
July 2020 UM1618 Rev 5 1/51

1

UM1618
User manual

Standard Software Driver for C55 Flash module embedded on
SPC57 K, L and S line microcontroller

Introduction

This document is the user manual for the Standard Software Driver (SSD) for single C55
Flash module integrated in SPC574Kxx, SPC572Lxx, SPC570Sxx and SPC574Sxx
devices.

The SSD is a set of APIs that enables user application to operate on the Flash module
embedded on a microcontroller. The C55 SSD contains a set of functions to program/erase
a single C55 Flash module.

The C55 Standard Software Driver (SSD) Flash provides the following APIs:

 FlashInit

 FlashErase

 FlashEraseAlternate

 BlankCheck

 FlashProgram

 ProgramVerify

 CheckSum

 FlashCheckStatus

 FlashSuspend

 FlashResume

 GetLock

 SetLock

 OverPgmProtGetStatus

 FlashArrayIntegrityCheck

 FlashArrayIntegritySuspend

 FlashArrayIntegrityResume

 UserMarginReadCheck

www.st.com

http://www.st.com

Contents UM1618

2/51 UM1618 Rev 5

Contents

1 Introduction . 6

1.1 Document overview . 6

1.2 Features . 6

2 API specification . 7

2.1 General overview . 7

2.2 General type definitions . 7

2.3 SSD configuration parameter . 7

2.4 Context data structure . 8

2.5 Other data structures . 9

2.6 Return codes .11

2.7 Normal mode functions . 12

2.7.1 FlashInit . 12

2.7.2 FlashErase . 13

2.7.3 FlashEraseAlternate . 17

2.7.4 BlankCheck . 18

2.7.5 FlashProgram . 20

2.7.6 ProgramVerify . 22

2.7.7 CheckSum . 24

2.7.8 FlashCheckStatus . 26

2.7.9 FlashSuspend . 28

2.7.10 FlashResume . 30

2.7.11 GetLock . 32

2.7.12 SetLock . 34

2.7.13 OverPgmProtGetStatus . 36

2.8 User Test Mode Functions . 37

2.8.1 FlashArrayIntegrityCheck . 37

2.8.2 FlashArrayIntegritySuspend . 40

2.8.3 FlashArrayIntegrityResume . 41

2.8.4 UserMarginReadCheck . 42

Appendix A Code sizes and stack usage . 45

UM1618 Rev 5 3/51

UM1618 Contents

3

Appendix B Write/erase times . 46

Appendix C System requirements . 47

Appendix D Acronyms . 48

Appendix E Document references . 49

Revision history . 50

List of tables UM1618

4/51 UM1618 Rev 5

List of tables

Table 1. Type definitions. 7
Table 2. SSD configuration structure field definition. 8
Table 3. Context data structure field definitions . 9
Table 4. Block information structure field definitions . 9
Table 5. Large block select structure field definitions . 10
Table 6. MISR structure field definitions . 10
Table 7. Return codes . 11
Table 8. Arguments for FlashInit. 12
Table 9. Return values for FlashInit . 12
Table 10. Arguments for FlashErase . 13
Table 11. Return values for FlashErase . 14
Table 12. Troubleshooting for FlashErase . 15
Table 13. Bit allocation for blocks in low address space . 16
Table 14. Bit allocation for blocks in middle address space . 16
Table 15. Bit allocation for blocks in high address space . 16
Table 16. Bit Allocation for Blocks in the first Large Address Space . 16
Table 17. Bit allocation for blocks in the second large address space . 16
Table 18. Arguments for FlashEraseAlternate . 17
Table 19. Return values for FlashEraseAlternate. 17
Table 20. Troubleshooting for FlashEraseAlternate . 17
Table 21. Arguments for BlankCheck . 19
Table 22. Return values for BlankCheck . 19
Table 23. Troubleshooting for BlankCheck. 19
Table 24. Arguments for FlashProgram . 20
Table 25. Return values for FlashProgram. 21
Table 26. Troubleshooting for FlashProgram . 21
Table 27. Arguments for ProgramVerify . 23
Table 28. Return values for ProgramVerify . 23
Table 29. Troubleshooting for ProgramVerify . 24
Table 30. Arguments for CheckSum. 25
Table 31. Return values for CheckSum . 25
Table 32. Troubleshooting for CheckSum . 25
Table 33. Arguments for FlashCheckStatus . 27
Table 34. Return values for FlashCheckStatus . 28
Table 35. Troubleshooting for FlashCheckStatus. 28
Table 36. Arguments for FlashSuspend . 29
Table 37. Return values for FlashSuspend . 29
Table 38. Suspend State Definitions . 29
Table 39. Suspending State vs. C55 Status . 30
Table 40. Arguments for FlashResume . 31
Table 41. Return values for FlashResume . 31
Table 42. Resume state definitions . 31
Table 43. Arguments for GetLock. 32
Table 44. Return values for GetLock . 32
Table 45. Troubleshooting for GetLock . 32
Table 46. Lock indicator definitions . 33
Table 47. blkLockState in low address space. 33
Table 48. blkLockState in middle address space . 34

UM1618 Rev 5 5/51

UM1618 List of tables

5

Table 49. blkLockState in high address space . 34
Table 50. blkLockState in the first large block (128K/256K) address space. 34
Table 51. blkLockState in the second large block space (128K/256K) address space 34
Table 52. blkLockState in UTest block Space . 34
Table 53. Arguments for SetLock . 35
Table 54. Return values for SetLock . 35
Table 55. Troubleshooting for SetLock. 35
Table 56. Arguments for OverPgmProtGetStatus . 36
Table 57. Return values for OverPgmProtGetStatus . 36
Table 58. Troubleshooting for OverPgmProtGetStatus . 36
Table 59. Arguments for FlashArrayIntegrityCheck . 38
Table 60. Return values for FlashArrayIntegrityCheck . 39
Table 61. Troubleshooting for FlashArrayIntegrityCheck . 39
Table 62. Arguments for FlashArrayIntegritySuspend . 40
Table 63. Return values for FlashArrayIntegritySuspend . 40
Table 64. Troubleshooting for FlashArrayIntegritySuspend . 40
Table 65. Suspend State Definitions . 41
Table 66. Arguments for FlashArrayIntegrityResume. 41
Table 67. Return values for FlashArrayIntegrityResume . 42
Table 68. Troubleshooting for FlashArrayIntegrityResume . 42
Table 69. Resume state definitions . 42
Table 70. Arguments for UserMarginReadCheck. 43
Table 71. Return values for UserMarginReadCheck . 44
Table 72. Troubleshooting for UserMarginReadCheck . 44
Table 73. Code size and stack usage for SPC574Kxx . 45
Table 74. Write/erase times for SPC57EM80xx . 46
Table 75. Write/erase times for SPC574Kxx . 46
Table 76. System requirements . 47
Table 77. Acronyms . 48
Table 78. Document revision history . 50

Introduction UM1618

6/51 UM1618 Rev 5

1 Introduction

1.1 Document overview

The roadmap for the document is as follows:

Section 1.2 shows the features of the driver. Appendix C: System requirements details the
system requirement for the driver development.Appendix E: Document references and lists
the documents referred and terms used in making of this document. Appendix D: Acronyms
lists the acronyms used.

Chapter 2 describes the API specifications. In this section there are many sub sections,
which describe the different aspects of the driver. Section 2.1 provides a general overview of
the driver. Section 2.2 mentions about the type definitions used for the driver. Section 2.3
mentions the driver configuration parameters. Section 2.4 and Section 2.5 describe the data
context structure and some other data structures used in this driver. Section 2.6 provides
return code information. Section 2.7 and Section 2.8 provide the detailed description of
normal mode and user’s test mode standard software Flash Driver APIs’ respectively.

1.2 Features

The C55 SSD provides the following features:

 Driver binary built with Variable-Length-Encoding (VLE) instruction set.

 Driver released in binary c-array format to provide compiler-independent support for
non-debug-mode embedded applications.

 Driver released in s-record format to provide compiler-independent support for debug-
mode/JTAG programming tools.

 Each driver function is independent of each other so the end user can choose the
function subset to meet their particular needs.

 Support from word-wise to quad-page-wise programming according to specific
hardware feature for fast programming.

 Position-independent and ROM-able

 Ready-to-use demos illustrating the usage of the driver

 Concurrency support via asynchronous design.

UM1618 Rev 5 7/51

UM1618 API specification

50

2 API specification

2.1 General overview

The C55 SSD has APIs to handle the erase, program, erase verify and program verify
operations on the Flash. Apart from these, it also provides the feature for locking specific
blocks and calculating check sum. This SSD also provides four User Test APIs for checking
the Array Integrity and do user margin read check as well as do suspend/resume those
operations. All functions work as asynchronous model for concurrency event support by
invoking ‘FlashCheckStatus’ function to track the on-going status of targeted operation.

2.2 General type definitions

2.3 SSD configuration parameter

The configuration parameter which is used for SSD operations is explained in this section.
The configuration parameters are handled as structure. User should correctly initialize the
fields including c55RegBase, mainArrayBase, uTestArrayBase,, mainInterfaceFlag,
programmableSize and BDMEnable before passing the structure to SSD functions. The rest
of parameters such as lowBlockInfo, midBlockInfo, highBlockInfo and nLargeBlockNum, are
initialized by ‘FlashInit’ automatically and can be used for other purposes of user’s
application.

Table 1. Type definitions

Derived type Size C language type description

BOOL 8-bits unsigned char

INT8 8-bits signed char

VINT8 8-bits volatile signed char

UINT8 8-bits unsigned char

VUINT8 8-bits volatile unsigned char

INT16 16-bits signed short

VINT16 16-bits volatile signed short

UINT16 16-bits unsigned short

VUINT16 16-bits volatile unsigned short

INT32 32-bits signed long

VINT32 32-bits volatile signed long

UINT32 32-bits unsigned long

VUINT32 32-bits volatile unsigned long

API specification UM1618

8/51 UM1618 Rev 5

The type definition for the structure is given below.

typedef struct _c55_ssd_config

{

UINT32 c55RegBase;

UINT32 mainArrayBase;

BLOCK_INFO lowBlockInfo;

BLOCK_INFO midBlockInfo;

BLOCK_INFO highBlockInfo;

UINT32 nLargeBlockNum;

UINT32 uTestArrayBase;

BOOL mainInterfaceFlag;

UINT32 programmableSize;

BOOL BDMEnable;

} SSD_CONFIG, *PSSD_CONFIG;

2.4 Context data structure

The Context Data structure is used for storing the context variable values while an
operation is in-progress. The operations that support asynchronous model may
require caching the context data including ‘FlashProgram’, ‘ProgramVerify’,
‘BlankCheck’, ‘CheckSum’, ‘FlashArrayIntegrityCheck’, and
‘UserMarginReadCheck’. User needs to declare and initialize a context data

Table 2. SSD configuration structure field definition

Parameter name Type Parameter description

c55RegBase UINT32 The base address of C55 control registers.

mainArrayBase UINT32 The base address of Flash main array.

lowBlockInfo BLOCK_INFO
Block info of the low address space. It includes
information of this block space based on different block
sizes.

midBlockInfo BLOCK_INFO
Block info of the mid address space. It includes
information of this block space based on different block
sizes.

highBlockInfo BLOCK_INFO
Block info of the high address space. It includes
information of this block space based on different block
sizes.

nLargeBlockNum UINT32
Number of blocks of the large address space (128K or
256K).

uTestArrayBase UINT32 The base address of the UTest block.

mainInterfaceFlag BOOL The flag to select main interface or not.

programmableSize UINT32
The maximum programmable size of the C55 Flash
according to specific interface.

BDMEnable BOOL
The debug mode selection. User can enable/disable
debug mode via this input argument.

UM1618 Rev 5 9/51

UM1618 API specification

50

structure before passing it to the above SSD functions. Refer to ‘FlashCheckStatus’
to have a quick view of how to initialize the context data. The context data structure
contents can be reviewed at any time during the operation progress (these
information may be useful in some cases), but they must not be changed for any
reason in order to make the operation completes correctly.

The type definition for the structure is given below.

typedef struct _c55_context_data

{

UINT32 dest;

UINT32 size;

UINT32 source;

UINT32 *pFailedAddress;

UINT32 *pFailedData;

UINT32 *pFailedSource;

UINT32 *pSum;

MISR *pMisr;

void* pReqCompletionFn;

} CONTEXT_DATA, *PCONTEXT_DATA;

2.5 Other data structures

Some other data structures used for SSD operation is explained in this section. They are the
structures used for variable declaration in SSD configuration and context data structures or
input argument declaration in some APIs.

Table 3. Context data structure field definitions

Name Description

dest The context destination address of an operation

size The context size of an operation

source The context source of an operation

pFailedAddress The context failed address of an operation

pFailedData The context failed data of an operation

pFailedSource The context failed source of an operation

pSum The context sum of an operation

pMisr The context MISR values of an operation

pReqCompletionFn Function pointer to the Flash function being checked for status

Table 4. Block information structure field definitions

Name Type Definition

n16KBlockNum UINT32 Number of 16K block.

API specification UM1618

10/51 UM1618 Rev 5

The type definition for the structure is given below:

typedef struct _c55_block_info

{

UINT32 n16KBlockNum;

UINT32 n32KBlockNum;

UINT32 n64KBlockNum;

} BLOCK_INFO, *PBLOCK_INFO;

The type definition for the structure is given below:

typedef struct _c55_nLarge_block_sel

{

UINT32 firstLargeBlockSelect;

UINT32 secondLargeBlockSelect;

} NLARGE_BLOCK_SEL, *PNLARGE_BLOCK_SEL;

The type definition for the structure is given below:

typedef struct _c55_misr

{

UINT32 w0;

UINT32 w1;

UINT32 w2;

UINT32 w3;

n32KBlockNum UINT32 Number of 32K block.

n64KBlockNum UINT32 Number of 64K block.

Table 5. Large block select structure field definitions

Name Type Definition

firstLargeBlockSelect UINT32

Bit map for the first 32 bit block select (from bit 0 to bit
31) in Large block (128K or 256K block) space such that
bit 0 is corresponding to the least significant bit and bit
31 is corresponding to the most significant bit.

secondLargeBlockSelect UINT32

Bit map for the second 32 bit block select (from bit 32 to
upper bits) in Large block (128K or 256K block) space
such that bit 32 is corresponding to the least significant
bit and bit 63 is corresponding to the most significant bit.

Table 6. MISR structure field definitions

Name Type Definition

Wn

n = 0, 1, …9
UINT32

Each Wn is corresponding to each MISR value provided by
user. User must provide totally ten MISR values via this
structure to do user’s test mode functions.

Table 4. Block information structure field definitions (continued)

Name Type Definition

UM1618 Rev 5 11/51

UM1618 API specification

50

UINT32 w4;

UINT32 w5;

UINT32 w6;

UINT32 w7;

UINT32 w8;

UINT32 w9;

} MISR, *PMISR;

2.6 Return codes

The return code is returned to the caller function to notify the success or errors of the API
execution. These are the possible values of return code:

Table 7. Return codes

Name Value Description

C55_OK 0x00000000 The requested operation is successful.

C55_ERROR_ALIGNMENT 0x00000001 Alignment error.

C55_ERROR_BUSY 0x00000004

New program/erase cannot be performed
while a high voltage operation is already in
progress.

New array integrity cannot be performed
while an array integrity is going on.

C55_ERROR_PGOOD 0x00000008 The program operation is unsuccessful.

C55_ERROR_EGOOD 0x00000010 The erase operation is unsuccessful.

C55_ERROR_NOT_BLANK 0x00000020
There is a non-blank Flash memory location
within the checked Flash memory region.

C55_ERROR_VERIFY 0x00000040
There is a mismatch between the source data
and the content in the checked Flash
memory.

C55_ERROR_BLOCK_INDICATOR 0x00000080 Invalid block space indicator.

C55_ERROR_ALTERNATE 0x00000100
The operation does not support alternate
interface for the specified address space.

C55_ERROR_FACTORY_OP 0x00000200 Factory erase/program is locked.

C55_ERROR_MISMATCH 0x00000400

In ‘FlashArrayIntegrityCheck’ or
‘UserMarginReadCheck’, the MISR values
generated by the hardware do not match the
values passed by the user.

C55_ERROR_NO_BLOCK 0x00000800
In ‘FlashArrayIntegrityCheck’ or
‘UserMarginReadCheck’, no block has been
enabled for array integrity check.

C55_ERROR_ADDR_SEQ 0x00001000 Invalid address sequence error.

C55_ERROR_MARGIN_LEVEL 0x00002000 Invalid margin level error.

API specification UM1618

12/51 UM1618 Rev 5

2.7 Normal mode functions

2.7.1 FlashInit

Description

This function initializes an individual Flash module. It accesses to Flash configuration
register and read out the number of block for each memory space of single Flash module.

For each time of using this driver, user must provide the chip-dependent
parameters such as c55RegBase, mainArrayBase, uTestArrayBase,
mainInterfaceFlag, programmableSize and DBMEnable and the rest of parameters
are initialized via this function. Those are block information including number of
block based on block size for each address space.

Prototype

UINT32 FlashInit (PSSD_CONFIG pSSDConfig);

Arguments

Return values

Troubleshooting

None.

Comments

In case of mainInterfaceFlag is main interface, ‘FlashInit’ checks the C55_MCR_RWE,
C55_MCR_EER and C55_MCR_SBC bits, and then clear them if any of them is set.

C55_DONE 0x00010000
The operation has been done and there is no
more this operation requested on
FlashCheckStatus function.

C55_INPROGRESS 0x00020000
The operation is in progress and user need
call FlashCheckStatus more times finish this
operation.

Table 7. Return codes (continued)

Name Value Description

Table 8. Arguments for FlashInit

Argument Description Range

pSSDConfig
Pointer to the SSD
Configuration Structure.

The values in this structure are chip-dependent.
Please refer to Section 2.3 for more details.

Table 9. Return values for FlashInit

Type Description Possible values

UINT32 Indicates successful completion of operation. C55_OK

UM1618 Rev 5 13/51

UM1618 API specification

50

This function also clears PGM/ERS bit in MCR/MCRA register if any of them is set.

Assumptions

None.

2.7.2 FlashErase

Description

This function is to do erase operation for multi-blocks on single Flash module according to
user’s input arguments via main interface. The targeted Flash module status is checked in
advance to return relevant error code if any. This function only sets the high voltage without
waiting for the operation to be finished. Instead, user must call ‘FlashCheckStatus’ function
to confirm the successful completion of this operation.

Prototype

UINT32 FlashErase(PSSD_CONFIG pSSDConfig,

UINT8 eraseOption,

UINT32 lowBlockSelect,

UINT32 midBlockSelect,

UINT32 highBlockSelect,

NLARGEK_BLOCK_SEL nLargeBlockSelect);

Arguments

Table 10. Arguments for FlashErase

Argument Description Range

pSSDConfig
Pointer to the SSD
Configuration Structure.

The values in this structure are chip-dependent.
Please refer to Section 2.3 for more details.

eraseOption
The option is to select
user’s expected erase
operation.

The valid value can be:

C55_ERASE_MAIN (0x0)

C55_ERASE_MAIN_FERS (0x1)

C55_ERASE_UTEST (0x2)

C55_ERASE_UTEST_FERS (0x3)

lowBlockSelect
To select the array blocks
in low address space for
erasing.

Bit-mapped value such that the least significant
bit is at bit 0 of 16K block region (if available),
then 32K block region (if available) and lastly
64K block region (if available). Select the block
in the low address space to be erased by setting
1 to the appropriate bit of lowBlockSelect. If
there is not any block to be erased in the low
address space, lowBlockSelect must be set to 0.

API specification UM1618

14/51 UM1618 Rev 5

Return values

midBlockSelect
To select the array blocks
in mid address space for
erasing.

Bit-mapped value such that the least significant
bit is at bit 0 of 16K block region (if available),
then 32K block region (if available) and lastly
64K block region (if available). Select the block
in the middle address space to be erased by
setting 1 to the appropriate bit of
midBlockSelect. If there is not any block to be
erased in the middle address space,
midBlockSelect must be set to 0.

highBlockSelect
To select the array blocks
in high address space for
erasing.

Bit-mapped value such that the least significant
bit is at bit 0 of 16K block region (if available),
then 32K block region (if available) and lastly
64K block region (if available). Select the block
in the high address space to be erased by
setting 1 to the appropriate bit of
highBlockSelect. If there is not any block to be
erased in the high address space,
highBlockSelect must be set to 0.

nLargeBlockSelect

To select the array blocks
in Large (128K or 256K)
address space for erasing.
It includes two elements to
decode the first half of
Large block select and the
second half of Large block
select.

Bit-mapped value such that the least significant
bit is at bit 0 of Large block region (if available).
Select the block in the Large address space to
be erased by setting 1 to the appropriate bit of
nLargeBlockSelect. If there is not any block to
be erased in the Large address space,
nLargeBlockSelect must be set to 0.

Table 11. Return values for FlashErase

Type Description Possible values

UINT32 Successful completion or error value.

C55_OK

C55_ERROR_ERASE_OPTION

C55_ERROR_BUSY

C55_ERROR_FACTORY_OP

Table 10. Arguments for FlashErase (continued)

Argument Description Range

UM1618 Rev 5 15/51

UM1618 API specification

50

Troubleshooting

Comments

'FlashErase' always uses main interface to complete an erase operation and ignores the
value of the ‘mainInterfaceFlag’ in the SSD configuration structure. However, it is
recommended that user should explicitly set this flag value to TRUE before calling
'FlashErase'.

The eraseOption input argument provides an option for user to select his expected erase
operation. If user wants to do factory erase, he must select eraseOption as
C55_ERASE_MAIN_FERS or C55_ERASE_UTEST_FERS. If user wants to do normal
erase operation on main array, eraseOption must be C55_ERASE_MAIN and lastly, user
must select C55_ERASE_UTEST to do erase operation on UTest block.

The factory erase feature can be used to provide a faster erase. But the feature cannot be
performed if the data at “diary” location in the UTest NVM space contains at least one zero
at reset. In that case, each try to perform factory erase causes the error
C55_ERROR_FACTORY_OP be returned.

The inputs lowBlockSelect, midBlockSelect, highBlockSelect and nLargeBlockSelect are
bit-mapped arguments that are used to select the blocks to be erased in the
Low/Mid/High/Large address spaces of main array. The selection of the blocks of the main
array is determined by setting/clearing the corresponding bit in lowBlockSelect,
midBlockSelect, highBlockSelect or nLargeBlockSelect.

The bit allocations for blocks in one address space are: the least significant bit is
corresponding to 16K block region and start with block 0 (if available), then 32K block region
(if available), then 64K block region (if available), and lastly 8K block region (if available).
The following diagrams show the formats of lowBlockSelect, midBlockSelect,
highBlockSelect and nLargeBlockSelect for the C55 module.

The Large block select includes two elements to decode the block selection for first 32
blocks (from bit 0 to bit 31) and second 32 blocks (from bit 32 to upper bits) separately.

Below is example for block allocation and bit map for specific Flash module with two blocks
for each block size in low, middle or high address space. The invalid blocks are marked as
reserved. And the number of valid bits may be various according to specific Flash module.

Table 12. Troubleshooting for FlashErase

Error codes Possible causes Solution

C55_ERROR_ERASE_OPTION Invalid erase option.
Use one of the valid values for the
option.

C55_ERROR_BUSY

New erase operation
cannot be performed
because there is
program/erase sequence in
progress on the Flash
module.

Wait until all previous program/erase
operations on the Flash module
finish. Possible cases that erase
cannot start are:

– erase in progress (MCR-ERS is
high);

– program in progress (MCR-PGM
is high);

C55_ERROR_FACTORY_OP
The factory erase could not
be performed.

Factory erase is locked by the
system due to the data at the UTest
NVM ‘diary’ location.

API specification UM1618

16/51 UM1618 Rev 5

If the selected main array blocks or UTest block are locked for erasing, those blocks are not
erased, but ‘FlashErase’ still returns C55_OK. User needs to check the erasing result with
the ‘BlankCheck’ function.

It is impossible to erase any Flash block when a program or erase operation is already in
progress on C55 module. ‘FlashErase’ returns C55_ERROR_BUSY when trying to do so. In
addition, when ‘FlashErase’ is running, it is unsafe to read the data from the Flash partitions
having one or more blocks being erased. Otherwise, it causes a Read-While-Write error.

Assumptions

It assumes that the Flash block is initialized using a ‘FlashInit’ API.

Table 13. Bit allocation for blocks in low address space

MSB LSB

bit 31 … bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

reserved … 64K block 1 64K block 0 32K block 1 32K block 0 16K block 1 16K block 0

Table 14. Bit allocation for blocks in middle address space

MSB LSB

bit 31 … bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

reserved … 64K block 1 64K block 0 32K block 1 32K block 0 16K block 1 16K block 0

Table 15. Bit allocation for blocks in high address space

MSB LSB

bit 31 … bit 9 bit 8 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

reserved …
8K

block
3

8K
block

2

8K
block

1

8K
block

0

64K
block

1

64K
block

0

32K
block

1

32K
block

0

16K
block

1

16K
block 0

Table 16. Bit Allocation for Blocks in the first Large Address Space

MSB LSB

bit 31 … bit 16 bit 15 bit 14 … bit 1 bit 0

block 31 … block 16 block 15 block 14 … block 1 block 0

Table 17. Bit allocation for blocks in the second large address space

MSB LSB

bit 31 … bit 16 bit 15 bit 14 … bit 1 bit 0

reserved … reserved block 47 block 46 … block 33 block 32

UM1618 Rev 5 17/51

UM1618 API specification

50

2.7.3 FlashEraseAlternate

Description

This function is to do erase operation for single block on single Flash module according to
user’s input arguments via alternate interface. The targeted Flash module status is checked
in advance to return relevant error code if any. This function only set the high voltage without
waiting for the operation to be finished. Instead, user must call ‘FlashCheckStatus’ function
to confirm the successful completion of this operation.

Prototype

UINT32 FlashEraseAlternate (PSSD_CONFIG pSSDConfig,

UINT32 interlockAddress);

Arguments

Return values

Troubleshooting

Table 18. Arguments for FlashEraseAlternate

Argument Description Range

pSSDConfig
Pointer to the SSD
Configuration Structure.

The values in this structure are chip-
dependent. Please refer to Section 2.3 for
more details.

interlockAddress
The interlock address which
points to the block needs to be
erased.

The interlockAddress must fall in the block
that user wants to erase and must be aligned
to word.

Table 19. Return values for FlashEraseAlternate

Type Description Possible values

UINT32 Successful completion or error value.

C55_OK

C55_ERROR_BUSY

C55_ERROR_ALIGNMENT

Table 20. Troubleshooting for FlashEraseAlternate

Returned Error Bits Description Solution

C55_ERROR_BUSY

New erase operation
cannot be performed
because there is
program/erase sequence in
progress on the Flash
module.

Wait until all previous program/erase
operations on the Flash module to finish.
Possible cases that erase cannot start
are:

– erase in progress (MCR-ERS is high);

– program in progress (MCR-PGM is
high);

C55_ERROR_ALIGNMENT
The input argument of
interlockAddress is not
aligned by word.

The input argument of interlockAddress
must be aligned by word.

API specification UM1618

18/51 UM1618 Rev 5

Comments

FlashEraseAlternate’ always uses alternate interface to complete an erase operation and
ignores the value of the ‘mainInterfaceFlag’ in the SSD configuration structure. However, it
is recommended that user should explicitly set this flag value to FALSE before calling
FlashEraseAlternate’.

The ‘FlashEraseAlternate’ must not be used to erase any block in the Large address space.
In that case the function only returns C55_OK without doing the operation.

If the selected main array blocks are locked for erasing, those blocks are not erased, but
‘FlashEraseAlternate’ still returns C55_OK. User needs to check the erasing result with the
‘BlankCheck’ function.

It is impossible to erase any Flash block when a program or erase operation is already in
progress on C55 module. ‘FlashEraseAlternate’ returns C55_ERROR_BUSY when trying to
do so.

In addition, when ‘FlashEraseAlternate’ is running, it is unsafe to read the data from the
Flash partitions having one or more blocks being erased. Otherwise, it causes a Read-
While-Write error.

Assumptions

It assumes that the Flash block is initialized using a ‘FlashInit’ API.

2.7.4 BlankCheck

Description

This function is to do blank check for the previous erase operation. It verifies whether the
expected Flash range is blank or not. In case of mismatch, the failed address and failed
destination is saved and relevant error code is returned.

This function only does blank check for given number of bytes which can terminate this
function within expected time interval. Thus, if user wants to do blank check for large size,
the rest of information need to be blank checked is stored in “pCtxData” variable and
‘FlashCheckStatus’ must be called periodically to do the next blank check for next
destination based on all data provided in “pCtxData”.

Prototype

UINT32 BlankCheck (PSSD_CONFIG pSSDConfig,

UINT32 dest,

UINT32 size,

UINT32 *pFailedAddress,

UINT32 *pFailedData,

PCONTEXT_DATA pCtxData);

UM1618 Rev 5 19/51

UM1618 API specification

50

Arguments

Return values

Troubleshooting

Comments

If the blank checking fails, the first failing address is saved to pFailedAddress, and the failing
data in Flash is saved to pFailedData. The contents pointed by pFailedAddress and

Table 21. Arguments for BlankCheck

Argument Description Range

pSSDConfig
Pointer to the SSD Configuration
Structure.

The values in this structure are chip-
dependent. Please refer to Section 2.3 for
more details.

dest
Destination address to be
checked.

Any accessible address aligned on word
boundary in either main array or UTest
block.

size
Size, in bytes, of the Flash region
to check.

If size = 0, the return value is C55_OK. It
should be word aligned and its
combination with dest should fall in either
main array or UTest block.

pFailedAddress
Return the address of the first
non-blank Flash location in the
checking region

Only valid when this function returns
C55_ERROR_NOT_BLANK.

pFailedData
Return the content of the first
non-blank Flash location in the
checking region.

Only valid when this function returns
C55_ERROR_NOT_BLANK.

pCtxData
Address of context data
structure.

A data structure for storing context
variables.

Table 22. Return values for BlankCheck

Type Description Possible values

UINT32 Successful completion or error value.
C55_OK

C55_ERROR_ALIGNMENTC55_ERRO
R_NOT_BLANK

Table 23. Troubleshooting for BlankCheck

Returned Error Bits Description Solution

C55_ERROR_ALIGNMENT
The dest, size provided
by user is not aligned by
word.

The dest, size must be word aligned.

C55_ERROR_NOT_BLANK
There is a non-blank
area within targeted
Flash range.

Call ‘FlashErase’ to re-erase the
targeted Flash range and do blank
check again.

API specification UM1618

20/51 UM1618 Rev 5

pFailedData are updated only when there is a non-blank location in the checked Flash
range.

If user wants to do blank check for large size, this Flash size is divided into many small
portions defined by NUM_WORDS_BLANK_CHECK_CYCLE such that blank check for one
small portion can be finished within expected time interval. In this case, ‘BlankCheck’
function plays a role to kick-off this blank check operation by finishing blank check for the
first portion after back-up all necessary information to pCtxData variable. And blank check
from the second portion is done within ‘FlashCheckStatus’ function. Thus, user must call
‘FlashCheckStatus’ to finish all his expected operations defined by size argument.

Assumptions

It assumes that the Flash block is initialized using a ‘FlashInit’ API.

2.7.5 FlashProgram

Description

This function is to do program operation for single or multi-programmable size via different
interface on targeted Flash module according to user’s input arguments. The targeted Flash
module status is checked in advance to return relevant error code if any. This function only
set the high voltage without waiting for the operation to be finished. Instead, user must call
‘FlashCheckStatus’ function to confirm the successful completion of this operation.

In case of programming for multi-programmable size, the rest of information need to be
programmed is stored in “pCtxData” variable and the ‘FlashCheckStatus’ function is called
periodically by user to confirm the successful completion of the previous destination and
once finish, this function invokes ‘FlashProgram’ more times to program the next destination
based on data provided in “pCtxData” until finish all.

Prototype

UINT32 FlashProgram (PSSD_CONFIG pSSDConfig,

BOOL factoryPgmFlag,

UINT32 dest.

UINT32 size,

UINT32 source,

PCONTEXT_DATA pCtxData);

Arguments

Table 24. Arguments for FlashProgram

Argument Description Range

pSSDConfig
Pointer to the SSD Configuration
Structure.

The values in this structure are chip-
dependent. Please refer to Section 2.3 for
more details.

factoryPgmFlag
A flag indicate to do whether
factory program or not.

TRUE to do factory program, FALSE to do
normal program.

dest
Destination address to be
programmed in Flash memory.

Any accessible address aligned on double
word boundary in either main array or
UTest space.

UM1618 Rev 5 21/51

UM1618 API specification

50

Return values

Troubleshooting

size
Size, in bytes, of the Flash region
to be programmed.

If size = 0, C55_OK is returned.

It should be multiple of word and its
combination with dest should fall in either
main array or UTest block.

source Source program buffer address.
This address must reside on word
boundary.

pCtxData Address of context data structure.
A data structure for storing context
variables

Table 25. Return values for FlashProgram

Type Description Possible values

UINT32
Successful completion or error
value.

C55_OK

C55_ERROR_ALTERNATE

C55_ERROR_ALIGNMENTC55_ERROR_BUSY

C55_ERROR_FACTORY_OP

Table 26. Troubleshooting for FlashProgram

Returned Error Bits Description Solution

C55_ERROR_ALTERNATE

This error occurs when
user wants to perform
factory program via the
alternate interface.

Use main interface if want to perform
factory program or perform normal
program if want to use alternate
interface.

C55_ERROR_ALIGNMENT
This error indicates that
dest/size/source isn’t
properly aligned.

Check if dest is aligned on double word
(64-bit) boundary. Check if size and
source are aligned on word boundary.

C55_ERROR_BUSY

There is program
operation is in progress
or erase operation is
going on and not in
suspended state.

Wait for the on-going high voltage
operation to finish. Flash program
operation can be started if:

– There is no program or erase
operation being in progress.

– If erase operation is in progress and it
must be in suspended state.

C55_ERROR_FACTORY_OP

The factory program
could not be performed
due to the data at the
‘diary’ location in the
UTest NVM contains at
least one zero.

Check the data at the ‘diary’ location in
the UTest NVM or just perform a normal
program.

Table 24. Arguments for FlashProgram (continued)

Argument Description Range

API specification UM1618

22/51 UM1618 Rev 5

Comments

After performing a program, ‘ProgramVerify’ should be used to verify the programmed data
is correct or not.

‘FlashProgram’ checks the mainInterfaceFlag in the SSD configuration to decide which
interface to be used for the operation, the main interface or the alternate interface. User
should explicitly set this parameter before calling the function.

This function also provides a faster method for user to perform, factory program. But the
feature cannot be performed if the data at “diary” location in the UTest NVM space contains
at least one zero at reset. In that case, each try to perform factory program cause the error
C55_ERROR_FACTORY_OP be returned.

If the selected main array blocks are locked for programming, those blocks are not
programmed, and ‘FlashProgram’ returns C55_OK.

If user wants to program to Large block space via alternate interface, this function still
returns C55_OK without doing any program operation.

It is impossible to program any Flash block when a program or erase operation has already
been in progress on C55 module. ‘FlashProgram’ returns C55_ERROR_BUSY when doing
so. However, user can use the ‘FlashSuspend’ function to suspend an on-going erase
operation on one block to perform a program operation on another block.

It is unsafe to read the data from the Flash partitions having one or more blocks being
programmed when ‘FlashProgram’ is running. Otherwise, it causes a Read-While-Write
error.

If user wants to do program for multi-programmable size, this function plays a role to kick-off
this operation by finishing program for the first programmable size after back-up all
necessary information to pCtxData variable. And programming from the second
programmable size is done within ‘FlashCheckStatus’ function. Thus, user must call
‘FlashCheckStatus’ to finish all his expected operations defined by size argument.

Assumptions

It assumes that the Flash block is initialized using a ‘FlashInit’ API. And Flash location must
be in erased state before calling ‘FlashProgram’ API.

2.7.6 ProgramVerify

Description

This function is to verify the previous program operation. It verifies if the programmed Flash
range matches the corresponding source data buffer. In case of mismatch, the failed
address, failed destination and failed source are saved and relevant error code are
returned.

This function only does verification for given number of bytes which can terminate this
function within expected time interval. Thus, if user wants to do Flash verification for large
size, the rest of information need to be verified is stored in “pCtxData” variable and
‘FlashCheckStatus’ must be called periodically to do the next verification for next destination
based on all data provided in “pCtxData”.

UM1618 Rev 5 23/51

UM1618 API specification

50

Prototype

UINT32 ProgramVerify (PSSD_CONFIG pSSDConfig,

UINT32 dest,

UINT32 size,

UINT32 source,

UINT32 *pFailedAddress,

UINT32 *pFailedData,

UINT32 *pFailedSource,

PCONTEXT_DATA pCtxData);

Arguments

Return values

Table 27. Arguments for ProgramVerify

Argument Description Range

pSSDConfig
Pointer to the SSD
Configuration Structure.

The values in this structure are chip-
dependent. Please refer to Section 2.3 for
more details.

dest
Destination address to be
verified in Flash memory.

Any accessible address aligned on word
boundary in main array or UTest block.

size
Size, in byte, of the Flash
region to verify.

If size = 0, C55_OK is returned.

It must be word aligned and its combination
with dest should fall within main array or UTest
block.

source Verify source buffer address. This address must reside on word boundary.

pFailedAddress
Return first failing address in
Flash.

Only valid when the function returns
C55_ERROR_VERIFY.

pFailedData
Returns first mismatch data in
Flash.

Only valid when this function returns
C55_ERROR_VERIFY.

pFailedSource
Returns first mismatch data in
buffer.

Only valid when this function returns
C55_ERROR_VERIFY.

pCtxData
Address of context data
structure.

A data structure for storing context variables

Table 28. Return values for ProgramVerify

Type Description Possible values

UINT32
Successful completion or error
value.

C55_OK

C55_ERROR_ALIGNMENTC55_ERROR_VERIFY

API specification UM1618

24/51 UM1618 Rev 5

Troubleshooting

Comments

The contents pointed by pFailedAddress, pFailedData and pFailedSource are updated only
when there is a mismatch between the source and destination regions.

If user wants to do program verify for large size, this Flash size is divided into many small
portions defined by NUM_WORDS_PROGRAM_VERIFY_CYCLE such that verification for
one small portion can be finished within expected time interval. In this case, ‘ProgramVerify’
function plays a role to kick-off this verification operation by finishing verification for the first
portion after back-up all necessary information to pCtxData variable. And verification from
the second portion is done within ‘FlashCheckStatus’ function. Thus, user must call
‘FlashCheckStatus’ to finish all his expected operations defined by size argument.

Assumptions

It assumes that the Flash block is initialized using a ‘FlashInit’ API.

2.7.7 CheckSum

Description

This function performs a 32-bit sum over the specified Flash memory range without carry,
which provides a rapid method for data integrity checking.

This function only does Flash check sum for given number of bytes which can terminate this
function within expected time interval. Thus, if user wants to do check sum for large size, the
rest of information need to be checked sum is stored in “pCtxData” variable and
‘FlashCheckStatus’ must be called periodically to do the next check sum for next destination
based on all data provided in “pCtxData”.

Prototype

UINT32 CheckSum (PSSD_CONFIG pSSDConfig,

UINT32 dest,

UINT32 size,

UINT32 *pSum,

PCONTEXT_DATA pCtxData);

Table 29. Troubleshooting for ProgramVerify

Returned Error Bits Description Solution

C55_ERROR_ALIGNMENT
This error indicates that
dest/size/source isn’t
properly aligned.

Check if dest , size and source are
aligned on word (32-bit) boundary.

C55_ERROR_VERIFY
There is a mismatch
between destination and
source data.

Check if the data in source is correct. If
yes, the previous program operation is
failed. User should re-erase that Flash
location and do program again.

UM1618 Rev 5 25/51

UM1618 API specification

50

Arguments

Return values

Troubleshooting

Comments

In order to provide correct pSum calculation, this input argument must not be NULL pointer.
However, this API does not return any error code if user tries doing so.

If user wants to do checksum for large size, this Flash size is divided into many small
portions defined by NUM_WORDS_CHECK_SUM_CYCLE such that checksum for one
small portion can be finished within expected time interval. In this case, ‘CheckSum’
function plays a role to kick-off this operation by finishing checksum for the first portion after
back-up all necessary information to pCtxData variable. And checksum from the second
portion is done within ‘FlashCheckStatus’ function. Thus, user must call ‘FlashCheckStatus’
to finish all the expected operations defined by size argument.

Table 30. Arguments for CheckSum

Argument Description Range

pSSDConfig
Pointer to the SSD
Configuration Structure.

The values in this structure are chip-dependent.
Please refer to Section 2.3 for more details.

dest
Destination address to be
summed in Flash memory.

Any accessible address aligned on word boundary
in either main array or UTest block.

size
Size, in bytes, of the Flash
region to check sum.

If size is 0 and the other parameters are all valid,
C55_OK is returned. It must be word aligned and its
combination with dest should fall within main array
or UTest block.

pSum Returns the sum value.

0x00000000 - 0xFFFFFFFF. Note that this value is
only valid when the function returns C55_OK.

User must not pass to this function with NULL
pointer of pSum.

pCtxData
Address of context data
structure.

A data structure for storing context variables.

Table 31. Return values for CheckSum

Type Description Possible values

UINT32 Successful completion or error value.
C55_OK

C55_ERROR_ALIGNMENT

Table 32. Troubleshooting for CheckSum

Returned Error Bits Description Solution

C55_ERROR_ALIGNMENT
This error indicates that
dest/size isn’t properly
aligned.

Check if dest and size are aligned on
word (32-bit) boundary.

API specification UM1618

26/51 UM1618 Rev 5

Assumptions

It assumes that the Flash block is initialized using a ‘FlashInit’ API.

2.7.8 FlashCheckStatus

Description

This function checks the status of on-going high voltage operation in user mode or status of
array integrity check in user test mode. The user’s application code should call this function
to determine whether the operation is done or failed or in progress. In addition, this function
is used to recover the un-completed task in FlashProgram, ProgramVerify, CheckSum ,
BlankCheck in case user wants to call those functions with very big size.

In case of invoking program operation for multi-programmable size, after confirming that the
previous program operation has been finished successfully, this function calls FlashProgram
one more time to do the next program operation at next destination.

In case of invoking Flash verify operation for large size, this function calls FlashVerify one
more time to do verification for the next portion of data.

In case of invoking blank check operation for large size, this function calls BlankCheck one
more time to do blank check for the next portion of data.

In case of invoking check sum for large size, this function calls CheckSum one more time to
do check sum for the next portion of data.

User must provide modeOp input argument with appropriate value to determine which
operation needs to be checked by this function. Below list defines all possible cases to call
this function:

Call FlashCheckStatus for program operation.

Call FlashCheckStatus for erase operation.

Call FlashCheckStatus for user’s test mode.

Call FlashCheckStatus for Flash verification.

Call FlashCheckStatus for blank check.

Call FlashCheckStatus for check sum.

User must provide pCtxData input argument which is a pointer to the context data structure
for each Flash function being checked for status. The context data structure contains a
function pointer which must be manually set up for each Flash operation (program, blank
check, program verify, check sum) to be checked for status. It is recommended to keep a
separate context data structure for each type of Flash operation. As an example, please
refer to the demo code included in the release package. Below is a code snippet.

CONTEXT_DATA dummyCtxData; // no context for erase and user test operation

CONTEXT_DATA pgmCtxData;

CONTEXT_DATA bcCtxData;

CONTEXT_DATA pvCtxData;

CONTEXT_DATA csCtxData;

/* set up function pointers in context data */

pgmCtxData.pReqCompletionFn = pFlashProgram;

bcCtxData.pReqCompletionFn = pBlankCheck;

UM1618 Rev 5 27/51

UM1618 API specification

50

pvCtxData.pReqCompletionFn = pProgramVerify;

csCtxData.pReqCompletionFn = pCheckSum;

Prototype

UINT32 FlashCheckStatus (PSSD_CONFIG pSSDConfig,

UINT8 modeOp,

UINT32 *opResult,

PCONTEXT_DATA pCtxData);

Arguments

Table 33. Arguments for FlashCheckStatus

Argument Description Range

pSSDConfig
Pointer to the SSD
Configuration Structure.

The values in this structure are chip-dependent.
Please refer to Section 2.3 for more details.

modeOp
To specify the operation
needs to be checked.

Must be one of the values:

– C55_MODE_OP_PROGRAM

– C55_MODE_OP_ERASE

– C55_MODE_OP_PROGRAM_VERIFY

– C55_MODE_OP_BLANK_CHECK

– C55_MODE_OP_CHECK_SUM

– C55_MODE_OP_USER_TEST_CHECK

opResult
To store result of the
operation.

The values for this variable are depend on the
operation being checked.

For PROGRAM operation, they are:

– C55_OK

– C55_ERROR_PGOOD

For ERASE operation, they are:

– C55_OK

– C55_ERROR_EGOOD

For PROGRAM_VERIFY operation, they are:

– C55_OK

– C55_ERROR_VERIFY

For BLANK_CHECK operation, they are:

– C55_OK

– C55_ERROR_NOT_BLANK

For CHECK_SUM operation, it is always C55_OK.

For USER_TEST_CHECK operation, they are:

– C55_OK

– C55_ERROR_MISMATCH

pCtxData
Address of a context
data structure.

A data structure for storing context variables

API specification UM1618

28/51 UM1618 Rev 5

Return values

Troubleshooting

Comments

User should call this function periodically until the whole operation finishes.

This function can also be called inside an interrupt procedure for program/erase to take the
full advantage of interrupt. Each time the interrupt procedure is called, ‘FlashCheckStatus’
gets called to continue to complete the whole operation.

Assumptions

It assumes that the Flash block is initialized using a ‘FlashInit()’ API.

2.7.9 FlashSuspend

Description

This function checks if there is any high voltage operation being in progress on the C55
module and if this operation can be suspended. This function suspends the ongoing
operation if it can be suspended.

Prototype

UINT32 FlashSuspend (PSSD_CONFIG pSSDConfig,

UINT8 *suspendState);

Table 34. Return values for FlashCheckStatus

Type Description Possible values

UINT32 Successful completion or error value.

C55_INPROGRESS

C55_DONE

C55_ERROR_MODE_OP

All possible states in ‘FlashSuspend()’

All possible states in
‘FlashArrayIntegritySuspend()’

Table 35. Troubleshooting for FlashCheckStatus

Returned Error Bits Description Solution

C55_ERROR_MODE_OP
User provides invalid
modeOp argument.

The modeOp must be one of the values
provided on Table 33.

UM1618 Rev 5 29/51

UM1618 API specification

50

Arguments

Return values

Troubleshooting

None.

Comments

After calling this function, read is allowed on main array space without any Read-While-
Write error. But data read from the blocks targeted for programming or erasing will be
indeterminate even if the operation is suspended.

Following table defines and describes various suspend states and associated suspend
codes.

Table 36. Arguments for FlashSuspend

Argument Description Range

pSSDConfig
Pointer to the SSD Configuration
Structure.

The values in this structure are chip-
dependent. Please refer to Section 2.3 for
more details.

suspendState
Indicate the suspend state of C55
module after the function being
called.

All state values are enumerated in Table 38.

Table 37. Return values for FlashSuspend

Type Description Possible values

UINT32 Successful completion of this function. C55_OK

Table 38. Suspend State Definitions

Argument Code Description
Valid operation after

suspend

C55_SUS_NOTHING 10
There is no program/erase
operation.

Erasing operation,
programming operation and
read are valid on main array
space.

C55_PGM_WRITE 11
There is a program
sequence in interlock write
stage.

Only read is valid on main
array space.

C55_ERS_WRITE 12
There is an erase
sequence in interlock write
stage.

Only read is valid on main
array space.

C55_ERS_SUS_PGM_WRITE 13
There is an erase-suspend
program sequence in
interlock write stage.

Only read is valid on main
array space.

C55_PGM_SUS 14
The program operation is
in suspended state.

Only read is valid on main
array space.

API specification UM1618

30/51 UM1618 Rev 5

This function should be used together with ‘FlashResume’. If suspendState is
C55_PGM_SUS or C55_ERS_SUS or C55_ERS_SUS_PGM_SUS, then ‘FlashResume’
should be called in order to resume the operation.

The table below lists the Suspend State against to the Flash block status.

The values of EHV, ERS, ESUS, PGM and PSUS represent the C55 status at the entry of
‘FlashSuspend’.

0: Logic zero; 1: Logic one; X: Do-not-care.

Assumptions

It assumes that the Flash block is initialized using a ‘FlashInit’ API.

2.7.10 FlashResume

Description

This function checks if there is any suspended erase or program operation on the C55
module, and resumes the suspended operation if there is any.

C55_ERS_SUS 15
The erase operation on
main array is in suspended
state.

Programming/Read operation
is valid on main array space.

C55_ERS_SUS_PGM_SUS 16
The erase-suspended
program operation is in
suspended state.

Only read is valid on main
array space.

Table 39. Suspending State vs. C55 Status

suspendState EHV ERS ESUS PGM PSUS

C55_SUS_NOTHING X 0 X 0 X

C55_PGM_WRITE 0 0 X 1 0

C55_ERS_WRITE 0 1 0 0 X

C55_ESUS_PGM_WRITE 0 1 1 1 0

C55_PGM_SUS
1 0 X 1 0

X 0 X 1 1

C55_ERS_SUS

1 1 0 0 X

X 1 1 0 X

X 1 1 0 X

C55_ERS_SUS_PGM_SUS
1 1 1 1 0

X 1 1 1 1

Table 38. Suspend State Definitions

Argument Code Description
Valid operation after

suspend

UM1618 Rev 5 31/51

UM1618 API specification

50

Prototype

UINT32 FlashResume (PSSD_CONFIG pSSDConfig,

UINT8* resumeState);

Arguments

Return values

Troubleshooting

None.

Comments

This function resumes one operation if there is any operation is suspended. For instance, if
a program operation is in suspended state, it is resumed. If an erase operation is in
suspended state, it is resumed too. If an erase-suspended program operation is in
suspended state, the program operation is resumed prior to resuming the erase operation.

Following table defines and describes various resume states and associated resume codes.

Assumptions

It assumes that the Flash block is initialized using a ‘FlashInit’ API.

Table 40. Arguments for FlashResume

Argument Description Range

pSSDConfig
Pointer to the SSD Configuration
Structure.

The values in this structure are chip-
dependent. Please refer to Section 2.3
for more details.

resumeState
Indicate the resume state of C55
module after the function being called.

All state values are listed in

Table 42

Table 41. Return values for FlashResume

Type Description Possible values

UINT32 Successful completion of this function. C55_OK

Table 42. Resume state definitions

Code Name Value Description

C55_RES_NOTHING 20 No program/erase operation to be resumed

C55_RES_PGM 21 A program operation is resumed

C55_RES_ERS 22 A erase operation is resumed

C55_RES_ERS_PGM 23
A suspended erase-suspended program operation is
resumed

API specification UM1618

32/51 UM1618 Rev 5

2.7.11 GetLock

Description

This function checks the block locking status of Low/Middle/High/Large address spaces in
the C55 module via either main or alternate interface.

Prototype

UINT32 GetLock (PSSD_CONFIG pSSDConfig,

UINT8 blkLockIndicator,

UINT32 *blkLockState);

Arguments

Return values

Troubleshooting

Table 43. Arguments for GetLock

Argument Description Range

pSSDConfig
Pointer to the SSD Configuration
Structure.

The values in this structure are chip-
dependent. Please refer to Section 2.3
for more details.

blkLockIndicator

Indicating the address space
which determines the address
space block locking register to be
checked.

Refer to Table 46 for valid values for this
parameter.

blkLockState
Returns the blocks’ locking status
in the given address space

Bit mapped value indicating the locking
status of the specified address space.

1: The block is locked from
program/erase.

0: The block is ready for program/erase

Table 44. Return values for GetLock

Type Description Possible values

UINT32 Successful completion or error value.

C55_OK

C55_ERROR_BLOCK_INDICATOR

C55_ERROR_ALTERNATE

Table 45. Troubleshooting for GetLock

Returned Error Bits Possible causes Solution

C55_ERROR_BLOCK_INDICATOR
The input blkLockIndicator is
invalid.

Set this argument to correct
value listed in Table 46.

C55_ERROR_ALTERNATE
User calls this function to get
lock status for Large block
space via alternate interface.

Alternate interface does not
support for Large block space.

UM1618 Rev 5 33/51

UM1618 API specification

50

Comments

Following table defines and describes various blkLockIndicator values.

The output parameter blkLockState returns a bit-mapped value indicating the block lock
status of the specified address space. A main array block is locked from program/erase if its
corresponding bit is set.

The indicated address space determines the valid bits of blkLockState. For either
Low/Mid/High/Large address spaces, if blocks corresponding to valid block lock state bits
are not present (due to configuration or total memory size), values for these block lock state
bits are always 1 because such blocks are locked by hardware on reset. These blocks
cannot be unlocked by software with ‘SetLock’ function.

If user uses the alternate interface to get the lock protection for the Large address space,
the error code C55_ERROR_ALTERNATE is returned to indicate that the interface does not
support this operation.

The bit allocations for blocks in one address space are: the least significant bit is
corresponding to 16K block region and start with block 0 (if available), then 32K block region
(if available) then lastly 64K block region (if available) and lastly 8K block region (if
available).

The Large block space is divided into two separate sections corresponding two different
block lock indicators. The C55_BLOCK_LARGE_FIRST lock indicator represents the first
32 blocks (from bit 0 to bit 31) of Large block space (128K/256K) and the C55_BLOCK_
LARGE_SECOND lock indicator represents the second 32 blocks (from bit 32 to upper bits)
of Large block space (128K/256K).

Below is example for the formats of blkLockState in the C55 Flash module according to
specific address space. In particular, this is an example with two blocks for each block size
in low, middle or high address space and 48 blocks for Large block (128K/256K) address
space. The invalid blocks are marked as reserved. And the number of valid bits may be
various according to specific Flash module.

Table 46. Lock indicator definitions

Code Name Value Description

C55_BLOCK_LOW 0 Block lock protection of low address space.

C55_BLOCK_MID 1 Block lock protection of mid address space.

C55_BLOCK_HIGH 2 Block lock protection of high address space.

C55_BLOCK_LARGE_FIRST 3
Block lock protection of the first Large address
space (from block 0 to block 31).

C55_BLOCK_LARGE_SECOND 4
Block lock protection of the second Large address
space (from block 32 to upper block numbering).

C55_BLOCK_UTEST 5 Block lock protection of the UTest block.

Table 47. blkLockState in low address space

MSB LSB

bit 31 … bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

reserved … 64K block 1 64K block 0 32K block 1 32K block 0 16K block 1 16K block 0

API specification UM1618

34/51 UM1618 Rev 5

Assumptions

It assumes that the Flash block is initialized using a ‘FlashInit’ API.

2.7.12 SetLock

Description

This function will set the block lock state for Low/Middle/High/ Large (128K/256K) address
space on the C55 module to protect them from program/erase via either main or alternate
interface.

Prototype

UINT32 SetLock (PSSD_CONFIG pSSDConfig,

UINT8 blkLockIndicator,

Table 48. blkLockState in middle address space

MSB LSB

bit 31 … bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

reserved … 64K block 1 64K block 0 32K block 1 32K block 0 16K block 1 16K block 0

Table 49. blkLockState in high address space

MSB LSB

bit 31 … bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

reserved … 64K block 1 64K block 0 32K block 1 32K block 0 16K block 1 16K block 0

Table 50. blkLockState in the first large block (128K/256K) address space

MSB LSB

bit 31 … bit 16 bit 15 bit 14 … bit 1 bit 0

block 31 … block 16 block 15 block 14 … block 1 block 0

Table 51. blkLockState in the second large block space (128K/256K) address space

MSB LSB

bit 31 … bit 16 bit 15 bit 14 … bit 1 bit 0

reserved … reserved block 47 block 46 … block 33 block 32

Table 52. blkLockState in UTest block Space

MSB LSB

bit 31 … bit 16 bit 15 bit 14 … bit 1 bit 0

reserved … reserved reserved reserved … reserved block 0

UM1618 Rev 5 35/51

UM1618 API specification

50

UINT32 blkLockState);

Arguments

Return values

Troubleshooting

Comments

See ‘GetLock’ API.

Assumptions

It assumes that the Flash block is initialized using a ‘FlashInit’ API.

Table 53. Arguments for SetLock

Argument Description Range

pSSDConfig
Pointer to the SSD
Configuration Structure.

The values in this structure are chip-dependent.
Please refer to Section 2.3 for more details.

blkLockIndicator

Indicating the address
space and the protection
level of the block lock
register to be read.

Refer to Table 46 for valid codes for this
parameter.

blkLockState
The block locks to be set to
the specified address
space and protection level.

Bit mapped value indicating the lock status of the
specified address space.

1: The block is locked from program/erase.

0: The block is ready for program/erase

Table 54. Return values for SetLock

Type Description Possible values

UINT32 Successful completion or error value.

C55_OK

C55_ERROR_BLOCK_INDICATOR

C55_ERROR_ALTERNATE

Table 55. Troubleshooting for SetLock

Returned Error Bits Possible causes Solution

C55_ERROR_BLOCK_INDICATOR
The input blkLockIndicator
is invalid.

Set this argument to correct
value listed in Table 46.

C55_ERROR_ALTERNATE

User calls this function to
set lock for Large block
space via alternate
interface.

Alternate interface does not
support for Large block space.

API specification UM1618

36/51 UM1618 Rev 5

2.7.13 OverPgmProtGetStatus

Description

This function returns the over-program protection status via either main or alternate
interface. This value shows blocks that are protected from being over programmed.

Prototype

UINT32 OverPgmProtGetStatus(PSSD_CONFIG pSSDConfig,

UINT8 blkProtIndicator,

UINT32 *blkProtState);

Arguments

Return values

Troubleshooting

Table 56. Arguments for OverPgmProtGetStatus

Argument Description Range

pSSDConfig
Pointer to the SSD Configuration
Structure.

The values in this structure are chip-
dependent. Please refer to Section 2.3
for more details.

blkProtIndicator

The block indicator to get over-
program protection status. This
argument will determine which over-
program protection register need to be
accessed by this function.

The valid value for this argument is as
same as that of blkLockIndicator
argument in ‘SetLock ’function.

blkProtState

The bit map for over-program
protection information of specific
address space according to
blkProtIndicator argument.

Bit-mapped value.

1: The block is protected from over-
program.

0: The block is ready for over-program.

Table 57. Return values for OverPgmProtGetStatus

Type Description Possible values

UINT32 Successful completion or error value.

C55_OK

C55_ERROR_BLOCK_INDICATOR

C55_ERROR_ALTERNATE

Table 58. Troubleshooting for OverPgmProtGetStatus

Returned Error Bits Possible causes Solution

C55_ERROR_BLOCK_INDICATOR
The input blkProtIndicator is
invalid.

Set this argument to correct
value listed in Table 46.

C55_ERROR_ALTERNATE

User calls this function to
get over-program protection
status via alternate
interface.

Alternate interface does not
support this operation.

UM1618 Rev 5 37/51

UM1618 API specification

50

Comments

If user uses the alternate interface to get the over program protection status for the Large
address space, the error code C55_ERROR_ALTERNATE is returned to indicate that the
interface does not support this operation.

The blkProtState is bit map allocation and it has the same definition with blkLockState of
‘GetLock’ function. See ‘GetLock’ function for more details.

Assumptions

It assumes that the Flash block is initialized using a ‘FlashInit’ API.

2.8 User Test Mode Functions

2.8.1 FlashArrayIntegrityCheck

Description

This function checks the array integrity of the Flash via main interface. The user specified
address sequence is used for array integrity reads and the operation is done on the
specified blocks. The MISR values calculated by the hardware is compared to the values
passed by the user, if they are not the same, then an error code is returned.

In order to support asynchronous design, this function stores the necessary information to
“pCtxData” (ex: user provided MISR value) and is terminated without waiting for completion
of this operation. User should call ‘FlashCheckStatus’ to check the on-going status of this
function. And once finish, it will do comparison between MISR values provided by user
which is currently stored in “pCtxData” and MISR values generated by hardware and return
an appropriate code according to this compared result.

Prototype

UINT32 FlashArrayIntegrityCheck(PSSD_CONFIG pSSDConfig,

UINT32 lowEnabledBlocks,

UINT32 midEnabledBlocks,

UINT32 highEnabledBlocks,

NLARGE_BLOCK_SEL nLargeEnabledBlocks,

UINT8 breakOption,

UINT8 addrSeq,

PMISR pMisrValue,

PCONTEXT_DATA pCtxData);

API specification UM1618

38/51 UM1618 Rev 5

Arguments

Table 59. Arguments for FlashArrayIntegrityCheck

Argument Description Range

pSSDConfig
Pointer to the SSD
Configuration Structure.

The values in this structure are chip-
dependent. Please refer to Section 2.3 for
more details.

lowEnabledBlocks
To select the array blocks in
low address space for
checking.

Refer to ‘FlashErase’ for details.

midEnabledBlocks
To select the array blocks in
mid address space for
checking.

Refer to ‘FlashErase’ for details.

highEnabledBlocks
To select the array blocks in
high address space for
checking.

Refer to ‘FlashErase’ for details.

nLargeEnabledBlocks

To select the array blocks in
Large block space
(128K/256K) address space
for checking.

Refer to ‘FlashErase’ for details.

breakOption
To specify an option to allow
stopping the operation on
errors.

Must be one of the values:

– C55_BREAK_NONE

– C55 BREAK_ON_DBD (stop the
operation on Double Bit Detection)

– C55_BREAK_ON_DBD_SBC (stop the
operation on Double Bit Detection or
Single Bit Correction)

addrSeq
To determine the address
sequence to be used during
array integrity checks.

Must be one of below values:

– C55_ADDR_SEQ_PROPRIETARY: this
is meant to replicate sequences normal
“user” code follows, and thoroughly
check the read propagation paths. This
sequence is proprietary

– C55_ADDR_SEQ_LINEAR: this is just
logically sequential.

It should be noted that the time to run a
sequential sequence is significantly shorter
than the time to run the proprietary
sequence.

pMISRValue
Address of a MISR structure
contains the MISR values
calculated by offline tool.

The individual MISR words can range from
0x00000000 - 0xFFFFFFFF

pCtxData
Address of a context data
structure.

A data structure for storing context
variables

UM1618 Rev 5 39/51

UM1618 API specification

50

Return values

Troubleshooting

The trouble shooting given here comprises of hardware errors and input parameter error.

Comments

The inputs lowEnabledBlocks, midEnabledBlocks, highEnabledBlocks and
nLargeEnabledBlock are bit-mapped arguments that are used to select the blocks to be
evaluated in the Low/Mid/High/ Large block (128K/256K) address spaces of main array. The
selection of the blocks of the main array is determined by setting/clearing the corresponding
bit in lowEnabledBlocks, midEnabledBlocks, highEnabledBlocks or nLargeEnabledBlocks.

For diagrams of block bit-map definitions of lowEnabledBlocks, midEnabledBlocks,
highEnabledBlocks and nLargeEnabledBlock, refer to ‘FlashErase’ function for more
details.

In case user specifies a break option other than C55_BREAK_NONE, the function is
stopped immediately if any Double Bit Detection or Single Bit Correction occurs. It is
possible to resume the operation by calling ‘FlashArrayIntegrityResume’ or start a new array
integrity check.

Table 60. Return values for FlashArrayIntegrityCheck

Type Description Possible values

UINT32 Successful completion or error value.

C55_OK

C55_ERROR_ADDR_SEQ

C55_ERROR_NO_BLOCK

C55_ERROR_MISMATCH

C55_ERROR_ALTERNATE

Table 61. Troubleshooting for FlashArrayIntegrityCheck

Returned Error Bits Possible causes Solution

C55_ERROR_MISMATCH

The MISR values calculated
by the user are incorrect.

Re-calculate the MISR values using the
correct Data and address sequence.

The MISR values calculated
by the Hardware are
incorrect.

Hardware Error.

C55_ERROR_NO_BLOCK
None of the Blocks are
enabled for Array Integrity
Check

Enable any of the blocks using variables
lowEnabledBlocks, midEnabledBlocks,
highEnabledBlocks or
nLargeEnabledBlocks.

C55_ERROR_ADDR_SEQ
User provides invalid
address sequence input
argument.

The address sequence input argument
must be either proprietary
(C55_ADDR_SEQ_PROPRIETARY) or
sequential
(C55_ADDR_SEQ_LINEAR). Any other
value is unacceptable.

C55_ERROR_ALTERNATE
User calls this function via
alternate interface.

Alternate interface does not support this
operation.

API specification UM1618

40/51 UM1618 Rev 5

If no blocks are enabled the C55_ERROR_NO_BLOCK error code is returned.

If user calls this function via alternate interface, the C55_ERROR_ALTERNATE error code
is returned.

This function does not support to do array integrity check on UTest block.

Assumptions

It assumes that the Flash block is initialized using a ‘FlashInit’ API.

2.8.2 FlashArrayIntegritySuspend

Description

This function will check if there is an on-going array integrity check of the Flash and suspend
it via main interface.

Prototype

UINT32 FlashArrayIntegritySuspend (PSSD_CONFIG pSSDConfig,

UINT8 *suspendState);

Arguments

Return values

Troubleshooting

Table 62. Arguments for FlashArrayIntegritySuspend

Argument Description Range

pSSDConfig
Pointer to the SSD Configuration
Structure.

The values in this structure are chip-
dependent. Please refer to Section 2.3 for
more details.

suspendState
Indicate the suspend state on user
test mode after calling the function.

All state values are enumerated in
Table 65.

Table 63. Return values for FlashArrayIntegritySuspend

Type Description Possible values

UINT32 Successful completion error code.
C55_OK

C55_ERROR_ALTERNATE

Table 64. Troubleshooting for FlashArrayIntegritySuspend

Returned Error Bits Possible causes Solution

C55_ERROR_ALTERNATE
User calls this function via
alternate interface.

Alternate interface does not
support this operation.

UM1618 Rev 5 41/51

UM1618 API specification

50

Comments

If user calls this function via alternate interface, a return code of C55_ERROR_ALTERNATE
is returned without doing any operation.

Following table defines and describes various suspend states and associated suspend
codes.

This function should be used together with ‘FlashArrayIntegrityResume’. If suspendState is
C55_UTEST_SUS, then ‘FlashArrayIntegrityResume’ should be called in order to resume
the operation.

Assumptions

It assumes that the Flash block is initialized using a ‘FlashInit’ API.

2.8.3 FlashArrayIntegrityResume

Description

This function checks if there is an on-going array integrity check of the Flash being
suspended and resume it via main interface.

Prototype

UINT32 FlashArrayIntegrityResume (PSSD_CONFIG pSSDConfig,

UINT8 *resumeState);

Arguments

Table 65. Suspend State Definitions

Argument Code Description

C55_SUS_NOTHING 10
There is no array integrity check/margin read
operation in-progress.

C55_USER_TEST_SUS 17 The user test operation is in suspended state.

Table 66. Arguments for FlashArrayIntegrityResume

Argument Description Range

pSSDConfig
Pointer to the SSD Configuration
Structure.

The values in this structure are chip-
dependent. Please refer to Section 2.3
for more details.

resumeState
Indicate the resume state on
user’s test mode after calling the
function.

All state values are enumerated in
Table 69.

API specification UM1618

42/51 UM1618 Rev 5

Return values

Troubleshooting

Comments

If user calls this function via alternate interface, a return code of C55_ERROR_ALTERNATE
is returned without doing any operation.

This function can also be used to resume an array integrity check/margin read check when it
is stopped by a Double Bit Detection or a Single Bit Correction.

Following table defines and describes various resume states and associated resume codes.

Assumptions

It assumes that the Flash block is initialized using a ‘FlashInit’ API.

2.8.4 UserMarginReadCheck

Description

This function checks the user margin reads of the Flash via main interface. The user
specified margin level is used for reads and the operation is done on the specified blocks.
The MISR values calculated by the hardware are compared to the values passed by the
user, if they are not the same, then an error code is returned.

In order to support asynchronous design, this function stores the necessary information to
“pCtxData” (ex: user provided MISR value) and is terminated without waiting for completion
of this operation. User should call ‘FlashCheckStatus’ to check the on-going status of this
function. And once finish, it does comparison between MISR values provided by user which
are currently stored in “pCtxData” and MISR values generated by hardware and return an
appropriate code according to this compared result.

Table 67. Return values for FlashArrayIntegrityResume

Type Description Possible values

UINT32 Successful completion or error code.
C55_OK

C55_ERROR_ALTERNATE

Table 68. Troubleshooting for FlashArrayIntegrityResume

Returned Error Bits Possible causes Solution

C55_ERROR_ALTERNATE
User calls this function via
alternate interface.

Alternate interface does not support
this operation.

Table 69. Resume state definitions

Argument Code Description

C55_RES_NOTHING 20
There is no array integrity check/margin read
operation suspended.

C55_RES_USER_TEST 24 The user test operation is in in-progress state.

UM1618 Rev 5 43/51

UM1618 API specification

50

Prototype

UINT32 UserMarginReadCheck (PSSD_CONFIG pSSDConfig,

UINT32 lowEnabledBlocks,

UINT32 midEnabledBlocks,

UINT32 highEnabledBlocks,

NLARGE_BLOCK_SEL nLargeEnabledBlocks,

UINT8 breakOption,

UINT8 marginLevel,

PMISR pMisrValue,

PCONTEXT_DATA pCtxData);

Arguments

Table 70. Arguments for UserMarginReadCheck

Argument Description Range

pSSDConfig
Pointer to the SSD Configuration
Structure.

The values in this structure are chip-
dependent. Please refer to Section 2.3
for more details.

lowEnabledBlocks
To select the array blocks in low
address space for checking.

Refer to ‘FlashErase’ for details.

midEnabledBlocks
To select the array blocks in mid
address space for being
evaluated.

Refer to ‘FlashErase’ for details.

highEnabledBlocks
To select the array blocks in high
address space for being
evaluated.

Refer to ‘FlashErase’ for details.

nLargeEnabledBlocks
To select the array blocks in Large
(128K/256K) address space for
being evaluated.

Refer to ‘FlashErase’ for details.

breakOption
To specify an option to allow
stopping the operation on errors.

Refer to ‘FlashArrayIntegrityCheck’ for
details.

marginLevel
To determine the margin level to
be used during margin read
checks.

Selects the margin level that is being
checked. Must be one of the values:

– C55_MARGIN_LEVEL_ERASE

– C55_MARGIN_LEVEL_PROGRAM

pMISRValue
Address of a MISR structure
contains the MISR values
calculated by the user.

Refer to ‘FlashArrayIntegrityCheck’ for
details.

pCtxData
Address of a context data
structure.

A data structure for storing context
variables

API specification UM1618

44/51 UM1618 Rev 5

Return values

Troubleshooting

Comments

Refer to ‘FlashArrayIntegrityCheck’ for details.

Assumptions

It assumes that the Flash block is initialized using a ‘FlashInit’ API.

Table 71. Return values for UserMarginReadCheck

Type Description Possible values

UINT32
Successful completion or error
value.

C55_OK

C55_ERROR_ALTERNATE

C55_ERROR_MARGIN_LEVEL

C55_ERROR_NO_BLOCK

C55_ERROR_MISMATCH

Table 72. Troubleshooting for UserMarginReadCheck

Returned Error Bits Possible causes Solution

C55_ERROR_MISMATCH

The MISR values
calculated by the user are
incorrect.

Re-calculate the MISR values using
the correct Data and margin level.

The MISR values
calculated by the
Hardware are incorrect.

Hardware Error.

C55_ERROR_NO_BLOCK
None of the Blocks are
enabled for Factory
Margin Read Check

Enable any of the blocks using
variables lowEnabledBlocks,
midEnabledBlocks,
highEnabledBlocks and
nLargeEnabledBlocks

C55_ERROR_MARGIN_LEVEL
User provides invalid
margin level.

The margin level input argument must
be either program level
(C55_MARGIN_LEVEL_PROGRAM)
or erase level
(C55_MARGIN_LEVEL_ERASE). Any
other value is unacceptable.

C55_ERROR_ALTERNATE
User calls this function via
alternate interface.

Alternate interface does not support
this operation.

UM1618 Rev 5 45/51

UM1618 Code sizes and stack usage

50

Appendix A Code sizes and stack usage

Note: Code size is measured on Diab compiler with version 5.7.0.0 on vle mode and SPC574Kxx
is selected.

Stack size is measured on CodeWarrior compiler v2.7 on SPC574Kxx.

Table 73. Code size and stack usage for SPC574Kxx

API name Code size (in bytes) Stack usage (in bytes)

FlashInit() 192 48

FlashProgram() 312 96

ProgramVerify() 184 80

FlashErase() 440 80

FlashEraseAlternate() 110 N/A

FlashCheckStatus() 858 80

BlankCheck () 154 64

CheckSum() 160 64

FlashSuspend() 240 48

FlashResume() 162 64

GetLock() 322 96

SetLock() 326 80

OverPgmProtGetStatus() 282 80

FlashArrayIntegrityCheck() 598 112

FlashArrayIntegrityResume() 182 64

FlashArrayIntegritySuspend() 126 48

UserMarginReadCheck() 620 112

Write/erase times UM1618

46/51 UM1618 Rev 5

Appendix B Write/erase times

Note: The timing values are measured on SPC57EM80xx device with 13.5MHz of system clock
and on VLE mode.

Note: The timing values are measured on SPC574Kxx device with 80MHz of system clock and on
VLE mode.

Table 74. Write/erase times for SPC57EM80xx

Operation Time (ms)

FlashProgram (PROGRAMMABLE_SIZE = 128) 0.128444444

ProgramVerify (NUM_WORDS_PROGRAM_VERIFY_CYCLE = 80) 0.282888889

CheckSum (NUM_WORDS_CHECK_SUM_CYCLE = 120) 0.282444444

FlashErase (one block) 0.031481481

BlankCheck (NUM_WORDS_BLANK_CHECK_CYCLE = 90) 0.314962963

Table 75. Write/erase times for SPC574Kxx

Operation Time (ms)

FlashProgram (PROGRAMMABLE_SIZE = 128) 0.0192

ProgramVerify (NUM_WORDS_PROGRAM_VERIFY_CYCLE = 80) 0.038225

CheckSum (NUM_WORDS_CHECK_SUM_CYCLE = 120) 0.041325

FlashErase (one block) 0.00475

BlankCheck (NUM_WORDS_BLANK_CHECK_CYCLE = 90) 0.042525

UM1618 Rev 5 47/51

UM1618 System requirements

50

Appendix C System requirements

The C55 SSD is designed to support a single C55 Flash module embedded on
microcontrollers. Before using this SSD on a different derivative microcontroller, user has to
provide the information specific to the derivative through a configuration. The table below
provides the hardware/tool which is necessary for using this driver.

Table 76. System requirements

Tool Name Description Version No

CodeWarrior IDE Development tool 2.7

Diab PowerPC compiler Compiler 5.7.0.0

GreenHills Development tool 6.1.4

P/E Debugger

Acronyms UM1618

48/51 UM1618 Rev 5

Appendix D Acronyms

Table 77. Acronyms

Abbreviation Complete name

API Application Programming Interface

BIU Bus Interface Unit

ECC Error Correction Code

EVB Evaluation Board

RWW Read While Write

SSD Standard Software Driver

UM1618 Rev 5 49/51

UM1618 Document references

50

Appendix E Document references

1. SPC57EM80xx - 32-bit Power Architecture® based MCU with up to 4 Mbyte Flash and
304 Kbyte RAM memories (RM0314, DocID 022530)

2. SPC574Kxx - 32-bit Power Architecture® based MCU for automotive applications
(RM0334, DocID 023671)

Revision history UM1618

50/51 UM1618 Rev 5

Revision history

Table 78. Document revision history

Date Revision Changes

11-Mar-2013 1 Initial release.

18-Sep-2013 2 Updated Disclaimer.

05-Aug-2014 3 Updated Introduction.

21-Apr-2016 4
Updated Section 2.3: SSD configuration parameter and
Section 2.5: Other data structures, Table 4: Block information
structure field definitions.

15-Jul-2020 5 Updated title.

UM1618 Rev 5 51/51

UM1618

51

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other
product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics – All rights reserved

	1 Introduction
	1.1 Document overview
	1.2 Features

	2 API specification
	2.1 General overview
	2.2 General type definitions
	2.3 SSD configuration parameter
	2.4 Context data structure
	2.5 Other data structures
	2.6 Return codes
	2.7 Normal mode functions
	2.7.1 FlashInit
	2.7.2 FlashErase
	2.7.3 FlashEraseAlternate
	2.7.4 BlankCheck
	2.7.5 FlashProgram
	2.7.6 ProgramVerify
	2.7.7 CheckSum
	2.7.8 FlashCheckStatus
	2.7.9 FlashSuspend
	2.7.10 FlashResume
	2.7.11 GetLock
	2.7.12 SetLock
	2.7.13 OverPgmProtGetStatus

	2.8 User Test Mode Functions
	2.8.1 FlashArrayIntegrityCheck
	2.8.2 FlashArrayIntegritySuspend
	2.8.3 FlashArrayIntegrityResume
	2.8.4 UserMarginReadCheck

	Appendix A Code sizes and stack usage
	Appendix B Write/erase times
	Appendix C System requirements
	Appendix D Acronyms
	Appendix E Document references
	Revision history

