Certificate Number Report Reference Issue Date 20200212-E341165 E341165-20170629 2020 Feb 12

Issued to:

Enphase Energy Inc. 1420 N. McDowell Blvd. Petaluma, CA 94954-6515

This is to certify that representative samples of

Photovolic Grid Support Utility Interactive Inverter with Rapid Shutdown Functionality

Models: IQ6PLUS-72-2-US\*, IQ6PLUS-72-5-US\*, IQ6-60-2-US\*, IQ6-60-5-US\*, IQ6PLUS-72-ACM-US\* and IQ6-60-ACM-US\*.

Where \* may be any character

Have been investigated by UL in accordance with the Standard(s) indicated on this Certificate.

Standard(s) for Safety:

UL 1741, Standard for Safety for Inverters, Converters, Controllers and Interconnection System Equipment for Use With Distributed Energy Resources, UL 1741, Second Edition, dated January 28, 2010. Including the requirements in UL 1741 Supplement SA, sections as noted in the Technical considerations.

IEEE 1547, IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems.

- IEEE 1547.1, IEEE Standard for Conformance Test Procedures for Equipment Interconnecting Distributed Resources with Electric Power Systems.
- UL 62109-1, Safety of Converters for Use in Photovoltaic Power Systems - Part 1: General Requirements; IEC 62109-2, Safety of Power Converters for use in Photovoltaic Power Systems - Part 2: Particular Requirements for Inverters.

**Additional Information:** 

CSA C22.2 No. 107.1-3, General Use Power Supplies. See the UL Online Certifications Directory at

www.ul.com/database for additional information

Only those products bearing the UL Certification Mark should be considered as being covered by UL's Certification and Follow-Up Service.

Look for the UL Certification Mark on the product.

Ba Mally

Bruce Mahrenholz, Director North American Certification Program



Certificate Number Report Reference Issue Date 20200212-E341165 E341165-20170629 2020 Feb 12

This is to certify that representative samples of the product as specified on this certificate were tested according to the current UL requirements.

Standards for Safety:

UL 1741, Standard for Safety for Inverters, Converters, Controllers and Interconnection System Equipment for Use With Distributed Energy Resources, UL 1741, Second Edition, dated January 28, 2010. Including the requirements in UL 1741 Supplement SA, sections as noted in the Technical considerations.

IEEE 1547, IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems. IEEE 1547.1, IEEE Standard for Conformance Test Procedures for Equipment Interconnecting Distributed Resources with Electric Power Systems.

UL 62109-1, Safety of Converters for Use in Photovoltaic Power Systems - Part 1: General Requirements; IEC 62109-2, Safety of Power Converters for use in Photovoltaic Power Systems - Part 2: Particular Requirements for Inverters.

CSA C22.2 No. 107.1-3, General Use Power Supplies.

Barnally

Bruce Mahrenholz, Director North American Certification Program



Certificate Number Report Reference Issue Date 20200212-E341165 E341165-20170629 2020 Feb 12

Components covered by this certificate provide functionality in compliance with UL 1741 Supplement A (SA) when used in a UL Listed end product which has been evaluated by UL for it's intended purpose. Compliance testing was conducted on samples of the products according to the test methods in the following sections of UL 1741 with compliant results:

| Certified functions.<br>Cross Reference table – UL<br>1741 SA to SRD                          | Source Requirement<br>Document(s) | Test<br>Standard(s)<br>and Section(s) | Report Date  |
|-----------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------|--------------|
| ANTI-ISLANDING PROTECTION -<br>UNINTENTIONAL ISLANDING WITH GRID<br>SUPPORT FUNCTIONS ENABLED | Electric Rule No. 21 Hh.1a        | UL 1741 SA 8                          | 2017-June-29 |
| LOW/HIGH VOLTAGE RIDE THROUGH                                                                 | Electric Rule No. 21 Table Hh.1   | UL 1741 SA 9                          | 2017-June-29 |
| LOW/HIGH FREQUENCY RIDE THROUGH                                                               | Electric Rule No. 21 Table Hh.2   | UL 1741 SA10                          | 2017-June-29 |
| RAMP RATES                                                                                    | Electric Rule No. 21 Table Hh.2k  | UL 1741 SA 11                         | 2017-June-29 |
| RECONNECT BY "SOFT START"                                                                     | Electric Rule No. 21 Hh.2k        | UL 1741 SA 11                         | 2017-June-29 |
| SPECIFIED POWER FACTOR                                                                        | Electric Rule No. 21 Hh.2i        | UL 1741 SA 12                         | 2017-June-29 |
| DYNAMIC VOLT/VAR OPERATIONS                                                                   | Electric Rule No. 21 Hh.2J        | UL 1741 SA 13                         | 2017-June-29 |
| FREQUENCY-WATT                                                                                | Electric Rule No. 21 Hh.2.L       | UL 1741 SA 14                         | 2017-June-29 |
| VOLT-WATT                                                                                     | Electric Rule No. 21 Hh.2.m       | UL 1741 SA 15                         | 2017-June-29 |
| DISABLE PERMIT SERVICE                                                                        |                                   | UL 1741 SA 17                         | 2017-June-29 |
| LIMIT ACTIVE POWER                                                                            |                                   | UL 1741 SA 18                         | 2017-June-29 |

Testing conducted to the requirements of UL 1741 SA corresponds to the minimum requirements for CA Rule 21, 2015. An enumeration of functions tested, including complete ratings, and available certified settings for the Grid Support functions, are recorded in the appendix to this document. Test data and detailed results of compliance testing are retained in the complete UL Report for this product.

Barnally

Bruce Mahrenholz, Director North American Certification Program



Certificate Number Report Reference Issue Date 20200212-E341165 E341165-20170629 2020 Feb 12

#### Appendix

| Detailed Testing Summary                                       | Test Standard(s)<br>and Section(s) | Fixed /<br>Adjustable | Pass /<br>Fail |
|----------------------------------------------------------------|------------------------------------|-----------------------|----------------|
| UNINTENTIONAL ISLANDING WITH GRID SUPPORT<br>FUNCTIONS ENABLED | UL 1741 SA 8                       | Adjustable            | Pass           |
| HIGH VOLTAGE RIDE-THROUGH DURATION                             | UL 1741 SA 9.1                     | Adjustable            | Pass           |
| HIGH VOLTAGE RIDE-THROUGH / MUST TRIP<br>MAGNITUDES            | UL 1741 SA 9.2                     | Adjustable            | Pass           |
| HIGH VOLTAGE MUST TRIP CLEARING TIMES                          | UL 1741 SA 9.2                     | Adjustable            | Pass           |
| LOW VOLTAGE RIDE-THROUGH DURATION                              | UL 1741 SA 9.1                     | Adjustable            | Pass           |
| LOW VOLTAGE RIDE-THROUGH / MUST TRIP<br>MAGNITUDES             | UL 1741 SA 9.2                     | Adjustable            | Pass           |
| LOW VOLTAGE MUST TRIP CLEARING TIMES                           | UL 1741 SA 9.2                     | Adjustable            | Pass           |
| HIGH FREQUENCY RIDE-THROUGH DURATION                           | UL 1741 SA10.1                     | Adjustable            | Pass           |
| HIGH FREQUENCY RIDE-THROUGH / MUST TRIP<br>MAGNITUDES          | UL 1741 SA10.2                     | Adjustable            | Pass           |
| HIGH FREQUENCY MUST TRIP CLEARING TIMES                        | UL 1741 SA10.2                     | Adjustable            | Pass           |
| LOW FREQUENCY RIDE-THROUGH DURATION                            | UL 1741 SA10.1                     | Adjustable            | Pass           |
| LOW FREQUENCY RIDE-THROUGH / MUST TRIP<br>MAGNITUDES           | UL 1741 SA10.2                     | Adjustable            | Pass           |
| LOW FREQUENCY MUST TRIP CLEARING TIMES                         | UL 1741 SA10.2                     | Adjustable            | Pass           |
| NORMAL RAMP RATE                                               | UL 1741 SA 11.2                    | Adjustable            | Pass           |
| "SOFT START" RAMP RATE                                         | UL 1741 SA 11.4                    | Adjustable            | Pass           |
| SPECIFIED POWER FACTOR                                         | UL 1741 SA 12                      | Adjustable            | Pass           |
| VOLT/VAR MODE (Q(V))                                           | UL 1741 SA 13                      | Adjustable            | Pass           |
| FREQUENCY-WATT (FW)                                            | UL 1741 SA 14                      | Adjustable            | Pass           |
| VOLT-WATT (VW)                                                 | UL 1741 SA 15                      | Adjustable            | Pass           |
| DISABLE PERMIT SERVICE                                         | UL 1741 SA 17                      | N/A                   | Pass           |
| LIMIT ACTIVE POWER                                             | UL 1741 SA 18                      | Adjustable            | Pass           |

Barnelig

Bruce Mahrenholz, Director North American Certification Program



Certificate Number Report Reference Issue Date 20200212-E341165 E341165-20170629 2020 Feb 12

| Inverter Firmware Ve | ersion:    | ΛΫĹΛΫĹΛΫĹ        |
|----------------------|------------|------------------|
| UL 1998              | Date       | Version/Revision |
| Yes                  | 2017-05-05 | V01.06.03        |
| Yes                  | 12/19/2017 | 02.12.00         |
| Yes                  | 2018-06-05 | 02.14.02         |

| Inverter Ratings - Output                         | Model IQ6 an     | Model IQ6 and IQ6 ACM |  |  |
|---------------------------------------------------|------------------|-----------------------|--|--|
| Output phase configuration                        | Single phase     | Split Phase           |  |  |
| Nominal (line to line) output voltage V ac        | 208 V            | 240 V                 |  |  |
| Operating voltage range V ac                      | 211-264 V        | 183-229 V             |  |  |
| Normal out frequency Hz                           | 47-68 Hz         | 47-68 Hz              |  |  |
| Rated output current (A ac)                       | 1.11 A           | 0.96 A                |  |  |
| Rated output power, (kW)                          | 0.230 kW (230VA) | 0.230 kW (230VA)      |  |  |
| Max. Branch Circuit overcurrent protection (A ac) | 20 A             | 20 A                  |  |  |
| Maximum Air Ambient (°C)                          | 65 °C            | 65 °C                 |  |  |

| Inverter Ratings - Output                         | Model IQ6 Plus an | Model IQ6 Plus and IQ6 Plus ACM |  |  |
|---------------------------------------------------|-------------------|---------------------------------|--|--|
| Output phase configuration                        | Single phase      | Split Phase                     |  |  |
| Nominal (line to line) output voltage V ac        | 208 V             | 240 V                           |  |  |
| Operating voltage range V ac                      | 211-264 V         | 183-229 V                       |  |  |
| Normal out frequency Hz                           | 47-68 Hz          | 47-68 Hz                        |  |  |
| Rated output current (A ac)                       | 1.35 A            | 1.17 A                          |  |  |
| Rated output power, (kW)                          | 0.280 kW (280VA)  | 0.280 kW (280VA)                |  |  |
| Max. Branch Circuit overcurrent protection (A ac) | 20 A              | 20 A                            |  |  |
| Maximum Air Ambient (°C)                          | 65 °C             | 65 °C                           |  |  |

| Other ratings:                                                        |                            |
|-----------------------------------------------------------------------|----------------------------|
| Max. output fault current (A) / duration (ms)                         | 20 A rms for 200 ms        |
| Max. utility backfeed current to PV input (A)                         | 0.08 A                     |
| Line Synchronization Characteristics /<br>In-rush current             | Method 2 / 0.9 A           |
| Limits of accuracy of voltage measurement                             | +/- 1 % (of Volts nominal) |
| Limits of accuracy of frequency measurement                           | + /- 0.1 Hz                |
| Manufacturers stated accuracy of time response for voltage trips      | +/- 2 line cycles or 0.1%  |
| Manufacturers stated accuracy of time response for<br>frequency trips | +/- 2 line cycles or 0.1%  |
| Enclosure Ratings                                                     | Туре 6                     |

Barnelig

Bruce Mahrenholz, Director North American Certification Program



Certificate Number Report Reference Issue Date 20200212-E341165 E341165-20170629 2020 Feb 12

| INTERCONNECTION INTEGRITY TEST CATEGORIES:  |                        |
|---------------------------------------------|------------------------|
| C62.42.2 Ring Wave Surge Category           | Catagory B (6kV, 500A) |
| C62.42.2 Combination Wave Surge Category    | Catagory B (6kV, 3kA)  |
| C37.90.1 RF Immunity - compliance           | Yes                    |
| C37.90.2 Communication circuit - compliance | N/A                    |

<u>Magnitude and time Limits</u> - Utility interconnection voltage magnitude limits, Ride Through time limits and trip times:

| Nominal voltage              |       |                     | Single/S | plit phase          |     |                   |
|------------------------------|-------|---------------------|----------|---------------------|-----|-------------------|
| UL 1741 SA9:                 |       | nitudes<br>nominal) |          | 「hrough<br>nds) (+) |     | st Trip<br>conds) |
| Boundary designation<br>(++) | Min   | Max                 | Min      | Max                 | Min | Max               |
| HV3                          | 106 % | 121.7 %             | N/A      | N/A                 | 0.1 | 0.5               |
| HV2                          | 104 % | 119 %               | 0.3      | 19.8                | 0.5 | 20.0              |
| HV1                          | 102 % | 115 %               | 0.8      | 299.8               | 1.0 | 300.0             |
| LV1                          | 70 %  | 98 %                | 0.3      | 299.8               | 0.5 | 300.0             |
| LV2                          | 50 %  | 96 %                | 0.8      | 149.8               | 0.2 | 150.0             |
| LV3                          | 50 %  | 94 %                | 0.8      | 29.8                | 0.1 | 30.0              |

<u>Magnitude and time Limits</u> - Utility interconnection Frequency magnitude limits, Ride Through time limits and trip times:

| Nominal Frequency:   | 60 Hz |                  |     |                     |      |                 |
|----------------------|-------|------------------|-----|---------------------|------|-----------------|
| UL 1741 SA10:        |       | itudes<br>uency) |     | Fhrough<br>nds) (+) |      | t Trip<br>onds) |
| Boundary designation | Min   | Max              | Min | Max                 | Min  | Max             |
| HF3                  | N/A   | N/A              | N/A | N/A                 | N/A  | N/A             |
| HF2                  | 60.3  | 65               | N/A | N/A                 | 0.1  | 0.5             |
| HF1                  | 60.1  | 65               | 0.8 | 599.8               | 0.16 | 600             |
| LF1                  | 57    | 59.9             | 0.8 | 599.8               | 0.16 | 600             |
| LF2                  | 50    | 59.9             | N/A | N/A                 | 0.1  | 0.5             |
| LF3                  | N/A   | N/A              | N/A | N/A                 | N/A  | N/A             |

Barnelly

Bruce Mahrenholz, Director North American Certification Program UL LLC



Certificate Number Report Reference Issue Date 20200212-E341165 E341165-20170629 2020 Feb 12

| SA11 Ramp Rate test ratings (RR/SSRR) | THE    | JUJU         |
|---------------------------------------|--------|--------------|
| Minimum normal ramp-up rate           | 1.0 %  | %Irated/SEC  |
| Maximum normal ramp-up rate           | 100 %  | %Irated/SEC  |
| Minimum soft start ramp-up rate       | 0.11 % | %Irated /SEC |
| Maximum soft start ramp-up rate       | 100 %  | %Irated /SEC |

| SA12 SPF Specified Power Factor (INV3)             |      |
|----------------------------------------------------|------|
| Minimum Inductive (Underexcited) Power Factor (<0) | -0.7 |
| Minimum Capacitive (Overexcited) Power Factor (>0) | +0.7 |

| Settings                                                            |                | Qmax Values -<br>Maximums | Qmin Values -<br>Minimums | Units        |
|---------------------------------------------------------------------|----------------|---------------------------|---------------------------|--------------|
| Reactive power production setting                                   | Q1             | 200                       | 0                         | VAR          |
| Reactive power absorption setting at the left edge of the deadband  | Q <sub>2</sub> | 0                         | 0                         | VAR          |
| Reactive power absorption setting at the right edge of the deadband | Q <sub>3</sub> | 0                         | 0                         | VAR          |
| Reactive power absorption setting                                   | Q4             | -200                      | 0                         | VAR          |
| Functional in the following priority modes:                         | [X] active p   | ower [X] reactive po      | wer                       | Ч <b>Г</b> Л |

| Settings                             |                     | Maximum           | Minimum | Units |  |
|--------------------------------------|---------------------|-------------------|---------|-------|--|
| The voltage at Q1                    | V1                  | 97 %              | 90 %    | %Vnom |  |
| The voltage at Q <sub>2</sub>        | V <sub>2</sub>      | 99 %              | 97 %    | %Vnom |  |
| The voltage at Q <sub>3</sub>        | V <sub>3</sub>      | 110 %             | 100 %   | %Vnom |  |
| The voltage at Q <sub>4</sub>        | V4                  | 119.17 %          | 110 %   | %Vnom |  |
| Functional in the following priority | modes: [X] active p | ower [X] reactive | oower   | 人い人   |  |



Bruce Mahrenholz, Director North American Certification Program



Certificate Number Report Reference Issue Date 20200212-E341165 E341165-20170629 2020 Feb 12

| SA14 Frequency-Watt (FW) extent of curve range settings                         |                        |           |       |             |  |  |  |  |
|---------------------------------------------------------------------------------|------------------------|-----------|-------|-------------|--|--|--|--|
| Settings                                                                        |                        | Frequency |       | Power level |  |  |  |  |
| Low end of the adjustment range of the start of the curtailment function        | F <sub>start_min</sub> | 60.1      | 100 % | %Watts      |  |  |  |  |
| High end of the adjustment range of the start of the curtailment function       | F <sub>start_max</sub> | 62.0      | 100 % | %Watts      |  |  |  |  |
| Low end of the adjustment range of the endpoint of the curtailment function     | F <sub>stop_min</sub>  | 62.5      | 0 %   | %Watts      |  |  |  |  |
| High end of the adjustment range of the endpoint of the<br>curtailment function | F <sub>stop_max</sub>  | 65.0      | 0 %   | %Watts      |  |  |  |  |

| SA15 Volt-Watt (VW) extent of curve range settings                              |                        |        |       |             |  |  |  |
|---------------------------------------------------------------------------------|------------------------|--------|-------|-------------|--|--|--|
| Settings                                                                        |                        | Volts  |       | Power level |  |  |  |
| Low end of the adjustment range of the start of the curtailment function        | V <sub>start_min</sub> | 1.01 % | 100%  | %Watts      |  |  |  |
| High end of the adjustment range of the start of the curtailment function       | V <sub>start_max</sub> | 1.08 % | 100 % | %Watts      |  |  |  |
| Low end of the adjustment range of the endpoint of the curtailment function     | V <sub>stop_min</sub>  | 1.03 % | 0 %   | %Watts      |  |  |  |
| High end of the adjustment range of the endpoint of the<br>curtailment function | V <sub>stop_max</sub>  | 1.15 % | 0 %   | %Watts      |  |  |  |

Barnelig

Bruce Mahrenholz, Director North American Certification Program

