TECO © Westinghouse

M O T O R C O M P A N Y

Installation Manual

AC Inverter

200 to 240 V	$1 / 3$ Phase	$1 \sim 3 \mathrm{HP}$
	3 Phase	$5 \sim 40 \mathrm{HP}$
380 to 480 V	3 Phase	$1 \sim 75 \mathrm{HP}$
500 to 600 V	3 Phase	$1 \sim 10 \mathrm{HP}$

■ SAFE OPERATION NOTES

Read this instruction manual thoroughly before installation, operation, maintenance or inspection of the inverter. Only authorized personnel should be permitted to perform maintenance, inspections or parts replacement.

In this manual, notes for safe operation are classified as: "WARNING" or "CAUTION".

Indicates a potentially hazardous situation that, if not avoided, could result in death or serious injury to personnel.

Indicates a potentially hazardous situation that, if not avoided, may result in minor or moderate injury to personnel and damage to the equipment.

"WARNING" and "CAUTION"

WARNING

- Always turn off the input power supply before wiring terminals.
- After turning OFF the main circuit power supply, do not touch the circuit components until the "CHARGE" LED is extinguished.
- Never connect power circuit output U/T1, V/T2, W/T3 to AC power supply.

CAUTION

- When mounting the MA7200 in a separate enclosure, install a fan or other cooling device to keep the intake air temperature below $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$.
- Do not perform a withstand voltage test to the inverter.
- All the parameters of the inverter have been preset at the factory. Do not change the settings unnecessarily.

This inverter has been placed through demanding tests at the factory before shipment. After unpacking, check for the following:

1. Verify that part numbers on shipping carton and unit match the purchase order sheet and/or packing list.
2. Do not install or operate any inverter that is damaged or missing parts.

Contact your local TECO authorized distributor or TECO representative if any of the above irregularities have been found.
Contents

1. MA7200 Handling Description 1-1
1.1 Inspection Procedure upon Receiving 1-1
1.2 Installation 1-2
1.3 Removing/Attaching of LCD Digital Operator and Front Cover 1-5
1.4 Wiring between Inverter and Peripheral Devices 1-8
1.5 Description of Terminal Function 1-12
1.6 Main Circuit Wiring Diagram 1-14
1.7 Wiring Main Circuit 1-15
1.8 Inverter Specifications 1-18
1.9 Dimensions 1-21
1.10 Peripheral Units 1-24
1.11 FUSE TYPES 1-32
2. Using LCD Digital Operator 2-1
3. Parameter Setting 3-1
3.1 Frequency Command An- 3-1
3.2 Parameters That Can be Changed during Running Bn- 3-2
3.3 Control Parameters Cn- 3-11
3.4 System Parameters Sn- 3-29
3.5 Monitoring Parameters Un- $\square \square$ 3-73
4. Fault Display and Troubleshooting 4-1
4.1 General 4-1
4.2 Error Message and Troubleshooting 4-2
Appendix
A. PID Control Function App-1
B. Adjusting PID Controller Арр-9
C. Wiring for PG Feedback Use- App-11
D. RS-485 Communication Interface Арр-12
E. SINK/SOURCE Typical Connection Diagram App-14
F. Set-up Using the Sensorless Vector Control App-15
G. Notes for Circuit Protection and Environmental Ratings App-17
H. Spare Parts Арр-22
I. Electrical Ratings For Contstant Torque and Quadratic Torque App-34
J. Inverter Heat Loss App-35
K. Tightening Torque For Different Wire Gauge App-37

No.	Figure Contents	Page	No.	Figure Contents	Page
1	Air clearance for MA7200 wall mounting	$1-2$	27	Deceleration to stop	$3-42$
2	Standard connection diagram	$1-10$	28	Coast to Stop	$3-42$
3	Processing the ends of twisted-pair cables	$1-16$	29	Whole range DC Injecting Braking Stop	$3-42$
4	The optical-couplers connect to external inductive load	$1-16$	30	Coast to Stop with Timer	$3-43$
5	MA7200 ground winding	$1-17$	31	Output voltage limit	$3-45$
6	LCD digital operator dimension	$1-30$	32	Stall prevention function during deceleration	$3-46$
7	Analog operator	$1-31$	33	Zero speed braking operation selection	$3-47$
8	LCD digital operator	$2-1$	34	Motor overload protection curve	$3-49$
9	Acceleration and Deceleration time	$3-4$	35	3 -wire mode connection diagram	$3-51$
10	Analog input gain and bias	$3-5$	36	Operation sequence in 3-wire mode	$3-51$
11	Adjust the auto torque boost gain Bn-11 to increase the output torque	$3-5$	37	2 2-wire mode connection diagram	$3-51$
12	An operation example of timer function	$3-8$	38	Time chart for multi-step speed and jog command	$3-52$
13	Time chart for energy-saving operation	$3-9$	39	Acceleration and deceleration ramp hold	$3-53$
14	Pulse Input Function	$3-10$	40	Time chart for DC injection braking command	$3-55$
15	User-defined V/F curve	$3-14$	41	PG speed control block diagram	$3-56$
16	Output frequency with slip compensation.	$3-15$	42	Time chart of output frequency with the UP/DOWN function	$3-57$
17	Slip compensation limit	$3-15$	43	Pulse signal output	$3-63$
18	DC injection braking time chart	$3-16$	44	The input/output signal in 'Timer' function application	$3-64$
19	Upper and lower bounds of the frequency command	$3-17$	45	PID wiring diagram	App-3
20	Setting jump frequencies	$3-17$	46	PID control block diagram, without Sleep Function	App-5
21	Acceleration stall prevention function	$3-19$	47	PID control block diagram, with Sleep Function	App-6
22	Run stall prevention function	$3-19$	48	Response of PID Control for Step-shape Input	App-6
23	Excess Load Detection Time Chart	$3-22$	49	Wiring of PG feedback	Apppp11
24	Speed search timing chart	$3-24$	50	Wiring for MODBUS Protocol communication	App-12
25	S curve	$3-26$	51	Wiring for PROFIBUS protocol communication	App-13
26	ASR Proportion Gain and Integral Time	$3-27$			

No.	Table Contents	Page
1	Main circuit terminals	$1-12$
2	Control circuit terminals	$1-13$
3	230V/460V class applicable wire size and connector	$1-15$
4	Brake resistor list	$1-24$
5	AC reactor list	$1-25$
6	Noise filter on the input side	$1-26$
7	Key's functions	$2-2$
8	Setting of monitoring contents	$3-6$
9	LCD Digital Operator Display Unit	$3-20$
10	230V Class Inverter Capacity Selection	$3-36$
11	$460 V$ Class Inverter Capacity Selection	$3-37$
12	$575 V$ Class Inverter Capacity Selection	$3-38$
13	V/F curve of 1~2 HP compact size, 230V Class MA inverter	$3-39$
14	V/F curve of 3~40 HP, 230V Class MA inverter	$3-40$
15	Multi-Function Input Setting	$3-50$
16	Multi-function analog input function list	$3-58$
17	Multi-function output terminal function	$3-61$

DISTRIBUTED BY:

1. MA7200 Handling Description

1.1 Inspection Procedure upon Receiving

Before delivery, Every MA7200 inverter has been properly adjusted and passed the demanding function test. After receiving the inverter, the customer should take it out and follow the below procedure:

- Verify that the Type No. of the inverter you've received is the same as the Type No. listed on your purchase order. (Please read the Nameplate)
- Observe the condition of the shipping container and report any damage immediately to the commercial carrier that has delivered your inverter.
- Inverter nameplate:

Model:	MA7200-2002-N1	2.7KVA	\qquad INVERTER MODEL \qquad INPUT SPECIFICATION \longleftarrow OUTPUT SPECIFICATION
AC Input:	1PH/3PH 200-240	0/60Hz	
AC Output:	6.4 A at 150\% for	Sec. (C)	
	7.6A at 110\% for	Sec. (V)	
Reference Installation Manual			

Inverter model number :

1.2 Installation

When installing the inverter, always provide the following space to allow normal heat dissipation.

(a) Space in Side

ambient temperature
$-10 \sim+40^{\circ} \mathrm{C}$

Fig. 1-a. Air clearance for MA7200 wall mounting

(a) NEMA4 Frame1

(c) NEMA4 Frame3

(b) NEMA4 Frame2

(d) NEMA4 Frame 4

Fig. 1-b. MA7200 NEMA4 Installation

CAUTION

Location of equipment is important to achieve proper performance and normal operating life. The MA7200 inverter should be installed in area where the following conditions exist.

- Ambient temperature: +14 to $104^{\circ} \mathrm{F},\left(-10\right.$ to $\left.40^{\circ} \mathrm{C}\right)$.
- Install the MA7200 in a location protected from rain, moisture and direct sunlight.
- Install the MA7200 in a location free from harmful mists, gases, liquids, airborne dusts and metallic particles.
- Install the MA7200 in a location free from vibration and electromagnetic noise. (i.e. welding machines, power units, etc...)
- When mounting multiple units in a common enclosure, install a cooling fan or some other means to cool the air entering the inverter to at least $104^{\circ} \mathrm{F}\left(+40^{\circ} \mathrm{C}\right)$ or below.

1.3 Removing/Attaching the Digital Operator and Front cover

CAUTION

Please disassemble Front Cover before you connect wires to terminals on MA7200 models.

- $230 \mathrm{~V} 1 \sim 25 \mathrm{HP}$ \& $460 \mathrm{~V} 1 \sim 30 \mathrm{HP} \& 575 \mathrm{~V} 1 \sim 10 \mathrm{HP}$ models: Plastic instructions, so please disconnect LCD Digital Operator before you disassemble Front Cover. After you finished the wiring connection, assemble Front Cover first then reinstall LCD Digital Operator.
- $230 \mathrm{~V} 30 \mathrm{HP}, ~ 40 \mathrm{HP} \& 460 \mathrm{~V} 40 \sim 75 \mathrm{HP}$: Iron instructions, you can disassemble Front Cover for wiring connection without disconnecting LCD Digital Operator. Then reinstall Front Cover back after you finished wiring connection.

MA7200 disassembly / Assembly procedures will be depended on different model as

 follows:(A)For 230 V : 1-2HP, 460 V : 1-2HP

- MA7200-2001-N1 - MA7200-4001-N1
- MA7200-2002-N1 • MA7200-4002-N1

Removing the digital operator :
Take off the two screws on the front cover in the place a and b. Remove the front cover and take off the screws in the place c and d. Disconnect the RS-232 cable connector on the backside of the LCD digital operator. Lift and remove digital operator.
Attaching the front cover and digital operator: Connect the RS-232 cable connector on the back of the LCD digital operator.

Attach the digital operator and tighten the screws in the place c and d. Insert the tabs of the upper part of front cover into the groove of the inverter and tighten the screws in the place a and b .
(B) For 230 V : 3-10HP, 460 V : 3-10HP, 575 V : 1-10HP

- MA7200-2003-N1
-MA7200-5007-N1
- MA7200-2005-N1
- MA7200-4005-N1 •MA7200-5002-N1
-MA7200-5010-N1
- MA7200-2007-N1
- MA7200-4007-N1 •MA7200-5003-N1
- MA7200-2010-N1
- MA7200-4010-N1 •MA7200-5005-N1

Removing the digital operator
Take off the screws in the place a. and b.
Press the lever on the side of the digital operator in the direction of arrow 1 to unlock the digital operator.
Disconnect the RS-232 cable connector on the back side of the LCD digital operator. Lift the digital operator in the direction of arrow 2 to remove the digital operator.

Removing the front cover
Press the left and right sides of the front cover in the directions of arrow 1 and lift the bottom of the cover in the direction of arrow 2 to remove the front cover.

Mounting the front cover and digital operator Insert the tab of the upper part of front cover into the groove of the inverter and press the lower part of the front cover onto the inverter until the front cover snaps shut.
Connecting the RS-232 cable connector on the back side of the LCD digital operator and hook the digital operator at a on the front cover in the direction of arrow 1.
Press the digital operator in the direction of arrow
 2 until it snaps in the place b and then tighten the screws in the place c and d. (on the front cover)
(C) For $230 \mathrm{~V} 15,20 \mathrm{HP}$ and $460 \mathrm{~V} 15,20 \mathrm{HP}$ Series

- MA7200-2015-N1
- MA7200-2020-N1
- MA7200-4015-N1
- MA7200-4020-N1

Removing the digital operator :
Take off the screws in the place a. and b. Disconnect the RS-232 cable connector on the back side of the LCD digital operator and then lift the digital operator upwards.

Removing the front cover :
Loosen the two screws of the front cover in the place c and d . And lift the bottom of the front cover to remove the front cover.

Mounting the front cover and digital operator : Insert the tab of the upper part of front cover into the groove of the inverter and tighten the screws in the place c and d .
Connect the RS-232 cable connector on the back of the LCD digital operator.
Attach the digital operator and tighten the screws in the place a and b.
(D) For $230 \mathrm{~V} 30 \sim 40 \mathrm{HP}$ and $460 \mathrm{~V} 40 \sim 75 \mathrm{HP}$ Series

Removing the front cover: Loosen the two screws of the front cover in the place a. and b. Then loosen the two screws c and d , lift the front cover upwards. (Don't removing the digital operator.)
Mounting the front cover: Press the front cover and then tighten the screws in the place a, b, c and d.

1.4 Wiring between Inverter and Peripheral devices and notice

CAUTION

1. After turning OFF the main circuit power supply, do not touch the circuit components or change any circuit components before the "CHARGE" lamps extinguished. (It indicates that there is still some charge in the capacitor).
2. Never do wiring work or take apart the connectors in the inverter while the power is still on.
3. Never connect the inverter output U/T1, V/T2, W/T3 to the AC source.
4. Always connect the ground lead E to ground.
5. Never apply high voltage test directly to the components within the inverter. (The semiconductor devices are vulnerable to high voltage shock.)
6. The CMOS IC on the control board is vulnerable to ESD. Do not try to touch the control board.
7. If $\mathrm{Sn}-03$ is $7,9,11$ (2-wire mode) or is $8,10,12$ (3-wire mode), except parameter settings of $\mathrm{Sn}-01$ and $\mathrm{Sn}-02$, the other parameter settings will return to their initial settings at factory. If the inverter is initially operated in 3 -wire mode $(\mathrm{Sn}-03=8$, 10,12), the motor will rotate in CCW sense after setting changed to 2 -wire mode. $(\mathrm{Sn}-03=7,9,11)$. Be sure that the terminals 1 and 2 are OPEN so as not to harmful to personal or cause any potential damage to machines.

CAUTION

1. Determine the wire size for the main circuit so that the line voltage drop is within 2% of the rated voltage. If there is the possibility of excessive voltage drop due to wire length, use a larger wire (larger diameter) suitable to the required length
Line voltage $\operatorname{drop}(\mathrm{V})=\sqrt{3} \times$ wire resistance $(\Omega / \mathrm{km}) \times$ wire length $(\mathrm{m}) \times \operatorname{current}(\mathrm{A}) \times 10^{-3}$
2. If the length of the cable wire between the inverter and the motor exceeds 30 m , use a lower carrier frequency for PWM (adjust the parameter $\mathrm{Cn}-34$). Refer to Page 3-23

Example of connection between the MA7200 and typical peripheral devices are shown as below.

Power supply	O
Power supply	
switch(NFB)	

Electromagnetic contactor

AC reactor

- MCCB (Molded-Case Circuit Breaker)
- Choose the Molded Case Circuit Breaker (MCCB) of proper current rating. Please refer to the selection guide "1.7 Wiring Main Circuit and Notice" on Page 1-14.
- Do not use a circuit breaker for start/stop operation.
- When a ground fault interrupter is used, select the one with no influence for high frequency. Setting current should be 200 mA or above and the operating time at 0.1 second or longer to avoid false triggering.
- MC (Magnetic Contactor)
- It is not always necessary to have a Magnetic Contactor on the input side. However, an input Magnetic Contactor can be used to prevent an automatic restart after recovery from an external power loss during remote control operation.
- Do not use the Magnetic Contactor for start/stop operation.
- AC Reactor
- To improve power factor or to reduce surge current, install an AC Reactor on the input side of the MA7200.

- Input Noise Filter

- When used with TECO specified Input Noise Filter, the MA7200 will comply with EN55011 class A regulation.
- Please refer to the selection guide "1.10 Peripheral Units" on page 1-22.

■ MA7200 Inverter

- The input power supply can be connected to any terminal R/L1, S/L2, T/L3 on the terminal block.
- Please connect the ground terminal E to the site ground securely.
- Output Noise Filter (Zero Phase Core)
- Install an Output Noise Filter between the MA7200 and the Induction Motor to eliminate noise transmitted between the power line and the inverter.
- Please refer to the selection guide " 1.10 Peripheral Devices" on page 1-22.
- Induction Motor
- When multiple motors are driven in parallel with an inverter, the inverter rated current should be at least 1.1 times the total motor rated current.
- The inverter and the motor must be separately grounded.

Standard Connection Diagram

The standard connection diagram of MA7200 is shown in Fig. 2. The sign © indicates the main circuit terminal and the sign \bigcirc indicates control circuit terminal. The terminal function and arrangement are summarized in Table 1 and Table 2. There are three types of control board, the terminal arrangement is shown as below.
(A) For Compact Size Type 230V : 1-2HP, 460V : 1-2HP (NEMA4 are the same)
-MA7200-2001/2-N1 •MA7200-4001/2-N1

Fig. 2-a Standard connection diagram
(B) $230 \mathrm{~V}: 3-40 \mathrm{HP}, 460 \mathrm{~V}: 3-75 \mathrm{HP}$ (NEMA4 to 20 HP), $575 \mathrm{~V}: 1-10 \mathrm{HP}$

- MA7200-2003-N1 through
MA7200-2040-N1
- MA7200-4003-N1
through
MA7200-4075-N1
-MA7200-5001-N1
through
MA7200-5010-N1

(*2) The terminal ${ }^{(1)}$ and (8) can be set as SINK or SOURCEtype input interface, when setting(1)~ (8) as sink type input, the short jumper of TP2 must be set to SINK position, and set to SOURCE position for source type input.
(*3) VIN Ref. can be set in two input methods as $0 \sim 10 \mathrm{~V}$ or $-10 \sim+10 \mathrm{~V}$
(*4) The terminal $\mathrm{A}(+), \mathrm{A}(-)$ can be the output terminal of Pulse Input Frequency Command.
Pulse Input Frequency Command: $50 \mathrm{~Hz} \sim 32 \mathrm{KHz}, 3 \sim 12 \mathrm{~V}$ High Voltage Level, input resistor $2.7 \mathrm{~K} \Omega$

(*6) The control board code No. : 4H300D6740022 (230V 3-25HP, 460V 3-30HP), 4H300D6750028 (230V 30-40HP, 460V 30-75HP), 4LA41X258S01(575V 1-10HP).
Fig. 2-b Standard connection diagram

1.5 Description of terminal function

Table 1 Main circuit terminals

Terminal	$\begin{aligned} & \text { 230V:1~20HP, 460V:1~20HP } \\ & 575 \mathrm{~V}: 1 \sim 10 \mathrm{HP} \end{aligned}$	230V:25~40HP, 460V:25~75HP	
R/L1	Main circuit input power supply (For single phase power supply, please use R/L1, S/L2 as input terminal)		
S/L2			
T/L3			
B1/P	B1/P, B2: External braking resistor B1/P, Θ : DC power supply input		
B2			
Θ		$\bullet \oplus-\ominus:$ DC power supply or braking unit	
\oplus	-		
B1/R	Unused	-	
U/T1	Inverter output		
V/T2			
W/T3			
E	Grounding lead (3rd type grounding)		

Terminal block configuration

- 230V/460V : $1 \sim 2 \mathrm{HP}$

- $230 \mathrm{~V}: 3 \sim 5 \mathrm{HP}$

- 460V : 3~5HP, 575V :1~3HP •575V : 5~10HP

- 230V/460V : 7.5~10HP

- 230V/460V : 15~20HP

- 230V : 25~40HP, 460V : 25~75HP

Table 2 Control circuit terminals

!

Caution

- Use the control circuit terminals VIN, AIN according the setting of Sn-24.
- The MAX. Output current at terminal $(+15 \mathrm{~V}$ or $+12 \mathrm{~V})$ is 20 mA .
- The multi-function analog output terminals $\mathrm{AO} 1, \mathrm{AO} 2$ is a dedicated output for a frequency meter, ammeter, etc. Do not use these 2 analog outputs for feedback control or any other control purpose.

1.6 Main Circuit Wiring Diagram

Main Circuit Wiring Diagram of MA7200:

1. $230 \mathrm{~V} / 460 \mathrm{~V}: 1 \sim 20 \mathrm{HP}$ and $575 \mathrm{~V}: 1 \sim 10 \mathrm{HP}$

2. $230 \mathrm{~V}: 25 \mathrm{HP} \quad 460 \mathrm{~V}: 25 \sim 30 \mathrm{HP}$

3. $230 \mathrm{~V}: 30 \sim 40 \mathrm{HP} \quad 460 \mathrm{~V}: 40 \sim 75 \mathrm{HP}$

DC Reactor built-in

1.7 Wiring main circuit and notice

Main circuit wiring
The non-fusible-breaker (NFB) should be installed between the AC source and the R/L1-S/L2-T/L3 input terminal of MA7200 inverter. The user can make his own decision of installing electromagnetic contactor block (MCB) or not. To protect against the false triggering of leakage-current, the user should install a leakage current breaker with amperage sensitivity $\geqq 200 \mathrm{~mA}$ and operation time $\geqq 0.1 \mathrm{sec}$.

Table 3230 V and 460 V class applicable wire size and connector

MA7200 model				Wire size (mm^{2})			NFB*4	MCB*4
Power supply	Applicable Power Rating $(\mathrm{HP})^{* 1}$	Rated KVA	Rated current (A)	Main circuit*2	Ground connection wire E (G)	Control wire ${ }^{*}$		
$\begin{gathered} 230 \mathrm{~V} \\ 1 \Phi / 3 \Phi \end{gathered}$	1HP	2	4.8	$2 \sim 5.5$	2~5.5	$0.5 \sim 2$	TO-50EC(15A)	CN-11
	2HP	2.7	6.4	$2 \sim 5.5$	$3.5 \sim 5.5$	$0.5 \sim 2$	TO-50EC(20A)	CN-11
	3HP	4	9.6	$3.5 \sim 5.5$	$3.5 \sim 5.5$	$0.5 \sim 2$	TO-50EC(20A)	CN-11
$\begin{gathered} 230 \mathrm{~V} \\ 3 \Phi \end{gathered}$	5.4HP	7.5	17.5	5.5	5.5	$0.5 \sim 2$	TO-50EC(30A)	CN-16
	7.5HP	10.1	24	8	$5.5 \sim 8$	$0.5 \sim 2$	TO-100S(50A)	CN-18
	10HP	13.7	32	8	$5.5 \sim 8$	$0.5 \sim 2$	TO-100S(60A)	CN-25
	15HP	20.6	48	14	8	$0.5 \sim 2$	TO-100S(100A)	CN-50
	20HP	27.4	64	22	8	$0.5 \sim 2$	TO-100S(100A)	CN-65
	25 HP	34	80	22	14	$0.5 \sim 2$	TO-225S(150A)	CN-80
	30HP	41	96	38	14	$0.5 \sim 2$	TO-225S(175A)	CN-100
	40HP	54	130	60	22	$0.5 \sim 2$	TO-225S(175A)	CN-125
$\begin{gathered} \text { 460V } \\ 3 \Phi \end{gathered}$	1HP	2.2	2.6	$2 \sim 5.5$	$2 \sim 5.5$	$0.5 \sim 2$	TO-50EC(15A)	CN-11
	2HP	3.4	4	$2 \sim 5.5$	$3.5 \sim 5.5$	$0.5 \sim 2$	TO-50EC(15A)	CN-11
	3HP	4.1	4.8	$2 \sim 5.5$	$3.5 \sim 5.5$	$0.5 \sim 2$	TO-50EC(15A)	CN-11
	5.4HP	7.5	8.7	$2 \sim 5.5$	$3.5 \sim 5.5$	$0.5 \sim 2$	TO-50EC(15A)	CN-18
	7.5HP	10.3	12	$3 \sim 5.5$	$3.5 \sim 5.5$	$0.5 \sim 2$	TO-50EC(20A)	CN-18
	10HP	12.3	15	5.5	5.5	$0.5 \sim 2$	TO-50EC(30A)	CN-25
	15HP	20.6	24	8	8	$0.5 \sim 2$	TO-50EC(30A)	CN-25
	20HP	27.4	32	8	8	$0.5 \sim 2$	TO-100S(50A)	CN-35
	25HP	34	40	8	8	$0.5 \sim 2$	TO-100S(75A)	CN-50
	30HP	41	48	14	8	$0.5 \sim 2$	TO-100S(100A)	CN-50
	40HP	54	64	22	8	$0.5 \sim 2$	TO-100S(100A)	CN-65
	50 HP	68	80	22	14	$0.5 \sim 2$	TO-125S(125A)	CN-80
	60HP	82	96	38	14	$0.5 \sim 2$	TO-225S(175A)	CN-100
	75HP	110	128	60	22	$0.5 \sim 2$	TO-225S(175A)	CN-125
$\begin{gathered} 575 \mathrm{~V} \\ 3 \Phi \end{gathered}$	1HP	1.7	1.7	$2 \sim 5.5$	$2 \sim 5.5$	$0.5 \sim 2$	TO-50EC(15A)	CN-11
	2HP	3.0	3.0	$2 \sim 5.5$	$3.5 \sim 5.5$	$0.5 \sim 2$	TO-50EC(15A)	CN-11
	3HP	4.2	4.2	$2 \sim 5.5$	$3.5 \sim 5.5$	$0.5 \sim 2$	TO-50EC(15A)	CN-11
	5.4HP	6.6	6.6	$2 \sim 5.5$	$3.5 \sim 5.5$	$0.5 \sim 2$	TO-50EC(15A)	CN-18
	7.5HP	9.9	9.9	$3 \sim 5.5$	$3.5 \sim 5.5$	$0.5 \sim 2$	TO-50EC(15A)	CN-18
	10HP	12.2	12.2	$2 \sim 5.5$	$3.5 \sim 5.5$	$0.5 \sim 2$	TO-50EC(20A)	CN-18

*1 : It is assumed constant torque load.
*2 : The main circuit has terminals of R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, B1/P, B2/R, B2, Θ.
*3 : The control wire is the wire led to the pin terminals of control board.
*4 : In Table 3, the specified Part No. of NFB and MC are the item No. of the products of TECO. The customer can use the same rating of similar products from other sources. To decrease the noise
interference, be sure to add R-C surge suppressor (R: $10 \Omega / 5 \mathrm{~W}, \mathrm{C}: 0.1 \mu \mathrm{~F} / 1000 \mathrm{VDC}$) at the 2 terminals of coils of electromagnetic contactor.

External circuit wiring precaution:

(A) Control circuit wiring:
(1) Separate the control circuit wiring from main circuit wiring (R/L1, S/L2, T/L3, U/T1, V/T2, W/T3) and other high-power lines to avoid noise interruption.
(2) Separate the wiring for control circuit terminals RA-RB-RC (R1A-R2B-R2C) (contact output) from wiring for terminals (1) ~ 8, A01, A02, GND, DO1, DO2, DOG 15 V (or $+12 \mathrm{~V},-12 \mathrm{~V})$, VIN, AIN, AUX, GND, IP12, IG12, A (+), A (-), S(+) and S(-).
(3) Use the twisted-pair or shielded twisted-pair cables for control circuits to prevent operating faults. Process the cable ends as shown in Fig. 3. The max. wiring distance should not exceed 50 meter.

Fig. 3. Processing the ends of twisted-pair cables
When the digital multi-function output terminals connect serially to an external relay, an anti-parallel freewheeling diode should be applied at both ends of relay, as shown below.

Fig. 4. The Optical-couplers connect to external inductive load
(B) Wiring the main circuit terminals:
(1) Input power supply can be connected to any terminal R/L1, S/L2 or T/L3 on the terminal block. The phase sequence of input power supply is irrelevant to the phase sequence.
(2) Never connect the AC power source to the output terminals U/T1, V/T2 and. W/T3.
(3) Connect the output terminals U/T1, V/T2, W/T3 to motor lead wires $\mathrm{U} / \mathrm{T} 1, \mathrm{~V} / \mathrm{T} 2$, and W/T3, respectively.
(4) Check that the motor rotates forward with the forward run source. Switch over any 2 of the output terminals to each other and reconnect if the motor rotates in reverse with the forward run source.
(5) Never connect a phase advancing capacitor or LC/RC noise filter to an output circuit.

(C) GROUNDING :

(1) Always use the ground terminal (E) with a ground resistance of less than 100Ω.
(2) Do not share the ground wire with other devices, such as welding machines or power tools.
(3) Always use a ground wire that complies with the technical standards on electrical equipment and minimize the length of ground wire.
(4) When using more than one inverter, be careful not to loop the ground wire, as shown below.

Fig. 5. MA7200 ground winding

- Determine the wire size for the main circuit so that the line voltage drop is within 2% of the rated voltage. (If there is the possibility of excessive voltage drop, use a larger wire suitable to the required length)
- Installing an AC reactor If the inverter is connected to a large-capacity power source (600 kVA or more), install an optional AC reactor on the input side of the inverter. This also improves the power factor on the power supply side.
- If the cable between the inverter and the motor is long, the high-frequency leakage current will increase, causing the inverter output current to increase as well. This may affect peripheral devices. To prevent this, adjust the carrier frequency, as shown below:

Cable length	$<100 \mathrm{ft}$.	$100-165 \mathrm{ft}$.	$166-328 \mathrm{ft}$.	$\geq 329 \mathrm{ft}$.
Carrier frequency $(\mathrm{Cn}-34)$	$15 \mathrm{kHz} \max$	$10 \mathrm{kHz} \max$	$5 \mathrm{kHz} \max$	2.5 kHz
$(\mathrm{Cn}-34=6)$	$(\mathrm{Cn}-34=4)$	$(\mathrm{Cn}-34=2)$	$(\mathrm{Cn}-34=1)$	

1.8 Inverter Specifications

- Basic Specifications
(a) 230 V Series

	Inverter (HP)	1	2	3	5	7.5	10	15	20	25	30	40
Max. Applicable Motor Output HP ${ }^{* 1}$ (KW)		$\begin{gathered} 1 \\ (0.75) \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ (1.5) \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ (2.2) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 5.4 \\ & (4) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 7.5 \\ (5.5) \\ \hline \end{gathered}$	$\begin{gathered} \hline 10 \\ (7.5) \\ \hline \end{gathered}$	$\begin{gathered} \hline 15 \\ (11) \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ (15) \\ \hline \end{gathered}$	$\begin{gathered} 25 \\ (18.5) \\ \hline \end{gathered}$	$\begin{gathered} \hline 30 \\ (22) \\ \hline \end{gathered}$	$\begin{gathered} \hline 40 \\ (30) \\ \hline \end{gathered}$
	Rated Output Capacity (KVA)	2	2.7	4	7.5	10.1	13.7	20.6	27.4	34	41	54
	Rated Output Current (A)	4.8	6.4	9.6	17.5	24	32	48	64	80	96	130
	Max. Output Voltage (V)	3-Phases, 200V~240V										
	Max. Output Frequency (Hz)	Through Parameter Setting 0.1~400.0 Hz										
	Rated Voltage, Frequency	$\begin{gathered} \hline \text { 1PH/3PH 200V~240V, } \\ 50 / 60 \mathrm{~Hz} \end{gathered}$			3-Phases, 200V~240V, 50/60Hz							
	Allowable Voltage Fluctuation	-15\% ~ +10\%										
	Allowable Frequency Fluctuation	$\pm 5 \%$										

(b) 460V Series

	Inverter (HP)	1	2	3	5	7.5	10	15	20	25	30	40	50	60	75
Max. Applicable Motor Output HP ${ }^{+1}$ (KW)		$\begin{array}{\|c} \hline 1 \\ (0.75) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 2 \\ (1.5) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 3 \\ (2.2) \\ \hline \end{array}$	$\begin{aligned} & 5.4 \\ & (4) \end{aligned}$	$\begin{array}{\|c\|} \hline 7.5 \\ (5.5) \\ \hline \end{array}$	$\begin{gathered} \hline 10 \\ (7.5) \end{gathered}$	$\begin{gathered} \hline 15 \\ (11) \end{gathered}$	$\begin{array}{\|c\|} \hline 20 \\ (15) \\ \hline \end{array}$	$\begin{gathered} \hline 25 \\ (18.5) \end{gathered}$	$\begin{gathered} 30 \\ (22) \end{gathered}$	$\begin{gathered} \hline 40 \\ (30) \end{gathered}$	$\begin{gathered} 50 \\ (37) \end{gathered}$	$\begin{gathered} 60 \\ (45) \end{gathered}$	$\begin{gathered} 75 \\ (55) \end{gathered}$
	Rated Output Capacity (KVA)	2.2	3.4	4.1	7.5	10.3	12.3	20.6	27.4	34	41	54	68	82	110
	Rated Output Current (A)	2.6	4	4.8	8.7	12	15	24	32	40	48	64	80	96	128
	Max. Output Voltage (V)	3-Phases, 380V~480V													
	Max. Output Frequency (Hz)	Through Parameter Setting $0.1 \sim 400.0 \mathrm{~Hz}$													
	Rated Voltage, Frequency	3-Phases, 380V ~ 480V, 50/60Hz													
	Allowable Voltage Fluctuation	-15\% ~ +10\%													
各	Allowable Frequency Fluctuation	$\pm 5 \%$													

(c) 575 V Series

Inverter (HP)		1	2	3	5	7.5	10
Max. Applicable Motor Output HP ${ }^{+1}$ (KW)		1 (0.75)	$\begin{gathered} 2 \\ (1.5) \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ (2.2) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 5.4 \\ & (4) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 7.5 \\ (5.5) \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ (7.5) \\ \hline \end{gathered}$
	Rated Output Capacity (KVA)	1.7	3.0	4.2	6.6	9.9	12.2
	Rated Output Current (A)	1.7	3.0	4.2	6.6	9.9	12.2
	Max. Output Voltage (V)	3-phase:500/550/575/600VAC					
	Max. Output Frequency (Hz)	Through Parameter Setting $0.1 \sim 400.0 \mathrm{~Hz}$					
	Rated Voltage, Frequency	3-Phases, 500V~600VAC, $50 / 60 \mathrm{~Hz}$					
	Allowable Voltage Fluctuation	-15\% ~ +10\%					
	Allowable Frequency Fluctuation	$\pm 5 \%$					

*1. Based on 4 pole motor
*2. The spec. of NEMA4 are the same

- General Specifications

Operation Mode	Graphic LCD Panel (English only) with parameters copying
Control Mode	Sinusoidal PWM
Frequency Control Range	$0.1 \mathrm{~Hz} \sim 400 \mathrm{~Hz}$
Frequency Accuracy (varied with temperature)	Digital Command: $\pm 0.01 \%\left(-10 \sim+40^{\circ} \mathrm{C}\right)$, Analog Command: $\pm 0.1 \%\left(25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}\right)$,
Speed Control Accuracy	$\pm 0.1 \%$ (V/F with PG feedback), $\pm 0.5 \%$ (Sensorless Vector Control)
Frequency Command Resolution	Digital Command: 0.01 Hz Analog Command: $0.06 \mathrm{~Hz} / 60 \mathrm{~Hz}$
Frequency Output - Resolution	0.01Hz
- Overload Resistibility	150\% Rated Current for 1 Min
- Frequency Setting Signal	DC 0~+10V / 4~20 mA, DC-10V~+10V and Pulse Input Frequency Command (Above $230 \mathrm{~V} / 460 \mathrm{~V} 25 \mathrm{HP}$ and 575 V 1~10HP)
$\stackrel{\text { ¢ }}{\text { ¢ }}$ Acc./Dec. Time	$0.0 \sim 6000.0 \mathrm{sec}$ (Accel/Decel Time Can Be Set Independently)
ভ Voltage-Frequency Characteristics	V/F Curve Can Be Set Through Parameter Setting
気 Regeneration Torque	Approx. 20\%
\bigcirc O Basic Control Function	Restart After Momentary Power Loss, PID Control, Auto Torque Boost, Slip Compensation, RS_485 Communication, Speed Feedback Control, Simple PLC function, 2 Analog Output Port
HVAC Function	Programmable Local/Remote Key, Engineering Unit Display, PID Sleep Function, External PID Function, Over/Low Feedback Detection, Low Suction Detection, Flow Meter Display via Analog Input or Pulse Input, Power Meter, kWh Meter and Energy Cost Usage.
Extra Function	Cumulative Power on \& Operation Hour memory, Energy Saving, Up/Down Operation, 4 Different sets of Fault Status Record (Including Latest one), MODBUS Communication, Multiple-Pulse Output Ports, Select Local/Remote, SINK/SOURCE Interface.
Stall Prevention	During Acceleration/Deceleration and constant Speed Running (Current Level Can Be Selected During Acceleration and Constant Speed Running. During Deceleration, Stall Prevention Can Be Enabled or Disabled)
Instantaneous Overcurrent	Stopped if above 200\% Rated Current
.으 Motor Overload Protection	Electronic Overload Curve Protection
0 Inverter Overload	Stopped if above 150\% Rated Current for 1 Min.
¢ Overvoltage	Stop if VDC 410 V (230 Class) or VDC 820 V (460 Class), VDC $1050 \mathrm{~V}(575$ Class)
\% Undervoltage	Stop if VDC 200V (230 Class) or VDC 400V (460 Class), VDC 546V(575 Class)
$\stackrel{\text { Momentary Power Loss }}{\text { Ride-Through time }}$	15 ms , stop otherwise
Overheat Protection	Protected by Thermistor
Grounding Protection	Protection by DC Current Sensor
Charge Indication (LED)	Lit when the DC Bus Voltage Above 50V
Output Phase Loss (OPL)	Motor coasts to stop at Output Phase Loss
- Application Site	Indoor (No Corrosive Gas And Dust Present)
\% ${ }_{\text {¢ }}^{\text {Di }}$. D Ambient Temperature	$-10^{\circ} \mathrm{C} \sim+40^{\circ} \mathrm{C}$ (Not Frozen)
등 흥 Storage Temperature	$-20^{\circ} \mathrm{C} \sim+60^{\circ} \mathrm{C}$
気 3 Ambient Humidity	Below 90\%RH (Non-Condensing)
Ш Height, Vibration	Below 1000M, 5.9m/S ${ }^{2}$ (0.6G), (JISC0911 Standard)
Communication Function	RS-485 Installed (MODBUS Protocol)
Encoder Feedback Interface	Built-in PG Feedback Interface and set to Open-collector Interface Drive or Complementary Interface Drive
EMI	Meet EN 61800-3 With Specified EMI Filter
EMS Compatibility	Meet EN 61800-3
Option	PROFIBUS Card

1.9 Dimensions

(a) $230 \mathrm{~V} / 460 \mathrm{~V}: 1 \sim 2 \mathrm{HP}$

(b) $230 \mathrm{~V}: 3 \mathrm{HP} \sim 25 \mathrm{HP}$

460V : 3HP~30HP
$575 \mathrm{~V}: 1 \mathrm{HP} \sim 10 \mathrm{HP}$

(c) $230 \mathrm{~V}: 30 \mathrm{HP} \sim 40 \mathrm{HP}$

```
\[
460 \mathrm{~V}: 40 \mathrm{HP} \sim 75 \mathrm{HP}
\]
```


(Open Chassis Type - IP00)

(Enclosed, Wall-mounted Type - NEMA1)
(d) NEMA4 Type : 1HP~20HP

Voltage	Inverter Capacity(HP)	NEMA4 (mm)						Weight (kg)
		W	H	D	W1	H1	d	
$\begin{aligned} & 230 \mathrm{~V} \\ & 1 / 3 \Phi \end{aligned}$	1	198	335	217	115	315	M6	6.3
	2							
	3							7.5
$\begin{gathered} 230 \mathrm{~V} \\ 3 \Phi \end{gathered}$	5	198	335	217	115	315	M6	7.5
	7.5	223	460	245	140	440	M6	16
	10							
	15							
	20							
$\begin{gathered} 460 \mathrm{~V} \\ 3 \Phi \end{gathered}$	1	198	335	217	115	315	M6	6.3
	2							
	3							7.5
	5							
	7.5	223	460	245	140	440	M6	16
	10							
	15							
	20							

1.10 Peripheral Units

Braking resistors
MA7200 230V/460V 1~20HP and 575V 1~10HP model have built-in braking transistor, and can be connected external braking resistor between B1/P and B2 when lack of braking ability. Above 25HP models, need to connect braking unit (on $\oplus-\ominus$ of inverter) and braking resistors (on B-P0 of braking unit).

Table 4					$\frac{\text { Braking resistor list }}{\text { Braking Resistor }}$			Braking Torque (\%)
Voltage	HP	$\begin{array}{\|c\|} \hline \text { Rated } \\ \text { current (A) } \\ \hline \end{array}$	Model	Number used	Code NO.	Specs.	Number used	
$\begin{aligned} & 230 \mathrm{~V} \\ & 1 / 3 \Phi \end{aligned}$	1	4.8	-	-	JNBR-150W200	$150 \mathrm{~W} / 200 \Omega$	1	119\%, 10\%ED
	2	6.4	-	-	JNBR-150W100	$150 \mathrm{~W} / 100 \Omega$	1	119\%, 10\%ED
	3	9.6	-	-	JNBR-260W70	$260 \mathrm{~W} / 70 \Omega$	1	115\%, 10\%ED
$\begin{gathered} 230 \mathrm{~V} \\ 3 \Phi \end{gathered}$	5	17.5	-	-	JNBR-390W40	390W/40	1	119\%, 10\%ED
	7.5	24	-	-	JNBR-520W30	$520 \mathrm{~W} / 30 \Omega$	1	108\%, 10\%ED
	10	32	-	-	JNBR-780W20	$780 \mathrm{~W} / 20 \Omega$	1	119\%, 10\%ED
	15	48	-	-	JNBR-2R4KW13R6	$2400 \mathrm{~W} / 13.6 \Omega$	1	117\%, 10\%ED
	20	64	-	-	JNBR-3KW10	$3000 \mathrm{~W} / 10 \Omega$	1	119\%, 10\%ED
	25	80	JNTBU-230	1	JNBR-4R8KW8	$4800 \mathrm{~W} / 8 \Omega$	1	119\%, 10\%ED
	30	96	JNTBU-230	1	JNBR-4R8KW6R8	$4800 \mathrm{~W} / 6.8 \Omega$	1	117\%, 10\%ED
	40	130	JNTBU-230	2	JNBR-3KW10	$3000 \mathrm{~W} / 10 \Omega$	2	119\%, 10\%ED
$\begin{gathered} 460 \mathrm{~V} \\ 3 \Phi \end{gathered}$	1	2.6	-	-	JNBR-150W750	$150 \mathrm{~W} / 750 \Omega$	1	126\%, 10\%ED
	2	4	-	-	JNBR-150W400	$150 \mathrm{~W} / 400 \Omega$	1	119\%, 10\%ED
	3	4.8	-	-	JNBR-260W250	$260 \mathrm{~W} / 250 \Omega$	1	126\%, 10\%ED
	5	8.7	-	-	JNBR-400W150	$400 \mathrm{~W} / 150 \Omega$	1	126\%, 10\%ED
	7.5	12	-	-	JNBR-600W130	$600 \mathrm{~W} / 130 \Omega$	1	102\%, 10\%ED
	10	15	-	-	JNBR-800W100	$800 \mathrm{~W} / 100 \Omega$	1	99\%, 10\%ED
	15	24	-	-	JNBR-1R6KW50	$1600 \mathrm{~W} / 50 \Omega$	1	126\%, 10\%ED
	20	32	-	-	JNBR-1R5KW50	$1500 \mathrm{~W} / 40 \Omega$	1	119\%, 10\%ED
	25	40	JNTBU-430	1	JNBR-4R8KW32	$4800 \mathrm{~W} / 32 \Omega$	1	119\%, 10\%ED
	30	48	JNTBU-430	1	JNBR-4R8KW27R2	$4800 \mathrm{~W} / 27.2 \Omega$	1	117\%, 10\%ED
	40	64	JNTBU-430	1	JNBR-6KW20	$6000 \mathrm{~W} / 20 \Omega$	1	119\%, 10\%ED
	50	80	JNTBU-430	2	JNBR-4R8KW32	$4800 \mathrm{~W} / 32 \Omega$	2	119\%, 10\%ED
	60	96	JNTBU-430	2	JNBR-4R8KW27R2	$4800 \mathrm{~W} / 27.2 \Omega$	2	117\%, 10\%ED
	75	128	JNTBU-430	2	JNBR-6KW20	$6000 \mathrm{~W} / 20 \Omega$	2	126\%, 10\%ED
$\begin{gathered} 575 \mathrm{~V} \\ 3 \Phi \end{gathered}$	1	1.7	-	-	JNBR-260W250	$260 \mathrm{~W} / 250 \Omega$	1	126\%, 10\%ED
	2	3.0	-	-	JNBR-260W250	$260 \mathrm{~W} / 250 \Omega$	1	126\%, 10\%ED
	3	4.2	-	-	JNBR-260W250	$260 \mathrm{~W} / 250 \Omega$	1	126\%, 10\%ED
	5	6.6	-	-	JNBR-400W150	$400 \mathrm{~W} / 150 \Omega$	1	126\%, 10\%ED
	7.5	9.9	-	-	JNBR-600W130	$800 \mathrm{~W} / 100 \Omega$	1	170\%, 9\%ED
	10	12.2	-	-	JNBR-800W100	$800 \mathrm{~W} / 100 \Omega$	1	125\%, 9\%ED

*Note 1: Another choices are listed as below.
*Note 2: JUVPHV-0060 no UL certification
440V 50HP : (JUVPHV-0060+JNBR-9R6KW16) x 1
440V 60HP : (JUVPHV-0060+JNBR-9R6KW13R6) x 1
*Note 3: When set up braking unit and resistor, please make sure there is adequately ventilated environment and appropriate distance for setting.

AC reactor

- An AC reactor can be added on the power supply side if the inverter is connected to a much larger capacity power supply system, or the inverter is within short distance ($<10 \mathrm{~m}$) from power supply systems, or to increase the power factor on the power supply side.
- Choose the proper AC reactor according to the below list.

Table 5 AC reactor list

Inverter Model			AC reactor	
V	HP	Rated current	Code No.	Specification (mH/A)
$\begin{array}{\|c\|} \hline 230 \mathrm{~V} \\ 1 \Phi / 3 \Phi \end{array}$	1	4.8A	3M200D1610021	$2.1 \mathrm{mH} / 5 \mathrm{~A}$
	2	6.5 A	3M200D1610030	$1.1 \mathrm{mH} / 10 \mathrm{~A}$
	3	9.6 A	3M200D1610048	$0.71 \mathrm{mH} / 15 \mathrm{~A}$
$\begin{gathered} 230 \mathrm{~V} \\ 3 \Phi \end{gathered}$	5.4	17.5A	3M200D1610056	$0.53 \mathrm{mH} / 20 \mathrm{~A}$
	7.5	24A	3M200D1610064	$0.35 \mathrm{mH} / 30 \mathrm{~A}$
	10	32A	3M200D1610072	$0.265 \mathrm{mH} / 40 \mathrm{~A}$
	15	48A	3M200D1610081	$0.18 \mathrm{mH} / 60 \mathrm{~A}$
	20	64A	3M200D1610099	$0.13 \mathrm{mH} / 80 \mathrm{~A}$
	25	80A	3M200D1610102	$0.12 \mathrm{mH} / 90 \mathrm{~A}$
	30	96A	3M200D1610111	$0.09 \mathrm{mH} / 120 \mathrm{~A}$
	40	130A	3M200D1610269	$0.07 \mathrm{mH} / 160 \mathrm{~A}$
$\begin{gathered} 460 \mathrm{~V} \\ 3 \Phi \end{gathered}$	1	2.6 A	3M200D1610137	$8.4 \mathrm{mH} / 3 \mathrm{~A}$
	2	4A	3M200D1610145	$4.2 \mathrm{mH} / 5 \mathrm{~A}$
	3	4.8A	3M200D1610153	$3.6 \mathrm{mH} / 7.5 \mathrm{~A}$
	5.4	8.7A	3M200D1610161	$2.2 \mathrm{mH} / 10 \mathrm{~A}$
	7.5	12A	3M200D1610170	$1.42 \mathrm{mH} / 15 \mathrm{~A}$
	10	15A	3M200D1610188	$1.06 \mathrm{mH} / 20 \mathrm{~A}$
	15	24A	3M200D1610196	$0.7 \mathrm{mH} / 30 \mathrm{~A}$
	20	32A	3M200D1610200	$0.53 \mathrm{mH} / 40 \mathrm{~A}$
	25	40A	3M200D1610218	$0.42 \mathrm{mH} / 50 \mathrm{~A}$
	30	48A	3M200D1610226	$0.36 \mathrm{mH} / 60 \mathrm{~A}$
	40	64A	3M200D1610234	$0.26 \mathrm{mH} / 80 \mathrm{~A}$
	50	80A	3M200D1610242	$0.24 \mathrm{mH} / 90 \mathrm{~A}$
	60	96A	3M200D1610251	$0.18 \mathrm{mH} / 120 \mathrm{~A}$
	75	128A	3M200D1610315	$0.15 \mathrm{mH} / 150 \mathrm{~A}$

Inverter Model			AC reactor
V	HP	V	Specification $(\mathrm{mH} / \mathrm{A})$
	1	1.7 A	$13.5 \mathrm{mH} / 3 \mathrm{~A}$
3Φ	2	3.0 A	$7.6 \mathrm{mH} / 5 \mathrm{~A}$
	3	4.2 A	$5.4 \mathrm{mH} / 7.5 \mathrm{~A}$
	5.4	6.6 A	$3.5 \mathrm{mH} / 10 \mathrm{~A}$
	7.5	9.9 A	$2.3 \mathrm{mH} / 15 \mathrm{~A}$
	10	12.2 A	$1.9 \mathrm{mH} / 15 \mathrm{~A}$

Note: The AC reactors are applied only to input side. Do not apply it to output side.
Noise filter
A. INPUT SIDE NOISE FILTER

- Installing a noise filter on power supply side to eliminate noise transmitted between the power line and the inverter
- MA7200 has its specified noise filter to meet the EN61800-3 class A specification

Table 6 Noise filter on the input side

Inverter			Noise Filter				
V	HP	Rated Current (A)		Code	Specifications	Current	Dimensions
$\begin{aligned} & 230 \mathrm{~V} \\ & 1 / 3 \Phi \end{aligned}$	1	4.8A	1Ф	4H300D1750003	JUNF12015S-MA	15 A	Fig. (a)
			3Φ	4H300D1710001	JUNF32012S-MA	12 A	Fig. (a)
	2	6.5A	1Ф	4H300D1750003	JUNF12015S-MA	15 A	Fig. (a)
			3Φ	4H300D1710001	JUNF32012S-MA	12 A	Fig. (a)
	3	9.6 A	1Ф	4H300D1600001	JUNF12020S-MA	20 A	Fig. (a)
			3Φ	4H300D1610007	JUNF32024S-MA	24 A	Fig. (a)
$\begin{gathered} \text { 230V } \\ 3 \Phi \end{gathered}$	5.4	17.5A		300D1610007	JUNF32024S-MA	24 A	Fig. (a)
	7.5	24A		H300D1620002	JUNF32048S-MA	48 A	Fig. (b)
	10	32A		H300D1620002	JUNF32048S-MA	48 A	Fig. (b)
	15	48A		H300D1730002	JUNF32070S-MA	70 A	Fig. (b)
	20	64A		H300D1730002	JUNF32070S-MA	70 A	Fig. (b)

Inverter			Noise Filter			
V	HP	Rated Current (A)	Code	Specifications	Current	Dimensions
$\begin{gathered} 460 \mathrm{~V} \\ 3 \Phi \end{gathered}$	1	2.6 A	4H300D1720007	JUNF34008S-MA	8 A	Fig. (a)
	2	4A	4H300D1720007	JUNF34008S-MA	8 A	Fig. (a)
	3	4.8A	4H300D1630008	JUNF34012S-MA	12 A	Fig. (a)
	5.4	8.7 A	4H300D1630008	JUNF34012S-MA	12 A	Fig. (a)
	7.5	12A	4H300D1640003	JUNF34024S-MA	24 A	Fig. (b)
	10	15A	4H300D1640003	JUNF34024S-MA	24 A	Fig. (b)
	15	24A	4H300D1740008	JUNF34048S-MA	48 A	Fig. (b)
	20	32 A	4H300D1740008	JUNF34048S-MA	48 A	Fig. (b)
	25	40A	4H000D1770008	KMF370A	70A	Fig. (c)
	30	48A	4H000D1790009	KMF370A	70A	Fig. (c)
	40	64A	4H000D1790009	KMF3100A	100A	Fig. (c)
	50	80A	4H000D1800004	KMF3100A	100A	Fig. (c)
	60	96A	4H000D1800004	KMF3150A	150A	Fig. (c)
	75	128A	4H000D1820005	KMF3180A	180A	Fig. (c)
$\begin{gathered} 575 \mathrm{~V} \\ 3 \Phi \end{gathered}$	1	1.7 A	4H300D1720007	JUNF34008S-MA	8 A	Fig. (a)
	2	3.0 A	4H300D1720007	JUNF34008S-MA	8 A	Fig. (a)
	3	4.2 A	4H300D1630008	JUNF34012S-MA	12 A	Fig. (a)
	5.4	6.6 A	4H300D1630008	JUNF34012S-MA	12 A	Fig. (a)
	7.5	9.9A	4H300D1640003	JUNF34024S-MA	24 A	Fig. (b)
	10	12.2 A	4H300D1640003	JUNF34024S-MA	24 A	Fig. (b)

- Dimension : (unit : mm)

(c)

Model	Dimension (mm)								
	W	W1	H	H1	D	d	M		
KMF370A	93	79	312	298	190	7	M6		
KMF3100A	93	79	312	298	190	7	M6		
KMF3150A	126	112	334	298	224	7	M6		
KMF3180A	126	112	334	298	224	7	M6		

B. EMI SUPPRESSION ZERO PHASE CORE

- Model : JUNFOC046S
- Code No. : 4H000D0250001
- According to the required power rating and wire size, select the matched ferrite core to suppress EMI noise.
- The ferrite core can attenuate the frequency response at high frequency range (from 100 KHz to 50 MHz , as shown below). It should be able to attenuate the RFI from inverter to outside.
- The zero-sequence noise ferrite core can be installed either on the input side or on the output side. The wire around the core for each phase should be winded by following the same convention and one direction. The more winding turns the better attenuation effect. (Without saturation). If the wire size is too big to be winded, all the wire can be grouped and go through these several cores together in one direction.
- Frequency attenuation characteristics (10 windings case)

Example: EMI suppression zero phase core application example

Note: All the line wire of U/T1, V/T2, W/T3 phase must pass through the same zero-phase core in the same winding sense.

LCD operator with extension wire

When used for remote control purpose, the LCD operator can have different extension wires based upon the applications. Some extension wires are listed below.

Cable Length	Extension Cable Set *1	Extension Cable *2	Blank Cover *3
1 m	4H332D0010000	4H314C0010003	
2 m	4H332D0030001	4H314C0030004	4H300D1120000
3 m	4H332D0020005	4H314C0020009	
5 m	4H332D0040006	4H314C0040000	
10 m	4H332D0130005	4H314C0060001	

*1 : Including special cable for LCD digital operator, blank cover, fixed use screws and installation manual.
*2: One special cable for LCD digital operator.
*3 : A blank cover to protect against external dusts, metallic powder, etc.
The physical dimension of LCD digital operator is drawn below.

Fig. 6. LCD Digital Operator Dimension

Analog operator

All MA7200 have the digital LCD digital operator. Moreover, an analog operator as JNEP-16 (shown in fig. 7) is also available and can be connected through wire as a portable operator. The wiring diagram is shown below.

Fig. 7. Analog Operator

PROFIBUS Communication Card

- Code No. : 4H300D0290009
- Please refer to the appendix D and "MA7200 PROFIBUS-DP Communication Application manual" for communication interface.

1.11 FUSE TYPES

230 V class

MODEL	HP	KVA	100\% CONT. Output AMPS	Rated Input AMPS	3Ф FUSE Rating	1Ф FUSE Rating
JNTMBG $\square \square 0001 \mathrm{JK}$	1	2	4.8	6	12	15
JNTMBG $\square \square 0002 \mathrm{JK}$	2	2.7	6.4	8	15	20
JNTMBG $\square \square 0003 \mathrm{JK}$	3	4	9.6	12	20	25
JNTMBG $\square \square 0005 \mathrm{JK}$	5	7.5	17.5	21	30	x
JNTMBG $\square \square 7$ R50JK	7.5	10.1	24	29	50	x
JNTMBG $\square \square 0010 \mathrm{JK}$	10	13.7	32	38	60	x
JNTMBG $\square \square 0015 \mathrm{JK}$	15	20.6	48	58	100	x
JNTMBG $\square \square 0020 \mathrm{JK}$	20	27.4	64	77	125	x
JNTMBG $\square \square 0025 \mathrm{JK}$	25	34	80	88	125	x
JNTMBG $\square \square 0030 \mathrm{JK}$	30	41	96	106	150	x
JNTMBG $\square \square 0040 \mathrm{JK}$	40	54	130	143	200	x

460 V class

MODEL	HP	KVA	100\% CONT. Output AMPS	Rated Input AMPS	FUSE Rating
JNTMBG $\square \square 0001 \mathrm{AZ}$	1	2.2	2.6	3	6
JNTMBG $\square \square 0002 \mathrm{AZ}$	2	3.4	4	5	10
JNTMBG $\square \square 0003 \mathrm{AZ}$	3	4.1	4.8	6	10
JNTMBG $\square \square 0005 \mathrm{AZ}$	5	7.5	8.7	10	20
JNTMBG $\square \square 7$ R50AZ	7.5	10.3	12	14	25
JNTMBG $\square \square 0010 \mathrm{AZ}$	10	12.3	15	18	30
JNTMBG $\square \square 0015 \mathrm{AZ}$	15	20.6	24	29	50
JNTMBG $\square \square 0020 \mathrm{AZ}$	20	27.4	32	38	60
JNTMBG $\square \square 0025 \mathrm{AZ}$	25	34	40	48	70
JNTMBG $\square \square 0030 \mathrm{AZ}$	30	41	48	53	80
JNTMBG $\square \square 0040 \mathrm{AZ}$	40	54	64	70	100
JNTMBG $\square \square 0050 \mathrm{AZ}$	50	68	80	88	125
JNTMBG $\square \square 0060 \mathrm{AZ}$	60	82	96	106	150
JNTMBG $\square \square 0075 \mathrm{AZ}$	75	110	128	141	200

575 V class

MODEL	HP	KVA	100\% CONT. Output AMPS	Rated Input AMPS	FUSE Rating
JNTMBG $\square \square$ 0001AX	1	1.7	1.7	2.2	5
JNTMBG $\square \square 0002$ AX	2	3.0	3.0	3.75	8
JNTMBG $\square \square 0003$ AX	3	4.2	4.2	5.25	10
JNTMBG $\square \square 0005$ AX	5	6.6	6.6	8.25	25
JNTMBG $\square \square$ 7R50AX	7.5	9.9	9.9	12.4	25
JNTMBG $\square \square 0010$ AX	10	12.2	12.2	15.25	30

Fuse Type UL designated SEMICONDUCTOR PROTECTION FUSES

Class CC,J,T,RK1 or RK5

Voltage Range: 300 V for drives with 230 V class VFD
500 V for drives with 460 V class VFD

2. Using LCD Digital Operator

Functions of LCD digital operator

JNEP-36A LCD digital operator has 2 modes: DRIVE mode and PRGM mode. When the inverter is stopped, DRIVE mode or PRGM mode can be selected by pressing the key $\frac{\text { PRGM }}{\text { DRIVE }}$. In DRIVE mode, the operation is enabled. Instead, in the PRGM mode, the parameter settings for operation can be changed but the operation is not enabled. The component names and function are shown as below:

Fig. 8. LCD Digital operator

- Remote/Local switch function:
- Local mode - RUN command input from LCD Digital Operator (SEQ LED off)
- Frequency command input from LCD Digital Operator (REF LED off)
- Remote mode-RUN command input from control circuit (when $\mathrm{Sn}-04=1$) or RS-485 comm. port (when Sn-04=2) (SEQ LED lit)
-Frequency command input from control circuit (when $\mathrm{Sn}-05=1$) or RS-485 comm. port (when Sn-05=2) (REF LED lit)
- The $\frac{\text { LOCAL }}{\text { REMOTE }}$ key is used as Local/Remote key. It can be set as JOG key when P1-03 $=1$.

Table 7 Key's functions

Key	Name	Function
(PRGM	PRGM/DRIVE key	Switches over between program mode (PRGM) and drive mode (DRIVE).
DSPL	DSPL key	Display operation status
LOCAL	Remote/Local /JOG key	$($ P1-03 $=0)$ Switch the Local/Remote Function (P1-03 = 1) Enable jog operation from LCD digital operator in operation (DRIVE).
($\frac{\text { FWD }}{\text { REV }}$	FWD/REV key	Select the rotation direction from LCD digital operator.
$>_{\text {RESET }}$	RESET key	Set the number of digital for user constant settings. Also It acts as the reset key when a fault has occurred.
N	INCREMENT key	Select the menu items, groups, functions, and user constant name, and increment set values.
W	DECREMENT key	Select the menu items, groups, functions, and user constant name, and decrement set values.
$\frac{\text { EDIT }}{\text { ENTER }}$	EDIT/ENTER key	Select the menu items, groups, functions, and user constants name, and set values (EDIT). After finishing the above action, press the key (ENTER).
RUN	RUN key	Start inverter operation in (DRIVE) mode when the digital operator is used. The LED will light.
$\stackrel{\circ}{\mathrm{STOP}}$	STOP key	Stop inverter operation from LCD digital operator. The STOP key can be enabled or disabled by setting the parameter $\mathrm{Sn}-07$ when operating from the control circuit terminal.

RUN, STOP indicator lights or blinks to indicate the 3 operating status:

㴆关 ON

■ Display contents in DRIVE mode and PRGM mode

*1 When the inverter is powered up, the inverter system immediately enters into DRIVE mode. Press the $\frac{\text { PRGM }}{\text { DRIVE }}$ key, the system will switch into PRGM mode. If the fault occurs, press the $\frac{\text { PRGM }}{\text { DRIVE }}$ key and enter into DRIVE mode to monitor the corresponding Un- $\square \square$ contents. If a fault occurs in the DRIVE mode, the corresponding fault will be displayed. Press the $\underset{\text { RESET }}{\rightarrow}$ key and reset the fault.
*2 The monitored items will be displayed according to the settings of $\mathrm{Bn}-12$ and $\mathrm{Bn}-13$.
*3 When in the DRIVE mode, press the \quad DSPL key and $\underset{\text { RESET }}{\rightarrow}$ key, the setting values of Sn - and $\mathrm{Cn}-\square \square$ will only be displayed for monitoring but not for changing or setting.

- Parameter description

The inverter has 9 groups of user parameters:

Parameters	Description
An- $\square \square$	Frequency command
Bn- $\square \square$	Parameter groups can be changed during running
Sn- $\square \square$	System parameter groups (can be changes only after stop)
Cn- $\square \square$	Control parameter groups (can be changed only after stop)
P1- $\square \square$	HVAC parameter groups (can be changed only after stop)
P2- $\square \square$	HVAC parameter groups (can be changed during running)
P3- $\square \square$	HVAC parameter groups (can be changed only after stop)
P4- $\square \square$	HVAC parameter groups (can be changed only after stop)
P5- $\square \square$	HVAC parameter groups (can be changed during running)

The parameter setting of $\mathrm{Sn}-03$ (operation status) will determine if the setting value of different parameter groups are allowed to be changed or only to be monitored, as shown below:

$\mathrm{Sn}-03$	DRIVE mode		PRGM mode	
	To be set	To be monitored	To be set	To be monitored
$0^{* 1}$	$\mathrm{An}, \mathrm{Bn}, \mathrm{P} 2, \mathrm{P} 5$	$(\mathrm{Sn}, \mathrm{Cn})^{* 2}$ $\mathrm{P} 1, \mathrm{P} 3, \mathrm{P4} 4$	$\mathrm{An}, \mathrm{Bn}, \mathrm{Sn}, \mathrm{Cn}$, $\mathrm{P} 1 \sim \mathrm{P} 5$	-
1	An	$\mathrm{Bn},(\mathrm{Sn}, \mathrm{Cn})^{* 2}$ $\mathrm{P} 1 \sim \mathrm{P} 5$	An	$\mathrm{Bn}, \mathrm{Sn}, \mathrm{Cn}$, $\mathrm{P} 1 \sim \mathrm{P} 5$

*1: Factory setting
*2: When in DRIVE mode, the parameter group Sn -, Cn - can only be monitored if the $\underset{\text { RESEI }}{\rightarrow}$ key and the DSPL key are to be pressed simultaneously.
*3 : Parameters P4-01~P4-04 can be monitored only during DRIVE mode.
Parameters P4-05 can be set and monitored during DRIVE mode.
*4 : After a few trial and adjustment, the setting value $\mathrm{Sn}-03$ is set to be " 1 " so that these parameters can't be modified again.

Example of using LCD digital operator

Note :
Before operation: Control parameter $\mathrm{Cn}-01$ value must be set as the input AC voltage value. For example, Cn-01=380 if AC input voltage is 380 .

This example will explain the operating of the inverter according to the following time chart.

■ OPERATION MODE

Example of operation

Description			Key Sequence	Digital Operator Display	Remark
(1)	When Power on	Select frequency reference value displayed Select PRGM mode Select CONTROL PARAMETER Display Cn-01 setting Input Voltage 380V		$\begin{array}{\|c\|} \hline \text { Freq. Cmd. } 000.00 \mathrm{~Hz} \\ \text { TECO } \\ \hline \end{array}$	
	\downarrow		PRGM	$\begin{array}{\|r} \hline \text { An -01 } \\ \text { Freq. Cmd. } 1 \\ \hline \end{array}$	LED DRIVE OFF
	Input voltage setting (e.g. AC			Cn -01Input Voltage	
	input voltage is 380 V)		$\begin{array}{\|l\|l\|} \hline \text { EDIT } \\ \text { ENTER } \\ \hline \end{array}$	$\begin{gathered} \hline \text { Cn-01 = 440.OVV } \\ \text { Input Voltage } \\ \hline \end{gathered}$	
			$\rightarrow \mathbb{R}$	$\begin{gathered} \hline \text { Cn-01 = 3880.0V } \\ \text { Input Voltage } \\ \hline \end{gathered}$	Display for 0.5 sec
	(continued)		EDIT	Entry Accepted	

\square Example of display (use \mathbb{N} and \mathbb{M} keys to display monitored items/contents)

Description	Key Sequence	Digital Operator Display	Remark
- Display Frequency Command - Display Moniter Contents *1 - Display Output Current - Display Output Voltage - Display DC Voltage - Display Output Voltage - Display Output Current	DSPL	Freq. Cmd. 60.00 Hz TECO Freq. Cmd. 60.00 Hz O/P Freq. 60.00 Hz Freq. Cmd. 60.00 Hz O/P I 12.5 A Freg. Cmd. 60.00 Hz O/P Volt. 220.0 V Freq. Cmd. 60.00 Hz DC Volt. 310.0 V Freg. Cmd. 60.00 Hz O/P Volt. 220.0 V Freq. Cmd. 60.00 Hz O/P I 12.5 A	

*1. The monitor contents can be selected by the setting of $\mathrm{Bn}-12$ and $\mathrm{Bn}-13$

3. Parameter Setting

3.1 Frequency command (in Multi-speed operation) $\quad \mathrm{An}^{{ }^{* 1}-}-\square$

Under the DRIVE mode, the user can monitor the parameters and set their values.

Parameter No.	Name	LCD Display (English)	Setting Range	Setting*2 Unit	Factory Setting	Ref. Page
An-01	Frequency Command 1	$\mathrm{An}-01=000.00 \mathrm{~Hz}$ Freq. Cmd. 1	0.00~400.00Hz	0.01 Hz	0.00Hz	$\begin{aligned} & 3-51 \\ & 3-67 \\ & 3-68 \end{aligned}$
An-02	Frequency Command 2	$\mathrm{An}-02=000.00 \mathrm{~Hz}$ Freq. Cmd. 2	0.00~400.00Hz	0.01 Hz	0.00Hz	
An-03	Frequency Command 3	$\mathrm{An}-03=000.00 \mathrm{~Hz}$ Freq. Cmd. 3	0.00~400.00Hz	0.01 Hz	0.00Hz	
An-04	Frequency Command 4	$\mathrm{An}-04=000.00 \mathrm{~Hz}$ Freq. Cmd. 4	0.00~400.00Hz	0.01 Hz	0.00Hz	
An-05	Frequency Command 5	$\begin{gathered} \text { An }-05=000.00 \mathrm{~Hz} \\ \text { Freq. Cmd. } 5 \\ \hline \end{gathered}$	0.00 $\sim 400.00 \mathrm{~Hz}$	0.01 Hz	0.00Hz	
An-06	Frequency Command 6	$\mathrm{An}-06=000.00 \mathrm{~Hz}$ Freq. Cmd. 6	0.00~400.00Hz	0.01 Hz	0.00Hz	
An-07	Frequency Command 7	An-07=000.00Hz Freq. Cmd. 7	0.00~400.00Hz	0.01 Hz	0.00Hz	
An-08	Frequency Command 8	An-08 $=000.00 \mathrm{~Hz}$ Freq. Cmd. 8	0.00~400.00Hz	0.01 Hz	0.00Hz	
An-09	Frequency Command 9	$\mathrm{An}-09=000.00 \mathrm{~Hz}$ Freq. Cmd. 9	0.00~400.00Hz	0.01 Hz	0.00Hz	
An-10	Frequency Command 10	$\mathrm{An}-10=000.00 \mathrm{~Hz}$ Freq. Cmd. 10	0.00~400.00Hz	0.01 Hz	0.00Hz	
An-11	Frequency Command 11	$\mathrm{An}-11=000.00 \mathrm{~Hz}$ Freq. Cmd. 11	0.00~400.00Hz	0.01 Hz	0.00Hz	
An-12	Frequency Command 12	$\mathrm{An}-12=000.00 \mathrm{~Hz}$ Freq. Cmd. 12	0.00~400.00Hz	0.01 Hz	0.00Hz	
An-13	Frequency Command 13	$\mathrm{An}-13=000.00 \mathrm{~Hz}$ Freq. Cmd. 13	0.00~400.00Hz	0.01 Hz	0.00Hz	
An-14	Frequency Command 14	$\mathrm{An}-14=000.00 \mathrm{~Hz}$ Freq. Cmd. 14	0.00 $\sim 400.00 \mathrm{~Hz}$	0.01 Hz	0.00Hz	
An-15	Frequency Command 15	$\mathrm{An}-15=000.00 \mathrm{~Hz}$ Freq. Cmd. 15	0.00 $\sim 400.00 \mathrm{~Hz}$	0.01 Hz	0.00Hz	
An-16	Frequency Command 16	$\mathrm{An}-16=000.00 \mathrm{~Hz}$ Freq. Cmd. 16	0.00 $\sim 400.00 \mathrm{~Hz}$	0.01 Hz	0.00Hz	
An-17	Jog Frequency Command	$\mathrm{An}-17=000.00 \mathrm{~Hz}$ Jog Freq. Cmd.	0.00 $\sim 400.00 \mathrm{~Hz}$	0.01Hz	6.00 Hz	$\begin{aligned} & 3-51 \\ & 3-53 \end{aligned}$

*1. At factory setting, the value of "Setting Unit" is 0.01 Hz .
*2. The displayed "Setting Unit" can be changed through the parameter Cn-28 and P1-01.

3.2 Parameters Groups Can Be Changed during Running Bn-

\square
Under the DRIVE mode, the Parameter group can be monitored and set by the users.

Function	Parameter No.	Name	LCD display (English)	Setting range	Setting Unit	Factory Setting	Ref. Page
Acc/Dec time	Bn-01	Acceleration Time 1	$\mathrm{Bn}-01=0010.0 \mathrm{~s}$ Acc. Time 1	$0.0 \sim 6000.0 \mathrm{~s}$	0.1s	30.0s	3-4
	Bn-02	Deceleration Time 1	$\begin{gathered} \hline \mathrm{Bn}-02=0010.0 \mathrm{~s} \\ \text { Dec. Time } 1 \end{gathered}$	$0.0 \sim 6000.0 \mathrm{~s}$	0.1s	30.0s	
	$\mathrm{Bn}-03$	Acceleration Time 2	$\mathrm{Bn}-03=0010.0 \mathrm{~s}$ $\text { Acc. Time } 2$	0.0~6000.0s	0.1 s	30.0s	
	Bn-04	Deceleration Time 2	$\begin{gathered} \text { Bn-04= } 0010.0 \mathrm{~s} \\ \text { Dec. Time } 2 \end{gathered}$	$0.0 \sim 6000.0 \mathrm{~s}$	0.1s	30.0s	
Analog Frequency	Bn-05	Analog Frequency Cmd. Gain (Voltage)	$\begin{gathered} \mathrm{Bn}-05=0100.0 \% \\ \text { Voltage Cmd. Gain } \end{gathered}$	0.0~1000.0\%	0.10\%	100.00\%	3-5
	Bn-06	Analog Frequency Cmd. Bias (Voltage)	$\begin{gathered} \mathrm{Bn}-06=000.0 \% \\ \text { Voltage Cmd. Bias } \end{gathered}$	-100.0\% ~ 100.0\%	0.10\%	0.00\%	
	Bn-07	Analog Frequency Cmd Gain. (Current)	$\begin{aligned} & \text { Bn-07= 0100.0\% } \\ & \text { Current Cmd. Gain } \end{aligned}$	0.0~1000.0\%	0.10\%	100.00\%	
	Bn-08	Analog Frequency Cmd Bias (Current)	$\begin{gathered} \text { Bn-08= } 000.0 \% \\ \text { Current Cmd. Bias } \end{gathered}$	-100.0\% ~ 100.0\%	0.10\%	0.00\%	
	Bn-09	Multi-Function Analog Input Gain	$\begin{aligned} & \text { Bn-09=0100.0\% } \\ & \text { Multi_Fun. } \sim \text { Gain } \end{aligned}$	0.0~1000.0\%	0.10\%	100.00\%	3-5
	$\mathrm{Bn}-10$	Multi-Function Analog Input Bias	$\mathrm{Bn}-10=000.0 \%$ Multi_Fun. ~Bias	-100.0\% ~ 100.0\%	0.10\%	0.00\%	
Torque Boost	$\mathrm{Bn}-11$	Auto Torque Boost Gain	$\begin{gathered} \mathrm{Bn}-11=0.5 \\ \text { Auto_Boost Gain } \end{gathered}$	$0.0 \sim 2.0$	0.1	0.5	3-5
Monitor	$\mathrm{Bn}-12$	Monitor 1	$\begin{gathered} \mathrm{Bn}-12=01 \\ \text { Display: Freq.Cmd. } \end{gathered}$	1~30	1	1	3-6
	$\mathrm{Bn}-13$	Monitor 2	$\begin{gathered} \mathrm{Bn}-13=19 \\ \text { Display: PID FBK. } \\ \hline \end{gathered}$	1~30	1	19	
Multi- Function Analog Output	Bn-14	Multi-Function Analog Output A01 Gain	$\begin{gathered} \mathrm{Bn}-14=1.00 \\ \sim \text { Output A01 Gain } \end{gathered}$	$0.01 \sim 2.55$	0.01	1	3-7
	Bn-15	Multi-Function Analog Output AO2 Gain	$\begin{gathered} \mathrm{Bn}-15=1.00 \\ \sim \text { Output AO2 Gain } \end{gathered}$	$0.01 \sim 2.55$	0.01	1	
PID Control	Bn-16	PID Detection Gain	$\begin{aligned} & \text { Bn-16=01.00 } \\ & \text { PID Cmd. Gain } \end{aligned}$	$0.01 \sim 10.00$	0.01	1	APP-1
	$\mathrm{Bn}-17$	PID Proportional Gain	$\begin{gathered} \text { Bn-17= } 01.00 \\ \text { PID P_gain } \\ \hline \end{gathered}$	0.01~10.00	0.01	1	
	Bn-18	PID integral time	$\begin{gathered} \hline \mathrm{Bn}-18=10.00 \mathrm{~s} \\ \text { PID I_Time } \\ \hline \end{gathered}$	0.00 $\sim 100.00 \mathrm{~s}$	0.01s	10.00s	
	Bn -19	PID Differential Time	$\begin{gathered} \mathrm{Bn}-19=0.00 \mathrm{~s} \\ \text { PID D_Time } \end{gathered}$	0~1.00s	0.01s	0.00s	
	Bn-20	PID Bias	$\begin{gathered} \hline \mathrm{Bn}-20=0 \% \\ \text { PID Bias } \end{gathered}$	0~109\%	1\%	0\%	

Function	Parameter No.	Name	LCD display (English)	Setting range	Setting Unit	Factory Setting	Ref. Page
Auto_Run Time Function	Bn-21	1st_Step Time Under Auto_Run Mode	$\mathrm{Bn}-21=0000.0 \mathrm{~s}$ Time 1	0.0~6000.0s	0.1s	0.0s	$\begin{aligned} & 3-67 \\ & 3-68 \end{aligned}$
	Bn-22	2nd_Step Time Under Auto_Run Mode	$\mathrm{Bn}-22=0000.0 \mathrm{~s}$ Time 2	0.0~6000.0s	0.1s	0.0s	
	Bn-23	3rd_Step Time Under Auto_Run Mode	$\begin{gathered} \hline \mathrm{Bn}-23=0000.0 \mathrm{~s} \\ \text { Time } 3 \end{gathered}$	0.0~6000.0s	0.1s	0.0s	
	Bn-24	4th_Step Time Under Auto_Run Mode	$\begin{gathered} \mathrm{Bn}-24=0000.0 \mathrm{~s} \\ \text { Time } 4 \end{gathered}$	0.0~6000.0s	0.1s	0.0s	
	Bn-25	5th_Step Time Under Auto_Run Mode	$\begin{gathered} \hline \mathrm{Bn}-25=0000.0 \mathrm{~s} \\ \quad \text { Time } 5 \end{gathered}$	0.0~6000.0s	0.1s	0.0s	
	Bn-26	6th_Step Time Under Auto_Run Mode	$\begin{gathered} \mathrm{Bn}-26=0000.0 \mathrm{~s} \\ \quad \text { Time } 6 \\ \hline \end{gathered}$	0.0~6000.0s	0.1s	0.0s	
	Bn-27	7th_Step Time Under Auto_Run Mode	$\mathrm{Bn}-27=0000.0 \mathrm{~s}$ Time 7	0.0~6000.0s	0.1s	0.0s	
	Bn-28	8th_Step Time Under Auto_Run Mode	$\begin{gathered} \hline \mathrm{Bn}-28=0000.0 \mathrm{~s} \\ \text { Time } 8 \end{gathered}$	0.0~6000.0s	0.1s	0.0s	
	Bn-29	9th_Step Time Under Auto_Run Mode	$\begin{gathered} \mathrm{Bn}-29=0000.0 \mathrm{~s} \\ \text { Time } 9 \end{gathered}$	0.0~6000.0s	0.1s	0.0s	
	Bn-30	10th_Step Time Under Auto_Run Mode	$\mathrm{Bn}-30=0000.0 \mathrm{~s}$ Time 10	0.0~6000.0s	0.1s	0.0s	
	Bn-31	11th_Step Time Under Auto_Run Mode	$\begin{gathered} \hline \mathrm{Bn}-31=0000.0 \mathrm{~s} \\ \quad \text { Time } 11 \\ \hline \end{gathered}$	0.0~6000.0s	0.1s	0.0s	
	Bn-32	12th_Step Time Under Auto_Run Mode	$\begin{gathered} \hline \mathrm{Bn}-32=0000.0 \mathrm{~s} \\ \quad \text { Time } 12 \\ \hline \end{gathered}$	0.0~6000.0s	0.1s	0.0s	
	Bn-33	13th_Step Time Under Auto_Run Mode	Bn-33= 0000.0s Time 13	0.0~6000.0s	0.1s	0.0s	
	Bn-34	14th_Step Time Under Auto_Run Mode	$\mathrm{Bn}-34=0000.0 \mathrm{~s}$ Time 14	0.0~6000.0s	0.1s	0.0s	
	Bn-35	15th_Step Time Under Auto_Run Mode	$\mathrm{Bn}-35=0000.0 \mathrm{~s}$ $\text { Time } 15$	0.0~6000.0s	0.1s	0.0s	
	Bn-36	16th_Step Time Under Auto_Run Mode	$\mathrm{Bn}-36=0000.0 \mathrm{~s}$ Time 16	0.0~6000.0s	0.1s	0.0s	
Timer Function	Bn-37	Timer Function On_Delay Time	$\mathrm{Bn}-37=0000.0 \mathrm{~s}$ ON_delay Setting	0.0~6000.0s	0.1s	0.0s	3-8
	Bn-38	Timer Function Off_Delay Time	$\begin{gathered} \mathrm{Bn}-38=0000.0 \mathrm{~s} \\ \text { OFF_delay Setting } \end{gathered}$	0.0~6000.0s	0.1s	0.0s	
Energy Saving	Bn-39	Energy_Saving Gain	$\begin{gathered} \text { Bn-39 }=100 \% \\ \text { Eg.Saving Gain } \end{gathered}$	50~150\%	1\%	100\%	3-9
Monitor	Bn-40	Monitor 3	$\begin{gathered} \mathrm{Bn}-40=00 \\ \text { Display: Set_Freq. } \end{gathered}$	00~30	1	0	3-9

Function	Parameter No.	Name	LCD display (English)	Setting range	Setting Unit	Factory Setting	Ref. Page
Pulse Input	Bn-41	Pulse Input Upper Limit	$\mathrm{Bn}-41=1440 \mathrm{~Hz}$ Pulse_Mul. Up_Bound	1440~32000	1 Hz	1440	3-10
	Bn-42	Pulse Input Gain	$B n-41=100.0 \%$ Pulse_Mul._Gain	0.0~1000.0	0.10\%	100	
	Bn-43	Pulse Input Bias	$\mathrm{Bn}-41=000.0 \%$ Pulse_Mul._Bias	-100.0~100.0	0.1Hz	0	
	Bn-44	Pulse Input Delay Time	$\mathrm{Bn}-41=0.10 \mathrm{~s}$ Pulse_Mul. Filter	0.00~2.00	0.01s	0.1	
-	Bn-45*1	Not Used	-	-	-	-	-
	Bn-46*1	Not Used	-	-	-	-	

*1. These parameters are not available for 77.01 and later software versions.
*2 Acceleration /Deceleration Time Factory Setting is 30 second for 575 V class $1-10 \mathrm{HP}$.
(1) Acceleration Time 1 (Bn-01)
(2) Deceleration Time 1 ($\mathrm{Bn}-02$)
(3) Acceleration Time $2(\mathrm{Bn}-03)$
(4) Deceleration Time $2(\mathrm{Bn}-04)$

Set individual Acceleration/Deceleration times
Acceleration time: the time required to go from 0% to 100% of the maximum output frequency
Deceleration time: the time required to go from 100% to 0% of the maximum output frequency
If the acceleration/deceleration time sectors 1 and 2 are input via the multi-function inputs terminal (5) (8), the acceleration/Deceleration can be switched between 2 sectors even in the running status.

Fig. 9. Acceleration and Deceleration time
Note :

1. To set the S-curve characteristics function, please refer to the description of $\mathrm{Cn}-41 \sim \mathrm{Cn}-44$.
2. The S-curve characteristic times can be set respectively for beginning-accel. end-accel., beginning-decel., and end-decel. through the parameters setting of $\mathrm{Cn}-41 \sim \mathrm{Cn}-44$.
(5) Analog Frequency Command Gain (Voltage) (Bn-05)
(6) Analog Frequency Command Bias (Voltage) (Bn-06)
(7) Analog Frequency Command Gain (Current) (Bn-07)
(8) Analog Frequency Command Bias (Current) (Bn-08)
(9) Multi-function Analog Input Gain
(10) Multi-function Analog Input Bias (Bn-10)
For every different analog frequency command (voltage or current) and multi-function analog inputs, their corresponding gain and bias should be specified respectively.

Fig. 10. Analog input gain and bias
(11) Auto Torque Boost Gain
(Bn-11)
The inverter can increase the output torque to compensate the load increase automatically through the auto torque boost function. Then the output voltage will increase. As a result, the fault trip cases can be decreased. The energy efficiency is also improved. In the case that the wiring distance between the inverter and the motor is too long (e.g. more than 100m), the motor torque is a little short because of voltage drop. Increase the value of Bn-11 gradually and make sure the current will not increase too much. Normally, no adjustment is required.

Fig. 11. Adjust the auto torque boost gain $\mathrm{Bn}-11$ to increase the output torque.
If the driven motor capacity is less than the inverter capacity (Max. applicable motor capacity), raise the setting.
If the motor generates excessive oscillation, lower the setting.
(12) Monitor 1 (Bn-12)
(13) Monitor 2 (Bn-13)

In the DRIVE mode, 2 inverter input/output statuses can be monitored at the same time. The specified items can be set through the setting of Bn-12 and Bn-13. For more details, refer to Table 8.
Example:

(1)	$\begin{aligned} & \mathrm{Bn}-12=02 \\ & \mathrm{Bn}-13=01 \end{aligned}$	Display	O/P Freq. Freq.Cmd.	$\begin{aligned} & 15.00 \mathrm{~Hz} \\ & 15.00 \mathrm{~Hz} \end{aligned}$
(2)	$\mathrm{Bn}-12=03$	Display	O/P I	21.0 A
	$\mathrm{Bn}-13=05$		DC Volt	311 V
(3)) $\mathrm{Bn}-12=11$	Display	I/P Term.	00101010
	$\mathrm{Bn}-13=12$		O/P Term.	00010010

Note: While monitoring, use the $\mathbb{\triangle}$ or key to show the next lower-row displayed. But the setting of $\mathrm{Bn}-12$ and $\mathrm{Bn}-13$ does not change.

Table 8 Setting of Monitoring contents

Setting	Monitoring contents	Description
01	Freq.Cmd.	Frequency Command
02	O/P Freq.	Output Frequency
03	O/P I	Output Current
04	O/P V	Output Voltage
05	DC Volt	Main Circuit DC Voltage
06	Term. VIN	Terminal Command VIN
07	Term. AIN	Terminal Command AIN
08	Term. AUX	Terminal Command AUX
09	O Output	Analog Output AO1
10	OOutput	Analog Output AO2
11	I/P Term	Input Terminal Status
12	O/P Term	Output Terminal Status
13	Sp. FBK	PG Speed Feedback
14	Sp. Compen.	PG Speed Compensation
15	PID I/P	PID Input
16	PID O/P	PID Output 1
17	PID O/P	PID Output 2
18	Motor Sp.	Motor Speed

In the 77.01 and later versions, 8 additional monitor contents are added for HVAC application. Below is the list of the monitor contents for HVAC application.

Setting	Monitoring contents	Description
19	PID FBK.	PID Feedback
20	PID Sleep	PID Sleep Status
21	O/P Power	Output Power
22	Reserved	Reserved
23	Reserved	Reserved
24	Reserved	Reserved
25	Reserved	Reserved
26	FLOW	Flow Meter Display
27	E_PID FBK	External PID Feedback
28	E_PID I/P	External PID Input
29	E_PID O/P	External PID Output 1
30	E_PID O/P	External PID Output 2

(14) Multi-function Analog Output AO1 Gain (Bn-14)
(15) Multi-function Analog Output AO1 Gain (Bn-15)

Multi-function analog output AO 1 and AO 2 can be set for their individual voltage level respectively.

(16) PID Detection Gain
(17) PID Proportional Gain
(18) PID Integral Time
(19) PID Differential Time
(20) PID Bias
(Bn-16)
(Bn-17)
(Bn-18)
(Bn-19)
(Bn-20)

- Please see the appendix A "PID Control Function" for more details.
(21) Time Setting in Auto_Run Mode ($\mathrm{Bn}-21 \sim \mathrm{Bn}-36$)

In Auto_Run mode, the time setting for individual step is described on "($\mathrm{Sn}-44 \sim 60$) auto run mode selection and enable".
(22) Timer ON_Delay Time (Bn-37)
(23) Timer OFF_Delay Time (Bn-38)

The timer function is enabled when the timer function input setting ($\mathrm{Sn}-25 \sim 28=19$) and its timer function output setting ($\mathrm{Sn}-30 \sim 32=21$) are set for the multi-function input and output respectively.
These inputs and outputs serve as general-purpose I/O. Setting ON/OFF delay time ($\mathrm{Bn}-37 / 38$) for the timer can prevent chattering of sensors, switches and so on.
When the timer function input ON times is longer than the value set for $\mathrm{Bn}-37$, the timer function output turns ON.
When the timer function input OFF time is longer than the value set for $\mathrm{Bn}-38$, the timer function output turns OFF. An example is shown below.

Fig. 12. An operation example of timer function
(24) Energy Saving Gain (Bn-39)

Input the energy saving command while a light load causes the inverter output voltage to be reduced and save energy. Set this value as a percentage of the V/F pattern. The setting range is $50 \sim 150 \%$. The factory setting is 100% and the energy saving function is disabled. If the energy saving gain $\mathrm{Bn}-39$ is not 100%, the energy saving function is enabled.
In energy saving mode $(\mathrm{Bn}-39 \neq 100)$, the output voltage will automatically decrease and be proportional to energy saving gain $\mathrm{Bn}-39$. The $\mathrm{Bn}-39$ setting should not be small so that the motor will not stall.
The energy saving function is disabled in the PID close-loop control and during acceleration and deceleration.

Fig. 13. Time chart for energy-saving operation
(25) Monitor 3 (Bn-40)

The parameter sets immediate display content as power on.
When $\mathrm{Bn}-40=00$, inverter power on, the first line will display frequency command, while the second line will display characters "TECO" as following diagram:

Freq. Cmd. : 15.00 Hz TECO

When $\mathrm{Bn}-40 \neq 00$, that is $\mathrm{Bn}-40=01 \sim 30$, LCD will display the set monitor items while inverter power on. The first line display content is determined by $\mathrm{Bn}-12$. The second line is determined by $\mathrm{Bn}-40$ as following diagram:

Set $B n-12=01$
$\mathrm{Bn}-40=02$
Freq.Cmd.: $\quad 15.00$ Hz
O/P Freq.: $\quad 00.00 \mathrm{~Hz}$
$\mathrm{Bn}-40=01 \sim 30$ parameter description is same with $\mathrm{Bn}-12, \mathrm{Bn}-13$. Please refer to Table 8, "Setting of Monitoring contents".
(26) Pulse Input setting ($\mathrm{Bn}-41 \sim \mathrm{Bn}-44$)

Setting $\mathrm{Sn}-05=3$ before starting Pulse Input function. Please refer to $\mathrm{Sn}-05$. Please refer to the following figure:

Fig. 14. Pulse Input Function

- The pulse input wiring is the same as PG feedback, IP12 and IG12 need external power supply.
- Pulse input can be used by open collector or complementary interface.
- The wiring please refer to appendix C, wiring for PG feedback use.
(27) PID Feedback Display at 0\%
(Bn-45)
(28) PID Feedback Display at 100%

These parameters are not available for software version 77.01 and later versions. Please use parameter Feedback Maximum (P1-02) instead.

See "MA7200 PLUS INVERTER SERIES Supplement for Fan and Pump" for more information about P1-02.

3.3 Control Parameters Cn- $\square \square$

Function	Parameter No.	Name	LCD display (English)	Setting range	Setting Unit	Factory Setting	$\begin{aligned} & \text { Ref. } \\ & \text { Page } \end{aligned}$
VIF Pattern Setting	Cn-01	Input Voltage	$\mathrm{Cn}-01=230.0 \mathrm{~V}$ Input Voltage	$150.0 \sim 255.0{ }^{+1}$	0.1 V	$230.0 \mathrm{~V}^{* 1}$	3-14
	Cn-02	Max. Output Frequency	$\begin{aligned} & \mathrm{Cn}-02=060.0 \mathrm{~Hz} \\ & \text { Max. O/P Freq. } \\ & \hline \end{aligned}$	$50.0 \sim 400.0 \mathrm{~Hz}$	0.1Hz	60.0Hz	3-14
	Cn-03	Max. Output Voltage	$\mathrm{Cn}-03=230.0 \mathrm{~Hz}$ Max. Voltage	$0.1 \sim 255.0 \mathrm{~V}^{* 1}$	0.1 V	$230.0{ }^{* 1}$	
	Cn-04	Max. Voltage Frequency	$\mathrm{Cn}-04=060.0 \mathrm{~Hz}$ Max. Volt Frequency	0.1~400.0Hz	0.1Hz	60.0 Hz	
	Cn-05	Middle Output Frequency	$\begin{aligned} & \text { Cn-05= } 003.0 \mathrm{~Hz} \\ & \text { Middle O/P Freq. } \end{aligned}$	0.1~400.0Hz	0.1Hz	3.0 Hz	
	Cn-06	Voltage At Middle Output Frequency	$\mathrm{Cn}-06=014.9 \mathrm{~V}$ Middle Voltage	$0.1 \sim 255.0 \mathrm{~V}^{* 1}$	0.1 V	$15.5 \mathrm{~V}^{* 1}$	
	Cn-07	Min Output Frequency	$\mathrm{Cn}-07=001.5 \mathrm{~Hz}$ Min O/P Freq.	0.1~400.0Hz	0.1Hz	1.5 Hz	
	Cn-08	Voltage At Min. Output Frequency	$\begin{gathered} \hline \mathrm{Cn}-08=007.9 \mathrm{~V} \\ \text { Min. Voltage } \\ \hline \end{gathered}$	$0.1 \sim 255.0 \mathrm{~V}^{* 1}$	0.1 V	$8.2 \mathrm{~V}^{* 1}$	
Motor Parameter	Cn-09	Motor Rated Current	$\begin{gathered} \hline \text { Cn-09= } 0003.3 \mathrm{~A} \\ \text { Motor Rated I } \end{gathered}$	*2	0.1A	$3.3 A^{* 3}$	3-14
	Cn-10	No Load Current Of Motor	$\begin{gathered} \text { Cn-10=30\% } \\ \text { Motor No-Load I } \end{gathered}$	0~99\%	1\%	30\%	3-15
	Cn-11	Rated Slip Of Motor	$C n-11=0.0 \%$ Motor Rated Slip	0~9.9\%	0.10\%	0.00\%	
	Cn-12	Line-To-Line Resistance Of Motor	$\begin{gathered} \mathrm{Cn}-12=05.732 \Omega \\ \text { Motor Line R } \\ \hline \end{gathered}$	0~65.535	0.001 1	$5.732^{* 3}$	
	Cn-13	Torque Compensation Of	$\begin{gathered} \text { Cn-13= 0064W } \\ \text { Core Loss } \\ \hline \end{gathered}$	0~65535W	1W	64^{*}	
DC Braking Function	Cn-14	DC Injection Braking Starting Frequency	$\mathrm{Cn}-14=01.5 \mathrm{~Hz}$ C Braking Start F	$0.1 \sim 10.0 \mathrm{~Hz}$	0.1Hz	1.5 Hz	3-16
	Cn-15	DC Braking Current	Cn-15= 050\% DC Braking Current	0~100\%	1\%	50\%	
	Cn-16	DC Injection Braking Time At Stop	$\begin{gathered} \mathrm{Cn}-16=00.5 \mathrm{~s} \\ \text { DC Braking Stop Time } \end{gathered}$	$0.0 \sim 25.5 \mathrm{~s}$	0.1s	0.5s	
	Cn-17	DC Injection Braking Time At Start	$\mathrm{Cn}-17=00.0 \mathrm{~s}$ DC Braking Start Time	$0.0 \sim 25.5 \mathrm{~s}$	0.1s	0.0s	
Frequency Limit	Cn-18	Frequency Command Upper Bound	Cn-18= 100\% Freq.Cmd. Up Bound	0~109\%	1\%	100\%	3-17
	Cn-19	Frequency Command Lower Bound	$\mathrm{Cn}-19=000 \%$ Freq. Cmd. Low Bound	0~109\%	1\%	0\%	
Frequency Jump	Cn-20	Frequency Jump Point 1	$\mathrm{Cn}-20=000.0 \mathrm{~Hz}$ Freq. Jump 1	$0.0 \sim 400.0 \mathrm{~Hz}$	0.1Hz	0.0Hz	3-17
	Cn-21	Frequency Jump Point 2	$\begin{gathered} \mathrm{Cn}-21=000.0 \mathrm{~Hz} \\ \text { Freq. Jump } 2 \\ \hline \end{gathered}$	$0.0 \sim 400.0 \mathrm{~Hz}$	0.1Hz	0.0Hz	
	Cn-22	Frequency Jump Point 3	$\mathrm{Cn}-22=000.0 \mathrm{~Hz}$ Freq. Jump 3	0.0~400.0Hz	0.1Hz	0.0Hz	
	Cn-23	Jump Frequency Width	$\mathrm{Cn}-23=01.0 \mathrm{~Hz}$ Freq. Jump Width	$0.0 \sim 25.5 \mathrm{~Hz}$	0.1Hz	1.0Hz	

Function	Parameter No.	Name	LCD display (English)	Setting range	Setting Unit	Factory Setting	Ref. Page
Retry Function	Cn-24	Number of Auto Restart Attempt	$C n-24=00$ Retry Times	$0 \sim 10$	1	0	3-18
Stall Prevention	Cn-25	Stall Prevention During Acceleration	$C n-25=170 \%$ Acc. Stall	30~200\%	1\%	170\%	3-19
	Cn-26	Stall Prevention During Running	$\begin{gathered} \text { Cn-26= } 160 \% \\ \text { Run Stall } \end{gathered}$	30~200\%	1\%	160\%	
Comm. Fault detection	Cn-27	Communication Fault Detection Time	Cn-27=01.0s Comm. FIt Det. Time	0.1~25.5s	0.1s	1s	3-19
Display Unit	Cn-28	LCD Digital Operator Display Unit	$\begin{gathered} \text { Cn-28= } 00000 \\ \text { Operator Disp. Unit } \end{gathered}$	0-39999	1	0	3-20
Frequency Agree Detection	Cn-29	Freq. Agree Detection Level During Accel.	Cn-29 $=000.0 \mathrm{~Hz}$ Acc. Freq. Det.Level	$0.0 \sim 400.0 \mathrm{~Hz}$	0.1Hz	0.0Hz	3-21
	Cn-30	Freq. Agree Detection Level During Decel.	$\begin{gathered} \mathrm{Cn}-30=000.0 \mathrm{~Hz} \\ \text { Dec. Freq. Det. Level } \end{gathered}$	$0.0 \sim 400.0 \mathrm{~Hz}$	0.1Hz	0.0Hz	
	Cn-31	Frequency Agree Detection Width	$\begin{gathered} \mathrm{Cn}-31=02.0 \mathrm{~Hz} \\ \text { F Agree Det. Width } \end{gathered}$	0.1~25.5Hz	0.1Hz	2.0 Hz	
ExcessLoadDetection	Cn-32	Excess Load Detection Level	$\begin{gathered} \mathrm{Cn}-32=160 \% \\ \text { Excess Load Level } \end{gathered}$	0~200\%	1\%	160\%	3-22
	Cn-33	Excess Load Detection Time	$\begin{gathered} \text { Cn-33= } 00.1 \mathrm{~s} \\ \text { Excess Load Det.Time } \end{gathered}$	0.0~25.5s	0.1s	0.1s	
Carrier Frequency	Cn-34	Carrier frequency setting	$\begin{gathered} \text { Cn-34=6 } \\ \text { Carry_Freq Setting } \end{gathered}$	1~6	1	6	3-23
Speed Search Control	Cn-35	Speed Search Detection Level	Cn-35=150\% Sp -Search Level	0~200\%	1\%	150\%	3-23
	Cn-36	Speed Search Time	$\begin{gathered} \text { Cn-36=02.0s } \\ \text { Sp-Search Time } \end{gathered}$	$0.1 \sim 25.5 \mathrm{~s}$	0.1s	2.0s	
	Cn-37	Min. Baseblock Time	Cn-37=0.5s Min. B.B. Time	0.5~5.0s	0.1s	0.5s	
	Cn-38	V/F Curve in Speed Search	$\begin{gathered} \text { Cn- } 38=80 \% \\ \text { Sp-search V/F Gain } \end{gathered}$	10~100\%	1\%	80\%	
Low Voltage Detection	Cn-39	Low Voltage Alarm Detection Level	$\begin{gathered} \text { Cn-39=200V } \\ \text { Low Volt. Det. Level } \end{gathered}$	150~210V* ${ }^{1}$	1 V	200 V *	3-25
Slip Comp.	Cn-40	Slip Compensation Primary Delay Time	$\mathrm{Cn}-40=02.0 \mathrm{~s}$ Slip Filter	$0.0 \sim 25.5 \mathrm{~s}$	0.1s	2.0s	3-25
S-curve time	Cn-41	S-curve Characteristic Time at Accel. Start	$\mathrm{Cn}-41=0.0 \mathrm{~s}$ S1 Curve Time	0.0~1.0s	0.1s	0.0s	3-25
	Cn-42	S-curve Characteristic Time at Accel. End	$\mathrm{Cn}-42=0.0 \mathrm{~s}$ S2 Curve Time	0.0~1.0s	0.1s	0.0s	
	Cn-43	S-curve Characteristic Time at Decel. start	Cn-43=0.0s S3 Curve Time	0.0~1.0s	0.1s	0.0s	
	Cn-44	S-curve Characteristic Time at Decel. end	$\mathrm{Cn}-44=0.0 \mathrm{~s}$ S4 Curve Time	0.0~1.0s	0.1s	0.0s	

Function	Parameter No.	Name	LCD display (English)	Setting range	Setting Unit	Factory Setting	Ref. Page
Speed feedback control	Cn-45	PG Parameter	$\mathrm{Cn}-45=0000.0$ PG Parameter	0.0~3000.0P/R	0.1P/R	0.0P/R	3-26
	Cn-46	Pole no. of Motor	$C n-46=04 P$ Motor Pole	2~32P	2P	4P	
	Cn-47	ASR Proportional Gain 1	$C n-47=0.00$ ASR Gain 1	$0.00 \sim 2.55$	0.01	0	
	Cn-48	ASR Integral Gain 1	Cn-48=01.0s ASR Intgl. Time 1	0.1~10.0S	0.1s	1.0s	
	Cn-49	ASR Proportional Gain 2	$\begin{aligned} & \text { Cn- } 49=0.02 \\ & \text { ASR Gain } 2 \end{aligned}$	$0.00 \sim 2.55$	0.01	0.02	
	Cn-50	ASR Integral Gain 2	$\mathrm{Cn}-50=01.0 \mathrm{~s}$ ASR Intgl. Time 2	0.1~10.0S	0.1s	1.0s	
	Cn-51	ASR Upper Bound	Cn-51= 05.0\% ASR Up Bound	0.1~10.0\%	0.10\%	5.00\%	3-27
	Cn-52	ASR Lower Bound	$\text { Cn-52= } 00.1 \%$ ASR Low Bound	0.1~10.0\%	0.10\%	0.10\%	
	Cn-53	Excessive Speed Deviation Detection Level	$C n-53=10 \%$ Sp.Deviat. Det.Level	1~50\%	1\%	10\%	
	Cn-54	Overspeed Detection Level	$\begin{gathered} \text { Cn-54= } 110 \% \\ \text { Over Sp.Det. Level } \end{gathered}$	1~120\%	1\%	110\%	
PID Control	Cn-55	PID Integral Upper Bound	$\begin{gathered} \text { Cn-55= } 100 \% \\ \text { PID I-Upper } \\ \hline \end{gathered}$	0~109\%	1\%	100\%	App-1
	Cn-56	PID Primary Delay Time Constant	$\mathrm{Cn}-56=0.0 \mathrm{~s}$ PID Filter	$0.0 \sim 2.5 s$	0.1s	0.0s	
Sensorless Vector Control	Cn-57	Motor Line-to-Line Resistance (R1)	$\begin{gathered} \hline \text { Cn- } 57=02.233 \Omega \\ \text { Mtr LINE_R } \\ \hline \end{gathered}$	0.001~60.000	0.001 1	$2.233 \Omega^{* 3}$	3-27
	Cn-58	Motor Rotor Equivalent Resistance (R2)	Cn-58=01.968 Ω Mtr ROTOR R	0.001~60.000 2	0.001 Ω	$1.968 \Omega^{* 3}$	3-28
	Cn-59	Motor Leakage Inductance (Ls)	Cn-59 $=9.6 \mathrm{mH}$ Mtr LEAKAGE_X	$0.01 \sim 200.00 \mathrm{mH}$	0.01 mH	$9.6 \mathrm{mH}{ }^{* 3}$	
	Cn-60	Motor Mutual Inductance (Lm)	Cn-60= 149.7 mH Mtr MUTUAL_X	$0.1 \sim 6553.5 \mathrm{mH}$	0.1 mH	$149.7 \mathrm{mH}^{* 3}$	
	Cn-61	Slip Compensation Gain	$\begin{aligned} & \hline \text { Cn-61 }=1.00 \\ & \text { SLIP GAIN } \end{aligned}$	$0.00 \sim 2.55$	0.01	1.00	
-	Cn-62 ${ }^{\text {4 }}$	Not Used *4	-	-	-	-	3-23
	Cn-63*4	Not Used *4	-	-	-	-	
PID Target Limit	Cn-64	PID Target Upper Limit	$C n-64=100 \%$ PID Target U_Limit	0~100\%	1\%	100\%	APP-1
	Cn-65	PID Target Lower Limit	$\mathrm{Cn}-65=0 \%$ PID Target L_Limit	0~100\%	1\%	0\%	

*1 These are for a 230 V class inverter. Value(*1) for a 460 V class inverter is double and to multiply 2.875 for 575 v class.
*2 The setting range is $10 \% \sim 200 \%$ of the inverter rated current.
*3 The factory setting values will vary based upon the inverter capacity selection ($\mathrm{Sn}-01$) value. In this case, the setting is for 4 -pole, $230 \mathrm{~V}, 60 \mathrm{~Hz}, 1 \mathrm{Hp}$ TECO standard induction motors.
*4. These parameters are not available for 77.01 and later software versions.

(1) Input Voltage Setting (Cn-01)

Set inverter voltage to match power supply voltage at input side (e.g. : 200V/230V, $380 \mathrm{~V} / 415 \mathrm{~V} / 440 \mathrm{~V} / 460 \mathrm{~V} / 575 \mathrm{~V}$)
(2) V/F Curve Parameter Settings ($\mathrm{Cn}-02 \sim \mathrm{Cn}-08$)

The V/F curve can be set to either one of the preset curves (setting $\operatorname{Sn}-02=0 \sim 14$) or a customer user-set curve (setting $\operatorname{Sn}-02=15$).
Setting $\mathrm{Cn}-02 \sim \mathrm{Cn}-08$ can be set by the user when $\mathrm{Sn}-02$ has been set to " 15 ". The user-defined V/F curve can be specified through the settings of $\mathrm{Cn}-02 \sim \mathrm{Cn}-08$ as shown in Fig. 15. The factory setting is straight line for the V/F curve. ($\mathrm{Cn}-05=\mathrm{Cn}-07, \mathrm{Cn}-06$ is not used) as shown below ($230 \mathrm{~V} / 60 \mathrm{~Hz}$ case).

Fig. 15. User-defined V/F curve
In low speed operation $(<3 \mathrm{~Hz})$, a larger torque can be generated by increasing the slope of V/F curve. However, the motor will be hot due to over-excitation. At the same time the inverter will be more inclined to fault. Based upon the applied load, properly adjust the V/F curve according to the magnitude of monitored current into the motor.
The four frequency settings must satisfy the following relationship, otherwise an error message "V/F Curve Invalid" will display.
(a) Max. output freq. \geqq Max. voltage freq. $>$ Mid. Output freq. \geqq Min. output freq.
(Cn-02)
(Cn-04)
(Cn-05)
(Cn-07)
(b) Max. output volt. \geqq Mid. output volt. $>$ Min. output voltage
(Cn-03)
(Cn-06)
(Cn-08)
If Mid. Output frequency $(\mathrm{Cn}-05)=$ Min. output frequency $(\mathrm{Cn}-07)$, the setting (Cn-06) is not effective.
(3) Motor Rated Current (Cn-09)

Electronic overload thermal reference current
The factory setting depends upon the capacity type of inverter (Sn-01).
The setting range is $10 \% \sim 200 \%$ of the inverter rated output current.
Set the rated current shown on the motor name plate if not using the TECO 4-pole motor.

(4) Motor No-Load Current (Cn-10)

This setting is used as a reference value for torque compensation function. The setting range is $0 \sim 99 \%$ of the inverter rated current Cn-09 (100\%).
The slip compensation is enabled when the output current is greater than motor no-load current ($\mathrm{Cn}-10$). The output frequency will shift from f 1 to $\mathrm{f} 2(>\mathrm{fl})$ for the positive change of load torque. (See Fig. 16)
Slip compensation $=\frac{\text { Motor rated slip }(C n-11) \times(\text { Output current }- \text { Motor no-load current }(C n-10))}{\text { Motor rated current }(C n-09)-\text { Motor no-load current }(C n-10)}$

Fig. 16. Output frequency with slip compensation.
(5) Motor Rated Slip (Cn-11)

This setting is used as a reference value for torque compensation function. See Fig. 16. The setting is $0.0 \sim 9.9 \%$ as a percentage of motor Max. voltage frequency (Cn-04) as 100%.
The setting is shown in Fig. 17 in the constant torque and constant output range. If setting Cn -11 is zero, no slip compensation is used.
There is no slip compensation in the cases when the frequency command is less than the Min. output frequency or during regeneration.
Motor rated slip $(\mathrm{Cn}-11)=\frac{\text { Motor rated freq. }(\mathrm{Hz}) \times(\text { Rated speed }(\mathrm{RPM})-\text { Motor No. of poles })}{\text { Max-voltage freq }(\mathrm{Cn}-04) \times 120} \times 100 \%$

Fig. 17. Slip compensation limit
(6) Motor Line-to-Line Resistance
(7) Motor Iron-Core Loss
(Cn-12)
(Cn-13)

It is for torque compensation function. The default setting depends upon the inverter capacity (Sn-01). Normally, the setting does not need to be altered. See Table 10~11 on page 3-36.
(8) DC Injection Braking Starting Frequency
(Cn-14)
(9) DC Injection Braking Current
(Cn-15)
(10) DC Injection Braking Time at Stop
(Cn-16)
(11) DC Injection Braking Time at Start
(Cn-17)
The DC injection braking function decelerates by applying a DC current to the motor. This happens in the 2 cases:
a. DC injection braking time at start: It is effective for temporarily stopping and then restarting, without regeneration, a motor coasting by inertia.
b. DC injection braking time at stop: It is used to prevent coasting by inertia when the motor is not completely stopped by normal deceleration when there is a large load. Lengthening the DC injection braking time ($\mathrm{Cn}-16$) or increasing the DC injection braking current (Cn-15) can shorten the stopping time.
For the DC injection braking current ($\mathrm{Cn}-15$), set the value for the current that is output at the time of DC injection braking. DC injection braking current is set as a percentage of inverter rated output current, with the inverter rated output current taken as 100%.
For the DC injection braking time at start ($\mathrm{Cn}-17$), set the DC injection braking operating time when the motor is started.
For the DC injection braking starting frequency ($\mathrm{Cn}-14$), set the frequency for beginning DC injection braking for deceleration. If the excitation level is less than the Min. output frequency (Cn-07), the DC injection braking will begin from Min. output frequency.
If the DC injection braking time at start $(\mathrm{Cn}-17)$ is 0.0 , the motor starts from the Min. output frequency and no DC injection braking are enabled.
If the DC injection braking time at stop (Cn-16) is 0.0 , no DC injection braking is enabled. In this case, the inverter output will be blocked off when the output frequency is less than the DC injection braking at start frequency ($\mathrm{Cn}-14$).

Fig. 18. DC injection braking time chart
(12) Frequency Command Upper Bound
(13) Frequency Command Lower Bound
(Cn-18)

The upper and lower bounds of the frequency command are set as a percentage of the Max. output frequency ($\mathrm{Cn}-02$ as 100%), in increments of 1%.
The relationship Cn-18 > Cn-19 must be abided by. If not, an error message "Freq. Limit Setting Error" may occur.
When the frequency command is zero and a run command is input, the motor operates at the frequency command lower bound (Cn-19). The motor will not operate, however, if the lower limit is set lower than the Min. output frequency (Cn-07).

Fig. 19. Upper and lower bounds of the frequency command
(14) Frequency Jump Point 1
(Cn-20)
(15) Frequency Jump Point 2
(Cn-21)
(16) Frequency Jump Point 3
(Cn-22)
(17) Jump Frequency Width
(Cn-23)
These settings allow the "jumping" of certain frequencies within the inverter's output frequency range so that the motor can operate without resonant oscillations caused by some machine systems.

Fig. 20. setting jump frequencies

Operation is prohibited within the jump frequency range, but changes during acceleration and deceleration are smooth with no jump. To disable this function, set the jump frequency $1 \sim 3(\mathrm{Cn}-20 \sim \mathrm{Cn}-22)$ to 0.0 Hz .
For the jump frequency $1 \sim 3(\mathrm{Cn}-20 \sim \mathrm{Cn}-22)$, set the center frequency to be jumped.
Be sure to set the jump so that $\mathrm{Cn}-20 \geq \mathrm{Cn}-21 \geq \mathrm{Cn}-22$. If not, a message "Jump frequency setting error" is displayed. For $\mathrm{Cn}-23$, set the jump frequency bandwidth. If $\mathrm{Cn}-23$ is set as 0.0 Hz , the jump frequency function is disabled.
(18) Number of Auto Restart Attempt (Cn-24)

The fault restart function will restart the inverter even when an internal fault occurs during inverter operation. Use this function only when continuing operation is more important than possibly damaging the inverter.
The fault restart function is effective with the following faults. With other faults, the protective operations will engage immediately without attempting to restart operation.

> Over-current • Ground fault • Main circuit over-voltage

The fault restart count will automatically increase upon the restart activated and will be cleared in the following cases:
a. When the operation is normal for 10 minutes after a fault restart is performed.
b. When the fault-reset input is received after the protection operation has been activated and the fault confirmed. (e.g., by pressing $\underset{\text { RESEI }}{\gtrless}$ or enable Fault reset terminal (3)
c. When the power is turned off and on again.

When one of the multi-function output terminals (RA-RB-RC or R1A-R1B-R1C, DO1, DO2 or R2A-R2C) is set to restart enabled, the output will be ON while the fault restart function is in progress. See page 3-60 for the setting of (Sn-30~Sn-32).
(19) Stall Prevention Level During Acceleration (Cn-25)
(20) Stall Prevention Level During Running
(Cn-26)
A stall occurs if the rotor can not keep up with the rotating electromagnetic field in the motor stator side when a large load is applied or a sudden acceleration or deceleration is performed. In this case, the inverter should automatically adjust the output frequency to prevent stall.
The stall prevention function can be set independently for accelerating and running.
Stall Prevention During Acceleration: See Fig.21. Stop acceleration if Cn-25 setting is exceeded. Accelerate again when the current recovers.
Stall Prevention During running : See Fig.22. Deceleration is started if the run stall prevention level $\mathrm{Cn}-26$ is exceeded, especially when an impact load is applied suddenly. Accelerate again when the current level is lower than Cn-26.

controlled to prevent stalling

Fig. 21 Acceleration stall prevention function
Set the parameters $\mathrm{Cn}-25$ and $\mathrm{Cn}-26$ as a percentage of inverter rated current (100% corresponds to inverter rated current).
See page 3-45, 3-46 for stall prevention function selection.
(21) Communication Fault Detection Time (Cn-27)

Please refer to "MODBUS/PROFIBUS Application Manual".
(22) LCD Digital Operator Display Unit (Cn-28)

It sets the units to be displayed for the frequency command and frequency monitoring as described below:

Table 9 LCD digital Operator Display unit

$\mathrm{Cn}-28$	Setting / Reading Content
	Frequency command/monitoring
0	Units of 0.01 Hz
1	Units of 0.01\%
2 to 39	Set in the units of $\mathrm{r} / \min (0$ to 39999). $\mathrm{r} / \mathrm{min}=120 \mathrm{x}$ frequency reference $(\mathrm{Hz}) / \mathrm{Cn}-28$ (Set the number of motor poles in $\mathrm{Cn}-28$, only even data is allowed)
$\begin{gathered} 40 \text { to } \\ 39999 \end{gathered}$	The position of decimal point is set by the value of the 5th digit of Cn-20. 5th digit $=0$: Displayed as XXXX 5th digit $=1$: Displayed as XXX.X 5th digit $=2$: Displayed as XX.XX 5th digit $=3$: Displayed as X.XXX The 1st digit to 4th digits of Cn- 28 set the value of 100% frequency.

Example 1:

When the set value of 100% speed is $200.0, \mathrm{Cn}-28=12000$ is set.
60% speed is displayed as 120.0 at $\mathrm{Cn}-28=12000$.

Example 2:

When the set value of 100% speed is $65.00, \mathrm{Cn}-28=26500$ is set.
60% speed is displayed as 39.00 at $\mathrm{Cn}-28=26500$.
The function of $\mathrm{Cn}-28$ is valid while the Engineering Unit (P1-01) is 0 (invalid). If the Engineering Unit set to nonzero value, the frequency command display format is set by P1-01 and P1-02.
(23) Frequency Agree Detection Level During Acceleration
(24) Frequency Agree Detection Level During Deceleration
(25) Frequency Agree Detection Width

Frequency detection function: Set the multi-function output terminals (control circuit terminals RA-RB-RC or R1A-R1B-R1C, DO1, DO2 or R2A-R2C) to output the desired Frequency Agree signal, Setting Frequency Agree and Output Frequency Detection level (through proper setting of $\mathrm{Sn}-30 \sim \mathrm{Sn}-32$).
The time chart for Frequency Detection operation is described as follows:

Function	Frequency Detection Operation	Description
Frequency Agree		- When output freq. is within freq. command $+/$ - freq. Detection width (Cn-31), frequency agree output is "ON". - Set $\mathrm{Sn}-30 \sim \mathrm{Sn}-32$ to be " 02 " for the setting of frequency agree output.
Setting Frequency Agree		- After acceleration, the output freq. reaches freq. Agree detection level during acceleration (Cn-29) and within freq. Agree detection width (Cn-31), agreed freq. output is "ON". - Set $\mathrm{Sn}-30 \sim \mathrm{Sn}-32$ to be "03".
Output Frequency Detection 1		- During acceleration, the output freq. is less than freq. agree detection level during acceleration (Cn-29), output freq. Detection 1 is "ON". - During deceleration, the output freq. is less than freq. agree detection level during deceleration (Cn-30), output freq. Detection 1 is "ON". - Set $\mathrm{Sn}-30 \sim \mathrm{Sn}-32$ to be " 04 " for the setting of output freq. detection.
Output Frequency Detection 2		- During acceleration, the output freq. is larger than freq. Agree detection level during acceleration (Cn-29), output freq. detection 2 is "ON". - During deceleration, the output freq. is larger than freq. Agree detection level during deceleration (Cn-30), output freq. detection 2 is "ON". - Set $\mathrm{Sn}-30 \sim \mathrm{Sn}-32$ to be " 05 " for the setting of output freq. detection.

(26) Excess Load Detection Level
(Cn-32)
(27) Excess Load Detection Time
(Cn-33)
The excess load Detection Function detects excessive mechanical load from an increase of output current.
An excess load condition is detected when the output current exceeds the Excess Load Detection Level (Cn-32) for longer than the Excess Load Detection Time (Cn-33). See Fig. 23 below.
The Multi-Function Output Terminals (Control Circuit Terminals RA-RB-RC or R1A-R1B-R1C, DO1, DO2 or R2A-R2C) can be set to indicate an excess load condition has been detected.

Fig. 23. Excess Load Detection Time Chart
Set the value of Sn - 12 (Excess Load Detection Selection) to choose:
a. Excess Load Detection at any time of only during speed agrees.
b. Stop Output or Continue Running after excess load condition is detected.

The excess load detection level (Cn -32) needs to be higher than the load loss detection level (P3-01). If not, an error message "Load Detection Setting Error" will be displayed.
(28) Torque Detection Level 2
(Cn-62)
(29) Torque Detection Time 2
(Cn-63)
Parameter Cn-62, 63 not available in the version of 77.01 and later versions. Please use $\mathrm{Cn}-32$ and $\mathrm{Cn}-33$ to set excess load detection level and time, and use P3-02 and P3-03 to set load loss detection level and time.
(30) Carrier Frequency Setting (Cn-34)
Lower the carrier frequency can decrease the noise interference and leakage current. Its setting is shown below.

The output frequency does not need to be adjusted, except in the following cases. a. If the wiring distance between the inverter and motor is long, lower the carrier frequency as shown below to allow less leakage current.

Wring distance	$<100 \mathrm{ft}$.	$100-165 \mathrm{ft}$	$166-328 \mathrm{ft}$	$\geq 329 \mathrm{ft}$.
Carrier frequency $(\mathrm{Cn}-34)$	$<15 \mathrm{kHz}$	$<10 \mathrm{kHz}$	$<5 \mathrm{KHz}$	$<2.5 \mathrm{KHz}$

b. If there is great irregularity in speed or torque, lower the carrier frequency.
(31) Speed Search Detection Level (Cn-35)
(32) Speed Search Time
(33) Min. Baseblock Time
(Cn-37)
(34) Speed Search V/F Curve
(Cn-38)
The speed search function will search the speed of a frequency coasting motor from the frequency command or max. frequency downward. And it will restart up smoothly from that frequency or max. frequency. It is effective in situations such as switching from a commercial power supply to an inverter without tripping occurred.
The timing of speed search function as shown below :

Fig. 24. Speed search timing chart
The speed search command can be set through the multi-function contact input terminal (5) ~8) (By setting the parameters $\mathrm{Sn}-25 \sim \mathrm{Sn}-28$).
If $\mathrm{Sn}-25 \sim \mathrm{Sn}-28=21:$ Speed search is performed from Max. output frequency and motor is coasting freely.
If $\mathrm{Sn}-25 \sim \mathrm{Sn}-28=22$: Speed search starts from the frequency command when the speed search command is enabled.
After the inverter output is blocked, the user should input speed search command then enable run operation, the inverter will begin to search the motor speed after the min. baseblock time Cn-37.
Speed search operation, if the inverter output current is less than Cn-35, the inverter will take the output frequency as the real frequency at that time. From those values of real frequency, the inverter will accelerate or decelerate to the set frequency according to the acceleration or deceleration time.
While the speed search command is being performed, the user can slightly decrease the setting of V/F curve $(\mathrm{Cn}-38)$ in order to prevent the OC protection function enabled. Normally, the V/F curve need not be changed. (As below) Speed search operating V/F curve $=\mathrm{Cn}-38 *$ (normal operating V/F curve)

Note : 1. The speed search operation will be disabled if the speed search command is enacted from the Max. frequency and the setting frequency. (I.e., $\mathrm{Sn}-25=20$, $\mathrm{Sn}-26=21$ and multi-function input terminals (5), (6) is used at the same time).
2. Make sure that the FWD/REV command must be performed after or at the same time with the speed search command. A typical operation sequence is shown below.

3. When the speed search and DC injection braking are set, set the Min. baseblock time (Cn-37). For the Min. baseblock time, set the time long enough to allow the motor's residual voltage to dissipate. If an overcurrent is detected when starting a speed search or DC injection braking, raise the setting Cn-37 to prevent a fault from occurring. As a result, the Cn-37 setting cannot be set too small.
(35) Low Voltage Alarm Detection Level (Cn-39)

In most cases, the default setting $\mathrm{Cn}-39$ need not be changed. If an external AC reactor is used, decrease the low voltage alarm detection level by adjusting Cn-39 setting smaller. Be sure to set a main-circuit DC voltage so that a main circuit undervoltage is detected.
(36) Slip Compensation Primary Delay Time (Cn-40)

In most cases, the setting $\mathrm{Cn}-40$ need not be changed. If the motor speed is not stable, increase the $\mathrm{Cn}-40$ setting. If the speed response is slow, decrease the setting of Cn-40.
(37) S-curve Characteristic Time at Acceleration Start (Cn-41)
(38) S-curve Characteristic Time at Acceleration End (Cn-42)
(39) S-curve Characteristic Time at Deceleration Start (Cn-43)
(40) S-curve Characteristic Time at Deceleration End (Cn-44)

Using the S-curve characteristic function for acceleration and deceleration can reduce shock to the machinery when stopping and starting. With the inverter, S-curve characteristic time can be set respectively for beginning acceleration, ending acceleration, beginning deceleration and ending deceleration. The relation between these parameters is shown in Fig. 25.

Fig. 25. S curve
After the S-curve time is set, the final acceleration and deceleration time will be as follows:

- Acc. time $=$ selected Acc. Time $1($ or 2$)+\frac{(\mathrm{Cn}-41)+(\mathrm{Cn}-42)}{2}$
- Dec. time $=$ selected Dec. Time $1($ or 2$)+\frac{(\mathrm{Cn}-43)+(\mathrm{Cn}-44)}{2}$
(41) PG Parameter (Cn-45)
The parameter is set in the unit of pulse/revolution. The factory setting is $0.1 \mathrm{P} / \mathrm{R}$.
(42) Pole Number of Motor (Cn-46)
$\mathrm{Cn}-45$ and $\mathrm{Cn}-46$ must meet the following relationship:

$$
\frac{2 * \mathrm{Cn}-45 * \mathrm{Cn}-02}{\mathrm{Cn}-46}<32767
$$

If not, an error message "PG Parameter Setting Error" will be displayed
(43) ASR Proportion Gain 1 (Cn-47)
(44) ASR Integral Gain 1 (Cn-48)

Set the proportion gain and integral time of the speed control (ASR)
(45) ASR Proportion Gain 2 (Cn-49)
(46) ASR Integral Gain 2 (Cn-50)

Use these constants to set different proportional gain and integral time settings for high-speed operation.

Fig. 26. ASR Proportion Gain and Integral Time
(47) ASR Upper Bound
(48) ASR Lower Bound
(Cn-51)

These settings of $\mathrm{Cn}-51$ and $\mathrm{Cn}-52$ will limit the ASR range.
(49) Excessive Speed Deviation Detection Level (Cn-53)

This parameter set the level of detecting PG speed deviation. The value of $\mathrm{Cn}-02$ is referred as 100%, the default unit setting is 1%.
(50) Overspeed Detection Level
(Cn-54)
Set this parameter for detecting overspeed. The value of $\mathrm{Cn}-02$ is referred as 100%, the default unit setting is 1%. Please refer to the setting of $\mathrm{Sn}-43$.
(51) PID Integral Upper Bound
(Cn-55)
(52) PID Primary Delay Time Constant
(Cn-56)
Please see the appendix A "PID Control Function" for more details.
(53) Motor Line-to-Line Resistance R1 (Cn-57)

Set the motor's terminal resistance (including the motor external cable resistance) in Ω unit.
The default setting depends upon the type of inverter (but do not include the motor external motor cable resistance).
This value will be automatically set during autotuning. See "Motor parameter autotuning selection" on page 3-70.
Increase the setting when the generating torque is not large enough at low speed.
Decrease the setting when the generating torque is extremely high and cause overcurrent trip at low speed.
(54) Motor Rotor Equivalent Resistance R2 (Cn-58)

Set the motor's rotor Y-equivalent model resistance in Ω unit.
The default setting depends upon the type of inverter. Normally this value isn't shown on the motor's nameplate, so it might be necessary to contact motor manufactory.
This value will be automatically set during autotuning. See "Motor parameter
autotuning selection" on page 3-70.
(55) Motor Leakage Inductance Ls (Cn-59)

Set the motor's rotor Y-equivalent model leakage inductance in mH unit.
The default setting depends upon the type of inverter.
This value will be automatically set during autotuning. See "Motor parameter autotuning selection" on page 3-70.
(56) Motor Mutual Inductance Lm (Cn-60)

Set the motor Y-equivalent model mutual inductance in mH unit.
The default setting depends upon the type of inverter.
This value will be automatically set during autotuning. See "Motor parameter autotuning selection" on page 3-70.

Note: The Induction Motor Y-equivalent model

(57) Slip Compensation Gain
(Cn-61)
The parameter Cn-61 improves speed accuracy while operating with a load.
Usually, the setting Cn-61 need not be changed. Adjust the setting if the speed accuracy is needed to improve.
When actual speed is low, increase the set value.
When actual speed is high, decrease the set value.

3.4 System Parameters
 Sn-
 \square

Function	Parameter No.	Name	LCD display (English)	Description	Factory Setting	Ref. Page
Capacity Setting	Sn-01	Inverter Capacity Selection	$\begin{aligned} & \hline \text { Sn-01= } 01 \\ & 220 \mathrm{~V} 1 \mathrm{HP} \end{aligned}$	Inverter capacity selection	*1	3-36
V/F Curve	Sn-02	VIF Curve Selection	Sn-02= 01 V/F curve	$0 \sim 14$: 15 fixed V/F curve pattern 15 : arbitrary V/F pattern selection		3-37
Operator Status	Sn-03	Operator Display	$S n-03=00$ Setting Valid	0 : An-םa, Bn-םa, Cn-םa, Sn-םa setting \& reading enabled 1 : An-aロ, setting \& reading enabled $\mathrm{Bn}-\square, \mathrm{Cn}-\square \square, \mathrm{Sn}-\square \mathrm{a}$ reading only 2~5 : reserved 6 : clear fault message 7 : 2-wire initialization (230V/460V) 8 : 3-wire initialization (230V/460V) 9 : 2-wire initialization (200V/415V) 10 : 3 -wire initialization ($200 \mathrm{~V} / 415 \mathrm{~V}$) 11:2-wire initialization (200V/380V) 12 : 3 -wire initialization (200V/380V) 13~15 : reserved		3-40
Operation Control Mode Selection	Sn-04	Run Source Selection	Sn-04=0 Run source Operator	Run source 0 : Operator 1 : Control terminal 2 : RS-485 communication	0	
	Sn-05	Frequency Command Selection	Sn-05= 0 Ref. Cmd. Operator	Frequency Command 0 : Operator 1 : Control circuit terminal 2 : RS-485 communication 3 : Pulse input	0	3-40
	Sn-06	Stopping Method Selection	$\begin{aligned} & \text { Sn-06= } 0 \\ & \text { Dec. Stop } \end{aligned}$	0 : Deceleration to Stop 1 : Coast to Stop 2 : Whole_range braking stop 3 : Coast to Stop with Timer (restart after time $\mathrm{Bn}-02$)	0	
	Sn-07	Priority of Stopping	Sn-07=0 Stop Key Valid	If operation command from control terminal or RS-485 communication port 0 : operator stop key effective 1 : operator stop key not effective	0	
	Sn-08	Prohibition of REV Run	Sn-08=0 Allow Reverse	0 : reverse run enabled 1 : reverse run disabled	0	
	Sn-09	Output Frequency Up/Down Function	$\text { Sn-09= } 0$ Inhibit UP/DOWN	0 : Reference frequency is changed through the key "UP/DOWN" pressing, later followed by key "EDIT/ENTER" pressing, and then this output freq. will be acknowledged. 1 : reference frequency will be acknowledged immediately after the key "UP/DOWN" pressing.	0	3-42

Function	Parameter No.	Name	LCD display (English)	Description	Factory Setting	Ref. Page
Operation Control Mode Selection	Sn-10	Frequency Command Characteristics Selection	Sn-10=0 Ref. Cmd. Fwd. Char.	0 : Reference command has forward characteristics ($0 \sim 10 \mathrm{~V}$ or $4 \sim 20 \mathrm{~mA} / 0 \sim 100 \%$ 1 : Reference command has reverse characteristics ($10 \sim 0 \mathrm{~V}$ or $20 \sim 4 \mathrm{~mA} / 0 \sim 100 \%$)	0	3-43
	Sn-11	Scanning Times at Input Terminal	$S n-11=0$ Scan Time 5 ms	0 : scan and confirm once per 5 ms 1 : continuously scan and confirm twice per 10 ms	0	
	Sn-12	Excess Load Detection Selection	$S n-12=0$ Detection Invalid	0 : Excess Load detection function is not effective. 1 : Excess Load is detected only at frequency agree. Continue operation after detection. 2 : Excess Load is detected only at frequency agree. Stop operation after detection. 3 : Excess Load is detected during running (Accel.,Decel. included). Continue operation after detection. 4 : Excess Load is detected during running (Accel., Decel included). Stop operation after detection..	0	3-44
	Sn-13	Output Voltage Limit Selection	Sn-13=0 V Limit Invalid	0 : V/F output voltage is limited 1 : V/F output voltage is not limited	0	
Protection Characteristic. selection	Sn-14	Stall Prevention During Acc. Function Selection	Sn-14=1 Acc. Stall Valid	0 : invalid (Too much a torque may cause the stall) 1 : valid (stop acceleration if current exceeds $\mathrm{Cn}-25$ setting)	1	3-45
	Sn-15	Stall Prevention During Dec. Function Selection	$S n-15=1$ Dec. Stall Valid	0 : invalid (installed with external brake unit) 1 : valid (no external brake unit used)	1	
Protection Characteristic. selection	Sn-16	Stall Prevention During Running Function Selection	$\begin{gathered} \text { Sn-16= } 1 \\ \text { Run Stall Valid } \end{gathered}$	0 : invalid 1 : valid -Deceleration time1 for stall prevention during running (no external brake unit used) 2 : valid -Deceleration time2 for stall prevention during running (no external brake unit used)	1	3-46
	Sn-17	Fault Retry Setting	Sn-17=0 Retry No O/P	0 : Do not output fault retry. (The fault contact does not operate.) 1 : Output fault retry. (The fault contact operates.)	0	
	Sn-18	Operation Selection At Power Loss	$\begin{gathered} \mathrm{Sn}-18=0 \\ \text { PwrL_to_ON Stop } \\ \text { O/P } \end{gathered}$	0 : stop running 1 : continue to run	0	

Function	Parameter No.	Name	LCD display (English)		Description	Factory Setting	Ref. Page
Protection Characteristic. selection	Sn-19	$\begin{gathered} \text { Zero Speed } \\ \text { Braking Operation } \\ \text { Selection } \end{gathered}$	Sn-19=0 Z_braking Invalid	(analog running 0 : invalid 1 : valid	Speed reference is 0 during on, the braking function selection id	0	3-46
Protection Characteristic. Selection	Sn-20	External Fault Contact 3 Contact Selection	$\begin{gathered} \mathrm{Sn}-20=0 \\ \text { Term. } 3 \text { NO_Cont. } \end{gathered}$	0 : A-contact (normally open input) 1 : B-contact (normally close input)		0	3-47
	Sn-21	External Fault Contact (3) Detection Selection	$\begin{gathered} \text { Sn-21= }=0 \\ \text { All Time Ext. Fault } \end{gathered}$	0 : detect all time 1 : detect only during operation		0	
	Sn-22	External Fault Operation Selection	$S n-22=1$ Ext. Fault Free run	$\begin{aligned} & 0 \text { : dec. to stop (upon dec. time1 Bn-02) } \\ & 1 \text { : coast (free run) to stop } \\ & 2 \text { : dec. to stop (upon dec. time1 } \mathrm{Bn}-04 \text {) } \\ & 3 \text { : continue operating } \\ & \hline \end{aligned}$		1	
	Sn-23	Motor Overload Protection Selection	$\begin{gathered} \text { Sn- } 23=1 \\ \text { Cold Start Over } \\ \text { Load } \end{gathered}$	Electronically motor overload protection selection 0 : electronically motor overload protection invalid 1 : standard motor cold start overload protection characteristics 2 : standard motor hot start overload protection characteristics 3 : special motor cold start overload protection characteristics 4 : special motor hot start overload protection characteristics		1	
	Sn-24	Frequency Command Characteristics Selection at External Analog Input Terminal	$\begin{gathered} \mathrm{Sn}-24=1 \\ \sim \mathrm{Cmd} . \mathrm{AIN} \end{gathered}$	Frequency command characteristics selection at external analog input terminal 0 : voltage signal 0~10V (VIN) 1 : current signal 4~20mA (AIN) 2 : addition of voltage signal $0 \sim 10 \mathrm{~V}$ and current signal $4 \sim 20 \mathrm{~mA}(\mathrm{VIN}+\mathrm{AIN})$ 3 : subtraction of current signal $4 \sim 20 \mathrm{~mA}$ and voltage signal $0 \sim 10 \mathrm{~V}$ (VIN-AIN)		1	3-48
Multifunction Input Contact Selection	Sn-25	Multi-Function Input Terminal (5) Function Selection	$\mathrm{Sn}-25=02$ Multi-Fun. Command1	00~33	The factory setting is multi-function command1	02	$\begin{aligned} & 3-48 \\ & 3-49 \end{aligned}$
	Sn-26	Multi-Function Input Terminal © Function Selection	Sn-26= 03 Multi-Fun. Command2	01~33	The factory setting is multi-function command2	03	
	Sn-27	Multi-Function Input Terminal (7) Function Selection	Sn-27= 06 Jog Command	02~33	The factory setting is jog command	06	
	Sn-28	Multi-Function Input Terminal 88 Function Selection	$\begin{gathered} \text { Sn-28= } 07 \\ \text { Acc. \& Dec Switch } \end{gathered}$	03~33	The factory setting is Acc. \& Dec. Interrupt	07	

Function	Parameter No.	Name	LCD display (English)	Description	Factory Setting	Ref. Page
RS-485 Communication Function	Sn-39	RS-485 Comm. Fault Stop Selection	$\begin{gathered} \text { Sn-39= } 0 \\ \text { 1st. Dec. stop } \end{gathered}$	0 : deceleration to stop (Bn-02) 1 : coast to stop 2 : deceleration to stop (Bn-04) 3 : continue to run	0	3-65
PG Speed Control	Sn-40	PG Speed Control Function	Sn-40=0 PG Invalid	0 : without speed control 1 : with speed control 2 : with speed control but no integration control during Acc/Dec. 3 : with speed control and integration control during Acc/Dec.	0	3-66
	Sn-41	Operation Selection At PG Open Circuit	$\begin{gathered} \text { Sn-41=0 } \\ \text { 1st. Dec. Stop } \end{gathered}$	0 : deceleration to stop (Bn-02) 1 : coast to stop 2 : deceleration to stop (Bn-04) 3 : continue to run	0	
	Sn-42	Operation Selection At PG Large Speed Deviation	$\begin{gathered} \text { Sn-42= } 0 \\ \text { 1st. Dec Stop } \end{gathered}$	0 : deceleration to stop (Bn-02) 1 : coast to stop 2 : deceleration to stop (Bn-04) 3 : continue to run	0	
	Sn-43	Operation Selection At PG Overspeed Detection Deviation	$\begin{gathered} \text { Sn-43=0 } \\ \text { 1st. Dec. Stop } \end{gathered}$	0 : deceleration to stop (Bn-02) 1 : coast to stop 2 : deceleration to stop (Bn-04) 3 : continue to run	0	
Auto Run Mode	Sn-44	Operation Mode Selection During Auto_Run	Sn-44=0 Auto_Run Invalid	0 : Auto_Run mode not effective 1 :Auto_Run mode for one single cycle. (continuing running from the unfinished step if restarting) 2 :Auto_Run mode be performed periodically (continuing running from the unfinished step if restarting) 3 :Auto_Run mode for one single cycle, then hold the speed of final step to run. (continuing running from the unfinished step if restarting) 4 :Auto_Run mode for one single cycle. (starting a new cycle if restarting) 5 :Auto_Run mode be performed periodically (starting a new cycle if restarting) 6 :Auto_Run mode for one single cycle, then hold the speed of final step to run. (starting a new cycle if restarting)	0	3-67
	Sn-45	Auto_Run Mode Operation Selection1	Sn-45=0 Auto_Run Stop	$\begin{aligned} & 0 \text { : stop (Bn-02) } \\ & 1 \text { : forward } \\ & 2 \text { : reverse } \end{aligned}$	0	3-67
	Sn-46	Auto_Run Mode Operation Selection2	$\text { Sn-46= } 0$ Auto_Run Stop		0	

Function	Parameter No.	Name	LCD display (English)	Description	Factory Setting	Ref. Page
Auto_Run Mode	Sn-47	Auto_Run Mode Operation Selection3	$\mathrm{Sn}-47=0$ Auto_Run Stop	0 : stop (Bn-02) 1 : forward 2 : reverse	0	3-67
	Sn-48	Auto_Run Mode Operation Selection4	Sn-48=0 Auto_Run Stop		0	
	Sn-49	Auto_Run Mode Operation Selection5	$\begin{gathered} \text { Sn-49= } 0 \\ \text { Auto_Run Stop } \end{gathered}$		0	
	Sn-50	Auto_Run Mode Operation Selection6	$\begin{gathered} \text { Sn- }-50=0 \\ \text { Auto_Run Stop } \end{gathered}$		0	
	Sn-51	Auto_Run Mode Operation Selection7	Sn-51=0 Auto_Run Stop		0	
	Sn-52	Auto_Run Mode Operation Selection8	$\begin{gathered} \text { Sn-52= } 0 \\ \text { Auto_Run Stop } \end{gathered}$		0	
	Sn-53	Auto Run Mode Operation Selection9	$\begin{gathered} \text { Sn-53= } 0 \\ \text { Auto_Run Stop } \end{gathered}$		0	
	Sn-54	Auto_Run Mode Operation Selection10	$\begin{gathered} \text { Sn-54= } 0 \\ \text { Auto_Run Stop } \end{gathered}$		0	
	Sn-55	Auto_Run Mode Operation Selection11	$\begin{gathered} \text { Sn-55= } 0 \\ \text { Auto_Run Stop } \end{gathered}$		0	
	Sn-56	Auto_Run Mode Operation Selection12	$\begin{gathered} \text { Sn-56= } 0 \\ \text { Auto_Run Stop } \end{gathered}$		0	
	Sn-57	Auto_Run Mode Operation Selection13	$\begin{gathered} \text { Sn-57=0 } \\ \text { Auto_Run Stop } \end{gathered}$		0	
	Sn-58	Auto_Run Mode Operation Selection14	$\begin{gathered} \text { Sn-58= } 0 \\ \text { Auto_Run Stop } \end{gathered}$		0	
	Sn-59	Auto_Run Mode Operation Selection15	$\begin{gathered} \text { Sn-59= }=0 \\ \text { Auto_Run Stop } \end{gathered}$		0	
	Sn-60	Auto Run Mode Operation Selection16	$\begin{gathered} \text { Sn-60= } 0 \\ \text { Auto_Run Stop } \end{gathered}$		0	
	Sn-61	Applied Torque Mode	$\begin{gathered} \text { Sn-61= } 0 \\ \text { Const. Tq. Load } \end{gathered}$	0 : constant torque 1 : variable(quadratic) torque	0	3-69
	$\mathrm{Sn}-62$ *2	Not Used	Sn-62= 0 Reserved	-	-	

	Sn-63	Parameter Copy	Sn-63=0 Not Load	0 : not loaded (copied) 1 : upload from digital operator to inverter 2 : download from inverter to digital operator 3 : inspect the EEPROM of digital operator 4 : inspect the EEPROM of inverter	0	3-69
	Sn-64	PID Function	Sn-64=0 PID Invalid	0 : PID invalid 1~8: PID valid	0	APP-1
	Sn-65*2	Not Used	Sn-65=0 Reserved	-	-	-
Sensorless Vector Control	Sn-66	Motor Parameters Autotuning Selection	Sn-66=0 AUTO TUNE SEL	0 : Autotuning invalid 1 : Autotuning valid	0	3-70
	Sn-67	Control Mode Selection	Sn-67=0 CNTRL MODE SEL	0 : V/F control mode (include V/F control with pulse generator feedback) 1 : Sensorless Vector Control Mode	0	
	Sn-68	Control selection	$\text { Sn-68 = } 0000$ Control selection	- 1: Output phase lose protection function valid - 0 : Output phase lose protection function invalid -1-: Reserved -0-: Reserved $-1-: \pm 10 \mathrm{~V}$ analog voltage input function is valid -0 -: $\pm 10 \mathrm{~V}$ analog voltage input function is invalid 1-: Frequency Up/Down hold function valid 0-: Frequency Up/Down hold function invalid * 1-2HP inverter does not support input of $\pm 10 \mathrm{~V}$ analog voltage.	0	3-70
	Sn-69	Not Used	-	This parameter is not available in the version of 77.01 and later versions.	0	-
	Sn-70	Not Used	-	This parameter is not available in the version of 77.01 and later versions.	0	-

*1. The default setting will depend upon the different inverter capacity.
*2. These parameters are not available the version for 77.01 and later version.
(3) Inverter capacity selection (Sn-01)

The inverter capacity has already been set at factory according to the following tables. Whenever the control board is replaced, the setting $\mathrm{Sn}-01$ must be set again according to the following tables.
Whenever the setting $\mathrm{Sn}-01$ has been changed, the inverter system parameter settings should be changed based upon the constant torque (CT) load (setting of $\mathrm{Sn}-61=0$) or variable torque (VT) load ($\mathrm{Sn}-61=1$).

Table 10 230V Class Inverter Capacity Selection

Sn-01 setting			001		002		003		004		005		006	
Item	name	$\mathrm{CT}(\mathrm{Sn}-61=0)$ $\mathrm{VT}(\mathrm{Sn}-61=1)$ VT(Sn-61 = 1)	CT	VT										
Inverter rated capacity (KVA)			2		2.7		4		7.5		10.1		13.7	
Inverter rated current (A)			4.8		6.4		9.6		17.5		24		32	
Max	applic	able capacity (HP)	1	1	2	2	3	3	5.4	7.5	7.5	10	10	10
	Cn-09	Motor rated current (A)	3.4	3.4	6.1	6.1	8.7	8.7	14.6	20.1	20.1	25.1	25.1	25.1
	Cn-12	Motor line impedance (Ω)	5.732	5.732	2.407	2.407	1.583	1.583	0.684	0.444	0.444	0.288	0.288	0.288
	Cn -13	Core loss torque compensation (W)	64	64	108	108	142	142	208	252	252	285	285	285
	Cn-34	Carrier freq.(kHz)	10	10	10	5	10	10	10	5	10	10	10	10
	Cn-37	Min. baseblock time (sec)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.7	0.7	0.7	0.7	0.7
	Sn-02	V/F curve	01	$07^{* 1}$	01	$07^{* 1}$	01	$07^{* 1}$	01	$07^{* 1}$	01	$07^{* 1}$	01	$07^{* 1}$
Max. carrier freq. (kHz)			15	10	15	5	15	15	15	5	15	10	15	15

Sn-01 setting			007		008		009		010		011	
Item	name	$\begin{aligned} & \left.\begin{array}{l} \mathrm{CT}(\mathrm{Sn}-61=0) \\ \mathrm{VT}(\mathrm{Sn}-61=1) \end{array}\right) \\ & \hline \end{aligned}$	CT	VT								
	rter rate	d capacity (KVA)	20.6		27.4		34		41		54	
Inve	rter rated	d current (A)	48		64		80		96		130	
Max	. applic	able capacity (HP)	15	20	20	25	25	25	30	40	40	40
	Cn-09	Motor rated current (A)	36.7	50.3	50.3	62.9	62.9	62.9	72.9	96.7	96.7	96.7
	Cn -12	Motor line impedance (Ω)	0.159	0.109	0.109	0.077	0.077	0.077	0.060	0.041	0.041	0.041
	Cn-13	Core loss torque compensation (W)	370	471	471	425	425	425	582	536	536	536
	Cn-34	Carrier freq.(kHz)	10	5	10	5	10	10	10	5	10	10
	Cn-37	Min. baseblock time (sec)	0.7	0.7	0.7	0.7	1.0	1.0	1.0	1.0	1.0	1.0
	Sn-02	V/F curve	01	$07^{* 1}$	01	07^{+1}	01	07^{+1}	01	$07^{* 1}$	01	$07^{* 1}$
Max. carrier freq. (kHz)			10	5	10	5	10	10	10	5	10	10

Table 11 460V Class Inverter Capacity Selection

Sn-01 setting			021		022		023		024		025		026		027	
	m name	$\operatorname{VT}(S n-61=1)$	CT	VT												
Inverter rated capacity (KVA)			2.	2	3			1			10			. 3		. 6
Inverter rated current (A)			2.	. 6				8			1			5		4
Max. applicable capacity (HP)			1	1	2	2	3	3	5.4	7.5	7.5	10	10	15	15	20
	$\mathrm{Cn}-09$	Motor rated current (A)	1.7	1.7	2.9	2.9	4	4	7.3	10.2	10.2	12.6	12.6	18.6	18.6	24.8
	Cn-12	${ }_{\text {M }}^{\text {Motor line }}$ impedance (Ω)	22.927	22.927	9.628	9.628	6.333	6.333	2.735	1.776	1.776	1.151	1.151	0.634	0.634	0.436
	Cn-13	$\begin{aligned} & \text { Core loss torque } \\ & \text { compensation }(W) \\ & \hline \end{aligned}$	64	64	108	108	142	142	208	252	252	285	285	370	370	471
	Cn-34	Carrier freq. (kHz)	10	5	10	5	10	10	10	5	10	10	10	5	10	5
	Cn-37	$\begin{aligned} & \begin{array}{l} \text { Min. baseblock time } \\ (\mathrm{sec}) \end{array} \\ & \hline \end{aligned}$	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.7	0.7	0.7	0.7	0.7	0.7	0.7
	Sn-02	VIF curve	01	07*1	01	$07^{* 1}$	01	$07^{* 1}$	01	07*1	01	07^{*}	01	07*	01	07^{+1}
Max. carrier freq. (kHz)			15	5	15	5	15	15	15	5	15	10	15	5	10	5
Sn-01 setting			028		029		030		031		032		033		034	
	m name	$\begin{aligned} & \mathrm{CT}(\mathrm{Sn}-61=0 \\ & \mathrm{VT}(\mathrm{~S}-61=1) \end{aligned}$	CT	VT												
Inverter rated capacity (KVA)			27	. 4	3			1			6					10
Inverter rated current (A) Max. applicable capacity (HP)			32		40		48		64		80		96		128	
			20	25	25	30	30	30	40	50	50	50	60	75	75	100
	Cn-09	Motor rated current (A)	24.8	31.1	31.1	36.3	36.3	36.3	48.7	59.0	59.0	59.0	70.5	80.0	80.0	114
	$\mathrm{Cn}-12$	$\begin{aligned} & \text { Motor line } \\ & \text { impedance }(\Omega) \end{aligned}$	0.436	0.308	0.308	0.239	0.239	0.239	0.164	0.133	0.133	0.133	0.110	0.074	0.074	0.027
	$\mathrm{Cn}-13$	$\begin{aligned} & \text { Core loss torque } \\ & \text { compensation (W) } \end{aligned}$	471	425	425	582	582	582	536	641	641	641	737	790	790	1800
	Cn-34	Carrier freq. (kHz)	10	5	10	5	10	10	10	5	10	10	10	5	10	5
	Cn-37	$\begin{aligned} & \begin{array}{l} \text { Min. baseblock time } \\ (\mathrm{sec}) \end{array} \\ & \hline \end{aligned}$	0.7	0.7	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	Sn-02	VIF curve	01	07*1	01	$07^{* 1}$	01	$07^{* 1}$	01	07*1	01	07^{*}	01	07"1	01	$07^{* 1}$
Max. carrier freq. (kHz)			10	5	10	5	10	10	10	5	10	10	10	5	10	5

Table 12 575V Class Inverter Capacity Selection

*1 Use the variable torque patterns when there is a quadratic or cubic relationship between the speed and load, such as in fan or pump applications. The user can properly choose the desired (V/f) patterns ($\mathrm{Sn}-02=04,05,06$, or 07) based upon the load torque characteristics.
*2 In the fan or pump applications, the load torque have a quadratic or cubic relationship between the speed and load. The inverter capacity rating can be increased to a value that doubles its own specified capacity rating in some special case. But, due to the real hardware limitation, 230 V 1 HP , $2 \mathrm{HP}, 3 \mathrm{HP}, 10 \mathrm{HP}, 25 \mathrm{HP}, 40 \mathrm{HP}$ and $460 \mathrm{~V} 1 \mathrm{HP}, 2 \mathrm{HP}, 3 \mathrm{HP}, 30 \mathrm{HP}, 50 \mathrm{HP}$ can not be adapted any larger capacity.
(4) V / F curve selection $(\mathrm{Sn}-02)$

Set the inverter input voltage ($\mathrm{Cn}-01$) first to match the power supply voltage. The V / f curve can be set to ant of the following.
Sn-02 $=00 \sim 14$: one of 15 pre-set curve patterns
$=15: \mathrm{V} / \mathrm{F}$ pattern can be set by the user through setting of $\mathrm{Cn}-01 \sim \mathrm{Cn}-08$

Table $13 \mathrm{~V} / \mathrm{F}$ curve of 1~2 HP compact size, 230 V Class MA inverter *

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \& Specif \& cations \& Sn-02 \& V/F Pattern \({ }^{\dagger}\) \& \& Speci \& cations \& Sn-02 \& \[
\text { V/F Pattern }{ }^{\dagger}
\] \\
\hline \multirow{3}{*}{} \& \multicolumn{2}{|r|}{50 Hz} \& 00 \& \& \multirow[t]{2}{*}{} \& 50 Hz \& \begin{tabular}{l}
Low \\
Starting \\
Torque \\
High \\
Starting \\
Torque
\end{tabular} \& 08
09 \& \\
\hline \& 60 Hz \& \begin{tabular}{l}
60 Hz \\
Satu- \\
ration \\
50 Hz \\
Satu- \\
ration
\end{tabular} \& 01
15

02 \& \& \& 60 Hz \& | Low |
| :--- |
| Starting |
| Torque |
| High |
| Starting |
| Torque | \& 10 \&

\hline \& \multicolumn{2}{|r|}{72 Hz} \& 03 \& \& \multirow[t]{3}{*}{} \& \multicolumn{2}{|c|}{90 Hz} \& 12 \&

\hline \multirow[t]{2}{*}{} \& 50 Hz \& | Variable |
| :--- |
| Torque 1 |
| Variable |
| Torque 2 | \& 04

05 \& \& \& \multicolumn{2}{|c|}{120 Hz} \& 13 \&

\hline \& 60 Hz \& | Variable |
| :--- |
| Torque 3 |
| Variable |
| Torque 4 | \& 06

07 \& \& \& \& \& 14 \&

\hline
\end{tabular}

* These values are for the 230 V class; double the values for 460 V class inverters.
${ }^{\dagger}$ Consider the following items as the conditions for selecting a V/f pattern.
They must be suitable for
(1) The voltage and frequency characteristic of motor.
(2) The maximum speed of motor.
\$ Select high starting torque only in the following conditions.
(1) The power cable length is long [492ft (150m) and above].
(2) Voltage drop at startup is large.
(3) AC reactor is inserted at the input side or output side of the inverter.
(4) A motor with capacity smaller than the maximum applicable inverter capacity is used.

Table $14 \mathrm{~V} / \mathrm{F}$ curve of $3 \sim 40 \mathrm{HP}, 230 \mathrm{~V}$ Class MA inverter *

	Specif	ations	Sn-02	V/F Pattern ${ }^{\dagger}$		Spec	ations	Sn-02	V/F Pattern ${ }^{\dagger}$
00000000000	50 Hz		00			50 Hz	Low Starting Torque High Starting Torque	08 09	
	60 Hz	60 Hz Satu- ration 50 Hz Satu- ration	01 15 02			60 Hz	Low Starting Torque High Starting Torque	10 11	
	72 Hz		03		$\begin{aligned} & \text { O} \\ & 0 \end{aligned}$	90 Hz		12	
0000000000000000	50Hz	Variable Torque 1 Variable Torque 2	04 05			120 Hz		13	
	60 Hz	Variable Torque 3 Variable Torque 4	06 07			180 Hz		14	

* These values are for the 230 V class; double the values for 460 V class $3 \sim 75 \mathrm{HP}$ inverters, multiply 2.61 for 575 V class.
\dagger Consider the following items as the conditions for selecting a V/f pattern.
They must be suitable for
(1) The voltage and frequency characteristic of motor.
(2) The maximum speed of motor.
\ddagger Select high starting torque only in the following conditions. Normally, the selection if not required.
(1) The power cable length is long [492ft (150m) and above].
(2) Voltage drop at startup is large.
(3) AC reactor is inserted at the input side or output side of the inverter.
(4) A motor with capacity smaller than the maximum applicable inverter capacity is used.
(5) Operator Display (Sn-03)

Parameter code ($\mathrm{Sn}-03=0$ or 1)
Set the parameter $\mathrm{Sn}-03$ as 0 or 1 to determine the access status as follows.

Sn -03	DRIVE mode		PRGM mode	
	Set	Read Only	Set	Read Only
0	An,Bn,P2, $\mathrm{P} 4-05, \mathrm{P5}$	$\mathrm{Sn}, \mathrm{Cn}, \mathrm{P} 1, \mathrm{P} 3$, $\mathrm{P} 4-01 \sim 04$	$\mathrm{An}, \mathrm{Bn}, \mathrm{Sn}, \mathrm{Cn}$, $\mathrm{P} 1 \sim \mathrm{P5}$	-
1	An	$\mathrm{Bn}, \mathrm{Sn}, \mathrm{Cn}$, $\mathrm{P} 1 \sim \mathrm{P} 5$	An	$\mathrm{Bn}, \mathrm{Sn}, \mathrm{Cn}$, $\mathrm{P} 1 \sim \mathrm{P5}$

Initialized setting of parameter
(Sn-03=7~12)
Except the parameter of $\mathrm{Sn}-01 \sim 02$ and $\mathrm{Sn}-61$, the parameter groups of An- \square
Bn- \square , Cn- \square , Sn - \qquad and P1- \qquad ~P5- \qquad can be initialized as factory setting according to the different input voltage. At the same time, the terminal (5) \sim (8) can be set as 2 -wire or 3-wire operation mode under different setting of $\mathrm{Sn}-03$. Please see 2-/3-wire operation mode on page 3-50.

(6) Run Source Selection
 (Sn-04)

The parameter is used to select the source of run command.
Sn-04 $=0$: digital operator
$=1:$ control circuit terminal
$=2$: RS-485 communication
Below is the RUN source for the case that $\operatorname{Sn}-04$ is set as 1 and the run source is from the control circuit terminal.

Initial Setting	2 -wire operation $(\mathrm{Sn}-03=7$ or 9 or 11)	3 -wire operation $(\mathrm{Sn}-03=8$ or 10 or 12$)$
Run Source	FWD/STOP, REV/STOP	RUN, STOP, FWD/ REV.

For more details, see "2-/3- wire operation" on page 3-50
(7) Frequency Command Setting Method Selection (Sn-05)

The parameter is used to select the source of frequency command.
Sn-05 $=0$: digital operator
$=1:$ control circuit terminal
$=2$: RS-485 communication
$=3$: pulse input (See "pulse input setting" on page 3-10)
(8) Stopping Method Selection (Sn-06)

Setting the stopping method used when a stop command is executed.

Setting	Function
0	Deceleration to stop
1	Coast to stop
2	DC braking stop: Stops faster than coast to stop, without regenerative operation.
3	Coast to stop with timer: Run sources are disregarded during decel. time.

The following diagrams show the operation of each stopping method.
a) Deceleration to Stop $\quad(\mathrm{Sn}-06=0)$

Deceleration to a stop at a rate set with the selected deceleration time.
b) Coast to Stop
(Sn-06=1)
After the stop command is executed, run source is disregarded until the Min. baseblock time Cn-37 has elapsed.

Fig. 27. Deceleration to stop
c) Whole Range DC Injection Braking Stop ($\mathrm{Sn}-06=2$)
 braking time

O/P freq. when the stop command is input

Fig. 29. Whole range DC Injecting Braking Stop
After the stop command is input and the minimum baseblock time (Cn-37) has elapsed, DC injection braking is applied and the motor stopped.
The DC injection braking time depends upon the output frequency when the stop command is input and the "DC injection time at stop" setting (Cn-16) as shown in Fig. 29.
Lengthen the minimum baseblock time (Cn-37) when an overcurrent (OC) occurs during stopping. When the power to an induction motor is turned OFF, the counter-electromotive force generated by the residual magnetic field in the motor can cause an overcurrent to be detected when DC injection braking stop is applied.
d) Coast to Stop with Timer $(\operatorname{Sn}-06=3)$

Fig. 30. Coast to Stop with Timer
After the stop command is executed, run sources are disregarded until the time T1 has elapsed. The time T1 depends upon the output frequency when the stop command is executed and upon the deceleration time ($\mathrm{Bn}-02$ or $\mathrm{Bn}-04$).
(9) Priority of Stopping (Sn-07)

This parameter enable or disable the STOP key on the digital operator when the run source is from an control circuit terminal or RS-485 communicate port while the motor is running.
$\mathrm{Sn}-07=0$: enabled. (The STOP key is enabled at all time during running)
$=1$: disabled (The STOP key is disabled when the run source is from control terminal or RS-485 port)
(10) Prohibition of REV Run (Sn-08)

While the parameter $\mathrm{Sn}-08$ is set as 1 . The reverse run of motor is not allowed
(11) Output Frequency UP/DOWN Function ($\mathrm{Sn}-09$)

The output frequency can be increased or decreased (UP/DOWN) through digital operator
$\mathrm{Sn}-09=0$: Change output frequency through the $(\mathbb{\sim}, \mathbb{Q}$ key. The frequency command will be accepted only after the key ${ }^{\text {EDNTTER }}$ has been pressed.
= 1: Change output frequency through the (, M) key. The frequency command can be recalled even restarting the inverter if the EDIT key has been pressed at that time.
The output frequency can be changed (increasing (UP) or decreasing (DOWN)) through either the LCD digital operator or external multi-function input terminal (terminals (5) (8).

(12) Frequency Command Characteristics Selection

30.16 previous or later version set $\mathrm{Sn}-68=-0--$

The positive and negative characteristics of analog frequency command ($0 \sim 10 \mathrm{~V} /$ $4 \sim 20 \mathrm{~mA}$) is as follow diagram:

30.17 previous or later version set $\mathrm{Sn}-68=-1-$ - :

The positive and negative characteristics of analog current input is similar to above description, while of analog voltage input is as follow diagram:

Among Sn-68 set, ' - ' represents 0 or 1.
Only 230V 3-40HP, 460V 3-75HP inverters support input of -10V~+10V analog voltage.
(13) Scan Time at Input Terminal

Setting of scan frequency of input terminal (Forward/Reverse, multi-function input)
Sn-11 $=0$: Scan input terminals every 5 ms .
$=1:$ Scan input terminals every 10 ms .

While Excess Load Detection is enabled by $\mathrm{Sn}-12$, be sure to set the values of the Excess Load Detection Level (Cn-32) and Excess Load Detection Time (Cn-33).
An excess load condition is detected when the Excess Load Detection is enabled, and the current exceeds the Excess Load Detection Level for longer than the Excess Load Detection Time.

Sn-12	Function	Display
0	Excess Load detection disabled	
1	Detect excess load only during speed agree. Continue operation after detection. (Minor fault)	"Excess Load Alarm" blinks
2	Detect excess load only during speed agree. Stop output after detection (Fault)	"Excess Load Fault" lights
3	Detect excess load at any time. Continue operation after detection. (Minor fault)	" Excess Load Alarm" blinks
4	Detect excess load at any time. Stop output after detection (Fault)	"Excess Load Fault" lights

(15) Output Voltage Limitation Selection (Sn-13)

In low speed region, if the output voltage from V/f pattern is too high, the inverter will be driven into fault status. As a result, the user can use this option to set the upper bound limit of output voltage.

Fig. 31. Output voltage limit
(16) Stall Prevention Selection During Acceleration (Sn-14)
$\mathrm{Sn}-14=0$: Disabled (Accelerate according to the setting. Stall may occurs with large load)
$=1$: Enabled (Stop acceleration if Cn-25 setting is exceeded. Accelerate again when current recovers)
Please refer to "Stall prevention level during acceleration" on page 3-19.
(17) Stall Prevention Selection During Deceleration ($\mathrm{Sn}-15$)

If external braking resistor unit is installed, the $\mathrm{Sn}-15$ setting must be disabled ($\mathrm{Sn}-15=0$).
If no external braking resistor unit is installed, the inverter can provide about 20% regenerative braking torque. If the load inertia is so large that it exceeds the regenerative braking torque, the parameter $\mathrm{Sn}-15$ is set as " 1 ". When setting $\mathrm{Sn}-15=1$ (enabled) is selected, the deceleration time ($\mathrm{Bn}-02$ or $\mathrm{Bn}-04$) is extended so that a main circuit overvoltage does not occur.

Fig. 32. Stall prevention function during deceleration $(\mathrm{Sn}-15=1)$
(18) Stall Prevention Selection during Running (Sn-16)

Sn-16 = 0 : Disabled (Stall may occur when a large load is applied)
= 1: Enabled (Deceleration will start if the motor current is larger than the stall prevention level during running and continues for more than 100 ms . The motor is accelerated back to the reference frequency again when the current falls below this level Cn -26).
Please refer to "Stall prevention level during running" on page 3-19.
(19) Operation Selection at Fault Contact during Fault Retrying (Sn-17)

Sn-17 = 0 : Do not output fault restart. (The fault contact does not work)
$=1$: Output fault restart. (The fault contact operates)
Please refer to "Number of auto restart attempt" on page 3-18.
(20) Operation Selection at Power Loss
(Sn-18)
This parameter specifies the processing to be performed when a momentary power loss occurs (within 2 sec)
$\mathrm{Sn}-18=0$: When power loss ride-through is disabled the inverter will stop after a momentary power loss. Then an undervoltage fault will be detected.
$=1$: When power loss ride through is enabled, operation will be restarted after a speed search invoked if the power is restored within the allowed time.
If the power is interrupted for more than 2 seconds, the fault contact output will operate and the motor will coast to stop.
(21) Zero Speed Braking Selection (Sn-19)

The run-source and frequency command is input from control circuit under the setting of $\mathrm{Sn}-04=1 \& \mathrm{Sn}-05=1$, If $\mathrm{Sn}-19$ is enabled, the blocking torque will be generated in DC-braking mode when the frequency command is 0 V and forward -run source is "ON".
A time-chart shows the above action as below. The zero-braking selection $\mathrm{Sn}-19$ is set to 1 and the DC-braking current Cn - 15 is limited within 20% of rated current.

Fig. 33. Zero speed braking operation selection
(22) External Fault Contact (3) Contact Selection
$\mathrm{Sn}-20=0$: Input signal is from A-contact. (Normal-open contact)
$=1:$ Input signal is from B-contact. (Normal-close contact)
(23) External Fault Contact (3) Detection Selection
(Sn-21)
Sn-21 $=0$: Always detects.
$=1$: Detect only during running.
(24) Detection Mode Selection of External Fault
(Sn-22)
An external fault is detected (at terminal (3), the following operation will be performed based upon the setting of $\mathrm{Sn}-22$
$\mathrm{Sn}-22=0:$ Decelerate to stop with the specified deceleration time $\mathrm{Bn}-02$.
$=1$: Coast to stop.
$=2:$ Decelerate to stop with the specified deceleration time $\mathrm{Bn}-04$.
$=3$: Continue running with no regard of external fault.
(25) Motor Overload Protection Selection (Sn-23)
$\mathrm{Sn}-23=0$: Electronic overload protection disable.
$\operatorname{Sn}-23=1 \sim 4$: Electronic overload protection enabled. The electronic thermal overload is detected according to the characteristic curves of protection operating time. vs. motor rated current setting (Cn-09).
$\operatorname{Sn}-23=1:$ The overload is detected according to the standard motor cold start curve.
$=2$: The overload is detected according to the standard motor hot start curve.
$=3$: The overload is detected according to the specific motor cold start curve.
$=4$: The overload is detected according to the specific motor hot start curve.
Disable the motor protection function (setting 0) when 2 or more motors are connected to a single inverter. Use another method to provide overload protection separately to each motor, such as connecting a thermal overload relay to the power line of each motor.
The motor overload protection function should be set as $\mathrm{Sn}-23=2$ or 4 (hot start protection characteristic curve) when the power supply is turned on or off frequently, because the thermal values is reset each time when the power is turned off.
For the motor without forced cooling fan, the heat dissipation capability is lower when in the low speed operation. The setting $\mathrm{Sn}-23$ can be either ' 1 ' or ' 2 '.
For the motor with forced cooling fan, the heat dissipation capability is not dependent upon the rotating speed. The setting Sn- 23 can be either ' 3 ' or ' 4 '.
To protect the motor from overload by use of electronic overload protection, be sure to set the parameter $\mathrm{Cn}-09$ according to the rated current value shown on the motor nameplate.

Fig. 34. Motor overload protection curve ($\mathrm{Cn}-09$ setting $=100 \%$)
(26) Frequency Characteristics Command Selection at External Analog Input Terminal (Sn-24)
Sn-24 $=0$: Frequency command is input at VIN terminal ($0 \sim 10 \mathrm{~V}$)
$=1:$ Frequency command is input at AIN terminal $(4 \sim 20 \mathrm{~mA})$
$=2:$ Frequency command is the addition $(\mathrm{VIN}+\mathrm{AIN})$ at VIN $(0 \sim 10 \mathrm{~V})$ and AIN (4~20mA) terminal.
$=3:$ Frequency command is the combination (VIN - AIN) at VIN ($0 \sim 10 \mathrm{~V}$) and $\operatorname{AIN}(4 \sim 20 \mathrm{~mA})$ terminal. If the value (VIN - AIN) is negative, the reference command will take ' 0 ' as a result.
On inverters of $230 \mathrm{~V} 3-40 \mathrm{HP}$, $460 \mathrm{~V} 3-75 \mathrm{HP}$, VIN allows input $\pm 10 \mathrm{~V}$ if
$\mathrm{Sn}-68=-1--$ and $\mathrm{Sn}-05=1$. Set $\mathrm{Sn}-24$ to select main frequency:
$\mathrm{Sn}-24=0$: frequency command is controlled by VIN(-10~+10V) input.
(Corresponding main frequency: $-10 \mathrm{~V} \sim+10 \mathrm{~V} \rightarrow$ Reverse frequency $100 \% \sim$ forward frequency 100%)
$=1$: frequency command in controlled by $\operatorname{AIN}(4 \sim 20 \mathrm{~mA})$ input.
(the status of forward/ reverse is set by user)
$=2$: frequency command is controlled by VIN and AIN, the sum of both (VIN + AIN).
= 3: frequency command is controlled by VIN and AIN, the balance of both (VIN - AIN).
$($ When $($ VIN $+\operatorname{AIN})<0$ or $($ VIN $-\operatorname{AIN})<0$, main frequency switched to reverse status.
While $\operatorname{Sn}-24=0,2$ or 3 , forward or reverse is controlled by main frequency command polarity.
(27) Multi-Function Input Terminal (5) Function Selection (Sn-25)
(28) Multi-Function Input Terminal © Function Selection
(Sn-26)
(29) Multi-Function Input Terminal (7) Function Selection (Sn-27)
(30) Multi-Function Input Terminal 8 Function Selection (Sn-28) The settings and functions for the multi-function input are listed in Table 14.

Table 15 Multi-Function Input Setting

Setting	Function	LCD Display	Description
00	Forward/Reverse command	3_Wire Run	3 -wire operation mode
01	2-wire key-pressing input stop command	2_Wire Stop Key	2-wire operation mode
02	Multi-speed command 1	Multi-Fun. Command 1	Multi-speed frequency command selection
03	Multi-speed command 2	Multi-Fun. Command 2	
04	Multi-speed command 3	Multi-Fun. Command 3	
05	Multi-speed command 4	Multi-Fun. Command 4	
06	Jogging	Jog Command	ON: select jogging frequency
07	Acc/Dec time switch command	Acc.\&Dec. Switch	OFF: the first stage Acc/Dec time (Bn-01, Bn-02), ON : the second stage Acc/Dec time (Bn-03, Bn-04),
08	External base-block command (N.O. contact)	Ext.B.B. NO_Cont	ON: inverter output baseblock
09	External base-block command (N.C. contact)	Ext.B.B. NC_Cont	OFF: inverter output baseblock
10	InhibitAcc/Dec command	Inhibit Acc\&Dec	Inhibit Acc/Dec (hold frequency)
11	Inverter overheat warning	Over Heat Alarm	ON: blink show overheat (inverter can proceed running)
12	FJOG	Forward Jog	ON: forward jog
13	RJOG	Reverse Jog	ON: reverse jog
14	PID integration reset	I_Time Reset	ON: Reset PID integration
15	PID control invalid	PID Invalid	ON: PID control not effective
16	External fault (N.O. contact)	Ext.Fault NO_Cont	ON: External fault input (normally open)
17	External fault (N. C. contact)	Ext.Fault NC_Cont	OFF: External fault input (normally close)
18	Multi-function analog input	\sim Input Valid	ON: multi-function analog input (AUX) effective
19	Timer function input	Timer Function	ON: ON-delay/OFF-delay timer input
20	DC braking command	DC Brakin Command	ON: DC injection braking applied when the frequency output is less than the DC injection start frequency
21	Speed search 1 command	Max Freq. Sp_Search	ON: speed search is performed from max. output frequency
22	Speed search 2 command	Set Freq. Sp_Search	ON : speed search is performed from reference frequency
23	Local/Remote control I	Operator Control	ON: local mode control (through LCD operator) OFF: Run Source and Frequency Command is determined according to (Sn-04, Sn-05) setting
24	Local/Remote control II	Ext. Term. Control	ON: local mode control (through control circuit terminal) OFF: Run Source and Frequency Command is determined according to (Sn-04, Sn-05) setting
25	RS-485 communication application	Comm. Control	PLC application extension use. (Please refer to "RS-485 MODBUS/PROFIBUS Application Manual")
26	speed control without PG	PG Invalid	ON: Speed control without PG
27	Reset integration of speed control with PG	I_Time Invalid	ON: Reset integration of speed control with PG
28	Frequency Up/Down function	UP/DOWN Function	Only $\mathrm{Sn}-28$ can be set as $\mathrm{Sn}-28=28$, terminal (7) used as up cmd. and terminal (8) used as down cmd. when $\mathrm{Sn}-28=28$
29	Force operation signal	Force Run	Only Sn-28 can be set as Sn-28=29
30	PID control invalid 2	PID Invalid w An-16	See " Appendix A PID Control Function " for the description.
31~33	HVAC Functions	--	See "MA7200 PLUS INVERTER SERIES Supplement for Fan and Pump " for the description.

Note: An error message of "Multi-Fun. Parameter" / "Setting Error" will be displayed if: Setting combination of ($\mathrm{Sn}-25 \sim \operatorname{Sn} 28$) is not organized in monotonically increasing order. Setting 21, 22 (both for speed search command) are set at the same time.

Forward/Reverse Change

Under 3-wire initialization mode $(\mathrm{Sn}-03=8$ or 10 or 12$)$, the multi-function input terminals (5)~8 have setting " 00 ", the inverter will be in the 3 -wire mode operation. As shown in Fig. 35, the Forward/Reverse change mode is set at the terminal (5).

Fig. 35. 3-wire mode connection Fig. 36. Operation sequence in 3 -wire mode diagram
Input STOP Command during 2-Wire Mode Operation (setting : 01)
Only set through parameter $\mathrm{Sn}-25$.
Under a standard 2-wire initialization mode as shown in Fig. 37(a), S1 and S2 can not be both "ON" at the same time.
When $\mathrm{S} 1=$ "ON" and $\mathrm{S} 2=$ "OFF", the motor is FWD running. When $\mathrm{S} 1=$ "OFF" and $\mathrm{S} 2=$ "ON", the motor is REV running. When $\mathrm{S} 1=$ "OFF" and $\mathrm{S} 2=$ "OFF", the motor stops running.
When $\mathrm{Sn}-25=$ ' 01 ', the 2 -wire operation mode has its self-sustaining function. Only through the multi-function input terminal(5), the operator can stop the inverter after pressing the "STOP" key as shown in Fig. 37(b). As shown in Fig. 37(b), the switches S1, S2 and S3 do not need to be the self-sustaining switches. When S1 is depressed "ON", the motor will be forward running. After S3 is depressed "ON", the motor will stop. When S2 is depressed "ON", the motor will be reverse running. After S3 is depressed "ON", the motor will stop.

Fig. 37. 2-wire mode connection diagram
Note : 1. For the other setting value (except " 00 ", " 01 "), the external operation mode is defaulted as 2 -wire mode and no self-sustaining function. (that is, the inverter will stop when contact (1) and (2) are not close.)。
2. Under the 2 -wire mode, the error message "Freq. Comm. Error" will be displayed in the digital operator when terminal (1) and (2) are both ON at the same time, the inverter will stop. After the above case cleared, the inverter will return normal.
Multi-Step Speed Command 1
(Setting : 02)
Multi-Step Speed Command 2
(Setting : 03)
Multi-Step Speed Command 3
Multi-Step Speed Command 4
Jog Frequency Selection
(Setting : 04)
(Setting : 05)
There are 16 (maximum) step speed command selection from the combination of the Multi-Step Speed Command and jog frequency command.
Multi-Step Speed command 1~4 and Jog Frequency Selection Setting Table.

$\begin{aligned} & \hline \text { Terminal }{ }^{8} \\ & (\text { Sn-28 }=05) \end{aligned}$	$\begin{aligned} & \hline \text { Terminal }{ }^{77} \\ & (\mathrm{Sn}-27=04) \\ & \hline \end{aligned}$	Terminal(6) (Sn-26= 03)	Terminal (5) (Sn-25=02)	Selected frequency
Multi-step speed cmd. 4	Multi-step speed cmd. 3	Multi-step speed cmd. 2	Multi-step speed cmd. 1	
0	0	0	0	Freq. Cmd. 1 (An-01)* ${ }^{\text {¹ }}$
0	0	0	1	Freq. Cmd. 2 (An-02)*2
0	0	1	0	Freq. Cmd. 3 (An-03)
0	0	1	1	Freq. Cmd. 4 (An-04)
0	1	0	0	Freq. Cmd. 5 (An-05)
0	1	0	1	Freq. Cmd. 6 (An-06)
0	1	1	0	Freq. Cmd. 7 (An-07)
0	1	1	1	Freq. Cmd. 8 (An-08)
1	1	1	1	Freq. Cmd. 16 (An-16)

Note: " 0 " : terminal is "OFF"
" 1 ": terminal is "ON"
An example shows the operation sequence of a multi-step speed and jog command is as below.

Fig. 38. Time chart for multi-step speed and jog command
*1 When the parameter $\mathrm{Sn}-05=0$, the reference command is input by the setting of $\mathrm{An}-01$. Instead, when the parameter $\mathrm{Sn}-05=1$, the reference command is input from analog command through the terminal VIN and AIN.
*2 If the parameter $\operatorname{Sn}-29=0$, the auxiliary frequency (the 2 nd step frequency setting: AUX frequency) is input from the AUX terminal. If the parameter $\operatorname{Sn}-29 \neq 0$, the 2 nd step frequency setting is determined by the parameter of An-02.
Acceleration Time And Deceleration Time Change (Setting : 07)
The acceleration time and deceleration time can be changed through the control circuit terminal (5)~(8) as described on page 3-4.

External Baseblock (N.O. Contact) (Setting : 08)
External Baseblock (N.C. Contact) (Setting : 09)
With either of these settings, the multi-function input terminal controls its inverter baseblock operation.
During running: As an external baseblock signal is detected, the digital operator will display a "B.B. Alarm". Then, the inverter output is blocked. After the baseblock signal is cleared, the motor will resume running according to its then reference signal.
During deceleration : An external baseblock signal is input, the digital operator will display " B.B. Alarm", the inverter is blocked from output and the output frequency will drop to zero. The motor will then coast to stop freely. After this external baseblock signal is cleared, the inverter will stay in stop mode.
Acceleration and Deceleration Ramp Hold
(Setting : 10)
With this setting, the signal of Acceleration/deceleration ramp hold (input from the multi-function input terminals) will pause the Acceleration/deceleration of motor and maintain the then output frequency. The motor will coast to stop if an OFF command is input while the acceleration / deceleration ramp hold input is ON, the then output frequency will be memorized and the command of Acceleration/deceleration ramp hold is released.

Fig. 39. Acceleration and deceleration ramp hold

When the inverter detects a overheat signal "ON", the digital operator will change its display as "Overheat Alarm". And the inverter still maintains its operation. When the overheat signal is "OFF", the digital operator will restore its previous display automatically. No RESET-key pressing is required.
FJOG Command (Setting : 12)
RJOG Command (Setting : 13)
The jogging can be performed in forward or reverse rotation.
Setting = 12: FJOG command "ON": Run forward at the jog frequency (An-17).
= 13: RJOG command "ON": Run reverse at the jog frequency (An-17).
The forward jog and reverse jog commands have priority over other frequency command commands.
The inverter will stop running with the stopping method set by the setting of $\mathrm{Sn}-06$ if the forward jog and reverse jog commands are both ON for more than 500 ms .
PID Integral Reset (Setting : 14)
PID Control Invalid
(Setting : 15)

- See "Appendix A PID Control Function" for the description.

External Fault N.O. Contact (Setting : 16)

External Fault N. C. Contact (Setting : 17)
The external fault input terminal is set to "ON", an external fault then occurs. If the external input terminal (6) is set for the external fault input terminal use, a message of "Fault Ext. Fault 6 " will be displayed.
There are 5 terminal to be assigned as external fault inputs, they are terminal (3), (5), (6), (7, ©

When an external fault occurs, the inverter will be blocked from output and the motor will coast to stop.
Multi-Function Analog Input Setting (Setting : 18)
To disable or enable the multi-function analog input at AUX terminal is controlled by the input signal at an external terminal. When the PID function is enabled, the original AUX function will be disabled.
Timer Function Input Terminal (Setting : 19)
Refer to the setting of timer function output terminal on page 3-63

DC Injection Braking Command (Setting : 20)
DC injection braking is used to prevent the motor from rotating due to inertia or external forces when the inverter is stopped.
The DC injection braking will be performed and the inverter will be stopped if the DC injection braking input is ON.
If a run source or jog command is input, the DC injection braking will be cleared and the motor will begin to run.

Fig. 40. Time chart for DC injection braking command
Speed Search 1
Speed Search 2
Refer to 'speed search' function on page 3-23.

LOCAL/REMOTE Control 1

OFF	Remote Control Run command and frequency command is performed through control circuit input or RS-485 communication port. (It will be set by the combination of settings of Sn-04 and Sn-05.) The REMOTE-REF, SEQ LED light is ON.
ON	Local Control Run command and frequency command is performed through digital operator. The REMOTE-REF, SEQ LED light is OFF.

To change the operation mode from LOCAL to REMOTE mode is effective only when the inverter is in STOP mode.

LOCAL/REMOTE Control 2 (setting : 24)

OFF	Remote Control Run command and frequency command is performed through control circuit input or RS-485 communication port. (It will be set by the combination of settings of Sn-04 and Sn-05.) The REMOTE-REF , SEQ LED light is ON.
ON	Local Control Run command and frequency command is performed through control circuit terminal. The REMOTE-REF, SEQ LED light is OFF.

To change the operation mode from LOCAL to REMOTE mode is effective only when the inverter is in STOP mode.

RS-485 Communication Application
(Setting : 25)
The multi-function input terminals (5) ~ 8 can be used as the extension contact terminals of PLC with the command communicated through the RS-485 port. (Please refer to the "RS-485 MODBUS/PROFIBUS APPLICATION MANUAL")
PG-Less Speed Control Action
(Setting : 26)
Reset Integration of Speed Control with PG
(Setting : 27)
When PG feedback is used, the integral control (to add the PG feedback compensation) can be disabled or enabled from the external terminals. And, user can use the external terminals to clear the integral value.

Fig. 41. PG speed control block diagram
Frequency UP/DOWN Function (Setting : 28)
The inverter can use either the digital operator or external multi-function input terminals (terminal (7) or ${ }^{(8)}$) to change the output frequency upward or downward.
By setting the parameters of $(\mathrm{Sn}-04=1, \mathrm{Sn}-05=1)$, firstly the run source and frequency command is set through the control circuit terminals. Secondly, set the parameter $\mathrm{Sn}-28=28$ (terminal © will now have the function "UP", its original function is disabled). Then, terminal © and © can be used for "UP" and "DOWN" function to control /change the output frequency.

Operation sequence as below:

Control circuit terminal © : UP function	ON	OFF	OFF	ON
Control circuit terminal (8) : DOWN function	OFF	ON	OFF	ON
Operation status	ACC	DEC	Constant	Constant
	(UP)	(DOWN)	(HOLD)	(HOLD)

$U=U P(A C C)$ status $\quad U 1=$ bounded from upper_limit while ACC $D=$ DOWN (DEC) status D1 = bounded from lower_limit while DEC $\mathrm{H}=$ HOLD (Constant) status

Fig. 42. Time chart of output frequency with the UP/DOWN function
Only set through parameter $\mathrm{Sn}-28$
When the frequency UP/DOWN function is being used, the output frequency will accelerate to the lower_limit ($\mathrm{Cn}-19$) if a run command is pressed.
If under HOLD state, 4th bit of Sn -68 is set to 1 power supply OFF, the inverter can remember output frequency as power supply OFF. While supplying the power again and setting operation command ON, the inverter will run at the remembered output frequency.
Under auto operation mode, UP/DOWN operation is unavailable.
When the UP/DOWN function and jog frequency command are both assigned to multi-function inputs, the jog frequency command input has the highest priority. Under UP/DOWN operation, both PID and Multi-Step Speed Command are unavailable.

Forced Run (Setting : 29)
Only set through parameter Sn -28. It is for special use (smoke fan, etc.) The inverter will discard the fault or alarm and the PID function will be disabled if the forced RUN input is ON.
If the forced RUN input is ON and RUN command is ON, the inverter will run at maximum frequency specified by $\mathrm{Cn}-02$ and the frequency command is invalid.

(31) Multi-Function Analog Input Function Selection
 (Sn-29)

The settings and functions for the multi-function analog input (terminal AUX) are listed in Table 15.

Table 16 Multi-function analog input function list

Setting	Function	LCD Display	Description (100\% output corresponds to 10 V level)
00	Auxiliary frequency command	Auxilary Freq.Cmd.	(Max. output frequency)
01	Frequency command gain (FGAIN)	Instruction gain 1	Total gain $=(\mathrm{Bn}-05, \mathrm{Bn}-07) \times$ FGAIN
02	Frequency command bias 1 (FBIAS1)	Cmd. Bias 1	Total bias $=(\mathrm{Bn}-06, \mathrm{Bn}-08)+$ FBIAS1
03	Frequency command bias 2 (FBIAS2)	Cmd. Bias 2	Total bias $=(\mathrm{Bn}-06, \mathrm{Bn}-08)+$ FBIAS2
04	Excess Load Level	Excess Load Level	According to analog input voltage ($0 \sim 10 \mathrm{~V}$), change excess load level (setting of $\mathrm{Cn}-32$ is disabled)
04	Overtorque detection level	Over Tq. Level	According to analog input voltage ($0 \sim 10 \mathrm{~V}$), change overtorque detection level (setting of $\mathrm{Cn}-32$ is disabled)
05	Output frequency bias (VBIAS)	Output Voltage	Total output voltage= V/F pattern voltage + VBIAS
06	Scaling of ACC/DEC time(TK)	Acc\&Dec Coeff	Real ACC/DEC time= ACC/DEC time (Bn-0~24) / TK
07	DC injection braking	DC Brakin current	According to analog input voltage ($0 \sim 10 \mathrm{~V}$), change the level of DC injection current (0-100\%). (inverter rated current $=100 \%$, the setting of $D C$ injection current Cn - 15 is disabled)
08	Stall prevention level during running	Run Still Level	According to analog input voltage ($1.5 \mathrm{~V} \sim 10 \mathrm{~V}$), change the level of stall prevention during running (30\%~200\%) (inverter rated current $=100 \%$, the setting $\mathrm{Cn}-26$ is disabled.)
09	PID control reference input	PID Command	Multi-function analog input (terminal AUX) used as PID control reference input ($0 \sim 10 \mathrm{~V}$). Please refer to "PID BLOCK DIAGRAM" on page App-5.
10	Frequency command lower limit	Freq. Cmd. Low Bound	Change the frequency command lower-limit (0-100\%) value according to the then analog input voltage (0~10V) (Max. output frequency (Cn-02) corresponds to the 100% analog output. The actual lower-limit is determined by the maximum of $\mathrm{Cn}-19$ and the value corresponding to the multi-function analog input terminal).
11	Jump frequency setting4	Freq Jump 4	Set the jump frequency 4, according to analog input voltage ($0 \sim 10 \mathrm{~V}$), while $\mathrm{Cn}-20 \sim \mathrm{Cn}-23$ can be used to set the jump frequency $1 \sim 3$ and their jump frequency width.

12	RS-485 communication application	Comm. Control	The analog value of AUX (0-1024/0-10V) can be read through RS-485 communication.
13	Frequency instruction gain 2 (FGAIN)	Instruction gain2	With Bn-05, 06 (or Bn-07, 08) set, adjust analog
14	Frequency instruction bias3 (FBIAS1)	Instruction bias 3	Winequency instruction gain and bias (gain and bias adjustment is similar to 7200GA)
15	Frequency instruction bias 4 (FBIAS2)	Instruction bias 4	----
$16 \sim 19$	HVAC Functions	See "MA7200 PLUS INVERTER SERIES Supplement for Fan and Pump " for the description.	

Analog input AUX can provided two groups of gain and bias as $\mathrm{Sn}-29=1 \sim 3$ and 13-15. When $\operatorname{Sn}-29=13 \sim 15$, the adjustment of gain and bias is similar to GA series. The following is the block diagrams: (Following is new diagram)

- Multi-function analog input characteristics
(1)

(3) $\mathrm{Sn}-29=02,14$

(2) $\mathrm{Sn}-29=01,13$

(4) $\mathrm{Sn}-29=03,15$

(5) $\mathrm{Sn}-29=04$

(6) $\mathrm{Sn}-29=05$

(7) $\mathrm{Sn}-29=06$

(8) $\mathrm{Sn}-29=07$

$$
\text { Real ACC/DEC Time }=\frac{\text { ACC/DEC Time }(\mathrm{Bn}-01 \sim 04)}{\text { Reduction Coefficient }(\mathrm{TK})}
$$

(11) $\mathrm{Sn}-29=10$

(10) $\mathrm{Sn}-29=09$

Multi-function analog input (terminal AUX) used as PID control reference input ($0 \sim 10 \mathrm{~V}$). Please refer to "PID Control Function on App-1
(12) $\mathrm{Sn}-29=11$

(13) $\mathrm{Sn}-29=12$: For RS-485 communication use. The analog value of AUX ($0-1024 / 0-10 \mathrm{~V}$) can be read through RS-485 communication. (Please refer to 'RS-485 MODBUS/PROFIBUS Application Manual')
(32) Multi-Function Output Terminal (RA-RB-RC or R1A-R1B-R1C) Function Selection (Sn-30)
(33) Multi-Function Output Terminal (DO1-DOG) Function Selection (Sn-31)
(34) Multi-Function Output Terminal (DO2-DOG or R2A-R2C) Function Selection (Sn-32)
Multi-function output terminal setting and its function as shown in Table 16.
Table 17 Multi-function output terminal function

Setting	Function	LCD Display	Description
00	During running	Running	ON : During running
01	Zero speed	Zero Speed	ON: Zero speed
02	Frequency agree	Frequency Arrive	Speed agree width: Cn-31
03	Setting frequency agree	Agreed F Arrive	ON : output frequency $= \pm$ Cn-29, Speed agree width: Cn-31
04	Output frequency detection1	Freq. Det. 1	ON : while ACC, $-\mathrm{Cn}-29$ output freq. $\mathrm{Cn}-29$ while DEC, $-\mathrm{Cn}-30$ output freq. $\mathrm{Cn}-30$ Speed agree width: $\mathrm{Cn}-31$
05	Output frequency detection2	Freq. Det. 2	ON : while ACC, output freq Cn-29(or -Cn-29) while DEC, output freq Cn-30(or -Cn-30) Speed agree width: Cn -31
06	Inverter ready	Run Ready OK!	ON : READY
07	Undervoltage detected	Low Volt Detect	ON : Undervoltage detected
08	Output baseblocked	Output B.B.	ON : Output baseblocked
09	Run source mode	Run Source Operator	ON : Run source from digital operator (Local mode)
10	Frequency command mode	Ref. Cmd. Operator	ON : Frequency command from digital operator (Local mode)
11	Excess Load Detection, NO Contact	Excess Load NO_Cont	ON : Excess Load detection (NO Contact)
12	Frequency command Invalid	Freq. Cmd. Invalid	ON : Frequency command Invalid
13	Fault	Fault	ON : Fault
14	Pulse signal output	Pulse Mul. Output	Only set by Sn -31, Sn-32 (terminal DO1-DOG)
15	Undervoltage alarm	Low Volt Alarm	ON : Undervoltage alarm
16	Inverter overheat	Inverter Over Heat	ON : Inverter Overheat
17	Motor overload	Motor Over Load	ON : Motor Overload
18	Inverter Overload	Inverter Over Load	ON : Inverter Overload
19	Fault retry	Fault Retry	ON : Retry
20	RS-485 communication fault	RS-485 Fault	ON : RS-485 communication fault
21	Timer function output	Timer Function	Signal delay output (.vs. timer function input)
22	RS-485 Communication Application	Comm. Control	Extension Output Contact application (Please refer to MA7200 RS-485 MODBUS /PROFIBUS Application Manual')
23	Excess Load Detection, NC Contact	Excess Load NC_Cont	ON : Excess Load detection (NC Contact)
24~28	HVAC Functions	----	See "MA7200 PLUS INVERTER SERIES Supplement for Fan and Pump " for the description.

During Running (Setting:00)

OFF	Run source OFF, inverter is off.
ON	Run source ON, or Run source OFF but residues output exists

Zero Speed (Setting : 01)

OFF	Output frequency \geqq MIN. output frequency (Cn-07)
ON	Output frequency $<$ MIN. output frequency (Cn-07)

Frequency Agree :
Setting Frequency Agree :
Output Frequency Detected 1 :
Output Frequency Detected 2 :
(Setting : 02)
(Setting : 03)
(Setting : 04)
(Setting : 05)

Refer frequency detection function on page 3-21.

Inverter Ready
Undervoltage Detected
(Setting : 06)

When the DC link voltage of main circuit is lower than the UNDERVOLTAGE DETECTION LEVEL (Cn-39), the output contact is in 'ON' state.

Output Blocked

Run Command Mode

OFF	Remote Mode (Sn-04 $=1,2$, or multi-function input terminal (5) (8) is set as Local/remote control I mode or Local/remote control II mode and contact terminal is OFF). Remote-SEQ LED is light in LCD digital operator
ON	Local Mode (Sn-04 $=0$ multi-function input terminal (5) (8) is set as Local/remote control I mode and contact terminal is ON).Remote-SEQ LCD is OFF, run command is from LCD digital operator

Frequency Command Mode (Setting : 10)

OFF	Remote mode ($\mathrm{Sn}-05=1,2$, or multi- function input terminal (5) (8) is set as Local/remote control I mode or Local/remote control II mode and contact terminal is OFF). Remote-REF LED is light in LCD digital operator
ON	Local mode (Sn-05 $=0$ multi- function input terminal (5) (8) is set as Local/remote control I mode and contact terminal is ON). Remote-REF LED is OFF, run command is from LCD digital operator

Excess Load Detection, NO Contact (Setting : 11)
See page 3-22, 3-44 for excess load detection function.
Frequency Command Missing (Setting : 12)
Run source is ON and frequency command is 0 , the output at the multi-function output terminal is ON.
Fault (Setting : 13)
If a fault occurs, the multi-function output terminal is ON. However, no response will occur if a communication fault occurs.
Pulse Signal Output (Setting : 14)
Only multi-function output terminal DO1-DOG (Setting Sn-31) can be set as the pulse signal output.
DO1 is a photo-coupler output, its pulse output frequency is set by parameter Sn-35.
Its wiring is:

Fig. 43. Pulse signal output
Undervoltage Alarm (Setting : 15)
If the main circuit DC bus voltage is below the undervoltage alarm detected level, the multi-function output terminal is ON.
Undervoltage alarm detected level : $\quad 230 \mathrm{~V}$ Class : 240VDC 460V Class: 460VDC

Inverter Overheat (Setting : 16)
See Page 4-2. If the cooling fin is overheat, the multi-function output terminal is ON.

Motor Overload (Setting : 17)
See "Motor overload protection selection" on page 3-48. If the motor has overload fault, the multi-function output terminal is ON.
Inverter Overload OL2 (Setting : 18)
If the inverter has overload fault, the multi-function output terminal is ON. See page 4-2.

Fault Retry (Setting : 19)
See "Fault restart function" (Cn-24) on page 3-18. Upon restart, the multi-function output terminal is ON.
RS-485 Communication Fault (Setting : 20)
See page 4-2.
Timer Function Output (Setting : 21)
If the multi-function input terminals (5)~8 are set as the timer input terminals (Sn-25-28 = 19), the signal will be output through the corresponding multi-function output terminals with the specified ON-delay and OFF-delay, as shown below. See "Timer function" on page 3-8.

Fig. 44. The input/output signal in 'Timer' function application
RS-485 Communication Application (Setting : 22)
In the application that the control commands are executed through the RS-485 communication port, the multi-function output terminals can be used as the PLC Extension Output Contact Terminals. For more details, Please refer to 'RS-485 MODBUS/PROFIBUS Application Manual'.
Excess Load Detection, NC Contact (Setting : 23)
See page 3-22, 3-44 for excess load detection function.
(35) Multi-Function Analog Output (Terminal AO1) Selection (Sn-33)
(36) Multi-Function Analog Output (Terminal AO2) Selection (Sn-34)

The multi-function analog output can be set to monitor the following 12 status items as shown below :

Sn-33, Sn-34 Setting	Monitored contents	Description	
		Input	Output
00	Frequency Command	0 ~ max. frequency	0~10V
01	Output Frequency	0 ~ max. frequency	
02	Output Current	0 ~ rated current	
03	Output Voltage	0 ~ rated voltage	
04	DC Voltage	$\begin{aligned} & 230 \mathrm{~V} \text { class } 0 \sim 400 \mathrm{~V} \\ & 460 \mathrm{~V} \text { class } 0 \sim 800 \mathrm{~V} \\ & \hline \end{aligned}$	
05	VIN Analog Command	$0 \sim 10 \mathrm{~V}$	
06	AIN Analog Command	4 ~ 20 mA	
07	AUX Analog Command	$0 \sim 10 \mathrm{~V}$	
08	PID Input	0 ~ max frequency	
09	PID Output1	0 ~ max frequency	
10	PID Output2	0 ~ max frequency	
11	Comm. Control	$0 \sim 100 \%{ }^{* 1}$	
12~14	HVAC Functions. See "MA7200 PLUS INVERTER SERIES Supplement for Fan and Pump " for the description.		

Note :
*1: When the setting of $\operatorname{Sn}-33 \sim 34=$ ' 11 ', the multi-function output terminals AO1, AO2 are controlled through RS-485 port either by MODBUS or PROFIBUS protocol. Please refer to "RS-485 MODBUS/PROFIBUS Application Manual"
The output gain ($\mathrm{Bn}-14$ and $\mathrm{Bn}-15$) will determine the output voltage at multi-function analog output at $\mathrm{AO} 1, \mathrm{AO} 2$ terminal. The specified multiple of 10 V will correspond to the 100% output monitored value.

(37) Pulse Output Multiplication-Gain Selection ($\mathrm{Sn}-35$)

If the multi-function output terminal (DO1) be set as pulse output (when $\mathrm{Sn}-31$ or $\mathrm{Sn}-32=14$), the final output pulse frequency is the multiple (according to $\mathrm{Sn}-35$) of the inverter output frequency. Refer to Fig. 43 for pulse signal output.
Ex1: when $\operatorname{Sn}-35=0$, the inverter output frequency is 60 Hz , the output pulse frequency is 60 Hz (duty $=50 \%$).

Different settings of $\mathrm{Sn}-35$ and their corresponding multiple numbers as shown below:

Sn-35 setting	Pulse output frequency	Applicable freq. range
0	$1 \mathrm{~F}: 1 \times$ inverter output frequency	$3.83 \sim 400.0 \mathrm{~Hz}$
1	$6 \mathrm{~F}: 6 \times$ inverter output frequency	$2.56 \sim 360.0 \mathrm{~Hz}$
2	$10 \mathrm{~F}: 10 \times$ inverter output frequency	$1.54 \sim 210.0 \mathrm{~Hz}$
3	$12 \mathrm{~F}: 12 \times$ inverter output frequency	$1.28 \sim 180.0 \mathrm{~Hz}$
4	$36 \mathrm{~F}: 36 \times$ inverter output frequency	$0.5 \sim 60.0 \mathrm{~Hz}$

(38) Inverter Station Address
(39) RS-485 Communication Baud Rate Setting
(40) RS-485 Communication Parity Setting
(Sn-36)
(Sn-37)
(41) RS-485 Stopping Method After Communication Error (Sn-39)

The MA7200 inverter has a built-in RS-485 port for monitoring inverter status and reading the parameter setting. Under the remote mode operation, the inverter status and the parameter settings can be monitored. Moreover, the user can change the parameters setting to control the motor operation.
MA7200 will use MODBUS protocol to communicate with external units by means of the cable line form RS-485 port.
Parameter definition is as follows:
Sn-36: inverter station address, setting range 1~31.

$$
\begin{aligned}
\mathrm{Sn}-37 & =0: 1200 \mathrm{bps}(\mathrm{bps}: \mathrm{bit} / \mathrm{sec}) \\
& =1: 2400 \mathrm{bps} \\
& =2: 4800 \mathrm{bps} \\
& =3: 9600 \mathrm{bps} \\
& =4: 19200 \mathrm{bps}
\end{aligned}
$$

Sn-38 = 0: no parity
$=1$: even parity
$=2$: odd parity
$\mathrm{Sn}-39=0:$ Deceleration to stop with Bn-02 (deceleration time), when RS-485 has communication error.
$=1:$ Coast to stop
= 2: Deceleration to stop with Bn-04 (deceleration time), when RS-485 has communication error.
$=3$: Continue to run (will stop if the key stop is pressed)
Every data stream has a data length of 11 bits : 1 start bit, 8 data bits, 1 parity bit and 1 stop bit. If $\mathrm{Sn}-38=0$, the parity bit is 1 .

3 different commands are used for communication between the inverter and external units:
a. Read command: external units to read the memory address of the inverter.
b. Write command: external units to write the memory address of the inverter in order to control the inverter.
c. Circuit test command: To test the communication status between the inverter and external units.
The change of setting $\mathrm{Sn}-36, \mathrm{Sn}-37, \mathrm{Sn}-38$ will be effective in the next start time after turning off the inverter.
Do not make the DRIVE/PRGM changeover while writing the date into the inverter through RS-485 port.
For more details of RS-485 communication, refer to
"RS-485 MODBUS/PROFIBUS Communication Application Manual".
(42) PG Speed Control Settings
(Sn-40)
$\mathrm{Sn}-40=0$: Disable speed control function.
$=1:$ Enable speed control.
$=2$: Enable speed control. No integral action during ACC/DEC.
$=3$: Enable speed control. Integral action is enabled.
(43) Operation Selection at PG Opens (Sn-41)

$$
\left.\begin{array}{rl}
\mathrm{Sn}-41 & =0: \text { deceleration to stop }(\mathrm{Bn}-02) \\
& =1: \text { coast to stop } \\
& =2: \text { deceleration to stop }(\mathrm{Bn}-04)
\end{array}\right\} \begin{aligned}
& \text { Display "PG Open" alarm. } \\
& \\
& \\
& =3: \text { continue to run }
\end{aligned}
$$

(Sn-42)
$\mathrm{Sn}-42=0$: deceleration to stop (Bn-02)
$=1:$ coast to stop
$=2$: deceleration to stop (Bn-04)
$=3$: continue to run
Blinking display "Sp. Deviate Over" alarm
(43) Overspeed Detection (Sn-43)

$$
\begin{array}{rlr}
\text { Sn-43 } & =0: \text { deceleration to stop }(\mathrm{Bn}-02) \\
& =1: \text { coast to stop } & \text { Display "Over Speed" fault message. } \\
& =2: \text { deceleration to stop (Bn-04) } & \\
& =3: \text { continue to run } & \text { Blinking display "Over Speed" alarm. }
\end{array}
$$

(44) Auto_Run Mode Selection (Sn-44)
(45) Auto_Run Mode Setting Selection (Sn-45~Sn-60)

A PLC operation mode is ready to use with the following setting of the multi-step frequency command1~16 (An-01~An-16), Auto_Run mode time setting (Bn-21~Bn-36) under the auto_run mode selection (Sn-44). The FWD/REV direction can be set with the setting of Sn45~60.
Under auto operation mode, to set operation direction by operator, multi-function input terminal or RS-485 are all invalid.
Under auto operation mode, preset frequency by multifunction input terminal(5)~ (8), and frequency UP/DOWN function is invalid. But if input JOG command as FJOG, RJOG, they will be prior to others. (refer to $\mathrm{Sn}-25 \sim 28$) .

Some example in auto_run mode :
(A) Single Cycle Running (Sn-44=1,4)

The inverter will run for a single full cycle based upon the specified setting mode. Then, it will stop.
For example :

$\mathrm{Sn}-44=1$	$\mathrm{Sn}-45 \sim 47=1(\mathrm{FWD})$	$\mathrm{Sn}-48=2(\mathrm{REV})$	$\mathrm{Sn}-49 \sim 60=0$
$\mathrm{An}-01=15 \mathrm{~Hz}$	$\mathrm{An}-02=30 \mathrm{~Hz}$	$\mathrm{An}-03=50 \mathrm{~Hz}$	$\mathrm{An}-04=20 \mathrm{~Hz}$
$\mathrm{Bn}-21=20 \mathrm{~s}$	$\mathrm{Bn}-22=25 \mathrm{~s}$	$\mathrm{Bn}-23=30 \mathrm{~s}$	$\mathrm{Bn}-24=40 \mathrm{~s}$

An-05~16 $=0 \mathrm{~Hz} \quad \mathrm{Bn}-25 \sim 36=0 \mathrm{~s}$

(B) Periodic Running $(\mathrm{Sn}-44=2,5)$

The inverter will repeat the same cycle periodically.
For example :
$\mathrm{Sn}-44=2$
An-01~16, Bn-21~36, Sn-45-60 : same setting as the example (A)

(C) Auto_Run Mode for Single Cycle

The speed of final step will be held to run.
For example :
Sn-44 $=3$
Sn-45~48 = 1 (FWD) $\mathrm{Sn}-49 \sim 60=0$
An-01~16, Bn-21~36 : same setting as the example (A)

Sn-44 $=1 \sim 3:$ If the inverter stops and re-starts again, it will continue running from the unfinished step, according to the setting of Sn-44.
$=4 \sim 6$: If the inverter stops and re-starts again, it will begin a new cycle and continue running according to the setting of $\mathrm{Sn}-44$.

	1~3	4~6

ACC/DEC time follow the setting of $\mathrm{Bn}-01, \mathrm{Bn}-02$ in Auto_Run Mode. If the setting values of $\mathrm{Bn}-21 \sim \mathrm{Bn}-36$ are all zero, the Auto_Run Mode is disabled.
(46) Applied Torque Load (Sn-61)

Select either the constant torque load $(\mathrm{Sn}-61=0)$ or varied torque load $(\mathrm{Sn}-61=1)$. The inverter will automatically choose the proper V/F pattern and change the inverter overload protection curve. (See page 3-36 for 'INVERTER CAPACITY SELECTION').
(47) LCD Language Displayed Selection (Sn-62)

This parameter is not available in the version of 77.01 and later versions.
(48) Parameter Copy (Sn-63)

JNEP-31 LCD digital operator can upload the parameter settings from the LCD digital operator to inverter and download parameter settings from the inverter to the LCD digital operator.
LCD digital operator will check its EEPROM or the inverter's EEPROM under the following settings.
Sn-63 $=0:$ NO action
$=1:$ Upload data (LCD digital operator \rightarrow inverter). During this period, the LED on the LCD digital operator will light sequentially in the CW sense.
$=2$: Download data (inverter \rightarrow LCD digital operator). During this period, the LED on the LCD digital operator will light sequentially in the CCW sense.
= 3 : Verification check on LCD's EEPROM; during this period the LED will be switch-on between 2 groups.
$=4$: Verification check on inverter's EEPROM; during this period the LED will not light.

Please follow the below steps to implement the action of parameter copy between different inverters (either upload or download).
Step 1: Check the contents of (LCD) digital operator EEPROM (Sn-63='03'), then check the contents of inverter's EEPROM (Sn-63='04'). Make sure that both EEPROM function properly.
Step 2: Download and copy the inverter's parameter settings to LCD digital operator EEPROM (Sn-63=2).
Step 3: Upload and copy the parameter settings of LCD digital operator to other inverter's EEPROM (Sn-63=1).
(49) PID Function Selection (Sn-64)

To enable PID control, set $\mathrm{Sn}-64=1$. Otherwise, set $\mathrm{Sn}-64=0$ to disable PID control function. Moreover, it is possible to use the multi-function terminals (5)~(8) to enable/disable PID control.
(50) Braking Resistor Protection Selection (Sn-65)

Please see the appendix A "PID Control Function" for more details.
(51) Motor Parameter Autotuning Selection (Sn-66)

The AUTOTUNE feature can be used to identify and store the motor's parameters
Sn-66 $=0$:Autotuning Disable
$=1$:Autotuning Enable
(52) Control Mode Selection (Sn-67)

Select one of the two control modes
Sn-67 $=0:$ V/F Control Mode (include V/F control with PG feedback) $=1$: Sensorless Vector Control Mode

Sensorless Control

1. Set $\mathrm{Sn}-67=1$ for sensorless vector control.
2. Set $\operatorname{Sn}-66=1$ for autotuning.
*1. For output frequency less than 1.5 Hz in sensorless vector control, set $\mathrm{Sn}-02=15$ and then change $\mathrm{Cn}-07$ to required frequency.
(53) Control selection (Sn-68)

The set method adopts bit edit, each bit represents one item of function. One bit is set to 0 indicates such function is unavailable, while 1 is available.
Bit $1(---Y)$ is corresponding to phase lose protection function. If ON the function, the inverter will stop output when output terminals phase-lose.
Bit $2(--Y-)$ is reversed with no function.

Bit $3(-\mathrm{Y}--)$ is set to allow $\pm 10 \mathrm{~V}$ analog voltage input. If the bit is set to 1 , the analog voltage input terminal (Vin) can input $-10 \mathrm{~V} \sim+10 \mathrm{~V}$. If it is set to 0 , the analog input terminal (Vin) is default as 0 V , that is the voltage is less that 0 V is not acceptable. The function is available only on 30.16 and later versions and 230 V $3-40 \mathrm{HP}, 460 \mathrm{~V} 3-75 \mathrm{HP}$ inverters. In the previous versions or 1-2HP inverters, the function is invalid.
If PID function is enabled ($\mathrm{Sn}-64=1 \sim 8$), $\pm 10 \mathrm{~V}$ signal is invalid.
Bit $4(\mathrm{Y}---)$ is set to remember output frequency UP/DOWN function under HOLD state. If the bit is set to 1 , to remember the output frequency the latest OFF the inverter. If 0 , the function is available. Please refer to $\mathrm{Sn}-28=28$ parameters description for frequency UP/DOWN function
(54) Torque Detection 2 Selection (Sn-69)

The parameter is not available for 77.01 and later software version.
Please use $\mathrm{Sn}-12$ for excess load detection and use P3-03 for load loss detection instead.
(55) Engineering Unit (Sn-70)
The parameter is not available for 77.01 and later software version. Please use P1-01 for engineering unit instead.
3.5 Monitoring parameters Un-

Parameter No.	Name	LCD display (English)	Unit	Description	Multi-function Analog Output Level
Un-01	Frequency Command	$\mathrm{Un}-01=60.00 \mathrm{~Hz}$ Frequency Command	0.01 Hz	Display frequency command. The displayed unit is determined by Cn-28.	10V/MAX. Output Frequency
Un-02	Output Frequency	Un-02=60.00Hz Output Frequency	0.01 Hz	Display output frequency. The displayed unit is determined by Cn-28.	10V/MAX. Output Frequency
Un-03	Output Current	Un-03=12.5A Output current	0.1A	Display inverter output current.	10V/Inverter Rated Current
Un-04	Output Voltage	Un-04=220.0V Output Voltage	0.1 V	Display output voltage command of inverter	$\begin{gathered} 10 \mathrm{~V} / 230 \mathrm{~V} \text { or } \\ 10 \mathrm{~V} / 460 \mathrm{~V} \end{gathered}$
Un-05	Main Circuit DC Voltage	Un-05=310.0V DC Voltage	0.1 V	Display DC voltage of inverter main circuit.	$\begin{gathered} 10 \mathrm{~V} / 400 \mathrm{~V} \text { or } \\ 10 \mathrm{~V} / 800 \mathrm{~V} \end{gathered}$
Un-06	External Analog Command VIN	Un-06=100\% Voltage $\sim \mathrm{Cmd}$.	0.1\%	-	10V/100\%
Un-07	External Analog Command AIN	Un-07=100\% $\text { Current } \sim \text { Cmd. }$	0.1\%	-	20mA/100\%
Un-08	Multi-Function Analog Input Command AUX	Un-08=100\% Multi_Fun ~Cmd.	0.1\%	-	10V/100\%
Un-09	External Analog OutputAO1	$\begin{gathered} \text { Un-09=100\% } \\ \text { Term.AO1 Output } \end{gathered}$	0.1\%	-	10V/100\%
Un-10	External Analog OutputAO1	$\begin{gathered} \hline \text { Un-10=100\% } \\ \text { Term.AO2 Output } \end{gathered}$	0.1\%	$-$	10V/100\%
Un-11	Input Terminal Status	Un-11= 00000000 I/P Term. Status	-		-
Un-12	Output Terminal Status	Un-12= 00000000 O/P Term. Status	-		-

Note : Term. is terminal abbrev.

$\begin{array}{\|c\|} \hline \text { Parameter } \\ \text { No. } \end{array}$	Name	LCD display (English)	Unit	Description	Multi-function Analog Output Level
Un-13	Amount of PG Speed Feedback	Un-13= 100.0\% PG Feedback.	0.1\%	100.0\%=MAX. output frequency	
Un-14	Amount of PG Speed Compen.	Un-14= 100.0\% PG Compen.	0.1\%	100.0\%=MAX. output freq.	
Un-15	PID Control Input	Un-15= 100\% PID Input	0.1\%	100.0\%=MAX. output freq.	10V/Max. output frequency
Un-16	PID Control Output 1	Un-16= 100\% PID Output1	0.1\%	100.0\%=MAX. output freq.	10V/Max. output frequency
Un-17	PID Control Output 2	$U n-17=00 \%$ PID Output2	0.1\%	100.0\%=MAX. output freq.	10V/Max. output frequency
Un-18	Fault Message 1	Overcurrent Message1	-	Fault message occurred now	-
Un-19	Fault Message 2	Overcurrent Message2	-	Fault message occurred last time	-
Un-20	Fault Message 3	Overheat Message3	-	Fault message occurred last two time	-
Un-21	Fault Message 4	Excess Load Message4	-	Fault message occurred last three time	-
Un-22	The Parameter Of Time Period Between Last Fault And The Nearest Fault.	Un-22 $=2400 \mathrm{Hr}$ Last Fault Run Time	1 Hr	The value of 'Run Elapse Time' parameter will be cleared after fault has been cleared.	-
Un-23	Frequency Command While Fault Occurred	Un-23 $=60.00 \mathrm{~Hz}$ Last Fault Freq. Cmd.	0.01 Hz	-	-
Un-24	Output Freq. While Fault Occurred	$\begin{array}{c\|} \hline \text { Un-24 }=60.00 \mathrm{~Hz} \\ \text { Last Fault O/P Freq. } \\ \hline \end{array}$	0.01 Hz	-	-
Un-25	Output Current While Fault Occurred	$U n-25=12.5 \mathrm{~A}$ Last Fault O/P I	0.1A	-	-
Un-26	Output Voltage While Fault Occurred	Un-26= 220.0V Last Fault O/P V	0.1V	-	-
Un-27	DC Voltage While Fault Occurred	$\text { Un-27= } 310.0 \mathrm{~V}$ Last Fault O/P V	0.1 V	-	-
Un-28	I/P Terminal Status While Fault Occurred	$\text { Un-28= } 00000000$ Last Fault I/P Term.	-	Same as Un-11, display terminal status	-
Un-29	O/P Terminal Status While Fault Occurred	$\begin{array}{\|c\|} \hline \text { Un-29= } 00000000 \\ \text { Last Fault O/P Term. } \end{array}$	-	Same as Un-12, display terminal status	-
Un-30	Time Elapsed After Power-On	Un-31=00002Hr P Elapsed Time	1Hr	Display total time elapsed after power ON	-
Un-31	Time Elapsed After Run	Un-31=00002Hr R Elapsed Time	1Hr	Display total time elapsed after pressing RUN	-
Un-32	EPROM S/W Version	Un-32= 00001 Soft Number	-	-Manufacturing use-	-
Un-33	Feedback Motor Speed	Un-33= 00000rpm Motor Speed	1rpm	Display motor speed while PG feedback is set.	10V/MAX. Motor Speed
Un-34	PID Feedback Display	Un-34= 00000 PID Feedback	*1	Displays PID feedback signal	
$\begin{aligned} & \text { Un-35- } \\ & \text { Un-40 } \end{aligned}$	See "MA7200 PLUS INVERTER SERIES Supplement for Fan and Pump " for the description.				

*1. The unit can be changed through parameter P1-01.
(1) Frequency Command
(Un-01)
(2) Output Frequency (Un-02)
(3) Output Current (Un-03)
(4) Output Voltage (Un-04)
(5) Main Circuit DC Voltage (Un-05)
Through the settings of $\mathrm{Sn}-33, \mathrm{Sn}-34$, the above contents can be displayed at the multi-function analog output terminals (AO1, AO2) in different voltage level of ($0 \sim 10 \mathrm{~V}$)
(6) External Analog Command VIN (Un-06)

The parameter can monitor the external analog terminal voltage VIN ($0 \sim 100 \% / 0 \sim 10 \mathrm{~V}$). The voltage can be output through the multi-function analog output terminal AO1, AO2 (Sn-33=05 or $\mathrm{Sn}-34=05$). The output voltage is the PID feedback voltage when the PID function is used. Please refer to page App-5, "PID block diagram".
(7) External Analog Command AIN (Un-07)

The parameter can monitor the external analog terminal current AIN ($0 \sim 100 \% / 0 \sim 20 \mathrm{~mA}$). The current can be output through the multi-function analog output terminal AO1, AO2 ($\mathrm{Sn}-33=06$ or $\mathrm{Sn}-34=06$). The output current is the PID feedback voltage when the PID function is used. Please refer to page App-5, "PID block diagram".
(8) Multi-Function Analog Input Command AUX (Un-08)

The parameter can monitor the multi-function analog input terminal AUX voltage ($0 \sim 100 \% / 0 \sim 20 \mathrm{~mA}$). The voltage can be output through the multi-function analog output terminal AO1, AO2 ($\mathrm{Sn}-33=07$ or $\mathrm{Sn}-34=07$). The output voltage is the PID target voltage (reference) when the PID function is used. Please refer to App-5, "PID block diagram".
(9) External Analog Output AO1, AO2 (Un-09, Un-10)

The parameter can monitor analog output terminal AO1, AO2 voltage ($0 \sim 10 \mathrm{~V}$). Their output gain can be adjusted through the setting of parameters $\mathrm{Bn}-14$ or $\mathrm{Bn}-15$. Their outputs are determined and varied proportionally according to the setting of (Sn-33 or $\mathrm{Sn}-34$).
(10) Input Terminal Status (Un-11)

The parameter will monitor the status of input terminal (1)~8: 'ON' or 'OFF'.
(11) Output Terminal Status (Un-12)

The parameter will monitor the status of input terminal RA-RC or R1A-R1C, DO1-DOG, DO2-DOG or R2A-R2C : 'ON' or 'OFF'.
(12) PG Speed Feedback and PG Speed Compensation (Un-13, Un-14)

These parameters will monitor the PG speed feedback and PG speed compensation signal if PG feedback function is used.
(13) PID Control Input (Un-15)
(14) PID Control Output1 (Un-16)
(15) PID Control Output2 (Un-17)

The values in Fig. 46, 47 (on page APP-5, APP-6) can be monitored through the parameters of Un-15, Un-16 and Un-17. Moreover, the multi-function analog output terminal $\mathrm{AO} 1, \mathrm{AO} 2$ can be used to monitor the output value through the proper setting of $\mathrm{Sn}-33$ and $\mathrm{Sn}-34$.
(16) Message 1 (Un-18)
(17) Message 2 (Un-19)
(18) Message 3 (Un-20)
(19) Message 4 (Un-21)

These parameters are used to display the fault messages whenever the fault occurred. The user can take proper action for trouble-shooting based upon the displayed message.
(20) The Cumulative Operation Time Setting (Un-22)

The parameter is used to count the elapsed time from the previous fault to the latest fault occurred recently. Its setting range is $0 \sim 65536 \mathrm{Hr}$. After the fault have been cleared and system reset again, the Un-22 will be cleared to zero and counted again.
(21) The Frequency Command While Last Fault Occurred
(22) The Output Frequency While Last Fault Occurred
(Un-23)
(23) The Output Current While Last Fault Occurred
(24) The Output Voltage While Last Fault Occurred
(25) The DC Voltage While Last Fault Occurred
(Un-24)
(23) The Output Current While Last Fault Occurred
(Un-25)
(25) The DC Voltage While Last Fautt Occurred (Un-27)
(26) The Input Terminal Status While Last Fault Occurred (Un-28)
(27) The Output Terminal Status While Last Fault Occurred (Un-29)

The above parameters will display the inverter status when the fault occurred lately. The contents of parameters Un-23~29 will be cleared after the faults have been cleared and the system reset again.
(28) The Cumulative Time Whenever The Input Power Is On (Un-30)

The parameter will record the cumulative operation time from power-on to power-off. Its value is $0 \sim 65535 \mathrm{Hr}$. If the value exceed 65535 , it will restart from 0 again.
(29) The Cumulative Run Time Whenever The Output Power Is On (Un-31)

The parameter will record the cumulative operation time from power-on to power-off. Its value is $0 \sim 65535 \mathrm{Hr}$. If the value exceeds 65535 , it will restart from 0 again.
(30) The EPROM Software Version (Un-32)

The parameter will specify the updated software version in this inverter.
(31) Motor Speed While PG Feedback Is Set. (Un-33)

While PG feedback control is set, the motor speed can be monitored through Un-33.
(32) PID Feedback Display (Un-34)

While PID Function is enabled, the PID feedback signal can be monitored through Un-34. While PID Function is not enabled, the Un-34 will be zero.
The display content can be set by P1-01 and P1-02.
P1-01 sets the unit of Un-34.
P1-02 is the equivalent value displayed for 100% PID Feedback.
See "MA7200 PLUS INVERTER SERIES Supplement for Fan and Pump" for more information.

4. Fault display and troubleshooting

4.1 General

The MA7200 have the protective and warning self-diagnostic functions. If fault occurs, the fault code is displayed on the digital operator. The fault contact output (RA-RBRC or R1A-R1B-R1C, DO1, DO2 or R2A-R2C) operates, and the inverter shut off to stop the motor. If warning occurs, the digital operator will display the warning code. However, the fault-contact output does not operate. (Except some certain cases, see page on 'Warning and Self-Diagnosis Functions'). The digital operator will return to its previous status when the above warning is clear.

- When a fault has occurred, refer to the following table to identify and to clear the cause of the fault.
- Use one of the following methods to reset the fault after restarting the inverter.

1. Stop the inverter.
2. Switch the fault reset input at terminal (4) signal or press the RESET key on the digital operator.
3. Turn off the main circuit power supply and turn on again.

4.2 Error Message and Troubleshooting
 (A) Protective Function

LCD Display (English)	Fault Contents	Fault Contact
Output		

Error Causes	Action to Be Taken
- Power capacity is too small. - Voltage drop due to wiring resistance. - A motor of large capacity connected to the same power system has been started. - Defective electromagnetic contractor.	- Check the source voltage and wiring. - Check the power capacity and power system.
- Extremely rapid accel. - Short-circuit or ground- fault at the inverter output side. - Motor of a capacity greater than the inverter rating has been started. - High-speed motor and pulse motor has been started.	- Extend the accel. time. - Check the load wiring.
- Motor dielectric strength is insufficient. - Load wiring is not proper.	- Check the motor wiring impedance and the load wiring.
- Insufficient deceleration time. - High input voltage compared to motor rated voltage.	- Extend the accel. time. - Use a braking resistor.
- Defective cooling fan. - Ambient temperature rise - Clogged filter.	- Check for the fan, filter and the ambient temperature.
- Overload, low speed operation or extended accel. time. - Improper V-f characteristic setting	- Measure the temperature rise of the motor. - Decrease the output load. - Set proper V/f characteristic.
- Improper rated current (Cn-09) setting	- Set proper V/f characteristic. - Set proper rated current (Cn-09) - If inverter is reset repetitively before fault removed, the inverter may be damaged.
- Machine errors or overload	- Check the use of the machine. - Set a higher protection level (Cn-32).
- Fault input of external signal (3), (5), © (6, (7) and (8).	- Identify the fault signal using Un-11.
- Disturbance of external noise - Excessive impact or vibration	- Reset NVRAM by running Sn-03. - Replace the control board if the fault can't be cleared.
- Improper setting of ASR parameter or over-speed protection level.	- Check the parameters of ASR and the protection level.
- The PG wiring is not properly connected or opencircuit.	- Check the PG wiring.
- Improper setting of ASR parameter or speed deviation level.	- Check parameters of ASR and speed deviation level.
- External noise - Excessive vibration or impact Communication wire - Not properly contacted	- Check the parameter setting, including Sn-01, Sn-02. - Check if the comm. wire is not properly contacted. - Restart, if fault remains, please contact to us.

LCD Display (English)	Fault Contents	Fault Contact Output
Fault Output Power Loss	One of the inverter output phases is lost. The motor coasts to stop.	Operation
Fault Load Loss	Load Loss is detected while the output current is smaller than the setting of P3-01. (machine protection)	Operation
Fault Over Feedback	Over feedback is detected while the PID feedback signal is larger than the setting of P3-04.	Operation
Fault Low Feedback	Low feedback is detected while the PID feedback signal is smaller than the setting of P3-07.	Operation
Fault Low Suction	Low Suction is detected while the output frequency approaches maximum output frequency (Cn-01) and 1. IPD error is larger than the setting of the setting of P3-12 or (and) 2. the output current is smaller the setting of the setting of P3-13	Operation
Fow Suction is detected while the output frequency approaches Fault Low Suction (Retry) 1. PPID error is larger than the setting of the setting of P3-12 or (and) 2. the output current is smaller the setting of the setting of P3-13.	Operation	After the time specified by P3-15, this fault will be reset automatically and inverter will re-start.

Error Causes	Action to Be Taken
- One of the inverter output phases is lost. - DCCT fault.	- Check the wiring between inverter and motor. - Replace the DCCT.
- Machine errors or broken belts.	- Check the use of the machine. If the load is connected by a belt, also check the belt. - Set a lower detection level (P3-01) or longer detection time (P3-02).
- The feedback level is beyond the acceptable level. - Improper feedback detection level (P3-04)	- Check the load, or the feedback signal sensor. - Set a lower protection level (P3-04) or longer detection time (P3-05).
- The feedback level is beyond the acceptable level. - Improper feedback detection level (P3-07)	- Check the load, or the feedback signal sensor. - Set a higher protection level (P3-07) or longer detection time (P3-08).
- The pump breaks suction or the pump losses the water supply.	- Check the pump system.
- The pump breaks suction or the pump losses the water supply.	- Check the pump system.

(B). Warning and Self-Diagnosis Functions

| $\begin{array}{c}\text { LCD Display } \\ \text { (English) }\end{array}$ | Fault Contents | Fault Contact |
| :---: | :--- | :--- | :--- |
| Output | | |$]$.

Error Causes	Action to Be Taken
- Input voltage drop	- Measure the main circuit DC voltage, if the voltage is lower allowance level, regulate the input voltage.
- Input voltage rise	- Measure the main circuit DC voltage, if the voltage is higher than allowance level, regulate the input voltage.
- Overload - Cooling fan fault. Ambient temperature rises. - Clogged filter.	- Check for the fan, filter and the ambient temperature.
- Machine error or overload	- Check the use of the machine. - Set a higher protection level (Cn-32).
- Insufficient Accel./Decel. Time - Overload - Excessive load impact occurs while operating	- Increase Accel./Decel. Time. - Check the load.
- Operation sequence error - 3-wire/2-wire selection error	- Check the circuit of system - Check the setting of system parameters $\mathrm{Sn}-25$, 26, 27, and 28.
- External noise - Excessive vibration or impact on Communication wire - Not properly contacted	- Check the parameter setting, including Sn-01, Sn-02. - Check if the comm. wire is not properly contacted. - Restart, if fault remains, please contact to us.
- Comm. between digital operator and inverter has not been established after system starts for 5 seconds. - Communication is established after system starts, but transmission fault occurs for 2 seconds.	- Re-plug the connector of the digital operators. - Replace the control board.
- External B.B. signal is input.	- After external BB signal is removed, execute the speed search of the inverter.
- Inverter KVA setting error.	- Set proper KVA value. Be aware of the difference of 230 V and 460 V
- The value of $\mathrm{Sn}-25 \sim \mathrm{Sn}-28$ is not in ascending order (Ex. $\mathrm{Sn}-25=05, \mathrm{Sn}-28=02$, those are improper setting). - Set speed search command of 21 and 22 simultaneously.	- Set these values by order (the value of Sn-25 must be smaller than those of Sn-26, 27, 28) - Command 21 and 22 can not be set on two multi-function-input contacts simultaneously.
- The values of Cn-02~Cn-08 do not satisfy $F_{m a x} \geq F_{A} \geq F_{B} \geq F_{\text {min. }}$.	- Change the settings.
- Upper limit and lower limit setting is incorrect.	- Change the settings.
- The PID sleep function is valid (P1-04 =1) and the PID function is invalid ($\mathrm{Sn}-64=0$)	- Set PID Function valid for using PID sleep function.
The target signal and feedback signal of external PID function use the same analog terminal. (Ex. P1-07 $=$ P1-08 $=1$, Terminal VIN is used for both target and feedback signal) - The analog terminal of target (or feedback) signal of external PID function is also used as frequency command, target (or feedback) of original PID function. (Ex. P1-07=2 (AIN = Ext. PID Target), Sn-64 = 1 (PID enabled, the AIN is feedback of PID function.)	- Use different analog terminals for external PID target and feedback. - Please reference "External PID Function (Input and Output Terminal)" to get the terminals available for different setting frequency command source (Sn-05) and PID function (Sn-64).
- The AUX flow meter function is set $(\mathrm{P} 4-01=1)$ and the terminal AUX is also used for PID function (Sn-29 = 9) or external PID function (P1-07 = 3 or P1-08 = 3). - The pulse flow meter function is set $(\mathrm{P} 4-01=2)$ and the frequency command is from pulse input ($\mathrm{Sn}-05=3$).	- Change the settings

LCD Display (English)	Fault Contents	Fault Contact Output
(blinking) Alarm Load Loss	Load Loss is detected while the output current is smaller than or equal to the setting of P3-01. However, the P3-03 has been set such that the inverter continue to run and disregard the over-torque warning.	No operation
(blinking) Alarm Over Speed	Excessive speed (operation remains)	No operation
$\begin{gathered} \text { (blinking) } \\ \text { Alarm } \\ \text { PG Open } \end{gathered}$	PG Open-circuit (operation remains)	No operation
$\begin{gathered} \text { Alarm } \\ \text { Sp.Deviat Over } \\ \hline \end{gathered}$	Excessive speed deviation (operation remains)	No operation
Load Fail	Error during upload and download (operation remains)	No operation
EEPROM Fault	Operator EEPROM error.	No operation
Upload Error	Data incorrect during Communication from the operator to the inverter.	No operation
Download Error	Data incorrect during Communication from the inverter to the operator.	No operation
Alarm Auto Tun-Error	Motor parameter autotuning error	No operation
PID Function Setting Error	Improper setting of PID function for target signal and feedback signal.	No operation
PID Target Limit Setting Error	Improper setting of Cn-64 and Cn-65.	No operation
PG Parameter Setting Error	Improper setting of Cn-45 and Cn-46.	No operation
Load Detection Setting Error	Improper setting of Cn-32 and P3-01.	No operation
Feedback Detection Setting Error	Improper setting of P3-04 and P3-07.	No operation
PID Wakeup Setting Error	Improper setting of PID wakeup level and the Low Feedback Level.	No operation

Error Causes	Action to Be Taken
- Machine errors or broken belts.	- Check the use of the machine. If the load is connected by a belt, also check the belt. - Set a lower detection level (P3-01) or longer detection time (P3-02).
- Improper ASR parameter setting or over-torque protection level.	- Check the ASR parameter and over-torque protection level.
- The circuit of PG is not properly connected or opencircuit.	- Check the wiring of PG.
- Improper ASR parameter setting or over-torque	- Check the ASR parameter and over-torque protection level.
- Bad communication during operator and inverter. - The connector is not properly connected.	- Check if the connector is not properly connected.
- Operator EEPROM error.	- Disable load function of operator. - Replace the operator.
- Incorrect inverter data format - Communication noise.	- Download the data to the operator again. - Check if the connector is not properly connected.
- Communication noise	- Check if the connector is not properly connected.
- Inverter capacity and motor rating are not properly matched. - The wiring between inverter and motor is disconnected. - Motor load unbalance.	- Correct the inverter/motor capacity ratio, wiring cable and motor load.
- The terminal VIN is used in both PID target and PID feedback Ex. Sn-64 = 0, Sn-05 = 1, Sn-24 = 0 (or 2, 3) and Sn-29 is other values than 9	- Set Sn-29 = 9 to use AUX as PID target
- Upper limit and Lower Limit setting is incorrect	- Change the settings
$\text { - } \frac{2 \times \mathrm{Cn}-45 \times \mathrm{Cn}-02}{\mathrm{Cn}-46}>32767$	- Change the settings.
- The excess load level (Cn-32) is smaller than the load loss level (P03-01)	- Modify the Excess Load Level and Load Loss Level
- The over feedback level (P3-04) is smaller than the low feedback level (P03-07)	- Modify the Over Feedback Level and Low feedback level
- The PID wakeup level (P02-03) is smaller than the Low Feedback level (P03-07) and the low feedback action (P0309) is not 0	- Modify the PID wakeup level and low feedback level

APPENDIX

A. PID Control Function

(A) List of Parameters for PID Control

- Below is the parameters used in PID Control.

Function	Parameter No.	Name and Description	LCD display (English)	Setting range	Setting Unit	Factory Setting
Setting of PID Control Parameter	Bn-16	PID Detection Gain	Bn-16= 01.00 PID Cmd. Gain	0.01~10.00	0.01	1
	Bn-17	PID Proportional Gain	$\begin{gathered} \text { Bn-17= } 01.00 \\ \text { PID P_gain } \\ \hline \end{gathered}$	0.01~10.00	0.01	1
	Bn-18	PID integral time	$\begin{gathered} \mathrm{Bn}-18=10.00 \mathrm{~s} \\ \text { PID I_Time } \\ \hline \end{gathered}$	0.00~100.00s	0.01s	10.00s
	Bn-19	PID Differential Time	$\begin{gathered} \mathrm{Bn}-19=0.00 \mathrm{~s} \\ \text { PID D_Time } \end{gathered}$	0~1.00s	0.01s	0.00s
	Bn-20	PID Bias	$\begin{gathered} \hline \text { Bn-20 }=0 \% \\ \text { PID Bias } \\ \hline \end{gathered}$	0~109\%	1\%	0\%
	Cn-55	PID Integral Upper Bound	$C n-55=100 \%$ PID I-Upper	0~109\%	1\%	100\%
	Cn-56	PID Primary Delay Time Constant	$\mathrm{Cn}-56=0.0 \mathrm{~s}$ PID Filter	0.0~2.5s	0.1s	0.0s
	Cn-64	PID Target Upper Limit	$\begin{gathered} \text { Cn-64 }=100 \% \\ \text { PID Target U_Limit } \end{gathered}$	0~100\%	1\%	100\%
	Cn-65	PID Target Lower Limit	$\begin{gathered} \text { Cn-65 }=0 \% \\ \text { PID Target L_Limit } \end{gathered}$	0~100\%	1\%	0\%
	Sn-05	Frequency Command Selection	$S n-05=0$ Ref. Cmd. Operator	0~3	1	0
PID Feedback Selection	Sn-24	External Analog Input	$\begin{gathered} \text { Sn-24=0 } \\ \sim \text { Cmd. VIN } \end{gathered}$	0~3	1	0
PID Monitor	Un-15	PID Control Input	Un-15=100\% PID Input	-	0.1\%	-
	Un-16	PID Control Output 1	Un-16=100\% PID Output1	-	0.1\%	-
	Un-17	PID Control Output 2	$\text { Un-17= } 00 \%$ PID Output2	-	0.1\%	-
	Un-34	PID Feedback Display	Un-34= 00000 PID Feedback	-	0	-

Function	Parameter No.	Name	Description
PID Integral Reset	Sn-25~ Sn-28	Multi-Function Output (RA-RB-RC, DO1, DO2) Function Selection	14: PID Integral Reset
PID Invalid	Sn-25~ Sn-28	Multi-Function Output (RA-RB-RC, DO1, DO2) Function Selection	15: PID Invalid
PID Invalid 2	Sn-25~ Sn-28	Multi-Function Output (RA-RB-RC, DO1, DO2) Function Selection	30: PID Invalid, An-16 is used as frequency command
PID Target Selection	Sn-29	Multi-Function Analog Input (AUX) Function Selection	9: Use terminal AUX as PID Target if Sn-05 = others : Use terminal VIN as PID Target if Sn-05 = 1

- For these functions below, please see " MA7200 PLUS INVERTER SERIES Supplement for Fan and Pump " for more details.
- Scaled PID Feedback Signal and Engineering Units.
- PID Sleep Function.
- Over Feedback Detection for PID Feedback Signal.
- Low Feedback Detection for PID Feedback Signal.
- External PID Function (using terminal AO1 or AO2 as output).
- Low Suction Detection Function.
(B) Input of PID Control
- If PID function is enabled, the frequency command is used as PID target. The PID feedback signal is from the combinational of terminal AIN and terminal VIN, according to the setting of $\mathrm{Sn}-24$.
If multi-step speed reference $1 \sim 4$ (set by $\mathrm{Sn}-25 \sim 28$) is not set, the PID target may come from keypad, terminal AUX or VIN, RS-485 communication or pulse input.
- Below is the list of the source of the PID target and PID feedback and the available setting of $\mathrm{Sn}-24$ for different settings of PID target.

Sn-05	Sn-29	PID Target	Available setting for Sn-24
0	-	From Keypad	$0,1,2,3$
1	9	From Terminal AUX (0-10V/0~100\%)	$0,1,2,3$
	else	From Terminal VIN $(0-10 \mathrm{~V} / 0 \sim 100 \%)$	1
2	-	From RS-485 Communication	$0,1,2,3$
3	-	From Pulse Input	$0,1,2,3$

Sn-24	PID Feedback	Comments
0	From Terminal VIN $(0 \sim 10 \mathrm{~V} / 0 \sim 100 \%)$	It is not valid if VIN is used as PID target
1	From Terminal AIN $(4 \sim 20 \mathrm{~mA} / 0 \sim 100 \%)$	
2	From VIN + AIN	It is not valid if VIN is used as PID target
3	From VIN - AIN	un

Fig. 45. PID Wiring Diagram

- An error message of "PID Setting Error" will be displayed if all the conditions below are satisfied.

1. the PID function is enabled ($\mathrm{Sn}-64=1 \sim 8$)
2. $\mathrm{Sn}-05=1$ and the value of $\mathrm{Sn}-29$ is not 9 (VIN is used as PID target).
3. $\mathrm{Sn}-24=0$, 2 or 3 (VIN is also included in PID feedback).

- Below is the functions affected by the setting of PID target/feedback signal.

Function	Description
External PID function	Terminals VIN, AIN and AUX used in main PID function can't be used for external PID function
Flow Meter Display	If terminal AUX is used in main PID function, the analog flow meter display function (P4-01 = 1) is not allowed

- If multi-step speed reference $1 \sim 4$ is used, An-02 \sim An-16 can be selected to be the PID target signal.

Multi-step Speed 4	Multi-step Speed 3	Multi-step Speed 2	Multi-step Speed 	PID Target
0	0	0	0	
0	0	0	1	An-02
0	0	1	0	An-03
0	0	1	1	An-04
0	1	0	0	An-05
0	1	0	1	An-06
1	1	1	1	An-16

*1 When the parameter Sn-05 is not zero, the PID target depends on the combination of Sn-05 and Sn-29.

(C) Description of PID Function

- The PID control function is a control system that matches a feedback value (i.e., a detected value) to the set target value. Combining the proportional (P), integral (I) and derivative (D) control make the control possible to achieve required response.
- The PID control function will be disabled if

1. The Auto-Run is set ($\mathrm{Sn}-40$ is nonzero value) or
2. The Forced Run command is set ($\mathrm{Sn}-25 \sim 28=29$ and the corresponding digital input is ON) or
3. Frequency UP/DOWN Function ($\mathrm{Sn}-28=28$) is set

- 8 PID control modes are available. Below is the list.

| Sn-64
 (PID Mode) | Characteristic | | Input of differential controller | | Actual PID Output | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Positive | Negative | Difference of
 target and
 feedback | Feedback
 value | PID Output | PID Output
 plus target
 value |
| 0 | V | | V | C | | |
| 1 | V | | | V | V Unavailable | |
| 2 | V | | V | | V | |
| 3 | V | | | V | | V |
| 4 | | V | V | | V | V |
| 5 | | V | | V | V | |
| 6 | | V | V | | | V |
| 7 | | V | | V | | V |

- Below is the Block Diagram of PID function.

Fig. 46. PID Block Diagram, without Sleep Function

- If the PID sleep function is enabled, the PID characteristic is according to parameter P1-05 (PID Wakeup Direction).

P1-05	PID Wakeup Direction	PID Error Signal
0	PID Wakeup while the feedback rises above the wakeup level	Negative Characteristic
1	PID Wakeup while the feedback falls below the wakeup level	Positive Characteristic

Fig. 47. PID Block Diagram, with Sleep Function
Deviation
Target value

(P)

(I)
(D)

Fig. 48. Response of PID control for step-shape (deviation) input

- Deviation $=$ Target value - Detected value \times Bn-16.
- P's control output $=$ deviation $\times \mathrm{Bn}-17$.
- I's control output will increase with time and the output will be equal to the deviation after time specified by parameter Bn-18
- The parameter Cn-55 will prevent the calculated value of the integral control (with the integral time Bn-18) in the PID control from exceeding the fixed amount.
- The output of D controller depends on the setting of Sn-64.

While Sn-64 $=1,3,5,7$, D's control output $=$ PID error $\times\left(\frac{\mathrm{Bn}-19}{5 \mathrm{~m} \mathrm{sec}}\right)$
While Sn-64 $=2,4,6,8$, D's control output $=$ PID feedback $\times\left(\frac{\mathrm{Bn}-19}{5 \mathrm{~m} \mathrm{sec}}\right)$

- The parameter Cn-55 prevents the calculated value of the integral control of PID from exceeding the fixed amount. The value is limited within 0-109\% of Max. output frequency (100\%).
Increase Cn-55 will improve the integral control. If hunting cannot be reduced by decreasing the Bn-18 or increasing Cn-56, Cn-55 has to decrease. If the setting of Cn-55 is too small, the output may not match the target setting.
- The parameter Cn-56 is the low-pass filter setting for PID control output. If the viscous friction of the mechanical system is high, or if the rigidity is low, causing the mechanical system to oscillate, increase the setting Cn-56 so that it is higher than the oscillation period. It will decrease the response, but it will prevent the oscillation.
- The parameters Cn-64 (PID Target Upper Limit) and Cn-65 (PID Target Lower Limit) limit the PID target signal. The actual frequency command is limited by Cn18 and Cn-19.

- Below is the list of the setting of multi-function input (Sn-25 ~ 28) for the PID function.

Setting	Function	Description
14	PID integration reset	ON: Reset PID integration
15	PID control invalid	ON: PID control not effective
30	PID control invalid 2	ON: PID control not effective, using An-16 as frequency command

- PID Integral Reset (Setting : 14).
- In the application of PID control, the integral can be reset to zero (ground) through the multi-function input terminal (5)~8 (Sn-25~28= 14).
- PID Control Invalid (Setting : 15)
- PID Control Invalid 2 (Setting : 30)

OFF	PID control valid (close-loop)
ON	PID control invalid (open-loop)

- If PID function is enabled (Sn-64 is not zero), this setting can be used to disable PID function. It is often used in the changeover of test run.
- To disable the PID function (PID control invalid is "ON"), an open-loop operation or jog operation can be performed in the test. The system can be set up properly after some test runs. Then, the system can be changed into PID control mode.
- Setting Sn-25~28= 15 can disable the PID function and set previous PID target as frequency command.
- Setting Sn-25~28= 30 can disable the PID function and set An-16 as frequency command.
- Below is the list of the frequency command source while the PID function is invalid.

Sn-05	Sn-29	Frequency Command Source with PID control invalid	
		Sn-25 $\sim 28=15$	Sn-25 $\sim 28=30$
0	-	From Keypad	
1	9	From Terminal AUX (0-10V/0~100\%)	
	Other Value	From Terminal VIN $(0-10 \mathrm{~V} / 0 \sim 100 \%)$	
2	-	From RS-485 Communication	
3	-	From Pulse Input	

- If both PID control invalid (Sn-25~28 = 15) and PID control invalid 2 (Sn$25 \sim 28=30$) are set, the PID control invalid 2 has the priority.

B. Adjusting PID Controller

Use the following procedure to activate PID control and then adjust it while monitoring the response.

1. Enable PID control by setting Sn-64 = 1~8
2. Adjust Proportional Gain Bn-17 until continuous oscillations in the Controlled Variable are at a minimum.
3. The addition of Integral Time Bn-18 will cause the steady-state error to approach zero. The time should be adjusted so that this minimal error is attained as fast as possible, without making the system oscillate.
4. If necessary, adjust Derivative Time Bn-19 to reduce overshoot during startup. The inverter's acceleration and deceleration rate times can also be used for this purpose.

All of these parameters are interactive, and will need to be adjusted until the control loop is properly tuned, i.e. stable with minimal steady-state error. A general procedure for tuning these parameters is as follows:

- Reducing Overshooting

If overshoot occurs, shorten the derivative time (D) and lengthen the integral time (I).

- Rapidly Stabilizing Control Status

To rapidly stabilize the control conditions even when overshooting occurs, shorten the integral time (I) and lengthen the derivative time (D).

- Reducing Long-cycle Oscillation

If oscillation occurs with a longer cycle than the integral time (I) setting, then the integral operation is strong. The oscillation will be reduced as the integral time (I) is lengthened.

- Reducing Short-cycle Oscillation

If oscillation cycle is short and approx. the same as the derivative time (D) setting, then the derivative operation is strong. The oscillation will be reduced as the derivative time (D) is shortened. If even setting the derivative time (D) to 0.00 cannot reduce oscillation, then either decreases the proportional gain (P) or raise the PID primary delay time constant.

C. Wiring for PG Feedback Use

The MA7200 inverter has a built-in PG interface, no external PG feedback option card is needed. An independent DC source of +12 V should be provided from an external source.

Fig. 49. Wiring of PG feedback
Note :

1. \boldsymbol{k} : Isolated twisted cable wire.
2. Notation for PG terminals

Terminal	Function
A(+)	PG signal input terminal. The voltage level is ($\mathrm{H}: 4 \sim 12 \mathrm{~V}, \mathrm{~L}: \leq 1 \mathrm{~V}$). Its Max. frequency is $<32767 \mathrm{~Hz}$
A(-)	
IP12	Terminals feed in the (+12)VDC external power source $(+12 \mathrm{~V} \pm 10 \%$, the Max. current is 40 mA)
IG12	
+12V	$(+12) \mathrm{V}$ DC source ($+12 \mathrm{~V} \pm 10 \%$, min. 0.5 A)
OV	
E	Inverter ground.

3. Please refer to page 3-26 and 3-66 for more details on PG feedback.
4. The A(+), A(-), IP12, IG12 terminals are integrated as CN2 in compact version. (see page 1-9~1-10). The code No. of the wire is 4H339D0250001.
5. The PG interface only allows the open-collector interface drive or complementary interface drive.
6. The short pin of TP1 set to PULL UP position for open-collector interface (factory setting) and set to OPEN position for complementary interface. The PG interface only allows the open-collector interface drive or complementary interface drive.
7. The shielded twisted-pair cable wire should be used between the inverter and PG, its length should be less than 150 feet.

D. RS-485 Communication Interface

- MA7200 RS-485 interface (terminal S(+), S(-)) can provide MODBUS protocol for communication. PROFIBUS protocol for communication is possible with an optional PROFIBUS Communication Card (MA-SP).
- Wiring diagram of MODBUS and PROFIBUS-DP:
(a) MODBUS Protocol Communication

Fig. 50. Wiring for MODBUS Protocol Communication
Note:1. A Host Controller with RS-485 interface can communicate with the MA7200 unit through RS-485 interface connection directly. If the Host Controller does not provide the RS-485 port and its RS-232 port is available (such as PC programming), an RS-485/RS-232 conversion card should be used to connect between this Host Controller and the MA7200 unit.
2. A MODBUS Host Controller can drive the network with no more than 31 inverters connected, using MODBUS communication standard. If the inverter (e.g., MA7200) is at the end of the network, it must have terminating resistors 220Ω at both terminals. All other inverters in the system should not have terminators.
3. Please refer to "MA7200 RS-485 MODBUS Communication Application Manual".
(b) PROFIBUS Protocol Communication

The optional MA-SP PROFIBUS Communication Card supports the PROFIBUS protocol. The optional MA-SP PROFIBUS Communication Card can be placed at the control board. An independent 24V DC Power Supply is needed for all MA-SP option cards.

Fig. 51. Wiring for PROFIBUS Protocol Communication
Note : 1. Code No. : 4H300D0290009
2. The optional MA-SP card will consume about $2.4 \mathrm{~W}\left(=24.0 \mathrm{~V}^{*} 0.1 \mathrm{~A}\right)$. Select the proper DC power supply to meet your system capacity based upon the station number.
3. A maximum of 31 PROFIBUS-DP stations (nodes) may be contained within a single network segment. If the drive is at the end of the network, it must have 220Ω between terminals (S-, S+).
4. For more details, refer to the "MA7200 PROFIBUS-DP Communication Application Manual".

E. SINK/SOURCE Typical Connection Diagram

- The UL/CUL Standard Type Control Board (Code No. : 4P101C0060002) Terminal (1)~8) can be set as Sink or Source Type Input Interface. Typical connection examples are shown below.
(a) SINK Type Input Interface: The short pin of TP2 is set to SINK position.
- Transistor (Open-collector) used for operation signal.

- NPN Sensor (Sink) used for operation signal.

(b) SOURCE Type Input Interface : The short pin of TP2 is set to SINK position.
- Transistor (Open-collector) used for operation signal.

- PNP Sensor (Source) used for operation signal.

F. Sensorless Vector Control Set-up

The MA7200 has two standard two selectable control modes, V/F Control Mode (Sn-67=0) and Sensorless Vector Control Mode (Sn-67=1). When the Sensorless Vector Control Mode is selected, be sure that the inverter capacity and the motor rating are suitably matched.
The AUTOTUNE feature can be used to identify and store the important motor parameters for the Sensorless Vector Control Mode.

Refer to pages 3-27, 3-28 and 3-70 for more details about Sensorless Vector Control.

- The Sequence of Motor Parameter Autotuning:

1. Disconnect the motor load and make sure that the wiring between the inverter and the motor is suitable. The difference between inverter capacity and motor rating should not be greater than two frame sizes.
2. Switch to PRGM operation mode by pressing the Digital Operator ($\left.\begin{array}{c}\text { PRGM } \\ \text { ORVE }\end{array}\right)$ key.
3. Input the Motor Rated Voltage Data to parameter Cn-03 (Max. Output Voltage) and the Motor Rated Frequency to parameter Cn-04 (Max. Voltage Frequency) using data from motor's nameplate. Enable Sensorless Vector Control Mode (Sn-67=1).
4. Enable the Autotuning Function by setting Sn-66= 1 .
5. Switch to DRIVE operation mode by pressing the ($\left.\begin{array}{c}\text { PRGM } \\ \text { ORNE }\end{array}\right)$ key, then run the inverter by pressing the RUN key.
6. The inverter system immediately enters into the autotuning operation until completing the autotuning procedure (normally about 25 seconds). The inverter then returns to a stopped condition. Press the STOP key to stop the parameter autotuning operation if an abnormality occurs during autotuning operation.
7. Finally, press the STOP key to return the system to normal operation mode. The value of motor parameter will be automatically stored in these parameters: Cn-57 (Motor Line-to-Line Resistance R1), Cn-58 (Motor Rotor Equivalent Resistance R2), Cn-59 (Motor Leakage Inductance Ls) and Cn-60 (Mutual Inductance Lm).

- The Operations and Adjustments of Sensorless Vector Control :

1. Make sure the inverter capacity and motor rating is suitably matched. Use the AUTOTUNE feature to identify and store the motor parameters in the first time sensorless vector operation after installation, and key in the Motor Rated Voltage data into Cn-03 and the Motor Rated Frequency into Cn-04 according to the motor nameplate.
2. Enable the Sensorless Vector Control Mode by setting Sn-67=1.
3. Increase setting $\mathrm{Cn}-57$ to increase the generating torque at low speed. Decrease setting Cn-57 to reduce the generating torque to avoid overcurrent trip at low speed.
4. Adjust setting Cn-61 if the speed accuracy needs to improve. When the actual speed is low, increase the set value and when the actual speed is high, decrease the set value.
5. If the motor speed is not stable or the load inertia is too large, increase the Cn-40 (Slip Compensation Primary Delay Time) setting.
If the speed response is slow, decrease the setting of $\mathrm{Cn}-40$.

G. Notes for Circuit Protection and Environmental Ratings

- Circuit Protection

The MA7200 is "suitable for use in a circuit capable of delivering not more than___rms symmetrical amperes___V maximum." Where the rms value symmetrical amperes and V maximum are to be as follows:

Device Rating		Short Circuit Rating (A)	Maximum Voltage (V)
Voltage	HP		
230 V	$1.5 \sim 50$	5,000	
	$51 \sim 100$	10,000	
460 V	$1.5 \sim 50$	5,000	480 V
	$51 \sim 200$	10,000	

- Environmental Ratings

The MA7200 is intended for use in pollution degree 2 environments.
■ Field Wiring Terminals and Tightening Torque
The wiring terminals and tightening torque are listed as follows. (Main Circuit Terminal Specifications - use $140 / 167^{\circ} \mathrm{F}\left(60 / 75^{\circ} \mathrm{C}\right)$ copper wire only).
(A) 230V Class (NEMA1)

Circuit	Inverter Rating (HP)	Terminals Mark	Cable Size (AWG)	Terminals	Tightening Torque (Pound-inch)
Main Circuit	1	L1, L2, L3, T1, T2, T3, B1/P, B2, \odot	14~10	M4	10
		(1)	14 ~ 10	M4	10
	2	L1, L2, L3, T1, T2, T3, B1/P, B2 , \odot	14~10	M4	10
		\bigcirc	12 ~ 10	M4	10
	3	L1, L2, L3, T1, T2, T3, B1/P, B1/R, B2, \odot	12 ~ 10	M4	10
		(1)	12 ~ 10	M4	10
	5	L1, L2, L3, T1, T2, T3, B1/P, B1/R, B2, \bigodot	12 ~ 10	M4	10
		$\stackrel{\rightharpoonup}{*}$	10	M4	10
	7.5	L1, L2, L3, T1, T2, T3, B1/P, B1/R, B2, \bigodot	8	M4	10
		($10 \sim 8$	M4	10
	10	L1, L2, L3, T1, T2, T3, B1/P, B1/R, B2, \bigodot	8	M4	10
		(1)	$10 \sim 8$	M4	10
	15	L1, L2, L3, T1, T2, T3, B1/P B2, \bigodot	8~6	M6	30
		$\stackrel{1}{\theta}$	10~8	M6	35
	20	L1, L2, L3, T1, T2, T3, B1/P, B2, \odot	8~6	M6	30
		()	$10 \sim 8$	M6	35
	25	L1, L2, L3, T1, T2, T3, \dagger, \ominus	4	M6	35
		$\stackrel{\theta}{\theta}$	6	M6	35
	30	L1, L2, L3, T1, T2, T3, \uparrow, \odot	2	M8	78
		$\stackrel{\text { ® }}{ }$	6	M10	156
	40	L1, L2, L3, T1, T2, T3, \dagger, \ominus	2/0	M8	78
		$\hat{*}$	4	M10	156
Control Circuit	All series	(1)~(8), 15V, VIN, AIN, AUX, AO1, AO2 RA, RB, RC, D01, DO2, (or R2A, R2C)	24~14	M2.6	4

(B) 460V Class (NEMA1)

Circuit	Inverter Rating (HP)	Terminals Mark	Cable Size (AWG)	Terminals	Tightening Torque (Pound-inch)
Main Circuit	1	L1, L2, L3, T1, T2, T3	14~10	M4	10
		$\stackrel{\ominus}{\hat{*}}$	14~10	M4	10
	2	L1, L2, L3, T1, T2, T3	14~10	M4	10
		$\stackrel{1}{\ominus}$	14~10	M4	10
	3	L1, L2, L3, T1, T2, T3, B1/P, B2, \bigodot	14~10	M4	10
		$\stackrel{1}{\theta}$	14~10	M4	10
	5	L1, L2, L3, T1, T2, T3, B1/P, B2, \bigodot	14~10	M4	10
		©	12 ~ 10	M4	10
	7.5	L1, L2, L3, T1, T2, T3, B1/P, B1/R, B2, \odot	12~10	M4	10
		$\stackrel{\rightharpoonup}{*}$	12 ~ 10	M4	10
	10	L1, L2, L3, T1, T2, T3, B1/P, B1/R, B2, \bigodot	10	M4	10
		$\stackrel{1}{\theta}$	10	M4	10
	15	L1, L2, L3, T1, T2, T3, B1/P, B2, \odot	10~8	M6	15
		$\stackrel{1}{\theta}$	12~10	M6	35
	20	L1, L2, L3, T1, T2, T3, B1/P, B2, \odot	10~8	M6	15
		$\stackrel{1}{\square}$	12~10	M6	35
	25	L1, L2, L3, T1, T2, T3, \oplus, \ominus	8	M6	35
		$\stackrel{1}{\theta}$	8	M6	35
	30	L1, L2, L3, T1, T2, T3, \dagger, \ominus	6	M6	35
		$\stackrel{1}{\theta}$	8	M6	35
	40	L1, L2, L3, T1, T2, T3, \uparrow, \ominus	4	M8	78
		$\stackrel{1}{\square}$	8	M10	156
	50	L1, L2, L3, T1, T2, T3, \uparrow, \odot	4	M8	78
		$\stackrel{1}{\theta}$	6	M10	156
	60	L1, L2, L3, T1, T2, T3, \dagger, \ominus	2	M8	78
		$\hat{\theta}$	6	M10	156
	75	L1, L2, L3, T1, T2, T3, \oplus, \ominus	2/0	M8	78
		$\stackrel{1}{\ominus}$	4	M10	156
Control Circuit	All series	(1)~8, 15V, VIN, AIN, AUX, AO1, AO2 RA, RB, RC, D01, DO2, (or R2A, R2C)	24~14	M2.6	4

(C) 575V Class (NEMA1)

Circuit	Inverter Rating (HP)	Terminals Mark	$\begin{gathered} \text { Cable Size } \\ \text { (AWG) } \\ \hline \end{gathered}$	Terminals	Tightening Torque (Pound-inch)
Main Circuit	1	L1, L2, L3, T1, T2, T3	14~10	M4	10
		$\stackrel{\text { - }}{ }$	14~10	M4	10
	2	L1, L2, L3, T1, T2, T3	14~10	M4	10
		$\stackrel{(}{*}$	14~10	M4	10
	3	L1, L2, L3, T1, T2, T3, B1/P, B2, \ominus	14~10	M4	10
		$\stackrel{(}{*}$	14~10	M4	10
	5	L1, L2, L3, T1, T2, T3, B1/P, B2, \ominus	14~10	M4	10
		$\stackrel{(}{*}$	12~10	M4	10
	7.5	L1, L2, L3, T1, T2, T3, B1/P, B1/R, B2, \bigodot	12~10	M4	10
		$\stackrel{(}{*}$	12~10	M4	10
	10	L1, L2, L3, T1, T2, T3, B1/P, B1/R, B2, \bigodot	12~10	M4	10
		$\stackrel{(}{*}$	12~10	M4	10
Control Circuit	All series	(1) ~8, 15V, VIN, AIN, AUX, AO1, AO2 RA, RB, RC, D01, DO2, (or R2A, R2C)	24~14	M2.6	4

(D) 230V Class (NEMA4)

Circuit	Inverter Rating (HP)	Terminals Mark	Cable Size (AWG)	Terminals	Tightening Torque (Pound-inch)
Main Circuit	1	L1, L2, L3, T1, T2, T3, B1/P, B1/R, B2, \bigodot	14~10	M4	10
		$\stackrel{\text { ® }}{ }$	14~10	M4	10
	2	L1, L2, L3, T1, T2, T3, B1/P, B1/R, B2, \bigodot	14~10	M4	10
		$\stackrel{\text { - }}{ }$	12~10	M4	10
	3	L1, L2, L3, T1, T2, T3, B1/P, B1/R, B2, \bigodot	12~10	M4	10
		$\stackrel{\text { ® }}{ }$	12~10	M4	10
	5	L1, L2, L3, T1, T2, T3, B1/P, B1/R, B2, \bigodot	12~10	M4	10
		(10	M4	10
	7.5	$\mathrm{L} 1, \mathrm{~L} 2, \mathrm{~L} 3, \mathrm{~T} 1, \mathrm{~T} 2, \mathrm{~T} 3, \mathrm{~B} 1 / \mathrm{P}, \mathrm{B} 1 / \mathrm{R}, \mathrm{B} 2, \ominus$	8	M4	10
		$\stackrel{\rightharpoonup}{-}$	10~8	M4	10
	10	L1, L2, L3, T1, T2, T3, B1/P, B1/R, B2, \bigodot	8	M4	10
		$\stackrel{\text { ® }}{ }$	10~8	M4	10
	15	L1, L2, L3, T1, T2, T3, B1/P B2, \ominus	4	M6	35
		$\stackrel{\text { ® }}{ }$	8	M6	35
	20	L1, L2, L3, T1, T2, T3, B1/P, B2, Θ	2	M6	35
		$\stackrel{\text { ® }}{ }$	8	M6	35
Control Circuit	$\begin{gathered} \text { All } \\ \text { series } \\ \hline \end{gathered}$	© ${ }^{1} \sim 8,15 \mathrm{~V}, \mathrm{VIN}, \mathrm{AIN}, \mathrm{AUX}, \mathrm{AO1}, \mathrm{AO} 2$ RA, RB, RC, DO1, DO2, (or R2A, R2C)	24~14	M2.6	4

(E) 460V Class (NEMA4)

Circuit	Inverter Rating (HP)	Terminals Mark	Cable Size (AWG)	Terminals	Tightening Torque (Pound-inch)
Main Circuit	1	L1, L2, L3, T1, T2, T3, B1/P, B1/R, B2, \odot	14~10	M4	10
		$\stackrel{\ominus}{\hat{O}}$	$14 \sim 10$	M4	10
	2	L1, L2, L3, T1, T2, T3, B1/P, B1/R, B2, \odot	$14 \sim 10$	M4	10
		$\stackrel{\ominus}{\hat{O}}$	$14 \sim 10$	M4	10
	3	L1, L2, L3, T1, T2, T3, B1/P, B1/R, B2, \odot	14~10	M4	10
		$\stackrel{1}{*}$	14~10	M4	10
	5	L1, L2, L3, T1, T2, T3, B1/P, B1/R, B2, \odot	14~10	M4	10
		$\stackrel{1}{\hat{O}}$	12 ~ 10	M4	10
	7.5	L1, L2, L3, T1, T2, T3, B1/P, B1/R, B2, \odot	12 ~ 10	M4	10
		$\stackrel{\rightharpoonup}{\theta}$	12 ~ 10	M4	10
	10	L1, L2, L3, T1, T2, T3, B1/P, B1/R, B2, \odot	10	M4	10
		(1)	10	M4	10
	15	L1, L2, L3, T1, T2, T3, B1/P, B1/R, B2, \odot	12 ~ 10	M6	35
		$\stackrel{\rightharpoonup}{\theta}$	12 ~ 10	M6	35
	20	L1, L2, L3, T1, T2, T3, B1/P, B1/R, B2, \odot	10	M6	35
		$\stackrel{\rightharpoonup}{\ominus}$	10	M6	35
Control Circuit	All series	$\begin{aligned} & \text { (1) ~8, 15V, VIN, AIN, AUX, AO1, AO2 } \\ & \text { RA, RB, RC, DO1, DO2, (or R2A, R2C) } \end{aligned}$	24~14	M2.6	4

H. Spare Parts

(A) 230V Class (NEMA1)

INVERTER \& PARTS NAME			CONTROL PC BOARD	POWER BOARD	Power Module (IGBT)	Diode Module
HP	MODEL	SPEC.				
1	MA7200-2001-N1	MODEL	-	-	FP15R06W1E3	
		CODE	4H300D6730027 *	4P106C01600A1	4LA32X025S01	
		Q'TY	1	1	1	
2	MA7200-2002-N1	MODEL	-	-	FP20R06W1E3	
		CODE	4H300D6730027* ${ }^{\text {1 }}$	4P106C0160003	4LA32X026S01	
		Q'TY	1	1	1	
3	MA7200-2003-N1	MODEL	-	-	7MBR30SA060', MUBW20-06A7	
		CODE	4H300D6740022*2	4P106C01800B1	277831619 277830132	
		Q'TY	1	1	1	
5	MA7200-2005-N1	MODEL	-	------	7MBR50SA060! MUBW30-06A7	
		CODE	4H300D6740022*2	4P106C01800C9	277831627 277830141	
		Q'TY	1	1	1	
7.5	MA7200-2007-N1	MODEL	-	-	7MBP50RA060	DF75LA80
		CODE	4H300D6740022 2	4P106C0210001	277831660	4M903D1480016
		Q'TY	1	1	1	1
10	MA7200-2010-N1	MODEL	-	-	7MBP75RA060	DF75LA80
		CODE	4H300D6740022 ${ }^{2}$	4P106C0220006	277831678	4M903D1480016
		Q'TY	1	1	1	----------
15	MA7200-2015-N1	MODEL	-	-	7MBP100RTA060	DF100BA80
		CODE	4H300D6740022*2	4P106C01500A6	277831694	277192209
		Q'TY	1	1	1	1
20	MA7200-2020-N1	MODEL	-	-	7MBP160RTA060	DF150BA80
		CODE	4H300D6740022*2	4P106C01500B4	277831708	277192179
		Q'TY	1	1	1	
25	MA7200-2025-N1	MODEL	-	-	MIG200J6CMB1W	SKKH72/16E
		CODE	4H300D67400222	4P106C03300B2	277830086	277112337
		Q'TY	1	1	1	3
30	MA7200-2030-N1	MODEL	-	-	CM200DY-12NF	SKKH106/16E
		CODE	4H300D6750028 2	4P106C04000A2	4KA32X064S01	277112302
		Q'TY	1	1	3	3
40	MA7200-2040-N1	MODEL	-	-	SKM300GB063DN	SKKH106/16E
		CODE	4H300D6750028*2	4P106C04000A2	277810662	277112302
		Q'TY	1	1	3	3

*1 : For old version, code no. is 4P101C0040001.
*2 : For old version, code no. is 4P101C0060002.

INVERTER \& PARTS NAME			COOLING FAN	Resistor
HP	MODEL	SPEC.		
1	MA7200-2001-N1	MODEL	KD1204PFBX MGA4012YR-A10(L)	N20SP-12-Y2
		CODE	4M903D0880002 - 4M903D0880002S2	3M903D1820000
		Q'TY	1	1
2	MA7200-2002-N1	MODEL	KD1204PFBX : MGA4012YR-A10(L)	N20SP-12-Y2
		CODE	4M903D0880002 4M903D0880002S2	3M903D1820000
		Q'TY	1	
3	MA7200-2003-N1	MODEL	AFB0624H	$8 \mathrm{~W} / 12 \Omega$
		CODE	4H300D0190012	4M903D0180086
		Q'TY	1	2
5	MA7200-2005-N1	MODEL	AFB0624H ${ }^{\text {MGA6024XR-O25(L) }}$	8W/12,
		CODE	4H300D0190012	4M903D0180086
		Q'TY	1	2
7.5	MA7200-2007-N1	MODEL	AFB0824VH	$8 \mathrm{~W} / 6.2 \Omega$ 8W/6.2л
		CODE	4H300D0200018	4M903D01800784M903D2330018
		Q'TY	1	1 ------1
10	MA7200-2010-N1	MODEL	AFB0824VH	$8 \mathrm{~W} / 6.2 \Omega$ 8W/6.2Л
		CODE	4H300D0200018 - 4H300D0200018S1	4M903D0180078:4M903D2330018
		Q'TY	1	1 : 1
15	MA7200-2015-N1	MODEL	AFB0824SH-B MGA8024YR-O25(L)	60W/2.2ת
		CODE	4H300D3340007 -- 4H300D1440004S1	3H300D2350005
		Q'TY	1	1
20	MA7200-2020-N1	MODEL	AFB0824SH-B MGA8024YR-O25(L)	$60 \mathrm{~W} / 2.2 \Omega$
		CODE	4H300D3340007	3H30002350005
		Q'TY	1	--------------------
25	MA7200-2025-N1	MODEL	PMD2408PMB1-A: MGA8024XB-O38 : KD2406PTB1 :'MGA6024XR-O25(L)	60W/120
		CODE		3K3A4880
		Q'TY	2 - 1	1
30	MA7200-2030-N1	MODEL	PSD2412PMB1 :MGA12024UB-O38(L): KD2406PTB1 :MGA6024XR-O25(L)	60W/120ת
		CODE	4H300D6040004 4H300D5790000S1 :4H300D6060021: HH300D1060007S1	3K3A4880
		Q'TY	2 -	1
40	MA7200-2040-N1	MODEL	PSD2412PMB1 'MGA12024UB-O38(L)' KD2406PTB1 'MGA6024XR-O25(L)	60W/120
		CODE		3K3A4880
		Q'TY	22 -----------1	1

INVERTER \& PARTS NAME			Relay	DCCT	Capacitor	OPERATOR
HP	MODEL	SPEC.				
1	MA7200-2001-N1	MODEL	OZ-SS-112LM	LX-7.5 : TB-7.5	$330 \mathrm{FF} / 400 \mathrm{~V}$	JNEP-36A
		CODE	271608055	3K3A2468 4M903D1030029S1	3K3A1868	4KA93X030T01
		Q'TY	1	2	3	1
2	MA7200-2002-N1	MODEL	OZ-SS-112LM	HY-10P : ${ }^{\text {a }}$ TB-10	$330 \mathrm{~F} / 400 \mathrm{~V}$	JNEP-36A
		CODE	271608055	273014331 273014332S1	3K3A1868	4KA93X030т01
		Q'TY	1	2	4	1
3	MA7200-2003-N1	MODEL	841-S-1A-D-H-24VDC	SY-15T : TK15	470uF/400v	JNEP-36A
		CODE	271608969	3M903D1420001 3M903D1420001S1	4M903D0300022	4KA93X030T01
		Q'TY	1	3	4	----------
5	MA7200-2005-N1	MODEL	841-S-1A-D-H-24VDC	SY-25T2 : TK25	470uF/400v	JNEP-36A
		CODE	271608969	3M903D3860009 3M903D3860009S1	4M903D0300022	4KA93X030T01
		Q'TY	1	3	4	1
7.5	MA7200-2007-N1	MODEL	841-S-2A-D-H-24VDC	HY37-P : TC-37.5A	1500uF/400V	JNEP-36A
		CODE	271608977	4M903D1020015 4M903D1020015S1	4M903D0310010	4KA93X030T01
		Q'TY	1	3	2	1
10	MA7200-2010-N1	MODEL	841-S-2A-D-H-24VDC	HY50-P : TC-50A	1800uF/400V	JNEP-36A
		CODE	271608977	4M903D1020023 4M903D1020023S1	4M903D0310010	4KA93X030T01
		Q'TY	1	3	2	1
15	MA7200-2015-N1	MODEL	G7J-4A-B-DC24V	HC-PT075V4B15 TP75	3300uF/400V	JNEP-36A
		CODE	3K3A2390	3M903D4030034 3M903D4030034S1	4M903D0310061	4KA93X030T01
		Q'TY	--------	1	2	----------
20	MA7200-2020-N1	MODEL	G7J-4A-B-DC24V	HC-PT100V4B15 : TP100	4400uF/400V	JNEP-36A
		CODE	3K3A2390	3M903D4030042: 3M903D4030042S1	4M903D0310052	4KA93X030T01
		Q'TY	1	1	2	1
25	MA7200-2025-N1	MODEL	942H-2C-24-DS	L08P150D15 : TD 150A	400V/6800uF	JNEP-36A
		CODE	4M903D2800006	4M903D3960031 4M903D4390034S1	4M903D4110007	4KA93X030т01
		Q'TY	1	3	2	1
30	MA7200-2030-N1	MODEL	942H-2C-24-DS	CT/Board	CAP./Board	JNEP-36A
		CODE	4M903D2800006	4P108C00800A2	4P108C0050008	4KA93X030т01
		Q'TY	1	1	1	1
40	MA7200-2040-N1	MODEL	942H-2C-24-DS	CT/Board	CAP./Board	JNEP-36A
		CODE	4M903D2800006	4P108C0090000	4P108C0060003	4KA93X030Т01
		Q'TY	1	1	1	1

(B) 460V Class (NEMA1)

INVERTER \& PARTS NAME			CONTROL PC BOARD	POWER BOARD	Power Module (IGBT)	Diode Module
HP	MODEL	SPEC.				
1	MA7200-4001-N1	MODEL	-	-	FP10R12NT3	
		CODE	4H300D6730027 ${ }^{* 1}$	4P106C0250002	4LB34D001S01	
		Q'TY	1	1	1	
2	MA7200-4002-N1	MODEL	-	-	FP10R12NT3	
		CODE	4H300D6730027 ${ }^{\text {+ }}$	4P106C02500A1	4LB34D001S01	
		Q'TY	1	1	1	
3	MA7200-4003-N1	MODEL	-		MUBW10-12A7	
		CODE	4H300D6740022 ${ }^{2}$	4P106C0240007	277830159	
		Q'TY	1	1	1	
5	MA7200-4005-N1	MODEL	-	-	MUBW15-12A7	
		CODE	4H300D6740022 2	4P106C02400A5	277830167	
		Q'TY	1	1	1	
7.5	MA7200-4007-N1	MODEL	-		$31 \mathrm{NAB12}$	6RI30G-160
		CODE	4H300D6740022 ${ }^{2}$	4P106C0110006	277830621	277191067
		Q'TY	1	1	1	1
10	MA7200-4010-N1	MODEL	-		31 NAB12	6RI30G-160
		CODE	4H300D6740022 ${ }^{\text {2 }}$	4P106C0110006	277830621	277191067
		Q'TY	1	1	1	1
15	MA7200-4015-N1	MODEL	-		7MBP75RA120	DF75AA160
		CODE	4H300D6740022 ${ }^{2}$	4P106C0150008	277831538	277192128
		Q'TY	1	1	1	
20	MA7200-4020-N1	MODEL	-		7MBP75RA120	DF75AA160
		CODE	4H300D6740022 ${ }^{2}$	4P106C0150016	277831538	277192128
		Q'TY	1	1	1	1
25	MA7200-4025-N1	MODEL	-		MIG100Q6CMB1X	SKKH72/16E
		CODE	4H300D6740022 ${ }^{\text {2 }}$	4P106C0330006	277830094	277112337
		Q'TY	1	1	1	3
30	MA7200-4030-N1	MODEL	-		MIG150Q6CMB1X	SKKH72/16E
		CODE	4H300D6740022 ${ }^{\text {2 }}$	4P106C03300A4	277830108	277112337
		Q'TY	1	1	1	3
40	MA7200-4040-N1	MODEL	-		CM150DY-24A	SKKH72/16E
		CODE	4H300D6750028 ${ }^{\text {2 }}$	4P106C0400007	277810328	277112337
		Q'TY	1	1	3	3
50	MA7200-4050-N1	MODEL	-		CM200DY-24A	SKKH106/16E
		CODE	4H300D6750028 ${ }^{\text {2 }}$	4P106C0400007	277810336	277112302
		Q'TY	1	1	3	3
60	MA7200-4060-N1	MODEL	-		SKM400GB128D	SKKH106/16E
		CODE	4H300D6750028 ${ }^{\text {2 }}$	4P106C0410000	4KA32X047S01	277112302
		Q'TY	1	1	3	3
75	MA7200-4075-N1	MODEL	-		SKM400GB128D	SKKH106/16E
		CODE	4H300D6750028 ${ }^{\text {2 }}$	4P106C0410000	4KA32X047S01	277112302
		Q'TY	1	1	3	3

*1 : For old version, code no. is 4P101C0040001.
*2 : For old version, code no. is 4P101C0060002.

INVERTER \& PARTS NAME			COOLING FAN	Resistor
HP	MODEL	SPEC.		
1	MA7200-4001-N1	MODEL	KD1204PFBX - MGA4012YR-A10(L)	5W/40』
		CODE-	4M903D0880002 - - MM903D0880002S2	3M112Z0010006
		Q'TY	1	2
2	MA7200-4002-N1	MODEL	KD1204PFBX - MGA4012YR-A10(L)	$5 \mathrm{~W} / 40 \Omega$
		CODE	4M903D0880002 - - ${ }^{\text {a }}$	3M112Z0010006
		Q'TY	--------------------------------1-1	2
3	MA7200-4003-N1	MODEL	AFB0624H ${ }^{\text {a }}$ MGA6024XR-O25(L)	$8 \mathrm{~W} / 120 \Omega$
		CODE	4H300D0190004 - - - 4H300D0190012S2	4M903D0180060--
		Q'TY	1	- 1
5	MA7200-4005-N1	MODEL	AFB0624H - MGA6024XR-O25(L)	8W/120
		CODE	4H300D0190004 - ${ }^{\text {- }}$ 4H300D0190012S2	4M903D0180060 --
		Q'TY	1	1
7.5	MA7200-4007-N1	MODEL	AFB0824SH	10W/16ת 10W/16ת
		CODE	4H300D0200000 - 4H300D0200018S1	4M903D0090022:4M903D2330026
		Q'TY		-
10	MA7200-4010-N1	MODEL	AFB0824SH	$10 \mathrm{~W} / 16 \Omega \quad 10 \mathrm{~W} / 16 \Omega$
		CODE	4H300D0200000 - 4H300D0200018S1	4M903D0190022 4M903D2330026
		Q'TY		---я----1
15	MA7200-4015-N1	MODEL	AFB0824SH	$80 \mathrm{~W} / 6.2 \Omega$
		CODE	4H300D1440004 -- 4H300D1440004S1	3 H 300 D 2360001
		Q'TY	1 1	- 1
20	MA7200-4020-N1	MODEL	AFB0824SH	$80 \mathrm{~W} / 6.2 \Omega$
		CODE		3H300D2360001
		Q'TY	(1	- 1
25	MA7200-4025-N1	MODEL	EEB0824EHE \ MGA8024XB-O38 ! ASB0624H-B !MGA6024XR-O25(L)	60W/240л
		CODE		3K3A4879
		Q'TY	2 : 1	- 1
30	MA7200-4030-N1	MODEL	EEB0824EHE IMGA8024XB-O38 ASB0624H-B IMGA6024XR-O25(L)	$60 \mathrm{~W} / 240 \Omega$
		CODE	4H30006050000 '4H300D5590001S1; 4H30006060013'; 4H300D0190012S2	3K3A4879
		Q'TY	2	- 1
40	MA7200-4040-N1	MODEL	PSD2412PMB1 'MGA12024UB-038(L)' KD2406PTB1 [MGA6024XR-O25(L)	60W/240
		CODE	4H30006040004 4 H 300 D 5790000 S1' 4 H30006060021 4H300D1060007S1	3K3A4881
		Q'TY	2	1
50	MA7200-4050-N1	MODEL	PSD2412PMB1 'MGA12024UB-038(L)' KD2406PTB1 'MGA6024XR-O25(L)	$60 \mathrm{~W} / 240 \Omega$
		CODE	4H30006040004 '4H300D5790000S1':4H300D6060021' 4 H300D1060007S1	3K3A4881
		Q'TY	2	1
60	MA7200-4060-N1	MODEL	PSD2412PMB1 'MGA12024UB-O38(L)' KD2406PTB1 'MGA6024XR-O25(L)	60W/240』
		CODE	4H30006040004 '4H300D5790000S1'4H300D6060021' 4 H30001060007S1	3K3A4881
		Q'TY	2	1
75	MA7200-4075-N1	MODEL	PSD2412PMB1 'MGA12024UB-038(L)' KD2406PTB1 'MGA6024XR-025(L)	$60 \mathrm{~W} / 240 \Omega$
		CODE	4H30006040004 4 H 300 D 5790000 S1: 4 H 30006060021 4H300D1060007S1	3K3A4881
		Q'TY	2 -	1

INVERTER \& PARTS NAME			Relay	DCCT	Capacitor	OPERATOR
HP	MODEL	SPEC.				
1	MA7200-4001-N1	MODEL	RT444012	TB5A 4V	330uF/400V	JNEP-36A
		CODE	4M903D1040008	4M903D2210012	3K3A1868	4KA93x030T01
		Q'TY	---------	--------	-	--------
2	MA7200-4002-N1	MODEL	RT444012	TB5A 4V	330uF/400V	JNEP-36A
		CODE	4M903D1040008	4M903D2210012	ЗKЗA-1868	4KA93х030T01-
		Q'TY	--------	-------	----	--------
3	MA7200-4003-N1	MODEL	953-1A-24DG-DC24V	HC-PSG075V4B15: TK7. 5	330uF/400V	JNEP-36A
		CODE	271603711	4M903D2220026!4M903D2220026S1	4M903D0300014	4KA93X030Т01
		Q'TY	------	3---------------125	----------	---------
5	MA7200-4005-N1	MODEL	953-1A-24DG-DC24V	HC-PSG125V4B15:	560uF/400V	JNEP-36A
		CODE	271603711	4M903D2220042 4M903D2220042S1	4M903D0300031	4KA93х030Т01
		Q'TY	------	------------------	---------	---------
7.5	MA7200-4007-N1	MODEL	841-S-2A-D-H	TC25A 4V	2200uF/400V	JNEP-36A
		CODE	271608977	4M903D2210063	4M903D0310036	4KA93X030Т01
		Q'TY	1	- ${ }^{\text {a }}$	-	-------
10	MA7200-4010-N1	MODEL	841-S-2A-D-H	TC25A 4V	2200uF/400V	JNEP-36A
		CODE	271608977	4M903D2210063	4M903D0310036	4KA93X030Т01
		Q'TY	----	--------	----2----	---------
15	MA7200-4015-N1	MODEL	G7J-4A-B-DC24V	HC-PT0375V4B15: TP37.5	3300uF/400V	JNEP-36A
		CODE	ЗКЗА2390	3M903D4030018 3M903D4030018S1	4M903D0310061	4KA93х030Т01-
		Q'TY	1		-	---------
20	MA7200-4020-N1	MODEL	G7J-4A-B-DC24V	HC-PT050V4B15: TP50	4400uF/400V	JNEP-36A
		CODE	ЗK3A2390	3M903D4030026 3M903D4030026S1	4M903D0310052	4KA93х030T01-
		Q'TY	----	-----------------1-1	-	--------
25	MA7200-4025-N1	MODEL	942H-2C-24-DS	L08P075D15 - TD75A	400V/6800uF	JNEP-36A
		CODE-	4M903D2800006	4M903D3960015 4M903D439001881	4M903D4110007	4KA93х030Т01-
		Q'TY	--------	-------------------	${ }^{---0^{-----}}$	---------
30	MA7200-4030-N1	MODEL	942H-2C-24-DS	L08P100D15 : TD100A	400V/6800uF	JNEP-36A
		CODE-	4M903D2800006	4M903D3960023 4M903D4390026S1	4M903D4110007	4KA93х030Т01-
		Q'TY	----------	-------------------	${ }^{----2^{-----}}$	----------
40	MA7200-4040-N1	MODEL	942H-2C-24-DS	CT/Board	CAP./Board	JNEP-36A
		CODE	4M903D2800006	$4 \mathrm{P108C0080004}$	$4 \mathrm{P} 08 \mathrm{C0040002}$	4KA93х030T01
		Q'TY	---------	--------	--------	--------
50	MA7200-4050-N1	MODEL	942H-2C-24-DS	CT/Board	CAP./Board	JNEP-36A
		CODE	4M903D2800006	$4 \mathrm{P108C00800A2}$	4 P 08 COO 000 Al	4KA93х030T01-
		Q'TY	-------	-------	-------	--------
60	MA7200-4060-N1	MODEL	942H-2C-24-DS	CT/Board	CAP./Board	JNEP-36A
		CODE	4M903D2800006	4 P 108 CO 0100005	$4 \mathrm{P} 08 \mathrm{COO20001}$	4KA93х030то1-
		Q'TY	---------	-------	---------	---------
75	MA7200-4075-N1	MODEL	942H-2C-24-DS	CT/Board	CAP./Board	JNEP-36A
		CODE-	4M903D2800006	4 P 108 CO 0100005	4P108C00200A0	4KA93X030-T01
		Q'TY	----------	---------	-	-----

(C) 230V Class (NEMA4)

INVERTER \& PARTS NAME			Control PC Board	Power Board	Rectifier Board	Main Circuit Transistor	$\begin{aligned} & \text { Cover } \\ & \text { Assy } \end{aligned}$
HP	MODEL	SPEC.					
1	MA7200-2001-N4	MODEL	-	-	-	FP15R06W1E3	-
		CODE	4H300D6730027	4P106C01600A1	-	4LA32X025S01	4LA41X371S01
		Q'TY	1	1	-	1	1
2	MA7200-2002-N4	MODEL	-	-	-	FP15R06W1E3	-
		CODE	4H300D6730027	4P106C0160003	-	4LA32X025S01	4LA41X371S01
		Q'TY	1	1	-	1	1
3	MA7200-2003-N4	MODEL	-	-	-	7MBP50RA060	-
		CODE	4H300D6740022	4P106C04900B0 4P106C05000B5	-	277831660	4LA41X371S01
		Q'TY	1	1	-	1	1
5	MA7200-2005-N4	MODEL	-	-	-	7MBP50RA060	-
		CODE	4H300D6740022	4P106C04900B0 4P106C05000B5	-	277831660	4LA41X371S01
		Q'TY	1	1	-	1	1
7.5	MA7200-2007-N4	MODEL	-	-	-	7MBP50RA060	-
		CODE	4H300D6740022	4P106C01500C2	4P106C0480008	277831660	4LA41X372S01
		Q'TY	1	1	1	1	1
10	MA7200-2010-N4	MODEL	-	-	-	7MBP75RA060	-
		CODE	4H300D6740022	4P106C01500D1	4P106C0480008	277831678	4LA41X372S01
		Q'TY	1	1	1	1	
15	MA7200-2015-N4	MODEL	-	-	-	7MBP100RTA060	-
		CODE	4H300D6740022	4P106C01500A6	4P106C0470002	4M903D4390026S1	4LA41X372S01
		Q'TY	1	1	1	1	1
20	MA7200-2020-N4	MODEL	-	-	-	7MBP160RTA060	
		CODE	4H300D6740022	4P106C01500B4	4P106C0470002	277831708	4LA41X372S01
		Q'TY	1	1	1	1	1

INVERTER \& PARTS NAME			Main Circuit Diode	Cooling Fan (inside)		Cooling Fan (outside)		Operator
HP	MODEL	SPEC.						
1	MA7200-2001-N4	MODEL	-	KDE1204PFVX	MGA4012YR-A10(L)		-	JNEP-36A
		CODE	-	4KA66X015T01	4M903D0880002S2		-	4P303C00100B7
		Q'TY	-		1		-	1
2	MA7200-2002-N4	MODEL	-	KDE1204PFVX	MGA4012YR-A10(L)		-	JNEP-36A
		CODE	-	4KA66X015T01	4M903D0880002S2		-	4P303C00100B7
		Q'TY	-		1		-	1
3	MA7200-2003-N4	MODEL	DB35-16	AD0424HB-G70(T)	MGA4024XS-O10(L)	KD2406PTB1	MGA6024XR-025(L)	JNEP-36A
		CODE	4M903D4410001	4M903D4630001	4KA66X022S01	4M903D4640006	6 4M903D4640006S1	4P303C00100B7
		Q'TY	1		1		2	1
5	MA7200-2005-N4	MODEL	DB35-16	AD0424HB-G70(T)	MGA4024XS-O10(L)	KD2406PTB1	MGA6024XR-O25(L)	JNEP-36A
		CODE	4M903D4410001	4M903D4630001	4KA66X022S01	4M903D4640006	6 4M903D4640006S1	4P303C00100B7
		Q'TY	1		1		2	1^{-----}
7.5	MA7200-2007-N4	MODEL	VVZ 70-16	AFB0624H	MGA6024XR-O25(L)	$\begin{gathered} \text { PMD2408PMB1- } \\ A(2) \mid 55 \end{gathered}$	MGA8024XB-038	JNEP-36A
		CODE	277111331	4H300D0190004	4H300D0190004S2	4M903D4730005	5 4m903D4730005S1	4P303C00100B7
		Q'TY	1		1		2	1
10	MA7200-2010-N4	MODEL	VVZ 70-16	AFB0624H	MGA6024XR-O25(L)	PMD2408PMB1 A(2) 155	- MGA8024XB-038	JNEP-36A
		CODE	277111331	4H30000190004	4H30000190004S2	4M903D4730005	5] 4M90304730005S1	4P303C00100B7
		Q'TY	1		1		2	---------
15	MA7200-2015-N4	MODEL	VVZ110-12	AFB0624H	MGA6024XR-O25(L)	PMD2408PMB1 A(2) 155	MGA8024XB-038	JNEP-36A
		CODE	277111322	4H300D0190004	4H300D0190004S2	4M903D4730005	5 4M903D4730005S1	4P303C00100B7
		Q'TY	1		1		2	1
20	MA7200-2020-N4	MODEL	VVZ175-12	AFB0624H	MGA6024XR-O25(L)	PMD2408PMB1- A(2) 155	MGA8024XB-038	JNEP-36A
		CODE	277111314	4H300D0190004	4H300D0190004S2	4M903D4730005	5 4m903D4730005S1	4P303C00100B7
		Q'TY	------		1		2	-

(D) 460V Class (NEMA4)

INVERTER \& PARTS NAME			Control PC Board	Power Board	Rectifier Board	Main Circuit Transistor	Cover Assy
HP	MODEL	SPEC.					
1	MA7200-4001-N4	MODEL	-	-	-	FP10R12NT3	-
		CODE	4H300D6730027	4P106C0250002	-	4LB34D001S01	4LA41X371S01
		Q'TY	1	1	-	1	1
2	MA7200-4002-N4	MODEL	-	-	-	FP10R12NT3	-
		CODE	4H300D6730027	4P106C02500A1	-	4LB34D001S01	4LA41X371S01
		Q'TY	1	1	-	1	1
3	MA7200-4003-N4	MODEL	-	-	-	7MBP25RA120	-
		CODE	4H300D6740022	4P106C0490011 4P106C0500017	-	277831716	4LA41X371S01
		Q'TY	1	1	-	1	1
5	MA7200-4005-N4	MODEL	-	-	-	7MBP25RA120	-
		CODE	4H300D6740022	4P106C0490003 4P106C0500009	-	277831716	4LA41X371S01
		Q'TY	1	1	-	1	1
7.5	MA7200-4007-N4	MODEL	-	-	-	7MBP50RA120	-
		CODE	4H300D6740022	4P106C0150032	4P106C0460007	277831686	4LA41X372S01
		Q'TY	1	1	1	1	1
10	MA7200-4010-N4	MODEL	-	-	-	7MBP50RA120	-
		CODE	4H300D6740022	4P106C0150032	4P106C0460007	277831686	4LA41 X 372 S01
		Q'TY	1	1	1	1	1
15	MA7200-4015-N4	MODEL	-	-	-	7MBP75RA120	-
		CODE	4H300D6740022	4P106C0150024	4P106C0450001	277831538	4LA41X372S01
		Q'TY	1	1	1	1	1
20	MA7200-4020-N4	MODEL	-	-	-	7MBP75RA120	-
		CODE	4H300D6740022	4P106C0150032	4P106C0450001	277831538	4LA41X372S01
		Q'TY	1	1	1	1	1

INVERTER \& PARTS NAME			Main Circuit Diode	Cooling Fan (inside)	Cooling Fan (outside)	Operator
HP	MODEL	SPEC.				
1	MA7200-4001-N4	MODEL	-	KDE1204PFVX 'MGA4012YR-A10(L)	-	JNEP-36A
		code	-	4KA66X015T01 4M903D0880002S2	-	4P303C00100B7
		Q'TY	-	1	-	1
2	MA7200-4002-N4	MODEL	-	KDE1204PFVX :'MGA4012YR-A10(L)	-	JNEP-36A
		CODE		4KA66X015T01 $4 \mathrm{MM903D0880002S2}$	-	4P303C00100B7
		Q'TY	-	1	-	1
3	MA7200-4003-N4	MODEL	DB35-16	$\begin{array}{cc}\text { AD0424HB-G70(T): } & \begin{array}{c}\text { MGA4024XS- } \\ 010(L)\end{array}\end{array}$	 KD2406PTB1 MGA6024XR- O25(L)	JNEP-36A
		CODE	4M903D4410001	4M903D4630001 ${ }_{\text {a }}$ 4KA66X022S01	4M903D4640006 4 49903D4640006S1	4P303C0010087
		Q'TY	1	1	2	1
5	MA7200-4005-N4	MODEL	DB35-16	AD0424HB-G70(T):MGA4024XS- $010(L)$	KD2406PTB1 MGA6024XR- 025(L)	JNEP-36A
		CODE	4M903D4410001	4M903D4630001 : 4KA66X022S01	4M903D4640006 :4M903D4640006S1	4P303C00100B7
		Q'TY	1	1	2	1
7.5	MA7200-4007-N4	MODEL	VVZ40-16	AFB0624H MGA6024XR- $025(L)$	PMD2408PMB1- A(2) 55$:$MGA8024XB-038	JNEP-36A
		CODE	27711349	4H300D0190004 4 H300D0190004S2	4M903D4730005 4 4M903D4730005S1	4P303C00100B7
		Q'TY	1	1	2	1
10	MA7200-4010-N4	MODEL	VVZ40-16	AFB0624H $:$MGA6024XR- O25(L)	PMD2408PMB1- A(2) 155	JNEP-36A
		CODE	27711349	4H300D0190004 4 4H300D0190004S2	4M903D4730005 4 4M903D4730005S1	4P303C00100B7
		Q'TY	1	1	2	1
15	MA7200-4015-N4	MODEL	WVZ 70-16	 AFB0624H MGA6024XR- O25(L)	$\left.\begin{array}{c}\text { PMD2408PMB1- } \\ \text { A(2) } 155\end{array}\right)$ MGA8024XB-O38	JNEP-36A
		CODE	277111331	4H300D0190004 4 H 300 D 0190004 S 2	4M903D4730005:4M903D4730005S1	4P303C00100B7
		Q'TY	1	1	2	1
20	MA7200-4020-N4	MODEL	WVZ 70-16	AFB0624H MGA6024XR- O25(L)	PMD2408PMB1- A(2) 155 MGA8024XB-O38	JNEP-36A
		CODE	277111331	4H300D0190004 : 4H300D0190004S2	4M903D4730005 :4M903D4730005S1	4P303C00100B7
		Q'TY	1	1	2	1

(E) 575V Class (NEMA1)

INVERTER \& PARTS NAME		CONTROL PC BOARD	POWER BOARD	$\begin{array}{c}\text { Power Module } \\ \text { (IGBT) }\end{array}$	Diode Module	
HP	MODEL		SPEC.		-	7MBR10SA-140

INVERTER \& PARTS NAME			COOLING FAN	Resistor
HP	MODEL	SPEC.		
1	MA7200-5001-N1	MODEL	AFB0624H	$8 \mathrm{~W} / 120 \Omega$
		CODE	4H300D0190004	4M903D0180060
		Q'TY	1	2
2	MA7200-5002-N1	MODEL	AFB0624H	$8 \mathrm{~W} / 120 \Omega$
		CODE-	4H300D0190004	4M903D0180060
		Q'TY	1	2
3	MA7200-5003-N1	MODEL	AFB0624H	$8 \mathrm{~W} / 120 \Omega$
		CODE	4H300D0190004	4M903D0180060
		Q'TY	1	2
5	MA7200-5005-N1	MODEL	AFB0824SH	KNY10W10J(10J10W)
		CODE	4H300D0200000	3K3A1923
		Q'TY	1	2
7.5	MA7200-5007-N1	MODEL	AFB0824SH	KNY10W10J(10J10W)
		CODE	4H300D0200000	3K3A1923
		Q'TY	1	2
10	MA7200-5010-N1	MODEL	AFB0824SH	KNY10W10J(10J10W)
		CODE	4H300D0200000	3K3A1923
		Q'TY	1	2

INVERTER \& PARTS NAME			Relay	DCCT	Capacitor	OPERATOR
HP	MODEL	SPEC.				
1	MA7200-5001-N1	MODEL	953-1A-24DG-DC24V	TK5A 4V	120uF/500V	JNEP-36
		CODE	271603711	4LA65D009S01	4LA11D003S01	4H300C0050000
		Q'TY	-	3	-	-
2	MA7200-5002-N1	MODEL	953-1A-24DG-DC24V	TK5A 4V	120uF/500V	JNEP-36
		CODE	271603711	4LA65D009S01	4LA11D003S01	4 H 300 CO 050000
		Q'TY	-	3	-	-
3	MA7200-5003-N1	MODEL	953-1A-24DG-DC24V	TK5A 4V	120uF/500V	JNEP-36
		CODE	271603711	4LA65D009S01	4LA11D003S01	4H300C0050000
		Q'TY	1	3	6	1
5	MA7200-5005-N1	MODEL	953-1A-24DG-DC24V	TA10A4V	FX22H122ID	JNEP-36
		CODE	271603711	3K3A2826	3K3A4841	$4 \mathrm{H} 300 \mathrm{C} 0050000^{3}$
		Q'TY	-----	3	-	1
7.5	MA7200-5007-N1	MODEL	953-1A-24DG-DC24V	TA17.5A 4V	FX22H122ID	JNEP-36
		CODE	271603711	4LA65D026S01	ЗKЗA4841	4 H 300 C 0050000
		Q'TY	1	3	2	1
10	MA7200-5010-N1	MODEL	953-1A-24DG-DC24V	TA17.5A 4V	FX22H122ID	JNEP-36
		CODE	271603711	4LA65D026S01	3K3A4841	4H300C0050000
		Q'TY	1	3	2	1

*1: For old version, code no. is 4H300C0020003 (JNEP-31V).
I. Electrical Ratings For Constant Torque and Quadratic Torque

MA7200 Model	Constant Torque (150\%, 1minute)				Quadratic Torque (110\%, 1minute)		
		Applic. Output (kW)	Rated Output Current (A)	$\begin{array}{\|c\|} \hline \text { Max. Switching } \\ \text { Freq. } \\ \text { (kHz) } \end{array}$	Max. Applic. Motor Output HP (kW)	Rated Output Current (A)	$\begin{gathered} \text { Max. Switching } \\ \text { Freq. } \\ \text { (kHz) } \end{gathered}$
MA7200-2001-N1		(0.75)	4.8 A	15	1 (0.75)	5.6 A	10
MA7200-2002-N1		(1.5)	6.4 A	15	2 (1.5)	7.6 A	5
MA7200-2003-N1	3	(2.2)	9.6 A	15	3 (2.2)	9.8 A	15
MA7200-2005-N1		(4)	17.5 A	15	7.5 (5.5)	22.7 A	5
MA7200-2007-N1		(5.5)	24 A	15	10 (7.5)	32 A	10
MA7200-2010-N1		(7.5)	32 A	15	$10 \quad(7.5)$	32 A	15
MA7200-2015-N1		(11)	48 A	10	20 (15)	56.7 A	5
MA7200-2020-N1		(15)	64 A	10	25 (18.5)	70.9 A	5
MA7200-2025-N1		(18.5)	80 A	10	25 (18.5)	80 A	10
MA7200-2030-N1		(22)	96 A	10	40 (30)	108 A	5
MA7200-2040-N1		(30)	130 A	10	$40 \quad(30)$	130 A	10
MA7200-4001-N1		(0.75)	2.6 A	15	1 (0.75)	2.9 A	
MA7200-4002-N1		(1.5)	4 A	15	2 (1.5)	4.6 A	5
MA7200-4003-N1		(2.2)	4.8 A	15	3 (2.2)	4.9 A	15
MA7200-4005-N1			8.7 A	15	7.5 (5.5)	12.5 A	5
MA7200-4007-N1		(5.5)	12 A	15	10 (7.5)	15.4 A	10
MA7200-4010-N1		(7.5)	15 A	15	15 (11)	22.7 A	5
MA7200-4015-N1		(11)	24 A	10	20 (15)	30.3 A	5
MA7200-4020-N1		(15)	32 A	10	25 (18.5)	38 A	5
MA7200-4025-N1		(18.5)	40 A	10	30 (22)	44 A	5
MA7200-4030-N1		(22)	48 A	10	$30 \quad(22)$	48 A	10
MA7200-4040-N1		(30)	64 A	10	$50 \quad$ (37)	71 A	5
MA7200-4050-N1		(37)	80 A	10	50 (37)	80 A	10
MA7200-4060-N1		(45)	96 A	10	75 (55)	108 A	5
MA7200-4075-N1		(55)	128 A	10	100 (75)	140 A	5
MA7200-5001-N1		(0.75)	1.7 A	10			
MA7200-5002-N1		(1.5)	3.0 A	10			
MA7200-5003-N1		(2.2)	4.2 A	10			
MA7200-5005-N1			6.6 A	10			
MA7200-5007-N1	7.5	(5.5)	9.9 A	10			
MA7200-5010-N1		(7.5)	12.2 A	10			

Item	Common details	
	Constant Torque	Quadratic Torque
Output Overload	150% for 60 s	110% for 60 s
Operation Ambient Temperature	$+14 \sim 104^{\circ} \mathrm{F}$	$+14 \sim 104^{\circ} \mathrm{F}$
Allowable Voltage Fluctuation	$-15 \% \sim+10 \%$	$-15 \% \sim+10 \%$
Output Frequency	$0.5 \mathrm{~Hz} \sim 400 \mathrm{~Hz}$	$0.5 \mathrm{~Hz} \sim 400 \mathrm{~Hz}$
V/F curve	Dependent on parameter setting	Quadratic (or Cubic) Torque

J. Inverter Heat Loss

(A) 200 to 230 V

	$\begin{gathered} \text { Model } \\ 7200-\text { XXXX-N1 } \end{gathered}$	2001	2002	2003	2005	2007	2010	2015	2020	2025	2030	2040
Inverter Capacity kVA		2	2.7	4	7.5	10.1	13.7	20.6	27.4	34	41	54
Rated Current A		4.8	6.4	9.6	17.5	24	32	48	64	80	96	130
	Fin	11	13	30	40	66	77	86	121	145	246	335
	Inside Unit	65	77	185	248	409	474	529	742	889	1510	2059
	Total Heat Loss	76	90	215	288	475	551	615	863	1034	1756	2394

(B) 380 to 460 V

	$\begin{gathered} \text { Model } \\ 7200-\text { XXXX-N1 } \end{gathered}$	4001	4002	4003	4005	4007	4010	4015	4020	4025	4030	4040	4050	4060	4075
Inverter Capacity kVA		2.2	3.4	4.1	7.5	10.3	12.3	20.6	27.4	34	41	54	68	82	110
Rated Current A		2.6	4	4.8	8.7	12	15	24	32	40	48	64	80	96	128
	Fin	16	21	41	45	64	72	126	157	198	236	262	324	369	481
	Inside Unit	99	129	249	278	393	442	772	965	1218	1449	1608	1993	2270	2957
	Total Heat Loss	115	150	290	323	457	514	898	1122	1416	1685	1870	2317	2639	3438

(C) 575 V

ModelMA7200- XXXX-N1		5001	5002	5003	5005	5007	5010
Inverter Capacity kVA		1.7	3.0	4.2	6.6	9.9	12.2
Rated Current A		1.7	3.0	4.2	6.6	9.9	12.2
	Fin						
	Inside Unit						
	エ Total Heat Loss						

K. Tightening Torque For Different Wire Gauge

TECO recommends using UL-listed copper wires (rated at $75^{\circ} \mathrm{C}$) and closed-loop lugs or CSA-certified ring lugs sized for the selected wire gauge to maintain proper clearances when wiring the drive. Use the correct crimp tool to install connectors per manufacturer recommendation. Table lists a suitable closedloop lugs manufactured by NICHIFU Corporation.

Wire Gauge mm^{2} (AWG)	Terminal Screw	R-Type Connectors (Lugs) Part Numbers	Tightening Torque kgf.cm (in.lbs)	Insulation CAP	Crimping Tool
0.75 (18)	M3.5	R1.25-3.5	8.2 to 10 (7.1 to 8.7)	TIC 0.5	NH 82
	M4	R1.25-4	12.2 to 14 (10.4 to 12.1)	TIC 0.5	NH 82
1.25 (16)	M3.5	R1.25-3.5	8.2 to 10 (7.1 to 8.7)	TIC 1.25	NH 82
	M4	R1.25-4	12.2 to 14 (10.4 to 12.1)	TIC 1.25	NH 82
2 (14)	M3.5	R2-3.5	8.2 to 10 (7.1 to 8.7)	TIC 2	NH 82
	M4	R2-4	12.2 to 14 (10.4 to 12.1)	TIC 2	NH 82
	M5	R2-5	22.1 to 24 (17.7 to 20.8)	TIC 2	NH 82
	M6	R2-6	25.5 to 30.0 (22.1 to 26.0)	TIC 2	NH 82
3.5/5.5 (12/10)	M4	R5.5-4	12.2 to 14 (10.4 to 12.1)	TIC 3.5/5.5	NH 82
	M5	R5.5-5	20.4 to 24 (17.7 to 20.8)	TIC 3.5/5.5	NH 82
	M6	R5.5-6	25.5 to 30.0 (22.1 to 26.0)	TIC 3.5/5.5	NH 82
	M8	R5.5-8	61.2 to 66.0 (53.0 to 57.2)	TIC 3.5/5.5	NH 82
8 (8)	M4	R8-4	12.2 to 14 (10.4 to 12.1)	TIC 8	NOP 60
	M5	R8-5	20.4 to 24 (17.7 to 20.8)	TIC 8	NOP 60
	M6	R8-6	25.5 to 30.0 (22.1 to 26.0)	TIC 8	NOP 60
	M8	R8-8	61.2 to 66.0 (53.0 to 57.2)	TIC 8	NOP 60
14 (6)	M4	R14-4	12.2 to 14 (10.4 to 12.1)	TIC 14	NOP 60/ 150
	M5	R14-5	20.4 to 24 (17.7 to 20.8)	TIC 14	NOP 60/ 150
	M6	R14-6	25.5 to 30.0 (22.1 to 26.0)	TIC 14	NOP 60/ 150
	M8	R14-8	61.2 to 66.0 (53.0 to 57.2)	TIC 14	NOP 60/ 150
22 (4)	M6	R22-6	25.5 to 30.0 (22.1 to 26.0)	TIC 22	NOP 60/ 150
	M8	R22-8	61.2 to 66.0 (53.0 to 57.2)	TIC 22	NOP 60/ 150
30/38 (3 / 2)	M6	R38-6	25.5 to 30.0 (22.1 to 26.0)	TIC 38	NOP 60/ 150
	M8	R38-8	61.2 to 66.0 (53.0 to 57.2)	TIC 38	NOP 60/ 150
$50 / 60$ (1/1/0)	M8	R60-8	61.2 to 66.0 (53.0 to 57.2)	TIC 60	NOP 60/ 150
	M10	R60-10	102 to 120 (88.5 to 104)	TIC 60	NOP 150
70 (2/0)	M8	R70-8	61.2 to 66.0 (53.0 to 57.2)	TIC 60	NOP 150
	M10	R70-10	102 to 120 (88.5 to 104)	TIC 60	NOP 150
$80(3 / 0)$	M10	R80-10	102 to 120 (88.5 to 104)	TIC 80	NOP 150
	M16	R80-16	255 to 280 (221 to 243)	TIC 80	NOP 150
100 (4/0)	M10	R100-10	102 to 120 (88.5 to 104)	TIC 100	NOP 150
	M12	R100-12	143 to 157 (124 to 136)	TIC 100	NOP 150
	M16	R80-16	255 to 280 (221 to 243)	TIC 80	NOP 150

