‘ , life.augmented

UM1618
User manual

Standard Software Driver for C55 Flash module embedded on
SPC57 K, L and S line microcontroller

Introduction

This document is the user manual for the Standard Software Driver (SSD) for single C55
Flash module integrated in SPC574Kxx, SPC572Lxx, SPC570Sxx and SPC574Sxx
devices.

The SSD is a set of APIs that enables user application to operate on the Flash module
embedded on a microcontroller. The C55 SSD contains a set of functions to program/erase
a single C55 Flash module.

The C55 Standard Software Driver (SSD) Flash provides the following APls:

July 2020

Flashinit

FlashErase
FlashEraseAlternate
BlankCheck

FlashProgram
ProgramVerify

CheckSum
FlashCheckStatus
FlashSuspend
FlashResume

GetLock

SetlLock
OverPgmProtGetStatus
FlashArraylntegrityCheck
FlashArrayIntegritySuspend
FlashArraylntegrityResume
UserMarginReadCheck

UM1618 Rev 5

1/51

www.st.com

http://www.st.com

Contents UM1618

Contents
1 Introduction e 6
1.1 Document overview 6
1.2 Features 6
2 APl specification i e 7
2.1 General Overview 7
2.2 General type definitions 7
2.3 SSD configuration parameter 7
24 Contextdata structure 8
25 Otherdatastructures 9
2.6 Return codes 11
2.7 Normal mode functions 12
271 Flashinit 12
2.7.2 FlashErase 13
273 FlashEraseAlternate 17
274 BlankCheck 18
27.5 FlashProgram 20
2.7.6 ProgramVerify 22
2.7.7 CheckSum 24
27.8 FlashCheckStatus 26
27.9 FlashSuspend 28
2710 FlashResume e 30
2711 Getlock 32
2712 Setlock ... 34
2713 OverPgmProtGetStatus 36
2.8 User Test Mode Functions 37
2.8.1 FlashArrayintegrityCheck 37
2.8.2 FlashArraylntegritySuspend 40
283 FlashArraylIntegrityResume 41
284 UserMarginReadCheck 42
Appendix A Code sizesandstackusage.................ciiiiinnnnnnn. 45

2/51 UM1618 Rev 5 ‘YI

UM1618 Contents
Appendix B Writelerasetimes. ittt 46
Appendix C Systemrequirements ittt 47
AppendiX D ACrONYMSttt sttt e aannanna e nnnnnns 48
Appendix E Documentreferencesttt 49
Revision history i i i it it tann e ennnnnnnn 50
KW UM1618 Rev 5 3/51

List of tables UM1618

List of tables

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.

4/51

Type definitions. e 7
SSD configuration structure field definition. 8
Context data structure field definitions 9
Block information structure field definitions L. 9
Large block select structure field definitions 10
MISR structure field definitions. 10
Return Codes e 11
Arguments for Flashlnit. 12
Return values for Flashlnit 12
Arguments for FlashErase e 13
Return values for FlashErase e e 14
Troubleshooting for FlashErase e 15
Bit allocation for blocks in low addressspace 16
Bit allocation for blocks in middle addressspace 16
Bit allocation for blocks in high addressspace. 16
Bit Allocation for Blocks in the first Large Address Space 16
Bit allocation for blocks in the second large addressspace 16
Arguments for FlashEraseAlternate i 17
Return values for FlashEraseAlternate. i 17
Troubleshooting for FlashEraseAlternate 17
Arguments for BlankCheck. e 19
Return values for BlankCheck 19
Troubleshooting for BlankCheck. e 19
Arguments for FlashProgram e 20
Return values for FlashProgram. e 21
Troubleshooting for FlashProgram 21
Arguments for ProgramVerify e 23
Return values for ProgramVerify e 23
Troubleshooting for ProgramVerify. e 24
Arguments for CheckSum. e 25
Return values for CheckSum 25
Troubleshooting for CheckSum 25
Arguments for FlashCheckStatus. 27
Return values for FlashCheckStatus 28
Troubleshooting for FlashCheckStatus. 28
Arguments for FlashSuspend e 29
Return values for FlashSuspend e 29
Suspend State Definitions 29
Suspending State vs. C55 Status. 30
Arguments for FlashResume e 31
Return values for FlashResume 31
Resume state definitions 31
Arguments for GetLOCK. 32
Return values for GetLock 32
Troubleshooting for GetLock e 32
Lock indicator definitions 33
blkLockState in low address space. 33
blkLockState in middle address spacet 34

UM1618 Rev 5 ‘YI

UM1618 List of tables
Table 49. blkLockState in high address space. e 34
Table 50. blkLockState in the first large block (128K/256K) address space. 34
Table 51. blkLockState in the second large block space (128K/256K) address space 34
Table 52. blkLockState in UTestblock Space 34
Table 53. Arguments for SetLock 35
Table 54. Returnvalues for SetLock 35
Table 55. Troubleshooting for SetLock. 35
Table 56. Arguments for OverPgmProtGetStatus 36
Table 57. Return values for OverPgmProtGetStatus 36
Table 58. Troubleshooting for OverPgmProtGetStatus 36
Table 59. Arguments for FlashArrayIntegrityCheck 38
Table 60. Return values for FlashArrayIntegrityCheck. i 39
Table 61. Troubleshooting for FlashArrayintegrityCheck 39
Table 62. Arguments for FlashArraylntegritySuspend i i 40
Table 63. Return values for FlashArraylntegritySuspend it 40
Table 64. Troubleshooting for FlashArrayintegritySuspend 40
Table 65. Suspend State Definitions e 41
Table 66. Arguments for FlashArraylntegrityResume. i 41
Table 67. Return values for FlashArraylntegrityResume 42
Table 68. Troubleshooting for FlashArrayintegrityResume 42
Table 69. Resume state definitions 42
Table 70. Arguments for UserMarginReadCheck. i 43
Table 71. Return values for UserMarginReadCheck 44
Table 72. Troubleshooting for UserMarginReadCheck 44
Table 73. Code size and stack usage for SPCS574KXX.o e 45
Table 74. Write/erase times for SPCS7EMBOXXot 46
Table 75. Write/erase times for SPCS74KXXot e 46
Table 76. Systemrequirements 47
Table 77. ACIONYMS . . o e e 48
Table 78. Document revision history 50

Kys UM1618 Rev 5 5/51

Introduction UM1618

1.1

1.2

6/51

Introduction

Document overview

The roadmap for the document is as follows:

Section 1.2 shows the features of the driver. Appendix C: System requirements details the
system requirement for the driver development.Appendix E: Document references and lists
the documents referred and terms used in making of this document. Appendix D: Acronyms
lists the acronyms used.

Chapter 2 describes the API specifications. In this section there are many sub sections,
which describe the different aspects of the driver. Section 2.1 provides a general overview of
the driver. Section 2.2 mentions about the type definitions used for the driver. Section 2.3
mentions the driver configuration parameters. Section 2.4 and Section 2.5 describe the data
context structure and some other data structures used in this driver. Section 2.6 provides
return code information. Section 2.7 and Section 2.8 provide the detailed description of
normal mode and user’s test mode standard software Flash Driver APIs’ respectively.

Features

The C55 SSD provides the following features:
e Driver binary built with Variable-Length-Encoding (VLE) instruction set.

e Driver released in binary c-array format to provide compiler-independent support for
non-debug-mode embedded applications.

e Driver released in s-record format to provide compiler-independent support for debug-
mode/JTAG programming tools.

e Each driver function is independent of each other so the end user can choose the
function subset to meet their particular needs.

e Support from word-wise to quad-page-wise programming according to specific
hardware feature for fast programming.

e Position-independent and ROM-able
¢ Ready-to-use demos illustrating the usage of the driver
e Concurrency support via asynchronous design.

3

UM1618 Rev 5

UM1618

API specification

2

2.1

2.2

2.3

3

API specification

General overview

The C55 SSD has APIs to handle the erase, program, erase verify and program verify
operations on the Flash. Apart from these, it also provides the feature for locking specific
blocks and calculating check sum. This SSD also provides four User Test APIs for checking
the Array Integrity and do user margin read check as well as do suspend/resume those
operations. All functions work as asynchronous model for concurrency event support by
invoking ‘FlashCheckStatus’ function to track the on-going status of targeted operation.

General type definitions

Table 1. Type definitions

Derived type Size C language type description
BOOL 8-bits unsigned char
INT8 8-bits signed char
VINT8 8-bits volatile signed char
UINT8 8-bits unsigned char
VUINT8 8-bits volatile unsigned char
INT16 16-bits signed short
VINT16 16-bits volatile signed short
UINT16 16-bits unsigned short
VUINT16 16-bits volatile unsigned short
INT32 32-bits signed long
VINT32 32-bits volatile signed long
UINT32 32-bits unsigned long
VUINT32 32-bits volatile unsigned long

SSD configuration parameter

The configuration parameter which is used for SSD operations is explained in this section.
The configuration parameters are handled as structure. User should correctly initialize the
fields including c55RegBase, mainArrayBase, uTestArrayBase,, maininterfaceFlag,
programmableSize and BDMEnable before passing the structure to SSD functions. The rest
of parameters such as lowBlockInfo, midBlockinfo, highBlockinfo and nLargeBlockNum, are
initialized by ‘FlashlInit’ automatically and can be used for other purposes of user’s
application.

UM1618 Rev 5 7/51

API specification

UM1618

24

8/51

Table 2. SSD configuration structure field definition

Parameter name Type Parameter description
c55RegBase UINT32 The base address of C55 control registers.
mainArrayBase UINT32 The base address of Flash main array.
Block info of the low address space. It includes
lowBlockInfo BLOCK_INFO information of this block space based on different block
sizes.
Block info of the mid address space. It includes
midBlockInfo BLOCK_INFO information of this block space based on different block
sizes.
Block info of the high address space. It includes
highBlockInfo BLOCK_INFO information of this block space based on different block
sizes.
nLargeBlockNum UINT32 Number of blocks of the large address space (128K or
256K).
uTestArrayBase UINT32 The base address of the UTest block.
maininterfaceFlag BOOL The flag to select main interface or not.
programmableSize UINT32 The maximum prqgrgmmable size of the C55 Flash
according to specific interface.
BDMEnable BOOL The debug que gelgctlon. User can enable/disable
debug mode via this input argument.

The type definition for the structure is given below.
typedef struct _c55 ssd config
{

UINT32 c55RegBase;

UINT32 mainArrayBase;

BLOCK INFO lowBlockInfo;
BLOCK_INFO midBlockInfo;
BLOCK_INFO highBlockInfo;
UINT32 nLargeBlockNum;

UINT32 uTestArrayBase;

BOOL mainInterfaceFlag;

UINT32 programmableSize;

BOOL BDMEnable;

} SSD_CONFIG, *PSSD_CONFIG;

Context data structure

The Context Data structure is used for storing the context variable values while an
operation is in-progress. The operations that support asynchronous model may
require caching the context data including ‘FlashProgram’, ‘ProgramVerify’,
‘BlankCheck’, ‘CheckSum’, ‘FlashArrayintegrityCheck’, and

‘UserMarginReadCheck’. User needs to declare and initialize a context data

UM1618 Rev 5

S72

UM1618

API specification

2.5

3

structure before passing it to the above SSD functions. Refer to ‘FlashCheckStatus’
to have a quick view of how to initialize the context data. The context data structure
contents can be reviewed at any time during the operation progress (these
information may be useful in some cases), but they must not be changed for any
reason in order to make the operation completes correctly.

Table 3. Context data structure field definitions

Name Description
dest The context destination address of an operation
size The context size of an operation
source The context source of an operation
pFailedAddress The context failed address of an operation
pFailedData The context failed data of an operation
pFailedSource The context failed source of an operation
pSum The context sum of an operation
pMisr The context MISR values of an operation
pRegCompletionFn Function pointer to the Flash function being checked for status

The type definition for the structure is given below.
typedef struct _c55 context data
{

UINT32 dest;

UINT32 size;

UINT32 source;

UINT32 *pFailedAddress;

UINT32 *pFailedData;

UINT32 *pFailedSource;

UINT32 *pSum;

MISR *pMisr;

void* pRegCompletionFn;

} CONTEXT DATA, *PCONTEXT DATA;

Other data structures

Some other data structures used for SSD operation is explained in this section. They are the
structures used for variable declaration in SSD configuration and context data structures or
input argument declaration in some APIs.

Table 4. Block information structure field definitions

Name Type Definition

n16KBlockNum UINT32 Number of 16K block.

UM1618 Rev 5 9/51

API specification

UM1618

10/51

Table 4. Block information structure field definitions (continued)

Name Type Definition
n32KBlockNum UINT32 Number of 32K block.
n64KBlockNum UINT32 Number of 64K block.

The type definition for the structure is given below:
typedef struct _c55 block info

{

UINT32 nl6KBlockNum;
UINT32 n32KBlockNum;
UINT32 n64KBlockNum;
} BLOCK_INFO, *PBLOCK INFO;

Table 5. Large block select structure field definitions

Name

Type

Definition

firstLargeBlockSelect

UINT32

Bit map for the first 32 bit block select (from bit O to bit
31) in Large block (128K or 256K block) space such that
bit 0 is corresponding to the least significant bit and bit

31 is corresponding to the most significant bit.

secondLargeBlockSelect

UINT32

Bit map for the second 32 bit block select (from bit 32 to
upper bits) in Large block (128K or 256K block) space
such that bit 32 is corresponding to the least significant
bit and bit 63 is corresponding to the most significant bit.

The type definition for the structure is given below:
typedef struct _c55 nLarge_ block_sel

{

UINT32 firstLargeBlockSelect;

UINT32 secondLargeBlockSelect;
} NLARGE BLOCK SEL, *PNLARGE BLOCK SEL;

Table 6. MISR structure field definitions

Name Type Definition
Wn Each Wn is corresponding to each MISR value provided by
01 .9 UINT32 user. User must provide totally ten MISR values via this
n=ou"1.. structure to do user’s test mode functions.

The type definition for the structure is given below:

typedef struct c¢55 misr

{

UINT32 wO0;
UINT32 wl;
UINT32 w2;
UINT32 w3;

UM1618 Rev 5

3

UM1618

API specification

2.6

3

UINT32
UINT32
UINT32
UINT32
UINT32
UINT32

w4 ;
w5 ;
wb6 ;
w7;
w8 ;

w9 ;

} MISR, *PMISR;

Return codes

The return code is returned to the caller function to notify the success or errors of the API
execution. These are the possible values of return code:

Table 7. Return codes

Name Value Description
C55_0OK 0x00000000 | The requested operation is successful.
C55_ERROR_ALIGNMENT 0x00000001 | Alignment error.
New program/erase cannot be performed
while a high voltage operation is already in
C55_ERROR_BUSY 0x00000004 | progress.
New array integrity cannot be performed
while an array integrity is going on.
C55_ERROR_PGOOD 0x00000008 | The program operation is unsuccessful.
C55_ERROR_EGOOD 0x00000010 | The erase operation is unsuccessful.
C55_ERROR_NOT BLANK 0x00000020 There is a non-blank Flash memory chatlon
within the checked Flash memory region.
There is a mismatch between the source data
C55_ERROR_VERIFY 0x00000040 |and the content in the checked Flash
memory.
C55_ERROR_BLOCK_INDICATOR |0x00000080 |Invalid block space indicator.
C55_ERROR_ALTERNATE 0x00000100 | 11'© Operation does not support alternate
interface for the specified address space.
C55 ERROR_FACTORY_OP 0x00000200 | Factory erase/program is locked.
In ‘FlashArraylntegrityCheck’ or
C55_ERROR_MISMATCH 0x00000400 UserMarginReadCheck’, the MISR values
generated by the hardware do not match the
values passed by the user.
In ‘FlashArraylntegrityCheck’ or
C55 ERROR_NO_BLOCK 0x00000800 |‘UserMarginReadCheck’, no block has been
enabled for array integrity check.
C55 _ERROR_ADDR_SEQ 0x00001000 |Invalid address sequence error.
C55_ERROR_MARGIN_LEVEL 0x00002000 | Invalid margin level error.

UM1618 Rev 5

11/51

API specification UM1618

2.7

2.71

12/51

Table 7. Return codes (continued)

Name Value Description

The operation has been done and there is no
C55 _DONE 0x00010000 | more this operation requested on
FlashCheckStatus function.

The operation is in progress and user need
C55 INPROGRESS 0x00020000 | call FlashCheckStatus more times finish this

operation.

Normal mode functions

Flashinit

Description

This function initializes an individual Flash module. It accesses to Flash configuration
register and read out the number of block for each memory space of single Flash module.

For each time of using this driver, user must provide the chip-dependent
parameters such as c55RegBase, mainArrayBase, uTestArrayBase,
maininterfaceFlag, programmableSize and DBMEnable and the rest of parameters
are initialized via this function. Those are block information including number of
block based on block size for each address space.

Prototype
UINT32 FlashInit (PSSD_CONFIG pSSDConfig) ;
Arguments
Table 8. Arguments for Flashinit
Argument Description Range
SSDConfi Pointer to the SSD The values in this structure are chip-dependent.
P 9 Configuration Structure. Please refer to Section 2.3 for more details.

Return values

Table 9. Return values for FlashlInit

Type Description Possible values

UINT32 Indicates successful completion of operation. C55 OK

Troubleshooting

None.

Comments

In case of maininterfaceFlag is main interface, ‘Flashinit’ checks the C55_MCR_RWE,
C55 MCR_EER and C55_MCR_SBC bits, and then clear them if any of them is set.

UM1618 Rev 5 ‘YI

UM1618

API specification

2.7.2

3

This function also clears PGM/ERS bit in MCR/MCRA register if any of them is set.

Assumptions

None.

FlashErase

Description

This function is to do erase operation for multi-blocks on single Flash module according to
user’s input arguments via main interface. The targeted Flash module status is checked in
advance to return relevant error code if any. This function only sets the high voltage without
waiting for the operation to be finished. Instead, user must call ‘FlashCheckStatus’ function
to confirm the successful completion of this operation.

Prototype

UINT32 FlashErase (PSSD CONFIG pSSDConfig,
UINT8 eraseOption,

UINT32 lowBlockSelect,

UINT32 midBlockSelect,

UINT32 highBlockSelect,

NLARGEK BLOCK SEL nLargeBlockSelect) ;

Arguments
Table 10. Arguments for FlashErase
Argument Description Range
SSDConfi Pointer to the SSD The values in this structure are chip-dependent.
P 9 Configuration Structure. Please refer to Section 2.3 for more details.
The valid value can be:
The option is to select C55_ERASE_MAIN (0x0)
eraseOption user’s expected erase C55 _ERASE_MAIN_FERS (0x1)
operation. C55_ERASE_UTEST (0x2)
C55_ERASE_UTEST_FERS (0x3)
Bit-mapped value such that the least significant
bit is at bit 0 of 16K block region (if available),
To select the array blocks then 32K bloc!< region (|}c available) and lastly
. 64K block region (if available). Select the block
lowBlockSelect in low address space for . .
erasin in the low address space to be erased by setting
9 1 to the appropriate bit of lowBlockSelect. If
there is not any block to be erased in the low
address space, lowBlockSelect must be set to 0.

UM1618 Rev 5 13/51

API specification

UM1618

14/51

Table 10. Arguments for FlashErase (continued)

Argument

Description

Range

midBlockSelect

To select the array blocks
in mid address space for
erasing.

Bit-mapped value such that the least significant
bit is at bit 0 of 16K block region (if available),
then 32K block region (if available) and lastly
64K block region (if available). Select the block
in the middle address space to be erased by
setting 1 to the appropriate bit of
midBlockSelect. If there is not any block to be
erased in the middle address space,
midBlockSelect must be set to 0.

highBlockSelect

To select the array blocks
in high address space for
erasing.

Bit-mapped value such that the least significant
bit is at bit 0 of 16K block region (if available),
then 32K block region (if available) and lastly
64K block region (if available). Select the block
in the high address space to be erased by
setting 1 to the appropriate bit of
highBlockSelect. If there is not any block to be
erased in the high address space,
highBlockSelect must be set to 0.

nLargeBlockSelect

To select the array blocks
in Large (128K or 256K)
address space for erasing.
It includes two elements to
decode the first half of
Large block select and the
second half of Large block
select.

Bit-mapped value such that the least significant
bit is at bit O of Large block region (if available).
Select the block in the Large address space to
be erased by setting 1 to the appropriate bit of
nLargeBlockSelect. If there is not any block to
be erased in the Large address space,
nLargeBlockSelect must be set to 0.

Return values

Table 11. Return values for FlashErase

Type

Description

Possible values

UINT32

Successful completion or error value.

C55_OK
C55_ERROR_ERASE_OPTION
C55_ERROR_BUSY
C55_ERROR_FACTORY_OP

UM1618 Rev 5

3

UM1618 API specification

Troubleshooting

Table 12. Troubleshooting for FlashErase

Error codes Possible causes Solution

C55_ERROR_ERASE_OPTION | Invalid erase option. Use one of the valid values for the

option.

Wait until all previous program/erase
New erase operation operations on the Flash module
cannot be performed finish. Possible cases that erase
because there is cannot start are:

C55_ERROR_BUSY program/erase sequence in |— erase in progress (MCR-ERS is
progress on the Flash high);
module. — program in progress (MCR-PGM
is high);

Factory erase is locked by the
system due to the data at the UTest
NVM ‘diary’ location.

The factory erase could not

C55_ERROR_FACTORY_OP
- - - be performed.

Comments

'FlashErase' always uses main interface to complete an erase operation and ignores the
value of the ‘maininterfaceFlag’ in the SSD configuration structure. However, it is
recommended that user should explicitly set this flag value to TRUE before calling
'FlashErase'.

The eraseOption input argument provides an option for user to select his expected erase
operation. If user wants to do factory erase, he must select eraseOption as
C55_ERASE_MAIN_FERS or C55_ERASE_UTEST_FERS. If user wants to do normal
erase operation on main array, eraseOption must be C55_ERASE_MAIN and lastly, user
must select C55 _ERASE_UTEST to do erase operation on UTest block.

The factory erase feature can be used to provide a faster erase. But the feature cannot be
performed if the data at “diary” location in the UTest NVM space contains at least one zero
at reset. In that case, each try to perform factory erase causes the error

C55 ERROR_FACTORY_OP be returned.

The inputs lowBlockSelect, midBlockSelect, highBlockSelect and nLargeBlockSelect are
bit-mapped arguments that are used to select the blocks to be erased in the
Low/Mid/High/Large address spaces of main array. The selection of the blocks of the main
array is determined by setting/clearing the corresponding bit in lowBlockSelect,
midBlockSelect, highBlockSelect or nLargeBlockSelect.

The bit allocations for blocks in one address space are: the least significant bit is
corresponding to 16K block region and start with block 0 (if available), then 32K block region
(if available), then 64K block region (if available), and lastly 8K block region (if available).
The following diagrams show the formats of lowBlockSelect, midBlockSelect,
highBlockSelect and nLargeBlockSelect for the C55 module.

The Large block select includes two elements to decode the block selection for first 32
blocks (from bit 0 to bit 31) and second 32 blocks (from bit 32 to upper bits) separately.

Below is example for block allocation and bit map for specific Flash module with two blocks
for each block size in low, middle or high address space. The invalid blocks are marked as
reserved. And the number of valid bits may be various according to specific Flash module.

3

UM1618 Rev 5 15/51

API specification UM1618

16/51

Table 13. Bit allocation for blocks in low address space

MSB LSB
bit 31 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
reserved 64K block 1 | 64K block 0 | 32K block 1 | 32K block 0 | 16K block 1 | 16K block 0

Table 14. Bit allocation for blocks in middle address space

MSB LSB
bit 31 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
reserved 64K block 1 | 64K block 0 | 32K block 1 | 32K block 0 | 16K block 1 | 16K block O

Table 15. Bit allocation for blocks in high address space

MSB LSB
bit 31 ... | bit9 | bit8 | bit7 | bit6é | bits5 | bit4 | bit3 | bit2 | bit1 bit 0
8K 8K 8K 8K 64K 64K 32K 32K 16K 16K
reserved | ... | block | block | block | block | block | block | block | block | block block 0
3 2 1 0 1 0 1 0 1
Table 16. Bit Allocation for Blocks in the first Large Address Space
MSB LSB
bit 31 bit 16 bit 15 bit 14 bit 1 bit 0
block 31 block 16 block 15 block 14 block 1 block 0
Table 17. Bit allocation for blocks in the second large address space
MSB LSB
bit 31 bit 16 bit 15 bit 14 bit 1 bit 0
reserved reserved block 47 block 46 block 33 block 32

If the selected main array blocks or UTest block are locked for erasing, those blocks are not
erased, but ‘FlashErase’ still returns C55_OK. User needs to check the erasing result with
the ‘BlankCheck’ function.

It is impossible to erase any Flash block when a program or erase operation is already in
progress on C55 module. ‘FlashErase’ returns C55_ERROR_BUSY when trying to do so. In
addition, when ‘FlashErase’ is running, it is unsafe to read the data from the Flash partitions
having one or more blocks being erased. Otherwise, it causes a Read-While-Write error.

Assumptions

It assumes that the Flash block is initialized using a ‘Flashinit’ API.

3

UM1618 Rev 5

UM1618

API specification

2.7.3

3

FlashEraseAlternate

Description

This function is to do erase operation for single block on single Flash module according to
user’s input arguments via alternate interface. The targeted Flash module status is checked
in advance to return relevant error code if any. This function only set the high voltage without
waiting for the operation to be finished. Instead, user must call ‘FlashCheckStatus’ function
to confirm the successful completion of this operation.

Prototype

UINT32 FlashEraseAlternate

UINT32 interlockAddress) ;

(PSSD_CONFIG pSSDConfig,

Arguments
Table 18. Arguments for FlashEraseAlternate
Argument Description Range
. The values in this structure are chip-
pSSDConfig Pomtler o t.he SSD dependent. Please refer to Section 2.3 for
Configuration Structure.)
more details.
The interlock address which The interlockAddress must fall in the block
interlockAddress points to the block needs to be |that user wants to erase and must be aligned
erased. to word.

Return values

Table 19. Return values for FlashEraseAlternate

Type

Description

Possible values

UINT32

C55_OK

Successful completion or error value. | C55_ERROR_BUSY

C55_ERROR_ALIGNMENT

Troubleshooting

Table 20. Troubleshooting for FlashEraseAlternate

Returned Error Bits Description

Solution

C55_ERROR_BUSY

New erase operation
cannot be performed
because there is

progress on the Flash
module.

program/erase sequence in

Wait until all previous program/erase

operations on the Flash module to finish.

Possible cases that erase cannot start

are:

— erase in progress (MCR-ERS is high);

— program in progress (MCR-PGM is
high);

The input argument of

C55_ERROR_ALIGNMENT |interlockAddress is not

aligned by word.

The input argument of interlockAddress
must be aligned by word.

UM1618 Rev 5

17/51

API specification UM1618

2.7.4

18/51

Comments

FlashEraseAlternate’ always uses alternate interface to complete an erase operation and
ignores the value of the ‘maininterfaceFlag’ in the SSD configuration structure. However, it
is recommended that user should explicitly set this flag value to FALSE before calling
FlashEraseAlternate’.

The ‘FlashEraseAlternate’ must not be used to erase any block in the Large address space.
In that case the function only returns C55_OK without doing the operation.

If the selected main array blocks are locked for erasing, those blocks are not erased, but
‘FlashEraseAlternate’ still returns C55_OK. User needs to check the erasing result with the
‘BlankCheck’ function.

It is impossible to erase any Flash block when a program or erase operation is already in
progress on C55 module. ‘FlashEraseAlternate’ returns C55_ERROR_BUSY when trying to
do so.

In addition, when ‘FlashEraseAlternate’ is running, it is unsafe to read the data from the
Flash partitions having one or more blocks being erased. Otherwise, it causes a Read-
While-Write error.

Assumptions

It assumes that the Flash block is initialized using a ‘Flashinit’ API.

BlankCheck

Description

This function is to do blank check for the previous erase operation. It verifies whether the
expected Flash range is blank or not. In case of mismatch, the failed address and failed
destination is saved and relevant error code is returned.

This function only does blank check for given number of bytes which can terminate this
function within expected time interval. Thus, if user wants to do blank check for large size,
the rest of information need to be blank checked is stored in “pCtxData” variable and
‘FlashCheckStatus’ must be called periodically to do the next blank check for next
destination based on all data provided in “pCtxData”.

Prototype

UINT32 BlankCheck (PSSD_CONFIG pSSDConfig,
UINT32 dest,

UINT32 size,

UINT32 *pFailedAddress,

UINT32 *pFailedData,

PCONTEXT DATA pCtxData) ;

3

UM1618 Rev 5

UM1618

API specification

3

Arguments
Table 21. Arguments for BlankCheck
Argument Description Range
.) . The values in this structure are chip-
pSSDConfig Pointer to the SSD Configuration dependent. Please refer to Section 2.3 for
Structure.)
more details.
Destination address to be Any acce§S|bI§ addre;s aligned on word
dest boundary in either main array or UTest
checked.
block.
If size = 0, the return value is C55_OK. It
size Size, in bytes, of the Flash region | should be word aligned and its

to check.

combination with dest should fall in either
main array or UTest block.

pFailedAddress

Return the address of the first
non-blank Flash location in the
checking region

Only valid when this function returns
C55_ERROR_NOT_BLANK.

Return the content of the first

Only valid when this function returns

structure.

pFailedData non-bl_ank Flgsh location in the C55_ERROR_NOT_BLANK.
checking region.
pCixData Address of context data A data structure for storing context

variables.

Return values

Table 22. Return values for BlankCheck

Type Description Possible values
C55_OK
UINT32 Successful completion or error value. C55_ERROR_ALIGNMENTC55 ERRO
R_NOT_BLANK

Troubleshooting

Table 23. Troubleshooting for BlankCheck

Returned Error Bits

Description

Solution

C55_ERROR_ALIGNMENT

word.

The dest, size provided
by user is not aligned by

The dest, size must be word aligned.

C55_ERROR_NOT_BLANK

area within targeted
Flash range.

There is a non-blank

Call ‘FlashErase’ to re-erase the
targeted Flash range and do blank
check again.

Comments

If the blank checking fails, the first failing address is saved to pFailedAddress, and the failing
data in Flash is saved to pFailedData. The contents pointed by pFailedAddress and

UM1618 Rev 5

19/51

API specification UM1618

2.7.5

20/51

pFailedData are updated only when there is a non-blank location in the checked Flash
range.

If user wants to do blank check for large size, this Flash size is divided into many small
portions defined by NUM_WORDS_BLANK_CHECK_CYCLE such that blank check for one
small portion can be finished within expected time interval. In this case, ‘BlankCheck’
function plays a role to kick-off this blank check operation by finishing blank check for the
first portion after back-up all necessary information to pCtxData variable. And blank check
from the second portion is done within ‘FlashCheckStatus’ function. Thus, user must call
‘FlashCheckStatus’ to finish all his expected operations defined by size argument.

Assumptions

It assumes that the Flash block is initialized using a ‘Flashinit’ API.

FlashProgram

Description

This function is to do program operation for single or multi-programmable size via different
interface on targeted Flash module according to user’s input arguments. The targeted Flash
module status is checked in advance to return relevant error code if any. This function only
set the high voltage without waiting for the operation to be finished. Instead, user must call
‘FlashCheckStatus’ function to confirm the successful completion of this operation.

In case of programming for multi-programmable size, the rest of information need to be
programmed is stored in “pCtxData” variable and the ‘FlashCheckStatus’ function is called
periodically by user to confirm the successful completion of the previous destination and
once finish, this function invokes ‘FlashProgram’ more times to program the next destination
based on data provided in “pCtxData” until finish all.

Prototype

UINT32 FlashProgram (PSSD CONFIG pSSDConfig,
BOOL factoryPgmFlag,

UINT32 dest.

UINT32 size,

UINT32 source,

PCONTEXT DATA pCtxData) ;

Arguments
Table 24. Arguments for FlashProgram
Argument Description Range
.) . The values in this structure are chip-
pSSDConfig gﬁ:‘éfsrteo the SSD Configuration dependent. Please refer to Section 2.3 for
' more details.
A flag indicate to do whether TRUE to do factory program, FALSE to do
factoryPgmFlag
factory program or not. normal program.
Destination address to be Any accessible .add'ress allgned on double
dest . word boundary in either main array or
programmed in Flash memory.
UTest space.

UM1618 Rev 5 ‘YI

UM1618

API specification

3

Table 24. Arguments for FlashProgram (continued)

Argument Description Range

If size = 0, C55_OK is returned.

size Size, in bytes, of the Flash region | It should be multiple of word and its

to be programmed. combination with dest should fall in either

main array or UTest block.
This address must reside on word

source Source program buffer address.
boundary.

pCtxData Address of context data structure. A d.a ta structure for storing context
variables

Return values

Table 25. Return values for FlashProgram

Type Description

Possible values

UINT32
value.

Successful completion or error

C55_OK

C55_ERROR_ALTERNATE
C55_ERROR_ALIGNMENTC55_ERROR_BUSY
C55_ERROR_FACTORY_OP

Troubleshooting

Table 26. Troubleshooting for FlashProgram

Returned Error Bits

Description

Solution

C55_ERROR_ALTERNATE

This error occurs when
user wants to perform
factory program via the
alternate interface.

Use main interface if want to perform
factory program or perform normal
program if want to use alternate
interface.

C55_ERROR_ALIGNMENT

This error indicates that
dest/size/source isn’t
properly aligned.

Check if dest is aligned on double word
(64-bit) boundary. Check if size and
source are aligned on word boundary.

C55_ERROR_BUSY

There is program
operation is in progress
or erase operation is
going on and not in
suspended state.

Wait for the on-going high voltage

operation to finish. Flash program

operation can be started if:

— There is no program or erase
operation being in progress.

— If erase operation is in progress and it
must be in suspended state.

C55 ERROR_FACTORY_OP

The factory program
could not be performed
due to the data at the
‘diary’ location in the
UTest NVM contains at
least one zero.

Check the data at the ‘diary’ location in
the UTest NVM or just perform a normal
program.

UM1618 Rev 5

21/51

API specification UM1618

2.7.6

22/51

Comments

After performing a program, ‘ProgramVerify’ should be used to verify the programmed data
is correct or not.

‘FlashProgram’ checks the maininterfaceFlag in the SSD configuration to decide which
interface to be used for the operation, the main interface or the alternate interface. User
should explicitly set this parameter before calling the function.

This function also provides a faster method for user to perform, factory program. But the
feature cannot be performed if the data at “diary” location in the UTest NVM space contains
at least one zero at reset. In that case, each try to perform factory program cause the error
C55 ERROR_FACTORY_OP be returned.

If the selected main array blocks are locked for programming, those blocks are not
programmed, and ‘FlashProgram’ returns C55_OK.

If user wants to program to Large block space via alternate interface, this function still
returns C55_OK without doing any program operation.

It is impossible to program any Flash block when a program or erase operation has already
been in progress on C55 module. ‘FlashProgram’ returns C55_ERROR_BUSY when doing
so. However, user can use the ‘FlashSuspend’ function to suspend an on-going erase
operation on one block to perform a program operation on another block.

It is unsafe to read the data from the Flash partitions having one or more blocks being
programmed when ‘FlashProgram’ is running. Otherwise, it causes a Read-While-Write
error.

If user wants to do program for multi-programmable size, this function plays a role to kick-off
this operation by finishing program for the first programmable size after back-up all
necessary information to pCtxData variable. And programming from the second
programmable size is done within ‘FlashCheckStatus’ function. Thus, user must call
‘FlashCheckStatus’ to finish all his expected operations defined by size argument.

Assumptions

It assumes that the Flash block is initialized using a ‘Flashinit’ API. And Flash location must
be in erased state before calling ‘FlashProgram’ API.

ProgramVerify

Description

This function is to verify the previous program operation. It verifies if the programmed Flash
range matches the corresponding source data buffer. In case of mismatch, the failed
address, failed destination and failed source are saved and relevant error code are
returned.

This function only does verification for given number of bytes which can terminate this
function within expected time interval. Thus, if user wants to do Flash verification for large
size, the rest of information need to be verified is stored in “pCtxData” variable and
‘FlashCheckStatus’ must be called periodically to do the next verification for next destination
based on all data provided in “pCtxData”.

3

UM1618 Rev 5

UM1618

API specification

3

Prototype

UINT32 ProgramVerify (PSSD_CONFIG pSSDConfig,

UINT32 dest,
UINT32 size,

UINT32 source,

UINT32 *pFailedAddress,
UINT32 *pFailedData,
UINT32 *pFailedSource,
PCONTEXT DATA pCtxData) ;

Arguments
Table 27. Arguments for ProgramVerify
Argument Description Range
. The values in this structure are chip-
pSSDConfig Pomt.er to ’Fhe SSD dependent. Please refer to Section 2.3 for
Configuration Structure. .
more details.
dest Destination address to be Any accessible address aligned on word
verified in Flash memory. boundary in main array or UTest block.
If size = 0, C55_OK is returned.
size Size, in byte, of the Flash It must be word aligned and its combination
region to verify. with dest should fall within main array or UTest
block.
source Verify source buffer address. This address must reside on word boundary.

pFailedAddress

Flash.

Return first failing address in

Only valid when the function returns
C55_ERROR_VERIFY.

pFailedData

Flash.

Returns first mismatch data in

Only valid when this function returns
C55_ERROR_VERIFY.

pFailedSource

buffer.

Returns first mismatch data in

Only valid when this function returns
C55_ERROR_VERIFY.

pCtxData

Address of context data
structure.

A data structure for storing context variables

Return values

Table 28. Return values for ProgramVerify

Type

Description

Possible values

UINT32

Successful completion or error
value.

C55_OK
C55_ERROR_ALIGNMENTC55_ERROR_VERIFY

UM1618 Rev 5

23/51

API specification UM1618

2.7.7

24/51

Troubleshooting

Table 29. Troubleshooting for ProgramVerify

Returned Error Bits Description Solution

This error indicates that
C55 _ERROR_ALIGNMENT | dest/size/source isn’t
properly aligned.

Check if dest , size and source are
aligned on word (32-bit) boundary.

Check if the data in source is correct. If
yes, the previous program operation is

failed. User should re-erase that Flash

location and do program again.

There is a mismatch
C55 ERROR_VERIFY between destination and
source data.

Comments

The contents pointed by pFailedAddress, pFailedData and pFailedSource are updated only
when there is a mismatch between the source and destination regions.

If user wants to do program verify for large size, this Flash size is divided into many small
portions defined by NUM_WORDS_PROGRAM_VERIFY_CYCLE such that verification for
one small portion can be finished within expected time interval. In this case, ‘ProgramVerify’
function plays a role to kick-off this verification operation by finishing verification for the first
portion after back-up all necessary information to pCtxData variable. And verification from
the second portion is done within ‘FlashCheckStatus’ function. Thus, user must call
‘FlashCheckStatus’ to finish all his expected operations defined by size argument.

Assumptions

It assumes that the Flash block is initialized using a ‘Flashinit’ API.

CheckSum

Description

This function performs a 32-bit sum over the specified Flash memory range without carry,
which provides a rapid method for data integrity checking.

This function only does Flash check sum for given number of bytes which can terminate this
function within expected time interval. Thus, if user wants to do check sum for large size, the
rest of information need to be checked sum is stored in “pCtxData” variable and
‘FlashCheckStatus’ must be called periodically to do the next check sum for next destination
based on all data provided in “pCtxData”.

Prototype

UINT32 CheckSum (PSSD_CONFIG pSSDConfig,
UINT32 dest,

UINT32 size,

UINT32 *pSum,

PCONTEXT DATA pCtxData) ;

3

UM1618 Rev 5

UM1618

API specification

3

Arguments
Table 30. Arguments for CheckSum
Argument Description Range
SSDConfi Pointer to the SSD The values in this structure are chip-dependent.
P 9 Configuration Structure. Please refer to Section 2.3 for more details.
Destination address to be Any accessible address aligned on word boundary
dest . e -
summed in Flash memory. in either main array or UTest block.
If size is 0 and the other parameters are all valid,
size Size, in bytes, of the Flash C55_OKiis returned. It must be word aligned and its
region to check sum. combination with dest should fall within main array
or UTest block.
0x00000000 - OxFFFFFFFF. Note that this value is
only valid when the function returns C55_OK.
pSum Returns the sum value.) i i
User must not pass to this function with NULL
pointer of pSum.
pCtxData Address of context data A data structure for storing context variables.
structure.

Return values

Table 31. Return values for CheckSum

Type

Description

Possible values

UINT32

Successful completion or error value.

C55_OK
C55_ERROR_ALIGNMENT

Troubleshooting

Table 32. Troubleshooting for CheckSum

Returned Error Bits

Description

Solution

C55_ERROR_ALIGNMENT

aligned.

This error indicates that
dest/size isn’t properly

Check if dest and size are aligned on
word (32-bit) boundary.

Comments

In order to provide correct pSum calculation, this input argument must not be NULL pointer.
However, this API does not return any error code if user tries doing so.

If user wants to do checksum for large size, this Flash size is divided into many small
portions defined by NUM_WORDS_CHECK_SUM_CYCLE such that checksum for one
small portion can be finished within expected time interval. In this case, ‘CheckSum’
function plays a role to kick-off this operation by finishing checksum for the first portion after
back-up all necessary information to pCtxData variable. And checksum from the second
portion is done within ‘FlashCheckStatus’ function. Thus, user must call ‘FlashCheckStatus’
to finish all the expected operations defined by size argument.

UM1618 Rev 5

25/51

API specification UM1618

2.7.8

26/51

Assumptions

It assumes that the Flash block is initialized using a ‘Flashinit’ API.

FlashCheckStatus

Description

This function checks the status of on-going high voltage operation in user mode or status of
array integrity check in user test mode. The user’s application code should call this function
to determine whether the operation is done or failed or in progress. In addition, this function
is used to recover the un-completed task in FlashProgram, ProgramVerify, CheckSum ,
BlankCheck in case user wants to call those functions with very big size.

In case of invoking program operation for multi-programmable size, after confirming that the
previous program operation has been finished successfully, this function calls FlashProgram
one more time to do the next program operation at next destination.

In case of invoking Flash verify operation for large size, this function calls FlashVerify one
more time to do verification for the next portion of data.

In case of invoking blank check operation for large size, this function calls BlankCheck one
more time to do blank check for the next portion of data.

In case of invoking check sum for large size, this function calls CheckSum one more time to
do check sum for the next portion of data.

User must provide modeOp input argument with appropriate value to determine which
operation needs to be checked by this function. Below list defines all possible cases to call
this function:

Call FlashCheckStatus for program operation.
Call FlashCheckStatus for erase operation.
Call FlashCheckStatus for user’s test mode.
Call FlashCheckStatus for Flash verification.
Call FlashCheckStatus for blank check.

Call FlashCheckStatus for check sum.

User must provide pCtxData input argument which is a pointer to the context data structure
for each Flash function being checked for status. The context data structure contains a
function pointer which must be manually set up for each Flash operation (program, blank
check, program verify, check sum) to be checked for status. It is recommended to keep a
separate context data structure for each type of Flash operation. As an example, please
refer to the demo code included in the release package. Below is a code snippet.

CONTEXT DATA dummyCtxData; // no context for erase and user test operation
CONTEXT_ DATA pgmCtxData;

CONTEXT DATA bcCtxData;

CONTEXT_DATA pvCtxData;

CONTEXT DATA csCtxData;

/* set up function pointers in context data */
pogmCtxData.pReqCompletionFn = pFlashProgram;

bcCtxData.pReqgCompletionFn = pBlankCheck;

3

UM1618 Rev 5

UM1618 API specification

pvCtxData.pRegCompletionFn = pProgramVerify;

csCtxData.pRegCompletionFn = pCheckSum;

Prototype

UINT32 FlashCheckStatus (PSSD_CONFIG pSSDConfig,
UINT8 modeOp,

UINT32 *opResult,

PCONTEXT_DATA pCtxData) ;

Arguments

Table 33. Arguments for FlashCheckStatus

Argument Description Range

Pointer to the SSD The values in this structure are chip-dependent.

pSSDConfig Configuration Structure. |Please refer to Section 2.3 for more details.

Must be one of the values:

— C55_MODE_OP_PROGRAM

— C55_MODE_OP_ERASE

— C55_MODE_OP_PROGRAM_VERIFY
— C55_MODE_OP_BLANK_CHECK

— C55_MODE_OP_CHECK_SUM

— C55_MODE_OP_USER_TEST_CHECK

To specify the operation

modeOp needs to be checked.

The values for this variable are depend on the
operation being checked.

For PROGRAM operation, they are:

— C55_0OK

— C55_ERROR_PGOOD

For ERASE operation, they are:

— C55_0OK

— C55_ERROR_EGOOD

To store result of the For PROGRAM_VERIFY operation, they are:
operation. — C55_0OK

— C55_ERROR_VERIFY

For BLANK_CHECK operation, they are:

— C55_0OK

— C55_ERROR_NOT_BLANK

For CHECK_SUM operation, it is always C55_OK.
For USER_TEST_CHECK operation, they are:
— C55_0OK

— C55_ERROR_MISMATCH

opResult

Address of a context

pCtxData data structure.

A data structure for storing context variables

3

UM1618 Rev 5 27/51

API specification UM1618

2.7.9

28/51

Return values

Table 34. Return values for FlashCheckStatus

Type Description Possible values

C55_INPROGRESS

C55_DONE
C55_ERROR_MODE_OP

All possible states in ‘FlashSuspend()’

All possible states in
‘FlashArrayIntegritySuspend()’

UINT32 Successful completion or error value.

Troubleshooting

Table 35. Troubleshooting for FlashCheckStatus

Returned Error Bits Description Solution
C55 ERROR MODE OP User provides invalid The modeOp must be one of the values
- - - modeOp argument. provided on Table 33.

Comments
User should call this function periodically until the whole operation finishes.

This function can also be called inside an interrupt procedure for program/erase to take the
full advantage of interrupt. Each time the interrupt procedure is called, ‘FlashCheckStatus’
gets called to continue to complete the whole operation.

Assumptions

It assumes that the Flash block is initialized using a ‘Flashinit()’ API.

FlashSuspend

Description

This function checks if there is any high voltage operation being in progress on the C55
module and if this operation can be suspended. This function suspends the ongoing
operation if it can be suspended.

Prototype

UINT32 FlashSuspend (PSSD CONFIG pSSDConfig,
UINT8 *suspendState) ;

3

UM1618 Rev 5

UM1618

API specification

3

Arguments
Table 36. Arguments for FlashSuspend
Argument Description Range
.) . The values in this structure are chip-

pSSDConfig Pointer to the SSD Configuration dependent. Please refer to Section 2.3 for

Structure. :

more details.

Indicate the suspend state of C55
suspendState module after the function being All state values are enumerated in Table 38.

called.

Return values

Table 37. Return values for FlashSuspend

Type

Description

Possible values

UINT32

Successful completion of this function.

C55_OK

Troubleshooting

None.

Comments

After calling this function, read is allowed on main array space without any Read-While-
Write error. But data read from the blocks targeted for programming or erasing will be
indeterminate even if the operation is suspended.

Following table defines and describes various suspend states and associated suspend

codes.

Table 38. Suspend State Definitions

Argument

Code

Description

Valid operation after
suspend

There is no program/erase

Erasing operation,
programming operation and

in suspended state.

C55_SUS_NOTHING 10 . ; .
operation. read are valid on main array
space.
There is a program Only read is valid on main
C55 PGM_WRITE 11 sequence in interlock write y
array space.
stage.
There is an erase Only read is valid on main
C55_ERS_WRITE 12 | sequence in interlock write y
- - array space.
stage.
There is an erase-suspend Only read is valid on main
C55 ERS_SUS_PGM_WRITE 13 | program sequence in y
; . array space.
interlock write stage.
C55_PGM_SUS 14 The program operation is | Only read is valid on main

array space.

UM1618 Rev 5

29/51

API specification

UM1618

2.7.10

30/51

Table 38. Suspend State Definitions

Valid operation after

suspended state.

Argument Code Description suspend
The erase operation on Programming/Read operation
C55_ERS_SUS 15 | main array is in suspended |. or g P
is valid on main array space.
state.
The erase-suspended Only read is valid on main
C55 ERS_SUS_PGM_SUS 16 | program operation is in y

array space.

This function should be used together with ‘FlashResume’. If suspendState is
C55 PGM_SUS or C55 ERS_SUS or C55 ERS _SUS PGM_SUS, then ‘FlashResume’
should be called in order to resume the operation.

The table below lists the Suspend State against to the Flash block status.

Table 39. Suspending State vs. C55 Status

suspendState EHV ERS ESUS PGM PSUS

C55_SUS_NOTHING X 0 X 0 X
C55_PGM_WRITE 0 0 X 1 0
C55_ERS_WRITE 0 1 0 0 X
C55_ESUS_PGM_WRITE 0 1 1 1 0
1 0 X 1 0

C55_PGM_SUS
X 0 X 1 1
1 1 0 0 X
C55_ERS_SUS X 1 1 0 X
X 1 1 0 X
1 1 1 1 0

C55_ERS_SUS_PGM_SUS

X 1 1 1 1

The values of EHV, ERS, ESUS, PGM and PSUS represent the C55 status at the entry of

‘FlashSuspend'.

0: Logic zero; 1: Logic one; X: Do-not-care.

Assumptions

It assumes that the Flash block is initialized using a ‘Flashinit’ API.

FlashResume

Description

This function checks if there is any suspended erase or program operation on the C55

module, and resumes the suspended operation if there is any.

UM1618 Rev 5

S72

UM1618

API specification

3

Prototype

UINT32 FlashResume (PSSD_CONFIG pSSDConfig,
UINT8* resumeState) ;

Arguments
Table 40. Arguments for FlashResume
Argument Description Range
.) . The values in this structure are chip-

pSSDConfig Pointer to the SSD Configuration dependent. Please refer to Section 2.3

Structure. .

for more details.

resumeState Indicate the resume state of C55 All state values are listed in

module after the function being called. | Table 42

Return values

Table 41. Return values for FlashResume

Type Description Possible values

UINT32 Successful completion of this function. | C55_OK

Troubleshooting

None.

Comments

This function resumes one operation if there is any operation is suspended. For instance, if
a program operation is in suspended state, it is resumed. If an erase operation is in
suspended state, it is resumed too. If an erase-suspended program operation is in
suspended state, the program operation is resumed prior to resuming the erase operation.

Following table defines and describes various resume states and associated resume codes.

Table 42. Resume state definitions

Code Name Value Description
C55_RES_NOTHING 20 No program/erase operation to be resumed
C55 RES_PGM 21 A program operation is resumed
C55 RES_ERS 22 A erase operation is resumed
C55 RES ERS PGM 23 A suspended erase-suspended program operation is
- - - resumed

Assumptions

It assumes that the Flash block is initialized using a ‘Flashinit’ API.

UM1618 Rev 5 31/51

API specification

UM1618

2.7.11

32/51

GetLock

Description

This function checks the block locking status of Low/Middle/High/Large address spaces in

the C55 module via either main or alternate interface.

Prototype

UINT32 GetLock (PSSD_CONFIG pSSDConfig,
UINT8 blkLockIndicator,
UINT32 *blkLockState) ;

Arguments
Table 43. Arguments for GetLock
Argument Description Range
.) . The values in this structure are chip-
pSSDConfig Pointer to the SSD Configuration dependent. Please refer to Section 2.3

Structure.

for more details.

blkLockIndicator

Indicating the address space
which determines the address
space block locking register to be
checked.

Refer to Table 46 for valid values for this
parameter.

blkLockState

Returns the blocks’ locking status
in the given address space

Bit mapped value indicating the locking
status of the specified address space.

1: The block is locked from
program/erase.

0: The block is ready for program/erase

Return values

Table 44. Return values for GetLock

Type Description Possible values
C55_0OK
UINT32 Successful completion or error value. |C55 _ERROR_BLOCK_INDICATOR
C55_ERROR_ALTERNATE

Troubleshooting

Table 45. Troubleshooting for GetLock

Returned Error Bits

Possible causes

Solution

C55_ERROR_BLOCK_INDICATOR

invalid.

The input blkLockIndicator is

Set this argument to correct
value listed in Table 46.

C55_ERROR_ALTERNATE

User calls this function to get
lock status for Large block
space via alternate interface.

Alternate interface does not
support for Large block space.

UM1618 Rev 5

S72

UM1618 API specification

Comments

Following table defines and describes various blkLockindicator values.

Table 46. Lock indicator definitions

Code Name Value Description
C55 BLOCK_LOW 0 Block lock protection of low address space.
C55 BLOCK_MID 1 Block lock protection of mid address space.
C55_BLOCK_HIGH 2 Block lock protection of high address space.

Block lock protection of the first Large address

C55_BLOCK_LARGE_FIRST 3 space (from block 0 to block 31).

Block lock protection of the second Large address

C55_BLOCK_LARGE_SECOND 4 space (from block 32 to upper block numbering).

C55 BLOCK_UTEST 5 Block lock protection of the UTest block.

The output parameter blkLockState returns a bit-mapped value indicating the block lock
status of the specified address space. A main array block is locked from program/erase if its
corresponding bit is set.

The indicated address space determines the valid bits of blkLockState. For either
Low/Mid/High/Large address spaces, if blocks corresponding to valid block lock state bits
are not present (due to configuration or total memory size), values for these block lock state
bits are always 1 because such blocks are locked by hardware on reset. These blocks
cannot be unlocked by software with ‘SetLock’ function.

If user uses the alternate interface to get the lock protection for the Large address space,
the error code C55_ERROR_ALTERNATE is returned to indicate that the interface does not
support this operation.

The bit allocations for blocks in one address space are: the least significant bit is
corresponding to 16K block region and start with block 0 (if available), then 32K block region
(if available) then lastly 64K block region (if available) and lastly 8K block region (if
available).

The Large block space is divided into two separate sections corresponding two different
block lock indicators. The C55 BLOCK_LARGE_FIRST lock indicator represents the first
32 blocks (from bit 0 to bit 31) of Large block space (128K/256K) and the C55 BLOCK _
LARGE_SECOND lock indicator represents the second 32 blocks (from bit 32 to upper bits)
of Large block space (128K/256K).

Below is example for the formats of blkLockState in the C55 Flash module according to
specific address space. In particular, this is an example with two blocks for each block size
in low, middle or high address space and 48 blocks for Large block (128K/256K) address
space. The invalid blocks are marked as reserved. And the number of valid bits may be
various according to specific Flash module.

Table 47. blkLockState in low address space

MSB LSB
bit 31 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
reserved 64K block 1 | 64K block 0 | 32K block 1 | 32K block 0 | 16K block 1 | 16K block O
‘YI UM1618 Rev 5 33/51

API specification

UM1618

2.7.12

34/51

Table 48. blkLockState in middle address space

MSB LSB
bit 31 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
reserved 64K block 1 | 64K block 0 | 32K block 1 | 32K block 0 | 16K block 1| 16K block 0
Table 49. blkLockState in high address space
MSB LSB
bit 31 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
reserved 64K block 1 | 64K block 0 | 32K block 1 | 32K block 0 | 16K block 1 | 16K block 0

Table 50. blkLockState in the first large block (128K/256K) address space

MSB LSB
bit 31 bit 16 bit 15 bit 14 bit 1 bit 0
block 31 block 16 block 15 block 14 block 1 block 0
Table 51. blkLockState in the second large block space (128K/256K) address space
MSB LSB
bit 31 bit 16 bit 15 bit 14 bit 1 bit 0
reserved reserved block 47 block 46 block 33 block 32
Table 52. blkLockState in UTest block Space
MSB LSB
bit 31 bit 16 bit 15 bit 14 bit 1 bit 0
reserved reserved | reserved | reserved reserved block 0

Assumptions

It assumes that the Flash block is initialized using a ‘Flashinit’ API.

SetLock

Description

This function will set the block lock state for Low/Middle/High/ Large (128K/256K) address
space on the C55 module to protect them from program/erase via either main or alternate

interface.

Prototype

UINT32 SetLock (PSSD_CONFIG pSSDConfig,
UINT8 blkLockIndicator,

UM1618 Rev 5

3

UM1618 API specification

UINT32 blkLockState) ;

Arguments
Table 53. Arguments for SetLock
Argument Description Range
SSDConfi Pointer to the SSD The values in this structure are chip-dependent.
P 9 Configuration Structure. Please refer to Section 2.3 for more details.

Indicating the address
space and the protection Refer to Table 46 for valid codes for this
level of the block lock parameter.

register to be read.

blkLockIndicator

Bit mapped value indicating the lock status of the
The block locks to be set to specified address space.

blkLockState the specified address

. 1: The block is locked from program/erase.
space and protection level.

0: The block is ready for program/erase

Return values

Table 54. Return values for SetLock

Type Description Possible values
C55_OK
UINT32 Successful completion or error value. C55 ERROR_BLOCK_INDICATOR
C55_ERROR_ALTERNATE

Troubleshooting

Table 55. Troubleshooting for SetLock

Returned Error Bits Possible causes Solution

The input blkLockIndicator | Set this argument to correct

C55_ERROR_BLOCK_INDICATOR is invalid. value listed in Table 46.

User calls this function to

C55_ERROR_ALTERNATE set Iock.for Large block Alternate interface does not
space via alternate support for Large block space.
interface.

Comments

See ‘GetLock’ API.

Assumptions

It assumes that the Flash block is initialized using a ‘Flashinit’ API.

3

UM1618 Rev 5 35/51

API specification UM1618

2713 OverPgmProtGetStatus

Description

This function returns the over-program protection status via either main or alternate
interface. This value shows blocks that are protected from being over programmed.

Prototype

UINT32 OverPgmProtGetStatus (PSSD CONFIG pSSDConfig,
UINT8 blkProtIndicator,
UINT32 *blkProtState);

Arguments
Table 56. Arguments for OverPgmProtGetStatus
Argument Description Range
.) . The values in this structure are chip-
pSSDConfig Pointer to the SSD Configuration dependent. Please refer to Section 2.3

Structure. for more details.

The block indicator to get over-
program protection status. This The valid value for this argument is as
blkProtindicator argument will determine which over- | same as that of blkLockIndicator
program protection register need to be | argument in ‘SetLock "function.
accessed by this function.

The bit map for over-program Bit-mapped value.

bikProtState protection information of specific 1: The block is protected from over-
address space according to program.
blkProtindicator argument. 0: The block is ready for over-program.

Return values

Table 57. Return values for OverPgmProtGetStatus

Type Description Possible values

C55_OK
UINT32 Successful completion or error value. | C55_ERROR_BLOCK_INDICATOR
C55_ERROR_ALTERNATE

Troubleshooting

Table 58. Troubleshooting for OverPgmProtGetStatus

Returned Error Bits Possible causes Solution

The input blkProtindicator is | Set this argument to correct

£55_ERROR_BLOCK_INDICATOR invalid. value listed in Table 46.

User calls this function to
get over-program protection | Alternate interface does not
status via alternate support this operation.

interface.

C55_ERROR_ALTERNATE

36/51 UM1618 Rev 5 KYI

UM1618 API specification
Comments
If user uses the alternate interface to get the over program protection status for the Large
address space, the error code C55 _ERROR_ALTERNATE is returned to indicate that the
interface does not support this operation.
The blkProtState is bit map allocation and it has the same definition with blkLockState of
‘GetLock’ function. See ‘GetLock’ function for more details.
Assumptions
It assumes that the Flash block is initialized using a ‘Flashinit’ API.

2.8 User Test Mode Functions

2.8.1 FlashArrayintegrityCheck

3

Description

This function checks the array integrity of the Flash via main interface. The user specified
address sequence is used for array integrity reads and the operation is done on the
specified blocks. The MISR values calculated by the hardware is compared to the values
passed by the user, if they are not the same, then an error code is returned.

In order to support asynchronous design, this function stores the necessary information to
“pCtxData” (ex: user provided MISR value) and is terminated without waiting for completion
of this operation. User should call ‘FlashCheckStatus’ to check the on-going status of this
function. And once finish, it will do comparison between MISR values provided by user
which is currently stored in “pCtxData” and MISR values generated by hardware and return
an appropriate code according to this compared result.

Prototype

UINT32 FlashArrayIntegrityCheck (PSSD_CONFIG pSSDConfig,
UINT32 lowEnabledBlocks,

UINT32 midEnabledBlocks,

UINT32 highEnabledBlocks,

NLARGE_BLOCK_SEL nLargeEnabledBlocks,

UINT8 breakOption,

UINT8 addrSeq,

PMISR pMisrValue,

PCONTEXT DATA pCtxData) ;

UM1618 Rev 5 37/51

API specification

UM1618

Arguments
Table 59. Arguments for FlashArraylntegrityCheck
Argument Description Range
. The values in this structure are chip-
pSSDConfig Pointer to the SSD dependent. Please refer to Section 2.3 for

Configuration Structure.

more details.

lowEnabledBlocks

To select the array blocks in
low address space for
checking.

Refer to ‘FlashErase’ for details.

To select the array blocks in

midEnabledBlocks mid address space for Refer to ‘FlashErase’ for details.
checking.
To select the array blocks in

highEnabledBlocks high address space for Refer to ‘FlashErase’ for details.

checking.

nLargeEnabledBlocks

To select the array blocks in
Large block space
(128K/256K) address space
for checking.

Refer to ‘FlashErase’ for details.

To specify an option to allow

Must be one of the values:
— C55_BREAK_NONE
— C55 BREAK_ON_DBD (stop the

breakOption stopping the operation on operation on Double Bit Detection)
errors. — C55_BREAK_ON_DBD_SBC (stop the
operation on Double Bit Detection or
Single Bit Correction)
Must be one of below values:
— C55_ADDR_SEQ_PROPRIETARY: this
is meant to replicate sequences normal
“user” code follows, and thoroughly
. check the read propagation paths. This
addrSeq -srquuee::::rgltr:)ebtgi:gg r:j;ng sequence is proprietary
array integrity checks. - CS§_ADDR_SEQ_LINEAR: this is just
logically sequential.
It should be noted that the time to run a
sequential sequence is significantly shorter
than the time to run the proprietary
sequence.
MISRValue ﬁcc)j:tr:izz E::&/IIISSEVSatmztsure The individual MISR words can range from
P . 0x00000000 - OxFFFFFFFF
calculated by offline tool.
Address of a context data A data structure for storing context
pCtxData

structure.

variables

38/51

UM1618 Rev 5

3

UM1618 API specification

Return values

Table 60. Return values for FlashArraylntegrityCheck

Type Description Possible values
C55_OK
C55_ERROR_ADDR_SEQ
UINT32 Successful completion or error value. |C55 ERROR_NO_BLOCK

C55_ERROR_MISMATCH
C55_ERROR_ALTERNATE

Troubleshooting

The trouble shooting given here comprises of hardware errors and input parameter error.

Table 61. Troubleshooting for FlashArrayintegrityCheck

Returned Error Bits Possible causes Solution

The MISR values calculated | Re-calculate the MISR values using the

by the user are incorrect. correct Data and address sequence.
C55_ERROR_MISMATCH | The MISR values calculated

by the Hardware are Hardware Error.

incorrect.

Enable any of the blocks using variables
lowEnabledBlocks, midEnabledBlocks,
highEnabledBlocks or
nLargeEnabledBlocks.

None of the Blocks are
C55_ERROR_NO_BLOCK |enabled for Array Integrity
Check

The address sequence input argument
must be either proprietary
(C55_ADDR_SEQ_PROPRIETARY) or
sequential
(C55_ADDR_SEQ_LINEAR). Any other
value is unacceptable.

User provides invalid
C55_ERROR_ADDR_SEQ |address sequence input
argument.

User calls this function via | Alternate interface does not support this

C55_ERROR_ALTERNATE . :
- - alternate interface. operation.

Comments

The inputs lowEnabledBlocks, midEnabledBlocks, highEnabledBlocks and
nLargeEnabledBlock are bit-mapped arguments that are used to select the blocks to be
evaluated in the Low/Mid/High/ Large block (128K/256K) address spaces of main array. The
selection of the blocks of the main array is determined by setting/clearing the corresponding
bit in lowEnabledBlocks, midEnabledBlocks, highEnabledBlocks or nLargeEnabledBlocks.

For diagrams of block bit-map definitions of lowEnabledBlocks, midEnabledBlocks,
highEnabledBlocks and nLargeEnabledBlock, refer to ‘FlashErase’ function for more
details.

In case user specifies a break option other than C55_BREAK_NONE, the function is
stopped immediately if any Double Bit Detection or Single Bit Correction occurs. It is
possible to resume the operation by calling ‘FlashArraylIntegrityResume’ or start a new array
integrity check.

3

UM1618 Rev 5 39/51

API specification UM1618

2.8.2

40/51

If no blocks are enabled the C55 ERROR_NO_BLOCK error code is returned.

If user calls this function via alternate interface, the C55 _ERROR_ALTERNATE error code
is returned.

This function does not support to do array integrity check on UTest block.

Assumptions

It assumes that the Flash block is initialized using a ‘Flashinit’ API.

FlashArrayintegritySuspend

Description

This function will check if there is an on-going array integrity check of the Flash and suspend
it via main interface.

Prototype

UINT32 FlashArrayIntegritySuspend (PSSD CONFIG pSSDConfig,
UINT8 *suspendState) ;

Arguments
Table 62. Arguments for FlashArrayintegritySuspend
Argument Description Range
.) . The values in this structure are chip-
pSSDConfig g?rll:]étetzrte? the SSD Configuration dependent. Please refer to Section 2.3 for
’ more details.
suspendState Indicate the suspend state on user | All state values are enumerated in
P test mode after calling the function. | Table 65.

Return values

Table 63. Return values for FlashArrayintegritySuspend

Type Description Possible values

C55_OK

UINT32 Successful completion error code. C55 ERROR_ALTERNATE

Troubleshooting

Table 64. Troubleshooting for FlashArrayintegritySuspend

Returned Error Bits Possible causes Solution

User calls this function via Alternate interface does not

C55_ERROR_ALTERNATE alternate interface. support this operation.

3

UM1618 Rev 5

UM1618

API specification

2.8.3

3

Comments

If user calls this function via alternate interface, a return code of C55_ERROR_ALTERNATE
is returned without doing any operation.

Following table defines and describes various suspend states and associated suspend
codes.

Table 65. Suspend State Definitions

Argument Code Description

There is no array integrity check/margin read

C55_SUS_NOTHING 10 >
operation in-progress.

C55_USER_TEST_SUS 17 The user test operation is in suspended state.

This function should be used together with ‘FlashArrayintegrityResume’. If suspendState is
C55 UTEST_SUS, then ‘FlashArraylintegrityResume’ should be called in order to resume
the operation.

Assumptions

It assumes that the Flash block is initialized using a ‘Flashinit’ API.

FlashArraylntegrityResume

Description

This function checks if there is an on-going array integrity check of the Flash being
suspended and resume it via main interface.

Prototype

UINT32 FlashArrayIntegrityResume (PSSD_CONFIG pSSDConfig,
UINT8 *resumeState) ;

Arguments
Table 66. Arguments for FlashArraylntegrityResume
Argument Description Range
.) . The values in this structure are chip-
pSSDConfig Pointer to the SSD Configuration dependent. Please refer to Section 2.3
Structure. .
for more details.
Indicate the resume state on .
, . All state values are enumerated in
resumeState user’s test mode after calling the
. Table 69.
function.
UM1618 Rev 5 41/51

API specification UM1618

2.8.4

42/51

Return values

Table 67. Return values for FlashArraylntegrityResume

Type Description Possible values

C55_OK

UINT32 Successful completion or error code. C55_ERROR ALTERNATE

Troubleshooting

Table 68. Troubleshooting for FlashArraylntegrityResume

Returned Error Bits Possible causes Solution

User calls this function via Alternate interface does not support

C55_ERROR_ALTERNATE alternate interface. this operation.

Comments

If user calls this function via alternate interface, a return code of C55_ERROR_ALTERNATE
is returned without doing any operation.

This function can also be used to resume an array integrity check/margin read check when it
is stopped by a Double Bit Detection or a Single Bit Correction.

Following table defines and describes various resume states and associated resume codes.

Table 69. Resume state definitions

Argument Code Description

There is no array integrity check/margin read

C55_RES_NOTHING 20 .
- - operation suspended.

C55_RES_USER_TEST 24 The user test operation is in in-progress state.

Assumptions

It assumes that the Flash block is initialized using a ‘Flashinit’ API.

UserMarginReadCheck

Description

This function checks the user margin reads of the Flash via main interface. The user
specified margin level is used for reads and the operation is done on the specified blocks.
The MISR values calculated by the hardware are compared to the values passed by the
user, if they are not the same, then an error code is returned.

In order to support asynchronous design, this function stores the necessary information to
“pCtxData” (ex: user provided MISR value) and is terminated without waiting for completion
of this operation. User should call ‘FlashCheckStatus’ to check the on-going status of this
function. And once finish, it does comparison between MISR values provided by user which
are currently stored in “pCtxData” and MISR values generated by hardware and return an
appropriate code according to this compared result.

UM1618 Rev 5 ‘YI

UM1618

API specification

Prototype

UINT32
UINT32
UINT32
UINT32
NLARGE

UINT8 marginLevel,

PMISR pMisrValue,

PCONTEXT DATA pCtxData) ;

UserMarginReadCheck (PSSD CONFIG pSSDConfig,
lowEnabledBlocks,
midEnabledBlocks,
highEnabledBlocks,
_ BLOCK_SEL nLargeEnabledBlocks,
UINT8 breakOption,

Arguments
Table 70. Arguments for UserMarginReadCheck
Argument Description Range
.) . The values in this structure are chip-
pSSDConfig Pointer fo the SSD Configuration dependent. Please refer to Section 2.3
Structure. .
for more details.
lowEnabledBlocks To select the array blOCch' in low Refer to ‘FlashErase’ for details.
address space for checking.
To select the array blocks in mid
midEnabledBlocks address space for being Refer to ‘FlashErase’ for details.
evaluated.
To select the array blocks in high
highEnabledBlocks address space for being Refer to ‘FlashErase’ for details.
evaluated.
To select the array blocks in Large
nLargeEnabledBlocks | (128K/256K) address space for Refer to ‘FlashErase’ for details.
being evaluated.
breakOption To spgmfy an OptIOI’? to allow Refgr to ‘FlashArrayIntegrityCheck’ for
stopping the operation on errors. | details.
)) Selects the margin level that is being
Level :;0 dete;rglng the margin Ie(\j/el 0 | checked. Must be one of the values:
marginLeve Cseuciz uring margin rea _ C55_MARGIN_LEVEL ERASE
' — C55_MARGIN_LEVEL_PROGRAM
Address of a MISR structure . . ,
pMISRValue contains the MISR values Refgr to ‘FlashArrayIntegrityCheck’ for
details.
calculated by the user.
Address of a context data A data structure for storing context
pCtxData)
structure. variables

3

UM1618 Rev 5

43/51

API specification

UM1618

44/51

Return values

Table 71. Return values for UserMarginReadCheck

value.

Type Description Possible values
C55_OK
"y o C55_ERROR_ALTERNATE
UINT32 Successful completion or error | ~55 FRROR MARGIN_LEVEL

C55_ERROR_NO_BLOCK
C55_ERROR_MISMATCH

Troubleshooting

Table 72. Troubleshooting for UserMarginReadCheck

Returned Error Bits

Possible causes

Solution

C55_ERROR_MISMATCH

The MISR values
calculated by the user are
incorrect.

Re-calculate the MISR values using
the correct Data and margin level.

The MISR values
calculated by the
Hardware are incorrect.

Hardware Error.

C55_ERROR_NO_BLOCK

None of the Blocks are
enabled for Factory
Margin Read Check

Enable any of the blocks using
variables lowEnabledBlocks,
midEnabledBlocks,
highEnabledBlocks and
nLargeEnabledBlocks

C55_ERROR_MARGIN_LEVEL

User provides invalid
margin level.

The margin level input argument must
be either program level
(C55_MARGIN_LEVEL_PROGRAM)
or erase level
(C55_MARGIN_LEVEL_ERASE). Any
other value is unacceptable.

C55_ERROR_ALTERNATE

User calls this function via
alternate interface.

Alternate interface does not support
this operation.

Comments

Refer to ‘FlashArraylIntegrityCheck’ for details.

Assumptions

It assumes that the Flash block is initialized using a ‘Flashinit’ API.

UM1618 Rev 5

3

UM1618

Code sizes and stack usage

Appendix A Code sizes and stack usage

Note:

3

Table 73. Code size and stack usage for SPC574Kxx

APl name Code size (in bytes) | Stack usage (in bytes)
Flashlnit() 192 48
FlashProgram() 312 96
ProgramVerify() 184 80
FlashErase() 440 80
FlashEraseAlternate() 110 N/A
FlashCheckStatus() 858 80
BlankCheck () 154 64
CheckSum() 160 64
FlashSuspend() 240 48
FlashResume() 162 64
GetlLock() 322 96
SetlLock() 326 80
OverPgmProtGetStatus() 282 80
FlashArraylntegrityCheck() 598 112
FlashArraylntegrityResume() 182 64
FlashArraylIntegritySuspend() 126 48
UserMarginReadCheck() 620 112

Code size is measured on Diab compiler with version 5.7.0.0 on vle mode and SPC574Kxx

is selected.

Stack size is measured on CodeWarrior compiler v2.7 on SPC574Kxx.

UM1618 Rev 5

45/51

Write/erase times UM1618
Appendix B Write/erase times
Table 74. Write/erase times for SPC57EM80xx
Operation Time (ms)

Note:

Note:

46/51

FlashProgram (PROGRAMMABLE_SIZE = 128)

0.128444444

ProgramVerify (NUM_WORDS_PROGRAM_VERIFY_CYCLE = 80) 0.282888889
CheckSum (NUM_WORDS_CHECK_SUM_CYCLE = 120) 0.282444444
FlashErase (one block) 0.031481481

BlankCheck (NUM_WORDS_BLANK_CHECK_CYCLE = 90)

0.314962963

Table 75. Write/erase times for SPC574Kxx

The timing values are measured on SPC57EM80xx device with 13.5MHz of system clock
and on VLE mode.

Operation Time (ms)
FlashProgram (PROGRAMMABLE_SIZE = 128) 0.0192
ProgramVerify (NUM_WORDS_PROGRAM_VERIFY_CYCLE = 80) 0.038225
CheckSum (NUM_WORDS_CHECK_SUM_CYCLE = 120) 0.041325
FlashErase (one block) 0.00475
BlankCheck (NUM_WORDS_BLANK_CHECK_CYCLE = 90) 0.042525

UM1618 Rev 5

The timing values are measured on SPC574Kxx device with 80MHz of system clock and on
VLE mode.

3

UM1618 System requirements

Appendix C System requirements

The C55 SSD is designed to support a single C55 Flash module embedded on
microcontrollers. Before using this SSD on a different derivative microcontroller, user has to
provide the information specific to the derivative through a configuration. The table below
provides the hardware/tool which is necessary for using this driver.

Table 76. System requirements

Tool Name Description Version No
CodeWarrior IDE Development tool 2.7
Diab PowerPC compiler Compiler 5.7.0.0
GreenHills Development tool 6.1.4
P/E Debugger

3

UM1618 Rev 5 47/51

Acronyms

UM1618

Appendix D Acronyms

48/51

Table 77. Acronyms

Abbreviation

Complete name

API Application Programming Interface
BIU Bus Interface Unit

ECC Error Correction Code

EVB Evaluation Board

RWwW Read While Write

SSD Standard Software Driver

UM1618 Rev 5

3

UM1618 Document references

Appendix E Document references

1. SPC57EMB80xx - 32-bit Power Architecture® based MCU with up to 4 Mbyte Flash and
304 Kbyte RAM memories (RM0314, DocID 022530)

2. SPC574Kxx - 32-bit Power Architecture® based MCU for automotive applications
(RM0334, DoclD 023671)

3

UM1618 Rev 5 49/51

Revision history

UM1618

Revision history

50/51

Table 78. Document revision history

Date Revision Changes

11-Mar-2013 1 Initial release.

18-Sep-2013 2 Updated Disclaimer.

05-Aug-2014 3 Updated Introduction.
Updated Section 2.3: SSD configuration parameter and

21-Apr-2016 4 Section 2.5: Other data structures, Table 4: Block information
structure field definitions.

15-Jul-2020 5 Updated title.

UM1618 Rev 5

3

UM1618

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other
product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics — All rights reserved

3

UM1618 Rev 5 51/51

	1 Introduction
	1.1 Document overview
	1.2 Features

	2 API specification
	2.1 General overview
	2.2 General type definitions
	2.3 SSD configuration parameter
	2.4 Context data structure
	2.5 Other data structures
	2.6 Return codes
	2.7 Normal mode functions
	2.7.1 FlashInit
	2.7.2 FlashErase
	2.7.3 FlashEraseAlternate
	2.7.4 BlankCheck
	2.7.5 FlashProgram
	2.7.6 ProgramVerify
	2.7.7 CheckSum
	2.7.8 FlashCheckStatus
	2.7.9 FlashSuspend
	2.7.10 FlashResume
	2.7.11 GetLock
	2.7.12 SetLock
	2.7.13 OverPgmProtGetStatus

	2.8 User Test Mode Functions
	2.8.1 FlashArrayIntegrityCheck
	2.8.2 FlashArrayIntegritySuspend
	2.8.3 FlashArrayIntegrityResume
	2.8.4 UserMarginReadCheck

	Appendix A Code sizes and stack usage
	Appendix B Write/erase times
	Appendix C System requirements
	Appendix D Acronyms
	Appendix E Document references
	Revision history

