## SIEMENS

Ingenuity for life


## Table of Contents

1 Essential and special Information on Network Calculation and System Planning using the SIMARIS Planning Tools ..... 5
1.1 Power Supply Systems, Connection to Earth .....  5
1.1.1 Introduction to Power Supply Systems .....  5
1.1.2 TN-S system .....  6
1.1.2.1 Features ..... 6
1.1.2.2 Advantages .....  6
1.1.2.3 Disadvantages .....  6
1.1.2.4 Precautions .....  6
1.1.3 TN-C system .....  7
1.1.3.1 Features .....  7
1.1.3.2 Advantages .....  7
1.1.3.3 Disadvantages .....  7
1.1.3.4 Precautions .....  7
1.1.4 TN-C-S system .....  8
1.1.4.1 Features .....  8
1.1.4.2 Advantages .....  8
1.1.4.3 Disadvantages .....  8
1.1.4.4 Precautions .....  8
1.1.5 TT system ..... 9
1.1.5.1 Features .....  9
1.1.5.2 Advantages .....  9
1.1.5.3 Disadvantages .....  9
1.1.6 IT system ..... 10
1.1.6.1 Features ..... 10
1.1.6.2 Advantages ..... 10
1.1.6.3 Disadvantages ..... 10
1.2 Degrees of Protection for Electrical Equipment ..... 11
1.2.1 Designation Structure for Degrees of Protection ..... 11
1.2.2 Degrees of Protection against Ingress of Foreign Bodies (first code number) ..... 11
1.2.3 Degrees of Protection against the Ingress of Water (second code number) ..... 12
1.3 ..... 121.3.1 Functional Endurance Basics
12
1.3.1.1 Fire Prevention for Building Structures of Special Type and Usage ..... 13
1.3.1.2 Selection of Fire Areas for the Calculation of Voltage Drop and Tripping Condition ..... 13
1.3.1.3 Calculation Basis ..... 13
1.3.1.4 Types of Functional Endurance and how they are considered in SIMARIS design ..... 14
1.3.2 Consideration of Functional Endurance in SIMARIS project ..... 21
1.3.2.1 Preliminary Note ..... 21
1.3.2.2 Functional Endurance for BD2, LD, LI und LX Busbar Trunking Systems ..... 21

1. Typification of Circuit-breakers in Medium-voltage Switchgear ..... 23
1.4.1 NX PLUS C (primary distribution level) ..... 23
1.4.2 $\quad$ 8DJH (secondary distribution level) ..... 24
1.4.3 8DJH36 (secondary distribution level) ..... 24
1.4.4 SIMOSEC (secondary distribution level) ..... 25
1.4.5 NXAIR (primary distribution level) ..... 25
1.5 SIVACON 8PS Busbar Trunking Systems ..... 26
1.5.1 Overview of Busbar Trunking Systems from 40 up to 6,300 A ..... 26
1.5.2 Configuration Rules for Busbar Trunking Systems ..... 33
1.5.2.1 Wiring Options for Busbar Trunking Systems ..... 33
1.5.2.2 Possible Combinations of different Busbar Trunking Systems within one Busbar Section ..... 37
1.5.2.3 Guidelines for Busbar Trunking Systems for their Direct Connection to a Switch and Current Feeding from Cables ..... 38
1.5.2.4 Possible Switching/Protective Devices in Tap-off Units for Busbar Trunking Systems ..... 40
1.5.2.5 Device Selection of Switching/Protective Devices for Busbar Trunking Systems Featuring Power Transmission ..... 41
1.5.2.6 Matrix Table for Busbar Trunking Systems and Matching Tap-off units. ..... 42
1.5.2.7 Particularities concerning the Simultaneity Factor of Busbar Trunking Systems for Power Distribution ..... 44
1.6 Parallel Cables in Network Calculation and System Planning ..... 45
1.6.1 Considering Parallel Cables in Network Calculations ..... 45
1.6.2 Parallel cables in incoming and outgoing feeders in the SIVACON S8 system (Low-voltage Power Distribution Board) ..... 47
1.7 Considering the Installation Altitude of Power Distribution Systems ..... 49
1.7.1 Insulation Capacity of NXAIR, NXPLUS C and 8DJH Medium-voltage Systems Dependent on the Installation Altitude ..... 49
1.7.2 Correction Factors for Rated Currents of S8 Low-voltage Switchboards Dependent on the Installation Altitudes ..... 50
1.7.3 Reduction Factors for Busbar Trunking Systems Dependent on the Installation Altitude ..... 51
1.7.3.1 SIVACON 8PS - LD... Busbar Trunking System ..... 51
1.7.4 Reduction Factors for Equipment Dependent on the Installation Altitude ..... 51
1.8 ..... 52
1.8.1 Dimensioning of Compensation Systems ..... 521.8.1.1 Electro-technical Basics: Power in AC Circuits
52
1.8.1.2 Central Compensation ..... 53
1.8.1.3 Reactive Power Controller Reactive Power Controller ..... 54
1.8.1.4 Consideration of Reactive Power Compensation in SIMARIS design ..... 54
1.8.2 Compensation Systems in Power Systems with Harmonic Content ..... 56
1.8.2.1 Impact of Linear and Non-linear Loads on the Power System ..... 56
1.8.2.2 Compensation systems in power systems with harmonic content ..... 57
1.8.2.3 Choking of Compensation Systems ..... 59
1.8.2.4 Ripple Control Frequency and its Importance for the Compensation System ..... 60
1.8.2.5 Consideration of Choking Rate and Audio Frequency Suppression in SIMARIS project ..... 61
1.9 Frequency converters ..... 62
1.10 The Technical Series of Totally Integrated Power ..... 63
1.11 Planning Manuals of Totally Integrated Power ..... 63
2 ..... 64
Special Technical Information about Network Calculation in SIMARIS design2.12.22.3 Directional and Non-directional Couplings64Symbols for representing the network diagram in SIMARIS design70
2.3.1 Design Principles of Directional and Non-directional Couplings ..... 72
7272
2.3.2 Load Transfer Switches in Accordance with DIN VDE 0100 Part 710 (IEC 60364-7-71) (medical locations)
2.3.3 Creating Emergency Power Supply Systems ..... 73
2.4 Dimensioning of Power Transmission and Power Distribution Lines ..... 74
2.5 Note on the Dimensioning of 8PS Busbar Trunking Systems ..... 75
2.6 Selectivity and Backup Protection ..... 76
2.6.1 Backup Protection ..... 76
2.6.2 Backup Protection as Dimensioning Target in SIMARIS design ..... 76
2.6.3 Selectivity ..... 77
2.6.4 Selectivity as Dimensioning Target in SIMARIS design ..... 79
2.7 Dimensioning the Network acc. to Icu or Icn ..... 80
2.7.1 Areas of Application for Miniature Circuit-breakers ..... 80
2.7.2 Selection of Miniature Circuit-Breakers acc. to Icn or Icu in SIMARIS design ..... 81
2.8 Overcurrent protection ..... 82
2.8.1 DMT (definite-time overcurrent protection) ..... 82
2.8.2 IDMT (inverse-time overcurrent protection) ..... 83
$2.9 \quad$ Transformers with ventilation ..... 84
2.10 Explanations about the Energy Efficiency Analyses in SIMARIS design ..... 86
2.11 Installation Types of Cables and Wires (Excerpt) ..... 89
2.11.1 Installation Types in Accordance with IEC 60364-5-523/99 (excerpt) ..... 89
2.11.2 Consideration of installation types in SIMARIS design ..... 91
2.12 Accumulation of Cables and Lines ..... 92
2.13 Special Conditions in Motor Circuits and their Consideration in SIMARIS design ..... 93
2.13.1 Special Properties of Motor Circuits ..... 93
2.13.1.1 Short-circuit Behaviour ..... 93
2.13.1.2 Switch-on and Start-up Behaviour ..... 93
2.13.1.3 Use of Special Switching and Protective Devices in Motor Circuits ..... 94
2.13.2 Motor Consumers with Simple Motor Protection. ..... 94
2.13.3 Motor Consumers as Motor Starter Combination ..... 95
2.13.4 Description of Motor Parameters ..... 98
$2.14 \quad$ Frequency converters ..... 101
2.14.1 Selection using the application matrix ..... 101
2.14.2 Standard load cycle. ..... 102
2.14.3 Use in the IT network ..... 102
2.14.4 Cable dimensioning. ..... 103
2.14.5 Transformer rating ..... 103
2.14.6 Altitude of installation. ..... 103
2.14.7 Compensation systems in power systems with harmonic content. ..... 105
2.14.8 Motor selection ..... 105
2.15 Standards for Calculations in SIMARIS design ..... 106
2.16 Additional Protection by RCDs in Compliance with DIN VDE 0100-410 (IEC 60364-4-41) ..... 107
2.16.1 Altered Maximum Disconnection Times in TN and TT System in Compliance with DIN VDE 0100-410 ..... 107
2.16.2 National Deviations from IEC 60364-4-41 ..... 108
2.16.2.1 The Netherlands ..... 108
2.16.2.2 Norway ..... 108
2.16.2.3 Belgium ..... 108
2.16.2.4 Ireland ..... 109
2.16.2.5 Spain ..... 109
2.17 Country-specific Particularities ..... 109
2.17.1 India ..... 109
2.18 Used Formula Symbols ..... 110
3 Special Technical Information about System Planning in SIMARIS project ..... 119
3.1 Technical Data of 8DJH Gas-insulated Medium-voltage Switchgear ..... 119
3.1.1 Electrical utility company (EUC) requirements. ..... 119
3.1.2 Current Transformer. ..... 119
3.1.3 Panels ..... 119
3.1.4 Panel blocks ..... 123
3.2 Technical Data of 8DJH compact Gas-insulated Medium-voltage Switchgear ..... 123
3.3 Technical Data of 8DJH36 Gas-insulated Medium-voltage Switchgear ..... 124
3.3.1 Electrical utility company (EUC) requirements. ..... 124
3.3.2 Current Transformer. ..... 124
3.3.3 Panels. ..... 124
3.4 Technical Data of NX PLUS C Gas-insulated Medium-voltage Switchgear ..... 126
3.4.1 Electrical utility company (EUC) requirements. ..... 126
3.4.2 Current Transformer. ..... 126
3.4.3 Cubicles. ..... 126
3.4.4 Operating cycles ..... 128
3.5 Technical Data of SIMOSEC Air-insulated Medium-voltage Switchgear ..... 128
3.5.1 Electrical utility company (EUC) requirements. ..... 128
3.5.2 Current Transformer. ..... 128
3.5.3 Panels. ..... 129
3.6 Technical Data of NXAIR Air-insulated Medium-voltage Switchgear ..... 132
3.6.1 Electrical utility company (EUC) requirements ..... 132
3.6.2 Current transformer ..... 132
3.6.3 Important engineering notes ..... 132
3.6.4 Panels ..... 133
3.6.4.1 NXAIR 17.5 kV ..... 133
3.6.4.2 NXAIR 24 kV ..... 137
3.7 Technical Data of NXAir Air-insulated Medium-voltage Switchgear (only for China). ..... 140
3.7.1 NXAir 12 kV. ..... 140
3.7.1.1 Current Transformer. ..... 140
3.7.1.2 Panels ..... 140
3.7.2 NXAir 24 kV . ..... 142
3.7.2.1 Current Transformer. ..... 142
3.7.2.2 Panels ..... 142
3.8 ANSI Codes for protection devices ..... 145
3.9 Medium Voltage Protective Devices ..... 148
3.10 Capacitive Voltage Detector Systems. ..... 150
3.11 Fans added to GEAFOL and GEAFOL basic transformers ..... 152
3.12 Technical Data for SIVACON S4 Low-voltage Switchboard ..... 152
3.12.1 Cubicles ..... 152
3.12.2 Cable Connection ..... 154
3.12.3 Component Mounting Rules for Vented Cubicles with 3- or 4-pole In-line Switch Disconnectors ..... 154
3.13 Technical Data of SIVACON S8 Low-voltage Switchgear ..... 155
3.13.1 Cubicles ..... 155
3.13.2 Cable connection ..... 157
3.13.3 Busbar Trunking Size for Connection Type "busbar trunking system for circuit-breaker design" ..... 158
3.13.4 Arcing Fault Levels ..... 160
3.13.5 Equipment Rules for Ventilated Cubicles with 3- or 4-pole In-line Units ..... 161
3.13.6 Derating tables ..... 162
3.13.6.1 Rated current for 3WL air circuit breakers (ACB) ..... 162
3.13.6.2 Rated current for 3WT air circuit breakers (ACB) ..... 164
3.13.6.3 Rated current for 3VL moulded-case circuit breakers (MCCB) (single cubicle) ..... 166
3.13.7 Frequency converters ..... 167
3.13.7.1 Built-in units ..... 167
3.13.7.2 Frequency converter (Cabinet units for application "pumping, ventilating, compressing") ..... 167
3.13.7.3 Frequency converter (Cabinet units for application "moving" and "processing") ..... 168
3.13.8 Installation - clearances and gangway width ..... 168
3.14 Technical Data of SIVACON 8PT Low-voltage Switchgear (only for China) ..... 170
3.14.1 Cubicles ..... 170
3.14.2 Derating tables. ..... 173
3.14.2.1 Rated Currents for 1 Circuit-breaker/Cubicle with 3WT ..... 173
3.14.2.2 Rated Currents for 2 Circuit-breakers/Cubicle with 3WT ..... 174
3.14.2.3 Rated Currents for 3 Circuit-breakers/Cubicle with 3WT ..... 175
3.14.2.4 Rated Currents for 1 Circuit-breaker/Cubicle with 3WL ..... 176
3.14.2.5 Rated currents for 2 Circuit-breakers/Cubicle with 3WL, Rear Connection ..... 177
3.14.2.6 Rated Currents for 2 Circuit-breakers/Cubicle with $3 W L$, Front Connection ..... 178
3.14.2.7 Rated Currents for 3 Circuit-breakers/Cubicle with 3WL ..... 179
3.14.2.8 Rated Currents for 1 Circuit-breaker/Cubicle with 3VL ..... 179
3.15 Forms of Internal Separation in Low-voltage Switchgear Cabinets (Forms 1-4) ..... 180
3.16 Electronic Overcurrent Trip Units (ETU) for 3WL Circuit-breakers ..... 182
3.17 Protection against arcing faults by arc fault detection devices and their consideration in SIMARIS project ..... 183
3.17.1 Arcing faults in final circuits ..... 183
3.17.1.1 Causes. ..... 183
3.17.1.2 Development of an arc as a result of a faulty point in the cable ..... 184
3.17.2 Closing the protection gap for serial and parallel arcing faults ..... 185
3.17.3 Application areas of AFDDs for final circuits up to 16 A ..... 187
3.17.4 Consideration of AFDDs in project planning with SIMARIS project. ..... 187
3.18 Standards in SIMARIS project ..... 188
3.18.1 Standards for Project Planning in SIMARIS project ..... 188
3.18.2 Explanations for the Standard for Medium-voltage Switchgear (IEC 62271-200) ..... 190
3.18.2.1 Operational Availability Category ..... 190
3.18.2.2 Type of Access to Compartments ..... 190
3.18.2.3 Internal Arc Classification IAC ..... 191

# Essential and special Information on Network Calculation and System Planning using the SIMARIS Planning Tools 

### 1.1 Power Supply Systems, Connection to Earth

### 1.1.1 Introduction to Power Supply Systems

Power supply systems are distinguished according to their

- type and number of live conductors,
- type of connection to earth,
- and the design of this connection to earth.

The code letters have the following meaning:

| Code let- <br> ter | Meaning in French | Meaning in English / German |
| :--- | :--- | :--- |
| T | terre | earth / Erde |
| I | isolé | isolated / isoliert |
| N | neutre | neutral / neutral |
| S | séparé | separated / getrennt |
| C | combiné | combined / kombiniert |

The designation for the power system configuration is made up from the code letters as follows:

| First letter: <br> it characterizes the earthing condition of the supply- <br> ing power source. | T | Directly earthed power source |
| :--- | :--- | :--- |
| Second letter: <br> it characterizes the earthing condition of the ex- <br> posed conductive parts in the electrical installation. | I | Insulation of live parts against earth or connection to earth <br> via impedance |
| N | Exposed conductive parts are connected to earth either <br> separately, in groups or jointly. |  |
| exposed conductive parts are directly connected to the <br> earthed point of the electrical installation via protective <br> conductors |  |  |
| characterize the arrangement of the neutral conduc- <br> tor N and the protective conductor PE in the TN <br> network. | S | Neutral conductor and protective conductor are wired as <br> separate conductors. |
| C | Neutral and protective conductor are combined in one <br> conductor (PEN). |  |

### 1.1.2 TN-S system



### 1.1.2.1 Features

- In the TN-S system, the neutral point of the voltage source is directly earthed (system earth electrode).
- Exposed conductive parts are connected to the neutral point of the voltage source through a defined connection.
- Throughout the entire network, the protective conductor is wired separate from the neutral conductor.
- There is only one central earthing point (CEP) for each subnetwork, from where PEN is split into PE +N .
- In the further course of the cable/busbar run, N+PE must not be connected any more.
- Thus, the entire system must be built up as a 5-conductor network starting from the main distribution board down to the final load level.


### 1.1.2.2 Advantages

- A short-circuit to an exposed conductive part becomes a fault with an appropriately high fault current.
- Simple protective devices, such as fuses or circuit-breakers, can take over the task to disconnect the faulted item of equipment.
- The separation of PE and $N$ throughout the entire system ensures that no stray currents will flow through building constructions or conductor shields, which might cause disturbances in the IT systems or lead to corrosion.


### 1.1.2.3 Disadvantages

- Five conductors are needed in the entire power system.
- Parallel network operation is not permitted, when subnetworks are connected.
- Subnetworks must be separated by 4-pole switching devices.
- It often happens that connections between PE +N are erroneously made in the further course of the network.


### 1.1.2.4 Precautions

- During installation, or respectively in case of system expansions, care must be taken that no further splitting bridge is used within a subnetwork downstream of the central earthing point (attention: national installation practice for HVAC!).
- In addition, a converter must be provided on the central earthing point that monitors the currents through PE with the aid of a current watchdog and renders appropriate feedback signals.


### 1.1.3 TN-C system



### 1.1.3.1 Features

- In the TN-C system, the neutral point of the voltage source is directly earthed (system earth electrode).
- Exposed conductive parts are connected to the neutral point of the voltage source through a defined connection.
- Starting from the feed-in point down to the loads, the PE +N function is implemented through a combined conductor, the PEN.
- Please observe that the PEN must be laid insulated throughout its entire course, also inside switchgear cabinets. For mechanical reasons it is mandatory that the conductor cross section of the PEN be $\geq 10 \mathrm{~mm}^{2}$ for copper, and $\geq 16 \mathrm{~mm}^{2}$ for aluminum.


### 1.1.3.2 Advantages

- A short-circuit to an exposed conductive part becomes a fault with an appropriately high fault current.
- Simple protective devices, such as fuses or circuit-breakers, can take over the task of disconnecting the faulted item of equipment.
- In the entire power system, only cables with a maximum of 4 conductors are laid, which will result in savings in the cable installation as compared to the TN-S system.
- The use of 3 -pole protective devices is sufficient.


### 1.1.3.3 Disadvantages

- The jointly wired PE +N in form of one PEN conductor throughout the entire system results in undesired effects and dangerous consequential damage caused by stray currents. These currents strain electrical as well as metallic mechanical systems.
- Corrosion in the building construction, load and possible inflammations of data cable shields, interference to and corruption of data packages owing to induction, etc. are some of the examples of consequential damage that might arise.


### 1.1.3.4 Precautions

- When new installations are built, or the system is expanded, TN-S systems shall be used.


### 1.1.4 TN-C-S system



### 1.1.4.1 Features

- In the TN-C-S system, the neutral point of the voltage source is directly earthed (system earth electrode).
- Exposed conductive parts are connected to the neutral point of the voltage source through a defined connection.
- Starting from the feed-in point down to a certain point in the network, the PE+N function is covered by a combined conductor, the PEN.
- Please observe that within the range of this PEN, the PEN must be laid insulated throughout its entire course, also inside switchgear cabinets. For mechanical reasons, it is mandatory that the conductor cross section of the PEN be $\geq 10$ $\mathrm{mm}^{2}$ for copper, and $\geq 16 \mathrm{~mm}^{2}$ for aluminum.
- Starting from this subnetwork, one or more 5-conductor networks (TN-S networks) with separate PE+N will branch.


### 1.1.4.2 Advantages

- A short-circuit to an exposed conductive part becomes a fault with an appropriately high fault current.
- Simple protective devices, such as fuses or circuit-breakers, can take over the task of disconnecting the faulted item of equipment.
- In some parts of the power system, only cables with a maximum of 4 conductors are laid, which will result in savings in the cable installation as compared to the pure TN-S system.


### 1.1.4.3 Disadvantages

- If a joint PEN is wired beyond the main distribution board, this will have undesired effects and result in dangerous consequential damage caused by stray currents. These currents strain electrical as well as metallic mechanical systems.
- Corrosion in the building construction, load and possible inflammations of data cable shields, interference to and corruption of data packages owing to induction, etc. are some of the examples of consequential damage that might arise.


### 1.1.4.4 Precautions

- When new installations are built, or the system is expanded, TN-S systems shall be relied on downward of the main distribution.


### 1.1.5 TT system



### 1.1.5.1 Features

- In the TT system, the neutral point of the voltage source is directly earthed (system earth electrode).
- The exposed conductive parts of the electrical installation are also directly earthed.
- System earth electrode and protective earthing of items of equipment are not conductively connected.
- The earthing system for the system earth electrode must be at a minimum distance of 20 m from that of the protective earthing.


### 1.1.5.2 Advantages

- Protective conductors are used to earth equipment in protection class I at their mounting location.
- This means that the location and the exposed conductive part will take approximately the same electrical potential even in case of a short-circuit, so that the touch voltage $\mathrm{UT}=0 \mathrm{~V}$.
- A short-circuit to an exposed conductive part now becomes an earth fault, and not a short-circuit, as in the TN system.
- Therefore, the fault current is relatively low compared to the TN system.


### 1.1.5.3 Disadvantages

- The fault currents are not defined.
- If the earth electrode for the exposed conductive part is interrupted, the entire fault current will flow though the human body.
- Under unfavourable conditions, this current is lower that the trip current of an RCCD, but there is danger to life!
- Typically, protective devices in the form of fuses cannot be applied owing to the low fault current. Normally, RCDs (residual current devices, formerly "RCCBs", residual-current-operated circuit-breakers) are required.


### 1.1.6 IT system



### 1.1.6.1 Features

- In the IT system, the phase conductors and - if available, the neutral conductor of the voltage source, too - are isolated to earth under normal operating conditions, or they are high-resistance-earthed.
- The exposed conductive parts which are connected in the installation are individually or jointly connected to earth through a (joint) protective conductor.


### 1.1.6.2 Advantages

- In case of a single short-circuit or earth fault, hazardous shock currents cannot flow.
- The fault must merely be signalled, not disconnected (insulation monitoring).
- After the fault was indicated, the operator can take his time to locate the fault while the network remains operable.
- In case of a second fault, the network must be disconnected similar to the TN or TT system.
- High availability and ideal supply conditions for hazardous locations owing to missing internal arcs during the first fault.


### 1.1.6.3 Disadvantages

- Voltage increase during the healthy phases after occurrence of the first fault $\rightarrow$ for device selection, please bear in mind that the isolation value which is required is higher.
- In addition to insulation monitoring, protection against overload must be ensured through the use of fuses or circuitbreakers.
- Since conditions will not always be identical to that of the TN system after the first fault, but can possibly approximate the TT system owing to undefined earth connections, it is sometimes necessary to apply additional RCCBs to isolate low faults currents.


## 1.2 Degrees of Protection for Electrical Equipment

### 1.2.1 Designation Structure for Degrees of Protection

- The designation always starts with the letters IP ('international protection'),
- followed by a two-digit number. This number indicates which scope of protection an enclosure provides in terms of - contact or solid external bodies (first digit)
- and humidity (second digit).
- Optionally, another letter plus a supplementary letter may follow after the two numbers. The additional letter is of significance for the protection of persons and renders information about the protection against access to dangerous parts
- with the back of one's hand (A)
- with a finger (B)
- with tools (C)
- and wire (D).


### 1.2.2 Degrees of Protection against Ingress of Foreign Bodies (first code number)

| First <br> code <br> number | Short description | Definition |
| :--- | :--- | :--- |
| $\mathbf{0}$ | Not protected | -- |
| $\mathbf{1}$ | Protected against ingress of foreign bodies of <br> 50 mm in diameter and larger | The probe, a ball of 50 mm in diameter, <br> must not fully penetrate ${ }^{*}$ |
| $\mathbf{2}$ | Protected against ingress of foreign bodies of <br> 12.5 mm in diameter and larger | The probe, a ball of 12.5 mm in diameter, <br> must not fully penetrate*) |
| $\mathbf{3}$ | Protected against ingress of foreign bodies of <br> 2.5 mm in diameter and larger | The probe, a ball of 2.5 mm in diameter, <br> must not penetrate at all |
| $\mathbf{4}$ | Protected against ingress of foreign bodies of <br> 1 mm in diameter and larger | The probe, a ball of 1 mm in diameter, <br> must not penetrate at all |
| $\mathbf{5}$ | Dust-protected | Ingress of dust is not completely prevented, but <br> dust may not penetrate to such an extent that <br> satisfactory device operation or the safety would <br> be impaired |
| $\mathbf{6}$ | Dust-proof | No ingress of dust |

[^0]
### 1.2.3 Degrees of Protection against the Ingress of Water (second code number)

| Second <br> code <br> number | Short description | Definition |
| :--- | :--- | :--- |
| $\mathbf{0}$ | Not protected | -- |
| $\mathbf{1}$ | Protected against dripping water | Vertically falling drops must not have any harmful <br> effect |
| $\mathbf{2}$ | Protected against dripping water if the <br> enclosure is tilted up to $15^{\circ}$ | Vertically falling drops must not have any harmful <br> effect if the enclosure is tilted up to $15^{\circ}$ to either side of <br> the plum line |
| $\mathbf{3}$ | Protected against spray water | Water sprayed at a $60^{\circ}$ angle of either side of the plumb <br> line must not have any harmful effect |
| $\mathbf{4}$ | Protected against jet water | Water splashing onto the enclosure from any side must <br> not have any harmful effect |
| $\mathbf{5}$ | Protected against strong water jets (hose- <br> proof) | Water in form of a water jet directed onto the enclosure <br> from any side must not have any harmful effect |
| $\mathbf{6}$ | Protected against the effects of <br> temporary immersion in water the enclosure from any side in form |  |
| $\mathbf{7}$ |  | Water must not enter in such quantities that would cause <br> harmful effects if the enclosure is temporarily fully im- <br> mersed in water under standardized pressure and time <br> conditions |
| $\mathbf{8}$ |  | Protected against the effects of <br> permanent immersion in water |

### 1.3 Explanations on the Consideration of Functional Endurance in the SIMARIS Planning Tools

### 1.3.1 Functional Endurance Basics

Construction regulations set special requirements on the electricity supply systems of safety facilities: the functionality of the cabling system must be ensured for a specific period of time even in case of fire.

This is ensured if the cables/wires and busbar trunking systems are used with a functional endurance classification E30, E60 or E90 in accordance with DIN 4102-12 and based on the rules of acceptance of these products.

This requires that the wires, cables or busbar trunking systems can resist a fire and do not cease to function because of a short-circuit, current interruption or loss of their insulation.

It must be verified that voltage drop and tripping conditions for personal protection (VDE 0100 Part 410) are also maintained under increased fire temperature conditions.

### 1.3.1.1 Fire Prevention for Building Structures of Special Type and Usage

"Fire protection equipment and fire prevention" for electrical installations are in particular necessary for building structures intended for special use. These are, for instance, hospitals or venues for public gathering. According to DIN VDE 0100-560 (previously DIN VDE 0100-718) "Communal facilities" and DIN VDE 0100-710
(previously DIN VDE 0107) "Medical locations", electrical installations must remain operable for a certain period of time, even in case of fire.

According to these standards, safety-relevant systems must remain operable for a specific period of time.
These are, for instance:

- Fire alarm systems
- Installations for alarming and instructing visitors and employees
- Safety lighting
- Ventilation systems for safety stairways, lift wells and machine rooms of fire fighting lifts, for which a 90 -minute minimum time of operability under full fire conditions must be ensured
- Water pressure rising systems for the supply of fire-extinguishing water
- Smoke extraction systems
- Lift systems for evacuating people with an evacuation circuit, which must remain operable for a minimum time of 30 minutes under full fire conditions in the feeder cable area


### 1.3.1.2 Selection of Fire Areas for the Calculation of Voltage Drop and Tripping Condition

When functional endurance is calculated under increased fire temperatures, it is assumed that this fire temperature may only occur in one fire area, and that fire walls with a fire resistance class F90 will prevent spreading of the fire. This means that cables and busbar trunking systems can be divided into several sections, of which one section may be exposed to the fire temperature and the others to normal room temperature. If a cabling system crosses more than 1 fire area, the fire area with the longest cable route shall be factored into the calculation, this allows to always assume and calculate the most unfavourable case.


### 1.3.1.3 Calculation Basis

- The calculation establishes the increased active resistance arising due to the temperature rise in the fire.
- The voltage drop is individually determined, i.e. for the hot (= defined largest fire area) and each of the cold fire areas. This means that the higher temperature is used for calculating the "hot fire area".
- The entire voltage drop across all areas is used to verify and output the data.
- the minimum short-circuit current is calculating with the highest impedance. The overall impedance is the sum of all impedance values in the fire areas, dependent on the higher temperature in the hot area and the impedance of the cold areas with normal temperatures.


### 1.3.1.4 Types of Functional Endurance and how they are considered in SIMARIS design

The following options are available for ensuring functional endurance of a busbar/cabling system:

- Protection through enclosure of the busbar trunking systems
- Protection through enclosure of standard cables
- Laying of cables with integrated functional endurance


### 1.3.1.4.1 Enclosing Busbar Trunking Systems

A temperature of $150^{\circ} \mathrm{C}$ is assumed for the busbar trunking systems. This temperature applies to all functional endurance classes. This temperature is only set and used for calculating the voltage drop and the tripping condition in the largest fire area. This default may, however, be subsequently altered depending on specific project conditions.
All enclosed busbar trunking systems require the consideration of derating factors. This must happen independent of the fact whether a fire area was defined or not.

For dimensioning, the current carrying capacity of the busbar trunking systems must be reduced accordingly on the basis of system-specific derating tables.

Enclosing busbar trunking systems is only permissible for the BD2, LD, LI and LX systems (both for Al and Cu ).
The derating tables for the various busbar trunking systems are kept in SIMARIS design. The software automatically accesses these tables in the course of calculations, as soon as an enclosure is entered for the respective type of busbar trunking system. However, the user has no access to these tables in the software, e.g. to display data, etc.

The following derating tables for the various busbar trunking systems are kept in SIMARIS design. In the tables there is only the highest complied functional endurance class listed. The busbar trunking systems are nevertheless also suitable for lower functional endurance classes.

BD2 system

| Mounting position flat, horizontal and vertical | Maximum current, vented from all sides | $I_{e}$ <br> with a <br> plate <br> thickness <br> of 50 mm | Functional endurance class | Mounting position flat, horizontal and vertical | Maximum current, vented from all sides | $I_{e}$ <br> with a <br> plate <br> thickness <br> of 50 mm | Functional endurance class |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| System | $I_{e}[A]$ | $I_{e}[A]$ |  | System | $I_{e}[A]$ | $I_{e}[A]$ |  |
| BD2A-160 | 160 | 100 | E90 | BD2C-160 | 160 | 100 | E90 |
| BD2A-250 | 250 | 160 | E90 | BD2C-250 | 250 | 160 | E90 |
| BD2A-400 | 400 | 250 | E90 | BD2C-400 | 400 | 250 | E90 |
| BD2A-630 | 630 | 400 | E90 | BD2C-630 | 630 | 400 | E90 |
| BD2A-800 | 800 | 500 | E90 | BD2C-800 | 800 | 500 | E90 |
| BD2A-1000 | 1000 | 630 | E90 | BD2C-1000 | 1000 | 630 | E90 |
|  |  |  |  | BD2C-1250 | 1250 | 800 | E90 |

LD system

| Mounting position | Maximum current | Current calculated with | Reduction factor | Func- <br> tional <br> endur- <br> ance <br> class | Current calculated with | Reduction factor | Func- <br> tional <br> endur- <br> ance <br> class | Current calculated with | Reduction factor | Functional endurance class |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| horizontal edgewise | IP34, vented from all sides | 20 mm plates |  |  | 40 mm plates |  |  | 45 mm plates ${ }^{1)}$ |  |  |
| System | $I_{e}[A]$ | $I_{e}[A]$ |  |  | $I_{e}[A]$ |  |  | $I_{e}[A]$ |  |  |
| LDA1 | 1100 | 675 | 0.61 | E60 | 603 | 0.55 | E90 | 550 | 0.50 | E90 |
| LDA2 | 1250 | 750 | 0.60 | E60 | 670 | 0.54 | E90 | 625 | 0.50 | E90 |
| LDA3 | 1600 | 912 | 0.57 | E60 | 804 | 0.50 | E90 | 800 | 0.50 | E90 |
| LDA4 | 2000 | 1140 | 0.57 | E90 | 1005 | 0.50 | E90 | 900 | 0.45 | E90 |
| LDA5 | 2500 | 1425 | 0.57 | E90 | 1250 | 0.50 | E90 | 1125 | 0.45 | E90 |
| LDA6 | 3000 | 1710 | 0.57 | E90 | 1500 | 0.50 | E90 | 1350 | 0.45 | E90 |
| LDA7 | 3700 | 2109 | 0.57 | E90 | 1850 | 0.50 | E90 | 1665 | 0.45 | E90 |
| LDA8 | 4000 | 2280 | 0.57 | E90 | 2000 | 0.50 | E90 | 1800 | 0.45 | E90 |
| LDC2 | 2000 | 1200 | 0.60 | E60 | 1072 | 0.54 | E90 | 1040 | 0.52 | E90 |
| LDC3 | 2600 | 1500 | 0.58 | E60 | 1340 | 0.52 | E90 | 1352 | 0.52 | E90 |
| LDC6 | 3400 | 1950 | 0.57 | E90 | 1742 | 0.51 | E90 | 1530 | 0.45 | E90 |
| LDC7 | 4400 | 2508 | 0.57 | E90 | 2200 | 0.50 | E90 | 1980 | 0.45 | E90 |
| LDC8 | 5000 | 2850 | 0.57 | E90 | 2500 | 0.50 | E90 | 2250 | 0.45 | E90 |


| Mounting position | Maximum current, | Current calculated with | Reduction factor | Functional endurance class | Current calculated with | Reduction factor | Functional endurance class | Current calculated with | Reduction factor | Functional endurance class |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| horizontal edgewise | IP54, vented from all sides | 20 mm plates |  |  | 40 mm plates |  |  | 45 mm plates ${ }^{1)}$ |  |  |
| system | $I_{e}[A]$ | $I_{e}[A]$ |  |  | $I_{e}[A]$ |  |  | $I_{e}[$ [ $]$ |  |  |
| LDA1 | 900 | 675 | 0.75 | E60 | 603 | 0.67 | E90 | 540 | 0.60 | E90 |
| LDA2 | 1000 | 750 | 0.75 | E60 | 670 | 0.67 | E90 | 600 | 0.60 | E90 |
| LDA3 | 1200 | 900 | 0.75 | E60 | 804 | 0.67 | E90 | 720 | 0.60 | E90 |
| LDA4 | 1500 | 1125 | 0.75 | E90 | 1005 | 0.67 | E90 | 900 | 0.60 | E90 |
| LDA5 | 1800 | 1350 | 0.75 | E90 | 1206 | 0.67 | E90 | 1080 | 0.60 | E90 |
| LDA6 | 2000 | 1500 | 0.75 | E90 | 1340 | 0.67 | E90 | 1200 | 0.60 | E90 |
| LDA7 | 2400 | 1800 | 0.75 | E90 | 1608 | 0.67 | E90 | 1440 | 0.60 | E90 |
| LDA8 | 2700 | 2025 | 0.75 | E90 | 1809 | 0.67 | E90 | 1620 | 0.60 | E90 |
| LDC2 | 1600 | 1200 | 0.75 | E60 | 1072 | 0.67 | E90 | 960 | 0.60 | E90 |
| LDC3 | 2000 | 1500 | 0.75 | E60 | 1340 | 0.67 | E90 | 1200 | 0.60 | E90 |
| LDC6 | 2600 | 1950 | 0.75 | E90 | 1742 | 0.67 | E90 | 1560 | 0.60 | E90 |
| LDC7 | 3200 | 2400 | 0.75 | E90 | 2144 | 0.67 | E90 | 1920 | 0.60 | E90 |
| LDC8 | 3600 | 2700 | 0.75 | E90 | 2412 | 0.67 | E90 | 2160 | 0.60 | E90 |

LD system

| Mounting position | Maximum current | Current calculated with | Reduction factor | Func- <br> tional <br> endur- <br> ance <br> class | Current calculated with | Reduction factor | Functional endurance class | Current calculated with | Reduction factor | Functional endurance class |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| flat horizontal | IP34 <br> IP54 <br> vented from all sides | 20 mm plates |  |  | 40 mm plates |  |  | 45 mm plates ${ }^{1)}$ |  |  |
| System | $I_{e}[A]$ | $I_{e}[$ [ $]$ |  |  | $I_{e}[A]$ |  |  | $I_{e}[A]$ |  |  |
| LDA1 | 700 | 602 | 0.86 | E60 | 545 | 0.78 | E90 | 486 | 0.69 | E90 |
| LDA2 | 750 | 645 | 0.86 | E60 | 584 | 0.78 | E90 | 521 | 0.69 | E90 |
| LDA3 | 1000 | 860 | 0.86 | E60 | 778 | 0.78 | E90 | 694 | 0.69 | E90 |
| LDA4 | 1200 | 1032 | 0.86 | E90 | 934 | 0.78 | E90 | 833 | 0.69 | E90 |
| LDA5 | 1700 | 1462 | 0.86 | E90 | 1323 | 0.78 | E90 | 1180 | 0.69 | E90 |
| LDA6 | 1800 | 1548 | 0.86 | E90 | 1400 | 0.78 | E90 | 1250 | 0.69 | E90 |
| LDA7 | 2200 | 1892 | 0.86 | E90 | 1712 | 0.78 | E90 | 1527 | 0.69 | E90 |
| LDA8 | 2350 | 2021 | 0.86 | E90 | 1828 | 0.78 | E90 | 1631 | 0.69 | E90 |
| LDC2 | 1200 | 1032 | 0.86 | E60 | 934 | 0.78 | E90 | 833 | 0.69 | E90 |
| LDC3 | 1550 | 1333 | 0.86 | E60 | 1206 | 0.78 | E90 | 1076 | 0.69 | E90 |
| LDC6 | 2000 | 1720 | 0.86 | E90 | 1556 | 0.78 | E90 | 1388 | 0.69 | E90 |
| LDC7 | 2600 | 2236 | 0.86 | E90 | 2023 | 0.78 | E90 | 1804 | 0.69 | E90 |
| LDC8 | 3000 | 2580 | 0.86 | E90 | 2334 | 0.78 | E90 | 2082 | 0.69 | E90 |


| Mounting position | Maximum current | Current calculated with | Reduction factor | Functional endurance class | Current calculated with | Reduction factor | Functional endurance class | current <br> calculat- <br> ed <br> with | Reduction factor | Functional endurance class |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| vertical | IP34, vented from all sides | 20 mm plates |  |  | 40 mm plates |  |  | 45 mm plates ${ }^{1)}$ |  |  |
| System | $I_{e}[A]$ | $I_{e}[A]$ |  |  | $I_{e}[$ [ $]$ |  |  | $I_{e}[A]$ |  |  |
| LDA1 | 950 | 675 | 0.71 | E60 | 603 | 0.63 | E90 | 475 | 0.50 | E90 |
| LDA2 | 1100 | 750 | 0.68 | E60 | 670 | 0.61 | E90 | 550 | 0.50 | E90 |
| LDA3 | 1250 | 900 | 0.72 | E60 | 804 | 0.64 | E90 | 625 | 0.50 | E90 |
| LDA4 | 1700 | 1125 | 0.66 | E90 | 1005 | 0.59 | E90 | 748 | 0.44 | E90 |
| LDA5 | 2100 | 1350 | 0.64 | E90 | 1206 | 0.57 | E90 | 924 | 0.44 | E90 |
| LDA6 | 2300 | 1500 | 0.65 | E90 | 1340 | 0.58 | E90 | 1012 | 0.44 | E90 |
| LDA7 | 2800 | 1800 | 0.64 | E90 | 1608 | 0.57 | E90 | 1232 | 0.44 | E90 |
| LDA8 | 3400 | 2025 | 0.60 | E90 | 1809 | 0.53 | E90 | 1496 | 0.44 | E90 |
| LDC2 | 1650 | 1200 | 0.73 | E60 | 1072 | 0.65 | E90 | 792 | 0.48 | E90 |
| LDC3 | 2100 | 1500 | 0.71 | E60 | 1340 | 0.64 | E90 | 1008 | 0.48 | E90 |
| LDC6 | 2700 | 1950 | 0.72 | E90 | 1742 | 0.65 | E90 | 1296 | 0.48 | E90 |
| LDC7 | 3500 | 2400 | 0.69 | E90 | 2144 | 0.61 | E90 | 1680 | 0.48 | E90 |
| LDC8 | 4250 | 2700 | 0.64 | E90 | 2412 | 0.57 | E90 | 2040 | 0.48 | E90 |

LD system

| Mounting position | Maximum current, | current <br> calculat- <br> ed <br> with | Reduction factor | Func- <br> tional <br> endur- <br> ance <br> class | current <br> calculat- <br> ed <br> with | Reduction factor | Functional endurance class | current <br> calculat- <br> ed <br> with | Reduction factor | Functional endurance class |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| vertical | IP54 <br> freely <br> ventilat- <br> ed | 20 mm plates |  |  | 40 mm plates |  |  | 45 mm plates ${ }^{1)}$ |  |  |
| System | $I_{e}[A]$ | $I_{e}[A]$ |  |  | $I_{e}[A]$ |  |  | $I_{e}[A]$ |  |  |
| LDA1 | 900 | 675 | 0.75 | E60 | 603 | 0.67 | E90 | 540 | 0.60 | E90 |
| LDA2 | 1000 | 750 | 0.75 | E60 | 670 | 0.67 | E90 | 600 | 0.60 | E90 |
| LDA3 | 1200 | 900 | 0.75 | E60 | 804 | 0.67 | E90 | 720 | 0.60 | E90 |
| LDA4 | 1500 | 1125 | 0.75 | E90 | 1005 | 0.67 | E90 | 900 | 0.60 | E90 |
| LDA5 | 1800 | 1350 | 0.75 | E90 | 1206 | 0.67 | E90 | 1080 | 0.60 | E90 |
| LDA6 | 2000 | 1500 | 0.75 | E90 | 1340 | 0.67 | E90 | 1200 | 0.60 | E90 |
| LDA7 | 2400 | 1800 | 0.75 | E90 | 1608 | 0.67 | E90 | 1440 | 0.60 | E90 |
| LDA8 | 2700 | 2025 | 0.75 | E90 | 1809 | 0.67 | E90 | 1620 | 0.60 | E90 |
| LDC2 | 1600 | 1200 | 0.75 | E60 | 1072 | 0.67 | E90 | 960 | 0.60 | E90 |
| LDC3 | 2000 | 1500 | 0.75 | E60 | 1340 | 0.67 | E90 | 1200 | 0.60 | E90 |
| LDC6 | 2600 | 1950 | 0.75 | E90 | 1742 | 0.67 | E90 | 1560 | 0.60 | E90 |
| LDC7 | 3200 | 2400 | 0.75 | E90 | 2144 | 0.67 | E90 | 1920 | 0.60 | E90 |
| LDC8 | 3600 | 2700 | 0.75 | E90 | 2412 | 0.67 | E90 | 2160 | 0.60 | E90 |

Ll system

| Mounting position | Maximum current, <br> IP55 freely ventilated | Current calculated with 45 mm p Horizonta | Reduction factor <br> lates al edgew | Functional endurance class | Current calcula -ed with 45 mm Horizon | Reduction factor <br> plates <br> al flat | Func- <br> tional <br> endur- <br> ance class | Current calcula t-ed with 45 mm vertical | Reduction factor <br> plates | Functional endurance class |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| System | $I_{e}[A]$ | $I_{e}[A]$ |  |  | $I_{e}[A]$ |  |  | $I_{e}[A]$ |  |  |
| LI-A. 0800 | 800 | 440 | 0.55 | E90 | 440 | 0.55 | E90 | 440 | 0.55 | E90 |
| LI-A. 1000 | 1000 | 560 | 0.56 | E90 | 560 | 0.56 | E90 | 560 | 0.56 | E90 |
| LI-A. 1250 | 1250 | 663 | 0.53 | E90 | 663 | 0.53 | E90 | 663 | 0.53 | E90 |
| LI-A. 1600 | 1600 | 832 | 0.52 | E90 | 832 | 0.52 | E90 | 832 | 0.52 | E90 |
| LI-A. 2000 | 2000 | 1120 | 0.56 | E90 | 1120 | 0.56 | E90 | 1120 | 0.56 | E90 |
| LI-A. 2500 | 2500 | 1375 | 0.55 | E90 | 1375 | 0.55 | E90 | 1375 | 0.55 | E90 |
| LI-A. 3200 | 3200 | 1824 | 0.57 | E90 | 1824 | 0.57 | E90 | 1824 | 0.57 | E90 |
| LI-A. 4000 | 4000 | 2200 | 0.55 | E90 | 2200 | 0.55 | E90 | 2200 | 0.55 | E90 |
| LI-A. 5000 | 5000 | 2700 | 0.54 | E90 | 2700 | 0.54 | E90 | 2700 | 0.54 | E90 |
| LI-C. 1000 | 1000 | 570 | 0.57 | E90 | 570 | 0.57 | E90 | 570 | 0.57 | E90 |
| LI-C. 1250 | 1250 | 663 | 0.53 | E90 | 663 | 0.53 | E90 | 663 | 0.53 | E90 |
| LI-C. 1600 | 1600 | 832 | 0.52 | E90 | 832 | 0.52 | E90 | 832 | 0.52 | E90 |
| LI-C. 2000 | 2000 | 1040 | 0.52 | E90 | 1040 | 0.52 | E90 | 1040 | 0.52 | E90 |
| LI-C. 2500 | 2500 | 1200 | 0.48 | E90 | 1200 | 0.48 | E90 | 1200 | 0.48 | E90 |
| LI-C. 3200 | 3200 | 1728 | 0.54 | E90 | 1728 | 0.54 | E90 | 1728 | 0.54 | E90 |
| LI-C. 4000 | 4000 | 2000 | 0.50 | E90 | 2000 | 0.50 | E90 | 2000 | 0.50 | E90 |
| LI-C. 5000 | 5000 | 2600 | 0.52 | E90 | 2600 | 0.52 | E90 | 2600 | 0.52 | E90 |
| LI-C. 6300 | 6300 | 3654 | 0.58 | E90 | 3654 | 0.58 | E90 | 3654 | 0.58 | E90 |


| LX system |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Functional endurance class $\mathbf{w . ~} 40 \mathrm{~mm}$ Promat |  | Functional endurance class w. 50 mm Promat |
| System | $I_{e}[A]$ | $I_{e}[$ [ $]$ |  | $I_{e}[A]$ |  |
| LXA01... | 800 |  |  | 480 | E90 |
| LXA02... | 1000 |  |  | 600 | E90 |
| LXA04... | 1250 |  |  | 750 | E90 |
| LXA05... | 1600 |  |  | 960 | E90 |
| LXA06... | 2000 |  |  | 1200 | E90 |
| LXA07... | 2500 |  |  | 1500 | E90 |
| LXA08... | 3200 | 2080 | E90 |  |  |
| LXA09... | 4000 | 2600 | E90 |  |  |
| LXA10... | 4500 | 2925 | E90 |  |  |
| LXC01... | 1000 |  |  | 600 | E90 |
| LXC02... | 1250 |  |  | 750 | E90 |
| LXC03... | 1400 |  |  | 840 | E90 |
| LXC04... | 1600 |  |  | 960 | E90 |
| LXC05... | 2000 |  |  | 1200 | E90 |
| LXC06... | 2500 |  |  | 1500 | E90 |
| LXC07... | 3200 |  |  | 1920 | E90 |
| LXC08... | $4000$ | 2600 | E90 |  |  |
| LXC09... | 5000 | 3250 | E90 |  |  |

${ }^{1)}$ On request

### 1.3.1.4.2 Enclosing Standard Cables

To calculate cables and wires, we recommend assuming a temperature of $150^{\circ} \mathrm{C}$. This is true for all functional endurance classes. (Bibl.: Heinz-Dieter Fröse, Brandschutz für Kabel und Leitungen, Hüthig \& Pflaum, 2005)

This temperature is only set and used for calculating the voltage drop and the tripping condition in the largest fire area. This default may, however, be subsequently altered depending on a specific project condition.

The current carrying capacity of enclosed cables can be compared to that of laying in hollow spaces.
Therefore, installation type B2 (= multi-core cable, or multi-core sheathed installation wire in an installation duct on a wall) instead of installation type $C$ is automatically set as default in SIMARIS design for the enclosure of standard cables. The user may, however, subsequently alter this setting. This means, the choice of installation types is not restricted, but can be changed by the user at any time upon his own risk.

All insulation materials may be selected as enclosures, but PVC70 is automatically set as default.


### 1.3.1.4.3 Cables with integrated Functional Endurance

The current carrying capacity of the cable cross section is determined under the same conditions as during normal operation in accordance with DIN VDE 0298.

The temperature for calculating the voltage drop and the temperature for the disconnection condition of the fire area is taken from the curve/table below, the standard temperature-time curve in the event of a fire is based on DIN 4102-2.

This data is automatically accessed by the software during a calculation operation.


| $\boldsymbol{t}$ | $\boldsymbol{\vartheta}-\boldsymbol{\vartheta}_{\mathbf{0}}$ | corresponds to |
| :--- | :--- | :--- |
| $\boldsymbol{m i n}$ | K |  |
| 0 | 0 |  |
| 5 | 556 |  |
| 10 | 658 |  |
| 15 | 719 |  |
| 30 | 822 | E30 |
| 60 | 925 | E60 |
| 90 | 986 | E90 |
| 120 | 1029 | E120 |
| 180 | 1090 |  |
| 240 | 1133 |  |
| 360 | 1194 |  |

```
\(\boldsymbol{\vartheta}-\boldsymbol{\vartheta}_{\mathbf{0}}=345 \lg (8 \mathrm{t}+1)\)
\(\boldsymbol{\vartheta}=\) fire temperature in K
\(\boldsymbol{\vartheta}_{\mathbf{0}} \quad=\) temperature of the probes at test start in K
\(\boldsymbol{t} \quad=\) time in minutes
```

The use of cables with integrated functional endurance does not impose any constraints regarding their current carrying capacity and the choice of an installation type.

However the choice of the

- conductor material is limited to copper
- and the insulation material to EPR and XLPE.



### 1.3.2 Consideration of Functional Endurance in SIMARIS project

### 1.3.2.1 Preliminary Note

SIMARIS project cannot consider the functional endurance of cables. Usually, several cables are laid together on cable trays. For this reason, it doesn't make sense to consider using Promat ${ }^{\circledR}$ for individual cables, instead the "promating" of the entire cable tray should have to be considered. However, this is not possible based of the data available in SIMARIS project, since there is no reference to the real course of the cables or the cable trays in the building.

For this reason, the explanations in the following sections only deal with the functional endurance of busbar trunking systems and how it is considered in the software.

### 1.3.2.2 Functional Endurance for BD2, LD, LI und LX Busbar Trunking Systems

### 1.3.2.2.1 Regulations

You can find a short introduction to the relevant regulations in chapter fire prevention for building structures of special type and usage.
In order to be able to offer the required functional endurance of busbar trunking systems, successful material tests for BD2, LD, LI and LX busbar trunking systems were performed in cooperation with the Promat Company at the Materialprüfanstalt Braunschweig (an institute for material testing).

### 1.3.2.2.2 Execution

Essential parts for meeting the functional endurance requirement are special components for the functional endurance duct and the support construction for the duct and the BD2, LD, LI und LX busbar trunking systems. Dependent on the ambient conditions, several cable duct designs (compartmentalisation using 4-, 3-, 2-side partitions) and the support construction (fastening using threaded rods or wall brackets) are feasible. In this context, provisions made in test certificates issued by construction supervision authorities must be observed:

- The maximum permissible distances between fastenings and a maximum permissible tensile stress of $6 \mathrm{~N} / \mathrm{mm}^{2} \mathrm{must}$ be kept
- Only fastenings, partition material and pertaining accessories approved by building authorities must be used

Depending on the installation of the busbar trunking systems 2-, 3-, or 4-side compartmentalisation may be required.


## Functional endurance with 2-side compartmentalisation:

(1) Busbar trunking system
(2) Partition
(3) Reinforcement of the partitions at the abutting edges
(6) Brackets acc. to static requirements


## Functional endurance with 3-side compartmentalisation:

(1) Busbar trunking system
(2) Partition
(3) Reinforcement of the partitions at the abutting edges
(5) Threaded rod (M12/M16)
(7) Support profile acc. to static requirements

## Functional endurance with 4-side compartmentalisation:

(1) Busbar trunking system
(2) Partition
(3) Reinforcement of the partitions at the abutting edges
(4) Load distribution plate
(5) Threaded rod (M12/M16)
(6) Brackets acc. to static requirements
(7) Support profile acc. to static requirements
(4) + (5) + (6) or
(4) $+(5)+(7)=$
special support construction (as described in specification of works and services)

The price for the special support construction must be added to the budget price.

## Note:

4-side compartmentalisation is only possible for horizontal installation.

[^1]
### 1.4 Typification of Circuit-breakers in Medium-voltage Switchgear

## Legend for the following tables

| - | Design variant |  |
| :--- | :--- | :--- |
| - | Not available |  |
| AR | Automatic reclosing |  |
| NAR | Non-automatic reclosing |  |
| CB-f | Circuit Breaker - fixed mounted |  |

If a transformer is selected as feed-in system in SIMARIS design, two types of circuit-breakers will be available for selection as "Type of switchgear" at the medium-voltage level.

In SIMARIS project, there is a corresponding selection possibility for the configuration of 8DJH medium-voltage switchgear that uses the cubicle type. The other medium-voltage switchgear in SIMARIS project is characterized by other features/designations for typifying switching devices. Please refer to tables in the following chapters.

### 1.4.1 NX PLUS C (primary distribution level)

The following table presents the circuit-breaker typification for NX PLUS C medium-voltage switchgear in a differentiated manner.

| Circuit-breaker | 3AH55 <br> CB-f AR | $\begin{aligned} & \text { 3AH25 } \\ & \text { CB-f AR } \end{aligned}$ | $\begin{aligned} & \text { 3AH55 } \\ & \text { CB-f AR } \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| Rated voltage | max. 15 kV | max. 15 kV | max. 24 kV |
| Short-circuit breaking current | max. 31.5 kA | max. 31.5 kA | max. 25 kA |
| Rated switching sequence $\begin{aligned} & \mathrm{O}-0.3 \mathrm{~s}-\mathrm{CO}-3 \mathrm{~min}-\mathrm{CO} \\ & \mathrm{O}-0.3 \mathrm{~s}-\mathrm{CO}-15 \mathrm{~s}-\mathrm{CO} \\ & \mathrm{O}-3 \mathrm{~min}-\mathrm{CO}-3 \mathrm{~min}-\mathrm{CO} \end{aligned}$ |  |  |  |
| Number of break operations $I_{r}$ short-circuit break operations $I_{S C}$ | $\begin{aligned} & 10,000 \\ & \max .50 \end{aligned}$ | $\begin{aligned} & 30,000 \\ & \text { max. } 50 \end{aligned}$ | $\begin{aligned} & 10,000 \\ & \max .50 \end{aligned}$ |
| In a single cubicle 600 mm <br> In a single cubicle 900 mm | - | - |  |

### 1.4.2 8DJH (secondary distribution level)

The following table presents the circuit-breaker typification for 8DJH medium-voltage switchgear in a differentiated manner.

| Circuit-breaker | Type 1.1 <br> (CB-f AR) | Type 2 <br> (CB-f AR) |
| :---: | :---: | :---: |
| Rated voltage | max. 24 kV | max. 24 kV |
| Short-circuit breaking current | max. 25 kA | max. 20 kA *) |
| Rated switching sequence $\begin{aligned} & \mathrm{O}-0.3 \mathrm{~s}-\mathrm{CO}-3 \mathrm{~min}-\mathrm{CO} \\ & \mathrm{O}-0.3 \mathrm{~s}-\mathrm{CO}-15 \mathrm{~s}-\mathrm{CO} \\ & \mathrm{O}-3 \mathrm{~min}-\mathrm{CO}-3 \mathrm{~min}-\mathrm{CO} \end{aligned}$ | Upon request |  |
| Number of break operations $I_{r}$ short-circuit break operations $I_{S C}$ | $\begin{aligned} & 10,000 \\ & \text { max. } 50 \end{aligned}$ | $\begin{aligned} & 2,000 \\ & \max .20 \end{aligned}$ |
| $\begin{array}{ll}\text { In a single panel } & 430 \mathrm{~mm} \\ & 500 \mathrm{~mm}\end{array}$ |  |  |
| In the panel block 430 mm | - | - |

${ }^{\text {*) }}$ Max. 21 kA at 60 Hz

### 1.4.3 8DJH36 (secondary distribution level)

The following table presents the circuit-breaker typification for 8DJH36 medium-voltage switchgear in a differentiated manner.

| Circuit-breaker | Type 1.1 <br> (CB-f AR) | Type 2 <br> (CB-f AR) |
| :---: | :---: | :---: |
| Rated voltage | max. 36 kV | max. 36 kV |
| Short-circuit breaking current | max. 20 kA | max. 20 kA |
| Rated switching sequence $\begin{aligned} & \mathrm{O}-0.3 \mathrm{~s}-\mathrm{CO}-3 \mathrm{~min}-\mathrm{CO} \\ & \mathrm{O}-0.3 \mathrm{~s}-\mathrm{CO}-15 \mathrm{~s}-\mathrm{CO} \\ & \mathrm{O}-3 \mathrm{~min}-\mathrm{CO}-3 \mathrm{~min}-\mathrm{CO} \end{aligned}$ | Upon request |  |
| Number of break operations $I_{r}$ short-circuit break operations $I_{S C}$ | $\begin{aligned} & 10,000 \\ & \operatorname{max.} 50 \end{aligned}$ | $\begin{aligned} & 2,000 \\ & \max .20 \end{aligned}$ |
| In a single panel 590 mm | - | - |
| In the panel block 590 mm | - | - |

### 1.4.4 SIMOSEC (secondary distribution level)

The following table presents the circuit-breaker typification for SIMOSEC medium-voltage switchgear in a differentiated manner.


### 1.4.5 NXAIR (primary distribution level)

The following table presents the circuit-breaker typification for NXAIR medium-voltage switchgear in a differentiated manner.

| Circuit-breaker | CB-f AR | CB-f AR | CB-f AR |
| :---: | :---: | :---: | :---: |
| Rated voltage | max. 17.5 kV | max. 17.5 kV | max. 24 kV |
| Short-circuit breaking current | max. 40 kA | max. 50 kA | max. 25 kA |
| Rated switching sequence $\begin{aligned} & \mathrm{O}-0.3 \mathrm{~s}-\mathrm{CO}-3 \mathrm{~min}-\mathrm{CO} \\ & \mathrm{O}-0.3 \mathrm{~s}-\mathrm{CO}-15 \mathrm{~s}-\mathrm{CO} \\ & \mathrm{O}-3 \mathrm{~min}-\mathrm{CO}-3 \mathrm{~min}-\mathrm{CO} \end{aligned}$ |  |  |  |
| Number of break operations $I_{r}$ short-circuit break operations $I_{S C}$ | $\begin{aligned} & 10,000 \\ & \operatorname{max.} 300 \end{aligned}$ | $\begin{aligned} & 10,000 \\ & \operatorname{max.} 300 \end{aligned}$ | $\begin{aligned} & 10,000 \\ & \operatorname{max.} 300 \end{aligned}$ |
| In a single panel 600 mm <br>  800 mm <br> 1000 mm  |  |  |  |

### 1.5 SIVACON 8PS Busbar Trunking Systems

1.5.1 Overview of Busbar Trunking Systems from 40 up to 6,300 A


| Busbar trunking system | Rated cur- <br> rent <br> Voltage <br> Degree of protection | Conductor configuration | Tap-off points | Pluggable tap-off boxes | Dimensions B $\times \mathrm{H}$ [cm] | Openings of fire walls B XH [cm] | Recommended horizontal fastening spaces | Criteria for decisionmaking | Application example |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BD2 <br> for medium-sized currents e.g. supply of building storeys <br> Production lines | $\begin{aligned} & 160- \\ & 1000 \mathrm{~A}(\mathrm{Al}) \\ & 160- \\ & 1250 \mathrm{~A}(\mathrm{Al}) \\ & 690 \mathrm{~V} \mathrm{AC} \\ & \\ & \text { IP52 / } 54 \text { I } \\ & \text { IP55 } \end{aligned}$ | $\begin{aligned} & \mathrm{L1}, \mathrm{~L} 2, \mathrm{~L}, \\ & \mathrm{~N}, 1 / 2 \mathrm{PE} \\ & \text { L1, L2, L3, } \\ & \mathrm{N}, \mathrm{PE} \end{aligned}$ | without <br> 2-side every <br> 0.25 m (offset) | max. 630 A | $\begin{aligned} & 16.7 \times 6.8 \text { up } \\ & \text { to } 400 \mathrm{~A} \\ & 16.7 \times 12.6 \text { as } \\ & \text { of } 500 \mathrm{~A} \end{aligned}$ | $27 \times 17$ up to 400 A <br> $27 \times 23$ as of 500 A | 1 x fastening per trunking unit <br> 2.5 m for 1000 A | Small system offering a high degree of flexibility due to various changes in direction <br> tap-off box starting from 16 A with a wide choice of equipment <br> No derating in case of vertical wiring up to 1000 A | High-rise buildings <br> Hotels <br> Old people's homes <br> Production lines <br> Shopping centres <br> Offices <br> Schools / universities |
| LD vented system for high currents e.g. in industry | $\begin{aligned} & 1100- \\ & 4000 \mathrm{~A}(\mathrm{Al}) \\ & 2000- \\ & 5000 \mathrm{~A}(\mathrm{Cu}) \\ & 1000 \mathrm{~V} \mathrm{AC} \\ & \text { IP34 / } 54 \end{aligned}$ | $\begin{aligned} & \mathrm{L} 1, \mathrm{~L} 2, \mathrm{~L} 3, \\ & \mathrm{~N}, \mathrm{PE} \\ & \mathrm{~L} 1, \mathrm{~L} 2, \mathrm{~L} 3, \\ & 1 / 2 \mathrm{~N}, 1 / 2 \\ & \mathrm{PE} \end{aligned}, \begin{aligned} & \mathrm{L} 1, \mathrm{~L} 2, \mathrm{~L} 3, \\ & \mathrm{~N}, 1 / 2 \mathrm{PE} \\ & \mathrm{L1}, \mathrm{~L} 2, \mathrm{~L} 3, \\ & \mathrm{PEN} \end{aligned}$ | without <br> 1-side every 1 m <br> 2-side every 1 m | $\max _{A} 1250$ | $\begin{aligned} & 18 \times 18 \text { up to } \\ & 2,600 \mathrm{~A} \\ & \\ & 24 \times 18 \text { up to } \\ & 5000 \mathrm{~A} \end{aligned}$ | $\begin{aligned} & 42 \times 42 \text { up to } \\ & 2,600 \mathrm{~A} \\ & \\ & 48 \times 42 \text { up to } \\ & 5000 \mathrm{~A} \end{aligned}$ | $1 \times$ fastening per IP34 trunking unit <br> 2 m for $5000 \mathrm{~A} /$ IP34 | Power distribution mostly horizontal <br> IP34 sufficient <br> Pluggable load feeders up to 1250 A <br> High degree of short-circuit strength of the load feeders <br> Low EMC values | Hospitals <br> Airport <br> Production lines <br> Chemistry, pharmacy <br> Exhibition halls <br> Tunnels <br> Wind power stations |



| Busbar trunking system | Rated current Voltage Degree of protection | Conductor configuration | Tap-off points | Pluggable tap-off boxes | Dimensions <br> $\mathrm{B} \times \mathrm{H}$ [cm] | Openings of fire walls B x H [cm] | Recommended horizontal fastening spaces | Criteria for deci-sion-making | Application example |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LI <br> for power transmission up to 6300 A and distribution in high-rise buildings | $\begin{aligned} & 800- \\ & 5000 \mathrm{~A}(\mathrm{AL}) \\ & 1000- \\ & 6300 \mathrm{~A}(\mathrm{AL}) \\ & 1000 \mathrm{~V} \mathrm{AC} \\ & \text { IP55 } \end{aligned}$ |  | without <br> 1-side every 0,66m (max. 3 per trunking unit) <br> 2-side every 0,66m (max. 6 per trunking unit) | Max. 1250A | $15,5 \times 11,1$ at 800A (AL) <br> 1000A (CU) <br> $15,5 \times 11,7$ at <br> 1250A (CU) <br> 15,5x13,2 at 1000A (AL) <br> 15,5x14,6 at 1250A (AL) 1600A (CU) <br> $15,5 \times 17,4$ at 2000A (CU) <br> $15,5 \times 18,2$ at 1600A (AL) <br> $15,5 \times 21,3$ at 2500A (CU) <br> 15,5x23,0 at 2000A (AL) <br> 15,5x28,0 at 3200A (CU) <br> 15,5x29,7 at 2500A (AL) <br> $41,0 \times 17,4$ at 4000A (CU) <br> $41,0 \times 18,2$ at 3200A (AL) <br> $41,0 \times 21,3$ at 5000A (CU) <br> $41,0 \times 23,0$ at 4000A (AL) <br> $41,0 \times 28,0$ at 6300A (CU) <br> $41,0 \times 29,7$ at 5000A (AL) | $35 \times 31$ at 800 A (AL) 1000 A (CU) <br> $35 \times 33$ at 1000 A (AL) 1250 A (CU) $35 \times 35$ at 1250 A (AL) 1600 A (CU) $35 \times 38$ at 1600 A (AL) 2000 A (CU) <br> $35 \times 43$ at 2000 A (AL) 2500 A (CU) $35 \times 50$ at 2500 A (AL) 3200 A (CU) $61 \times 38$ at 3200 A (AL) 4000 A (CU) $61 \times 43$ at 4000 A (AL) 5000 A (CU) $61 \times 50$ at 5000 A (AL) 6300 A (CU) | edgewise <br> 3 m <br> flat <br> $2 m$ | High degree of protection <br> High short-circuit rating <br> Low voltage drop <br> Flexible tap-offs for loads <br> Potential demands for increasing the cross-section of the neutral conductor can be met <br> Clean Earth requirement for a separate PE conductor insulated to the busbar trunking system housing | High-rise buildings <br> Data center <br> Infrastructure <br> Manufacturing industry |


| Busbar trunking system | Rated current Voltage Degree of protection | Conductor configuration | Tap-off points | Pluggable tap-off boxes | Dimensions B x H [cm] | Openings of fire walls B x H [cm] | Recommended horizontal fastening spaces | Criteria for decisionmaking | Application example |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LR for the transmission of high currents at a high degree of protection | $\begin{aligned} & 630- \\ & 6300 \text { A (AI) } \end{aligned}$ | $\begin{aligned} & \mathrm{L} 1, \mathrm{~L} 2, \mathrm{~L} 3, \\ & \mathrm{~N}, \mathrm{PE} \end{aligned}$ | without | -- | $\begin{aligned} & 9 \times 9 \text { up to } \\ & 1000 \mathrm{~A} \end{aligned}$ | $\begin{aligned} & 19 \times 19 \text { up } \\ & \text { to } 1000 \text { A } \end{aligned}$ | 1.5 m | Cast-resin system for a high degree of protection | Unprotected outdoor areas |
|  | 1000 V AC | $\begin{aligned} & \text { L1, L2, L3, } \\ & \text { PEN } \end{aligned}$ |  |  | $\begin{aligned} & 12 \times 12 \text { at } 1350 \\ & \mathrm{~A} \end{aligned}$ | $\begin{aligned} & 22 \times 22 \text { up to } \\ & 1350 \mathrm{~A} \end{aligned}$ |  |  | Aggressive ambient conditions |
|  |  |  |  |  | $\begin{aligned} & 12 \times 15 \text { up to } \\ & 1,700 \mathrm{~A} \end{aligned}$ | $\begin{aligned} & 22 \times 25 \text { up to } \\ & 1700 \text { A } \end{aligned}$ |  |  |  |
|  |  |  |  |  | $\begin{aligned} & 12 \times 19 \text { at } 2000 \\ & \text { A } \end{aligned}$ | $\begin{aligned} & 22 \times 29 \text { at } \\ & 2000 \mathrm{~A} \end{aligned}$ |  |  |  |
|  |  |  |  |  | $\underset{\mathrm{A}}{22 \times 22 \text { at } 2500}$ | $\begin{aligned} & 22 \times 32 \text { at } \\ & 2500 \mathrm{~A} \end{aligned}$ |  |  |  |
|  |  |  |  |  | $\underset{\mathrm{A}}{22 \times 24} \text { at } 3150$ | $\begin{aligned} & 22 \times 34 \text { at } \\ & 3150 \mathrm{~A} \end{aligned}$ |  |  |  |
|  |  |  |  |  | $\begin{aligned} & 22 \times 38 \text { at } 4000 \\ & \text { A } \end{aligned}$ | $\begin{aligned} & 22 \times 48 \text { at } \\ & 4000 \mathrm{~A} \end{aligned}$ |  |  |  |
|  |  |  |  |  | $\underset{\mathrm{A}}{22 \times 44 \text { at } 5000}$ | $\begin{aligned} & 22 \times 54 \text { at } \\ & 5000 \mathrm{~A} \end{aligned}$ |  |  |  |
|  |  |  |  |  | $\begin{aligned} & 22 \times 48 \text { at } 6300 \\ & \text { A } \end{aligned}$ | $\begin{aligned} & 22 \times 58 \text { at } \\ & 6300 \mathrm{~A} \end{aligned}$ |  |  |  |

The following figure shows a graphic overview of the available busbar trunking systems.


The following overview states the designations of the various components of a busbar trunking system taking the BD2 system as an example.


### 1.5.2 Configuration Rules for Busbar Trunking Systems

### 1.5.2.1 Wiring Options for Busbar Trunking Systems

The following table provides an overview of the wiring options which are suitable for the respective busbar trunking system or the busbar mounting positions.

## Meaning of the abbreviations used here

| HE | horizontal / edgewise |
| :--- | :--- |
| HF | horizontal / flat |
| V | vertical |


| Busbar <br> trunking system | Possible installation types / <br> mounting positions |
| :--- | :--- |
| BD 01 | HE , HF , V |
| BD 2 | HE, HF , V |
| LD | HE, HF, V |
| LI | HE, HF , V |
| LX | HE, HF , V |
| LR | HE, HF, V |

Generally speaking, busbar trunking systems are dimensioned in terms of their current carrying capacity which is independent of their installation type / mounting position. But there are exceptions, which will be explained in more detail in the following.
SIMARIS design considers all of the configuration rules listed below for the dimensioning and checking of 8PS busbar trunking systems.

## LD system

SIMARIS design considers the derating of the LD busbar trunking systems dependent on the degree of protection and installation type, when dimensioning and checking the busbar trunking system.

The following type key permits a precise definition of the required system.

|  |  |  |  |  |  |  |  |  |  |  | ic |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  | LD |  |  |  |  |
| Condu | ctor m | materia |  |  |  |  |  |  |  |  |  |  |
| AI |  |  |  |  |  |  |  |  | A |  |  |  |
| Cu |  |  |  |  |  |  |  |  | C |  |  |  |
| Rated | curren | t $I_{\mathrm{e}}[\mathrm{A}$ |  |  |  |  |  |  |  |  |  |  |
| IP34 |  |  |  |  |  | IP54 |  |  |  |  |  |  |
| horizon | tal ed | gewise |  |  |  | horizo | ontal | horiz | ontal |  |  |  |
|  |  | cl. heig | ht rise |  |  | edge | wise |  |  |  |  |  |
| $<1.3$ | 3 m | > 1.3 | 3 m | ver | ical | and ve | ertical |  |  |  |  |  |
| AI | Cu | AI | Cu | Al | Cu | AI | Cu | AI | Cu |  |  |  |
| 1100 |  | 950 |  | 950 |  | 900 |  | 700 |  | 1 |  |  |
| 1250 | 2000 | 1100 | 1650 | 1100 | 1650 | 1000 | 1600 | 750 | 1200 | 2 |  |  |
| 1600 | 2600 | 1250 | 2100 | 1250 | 2100 | 1200 | 2000 | 1000 | 1550 | 3 |  |  |
| 2000 |  | 1700 |  | 1700 |  | 1500 |  | 1200 |  | 4 |  |  |
| 2500 |  | 2100 |  | 2100 |  | 1800 |  | 1700 |  | 5 |  |  |
| 3000 | 3400 | 2300 | 2700 | 2300 | 2700 | 2000 | 3400 | 1800 | 2000 | 6 |  |  |
| 3700 | 4400 | 2800 | 3500 | 2800 | 3500 | 2400 | 4400 | 2200 | 2600 | 7 |  |  |
| 4000 | 5000 | 3400 | 4250 | 3400 | 4250 | 2700 | 5000 | 2350 | 3000 | 8 |  |  |
| Design |  |  |  |  |  |  |  |  |  |  |  |  |
| 4-cond | ductor |  |  |  |  |  |  |  |  |  | 4 |  |
| 5-cond | ductor |  |  |  |  |  |  |  |  |  | 6 |  |
| N/ PE |  |  |  |  |  |  |  |  |  |  |  |  |
| 1/2L |  |  |  |  |  |  |  |  |  |  |  | 1 |
| L |  |  |  |  |  |  |  |  |  |  |  | 2 |

## Degree of protection

| IP34 | $\mathbf{3}$ |
| :--- | :--- |
| IP54 | $\mathbf{5}$ |

## LI system

The basic components of the LI system are determined using a type code. The type is specified and selected on the basis of rated current, conductor material and system type or conductor configuration.
The following type code enables precise definition of the system.


1) PE conductor $=$ enclosure
2) Separate PE conductor routed through additionally insulated busbar (clean earth)
3) An additional busbar doubles the cross section of the neutral conductor (200 \%)
4) PE or PEN conductor = enclosure and additional busbar

Figure 5-2 Type code of the LI system

## LX system

For the following systems, the rated current is independent of the mounting position of the busbars. This means that derating is unnecessary.

|  |  | Ordering type |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Fire protection |  | +L |  | - | S120-X |
| Basic type |  | LX |  |  | $\ldots$ |
| Conductor material |  |  |  |  |  |
| AI |  |  | A |  |  |
| Cu |  |  | C |  |  |
| Rated current $I_{\text {e }}[\mathrm{A}]$ |  |  |  |  |  |
| Al | Cu |  |  |  |  |
| 800 | 1000 |  | 01 |  |  |
| 1000 | 1250 |  | 02 |  |  |
|  | 1400 |  | 03 |  |  |
| 1250 | 1600 |  | 04 |  |  |
| 1600 | 2000 |  | 05 |  |  |
| 2000 | 2500 |  | 06 |  |  |
| 2500 | 3200 |  | 07 |  |  |
| 3200 | 4000 |  | 08 |  |  |
| 4000 | 5000 |  | 09 |  |  |
| 4500 |  |  | 10 |  |  |
| Configuration of the conductors |  |  |  |  |  |
| L1+L2+L3+PE |  |  |  | 30 |  |
| L1+L2+L3+PEN/PEN ${ }^{4}$ |  |  |  | 41 |  |
| $\mathrm{L} 1+\mathrm{L} 2+\mathrm{L} 3+\mathrm{N}+\mathrm{PE}{ }^{1)}$ |  |  |  | 51 |  |
| $\mathrm{L} 1+\mathrm{L} 2+\mathrm{L} 3+\mathrm{N}+\mathrm{N}^{3}+\mathrm{PE}^{1)}$ |  |  |  | 52 |  |
| $\left.\mathrm{L} 1+\mathrm{L} 2+\mathrm{L} 3+\mathrm{N}+\mathrm{PE} / \mathrm{PE}^{4}\right)$ |  |  |  | 53 |  |
| $\mathrm{L} 1+\mathrm{L} 2+\mathrm{L} 3+\mathrm{N}+\mathrm{N}^{3}+\mathrm{PE} / \mathrm{PE}^{4)}$ |  |  |  | 54 |  |
| $\mathrm{L} 1+\mathrm{L} 2+\mathrm{L} 3+\mathrm{N}+(\mathrm{PE})^{2}+\mathrm{PE}^{(1)}$ |  |  |  | 61 |  |
| $\mathrm{L} 1+\mathrm{L} 2+\mathrm{L} 3+\mathrm{N}+\mathrm{N}^{3}+(\mathrm{PE})^{2}+\mathrm{PE}^{\left(/ \mathrm{PE}^{1)}\right.}$ |  |  |  | 62 |  |
| Fire protection |  |  |  |  |  |
| Positioning ( $\mathrm{X}^{*}$ ) |  |  |  |  |  |

1) PE conductor $=$ enclosure
2) Separate PE conductor routed through additionally insulated busbar (clean earth)
3) An additional busbar doubles the cross section of the neutral conductor (200 \%)
4) PE conductor = enclosure and additional busbar
5) Only available as a copper system (LXC)

One exception is the flat horizontal mounting position, for which a derating based on the table below must be considered:

| system | horizontal on edge | flat horizontal |
| :--- | :--- | :--- |
| LXC 01... | 1,000 A | 800 A |
| LXC 03.... | 1,400 A | $1,380 \mathrm{~A}$ |
| LXC 04... | 1,600 A | $1,570 \mathrm{~A}$ |
| LXC 05... | 2,000 A | 1,900 A |
| LXC 07.... | 3,200 A | $3,100 \mathrm{~A}$ |
| LXA 07.... | 2,500 A | $2,400 \mathrm{~A}$ |
| LXA 09.... | 4,000 A | $3,800 \mathrm{~A}$ |

### 1.5.2.2 Possible Combinations of different Busbar Trunking Systems within one Busbar Section

| Busbar trunking system | Possible combinations with other types |
| :--- | :--- |
| BD 01 | None. |
| BD 2A | None. |
| BD 2C | None. |
| LDA | LRA, LRC |
| LDC | LRA, LRC |
| LIA | LRA, LRC |
| LIC | LRA, LRC |
| LXA | LRA, LRC |
| LXC | LRA, LRC |
| LRA | LDA, LDC, LXA, LXC |
| LRC | LDA, LDC, LXA, LXC |

### 1.5.2.3 Guidelines for Busbar Trunking Systems for their Direct Connection to a Switch and Current Feeding from Cables

## BD01 system

As a rule, these busbar trunking systems must always be fed from cable connection boxes. There is no option for a direct switch connection in the installation. Therefore, these systems are unsuitable for power transmission and for this reason, this function cannot be selected in SIMARIS design.

## BD 2 system

BD2 systems are suitable for connection by means of a cable connection box as well as direct connection to a switch in the installation, this applies to their entire current range rating (160 A-1,250 A). There are no constraints. Therefore, these systems are technically suitable for power transmission and can be selected accordingly in SIMARIS design.

## LD systems

LD systems are suitable for connection by means of a cable connection box as well as direct connection to a switch in the installation, this applies to their entire current range rating ( 1,100 A-5,000 A). The following tables indicate which systems can also be fed from a cable connection box.

| Conductor material | Type designation | Cable connection possible |
| :---: | :---: | :---: |
| Aluminum | LDA 1... | - |
|  | LDA 2... | - |
|  | LDA 3... | $\bullet$ |
|  | LDA 4... | - |
|  | LDA 5... | - |
|  | LDA 6... | - |
|  | LDA 7... | - |
|  | LDA 8... | - |
| Copper | LDC 2... | - |
|  | LDC 3... | - |
|  | LDC 6... | - |
|  | LDC 7... | - |
|  | LDC 8... | - |

## LI systems

The distribution board and LI busbar trunking system are connected using an integrated busbar trunking connection unit for rated currents up to $6,300 \mathrm{~A}$ ( $\mathrm{I}=6,300 \mathrm{~A}$ on request). The busbars can be connected:

From above

- From below (on request)

The following tables indicate which systems can also be fed from a cable connection box.

| Conductor material | Type designation | Cable connection possible |
| :---: | :---: | :---: |
| Aluminium | LIA 08... | - |
|  | LIA 10... | - |
|  | LIA 12... | - |
|  | LIA 16... | - |
|  | LIA 20... | - |
|  | LIA 25... | - |
|  | LIA 32... | - |
|  | LIA 40... | - |
|  | LIA 50... | - |
| Copper | LIC 10... | - |
|  | LIC 12... | - |
|  | LIC 16... | - |
|  | LIC 20... | - |
|  | LIC 25... | - |
|  | LIC 32... | - |
|  | LIC 40... | - |
|  | LIC 50... | - |
|  | LIC 63... | - |

## LX system

LX systems are suitable for connection by means of a cable connection box as well as direct connection to a switch in the installation, this applies to their entire current range rating ( $800 \mathrm{~A}-6,300 \mathrm{~A}$ ). The following tables indicate which systems can also be fed from a cable connection box.

| Conductor material | Type designation | Cable connection possible |
| :---: | :---: | :---: |
| Aluminum | LXA 01.. | - |
|  | LXA 02.. | - |
|  | LXA 04.. | - |
|  | LXA 05.. | - |
|  | LXA 06.. | - |
|  | LXA 07.. | - |
|  | LXA 08.. | - |
|  | LXA 09.. | - |
|  | LXA 10.. | - |
| Copper | LXC 01.. | - |
|  | LXC 02.. | - |
|  | LXC 03.. | - |
|  | LXC 04.. | - |
|  | LXC 05.... | - |
|  | LXC 06.. | - |
|  | LXC 07.. | - |
|  | LXC 08.. | - |
|  | LXC 09.. | - |
|  | LXC 10.. | - |

### 1.5.2.4 Possible Switching/Protective Devices in Tap-off Units for Busbar Trunking Systems

| Type of switchgear top | Busbar trunking system |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | BD 01 | BD 2 | LD | LI | LX |
| Circuit-breaker | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | - |
| Switch disconnector with fuse ${ }^{1)}$ | - | $\bullet$ | - | $\bullet$ | $\bullet$ |
| Fuse switch disconnector ${ }^{1)}$ | - | $\bullet$ | $\bullet$ | $\bullet$ | - |
| Fuse with base | - | $\bullet$ | - | - | - |

[^2]
### 1.5.2.5 Device Selection of Switching/Protective Devices for Busbar Trunking Systems Featuring Power Transmission

Generally speaking, no in-line type switch disconnectors or air circuit-breakers (ACB) are selected and dimensioned for tapoff units for busbar trunking systems. A manual selection permits to select all of the switches suitable for the respective current range of the load feeder. In this context it should however be clarified with a Siemens sales office whether this feeder can be designed in form of a special tap-off unit.

| Busbar trunking system | Device selection <br> Automatic dimensioning |
| :---: | :---: |
| BD01 | Miniature circuit-breaker (MCB) up to 63 A <br> Fuse and base NEOZED up to 63 A |
| BD 2 | Moulded-case circuit-breaker (MCCB) up to 530 A <br> Miniature circuit-breaker (MCB) up to 125 A <br> Switch disconnector with fuses up to 320 A <br> Fuse switch disconnector up to 125 A <br> Fuse and base NEOZED up to 63 A <br> Fuse and base NH up to 530 A |
| LD | Moulded-case circuit-breaker (MCCB) up to $1,250 \mathrm{~A}$ <br> Fuse switch disconnector up to 630 A |
| LI | Moulded-case circuit-breaker (MCCB) up to 1,250 A <br> Switch disconnector with fuses up to 630 A <br> Fuse switch disconnector up to 630 A <br> Fuse and base <br> NH up to 630 A |
| LX | Moulded-case circuit-breaker MCCB up to $1,250 \mathrm{~A}$ <br> Switch disconnector with fuses up to 630 A |

### 1.5.2.6 Matrix Table for Busbar Trunking Systems and Matching Tap-off units

Matching tap-off units to be used for the fuses and devices dimensioned in SIMARIS design and intended to be built into the power tap-off units of busbar trunking systems, can be found with the aid of the following table.

| Busbar trunking system | Device selection <br> Dimensioned device |  | Devices to be tendered or ordered |  |
| :---: | :---: | :---: | :---: | :---: |
| BD01 | Miniature circuit-breaker MCB up to 63 A | $\begin{aligned} & \text { 5SJ.., 5SP.., } \\ & \text { 5SQ.., 5SX.., } \\ & \text { 5SY. } \end{aligned}$ | Tap-off unit: | BD01-AK1../.. BD01-AK2..I.. |
| BD2 | Circuit-breaker MCCB up to 530 A | 3VL... | Tap-off unit: max. 125 A max. 250 A $\max .400 \mathrm{~A}$ max. 530 A | BD2-AK03XI.. <br> BD2-AK04/.. <br> BD2-AK05/.. <br> BD2-AK06/.. |
|  | Miniature circuit-breaker MCB up to 63 A | $\begin{aligned} & \text { 5SJ.., 5SP.., } \\ & \text { 5SQ.., 5SX.., } \\ & \text { 5SY... } \end{aligned}$ | Tap-off unit: max. 16 A max. 63 A | BD2-AK1/.. <br> BD2-AK02M/.. <br> BD2-AK2M/.. |
|  | Switch-disconnector with fuses <br> max. 125 A <br> Fuse: | 3KL5.., <br> 3NA3.. size 00 | Tap-off unit: max. 125 A <br> Fuse: | BD2-AK3XI.. <br> 3NA3.. size 00 |
|  | Fuse switch disconnector max. 400 A <br> Fuse: | 3NP4.. <br> 3NA3.. up to size 2 | Tap-off unit: max. 125 A <br> max. 250 A <br> max. 400 A <br> Fuse: | BD2-AK03XI.. <br> BD2-AK04/.. <br> BD2-AK05/.. <br> 3NA3.. up to size 2 |
|  | Fuse base NEOZED up to 63 A <br> Fuse: | $\begin{aligned} & \text { 5SG5.. } \\ & \text { 5SE23.. } \end{aligned}$ | Tap-off unit: max. 63 A <br> Fuse: | $\begin{aligned} & \text { BD2-AK02XI.. } \\ & \text { BD2-AK2XI.. } \\ & \text { 5SE23.. } \end{aligned}$ |
|  | DIAZED up to 63 A: Fuse: | $\begin{aligned} & \text { 5SF.. } \\ & \text { 5SA.., 5SB.. } \end{aligned}$ | Fuse: | 5SA.., 5SB... |
| LD | Circuit-breaker <br> MCCB max. 1,250 A <br> Fuse switch disconnector max. 630 A <br> Fuse: | 3VL <br> 3NP4.. <br> 3NA3.. up to size 3 | Tap-off unit: <br> Tap-off unit: <br> Fuse: | LD-K-AK.I.. LD-K-AK./.. <br> 3NA3.. up to size 3 |


| Busbar trunking system | Device selection <br> Dimensioned device |  | Devices to be tendered or ordered |  |
| :---: | :---: | :---: | :---: | :---: |
| LI | Circuit-breker MCCB up to 1,250 A | 3VL | Tap-off unit: | LI-T-...-..-..3VL... |
|  | Switch-disconnector with fuses max. 630 A <br> Fuse | FSF... <br> 3NA3.. up to size 3 | Tap-off unit: Fuse: | LI-T-...-.....FSF... <br> 3NA3.. up to size 3 |
|  | Fuse switch disconnector up to 630 A <br> Fuse | 3NP11.. <br> 3NA3... up to size 3 | Tap-off unit: <br> Fuse: | LI-T-...-..-.3NP11... <br> 3NA3.. up to size 3 |
|  | Fuse and base NH up to 630 A Fuse | NH <br> 3NA3.. up to size 3 | Tap-off unit: <br> Fuse: | LI-T-...-..-..NH... <br> 3NA3.. up to size 3 |
| LX | Circuit-breaker <br> MCCB max. 1,250 A | 3VL.. | Tap-off unit: | LX-AK./FS.. |
|  | Switch-disconnector with fuses <br> max. 630 A | 3KL5/6.. |  |  |
|  | Fuse: | 3NA3.. up to size 3 | Fuse: | 3NA3.. up to size 3 |

### 1.5.2.7 Particularities concerning the Simultaneity Factor of Busbar Trunking Systems for Power Distribution

Busbar trunking systems for power distribution may be composed of several busbar sections. For each busbar section, a separate simultaneity factor referring to the loads connected may be entered in SIMARIS design. However, busbar sections indexed with a simultaneity factor do not reduce upstream busbar sections.

The behaviour shown in calculations in SIMARIS design differs from that of point-to-point distribution boards, since here, the loads connected to the upstream distribution board will be reduced again.

The graphics below show a comparison of both cases including the respective technical data in the possible graphical representations of the network diagram in SIMARIS design.

The technical data in these diagrams are only legible, if you zoom up the document very much, e.g. to $500 \%$.
Otherwise a legible graphic representation of the network diagram in the document format of this manual (DIN A4) would not have been possible.

Single-line diagram with load flow / load distribution


### 1.6 Parallel Cables in Network Calculation and System Planning

### 1.6.1 Considering Parallel Cables in Network Calculations

If two or more conductors in a circuit are connected with the same phase or pole of a circuit (parallel connection), it must be kept in mind, how the load current is split between the conductors.

An even splitting can be assumed if the conductors

- are made of the same material,
- have the same rated cross section
- approx. the same length,
- have no branches along the entire circuit length
and
- the conductors connected in parallel are contained in multi-core or twisted, single-core cables or lines,
- or the conductors connected in parallel in single-core cables or lines, in closely bundled or flat arrangement, have a rated cross section up to a maximum of $50 \mathrm{~mm}^{2} \mathrm{Cu}$ or $70 \mathrm{~mm}^{2} \mathrm{Al}$,
- or the conductors connected in parallel in single-core cables or lines, in closely bundled or flat arrangement, have a higher rated cross section than $50 \mathrm{~mm}^{2} \mathrm{Cu}$ or $70 \mathrm{~mm}^{2}$ Al while special installation measures were taken. These installation measures consist of a suitable phase sequence and spatial arrangement of the different phases or poles.

In this case, the current will rise at an even ratio in all cables connected in parallel in the event of overload.
Under such preconditions, it is possible to protect these parallel cables separately using protective devices of the same type and size.

In SIMARIS design, these preconditions are regarded as given.
If the network diagram in SIMARIS design contains cable routes with parallel cables in the infeed, which were either determined by automatic dimensioning or manually set, there are the following protection options:

- Joint protection upstream and downstream of the respective route of parallel cables, i.e. prior to its splitting and after joining the cables:

- Separate protection at the beginning and end of the route of parallel cables, i.e. after its splitting and before joining the cables again:

- Separate protection at the beginning and end of the route of parallel cables, i.e. after its splitting and before joining the cables again:


The network diagram in SIMARIS design does not represent this protection of parallel cable routes in such detail, but you can recognize and determine this configuration at the following points:

- The number of cables laid in parallel is only marked in the cable route labelling and not represented graphically. It results either from automatic dimensioning, or can be set manually in the "Properties" dialog of the cable route.
- The fuses or protective devices, too, are always graphically represented as one fuse or protective device, but in case of separate protection they are labelled with the corresponding factor. The selection, how separate protection shall be implemented, can be made by marking the feed-in circuit and choosing the desired separate protection in the respective circuit properties in the window section at the bottom left.



### 1.6.2 Parallel cables in incoming and outgoing feeders in the SIVACON S8 system (Low-voltage Power Distribution Board)

- Direct feed-in / outgoing feeder with parallel cables


Please note that possible connection points for cables are limited in a cubicle for direct feed-in / outgoing feeders.

An overview of cable connections options in a cubicle for direct feed-in / outgoing feeders is given in the following table:

| Cross section | Number of cable cross sections to be connected as a function of the rated current |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $31 / 2$ conductors | 630 A | 800 A | $1,000 \mathrm{~A}$ | $1,250 \mathrm{~A}$ | $1,600 \mathrm{~A}$ |
| max. $240 \mathrm{~mm}^{2}$ | 4 | 4 | 4 | 6 | 6 |
| $31 / 2$ conductors | $2,000 \mathrm{~A}$ | $2,500 \mathrm{~A}$ | $3,200 \mathrm{~A}$ | $4,000 \mathrm{~A}$ |  |
| max. $300 \mathrm{~mm}^{2}$ | 9 | 9 | 11 | 14 |  |



Please note that the possible connection points for cables are limited in an incoming/outgoing feeder cubicle for air circuitbreakers (ACB).

An overview of cable connections options in a cubicle for 3 W . circuit-breakers is given in the following table:

| Cross section | Number of cable cross sections to be connected as a function of the rated current |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $31 / 2$ conductors | 630 A | 800 A | 1,000 A | 1,250 A | 1,600 A |
| max. $240 \mathrm{~mm}{ }^{2}$ | 4 | 4 | 4 | 6 | 6 |
| $31 / 2$ conductors | 2,000 A | 2,500 A | 3,200 A | 4,000 A |  |
| max. $300 \mathrm{~mm}{ }^{2}$ | 9 | 9 | 11 | 14 |  |

### 1.7 Considering the Installation Altitude of Power Distribution Systems

### 1.7.1 Insulation Capacity of NXAIR, NXPLUS C and 8DJH Mediumvoltage Systems Dependent on the Installation Altitude

- The insulation capacity is proved by testing the switchgear using rated values for the short-duration power-frequency withstand voltage and the lightning impulse withstand voltage in accordance with IEC 62271-1 I VDE 0671-1.
- The rated values are referred to the altitude zero above sea level and normal air conditions ( $1013 \mathrm{hPa}, 20^{\circ} \mathrm{C}, 11 \mathrm{~g} / \mathrm{m}^{3}$ water content according to IEC 60071 and VDE 0111).
- The insulating capacity decreases in rising altitudes. For installation altitudes above 1000 m (above sea level) the standards do not provide any guidelines for assessing the insulation capacity, this is left to special arrangements.

All parts exposed to high voltage inside the system container are insulated against the earthed outer encapsulation using SF6 gas.

The gas insulation with an excess gas pressure of 50 kPa allows for installation at any altitude above sea level without that the voltage strength would be impaired. This is also true for cable connections using

- plugged terminals for NXPLUS C systems
- cable T-plugs or angular cable plugs for 8DJH systems.
- In case of NXPLUS C switchgear, a reduction of the insulation capacity must merely be factored in for panels containing HV HRC fuses,
- in case of 8DJH switchgear, for both the panels with HV HRC fuses and air-insulated metering panels, when the installation altitude rises.

A higher insulation level must be selected for installation altitudes above 1000 m . This value is gained from a multiplication of the rated insulation level for 0 m to $1,000 \mathrm{~m}$ applying an altitude correction factor $K_{a}$ (see illustration and example).

For installation altitudes above $1,000 \mathrm{~m}$ we recommend an altitude correction factor $K_{a}$ dependent on the installation altitude above sea level.

Curve $\boldsymbol{m}=\mathbf{1}$ applies to the rated short-duration power-frequency withstand voltage and the rated lightning impulse withstand voltage in accordance with IEC 62271-1.


## Example:

- Installation altitude $3,000 \mathrm{~m}$ above sea level $\left(\boldsymbol{K}_{\boldsymbol{a}}=\mathbf{1}, \mathbf{2 8}\right)$
- Rated switchgear voltage: 17.5 kV
- Rated lightning impulse withstand voltage: 95 kV
- Rated lightning impulse withstand voltage to be selected $=\mathbf{9 5} \mathbf{~ k V} \cdot \mathbf{1}, \mathbf{2 8}=\mathbf{1 2 2} \mathbf{~ k V}$


## Result:

According to the above table, a system should be selected that features a rated voltage of 24 kV and a rated lightning impulse withstand voltage of 125 kV .

### 1.7.2 Correction Factors for Rated Currents of S8 Low-voltage Switchboards Dependent on the Installation Altitudes

The low air density in altitudes higher than $2,000 \mathrm{~m}$ above sea level affects the electrical characteristics of the switchboard.

Therefore, the following correction factors for rated currents must be observed in installation altitudes higher than 2,000 m above sea level.

| Altitude of <br> the installation site | Correction factor |
| :--- | :--- |
| max. 2,000 m | 1 |
| max. 2,500 m | 0.93 |
| max. 3,000 m | 0.88 |
| max. 3,500 m | 0.83 |
| max. $4,000 \mathrm{~m}$ | 0.79 |
| max. $4,500 \mathrm{~m}$ | 0.76 |
| max. $5,000 \mathrm{~m}$ | 0.70 |

In addition, a reduction of the equipment switching capacity must also be considered in installation altitudes higher than $2,000 \mathrm{~m}$ above sea level. Equipment correction factors must be taken from the technical documentation of the respective equipment.

### 1.7.3 Reduction Factors for Busbar Trunking Systems Dependent on the Installation Altitude

### 1.7.3.1 SIVACON 8PS - LD... Busbar Trunking System

The SIVACON 8PS - LD... system can be operated as power transmission system up to an installation altitude of 5,000 metres above sea level without the necessity to reduce its rated impulse withstand voltage and current.

The influence of heat dissipation can normally be neglected.
The lower cooling is balanced by lower ambient temperatures as result of rising altitudes of installation. so that a reduction of the current load is not required.

## Exception:

If the busbar trunking system is installed in a climatized or heated switchgear room, this reason becomes obsolete and the current must be reduced by factor given in the table below.
Reduction factors for rated currents dependent on the altitude of installation:

| Rated impulse <br> withstand <br> voltage <br> $U_{\text {imp }}[\mathrm{kV}]$ <br> 8 | Test voltages and appropriate installation altutides |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Mounting height [m] |  |  |  |  |  |  |  |  |  |  |  |
|  | 0 | 200 | 500 | 1000 | 1500 | 2000 | 2500 | 3000 | 3500 | 4000 | 4500 | 5000 |
|  | Room temperature [ ${ }^{\circ} \mathrm{C}$ ] |  |  |  |  |  |  |  |  |  |  |  |
|  | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
|  | Air pressure [kPa] |  |  |  |  |  |  |  |  |  |  |  |
|  | 101.3 | 98.5 | 95.5 | 89.9 | 84.6 | 79.5 | 74.7 | 70.1 | 65.8 | 61.6 | 57.7 | 54.0 |
|  | Relative air density [ $\mathrm{kg} / \mathrm{m}^{3}$ ] |  |  |  |  |  |  |  |  |  |  |  |
|  | 1.2 | 1.2 | 1.1 | 1.1 | 1.0 | 0.9 | 0.9 | 0.8 | 0.8 | 0.7 | 0.7 | 0.6 |
|  | Correction factor |  |  |  |  |  |  |  |  |  |  |  |
|  | 1.22 | 1.18 | 1.15 | 1.08 | 1.02 | 1.00 | 0.90 | 0.84 | 0.79 | 0.74 | 0.69 | 0.65 |
|  | U1.2/50 surge at AC and DC [kV] |  |  |  |  |  |  |  |  |  |  |  |
|  | 16.5 | 16.0 | 15.5 | 14.6 | 13.8 | 13.6 | 12.2 | 11.4 | 10.7 | 10.0 | 9.4 | 8.8 |
|  | Current reduction factor |  |  |  |  |  |  |  |  |  |  |  |
|  | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.97 | 0.94 | 0.91 | 0.88 | 0.85 | 0.82 |

### 1.7.4 Reduction Factors for Equipment Dependent on the Installation Altitude

Depending on the real conditions on site, the ambient conditions present in altitudes of installation above approx. $2,000 \mathrm{~m}$ above the sea level may have a very strong influence on the electrical and/or electro-mechanical properties of switching and protective devices.

This requires an individualistic (project-specific) approach towards device dimensioning.
Besides the derating factors, further factors must be taken into account, which can be neglected in device dimensioning under "normal" ambient conditions.
Since these factors can be specified in a uniform manner for all devices, but are dependent on the respective devices, they must always be explicitly requested and considered accordingly.

### 1.8 Consideration of Compensation Systems in the Network Design with SIMARIS Planning Tools

### 1.8.1 Dimensioning of Compensation Systems

### 1.8.1.1 Electro-technical Basics: Power in AC Circuits

If an inductive or capacitive resistance is connected to an AC voltage source, in analogy to the resistances a reactive power component will be present in addition to the existing active power component.

The reactive power component is caused by the phase displacement between current and voltage of the inductance or the capacity. In a purely ohmic resistance, current and voltage are in the same phase, therefore a purely ohmic resistance does not have a reactive power component.

The reactive power component is called reactive power $\boldsymbol{Q}$ [var].
The active component is called active power $\boldsymbol{P}$ [W].
The total power in the AC circuit is the apparent power $S$ [VA].
Apparent power $S$ can be calculated from active power $\boldsymbol{P}$ and reactive power $\boldsymbol{Q}$ :
$S=\sqrt{\boldsymbol{Q}^{2}+\boldsymbol{P}^{2}}$

There is a phase displacement of $90^{\circ}$ between active power $\boldsymbol{P}$ and reactive power $\boldsymbol{Q}$.
The correlations between active, reactive and apparent power are illustrated in the power triangle.


How to calculate the different power components in the AC circuit:

|  | Formula <br> symbol | Unit | Formula | Formula |
| :--- | :--- | :--- | :--- | :--- | :--- |
| apparent power | $\boldsymbol{S}$ | VA | $S=U \cdot I$ | $S=\sqrt{Q^{2}+P^{2}}$ |
| active power | $\boldsymbol{P}$ | W | $P=U \cdot I \cdot \cos \varphi=S \cdot \cos \varphi$ | $P=\sqrt{S^{2}+Q^{2}}$ |
| reactive power | $\boldsymbol{Q}$ | var | $Q=U \cdot I \cdot \sin \varphi=S \cdot \sin \varphi$ | $Q=\sqrt{S^{2}-P^{2}}$ |

The power factor $\cos \varphi$ is called active power factor, shortened to power factor. It is often specified on the rating plates of electric motors.

The power factor $\boldsymbol{\operatorname { c o s } \boldsymbol { \varphi }}$ represents the ratio between active power $\boldsymbol{P}$ and apparent power $\boldsymbol{S}$ :
$\boldsymbol{\operatorname { c o s }} \boldsymbol{\varphi}=\frac{\boldsymbol{P}}{\boldsymbol{S}}$
It indicates which proportion of apparent power is translated into the desired active power.

$\boldsymbol{\operatorname { s i n }} \varphi=\frac{\boldsymbol{Q}}{\boldsymbol{S}}$

### 1.8.1.2 Central Compensation

In case of central compensation, the entire compensation system is installed at a central place, e.g. in the low-voltage distribution board. The entire demand of reactive power is covered. The capacitor power is split into several stages and adjusted to the load conditions by an automatic reactive power controller using contactors.

The compensation system is composed of modules comprising a fuse switch disconnector as short-circuit protection, a contactor with discharge resistors and the capacitor bank. Usually, the modules are connected to an internal, vertical cubicle busbar system.
Today, such a central compensation is implemented in most application cases. Central compensation can be easily monitored. Modern reactive power controllers permit continuous control of the switching state, $\boldsymbol{\operatorname { c o s } \boldsymbol { s } \varphi}$ as well as the active and reactive currents. This often allows to economize on capacitor power, i.e. use a lower total power, since the simultaneity factor of the entire plant can be taken into account for the layout. The installed capacitor power is better utilized.

However, the plant-internal wiring system itself is not relieved from reactive power, which does not constitute a disadvantage provided that the cable cross sections are sufficient. This means that this application can be used whenever the plant-internal wiring system is not under-dimensioned.

The central compensation panels can be directly integrated into the main busbar system of the LVMD or connected to the switchgear using an upstream group switch. Another option is to integrate the cubicles into the LVMD using a cable or busbar system. To this end, however, a switching/protective device must be provided as outgoing feeder from the distribution board.

## Advantages:

- Clear and straightforward concept
- Good utilisation of the installed capacitor power
- Installation is often easier
- Less capacitor power required, since the simultaneity factor can be considered
- More cost-effective for networks with harmonic content, since reactive-power controlled systems can be more easily choked.


## Disadvantages:

- The plant-internal power system is not relieved
- Additional layout for automatic control



### 1.8.1.3 Reactive Power Controller

These modern microprocessor-controlled reactive power controllers solve complex tasks which go far beyond pure reactive power compensation to a pre-selected target $\cos \boldsymbol{\varphi}$. The innovative control behaviour responds to all requirements of modern industrial power systems and turns these controllers into a globally applicable solution.

Their high accuracy and sensitivity, even in power systems with a heavy harmonic load, must be emphasized as much as the fact that they can handle continuous or occasional energy recovery in power systems with their own in-plant power generation.
All components of the compensation system are treated gently by these controllers and protected against overload. This results in a much longer system life expectancy.

### 1.8.1.4 Consideration of Reactive Power Compensation in SIMARIS design

SIMARIS design maps an adjustable reactive power compensation system with several reactive power levels in respect of the capacitor power.
This compensation system can be directly integrated into the main busbar system of the switchgear installation using "Type of connection", or connected to an upstream protective device with cables or a busbar system.

In addition, you can select direct connection to the main busbar system or a connection by means of an group switch using "Type of switchgear".


The reactive power per stage in kvar, the number of stages and the modules switched on can also be set in this window.


At first, you roughly estimate the total capacitor power required to compensate the respective network.

## Variant 1 :

It can be estimated using the following factors:

- 25-30\% of the transformer output at $\boldsymbol{\operatorname { c o s }} \boldsymbol{\varphi}=0.9$
- 40-50 \% of the transformer output at $\boldsymbol{\operatorname { c o s }} \boldsymbol{\varphi}=1.0$


## Variant 2:

- The network diagram of SIMARIS design displays the reactive power $\boldsymbol{Q}=-\ldots$ kvar in the "Energy report" view.

Use the following formula to calculate the required capacitor power:
$Q_{C}[k v a r]=P[k W] \cdot\left(\tan \varphi_{1}-\tan \varphi_{2}\right)$
$\tan \varphi=\sqrt{\frac{1-\cos ^{2} \varphi}{\cos ^{2} \varphi}}$

Table: : $(\boldsymbol{\operatorname { t a n }} \boldsymbol{\varphi} \mathbf{1}-\boldsymbol{\operatorname { t a n }} \boldsymbol{2} \mathbf{2})$ values to determine the capacitor power $\boldsymbol{Q}_{\boldsymbol{C}}$ when compensated from $\boldsymbol{\operatorname { c o s } \varphi} \boldsymbol{1}$ to $\boldsymbol{\operatorname { c o s } \varphi} \mathbf{2}$ : Planning Guide for Power Distribution Plants, H.Kiank, W.Fruth, 2011, p. 299

| $\cos \varphi 1 \cos \varphi 2$ |  | Target power factor |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 0.70 | 0.75 | 0.80 | 0.85 | 0.90 | 0.92 | 0.94 | 0.95 | 0.96 | 0.98 | 1.00 |
|  | 0.40 | 1.27 | 1.41 | 1.54 | 1.67 | 1.81 | 1.87 | 1.93 | 1.96 | 2.00 | 2.09 | 2.29 |
|  | 0.45 | 0.96 | 1.10 | 1.23 | 1.36 | 1.50 | 1.56 | 1.62 | 1.66 | 1.69 | 1.78 | 1.98 |
|  | 0.50 | 0.71 | 0.85 | 0.98 | 1.11 | 1.25 | 1.31 | 1.37 | 1.40 | 1.44 | 1.53 | 1.73 |
|  | 0.55 | 0.50 | 0.64 | 0.77 | 0.90 | 1.03 | 1.09 | 1.16 | 1.19 | 1.23 | 1.32 | 1.52 |
|  | 0.60 | 0.31 | 0.45 | 0.58 | 0.71 | 0.85 | 0.91 | 0.97 | 1.00 | 1.04 | 1.13 | 1.33 |
|  | 0.65 | 0.15 | 0.29 | 0.42 | 0.55 | 0.68 | 0.74 | 0.81 | 0.84 | 0.88 | 0.97 | 1.17 |
|  | 0.70 | --- | 0.14 | 0.27 | 0.40 | 0.54 | 0.59 | 0.66 | 0.69 | 0.73 | 0.82 | 1.02 |
|  | 0.75 | --- | --- | 0.13 | 0.26 | 0.40 | 0.46 | 0.52 | 0.55 | 0.59 | 0.68 | 0.88 |
|  | 0.80 | --- | --- | --- | 0.13 | 0.27 | 0.32 | 0.39 | 0.42 | 0.46 | 0.55 | 0.75 |
|  | 0.85 | --- | --- | --- | --- | 0.14 | 0.19 | 0.26 | 0.29 | 0.33 | 0.42 | 0.62 |
|  | 0.90 | --- | --- | --- | --- | --- | 0.06 | 0.12 | 0.16 | 0.19 | 0.28 | 0.48 |

## Example:

 $\boldsymbol{\operatorname { c o s }} \varphi 2=0.98$ shall be attained by compensation.
Using the above formula or table, you get $\boldsymbol{\operatorname { t a n } \varphi} \mathbf{1}-\boldsymbol{\operatorname { t a n }} \boldsymbol{\varphi} \mathbf{2}=\mathbf{0 . 5 5}$.
This results in a required compensation power:
$Q_{C}[k v a r]=P[k W] \cdot\left(\tan \varphi_{1}-\tan \varphi_{2}\right)=780 k W \cdot 0,55=429 \mathrm{kvar}$

In the above window, reactive power per stage, the number of modules and the stages switched on can be set accordingly.

### 1.8.2 Compensation Systems in Power Systems with Harmonic Content

This content (texts and graphics) of the chapters Impact of linear and non-linear loads on the power system, Compensation systems in power systems with harmonic content, Choking of compensation systems and Ripple control frequency and its importance for the compensation system were taken from a brochure issued by Lechwerke AG (Schaezlerstraße 3, 86250 Augsburg).

Title:
Our service for you:

- Reactive current
- Compensation systems
- Proper choking.

Responsible for the content of the brochure according to the imprint: Steffen Götz

### 1.8.2.1 Impact of Linear and Non-linear Loads on the Power System

Linear loads such as incandescent lamps draw a sinusoidal current. Thus, the current curve basically has the same shape as the sinusoidal voltage. This sinusoidal current causes a voltage drop in the power system's impedances (AC resistors), which also shows a sine shape. For this reason, the voltage curve is only affected in its amplitude but not in its basic course. Therefore, the sine curve of the voltage is not distorted.


Current curve (red) for a linear load

In the power supply networks of today, there is a trend towards power consuming appliances which draw a current from the supply network which is distinctly different from the sine shape. This non-sinusoidal current causes a voltage drop in the impedances of the power lines which is also not sinusoidal. This means that the voltage is not only altered in its amplitude but also in its shape. The originally sinusoidal line voltage is distorted. The distorted voltage shape can be decomposed into the fundamental (line frequency) and the individual harmonics. The harmonics frequencies are integer multiples of the fundamental, which are identified by the ordinal number " n " (see below).


Current curve (orange) for a non-linear load

## Harmonics and their frequencies with the ordinal number " n "

Fundamental frequency 50 Hz
2nd harmonic 100 Hz
3rd harmonic 150 Hz
4th harmonic 200 Hz
5th harmonic 250 Hz
6th harmonic 300 Hz
7th harmonic 350 Hz


This means non-linear loads cause harmonic current content, which causes harmonic voltage content.
Linear loads are:

- ohmic resistances (resistance heating, incandescent lamps,...)
- 3-phase motors
- capacitors

Non-linear loads (causing harmonic content) are:

- converters
- rectifiers and inverters
- single-phase, fixed-cycle power supplies for electronic consumers such as TV sets, computers, electronic control gear (ECG) and compact energy-saving lamps


### 1.8.2.2 Compensation systems in power systems with harmonic content



Capacitors form a resonant circuit with the inductances in the power system (transformers, motors, cables and reactor coils). The resonance frequency can easily be established from a rule of thumb:
$f_{r}=50 \mathrm{~Hz} \times \sqrt{\frac{S_{k}}{Q_{c}}}$
$\boldsymbol{f}_{\boldsymbol{r}}=$ resonance frequency $[\mathrm{Hz}]$
$\boldsymbol{S}_{\boldsymbol{k}}=$ short-circuit power at the connection point of a compensation system [kVA]
$\boldsymbol{Q}_{\boldsymbol{c}}=$ reactive power of the compensation system [kvar]
or using the formula
$f_{r}=50 \mathrm{~Hz} \times \sqrt{\frac{S_{T r}}{Q_{c} \times u_{k}}}$
$\boldsymbol{f}_{\boldsymbol{r}}=$ resonance frequency [Hz]
$\boldsymbol{S}_{\boldsymbol{T r}}=$ nominal transformer output [kVA]
$\boldsymbol{u}_{\boldsymbol{k}}=$ relative short-circuit voltage of the transformer (e.g 0.06 with $6 \%$ )
$\boldsymbol{Q}_{\boldsymbol{c}}=$ reactive power of the compensation system [kvar]

## Example:

Operation of a compensation system, 400 kVA in 8 levels (modules), non-choked, supplied by a transformer with a nominal output of $\boldsymbol{S}_{\boldsymbol{T} r}=630 \mathrm{kVA}$ and a relative short-circuit voltage $\boldsymbol{u}_{\boldsymbol{k}}$ of $6 \%$.
Dependent on the capacitors connected into supply, there will be resonance frequencies between 256 Hz and 725 Hz (see the table below).

Resonance frequencies in case of differing compensation capacity and transformer with $\boldsymbol{S}_{\boldsymbol{T r}}=630 \mathrm{kVA}$ and $\boldsymbol{u}_{\boldsymbol{k}}=6 \%$

| Capacitor <br> power $\boldsymbol{Q}_{\boldsymbol{c}}[\mathrm{kvar}]$ | Resonance <br> frequency $f_{r}[\mathrm{~Hz}]$ |
| :--- | :--- |
| 50 | 725 |
| 100 | 512 |
| 150 | 418 |
| 200 | 362 |
| 250 | 324 |
| 300 | 296 |
| 350 | 274 |
| 400 | 256 |

It becomes obvious that the values of the resonance frequency $\boldsymbol{f}_{r}$ are close to a harmonic frequency in several cases.

If the resonance frequency is the same as the harmonic frequency, this will result in a resonance-effected rise of the harmonic voltages.
And the current is increased between inductance and capacitance, which then rises to a multiple of the value fed into the power system from the harmonic "generator".


Amplification factors of harmonic voltages in case of non-choked compensation systems connected to a $1,000 \mathrm{kVA}$ transformer
Though the increase of the harmonic voltage rises the r.m.s. value of the voltage to a minor extent, the peak value of the voltage may rise substantially depending on harmonic content and phase angle (up to $\approx 15 \%$ ). The increase of the harmonic current results in a significant increase of the r.m.s. value of the capacitor current. The combination of both effects may under certain circumstances cause an overloading of the capacitor and an additional load on the power consuming appliances and the transformer.

For this reason, compensation systems should always be equipped with capacitors showing a sufficient nominal voltage rating and a high current carrying capacity.

In order to prevent these resonance effects and the resulting capacitor overloading, reactor-connected compensation systems must be used.

### 1.8.2.3 Choking of Compensation Systems

A compensation system should be choked if the ratio of harmonics (harmonic-generating equipment) to the total output of the plant exceeds a value of $15 \%$. This ratio must also be paid attention to in weak-load times, since displacements (no line attenuation caused by loads) may now occur which contribute to resonance formation. Another guidance value for the use of reactor-connected systems may be a harmonic voltage of $2 \%$ in case of a 5 th harmonic ( 250 Hz ), or $3 \%$ for the total harmonic content referred to the nominal voltage.

Owing to the increased use of non-linear consumer equipment, these values are attained in many power systems, at least sometimes. A power system analysis is required for detailed value findings.

Please note, however, that the values of the existing harmonic levels in the power system will tend to grow in the future, firstly for example, owing to the integration of more harmonic-generating equipment.
Secondly, resonances may occur even with less harmonic content. Choking is therefore recommended on principle.

In reactor-connected (choked) compensation systems, every capacitor module is series-connected to a reactor.
This creates a series resonant circuit. Reactor dimensioning determines the series resonance frequency of the series resonant circuit. This resonance frequency must be below the lowest occurring harmonic (mostly the 5th harmonic).


A series resonant circuit becomes inductive above the resonance frequency. Therefore, resonance cannot be excited any more in such a case. Below its resonance frequency, it is capacitive and serves for reactive power compensation.


Attenuation of harmonic voltages of a compensation system with $7 \%$ choking in case of different capacitor modules (levels).

The resonance frequency $\boldsymbol{f}_{\boldsymbol{r}}$ of a compensation system is calculated from the choking factor $\boldsymbol{p}$ of the system:
$f_{r}=50 \mathrm{~Hz} \times \sqrt{\frac{\mathbf{1}}{p}}$
$\boldsymbol{f}_{\boldsymbol{r}}=$ resonance frequency $[\mathrm{Hz}]$
p = choking factor

## Example:

If a compensation system is choked at $7 \%(=0.07)$, its resonance frequency is at 189 Hz . Consequently, the resonance frequency is below the 5th harmonic ( 250 Hz ), as described above.

The choking factor $\boldsymbol{p}$ reflects the ratio of reactances, i.e. the ratio of the inductive reactance of the reactor to the capacitive reactance of the capacitor at line frequency.
$p=\frac{X_{L}}{X_{C}}$
p = choking factor
$\boldsymbol{X}_{\boldsymbol{L}}=$ inductive reactance of the reactor (at 50 Hz ) $[\Omega]$
$\boldsymbol{X}_{\boldsymbol{C}}=$ capacitive reactance of the capacitor (at 50 Hz )
If a compensation system is choked at $7 \%$, the reactance (inductive reactance) of the reactor is $7 \%$ of the capacitive reactance of the capacitor at line frequency ( 50 Hz ). Reactances are calculated from the capacitance, or respectively from the reactor inductance, on the basis of the following formulae:
$X_{C}=\frac{1}{2 \cdot \pi \cdot f \cdot C}$
$\boldsymbol{X}_{\boldsymbol{C}}=$ capacitive reactance of the capacitor (at 50 Hz ) $[\boldsymbol{\Omega}]$
$\boldsymbol{f}=$ frequency $[\mathrm{Hz}]$
C = capacitance [F]
$X_{L}=2 \cdot \boldsymbol{\pi} \cdot \boldsymbol{f} \cdot \boldsymbol{L}$
$X_{L}=$ inductive reactance of reactor $[\Omega]$
$\boldsymbol{f}$ = frequency $[\mathrm{Hz}]$
$\boldsymbol{L}=$ reactor inductance [ H ]

### 1.8.2.4 Ripple Control Frequency and its Importance for the Compensation System

Most distribution system operators (DSO) emit ripple control signals (audio frequencies) to control night-current storage heaters, tariff switchovers and street lighting, etc. The signal levels for audio-frequency control systems overlaying the power system are between 110 Hz and $2,000 \mathrm{~Hz}$, dependent on the DSO. These signals are received by audio frequency receivers which perform the required switching. In this context it is important that the signals are not influenced and transmitted - i.e. received - at a sufficiently high voltage level.
To ensure this, the use of audio frequency suppression is required, which prevents the absorption of ripple control signals from the power system by means of a compensation system.
The audio frequency suppression device to be used depends on the frequency of the ripple control signal of the respective DSO.

### 1.8.2.5 Consideration of Choking Rate and Audio Frequency Suppression in SIMARIS project

In SIMARIS project, SIVACON S8 low-voltage switchboard can be configured to include reactive power compensation, if necessary. To set values for a specific project as required, the choking rate and appropriate audio frequency suppression can be selected in the properties of the reactive power compensation assembly.

These properties are displayed in the program step "System Planning" $\rightarrow$ "Front View", as soon as the respective reactive power compensation assembly is marked in the graphic area.


In the Project Output of "tender specification texts", the parameters are applied as selected and integrated into the description.

### 1.9 Frequency converters

In the SIMARIS planning tools there are frequency converters available which can be integrated in a switchgear (built-in units) and as well frequency converters which are delivered in a separate cabinet (Cabinet unit).

You can find more information regarding frequency converters in the following chapters:

### 2.14 Frequency converters in SIMARIS design

3.13.7 Frequency converters in SIMARIS project

| Converter type | Mounting <br> technique | Power ranges [kW] <br> $3 A C 380-480 \mathrm{~V}$ | Power ranges [kW] <br> 3AC500-600V | Power ranges [kW] <br> 3AC660-690V |
| :--- | :--- | :---: | :---: | :---: |
| G120 (PM240-2) | Built-in unit | $0.55-132$ | $11-132$ | $11-132$ |
| G120P cabinet | Cabinet unit | $110-400$ | - | - |
| G150 | Cabinet unit | $110-560$ | $110-560$ | $75-800$ |


| Performance <br> Use | Basic |  | Medium |  |
| :---: | :---: | :---: | :---: | :---: |
| Pumping/ ventilating/ compressing | Centrifugal pumps Radial/ axial fans Compressors | $\begin{aligned} & \text { G120 } \\ & \text { G120P cabinet } \\ & \text { G150 } \end{aligned}$ | Centrifugal pumps Radial/ axial fans Compressors | G120 <br> G120P cabinet G150 |
| $\square$ Moving | Belt conveyors Roller conveyors Chain conveyors | $\begin{aligned} & \text { G120 } \\ & \text { G150 } \end{aligned}$ | Belt conveyors Roller conveyors Chain conveyors Vertical/horizontal material handling Elevators Escalators Gantry cranes Ship's drives Cable railways | $\begin{aligned} & \text { G120 } \\ & \text { G150 } \end{aligned}$ |
| Processing | Mils <br> Mixers <br> Kneaders <br> Crushers <br> Agiators <br> Centrifuges | $\begin{aligned} & \text { G120 } \\ & \text { G150 } \end{aligned}$ | Mils <br> Mixers <br> Kneaders <br> Crushers <br> Agiators <br> Centrifuges <br> Extruder <br> Rotary furnaces | $\begin{aligned} & \text { G120 } \\ & \text { G150 } \end{aligned}$ |

### 1.10 The Technical Series of Totally Integrated Power

The Technical Series of Totally Integrated Power documents further technical support for some very special cases of network design. Each edition of this documentation series considers a special case of application and illustrates, how this case is mapped in network design and calculation using SIMARIS design.

The following topics are currently available:

- Modelling IT isolating transformers in SIMARIS design for hospital applications
- Use of switch-fuse combinations at the medium-voltage level for the protection of distribution transformers
- Modelling uninterruptible Power Supply (UPS) in SIMARIS design for the Use in data centres
- Modelling the use of selective main circuit-breakers without control circuit (SHU) with SIMARIS design 8.0
- Load impact in the feed-in circuit on life cycle energy costs
- Special application: short-circuit protection for the "isolated-parallel" UPS system
- Arcing faults in medium and low voltage switchgear
- SIESTORAGE energy storage systems - a technology for the transformation of energy system
- Electrical infrastructure for e-car charging stations
- Liberalised energy market - smart grid, micro grid
- The Energy Management Standard DIN EN ISO 50001
- Cable sizing with SIMARIS design for cable burying
- Electric Power Distribution in Data Centres Using L-PDUs
- Influence of Modern Technology on Harmonics in the Distribution Grid
- Direct and Alternating Power Supply in a Data Center

If you are interested in the content of the technical series, you can download the PDF-documents at www.siemens.com/tip-cs/technical-series

### 1.11 Planning Manuals of Totally Integrated Power

You can also find bedrock support for your project planning in the planning manuals of Totally Integrated Power, which are available for download in the corresponding section of our download page at
www.siemens.com/tip-cs/downloadcenter
The following Planning Manuals are currently available:

- Planning of Electric Power Distribution - Technical Principles
- Application Models for Power Distribution - High-rise Buildings
- Application Models for Power Distribution - Data Centres
- Application Models for Power Distribution - Hospitals


## 2 Special Technical Information about Network Calculation in SIMARIS design

2.1 Symbols for representing the network diagram in SIMARIS design

| Symbols in the network diagram | Meaning |
| :--- | :--- |
| System infeeds |  |


|  | Cable within a coupling |
| :--- | :--- | :--- |
| Cable connections | Cable, within a coupling, 3-core, with N and PE |


| Symbols in the network diagram | Meaning |
| :---: | :---: |
| Busbar connections |  |
|  | Busbar, 4-core, with PEN |
|  | Busbar, 4-core, with PE |
|  | Busbar, 5-core, with N and PE |
|  | Busbar within a coupling |
|  | Busbar, within a coupling, 3-core, with N and PE |
|  | Busbar, within a coupling, 4-core, with PEN |
|  | Busbar, within a coupling, 4-core, with PE |
|  | Busbar, within a coupling, 5-core, with N and PE |
|  | Busbar, wall to wall |
|  | Busbar, 3-core, with N and PE, wall to wall |
|  | Busbar, 4-core, with PEN, wall to wall |
|  | Busbar, 4-core, with PEN, wall to wall |
|  | Busbar, 5 -core, with N and PE, wall to wall |


| Symbols in the network diagram | Meaning |
| :---: | :---: |
| Other symbols within distributions |  |
| $\stackrel{1}{\underline{Z}}$ | Equivalent impedance |
| Switching and protective devices, fuses |  |
|  | Circuit-breaker with isolating function, medium voltage |
|  | Circuit-breaker, medium voltage |
| $\rangle^{t}$ | Switch disconnector, low voltage |
| $\frac{1}{\square}$ | Switch disconnector with fuse, low voltage |
| ${ }_{7}$ | Non-automatic air circuit breaker, low voltage |
| $\frac{\downarrow}{x}$ | Circuit-breaker, low voltage |
| $\underbrace{\star}_{0}$ | Main miniature circuit breaker (SHU), low voltage |
|  | Miniature circuit-breaker, low voltage |
| $\xi$ | Residual current operated circuit-breaker, low voltage |
| $\square$ | RCD for circuit-breaker, low voltage, with mechanical release of disconnection |
| $-\square$ | RCD for circuit-breaker, low voltage, with electronic trip of disconnection |


| Symbols in the network diagram | Meaning |
| :--- | :--- | :--- |
| Switching and protective devices, fuses | (Overload) relay |


| Symbols in the network diagram | Meaning |
| :--- | :--- | :--- |


| Other symbols | Incoming feeder |
| :--- | :--- |
|  | Outgoing feeder |
| $\square$ | Earth |
| $\square$ |  |
| $\square$ |  |

### 2.2 Power Sources

| Power sources | Transformer | Generator | UPS |
| :---: | :---: | :---: | :---: |
| Selection | Quantity and power rating corresponding to the power required for normal power supply | Quantity and power rating corresponding to the total power of consumers to be supplied if the transformers fail | Quantity, power, and energy quantity dependent on the duration of independent power supply and total power consumption of the consumers to be supplied by the UPS |
| Requirements | - High reliability of supply <br> - Overload capability <br> - Low power loss <br> - Low noise <br> - No restrictions with regard to installation <br> - Observance of environment, climate and fire protection categories | Energy coverage for standby power supply in case of turbosupercharger motors, load sharing in steps <br> - Availability of sufficient continuous short-circuit power to ensure tripping conditions | - Stable output voltage <br> - Availability of sufficient continuous short-circuit power to ensure tripping conditions <br> - Low-maintenance buffer batteries for power supply, observance of noise limits <br> - Little harmonic load for the upstream network |
| Rated current | $I_{N}=\frac{S_{N}}{\sqrt{3} \cdot U_{N}}$ | $I_{N}=\frac{S_{N}}{\sqrt{3} \cdot U_{N}}$ | $I_{N}=\frac{S_{N}}{\sqrt{3} \cdot U_{N}}$ |



| Legend |  |
| :--- | :--- |
| $\boldsymbol{I}_{\boldsymbol{N}}$ | Rated current |
| $\boldsymbol{U}_{\boldsymbol{N}}$ | Nominal voltage |
| $\boldsymbol{U}_{\boldsymbol{K}}$ | Rated short-circuit voltage |
| $\boldsymbol{S}_{\boldsymbol{N}}$ | Nominal apparent power |


| Power sources | Transformer | Generator | UPS |
| :---: | :---: | :---: | :---: |
| Advantages | High transmission capacity possible Stable short-circuit currents Electrical isolation | Distributed availability Independent power generation | - Low power loss <br> - Voltage stability <br> - Electrical isolation |
| Disadvantages | High inrush currents Dependency on the public grid | - System instability in case of power system fluctuations <br> - Small <br> short-circuit currents | Very small short-circuit currents |

## 2.3 Directional and Non-directional Couplings

### 2.3.1 Design Principles of Directional and Non-directional Couplings

Non-directional couplings are couplings with a non-defined direction of energy flow for mapping a normal power supply grid.

Directional couplings, in which the direction of energy flow is defined, are required to build a supply network integrating normal and safety power supply. The classic application case of directional couplings is given in a hospital, where the power supply network is built up on the basis of VDE 0100 Part 710 (hospital NPS/SPS network). Networks with directional couplings do not permit parallel network operation and energy recovery for the power supply system of the power supplier.

### 2.3.2 Load Transfer Switches in Accordance with DIN VDE 0100 Part 710 (IEC 60364-7-71) (medical locations)

A changeover connection is a circuit combination for coupling networks for normal power supply with the safety supply.
The standard requires reliable isolation between systems for automatic load transfer switches. The maximum total disconnect time (from the moment of fault occurrence until arc quenching in the overcurrent protection device) must be lower than the minimum transfer delay time of the automatic load transfer switch.

The lines between the automatic load transfer switch and the downstream overcurrent protection device must be laid short-circuit- and earth-fault-proof.

Load transfer switches in the sense of this standard shall automatically ensure direct power supply from th3e two independent systems at each distribution point (main distribution board and distribution boards for medical locations of group 2).

Continuous operability must be ensured.
This means if there is a voltage failure in one or more phases in the main distribution board, a safety power supply system must automatically take over. Take-over of supply shall be delayed, so that short-time interruptions can be bridged.
In practice, these load transfer switches are used dependent on the network configuration.
DIN VDE 0100 Part 710 mandatorily requires network calculations and proofs of selectivity, i.e. appropriate documentation must be available.

Planning with SIMARIS design can take account of this DIN requirement, by mapping and appropriately dimensioning the changeover connection between the normal and the safety power supply system.


Example for the representation of a changeover connection in SIMARIS design professional

### 2.3.3 Creating Emergency Power Supply Systems

## Example

Normal operation
In an active safety power supply system, the coupling switch in the
LVMD is closed as the only connection of both networks during normal
operation.
In the building's main distribution board and in the sub-distribution
boards, the coupling switches are open and the feed-in circuit-breakers
are switched on.
The NPS and SPS networks are both active and operated separately.

### 2.4 Dimensioning of Power Transmission and Power Distribution Lines

|  | Overload protection | Short-circuit protection | Protection by disconnection in the TN system | Voltage drop |
| :---: | :---: | :---: | :---: | :---: |
| Requireme nt | Line protection against overload shall prevent damage from the connection itself (conductor insulation, connection points, terminals, etc.) and its immediate environment, which could be caused by excessive heating. | Line protection against overload shall prevent damage from the connection itself (conductor insulation, connection points, terminals, etc.) and its immediate environment, which could be caused by excessive heating. <br> The current breaking capacity of the shortcircuit protection device must be rated in such a way that it is capable of breaking the maximum possible short-circuit at the mounting location. | The loop impedance $Z_{s}$ of the supply line must be dimensioned in such a way that the resulting short-circuit current will cause an automatic tripping of the protective device within the defined period of time. <br> In this context, it must be assumed that the fault will occur between a phase conductor and a protective conductor or an exposed conductive part somewhere in the installation, where the impedance can be neglected. | The maximum permissible voltage drop for power consumers must be taken into account for cable rating. |
| Features | $I_{B} \leq I_{N} \leq I_{Z}$ <br> The cable load capacity $\boldsymbol{I}_{\boldsymbol{Z}}$ is rated for the maximum possible operating current $\boldsymbol{I}_{\boldsymbol{B}}$ of the circuit and the nominal current $I_{N}$ of the protection device. $I_{2} \leq 1,45 \cdot I_{Z}$ <br> The conventional tripping current $\boldsymbol{I}_{2}$, which is defined by the upstream protective device, is lower, at most equal to the 1.45 -fold of the maximum permissible cable load capacity $I_{Z}$. | $I^{2} \cdot t \leq k^{2} \cdot S^{2}$ <br> The maximum period of time $t$ until a shortcircuit current $\boldsymbol{I}$ is broken, measured at any point in the circuit, may only last so long that the energy produced by the short-circuit does not reach the energy limit which would cause damage or destruction of the connection line. | $Z_{S} \cdot I_{a} \leq U_{o}$ <br> The loop impedance $Z_{S}$ of the supply line must be dimensioned in such a way that the resulting short-circuit current will cause an automatic tripping of the protective device within the defined period of time. In this context, it must be assumed that a fault will occur between a phase conductor and a protective conductor or an exposed conductive part somewhere in the installation, where the impedance can be neglected. | Voltage drop in the three-phase system $\Delta U=\frac{I \cdot L \cdot \sqrt{3} \cdot\left(R_{W}^{\prime} \cdot \cos \varphi+X_{L}^{\prime} \cdot \sin \varphi\right)}{U_{N}} \cdot 100 \%$ <br> Voltage drop in the AC system $\Delta U=\frac{2 \cdot I \cdot L \cdot\left(R_{W}^{\prime} \cdot \cos \varphi+X_{L}^{\prime} \cdot \sin \varphi\right)}{U_{N}} \cdot 100 \%$ |


|  | Overload protection | Short-circuit protection | Protection by disconnection in the TN system | Voltage drop |
| :---: | :---: | :---: | :---: | :---: |
| Particularities | Overload protection devices may be used at the beginning or end of the cable line to be protected. Following VDE 0298 Part 4, the permissible load capacity $I_{Z}$ of cables or wires must be determined in accordance with the real wiring conditions. If gl-fuses are used as the sole protection device, short-circuit protection is also given, when the overload protection criterion is met. | A short-circuit protection device must always be mounted at the beginning of the cable line. <br> - When short-circuit protection is tested, the PE/PEN conductor must always be included. <br> In the tripping range < 100 ms the $\boldsymbol{I}^{\mathbf{2}}$ values given by the equipment manufacturer $\boldsymbol{t}$ must be considered. | The permissible disconnection time, reached by $I_{a}$ for consumers $\leq 32 \mathrm{~A}$ is 0.4 s for alternating current and 5 s for direct current. <br> - The permissible tripping time, reached by $\boldsymbol{I}_{\boldsymbol{a}}$ for consumers > 32 A and distribution circuits is 5 s . <br> - Additional protection ensured by $R C D(\leq 30 \mathrm{~mA})$ is required for gen-eral-purpose sockets and sockets to be used by ordinary persons (sockets $\leq 20$ A). <br> - Additional protection ensured by RCD ( $\leq 30 \mathrm{~mA}$ ) is required for final circuits for outdoor portable equipment with a current rating $\leq 32 \mathrm{~A}$. | $\begin{aligned} & R_{W}=R_{55^{\circ} \mathrm{C}}=1.14 \cdot R_{20^{\circ} \mathrm{C}} \\ & R_{80^{\circ} \mathrm{C}}=1.24 \cdot R_{20^{\circ} \mathrm{C}} \end{aligned}$ <br> The resistance load per unit length of a cable is temperaturedependent <br> - An increased resistance in case of fire must be considered for the dimensioning of cables and wires with functional endurance in order to ensure fault-free starting of safety-relevant consumers. <br> It is always the voltage drop at the transformer which must be also taken into account, e.g. 400 V , the secondary transformer voltage is a no-load voltage! <br> Voltage tolerances for equipment and installations are defined in IEC 60038. |

For an explanation of the formula symbols, please refer to section 2.18

### 2.5 Note on the Dimensioning of 8PS Busbar Trunking Systems

Busbar trunking systems are tested for thermal short-circuit strength and overload protection.
Dynamic short-circuit strength is present if both attributes are fulfilled (see IEC 60364-4-43 Clause 434).
Dynamic short-circuit strength is not tested.
Owing to the constructive features of busbar trunking systems and their special methods of installation based on manufacturer instructions, the occurrence of the maximum to be expected theoretical peak short-circuit current acc. to VDE 0102 or respectively IEC 60909 can usually be ruled out.
In special cases, a verification of this assumption must be performed by the user.

### 2.6 Selectivity and Backup Protection

### 2.6.1 Backup Protection

The prerequisite is that $\boldsymbol{Q 1}$ is a current-limiting device. If the fault current in case of a short-circuit is higher than the rated breaking capacity of the downstream protection device, it is protected by the upstream protection device. $\boldsymbol{Q} 2$ can be selected with an $\boldsymbol{I}_{\boldsymbol{c u}}$ or $\boldsymbol{I}_{\boldsymbol{c n}}$ value lower than $\boldsymbol{I}_{\boldsymbol{k} \boldsymbol{m a x}}$ of $\boldsymbol{Q 2}$. But this allows for partial selectivity only (see the following illustration).


### 2.6.2 Backup Protection as Dimensioning Target in SIMARIS design



When the dimensioning target "Backup protection" is set, SIMARIS design selects such switching and protective devices that they will protect themselves or will be protected by an upstream-connected switching device in case of a possible short-circuit.
The algorithm applied may result in deviations from the published tables on backup protection.

### 2.6.3 Selectivity

When several series-connected protective devices cooperate in graded disconnection operations, the
protective device ( $\mathbf{Q 2}$ ) closest to the fault location must disconnect. The other upstream devices (e.g. Q1) remain in operation. The effects of a fault are spaciously and temporally limited to a minimum, since unaffected branch circuits (e.g. Q3) continue to be supplied.


- Current selectivity is attained by the different magnitudes of the tripping currents of the protective devices.

- Time selectivity is attained by the temporal tripping delay of the upstream protection devices.

- Representation of the selective layout of the network



### 2.6.4 Selectivity as Dimensioning Target in SIMARIS design

| Properties |  |  |
| :---: | :---: | :---: |
| Properties of circuit |  |  |
| Circuit | LVSD 1.18.2 |  |
| System configuration | TN-S | i |
| Simultaneity factor | 1 |  |
| Separate protection |  |  |
| Target of dimensioning | Selectivity | i |
| Selectivity interval | 1,55 |  |
| As default | Apply |  |

When "Selectivity" is set as dimensioning target in SIMARIS design, it is applied circuit by cir-
cuit. In order to attain current selectivity, the switching devices are staggered
between the circuits according to their current values during automatic dimensioning with
selectivity intervals. Here, electronic trip units are used for circuit-breakers which are
equipped with time-delayed short-circuit releases characterized as "S", they allow to attain
time selectivity in addition to current selectivity.

## 2.7 <br> Dimensioning the Network acc. to Icu or Icn

### 2.7.1 Areas of Application for Miniature Circuit-breakers

Miniature circuit-breakers (MCB) are used at different mounting locations in electrical installations.

## Electrical installations accessible for ordinary persons

Circuit-breakers are subjected to higher test requirements with regard to their rated short-circuit breaking current $/ \mathrm{cn}$ in electrical installations which are accessible for ordinary persons. This is regulated in IEC 60898.

The rated short-circuit breaking current $\boldsymbol{I}_{\boldsymbol{c} \boldsymbol{n}}$ is the short-circuit current (r.m.s. value), which can disconnect the miniature circuit-breaker at a rated operating voltage (+l- $10 \%$ ) and a specified $\boldsymbol{\operatorname { c o s }} \boldsymbol{\varphi}$.
This is tested using the test sequence $0-\mathrm{t}-\mathrm{CO}-\mathrm{t}-\mathrm{CO}$. The rated operational short-circuit breaking capacity $\boldsymbol{I}_{\boldsymbol{c s}}$ is tested.

## Attention:

Changes in the overload release characteristics are not permitted any more after this test!

## electrical installations inaccessible for ordinary persons

In electrical installations which are inaccessible for ordinary persons, e.g. industrial plants, miniature circuit-breakers, such as the MCCB, are tested with respect to their rated ultimate short-circuit breaking capacity $\boldsymbol{I}_{\boldsymbol{c u}}$. This test is performed in accordance with IEC 60947-2.

The shortened test sequence 0-t-CO is used here.

## Attention:

Changes in the overload release characteristics ARE permitted after this test!

Legend for the test sequence

| $\mathbf{0}$ | Break operation |
| :--- | :--- |
| $\mathbf{C O}$ | Make, break operation |
| $\mathbf{t}$ | Pause |

### 2.7.2 Selection of Miniature Circuit-Breakers acc. to Icn or Icu in SIMARIS design

In SIMARIS design, miniature circuit-breakers can be dimensioned according to both requirements, or they can be selected manually using the Catalogue function.

## Attention:

The function named "Selection according to $I_{c n}$ or $I_{c u}$ " is only available for final circuits.

Device selection or check takes place during the dimensioning process dependent on the setting made, either corresponding to $\boldsymbol{I}_{\boldsymbol{c} \boldsymbol{n}}$ or $\boldsymbol{I}_{\boldsymbol{c u}}$.

All devices have been tested based on both test standards (IEC 60898 and IEC 60947-2) and the miniature circuit-breaker check process is based on both test standards.

However, the function "Selection acc. to $\boldsymbol{I}_{\boldsymbol{c n}}$ or $\boldsymbol{I}_{\boldsymbol{c u}}$ " is not available for device categories such as RCBOs (5SU1, 5SU9).

| Device group | Type | $\boldsymbol{I}_{\boldsymbol{c} \boldsymbol{n}}[\mathrm{kA}]$ | $\boldsymbol{I}_{\boldsymbol{c u}}[\mathrm{kA}]$ |
| :--- | :--- | :--- | :--- |
| 5SY | MCB | $6 / 10 / 15$ | $10 \ldots . .50$ |
| 5SY60 | MCB | 6 | 6 |
| 5SX | MCB | $6 / 10$ | $10 / 15$ |
| 5SX1 | MCB | 3 | 4.5 |
| 5SQ | MCB | 3 | 4.5 |
| 5SJ....-.CC | MCB | $6 / 10 / 15$ | $10 / 15 / 25$ |
| 5SP4 | MCB | 10 | 10 |
| 5SY8 | MCB | -- | $20 \ldots .70$ |
| 5SL6 | MCB | 6 | 6 |
| 5SL4 | MCB | 10 | 10 |
| 5SL3 | MCB | 4.5 | 4.5 |

## 2.8 Overcurrent protection

The overcurrent protection devices detect a fault on account of its amperage and clear the fault after a certain delay time has elapsed. Overcurrent protection devices either work with current-independent current thresholds (DMT - definite time overcurrent protection) or with a current-dependent tripping characteristic (IDMTL -inverse definite minimum time). Modern digital devices work phase-selective and can be configured especially for earth-fault detection (DMT / IDMT).

### 2.8.1 DMT (definite-time overcurrent protection)

You can use DMT as main protection always if it is possible to differ only on basis of the amperage between operation current and fault current. Selectivity can be achieved via delay time grading.

Advantage:

- Accurately defined tripping time at DMT dependent on current threshold(s)


Trip characteristic of a two-stage (50) protection (definite time-overcurrent)

### 2.8.2 IDMT (inverse-time overcurrent protection)

In case of inverse definite minimum time ( inverse-time overcurrent protection) the tripping time depends on the amperage of the fault current. Due to the configuration possibilities of the IDMT tripping characteristics a similar tripping performance as by using fuses can be reached. "Inverse" indicates a curve shape of tripping characteristics proportional to 1/(current*). Concrete formulas can be found at IEC 60255-151.

## Advantage:

■ variable, (invers-)stromabhängige Auslösezeit bei AMZ


IEC characteristics
IEC invers:

$$
t=\frac{0,14}{\left(I / I_{p}\right)^{0,02}-1} \cdot T_{p}
$$

IEC very invers:

$$
t=\frac{13,5}{\left(I / I_{p}\right)^{1}-1} \cdot T_{p}
$$

IEC extreme invers:

$$
t=\frac{80}{\left(I / I_{p}\right)^{2}-1} \cdot T_{p}
$$

IEC long time invers:

$$
t=\frac{120}{\left(I / I_{p}\right)^{1}-1} \cdot T_{p}
$$

### 2.9 Transformers with ventilation

The performance of GEAFOL transformers can be enhanced by using cross-flow fans. If they are installed in an open space and sufficiently ventilated, a performance increase of up to $50 \%$ can be achieved. In practice, and in particular if transformer housings are used, the maximum output will be limited to $140 \%$ of the power rating of the distribution transformer. Besides the performance increase, cross-flow fans can be employed to ensure the nominal transformer output continuously even under hot ambient conditions. Since losses rise as a square of the load current, cross-flow fans are only costefficient above a transformer output of 400 kVA .

Without additional ventilation, the transformer power is marked as AN (air natural), with additional ventilation, it is marked as AF (air forced). For recommended circuit breakers see Info. The selection and settings are made automatically.

The following must be kept in mind when switch-fuse combinations are selected:
If transformers with cross-flow fans shall be protected by means of a switch-fuse combination, the device combination dimensioned in SIMARIS design for non-ventilated operation must be checked as to its load carrying capacity with an increased nominal current

Switch-fuse combinations for the protection of transformers that use cross-flow fans for output enhancements can normally only be used for outputs below that of forced-ventilated transformer output, meaning that they can only be fully utilized if the AF transformer output ( $140 \%$ of the nominal transformer rating) is only applied for a very short time.

Owing to the fact that these HV HRC fuses are used in moulded plastic containers in gas-insulated switchgear applications, their power loss must not exceed a defined value so that their contact material is not damaged and the fuse does not blow (false tripping) as a result of excess heat. In this respect, the values of the table below for the corresponding switchboards should be noted.

Matching fuse/transformer classifications can be found in the Technical Series No. 2 at www.siemens.com/tipcs/downloadcenter.

Max. load of HV HRC fuse - type SIBA - for 8DJH and NXPLUS C

| Max. load of HV HRC fuse - type SIBA - for 8DJH and NXPLUS C |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fuse |  |  | HHD |  |  |  | SSK |  |  |  |
|  |  |  | 8DJH | NXPLUS C |  |  | 8DJH | NXPLUS C |  |  |
| Ur [kV] | Length | Ir [A] | lbmax [A] |  | Pv [WI] | MLFB | Ibmax [A] |  | Pv [WI] | MRPD |
| 3-7.2 | 292 | 10 | 8,1 | 9.2 | 17 | 518:30098 13-10 | - | - | - | - |
|  |  | 16 | 13,1 | 14 | 17 | 518:30098 13-16 | - | - | - | - |
|  |  | 20 | 16,3 | 18,4 | 13 | 518:30098 13-20 | - | - | - | - |
|  |  | 25 | 20,4 | 23 | 16 | 518:30098 13-25 | - | - | - | - |
|  |  | 31,5 | 25,7 | 29 | 21 | 518:30098 13-31.5 | - | - | - | - |
|  |  | 40 | 32,7 | 36,8 | 27 | 518:30098 13-40 | - | - | - | - |
|  |  | 50 | 40,8 | 46 | 30 | 518:30098 13-50 | - | - | - | - |
|  |  | 63 | 51,5 | 58 | 38 | 518:30099 13-63 | - | - | - | - |
|  |  | 80 | 53 | 63,2 | 47 | 518:30099 13-80 | - | - | - | - |
|  |  | 100 | 54,5 | 79 | 64 | 518:30099 13-100 | - | - | - | - |
| 6-12 | 292 | 10 | 8,1 | 9.2 | 28 | 518:3000413-10 | - | - | - | - |
|  |  | 16 | 13,1 | 14.7 | 28 | 518:3000413-16 | - | - | - | - |
|  |  | 20 | 16,3 | 18,4 | 23 | 518:3000413-20 | - | - | - | - |
|  |  | 25 | 20,4 | 23 | 29 | 518:3000413-25 | - | - | - | - |
|  |  | 31,5 | 25.7 | 25,7 | 38 | 518:3000413-31.5 | - | - | - | - |
|  |  | 40 | 26.2 | 29,3 | 50 | 518:3000413-40 | - | - | - | - |
|  |  | 50 | 32,8 | 36,6 | 56 | 518:3000413-50 | - | - | - | - |
|  |  | 63 | 46,2 | 49,8 | 63 | 518:3001213-63 | 46.1 | 46.1 | 62 | 518:3001243-63 |
|  |  | 80 | 49,9 | 55 | 76 | 518:3001213-80 | 49.9 | 55.0 | 76 | 518:3001243-80 |
|  |  | 100 | 53,7 | 62 | 104 | 518:3001213-100 | 54.5 | 62.5 | 98 | 518:3001243-100 |
|  |  | 125 | - | - | - | - | 65.0 | 74.0 | 135 | 518:3002043-125 |
|  | 442 | 10 | 8,2 | 8,2 | 28 | 518:3010 113-10 | - | - | - | - |
|  |  | 16 | 13,2 | 13,2 | 19 | 518:3010113-16 | - | - | - | - |
|  |  | 20 | 16,5 | 16,5 | 22 | 518:3010113-20 | - | - | - | - |
|  |  | 25 | 20,6 | 20,6 | 28 | 518:3010113-25 | - | - | - | - |
|  |  | 31,5 | 26 | 26 | 37 | 518:3010113-31.5 | - | - | - | - |
|  |  | 40 | 33 | 33 | 48 | 518:3010113-40 | - | - | - | - |
|  |  | 50 | 36 | 40,4 | 54 | 518:3010113-50 | - | - | - | - |
|  |  | 63 | 42,5 | 51 | 58 | 518:3010213-63 | - | - | - | - |
|  |  | 80 | 54 | 54 | 70 | 518:3010213-80 | 54.0 | 55.2 | 72 | 518:3010243-80 |
|  |  | 100 | 59,2 | 68 | 96 | 518:3010213-100 | 60.6 | 69.0 | 93 | 518:3010243-100 |
|  |  | 125 | - | - | - | - | 72.2 | 81.0 | 128 | 518:3010343-125 |
| 10-17.5 | 292 | 10 | 8,1 | 8,1 | 38 | 518:30255 13-10 | - | - | - | - |
|  |  | 16 | 13,1 | 13,1 | 37 | 518:30255 13-16 | - | - | - | - |
|  |  | 20 | 16,3 | 16,3 | 40 | 518:3022113-20 | - | - | - | - |
|  |  | 25 | 16,9 | 19,7 | 56 | 518:3022113-25 | - | - | - | - |
|  |  | 31,5 | 21,3 | 21,6 | 65 | 518:3022113-31.5 | - | - | - | - |
|  |  | 40 | 26,2 | 26,2 | 84 | 518:3022113-40 | - | - | - | - |
|  |  | 50 | 28,9 | 31.2 | 101 | 518:3022113-50 | - | - | - | - |
|  |  | 63 | 35,7 | 37,3 | 106 | 518:30222 13-63 | - | - | - | - |
|  |  | 80 | 41,3 | 47 | 137 | 518:30222 13-80 | - | - | - | - |
|  | 442 | 6 | 5,2 | 5,2 | 21 | 518:3023113-6.3 | - | - | - | - |
|  |  | 10 | 8,3 | 8,3 | 38 | 518:3023113-10 | - | - | - | - |
|  |  | 16 | 13.2 | 12,7 | 37 | 518:3023113-16 | - | - | - | - |
|  |  | 20 | 16,5 | 16,5 | 42 | 518:3023113-20 | - | - | - | - |
|  |  | 25 | 20,4 | 20,4 | 56 | 518:3023113-25 | - | - | - | - |
|  |  | 31,5 | 22,7 | 22.4 | 60 | 518:3023113-31.5 | - | - | - | - |
|  |  | 40 | 24,5 | 27,2 | 84 | 518:3023113-40 | - | - | - | - |
|  |  | 50 | 30 | 34 | 101 | 518:3023213-50 | - | - | - | - |
|  |  | 63 | 37,8 | 43 | 106 | 518:3023213-63 | - | - | - | - |
|  |  | 80 | 41,8 | 46 | 137 | 518:3023213-80 | - | - | - | - |
|  |  | 100 | 48,1 | 55 | 182 | 518:30233 13-100 | - | - | - | - |
| 10-2 | 442 | 6 | 5,2 | 5.2 | 29 | 518:30006 13-6.3 | - | - | - | - |
|  |  | 10 | 8,3 | 8,3 | 52 | 518:3000613-10 | - | - | - | - |
|  |  | 16 | 12.7 | 12,7 | 59 | 518:30006 13-16 | - | - | - | - |
|  |  | 20 | 16,5 | 16,5 | 46 | 518:30006 13-20 | - | - | - | - |
|  |  | 25 | 20,4 | 20,4 | 56 | 518:3000613-25 | - | - | - | - |
|  |  | 31,5 | 22.7 | 22.4 | 72 | 518:3000613-31.5 | - | - | - | - |
|  |  | 40 | 24,5 | 27,2 | 106 | 518:30006 13-40 | - | - | - | - |
|  |  | 50 | 32 | 34 | 108 | 518:3001413-50 | - | - | - | - |
|  |  | 63 | 33,5 | 36,2 | 132 | 518:3001413-63 | 33.5 | - | - | - |
|  |  | 80 | 37.8 | 45 | 174 | 518:3001413-80 | 41.8 | 46.0 | 143 | 518:3001443-80 |
|  |  | 100 | - | 53 | 234 | 518:30022 13-100 | 48.1 | 58.0 | 188 | 518:3002243-100 |

### 2.10 Explanations about the Energy Efficiency Analyses in SIMARIS design

The issue of energy efficiency is gaining more and more importance owing to continuously rising energy costs and limited fossil resources. Therefore, it should also be taken into account when planning the power distribution system.
SIMARIS design gives an overview of the power loss in individual circuits as well as the distance to the main distribution:

- System infeed / Coupling
- Distribution board
- Final circuits

Within these circuits, the losses of the individual power system components are displayed in detail:

- Transformers
- Busbar trunking systems
- Cables
- Switching devices and protective devices
- Compensation systems

In order to gain an overview of possible optimisation potential quickly, relative as well as absolute losses of the circuits are listed. The table can either be sorted according to the magnitude of the absolute or relative circuit losses by clicking the respective column header, so that the circuits with the greatest losses can be identified and analysed further.

The following illustration shows the dialog for data display of power losses by circuits:


Only one operating mode can be viewed and analysed at a time, i.e. in a project in which different operating modes were defined, these operating modes can be viewed one after the other by selecting them accordingly in the drop-down menu.

The losses for the entire configured network (for the selected operating mode) are the sum of the losses of the individual circuits:

$$
\begin{array}{ll}
\boldsymbol{P}_{\text {Vabs_project }}= & \sum_{\text {circuit }} \boldsymbol{P}_{\text {Vabs_circuit }} \\
\boldsymbol{P}_{\text {Vrel_project }}= & \frac{\boldsymbol{P}_{\text {Vabs_project }}}{\boldsymbol{S}_{\text {nproject }}} \\
\boldsymbol{P}_{\text {Vabs_project }} & =\text { Absolute power loss of the configured network [W] } \\
\boldsymbol{P}_{\text {Vabs_circuit }} & =\text { Absolute power loss of a circuit [W] } \\
\boldsymbol{P}_{\text {Vrel_poject }} & =\text { Relative power loss of the configured network [\%] } \\
\boldsymbol{S}_{\boldsymbol{n} \_ \text {project }} & =\text { Apparent power of the configured network [VA] }
\end{array}
$$

The circuit losses add up of the losses of its individual components dependent on the circuit composition:

$$
\begin{aligned}
& \boldsymbol{P}_{\text {Vabs }}=\boldsymbol{P}_{\text {Vabs_Tr }}+\boldsymbol{P}_{\text {Vabs_TS }}+\boldsymbol{P}_{\text {Vabs_C }}+\boldsymbol{P}_{\text {Vabs_BS }}+\boldsymbol{P}_{\text {Vabs_Cap }} \\
& \boldsymbol{T r} \ldots \ldots=\text { Transformer } \\
& \boldsymbol{T S} \ldots \ldots .=\text { Top switch } \\
& \boldsymbol{C} \ldots \ldots . .=\text { Connection } \\
& \boldsymbol{B S} \ldots . . .=\text { Bottom switch } \\
& \boldsymbol{C a p} \ldots=\text { Capacitor }
\end{aligned}
$$

$$
\begin{array}{ll}
\boldsymbol{P}_{\text {Vrel_circuit }} & =\frac{\boldsymbol{P}_{\text {Vabs_circuit }}}{\boldsymbol{S}_{\boldsymbol{n} \text { _circuit }}} \\
\boldsymbol{P}_{\text {Vrel_circuit }} & =\text { Relative power loss of circuit [\%] } \\
\boldsymbol{S}_{\boldsymbol{n}_{\text {_circuit }}} & =\text { Apparent power of the circuit [VA] }
\end{array}
$$

Power losses are calculated based on the load currents of the respective circuits. Simultaneity and capacitor factors which were entered are also considered here.

In the power loss dialogue (see above) the respective circuits can be selected in the list and individual components can be replaced using the "Change device" button (on the right). The power loss which was possibly changed will be displayed right above the button and the summated circuit value is also adjusted in the list dependent on the new selection. In addition, the circuit selected in the list is highlighted on the network diagram by a blue frame.
A holistic approach to power loss optimisation should always be preferred and the effects on network dimensioning must be considered accordingly. Therefore these changes are always verified in SIMARIS design for correctness with regard to network dimensioning rules.
If a violation of the configuration rules kept in the system occurred as a result of changes in the loss optimisation made, the user would be notified by an error message (displayed below the network diagram). This error can either be remedied by performing another redimensioning cycle or by a manual adjustment on the network diagram.

## Example:

When a transformer with a higher nominal power is selected, the transformer's power loss can be reduced. A more powerful transformer will have a higher current rating, but also higher short-circuit currents. The other components in the circuit, such as busbars, cables, switching and protective devices must be matched accordingly. SIMARIS design performs this adjustment automatically by starting another redimensioning cycle.

Based on the IEC 60364-8-1 respectively VDE 0100 part 801 „Low-voltage electrical installations - Energy efficiency" you will find the accumulated length of the separate current circuits at the program menu „Energy efficiency" $\rightarrow$ „Power loss". The sum of length shows the distance between the current circuit selected and the main distribution. The interpretation of the standard in SIMARIS design follows the Barycentre method which is described in the standard. SIMARIS design calculates the accumulated length on the basis of the already entered cable lengths and busbar lengths.

The chart below shows an example of how the separate main- and sub-distribution board loads can be displayed graphically with their accumulated lengths and how an overview of the load distribution can be given. The vertical axis shows the distance to the main distribution and the apparent power is displayed below the separate load symbols. The separate loads could be illustrated here as well.

## Load distribution

## Distance from load to main distribution



### 2.11 Installation Types of Cables and Wires (Excerpt)

### 2.11.1 Installation Types in Accordance with IEC 60364-5-523/99 (excerpt)

| Reference installation type |  | Graphical representation (Example) | Installation conditions |
| :---: | :---: | :---: | :---: |
| Installation in heat-insulted walls | A |  | Single-core cables in an electrical installation conduit in a thermally insulated wall |
|  | A |  | Multi-core cable, or multi-core sheathed installation wire in a conduit in a thermally insulated wall |
| Installation in electrical installation conduits | B |  | Single-core cables in an electrical installation conduit on a wall |
|  | B2 |  | Multi-core cable, or multi-core sheathed installation wire in a conduit on a wall |
| Direct installation |  | 为 | - Single- or multi-core cable, or single- or multi-core sheathed installation wire in a conduit on a wall |


| Reference installation typ |  | Graphical representation (Example) | Installation conditions |
| :---: | :---: | :---: | :---: |
| Installation in the ground | D1 |  | Multi-core or single-core cable in conduit or in cable ducting in the ground |
|  | D2 |  | Sheated single-core or multi-core cables direct in the ground <br> - without added mechanical protection <br> - with added mechanical protection |
| Installation suspended in air | E |  | Multi-core cable, or multi-core sheathed installation wire suspended in air at a distance of at least 0.3 x diameter $\boldsymbol{d}$ from the wall |
|  | F |  | - Single-core cable, or single-core sheathed installation wire, can be touched, suspended in air at a distance of at least $1 \times$ diameter $\boldsymbol{d}$ from the wall |
|  | G |  | - Single-core cables, or single-core sheathed installation wires, at a distance d, suspended in air at a distance of at least $1 \times$ diameter $\boldsymbol{d}$ from the wall |

### 2.11.2 Consideration of installation types in SIMARIS design

When dimensioning cables and wires, SIMARIS design takes into account the installation type by means of appropriate adjustment factors in accordance with the international standard IEC 60364-5-52, or respectively the German standard DIN VDE 0298-4: 2013-06. The selection of the installation type, as depicted below, automatically factors in the appropriate rated values $\boldsymbol{I}_{\boldsymbol{r}}$ for the cable's current carrying capacity in reference installation type A1, A2, B1, B2, C, D1, D2, E, F or G. A distinction is made according to conductor material and conductor insulation material.


According to the above mentioned standards relating to the permissible current carrying capacity, conversion factors for deviating conditions must additionally be factored in.
$\boldsymbol{I}_{\boldsymbol{z}}=\boldsymbol{I}_{\boldsymbol{r}} \cdot \boldsymbol{\Pi} \boldsymbol{f}$
$\boldsymbol{I}_{\boldsymbol{r}} \quad$ permissible current carrying capacity of the cable
$\boldsymbol{I}_{\boldsymbol{Z}}$ rated value for the cable's current carrying capacity in reference installation type A1, A2, B1, B2, C, D1, D2, E, F or G
$\boldsymbol{\Pi} \boldsymbol{f}$ product of all of the required conversion factors $\boldsymbol{f}$ for deviating conditions

SIMARIS design automatically calculates and considers the conversion factors when the following information is entered:

- Installation in air: air temperature, accumulation of cables
- Installation in the ground: Soil temperature, soil heat resistance, accumulation of cables, spacing of systems

In addition, a reduction factor in accordance with DIN VDE 0100520 Addendum 3 can be considered in SIMARIS design if loads causing harmonic content are used. The factor is defined in an interactive dialogue which is called up with the aid of the i-button next to the input field for reduction factor $\boldsymbol{f}_{\boldsymbol{g e s}}$ tot.


Note: A conversion factor is also considered for busbar systems if a deviating ambient temperature is entered.

### 2.12 Accumulation of Cables and Lines

The IEC 60364-5-52, or respectively DIN VDE 0298 Part 4 standard defines the accumulation of cables and lines. Since accumulation is relevant for cable/cord sizing, it can also be considered in SIMARIS design.


The sum of the recently edited cables/cords plus the number of cables/cords to be laid in parallel must here be entered as the number of parallel lines. When single cores are to be laid, this addition shall include only the number of AC circuits or three-phase circuits which consist of several single-core cables or lines. This means that the two or three live conductors are counted as one circuit each in such a case.

For detailed information about the accumulation of cables and lines please refer to the original texts of the above standards.

### 2.13 Special Conditions in Motor Circuits and their Consideration in SIMARIS design

### 2.13.1 Special Properties of Motor Circuits



Motor circuits show deviating properties compared to other power consumers. Therefore, they are considered separately in SIMARIS design. This means they have their own icon that represents them on the network diagram. This enables these special conditions in motor circuits to be considered accordingly in the dimensioning process.

### 2.13.1.1 Short-circuit Behaviour

The basis for short-circuit calculations in SIMARIS design is EN 60909-0, or respectively VDE 0102.
In the event of a short circuit, motor consumers are driven by the driven machines and their mass moment of inertia owing to the fact that they are mechanically coupled to them. Here, they act as generator and feed their share of the shortcircuit current to the point of fault.

Section 3.8 (asynchronous motors) calls for this share to be always

- considered in industrial networks and the auxiliary installations in power plants,
- and considered in public power supply networks if their contribution to the short-circuit current is $\boldsymbol{I}_{\boldsymbol{K}}{ }_{\boldsymbol{K}}>5 \%$ of the initial short-circuit current which was established without motors.

Those motors may be neglected in the calculation which cannot be switched on simultaneously according to the type of circuitry (interlocking) or process control.

In contrast to other loads, the proportion of short-circuit current fed back is considered in the calculation in SIMARIS design if a motor circuit is the load.

### 2.13.1.2 Switch-on and Start-up Behaviour

Owing to the high inrush current for accelerating the centrifugal mass and due to the fact that the inductive rotor resistance is greatly reduced in the instant of on-switching, the dynamic voltage drop must be considered in this operating case in addition to the static voltage drop.

### 2.13.1.3 Use of Special Switching and Protective Devices in Motor Circuits

The performance described in the Switch-on and start-up behaviour determines a special selection and setting of protective devices (fuseless/fused) and their switching devices.


### 2.13.2 Motor Consumers with Simple Motor Protection



In the selection window, which is displayed as soon as a motor is added to the network diagram, the option of "Simple motor protection" can be chosen in the field "Motor type". This selection protects the drive by a circuit-breaker ("fuseless"). Fused technology is not supported at this point.

Dependent on the motor power, motor protection circuit-breakers (MSP/3RV), moulded-case circuit-breakers (MCCB/3VL) with releases for motor protection, and as of a nominal motor current > 500A air circuit-breakers ( $\mathrm{ACB} / 3 \mathrm{WL}$ ) are sized in the dimensioning process.

This selection allows to calculate drives up to $1,000 \mathrm{~kW}$ in SIMARIS design.

In practice however, you should consider sidestepping to medium-voltage motors when planning drive performances of 300 kW/400 V or higher, since the dynamic voltage drop and the high start-up currents may cause problems in the lowvoltage network.


### 2.13.3 Motor Consumers as Motor Starter Combination



The selection window, which is displayed as soon as a motor is added to the network diagram, also allows to choose the option of "Motor starter combination" in the field "Motor type".
This selection is used to configure drives which are kept as tested motor starter combinations - protective device (circuitbreaker / fuse) plus switching device for switching during normal operation (contactors / soft starters) - in the database.

The motor data contains standardized Siemens low-voltage motors as default values. However, an appropriately tested started combination can also be dimensioned for any motor.

Dimensioning of the motor starter combination is effected on the basis of the nominal motor current. When motor data is changed, its starter combination must be adapted by performing another dimensioning run. A direct selection of the starter combination from the product catalogue is not supported, so that the use of a tested combination is ensured by the program.

The following selection window allows both the selection of a fuseless (circuit-breaker protected) and fused technology.


The selection of different motor starter types is possible, too

- Direct on-line starter (direct on/off switching)

- Reversing duty (direct on/off switching with change of the direction of rotation)

- Star/Delta starter (starting current limiting through change of the winding circuitry)

- Soft starter (starting current limiting through electronic turn-on phase angle control)


Depending on the permissible degree of damage to equipment, coordination type 1 or 2 can be selected for the motor starter types.
Info for type of coordination
Type of coordination according to IEC 60947-4-1 defines motor controller
protection levels following a short circuit fault.

## Type 1 Coordination

requires that under short circuit conditions, the contactor or starter shall cause no danger to persons or installation and may not be suitable for further service without repair and replacement of parts.

## Type 2 Coordination

requires that under short circuit conditions, the contactor or starter shall cause no danger to persons or installation and shall be suitable for further use. The risk of contact welding is recognized, in which case the manufacturer shall indicate the measures to be taken as regards to the maintenance of the equipment.

The following types are available for selection as overload relay:

| Overload relay | none |
| :--- | :--- |
|  | none <br> thermal <br> electronic <br> SIMOCODE |

In Simaris design, motor starter combinations can only be selected with a voltage setting of $400 \mathrm{~V}, 500 \mathrm{~V}$ and $690 \mathrm{~V}(+/-5$ $\%$ ) in the low-voltage network in accordance with the tested combinations available. The voltage setting for the lowvoltage network can be viewed and adjusted in the program step "Project Definition".
You can find a list with the motor starter combinations provided in SIMARIS design at www.siemens.com/simaris/faq in the category FAQ-SIMARIS design $\rightarrow$ Motors/Motor Starters.

### 2.13.4 Description of Motor Parameters

| Power mech [kW] |  | $\checkmark$ | Nominal voltage [V] |  | 400 | $\checkmark$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Nominal current [A] | 28,638 | $\checkmark$ |  |  |  |  |
| $\cos (\varphi)$ | 0,84 | $\checkmark$ | Efficiency $\mathrm{\eta}$ |  | 0,9 | $\checkmark$ |
| Starting current ratio | 5 | $\checkmark$ | R/X ratio |  | 0,42 | - |
| Startup class | Class 10 | $\checkmark$ | i |  |  |  |
| Capacity factor ai |  |  | 1 |  |  |  |
| Factor of energetic recovery system |  |  | 1 |  |  |  |
| As default |  |  |  |  | Cancel |  |

- Power mech.: $[k W] \rightarrow$ mechanical power of the drive

$$
P_{\text {mech. }}=P_{\text {elektr. }} \cdot \eta
$$

- Nominal voltage $\rightarrow$ Nominal voltage of the drive

The nominal voltage of the drive can deviate from the system voltage, for example a 400 V drive can be operated in a 380 V network (deviating current consumption).

- Nominal current $\rightarrow$ Nominal current of the drive

Assuming constant active power, the nominal current will change as a function of power factor $\boldsymbol{\operatorname { c o s } \boldsymbol { \rho } \boldsymbol { \varphi } \text { or the }}$ system voltage.

- Power factor $\boldsymbol{\operatorname { c o s }} \boldsymbol{\varphi}$

The power factor is defined as the ratio of the amount of active power $\boldsymbol{P}$ to apparent power $\boldsymbol{P}$. It is equal to the cosine of the phase displacement angle $\boldsymbol{\varphi}$

## - Efficiency $\boldsymbol{\eta}$

Efficiency $\boldsymbol{\eta}$ is a measure for the efficiency of energy transformation and transmission.
$\boldsymbol{\eta}=\frac{\boldsymbol{P}_{a b}}{\boldsymbol{P}_{z u}}=\frac{\boldsymbol{P}_{\text {mech. } \text { shaft }}}{\boldsymbol{P}_{\text {electric }}}$

- Power calculation for an electric drive
$P_{\text {mech }}=U \cdot I \cdot \sqrt{3} \cdot \cos \varphi \cdot \eta$

$15 \mathrm{~kW}=0.4 \mathrm{kV} \cdot 28.64 \mathrm{~A} \cdot 1.732 \cdot 0.84 \cdot 0,9$

## - Starting current ratio

Asynchronous motors have a high switch-on current, because more power, and thus more current, is needed to accelerate the rotating centrifugal mass up to nominal speed than for maintaining the speed. Moreover, the inductive resistance of the winding is greatly reduced at standstill, because the rotor (squirrel cage type) acts similar to a shorted secondary transformer winding. The inductive resistance will only rise when the rotor reaches its positive-sequence speed, this means when the rotor speed nearly equals the speed of the rotating field.
Thus, the starting current ratio has an effect on the proportion of regenerative feedback of the
short-circuit current and the dynamic voltage drop.
Dependent on the power and the machines to be driven (e.g. heavy duty starting), the starting current of an asynchronous motor can be 10 times the value of its nominal current.
The following values are kept as defaults in SIMARIS design:
$\rightarrow 5$ for direct on-line starting
$\rightarrow 3$ for soft starting
$\rightarrow 1.7$ for star/delta starting
These values can be adjusted by users according to project-specific needs.

## - R/X ratio

The R/X ratio (active resistance $\boldsymbol{R}_{\boldsymbol{M}} / \boldsymbol{X}_{\boldsymbol{M}}$ reactance) of a motor is used in network calculations to determine the impedance $\boldsymbol{Z}_{\boldsymbol{M}}$ of the motor consumer for starting.
$X_{M}=\frac{Z_{M}}{\sqrt{1+\left(R_{M} / X_{M}\right)^{2}}}$
$\boldsymbol{R}_{M}=\boldsymbol{X}_{M} \cdot\left(\boldsymbol{R}_{M} / X_{M}\right)$

It influences the calculation of the dynamic voltage drop. Moreover, it serves for determining the angle in the share of short-circuit current feedback.

Angle calculation in inductive operating mode:
$\varphi_{k M}=-\arctan \left(\frac{1}{R_{M} / X_{M}}\right)$
Owing to the much higher short-circuit power of the whole network compared to the share fed back by the motor, the modified share of feedback cannot be identified by the modified angle.
In SIMARIS design, a default value of 0.42 is kept, which is suitable for most cases of application.

- Start-up class

The start-up class indicates the starting behaviour of an asynchronous motor.
IEC 60947-1 distinguishes Start-up Class 10, Class 20, Class 30 and Class 40. Here, the starting times of the drives in seconds until the nominal speed is reached serves for classification (max. 10, max. 20, max. 30 and up to 40 seconds). In Simaris design, you can select Class 10 or Class 20 as start-up class of a motor consumer with simple motor protection. This dimensions different releases with regard to their inertia in the range of MSP Sirius 3 RV motor protection cir-cuit-breakers. With other circuit-breakers, the overload releases are set to 10 or 20 seconds of inertia during dimensioning.
It is not possible to differentiate start-up classes for motor consumers laid out as motor starter combinations, since these are tested combinations, as described above, whose basis is start-up class 10.

## - Capacity factor ai

The capacity factor, which is defaulted as 1 in SIMARIS design, allows to reduce the nominal motor current of the drive. This function can be used when a drive was oversized in terms of its mechanical power $\boldsymbol{P}_{\boldsymbol{m e c h}}$, but is not run at full load in the specific case of operation.
Please note in this context that the entire nominal current will be used for dimensioning in the motor circuit and referred to and displayed in the "Load flow" network diagram view. But for the voltage drop calculation and for referring the motor current to the upstream circuits in the network, the reduced nominal motor current will be considered.

## - Factor of energetic recovery system

In practice, there needn't always be a power transmission in case of fault from the driven machine to the electric motor owing to the mechanical coupling between motor and machine (e.g. electric motors with braking system).
In such cases, a reduced short-circuit current share will be fed from the drive to the point of fault during a short circuit. In order to be able to map such cases of application in SIMARIS design, you can reduce the percentage of short-circuit current which is fed back by using the factor of the energetic recovery system.
When a motor feeder (equivalent circuit mapping for the sum of several motors) is mapped, too, the number of drives to be considered (probability of simultaneous operation of motors which are continuously switched on and off) can be represented by the factor of the energetic recovery system.

### 2.14 Frequency converters

### 2.14.1 Selection using the application matrix



Frequency converters can either be selected dependent on their intended application or they can be selected by type if the frequency converter type has already been determined.
The performance "Basic" or "Medium" helps to distinguish requirements as to torque/speed/positioning accuracy, axis coordination and functionality. Currently, SIMARIS design provides frequency converters intended for basic and medium performance.


### 2.14.2 Standard load cycle

Every selectable frequency converter can either be chosen with a load cycle featuring "Low Overload" or "High Overload". If "High Overload" was selected, the frequency converter can be overloaded with a higher current for a period not extending 60 s , however, its base load is lower.


Definition of the standard load duty cycle low overload


Definition of the standard load duty cycle high overload

### 2.14.3 Use in the IT network

When converters are installed in or commissioned for the IT network, the earth connection of the radio interference suppressor filter for "Second environments", which is integrated as standard in SINAMICS G150/G120P Cabinet devices, must be interrupted (this filter complies with Category C3 of the EMC product standard EN 61800-3). This is done by simply removing the metal shackle on the filter as described in its operating instructions. If this is neglected, the capacitors of the radio interference suppressor filter will be overloaded in case of a motor-side earth fault and possibly destroyed. After removal of the earth connection of the standard type radio interference suppressor filter, the converters comply with Category C4 of the EMC product standard EN 61800-3. For more details please refer to the chapter "EMC design guideline".
If SINAMICS G120 converters with Power Module 240-2 are installed in IT systems, you should select the variant without an integrated line filter.

|  | Adjustable speed electrical power drive systems PDS |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | C1 | C2 | C3 | C4 |
| Environment | "First" environment (residential, business, and commercial areas) |  | "Second" environment (industrial areas) |  |
| Voltage or current | < 1000 V |  |  | $\begin{aligned} & \geq 1000 \mathrm{~V} \\ & \text { or } \\ & \geq 400 \mathrm{~A} \end{aligned}$ |
| Specialist EMC knowledge required? | No | Installation and commissioning must be carried out by specialist personnel |  |  |

Overview of categories C1 to C4 according to the EMC product standard EN 61800-3

### 2.14.4 Cable dimensioning

The primary cable is dimensioned in accordance with the applicable dimensioning rules for low-voltage cables based on the disconnect requirement, the nominal current of the protective device for the frequency converter, the short-circuit current and the voltage drop. In this context, the effects of frequency converter harmonics are taken into account by means of the total power factor $\lambda$.

The secondary cable is a recommendation based on the frequency converter, no further calculations or verifications are performed.

### 2.14.5 Transformer rating

In order to factor in eddy current losses of the transformer as well, which is caused by the harmonics generated in the frequency converter, the following formula applying to transformers should be considered:

$$
S \geq k \cdot \frac{P_{w}}{\lambda \cdot \eta_{\text {converter }} \cdot \eta_{\text {motor }}}
$$

$P_{w} \quad$ Motor shaft power or type rating of the matched converter
$\eta_{\text {motor }} \quad$ Motor efficiency
$\eta_{\text {converter }} \quad$ Converter efficiency
$\lambda$ Line-side total power factor
$k \quad$ Factor which accounts for the effects of additional transformer loss as a result of line-side harmonic currents
$\mathrm{k}=1.20$ if a standard distribution transformer is used in combination with $\mathrm{G} 120, \mathrm{G} 120 \mathrm{P}$ Cabinet and G 150 converters

### 2.14.6 Altitude of installation

In altitudes > 2,000 m above sea level, you must be aware of the fact that the air pressure, and hence the air density, decreases with increasing altitude, which affects electrical installations. This effect reduces both the cooling effect and the insulating capacity of air.
Permissible power systems in dependency of the altitude of installation

- Altitudes of installation up to max. 2,000 m above sea level
- Any type of system which is permitted for the converter
- Altitudes of installation from $2,000 \mathrm{~m}$ up to $4,000 \mathrm{~m}$ above sea level
- Connection only to a TN system with earthed neutral
- TN systems with earthed polyphase line conductors are not permitted
- The TN system with earthed neutral can be implemented by using an isolating transformer
- The phase-to-phase voltage does not need to be reduced


Permissible output current dependent on the altitude of installation for Power Modules PM240-2


Permissible output current dependent on the altitude of installation for SINAMICS G120P Cabinet, size GX


Permissible output current dependent on the altitude of installation for SINAMICS G120P Cabinet, size HX

| Degree of protection | Installation altitude above | Current derating factor (as a \% of the rated current) at an ambient ambient/intake air temperature of |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | m | $20^{\circ} \mathrm{C}$ | $25^{\circ} \mathrm{C}$ | $30^{\circ} \mathrm{C}$ | $35^{\circ} \mathrm{C}$ | $40^{\circ} \mathrm{C}$ | $45^{\circ} \mathrm{C}$ | $50^{\circ} \mathrm{C}$ |
| $\begin{aligned} & \text { IP20, IP21, } \\ & \text { IP23 and IP43 } \end{aligned}$ | 0 ... 2000 |  |  |  |  |  | 93.3 \% | 86.7 \% |
|  | 2001 ... 2500 |  |  |  |  | 96.3\% |  |  |
|  | 2501 ... 3000 |  | 100 \% |  | 98.7\|\% |  |  |  |
|  | 3001 ... 3500 |  |  |  |  |  |  |  |
|  | 3501 ... 4000 |  |  | 96.3\% |  |  |  |  |
|  | 4001 ... 4500 |  | 97.5\% |  |  |  |  |  |
|  | 4501 ... 5000 | 98.2 \% |  |  |  |  |  |  |

Current derating factors for SINAMICS G150 converters installed in cabinets dependent on ambient/intake air temperature and altitude of installation

### 2.14.7 Compensation systems in power systems with harmonic content

Since frequency converters are subject to harmonics, section "1.8.2 Compensation systems in power systems with harmonic content" must be noted in this context.

In SIMARIS project, compensation systems are selected as "choked" as standard.

### 2.14.8 Motor selection

The motor data contains standardized Siemens low-voltage motors as default values. However, it is also possible to dimension a matching combination of switching/protective devices, frequency converter and motor for any other motor.

Dimensioning of this combination is effected on the basis of the nominal motor current. When motor data is changed, this combination must be adapted by performing another dimensioning run. Or, you can also configure the frequency converter with the aid of a catalog including its optional accessories.

### 2.15 Standards for Calculations in SIMARIS design

| Title | IEC | HD | EN | DIN VDE |
| :---: | :---: | :---: | :---: | :---: |
| Erection of low-voltage installations *) | 60364-1... 6 | 384 |  | $\begin{aligned} & 0100- \\ & 100 \ldots 710 \end{aligned}$ |
| Short-circuit currents in three-phase networks Current calculation | 60909 |  | 60909 | 0102 |
| Short-circuit currents - Calculation of effects Definitions and calculation methods | 60865 |  | 60865 | 0103 |
| Low-voltage switchgear and controlgear -Circuit-breakers | 60947-2 |  | 60947-2 | 0660-101 |
| Low-voltage switchgear and controlgear assemblies | 61439 |  | 61439 | 0660-600 |
| A method of temperature-rise assessment by extrapolation for partially type-tested assemblies (PTTA) of low-voltage switchgear and controlgear | 60890+C | 528 S2 |  | 0660-507 |
| Use of cables and cords for power installations Recommended current-carrying capacity for sheathed and nonsheathed cables for fixed wirings in and around buildings and for flexible cables and cords | 60364-5-52 | 384 |  | 0298-4 |
| Electrical insulation material - <br> Miniature circuit-breakers for house installations and similar purposes | 60898-1 |  | 60898-1 | 0641-11 |
| High-voltage switchgear and controlgear high-voltage switch-fuse combinations | 62271 |  | 62271 | 0671-105 |
| Low-voltage electrical installations Selection and erection of electrical equipment -Isolation, switching and control - Clause 534: Devices for protection against overvoltages | 60364-5-53 | 60364-5-534 |  | 0100-534 |
| Low-voltage electrical installations - Protection for safety - <br> Protection against voltage disturbances and electromagnetic disturbances - <br> Clause 443: Protection against overvoltages of atmospheric origin or due to switching | 60364-4-44 | 60364-4-443 |  | 0100-443 |
| Lightning protection - Part 1... 4 | 62305-1... 4 |  |  | 0185-1... 4 |
| Low-voltage surge protective devices Surge protective devices connected to low-voltage power systems Requirements and tests | 61643-11 |  |  | 0675-6-11 |
| Tests for electric cables under fire conditions - Circuit integrity | 60331-11, 21 |  | 50200 | $\begin{aligned} & 0472-814 \\ & 0482-200 \end{aligned}$ |
| Fire behaviour of building materials and building components - Part 12: Circuit integrity maintenance of electric cable systems, requirements and testing |  |  |  | $\begin{aligned} & 4102-12: \\ & 1998-11 \end{aligned}$ |


| Title | IEC | HD | EN | DIN VDE |
| :--- | :--- | :--- | :--- | :--- |
| Electrical equipment of electric road vehicles - Elec- <br> tric vehicles conductive charging system | 61851 |  | 61851 |  |

*) Those special national requirements acc. to Appendix ZA (mandatory) and the A-deviations acc. to Appendix ZB (informative) of DIN VDE 0100-410 (VDE 0100-410): 2007-06 are not mapped and must be considered separately!

### 2.16 Additional Protection by RCDs in Compliance with DIN VDE 0100-410 (IEC 60364-4-41)

In AC systems, additional protection must be provided by means of residual-current-operated devices (RCDs) for:
a) sockets with a rated max. current not exceeding 20 A , which are intended to be used by unskilled, ordinary users and for general-purpose applications;
b) final circuits in outdoor areas used for portable equipment, with a rated current of no more than 32 A .

Annotation on a):
An exception may be made for:

- sockets which are supervised by electrically skilled or instructed persons, as for example in some commercial or industrial installations, or
- sockets that have been installed for connecting one specific item of equipment.

Special protection arrangements for the exclusive use of electrically skilled persons see Appendix C
(non-conductive environment, local protective equipotential bonding, protective isolation).

### 2.16.1 Altered Maximum Disconnection Times in TN and TT System in Compliance with DIN VDE 0100-410

Maximum disconnection times for final circuits with a rated current no greater than 32 A :

## TN system

| $50 \mathrm{~V}<\mathrm{U} \leq 120 \mathrm{~V}$ | AC | 0.8 s |
| :--- | :--- | :--- |
|  | DC | 5 s (disconnection may be required here for other reasons) |
| $120 \mathrm{~V}<\mathrm{U} \leq 230 \mathrm{~V}$ | AC | 0.4 s |
| $230 \mathrm{~V}<\mathrm{U} \leq 400 \mathrm{~V}$ | DC | 5 s |
|  | AC | 0.2 s |
| $U>400 \mathrm{~V}$ | DC | 0.4 s |
|  | AC | 0.1 s |

In TN systems, a disconnection time of no greater than 5 s is permitted for distribution board circuits and any other circuit.

## TT system

| $50 \mathrm{~V}<\mathrm{U} \leq 120 \mathrm{~V}$ | AC | 0.3 s |
| :--- | :--- | :--- |
|  | DC | 5 s (disconnection may be required here for other reasons) |
| $120 \mathrm{~V}<\mathrm{U} \leq 230 \mathrm{~V}$ | AC | 0.2 s |
|  | DC | 0.4 s |
| $230 \mathrm{~V}<\mathrm{U} \leq 400 \mathrm{~V}$ | AC | 0.07 s |
|  | DC | 0.2 s |
| $\mathbf{U}>400 \mathrm{~V}$ | AC | 0.04 s |
|  | DC | 0.1 s |

In TT systems, a disconnection time of no greater than 1 s is permitted for distribution board circuits and any other circuit.

### 2.16.2 National Deviations from IEC 60364-4-41

### 2.16.2.1 The Netherlands

- The above table with max. disconnection times (above section Altered Maximum Disconnection Times in TN and TT System in Compliance with DIN VDE 0100-410) applies to all circuits supplying power outlets and all final circuits up to 32 A.
- For TT systems: as a rule, $\boldsymbol{R}_{\boldsymbol{a}}$ must not exceed $166 \boldsymbol{\Omega}$.


### 2.16.2.2 Norway

- Installations which are part of an IT system and are supplied from the public grid must be disconnected from supply on occurrence of the first fault. Table 41.1 of the standard applies.
- The use of a PEN conductor downstream of the main distribution is generally not permitted.


### 2.16.2.3 Belgium

- Each electrical installation which is supervised by ordinary persons (i.e. not skilled or instructed in electrical installation matters) must be protected by a residual-current-operated circuit-breaker. The magnitude of the maximum permissible rated fault current $\Delta \boldsymbol{I}_{\boldsymbol{n}}$ depends on the circuit to be protected and the earthing resistance.

| Circuit type | $\boldsymbol{R}_{\text {a max. }}$ | $\Delta \boldsymbol{I}_{n \text { max. }}$ |
| :--- | :--- | :--- | :--- |
|  | $\boldsymbol{R}_{\boldsymbol{a}}>100 \Omega$ generally not <br> permissible for domestic <br> installations. |  |
| Household (bathroom, washing machines, dishwashers etc.) |  | 30 mA |
| General protection for dwellings | $30-100 \Omega$ |  |

Circuits for sockets in domestic installations: the number of simple or multiple sockets is limited to 8 per circuit and the minimal cross section is $2.5 \mathrm{~mm}^{2}$.

The use of the PEN conductor (TNC) is not allowed for installations in dwellings and installations with increased fire or explosion risk (BE2-BE3 art. 101.03 and art. 104.05 GREI).

### 2.16.2.4 Ireland

- Regulation on the use of RCDs with $\Delta \boldsymbol{I}_{\boldsymbol{N}}<30 \boldsymbol{m} \boldsymbol{A}$ for all circuits up to 32 A


### 2.16.2.5 Spain

- Regulation on the use of RCDs as an additional protection for sockets up to 32 A which are intended to be used by ordinary persons.


### 2.17 Country-specific Particularities

### 2.17.1 India

- Parallel operation of transformers and diesel generators is not permitted according to the rules established by the Indian Electricity Board.


## 2．18 Used Formula Symbols

| Formula symbol | Unit | Description |
| :---: | :---: | :---: |
| $\eta$ |  | Efficiency |
| $\varphi 1$ ph＿n | － | Phase angle at lk1ph＿n min／max |
| $\varphi 1$ ph＿pe | － | Phase angle at Ik1ph＿pe min／max |
| $\varphi 1 \mathrm{~min} / \mathrm{max}$ | － | Phase angle at lk1 min／max |
| $\varphi 2$ | 。 | Phase angle at lk2min |
| $\varphi 3$ | － | Phase angle at $\mathrm{lk} 3 \mathrm{~min} / \mathrm{max}$ |
| $\varphi 3 \mathrm{~min} / \mathrm{max}$ | 。 | Phase angle at lk3 min／max |
| ¢motor | 。 | Phase angle at Ikmotor |
| $\Delta u$ | \％ | Relative voltage drop between the beginning and end of a line section |
| $\Delta \mathrm{U}$ | V | Relative voltage drop between the beginning and end of a line section |
| $\Delta \mathrm{u}$＿tr | \％ | Relative voltage drop over the transformer winding |
| $\Delta \mathrm{U}$＿tr | V | Absolute voltage drop over the transformer winding |
| $\Sigma \Delta u$ | \％ | Summated relative voltage drop up to a given point with／without voltage drop over the transformer winding according to the selected settings |
| $\Sigma \Delta U$ | V | Summated absolute voltage drop up to a given point with／without voltage drop over the transformer winding according to the selected settings |
| $\Sigma \Delta u \mathrm{dyn}$. | \％ | Summated relative voltage drop at the starting motor with／without voltage drop over the transformer winding according to the selected settings |
| $\Sigma \Delta U$ dyn． | V | Summated absolute voltage drop at the starting motor with／without voltage drop over the transformer winding according to the selected settings |
| ai |  | Capacity factor |
| c min／max |  | Minimum／maximum voltage factor in accordance with IEC 60909－0 |
| $\cos (\varphi)$ |  | Power factor |
| F1 |  | The indicated short－circuit current refers to a fault in the medium－voltage busbar |
| F2 |  | The indicated short－circuit current refers to a fault at the primary side of the transformer |
| F3 |  | The indicated short－circuit current refers to a fault at the secondary side of the transformer |
| F4 |  | The indicated short－circuit current refers to a fault at the end of the secondary－side con－ nection of the transformer． |


| Formula symbol | Unit | Description |
| :---: | :---: | :---: |
| ftot |  | Reduction factor |
| fn | Hz | Nominal frequency |
| gf |  | Simultaneity factor |
| gi |  | Simultaneity factor |
| HO |  | High overload |
| 1> | A | Phase energizing current of overcurrent module of DMT relay |
| 1>> | A | Phase energizing current of high-current module of DMT relay |
| 1>>> | A | Phase energizing current of high-current module of DMT relay |
| $\theta \Delta u$ | ${ }^{\circ} \mathrm{C}$ | Conductor temperature of MV cable / Conductor temperature of LV cable for voltage drop calculation |
| өtIkmax | ${ }^{\circ} \mathrm{C}$ | Conductor temperature of MV cable / Conductor temperature of LV cable at Ikmax |
| $\theta \Delta I \mathrm{kmin}$ | ${ }^{\circ} \mathrm{C}$ | Conductor temperature of MV cable / Conductor temperature of LV cable during disconnection |
| 12 | A | Conventional fusing current |
| $1^{2} \mathrm{t}$ | $k A^{2} \mathrm{~S}$ | Let-through energy |
| $1^{2} \mathrm{ta}$ | $k A^{2} \mathrm{~s}$ | Let-through energy downstream of the lower switching device or at the target distribution board / consumer |
| $1^{2} \mathrm{t}$ b | $k A^{2} \mathrm{~S}$ | Let-through energy upstream of the lower switching device |
| $1^{2} \mathrm{tc}$ | $k A^{2} \mathrm{~S}$ | Let-through energy downstream of the upper switching device |
| $1^{2} \mathrm{t}$ d | $k A^{2} \mathrm{~s}$ | Let-through energy at the output distribution board or upstream of the upper switching device |
| $12 t(1 i)$ | $k A^{2} \mathrm{~S}$ | Let-through energy of the switching device at the transition to the I-release |
| 12t(1kmax) | $k A^{2} \mathrm{~S}$ | Let-through energy of the switching device in the event of maximum short-circuit current |
| 12 t (1kmin) | $k A^{2} \mathrm{~S}$ | Let-through energy of the switching device in the event of minimum short-circuit current |
| $1^{2}+($ RCD $)$ | $k A^{2} \mathrm{~S}$ | Rated let-through energy of RCD |
| 12 t (fuse) | $k A^{2} \mathrm{~S}$ | Let-through energy of fuse |
| $1{ }^{22}$ (set-point) | $k A^{2} \mathrm{~S}$ | Let-through energy requirement on the connecting line |
| $1^{2}$ t value |  | Let-through energy of the switching device at Ikmax from the characteristic curve file |
| 12tmax(base) | $k A^{2} \mathrm{~S}$ | Permissible 12 t value of the fuse base |


| Formula symbol | Unit | Description |
| :---: | :---: | :---: |
| $\mathrm{la} / \mathrm{ln}$ |  | Starting current ratio |
| lb | A | Operating current |
| lbb | A | Reactive load current |
| Ibel | A | Load current |
| Ir | A | Rated setpoint current of the switching device |
| lbs | A | Apparent load current |
| Ibw | A | Active load current |
| lb_out | A | Load output current |
| Îc value | kA | Cut-off current of the switching device at Ikmax from the characteristic curve file (instantaneous value) |
| Ic (fuse) | kA | Cut-off current of the fuse |
| lcm | kA | Rated short-circuit making capacity |
| Icmax (base) | kA | Rated short-circuit current of the fuse base |
| Icn | kA | Rated short-circuit breaking capacity acc. to IEC 60898-1 |
| Icu | kA | Rated ultimate short-circuit breaking capacity acc. to IEC 60947-2 |
| Icu korr a | kA | Requirement on the rated ultimate short-circuit breaking capacity downstream of the lower switching device or at the target distribution board (controlled short-circuit current) |
| Icu korr b | kA | Requirement on the rated ultimate short-circuit breaking capacity upstream of the lower switching device (controlled short-circuit current) |
| Icu korr c | kA | Requirement on the rated ultimate short-circuit breaking capacity downstream of the upper switching device (controlled short-circuit current) |
| Icu korr d | kA | Requirement on the rated ultimate short-circuit breaking capacity at the output distribution board or upstream of the upper switching device (controlled short-circuit current) |
| Icu(fuse) | kA | Rated ultimate short-circuit breaking capacity - fuse |
| Icu/lcn required | kA | Required short-circuit breaking capacity for the protective device at the mounting location |
| Icw 1 s | kA | Rated short-time withstand current 1s |
| le | A | Earth energizing current of the DMT relay / of the RCD module |
| $\lg$ | A | Setting value of the release for earth fault detection |
| Igb | A | Total reactive current |


| Formula symbol | Unit | Description |
| :---: | :---: | :---: |
| Igs | A | Total apparent current |
| Igw | A | Total active current |
| Ig_out | A | Rated output current of frequency converter for selected overload cycle |
| IHHmin | A | Minimum tripping current of the high-voltage high-rupturing capacity fuse (HV HRC fuse) |
| li | A | Setting value of instantaneous short-circuit (I)-release |
| Ik1D | kA | 1-phase continuous short-circuit current |
| Ik1max | kA | Maximum 1-phase short-circuit current |
| 1 l 1 max(F1) | kA | Maximum 1-phase short-circuit current in the event of a fault in the medium-voltage busbar |
| lk1maxph_n | kA | Maximum 1-phase short-circuit current phase to neutral conductor |
| Ik1maxph_pe | kA | Maximum 1-phase short-circuit current phase to protective conductor |
| 1 k 1 min | kA | Minimum 1-phase short-circuit current |
| $\mathrm{lk} 1 \mathrm{~min}(\mathrm{~F} 2)$ | kA | Minimum 1-phase short-circuit current in the event of a fault at the transformer primary side |
| $\mathrm{lk} 1 \mathrm{~min}(\mathrm{~F} 3)$ | kA | Minimum 1-phase short-circuit current in the event of a fault at the transformer secondary side |
| $\mathrm{lk} 1 \mathrm{~min}(\mathrm{~F} 4)$ | kA | Minimum 1-phase short-circuit current in the event of a fault at the end of the secondary-side connection of the transformer |
| Ik1minph_n | kA | Minimum 1-phase short-circuit current phase to neutral conductor |
| lk1minph_pe | kA | Minimum 1-phase short-circuit current phase to protective conductor |
| Ik2min | A | Minimum 2-pole short-circuit current |
| Ik2min(F2) | kA | Minimum 2-pole short-circuit current in the event of a fault at the transformer primary side |
| $1 \mathrm{l} 2 \mathrm{~min}(\mathrm{~F} 3)$ | kA | Minimum 2-pole short-circuit current in the event of a fault at the transformer secondary side |
| Ik2min(F4) | kA | Minimum 2-pole short-circuit current in the event of a fault at the end of the secondary-side connection of the transformer |
| Ik3(F3) | kA | 3-pole short-circuit current in the event of a fault at the transformer secondary side |
| Ik3D | kA | 3-pole continuous short-circuit current |
| Ik3max | kA | Maximum 3-pole short-circuit current |
| $1 \mathrm{l} 3 \max (\mathrm{~F} 1$ ) | kA | Maximum 3-pole short-circuit current in the event of a fault in the medium-voltage busbar |


| Formula symbol | Unit | Description |
| :---: | :---: | :---: |
| Ik3min | kA | Minimum 3-pole short-circuit current |
| Ikmax | A | Maximum short-circuit current of all short-circuit currents |
| Ikmax a | kA | Maximum short-circuit current downstream of the lower switching device or at the target distribution board (uncontrolled short-circuit current) |
| Ikmax b | kA | Maximum short-circuit current upstream of the lower switching device (uncontrolled short-circuit current) |
| Ikmax c | kA | Maximum short-circuit current downstream of the upper switching device (uncontrolled short-circuit current) |
| Ikmax d | kA | Maximum short-circuit current at the output distribution board or upstream of the upper switching device (uncontrolled short-circuit current) |
| Ikmax/lkmin |  | Ratio of maximum/minimum short-circuit current |
| Ikmin | A | Minimum short-circuit current of all short-circuit currents |
| Ikmotor | kA | 3-pole short-circuit current proportion of the motor |
| Ikre |  | Factor of energetic recovery - short-circuit current |
| Imax | A | Maximum rated current of busbar system |
| In | A | Nominal/rated current |
| In (RCD) | mA | Rated current of RCD |
| In (switch) | A | Nominal/rated current of medium-voltage switchgear |
| In (fuse) | A | Nominal/rated current of medium-voltage fuse |
| In max | A | Rated device current at $40^{\circ} \mathrm{C}$ standard temperature |
| In zul | A | Permissible switch load according to ambient temperature |
| In1 | A | Rated current of transformer, primary side |
| In2 | A | Rated current of transformer, secondary side |
| Inenn | A | Nominal transformer current at nominal power |
| In_max | A | Nominal transformer current at maximum power with fan mounted |
| Ip | A | Configuration value for current at IDMT protection |
| Ipk | kA | Peak short-circuit current |
| lpk | kA | Short-circuit strength of the lightning current/overvoltage arrester in case of maximum permissible size of backup fuse |
| Iq | kA | Conditional rated short-circuit current - motor starter combination |


| Formula symbol | Unit | Description |
| :---: | :---: | :---: |
| IR | A | Setting value for overload (L)-release |
| Isd | A | Setting value of short-time delayed short-circuit (S)-release |
| Isel-short | A | Calculated selectivity limit value between Ikmin and Ikmax |
| Isel overload | A | Calculated selectivity limit value in range less than Ikmin |
| Iz, Izul | A | Permissible load current of a connecting line |
| I_in | A | Rated input current of frequency converter for selected overload cycle |
| I_out | A | Rated output current of frequency converter for selected overload cycle |
| $1 \Delta \mathrm{n}$ | mA | Rated earth-fault current - RCD protection |
| LO |  | Low Overload |
| L |  | Phase |
| L1 |  | Phase 1 |
| L2 |  | Phase 2 |
| L3 |  | Phase 3 |
| max |  | Maximum |
| min |  | Minimum |
| MRPD |  | Machine-readable product designation |
| MV |  | Medium voltage |
| N |  | Neutral conductor |
| LV |  | Low voltage |
| P | kW | Active power, electric |
| PE |  | Protective earth conductor |
| Pmech | kW | Active power, mechanical |
| Pn | kW | Nominal active power |
| P0 | kW | No-load losses |
| Pv, Pk | kW | Short-circuit losses |
| pz |  | Number of poles, switchgear |


| Formula symbol | Unit | Description |
| :---: | :---: | :---: |
| Q | kvar | Reactive power |
| Qe | kvar | Effective reactive capacitor power |
| Qn | kvar | Nominal reactive power |
| R/X |  | Ratio of resistance to reactance |
| R0 | $m \Omega$ | Resistance in the zero phase-sequence system |
| R0 min/max | $m \Omega$ | Minimum/maximum resistance in the zero phase-sequence system |
| RON | $m \Omega$ | Resistance in the zero phase-sequence system, phase - N |
| R0 PE(N) | $m \Omega$ | Resistance in the zero phase-sequence system, phase - PE(N) |
| ROUU | $m \Omega$ | Resistance in the zero phase-sequence system for the voltage drop |
| R0/R1 |  | Resistance ratio of zero/positive phase-sequence system |
| r0ph-n | $\mathrm{m} \Omega / \mathrm{m}$ | Specific active resistance of the zero phase-sequence system for the phase to neutral conductor loop |
| rOph-pe(n) | $\mathrm{m} \Omega / \mathrm{m}$ | Specific active resistance of the zero-phase-sequence system for the phase to PE conductor loop |
| r1 | $\mathrm{m} \Omega / \mathrm{m}$ | Specific active resistance of positive phase-sequence system |
| r1 | \% | Related resistance value in the positive phase-sequence system |
| R1 | $\mathrm{m} \Omega$ | Resistance in the positive phase-sequence system |
| $\mathrm{R} 1 \Delta \mathrm{U}$ | $m \Omega$ | Resistance in the positive phase-sequence system for the voltage drop |
| R1 min/max | $m \Omega$ | Minimum/maximum resistance in the positive phase-sequence system |
| $\mathrm{Ra}+\mathrm{Rb}$ max | $m \Omega$ | Sum of resistances of the earth electrode and possibly wired protective conductor between exposed conductive part and earth in the IT or TT network |
| Rs min/max | $m \Omega$ | Minimum/maximum loop resistance |
| S | kVA | apparent power |
| S2K2 |  | Thermal fault withstand capability of the cable |
| Sn | kVA | Nominal apparent power |
| SnT | kVA | Nominal apparent power of transformer |
| SnT_max | kVA | Maximum apparent power of transformer with fan mounted |
| t> | s | Delay time for the overcurrent module of DMT relay |
| $t \gg$ | S | Delay time for the high-current module of DMT relay |


| Formula symbol | Unit | Description |
| :---: | :---: | :---: |
| ta zul (li) | s | Permissible switch disconnection time for the setting value of the I-release, without violating the condition k2S2>12t |
| ta zul (Ikmax) | S | Permissible switch disconnection time at maximum short-circuit current, without violating the condition $\mathrm{k} 2 \mathrm{~S} 2>12 \mathrm{t}$ |
| ta zul (lkmin) | s | Permissible switch disconnection time at minimum short-circuit current, without violating the condition $\mathrm{k} 2 \mathrm{~S} 2>12 \mathrm{t}$ |
| ta zul ABS | s | Permissible disconnection time in compliance with DIN VDE 0100-410 (IEC 60364-4-41) |
| ta(min abs) | s | Switchgear disconnection time for disconnect condition |
| ta(min kzs) |  | Switchgear disconnection time for short-circuit protection |
| ta_max | s | Maximum disconnection time of the switchgear to be evaluated |
| te | s | Delay time of the earth energizing current of the DMT relay / of the RCD module |
| $\operatorname{tg}$ | s | Time value of the G-release (absolute) |
| tp | s | Configuration value of time multiplicator for IDMT protection |
| tR | s | Time value of the L-release |
| tsd | s | Time value of the S-release |
| Tu | ${ }^{\circ} \mathrm{C}$ | Ambient device temperature |
| u | \% | Relative voltage |
| ukr | \% | Relative rated short-circuit voltage |
| Umax | V | Maximum rated voltage of the busbar system |
| Un | V | Nominal voltage |
| Uprim | kV | Primary voltage |
| Usec | V | Secondary voltage |
| LVSD |  | Low-voltage sub-distribution (system) |
| V |  | Loads |
| X0 min/max | $m \Omega$ | Minimum/maximum reactance in the zero phase-sequence system |
| XO N | $m \Omega$ | Reactance of phase-N in the zero phase-sequence system |
| X0 PE(N) | $m \Omega$ | Reactance of phase-PE(N) in the zero phase-sequence system |
| X0ロU | $\mathrm{m} \Omega$ | Reactance of the zero phase-sequence system for voltage drop, independent of temperature |


| Formula symbol | Unit | Description |
| :---: | :---: | :---: |
| X0/X1 |  | Reactance ratio of zero/positive phase-sequence system |
| x0ph-n | $\mathrm{m} \Omega / \mathrm{m}$ | Specific reactive resistance of the zero phase-sequence system for the phase to neutral conductor loop |
| x0ph-pe(n) | $\mathrm{m} \Omega / \mathrm{m}$ | Specific reactive resistance of the zero-phase-sequence system for the phase to PE conductor loop |
| x1 | $\mathrm{m} \Omega / \mathrm{m}$ | Specific reactive resistance of positive phase-sequence system |
| X1 | $m \Omega$ | Reactance in the positive phase-sequence system |
| X1 min/max | $\mathrm{m} \Omega$ | Minimum/maximum reactance in the positive phase-sequence system |
| $\mathrm{X} 1 \Delta \mathrm{U}$ | $m \Omega$ | Reactance in the positive phase-sequence system for the voltage drop |
| xd" | \% | Subtransient reactance |
| Xs min/max | $\mathrm{m} \Omega$ | Minimum/maximum loop reactance |
| Z0 | $m \Omega$ | Impedance of zero phase-sequence system |
| Z0 min/max | $m \Omega$ | Minimum/maximum impedance in the zero phase-sequence system |
| ZODU | $m \Omega$ | Impedance in the zero phase-sequence system for the voltage drop |
| Z1 | $m \Omega$ | Impedance of positive phase-sequence system |
| Z1 min/max | $m \Omega$ | Minimum/maximum impedance in the positive phase-sequence system |
| Z1 ${ }^{\text {U }}$ | $m \Omega$ | Impedance in the positive phase-sequence system for the voltage drop |
| Zs |  | Loop impedance |
| Zs min/max |  | Minimum/maximum loop resistance |

## 3 <br> Special Technical Information about System Planning in SIMARIS project

### 3.1 Technical Data of 8DJH Gas-insulated Medium-voltage Switchgear

### 3.1.1 Electrical utility company (EUC) requirements

Requirements based on the relevant Technical Supply Conditions must be inquired about and observed.

### 3.1.2 Current Transformer

In order to size a combination of current transformer plus protection device optimally, please get in touch with your Siemens contact in charge, who can perform a separate calculation of the required current transformers or protection devices for you.

### 3.1.3 Panels

Circuit-breaker panel L (Type1.1, Automatic reclosing)

|  | AR = Automatic reclosing |  |  |
| :---: | :---: | :---: | :---: |
|  | Number of current break operations Ir | n | 10,000 / M2 |
|  | Rated switching sequence |  | $\mathrm{O}-0.3 \mathrm{~s}-\mathrm{CO}-3 \mathrm{~min}-\mathrm{CO}$ |
|  | Number of short-circuit isolations Isc | n | 25 or 50 |

Circuit-breaker panel L (Type2, Non automatic reclosing)

|  | NAR $=$ Non automatic reclosing |  |  |
| :---: | :---: | :---: | :---: |
|  | Number of current break operations Ir | n | 2,000 / M1 |
|  | Rated switching sequence |  | $\mathrm{O}-3 \mathrm{~min}-\mathrm{CO}-3 \mathrm{~min}-\mathrm{CO}$ |
|  | Number of short-circuit isolations Isc | n | 6 or 20 |


|  | Ring－main cable panel R |  |  |
| :---: | :---: | :---: | :---: |
|  |  | Three－position switch－disconnector | Capacitive voltage detecting system |
|  | Transformer panel T |  |  |
| 路造 |  | Three－position switch－disconnector |  |
|  | Busbar sectionalizer panel S（with switch disconnector） |  |  |
| 100 | 京 | Three－position switch－disconnector |  |
|  | Busbar sectionalizer panel H（with HV HRC fuse） |  |  |
| ato |  | Three－position disconnector |  |




For more information about this switchgear, please refer to: www.siemens.com/8djh

### 3.1.4 Panel blocks

You can configurate the following panel blocks.

| 2 panels | RR, RT, RK, RL, RS, RH, K(E)L, K(E)T, KL, KR, KT, LR, LK, LL, TK, TR, TT |
| :--- | :--- |
| 3 panels | RRR, RRT, RRL, RRS, RRH, RTR, RTT, RLL, RLR, LLL, LLR, LRL, LRR, TRR, TTT |
| 4 panels | RRRR, RRRH, RRRL, RRRS, RRRT, RRTR, RRTT, RRLL; RRLR, RTRR, RTRT, RTTT, <br> RTTR, RLLL, RLLR, RLRL, RLRR, LLLLL, LLLR, LLRL, LLRR, LRLL, LRLR, LRRL, LRRR, <br> TRRR, TRRT, TRTR, TRTT, TTRR, TTRT, TTTR, TTTT |
| 5 panels <br> (only China) | RRRRR, RRRRT, RRRRLL, RLLLL, RLLLR, RRRTT, RTTTT, RTTTR |
| 6 panels <br> (only China | RRRRRR, RRRRRL,RRRRLL, RRRRRT, RRRRTT |

## Legend:

| H | Bus sectionalizer panel H (with HV-fuse) |
| :--- | :--- |
| K | Cable connection panel K |
| $\mathrm{K}(\mathrm{E})$ | Cable connection panel K with earthing switch |
| L | Circuit-breaker panel L(type1, AR) respectively L(type2, NAR) |
| R | Ring-main panel R |
| S | Bus sectionalizer panel S (with switch disconnector) |
| T | Transformer panel T |

## Please note:

- Panels in a panel block can only be 310 mm or respectively 430 mm wide
- Within one panel block there may only be circuit-breaker panels of type 1 or type 2


### 3.2 Technical Data of 8DJH compact Gas-insulated Medium-voltage Switchgear

- Space-efficient ring net switchgear in block-type construction
- Width RRT = 700 mm (comparison: 8DJH standard 1050 mm )
- Further scheme versions: RRT-R and RRT-RRT
- Transformer connection: in the back above (for direct connection to eine direkte Verbindung zum Verteiltransformator), alternatively to the right or above
- Functionalities of der switching devices (Switch disconnector, switch-fuse combination) as in the standard version
- 8DJH Compact can be easily installed in new local transformer substations, and is the ideal retrofit switchgear for existing compact substations


### 3.3 Technical Data of 8DJH36 Gas-insulated Medium-voltage Switchgear

### 3.3.1 Electrical utility company (EUC) requirements

Requirements based on the relevant Technical Supply Conditions must be inquired about and observed.

### 3.3.2 Current Transformer

In order to size a combination of current transformer plus protection device optimally, please get in touch with your Siemens contact in charge, who can perform a separate calculation of the required current transformers or protection devices for you.

### 3.3.3 Panels

|  | Circuit-breaker panel L1 (Type 1, AR) |  |  |
| :---: | :---: | :---: | :---: |
|  | AR = Automatic reclosing |  |  |
|  | Number of breaking operations Ir | n | 10,000 / M2 |
|  | Rated operating sequence |  | $\mathrm{O}-0,3 \mathrm{~s}-\mathrm{CO}-3 \mathrm{~min}-\mathrm{CO}$ |
| - | Number of short-circuit breaking operations Isc | n | 25 or 50 |
|  | Circuit-breaker panel L2 (Type 2, NAR) |  |  |
|  | NAR $=$ Non automatic reclosing |  |  |
|  | Number of breaking operations Ir | n | 2,000 / M1 |
|  | Rated operating sequence |  | $\mathrm{O}-3 \mathrm{~min}-\mathrm{CO}-3 \mathrm{~min}-\mathrm{CO}$ |
|  | Number of short-circuit breaking operations Isc | n | 6 or 20 |



For more information about this switchgear, please refer to: www.siemens.com/8djh36

### 3.4 Technical Data of NX PLUS C Gas-insulated Medium-voltage Switchgear

### 3.4.1 Electrical utility company (EUC) requirements

Requirements based on the relevant Technical Supply Conditions must be inquired about and observed.

### 3.4.2 Current Transformer

In order to size a combination of current transformer plus protection device optimally, please get in touch with your Siemens contact in charge, who can perform a separate calculation of the required current transformers or protection devices for you.

### 3.4.3 Cubicles





For more information about this switchgear, please refer to: www.siemens.com/nxplusc

### 3.4.4 Operating cycles

For circuit breaker panels LS up to 31.5 kA you can select the following operating cycles:

- 2,000/1,000/10,000 up to 24 kV all rated normal current of feeder
- 5,000/5,000/30,000 up to 15 kV rated normal current of feeder: 1,000 A and 1,250 A
- 10,000/10,000/30,000 up to 15 kV rated normal current of feeder: 1,000A and 1,250A

For vacuum contactor panel VS up to 24 kV , up to 31.5 kA you can select the following operating cycles:

- 2,000/1,000/500,000 without closing latch
- 2,000/1,000/100,000 with closing latch


### 3.5 Technical Data of SIMOSEC Air-insulated Medium-voltage Switchgear

### 3.5.1 Electrical utility company (EUC) requirements

Requirements based on the relevant Technical Supply Conditions must be inquired about and observed.

### 3.5.2 Current Transformer

In order to size a combination of current transformer plus protection device optimally, please get in touch with your Siemens contact in charge, who can perform a separate calculation of the required current transformers or protection devices for you.

### 3.5.3 Panels

|  | Circuit-breaker panel, type L Single panel |  |  |
| :---: | :---: | :---: | :---: |
| - | Automatic reclosing AR: Number of breaking operations Ir | n | 10,000 / M2 |
| 日 | Rated switching sequence |  | O-0,3s-CO-30s-CO |
|  | Number of short-circuit breaking operations Isc | n | 30 or 50 |
| 4 | Without automatic reclosing NAR: <br> Number of breaking operations Ir | n | 2,000 / M1 |
|  | Rated switching sequence |  | $\mathrm{O}-0,3 \mathrm{~s}-\mathrm{CO}-30 \mathrm{~s}-\mathrm{CO}$ |
|  | Number of short-circuit breaking operations Isc | n | 20 |
|  | Circuit-breaker panel, type L(T) Combination panel |  |  |
| 0 | Automatic reclosing AR: Number of breaking operations Ir | n | 10,000 / M2 |
|  | Rated switching sequence |  | O-0,3s-CO-30s -CO |
|  | Number of short-circuit breaking operations Isc | n | 30 or 50 |
| $\square$ | Without automatic reclosing NAR: <br> Number of breaking operations Ir | n | 2,000 / M1 |
|  | Rated switching sequence |  | $\mathrm{O}-0,3 \mathrm{~s}-\mathrm{CO}-30 \mathrm{~s}-\mathrm{CO}$ |
|  | Number of short-circuit breaking operations Isc ```Combinations possible with - High-rising panel, type H - Ring cable panel, type R (T) - Metering panel, type \(M\) and \(M(-K)\)``` | n | 20 |
|  | Ring cable panel, type R Single panel |  |  |
|  |  | Three-position switch-disconnector | Capacitive voltage detecting system |



Current transformers, if required, must be provided by the customer (utilities company).



For more information about this switchgear, please refer to: www.siemens.com/simosec

### 3.6 Technical Data of NXAIR Air-insulated Medium-voltage Switchgear

### 3.6.1 Electrical utility company (EUC) requirements

Requirements based on the relevant Technical Supply Conditions must be inquired about and observed.

### 3.6.2 Current transformer

For optimal design of the combination transformer-protection, please approach your responsible Siemens contact person, who can create a separate calculation of necessary transformer or protection devices.

### 3.6.3 Important engineering notes

- Regarding pressure absorbers please note the following:
- Having not selected "pressure relief duct", you have to stipulate pressure absorbers in some panels
- Pressure absorbers are not displayed in the front view of SIMARIS project, as depending on the projection only some panels need an absorber. But the necessary room height will be considered in SIMARIS project.
- Pressure absorbers are only allowed to be installed in non-ventilated panels, this means a system which is exclusively equipped with ventilated panels can only be realized with pressure relief duct.
- For earthing switch, connection or voltage transformer in busbar compartments a top box will be supplemented automatically.
CAUTION: Having not selected "pressure relief duct", it is not allowed to configure a top box before or after another panel with top box!
- Before and after a bus sectionalizer (with or without disconnector) there must be at least two other arbitrary NXAIR panels before another bus sectionalizer (with or without disconnector) may be inserted or the switchgear ends.


### 3.6.4 Panels

### 3.6.4.1 NXAIR 17.5 kV

|  | Circuit-breaker panel <br> Individual panel |
| :--- | :--- | :--- |



Rated short-time current Ik [kA]: 25; 31.5; 40; 50
Rated voltage Ur [kV]: 7.2; 12; 17.5
Rated normal current [A]: 630-4,000
Panel width [mm] : 600; 800; 1,000

## Circuit-breaker up to 40 kA

Amount Operating cycles
Rated operating sequence
10,000 / C2, E2, M2
$\mathrm{O}-0.3 \mathrm{~s}-\mathrm{CO}-3 \mathrm{~min}-\mathrm{CO}$
$\mathrm{O}-0.3 \mathrm{~s}-\mathrm{CO}-15 \mathrm{~s}-\mathrm{CO}$
$\mathrm{O}-3 \mathrm{~min}-\mathrm{CO}-3 \mathrm{~min}-\mathrm{CO}$

## Circuit-breaker 50 kA

Amount Operating cycles
Rated operating sequence (at normal current)
10,000 / C2, E2, M2
O-3min - CO - 3min -CO
Combination possibility with

- Bus riser panel with disconnector
- Bus riser panel without disconnector

| Disconnecting panel Individual panel |
| :---: |

Rated short-time current Ik [kA]: 25; 31.5; 40; 50


Rated voltage Ur [kV]: 7.2; 12; 17.5
Rated normal current [A]: 630-4,000
Panel width [mm] : 800; 1,000


Contactor panel Individual panel


| Metering panel <br> Individual panel |
| :--- | :--- |

Rated short-time current Ik [kA]: 25; 31.5; 40; 50


Rated voltage Ur [kV]: 7.2; 12; 17.5
Rated normal current [A]: -
Panel width [mm] : 800

|  | Busbar current metering panel Individual panel |
| :---: | :---: |
|  | Rated short-time current Ik [kA]: 25*); 31.5*); 40; 50 <br> Rated voltage Ur [kV]: 7.2; 12; 17.5 <br> Rated normal current [A]: - <br> Panel width [mm] : 800 <br> *) 25 kA and 31 kA only available on Ir 3,150A rated normal current of busbar |
|  | Transformer panel for auxiliaries service Individual panel |
|  | Rated short-time current lk [kA]: 25; 31.5 <br> Rated voltage Ur [kV]: 7.2; 12 <br> Rated normal current [A]: - <br> Panel width [mm] : 1,000 |
|  | Busbar connection panel Individual panel |
|  | Rated short-time current lk [kA]: 25; 31.5; 40; 50 <br> Rated voltage Ur [kV]: 7.2; 12; 17.5 <br> Rated normal current [A]: 1,250; 2,500; 3,150; 4,000 <br> Panel width [mm] : 800; 1,000 |


|  | Bus riser panel with disconnector <br> Combination panel |
| :--- | :--- |

### 3.6.4.2 NXAIR 24 kV

Circuit-breaker panel
Individual panel


Rated short-time current lk [kA]: 16; 20; 25
Rated voltage Ur [kV]: 24
Rated normal current [A]: 800-2,500
Panel width [mm] : 800; 1,000


Circuit-breaker up to 25kA
Amount operating cycles
10,000 / C2, E2, M2
Rated operating sequence
O-0.3s - CO - 3min -CO
O-0.3s - CO - 15s -CO

Circuit-breaker panel (Bus sectionalizer)
Combination panel

Rated short-time current lk [kA]: 16; 20; 25
Rated voltage Ur [kV]: 24
Rated normal current [A]: 1,250-2,500
Panel width [mm] : 800; 1,000


Circuit-breaker up to 25kA
Amount operating cycles
10,000 / C2, E2, M2
Rated operating sequence
O-0.3s - CO - 3min -CO
$\mathrm{O}-0.3 \mathrm{~s}-\mathrm{CO}-15 \mathrm{~s}-\mathrm{CO}$

## Combination possibilities with

- Bus riser panel with disconnector
- Bus riser panel without disconnector


Rated short-time current lk [kA]: 16; 20; 25
Rated voltage Ur [kV]: 24
Rated normal current [A]: 200*)
Panel width [mm] : 800

*) The output current is limited via fuse

|  | Metering panel <br> Individual panel |  |
| :--- | :--- | :--- |
|  | Rated short-time current Ik [kA]: 16; 20; 25 <br> Rated voltage Ur [kV]: 24 <br> Rated normal current [A]: - <br> Panel width [mm]: 800 |  |
|  |  |  |



Rated short-time current lk [kA]: 16; 20; 25
Rated voltage Ur [kV]: 24
Rated normal current [A]: 1,250-2,500
Panel width [mm] : 800; 1,000


Combination possibility with

- Circuit-breaker panel (Bus sectionalizer)

|  | Bus riser panel without disconnector <br> Combination panel |
| :--- | :--- |



Rated short-time current lk [kA]: 16; 20; 25
Rated voltage Ur [kV]: 24
Rated normal current [A]: 1,250-2,500
Panel width [mm] : 800; 1,000
Measurement module: optional


Combination possibility with

- Circuit-breaker panel (Bus sectionalizer)


### 3.7 Technical Data of NXAir Air-insulated Medium-voltage Switchgear (only for China)

### 3.7.1 NXAir 12 kV

### 3.7.1.1 Current Transformer

For optimal design of the combination transformer-protection, please approach your responsible Siemens contact person, who can create a separate calculation of necessary transformer or protection devices.

### 3.7.1.2 Panels


Bus riser panel without disconnecting module

### 3.7.2 NXAir 24 kV

### 3.7.2.1 Current Transformer

For optimal design of the combination transformer-protection, please approach your responsible Siemens contact person, who can create a separate calculation of necessary transformer or protection devices.

### 3.7.2.2 Panels


Bus riser panel without disconnecting module


### 3.8 ANSI Codes for protection devices

```
B = basic
O = optional (additional price)
- = not available
1) via CFC
```

| 7SD80 |
| :---: |
| 7SD610 |
| 7SJ82 |
| 7SJ80 |
| 7SJ61 |
| 7SJ62 |
| 7SJ63 |
| 7SJ64 |
| 7SJ45 |
| 7SJ46 |
| 7SJ600 |
| 7SJ602 |
| 7SR11 |
| 7SR12 |
| 7SK80 |
| $7 U M 62$ |
| 7UT612 |
| 7VE6 |


| ANSI | Functions | Abbr. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Protection functions for 3-pole tripping | 3-pole | B | B | B | B | B | B | B | B | B | B | B | B | B | B | B | B | B | 0 |
|  | Protection functions for 1-pole tripping | 1-pole | - | 0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 14 | Locked rotor protection | $1>+\mathrm{V}<$ | - | - | - | - | 0 | 0 | 0 | 0 | - | - | - | - | - | - | B | 0 | - | - |
| 21 | Distance protection | Z< | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0 | - | - |
| 24 | Overexcitation protection | V/f | - | - | 0 | - | - | - | - | - | - | - | - | - | - | - | - | B | - | - |
| 25 | Synchrocheck, synchronizing function | Sync | - | - | 0 | 0 | - | 0 | - | 0 | - | - | - | - | - | - | - | - | - | B |
| 25 | Synchronizing function with balancing commands | Sync | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | B |
| 27 | Undervoltage protection | V < | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | - | - | - | - | - | B | 0 | B | - | 0 |
| 27 | Undervoltage protection, 3-phase | $\mathrm{V}<$ | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | - | - | - | - | - | B | 0 | - | - | - |
| 27 | Undervoltage protection, positivesequence system | V1< | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | - | - | - | - | - | - | 0 | B | - | - |
| 27 | Undervoltage protection, 1-phase, Vx | $\mathrm{V} \times$ < | 0 | 0 | 0 | 0 | - | 0 | - | 0 | - | - | - | - | - | - | 0 |  | - | 0 |
| 27TN/59TN | Stator ground fault 3rd harmonics | $\mathrm{V} 0<,>$ (3.Harm.) | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0 | - | - |
|  | Undervoltage-controlled reactive power protection | Q>/V< | - | - | 0 | 0 | - | 0 | - | 0 | - | - | - | - | - | - | - | - | - | - |
| 32 | Directional power supervision | P<>, Q<> | - | 0 | 0 | 0 | - | 0 | - | 0 | - | - | - | - | - | - | 0 | B | - | - |
| 32F | Forward power supervision | $\mathrm{P}>, \mathrm{P}<$ | - | 0 | 0 | 0 | - | 0 | - | 0 | - | - | - | - | - | - | 0 | 0 | - | - |
| 32R | Reverse power protection | $\mathrm{P}>$, $\mathrm{P}<$ | - | 0 | 0 | 0 | - | 0 | - | 0 | - | - | - | - | - | - | 0 | B | - | - |
| 37 | Undercurrent protection, underpower | K, P< | - | - | B | B | B | B | $\begin{aligned} & \text { B } \\ & 1) \end{aligned}$ | B | - | - | - | B | B | B | B | 0 | - | - |
| 38 | Temperature supervision | ~> | - | - | 0 | - | 0 | 0 | 0 | 0 | - | - | - | 0 | - | - | B | 0 | 0 | - |
| 38 | Bearing temperature supervision |  | - | - | - | - | 0 | 0 | 0 | 0 | - | - | - | 0 | - | - | B | 0 | - | - |
| 40 | Underexcitation protection | 1/XD | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0 | - | - |
| 46 | Unbalanced-load protection | 12> | - | - | B | B | B | B | B | B | - | - | B | B | B | B | B | 0 | 0 | - |
| 46 | Negative-sequence system overcurrent protection | $12>$, 12/11> | - | - | B | B | B | B | B | B | - | - | B | B | B | B | B | 0 | 0 | - |
| 46 | Unbalanced-load protection (thermal) | $12^{2} \mathrm{t}>$ | - | - | B | - | - | - | - | - | - | - | - | - | - | - | - | 0 | - | - |
| 46 | Negative-sequence system overcurrent protection | $\mid 2>, 12 / 11>$ | - | - | B | B | B | B | B | B | - | - | B | B | B | B | B | B | 0 | - |
| 46 | Negative-sequence system overcurrent protection | 12>, 12/11> | - | - | B | B | B | B | B | B | - | - | B | B | B | B | B | 0 | 0 | - |
|  | Negative-sequence system overcurrent protection with direction | 12>, <V2/I2 | - | - | 0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 47 | Phase-sequence-voltage supervision | LA, LB, LC | - | B | B | 0 | B | B | B | B | - | - | - | - | - | B | 0 | B | B | - |
| 47 | Overvoltage protection, negativesequence system | V2> | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | - | - | - | - | - | B | 0 | 0 | - | - |
| 48 | Starting-time supervision | $1{ }^{2}$ start | - | - | - | - | 0 | 0 | 0 | 0 | - | - | - | - | - | - | B | 0 | - | - |
| 49 | Thermal overload protection | ,$>, 12 \mathrm{t}$ | B | B | B | B | B | B | B | B | - | - | B | B | B | B | B | B | B | - |
| 49R | Rotor overload protection | 12 t | - | - | - | - | 0 | 0 | 0 | 0 | - | - | - | 0 | - | - | B | - | - | - |
| 49S | Stator overload protection | $1^{2} \mathrm{t}$ | - | - | - | - | 0 | 0 | 0 | 0 | - | - | - | 0 | - | - | B | B | - | - |
| 50/ 50N | Definite time-overcurrent protection | 1> | B | B | B | B | B | B | B | B | B | B | B | B | B | B | B | B | B | - |
| $\begin{aligned} & \hline 50 \mathrm{TD} / 50 \mathrm{~N} \\ & \mathrm{TD} \\ & \hline \end{aligned}$ | Definite time-overcurrent protection | 1> | B | B | B | B | B | B | B | B | B | B | B | B | B | B | B | B | B | - |
| 50/ 50N | Instantaneous overcurrent protection | $1>$, In> | B | B | B | B | B | B | B | B | B | B | B | B | B | B | B | B | B | - |
| 50HS | High speed instantaneous overcurrent protection | \|>>> | - | B | B | B | B | B | - | B | - | - | B | B | B | B | B | - | - | - |
| SOTF | Instantaneous tripping at switch onto fault |  | B | B | B | B | B | B | B | B | - | - | B | B | B | B | B | B | B | B |
| AFD | Arc-protection |  | - | - | 0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |


|  | B = basic <br> $\mathrm{O}=$ optional (additional price) <br> - = not available <br> 1) via CFC |  | $\begin{aligned} & \circ \\ & \infty \\ & \end{aligned}$ | $\begin{aligned} & \circ \\ & \stackrel{0}{6} \\ & \stackrel{0}{n} \end{aligned}$ | $\begin{aligned} & N \\ & N \\ & N \end{aligned}$ | $\begin{aligned} & \circ \\ & \stackrel{\infty}{N} \\ & \end{aligned}$ | $\begin{aligned} & \overline{6} \\ & \cdots \end{aligned}$ | $\begin{aligned} & N \\ & \stackrel{N}{N} \end{aligned}$ | $\begin{aligned} & \stackrel{m}{0} \\ & \stackrel{N}{n} \end{aligned}$ | $\begin{aligned} & \stackrel{y}{n} \\ & \stackrel{y}{n} \end{aligned}$ | $\stackrel{\bullet n}{\leftarrow}$ | $\begin{aligned} & \bullet \\ & \underset{\sim}{\top} \end{aligned}$ | $\begin{aligned} & \circ \\ & \stackrel{\circ}{n} \\ & \cdots \end{aligned}$ | $\begin{aligned} & \text { N } \\ & \text { O } \\ & \end{aligned}$ | $\underset{\underset{\sim}{\sim}}{\underset{\sim}{r}}$ | $\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{N}{N} \end{aligned}$ | $\begin{aligned} & \circ \\ & \stackrel{\infty}{\omega} \\ & \underset{\sim}{\infty} \end{aligned}$ | $\sum_{N}^{N}$ | $\begin{aligned} & \stackrel{N}{6} \\ & \stackrel{\rightharpoonup}{5} \end{aligned}$ | $\stackrel{\bullet}{\text { ® }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ANSI | Functions | Abbr. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 50Ns | Sensitive ground-current protection | Ins> | - | - | B | 0 | 0 | 0 | 0 | 0 | - | - | - | 0 | 0 | 0 | 0 | B | - | - |
| - | Intermittent ground-fault protection | lie> | - | - | 0 | B | 0 | 0 | - | 0 | - | - | - | - | - | - | B | - | - | - |
| 50BF | Circuit-breaker failure protection | CBFP | B | 0 | 0 | B | B | B | B | B | - | - | B | B | B | B | B | B | 0 | - |
| 50RS | Circuit-breaker restrike protection | CBRS | - | - | 0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| $51 / 51 \mathrm{~N}$ | Inverse time-overcurrent protection | Ip, Inp | B | B | B | B | B | B | B | B | B | B | B | B | B | B | B | B | B | - |
| 50L | Load-jam protection | $1>$ L | - | - | - | - | 0 | 0 | 0 | 0 | - | - | - |  | - | - | B | - | - | - |
| 51C | Cold load pickup |  | - | - | B | B | B | B | B | B | - | - | - | - | B | B | B | - | - | - |
| 51V | Voltage dependent overcurrent protection | $\mathrm{t}=\mathrm{f}(\mathrm{l})+\mathrm{V}<$ | - | - | 0 | 0 | - | B | - | B | - | - | - | - | - | B | 0 | B | - | - |
| 51V | Overcurrent protection with voltage release | $\mathrm{t}=\mathrm{f}(\mathrm{I})+\mathrm{V}<$ | - | - | 0 | 0 | - | B | - | B | - | - | - | - | - | B | 0 | B | - | - |
| 51V | Overcurrent protection with voltagedependent current threshold | $\mathrm{t}=\mathrm{f}(\mathrm{I}, \mathrm{V})$ | - | - | 0 | 0 | - | B | - | B | - | - | - | - | - | - | 0 | B | - | - |
| 55 | Power factor | cosj | - | $\begin{gathered} \hline \text { B } \\ 1) \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { B } \\ \hline 1) \\ \hline \end{gathered}$ | 0 | - | 0 | $\begin{gathered} \hline \text { B } \\ 1) \\ \hline \end{gathered}$ | 0 | - | - | - | - | - | - | 0 | 0 | B | - |
| 59 | Overvoltage protection | V> | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | - | - | - | - | - | B | 0 | B | - | 0 |
| 59 | Overvoltage protection, 3-phase | V> | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | - | - | - | - | - | B | 0 | 0 | - | - |
| 59 | Overvoltage protection, positivesequence system | V1> | 0 | 0 | 0 | 0 | - | 0 | - | 0 | - | - | - | - | - | - | 0 | 0 | - | - |
| 59 | Overvoltage protection, Compounding | V1comp> | - | 0 | 0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 59 | Overvoltage protection, 1-phase, Vx | Vx> | - | 0 | 0 | 0 | - | 0 | - | 0 | - | - | - | - | - | - | 0 | - | - | 0 |
|  | Peak overvoltage protection, 3phase, for capacitors | V > cap. | - | - | 0 | - | - | - | - | - | - | - | - | - |  |  | - | - | - | - |
| 59N | Overvoltage protection, zerosequence system | V0> | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | - | - | - | 0 | - | B | 0 | B | - | - |
| 59R, 27R | Rate-of-voltage-change protection | dV/dt | - | - | - | 0 | - | 0 | - | 0 | - | - | - | - | - | - | 0 | - | - | - |
| 60C | Current-unbalance protection for capacitor banks | lunbal> | - | - | 0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 60FL | Measuring-voltage failure detection |  | 0 | 0 | B | 0 | - | B | B | B | - | - | - | - | - | B | 0 | B | - | - |
| 64 | Sensitive ground-fault protection (machine) |  | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | B | - | - |
| 64 S | Stator ground-fault protection | V0>, 310> | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | B | - | - |
| 64 S 100 | 100\% stator ground-fault protection (3rd harmonic) | U0 зн< | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0 | - | - |
| 64S 100 | 100\% stator ground-fault protection (20Hz) | RsgF | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0 | - | - |
| 64R | Rotor ground-fault protection | RRGF | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0 | - | - |
| 64R | Rotor ground-fault protection (current measurement) | ILes > | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | B | - | - |
| 66 | Restart inhibit | $1^{2} \mathrm{t}$ | - | - | - | - | 0 | 0 | 0 | 0 | - | - | - | 0 | - | - | B | 0 | - | - |
| 67 | Directional time-overcurrent protection, phase | l , IP $<(\mathrm{V}, \mathrm{I})$ | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | - | - | - | - | - | B | - | B | - | - |
| 67N | Directional time-overcurrent protection for ground-faults | $\ln >, \operatorname{lnp} \angle(\mathrm{V}, \mathrm{I})$ | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | - | - | - | - | - | B | 0 | B | - | - |
| 67Ns | Dir. sensitive ground-fault detection for systems with resonant or isolated neutral | $\operatorname{lns}^{2}, \angle(\mathrm{~V}, \mathrm{l})$ | - | - | 0 | 0 | - | 0 | 0 | 0 | - | - | - | 0 | - | B | 0 | B | - | - |
| 67Ns | Sensitive ground-fault detection for systems with resonant or isolated neutral with admittanz method | ? |  |  | 0 | - | - | - | - | - | - | - | - | - | - | - | - | - |  |  |
| 67Ns | Transient ground-fault function, for transient and permanent ground faults in resonant-grounded or isolated networks | WOp,tr> | - | - | 0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|  | Directional intermittent ground fault protection | lie dir> | - | - | 0 | 0 | - | 0 | - | 0 | - | - | - | - | - | - | 0 | - | - | - |
| 68 | Power-swing blocking | " Z/" ${ }^{\text {t }}$ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0 | - |  |
| 74TC | Trip-circuit supervision | TCS | B | B | B | B | B | B | B | B | - | - | B | B | B | B | B | B | 0 | B |
| 78 | Out-of-step protection | "Z\|" t | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0 | - | - |


|  | $\begin{aligned} & \text { B = basic } \\ & O=\text { optional (additional price) } \\ & \text { - }=\text { not available } \\ & \text { 1) via CFC } \end{aligned}$ |  | $\begin{aligned} & \text { oo } \\ & \stackrel{n}{n} \end{aligned}$ | $\begin{aligned} & \circ \\ & \stackrel{0}{0} \\ & \stackrel{n}{n} \end{aligned}$ | $\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{n} \end{aligned}$ | $\begin{aligned} & \infty \\ & \stackrel{\infty}{n} \end{aligned}$ | $\stackrel{\overline{0}}{\wedge}$ | $\stackrel{N}{N}$ | $\begin{aligned} & \stackrel{n}{0} \\ & \underset{\sim}{n} \end{aligned}$ | $$ | $\stackrel{\curvearrowleft}{\stackrel{n}{N}}$ | $\begin{aligned} & \stackrel{0}{4} \\ & \end{aligned}$ | $\begin{aligned} & \text { O} \\ & \stackrel{0}{n} \\ & \end{aligned}$ | $$ | $\underset{\underset{\sim}{\sim}}{\bar{\sim}}$ | $\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{\sim} \end{aligned}$ | $\begin{aligned} & \stackrel{\otimes}{\infty} \\ & \underset{\sim}{\aleph} \end{aligned}$ | $\sum_{N}^{N}$ | $\frac{N}{\grave{o}}$ | $\stackrel{\bullet}{\gtrless}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ANSI | Functions | Abbr. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 79 | Automatic reclosing | AR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | - | 0 | 0 | 0 | 0 | - | - | - | - |
| 81 | Frequency protection | $f<, f>$ | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | - | - | - | - | - | B | 0 | B | - | 0 |
| 810 | Overfrequency protection | $f>$ | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | - | - | - | - | - | B | 0 | B | - | 0 |
| 81U | Underfrequency protection | f< | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | - | - | - | - | - | B | 0 | B | - | 0 |
| 81R | Rate-of-frequency-change protection | df/dt | 0 | - | 0 | 0 | - | 0 | - | 0 | - | - | - | - | - | - | 0 | 0 | - | 0 |
|  | Vector-jump protection | $\Delta$ \#\# $>$ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0 | - | 0 |
| 81LR | Load restoration | LR | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 85 | Teleprotection |  | B | B | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 85 DT | Circuit-breaker intertripping scheme |  | B | B | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 86 | Lockout |  | B | B | B | B | B | B | B | B | - | - | - | - | B | B | B | B | B | - |
| 87 | Differential protection | " 1 | B | B | 0 | - | - | - | - | - | - | - | - | - | - | - | - | B | B | - |
| 87G | Differential protection, generator | " 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | B | B | - |
| 87T | Differential protection, transformer | " 1 | - | 0 | - | - | - | - | - | - | - | - | - | - | - | - | - | B | B | - |
| 87B | Differential protection, busbar | " 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | B | - |
| 87M | Differential protection, motor | " 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | B | B | - |
| 87L | Differential protection, line | " 1 | B | B | - | - | - | - | - | - | - | - | - | - | - | - | - | - | B | - |
| 87C | Differential protection, capacitor bank | " 1 | - | - | 0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 87 N | Differential ground-fault protection | "IN | B | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | - | - | 0 | 0 | 0 | - | 0 | 0 | - |
| 87N T | Low impedance restricted groundfault protection | "IN | - | - | 0 | - | - | - | - | - | - | - | - | - | - | - | - | 0 | 0 | - |
| 87 NH | High impedance restricted groundfault protection | "IN | - | - | 0 | 0 | 0 | 0 | 0 | 0 | - | - | - | 0 | 0 | 0 | - | - | 0 | - |
| 87 NL | 310 Differential protection | " 310 | B | 0 | - | - | - | - | - | - | - | - | - | - | - | - | - | 0 | - | - |
| 87Ns L | Ground-fault differential protection for systems with resonant or isolated neutral | "Insens | 0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0 | - |
|  | Broken-wire detection for differential protection |  | B | B | - | - | - | - | - | - | - | - | - | - | - | - | - | - | B | - |
| 90 V | Automatic voltage control 2 winding transformer |  | - | - | 0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 90 V | Automatic voltage control 3 winding transformer |  | - | - | 0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 90 V | Automatic voltage control grid coupling transformer |  | - | - | 0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| FL | Fault locator | FL | - | B | 0 | 0 | - | 0 | 0 | 0 | - | - | - | - | - | - | - | - | - | - |

### 3.9 Medium Voltage Protective Devices

| 7SD61 | Differential protection relay for 2 line ends with 4-line display <br> The 7SD610 relay is a differential protection relay suitable for all kinds of applications, providing all func- <br> tions required for the differential protection of lines, cables and transformers. Transformers and compen- <br> sation coils within the differential protection zone are protected by integrated functions which were previ- <br> ously found in the differential protection of transformers only. Moreover, it is also well-suited for complex <br> applications such as series and parallel compensation of lines and cables. |
| :--- | :--- |
| 7SD80 | Line Differential Protection <br> The line differential protection SIPROTEC 7SD80 has been conceived for selective line protection of power <br> cables and overhead lines up to 24km for all kind of starpoint configurations. The implemented phase compari- <br> son algorithm is a fast and stable method for line protection in industry and distribution grids. The protection <br> interface communication is carried out directly without external equipment over copper wires, optical fibers or <br> both in redundanc. The wide scope of non directional and directional functions can be applied miscellaneously <br> as emergency functions as well as backup functions. |
| 7SJ600 | Digital overcurrent, motor and overload protection relay <br> The SIPROTEC 7SJ600 is a numerical overcurrent protection relay which, in addition to its primary use in <br> radial distribution networks and motor protection, also be employed as backup protection for feeder, <br> transformer and generator differential protection. |
| 7SJ602 | Multi-function overcurrent and motor protection relay <br> The SIPROTEC 7SJ602 is a numerical overcurrent protection relay which, in addition to its primary use in <br> radial distribution networks and motor protection, can also be used as backup protection for the differen- <br> tial protection of lines, transformers and generators. The SIPROTEC 7SJ602 provides both definite-time <br> and inverse-time overcurrent protection along with overload protection and protection against unbal- <br> anced loads (negative phase-sequence system) for a very comprehensive relay package. |
| 7SJ82 | Multi-function protection relay <br> The SIPROTEC 4 7SJ63 can be used as protection relay for controlling and monitoring outgoing distribution <br> feeders and transmission lines in at any voltage level in power systems which are characterized by an <br> earthed, low-resistance earthed, non-earthed or a compensated neutral point topology. The relay is suit- <br> able for radial and looped networks and for lines with single or multi-terminal feeds. Regarding the time- <br> overcurrent/directional time-overcurrent protection, its characteristics can either be definite time or in- <br> verse time or user-defined. |


| 7SK80 | Motor Protection Relay <br> The SIPROTEC Compact 7SK80 is a multi-functional motor protection relay. It is designed for protection of <br> asynchronous motors of all sizes. The relays have all the required functions to be applied as a backup relay <br> to a transformer differential relay. The SIPROTEC Compact 7SK80 features "flexible protection functions". |
| :--- | :--- |
| 7SN60 | Transient earth-fault protection relay <br> The highly sensitive 7SN60 transient earth-fault relay determines the direction of transient and continu- <br> ous earth faults in systems with isolated neutral, in systems with high-impedance resistive earthing and in <br> compensated systems. Continuous earth faults are indicated with a delay, either in conjunction with a <br> transient earth fault and subsequently persisting displacement voltage, or with just the displacement volt- <br> age present. |
| 7SR11 | Overcurrent and Earth Fault protection <br> The 7SR11 series of relays provide overcurrent and earth fault protection. These relays are typically applied <br> to provide the main protection on feeders and interconnectors and the back-up protection on items of <br> plant such as transformers. On distribution system circuits overcurrent and earth fault protection is often <br> the only protection installed. |
| 7SR12 | Overcurrent and Earth Fault protection <br> The 7SR12 includes for directional control of the overcurrent and earth fault functionality and is typically <br> installed where fault current can flow in either direction i.e. on interconnected systems. |
| 7UM62 | Multi-function generator and motor protection relay <br> SIPROTEC 4 7UM62 protection relays can do more than just protect. They also provide numerous addition- <br> al functions. Be it earth faults, short-circuits, overload, overvoltage, overfrequency or <br> underfrequency asynchronous conditions, protection relays assure continued operation of power stations. <br> The SIPROTEC 4 7UM62 protection relay is compact unit which has been specially <br> developed for the protection of small, medium-sized and large generators. |
| 7UT612 | Differential protection relay for transformers, generators, motors and busbars <br> The SIPROTEC 7UT612 differential protection relay is used for fast and selective fault clearing of short- <br> circuits in two winding transformers of all voltage levels and also in rotating electric machines like motors <br> and generators, for short two-terminal lines and busbars up to 7 feeders. |
| 7VE61 | Multi-function parallelling devices <br> The 7VE61 and 7VE63 parallelling devices of the SIPROTEC 4 family are multi-functional compact units <br> used for parallelling power systems and generators. |

For more information about these protection relays, please refer to:
www.siemens.com/protection

### 3.10 Capacitive Voltage Detector Systems

Voltage detector systems IEC IEN 61243-5 bzw. VDE 0682-415
Pluggable voltage display unit
Isolation from supply tested phase by phase, plugging the unit into the proper socket pairs
Display unit is suitable for continuous duty
Safe to touch
Routine-tested
Measurement system and voltage display unit can be tested
Voltage display unit flashes, when high voltage is appplied

| WEGA 2.2 | Integrated display <br> No maintenance <br> Integrated repeat test of the interface (self-testing) <br> Integrated function test (without auxiliary power) by pressing the "Display Test" key <br> Integrated 3-phase LRM measuring point for phase comparison <br> Display "AO" to "A6" <br> - "AO": Operating voltage not available. Active zero-voltage display <br> - "A1": Operating voltage ready <br> - "A2": Auxiliary power not available <br> - "A3": Phase failure in phase L1, e.g. earth fault, operating voltage present at L2 and L3 <br> - "A4": Voltage present. Shown in the range of 0.10...0.45 • $\boldsymbol{U}_{\boldsymbol{n}}$ <br> - "A5": Display of "Test" OK <br> - "A6": Display of "Test" OK <br> Signalling relay (integrated, auxiliary power required) |
| :---: | :---: |
| CAPDIS-S1+ | No maintenance <br> Integrated display <br> Integrated repeat test of the interfaces (self-testing) <br> Integrated function test (without auxiliary power) by pressing the "Test" key <br> Integrated 3-phase LRM measuring point for phase comparison <br> Display "A1" to "A5" <br> - "A1": Operating voltage ready <br> - "A2": Operating voltage not available <br> - "A3": Phase failure in phase L1, e.g. earth fault, operating voltage present at L2 and L3 <br> - "A4": Voltage present. Shown in the range of 0.10...0.45 • $\boldsymbol{U}_{\boldsymbol{n}}$ <br> - "A5": Display of "Test" OK <br> Without auxiliary power <br> Without signalling relay (without auxiliary contacts) |
| CAPDIS-S2+ | No maintenance <br> Integrated display <br> Integrated repeat test of the interfaces (self-testing) <br> Integrated function test (without auxiliary power) by pressing the "Test" key <br> Integrated 3-phase LRM measuring point for phase comparison <br> Display "AO" to "A6" <br> - "AO": Operating voltage not available. Active zero-voltage display <br> - "A1": Operating voltage ready <br> - "A2": Auxiliary power not available <br> - "A3": Phase failure in phase L1, e.g. earth fault, operating voltage present at L2 and L3 <br> - "A4": Voltage present. Shown in the range of 0.10...0.45 • $\boldsymbol{U}_{\boldsymbol{n}}$ <br> - "A5": Display of "Test" OK <br> - "A6": Display of ERROR, e.g. wire breakage or aux. power missing <br> Signalling relay (integrated, auxiliary power required) |

### 3.11 Fans added to GEAFOL and GEAFOL basic transformers

- Some of the GEAFOL transformers could be operated at a $40 \%$ higher output if a fan were added.
- Some of the GEAFOL basic transformers could be operated at a $20 \%$ higher output if a fan were added.

However, the "Fan added" property is not prompted when the transformer is created in step "1 Project Definition" $\rightarrow$ "B Create Project Structure", but can be selected in step " 2 System Planning" as a property of the respective transformer.


### 3.12 Technical Data for SIVACON S4 Low-voltage Switchboard

### 3.12.1 Cubicles

|  | Circuit-breaker design |  |
| :---: | :---: | :---: |
|  | Mounting design <br> Functions <br> Rated current $\boldsymbol{I}_{\boldsymbol{n}}$ <br> Connection type <br> Cubicle width [mm] <br> Internal subdivision <br> Busbar position | Fixed-mounted, withdrawable-unit design <br> Incoming/outgoing feeder, coupling $\max .3,200 \mathrm{~A}$ <br> Top / Bottom $400 / 600 / 800 / 1,200$ <br> Form 1, 2b, 3b, 4a, 4b <br> At the top |
|  | Fixed-mounting design with module doors |  |
|  | Mounting design <br> Functions <br> Rated current $\boldsymbol{I}_{\boldsymbol{n}}$ <br> Connection type <br> Cubicle width [mm] <br> Internal subdivision <br> Busbar position | Withdrawable unit, fixed-mounted, socket with module doors <br> Cable outlets <br> max. 1,600 A <br> Front and rear side 1,200/1,600 <br> Form 1, 2b, 3b, 4a, 4b <br> At the top |


|  | Fixed-mounted design with cubicle door / front cover |
| :--- | :--- | :--- |


|  | Special cubicles |  |
| :---: | :---: | :---: |
| 10m | Mounting design | Mounting plate, 19" guide frame |
|  | Functions | Any design |
|  | Cubicle width [mm] | $400 / 600 / 800 / 1,000 / 1,200$ (mounting plate) <br> 600 / 800 ( $19^{\prime \prime}$ guide frame) |
|  | Internal subdivision | Form 1, 2b |
|  | Busbar position | Top/without (mounting plate) Without (19" guide frame) |

### 3.12.2 Cable Connection

Please check the cable connection options at the cubicles!

### 3.12.3 Component Mounting Rules for Vented Cubicles with 3- or 4-pole In-line Switch Disconnectors

- Component mounting in the cubicle from bottom to top and decreasing from size 3 to size 00
- Recommended maximum component density per cubicle incl. reserve approx. 2/3
- Distribute in-line switch disconnectors of size 2 and 3 to different cubicles, if possible
- Total operating current per cubicle max. 2,000 A
- Rated currents of component sizes $=\mathbf{0 , 8} \cdot \boldsymbol{I}_{\boldsymbol{n}}$ of the largest fuse-link
- Rated currents of smaller fuse-links in same size $=\mathbf{0 , 8} \cdot \boldsymbol{I}_{\boldsymbol{n}}$ of the fuse-link

| Size | Grouping | Blanking covers with vent slots | Example |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 00 \\ & 1 \end{aligned}$ | Summation current of the group $\leq 400 \mathrm{~A}$ | 100 mm blanking cover below ${ }^{1)}$ the group | In-line unit <br> In-line unit size $00 / 1$ <br> In-line unit size $00 / 1$ <br> In-line unit size $00 / 1$ <br> In-line unit | Nominal current fuse: <br> 80 A <br> 125 A <br> 250 A <br> Total: | Operating current: $\begin{aligned} & 64 \mathrm{~A} \\ & 100 \mathrm{~A} \\ & 200 \mathrm{~A} \end{aligned}$ $364 \mathrm{~A}$ |
| 2 | Not permissible | 50 mm blanking cover below ${ }^{1)}$ the in-line unit | In-line unit <br> In-line unit size 2 <br> In-line unit | Nominal current fuse: $400 \mathrm{~A}$ | Operating current: $320 \mathrm{~A}$ |
| 3 | Not permissible <br> Operating current < 440 A | 50 mm blanking cover above and 100 mm blanking cover below ${ }^{1)}$ the in-line unit |  | Nominal current fuse: $500 \mathrm{~A}$ | Operating current: $400 \mathrm{~A}$ |
|  | Not permissible <br> Operating current from 440 A to 500 A | 100 mm blanking cover each above and below ${ }^{1)}$ the in-line unit |  | Nominal current fuse: <br> 630 A | Operating current: $500 \mathrm{~A}$ |

### 3.13 Technical Data of SIVACON S8 Low-voltage Switchgear

### 3.13.1 Cubicles

|  | Circuit-breaker design |  |
| :---: | :---: | :---: |
|  | Mounting technique Functions <br> Rated current $\boldsymbol{I}_{\boldsymbol{n}}$ <br> Connection type <br> Cubicle width (mm) <br> Internal separation: <br> Busbar position: | Fixed-mounted or withdrawable unit design System infeed, feeder, coupling max. 6,300 A <br> Front or rear side cables/ busbar trunking systems <br> 400 / $600 / 800 / 1,000 / 1,400$ <br> Form 1, 2b, 3a, 4b, 4 Type 7 (BS) <br> Rear / top |
|  | Universal mounting design |  |
|  | Mounting technique <br> Functions <br> Rated current $\boldsymbol{I}_{\boldsymbol{n}}$ <br> Connection type <br> Cubicle width (mm) <br> Internal separation <br> Busbar position | Withdrawable unit design, fixed mounted with compartment doors, plug-in design <br> Cable feeders, motor feeders (MCC) <br> max. 630 A / max. 250 kW <br> Front and rear side <br> 600 / 1,000 / 1,200 <br> Form 2b, 3b, 4a, 4b, 4 Type 7 (BS) <br> Rear / top |
|  | Fixed-mounted design |  |
|  | Mounting technique <br> Functions <br> Rated current $\boldsymbol{I}_{\boldsymbol{n}}$ <br> Connection type <br> Cubicle width (mm) <br> Internal separation <br> Busbar position | Fixed-mounted design with front cover <br> Cable feeders <br> max. 630 A <br> Front-mounted <br> 1,000 / 1,200 <br> Form 1, 2b, 3b, 4a, 4b <br> Rear / top |



|  | Network switching |  |
| :---: | :---: | :---: |
| $\square$ | Mounting technique <br> Functions | Fixed-mounted devices <br> Completely equipped network switching cubicle for control of 2 ACB / MCCB for automatic / manual switchover between mains and equivalent power supply network |
| 或回 |  |  |
|  | Rated current $\boldsymbol{I}_{\boldsymbol{n}}$ |  |
|  | Connection type |  |
|  | Cubicle width (mm) | 400 |
|  | Internal separation | Form 2b |
|  | Busbar position | Rear / top / none |
|  | Central earthing point |  |
| $\square$ | Mounting technique <br> Functions | Fixed-mounted devices <br> Central earthing point, usable for busbar systems L1, L3, PEN (insulated), PE |
|  |  |  |
|  | Rated current $\boldsymbol{I}_{\boldsymbol{n}}$ |  |
|  | Connection type | - |
|  | Cubicle width (mm) | 200 / 600 / 1,000 |
|  | Internal separation | Form 2b |
|  | Busbar position | Rear / top / none |

### 3.13.2 Cable connection

Please check the cable connection options of the cables at the panels/cubicles! Information can also be found in the section "Parallel cables in incoming and outgoing feeders in the SIVACON S8 system (low-voltage power distribution board)" of this manual.

### 3.13.3 Busbar Trunking Size for Connection Type "busbar trunking system for circuit-breaker design"

|  | Busbar trunking system - connection pieces for LD busbars with aluminium conductors busbar amperage |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | IP34, horizontal | IP34, vertical | IP54 |
| LDA<n> | LDA1 | max. 1,100 A | max. 950 A | max. 900 A |
|  | LDA2 | max. 1,250 A | max. 1,100 A | max. 1,000 A |
|  | LDA3 | max. 1,600 A | max. 1,250 A | max. 1,200 A |
|  | LDA4 | max. 2,000 A | max. 1,700 A | max. 1,500 A |
|  | LDA5 | max. 2,500 A | max. 2,100 A | max. 1,800 A |
|  | LDA6 | max. 3,000 A | max. 2,300 A | max. 2,000 A |
|  | LDA7 | max. 3,700 A | max. 2,800 A | max. 2,400 A |
|  | LDA8 | max. 4,000 A | max. 3,400 A | max. 2,700 A |


|  | Busbar trunking system - connection pieces for LD busbars with copper conductors busbar amperage |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | IP34, horizontal | IP34, vertical | IP54 |
| LDC<n> | LDC2 | max. 2,000 A | max. 1,650 A | max. 1,600 A |
|  | LDC3 | max. 2,600 A | max. 2,100 A | max. 2,000 A |
|  | LDC6 | max. 3,400 A | max. 2,700 A | max. 2,600 A |
|  | LDC7 | max. 4,400 A | max. 3,500 A | $\max$ 3,200 A |
|  | LDC8 | max. 5,000 A | max. 4,250 A | max. 3,600 A |


| LXA<n> | Busbar trunking system - connection pieces for LX busbars with aluminium conductors busbar amperage |  |
| :---: | :---: | :---: |
|  | LXA01... | max. 800 A |
|  | LXA02... | max. 1,000 A |
|  | LXA04... | max. 1,250 A |
|  | LXA05 | max. 1,600 A |
|  | LXA06 | max. 2,000 A |
|  | LXA07 | max. 2,500 A |
|  | LXA08... | max. 3,200 A |
|  | LXA09... | max. 4,000 A |
|  | LXA10... | max. 4,500 A |


|  | Busbar trunking system - connection pieces for LX busbars with copper conductors - <br> busbar amperage |  |
| :--- | :--- | :--- |
| LXC <n> | LXC01... | max. 1,000 A |
|  | LXA02... | max. 1,250 A |
|  | LXA04... | max. 1,600 A |
|  | LXA05 | max. 2,000 A |
|  | LXA06 | max. 2,500 A |
|  | LXA07 | max. 3,200 A |
|  | LXA08... | max. 4,000 A |
|  | LXA09... | max. 5,000 A |


|  | Busbar trunking system - connection pieces for LI busbars with aluminium conductors - <br> busbar amperage |  |
| :--- | :--- | :--- |
| LIA<n> | LIA1600 | max. $1,600 \mathrm{~A}$ |
|  | LIA2000 | max. $2,000 \mathrm{~A}$ |
|  | LIA2500 | max. $2,500 \mathrm{~A}$ |
|  | LIA3200 | max. $3,200 \mathrm{~A}$ |
|  | LIA4000 | max. $4,000 \mathrm{~A}$ |
|  | LIA5000 | max. $5,000 \mathrm{~A}$ |


|  | Busbar trunking system - connection pieces for LI busbars with copper conductors busbar amperage |  |
| :---: | :---: | :---: |
| LIC<n> | LIC1600 | max. 1,600 A |
|  | LIC2000 | max. 2,000 A |
|  | LIC2500 | max. 2,500 A |
|  | LIC2000 | max. 2,000 A |
|  | LIC3200 | max. 3,200 A |
|  | LIC4000 | max. 4,000 A |
|  | LIC5000 | max. 5,000 A |
|  | LIC6300 | max. 6,300 A |

For SIVACON S8 low-voltage switchgear there are special busbar trunking connectors available. These busbar trunking connectors allow the connection of 3 WL air circuit-breakers with the busbar trunking system. Therefore however it is necessary to have them installed as withdrawable unit in the switchgear.

### 3.13.4 Arcing Fault Levels

Arcing fault levels describe a classification based on the equipment properties under arcing fault conditions and the limitation of the effects of an arcing fault on the installation or parts thereof.
Testing of low-voltage switchgear under arcing fault conditions is a special test in compliance with IEC 61641 or VDE 0660 Part 500-2.


### 3.13.5 Equipment Rules for Ventilated Cubicles with 3- or 4-pole In-line Units

- Equipment in the cubicle from bottom to top, decreasing from size 3 to size 00
- Recommended maximum equipment per cubicle approximately $2 / 3$ including reserve
- Distribute size 2 and 3 in-line units on different cubicles to the extent possible.
- Summation operational current per cubicle max. 2,000 A
- Rated currents of the devices sizes $=\mathbf{0 . 8} \cdot \boldsymbol{I}_{n}$ of the largest fuse link
- Rated currents of smaller fuse links of one size $=\mathbf{0 . 8} \cdot \boldsymbol{I}_{n}$ of the fuse link

| Size | Grouping | Blanking covers with vent slots | Example |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 00 \\ & 1 \end{aligned}$ | Summation current of the group $\leq 400 \mathrm{~A}$ | 100 mm blanking cover below ${ }^{1)}$ the group | In-line unit <br> In-line unit size $00 / 1$ <br> In-line unit size $00 / 1$ <br> In-line unit size $00 / 1$ <br> In-line unit | Nominal current fuse: $80 \mathrm{~A}$ $125 \mathrm{~A}$ <br> 250 A <br> Total: | Operating current: <br> 64 A <br> 100 A <br> 200 A <br> 364 A |
| 2 | Not permissible | 50 mm blanking cover below ${ }^{1)}$ the in-line unit | In-line unit <br> In-line unit size 2 <br> In-line unit | Nominal current fuse: $400 \mathrm{~A}$ | Operating current: $320 \mathrm{~A}$ |
| 3 | Not permissible <br> Operating current < 440 A | 50 mm blanking cover above and 100 mm blanking cover below ${ }^{1)}$ the in-line unit |  | Nominal current fuse: $500 \mathrm{~A}$ | Operating current: $400 \mathrm{~A}$ |
|  | Not permissible <br> Operating current from 440 A to 500 A | 100 mm blanking cover each above and below ${ }^{1)}$ the in-line unit |  | Nominal current fuse: $630 \mathrm{~A}$ | Operating current: $500 \mathrm{~A}$ |

### 3.13.6 Derating tables

### 3.13.6.1 Rated current for 3WL air circuit breakers (ACB)

| Degree of protection |  | IP54 <br> (Non-ventilated) | $\begin{aligned} & \text { IP3X, IP4X } \\ & \text { (Venti- } \\ & \text { lated) } \end{aligned}$ | IP54 <br> (Non-ventilated) | IP3X, IP4X <br> (Ventilated) | IP54 <br> (Non-ventilated) | IP3X, IP4X (Ventilated) | IP54 <br> (Non-ventilated) | $\begin{aligned} & \text { IP3X, IP4X } \\ & \text { (Venti- } \\ & \text { lated) } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Busbar position Function |  | Rear Incoming, outgoing feeder |  |  |  |  |  |  |  |
| Cable/Busbar entry Type of connection |  | BottomCable, busbar CableRated current at $35^{\circ}[A]$ |  |  |  | Top <br> LD busbar |  | LX busbar |  |
| 630 | 1 | 630 | 630 | 630 | 630 |  |  |  |  |
| 800 | 1 | 800 | 800 | 800 | 800 |  |  |  |  |
| 1000 | 1 | 1000 | 1000 | 1000 | 1000 |  |  |  |  |
| 1250 | 1 | 1170 | 1250 | 1020 | 1190 |  |  |  |  |
| 1600 | 1 | 1410 | 1600 | 1200 | 1360 | 1440 | 1550 | 1250 | 1410 |
| 2000 | 1 | 1500 | 1840 | 1480 | 1710 | 1590 | 1740 | 1310 | 1570 |
| 2000 | II | 1630 | 1920 | 1880 | 2000 | 1630 | 1920 | 1660 | 1970 |
| 2500 | II | 1950 | 2320 | 1830 | 2380 | 2130 | 2330 | 1940 | 2230 |
| 3200 | II | 2470 | 2920 | 1990 | 2480 | 2440 | 2660 | 2160 | 2530 |
| 4000 | III | 2700 | 3700 | 2430 | 3040 | 2750 | 3120 | 2700 | 3110 |
| 5000 | III | 3590 | 4440 |  |  | 3590 | 4440 | 3580 | 4490 |
| 6300 | III | 3710 | 4780 |  |  |  |  | 3710 | 4780 |


| Degree of protection |  | IP54 <br> (Non-ventilated) | IP3X, IP4X (Ventilated) | IP54 <br> (Non-ventilated) | IP3X, IP4X (Ventilated) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Busbar position |  | Rear |  |  |  |
| Function |  | Bus coupler, longitudinal |  | Bus coupler, transverse |  |
| Nominal current [A] | Size | Rated current at $35^{\circ}$ [A] |  |  |  |
| 630 | 1 | 630 | 630 | 630 | 630 |
| 800 | 1 | 800 | 800 | 800 | 800 |
| 1000 | I | 1000 | 1000 | 1000 | 1000 |
| 1250 | 1 | 1140 | 1250 | 1170 | 1250 |
| 1600 | I | 1360 | 1600 | 1410 | 1600 |
| 2000 | 1 | 1630 | 1910 | 1500 | 1840 |
| 2000 | II | 1710 | 2000 | 1630 | 1920 |
| 2500 | II | 1930 | 2440 | 1950 | 2320 |
| 3200 | II | 2410 | 2700 | 2470 | 2920 |
| 4000 | III | 2650 | 3510 | 2700 | 3700 |
| 5000 | III | 3310 | 4460 |  |  |
| 6300 | III | 3300 | 5060 |  |  |

$\left.\begin{array}{|l|l||l|l|l|l|l}\hline \text { Degree of protection } & \begin{array}{l}\text { IP54 } \\ \text { (Non- } \\ \text { ventilat- } \\ \text { ed) }\end{array} & \begin{array}{l}\text { IP3X, IP4X } \\ \text { (Ventilat- } \\ \text { ed) }\end{array} & \begin{array}{l}\text { IP54 } \\ \text { (Non- } \\ \text { ventilat- } \\ \text { ed) }\end{array} & \begin{array}{l}\text { IP3X, IP4X } \\ \text { (Ventilat- } \\ \text { ed) }\end{array} & \begin{array}{l}\text { IP54 } \\ \text { (Non- } \\ \text { ventilat- } \\ \text { ed) }\end{array} & \begin{array}{l}\text { IP3X, IP4X } \\ \text { (Ventilat- } \\ \text { ed) }\end{array} \\ \hline \text { Busbar position } & \text { Top } \\ \text { Incoming, outgoing feeder }\end{array}\right]$

| Degree of <br> protection | IP54 <br> (Non- <br> ventilated) | IP3X, IP4X (Ven- <br> tilated) |  |
| :--- | :--- | :--- | :--- |
| Busbar position | Rear |  |  |
| Function <br> Nominal <br> current [A] | Size | Bus coupler, longitudinal <br> Rated current at $35^{\circ}$ [A] |  |
| 630 | I | 630 | 630 |
| 800 | I | 800 | 800 |
| 1000 | I | 930 | 1000 |
| 1250 | I | 1160 | 1250 |
| 1600 | I | 1390 | 1600 |
| 2000 | I | 1500 | 1850 |
| 2000 | II | 1630 | 1930 |
| 2500 | II | 1960 | 2360 |
| 3200 | II | 2200 | 2700 |
| 4000 | III | 2840 | 3670 |
| 5000 | III | 3660 | 4720 |
| 6300 | III | 3920 | 5180 |

### 3.13.6.2 Rated current for 3WT air circuit breakers (ACB)

| Degree of protection |  | IP54 <br> (Non-ventilated) | IP3X, IP4X <br> (Ventilated) | IP54 <br> (Non-ventilated) | IP3X, IP4X <br> (Ventilated) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Busbar position |  | Rear |  |  |  |
| Function |  | Incoming, outgoing feeder |  |  |  |
| Cable/ Busbar entry |  | Bottom |  | Top |  |
| Type of connection |  | Cable, busbar <br> Rated current at $35^{\circ}[\mathrm{A}]$ |  |  |  |
| Nominal current [A] | Size |  |  |  |  |
| 630 | I | 630 | 630 | 630 | 630 |
| 800 | I | 800 | 800 | 800 | 800 |
| 1000 | 1 | 1000 | 1000 | 915 | 1000 |
| 1250 | I | 1160 | 1250 | 1060 | 1250 |
| 1600 | I | 1500 | 1600 | 1220 | 1370 |
| 2000 | II | 1710 | 1980 | 1710 | 1980 |
| 2500 | II | 2030 | 2400 | 1930 | 2210 |
| 3200 | II | 2290 | 2690 | 2020 | 2340 |


| Degree of protection | IP54 <br> (Non- <br> ventilat- <br> ed) | IP3X, IP4X <br> (Ventilat- <br> ed) | IP54 <br> (Non- <br> ventilat- <br> ed) | IP3X, IP4X <br> (Ventilat- <br> ed) |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Busbar position | Rear |  |  |  |  |
| Function |  |  |  |  |  |
| Nominal <br> current [A] | Size | Bus coupler, longitu- <br> dinal <br> Rated current at 35 | Bus coupler, trans- <br> verse |  |  |
| 630 | I | 630 | 630 | 630 | 630 |
| 800 | I | 800 | 800 | 800 | 800 |
| 1000 | I | 1000 | 1000 | 1000 | 1000 |
| 1250 | I | 1230 | 1250 | 1160 | 1250 |
| 1600 | I | 1430 | 1640 | 1500 | 1600 |
| 2000 | II | 1660 | 1950 | 1710 | 1980 |
| 2500 | II | 2180 | 2460 | 2030 | 2400 |
| 3200 | II | 2290 | 2690 | 2290 | 2690 |


| Degree of protection | IP54 <br> (Non- <br> ventilated) | IP3X, IP4X (Ven- <br> tilated) |
| :--- | :--- | :--- |
| Busbar position | Top |  |


| Degree of protection | IP54 <br> (Non- <br> ventilated) | IP3X, IP4X (Ven- <br> tilated) |  |
| :--- | :--- | :--- | :--- |
| Busbar position <br> Function <br> Nominal <br> current [A] | Size | Bus coupler, longitudinal <br> Rated current at $35^{\circ}$ [A] |  |
| 630 | I | 630 | 630 |
| 800 | I | 800 | 800 |
| 1000 | I | 860 | 1000 |
| 1250 | I | 995 | 1250 |
| 1600 | I | 1420 | 1600 |
| 2000 | II | 1440 | 1810 |
| 2500 | II | 1760 | 2200 |
| 3200 | II | 1980 | 2380 |

### 3.13.6.3 Rated current for 3VL moulded-case circuit breakers (MCCB) (single cubicle)

| Degree of protection | IP54 <br> (Non- <br> ventilat- <br> ed) | IP3X, IP4X <br> (Ventilat- <br> ed) | IP54 <br> (Non- <br> ventilat- <br> ed) | IP3X, IP4X <br> (Ventilat- <br> ed) |
| :--- | :--- | :--- | :--- | :--- |
| Busbar position | Rear |  |  |  |
| Function | Incoming, outgoing feeder |  |  |  |
| Cable/ Busbar entry | Bottom | Top |  |  |
| Type of connection <br> Nominal current [A] | Cable <br> Rated current at 35 |  |  |  |
| 630 | 515 | 570 | Cable |  |
| 800 | 655 | 720 | 605 | 660 |
| 1250 | 890 | 1100 | 775 | 980 |
| 1600 | 1050 | 1200 | 915 | 1070 |


| Degree of protection | IP54 <br> (Non- <br> ventilat- <br> ed) | IP3X, IP4X <br> (Ventilat- <br> ed) |
| :--- | :--- | :--- |
| Busbar position | Top |  |
| Function | Incoming, outgoing <br> feeder |  |
| Cable/ Busbar entry | Bottom |  |
| Type of connection <br> Nominal current [A] | Cable <br> Rated current at 35 <br> [A] |  |
| 630 | 540 | 570 |
| 800 | 685 | 720 |
| 1250 | 890 | 1100 |
| 1600 | 900 | 1100 |

### 3.13.7 Frequency converters

### 3.13.7.1 Built-in units

Allowed output current depending on the ambient operation temperature of the converter (valid until 1000 m above NN ):


Ambient operating temperature $=$ temperature within the cubicle

### 3.13.7.2 Frequency converter

(Cabinet units for application "pumping, ventilating, compressing")
Permissible output current depending on the ambient operation temperature of the converter (valid until 1000 m above NN):


Ambient temperature $=$ temperature within the cubicle

### 3.13.7.3 Frequency converter <br> (Cabinet units for application "moving" and "processing")

Permissible output current depending on the ambient operation temperature of the converter (valid until 2000 m above NN):


### 3.13.8 Installation - clearances and gangway width



Leave a space of at least 400 mm above the cubicles !

1) Back-to-back installation: 200 mm ( $300 \mathrm{~mm}{ }^{2}$ )
${ }^{2}$ ) Only for IP43 (projecting of the top plate)
2) While adding of the right cubicle, the protrusion of the main busbar connecting brackets must considered! Top busbar position: protrusion $90 \mathrm{~mm} \rightarrow$ recommended clearances $>150 \mathrm{~mm}$ protrusion $54 \mathrm{~mm} \rightarrow$ recommended clearances $>100 \mathrm{~mm}$

Attention: All dimensions refer to the frame dimensions (nominal cubicle size) !


${ }^{2}$ Clrcult-breaker in
the "completely extracted and isolated" position
${ }^{23}$ Handles (e.g. for controls or equipment)

${ }^{0}$ Circult breaker fully withdrawn
${ }^{23}$ Door fixed in open position


### 3.14 Technical Data of <br> SIVACON 8PT Low-voltage Switchgear (only for China)

### 3.14.1 Cubicles

|  | Circuit breaker system for 1 circuit breaker |  |
| :---: | :---: | :---: |
|  | Installation systems: <br> Functions: <br> Rated current $\boldsymbol{I}_{\boldsymbol{n}}$ : <br> Connection position: <br> Section width (mm): <br> Internal separation: <br> Busbar position: | Fixed-mounted design, Withdrawable design <br> Supply, Feeder, Coupling <br> up to 6,300 A <br> front or rear <br> Cable / busbar trunking system <br> 400 / 600 / 800 / 1,000 <br> Form 1, 2b, 3a, 4b <br> top |
|  | Circuit breaker system for 2 circuit breaker |  |
|  | Installation systems: <br> Functions: <br> Rated current $\boldsymbol{I}_{\boldsymbol{n}}$ : <br> Connection position: <br> Section width (mm): <br> Internal separation: <br> Busbar position: | Fixed-mounted design, Withdrawable design <br> Supply, Feeder, Coupling <br> $2,000 / 2,500 \mathrm{~A}$ <br> front or rear <br> Cable / busbar trunking system <br> $600 / 800 / 1,000$ <br> Form 1, 3a <br> top |
|  | Circuit breaker system for 3 circuit breaker |  |
|  | Installation systems: <br> Functions: <br> Rated current $\boldsymbol{I}_{\boldsymbol{n}}$ : <br> Connection position: <br> Section width (mm): <br> Internal separation: <br> Busbar position: | Fixed-mounted design, Withdrawable design <br> Supply, Feeder <br> up to $1,600 \mathrm{~A}$ <br> front or rear <br> Cable / busbar trunking system <br> $600 / 1,000 / 1$,200 <br> Form 1, 3a <br> top |


|  | Withdrawable unit design with front doors |  |
| :---: | :---: | :---: |
| 1000 | Installation systems: <br> Functions: <br> Rated current $\boldsymbol{I}_{\boldsymbol{n}}$ : <br> Connection position: <br> Section width (mm): <br> Internal separation: <br> Busbar position: | Withdrawable unit design with front doors <br> Cable feeders, Motor feeders (MCC) <br> up to 630 A <br> front or side right <br> 600 / 1,000 <br> Form 3b, 4b <br> top |
|  | Fixed-mounted design with front covers OFF1 |  |
|  | Installation systems: <br> Functions: <br> Rated current $\boldsymbol{I}_{\boldsymbol{n}}$ : <br> Connection position: <br> Section width (mm): <br> Internal separation: <br> Busbar position: | Fixed-mounted or plug-in design with front covers <br> Cable feeders <br> up to 630 A <br> front or side right <br> 600 / 800 / 1,000 <br> Form 1, 2b <br> top |
|  | Fixed-mounted design with front doors, connection right, OFF2 |  |
|  | Installation systems: <br> Functions: <br> Rated current $\boldsymbol{I}_{\boldsymbol{n}}$ : <br> Connection position: <br> Section width (mm): <br> Internal separation: <br> Busbar position: | Fixed-mounted or plug-in design with front doors <br> Cable feeders <br> up to 630 A <br> side right <br> 1,000 <br> Form 4a <br> top |


|  | Fixed-mounted design with front doors, connection rear, OFF3 |
| :--- | :--- | :--- |

### 3.14.2 Derating tables

### 3.14.2.1 Rated Currents for 1 Circuit-breaker/Cubicle with 3WT

| Rated currents $\boldsymbol{I}_{\boldsymbol{n}}$ as a function of ambient temperature Incoming feeder or outgoing feeder function |  |  |  |  |  |  |  |  |  |  |  |  |  | 3WT |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Non-ventilated |  |  |  |  |  |  | Ventilated |  |  |  |  |  |  | Type | Rated current [A] |
| $\begin{aligned} & 20^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 25^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 30^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 35^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 40^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 45^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 50^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 20^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 25^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 30^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 35^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 40^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 45^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 50^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ |  |  |
| 630 | 630 | 630 | 630 | 630 | 630 | 630 | 630 | 630 | 630 | 630 | 630 | 630 | 630 | 3WT806 | 630 |
| 800 | 800 | 800 | 800 | 800 | 800 | 800 | 800 | 800 | 800 | 800 | 800 | 800 | 800 | 3WT808 | 800 |
| 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 3WT810 | 1000 |
| 1250 | 1250 | 1250 | 1250 | 1250 | 1220 | 1180 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 3WT812 | 1250 |
| 1600 | 1600 | 1580 | 1540 | 1500 | 1450 | 1410 | 1600 | 1600 | 1600 | 1600 | 1600 | 1600 | 1590 | 3WT816 | 1600 |
| 2000 | 2000 | 2000 | 2000 | 2000 | 1950 | 1890 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 3WT820 | 2000 |
| 2500 | 2500 | 2450 | 2390 | 2330 | 2260 | 2190 | 2500 | 2500 | 2500 | 2500 | 2500 | 2500 | 2490 | 3WT825 | 2500 |
| 2750 | 2690 | 2620 | 2560 | 2490 | 2420 | 2340 | 3150 | 3070 | 3000 | 2920 | 2850 | 2770 | 2680 | 3WT832 | 3200 |


| Rated currents $\boldsymbol{I}_{\boldsymbol{n}}$ as a function of ambient temperature |  |  |  |  |  |  |  |  |  |  |  |  |  | 3WT |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Coupling function Non-ventilated |  |  |  |  |  |  |  |  |  |  |  |  |  | Type | Rated current [A] |
| Non-ventilated |  |  |  |  |  |  | Ventilated |  |  |  |  |  |  |  |  |
| $\begin{aligned} & 20^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 25^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 30^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 35^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 40^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 45^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 50^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 20^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 25^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 30^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 35^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 40^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 45^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 50^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ |  |  |
| 630 | 630 | 630 | 630 | 630 | 630 | 630 | 630 | 630 | 630 | 630 | 630 | 630 | 630 | 3WT806 | 630 |
| 800 | 800 | 800 | 800 | 800 | 800 | 800 | 800 | 800 | 800 | 800 | 800 | 800 | 800 | 3WT808 | 800 |
| 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 3WT810 | 1000 |
| 1250 | 1250 | 1250 | 1250 | 1220 | 1190 | 1150 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 3WT812 | 1250 |
| 1590 | 1540 | 1490 | 1440 | 1390 | 1340 | 1280 | 1600 | 1600 | 1600 | 1600 | 1600 | 1580 | 1520 | 3WT816 | 1600 |
| 2000 | 2000 | 2000 | 2000 | 2000 | 1950 | 1890 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 3WT820 | 2000 |
| 2500 | 2500 | 2480 | 2420 | 2350 | 2290 | 2220 | 2500 | 2500 | 2500 | 2500 | 2500 | 2500 | 2460 | 3WT825 | 2500 |
| 2590 | 2530 | 2470 | 2400 | 2340 | 2270 | 2210 | 3000 | 2930 | 2860 | 2790 | 2710 | 2640 | 2560 | 3WT832 | 3200 |

### 3.14.2.2 Rated Currents for 2 Circuit-breakers/Cubicle with 3WT

With cubicle type 2 ACB/cubicle the rated currents are specified according the installation position of the circuit-breaker.

| Rated currents $\boldsymbol{I}_{\boldsymbol{n}}$ as a function of ambient temperature Incoming feeder or outgoing feeder or coupling function |  |  |  |  |  |  |  |  |  |  |  |  |  | 3WT |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Rated current [A] |
| Non-ventilated |  |  |  |  |  |  | Ventilated |  |  |  |  |  |  | Type |  |
| $\begin{aligned} & 20^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 25^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 30^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 35^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 40^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 45^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 50^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 20^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 25^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 30^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 35^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 40^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 45^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 50^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ |  |  |
| Installation position top |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1790 | 1750 | 1710 | 1660 | 1620 | 1570 | 1530 | 2000 | 2000 | 2000 | 2000 | 1990 | 1940 | 1880 | 3WT820 | 2000 |
| 2060 | 2010 | 1960 | 1910 | 1860 | 1810 | 1750 | 2470 | 2410 | 2350 | 2290 | 2230 | 2170 | 2100 | 3WT825 | 2500 |
| Installation position below |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1910 | 1870 | 1820 | 1770 | 1730 | 1680 | 1630 | 2000 | 2000 | 2000 | 2000 | 1970 | 1920 | 1860 | 3WT820 | 2000 |
| 2280 | 2220 | 2170 | 2120 | 2060 | 2000 | 1940 | 2500 | 2500 | 2500 | 2500 | 2490 | 2420 | 2350 | 3WT825 | 2500 |

### 3.14.2.3 Rated Currents for 3 Circuit-breakers/Cubicle with 3WT

With cubicle type 3 ACB/cubicle the rated currents are specified according the installation position of the circuit-breaker.
ATTENTION: Consider the rated current of the vertical busbars while projecting the cubicle!

| Rated currents $\boldsymbol{I}_{\boldsymbol{n}}$ with vertical busbars as a function of ambient temperature |  |  |  |  |  |  |  |  |  |  |  |  |  | Installation position |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Non-ventilated |  |  |  |  |  |  | Ventilated |  |  |  |  |  |  |  |
| $\begin{aligned} & 20^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 25^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 30^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 35^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 40^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 45^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 50^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 20^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 25^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 30^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 35^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 40^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 45^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 50^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ |  |
| 3175 | 3100 | 3025 | 2950 | 2870 | 2790 | 2705 | 4090 | 3995 | 3900 | 3800 | 3700 | 3595 | 3485 | $\Sigma$ below, middle, top |
| 2260 | 2210 | 2155 | 2100 | 2045 | 1985 | 1925 | 2905 | 2840 | 2770 | 2700 | 2630 | 2555 | 2480 | $\Sigma$ below, middle |


| Rated | urrent | $I_{n}$ as | funct | of | ien | mp | ure |  |  |  |  |  |  | 3WT |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Installation position optional |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Non-ventilated |  |  |  |  |  |  | Ventilated |  |  |  |  |  |  | Type | Rated current [A] |
| $\begin{aligned} & 20^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 25^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 30^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 35^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 40^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 45^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 50^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 20^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 25^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 30^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 35^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 40^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 45^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 50^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ |  |  |
| 630 | 630 | 630 | 630 | 630 | 630 | 600 | 630 | 630 | 630 | 630 | 630 | 630 | 630 | 3WT806 | 630 |
| 800 | 800 | 800 | 800 | 800 | 780 | 750 | 800 | 800 | 800 | 800 | 800 | 795 | 765 | 3WT808 | 800 |
| 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 3WT810 | 1000 |

Installation position top

| 1160 | 1135 | 1110 | 1080 | 1050 | 1020 | 990 | 1250 | 1250 | 1250 | 1250 | 1215 | 1180 | 1145 | $3 W T 812$ | 1250 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1160 | 1135 | 1110 | 1080 | 1050 | 1020 | 990 | 1345 | 1315 | 1280 | 1250 | 1215 | 1180 | 1145 | $3 W T 816$ | 1600 |

Installation position middle

| 1185 | 1155 | 1130 | 1100 | 1070 | 1040 | 1010 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | $3 W T 812$ | 1250 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1185 | 1155 | 1130 | 1100 | 1070 | 1040 | 1010 | 1455 | 1420 | 1385 | 1350 | 1315 | 1275 | 1240 | $3 W T 816$ | 1600 |

Installation position below

| 1345 | 1315 | 1280 | 1250 | 1215 | 1180 | 1145 | 1345 | 1315 | 1280 | 1250 | 1215 | 1180 | 1145 | $3 W T 812$ | 1250 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1505 | 1470 | 1435 | 1400 | 1365 | 1325 | 1285 | 1600 | 1600 | 1600 | 1600 | 1555 | 1515 | 1470 | $3 W T 816$ | 1600 |

### 3.14.2.4 Rated Currents for 1 Circuit-breaker/Cubicle with 3WL

| Rated currents $\boldsymbol{I}_{\boldsymbol{n}}$ depending on ambient temperature |  |  |  |  |  |  |  |  |  |  |  |  |  | 3WL |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Function incoming supply or outgoing feeder |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Non-ventilated |  |  |  |  |  |  | Ventilated |  |  |  |  |  |  | Type | Rated current [A] |
| $\begin{aligned} & 20^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 25^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 30^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 35^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 40^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 45^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 50^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 20^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 25^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 30^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 35^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 40^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 45^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 50^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ |  |  |
| 630 | 630 | 630 | 630 | 630 | 630 | 630 | 630 | 630 | 630 | 630 | 630 | 630 | 630 | 3WL1106 | 630 |
| 800 | 800 | 800 | 800 | 800 | 800 | 800 | 800 | 800 | 800 | 800 | 800 | 800 | 800 | 3WL1108 | 800 |
| 1000 | 1000 | 980 | 955 | 930 | 900 | 875 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 3WL1110 | 1000 |
| 1250 | 1220 | 1190 | 1160 | 1130 | 1100 | 1060 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1240 | 3WL1112 | 1250 |
| 1580 | 1550 | 1510 | 1470 | 1430 | 1390 | 1350 | 1600 | 1600 | 1600 | 1600 | 1600 | 1600 | 1600 | 3WL1116 | 1600 |
| 1910 | 1870 | 1830 | 1780 | 1730 | 1680 | 1630 | 2000 | 2000 | 2000 | 2000 | 2000 | 1950 | 1890 | 3WL1220 | 2000 |
| 1250 | 1220 | 1190 | 1160 | 1130 | 1100 | 1060 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1240 | 3WL1112 | 1250 |
| 1580 | 1550 | 1510 | 1470 | 1430 | 1390 | 1350 | 1600 | 1600 | 1600 | 1600 | 1600 | 1600 | 1600 | 3WL1116 | 1600 |
| 1910 | 1870 | 1830 | 1780 | 1730 | 1680 | 1630 | 2000 | 2000 | 2000 | 2000 | 2000 | 1950 | 1890 | 3WL1220 | 2000 |
| 2210 | 2160 | 2100 | 2050 | 2000 | 1940 | 1880 | 2500 | 2500 | 2500 | 2440 | 2380 | 2310 | 2240 | 3WL1225 | 2500 |
| 2530 | 2470 | 2410 | 2350 | 2290 | 2220 | 2160 | 3010 | 2940 | 2870 | 2800 | 2720 | 2650 | 2570 | 3WL1232 | 3200 |
| 3760 | 3680 | 3590 | 3500 | 3400 | 3310 | 3210 | 4000 | 4000 | 4000 | 4000 | 4000 | 3930 | 3810 | 3WL1340 | 4000 |
| 3860 | 3770 | 3680 | 3590 | 3490 | 3400 | 3290 | 4740 | 4630 | 4520 | 4400 | 4280 | 4160 | 4040 | 3WL1350 | 5000 |
| 4860 | 4750 | 4630 | 4520 | 4390 | 4270 | 4140 | 5720 | 5610 | 5500 | 5390 | 5280 | 5160 | 5040 | 3WL1363 | 6300 |

Rated currents $\boldsymbol{I}_{\boldsymbol{n}}$ depending on ambient temperature
Function longitudinal coupler

| Non-ventilated |  |  |  |  |  |  | Ventilated |  |  |  |  |  |  | Type | Rated current [A] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 20^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 25^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 30^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 35^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 40^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 45^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 50^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 20^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 25^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 30^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 35^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 40^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 45^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 50^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ |  |  |
| 630 | 630 | 630 | 630 | 630 | 630 | 630 | 630 | 630 | 630 | 630 | 630 | 630 | 630 | 3WL1106 | 630 |
| 800 | 800 | 800 | 800 | 800 | 785 | 760 | 800 | 800 | 800 | 800 | 800 | 800 | 800 | 3WL1108 | 800 |
| 895 | 875 | 850 | 830 | 810 | 785 | 760 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 995 | 3WL1110 | 1000 |
| 1180 | 1160 | 1130 | 1100 | 1070 | 1040 | 1010 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 3WL1112 | 1250 |
| 1540 | 1510 | 1470 | 1430 | 1390 | 1360 | 1310 | 1600 | 1600 | 1600 | 1600 | 1600 | 1600 | 1590 | 3WL1116 | 1600 |
| 2000 | 1980 | 1920 | 1850 | 1780 | 1710 | 1640 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 1970 | 3WL1220 | 2000 |
| 2280 | 2210 | 2140 | 2070 | 1990 | 1910 | 1830 | 2500 | 2500 | 2500 | 2480 | 2390 | 2300 | 2200 | 3WL1225 | 2500 |
| 2470 | 2400 | 2320 | 2240 | 2160 | 2080 | 1990 | 3140 | 3050 | 2950 | 2850 | 2750 | 2640 | 2530 | 3WL1232 | 3200 |
| 3510 | 3430 | 3350 | 3270 | 3180 | 3090 | 3000 | 4200 | 4100 | 4000 | 3900 | 3800 | 3690 | 3580 | 3WL1340 | 4000 |
| 3790 | 3700 | 3610 | 3520 | 3430 | 3330 | 3230 | 4980 | 4870 | 4750 | 4630 | 4510 | 4380 | 4250 | 3WL1350 | 5000 |
| 4570 | 4460 | 4350 | 4240 | 4130 | 4010 | 3890 | 5570 | 5440 | 5310 | 5180 | 5040 | 4900 | 4750 | 3WL1363 | 6300 |

### 3.14.2.5 Rated currents for 2 Circuit-breakers/Cubicle with 3WL, Rear Connection

With cubicle type $2 \mathrm{ACB} / c u b i c l e ~ t h e ~ r a t e d ~ c u r r e n t s ~ a r e ~ s p e c i f i e d ~ a c c o r d i n g ~ t o ~ t h e ~ i n s t a l l a t i o n ~ p o s i t i o n ~ o f ~ t h e ~ c i r c u i t-b r e a k e r . ~$
ATTENTION: max. $I_{c w}=65 k A, 1 \mathrm{~s}$ at cable connection rear

| Rate | urre | $I_{n}$ | nd | on | bien | per |  |  |  |  |  |  |  | 3WL |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Function incoming feeder or outgoing feeder |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Non-ventilated |  |  |  |  |  |  | Ventilated |  |  |  |  |  |  |  |  |
| $20^{\circ}$ | $25^{\circ}$ | $30^{\circ}$ | $35^{\circ}$ | $40^{\circ}$ | $45^{\circ}$ | $50^{\circ}$ | $20^{\circ}$ | $25^{\circ}$ | $30^{\circ}$ | $35^{\circ}$ | $40^{\circ}$ | $45^{\circ}$ | $50^{\circ}$ | Type | Rated |
| [A] | [ A ] | [A] | [ A ] | [A] | [ A ] | [A] | [A] |  | current [A] |

Installation position top

| 1870 | 1830 | 1790 | 1740 | 1690 | 1650 | 1600 | 1960 | 1910 | 1870 | 1820 | 1770 | 1720 | 1670 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $3 W L 1220$ | 2000 |  |  |  |  |  |  |  |  |  |  |  |  |
| 1930 | 1870 | 1810 | 1750 | 1690 | 1620 | 1550 | 2270 | 2200 | 2130 | 2060 | 1990 | 1910 | 1830 |

Installation position below

| 1760 | 1760 | 1760 | 1760 | 1710 | 1660 | 1620 | 1840 | 1840 | 1840 | 1840 | 1790 | 1740 | 1690 | $3 W L 1220$ | 2000 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2200 | 2200 | 2200 | 2200 | 2140 | 2080 | 2020 | 2310 | 2310 | 2310 | 2310 | 2250 | 2190 | 2120 | $3 W L 1225$ | 2500 |


|  | rre | , | endi | on | bient | mpe |  |  |  |  |  |  |  | 3WL |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Function incoming feeder or outgoing feeder and coupler |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Non-ventilated |  |  |  |  |  |  | Ventilated |  |  |  |  |  |  |  |  |
| $\begin{aligned} & 20^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 25^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 30^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 35^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 40^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 45^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 50^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 20^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 25^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 30^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 35^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 40^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 45^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 50^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | Type | Rated current [A] |

Installation position top (coupler)

| 1780 | 1740 | 1700 | 1650 | 1610 | 1570 | 1520 | 1860 | 1810 | 1780 | 1730 | 1680 | 1630 | 1590 | $3 W L 1220$ | 2000 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1830 | 1780 | 1720 | 1660 | 1610 | 1540 | 1470 | 2160 | 2090 | 2020 | 1960 | 1890 | 1810 | 1740 | $3 W L 1225$ | 2500 |

Installation position below (incoming feeder or outgoing feeder)

| 1670 | 1670 | 1670 | 1670 | 1620 | 1580 | 1540 | 1750 | 1750 | 1750 | 1750 | 1700 | 1650 | 1610 | $3 W L 1220$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2090 | 2090 | 2090 | 2090 | 2030 | 1980 | 1920 | 2190 | 2190 | 2190 | 2190 | 2140 | 2080 | 2010 | $3 W L 1225$ |
| 2500 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

### 3.14.2.6 Rated Currents for 2 Circuit-breakers/Cubicle with 3WL, Front Connection



| Rated currents $\boldsymbol{I}_{\boldsymbol{n}}$ depending on ambient temperature |  |  |  |  |  |  |  |  |  |  |  |  |  | 3WL |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Function incoming feeder or outgoing feeder |  |  |  |  |  |  |  |  |  |  |  |  |  | Type | Rated current [A] |
| Non-ventilated |  |  |  |  |  |  | Ventilated |  |  |  |  |  |  |  |  |
| $\begin{aligned} & 20^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 25^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 30^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 35^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 40^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 45^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 50^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 20^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 25^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 30^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 35^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 40^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 45^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 50^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ |  |  |
| Installation position top |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1380 | 1340 | 1310 | 1270 | 1240 | 1210 | 1170 | 1890 | 1840 | 1800 | 1760 | 1710 | 1660 | 1610 | 3WL1220 | 2000 |
| 1380 | 1340 | 1310 | 1270 | 1240 | 1210 | 1170 | 2090 | 2040 | 2000 | 1940 | 1890 | 1830 | 1790 | 3WL1225 | 2500 |
| Installation position below |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1380 | 1380 | 1380 | 1380 | 1340 | 1300 | 1260 | 1770 | 1770 | 1770 | 1770 | 1720 | 1670 | 1620 | 3WL1220 | 2000 |
| 1720 | 1720 | 1720 | 1720 | 1670 | 1620 | 1580 | 2210 | 2210 | 2210 | 2210 | 2160 | 2090 | 2030 | 3WL1225 | 2500 |

Rated currents $\boldsymbol{I}_{n}$ depending on ambient temperature
Function incoming feeder or outgoing feeder and coupler

| Non-ventilated |  |  |  |  |  |  | Ventilated |  |  |  |  |  |  | Type | Rated current [A] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $20^{\circ}$ | $25^{\circ}$ | $30^{\circ}$ | $35^{\circ}$ | $40^{\circ}$ | $45^{\circ}$ | $50^{\circ}$ | $20^{\circ}$ | $25^{\circ}$ | $30^{\circ}$ | $35^{\circ}$ | $40^{\circ}$ | $45^{\circ}$ | $50^{\circ}$ |  |  |
| [A] | [ A ] | [A] | [A] |  |  |

Installation position top (coupler)

| 1450 | 1410 | 1380 | 1340 | 1310 | 1270 | 1230 | 1990 | 1940 | 1890 | 1850 | 1800 | 1750 | 1690 | $3 W L 1220$ | 2000 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1450 | 1410 | 1380 | 1340 | 1310 | 1270 | 1230 | 2200 | 2150 | 2100 | 2040 | 1990 | 1930 | 1880 | $3 W L 1225$ | 2500 | In (incoming feeder or outgoing feeder)

## 3WL1220 operated alone:

$\boldsymbol{I}_{\boldsymbol{n}}=2000 \mathrm{~A}$, applies for incoming feeder, outgoing feeder and coupling, ventilated and non-ventilated

## 3WL1225 operated alone:

$\boldsymbol{I}_{n}=2500 \mathrm{~A}$, applies for incoming feeder, outgoing feeder and coupling, ventilated

### 3.14.2.7 Rated Currents for 3 Circuit-breakers/Cubicle with 3WL

## No test results are available for 3WL yet; the rated currents were taken over from 3WN

With cubicle type $3 \mathrm{ACB} /$ cubicle the rated currents are specified according the installation position of the circuit-breaker.

## ATTENTION: Consider the rated current of the vertical busbars while projecting the cubicle!

| Rated currents $\boldsymbol{I}_{\boldsymbol{n}}$ with vertical busbars as a function of ambient temperature |  |  |  |  |  |  |  |  |  |  |  |  |  | Installation position |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Non-ventilated |  |  |  |  |  |  | Ventilated |  |  |  |  |  |  |  |
| $\begin{aligned} & 20^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 25^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 30^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 35^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 40^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 45^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 50^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 20^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 25^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 30^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 35^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 40^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 45^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 50^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ |  |
| 3175 | 3100 | 3025 | 2950 | 2870 | 2790 | 2705 | 4090 | 3995 | 3900 | 3800 | 3700 | 3595 | 3485 | $\Sigma$ below, middle, top |
| 2260 | 2210 | 2155 | 2100 | 2045 | 1985 | 1925 | 2905 | 2840 | 2770 | 2700 | 2630 | 2555 | 2480 | $\boldsymbol{\Sigma}$ below, middle |


| Rated | rent | as | nct | of | bient | emper | ure |  |  |  |  |  |  | 3WL |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Installation position optional |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Non-ventilated |  |  |  |  |  |  | Ventilated |  |  |  |  |  |  |  |  |
| $\begin{aligned} & 20^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 25^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 30^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 35^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 40^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 45^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 50^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 20^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 25^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 30^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 35^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 40^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 45^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 50^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | Type | Rated current [A] |
| 630 | 630 | 630 | 630 | 630 | 630 | 600 | 630 | 630 | 630 | 630 | 630 | 630 | 630 | 3WL1106 | 630 |
| 800 | 800 | 800 | 800 | 800 | 780 | 750 | 800 | 800 | 800 | 800 | 800 | 795 | 765 | 3WL1108 | 800 |
| 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 3WL1110 | 1000 |

## Installation position top

| 1160 | 1135 | 1110 | 1080 | 1050 | 1020 | 990 | 1250 | 1250 | 1250 | 1250 | 1215 | 1180 | 1145 | 3WL1112 | 1250 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1160 | 1135 | 1110 | 1080 | 1050 | 1020 | 990 | 1345 | 1315 | 1280 | 1250 | 1215 | 1180 | 1145 | 3WL1116 | 1600 |
| Installation position middle |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1185 | 1155 | 1130 | 1100 | 1070 | 1040 | 1010 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 3WL1112 | 1250 |
| 1185 | 1155 | 1130 | 1100 | 1070 | 1040 | 1010 | 1455 | 1420 | 1385 | 1350 | 1315 | 1275 | 1240 | 3WN1116 | 1600 |

Installation position below

| 1345 | 1315 | 1280 | 1250 | 1215 | 1180 | 1145 | 1345 | 1315 | 1280 | 1250 | 1215 | 1180 | 1145 | 3WL1112 | 250 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1505 | 1470 | 1435 | 1400 | 1365 | 1325 | 1285 | 1600 | 1600 | 1600 | 1600 | 1555 | 1515 | 1470 | 3WL1116 | 160 |

### 3.14.2.8 Rated Currents for 1 Circuit-breaker/Cubicle with 3VL

| Rated currents $\boldsymbol{I}_{\boldsymbol{n}}$ depending on ambient temperature |  |  |  |  |  |  |  |  |  |  |  |  |  | 3VL |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | Function incoming feeder or outgoing feeder |  |
| Non-v | entilat |  |  |  |  |  | Ventil | ted |  |  |  |  |  |  |  |
| $\begin{aligned} & 20^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 25^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 30^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 35^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 40^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 45^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 50^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 20^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 25^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 30^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 35^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $40^{\circ}$ | $\begin{aligned} & 45^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | $\begin{aligned} & 50^{\circ} \\ & {[\mathrm{A}]} \end{aligned}$ | Type | Rated current [A] |
| 560 | 545 | 525 | 510 | 490 | 470 | 450 | 630 | 630 | 610 | 590 | 570 | 545 | 525 | 3VL5763 | 630 |
| 690 | 670 | 650 | 630 | 605 | 580 | 555 | 800 | 800 | 780 | 755 | 730 | 700 | 670 | 3VL6780 | 800 |
| 1190 | 1150 | 1120 | 1080 | 1040 | 1000 | 955 | 1220 | 1180 | 1140 | 1100 | 1060 | 1020 | 980 | 3VL7712 | 1250 |
| 1260 | 1220 | 1180 | 1140 | 1100 | 1060 | 1010 | 1380 | 1340 | 1300 | 1260 | 1210 | 1160 | 1110 | 3VL8716 | 1600 |

### 3.15 Forms of Internal Separation in Low-voltage Switchgear Cabinets (Forms 1-4)

## Protection Targets acc. to 61439-1

- Protection against contact with live parts in the adjacent functional units. The degree of protection must be at least IPXXB.
- Protection against ingress of foreign bodies from one functional unit of the switchgear and controlgear assembly into an adjacent one. The degree of protection must be at least IP2X.




### 3.16 Electronic Overcurrent Trip Units (ETU) for 3WL Circuit-breakers

|  | Accessories for 3WL circuit-breakers, (ETU $=$ Electronic Trip Unit) |
| :--- | :--- | :--- | :--- |

### 3.17 Protection against arcing faults by arc fault detection devices and their consideration in SIMARIS project

About $30 \%$ of all fires caused by electricity develop owing to fault reasons in electrical installations. Since such fires can cause tremendous damage, it is reasonable to take protective measures in the electrical installation in those cases where preventive action is possible.

### 3.17.1 Arcing faults in final circuits

### 3.17.1.1 Causes

Arcing faults in final circuits can occur as parallel arcing faults between phase and neutral conductor / earth or as serial arcing faults in the phase or neutral conductor. Please find possible causes of arcing faults in the information below.

- Causes of parallel arcing faults between phase and neutral conductor / earth
Damage by nails and screws
- Causes for serial arcing faults in the phase or neutral conductor


The high temperature in the arc in conjunction with flammable material may then cause a fire.

### 3.17.1.2 Development of an arc a result of a faulty point in the cable

| Phase | Description |  |
| :---: | :---: | :---: |
| Phase 1 | Current flows through a damaged cable |  |
| Phase 2 | Bottle neck in the cable and the insulation are getting hot |  |
| Phase 3 | Up to approx. $1,250^{\circ} \mathrm{C}$ Hot copper oxidizes to copper oxide, the insulation is carbonized |  |
| Phase 4 | Up to approx. $6,000^{\circ} \mathrm{C}$ <br> Copper melts and gasifies for a short moment (e.g. in the sine peak) Air gap <br> - Occasional arcing faults across the insulation |  |
| Phase 5 | Approx. $6,000^{\circ} \mathrm{C}$ <br> Stable arcing fault across the carbonized insulation |  |

### 3.17.2 Closing the protection gap for serial and parallel arcing faults

As a rule, overcurrent protection devices can only be effective if the current flow time at a given amperage is above the tripping characteristic of the respective overcurrent protection device.
Arc fault detection devices may provide additional protection against serial or parallel arcing faults in cases where miniature circuit-breakers would not trip and fuses would not melt. This means that existing gaps in protection can be closed by arc fault detection devices (AFDD).

## Protection by miniature circuit-breakers

The following diagram shows characteristic tripping curves of miniature circuit-breakers with characteristics B, C and D, as well as the tripping characteristic of the 5SM6 AFDD. In events of parallel arcing faults, the tripping times of AFDDs provide complementary and improved protection in some transitional zones. As explained above, only AFDDs protect against serial arc faults. Miniature circuit-breakers are not suitable in these cases.


## Protection by fuses

The following diagram shows the melting characteristic of a fuse in utilisation category gL and the tripping characteristic of the 5SM6 AFDD. Here it is also demonstrated that the tripping times of AFDDs in case of parallel arcing faults provide complementary and improved protection in transitional zones. As explained above, only arc fault detection devices can protect effectively in case of serial arc faults.



In the United States (UL standard, UL1699) such AFCls have already been a mandatory part of electrical installations for some years, within the IECIEN standards it is currently being discussed whether to make such devices compulsory in order to minimize the possible fire risk caused by electrical installations.
Relevant standards are IECIEN 62606, IEC 60364-4-42, IEC 60364-5-53.

### 3.17.3 Application areas of AFDDs for final circuits up to 16 A

Arc fault detection devices can be used in areas

- where a fire would not be detected immediately, thus causing a hazard for human beings
- residential dwellings
- bedrooms, children's bedrooms
- high-power equipment is operated unattendedly, e.g. washing machine, dish washer run overnight
- old people's homes
- hospitals
- where valuable goods or works of art are stored
- libraries
- museums
- galleries
- with / made of easily ignitable materials
- wooden structures and panelling, ecological building material, attic conversions
- where easily flammable materials are processed
- carpenter's workshops
- bakeries
- cattle sheds, barns


### 3.17.4 Consideration of AFDDs in project planning with SIMARIS project

In order to integrate fire protection into project planning, AFDDs can be added in several ways when planning distribution boards in SIMARIS project in the program step 'System planning'

- either by adding them to the component list, so that they will be automatically placed in the distribution boards during the 'Automatic placement' step
- or selected directly in the front view and placed graphically.


### 3.18 Standards in SIMARIS project

### 3.18.1 Standards for Project Planning in SIMARIS project

| Title | IEC / EN | Local Norm |
| :---: | :---: | :---: |
| Medium voltage switchboards |  |  |
| Common destinations for norms of high voltage switch devices | IEC / EN 62271-1 | $\begin{aligned} & \text { DIN VDE 0671-1 } \\ & (0670-1000) \end{aligned}$ |
| Metal-cladded alternating current switch boards for rated voltages beyond 1 kV up to and including 52 kV | IEC / EN 62271-200 | DIN VDE 0671-200 |
| High voltage current with nominal alternating voltage beyond 1 kV | IEC / EN 61936-1 | DIN VDE 0101 |
| Electrical plants in operation | EN 50110 | DIN VDE 0105-100 |
| Instruction for sulphur hexalflouride (SF6) of technical purity grade for using in electrical manufacturing resources for new SF6 | IEC / EN 60376 | DIN VDE 0373-1 |
| Protection classes by casing (IP-Code) | IEC / EN 60529 | DIN VDE 0470-1 |
| Insulation coordination | IEC / EN 60071 | DIN VDE 0111 |
| Degrees of protection provided by enclosures for electrical equipment against external mechanical impacts | IEC 62262 | DIN VDE 0470-100 |
| Medium voltage switching devices and monitoring installations |  |  |
| High voltage alternating current switch devices | IEC / EN 62271-100 | DIN VDE 0671-100 |
| High voltage alternating current gate and motor starters with gates | IEC / EN 60470 | DIN VDE 0670-501 |
| High voltage alternating current circuit-breaker and -earthing switch | IEC / EN 62271-102 | DIN VDE 0671-102 |
| High voltage circuit breaker for rated voltages beyond 1 kV and lower than 52 kV | IEC / EN 62271-105 | DIN VDE 62271-105 |
| Protecting combinations of high voltage circuit breaker | IEC / EN 62271-105 | DIN VDE 0671-105 |
| High voltage fuses - current limiting fuses | IEC / EN 60282 | DIN VDE 0670-4 |
| Alternating current switch devices for voltages of more than 1 kV Selection of current limiting fuse insertions for transformer circuit | IEC / EN 60787 | DIN VDE 0670-402 |
| Over-voltage protection | IEC / EN 60099 | DIN VDE 0675 |
| Transducers - current transformers | IEC / EN 60044-1 | DIN VDE 0414-44-1 |
| Transducers - inductive voltage transformers | IEC / EN 60044-2 | DIN VDE 0414-44-2 |
| Transducers - combinded transformers | IEC / EN 60044-3 | DIN VDE 0414-44-3 |
| Voltage diagnostic systems (VDS) | IEC / EN 61243-5 | DIN VDE 0682-415 |


| Title | IEC / EN | Local Norm |
| :---: | :---: | :---: |
| Transformers |  |  |
| Dry-type transformer | IEC / EN 60076- 11:2004 | DIN VDE 42523 |
| Dry-type transformer | IEC / EN 60076- <br> 11:2004 | NBR 10295/11 |
| Oil transformer | IEC / EN 60076/50464 | DIN VDE 60076/0532 |
| Low voltage switchgear |  |  |
| Low voltage combinations of switch devices Part 2: type-tested combinations | IEC / EN 61439-2 (60439-1) | $\begin{aligned} & \text { DIN VDE 0660-600-2 } \\ & \text { (0660-500) } \end{aligned}$ |
| Establishing of low voltage plants | IEC / EN 60364 | DIN VDE 0100 |
| Classification of environmental conditions | IEC / EN 60721-3-3 | DIN EN 60721-3-3 |
| Protection classes by casing (IP-Code) | IEC / EN 60529 | DIN VDE 0470-1 |
| Electrical plants in operations | EN 50110 | DIN VDE 0105 |
| Busbar Trunking Systems |  |  |
| Low voltage combinations of switch devices Part 2: Special busbar distribution requirements | IEC / EN 60439-2 | DIN VDE 0660-502 |
| Low voltage switching devices |  |  |
| Insulating coordination for electrical manufacturing resources in low voltage plants | IEC / EN 60664 | DIN VDE 0110-1 |
| Low voltage switch devices - Part 1: Common definitions | IEC / EN 60947-1 | DIN VDE 0660-100 |
| Low voltage switch devices - Part 2: circuit breaker | IEC / EN 60947-2 | DIN VDE 0660-101 |
| Low voltage switch devices - Part 4-1: gate and motor starters electromechanic gate and motorstarters | IEC / EN 60947-4-1 | DIN VDE 0660-102 |
| Low voltage switch devices - Part 3: circuit breaker, disconnectors, switch disconnector and switch - protecting- units | IEC / EN 60947-3 | DIN VDE 0660-107 |
| Low voltage fuses | IEC / EN 60269 | DIN VDE 0636 |
| Surge protection devices for low voltage - <br> Part 11: Surge protection devices for using in low voltage plants requirements and tests | IEC / EN 61643-11 | DIN VDE 0675-6-11 |
| Transducers - current transformers | IEC / EN 60044-1 | DIN VDE 0414-44-1 |
| Charging units |  |  |
| Low voltage electrical installations: <br> Requirements for special installations or locations Supply of Electrical Vehicle | EN 60364-7-722 | DIN VDE 0100-722 |
| @Siemens: translation missing | IEC 62196 | DIN IEC 62196 |
| Electric vehicle conductive charging system | IEC 61851 |  |

### 3.18.2 Explanations for the Standard for Medium-voltage Switchgear (IEC 62271-200)

Siemens offers the entire product range of air- and gas-insulated switchgear type-tested in accordance with IEC 62271-200.

Safety, availability, and easy maintenance are important qualifications which can be easily specified using standardized classifications.

- For example, the category of operational availability describes to which extent the switchgear will remain operable if a compartment is opened for maintenance works.
- The type of accessibility of compartments is also classified.
- In addition, the standard defines more classifications, such as service life and other characteristics of the switching devices.
- Medium-voltage switchgear is intended for use in rooms which are solely accessible to authorised personnel (locked electrical operating area). The switchgear installations are IAC-qualified, i.e. the metal encapsulation will protect the operating personnel in the (very rare) case of an internal arcing fault against its harmful effects. The IAC qualification describes the accessibility level, the possibilities of how to be installed in the room, as well as the test current and the testing time.


### 3.18.2.1 Operational Availability Category

$\left.\begin{array}{l|l|l}\hline \begin{array}{l}\text { Operational } \\ \text { availability category }\end{array} & \begin{array}{l}\text { When an accessible compartment of the } \\ \text { switchgear is opened ... }\end{array} & \text { Type of construction } \\ \hline \text { LSC 1 } & \begin{array}{l}\text { then the busbar and therefore the complete } \\ \text { switchgear must be isolated. }\end{array} & \begin{array}{l}\text { No partition plates within the panel, no } \\ \text { panel partitions to the adjacent panels. }\end{array} \\ \hline \text { LSC 2 } & \text { LSC 2A } & \begin{array}{l}\text { only the supply cable must be isolated. The } \\ \text { busbar and the adjacent panels can remain } \\ \text { in operation. }\end{array}\end{array} \begin{array}{l}\text { Panel partitions and isolating distance with } \\ \text { compartmentalisation to the busbar. }\end{array}\right]$

### 3.18.2.2 Type of Access to Compartments

| Compartment accessi- <br> bility | Access features |  |
| :--- | :--- | :--- | :--- |
| Interlock-controlled | Opening for normal operation and mainte- <br> nance, e.g. fuse change. | Access is controlled by the construction of <br> the switchgear, i.e. integrated interlocks <br> prevent unauthorized opening. |
| Procedure-dependent | Opening for normal operation and mainte- <br> nance, e.g. fuse change. | Access control via a suitable procedure <br> (working instruction of the owner) combined <br> with a locking device (lock). |
| Tool-dependent | Opening not for normal operation <br> or maintenance, e.g. cable check. | Access only with opening tool, special access <br> procedure (instruction of the owner). |
| Not accessible | Opening can destroy the compartment <br> This generally applies to gas-filled compartments of gas-insulated switchgear. As the <br> switchgear requires no maintenance and operates independent of climatic conditions, access <br> is neither required nor possible. |  |

### 3.18.2.3 Internal Arc Classification IAC

The notation IAC A FLR, I and $t$ is composed of the abbreviations for the following values:

| IAC | Internal Arc Classification |
| :--- | :--- |
| A | Distance between the indicators 300 mm , i.e. installation in rooms with access for <br> authorised personnel, locked electrical operating area. |
| FLR | Access from the front ( $\mathrm{F}=$ Front $)$ <br> from the sides $(\mathrm{L}=$ Lateral) <br> from behind ( $=$ Rear $)$ |
| $\mathbf{I}$ | Test current = rated short-circuit breaking current (in kA) |
| $\mathbf{t}$ | Accidental arc duration (in seconds) |

# Published by and Copyright © 2016: 

## Siemens AG

Wittelsbacherplatz 2
80333 Munich, Germany

## Siemens AG

Energy Management
Medium Voltage \& Systems
Post office box 3240
91050 Erlangen
Germany
www.siemens.com/simaris
For more information, please contact
our Customer Support Centre.
Tel.: +49 7000-7462747
or: +49 911 895-7222
(charges depend on your provider)
Email: technical-assistance@siemens.com
www.siemens.com/lowvoltage/technical-support

The information provided in this brochure contains merely general descriptions or characteristics of performance which in actual case of use do not always apply as described or which may change as a result of further development of the products. An obligation to provide the respective characteristics shall only exist if expressly agreed in the terms of contract.

All product names may be trademarks or product names of Siemens AG or supplier companies; use by third parties for their own purposes could constitute a violation of the owner's rights.

Subject to technical changes without prior notice • 07/16
© Siemens AG 2016 • Printed in Germany


[^0]:    *) Note: The full diameter of the probe must not fit through the opening of the enclosure.

[^1]:    - The required reduction factors are automatically considered in SIMARIS project according to the functional endurance class and mounting position selected for the project.
    - When a project is imported from SIMARIS design, the functional endurance class and the resulting busbar trunking system as defined there are also imported.
    - The matching plate thickness is then automatically selected by SIMARIS project based on the selected functional endurance class.
    - Weight specifications and promating are based on manufacturer data.

[^2]:    ${ }^{1)}$ No in-line type design permitted!

