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Application note

STM32 microcontroller random number generation validation 
 using the NIST statistical test suite

Introduction

Many standards created requirements and references for the construction, the validation 
and the use of random number generators (RNGs), in order to verify that the output they 
produce is indeed random. 

This application note provides some guidelines to verify the randomness of the numbers 
generated by the RNG peripheral embedded in a selection of STM32 microcontrollers 
(MCUs) listed in the table below. This verification is based either on the statistical test suite 
(STS) SP 800-22rev1a (April 2010) or SP 800-90b (January 2018) of the NIST (National 
Institute of Standards and Technology).

This document is structured as follows:

• a general introduction to STM32 microcontroller random number generator 
(see Section 1)

• the NIST SP800-22b test suite (see Section 2)

• the steps needed to run NIST SP800-22b test and analysis (see Section 3)

• the NIST SP800-90b test suite (see Section 4)

• the steps needed to run NIST SP800-90b test and analysis (see Section 5)

          

          

Table 1. Applicable products

Type
Products

Checked with SP800-22rev1a Checked withSP800-90b

Micro
controllers

STM32F2 Series, STM32F4 Series, STM32F7 Series, 
STM32H742, STM32H743/753, STM32H745/755, 
STM32H747/757 lines, STM32H750 Value line 
STM32L0 Series, STM32L4 Series, STM32L4+ Series

STM32H7A3/7B3 line, 
STM32H7B0 Value line, STM32H723/733, 
STM32H725/735, STM32H730 Value line, 
STM32L5 Series

www.st.com

http://www.st.com
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1 STM32 MCU RNG 

1.1 Introduction

Random number generators (RNGs) used for cryptographic applications typically produce 
sequences made of random 0’s and 1’s bits. 

There are two basic classes of random number generators: 

• Deterministic RNG or pseudo RNG (PRNG)

A deterministic RNG consists of an algorithm that produces a sequence of bits from an 
initial value called a seed. To ensure forward unpredictability, care must be taken in 
obtaining seeds. The values produced by a PRNG are completely predictable if the 
seed and generation algorithm are known. Since in many cases the generation 
algorithm is publicly available, the seed must be kept secret and generated from a 
TRNG.

• Non-deterministic RNG or True RNG (TRNG)

A non-deterministic RNG produces randomness that depends on some unpredictable 
physical source (the entropy source) outside of any human control.

The RNG hardware peripheral implemented in some STM32 MCUs is a true random 
number generator.

1.2 STM32 MCU implementation description

The table below lists the STM32 Arm®(a) core-based MCUs that embed the RNG peripheral.

          

          

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

Table 2. STM32 lines embedding the RNG hardware peripheral 

Series STM32 lines

STM32F2 Series STM32F2x5, STM32F2x7

STM32F4 Series
STM32F405/415, STM32F407/417, STM32F410, STM32F427/437, 
STM32F429/439, STM32F469/479

STM32F7 Series STM32F7x5, STM32F7x6

STM32L0 Series STM32L05x, STM32L06x, STM32L072/073

STM32L4 Series STM32L4x6

STM32L4+ Series All lines

STM32H7 Series
STM32H723/733, STM32H725/735, STM32H730 Value line, STM32H742, 
STM32H743/753, STM32H745/755, STM32H747/757, STM32H750 Value line, 
STM32H7A3/7B3, STM32H7B0 Value line

STM32L5 Series STM32L5x2
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The true RNG implemented in the STM32 MCUs is based on an analog circuit. This circuit 
generates a continuous analog noise that is used in the RNG processing to produce a 32-bit 
random number.

The analog circuit is made of several ring oscillators whose outputs are XORed.

The RNG processing is clocked by a dedicated clock at a constant frequency and, for a 
subset of microcontrollers, the RNG dedicated clock can be reduced using the divider inside 
the RNG peripheral. 

For more details about the RNG peripherals, refer to the STM32 reference manuals.

The figure below shows a simplified view of a true RNG in STM32 microcontrollers.

Figure 1. STM32 true RNG block diagram

MSv40908V2

32-bit AHB bus

Analog seed

RNG processing

Health tests

RNG_CLK

RNG_CR
Control register

RNG_DR
Data register

RNG_SR
Status register

Clock divider(1)

(1) Depends on STM32 products
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2 NIST SP800-22b test suite

2.1 Introduction

The NIST SP800-22b statistical test suite is used to probe the quality of RNGs for 
cryptographic applications. A comprehensive description of the suite is presented in the 
NIST document entitled A Statistical Test Suite for the Validation of Random Number 
Generators and Pseudo Random Number Generators for Cryptographic Applications. 

2.2 NIST SP800-22b test suite description

The NIST SP800-22b statistical test suite “sts-2.1.1” is a software package developed by 
NSIT that can be downloaded from the NIST web site (search for download the NIST 
Statistical Test Suite at csrc.nist.gov).

The source code has been written in ANSI C. The NIST statistical test suite consists of 
15 tests that verify the randomness of a binary sequence. These tests focus on various 
types of non-randomness that can exist in a sequence.

These test can be classified as follows:

• Frequency tests

– Frequency (Monobit) test

To measure the distribution of 0’s and 1’s in a sequence and to check if the result 
is similar to the one expected for a truly random sequence.

– Frequency test within a block

To check whether the frequency of 1’s in a M-bit block is approximately M/2, as 
expected from the theory of randomness.

– Run tests

To assess if the expected total number of runs of 1’s and 0’s of various lengths is 
as expected for a random sequence.

– Test of the longest run of 1’s in a block

To examine the long runs of 1’s in a sequence.

• Test of linearity

– Binary matrix rank test

To assess the distribution of the rank for 32x32 binary matrices.

– Linear complexity test

To determine the linear complexity of a finite sequence.

• Test of correlation (by means of Fourier transform)

– Discrete Fourier transform (spectral) test

To assess the spectral frequency of a bit string via the spectral test based on the 
discrete Fourier transform. It is sensitive to the periodicity in the sequence.

• Test of finding some special strings

– Non-overlapping template matching test

To assess the frequency of m-bit non-periodic patterns.

– Overlapping template matching test

To assess the frequency of m-bit periodic templates
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• Entropy tests

– Maurer’s “Universal Statistical” test

To assess the compressibility of a binary sequence of L-bit blocks.

– Serial test

To assess the distribution of all 2m m-bit blocks.

Note: For m = 1, the serial test is equivalent to the frequency test of Section 2.2.

– Approximate entropy test

To assess the entropy of a bit string, comparing the frequency of all m-bit patterns 
against all (m+1)-bit patterns.

• Random walk tests

– Cumulative sums (Cusums) test

To assess that the sum of partial sequences is not too large or too small; it is 
indicative of too many 0’s or 1’s.

– Random excursion test

To assess the distribution of states within a cycle of random walk.

– Random excursion variant test

To detect deviations from the expected number of visits to different states of the 
random walk.

Each of the above tests is based on a calculated test statistic value, that is a function of the 
testing sequence.

The test statistic is used to calculate a Pvalue, which is the probability that a perfect random 
number generator generated a sequence less random than the sequence that was tested.

For more details about the NIST statistical test suite, refer to the following NIST document 
available on the NIST web site: A Statistical Test Suite for Random and Pseudorandom 
Number Generators for Cryptographic Applications” Special Publication 800-22 
Revision 1a.
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3 NIST SP800-22b test suite running and analyzing

3.1 Firmware description

To run the NIST statistical test suite as described in the previous section, two firmware are 
needed, one on the STM32 microcontroller side and one on the NIST SP800-22b test suite 
side.

3.1.1 STM32 MCU side

The firmware package is provided upon request. For more details, contact the local ST 
sales representative.

This program allows random numbers generation, using the STM32 RNG peripheral. It also 
retrieves these numbers on a workstation for testing with the NIST statistical test suite.

Each firmware program is used to generate 10 64-Kbyte blocks of random numbers. The 
output file contains 5,120,000 random bits to be tested with the NIST statistical test.

As recommended by the NIST statistical test suite, the output file format can be one of the 
followings:

• a sequence of ASCII 0's and 1's if the FILE_ASCII_FORMAT Private define is 
uncommented in the main.c file

• A binary file of random bytes if the FILE_BINARY_FORMAT Private define is 
uncommented in the main.c file.

Form more details about the program description and settings, refer to the readme file inside 
the firmware package.

Note: The USART configuration can be changed via the SendToWorkstation() function in the 
main.c file.

The output values can be changed by modifying the Private define in the main.c file as 
follows: 
#define NUMBER_OF_RANDOM_BITS_TO_GENERATE   512000 
#define BLOCK_NUMBER 10

3.1.2 On the NIST SP800-22b test suite side

Downloaded on a workstation, the NIST statistical test suite package sts-2.1.1 verifies the 
randomness of the output file of the STM32 RNG peripheral.

The generator file to be analyzed must be stored under the data folder (sts-2.1.1\data).

For more details about how the NIST statistical tests work, refer to section ‘How to get 
started in the NIST document A Statistical Test Suite for Random and Pseudorandom 
Number Generators for Cryptographic Applications.



NIST SP800-22b test suite running and analyzing AN4230

10/27 AN4230 Rev 6

3.2 NIST SP800-22b test suite steps

The figure below describes the steps needed to verify the randomness of an output number 
generated by STM32 MCUs using the NIST statistical test suite package sts-2.1.1.

Figure 2. Block diagram of deviation testing of a binary sequence from randomness
based on NIST test suite 

3.2.1 Step 1: random number generator

Connect the STM32 board to the workstation. Depending on the type of board, the 
connection is made as follows:

• via a null-modem female/female RS232 cable

• via a USB Type-A to Mini-B cable

The STM32 RNG is run via the UART firmware in order to generate a random number as 
described in Section 3.1.1: STM32 MCU side. Data are stored on the workstation using a 
terminal emulation application such as a PuTTY (free and open-source terminal emulator, 
serial console and network file transfer application). 

3.2.2 Step 2: NIST statistical test

The sts-2.1.1 package is compiled as described in the NIST statistical test suite 
documentation in order to create an executable program using visual C++ compiler.

After running the NIST statistical test suite program, a series of menu prompts are displayed 
in order to select the data to be analyzed and the statistical tests to be applied.

In this application note, the NIST statistical test suite is compiled under the name 
assess.exe and saved under the NIST_Test_Suite_OutputExample folder. As described 
previously, the random number is defined as 512,000 bits per block.
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The various steps are detailed as follows:

1. The first screen that appears is shown below.

Figure 3. Main sts-2.1.1 screen

When value 0 is entered, the program requires to enter the file name and path of the 
random number to be tested.

2. The second screen is shown below.

Figure 4. File input screen

This application note details an example with two files per series, generated with the 
STM32 RNG, with the following file formats as recommended by NIST:

– ascii.bin: sequence of ASCII 0's and 1's

– binary.bin: each byte in the data file contains 8 bits of data
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3. The NIST statistical test suite displays 15 tests that can be run via the screen shown 
below.

Figure 5. Statistical test screen

In this case, 1 has been selected to apply all of the statistical tests.

4. The parameter adjustments ca be done in the screen shown below.

Figure 6. Parameter adjustment screen

In this example, the default settings are kept and value 0 is selected to go to the next 
step.
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5. The user needs to provide the number of bitstreams.

Figure 7. Bitstreams input

The NIST statistical test suite requires to put the number of bitstreams: 10 is entered 
for this example, meaning 10 blocks of 512 Kbits are selected (5,12 Mbits).

6. The user must then specify whether the file consists of bits stored in ASCII format or 
hexadecimal strings stored in a binary format using the following screen.

Figure 8. Input file format

Value 0 is selected because the file is in ASCII format.
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7. After entering all necessary inputs, the NIST statistical test suite starts analyzing the 
input file.

Figure 9. Statistical testing in progress

8. When the testing process is complete, the screen below appears.

Figure 10. Statistical testing complete

The statistical test results can be found in sts-2.1.1\experiments\AlgorithmTesting.
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3.2.3 Step 3: test report

The NIST statistical tests provide an analytical routine to facilitate the interpretation of the 
results. A file named finalAnalysisReport is generated when the statistical testing is 
complete and saved under sts2.1.1\experiments\AlgorithmTesting.

The report contains a summary of experimental results of 15 tests (see Appendix A).

The NST statistical tests also provide a detailed report for each test, saved under 
sts-2.1.1\experiments\AlgorithmTesting\<Test suite name>.

The two following examples of complete NIST statistical test suite output reports are 
available under NIST_Test_Suite_OutputExample:

• example of an Ascii_File_Format, with two folders:

– Input_File: contains the random number generator saved with the ascii format.

– Final_Analysis_Report: contains the complete NIST statistical test suite output 
report based on this input file, the summary of experimental results and the report 
of each test.

• example of a Binary_File_Format, with two folders:

– Input_File: contains the random number generator saved with the binary format.

– Final_Analysis_Report: contains the complete NIST statistical test suite output 
report based on this input file, the summary of experimental results and the report 
of each test.
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4 NIST SP800-90b test suite

4.1 Introduction 

The cryptographic random bit generators (RBGs), also known as random number 
generators (RNGs), require a noise source that produces outputs with some level of 
unpredictability, expressed as min-entropy.

The specificity of the NIST SP800-90b statistical test suite is to probe the quality of random 
generators for cryptographic applications by its standardized means of estimating the quality 
of a source of entropy. 

A comprehensive description of the suite is presented in the NIST document entitled 
Recommendation for the Entropy Sources Used for Random Bit Generation.

4.2 NIST SP800-90b test suite description

The NIST SP800-90b statistical test suite can be downloaded from the GitHub web site 
(https://github.com/usnistgov/SP800-90B_EntropyAssessment).

The SP800-90B_EntropyAssessment C++ package implements the min-entropy 
assessment methods included in Special Publication 800-90B.

The project is composed of two separate sections:

• IID tests, confirming that a dataset is IID (independent and identically distributed)

• non-IID tests, providing an estimate for min-entropy for any data provided

The STM32 certifiable TRNG noise source is tested using non-IID tests.

4.2.1 Non-IID track: entropy estimation for non-IID data

Not all the noise sources are able to produce IID outputs. Sequences with dependent values 
result in overestimates of entropy. But the diverse number of estimates reduces the 
probability of the overestimation of the source's entropy. 

For non-IID data, various estimators (detailed below) must be calculated on the outputs of 
the noise source and outputs of any conditioning component, except for:

• three keyed algorithms that have been vetted for a keyed conditioning component: 
HMAC, CMAC and CBC-MAC

• three unkeyed functions that have been vetted for an unkeyed conditioning component: 
all the approved hash functions specified in FIPS 180 or FIPS 202, Hash_df and 
Block_Cipher_df 

Note: STM32 certifiable RNGs use the approved CMAC conditioning component (NIST CAVP 
number C1327).

The minimum of all the estimates is taken as the entropy assessment of the entropy source 
for this recommendation. 
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The estimators are the following:

• Most common value estimate: A confidence interval is constructed for the proportion 
p of the most common value in the input dataset and the min-entropy per sample is 
estimated from the upper bound of this confidence interval. 

• Collision estimate: measures the mean number of samples to the first repeated value 
in a dataset. Based on the collision times, this method estimates the probability of the 
most-likely output value. 

• Markov estimate: The Markov model can be used as a template for testing sources 
with dependencies, as the sample value always depends on the value of the previous 
ones. After measuring the dependencies between consecutive values from the input 
dataset, this model provides a min-entropy estimate that is based on the entropy 
present in any subsequence of outputs, instead of an estimate of the min-entropy per 
output.

• Compression estimate: Based on the amount of compression of the dataset, the 
entropy rate is computed by the compression estimate. The estimate is computed by 
generating a dictionary of values, and then computing the average number of samples 
required to produce an output, based on the dictionary. An entropy rate is still obtained 
even if the compression rate has been effected when using this statistic for testing 
sequences with dependencies.

• T-tuple estimate: The frequency of the t-tuples (such as pairs or triples) that appear in 
the input dataset is examined and an estimate of the entropy per sample is produced 
based on this frequency.

• Longest repeated substring (LRS) estimate: Based on the number of repeated 
substrings (tuples) within the input dataset, this method estimates the collision entropy 
of the source. This is a complementary estimate, as it handles tuple sizes that are too 
large for the t-tuple estimate

• Multi-most common in window (multiMCW) prediction estimate: Based on the last 
n outputs, every subpredictor of the multi-most common in window predictor aims to 
guess the next output. The multiMCW predictor records the number of times that each 
subpredictor predicted correctly the value that occurs most often in the window of the n 
previous outputs. And to predict the next value we use the subpredictor with the most 
correct predictions.

• Lag prediction estimate: Based on a specified lag, every subpredictor of the lag 
predictor predicts the next output. A scoreboard is kept by the lag predictor to record 
the number of times that each subpredictor was correct and the one with the most 
correct predictions are used for the prediction of the next value. 

• Multi-Markov model with counting (MultiMMC) prediction estimate: composed of 
multiple MMC subpredictors. The frequencies for transitions from one output to a 
subsequent output are recorded by each MMC predictor and a prediction is made 
based on the most frequently observed transition from the current output. Each 1 to n 
depth of the n MMC subpredictors run in parallel and the one with the most correct 
number of predictions is used to predict the next value.

• LZ78Y prediction estimate: the strings that have been added to the dictionary so far 
are kept in the predictor dictionary. This dictionary keeps adding new strings until it 
reaches its maximum capacity. Every substring in the most recent n samples updates 
or gets added to the dictionary each time a sample is processed. 
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5 NIST SP800-90b test suite running and analyzing

5.1 Firmware description

To run the NIST statistical test suite as described in the previous section, two firmwares are 
needed, one on the STM32 microcontroller side and one on the NIST SP800-90b test suite 
side.

5.1.1 STM32 MCU side

The firmware package is provided upon request. For more details, contact the local ST 
sales representative.

This program allows random numbers generation, using the STM32 RNG peripheral. This 
program also pushes these numbers to a workstation in order to test them with the NIST 
statistical test suite.

Each firmware program is used to generate two 64-Kbyte blocks of random numbers. The 
output file contains 1,024,000 random bits to be tested with the NIST statistical test.

Note: The USART configuration can be changed via the SendToWorkstation() function in the 
main.c file.

The output values can be changed by modifying the Private define in the main.c file as 
follows: 
#define NUMBER_OF_RANDOM_BITS_TO_GENERATE   512000 
#define BLOCK_NUMBER 2

5.1.2 NIST SP800-90b test suite side

Downloaded on a workstation, the NIST statistical test suite package verifies the 
randomness of the output file of the STM32 RNG peripheral.

The generator file to be analyzed must be stored under the bin folder (...\bin\data).

For more details about how the NIST statistical tests work, refer to the readme file available 
on the GitHub web site (https://github.com/usnistgov/SP800-90B_EntropyAssessment).

5.2 NIST SP800-90B test suite steps

5.2.1 Step 1: random number generator

Connect the STM32 board to the workstation, via a USB Type-A to Micro-B cable

The STM32 RNG is run via the UART firmware in order to generate a random number as 
described in Section 5.1.1: STM32 MCU side. Data are stored on the workstation using a 
terminal emulation application such as an PuTTY (free and open-source terminal emulator, 
serial console and network file transfer application). 
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5.2.2 Step 2: NIST statistical tests

The Makefile is used to compile the program as described in the readme file mentioned in 
Section 5.1.2).

For non-IID tests, the user must follow the steps detailed below:

1. Use the Makefile to compile the program: make non_iid

2. Run the program with

./ea_non_iid [-i|-c] [-a|-t] [-v] [-l <index>,<samples> ] <file_name> 
[bits_per_symbol]

where

– -i indicates that data is unconditioned and returns an initial entropy estimate 
(default).

– -c indicates that data is conditioned.

– -a estimates the entropy for all data in the binary file (default).

– -t truncates the created bitstring representation of data to the first 1 Mbits.

– -l reads (at most) data samples after indexing into the file by * bytes.

– -v : verbosity flag for more output (optional, can be used multiple times)

– bits_per_symbol: number of bits per symbol. Each symbol is expected to fit 
within a single byte.

Example: ./ea_non_iid ../bin/l5.bin 1 -i -t -v

5.2.3 Step 3: test report

The NIST statistical tests provide an analytical routine to facilitate the interpretation of the 
results:

• For the non IID tests, the result for each IID test is provided and, at the end, the final 
min entropy. 
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6 Conclusion

This application note describes the main guidelines and steps to verify the randomness of 
numbers generated by the STM32 microcontrollers RNG peripheral, using either NIST 
statistical test suite SP800-22rev1a, April 2010 or SP800-90B, January 2018. 
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Appendix A NIST SP800-22b statistical test suite

The results are represented as a table with p rows and q columns, where: 

• p, the number of rows, corresponds to the number of statistical tests applied 

• q, the number of columns (q = 13) is distributed as follows: 

– columns 1-10 correspond to the frequency of 10 Pvalues 

– column 11 is the Pvalue that arises via the application of a chi-square test11 

– column 12 is the proportion of binary sequences that passed 

– column 13 is the corresponding statistical test 

The example below shows the first and last part of the test results. For more details, refer to 
the finalAnalysisReport file under sts-2.1.1\experiments\AlgorithmTesting.

Part 1

------------------------------------------------------------------------------

RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING 
SEQUENCES

------------------------------------------------------------------------------

   generator is <data/ascii.bin>

------------------------------------------------------------------------------

 C1  C2  C3  C4  C5  C6  C7  C8  C9 C10  P-VALUE  PROPORTION  STATISTICAL TEST

------------------------------------------------------------------------------

  0   1   2   1   2   1   1   1   0   1  0.911413     10/10      Frequency

  1   1   0   1   3   0   2   1   1   0  0.534146     10/10      BlockFrequency

  0   1   3   3   0   1   0   2   0   0  0.122325     10/10      CumulativeSums

  1   1   3   1   0   1   1   1   0   1  0.739918     10/10      CumulativeSums

  2   0   2   2   1   1   0   1   0   1  0.739918     10/10      Runs

  1   0   1   1   0   3   1   1   0   2  0.534146      9/10      LongestRun

  1   2   1   0   2   1   1   0   0   2  0.739918     10/10      Rank

  3   0   1   2   1   1   0   1   0   1  0.534146      9/10      FFT

  1   1   1   0   0   2   1   2   0   2  0.739918     10/10      NonOverlappingTemplate

  1   1   0   0   1   1   1   3   0   2  0.534146     10/10      NonOverlappingTemplate

  0   2   1   0   4   0   2   0   0   1  0.066882     10/10      NonOverlappingTemplate

  0   0   0   1   1   3   0   2   1   2  0.350485     10/10      NonOverlappingTemplate

  0   1   2   2   1   1   1   2   0   0  0.739918     10/10      NonOverlappingTemplate

  2   2   1   0   2   0   1   1   1   0  0.739918     10/10      NonOverlappingTemplate

  1   0   2   2   1   1   1   0   1   1  0.911413     10/10      NonOverlappingTemplate

  0   0   1   1   0   0   2   3   1   2  0.350485     10/10      NonOverlappingTemplate
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Part 2

  2   0   1   0   1   2   1   0   2   1  0.739918     10/10      OverlappingTemplate

  1   0   2   1   0   2   2   1   1   0  0.739918     10/10      Universal

  1   1   0   0   2   0   2   3   1   0  0.350485     10/10      ApproximateEntropy

  0   1   1   1   1   0   0   0   1   0     ----       5/5       RandomExcursions

  1   1   0   0   2   0   0   0   0   1     ----       5/5       RandomExcursions

  0   1   1   1   0   0   0   0   1   1     ----       5/5       RandomExcursions

  0   0   0   0   0   1   1   0   2   1     ----       5/5       RandomExcursions

  1   0   0   0   3   0   0   0   1   0     ----       5/5       RandomExcursions

  0   0   0   1   1   0   0   1   1   1     ----       5/5       RandomExcursions

  1   0   1   1   0   2   0   0   0   0     ----       5/5       RandomExcursions

  1   0   0   0   1   1   1   0   1   0     ----       5/5       RandomExcursions

  2   1   0   1   1   0   0   0   0   0     ----       5/5       RandomExcursionsVariant

  2   1   0   0   1   1   0   0   0   0     ----       5/5       RandomExcursionsVariant

  1   1   0   2   1   0   0   0   0   0     ----       5/5       RandomExcursionsVariant

  1   2   0   1   1   0   0   0   0   0     ----       5/5       RandomExcursionsVariant

  1   1   1   1   0   0   0   1   0   0     ----       5/5       RandomExcursionsVariant

  1   1   0   1   1   0   0   0   0   1     ----       5/5       RandomExcursionsVariant

  0   1   0   2   1   0   0   0   0   1     ----       5/5       RandomExcursionsVariant

  0   0   0   1   0   1   0   3   0   0     ----       5/5       RandomExcursionsVariant

  0   0   0   0   0   0   2   1   1   1     ----       5/5       RandomExcursionsVariant

  0   0   1   0   0   0   1   1   1   1     ----       5/5       RandomExcursionsVariant

  0   0   0   1   0   0   2   0   2   0     ----       5/5       RandomExcursionsVariant

  0   1   0   0   1   1   1   1   0   0     ----       5/5       RandomExcursionsVariant

  1   0   0   2   0   1   1   0   0   0     ----       5/5       RandomExcursionsVariant

  1   0   0   0   2   1   0   0   0   1     ----       5/5       RandomExcursionsVariant

  0   0   0   1   1   0   1   1   1   0     ----       5/5       RandomExcursionsVariant

  0   0   0   0   2   0   2   0   0   1     ----       5/5       RandomExcursionsVariant

  0   0   1   0   1   2   1   0   0   0     ----       5/5       RandomExcursionsVariant

  0   0   1   0   0   2   2   0   0   0     ----       5/5       RandomExcursionsVariant

  1   1   0   0   0   2   3   0   2   1  0.350485     10/10      Serial

  0   2   1   0   3   1   0   1   1   1  0.534146     10/10      Serial

  2   1   1   1   0   1   1   3   0   0  0.534146     10/10      LinearComplexity

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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The minimum pass rate for each statistical test, with the exception of the random excursion 
(variant) test, is approximately 8 for a sample size of 10 binary sequences.

The minimum pass rate for the random excursion (variant) test is approximately 4 for a 
sample size of 5 binary sequences.

For further guidelines, construct a probability table using the MAPLE program provided in 
the addendum section of the documentation.
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Appendix B NIST SP800-90b statistical test suite

This is an example of the execution of the non-IID tests.

$ ./ea_non_iid ../bin/l5.bin 1 -i -t -v 

Opening file: '../bin/l5.bin'

Number of Binary Symbols: 1024000

Symbol alphabet consists of 2 unique symbols

Running non-IID tests...

Running Most Common Value Estimate...

MCV Estimate: mode = 530185, p-hat = 0.51775878906249995, p_u = 0.51903071907139675

Most Common Value Estimate (bit string) = 0.946108 / 1 bit(s)

Running Entropic Statistic Estimates (bit strings only)...

Collision Estimate: X-bar = 2.4954732991667945, sigma-hat = 0.49998011778222412, p = 
0.55717151750062044

Collision Test Estimate (bit string) = 0.843807 / 1 bit(s)

Markov Estimate: P_0 = 0.4822412109375, P_1 = 0.51775878906249995, P_0,0 = 
0.48618305677846313, P_0,1 = 0.51381694322153693, P_1,0 = 0.47857068759018079, P_1,1 = 
0.52142931240981927, p_max = 6.2798397734367098e-37

Markov Test Estimate (bit string) = 0.939536 / 1 bit(s)

Compression Estimate: X-bar = 5.2113069751685934, sigma-hat = 1.0187463366852749, p = 
0.035431813237513987

Compression Test Estimate (bit string) = 0.803135 / 1 bit(s)

Running Tuple Estimates...

t-Tuple Estimate: t = 16, p-hat_max = 0.53187518804173173, p_u = 0.53314533218239224

LRS Estimate: u = 17, v = 38, P_{max,W} = 0.50423097749594759, p_u = 0.50550366496585808

T-Tuple Test Estimate (bit string) = 0.907399 / 1 bit(s)

LRS Test Estimate (bit string) = 0.984207 / 1 bit(s)

Running Predictor Estimates...

MultiMCW Prediction Estimate: N = 1023937, Pglobal' = 0.51634782805743162 (C = 527405) Plocal 
= 0.42674646958653317 (r = 21)

Multi Most Common in Window (MultiMCW) Prediction Test Estimate (bit string) = 0.953585 / 1 
bit(s)

Lag Prediction Estimate: N = 1023999, Pglobal' = 0.50526439621655594 (C = 516087) Plocal = 
0.40830971576974662 (r = 20)

Lag Prediction Test Estimate (bit string) = 0.984890 / 1 bit(s)

MultiMMC Prediction Estimate: N = 1023998, Pglobal' = 0.51899462537798435 (C = 530147) Plocal = 
0.42674521449187308 (r = 21)

Multi Markov Model with Counting (MultiMMC) Prediction Test Estimate (bit string) = 0.946208 / 1 
bit(s)
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LZ78Y Prediction Estimate: N = 1023983, Pglobal' = 0.51899440603936897 (C = 530139) Plocal = 
0.42674552311446512 (r = 21)

LZ78Y Prediction Test Estimate (bit string) = 0.946209 / 1 bit(s)

H_original: 1.000000

H_bitstring: 0.803135

min(H_original, 1 X H_bitstring): 0.803135
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