

Security Access System

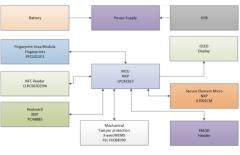
Energy Harvesting Smart Label

NXP Reader, and NFC to MCU Demo

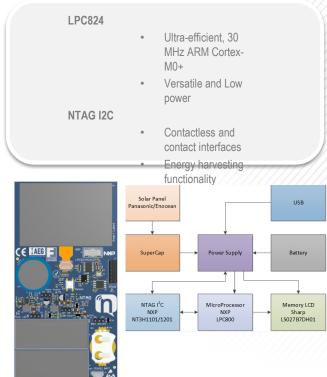
Security Access System (SAS)

LPC43S37

- 204 MHz ARM Cortex-M4/M0+ Dual core
- AES engine for encryption and decryption
- Extensive Communication peripherals


A7001CM

- Tamper resistant secure Micro
- Complete security platform enabling customized solutions

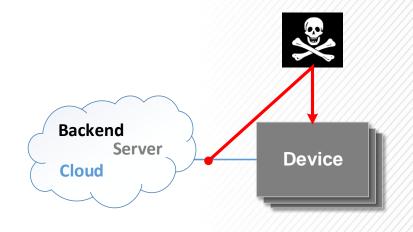

Capacitive Sensor (PCA8885)

- Proximity sensing
- Ruggedized keypad

Energy Harvesting Smart Label (EnSL)

Agenda

- Motivation for Security
- What is the NXP Secure Access Demo exactly?
- The Hardware + Firmware Implementation
- What we CAN and CANNOT offer?



Motivation for Security

Risks

- Attacking the device
 - Tampering with the device
 - Counterfeit device
- Attacking the device link
 - Stealing information (Eavesdropping)
 - Modifying information (or Fabrication)
- Attacking the system (Denial of Service)

Requirements

Safety

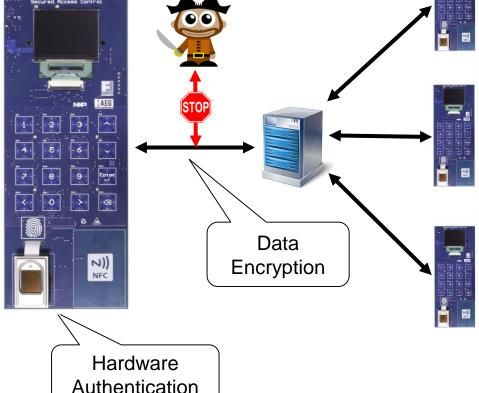
Do what you are supposed to do

Privacy

Restrict access to user data

Access control

Restrict access to authorized persons



Secure Access

Each measure requires secure storage of keys or identification assets

Authentication

Hardware Security

Main Security Services

Data protection

Confidentiality

Encryption

Integrity

Hashing

Logging & Auditing

Security log

Remember actions

Auditor access

Log interpretation

Authentication Authorization

Authentication

Password

Biometry - Token

Authorization

Access rights

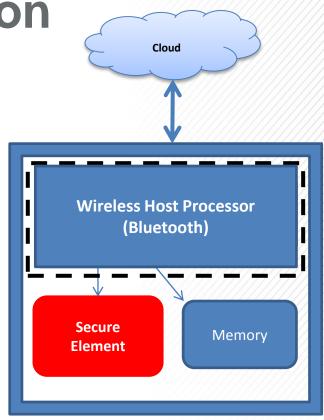
Software protection

Code Integrity

Code signature
Code verification

Runtime integrity

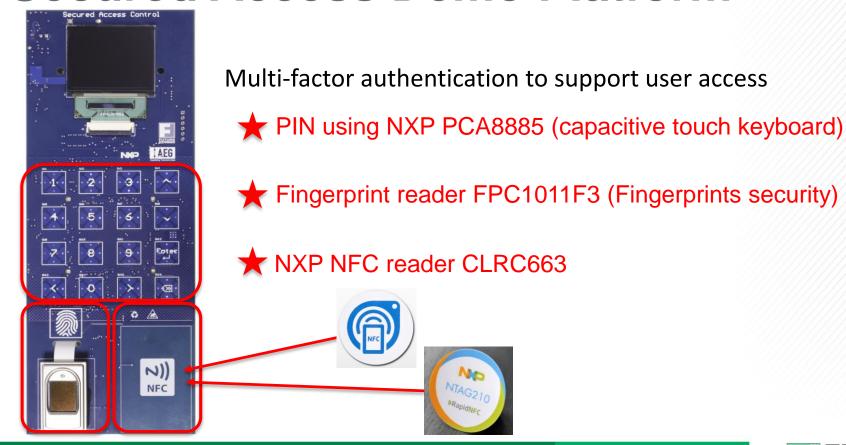
Provisioning


Code Update

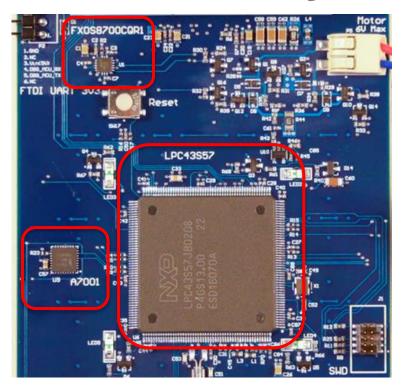
System upgrade App upgrade Bug fixing

Hardware Security Solution

- Authenticate boot software
- Key storage for encrypted firmware
- Secure Firmware Update
- Node Authentication
 - Use pre-stored cert or hash to authenticate without cloud connection
- Cloud Authentication
 - Use PKI structure for mutual authentication
- Tamper resistant



Hardware Implementation

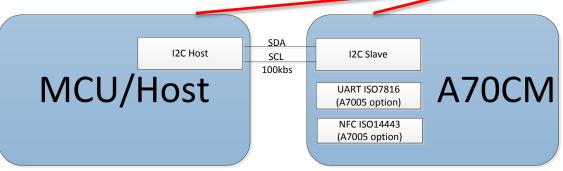


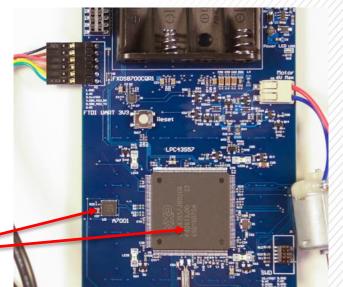
Secured Access Demo Platform

Core Security

★ NXP 3-Axis Accelerometer FXO8700

★ NXP Secure Element A70CM

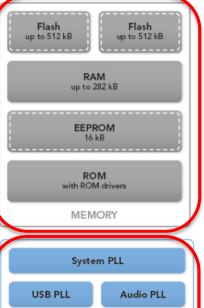

NXP MCU with integrated security LPC43S57



Core Security

The heart of this kit is the:

- 1. MCU LPC4300 Series
- 2. Secure Element Co-processor A7001

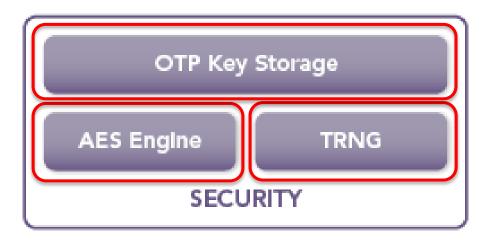

LPC43S57 MCU Features

ANALOG

DAC

Advanced Peripherals

Power Management Unit
Power saving modes, BOD, POR


Clock Generation Unit
12 MHz, 1-24 MHz System OSC

SYSTEM

ADC (2-3)

LPC43S57 Security Features

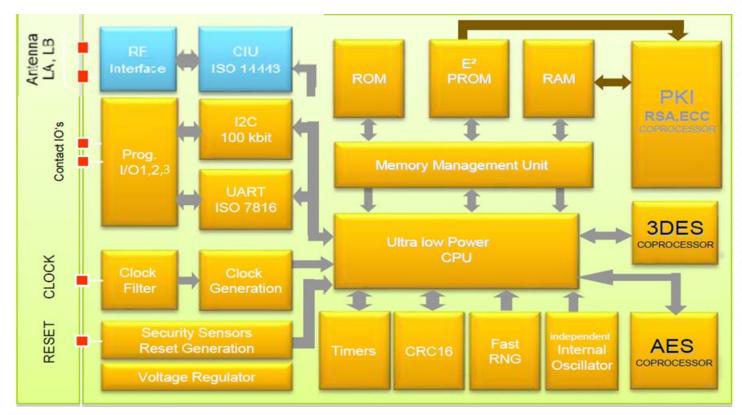
- ★ Unique Device ID
- ★ Secure Boot from encrypted image
- ★ True Random Number Generator
- ★ Hardware-accelerated AES-128 Engine
- Two 128-bit nonvolatile OTP memories for encrypted keys

Private Key Storage

Where to Store Private Keys on MCU?

- SRAM Bad Idea …
- Non-Volatile Memory Even Worse!
- There is NO good place to store the private key in the MCU! Especially going through a 3rd party
- So, the answer is ...

The private key MUST REMAIN in the A70CM ... NEVER store your private keys in the MCU!!



What is an A70CM?

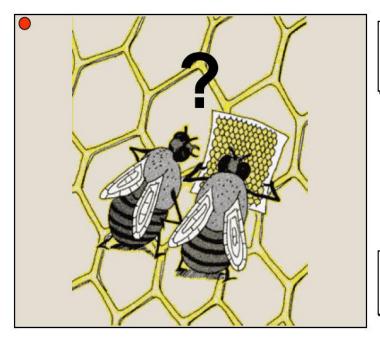
- An integrated system with enhanced security
 - Anti-cloning
 - Key storage
 - Asymmetric/Symmetric key encryption, decryption and generation
 - Signature generation and verification
 - Authentication based on PKI
- Security OS JCOP 2.4.2 OS Smart Card Operating System
- Card Manager Applet
 - Configuration of the cipher suites
 - Cryptographic operations
 - Trust Provisioning at different stages

A7005 Product Features

MIFARE on A7005/6 depending on the configuration

A70CM Key Features

- Public Key Infrastructure (PKI) authentication to support TLS session
- RSA/ECC key-pair generation and signature generation/verification
- RSA encryption/decryption
- AES algorithm: AES-128/256
- Total 78 AES keys in the key store.
 - 26 Key sets in the key store. Accessible to users
 - 1 default key-wrapping key. Invisible to user
 - 1 local encryption key. Invisible to users
- Key wrapping
- Two formats of key set
- Secure remote key management
- Trust Provisioning service in NXP certified and secure environment



A70CM Keys and Certificates

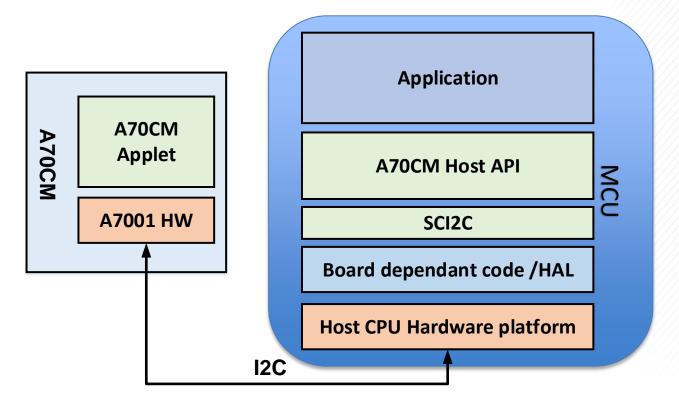
Key ID	Object type/purpose	NXP Provisioning		
oo Device ID1, K _{pr} /K _{pub}	(ECC/RSA) public/private <u>key pair</u> for Device Authentication (TLS)	Created by NXP and injected by NXP at Wafer Level		
© Device ID2, K _{pr} /K _{pub}	(ECC/RSA) public/private <u>key pair</u> for Device Authentication (TLS)	4		
Device certificates	2 certificates for Device Authentication corresponding to Dev ID1 and Dev ID2	Optional: creation and injection by NXP		
Kroot CA	2 Public key (ECC/RSA) Sever/client certificate checking	-		
⊚⊚ DK ₁₂₈	AES Key store: default AES 128 bits key set (triplet) (*)	Initialized by NXP to Random		
O OO DK ₂₅₆	AES Key store: default AES 256 bits key set (triplet) (*)	Initialized by NXP to Random		
€ K _{AES,1}	AES Key store: AES key Set 1 (triplet) (*)	Initialized by NXP to Random		
		Initialized by NXP to Random		
KAES,24	AES Key store: AES key Set 24 (triplet) (*)	Initialized by NXP to Random		
SM K _{ADMIN}	Public key (ECC/RSA) Remote key/certificate mngt (access control)	-		
SM K _{WRAP}	AES-128 key Encrypt keys exchanged on SM IF	Initialized by NXP to Random		
SM K _{MK}	AES Key for Secure Module Upgrade (Card Manager Key)	Unique by Secure Element. Available through NXP Key Delivery Service (KDS).		
Note: Device = OEM product (*) Eg DLMS keys ($K_{MK} K_{AK} K_{EK}$) or Mbus keys ($K_{M} K_{C}$ -)				

A70CM Security in Hardware

Memory:

holding secret data

CPU with Glue Logic


- + Memory Scrambling
- + Active Shield

Active Shields

(Co-)Processor, Logic: operating on secret data

A70CM: System Implementation

Transmit Keys Securely

Recall: I2C bus between LPC43S & A70CM is NOT secure

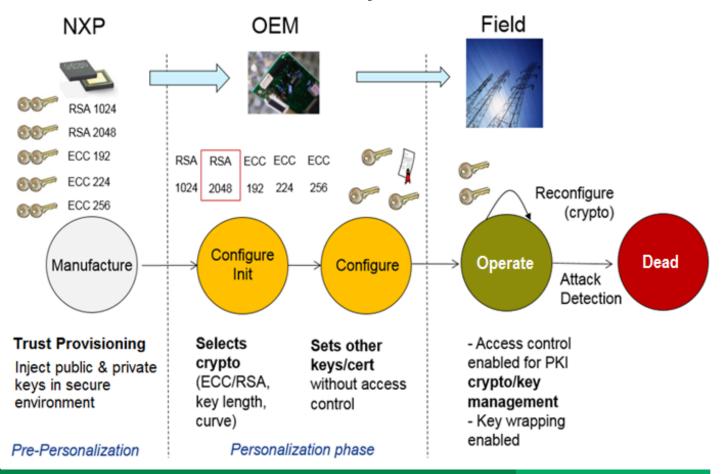
Solution:

 Use Key-Wrapping Key to encrypt keys before transmitting!

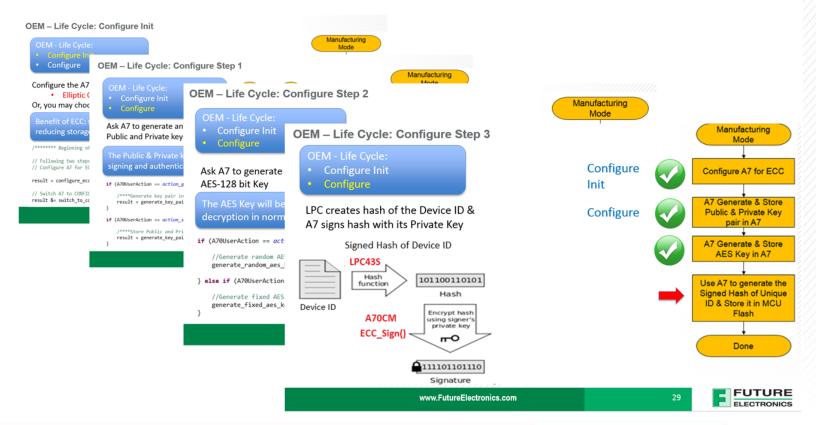
Key-Wrapping Key

How to Use Key-Wrapping Key?

- Save Symmetric Key-Wrapping Key to:
 - ✓ A70CM
 - ✓ OTP key in LPC43S
 - LPC43S requests AES key from A70CM
 - A70CM Key-Wraps AES key & sends to LPC43S
 - LPC43S decrypts AES key with Key-Wrapping Key in OTP
 - AES engine uses decrypted AES key to encrypt/decrypt



A70CM Life Cycle and Firmware Implementation



A70CM Life Cycle

Firmware Implementation

WE CAN

- We can share the schematic on a request
- We can share the gerbers files on request
- We can share the BOM on request
- We can help our customers with their designs needs

WE CANNOT DO:

- Provide this demo board to our customer. As we are using a "debug version" of the secure element (A7001) which customer will need a NDA with NXP to proceed.
- Give away the library for the finger print sensor. The library is not free and customer will need to license it from Fingerprints
- Give away any source code of the demo application as mentioned secure element need NDA with NXP and in some case some of our IP is in the code as well

Latest NFC Frontend Evaluation Board

NXP PN5180 NFC Frontend Evaluation Board

Target Application:

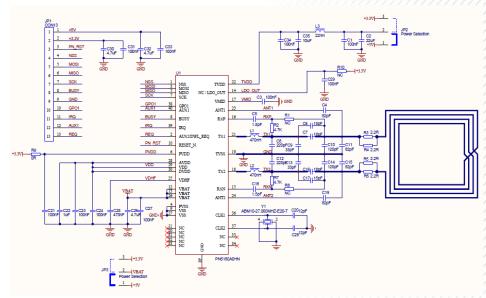
Payment (e.g. Point-of-Sales Terminals), Physical-access, eGov, Industrial

Key Components:

NXP – PN5180A0HN

Features:

- Based on NXP PN5180 Eval Board and removed the MCU and reduce the size of the antenna to fit smaller dimension.
- PCB Dimension 68mm x 38mm (FR-4, 2-layers board)
- Highly integrated high performance full NFC Forum-compliant frontend for contactless communication at 13.56 MHz
- Transmitter current up to 250 mA
- Dynamic Power Control (DPC) for optimized RF performance, even under detuned antenna conditions
- Adaptive Receiver Control (ARC) automatically adjusts the receiver parameters for always reliable communication
- Includes NXP ISO/IEC14443-A, Innovatron ISO/IEC14443-B and NXP MIFARE Crypto 1 intellectual property
- Full compliancy with all standards relevant to NFC, contactless operation and EMVCo
- Active load modulation supports smaller antenna in Card Emulation Mode
- Automatic EMD handling performed without host interaction relaxes the timing requirements on the Host Controller
- Low-power card detection (LPCD) minimizes current consumption during polling
- Automatic support of system LDO or system DC/DC power-down mode during LPCD
- Zero-Power-Wake-up
- One host interface based on SPI



NXP PN5180 NFC Frontend Evaluation Board

The PN5180 frontend supports the following RF operating modes:

- Reader/Writer mode supporting ISO/IEC 14443-A up to 848 kBit/s, MIFARE
- Reader/Writer mode supporting ISO/IEC 14443-B up to 848 kBit/s
- Reader/Writer mode supporting JIS X 6319-4 (comparable with FeliCa scheme)
- Supports reading of all NFC tag types (type 1, type 2, type 3, type 4A and type 4B)
- Reader/Writer mode supporting ISO/IEC 15693
- Reader/Writer mode supporting ISO/IEC 18000-3 Mode 3
- ISO/IEC 18092 (NFC-IP1)
- ISO/IEC 21481 (NFC-IP-2)
- ISO/IEC 14443-type A Card emulation up to 848 kBit/s

Item	Description	P/N	DTR#	Brand	Ref.	Qty
1	IC, PN5180A0HN/HVQFN40//C1/REEL 13 Q	PN5180A0HN		NXP	U1	1

Engineering Tomorrow's Ideas

Thank you

