ARTISAN° TECHNOLOGY GROUP

Your **definitive** source for quality pre-owned equipment.

Artisan Technology Group

(217) 352-9330 | sales@artisantg.com | artisantg.com

Full-service, independent repair center

with experienced engineers and technicians on staff.

We buy your excess, underutilized, and idle equipment along with credit for buybacks and trade-ins.

Custom engineering

so your equipment works exactly as you specify.

Critical and expedited services

In stock / Ready-to-ship

- Leasing / Rentals / Demos
- ITAR-certified secure asset solutions

Expert team | Trust guarantee | 100% satisfaction

All trademarks, brand names, and brands appearing herein are the property of their respective owners.

Find the Keysight / Agilent E1503A at our website: Click HERE

Agilent E1503A 8-Channel Programmable Filter/Gain SCP

Data Sheet

- Use with Agilent E1413C/E1415A/E1419A
- Programmable low-pass filter per channel
- Programmable input amplifier per channel
- \pm 0.25/2/16 V maximum sensor voltage
- Maximum flexibility for low-level and high-level sensors

Agilent E1503A

Description

The Agilent E1503A 8-Channel Programmable Filter and Gain SCP provides eight programmable, 2-pole low-pass filters with cutoff frequency settings of 2, 10, and 100 Hz, as well as a 1.5 kHz "pass-through" mode (filter OFF). The eight

programmable input amplifiers provide input voltage ranges of \pm 0.25 V, \pm 2 V, and \pm 16 V. The E1503A SCP also provides input over-voltage protection and open transducer detection on each channel.

Measurement applications include low-level voltage, temperature, resistance, and strain measurements and general measurements of voltage output sensors. Use the E1503A with the following VXI modules:

Model	Description
E1413C	64-Channel Scanning A/D Converter
E1415A	Algorithmic Closed Loop Controller
E1419A	Multifunction Measurement and Control Module (only in SCP positions 5 - 8)

Refer to the Agilent Technologies Website for recent product updates, if applicable.

Voltage Measurements

The E1503A is ideal for measuring signals from sensors with full-scale voltage outputs from 3.9 mV to 16 V. The programmable, 2-pole, low-pass filters reduce sensor-based noise in the measurement.

Temperature Measurements

The E1503A can be used to make temperature measurements with thermocouples, thermistors, or RTDs.

Agilent Technologies

Innovating the HP Way

Temperature measurements with thermistors or RTDs require the E1505A 8-Channel Current Source SCP. Engineering units conversion to degrees C are made on-card at full speed.

Resistance Measurements

Resistance is measured using the E1505A Current Source SCP with the E1503A SCP. Measurements are made by applying a dc current to the unknown and measuring the voltage drop across the unknown resistance. The current source is provided through the E1505A. The recommended application is as shown here using 4-wire Ω connections. Two-wire Ω measurement is possible but not recommended since two 150 Ω series resistors protecting the input FET multiplexer are included in the measurement.

Strain Measurements

The E1503A can be used to make strain measurements when combined with either the E1506A or E1507A Strain Completion SCPs. Refer to the E1506A/E1507A *Technical Specifications* for more information.

Product Specifications

These specifications for the E1503A reflect the combined performance of the scanning A/D and the E1503A SCP.

Measurement Ranges

•	
DC Volts:	\pm 3.9 mV to \pm 16 V Full Scale
Temperature:	
Thermocouples:	–200 to + 1700 °C
Thermistors: *	–80 to + 160 °C
RTD's: *	–200 to + 850 °C
Resistance: *	8 Ω to 131K Ω FS
Strain: **	25,000 $\mu\epsilon$ or limit of linear range of strain
	gage
*Requires Agilent F1505A	

*Requires Agilent E1505A. **Requires Agilent E1506A/E1507A.

. .

Input Characteristics

Maximum input voltage (nor	mal mode plus common mode):
Operating:	$<\pm$ 16 V peak
Damage level:	$>\pm$ 42 V peak
Maximum common mode vo	ltage:
Operating:	$<\pm$ 16 V peak
Damage level:	$>\pm$ 42 V peak
Common mode rejection:	
0 to 60 Hz:	
Gain x1:	>–100 dB
Gain x8:	>-116 dB
Gain x64:	>–132 dB
Input impedance:	Greater than 100 $M\Omega$ differential

Maximum Tare Cal Offset

Maximum tare cal offset depends on A/D range and SCP gain.

A/D Range ±V F. Scale	Offset V Gain x1	Offset V Gain x8	Offset V Gain x64
16	3.2213	.40104	.04970
4	.82101	.10101	.01220
1	.23061	.02721	.00297
0.25	.07581	.00786	.00055
0.0625	.03792	.00312	n/a

Measurement Accuracy DC Volts

If autoranging is ON, add \pm .02% FS to accuracy specifications.

Gain x1 A/D Range ±V F. Scale	Linearity % of Reading		Offse	Noise 3o	Noise* 3o		
		2 Hz	10 Hz	100 Hz	Filt Off		
.0625	0.01%	13 µV	9.5 μV	6.8 μV	6.3 μV	45 μV	26 µV
.25	0.01%	15 μV	12.5 μV	11.2 μV	10.8 μV	63 μV	31 µV
1	0.01%	33 µV	31.8 μV	31.3 μV	$31.2\;\mu\text{V}$	112 μV	93 μV
4	0.01%	123 μV	122 μV	122 μV	122 μV	450 μV	366 µV
16	0.01%	488 μV	488 μV	488 μV	488 μV	1.8 mV	1.5 mV
*A/D filter	ON (min s	ample pei	riod ≥145	µs: ≤100	Hz scan r	ate 64 ch)	

Temperature Coefficients

For offset, add Tempco and fixed offset to the offset above.

	Temp Range	Temp	CO	2 Hz	10 Hz	100 Hz	Filt Off
Gain:		15 pp	m∕°C				
Offset:	0-30 °C	0.16 µ	ιV/°C	0 µV	0 µV	0 μV	0 µV
	30-40 °	C 0.18 µ	ιV/°C	13 μV	9 μV	1.1 μV	0.2 μV
	40-55 °	C 0.39 µ	ιV/°C	31 µV	22 μV	6.4 μV	1.1 μV
Gain x8	Linoarity		04	feat Error		Noiso	Noico*
A/D Range ±V F. Scale	% of Reading		UI	ISEL EITOI		иотее 30	иотse 30
		2 Hz	10 Hz	z 100 ł	lz Filt Of	f	
.0078	0.01%	4.6 μV	4.2 μ	V 3.8 μ	V 3.7 μ\	/ 5.8 μV	4.9 μV
.031	0.01%	4.8 μV	4.6 μ	ν 4.4 μ	V 4.3 μ\	/ 6.9 μV**	5.9 μV**
.125	0.01%	6 µV	5.3 μ	V 5μV	4.9 μ\	/ 14 μV	12 μV
.5	0.01%	16 µV	16 μ\	/ 16 μ\	/ 16 μV	56 μV	46 μV
2	0.01%	61 µV	61 μ\	/ 61μ\	/ 61 μV	225 µV	188 μV
*A/D filter	ON (min sa	ample pe	riod ≥1	45 μs: ≤1	00 Hz sca	n rate 64 cl	h).

** 7.4 μV and 6.3 μV when temperature ${\geq}40~^\circ C$

Temperature Coefficients

For offset,	add Temp	co and fix	ked offs	et to the o	ffset abov	e.		
	Temp Range	Temp	000	2 Hz	10 Hz	100 Hz	Filt Off	
Gain:		15 pp	om∕°C					
Offset:	0-30 °C	0.16	μV/°C	0 µV	0 µV	0 μV	0 µV	
	30-40 °	C 0.18	μV/°C	4.3 μV	2.7 μV	1 μV	0.2 μV	
	40-55 °	C 0.39	μV/°C	13 μV	10 µV	6.2 μV	0.8 μV	
Gain x64	Gain x64							
A/D Range ±V	Linearity % of Reading		Offset Error				Noise* 3o	
F. Scale								
		2 Hz	10 Hz	100 Hz	Filt Off			
.0039	0.01%	2.9 μV	2.3 μV	/ 2.1 μV	2.1 μV	1.6 μV**	1.3 μV**	
.0156	0.01%	3 μV	2.4 μV	2.2 μV	2.2 μV	2.2 μV***	1.9 μV***	
.0625	0.01%	3.5 μV	3 μV	2.9 μV	2.9 μV	7 μV	5.7 μV	
.25	0.01%	8.2 μV	8 µV	8 µV	8 µV	28 μV	23 µV	
*A/D filter ** 1.9 μV *** 2 5 μ	ON (min sa and 1.7 μV V and 2.2 μ	ample pe for 100 H	riod ≥14 Iz filter tempera	15 μs: ≤10 ature >40 °	0 Hz scan	rate 64 ch).	

Temperature Coefficients

For offset, add Tempco and fixed offset to the offset above.

	Temp Range	Tempco	2 Hz	10 Hz	100 Hz	Filt Off
Gain:		15 ppm/°C				
Offset:	0-30 °C 30-40 °C	0.16 μV/°C 0.18 μV/°C	0 μV 1 1 μV	0μV 02μV	0 μV 0 1 μV	0μV 01μV
	40-55 °C	0.39 μV/°C	6 μV	1.4 μV	0.6 μV	0.6 μV

Temperature Measurement Accuracy

The thermocouple graphs following this description include the errors due to measuring the voltage output of the thermocouple, and the algorithm errors due to converting the thermocouple voltage to temperature or the Measurement/ Conversion Error (MCE). To this error the Reference Junction Measurement Error (RJME) must be added due to measuring the reference junction temperature with an RTD or thermistor (this measurement requires an E1505A). Also, the Isothermal Reference Gradient Errors (IRGE) must be added due to gradients across the isothermal reference. If an external isothermal reference panel is used, consult the manufacturer's specifications. If Agilent terminal blocks are used as the isothermal reference, see the notes below.

Total Temperature Error = $[(MCE)^2 + (RJME)^2 + (IRGE)^2]^{1/2}$

NOTES:

1) When using the Terminal Block as the isothermal reference, add \pm 0.6 °C to the thermocouple accuracy specs to account for temperature gradients across the Terminal Block. The ambient temperature of the air surrounding the Terminal Block must be within \pm 2 °C of the temperature of the inlet cooling air to the VXI mainframe.

2) When using the Agilent E1586A Rack Mount Terminal Panel as the isothermal reference, add \pm 0.2 °C to the thermocouple accuracy specs to account for temperature gradients across the E1586A. The E1586A should be mounted in the bottom part of the rack, below and away from other heat sources, for best performance.

All specifications for the following were measured with the A/D filter off.

The following temperature accuracy graphs include instrument and firmware linearization errors. The linearization algorithm used is based on the ITS-90 transducer curves. Add your transducer accuracy to determine total measurement error.

Conv	Conversion Chart							
Opt 011	=	E1501A						
Opt 012	=	E1502A						
Opt 013	=	E1503A						
Opt 015	=	E1505A						
Opt 016	=	E1506A						
Opt 017	=	E1507A						
Opt 018	=	E1508A						
Opt 019	=	E1509A						
Opt 020	=	E1510A						
Opt 021	=	E1511A						

Current Requirements (Amps)									
5 V typ	5 V max	24 V typ	24 V max	-24 V typ	-24 V max				
0.01	0.01	0.04	0.06	0.04	0.06				
Order	ing Infor	mation							
Descript	tion		P	roduct No.					
8-Channe	el Programm	able Filter/Ga	E	1503A					

8-Channel Programmable Filter/Gain SCP

Related Literature

2000 Test System and VXI Catalog CD-ROM, Agilent Pub. No. 5980-0308E (detailed specifications for VXI products)

2000 Test System and VXI Catalog, Agilent Pub. No. 5980-0307E (overview of VXI products)

1998 Test System and VXI Products Data Book, Agilent Pub. No. 5966-2812E

Online

Internet access for Agilent product information, services and support www.agilent.com/find/tmdir

VXI product information www.agilent.com/find/vxi

Defense Electronics Applications www.agilent.com/find/defense_ATE

Agilent Technologies VXI Channel Partners www.agilent.com/find/vxichanpart

Agilent Technologies' HP VEE Application Website www.agilent.com/find/vee

Agilent Technologies Data Acquisition and Control Website www.agilent.com/find/data acq

Agilent Technologies Instrument Driver Downloads www.agilent.com/find/inst drivers

Agilent Technologies Electronics Manufacturing Test Solutions www.agilent.com/go/manufacturing

Get assistance with all your test and measurement needs at www.agilent.com/find/assist

or check your local phone book for the Agilent office near you.

Agilent Technologies' test and measurement service/support commitment

Agilent strives to maximize the value our test and measurement products give you, while minimizing your risk and service/support problems. We work to ensure that each product is realistically described in the literature, meets its stated performance and functionality, has a clearly stated global warranty, and is supported at least five years beyond its production life. Our extensive selfhelp tools include many online resources (www.agilent.com).

Experienced Agilent test engineers throughout the world offer practical recommendations for product evaluation and selection. After you purchase an Agilent product, they can provide no-charge assistance with operation verification and basic measurement setups for advertised capabilities. To enhance the features, performance, and flexibility of your test and measurement products—and to help you solve application challenges—Agilent offers free or extra-cost product options and upgrades, and sell expert engineering, calibration, and other consulting services.

Phone and fax United States: Agilent Technologies (tel) 1 800 452 4844

Canada: Agilent Technologies Canada Inc. (tel) 1 877 894 4414

Europe: Agilent Technologies Test & Measurement European Marketing Organisation (tel) (31 20) 547 2000

Japan: Agilent Technologies Japan Ltd. (tel) (81) 426 56 7832 (fax) (81) 426 56 7840

Latin America: Agilent Technologies Latin American Region Headquarters, U.S.A. (tel) (305) 267 4245 (fax) (305) 267 4286

Australia/New Zealand: Agilent Technologies Australia Pty Ltd. (tel) 1 800 629 485 (Australia) (fax) (61 3) 9272 0749 (tel) 0 800 738 378 (New Zealand) (fax) (64 4) 802 6881

Asia Pacific: Agilent Technologies, Hong Kong (tel) (852) 3197-7777 (fax) (852) 2506-9284

Data Subject to Change © Agilent Technologies 2000 Printed in the U.S.A. 04/2000 Publication No.: 5966-2389E

Agilent Technologies

Innovating the HP Way

Artisan Technology Group is an independent supplier of quality pre-owned equipment

Gold-standard solutions

Extend the life of your critical industrial, commercial, and military systems with our superior service and support.

We buy equipment

Planning to upgrade your current equipment? Have surplus equipment taking up shelf space? We'll give it a new home.

Learn more!

Visit us at **artisantg.com** for more info on price quotes, drivers, technical specifications, manuals, and documentation.

Artisan Scientific Corporation dba Artisan Technology Group is not an affiliate, representative, or authorized distributor for any manufacturer listed herein.

We're here to make your life easier. How can we help you today?

(217) 352-9330 | sales@artisantg.com | artisantg.com

