
 AN3407
 Using Matrix Keypad with AVR® Devices

Features

• Basic Overview and Example of Matrix Keypad Operation
• Easy Implementation to Other Applications
• Advanced Low-Power Implementation Example

– Fully interrupt driven operation
– Power-Down Sleep mode
– Well suited in battery-powered applications

• Software Button Debouncing
• Simple Passcode Check Implementation
• LED Passcode Validation Indicator

Introduction

Author: Amund Aune, Microchip Technology Inc.

This application note shows how a general keypad application can be implemented with tinyAVR® and megaAVR®

devices. A conceptual overview of the operation of a matrix keypad and two demo applications are presented. One
demo shows a simple implementation of a keypad, while the second demo uses more advanced features to make the
application more efficient and use less power.

The examples in this application note may easily be changed to interface a smaller or larger matrix keypad, and are
easy to implement into another application. The application may be used in all implementations using a matrix
keypad, such as access control keypads, keyboards, or remote controls.

The code examples are available through Atmel START:

• Using Matrix Keypad with AVR Devices - Basic
– https://start.atmel.com/#example/Atmel%3AApplication_AVR_Examples%3A1.0.0%3A%3AApplication

%3AUsing_Matrix_Keypad_with_AVR_Devices_-_Basic%3A
• Using Matrix Keypad with AVR Devices - Advanced

– https://start.atmel.com/#example/Atmel%3AApplication_AVR_Examples%3A1.0.0%3A%3AApplication
%3AUsing_Matrix_Keypad_with_AVR_Devices_-_Advanced%3A

The code examples are also available through GitHub:

View Code Examples on GitHub
Click to browse repositories

© 2020 Microchip Technology Inc. Application Note DS00003407A-page 1

https://start.atmel.com/#example/Atmel%3AApplication_AVR_Examples%3A1.0.0%3A%3AApplication%3AUsing_Matrix_Keypad_with_AVR_Devices_-_Basic%3A
https://start.atmel.com/#example/Atmel%3AApplication_AVR_Examples%3A1.0.0%3A%3AApplication%3AUsing_Matrix_Keypad_with_AVR_Devices_-_Basic%3A
https://start.atmel.com/#example/Atmel%3AApplication_AVR_Examples%3A1.0.0%3A%3AApplication%3AUsing_Matrix_Keypad_with_AVR_Devices_-_Advanced%3A
https://start.atmel.com/#example/Atmel%3AApplication_AVR_Examples%3A1.0.0%3A%3AApplication%3AUsing_Matrix_Keypad_with_AVR_Devices_-_Advanced%3A
https://github.com/microchip-pic-avr-examples/attiny1627-using-matrix-keypad-with-avr-devices
https://github.com/microchip-pic-avr-examples/attiny1627-using-matrix-keypad-with-avr-devices

Table of Contents

Features... 1

Introduction...1

1. Block Diagram...3

2. Theory of Operation.. 4

3. Demo Operation..7

3.1. Hardware Prerequisites..7
3.2. Software Prerequisites... 7
3.3. Running the Example...7

4. Source Code Overview... 8

4.1. Basic Operation..8
4.2. Advanced Operation...10

5. Power Consumption..16

5.1. Basic Operation..16
5.2. Advanced Operation...16
5.3. Plotting Current Data..17

6. Get Code Examples from Atmel START... 20

7. Get Code Examples from GitHub..21

8. Revision History.. 22

The Microchip Website...23

Product Change Notification Service..23

Customer Support.. 23

Microchip Devices Code Protection Feature.. 23

Legal Notice... 23

Trademarks.. 24

Quality Management System... 24

Worldwide Sales and Service...25

 AN3407

© 2020 Microchip Technology Inc. Application Note DS00003407A-page 2

1. Block Diagram
The block diagram below shows an overview of the advanced application example using a 4x4 keypad with the
ATtiny1627 Curiosity Nano development board. It shows how the application interacts with the peripherals and CPU
of the tinyAVR® 2 device. The keypad and LEDs may be connected to any of the General Purpose Input/Output
(GPIO) pins, but in this example, they are connected physically in a row on the ATtiny1627 Curiosity Nano to simplify
connection.

Figure 1-1. Block Diagram
AVR® Microcontroller

RED LED

GREEN LED

PA1

PA2

PB1

PB0

PC2

PC1

PC0

PC3

1 2 3 A

4 5 6 B

7 8 9 C

* 0 # D

VCC

PB3

PB2

RTC

Configure
and Start

PIT interrupt

CPU

PORT

Configure

Pin Change
Interrupt

 AN3407
Block Diagram

© 2020 Microchip Technology Inc. Application Note DS00003407A-page 3

2. Theory of Operation
Matrix keypads consist of a grid of buttons with corresponding wires that may be read and interpreted by a
microcontroller. As the figure below shows, the number of pins needed by the microcontroller is determined by the
number of rows and columns in the button grid, where one wire is needed per row and per column. When a button is
pressed, a connection between the corresponding row and column is created. This connection enables the keypad to
be interpreted by the microcontroller.

Figure 2-1. Matrix Keypad Schematics

ROW 0

ROW 1

ROW 2

ROW 3

COLUMN
0

COLUMN
1

COLUMN
2

COLUMN
3

R0
R1
R2
R3
C3
C2
C1
C0

1 2 3 A

B654

7 8 9 C

D#0*

COLUMN 0

ROW 0

There are multiple ways of scanning a matrix keypad. The simple method used in the example applications is
scanning one full axis (that is, the row or the column) at a time. This is done by setting up one of the axes to output a
known voltage level and reading the voltage level of the wires of the other axis to find out which wire was pulled to
that voltage. Figure 2-2 shows where the columns output 0V and the rows are connected to 3.3V through a pull-up
resistor. ROW 0 is shown to be pulled down to 0V because of a connection to the columns, so the pressed button
may therefore be assumed to be in ROW 0.

 AN3407
Theory of Operation

© 2020 Microchip Technology Inc. Application Note DS00003407A-page 4

Figure 2-2. Row Scan

ROW 0

ROW 1

ROW 2

ROW 3

COLUMN
0

COLUMN
1

COLUMN
2

COLUMN
3

R0
R1
R2
R3
C3
C2
C1
C0

1 2 3 A

B654

7 8 9 C

D#0*

0V

3.3V

After the first axis has been scanned, the setup must be flipped to read the other axis. This is shown in Figure 2-3
where COLUMN 1 is shown to be pulled down to 0V because of a connection to the rows, so the pressed button may
therefore be assumed to be in COLUMN 1.

Figure 2-3. Column Scan

ROW 0

ROW 1

ROW 2

ROW 3

COLUMN
0

COLUMN
1

COLUMN
2

COLUMN
3

R0
R1
R2
R3
C3
C2
C1
C0

1 2 3 A

B654

7 8 9 C

D#0*

0V

3.3V

When both axes have been scanned, the coordinates of the pressed button in the grid are known, and the button
press may be recorded and acted upon. In this example, since ROW 0 and COLUMN 1 are known to include the
pressed button, it is understood that button 2 is pressed.

Although this method is simple, the problem with it is that it can only handle one simultaneous button press at a time.
Figure 2-4 shows which wires are pulled low when each of the axes are pulled low. As shown in the figure, ROW 1
and 2 and COLUMN 1 and 2 are pressed, leading to four buttons being recorded while only two buttons are really
pressed. This effect is called ghosting.

 AN3407
Theory of Operation

© 2020 Microchip Technology Inc. Application Note DS00003407A-page 5

Figure 2-4. Ghosting

0V

3.3V
Pressed
button

ROW 0

ROW 1

ROW 2

ROW 3

COLUMN
0

COLUMN
1

COLUMN
2

COLUMN
3

R0
R1
R2
R3
C3
C2
C1
C0

1 2 3 A

B654

7 8 9 C

D#0*

Columns pulled low

ROW 0

ROW 1

ROW 2

ROW 3

COLUMN
0

COLUMN
1

COLUMN
2

COLUMN
3

R0
R1
R2
R3
C3
C2
C1
C0

1 2 3 A

B654

7 8 9 C

D#0*

Rows pulled low

Another method is to pull the axis low one wire at a time, reading all the pins on the other axis for each time to find
the intersections. This is shown in the figure below, where ROW 0 is driven low, and COLUMN 1 and COLUMN 2 are
pulled low by buttons 2 and 3 being pressed. The advantage of this method is the ability to read two button presses
at a time, while the disadvantage is that it may add complexity to the application.

Figure 2-5. Single Axis Scan

ROW 0

ROW 1

ROW 2

ROW 3

COLUMN
0

COLUMN
1

COLUMN
2

COLUMN
3

R0
R1
R2
R3
C3
C2
C1
C0

1 2 3 A

B654

7 8 9 C

D#0*

0V

3.3V

 AN3407
Theory of Operation

© 2020 Microchip Technology Inc. Application Note DS00003407A-page 6

3. Demo Operation
In these demo applications, a keypad is connected to the ATtiny1627 Curiosity Nano development board to show
how an access code can be read and checked for validity. The pin code is written by pressing the alphanumerical
buttons on the keypad, reset by pressing star (*), and check for validity by pressing pound (#). The green LED flashes
when the pin is valid and the red LED flashes if the code is incorrect. The red LED also flashes if the preset maximum
number of characters (20) is reached.

Two demos are presented where one, the basic keypad example, implements the above functionality in the simplest
way possible. It is presented to create an understanding of how the keypad works and how one may interface with it.
The other demo, the advanced keypad example, implements more advanced features of the tinyAVR® device to
improve the efficiency of the application in various ways.

3.1 Hardware Prerequisites
• Microchip ATtiny1627 Curiosity Nano Evaluation Kit

– https://www.microchip.com/developmenttools/ProductDetails/DM080104
• A 4x4 Matrix Keypad
• Two LEDs
• Two resistors
• Micro-USB cable (Type-A/Micro-B)

3.2 Software Prerequisites
• Atmel Studio 7 (Version 7.0.2397 or later)
• Atmel Studio ATtiny_DFP version 1.4.308 or later

3.3 Running the Example
• Connect the keypad to the ATmega1627 Curiosity Nano as follows:

– Row 0: PB0
– Row 1: PB1
– Row 2: PA2
– Row 3: PA1
– Column 0: PC3
– Column 1: PC0
– Column 2: PC1
– Column 3: PC2

• Connect the red LED to PB3 and the green LED to PB2
• Connect the ATtiny1627 Curiosity Nano to a computer using a USB cable
• Download the application as explained in Section 6. Get Code Examples from Atmel START and program it to

the ATtiny1627 Curiosity Nano
• The pin code “123ABC” is programmed to be the passcode. Try pressing this code followed by pound (#) to

observe the green LED flashing. Try a different code to observe the red LED flashing.

 AN3407
Demo Operation

© 2020 Microchip Technology Inc. Application Note DS00003407A-page 7

https://www.microchip.com/developmenttools/ProductDetails/DM080104

4. Source Code Overview

4.1 Basic Operation
This section presents a basic keypad application where a bare minimum of peripherals and features have been used.
It is intended to show the basics of interfacing a keypad with an AVR® microcontroller.

The figure below shows the application main function. It initiates the microcontroller to the default main clock setting
and configures the GPIO pins connected to the LED and to the keypad. The keypad pins are initiated with the rows
as outputs with a low-output value and the columns as inputs with the internal pull ups enabled.

Figure 4-1. Basic Operation Main Function Overview

System Initiation
fCPU: 3.33 MHz, GPIO init

Logic low level
detected in column

NO

YES

10 ms Delay

Logic low level
detected in column

NO

YES

Logic high level
for all columns

NO

YES

main()

scan_keys()

check_passcode()

As shown in the figure, the device polls the column pins to see whether any of them have been pulled down because
of a connection to the row. If a connection is detected, the device busy-waits for 10 ms before checking the column
pins again. If one of the column pins are still pulled to the row voltage, the key press is considered valid. This
sequence is a simple implementation of a button debouncing technique.

 AN3407
Source Code Overview

© 2020 Microchip Technology Inc. Application Note DS00003407A-page 8

When a valid key press has been detected, the functions scan_keys() and check_passcode() are run. The two
functions are discussed in the following sections.

When the key press has been properly handled by the two functions, the device polls for the button to be released.
This is done to prevent one press to be registered multiple times. When the button is released, the device returns to
polling for a new key press.

4.1.1 Key Scan
The scan_keys() function starts by recording which of the columns contains the pressed button. Each column is
assigned a value which is stored in the key_pressed variable as shown in the figure below. When the column has
been recorded, the row and column pins are inverted in the sense that the rows become inputs and the columns
become outputs.

Figure 4-2. Key Scan Function Overview

COLUMN 0? COLUMN 1? COLUMN 2? COLUMN 3?

key_pressed = 0 key_pressed = 1 key_pressed = 2 key_pressed = 3

scan_keys()

YES YES YES YES

NO NO NO

ROW 0? ROW 1? ROW 2? ROW 3?

key_pressed += 0 key_pressed += 4 key_pressed += 8 key_pressed += 12

YES YES YES YES

NONONO

Pin Invert
Rows Input, columns output

Pin Reset
Columns Input, rows output

return

The key_pressed variable is incremented by a value depending on which row is detected to contain the pushed
button. If, for example, button B is pressed, COLUMN 3 would be recorded first, with a value of 3 being stored into
the key_pressed variable. Then ROW 1 would be recorded, which would add 4 to the variable, giving the variable a

 AN3407
Source Code Overview

© 2020 Microchip Technology Inc. Application Note DS00003407A-page 9

total of 7. Counting the buttons of the keypad left to right and top to bottom, button B (with a zero-indexed numbering
scheme) is button number 7.

After recording the button press, the pins are reset to the initial state with columns as inputs and rows as outputs.

4.1.2 Passcode Check
In this application example, the star key (*) is used for resetting the input code, while the pound key (#) is used to
check whether the input code matches the passcode. Therefore, this function begins by checking whether one of
these special characters are pressed. If not, the pressed alphanumeric character is added to the pin code input
string.

Figure 4-3. Passcode Processing Overview

check_passcode()

Button pressed == *

input_pass reset

Button pressed == # input_pass == passcode Green LED flashed

Red LED flashed

YES

NO

YES

YES

NO

NO

input_pass length
exceeded

YES Red LED flashed
twice

Add character to
input_pass

return

NO

If the pound key is pressed and the input code matches the passcode, the green LED is flashed before the input code
is reset. If, on the other hand, the input code does not match, the red LED is flashed instead. If the star key is
pressed, the passcode is simply reset.

The application implements a fixed length input code of 20 characters. If the length is exceeded, it flashes the red
status LED twice and resets the input code.

4.2 Advanced Operation
The tinyAVR® and megaAVR® microcontroller families include advanced features that can make applications more
efficient, both in terms of power consumption and CPU utilization. The following sections explain each feature used in
the advanced application example.

 AN3407
Source Code Overview

© 2020 Microchip Technology Inc. Application Note DS00003407A-page 10

4.2.1 Sleep
The most important low-power feature that is implemented in the advanced keypad application is putting the MCU to
sleep. tinyAVR and megaAVR devices have three available sleep modes. The sleep modes each turn off the clock for
different parts of the microcontroller to save power.

When designing an application that uses a sleep mode, one must consider which peripherals and clocks that need to
be awake while the CPU sleeps. If, for example, the Real-Time Counter (RTC) should keep track of time while the
CPU sleeps, one must select a sleep mode accordingly. Also, the sleep mode must be selected based on how the
CPU should wake from sleep. Some interrupt types are unable to wake the device in certain sleep modes.
Information regarding peripheral clocks and interrupts in different sleep modes can be found in the Sleep Controller
section in the device data sheet.

In the advanced keypad application, no peripheral is needed to be kept running between button presses. Therefore,
Power-Down Sleep mode is suitable. Looking at wake-up sources for this sleep mode, one can see that a pin change
interrupt will be able to wake the CPU. This is also suitable for the application since a pin change (that is, a button
press), is what the application is waiting for. It is important to note that some pin change interrupt types rely on a
clock signal to trigger. Since the relevant clock is turned off in Power-Down Sleep mode, an asynchronous
(independent of a clock signal) trigger must be chosen for the pin change interrupt. In the application, the
BOTHEDGES trigger (as described in Section 4.2.2 Interrupt Operation) is chosen.

Power-Down Sleep mode initialization is shown in the following code snippet:

 /* Set Power Down Sleep Mode and enable sleep */
 SLPCTRL.CTRLA = SLPCTRL_SMODE_PDOWN_gc | SLPCTRL_SEN_bm;

4.2.2 Interrupt Operation
The basic keypad application makes the CPU continuously poll the column pins to see if a button has been pressed.
Polling buttons with the CPU is inefficient use of both power and CPU resources.

To solve this problem, interrupts can be used. The tinyAVR® and megaAVR® devices feature pin sense interrupts for
all of their GPIO pins. With pin sense interrupts enabled, the PORT peripheral will look over the pins and
automatically notify the CPU if a change has been detected. This frees the CPU to perform different tasks while
waiting for a key press, or to go to sleep to save power.

The pin sense interrupt features the following triggers:
• FALLING: Triggers when the logic input level of the pin has dropped from high to low
• RISING: Triggers when the logic input level of the pin has risen from low to high
• BOTHEDGES: Triggers both when the logic input level of the pin has dropped from high to low or risen from low

to high
• LEVEL: Triggers whenever the pin is detected to be low

When combining the pin sense interrupts with a sleep mode, further considerations must be made. Not all pin sense
interrupt triggers are compatible with all sleep modes. In the low-power keypad application, the lowest possible power
consumption is desired and, therefore, a trigger that can wake the device from Power-Down Sleep mode must be
used. The BOTHEDGES and the LEVEL triggers are able to wake the device in the deepest sleep mode. In the
application, the BOTHEDGES trigger has been selected.

Configuration of the BOTHEDGES interrupt trigger for the columns of the keypad is shown in the following code
snippet:

/* Enable BOTHEDGES interrupts for columns */
PORTC.PIN0CTRL = PORT_ISC_BOTHEDGES_gc;
PORTC.PIN1CTRL = PORT_ISC_BOTHEDGES_gc;
PORTC.PIN2CTRL = PORT_ISC_BOTHEDGES_gc;
PORTC.PIN3CTRL = PORT_ISC_BOTHEDGES_gc;

4.2.3 Timer Delays
Delaying the application flow by counting clock cycles with the CPU similar to the basic keypad example is inefficient.
Instead of holding the CPU to something trivial as counting clock cycles, it can go to sleep to save power or do other
useful work.

 AN3407
Source Code Overview

© 2020 Microchip Technology Inc. Application Note DS00003407A-page 11

The ATtiny1627 microcontroller used in this application example features a Real-Time Counter (RTC) which can keep
track of delays independent of the CPU. It can run on the internal 32.768 kHz RC oscillator, which means it will run in
any sleep mode. The RTC features a Periodic Interrupt Timer (PIT) which can interrupt the CPU from any sleep mode
after a set number of RTC clock cycles.

PIT initialization is shown in the code snippet below:

/* Set interrupt to fire every 32 RTC clock cycles and enable PIT */
RTC.PITCTRLA = RTC_PERIOD_CYC32_gc | RTC_PITEN_bm;
/* Enable PIT interrupts */
RTC.PITINTCTRL = RTC_PI_bm;

4.2.4 Pin Setup
When an application leaves some pins of the microcontroller unused, special considerations should be made to keep
power consumption down. When the device is in a sleep mode, the power consumption from unused and incorrectly
configured pins may be significant.

The most important aspect to consider is avoiding floating pins. Floating pins are pins that are not tied to a defined
voltage level. They may behave sporadically based on outside and internal interference. This sporadic behavior may
lead to the voltage threshold of transistors being crossed which leads to dynamic power consumption.

Floating pins are avoided by enabling internal pull ups for the pins. This pulls the voltage to a constant logic high level
through an internal pull-up resistor. One may also disable the digital input buffer of the pin. This disconnects the
digital input circuitry, further lowering the power consumption.

In all applications configured using Atmel START, unused pins are automatically initialized as inputs with the internal
pull up enabled. In the advanced keypad application, the unused pins are also initialized in START to disable the
digital input circuits.

The following code snippet configures pin PA0 to an input with pull up enabled and the digital input circuit disabled:

/* Set the pin to input */
PORTA.DIRCLR = PIN0_bm;
/* Enable pullup and disable digital input buffer */
PORTA.PIN0CTRL = PORT_PULLUPEN_bm | PORT_ISC_INPUT_DISABLE_gc;

4.2.5 Advanced Keypad Implementation
The main application flow of the advanced keypad application is shown in the figure below. It shows that the device is
set to sleep when waiting for a keypress. A pin change interrupt wakes up the CPU and lets it scan the button that
was pressed.

 AN3407
Source Code Overview

© 2020 Microchip Technology Inc. Application Note DS00003407A-page 12

Figure 4-4. Main Application Flow

System Initiation
fCPU: 3.33 MHz, START init

Power-Down Sleep

PRESS_VALID == 1 NO

YES

Logic high level
for all columns

NO

YES

main()

scan_keys()

check_passcode()

PORT ISR wake-up
Button is pressed

btn_debounce()

Power-Down Sleep

PORT ISR wake-up
Button is released

After wake up from sleep, the button press is debounced. This is performed by running a loop ten times, in which the
button is checked to be pressed as shown in the chart below. If the button is found to be pressed all ten times, the
button press is considered valid. If the button is not read as pressed while iterating through the loop, the validation
flag is cleared and the CPU exits the loop.

 AN3407
Source Code Overview

© 2020 Microchip Technology Inc. Application Note DS00003407A-page 13

Figure 4-5. btn_debounce()

Reset PRESS_VALID
flag in GPIOR0

for-loop
i = 0; i < 10; i++

i ≥ 10

i < 10

Button still
pressed

NO

YES

Clear PRESS_VALID
flag in GPIOR0

break

lp_delay_ms(2) return

btn_debounce

The debounce function uses a 2-ms delay between the iterations of the loop. This delay is implemented using a timer
delay as shown in the figure below. The Periodic Interrupt Timer (PIT) is programmed to trigger an interrupt once
every millisecond. When the interrupt is triggered, a counter is incremented, and when this counter reaches the
desired number of microseconds, the CPU returns from the function.

 AN3407
Source Code Overview

© 2020 Microchip Technology Inc. Application Note DS00003407A-page 14

Figure 4-6. lp_delay_ms()

pit_cnt = 0

lp_delay_ms(delay)

Enable PIT interrupt

pit_cnt == delay NO

YES

Disable PIT interrupt

return

Go to sleep PIT ISR wake-up
1 ms has passed

pit_cnt += 1

The scan_keys() and check_passcode() functions are identical to those of the basic keypad example, except
that they use the low-power timer delay function when timing the LED indicators.

 AN3407
Source Code Overview

© 2020 Microchip Technology Inc. Application Note DS00003407A-page 15

5. Power Consumption

5.1 Basic Operation
When scanning the keypad in the basic application example, the CPU continuously polls the I/O lines and busy-waits
for delays. This is reflected in the relatively high-power consumption as can be seen in the figures below.

Figure 5-1. Power Analysis, Basic Operation Without Key Press

Figure 5-2. Power Analysis, Basic Operation With Key Press

In addition to using much power, unused pins are not handled correctly by enabling the internal pull up, which may be
seen in the instability of the power consumption. When touching the other pins of the device while measuring current,
one can clearly see that the results are affected.

5.2 Advanced Operation
Using the features described in Section 4.2 Advanced Operation, the power consumption is very low as shown in the
figures below. When the device is sleeping and no buttons are pressed, it uses ~0.8 µA.

 AN3407
Power Consumption

© 2020 Microchip Technology Inc. Application Note DS00003407A-page 16

Figure 5-3. Power Analysis, Advanced Operation Without Key Press

When buttons are repeatedly pressed and scanned by the device as seen in the second figure, power consumption is
significantly higher than when the CPU is sleeping, but is still very low at ~30 µA on average and ~80 µA when
holding down a button.

Figure 5-4. Power Analysis, Advanced Operation With Key Press

5.3 Plotting Current Data
The following instructions show how to analyze power consumption using the Power Debugger and Data Visualizer.

Notes: 
• For detailed information on the Power Debugger, refer to the Power Debugger User’s Guide.
• For detailed information on the Data Visualizer, refer to the Data Visualizer User’s Guide.

Power Debugger connection:
1. Connect one of the ground reference pins of the Power Debugger to a ground pin on the Curiosity Nano

board.
2. Connect the VOFF pin on the Curiosity Nano board to a ground pin to turn off the connection between the

USB power supply and the tinyAVR device.
3. Connect the VBUS pin on the Curiosity Nano board to the the input current pin of measurement circuit A on

the Power Debugger.
4. Connect the output current pin of measurement circuit A on the Power Debugger to the VTG pin on the

Curiosity Nano board.

Measurement circuit A of the Power Debugger is now connected in series between the USB voltage source and the
tinyAVR microcontroller, and can measure the total current used.

 AN3407
Power Consumption

© 2020 Microchip Technology Inc. Application Note DS00003407A-page 17

http://ww1.microchip.com/downloads/en/DeviceDoc/Power-Debugger_UserGuide.pdf
https://www.microchip.com/webdoc/GUID-F897CF19-8EAC-457A-BE11-86BDAC9B59CF/index.html

Figure 5-5. Power Debugger Connection

A
GND

USB

DGI

TX<-
CLK

host

POWER DEBUGGER

A

USB

DEBUGGER

ATtiny1627

SW0

LED0

PS LEDN
C

ID
CD

CRX CD
CTX

D
BG

1
D

BG
2

PA
1

PA
2

PB1
PB0

PC2
PC1

PC0
PC3

G
N

D
PB2

PB3

V
BU

S
V

O
FF

D
BG

3
D

BG
0

G
N

D
V

TG
PB6

PB5
PB4

PA
3

PA
4

PA
5

PA
6

PA
7

G
N

D
PC5

PC4

ATtiny1627
CURIOSITY NANO

host

Data Visualizer setup:
1. Open Data Visualizer.
2. Open Configuration > Visualization > Power Debugging in Data Visualizer.
3. On the DGI Control Panel pane, select Power Debugger Data Gateway > Connect.
4. Check the Power check box.
5. Expand the Channel A dropdown in the Control Panel in the Power Analysis pane.
6. Drag the plug from A Current in the DGI Control Panel pane to the Current socket in the Power Analysis

pane.
7. Press Start in the DGI Control Panel pane.
8. Optional: Enable cursors by checking the Enabled check box in the Cursors dropdown.

 AN3407
Power Consumption

© 2020 Microchip Technology Inc. Application Note DS00003407A-page 18

Figure 5-6. Power Debugging Graph in Data Visualizer

 AN3407
Power Consumption

© 2020 Microchip Technology Inc. Application Note DS00003407A-page 19

6. Get Code Examples from Atmel START
The code examples are available through Atmel START, which is a web-based tool that enables the configuration of
the application code through a Graphical User Interface (GUI). The code can be downloaded for Atmel Studio
MPLAB X and IAR Embedded Workbench® via the direct example code link below or the Browse Examples button
on the Atmel START front page.

The Atmel START webpage: start.atmel.com/.

Code Examples

• Using Matrix Keypad with AVR Devices - Basic
– https://start.atmel.com/#example/Atmel%3AApplication_AVR_Examples%3A1.0.0%3A%3AApplication

%3AUsing_Matrix_Keypad_with_AVR_Devices_-_Basic%3A
• Using Matrix Keypad with AVR Devices - Advanced

– https://start.atmel.com/#example/Atmel%3AApplication_AVR_Examples%3A1.0.0%3A%3AApplication
%3AUsing_Matrix_Keypad_with_AVR_Devices_-_Advanced%3A

Click User Guide in Atmel START for details and information about example projects. The User Guide button can be
found in the example browser, and by clicking the project name in the dashboard view within the Atmel START
project configurator.

Atmel Studio

Download the code as an .atzip file for Atmel Studio from the example browser in Atmel START by clicking
Download Selected example. To download the file from within Atmel START, click Export project followed by
Download pack.

Double click the downloaded .atzip file, and the project will be imported to Atmel Studio 7.0.

MPLAB X

Download the code as an .atzip file for MPLAB X IDE from within Atmel START by clicking Export project
followed by Download pack.

To open the Atmel START example in MPLAB X, select from the menu in MPLAB X, File > Import > START MPLAB
Project and navigate to the .atzip file.

IAR Embedded Workbench

For information on how to import the project in IAR Embedded Workbench, open the Atmel START User Guide,
select Using Atmel Start Output in External Tools, and IAR Embedded Workbench. A link to the Atmel START
User Guide can be found by clicking Help from the Atmel START front page or Help And Support within the project
configurator, both located in the upper right corner of the page.

 AN3407
Get Code Examples from Atmel START

© 2020 Microchip Technology Inc. Application Note DS00003407A-page 20

https://start.atmel.com/
https://start.atmel.com/#example/Atmel%3AApplication_AVR_Examples%3A1.0.0%3A%3AApplication%3AUsing_Matrix_Keypad_with_AVR_Devices_-_Basic%3A
https://start.atmel.com/#example/Atmel%3AApplication_AVR_Examples%3A1.0.0%3A%3AApplication%3AUsing_Matrix_Keypad_with_AVR_Devices_-_Basic%3A
https://start.atmel.com/#example/Atmel%3AApplication_AVR_Examples%3A1.0.0%3A%3AApplication%3AUsing_Matrix_Keypad_with_AVR_Devices_-_Advanced%3A
https://start.atmel.com/#example/Atmel%3AApplication_AVR_Examples%3A1.0.0%3A%3AApplication%3AUsing_Matrix_Keypad_with_AVR_Devices_-_Advanced%3A
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-START-User-Guide-DS50002793A.pdf

7. Get Code Examples from GitHub
The code examples are available through GitHub, which is a web-based server that provides the application codes
through a Graphical User Interface (GUI). The code examples can be opened in both Atmel Studio and MPLAB X. To
open the Atmel Studio project in MPLAB X, select from the menu in MPLAB X, File > Import > Atmel Studio Project
and navigate to .cproj file.

The GitHub webpage: GitHub.

Code Examples

View Code Examples on GitHub
Click to browse repositories

Download the code as a .zip file from the example page on GitHub by clicking the Clone or download button.

 AN3407
Get Code Examples from GitHub

© 2020 Microchip Technology Inc. Application Note DS00003407A-page 21

https://github.com/
https://github.com/microchip-pic-avr-examples/attiny1627-using-matrix-keypad-with-avr-devices

8. Revision History
Revision Date Description

A 06/2020 Initial document release

 AN3407
Revision History

© 2020 Microchip Technology Inc. Application Note DS00003407A-page 22

The Microchip Website
Microchip provides online support via our website at www.microchip.com/. This website is used to make files and
information easily available to customers. Some of the content available includes:

• Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQs), technical support requests, online
discussion groups, Microchip design partner program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service
Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will
receive email notification whenever there are changes, updates, revisions or errata related to a specified product
family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support
Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Embedded Solutions Engineer (ESE)
• Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to
help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature
Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is one of the most secure families of its kind on the market today,

when used in the intended manner and under normal conditions.
• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these

methods, to our knowledge, require using the Microchip products in a manner outside the operating
specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of
intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code

protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection
features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital
Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you
may have a right to sue for relief under that Act.

Legal Notice
Information contained in this publication regarding device applications and the like is provided only for your
convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with

 AN3407

© 2020 Microchip Technology Inc. Application Note DS00003407A-page 23

http://www.microchip.com/
http://www.microchip.com/pcn
http://www.microchip.com/support

your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER
EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such
use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless
otherwise stated.

Trademarks
The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox,
KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST,
MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer,
QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,
TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control,
HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus,
ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider,
Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom,
CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM,
dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP,
INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF,
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM,
PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad
I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense,
ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A.
and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of
Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2020, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-6262-0

Quality Management System
For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.

 AN3407

© 2020 Microchip Technology Inc. Application Note DS00003407A-page 24

http://www.microchip.com/quality

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
www.microchip.com/support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

© 2020 Microchip Technology Inc. Application Note DS00003407A-page 25

http://www.microchip.com/support
http://www.microchip.com

	Features
	Introduction
	Table of Contents
	1. Block Diagram
	2. Theory of Operation
	3. Demo Operation
	3.1. Hardware Prerequisites
	3.2. Software Prerequisites
	3.3. Running the Example

	4. Source Code Overview
	4.1. Basic Operation
	4.1.1. Key Scan
	4.1.2. Passcode Check

	4.2. Advanced Operation
	4.2.1. Sleep
	4.2.2. Interrupt Operation
	4.2.3. Timer Delays
	4.2.4. Pin Setup
	4.2.5. Advanced Keypad Implementation

	5. Power Consumption
	5.1. Basic Operation
	5.2. Advanced Operation
	5.3. Plotting Current Data

	6. Get Code Examples from Atmel START
	7. Get Code Examples from GitHub
	8. Revision History
	The Microchip Website
	Product Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System
	Worldwide Sales and Service

