If set, the internal data buffer is completely deleted after calculation.
• bError: The output is TRUE if an error occurs.

PLC API

TF3600116 Version: 1.5

• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281]. This output is identical to the return value of the
method.

If a timeout occurs or no MultiArray buffer is available for the result, then neither the input data nor
the result data are lost. They are forwarded on the next call.

Init():

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the
PLC. It cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
'call_after_init' (see TwinCAT PLC reference). In addition, this facilitates the function block
encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

• stInitPars: Function block-specific structure with initialization parameters of type
ST_CM_EmpiricalMoments_InitPars [} 218]. The parameters must correlate to the above definition of the
input and output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

ResetData():

The method deletes all data records that have already been added, see Memory property of the function
block. If the Call() method is called again after a ResetData(), the internal memory must be replenished
in order to calculate a valid result.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD ResetData : HRESULT
VAR_INPUT
END_VAR

Alternatively the automatic reset in the method CallEx() can be used.

PassInputs():

As long as an FB_CMA_Source instance is called and signal data are thus transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically as explained in the API PLC Reference
[} 70].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. The function block must be called cyclically, but
it is sufficient for the data arriving at the function block to be forwarded in the communication ring [} 63]. This
is done using the PassInputs() method in place of the Call() method. The algorithm itself is not called
here, and accordingly no result is calculated and no output buffer generated.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

PLC API

TF3600 117Version: 1.5

GetChannelErrors():

The method enables the querying of a list of the channel-specific return values when processing several
channels (nChannels > 1). A call is useful in the case that the return value of the function block
corresponds to one of the values eCM_InfRTime_AmbiguousChannelResults or
eCM_ErrRTime_ErrornousChannelResults.

• Return value: Information on the reading process of the list of error codes. The value is set to TRUE if
the query was successful, otherwise to FALSE.

METHOD GetChannelErrors : BOOL
VAR_IN_OUT
 aChannelErrors : ARRAY[*] OF HRESULT;
END_VAR

• aChannelErrors: Error list of the type HRESULT of the length nChannels.

Similar function blocks

The function block FB_CMA_EmpiricalMean [} 108] calculates the empirical average of input values.

The function block FB_CMA_EmpiricalStandardDeviation [} 117] calculates the empirical standard deviation of
input values.

The function block FB_CMA_EmpiricalExcess [} 103] calculates the empirical excess of input values.

The function block FB_CMA_MomentCoefficients [} 151] calculates the empirical mean value, i.e. standard
deviation, skew and excess, depending on the parameterization.

The FB_CMA_HistArray [} 130] function block calculates the histograms of input value distributions.

The FB_CMA_Quantiles [} 169] function block calculates the quantiles of an empirical distribution, which
enable the frequency of outliers to be assessed.

As an alternative to the kurtosis the FB_CMA_CrestFactor [} 85] function block calculates a different measure
for peakiness (Crest Factor) of a signal, although this is more sensitive to outliers.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base

Limited functional scope already available with CM 3.1. See section Compatibility [} 52].

5.1.12 FB_CMA_EmpiricalStandardDeviation

Calculates the empirical standard deviation for single- and multi-channel real-valued time series.

The function block treats the input signal as a time series, if necessary with several independent channels.
For each channel, the empirical standard deviation according to equation

. The Bessel's correction is always applied, in contrast to FB_CMA_MomentCoefficients [} 151]. A single
sample per channel (see Inputs and Outputs, first table) can be added in each cycle, and several samples
per channel can be added to the sample quantity in one cycle (see Inputs and Outputs, second table).

PLC API

TF3600118 Version: 1.5

Further comments

2 values must be available for calculating an initial result. Results may become inaccurate if the input values
are many orders of magnitude apart.

Memory properties

The sample quantity N, which is used to calculate the current result, automatically increases with each new
incoming data set, i.e. the function block uses all input values since its instantiation. Resetting of the sample
quantity to zero (deleting the internal memory of the FB) is provided by a ResetData() method or, if the
CallEx() method is used, by the variable bResetData.

NaN occurrence

If the number of input values is insufficient for calculating a result for a particular channel or the variance is
zero, the value NaN (not a number) according to IEC 754 is returned for this channel. The presence of this
error value can be checked with the function LrealIsNaN(). The reason may be that so far not enough input
data were transferred or that only NaNs were transferred as input values for individual channels. A variance
of zero may occur if the time series of the values is constant, for example if no sensor data were transferred
due to a broken wire or switching errors.

If a set of input values contains the special constant NaN, no value is added to the statistics for this channel
for this time step, i.e. it is treated as indicator for missing values.

Handling of NaN values
If the situations described above, which lead to NaN values, cannot be ruled out or safely ne-
glected, the application program must be able to handle these error values.

Behavior when processing multi-channel input data

When processing several channels (nChannels > 1), there is a possibility of each channel having different
return values. In this case, return values can be queried separately on the function block. If the results from
one or more channels are impermissible, but not all channels, the value on the function block corresponds to
eCM_InfRTime_AmbiguousChannelResults. If the results of all channels are impermissible, then the
value on the function block corresponds to eCM_ErrRTime_ErrornousChannelResults.

A list of return values of all channels can be queried using the method GetChannelErrors().

When processing several subchannels (nSubChannels > 0), particular attention must be paid to the
formatting of the input and output data. If the input data consist of a multi-channel result of an upstream
function block, the value of nChannels must be adopted; further configuration takes place in this case via
the parameter nSubChannels.

Sample: In the statistical consideration (e.g. by FB_CMA_Quantiles) of the frequency channels of a multi-
channel spectrum (e.g. FB_CMA_MagnitudeSpectrum), the value of nChannels must be identical to the
number of input signals; the number of subchannels nSubChannels corresponds to the length of the
spectrum.

Sample implementation

A sample implementation is available under the following link: Statistical methods [} 257]

Inputs and outputs

The input and output buffers correspond to the following definition (Shape). The variable parameters are part
of the function block input stInitPars.

PLC API

TF3600 119Version: 1.5

Versions Input buffer (MultiArray input
stream)
Element type, number of dimen-
sions, dimension sizes

Output buffer (MultiArray output
stream)
Element type, number of dimen-
sions, dimension sizes

Standard version
(nSubChannels = 0)

LREAL, 1,
nChannels

LREAL, 1,
nChannels

Standard version for several data
sets
(nSubChannels = 0)

LREAL, 2,
nChannels x not specified*

LREAL, 1,
nChannels

Multi-channel version
(nSubChannels > 0)

LREAL, 2,
nChannels x nSubChannels

LREAL, 2,
nChannels x nSubChannels

Multi-channel version for several
data sets
(nSubChannels > 0)

LREAL, 3,
nChannels x nSubChannels x not
specified*

LREAL, 2,
nChannels x nSubChannels

*: The length of this dimension can be selected as desired and can thus adapt itself to the application or to
the output buffer of the preceding algorithm.
VAR_INPUT
 stInitPars : ST_CM_EmpiricalMoments_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs: ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be in
itialized for results (0 for no initialization)
 tTransferTimeout : LTIME := LTIME#500US; // timeout checking off during access to in
ter-task FIFOs
END_VAR

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (Alternatively: Init() method). They may only be assigned once. A
change at runtime is not possible.

• stInitPars: Function block-specific structure with initialization parameters of type
ST_CM_EmpiricalMoments_InitPars [} 218]. The parameters must correlate to the above definition of the
input and output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

• tTransferTimeout: Setting of the synchronous timeout for internal MultiArray forwardings. See
section Parallel processing [} 63].

Output parameters
VAR_OUTPUT
 bError : BOOL; // TRUE if an error occurs. Reset by next metho
d call.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/
info
 ipErrorMessage : I_TcMessage := fbErrorMessage; // Shows detailed information about occurred er
rors, warnings and more.
 nCntResults : ULINT; // Counts outgoing results (MultiArrays were ca
lculated and sent to transfer tray).
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281].

PLC API

TF3600120 Version: 1.5

• ipErrorMessage: Contains more detailed information on the current return value. Refer here to the
section PLC API [} 72]. This special interface pointer is internally secured so that it is always valid/
assigned.

Methods
METHOD Init : HRESULT
VAR_INPUT
 stInitPars : ST_CM_EmpiricalMoments_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers: UDINT := 4; // number of MultiArrays which should be ini
tialized for results (0 for no initialization)
END_VAR

Call():

The method is called each cycle in order to apply the algorithm to the current input data. The function block
waits for input data if the method indicates neither new results nor an error. This is a regular behavior in the
process of the analysis chain.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD Call : HRESULT
VAR_OUTPUT
 bNewResult : BOOL; // TRUE every time when outgoing MultiArray was calculated and sent t
o transfer tray.
 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no MultiArray buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

CallEx():

The method is called in each cycle in order to update the internal memory from the input signal. A result is
output only every nAppendData cycles. An alternative method is Call().

The function block waits for input data if the method indicates neither new results nor an error. This is a
regular behavior in the process of the analysis chain.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD CallEx : HRESULT
VAR_INPUT
 nAppendData : UDINT; // count of data buffers which are appended until calculation (1= cal
culate always)
 bResetData : BOOL; // automatic reset of dataset buffer after each calculation
END_VAR
VAR_OUTPUT
 bNewResult : BOOL; // TRUE every time when outgoing MultiArray was calculated and sent
to transfer tray.
 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• nAppendData: Defines how many input data buffers are to be collected before a calculation is carried
out, because several data blocks are preferably added in order to achieve a precise result.

• bResetData: If set, the internal data buffer is completely deleted after calculation.
• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281]. This output is identical to the return value of the
method.

PLC API

TF3600 121Version: 1.5

If a timeout occurs or no MultiArray buffer is available for the result, then neither the input data nor
the result data are lost. They are forwarded on the next call.

Init():

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the
PLC. It cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
'call_after_init' (see TwinCAT PLC reference). In addition, this facilitates the function block
encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

• stInitPars: Function block-specific structure with initialization parameters of type
ST_CM_EmpiricalMoments_InitPars [} 218]. The parameters must correlate to the above definition of the
input and output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

ResetData():

The method deletes all data records that have already been added, see Memory property of the function
block. If the Call() method is called again after a ResetData(), the internal memory must be replenished
in order to calculate a valid result.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD ResetData : HRESULT
VAR_INPUT
END_VAR

Alternatively the automatic reset in the method CallEx() can be used.

PassInputs():

As long as an FB_CMA_Source instance is called and signal data are thus transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically as explained in the API PLC Reference
[} 70].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. The function block must be called cyclically, but
it is sufficient for the data arriving at the function block to be forwarded in the communication ring [} 63]. This
is done using the PassInputs() method in place of the Call() method. The algorithm itself is not called
here, and accordingly no result is calculated and no output buffer generated.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

GetChannelErrors():

PLC API

TF3600122 Version: 1.5

The method enables the querying of a list of the channel-specific return values when processing several
channels (nChannels > 1). A call is useful in the case that the return value of the function block
corresponds to one of the values eCM_InfRTime_AmbiguousChannelResults or
eCM_ErrRTime_ErrornousChannelResults.

• Return value: Information on the reading process of the list of error codes. The value is set to TRUE if
the query was successful, otherwise to FALSE.

METHOD GetChannelErrors : BOOL
VAR_IN_OUT
 aChannelErrors : ARRAY[*] OF HRESULT;
END_VAR

• aChannelErrors: Error list of the type HRESULT of the length nChannels.

Similar function blocks

The function block FB_CMA_EmpiricalMean [} 108] calculates the empirical average of input values.

The function block FB_CMA_EmpiricalSkew [} 112] calculates the empirical skew of input values.

The function block FB_CMA_EmpiricalExcess [} 103] calculates the empirical excess of input values.

The function block FB_CMA_MomentCoefficients [} 151] calculates the empirical mean value, i.e. standard
deviation, skew and excess, depending on the parameterization.

The FB_CMA_HistArray [} 130] function block calculates the histograms of input value distributions.

The FB_CMA_Quantiles [} 169] function block calculates the quantiles of an empirical distribution, which
enable the frequency of outliers to be assessed.

As an alternative to the kurtosis the FB_CMA_CrestFactor [} 85] function block calculates a different measure
for peakiness (Crest Factor) of a signal, although this is more sensitive to outliers.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base

Limited functional scope already available with CM 3.1. See section Compatibility [} 52].

5.1.13 FB_CMA_Envelope

Calculates the envelope of a time signal.

The envelope is defined mathematically as the absolute value of the analytical signal, see
FB_CMA_AnalyticSignal [} 75]. In the time-continuous display, the envelope xenv(t) of the signal x(t) is defined
as:

The envelope can be interpreted as amplitude-modulated component of the signal x(t), for example

The phase-modulated component φ(t) can also be calculated, see FB_CMA_InstantaneousPhase [} 139]. The
envelope can be used for efficient evaluation of rise or decay processes.

PLC API

TF3600 123Version: 1.5

The discrete calculation of the envelope with the function block takes place efficiently in the frequency range.
The input vector is first overlapped with the immediately preceding buffer and multiplied with a window
function. Subsequently an FFT for real input values is applied. Within the frequency range the Hilbert
transform is applied to the signal, and the result is transformed back to the time range. The absolute value of
the resulting complex values is calculated. The time signal is added up overlapping using the Overlap-Add
method. By selecting suitable window functions a continuous output signal without step changes can be
achieved.

The envelope only provides valid results for mean-free signals. If a signal with a mean value is to be
analyzed, the signal average must be subtracted beforehand and added back to the result of the function
block with the previously subtracted value.

Note the window length
The value of nWindowLength must be less or equal the value of nFFT_Length. The length of the
FFT can orient itself to the required frequency resolution. Typically a value of about 4/5 of the FFT-
length is often used as the window length.

If nFFT_Length is greater than nWindowLength, the frequency resolution of the FFT (and therefore also
the length of the return values vector) is increased. The length difference is filled with zeros before the
Fourier transform. This can be useful for achieving a higher frequency resolution, or for avoiding circular
aliasing in calculations with inverse transformation in the time domain. Despite the higher frequency
resolution, however, the result contains no more information.

Memory properties

Since the Overlap-Add method is used, in each case the current input buffer together with the two last
transferred buffers is used for the calculation.

NaN occurrence

If the input vector contains one or more NaN (Not a Number) values, the entire output sector is filled with
NaN. See separate section for further information on NaN values [} 62].

Handling of NaN values
If the situations described above, which lead to NaN values, cannot be ruled out or safely ne-
glected, the application program must be able to handle these error values.

Behavior when processing multi-channel input data

When processing several channels (nChannels > 1), there is a possibility of each channel having different
return values. In this case, return values can be queried separately on the function block. If the results from
one or more channels are impermissible, but not all channels, the value on the function block corresponds to
eCM_InfRTime_AmbiguousChannelResults. If the results of all channels are impermissible, then the
value on the function block corresponds to eCM_ErrRTime_ErrornousChannelResults.

A list of return values of all channels can be queried using the method GetChannelErrors().

Inputs and outputs

The input and output buffers correspond to one of the following definitions (input / output shape). The
variable parameters are part of the function block input stInitPars.

Versions Input buffer (MultiArray input
stream)
Element type, number of dimen-
sions, dimension sizes

Output buffer (MultiArray output
stream)
Element type, number of dimen-
sions, dimension sizes

Standard version
(nChannels = 1)

LREAL, 1,
nWindowLength/2

LREAL, 1,
nWindowLength/2

Multi-channel version
(nChannels > 1)

LREAL, 2,
nChannels x nWindowLength/2

LREAL, 2,
nChannels x nWindowLength/2

PLC API

TF3600124 Version: 1.5

VAR_INPUT
 stInitPars : ST_CM_Envelope_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be in
itialized for results (0 for no initialization)
 tTransferTimeout : LTIME := LTIME#500US; // timeout checking off during access to in
ter-task FIFOs
END_VAR

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (Alternatively: Init() method). They may only be assigned once. A
change at runtime is not possible.

• stInitPars: Function-block-specific structure with initialization parameters of the type
ST_CM_Envelope_InitPars [} 219]. The parameters must correlate to the above definition of the input
and output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

• tTransferTimeout: Setting of the synchronous timeout for internal MultiArray forwardings. See
section Parallel processing [} 63].

Output parameters
VAR_OUTPUT
 bError : BOOL; // TRUE if an error occurs. Reset by next metho
d call.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/
info
 ipErrorMessage : I_TcMessage := fbErrorMessage; // Shows detailed information about occurred er
rors, warnings and more.
 nCntResults : ULINT; // Counts outgoing results (MultiArrays were ca
lculated and sent to transfer tray).
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281].
• ipErrorMessage: Contains more detailed information on the current return value. Refer here to the

section PLC API [} 72]. This special interface pointer is internally secured so that it is always valid/
assigned.

Methods
METHOD Init : HRESULT
VAR_INPUT
 stInitPars : ST_CM_Envelope_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be init
ialized for results (0 for no initialization)
END_VAR

Call():

The method is called each cycle in order to apply the algorithm to the current input data. The function block
waits for input data if the method indicates neither new results nor an error. This is a regular behavior in the
process of the analysis chain.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

PLC API

TF3600 125Version: 1.5

METHOD Call : HRESULT
VAR_OUTPUT
 bNewResult : BOOL; // TRUE every time when outgoing MultiArray was calculated and sent t
o transfer tray.
 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no MultiArray buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

Init():

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the
PLC. It cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
'call_after_init' (see TwinCAT PLC reference). In addition, this facilitates the function block
encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

• stInitPars: Function-block-specific structure with initialization parameters of the type
ST_CM_Envelope_InitPars [} 219]. The parameters must correlate to the above definition of the input
and output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

ResetData():

The method deletes all data records that have already been added, see Memory property of the function
block. If the Call() method is called again after a ResetData(), the internal memory must be replenished
in order to calculate a valid result.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD ResetData : HRESULT
VAR_INPUT
END_VAR

PassInputs():

As long as an FB_CMA_Source instance is called and signal data are thus transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically as explained in the API PLC Reference
[} 70].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. The function block must be called cyclically, but
it is sufficient for the data arriving at the function block to be forwarded in the communication ring [} 63]. This
is done using the PassInputs() method in place of the Call() method. The algorithm itself is not called
here, and accordingly no result is calculated and no output buffer generated.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

PLC API

TF3600126 Version: 1.5

METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

GetChannelErrors():

The method enables the querying of a list of the channel-specific return values when processing several
channels (nChannels > 1). A call is useful in the case that the return value of the function block
corresponds to one of the values eCM_InfRTime_AmbiguousChannelResults or
eCM_ErrRTime_ErrornousChannelResults.

• Return value: Information on the reading process of the list of error codes. The value is set to TRUE if
the query was successful, otherwise to FALSE.

METHOD GetChannelErrors : BOOL
VAR_IN_OUT
 aChannelErrors : ARRAY[*] OF HRESULT;
END_VAR

• aChannelErrors: Error list of the type HRESULT of the length nChannels.

Similar function blocks

The FB_CMA_AnalyticSignal [} 75] block calculates the analytical signal of a time series.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base

Limited functional scope already available with CM 3.1. See section Compatibility [} 52].

5.1.14 FB_CMA_EnvelopeSpectrum

Calculates the envelope spectrum of a time signal.

The envelope spectrum is a combined function block of FB_CMA_Envelope [} 122] and
FB_CMA_PowerSpectrum [} 165]. Accordingly, the signal envelope of a time signal is calculated first, followed
by the power spectrum. The function block is very important for frequency-resolved analysis of roller bearing
damage, see Bearing monitoring [} 38].

The internally used window length and the length of the FFT for the calculation of the signal envelope are
calculated depending on the selected window function and associated overlap (nOverlap), in relation to the
calculation of power spectrum. The rule for the window length is L = 2*(nWindowLength-nOverlap).
The FFT length N corresponds to the next larger power of 2, to which the following applies: N >= 4*L/3.

Note the window length
The value of nWindowLength must be less or equal the value of nFFT_Length. The length of the
FFT can orient itself to the required frequency resolution. Typically a value of about 4/5 of the FFT-
length is often used as the window length.

If nFFT_Length is greater than nWindowLength, the frequency resolution of the FFT (and therefore also
the length of the return values vector) is increased. The length difference is filled with zeros before the
Fourier transform. This can be useful for achieving a higher frequency resolution, or for avoiding circular
aliasing in calculations with inverse transformation in the time domain. Despite the higher frequency
resolution, however, the result contains no more information.

Memory properties

PLC API

TF3600 127Version: 1.5

Since the Overlap-Add method is used, in each case the current input buffer together with the two last
transferred buffers is used for the calculation.

This delay effect may also be enlarged when using some window functions with a wide overlap (nOverlap)
when calculating the power spectrum.

NaN occurrence

If the input vector contains one or more NaN (Not a Number) values, the entire output sector is filled with
NaN. See separate section for further information on NaN values [} 62].

Handling of NaN values
If the situations described above, which lead to NaN values, cannot be ruled out or safely ne-
glected, the application program must be able to handle these error values.

Behavior when processing multi-channel input data

When processing several channels (nChannels > 1), there is a possibility of each channel having different
return values. In this case, return values can be queried separately on the function block. If the results from
one or more channels are impermissible, but not all channels, the value on the function block corresponds to
eCM_InfRTime_AmbiguousChannelResults. If the results of all channels are impermissible, then the
value on the function block corresponds to eCM_ErrRTime_ErrornousChannelResults.

A list of return values of all channels can be queried using the method GetChannelErrors().

Sample implementation

A sample implementation is available under the following link: Envelope spectrum [} 275].

Inputs and outputs

The input and output buffers correspond to one of the following definitions (input / output shape). The
variable parameters are part of the function block input stInitPars.

Versions Input buffer (MultiArray input
stream)
Element type, number of dimen-
sions, dimension sizes

Output buffer (MultiArray output
stream)
Element type, number of dimen-
sions, dimension sizes

Standard version
(nChannels = 1)

LREAL, 1,
nWindowLength-nOverlap

LREAL, 1,
nFFT_Length/2+1

Multi-channel version
(nChannels > 1)

LREAL, 2,
nChannels x nWindowLength-
nOverlap

LREAL, 2,
nChannels x nFFT_Length/2+1

VAR_INPUT
 stInitPars : ST_CM_EnvelopeSpectrum_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be
initialized for results (0 for no initialization)
 tTransferTimeout : LTIME := LTIME#500US; // timeout checking off during access to
inter-task FIFOs
END_VAR

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (Alternatively: Init() method). They may only be assigned once. A
change at runtime is not possible.

• stInitPars: Function-block-specific structure with initialization parameters of the type
ST_CM_EnvelopeSpectrum_InitPars [} 219]. The parameters must correlate to the above definition of
the input and output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

PLC API

TF3600128 Version: 1.5

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

• tTransferTimeout: Setting of the synchronous timeout for internal MultiArray forwardings. See
section Parallel processing [} 63].

Output parameters
VAR_OUTPUT
 bError : BOOL; // TRUE if an error occurs. Reset by next metho
d call.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/
info
 ipErrorMessage : I_TcMessage := fbErrorMessage; // Shows detailed information about occurred er
rors, warnings and more.
 nCntResults : ULINT; // Counts outgoing results (MultiArrays were ca
lculated and sent to transfer tray).
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281].
• ipErrorMessage: Contains more detailed information on the current return value. Refer here to the

section PLC API [} 72]. This special interface pointer is internally secured so that it is always valid/
assigned.

Methods
METHOD Init : HRESULT
VAR_INPUT
 stInitPars : ST_CM_EnvelopeSpectrum_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be init
ialized for results (0 for no initialization)
END_VAR

Call():

The method is called each cycle in order to apply the algorithm to the current input data. The function block
waits for input data if the method indicates neither new results nor an error. This is a regular behavior in the
process of the analysis chain.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD Call : HRESULT
VAR_OUTPUT
 bNewResult : BOOL; // TRUE every time when outgoing MultiArray was calculated and sent t
o transfer tray.
 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no MultiArray buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

Init():

PLC API

TF3600 129Version: 1.5

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the
PLC. It cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
'call_after_init' (see TwinCAT PLC reference). In addition, this facilitates the function block
encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

• stInitPars: Function-block-specific structure with initialization parameters of the type
ST_CM_EnvelopeSpectrum_InitPars [} 219]. The parameters must correlate to the above definition of
the input and output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

ResetData():

The method deletes all data records that have already been added, see Memory property of the function
block. If the Call() method is called again after a ResetData(), the internal memory must be replenished
in order to calculate a valid result.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD ResetData : HRESULT
VAR_INPUT
END_VAR

PassInputs():

As long as an FB_CMA_Source instance is called and signal data are thus transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically as explained in the API PLC Reference
[} 70].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. The function block must be called cyclically, but
it is sufficient for the data arriving at the function block to be forwarded in the communication ring [} 63]. This
is done using the PassInputs() method in place of the Call() method. The algorithm itself is not called
here, and accordingly no result is calculated and no output buffer generated.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

GetChannelErrors():

The method enables the querying of a list of the channel-specific return values when processing several
channels (nChannels > 1). A call is useful in the case that the return value of the function block
corresponds to one of the values eCM_InfRTime_AmbiguousChannelResults or
eCM_ErrRTime_ErrornousChannelResults.

• Return value: Information on the reading process of the list of error codes. The value is set to TRUE if
the query was successful, otherwise to FALSE.

METHOD GetChannelErrors : BOOL
VAR_IN_OUT
 aChannelErrors : ARRAY[*] OF HRESULT;
END_VAR

PLC API

TF3600130 Version: 1.5

• aChannelErrors: Error list of the type HRESULT of the length nChannels.

Similar function blocks

The function block FB_CMA_Envelope [} 122] calculates the envelope of a time series.

The FB_CMA_PowerSpectrum [} 165] block calculates the power spectrum by means of squaring of the
values in the last step.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base

Limited functional scope already available with CM 3.1. See section Compatibility [} 52].

5.1.15 FB_CMA_HistArray

Calculates the frequency distribution for single and multi-channel real-valued time series.

The function block FB_CMA_HistArray calculates the frequency distribution (called histogram in the graphic
display) of single-channel and also multi-channel real-valued input data. Each channel is considered
independently. The frequency distribution of the cyclically incoming data buffer is calculated for every single
channel, both individual values and arrays being allowed as input buffers.

The lower and upper limits as well as the number of classes (also called bins) are transferred for the
parameterization. The individual class limits are then distributed in identical intervals across the so defined
total range, see Statistical analysis [} 27]. Values that lie below the lower limit and values that lie above the
upper limit are each counted in two additional bins.

The return value is a two-dimensional array with unsigned 64-bit integer values. The first index is the number
of the channel and the second index is the number of the histogram bin concerned. The counts of the
elements with a value below the lower limit value or above the upper limit value are contained in the first or
last bin respectively.

If a histogram counter exceeds a value of 2 to the power of 64, approx. 1.8E19, in the current
implementation the counter overruns without generating an error message. With a counting step of 100
microseconds, this would happen after 59 million years at the earliest.

Memory properties

The sample quantity N, which is used to calculate the current result, automatically increases with each new
incoming data set, i.e. the function block uses all input values since its instantiation. Resetting of the sample
quantity to zero (deleting the internal memory of the FB) is provided by a ResetData() method or, if the
CallEx() method is used, by the variable bResetData.

Configuration

The initialization parameters specify the limits for counting samples in the regular histogram bins. They can
be individually adjusted for each channel with the Configure() method.

NaN occurrence

If a set of input values contains the special constant NaN, no value is added to the statistics for this channel
for this time step, i.e. it is treated as indicator for missing values. No NaN values are expected at the output.

Behavior when processing multi-channel input data

PLC API

TF3600 131Version: 1.5

When processing several channels (nChannels > 1), there is a possibility of each channel having different
return values. In this case, return values can be queried separately on the function block. If the results from
one or more channels are impermissible, but not all channels, the value on the function block corresponds to
eCM_InfRTime_AmbiguousChannelResults. If the results of all channels are impermissible, then the
value on the function block corresponds to eCM_ErrRTime_ErrornousChannelResults.

A list of return values of all channels can be queried using the method GetChannelErrors().

When processing several subchannels (nSubChannels > 0), particular attention must be paid to the
formatting of the input and output data. If the input data consist of a multi-channel result of an upstream
function block, the value of nChannels must be adopted; further configuration takes place in this case via
the parameter nSubChannels.

Sample: In the statistical consideration (e.g. by FB_CMA_Quantiles) of the frequency channels of a multi-
channel spectrum (e.g. FB_CMA_MagnitudeSpectrum), the value of nChannels must be identical to the
number of input signals; the number of subchannels nSubChannels corresponds to the length of the
spectrum.

Sample implementation

A sample implementation is available under the following link: Histogram [} 254].

Inputs and outputs

The input and output buffers correspond to the following definition (Shape). The variable parameters are part
of the function block input stInitPars.

Versions Input buffer (MultiArray input
stream)
Element type, number of dimen-
sions, dimension sizes

Output buffer (MultiArray output
stream)
Element type, number of dimen-
sions, dimension sizes

Standard version
(nSubChannels = 0)

LREAL, 1,
nChannels

ULINT, 2,
nChannels x nBins+2

Standard version for several data
sets
(nSubChannels = 0)

LREAL, 2,
nChannels x not specified*

ULINT, 2,
nChannels x nBins+2

Multi-channel version
(nSubChannels > 0)

LREAL, 2,
nChannels x nSubChannels

ULINT, 3,
nChannels x nSubChannels x nBin
s+2

Multi-channel version for several
data sets
(nSubChannels > 0)

LREAL, 3,
nChannels x nSubChannels x not
specified*

ULINT, 3,
nChannels x nSubChannels x nBin
s+2

*: The length of this dimension can be selected as desired and can thus adapt itself to the application or to
the output buffer of the preceding algorithm.
VAR_INPUT
 stInitPars : ST_CM_HistArray_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be in
itialized for results (0 for no initialization)
 tTransferTimeout : LTIME := LTIME#500US; // timeout checking off during access to in
ter-task FIFOs
END_VAR

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (Alternatively: Init() method). They may only be assigned once. A
change at runtime is not possible.

• stInitPars: Function-block-specific structure with initialization parameters of the type
ST_CM_HistArray_InitPars [} 220]. The parameters must correlate to the above definition of the input
and output buffers.

PLC API

TF3600132 Version: 1.5

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

• tTransferTimeout: Setting of the synchronous timeout for internal MultiArray forwardings. See
section Parallel processing [} 63].

Output parameters
VAR_OUTPUT
 bError : BOOL; // TRUE if an error occurs. Reset by next metho
d call.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/
info
 ipErrorMessage : I_TcMessage := fbErrorMessage; // Shows detailed information about occurred er
rors, warnings and more.
 nCntResults : ULINT; // Counts outgoing results (MultiArrays were ca
lculated and sent to transfer tray).
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281].
• ipErrorMessage: Contains more detailed information on the current return value. Refer here to the

section PLC API [} 72]. This special interface pointer is internally secured so that it is always valid/
assigned.

Methods

Call():

The method is called each cycle in order to apply the algorithm to the current input data. The function block
waits for input data if the method indicates neither new results nor an error. This is a regular behavior in the
process of the analysis chain.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD Call : HRESULT
VAR_OUTPUT
 bNewResult : BOOL; // TRUE every time when outgoing MultiArray was calculated and sent t
o transfer tray.
 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no MultiArray buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

CallEx() :

The method is called in each cycle in order to calculate the histogram from the input signal. An alternative
method is Call().
The histogram evaluation is generally significantly more computationally demanding than the registration of
new input values. Therefore a use of the method Callex() can considerably shorten the runtime,
depending on the configured parameters, by only calculating statistic results when they are required.

The function block waits for input data if the method indicates neither new results nor an error. This is a
regular behavior in the process of the analysis chain.

PLC API

TF3600 133Version: 1.5

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD CallEx : HRESULT
VAR_INPUT
 nAppendData : UDINT; // count of data buffers which are appended until calculation (1= cal
culate always)
 bResetData : BOOL; // automatic reset of dataset buffer after each calculation
END_VAR
VAR_OUTPUT
 bNewResult : BOOL; // TRUE every time when outgoing MultiArray was calculated and sent
to transfer tray.
 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• nAppendData: Defines how many input data buffers are to be collected before a calculation is carried
out, because several data blocks are preferably added in order to achieve a precise result.

• bResetData: If set, the internal data buffer is completely deleted after calculation.
• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281]. This output is identical to the return value of the
method.

If a timeout occurs or no MultiArray buffer is available for the result, then neither the input data nor
the result data are lost. They are forwarded on the next call.

Configure() :

By calling this method, the histogram arguments can be reconfigured. This allows fine adjustment of the
fMinBinned and fMaxBinned parameters during runtime. The corresponding PLC array must be defined
as follows.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes.

METHOD Configure : HRESULT
VAR_INPUT
 pArg : POINTER TO LREAL; // pointer to 2-dimensional array (LREAL) of arguments
 nArgSize : UDINT; // size of arguments buffer in bytes
END_VAR

The input buffers correspond to one of the following definitions (input shape). The variable parameters are
part of the function block input stInitPars. The two parameters to be configured per channel and
subchannel are [fMinBinned, fMaxBinned].

Versions Input buffer (MultiArray input stream)
Element type, number of dimensions, dimension
sizes

Identical configuration of all channels and
subchannels

LREAL, 1,
2

Channel-specific configuration
(nSubChannels = 0)

LREAL, 2,
nChannels x 2

Subchannel-specific configuration
(nSubChannels > 0)

LREAL, 2,
nSubChannels x 2

Channel and subchannel-specific configuration
(nSubChannels > 0)

LREAL, 3,
nChannels x nSubChannels x 2

METHOD Init : HRESULT
VAR_INPUT
 stInitPars : ST_CM_HistArray_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be initialized for results (
0 for no initialization)
END_VAR

PLC API

TF3600134 Version: 1.5

Init():

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the
PLC. It cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
'call_after_init' (see TwinCAT PLC reference). In addition, this facilitates the function block
encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

• stInitPars: Function-block-specific structure with initialization parameters of the type
ST_CM_HistArray_InitPars [} 220]. The parameters must correlate to the above definition of the input
and output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

ResetData():

The method deletes all data records that have already been added, see Memory property of the function
block. If the Call() method is called again after a ResetData(), the internal memory must be replenished
in order to calculate a valid result.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD ResetData : HRESULT
VAR_INPUT
END_VAR

Alternatively the automatic reset in the method CallEx() can be used.

PassInputs():

As long as an FB_CMA_Source instance is called and signal data are thus transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically as explained in the API PLC Reference
[} 70].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. The function block must be called cyclically, but
it is sufficient for the data arriving at the function block to be forwarded in the communication ring [} 63]. This
is done using the PassInputs() method in place of the Call() method. The algorithm itself is not called
here, and accordingly no result is calculated and no output buffer generated.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

GetChannelErrors():

The method enables the querying of a list of the channel-specific return values when processing several
channels (nChannels > 1). A call is useful in the case that the return value of the function block
corresponds to one of the values eCM_InfRTime_AmbiguousChannelResults or
eCM_ErrRTime_ErrornousChannelResults.

• Return value: Information on the reading process of the list of error codes. The value is set to TRUE if
the query was successful, otherwise to FALSE.

PLC API

TF3600 135Version: 1.5

METHOD GetChannelErrors : BOOL
VAR_IN_OUT
 aChannelErrors : ARRAY[*] OF HRESULT;
END_VAR

• aChannelErrors: Error list of the type HRESULT of the length nChannels.

Similar function blocks

The FB_CMA_Quantiles [} 169] function block calculates the quantiles of input value distributions.

The FB_CMA_MomentCoefficients [} 151] function block calculates the statistical moment coefficients:
average value, standard deviation, skew and kurtosis.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base

Limited functional scope already available with CM 3.1. See section Compatibility [} 52].

5.1.16 FB_CMA_InstantaneousFrequency

Calculation of the instantaneous frequency of a time signal

The instantaneous frequency in the mathematical sense is defined as temporal derivative of the
instantaneous phase, see FB_CMA_InstantaneousPhase [} 139]. In the time-continuous display, the
instantaneous frequency ω(t) of the signal x(t) is defined as:

The instantaneous frequency can be interpreted as frequency-modulated component of the signal x(t), for
example

In this way the signal x(t) can be transformed into the amplitude- and frequency-modulated representation
through calculation of the instantaneous frequency and the envelope [} 122] .

The function blocks instantaneous phase and instantaneous frequency only provide valid results for signals
without mean values. If a signal with a mean value is to be analyzed, the signal average must be subtracted
beforehand.

The instantaneous frequency is well suited for analyzing torsional vibrations of a crankshaft. Torsional
vibrations can be caused by a fluctuating torque, for example, and result in a frequency modulation on an
otherwise uniform speed.

Note the window length
The value of nWindowLength must be less or equal the value of nFFT_Length. The length of the
FFT can orient itself to the required frequency resolution. Typically a value of about 4/5 of the FFT-
length is often used as the window length.

PLC API

TF3600136 Version: 1.5

If nFFT_Length is greater than nWindowLength, the frequency resolution of the FFT (and therefore also
the length of the return values vector) is increased. The length difference is filled with zeros before the
Fourier transform. This can be useful for achieving a higher frequency resolution, or for avoiding circular
aliasing in calculations with inverse transformation in the time domain. Despite the higher frequency
resolution, however, the result contains no more information.

Memory properties

Since the Overlap-Add method is used, in each case the current input buffer together with the two last
transferred buffers is used for the calculation.

NaN occurrence

If the input vector contains one or more NaN (Not a Number) values, the entire output sector is filled with
NaN. See separate section for further information on NaN values [} 62].

Handling of NaN values
If the situations described above, which lead to NaN values, cannot be ruled out or safely ne-
glected, the application program must be able to handle these error values.

Behavior when processing multi-channel input data

When processing several channels (nChannels > 1), there is a possibility of each channel having different
return values. In this case, return values can be queried separately on the function block. If the results from
one or more channels are impermissible, but not all channels, the value on the function block corresponds to
eCM_InfRTime_AmbiguousChannelResults. If the results of all channels are impermissible, then the
value on the function block corresponds to eCM_ErrRTime_ErrornousChannelResults.

A list of return values of all channels can be queried using the method GetChannelErrors().

Inputs and outputs

The input and output buffers correspond to one of the following definitions (input / output shape). The
variable parameters are part of the function block input stInitPars.

Versions Input buffer (MultiArray input
stream)
Element type, number of dimen-
sions, dimension sizes

Output buffer (MultiArray output
stream)
Element type, number of dimen-
sions, dimension sizes

Standard version
(nChannels = 1)

LREAL, 1,
nWindowLength/2

LREAL, 1,
nWindowLength/2

Multi-channel version
(nChannels > 1)

LREAL, 2,
nChannels x nWindowLength/2

LREAL, 2,
nChannels x nWindowLength/2

VAR_INPUT
 stInitPars : ST_CM_InstantaneousFrequency_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should
 be initialized for results (0 for no initialization)
 tTransferTimeout : LTIME := LTIME#500US; // timeout checking off during access
 to inter-task FIFOs
END_VAR

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (Alternatively: Init() method). They may only be assigned once. A
change at runtime is not possible.

• stInitPars: Function block-specific structure with initialization parameters of type
ST_CM_InstantaneousFrequency_InitPars [} 221]. The parameters must correlate to the above definition
of the input and output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

PLC API

TF3600 137Version: 1.5

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

• tTransferTimeout: Setting of the synchronous timeout for internal MultiArray forwardings. See
section Parallel processing [} 63].

Output parameters
VAR_OUTPUT
 bError : BOOL; // TRUE if an error occurs. Reset by next metho
d call.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/
info
 ipErrorMessage : I_TcMessage := fbErrorMessage; // Shows detailed information about occurred er
rors, warnings and more.
 nCntResults : ULINT; // Counts outgoing results (MultiArrays were ca
lculated and sent to transfer tray).
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281].
• ipErrorMessage: Contains more detailed information on the current return value. Refer here to the

section PLC API [} 72]. This special interface pointer is internally secured so that it is always valid/
assigned.

Methods
METHOD Init : HRESULT
VAR_INPUT
 stInitPars : ST_CM_InstantaneousFrequency_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be initi
alized for results (0 for no initialization)
END_VAR

Call():

The method is called each cycle in order to apply the algorithm to the current input data. The function block
waits for input data if the method indicates neither new results nor an error. This is a regular behavior in the
process of the analysis chain.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD Call : HRESULT
VAR_OUTPUT
 bNewResult : BOOL; // TRUE every time when outgoing MultiArray was calculated and sent t
o transfer tray.
 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no MultiArray buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

Init():

PLC API

TF3600138 Version: 1.5

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the
PLC. It cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
'call_after_init' (see TwinCAT PLC reference). In addition, this facilitates the function block
encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

• stInitPars: Function block-specific structure with initialization parameters of type
ST_CM_InstantaneousFrequency_InitPars [} 221]. The parameters must correlate to the above definition
of the input and output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

ResetData():

The method deletes all data records that have already been added, see Memory property of the function
block. If the Call() method is called again after a ResetData(), the internal memory must be replenished
in order to calculate a valid result.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD ResetData : HRESULT
VAR_INPUT
END_VAR

PassInputs():

As long as an FB_CMA_Source instance is called and signal data are thus transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically as explained in the API PLC Reference
[} 70].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. The function block must be called cyclically, but
it is sufficient for the data arriving at the function block to be forwarded in the communication ring [} 63]. This
is done using the PassInputs() method in place of the Call() method. The algorithm itself is not called
here, and accordingly no result is calculated and no output buffer generated.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

GetChannelErrors():

The method enables the querying of a list of the channel-specific return values when processing several
channels (nChannels > 1). A call is useful in the case that the return value of the function block
corresponds to one of the values eCM_InfRTime_AmbiguousChannelResults or
eCM_ErrRTime_ErrornousChannelResults.

• Return value: Information on the reading process of the list of error codes. The value is set to TRUE if
the query was successful, otherwise to FALSE.

METHOD GetChannelErrors : BOOL
VAR_IN_OUT
 aChannelErrors : ARRAY[*] OF HRESULT;
END_VAR

PLC API

TF3600 139Version: 1.5

• aChannelErrors: Error list of the type HRESULT of the length nChannels.

Similar function blocks

The function block FB_CMA_InstantaneousPhase [} 139] calculates the instantaneous phase of a time signal.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base

Limited functional scope already available with CM 3.1. See section Compatibility [} 52].

5.1.17 FB_CMA_InstantaneousPhase

Calculation of the instantaneous phase of a time signal

The instantaneous phase φ(t) of a signal x(t) is defined via the phase of the analytical signal, see
FB_CMA_AnalyticSignal [} 75]:

The instantaneous phase can be interpreted as phase-modulated component of the signal x(t):

The amplitude-modulated component (envelope) of the signal can also be determined, see
FB_CMA_Envelope [} 122].

The function blocks instantaneous phase and instantaneous frequency only provide valid results for signals
without mean values. If a signal with a mean value is to be analyzed, the signal average must be subtracted
beforehand.

Note the window length
The value of nWindowLength must be less or equal the value of nFFT_Length. The length of the
FFT can orient itself to the required frequency resolution. Typically a value of about 4/5 of the FFT-
length is often used as the window length.

If nFFT_Length is greater than nWindowLength, the frequency resolution of the FFT (and therefore also
the length of the return values vector) is increased. The length difference is filled with zeros before the
Fourier transform. This can be useful for achieving a higher frequency resolution, or for avoiding circular
aliasing in calculations with inverse transformation in the time domain. Despite the higher frequency
resolution, however, the result contains no more information.

Memory properties

Since the Overlap-Add method is used, in each case the current input buffer together with the two last
transferred buffers is used for the calculation.

NaN occurrence

If the input vector contains one or more NaN (Not a Number) values, the entire output sector is filled with
NaN. See separate section for further information on NaN values [} 62].

PLC API

TF3600140 Version: 1.5

Handling of NaN values
If the situations described above, which lead to NaN values, cannot be ruled out or safely ne-
glected, the application program must be able to handle these error values.

Behavior when processing multi-channel input data

When processing several channels (nChannels > 1), there is a possibility of each channel having different
return values. In this case, return values can be queried separately on the function block. If the results from
one or more channels are impermissible, but not all channels, the value on the function block corresponds to
eCM_InfRTime_AmbiguousChannelResults. If the results of all channels are impermissible, then the
value on the function block corresponds to eCM_ErrRTime_ErrornousChannelResults.

A list of return values of all channels can be queried using the method GetChannelErrors().

Inputs and outputs

The input and output buffers correspond to one of the following definitions (input / output shape). The
variable parameters are part of the function block input stInitPars.

Versions Input buffer (MultiArray input
stream)
Element type, number of dimen-
sions, dimension sizes

Output buffer (MultiArray output
stream)
Element type, number of dimen-
sions, dimension sizes

Standard version
(nChannels = 1)

LREAL, 1,
nWindowLength/2

LREAL, 1,
nWindowLength/2

Multi-channel version
(nChannels > 1)

LREAL, 2,
nChannels x nWindowLength/2

LREAL, 2,
nChannels x nWindowLength/2

VAR_INPUT
 stInitPars : ST_CM_InstantaneousPhase_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be
initialized for results (0 for no initialization)
 tTransferTimeout : LTIME := LTIME#500US; // timeout checking off during access to
inter-task FIFOs
END_VAR

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (Alternatively: Init() method). They may only be assigned once. A
change at runtime is not possible.

• stInitPars: Function block-specific structure with initialization parameters of type
ST_CM_InstantaneousPhase_InitPars [} 221]. The parameters must correlate to the above definition of
the input and output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

• tTransferTimeout: Setting of the synchronous timeout for internal MultiArray forwardings. See
section Parallel processing [} 63].

Output parameters
VAR_OUTPUT
 bError : BOOL; // TRUE if an error occurs. Reset by next metho
d call.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/
info
 ipErrorMessage : I_TcMessage := fbErrorMessage; // Shows detailed information about occurred er

PLC API

TF3600 141Version: 1.5

rors, warnings and more.
 nCntResults : ULINT; // Counts outgoing results (MultiArrays were ca
lculated and sent to transfer tray).
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281].
• ipErrorMessage: Contains more detailed information on the current return value. Refer here to the

section PLC API [} 72]. This special interface pointer is internally secured so that it is always valid/
assigned.

Methods
METHOD Init : HRESULT
VAR_INPUT
 stInitPars : ST_CM_InstantaneousPhase_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be initi
alized for results (0 for no initialization)
END_VAR

Call():

The method is called each cycle in order to apply the algorithm to the current input data. The function block
waits for input data if the method indicates neither new results nor an error. This is a regular behavior in the
process of the analysis chain.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD Call : HRESULT
VAR_OUTPUT
 bNewResult : BOOL; // TRUE every time when outgoing MultiArray was calculated and sent t
o transfer tray.
 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no MultiArray buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

Init():

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the
PLC. It cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
'call_after_init' (see TwinCAT PLC reference). In addition, this facilitates the function block
encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

• stInitPars: Function block-specific structure with initialization parameters of type
ST_CM_InstantaneousPhase_InitPars [} 221]. The parameters must correlate to the above definition of
the input and output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

PLC API

TF3600142 Version: 1.5

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

ResetData():

The method deletes all data records that have already been added, see Memory property of the function
block. If the Call() method is called again after a ResetData(), the internal memory must be replenished
in order to calculate a valid result.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD ResetData : HRESULT
VAR_INPUT
END_VAR

PassInputs():

As long as an FB_CMA_Source instance is called and signal data are thus transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically as explained in the API PLC Reference
[} 70].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. The function block must be called cyclically, but
it is sufficient for the data arriving at the function block to be forwarded in the communication ring [} 63]. This
is done using the PassInputs() method in place of the Call() method. The algorithm itself is not called
here, and accordingly no result is calculated and no output buffer generated.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

GetChannelErrors():

The method enables the querying of a list of the channel-specific return values when processing several
channels (nChannels > 1). A call is useful in the case that the return value of the function block
corresponds to one of the values eCM_InfRTime_AmbiguousChannelResults or
eCM_ErrRTime_ErrornousChannelResults.

• Return value: Information on the reading process of the list of error codes. The value is set to TRUE if
the query was successful, otherwise to FALSE.

METHOD GetChannelErrors : BOOL
VAR_IN_OUT
 aChannelErrors : ARRAY[*] OF HRESULT;
END_VAR

• aChannelErrors: Error list of the type HRESULT of the length nChannels.

Similar function blocks

The function block FB_CMA_InstantaneousFrequency [} 135] calculates the instantaneous frequency of a time
signal.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base

Limited functional scope already available with CM 3.1. See section Compatibility [} 52].

PLC API

TF3600 143Version: 1.5

5.1.18 FB_CMA_IntegratedRMS

Calculates (optionally integrated) RMS values for single- and multi-channel real-valued time series.

Calculates the RMS value for single- and multi-channel time series; both the frequency range used and the
integration order of the time series can be defined. For an acceleration signal this results in RMS values for
the vibration acceleration, vibration velocity and the vibration amplitude, each in a defined frequency range.

The function block treats the input signal as a signal with several independent channels. For each channel
the values for up to three different integration orders within the frequency range are integrated over a defined
frequency interval, and the RMS values are then calculated. The function block is suitable for vibration
assessment according to DIN ISO 10816 and DIN ISO 7919 or DIN ISO 20816, see Vibration assessment
[} 33].

The sampling rate and the limits of the integrated intervals can be parameterized. In order to obtain
reproducible scaling, the input signals and the frequencies must be transferred scaled in SI units, i.e. 1 m/
(sec)² for acceleration values and 1/sec = 1 Hz for frequencies. The maximum order of the integration can be
configured between zero and two. The number of integrated RMS values to be calculated is to be specified
by means of (nOrder+1). The result is forwarded as an array of these values with the corresponding
indices.

In many cases the underlying short-term power spectrum is not a good statistical estimator for the spectrum
of a signal, so that the values can fluctuate despite averaging over frequencies. It is therefore advisable to
use a sufficiently large window length. In many cases it may additionally be advisable to reduce the
fluctuation by calculating the geometric mean over several consecutive values.

Memory properties

Due to the use of the Welch method, the current input data buffer, together with the last-transferred buffers,
is used for the calculation. The number of buffers incorporated depends on the selected overlap
(nOverlap).
The frequency analysis takes step changes in the time series into account. In order to achieve a correct
result, therefore, the input data buffers used must be concatenated without gaps and without jumps.

NaN occurrence

If the input vector contains one or more NaN (Not a Number) values, the entire output sector is filled with
NaN. See separate section for further information on NaN values [} 62].

Handling of NaN values
If the situations described above, which lead to NaN values, cannot be ruled out or safely ne-
glected, the application program must be able to handle these error values.

Behavior when processing multi-channel input data

When processing several channels (nChannels > 1), there is a possibility of each channel having different
return values. In this case, return values can be queried separately on the function block. If the results from
one or more channels are impermissible, but not all channels, the value on the function block corresponds to
eCM_InfRTime_AmbiguousChannelResults. If the results of all channels are impermissible, then the
value on the function block corresponds to eCM_ErrRTime_ErrornousChannelResults.

A list of return values of all channels can be queried using the method GetChannelErrors().

Inputs and outputs

The input and output buffers correspond to one of the following definitions (input / output shape). The
variable parameters are part of the function block input stInitPars.

PLC API

TF3600144 Version: 1.5

Versions Input buffer (MultiArray input
stream)
Element type, number of dimen-
sions, dimension sizes

Output buffer (MultiArray output
stream)
Element type, number of dimen-
sions, dimension sizes

Standard version
(nMaxBands = 1)

LREAL, 2,
nChannels x nWindowLength-
nOverlap

LREAL, 2,
nChannels x nOrder+1

Versions for several frequency
bands
(nMaxBands > 1)

LREAL, 2,
nChannels x nWindowLength-
nOverlap

LREAL, 3,
nChannels x nOrder
+1 x nMaxBands

VAR_INPUT
 stInitPars : ST_CM_IntegratedRMS_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be in
itialized for results (0 for no initialization)
 tTransferTimeout : LTIME := LTIME#500US; // timeout checking off during access to in
ter-task FIFOs
END_VAR

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (Alternatively: Init() method). They may only be assigned once. A
change at runtime is not possible.

• stInitPars: Function-block-specific structure with initialization parameters of the type
ST_CM_IntegratedRMS_InitPars [} 222]. The parameters must correlate to the above definition of the
input and output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

• tTransferTimeout: Setting of the synchronous timeout for internal MultiArray forwardings. See
section Parallel processing [} 63].

Output parameters
VAR_OUTPUT
 bError : BOOL; // TRUE if an error occurs. Reset by next metho
d call.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/
info
 ipErrorMessage : I_TcMessage := fbErrorMessage; // Shows detailed information about occurred er
rors, warnings and more.
 nCntResults : ULINT; // Counts outgoing results (MultiArrays were ca
lculated and sent to transfer tray).
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281].
• ipErrorMessage: Contains more detailed information on the current return value. Refer here to the

section PLC API [} 72]. This special interface pointer is internally secured so that it is always valid/
assigned.

Methods

Call():

PLC API

TF3600 145Version: 1.5

The method is called each cycle in order to apply the algorithm to the current input data. The function block
waits for input data if the method indicates neither new results nor an error. This is a regular behavior in the
process of the analysis chain.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD Call : HRESULT
VAR_OUTPUT
 bNewResult : BOOL; // TRUE every time when outgoing MultiArray was calculated and sent t
o transfer tray.
 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no MultiArray buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

Configure():

On calling this method, the frequency bands must be configured at the beginning. The corresponding PLC
array must be defined as follows. The Configure() method can also be used for a new configuration with
a different set of arguments.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD Configure : HRESULT
VAR_INPUT
 pArg : POINTER TO LREAL; // pointer to array (LREAL) of arguments
 nArgSize : UDINT; // size of arguments buffer in bytes
END_VAR

The input buffers correspond to one of the following definitions (input shape). The variable parameters are
part of the function block input stInitPars. The two parameters to be configured per frequency band and
channel are [fLowerFrequencyLimit, fUpperFrequencyLimit].

Versions Input buffer (MultiArray input stream)
Element type, number of dimensions, dimension
sizes

Identical configuration of all channels LREAL, 1,
2

Frequency band-specific configuration
(nMaxBands >= 1)

LREAL, 2,
nMaxClasses x 2

Channel-specific configuration
(nMaxBands = 1)

LREAL, 2,
nChannels x 2

Channel and frequency band-specific configuration LREAL, 3,
nChannels x nMaxBands x 2

METHOD Init : HRESULT
VAR_INPUT
 stInitPars : ST_CM_IntegratedRMS_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be ini
tialized for results (0 for no initialization)
END_VAR

Init():

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the
PLC. It cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
'call_after_init' (see TwinCAT PLC reference). In addition, this facilitates the function block
encapsulation.

PLC API

TF3600146 Version: 1.5

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

• stInitPars: Function-block-specific structure with initialization parameters of the type
ST_CM_IntegratedRMS_InitPars [} 222]. The parameters must correlate to the above definition of the
input and output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

ResetData():

The method deletes all data records that have already been added, see Memory property of the function
block. If the Call() method is called again after a ResetData(), the internal memory must be replenished
in order to calculate a valid result.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD ResetData : HRESULT
VAR_INPUT
END_VAR

PassInputs():

As long as an FB_CMA_Source instance is called and signal data are thus transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically as explained in the API PLC Reference
[} 70].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. The function block must be called cyclically, but
it is sufficient for the data arriving at the function block to be forwarded in the communication ring [} 63]. This
is done using the PassInputs() method in place of the Call() method. The algorithm itself is not called
here, and accordingly no result is calculated and no output buffer generated.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

GetChannelErrors():

The method enables the querying of a list of the channel-specific return values when processing several
channels (nChannels > 1). A call is useful in the case that the return value of the function block
corresponds to one of the values eCM_InfRTime_AmbiguousChannelResults or
eCM_ErrRTime_ErrornousChannelResults.

• Return value: Information on the reading process of the list of error codes. The value is set to TRUE if
the query was successful, otherwise to FALSE.

METHOD GetChannelErrors : BOOL
VAR_IN_OUT
 aChannelErrors : ARRAY[*] OF HRESULT;
END_VAR

• aChannelErrors: Error list of the type HRESULT of the length nChannels.

PLC API

TF3600 147Version: 1.5

Similar function blocks

The function block FB_CMA_MultiBandRMS [} 156] calculates RMS values for single and multi-channel real-
valued time series for configurable frequency bands.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base

Limited functional scope already available with CM 3.1. See section Compatibility [} 52].

5.1.19 FB_CMA_MagnitudeSpectrum

Calculates the magnitude spectrum (also referred to as amplitude spectrum) of a real-valued input
signal.

The function block FB_CMA_MagnitudeSpectrum calculates the magnitude spectrum from a real-valued
input signal. The function block performs several functions, see Analysis of data streams [} 16] and
Frequency analysis [} 34]:

The input data buffer is first overlapped with the immediately preceding buffers and multiplied with a window
function. If the value of parameter nFFT_Length is greater than the parameter nWindowLength, the
windowed time signal is filled with the same number of zeros at the beginning and the end, in order to reach
the required FFT input length (zero padding). Subsequently a FFT for real values is applied, and the absolute
value of the resulting complex values is calculated. If the parameter bTransformToDecibel is TRUE, the
values are transformed to decibel values. These decibel values are the same for magnitude and power
spectra, i.e. the influence of squaring is taken into account in the calculation of the decibel value by a factor
of two for the magnitude spectrum. In addition, the magnitude spectrum can be scaled via the parameter
eScalingType, see Scaling of spectra [} 25].

The FB_CMA_MagnitudeSpectrum function block behaves similar to FB_CMA_PowerSpectrum [} 165]. The
difference is squaring of the results in FB_CMA_PowerSpectrum [} 165].

In many cases the short-term spectrum is not a good statistical estimator for the spectrum of a signal. In
many cases it is advisable to reduce the fluctuation of the estimated values through averaging over several
frequencies or over consecutive spectra.

Scaling

The scaling of the result values, e.g. the acceleration spectral densities matches the definition of the FFT by
default. This means that the influence of the window length and the window function can be eliminated.
Tabulated parameters, which are described in the section "Spectrum Scaling Options [} 286]", can be used
for the arithmetic scaling of absolute measurements.

Memory properties

Due to the use of the Welch method, the current input data buffer, together with the last-transferred buffers,
is used for the calculation. The number of buffers incorporated depends on the selected overlap
(nOverlap).
The frequency analysis takes step changes in the time series into account. In order to achieve a correct
result, therefore, the input data buffers used must be concatenated without gaps and without jumps.

NaN occurrence

If the input vector contains one or more NaN (Not a Number) values, the entire output sector is filled with
NaN. See separate section for further information on NaN values [} 62].

PLC API

TF3600148 Version: 1.5

Handling of NaN values
If the situations described above, which lead to NaN values, cannot be ruled out or safely ne-
glected, the application program must be able to handle these error values.

Behavior when processing multi-channel input data

When processing several channels (nChannels > 1), there is a possibility of each channel having different
return values. In this case, return values can be queried separately on the function block. If the results from
one or more channels are impermissible, but not all channels, the value on the function block corresponds to
eCM_InfRTime_AmbiguousChannelResults. If the results of all channels are impermissible, then the
value on the function block corresponds to eCM_ErrRTime_ErrornousChannelResults.

A list of return values of all channels can be queried using the method GetChannelErrors().

Sample implementation

A sample implementation is available under the following link: Magnitude spectrum: [} 240].

Inputs and outputs

The input and output buffers correspond to one of the following definitions (input / output shape). The
variable parameters are part of the function block input stInitPars.

Versions Input buffer (MultiArray input
stream)
Element type, number of dimen-
sions, dimension sizes

Output buffer (MultiArray output
stream)
Element type, number of dimen-
sions, dimension sizes

Standard version
(nChannels = 1)

LREAL, 1,
nWindowLength-nOverlap

LREAL, 1,
nFFT_Length/2+1

Multi-channel version
(nChannels > 1)

LREAL, 2,
nChannels x nWindowLength-
nOverlap

LREAL, 2,
nChannels x nFFT_Length/2+1

VAR_INPUT
 stInitPars : ST_CM_MagnitudeSpectrum_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be i
nitialized for results (0 for no initialization)
 tTransferTimeout : LTIME := LTIME#500US; // timeout checking off during access to i
nter-task FIFOs
END_VAR

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (Alternatively: Init() method). They may only be assigned once. A
change at runtime is not possible.

• stInitPars: Function-block-specific structure with initialization parameters of the type
ST_CM_MagnitudeSpectrum_InitPars [} 223]. The parameters must correlate to the above definition of
the input and output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

• tTransferTimeout: Setting of the synchronous timeout for internal MultiArray forwardings. See
section Parallel processing [} 63].

Output parameters

PLC API

TF3600 149Version: 1.5

VAR_OUTPUT
 bError : BOOL; // TRUE if an error occurs. Reset by next metho
d call.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/
info
 ipErrorMessage : I_TcMessage := fbErrorMessage; // Shows detailed information about occurred er
rors, warnings and more.
 nCntResults : ULINT; // Counts outgoing results (MultiArrays were ca
lculated and sent to transfer tray).
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281].
• ipErrorMessage: Contains more detailed information on the current return value. Refer here to the

section PLC API [} 72]. This special interface pointer is internally secured so that it is always valid/
assigned.

Methods
METHOD Init : HRESULT
VAR_INPUT
 stInitPars : ST_CM_MagnitudeSpectrum_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be init
ialized for results (0 for no initialization)
END_VAR

Call():

The method is called each cycle in order to apply the algorithm to the current input data. The function block
waits for input data if the method indicates neither new results nor an error. This is a regular behavior in the
process of the analysis chain.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD Call : HRESULT
VAR_OUTPUT
 bNewResult : BOOL; // TRUE every time when outgoing MultiArray was calculated and sent t
o transfer tray.
 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no MultiArray buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

Init():

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the
PLC. It cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
'call_after_init' (see TwinCAT PLC reference). In addition, this facilitates the function block
encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

• stInitPars: Function-block-specific structure with initialization parameters of the type
ST_CM_MagnitudeSpectrum_InitPars [} 223]. The parameters must correlate to the above definition of
the input and output buffers.

PLC API

TF3600150 Version: 1.5

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

ResetData():

The method deletes all data records that have already been added, see Memory property of the function
block. If the Call() method is called again after a ResetData(), the internal memory must be replenished
in order to calculate a valid result.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD ResetData : HRESULT
VAR_INPUT
END_VAR

PassInputs():

As long as an FB_CMA_Source instance is called and signal data are thus transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically as explained in the API PLC Reference
[} 70].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. The function block must be called cyclically, but
it is sufficient for the data arriving at the function block to be forwarded in the communication ring [} 63]. This
is done using the PassInputs() method in place of the Call() method. The algorithm itself is not called
here, and accordingly no result is calculated and no output buffer generated.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

GetChannelErrors():

The method enables the querying of a list of the channel-specific return values when processing several
channels (nChannels > 1). A call is useful in the case that the return value of the function block
corresponds to one of the values eCM_InfRTime_AmbiguousChannelResults or
eCM_ErrRTime_ErrornousChannelResults.

• Return value: Information on the reading process of the list of error codes. The value is set to TRUE if
the query was successful, otherwise to FALSE.

METHOD GetChannelErrors : BOOL
VAR_IN_OUT
 aChannelErrors : ARRAY[*] OF HRESULT;
END_VAR

• aChannelErrors: Error list of the type HRESULT of the length nChannels.

Similar function blocks

The FB_CM_PowerSpectrum [} 165] block calculates the power spectrum by means of squaring of the values
in the last step.

The FB_CMA_PowerCepstrum [} 161] function block calculates a transformation that emphasizes harmonics.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base

PLC API

TF3600 151Version: 1.5

Limited functional scope already available with CM 3.1. See section Compatibility [} 52].

5.1.20 FB_CMA_MomentCoefficients

Calculates the average value, the empirical standard deviation, the skew and the excess for single- and
multi-channel real-valued time series.

The function block treats the input signal as a time series, if necessary with several independent channels.
For each channel the moment coefficients are calculated, optionally up to the fourth order. The maximum
order of the moments to be calculated can be configured via the parameter nOrder. A specific enumeration
for application of the moment coefficients is also available: E_CM_MCoefOrder [} 208]. The result is
forwarded as an array of these coefficients with corresponding indices.

By default no Bessel's correction is applied for the calculation of the empirical standard deviation, the skew
and the excess. In the initialization parameters the correction can optionally be switched on, see
bPopulationEstimates. The parameter should be set to TRUE, in order to obtain results that meet
expectations. The influence of Bessel's correction becomes smaller with increasing sample size. The relative
deviation between the corrected and the non-corrected empirical standard deviation can be determined
unambiguously. The following table provides clues:

Sample size N Relative deviation / %
10 -5.13
100 -0.501
1000 -0,05001
10000 -0,0050001

Output from the function block: The random sample scope N (for all nOrder), the arithmetical mean value
(nOrder = 1), the empirical standard deviation (nOrder = 2), the skew (nOrder = 3), the excess
(nOrder = 4).

Definition of empirically calculated moments

The arithmetic mean value

The empirical standard deviation, without Bessel's correction

The empirical standard deviation, with Bessel's correction

The empirical skew (without Bessel's correction v‘ and with correction v))

PLC API

TF3600152 Version: 1.5

The empirical excess (without Bessel's correction E‘ and with correction E)

The excess E is therefore the difference between the kurtosis K and the value 3; this corresponds to the
kurtosis of the normal distribution. It describes the evaluation of the calculated kurtosis in terms of a normal
distribution.

A single sample per channel (see Inputs and Outputs, first table) can be added in each cycle, and several
samples per channel can be added to the sample quantity in one cycle (see Inputs and Outputs, second
table).

Further comments

The calculation of the standard deviation and higher moments requires a minimum number of sample values.
If Bessel's correction is inactive, the mean value and the standard deviation are calculated for a sample size
of 1. Two values are required for calculating the skew and the excess. If Bessel's correction is active, the
minimum sample size required corresponds to the order (mean value - 1, standard deviation - 2, skew - 3,
excess - 4). In addition, for calculating skew and excess the variance cannot be null.

Results for higher moments may become imprecise, if the input values differ by many orders of magnitude.

Memory properties

The sample quantity N, which is used to calculate the current result, automatically increases with each new
incoming data set, i.e. the function block uses all input values since its instantiation. Resetting of the sample
quantity to zero (deleting the internal memory of the FB) is provided by a ResetData() method or, if the
CallEx() method is used, by the variable bResetData.

NaN occurrence

If the number of input values is insufficient for calculating a result for a particular channel or the variance is
zero, the value NaN (not a number) according to IEC 754 is returned for this channel. The presence of this
error value can be checked with the function LrealIsNaN(). The reason may be that so far not enough input
data were transferred or that only NaNs were transferred as input values for individual channels. A variance
of zero may occur if the time series of the values is constant, for example if no sensor data were transferred
due to a broken wire or switching errors.

If a set of input values contains the special constant NaN, no value is added to the statistics for this channel
for this time step, i.e. it is treated as indicator for missing values.

Handling of NaN values
If the situations described above, which lead to NaN values, cannot be ruled out or safely ne-
glected, the application program must be able to handle these error values.

Behavior when processing multi-channel input data

When processing several channels (nChannels > 1), there is a possibility of each channel having different
return values. In this case, return values can be queried separately on the function block. If the results from
one or more channels are impermissible, but not all channels, the value on the function block corresponds to
eCM_InfRTime_AmbiguousChannelResults. If the results of all channels are impermissible, then the
value on the function block corresponds to eCM_ErrRTime_ErrornousChannelResults.

A list of return values of all channels can be queried using the method GetChannelErrors().

PLC API

TF3600 153Version: 1.5

When processing several subchannels (nSubChannels > 0), particular attention must be paid to the
formatting of the input and output data. If the input data consist of a multi-channel result of an upstream
function block, the value of nChannels must be adopted; further configuration takes place in this case via
the parameter nSubChannels.

Sample: In the statistical consideration (e.g. by FB_CMA_Quantiles) of the frequency channels of a multi-
channel spectrum (e.g. FB_CMA_MagnitudeSpectrum), the value of nChannels must be identical to the
number of input signals; the number of subchannels nSubChannels corresponds to the length of the
spectrum.

Inputs and outputs

The input and output buffers correspond to the following definition (Shape). The variable parameters are part
of the function block input stInitPars.

Versions Input buffer (MultiArray input
stream)
Element type, number of dimen-
sions, dimension sizes

Output buffer (MultiArray output
stream)
Element type, number of dimen-
sions, dimension sizes

Standard version
(nSubChannels = 0)

LREAL, 1,
nChannels

LREAL, 2,
nChannels x nOrder+1

Standard version for several data
sets
(nSubChannels = 0)

LREAL, 2,
nChannels x not specified*

LREAL, 2,
nChannels x nOrder+1

Multi-channel version
(nSubChannels > 0)

LREAL, 2,
nChannels x nSubChannels

LREAL, 3,
nChannels x nSubChannels x nOrd
er+1

Multi-channel version for several
data sets
(nSubChannels > 0)

LREAL, 3,
nChannels x nSubChannels x not
specified*

LREAL, 3,
nChannels x nSubChannels x nOrd
er+1

*: The length of this dimension can be selected as desired and can thus adapt itself to the application or to
the output buffer of the preceding algorithm.
VAR_INPUT
 stInitPars : ST_CM_MomentCoefficients_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be
initialized for results (0 for no initialization)
 tTransferTimeout : LTIME := LTIME#500US; // timeout checking off during access to
inter-task FIFOs
END_VAR

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (Alternatively: Init() method). They may only be assigned once. A
change at runtime is not possible.

• stInitPars: Function-block-specific structure with initialization parameters of the type
ST_CM_MomentCoefficients_InitPars [} 224]. The parameters must correlate to the above definition of
the input and output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

• tTransferTimeout: Setting of the synchronous timeout for internal MultiArray forwardings. See
section Parallel processing [} 63].

PLC API

TF3600154 Version: 1.5

Output parameters
VAR_OUTPUT
 bError : BOOL; // TRUE if an error occurs. Reset by next metho
d call.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/
info
 ipErrorMessage : I_TcMessage := fbErrorMessage; // Shows detailed information about occurred er
rors, warnings and more.
 nCntResults : ULINT; // Counts outgoing results (MultiArrays were ca
lculated and sent to transfer tray).
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281].
• ipErrorMessage: Contains more detailed information on the current return value. Refer here to the

section PLC API [} 72]. This special interface pointer is internally secured so that it is always valid/
assigned.

Methods
METHOD Init : HRESULT
VAR_INPUT
 stInitPars : ST_CM_MomentCoefficients_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers: UDINT := 4; // number of MultiArrays which should be ini
tialized for results (0 for no initialization)
END_VAR

Call():

The method is called each cycle in order to apply the algorithm to the current input data. The function block
waits for input data if the method indicates neither new results nor an error. This is a regular behavior in the
process of the analysis chain.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD Call : HRESULT
VAR_OUTPUT
 bNewResult : BOOL; // TRUE every time when outgoing MultiArray was calculated and sent t
o transfer tray.
 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no MultiArray buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

CallEx():

The method is called in each cycle in order to update the internal memory from the input signal. A result is
output only every nAppendData cycles. An alternative method is Call().

The function block waits for input data if the method indicates neither new results nor an error. This is a
regular behavior in the process of the analysis chain.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD CallEx : HRESULT
VAR_INPUT
 nAppendData : UDINT; // count of data buffers which are appended until calculation (1= cal
culate always)
 bResetData : BOOL; // automatic reset of dataset buffer after each calculation
END_VAR
VAR_OUTPUT

PLC API

TF3600 155Version: 1.5

 bNewResult : BOOL; // TRUE every time when outgoing MultiArray was calculated and sent
to transfer tray.
 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• nAppendData: Defines how many input data buffers are to be collected before a calculation is carried
out, because several data blocks are preferably added in order to achieve a precise result.

• bResetData: If set, the internal data buffer is completely deleted after calculation.
• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281]. This output is identical to the return value of the
method.

If a timeout occurs or no MultiArray buffer is available for the result, then neither the input data nor
the result data are lost. They are forwarded on the next call.

Init():

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the
PLC. It cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
'call_after_init' (see TwinCAT PLC reference). In addition, this facilitates the function block
encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

• stInitPars: Function-block-specific structure with initialization parameters of the type
ST_CM_MomentCoefficients_InitPars [} 224]. The parameters must correlate to the above definition of
the input and output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

ResetData():

The method deletes all data records that have already been added, see Memory property of the function
block. If the Call() method is called again after a ResetData(), the internal memory must be replenished
in order to calculate a valid result.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD ResetData : HRESULT
VAR_INPUT
END_VAR

Alternatively the automatic reset in the method CallEx() can be used.

PassInputs():

As long as an FB_CMA_Source instance is called and signal data are thus transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically as explained in the API PLC Reference
[} 70].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. The function block must be called cyclically, but

PLC API

TF3600156 Version: 1.5

it is sufficient for the data arriving at the function block to be forwarded in the communication ring [} 63]. This
is done using the PassInputs() method in place of the Call() method. The algorithm itself is not called
here, and accordingly no result is calculated and no output buffer generated.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

GetChannelErrors():

The method enables the querying of a list of the channel-specific return values when processing several
channels (nChannels > 1). A call is useful in the case that the return value of the function block
corresponds to one of the values eCM_InfRTime_AmbiguousChannelResults or
eCM_ErrRTime_ErrornousChannelResults.

• Return value: Information on the reading process of the list of error codes. The value is set to TRUE if
the query was successful, otherwise to FALSE.

METHOD GetChannelErrors : BOOL
VAR_IN_OUT
 aChannelErrors : ARRAY[*] OF HRESULT;
END_VAR

• aChannelErrors: Error list of the type HRESULT of the length nChannels.

Similar function blocks

The function block FB_CMA_EmpiricalMean [} 108] calculates the empirical average of input values.

The function block FB_CMA_EmpiricalStandardDeviation [} 117] calculates the empirical standard deviation of
input values.

The function block FB_CMA_EmpiricalSkew [} 112] calculates the empirical skew of input values.

The function block FB_CMA_EmpiricalExcess [} 103] calculates the empirical excess of input values.

The FB_CMA_HistArray [} 130] function block calculates the histograms of input value distributions.

The FB_CMA_Quantiles [} 169] function block calculates the quantiles of an empirical distribution, which
enable the frequency of outliers to be assessed.

As an alternative to the kurtosis the FB_CMA_CrestFactor [} 85] function block calculates a different measure
for peakiness (Crest Factor) of a signal, although this is more sensitive to outliers.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base

Limited functional scope already available with CM 3.1. See section Compatibility [} 52].

5.1.21 FB_CMA_MultiBandRMS

Calculated RMS value for single- and multi-channel real-valued time series for configurable frequency
bands

The function block FB_CMA_MultiBandRMS calculates the RMS values of the signals for single and multi-
channel time series in relation to individually configurable frequency bands.

PLC API

TF3600 157Version: 1.5

The number of channels is described via the input stream. The maximum number of frequency bands
configured for a channel and the parameters of the internal Fourier transformation are transferred via
ST_CM_MultiBandRMS_InitPars [} 225]. The frequency bands are configured by calling the Configure()
method.

The function block can be used for monitoring of bearing damage frequencies, for example.

Delimitation to FB_CMA_IntegratedRMS [} 143]:

The function block FB_CMA_IntegratedRMS has additional functionality in that the input time series can be
temporally integrated before the frequency band-limited RMS calculation, optionally up to second order.
Thus, this function block can, for example, directly calculate the RMS value for vibration acceleration,
vibration velocity and vibration displacement for a defined frequency band.

Configuration

A three-dimensional array with values is transferred as the configuration parameters to the Configure()
method of the function block (optionally two-dimensional in the case of a single input channel, otherwise all
channels are configured identically). The lower and upper limits of a frequency band are specified in this
array. The function block then calculates the RMS values for these frequency bands of each channel on the
basis of the input data.

Memory properties

Due to the use of the Welch method, the current input data buffer, together with the last-transferred buffers,
is used for the calculation. The number of buffers incorporated depends on the selected overlap
(nOverlap).
The frequency analysis takes step changes in the time series into account. In order to achieve a correct
result, therefore, the input data buffers used must be concatenated without gaps and without jumps.

NaN occurrence

If the input vector contains one or more NaN (Not a Number) values, the entire output sector is filled with
NaN. See separate section for further information on NaN values [} 62].

Handling of NaN values
If the situations described above, which lead to NaN values, cannot be ruled out or safely ne-
glected, the application program must be able to handle these error values.

Behavior when processing multi-channel input data

When processing several channels (nChannels > 1), there is a possibility of each channel having different
return values. In this case, return values can be queried separately on the function block. If the results from
one or more channels are impermissible, but not all channels, the value on the function block corresponds to
eCM_InfRTime_AmbiguousChannelResults. If the results of all channels are impermissible, then the
value on the function block corresponds to eCM_ErrRTime_ErrornousChannelResults.

A list of return values of all channels can be queried using the method GetChannelErrors().

Sample implementation

A sample implementation is available under the following link: https://infosys.beckhoff.com/content/1033/
TF3600_TC3_Condition_Monitoring/Resources/zip/27021601158728843.zip.

Inputs and outputs

The input and output buffers correspond to one of the following definitions (input / output shape). The
variable parameters are part of the function block input stInitPars. For the processing of any number of
channels (nChannels >= 1) the rule is:

https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/zip/27021601158728843.zip
https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/zip/27021601158728843.zip

PLC API

TF3600158 Version: 1.5

Versions Input buffer (MultiArray input
stream)
Element type, number of dimen-
sions, dimension sizes

Output buffer (MultiArray output
stream)
Element type, number of dimen-
sions, dimension sizes

Standard version
(nMaxBands >= 1)

LREAL, 2,
nChannels x nWindowLength-
nOverlap

LREAL, 2,
nChannels x nMaxBands

VAR_INPUT
 stInitPars : ST_CM_MultiBandRMS_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be in
itialized for results (0 for no initialization)
 tTransferTimeout : LTIME := LTIME#500US; // timeout checking off during access to in
ter-task FIFOs
END_VAR

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (Alternatively: Init() method). They may only be assigned once. A
change at runtime is not possible.

• stInitPars: Function-block-specific structure with initialization parameters of the type
ST_CM_MultiBandRMS_InitPars [} 225]. The parameters must correlate to the above definition of the
input and output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

• tTransferTimeout: Setting of the synchronous timeout for internal MultiArray forwardings. See
section Parallel processing [} 63].

Output parameters
VAR_OUTPUT
 bError : BOOL; // TRUE if an error occurs. Reset by next metho
d call.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/
info
 ipErrorMessage : I_TcMessage := fbErrorMessage; // Shows detailed information about occurred er
rors, warnings and more.
 nCntResults : ULINT; // Counts outgoing results (MultiArrays were ca
lculated and sent to transfer tray).
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281].
• ipErrorMessage: Contains more detailed information on the current return value. Refer here to the

section PLC API [} 72]. This special interface pointer is internally secured so that it is always valid/
assigned.

Methods
METHOD Init : HRESULT
VAR_INPUT
 stInitPars : ST_CM_MultiBandRMS_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be initialized for results
(0 for no initialization)
END_VAR

PLC API

TF3600 159Version: 1.5

Call():

The method is called each cycle in order to apply the algorithm to the current input data. The function block
waits for input data if the method indicates neither new results nor an error. This is a regular behavior in the
process of the analysis chain.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD Call : HRESULT
VAR_OUTPUT
 bNewResult : BOOL; // TRUE every time when outgoing MultiArray was calculated and sent t
o transfer tray.
 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no MultiArray buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

Configure():

On calling this method, the frequency bands must be configured at the beginning. The corresponding PLC
array must be defined as follows. The Configure() method can also be used for a new configuration with
a different set of arguments.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD Configure : HRESULT
VAR_INPUT
 pArg : POINTER TO LREAL; // pointer to array (LREAL) of arguments
 nArgSize : UDINT; // size of arguments buffer in bytes
END_VAR

The input buffers correspond to one of the following definitions (input shape). The variable parameters are
part of the function block input stInitPars. The two parameters to be configured per frequency band and
channel are [fLowerFrequencyLimit, fUpperFrequencyLimit].

Versions Input buffer (MultiArray input stream)
Element type, number of dimensions, dimension
sizes

Identical configuration of all channels LREAL, 1,
2

Frequency band-specific configuration
(nMaxBands >= 1)

LREAL, 2,
nMaxClasses x 2

Channel-specific configuration
(nMaxBands = 1)

LREAL, 2,
nChannels x 2

Channel and frequency band-specific configuration LREAL, 3,
nChannels x nMaxBands x 2

Init():

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the
PLC. It cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
'call_after_init' (see TwinCAT PLC reference). In addition, this facilitates the function block
encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

PLC API

TF3600160 Version: 1.5

• stInitPars: Function-block-specific structure with initialization parameters of the type
ST_CM_MultiBandRMS_InitPars [} 225]. The parameters must correlate to the above definition of the
input and output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

ResetData():

The method deletes all data records that have already been added, see Memory property of the function
block. If the Call() method is called again after a ResetData(), the internal memory must be replenished
in order to calculate a valid result.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD ResetData : HRESULT
VAR_INPUT
END_VAR

PassInputs():

As long as an FB_CMA_Source instance is called and signal data are thus transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically as explained in the API PLC Reference
[} 70].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. The function block must be called cyclically, but
it is sufficient for the data arriving at the function block to be forwarded in the communication ring [} 63]. This
is done using the PassInputs() method in place of the Call() method. The algorithm itself is not called
here, and accordingly no result is calculated and no output buffer generated.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

GetChannelErrors():

The method enables the querying of a list of the channel-specific return values when processing several
channels (nChannels > 1). A call is useful in the case that the return value of the function block
corresponds to one of the values eCM_InfRTime_AmbiguousChannelResults or
eCM_ErrRTime_ErrornousChannelResults.

• Return value: Information on the reading process of the list of error codes. The value is set to TRUE if
the query was successful, otherwise to FALSE.

METHOD GetChannelErrors : BOOL
VAR_IN_OUT
 aChannelErrors : ARRAY[*] OF HRESULT;
END_VAR

• aChannelErrors: Error list of the type HRESULT of the length nChannels.

Similar function blocks

The function block FB_CMA_IntegratedRMS [} 143] has additional functionality in that the input time series
can be temporally integrated before the frequency band-limited RMS calculation, optionally up to second
order.

PLC API

TF3600 161Version: 1.5

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base

Limited functional scope already available with CM 3.1. See section Compatibility [} 52].

5.1.22 FB_CMA_PowerCepstrum

The function block calculates the power cepstrum for a real-valued input signal.

The power cepstrum Cp(τ) is defined as follows, in this case in time-continuous representation:

Accordingly, it is defined as inverse Fourier transformation of the logarithmized power spectrum (see
FB_CMA_PowerSpectrum [} 165]). Forward and inverse transformation bring the result back into the time
range.

The function block is helpful for monitoring of gear units, see Gearbox monitoring [} 46].

In the numerical implementation the PowerSpectrum is calculated first. The input data buffer is overlapped
with the immediately preceding buffers and multiplied with a window function. If the value of parameter
nFFT_Length is greater than the parameter nWindowLength, the windowed time signal is filled with the
same number of zeros at the beginning and the end, in order to reach the required FFT input length (zero
padding). Subsequently a FFT for real values is applied, and the absolute value of the resulting complex
values and the square of the values is calculated. The values are then logarithmized. Before the
logarithmization the argument is compared with the value of the parameter fLogThreshold. If they are
smaller they are set to this value in order to avoid value range errors or the attempt to calculate the logarithm
of zero. This is followed by another inverse Fourier transformation. The result is an array with complex
values.

Evaluation of the complex-valued result
In practice the absolute value, the squared absolute value or only the real part of the complex-val-
ued power cepstrum is evaluated, depending on the application. This has to be implemented by the
user as required.

A number of slightly different definitions exist for the power cepstrum. The definition used here is based on
common definitions by J. Korelus and Robert B. Randall, see Literature notes [} 50].

Differentiation to the complex cepstrum:

The power cepstrum differs from the complex cepstrum, which is defined as logarithmized Fourier back
transformation of a complex signal spectrum. Due to the absolute value calculation the power cepstrum is
less sensitive to the properties of the phase angle of the signal, compared with the complex cepstrum. In
addition, the complex cepstrum directly provides a real-valued result.

Memory properties

Due to the use of the Welch method, the current input data buffer, together with the last-transferred buffers,
is used for the calculation. The number of buffers incorporated depends on the selected overlap
(nOverlap).
The frequency analysis takes step changes in the time series into account. In order to achieve a correct
result, therefore, the input data buffers used must be concatenated without gaps and without jumps.

NaN occurrence

PLC API

TF3600162 Version: 1.5

If the input vector contains one or more NaN (Not a Number) values, the entire output sector is filled with
NaN. See separate section for further information on NaN values [} 62].

Handling of NaN values
If the situations described above, which lead to NaN values, cannot be ruled out or safely ne-
glected, the application program must be able to handle these error values.

Behavior when processing multi-channel input data

When processing several channels (nChannels > 1), there is a possibility of each channel having different
return values. In this case, return values can be queried separately on the function block. If the results from
one or more channels are impermissible, but not all channels, the value on the function block corresponds to
eCM_InfRTime_AmbiguousChannelResults. If the results of all channels are impermissible, then the
value on the function block corresponds to eCM_ErrRTime_ErrornousChannelResults.

A list of return values of all channels can be queried using the method GetChannelErrors().

Sample implementation

A sample implementation is available under the following link: Power cepstrum [} 277].

Inputs and outputs

The input and output buffers correspond to one of the following definitions (input / output shape). The
variable parameters are part of the function block input stInitPars.

Versions Input buffer (MultiArray input
stream)
Element type, number of dimen-
sions, dimension sizes

Output buffer (MultiArray output
stream)
Element type, number of dimen-
sions, dimension sizes

Standard version
(nChannels = 1)

LREAL, 1,
nWindowLength-nOverlap

LCOMPLEX, 1,
nFFT_Length/2+1

Multi-channel version
(nChannels > 1)

LREAL, 2,
nChannels x nWindowLength-
nOverlap

LCOMPLEX, 2,
nChannels x nFFT_Length/2+1

VAR_INPUT
 stInitPars : ST_CM_PowerCepstrum_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be in
itialized for results (0 for no initialization)
 tTransferTimeout : LTIME := LTIME#500US; // timeout checking off during access to in
ter-task FIFOs
END_VAR

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (Alternatively: Init() method). They may only be assigned once. A
change at runtime is not possible.

• stInitPars: Function-block-specific structure with initialization parameters of the type
ST_CM_PowerCepstrum_InitPars [} 226]. The parameters must correlate to the above definition of the
input and output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

PLC API

TF3600 163Version: 1.5

• tTransferTimeout: Setting of the synchronous timeout for internal MultiArray forwardings. See
section Parallel processing [} 63].

Output parameters
VAR_OUTPUT
 bError : BOOL; // TRUE if an error occurs. Reset by next metho
d call.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/
info
 ipErrorMessage : I_TcMessage := fbErrorMessage; // Shows detailed information about occurred er
rors, warnings and more.
 nCntResults : ULINT; // Counts outgoing results (MultiArrays were ca
lculated and sent to transfer tray).
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281].
• ipErrorMessage: Contains more detailed information on the current return value. Refer here to the

section PLC API [} 72]. This special interface pointer is internally secured so that it is always valid/
assigned.

Methods
METHOD Init : HRESULT
VAR_INPUT
 stInitPars : ST_CM_PowerCepstrum_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be initialized for results
 (0 for no initialization)
END_VAR

Call():

The method is called each cycle in order to apply the algorithm to the current input data. The function block
waits for input data if the method indicates neither new results nor an error. This is a regular behavior in the
process of the analysis chain.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD Call : HRESULT
VAR_OUTPUT
 bNewResult : BOOL; // TRUE every time when outgoing MultiArray was calculated and sent t
o transfer tray.
 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no MultiArray buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

Init():

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the
PLC. It cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
'call_after_init' (see TwinCAT PLC reference). In addition, this facilitates the function block
encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

PLC API

TF3600164 Version: 1.5

• stInitPars: Function-block-specific structure with initialization parameters of the type
ST_CM_PowerCepstrum_InitPars [} 226]. The parameters must correlate to the above definition of the
input and output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

ResetData():

The method deletes all data records that have already been added, see Memory property of the function
block. If the Call() method is called again after a ResetData(), the internal memory must be replenished
in order to calculate a valid result.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD ResetData : HRESULT
VAR_INPUT
END_VAR

PassInputs():

As long as an FB_CMA_Source instance is called and signal data are thus transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically as explained in the API PLC Reference
[} 70].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. The function block must be called cyclically, but
it is sufficient for the data arriving at the function block to be forwarded in the communication ring [} 63]. This
is done using the PassInputs() method in place of the Call() method. The algorithm itself is not called
here, and accordingly no result is calculated and no output buffer generated.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

GetChannelErrors():

The method enables the querying of a list of the channel-specific return values when processing several
channels (nChannels > 1). A call is useful in the case that the return value of the function block
corresponds to one of the values eCM_InfRTime_AmbiguousChannelResults or
eCM_ErrRTime_ErrornousChannelResults.

• Return value: Information on the reading process of the list of error codes. The value is set to TRUE if
the query was successful, otherwise to FALSE.

METHOD GetChannelErrors : BOOL
VAR_IN_OUT
 aChannelErrors : ARRAY[*] OF HRESULT;
END_VAR

• aChannelErrors: Error list of the type HRESULT of the length nChannels.

Similar function blocks

The function block FB_CMA_Envelope [} 122] is also suitable for the analysis of pulse-like excitations with
linear and non-linear system components.

PLC API

TF3600 165Version: 1.5

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base

Limited functional scope already available with CM 3.1. See section Compatibility [} 52].

5.1.23 FB_CMA_PowerSpectrum

Calculation of the power spectrum of a real-valued input signal, and optional decibel scaling.

The function block calculates the power spectrum (also referred to as correlogram or periodogram) of a real-
valued input signal. The function block performs several functions, see Analysis of data streams [} 16] and
Frequency analysis [} 34]:

The input data buffer is first overlapped with the immediately preceding buffers and multiplied with a window
function. If the value of parameter nFFT_Length is greater than the parameter nWindowLength, the
windowed time signal is filled with the same number of zeros at the beginning and the end, in order to reach
the required FFT input length (zero padding). Subsequently a FFT for real values is applied, and the absolute
value of the resulting complex values is calculated. If the parameter bTransformToDecibel is TRUE, the
values are transformed to decibel values. These decibel values are the same for magnitude and power
spectra, i.e. the influence of squaring is taken into account in the calculation of the decibel value by a factor
of two for the magnitude spectrum. In addition, the magnitude spectrum can be scaled via the parameter
eScalingType, see Scaling of spectra [} 25].

The FB_CMA_PowerSpectrum function block behaves similar to FB_CMA_MagnitudeSpectrum [} 147]. The
difference is squaring of the results in FB_CMA_PowerSpectrum [} 165].

In many cases the short-term power spectrum is not a good statistical estimator for the spectrum of a signal.
In many cases the fluctuation of the estimated values should be reduced through averaging over several
frequencies or over consecutive spectra.

Scaling

The scaling of the result values, e.g. the acceleration spectral densities matches the definition of the FFT by
default. This means that the influence of the window length and the window function can be eliminated.
Tabulated parameters, which are described in the section "Spectrum Scaling Options [} 286]", can be used
for the arithmetic scaling of absolute measurements.

Memory properties

Due to the use of the Welch method, the current input data buffer, together with the last-transferred buffers,
is used for the calculation. The number of buffers incorporated depends on the selected overlap
(nOverlap).
The frequency analysis takes step changes in the time series into account. In order to achieve a correct
result, therefore, the input data buffers used must be concatenated without gaps and without jumps.

NaN occurrence

If the input vector contains one or more NaN (Not a Number) values, the entire output sector is filled with
NaN. See separate section for further information on NaN values [} 62].

Handling of NaN values
If the situations described above, which lead to NaN values, cannot be ruled out or safely ne-
glected, the application program must be able to handle these error values.

Behavior when processing multi-channel input data

PLC API

TF3600166 Version: 1.5

When processing several channels (nChannels > 1), there is a possibility of each channel having different
return values. In this case, return values can be queried separately on the function block. If the results from
one or more channels are impermissible, but not all channels, the value on the function block corresponds to
eCM_InfRTime_AmbiguousChannelResults. If the results of all channels are impermissible, then the
value on the function block corresponds to eCM_ErrRTime_ErrornousChannelResults.

A list of return values of all channels can be queried using the method GetChannelErrors().

Inputs and outputs

The input and output buffers correspond to one of the following definitions (input / output shape). The
variable parameters are part of the function block input stInitPars.

Versions Input buffer (MultiArray input
stream)
Element type, number of dimen-
sions, dimension sizes

Output buffer (MultiArray output
stream)
Element type, number of dimen-
sions, dimension sizes

Standard version
(nChannels = 1)

LREAL, 1,
nWindowLength-nOverlap

LREAL, 1,
nFFT_Length/2+1

Multi-channel version
(nChannels > 1)

LREAL, 2,
nChannels x nWindowLength-
nOverlap

LREAL, 2,
nChannels x nFFT_Length/2+1

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (Alternatively: Init() method). They may only be assigned once. A
change at runtime is not possible.
VAR_INPUT
 stInitPars : ST_CM_PowerSpectrum_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be in
itialized for results (0 for no initialization)
 tTransferTimeout : LTIME := LTIME#500US; // timeout checking off during access to in
ter-task FIFOs
END_VAR

• stInitPars: Function-block-specific structure with initialization parameters of the type
ST_CM_PowerSpectrum_InitPars [} 227]. The parameters must correlate to the above definition of the
input and output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

• tTransferTimeout: Setting of the synchronous timeout for internal MultiArray forwardings. See
section Parallel processing [} 63].

Output parameters
VAR_OUTPUT
 bError : BOOL; // TRUE if an error occurs. Reset by next metho
d call.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/
info
 ipErrorMessage : I_TcMessage := fbErrorMessage; // Shows detailed information about occurred er
rors, warnings and more.
 nCntResults : ULINT; // Counts outgoing results (MultiArrays were ca
lculated and sent to transfer tray).
END_VAR

• bError: The output is TRUE if an error occurs.

PLC API

TF3600 167Version: 1.5

• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

• ipErrorMessage: Contains more detailed information on the current return value. Refer here to the
section PLC API [} 72]. This special interface pointer is internally secured so that it is always valid/
assigned.

Methods
METHOD Init : HRESULT
VAR_INPUT
 stInitPars : ST_CM_PowerSpectrum_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be initi
alized for results (0 for no initialization)
END_VAR

Call():

The method is called each cycle in order to apply the algorithm to the current input data. The function block
waits for input data if the method indicates neither new results nor an error. This is a regular behavior in the
process of the analysis chain.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD Call : HRESULT
VAR_OUTPUT
 bNewResult : BOOL; // TRUE every time when outgoing MultiArray was calculated and sent t
o transfer tray.
 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no MultiArray buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

Init():

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the
PLC. It cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
'call_after_init' (see TwinCAT PLC reference). In addition, this facilitates the function block
encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

• stInitPars: Function-block-specific structure with initialization parameters of the type
ST_CM_PowerSpectrum_InitPars [} 227]. The parameters must correlate to the above definition of the
input and output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

ResetData():

PLC API

TF3600168 Version: 1.5

The method deletes all data records that have already been added, see Memory property of the function
block. If the Call() method is called again after a ResetData(), the internal memory must be replenished
in order to calculate a valid result.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD ResetData : HRESULT
VAR_INPUT
END_VAR

PassInputs():

As long as an FB_CMA_Source instance is called and signal data are thus transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically as explained in the API PLC Reference
[} 70].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. The function block must be called cyclically, but
it is sufficient for the data arriving at the function block to be forwarded in the communication ring [} 63]. This
is done using the PassInputs() method in place of the Call() method. The algorithm itself is not called
here, and accordingly no result is calculated and no output buffer generated.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

GetChannelErrors():

The method enables the querying of a list of the channel-specific return values when processing several
channels (nChannels > 1). A call is useful in the case that the return value of the function block
corresponds to one of the values eCM_InfRTime_AmbiguousChannelResults or
eCM_ErrRTime_ErrornousChannelResults.

• Return value: Information on the reading process of the list of error codes. The value is set to TRUE if
the query was successful, otherwise to FALSE.

METHOD GetChannelErrors : BOOL
VAR_IN_OUT
 aChannelErrors : ARRAY[*] OF HRESULT;
END_VAR

• aChannelErrors: Error list of the type HRESULT of the length nChannels.

Similar function blocks

The FB_CMA_MagnitudeSpectrum [} 147] function block calculates the magnitude spectrum without squaring
of the values in the last step.

The FB_CMA_PowerCepstrum [} 161] function block calculates a transformation that emphasizes harmonics.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base

Limited functional scope already available with CM 3.1. See section Compatibility [} 52].

PLC API

TF3600 169Version: 1.5

5.1.24 FB_CMA_Quantiles

Calculates the quantile of the input value distribution for single- and multi-channel real-valued
signals.

The function block FB_CMA_Quantiles calculates p-quantiles of single or multi-channel real-valued input
data. Each channel is considered independently.

The function block is initially based on the calculation of a frequency distribution, see FB_CMA_HistArray
[} 130]. The lower and upper limit values and the number of classes (also referred to as bins) of the
frequency distribution are transferred for parameterization. The individual class limits are then distributed in
identical intervals across the so defined total range, see Statistical analysis [} 27]. The cumulative frequency
distribution is then calculated, and from this the configured quantile, see Statistical analysis [} 27]. A further
configuration parameter is the number of quantiles to be calculated for each channel.

The result is a two-dimensional array with real values. The first index is the channel number, the second
index is the number of the respective quantile.

Values that are below the lower limit and values above the upper limit with regard to the classification are
ignored for the quantile calculation. Within an interval the quantile values are interpolated. If the empirical
cumulative frequency distribution is constant section by section, the smallest suitable value is used.

Memory properties

The sample quantity N, which is used to calculate the current result, automatically increases with each new
incoming data set, i.e. the function block uses all input values since its instantiation. Resetting of the sample
quantity to zero (deleting the internal memory of the FB) is provided by a ResetData() method or, if the
CallEx() method is used, by the variable bResetData.

Configuration

A two-dimensional array with values is transferred to the Configure() method of the function block as
configuration parameters. Each value represents the relative frequency for a channel and quantile to be
calculated. The function block then calculates the quantiles for these frequencies for each channel, based on
the input data. The set frequency is 0.5, which corresponds to the median. Alternatively, a one-dimensional
array can be transferred with values for the quantile to be calculated, which are used for all channels.

NaN occurrence

If results are not yet available for a channel, the value NaN (not a number) is returned for this channel.
Reasons may be that no input data have been transferred yet, all data transferred so far are outside the
interval between fMinBinned and fMaxBinned, or only NaNs were transferred as input values for
individual channels.
If a set of input values contains the special constant NaN, no value is added to the statistics for this channel
for this time step, i.e. it is treated as indicator for missing values.

Handling of NaN values
If the situations described above, which lead to NaN values, cannot be ruled out or safely ne-
glected, the application program must be able to handle these error values.

Router memory

The quantile calculation is a statistical calculation based on histograms, which require a lot of memory. The
memory usage depends on the parameters nChannels, nBins and nMaxQuantiles. It is recommended
to keep these parameters as small as possible.

Behavior when processing multi-channel input data

When processing several channels (nChannels > 1), there is a possibility of each channel having different
return values. In this case, return values can be queried separately on the function block. If the results from
one or more channels are impermissible, but not all channels, the value on the function block corresponds to
eCM_InfRTime_AmbiguousChannelResults. If the results of all channels are impermissible, then the
value on the function block corresponds to eCM_ErrRTime_ErrornousChannelResults.

PLC API

TF3600170 Version: 1.5

A list of return values of all channels can be queried using the method GetChannelErrors().

When processing several subchannels (nSubChannels > 0), particular attention must be paid to the
formatting of the input and output data. If the input data consist of a multi-channel result of an upstream
function block, the value of nChannels must be adopted; further configuration takes place in this case via
the parameter nSubChannels.

Sample: In the statistical consideration (e.g. by FB_CMA_Quantiles) of the frequency channels of a multi-
channel spectrum (e.g. FB_CMA_MagnitudeSpectrum), the value of nChannels must be identical to the
number of input signals; the number of subchannels nSubChannels corresponds to the length of the
spectrum.

Sample implementation

A sample implementation is available under the following link: Condition Monitoring with frequency analysis
[} 266].

Inputs and outputs

The input and output buffers correspond to the following definition (Shape). The variable parameters are part
of the function block input stInitPars.

Versions Input buffer (MultiArray input
stream)
Element type, number of dimen-
sions, dimension sizes

Output buffer (MultiArray output
stream)
Element type, number of dimen-
sions, dimension sizes

Standard version
(nSubChannels = 0)

LREAL, 1,
nChannels

LREAL, 2,
nChannels x nMaxQuantiles

Standard version for several data
sets
(nSubChannels = 0)

LREAL, 2,
nChannels x not specified*

LREAL, 2,
nChannels x nMaxQuantiles

Multi-channel version
(nSubChannels > 0)

LREAL, 2,
nChannels x nSubChannels

LREAL, 3,
nChannels x nSubChannels x nMa
xQuantiles

Multi-channel version for several
data sets
(nSubChannels > 0)

LREAL, 3,
nChannels x nSubChannels x not
specified*

LREAL, 3,
nChannels x nSubChannels x nMa
xQuantiles

*: The length of this dimension can be selected as desired and can thus adapt itself to the application or to
the output buffer of the preceding algorithm.
VAR_INPUT
 stInitPars : ST_CM_Quantiles_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be in
itialized for results (0 for no initialization)
 tTransferTimeout : LTIME := LTIME#500US; // timeout checking off during access to in
ter-task FIFOs
END_VAR

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (Alternatively: Init() method). They may only be assigned once. A
change at runtime is not possible.

• stInitPars: Function-block-specific structure with initialization parameters of the type
ST_CM_Quantiles_InitPars [} 228]. The parameters must correlate to the above definition of the input
and output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

PLC API

TF3600 171Version: 1.5

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

• tTransferTimeout: Setting of the synchronous timeout for internal MultiArray forwardings. See
section Parallel processing [} 63].

Output parameters
VAR_OUTPUT
 bError : BOOL; // TRUE if an error occurs. Reset by next metho
d call.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/
info
 ipErrorMessage : I_TcMessage := fbErrorMessage; // Shows detailed information about occurred er
rors, warnings and more.
 nCntResults : ULINT; // Counts outgoing results (MultiArrays were ca
lculated and sent to transfer tray).
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281].
• ipErrorMessage: Contains more detailed information on the current return value. Refer here to the

section PLC API [} 72]. This special interface pointer is internally secured so that it is always valid/
assigned.

Methods

Call():

The method is called each cycle in order to apply the algorithm to the current input data. The function block
waits for input data if the method indicates neither new results nor an error. This is a regular behavior in the
process of the analysis chain.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD Call : HRESULT
VAR_OUTPUT
 bNewResult : BOOL; // TRUE every time when outgoing MultiArray was calculated and sent t
o transfer tray.
 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no MultiArray buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

CallEx() :

The method is called in each cycle in order to calculate quantiles from the input signal. An alternative method
is Call().
The quantile evaluation is generally significantly more computationally demanding than the registration of
new input values. Therefore a use of the method Callex() can considerably shorten the runtime,
depending on the configured parameters, by only calculating statistic results when they are required.

The function block waits for input data if the method indicates neither new results nor an error. This is a
regular behavior in the process of the analysis chain.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

PLC API

TF3600172 Version: 1.5

METHOD CallEx : HRESULT
VAR_INPUT
 nAppendData : UDINT; // count of data buffers which are appended until calculation (1= cal
culate always)
 bResetData : BOOL; // automatic reset of dataset buffer after each calculation
END_VAR
VAR_OUTPUT
 bNewResult : BOOL; // TRUE every time when outgoing MultiArray was calculated and sent
to transfer tray.
 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• nAppendData: Defines how many input data buffers are to be collected before a calculation is carried
out, because several data blocks are preferably added in order to achieve a precise result.

• bResetData: If set, the internal data buffer is completely deleted after calculation.
• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281]. This output is identical to the return value of the
method.

If a timeout occurs or no MultiArray buffer is available for the result, then neither the input data nor
the result data are lost. They are forwarded on the next call.

Configure() :

The quantile arguments must be configured at the beginning with the call of this method. The corresponding
PLC array must be defined as follows. The Configure() method can also be used for a new configuration
with a different set of arguments.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes.

METHOD Configure : HRESULT
VAR_INPUT
 pArg : POINTER TO LREAL; // pointer to 2-dimensional array (LREAL) of arguments
 nArgSize : UDINT; // size of arguments buffer in bytes
END_VAR

The input buffers correspond to one of the following definitions (input shape). The variable parameters are
part of the function block input stInitPars.

Versions Input buffer (MultiArray input stream)
Element type, number of dimensions, dimension
sizes

Identical configuration of all channels and
subchannels

LREAL, 1,
nMaxQuantiles

Channel-specific configuration
(nSubChannels = 0)

LREAL, 2,
nChannels x nMaxQuantiles

Subchannel-specific configuration
(nSubChannels > 0)

LREAL, 2,
nSubChannels x nMaxQuantiles

Channel and subchannel-specific configuration
(nSubChannels > 0)

LREAL, 3,
nChannels x nSubChannels x nMaxQuantiles

METHOD Init : HRESULT
VAR_INPUT
 stInitPars : ST_CM_Quantiles_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be initi
alized for results (0 for no initialization)
END_VAR

Init():

PLC API

TF3600 173Version: 1.5

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the
PLC. It cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
'call_after_init' (see TwinCAT PLC reference). In addition, this facilitates the function block
encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

• stInitPars: Function-block-specific structure with initialization parameters of the type
ST_CM_Quantiles_InitPars [} 228]. The parameters must correlate to the above definition of the input
and output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

ResetData():

The method deletes all data records that have already been added, see Memory property of the function
block. If the Call() method is called again after a ResetData(), the internal memory must be replenished
in order to calculate a valid result.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD ResetData : HRESULT
VAR_INPUT
END_VAR

Alternatively the automatic reset in the method CallEx() can be used.

PassInputs():

As long as an FB_CMA_Source instance is called and signal data are thus transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically as explained in the API PLC Reference
[} 70].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. The function block must be called cyclically, but
it is sufficient for the data arriving at the function block to be forwarded in the communication ring [} 63]. This
is done using the PassInputs() method in place of the Call() method. The algorithm itself is not called
here, and accordingly no result is calculated and no output buffer generated.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

GetChannelErrors():

The method enables the querying of a list of the channel-specific return values when processing several
channels (nChannels > 1). A call is useful in the case that the return value of the function block
corresponds to one of the values eCM_InfRTime_AmbiguousChannelResults or
eCM_ErrRTime_ErrornousChannelResults.

• Return value: Information on the reading process of the list of error codes. The value is set to TRUE if
the query was successful, otherwise to FALSE.

PLC API

TF3600174 Version: 1.5

METHOD GetChannelErrors : BOOL
VAR_IN_OUT
 aChannelErrors : ARRAY[*] OF HRESULT;
END_VAR

• aChannelErrors: Error list of the type HRESULT of the length nChannels.

Similar function blocks

The FB_CMA_HistArray [} 130] function block calculates the histograms of input value distributions.

The FB_CMA_MomentCoefficients [} 151] function block calculates the statistical moment coefficients:
average value, standard deviation, skew and kurtosis.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base

Limited functional scope already available with CM 3.1. See section Compatibility [} 52].

5.1.25 FB_CMA_RealFFT

Calculation of the Fast Fourier Transform (FFT) for real-valued input signals.

The function block FB_CMA_RealFFT calculates the Fourier transformation of the real-valued input signal
x[n] present at the function block. A high-performance FFT algorithm is used. It is possible to calculate the
forward and inverse transformation. The setting is made via the input stInitPars (see inputs and outputs).

Definition of the forward Fourier transform in DFT notation:

Definition of the inverse Fourier transform in DFT notation:

The highest frequency of a component in the input signal should be at the most around half of the sampling
rate of the input signal so that aliasing effects are avoided.

The FFT is defined as the transformation of a cyclically continued signal. This can lead to the determination of
jumps as soon as the cyclically continued signal is not exactly continuous, i.e. the same at the beginning and
end. The function blocks FB_CMA_PowerSpectrum [} 165] and FB_CMA_MagnitudeSpectrum [} 147] avoid
these difficulties by an analysis in overlapping sections multiplied by a window function.

Scaling

For the quantitative evaluation of the spectrum by measurement means, the calculated spectrum is to be
weighted with 1/nFFT_Length for the DC component, i.e. the first array element of the output, and with 2/
nFFT_Length for all other elements of the output. The function block scales during the forward and inverse
transformation in such a way that, in the case of successive forward and inverse transformations, the original
input signal is directly calculated again at the output.

Memory properties

PLC API

TF3600 175Version: 1.5

The function block result is only determined by the current input values, i.e. no past values are taken into
account.

NaN occurrence

If the input vector contains one or more NaN (Not a Number) values, the entire output sector is filled with
NaN. See separate section for further information on NaN values [} 62].

Handling of NaN values
If the situations described above, which lead to NaN values, cannot be ruled out or safely ne-
glected, the application program must be able to handle these error values.

Behavior when processing multi-channel input data

When processing several channels (nChannels > 1), there is a possibility of each channel having different
return values. In this case, return values can be queried separately on the function block. If the results from
one or more channels are impermissible, but not all channels, the value on the function block corresponds to
eCM_InfRTime_AmbiguousChannelResults. If the results of all channels are impermissible, then the
value on the function block corresponds to eCM_ErrRTime_ErrornousChannelResults.

A list of return values of all channels can be queried using the method GetChannelErrors().

Sample implementation

A sample implementation is available under the following link: FFT with real-value input signal [} 236].

Inputs and outputs

The input and output buffers correspond to one of the following definitions (input / output shape). The
variable parameters are part of the function block input stInitPars.

Versions Input buffer (MultiArray input
stream)
Element type, number of dimen-
sions, dimension sizes

Output buffer (MultiArray output
stream)
Element type, number of dimen-
sions, dimension sizes

Standard version
(nChannels = 1)

LREAL, 1,
nFFT_Length

LCOMPLEX, 1,
nFFT_Length/2+1

Version with full spectrum*
(nChannels = 1)

LREAL, 1,
nFFT_Length

LCOMPLEX, 1,
nFFT_Length

Multi-channel version
(nChannels > 1)

LREAL, 2,
nChannels x nFFT_Length

LCOMPLEX, 2,
nChannels x nFFT_Length/2+1

Multi-channel version with full
spectrum*
(nChannels > 1)

LREAL, 2,
nChannels x nFFT_Length

LCOMPLEX, 2,
nChannels x nFFT_Length

*: If the output buffer of the full spectrum is to be output, this can be achieved by negating the parameter
bHalfSpec (:=FALSE).
VAR_INPUT
 stInitPars : ST_CM_RealFFT_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be in
itialized for results (0 for no initialization)
 tTransferTimeout : LTIME := LTIME#500US; // timeout checking off during access to in
ter-task FIFOs
END_VAR

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (Alternatively: Init() method). They may only be assigned once. A
change at runtime is not possible.

PLC API

TF3600176 Version: 1.5

• stInitPars : Function-block structure with initialization parameters of the type ST_CM_RealFFT_InitPars
[} 229]. The parameters must correlate to the above definition of the input and output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

• tTransferTimeout: Setting of the synchronous timeout for internal MultiArray forwardings. See
section Parallel processing [} 63].

Output parameters
VAR_OUTPUT
 bError : BOOL; // TRUE if an error occurs. Reset by next metho
d call.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/
info
 ipErrorMessage : I_TcMessage := fbErrorMessage; // Shows detailed information about occurred er
rors, warnings and more.
 nCntResults : ULINT; // Counts outgoing results (MultiArrays were ca
lculated and sent to transfer tray).
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281].
• ipErrorMessage: Contains more detailed information on the current return value. Refer here to the

section PLC API [} 72]. This special interface pointer is internally secured so that it is always valid/
assigned.

Methods
METHOD Init : HRESULT
VAR_INPUT
 stInitPars : ST_CM_RealFFT_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be initi
alized for results (0 for no initialization)
END_VAR

Call():

The method is called each cycle in order to apply the algorithm to the current input data. The function block
waits for input data if the method indicates neither new results nor an error. This is a regular behavior in the
process of the analysis chain.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD Call : HRESULT
VAR_OUTPUT
 bNewResult : BOOL; // TRUE every time when outgoing MultiArray was calculated and sent t
o transfer tray.
 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no MultiArray buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

Init():

PLC API

TF3600 177Version: 1.5

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the
PLC. It cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
'call_after_init' (see TwinCAT PLC reference). In addition, this facilitates the function block
encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

• stInitPars : Function-block structure with initialization parameters of the type ST_CM_RealFFT_InitPars
[} 229]. The parameters must correlate to the above definition of the input and output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

PassInputs():

As long as an FB_CMA_Source instance is called and signal data are thus transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically as explained in the API PLC Reference
[} 70].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. The function block must be called cyclically, but
it is sufficient for the data arriving at the function block to be forwarded in the communication ring [} 63]. This
is done using the PassInputs() method in place of the Call() method. The algorithm itself is not called
here, and accordingly no result is calculated and no output buffer generated.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

GetChannelErrors():

The method enables the querying of a list of the channel-specific return values when processing several
channels (nChannels > 1). A call is useful in the case that the return value of the function block
corresponds to one of the values eCM_InfRTime_AmbiguousChannelResults or
eCM_ErrRTime_ErrornousChannelResults.

• Return value: Information on the reading process of the list of error codes. The value is set to TRUE if
the query was successful, otherwise to FALSE.

METHOD GetChannelErrors : BOOL
VAR_IN_OUT
 aChannelErrors : ARRAY[*] OF HRESULT;
END_VAR

• aChannelErrors: Error list of the type HRESULT of the length nChannels.

Similar function blocks

The function block FB_CMA_ComplexFFT [} 93] calculates the Fourier transformation of a complex-valued
input signal.

The function block FB_CMA_PowerSpectrum [} 165] calculates the power spectrum of a real-valued input
signal.

PLC API

TF3600178 Version: 1.5

The function block FB_CMA_MagnitudeSpectrum [} 147] calculates the magnitude spectrum of a real-valued
input signal.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base

Limited functional scope already available with CM 3.1. See section Compatibility [} 52].

5.1.26 FB_CMA_RMS

Calculates the temporal RMS value for single and multi-channel real-valued signals.

This function block calculates the temporal RMS of one or more input channels. The RMS is calculated
block-wise over an internal buffer length M.

If this internal buffer is full, the oldest values are replaced by the current ones and a new result is output. The
number of input values to be replaced depends on the MultiArray size set at the source function block
(FB_CMA_Source [} 193]).

Memory properties

For the calculation of the RMS value, nBufferLength values of the time series are stored internally per
channel/subchannel. In a call with smaller input buffer size, fewer values can be transferred. In this case the
buffer content is shifted, and the signal length is filled with the corresponding number of newly transferred
values. If the input buffer is larger than the internal buffer, the latter is filled with the latest values for the
calculation.

NaN occurrence

If the input vector contains one or more NaN (Not a Number) values, the entire output sector is filled with
NaN. See separate section for further information on NaN values [} 62].

The output vector is filled with NaN until the internal buffer has been completely filled with new, valid values.

Handling of NaN values
If the situations described above, which lead to NaN values, cannot be ruled out or safely ne-
glected, the application program must be able to handle these error values.

Behavior when processing multi-channel input data

When processing several channels (nChannels > 1), there is a possibility of each channel having different
return values. In this case, return values can be queried separately on the function block. If the results from
one or more channels are impermissible, but not all channels, the value on the function block corresponds to
eCM_InfRTime_AmbiguousChannelResults. If the results of all channels are impermissible, then the
value on the function block corresponds to eCM_ErrRTime_ErrornousChannelResults.

A list of return values of all channels can be queried using the method GetChannelErrors().

PLC API

TF3600 179Version: 1.5

When processing several subchannels (nSubChannels > 0), particular attention must be paid to the
formatting of the input and output data. If the input data consist of a multi-channel result of an upstream
function block, the value of nChannels must be adopted; further configuration takes place in this case via
the parameter nSubChannels.

Sample: In the statistical consideration (e.g. by FB_CMA_Quantiles) of the frequency channels of a multi-
channel spectrum (e.g. FB_CMA_MagnitudeSpectrum), the value of nChannels must be identical to the
number of input signals; the number of subchannels nSubChannels corresponds to the length of the
spectrum.

Sample implementation

A sample implementation is available under the following link: Time-based RMS [} 250].

Inputs and outputs

The input and output buffers correspond to one of the following definitions (input / output shape). The
variable parameters are part of the function block input stInitPars.

Versions Input buffer (MultiArray input
stream)
Element type, number of dimen-
sions, dimension sizes

Output buffer (MultiArray output
stream)
Element type, number of dimen-
sions, dimension sizes

Standard version for several data
sets
(nSubChannels = 0)

LREAL, 2,
nChannels x not specified*

LREAL, 1,
nChannels

Multi-channel version for several
data sets
(nSubChannels > 0)

LREAL, 3,
nChannels x nSubChannels x not
specified*

LREAL, 2,
nChannels x nSubChannels

*: The length of this dimension can be selected as desired and can thus adapt itself to the application or to
the output buffer of the preceding algorithm.
VAR_INPUT
 stInitPars : ST_CM_RMS_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be in
itialized for results (0 for no initialization)
 tTransferTimeout : LTIME := LTIME#500US; // timeout checking off during access to in
ter-task FIFOs
END_VAR

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (Alternatively: Init() method). They may only be assigned once. A
change at runtime is not possible.

• stInitPars: Function-block-specific structure with initialization parameters of the type
ST_CM_RMS_InitPars [} 229]. The parameters must correlate to the above definition of the input and
output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

• tTransferTimeout: Setting of the synchronous timeout for internal MultiArray forwardings. See
section Parallel processing [} 63].

Output parameters

PLC API

TF3600180 Version: 1.5

VAR_OUTPUT
 bError : BOOL; // TRUE if an error occurs. Reset by next metho
d call.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/
info
 ipErrorMessage : I_TcMessage := fbErrorMessage; // Shows detailed information about occurred er
rors, warnings and more.
 nCntResults : ULINT; // Counts outgoing results (MultiArrays were ca
lculated and sent to transfer tray).
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281].
• ipErrorMessage: Contains more detailed information on the current return value. Refer here to the

section PLC API [} 72]. This special interface pointer is internally secured so that it is always valid/
assigned.

Methods
METHOD Init : HRESULT
VAR_INPUT
 stInitPars : ST_CM_RMS_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be initialized for results (
0 for no initialization)
END_VAR

Call():

The method is called each cycle in order to apply the algorithm to the current input data. The function block
waits for input data if the method indicates neither new results nor an error. This is a regular behavior in the
process of the analysis chain.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD Call : HRESULT
VAR_OUTPUT
 bNewResult : BOOL; // TRUE every time when outgoing MultiArray was calculated and sent t
o transfer tray.
 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no MultiArray buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

Init():

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the
PLC. It cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
'call_after_init' (see TwinCAT PLC reference). In addition, this facilitates the function block
encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

• stInitPars: Function-block-specific structure with initialization parameters of the type
ST_CM_RMS_InitPars [} 229]. The parameters must correlate to the above definition of the input and
output buffers.

PLC API

TF3600 181Version: 1.5

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

ResetData():

The method deletes all data records that have already been added, see Memory property of the function
block. If the Call() method is called again after a ResetData(), the internal memory must be replenished
in order to calculate a valid result.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD ResetData : HRESULT
VAR_INPUT
END_VAR

PassInputs():

As long as an FB_CMA_Source instance is called and signal data are thus transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically as explained in the API PLC Reference
[} 70].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. The function block must be called cyclically, but
it is sufficient for the data arriving at the function block to be forwarded in the communication ring [} 63]. This
is done using the PassInputs() method in place of the Call() method. The algorithm itself is not called
here, and accordingly no result is calculated and no output buffer generated.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

GetChannelErrors():

The method enables the querying of a list of the channel-specific return values when processing several
channels (nChannels > 1). A call is useful in the case that the return value of the function block
corresponds to one of the values eCM_InfRTime_AmbiguousChannelResults or
eCM_ErrRTime_ErrornousChannelResults.

• Return value: Information on the reading process of the list of error codes. The value is set to TRUE if
the query was successful, otherwise to FALSE.

METHOD GetChannelErrors : BOOL
VAR_IN_OUT
 aChannelErrors : ARRAY[*] OF HRESULT;
END_VAR

• aChannelErrors: Error list of the type HRESULT of the length nChannels.

Similar function blocks

The function block FB_CMA_CrestFactor [} 85] calculates the crest factor for each channel for single and
multi-channel time series.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base

PLC API

TF3600182 Version: 1.5

Limited functional scope already available with CM 3.1. See section Compatibility [} 52].

5.1.27 FB_CMA_SparseSpectrum

Calculation of individual spectral values for real-valued input signals

The function block FB_CMA_SparseSpectrum provides a configurable number of individual spectral values,
which are scaled in compliance with the function blocks FB_CMA_RealFFT [} 174],
FB_CMA_MagnitudeSpectrum [} 147] or FB_CMA_PowerSpectrum [} 165]. The DFT coefficients are
calculated

with the Goertzel algorithm. This is more efficient than a radix-2 FFT if the following applies to the number M
of the coefficients to be calculated with a window length L:

Here, N is the next greater power of 2 with respect to the window length L. If only a few/individual spectral
values are required, these can be calculated with the function block, if necessary directly in the (fast)
sampling task, so that spontaneous changes in the spectrum can be reacted to more quickly.

The highest frequency of a component in the input signal should be at the most around half of the sampling
rate of the input signal so that aliasing effects are avoided.

The function block performs several functions, see Analysis of data streams [} 16] and Frequency analysis
[} 34].

The input data buffer is first overlapped with the immediately preceding buffers and multiplied with a window
function. The DFT coefficients are then calculated using the Goertzel algorithm. The parameter
eSpectrumType defines whether the absolute magnitude or its square is calculated from the resulting
complex values. If the parameter bTransformToDecibel is TRUE, the values are transformed to decibel
values if magnitude or power values have been calculated. These decibel values are the same for both
spectral values, i.e. the influence of the squaring with the power values is taken into account in the
calculation of decibel values by a factor of two for the magnitude values. Furthermore, scaling of the results
is feasible via the parameter eScalingType, see Scaling of spectra [} 25].

Scaling

The scaling of the result values, e.g. the acceleration spectral densities matches the definition of the FFT by
default. This means that the influence of the window length and the window function can be eliminated.
Tabulated parameters, which are described in the section "Spectrum Scaling Options [} 286]", can be used
for the arithmetic scaling of absolute measurements.

Memory properties

Due to the use of the Welch method, the current input data buffer, together with the last-transferred buffers,
is used for the calculation. The number of buffers incorporated depends on the selected overlap
(nOverlap).
The frequency analysis takes step changes in the time series into account. In order to achieve a correct
result, therefore, the input data buffers used must be concatenated without gaps and without jumps.

NaN occurrence

PLC API

TF3600 183Version: 1.5

If the input vector contains one or more NaN (Not a Number) values, the entire output sector is filled with
NaN. See separate section for further information on NaN values [} 62].

Handling of NaN values
If the situations described above, which lead to NaN values, cannot be ruled out or safely ne-
glected, the application program must be able to handle these error values.

Behavior when processing multi-channel input data

When processing several channels (nChannels > 1), there is a possibility of each channel having different
return values. In this case, return values can be queried separately on the function block. If the results from
one or more channels are impermissible, but not all channels, the value on the function block corresponds to
eCM_InfRTime_AmbiguousChannelResults. If the results of all channels are impermissible, then the
value on the function block corresponds to eCM_ErrRTime_ErrornousChannelResults.

A list of return values of all channels can be queried using the method GetChannelErrors().

Sample implementation

A sample implementation showing the possible uses of the function block and its configuration is available
under the following link: Calculation of individual spectral values [} 244]

Inputs and outputs

The input and output buffers correspond to one of the following definitions (input / output shape). The
variable parameters are part of the function block input stInitPars.

Versions Input buffer (MultiArray input
stream)
Element type, number of dimen-
sions, dimension sizes

Output buffer (MultiArray output
stream)
Element type, number of dimen-
sions, dimension sizes

Standard variant DFT
(nChannels = 1,
eSpectrumType = eCM_DFT)

LREAL, 1,
nWindowLength-nOverlap

LCOMPLEX, 1,
nBins

Standard variant Spectrum
(nChannels = 1,
eSpectrumType <> eCM_DFT)

LREAL, 1,
nWindowLength-nOverlap

LREAL, 1,
nBins

Multi-channel variant DFT
(nChannels > 1,
eSpectrumType = eCM_DFT)

LREAL, 2,
nChannels x nWindowLength-
nOverlap

LCOMPLEX, 2,
nChannels x nBins

Multi-channel variant Spectrum
(nChannels > 1,
eSpectrumType <> eCM_DFT)

LREAL, 2,
nChannels x nWindowLength-
nOverlap

LREAL, 2,
nChannels x nBins

VAR_INPUT
 stInitPars : ST_CM_SparseSpectrum_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be i
nitialized for results (0 for no initialization)
 tTransferTimeout : LTIME := LTIME#500US; // timeout checking off during access to i
nter-task FIFOs
END_VAR

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (Alternatively: Init() method). They may only be assigned once. A
change at runtime is not possible.

• stInitPars: Function block-specific structure with initialization parameters of the type
ST_CM_SparseSpectrum_InitPars [} 230]. The parameters must correlate to the above definition of the
input and output buffers.

PLC API

TF3600184 Version: 1.5

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

• tTransferTimeout: Setting of the synchronous timeout for internal MultiArray forwardings. See
section Parallel processing [} 63].

Output parameters
VAR_OUTPUT
 bError : BOOL; // TRUE if an error occurs. Reset by next metho
d call.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/
info
 ipErrorMessage : I_TcMessage := fbErrorMessage; // Shows detailed information about occurred er
rors, warnings and more.
 nCntResults : ULINT; // Counts outgoing results (MultiArrays were ca
lculated and sent to transfer tray).
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281].
• ipErrorMessage: Contains more detailed information on the current return value. Refer here to the

section PLC API [} 72]. This special interface pointer is internally secured so that it is always valid/
assigned.

Methods

Call():

The method is called each cycle in order to apply the algorithm to the current input data. The function block
waits for input data if the method indicates neither new results nor an error. This is a regular behavior in the
process of the analysis chain.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD Call : HRESULT
VAR_OUTPUT
 bNewResult : BOOL; // TRUE every time when outgoing MultiArray was calculated and sent t
o transfer tray.
 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no MultiArray buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

Configure():

On calling this method, the spectral values must be configured at the beginning. The DFT index is calculated
for the frequency f to k = f * fSampleRate / nWindowLength. If f is not an integer multiple of the
frequency resolution fSampleRate / nWindowLength, the spectral portions are distributed to two
consecutive spectral values.

The corresponding PLC array must be defined as follows. The Configure() method can also be used for a
new configuration with a different set of arguments.

PLC API

TF3600 185Version: 1.5

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD Configure : HRESULT
VAR_INPUT
 pArg : PVOID; // pointer to array of arguments
 nArgSize : UDINT; // size of arguments buffer in bytes
END_VAR

The input buffers correspond to one of the following definitions (input shape). The variable parameters are
part of the function block input stInitPars.

Versions Input buffer (MultiArray input stream)
Element type, number of dimensions, dimension
sizes

Identical configuration of all channels UDINT, 1,
nBins

Channel-specific configuration
(nChannels > 1)

UDINT, 2,
nChannels x nBins

METHOD Init : HRESULT
VAR_INPUT
 stInitPars : ST_CM_SparseSpectrum_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be init
ialized for results (0 for no initialization)
END_VAR

Init():

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the
PLC. It cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
'call_after_init' (see TwinCAT PLC reference). In addition, this facilitates the function block
encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

• stInitPars: Function block-specific structure with initialization parameters of the type
ST_CM_SparseSpectrum_InitPars [} 230]. The parameters must correlate to the above definition of the
input and output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

ResetData():

The method deletes all data records that have already been added, see Memory property of the function
block. If the Call() method is called again after a ResetData(), the internal memory must be replenished
in order to calculate a valid result.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD ResetData : HRESULT
VAR_INPUT
END_VAR

PassInputs():

PLC API

TF3600186 Version: 1.5

As long as an FB_CMA_Source instance is called and signal data are thus transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically as explained in the API PLC Reference
[} 70].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. The function block must be called cyclically, but
it is sufficient for the data arriving at the function block to be forwarded in the communication ring [} 63]. This
is done using the PassInputs() method in place of the Call() method. The algorithm itself is not called
here, and accordingly no result is calculated and no output buffer generated.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

GetChannelErrors():

The method enables the querying of a list of the channel-specific return values when processing several
channels (nChannels > 1). A call is useful in the case that the return value of the function block
corresponds to one of the values eCM_InfRTime_AmbiguousChannelResults or
eCM_ErrRTime_ErrornousChannelResults.

• Return value: Information on the reading process of the list of error codes. The value is set to TRUE if
the query was successful, otherwise to FALSE.

METHOD GetChannelErrors : BOOL
VAR_IN_OUT
 aChannelErrors : ARRAY[*] OF HRESULT;
END_VAR

• aChannelErrors: Error list of the type HRESULT of the length nChannels.

Similar function blocks

The function block FB_CMA_RealFFT [} 174] calculates the Fast Fourier Transform for real-valued input
signals.

The function block FB_CMA_MagnitudeSpectrum [} 147] calculates the magnitude spectrum of a real-valued
input signal.

The function block FB_CMA_PowerSpectrum [} 165] calculates the power spectrum by means of squaring of
the values in the last step.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base

5.1.28 FB_CMA_Sink

This function block writes data from a MultiArray buffer into an external PLC data buffer.

It contains all the MultiArrays that are transferred to the specified analysis ID. Depending on the analysis
chain the output results can contain NaN values.

NOTE
Exception
Comparisons with NaN (Not a Number) can cause an exception that leads to an execution stop and may
possibly cause machine damage. It is urgently recommended to check the result for NaN before it is pro-
cessed. Or if NaNs are to be processed in the application, the floating point exception must be deactivated
for this task.

PLC API

TF3600 187Version: 1.5

Inputs and outputs
VAR_INPUT
 nOwnID : UDINT; // ID for this FB instance
 tTransferTimeout : LTIME := LTIME#40US; // timeout checking off during access to inter-
task FIFOs
END_VAR

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (Alternatively: Init() method). They may only be assigned once. A
change at runtime is not possible.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• tTransferTimeout: Setting of the synchronous timeout for internal MultiArray forwardings. See
section Parallel processing [} 63].

Output parameters
VAR_OUTPUT
 bError : BOOL; // TRUE if an error occurs. Reset by next metho
d call.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/
info
 ipErrorMessage : I_TcMessage := fbErrorMessage; // Shows detailed information about occurred er
rors, warnings and more.
 nCntResults : ULINT; // Counts outgoing results (MultiArrays were ca
lculated and sent to transfer tray).
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281].
• ipErrorMessage: Contains more detailed information on the current return value. Refer here to the

section PLC API [} 72]. This special interface pointer is internally secured so that it is always valid/
assigned.

Methods

Output1D():

Writes data from a MultiArray into an external one-dimensional data buffer. The function block waits for input
data if the method indicates neither new results nor an error. This is a regular behavior in the process of the
analysis chain.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes.

METHOD Output1D : HRESULT
VAR_INPUT
 pDataOut : POINTER TO BYTE; // address of data buffer
 nDataOutSize : UDINT; // size of data buffer in bytes
 eElementType : E_MA_ElementTypeCode;
 nWorkDim : UDINT:=0; // It designates the dimension in the MultiArray being pro
cessed.
 nElements : UDINT:=0; // optional: default:0->full
 copy; It designates the number of elements to be copied out of the MultiArray.
 pStartIndex : POINTER TO UDINT; (* optional: default:0->internally handled as [0,0,..];
 It designates the index of the first element to be copied
out of the MultiArray.
 If allocated it must point to a onedimensional array of UD
INT with so many elements as dimensions of the MultiArray. *)
 nOptionPars : DWORD; // option mask
END_VAR
VAR_OUTPUT
 bNewResult : BOOL; // TRUE every time when data was written from MultiArray t
o data buffer.
 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

PLC API

TF3600188 Version: 1.5

• eElementType: This input is of the type E_MA_ElementTypeCode. The element type of the specified
MultiArray buffer must correlate to the element type of the specified external data buffer.

• nWorkDim: The dimension of the MultiArray to be processed. These data are copied into the specified
external data buffer. In general the MultiArray is also one-dimensional and nWorkDim:=0, but the
MultiArray can also have additional dimensions, which may not then be copied, however.

• nElements: Specifies the number of elements to be copied from the MultiArray. nElements:=0 has
to be set in order to copy everything. If you are only interested in a certain bandwidth of your result,
however, then it is not necessary to copy the entire data quantity. This also reduces the necessary size
of your specified external data buffer.

• pStartIndex: This is an optional parameter that is useful if the MultiArray has more than one
dimension or if not all elements are to be copied. Specifies the index of the first element that is to be
copied from the MultiArray. If assigned, it must point to a one-dimensional array of UDINT that has as
many elements as the MultiArray has dimensions.

• bNewResult: This output is TRUE each time a new result has been successfully written into the data
buffer.

• bError: This output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, then a descriptive error code of the type HRESULT is displayed.

Possible values are described in the List of error codes. This output is identical to the return value of
the method.
Tip: If a timeout occurs, the input data are not lost. They are processed on the next call.

Output1DStd():

Writes data from a MultiArray into an external one-dimensional data buffer. The function block waits for input
data if the method indicates neither new results nor an error. This is a regular behavior in the process of the
analysis chain.

This method uses default values for the parameters nWorkDim:=0, nElements:=0 and
pStartIndex:=0.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the list of error codes.

METHOD Output1DStd : HRESULT
VAR_INPUT
 pDataOut : POINTER TO BYTE; // address of data buffer
 nDataOutSize : UDINT; // size of data buffer in bytes
 eElementType : E_MA_ElementTypeCode;
 nOptionPars : DWORD; // option mask
END_VAR
VAR_OUTPUT
 bNewResult : BOOL; // TRUE every time when data was written from MultiArray t
o data buffer.
 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• eElementType: This input is of the type E_MA_ElementTypeCode. The element type of the specified
MultiArray buffer must correlate to the element type of the specified external data buffer.

• bNewResult: This output is TRUE each time a new result has been successfully written into the data
buffer.

• bError: This output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, then a descriptive error code of the type HRESULT is displayed.

Possible values are described in the List of error codes. This output is identical to the return value of
the method.
Tip: If a timeout occurs, the input data are not lost. They are processed on the next call.

Output2D():

Writes data from a MultiArray into an external two-dimensional data buffer. If the method is returned with
neither an indication of a new result nor with an error, then the object waits for input data. This is a regular
behavior in the analysis chain.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

PLC API

TF3600 189Version: 1.5

METHOD Output2D : HRESULT
VAR_INPUT
 pDataOut : POINTER TO BYTE; // address of data buffer
 nDataOutSize : UDINT; // size of data buffer in bytes
 eElementType : E_MA_ElementTypeCode;
 nWorkDim0 : UDINT:=0; // It designates the first dimension in the MultiArray being p
rocessed.
 nWorkDim1 : UDINT:=1; // It designates the second dimension in the MultiArray being
processed.
 nElementsDim0 : UDINT:=0; // optional: default:0-
>full copy; It designates the number of elements to be copied out of WorkDim0 of the MultiArray.
 nElementsDim1 : UDINT:=0; // optional: default:0-
>full copy; It designates the number of elements to be copied out of WorkDim1 of the MultiArray.
 pStartIndex : POINTER TO UDINT; (* optional: default:0->internally handled as [0,0,..];
 It designates the index of the first element to be copied out
of the MultiArray.
 If allocated it must point to a onedimensional array of UDINT
with so many elements as dimensions of the MultiArray. *)
 nOptionPars : DWORD; // option mask
END_VAR
VAR_OUTPUT
 bNewResult : BOOL; // TRUE every time when data was written from MultiArray to dat
a buffer.
 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• pDataOut: Address of the external two-dimensional data buffer.

• eElementType: This input is of the type E_MA_ElementTypeCode [} 209]. The element type of the
specified MultiArray buffer must correlate to the element type of the specified external data buffer.

• nWorkDim0: Specifies the first dimension of the MultiArray to be processed. These data are copied
into the first dimension of the specified external data buffer. In general the MultiArray is also two-
dimensional and nWorkDim0:=0, but the MultiArray can also have additional dimensions, which may
not then be copied, however.
E.g.: If the second dimension is to be copied into the first index of the target data buffer, then set
nWorkDim0:=1.

• nWorkDim1: Specifies the second dimension of the MultiArray to be processed. These data are copied
into the second dimension of the specified external data buffer. In general the MultiArray is also two-
dimensional and nWorkDim1:=1, but the MultiArray can also have additional dimensions, which may
not then be copied, however.
E.g.: If the first dimension is to be copied into the second index of the target data buffer, then set
nWorkDim1:=0.

• nElementsDim0: Specifies the number of elements to be copied from nWorkDim0 of the MultiArray.
nElementsDim0:=0 has to be set in order to copy everything. If you are only interested in a certain
bandwidth of your result, however, then it is not necessary to copy the entire data quantity. This also
reduces the necessary size of your specified external data buffer.

• nElementsDim1: Specifies the number of elements to be copied from nWorkDim0 of the MultiArray.
nElementsDim1:=0 has to be set in order to copy everything. If you are only interested in a certain
bandwidth of your result, however, then it is not necessary to copy the entire data quantity. This also
reduces the necessary size of your specified external data buffer.

• pStartIndex: This is an optional parameter that is useful if the MultiArray has more than two
dimensions or if not all elements are to be copied. Specifies the index of the first element that is to be
copied from the MultiArray. If assigned, it must point to a one-dimensional array of UDINT that has as
many elements as the MultiArray has dimensions.

• bNewResult: This output is TRUE each time a new result has been successfully written into the data
buffer.

• bError: This output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, then a descriptive error code of the type HRESULT is displayed.

Possible values are described in the List of error codes [} 281]. This output is identical to the return
value of the method.
Tip: If a timeout occurs, the input data are not lost. They are processed on the next call.

Output2DStd():

PLC API

TF3600190 Version: 1.5

Writes data from a MultiArray into an external two-dimensional data buffer. If the method is returned with
neither an indication of a new result nor with an error, then the object waits for input data. This is a regular
behavior in the analysis chain.

This method uses default values for the parameters nWorkDim0:=0, nWorkDim1:=1,
nElementsDim0:=0, nElementsDim1:=0 and pStartIndex:=0.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD Output2DStd : HRESULT
VAR_INPUT
 pDataOut : POINTER TO BYTE; // address of data buffer
 nDataOutSize : UDINT; // size of data buffer in bytes
 eElementType : E_MA_ElementTypeCode;
 nOptionPars : DWORD; // option mask
END_VAR
VAR_OUTPUT
 bNewResult : BOOL; // TRUE every time when data was written from MultiArray to dat
a buffer.
 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• pDataOut: Address of the external two-dimensional data buffer.

• eElementType: This input is of the type E_MA_ElementTypeCode [} 209]. The element type of the
specified MultiArray buffer must correlate to the element type of the specified external data buffer.

• bNewResult: This output is TRUE each time a new result has been successfully written into the data
buffer.

• bError: This output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, then a descriptive error code of the type HRESULT is displayed.

Possible values are described in the List of error codes [} 281]. This output is identical to the return
value of the method.
Tip: If a timeout occurs, the input data are not lost. They are processed on the next call.

Output3D():

Writes data from a MultiArray into an external three-dimensional data buffer. If the method is returned with
neither an indication of a new result nor with an error, then the object waits for input data. This is a regular
behavior in the analysis chain.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD Output3D : HRESULT
VAR_INPUT
 pDataOut : POINTER TO BYTE; // address of data buffer
 nDataOutSize : UDINT; // size of data buffer in bytes
 eElementType : E_MA_ElementTypeCode;
 nWorkDim0 : UDINT:=0; // It designates the first dimension in the MultiArray being p
rocessed.
 nWorkDim1 : UDINT:=1; // It designates the second dimension in the MultiArray being
processed.
 nWorkDim2 : UDINT:=1; // It designates the third dimension in the MultiArray being p
rocessed.
 nElementsDim0 : UDINT:=0; // optional: default:0-
>full copy; It designates the number of elements to be copied out of WorkDim0 of the MultiArray.
 nElementsDim1 : UDINT:=0; // optional: default:0-
>full copy; It designates the number of elements to be copied out of WorkDim1 of the MultiArray.
 nElementsDim2 : UDINT:=0; // optional: default:0-
>full copy; It designates the number of elements to be copied out of WorkDim2 of the MultiArray.
 pStartIndex : POINTER TO UDINT; (* optional: default:0->internally handled as [0,0,..];
 It designates the index of the first element to be copied out
of the MultiArray.
 If allocated it must point to a onedimensional array of UDINT
with so many elements as dimensions of the MultiArray. *)
 nOptionPars : DWORD; // option mask
END_VAR
VAR_OUTPUT
 bNewResult : BOOL; // TRUE every time when data was written from MultiArray to dat
a buffer.

PLC API

TF3600 191Version: 1.5

 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• pDataOut: Address of the external two-dimensional data buffer.

• eElementType: This input is of the type E_MA_ElementTypeCode [} 209]. The element type of the
specified MultiArray buffer must correlate to the element type of the specified external data buffer.

• nWorkDim0: Specifies the first dimension of the MultiArray to be processed. These data are copied
into the first dimension of the specified external data buffer. In general the MultiArray is also two-
dimensional and nWorkDim0:=0, but the MultiArray can also have additional dimensions, which may
not then be copied, however.
E.g.: If the second dimension is to be copied into the first index of the target data buffer, then set
nWorkDim0:=1.

• nWorkDim1: Specifies the second dimension of the MultiArray to be processed. These data are copied
into the second dimension of the specified external data buffer. In general the MultiArray is also two-
dimensional and nWorkDim1:=1, but the MultiArray can also have additional dimensions, which may
not then be copied, however.
E.g.: If the first dimension is to be copied into the second index of the target data buffer, then set
nWorkDim1:=0.

• nWorkDim2: Specifies the third dimension of the MultiArray to be processed. These data are copied
into the third dimension of the specified external data buffer. In general the MultiArray is also three-
dimensional and nWorkDim2:=2, but the MultiArray can also have additional dimensions, which may
not then be copied, however.
E.g.: If the first dimension is to be copied into the second index of the target data buffer, then set
nWorkDim2:=0.

• nElementsDim0: Specifies the number of elements to be copied from nWorkDim0 of the MultiArray.
nElementsDim0:=0 has to be set in order to copy everything. If you are only interested in a certain
bandwidth of your result, however, then it is not necessary to copy the entire data quantity. This also
reduces the necessary size of your specified external data buffer.

• nElementsDim1: Specifies the number of elements to be copied from nWorkDim1 of the MultiArray.
nElementsDim1:=0 has to be set in order to copy everything. If you are only interested in a certain
bandwidth of your result, however, then it is not necessary to copy the entire data quantity. This also
reduces the necessary size of your specified external data buffer.

• nElementsDim2: Specifies the number of elements to be copied from nWorkDim2 of the MultiArray.
nElementsDim2:=0 has to be set in order to copy everything. If you are only interested in a certain
bandwidth of your result, however, then it is not necessary to copy the entire data quantity. This also
reduces the necessary size of your specified external data buffer.

• pStartIndex: This is an optional parameter that is useful if the MultiArray has more than two
dimensions or if not all elements are to be copied. Specifies the index of the first element that is to be
copied from the MultiArray. If assigned, it must point to a one-dimensional array of UDINT that has as
many elements as the MultiArray has dimensions.

• bNewResult: This output is TRUE each time a new result has been successfully written into the data
buffer.

• bError: This output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, then a descriptive error code of the type HRESULT is displayed.

Possible values are described in the List of error codes [} 281]. This output is identical to the return
value of the method.
Tip: If a timeout occurs, the input data are not lost. They are processed on the next call.

Output3DStd():

Writes data from a MultiArray into an external three-dimensional data buffer. If the method is returned with
neither an indication of a new result nor with an error, then the object waits for input data. This is a regular
behavior in the analysis chain.

This method uses default values for the parameters nWorkDim0:=0, nWorkDim1:=1, nWorkDim2:=2,
nElementsDim0:=0, nElementsDim1:=0, nElementsDim2:=0 and pStartIndex:=0.

PLC API

TF3600192 Version: 1.5

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD Output3DStd : HRESULT
VAR_INPUT
 pDataOut : POINTER TO BYTE; // address of data buffer
 nDataOutSize : UDINT; // size of data buffer in bytes
 eElementType : E_MA_ElementTypeCode;
 nOptionPars : DWORD; // option mask
END_VAR
VAR_OUTPUT
 bNewResult : BOOL; // TRUE every time when data was written from MultiArray to dat
a buffer.
 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• pDataOut: Address of the external two-dimensional data buffer.

• eElementType: This input is of the type E_MA_ElementTypeCode [} 209]. The element type of the
specified MultiArray buffer must correlate to the element type of the specified external data buffer.

• bNewResult: This output is TRUE each time a new result has been successfully written into the data
buffer.

• bError: This output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, then a descriptive error code of the type HRESULT is displayed.

Possible values are described in the List of error codes [} 281]. This output is identical to the return
value of the method.
Tip: If a timeout occurs, the input data are not lost. They are processed on the next call.

METHOD Init : HRESULT
VAR_INPUT
 nOwnID: UDINT; // ID for this FB instance
END_VAR

Init():

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the
PLC. It cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
'call_after_init' (see TwinCAT PLC reference). In addition, this facilitates the function block
encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

PassInputs():

As long as an FB_CMA_Source instance is called and signal data are thus transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically as explained in the API PLC Reference
[} 70].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. The function block must be called cyclically, but
it is sufficient for the data arriving at the function block to be forwarded in the communication ring [} 63]. This
is done using the PassInputs() method in place of the Call() method. The algorithm itself is not called
here, and accordingly no result is calculated and no output buffer generated.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

PLC API

TF3600 193Version: 1.5

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base,

Tc3_MultiArray

5.1.29 FB_CMA_Source

This function block writes data from an external PLC data buffer into a MultiArray buffer.

It accumulates input data continuously, until the maximum size of the MultiArray is reached. Once the
MultiArray is full, it is transferred to the target analysis ID.

An instance of FB_CMA_Source must not be used as target for any other analysis function block. It offers
only source functionality.

A time series collection can be interrupted in the event of an error. Lost signal data can lead to an
unexpected result of the analysis chain, depending on the configuration of the algorithms.

Inputs and outputs

The output buffers correspond to the following definition (Shape). The variable parameters are part of the
function block input stInitPars.

MultiArray in the Element type Dimensions Dimensional variables
output stream eTypeCode nDims aDimSizes

VAR_INPUT
 stInitPars : ST_MA_MultiArray_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be ini
tialized for results (0 for no initialization)
 tTransferTimeout : LTIME := LTIME#40US; // timeout checking off during access to int
er-task FIFOs
END_VAR

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (Alternatively: Init() method). They may only be assigned once. A
change at runtime is not possible.

• stInitPars: Function-block-specific structure of the initialization parameters of the type
ST_MA_MultiArray_InitPars [} 233]. MultiArray buffers are specified for the result buffers. These
parameters must correlate to the above definition of the output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

• tTransferTimeout: Setting of the synchronous timeout for internal MultiArray forwardings. See
section Parallel processing [} 63].

Output parameters
VAR_OUTPUT
 bError : BOOL; // TRUE if an error occurs. Reset by next metho
d call.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/
info
 ipErrorMessage : I_TcMessage := fbErrorMessage; // Shows detailed information about occurred er

PLC API

TF3600194 Version: 1.5

rors, warnings and more.
 nCntResults : ULINT; // Counts outgoing results (MultiArrays were ca
lculated and sent to transfer tray).
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281].
• ipErrorMessage: Contains more detailed information on the current return value. Refer here to the

section PLC API [} 72]. This special interface pointer is internally secured so that it is always valid/
assigned.

Methods

Input1D():

Writes data from an external one-dimensional data buffer into a MultiArray. This method must be called
whenever new input samples are available, usually cyclically.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD Input1D : HRESULT
VAR_INPUT
 pDataIn : POINTER TO BYTE; // address of data buffer (e.g. oversampling data) as one-
dimensional array
 nDataInSize : UDINT; // size of data buffer in bytes
 eElementType : E_MA_ElementTypeCode;
 nWorkDim : UDINT; // It designates the dimension in the multi array being pr
ocessed.
 pStartIndex : POINTER TO UDINT; (* optional: default:0-
>internally handled; It designates the index of the first MultiArray element to be copied.
 If allocated it must point to a onedimensional array of
 UDINT with so many elements as dimensions of the MultiArray.
 Upon successful completion of the copy, corresponding S
tartIndex is incremented by the number of copied elements. *)
 nOptionPars : DWORD; // option mask
END_VAR
VAR_OUTPUT
 bNewResult : BOOL; // TRUE every time when outgoing MultiArray was calculated
 and sent to transfer tray.
 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• pDataIn: The data buffer must contain the data from all channels.

• eElementType: This input is of the type E_MA_ElementTypeCode [} 209]. The element type of the
specified MultiArray buffer (initialization parameters) must match the element type of the specified
external data buffer.

• nWorkDim: Defines the dimension in which the data are accumulated. In general the MultiArray is also
one-dimensional and nWorkDim := 0, but the MultiArray can also have additional dimensions, which
may not then be processed, however.

• pStartIndex: This is an optional parameter, which can be useful if the MultiArray has more than one
dimension. Specifies the index of the first MultiArray element to be copied. If assigned, it must point to
a one-dimensional array of UDINT that has as many elements as the MultiArray has dimensions. After
a successful copy process, the corresponding Start Index is incremented by the number of copied
elements.

• bError: This output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, then a descriptive error code of the type HRESULT is displayed.

Possible values are described in the List of error codes [} 281]. This output is identical to the return
value of the method.

Input1DStd():

Writes data from an external one-dimensional data buffer into a MultiArray. This method must be called
whenever new input samples are available, usually cyclically.

This method uses default values for the parameters nWorkDim := 0 and pStartIndex := 0.

PLC API

TF3600 195Version: 1.5

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD Input1DStd : HRESULT
VAR_INPUT
 pDataIn : POINTER TO BYTE; // address of data buffer (e.g. oversampling data) as one-
dimensional array
 nDataInSize : UDINT; // size of data buffer in bytes
 eElementType : E_MA_ElementTypeCode;
 nOptionPars : DWORD; // option mask
END_VAR
VAR_OUTPUT
 bNewResult : BOOL; // TRUE every time when outgoing MultiArray was calculated
 and sent to transfer tray.
 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• pDataIn: The data buffer must contain the data from all channels.

• eElementType: This input is of the type E_MA_ElementTypeCode [} 209]. The element type of the
specified MultiArray buffer (initialization parameters) must match the element type of the specified
external data buffer.

• bError: This output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, then a descriptive error code of the type HRESULT is displayed.

Possible values are described in the List of error codes [} 281]. This output is identical to the return
value of the method.

Input2D():

Writes data from an external two-dimensional data buffer into a MultiArray. This method must be called
whenever new input samples are available, usually cyclically.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD Input2D : HRESULT
VAR_INPUT
 pDataIn : POINTER TO BYTE; // address of data buffer (e.g. oversampling data) as twod
imensional array (e.g.[1..channels,1..oversamples])
 nDataInSize : UDINT; // size of data buffer in bytes
 eElementType : E_MA_ElementTypeCode;
 nWorkDim0 : UDINT:=0; // It designates the first dimension in the MultiArray bei
ng processed. (e.g. 1..channels)
 nWorkDim1 : UDINT:=1; // It designates the second dimension in the MultiArray be
ing processed.
 pStartIndex : POINTER TO UDINT; (* optional: default:0->
internally handled; It designates the index of the first MultiArray element to be copied.
 If allocated it must point to a onedimensional array of
 UDINT with so many elements as dimensions of the MultiArray.
 Upon successful completion of the copy, corresponding S
tartIndex is incremented by the number of copied elements. *)
 nOptionPars : DWORD; // option mask
END_VAR
VAR_OUTPUT
 bNewResult : BOOL; // TRUE every time when outgoing MultiArray was calculated
 and sent to transfer tray.
 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• pDataIn: The data buffer must contain the data from all channels.

• eElementType: This input is of the type E_MA_ElementTypeCode [} 209]. The element type of the
specified MultiArray buffer (initialization parameters) must match the element type of the specified
external data buffer.

• nWorkDim0: Defines the dimension that matches the number of channels. In general the MultiArray is
also two-dimensional and nWorkDim0 := 0, but the MultiArray can also have additional dimensions,
which may not then be processed, however.
E.g.: If the first index of the specified data buffer stands for the channels, while the second dimension
of the MultiArray counts the channels, then set nWorkDim0:=1.

PLC API

TF3600196 Version: 1.5

• nWorkDim1: Defines the dimension in which the data are accumulated. In general the MultiArray is
also two-dimensional and nWorkDim1 := 1, but the MultiArray can also have additional dimensions,
which may not then be processed, however.
E.g.: If the second index of the specified data buffer stands for the accumulated data, while the first
dimension of the MultiArray collects the data, then set nWorkDim1 := 0.

• pStartIndex: This is an optional parameter, which can be useful if the MultiArray has more than two
dimensions. Specifies the index of the first MultiArray element to be copied. If assigned, it must point to
a one-dimensional array of UDINT that has as many elements as the MultiArray has dimensions. After
a successful copy process, the corresponding Start Index is incremented by the number of copied
elements.

• bError: This output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, then a descriptive error code of the type HRESULT is displayed.

Possible values are described in the List of error codes [} 281]. This output is identical to the return
value of the method.

Input2DStd():

Writes data from an external two-dimensional data buffer into a MultiArray. This method must be called
whenever new input samples are available, usually cyclically.

This method uses default values for the parameters nWorkDim0 := 0, nWorkDim1 := 1 and
pStartIndex := 0.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD Input2DStd : HRESULT
VAR_INPUT
 pDataIn : POINTER TO BYTE; // address of data buffer (e.g. oversampling data) as twod
imensional array (e.g.[1..channels,1..oversamples])
 nDataInSize : UDINT; // size of data buffer in bytes
 eElementType : E_MA_ElementTypeCode;
 nOptionPars : DWORD; // option mask
END_VAR
VAR_OUTPUT
 bNewResult : BOOL; // TRUE every time when outgoing MultiArray was calculated
 and sent to transfer tray.
 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• pDataIn: The data buffer must contain the data from all channels.

• eElementType: This input is of the type E_MA_ElementTypeCode [} 209]. The element type of the
specified MultiArray buffer (initialization parameters) must match the element type of the specified
external data buffer.

• bError: This output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, then a descriptive error code of the type HRESULT is displayed.

Possible values are described in the List of error codes [} 281]. This output is identical to the return
value of the method.

Input3D():

Writes data from an external three-dimensional data buffer into a MultiArray. This method must be called
whenever new input samples are available, usually cyclically.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD Input2D : HRESULT
VAR_INPUT
 pDataIn : POINTER TO BYTE; // address of data buffer (e.g. oversampling data) as twod
imensional array (e.g.[1..channels,1..oversamples])
 nDataInSize : UDINT; // size of data buffer in bytes
 eElementType : E_MA_ElementTypeCode;
 nWorkDim0 : UDINT:=0; // It designates the first dimension in the MultiArray bei
ng processed. (e.g. 1..channels)
 nWorkDim1 : UDINT:=1; // It designates the second dimension in the MultiArray be
ing processed.

PLC API

TF3600 197Version: 1.5

 nWorkDim2 : UDINT:=2; // It designates the third dimension in the MultiArray bei
ng processed.
 pStartIndex : POINTER TO UDINT; (* optional: default:0->
internally handled; It designates the index of the first MultiArray element to be copied.
 If allocated it must point to a onedimensional array of
 UDINT with so many elements as dimensions of the MultiArray.
 Upon successful completion of the copy, corresponding S
tartIndex is incremented by the number of copied elements. *)
 nOptionPars : DWORD; // option mask
END_VAR
VAR_OUTPUT
 bNewResult : BOOL; // TRUE every time when outgoing MultiArray was calculated
 and sent to transfer tray.
 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• pDataIn: The data buffer must contain the data from all channels.

• eElementType: This input is of the type E_MA_ElementTypeCode [} 209]. The element type of the
specified MultiArray buffer (initialization parameters) must match the element type of the specified
external data buffer.

• nWorkDim0: Defines the dimension that matches the number of channels. In general the MultiArray is
also two-dimensional and nWorkDim0 := 0, but the MultiArray can also have additional dimensions,
which may not then be processed, however.
E.g.: If the first index of the specified data buffer stands for the channels, while the second dimension
of the MultiArray counts the channels, then set nWorkDim0 := 1.

• nWorkDim1: Defines the dimension that corresponds to the number of subchannels. In general, the
MultiArray is also three-dimensional and nWorkDim0 := 0 and nWorkDim1 := 1, but the MultiArray
may also have additional dimensions, which may not then be processed, however.
E.g.: If the second index of the specified data buffer stands for the subchannels, while the third
dimension of the MultiArray counts the subchannels, then set nWorkDim1 := 2.

• nWorkDim2: Defines the dimension in which the data are accumulated. In general the MultiArray is
also two-dimensional and nWorkDim1 := 1, but the MultiArray can also have additional dimensions,
which may not then be processed, however.
E.g.: If the second index of the specified data buffer stands for the accumulated data, while the first
dimension of the MultiArray collects the data, then set nWorkDim1 := 0.

• pStartIndex: This is an optional parameter, which can be useful if the MultiArray has more than two
dimensions. Specifies the index of the first MultiArray element to be copied. If assigned, it must point to
a one-dimensional array of UDINT that has as many elements as the MultiArray has dimensions. After
a successful copy process, the corresponding Start Index is incremented by the number of copied
elements.

• bError: This output is TRUE if an error occurs.

hrErrorCode: If an error occurs, then a descriptive error code of the type HRESULT is displayed. Possible
values are described in the List of error codes [} 281]. This output is identical to the return value of the
method.

Input3DStd():

Writes data from an external three-dimensional data buffer into a MultiArray. This method must be called
whenever new input samples are available, usually cyclically.

This method uses default values for the parameters nWorkDim0 := 0, nWorkDim1 := 1,
nWorkDim2 := 2 and pStartIndex := 0.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD Input2DStd : HRESULT
VAR_INPUT
 pDataIn : POINTER TO BYTE; // address of data buffer (e.g. oversampling data) as twod
imensional array (e.g.[1..channels,1..oversamples])
 nDataInSize : UDINT; // size of data buffer in bytes
 eElementType : E_MA_ElementTypeCode;
 nOptionPars : DWORD; // option mask
END_VAR
VAR_OUTPUT

PLC API

TF3600198 Version: 1.5

 bNewResult : BOOL; // TRUE every time when outgoing MultiArray was calculated
 and sent to transfer tray.
 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• pDataIn: The data buffer must contain the data from all channels and subchannels.

• eElementType: This input is of the type E_MA_ElementTypeCode [} 209]. The element type of the
specified MultiArray buffer (initialization parameters) must match the element type of the specified
external data buffer.

• bError: This output is TRUE if an error occurs.

hrErrorCode: If an error occurs, then a descriptive error code of the type HRESULT is displayed. Possible
values are described in the List of error codes [} 281]. This output is identical to the return value of the
method.
METHOD Init : HRESULT
VAR_INPUT
 stInitPars : ST_MA_MultiArray_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be initi
alized for results (0 for no initialization)
END_VAR

Init():

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the
PLC. It cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
'call_after_init' (see TwinCAT PLC reference). In addition, this facilitates the function block
encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

• stInitPars: Function-block-specific structure of the initialization parameters of the type
ST_MA_MultiArray_InitPars [} 233]. MultiArray buffers are specified for the result buffers. These
parameters must correlate to the above definition of the output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

ResetData():

The method deletes all data sets that have already been added so that the current output buffer (MultiArray)
can be filled from the start again. If external indices are to be used when filling (pStartIndex parameter),
they must be explicitly reset.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the list of error codes.

METHOD ResetData : HRESULT
VAR_INPUT
END_VAR

ResetAnalysisChain():

Calling this method causes an automatic reset of all algorithms in the full analysis chain. Internally, a
ResetData() is carried out each time before accepting the new data set. Consequently, this also implies a
ResetData() on FB_CMA_Source.

PLC API

TF3600 199Version: 1.5

If the analysis chain is only to be active for a certain period, this method offers the option to reset all
algorithms before the next execution.

Errors can occur when calling an input method and cause interruptions in the time series collection. If the
following algorithms in the analysis chain calculate spectra, then the ResetAnalysisChain() method can be
called in the case of an error when calling an input method. Because it is not possible to calculate correct
spectra on the basis of fragmented time series.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the list of error codes.

METHOD ResetAnalysisChain : HRESULT
VAR_INPUT
END_VAR

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base,

Tc3_MultiArray

5.1.30 FB_CMA_VibrationAssessment

Vibration assessment of real-valued input signals.

The function block FB_CMA_VibrationAssessment performs a vibration assessment of real-valued input
signals on the basis of ISO 10816-3. This is explained in more detail in the section Application concepts, see
Vibration assessment [} 33]. The function block combines the calculation of integrated RMS values on
configurable frequency bands with their classification for single and multi-channel input data.

The result is a one-dimensional array that contains three values for each frequency band: the highest
calculated classification (in the range -1..nMaxClasses), the associated integration order (in the range
0..nOrder) and the channel (in the range 1..nChannels). It is recommended to save the result of the
classification on the Sink in a two-dimensional array in the form
aResult : ARRAY[1..nMaxBands] OF ARRAY [1..3] OF DINT. The data are then available for
each band as follows: [{class},{order},{channel}].

The data contained can be used to make a statement/evaluation with regard to the machine state on the
basis of the vibration measurements. The possible configuration of several frequency bands facilitates the
evaluation; the condition for various speeds of the machine can be determined simultaneously taking the
example of the ISO 10816-3.

Note the window length
The value of nWindowLength must be less or equal the value of nFFT_Length. The length of the
FFT can orient itself to the required frequency resolution. Typically a value of about 4/5 of the FFT-
length is often used as the window length.

If nFFT_Length is greater than nWindowLength, the frequency resolution of the FFT (and therefore also
the length of the return values vector) is increased. The length difference is filled with zeros before the
Fourier transform. This can be useful for achieving a higher frequency resolution, or for avoiding circular
aliasing in calculations with inverse transformation in the time domain. Despite the higher frequency
resolution, however, the result contains no more information.

Memory properties

Due to the use of the Welch method, the current input data buffer, together with the last-transferred buffers,
is used for the calculation. The number of buffers incorporated depends on the selected overlap
(nOverlap).
The frequency analysis takes step changes in the time series into account. In order to achieve a correct
result, therefore, the input data buffers used must be concatenated without gaps and without jumps.

Behavior when processing multi-channel input data

PLC API

TF3600200 Version: 1.5

When processing several channels (nChannels > 1), there is a possibility of each channel having different
return values. In this case, return values can be queried separately on the function block. If the results from
one or more channels are impermissible, but not all channels, the value on the function block corresponds to
eCM_InfRTime_AmbiguousChannelResults. If the results of all channels are impermissible, then the
value on the function block corresponds to eCM_ErrRTime_ErrornousChannelResults.

A list of return values of all channels can be queried using the method GetChannelErrors().

Sample implementation

A sample implementation is available under the following link: Vibration assessment according to ISO
10816-3 (compact) [} 261].

Inputs and outputs

The input and output buffers correspond to one of the following definitions (input / output shape). The
variable parameters are part of the function block input stInitPars.

Versions Input buffer (MultiArray input
stream)
Element type, number of dimen-
sions, dimension sizes

Output buffer (MultiArray output
stream)
Element type, number of dimen-
sions, dimension sizes

Standard version
(nChannels = 1)

LREAL, 1,
nWindowLength-nOverlap

DINT, 1,
nMaxBands*3

Multi-channel version
(nChannels > 1)

LREAL, 2,
nChannels x nWindowLength-
nOverlap

DINT, 1,
nMaxBands*3

VAR_INPUT
 stInitPars : ST_CM_VibrationAssessment_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be
 initialized for results (0 for no initialization)
 tTransferTimeout : LTIME := LTIME#500US; // timeout checking off during access to
 inter-task FIFOs
END_VAR

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (Alternatively: Init() method). They may only be assigned once. A
change at runtime is not possible.

• stInitPars: Function-block-specific structure with initialization parameters of the type
ST_CM_VibrationAssessment_InitPars [} 231]. The parameters must correlate to the above definition of
the input and output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

• tTransferTimeout: Setting of the synchronous timeout for internal MultiArray forwardings. See
section Parallel processing [} 63].

Output parameters
VAR_OUTPUT
 bError : BOOL; // TRUE if an error occurs. Reset by next metho
d call.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/
info
 ipErrorMessage : I_TcMessage := fbErrorMessage; // Shows detailed information about occurred er
rors, warnings and more.

PLC API

TF3600 201Version: 1.5

 nCntResults : ULINT; // Counts outgoing results (MultiArrays were ca
lculated and sent to transfer tray).
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281].
• ipErrorMessage: Contains more detailed information on the current return value. Refer here to the

section PLC API [} 72]. This special interface pointer is internally secured so that it is always valid/
assigned.

Methods
METHOD Init : HRESULT
VAR_INPUT
 stInitPars : ST_CM_VibrationAssessment_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be i
nitialized for results (0 for no initialization)
END_VAR

Call():

The method is called each cycle in order to apply the algorithm to the current input data. The function block
waits for input data if the method indicates neither new results nor an error. This is a regular behavior in the
process of the analysis chain.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD Call : HRESULT
VAR_OUTPUT
 bNewResult : BOOL; // TRUE every time when outgoing MultiArray was calculated and sent t
o transfer tray.
 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no MultiArray buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

Init():

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the
PLC. It cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
'call_after_init' (see TwinCAT PLC reference). In addition, this facilitates the function block
encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

• stInitPars: Function-block-specific structure with initialization parameters of the type
ST_CM_VibrationAssessment_InitPars [} 231]. The parameters must correlate to the above definition of
the input and output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

PLC API

TF3600202 Version: 1.5

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

Configure():

On calling this method, the classification arguments and frequency bands must be configured at the
beginning. The corresponding PLC arrays must be defined as follows. The Configure() method can also
be used for a new configuration with a different set of arguments.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD Configure : HRESULT
VAR_INPUT
 pArg1 : POINTER TO LREAL; // pointer to 2-dimensional
array (LREAL) of arguments for classification
 nArgSize1 : UDINT; // size of arguments buffer in bytes
 pArg2 : POINTER TO LREAL; // pointer to 2-dimensional
array (LREAL) of arguments for frequency bands
 nArgSize2 : UDINT; // size of arguments buffer in bytes
END_VAR

The input buffers correspond to one of the following definitions (input shape). The variable parameters are
part of the function block input stInitPars. The two parameters to be configured per frequency band are
[fLowerFrequencyLimit, fUpperFrequencyLimit] (input buffer 2).

Versions Input buffer 1 (MultiArray input
stream)
Element type, number of dimen-
sions, dimension sizes

Input buffer 2 (MultiArray input
stream)
Element type, number of dimen-
sions, dimension sizes

Identical configuration of all
channels
(nChannels >= 1)

LREAL, 2,
nOrder+1 x nMaxClasses

LREAL, 2,
nMaxBands x 2

ResetData():

The method deletes all data records that have already been added, see Memory property of the function
block. If the Call() method is called again after a ResetData(), the internal memory must be replenished
in order to calculate a valid result.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD ResetData : HRESULT
VAR_INPUT
END_VAR

PassInputs():

As long as an FB_CMA_Source instance is called and signal data are thus transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically as explained in the API PLC Reference
[} 70].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. The function block must be called cyclically, but
it is sufficient for the data arriving at the function block to be forwarded in the communication ring [} 63]. This
is done using the PassInputs() method in place of the Call() method. The algorithm itself is not called
here, and accordingly no result is calculated and no output buffer generated.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

GetChannelErrors():

PLC API

TF3600 203Version: 1.5

The method enables the querying of a list of the channel-specific return values when processing several
channels (nChannels > 1). A call is useful in the case that the return value of the function block
corresponds to one of the values eCM_InfRTime_AmbiguousChannelResults or
eCM_ErrRTime_ErrornousChannelResults.

• Return value: Information on the reading process of the list of error codes. The value is set to TRUE if
the query was successful, otherwise to FALSE.

METHOD GetChannelErrors : BOOL
VAR_IN_OUT
 aChannelErrors : ARRAY[*] OF HRESULT;
END_VAR

• aChannelErrors: Error list of the type HRESULT of the length nChannels.

Similar function blocks

The function block FB_CMA_IntegratedRMS [} 143] calculates (optionally) integrated RMS values for single
and multi-channel real-valued time series.

The function block FB_CMA_WatchUpperThresholds [} 203] performs the configurable threshold value
monitoring of multi-channel data.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base

Limited functional scope already available with CM 3.1. See section Compatibility [} 52].

5.1.31 FB_CMA_WatchUpperThresholds

Configurable threshold value monitoring of multi-channel data

Similar to the FB_CMA_DiscreteClassification [} 97] function block, this function block allocates the individual
channels of a multi-channel signal to a number of configurable discrete categories, based on configurable
threshold values. After the configuration the function block calculates a one-dimensional array with precisely
two values for each input vector. The type of both elements is a signed 32-bit Integer number. The first value
of the result identifies the number of highest determined category, the second value the channel number with
the highest category. In both cases numbering starts with zero. If no input value of a channel matches the
respective threshold value for the lowest category, the resulting value is -1. If an input value equals the
threshold value of a category, it is counted under this category. If several channels are allocated the highest
category, the channel number with the lower number is returned.

Configuration

The function block can be configured at runtime by specifying the threshold value for each channel and each
threshold value category.

Memory properties

Depending on the function block configuration, the number of the highest threshold value category and the
number of the triggering channel are saved until the method ResetData() is called, or the values are
recalculated after each step.

NaN occurrence

If the input value is NaN, the result of the classification is -2. No NaN values are expected at the output.

Behavior when processing multi-channel input data

PLC API

TF3600204 Version: 1.5

When processing several channels (nChannels > 1), there is a possibility of each channel having different
return values. In this case, return values can be queried separately on the function block. If the results from
one or more channels are impermissible, but not all channels, the value on the function block corresponds to
eCM_InfRTime_AmbiguousChannelResults. If the results of all channels are impermissible, then the
value on the function block corresponds to eCM_ErrRTime_ErrornousChannelResults.

A list of return values of all channels can be queried using the method GetChannelErrors().

When processing several subchannels (nSubChannels > 0), particular attention must be paid to the
formatting of the input and output data. If the input data consist of a multi-channel result of an upstream
function block, the value of nChannels must be adopted; further configuration takes place in this case via
the parameter nSubChannels.

Sample: In the statistical consideration (e.g. by FB_CMA_Quantiles) of the frequency channels of a multi-
channel spectrum (e.g. FB_CMA_MagnitudeSpectrum), the value of nChannels must be identical to the
number of input signals; the number of subchannels nSubChannels corresponds to the length of the
spectrum.

Inputs and outputs

The input and output buffers correspond to one of the following definitions (input / output shape). The
variable parameters are part of the function block input stInitPars.

Versions Input buffer (MultiArray input
stream)
Element type, number of dimen-
sions, dimension sizes

Output buffer (MultiArray output
stream)
Element type, number of dimen-
sions, dimension sizes

Standard version
(nSubChannels = 0)

LREAL, 1,
nChannels

DINT (32bit), 1,
2

Multi-channel version
(nSubChannels > 0)

LREAL, 2,
nChannels x nSubChannels

DINT (32bit), 2,
nChannels x 2

VAR_INPUT
 stInitPars : ST_CM_WatchUpperThresholds_InitPars; // init parameter
 nOwnID : UDINT; // ID for this FB instance
 aDestIDs : ARRAY[1..cCMA_MaxDest] OF UDINT; // IDs of destinations for output
 nResultBuffers : UDINT := 4; // number of MultiArrays which should be
 initialized for results (0 for no initialization)
 tTransferTimeout: LTIME := LTIME#500US; // timeout checking off during access to
 inter-task FIFOs
END_VAR

Input parameters

The input parameters of this function block represent initialization parameters and must already be assigned
in the declaration of the FB instance! (Alternatively: Init() method). They may only be assigned once. A
change at runtime is not possible.

• stInitPars: Function-block-specific structure with initialization parameters of the type
ST_CM_WatchUpperThresholds_InitPars [} 232]. The parameters must correlate to the above definition
of the input and output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

• tTransferTimeout: Setting of the synchronous timeout for internal MultiArray forwardings. See
section Parallel processing [} 63].

Output parameters

PLC API

TF3600 205Version: 1.5

VAR_OUTPUT
 bError : BOOL; // TRUE if an error occurs. Reset by next metho
d call.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/
info
 ipErrorMessage : I_TcMessage := fbErrorMessage; // Shows detailed information about occurred er
rors, warnings and more.
 nCntResults : ULINT; // Counts outgoing results (MultiArrays were ca
lculated and sent to transfer tray).
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281].
• ipErrorMessage: Contains more detailed information on the current return value. Refer here to the

section PLC API [} 72]. This special interface pointer is internally secured so that it is always valid/
assigned.

Methods

Call():

The method is called each cycle in order to apply the algorithm to the current input data. The function block
waits for input data if the method indicates neither new results nor an error. This is a regular behavior in the
process of the analysis chain.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD Call : HRESULT
VAR_OUTPUT
 bNewResult : BOOL; // TRUE every time when outgoing MultiArray was calculated and sent t
o transfer tray.
 bError : BOOL; // TRUE if an error occurs.
 hrErrorCode : HRESULT; // '< 0' = error; '> 0' = info; '0' = no error/info
END_VAR

• bError: The output is TRUE if an error occurs.
• hrErrorCode: If an error occurs, a corresponding error code of the type HRESULT is output. Possible

values are described in the List of error codes [} 281]. This output is identical to the return value of the
method.
Note: If a timeout occurs or no MultiArray buffer is available for the result, then neither the input data
nor the result data are lost. They are forwarded on the next call.

Init():

This method is not usually necessary in a Condition Monitoring application. It offers an alternative to the
function block initialization. The Init() method may only be called during the initialization phase of the
PLC. It cannot be used at runtime. You are referred to the use of an FB_init method or the attribute
'call_after_init' (see TwinCAT PLC reference). In addition, this facilitates the function block
encapsulation.

The input parameters of the function block instance may not be assigned in the declaration if the initialization
is to take place using the Init() method.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

• stInitPars: Function-block-specific structure with initialization parameters of the type
ST_CM_WatchUpperThresholds_InitPars [} 232]. The parameters must correlate to the above definition
of the input and output buffers.

• nOwnID: Identifies the function block instance with a unique ID. This must always be greater than zero.
A proven approach is to define an enumeration for this purpose.

• aDestIDs: Defines the destinations to which the results are to be forwarded by specifying the IDs of
the destinations. The definition of the output buffer (as described above) must correlate to the definition
of the input buffer of each selected destination.

PLC API

TF3600206 Version: 1.5

• nResultBuffers: The function block initializes a Transfer Tray Stream with the specified number of
MultiArray buffers. The default value is four.

Configure():

The classification arguments must be configured at the beginning with the call of this method. The
corresponding PLC array must be defined as follows. The Configure() method can also be used for a new
configuration with a different set of arguments.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD Configure : HRESULT
VAR_INPUT
 pArg : POINTER TO LREAL; // pointer to array (LREAL) of arguments
 nArgSize : UDINT; // size of arguments buffer in bytes
END_VAR

The input buffers correspond to one of the following definitions (input shape). The variable parameters are
part of the function block input stInitPars.

Versions Input buffer (MultiArray input stream)
Element type, number of dimensions, dimension
sizes

Identical configuration of all channels and
subchannels

LREAL, 1,
nMaxClasses

Channel-specific configuration
(nSubChannels = 0)

LREAL, 2,
nChannels x nMaxClasses

Subchannel-specific configuration
(nSubChannels > 0)

LREAL, 2,
nSubChannels x nMaxClasses

Channel and subchannel-specific configuration
(nSubChannels > 0)

LREAL, 3,
nChannels x nSubChannels x nMaxClasses

ResetData():

The method deletes all data records that have already been added, see Memory property of the function
block. If the Call() method is called again after a ResetData(), the internal memory must be replenished
in order to calculate a valid result.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD ResetData : HRESULT
VAR_INPUT
END_VAR

Alternatively bMemorize=FALSE can be set in the initialization structure for an automatic reset.

PassInputs():

As long as an FB_CMA_Source instance is called and signal data are thus transferred to a target block, all
further function blocks of the analysis chain have to be called cyclically as explained in the API PLC Reference
[} 70].
Sometimes it is useful not to be execute an algorithm for a certain time. For example, some algorithms
should be executed only after prior training or configuration. The function block must be called cyclically, but
it is sufficient for the data arriving at the function block to be forwarded in the communication ring [} 63]. This
is done using the PassInputs() method in place of the Call() method. The algorithm itself is not called
here, and accordingly no result is calculated and no output buffer generated.

• Return value: If an error occurs, a corresponding error code of the type HRESULT is output. Possible
values are described in the List of error codes [} 281].

METHOD PassInputs : HRESULT
VAR_INPUT
END_VAR

GetChannelErrors():

PLC API

TF3600 207Version: 1.5

The method enables the querying of a list of the channel-specific return values when processing several
channels (nChannels > 1). A call is useful in the case that the return value of the function block
corresponds to one of the values eCM_InfRTime_AmbiguousChannelResults or
eCM_ErrRTime_ErrornousChannelResults.

• Return value: Information on the reading process of the list of error codes. The value is set to TRUE if
the query was successful, otherwise to FALSE.

METHOD GetChannelErrors : BOOL
VAR_IN_OUT
 aChannelErrors : ARRAY[*] OF HRESULT;
END_VAR

• aChannelErrors: Error list of the type HRESULT of the length nChannels.

Similar function blocks

The FB_CMA_DiscreteClassification [} 97] function block classifies multi-channel input data.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base

Limited functional scope already available with CM 3.1. See section Compatibility [} 52].

5.2 Functions

5.2.1 F_MA_IsNAN
This function tests for presence of a NaN (Not-a-Number) value, returning TRUE when the value is a NaN.
FUNCTION F_MA_IsNAN : BOOL
VAR_INPUT
 fValue : LREAL;
END_VAR

For further information see chapter Handling with NaN values [} 62].

The function is obsolete.
Please use the LrealIsNaN() function instead (Tc2_Utilities library).

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_MultiArray

5.2.2 F_CM_CalculateRecommendedOverlap
This function calculates a recommended overlap based on the amplitude flatness and overlap correlation of
the window function. See section: Analysis of data streams [} 21].
FUNCTION F_CM_CalculateRecommendedOverlap : UDINT
VAR_INPUT
 eWindowType : E_CM_WindowType; (* Window type. *)
 aWindowParameters : T_CM_WindowParameters; (* Window parameters for specific windows, e.g. F

PLC API

TF3600208 Version: 1.5

latTop. *)
 nWindowLength : UDINT; (* Length of analysis window. *)
END_VAR

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM_Base

5.3 Data types

5.3.1 E_CM_MCoefOrder
TYPE E_CM_MCoefOrder :
(
 eCM_N := 0, (* Count of included cases. *)
 eCM_Mean := 1, (* Mean value. *)
 eCM_StDev := 2, (* Standard deviation. *)
 eCM_Skew := 3, (* Skew value (third moment). *)
 eCM_Kurtosis := 4 (* Excess Kurtosis value. *)
) UDINT;
END_TYPE

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_CM_Base

5.3.2 E_CM_ScalingType
Further details can be found in the chapter Spectrum scaling [} 286].
TYPE E_CM_ScalingType :
(
 eCM_NoScaling := 0,
 eCM_DiracScaling := 1,
 eCM_PeakAmplitude := 2,
 eCM_RootPowerSum := 3,
 eCM_RMS := 4,
 eCM_GainCorrection := 5,
 eCM_PowerSpectralDensity := 6,
 eCM_UnitaryScaling := 7
) UDINT;
END_TYPE

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_CM_Base

5.3.3 E_CM_SpectrumType
TYPE E_CM_SpectrumType : (
 eCM_DFT :=0, (* Plain DFT. *)
 eCM_Magnitude :=1, (* Magnitude spectrum. *)
 eCM_Power :=2 (* Power spectrum. *)
) UDINT;
END_TYPE

PLC API

TF3600 209Version: 1.5

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM_Base

5.3.4 E_CM_UnwrapMethod
TYPE E_CM_UnwrapMethod :
(
 eCM_NoUnwrapping := 0,
 eCM_ThresholdUnwrapping := 1
) UDINT;
END_TYPE

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM_Base

5.3.5 E_CM_WindowType
Further details can be found in the chapter Analysis of data streams [} 19].
TYPE E_CM_WindowType :
(
 eCM_HannWindow := 16#05300901,
 eCM_RectangularWindow := 16#05300902,
 eCM_BartlettWindow := 16#05300905,
 eCM_HammingWindow := 16#05300906,
 eCM_KaiserWindow := 16#05300907,
 eCM_FlatTopWindow := 16#05300917
) UDINT;
END_TYPE

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM_Base

5.3.6 E_MA_ElementTypeCode
TYPE E_MA_ElementTypeCode :
(
 eMA_TypeCode_NONE := 0, (* Internally used. *)
 eMA_TypeCode_BYTE := 2,
 eMA_TypeCode_CHAR := 3,
 eMA_TypeCode_WCHAR := 4,
 eMA_TypeCode_BOOL := 5, (* Boolean type. *)
 eMA_TypeCode_INT16 := 6,
 eMA_TypeCode_UINT16 := 7,
 eMA_TypeCode_INT32 := 8, (* Used e.g. for classification results. *)
 eMA_TypeCode_UINT32 := 9,
 eMA_TypeCode_INT64 := 10,
 eMA_TypeCode_UINT64 := 11, (* 64-bit long unsigned. Use for statistical counters. *)
 eMA_TypeCode_REAL := 12, (* Unsupported: 32-bit floating point type. *)
 eMA_TypeCode_LREAL := 13, (* Standard floating-point type. *)
 eMA_TypeCode_LCOMPLEX := 15, (* Standard 128-bit complex type (real part first). *)
 eMA_TypeCode_SPUNKNOWN := 22, (* Used for TCOM Pointers. *)
) UDINT;
END_TYPE

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM_Base

PLC API

TF3600210 Version: 1.5

5.3.7 T_CM_WindowParameters
TYPE T_CM_WindowParameters : ARRAY [0..4] OF LREAL;
END_TYPE

Use of T_CM_WindowParameters
Free parameters for the configuration of window functions are specified by a general array of the
length 5. Only the first value of this array is used if eCM_KaiserWindow is selected; all values are
used if eCM_FlatTopWindow is selected. The parameters are irrelevant for all other window types.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM_Base

PLC API

TF3600 211Version: 1.5

5.3.8 Error codes

5.3.8.1 E_CM_ErrorCode

PLC API

TF3600212 Version: 1.5

code (HRESULT) symbol description / solution
0 eCM_OK No Error, everything is OK
logic errors
16#9851_0100 eCM_ErrLogic General logic error
16#9851_0102 eCM_ErrLogic_NotImplemented Function is not yet implemented.
16#9851_0110 eCM_ErrLogic_LackOfInitialization Algorithm is not initialized correctly.
16#9851_0125 eCM_ErrLogic_InvalidObjectState Operation is invalid for current object state.
configuration errors
16#9851_1000 eCM_ErrConfig General configuration error
16#9851_1100 eCM_ErrConfig_OutOfMemory Memory allocation failed. => Increase router

memory (see chapter Memory management
[} 59])
Equivalent to
ADSERR_DEVICE_NOMEMORY

16#9851_1800 eCM_ErrConfig_IllegalParameter Configuration parameter is not valid.
16#9851_1900 eCM_ErrConfig_ParameterOutOfRan

ge
Configuration parameter is out of range.

16#9851_1901 eCM_ErrConfig_ParameterOutOfRan
ge_NoPowerOfTwo

Parameter is not a power of two as required.

16#9851_1902 eCM_ErrConfig_ParameterOutOfRan
ge_FFT_length_Zero

FFT length is zero.

16#9851_1903 eCM_ErrConfig_ParameterOutOfRan
ge_DecibelThreshold_too_small

Decibel threshold is too small, which would
cause underflow.

16#9851_1904 eCM_ErrConfig_ParameterOutOfRan
ge_LogThreshold_too_small

Logarithm threshold is too small, which would
cause underflow.

16#9851_1905 eCM_ErrConfig_ParameterOutOfRan
ge_nInLength_Minimum_two

Input length is too small. Value must be at
least two.

16#9851_190D eCM_ErrConfig_ParameterOutOfRan
ge_nChannels_smaller_one

Number of channels is zero.

16#9851_190E eCM_ErrConfig_ParameterOutOfRan
ge_nBins_smaller_one

Number of bins is zero.

16#9851_190F eCM_ErrConfig_ParameterOutOfRan
ge_invalid_limit_interval

Lower limit is not smaller than upper limit.

16#9851_1910 eCM_ErrConfig_ParameterOutOfRan
ge_unknown_scaling_type

Scaling type is unknown.

16#9851_1911 eCM_ErrConfig_ParameterOutOfRan
ge_illegal_quantile_argument

Quantile argument is outside [0 .. 1].

16#9851_1912 eCM_ErrConfig_ParameterOutOfRan
ge_illegal_threshold_order

Threshold order is illegal. The thresholds
must be in ascending order.

16#9851_1913 eCM_ErrConfig_ParameterOutOfRan
ge_threshold_number_toolarge

More threshold values given than configured.

16#9851_1914 eCM_ErrConfig_ParameterOutOfRan
ge_Integration_limit_too_low

Integration limit is too low.

16#9851_1915 eCM_ErrConfig_ParameterOutOfRan
ge_Integration_limit_too_high

Integration limit is too high.

16#9851_1916 eCM_ErrConfig_ParameterOutOfRan
ge_Integration_limits_inconsistent

Integration limits are inconsistent.

16#9851_1917 eCM_ErrConfig_ParameterOutOfRan
ge_Samplerate_not_positive

Sample rate is zero or negative.

16#9851_191A eCM_ErrConfig_ParameterOutOfRan
ge_TimeConstant_too_small

Passed time constant is too small.

16#9851_192C eCM_ErrConfig_ParameterOutOfRan
ge_fScaleFactor_invalid

Scale factor is invalid.

PLC API

TF3600 213Version: 1.5

code (HRESULT) symbol description / solution
16#9851_192D eCM_ErrConfig_ParameterOutOfRan

ge_DivThreshold_too_small
Division threshold is too small, which would
cause underflow.

16#9851_192E eCM_ErrConfig_ParameterOutOfRan
ge_nMaxBands_zero

Number of configurable bands is zero.

16#9851_192F eCM_ErrConfig_ParameterOutOfRan
ge_nOrder_invalid

Order is invalid.

16#9851_1B00 eCM_ErrConfig_ParameterMismatch Parameter dependency does not met.
16#9851_1B01 eCM_ErrConfig_ParameterMismatch

_WindowLength_larger_FFT_length
Window length is larger than FFT length.

16#9851_1B06 eCM_ErrConfig_ParameterMismatch
_overlap_larger_BufferLength

Overlap is larger than buffer length.

runtime errors (while data processing)
these errors lead to an HRESULT of ADS_E_INVALIDPARM
16#9851_2000 eCM_ErrRTime General runtime error
16#9851_2011 eCM_ErrRTime_IllegalPointer Illegal (interface) pointer or memory address
16#9851_2015 eCM_ErrRTime_NonMonotonousInpu

tData
Input data is not monotonous as required.

16#9851_2016 eCM_ErrRTime_ErrornousChannelRe
sults

Results on at least one channel are
errornous.

16#9851_2021 eCM_ErrRTime_IllegalBuffer Illegal data buffer
illegal input buffer parameters (can occur in fixed-buffer ADS calls)
16#9851_2023 eCM_ErrRTime_IllegalInput Illegal input signature
16#9851_2025 eCM_ErrRTime_IllegalInputDimensio

nNumber
Input data has illegal number of dimensions.

16#9851_2026 eCM_ErrRTime_IllegalInputShape Input data has illegal shape.
16#9851_2028 eCM_ErrRTime_IllegalInputDataType Illegal element type of input data stream
16#9851_202A eCM_ErrRTime_IllegalInputNoArray No multiarray passed as input parameter.
illegal output buffer parameters (can occur in fixed-buffer ADS calls)
16#9851_2030 eCM_ErrRTime_IllegalOutput Illegal output signature
16#9851_2032 eCM_ErrRTime_IllegalOutputDimensi

onNumber
Output buffer has illegal number of
dimensions.

16#9851_2033 eCM_ErrRTime_IllegalOutputShape Output buffer has illegal shape.
16#9851_2034 eCM_ErrRTime_IllegalOutputDataTyp

e
Illegal element type of output data buffer

16#9851_2035 eCM_ErrRTime_IllegalOutputNoArray No multiarray passed as output parameter.
interpolation errors
16#9851_2060 eCM_ErrRTime_Interpolation General interpolation error
16#9851_2063 eCM_ErrRTime_Interpolation_OutOfB

ounds
Input data is out of bounds.

16#9851_2064 eCM_ErrRTime_Interpolation_Invalid
Dimension

Array with input data has invalid dimension
for used method.

16#9851_2065 eCM_ErrRTime_Interpolation_Invalid
Constraints

Constraints on the derivatives at the end
points can not be met.

info codes
16#1851_B103 eCM_InfRTime_InsufficientInputData Insufficient inputdata for a representative

result
16#1851_B104 eCM_InfRTime_InvalidInputData Input data is invalid.
16#1851_B105 eCM_InfRTime_AmbiguousChannelR

esults
Results on at least one channel are
ambiguous.

16#1851_B106 eCM_InfRTime_nBufferLength_too_s
mall

Configured bufferlength is too small for input
data.

PLC API

TF3600214 Version: 1.5

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM_Base

5.3.8.2 E_CMA_ErrorCode

These error codes are necessary in the realtime context only. Please, note that the analysis function blocks
must be allocated in the PLC declaration part correctly.
The configuration errors should be solved first, followed by the initialization errors.
For example: If any instances throw the error eCMA_ErrConfig_InvalidOwnID this has to be solved first.
Runtime errors at other function blocks can be subsequent errors.

code (HRESULT) symbol description / solution
0 eCMA_OK No Error, everything is OK
configuration errors
16#9852_0101 eCMA_ErrConfig_InvalidOwnID invalid transfer own ID was allocated
16#9852_0102 eCMA_ErrConfig_InvalidDestID invalid transfer destination IDs were

allocated
16#9852_0103 eCMA_ErrConfig_InvalidBufferNumber invalid number of MultiArrays which

should be initialized for results
16#9852_0104 eCMA_ErrConfig_InvalidTimeout invalid timeout. condition: 0us <<

tTransferTimeout << task cycle time
initialization errors
16#9852_0201 eCMA_ErrInit_IllegalInitContext initialization not possible. Illegal

initialization context or internal members
uninitialized.

16#9852_0202 eCMA_ErrInit_InitTransferTrayFailed Initialization of transfer tray has been
failed. Check TcCOM object states and
router memory (see Memory
management [} 59]). Check installed
TwinCAT version (see System
requirements [} 52]).

16#9852_0203 eCMA_ErrInit_NoStreamAllocated The analysis chain is incorrect. Check all
OwnIDs and DestIDs.

16#9852_0204 eCMA_ErrInit_StreamOverrun Not enough streams available. Adjust
ST_CM_TransferTray_InitPars

runtime errors
16#9852_0301 eCMA_ErrRTime_InvalidPointer NULL pointer was allocated
16#9852_0302 eCMA_ErrRTime_InvalidDataBufferSize invalid size of data buffer was allocated
16#9852_0303 eCMA_ErrRTime_InvalidElementType invalid element type was allocated
16#9852_0304 eCMA_ErrRTime_InvalidElementCnt element count does not match. (check

number of elements, MultiArray buffer
size and start index)

16#9852_0305 eCMA_ErrRTime_InvalidStartIndex invalid pStartIndex was allocated (check
buffer sizes)

16#9852_0311 eCMA_ErrRTime_MissingConfiguration Argument not configured. Call method
Configure() first.

16#9852_0321 eCMA_ErrRTime_NoMultiArrayAvailable no multiarray available for result. Check
analysis chain, task cycle times and the
number of MultiArrays (usually at least 3
in each ring)

PLC API

TF3600 215Version: 1.5

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_CM

5.3.8.3 E_MA_ErrorCode

code (HRESULT) symbol description / solution
0 eMA_OK No Error, everything is OK
logic errors
16#9871_0100 eMA_ErrLogic General logic error
16#9871_0102 eMA_ErrLogic_NotImplemented Function is not yet implemented.
16#9871_0110 eMA_ErrLogic_LackOfInitialization Algorithm is not initialized correctly.
16#9871_0126 eMA_ErrLogic_ObjectCreationFailed Object creation failed. Probably driver is

missing or out-dated.
configuration errors
16#9871_1000 eMA_ErrConfig General configuration error
Maps to ADSERR_DEVICE_NOMEMORY
16#9871_1100 eMA_ErrConfig_OutOfMemory Memory allocation failed. => Increase

router memory (see chapter Memory
management [} 59]).
Equivalent to
ADSERR_DEVICE_NOMEMORY

all of the following errors lead to an HRESULT of ADS_E_INVALIDPARM
16#9871_1800 eMA_ErrConfig_IllegalParameter Configuration parameter is not valid.
16#9871_1900 eMA_ErrConfig_ParameterOutOfRange Configuration parameter is out of range.
runtime errors (while data processing)
16#9871_2000 eMA_ErrRTime General runtime error
16#9871_2011 eMA_ErrRTime_IllegalPointer Illegal (interface) pointer or memory

address
16#9871_2012 eMA_ErrRTime_EmptyArray Multiarray has no data (product of

dimension sizes is zero).
16#9871_2013 eMA_ErrRTime_InstanceExists There is already an allocated instance.
16#9871_2014 eMA_ErrRTime_NoInstanceExists There is no allocated or initialized

instance.
16#9871_2021 eMA_ErrRTime_IllegalBuffer Illegal data buffer
16#9871_2022 eMA_ErrRTime_IllegalSubarraySize Illegal size of subarray
16#9871_2029 eMA_ErrRTime_IllegalPermutation Requested permutation of dimensions is

not valid.
illegal input buffer parameters
16#9871_2023 eMA_ErrRTime_IllegalInput Illegal input signature
16#9871_2025 eMA_ErrRTime_IllegalInputDimensionNu

mber
Input data has illegal number of
dimensions.

16#9871_2026 eMA_ErrRTime_IllegalInputShape Input data has illegal shape.
16#9871_2028 eMA_ErrRTime_IllegalInputDataType Illegal element type of input data stream
16#9871_202A eMA_ErrRTime_IllegalInputNoArray No multiarray passed as input parameter.
illegal output buffer parameters
16#9871_2030 eMA_ErrRTime_IllegalOutput Illegal output signature
16#9871_2035 eMA_ErrRTime_IllegalOutputNoArray No multiarray passed as output

parameter.

PLC API

TF3600216 Version: 1.5

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM_Base

5.3.9 InitPars structures

5.3.9.1 ST_CM_AnalyticSignal_InitPars

Function block-specific structure with initialization parameters, which are analyzed when the function block is
initialized.
TYPE ST_CM_AnalyticSignal_InitPars EXTENDS ST_CM_Object_InitPars :
STRUCT
 nFFT_Length : UDINT := 512; (* Length of FFT. *)
 nWindowLength : UDINT := 400; (* Length of analysis window. *)
 nChannels : UDINT := 1; (* Number of channels. *)
END_STRUCT
END_TYPE

• nFFT_Length is the length of the FFT. It must be greater than one and an integral power of two.
• nWindowLength is the length of the analysis window in samples. The length must be greater than one

and an even number.
• nChannels defines the number of independent channels. This must be greater than zero.

Avoiding artefacts
The value of nFFT_Length must be equal or greater the value of nWindowLength. In order to
avoid artefacts in the calculation, nFFT_Length should be at least 25 larger than nWin-
dowLength. An increase in the FFT length in relation to the window length makes sense with this
function block in order to avoid circular aliasing.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM_Base

5.3.9.2 ST_CM_ArgSort_InitPars

Function block-specific structure with initialization parameters, which are analyzed when the function block is
initialized.
TYPE ST_CM_ArgSort_InitPars EXTENDS ST_CM_Object_InitPars :
STRUCT
 nInLength : UDINT := 256; (* Length of input data array. *)
 bSortDownward : BOOL := FALSE; (* If true, sort in descending order (largest values first
). *)
 fScaleFactor : LREAL := 1.0; (* Scaling factor to transform index values, for example t
o frequency values. *)
 nChannels : UDINT := 1; (* Number of channels. *)
END_STRUCT
END_TYPE

• nInLength is the length of the input array.
• bSortDownward is a flag with which you can select whether the data are to be sorted in ascending or

descending order. If bSortDownward is TRUE, then the largest values are placed at the front.
• fScaleFactor can be used in order to directly display, for example, the amplitude with associated

frequencies instead of the index position (fScaleFactor = 1).
• nChannels defines the number of independent channels. This must be greater than zero.

PLC API

TF3600 217Version: 1.5

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM_Base

5.3.9.3 ST_CM_CrestFactor_InitPars

Function block-specific structure with initialization parameters, which are analyzed when the function block is
initialized.
TYPE ST_CM_CrestFactor_InitPars EXTENDS ST_CM_Object_InitPars :
STRUCT
 nChannels : UDINT := 32; (* Number of channels. *)
 nSubChannels : UDINT := 0; (* Number of subchannels. *)
 nBufferLength : UDINT := 250; (* Buffer length. *)
 fDecibelThreshold : LREAL := cCM_MinArgLog10; (* Minimum argument of decadic logarithm for 6
4-bit IEEE 754 arithmetic. *)
END_STRUCT
END_TYPE

• nChannels defines the number of independent channels. This must be greater than zero.
• nSubChannels defines the number of independent subchannels. This must be greater than or equal

to zero.
• nBufferLength is the number of input values per channel held in the internal buffer.
• fDecibelThreshold is a very small floating point value greater than zero. Values that are less than

this number are replaced with this value before any transformation to the decibel scale. (The purpose is
the avoidance of value range errors. The logarithm of zero is not defined and strives infinitely towards
minus for the limit value of small arguments. The same applies to the argument of the number zero,
arg(0). The smallest possible value is 2.3e-308, which is equivalent to the constant
cCM_MinArgLog10.)

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM_Base

5.3.9.4 ST_CM_CrestFactorPlus_InitPars

Function block-specific structure with initialization parameters, which are analyzed when the function block is
initialized.
TYPE ST_CM_CrestFactorPlus_InitPars EXTENDS ST_CM_Object_InitPars :
STRUCT
 nChannels : UDINT := 32; (* Number of channels. *)
 nSubChannels : UDINT := 0; (* Number of subchannels. *)
 nBufferLength : UDINT := 250; (* Buffer length. *)
 bTransformToDecibel : BOOL := TRUE; (* Transform to Decibel. *)
 fDecibelThreshold : LREAL := cCM_MinArgLog10; (* Minimum argument of decadic logarithm for
64-bit IEEE 754 arithmetic. *)
END_STRUCT
END_TYPE

• nChannels defines the number of independent channels. This must be greater than zero.
• nSubChannels defines the number of independent subchannels. This must be greater than or equal

to zero.
• nBufferLength is the number of input values per channel held in the internal buffer.
• bTransformToDecibel is a Boolean value that indicates whether the result of the FFT is to be

transformed to the decibel scale, according to transformation x → 20 * log10(x).
• fDecibelThreshold is a very small floating point value greater than zero. Values that are less than

this number are replaced with this value before any transformation to the decibel scale. (The purpose is
the avoidance of value range errors. The logarithm of zero is not defined and strives infinitely towards

PLC API

TF3600218 Version: 1.5

minus for the limit value of small arguments. The same applies to the argument of the number zero,
arg(0). The smallest possible value is 2.3e-308, which is equivalent to the constant
cCM_MinArgLog10.)

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM_Base

5.3.9.5 ST_CM_ComplexFFT_InitPars

Function block-specific structure with initialization parameters, which are analyzed when the function block is
initialized.
TYPE ST_CM_ComplexFFT_InitPars EXTENDS ST_CM_Object_InitPars :
STRUCT
 nFFT_Length : UDINT := 256; (* Length of FFT. *)
 bForward : BOOL := TRUE; (* Flag indicating forward FFT. *)
 nChannels : UDINT := 1; (* Number of channels. *)
END_STRUCT
END_TYPE

• nFFT_Length is the length of the FFT. It must be greater than one and an integral power of two.
• bForward is a Boolean parameter that specifies the direction of the FFT. If the value is TRUE, the

normal FFT is calculated. Otherwise the inverse FFT is used.
• nChannels defines the number of independent channels. This must be greater than zero.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM_Base

5.3.9.6 ST_CM_DiscreteClassification_InitPars

Function block-specific structure with initialization parameters, which are analyzed when the function block is
initialized.
TYPE ST_CM_DiscreteClassification_InitPars EXTENDS ST_CM_Object_InitPars :
STRUCT
 nChannels : UDINT := 10; (* Number of channels. *)
 nSubChannels : UDINT := 0; (* Number of subchannels. *)
 nMaxClasses : UDINT := 3; (* Number of configurable threshold classes. *)
END_STRUCT
END_TYPE

• nChannels defines the number of independent channels. This must be greater than zero.
• nSubChannels defines the number of independent subchannels. This must be greater than or equal

to zero.
• nMaxClasses is the maximum number of classes that are configured. This must be at least one.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM_Base

5.3.9.7 ST_CM_EmpiricalMoments_InitPars

Function block-specific structure with initialization parameters, which are analyzed when the function block is
initialized.

PLC API

TF3600 219Version: 1.5

TYPE ST_CM_EmpiricalMoments_InitPars EXTENDS ST_CM_Object_InitPars :
STRUCT
 nChannels : UDINT := 512; (* Number of channels. *)
 nSubChannels : UDINT := 0; (* Number of subchannels. *)
 bPopulationEstimates : BOOL := TRUE; (* Apply Bessel's correction to results. *)
END_STRUCT
END_TYPE

• nChannels defines the number of independent channels. This must be greater than zero.
• nSubChannels defines the number of independent subchannels. This must be greater than or equal

to zero.
• bPopulationEstimates is a Boolean parameter that specifies whether a Bessel correction is to be

carried out.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM_Base

5.3.9.8 ST_CM_Envelope_InitPars

Function block-specific structure with initialization parameters, which are analyzed when the function block is
initialized.
TYPE ST_CM_Envelope_InitPars EXTENDS ST_CM_Object_InitPars :
STRUCT
 nFFT_Length : UDINT := 512; (* Length of FFT. *)
 nWindowLength : UDINT := 400; (* Length of analysis window. *)
 nChannels : UDINT := 1; (* Number of channels. *)
END_STRUCT
END_TYPE

• nFFT_Length is the length of the FFT. It must be greater than one and an integral power of two.
• nWindowLength is the length of the analysis window in samples. The length must be greater than one

and an even number.
• nChannels defines the number of independent channels. This must be greater than zero.

Avoiding artefacts
The value of nFFT_Length must be equal or greater the value of nWindowLength. In order to
avoid artefacts in the calculation, nFFT_Length should be at least 25 larger than nWin-
dowLength. An increase in the FFT length in relation to the window length makes sense with this
function block in order to avoid circular aliasing.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM_Base

5.3.9.9 ST_CM_EnvelopeSpectrum_InitPars

Function block-specific structure with initialization parameters, which are analyzed when the function block is
initialized.
TYPE ST_CM_EnvelopeSpectrum_InitPars EXTENDS ST_CM_InitPars :
STRUCT
 nFFT_Length : UDINT := 512; (* Length of FFT. *)
 nWindowLength : UDINT := 400; (* Length of analysis window. *)
 bTransformToDecibel : BOOL := TRUE; (* Transform to decibel. *)
 fDecibelThreshold : LREAL := cCM_MinArgLog10; (* Minimum
argument of decadic logarithm for 64-bit IEEE 754 arithmetic. *)
 eWindowType : E_CM_WindowType := eCM_HannWindow; (* Window type. *)
 aWindowParameters : T_CM_WindowParameters := [2.5,1,1,1,1]; (* Window parameters for specifi
c windows, e.g. FlatTop. *)
 nOverlap : UDINT := -1; (* Size of overlap in samples. *

PLC API

TF3600220 Version: 1.5

)
 eScalingType : E_CM_ScalingType := eCM_DiracScaling; (* Scaling type. *)
 nChannels : UDINT := 1; (* Number of channels. *)
END_STRUCT
END_TYPE

• nFFT_Length is the length of the FFT of the spectrum. It must be greater than one and an integral
power of two.

• nWindowLength is the length of the analysis window in samples. The length must be greater than one
and an even number.

• bTransformToDecibel is a Boolean value that indicates whether the result of the FFT is to be
transformed to the decibel scale, according to transformation x → 20 * log10(x).

• fDecibelThreshold is a very small floating point value greater than zero. Values that are less than
this number are replaced with this value before any transformation to the decibel scale. (The purpose is
the avoidance of value range errors. The logarithm of zero is not defined and strives infinitely towards
minus for the limit value of small arguments. The same applies to the argument of the number zero,
arg(0). The smallest possible value is 2.3e-308, which is equivalent to the constant
cCM_MinArgLog10.)

• eWindowType defines the used window function (of the type E_CM_WindowType [} 209]). A good
default value is the window type eCM_HannWindow.

• eWindowType defines the used window function (of the type E_CM_WindowType [} 209]). A good
default value is the window type eCM_HannWindow.

• aWindowParameters contains the free parameters of selected window functions. When using
eCM_KaiserWindow, the first entry defines the parameter beta; if eCM_FlatTopWindow is used, all
parameters are used. See section Window functions [} 19].

• nOverlap defines the number of overlapping samples. This must be greater than or equal to zero. If
the value cCM_OverlapRecommended is selected, a recommended overlap is calculated internally
(see F_CM_CalculateRecommendedOverlap [} 207]); the value cCM_OverlapInactive deactivates
the internally used buffer and sets the value to zero.

• eScalingType enables the selection of the scaling to be used (of the type E_CM_ScalingType [} 208]),
in case absolute scaling is required. The default value is eCM_DiracScaling. When selecting the
scaling the type of signal should be considered: either deterministic signals or wide-band signals with
stochastic portion. Both types require different scalings.

• nChannels defines the number of independent channels. This must be greater than zero.

Avoiding artefacts
The value of nFFT_Length must be equal or greater the value of nWindowLength. In order to
avoid artefacts in the calculation, nFFT_Length should be at least 25 larger than nWin-
dowLength. An increase in the FFT length in relation to the window length makes sense with this
function block in order to avoid circular aliasing.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM_Base

5.3.9.10 ST_CM_HistArray_InitPars

Function block-specific structure with initialization parameters, which are analyzed when the function block is
initialized.
TYPE ST_CM_HistArray_InitPars EXTENDS ST_CM_Object_InitPars :
STRUCT
 nChannels : UDINT := 512; (* Number of channels. *)
 nSubChannels : UDINT := 0; (* Number of subchannels. *)
 nBins : UDINT := 100; (* Number of bins. *)
 fMinBinned : LREAL := -120; (* Minimum binned value. *)

PLC API

TF3600 221Version: 1.5

 fMaxBinned : LREAL := 100; (* Maximum binned value. *)
END_STRUCT
END_TYPE

• nChannels defines the number of independent channels. This must be greater than zero.
• nSubChannels defines the number of independent subchannels. This must be greater than or equal

to zero.
• nBins is the number of histogram bins. It must be at least one. In many cases it makes sense to

choose values between 10 and 20. The two special bins for values that lie below fMinBinned or
above fMaxBinned are not included in this value.

• fMinBinned is the lower limit value for which samples are counted in the regular histogram bins.
• fMaxBinned is the upper limit value for which samples are counted in the regular histogram bins.
fMaxBinned must be greater than fMinBinned.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM_Base

5.3.9.11 ST_CM_InstantaneousFrequency_InitPars

Function block-specific structure with initialization parameters, which are analyzed when the function block is
initialized.
TYPE ST_CM_InstantaneousFrequency_InitPars EXTENDS ST_CM_Object_InitPars :
STRUCT
 nFFT_Length : UDINT := 512; (* Length of FFT. *)
 nWindowLength : UDINT := 400; (* Length of analysis window. *)
 fMagnitudeThreshold : LREAL := cCM_MinArgDiv; (* Minimum value for the numerical calculabili
ty. *)
 fSampleRate : LREAL := 50000; (* Sample rate in Hertz. *)
 nChannels : UDINT := 1; (* Number of channels. *)
END_STRUCT
END_TYPE

• nFFT_Length is the length of the FFT. It must be greater than one and an integral power of two.
• nWindowLength is the length of the analysis window in samples. The length must be greater than one

and an even number.
• fMagnitudeThreshold defines the limit value for the numerical calculability of the instantaneous

frequency. The limit value relates to the value

• fSampleRate Sampling rate of the incoming time signal. The value is used for the scaling of the result
in Hz.

• nChannels defines the number of independent channels. This must be greater than zero.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM_Base

5.3.9.12 ST_CM_InstantaneousPhase_InitPars

Function block-specific structure with initialization parameters, which are analyzed when the function block is
initialized.
TYPE ST_CM_InstantaneousPhase_InitPars EXTENDS ST_CM_Object_InitPars :
STRUCT
 nFFT_Length : UDINT := 512; (* Length of FFT. *)
 nWindowLength : UDINT := 400; (* Length of analysis window
. *)

PLC API

TF3600222 Version: 1.5

 eUnwrapMethod : E_CM_UnwrapMethod := eCM_ThresholdUnwrapping; (* Unwrap method for phase v
alues. *)
 fPhaseThreshold : LREAL := cCM_MinArgDiv; (* Minimum value for calcula
ting the instantaneous phase. *)
 nChannels : UDINT := 1; (* Number of channels. *)
END_STRUCT
END_TYPE

• nFFT_Length is the length of the FFT. It must be greater than one and an integral power of two.
• nWindowLength is the length of the analysis window in samples. The length must be greater than one

and an even number.
• eUnwrapMethod defines the method used for phase-unwrapping with regard to the phase in multiples

of 2 PI (see E_CM_UnwrapMethod [} 209]).
• fPhaseThreshold limit value for calculating the instantaneous phase. The value is related to the

signal envelope. Interpretation: If the signal level is too low, the calculation of the phase is numerically
too uncertain and cannot be evaluated reliably. 0 is then output as the phase.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM_Base

5.3.9.13 ST_CM_IntegratedRMS_InitPars

Function block-specific structure with initialization parameters, which are analyzed when the function block is
initialized.
TYPE ST_CM_IntegratedRMS_InitPars EXTENDS ST_CM_Object_InitPars :
STRUCT
 nFFT_Length : UDINT := 512; (* Length of FFT. *)
 nWindowLength : UDINT := 400; (* Length of analysis window.
 *)
 fSampleRate : LREAL := 20000; (* Sample rate in Hertz. *)
 fLowerFrequencyLimit : LREAL := 20.0; (* Lower limit of frequency b
and in Hertz. *)
 fUpperFrequencyLimit : LREAL := 1000.0; (* Upper limit of frequency b
and in Hertz. *)
 nMaxBands : UDINT := 1; (* Maximum number of frequenc
y bands. *)
 nOrder : UDINT := 2; (* Maximum order of integrati
on: 0 = acceleration, 1 = velocity, 2 = place. *)
 nChannels : UDINT := 2; (* Number of channels. *)
 eWindowType : E_CM_WindowType := eCM_HannWindow; (* Window type. *)
 aWindowParameters : T_CM_WindowParameters := [2.5,1,1,1,1]; (* Window parameters for spec
ific windows, e.g. FlatTop. *)
 nOverlap : UDINT := -1; (* Size of overlap in samples
. *)
 bTransformToDecibel : BOOL := TRUE; (* Transform to decibel. *)
 fDecibelThreshold : LREAL := cCM_MinArgLog10; (* Minimum argument of decadi
c logarithm for 64- bit IEEE 754 arithmetic. *)
END_STRUCT
END_TYPE

• nFFT_Length is the length of the FFT. It must be greater than one and an integral power of two.
• nWindowLength is the length of the analysis window in samples. The length must be greater than one

and an even number.
• fSampleRate Sampling rate of the incoming time signal. The value is used for the scaling of the result

in Hz.
• fLowerFrequencyLimit Lower limit of the considered frequency interval. The lower limit frequency

must be at least the sampling rate divided by the FFT-length.
• fUpperFrequencyLimit Upper limit of the considered frequency interval. The upper limit frequency

must be no greater than half the sampling rate and greater than the lower limit frequency.
• nMaxBands specifies the maximum number of frequency bands for which the RMS value is calculated.
• nOrder is the maximum order of the integration. This must be an integer between zero and two. The

number of the values determined per channel is (nOrder+1).

PLC API

TF3600 223Version: 1.5

• nChannels defines the number of independent channels. This must be greater than zero.

• eWindowType defines the used window function (of the type E_CM_WindowType [} 209]). A good
default value is the window type eCM_HannWindow.

• aWindowParameters contains the free parameters of selected window functions. When using
eCM_KaiserWindow, the first entry defines the parameter beta; if eCM_FlatTopWindow is used, all
parameters are used. See section Window functions [} 19].

• nOverlap defines the number of overlapping samples. This must be greater than or equal to zero. If
the value cCM_OverlapRecommended is selected, a recommended overlap is calculated internally
(see F_CM_CalculateRecommendedOverlap [} 207]); the value cCM_OverlapInactive deactivates
the internally used buffer and sets the value to zero.

• bTransformToDecibel is a Boolean value that indicates whether the result of the FFT is to be
transformed to the decibel scale, according to transformation x → 20 * log10(x).

• fDecibelThreshold is a very small floating point value greater than zero. Values that are less than
this number are replaced with this value before any transformation to the decibel scale. (The purpose is
the avoidance of value range errors. The logarithm of zero is not defined and strives infinitely towards
minus for the limit value of small arguments. The same applies to the argument of the number zero,
arg(0). The smallest possible value is 2.3e-308, which is equivalent to the constant
cCM_MinArgLog10.)

Note the window length
The value of nWindowLength must be less or equal the value of nFFT_Length. The length of the
FFT can orient itself to the required frequency resolution. Typically a value of about 4/5 of the FFT-
length is often used as the window length.

If nFFT_Length is greater than nWindowLength, the frequency resolution of the FFT (and therefore also
the length of the return values vector) is increased. The length difference is filled with zeros before the
Fourier transform. This can be useful for achieving a higher frequency resolution, or for avoiding circular
aliasing in calculations with inverse transformation in the time domain. Despite the higher frequency
resolution, however, the result contains no more information.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM_Base

5.3.9.14 ST_CM_MagnitudeSpectrum_InitPars

Function block-specific structure with initialization parameters, which are analyzed when the function block is
initialized.
TYPE ST_CM_MagnitudeSpectrum_InitPars EXTENDS ST_CM_Object_InitPars :
STRUCT
 nFFT_Length : UDINT := 512; (* Length of FFT. *)
 nWindowLength : UDINT := 400; (* Length of analysis window.
*)
 fDecibelThreshold : LREAL := cCM_MinArgLog10; (* Minimum argument of decadic
 logarithm for 64- bit IEEE 754 arithmetic. *)
 bTransformToDecibel : BOOL := TRUE; (* Transform to decibel. *)
 eWindowType : E_CM_WindowType := eCM_HannWindow; (* Window type. *)
 aWindowParameters : T_CM_WindowParameters := [2.5,1,1,1,1]; (* Window parameters for speci
fic windows, e.g. FlatTop. *)
 nOverlap : UDINT := -1; (* Size of overlap in samples.
 *)
 eScalingType : E_CM_ScalingType := eCM_DiracScaling; (* Scaling type. *)
 nChannels : UDINT := 1; (* Number of channels. *)
END_STRUCT
END_TYPE

• nFFT_Length is the length of the FFT. It must be greater than one and an integral power of two.
• nWindowLength is the length of the analysis window in samples. The length must be greater than one

and an even number.

PLC API

TF3600224 Version: 1.5

• fDecibelThreshold is a very small floating point value greater than zero. Values that are less than
this number are replaced with this value before any transformation to the decibel scale. (The purpose is
the avoidance of value range errors. The logarithm of zero is not defined and strives infinitely towards
minus for the limit value of small arguments. The same applies to the argument of the number zero,
arg(0). The smallest possible value is 2.3e-308, which is equivalent to the constant
cCM_MinArgLog10.)

• bTransformToDecibel is a Boolean value that indicates whether the result of the FFT is to be
transformed to the decibel scale, according to transformation x → 20 * log10(x).

• eWindowType defines the used window function (of the type E_CM_WindowType [} 209]). A good
default value is the window type eCM_HannWindow.

• aWindowParameters contains the free parameters of selected window functions. When using
eCM_KaiserWindow, the first entry defines the parameter beta; if eCM_FlatTopWindow is used, all
parameters are used. See section Window functions [} 19].

• nOverlap defines the number of overlapping samples. This must be greater than or equal to zero. If
the value cCM_OverlapRecommended is selected, a recommended overlap is calculated internally
(see F_CM_CalculateRecommendedOverlap [} 207]); the value cCM_OverlapInactive deactivates
the internally used buffer and sets the value to zero.

• eScalingType enables the selection of the scaling to be used (of the type E_CM_ScalingType [} 208]),
in case absolute scaling is required. The default value is eCM_DiracScaling. When selecting the
scaling the type of signal should be considered: either deterministic signals or wide-band signals with
stochastic portion. Both types require different scalings.

• nChannels defines the number of independent channels. This must be greater than zero.

Note the window length
The value of nWindowLength must be less or equal the value of nFFT_Length. The length of the
FFT can orient itself to the required frequency resolution. Typically a value of about 4/5 of the FFT-
length is often used as the window length.

If nFFT_Length is greater than nWindowLength, the frequency resolution of the FFT (and therefore also
the length of the return values vector) is increased. The length difference is filled with zeros before the
Fourier transform. This can be useful for achieving a higher frequency resolution, or for avoiding circular
aliasing in calculations with inverse transformation in the time domain. Despite the higher frequency
resolution, however, the result contains no more information.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM_Base

5.3.9.15 ST_CM_MomentCoefficients_InitPars

Function block-specific structure with initialization parameters, which are analyzed when the function block is
initialized.
TYPE ST_CM_MomentCoefficients_InitPars EXTENDS ST_CM_Object_InitPars :
STRUCT
 nChannels : UDINT := 512; (* Number of channel
s. *)
 nSubChannels : UDINT := 0; (* Number of subchan
nels. *)
 nOrder : E_CM_MCoefOrder := E_CM_MCoefOrder.eCM_Kurtosis; (* Maximum order of
the moment coefficients that are calculated. *)
 bPopulationEstimates : BOOL := FALSE; (* Apply Bessel's co
rrection to results. *)
 bKurtosisExcess : BOOL := TRUE; (* Flag if kurtosis
is reduced by 3. *)
END_STRUCT
END_TYPE

• nChannels defines the number of independent channels. This must be greater than zero.

PLC API

TF3600 225Version: 1.5

• nSubChannels defines the number of independent subchannels. This must be greater than or equal
to zero.

• nOrder is the maximum order of the moment coefficients (E_CM_MCoefOrder [} 208]) that are
calculated. This must be an integer between one and four. The order numbers are: 0 = counter, 1 =
average value, 2 = standard deviation, 3 = skew, 4 = excess kurtosis. The number of determined
coefficients is (nOrder+1).

• bPopulationEstimates is a Boolean value that indicates, whether the corresponding Bessel's
correction is applied to the sample variance, skew and excess.

• bKurtosisExcess is a Boolean value that specifies whether the excess is reduced by the value.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM_Base

5.3.9.16 ST_CM_MultiBandRMS_InitPars

Function block-specific structure with initialization parameters, which are analyzed when the function block is
initialized.
TYPE ST_CM_MultiBandRMS_InitPars EXTENDS ST_CM_Object_InitPars :
STRUCT
 nFFT_Length : UDINT := 512; (* Length of FFT. *)
 nWindowLength : UDINT := 400; (* Length of analysis window.
 *)
 fSampleRate : LREAL := 20000; (* Sample rate in Hertz. *)
 nMaxBands : UDINT := 10; (* Maximum number of frequenc
y bands. *)
 nChannels : UDINT := 10; (* Number of channels. *)
 eWindowType : E_CM_WindowType := eCM_HannWindow; (* Window type. *)
 aWindowParameters : T_CM_WindowParameters := [2.5,1,1,1,1]; (* Window parameters for spec
ific windows, e.g. FlatTop. *)
 nOverlap : UDINT := -1; (* Size of overlap in samples
. *)
 bTransformToDecibel : BOOL := TRUE; (* Transform to decibel. *)
 fDecibelThreshold : LREAL := cCM_MinArgLog10; (* Minimum argument of decadi
c logarithm for 64- bit IEEE 754 arithmetic. *)
END_STRUCT
END_TYPE

• nFFT_Length is the length of the FFT. It must be greater than one and an integral power of two.
• nWindowLength is the length of the analysis window in samples. The length must be greater than one

and an even number.
• fSampleRate Sampling rate of the incoming time signal. The value is used for the scaling of the result

in Hz.
• nMaxBands specifies the maximum number of frequency bands for which the RMS value is calculated.
• nChannels defines the number of independent channels. This must be greater than zero.

• eWindowType defines the used window function (of the type E_CM_WindowType [} 209]). A good
default value is the window type eCM_HannWindow.

• aWindowParameters contains the free parameters of selected window functions. When using
eCM_KaiserWindow, the first entry defines the parameter beta; if eCM_FlatTopWindow is used, all
parameters are used. See section Window functions [} 19].

• nOverlap defines the number of overlapping samples. This must be greater than or equal to zero. If
the value cCM_OverlapRecommended is selected, a recommended overlap is calculated internally
(see F_CM_CalculateRecommendedOverlap [} 207]); the value cCM_OverlapInactive deactivates
the internally used buffer and sets the value to zero.

• bTransformToDecibel is a Boolean value that indicates whether the result of the FFT is to be
transformed to the decibel scale, according to transformation x → 20 * log10(x).

PLC API

TF3600226 Version: 1.5

• fDecibelThreshold is a very small floating point value greater than zero. Values that are less than
this number are replaced with this value before any transformation to the decibel scale. (The purpose is
the avoidance of value range errors. The logarithm of zero is not defined and strives infinitely towards
minus for the limit value of small arguments. The same applies to the argument of the number zero,
arg(0). The smallest possible value is 2.3e-308, which is equivalent to the constant
cCM_MinArgLog10.)

Note the window length
The value of nWindowLength must be less or equal the value of nFFT_Length. The length of the
FFT can orient itself to the required frequency resolution. Typically a value of about 4/5 of the FFT-
length is often used as the window length.

If nFFT_Length is greater than nWindowLength, the frequency resolution of the FFT (and therefore also
the length of the return values vector) is increased. The length difference is filled with zeros before the
Fourier transform. This can be useful for achieving a higher frequency resolution, or for avoiding circular
aliasing in calculations with inverse transformation in the time domain. Despite the higher frequency
resolution, however, the result contains no more information.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM_Base

5.3.9.17 ST_CM_PowerCepstrum_InitPars

Function block-specific structure with initialization parameters, which are analyzed when the function block is
initialized.
TYPE ST_CM_PowerCepstrum_InitPars EXTENDS ST_CM_Object_InitPars :
STRUCT
 nFFT_Length : UDINT := 512; (* Length of FFT. *)
 nWindowLength : UDINT := 400; (* Length of analysis window. *)
 eWindowType : E_CM_WindowType := eCM_HannWindow; (* Window type. *)
 aWindowParameters : T_CM_WindowParameters := [2.5,1,1,1,1]; (* Window parameters for specifi
c windows, e.g. FlatTop. *)
 nOverlap : UDINT := -1; (* Size of overlap in samples. *
)
 fLogThreshold : LREAL := cCM_MinArgLogN; (* Minimum argument of decadic l
ogarithm for 64- bit IEEE 754 arithmetic
 eScalingType : E_CM_ScalingType := eCM_DiracScaling; (* Scaling type. *)
 nChannels : UDINT := 1; (* Number of channels. *)
 *)
END_STRUCT
END_TYPE

• nFFT_Length is the length of the FFT. It must be greater than one and an integral power of two.
• nWindowLength is the length of the analysis window in samples. The length must be greater than one

and an even number.

• eWindowType defines the used window function (of the type E_CM_WindowType [} 209]). A good
default value is the window type eCM_HannWindow.

• aWindowParameters contains the free parameters of selected window functions. When using
eCM_KaiserWindow, the first entry defines the parameter beta; if eCM_FlatTopWindow is used, all
parameters are used. See section Window functions [} 19].

• nOverlap defines the number of overlapping samples. This must be greater than or equal to zero. If
the value cCM_OverlapRecommended is selected, a recommended overlap is calculated internally
(see F_CM_CalculateRecommendedOverlap [} 207]); the value cCM_OverlapInactive deactivates
the internally used buffer and sets the value to zero.

• fLogThreshold is a very small floating point value greater than zero. The smallest possible value is
3.75e-324, which is equivalent to the constant cCM_MinArgLogN.
Spectral values with absolute values that are smaller than this number are replaced with this value

PLC API

TF3600 227Version: 1.5

before the spectrum is logarithmized. The purpose is the avoidance of value range errors. The
logarithm of zero is not defined and strives infinitely towards minus for the limit value of small
arguments. The same applies to the argument of the number zero, arg(0).

• eScalingType enables the selection of the scaling to be used (of the type E_CM_ScalingType [} 208]),
in case absolute scaling is required. The default value is eCM_DiracScaling. When selecting the
scaling the type of signal should be considered: either deterministic signals or wide-band signals with
stochastic portion. Both types require different scalings.

• nChannels defines the number of independent channels. This must be greater than zero.

Window length
The value of nFFT_Length must be equal or greater the value of nWindowLength. The length of
the FFT can orient itself to the required frequency resolution. Typically a value of about 3/4 of the
FFT length is often used as the window length.

If nFFT_Length is greater than nWindowLength, the frequency resolution of the FFT (and therefore also
the length of the return values vector) is increased. The length difference is filled with zeros before the
Fourier transform. This can be useful for achieving a higher frequency resolution or, e.g. when calculating
with inverse transformation in the time domain, in order to avoid circular aliasing . Despite the higher
frequency resolution, however, the result contains no more information.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM_Base

5.3.9.18 ST_CM_PowerSpectrum_InitPars

Function block-specific structure with initialization parameters, which are analyzed when the function block is
initialized.
TYPE ST_CM_PowerSpectrum_InitPars EXTENDS ST_CM_Object_InitPars :
STRUCT
 nFFT_Length : UDINT := 512; (* Length of FFT. *)
 nWindowLength : UDINT := 400; (* Length of analysis window.
*)
 fDecibelThreshold : LREAL := cCM_MinArgLog10; (* Minimum argument of decadic
 logarithm for 64- bit IEEE 754 arithmetic. *)
 bTransformToDecibel : BOOL := TRUE; (* Transform to decibel. *)
 eWindowType : E_CM_WindowType := eCM_HannWindow; (* Window type. *)
 aWindowParameters : T_CM_WindowParameters := [2.5,1,1,1,1]; (* Window parameters for speci
fic windows, e.g. FlatTop. *)
 nOverlap : UDINT := -1; (* Size of overlap in samples.
 *)
 eScalingType : E_CM_ScalingType := eCM_DiracScaling; (* Scaling type. *)
 nChannels : UDINT := 1; (* Number of channels. *)
END_STRUCT
END_TYPE

• nFFT_Length is the length of the FFT. It must be greater than one and an integral power of two.
• nWindowLength is the length of the analysis window in samples. The length must be greater than one

and an even number.
• fDecibelThreshold is a very small floating point value greater than zero. Values that are less than

this number are replaced with this value before any transformation to the decibel scale. (The purpose is
the avoidance of value range errors. The logarithm of zero is not defined and strives infinitely towards
minus for the limit value of small arguments. The same applies to the argument of the number zero,
arg(0). The smallest possible value is 2.3e-308, which is equivalent to the constant
cCM_MinArgLog10.)

• bTransformToDecibel is a Boolean value that indicates whether the result of the FFT is to be
transformed to the decibel scale, according to transformation x → 20 * log10(x).

• eWindowType defines the used window function (of the type E_CM_WindowType [} 209]). A good
default value is the window type eCM_HannWindow.

PLC API

TF3600228 Version: 1.5

• aWindowParameters contains the free parameters of selected window functions. When using
eCM_KaiserWindow, the first entry defines the parameter beta; if eCM_FlatTopWindow is used, all
parameters are used. See section Window functions [} 19].

• nOverlap defines the number of overlapping samples. This must be greater than or equal to zero. If
the value cCM_OverlapRecommended is selected, a recommended overlap is calculated internally
(see F_CM_CalculateRecommendedOverlap [} 207]); the value cCM_OverlapInactive deactivates
the internally used buffer and sets the value to zero.

• eScalingType enables the selection of the scaling to be used (of the type E_CM_ScalingType [} 208]),
in case absolute scaling is required. The default value is eCM_DiracScaling. When selecting the
scaling the type of signal should be considered: either deterministic signals or wide-band signals with
stochastic portion. Both types require different scalings.

• nChannels defines the number of independent channels. This must be greater than zero.

Note the window length
The value of nWindowLength must be less or equal the value of nFFT_Length. The length of the
FFT can orient itself to the required frequency resolution. Typically a value of about 4/5 of the FFT-
length is often used as the window length.

If nFFT_Length is greater than nWindowLength, the frequency resolution of the FFT (and therefore also
the length of the return values vector) is increased. The length difference is filled with zeros before the
Fourier transform. This can be useful for achieving a higher frequency resolution, or for avoiding circular
aliasing in calculations with inverse transformation in the time domain. Despite the higher frequency
resolution, however, the result contains no more information.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM_Base

5.3.9.19 ST_CM_Quantiles_InitPars

Function block-specific structure with initialization parameters, which are analyzed when the function block is
initialized.
TYPE ST_CM_Quantiles_InitPars EXTENDS ST_CM_Object_InitPars :
STRUCT
 nChannels : UDINT := 512; (* Number of channels. *)
 nSubChannels : UDINT := 0; (* Number of subchannels. *)
 fMinBinned : LREAL := -120; (* Minimum binned value. *)
 fMaxBinned : LREAL := 100; (* Maximum binned value. *)
 nBins : UDINT := 100; (* Number of bins. *)
 nMaxQuantiles : UDINT := 10; (* Maximum number of quantiles. *)
END_STRUCT
END_TYPE

• nChannels defines the number of independent channels. This must be greater than zero.
• nSubChannels defines the number of independent subchannels. This must be greater than or equal

to zero.
• fMinBinned is the lower limit value for which samples are counted in the regular histogram bins.
• fMaxBinned is the upper limit value for which samples are counted in the regular histogram bins.
fMaxBinned must be greater than fMinBinned.

• nBins is the number of histogram bins. It must be at least one. In many cases it makes sense to
choose values between 10 and 20. The two special bins for values that lie below fMinBinned or
above fMaxBinned are not included in this value.

• nMaxQuantiles is the number of quantiles to be calculated for each channel. This must be an integer
greater than zero.

PLC API

TF3600 229Version: 1.5

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM_Base

5.3.9.20 ST_CM_RealFFT_InitPars

Function block-specific structure with initialization parameters, which are analyzed when the function block is
initialized.
TYPE ST_CM_RealFFT_InitPars EXTENDS ST_CM_Object_InitPars :
STRUCT
 nFFT_Length : UDINT := 512; (* Length of FFT. *)
 bForward : BOOL := TRUE; (* Flag indicating forward FFT. *)
 bHalfSpec : BOOL := TRUE; (* Flag indicating length of output; if TRUE, the algorithm outp
uts half the spectrum (nFFT_Length/2 + 1). *)
 nChannels : UDINT := 1; (* Number of channels. *)
END_STRUCT
END_TYPE

• nFFT_Length is the length of the FFT. It must be greater than one and an integral power of two.
• bForward is a Boolean parameter that specifies the direction of the FFT. If the value is TRUE, the

normal FFT is calculated. Otherwise the inverse FFT is used.
• bHalfSpec is a Boolean parameter that specifies the size of the result buffer. If the value is TRUE, the

algorithm outputs the half-spectrum (nFFT_Length/2 + 1).
• nChannels defines the number of independent channels. This must be greater than zero.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM_Base

5.3.9.21 ST_CM_RMS_InitPars

Function block-specific structure with initialization parameters, which are analyzed when the function block is
initialized.
TYPE ST_CM_RMS_InitPars EXTENDS ST_CM_Object_InitPars :
STRUCT
 nChannels : UDINT := 4; (* Number of channels. *)
 nSubChannels : UDINT := 0; (* Number of subchannels. *)
 nBufferLength : UDINT := 2000; (* Buffer length. *)
 fDecibelThreshold : LREAL := cCM_MinArgLog10; (* Minimum argument of decadic logarithm for
 64-bit IEEE 754 arithmetic. *)
 bTransformToDecibel : BOOL := TRUE; (* Transform to decibel. *)
END_STRUCT
END_TYPE

• nChannels defines the number of independent channels. This must be greater than zero.
• nSubChannels defines the number of independent subchannels. This must be greater than or equal

to zero.
• nBufferLength is the number of input values per channel held in the internal buffer.
• fDecibelThreshold is a very small floating point value greater than zero. Values that are less than

this number are replaced with this value before any transformation to the decibel scale. (The purpose is
the avoidance of value range errors. The logarithm of zero is not defined and strives infinitely towards
minus for the limit value of small arguments. The same applies to the argument of the number zero,
arg(0). The smallest possible value is 2.3e-308, which is equivalent to the constant
cCM_MinArgLog10.)

• bTransformToDecibel is a Boolean value that indicates whether the result of the FFT is to be
transformed to the decibel scale, according to transformation x → 20 * log10(x).

PLC API

TF3600230 Version: 1.5

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM_Base

5.3.9.22 ST_CM_SparseSpectrum_InitPars

Function block-specific structure with initialization parameters, which are analyzed when the function block is
initialized.
TYPE ST_CM_SparseSpectrum_InitPars EXTENDS ST_CM_Object_InitPars :
STRUCT
 nWindowLength : UDINT := 1000; (* Length of analy
sis window. *)
 fSampleRate : LREAL := 10000; (* Sample rate in
Hertz. *)
 nBins : UDINT := 1; (* Number of spect
ral bins. *)
 eSpectrumType : E_CM_SpectrumType := E_CM_SpectrumType.eCM_Magnitude; (* Type of spectru
m, i.e. plain DFT, magnitude, power. *)
 eWindowType : E_CM_WindowType := eCM_HannWindow; (* Window type. *)
 aWindowParameters : T_CM_WindowParameters := [2.5,1,1,1,1]; (* Window paramete
rs for specific windows, e.g. FlatTop. *)
 nOverlap : UDINT := -1; (* Size of overlap
 in samples. *)
 eScalingType : E_CM_ScalingType := eCM_DiracScaling; (* Scaling type. *
)
 bTransformToDecibel : BOOL := FALSE; (* Transform to de
cibel. *)
 fDecibelThreshold : LREAL := cCM_MinArgLog10; (* Minimum argumen
t of decadic logarithm for 64- bit IEEE 754 arithmetic. *)
 nChannels : UDINT := 1; (* Number of chann
els. *)
END_STRUCT
END_TYPE

• nWindowLength is the length of the analysis window in samples. The length must be greater than one
and an even number.

• fSampleRate Sampling rate of the incoming time signal. The value is used for the scaling of the result
in Hz.

• nBins is the number of spectral values to be calculated. The corresponding indices
(k := f / fSampleRate / nWindowLength) must be configured after initialization using the
Configure() method.

• eSpectrumType defines the type of spectral values (of the type E_CM_SpectrumType [} 208]) to be
calculated. The scaling of the values is adapted to the respective type, so that the values correspond to
the results of the function blocks FB_CMA_RealFFT [} 174], FB_CMA_MagnitudeSpectrum [} 147] or
FB_CMA_PowerSpectrum [} 165].

• eWindowType defines the used window function (of the type E_CM_WindowType [} 209]). A good
default value is the window type eCM_HannWindow.

• aWindowParameters contains the free parameters of selected window functions. When using
eCM_KaiserWindow, the first entry defines the parameter beta; if eCM_FlatTopWindow is used, all
parameters are used. See section Window functions [} 19].

• nOverlap defines the number of overlapping samples. This must be greater than or equal to zero. If
the value cCM_OverlapRecommended is selected, a recommended overlap is calculated internally
(see F_CM_CalculateRecommendedOverlap [} 207]); the value cCM_OverlapInactive deactivates
the internally used buffer and sets the value to zero.

• eScalingType enables the selection of the scaling to be used (of the type E_CM_ScalingType [} 208]),
in case absolute scaling is required. The default value is eCM_DiracScaling. When selecting the
scaling the type of signal should be considered: either deterministic signals or wide-band signals with
stochastic portion. Both types require different scalings.

• bTransformToDecibel is a Boolean value that indicates whether the result of the FFT is to be
transformed to the decibel scale, according to transformation x → 20 * log10(x).

PLC API

TF3600 231Version: 1.5

• fDecibelThreshold is a very small floating point value greater than zero. Values that are less than
this number are replaced with this value before any transformation to the decibel scale. (The purpose is
the avoidance of value range errors. The logarithm of zero is not defined and strives infinitely towards
minus for the limit value of small arguments. The same applies to the argument of the number zero,
arg(0). The smallest possible value is 2.3e-308, which is equivalent to the constant
cCM_MinArgLog10.)

• nChannels defines the number of independent channels. This must be greater than zero.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM_Base

5.3.9.23 ST_CM_VibrationAssessment_InitPars

Function block-specific structure with initialization parameters, which are analyzed when the function block is
initialized.
TYPE ST_CM_VibrationAssessment_InitPars EXTENDS ST_CM_Object_InitPars :
STRUCT
 nFFT_Length : UDINT := 512; (* Length of FFT. *)
 nWindowLength : UDINT := 400; (* Length of analysis window.
 *)
 fSampleRate : LREAL := 20000; (* Sample rate in Hertz. *)
 nChannels : UDINT := 2; (* Number of channels. *)
 nOrder : UDINT := 2; (* Maximum order of integrati
on: 0 = acceleration, 1 = velocity, 2 = place. *)
 nMaxBands : UDINT := 1; (* Maximum number of frequenc
y bands. *)
 nMaxClasses : UDINT := 3; (* Number of configurable thr
eshold classes. *)
 bMemorize : BOOL :=TRUE; (* Flag if results are memori
zed. *)
 eWindowType : E_CM_WindowType := eCM_HannWindow; (* Window type. *)
 aWindowParameters : T_CM_WindowParameters := [2.5,1,1,1,1]; (* Window parameters for spec
ific windows, e.g. FlatTop. *)
 nOverlap : UDINT := -1; (* Size of overlap in samples
. *)
 bTransformToDecibel : BOOL := TRUE; (* Transform to decibel. *)
 fDecibelThreshold : LREAL := cCM_MinArgLog10; (* Minimum argument of decadi
c logarithm for 64- bit IEEE 754 arithmetic. *)
END_STRUCT
END_TYPE

• nFFT_Length is the length of the FFT. It must be greater than one and an integral power of two.
• nWindowLength is the length of the analysis window in samples. The length must be greater than one

and an even number.
• fSampleRate Sampling rate of the incoming time signal. The value is used for the scaling of the result

in Hz.
• nChannels defines the number of independent channels. This must be greater than zero.
• nOrder is the maximum order of the integration. This must be an integer between zero and two. The

number of the values determined per channel is (nOrder+1).
• nMaxBands specifies the maximum number of frequency bands for which the RMS value is calculated.
• nMaxClasses is the maximum number of classes that are configured. This must be at least one.
• bMemorize is a Boolean variable. If it is FALSE, the function block recalculates the number of the

highest category and the corresponding channel for each step. If the value is TRUE, the result values
are stored when a limit value is exceeded until the ResetData() method is executed or a channel
reaches a higher category. The default value is TRUE.

• eWindowType defines the used window function (of the type E_CM_WindowType [} 209]). A good
default value is the window type eCM_HannWindow.

PLC API

TF3600232 Version: 1.5

• aWindowParameters contains the free parameters of selected window functions. When using
eCM_KaiserWindow, the first entry defines the parameter beta; if eCM_FlatTopWindow is used, all
parameters are used. See section Window functions [} 19].

• nOverlap defines the number of overlapping samples. This must be greater than or equal to zero. If
the value cCM_OverlapRecommended is selected, a recommended overlap is calculated internally
(see F_CM_CalculateRecommendedOverlap [} 207]); the value cCM_OverlapInactive deactivates
the internally used buffer and sets the value to zero.

• bTransformToDecibel is a Boolean value that indicates whether the result of the FFT is to be
transformed to the decibel scale, according to transformation x → 20 * log10(x).

• fDecibelThreshold is a very small floating point value greater than zero. Values that are less than
this number are replaced with this value before any transformation to the decibel scale. (The purpose is
the avoidance of value range errors. The logarithm of zero is not defined and strives infinitely towards
minus for the limit value of small arguments. The same applies to the argument of the number zero,
arg(0). The smallest possible value is 2.3e-308, which is equivalent to the constant
cCM_MinArgLog10.)

Note the window length
The value of nWindowLength must be less or equal the value of nFFT_Length. The length of the
FFT can orient itself to the required frequency resolution. Typically a value of about 4/5 of the FFT-
length is often used as the window length.

If nFFT_Length is greater than nWindowLength, the frequency resolution of the FFT (and therefore also
the length of the return values vector) is increased. The length difference is filled with zeros before the
Fourier transform. This can be useful for achieving a higher frequency resolution, or for avoiding circular
aliasing in calculations with inverse transformation in the time domain. Despite the higher frequency
resolution, however, the result contains no more information.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM_Base

5.3.9.24 ST_CM_WatchUpperThresholds_InitPars

Function block-specific structure with initialization parameters, which are analyzed when the function block is
initialized.
TYPE ST_CM_WatchUpperThresholds_InitPars EXTENDS ST_CM_Object_InitPars :
STRUCT
 nChannels : UDINT := 10; (* Number of channels. *)
 nSubChannels : UDINT := 0; (* Number of subchannels. *)
 nMaxClasses : UDINT := 3; (* Number of configurable threshold classes. *)
 bMemorize : BOOL :=TRUE; (* Flag if results are memorized. *)
END_STRUCT
END_TYPE

• nChannels defines the number of independent channels. This must be greater than zero.
• nSubChannels defines the number of independent subchannels. This must be greater than or equal

to zero.
• nMaxClasses is the maximum number of classes that are configured. This must be at least one.
• bMemorize is a Boolean variable. If it is FALSE, the function block recalculates the number of the

highest category and the corresponding channel for each step. If the value is TRUE, the result values
are stored when a limit value is exceeded until the ResetData() method is executed or a channel
reaches a higher category. The default value is TRUE.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM_Base

PLC API

TF3600 233Version: 1.5

5.3.9.25 ST_MA_MultiArray_InitPars

Function block-specific structure with initialization parameters, which are analyzed when the function block is
initialized.
TYPE ST_MA_MultiArray_InitPars :
STRUCT
 eTypeCode : E_MA_ElementTypeCode := eMA_TypeCode_LREAL; (* Used datatype. *
)
 nDims : UDINT := 1; (* Number of dimens
ions the array will have. *)
 aDimSizes : ARRAY[0.. 15] OF UDINT := [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; (* Size for each di
mension. *)
END_STRUCT
END_TYPE

• eTypeCode The parameter specifies the element type (E_MA_ElementTypeCode [} 209]) of the
MultiArray buffer element.

• nDims The parameter specifies the number of dimensions of the MultiArray buffer.
• aDimSizes The size of each dimension is specified by this array. If the shape of the input buffer of a

following algorithm is defined with 'm x n' (in the input stream), the MultiArray buffer must be created
with aDimSizes := [m,n].

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_MultiArray

5.4 Global constants

5.4.1 GVL_CM

Analysis function block constants:
cCMA_MaxDest : UDINT := 20;
cCMA_MaxID : UDINT := 1000;

• cCMA_MaxDest: Maximum number of destinations for an analysis function block.
• cCMA_MaxID: Maximum ID that can be issued for an analysis function block (corresponds to the

maximum number of possible analysis function blocks).

Transfer Tray parameter:

The internal transfer tray is initialized with the following constants for the transfer of data between the
analysis function blocks.
cCMA_InitParsTransferTray : ST_MA_TransferTray_InitPars := (
 nStreams := 2048,
 nMaxEntries := 10,
 nQueueSize := 64,
 bLockFree := TRUE,
 nUpdatePeriod := 2);

• nStreams This parameter specifies how many independently functioning queues are provided. There
should be a separate queue for each task-spanning data stream. Additional queues do not require any
system resources.

• nMaxEntries This parameter indicates the maximum number of elements that the queues can
contain. For the communication of data buffers it usually makes sense for all buffers that come into
question to have space in the queue so that no buffer overrun conditions can occur. A value of one can
also be selected.

• nQueueSize The reserved length of the queues. This value must be larger than nMaxEntries and in
addition must be an integral power of two.

PLC API

TF3600234 Version: 1.5

• bLockFree If this parameter is TRUE, a modern lock-free implementation is used for the queues. This
is the preset state. Otherwise a classic implementation with interrupt blocks is used. The lock-free
implementation can achieve a better time behavior of the overall system, but may lead to higher
latencies under an extremely high load.

• nUpdatePeriod This parameter specifies how often internal interim results are refreshed. The
frequency of complex operations can be reduced by a value greater than one. Values of two (preset) or
three are usually practical.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base,

Tc3_MultiArray

5.4.2 GVL_CM_Base

Limit value constants:
cCM_MinArgLog10 : LREAL := 2.3E-308; (* approximate minimum argument of decadic logarithm *)
cCM_MinArgLogN : LREAL := 2.3E-308; (* approximate minimum argument of natural logarithm *)
cCM_MinArgDiv : LREAL := 2.3E-308; (* minimum argument of division *)

The purpose of these constants is to avoid value range errors. The logarithm of real numbers is not defined
in the case of negative numbers and zero. For this reason, constants are defined with values close to zero.
The same applies to division by zero.

Constants for recommended overlapping:
cCM_OverlapRecommended : UDINT := TO_UDINT(-1); (* setting for recommended overlap (e.g. HannWin
dow: 50% overlapping) *)
cCM_OverlapInactive : UDINT := TO_UDINT(-2); (* setting in order to deactivate overlap *)

These constants are for setting the size of the internal data buffer when using the window functions. They
serve in the InitPars structures [} 216] of the respective function blocks as values for the parameter
ST_CM_EnvelopeSpectrum_InitPars [} 220].

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM_Base

5.4.3 Global_Version

This global constant contains the library version information.

All libraries have a specific version. This version is shown in the PLC library repository too.

VAR_GLOBAL CONSTANT
 stLibVersion_Tc3_CM : ST_LibVersion;
END_VAR

Type definition of this global constant structure: ST_LibVersion

To compare the existing version to a required version the function F_CmpLibVersion (defined in Tc2_System
library) is offered.

PLC API

TF3600 235Version: 1.5

5.4.4 Param

List of the parameters than can be set before runtime
VAR_GLOBAL CONSTANT
 eEventTraceLevel : TcEventSeverity := TcEventSeverity.Critical;
END_VAR

• eEventTraceLevel: The parameter enables the central setting of the TcEventSeverity of the events
for the use of the TcEventLogger (see Overview) inside the Condition Monitoring library.

Setting

Parameters are changed via the Library Manager: in the Tc3_CM_Base library in the GVLs folder under
Param in the column "Value (editable)".

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM_Base

Samples

TF3600236 Version: 1.5

6 Samples

6.1 FFT with real-value input signal
The sample illustrates the implementation of a spectrum calculation with the function block FB_CMA_RealFFT
[} 174].

The sample is available for download from here:
https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/
zip/27021601158730507.zip

https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/zip/27021601158730507.zip
https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/zip/27021601158730507.zip

Samples

TF3600 237Version: 1.5

Block diagram

Program parameters

The table below shows a list of important parameters for the configuration of the

RealFFT function block.

FFT length 2048
Forward calculation TRUE

Samples

TF3600238 Version: 1.5

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4018 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base,

Tc3_MultiArray

6.2 FFT with complex-value input signal
The sample illustrates the implementation of a spectrum calculation with the function block
FB_CMA_ComplexFFT [} 93]. In contrast to the function block FB_CMA_RealFFT [} 174], the data type
LCOMPLEX is used for the required multi-array.

The sample is available for download from here:
https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/
zip/27021601158702731.zip

https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/zip/27021601158702731.zip
https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/zip/27021601158702731.zip

Samples

TF3600 239Version: 1.5

Block diagram

Program parameters

The table below shows a list of important parameters for the configuration of the

ComplexFFT function block.

Samples

TF3600240 Version: 1.5

Type code eMA_TypeCode_LCOMPLEX
FFT length 2048
Forward calculation TRUE

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4018 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base,

Tc3_MultiArray

6.3 Magnitude spectrum:
This sample implements a single-channel magnitude spectrum. The code is split into two tasks: a control
task, which collects the discrete input signal of a hardware module, e.g. EL3632, and a CM task, which
calculates the spectrum. The block diagram below shows the analysis chain implemented in the sample.

The source code for the sample is available for download from here:
https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/
zip/27021601158797835.zip

https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/zip/27021601158797835.zip
https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/zip/27021601158797835.zip

Samples

TF3600 241Version: 1.5

Block Diagram

Program parameters

The table below shows a list of important parameters for the configuration of the magnitude spectrum
function block.

FFT-length 4096
Window size 3200
Buffer size 1600
Window type eCM_HannWindow
Scaling type eCM_ROOT_POWER_SUM
Scaling in decibels (dB) FALSE

Samples

TF3600242 Version: 1.5

Global Constants

These parameters are defined as constants in the list of global variables.
VAR_GLOBAL CONSTANT
 cOversamples : UDINT := 10; // oversampling factor
 cBufferLength : UDINT := 1600; // size of buffer for spectrum
 cWindowLength : UDINT := 3200; // size of window
 cFFTResult : UDINT := 2049; // size of spectrum result
 cFFTLength : UDINT := 4096; // spectrum lines
END_VAR

Code for Control Task

Following code snippet shows the declaration in MAIN program:
PROGRAM MAIN

VAR CONSTANT
 cInitSource : ST_MA_MultiArray_InitPars := (eTypeCode := eMA_TypeCode_LREAL, nDims := 1, aDim
Sizes := [cBufferLength]);
END_VAR

VAR
 nInputSelection : UDINT := 1; // Switch between hardware and function generator
 nSample : UDINT;
 aEl3632 AT %I* : ARRAY[1..cOversamples] OF INT; // Input from hardware e.g. EL3632
 aBuffer : ARRAY[1..cOversamples] OF LREAL;

 fbSource : FB_CMA_Source :=(stInitPars := cInitSource, nOwnID := eID_Source, aDestIDs :=
[eID_Spectrum]); // Initialize source buffers
 fbSink : FB_CMA_Sink := (nOwnID := eID_Sink);
 aSpectrumResult : ARRAY[1..cFFTResult] OF LREAL; // Copy result
END_VAR

Method calls in MAIN program:
fbSource.Input1D(pDataIn := ADR(aBuffer),
 nDataInSize := SIZEOF(aBuffer),
 eElementType := eMA_TypeCode_LREAL,
 nWorkDim := 0,
 pStartIndex := 0,
 nOptionPars := cCMA_Option_MarkInterruption);

fbSink.Output1D(pDataOut := ADR(aSpectrumResult),
 nDataOutSize := SIZEOF(aSpectrumResult),
 eElementType := eMA_TypeCode_LREAL,
 nWorkDim := 0,
 nElements := 0,
 pStartIndex := 0,
 nOptionPars := 0,
 bNewResult => bCalculate);

Code for CM Task

Declaration in MAIN_CM program:
PROGRAM MAIN_CM

VAR CONSTANT
 cInitSpectrum : ST_CM_MagnitudeSpectrum_InitPars := (nFFT_Length := cFFTLength,
 nWindowLength := cWindowLength,
 bTransformToDecibel:= FALSE,
 eWindowType := eCM_HannWindow,
 eScalingType := eCM_RMS);
END_VAR
VAR
 fbSpectrum : FB_CMA_MagnitudeSpectrum :=(stInitPars := cInitSpectrum,
 nOwnID := eID_Spectrum,
 aDestIDs := [eID_Sink]);
END_VAR

Method calls in MAIN_CM program:
fbSpectrum.Call();

Samples

TF3600 243Version: 1.5

The result of the sample code can be checked for a sinusoidal signal of arbitrary amplitude and frequency as
the input signal. The variable, fRmsValue above should be exactly equal to amplitude/SQRT(2).

Each frequency value can be assigned to the corresponding array index of the spectrum result. Calculation
formula:
sample rate = oversampling factor / sampling task cycle time
index = frequency * (FFT length / sample rate)

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base,

Tc3_MultiArray

6.4 Multi-channel magnitude spectrum
This sample implements the magnitude spectrum for 5 input channels simultaneously. The code is split into
two tasks: a control task, which collects the input samplings of a hardware module, e.g. EL3632, and a CM
task, which calculates the spectrum. The block diagram below shows the analysis chain implemented in the
program.

The source code for the sample is available for download from here:
https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/
zip/27021601158799499.zip

Block diagram

https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/zip/27021601158799499.zip
https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/zip/27021601158799499.zip

Samples

TF3600244 Version: 1.5

Program parameters

The table below shows a list of important parameters for the configuration of the magnitude spectrum
function blocks.

Channels 5
FFT-length 4096
Window size 3200
Buffer size 1600
Window type eCM_HannWindow
Scaling type eCM_RootPowerSum
Conversion to decibels FALSE

Global constants

These parameters are defined as constants in the list of global variables.
VAR_GLOBAL CONSTANT
 cOversamples : UDINT := 20; // number of oversamples
 cMaxChannels : UDINT := 5; // Number of data channels
 cWindowType : E_CM_WindowType := E_CM_WindowType.eCM_HannWindow; // window type for analysis
 cWindowLength : UDINT := 3200; // length of signal window.
 cOverlap : UDINT := 1600; // recommended buffer overlap
 cBufferLength : UDINT := cWindowLength -
 cOverlap; // internal buffer size with 50% overlapping
 cFFTLength : UDINT := 4096; // length of FFT for mag.
 spectrum
 cFFTResult : UDINT := 2049; // result of mag. spectrum
(cFFTLength/2+1)
END_VAR

Global variables

The parameters are defined in the list of global variables.
VAR_GLOBAL
 bInvalidateCh4 : BOOL := FALSE; // Invalidate input signal on channel 4
END_VAR

Explanations

The result of the sample code can be tested for a sinusoidal signal of any amplitude and frequency. The
RMS values are saved in the array aRmsValue in accordance with the respective channel number. The
result must correspond exactly to the peak amplitude of every sinusoidal signal divided by SQRT(2). The
sample code can be extended for more than 5 channels depending on the requirements and the resources
of the target system.

The setting of the global variables bInvalidateCh4 := TRUE demonstrates a possible error handling with
impermissible input data.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base,

Tc3_MultiArray

6.5 Calculation of individual spectral values
This sample implements as an example the possible uses of the function block FB_CMA_SparseSpectrum.
Various window functions and scalings are presented for the possible calculations of DFT, magnitude and
power values. Numerical effects in the detection are shown in two frequency portions of a generated signal:
The first frequency corresponds to a multiple of the numerical resolution in the spectral range, while the
second lies between two such values.

Samples

TF3600 245Version: 1.5

The source code for the sample is available for download from here: https://infosys.beckhoff.com/
content/1033/TF3600_TC3_Condition_Monitoring/Resources/zip/9066662027.zip

Block diagram

Program parameters

The table below shows a list of the important parameters for configuring the function blocks.

FFT-length 2048 / 2048 / 2048
Window size 2048 / 2048 / 2048
Buffer size 2048 / 1024 / 1024
Window type eCM_RectangularWindow / eCM_HannWindow /

eCM_HannWindow
Scaling method eCM_NoScaling / eCM_PeakAmplitude /

eCM_PeakAmplitude
Type of spectral values eCM_DFT / eCM_Magnitude / eCM_Power

Configuration of the frequency bands

The GVL_Constants define the central parameters for initializing the algorithm and the properties of the
generated signal.
VAR_GLOBAL CONSTANT
 cSampleRate : LREAL := 10000; // Sample rate of input s
ignal.
 cWindowLength : UDINT := 2048; // Internal buffer size w
ith 50% overlapping
 cResolution : LREAL := cSamplerate / cWindowLength; // Frequency resolution
 cBands : UDINT := 2; // Number of bands
 cSetFrequency : ARRAY[1..cBands] OF LREAL := [41*cResolution, 413]; // Frequency in Hz; [exa
ct, intermediate]
 cSetAmplitude : ARRAY[1..cBands] OF LREAL := [1.0, 2.0]; // Peak amplitudes of sin
e signals
 cBandWidth : UDINT := 5; // Computed bins per
frequency.
 cDFTBins : UDINT := cBandWidth * cBands; // Number of spectral bin
s, cBandWidth bins per frequency
END_VAR

https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/zip/9066662027.zip
https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/zip/9066662027.zip

Samples

TF3600246 Version: 1.5

The generated signal (MAIN.aBuffer) consists of two frequency components. One is chosen with respect
to the numerical resolution, i.e. it is a multiple of f = 10000 Hz/2048 = 4.8828125 Hz. The second is
chosen such that the peak lies between two spectral values and thus cannot be precisely represented. In
order to be able to illustrate the numerical effects, a further four values are calculated around the
respectively sought spectral values. The configuration takes place in der MAIN_CM.
// Compute parameters, adjust if cDFTBins is changed.
FOR i := 1 TO cBands DO
 k := LREAL_TO_DINT(cSetFrequency[i] / cResolution);
 aDFTBins[(i-1) * cBandWidth + 1] := DINT_TO_UDINT(MAX(k-2,1));
 aDFTBins[(i-1) * cBandWidth + 2] := DINT_TO_UDINT(MAX(k-1,1));
 aDFTBins[(i-1) * cBandWidth + 3] := DINT_TO_UDINT(MIN(k+0,nyquist));
 aDFTBins[(i-1) * cBandWidth + 4] := DINT_TO_UDINT(MIN(k+1,nyquist));
 aDFTBins[(i-1) * cBandWidth + 5] := DINT_TO_UDINT(MIN(k+2,nyquist));
END_FOR

Visualization of the results

The sample includes an extensive TwinCAT measurement project in which the calculated spectral values
from the function block FB_CMA_SparseSpectrum are compared with the reference algorithms
(FB_CMA_RealFFT, FB_CMA_MagnitudeSpectrum, FB_CMA_PowerSpectrum). The difference between an
excitation as a multiple of the numeric frequency resolution and a value between two such values is
illustrated. The visualized frequency bands can be considered as a "zoom" of the corresponding area.

The following illustrations show the results from the comparison of the function blocks FB_CMA_RealFFT
and FB_CMA_MagnitudeSpectrum.

Spectrum of the FB_RealFFT (top) and the spectral values of bands 1 (center) and 2 (bottom).

Samples

TF3600 247Version: 1.5

Magnitude spectrum of the function block FB_MagnitudeSpectrum (top) as well as the spectral values of
bands 1 (center) and 2 (bottom).

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base,

Tc3_MultiArray

6.6 Window functions
This sample implements several single-channel magnitude spectra and compares the use of different
window functions. Three variants are presented: One with the overlap mechanism deactivated, an automatic
calculation of the recommended overlap and a manual configuration using a suitable firmware function.

The source code for the sample is available for download from here: https://infosys.beckhoff.com/
content/1033/TF3600_TC3_Condition_Monitoring/Resources/zip/18014403771018123.zip

https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/zip/18014403771018123.zip
https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/zip/18014403771018123.zip

Samples

TF3600248 Version: 1.5

Block diagram

Program parameters

The table below shows a list of important parameters for the configuration of the magnitude spectrum
function blocks.

FFT length 4096
Window size 3200
Buffer size 3200 / 1600 / 767
Window type eCM_RectangularWindow / eCM_HannWindow /

eCM_FlatTopWindow

Decibel transformation False

Calculation/specification of the overlap

Version 1: Use of the function F_CM_CalculateRecommendedOverlap [} 207]

By means of the named function the recommended overlap can be calculated at runtime. After download/
login, the necessary values are called in the MAIN_CM in the first cycle.
IF bCalculateOverlap THEN
 // recommended overlap for window 1
 nOverlap1 := F_CM_CalculateRecommendedOverlap(eWindowType := cWindowType1, aWindowParameters :=
cWindowParameters1, nWindowLength := cWindowLength);

 // recommended overlap for window 2
 nOverlap2 := F_CM_CalculateRecommendedOverlap(eWindowType := cWindowType2, aWindowParameters :=
cWindowParameters2, nWindowLength := cWindowLength);

 // recommended overlap for window 3
 nOverlap3 := F_CM_CalculateRecommendedOverlap(eWindowType := cWindowType3, aWindowParameters :=
cWindowParameters3, nWindowLength := cWindowLength);

 bCalculateOverlap := FALSE;
END_IF

The lengths obtained in this way can subsequently be entered in the configuration of the analysis chains
(parameters cOverlap1, cOverlap2, cOverlap3 in the GVL_Constants.). The dependencies in the
buffer length must be observed here! After downloading/logging in again, the application is configured with
regard to the overlap.

Version 2: Reading the initial parameters in the PLC API [} 71]

Samples

TF3600 249Version: 1.5

If the value nOverlap := cCM_OverlapRecommended is used with the initialization structure for the
overlap, then the optimum overlap is calculated in the initialization phase of the function block, depending on
the window parameters. This value can be read in the Online View of the function block in the node
stInitPars after the download and login. With this variant it is not necessary to start the application!

Fig. 2: Online View for Spectrum 2 (Hann window)

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base,

Tc3_MultiArray

6.7 Scaling of spectra
As described under Scaling of spectra [} 25], the Condition Monitoring library offers a number of different
options for scaling of spectra. This tutorial enables examination of various prepared scalings by means of a
simple sine wave, and to deepen the theoretical understanding. The scopes are limited to the range 0 Hz to
400 Hz, in order to be able to show the differences more clearly.

The tutorial is available for download from here:
https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/
zip/27021601158733835.zip

https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/zip/27021601158733835.zip
https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/zip/27021601158733835.zip

Samples

TF3600250 Version: 1.5

Block diagram

Program parameters

The table below shows a list of important parameters for the configuration of the used function blocks
FB_CMA_MagnitudeSpectrum [} 147] and FB_CMA_PowerSpectrum [} 165].

GVL_Constant contains three scenarios, which you can test by commenting or uncommenting the selected
code segments and enabling the configuration. The expected behavior of the scenarios is documented in the
GVL as a comment.

FFT length 2048
Window size 1800
Conversion to decibels TRUE / FALSE
Window type eCM_HannWindow
Scaling type eCM_PeakAmplitude / eCM_RMS

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4018 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base,

Tc3_MultiArray

6.8 Time-based RMS
The sample illustrates the implementation of a time-based RMS calculation for a signal with the function
block FB_CMA_RMS [} 178].

Samples

TF3600 251Version: 1.5

The sample is available for download from here:

https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/
zip/27021601158732171.zip

Block diagram

https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/zip/27021601158732171.zip
https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/zip/27021601158732171.zip

Samples

TF3600252 Version: 1.5

Program parameters

The table below shows a list of important parameters for the configuration of the program block for
calculating the time-based RMS of a signal.

Channels 1
Buffer size 1200
Conversion to decibels FALSE

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4016.12 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base,

Tc3_MultiArray

6.9 Multi-band RMS
The sample illustrates a calculation implementation for several frequency band-limited RMS values of a
signal with the function block FB_CMA_MultiBandRMS [} 156].

The sample is available for download from here:
https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/
zip/27021601158728843.zip

https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/zip/27021601158728843.zip
https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/zip/27021601158728843.zip

Samples

TF3600 253Version: 1.5

Block diagram

Program parameters

The table below shows a list of important parameters for the configuration of the function block for calculating
several frequency band-limited RMS values of a signal

Samples

TF3600254 Version: 1.5

Size of the FFT 2048
Window size 1600
Sampling rate 10000
Frequency bands 2
Channels 1
Window type eCM_HannWindow
Conversion to decibels FALSE

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4016.12 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base,

Tc3_MultiArray

6.10 Histogram
This sample implements a histogram. The code is divided into two tasks: a control task that collects the input
data, e.g. from EL3632, and a so-called CM task that calculates the histogram. The block diagram below
shows the analysis chain.

The source code for the sample is available for download from here:
https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/
zip/36028800413537163.zip

https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/zip/36028800413537163.zip
https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/zip/36028800413537163.zip

Samples

TF3600 255Version: 1.5

Block diagram

Program parameters

The table below shows the most important parameters for the configuration of the histogram function block:

Histogram Bins 100
Appended Datasets 10
Oversamples 10
Max. Bin Limit +3 or +5
Min. Bin Limit -3 or -5
Channels 1
Buffer Length 100

Global Constants

The parameters specified above can be defined as global constants:
VAR_GLOBAL CONSTANT
 cBufferLength : UDINT := 100;
 cChannels : UDINT := 1;
 cOversamples : UDINT := 10;
 cMaxBins : UDINT := 100;
 cAppendedData : UDINT := 10;

Samples

TF3600256 Version: 1.5

 cBinLimit_1 : LREAL := 3;
 cBinLimit_2 : LREAL := 5;
END_VAR

Code for the MAIN task

The following code snippet shows the declaration in the MAIN program:
PROGRAM MAIN
VAR CONSTANT
 cInitSource : ST_MA_MultiArray_InitPars
 := (eTypeCode := eMA_TypeCode_LREAL, nDims := 2, aDimSizes := [1, cBufferLength]);
END_VAR
VAR
 nInputSelection : UDINT := 1;
 nSample : UDINT;
 aEl3632 AT %I* : ARRAY [1..cOversamples] OF INT;
 aBuffer : ARRAY [1..cOversamples] OF LREAL;
 fbSource : FB_CMA_Source := (stInitPars := cInitSource, nOwnId
:= eID_Source, aDestIDs := [eID_Histogram]);
 fbSink : FB_CMA_Sink := (nOwnID := eID_Sink);
 aHistReulst : ARRAY [1..cMaxBins+2];
END_VAR

The following code snippet shows the method calls in the MAIN program:
fbSource.Input2D(pDataIn := ADR(aBuffer),
 aDataInSize := SIZEOF(aBuffer),
 eElementType := eMA_TypeCode_LREAL,
 nWorkDim0 := 0,
 nWorkDim1 := 1,
 pStartIndex := 0,
 nOptionPars := cCMA_Option_MarkInterruption);

fbSink(pDataOut := ADR(aHistResult),
 nDataOutSize := SIZEOF(aHistResult),
 eElementType := eMA_TypeCode_UINT64,
 nWorkDim0 := 0,
 nWorkDim1 := 1,
 nElements := 0,
 pStartIndex := 0,
 nOptionPars := 0);

Code for the CM task

The variable declaration in the MAIN_CM program:
VAR CONSTANT
 cInitHistArray : ST_CM_HistArray_InitPars := (nChannels := cChannels, nBins := cMaxBins,
fMinBinnded := -cBinLimit_1, fMaxBinned := cBinLimit_1);
END_VAR

The method calls in the MAIN_CM program:
fbHistArray.CallEx(nAppendData := cAppendData, bReset :=);

IF bConfig then
 fbHistArray.Configure(pArg := ADR(aHisArrayConfig), nArgSize := SIZEOF(aHistArrayConfig)
END_IF

The Configure method is optional, but it enables the fine setting of the parameters fMinBinned and
fMaxBinned at runtime.

Random Number Generator

A histogram is very often used as a visual help in order to understand the underlying distribution of all
measured values, e.g. the peaks in the vibration signal. The function generator contained in the sample code
is extended for this purpose. The function generator can simulate the usual and practically oriented random
numbers and their distributions. Using the variable E_DistributionType you can select a distribution such as
exponential, normal (or Gaussian), Chi-squared or gamma. By default the random numbers are generated
from a uniform distribution.

Please note that every distribution requires one or more parameters in order to determine the prop-
agation of the random numbers or their range. This can be done using the input variable aRange.

Samples

TF3600 257Version: 1.5

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4016.12 PC or CX (x86, x64) Tc3_CM (v1.0.19), Tc3_CM_Base,

Tc3_MultiArray

6.11 Statistical methods
This sample illustrates the options for statistical evaluation of Condition Monitoring Library data. Statistical
evaluations for standard normal and gamma-distributed signal data and a sine signal are processed. The
function blocks FB_CMA_HistArray [} 130], FB_CMA_EmpiricalMean [} 108],
FB_CMA_EmpiricalStandardDeviation [} 117], FB_CMA_EmpiricalSkew [} 112] and FB_CMA_EmpiricalExcess
[} 103] are used.

The sample is available for download from here:

https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/
zip/18014403771014795.zip

Block diagram

Program parameters

The table below shows a list of important parameters for the configuration of the function blocks that are
used.

Buffer size 100
Channels 3
Frequency bins 200

https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/zip/18014403771014795.zip
https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/zip/18014403771014795.zip

Samples

TF3600258 Version: 1.5

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022 PC or CX (x86, x64) Tc3_CM (>= 1.0.22),

Tc3_CM_Base (>= 1.1.10),
Tc3_MultiArray

6.12 Vibration assessment according to ISO 10816-3
Vibration assessment based on ISO 10816-3 is explained in more detail in section Application concepts, see
Vibration assessment [} 33]. The classification based on the calculated RMS values is done directly in the
MAIN program. Alternatively, the function blocks FB_CMA_WatchUpperThresholds [} 203] or
FB_CMA_DiscreteClassification [} 97] could be used.

The sample is available for download from here:
https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/
zip/36028800413476491.zip

An alternative implementation can be found in the sample Vibration assessment according to ISO 10816-3
(compact) [} 261] and in the sample Schwingungsbeurteilung nach ISO 10816-3 (erweitert) [} 264].

https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/zip/36028800413476491.zip
https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/zip/36028800413476491.zip

Samples

TF3600 259Version: 1.5

Block diagram

Program parameters

The table below shows a list of important parameters for the configuration of the function blocks that are
used.

Samples

TF3600260 Version: 1.5

Buffer size 2000
Channels 2
FFT length 4096
Window size 4000
Sampling rate 10000
Lower frequency bound 10
Upper frequency bound 1000
Order (RMS) 2
Window type eCM_HannWindow
Conversion to decibels FALSE

Data input

In the sample, oversampling is set to 10, and the PLC task linked to the I/Os is set to 1 ms. This results in a
sampling rate of 10 kHz for the data input. According to the sampling theorem, signals in the spectrum up to
5 kHz can now be analyzed correctly, provided the anti-aliasing filter is set correctly in the I/O terminal (see
Fourier analysis [} 13]).

Buffering of the data stream

The input data of the two channels are buffered in the MAIN routine with a source function block.
Accordingly, a two-dimensional array with the size [cChannels, cBufferLength] is established. According to
DIN ISO 10816-3, frequency range of 10 Hz to 1000 Hz should be evaluated for a rotational speed of more
than 600 min-1. The frequency resolution of the frequency analysis (calculated internally in the
IntegratedRMS function block) should therefore be well below 10 Hz. If a buffer of 4000 samples is used at a
sampling rate of 10 kHz, the resulting frequency resolution is 2.5 Hz. If the Hann window is used, this is
formally reduced to 2.5 Hz * 1.5 = 3.75 Hz. In addition, the FFT-length must be a power of 2 and greater than
the WindowLength. The BufferLength results from a 50% overlap of the windows. The parameterization in
terms of the internal FFT is defined accordingly in the GVL_Constant as follows:
cFFTLength : UDINT := 4096; // length of FFT
cWindowLength : UDINT := 4000; // 96 samples Zero padding
cBufferLength : UDINT := cWindowLength/2; // buffer due to 50% overlap

Accordingly, as indicated in the diagram above, an array of the size [2,2000] is obtained for the transfer to
the function block FB_CMA_IntegratedRMS.

Frequency-selective RMS value calculation

In the function block FB_CMA_IntegratedRMS an FFT is now calculated, and the RMS value for the
transferred frequency range (here 10 Hz to 1000 Hz) is calculated (formally several ranges may be
specified). In addition to the RMS values of the direct input signal (when an accelerometer is connected, this
is usually an acceleration signal), the function block also calculates the respective integrated parameters, i.e.
the RMS value of the vibration velocity and the RMS value of the vibration displacement. The output of the
function block is accordingly a 2-dimensional array with [2,3] (2 channels, 3 RMS values per channel).
// define frequency interval according to ISO 10816-3
// e.g. 10 .. 1000 Hz for rotating speed over 600r/min
cfLowerFrequencyLimit : UDINT := 10;
cfUpperFrequencyLimit : UDINT := 1000;

// Parameters for RMS calculation
cOrderRMS : UDINT := 2; // acceleration, velocity, and displacement
cChannels : UDINT := 2; // ISO 10816-3 says 2 orthogonal sensors
cResult_Length : UDINT := cOrderRMS+1; // nOrder+1 (see InfoSys)

In the settings referred to above the source function block requires 2000/10 = 200 cycles with 1 ms for filling
the buffer. The cycle time of the PlcTask_CM should be less than 0.5 * 200 ms, see Task Setting [} 60].
Since the function block only requires little computing time, the cycle time of the PlcTask_CM is set to 10 ms.
The transfer of the data from the source function block to FB_CMA_IntegratedRMS across the task
boundaries is handled internally by the Condition Monitoring Library.

Samples

TF3600 261Version: 1.5

Analyzing the result

The results of the RMS value calculation are transferred back to the fast PLC task with 1 ms via a sink
function block. All that is required for this purpose is specification of an array in the MAIN routine, which
matches the size of the array at the output of FB_CMA_IntegratedRMS, see variable aRMSResult.

The sink function block sets a flag to TRUE when a valid result was calculated, see variable bCalcuate.
(* Push results to sink *)
fbSink.Output2D(pDataOut := ADR(aRMSResult),
 nDataOutSize := SIZEOF(aRMSResult),
 eElementType := eMA_TypeCode_LREAL,
 nWorkDim0 := 0,
 nWorkDim1 := 1,
 nElementsDim0 := 0,
 nElementsDim1 := 0,
 pStartIndex := 0,
 nOptionPars := 0,
 bNewResult => bCalculate);

Based on this flag, the result of the RMS value calculation can then be used in the MAIN routine. In this case
the RMS values of the vibration velocity and the vibration displacement are checked for the limit values
defined in the ISO standard. Simple IF queries are used in order to keep the sample simple.

The class according to ISO 10816-3 is determined for each two channels and stored in the variables
ISOClassIs_Vel (for the classification with regard to the vibration velocity) and ISOClassIs_Displ (for
the classification with regard to the vibration displacement). This sample results in four classifications.
According to ISO 10816-3, the larger of the two values should be used, if orthogonally arranged sensors are
used. In addition, the stricter evaluation should be used if both the vibration displacement and the vibration
velocity are used. Accordingly, the worst case of the four evaluations is sought in the source code and
defined as output variable ISO_10816_Classification.

Interaction and comments on the sample

In the sample two harmonic vibrations with identical amplitude (4 m/s2) but different frequency (400 Hz and
35 Hz) are defined as input variables. While this acceleration amplitude means classification in class A for a
frequency of 400 Hz for an evaluation based on vibration displacement and vibration velocity, for a vibration
with 35 Hz an evaluation based on vibration displacement results in class C, for vibration velocity even down
to class D. The output variable ISO_10816_Classification therefore corresponds to class D.

If the amplitude of the vibration with 35 Hz is changed to 1 m/s2, the classification changes to B (for vibration
velocity) or A (for vibration displacement). Accordingly, the variable ISO_10816_Classification is set to
B.

Alternatively, you can leave the amplitude at 4 m/s2 and increase the frequency, e.g. to 800 Hz. This results
in Class A classification throughout, and the variable ISO_10816_Classification is set to A.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base,

Tc3_MultiArray

6.13 Vibration assessment according to ISO 10816-3
(compact)

Vibration assessment based on ISO 10816-3 is explained in more detail in section Application concepts, see
Vibration assessment [} 33]. The classification takes place via the function block
FB_CMA_VibrationAssessment [} 199].

The sample is available for download from here: https://infosys.beckhoff.com/content/1033/
TF3600_TC3_Condition_Monitoring/Resources/zip/9007207491219979.zip

https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/zip/9007207491219979.zip
https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/zip/9007207491219979.zip

Samples

TF3600262 Version: 1.5

An alternative implementation can be found in the sample Vibration assessment according to ISO 10816-3
[} 258] and in the sample Schwingungsbeurteilung nach ISO 10816-3 (erweitert) [} 264].

Block diagram

Program parameters

The table below shows a list of important parameters for the configuration of the function blocks that are
used.

Samples

TF3600 263Version: 1.5

Buffer size 800
Channels 2
FFT length 2048
Window size 1600
Sampling rate 10000
Number of frequency bands 2
Lower frequency bound [10, 200]
Upper frequency bound [1000, 2000]
Order (RMS) 2
Window type eCM_HannWindow
Conversion to decibels FALSE

Configuration

The speed and deflection of the measured data are used for the machine monitoring according to ISO
10816-3. A classification on the basis of the acceleration data does not take place. For this reason the
classification is implicitly deactivated by setting the limit values to a sufficiently high value (see
GVL_Constants):
cISOClassDef_Vibration : ARRAY[1..cMaxClasses] OF LREAL := [1E6, 1E6, 1E6];
cISOClassDef_Velocity : ARRAY[1..cMaxClasses] OF LREAL := [2.3E-3, 4.5E-3, 7.1E-3];
cISOClassDef_Displ : ARRAY[1..cMaxClasses] OF LREAL := [29E-6, 57E-6, 90E-6];

Evaluation

The definition of the classification on the basis of ISO 10816-3, based on the speed and deflection for all
channels, takes place in the control task. If a new result is available, it is evaluated as follows:
IF bCalculate THEN
 // Highscore in classification according to ISO 10816-3.
 ISO_10816_HighscoreClass := aVAResult[ISO_10816_nSelectedBand][1]; // class
 ISO_10816_HighscoreOrder := aVAResult[ISO_10816_nSelectedBand][2]; // order
 ISO_10816_HighscoreChannel := aVAResult[ISO_10816_nSelectedBand][3]; // channel

 IF NOT (ISO_10816_HighscoreClass = E_IsoClass.Error) THEN
 nCountResults := fbSink.nCntResults;
 // ToDo: if succeeded
 ELSE
 // ToDo: if error; RMS result is NaN. Code here what to do.
 END_IF
END_IF

The result data aVAResult contain the following information for all configured frequency bands:

• ISO_10816_HighscoreClass: The classification (A-D) of the machine state on the basis of the
configured limit values.

• ISO_10816_HighscoreOrder: The integration order for the calculated evaluation, i.e. 0 for the
acceleration, 1 for the speed and 2 for the deflection.

• ISO_10816_HighscoreChannel: The basic channel for the calculated evaluation.

In this sample, the frequency band for the evaluation is selected via the variable
ISO_10816_nSelectedBand.

Memory property

The memory property of the algorithm can be changed via the initial parameter bMemorize. If the parameter
is set to TRUE, the highest classification is not overwritten again by a lower evaluation until the method
ResetData() is called. Compare the behavior of the function block FB_CMA_WatchUpperThresholds [} 203]
here.

Samples

TF3600264 Version: 1.5

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base

Limited functional scope already available with CM 3.1. See section Compatibility [} 52].

6.14 Schwingungsbeurteilung nach ISO 10816-3 (erweitert)
Vibration assessment based on ISO 10816-3 is explained in more detail in section Application concepts, see
Vibration assessment [} 33].

In comparison with the sample Vibration assessment according to ISO 10816-3 [} 258] the calculated
(integrated) RMS values are first averaged with the help of the function block FB_CMA_EmpiricalMean
[} 108]. The classification takes place here on the basis of the mean values by an instance of
FB_CMA_DiscreteClassification [} 97]. By using statistical data, the machine evaluation is more stable than
with the direct processing of the RMS values. The same effect could also be achieved in the above sample
by adjusting the window length accordingly, but with a significantly higher computational effort.

The sample is available for download from here: https://infosys.beckhoff.com/content/1033/
TF3600_TC3_Condition_Monitoring/Resources/zip/9007204516275467.zip

Block diagram

Program parameters

The table below shows a list of important parameters for the configuration of the function blocks that are
used.

https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/zip/9007204516275467.zip
https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/zip/9007204516275467.zip

Samples

TF3600 265Version: 1.5

Buffer size 2000
Channels 2
FFT length 4096
Window size 4000
Sampling rate 10000
Lower frequency bound 10
Upper frequency bound 1000
Order (RMS) 2
Classes (classification) 3
Window type eCM_HannWindow
Data sets (statistics) 100
Reset after calculation (statistics) TRUE

Configuration

The speed and deflection of the measured data are used for the machine monitoring according to ISO
10816-3. A classification based on the acceleration data does not take place, but is used in related
standards, e.g. ISO 10816-21 for wind turbines. The limit values used here are defined in the
GVL_Constants:
cISOClassDef_Acc : ARRAY[1..3] OF LREAL := [1E6, 1E6, 1E6];
cISOClassDef_Velocity : ARRAY[1..3] OF LREAL := [2.3E-3, 4.5E-3, 7.1E-3];
cISOClassDef_Displ : ARRAY[1..3] OF LREAL := [29E-6, 57E-6, 90E-6];

Evaluation

The calculated RMS values for velocity and deflection as well as the associated mean values and variance
(standard deviations) are stored channel-wise in instances of ST_Channel. Exclusively the mean values are
used for the classification. The variance can be used as a measure of the reliability of the mean value. The
result of the classification is illustrated on the basis of the configured limit values by means of E_IsoClass.
The result data are visualized via a Scope project.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4022.25 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base

Samples

TF3600266 Version: 1.5

Limited functional scope already available with CM 3.1. See section Compatibility [} 52].

6.15 Condition Monitoring with frequency analysis
This tutorial configures a complete monitoring application, based on the TwinCAT 3 Condition Monitoring
API. It facilitates creation of a workflow for Condition Monitoring applications, including data collection and
adding high-performance analysis algorithms. The block diagram below illustrates the arrangement of the
application. For a better understanding of the programming tasks, the document is subdivided into design
steps.

The sample is available for download from here:
https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/
zip/27021601158794507.zip

It can be modified and extended as required.

Block diagram

Step 1: Application specification

The first step for the design of a condition monitoring application is to determine the main aims of the
application, e.g. automatic warning in the event of excessive vibrations or in the event of a malfunction in the
bearing, based on frequency analysis. It is also important to consider other technical factors such as
measuring sensors, the sampling rate of the controller and the expected accuracy. The aim of this tutorial is
to detect small and large errors in the input signal with the aid of the magnitude spectrum and its quantile
distribution. In addition, a classifier is used for predicting the general state as "normal state", "warning state"
or "alarm state". The table below shows a list of the function blocks used in this tutorial.

https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/zip/27021601158794507.zip
https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/zip/27021601158794507.zip

Samples

TF3600 267Version: 1.5

Function block
FB_CMA_Souce
FB_CMA_Sink
FB_CMA_MagnitudeSpectrum
FB_CMA_Quantiles
FB_CMA_DiscreteClassification

For a more detailed description of the algorithm selection for specific issues such as bearing analysis [} 38],
gear unit analysis [} 46] or frequency analysis [} 34], we refer to the solutions described elsewhere. Since the
aim of the tutorial is to detect general changes in the input signal, a magnitude spectrum with a resolution of
4096 lines is sufficient. The 50 % and 90 % quantile of the spectral values are calculated, and the result is
classified as "normal state", “warning state” or "alarm state“.

Step 2: Configuration of the PLC tasks

Since condition monitoring and analysis is comprised of a data acquisition stage, a calculation stage and an
analysis stage, the task has to be structured according to the calculation requirements for each step. Here
[} 60] you can find additional information on this topic. The aim of this tutorial is to calculate the magnitude
spectrum of 4096 lines, for which approx. 3200 data samples are required. The means that, during the data
collection stage, a source multi-array has to handle 1600 data samples, considering overlapping. With 10x
oversampling, 160 cycles are required, or 160 ms with 1 ms trigger, to fill a single multi-array. The following
setting is therefore recommended for the calculation task:

Calculation cycle time < (data collection cycle time * buffer size / oversampling factor)*0.5

For the tutorial the calculation cycle time is set to 10 ms. For the actual application it is important to consider
the computation load, which is affected by other tasks that run simultaneously on the same controller, such
as visualization or network communication. Further information on task settings can be found here [} 60] in
the task cycle time section. Make sure that adequate router memory capacity [} 59] is allocated before
starting to build a Condition Monitoring application. This tutorial was set for working with a router memory
capacity adjusted to 32 MB.

Step 3: Configuration of the function blocks

In this step the function blocks listed above are configured according to the application requirements. As
already mentioned, the source multi-array collects 1600 data samples for calculating a spectrum. The
aDimSizes parameter is therefore set to 1600. Since the tutorial only considers one channel, nDims is set to
1.
PROGRAM CM_Worker

VAR CONSTANT
 cInitSourceSpectrum : ST_MA_MultiArray_InitPars := (eTypeCode := eMA_TypeCode_LREAL, nD
ims := 1, aDimSizes := [1600]);
END_VAR

In the calculation task the magnitude spectrum for calculating a spectrum of 4096 lines is configured,
indicated by cFFTLength. A so-called window function is used, since the spectrum calculation is associated
with periodic processing of discrete segments of a continuous signal. A correctly selected window function
improves the signal transformation efficiency, reduces fluctuations thanks to the overlap-add method and
improves the spectral resolution. In practical applications the window function also reduces the leakage
effect near critical frequencies. In the tutorial Hann window was selected. The magnitude spectrum function
block offers a wide range of scaling options as shown here [} 286], out of which the RMS value was
selected. The reason is that for time-varying physical signals, an RMS value is a preferred indicator of the
mean signal power, in contrast to the peak value, for example. In the vibration acceleration spectrum,
individual lines indicate the effective values of the vibrations at the corresponding frequency and can be
expressed directly in the corresponding units such as mm/s² or g.
PROGRAM MAIN_CM

VAR CONSTANT
 cInitSpectrum : ST_CM_MagnitudeSpectrum_InitPars := (nFFT_Length := 4096,
 nWindowLength := 2*1600,
 bTransformToDecibel:= FALSE,

Samples

TF3600268 Version: 1.5

 eWindowType := eCM_HannWindow,
 eScalingType := eCM_RMS);
END_VAR

The result of the magnitude spectrum is copied to an array via a sink function block, with specified array
length of nFFT_Length/2+1. In the next step of the analysis chain, a quantile function block for calculating
the 50 % and 90 % quantiles of the spectral values is configured. In many cases the spectral values fluctuate
strongly, so that an evaluation is difficult if the values are too low or too high. Using the quantiles it is
possible to determine the maximum, minimum or indeed the average value over a specified time interval.
This type of range-based evaluation is often more reliable and easier to handle. A 50% quantile value Q0.5 is
a value for which almost 50% of the values of a distribution are less than Q0.5. It is also referred to as median
value. Similarly, a 90% quantile Q0.9 indicates a value for which 90% of the values of a distribution are less
than Q0.9.
VAR CONSTANT
 cInitQuantiles : ST_CM_Quantiles_InitPars := (nChannels := (4096/2+1),
 fMinBinned := -10,
 fMaxBinned := 10,
 nBins := 100,
 nMaxQuantiles := 2);
END_VAR

In the program the quantiles are configured as follows:
(*--------- Configure quantile args ---------*)
IF bConfigureQuantile THEN
 FOR nChannel := 1 TO (cFFTLength/2+1) DO
 aQuantilesArg[nChannel,1]:= 0.50; // 50% quantile
 aQuantilesArg[nChannel,2]:= 0.90; // 90% quantile
 END_FOR
 fbQuantiles.Configure(pArg := ADR(aQuantilesArg), nArgSize := SIZEOF(aQuantilesArg));
 bConfigureQuantile := FALSE;
END_IF

Here [} 169] you can find a more detailed description of the function block. Note that the parameters
fMinBinned and fMaxBinned define the expected input signal range and nBins indicates the number of Bins
into which the signal range is divided. These parameters depend on the respective input signal. The signal
state is classified based on the quantiles information. The discrete function block can process several
channels simultaneously, therefore the quantile output is sent directly to the block. The classifier is set to
distinguish between three states and to display the corresponding state via the nMaxClasses parameter.
VAR CONSTANT
 cInitClassification : ST_CM_DiscreteClassification_InitPars := (nChannels:= (4096/2+1),
 nMaxClasses := 3);
END_VAR

Note: The output of the quantiles function block is a 2D array, which in this case is the number of spectral
lines over the number of quantiles. But the discrete classifier only allows a one-dimensional array, which
contains the number of input channels. In order to avoid a dimension conflict, the buffer converter of
FB_CMA_BufferConverting should be used. This function block converts a two-dimensional multi-array to a
one-dimensional array without any data loss. The code snippet describes the corresponding application.
VAR CONSTANT
 cInitBuffer : ST_MA_MultiArray_InitPars := (eTypeCode := eMA_TypeCode_LREAL,
 nDims := 1,
 aDimSizes := [(4096/2+1)]);
END_VAR
VAR
 fbBufferConverter : FB_CMA_BufferConverting := (stInitPars := cInitBuffer, nOwnID := eID_Buffer
Converter, aDestIDs := [eID_Classify]);
END_VAR

The buffer converter calls a method:
fbBufferConverter.Copy1D(nWorkDimIn := 0,
 nWorkDimOut := 0,
 nElements := 0,
 pStartIndexIn := 0,
 pStartIndexOut := 0,
 nOptionPars := 0);

Further information on this function block can be found under FB_CMA_BufferConverting [} 82]. To complete
the function block configuration, each sink function block must be linked to PLC arrays with correct
dimensions.

Samples

TF3600 269Version: 1.5

Step 4: Fine-tuning of the application parameters

Before starting the analysis, it is important to configure the discrete classifier with regard to its limit values. A
classification limit or threshold value enables the discrete classifier to monitor incoming channels
continuously and determine whether one of the input channels exceeds this threshold value. The threshold
values depend on the respective application, the accuracy requirements, the permitted detection tolerances,
etc. The aim of this tutorial is to detect small errors, which are comparable to random noise, and also large-
sized errors, which occur at a specific frequency (e.g. 200 Hz). The threshold values fWarning and fAlarm
are determined. If the amplitude of the input channels exceeds fWarning, the general state switches to
warning state. If fAlarm is exceeded, an alarm message is issued. If the threshold values are not exceeded,
the channel state is in the normal range.
(*--------- Configure classifier args ---------*)
IF bConfigureClassifier THEN

 fWarning := (fMonitoringLevel/100)*1.5;
 fAlarm := (fMonitoringLevel/100)*2.5;

 fbTeachTimer(IN := TRUE, PT := T#15S);
 IF fbTeachTimer.Q THEN

 fbTeachTimer(IN := FALSE);

 FOR nChannel := 1 TO (cFFTLength/2+1) DO
 aClassArgs[nChannel, 1] := (fMonitoringLevel/100)*aQuantilesCopy[nChannel,1];
 aClassArgs[nChannel, 2] := fWarning*aQuantilesCopy[nChannel,1];
 aClassArgs[nChannel, 3] := fAlarm*aQuantilesCopy[nChannel,1];
 END_FOR

 fbClassification.Configure(pArg := ADR(aClassArgs), nArgSize := SIZEOF(aClassArgs));
 bConfigureClassifier := FALSE;

 END_IF

END_IF

The code snippet above describes the configuration of this discrete classifier, so that a timer block allows a
normal operating window to pass through a so-called teaching phase, during which the discrete classifier is
configured. It is assumed that the input signal behaves normally during this time, i.e. within the permissible
range. The warning threshold is 150 % of the “normal” 50 % quantile, the alarm threshold is 250 % of the
normal 50 % quantile. Since the 50% quantile describes the average behavior, this threshold value
configuration is suitable for applications whose inputs only have few outliers. The 90 % quantile can also be
determined as threshold value, if it is assumed that the input signal is likely to fluctuate strongly. It is also
possible to configure another variable, fMonitoringLevel, which can be used to apply a certain tolerance
range around the permissible value, in order to control the number of false alarms. This parameter can be
used to fine-tune the threshold values. Note that the threshold values for the discrete classifier can be
specified individually for all input channels.

Step 5: Starting the application

Compile the code, download it to the target system and start the PLC, in order to execute the tutorial. A small
prepared visualization, referred to as Dashboard, can be found in the Solution Explorer under the VISU
node, which can be used for a quick test. For the simulation the input signal is linked to a function generator,
which was configured for generating a sinusoidal 50 Hz signal with an amplitude of 5. Other available signals
such as pulse, triangle or saw tooth, or indeed a hardware module such as EL3632, can be applied to the
input. Once the application has been started, the display fields show the maximum amplitude, the RMS
amplitude and the frequency at the maximum amplitude of the PLC in real-time.

Samples

TF3600270 Version: 1.5

The diagram illustrates that the state of the application is shown in the corresponding display field. A small-
sized error can be simulated by pressing the Add Fault button. You can see how the RMS value of the input
signal slowly increases beyond the threshold value and how the state changes accordingly. To simulate a
large-sized error, press the Small/Large button. Similar to the previous error the RMS value will increase, but
this time the “Fault Frequency” field shows the frequency of the fault signal, in this case 200 Hz.

Step 6: Monitoring

Once the PLC has started, the display fields show the current values. Initially the Reconfigure button is
shown as pressed, and the signal in the right-hand corner is disabled. The means that the limit values are in
the process of being specified for the discrete classifier. Once the configuration is complete, the Reconfigure
button resets itself, and the machine status is shown as “normal state”. The signal switches to green, which
has the same meaning.

To simulate an error, leave the option field at “Small Fault” and press the Activate Disturbance button. The
machine will switch between “Normal” and “Warning” state, and the signal switches between green and
orange. If a large error is simulated by switching the option field, the machine state switches to “Alarm” state,
and the signal switches to red. To prevent the fault, release the Activate Disturbance button. The signal state
returns to green. Note that a change in the signal amplitude also results in an error state. If this is
undesirable, press the Reconfigure button again, in order to adjust the discrete classifier to this new signal
state.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base,

Tc3_MultiArray

Samples

TF3600 271Version: 1.5

6.16 Threshold value consideration for averaged
magnitude spectra

This sample illustrates an analysis chain for threshold value consideration, as explained in the Frequency
analysis [} 34] application concept. The analysis chain implements the calculation of a magnitude spectrum,
averaging of several magnitude spectra and subsequent threshold value consideration for exemplary
frequency bands. For a better illustration of the threshold value consideration around 50 Hz, the scope is
limited to the frequency range from 0 Hz to 100 Hz.

The sample is available for download from here:
https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/
zip/27021601158718859.zip

Block diagram for the analysis chain:

Program parameters

The table below shows a list of important parameters for the configuration of the function blocks that are
used.

FFT length 8192
Window size 6400
Buffer size 3200
Window type eCM_HannWindow
Scaling type eCM_RMS
Coefficient order eCM_Mean
Maximum number of classes 1

https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/zip/27021601158718859.zip
https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/zip/27021601158718859.zip

Samples

TF3600272 Version: 1.5

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base,

Tc3_MultiArray

6.17 Crest factor
This sample calculates the crest factor for an input signal. Although the function block FB_CMA_CrestFactor
[} 85] is able to process several channels, for the purpose of illustration only a single channel will be
considered. The block diagram below shows the analysis chain implemented in the program.

The source code for the sample is available for download from here:
https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/
zip/27021601158767243.zip

https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/zip/27021601158767243.zip
https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/zip/27021601158767243.zip

Samples

TF3600 273Version: 1.5

Block Diagram

Program parameters

The table below shows a list with important configuration parameters for the function block for calculating the
crest factor.

Channels 2
Buffer size 1600

Samples

TF3600274 Version: 1.5

Global constants

These parameters are defined in the global variable list as constants.
VAR_GLOBAL CONSTANT
 cOversamples : UDINT := 10; // oversampling factor
 cChannels : UDINT := 2; // number of channels
 cBufferLength : UDINT := 2000; // size of buffer
END_VAR

Code for Control Task

Following code snippet shows the declaration in MAIN program:
VAR CONSTANT
 cInitSource : ST_MA_MultiArray_InitPars := (eTypeCode := eMA_TypeCode_LREAL, nDims := 2,
 aDimSizes := [cChannels, cBufferLength]);
END_VAR

VAR
 nInputSelection : UDINT := 1;
 aCrestFactor : ARRAY[1..cChannels] OF LREAL;
 nSampleIdx : UDINT;
 nChannelIdx : UDINT;
 aEl3632 AT %I* : ARRAY[1..cChannels] OF ARRAY[1..cOversamples] OF INT; // input from hardwar
e e.g. EL3632
 aBuffer : ARRAY[1..cChannels] OF ARRAY[1..cOversamples] OF LREAL;
 fbSource : FB_CMA_Source := (stInitPars := cInitSource, nOwnID := eID_Source, aDestIDs :=
[eID_Crest]); // Initialize source
 fbSink : FB_CMA_Sink := (nOwnID := eID_Sink);
END_VAR

Method calls in Main program:
// Collect data in a source
fbSource.Input2D(pDataIn := ADR(aBuffer),
 nDataInSize := SIZEOF(aBuffer),
 eElementType := eMA_TypeCode_LREAL,
 nWorkDim0 := 0,
 nWorkDim1 := 1,
 pStartIndex := 0,
 nOptionPars := 0);

// Push results to sink
fbSink.Output1D(pDataOut := ADR(aCrestFactor),
 nDataOutSize := SIZEOF(aCrestFactor),
 eElementType := eMA_TypeCode_LREAL,
 nWorkDim := 0,
 nElements := 0,
 pStartIndex := 0,
 nOptionPars := 0,
 bNewResult => bNewResult);

Code for CM Task

Declaration in MAIN_CM program:
VAR CONSTANT
 cInitCrest : ST_CM_CrestFactor_InitPars := (nChannels := cChannels, nBufferLength := cBufferLe
ngth);
END_VAR

VAR
 fbCrest : FB_CMA_CrestFactor := (stInitPars := cInitCrest, nOwnID:= eID_Crest, aDestIDs:= [eID_
Sink]); // Initialize crest
END_VAR

Method calls in MAIN_CM program:
fbCrest.Call();

The result of the sample code can be checked for a sinusoidal signal of arbitrary amplitude and frequency as
the input signal. The crest factor, in this case first element of aCrestFactor, must be equal to 3.01 dB.

Samples

TF3600 275Version: 1.5

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base,

Tc3_MultiArray

6.18 Envelope spectrum
The sample illustrates a calculation implementation for an envelope spectrum with the function block
FB_CMA_EnvelopeSpectrum [} 126]. The input signal is generated with a function generator. It corresponds
to the superposition of two sine waves with 120 Hz and 230 Hz. For a better illustration of the result, the
scope is limited to the frequency range from 0 Hz to 300 Hz.

The sample is available for download from here:
https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/
zip/27021601158717195.zip

https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/zip/27021601158717195.zip
https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/zip/27021601158717195.zip

Samples

TF3600276 Version: 1.5

Block diagram

Program parameters

The table below shows a list with important configuration parameters for the function block for calculating the
envelope spectrum.

FFT length envelope 2048
FFT length spectrum 2048
Window size 2048
Conversion to decibels FALSE
Window type eCM_HannWindow
Scaling type eCM_RMS

Samples

TF3600 277Version: 1.5

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v3.1.4013 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base,

Tc3_MultiArray

6.19 Power cepstrum
This sample implements the calculation of power cepstrum and power spectrum. The signal under
consideration is generated by amplitude modulation based on two sine waves, a carrier frequency and a
modulation frequency.

The source code for the sample is available for download from here:

https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/
zip/18014403771013131.zip

Block diagram

Program parameters

The table below shows a list of important parameters for the configuration of the function blocks that are
used.

FFT length 4096
Window size 4096
Buffer size 2048

https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/zip/18014403771013131.zip
https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/zip/18014403771013131.zip

Samples

TF3600278 Version: 1.5

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4018 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base,

Tc3_MultiArray

6.20 Event-based frequency analysis
This sample implements an event based frequency analysis. The generated signal consists of a noisy sine
signal with a frequency of 200 Hz and pure noise, which alternate every two seconds. Buffering of the signal
begins when a rising edge is detected in the (generated) input signal. The collected data are then relayed via
FB_CMA_Source [} 193] to the function block FB_CMA_MagnitudeSpectrum [} 147].

The source code for the sample is available for download from here:

https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/
zip/18014403770907403.zip

https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/zip/18014403770907403.zip
https://infosys.beckhoff.com/content/1033/TF3600_TC3_Condition_Monitoring/Resources/zip/18014403770907403.zip

Samples

TF3600 279Version: 1.5

Block diagram

Program parameters

The table below shows a list of important parameters for the configuration of the magnitude spectrum
function block.

FFT length 16384
Window size 16000
Buffer size 8000
Window type eCM_HannWindow
Scaling type eCM_ PeakAmplitude

Event-based buffering of the input signal

The program block CollectData controls the event-based sampling of the input signal. The input
parameters are defined as follows:

Samples

TF3600280 Version: 1.5

PROGRAM CollectData
VAR_INPUT
 bTrigger : BOOL; // Trigger signal, start with rising edge
END_VAR
VAR_IN_OUT
 aInputSignal : ARRAY[1..cOversamples] OF LREAL; // input time signal
END_VAR

The inverse of the trigger signal bTrigger_ and the current state of buffer are stored locally.
VAR
 bTrigger_ : BOOL := FALSE;
 nSourceState : UINT := 0;
 nActualBuffersSent : ULINT := 0;
 nBuffersToSent : ULINT := 2;

 // ...

END_VAR

Event-controlled sampling of the signal takes place when the trigger signal has a rising edge and the buffer
is ready, i.e. state 0.
IF (bTrigger AND NOT bTrigger_) AND nSourceState = 0 THEN
 nActualBuffersSent := fbSource.nCntResults; // check number of sent MultiArrays from fbSource
 fbSourceState := 1;
END_IF
bTrigger_ := bTrigger;

The following code shows the actual event-based buffering of the signal via the source function block.
CASE nSourceState OF

 1: // if <nBuffersToSent> MultiArrays has been sent, stop buffering

 fbSource.Input1D(pDataIn := ADR(aInputSignal),
 nDataInSize := SIZEOF(aInputSignal),
 eElementType := eMA_TypeCode_LREAL,
 nWorkDim := 0,
 pStartIndex := 0,
 nOptionPars := cCMA_Option_MarkInterruption);

 IF (fbSource.nCntResults-nActualBuffersSent) = nBuffersToSent THEN
 nSourceState := 2;
 END_IF

 2: // reset Source Buffer and wait for next trigger hit

 fbSource.ResetData();
 nSourceState := 0;

END_CASE;

The buffered signal data is subsequently relayed to the magnitude spectrum function block. The buffered
signal is processed in the same way as shown in the Magnitude spectrum: [} 240] sample.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4018 PC or CX (x86, x64) Tc3_CM, Tc3_CM_Base,

Tc3_MultiArray

Appendix

TF3600 281Version: 1.5

7 Appendix

7.1 Error Codes Overview
Error codes are returned by type HRESULT. A test for non-zero value is insufficient for values of type
HRESULT.

declaration error ok ok but with info check functions
hrErrorCode :HRES
ULT;

< 0 >= 0 > 0 SUCCEEDED(),
FAILED()

The following error codes may occur.

16#9811_0000 - 16#9811_FFFF listed in TwinCAT (ADS) Error Codes [} 281] (there
without high-order WORD). Further notes below on
this page.

16#9851_0000 - 16#9851_FFFF Condition Monitoring Error Codes are listed under
E_CM_ErrorCode [} 211]

16#9852_0000 - 16#9852_0FFF Condition Monitoring Analysis Error Codes are listed
in E_CMA_ErrorCodes [} 214]

16#9871_0000 - 16#9871_FFFF MultiArray Error Codes can be found in
E_MA_ErrorCode [} 215]

If an error occurs during initialization, the function block cannot be used.

Further information on standard TwinCAT Error Codes:

error value symbol Error description Remedy option
16#9811_070A NOMEMORY No memory Incorrect memory settings

=> increase router memory (see
chapter Memory Management [} 59])

16#9811_0719 TIMEOUT Device has a timeout A timeout may occur during buffer
memory transfers. Usually this is non-
critical for the CM analysis chain. The
response to the error depends on the
type of algorithm and the precise
location where the error occurred. The
timeout input should only be increased
if it matches the task cycle time.
See section Parallel processing [} 63].

In some cases error handling with error codes is not the best choice, particularly if the actions result in an
undefined value with regard to non-standard, but possible input data. Or if values were excluded from the
process. In this case missing values and partially undefined results can be described by the special constant
NaN (see chapter NaN values [} 62]). This is used in case of errors whose appearance does not depend on
the program logic, but on certain input data.

7.2 ADS Return Codes
Grouping of error codes: 0x000 [} 281]..., 0x500 [} 282]..., 0x700 [} 283]..., 0x1000 [} 285]...

Global error codes

Appendix

TF3600282 Version: 1.5

Hex Dec HRESULT Name Description
0x0 0 0x9811 0000 ERR_NOERROR No error.
0x1 1 0x9811 0001 ERR_INTERNAL Internal error.
0x2 2 0x9811 0002 ERR_NORTIME No real-time.
0x3 3 0x9811 0003 ERR_ALLOCLOCKEDMEM Allocation locked – memory error.
0x4 4 0x9811 0004 ERR_INSERTMAILBOX Mailbox full – the ADS message could not be sent.

Reducing the number of ADS messages per cycle
will help.

0x5 5 0x9811 0005 ERR_WRONGRECEIVEHMSG Wrong HMSG.
0x6 6 0x9811 0006 ERR_TARGETPORTNOTFOUND Target port not found – ADS server is not started or

is not reachable.
0x7 7 0x9811 0007 ERR_TARGETMACHINENOTFOUND Target computer not found – AMS route was not

found.
0x8 8 0x9811 0008 ERR_UNKNOWNCMDID Unknown command ID.
0x9 9 0x9811 0009 ERR_BADTASKID Invalid task ID.
0xA 10 0x9811 000A ERR_NOIO No IO.
0xB 11 0x9811 000B ERR_UNKNOWNAMSCMD Unknown AMS command.
0xC 12 0x9811 000C ERR_WIN32ERROR Win32 error.
0xD 13 0x9811 000D ERR_PORTNOTCONNECTED Port not connected.
0xE 14 0x9811 000E ERR_INVALIDAMSLENGTH Invalid AMS length.
0xF 15 0x9811 000F ERR_INVALIDAMSNETID Invalid AMS Net ID.
0x10 16 0x9811 0010 ERR_LOWINSTLEVEL Installation level is too low –TwinCAT 2 license er-

ror.
0x11 17 0x9811 0011 ERR_NODEBUGINTAVAILABLE No debugging available.
0x12 18 0x9811 0012 ERR_PORTDISABLED Port disabled – TwinCAT system service not

started.
0x13 19 0x9811 0013 ERR_PORTALREADYCONNECTED Port already connected.
0x14 20 0x9811 0014 ERR_AMSSYNC_W32ERROR AMS Sync Win32 error.
0x15 21 0x9811 0015 ERR_AMSSYNC_TIMEOUT AMS Sync Timeout.
0x16 22 0x9811 0016 ERR_AMSSYNC_AMSERROR AMS Sync error.
0x17 23 0x9811 0017 ERR_AMSSYNC_NOINDEXINMAP No index map for AMS Sync available.
0x18 24 0x9811 0018 ERR_INVALIDAMSPORT Invalid AMS port.
0x19 25 0x9811 0019 ERR_NOMEMORY No memory.
0x1A 26 0x9811 001A ERR_TCPSEND TCP send error.
0x1B 27 0x9811 001B ERR_HOSTUNREACHABLE Host unreachable.
0x1C 28 0x9811 001C ERR_INVALIDAMSFRAGMENT Invalid AMS fragment.
0x1D 29 0x9811 001D ERR_TLSSEND TLS send error – secure ADS connection failed.
0x1E 30 0x9811 001E ERR_ACCESSDENIED Access denied – secure ADS access denied.

Router error codes

Hex Dec HRESULT Name Description
0x500 1280 0x9811 0500 ROUTERERR_NOLOCKEDMEMORY Locked memory cannot be allocated.

0x501 1281 0x9811 0501 ROUTERERR_RESIZEMEMORY The router memory size could not be changed.

0x502 1282 0x9811 0502 ROUTERERR_MAILBOXFULL The mailbox has reached the maximum number of
possible messages.

0x503 1283 0x9811 0503 ROUTERERR_DEBUGBOXFULL The Debug mailbox has reached the maximum
number of possible messages.

0x504 1284 0x9811 0504 ROUTERERR_UNKNOWNPORTTYPE The port type is unknown.
0x505 1285 0x9811 0505 ROUTERERR_NOTINITIALIZED The router is not initialized.
0x506 1286 0x9811 0506 ROUTERERR_PORTALREADYINUSE The port number is already assigned.
0x507 1287 0x9811 0507 ROUTERERR_NOTREGISTERED The port is not registered.
0x508 1288 0x9811 0508 ROUTERERR_NOMOREQUEUES The maximum number of ports has been reached.
0x509 1289 0x9811 0509 ROUTERERR_INVALIDPORT The port is invalid.
0x50A 1290 0x9811 050A ROUTERERR_NOTACTIVATED The router is not active.
0x50B 1291 0x9811 050B ROUTERERR_FRAGMENTBOXFULL The mailbox has reached the maximum number for

fragmented messages.
0x50C 1292 0x9811 050C ROUTERERR_FRAGMENTTIMEOUT A fragment timeout has occurred.
0x50D 1293 0x9811 050D ROUTERERR_TOBEREMOVED The port is removed.

Appendix

TF3600 283Version: 1.5

General ADS error codes

Appendix

TF3600284 Version: 1.5

Hex Dec HRESULT Name Description
0x700 1792 0x9811 0700 ADSERR_DEVICE_ERROR General device error.
0x701 1793 0x9811 0701 ADSERR_DEVICE_SRVNOTSUPP Service is not supported by the server.
0x702 1794 0x9811 0702 ADSERR_DEVICE_INVALIDGRP Invalid index group.
0x703 1795 0x9811 0703 ADSERR_DEVICE_INVALIDOFFSET Invalid index offset.
0x704 1796 0x9811 0704 ADSERR_DEVICE_INVALIDACCESS Reading or writing not permitted.
0x705 1797 0x9811 0705 ADSERR_DEVICE_INVALIDSIZE Parameter size not correct.
0x706 1798 0x9811 0706 ADSERR_DEVICE_INVALIDDATA Invalid data values.
0x707 1799 0x9811 0707 ADSERR_DEVICE_NOTREADY Device is not ready to operate.
0x708 1800 0x9811 0708 ADSERR_DEVICE_BUSY Device is busy.
0x709 1801 0x9811 0709 ADSERR_DEVICE_INVALIDCONTEXT Invalid operating system context. This can result

from use of ADS function blocks in different tasks. It
may be possible to resolve this through multitasking
synchronization in the PLC.

0x70A 1802 0x9811 070A ADSERR_DEVICE_NOMEMORY Insufficient memory.
0x70B 1803 0x9811 070B ADSERR_DEVICE_INVALIDPARM Invalid parameter values.
0x70C 1804 0x9811 070C ADSERR_DEVICE_NOTFOUND Not found (files, ...).
0x70D 1805 0x9811 070D ADSERR_DEVICE_SYNTAX Syntax error in file or command.
0x70E 1806 0x9811 070E ADSERR_DEVICE_INCOMPATIBLE Objects do not match.
0x70F 1807 0x9811 070F ADSERR_DEVICE_EXISTS Object already exists.
0x710 1808 0x9811 0710 ADSERR_DEVICE_SYMBOLNOTFOUND Symbol not found.
0x711 1809 0x9811 0711 ADSERR_DEVICE_SYMBOLVERSIONIN-

VALID
Invalid symbol version. This can occur due to an on-
line change. Create a new handle.

0x712 1810 0x9811 0712 ADSERR_DEVICE_INVALIDSTATE Device (server) is in invalid state.
0x713 1811 0x9811 0713 ADSERR_DEVICE_TRANSMODENOTSUPP AdsTransMode not supported.
0x714 1812 0x9811 0714 ADSERR_DEVICE_NOTIFYHNDINVALID Notification handle is invalid.
0x715 1813 0x9811 0715 ADSERR_DEVICE_CLIENTUNKNOWN Notification client not registered.
0x716 1814 0x9811 0716 ADSERR_DEVICE_NOMOREHDLS No further notification handle available.
0x717 1815 0x9811 0717 ADSERR_DEVICE_INVALIDWATCHSIZE Notification size too large.
0x718 1816 0x9811 0718 ADSERR_DEVICE_NOTINIT Device not initialized.
0x719 1817 0x9811 0719 ADSERR_DEVICE_TIMEOUT Device has a timeout.
0x71A 1818 0x9811 071A ADSERR_DEVICE_NOINTERFACE Interface query failed.
0x71B 1819 0x9811 071B ADSERR_DEVICE_INVALIDINTERFACE Wrong interface requested.
0x71C 1820 0x9811 071C ADSERR_DEVICE_INVALIDCLSID Class ID is invalid.
0x71D 1821 0x9811 071D ADSERR_DEVICE_INVALIDOBJID Object ID is invalid.
0x71E 1822 0x9811 071E ADSERR_DEVICE_PENDING Request pending.
0x71F 1823 0x9811 071F ADSERR_DEVICE_ABORTED Request is aborted.
0x720 1824 0x9811 0720 ADSERR_DEVICE_WARNING Signal warning.
0x721 1825 0x9811 0721 ADSERR_DEVICE_INVALIDARRAYIDX Invalid array index.
0x722 1826 0x9811 0722 ADSERR_DEVICE_SYMBOLNOTACTIVE Symbol not active.
0x723 1827 0x9811 0723 ADSERR_DEVICE_ACCESSDENIED Access denied.
0x724 1828 0x9811 0724 ADSERR_DEVICE_LICENSENOTFOUND Missing license.
0x725 1829 0x9811 0725 ADSERR_DEVICE_LICENSEEXPIRED License expired.
0x726 1830 0x9811 0726 ADSERR_DEVICE_LICENSEEXCEEDED License exceeded.
0x727 1831 0x9811 0727 ADSERR_DEVICE_LICENSEINVALID Invalid license.
0x728 1832 0x9811 0728 ADSERR_DEVICE_LICENSESYSTEMID License problem: System ID is invalid.
0x729 1833 0x9811 0729 ADSERR_DEVICE_LICENSENOTIMELIMIT License not limited in time.
0x72A 1834 0x9811 072A ADSERR_DEVICE_LICENSEFUTUREISSUE License problem: Time in the future.
0x72B 1835 0x9811 072B ADSERR_DEVICE_LICENSETIMETOLONG License period too long.
0x72C 1836 0x9811 072C ADSERR_DEVICE_EXCEPTION Exception at system startup.
0x72D 1837 0x9811 072D ADSERR_DEVICE_LICENSEDUPLICATED License file read twice.
0x72E 1838 0x9811 072E ADSERR_DEVICE_SIGNATUREINVALID Invalid signature.
0x72F 1839 0x9811 072F ADSERR_DEVICE_CERTIFICATEINVALID Invalid certificate.
0x730 1840 0x9811 0730 ADSERR_DEVICE_LICENSEOEMNOT-

FOUND
Public key not known from OEM.

0x731 1841 0x9811 0731 ADSERR_DEVICE_LICENSERESTRICTED License not valid for this system ID.
0x732 1842 0x9811 0732 ADSERR_DEVICE_LICENSEDEMODENIED Demo license prohibited.
0x733 1843 0x9811 0733 ADSERR_DEVICE_INVALIDFNCID Invalid function ID.
0x734 1844 0x9811 0734 ADSERR_DEVICE_OUTOFRANGE Outside the valid range.
0x735 1845 0x9811 0735 ADSERR_DEVICE_INVALIDALIGNMENT Invalid alignment.

Appendix

TF3600 285Version: 1.5

Hex Dec HRESULT Name Description
0x736 1846 0x9811 0736 ADSERR_DEVICE_LICENSEPLATFORM Invalid platform level.
0x737 1847 0x9811 0737 ADSERR_DEVICE_FORWARD_PL Context – forward to passive level.
0x738 1848 0x9811 0738 ADSERR_DEVICE_FORWARD_DL Context – forward to dispatch level.
0x739 1849 0x9811 0739 ADSERR_DEVICE_FORWARD_RT Context – forward to real-time.
0x740 1856 0x9811 0740 ADSERR_CLIENT_ERROR Client error.
0x741 1857 0x9811 0741 ADSERR_CLIENT_INVALIDPARM Service contains an invalid parameter.
0x742 1858 0x9811 0742 ADSERR_CLIENT_LISTEMPTY Polling list is empty.
0x743 1859 0x9811 0743 ADSERR_CLIENT_VARUSED Var connection already in use.
0x744 1860 0x9811 0744 ADSERR_CLIENT_DUPLINVOKEID The called ID is already in use.
0x745 1861 0x9811 0745 ADSERR_CLIENT_SYNCTIMEOUT Timeout has occurred – the remote terminal is not

responding in the specified ADS timeout. The route
setting of the remote terminal may be configured in-
correctly.

0x746 1862 0x9811 0746 ADSERR_CLIENT_W32ERROR Error in Win32 subsystem.
0x747 1863 0x9811 0747 ADSERR_CLIENT_TIMEOUTINVALID Invalid client timeout value.
0x748 1864 0x9811 0748 ADSERR_CLIENT_PORTNOTOPEN Port not open.
0x749 1865 0x9811 0749 ADSERR_CLIENT_NOAMSADDR No AMS address.
0x750 1872 0x9811 0750 ADSERR_CLIENT_SYNCINTERNAL Internal error in Ads sync.
0x751 1873 0x9811 0751 ADSERR_CLIENT_ADDHASH Hash table overflow.
0x752 1874 0x9811 0752 ADSERR_CLIENT_REMOVEHASH Key not found in the table.
0x753 1875 0x9811 0753 ADSERR_CLIENT_NOMORESYM No symbols in the cache.
0x754 1876 0x9811 0754 ADSERR_CLIENT_SYNCRESINVALID Invalid response received.
0x755 1877 0x9811 0755 ADSERR_CLIENT_SYNCPORTLOCKED Sync Port is locked.

RTime error codes

Hex Dec HRESULT Name Description
0x1000 4096 0x9811 1000 RTERR_INTERNAL Internal error in the real-time system.
0x1001 4097 0x9811 1001 RTERR_BADTIMERPERIODS Timer value is not valid.
0x1002 4098 0x9811 1002 RTERR_INVALIDTASKPTR Task pointer has the invalid value 0 (zero).
0x1003 4099 0x9811 1003 RTERR_INVALIDSTACKPTR Stack pointer has the invalid value 0 (zero).
0x1004 4100 0x9811 1004 RTERR_PRIOEXISTS The request task priority is already assigned.
0x1005 4101 0x9811 1005 RTERR_NOMORETCB No free TCB (Task Control Block) available. The

maximum number of TCBs is 64.
0x1006 4102 0x9811 1006 RTERR_NOMORESEMAS No free semaphores available. The maximum num-

ber of semaphores is 64.
0x1007 4103 0x9811 1007 RTERR_NOMOREQUEUES No free space available in the queue. The maximum

number of positions in the queue is 64.

0x100D 4109 0x9811 100D RTERR_EXTIRQALREADYDEF An external synchronization interrupt is already ap-
plied.

0x100E 4110 0x9811 100E RTERR_EXTIRQNOTDEF No external sync interrupt applied.
0x100F 4111 0x9811 100F RTERR_EXTIRQINSTALLFAILED Application of the external synchronization interrupt

has failed.
0x1010 4112 0x9811 1010 RTERR_IRQLNOTLESSOREQUAL Call of a service function in the wrong context
0x1017 4119 0x9811 1017 RTERR_VMXNOTSUPPORTED Intel VT-x extension is not supported.
0x1018 4120 0x9811 1018 RTERR_VMXDISABLED Intel VT-x extension is not enabled in the BIOS.
0x1019 4121 0x9811 1019 RTERR_VMXCONTROLSMISSING Missing function in Intel VT-x extension.
0x101A 4122 0x9811 101A RTERR_VMXENABLEFAILS Activation of Intel VT-x fails.

TCP Winsock error codes

Hex Dec Name Description
0x274C 10060 WSAETIMEDOUT A connection timeout has occurred - error while establishing the connection, because

the remote terminal did not respond properly after a certain period of time, or the es-
tablished connection could not be maintained because the connected host did not re-
spond.

0x274D 10061 WSAECONNREFUSED Connection refused - no connection could be established because the target computer
has explicitly rejected it. This error usually results from an attempt to connect to a ser-
vice that is inactive on the external host, that is, a service for which no server applica-
tion is running.

0x2751 10065 WSAEHOSTUNREACH No route to host - a socket operation referred to an unavailable host.
More Winsock error codes: Win32 error codes

Appendix

TF3600286 Version: 1.5

7.3 Spectrum Scaling Options
This page provides an overview of the scaling options for spectral calculations. The following table shows
symbols and important parameters for the scaling.

Symbol Function block parame-
ters

Meaning

N nFFT_Length Number of input values of the FFT
Fs Sampling frequency or sampling rate
Ʃwn eWindowFunction,

nWindowLength
Sum of the values of the window function

Ʃwn
2 eWindowFunction,

nWindowLength
Sum of the squared values of the window
function

SQRT(x) Square root of X
MAX(|Xn|) Maximum of the spectral values Xn

RMS(xn) = SQRT([Ʃ (xn)2] / N) Root Mean Square value of a signal
PSD(Xn) Power Spectral Density
LSD(Xn) Linear Spectral Density
A Amplitude of a reference sine signal

The following table lists default scaling options (of type E_CM_ScalingType [} 208]), which can be selected by
the function blocks FB_CMA_PowerSpectrum [} 165] and FB_CMA_MagnitudeSpectrum [} 147] and function
blocks derived from these. The resulting factors do not have to be evaluated by the user. They are given in
the second column in order to be able to include further parameters if necessary. The values xn denote the
input values of the function block and the values Xk the spectral value for the frequency channel k resulting
from the scaling.

Appendix

TF3600 287Version: 1.5

Scaling option Contained factor Description
Deterministic signals
eCM_PeakAmplitude 2 / Ʃwn This scaling adapts the magnitude values in such a

way that an input sine signal with the amplitude A
reaches a maximum value of A. The result is
independent of the type of window function. The unit
of the magnitude value is the same as the unit of the
input signal.
MAX(|Xk|) = A
However, the maximum values of the spectrum do
not enable any robust estimation of the amplitude,
since so-called scalloping losses can occur.

eCM_RootPowerSum 2 / SQRT(N * Ʃwn 2) This scaling adapts the spectral values in such a way
that for an input sine signal with the amplitude A, the
square of the sum of the power values has the value
A. Accordingly the square root of the sum of the
squares of the magnitude values can also be used.
The result is thus equal to the RMS value of the input
signal multiplied by SQRT(2).
SQRT(Ʃ|Xk|2) = A
This scaling is suitable for the evaluation of narrow-
band signals. Since the summing via neighboring
frequency bands reduces scalloping losses, it is
considerably more robust than
eCM_PeakAmplitude.

eCM_RMS SQRT(2/N * Ʃwn 2) This scaling results in power values and the square
root of their sum is equal to the RMS value of the
input signal. A sinusoidal signal with the amplitude A
results in a value of A/SQRT(2):
SQRT(Ʃ|X(k)|2) = RMS(xn) = A * SQRT(1/2)
Like eCM_ROOT_POWER_SUM this scaling is also
robust and suitable for the evaluation of narrow-band
signals. In addition the RMS value is also well-
defined for broadband signals.

Stochastic and broadband signals
eCM_PowerSpectralDen
sity

SQRT(2 / Ʃwn
2) This scaling determines the Power Spectral Density

(PSD). For broadband and stochastic signals this is
independent of the parameters of the FFT and
window function.
PSD(Xk) = |Xk|2/FS

In order to determine a physically correct power
spectral density, the result must additionally be
divided by the sampling rate of the input signal in
Hertz. If the input signal has the unit Volt, then the
unit 1 V/Hz is obtained for the magnitude and the unit
1 V2/Hz for the power density. Division by the root of
the sampling rate must take place for the Linear
Spectral Density; the unit is then 1 V/(1 Hz)1/2:
LSD(Xk) = |Xk|/ SQRT(FS)

eCM_UnitaryScaling SQRT(1 / Ʃwn 2) This scaling determines power densities similar to an
FFT, which is divided by the value SQRT(N). It
therefore corresponds to a so-called unitary FFT, for
which the same factors apply for the forward and
inverse transformation.

Elementary

Appendix

TF3600288 Version: 1.5

Scaling option Contained factor Description
eCM_DiracScaling sqrt(N / Ʃwn 2) This scaling normalizes the power spectrum in such a

way that the broadband signal is equal to the
unscaled FFT (with the definition given above). The
influence of window type and window length is thus
eliminated. However, the effect of the FFT-length N
exists just as it does with the unscaled FFT.

eCM_NoScaling 1 No scaling. The result consists of the application of
the window function (which always has a maximum of
one in accordance with convention) followed by the
FFT.

eCM_GainCorrection SQRT(Ʃwn 2 / (Ʃwn)2) This scaling divides the signal by the Processing
Gain of the window function, which is the reciprocal
value of the Effective Noise Bandwidth.

Glossary

TF3600 289Version: 1.5

Glossary
Acceleration Spectral Density (ASD)

is the name given to the physical variable rep-
resented by the output values of the Fourier
transformation if the input signal is an accelera-
tion signal such as is measured, for example,
by a piezoelectric vibration pick-up. If inte-
grated over a frequency interval, the accelera-
tion density produces a frequency-specific ac-
celeration in much the same way as the power
density. The usual unit is 1 millimetre per sec-
ond squared per Hertz = 1 mm ⁄ s2 ⁄ Hz.

Aliasing
is an error that occurs if frequencies occur in a
signal that are higher than half the sampling
rate. In this case the signal from the sampling
can no longer be clearly reconstructed (Nyquist
theorem). These frequencies are reflected in
the spectrum as so-called image frequencies.

Angle of contact
is the angle between the line along which the
balls of a ball bearing touch the running sur-
face and the plane that is perpendicular to the
axis of the bearing. While the angle of contact
is always close to zero in the case of bearings
designed exclusively for radial loads, it can be
significantly larger with bearings that also bear
axial loads. It therefore depends both on the
geometry and on the current load on the bear-
ing and has an effect on the observable dam-
age frequencies due to the pitch diameter.
These are therefore not constant in the case of
bearings for axial loads.

Artefacts
unwanted changes in the signal that result from
errors in the processing, for example due to
aliasing.

Bessel’s correction
correction that takes into account the number
of the degrees of freedom when estimating sta-
tistical moment coefficients from a series of
data. Specifically, for example, the standard
deviation is corrected by multiplying it by the
factor sqrt(n/(n-1)), the skew by sqrt(n*(n-1)/
(n-2)) and so on. The factor is generally negli-
gible if n is a larger number.

Bin
designates one channel of a multi-channel sig-
nal output. The designation is used in particular
with transformations that convert signals, such
as the FFT or the formation of the histogram.

Cepstrum
is a transformation based on frequency analy-
sis that emphasises periodic elements in the
spectrum due to harmonics or amplitude modu-
lations. Distinction is made between the power
cepstrum and the complex cepstrum.

Circular aliasing
is an artefact that can occur when signals are
modified in the frequency domain and then
transformed back into the time domain by
means of an inverse FFT (Overlap-Add
method). The modification can be described as
a multiplication in the frequency domain, which
generally corresponds to filtering in the time
domain. This is equivalent to a cyclically de-
fined folding with the pulse response of the fil-
tering. If the pulse response is too long, then
signal portions belonging to the beginning of
the time period appear at the end of the section
and vice versa. The reason for this is the cyclic
definition of the discrete Fourier transformation.
Extensive modifications in the frequency do-
main can thus lead to artefacts. As counter-
measure the time signal can be supplemented
by zeros before processing (zero padding), so
that a reserve is created for the extension of
the signal.

Complexity
in this case: specification of the required re-
sources of an algorithm (computing time and, if
necessary, memory space). Condition Monitor-
ing functions are called with vastly different
data quantities; while a short-term FFT may be
called with only 32 values, it may be useful, for
example, to calculate a cepstrum for 16000
values. Therefore, in the case of a variable
number of input data n, the algorithm is ob-
served to see how it behaves with an increas-
ing amount of data; in computer science this is
normally described by the notation O(f(n)) (also
called ‘Landau Notation’). This notation states
that the complexity does not grow significantly
faster than a function f(n) as n increases. An
algorithm with the computing time complexity
O(n) thus requires, for example, eight times the
computing time for eight times the data amount
n, while an algorithm with the complexity O(n2)
already requires sixty-four times the computing
time. An FFT of the complexity O(n * log2 n)
conversely requires 112 times the computing
time for n=16384 compared to n=256. With
small amounts of data the computing time is
usually dominated by a portion that is indepen-
dent of the number of input data.

Glossary

TF3600290 Version: 1.5

Crest factor
relationship between the peak value and the
RMS value of a signal, normally expressed in
decibels.

Damage frequencies
are characteristic frequencies that occur when
certain machine elements are damaged. For
example, certain frequencies are assigned to
damage to the rolling elements, inner race,
outer race and cage in roller bearings and
these frequencies are proportional to the speed
of rotation of the axis, depending on the angle
of contact.

Decibel or dB
logarithmic scale for evaluating the intensity of
oscillations or of intensity ratios. A decibel
(symbol dB) is defined as one tenth of the aux-
iliary unit of measurement Bel. If x is a power
value, then the value y in decibels = 20 *
log10(x/x0). The value 1 or a defined reference
value is used for x0.

FFT
or Fast Fourier Transformation: Fast Fourier
Transformation, a calculation method for calcu-
lating the discrete Fourier transformation.
Strictly speaking several such calculation
methods exist, wherein the common implemen-
tations permit only power-of-two numbers as
the input length (Cooley-Tukey algorithm). The
common feature is a complexity of the order
O(n * nlog(n)), i.e. the calculation of an FFT
with 2048 points is a little more than four times
as complex as for 512 points.

Fourier transformation
is a transformation that enables a time signal to
be decomposed into different frequency por-
tions, thus forming the basis for many fre-
quency analysis methods. Instead of the con-
tinuous Fourier transformation, which repre-
sents a continuous function of an infinite signal,
the discrete Fourier transformation (DFT) is
normally used in practice as it is defined for a
discrete, periodic signal. An efficient implemen-
tation of the discrete Fourier transformation,
which is of great practical importance, is the
Fast Fourier Transformation (FFT).

Frequency domain
or frequency space is the name given to the
representation of a signal on the basis of the
values of the FFT. Since the complex Fourier
spectrum of every signal can be clearly repre-
sented and can be transformed back into an
equivalent time signal without losses, fre-
quency domain and time domain (as so-called

‘orthonormal bases’ in the function space) rep-
resent equivalent representations of the same
signal. Many operations for the analysis of sig-
nals can be performed more simply and effi-
ciently in the frequency domain than in the time
domain.

Harmonics
are oscillations that occur as integer multiples
of a basic frequency. They are characteristic of
pulse-type excitations and non-linear effects at
the origin of the oscillation and in this case can
typically be recognised by groups of lines in the
spectrum with a constant distance between
one another.

Hilbert Transformation
transformation that efficiently determines the
ninety-degree phase-shifted signal from an os-
cillation signal. The Hilbert Transformation is
used, for example, for the calculation of the an-
alytical signal.

Kurtosis
(sometimes also curtosis or curvature): indica-
tor of the ‘impulsiveness’ or ‘peakness’ of a
statistical distribution of values, determined
from the fourth central statistical moment. For
better evaluation of distributions, often the dis-
tance between curtosis of the measured distri-
bution and curtosis of the normal distribution
(value is 3) is used. This is then called excess
curtosis. A Gaussian distribution accordingly
has the excess curtosis zero, a distribution with
many outliers achieves a value much greater
than zero.

Machine protection
is the name given to methods that aim to auto-
matically switch a plant off as quickly as possi-
ble if monitoring parameters exceed a critical
threshold. In this way accidents and damage
can be avoided.

Moment coefficients
is a collective term for statistical values such as
mean value, standard deviation, skew and kur-
tosis of statistical variables. They are called
that because they can be calculated from the
central statistical moments of the probability
distributions or histograms of these variables.

NaN (Not a Number)
is a symbolic constant that marks invalid or
missing values according to the IEC 745 stan-
dard. The following points rank among the
main characteristics of NaN values: All arith-
metic operations that use NaN as input data re-
turn NaN as the result. All relational operators

Glossary

TF3600 291Version: 1.5

=, !=, > < >= <= always return the value False if
at least one of the operands is NaN. The stan-
dard function isnan or _isnan returns the value
True if the argument has the value NaN. The
expression isnan(a) is equivalent to the expres-
sion !(a == a) or NOT(a = a). The fact that NaN
values reproduce themselves when used in fur-
ther calculations is advantageous in that invalid
values cannot be overlooked

Nyquist theorem or sampling theorem
a theorem from communication technology and
signal processing that states, slightly simplified,
that a continuous signal must be sampled with
a frequency greater than double that of the
highest frequency contained in the signal so
that the original signal can be reconstructed
without loss of information or ambiguity from
the time-discrete signal obtained in this way.
This maximum frequency is called the Nyquist
frequency. In practice filters are integrated into
most D/A convertors that limit the maximum
frequency of the input signal to a value smaller
than half the sampling rate.

Overlap-Add method
a method that enables a signal to be decom-
posed initially into short-term spectra without
loss of information, then to process it further
(e.g. to filter it) in the frequency domain and
then to reconstruct it as a continuous time sig-
nal again.

Quantile or percentile
is the designation of a value that is determined
from a statistical variable. First of all its empiri-
cal frequency distribution (density function) is
determined and from this the cumulative fre-
quency distribution (also called cumulative dis-
tribution function) is calculated. The value of
the percentile q is the maximum value which
the random variable reaches in q percent of all
cases, but does not exceed. This value is de-
termined by the formation of the inverse func-
tion of the cumulative frequency distribution.
The only difference between quantiles and per-
centiles is that quantiles use the decimal frac-
tion instead of the corresponding percentages.
The value of the 50-percent percentile is also
called the median.

Quefrency
is the name given to the time axis that results
from the calculation of the cepstrum. As a
‘scrambled’ reversal of the term ‘Frequency’,
the name suggests the operations ‘inversion’
and ‘re-sorting’ which are characteristic of the
cepstrum. As a result of two successive Fourier
transformations, a transformation into the fre-
quency domain initially results, with the as-

signed unit 1 Hertz. The second transformation
leads in turn to a time domain in which, how-
ever, it is no longer the absolute time that lies
on the axis, but the periodic durations deter-
mined by means of the cepstrum. The unit of
quefrency is a second.

RCFA or Root Cause Failure Analysis
name for the analysis for the determination of
primary causes of damage. This is of particular
importance in the case of roller bearings, since
primary damage leads to more complex conse-
quential damage. Determination of the causes
allows the emergence of damage to be effec-
tively reduced.

Sampling frequency
is the frequency with which the analog signal is
originally sampled and converted into digital
values. This conversion takes place in steps of
a constant length of time called the sampling
period. The inverse value of the sampling pe-
riod is called the sampling frequency and is ex-
pressed in Hertz. See also ‘Nyquist theorem’.

Scalloping
is the effect that the precise spectral value of
narrow-band signals (for instance a sine signal
or that of a calibrator) depends on which part of
the FFT channel the frequency of the channel
lies. The extent of the effect depends on the
window function.

Skew
measurement of the asymmetry of a statistical
distribution, determined from the third central
statistical moment. A symmetrical distribution
has a skew of zero.

Time domain
denotes the representation of a signal using
the temporally sampled values, as is originally
available following a measurement. Since the
Fourier spectrum of every signal can also be
clearly represented and can be transformed
back into an equivalent time signal without
losses, the time domain and frequency domain
(as so-called ‘orthonormal bases’ in the func-
tion space) represent equivalent representa-
tions of the same signal.

Tooth engagement frequencies
or meshing frequencies denotes the frequency
with which the pairs of teeth in a gearbox touch
each other. This contact causes the so-called
meshing oscillation.

Glossary

TF3600292 Version: 1.5

Window functions
functions that are used, for example, in con-
junction with a frequency analysis (Welch
method) to decompose long input signals with-
out the addition of artificial jumps. As standard
the Hann window can be used in almost all
cases. The choice of window function affects
the frequency and time resolution of the fre-
quency analysis.

Windowing
is the name given to the calculation step of the
multiplication by a window function (see
above).

Zero Padding
denotes a processing step that is applied when
an FFT with a certain length is to be calculated
from a smaller number of samples. To do this
the values of the time series are filled at the
front and rear with zeros until the desired num-
ber of the values is attained. This usually re-
quires the windowing of the signal e.g. accord-
ing to the Welch method, so that no false
jumps are created in the time series. Zero pad-
ding increases the frequency resolution of an
FFT, which is equal to the sampling rate di-
vided by the number of FFT points, but the in-
formation content of the original signal is, of
course, not increased.

Beckhoff Automation GmbH & Co. KG
Hülshorstweg 20
33415 Verl
Germany
Phone: +49 5246 9630
info@beckhoff.com
www.beckhoff.com

More Information:
www.beckhoff.com/tf3600

mailto:info@beckhoff.de?subject=TF3600
https://www.beckhoff.com
https://www.beckhoff.com/tf3600

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 Safety instructions

	2 Overview
	2.1 Introduction
	2.1.1 Fourier analysis
	2.1.2 Analysis of data streams
	2.1.3 Triggered analysis of a time period
	2.1.4 Scaling of spectra
	2.1.5 Statistical analysis

	2.2 Application concepts
	2.2.1 Vibration assessment
	2.2.2 Frequency analysis
	2.2.3 Bearing monitoring
	2.2.4 Gearbox monitoring

	2.3 Literature notes

	3 Installation
	3.1 System requirements
	3.2 Compatibility
	3.3 Installation
	3.4 Licensing

	4 Technical introduction
	4.1 Memory Management
	4.2 Task Setting
	4.3 NaN values
	4.4 Parallel processing with Transfer Tray
	4.5 MultiArray Handling

	5 PLC API
	5.1 Function blocks
	5.1.1 FB_CMA_AnalyticSignal
	5.1.2 FB_CMA_ArgSort
	5.1.3 FB_CMA_BufferConverting
	5.1.4 FB_CMA_CrestFactor
	5.1.5 FB_CMA_CrestFactorPlus
	5.1.6 FB_CMA_ComplexFFT
	5.1.7 FB_CMA_DiscreteClassification
	5.1.8 FB_CMA_Downsampling
	5.1.9 FB_CMA_EmpiricalExcess
	5.1.10 FB_CMA_EmpiricalMean
	5.1.11 FB_CMA_EmpiricalSkew
	5.1.12 FB_CMA_EmpiricalStandardDeviation
	5.1.13 FB_CMA_Envelope
	5.1.14 FB_CMA_EnvelopeSpectrum
	5.1.15 FB_CMA_HistArray
	5.1.16 FB_CMA_InstantaneousFrequency
	5.1.17 FB_CMA_InstantaneousPhase
	5.1.18 FB_CMA_IntegratedRMS
	5.1.19 FB_CMA_MagnitudeSpectrum
	5.1.20 FB_CMA_MomentCoefficients
	5.1.21 FB_CMA_MultiBandRMS
	5.1.22 FB_CMA_PowerCepstrum
	5.1.23 FB_CMA_PowerSpectrum
	5.1.24 FB_CMA_Quantiles
	5.1.25 FB_CMA_RealFFT
	5.1.26 FB_CMA_RMS
	5.1.27 FB_CMA_SparseSpectrum
	5.1.28 FB_CMA_Sink
	5.1.29 FB_CMA_Source
	5.1.30 FB_CMA_VibrationAssessment
	5.1.31 FB_CMA_WatchUpperThresholds

	5.2 Functions
	5.2.1 F_MA_IsNAN
	5.2.2 F_CM_CalculateRecommendedOverlap

	5.3 Data types
	5.3.1 E_CM_MCoefOrder
	5.3.2 E_CM_ScalingType
	5.3.3 E_CM_SpectrumType
	5.3.4 E_CM_UnwrapMethod
	5.3.5 E_CM_WindowType
	5.3.6 E_MA_ElementTypeCode
	5.3.7 T_CM_WindowParameters
	5.3.8 Error codes
	5.3.8.1 E_CM_ErrorCode
	5.3.8.2 E_CMA_ErrorCode
	5.3.8.3 E_MA_ErrorCode

	5.3.9 InitPars structures
	5.3.9.1 ST_CM_AnalyticSignal_InitPars
	5.3.9.2 ST_CM_ArgSort_InitPars
	5.3.9.3 ST_CM_CrestFactor_InitPars
	5.3.9.4 ST_CM_CrestFactorPlus_InitPars
	5.3.9.5 ST_CM_ComplexFFT_InitPars
	5.3.9.6 ST_CM_DiscreteClassification_InitPars
	5.3.9.7 ST_CM_EmpiricalMoments_InitPars
	5.3.9.8 ST_CM_Envelope_InitPars
	5.3.9.9 ST_CM_EnvelopeSpectrum_InitPars
	5.3.9.10 ST_CM_HistArray_InitPars
	5.3.9.11 ST_CM_InstantaneousFrequency_InitPars
	5.3.9.12 ST_CM_InstantaneousPhase_InitPars
	5.3.9.13 ST_CM_IntegratedRMS_InitPars
	5.3.9.14 ST_CM_MagnitudeSpectrum_InitPars
	5.3.9.15 ST_CM_MomentCoefficients_InitPars
	5.3.9.16 ST_CM_MultiBandRMS_InitPars
	5.3.9.17 ST_CM_PowerCepstrum_InitPars
	5.3.9.18 ST_CM_PowerSpectrum_InitPars
	5.3.9.19 ST_CM_Quantiles_InitPars
	5.3.9.20 ST_CM_RealFFT_InitPars
	5.3.9.21 ST_CM_RMS_InitPars
	5.3.9.22 ST_CM_SparseSpectrum_InitPars
	5.3.9.23 ST_CM_VibrationAssessment_InitPars
	5.3.9.24 ST_CM_WatchUpperThresholds_InitPars
	5.3.9.25 ST_MA_MultiArray_InitPars

	5.4 Global constants
	5.4.1 GVL_CM
	5.4.2 GVL_CM_Base
	5.4.3 Global_Version
	5.4.4 Param

	6 Samples
	6.1 FFT with real-value input signal
	6.2 FFT with complex-value input signal
	6.3 Magnitude spectrum:
	6.4 Multi-channel magnitude spectrum
	6.5 Calculation of individual spectral values
	6.6 Window functions
	6.7 Scaling of spectra
	6.8 Time-based RMS
	6.9 Multi-band RMS
	6.10 Histogram
	6.11 Statistical methods
	6.12 Vibration assessment according to ISO 10816-3
	6.13 Vibration assessment according to ISO 10816-3 (compact)
	6.14 Schwingungsbeurteilung nach ISO 10816-3 (erweitert)
	6.15 Condition Monitoring with frequency analysis
	6.16 Threshold value consideration for averaged magnitude spectra
	6.17 Crest factor
	6.18 Envelope spectrum
	6.19 Power cepstrum
	6.20 Event-based frequency analysis

	7 Appendix
	7.1 Error Codes Overview
	7.2 ADS Return Codes
	7.3 Spectrum Scaling Options

	 Glossary

		documentation@beckhoff.com
	2020-11-12T05:58:50-0800
	Beckhoff Automation, Verl
	Documentation Publishing

