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Abstract

Conversational Intelligence requires that a person engage on informational, per-
sonal and relational levels. Advances in Natural Language Understanding have
helped recent chatbots succeed at dialog on the informational level. However,
current techniques still lag for conversing with humans on a personal level and
fully relating to them. The University of Michigan’s submission to the Alexa Prize
Grand Challenge 3, Audrey, is an open-domain conversational chat-bot that aims
to engage customers on these levels through interest driven conversations guided
by customers’ personalities and emotions. Audrey is built from socially-aware
models such as Emotion Detection and a Personal Understanding Module to grasp a
deeper understanding of users’ interests and desires. Our architecture interacts with
customers using a hybrid approach balanced between knowledge-driven response
generators and context-driven neural response generators to cater to all three levels
of conversations. During the semi-finals period, we achieved an average cumulative
rating of 3.25 on a 1-5 Likert scale.

1 Introduction

Naturally conversing with artificial agents has been a lofty goal since the beginning of the computing
era, starting with the Turing Test. The tremendous growth in the Conversational Al paradigm in
the recent decade has brought conversational agents—chatbots—closer to this goal, as the research
community has become increasingly interested in systematically developing and testing these models.
Goal-oriented chatbots have seen significant growth and adoption in areas such as basic question
answering services online [2]. The success of goal-oriented chatbots lies in their ability to carry out a
meaningful and useful conversation in a limited domain where the range of topics and user utterances
is restricted and predictable (e.g., booking a plane ticket or offering limited helpdesk advice). Yet,
open domain chatbots face substantial challenges in having similar levels of success, as these need to
understand diverse context from potentially any domain, determine how to respond to such content in
a way that makes for a natural conversation (beyond just the response level), and generate human-like
responses.

We took a step towards the vision of naturally conversing artificial agents and built Audrey, an open
domain chatbot that tackles all of the main challenges posed to open domain chatbots. Audrey
participated in the Alexa Prize Socialbot Grand Challenge 3 which provided us a platform to
implement and deploy Audrey to a broad audience. Audrey was first deployed to Amazon Alexa
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customers on December, 41, 2019 and this report summarizes our conversations with Alexa customers
until the end of semi-finals interaction period on April 29", 2020. When the customer invokes “let’s
chat,” Audrey was randomly chosen from one of the ten Alexa Prize socialbots for interaction.

We constructed Audrey using multiple technical models in three thematically-grouped components:
(1) natural language understanding, (2) dialog management, and (3) response generation. The first of
these components aims to understand what the customer has said at the semantic and social levels
and includes models for tasks such as (i) Noun Phrase Extraction, (ii) Sentiment Classification, and
(iii) Emotion Classification. The second of these components aims to decide how to respond to the
customer’s speech based on goals for longer conversation. Here, we introduce multiple innovative
models for handling this conversation policy, including (i) a Personality Understanding Module
that infers the interests of customers, (ii) reinforcement learning for selecting conversation topics
and (iii) an adaptive strategy for transitioning between template-based and neural-network-based
response generators to maximize conversational coherence. The third component encompasses a
variety of modules for generating engaging responses to customers using different strategies including
template-based generators, neural response generators, and hybrid generators with a mix of both for a
seamless conversation flow. When used alone template based responses are often generic and fail to
display all aspects of human-like attributes in conversations while neural response generators have
difficulty tracking long-term aspects of the conversation. We propose to use the hybrid generator to
deal with these shortcomings of either approach.

Based on interactions with customers, our work offers the following three contributions towards the
development of open domain chatbots. First, open domain chatbots tend to heavily gravitate towards
either a rule-based system or end-to-end neural network approaches. Our work informs that such
chatbots can benefit and realize new avenues for improvement by finding the right balance between
these systems. Second, customers enjoy engaging with a chatbot on day-to-day topics such as fitness,
pets, and technology. Additionally, they desire such bots to engage in more open-ended personal
chit-chat. Designing improved modules that allow for quick discovery of customer preferences
and intents (such as our model for inferring customers’ interests in Section [2.2.2) will enable open
domain chatbots to be deployed as naturally conversing artificial companions right from the start of
the conversation. Finally, leveraging context information that accommodates for various customer
behaviors and designing a mix of dialogue policies for making high-level decisions allows coherent
dialogues and a smooth dialogue-flow in open domain chatbots.

We evaluated Audrey by analyzing the impact of generators and conversation starters in Section
[3.1] We also conducted experiments on our generators and dialogue policy to support our claims in
Section[3.2

2 Architecture

We designed Audrey as a modular, scalable framework that allows rapid iterative testing and high-
availability deployment. Audrey is implemented on top of the Amazon Conversational Bot Toolkit
(CoBot) [12]]. The core concepts behind our architecture, such as noun phrase extraction, emotion
classification, and response generators, are deployed as APIs on independent Docker modules. A
server-less AWS lambda function is used to interface with Alexa Skills Kit (ASK) and connect our
Docker modules, creating the Audrey architecture. Figure |l|shows our modular framework and how
the conversation state is processed and updated during the conversation.

Audrey’s system consists of three core components:
* Natural Language Understanding (NLU), which processes input from the customers (§2.1))

* Dialog Policy Optimizer, which recommends the most relevant conversation topic and
provides natural transitions between topics (§2.2)

* Natural Language Generation (NLG), which handles different facets of social conversations
through a mix of template-based generators, topic-based retrieval generators, and neural
response generators for handling out of domain conversations (§2.3)
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Figure 1: Audrey Architecture

2.1 Core Component 1: Natural Language Understanding

In a social dialog, it is important to discuss subjects that are relevant to the conversation and to
understand the nuances of the conversation. The NLU modules focus on finding and extracting the
most relevant information to our template based generators using noun phrase extraction and Amazon
entity recognition. The NLU component also provides context information for transitions to dialogue
policy using an emotion classifier and a sentiment classifier to inform how customers reacted to the
previous turn.

2.1.1 Noun Phrase Extraction

Noun phrases in a conversation help identify the topics and other important information from the
speaker. Through the noun phrases we get a better understanding of the topic, which helps in
activating the appropriate topical module. We first used a noun phrase extraction model based on
Spacy [9] to recognize key concepts that customers mentioned in the conversation. However, we
found the extraction model’s performance was low in our conversational setting, which hurt our
ability to recognize key concepts the customers talked about.

Therefore, we chose to deploy a state-of—the-art model to deal with the noun phrase extraction task.
Specifically, we use the Bidirectional Encoder Representations from Transformers model (BERT) [3]]
as the backbone noun phrase extraction model. Although BERT can deal with many natural language
understanding tasks, here we mainly leverage part of speech (POS) tagging as the downstream task of
BERT. During the inference step, we set up the POS tag combination rule to extract the noun phrases.
Compared to Name Entity Recognition (NER), the method we use is much more flexible because we
can adjust the extracting rule to extract the noun phrases as per our interest.

We fine-tuned the pre-trained BERT model with PennTree bank dataset [13]. We compared the
performance of our fine-tuned BERT model with Condition Random Field (CRF) and Bi-LSTM+CREF.
The result in Table[T|shows that BERT clearly outperforms the other two models.

2.1.2 Entity Resolution

Entity Resolution allows us to connect concepts mentioned by the customer to broader knowledge
in order to continue a conversation along the topic. We utilize the Entity Resolution service from
Amazon Evi Knowledge Graph to find relevant entities related to the extracted noun. For example,
suppose our Noun Phrase Extraction extracted the noun phrase “Avatar” in previous step; the Entity



Models Accuracy(%)

CRF 77.63
Bi-LSTM + CRF  89.57
BERT 94.97

Table 1: Performance Comparison for POS Tagging

Resolution service would recognize the noun phrase as the entity movie:Avatar. We would then use
predefined custom queries for movie related topics for Amazon Evi Knowledge Graph to find related
director director:James Cameron and actor Sam Worthington. We would then pass the extracted
information to the hierarchical generator described in Section[2.3.6

2.1.3 Sentiment Classification

Sentiment Classification is a way to computationally classify text into positive, negative or neutral
opinions. It implicitly allows Audrey to understand customers and their preferences while providing a
way to make informed decisions about the conversation’s trajectory. We used a lexicon and rule-based
sentiment classifier called Vader [[L0] to assign a sentiment score to input customer utterances. We
maintained a global sentiment for each conversation by calculating the running average of sentiment
scores. These sentiments were principally used in strategy selection and topical transitions which we
describe in detail in transitions Section [2.2]under dialogue policy.

2.1.4 Emotion Classification

One of the challenges of any dialogue agent is recognizing the feelings of the conversation partner
and replying accordingly. Customers feel more satisfied when given a response that is generated by
understanding their underlying emotions. In order to give an empathetic response, understanding the
underlying emotion of the conversation is of great importance. We utilize a emotion detection model
named TL-ERC [8]] to deal with emotion classification task (Figure @) TL-ERC [8] is a two-stage
model in which the first part is a generative conversation model constructed by a sentence encoder,
a context encoder, and a sentence decoder, while the second part is a emotion recognition model
containing a sentence encoder, a context encoder, and a classifier.
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Figure 2: Framework for Emotion Recognition in Conversations (ERC) using Transfer Learning (TL)
parameters. The knowledge from a dialogue generator is transferred into the discriminative task of
emotion recognition.

The sentence encoder of emotion recognition model is fine-tuned from the pretrained checkpoint from
BERT, and the context encoder from the corresponding component of the generative conversation
model. For pretraining with the source task of the conversation model, we use Cornell Movie Dialog
Corpus [4], a large scale benchmark dataset. Here we compare the performance between TL-ERC and
Fasttext[11]. The result is shown in Table|2} from which we can see that TL-ERC is more powerful.
For fine-tuning emotion recognition model, we use Empathetic Dialogues|17], a novel data set of
25,000 conversations grounded in emotional situations released by Facebook in 2019. In the original
dataset, there are total 31 different emotion categories. However, there are some similar kinds of
emotions in the dataset such as "joyful" & "impressed”, "annoyed" & "furious", etc. To simplify



further tasks, we grouped these 31 emotion labels into 10 emotion labels based on their meaning and
similarity and formed a new dataset for training.

Models Accuracy(%) Avg Precision(%) Avg Recall(%) AvgF1(%)

Fasttext  52.99 53.51 52.99 53.10
TL-ERC 61.82 62.82 61.82 61.88

Table 2: Performance Comparison for Emotion Classification

2.2 Core Component 2: Dialogue Policy

Audrey is a dialog agent designed for both topical and open domain chit-chat. For customer satis-
faction, such an agent must not only have deep personal conversations with the customer but also
provide customers an opportunity to converse on a breadth of topics. There can be several topics
that a customer may like to talk about including popular ones like movies, sports, animals, etc. or
other topics such as arts, gaming, or even Pokemon. Enabling a dialog agent with domain knowledge
and expertise to handle these various avenues makes it equally important to manage dialogue flow
for human like conversations. Managing dialogue requires Audrey to have a dialogue policy that
tracks its state, smoothly transition from one avenue to other and guide conversations to topics that
customers may find engaging. A crucial component of Audrey is to decide what topic to talk about
at each turn, which is determined by the dialogue policy. We use the dialogue policy to help guide
Audrey’s conversations to relevant template based or neural generation based responses.

Our Dialog Policy Optimizer component recommends the most relevant conversation topic for the
customer as well as provides natural transitions between topics for our conversations. We introduced
the Personality Understanding Module (PUM) that collects and stores customer information to infer
their interests. We then leverage knowledge about the customers to select and recommend the
most relevant, personalized topics to them using a Reinforcement Learning-based approach. To
accommodate various customer behaviors and keep conversations coherent, our transition mechanisms
guide the flow between topical and out-of-domain conversations. The transition mechanism uses
sentiment classification and threshold based transitions for our neural generators.

2.2.1 Topical Transitions

A conversational agent that aims to engage and entertain customers requires the ability to maintain
coherent conversations. The agent can maintain such coherent conversations by ensuring smooth
topical transitions which play a very important role and are described as a dialogue policy below.
Audrey’s goal is to be a personal chatbot that can engage customers in topics they enjoy conversing
about. Although Audrey can talk on a wide variety of topics, some customers found certain topics
more engaging than the others. Additionally, we hypothesized that the customers would expect
Audrey to guide the conversation without them explicitly mentioning what they wanted to talk about.

The overall goal of the dialogue policy is to maintain a positive global sentiment of each conversation
while avoiding repeated negative sentiment customer-utterances. We use the sentiment classifier
from Section [2.1.3]to assign sentiment scores and maintain a global sentiment. The dialogue policy
switches to a different topic when the sentiment score drops (we specified thresholds on sentiment
scores to define such states), a strategy that we found to work well in practice.

Audrey decides on the new topic to transition to using one of two different approaches: (1) PUM
(Section[2.2.2)) or (2) an RL-based approach (Section [2.2.3)). We observed smooth topic transitions
can be ensured by asking questions to the customers. Thus, our topic transitions are always followed
by a template based Initiator module (Section[2.3.T) that ensures coherent dialogue flow. To handle
out of topic transitions (e.g., generic chat and out of domain utterances), Audrey uses transitions
based on Neural Response Generators (2.2.4). We will use the term transitions throughout the rest of
the paper to describe topical switches followed by a relevant generated question.

2.2.2 Personal Understanding Module (PUM)

Chatbots that personalize a customer’s experience could improve the quality of the experience, make
the interaction easier, and make the customer feel understood. To do this requires knowledge about



customers that allows Audrey to pick topics that are relevant to the customer. We build the Personal
Understanding Module (PUM) to offer personalized experience and direct the conversation based on
different customer personalities. We only invoke the PUM module when the topic is exhausted or
when we do not have enough context information to respond to the customer.

When Audrey invokes the PUM, it asks customers a proxy question that could provide additional
information about the customer’s preference for different topics. For example, Audrey may ask
customers their interests in books: "I am lucky to have access to every single book online. It’s so easy
to get lost in a good book. I personally like sci-fi and fantasy books. Do you like reading often?"” The
answer to the proxy question allows us to set a customer attribute that corresponds to their answer
(e.g., whether they like books, movies, sports, video games, etc.).

We have built a Bayesian network that models relationships between customer attributes (Figure
[3). The network allows us to represent the conditional dependence between these attributes using a
directed graph. We estimate the parameters of the network (i.e., conditional probabilities of different
attributes) using data from the Survey of Public Participation in the Arts[/15]].

Audrey uses the network to personalize the conversation and direct it to topics relevant to the customer.
After each customer response to a proxy questions, Audrey can infer the probability of other attributes
that it did not ask about based on the customer’s previous answers. We relate each attribute to different
topics Audrey can talk about to select the most likely topic of interest to the customer.
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Figure 3: Bayesian network that models customer attributes. Each node in the network represents
one attribute such as whether the customer likes books or not. The network allows Audrey to infer
values of other customer attributes given knowledge about a subset of customer attributes.

2.2.3 Topic Selection based on Reinforcement Learning (RL)

To offer a truly personalized experience the chatbot needs to reason about and plan sequences of
topics that the customer wants to talk about throughout the whole conversation. Audrey leverages
Reinforcement Learning (RL) to estimate a policy that allows it to select the next topic based on
customers’ explicit preferences for certain topics and their ordering. When the topic is not exhausted,
and the conversation with the customer is continuing, the RL based topic selection is used.

We formulated the problem of topic selection as a Markov Decision Process[18]]. The task of the agent
is to chose the next topic for transition conditioned on the current topic of conversation. We assume
each topic selection to be associated with a reward from an unknown distribution. Ideally, we want
these rewards to accurately approximate customer preferences. We train an agent to estimate these
reward distributions given the training data. Our training data consists of Audrey’s conversations
along with customer ratings collected throughout the semifinals stage. These ratings are used as the



feedback signal to train our agent. The agent is trained using an offline batch policy where the agent
learns only from the data collected in the past without directly interacting with the environment.

We represent each conversation C; as a sequence of ¢ unique topics (C; = {aq, a1, as, ....a; }) with
the given rating R;. Let the reward at each turn of the conversation be given by an unknown function
r(-) as r(a;—1,a;). In an online setting, the total expected reward of the conversation is given by:

Ec,(R) = +"" r(ai_1,a), @)

where -y is the discount factor. Estimating r(-) would allow us to select topics that better estimate
customer intention at each conversation turn. We represent r(-) as a multi-layer perceptron neural
network. Our objective is to minimize the mean squared error between the expected reward E¢, (R)
and the rating R; and learn r(-) from the training data. For improved convergence during training,
we scale the ratings s.t. R; € [0, 1]. We set 7y as 0.99 in our experiments.

During deployment, we fixed the learned r(-). Topics are selected during transitions using an
€ — greedy action selection strategy. We choose topics either with the maximum estimated reward
or uniformly at random with probability e. Such a formulation allows Audrey to learn about the
sequence of topics customers find engaging from the past conversations.

2.2.4 Transitions based on Neural Response Generators

An ideal chatbot would be able to talk at depth about a topic the customer is passionate about, but
should also be able to transition between topics when the conversation becomes stale. One indicator
of stale topics is the customer’s switch to generic chat or other out of domain utterances.

To handle generic chat and out of domain utterances, we leverage the power of neural response
generators. We developed a module to intelligently decide the number of previous turns to pass to
the generator by looking at the previous states and finding out how long the customer talked about
the current topic. This way, the model was able to generate sophisticated responses when Audrey
covered a topic in depth, while being flexible enough to switch topics if the customer initiated the
transition. The specifics of our neural generators will be described in detail in the next section[2.3]

2.3 Core Component 3: Natural Language Generation

Recent advances in Natural Language Understanding (NLU) have helped spark recent interest in
conversational Al. However, chatbots and voice assistant still generate responses in very fixed and
robotic manner. In order to produce more diverse and personalised output, chatbots need to be able
to automatically generate language adapted to the current context. To accomplish our goal of an
open-domain chatbot, we developed a Natural Language Generation (NLG) system comprised of a
variety of template-based and neural generation models, which can be selected and adapted based
on context. These generation modules work together to produce responses for different stages of
conversation from small talk to discussions of customers’ interests, from acknowledging customers
emotions to giving opinions.

Mirroring real-world behavior when striking up a conversation with a stranger, Audrey starts all
conversations with an ice-breaker question invoked by our Initiators module (§2.3.T) to make a great
first impression and form an immediate connection with the customer. Next, Audrey deepens the
conversation by engaging the customer with one of our topic modules using a Follow Up Response
Generator (§2.3.2).There are four different retrieval-based topical modules which differ in their
architectures but have one goal: in-depth and coherent conversation on a particular topic at length. To
better handle popular topics like Movies, Books and Music, we developed the Hierarchical Topical
Generator (§2.3.6) that uses a hierarchical structure about subtopics within a topic and can navigate
within and between these subtopics using Amazon’s Evi Knowledge Graph. Additionally, to further
our goal of building a chatbot based diversity, we curated topics of customers’ interests (weather,
season, arts, gaming, and Pokemon etc.) and developed a dynamic retrieval-based generator to discuss
these (§2.3.5). Finally, to keep Audrey grounded in the real world, we designed two modules to
discuss news: (1) the Trending News Conversation Generator ( talks about recent news by



continuously pulling trending information from social media and (2) the News Response Generator
(§2.3.4) which sources the latest news from on articles from Washington Post for discussion.

All of these modules are templated retrieval based systems but for open-domain chat we require more
than such systems and hence we deployed 3 different neural generation modules. Our Topical GPT
Response Generator (§2.3.5) handles all the random topics which could not be handled by retrieval
systems. It is developed by fine-tuning the GPT-2 language generation model by OpenAl [16] on
Topical-Chat dataset released by Amazon [[7]. We also developed the Empathetic Response Generator
(§2.3.8) to connect with customers on an emotional level by responding when we detect a customer
has replied with emotion. Lastly, we also use Amazon’s Neural Response Generator (§2.3.9) based
on the transfer learning approach by HuggingFace [19].

2.3.1 Initiators Module

We believe that first time conversations thrive on ice-breakers which can break the awkward silence
and establish a conversational common ground. With this idea in mind, we developed the initiator
module to generate human-level ice-breaker questions with follow-ups. Instead of simply asking
customers or opening up with a "hey, how are you doing," we took the initiative by asking them
intriguing questions. Audrey asks customers questions like "what is that one thing which you want to
do today?", "how many hours do you spend on your computer each day?", and "if you were to write a
book about your life, what would it be called?" To further improve the transition, the Initiator Module
would be followed by transitions by the Follow Up Response Generator, described in Section[2.3.2]

To make the first few turns as delightful as possible, we hand-crafted templates with questions
and follow-ups, three turns deep. The optimal response template is selected via a weighted score
of keywords search and the mean-pooled sentence vector cosine similarity using SpaCy [9]] word
embeddings based on the customers’ utterance to our initial ice-breaker question.

2.3.2 Follow Up Response Generator

Natural transitions from one topic to another is key to engagement in a social conversation. Audrey’s
architecture uses a Follow Up Response Generator to handle transitions in between topics.

In order to make smooth transitions from the initial icebreakers leading to deeper conversations in
different topic modules, we use the Follow Up Response Generator. We have custom transitions
for ten topical modules. Initially, customers were given options to choose from general topics such
as movies, books, and music. Looking at our conversations, we realized that giving customers too
many choices sometimes lead conversations to a deadlock. Rather than that, we try to have natural
transitions from previous initiator topic to our customized topical modules. For example before
transitioning to Fitness module, Audrey says "I’ve started doing cardio recently! Getting stuck in my
little electric box isn’t really good for my health." which gives a more natural path towards topical
discussion.

The main transition mechanism described for neural generators in Section [2.2.4) were supplemented
by a section of engaging conversational questions, e.g., “What’s the smartest thing you’ve seen your
pet do ?” Recognizing that engaging customers on a conversational trajectory that leads to deeper
discussion can create a strong bond [[1], we developed a novel procedure to rank questions by intimacy
to help better engage customers. 3.0M questions were scraped from Reddit and used to fine-tune a
BERT language model. Then the BERT model was trained to predict each question’s intimacy [-1,1]
using a training set of 960 questions rated for intimacy and developed by us. The model attained
Pearson’s r = 0.77 on a held out test set indicating it is close to meeting human judgment on intimacy.
After filtering all questions to a narrow range appropriate for discussion and use in an Alexa Prize
chatbot, we categorized the questions into low, medium, and high intimate question. Experiments in
Section[3.2.1] test the effect of question ordering on conversation ratings.

2.3.3 Trending News Conversation Generator

The purpose of the Trending News Conversation Generator was to introduce recent news and content
into Audrey’s conversations. While it is easier to deploy template based or generated conversations
related to seasonal events or longstanding news, our aim with the Trending News Conversation
generation was to introduce fresh content and topics that a customer may have heard in the past few
days.



In particular, due to the recent events of COVID-19 dominating the news cycle and reducing the
availability of positive content and entertainment, we primarily pulled content by scraping Reddit’s
/r/UpliftingNews subreddit, as the majority of the content is news articles with a positive focus,
without a specific domain.

For dynamic data and knowledge, Audrey used SoundingBoard’s data pipeline in order to retrieve,
filter, process, and upload daily Reddit content to DynamoDDb [6]. Subreddits that were dynamically
scraped included /r/TodaylLearned, /r/movies, /r/UpliftingNews, /t/news, /r/worldnews, /r/science,
/r/sports, and other topical subreddits in the same vein. SoundingBoard’s extensive filtering process,
which ensured a minimal amount of sensitive content was uploaded to DynamoDb, was applied to all
dynamic data, as well as much of the static datasets and our sensitive-content filtering for Audrey.

As shown in Table[3] the initial prompts of the trending news generator use positive news headlines
across a variety of domains (with the exception of having some basis on COVID-19). From here, the
trending news generator utilizes the Amazon neural generator from Section [2.3.9|to generate further
responses, feeding in filtered Reddit comments from the original thread into the knowledge input of
the Amazon neural generator. The Table [3|shows a longer exchange:

Conversation

Audrey Have you heard that john krasinski is throwing a virtual prom for the
class of 2020?

User Wow, that’s very nice of him.

Audrey It sure is. He is a very talented guy.

User Yeah. I’m a huge fan of his.

Audrey He is also a very smart person.

Table 3: Conversation example of the Trending News Conversation generator. To respect customers’
privacy, this is not a real customer conversation.

The Trending News Conversation generator’s results can be found in §3.2.2] Overall, there was no
significant impact on ratings, but the average conversation duration dramatically increased. It is
difficult to understand the impact COVID-19 has on its performance, as one is unable to access how
the customer feels about the topic versus a time period where the news cycle is less focused on one
particularly sad topic. Regardless, the Trending News Conversation generator is able to generate
responses to recent news items by using dynamic web scraping in combination with Amazon Neural
Generator model. By providing Reddit user comments as “knowledge,” Audrey is able to make pop
culture references to the topic, provided the comment contains no sensitive content.

2.3.4 News Response Generator

Sourcing the latest news to customers who are interested in knowing and chatting about them is an
important part of any social conversation. Our main source for our news generator is the Washington
Post. Using the API provided by the Alexa Prize Team, we were able to access articles from the
Washington Post. The API provided basic information about the article, such as the author, topic, and
the body of the text. Through basic pre-processing and using the TextRank method for summarization
[14], we were able to split the body of the text into bite size information for a conversation. We used a
template based approach to discuss recent news items. This is in similar fashion to the Trending News
Conversation Generator, but the conversation is more reliably generated and fact-based by having
consistent access to the content of the news articles that are fed into a template-based approach.

The news response generator is able to discuss factually-based information about Washington Post
articles, providing a stable conversation about a variety of recent topics.

2.3.5 Topical Response Generator

The topical response generator is a dynamic retrieval-based generator that can engage customers in a
particular topic before switching to another topic depending on the customers’ interest levels. We
analyzed interests from Alexa Prize Social Bot customer feedback and hand picked non-mainstream
topics such as arts, gaming, and Pokemon, etc. These highly tailored topical generators showed great
engagement with the customers. Below is a list of topics that we implemented in chronological order.



Audrey | I have recent metro transit police news! Would you like to hear this one about Previous

User
Audrey

User
Audrey

User

hoaxes from “Kid Cole” landed him on MTV’s show?

Sure.

Let me summarize for you. It basically says the following. Jerez Nehemiah Stone-
Coleman, 21, a.k.a. Kidd Cole, pleaded guilty Dec. 18 to one count of making threats
involving explosive materials in a plea deal, after admitting to making 13 terrorist-
related threats among what prosecutors said were more than 300 calls to 911 over a
six-month period before his May 27 arrest. Shall I go on?

Yes.

Mehta said he "thought long and hard" about Stone-Coleman’s punishment, saying it
might not be the "best outcome" from the defendant’s perspective but was appropriate
under the law.

That’s interesting, I hadn’t heard about it.

Table 4: Conversation example of the news response generator. To respect customers’ privacy, this is
not a real customer conversation.

Fitness - The Fitness topic module talks about different forms of exercise, such as cardio,
strength training, yoga, and flexibility routines. Our responses were constructed in an
encouraging tone and in a customer-friendly manner. We also included some responses to
keep the conversation flowing even if the customer is not interested in fitness. Similar to
mainstream models like movies, music, and books, the hierarchy was created to account for
all possible customer responses.

Season - The Season topic module talks about different activities for each season, such as
going to the beach and hiking in the summer. The hierarchy begins with the four seasons in
general, and then continues to the second level, which contains details about the specific
activities that are popular in each season. From these starters, we were able to understand
what a particular customer likes to talk about related to their choice of season, which
helped us to provide appropriate follow-ups to the customers’ responses. An example of a
conversation related to the Season module is shown in Table

Food - The Food topic module talks about food related topics varying from exotic inter-
national cuisine to the top ten ice cream flavors. There were a lot of possibilities with
this module, because food has a wide range of varieties based on the taste, the process of
making, and, most importantly, based on customers’ own preferences, which gave us lots
of dimensions to talk about. To tackle this, we first created a decision tree to predict how
the customer will respond to certain questions and to maintain and deepen the conversation
within context, then we constructed our responses based on the customer’s responses.

Weather - The Weather topic module talks about a customer’s favorite weather and outdoor
activities related to that weather. The customers prefer different activities in different weather
environments, so we start the conversation with weather in general and go into detail when
we grasp the customers’ favorite weather or the one they are interested in talking about. We
also added follow-up questions at the end of our response to continue the conversation.

Game - The Game topic module talks about flagship games in different genres, such as
League of Legends (MOBA), Overwatch (FPS), The Witcher 3 (RPG), and Goat Simulator
(SIM). The hierarchical structure goes from the different genres to the specific games
customers are interested in. This module also contains appropriate responses for customers
that are not interested in gaming by routing to other topics such as fitness and movies to
continue the flow of the conversation.

Pets - The Pets topic module talks about the common household pets, such as dogs, cats, and
fish, and their favorite toys. With the wide range of pet choices, this module was complex
and filled with responses that intertwined the subtopics together. To ease the flow of this
topic module, we started with a question that asks whether the customer has a pet or not. If
yes, then the conversation continued to talk about their pet. In the other case, we continued
with their preferences regarding pets.

Art - The Art topic module talks about different forms of art, such as painting and sculpting.
The hierarchy starts with two general forms of art, such as visual art and performing arts.
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The decision tree then continues to outline the specific art forms within each general category.
While responding to their favorite art forms, we continue the conversation with discussions
such as the art marking process and different art mediums.

* Technology - The Technology module talks about ubiquitous technologies, such as smart-
phones, game consoles, and the internet. With a broad sense of what the customer’s favorite
technology is, we then continue with responses relating to their functionalities and the
common everyday activities such as social media and productive work. The module also
branches to other possible related topics such as art and film to have more variety.

* Sports - The Sports topic module talks about different sports including football, basketball,
and swimming. Each sport leads to specific questions that learn more about the customer’s
interests regarding the sport. In case the customer is interested in a sport that was not in our
database, we are still able to continue the conversation by referring to the sport the customer
mentioned and asking meaningful questions regarding their interests.

* Science - The Science topic module talks about biology, physics, and chemistry. For the
customers interested in science, we have branches in the decision tree that lead to discussion
about the details of each subject. On the other hand, if the customer wasn’t interested in
science specifically, we were able to route them to other topics such as games and food to
keep the conversation engaging.

* Pokemon - The Pokemon topic module talks about twenty types of Pokemon, including
but not limited to fire type, water type, and air type. From then on we delve deeper into
details about each type of Pokemon along with the skilled Pokemon trainers. This module
also includes introductions to other topic modules to ease the transitions between different
modules.

* Anime - The Anime topic module talks about seventeen different popular anime. From
there we ask the customer’s opinions on different parts of the anime, such as fight scenes
or the opening. If the customer wasn’t interested in anime, we could route them to another
topic such as movies.

Audrey | I love seeing how the world changes from season to season. What is your favorite
season?
User Spring.
Audrey | Ah Spring makes me happy! The world is filled with color and excitement! What do
you like most about Spring?
User The warm weather.
Audrey | The warm weather is definitely a welcome change after the bitter winter. Have you
watched spring cherry blossoms?

User Yes I have!
Table 5: An example conversation from the Season topic module. To respect customers’ privacy, this
is not a real customer conversation.

The core of our topical response generator module is a custom, flexible framework that retrieves
sentences from a curated database. The generator uses the raw customer utterance, noun entities, and
customer’s previous turn history to retrieve the best responses from our database. The database is a
list of nested dictionaries that stores pairs of expected customer prompts and Audrey’s template-based
responses. The expected customer prompts are phrases that we expect customer to utter which we
then pair up with the most appropriate bot response based on templates within each topic module.

When generating a response, the customer’s turn history is used to index into the corresponding
location in our database, limiting our search from thousands of response templates to just tens of
responses. Then, we select the optimal response by matching the customer utterance to the most
similar expected customer prompts via a weighted combination of keywords search and cosine
similarity matching between sentence vectors given by Spacy’s pre-trained word embedding[9]]. Once
an optimal response template is found, we fill the template with noun phrases, verbs, or adjectives
extracted from the customer utterance. If there is no ideal template based response to a particular
customer utterance, we use the neural response generator as a backup.
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2.3.6 Hierarchical Topical Generator

In order to design a unique experience for the customers who engage with Audrey, we built a
Hierarchical Topical Generator module to have flexibility, opinion and engagement. Our model was
based on the data provided by the Amazon’s Evi Knowledge Graph from Section We defined
a set of attributes for each topic module using the entity. For example, given a movie title from
a customer utterance, attributes like its actors, directors, plot or other related movies’ information
can be extracted through Evi. The attributes were defined so that the information regarding these
attributes could be maintained in all conversation turns within that particular topic module, while
topic modules are initiated based on the extracted entity (like movie title here will initiate the Movies
Module). On top of that, we also define a hierarchical structure for all of these attributes within each
topic module. In each turn, the generator selects a topic attribute and generates a relevant responseby
accessing related information from the knowledge graph. When enough context information is not
present, we follow the defined hierarchy to select the attributes.

We flexibly switch between attributes through an interplay of questions and opinions when enough
context about customer preference is available and the switches between topics are handled by the
dialogue policy. The design of our hierarchical topical generator allows us to have long, in-depth and
engaging conversations with customers about these topics.

Audrey’s static knowledge comes from a mixture of primarily domain-specific datasets. For movie
knowledge, The Movie Databas and The Open Movie Databas were fused together into a Amazon
DynamoDB tableE] to provide metadata information about popular movies, such as its title, abridged
plot summary, ratings, and actors.

Other static data, less focused on knowledge, included several years of Reddit comments. Using a
rigorous word blacklist, as well as a subreddit blacklist for sensitive content, Reddit comments were
filtered and indexed into Amazon’s ElasticSearchEl This allowed for keywords and phrases to be
queried and quickly returned with relevant Reddit comments containing that keyword or keyphrase.
Additionally, items could be queried by subreddit, allowing for versatile pool of opinionated comments
on nearly any topic, such as movie opinions that reference a certain movie title in /r/movies. We
observed that opinion based response generation leads to better engagement with customers than
stating facts or summaries.

2.3.7 TopicalGPT Response Generator

In the above sections, we designed diverse response generators to deal with different topics uttered
frequently in the conversations. However, general conversation without any specific topic or chit-chat
also constitutes an important part of the conversation while talking to a chatbot. Customers may talk
about a random topic with Audrey at the very start or maybe after several turns into the conversation
which adds more uncertainty to the conversation and increases the difficulty of designing a dialog
system which can respond appropriately.

In order to deal with open domain chat, we took advantage of one of the state-of-the-art natural
language generation models, GPT-2 [16], a large scale unsupervised language model. GPT-2 has
shown excellent performance and large capacity to generalize in many natural language generation
tasks, which led us to integrate the GPT-2 model directly without any modifications. Specifically, we
treat the last few turns of customers’ conversation as the context and input it to GPT-2 the model which
then generates the relative response based on it. For training purposes, we used the Topical-Chat
dataset released by Amazon [7]] to fine-tune the model. This dataset includes more than 235,000
utterances and generalizes the pattern of chit-chat or open domain conversation very comprehensively.
We also proposed a multi-task objective function for training the model: on one hand, we try to
minimize the perplexity of the output sentence and on the other hand, we add an extra classification
task—given the context, we provide the real response and a bunch of unrelated sentences, and let the
model to select the correct one. We believe these tasks drives the model to generate output both with
high fluency and accuracy. To show the advantage of GPT-2 model, we ran an experiment to compare
the performances between GPT and GPT-2; the result is shown in Table [§] and confirm the advantage

"https://www.themoviedb.org/
*https://www.omdbapi.com/
3https://aws.amazon.com/dynamodb/
*https://aws.amazon.com/elasticsearch-service/
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Models Negative log likelihood Perplexity

GPT 2.904 18.25
GPT-2  2.891 18.02

Table 6: Performance Comparison Between GPT and GPT-2

of GPT-2 over GPT in our setting. Examples of generated responses from our model are shown in
Table[7]

User Do you like dogs or cats?

Audrey | I'm a dog person, but my cats love me.
Table 7: Topic variety with the Topical GPT module. To respect customers’ privacy, this is not a real
customer conversation.

2.3.8 Empathetic Response Generator

Acknowledging customers emotions and providing relevant responses suitable for each kind of
emotion is a key element in any social conversation. Based on this idea, we decided to use the
classified emotion determined from a customer’s past context as a cue to our generator model to
generate an empathetic response. The generator would be evoked by the Dialog Policy when the
emotion would be classified as either happy or angry.

Similar to the Topical GPT response generator, we use GPT-2 model as the backbone of this generator
model. We fine-tuned GPT-2 model using Empathetic Dialogues dataset which is also used in creating
the emotion detection classifier.

User I am feeling sad today, I did poorly on my exam.
Audrey | That’s okay, just keep working hard and you’ll be fine!

Table 8: Empathetic Generator variety with the Empathetic Response Generator. To respect customers’
privacy, this is not a real customer conversation.

2.3.9 Amazon Neural Response Generator

The Amazon Neural Response Generator was provided as a service starting in the quarter-finals inter-
action period. The model was trained based on the transfer learning approach by HuggingFace[19].
The generator was used to handle out-of-domain responses as well as generating responses for the
trending news conversation module.

2.4 Prosody

Our prosody generation utilizes Amazon Alexa’s speech synthesis system in order to give Audrey
her own unique voice. We used the Amazon Speech Synthesis Markup Language(SSML) format
to enhance our templates by dynamically adding tags to our final output response. For example,
whenever we encountered a question mark or exclamation mark in the generated response, we inserted
emotion and pitch tags in order to provide the inflection to indicate more inquisitive or curious
responses. After testing different samples with various SSML tags and hierarchies for introducing
prosody, we decided to use excited emotion ("<amazon:emotion name="excited’ intensity="low’>")
for longer responses and ("<prosody pitch="high’>") for shorter responses. For longer responses
generated by our bot, we also experimented with increasing the speaking rate, bringing it closer to
normal speaking patterns.
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3 Results and Analysis

During the semi-finals interaction period from March 20™ to April 29" we performed a series of
experiments to quantify the impact of different parts of Audrey’s pipeline on conversational ratings
and duration. We describe insights from descriptive analyses done on these conversations in Section
[3.1] and comparative experiments on conversation quality done through systematically adjusting
Audrey’s components in Section[3.2}

3.1 Analysis

The following five analyses in Sectionsreﬂect Audrey’s performance during the semi-final
interaction period during March 20" to April 29,
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Figure 4: Overview of ratings vs conversation starters during the semi-finals interaction period. When
we started our conversations with pets and weather topics, we had highest initial engagement.(Note
that we changed the y-axis from 2.5-4.0 to make it easier to visualize.)

3.1.1 Which conversation starters gave better ratings?

Our conversations starters aim to initiate the conversation on a high note and quickly engage the
customer in a topic of their interest that Audrey is also able to chat about. Figure ] shows the resulting
conversation score based on which started was used to initiate the dialog. While conversations can
go many directions after the starter, these results indicate that customers consistently preferred to
start the conversation with “light” conversation fare, e.g., about the weather or their pets, rather than
focusing directly on starters that are more domain-interests. Our results highlight the importance of
small talk [3]] as an avenue for drawing new customers into a conversation.

3.1.2 What is the relationship between conversation length and rating?

Customers who keep talking to Audrey are able to experience a wider breadth of topics. Ten percent of
our conversations lasted longer than 7 minutes and 25 seconds. It is intuitive that longer conversation
correlated with higher ratings, but Figure 5] shows that duration is only weakly correlated with rating.

3.1.3 How are ratings different for new and returning customers?

The Alexa Prize Grand Challenge platform allows customers to return, which provides an opportunity
for Audrey to use information learned about them during their prior conversations (e.g., interests
in particular movies or sports) to engage with them. However, returning customers also present a
challenge to our generators, as customers may have heard some of the content before (e.g., retreading
the previous conversation). Therefore, we tested whether the conversation score was higher for
returning versus new customersE]

3Note that because the customer identifiers we receive reset periodically, we are unable to track all return
visits and some first visits by a new customer may actually be returning. Additionally, due to the blinded nature
of customer interactions with the Alexa Prize experience, many first time visitors may have previously interacted
with other socialbots.
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Figure 5: Distribution of ratings and duration. Conversation Rating and Duration were weakly
correlated (Pearson r=0.13) suggesting that customers willing to talk for a long duration with Audrey
are not more satisfied with the quality than those only willing to talk for a shorter duration.
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Figure 6: Point Plot based on new and returning customer comparison. Median ratings for returning
customers were higher than the new customers.

Figure [6] shows a plot of the mean and the spread of ratings for new and returning customers. New
customers gave an average rating of 3.21, and returning customers gave an average rating of 3.40.
While returning customers gave a higher average rating, the spread is much larger compared to new
customers.

3.1.4 How do different topic modules and generators affect the engagement of the
customer?

Audrey uses multiple modules for generating speech (§2.3.5) guided by conversation policy goals
(§2.2.3] and §2.2.7). These generators each can have different effects on the engagement of the
customer, based on their interests. Here, we measure engagement through the number of responses
made by a single generator—i.e., did the customer talk to this part of Audrey more. Figure
shows that customers consistently engaged more with the neural response generators than with other
template or hybrid generators. The most-utilized generator, Topical Response, contains multiple
topics, each could have different levels of engagement. Therefore, we examined the average number
of turns for each topic, shown in Figure[7b] Among topics, season and fitness led to more conversation,
with over a full turn more dialog. Customers engage with the majority of topics for at least three
turns on average with the exception of pets which was slightly lower (2.50). We speculate that the
pets topic results in fewer turns due to conversational redirection from people who don’t have pets.
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Figure 7: Overview of average number of turns vs generators and topics. a) The topical chats and
neural generators engage customers the most. b) Among the topical chats, season and fitness topics
get the longest conversations.

3.1.5 How do different topic modules and response intents affect the overall ratings?

Because Audrey’s responses are generated by different initiators and topic modules, many factors can
affect overall rating. In order to pinpoint the modules that are positively affecting our performance,
we construct an OLS regression where we treat each conversation as an observation and include
independent variables for (i) the number of turns from each generator, (ii) the particular conversation
starter, (iii) generator expressions like asking for a customer to repeat themselves, (iv) sensitive
questions uttered by the customer, and (v) the duration of the conversation in minutes. By using the
customer rating as the dependent variable, this model let’s us quantify the impact of each component.

The regression results, shown in Table [9] contain four main findings. First, the largest significant
effect on the conversation comes from longer conversations with the topical generators. Surprisingly,
despite Pets having the shortest overall conversation (cf. Figure[7p) discussions on Pets has the largest
positive effect on score among all topics. Other strong contributors were more narrow topics such as
Art, Fitness, Food and Games. Second, our knowledge-rich hierarchical response generators (built on
top of EVI) did not significantly improve conversations, despite their ability go deeper into a topic
based on domain knowledge. Third, we observe a statistically-significant negative effect for when
Audrey uses Topical GPT directly to generate a response (not as a part of a strategy) based on what
the customer has said. As this fallback strategy is evoked when Audrey cannot determine how to best
proceed, this coefficient suggests that (i) a better strategy for handling non-sequitur comments by
customers can improve conversation quality and that (ii) neural generators are not yet suitable to fully
dynamically generate the conversation over long periods. Fourth, building upon the analysis of the
initiators (§2.3.1)), when controlling for all other factors, surprisingly, the way the conversation is
initiated has no significant impact on the resulting scor
about the Seasons, approaches significance with a large positive coefficient.

3.2 [Experiments

Throughout the quarterfinals and semifinals periods, multiple A/B tests were done on the platform to
quantify the effect of specific components. In the following tables, the average conversation duration
are adjusted to exclude outliers.

3.2.1 Intimacy Experiment for transitions

Our question intimacy estimation modules enable Audrey to potentially move from more casual to
deeper questions during conversation. To test whether systematically increasing question intimacy
leads to higher-ranked conversations, we randomly selected conversations to engage in one of two
strategies: (1) asking conversational questions in increasing order of intimacy or (2) asking the
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B Standard Error

Intercept 2.948*** 0.104
Duration (minutes) 0.001*** 0.000
Conversation Starter: None 0.095 0.105
Conversation Starter: Art 0.079 0.118
Conversation Starter: Fitness 0.045 0.110
Conversation Starter: Food 0.067 0.110
Conversation Starter: Games 0.071 0.117
Conversation Starter: Pets 0.071 0.117
Conversation Starter: Pokemon 0.132 0.144
Conversation Starter: Science 0.011 0.120
Conversation Starter: Seasons 0.184* 0.110
Conversation Starter: Sports —-0.073 0.123
Conversation Starter: Tech 0.043 0.120
Conversation Starter: Weather 0.170 0.117
Hierarchical Response: Books 0.022 0.017
Hierarchical Response: Movies 0.028* 0.016
Hierarchical Response: Music 0.013 0.022
Topical Response: Art 0.031** 0.013
Topical Response: Fitness 0.039*** 0.007
Topical Response: Food 0.034*** 0.009
Topical Response: Games 0.043*** 0.014
Topical Response: Pets 0.055*** 0.016
Topical Response: Science 0.027** 0.014
Topical Response: Season 0.028*** 0.006
Topical Response: Sports 0.016 0.015
Topical Response: Tech 0.028** 0.014
Topical Response: Weather 0.018 0.014
Amazon Neural Generator —0.006"** 0.002
Follow Up Questions —0.011 0.013
Goodbye Response 0.042* 0.024
Response to Offensive Comments —0.048*** 0.014
Repeat Response 0.047 0.032
Observations 16,404

R? 0.033

Note: *p<0.1; **p<0.05; ***p<0.01

Table 9: OLS regression result for different intents that could effect the overall rating.

same questions in a random order, using the 76 questions from Section[2.3.2] This experiment was
conducted over many conversations from March 28th to April 6th.

We hypothesized that by initially picking less intimate conversational questions for transitions in
the beginning and gradually increasing the intimacy level of the question, customers would have a
better feeling of the conversation that would translate into higher ratings. However, the results in
Table [I0]showed a statistically-significant drop in conversational score, when questions were asked in
increasing order. We speculate that while the questions were intriguing, they were not always asked
at times that lead to strong conversational coherence, which negated the effect of question ordering.

3.2.2 Trending News Conversation Generator

Our Trending News Conversation Generator (TNCG) allows Audrey to inject interesting discussion
points during the middle of a conversation when the Dialog Policy manager (§2.2) has identified that
the customer’s focus has drifted, potentially sparking more engagement. However, such transitions
could seem out of place and jar the customer, especially with reliance on Topical GPT to generate
subsequent conversation on recent news. Here, we performed an A/B experiment to test the effect
of introducing recent news in a conversation by randomly varying whether the TNCG (§2.3.3] or
Follow-up Generator (§2.3.2)) was used to transition between topics. The experiment was run during

17



Avg. Feedback Avg. Conversation  Avg. Conversation

Variant Feedback CI

Rating Duration (seconds) Duration CI
Random order 3.321 (3.287, 3.355) 223.22 (216.097, 230.343)
Increasing intimacy 3.201 (3.167, 3.235) 196.33 (190.076, 202.584)

Table 10: Mean conversation ratings and duration when transitioning between topics using questions
ordered by increasing intimacy versus the same questions asked in a random order. Intimacy had no
effect on customers’ preferences for the conversation, but increasing intimacy led to a statistically-
significant drop in conversation duration.

April 21st to April 23rd. Our results in Table|11|showed a statistically-significant increase in the
average conversation duration with the TNCG. However, the generator had no significant effect
on rating, a discrepancy that agrees with our findings in §3.1.2]that the two are weakly correlated.
We speculate that TNCG generally increased conversation duration based on the interest of recent
news over templated topic changers, but that its under-preparedness to discuss COVID-19 caused
inconsistency with the final ratings. We observed a general lack of interest in discussing coronavirus
news, which encompasses nearly our entire pool of content, despite selecting for positive-only news.

Avg. Feedback Avg. Conversation  Avg. Conversation

Variant Rating Feedback CI Duration (seconds) Duration CI
Trending News Gen. 3.276 (3.217, 3.330) 224.14 (212.069, 236.211)
Followup Generator 3.251 (3.194, 3.308) 151.00 (109.665, 132.3348)

Table 11: Experiment on Trending News Conversation Generator and Follow-up Generator.

3.2.3 Experiment on Providing Context to the Neural Generators

The neural response generator (NRG; conditions its output based on prior context. More
context can potentially provide richer information to craft a conversational arc matching the current
trajectory; however, selecting prior turns that cover multiple topics may muddy the output. Therefore,
we conducted an A/B experiment to test the effect of different types of context provided to the NRG.
The first condition uses all prior turns on the current topic as context, while the second always selects
the 5 previous turns as context, regardless of their topic.

The experiment ran March 20th to March 28th with results shown in Table[T2] Including only on-topic
context for the NRG attained a mean rating of 3.308 compared against the 3.196 mean rating for
using a fixed-size context. We observed the only on-topic context to be statistically different from
fixed sized content, both in terms of higher average feedback ratings and lower average conversation
duration. The inverted trends between ratings and conversation duration is unexpected, but this
again corroborates with the findings in that suggest only a weak correlation between the
two. Nevertheless, we view this as a useful guide for the importance of conditioning on a more
topically-narrow context to improve response quality and coherence.

Avg. Feedback Avg. Conversation  Avg. Conversation

Variant Feedback CI

Rating Duration (seconds) Duration CI
Only On-topic Context 3.308 (3.287, 3.329) 208.06 (204.130, 211.990)
Fixed-size Context 3.196 (3.181, 3.211) 242.73 (240.122, 245.338)

Table 12: Ratings Change on Introducing Dynamic Context Length for GPT-2

4 Conclusion

We designed an open-domain social conversation system, Audrey, that achieved a cumulative average
rating of 3.25 out of 5 in the the semi-finals. Audrey was designed with the goals of engaging with
customers on a personal level by adapting to their preferences, interests, and personality. To achieve
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these goals, we developed a large collection of NLP modules for language understanding (§2.1] dialog
management (§2.2), and response generation (§2.3) that create a diverse conversational landscape
intended to evoke delight.

5 Future Work

Given time constraints from late deployment in semifinals, we were not able to perform rigorous
experimental analysis on the innovative features released recently like the Personal Understanding
Module (PUM) and Reinforcement Learning (RL) based Topic Selection and some new topical
modules. We will aim to improve the Personal Understanding Module (PUM) so that it can better
suggest topics based on customers’ likes and dislikes and create an adaptive and unique conversation
experience for them. Lastly, we also plan to improve our reinforcement learning model to build a
better dialog policy for topic selection and conversation content planning.
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