

BootROM User Manual

Rev. 1.5, 2020-09-25

TLE986x BF-Step

TLE986x BF BootROM

User Manual 2 Rev. 1.5, 2020-09-25

1 Introduction . 5
1.1 Purpose . 5
1.2 Scope . 5
1.3 Abbreviations and special terms . 5

2 Overview . 7
2.1 Firmware architecture . 7
2.2 Program structure . 8

3 Startup procedure . 10
3.1 Program structure . 10
3.1.1 Test and initialization of RAM . 10
3.1.2 NVM initialisation routine . 11
3.1.3 NVM MapRAM initialisation . 11
3.1.3.1 NVM MapRAM initialization at high prio reset 11
3.1.3.2 NVM MapRAM initialization at low prio reset 12
3.1.4 Oscillator trimming and system clock selection 12
3.1.5 Analog module trimming . 13
3.1.6 User configuration data initialization . 13
3.1.7 Debug support mode entry . 14
3.1.8 User mode and BSL mode entry . 14
3.1.8.1 NAC definition . 14
3.1.9 Node Address for Diagnostic (NAD) . 17

4 FastLIN and UART BSL Mode . 19
4.1 FastLIN and UART BSL protocol . 19
4.2 Phase I for UART BSL: Automatic serial synchronization to the host 20
4.2.1 General description . 20
4.2.2 Calculation of BR_VALUE and PRE values . 22
4.3 Phase I for FastLIN BSL: FastLIN BSL entry sequence 23
4.4 Phase II: Serial communication protocol and the working modes 23
4.4.1 Serial communication protocol . 23
4.4.1.1 Transfer block structure . 24
4.4.1.2 Transfer block type . 24
4.4.1.3 Response codes to the host . 25
4.4.1.4 Block response delay . 28
4.4.2 UART BSL Modes . 30
4.4.2.1 Header Block . 30
4.4.2.2 Mode 0 - Code/Data download to RAM/100TP 30
4.4.2.3 Mode 1 - Code Execution inside RAM . 33
4.4.2.4 Mode 2 - Code/Data download to NVM . 33
4.4.2.5 Mode 3 - Code Execution inside NVM . 38
4.4.2.6 Mode 4 - NVM Erase . 38
4.4.2.7 Mode 6 - NVM Protection . 40

TLE986x BF BootROM

User Manual 3 Rev. 1.5, 2020-09-25

4.4.2.8 Mode A - NVM Readout, Chip ID, Checksum, FastLIN BSL entry com-
mand 41

4.4.3 16 bits inverted XOR checksum . 47
4.5 WDT1 refreshing . 47

5 NVM . 48
5.1 NVM overview . 48
5.1.1 NVM organisation . 48
5.2 NVM configuration sectors organisation . 51
5.2.1 Chip ID definition . 51
5.2.2 100 Time Programmable data . 54
5.3 NVM user routines organisation . 60
5.3.1 Opening assembly buffer routine . 63
5.3.2 NVM programming routine . 66
5.3.3 Page Verify Routine . 70
5.3.4 NVM page erasing routine . 72
5.3.5 Erase Page Verify Routine . 74
5.3.6 Sector Erasing Routine . 75
5.3.7 Erase Sector Verify Routine . 76
5.3.8 Abort NVM programming routine . 78
5.3.9 MapRAM initialization . 78
5.3.10 Read NVM status routine . 80
5.3.11 Read 100 Time Programmable parameter data routine 80
5.3.12 Program 100 Time Programmable routine . 81
5.3.13 NVM ECC check routines . 83
5.3.14 Read NVM ECC2 address routine . 85
5.3.15 RAM MBIST starting routine . 85
5.3.16 NVM protection status change routines . 86
5.3.17 Read NVM config status routine . 91
5.3.18 Read user calibration data . 92
5.3.19 NVMCLKFAC setting routine . 93
5.4 NVM user applications . 94
5.4.1 NVM Data sector handling . 94
5.4.2 Supporting Background NVM Operation . 101
5.4.3 Emergency operation handling . 104
5.4.3.1 Emergency operation handling - Type 1 routines 104
5.4.3.2 Emergency operation handling - Type 2 routines 105
5.4.3.3 Emergency operation handling timing . 105
5.4.4 NVM user routines operation . 107
5.4.4.1 NVM user programming operation . 107
5.4.4.2 Tearing-safe Programming . 109
5.4.4.3 NVM user erase operation . 110
5.4.4.4 NVM user programming abort operation . 111

TLE986x BF BootROM

User Manual 4 Rev. 1.5, 2020-09-25

5.4.5 NVM protection mechanism . 111

6 Revision History . 112

TLE986x BF BootROM

Introduction

User Manual 5 Rev. 1.5, 2020-09-25

1 Introduction
This document specifies the BootROM firmware behavior for the TLE986x family. The
specification contains the following major sections:
• BootROM Overview
• Startup Procedure
• BSL features
• NVM structure and user routines description.

1.1 Purpose
The document describes the functionality of the BootROM firmware.

1.2 Scope
The BootROM firmware for the TLE986x family provides the following features:
• Startup procedure for stable operation of TLE986x chip
• Debugger connection for proper code debug
• BSL mode for users to download and run code from NVM and RAM
• NVM operation handling, e.g. program and erase

1.3 Abbreviations and special terms

Table 1-1 Abbreviations and Terms
BSL BootStrap Loader
CS Configuration Sector
EOT End of Transmission
EVR Embedded Voltage Regulator
NAC No Activity Count
NAD Node address for diagnostic
NEA NVM End Address
NLS NVM Linear Size
NSA NVM Starting Address
NVM Non Volatile Memory
OCDS On-Chip Debug Support
OSC Oscillator
PEM Program Execution Mode

TLE986x BF BootROM

Introduction

User Manual 6 Rev. 1.5, 2020-09-25

PLL Phase-Locked Loop
SA Service Algorithm
SCU System Control Unit
SWD Serial Wire Debug
VTOR Vector Table Offset Register
WDT WatchDog Timer

Table 1-1 Abbreviations and Terms (cont’d)

TLE986x BF BootROM

Overview

User Manual 7 Rev. 1.5, 2020-09-25

2 Overview
This specification describes all firmware features including the operations and tasks
defined to support the general startup behaviour and various boot options.

2.1 Firmware architecture
TLE986x on-chip BootROM consists of:
• startup procedure, see Chapter 3
• bootstrap loader via UART, see Chapter 4
• NVM user routines and NVM integrity handling routines, see Chapter 5
The BootROM in TLE986x is located at 00000000H and so represents the standard reset
handler routine.
The startup procedure includes:
• EVR calibration
• MapRAM initialisation
• on-chip oscillator configurations
• NVM protection enabling
• branching to different modes
The latched values of TMS, P0.0 and P0.2 at the rising edge of RESET determine the
mode of operation to be entered.
BootROM operation modes:
• User / BSL mode
• Debug Support mode
In user mode BootROM performs the following steps: execute the startup procedure, set
the vector table position at the beginning of the NVM in user accessible space (by proper
setting of the VTOR register) and jump to the user defined reset handler routine (jump to
the location pointed by the address 11000004H-11000007H) to execute the user
program.
Note: The firmware will only set the VTOR to point at the beginning of the user

accessible NVM region but will not write any vector table. This is the responsibility
of the user to download a correct vector table.

Table 2-1 lists the boot options available in the TLE986x.

TLE986x BF BootROM

Overview

User Manual 8 Rev. 1.5, 2020-09-25

The device test mode is not intended to be selected by the user. The user shall ensure
by external configuration of the pins (TMS, P0.0 and P0.2) that no device test mode is
entered.

2.2 Program structure
The different sections of the BootROM provide the following basic functionality.

Startup procedure
The startup procedure is the main control program in the BootROM. It is the first software
controlled operation that is executed after any reset.
The startup procedure will perform configuration sector verification, EVR calibration, on-
chip oscillator trimming, MapRAM initialisation, BootROM protection, NVM protection
and decode the pin-latched values of the TMS, P0.0 and P0.2 to determine which mode
it will jump to.

User mode
User mode supports user code execution in the NVM address space. However, if NVM
is not protected and the Bytes at address 11000004H-11000007H are erased (FFH), then
device enters sleep mode. If a valid user reset vector is found at 11000004H (values at
11000004H - 11000007H not equal to FFFFFFFFH) and a proper NAC value is found then
the BootROM proceeds into user mode. In case an invalid NAC value is found, the
device waits forever for a FastLIN BSL communication.

Table 2-1 TLE986x Boot options
TMS/DAP1 P0.0

/DAP0
P0.2 Mode / Comment

0 X X User mode / BSL mode 1)2)

1) On-chip OSC is selected as PLL input. System is running on LP_CLK until firmware switches to PLL output
before jumping to user code. Exception is with hardware reset where user settings are retained.

2) Boot in user mode or BSL mode depends on the NAC word in user memory (NVM).

1 0 X Device test mode3)

3) Power up with special internal settings. At completion, device runs in endless loop. No NVM code execution
is performed.

1 1 0 Debug Support mode with SWD port
1 1 1 Device test mode3)

TLE986x BF BootROM

Overview

User Manual 9 Rev. 1.5, 2020-09-25

FastLIN and UART BSL mode
It is used to support BSL via UART protocol. Downloading of code/data to RAM and NVM
related programming is supported in this mode.

TLE986x BF BootROM
Startup procedure

User Manual 10 Rev. 1.5, 2020-09-25

3 Startup procedure
This chapter describes the BootROM startup procedure in TLE986x.
The startup procedure is the first software-controlled operation in the BootROM that is
automatically started after every reset. Certain operations are skipped depending on the
type of reset. Refer to next section for further details.

3.1 Program structure
The first task executed by the startup firmware is the check of the reset source.
For power on, brown-out reset or wake-up from sleep mode reset, RAM test and
initialization are executed according to user settings, while they are skipped for other
reset types.
Firmware code uses part of the RAM for variable storage, literal pools and stack pointer.
The startup code only uses a specific RAM region (the first 1 kB mapped from address
18000000H to 180003FFH), subset of the total available RAM address range. In the
remaining region, which is not used by the firmware, the user can store values to be valid
across reset for all reset sources different from power on reset, brown out reset and
wakeup reset. For these three reset sources, either a RAM test or a RAM clear might be
executed thus destroying the previously stored values.

After that, depending on the reset source, the firmware will do NVM protection, NVM
MapRAM initialisation, on-chip oscillator trimming, PLL setting and analog module
trimming. It will decode the pin-latched values of the TMS, P0.0 and P0.2 to determine
which mode it will jump to.
If bootup mode is Debug Support mode, the WDT1 is disabled. For entry to user mode,
the WDT1 remains active. Next, the firmware will wait for NVM module to be ready.
For software, or internal watchdog reset (triggered by the WDT in the SCU), the following
steps are skipped:
• RAM test and initialisation
• NVM MapRAM initialisation and service algorithm
• Setting of oscillator and PLL and switching system clock input to PLL output
• Loading of analog modules trimming parameters from first 100TP page
• Loading of user configuration data from 100TP page into the RAM
• Clearing of NMI status before exit to user mode or Debug support mode

3.1.1 Test and initialization of RAM
A functional test sequence is executed on the entire RAM after power on reset and
brown out reset and can be executed optionally after a wakeup reset. The test consists
of a linear write/read algorithm using alternating data. Once it is started, the firmware

TLE986x BF BootROM
Startup procedure

User Manual 11 Rev. 1.5, 2020-09-25

waits until the test is completed, before checking the result and continuing accordingly
the start up sequence.
The execution of the RAM test after a wake up reset is controlled by the MBIST_EN bit
in the PMU->SystemStartConfig register. The user can freely set the value of this bit and
its value is kept over wake up reset. If the bit is set to 0, the RAM test is not performed
on wake up. If the bit is set to 1 then the RAM test is performed even for wake up resets.
If an error is detected the device is set to loop endlessly with WDT1 enabled.
In case of power-on reset, brown-out reset or wake-up reset from sleep mode the start
up procedure will continue with a complete RAM initialization by writing all the RAM to
zero with proper ECC status.This is needed to prevent an ECC error during user code
execution due to a write operation to an un-initialised location (with invalid ECC code).
Afterwards the Firmware proceeds checking the NVM status.
Note: Via MBIST EN bit user can only disable the RAM test sequence while the RAM

initialization to 00H is still executed.

Note: The test sequence on the entire RAM takes 500 μs while the initialization of the
complete RAM takes 150 μs.

3.1.2 NVM initialisation routine
This routine will set the NVM protection according to the password in the configuration
sector (refer to Section 5.4.5 for further details on NVM protection and protection
password).

3.1.3 NVM MapRAM initialisation
The MapRAM is being used for the EEPROM emulation which is described in
Chapter 5.4.1. After every reset the system performs the MapRAM initialisation. This
operation is triggered to restore the MapRAM content.
The operation is executed with different flows depending on the type of reset. These two
flows are described in the following chapters.

3.1.3.1 NVM MapRAM initialization at high prio reset
During power on reset, brown out reset, pin reset or wakeup reset, the MapRAM content
is cleared. For this reason, during the following startup sequence the system performs a
complete MapRAM initialization. In case during the initialisation at least one error is
detected, the service algorithm routine is called to do the repair.
In case of mapping errors, the repair mechanism consists of erasing the wrong pages
(either faulty or double mapped pages). The repair step then requires the right of

TLE986x BF BootROM
Startup procedure

User Manual 12 Rev. 1.5, 2020-09-25

modifying the NVM Data sector content, which can be in contrast to the NVM protection
settings user has provided. To avoid any risk of data loss, the user can control via
dedicated 100TP page parameter whether the SA is allowed to proceed to the repair
step in case NVM password protection for NVM Data sector is installed.
Detailed description of the MapRAM initialization and repair step can be found at
Section 5.4.1

3.1.3.2 NVM MapRAM initialization at low prio reset
During low prio reset (soft reset, internal WDT reset and lockup reset) the content of the
MapRAM is not cleared and so a MapRAM initialization is not mandatory. Any of these
reset types might occur during an NVM operation on a non-linearly mapped data sector
and might result in an inconsistent state of the MapRAM. In order to check MapRAM for
consistency, MapRAM initialization is performed for these reset types too. In case of
mapping errors no repair step is triggered, so that worst case startup time is not
increased.
The result of the NVM Data sector initialization executed during the startup flow is
reported to the user via the bit 1 of the SYS_STRTUP_STS register (MRMINITSTS).
If this bit is set to 1 then the last initialization failed and the mapping info might be
corrupted. In this case, a reset (power on reset, brown out reset, pin reset, WDT1
reset or wakeup reset) can be issued in order to start the Service Algorithm to try
to fix the integrity issue inside the Data NVM. If the MRAMINITSTS is still flagged
afterwards, the Data NVM sector has to be re-initialized by performing a sector
erase.

3.1.4 Oscillator trimming and system clock selection
After every power on reset, brown out reset, pin reset or wakeup from sleep reset the
system runs with an internal low precision clock (nominally 18 MHz). During the start up
procedure, the internal oscillator is trimmed and the PLL is programmed to fSYS max. for
the device. In order to reduce the boot time, the start up procedure continues to run with
the low precision clock while the PLL is locking. System clock will be switched to PLL
output before jumping to user or BSL mode in case of successful lock. In case the PLL
does not lock the startup sequence proceeds further using the low precision clock as
system clock.
Once user mode is entered, user is allowed to set the final desired frequency by proper
register setting.
Note: After every power on reset, brown out reset, pin reset or wakeup reset the

user shall check whether the system is running on the low precision clock
or on the PLL output reading the SYSCON0 register.

TLE986x BF BootROM
Startup procedure

User Manual 13 Rev. 1.5, 2020-09-25

3.1.5 Analog module trimming
In this routine, the trimming values of voltage regulators, LIN module, temperature
sensor, bridge driver and other analog modules are read from the configuration sector
and written into the respective SFR. For user mode or Debug Support mode, checksum
on 100TP page is evaluated. In case of error, default values are used. Refer to Table 5-
11 for a list of user parameters in 100TP page.

3.1.6 User configuration data initialization
The firmware provides a routine to download data stored in user accessible configuration
sector pages (100TP) during the startup flow. In particular, the routine copies a specified
number of Bytes from a selected 100TP page (starting always from first Byte in the page)
into the RAM (starting at a given address). The routine is by default disabled and can be
enabled and controlled by proper programming of the Bytes stored in first 100TP page
as described in the Table 5-11. This routine is not performed after a software or
watchdog reset.
Relevant routine control parameters stored in the first 100TP page are:
• CS_USER_CAL_STARTUP_EN (offset=79H): When set to C3H it enables the user

data download from a 100TP page into the RAM during startup flow. All other values
will be ignored and the routine will not be executed at startup.

• CS_USER_CAL_XADDH: (offset=7AH): It defines the high Byte of the RAM starting
address where to copy data downloaded from 100TP page. This Byte is ignored if the
routine is not enabled.

• CS_USER_CAL_XADDL: (offset=7BH): It defines the low Byte of the RAM starting
address where to copy data downloaded from 100TP page. This Byte is ignored if the
routine is not enabled.

• CS_USER_CAL_100TP_PAGE: (offset=7CH): It defines the 100TP page where data
has to be downloaded from (refer to Figure 5-8). This Byte is ignored if the routine is
not enabled.

• CS_USER_CAL_NUM: (offset=7DH): It defines the number of Bytes to be
downloaded starting from the first Byte of the selected 100TP page. This Byte is
ignored if the routine is not enabled.

The RAM address where the user configuration data has to be copied to is stored as a
16-bit offset to the RAM start address (18000000H). This offset is defined by the
CS_USER_CAL_XADDL and CS_USER_CAL_XADDH parameters.
The routine has been developed to support downloading of the Customer_ID and the
ADC calibration parameters stored at the beginning of the first 100TP page (see
Table 5-11) into the RAM for an easy access but can be more generally used for all other
CS user parameters. If the routine is enabled, firmware will copy the data from the

TLE986x BF BootROM
Startup procedure

User Manual 14 Rev. 1.5, 2020-09-25

selected 100TP page into the RAM. Moreover, independent of startup setting, a similar
routine is provided as NVM user routine (refer to Section 5.3.18).

3.1.7 Debug support mode entry
Entry to Debug support mode is determined by pin setting at power up (see Table 2-1).
In case NVM address 11000004H-11000007H is not FFFFFFFFH, the firmware code
clears the RAM, waits for debugger to be connected, moves the VTOR to 11000000H
and jumps to user code.

3.1.8 User mode and BSL mode entry
Entry to user mode is determined by the No Activity Count (NAC) value which is defined
in the user code (refer to Section 3.1.8.1). After waiting the time defined by the current
NAC value, the startup procedure sets the VTOR register to point to the beginning of the
NVM (11000000H) and jumps to the reset handler.
If NVM double Bit error occurs when reading the NAC value, the system goes into
endless loop.
Before entering user mode, the system clock frequency is switched to PLL output
previously set to the max. fSYS of the device. In case PLL has not locked within 1 ms, the
CPU clock source LP_CLK (low precision clock running nominally at 18 MHz) will be
used.
Note: User mode is entered jumping to the reset handler. This can happen directly from

startup routine, after a waiting time for possible BSL communication, or as a result
of BSL commands. In all these cases, jump to user mode will only occur either (1)
when NVM is not protected and NVM content at 11000004H-11000007H is not
FFFFFFFFH or (2) when NVM is protected. In all other cases, firmware will put the
device in sleep mode.

3.1.8.1 NAC definition
The NAC value defines the time window after reset release in which the firmware is able
to receive BSL connection messages. The bits 5 to 0 define the duration of the time
window while bit 7 of the NAC defines, which BSL interface is selected. Bit 6 is reserved
and not used. If no BSL messages are received on the selected BSL interface during the
NAC window and NAC time has expired, the firmware code proceeds to user mode.
There are 2 different BSL interfaces supported, FastLIN and UART.
The FastLIN BSL is an enhanced feature in TLE986x device, supporting a fixed baud
rate of 115.2 kBaud. To support this faster baudrate the protocol used will be the same
as UART BSL but on the integrated LIN transceiver (Refer to Chapter 4 for protocol
description).

TLE986x BF BootROM
Startup procedure

User Manual 15 Rev. 1.5, 2020-09-25

After ending the start up procedure, the program will detect any activities on the LIN/
UART for a period of time, determined by (((NAC & 3FH) -1H) * 5) ms reduced by the time
already spent to perform the start up procedure. When nothing is detected on the LIN/
UART and (((NAC & 3FH) -1H) * 5) ms is passed from reset going high, the
microcontroller will jump to user mode. If NAC(5:0) is 1H, the BSL window is closed, no
BSL connection is possible and user mode is entered without delay.
The maximum NAC value is restricted to CH as the first open WDT1 window is worst
case 65 ms. In case a valid BSL command is detected during the BSL window the
firmware suspends the counting of the WDT1 in order to avoid that requested BSL
communication is broken by a WDT1 reset. The firmware will then re-enable the WDT1
before jumping to user code. If NAC is not valid, BootROM code will switch off the WDT1
and wait for a FastLIN entry sequence infinitely.
Table 3-1 gives an overview of the action of the microcontroller with respect to No
Activity Count (NAC) values and the Table 3-2 shows the selection of the BSL interface
depending on the NAC bit 7.

TLE986x BF BootROM
Startup procedure

User Manual 16 Rev. 1.5, 2020-09-25

Table 3-1 Type of action w.r.t. No Activity Count (NAC) values
NAC Value (5:0) Action
01H 0 ms delay. Jump to user mode immediately
02H 5 ms delay before jumping to user mode1)

1) If a FastLIN frame/UART frame is received within the delay period, the following actions occur; (1) the
remaining delay is ignored, (2) it will not enter user mode anymore (3) it will process the FastLIN / UART frame
accordingly

03H 10 ms delay before jumping to user mode1)

04H 15 ms delay before jumping to user mode1)

05H 20 ms delay before jumping to user mode1)

06H 25 ms delay before jumping to user mode1)

07H 30 ms delay before jumping to user mode1)

08H 35 ms delay before jumping to user mode1)

09H 40 ms delay before jumping to user mode1)

0AH 45 ms delay before jumping to user mode1)

0BH 50 ms delay before jumping to user mode1)

0CH 55 ms delay before jumping to user mode1)

0DH - 3FH, 00H, Invalid Wait forever for the first frame

TLE986x BF BootROM
Startup procedure

User Manual 17 Rev. 1.5, 2020-09-25

For each derivative, the NAC value is stored, together with the NAD value, in the last 4
Bytes of the linearly mapped NVM region. To ensure the parameter validity, the 2
parameters’ actual values and their inverted values are checked. In case the stored
value and inverted value are not consistent (value + inverted value + 1 not equal to 0)
the parameter is considered to be invalid and the default value is used: The BSL window
will be open indefinitely and FastLIN is selected as BSL interface.
The Table 3-3 shows the addresses for all the available family devices. In the table NSA
stands for NVM Starting Address whose value is 11000000H for all derivatives and NLS
stands for NVM Linear Size, in Bytes, whose value is derivative dependent.

For NSA and NLS values refer to Table 5-2.

3.1.9 Node Address for Diagnostic (NAD)
The NAD value is stored similar to the NAC value in NVM. This field specifies the
address of the active slave node. Only slave nodes have an address. The NAD address
range supported in TLE986x is listed in Table 3-4.

Table 3-2 BSL Interface selection via NAC
NAC(7) Action
 0 FastLIN BSL
 1 UART BSL

Table 3-3 NAC and NAD parameters details
Address User Defined

Value
Criteria / Range Default

NSA+(NLS-4)H NAC 01H - 0CH for FastLIN BSL
81H - 8CH for UART BSL

7FH

NSA+(NLS-3)H NAC 1’s complement -
NSA+(NLS-2)H NAD (for FastLIN

BSL only)
01H - FFH (00H is reserved) 7FH

NSA+(NLS-1)H NAD (for FastLIN
BSL only)

1’s complement -

Table 3-4 NAD address range
NAD Value Description
00H Invalid Slave Address
01H to FEH Valid Slave Address

TLE986x BF BootROM
Startup procedure

User Manual 18 Rev. 1.5, 2020-09-25

If the NAD value is not programmed in the NVM linear region or in case its value is invalid
(value and inverted value not consistent), the NAD is assumed to be 7FH.

7FH Default Address (NAD value is invalid or it is not programmed in NVM
linear area)

FFH Broadcast Address (The actual NAD value stored in the NVM is not
checked. Communication is granted)

Table 3-4 NAD address range (cont’d)
NAD Value Description

 TLE986x BF BootROM
FastLIN and UART BSL Mode

User Manual 19 Rev. 1.5, 2020-09-25

4 FastLIN and UART BSL Mode
This chapter describes the protocol used for the FastLIN and UART BSL.
Both FastLIN and UART BSL share the same protocol. FastLIN BSL communication is
performed via the integrated LIN transceiver while UART BSL is performed via the full
duplex UART interface (UART1, UART send P0.1, UART receive P1.4).
Note: UART BSL expects a full duplex communication. A connection of an

external LIN transceiver to P0.1/P1.4 is not supported by UART BSL.

Although FastLIN BSL uses the same protocol as UART BSL, the connection sequence
is different. To protect the FastLIN BSL from unwanted entries, a special entry sequence
must be executed before FastLIN BSL is fully enabled. In addition, the FastLIN BSL is
always executed at a fixed baud rate of 115.2 kBaud.
All information regarding connection and protocol for both UART and FastLIN are
reported following.
The protocol is based on the phases described following.

4.1 FastLIN and UART BSL protocol
The FastLIN and UART BSL protocol is based on the following two phases:

• Phase I: Establish a serial connection
• For FastLIN BSL the device automatically sets a baud rate of 115.2 kBaud and

waits for a specific command entry sequence before enabling all FastLIN BSL
supported features (refer to Chapter 4.3).

• For UART BSL the device automatically synchronizes transfer speed (baud
rate) with the serial communication partner (host) for UART. (refer to
Chapter 4.2)

• Phase II: Perform the serial communication with the host. The host controls
communication by sending header information which selects one of the working
modes (refer to Chapter 4.4) These modes are:
– Mode 0 (00H): Transfer a user program from the host to RAM or write 100TP
pages1)

– Mode 1 (01H): Execute a user program in the RAM2)

– Mode 2 (02H): Transfer a user program from the host to NVM1)

– Mode 3 (03H): Execute a user program in the NVM2)

– Mode 4 (04H): Erase NVM1)

– Mode 6 (06H): NVM protection mode enabling/disabling Scheme2)

1) The microcontroller returns to the beginning of phase II and waits for the next command from the host
2) UART BSL and serial communication are terminated.

 TLE986x BF BootROM
FastLIN and UART BSL Mode

User Manual 20 Rev. 1.5, 2020-09-25

– Mode A (0AH): Get Info (based on Option Byte)1)

Except mode 1, mode 3 and mode 6, the microcontroller returns to the beginning of
Phase II and waits for the next command from the host after executing all other modes.
All serial communication is performed via the integrated LIN transceiver for FastLIN and
via the full duplex serial interface (UART1) of the TLE986x for UART BSL.
The serial transfer works in asynchronous mode with the serial parameters 8N1 (eight
data Bits, no parity and one stop Bit).
The following section provides detailed information on these two phases.

4.2 Phase I for UART BSL: Automatic serial synchronization to the
host

Upon entering UART BSL mode, a serial connection is established and the transfer
speed (baud rate) of the serial communication partner (host) is automatically
synchronized in the following steps, a simplified entry flow is depicted in Figure 4-1:
• STEP 1: Initialize serial interface for reception and timer for baud rate measurement
• STEP 2: Wait for test Byte (80H) from host
• STEP 3: Synchronize the baud rate to the host
• STEP 4: Send Acknowledge Byte (55H) to the host
• STEP 5: Enter Phase II

4.2.1 General description
The microcontroller will set the serial port of the UART1 to mode 1 (8-bit UART, variable
baud rate) for communication. Timer 2 will be set in auto-reload mode (16-bit timer) for
baud rate measurement. In the process of waiting for the test Byte (80H), microcontroller
will start the timer on reception of the start Bit (0) and stop it on reception of the last Bit
of the test Byte (1). Then the UART BSL routine calculates the actual baud rate, sets the
PRE and BR_VALUE values and activates baud rate generator. When the
synchronization is done, the microcontroller sends back the Acknowledge Byte (55H) to
the host. If the synchronization fails, the baud rates for the microcontroller and the host
are different, and the Acknowledge code from the microcontroller cannot be received
properly by the host. In this case, on the host side, the host software may give a message
to the user, e.g. asking the user to repeat the synchronization procedure. On the
microcontroller side, the UART BSL routine cannot judge whether the synchronization is
correct or not. It always enters phase II after sending the Acknowledge Byte. Therefore,
if synchronization fails, a reset of the microcontroller has to be invoked, to restart it for a
new synchronization attempt.

 TLE986x BF BootROM
FastLIN and UART BSL Mode

User Manual 21 Rev. 1.5, 2020-09-25

Figure 4-1 BSL Entry flow (simplified)

BootROM
BSL Mode Start

is NAC > 0x01
(0ms) or invalid?

Start NAC timer
(Timer21)

Timer21
elapsed?*

is RxD line low
state? no

no

Stop NAC timer
(Timer21)**

disable WDT1**

yes

Start Baudrate
detection
(Timer2)

is RxD line high
state?

no

Stop Baudrate
detection
(Timer2)

yes

Calculate baudrate

Program BaudRate
for UART1

Return
Acknowledge (0x55)

is BSL command
received?

no

Execute BSL
command

enable WDT1

Mode 3

Exit to User Mode

BSL Mode?

Program BaudRate
for UART1

to 115.2kBaud

is BSL command
received?

Get ChipID Cmd.
Received?

yes

NAD match?

yes

FastLIN

Timer21
elapsed?*no

no

yes

yes
yes

UART BSL

Stop NAC timer
(Timer21)**

disable WDT1**

no

no

0ms

5..55ms

disable WDT1
disable Timer21

(disable NAC timer)

invalid

Setup
Hardware

(UART, LIN)

Setup
Hardware

(Timer2, UART)

Setup Timer21
(NAC timer)

*) if NAC Timer is disabled (NAC = invalid)
Timer21 will never elaps,
it always branches to ‚no‘

**) if NAC Timer is disabled (NAC = invalid)
Stop NAC timer and disable WDT1 is

skipped

 TLE986x BF BootROM
FastLIN and UART BSL Mode

User Manual 22 Rev. 1.5, 2020-09-25

4.2.2 Calculation of BR_VALUE and PRE values
For the baud rate synchronization of the microcontroller to the fixed baud rate of the host,
the UART BSL routine waits for a test Byte (80H), which has to be sent by the host. By
polling the receive port of the serial interface (P1_DATA.4/RxD Pin), the Timer 2 is
started on the reception of the start Bit (0) and stopped on the reception of the last Bit of
the test Byte (1). Hence the time recorded is the receiving time of 8 Bits (1 start Bit plus
7 least significant Bits of the test Byte). The resulting timer value is 16-bit (T2). This value
is used to calculate the 11-bit auto-reload value (BR_VALUE stored in the BGH and BGL
SFRs), the fractional divider FDSEL and PRE, with T2PRE predefined as 011. This
calculation needs two formulas.
First, the correlation between the baud rate (baud) and the reload value (BG) depends
on the internal peripheral frequency (fPCLK)

[4.1]

Second, the relation between the baud rate (baud) and the recording value of Timer 2
(T2) depends on the T2 peripheral frequency (fT2) and the number of received Bits
(fT2Nb)

[4.2]

Combining Equation [4.1] and Equation [4.2] with Nb=8, fT2=fPCLK/ 8 (T2PRE=011),

[4.3]

Simplifying Equation [4.3], we get

[4.4]

After setting BR_VALUE, FDSEL and PRE, the baud rate generator will then be enabled,
and the UART BSL routine sends an Acknowledge Byte (55H) to the host. If this Byte is
received correctly, it will be guaranteed that both serial interfaces are working with the
same baud rate.

baud
fPCLK

16 PRE× BR_VALUE FDSEL
32

-------------------+è ø
æ ö×

--=

baud
fT2 Nb×

T2
--------------------=

fPCLK

16 PRE× BR_VALUE FDSEL
32

-------------------+è ø
æ ö×

--

fPCLK
8

--------------- 8×

T2
------------------------=

PRE BR_VALUE FDSEL
32

-------------------+è ø
æ ö× T2

16
-------=

 TLE986x BF BootROM
FastLIN and UART BSL Mode

User Manual 23 Rev. 1.5, 2020-09-25

4.3 Phase I for FastLIN BSL: FastLIN BSL entry sequence
Upon entering FastLIN BSL mode, there is no automatic synchronization to the host
transfer speed. The device sets the baud rate to 115.2 kBaud. Please also refer to the
simplified entry flow in Figure 4-1.
In addition, the FastLIN mode is protected against unwanted entries, i.e. because of
noise on the communication line. In order to establish a FastLIN connection, the
following sequence must be sent to the device during the active BSL connection window
(NAC).
• STEP 1: Host to send the “Get Chip ID for FastLIN BSL entry” command
• STEP 2: Device to answer with Acknowledge (55H)
• STEP 3: Device to answer with the Chip ID
Get Chip ID for FastLIN BSL entry is described in Chapter 4.4.2.8.
If the sequence has been passed to the device during the BSL active window and the
device has acknowledged the commands and answered with the Chip ID then the
FastLIN BSL connection is established, the NAC and the WDT1 will be disabled and the
device will wait for further FastLIN BSL commands.

4.4 Phase II: Serial communication protocol and the working modes
Once the BSL communication is established, the FastLIN or UART BSL enters Phase II,
during which it communicates with the host to select the desired working modes. The
detailed communication protocol is explained as follows: From now on, both FastLIN and
UART BSL modes share the same UART BSL protocol.

4.4.1 Serial communication protocol
The communication between the host and the UART BSL routine is done by a simple
transfer protocol. The information is sent from the host to the microcontroller in blocks.
All the blocks follow the specified block structure. The host is sending several transfer
blocks and the UART BSL routine is just confirming them by sending back single
Acknowledge or error Bytes. The microcontroller itself does not send any transfer blocks.
 However, the above rule does not apply to some modes where the microcontroller might
need to send the required data to the host besides the Acknowledge or error Byte (e.g.
mode A).

 TLE986x BF BootROM
FastLIN and UART BSL Mode

User Manual 24 Rev. 1.5, 2020-09-25

4.4.1.1 Transfer block structure
A transfer block consists of three parts:

• Block Type: the type of block, which determines how the Bytes in the data area are
interpreted. Implemented block types are:
– 00H type “Header”
– 01H type “Data”
– 02H type “End of Transmission” (EOT)

• Data area: A list of Bytes, which represents the data of the block. The length of data
area cannot exceed 128 Bytes for mode 0 and 2. For mode 2, the length of data area
must always be 128 Bytes. This is due to the fact that NVM is written page-wise.

• Checksum: the XOR checksum of the Block Type and data area.
The host will decide the number of transfer blocks and their respective lengths during
one serial communication process. For safety purpose, the last Byte of each transfer
block is a simple checksum of the Block Type and data area. The host generates the
checksum by XOR-ing all the Bytes of the Block Type and data area. Every time the
UART BSL routine receives a transfer block, it recalculates the checksum of the received
Bytes (Block Type and data area) and compares it with the attached checksum.
Note: If there is less than one page to be programmed to NVM, the PC host will have to

fill up the vacancies with 00H, and transfer data in the length of 128 Bytes.

4.4.1.2 Transfer block type
There are three types of transfer blocks depending on the value of the Block Type.
Table 4-1 provides the general information on these block types. More details will be
described in the corresponding sections later.

Block Type
(1 byte)

Checksum
(1 byte)

Data Area
(X bytes)

 TLE986x BF BootROM
FastLIN and UART BSL Mode

User Manual 25 Rev. 1.5, 2020-09-25

4.4.1.3 Response codes to the host
The microcontroller communicates to the host whether a block has been successfully
received by sending out a response code. If a block is received correctly, an
Acknowledge Code (55H) is sent. In case of failure, an error code is returned. There are
two possible error codes, FFH or FEH, reflecting the two possible types of fail, Block Type
or Checksum Error. A Block Type Error occurs when either a not implemented Block
Type or transfer blocks in wrong sequence are received. For example, if in working mode
0 two consecutive header blocks are received a Block Type Error is detected and a Block
Type Error (FFH) indication is returned. A Checksum Error occurs when the checksum
comparison on a received block fails. In such a case, the transfer is rejected and a
Checksum Error (FEH) indication is returned. In both error cases the UART BSL routine
awaits the actual block from the host again.
When program and erase operation of NVM is restricted due to enabled NVM protection,
only modes 1, 3 and some options of mode A are allowed. All other modes are blocked
and a Protection Error code (FDH) will be sent to host. This will indicate that NVM is
protected and no programming and erasing are allowed. In this error case, the UART
BSL routine will wait for the next header block from the host again.

Table 4-2 gives a summary of the response codes to be sent back to the host by the
microcontroller after it receives a transfer block.

Table 4-1 Type of transfer block
Block Name Block Type Description
Header block 00H This block has a fixed length of 8 Bytes. Special

information is contained in the data area of the block,
which is used to select different working modes.

Data block 01H This block length depends on the special information
given in the previous header block. This block is used in
working mode 0 and 2 to transfer a portion of program
code. The program code is contained in the data area of
the block.

EOT block 02H This block length depends on the special information
given in the previous header block. This block is the last
block in data transmission in working mode 0 and 2. The
last program code to be transferred is in the data area of
the block.

 TLE986x BF BootROM
FastLIN and UART BSL Mode

User Manual 26 Rev. 1.5, 2020-09-25

Table 4-3 shows a tabulated summary of the possible responses the device may
transmit following the reception of a header, data or EOT block.

Table 4-2 Type of response codes
Communication status Response code to the host
 Acknowledge (Success) 55H
 Block Type Error FFH
 Checksum Error FEH

 Protection Error FDH
Combined Offset Error
(COMBOFFSETFAULT)

0FBH only valid for Mode 0 option F0H

ID Offset Error
(IDOFFSETFAULT)

0FAH only valid for Mode 0 option F0H

In Page Offset Error
(INPAGEOFFSETFAULT)

0F9H only valid for Mode 0 option F0H

Table 4-3 Possible responses for various block types
Mode Header block Data block EOT block
 0 Acknowledge, Block Type

Error, Checksum Error,
Protection Error

Acknowledge, Block
Type Error, Checksum
Error

Acknowledge, Block
Type Error,
Checksum Error,
Combined/ID/InPage
offset error

 1 Acknowledge, Block Type
Error, Checksum Error

 2 Acknowledge, Block Type
Error, Checksum Error,
Protection Error

Acknowledge, Block
Type Error, Checksum
Error

Acknowledge, Block
Type Error,
Checksum Error

 3 Acknowledge, Block Type
Error, Checksum Error

 4 Acknowledge, Block Type
Error, Checksum Error,
Protection Error

 TLE986x BF BootROM
FastLIN and UART BSL Mode

User Manual 27 Rev. 1.5, 2020-09-25

The responses are defined in Table 4-4, which lists the possible reasons and/or
implications for error and suggests the possible corrective actions that the host can take
upon notification of the error.

 6 Acknowledge, Block Type
Error, Checksum Error,
Protection Error

 A Acknowledge, Block Type
Error, Checksum Error,
Protection Error

Table 4-4 Definitions of responses
Response Value Description

Block
Type

BSL
Mode

Reasons / Implications Corrective
Action

Acknow-
ledge

55H Head
er

1, 3 The requested operation will
be performed once the
response is sent.

 A The requested operation has
been performed and was
successful. Requested data
transmission follows.

 6 The requested operation has
been performed and was
successful.

 EOT 0, 2, 4

All other
combinations

Reception of the block was
successful. Ready to receive
the next block.

Block Type
Error

FFH Head
er

2, 4, A Start Address in Mode Data is
not within NVM address
range or invalid 100TP Page.

Retransmit a valid
header block.

All other
combinations

Either the Block Type is
undefined or option is invalid
or the flow is invalid.

Retransmit a valid
block

Checksum
Error

FEH All
combinations

There is a mismatch between
the calculated and the
received Checksum.

Retransmit a valid
block

Table 4-3 Possible responses for various block types (cont’d)
Mode Header block Data block EOT block

 TLE986x BF BootROM
FastLIN and UART BSL Mode

User Manual 28 Rev. 1.5, 2020-09-25

4.4.1.4 Block response delay
As described in Section 4.4.1.3, after receiving any block the microcontroller
communicates to the host whether the block was successfully received by sending out
a response code. If a block is received correctly, an Acknowledge Code (55H) is sent. In
case of failure, an error code is returned.
The response is transmitted with a delay that depends on the selected mode and on the
type of the block received.
The following Table 4-5 reports the maximum response delay for each mode and block
type.

Protection
Error

FDH Head
er

0, 2,
4, 6, A

Protection against external
access enabled, i.e. user-
password is valid.

Disable protection

Combined
Offset
Error Code

FBH EOT 0 The operation is targeting
100-TP page 1 and there is at
least 1 Byte with a not in page
offset and 1 byte pointing to
the Customer_ID reserved
region.

Check the Byte
offset.

ID Offset
Error Code

FAH EOT 0 The operation is targeting
100-TP page 1 and there is at
least 1 Byte pointing to the
Customer_ID reserved
region.

Check the Byte
offset.

Combined
Offset
Error Code

F9H EOT 0 There is at least 1 Byte with a
not in page offset.

Check the Byte
offset.

Table 4-4 Definitions of responses (cont’d)
Response Value Description

Block
Type

BSL
Mode

Reasons / Implications Corrective
Action

 TLE986x BF BootROM
FastLIN and UART BSL Mode

User Manual 29 Rev. 1.5, 2020-09-25

Table 4-5 Maximum Response Delay

Max Response Delay Table
Block Type

Mode Option Description Header Data EoT

Mode 0 0x00 Download Code/
Data to RAM

250 us 1 µs per Byte 1 µs per Byte

0xF0 Download data to
100TP pages

250 µs 1 µs per Byte 10 ms 1)

1) Time needed for data collection, OpenAB, erasing old data (if required) and programming the data given

Mode 1 -- RAM code
execution

250 µs -- --

Mode 2 -- Download Code/
Data to NVM

250 µs 10 ms 1) 10 ms 1)

Mode 3 -- NVM code
execution

250 µs -- --

Mode 4 0x00 NVM page erase 4.5 ms -- --
0x40 NVM sector erase 4.5 ms -- --
0xC0 NVM mass erase 4.5 ms per

sector
 -- --

Mode 6 -- NVM Protection set 10 ms 1) -- --
 -- NVM Protection

reset
4.5 ms + 4.5
ms per sector

 -- --

Mode A 0x00 Get Chip ID 250 µs -- --
0x10 NVM Page

Checksum Check
250 µs -- --

0x18 NVM Mass
checksum check

100 ms -- --

0x50 100TP page
Checksum Check

250 µs -- --

0xC0 NVM Page 250 µs -- --
0xF0 100TP page 250 µs -- --

 TLE986x BF BootROM
FastLIN and UART BSL Mode

User Manual 30 Rev. 1.5, 2020-09-25

4.4.2 UART BSL Modes
When the UART BSL routine enters Phase II, it first waits for an 8-byte long header block
from the host. The header block contains the information for the selection of the working
modes. Depending on this information, the UART BSL routine selects and activates the
desired working mode. If the microcontroller receives an incorrect header block, the
UART BSL routine sends, instead of an Acknowledge code, a Checksum or Block Type
Error code to the host and awaits the header block again. In this case the host may react
by re-sending the header block or by releasing a message to the user.

4.4.2.1 Header Block
The header block is always the first transfer block to be sent by the host during one data
communication process. It contains the working mode number and special information
on the related mode (referred to as “Mode Data”). The general structure of a header
block is shown below.

Description:
• Block Type 00H: The Block Type, which marks the block as a header block
• Mode: The mode to be selected. The implemented modes are covered in Section 4
• Mode Data: Five Bytes of special information, which are necessary to activate

corresponding working mode.
• Checksum: The checksum of the header block.

4.4.2.2 Mode 0 - Code/Data download to RAM/100TP
Mode 0 is used to transfer a user program or data from the host to the RAM of the
microcontroller via serial interface. Selecting the proper mode option, this mode can be
used to transfer data into the user configuration sector pages. In this case, user has to
transfer data to the RAM in accordance with the format reported in the Table 5-12 and
after EOT block has been received, data is automatically copied with proper offset in the
target page. If NVM protection is installed, programming to RAM is not allowed.
Different options supported are:
• Option 00H: RAM download
• Option F0H: RAM download and Configuration sector page programming
The header block for this working mode has the following structure:

Block Type
00H

(Header Block)
Mode

(1 byte)
Mode Data
(5 bytes)

Checksum
(1 byte)

Data Area

 TLE986x BF BootROM
FastLIN and UART BSL Mode

User Manual 31 Rev. 1.5, 2020-09-25

The header block for RAM download (Option = 00H)

Mode Data Description:
Start Addr High, Low: 16-bit Start Address, which determines where to copy the
received program codes into the RAM.
Block Length: The length (number of Bytes) of the following data blocks or EOT block.
Not Used: this Byte is not used and will be ignored.
Option: Set to 00H for RAM download.
Note: RAM Address provided as input in mode 0 has to be considered as an offset to be

added to the standard RAM starting address of the TLE986x.

In option 00H start address can be each valid RAM offset address. Data sent in the
following data/ EOT blocks will be copied into the RAM at the specified address
(18000000H + StartAddr).

The header block for RAM download and 100TP page programming (Option = F0H)

Mode Data Description:
Start Addr High, Low: 16-bit Start Address, which determines where to copy the
received data in the RAM.
Block Length: The length of the following data blocks or EOT block.
100TP Page: This Byte is used to select the desired 100TP page to be programmed.
This Byte is relevant only in case option F0H is used. The 100TP page is selected
according to the addressing scheme reported in Figure 5-8.
Option: Set to F0H for RAM download and 100TP page programming

00H
(Header
Block)

StartAddr
High

(1 byte)

Checksum
(1 byte)

Mode Data (5 bytes)
00H

(Mode 0) StartAddr
Low

(1 byte)

Block
Length
(1 byte)

Option
= 00H

(1 byte)

Not Used
(1 byte)

00H
(Header
Block)

StartAddr
High

(1 byte)

Checksum
(1 byte)

Mode Data (5 bytes)
00H

(Mode 0) StartAddr
Low

(1 byte)

Block
Length
(1 byte)

Option
(1 Byte)

100TP
Page

(1 byte)

 TLE986x BF BootROM
FastLIN and UART BSL Mode

User Manual 32 Rev. 1.5, 2020-09-25

Using this option, user can write data into the 100TP pages. In this case, data has to be
sent to the RAM according to the Table 5-12 and therefore start address has to be equal
to 18000400H. In case a different starting address is provided, the operation will result in
a Block Type Error indication. When this option is selected a proper 100TP page has to
be provided.

Note: RAM Address provided as input in mode 0 has to be considered as an offset to be
added to the standard RAM starting address of the TLE986x. So, for option F0H,
the Start Addr parameter has to be set to 0400H.

All other options will be treated as option 00H.
Note: The Block Length refers to the whole length (Block Type, data area and

checksum) of the following transfer block (data block or EOT block).

After successfully receiving the header block, the microcontroller enters mode 0, during
which the program codes are transmitted from the host to the microcontroller by data
block and EOT block, which are described as below.

The data block

Description:
Program Code: The program code has a length of ((Block Length) - 2) Byte, where the
Block Length is provided in the previous header block.

The EOT block

Description:
Last Codelength: This Byte indicates the length of the program code in this EOT block.
Program Code: The last program code to be sent to the microcontroller
Not used: The length is ((Block Length) - 3 - (Last Codelength)) Bytes.

01H
(Data
Block)

Checksum
(1 byte)

Program Code
(((Block Length) - 2) bytes)

Program Code
(Last Codelength

bytes)

Not Used
(((Block Length) – 3 – (Last

Codelength)) bytes)

Last
Codelength

(1 byte)

02H
(EOT
Block)

Checksum
(1 byte)

 TLE986x BF BootROM
FastLIN and UART BSL Mode

User Manual 33 Rev. 1.5, 2020-09-25

When trying to program 100TP page, some special error handling is provided.
In particular, in addition to the generic error code, the UART BSL Mode 0 option F0H may
return:
• BLOCKFAULT indication (FFH) in case of wrong config sector page selection
• INPAGEOFFSETFAULT indication (F9H) in case at least one byte has an offset >

7EH, i.e. has a not in page offset or is targeting the page counter (refer to Table 5-12).
In this case, the program for the valid Bytes is still performed.

• IDOFFSETFAULT indication (FAH) in case at least one byte is targeting the
Customer_ID reserved region when programming 100TP page 1. In this case, the
program for the valid Bytes is still performed.

• COMBOFFSETFAULT indication (FBH) in case at least one byte is targeting the
Customer_ID reserved region when programming 100TP page 1 and at least 1 Byte
has a not in page offset or is targeting the page counter. In this case, the program for
the valid Bytes is still performed.

4.4.2.3 Mode 1 - Code Execution inside RAM
Mode 1 is used to execute a user program in the RAM of the microcontroller at the
address pointed by the RAM location 18000404H. The header block for this working
mode has the following structure:

The header block

Mode Data Description:
Not used: The five Bytes are not used and will be ignored in mode 1.
In working mode 1, the header block is the only transfer block to be sent by the host, no
further serial communication is necessary. The microcontroller will exit the UART BSL
mode, set the vector table in RAM at address 18000400H and branch to the address
pointed by the standard reset handler (18000404H).

4.4.2.4 Mode 2 - Code/Data download to NVM
Mode 2 is used to transfer a user program from the host to the NVM of the microcontroller
via serial interface. This mode is not accessible if NVM protection is installed.
The header block for this working mode has the following structure:

00H
(Header
Block)

Checksum
(1 byte)

Mode Data (5 bytes)
01H

(Mode 1) Not Used

 TLE986x BF BootROM
FastLIN and UART BSL Mode

User Manual 34 Rev. 1.5, 2020-09-25

The header block

Mode Data Description:
Start Addr 4, 3, 2, and 1: 32-bit Start Address, which determines where to copy the
received program codes in the NVM. This address must be aligned to the page address
(Bit[6:0] = 0).
Block Length: The length of the following data blocks or EOT block. If data blocks are
to be sent, the block length has to be 130 (128+2) Bytes. If only EOT block is sent, the
block length has to be 131 (128+3) Bytes. Other block length values than 130 (data
block) or 131 (EOT block) are not allowed.
Note: If the data starts in a non-page address, PC host must fill up the beginning

vacancies with 00H and provide the start address of that page. For e.g., if data
starts in 11000F82H, the PC host will fill up the addresses 11000F80H and
11000F81H with 00H and provide the Start Address 11000F80H to
microcontroller. Moreover, if data is only 8 Bytes, the PC host will also fill up the
remaining addresses with 00H and transfer 128 data Bytes.The Block Length
refers to the whole length (Block Type, data area and Checksum) of the following
transfer block (data block or EOT block).

After successfully receiving the header block, the microcontroller enters mode 2, during
which the program codes are transmitted from the host to the microcontroller by data
block and EOT block, which are described as below.

The data block

Description:
Program Codes: The program codes have a length of ((Block Length) - 2) Bytes,
where Block Length is provided in the previous header block.

00H
(Header
Block)

StartAddr
4

(MSB)

Checksum
(1 byte)

Mode Data (5 bytes)
02H

(Mode 2) StartAddr
3

Block
Length
(1 byte)

StartAddr
2

StartAddr
1

(LSB)

01H
(Data
Block)

Checksum
(1 byte)

Program Codes
(((Block Length) - 2) bytes)

 TLE986x BF BootROM
FastLIN and UART BSL Mode

User Manual 35 Rev. 1.5, 2020-09-25

The EOT block

Description:
Last Codelength: This Byte indicates the number of program code bytes in this EOT
block.
Program Code: The last program code bytes to be sent to the microcontroller
Not used: The length is ((Block Length) - 3 - (Last Codelength)) Bytes.
The following Figures show examples of how to program one or several NVM pages
using working mode 2.

Last
Codelength

(1 byte)

02H
(EOT
Block)

Checksum
(1 byte)

Program Code
(Last Codelength

bytes)

Not Used
(((Block Length) – 3 – (Last

Codelength)) bytes)

 TLE986x BF BootROM
FastLIN and UART BSL Mode

User Manual 36 Rev. 1.5, 2020-09-25

Figure 4-2 Single NVM Page program via working mode 2

00H
(Header
Block)

11H
(StartAddr 4)

Checksum
(1 byte)

Mode Data (5 bytes)
02H

(Mode 2) 00H
(StartAddr 3)

83H
(Block Length)

00H
(StartAddr 2)

80H
(StartAddr 1)

80H
(Last

CodelEngth)

02H
(EOT
Block)

Checksum
(1 byte)

Program Code
(128 bytes)

Host TLE98xx

Wait for Ack : Max waiting time 250 µs

55H
(Ack)

Wait for Ack: Max waiting time 10 ms

55H
(Ack)

 TLE986x BF BootROM
FastLIN and UART BSL Mode

User Manual 37 Rev. 1.5, 2020-09-25

Figure 4-3 Multiple NVM Page program via working mode 2

00H
(Header
Block)

11H
(StartAddr 4)

Checksum
(1 byte)

Mode Data (5 bytes)
02H

(Mode 2) 00H
(StartAddr 3)

82H
(Block Length)

00H
(StartAddr 2)

80H
(StartAddr 1)

Host TLE98xx

Programming second, third and fourth page of the first Linear sector : NVM addresses 11000080H to 1100017FH

Wait for Ack : Max waiting time 250 µs

55H
(Ack)

Wait for Ack: Max waiting time 250 us

55H
(Ack)

01H
(Data
Block)

Checksum
(1 byte)

Program Codes for second page of first sector
(((Block Length) - 2) bytes) = 128 Bytes

Wait for Ack : Max waiting time 10 ms

55H
(Ack)

01H
(Data
Block)

Checksum
(1 byte)

Program Codes for third page of first sector
(((Block Length) - 2) bytes) = 128 Bytes

Wait for Ack : Max waiting time 10 ms

55H
(Ack)

01H
(Data
Block)

Checksum
(1 byte)

Program Codes for fourth page of first sector
(((Block Length) - 2) bytes) = 128 Bytes

Wait for Ack : Max waiting time 10 ms

55H
(Ack)

00H
(Last

CodelEngth)

02H
(EOT
Block)

Checksum
(1 byte)

Not Used Byte
(127 bytes)

 TLE986x BF BootROM
FastLIN and UART BSL Mode

User Manual 38 Rev. 1.5, 2020-09-25

4.4.2.5 Mode 3 - Code Execution inside NVM
Mode 3 is used to execute a user program in the NVM of the microcontroller at the
address pointed by the NVM location 11000004H. The header block for this working
mode has the following structure:

The header block

Mode Data Description:
Not used: The five Bytes are not used and will be ignored in mode 3.
In working mode 3, the header block is the only transfer block to be sent by the host, no
further serial communication is necessary. The microcontroller will exit the UART BSL
mode, set the vector table in NVM at the address 11000000H and jump to the address
pointed by the NVM location 11000004H.
Note: Jump to NVM will only occur when either (1) NVM is not protected and NVM

content at 11000004H is not FFH or (2) when NVM is protected. In all other cases,
firmware will put the device in sleep mode.

4.4.2.6 Mode 4 - NVM Erase
Mode 4 is used to erase different areas of the NVM. It supports mass erase of all the
NVM sectors, individual erase of the sectors for linear area or for non-linear area and
single page erase. This is determined by the Option Byte. This mode is not accessible if
the NVM protection is enabled.
Different options supported are:
• Option 00H : NVM page erase
• Option 40H : NVM sector erase
• Option C0H : NVM Mass erase

00H
(Header
Block)

Checksum
(1 byte)

Mode Data (5 bytes)
03H

(Mode 3) Not Used

 TLE986x BF BootROM
FastLIN and UART BSL Mode

User Manual 39 Rev. 1.5, 2020-09-25

The header block for NVM page erase (with Option = 00H)

Mode Data Description:
Start Addr High, Low: 32-bit Start Address, which determines which NVM page to be
erased. Address should be page aligned (Bit[6:0]=0).
Option: Set to 00H for page erase
When the Option Byte = 00H, this mode performs an erase of the NVM page specified
by the provided address.

The header block for NVM sector erase: (with Option = 40H)

Mode Data Description:
Start Addr High, Low: 32-bit Start Address, which determines which NVM sector to be
erased. Address should be sector aligned (Bit[11:0]=0).
Option: Set to 40H for sector erase
When the Option Byte = 40H, this mode performs an erase of the NVM sector specified
by the provided address. The time taken to erase a sector is max 4.5 ms.

The header block for NVM mass erase: (with Option = C0H)

Mode Data Description:
Not used: The four Bytes are not used and will be ignored in option C0H.

00H
(Header
Block)

StartAddr
4

(MSB)

Checksum
(1 byte)

Mode Data (5 bytes)
04H

(Mode 4) StartAddr
3

Option
=00H

(1 byte)

StartAddr
2

StartAddr
1

(LSB

00H
(Header
Block)

Checksum
(1 byte)

Mode Data (5 bytes)
04H

(Mode 4) Option
= 40H

(1 byte)

StartAddr
4

(MSB)

StartAddr
3

StartAddr
2

StartAddr
1

(LSB

00H
(Header
Block)

Checksum
(1 byte)

Mode Data (5 bytes)
04H

(Mode 4) Option
=C0H

(1 byte)

Not Used

(4 bytes)

 TLE986x BF BootROM
FastLIN and UART BSL Mode

User Manual 40 Rev. 1.5, 2020-09-25

Option: Set to C0H for mass erase
When the Option Byte = C0H, this mode performs a mass erase of all the NVM sectors.
The time taken will be max. 4.5 ms * number of sectors, as the erase operation is done
sequentially.

Note:

1. In mode 4, a Block Type Error will be sent, if an invalid option Byte is received. Once
password is set, no access to mode 4 is allowed and Protection Error will be sent.

2. NAC and NAD values will also be erased and the device will no longer be accessible
in UART BSL, because NAC is invalid and default NAC will be used.

4.4.2.7 Mode 6 - NVM Protection
Mode 6 is used to enable or disable the NVM Protection Mode by the given user-
password. The header block for this working mode has the following structure:

The header block

Mode Data Description
User-password: This Byte is given by user to enable or disable NVM protection mode.
Not used: The four Bytes are not used and will be ignored in mode 6.

In mode 6, the header block is the only transfer block to be sent by the host. If device is
unprotected, the provided user-password will be set as NVM_PASSWORD and
internally stored. No further commands will be accepted until a power up or hardware
reset. Afterwards, protection mode will be enabled.
However, if the NVM is already protected, the microcontroller will deactivate the
Protection and erase the NVM if the user-password Byte matches the stored
NVM_PASSWORD Byte. If MSB of the NVM_PASSWORD is 0, only NVM Linearly
mapped sectors are erased. If the Bit is 1, both NVM Linearly and Non-linearly mapped
regions are erased. No further commands will be accepted until a power up or hardware
reset. Afterwards, protection mode will be disabled.

00H
(Header
Block)

User-
password

(1 byte)

Checksum
(1 byte)

Mode Data (5 bytes)
06H

(Mode 6) Not Used

(4 bytes)

 TLE986x BF BootROM
FastLIN and UART BSL Mode

User Manual 41 Rev. 1.5, 2020-09-25

In case NVM is protected and the given user-password does not match the stored
NVM_PASSWORD, no actions will be triggered and a Protection Error (FDH) will be
returned instead of Acknowledge.
Note:

1. Password value has to be different from 00H and FFH. If NVM_PASSWORD is set to
either 00H or FFH on an unprotected device, the protection will not be set and a
protection error (FDH) will be returned.

2. When disabling NVM protection, together with NVM, the NAC and NAD values are
erased too. As a result, after next reset, default NAD will be used and chip waits
forever for the first FastLIN BSL frame.

4.4.2.8 Mode A - NVM Readout, Chip ID, Checksum, FastLIN BSL entry
command

Mode A is used to get 4 Bytes Chip ID data, NVM or 100TP page read, NVM or 100TP
page or NVM mass checksum check depending on the Option Byte value in the header
block.
In addition, the get Chip ID command is used as entry command for the FastLIN BSL
mode.
Different options are supported:
• Option 00H: Get 4 Bytes Chip ID
• Option 10H: NVM page checksum check
• Option 18H: Mass NVM checksum check
• Option 50H: 100TP page checksum check
• Option C0H: NVM page read
• Option F0H: 100TP page read

The header block for Get 4 Byte Chip ID (Option = 00H)

Table 4-6 Erase NVM during unprotection
NVM_PASSWORD Bit 7 Description
0 Only linearly mapped NVM is erased.
1 Both linearly and non-linearly mapped NVM are erased.

00H
(Header
Block)

Checksum
(1 byte)

Mode Data (5 bytes)
0AH

(Mode A) Not Used

(4 bytes)

Option
=00H

(1 byte)

 TLE986x BF BootROM
FastLIN and UART BSL Mode

User Manual 42 Rev. 1.5, 2020-09-25

Mode Data Description:
Not Used: These Bytes are not used and will be ignored for Option 00H.
Option: Set to 00H for Get 4 Byte Chip ID.
If this command is successfully received, microcontroller will return an Acknowledge
followed by 4 data Bytes and a single byte checksum. The order of the 4 Bytes of data
are SFR ID, CHIP_ID2, CHIP_ID1 and CHIP_ID0. Refer to Chapter 5.2.1 for CHIP_ID
definition.
Note: The checksum is calculated on the acknowledge and the 4 data bytes.

The header block for Get 4 Byte Chip ID as FastLIN entry (Option = 00H)
In order to avoid unwanted entries, the FastLIN connection is established only if this
command is successfully received during the active BSL connection window defined by
the NAC. This command must then be the first FastLIN BSL command to be sent by the
Host.

Mode Data Description:
NAD: Node Address for Diagnostic, specifies the address of the active slave node. See
Chapter 3.1.9.
BSL Entry Key: “BSL” in ASCII.
Option: Set to 00H for Get 4 Byte Chip ID.
If this command is successfully received, the microcontroller returns an Acknowledge
followed by 4 data Bytes and a single byte checksum. The order of the 4 Bytes of data
are SFR ID, CHIP_ID2, CHIP_ID1 and CHIP_ID0. Refer to Chapter 5.2.1 for CHIP_ID
definition.
On successful completion of the sequence, FastLIN BSL is fully entered and all other
commands can be executed.
Note: The checksum is calculated on the acknowledge and the 4 data bytes.

00H
(Header
Block)

Checksum
(1 byte)

Mode Data (5 bytes)
0AH

(Mode A) Option
=00H

(1 byte)

`L´
=4CH

(1 byte)

`S´
=53H

(1 byte)

´B`
=42H

(1 byte)

NAD
(1 byte)

BSL Entry Key

 TLE986x BF BootROM
FastLIN and UART BSL Mode

User Manual 43 Rev. 1.5, 2020-09-25

The header block for NVM page checksum check (Option = 10H)

Mode Data Description:
Start Addr High, Low: Address of the NVM page for checksum check. (Address should
be page aligned, Bit[6:0]=0).
Expected CHKSum High, Low: Expected checksum High/Low Byte.
Option: set to 10H to enable NVM page checksum check.
Note: The start address provided with the header block must be shifted by 7 bits to the

left and then added to the NVM start address to build the actual address, i.e. it is
calculated as follows in Mode A Option C0H: Actual address = 11000000H +
(StartAddrHigh << 15) + (StartAddrLow << 7).

This option will trigger a checksum calculation (16 bits inverted XOR, refer to
Chapter 4.4.3) over the whole page pointed by the address given in the header block
and the result will then be compared with the expected checksum (provided as well by
the user in the header frame). If the given address is a valid NVM address, the
microcontroller will return an Acknowledge followed by four data Bytes and a single byte
checksum. The Bytes are, in sequential order, pass/fail indication (00H if the calculated
and expected checksum match, 80H if they differ), calculated checksum High Byte,
calculated checksum Low Byte, and a final Byte equal to 00H.
Note: The checksum is calculated on the acknowledge and the 4 data bytes.

The input address should always be page aligned. In case it is not aligned, the address
will be internally changed to point to the beginning of the addressed page so that
checksum is always evaluated on a complete page.
In case the provided address is not a valid NVM address, the microcontroller will return
a Block Type Error (FFH) instead of an Acknowledge (55H) followed by no further Bytes.
Note: In case the address is pointing to an erased non linearly mapped page, the

address is considered invalid and a Block Type Error (FFH) is returned.

00H
(Header
Block)

StartAddr
High

(1 byte)

Checksum
(1 byte)

Data Area
0AH

(Mode A) StartAddr
Low

(1 byte)

Option
=10H

(1 byte)

Expected
CHKSum

High
(1 byte)

Expected
CHKSum

Low
(1 byte)

 TLE986x BF BootROM
FastLIN and UART BSL Mode

User Manual 44 Rev. 1.5, 2020-09-25

The header block for Mass checksum check (Option = 18H)

Mode Data Description:
Not Used: These Bytes are not used and will be ignored for Option 18H.
Expected CHKSum High, Low: Expected checksum High/Low Byte.
Option: set to 18H to enable mass checksum check.

This option will trigger a checksum calculation (16 bits inverted XOR, refer to
Chapter 4.4.3) over all the linearly mapped sectors (including erased pages and
sectors). The not linearly mapped sectors and 100TP pages are not included. The result
will then be compared with the expected checksum (provided by the user in the header
frame). The microcontroller will return an Acknowledge followed by four data Bytes and
a single byte checksum. The Bytes are, in sequential order, pass/fail indication (00H if
the calculated and expected checksum match, 80H if they differ), calculated checksum
High Byte, calculated checksum Low Byte, and a final Byte equal to 00H.
Note: The checksum is calculated on the acknowledge and the 4 data bytes.

The header block for 100TP page checksum check (Option = 50H)

Mode Data Description:
100TP Page: Selection of the 100TP Page to be checked (refer to Figure 5-8).
Not Used: This Byte is not used and will be ignored for Option 50H.
Expected CHKSum High, Low: Expected checksum High/Low Byte.
Option: set to 50H to enable 100TP page checksum check.

00H
(Header
Block)

Checksum
(1 byte)

Mode Data (5 bytes)
0AH

(Mode A) Option
=18H

(1 byte)

Expected
CHKSum

High
(1 byte)

Expected
CHKSum

Low
(1 byte)

Not Used
(1 byte)

Not Used
(1 byte)

00H
(Header
Block)

Checksum
(1 byte)

Data Area
0AH

(Mode A) Option
=50H

(1 byte)

Expected
CHKSum

High
(1 byte)

Expected
CHKSum

Low
(1 byte)

100TP
Page

(1 byte)

Not Used
(1 byte)

 TLE986x BF BootROM
FastLIN and UART BSL Mode

User Manual 45 Rev. 1.5, 2020-09-25

This option will trigger a checksum calculation (16 bits inverted XOR, refer to
Chapter 4.4.3) over the whole 100TP page pointed by the address given in the header
block and the result will then be compared with the expected checksum (provided as well
by the user in the header frame). The 100TP page address has to be in accordance with
the configuration sector address scheme described in the Figure 5-8. If the given
address is valid, the microcontroller will return an Acknowledge followed by four data
Bytes and a single byte checksum. The Bytes are, in sequential order, pass/fail
indication (00H if the calculated and expected checksum match, 80H if they differ),
calculated checksum High Byte, calculated checksum Low Byte, and a final Byte equal
to 00H.
In case the provided address is not valid, the microcontroller will return a Block Type
Error (FFH) instead of an Acknowledge (55H) followed by no further Bytes.
Note: The checksum is calculated on the acknowledge and the 4 data bytes.

The header block for NVM page read (Option C0H)

Mode Data Description:
Start Addr High, Low: Address of the NVM page to be read (Address should be page
aligned, Bit[6:0]=0).
Not Used: These Bytes are not used and will be ignored for Option C0H.
Option: set to C0H to enable NVM page read.
Note: The start address provided with the header block has to be shifted by 7 bits to the

left and then added to the NVM start address to build the actual address, i.e. it is
calculated as follows in Mode A Option C0H: Actual address = 11000000H +
(StartAddrHigh << 15) + (StartAddrLow << 7).

This option will trigger a read of the addressed NVM page. Microcontroller will return an
Acknowledge (55H) followed by the 128 NVM page data Bytes (starting from the least
significant Byte of the page).

00H
(Header
Block)

StartAddr
High

(1 byte)

Checksum
(1 byte)

Mode Data (5 bytes)
0AH

(Mode A) StartAddr
Low

(1 byte)

Option
=C0H

(1 byte)

Not Used
(1 byte)

Not Used
(1 byte)

 TLE986x BF BootROM
FastLIN and UART BSL Mode

User Manual 46 Rev. 1.5, 2020-09-25

The input address should always be aligned with a page. In case it is not aligned, the
address will be internally changed to point to the beginning of the addressed page so
that the page Bytes are always returned ordered from the least to the most significant
Byte.
In case the provided address is not a valid NVM address, the microcontroller will return
a Block Type Error (FFH) instead of an Acknowledge (55H) followed by no further Bytes.
To prevent user code to be read, this option is disabled if NVM is protected and only a
Protection Error Byte (FDH) will be returned.
Note: In case the address is pointing to an erased non linearly mapped page, the

address is considered invalid and a Block Type Error (FFH) is returned.

The header block for 100TP page read (Option = F0H)

Mode Data Description:
Not Used: These Bytes are not used and will be ignored for Option F0H.
100TP Page: Selection of the 100TP Page to be checked (refer to Figure 5-8).
Option: set to F0H to enable 100TP page read.

This option will trigger a read of the addressed 100TP page. Microcontroller will return
an Acknowledge (55H) followed by the 128 100TP page data Bytes (starting from the
least significant Byte of the page).
The 100TP page is selected by the CS Page Byte according to the scheme shown in
Figure 5-8.
In case an invalid 100TP page is selected the microcontroller will return a Block Type
Error (FFH) instead of an Acknowledge (55H) followed by no further Bytes.
To prevent user code to be read, this option is disabled if NVM is protected (NVM
password installed) and only a Protection Error Byte (FDH) will be returned.

All other values for option Byte
Block Type Error indication (FFH) is sent back.

00H
(Header
Block)

Checksum
(1 byte)

Mode Data (5 bytes)
0AH

(Mode A) Option
=F0H

(1 byte)

Not Used
(1 byte)

100TP
Page

(1 byte)

Not Used
(1 byte)

Not Used
(1 byte)

 TLE986x BF BootROM
FastLIN and UART BSL Mode

User Manual 47 Rev. 1.5, 2020-09-25

In mode A, the header block is the only transfer block to be sent by the host. The
microcontroller will return an Acknowledge followed by data Bytes if the header block is
received successfully. If an invalid option is received, the microcontroller will return a
Block Type Error indication (FFH) and no further Bytes.

4.4.3 16 bits inverted XOR checksum
This checksum structure is used in BSL Mode A options 10H, 18H, 50H as a fast data
integrity check. These modes will read the specified NVM range, calculate the checksum
and compare it against the expected one provided as command parameter.
To calculate this checksum, all Half-Words (16 bits) of the selected NVM region are
xored. The resulting value is then logically complemented (1´s complement).
The following figure shows the calculation algorithm.

Figure 4-4 16 bits inverted XOR checksum calculation

4.5 WDT1 refreshing
After a reset the WDT1 is starting with a long open window. WDT1 keeps on running
while waiting for first UART frame. In case during the UART BSL waiting time, defined
by NAC, a UART communication is detected, WTD1 is disabled and its status frozen.
Subsequently, before exiting to RAM or NVM in UART BSL modes 1 and 3 the watchdog
is re-enabled and starts from the previously frozen state. The WDT1 is then still in long
open window and the remaining valid time is equal to long open window minus the time
between reset release and first UART communication. User program needs to trigger the
WDT1 refresh accordingly.

Byte(0) Byte(n-2) Byte(n-1)Byte(1) Byte(2) Byte(3) Byte(4) Byte(5)

HalfWord(0) HalfWord(1) HalfWord(2) HalfWord((n-2)/2)

~(HW(0) xor HW(1) xor HW(2) xor -- xor HW((n-2)/2))

For a NVM page, n= 128 =>

~(HW(0) xor HW(1) xor HW(2) xor --- xor HW(63))

TLE986x BF BootROM
NVM

User Manual 48 Rev. 1.5, 2020-09-25

5 NVM
Non Volatile Memory (NVM) is the flash module of the TLE986x which partly supports
EEPROM emulation.

5.1 NVM overview
The NVM is a single block of NVM memory of up to 256 kBytes separated into Code and
Data space. The following table shows the NVM address range.

NSA and NEA values are shown in Table 5-2:

Note: An erased page is ECC-Clean and will not generate an ECC error.

Note: Reading an erased page in the Code space will return FFH and will not trigger any
error.

Note: Reading an erased page in the Data space will return 00H and will also create an
NVM Map Error NMI, if enabled in NMICON. As a consequence, an erased page
in the Data space has to be written before it can be read without triggering an error.

5.1.1 NVM organisation
The NVM has 2 types of memory configuration, Code and Data. It is organised in sectors.
Each NVM Sector is a block of 4 kBytes organised into blocks of 128 Bytes called Page.
The page is the minimum data granularity for NVM (code and data) write and erase so,
with this NVM structure, any NVM update, even when targeting only one byte, actually

Table 5-1 NVM address range
Address Address Range
NSA to NEA NVM memory

Table 5-2 NVM Size and Address Range
NVM Size
(kB)

NVM
Starting
Address
(NSA)

NVM Linear
Size, NVM
CFLASH Size
(NLS)

NVM
DFLASH
Starting
Address

NVM
DFLASH
Size

NVM DFLASH
End Address,
NVM FLASH
End Address
(NEA)

36 11000000H 8000H 11008000H 1000H 11008FFFH
64 11000000H F000H 1100F000H 1000H 1100FFFFH
128 11000000H 1F000H 1101F000H 1000H 1101FFFFH
256 11000000H 3F000H 1103F000H 1000H 1103FFFFH

TLE986x BF BootROM
NVM

User Manual 49 Rev. 1.5, 2020-09-25

involves 128 bytes. Table 5-3 shows the sector address organisation of the first and last
4 sectors of the 256 kBytes NVM. The other sector organization can be simply derived
per extension of the reported scheme. Table 5-4 shows the page address organisation
of NVM Sector 1 and it can be used as a reference for page organization of any NVM
Sector.

Table 5-3 NVM memory sector organisation
Address NVM Sector Number
11000000H to
11000FFFH

1

11001000H to
11001FFFH

2

11002000H to
11002FFFH

3

11003000H to
11003FFFH

4

1103C000H to
1103CFFFH

61

1103D000H to
1103DFFFH

62

1103E000H to
1103EFFFH

63

1103F000H to
1103FFFFH

64

Table 5-4 NVM memory sector 1 page organisation
Address Page Number of NVM Sector
11000000H to
1100007FH

0

11000080H to
110000FFH

1

11000100H to
1100017FH

2

11000180H to
110001FFH

3

11000200H to
1100027FH

4

TLE986x BF BootROM
NVM

User Manual 50 Rev. 1.5, 2020-09-25

11000280H to
110002FFH

5

11000300H to
1100037FH

6

11000380H to
110003FFH

7

11000400H to
1100047FH

8

11000480H to
110004FFH

9

11000500H to
1100057FH

10

11000580H to
110005FFH

11

11000600H to
1100067FH

12

11000680H to
110006FFH

13

11000700H to
1100077FH

14

11000780H to
110007FFH

15

11000800H to
1100087FH

16

11000880H to
110008FFH

17

11000900H to
1100097FH

18

11000980H to
110009FFH

19

11000A00H to
11000A7FH

20

11000A80H to
11000AFFH

21

Table 5-4 NVM memory sector 1 page organisation (cont’d)
Address Page Number of NVM Sector

TLE986x BF BootROM
NVM

User Manual 51 Rev. 1.5, 2020-09-25

5.2 NVM configuration sectors organisation
The configuration sector contains important user data needed for proper system
initialization.

5.2.1 Chip ID definition
The specific characteristics of the different variants of the product family are captured in
the definition of the CHIP_ID Bytes.
The Chip_ID bytes can be read via BSL mode A. When triggered, this mode replies
providing the 3 CHIP_ID Bytes plus the content of the Identification Register (ID).
Please refer to the following tables for CHIP_ID details. This is a variant specific
identification number. The unique device specific identification number is described in
Table 5-11.

11000B00H to
11000B7FH

22

11000B80H to
11000BFFH

23

11000C00H to
11000C7FH

24

11000C80H to
11000CFFH

25

11000D00H to
11000D7FH

26

11000D80H to
11000DFFH

27

11000E00H to
11000E7FH

28

11000E80H to
11000EFFH

29

11000F00H to
11000F7FH

30

11000F80H to
11000FFFH

31

Table 5-4 NVM memory sector 1 page organisation (cont’d)
Address Page Number of NVM Sector

TLE986x BF BootROM
NVM

User Manual 52 Rev. 1.5, 2020-09-25

Table 5-5 Chip ID Byte 0

 Res MAX_FREQ OP_AMP Phases DMA PKG Type

Table 5-6 Chip ID Byte 0 Bits Description
Field Bits Description
 PKG_Type [1:0] Package Type

00 VQFN-48
01 TQFP-48
10 Reserved
11 Reserved

 DMA 2 DMA
0 with DMA
1 without DMA

 Phases 3 Bridge driver number of phases
0 2 phases
1 3 phases

 OP_AMP 4 Op Amp
0 with Op Amp
1 without Op Amp

 Max Freq [6:5] Maximum Frequency
00 reserved
01 20 MHz
10 24MHz
11 40 MHz

 Res 7 Reserved

Table 5-7 Chip ID Byte 1

 NVM_SIZE

 EEPROM_SIZE

TLE986x BF BootROM
NVM

User Manual 53 Rev. 1.5, 2020-09-25

Table 5-8 Chip ID Byte 1 Bits Description
Field Bits Description
 EEPROM_SIZE [3:0] EEPROM (non-linearly mapped NVM) Size

0000 0 Kbyte
0001 4 Kbyte
0010 8 Kbyte
0011 12 Kbyte
0100 16 Kbyte
0101 20 Kbyte
0110 24 Kbyte
0111 28 Kbyte
1000 32 Kbyte
1001 36 kByte
1010 40 Kbyte
1011 44 Kbyte
1100 48 Kbyte
1101 52 Kbyte
1110 56 Kbyte
1111 60 Kbyte

 NVM_SIZE [7:4] total NVM Size
0000 Res
0001 256 Kbyte
0010 Res
0011 36 Kbyte
0100 Res
0101 Res
0110 Res
0111 64 Kbyte
1000 Res
1001 Res
1010 Res
1011 Res
1100 Res
1101 Res
1110 Res
1111 128 Kbyte

Table 5-9 Chip ID Byte 2

 Res VARIANT_ID

TLE986x BF BootROM
NVM

User Manual 54 Rev. 1.5, 2020-09-25

5.2.2 100 Time Programmable data
User has eight 100 time programmable pages. The first one is used to store user
configuration parameters for measurement interface and sense amplifier as well as
ADC1 calibration parameters. These parameters are usually determined in the user
application and might require several iterations before the best fit is found.
The values of the first page, from offset 10H to 63H, are automatically copied into the
dedicated SFR registers after every power on reset, brown out reset or wake-up reset
from sleep mode thus replacing the registers default reset values. The user can check
them by reading the dedicated SFRs or by reading directly the content of the page.
The first 4 Bytes of the first 100TP page are used to store a device ID that can be read
by the user. The content of these 4 bytes are preloaded prior to shipment and cannot be
modified by the user. In case the user tries to write these values via the 100TP page
writing features offered in BSL or via NVM user routine, an error is reported and the
original content of the bytes is preserved. The Customer_ID definition is described in
Figure 5-1.
The data stored in this first 100 time programmable page can be found in Table 5-11.
To read data stored in the 100TP pages, refer to Section 5.3.11.
To perform the programming of these pages, the user is required to preload the contents
to be programmed into the RAM as listed in Table 5-12. The offset entered for the
programming does not need to be in sequential order. Once a page has been
programmed 100 times, no further programming on that page is allowed. In the last Byte
of each 100TP page a program counter is stored (not changeable by user).
Since part of the data stored in the first 100TP page are used as trim or configuration
data at reset, the content is protected by an in-page checksum (XOR of the first 126
bytes of the page) stored at one before last byte of the page (in-page offset 7EH, refer to
Table 5-11). User is required to properly calculate and update the checksum when re-
programming the 100TP page 1.
Note: At power on reset, brown out reset or wake-up reset from sleep mode, the

firmware checks the checksum of the first 100TP page. In case the
checksum is not correct, The data stored from offset 10H to 63H are not
downloaded into the SFRs and backup values are used instead.

For further information regarding 100TP page program, refer to Section 5.3.12.

Table 5-10 Chip ID Byte 2 Bits Description
Field Bits Description
 VARIANT_ID [3:0] Variant ID
 Res [7:4] Reserved

TLE986x BF BootROM
NVM

User Manual 55 Rev. 1.5, 2020-09-25

Table 5-11 100-Time Programmable Page 1
Data
Offset

SFR / Variable
Name

Description Default
Value

Back-up
Value1)

00H to
03H

CUSTOMER_ID Device ID for user Device ID
dependent

N.A.

04H GAIN_VS_10B Calibration gain for supply
voltage measurement

Chip
Individual

N.A.

05H OFFSET_VS_10B Calibration offset for supply
voltage measurement

Chip
Individual

N.A.

06H GAIN_VBAT_SENS
E_10B

Calibration gain for battery
voltage measurement

Chip
Individual

N.A.

07H OFFSET_VBAT_SE
NSE_10B

Calibration offset for battery
voltage measurement

Chip
Individual

N.A.

08H GAIN_VMON_ATT_
1_5

Calibration gain for high
voltage monitoring input
voltage measurement

Chip
Individual

N.A.

09H OFFSET_VMON_A
TT_1_5

Calibration offset for high
voltage monitoring input
voltage measurement

Chip
Individual

N.A.

0AH CONFIG_VERS Configuration Sector version 02H N.A.
0BH Reserved Reserved 00H N.A.
0CH to
0DH

CFLASH_PW Linearly mapped region
protection removal password

0000H N.A.

0EH to
0FH

DFLASH_PW Non-Linearly mapped region
protection removal password

0000H N.A.

10H to
13H

MEAS_ADC2_CTRL
1

Measurement unit:
Control register 1

00000000
H

00000000
H

14H to
17H

MEAS_ADC2_CTRL
2

Measurement unit:
Control register 2

00000703
H

00000703
H

18H to
1BH

MEAS_ADC2_SQ1_
4

Channel controller:
Measurement channel
enable Bits of cycle 1 to 4

29362837
H

29362837
H

1CH to
1FH

MEAS_ADC2_SQ5_
8

Channel controller:
Measurement channel
enable Bits of cycle 5 to 8

28372836
H

28372836
H

TLE986x BF BootROM
NVM

User Manual 56 Rev. 1.5, 2020-09-25

20H to
23H

MEAS_ADC2_SQ9_
10

Channel controller:
Measurement channel
enable Bits of cycle 9 to 10

00002936
H

00002936
H

24H to
27H

ADC2_CAL_CH0_1 Calibration unit:
Calibration of channel 0 and
1

Chip
Individual

Chip
Individual

28H to
2BH

ADC2_CAL_CH2_3 Calibration unit:
Calibration of channel 2 and
3

Chip
Individual

Chip
Individual

2CH to
2FH

ADC2_CAL_CH4_5 Calibration unit:
Calibration of channel 4 and
5

Chip
Individual

Chip
Individual

30H to
33H

ADC2_FILTCOEFF0
_5

IIR filter:
Filter coefficients of ADC
channels 0 to 5

00000AAA
H

00000AAA
H

34H to
37H

ADC2_FILT_UP_CT
RL

Postprocessing:
Upper threshold filter enable

00000F3F
H

00000F3F
H

38H to
3BH

ADC2_FILT_LOW_
CTRL

Postprocessing:
Lower threshold filter enable

00000F3F
H

00000F3F
H

3CH to
3FH

ADC2_TH0_3_LOW
ER

Postprocessing:
Lower comparator trigger
level of channels 0 to 3

182F423A
H

182F423A
H

40H to
43H

ADC2_TH4_5_LOW
ER

Postprocessing:
Lower comparator trigger
level of channels 4 to 5

00009A00
H

00009A00
H

44H to
47H

ADC2_TH6_9_LOW
ER

Postprocessing:
Lower comparator trigger
level of channels 6 to 9

C6D39EC
DH

C6D39EC
DH

48H to
4BH

ADC2_TH0_3_UPP
ER

Postprocessing:
Upper comparator trigger
level of channels 0 to 3

ABBDC5C
0H

ABBDC5C
0H

4CH to
4FH

ADC2_TH4_5_UPP
ER

Postprocessing:
Upper comparator trigger
level of channels 4 to 5

0000BC00
H

0000BC00
H

Table 5-11 100-Time Programmable Page 1 (cont’d)
Data
Offset

SFR / Variable
Name

Description Default
Value

Back-up
Value1)

TLE986x BF BootROM
NVM

User Manual 57 Rev. 1.5, 2020-09-25

50H to
53H

ADC2_CNT0_3_LO
WER

Postprocessing:
Lower counter trigger level of
channels 0 to 3

12131312
H

12131312
H

54H to
57H

ADC2_CNT4_5_LO
WER

Postprocessing:
Lower counter trigger level of
channels 4 to 5

00000A0A
H

00000A0A
H

58H to
5BH

ADC2_CNT0_3_UP
PER

Postprocessing:
Upper counter trigger level of
channels 0 to 3

12131B1A
H

12131B1A
H

5CH to
5FH

ADC2_CNT4_5_UP
PER

Postprocessing:
Upper counter trigger level of
channels 4 to 5

00001212
H

00001212
H

60H to
63H

ADC2_MMODE0_5 Postprocessing:
Overvoltage measurement
mode of channels 0 to 5

00000000
H

00000000
H

64H to
6BH

Reserved Reserved 00H N.A.

6CH CHIP_ID_BYTE_00 Chip Id Byte 002) Chip
Individual

N.A.

6DH CHIP_ID_BYTE_01 Chip Id Byte 012) Chip
Individual

N.A.

6EH CHIP_ID_BYTE_02 Chip Id Byte 022) Chip
Individual

N.A.

6FH CHIP_ID_BYTE_03 Chip Id Byte 032) Chip
Individual

N.A.

70H CHIP_ID_BYTE_04 Chip Id Byte 042) Chip
Individual

N.A.

71H CHIP_ID_BYTE_05 Chip Id Byte 052) Chip
Individual

N.A.

72H CHIP_ID_BYTE_06 Chip Id Byte 062) Chip
Individual

N.A.

73H CHIP_ID_BYTE_07 Chip Id Byte 072) Chip
Individual

N.A.

Table 5-11 100-Time Programmable Page 1 (cont’d)
Data
Offset

SFR / Variable
Name

Description Default
Value

Back-up
Value1)

TLE986x BF BootROM
NVM

User Manual 58 Rev. 1.5, 2020-09-25

74H CHIP_ID_BYTE_08 Chip Id Byte 082) Chip
Individual

N.A.

75H CHIP_ID_BYTE_09 Chip Id Byte 092) Chip
Individual

N.A.

76H CHIP_ID_BYTE_10 Chip Id Byte 102) Chip
Individual

N.A.

77H CHIP_ID_BYTE_11 Chip Id Byte 112) Chip
Individual

N.A.

78H CS_SA_WITH_PRO
T_EN

When set to A5H, enables
Service Algorithm even on
protected NVM Data Sector.

00H N.A.

79H CS_USER_CAL_ST
ARTUP_EN

Enable Byte for user
calibration data download
during startup. If value=0xC3
then the download is enabled

00H N.A.

7AH CS_USER_CAL_XA
DDH

High Byte of the RAM
starting address where
downloaded data has to be
stored(0xF0 for RAM initial
address)

00H N.A.

7BH CS_USER_CAL_XA
DDL

LOW Byte of the RAM
starting address where
downloaded data has to be
stored(0x00 for RAM initial
address)

00H N.A.

7CH CS_USER_CAL_10
0TP_PAGE

100TP page where
calibration data has to be
downloaded from. By default
100TP page1 should be
used (Value=0x11)

00H N.A.

7DH CS_USER_CAL_NU
M

Number of Bytes to be
downloaded starting from the
first Byte of the selected
100TP page.

00H N.A.

Table 5-11 100-Time Programmable Page 1 (cont’d)
Data
Offset

SFR / Variable
Name

Description Default
Value

Back-up
Value1)

TLE986x BF BootROM
NVM

User Manual 59 Rev. 1.5, 2020-09-25

7EH CHECKSUM_100TP
_P1

XOR of the first 126 Bytes of
100TP page 1.

Chip
Individual

N.A.

7FH PROG_TIMES_100
TP_P1

This reflects the number of
times that this page has been
programmed. (Up to a
maximum of 100 times.)

00H N.A.

1) Values used during startup for analog module trimming in case a checksum error on 100TP page 1 is detected.
Refer to Chapter 3.1.5.

2) This is a unique device specific identification number. The variant specific identification number is described
in Chapter 5.2.1.

Table 5-12 RAM preloading for 100 Time Programmable page programming
RAM Address Function
18000400H Number of Bytes to be programmed (i.e. N, up to a

maximum of 1271) Bytes)

1) The maximum number of bytes that the user can load into the 100TP pages is limited to 127 since last byte is
used as a program operation counter. To ensure that the page are not programmed more than 100 times, even
not by accident, the counter byte (last byte in the page) can be read but not overwritten by the user.

18000401H 100TP offset 1
18000402H 100TP data 1 to be programmed
18000403H 100TP offset 2
18000404H 100TP data 2 to be programmed
.....
18000401H + ((N-1) x 2) 100TP offset N
18000402H + ((N-1) x 2) 100TP data N to be programmed

Table 5-11 100-Time Programmable Page 1 (cont’d)
Data
Offset

SFR / Variable
Name

Description Default
Value

Back-up
Value1)

TLE986x BF BootROM
NVM

User Manual 60 Rev. 1.5, 2020-09-25

Figure 5-1 Customer_ID definition

5.3 NVM user routines organisation
The NVM user routines are BootROM routines called by user and placed from the
address 0000383DH to 00003925H. The complete list of NVM user routines can be found
in Table 5-13.

Family Derivative Design step Reserved

Sales code Feature

Pack CLK

Major no. Minor no.

31 24 23 20 19 16 15 12 11 8 7 0

Family
 [Decimal values]

0: Reserved
1: 2-phase (TLE986x)
2: 3-phase (TLE987x)
Others: Reserved

Derivative – Sales code
[Decimal values]

0: TLE98x0
1: TLE98x1
2: TLE98x2
3: TLE98x3:
4: TLE98x4
5: TLE98x5
6: TLE98x6
7: TLE98x7
8: TLE98x8
9: TLE98x9
others: Reserved

Derivative – Feature – Pack.
[Decimal values]

0: VQFN48QX
1: TQFP48
Others: Reserved:

Derivative – Feature – CLK
[Decimal values]

0: 20 MHz
1: 24 MHz
2: 40 MHz
3: Reserved:

Design Step (Major)
 [Hex values]

A: Design Step A
B: Design Step B
Others: Reserved

Design Step (Minor)
 [Hex values]

A: Design Step A
B: Design Step B
C: Design Step C
D: Design Step D
E: Design Step E
F: Design Step F

TLE986x BF BootROM
NVM

User Manual 61 Rev. 1.5, 2020-09-25

Table 5-13 NVM user routines list
Address Routine Description
00003925H USER_CFLASH_WR_PROT_EN To enable write protection on

the linearly mapped NVM
sectors.

0000391DH USER_CFLASH_WR_PROT_DIS To disable write protection on
the linearly mapped NVM
sectors.

00003915H USER_CFLASH_RD_PROT_EN To enable read protection on the
linearly mapped NVM sectors.

0000390DH USER_CFLASH_RD_PROT_DIS To disable read protection on
the linearly mapped NVM
sectors.

00003905H USER_DFLASH_WR_PROT_EN To enable write protection on
the non linearly mapped NVM
sectors.

000038FDH USER_DFLASH_WR_PROT_DIS To disable write protection on
the non linearly mapped NVM
sectors.

000038F5H USER_DFLASH_RD_PROT_EN To enable read protection on the
non linearly mapped NVM
sectors.

000038EDH USER_DFLASH_RD_PROT_DIS To disable read protection on
the non linearly mapped NVM
sectors.

000038E5H USER_OPENAB To open the assembly buffer for
writing

000038DDH USER_PROG To program the NVM
000038D5H USER_ERASEPG To erase an NVM page
000038CDH USER_ABORTPROG To abort the NVM programming

by closing the assembly buffer
000038C5H USER_NVMRDY To access if the NVM is in ready

to read status
000038BDH USER_READ_CAL To read the NVM calibration

data.
000038B5H USER_NVM_CONFIG To read the NVM configuration

status

TLE986x BF BootROM
NVM

User Manual 62 Rev. 1.5, 2020-09-25

000038ADH USER_NVM_ECC2ADDR To read the NVM ECC2 address
0000389DH USER_MAPRAM_INIT To initialize MapRAM
00003895H USER_VERIFY_PAGE

1)
To perform a page verify

0000388DH USER_ERASE_SECTOR_VERIFY
1)

To perform a sector erase verify

00003885H USER_ERASEPG_VERIFY
1)

To perform a page erase verify

00003875H USER_READ_100TP To read the NVM 100TP
parameter data

0000386DH USER_100TP_PROG To perform the 100TP program.
(This can be used 100 times per
100TP page)

00003865H USER_ERASE_SECTOR To erase an NVM Sector
00003855H USER_NVMCLKFAC_SET To set NVMCLKFAC Bit in

SYSCON0
0000384DH USER_RAM_MBIST_START To perform a sequential

checkerboard and inverted
checkerboard test on the RAM.

00003845H USER_NVM_ECC_CHECK To trigger a complete NVM read
and provide cumulated ECC
single bit error indication.

0000383DH USER_ECC_CHECK To provide cumulated ECC
single bit error indication since
last call of the function.

1) This function is not available for variants with 256KB flash.

Table 5-14 NVM User Routines Maximum Stack Usage
Routine Maximum Stack Usage
USER_CFLASH_WR_PROT_EN 0000H
USER_CFLASH_WR_PROT_DIS 0000H
USER_CFLASH_RD_PROT_EN 0000H
USER_CFLASH_RD_PROT_DIS 0000H

Table 5-13 NVM user routines list (cont’d)
Address Routine Description

TLE986x BF BootROM
NVM

User Manual 63 Rev. 1.5, 2020-09-25

5.3.1 Opening assembly buffer routine
The NVM programming routine consists of two parts: The assembly buffer opening
routine, and the programming and verification routine.
The Open Assembly buffer routine reads the content of the physical page into a NVM
internal RAM memory block (Assembly Buffer). The address of the page to be read is
provided with the OpenAB function call. Once the OpenAB call has been executed

USER_DFLASH_WR_PROT_EN 0000H
USER_DFLASH_WR_PROT_DIS 0000H

USER_DFLASH_RD_PROT_EN 0000H
USER_DFLASH_RD_PROT_DIS 0000H
USER_OPENAB 0038H

USER_PROG 00B0H
USER_ERASEPG 0058H
USER_ABORTPROG 0010H

USER_NVMRDY 0000H
USER_READ_CAL 0030H
USER_NVM_CONFIG 000CH
USER_NVM_ECC2ADDR 000CH
USER_MAPRAM_INIT 0020H
USER_VERIFY_PAGE1) 004CH
USER_ERASE_SECTOR_VERIFY1) 0058H
USER_ERASEPG_VERIFY1) 0044H
USER_READ_100TP 0030H
USER_100TP_PROG 0084H
USER_ERASE_SECTOR 0030H
USER_NVMCLKFAC_SET 0008H
USER_RAM_MBIST_START 01D0H
USER_NVM_ECC_CHECK 0020H
USER_ECC_CHECK 0020H
1) This function is not available for variants with 256KB flash.

Table 5-14 NVM User Routines Maximum Stack Usage (cont’d)
Routine Maximum Stack Usage

TLE986x BF BootROM
NVM

User Manual 64 Rev. 1.5, 2020-09-25

successfully the user can update the content of the Assembly Buffer (128 bytes) by
(over)writing the data starting from the address handed over to the OpenAB function.
In case the provided address targets the NVM non-linearly mapped data region , before
copying the data, the OpenAB routine will check to which physical page the provided
address is linked and make the data of this physical page available in the Assembly
Buffer.
In order to prepare the data for the next program operation, the open assembly buffer
routine then accesses the data stored in the MapRAM and NVM array (Data Block and
MapBlock) related to the address provided as input. While accessing this data, the
routine performs a consistency check of the read information and reports a proper
warning or fail to the user by means of the bit 0, 1, 2 and 3 of the return values (Table 5-
16). The performed check and related warnings/errors depend on the region to which the
addressed page belongs, as described in Table 5-15:

Note: The assembly buffer opening routine needs to be executed successfully before
the NVM programming routine can be called.

Table 5-15 Open Assembly Buffer subroutine return value for ECC check
NVM Region ECC Fail in

MapRAM
ECC Fail in
MapBlock

ECC Fail in Data
Block

Code Region not applicable Not applicable bit 1 set, only
warning, AB is
opened

Data region bits 0 and 3 set.
Error, AB not
opened

bit 2 set, only
warning, AB is
opened

bit 1 set, only
warning, AB is
opened

Table 5-16 Opening assembly buffer subroutine
Subroutine 000038E5H: USER_OPENAB

Prototype:
unsigned char USER_OPENAB(int *Address)

TLE986x BF BootROM
NVM

User Manual 65 Rev. 1.5, 2020-09-25

The input address will be page aligned internally, bit[6:0] = don’t care. Once assembly
buffer is opened, user must either proceed with the standard program flow (refer to
Figure 0-4) or close the assembly buffer using the dedicated abort programming user
routine (refer to Chapter 5.3.8). All other sequences are not allowed and might lead to
loss of data. Please check the flow diagram in Figure 5-15, it depicts the usage of the
USER_OPENAB function.

Input *Address(int pointer): pointer to the NVM address to be
programmed.

Output Return value (unsigned char):
Bit 0: Pass or fail
 0 = Assembly Buffer is successfully opened
 1 = Assembly Buffer cannot be opened.
Bit 1: Data Block ECC Pass or fail
 0 = Data Block has no ECC2 fail
 1 = Data Block has at least one ECC2 fail
Bit 2: Map Block ECC Pass or fail
 0 = Map Block has no ECC2 fail
 1 = Map Block has at least one ECC2 fail
Bit 2 is used only for pages in Data sector
Bit 3: MapRAM ECC Pass or fail
 0 = MapRAM has no ECC2 fail
 1 = MapRAM has at least one ECC2 fail
Bit 3 is used only for pages in Data sector.
Bit 7: Execution Pass/Fail status
 0 = Pass: Routine was correctly executed.
 1 = Fail: Routine was not executed

Possible reasons of failure:
- Corrupted NVM data sector.
- The range of the address is protected.
- The range of the address is incorrect.

Possible reason for execution fail:
- Routine called as nested call during the execution of another
NVM routine (e.g. via RAM branching)
- Assembly Buffer is already opened.

Table 5-16 Opening assembly buffer subroutine (cont’d)

TLE986x BF BootROM
NVM

User Manual 66 Rev. 1.5, 2020-09-25

5.3.2 NVM programming routine
There are 2 types of programming available, Type 1 or Type 2 (Type 1 without or Type
2 with RAM background activity during NVM operation).
For Type 1 programming, the flow control is always kept by the BootROM NVM
programming routine. Consequently, no other operations can be run in parallel thus
avoiding making use of the NVM operation waiting time. In Type 2 programming, the
BootROM routine starts the write operation and then gives back control to the user
software by branching to the RAM address 18000400H. In this scenario, the user
software needs to reside in RAM because no access to the NVM is possible while
internal program sequence is on-going. The user software needs to hand back the
control to the NVM programming routine, which continues with polling the busy Bit.
A description of the BootROM programming routine is provided in the following Table 5-
17. More information on the support for background activity during NVM operation can
be found in Section 5.4.2.
The program operation is executed on the page selected by the previously called
USER_OPENAB. If the addressed page is already programmed, then an erase will be
applied as wel, see timing diagrams below. In case the target page belongs to the NVM
Data region, at the end of a successful program operation, the USER_PROG routine
properly updates the MapRAM information mapping the page just written and randomly
selects a proper spare page between the available (not written and not faulty) pages. In
case, for any reason, a valid spare page cannot be found, the routine returns a proper
error indication. In such case all data previously written, including the page just written
is still accessible (no data loss). Please check the flow diagram in Figure 5-15, it depicts
the usage of the USER_PROG function.

Timing diagrams
In the following the timing diagrams for various USER_PROG usecases are displayed.
The colored areas in the beginning and the end of a block represent the bootrom
preamble and postamble code (these are not timing accurate).

Figure 5-2 Programming an erased paged, applies to code flash as well as to
data flash

tPR t

write

verify

TLE986x BF BootROM
NVM

User Manual 67 Rev. 1.5, 2020-09-25

Figure 5-3 Programming an erased paged with enabled retry (corrective action
= 1), applies to code flash as well as to data flash

Figure 5-4 Programming an used paged, applies to code flash only

Figure 5-5 Programming an used paged with enabled retry (corrective action =
1), applies to code flash only

Figure 5-6 Programming an used paged, applies to data flash only

t

write

tPR

erase write

tER tPR

optional retry
Verify failed verify

t

erase write

tER tPR

verify

t

erase write

tER tPR

erase write

tER tPR

optional retry
Verify failed verify

t

erase oldwrite new

tPR tER

verify

TLE986x BF BootROM
NVM

User Manual 68 Rev. 1.5, 2020-09-25

Figure 5-7 Programming an used paged with enabled retry (corrective action =
1), applies to data flash only

Table 5-17 Programming subroutine
Subroutine 000038DDH: USER_PROG

Prototype:
unsigned char USER_PROG(char PROG_FLAG)

t

erase newwrite new

tPR tER

Verify failed

erase oldwrite new

verify

tPR tER

optional retry

TLE986x BF BootROM
NVM

User Manual 69 Rev. 1.5, 2020-09-25

Input PROG_FLAG (char): Byte for controlling the programing
routine.
Bit 0: RAM branching control bit

0 = RAM branching disabled
1 = RAM branching enabled

Bit 1: Corrective action (retry and disturb handling) control bit
0 = Corrective actions disabled
1 = Corrective actions enabled

Bit 2: Failing page erase control bit when addressing non
linearly mapped sector (refer to Chapter 5.4.4.2 for more
details)

0 = Failing page erase enabled. The programmed data are
erased in case of fail. If the page was already used, old
data are kept.

1 = Failing page erase disabled. Programmed data are not
erased in case of fail. If page was already used, old data
are not kept and the new failing data are accessible by
reading the target page.

Table 5-17 Programming subroutine (cont’d)

TLE986x BF BootROM
NVM

User Manual 70 Rev. 1.5, 2020-09-25

5.3.3 Page Verify Routine

Note: This function is not available for variants with 256KB flash.

This user routine performs a verify on the target page using the Hard Read Level Erased
and Hard Read Level Programmed (refer to Figure 5-10 for read level details). The
address of the target page is provided as input parameter.
In case the target page belongs to the linear code flash region, the routine performs the
check on the target page and returns the page status. The routine first reads the page at
standard read level and then compares the data read with the content read with Hard
Read levels. In case an ECC fail is found or data are not identical at all the three used

Output Return value (unsigned char):
Bit 0 Pass or Fail.This bit is the OR of the bits 4, 5, 6 and 7

0 = Programming completed successfully. No errors
occurred

1 = Programming failed. At least one error occurred
Bit 1-3: Reserved
Bit 4: Verify Pass/Fail
 0 = Pass: The verification of the programmed data passed
 1 = Fail: The verification of the programmed data failed
Bit 5: Emergency Operation Pass/Fail
 0 = Pass: The normal flow of the program operation has not

been interrupted by an emergency operation request.
 1 = Fail: The normal flow of the program operation has not

been completed due to a request of an emergency
operation

Bit 6: Spare page selection Pass/Fail (Valid only for operation
run on NVM Data pages)

 0 = Pass: A new random spare page has been properly
selected

 1 = Fail: The random spare page selection failed. No random
spare page selected

Bit 7: Execution Pass/Fail status
 0 = Pass: Routine execution could be properly started
 1 = Fail: Routine execution could not be properly started due

to missing required setting (Assembly Buffer not opened,
target region write protected, nested call execution)

Note: No NVM prog, erase or verify routine can be called until
this NVM operation is completed.

Table 5-17 Programming subroutine (cont’d)

TLE986x BF BootROM
NVM

User Manual 71 Rev. 1.5, 2020-09-25

read levels, a fail is returned (03H, 05H or 07H depending on which read level the verify
is failing).
In case the page belongs to the non-linearly mapped data flash, the routine first
accesses the MapRAM to check that the target page is mapped. In case no valid
mapping for the page is found (invalid physical page or ECC fail) a proper error is
reported (41H). If a valid mapping is found, the routine performs the page verify on the
related physical page and its status is returned.
The routine is not performed in case write protection is set on the target region. In this
case, an error (81H) is returned and the verify is not executed. In such case, the user is
required to (temporarily) disable write protection on the target region before calling the
routine.
The routine cannot be executed during any other NVM operation (it cannot be called as
nested call inside other NVM related user routines.)
Note: A fail returned by this function does not mean the page is no longer

readable, it means that at least some cells have reached the Hard Read
levels, a refresh of the page is recommended.

Table 5-18 Page verify subroutine
Subroutine 00003895H: USER_VERIFY_PAGE

Prototype:
unsigned char USER_VERIFY_PAGE(int NVMPageAddr)

TLE986x BF BootROM
NVM

User Manual 72 Rev. 1.5, 2020-09-25

5.3.4 NVM page erasing routine
Similarly, there are 2 types of erasing available, Type 1 or Type 2 (Type 1 without or Type
2 with RAM background activity during NVM operation). Details in the following table.
Please check the flow diagram in Figure 5-15, it depicts the usage of the
USER_ERASEPG function.

Input NVMPageAddr (int): NVM page address to be checked, page
aligned address

Output Return value (char):
Bit 0: Pass or Fail. It is the OR of the bits 1, 2, 6 and 7
 0 = Overall pass
 1 = Overall fail

Bit 1: Page verify on Hard Read Level Erased Pass or Fail.
 0 = Page verify on Hard Read Level Erased pass
 1 = Page verify on Hard Read Level Erased fail

Bit 2: Page verify on Hard Read Level Programmed Pass or
Fail.

 0 = Page verify on Hard Read Level Programmed pass
 1 = Page verify on Hard Read Level Programmed fail

Bit 3 to 5: Reserved

Bit 6: MapRAM check Pass or Fail (valid only when addressing
the DFLASH)
 0 = Pass: No MapRAM fail found
 1 = Fail: MapRAM fail found (Invalid page)

Bit 7: Execution Pass/Fail status
 0 = Pass: Routine execution could be properly started
 1 = Fail: Routine execution could not be properly started due

to missing required setting (e.g.: Opened Assembly
Buffer, nested call execution, invalid address, write
protection set)

Note: No NVM prog, erase or verify routine can be called until
this NVM operation is completed.

Table 5-18 Page verify subroutine (cont’d)

TLE986x BF BootROM
NVM

User Manual 73 Rev. 1.5, 2020-09-25

The input NVMPageAddr should be page aligned, with bits[6:0] = 0.

Table 5-19 Page erasing subroutine
Subroutine 000038D5H: USER_ERASEPG

Prototype:
unsigned char USER_ERASEPG(int *NVMPageAddr, char
RAM_RTNE_BRNCHNG)

Input *NVMPageAddr (int pointer): pointer to the NVM address
(page aligned) to be erased
RAM_RTNE_BRNCHNG (char): To enable or disable
background execution from RAM.
Bit 0: RAM branching control bit
 0 = RAM branching disabled
 1 = RAM branching enabled

Output Return value (unsigned char):
Bit 0: Pass or Fail
 0 = Erasing completed successfully.
 1 = Erasing failed.

Bit 3: MapRAM ECC Pass or fail
 0 = MapRAM has no ECC2 fail
 1 = MapRAM has at least one ECC2 fail
Bit 3 is used only for pages in Data sector.
Bit 3 is set together with bit 0 and erase is not performed.

Bit 7: Execution Pass/Fail status
 0 = Pass: Routine was correctly executed.
 1 = Fail: Routine was not executed

Possible reasons of failure:
- The range of the address is incorrect.
- This is a protected range.

Possible reason for execution fail:
- Routine called as nested call during the execution of another

NVM routine (e.g. via RAM branching)

Note: No NVM prog, erase or verify routine can be called until
this NVM operation is completed.

TLE986x BF BootROM
NVM

User Manual 74 Rev. 1.5, 2020-09-25

5.3.5 Erase Page Verify Routine

Note: This function is not available for variants with 256KB flash.

This user routine performs an erase verify on the target page using the Hard Read Level
Erased (refer to Figure 5-10 for read level details). The address of the target page is
provided as input parameter.
In case the target page belongs to the linear code flash region, the routine performs the
check on the target page and returns the page status.
In case the page belongs to the non-linearly mapped data flash, the check is performed
on the spare page regardless of the page address provided as input. In particular, the
routine first accesses the MapRAM to check that a valid spare page link is present in the
MapRAM (no ECC fail and valid link to an existing physical page). In case no valid spare
page link is found, a proper error is reported (41H). In that case the user shall try to
rebuild valid mapping info by calling the USER_MAPRAM_INIT routine. If a valid spare
page selection is found, the routine performs an erase page verify on the physical page
selected as spare page and its status is returned.
The routine is not performed in case write protection is set on the target region. In this
case, an error (81H) is returned and the verify is not executed. In such case, the user is
required to (temporarily) disable the write protection on the target region before calling
the routine.
The routine cannot be executed during any other NVM operation (it cannot be called as
nested call inside other NVM related user routines.)
Note: A fail returned by this function does not mean the page is no longer usable,

it means that at least some cells have reached the Hard Read levels. In case
of lineare code flash retry the page erase, in case of mapped data flash rerun
USER_MAPRAM_INIT1).

1) USER_MAPRAM_INIT selects a new erased spare page. With the next restart of the device the Service
Algorithm will attempt to erase the affected page again.

Table 5-20 Erase page verify subroutine
Subroutine 00003885H: USER_ERASEPG_VERIFY

Prototype:
unsigned char USER_ERASEPG_VERIFY(int NVMPageAddr)

TLE986x BF BootROM
NVM

User Manual 75 Rev. 1.5, 2020-09-25

5.3.6 Sector Erasing Routine
This routine is used to perform an erase of a NVM data sector.

Input NVMPageAddr (int): NVM page address to be checked, page
aligned address

Output Return value (char):
Bit 0: Pass or Fail. It is the OR of the bits 1, 6 and 7
 0 = Overall pass
 1 = Overall fail

Bit 1: Erase verify on Hard Read Level Erased Pass or Fail.
 0 = Erase page verify pass
 1 = Erase page verify fail

Bit 2 to 5: Reserved

Bit 6: MapRAM check Pass or Fail (valid only when addressing
the DFLASH)
 0 = Pass: No MapRAM fail found
 1 = Fail: MapRAM fail found (Invalid spare page)

Bit 7: Execution Pass/Fail status
 0 = Pass: Routine execution could be properly started
 1 = Fail: Routine execution could not be properly started due

to missing required setting (e.g.: Opened Assembly
Buffer, nested call execution, invalid address, write
protection set)

Note: No NVM prog, erase or verify routine can be called until
this NVM operation is completed.

Table 5-21 Sector Erasing Subroutine
Subroutine 00003865H: USER_ERASE_SECTOR

Prototype:
unsigned char USER_ERASE_SECTOR(unsigned int
sectorAddress)

Table 5-20 Erase page verify subroutine (cont’d)

TLE986x BF BootROM
NVM

User Manual 76 Rev. 1.5, 2020-09-25

The input value sectorAddress should be sector aligned, with the bits[11:0] = 0.

5.3.7 Erase Sector Verify Routine

Note: This function is not available for variants with 256KB flash.

This user routine performs an erase verify on the target sector using the Hard Read Level
Erased (refer to Figure 5-10 for read level details). The address of the target sector is
provided as input parameter.
The routine accepts a 32 bit address as input parameter. Since the routine works on a
sector base, the last 12 bits of the provided address are not relevant and ignored.
In case the target sector belongs to the linear code flash region, the routine performs the
check on the target sector and returns the sector status. The check is performed
sequentially on all the pages of the sector one by one.
In case the target sector is the non-linearly mapped data flash, the routine performs a
dedicated consistency check of the MapRAM. In case a invalid spare page mapping is
found (not linked to any physical page) or any logical page is mapped or in case any
MapRAM entry has a ECC fail a proper error is reported (41H). In that case the user shall
try to rebuild valid mapping info by calling the USER_MAPRAM_INIT routine. If no issue
in the MapRAM is found, the routine performs an erase sector verify on all the physical
pages of the sectors and the sector status is returned.
The routine is not performed in case write protection is set on the target region. In this
case, an error (81H) is returned and the verify is not executed. In such case, the user is

Input SectorAddress (unsigned int): NVM Sector address
Output Returned value (unsigned char):

Bit 0: Pass or Fail
 0 = Erasing completed successfully.
 1 = Erasing failed.
Bit 7: Execution Pass/Fail status
 0 = Pass: Routine was correctly executed.
 1 = Fail: Routine was not executed

Possible reason for execution fail:
- Routine called as nested call during the execution of another

NVM routine (e.g. via RAM branching)

Note: No NVM prog, erase or verify routine can be called until
this NVM operation is completed.

Table 5-21 Sector Erasing Subroutine

TLE986x BF BootROM
NVM

User Manual 77 Rev. 1.5, 2020-09-25

required to (temporarily) disable write protection on the target region before calling the
routine.
The routine cannot be executed during any other NVM operation (it cannot be called as
nested call inside other NVM related user routines.)
Note: A fail returned by this function does not mean the sector is no longer usable,

it means that at least some cells in at least one page have reached the Hard
Read levels, it is recommended to perform a sector erase again.

Table 5-22 Erase sector verify subroutine
Subroutine 0000388DH: USER_ERASE_SECTOR_VERIFY

Prototype:
unsigned char USER_ERASE_SECTOR_VERIFY(int
NVMSectorAddr)

Input NVMSectorAddr (int): NVM Sector address to be checked,
sector aligned address

Output Return value (unsigned char):
Bit 0: Pass or Fail. It is the OR of the bits 1, 6 and 7
 0 = Overall pass
 1 = Overall fail

Bit 1: Erase verify on Hard Read Level Erased Pass or Fail.
 0 = Erase verify for all pages of the target sector passes
 1 = Erase page verify for at least one page of the sector fails

Bit 2 to 5: Reserved

Bit 6: MapRAM check Pass or Fail (valid only when addressing
the DFLASH)
 0 = Pass: No MapRAM fail found
 1 = Fail: MapRAM fail found (Invalid spare page, mapped

pages, ECC mapRAM fail)

Bit 7: Execution Pass/Fail status
 0 = Pass: Routine execution could be properly started
 1 = Fail: Routine execution could not be properly started due

to missing required setting (e.g.: Opened Assembly
Buffer, nested call execution, invalid address, write
protection set)

Note: No NVM prog, erase or verify routine can be called until
this NVM operation is completed.

TLE986x BF BootROM
NVM

User Manual 78 Rev. 1.5, 2020-09-25

5.3.8 Abort NVM programming routine
This user routine aborts the NVM programming by closing an opened assembly buffer.
Please check the flow diagram in Figure 5-15, it depicts the usage of the
USER_ABORTPROG function.

5.3.9 MapRAM initialization
This routine is meant to be used to re-initialize the MapRAM of the DFLASH sector.
The routine performs a complete MapRAM initialization by triggering a dedicated
function of the NVM internal Finite State Machine. When triggered, the state machine
resets the whole MapRAM and rebuilds information by reading the current logical to
physical address information stored directly in the NVM data sector. In case of mapping
errors (double or multiple mapping or faulty pages) the initialization of the MapRAM is
stopped on the first error found and the routine is exited reporting a proper error
indication. In case of fail, the content of the MapRAM might be only partial and the
mapping information might be corrupted.
The routine can be used to try to restore a clean MapRAM status in case a MapRAM
error has been reported by the startup or by the program routine or in case some data
sector pages have been lost. In addition, this routine can be used to check whether the
mapped sector has a consistent status. Please check the flow diagram in Figure 5-15,
it depicts the usage of the USER_MAPRAM_INIT function.
Note: In case an NVM operation on the Data region is interrupted (e.g. due to reset

events), the mapped sector might have an inconsistent status depending on
the moment in which the interruption occurred. In case of power-on reset,
brown-out reset, pin reset or wake-up reset the system performs the
MapRAM initialisation during the following startup and triggers the Service

Table 5-23 Abort NVM programming subroutine
Subroutine 000038CDH: USER_ABORTPROG

Prototype:
bool USER_ABORTPROG(void)

Input --
Output Return value (bool): Pass or Fail

 0 = Abort successfully, assembly buffer closed.
 1 = Abort failed as programming already started.

Possible reason of failure:
- Programming already started.
- Routine called as nested call during the execution of another

NVM routine (e.g. via RAM branching)

TLE986x BF BootROM
NVM

User Manual 79 Rev. 1.5, 2020-09-25

Algorithm to try to repair mapping inconsistency, if required. In case of
software reset (e.g. issued during a RAM branching) or internal watchdog
reset, the following startup sequence performs a MapRAM initialization
without triggering the repair step in case of errors. The user shall then check
after every reset the status of the mapped region evaluating the information
reported on the MEMSTAT and SYS_STRTUP_STS registers. Refer to
Chapter 3.1.3 for MapRAM initialization flow for different reset types. If a
mapping error is found the user shall not try to program or erase any page
in the Data sector but shall try to trigger a new repair step by issuing a
proper reset or erasing the complete sector.

Table 5-24 MapRAM initialization subroutine
Subroutine 0000389DH: USER_MAPRAM_INIT

Prototype:
unsigned char USER_MAPRAM_INIT(void)

Input --
Output Return value (unsigned char):

Bit 0: Pass or Fail. It is the OR of the bits 5, 6 and 7
 0 = MapRAM initialization pass
 1 = MapRAM initialization fail
Bit 1 to 4: Reserved

Bit 5: Double mapping
 0 = Pass: No double mapping found
 1 = Fail: The initialization failed due to double mapping

Bit 6: Faulty page
 0 = Pass: No faulty pages found
 1 = Fail: The initialization failed due to faulty page

Bit 7: Execution Pass/Fail status
 0 = Pass: Routine execution could be properly started
 1 = Fail: Routine execution could not be properly started due

to missing required setting (e.g.: Opened Assembly
Buffer, nested call execution)

Note: No NVM prog, erase or verify routine can be called until
this NVM operation is completed.

TLE986x BF BootROM
NVM

User Manual 80 Rev. 1.5, 2020-09-25

5.3.10 Read NVM status routine
This user routine checks for the NVM status.

5.3.11 Read 100 Time Programmable parameter data routine
This routine reads the 100TP page content. For the 100TP page 1, the data offset range
is listed in Table 5-11. Details in the following table.

Table 5-25 Read NVM status subroutine
Subroutine 000038C5H: USER_NVMRDY

Prototype:
bool USER_NVMRDY(void)

Input --
Output Return value (bool): Pass or Fail

0 = NVM is not busy.
1 = NVM is busy now.

TLE986x BF BootROM
NVM

User Manual 81 Rev. 1.5, 2020-09-25

Figure 5-8 User configuration sector pages address Byte description

5.3.12 Program 100 Time Programmable routine
This routine programs data into the 100TP pages. The 100TP content to be programmed
has to be preloaded into the RAM. The details can be found in Section 5.2.2.

Table 5-26 Read 100 Time Programmable subroutine
Subroutine 00003875H: USER_READ_100TP

Prototype:
bool USER_READ_100TP(char 100TP_Page_Sel, unsigned
char DataOffset, int *HundredTPData)

Input 100TP_Page_Sel (char): 100TP page selection Byte
(CS_Byte, refer to Figure 5-8)
DataOffset (unsigned char): Data Offset in page (00H to 7FH)

Output Returned value (bool): Pass or Fail
0 = Read is successful.
1 = Read is not successful due to invalid range selected.

HundredTPData (int pointer) = Pointer to the RAM location
where 100TP Data is saved

100TP_Byte
High nibble:

100TP
selection

100TP_Byte
Low nibble :

Page
selection

1

2

3

4

1

5

6

7

8

1

Reserved

100TP page 1

100TP page 2

100TP page 3

100TP page 4

Reserved

100TP page 5

100TP page 6

100TP page 7

100TP page 8

Reserved

TLE986x BF BootROM
NVM

User Manual 82 Rev. 1.5, 2020-09-25

Table 5-27 Program 100 Time Programmable subroutine
Subroutine 0000386DH: USER_100TP_PROG

Prototype:
unsigned char USER_100TP_PROG(char 100TP_Page_Sel)

Input 100TP_Page_Sel (char): 100TP page selection Byte
(CS_Byte, refer to Figure 5-8)
RAM preloaded with the 100TP data to be programmed.

Output Returned value (unsigned char):
Bit 0: Program operation pass or fail flag
 0 = Program completed successfully
 1 = Program failed.

Bit 1: In page offset error flag
 0 = All bytes have in page offset
 1 = At least one byte has a not in page offset.
Note: not in page bytes are not programmed and do not result
in a program error on bit 0.
Note: Counter position is already considered out of range

Bit 2: ID protected region fail flag
 0 = All bytes do not target the reserved Customer_ID region
 1 = At least 1 Byte targets the reserved Customer_ID region
Note: Bytes targeting the Customer_ID region are not
programmed and do not result in a program fail error on bit 0

Bit 7: Execution Pass/Fail status
 0 = Pass: Routine was correctly executed.
 1 = Fail: Routine was not executed

Possible reasons of failure:
- The NVM code area is protected against programming.
- The 100TP page is already programmed to a maximum of 100
times.

Possible reason for execution fail:
- Routine called as nested call during the execution of another
NVM routine (e.g. via RAM branching)

Note: No NVM prog, erase or verify routine can be called until
this NVM operation is completed.

TLE986x BF BootROM
NVM

User Manual 83 Rev. 1.5, 2020-09-25

5.3.13 NVM ECC check routines
The firmware provides 2 different routines to enable the user to check and monitor the
quality of the NVM cells upon shipment and/or over the lifetime of the device.
The first routine, USER_NVM_ECC_CHECK, provides an easy way for the user to
perform a quick check of the status of the whole NVM array. The routine performs a read
of the complete NVM returning the single and double bit ECC flags. This is meant to be
used as a quick check of the programming quality of the NVM Code region and the
mapped pages of the NVM Data region.

Note: The USER_NVM_ECC_CHECK routine performs a read of the entire NVM
code region and of all the non-erased (mapped) pages of the Data region. All
logical pages of the Data NVM region not yet programmed and consequently
not mapped are not checked since there is no link to a physical address. In
case the user needs to completely check the NVM Data region, a program of
all the logical pages of the sector has to be performed before calling the
USER_NVM_ECC_CHECK

Note: The USER_NVM_ECC_CHECK makes use of the RAM byte at 0x18000015.
Any data being stored there is overwritten.

Table 5-28 NVM ECC check subroutine
Subroutine 00003845H: USER_NVM_ECC_CHECK

Prototype:
unsigned char USER_NVM_ECC_CHECK(void)

Input --
Output Returned value (unsigned char): ECC error indication

Bit 0: ECC1READ
 0 = No single bit ECC error on the whole NVM read.
 1 = At least one single bit ECC error on the whole NVM read
Bit 1: ECC2READ
 0 = No double bit ECC error on the whole NVM read.
 1 = At least one double bit ECC error on the whole NVM read
Bit 7: Execution Pass/Fail status
 0 = Pass: Routine was correctly executed.
 1 = Fail: Routine was not executed

Possible reason for execution fail:
- Routine called as nested call during the execution of another

NVM routine (e.g. via test is running, no RAM access should
be attempted on the whole RAM. branching)

TLE986x BF BootROM
NVM

User Manual 84 Rev. 1.5, 2020-09-25

The second routine, USER_ECC_CHECK, provides a way to check whether during code
execution any ECC error occurred. With its return value the routine indicates if a single
or a double bit error ECC error flag was set since last power-off (incl. Sleep Mode) of the
device, last call of this routine or since last call of a user routine for NVM operation,
whatever happened last. This routine is meant to be used over device life time to monitor
the occurrence of ECC errors. In addition, in case of EEC2 error, the routine will provide
as an output the address of the last ECC2 error occurred.
The address is reported as an output in the RAM location passed as a pointer. The
returned value always provides the starting address of the 8 Byte section where the ECC
error happened.

Note: The ECC error flags, provided as output of the NVM ECC check routines, are a
copy of the ECC internal error flags registers. These registers are set when a read
access to the NVM results in a single and/or double bit error and are cleared only
in case of power-off (incl. Sleep Mode) or in the following cases:

1. When programming or erasing a NVM page.

Table 5-29 ECC check subroutine
Subroutine 0000383DH: USER_ECC_CHECK

Prototype:
unsigned char USER_ECC_CHECK(unsigned int *ECC2Addr)

Input ECC2Addr (unsigned int pointer): Pointer to the RAM location
where the last NVM address with ECC2 error shall be stored

Output Returned value (unsigned char): ECC error indication
Bit 0: ECC1READ
 0 = No single bit ECC error on the whole NVM read.
 1 = At least one single bit ECC error on the whole NVM read
Bit 1: ECC2READ
 0 = No double bit ECC error on the whole NVM read.
 1 = At least one double bit ECC error on the whole NVM read
Bit 7: Execution Pass/Fail status
 0 = Pass: Routine was correctly executed.
 1 = Fail: Routine was not executed

Possible reason for execution fail:
- Routine called as nested call during the execution of another

NVM routine (e.g. via test is running, no RAM access should
be attempted on the whole RAM. branching)

TLE986x BF BootROM
NVM

User Manual 85 Rev. 1.5, 2020-09-25

2. When calling the USER_NVM_ECC_CHECK routine before performing the
NVM complete read.

3. When calling the USER ECC check routine before returning to user code.

5.3.14 Read NVM ECC2 address routine
This routine returns the result of the last NVM address accessed resulting in a double
ECC error. Details in the following table.

The address reported as an output in the RAM location is passed as a pointer. The
returned value always provides the starting address of the 8 Byte section where the ECC
error happened.

5.3.15 RAM MBIST starting routine
This routine is used to perform a RAM test. A linear write/read algorithm using alternating
data is executed on a RAM range specified by the start and stop addresses given as
input parameters. When starting the MBIST test, standard RAM interface is disabled.

Table 5-30 Read NVM ECC2 address subroutine
Subroutine 000038ADH: USER_NVM_ECC2ADDR

Prototype:
unsigned char USER_NVM_ECC2ADDR(unsigned int
*ECC2Addr)

Input ECC2Addr (unsigned int pointer): Pointer to the RAM location
where the last NVM address with ECC2 error shall be stored

Output Returned Value (unsigned char):
Bit 0: Pass or Fail
 0 = ECC2Addr read out successful
 1 = ECC2Addr read out failed
Bit 4: ECC2 error detection
 0 = No NVM ECC2 detected
 1 = NVM ECC2 address detected
Bit 7: Execution Pass/Fail status
 0 = Pass: Routine was correctly executed.
 1 = Fail: Routine was not executed

Possible reason for execution fail:
- Null pointer passed to the routine, or invalid pointer, 0x81 is
returned
- Routine called as nested call during the execution of another

NVM routine (e.g. via RAM branching)

TLE986x BF BootROM
NVM

User Manual 86 Rev. 1.5, 2020-09-25

Therefore data stored into it will not be accessible and data stored in the memory range
under test will be cleared to zero. The standard interface will be re-enabled after
completion before the end of the routine execution.
Note: The start and stop address passed as parameter are offsets to be added to the

RAM start address (18000000H).

Note: The range of memory to be tested by this function is limited to the first 4KB
of the RAM.

Note: While test is running, no RAM access should be attempted on the whole
RAM.

5.3.16 NVM protection status change routines
These routines allow to enable or disable the read or write protection individually on the
NVM Code Sectors (Linearly mapped NVM sectors) and on the NVM Data Sectors (Not
linearly mapped NVM sectors).

Table 5-31 RAM MBIST start subroutine
Subroutine 0000384DH: USER_RAM_MBIST_START

Prototype:
unsigned char USER_RAM_MBIST_START(short
RAM_MBIST_Stop_Addr, short RAM_MBIST_Start_addr)

Input RAM_MBIST_Stop_Addr (short): RAM offset of the stop
address of RAM range to be tested
RAM_MBIST_Start_addr (short): RAM offset of the start
address of RAM range to be tested

Output Returned value (unsigned char): Pass or Fail
Bit 0: MBIST result, pass or fail
 0 = MBIST test pass
 1 = MBIST test fail
Bit 1: Address range fail
 0 = test routine pass (address range valid)
 1 = test routine fail (address range invalid)
Bit 7: Execution Pass/Fail status
 0 = Pass: Routine was correctly executed
 1 = Fail: Routine was not executed

Possible reason for execution fail:
- Routine called as nested during the execution of another NVM
routine (e.g. via RAM branching)

TLE986x BF BootROM
NVM

User Manual 87 Rev. 1.5, 2020-09-25

These routines control the protection status updating the value of the lower nibble of the
NVM_PROT_STS register. The status of the register will be anyhow restored according
to the NVM PASSWORD stored in the Configuration Sector at next reset. Please, refer
to User Manual for NVM_PROT_STS bits description.
Note: Each routine requires a password (16 bit) that shall be provided as an input to the

user routine call. The BootROM code will compare this password with the one
stored into the configuration sector 100TP page 1 (offset 0CH for the routines
addressing the linearly mapped region protection and offset 0EH for the routines
addressing the non linearly mapped region protection). Only in case the password
read out of the 100TP page 1 matches the password provided as input, the
requested protection status change is performed (refer to Table 5-11).

This routine sets the bit NVM_PROT_STS(1) to 0.

Table 5-32 NVM Code sectors (linearly mapped NVM sectors) write protection
enable subroutine

Subroutine 00003925H: USER_CFLASH_WR_PROT_EN
Prototype:
bool USER_CFLASH_WR_PROT_EN(unsigned short
CFLASH_PW)

Input CFLASH_PW(unsigned short): Password to be compared to
the one stored in the 100TP page 1 (offset 0CH)

Output Returned value (bool): Pass or Fail
0 = Operation completed successfully.
1 = Operation failed. (Password does not match)

Table 5-33 NVM Code sectors (linearly mapped NVM sectors) write protection
disable subroutine

Subroutine 0000391DH: USER_CFLASH_WR_PROT_DIS
Prototype:
bool USER_CFLASH_WR_PROT_DIS(unsigned short
CFLASH_PW)

TLE986x BF BootROM
NVM

User Manual 88 Rev. 1.5, 2020-09-25

This routine sets the bit NVM_PROT_STS(1) to 1.

This routine sets the bit NVM_PROT_STS(3) to 0.

Input CFLASH_PW(unsigned short): Password to be compared to
the one stored in the 100TP page 1 (offset 0CH)

Output Returned value (bool): Pass or Fail
0 = Operation completed successfully.
1 = Operation failed. (Password does not match)

Table 5-34 NVM Code sectors (linearly mapped NVM sectors) read protection
enable subroutine

Subroutine 00003915H: USER_CFLASH_RD_PROT_EN
Prototype:
bool USER_CFLASH_RD_PROT_EN(unsigned short
CFLASH_PW)

Input CFLASH_PW(unsigned short): Password to be compared to
the one stored in the 100TP page 1 (offset 0CH)

Output Returned value (bool): Pass or Fail
0 = Operation completed successfully.
1 = Operation failed. (Password does not match)

Table 5-35 NVM Code sectors (linearly mapped NVM sectors) read protection
disable subroutine

Subroutine 0000390DH: USER_CFLASH_RD_PROT_DIS
Prototype:
bool USER_CFLASH_RD_PROT_DIS(unsigned short
CFLASH_PW)

Table 5-33 NVM Code sectors (linearly mapped NVM sectors) write protection
disable subroutine (cont’d)

TLE986x BF BootROM
NVM

User Manual 89 Rev. 1.5, 2020-09-25

This routine sets the bit NVM_PROT_STS(3) to 1.

This routine sets the bit NVM_PROT_STS(0) to 0.

Input CFLASH_PW(unsigned short): Password to be compared to
the one stored in the 100TP page 1 (offset 0CH)

Output Returned value (bool): Pass or Fail
0 = Operation completed successfully.
1 = Operation failed. (Password does not match)

Table 5-36 NVM Data sectors (not linearly mapped NVM sectors) write
protection enable subroutine

Subroutine 00003905H: USER_DFLASH_WR_PROT_EN
Prototype:
bool USER_DFLASH_WR_PROT_EN(unsigned short
DFLASH_PW)

Input DFLASH_PW(unsigned short): Password to be compared to
the one stored in the 100TP page 1 (offset 0EH)

Output Returned value (bool): Pass or Fail
0 = Operation completed successfully.
1 = Operation failed. (Password does not match)

Table 5-37 NVM Data sectors (not linearly mapped NVM sectors) write
protection disable subroutine

Subroutine 000038FDH: USER_DFLASH_WR_PROT_DIS
Prototype:
bool USER_DFLASH_WR_PROT_DIS(unsigned short
DFLASH_PW)

Table 5-35 NVM Code sectors (linearly mapped NVM sectors) read protection
disable subroutine (cont’d)

TLE986x BF BootROM
NVM

User Manual 90 Rev. 1.5, 2020-09-25

This routine sets the bit NVM_PROT_STS(0) to 1.

This routine sets the bit NVM_PROT_STS(2) to 0.

Input DFLASH_PW(unsigned short): Password to be compared to
the one stored in the 100TP page 1 (offset 0EH)

Output Returned value (bool): Pass or Fail
0 = Operation completed successfully.
1 = Operation failed. (Password does not match)

Table 5-38 NVM Data sectors (not linearly mapped NVM sectors) read protection
enable subroutine

Subroutine 000038F5H: USER_DFLASH_RD_PROT_EN
Prototype:
bool USER_DFLASH_RD_PROT_EN(unsigned short
DFLASH_PW)

Input DFLASH_PW(unsigned short): Password to be compared to
the one stored in the 100TP page 1 (offset 0EH)

Output Returned value (bool): Pass or Fail
0 = Operation completed successfully.
1 = Operation failed. (Password does not match)

Table 5-39 NVM Data sectors (not linearly mapped NVM sectors) read protection
disable subroutine

Subroutine 000038EDH: USER_DFLASH_RD_PROT_DIS
Prototype:
bool USER_DFLASH_RD_PROT_DIS(unsigned short
DFLASH_PW)

Table 5-37 NVM Data sectors (not linearly mapped NVM sectors) write
protection disable subroutine (cont’d)

TLE986x BF BootROM
NVM

User Manual 91 Rev. 1.5, 2020-09-25

This routine sets the bit NVM_PROT_STS(2) to 1.

For the NVM protection mechanism, user configuration sector pages (100TP) are
considered being part of the NVM code area.
Read protection does not block code fetching.
Note: Copying code from NVM to RAM requires a normal NVM read execution and so is

blocked in case NVM Read Protection is enabled.

Read protection is meant to protect user application code from hacking. Hence, even if
read protection is enabled on Code region, Data regions or both, the code executed from
Code NVM region can always read both NVM Code and Data regions. Please, refer to
the User Manual for more information about read and write protection mechanism.

5.3.17 Read NVM config status routine
This routine reads the NVM Configuration Status. Details in the following table.

Input DFLASH_PW(unsigned short): Password to be compared to
the one stored in the 100TP page 1 (offset 0EH)

Output Returned value (bool): Pass or Fail
0 = Operation completed successfully.
1 = Operation failed. (Password does not match)

Table 5-40 Read NVM config status subroutine
Subroutine 000038B5H: USER_NVM_CONFIG

Prototype:
bool USER_NVM_CONFIG(char *NVMSize, char
*MapRAMSize)

Table 5-39 NVM Data sectors (not linearly mapped NVM sectors) read protection
disable subroutine (cont’d)

TLE986x BF BootROM
NVM

User Manual 92 Rev. 1.5, 2020-09-25

5.3.18 Read user calibration data
All data stored in the 100TP pages can be downloaded into the RAM using this routine.
In particular, this routine has been developed to help user in downloading the ADC1
calibration parameters stored at the beginning of 100TP page 1 (See Table 5-11) to an
easily accessible data space (RAM). To download the data, the user needs to provide
the 100TP page where data has to be read from, number of Bytes to be copied, and the
RAM address where data has to be copied to. The routine will copy the specified number
of Bytes from the selected page (starting always from first Byte in the page) into the RAM
(starting at the given address).
Note: The provided RAM address where data have to be copied is just an offset to the

device RAM start address (18000000H).

Input --
Output Return value (bool): Pass or fail

0 = Configuration read successfully.
1 = Configuration read failed.

NVMSize (char pointer): pointer to the RAM location where the
number of available sectors of the code area (4 kBytes each)
has to be saved
MapRAMSize (char pointer): pointer to the RAM location
where to store the number of available sectors of the data area
(4 kBytes each)

Possible reason of failure:
- NVM Linear sector is set as 00H.

Table 5-40 Read NVM config status subroutine (cont’d)

TLE986x BF BootROM
NVM

User Manual 93 Rev. 1.5, 2020-09-25

5.3.19 NVMCLKFAC setting routine
This routine is used to write the NVMCLKFAC Bit in SYSCON0 register.

Table 5-41 Read user calibration data subroutine
Subroutine 000038BDH: USER_READ_CAL

Prototype:
unsigned char USER_READ_CAL(unsigned char
NumOfBytes, char Sel100TP, short RAMAddr)

Input NumOfBytes (unsigned char): Number of Bytes to be copied
from config sector into the RAM (allowed values are form 01H to
80H).
Sel100TP (char): 100TP page to take data from (refer to
Figure 5-8).
RAMAddr (short): RAM address offset to copy data to (03FFH
< RAMAddr < RAMAddr + NumOfBytes < RAM size).

RAM size:
 3 kB RAM: 0BFFH
 6 kB RAM: 17FFH

Output Return value (unsigned char):
Bit 0: Pass or Fail
 0 = Read is successful.
 1 = Read is not successful due to invalid input values.
Bit 7: Execution Pass/Fail status
 0 = Pass: Routine was correctly executed.
 1 = Fail: Routine was not executed

Possible reasons of failure:
- The input parameters are incorrect.

Possible reason for execution fail:
- Routine called as nested call during the execution of another

NVM routine (e.g. via RAM branching)

TLE986x BF BootROM
NVM

User Manual 94 Rev. 1.5, 2020-09-25

5.4 NVM user applications
The NVM user routines application is described in this section.

5.4.1 NVM Data sector handling
The NVM provides a special sector for Data storage. Through a non-linear mapping of
the address space, the FW and the NVM module provides a special feature to increase
the maximum number of write-erase cycles a logical page can stand and to reduce the
risk of data loss in case of interrupted NVM operations (tearing events).
The handling of this special Data sector requires the usage of an NVM internal look-up
table (MapRAM) which is used to store and handle the link between logical and physical
addresses of the sector’s pages.
Since the MapRAM is a volatile memory, the firmware takes care to rebuild the MapRAM
content at each power up based on mapping information stored into a specific field of the
Data sectors pages (mapblock). This process is called Data sector initialization
(MapRAM initialization).
During this initialization phase, mapping errors induced by tearing events might be
found. This would then prevent the firmware from properly restoring the link between the
logical and physical addresses thus preventing proper usage of this sector. In this case,
the firmware provides a specific algorithm (Service Algorithm) to identify and solve these
errors. In particular, the Service Algorithm tries to repair bad pages created
unintentionally into the NVM Data region due to, for example, a NVM program or erase
operation interrupted by any reset or power loss (tearing events). The Service Algorithm
is triggered during the startup by the NVM data sector initialization in case mapping
issues are found.
The Service Algorithm provides proper analysis features to try to preserve the
integrity of the NVM Data region in case ongoing NVM operation (program or
erase) is unintentionally and unexpectedly aborted (e.g. due to power loss).
Anyhow, it is not meant to cover all possible scenarios that can be created by an
interrupted NVM operation. The user shall put in place proper action to avoid any

Table 5-42 NVMCLKFAC setting subroutine
Subroutine 00003855H: USER_NVMCLKFAC_SET

Prototype:
void USER_NVMCLKFAC_SET(char Value)

Input Value (char): SYSCON0.NVMCLKFAC value to be written.
b

Output --

TLE986x BF BootROM
NVM

User Manual 95 Rev. 1.5, 2020-09-25

possible interruption of NVM operation (e.g. using proper capacitor on the power
supply).
The NVM data sector initialization and Service Algorithm flows are described below.

NVM Data sector initialization
After any reset, as part of the start up, the firmware triggers a NVM initialization of the
NVM data sector. This initialization is performed by a hardware state machine which
takes care to restore the mapping information into the MapRAM reading specific bytes
(called mapblock) of the NVM data sector pages (see Figure 5-9). The state machine
accesses these bytes and, page by page, reads out the logical page to which the current
physical page has to be linked to, updating accordingly the dedicated MapRAM location.
In case a mapblock is read as erased, the physical page is not mapped. All the logical
pages for which no valid mapping is found are marked into the MapRAM as unmapped.
While reading out the info from the mapblock, the hardware state machine might find
incorrect mapping info. In particular, following scenarios might appear:
• more physical pages are mapped to the same logical page (double or higher mapping)
• the mapblock information cannot be read correctly due to ECC errors (faulty page)
In this case, the hardware state machine stops the initialization on the first incorrect
mapping. In case of power on reset, brown out reset, pin reset, WDT1 reset or wake up
from sleep in addition the execution of the Service Algorithm (SA) is triggered.

Figure 5-9 MapRAM and Mapblocks

4

28 2

MAPRAM Data sectorMapblock

0

DM

4

0

ERR Faulty page

Log Pg 0
Log Pg 1
Log Pg 2
Log Pg 3
Log Pg 4
Log Pg 5

Log Pg 27
Log Pg 28
Log Pg 29
Log Pg 30
Log Pg 31
Log Pg 32

Phys Pg 0
Phys Pg 1
PhysPg 2
Phys Pg 3
Phys Pg 4
Phys Pg 5

Phys Pg 27
PhysPg 28
Phys Pg 29
Phys Pg 30
Phys Pg 31
Phys Pg 32

TLE986x BF BootROM
NVM

User Manual 96 Rev. 1.5, 2020-09-25

Figure 5-10 Read levels and faulty page

Programmed Cells Erased cells

Standard R
ead Level

Soft R
ead Level Erased

Soft R
ead Level Program

m
ed

H
ard R

ead Level P
rogram

m
ed

H
ard R

ead Level E
rased

Good programmed page

Programmed Cells Erased cells

Standard R
ead Level

Soft R
ead Level Erased

Soft R
ead Level Program

m
ed

H
ard R

ead Level P
rogram

m
ed

H
ard R

ead Level E
rased

Faulty page

TLE986x BF BootROM
NVM

User Manual 97 Rev. 1.5, 2020-09-25

Figure 5-11 NVM data sector initialization flow

In order to detect pages whose mapblock is marginal towards the standard read level,
the NVM finite state machine that performs the mapping initialization is triggered three
times with three different read levels: standard read margin, soft read level erased and
soft read level programmed (refer to Figure 5-10). As soon as the first incorrect mapping
(faulty or multiple mapping) is detected by any of these three initialization sequences,
depending on the reset type, the Service Algorithm is called.
At the end of the Service Algorithm execution, a new initialization of the Data sector is
needed to properly initialize the mapping info. This final initialization is again executed
by triggering the NVM Finite State Machine and is performed using only the standard
read level.
Note: For any reset the result of the last NVM Data sector initialization executed

during the startup flow is reported to the user via the bit 1 of the
SYS_STRTUP_STS register (MRMINITSTS). If this bit is set to 1 then the last
initialization failed and the mapping info might be corrupted. In this case, a
reset (power on reset, brown out reset, pin reset or wakeup reset) can be
issued in order to start the Service Algorithm to try to fix the integrity issue
inside the Data NVM. If the MRAMINITSTS is still flagged afterwards, the
Data NVM sector has to be re-initialized by performing a sector erase.

Service Algorithm

NVM_MAPRAM_INIT

Restore MapRAM
info reading out
page by page

mapblocks using
standard read level

Incorrect mapping
info found?

SERVICE_ALGOR

Yes
Check Mapping info
into mapblocks with
soft read level and

repair all faulty
pages and up to

one double
mapping

End

MEMSTAT = 0x00

No

Update MEMSTAT
info

TLE986x BF BootROM
NVM

User Manual 98 Rev. 1.5, 2020-09-25

The Service Algorithm is called by the NVM Data sector initialization in case incorrect
mapping issues have been found. The Service Algorithm checks the data sector page
by page reading the mapblocks with soft read levels (refer to Figure 5-10).
At first, the Service Algorithm looks for faulty pages and tries to repair them by erasing
these pages. Following, the algorithm proceeds looking for double or higher mappings.
In case two or more double mappings or at least one triple or higher mapping were found
the SA stops execution and reports an error on the MEMSTAT register (MEMSTAT set
to B0H). In case, instead only one double mapping is found, the algorithm selects which
page has to be erased according to the following steps:
1. The SA checks the 2 pages linked to the double mapping with standard, soft and hard

read levels to detect which one has better quality (more margin towards the standard
read level, refer to Figure 5-10). The page with smaller margin is then erased.

2. In case both pages have same quality, the algorithm checks some specific bits of the
mapblock (called map counter) to check which of the pages has been programmed
last. In this case, the older one is erased.

In case both pages have same map counter value, the SA cannot decide which page has
to be erased and ends the flow reporting an error on the MEMSTAT register (e.g.
MEMSTAT set to B0H for a 256KB variant).
Whenever the SA is triggered, information regarding the addressed data sector number
will be stored in SECTORINFO (this is an indication that the SA was executed during the
start up phase). In addition, in case the SA cannot recover all incorrect mapped pages,
the SA reports a fail into the SASTATUS field of the MEMSTAT writing the value 10B. In
such a case, the user shall properly handle the reported mapping issue by either
triggering a reset (Power on reset, pin reset, WDT1 reset, brown out reset or wake up
from sleep reset) in order to trigger a new NVM initialisation or to erase the whole NVM
data sector to reset the mapping info.
Detailed description of the MEMSTAT register can be found in the following table
Table 5-43.

TLE986x BF BootROM
NVM

User Manual 99 Rev. 1.5, 2020-09-25

Note: The MEMSTAT register has a dual function. It is used to store the return
value of the SA as well as input value for the NVM operations to indicate the
Emergency Operation. For this reason, the user shall reset the MEMSTAT
register after every power on reset, brown out reset, pin reset or wake up
reset before the execution of any NVM operation.

During the repair phase, pages with incorrect mapping are erased. Each page erase
operation takes up to 4.5 ms.

Table 5-43 MEMSTAT Register Status for NVM Integrity Handling
Field Bits Description
SASTATUS 7:6 Service Algorithm Status

00 Depending on SECTORINFO, 2 possible outcomes.
For SECTORINFO = 00H: NVM initialisation
successful, no SA is executed.
For SECTORINFO = Otherwise: SA execution
successful. Only 1 mapping error fixed.

01 SA execution successful. At least 1 mapping error
fixed.

10 SA execution failed. Map error in data sector.
11 Reserved

SECTORINFO 5:0 Sector Information
At the startup, the value of tthis field is set to 000000B and it
is written anytime the SA is executed.
This field is internally divided into two parts:

Bits 5:0 : NVM Class identifier
 30H: 256KB variants

20H: 128KB variants
10H: 64KB variants
09H: 36KB variants

Others: Reserved

Once the SA has been executed, regardless of the execution
status, the last access sector information will be stored here.

TLE986x BF BootROM
NVM

User Manual 100 Rev. 1.5, 2020-09-25

Figure 5-12 Service Algorithm: Timing examples

Due to the duration of the first WDT1 open window after reset (long open window), the
maximum number of pages that can be repaired in one Service Algorithm execution is
13.
The result of the Service Algorithm repair phase is reported in the MEMSTAT register.
At the end of the startup procedure, user shall evaluate the content of this register to
properly handle fails and clear the register before performing any NVM operation.
The value is only available after reset before any NVM operation (Program, Erase,
OpenAB) is started. The corresponding NVM address to the Sector Information read is
listed in Table 5-3.

Service Algorithm and NVM Protection
In case the Service Algorithm detects mapping issues, it tries to repair mapping by
erasing the wrong pages (either faulty or double mapped pages). Consequently, the
repair step can modify the NVM Data sector content. To avoid data loss, the SA checks
the NVM data sector protection and proceeds towards the repair step only if the
protection is not enabled.
In case protection is enabled, instead, the repair actions are not performed and a
warning is provided to the user by writing the value FEH in the MEMSTAT register.
Via a dedicated 100TP sector parameter the user can always allow Service Algorithm to
perform the repair step even in case the Data sector is protected. The control Byte for
this feature, CS_SA_WITH_PROT_EN, is stored into the first 100TP page (refer to
Table 5-11). When this parameter is set to the value A5H the repair step is executed
even in case protection is set. The repair flow saves the protection setting, removes
temporarily the protection on the data sector, performs the needed repair operation and

Startup
phase 1
(0.3 ms)

MAPRAM
INIT + SA
Mapping

check
(0.1 ms)

Faulty page Erase
(4.5 ms)

Startup
phase 2
(1 ms)

Startup
phase 1
(0.3 ms)

MAPRAM
INIT + SA
Mapping

check
(0.1 ms)

Faulty page 1 Erase
(4.5 ms)

Faulty page 2 Erase
(4.5 ms)

Faulty page 3 Erase
(4.5 ms)

Double Mapping Page Erase
(4.5 ms)

Startup
phase 2
(1 ms)

Startup and Service Algorithm timing:
Single Faulty page

Startup and Service Algorithm timing: 3 Faulty pages and 1 Double Mapping

TLE986x BF BootROM
NVM

User Manual 101 Rev. 1.5, 2020-09-25

then restores the original protection settings. The temporary protection disabling is
performed via NVM protection register setting, no access or changes to the user defined
NVM protection password is performed. By default the CS_SA_WITH_PROT_EN
parameter is set to 00H (i.e. protection status is considered).

5.4.2 Supporting Background NVM Operation
There is only one NVM module present in TLE986x. When NVM is busy executing
internal operations (e.g. cells programming or erasing, data verify), no other activities
within NVM can be executed. Although the NVM programming or erasing is handled by
the NVM module, the user code cannot be read or executed as the NVM module is busy.
For this reason interrupts can only be serviced when the NVM is free if the interrupt
vector table or interrupt service routines are located in the NVM. A NVM program
operation can take from 3.5 ms to 13.5 ms to be completed. Therefore there is a need to
support the user for critical activities.
To support other user activities while NVM is busy, the BootROM can redirect code
execution to RAM after triggering time consuming NVM operations like program and
erase. This type of background code execution is known as Type 2 NVM operations or
RAM branching. When RAM branching is active, the BootROM routines jump to the RAM
address 18000400H every time it has to wait for NVM internal operation to be completed.
In this way, the user can execute code from RAM while NVM is busy.
While executing user code from RAM due to RAM branching, if the ongoing internal NVM
operation is completed, the BootROM code execution is not automatically restarted and
the previously triggered BootROM user routine is suspended. The user needs to
explicitly re-trigger the user routine code execution by giving back control to the
BootROM via a return instruction (BX LR). In this way the suspended user routine
execution is resumed.
The USER_NVMRDY user routine (refer to Chapter 5.3.10) is provided to check
whether the internal on going NVM operation is finished. User can use this routine to poll
the busy status of the NVM to decide when to return control to the suspended user
routine.
In case the user RAM code returns control to BootROM user routine while NMV is still
busy, the BootROM code waits till the internal operation is completed before continuing
with the normal user routine execution.
Table 5-44 shows RAM branching address and provides an example for the RAM code
exit point. Figure 5-13 shows how background programming can be supported during
calls to a NVM programming routine.
Note: The context switch between BootROM user routine and user RAM code in

NVM operation Type 2 is user responsibility. To avoid that RAM code
execution interferes with BootROM user code completion, the user must
save the content of the used resources (e.g. core registers) upon starting

TLE986x BF BootROM
NVM

User Manual 102 Rev. 1.5, 2020-09-25

the RAM code execution and restore them before jumping back to the
BootROM code. Under no circumstances shall the user return with modified
core registers, as proper resuming the BootROM function cannot be
ensured.

Note: During user RAM code execution in Type 2 NVM operations, no calls to NVM
user routine are allowed. Calling other NVM user routines can change
internal NVM registers content thus affecting the completion of the
suspended operation.

Table 5-44 RAM branch code structure
RAM Address RAM content
18000400H Start of user defined code. It can be directly code or jump to

some other RAM location
End of user defined
code location

BX LR (Return instruction)

TLE986x BF BootROM
NVM

User Manual 103 Rev. 1.5, 2020-09-25

Figure 5-13 Background NVM programming operation with jumps to RAM code
(example for non-linearly mapped sector)

Internal page program
NVM FSM started for

programming

User Prog

RAM
Branching
enabled?

End

Call to RAM
routine @CA1

Yes

Yes

Typical task for RAM user code:
- Perform important user task
- Refresh watchdog window
- Poll LIN status
- RET to BootROM

Note: CA1 is a fixed label at
RAM address (18000400 H).

NVM ready?

No

Page program
preparation

Save the used resource
(e.g push registers on

stack)

User code execution

Call USER_NVMRDY

NVM Ready?

No

Yes

Restore used resources

Old page
NVM FSM started for

erase

RAM
Branching
enabled?

Call to RAM
routine @CA1

Yes

Yes

NVM ready?

No

MapRAM update

Save the used resource
(e.g push registers on

stack)

User code execution

Call USER_NVMRDY

NVM Ready?

No

Yes

Restore used resources

MapRAM initialization

BootROM User routine:
USER PROG on a already programmed page

in Data NVM Region

RAM Branching:
User code

TLE986x BF BootROM
NVM

User Manual 104 Rev. 1.5, 2020-09-25

5.4.3 Emergency operation handling
Note: Emergency operation provides the possibility to exit an on-going NVM

operation in a faster way skipping some internal time consuming steps in
case high priority tasks are required. For this reason, leaving an NVM
operation via an emergency operation request might leave some
inconsistent data into the sector targeted by the interrupted operation.
When using this feature on Data NVM sector, the user is recommended,
soon after the completion of the execution of the high priority tasks, to issue
a pin reset or sleep entry-exit sequence to let the firmware to properly clean
the sector.

To ensure that NVM is functioning correctly, all NVM operations (i.e. program or erase)
are to be completed before a new NVM operation is started. In addition, corrective
activities such as retries and disturb handling are added in an NVM program routine and
could add additional time. In an emergency situation, where the system needs to save
important user data in the shortest time possible, this becomes critical. Therefore, a
mechanism to bypass these corrective activities as well as to inform that a new NVM
sequence will not be started, is needed. To support an emergency situation, the following
steps are recommended in the code whenever the NVM programming is called.

5.4.3.1 Emergency operation handling - Type 1 routines
For Type 1 routines (including both program and erase), an emergency programming
may only be handled with the interrupt enabled shown in Table 5-45.

Table 5-45 Emergency operation handling in Type 1 routines
Step Description
1 User code enables interrupt and sets MEMSTAT.NVMPROP before calling

NVM (Program/Erase) routines.
2 While the NVM operation is on-going, an event occurs triggering an interrupt.
3 Interrupt subroutine (ISR) is serviced immediately when the NVM is free.
4 ISR has to check for the MEMSTAT.NVMPROP status. If this Bit is set,

MEMSTAT.EMPROP has to be set and ISR has to be exited.
5 With control returned to the BootROM, the NVM routines will be executed

bypassing the corrective activities. This ensures that the routines are
completed in the shortest time possible

6 Exiting the NVM routines, the user code checks the MEMSTAT.EMPROP.
Since it is set, the code can branch to execute a user defined emergency
sequence and clear the Bits MEMSTAT.NVMPROP and MEMSTAT.EMPROP.
These activities can include the programming of the critical data.

TLE986x BF BootROM
NVM

User Manual 105 Rev. 1.5, 2020-09-25

5.4.3.2 Emergency operation handling - Type 2 routines
For Type 2 routines (including both program and erase), an emergency programming
may be handled with or without the interrupt enabled. In the case with interrupt enabled,
it is similar to Type 1 Routines shown in Table 5-45. For the case without interrupt
enabled, it is shown in Table 5-46.

5.4.3.3 Emergency operation handling timing
In this chapter some information about overall emergency operation worst case timing
is provided.
Table 5-47 describes the case in which user data has to be saved into the linear sector
due to an emergency event. Flow for programming the critical information in the not lin-
early mapped region of the NVM is similar (step 6 and 7 are inverted and a few µs have
to be added for MapRAM update) and overall worst case time is the same.

Table 5-46 Emergency operation handling in Type 2 routines (No interrupt)
Step Description
1 User code sets MEMSTAT.NVMPROP before calling NVM (Program/Erase)

routines.
2 While the NVM operation is started, the BootROM jumps to execute a user

defined code in the RAM. Within this code, the user checks periodically for
critical events.

3 During the checking, an emergency event occurs. The code has to set
MEMSTAT.EMPROP and give back control to BootROM.

4 With control returned to the BootROM, the NVM routines will be executed
bypassing the corrective activities. This ensures that the routines are
completed in the shortest time possible

5 Exiting the NVM routines, the user code checks the MEMSTAT.EMPROP.
Since it is set, the code can branch to execute a user defined emergency
sequence and clear the Bits MEMSTAT.NVMPROP and MEMSTAT.EMPROP.
These activities can include the programming of the critical data.

Table 5-47 Emergency operation handling in Type 1 routines
Phase Description
1 User code enables interrupt and sets MEMSTAT.NVMPROP before calling

NVM (Program/Erase) routines.
2 While the NVM operation is on-going, an event occurs triggering an interrupt.

In the worst case interrupt comes soon after a new erase was started.

TLE986x BF BootROM
NVM

User Manual 106 Rev. 1.5, 2020-09-25

The Table 5-47 refers to the type 1 routines but data are similar for type 2 routines as
well.

Figure 5-14 Worst case emergency handling timing when linear sector is used

Worst case time, shown in Figure 5-14, is then 13.5 ms. This does not include time for
user code execution. It can be reduced by about 4.1 ms if the user ensures that the page
used for critical data saving is erased.

3 Interrupt subroutine (ISR) is serviced immediately when the NVM is free.
4 With control returned to the BootROM, the NVM routines will be executed

bypassing the corrective activities. This ensures that the routines will end in
the shortest time possible even if a successful execution of the on going NVM
operation is not ensured.

5 Exiting the NVM routines, the user code checks the MEMSTAT.EMPROP.
Since it is set, the code can branch to execute a user defined emergency
sequence. First step is open AB and load user relevant data.

6 Before programming new data, if target page is already used, a preliminary
erase is performed.

7 User critical data are programmed in the target page.

Table 5-47 Emergency operation handling in Type 1 routines (cont’d)
Phase Description

Phase 1 Phase 2

Interrupt
event

occurring

ISR

Waiting for NVM
available, erase just

started

4100 us

Phase 3

x us

Phase 4

300 us

BootROM
routine

completion

Open AB
and load

critical data

2000 us +
x us user

code

Erasing
used page

4100 us

Critical data
program

3000 us

Phase 5 Phase 6 Phase 7

TLE986x BF BootROM
NVM

User Manual 107 Rev. 1.5, 2020-09-25

5.4.4 NVM user routines operation
This section describes the application of some NVM user routines.

5.4.4.1 NVM user programming operation
In TLE986x, the NVM supports programming of up to 128 Bytes of data at once. The user
can execute the following sequence illustrated in Figure 5-15 for NVM user
programming. Once the assembly buffer has been successfully opened, the user can
load the assembly buffer with the user defined contents. This can be achieved by a store
instruction targeting the selected byte in the NVM page opened with the OPEN_AB user
routine.

TLE986x BF BootROM
NVM

User Manual 108 Rev. 1.5, 2020-09-25

Figure 5-15 NVM user program

Program Page

Set local
retry = 01)

Check VS supply and
Die temperature

(ADC2)

Supply and
Temp. Ok?

Copy new data into
assembly buffer

Disable
interrupts

WDT1
Short Open

Window
Service

Open
Assembly

Buffer,
call

USER_OPENAB

WDT1
normal

window trigger
(close SOW)

WDT1
Short Open

Window
Service

Write
Assembly

Buffer to page,
call

USER_PROG

WDT1
normal

window trigger
(close SOW)

USER_PROG
failed?

(bit0=1)

Verify Fail?
(bit4=1)

Increment local
retry counter1)

Exec. Fail?
(bit7=1)

Address range
Fail? (bit0=1)

ECC Fail?3)

(bit3=1)

Exec. Fail?
(bit7=1)

USER_
MAPRAM_

INIT

no

Spare Page
Fail?3)

(bit6=1)

yes

no

no

Enable
interrupts

Exit
Program Page

yes

Local Retry > 21)Set return
error flags yes no

yes

no

Abort
programming,

call
USER_

ABORTPROG

USER_MAPRAM_INIT
failed? (bit0=1)

Exec. Fail?
(bit7=1)

Double
Mapping?
(bit5=1)

Faulty Page?
(bit6=1)

yes

no

no
Increment

global Retry
Counter2)

yes

Device Reset,
e.g. WDT1 timeout

No,
retry

Prog. Page
Flow

Yes, call MapRAM Init

yes

MapRAM Init3)

Yes, call MapRAM Init

1) local retry defines how often the Program
Page flow is repeated upon a fail, amount of
retries are application specific, for 256KB
variants at least two retries are recommended,
for 128KB (or less) variants the retry is optional
2) global retry defines how often the device
goes through a reset, e.g. to execute the
Service Algorithm
3) not applicable for code flash page
programming

Op
en

 A
ss

em
bly

 Bu
ffe

r
Pa

ge
 Pr

og
ra

m
m

ing

M
ap

RA
M

 In
it

ECC Fail?
(bit1 or bit2=1)

no

no

yes

yes

no

yes

no

TLE986x BF BootROM
NVM

User Manual 109 Rev. 1.5, 2020-09-25

5.4.4.2 Tearing-safe Programming
In TLE986x, the mapping mechanism of the non-linearly mapped sector is used like a
log-structured file system. When a page is programmed in this sector, the old values are
not physically overwritten, but a different physical page (spare page) in the same sector
is programmed. If the programming fails, the old values are still present in the sector and
user can decide, by means of a specific input parameter of the user programming routine
(refer to Table 5-17), whether the old values or the new failing values should be
physically kept in the sector.
When an erase or write procedure is interrupted by a power down, this is identified during
the reconstruction of the MapRAM content after the next reset. In this case, the service
algorithm routine is automatically started and repairs the NVM state exploiting the fact
that either the old or the new data (or both) are fully valid

TLE986x BF BootROM
NVM

User Manual 110 Rev. 1.5, 2020-09-25

5.4.4.3 NVM user erase operation
The user can execute the following sequence illustrated in Figure 5-16 for NVM user
erase.

Figure 5-16 NVM user page erase

Erase Page

Set local
retry = 01)

Check VS supply and
Die temperature

(ADC2)

Supply and
Temp. Ok?

Disable
interrupts

WDT1
Short Open

Window
Service

Erase Page,
call

USER_ERASEPG

WDT1
normal

window trigger
(close SOW)

USER_ERASEPG
failed?

(bit0=1)

yes

ECC Fail?3)

(bit3=1)

Exec. Fail?
(bit7=1)

Enable
interrupts

Exit
Erase Page

Set return
error flags

Increment local
retry counter1)

Local Retry > 21)

no

yes

yes

no

no

USER_
MAPRAM_

INIT

Abort
programming,

call
USER_

ABORTPROG4)

USER_MAPRAM_INIT
failed? (bit0=1)

Exec. Fail?
(bit7=1)

Double
Mapping?
(bit5=1)

Faulty Page?
(bit6=1)

yes

no

no
Increment

global Retry
Counter2)

yes

Device Reset,
e.g. WDT1 timeout

No,
retry

Prog. Page
Flow

MapRAM Init3)
M

ap
RA

M
 In

it

yes

1) local retry defines how often the Erase Page flow is repeated upon a fail, amount of retries are application
specific, for 256KB variants at least two retries are recommended, for 128KB (or less) variants the retry is optional
2) global retry defines how often the device goes through a reset, e.g. to execute the Service Algorithm
3) not applicable for code flash page programming
4) Abort is not needed in this case, but for harmonization with the Program Page flow it is kept

yes

yes

Pa
ge

 Er
as

e

TLE986x BF BootROM
NVM

User Manual 111 Rev. 1.5, 2020-09-25

5.4.4.4 NVM user programming abort operation
The user can execute the following sequence illustrated in Figure 5-17 for NVM user
programming abort.

Figure 5-17 NVM user abort program

5.4.5 NVM protection mechanism
User can use BSL mode 6 of FastLIN or UART to control the NVM protection by
providing or deleting a dedicated password. (please refer to Section 4.4.2.7 for more
details regarding NVM password setting). Once a valid password (different from 00H and
FFH) is programmed, program and read protection on both code and data NVM regions
is enabled upon startup regardless of reset source. During normal operation, if user
wishes to program or read the NVM, he can temporarily disable the NVM protection
writing the desired protection settings into the least significant nibble of the
NVM_PROT_STS register by means of the dedicated BootROM functions (refer to
Section 5.3.16)

User calls
“USER_OPENAB” Routine

User calls
“USER_ABORTPROG”

Routine

End

Start

Load the assembly buffer

TLE986x BF BootROM

Revision History

User Manual 112 Rev. 1.5, 2020-09-25

6 Revision History

Revision Date Changes
1.5 2020-09-25 TLE9862 (256KB) variants added

Chapter 3.1.1 MBIST timings updated
Chapter 3.1.4 target PLL frequency updated
Chapter 3.1.8 target PLL frequency updated
Table 3-4 order updated
Chapter 4 note regarding the UART interface added
Table 5-2 256KB NVM size added
Table 5-3 extended to support 256KB variants
Table 5-5 PKG_Type extended by TQFP-48
Table 5-8 NVM_SIZE listed updated to remove
irrelevant entries and adding 256KB size
Chapter 5.2.2 note updated, to use backup values
instead of default values
Figure 5-1 TQFP48 added
Table 5-13 footnote added to exclude certain function for
256KB variants
Table 5-14 footnote added to exclude certain function for
256KB variants
Chapter 5.3 user APIs reordered
Chapter 5.3.2 timing diagrams of USER_PROG function
added
Chapter 5.3.3 editorial changes
Chapter 5.3.5 editorial changes
Chapter 5.3.7 editorial changes
Chapter 5.3.15 editorial changes
Table 5-43 SECTORINFO updated
Chapter 5.4.2 NVM programming timing values updated
Figure 5-15 NVM user program flow added
Figure 5-16 NVM user page erase flow added

Edition 2020-09-25
Published by
Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 2020.
All Rights Reserved.

Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values
stated herein and/or any information regarding the application of the device, Infineon Technologies hereby
disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-
infringement of intellectual property rights of any third party.

Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office (www.infineon.com).

Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in
question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.

http://www.infineon.com

w w w . i n f i n e o n . c o m

Published by Infineon Technologies AG

http://www.infineon.com

	1 Introduction
	1.1 Purpose
	1.2 Scope
	1.3 Abbreviations and special terms

	2 Overview
	2.1 Firmware architecture
	2.2 Program structure

	3 Startup procedure
	3.1 Program structure
	3.1.1 Test and initialization of RAM
	3.1.2 NVM initialisation routine
	3.1.3 NVM MapRAM initialisation
	3.1.4 Oscillator trimming and system clock selection
	3.1.5 Analog module trimming
	3.1.6 User configuration data initialization
	3.1.7 Debug support mode entry
	3.1.8 User mode and BSL mode entry
	3.1.9 Node Address for Diagnostic (NAD)

	4 FastLIN and UART BSL Mode
	4.1 FastLIN and UART BSL protocol
	4.2 Phase I for UART BSL: Automatic serial synchronization to the host
	4.2.1 General description
	4.2.2 Calculation of BR_VALUE and PRE values

	4.3 Phase I for FastLIN BSL: FastLIN BSL entry sequence
	4.4 Phase II: Serial communication protocol and the working modes
	4.4.1 Serial communication protocol
	4.4.2 UART BSL Modes
	4.4.3 16 bits inverted XOR checksum

	4.5 WDT1 refreshing

	5 NVM
	5.1 NVM overview
	5.1.1 NVM organisation

	5.2 NVM configuration sectors organisation
	5.2.1 Chip ID definition
	5.2.2 100 Time Programmable data

	5.3 NVM user routines organisation
	5.3.1 Opening assembly buffer routine
	5.3.2 NVM programming routine
	5.3.3 Page Verify Routine
	5.3.4 NVM page erasing routine
	5.3.5 Erase Page Verify Routine
	5.3.6 Sector Erasing Routine
	5.3.7 Erase Sector Verify Routine
	5.3.8 Abort NVM programming routine
	5.3.9 MapRAM initialization
	5.3.10 Read NVM status routine
	5.3.11 Read 100 Time Programmable parameter data routine
	5.3.12 Program 100 Time Programmable routine
	5.3.13 NVM ECC check routines
	5.3.14 Read NVM ECC2 address routine
	5.3.15 RAM MBIST starting routine
	5.3.16 NVM protection status change routines
	5.3.17 Read NVM config status routine
	5.3.18 Read user calibration data
	5.3.19 NVMCLKFAC setting routine

	5.4 NVM user applications
	5.4.1 NVM Data sector handling
	5.4.2 Supporting Background NVM Operation
	5.4.3 Emergency operation handling
	5.4.4 NVM user routines operation
	5.4.5 NVM protection mechanism

	6 Revision History

