

Generating HTML content on the fly using
Digi International’s Advanced Web Server

Generating on-the-fly Web page Content in AWS Applications

 Copyright 2008 Digi International Page 2/13 V1.2

1 Document History
Date Initials Change Description
1/17/08 JZW Initial entry
1/18/08 JZW First round of grammar/spelling corrections
1/21/08 JZW Add in edits

Generating on-the-fly Web page Content in AWS Applications

 Copyright 2008 Digi International Page 3/13 V1.2

2 Table of Contents

1 Document History ... 2
2 Table of Contents .. 3
3 Introduction ... 3

3.1 Problem Solved ... 3
3.2 Audience ... 3
3.3 Assumptions .. 4
3.4 Scope ... 4
3.5 Theory of Operation .. 4

4 Basics .. 5
4.1 HTML code ... 5
4.2 AWS Comment Tags .. 5
4.3 PBuilder Utility ... 6

4.3.1 list.bat .. 7
4.4 Stub Functions .. 7

4.4.1 Variables ... 7
5 Generating the HTML ... 7

5.1 bsp and the file system .. 8
5.2 File creation .. 8
5.3 File request format .. 10

6 AWS to stub function hand-off ... 10
7 Caveats .. 12

7.1 Multiple users .. 12
7.1.1 Files ... 12
7.1.2 Variables ... 13

8 Conclusion .. 13

3 Introduction

3.1 Problem Solved
 You are creating a web-based application using Digi International’s Advanced Web
Server (AWS). You realize that due to the complex matrix of users of your system, you
might need hundreds of different web pages, to meet the needs of your potential users.
Further you realize that most of these pages are variations on a common theme with some
differences. Is there a way to dynamically generate the HTML content (on-the-fly)? The
answer is yes. This white paper describes a method for dynamically generating HTML
content and at execution time allowing your application to access these pages.

3.2 Audience

Generating on-the-fly Web page Content in AWS Applications

 Copyright 2008 Digi International Page 4/13 V1.2

This paper is intended for sophisticated technical users who understand and have
experience creating applications using Digi International’s NET+OS (gnu or Green Hills)
and the AWS component of NET+OS. The user either wants to modify an existing AWS
application allowing it to dynamically generate HTML content or the user is creating a
new AWS application and again, wants the application to be capable of dynamically
generating HTML content.

3.3 Assumptions
This white paper assumes that the reader has extensive experience using Digi
International’s NET+OS, Digi International’s AWS, NET+OS’s file system and standard
C file system function calls. If you are weak in any of these areas, you might want to do a
little studying in your area(s) of weakness before proceeding with reading this white
paper.

3.4 Scope
This document describes the HTML, AWS comment tags, PBuilder utility use and stub
function generation in the building of an AWS application capable of generating HTML
pages dynamically. That is the content of the HTML pages is decided at run time not
compile time. The following are non-goals of this white paper:

• Teach the user HTML page authoring
• Teach the user how to add AWS comment tags to an HTML page
• Teach the user how to build applications using Digi International’s NET+OS

(gnu or Green Hills)
• Provide any information relating to Digi International’s .net product
• Provide any information relating to Digi International’s LxNETES product

3.5 Theory of Operation
One or more web pages are served from the user’s device and displayed in the user’s
browser. One or more of these browser-displayed pages allows the user to enter data
and/or select options. Based on these entries and selections, variables are updated. Based
on the state and or content of these variables, HTML code is generated, and written to
one or more files on NET+OS’s file system (in the device). Further, based on the
customer’s selections, the currently displayed page is changed from the current page to
one of the page(s) previously written to the device’s file system. Ultimately, one (or
more) of the dynamically-generated pages gives the user the option of returning to his/her
starting point (web page).

3.6 Conventions
Advanced Web Server (AWS) comment tags have the following format:
<!—Tag Name
Unfortunately, MS Word makes some invalid changes to the comment tags. Thus I’ll
explain what they should be. A comment tag is made up of a left angle bracket ‘<’
followed by an exclamation mark ‘!’ and two consecutive minus signs. There should be
no spaces between the angle bracket, the exclamation mark and the minus signs. Next

Generating on-the-fly Web page Content in AWS Applications

 Copyright 2008 Digi International Page 5/13 V1.2

there should be a space. Following the space you place the tag name and options required
for the tag. After the tag name and options, leave one space, followed by two minus signs
and a right angle bracket ‘>’. Again there should be no space between the two minus
signs and the right angle bracket.

4 Basics
The following section describes the basics of creating a NET+OS project as described
above.

4.1 HTML code
My modus operandi in creating AWS applications and their associated web pages is to
create the web pages in raw HTML code, without regard to the requirements of the AWS.
In the next section, I discuss what you need to add for supporting AWS. Thus your basic
web page might look something like this:
<html>
<head>
<title>My test page</title>
</head>
<body>
Content line one
Content line two
Content line three
</body>
</html>

You should then test your pages and their flow using your favorite browser. Now clearly
you can not test the dynamic part, at this step. This will only test your static content. You
should get your pages in a good state before continuing.

4.2 AWS Comment Tags
AWS comment tags are the method for getting the browser, the AWS and your
application all talking together. Comment tags in conjunction with the stub functions
(described later in this document) give the AWS access to device data. If you have not
already done so, this would be a good time to review the document entitled Digi
Advanced Web Server Toolkit. This document describes the basic operation of the AWS,
the PBuilder utility and describes the array of comment tags available to your application.

An AWS comment tag has the following form:
<!— comment tag
<!—RpEnd

The simplest comment tag is one used in conjunction with static HTML data, as follows
<html>
<head>
<title>My Little Test Page</title>

Generating on-the-fly Web page Content in AWS Applications

 Copyright 2008 Digi International Page 6/13 V1.2

</head>
<body>
<!—RpDZT
This text will be displayed on your browser screen
<!—RpEnd
</body>
</html>

The more complicated comment tags allow you to define stub functions that will either
get device data and pass it to the AWS for displaying the data on your browser, or will
take data from the browser and hand it to a stub function for storing device data or for
directing the device to engage in some activity. Description of these functions is outside
the scope of this document. Again, please review the Digi Advanced Web Server Toolkit
for that information.

4.3 PBuilder Utility
Ultimately, your HTML code or some component(s) of it needs to be converted into C
code, allowing it to run on your device. The purpose of the PBuilder utility (<NET+OS
directory top\bin\PBuilder.exe) is to perform this transformation. The file list.bat, (or
pbuilder.pbb under Digi ESP) described in the next section, facilitates this operation. If
you are unfamiliar with the PBuilder utility, please review the Digi Advanced Web
Server Toolkit document.

Among other files, running the PBuilder utility generates a .c file for each web page you
created and one _v.c file containing your stub functions (AWS callbacks). If you populate
your stub functions and then run the PBuilder utility again, you will lose your work. For
that reason, we recommend using the following directory structure for your project:

Main directory
 |\
 | \
 | \
 | \
 | \
 | \
 32b
pbuilder
 |
 |
 html

Place your htm(l) files in the html directory. Run the PBuilder utility from the pbuilder
directory. When PBuilder runs successfully it will create <html file name>.c files and
<the first html file name mentioned in list.bat>_v.c file in the html directory. Copy the
_c.v file into the pbuilder directory (one level up). Start filling in the stub functions.
When/if you must run the PBuilder utility again, only the _v.c file with empty functions

Generating on-the-fly Web page Content in AWS Applications

 Copyright 2008 Digi International Page 7/13 V1.2

will be overwritten. Copy any new functions created in _v.c (in the pbuilder/html
directory) and paste them into the _v.c file located in the pbuilder directory. The <html
page>.c files can safely be overwritten as you do not normally edit these files.

4.3.1 list.bat
The list.bat file (AKA pbuilder.pbb if you are using Digi ESP) is normally placed in the
pbuilder directory, mentioned above. The file lists the files on which the PBuilder utility
is to operate. Since this file is located in the pbuilder directory, the paths of files
described in the list.bat file, must be relative to the pbuilder directory. So the contents of
the list.bat file might look something like this:

html/file1.htm
html/file2.htm
html/file3.htm

The contents of this file are text so the file is editable with your favorite text editor.
Please note that the last line must have a carriage return after it. Also note that the
PBuilder and the AWS always assume that the first file described in the list.bat file is to
be the “main” page of your web application. So ensure that whatever file you want as the
main page is listed first in list.bat.

4.4 Stub Functions
What I refer to as stub functions are the AWS callback functions created by running the
PBuilder utility against your AWS comment tag-laden HTML files. After their initial
creation, the functions do nothing. Your job is to fill in the stub functions with whatever
action(s) you need the functions to perform. Please consult the NET+OS project,
associated with this document for ideas on what actions your functions might perform.
But this is highly customer dependant.

4.4.1 Variables
It is critical to remember that your stub functions are called from the AWS. In addition,
there is no guarantee in which order the functions will be called, or whether you’ll be
swapped out in between the return function of your stub function (when your function
stack becomes invalid) and where in the AWS the variable you are returning is actually
used. Therefore, you can not return stack variables from your functions. You must either
define them as static or declare them globally. In addition, remember that in most cases,
more than one user will access the AWS application. Therefore you will need to architect
a method for keeping the use of one user’s variable from colliding with that of another
user.

5 Generating the HTML
This section describes the C code required in a stub function for generating the on-the-fly
web page.

Generating on-the-fly Web page Content in AWS Applications

 Copyright 2008 Digi International Page 8/13 V1.2

5.1 BSP and the file system
Before starting you must ensure that the file system exists so your application can access
it. The easiest way to do this is to allow the BSP to create the file system for you. The
way you do this is by finding the bsp-owned manifest constant entitled
BSP_INCLUDE_FILESYSTEM_FOR_CLIBRARY. In NET+OS V7.2 and below, this
was contained in src\bsp\platforms\<your platform>bsp.h. If you are running in the Digi
ESP environment, this file is contained in your workspace. In NET+OS versions above
V7.2, this constant is declared in file myplatform\bsp_fs.h . Next change the declaration
of this constant to TRUE. Next rebuild your bsp and then your application.

5.2 File creation
Ultimately there must be a user-filled-in function that creates the file(s) required for the
application. The following is an example of such a function:

extern void generateAndJumpPages(void *theTaskDataPtr, Signed16Ptr
theIndexValuesPtr);
void generateAndJumpPages(void *theTaskDataPtr, Signed16Ptr theIndexValuesPtr) {

 FILE *fp = NULL;
 void * theServerDataStructure = NULL;

 fp = fopen("RAM0/theNewPage.htm","w+");
 if(fp == NULL)
 {
 printf("Unable to open file\n");
 }
 printf("file opened\n");

 fprintf(fp,"%s\n", "<html>");
 fprintf(fp,"%s\n", "<head>");
 fprintf(fp,"%s\n", "<title> New test web page </title>");
 fprintf(fp,"%s\n", "</head>");
 fprintf(fp,"%s\n", "<body>");
 fprintf(fp,"%s\n", "You are accessing a web page created on the fly");
 fprintf(fp,"%s\n", "
");
 switch(thePageToGenerate)
 {
 case 3:
 fprintf(fp,"%s\n", "You selected page 3");
 fprintf(fp,"%s\n", "
");
 break;
 case 4:
 fprintf(fp,"%s\n", "You selected page 4");
 fprintf(fp,"%s\n", "
");
 break;
 case 5:

Generating on-the-fly Web page Content in AWS Applications

 Copyright 2008 Digi International Page 9/13 V1.2

 fprintf(fp,"%s\n", "You selected page 5");
 fprintf(fp,"%s\n", "
");
 break;
 default:
 fprintf(fp,"%s\n", "You selected an unknown page");
 fprintf(fp,"%s\n", "
");
 break;
 }
 fprintf(fp,"%s\n", "There should be a link on this page to get you back to the first
page");
 fprintf(fp,"%s\n", "
");
 fprintf(fp, "%s %s %s\n", "You selected animal ", theAnimalName, " on the
selection page");
 fprintf(fp,"%s\n", "
");
 fprintf(fp,"%s\n", "</body>");
 fprintf(fp,"%s\n", " Return to the first page");
 fprintf(fp,"%s\n", "</html>");
 fclose(fp);

 // get the AWS data structure
 theServerDataStructure = RpHSGetServerData();
 if(theServerDataStructure == NULL)
 {
 printf("AWS data structure not available\n");
 return;
 }
 // allow file close to finish
 tx_thread_sleep(10);
 RpSetNextFilePage(theServerDataStructure, "/FS/RAM0/theNewPage.htm");

 return;
}

The call to fopen() opens a file in the device’s file system. If you were opening multiple
files, you’d need multiple calls to fopen().

As you can see, the calls to fprintf() are writing the HTML code into the file. Please
notice the switch statement. This is where I generate different page content based on
input from the user’s entry via their browser. Also notice in the following line:
 fprintf(fp, "%s %s %s\n", "You selected animal ", theAnimalName, " on the
selection page");

 The animal name changes as the user enters different animal names again though his/her
browser.

Generating on-the-fly Web page Content in AWS Applications

 Copyright 2008 Digi International Page 10/13 V1.2

Clearly this is a simple example but it shows that based on user input, I can generate
different page content that will be displayed to the user in his/her browser.

When you are done writing all your content into the file please remember to close the
file(s). fclose(fp);

Last, please notice the following call as it is subtle but critical:
 RpSetNextFilePage(theServerDataStructure, "/FS/RAM0/theNewPage.htm");

 This call instructs the AWS to change the next page to be displayed to the user.
Additionally it tells the AWS to find the web content for this page in the file system, as
opposed to the AWS’s page table. This is the jumping off point from the pages that were
built into your AWS application to the dynamic pages that your application generated
(and placed in the file system). In addition please notice the following fprintf() statement:

 fprintf(fp,"%s\n", " Return to the first page");

By including a line like this, somewhere on your page, you leave your dynamic page the
ability to link back to a page contained in the AWS’s internal table.

5.3 File request format
The format of the file and page references is quite critical to ensuring that your AWS
application runs successfully. Please notice the following call to RpSetNextFilePage():

 RpSetNextFilePage(theServerDataStructure, "/FS/RAM0/theNewPage.htm");

The format of the file reference is /FS/RAM0/theNewPage.htm. /FS tells AWS that the
page is on the file system. /RAM0 tells the AWS that the file is in the RAM file system,
device RAM0. If the file you wanted was in the FLASH file system, you’d replace
RAM0 with FLASH0. Last /theNewPage.htm is the file name in the file RAM system.

Next notice the following:

 fprintf(fp,"%s\n", " Return to the first page");

First notice that I have left out the /FS and the /RAM0. this says that the page is stored in
the AWS’s internal page table. Also notice that I start the file name with a forward slash
“/”. If you reference a page name from within a file on the file system, AWS assumes that
the page to which you are referring to is also in the file system. So you’d get a file not
found error. Thus I’d recommend that you include the full path reference when
referencing web pages.

6 AWS to stub function hand-off
A crucial question whose answer might lead to a successful AWS application is how do I
structure my AWS comment tags so that when my user hits the submit button, I get to a

Generating on-the-fly Web page Content in AWS Applications

 Copyright 2008 Digi International Page 11/13 V1.2

function that will create my files and send me to the correct web page? Please review the
following web code, including AWS comment tags:

<html>
<head>
<title>Digi test application, page one</title>
</head>
<body>
<!-- RpDZT -->
This is the Digi test application for generating web pages on the fly
This is page two
<!-- RpEnd -->
<!-- RpFormHeader RpFunctionPtr="generateAndJumpPages"
 RpNextPage=PgjzwSubmittedPage -->
<form method=POST action="jzwSubmittedPage.htm">
<!-- RpEnd -->
Please select a page and it will be generated:

<!-- RpDZT -->
Page 3
<!-- RpEnd -->
<!-- RpFormInput TYPE=radio NAME=onTheFlyRadioButtons VALUE="three"
RpItemNumber=3
 RpSetType=Function RpSetPtr=setThePageToGenerate RpGetType=Function
 RpGetPtr=getThePageToGenerate -->
<input type=radio name=jzwePageThree value="3"> Page3
<!-- RpEnd -->

<!-- RpDZT -->
Page 4
<!-- RpEnd -->
<!-- RpFormInput TYPE=radio NAME=onTheFlyRadioButtons VALUE="four"
RpItemNumber=4
 RpSetType=Function RpSetPtr=setThePageToGenerate RpGetType=Function
 RpGetPtr=getThePageToGenerate -->
<input type=radio name=jzwePageFour value="4"> Page4
<!-- RpEnd -->

<!-- RpDZT -->
Page 5
<!-- RpEnd -->
<!-- RpFormInput TYPE=radio NAME=onTheFlyRadioButtons VALUE="five"
RpItemNumber=5
 RpSetType=Function RpSetPtr=setThePageToGenerate RpGetType=Function
 RpGetPtr=getThePageToGenerate -->
<input type=radio name=jzwePageFive value="5"> Page5

Generating on-the-fly Web page Content in AWS Applications

 Copyright 2008 Digi International Page 12/13 V1.2

<!-- RpEnd -->

<p>
<!-- RpDZT -->
Please select your favorite animal:
<!-- RpEnd -->

<!-- RpFormInput TYPE="text" NAME="animalName" SIZE="32"
MAXLENGTH="32"
 RpGetType=Function RpGetPtr=getTheAnimalName
 RpSetType=Function RpSetPtr=setTheAnimalName -->
<input type=text name=animalSelected size=32 maxelength=32>
<!-- RpEnd -->
<p>
<!-- RpFormInput TYPE=SUBMIT VALUE="Submit the puppy" -->
<input type=submit>Go
<!-- RpEnd -->
<!-- RpFormEnd -->
</form>
<!-- RpEnd -->
</body>
</html>

In the following line:
<!-- RpFormHeader RpFunctionPtr="generateAndJumpPages"
 RpNextPage=PgjzwSubmittedPage -->

The comment tag RpFunctionPtr refers to function generateAndJumpPages(). If you
remember from the section entitled File Creation, generateAndJumpPages() is the
function that generates the file and changes the “next page”. So by setting RpFunctionPtr
to a function that creates files and sets the next page, the PBuilder utility creates a stub
function that you fill in with the appropriate code. The AWS will call into this function
after your user hits the submit key on the appropriate web page. Further the RpForInput
tags, show the code required to implement the radio buttons, the text input and the submit
key. Again, please consult the Digi Advanced Web Server Toolkit document for more
information on AWS comment tags.

7 Caveats
The following section briefly describes areas to be careful of when creating AWS
applications that access dynamic pages.

7.1 Multiple users

7.1.1 Files
In most cases your AWS application will service multiple users. You want to ensure that
the input of one user does not corrupt the inputs of another. Therefore you must architect

Generating on-the-fly Web page Content in AWS Applications

 Copyright 2008 Digi International Page 13/13 V1.2

your application (stub functions) to ensure that users get a unique file. The Digi
Advanced Web Server Toolkit document describes calls to access your connection
number. You could generate files names that contain the user’s connection number as a
way of keeping file names from colliding. You’ll need to think about this when creating
your application.

7.1.2 Variables
The variables that the stub functions use to store and retrieve device data are another
place where the sharing of variables between users could pose a problem. You will also
want to architect something in your application to ensure that one user’s data does not
corrupt another user’s data. Again you might use the connection number as an index into
a table of global variables as a way of eliminating corruption. This is clearly something
that you must think about when architecting your application.

8 Conclusion
Your application might not be as complicated as needing the ability to create dynamic
web pages. But if you do need this capability, this document demonstrates the methods
required to implement them. If you are unfamiliar with AWS comment tags, I urge you to
review the document entitled Digi Advanced Web Server Toolkit in your Documentation
directory.

Example Sources

ftp://ftp1.digi.com/support/documentation/dynamic_web_pages.zip

