STM32G4- FD-CAN

Flexible Data-rate Controller Area Network interface
Revision 1.0

K 'I life.augmented

Hello and welcome to this presentation of the Flexible
Data rate Controller Area Network interface.

It covers the main features of this interface, which is
widely used to connect the microcontroller to a CAN
network.

Node 1
STM32G4

Overview

« An FD-CAN controller provides a communication
interface with an external CAN transceiver via two pins

« Three FD-CAN controllers in the STM32G4
FD-CAN

Node N
Application benefits
Transcei
Multi-master concept
l | Object-oriented communication
CAN high
Real-time capability
.4 CAN low

& Low message transfer latency

CAN Bus

System wide message consistency

The Flexible Data-rate Controller Area Network is a
standard serial differential bus broadcast interface that
enables the microcontroller to communicate with external
devices connected to the same network bus.

The FD-CAN interface is highly configurable, enabling

nodes to easily connect using just two wires.
Applications benefit from a Multi-master concept with
message priority, object-oriented communication (no
node addressing, but content identification), real-time
capability with low message transfer latency and system
wide message consistency (error detection &
management mechanism).

The STM32G4 microcontroller embeds 3 FD-CAN
controllers.

Configuration

g fdcan_iq_ck

fdcani_intrO_it =
fdcan1_intr1_it

fdcan_pclk

Rx handier
Acceptance fil

ACceptanc ter

] FD-CAN1
| FD-CAN2
| FD-CAN3

Kernel clock domain

APB clock domain

Message RAM
Buffers, FIFOs, Filters

The CAN sub-system supports 3 FD-CAN controllers
named FD-CAN1, FD-CAN2 and FD-CANS.

These 3 controllers are independent, except for the
Clock Unit and RAM which are shared, and have the
same functionalities.

These controllers support both the Basic Extended CAN
protocol versions 2.0 A and B with a maximum bit rate of
1 Mbit/s, as well as the CAN FD protocol version 1.0 with
up to 64 data bytes and a data bit rate of up to 8 Mbit/s.
The CAN core contains the Protocol Controller and
receive / transmit shift registers.

It handles all ISO 11898-1: 2015 protocol functions and
supports both 11-bit and 29-bit identifiers.

The Tx handler controls the message transfer from the
Message RAM to the CAN core while the Rx handler
Controls the transfer of received messages from the
CAN core to the external Message RAM.

Two clock domains are implemented: the APB bus
interface and the CAN core kernel clock and therefore
synchronization blocks are required between these two
domains.

A shared 0.8-Kbyte Message RAM memory is available.
This RAM is used to contain the filters, buffers and
FIFOs.

CAN subsytem lernel clockinput

\CAN subswtem APB interface clock input
[AD-CAN interrupt0

|FD-CAN interrupt1

fdcan ck
fdcan _pclk
fdan_intr0_it
fdan_intr1_it
fdcan_ts[0:15]

[FDCAN_RX
_FDCAN_TX
APB interface

augmented

Digital input
| Digital input
Digital output
|Digital output

jDigitaI input
_Digital output

Digital inputbutput -

RAM access

|D-CAN receive pin Aternate function o @IOs |

Pinout

Exernal timestamp vector
» This timestamp is provided by a timer contained i_n the FD-CAN block

FD-CAN transmit pin _ _
Single APB slave interface with multiple psel for configuration, control and|

The CAN subsystem 1I/O signals and pins are detailed in

this table.

Two clocks are provided to the FD-CAN unit:

» fdcan_ck, the kernel clock used to obtain the bit rate

» fdcan_apb, which is the APB clock used to access
memory-mapped registers and message RAM.

Two interrupt outputs enable the FD-CAN unit to report

events to the Cortex-M4 processor.

An external 16-bit timestamp input port can be used by

the FD-CAN unit to timestamp the transmission or the

reception of a message.

This timestamp is provided by a timer contained in the

FD-CAN block.

FDCAN_RX and FDCAN_TX have to be connected to

the transceiver.

At last, the APB slave interface is internally split into

three parts, each of them having a dedicated chip-select:

configuration, control and RAM access.

Features mm

» CAN protocol versions 2.0 Aand B and CAN FD protocol version 1.0

« Compliance with 1ISO 11898-1:2015.
* CAN FD with max. 64 data bytes supported

» Bitrates:
« Arbitration Bit Rate up to 1 Mbité
« Data Bit Rate up to 8 Mbité
+ Supports

2 maskable interrupts per controller
* Power-down support
« CAN error logging
« AUTOSAR and J1939 support
« Separate signaling on reception of High Priority Messages

The FD-CAN controller conforms with the CAN protocol
version 2.0 part A, B and ISO 11898-1: 2015 and CAN
FD protocol with maximum 64 data bytes supported.
Maximum bit rate in FD mode is 8 Megabits per second.
Each controller also supports 2 independent maskable
interrupts, each one having 24 fully configurable interrupt
flags.

The controllers have a power-down mode.

They support error logging, AUTOSAR, J1939 and
separate signaling on reception of high-priority
messages.

FIFOS

+ The message RAM contains: Message RAM
+ Two Receive FIFOs of three payloads each
+ Configurable Transmit FIFO / queue of three Rx FIFOO
payload (up to 64 Bytes per payload) 0-3 messages

« Configurable Transmit Event FIFO

Rx FIFO1
0-3 messages

Tx Buffers
0-3 messages

Tx Events FIFO
0-3 events

Up to 3 received messages can be stored in each of the
two Rx FIFOs. The acceptance filter selects the FIFO to
use.

Up to 3 messages to transmit can be stored as part of
the message RAM configured either as a Tx FIFO or as
3 separate Tx buffers.

Each entry of the Rx FIFO and Tx FIFO or Tx buffers
supports the maximum message size, 64 Bytes of
payload.

The Tx Event FIFO stores Tx timestamps together with
the corresponding Message ID.

Flexible Datarate (FD) CAN
enhancements

Slandard CAN frame (8 b;te data phase)

V) | 4 NV ol |~)Y || YO00000000000000000000000000000000V)
I|| A AT A A A A WAV A A VAV AN A A AN VAV AT A VAV AV ATV AN AW AVAVAVAVAVIVAYAWAY

30 CAN fa_et_ [fra_me Mode (8-byte data phase, increased bit-rate)

FD CAN Fast Fame Mode + Long Frame Mode (64 b)te data phase increased bit- rate)
— e e P e
I

Arbitration phase

There are two variants in the FD-CAN protocol:

1. Long Frame Mode (LFM), where the data field of a
CAN frame may be longer that eight bytes, up to 64
bytes.

2. Fast Frame Mode (FFM), where control field, data
field, and CRC field of a CAN frame are transmitted with
a higher bit rate compared to the beginning and to the
end of the frame. This high data rate is typically 8
Megabits per second.

Fast Frame Mode can be used in combination with Long
Frame Mode.

T ofl TR K. 2
Bit timing mm
Sampling point Transmit point

Configuration
fdcan_ck 9 SyncSeg Bit segment 1 Bit segment 2
+1..30 11q 1-321tq 1-161q

— ' [
Subsystem | tsyneseq i tost i tasz

config reg | CLKDIV 1 bit-time

fdean_tq_ck

* The bit timing logic monitors the serial bus-line and performs sampling and
adjustment of the sample point
« time quantum (tq) = (FDCAN_NBTP[NBRP] + 1) * ttcan_tq cik
+ bit time = tSyncSeg + tBS1 + tBS2
+ The length of tBS1 and tBS2 is programmable

The bit timing logic monitors the serial bus line and
performs sampling and adjustment of the sample point
by synchronizing on the start-bit edge and
resynchronizing on the following edges.

The time quantum is the basic timing unit, obtained from
the configuration unit and equal to tfdcan_tq_ck
multiplied by a ratio from 1 to 512, programmed in the
FDCAN_NBTP register.

The bit time is split into 3 segments: the synchronization
segment, the bit segment 1 and the bit segment 2.

Each of these segments is an integer multiple of the time
quantum.

The duration of BS1 and BS2 is independently
programmable for nominal bit time and data bit time. The
data bit time applies when operating in FD mode and
data are transmitted at the high data rate.

In order to adjust the on-chip bus clock, the CAN

controller may shorten or prolong the length of a bit by an
integral number of quanta.

The maximum value of these bit time adjustments are
termed the Synchronization Jump Width, SJW, which is
programmable from 1 to 4 time gquanta.

Transmitter delay compensation mm

» The FD-CAN controller implements a delay compensation mechanism to
compensate the CAN transceiver loop delay, thereby enabling transmission
with higher bit rates during the FD-CAN data phase independent of the delay
of a specific CAN transceiver

[ror | resi | mms [g| ime; |
FD-CAN FD-CAN transceiver Arbiration
controller FDCAN_TX m

FDCAN_TX 1
itration
FDCAN_RX Ethase | I |

Transmitter delay —»——=

FDCAN_RX # — —

Start Stop
fdcan_tq_ck —— —— Secondary Sample Point

‘ Delay counter
LA

The transmitter delay compensation enables
configurations where the data bit time is shorter than the
transmitter delay.

It is enabled by setting bit TDC in DBTP register.

The received bit is compared against the transmitted bit
at the Secondary Sample Point.

The SSP position is defined as the sum of the measured
delay from the FDCAN transmit output pin FDCAN_TX
through the transceiver to the receive input pin
FDCAN_RX plus the transmitter delay

compensation offset.

The transmitter delay compensation offset is used to
adjust the position of the SSP inside the received bit, e.g.
half of the bit time in the data phase.

Classic CAN 2.0B

FD-CAN operating modes

FD CAN

Reset
(LFM and/or FFM) e

Restricted

Bus Monitoring

Test modes

The FD-CAN has three main operating modes:
Initialization, Normal and Sleep.

After a hardware reset, the FD-CAN enters Initialization
mode via software.

In this mode:

» The peripheral must be configured (bit timings and
RAM allocation). In the ‘Bit timing’ configuration, the
rate is set then the sampling point is adjusted
according to the actual serial bus-line.

» The CAN controller then synchronizes itself with the
CAN bus by waiting for 11 consecutive recessive bits.

When the CAN is in Normal mode, the user can select
different specific sub-modes:

e Classic CAN mode compatible with CAN

10

specification 2.0B

FD CAN mode: it can be Long Frame and/or Fast
Frame mode, named respectively LFM and FFM
Restricted mode: the controller is able to receive data
frames and acknowledge them, but does not send
frames. It can be used in applications that adapt
themselves to different CAN bit rates.

Bus Monitoring mode: the controller is able to receive
data frames (but cannot acknowledge them). It can
be used to analyze the traffic on a CAN bus without
affecting it by the transmission of dominant bits.

Test modes detailed in next slide.

Upon a CPU request, the FD-CAN is put in Sleep mode
which operates at a lower power, when bus idle state is
detected.

10

Dominant
level

Recessive Sampling point FDCAN_TEST[RX]
level monitoring

FDCAN_TX FDCAN_RX FDCAN_TX FDCAN_RX FDCAN_TX FDCAN_RX

1 L

|

FD-CAN FD-CAN FD-CAN

Directaccess to DCAN_TX and FDCAN_RX pins External loopback mode Internal loopback mode

To enable write access to FDCAN_TEST register,
bit Test in CCCR register must be set to 1, thus
enabling the configuration of test modes and
functions.

In test mode, software can control the state of the
FDCAN_TX pin and can read the state of
FDCAN_RX.

Through the FDCAN_TEST reqister, software can
control the FDCAN_TX output: force dominant level,
force recessive level, monitor the sample point.
The actual value at pin FDCAN_RX can be read
from RX bit in FDCAN_TEST register. Both
functions can be used to check the CAN bus
physical layer.

These test modes should be used for production
tests or self test only.

Furthermore, the FD-CAN controller supports two

11

loopback modes that are entered through control bits in
the FDCAN_TEST and FDCAN_CCCR regqisters.

In external loopback mode, the FDCAN treats its own
transmitted messages as received messages and stores
them (if they pass acceptance filtering) into Rx FIFOs.
This mode is provided for hardware self-test. To be
independent from external stimulation, the FDCAN
ignores acknowledge errors (recessive bit sampled in the
acknowledge slot of a

data / remote frame) in Loop Back mode.

Internal loopback mode can be used for a hot selftest,
meaning the FDCAN can be tested without affecting a
running CAN system connected to the FDCAN_TX and
FDCAN_RX pins.

In this mode, FDCAN_RX pin is disconnected from the
FDCAN and FDCAN_TX pin is held recessive.

11

Acceptance filter

+ The FD-CAN controller offers the possibility to configure two sets of
acceptance filters located in message RAM, one for standard identifiers and
another for extended identifiers

* Each set has 28 entries : 28x 11-bit filter entries+ 28x 29-bit filter entries

» These filters can be assigned to Rx FIFO 0 or Rx FIFO 1

Received message

-

l | Acceptance filter #0 match ? P]
Acceptance filtering stops at the first l” Store in Rx FIFO 0
matching element = b » Store in Rx FI
> Following filter elements are not | ini e A AL P » 519"9 in Rx FIFO 1
evaluated for this message l.-: | > RejectID
y > Set high priority message interrupt flag
‘ b » Set high priority message interrupt flag and store in FIFO 0
l # Set high priority message interrupt flag and store in FIFO 1
N
| Acceptance filter #N match ? P

The FD-CAN controller offers the possibility to configure
two sets of acceptance filters, one for standard 11-bit
identifiers and another for 29-bit extended identifiers.
Each filter element is configurable for acceptance or
rejection filtering

« Each filter element can be enabled/disabled individually
* Filters are checked sequentially, execution stops with
the first matching filter element.

Software configures the number of active filter instances,
maximum is 28.

Acceptance filtering is started after the complete
identifier has been received.

After acceptance filtering has completed, and if a
matching Rx FIFO has been found, the Message
Handler starts writing the received message data in 32-
bit portions to the matching Rx FIFO.

12

Acceptance filter

+ Each filter element can be configured as

* Range filter (from - to)
» MessagelDe[SF1ID, SF2ID] for standard ID
* MessagelDe[EF1ID, EF2ID] for extended ID if EFT=0
* MessagelD & XIDAM[EIDN]<[EF1ID, EF2ID] for extended ID if EFT=11

« Filter for one or two dedicated IDs
* MessagelD = SF1ID || MessagelD = SF2ID for standard ID
+ MessagelD & XIDAM[EIDN] = EF1ID || MessagelD & XIDAM[EIDN] = EF2ID for extended ID

* Classic bit mask filter
+ MessagelD & SF2ID == SF1ID & SF2ID for standard ID
*+ MessagelD & XIDAM[EIDN] & EF2ID == EF1ID & EF2ID for extended ID

Each filter element can be configured as

* Range filter (from - to)

« Filter for one or two dedicated IDs

» Classic bit mask filter.

Regarding extended ID, the Extended ID AND Mask
(XIDAM) is AND-ed with the received identifier before the
filter list is executed.

To filter for one specific Message ID, the filter element
has to be configured with SF1ID = SF2ID and EF1ID =
EF2ID.

13

Message ID filtering

Valid frame received ‘

e

TR / e \ /—}—" Same algorithm for
1—(11-bitID ——(Bit identifier 29-bit ID ! extended ID filtering
Y

Remote frame ? \s—r{
N fe

N/~ Receive filter list enabled b

L
\ Y
\Y
h .ff
/ \

{ Acceptance or rejection

Reject remote frame ?
I'n

Y

Match filter element 0?
IN

+N
Match filter element
5 RXGFC[LSS]?
—-l N
x Accepting non-matching \/
\ frames ? /
o

Acceptance

Discard frame

[TargetFIFOTaT&&
: =)
_ 1 N

Append to target FIFO |

This algorithm describes the filtering sequence of frames
received with a standard ID.

A similar algorithm is used to handle frames received
with an extended ID, however the configuration of these
two algorithms is done independently.

First step is accepting or rejecting the remote frames.
Then when the receiver list is disabled, the filter
elements are bypassed. Otherwise, the first matching
element determines whether the frame is accepted or
rejected.

When the receiver filter is disabled or no filtering
elements has matched, the frame is either accepted or
rejected.

At last, when the frame is accepted and the targeted Rx
FIFO is not full, this frame is appended to the Rx FIFO.
When the Rx FIFO is full and blocking mode is selected,
then the frame is discarded.

14

+ The two Rx FIFOs implement the same synchronization mechanisms between
hardware and software
« When the FD-CAN controller writes a new message in Rx FIFOn, the read only Put index

« Software has to indicate how many messages it has read in order to update the Get index

Rx FIFO operation

field is updated

Rx AFOO0

Rx AFO1

. Acceptancefiters |

Rx FIFO 0 and Rx FIFO 1 can hold up to three elements
each.

Received messages that passed acceptance filtering are
transferred to the Rx FIFO as configured by the matching
filter element.

The read only registers FDCAN_RXFO0S and
FDCAN_RXFL1S provide the following information:

» Position of the Put index

» Position of the Get index

 Number of pending messages

* FIFO full condition.

15

Dy IO 3. .
Rx FIFO operation
Rx FIFO Blocking Mode Rx FIFO Overwrite Mode
[1] Rx HFOn 1) Rx AFOn
MSG ___, MSG MSG MSG |, MSG MSG MSG MsG |,
D C B A D C = A
(2] Rx HFOn [2} Rx HFOn
MSG MSG MSG MSG MSG MSG MSG MSG
D C B A D D c B
MSG MSG
D l A]
Lys - -
2L

The Rx FIFO blocking mode is the default operation
mode for the Rx FIFOs.

When an Rx FIFO full condition is reached, no further
messages are written to the corresponding Rx FIFO until
at least one message has been read out and the Rx
FIFO Get Index has been incremented.

In case a message is received while the corresponding
Rx FIFO is full, this message is discarded and the
message lost condition is signaled.

In Rx FIFO overwrite mode, when an Rx FIFO full
condition is signaled, the oldest message is discarded
and the next message is accepted, as shown in the
sequence on the right.

Put and get index are both incremented by one.

16

Tx HFO

Tx FIFO mode

Software —

+ Software has to indicate how many
messages it has written to the FIFO in order
to update the Put index

« When the FD-CAN controller reads a
message, it updates the Get index

Kys NA |

CAN |
: core

Lowest
message ID

Software

+ The three buffers are handled independently

of each other

« Software selects the buffer to which the nex
message is written

« The AD-CAN controller indicates which buffers are

ENCICV U Transnit @ncellation R

Up to three Tx Buffers can be set up for message
transmission.
Either the Tx FIFO mode is chosen, in which all

messages are transmitted in the same order that have

been prepared by software.

Or the Tx Queue mode is chosen, in which the three
message buffers are handled independently of each

other.

Messages stored in the Tx Queue are transmitted
starting with the message with the highest priority.

The FD-CAN controller supports transmit cancellation.
To cancel a requested transmission from a Tx Queue
Buffer, software has to write a 1 to the corresponding bit

position of register TXBCR.

Transmit cancellation is not intended for Tx FIFO
operation.

17

Tx Event handling

+ To support Tx event handling, the FD-CAN has implemented a Tx Event FIFO

+ After the FD-CAN controller has transmitted a message on the CAN bus, Message ID and
timestamp are stored in a Tx Event FIFO element

Message is transmitted

L

— Software |

To support Tx event handling, the FD-CAN has
implemented a Tx Event FIFO.

The purpose of the Tx Event FIFO is to decouple
handling transmit status information from transmit
message handling.

A Tx Buffer holds only the message to be transmitted,
while the transmit status is stored separately in the Tx
Event FIFO.

This has the advantage, especially when operating a
dynamically managed transmit queue, that a Tx Buffer
can be used for a new message immediately after
successful transmission.

There is no need to save transmit status information from
a Tx Buffer before overwriting that Tx Buffer.

In case a Tx event occurs while the Tx Event FIFO is full,
this event is discarded and interrupt flag is set.

18

.ougmented

FD-CAN Interrupts

-
o ©
QO
b |
O
(o]
[{]
-
QO
o
(9]
2
&G o
w
QO
o
[q)]
o
w
(1]
= |
[a}]
e |
QO
—
@
-

hterrupt event hterrupt event

Access b Reserved Address TX Event HFO FRull
Protocol Eror in Data Fhase | TX Event HFO New Entry
Protocol BEror in Arbitration Phase | TX AFO Empty
Watchdog imeout | Transmission Cancellation Anished
Bus_Off | Transmission Completed
Warning Status | High Priority Message
Eror Rassive : RX AFO1 Message Lost
Eror Logging Overflow RX AFO1 Rull Interrupt
Tineout Cccurred | RXAFO1 New Message
Message RAM Access HRailure | RXHFO0 Message Lost
TineStamp Wraparound | RXHFOO FRull Interrupt
TXEvent AFO Hement Lost RX AFO0 New Message

An FD-CAN controller peripheral provides two
independent interrupt lines.

This slide shows the complete list of possible interrupt
events.

i

Low-power modes

| Stop 0Stop 1

Mode Description
Run | Active.
Active
Sleep i . ; : ;
» Peripheral interrupts cause the device to ext Sleep mode
Low-power run | Active
Active

LEWpOWEL SRep ~ Peripheral interrupts cause the device to ext Low-power sleep mode

' standby | Not available
Shutdown |

Here is an overview of the FD-CAN sub-system low-
power configuration modes.

The device is not able to perform any communications in
Stop or Standby modes.

It is important to ensure that all CAN traffic is completed
before the peripheral enters Stop or Standby modes.

Debug support

* While the CPU Core is in Debug mode:
« FD-CAN remains in its normal functioning mode

« Registers of the type “reset on read” or “set on read” are disabled; reading them does not
affect their value

While the CPU Core is in Debug mode (i.e. stopped at a
breakpoint), then

e FD-CAN remains in its normal functioning mode. In
particular, reception continues as normal and this
may lead to reception overrun errors when FIFOs or
buffers are full.

e Regqisters of the type “reset on read” or “set on read”
are disabled; reading them does not affect their
value.

21

CAN related peripherals

+ Refer to these other peripherals:

* Reset and clock controller (RCC) for more information about the CAN clock control and
enable/reset

* Nested vectored interrupt controller (NVIC) for more information about the mapping of
the FD-CAN’s interrupts

* General-purpose 1/0s (GPIO) for more information about the FD-CAN's input and output
pins

* Debug Support (DBG) for more information about the FD-CAN's behavior when the CPU
is halted

For additional information, refer to the training for these
peripherals which may affect FD-CAN behavior:

» Reset and clock controller (RCC) for more information
about the CAN clock control and enable/reset.

* Interrupts for more information about the mapping of
the FD-CAN's interrupts.

» General-purpose I/Os (GPIO) for more information
about the FD-CAN's input and output pins.

* Debug Support (DBG) for more information about the
FD-CAN's behavior in debug mode.

22

References

+ For more details, please refer to the following resources:
« Application note AN3154: Description of the CAN protocol used in the STM32 boot loader

« Application note AN3364: Migration and compatibility guidelines for STM32
microcontroller applications

« Web (connection examples, available monitoring tools, and more)

Application notes covering the CAN topic are available
on www.st.com.

To learn more about the CAN interface, you can also visit
a wide range of web pages discussing the CAN
communication protocol and bus monitoring tools.

Many digital oscilloscopes support direct reading and
analysis of data transmitted over the CAN bus.

23

