
Feedback-Driven Semi-Supervised Synthesis of Program

Transformations

XIANG GAO
∗
, National University of Singapore, Singapore

SHRADDHA BARKE
†
, University of California, San Diego, USA

ARJUN RADHAKRISHNA,Microsoft, USA
GUSTAVO SOARES,Microsoft, USA
SUMIT GULWANI,Microsoft, USA
ALAN LEUNG,Microsoft, USA
NACHIAPPAN NAGAPPAN,Microsoft Research, USA
ASHISH TIWARI,Microsoft, USA

It is fairly common for developers to make repeated edits in code that are all instances of a more-general
program transformation. Since this process can be tedious and error-prone, we study the problem automatically
learning program transformations from past edits, which can then be used to predict future edits. We take
the novel view of the problem as a semi-supervised learning problem: apart from the concrete edits that
are instances of the general transformation, the learning procedure also exploits access to additional inputs
(program subtrees) that are marked as positive or negative depending on whether the transformation applies
on those inputs. We present a procedure to solve the semi-supervised transformation learning problem using
anti-unification and programming-by-example synthesis technology. To eliminate reliance on access to marked
additional inputs, we generalize the semi-supervised learning procedure to a feedback-driven procedure that
also generates the marked additional inputs in an iterative loop. We apply these ideas to build and evaluate
three applications that use different mechanisms for generating feedback. Compared to existing tools that
learn program transformations from edits, our feedback-driven semi-supervised approach is vastly more
effective in successfully predicting edits with significantly fewer past edit data.

1 INTRODUCTION

Integrated Development Environments (IDEs) and static analysis tools help developers edit their
code by automating common classes of edits, such as boilerplate code edits (e.g., equality com-
parisons or constructors), code refactorings (e.g., rename class, extract method), and quick fixes
(e.g., fix possible NullReferenceException). To automate these edits, tool builders implement
code transformations that manipulate the Abstract Syntax Tree (AST) of the user’s code to produce
the desired code edit.
While traditional tools support a predefined catalog of transformations handcrafted by tool

builders, in recent years, we have seen an emerging trend of tools and techniques that synthesize
program transformations using input-output examples of code edits (Bader et al., 2019, Meng
et al., 2011, 2013, Miltner et al., 2019, Rolim et al., 2017, 2018). For instance, GetAFix (Bader
et al., 2019) learns fixes for static analysis warnings using previous fixes as examples. It has been
deployed to production at Facebook where it is being used during the maintenance of Facebook apps.
BluePencil (Miltner et al., 2019) produces code edit suggestions to automate repetitive code edits

∗Xiang Gao performed this work as part of his internship with the Prose team at Microsoft.
†Shraddha Barke performed this work as part of his internship with the Prose team at Microsoft.

Authors’ addresses: Xiang Gao, National University of Singapore, Singapore, gaoxiang@comp.nus.edu.sg; Shraddha Barke,
University of California, San Diego, USA, gaoxiang@comp.nus.edu.sg; Arjun Radhakrishna, Microsoft, USA, arradha@
microsoft.com; Gustavo Soares, Microsoft, USA, gustavo.soares@microsoft.com; Sumit Gulwani, Microsoft, USA, sumitg@
microsoft.com; Alan Leung, Microsoft, USA, alan.leung@microsoft.com; Nachiappan Nagappan, Microsoft Research, USA,
nachin@microsoft.com; Ashish Tiwari, Microsoft, USA, ashish.tiwari@microsoft.com.

2 X. Gao, S. Barke, A. Radhakrishna, G. Soares, S. Gulwani, A. Leung, N. Nagappan, A. Tiwari

by synthesizing transformations on-the-fly based on the recent edits performed by the developer. It
has been deployed in Microsoft Visual Studio (VS) and is available as part of VS IntelliCode.

The main challenge of generalizing examples of edits to program transformations lies in synthe-
sizing an intended generalization that not only satisfies the few examples but also produces the
correct edits on unseen inputs. Incorrect generalizations can lead to false negatives: the transfor-
mation does not produce an intended edit in a location that should be changed. False negatives
increase the burden on developers, since it requires developers to either provide more examples
or perform the edits themselves, reducing the number of automated edits. Moreover, it may lead
developers to miss edits leading to bugs and inconsistencies in the code. Incorrect generalizations
can also lead to false positives: the transformation produces an incorrect edit. While false negatives
are usually related to transformations that are too specific, false positives are mostly related to
transformations that are too general. Both false negatives and positives, can reduce developers’
confidence in the aforementioned systems, and thus, finding the correct generalization is crucial
for the adoption of these systems.
Existing approaches have tried to handle the generalization problem in different ways.

SYDIT (Meng et al., 2011) and LASE (Meng et al., 2013) can only generalize names of variables,
methods and fields when learning a code transformation. The former only accepts one example, and
synthesizes the transformation using the most general generalization. The latter accepts multiple
examples and synthesizes the transformation using the most specific generalization, which is
also the approach adopted by Revisar (Rolim et al., 2018) and Getafix (Bader et al., 2019). Using
either the most specific or the most general generalization is usually undesirable, as they are likely
to produce false negatives and false positives, respectively. Refazer (Rolim et al., 2017) learns a
set of transformations consistent with the examples and stores them as a Version Space Algebra
(VSA) (Polozov and Gulwani, 2015b). It then uses a ranking system to rank the transformations and
select the one that is more likely to be correct based on a set of predefined heuristics. However,
despite the more sophisticated approach to generalization, Refazer still required up to six examples
during its evaluation (Rolim et al., 2017).

All aforementioned techniques rely only on input-output examples and background knowledge
(ranking functions) to deal with the generalization problem. Another alternative is to use semi-
supervised learning (Zhu and Goldberg, 2009); an approach to machine learning that combines a set
of input-output examples, and an amount of unlabeled data (inputs) during training. It has recently
become more popular and practical due to the variety of problems for which vast quantities of
unlabeled data are available, e.g. text on websites, protein sequences, or images (Zhu, 2005). The
fact that source code can also provide many additional inputs where the synthesized transformation
should and should not produce edits inspires a natural question:

Is it possible to combine input-output examples with additional inputs to synthesize program transformations?

Our first key observation is that an additional input AST can help us disambiguate how to general-
ize the transformation by providing more examples of ASTs that should be manipulated by the trans-
formation. Consider a simple change from if (score < threshold) to if (IsValid(score)).
With a single example, it is not clear whether we do the transformation only when the left-hand
side of the comparison is score. However, if one says that the transformation should also apply
to if (GetScore(run) < threshold), then we have one more example for the LHS expression,
GetScore(run), and we can use this example to refine our transformation—in this case, generalize
it further. However, we still need to identify the locations in the source code (the additional inputs)
where the transformation should apply. Our second key observation is that we can predict whether
an arbitrary input should be an additional input by evaluating the quality of the transformations
synthesized using the new input through a user-driven or automated feedback system.

Feedback-Driven Semi-Supervised Synthesis of Program Transformations 3

In this paper, we propose Sparse, a feedback-driven semi-supervised technique to synthesize
program transformations. Its approach is based on our two key observations above. Initially, Sparse
synthesizes a program transformation from input-output examples using ReFazer (Rolim et al.,
2017). For the input-output example, Sparse tracks which sub-trees of the AST (corresponding to
a sub-expression) were used to construct the output, and can potentially be generalized. We call
these nodes selected nodes for reasons that will be apparent later on. As an example, consider again
the change if (score < threshold) to if (IsValid(score)). The expression score was used
in the output—it is a selected node. Next, Sparse iterates over candidate additional inputs to find
more examples to refine the generalization. For each candidate input, it performs two main steps:
• Sparse computes the anti-unification of the input examples and the candidate additional input.
Anti-unification is a generalization process which can identify corresponding sub-trees among
different input ASTs. For instance, it can identify that score corresponds to the GetScore(run)
in the example input and candidate additional input if (GetScore(run) < threshold). Our
anti-unification based generalization algorithm tries to compute a generalization where each
selected node in the example input has a corresponding node in the candidate additional input.
For example, if the candidate additional input was if (UnrelatedCondition()), then we can
infer the correspondence between score < threshold and UnrelatedCondition(), and the
sub-tree score itself has no corresponding sub-tree, which causes anti-unification to fail to find
a generalization. If anti-unification fails, the candidate additional input is not compatible and we
discard it. Otherwise, we generate a new example from the candidate additional input, and then re-
synthesize the parts of the transformations using also the new example. In our running scenario,
the new example is if (GetScore(run) < threshold) ↦→ if (IsValid(GetScore(run))).
• Sparse uses a feedback system to further evaluate whether the current candidate input should
be accepted. The feedback is provided by a reward function that can be composed of different
components. For instance, it can take into consideration user-provided feedback, such as whether
the transformation should use a particular input. Such a feedback is usually easier to be provided
by the user than another input-output example. However, the feedback can also use automated
components that rewards, for example, additional inputs that are similar to the example in-
puts but generalize the transformation without overgeneralizing it. If the final reward score is
above a certain threshold, Sparse accepts the additional input and synthesizes a new program
transformation using the new example.
We implemented Sparse for the domain of C# program transformations. It uses the implemen-

tation of Refazer available in the PROSE SDK1. Further, we augmented the BluePencil (Miltner
et al., 2019) algorithm with Sparse to synthesize on-the-fly transformations. BluePencil provides
a modeless interface where developers do not need to enter a special mode to provide examples, but
instead they are inferred from the history of changes to a particular file.
With these components, we implemented three applications that use feedback-driven semi-

supervised synthesis:
• Sparse loc: User-provided feedback about missed inputs. This application allows developers to
specify, as an additional input, a subtree where the transformation did not produce an edit
(false negative). This implementation is motivated by the fact that when the transformation-
learning system produces a false negative, it is easier for the developer to provide an additional
input rather than an input-output example. On a benchmark of 12,642 test cases, we compared
Sparse loc with the baseline (ReFazer). While the recall of Blue-Pencil ranged from 26.71% (1
example provided) to 89.10% (3 examples provided), Sparse loc’s recall was at least 99.94% and its
precision was at least 96.01% with just 1 example (and 1 additional input) provided. These results

1https://www.microsoft.com/en-us/research/group/prose/

https://www.microsoft.com/en-us/research/group/prose/

4 X. Gao, S. Barke, A. Radhakrishna, G. Soares, S. Gulwani, A. Leung, N. Nagappan, A. Tiwari

suggest that Sparse loc can synthesize suggestions with high precision to locations indicated by
developers as false negatives.
• Sparse cur: Semi-automated feedback based on cursor position. This feature uses the cursor position
in the editor to indicate candidate additional inputs to Sparse. This feature is motivated by the fact
the developers may either not be aware that they can provide additional inputs (discoverability
problem (Miltner et al., 2019)), or may not want to break their workflow to provide additional
inputs. The cursor position acts like a proxy for the user, and indicates implicitly, that the user
wants to modify the current location. However, the cursor location is ambiguous. The sub-tree
that the user wants to edit may be any of sub-trees that are present at the cursor location, i.e.,
lowest leaf node at the cursor location all the way to the root of the AST. The tool relies on
feedback from Sparse’s reward function (Section 4.2) to accept additional inputs. We compared
this reward function with two alternative reward functions: (i) no validation, i.e.„ Sparse accepts
any additional inputs; (ii) and clone detection, which accepts inputs based on their similarities
with the input examples. Our results show that while “no validation” and “clone detection” lead
to high false positives and negatives, respectively, Sparse’s reward function produces only 11
false positives and 14 false negatives on 243,682 tested additional inputs. We also evaluated the
effectiveness of Sparse cur in generating correct suggestions at the cursor location. Within 291
scenarios, Sparse cur only generates one false positive and three false negatives.
• Sparse auto: Automated feedback based on all inputs in the source code. This feature uses all the
nodes available in the source code as input to Sparse. This feature is relevant in the settings
where user feedback is not feasible. For example, (a) when the developer themselves may not be
aware of all locations that must be changed, or (b) when the developer may want to apply the
edits in bulk, instead of inspecting each one for correctness. We evaluated how often Sparse auto

can save developers from indicating the additional inputs. In 86 scenarios of repetitive tests with
a total of 350 repetitive edits, Sparse loc decreased the number of times the developer would
have to indicate the input by 30%. When compared to Blue-Pencil, our results show that Sparse
auto automated 263 edits while Blue-Pencil automated only 150.

Contributions. We summarize the contributions of this paper as follows:
• We formalize the feedback-driven semi-supervised synthesis problem (Section 3);
• We propose Sparse, the first known technique to address the feedback-driven semi-supervised
synthesis problem for program transformations (Section 4);
• We propose three practical applications of Sparse and instantiate them for the domain of C#
program transformations (Section 5);
• We evaluate Sparse along the dual axes of effectiveness (quality as measured by false positive and
negative rates) and efficiency (user burden as measured by number of examples and additional
inputs). Our results show that Sparse achieves near 100% precision and recall across almost 86
real-world developer scenarios, all while delivering each suggestion in less than half a second.

2 MOTIVATING EXAMPLE

We start by illustrating the challenges of synthesizing code transformations from input-output
examples. Consider the scenario shown in Figure 1.

A C# developer working on the NuGet2 codebase has refactored the ResolveDependencymethod
to make it static, then moved it to the new static class DependencyResolveUtility. As a result,
the developer must update all invocations of this method to match its new signature. Figure 1a
shows two callsites where the developer has manually updated the invocation to match this

2Nuget is a the package manager for .NET

Feedback-Driven Semi-Supervised Synthesis of Program Transformations 5

(a) Two repetitive edits. Both edits update invocations to the method ResolveDependency but one of
the arguments is different. Given these two edits, IntelliCode synthesizes a transformation to automate

similar edits.

- repository.ResolveDependency(dependency1, null, false, false, Lowest);
+ DependencyResolverUtility.ResolveDependency(repository, dependency1, null, false, false,

Lowest); }

- repository.ResolveDependency(dependency2, null, false, false, Lowest);
+ DependencyResolverUtility.ResolveDependency(repository, dependency2, null, false, false,

Lowest);}

(b) IntelliCode correctly produces suggestions to these locations based on the previous edits. The first

argument is the only difference between these locations, similar to the examples.

repository.ResolveDependency(dependency3 , null , false , false , Lowest);
repository.ResolveDependency(dependency4 , null , false , false , Lowest);

(c) IntelliCode fails to produce suggestions to these locations (false negative). Notice that there are more

elements that are different in these locations compared to the locations in the examples.

repository.ResolveDependency(dependency1 , null , false , false , Highest);
repository.ResolveDependency(dependency2 , null , false , false , Highest);
Marker.ResolveDependency(dependency , null , AllowPrereleaseVersions , false ,

Highest);

(d) While this location shares the same structure as the previous ones, the transformation should not

produce an edit here.

- s.GetUpdates(IsAny<IEnumerable<IPackage> >(), false, false,
+ DependencyResolverUtility.GetUpdates(s, IsAny<IEnumerable<IPackage»(), false, false,

IsAny <IEnumerable <FrameworkName >>(), IsAny <IEnumerable <IVersionSpec >>())

Fig. 1. A scenario with two repetitive edits (input-output examples), additional inputs, and a false positive.

All inputs share the same structure (a method invocation with 5 arguments).

signature. Figures 1b and 1c show additional locations that will require a similar modification:
note that they share the same general structure but contain dissimilar subexpressions. Manually
performing such repetitive edits is tedious, error-prone, and time-consuming. Unfortunately, neither
Visual Studio (Microsoft, 2019) nor ReSharper (JetBrains, 2020b) include built-in transformations to
automate these edits.

However, a recently introduced Visual Studio feature based on BluePencil (Miltner et al., 2019),
called IntelliCode Refactorings (IntelliCode for brevity in the remainder of this paper), can learn to
automate these edits after watching the developer perform a handful of edits. Specifically, after
watching edits to the two locations shown in Figure 1a, IntelliCode learns a transformation and
suggests automated edits to the locations shown in Figure 1b.
With only these two examples, however, IntelliCode is not yet able to produce suggestions

for the locations shown in Figure 1c. These are false negatives. This is because the inputs in
the examples provided so far differed only in their first method argument: dependency1 and
dependency2, respectively. As a result, IntelliCode synthesizes a transformation that generalizes
across variation in the first argument, but not the others. While sufficient to suggest edits for
the locations in Figure 1b, this transformation is not sufficiently general to apply to the locations

6 X. Gao, S. Barke, A. Radhakrishna, G. Soares, S. Gulwani, A. Leung, N. Nagappan, A. Tiwari

Fig. 2. Sparse cur implemented as a Visual Studio Extension. The developer clicks on a line to manually edit

the code where the PBE system produced a false negative. Sparse cur uses feedback-driven program-synthesis

to synthesize a transformation that is general enough to be applied to this location. The edit generated by

the transformation is shown as an auto-completion suggestion.

shown in Figure 1c, which contain additional variation in the call target, third argument, and fifth
argument (Marker, AllowPrereleaseVersions, and Highest, respectively).
To address this situation, the developer performs another manual edit at the first location in

Figure 1c. IntelliCode consumes this edit as a new example and synthesizes a new transformation
to generalize across variation in both the first and fifth arguments: IntelliCode has disambiguated
the developer’s intent because the new example contains a different variable (Highest rather than
Lowest) in the final argument. At this point, IntelliCode is now able to produce correct suggestions
for all locations that differ only in their first or last argument. Unfortunately, despite having seen
three input-output examples, it still fails to produce suggestions for the last location in Figure 1c.

In general, false negatives like those described stem from insufficiently general transformations–
they overfit to the given examples. They not only reduce the applicability of the tool but also
frustrate developers, who naturally expect an edit suggestion to automate their task after having
already supplied several examples. The line between too specific and too general can be thin, though.
In this scenario, the desired transformation should produce edits on invocations of the instance
method ResolveDependency using 5 arguments. If we generalize the name of the method to any
method, it will lead to false positives. For instance, it would produce the edit shown in Figure 1d.

Our solution. We now illustrate how a system based on Sparse can help alleviating this problem.
Sparse cur uses the cursor position in the editor to indicate candidate additional inputs to our
semi-supervised synthesis technique. Consider the first false negative shown in Figure 1c. As soon
as the developer places the cursor in the location related to the false negative, Sparse cur uses
the semi-supervised feedback synthesis to improve the transformation. The new transformation
produces an auto-completion suggestion for the current location (see Figure 2). We provide details of
our technique and its applications in Sections 4 and 5, respectively. In the next section, we formalize
the problem of feedback-driven semi-supervised synthesis.

3 THE SEMI-SUPERVISED SYNTHESIS PROBLEM

We first formalize the semi-supervised synthesis of program transformation problem and follow-up
with the feedback-driven semi-supervised synthesis problem.

Feedback-Driven Semi-Supervised Synthesis of Program Transformations 7

3.1 Preliminaries and Problem Statements

Abstract Syntax Trees. Let T denote the set of all abstract syntax trees (AST). We use the notation
𝑡 to denote a single AST in T, and use the notation SubTrees(𝑡) ⊆ T to denote the set of all sub-trees
in 𝑡 . Each node in the AST consists of a string label representing the node type (e.g., Identifier,
InvokeExpression, etc), set of attributes (e.g., text value of leaf nodes, etc) and a list of children.

Edit Programs. An edit program
3
P : T ̸→ T is a partial function4 that maps ASTs to ASTs. In

this report, we assume that each edit program P is a pair (Pguard, Ptrans) of two parts: (a) a guard
Pguard : T→ B, and (b) a transformer Ptrans : T ̸→ T. We have that P(𝑡) = Ptrans (𝑡) when Pguard (𝑡)
is true, and P(𝑡) = ⊥ otherwise.

Example 3.1. Consider the two edits shown in Figure 1a. For each edit, the following edit program
maps the subtree before the change to the subtree after the change.

Pguard =Input matches X1.X2 (X3, X4, X5, X6, X7) where
| X1 .label = Identifier ∧ X1 .Attributes[TextValue] = repository

| X2.label = Identifier ∧ X2 .Attributes[TextValue] = ResolveDependency

| X3.label = X4.label = · · · = Argument ∧ X4 .Attributes[TextValue] = null ∧ . . .

Ptrans =return DependencyResolveUtility.X2 (X1, X3, X3, X5, X6, X7)

ReFazer learns this program initially in Section 2 (with just 2 examples). This program is written
in terms of templates with each Xi representing a hole. In Section 3.2, we present a domain-specific
language to express such programs.

The Semi-Supervised Synthesis Problem. As explained in Section 2, the semi-supervised synthesis
problem is the core piece among the techniques in this paper. Semi-supervised synthesis allows
a user or an environment to finely control the level of generalization used by the synthesizer.
The formal definition of the problem is as follows. Given (a) a set of input-output examples
Examples = {i0 ↦→ o0, . . . , i𝑘 ↦→ o𝑘 }, (b) a set of additional positive input PI = {pi0, . . . , pi𝑛 , and (c) a
set of additional negative inputs NI = {ni0, . . . , ni𝑚} , the semi-supervised programming-by-example

problem is to produce a program P such that (a) ∀0 ≤ 𝑗 ≤ 𝑘.P(i𝑗) = o𝑗 , (b) ∀0 ≤ 𝑗 ≤ 𝑛.P(pi) ≠ ⊥,
and (c) ∀0 ≤ 𝑗 ≤ 𝑚.P(ni𝑗) = ⊥. Intuitively, the problem asks for a program that is consistent with
the provided examples, produces outputs on all additional positive inputs, and does not produce
an output on any additional negative inputs. The over-generalization and under-generalization
problem can be addressed by providing more additional negative and positive examples, respectively.

The Feedback-Driven Semi-Supervised Synthesis Problem. The semi-supervised synthesis problem
assumes access to positive and negative additional inputs, but how do we find (more of) them to
help refine the synthesized program? We use feedback from either the user or the environment and
use that feedback to discover these additional inputs. In this setting, the synthesizer is provided
some extra inputs: (a) A finite pool of inputs InputPool ⊆ T. We assume that all example inputs
and additional (positive or negative) inputs are drawn from the input pool InputPool. In practice,
the input pool is usually the set of all sub-trees of the AST representing a source file. (b) A reward

function Rew : InputPool ̸→ [−∞,∞]. The reward function acts as a feedback mechanism. A
positive and negative reward for an i ∈ InputPool indicates whether the synthesized program is
applicable or not on i. For convenience we separate the rewards function in to the user provided
RewU and environment provided RewE reward functions, with Rew = RewU + RewE. In Section 4.2,

3We also refer to edit program more generally as transformations.
4In this report, we consistently use ̸→ to denote partial functions.

8 X. Gao, S. Barke, A. Radhakrishna, G. Soares, S. Gulwani, A. Leung, N. Nagappan, A. Tiwari

we define feedback oracles which take as input the state of the feedback loop (i.e., examples, positive
and negative inputs, synthesized program) and return a reward function. While we could merge
the notion of feedback oracle and reward function, with reward function taking additional inputs
mentioned, this separation allows for easier notation.

The rewards are generated from a number of factors including (a) if the user manually indicates
whether an input from the input pool should be positively or negatively marked, (b) whether
applying a produced edit leaves the source code document in a compilable state, and (c) whether
the produced edit for an input is similar to or different from the examples.

This workflow proceeds in multiple rounds of interaction. In the 𝑛𝑡ℎ iteration of the workflow,
• The synthesizer, using the examples and the reward function Rew𝑛−1, produces a program
P𝑛 that is consistent with the examples Examples and the positive/negative additional inputs
deduced from Rew𝑛−1.
• Optionally, the user adds new examples to the set of Examples to produce Examples𝑛 .
• The user and the environment in conjunction produce the rewards Rew𝑛 : SubTrees(𝑡𝑛) ̸→
[−∞,∞] to provide feedback on how P𝑛 is to be refined in the next iteration to produce P𝑛+1

This workflow of a continuous interaction between the environment and the user on one side,
and the synthesizer on the other. This continuous interaction using rewards is reminiscent of a
reinforcement learning scenario. However, in our setting, the user and the environment cannot
be modelled as a Markov decision process, and the state space is non-continuous infinite, making
standard reinforcement learning techniques not applicable.

Due to the user-in-the-loop nature of the feedback-driven semi-supervised synthesis workflow, it
is infeasible to define an explicit correctness condition for the problem. The real optimality criterion
for the synthesized program is how well does the synthesized program match user intent? This
criterion is hard to capture in any formally meaningful way. Further, depending on the scenario
the same program may either be correct or incorrect. For example, in the case from Section 2, in a
slightly different scenario, it is quite possible that the under-generalized transformer generated
initially is the intended transformation. It is impossible to guess without semantics knowledge
about the domain of the source code, which we are consciously keeping out-of-scope here.

However, we do have a quiescence condition on the environment and the synthesizer combined:
when the user-dependant feedback stop changing (i.e., RewU is fixed), the synthesized program
should converge to a fixed one. Due to the lack of strict correctness conditions, to ensure the quality
of the programs and edits produced, we further experimentally validate the techniques with a
comprehensive evaluation (see Section 6).

3.2 Background: Program-by-Example for Code

Programming-by-Example techniques form the basis of the techniques used in our proposed solution.
For a given input domain I, output domain O, and class of programs Programs, a programming-by-
example technique takes as input a set of examples i0 ↦→ o0, . . . , i𝑛 ↦→ o𝑛 and produces a program
P : I→ O such that P(i𝑘) = o𝑘 for all 0 ≤ 𝑘 ≤ 𝑛. In our setting, we fix I = T and O = T.
We use a slightly modified version of ReFazer (Rolim et al., 2017) as our programming-by-

example technique. In ReFazer, the programs are drawn from the domain-specific language (DSL)
shown in Figure 3. The programs are composed of guard and transformers as stated above. Guards
are the conjunction of predicates over nodes of the AST. The nodes are identified using XPath like
queries and the predicates test the label, attributes, or position of the nodes. Transformers are two
types:
• Selections: A selection returns a subtree of the input. The subtree is identified as the 𝑛𝑡ℎ node
that satisfies a guard.

Feedback-Driven Semi-Supervised Synthesis of Program Transformations 9

program := (guard, transformer) transformer := construct | select
guard := pred | Conjunction(pred, guard) construct := Tree(kind, attrs, children)
pred := IsNthChild(node, n) children := EmptyChildren | Cons(node, children)

| IsKind(node, kind) | InsertChild(Children(select), pos, node)
| Attribute(node, attr) = value | DeleteChild(Children(select), pos)
| Not(pred) | ReplaceChildren(Children(select), posList, children)

| MapChildren(_ input: transformer, Children(select))
node := Path(input, path) select := Nth(Filter(guard, SubTrees(input)), n)

pos := n | ChildIndexOf(node)

Variables:
AST input; int n; List<int> posList; string kind, attr, value; XPath path; Dictionary<string, string> attrs;

Fig. 3. Domain-Specific language for edit programs

• Constructions: A construction return a subtree that is constructed specifying the kind of
node, its attributes, and its children. The children may be constructed using several different
operators. For example, the operator InsertChild(select, pos, node) selects a node
(called parent) from the input and returns the parent’s children with a additional node at the
position pos.

We do not provide any details on how ReFazer synthesizes programs given examples. However, one
important aspect of the ReFazer synthesis algorithm is that it prefers selections over constructions,
i.e., when a particular subtree of the output can be selected from the input AST, ReFazer returns a
program with the selection. The reader is referred to (Polozov and Gulwani, 2015a, Rolim et al.,
2017) for further details.

Example 3.2. Revisit the edits in Figure 1a and Example 3.1, ReFazer synthesizes the following
transformer: X1.X2 (X3, X4, X5, X6, X7) ̸→ DependencyResolveUtility.X2 (X1, X3, X4, X5, X6, X7). The
ReFazer program that represents this transformer is given by
Tree(CallExpression, [], Cons(

Tree(DotExpression, [], Cons(
Tree(Identifier, [TextValue=DependencyResolveUtility], EmptyChildren),
Cons(select1, EmptyChildren))),

Cons(select2, select3)))

Here, select1, select2, and select3 extract the fragments X2, X1, and X3, X4, X5, X6, X7.
Each select is specified by guard. For example, for select1, the guard might be of
the form IsKind(Current, Identifier) ∧ Attribute(Current, TextValue) = Resolve∧
IsKind(Parent, DotExpression) ∧

Over-generalization and Under-generalization. Input-output examples are inherently an under-
specification of the intended program, and any programming-by-example technique needs to
generalize inductively from the examples. Developers view false positives more unfavorably than
false negatives—it causes them to lose trust, and love to hate the tool (Bessey et al., 2010). Hence,
most synthesis techniques, including ReFazer, used in the source code transformation domain err
on the side of under-generalization (see, for example, (Bader et al., 2019, Meng et al., 2013, Rolim
et al., 2017)).

4 FEEDBACK-DRIVEN SEMI-SUPERVISED SYNTHESIS

We present the Sparse technique to address the feedback-driven semi-supervised synthesis problem.
This solution approach is depicted in Figure 4 and works as follows:
• In each round, the feedback-driven problem with real number feedback is converted into

an instance of the semi-supervised synthesis problem. We achieve this reduction by choosing
thresholds 𝑛 and 𝑝 with 𝑛 < 𝑝 , with PI = {i ∈ InputPool | Rew𝑛−1 (i) > 𝑝} and NI = {i ∈

10 X. Gao, S. Barke, A. Radhakrishna, G. Soares, S. Gulwani, A. Leung, N. Nagappan, A. Tiwari

Input Pool

User
+

Environment
RewardsProgram

∃pi : Rew(pi) > 𝑝

∃ni : Rew(ni) < 𝑛

Semi-Supervised
Synthesis

Positive Inputs

Examples

Negative Inputs

Add pi to Positive Inputs

Add ni to Negative Inputs
Fig. 4. Solution approach for the feedback-driven semi-supervised problem

InputPool | Rew𝑛−1 (i) < 𝑛}. The thresholds 𝑝 and 𝑛 may depend on a wide variety of factors
including the number of examples in Examples𝑛 , properties of the program P𝑛−1, etc. See Section 4.2.
• The semi-supervised synthesis is solved using a standard (not semi-supervised) programs

synthesizer. To ensure that the synthesized program produces outputs on the additional positive
inputs, we generate new examples by associating each additional positive input pi with an output
po. This output is produced by using a given example i ↦→ o, and using a combination of provenance
analysis and anti-unification. Informally, we first associate each sub-tree 𝑠 ′ of pi with an equivalent
sub-tree 𝑠 of i. Then, in o we replace each sub-tree generated from a sub-tree 𝑠 of the input i, with a
new sub-tree that is generated in a similar way but with 𝑠 replaced by 𝑠 ′. See Section 4.1.

4.1 Semi-Supervised Synthesis

Algorithm 1 Semi-Supervised Synthesis
Input: Input-output examples Examples = {i0 ↦→ o0, . . . , i𝑘 ↦→ o𝑘 }
Input: Additional positive inputs PI = {pi0, . . . , pi𝑛}
Input: Additional negative inputs NI = {ni0, . . . , ni𝑚}
Output: Program P

1: Inputs← {i | (i ↦→ o) ∈ Examples}
2: P

guard
← ReFazer

guard
(Inputs ∪ PI,NI)

3: Ptrans ← TransSynth(Examples, PI)
4: if P

guard
= ⊥ ∨ Ptrans = ⊥ then return ⊥

5: return (P
guard

, Ptrans)
6:
7: function TransSynth(Examples, PI)
8: Ptrans ← ReFazertrans (Examples)
9: 𝜋 ← Provenance(i0 ↦→ o0, Ptrans)
10: (𝜏, ⟨𝜎0, . . . , 𝜎𝑘 , 𝜎 ′0, . . . , 𝜎

′
𝑛⟩) ← ⊲⊳𝜋 {i0, . . . , i𝑘 , pi0, . . . , pi𝑛}

11: if ⊥ ∈ (𝜎0, . . . , 𝜎𝑘 , 𝜎 ′0, . . . , 𝜎
′
𝑛) then return ⊥

12: AdditionalExamples← {pi𝑗 → Evaluate
∗ (Ptrans, pi, i) | pi𝑗 ∈ PI}

13: return ReFazertrans (Examples ∪ AdditionalExamples)

Algorithm 1 depicts a procedure for the semi-supervised synthesis problem. In the procedure,
we use the ReFazerguard and ReFazertrans as oracles. Oracle ReFazerguard takes positive inputs and
negative inputs, and produces guard that is true on the former and false on the latter. Oracle
ReFazertrans takes a set of examples and produces a transformer consistent with them.
The guard synthesis component of the algorithm (line 2) falls back to ReFazerguard. However,

transformer synthesis is significantly more involved. First, using only the examples Examples, we
synthesize a transformer program that is consistent with each example (line 8). Using this program,
we extract provenance information (line 9) on what fragments of the example outputs are dependant
on what fragments of the example inputs, and what sub-programs are used to transform the input

Feedback-Driven Semi-Supervised Synthesis of Program Transformations 11

fragments to the output fragments. Then, we use the anti-unification (line 10) to determine which
fragments of the example inputs are associated which fragments of the additional positive inputs.
Using the provenance and anti-unification data, we can now compute a candidate output for each
additional positive input (line 12). Finally, we synthesize a transformer program from the original
examples and the new examples obtained by associating each additional positive input with its
candidate output. We explain these steps in detail.

Provenance. The first step of transformer synthesis computes provenance information for each
example. The provenance information is computed for selects. Given a transformer program Ptrans,
and an example i ↦→ o, the provenance information takes the form of SP0 ← si0, . . . , SP𝑛 ← si𝑛 ,
where (a) each si𝑗 is a sub-tree of i, and (b) each SP𝑗 is a sub-program of Ptrans that is a select, and
SP𝑗 produces the output si𝑗 during the execution of Ptrans (si). Note that each SP𝑗 may have multiple
sub-trees si𝑗 and si

′
𝑗 such that SP𝑗 ← si𝑗 and SP𝑗 ← si

′
𝑗 . One such case is due to the MapChildren

operator in Figure 3. The lambda function (produced by transformer) may have select programs
that operate over all children of a given node. The need for provenance information will be clear
in the rest of this section. One reason we consider provenance only for selects is that any guard
operation is going to depend all of the input tree.

Example 4.1. Consider the Ptrans shown in Example 3.2 and with the abbreviated example:
repository.ResolveDependency(dependency1, args . . .) ↦→

DependencyResolverUtility.ResolveDependency(repository, dependency1, args . . .)
The provenance information is given by 𝜋 = { select1 ← ResolveDependency, select2 ←
repository, select3← args...}.

Anti-Unification. The next step in the algorithm is to compute an anti-unification of inputs and
additional positive inputs. Given two inputs i1 and i2, the anti-unification i1 ⊲⊳ i2 is given by a pair
(𝜏, ⟨𝜎1, 𝜎2⟩) such that:
• a template 𝜏 , i.e., an AST with labelled holes {h0, . . . , h𝑛}, and
• two substitutions 𝜎1, 𝜎2 : {h0, . . . , h𝑛} → T such that 𝜎1 (𝜏) = i1 ∧ 𝜎2 (𝜏) = i2.

This definition can be generalized to more than two inputs. For arbitrary number of inputs, we use
the notation ⊲⊳{i1, . . . , i𝑛}. As is standard, we write anti-unification to mean the anti-unification
that produces the most specific generalization.

Example 4.2. Consider two inputs i1 = if(score < threshold) and
i2 = if (GetScore(run) < threshold). The anti-unification ⊲⊳{i1, i2} =

if(h0 − threshold), ⟨{h0 ↦→ score}, {h0 ↦→ GetScore(run)}⟩. It is more specific than
any other generalization of i1 and i2, e.g., an anti-unification with template 𝑖 𝑓 (h0 < h1).

We do not go into the details of the procedure for computing anti-unification but explain the
procedure briefly. The procedure is a variant of anti-unification modulo associativity-unity (AU).
First, we categorize all possible AST nodes into two different categories, based on the label:
• Fixed arity nodes. These are nodes that always have a fixed number of children. For example,
Identifier always has 0 children,CallExpression always has 2 children (function and argument
list), and PlusExpression always has 2 children.
• Variable arity nodes. These nodes can have different number of children. For example,
ParameterList, Block, and ClassDeclaration. One key observation is that in the AST domain,
the children of every variable arity node can be treated as a homogenous list. That is, no
position in the list has a special meaning: every child in a parameter list is a parameter. In
contrast, the two children of CallExpression are functionally different.

Informally, i1 ⊲⊳ i2 is computed as follows:

12 X. Gao, S. Barke, A. Radhakrishna, G. Soares, S. Gulwani, A. Leung, N. Nagappan, A. Tiwari

• If the roots of i1 and i2 have different labels or attributes: then i1 ⊲⊳ i2 = (h, ({h ↦→ i1}, {h ↦→
i2})).
• If the root nodes of i1 and i2 have the same label label and attributes attrs, and if the nodes
fixed-arity: then i1 ⊲⊳ i2 = Tree(label, attrs, 𝜏1 . . . 𝜏𝑛), ⟨

⋃
𝑖 𝜎

𝑖
2,
⋃

𝑖 𝜎
𝑖
2⟩ where (a) Children(i1) =

i
1
1, . . . , i

𝑛
1 and Children(i2) = i

1
2, . . . , i

𝑛
2 , and (b) for all 1 ≤ 𝑖 ≤ 𝑛.i

𝑗

1 ⊲⊳ i
𝑗

2 = (𝜏 𝑗 , (𝜎
𝑗

1 , 𝜎
𝑗

2))
• If the root nodes of i1 and i2 have the same label label and are variable arity nodes: Let the
children of i1 and i2 be i11, . . . , i

𝑛
1 and i

1
2, . . . , i

𝑚
2 , respectively. Then, we compute two lists of node

sequences s0, d0𝑖 , s
1 . . . d𝑘𝑖 , s

𝑘 for 𝑖 ∈ {1, 2} such that: (a) The concatenation of s0d0𝑖 s
1 . . . d𝑘𝑖 s

𝑘 is
equal to i11, . . . , i

𝑛
1 and i

1
2, . . . , i

𝑛
2 for 𝑖 = 1 and 𝑖 = 2, respectively. Note that s𝑖 are shared between

the two lists. (b) the combined length of s𝑗
𝑖
is maximized. Note that some d𝑗

𝑖
may be the empty

list nil which acts as the identity for the concatenation operation. Now, the anti-unification
i1 ⊲⊳ i2 = (Tree(label, attrs, s1h1 . . . s𝑘), ⟨{h𝑖 ↦→ d

𝑖
1 | 0 ≤ 𝑖 ≤ 𝑘}, {h𝑖 ↦→ d

𝑖
2 | 0 ≤ 𝑖 ≤ 𝑘}⟩).

Remark 4.3. The anti-unification of two ASTs i1 and i2 is not uniquely defined in some cases. For
example, the both i1 and i2 be argument lists with i1 = (var, var) and i1 = (var). Now, i1 ⊲⊳ i2 is
computed as per the third case above. As per the definition, we have two options for the result:
(a) ((var, h), ⟨{h ↦→ var}, {h ↦→ nil}⟩, or (b) ((h, var), ⟨{h ↦→ var}, {h ↦→ nil}⟩. That is, it is
unclear if the var in i2 matches with the first or the second var in i1. This issue can be resolved by
using more advanced anti-unification techniques. However, we did not notice such cases in our
experiments.

Identifier

method
InvokeExpr

(ResolveDe
pendency)

AST of input 1

Identifier

(repository)

Argument

Identifier …… Identifier

(dependency1) (Lowest)

Identifier

method
InvokeExpr

(ResolveDe
pendency)

AST of input 2

Identifier

(repository)

Argument

Identifier …… Identifier

(dependency2) (Highest)

Identifier

method
InvokeExpr

(ResolveDe
pendency)

Generalization

Identifier

(repository)

Argument

……ℎ1 ℎ2

Fig. 5. The partial AST of two inputs shown in Figure 1a and 1c, and their anti-unification.

For our use case, we do not consider the general notion of anti-unification, but anti-unification
modulo provenance. Informally, we need every substitution to be above all select operations. That
is, if h ↦→ si, then �SP, si′ : (SP ← si

′) ∈ 𝜋 ∧ si
′ is an ancestor of si. Note that the additional

constraint makes the anti-unification be undefined in certain cases (see Example 4.4). We use the
notation i1 ⊲⊳𝜋 i2 and ⊲⊳𝜋 {i1, . . . , i𝑛} to denote anti-unification modulo provenance.

Example 4.4. Consider the inputs i1 = if(GetScore(run) < threshold) and i2 =

if(score < threshold). Without provenance, anti-unification generates substitutions 𝜎1 =

{h ↦→ GetScore(run)} and 𝜎2 = {h ↦→ score}. However, if we have provenance information
𝜋 = {select1 ← run}, then no anti-unification exists modulo 𝜋 . Intuitively, we are trying to
match “important parts” (here, selected nodes) of i1 with equivalent parts in i2. However, there is
no equivalent to run in i2.

Completing the Procedure. Given the above anti-unification provenance computation, we produce
the outputs for all additional positive inputs pi. For producing these outputs, we use an evaluation
process that leverages an input i from an example. This process is denoted as Evaluate∗ (Ptrans, pi, i).
Let 𝜎 and 𝜎 ′ be the substitutions for i and pi, respectively. We evaluate Ptrans on pi as follows:
• For every sub-program SP of Ptrans which is a select, let SP← si ∈ 𝜋 . Then, the evaluation
value is set to 𝜎 ′(𝜎−1 (si)).

Feedback-Driven Semi-Supervised Synthesis of Program Transformations 13

• For every sub-program SP of Ptrans which is not a select and has no sub-program that is a
select, the evaluation value is set to SP(i).
• For every other sub-program, the evaluation value is computed in the standard way, i.e.,
using the semantics of the operator and the evaluation values of the child sub-programs.

We do not describe this procedure formally, but illustrate it using an example.

Example 4.5. Consider the first input in Figure 1a and 1c, anti-unification generates 𝜎1 =

{h1 ↦→ dependency, h2 ↦→ Lowest} and 𝜎2 = {h1 ↦→ dependency2, h2 ↦→ Highest}. To pro-
duce the output for the additional positive input in 1c, we apply 𝜎2 (𝜎−11 (si)) to every SP ←
si ∈ 𝜋 . Here, these sub-trees are: dependency and Lowest, and several others selects which
are not ancestors of h1 or h2 (e.g., ResolveDependency). Now, we have 𝜎2 (𝜎−11 (dependency)) =
dependency1 and 𝜎2 (𝜎−11 (Lowest)) = Highest. Continuing evaluation, we end up with the output
DependancyResolverUtility.ResolveDependency(dependency1, ..., Highest).

Once we have the outputs for the additional positive inputs, we provide the examples and the
new examples generated from additional positive inputs to the transformer synthesis component
of the ReFazer. We have the following theorem.

Theorem 4.6 (Soundness). Algorithm 1 is sound. That is, if a program P is returned, then (a) ∀i ↦→
o ∈ Examples.P(i) = o, (b) ∀pi ↦→ PI.P(pi) ≠ ⊥, and (c) ∀ni ↦→ NI.P(ni) ≠ ⊥.

The proof follows from the use of ReFazertrans and ReFazerguard in lines 13 and 2, respectively.

Remark 4.7 (Completness of Algorithm 1). Algorithm 1 is not complete, i.e., it may not return a
program even when one satisfying all requirements exists. This is an intentional choice. Consider
the case where Examples = {“(temp − 32) ∗ (5/9)” ↦→ “FtoC(temp)”}, PI = {“x = x + 1; ”}, and
NI = ∅. Here, the input of the example and the additional positive input are not logically related.
However, there exists a program that is correct, i.e., the program that returns the constant tree
“FtoC(temp)”. In any practical scenario, this constant program is very unlikely to be the intended
program. Hence, we explicitly make the choice of incompleteness.

4.2 Feedback-driven Semi-supervised Synthesis

Algorithm 2 Feedback-driven semi-supervised synthesis

Require: Feedback oracle Feedback : P × (T ̸→ T) × 2T → (T→ [−∞,∞]).
Require: Semi-supervised synthesis engine SynthesisEngine.
Require: Input pool InputPool.
Require: Initial examples Examples, positive inputs PI, and negative inputs NI.
1: while true do
2: P← SynthesisEngine(Examples, PI,NI)
3: Rew← Feedback(P, Examples, InputPool)
4: (𝑛, 𝑝) ← Thresholds(Examples, P, PI,NI, InputPool)
5: PI

′ ← {i ∈ InputPool | Rew(i) > 𝑝}
6: NI

′ ← {i ∈ InputPool | Rew(i) < 𝑛}
7: if * then
8: PI← PI ∪ pi′ where pi′ is an arbitrary input from PI

′

9: else
10: NI← NI ∪ ni′ where ni′ is an arbitrary input from NI

′

Algorithm 2 presents a procedure for the feedback-driven semi-supervised synthesis problem.
It takes the following as input: (a) A feedback oracle Feedback that represents the user and the

14 X. Gao, S. Barke, A. Radhakrishna, G. Soares, S. Gulwani, A. Leung, N. Nagappan, A. Tiwari

environment. The feedback oracle takes as input a program P, a set of examples Examples, and an
input pool InputPool, and produces a reward function Rew : InputPool→ [−∞,∞]. Informally, the
feedback oracle checks the whole state of the process, and produces rewards for inputs from the pool.
(b) A semi-supervised synthesis procedure SynthesisEngine. This procedure is the one depicted in
Algorithm 1. (c) An input pool, an initial non-empty set of examples, a set of positive inputs, and a
set of negative inputs. The algorithm itself closely follows Figure 4. The only new component is
the function Thresholds to choose 𝑝 and 𝑛. The function Thresholds picks the thresholds based on
all the information present in the current context. This function is dependant on the application
scenario and the Feedback oracle. In Section 5, we demonstrate how this function was chosen in
three different scenarios. The other major component of the procedure is the Feedback oracle. We
present two different feedback oracles Feedbackuser and Feedbackauto. In the application scenarios,
these oracles are combined in differently to obtain application specific feedback oracles.

User-driven feedback oracle. The user-driven feedback oracle Feedbackuser represents the user of
the application. In different interfaces, the feedback from the user can take different forms, each
of which can be converted to a reward function RewU : InputPool → [−∞, +∞]. We have the
following common cases (see Section 5):
• The user explicitly provides new positive inputs PI′ and negative inputs NI′. We convert
this feedback into a reward function RewU by setting ∀pi ∈ PI.RewU (pi) = +∞, ∀ni ∈
NI.RewU (ni) = −∞, and RewU (i) = 0 for all other inputs in InputPool.
• The user provides a set of candidate positive inputs PI∗. For example, a set of candidate
positive inputs could be a set of ASTs which are contain the cursor location in a file. Given
PI
∗, we have ∀pi ∈ PI∗ .RewU (pi) = 𝑥 for some 0 < 𝑥 < +∞.

With richer user interfaces, we could consider more complex forms of Feedbackuser oracle.

Fully automated feedback oracle. The fully automated feedback oracle Feedbackauto represents the
environment the synthesizer is operating in. It can include a number of independent components
only restricted by the available tools in the environment the synthesizer is running in. For example,
if a synthesizer is running inside an IDE, the oracle could use the compiler, the version control
history, etc. Algorithm 3 presents an basic oracle that only reuses components from the semi-
supervised synthesis engine, i.e., the provenance computation and the anti-unification. In practice,
the feedback loop in Algorithm 2 can be optimized by sharing the provenance computation and
anti-unification across the synthesis engine and Feedbackauto oracle.

Algorithm 3 works as follows:
(a) If the program P on i produces an output that cannot be compiled, reward is −∞,
(b) Otherwise, we synthesize a guard using ReFazerguard and collect all the inputs InputPool

guard

in the InputPool that satisfy the guard. If InputPool
guard

contains a significant fraction of
InputPool, provide reward −∞. Overly general guards are almost never the intended one.

(c) Otherwise, compute the distance between the i and an example input, using the Distance

function. If this distance is high (resp. low), we give i a low (resp. high) reward.
We explain the Distance function informally: it is based on a combination of anti-unification and a
clone detection technique (we use the technique from (Jiang et al., 2007)) that returns a distance
between two trees.

Example 4.8. Consider the example if(score < threshold) ↦→ if(IsValid(score)), and the
candidate additional input if(GetScore(run) < threshold). Say, a clone-detection technique on
the two inputs returns some value 𝑑 . Now, depending on threshold we have either the positive or
negative case. Further, replacing GetScore(run) with larger and larger expressions will give greater
and greater distances. However, from the program (and provenance information), we know that the

Feedback-Driven Semi-Supervised Synthesis of Program Transformations 15

Algorithm 3 The Fully Automated Feedback Oracle Feedbackuser
Require: Compiler Compiler : 𝑡 → B or ⊥ if not compiler is available
Require: Distance metric Distance : T × T→ R≥0
Require: Program P = (P

guard
, Ptrans)

Require: Examples Examples : T × T
Ensure: Rewards function RewE : InputPool ̸→ [−∞, +∞]
1: i∗ ↦→ o

∗ ← arbitrary example in Examples

2: 𝜋 ← Provenance(i∗ ↦→ o
∗, Ptrans)

3: RewE ← ∅
4: for all i ∈ InputPool do
5: if Compiler ≠ ⊥ ∧ Compiler(i) = false then
6: RewE ← RewE ∪ {i ↦→ −∞}
7: guard← ReFazer

guard
({i | i ↦→ o ∈ Examples} ∪ PI ∪ {i},NI

8: InputPool
guard

← {i ∈ InputPool | guard(i) = true}

9: if
|InputPool

guard
|

|InputPool| > 𝜖 then RewE ← RewE ∪ {i ↦→ −∞} continue

10: d← Distance(i, i∗, 𝜋)
11: RewE ← RewE ∪ {i ↦→ (d < threshold) ? 𝑦 : −𝑦}
12: return RewE

internals of what expression appears in lieu of score does not matter to the transformation. Hence,
we use anti-unification to produce the abstracted trees if(h < threshold) and if(h < threshold),
from i and i

′ respectively, and then use the clone detection technique to measure distance. Here, it
will return 0.

However, the technique from the above example may produce distances that are too low, and
produce too many false positives. To avoid this problem, we use D-caps (Evans et al., 2009, Nguyen
et al., 2013), a technique for identifying repetitive edits. Given a number 𝑑 >= 1, a d-cap is a tree-like
structure obtained by replacing all sub-trees of depth 𝑑 with holes.

Example 4.9. Consider the following example (i ↦→ o) ≡ new Attribute(expression,
Type, true) ↦→ CreateSoftAttribute(expression, Type, true) and a candidate positive in-
put 𝑖𝑝 ≡ new Attribute(attributes) that should not be accepted (they are calling different
constructor of Attribute). Using anti-unification and clone-detection, we will assume that the
distance is 0, as both inputs abstract to newAttributes(h). On the other hand, if the h is replaced
with it’s 1-cap, the new abstractions are given new Attribute(h1, h2, h3) and new Attribute(h).
Now, the distance is not zero, with the right threshold, we would avoid this false positive.

5 APPLICATIONS OF SPARSE

In this section, we present three practical applications of Sparse in the domain of C# program
transformations. They allow different types of feedback to produce additional positive inputs to the
semi-supervised synthesizer. To implement the semi-supervised synthesis algorithm (Algorithm 1),
we leverages the Transformation.Tree API available in the PROSE SDK as a concrete implementation
of ReFazer. Additionally, in all applications, we use all the AST nodes available in the source code
as inputs for the input pool.

5.1 Sparse loc: User-Provided Additional Input Feedback

Sparse loc leverages user-driven feedback oracle to identify positive inputs to the semi-supervised
synthesizer. The target for Sparse loc is applications where a user is providing examples manually.

16 X. Gao, S. Barke, A. Radhakrishna, G. Soares, S. Gulwani, A. Leung, N. Nagappan, A. Tiwari

To illustrate this application, consider our motivating scenario shown in Figure 1. For the first false
negative (Figure 1c), instead of manually performing the edit to give another example, the developer
can provide feedback to the system by indicating that the location (text selection representing the
input AST) should have been modified. Sparse loc uses the feedback to create a positive input and
generalize the transformation. After that, Sparse loc produces suggestions to two out of the three
false negatives. The developer can follow the same process to fix the other false negative. In terms
of the feedback oracles from the previous section, Feedbackuser returns a reward function RewU

that is +∞ on the additional positive input the user has provided, and is 0 everywhere else. Further,
we pick the thresholds 𝑝 and 𝑛 to both have the value 0.

Sparse loc requires the developer to enter a special mode to provide examples and feedback to the
system. While this interaction gives more control to the developer, it may also prevent developers
from using it due to discoverability problems (Miltner et al., 2019). Next, we describe two other
modeless applications of Sparse that do not require explicitly providing examples and feedback.

5.2 Automated Feedback Based on Cursor Position (Sparse cur)

For our second application, we instantiated the BluePencil algorithm (Miltner et al., 2019) using
our semi-supervised synthesizer as the PBE synthesizer. Blue-Pencil works in the background of
an editor. While the developer edits the code, the system infers examples of repetitive edits from
the history of edits, and it uses an synthesizer to learn program transformations for these edits.
The original algorithm does not consider sets of input-output examples of size one, as they do not
indicate repetitive changes. We modified this constraint to allow the system to use Sparse cur to
learn transformations from just one example and one additional positive input.
To enable the completely modeless interaction, Sparse cur uses both user-driven and fully

automated oracles to produce feedback. The former leverages the cursor position to collect implicit
feedback from the developer. Note that the developer is not actively providing feedback—it is
completely transparent to the user, and is inferred automatically. Intuitively, the cursor suggests
that the developer is interested in that part of the code and may want to edit it.

However, the cursor location is very ambiguous: the subtree the user is likely to edit can be any
subtree that contains the cursor location. Consider the false negative shown in Figure 1c. Suppose
the developer places the cursor location in the beginning of the line. There are many sub-trees
that include this location, including the ones corresponding to the following code fragments:
repository and repository.ResolveDependency(...). The latter is the input that should be
classified as positive input. The Feedbackuser oracle returns reward function that gives a positive
score (say 𝑥) to all sub-trees that include the position defined by the cursor. We use further feedback
from Feedbackauto oracle described in Section 4.2 to further disambiguate the cursor location.
Intuitively, Feedbackauto will provide positive rewards (say 𝑦) to all nodes that are “similar” to the
example inputs. Finally, we pick thresholds 𝑛 and 𝑝 such that 𝑛 < 𝑥 < 𝑝 ∧ 𝑛 < 𝑦 < 𝑝 , but 𝑥 +𝑦 > 𝑝 .

We implement Sparse cur as a Visual Studio extension. Figure 2 shows the extension in action. As
soon as the developer places the cursor in the location related to the false negative, Sparse cur uses
the semi-supervised feedback synthesis to improve the transformation. The new transformation
produces an auto-completion suggestion for the current location (see Figure 2). In this setting, we are
using the user-driven feedback and the automated feedback to more precisely pick the additional
positive input. However, there are many settings where it is infeasible to obtain any feedback from
the user. We discuss this case in the following section.

5.3 Sparse auto: Automated Feedback Based on Inputs in the Source Code

Our last application (Sparse auto) uses a fully automated feedback to identify positive inputs without
any explicitly or implicitly feedback from developers. The motivation for this application is that the

Feedback-Driven Semi-Supervised Synthesis of Program Transformations 17

#Examples

Build19 4 #Edit 2 3 4 5 6 7

WriteLine 4 #Test 25 21 18 8 2 3

billg 5

billg2 2 2-3 4-5 6-7 8-9 10+

refazer0 9

refazer1 4

refazer2 9

refazer3 2

refazer4 4

refaze9 10

csharptest10 3

csharptest12 7

csharptest13 2

csharptest14 4

csharptest15 4

csharptest16 4

csharptest17 2

csharptest2 4

csharptest4 4

csharptest5 4

csharptest6 8

csharptest7 5

dogfood-1 4

dogfood-10

dogfood-102 2

dogfood-103 2

dogfood-104 2

dogfood-105 2

dogfood-106 2

dogfood-107 2

dogfood-108 4

dogfood-109 5

dogfood-11

dogfood-110 2

dogfood-111 2

dogfood-112 4

dogfood-113 2

dogfood-114 2

dogfood-115 3

dogfood-116 2

dogfood-12 9

dogfood-13 7

dogfood-14 10

dogfood-15 3

Program # Edit

0

5

10

15

20

25

30

2 3 4 5 6 7 8 9 10 13 16

N
u

m
b

e
r

o
f
e

d
it
in

g

s
e
s
s
io

n
s

Number of repetative edits

Fig. 6. The distribution of number of repetitive edits across the programs

developers may not be aware of all locations that must be changed or they may want to apply the
edits in bulk. We also implemented Sparse auto on top of Blue-Pencil. We restricted this application
to synthesis tasks that have at least two input-output examples.
Consider our motivating example (Figure 1). As soon as the developer finishes the first two

edits (Figure 1a), Sparse auto automatically identifies the inputs in Figure 1c as positive inputs and
synthesizes the correct transformation. Now, if the user is unaware of the other locations, the tool
still produces suggestions at these places. These suggestions may then be used to automatically
prompt the user to make these additional edits. Another scenario is as follows: after the two edits,
the user creates a pull request. The tool can now be run as an automated reviewer (see, for example,
(Bader et al., 2019)) to suggest changes to the pull request.

6 EVALUATION

In this section, we present our evaluation of the proposed approach in terms of effectiveness and
efficiency. In particular, we evaluate Sparse with respect to the following research questions:

RQ1 What is the effectiveness of the Sparse loc in generating correct code transformations?

RQ2 What is the effectiveness of the reward calculation function?

RQ3 Given the cursor location, what is the effectiveness and efficiency of Sparse cur?

RQ4 What is the effectiveness and efficiency of feedback-driven synthesis Sparse auto?

6.1 Benchmark

We collected 86 occurrences in real life code containing repetitive edits. These scenarios were
collected from developers in a large company X spanning a team size of several thousand developers
and millions of lines of code. We selected this sample from editing sessions with repetitive edits.

We construct a benchmark containing 86 program editing sessions. In each session, there is a list
of program versions representing the program content before and after each edit. By comparing
different program versions, we can easily figure out the edit. For each session, we manually generate
a description containing the number of edit, the version ids before and after each edit and the locations
where each edit is applied. Each editing session contains at least two repetitive edits and some
noises (the edits that are not repetitive). Figure 6 shows the number of repetitive edits in different
program editing sessions, where the 𝑥-axis presents the number of repetitive edits and 𝑦-axis gives
the number of editing sessions. For instance, there are 25, around 30%, program editing sessions
with 2 repetitive edit. This percentage also motivates us to perform program synthesis with fewer
examples, otherwise, we cannot generate any suggestions for such cases by learning from multiple
examples. The averaged number of repetitive edits is 4.07 while the largest number is 16. The
benchmark suite contains a variety of edits, from small edits that change only one single program
statement to large edits that modify code blocks.

18 X. Gao, S. Barke, A. Radhakrishna, G. Soares, S. Gulwani, A. Leung, N. Nagappan, A. Tiwari

Table 1. The effectiveness of semi-supervised synthesis.

Example Session Edit Scenario ReFazer Sparse
loc

Precision Recall Precision Recall
One 86 350 1400 100.00% 26.71% 96.01% 100.00%
Two 61 300 3664 99.65% 77.26% 98.58% 99.94%
Three 40 237 7578 99.88% 89.10% 99.72% 99.99%

6.2 Effectiveness of Sparse loc

Suppose developers indicate the additional positive inputs that should be transformed, we first
evaluate the effectiveness of Sparse loc by measuring its precision and recall in generating correct
suggestions. In this evaluation, we use original ReFazer (Rolim et al., 2017), the existing program
synthesis tool for code transformation, as our baseline approach.

6.2.1 Experimental setup. In each program edit session, we first extract all the repetitive edits
from history versions. For a session with𝑀 repetitive edits, we provide 𝑁 edits as examples for
the synthesis engine, and the remaining repetitive edits in this session are used for testing. We set
𝑁 < 𝑀 to ensure there is at least one edit can be used for testing, further, we limit 𝑁 up to three.
Considering users could perform the repetitive edits in any order, we consider all combinations
when choosing the examples. For a editing session with 𝑀 repetitive edits, there are 𝐶 (𝑀, 𝑁)
combinations when choosing the 𝑁 examples. For instance, for a program edit session with four
repetitive edits, if two edits are provided to the PBE engine as examples, there are 𝐶 (4, 2) = 6
combinations. Given a combination of 𝑁 examples to the PBE engine, we then create a set of testing
scenarios. In each scenario, 𝑁 edits are provided to PBE engine as examples, and one edit is used for
testing. Therefore, for a editing session with𝑀 repetitive edits, suppose 𝑁 examples are provided
to the synthesis engine, we will create 𝐶 (𝑀, 𝑁) ∗ (𝑀 − 𝑁) scenarios. The Sparse loc also takes
the testing edit as additional positive input. The synthesized transformation takes as input the
testing edit inputs, and outputs the corresponding suggestions. We calculate the precision and
recall of ReFazer and Sparse loc by measuring the number of false positives, false negatives, and
true positives produced in all the scenarios.

6.2.2 Results. Table 1 presents our evaluation results of traditional ReFazer and Sparse loc. Column
Example presents the number of examples provided to PBE engine, while Session shows the number
of program editing sessions. Edit and Scenario give the number of edits and scenarios, respectively.
The more examples PBE engine takes, the more scenarios we create because there are more
combinations when choosing examples. By comparing the different numbers of examples, ReFazer
produces much better results (recall) with more examples (from 26.71% with one example to
89.10% with three examples). This is because the synthesis engine can learn how to generalize
the transformation with more examples. The precision is always high because ReFazer always
learns the most specific transformation which is unlikely to produce false positives. However, too
specific transformation easily results in false negatives. Especially, the recall with one example is
just 26.71%, which also highlights the challenges to synthesize a high-quality transformation with
fewer examples. In contrast, Sparse loc significantly improves the recall regardless of the number
of examples, while keeps the high precision (slightly lower). Sparse loc can generate better results
because the additional input could help synthesize a more properly generalized transformation.
Specifically, we even achieve 100% recall and >96% precision with only one example, which can
release the burden of users from providingmultiple repetitive edit examples. Compare with ReFazer,
we generate a few more false positives. The reasons will be discussed in discussion section.

Feedback-Driven Semi-Supervised Synthesis of Program Transformations 19

Table 2. The effectiveness of the reward calculation function.

Session # pNode # nNode
No validation Clone detection Reward function

false # false # false # false # false # false
positive negative positive negative positive negative

86 265 243417 9055 7 8 111 11 14

Sparse loc significantly improves the recall of ReFazer while keeps the high precision in
generating correct suggestions. Even by taking one example as input, Sparse loc achieves
more than 96% precision and 100% recall.

6.3 Effectiveness of Reward Calculation Function

Our second experiment evaluates the effectiveness of the proposed reward calculation function.
Reward calculation function determines whether a node is additional positive/negative input for
the feedback system. In this section, we evaluate its effectiveness in identifying additional positive
input by comparing with two baseline approaches: No validation and clone detection.

• No validation: regard any node as additional positive input;
• Clone detection: Given an edit <𝑖, 𝑜> and one node 𝑖𝑛 , we determine whether 𝑖𝑛 is an positive
additional input by calculating the normalized distance between 𝑖𝑛 and 𝑖 using clone detection
techniques. Here, we use the approach proposed by Jiang et al. (2007). If the distance is less
than a threshold 𝑡 (here, we set 𝑡 as 0.3), 𝑖𝑛 will be regarded as an additional positive input;
• Reward function: Given edit <𝑖, 𝑜> and node 𝑖𝑛 , we use our proposed approach to calculate
the reward score between <𝑖, 𝑜> and 𝑖𝑛 . If the score is greater than threshold 𝑡 (we set 𝑡 as
0.7), 𝑖𝑛 will be regarded as an valid additional positive input.

6.3.1 Experimental setup. Given an input 𝑖 , we determine whether 𝑖 is additional positive input
using the above three different approaches. In each program editing session, we select the first edit
as the example for the PBE engine, and remaining edit inputs as testing nodes. We mark the input
of testing edit as pNode, which should be determined as additional positive input. To evaluate the
precision, we also test our reward validation on irrelevant nodes, which is marked as nNodes. In
each edit session, we regards all the nodes from the document that should not be transformed by
the synthesized transformation as nNode. Once an input is determined as valid additional positive
input, semi-supervised synthesis is invoked to synthesize suggestions for the additional inputs. We
measure the false positive/negatives on both pNode and nNode produced by different approaches.

6.3.2 Results. Table 2 shows the evaluation results. By regarding any node as additional positive
input, the synthesis engine can successfully generates suggestions for many of them. However,
it also generates a large number of false positives (9055), which demonstrates the importance of
the additional input validation. If we validate the additional input using existing clone detection
(Column 6, 7), the false positive is significantly reduced. However, it introduces more false negatives
because the clone detection is too strict when comparing two inputs as shown in Section 4.2.
Considering the fact that we fail to generate suggestions on more than 40% (111 out of 265) of
𝑝𝑁𝑜𝑑𝑒s, it is also not acceptable. The last two columns show the evaluation result of our reward
calculation function. We also significantly reduce the number of false positives while do not
introduce too many false negatives. Our reward calculation function results in 3 more false positive
than clone detection. The underlying reason will be analyzed in the discussion section.

20 X. Gao, S. Barke, A. Radhakrishna, G. Soares, S. Gulwani, A. Leung, N. Nagappan, A. Tiwari

Table 3. The effectiveness of Sparse cur when given the history edit trace and the cursor location.

Scenario Suggestion False Positive False Negative Precision Recall Time(ms)
295 291 1 3 99.66% 98.98% 51.83(avg)

The proposed addition input validation can help reduce false positives. Further, it generates
much fewer false negatives than existing clone detection techniques.

6.4 The Effectiveness and Efficiency of Sparse cur

To evaluate the effectiveness and efficiency of Sparse cur, we measure the false positive and false
negatives produced at the cursor location by simulating the program editing process of developers.

6.4.1 Experimental setup. Recall that all the program versions are recorded in form of {𝑣1, 𝑣2, 𝑣3
... 𝑣𝑖 ... 𝑣𝑛} on each program editing session. We could easily reproduce the editing steps by going
through all the history versions one by one. From the second edit in each editing session (users
need to manually complete the first edit), we feed the history versions before edit 𝑒𝑖 and the edit
location of 𝑒𝑖 to Sparse cur. The history versions include at least one repetitive edit (e.g. 𝑒1) and
some irrelevant edits (noises). We randomly select a location from the range of edit location to
simulate the cursor location (user might invoke synthesis at any location within the range of edit).

6.4.2 Result. Table 3 shows our evaluation result. Column Scenario presents the number of sce-
narios. In each scenario, one set of history versions and one cursor location are provided to the
engine. Our evaluation results show that our engine only generates one false positive and three
false negatives on all the scenarios. In other words, we achieve 99.66% precision and 98.98% recall.

Meanwhile, Sparse cur should be fast enough to ensure that the suggestion can be generated at
run-time. Therefore, we also evaluate the efficiency of Sparse cur by measuring the time to generate
each suggestion. Column Time describes the averaged time to generate edit suggestions. Basically,
our engine could produce one suggestion in 51.8ms on average, and up to 441ms. At the cursor
location, we believe generating suggestions in less than 0.44 second is acceptable.

Given one set of history versions and one cursor location, Sparse cur achieves around
99% precision and recall in generating correct suggestions. Meanwhile, it just takes 51.8
milliseconds on average to generate one suggestion.

6.5 The Effectiveness and Efficiency of Feedback-driven Synthesis Sparse auto

In this experiment, we evaluate the efficiency and effectiveness of Sparse auto, using automated
feedback. Sparse auto should require fewer examples to synthesize a correct transformation. We
measure the number of required input-output examples and additional inputs from developers to
complete one edit task. In this evaluation, we use BluePencil as our baseline approach.

6.5.1 Experimental setup. Given a set of edits as edit task, developer needs to manually perform
some edits, once synthesise engine can learn a correct transformation from the user-provided
edits, it automates the remaining ones. For BluePencil, we assume developer manually produce
versions {𝑣1, 𝑣2, ... 𝑣𝑖 }, and BluePencil automates the edits in the remaining versions {𝑣𝑖 ... 𝑣𝑛}. We
measure the minimal number of repetitive edits in {𝑣1, 𝑣2, ... 𝑣𝑖 } required from developers and the
number of automatically generated edits. As for Sparse auto, we also assume developer manually
produce versions {𝑣1, 𝑣2, ... 𝑣 𝑗 }. Meanwhile, we also assume developers provide their cursor locations.

Feedback-Driven Semi-Supervised Synthesis of Program Transformations 21

Table 4. To complete all the repetitive edits, the required information (examples and locations) from users

and the number of auto-generated suggestions. Column Auto-input is the number of additional inputs that

are automatically identified by the feedback system. Column Ratio shows the averaged number of required

examples to generate one suggestion.

Approach Edit Example Location Auto-input Suggestion Ratio Time(s)
BluePencil 350 200 - - 150 1.33 0.25
Sparse auto 350 87 87 37 263 0.33 0.32

According the given history versions and cursor location, Sparse auto automatically founds more
additional inputs, synthesizes program and automates the edits in the remaining versions {𝑣 𝑗 ... 𝑣𝑛}.
We measure the minimal number of repetitive edits in {𝑣1, 𝑣2, ... 𝑣 𝑗 } and the minimal number of
cursor locations required from developers.

6.5.2 Results. Table 4 shows our evaluation results. Column Edit shows the total number of edits
that need to be completed in the task. To complete all the edits, BluePencil requires users to
manually perform 200 edits and it automates 150 edits (suggestions). On average, to generate
one suggestion, users need to provide 1.33 (column Ratio) examples. Compared with BluePencil,
Sparse auto just needs 87 examples and 87 user-indicated locations. Meanwhile, feedback system
automatically find 37 additional inputs, shown in columnAuto-input, that can improve the previously
synthesized transformation. Corresponding, Sparse auto automatically produces more suggestions
than BluePencil (263 vs 150). On average, it just needs 0.33 examples to produce one suggestion.
Meanwhile, Sparse auto should be fast enough to ensure that the suggestion can be generated

at run-time when developers are programming. Therefore, we also evaluated its efficiency by
measuring the time to generate edit suggestions. Column Time describes the averaged time to
generate edit suggestions. Basically, our engine could complete the given edit task in 0.32 seconds
on average. Compared to BluePencil, Sparse auto is a little bit slower because it continuously
refines the transformation by invoking synthesis engine multiple times.

To complete the same edit task, Sparse auto requires much fewer examples and generates
more correct suggestions than BluePencil. On average, Sparse auto takes 0.32 seconds to
complete one edit task.

6.6 Discussion

In our experiments, Sparse produced a small number of false positives and false negatives. Besides
from false positives and negatives related to limitations of Refazer itself, we found false positives
related to the semi-supervised synthesis and the automated feedback oracles. We observed false
positives related to limitations of our anti-unification algorithm.
The semi-supervised synthesis produces a false positive in this case. Given the following edit:

Model(. . . , Outputs = null, Inputs = null) ↦→ Model(. . . , Outputs = null), i.e.,
removing Inputs=null, and the following additional positive input Model(. . . , Inputs = new
List<ModelInput>), Outputs = null) (note the switch of the last two parameters). Semi-
supervised synthesis generates transformation that delete the last argument of newMode object
creation. Therefore, the synthesized transformation will produce the suggestion for the addi-
tional input by deleting the last argument Outputs = null. However, the desired edit is delete the
Inputs = ∗ clause, which is the second last argument in the additional input. That is, the correct
suggestion should be to remove the second-to-last argument.
One way to address this issue would be to extend the the anti-unification algorithm to handle

commutativity (as the order of name=value style arguments is irrelevant. However, this changes

22 X. Gao, S. Barke, A. Radhakrishna, G. Soares, S. Gulwani, A. Leung, N. Nagappan, A. Tiwari

our anti-unification problem from AU to ACU (associativity-unity-commutativity), making the
problem significantly more complex.

Limitations of the feedback oracles. In our experiment, Sparse cur and Sparse auto produced
false positives and negatives due to limitations in the feedback oracles. It might classify negative
inputs as positive ones if the locations are too similar. For instance, developers made the following
edit: comparedEdge.Item2 >= Source.Index ↦→ comparedEdge.Item2 > Source.Index. The
developer intention was to change “ >= ” to “ > ” only if the left side of the comparison expression
was comparedEdge.Item2. The oracle classified comparedEdge.Item1 >= Source.Index as a
positive addition since the input is too similar. As future work, we plan to allow users to provide
feedback about false positives, so that the system can create negative inputs. On the other hand,
the false negatives mainly happened on small inputs where the change was on the root of the AST.
In this case, any generalization of the input looked like an over generalization for the feedback
oracle, since there was not much context for transformation.

Threats to Validity. Our selection of benchmark may not be representative for all types of edits
developers. To reduce this threat, we collected real-world scenarios from the developers who
are working on different large code-bases to have as much variety as possible in the benchmark
suite. Another threat is that developers may perform irrelevant, non-repetitive edits in addition to
the repetitive ones, which may affect the effectiveness of Sparse. To alleviate this issue, we also
collected the traces of irrelevant edits and use them in our benchmarks. With respect to threats to
construct validity, some scenarios of repetitive edits are ambiguous even for humans to understand
what was the transformation intended by the developer, which may affect the construction of our
benchmark. To reduce this threat, multiple authors of the paper reviewed the scenarios. If possible,
we contacted the developer who made the edit for confirmation.

7 RELATEDWORK

Interactive program synthesis. Interactive program synthesis systems allow users to incrementally
refine semantic specifications in response to synthesizer outputs (An et al., 2019, Le et al., 2017).
Within this paradigm, a notable approach for proposing refinements is based on the concept of
distinguishing inputs (Jha et al., 2010), in which inputs are discovered for which the outputs of
multiple consistent programs disagree, suggesting the need for additional refinement to rule out
undesired candidate programs. FlashProg (Mayer et al., 2015) employs this notion of distinguishing
inputs to pose parsimonious sequences of questions to the user to resolve ambiguities with respect
to the user’s specification. A disadvantage of this approach, however, is the overhead required for
users to answer potentially many rounds of clarifying questions to refine intent. In this paper, we
propose a complementary technique. Instead of multiple programs, Sparse can synthesize new
programs using semi-supervised synthesis. Additionally, the technique not only leverages user
feedback but also allows fully automated feedback during specification refinement. Our approach
has the advantage that it allows users to refine intent with little to no modification to their workflow.

Semi-supervised learning. Semi-supervised learning machine learning techniques (Zhu and Gold-
berg, 2009) combine labeled data (i.e., input-output examples) with unlabeled data (i.e., additional
inputs) during training to exploit the large amount of unlabeled data available in many domains,
such as websites, source code, and images (Zhu, 2005). Beyond classical machine learning settings,
semi-supervised learning techniques have also been adapted for use in program synthesis. For
example, the BlinkFill system (Singh, 2016) for synthesizing spreadsheet string transformations
exploits input data by extracting a graphical constraint system to efficiently encode the logical

Feedback-Driven Semi-Supervised Synthesis of Program Transformations 23

structure across all available inputs. This input structure allows BlinkFill to achieve dramatic re-
duction in the number of candidate programs, netting improvement to performance and reduction
in the number of input-output examples over previous systems (Gulwani, 2011). Unfortunately,
direct application of this approach to the domain of program transformations is impractical due
to different types of inputs (positive inputs and negative inputs), the large number of inputs (all
AST nodes in the source code) and the size of the ASTs themselves (potentially many thousands
of tokens per file). To mitigate the issues, we have proposed a novel technique based on reward
functions to isolate only those additional inputs that are likely to provide fruitful disambiguation,
while still preserving the runtime efficiency required for interactive use in an IDE setting.

Software refactoring tools. Software refactorings are structured changes to existing software
that improve code quality while preserving program semantics (Mens and Tourwe, 2004, Opdyke,
1992). Popular IDEs such as Visual Studio (Microsoft, 2019), Eclipse (Eclipse Foundation, 2020), and
IntelliJ (JetBrains, 2020a) provide built-in support for various forms of well-understood software
refactorings. However, experience shows that these refactoring tools are often underutilized by
developers (Vakilian et al., 2012). Impediments to adoption include the tedium associated with
applying refactorings, and lack of awareness that a desired refactoring exists (the discoverability
problem). Additionally, recent studies (Kim et al., 2012) indicate that developers often relax the re-
quirement on semantics-preservation in practice, suggesting the need for tools for ad-hoc repetitive
code transformation (Steimann and von Pilgrim, 2012), not just well-known refactorings.
Toward this end, several program synthesis-based approaches have been studied toward user-

friendly refactoring and code transformation support, such as the SYDIT, LASE, and Refazer
systems (Meng et al., 2011, 2013, Rolim et al., 2017) for synthesis of code transformations from
examples. The Getafix (Bader et al., 2019) and Revisar systems (Rolim et al., 2018) apply code
repository mining techniques to discover such changes offline from large codebases, thus expanding
breadthwhile alsomitigating the burden for users to specify examples explicitly. Blue-Pencil (Miltner
et al., 2019) takes an alternative approach to increase discoverability and user-friendliness: the
system uses a modeless, on-the-fly interaction model in which the programmer is presented with
suggested edits without ever exiting the boundaries of the IDE’s text editor–the system watches
the user’s behavior and analyzes code change patterns to discover ad-hoc repetitive edits.

The semi-supervised feedback learning approach in this paper is complementary and compatible
with the techniques employed by Blue-Pencil: the modeless interaction of Blue-Pencil provides easy
discoverability, and additional inputs provide a natural and effective mechanism for refinement
when a false negative or positive is discovered.

Code suggestions. Related to refactoring by example are techniques for suggesting code com-
pletions. Raychev et al. (Raychev et al., 2014) train statistical language models to predict API
usage patterns from code snippets extracted from websites such as Github and StackOverflow.
These models are capable of filling partial programs with holes corresponding to missing method
names or parameters. The Bing Developer Assistant (Zhang et al., 2016) also employs statistical
models for code snippets, but for the purpose of answering natural language code search queries.
MatchMaker (Yessenov et al., 2011) analyzes dynamic executions, rather than source code, of
real-world programs for API usage patterns. The aforementioned approaches all require training
over large datasets, whereas our approach provides suggestions from few examples and additional
inputs. In contrast to statistical techniques, type-based code completion approaches exploit type
information to complete partial expressions (Gvero et al., 2013, Perelman et al., 2012). Because
these techniques require rich type information, they may be difficult or impractical to apply toward
dynamically-typed languages. Our approach avoids this difficulty by requiring only syntax trees.

24 X. Gao, S. Barke, A. Radhakrishna, G. Soares, S. Gulwani, A. Leung, N. Nagappan, A. Tiwari

8 CONCLUSION

Developer tools that proactively predict user’s actions and help them improve their productivity
are gaining popularity. In this context, we presented a novel approach for predicting repeated edits
that exploits the latent information in the rest of user’s code. By combining knowledge about what
edits the user has performed in the past with the observable patterns in rest of the code, Sparse is
able to significantly improve precision and recall metrics for predicting future repeated edits. It is
intriguing to think about the potential of harnessing other forms of hidden information in user’s
code and actions to ease the task of producing bug-free code revisions.

REFERENCES

S. An, R. Singh, S. Misailovic, and R. Samanta. Augmented example-based synthesis using relational perturbation properties.
Proceedings of the ACM on Programming Languages, 4(POPL):1–24, 2019.

J. Bader, A. Scott, M. Pradel, and S. Chandra. Getafix: Learning to fix bugs automatically. Proc. ACM Program. Lang., 3
(OOPSLA), Oct. 2019. doi: 10.1145/3360585. URL https://doi.org/10.1145/3360585.

A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-Gros, A. Kamsky, S. McPeak, and D. Engler. A
few billion lines of code later. Commun. ACM, 53(2), 2010. ISSN 0001-0782. doi: 10.1145/1646353.1646374. URL
https://doi.org/10.1145/1646353.1646374.

Eclipse Foundation. Eclipse. At https://www.eclipse.org/, 2020.
W. S. Evans, C. W. Fraser, and F. Ma. Clone detection via structural abstraction. Software Quality Journal, 17(4):309–330,

2009.
S. Gulwani. Automating string processing in spreadsheets using input-output examples. In Proceedings of the 38th Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’11). ACM New York, NY, USA, 2011.
T. Gvero, V. Kuncak, I. Kuraj, and R. Piskac. Complete completion using types and weights. In Proceedings of the 34th ACM

SIGPLAN conference on Programming language design and implementation, pages 27–38, 2013.
JetBrains. IntelliJ. At https://www.jetbrains.com/idea/, 2020a.
JetBrains. ReSharper. At https://www.jetbrains.com/resharper/, 2020b.
S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari. Oracle-guided component-based program synthesis. In 2010 ACM/IEEE 32nd

International Conference on Software Engineering, volume 1, pages 215–224. IEEE, 2010.
L. Jiang, G. Misherghi, Z. Su, and S. Glondu. Deckard: Scalable and accurate tree-based detection of code clones. In 29th

International Conference on Software Engineering (ICSE’07), pages 96–105. IEEE, 2007.
M. Kim, T. Zimmermann, and N. Nagappan. A field study of refactoring challenges and benefits. In Proceedings of the ACM

SIGSOFT 20th International Symposium on the Foundations of Software Engineering, FSE ’12, pages 50:1–50:11, New York, NY,
USA, 2012. ACM. ISBN 978-1-4503-1614-9. doi: 10.1145/2393596.2393655. URL http://doi.acm.org/10.1145/2393596.2393655.

V. Le, D. Perelman, O. Polozov, M. Raza, A. Udupa, and S. Gulwani. Interactive program synthesis. arXiv preprint

arXiv:1703.03539, 2017.
M. Mayer, G. Soares, M. Grechkin, V. Le, M. Marron, O. Polozov, R. Singh, B. Zorn, and S. Gulwani. User interaction models

for disambiguation in programming by example. In Proceedings of the 28th Annual ACM Symposium on User Interface

Software & Technology, pages 291–301, 2015.
N. Meng, M. Kim, and K. S. McKinley. Systematic editing: generating program transformations from an example. ACM

SIGPLAN Notices, 46(6):329–342, 2011.
N. Meng, M. Kim, and K. S. McKinley. Lase: locating and applying systematic edits by learning from examples. In 2013 35th

International Conference on Software Engineering (ICSE), pages 502–511. IEEE, 2013.
T. Mens and T. Tourwe. A survey of software refactoring. IEEE Transactions on Software Engineering, 30(2):126–139, Feb

2004. ISSN 0098-5589. doi: 10.1109/TSE.2004.1265817.
Microsoft. Visual Studio. At https://www.visualstudio.com, 2019.
A. Miltner, S. Gulwani, V. Le, A. Leung, A. Radhakrishna, G. Soares, A. Tiwari, and A. Udupa. On the fly synthesis of edit

suggestions. Proceedings of the ACM on Programming Languages, 3(OOPSLA):1–29, 2019.
H. A. Nguyen, A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, and H. Rajan. A study of repetitiveness of code changes in software

evolution. In 2013 28th IEEE/ACM International Conference on Automated Software Engineering (ASE), pages 180–190.
IEEE, 2013.

W. F. Opdyke. Refactoring Object-oriented Frameworks. PhD thesis, Champaign, IL, USA, 1992. UMI Order No. GAX93-05645.
D. Perelman, S. Gulwani, T. Ball, and D. Grossman. Type-directed completion of partial expressions. In Proceedings of the

33rd ACM SIGPLAN conference on Programming Language Design and Implementation, pages 275–286, 2012.
O. Polozov and S. Gulwani. Flashmeta: a framework for inductive program synthesis. In Proceedings of the 2015 ACM

SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications, pages 107–126,

https://doi.org/10.1145/3360585
https://doi.org/10.1145/1646353.1646374
https://www.eclipse.org/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/resharper/
http://doi.acm.org/10.1145/2393596.2393655
https://www.visualstudio.com

Feedback-Driven Semi-Supervised Synthesis of Program Transformations 25

2015a.
O. Polozov and S. Gulwani. Flashmeta: a framework for inductive program synthesis. In Proceedings of the 2015 ACM

SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications, pages 107–126,
2015b.

V. Raychev, M. Vechev, and E. Yahav. Code completion with statistical language models. In Proceedings of the 35th ACM

SIGPLAN Conference on Programming Language Design and Implementation, pages 419–428, 2014.
R. Rolim, G. Soares, L. D’Antoni, O. Polozov, S. Gulwani, R. Gheyi, R. Suzuki, and B. Hartmann. Learning syntactic program

transformations from examples. In 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE), pages
404–415. IEEE, 2017.

R. Rolim, G. Soares, R. Gheyi, T. Barik, and L. D’Antoni. Learning quick fixes from code repositories, 2018.
R. Singh. Blinkfill: Semi-supervised programming by example for syntactic string transformations. Proc. VLDB Endow., 9

(10):816–827, June 2016. ISSN 2150-8097. doi: 10.14778/2977797.2977807. URL https://doi.org/10.14778/2977797.2977807.
F. Steimann and J. von Pilgrim. Refactorings without names. In Proceedings of the 27th IEEE/ACM International Conference

on Automated Software Engineering, ASE 2012, pages 290–293, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1204-2.
doi: 10.1145/2351676.2351726. URL http://doi.acm.org/10.1145/2351676.2351726.

M. Vakilian, N. Chen, S. Negara, B. A. Rajkumar, B. P. Bailey, and R. E. Johnson. Use, disuse, and misuse of automated
refactorings. In 2012 34th International Conference on Software Engineering (ICSE), pages 233–243. IEEE, 2012.

K. Yessenov, Z. Xu, and A. Solar-Lezama. Data-driven synthesis for object-oriented frameworks. ACM SIGPLAN Notices, 46
(10):65–82, 2011.

H. Zhang, A. Jain, G. Khandelwal, C. Kaushik, S. Ge, and W. Hu. Bing developer assistant: improving developer productivity
by recommending sample code. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of

Software Engineering, pages 956–961, 2016.
X. Zhu and A. B. Goldberg. Introduction to semi-supervised learning. Synthesis lectures on artificial intelligence and machine

learning, 3(1):1–130, 2009.
X. J. Zhu. Semi-supervised learning literature survey. Technical report, University of Wisconsin-Madison Department of

Computer Sciences, 2005.

https://doi.org/10.14778/2977797.2977807
http://doi.acm.org/10.1145/2351676.2351726

	Abstract
	1 Introduction
	2 Motivating Example
	3 The Semi-Supervised Synthesis Problem
	3.1 Preliminaries and Problem Statements
	3.2 Background: Program-by-Example for Code

	4 Feedback-driven Semi-Supervised Synthesis
	4.1 Semi-Supervised Synthesis
	4.2 Feedback-driven Semi-supervised Synthesis

	5 Applications of Sparse
	5.1 Sparseloc: User-Provided Additional Input Feedback
	5.2 Automated Feedback Based on Cursor Position (Sparsecur)
	5.3 Sparseauto: Automated Feedback Based on Inputs in the Source Code

	6 Evaluation
	6.1 Benchmark
	6.2 Effectiveness of Sparseloc
	6.3 Effectiveness of Reward Calculation Function
	6.4 The Effectiveness and Efficiency of Sparsecur
	6.5 The Effectiveness and Efficiency of Feedback-driven Synthesis Sparseauto
	6.6 Discussion

	7 Related Work
	8 Conclusion
	References

