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PREFACE

This book is the outgrowth of a course in vacuum-tube design given

for many years at Stanford University to senior and graduate students in

electrical engineering and physics. It is concerned with the determina-

tion of vacuum-tube characteristics in terms of the electron action within

the tube. The book attempts to bridge the gap between the physical

laws that lie behind the electron behavior and the external characteristics

of the tubes themselves.

It is hoped that the point of view taken wiU be acceptable to both

physicists and engineers. The development of the physical laws involved

is indicated, after which emphasis is placed upon their description and

utilization. Although this book cannot pretend to give much design

information, the attempt has been to include enough of the basic relations,

physical data, and significant references to make it a useful reference

source to vacuum experimenters and tube designers.

Vacuum tubes may seem a rather special subject to which to restrict

the material in a book. Actually this is not so. In preparing the book

so much material was collected that the contents had to be restricted to

first-order effects. It is felt that although engineers and physicists work-

ing with vacuum tubes are primarily concerned with the utilization of

already developed tubes, the successful application of these tubes is

greatly enhanced by a knowledge of their limitations and an understand-

ing of the origin of their characteristics. This is particularly true since

there are many occasions when it is desired to use tubes under conditions

different from those specified by the manufacturer. Under these condi-

tions it is imperative to know how far one may depart from recommended

operating conditions without exceeding some design limitation of the

tube. This, in turn, requires a knowledge of how the tube operates.

Circuits and tube applications are so completely covered in the text-

book and periodical literature that no effort has been made to include

information on these subjects. Only in the case of ultra-high-frequency

tubes where the tube cannot be completely separated from the circuit

have circuit considerations been included.

The author is indebted to many people for assistance rendered in the

preparation of this book. He is particularly indebted to Dr. F. E. Ter-
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man, dean of the Stanford School of Engineering, who was a constant

source of inspiration and encouragement, and who made many valuable

suggestions and gave much direct assistance in checking the work. The

author is also indebted to Prof. Paul Kirkpatrick, head of the Physics

Department at Stanford, for suggestions on the material of Chaps. 3 to

6 and 9; to Prof. L. Marton for suggestions on the material of Chaps. 13

to 15 and 20; and to C. V. Litton for much information and suggestions

relative to Chap. 21. He is indebted to Evelyn G. Sarson, who typed a

large part of the manuscript in its final form. 0. 0. Pardee and Will

Harman assisted in the correction of the entire work. Lastly, the author

is more than a little indebted to his wife, who personally typed much of

the manuscript and was a source of constant assistance.

Palo Alto, Calif.

January, 1948

K.4RL R. Spangenberg
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CHAPTER 1

INTRODUCTION

VAcuuM tubes are found as basic or auxiliary elements in numerous
technical devices now in use. They arc indispensable in communication

systems and industrial control. Their development has facilitated

advances in the fields of power and transportation. Without the

vacuum tube we should be back in the days of the gravity-cell telegraph

and the ringer telephone.

In the United States the number of vacuum tubes in use is several

times the number of human beings and household pets. The 50,000,000

radio sets manufactured in the United States in the year 1947, alone

contained more vacuum tubes than the adult population of the country.

Associated with the 25,000,000 telephones and 120,000,000 miles of tele-

phone and telegraph wire in the United States are many more vacuum
tubes. Various industrial devices include almost as many more. The
United States uses nearly half the world’s total of vacuum tubes.

One may conclude that there are many vacuum tubes in use. They
must be of some importance. They are.

1.1. Devices Using Vacuum Tubes. This book is more concerned

with the properties and functions of vacuum tubes than with the systems

utilizing these properties. However, it is well to be reminded of the

extent of vacuum-tube applications and the degree to which we are

dependent upon them. The following devices are totally dependent

upon vaccum tubes.

Radio Receivers. These are too well known to require much descrip-

tion. They range from portable receivers the size of a brick and capable

of receiving local broadcast stations to large-size all-wave receivers

capable of picking up a signal stronger than the noise level from any
point on the globe. Even the smallest receivers use 4 or 5 vacuum tubes.

The average home receiver has about 7 tubes. An all-wave receiver may
have 20 or more tubes.

Radio Transmitters. Transmitters range from portable walkie-talkie

sets to large power-broadcast and short-wave stations. In output power
they vary from 0.1 watt to hundreds of kilowatts. In frequency they
may range from 100 kc to 60,000 me. The short-wave transmitters are

capable of producing an audible signal at any point on the earth’s surface.

1



2 VACUUM TUBES

Transmitters may use voice or code. They may incorporate static-

elimination or secrecy features in their operation. A small transmitter

may use only a few vacuum tubes. The largest transmitters may use

50 or more tubes.

Long-distance Wire Telephones. The connections between telephone

stations on the same continent are effected by wire transmission lines

rather than by radio. When the distance between telephone stations is

large, it is necessary to amphfy the speech energy about every 16 miles

for cables and every 50 miles for open-wire lines. Each speech amplifier

contains several vacuum tubes and amplifies the speech power from about

10 microwatts to about 1 milliwatt, a power amplification of 100. Thus
a telephone call from San Francisco to New York passes through 30 or

more speech amplifiers.

Television Systems. Television systems achieve the modem miracle of

reproducing a visual scene at a point remote from the original. This is

done entirely with vacuum tubes and electrical-circuit elements. No me-
chanical devices are needed. In its present stage of development the

reproduced picture as viewed from 6 ft on an 8-in. cathode-ray-tube

screen is as good as a motion picture seen from the first row of the balcony.

Each television transmitter contains hundreds of vacuum tubes, including

a special camera tube. Every television receiver contains 20 or more
tubes, including a special viewing tube.

Measurement Devices. Electronic measurement devices are too

numerous to mention. Quantities that can be measured, besides all the

electrical quantities, are color, weight, light intensity, odor, time interval,

and many others. In fact, it can be said that any quantity which can

be measured at all can probably be measured by electronic means.

Industrial Control. The number of electronic industrial-control

devices is legion. They include counting circuits, sorting systems, illu-

mination-control systems, welding-control devices, and liquid- and

gaseous-flow regulators. Typical devices are those which automatically

regulate temperature or humidity. All these devices have their primary

dependence upon the vacuum tubes in them.

In addition to the above devices, which are totally dependent upon
vacuum tubes, there are many others that have acquired a strong depend-

ence upon electronic devices. Thus all commercial flying makes constant

use of radio communications to keep posted on the weather and on

terminal traffic and to keep ground stations posted on plane positions

as well as to guide the planes directly. The invasion of other fields by
electronics has already been considerable and is bound to be greater in

time to come.

1.2. Functions of Vacuum Tubes. Although the applications of

vacuum tubes are almost infinite, the specific functions that vacuum tubes
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can perform by virtue of their owm properties are relatively few. It is

these few fundamental functions and their combinations that give rise

to the numerous applications.

A list of the functions of vacuum tubes is bound to be an arbitrary

one since the tube cannot function by itself without an associated circuit.

However, some of the jobs that vacuum tubes can perform are so funda-

mental that they may be considered properties of the tube itself, inde-

pendent of the associated circuits.

The principal functions that may be performed by vacuum tubes are

listed below.

Rectification. Vacuum tubes are able to convert alternating currents

to direct currents. This is known as “rectification.” Rectification is an

inherent property of vacuum tubes because current can flow in only one

direction from a source of electrons.

If a sinusoidal wave of voltage is applied to a vacuum tube of the

right type, current will flow in only one direction, giving rise to a succes-

sion of half-wave pulses all of the same polarity. It is possible to connect

another like tube to insert half-wave pulses of the same polarity between
the pulses of the first tube. The average of these pulses constitutes a

direct current; the other frequency components are rejected by a filter

circuit.

Rectification is important because electronic devices operate best on
direct current, while power is usually generated and transmitted in alter-

nating form. It is thus necessary to convert, or rectify, the a-c power to

d-c power.

Amplification. The amplification of voltage or power is the outstand-

ing function that vacuum tubes are able to perform. With the exception

of the mechanical torque amplifier, no other device can do anything

like it. Strictly speaking, the vacuum tube does not amplify power but
rather controls the flow of a relatively large amount of power from one

source with a small amount of power from another source. The British

use the expression “electric valve” for certain types of electron tubes.

This term is really better than ours, for it indicates the nature of the

amplifying action.

Oscillation. The generation of high-frequency alternating currents,

or oscillation, is another remarkable function that vacuum tubes can
perform. Oscillation is obtained by causing part of the output of an
amplifier to excite the amplifier and thus make the device self-excited

and self-sustaining. Tubes can be built that will produce oscillations

at frequencies as low as 1 cycle per sec, while other tubes can be built

that will oscillate at frequencies as high as 60,000 me per sec.

Frequency Conversion. Vacuum tubes are able to shift the frequency
of a wave. This they are able to do by an electrical “beat” action.
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Thus a wave of a given frequency can be mixed with a wave of another

frequency in a vacuum tube, and among the products of the interaction

is found the difference of the two frequencies. If one of the original

waves had certain effects associated with it, these same effects are

associated with the difference frequency. The beat action results from
the nonlinear characteristics of the vacuum tube.

Modulation. The transmission of intelligence by radio waves or by
certain types of wire telephony requires the use of frequencies higher than

those audible. It is necessary to superimpose the audible frequencies

upon the higher transmitted frequency. This superimposition is known
as “modulation.” Modulation is best performed by vacuum tubes.

Basically, modulation takes the form of varying some property of the

r-f wave at the audible rate. The commonest form of modulation varies

the amplitude of the r-f wave in accordance with the intelligence to be

transmitted. This is known as “amplitude modulation.” Frequency
modulation is also common.

Detection. Detection is the inverse of modulation and is sometimes
known as “demodulation.” It is the process of extracting the intelligence

from the modulated wave. In the case of amplitude modulation the

detection may be effected by rectifying the r-f wave and then utilizing

the average value of the rectified wave, since it follows the amplitude varia-

tions in magnitude. Detection of modulated radio signals is best per-

formed by vacuum tubes over most of the range of radio frequencies.

Light-image Production. It is possible for vacuum tubes to convert

part of their output energy into visible light. This is done in cathode-

ray tubes in which a stream of electrons is caused to hit a fluorescent

screen, causing light to be emitted. The cathode-ray tube can be used

for viewing wave forms and for doing many other wonderful things,

including the reproduction of visual scenes. The fundamental property

involved here is the conversion of electrical energy into visual energy.

Photoelectric Action. Vacuum tubes can be made that will convert

light energy into electrical energy. This is possible by virtue of the

photoelectric effect, which is the emission of electrons from certain sur-

faces when illuminated with visual energy. The liberated electrons con-

stitute an electric current whose measure is related to the frequency and
intensity of the exciting light. Tubes making use of this principle are

known as “photoelectric tubes.” The photoelectric tube is one of the

tubes most extensively used in industrial-control systems.

The above paragraphs have given a bird’s-eye view of the functions

of vacuum tubes. The reader is probably familiar with all the above
functions, which are now commonly encountered in everyday life. The
rest of the book is devoted to the description and explanation of the

characteristics of the vacuum tubes themselves.



CHAPTER 2

BASIC TUBE TYPES

The electronic engineer has about a dozen types of vacuum tube he

can call upon for his high-frequency and industrial-control circuits.

This is a surprisingly small number of distinct tube types. The small

number of types is balanced, however, by the large number of forms in

which each type may appear, as determined by the required power
capacity and frequency range.

The purpose of this chapter is to list the basic types and their funda-

mental characteristics as a prelude to a detailed study of their charac-

teristics and the physical laws from which these are derived.

2.1. Vacuum Diode. The vacuum diode is a two-electrode vacuum
tube. One electrode acts as an

emitter of electrons and is called

the “cathode.” The other elec-

trode acts as a collector of elec-

trons and is called the “anode”
or “plate.” The emitter may be

either directly or indirectly
heated. In physical form the
vacuum diode may vary from a

small metal tube to a large glass

rectifier tube.

The current-voltage charac-

teristics of a typical diode are

shown in Fig. 2.1. The current

follows a three-halves-power law

of voltage over the normal range

of operation. At high values of

plate voltage or at low values of heater current the plate current tends

to be limited by the cathode emission and to increase only very slowly

with plate voltage.

The most useful property of the diode is that it passes current only

in one direction. This property makes the diode useful as a detector

ind as a rectifier for d-c power supplies.
"
5

characteristics of a diode.
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2.2. Vacuum Triode. A vacuum triode is a three-electrode tube con-

taining an emitting electrode called the “cathode,” a control electrode

called the “grid,” and a current-collecting electrode called the “anode”
or “plate.”

The emitting electrode may be an indirectly heated oxide cathode,

an oxide-coated filament, or a filament of tungsten or thoriated tungsten.

The control electrode, usually in the form of a grid of fine wire, sur-

rounds the emitter and is in turn surrounded by the plate in the common-

est form of triode. By virtue of its proximity to the cathode the grid is

able to influence the electrostatic field at the cathode to a greater extent

than can the plate, and thus it is able to control the flow of current from

the cathode. The grid is usually operated on a slight negative potential

so that the electrons will pass between the grid wires without hitting the

wires themselves.

Some typical characteristics of a triode illustrating the variation of

plate current with plate voltage for various fixed values of grid voltage

are shown in Fig. 2.2. The plate current increases if either grid or plate

voltage is increased. The increase in plate current for a given increase

in grid voltage is always much larger than the increase in plate current

for the same increase in plate voltage.
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The relative effectiveness of the plate and grid potentials in controlling

the plate current is known as the amplification factor of the tube (mu;

symbol n). The amplification factor is the maximum amplification that

can be obtained by using the tube as an amplifier. With triodes the

useful amplification is about two-thirds of the amplification factor.

Study of the family of curves of Fig. 2.2 shows that all the curves

are alike in shape and further are somewhat similar to the characteristic

of a diode. This is true in that the plate current of a triode is found to

vary nearly as the three-halves power of an equivalent voltage which is

Fig. 2.3.—Plate-current—plate-voltage characteristics of a

screen-grid tube. V/ = 6.3 volts, = 100 volts.

the sum of the plate voltage divided by mu and the grid voltage.

Triodes have their greatest use as power amplifiers. They are also

used extensively in control applications wherever a small voltage is

wanted to control an appreciable amount of current.

2.3. Screen-grid Tube. The screen-grid tube is a four-element

vacuum tube. The four elements are cathode, control grid, screen grid,

and plate. The electrode construction is similar to that of the triode

except that an extra grid of mesh a little coarser than that of the control

grid is inserted between the control grid and the plate.

The screen-grid tube is the historical predecessor of the pentode.

Its invention was the result of an effort to overcome a limitation of the

triode. Triodes do not work well as amplifiers of high frequencies, for

the high interelectrode capacity between plate and grid causes the tube

to regenerate and oscillate. In the screen-grid tube the capacity between



8 VACUUM TUBES

the control grid and plate is reduced by inserting the extra grid, known
as the “screen grid,” between these elements. The insertion of the

screen grid and its operation at a constant potential succeeded in produc-

ing the low control-grid—plate capacity desired but caused distortions in

the plate-current—plate-voltage characteristics, for the new electrode

arrangement permitted secondary electron flow between plate and screen

grid. This detrimental effect was overcome in the pentode by the addi-

tion of a coarse-mesh suppressor grid between screen grid and plate.

The screen-grid tube is usually operated with cathode near ground

potential, control grid at a small negative potential, and screen grid and

plate at a medium and high positive potential, respectively. Some
typical screen-grid-tube plate-current—^plate-voltage characteristics are

shown in Fig. 2.3. The dips in the low-voltage portion of the curves are

the result of secondary electron current flowing from plate to screen.

The low slope of the high-voltage portion of the curves results from the

fact that the cathode is screened from the plate by the screen grid as

well as by the control grid, and hence the magnitude of the plate current

is increased only a little by an increase in plate voltage. Screen-grid

tubes have been rendered virtually obsolete by the development of the

pentode and some special tetrodes not subject to the tremendous dis-

tortions of current characteristics by secondary emission. Screen-grid

tubes may be used as a-f and r-f amplifiers. They are also occasionally

used in laboratory apparatus in which it is desirable to utilize the negative

resistance characteristic which is available at the points on the current

characteristics where the slope is negative.

2.4. Pentode. The pentode is a five-element high-vacuum tube.

The five electrodes, in the order in which they occur in the tube, are

cathode, control grid, screen grid, suppressor grid, and plate. In normal

operation the cathode is operated near ground potential, the control grid

at a small negative potential, the screen grid at a relatively large positive

potential, the suppressor grid at cathode potential, and the plate at the

screen potential or a more positive potential.

Some typical plate-current—plate-voltage curves of a pentode are

shown in Fig. 2.4. In these it is seen that the insertion of the suppressor

grid at cathode potential between screen grid and plate has eliminated the

distortions in the characteristic observed in the case of the screen-grid

tube. This it does by causing a negative potential gradient at both the

screen grid and plate, which suppresses the secondary electrons from these

electrodes. The slope of the plate-current characteristic for high plate

voltages is even less than in the screen-grid tube, for there is another

screening grid between plate and cathode in the pentode. The result of

this high screening action is to make the amplification factor of the
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pentode extremely high, of the order of 1,000 or more, and to give the

tube a high effective resistance in the plate circuit. The pentode is,

in fact, very nearly a constant-current device. The variation of plate

current with grid voltage, which is measured by a factor known as the

“grid-plate transconductance” or, more commonly, the “mutual con-

ductance” of the tube, is about the same as in the triode. Only about

one-tenth of the high amplification factor of the pentode can be realized

in amplifier operation. However, the reduced plate—control-grid

capacity makes the pentode a better tube in voltage-amplifier apphcations.

The pentode is a versatile tube. It can be connected to give diode,

triode, and screen-grid as well as pentode action. It is available in

constant- and variable-mu forms. It is probably the most extensively

used tube in low-power applications. There are probably more pentodes

in use today than any other type of electron tube. A cutaway drawing

of a pentode showing the electrode structure is given in Fig. 2.5.

2.6. Beam-power Tube. The beam-power tube is a special type of

tetrode. It is designed so that the electrons move from cathode to

plate in dense sheets. This effect is achieved by making the control

grid and screen grid of the same pitch and aligning the grid wires. The
electrode structure of the tube is shown in Fig. 2.6.
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The effect of the dense current sheets between the screen grid and
plate is to depress the potential between these two electrodes within the

1 METAL ENVELOPE

2 SPACER SHIELD

3 INSULATING SPACER

4 AAOUNT SUPPORT

9 CONTROL GRID

6 COATED CATHODE

7 SCREEN

8 HEATER

9 SUPPRESSOR

10 PUTE

11 BATAIUM
GEHER

12 CONICAL
STEM SHIELD

13 HEADER

14 GUSS SEAL

15 HEADER INSERT

16 GUSS-BUnON STEM
SEAL

17 CYLINDRICAL BASE
SHIELD

Fig. 2.5.—Cutaway picture of a single-ended metal-envelopie pentode.

tube because of the high concentration of negative charge. The poten-

tial between screen grid and plate is depressed enough so that secondary

electron flow from plate to grid is suppressed without the aid of a sup-
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pressor grid. Thus the tube represents another solution to the problem

of overcoming the distortions in the current characteristics of the ordi-

nary screen-grid tube.

The plate-current—plate-voltage characteristics of a beam-power tube

are shown in Fig. 2.7. It is saen that these characteristics are free of the

dip in the shoulder due to secondary electron flow. The distinctive

features of the beam-power tube’s characteristics as contrasted with the

pentode characteristics are that the plate current rises much more rapidly

at low plate potentials and the condition of complete transmission of

N!/'

Pig. 2.6.—Cutaway view of the electrode arrangement in a

beam-power tube. {Courtesy of RCA.)

current to the plate is reached at a lower plate potential. The plate

current rises rapidly because the high space-charge density blocks the

flow of electrons to the plate at low plate potentials, and this blocking

action stops quite abruptly as the plate potential is increased. In the

beam-power tube, complete transmission of current passed by the screen

grid to the plate occurs when the plate potential has risen to about

20 per cent of the screen-grid potential, whereas in the pentode the trans-

mission is not complete until the plate potential has risen to about 50 per

cent of the screen-grid potential. This results from the behavior of the

individual electrons, which, in the beam-power tube, are more uniform in

direction and velocity than in the pentode, in which the electrons are

strongly deflected by the suppressor grid.

The beam-power tube is made in small and medium-size metal tubes
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and in a medium-size glass tube. The beam-power tube is used in many
ways. It is extensively employed as an audio-power amplifier tube and
also as a r-f amplifier and oscillator tube.

2.6. Cathode-ray Tubes. The cathode-ray tube is in a class by itself

among the vacuum tubes. It makes use of the geometrical form rather

than the intensity of its electron stream and converts the energy of its

electron stream into a visual indication. In its commonest application

Fig. 2.7. Plate-current—plate-voltage characteristics of a beam-power tube.

the cathode-ray tube uses its electron beam to show the shape of an
applied voltage wave as a light trace upon a fluorescent screen. The
cathode-ray tube is an electronic oscilloscope that produces on a screen

a light spot that can be deflected in two dimensions.

The cathode-ray tube is generally housed in a large glass envelope
shaped like an Erlenmeyer flask. In the neck of the glass envelope is

located a set of electrodes known as the “electron gun.” This gun serves

to produce a circular beam of electrons that is fired at the large end of

the envelope, which is covered with a fluorescent material. Also housed
in the neck of the envelope are deflecting devices that serve to bend the
beam in horizontal and vertical directions. The fluorescent screen on
the inside of the large end of the envelope gives off light at the point at

which the electron beam strikes.
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In physical size the ordinary cathode-ray tubes range from 10 to

20 in. in length and have fluorescent screens from 3 to 5 in. in diameter.

The tubes operate with a beam-accelerating potential between 800 and
10,000 volts. The electrode arrangement in a typical cathode-ray tube

is shown in Fig. 2.8.

Cathode-ray tubes are principally used to observe electrical wave
forms. They may also be used to compare frequencies, plot the B-H
curves of iron, and plot the current-voltage characteristics of vacuum
tubes. They are extensively employed as indicators of elapsed-time

intervals in ionosphere height-measuring devices and radar sets. They
are built in a special form known as the “ kinescope ” for use as television

Fig. 2.8.—Typical electrode arrangement in a cathode-ray tube. K, cathode; G,

control grid; H, accelerating electrode; F, focusing electrode; A, final accelerating

electrode; O, limiting apertures; B, vertical deflecting plates; C, horizontal deflecting

plates.

viewing tubes. They have so many uses as measuring and testing devices

that no radio or electronic laboratory worthy of the name is without

one.

2.7. Klystron. The klystron is a newcomer to the group of vacuum
tubes in use today. It is a special ultra-high-frequency tube that is capa-

ble of generating, detecting, and amplifying radio waves ranging in fre-

quency from 600 to 30,000 me (50 to 1 cm).

The principle of operation of the klystron amplifier differs from that

of other vacuum tubes. It makes use of a velocity-modulation principle

that causes a stream of electrons, which initially has a uniform current

density, to form in bunches. It is the periodic bunch impact that excites

the output resonator, from which energy is extracted. This use of a beam
passing through gaps in closed cavity resonators built into the tube made
it possible for the klystron to overcome the transit-time limitations that

the conventional negative-grid tubes encoimter at high frequencies.

A cutaway drawing of an early type of klystron is shown in Fig. 2.9.

The beam of electrons used in the tube is generated in a cathode at one
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end of the tube. The electrons liberated from this cathode are acceler-

ated toward the main body of the tube, where they pass through a tube

and then through a set of grids in a cavity resonator. In passing through

this first resonator some of the electrons are speeded up and some slowed

down by an alternating axial electric field. This action, called “velocity

modulation,” causes the electrons to form in bunches by the time they

pass through the grids of the second resonator, and it is the bunch

impact here that converts the kinetic energy of the electrons into high-

frequency electromagnetic energy of the second, or catching, resonator.

A klystron tube may be used as an oscillator by feeding part of the

output from the output resonator back to the input resonator. The
tube will oscillate when the total phase shift around the circuit composed
of the input resonator, the electron beam, the output resonator, and the

coupling line back to the input resonator is some integral multiple of

360 deg. Because of this phase requirement it is found that the oscillating

action is voltage selective; i.e., the tube will oscillate at certain voltages

but not at others since the phase-angle equivalent of the transit time of
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the electrons along the beam is involved. In Fig. 2.10 is shown a curve

of klystron output versus beam voltage. This shows how the tube

oscillates at certain select bands

of voltage. The maximum power

output that can be obtained from

a klystron is nearly inversely pro-

portional to the frequency for

which the tube is designed, being

about 200 watts at 40 cm.

2.8. Magnetron. The magne-

tron is a vacuum tube whose

current may be influenced by a

magnetic field. In certain special

forms it is useful as an ultra-high-

frequency oscillator. As such it

may oscillate at wave lengths

from 100 to 1 cm. It is capable

of a continuous power output of several hundred watts and instantane-

ous powers of several thousand kilowatts.

Early forms of the tube were

of the split-anode type. The
important parts of this type of

magnetron are the cathode, fre-

quently in the form of a straight

wire filament, and the anode, in

the form of a circular plate con-

centric with the cathode and split

into an even number of similar

segments. The segments of the

plate are operated at the same

positive d-c potential relative to

the cathode, and a magnetic field

is applied parallel to the tube

axis. This combination of elec-

tric and magnetic fields causes the

electrons emittedfrom the cathode

to move in nearly circular paths

in the region between cathode and

anode.

The radii of the nearly circular electron paths in a magnetron

depend upon the strength of the radial electric field and the axial mag-

netic field. The radii of the patlm decrease as the electric field h

0000(9

Relative magnetic field

Fig. 2.11.—Cutoff characteristic of a split-

anode magnetron. The curve shows that

as the axial magnetic field is increased the

plate current is at first constant and then

suddenly drops rapidly to zero. This

results from the electrons becoming pro-

gressively more curved in their paths until

they finally are unable to reach the plate.

Fig. 2.10.—Power output—^beam voltage

characteristics of a tw'o-resonator klystron

oscillator. This is a picture of an oscillo-

scope trace, which shows that oscillations

are selective with beam voltage.
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decreased or as the magnetic field is increased. Thus if a magnetron

has its circular plate segments maintained at a constant d-c potential

and the strength of the axial magnetic field is increased from zero strength

to a large value, the electrons in the tube will at first move radially from

the cathode to the plate and then move in paths which are more and more

strongly curved until finally the magnetic-field strength is reached at

which the electrons miss the plate entirely. This action is shown in

Fig. 2.11, in which there is given a plate-current-magnetic-field charac-

teristic and sketches of the associated electron paths. It is seen that

tron. The outer electrode serves as the anode. Each of the hole-and-slot

combinations acts like a parallel resonant L-C circuit.

the magnetic field is capable of entirely cutting off the current from the

plate.

For operation as a high-frequency oscillator the plate segments are

made part of resonant circuits, and the magnetic field is adjusted to

approximately the value that causes the electrons just to graze the plate.

If any small disturbance occurs, a complex electronic action results

in which the damped oscillation of the resonant circuit affects the electron

paths so that some electrons extract energy from the system while others

give up part of their kinetic energy to the oscillating system. The tube

can be adjusted so that energy is extracted from the majority of the

electrons as they graze the plates, and thus powerful oscillations are

maintained.

Modern super-high-frequency magnetrons are made in the form of a

multianode cavity. The basic structure of such magnetrons is shown in

Fig. 2. 12. The cathode is in the form of a cylinder of appreciable diam-

eter located in the center of the structure. The anodes are cut out of

one piece of metal and have the form of a large circular hole in a block

with radial slots leading out to smaller circular holes. Electrically,

each slot and terminating hole are equivalent to a tuned resonant circuit.
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the slot having a predominantly capacitive action and the terminating

hole having a predominantly inductive action. One of the resonant

conditions possible in this equivalent circuit is one in which alternate

segments of the anode exhibit the same electrical polarity and thus give

the same action as a split multisegment anode, with the advantage that

the fields associated with this resonance are confined. Under proper

conditions of voltage and magnetic-field strength parallel to the long axis

of the cathode, energy will be transferred from the swarm of gyrating

Light flux.lu.mens

Fig. 2.13.1—Current-illumination curves of a typical vacuum

phototube. ITie current is linear with the illumination. Al-

though actual currents are quite small, the voltage developed

across the large series resistors used is ample for operating

vacuum-tube devices.

electrons around the anode to the resonant circuit and powerful oscilla-

tions tvill be sustained.

2.9. Phototubes. The phototube is a vacuum tube that permits

current to pass through it when light falls upon one of its electrodes. The

tubes are generally small and contain an electrode in the form of a half

cylinder coated with some photosensitive material such as caesium oxide.

Various other light-sensitive materials enable the phototube to respond

to light of different colors or even to ir-'dsible radiations.
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Phototubes are extensively used for counting and sorting devices

They may be used to operate doors and drinking fountains, to turn on

lights, and to provide safety devices for machine operators. They may
be employed anywhere where the interruption or detection of a beam of

light is to be correlated with some operation.

Phototubes are able to operate by virtue of an effect known as

“photoemission.” Certain materials exhibit the property of emitting

electrons when exposed to light. The number of electrons emitted is

directly proportional to the intensity of the illumination so that a variable

light intensity may be translated into a variable electric current or

potential. Use is made of this linear property in the recording and

reproduction of sound on film. The sensitivity of a phototube in con-

junction with a voltage amplifier is so great it may be used to study the

light from stars. A typical set of current-illumination curves of a vacuum
phototube is given in Fig. 2. 13.



CHAPTER 3

ELECTRONS AND IONS

3.1. The Electron. It is the electron that makes vacuum tubes possi-

ble and endows them with their remarkable properties. The electron

is one of the fundamental particles of matter. It is the lightest particle

known. It cannot be subdivided into anything smaller than itself. It

is so small that it cannot be observed directly; all observations of its

properties must be made in terms of the effects associated with it, such

effects as the heat generated upon impact of an electron with a stationary

object or the magnetic field surrounding an electron in motion.

For most of the purposes of electronics the electron may be considered

to be a small, dense particle carrying a negative charge of electricity.

However, it should be borne in mind that this picture of the electron is

far from adequate. There are some applications in which the electron

displays more of a “wave” aspect than a “particle” aspect. This is

the case with the electron microscope, where a high-velocity beam of

electrons acts as though it were a light ray of very short wave length.

In the majority of applications the particle aspect of the electron

predominates, with the following characteristics:

Mass 9.1066 X kg
Negative charge 1.6020 X 10~” coulomb
Apparent radius 1.9X 10“** cm

It is seen that the electron is very dense and is highly charged. It

has an apparent density of 0.50 X 10“ g per cm®, which is milhons of

times greater than that of our heaviest metals (the density of iron is

7.86 g per cm®). Further, if the classic concepts of electrostatics be
applied to the electron, it may be thought of as being charged to a

potential of about 750 kv.

Electrons are a basic constituent of all matter, being the planetary

unit of all atoms. No matter can exist without electrons, but electrons

may exist by themselves. It is the free electrons that are responsible

for most electrical phenomena. They are the units that carry the cur-

rent in vacuum tubes. They constitute currents in conductors when in

motion. Their motion in special conductors such as antennas gives rise

to electromagnetic radiations. They constitute cathode rays and beta

rays and are emitted from hot bodies.

19
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3.2. The Proton. The proton is the companion piece to the electron.

It is the fundamental particle carrying a positive charge of electricity.

It, too, is a constituent of all matter, existing as it does in the nucleus

of all atoms. The vital statistics of the proton are that its charge is the

same in magnitude as that of the electron but with a positive sign, that

its mass is 1,845 times that of the electron, and that its apparent diameter

is a little less than 10"’^® cm. The proton is not nearly so much in

evidence as is the electron in vacuum tubes. It rarely exists as an isolated

particle. Because of its great mass it has a smaller effect than does the

electron in determining the characteristics of materials and in constituting

a current flow.

3.3. Other Fundamental Particles. Until 1932 the electron and the

proton were the only fundamental particles known. Then there were

foimd a number of other fundamental particles whose rarity and short

life had hitherto precluded their discovery.

Among these new particles is the neutron, which is basically a proton

with no charge. There is also a positron, which is an electron with a

positive charge. There is some evidence of a neutrino, which is a particle

of small mass and with no charge. Strangest of aU is the mesotron, often

abbreviated as “meson,” which is a particle with about one-tenth the

mass of the proton and carrying either a positive or a negative charge.

These particles, however, are of no concern to the electronic engineer since

they seldom make their appearance in ordinary vacuum tubes.

Another “particle” that has been known for some time is the photon.

The photon, though classed as a particle, exhibits a wave nature most of

the time and is the one particle whose dual nature is most evident.

It is a packet of electromagnetic energy whose apparent mass is directly

proportional to the frequency of its wave aspect. It carries no charge.

3.4. Atoms and Molecules. Electrically neutral combinations of

electrons and protons constitute atoms according to the atomic theory

of Rutherford, Bohr, and subsequent workers. The word “atom” is

derived from the Greek word meaning “indivisible.” Atoms are indi-

visible in the sense that they are the smallest bits of matter which main-

tain the properties of the several elements of materials of which they are

part. There are 92 types of atoms, corresponding to 92 materials

known as “elements.” Combinations of the different atoms form mole-

cules, which are the smallest constituent parts of all other materials

composing the physical world.

The basic structure of the atom is believed to be a kind of planetary

system consisting of a nucleus, which is a group of neutrons and protons,

and having a group of planetary electrons equal to the number of protons

.in the nucleus.
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The simplest atom is that of hydrogen. It has 1 nuclear proton

and 1 planetary electron. To get an idea of the size of such an atom,

if the proton were 1 cm in radius, the electron would normally be spaced

a distance of 5 km. The helium atom is the next simplest atom. Its

nucleus consists of 2 protons and 2 neutrons. It has 2 planetary

electrons. Other atoms are relatively more complicated. The oxygen

atom has 8 nuclear protons and 8 nuclear neutrons, whose charge is

balanced by that of 8 planetary electrons.

The weight of an atom is determined almost entirely by the sum of

the number of protons and neutrons in its nucleus. The physical prop-

erties of the atom are determined by the number and arrangement of its

planetary electrons. The number of the planetary electrons of an atom

of an element is known as the “atomic number” of that element. The

order of the elements when listed according to their atomic number is

very nearly but not exactly the same as the order according to the atomic

weights. If the elements are arranged in a periodic table according to

their atomic weights and chemical affinity (valence), as was done by

Mendelyeev, it is found that elements with similar characteristics are

grouped in columns of equal valence (see Appendix I for a periodic table

of the elements).

The planetary electrons of an atom were shown by Bohr to lie in

restricted orbits. They were further found to lie in shells about the

nucleus, each shell having a maximum capacity for electrons. The
maximum capacity of the successive shells from the nucleus out is 2,

8, 18, 32, 18, 18, 2. Thus the atom of neon, whose atomic number is

10 and whose atomic weight is 20.183, has 10 planetary electrons arranged

with 2 electrons in the first shell and 8 in the second. These 10 electrons

balance the electrical charge of the nucleus, which consists of 10 protons

and 12 neutrons.

The number of electrons in the outermost shell of an atom determines

its valence and is the principal factor in determining the physical prop-

erties of the atom. Atoms with an outer shell filled to its capacity are

relatively inactive, while atoms with only 1 electron in their outer

shell are most active.

The atomic weights of the elements are taken as relative to that of

oxygen, which is chosen to be 16. The fact that the atomic weights are

not integers is due in most cases to the fact that there exist atoms of the

same element with different numbers of neutrons in the nucleus. The
atomic weight of a sample of an element is then determined by the rela-

tive number of these different atoms. Atoms with the same number of

planetary electrons but with different numbers of nuclear neutrons are

known as “isotopes” of the same element. Neon has isotopes with 20,
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21, and 22 nuclear particles mixed in such a way that the atomic weight

is 20.183. Hydrogen has isotopes with 0, 1, and 2 nuclear neutrons.

The first isotope is the common one. The others are the relatively rare

“heavy hydrogen” isotopes.

Combinations of the atoms of the elements form molecules. The
molecule is the smallest particle of a compound which can exist without

losing the characteristics of that compound. Molecules range in size

from those of atomic size to a few large enough to be seen with an elec-

tron microscope. The molecules of some elements are not just single

atoms but groups of two identical atoms.

3.6. Ions. An ion is a molecule or atom with a charge of electricity

acquired by the loss or gain of one or more electrons. Electrons in the

outer shell of an atom are rather loosely bound to the atom and so may
be dislodged by impact of a particle or by exposure to X rays. Ioniza-

tion of an atom of an element does not change it from one element to

another. This is because the nucleus of the atom is unchanged and the

form of the nucleus determines the arrangement of the electrons in

neutral form.

Ions are important in vacuum tubes because they constitute a cur-

rent when in motion and thus affect the characteristics of tubes, if they

exist in sufficient number. Since even the most completely evacuated

tubes contain billions of molecules per cubic centimeter, ions are always

created by the impact of electrons and depending upon the type of tube

may be a large factor in determining the tube characteristics.

Ions are of most importance in certain special tubes that contain

considerable amounts of a definite gaseous element deliberately introduced

in great quantities and are an important factor in the tube operation.



CHAPTER 4

ELECTRONIC EMISSION

liiVERY vacuum tube depends for its action upon a stream of electrons

that acts as a carrier of current. As necessary as the stream of electrons

is the electrode that emits them. Whatever the nature of the tube and
the arrangement of electrodes, an emitting electrode cannot be dispensed

with. Even in cold-cathode tubes, one of the electrodes is treated with

a low-work-function material to facilitate the production of some elec-

trons that will initiate the action.

In general, the excellence of performance of a given tube depends

upon the efficiency with which free electrons are produced. When the

emission fails, the tube is useless. We infer correctly then, that the

subject of electron emission is worthy of considerable study.

The types of electronic emission may be listed as follows:

1. Thermionic, or primary, emission.

2. Secondary emission.

3. Photoelectric emission.

4. Field emission.

The common feature of all types of emission is that energy is imparted

to the free electrons in a solid in an amount sufficient to enable them to

overcome the restraining forces at its surface and thus escape from the

solid.

The types of emission differ only in the way in which the escape

energy is imparted to the free electrons. Thermionic emission occurs

when a material is heated to incandescence in a vacuum. In this case

the escape energy is imparted by heating the material. Secondary emis-

sion occurs when a high-velocity electron or ion strikes a material in a

vacuum and knocks out one or more electrons. In this case the energy

that enables the free electrons to escape comes from the striking particle.

Photoelectric emission occurs when energy in the form of light falls upon
a surface. Field emission occurs at cold surfaces under the influence of

extremely strong fields.

All types of emission are most effective in vacuum. If the emission

did occur in air, the emitted electrons would not get very far through

the relatively dense surrounding atmosphere. Most metals would bum
23
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up in air at the temperatures to which they must be raised to emit sat-

isfactorily. Only primary and secondary emission will be discussed in

this chapter. Photoelectric emission will be discussed in a separate

chapter. Field emission is not yet of much practical importance.

4.1. Theory of Thermionic Emission. Every metal has a crystalline

structure of its atoms, i.e., the atoms have an orderly arrangement in

some sort of lattice pattern. The atoms in this lattice structure have

certain of their outer electrons loosely bound. These loosely bound

1

/

( ^ MaxwB

y
.V

Uictn dis

3000°K

5: n

/
1

/

\
\

\
A -Fermi

^disfrib

-Dfrac

utiorrs

/

/

\
\

\
,

b°K
\

1

Z- K \i00tV VK

Ql/ — 1 I JiL ^ ^
II I

0 0.2 0.4 0.6 0.8 1,0 1.2 1.4 1.6 1.8

Velocity V, multiply scale values by 10^ for m per sec

Fig. 4.1.—Maxwellian and Permi-Dirac distribution of velocities in

1 cu mm of solid tungsten. The abscissa gives the relative number
of electrons in a velocity increment of 10~® meters per sec in units of

10^“ electrons.

electrons may move from atom to atom in a relatively unrestricted

fashion. Such electrons are known as the “free electrons” in the metal
in that they are not bound to any one atom. The free electrons in a
metal act much like the molecules in a gas. An increase in temperature
increases their activity and average velocity. A potential gradient in

the metal causes them to move progressively in one direction, giving

rise to a conduction-current flow.

Because of the atomic restraints it is not expected that the velocity

distribution in a metal is Maxwellian, as is almost exactly the case for

gases. The true distribution was found by Fermi and Dirac from quan-
tum-mechanical statistical considerations. For comparison there are

shown in Fig. 4.1 the Maxwellian and Fermi-Dirac distribution of veloci-

ties. The distinctive feature of the Fermi-Dirac distribution of velocities

is that at zero temperature only a small fraction of the electrons have
zero velocity. As temperature increases, the velocity and corresponding

enei^ distribution change so that more electrons have higher velocities.
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The high-velocity electrons that escape from the metal constitute the

emitted current.

The Maxwellian distribution of velocities referred to above and

shown in Fig. 4.1 is one given by the equation

(4.1)

This is the general form of the probability y that a particle will have a

velocity x times the most probable velocity. It applies perfectly for

most gases but does not give the true picture for electrons in metals.

For large velocities, however, the Maxwellian and Fermi-Dirac distribu-

tions differ only by a constant. Thus the electrons emitted from an

incandescent surface do have a Maxwellian distribution, but the energies

of the electrons are (at 3000°K) about 1,000 times those predicted from

the simple Maxwellian theory. Upon converting Eq. (4.1) to a form

involving energy instead of velocity and taking the derivative properly,

the fraction — of the emitted electrons that can move against a retarding
no

field of V volts is given by

n
ria

(4.2)

where — e is charge of the electron, 1.602 X 10“'° coulomb

k is Boltzmann's constant, 1.380 X 10“°° watt-sec per °K
T is absolute temperature, 273 -|- °C

A nomographic chart of Eq. (4.2) is given in Fig. 4.2. From this it is

seen that about 50 per cent of the electrons emitted from a cathode at

1500°K, typical oxide operating temperature, have velocities greater

than 0,09 volt.

Work Function. The surface restraints that prevent the majority

of the free electrons in a metal from leaving it are the electrostatic forces

produced by the charges in the atoms. These come not only from the

residual positive charges but also from a rearrangement of the negative

charges. A free electron must have a certain minimum kinetic energy

before it can tear itself free from these forces. The work per unit charge

required to free an electron from the influence of the charges in the metal

and thus to escape from it is known as the work function of the metal.

The work function is usually expressed in volts.

The electrostatic forces within a metal are rather complex and not

completely understood. Indications are that the forces are small within

the metal, reach a maximum several atomic diameters outside the metal,

and then decrease according to an inverse-square law at greater dis-



26 VACUUM TUBES

Fig. 4.2.—The velocity distribution of electrons resulting from thermionic emission

as given by Eq. (4.2). The nomographic chart gives the fraction of the emitted

electrons associated with a given cathode temperature that can overcome a retarding

potential of a given number of volts.
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tances, where an image action manifests itself. It would be expected

that the work function would decrease as the distance between the

atoms in the crystalline structure increased. This turns out to be the

case, and experimentally, a curve of the work function of the alkali

metals of the first column of the periodic table plotted against their

atomic spacing is a smooth one, nearly inversely proportional to the

square root of the atomic spacing, as may be seen in Fig. 4.3. Conclusions

for other metals can hardly be drawn, for there are so few having the

Atomic spacing. Angstroms

Fig. 4.3.—Work function of the alkali metals as a func-

tion of atomic spacing. The curve shows that for a

given crystal structure, the further the atoms are apart

the lower is the work function.

same valence and crystalline structure. Since the atomic spacing is a

periodic function of the atomic number, the work function is also a

periodic function of the atomic number.

No completely successful theoretical determination of the work func-

tion has apparently as yet been made. The general nature of the restrain-

ing forces is probably very much like that shown in Fig. 4.4. Within

the metal the force has an average value of zero. Near the surface there

are the attractive forces of atoms that have lost an electron by emission

and forces due to rearrangement of residual charges. The forces are

undoubtedly greatest near the surface, where the force-producing

charges are closest and yet not symmetrically disposed with respect to

the surface. Well outside the surface the force is probably one that

varies with the inverse square of the distance from the metal, for in this

region the charges in the metal arrange themselves so as to give the effect

of an image charge of the electron escaping from the metal. The force
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cannot be inverse-square law all the way out from the surface, for then

an infinite energy would be needed for escape. It may be concluded that

the work function depends in some complex way upon the atomic spac-

ing, crystal structure, and valence of the metal.

The work function of materials is most accurately determined experi-

mentally from observations of the photoelectric emission of the material.

Pig. 4.4.—Restraining force on an electron near a metal surface.

At large distances from the metal the force is that due to an image

charge located in the metal.

but it may also be deduced from the thermionic-emission characteristics.

A list of the work functions of the metal emitters most often used is

given in Table I.^’^

* Hughes, A. L., and L. A. DuBkidge, “Photoelectric Emission Phenomena,”

McGraw-Hill, New York, 1932.

* Beckeb, J. a.. Thermionic Emission and Adsorption, Rev. Modern Phys., vol

T, pp. 96-128, April, 1935.
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TABLE I

EMISSION CONSTANTS OF THE METALS

Probable (hr,*

volts

! Average <^p, f

1
volts

1

Melting temp.,

°C

Lattice const,

angstrom units

Ag 4.7 4.6 960.5 4.08

A1 3.0 3.0 659.7 4.04

Au 4.8 4.78 1063 4.07

Ba 2,52 850 5.015

Bi 4.1 4.2 271.3 4.75

C 4,7 4.77 >3500 2.455

Ca 3.2 3.0 810 5.56

Cd 4.1 4.0 320.9 2.97

Cs 1.8 1.67 28,5 6.05

Cu 4.1 4.3 1083 3.61

Fe 4.7 4.74 1535 2.90

Hg 4.5 4.53 -38.87
K 1.8 1.90 62.3 5.33

Li 2.2 2.21 186.0 3.46

Mg 2.4 2.43 651.0 3.20

Mo 4.3 4.15 2620 3.14

Na 1.9 2.0 97.5 4.24

Ni 5.0 5.01 1455 2.66

Pb 4.0 3.9 327.4 4.94

Pt 6.0 6.3 1773.5 3.91

Rb 1.8 1.82 38.5 5.62

Sr 2.1 2.06 800 6.05

Ta 4.1 4.13 3269 3.28

Th 3.4 3.50 1845 5,07

W 4.52 4.61 3370 3.16

Zn 8.3 3.44 419.47 2.66

Zr 4.1 3.73 1900 3.22

* Work function as determined by thermionic measurements,

t Work function as determined by photoelectric measurements.

The Emission Equation. In view of the foregoing discussion it would

be expected that the emission from a metal would depend upon its tempera-

ture and upon the work function. Richardson^ and Dushman^ have

' Richardson, O. W., The Distribution of the Molecules of a Gas in a Field of

Force, Phil. Mag., vol. 28 (No. 5), pp, 633-647, 1914.

^ Dhshman, S., Electron Emission from Metals as a Function of Temperature,

Phys. Rev., vol. 21 (No. 6), pp. 623-636, 1923. See also the summarizing source

article, S. Dushman, Thermionic Emission, Rev. Modern Phys., vol. 2, pp. 381-476,

October, 1930, which gives a comprehensive survey of the subject as developed to that

date. See also the book, A. L. Riemann, “Thermionic Emission,” Wiley, New York,

1934.
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shown this to be the case and have shown specifically that the thermionic

emission from a metal is given by

J = ATh ^ (4.3)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

.4
!0J

S S S T

1.3 1.4 1.5 1.6

Fig. 4.5.—Characteristics of the common emitters shown

as a curve of \ogJ/T^ against 1/T- This type of plot

demonstrates the validity of the Richardson-Dushman

equation (4.3). The y-axis intercepts give the emission

constant A. The slope of the lines is proportional to

the work function of the emitter.

where J is current density, amperes per cm*

A is 120.4 amperes per cm* per deg*, a universal theoretical constant

T is absolute temperature, °K (273 + °C)

6o is temperature equivalent of the work function, ll,6(X)^o,°K

<l>o is work function of the metal, volts

Equation (4.3) may be derived from either thermodynamic or quantum-
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mechanical considerations. The resulting equation is the same in either

case.

From the form of the emission equation (4.3) it is seen that if the

logarithm of ^ be plotted against the reciprocal of T there will result a

straight line whose slope is — 6o and whose ?/-axis intercept is In, A. The

correctness of the emission equation has been verified by so plotting

experimentally determined results. It is found in all cases that the

results produce a straight line. A group of such curves for common
emitters is given in Fig. 4.5. In this figure those lines with the lowest

slope correspond to metals with the lowest work function. Theoretically,

the intercept should be 2.08, corresponding to the log iol20.4. Actually,

it is about 1.78, corresponding to a value of A of 60 instead of 120.4 for

most of the pure metals. Values of A are found higher as weU as lower

than the theoretical values so that the theory is not discredited by this

discrepancy. There is some evidence that the work function is not

entirely independent of temperature as has been assumed in the deriva-

tion of the emission equation. The differences in the value of the work

function as determined by thermionic and photoelectric methods may
possibly be due to temperature. A decrease in the work function of 6

parts per 100,000 per degree would cause the observed discrepancy in

the constant A.

The exponential term in the emission equation accounts for most of

the variation of emission with temperature. The variation with the

term is so small that the correctness of the exponent 2 can hardly be

verified experimentally. In the ease of tungsten at 2500°K a 1 per cent

change in temperature changes the term by 2 per cent but changes the

exponential term by 20 per cent. This causes the emission-temperature

function to be one of the most rapidly varying functions found in

nature. Doubling the temperature may increase the emission by a factor

of 10^. Halving the work function will have nearly the same effect as

doubling.

The quantities of the curves of Fig. 4.5 are not in very convenient

form for ordinary use, and therefore a better method of representing the

emission characteristics of materials is sought. It is possible to plot

emission current against temperature directly as in Fig. 4.6, but the

variation of current with temperature is so rapid that such a curve is not

very satisfactory. It would also be possible to plot emission against

heating power by making use of the fact that at the high temperatures

required for emission most of the power is lost through radiation accord-

ing to the Stefan-Boltzmann law.
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P = KesT^ (4.4)

where P is radiated power, watts per cm^

K is 5.73 X 10“*^ watt per cm^ per deg^, a universal constant

known as the “ Stefan-Boltzmann constant”

eg is radiation efficiency as fractional radiation of a black body or

perfect radiator

Such a plot gives curves that are nearly but not quite straight lines because

of the two temperature factors in the thermionic-emission equation. It

emitter as a function of temperature.

is possible, however, to warp the hnes of the emission scale to take account

of the nonuniform temperature variation and get a straight-hne plot as

shown in Fig. 4.7. The coordinate paper used in Fig. 4.7 is known as

“power-emission paper.” On it curves of emission against heating

power are straight lines to the extent that the radiation efficiency of the

emitter remains constant with temperature. Contours of emission effi-

ciency in milliamperes per watt are also readily drawn. Since heat-
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radiation efficiency varies rather slowly with temperature, as shown in

Fig. 4.8, the emission-power curves can be e.xtrapolated as straight lines

with considerable assurance. Radiation efficiency is defined as the per

Fflr, watts -.=
cvi

Fig. 4.7.—Emission-current density as a function of heating power for typical exam-

ples of various emitter types. The curves show the relative emission efficiencies of

the different emitters.

cent of black-body, or perfect, radiation. Black-body radiation as given

by Eq. (4.4) is shown in Fig. 4.9. Power-emission paper is manufactured

and sold by the Keuffel and Esser Company.
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Types of Emitter .—Because of the dependence of emission upon
temperature and the work function it is not necessarily true that the

metal with the lowest work function is the best emitter. This is shown
by the case of caesium, which has the lowest work function of all the

metals, 1.8 volts. It cannot be made to give much thermionic emission

because it can be raised only to 300°K, slightly over average room tem-

perature, before it melts. On the other hand, tungsten, which has a

rather high work function, 4.52 volts, has the highest melting temperature

100 200 SOO 1000 2000 5000
Temperature, °K

Fig. 4.8.—The radiation efficiency of various metals used in vacuum-
tube construction as a function of temperature. Efficiency is given

as a fraction of black-body radiation, which is shown in Fig. 4.9.

of all the metals, 3655°K, and as a result gives the highest emission of all

the pure metals just below its melting temperature. Caesium, however,

is preferred for photoelectric emission and secondary emission where
temperature is not a factor.

It has been found that it is possible to raise some metals to tempera-
tures higher than their melting temperatures in the pure state by using

them in various chemical and physical combinations. Thus a monatomic
layer of thorium on tungsten can be operated at or above the melting
temperature of thorium itself. Also, it has been found that small bits

of the pure metal can be made to diffuse out of an oxide in the case of
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the rare-earth metals so that advantage can be taken of the low work
function of these metals, which would otherwise melt at low temperatures.

From the above remarks it is seen that three classes of emitters exist.

They are

1. Pure metals.

2. Atomic-film emitters.

3. Oxide emitters.

10 20 50 100 200 500 1000 2000 5000 IQOOO
Temperature, ®K

Fig. 4.9.—The thermal radiation of a black body or ideal radiator as a function

of temperature as given by the Stefan-Boltzmann law of Eq. (4.4).

These different types of thermionic emitters will now be discussed

separately.

4.2. Emission of F*ure Metals. Tungsten. The pure metals follow

the Richardson-Dushman emission equation as closely as can be deter-

mined experimentally. In general, the metals with suitable physical

characteristics for emission have a relatively high work function and
so even at best are not very good emitters. Of all the metals tungsten
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is the most extensively used because it can be raised to a higher tempera-

ture without melting than any other metal. Although tungsten has a

desirable high melting temperature, its other physical characteristics are

less desirable. It is a hard metal to work because of its crystalline

structure. It was not until 1908, when Coolidge discovered that tung-

sten becomes ductile when extensively worked, that it became practical

to use the metal at all. Timgsten cannot be drawn into wire form as

can most metals but must be hammered into shape, a process known
as “swaging.”

The emission characteristics of tungsten have been extensively

studied, and more is known of its thermionic behavior than is known of

any other metal.

The principal characteristics of tungsten as given by Jones and

Langmuir are recorded in Table II. The data in this table are for a wire

of unit length and unit diameter. The characteristics for any other

diameter and length are readily determined by the dimensional equations

given. The principal features of tungsten emission are given in the

curves of Fig. 4.10. An example of the use of Table II is given in Prob.

4.3.

Because of its relatively low emission, tungsten is not used as an

emitter unless the application is such that other emitters cannot be used.

Tungsten is used almost exclusively for filaments of tubes with plate

potentials higher than 4,000 volts. This is because other emitters can-

not stand the positive-ion bombardment at energies corresponding to

this high potential. The positive ions referred to have their origin in

residual gases in the tube. All other emitters have their emission

impaired when subjected to bombardment by these high-energy particles.

Except for the brittleness caused by crystallization at high temperatures,

tungsten filaments are more rugged than any other. Like all emitters,

tungsten is subject to reduction of emission from contamination by
various gases. Tungsten cleans up more readily by heating or bombard-

ment than any other material.

Tantalum. The only other pure-metal emitter of any importance is

tantalum. Tantalum cannot be heated to as high a temperature as

tungsten because its melting temperature is 3300°K. However, the

work function of tantalum is relatively low, being 4.1 volts against 4.53

volts for tungsten, so that its emission is at least ten times that from

1 Jones, H. A., and I. Langmuir, The Characteristics of Tungsten Filaments as

Functions of Temperature, Gen. Elec. Rev., vol. 30, Part I, pp. 310-319, June;

Part II, pp. 354-361, July; Part III, pp. 408-412, August, 1927.

* Forsythe, W. E., and A. G. Worthing, The Properties of Tungsten and the

Characteristics of Tungsten Lamps, Astrophys. Jmir., vol. 61, pp. 146-185.
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TABLE II

SPECIFIC CHARACTERISTICS OP IDEA!. TUNGSTEN FILAMENTS*
(For a wire 1 cm in length and 1 cm in diameter)

T, °K
w

watts per cm

R' X 10’,

J.io.,
ohm-cm

ifii

amps per

V' X lOa,

y^xio’
volts per

cm^^

r. L‘.
'

^
’ Id

amp per cm^

M'
’ Id

g per cm2 pgj
sec,

evaporation

R'r

R'293°

Rt
/? 293

°

273 6.37

293 0.0 6.99 0.0 0.0 1 00

300 0.0001001 7.20 3.727 0.02683 1 08

400 0.00624 10.26 24.67 0.2530 1 407

500 0.0305 13.45 47.62 0.6404 1 994
600 0.0954 16.85 75.25 1.268 9 41

700 0.240 20.49 108.2 2.218 4 9.8

800 0.530 24.19 148.0 3.581 .8 46

900 1.041 27.94 193.

1

5 . 393 4 00

1,000 1.891 31.74 244. I 7.749 3.36 X 10-^5 1.16 X 10- 33 4.54
1,100 3.223 3,5.,58 301.0 10.71 4.77 X 10-13 6.81 X 10-60 5.08
1,200 5.210 39.46 363.4 14.34 3.06 X 10-n 1.01 X 10-2S 5.65
1,300 8.060 43.40 430.9 18.70 1.01 X 10-9 4.22 X 10-2* 6.22
1,400 12.01 47.37 503.5 23.85 i 2.08 X 10-8 7 . 88 X 10 86 6,78

1,500 17.33 51.40 580.6 29.85 2.87 X 10- ’ 7.42 X 10-60 7.36
1,600 24.32 55.46 662.2 36.73 2.91 X 10-8 3.92 X 10-18 7.93
1,700 33.23 59.58 747.3 44.52 2.22 X 10-6 1.31 X 10-16 8.52
1,800 44.54 63.74 836.0 53.28 1.40 X 10-^ 2.97 X 10-15 9.12
1,900 58.45 67.94 927.4 63.02 7.15 X 10-* 4.62 X 10-14 9.72

*2,000 75.37 72.19 1,022
[

73.75 3.15 X 10-3 5.51 X 10-13 10.33
2,100 95.69 76.49 1,119 i 85.57 1.23 X 10'

3

4.95 X 10-12 10.93
2,200 119.8 80.83 1,217 98.40 4.17 X 10-* 3.92 X 10-11 11.57
2,300 148.2 85.22 1,319 112.4 1.28 X 10-1 2.45 X 10-10 12.19
2,400 181.2 89.65 1,422 127.5 0.364 1.37 X 10 -6 12.83

2,500 219.3 94.13 1.526 143.6 0.935 6.36 X 10-9 13.47
2,600 263.0 98.66 1.632 161.1 2.25 2.76 X 10-8 14.12
2,700 312.7 103.22 1,741 179.7 5.12 9.95 X 10-2 14.76
2,800 368.9 107 . 85 1,849 199.5 11.11 3.51 X 10-2 15.43
2,900 432.4 112.51 1,961 220.6 22.95 1.08 X 10-6 16.10

3,000 503.5 117.21 2,072 243.0 44.40 3.04 X 10-6 16.77
3,100 583.0 121.95 2,187 266.7 83.0 8.35 X 10-6 17.46
3,200 671.5 126.76 2,301 291.7 150.2 2.09 X 10-s 18.15
3,300 769.7 131.60 2,418 318.3 265.2 5.02 X 10-6 18.83
3,400 878.3 136.49 2,537 346.2 446.0 1.12 X 10-4 19.53

3,500 998.0 141.42 2,657 375.7 732.0 2.38 X 10-4 20.24
3,600 :1,130 146.40 2,777 406.7 1,173 i.86 X 10-4 20.95
3,655 ;1,202 149.15 2,838 423.4 1,505 7.15 X 10-4 21.34

* The values given are taken from H. A. Jones and I. Langmuir. The Characteristics of Tungsten
Filaments, Gen. Elec. Rev., vol. 30, pp. 312—313, 1927, Table I. The notation of Jones and Langmuir is

retained in this table.
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tungsten at any temperature less than 2500°K. Tantalum has the advan-
tage over tungsten that it can be worked in sheet form to produce
specially shaped cathodes, and the like. A disadvantage is that it is

easily contaminated by residual gases, which form oxides that greatly

reduce the emission.

4.3. Atomic-film Emitters. It is possible to get emission higher than
that from pure metals from an atomic film of one metal on another.

Of the various combinations that are possible, the most extensively used
is that of thorium on tungsten. It was discovered by Langmuir and
Rogers that the small amount of thorium put into tungsten to reduce

the crystallization gave rise to very high emission under certain conditions.

What apparently happens is that a certain amount of thorium in the

metal diffuses to the surface, where it emits much as thorium would,

^vith the advantage that the thorium can be heated above its own melting

temperature and that the work function is reduced by the redistribution

of charges in the tungsten and surface layer of thorium.

Thorium was originally added to tungsten to reduce crystallization.

As now added to increase the emission, the amount is about per cent,

and this amount is quite critical. If more than this amount is added,

the timgsten wire is too hard to work. If less is added, there may not

be enough to produce high emission. The thorium is added in the form
of thoria (thorium oxide, Th02).

A rather intricate schedule of operations is required to produce and
activate a film of thorium on tungsten. The process includes the fol-

lowing steps

:

1. Reduction of Thoria to Metallic Thorium. This is achieved by
heating the filament to 2800°K for 1 or 2 min. During this time, most
of the thorium oxide is reduced to thorium, and such thorium as reaches

the surface evaporates. If the emission is measured at this point, it

will be found to be very nearly the emission of pure tungsten.

2. Diffusion of Metallic Thorium to the Surface. This takes place as

the filament is held at a temperature of 2100°K for a period of 15 to

30 min. During this time the emission increases by a factor of about

1,000. The explanation of this behavior is that metallic thorium dif-

fuses to the surface, where it builds up a monatomic layer of thorium.

Studies with the electron microscope^ show that the thorium arrives at

the surface both through pores in the tungsten and at the grain boundaries,

from which places it spreads over the surface. At this reduced tempera-

ture the evaporation is not very large. In the range of temperatures

between 2100 and 2300°K the thorium diffuses to the surface faster than

^ BRiJcHE, E., and H. Mahl, Ueber das Emissions bild von thorierten Volfram und

thoriertem Molybdan, Zeit. fiir Tech. Phys., vol. 16, pp. 623-627, December, 1935.
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it evaporates, so that this is a suitable range for activation. In this

range of temperature the percentage of the surface covered varies from

20 to 85 per cent, decreasing as temperature increases as shown in Fig.

4. 11. The final layer of thorium that forms is beheved to be monatomic.

3. Operation. After the above treatment the filament temperature is

reduced to 1900°K, where it may be operated for long periods of time in

a very stable fashion. At this temperature, both the diffusion and

1500 2000 2500 3000

Temperature, "K

Pig. 4.11.—The emission of thoriated tungsten as a

function of temperature. O indicates operating range

of temperatures; A, activation range; D, diffusion

range, and R, reduction range.

evaporation are low, but there is a sufficient preponderance of diffusion

to maintain a good emitting surface. Any temperature below 1900°K

is suitable for operation. At this temperature, the tungsten surface is

about 85 per cent covered by thorium, and the fife of the coating is

several thousand hours. If the temperature is reduced, the effective

work function is decreased, the life is increased, the percentage surface

coverage is increased, but the emission is decreased.

It is interesting to note that the thoriated tungsten filaments are

usually operated at 1900°K, which is nearly the melting temperature of

thorium, something that could not be done with the pure metal because

of its softness at this high temperature. Also, the work function of

thoriated tungsten filaments is 2.6 volts for a 100 per cent covered sur-

face, and this work function is lower than the work function either of
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tungsten, 4.51 volts, or of thorium, 3.4 volts. The work function of

thoriated tungsten is a linear function of the surface coverage given by
= 4.51 — 1.96 volts, where 6 is the fraction of the tungsten surface

covered by thorium. The reason why the work function is reduced by
having the metals in combination is that most of the electrons in the

thorium layer are drawn toward the tungsten base. This produces a

dipole layer on the surface, udth its positive end outward. This means
that in most of the surface region the electrostatic forces are outward,

opposing the image forces and thus reducing the work function.

Thoriated tungsten surfaces are always carbonized to increase the

life. It has been found that if some of the tungsten is converted to

tungsten carbide (WjC) the evaporation of thoriiun from its surface is

greatly reduced.* The rate of evaporation of thorium from a tungsten

carbide surface at 2200°K is only about one-sixth of that from an uncar-

bonized surface at this temperature. Carbonization may be achieved

by heating the filament to a temperature of 1600°K in a vapor of some
hydrocarbon such as naphthalene or acetylene. It may also be achieved

by heating the filament to red heat in an atmosphere of hydrogen while

in contact with a carbon surface. As the filament is converted to tung-

sten carbide, its electrical conductance decreases until when totally con-

verted it is about 6 per cent of the original value. The electrical resist-

ance is therefore an excellent index of the degree of conversion. In prac-

tice, it is found that the conversion cannot be carried beyond the point

whore the conductance is reduced to 80 per cent of its original value, for

the tungsten carbide is so brittle that the filament would be dangerously

weakened by further action.

The fact that the layer of thorium on tungsten is monatomic is evi-

denced by at least two aspects of the behavior of the composite emitter

surface. (1) If the filament is deactivated by heating to a higher tem-

perature after having been activated, the manner in which the emission

reduces mth time is independent of the length of time the film has been
activated. This indicates that the activation beyond a certain point

does not add any more emitting material to the surface, which can be the

case only if the layer is monatomic and surplus atoms are lost by evapora-

tion. (2) There is no discontinuity in the emission characteristics during

the activation process.

Monatomic films other than thorium on tungsten may be used. It is

found that they are not as stable as a thorium layer because of more
rapid diffusion and evaporation, and hence they are not much used.

Curves showing the emission characteristics of various combinations are

' Kollbb, L. R., “The Physics of Electron I'ubes,” 1st ed., McGraw-Hill, New
Fork, 1934.
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shown in Fig. 4.12. In this figure the notation 0~W means that the
emitting metal is on an oxidized tungsten surface.

4.4. Oxide Emitters. In 1904, Wehnelt discovered that copious
electron emission could be obtained from alkaline-earth oxide coatings.

The entire development of small vacuum tubes is based upon this dis-

covery, for oxide coatings are used almost exclusively as a source of

emission in them. The alkaline-earth metals that are readily available

(ioVt)

4 5 6 1 8 9 10 II 12 13 14 15 16 11 18

Degrees

Fig. 4.12.—The emission of monatomic films on tungsten. {After

Dushman.)

are barium, strontium, and calcium, and it is their oxides that have been
found to give such high emission. Modern oxide coatings are usually

a half-and-half mixture of the oxides of barium and strontium. Such a

coating will give high emission at low temperatures with a high thermal

efficiency; thus at 1000°K an emission of 100 ma per cm^ at an efficiency

of 20 ma per watt input is readily obtained. This is about the same
emission as is given by a tungsten filament at 2300°K, but the emission

efficiency here is only 1 ma per watt. The oxide coatings may be applied

either to an indirectly heated cathode surface or directly to a filament.

They are particularly well adapted to making specially shaped unipo-

tential cathodes.

Theory of Oxide Emission. Oxide emission has been the subject of

extensive study for the last 30 years though it has not been until recently
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that an explanation of the action has been available in fairly complete

form.^“®

The accumulated evidence indicates that the emission takes place from

particles of free metal on the surface of the oxide coating. The free

metal is made available by the following mechanisms

:

1. Chemical reaction of the oxide with the core metal.

2. Electrolytic reduction by the gradient of potential through the

oxide coating.

3. Reduction of the oxide by positive-ion bombardment.

It was discovered early that the core metal played a part in the elec-

tron emission. It was even believed that electrons were liberated at the

core. This was disproved by showing that there was no emission from

the core metal when the coating was removed by mechanical shock.

Further, the emission was shown to be independent of the size and shape

of the core. Also, the photoelectric work function of the oxide surface

was the same as the thermionic work function. However, the most
conclusive evidence that the emission is from the surface is that the same
emission characteristics are obtained from an oxide coating if metal is

vaporized onto the surface as is obtained by the normal process of activa-

tion. Different core metals do, however, exhibit different effects upon
the emission. In the order of their reaction titanium, tantulum, nickel,

and molybdenum will react with the alkaline-earth oxides to produce

core-metal oxide and free alkaline earth. The action is evidenced by the

fact that oxides can be activated by heating alone. The titanium reac-

tion is probably responsible for the excellent performance obtained with

cores of “Konel” metal, which is an alloy of nickel, iron, cobalt, and
titanium. The metal most used for core metals is nickel, which is pre-

ferred because of its excellent physical properties and low cost.

Free alkaline-earth metal is also made available by the electrolytic

action associated with the passage of current through the coating. The
earth oxides dissociate under the usual condition of polarity. The metal

ion goes to the core, and the oxygen ion is liberated. This action can

be detected by the Uberation of oxygen.

Dissociation of the oxides is also caused by positive-ion bombardment.
' Blewett, J. P., Properties of Oxide Coated Cathodes, Jour. Appl. Phys., vol. 10,

Part I, October, 1939, pp. 668-679; Part II, pp. 831-848, December, 1939.
* Dushman, S., Thermionic Emission, Rev. Modern Phys., vol. 2, pp. 381-476,

October, 1930.

® Riemann, op. cit.

* Becker, op. cU.

® Blewett, J. P., Oxide Coated Cathode Literature, 1940-1945, Jour. Appl. Phys.,

vol. 17, pp. 643-647, August, 1946.
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Even in the best vacuums there are enough ions present to give an appre-

ciable action. The fact that activation is greatly facilitated by applica-

tion of a positive potential to the tube in processing is considered sufficient

evidence of the existence of this action.

As with the atomic-fihn emitters the resultant work function is lower

than that of the pure metals alone, and these are already very low.

Reported values of the work function of oxides have shown a tremendous

variation until recently, when improved vacuum techniques and a better

understanding of the mechanism have given rise to some fairly consistent

values. The work functions of the oxides are now believed to he within

25 per cent of the following values:

BaO 1.1 volts

SrO 1 . 4 volts

CaO 1 . 9 volts

BaO -t- SrO 1 . 0 volts

Emission from the combination of barium and strontium oxides is

seen to be better than from either one alone. The reduction in work

function over that of the pure metals is again probably due to an elec-

trical double layer formed by a monatomic coating of the pure metal on

the oxide. Values of the emission constant A also show a great range of

variation as reported by various observers. It has been found that both

the emission constant and the work function change with the degree of

activation of the oxide coatings. Both decrease with activation, and

experimentally it is found that the work function is a linear function

of the logarithm of the emission constant. Properly speaking, it is not

correct to ascribe an emission constant to oxide coatings, for the emission

law in this case is shghtly different from the Richardson-Dushman law.*

An equivalent emission constant is of the order of 0.01 amperes per cm^

per deg.

Electron-microscope studies of oxide emission show that there is no

relation between surface irregularities and emission.^ Variations in

work function are observed with orientation of crystal faces. The

emission simface does not change much with degree of activation though

the emission may change greatly. Emission is improved by reducing

oxide particle size, as may be done by using colloidal particles.

In operation, an oxide cathode has to establish an equihbrium between

rate of production of free emitting metal and evaporation of the same.

This means the establishment of an equilibrium between electrolysis,

diffusion, and evaporation. This latter will be disturbed if the tempera-

ture of the oxide or the amount of current is changed. Under normal

1 Blewett, Properties of Oxide Coated Cathodes, Part I, op. cit.

® Heinze, W., and S. Wagener, Vorgange bei Aktivierung von Oxydkathoden,

Zeit.fur Tech. Phys., vol. 17 (No. 12), pp. 645-653, 1936.
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conditions the equilibrium adjusts itself to the current drawm so quickly

that no change is evident. If, however, the cathode temperature is low

or if the emission is partly contaminated or partly exhausted, there will

be evident an adjustment of emission over a period of seconds or even

minutes as the current drawn is suddenly changed.

The adjustment is of the following nature: If the voltage on a tube is

increased, the current immediately increases and then drops slowly,

coming to rest at a value between the previous and initial value. If the

voltage is decreased, the current will immediately decrease and then

slowly rise to a value between the previous and initial value.

Activation of Oxide Emitters. Since the alkaUne-earth oxides are not

stable in air, the coating must be applied to the cathode or filament in

the form of a carbonate or hydroxide. The carbonates are most exten-

sively used, being held to the surface with an organic binder. Coatings

of a thickness of 0.010 to 0.020 in. work well. When a coating has been

applied and the tube evacuated, the coating is activated by first heating

it to a temperature of about 1500°K for a few minutes. This reduces the

carbonates to oxides, and during this time copious CO 2 is evolved.

Considerable thermal reduction also occurs, with attendant evaporation

of liberated metal. The oxide coating is then operated at a temperature

of about 1000°K with a potential of about 100 volts applied to an adjacent

electrode through a protective resistor. Electrolysis and positive-ion

bombardment then occur, and the emission will build up slowly to a

final value, when the filament will be ready for use.

Various other methods of applying coatings may be used. Heating

in air is recommended to ehminate the organic binder. For a water

paste the coating should be baked in an inactive gas to get good adherence.

Hydroxides, which are very good for coating tungsten, may be dipped

and then baked in air to get a so-called “combined coating.”

Specific Emission Characteristics. The hnes of Fig. 4.5 show the

behavior of oxide coatings in comparison with other emitters. The low

work fimction is evident from the small negative slope of the curve.

Emission as a function of power is shown in Fig. 4.7 in contrast with

other emitters. The higher emission efficiencies are evident. The
emission obtainable from oxide coatings has increased with the years.

This may continue, though an increase over present values by more than

a factor of 10 is not probable. Some comparative emission efficiencies

are

Ma per Cm’ per Watt
Pure tungsten filament 2-10

Thoriated tungsten filaments 5-100

Oxide-coated indirectly heated cathodes 10-200

Oxide-coated filaments 200-1,000
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Under normal conditions the life of an oxide coating should be several

thousand hours. Cessation of emission is due to exhaustion of free metal

in the oxide. In mixed coatings there is a preferential evaporation of the

bariiun, which finally leaves the relatively less efficient strontium to give

a greatly reduced emission.

Oxide coatings are more easily damaged or poisoned than any other

tjrpe of coating. They are particularly susceptible to poisoning by

oxygen. Emission may be reduced by several powers of 10 by the pres-

ence of oxygen at a pressure of 10“'* nun of mercury, while a pressure of

I0“* mm will inhibit emission completely. Oxide coatings are seldom

used on tubes where they will be subjected to bombardment of more than

1,000 volts. Bombardment by particles of higher energy will disintegrate

an oxide coating completely.

Transient Emission. The monatomic layer of barium of the oxide

coating has tremendous instantaneous-emission potentialities. Such a

layer may yield instantaneous emission as great as 100 amperes per

cm^. When short-time high voltages are applied, such large emission

may be realized. The high voltage exhausts the available emission in a

time of the order of milliseconds. When this happens, the supply of

free barium must be resupplied through processes of reduction and dif-

fusion. Since this takes an appreciable time, a current-voltage plot of a

diode operated rmder these conditions at 60 cycles exhibits pronounced

exhaustion effects, giving rise to a loop in the retrace characteristic.

When a very sharp pulse of voltage is applied to an emitting surface, the

emitted current consists of a capacitive displacement component as well

as the conduction component. As a result, the current pulse will gener-

ally have an initial peak with a subsequent rapid decay.

4.6. Schottky Effect. A departure from the llichardson-Dushman

emission equation occurs when the emitting surface is subjected to a

strong positive potential gradient. Effectively the field reduces the work

function. As a result, the current from an emitter increases with the

potential applied even though the temperature is kept constant and the

emission is not affected by the space charge of the electrons.

The action may be understood by referring to Fig. 4.13, in which the

effect of a constant gradient of potential upon the normal potential

barrier at the surface of the emitter is shown. The combination of the

constant gradient and the normal potential barrier is seen to give a new

potential barrier, which has a maximum at a certain distance dc from

* ScHADB, O. H., Analysis of Rectifier Operation. Proc. I.R.E., vol. 31 (No. 7),

pp. 341-361, 1943.

* CoOMBES, E. A., Pulsed Properties of Oxide Cathodes, Jour. Appl. Phys., vol. 17,

pp. 647-654, August, 1946.
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the surface. This distance is known as the “critical escape distance”

because once an electron gets beyond this distance the electrostatic

forces are outward rather than restraining and thus an electron keeps on

moving. Upon equating the image field with the gradient, the maximum
of the restraining potential is found to occur at a distance

where e is the charge on the electron, E is the potential gradient, and eo

is the dielectric constant of free space of value 8.85 X 10“'^ for rational-

Fig. 4 13.—Diagram of the potential barrier associated

with the Schottky effect.

ized mks units. The crest of the potential barrier has been reduced by
the work the electron would have to do to overcome the image force

from the surface from do to infinity. This amount of work is
Â

volts. The work function is further reduced the same amount owing to

the fact that the potential at the distance dc is reduced by the amount dcE.

The total reduction in the effective work function is thus e

volts. When this correction is made for the work function in the Rich-

ardson-Dushman equation, it is found that the ratio of the emitted current

in the presence of the strong electric field to the normal emission current

is given by

J (4.6)
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where /b is the emission-current density in the presence of the strong

electric field, J is the normal emission-current density, « is the Napierian

base 2.718, E is now the negative gradient of potential in volts per centi-

meter, and T is the temperature in degrees Kelvin. This equation may
be verified experimentally by plotting the logarithm of J® against the

square root of E. The experimental results are found to give a good
straight line for all but low values of gradient at which the current drops

more rapidly than this simple theory predicts. The slope of the line is, of

course,
4.403 logio €

4.6. Contact Difference of Potential. Another factor that occasion-

ally enters the emission picture is “contact difference of potential.”

This term is given to the effect observed when two dissimilar metals are

put in good electrical contact. It is found that a small potential differ-

ence will exist between the free surfaces of the two different metals.

This difference of potential turns out to be the difference between the

work functions of the metals and arises from the fact that electrons can

move more readily from the metal of low work function to the metal of

high work function than vice versa. The differential action results in

an equilibrium that leaves the metal of low work function positively

charged relatively to the metal of high work function by just the differ-

ence of the work functions. In ordinary vacuum tubes contact differ-

ences of potential are usually less than volt and so do not cause

serious trouble except in special cases. Such differences of potential

as may arise from contact of dissimilar metals will be most serious in

such places as the cathode-control-grid circuit.

4.7. Secondary Emission. Another form of emission that plays an
important role in vacuum tubes is secondary emission. This occurs

when a smiace is struck by electrons or ions of appreciable velocity.

Secondary emission caused by the bombardment of electrons is the more
important case and occurs whenever the striking electrons have energies

corresponding to a few volts or more. When this happens, the striking

electrons may knock one or more electrons out of the material, giving rise to

a reverse component of current. The electrons knocked out of a material,

known as “secondary” electrons, may number more than the “striking,”

or “primary,” electrons. There is no violation of the conservation of

energy law when this happens, for the velocity of the secondary electrons

is for the most part very low. Secondary emission is commonly encoun-

tered in multiple-electrode tubes, where it has the effect of altering some-

what the normal primary-electron current characteristics. It occurs in

cathode-ray tubes where the beam electrons hit the fluorescent screen,

and is necessary there to complete the circuit for the current flow. It
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is deliberately used in a number of types of fdectron-multiplier tubes,

where it makes possible a high amplification of current by a purely elec-

tronic action.

Secondary-emission characteristics of materials are measured by
means of the apparatus shown schematically in Fig. 4. 14. In the arrange-

ment shown a beam of electrons is directed at a target inside of a sphere

at a higher potential, which attracts the secondary electrons hberated

at the target. The ratio of secondary- to primary-electron current can

be read for any primary-electron potential. ‘ For a long time there were

great discrepancies in the reported secondary-emission characteristics of

CoHecfor

Fig. 4.14.—Apparatus for the measurement of secondary-

emission characteristics.

the various metals. It was evident that small traces of impurities or

surface contaminations made a great difference in the secondary-emission

characteristics. Techniques have now been refined to the point where

the values reported by various investigators are fairly consistent. The

average secondary-emission characteristics of the materials commonly

used in vacuum tubes when only the ordinary precautions against con-

tamination are taken are shown in Fig. 4.15.^

Variation of Secondary Emission with Primary-electron Potential. In

Fig. 4.16 are shown the secondary characteristics of the common metals

presented in curve form, giving the ratio of secondary- to primary-elec-

1 See Komath, R., Sekundarelektronemission fester Korper, Physik. Zeit., vol. 38,

pp. 202-224, Mar. 15, 1937, for an excellent discussion of methods of measurement

and results obtained up to that date.

2 Harries, J. H. Owen, Secondary Electron Radiation, Electronics, vol. 17, pp.

100-108, 180, September, 1944.
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tron current as a function of the primary-electron potential as reported

by Bruining and DeBoer. ^ These results probably are more rehable

than any previously reported, for the investigators used a special appara-

tus in which the metal to be tested was evaporated onto the target in

a vacuum just before the measurement was made. The results presented

show lower ratios of secondary- to primary-electron current than those

Fig. 4.15.—Secondary-emission characteristics of the metals under ordinary

conditions. The curve shows the ratio of the number of secondary to pri-

mary electrons for various primary-electron impact velocities expressed in

volte. {After Harries.)

previously reported. This is probably due to the fact that with previous

handling the metals became partly oxidized and oxidized surfaces are

* Bkuining, H., and J. H. DeBoer, Secondary Emission, Part I, Secondary Emis-

sion of Metals, Physica, vol. 6, pp. 17-30, January, 1938; Part II, Absorption of

Secondary Electrons, Physica, vol. 5, pp. 901-912, December, 1938; Part III, Second-

ary Electron Emission Caused by Bombardment with Slow Primary Electrons,

Physica, vol. 5, pp. 913-917, December, 1938; Part IV, Compounds with a High

Capacity for Secondary Electron Emission, Physica, vol. 6, pp. 823-833, August, 1939;

Part V, Mechanism of Secondary Electron Emission, Physica, vol. 6, pp. 834-839,

August, 1939; Part VI, Influence of Externally Adsorbed Ions and Atoms, on the

Secondary Electron Emission of Metals, Physica, vol. 6, pp. 941-950, October, 1939.
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known to have higher secondary emission than those which are not.

The curves of Fig. 4.15 show that all the metals have a low secondary

emission at low primary-electron potentials. Most of the metals have

a maximum secondary emission between 200 and 400 volts of primary

potential, which then decreases slowly, becoming constant at a value

between 50 and 95 per cent of the maximum value. Most of the uncon-

taminated metals have a maximum ratio of secondary- to primary-elec-

tron currents less than 1 though it should be remembered that metals

as encountered in tubes are seldom uncontaminated and will have

maximum ratios of the order of 1 to 5.

Although the complete theory of secondary-electron emission is as

yet not worked out, a great deal is known of the mechanism.’’^ When

Primary electron potential, volts

Pig. 4.16.—Secondary-emission characteristics of metals with

inappreciable surface contamination. {After Bruining and

DeBoer.)

primary electrons strike a surface at right angles, they may knock electrons

out of the atoms near the surface and those with velocity components
directed toward the surface may be able to overcome the surface-poten-

tial restraints and escape from the metal. Each primary electron may
shake up several atoms, thus giving rise to several electrons emitted per

primary electron. It should be noted that the source of secondary elec-

trons hes almost entirely in the electrons of the surface atoms and not in the

free electrons of the metal. If a normally directed primary electron strikes

a free electron, it cannot give it a component of velocity directed toward
the surface. Electrons knocked out of atoms, however, may have such

Ibid., Part V.

* Wooldridge, D. E., Theory of Secondary Emission, Phys. Rev., vol. 56, pp.

562-578, Sept. 15, 1939.
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a component. As the potential of the primary electron is increased, it

will at first knock out more and more secondary electrons. However,

as the potential is further increased, the surface atoms are exposed to

the primary-electron forces for a shorter time, i.e., the so-called “col

lision diameter” decreases, and the pri-

mary electron mil first knock electrons

out of atoms when it has slowed down
upon penetration into the metal. Thus

at the maximum of emission it is

believed that the majority of the sec-

ondary electrons are liberated a depth

of several atoms into the metal.^

Beyond this potential the primaries

penetrate still farther into the metal,

and the probability that the electrons

knocked out of the atoms at this depth

will reach the surface decreases, with

the result that the secondary emission

decreases.

Velocity Distribution of Secondary

Electrons. In Fig. 4.17 is shown a

typical curve of the distribution of

velocities in the secondary electrons

emitted from a metal. Most of the electrons, about 90 per cent, have

velocities below 20 volts. The electrons naturally fall into three groups

as indicated in the figure. These are as follows:

1
1

v

L
^0 20 40 60 80 100

Secondary electron velocity as

percentage of primary impact energy

Fig. 4.17.—The relative velocity

distribution of secondary electrons.

About 90 per cent of the secondary

electrons will have velocities in

range I, 7 per cent in range II,

and 3 per cent in range III.

Group I—0 to 20 volts. This group comprises about 90 per cent of

all the secondaries for primary potentials of 50 volts or more.

There is a pronounced maximum in this group at about 10 volts.

These are the electrons which are shaken out of the atoms as a

result of the passage of the primary electrons and do not have much
energy.

Group 11—20 volts to 98 per cent of the primary-electron potential.

These comprise about 7 per cent of the total secondary current.

They represent high-energy electrons knocked out of atoms and

elastic reflections of the primary electrons at a considerable depth

in the metal.

Group III—98 to 100 per cent of primary-electron potential. This

group comprises only about 3 per cent of the secondary current

‘ Bruining, H., Depth at Which Secondary Electrons Are Liberated, Physica,

vol. 3, pp. 1046-1052, September, 1936.
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and has a maximum at about 99 per cent of the primary-electron

potential. This group arises from elastic reflections of primary

electrons from atoms near the surface of the metal, not really

secondary electrons at all.

Another representation of the secondary-electron velocity distribu-

tion is obtained if potential between sphere and target of the apparatus

of Fig. 4.14 is made negative instead of positive and the current of the

sphere is measured against the retarding potential. The resultant curve

is shown in Fig. 4.18. This curve is an average for measurements on

various metals with primary-electron
,,

potentials in the range of 275 to 1,000
|.,J

volts. Curves like those in Fig. 4.17 e .| go

are obtained by taking the negative .a ^
derivative of curves such as those in |"-i 60

Fig. 4.18. |i
Variation of Secondary Emission ,^1

with Angle. When primary electrons
20

strike a surface at right angles, it is
1

1

ll 11!11
N 11111
I 11111
1 11111
1 1 1is8s

^ f 11 1 f 0 20 40 60 80 100
emitted at all angles. The spray of Retarding potential uspercenfoge

secondary electrons seems to foUow of primary impact energy

very nearly a cosine law of distribution Fig. 4.18.—Collector current as a

under all conditions. function of retarding potential of the

When the primary electrons strike secondary-emission measuring appa-

a metal surface at an angle, it is Fig. 4.14.

found that the distribution of the angle on the secondaries is still nearly

a cosine-law variation. More important than this is the fact that the

secondary- to primary-emission ratio increases as the primary electrons

strike more nearly parallel to the surface. Some typical curves showing
the variation of the secondary- to primary-emission ratio are given in

Fig. 4.19. The increase in secondary emission with angle is largely due
to the fact that at angles other than normal the primary electron may
knock free electrons out of the metal as well as electrons out of atoms.

The variation of emission is given quite closely by'

Ee = (4.7)

where 0 is angle between normal and direction of primary electrons

Re is ratio of secondary to primary electrons at angle 6

Re is ratio of secondary to primary electrons at angle zero

e is Napierian base 2.718

1 Bbvininq and DeBoer, op. dt.. Part II.
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p is a coefficient that increases with primary potential and is pro-

portional to the primary-electron penetration

Secondary Emission of Composite Layers. Certain combination sur-

faces have been found to have pronouncedly higher secondary emission

^assO-cose)

0 100 200 300 400 500 600 700 800 900 1000

Vp, Primary voltage, volte

Fig. 4.19.—Variation of secondary-emission ratio with

angle of primary impact. Note that the secondary-emis-

sion ratio increases as the angle of incidence becomes

more nearly grazing. {After Braining and DeBoer.)

than the pure metals. Such siu4aces are the alkalihaUdes on a base of

the alkali metal and alkali oxides on various metal bases. All these

combinations show the same general secondary-emission characteristics

as do the pure metals except that the current ratios instead of being

in the vicinity of unity may be as high as 8 to 11. The velocity distribu-
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tioa for composite surfaces is much narrower than for the pure metals,

i.e., a given percentage of the total electrons are included in a lower

range of velocities, 85 per cent in the first 3 volts. Below are given data

on some of the alkali halides. ^

TABLE III

MAXIMUM SECONDARY-EMISSION RATIOS OF ALKALI HALIDES
Compound Maximum Ratio

LiF 5.6

NaF 5.7

CaFj 3.15

NaCl 6.8

KCl 7.5

RbCl 5.8

CsCl 6.5

NaBr 6.25

Nal 5.5

KI 5.6

Of the alkali oxides, by far the best emitter is caesium oxide,

partly reduced, on a base of silver. Some typical curves for alkali

oxides are shown in Fig. 4.20. This same combination gives very

high photoemission. Photoemissive surfaces are prepared in the same
way.

In connection with composite siufaces it should be noted that a com-
bination with a low work function does not necessarily have a high

secondary- to primary-electron ratio, and vice versa. Thus tungsten

with a work function of 4.52 volts has a maximum ratio of 1.5. Con-
tamination with oxygen increases the work function to 9.25 volts but
increases rather than decreases the maximum ratio.* This probably

means that electrons are more readily knocked out of the surface atoms
and so give increased secondary emission even though they require more
energy to escape from the surface. For a given combination of elements,

however, the secondary emission usually increases with decreasing work
function. Thus, if caesium on caesium oxide on silver is contaminated

with oxygen, the work function increases and the secondary emission

decreases. Also, in the case of molybdenum partly coated with barium
the work function passes through a maximum with a given percentage

of the surface covered, as is evidenced by the photoelectric emission.

The secondary emission passes through a maximum with the same

* Bbuining and DeBoeh, op. cit., Part V.

* ZwoBYKiN, V. K., and G, A, Mobton, “Television,” p. 32, Wiley, New York,

1940.
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percentage of surface coverage though the maximum is not nearly so

pronounced. 1

Secondary Emission of Insulainrs. Insulators as well as conductors

may emit secondary electrons. Measurements on insulators are more

difficult to make because the potential of the insulator cannot be meas-

ured directly. The characteristics can, however, be deduced from the

potential that the insulator assumes relative to a spherical collector

Fig. 4.20.—Secondary emission of the alkali oxides. (Re-printed

by permission from “Television” by V. K. Zworykin and G. A.

Morton, Wiley, New York, 1940.)

electrode when bombarded with electrons of different potentials. The
general features of the secondary emission of insulators may be summed
as follows:^ Insulators exhibit curves of ratio of secondary- to primary-

electron current versus primary-electron potential that are similar to

those of the metals. Ratios usually exceed 1 over a considerable range

of potentials, a maximum occurring between 300 and 800 volts. As with

the metals, the ratio rises rapidly to a maximum and then drops slowly.

As with the metals, most of the secondary electrons are emitted perpen-

dicularly to the surface, following very nearly a cosine law of distribution

' Bruining and DeBoer, op. cit.. Part VI.
* Kollath, op. cit.
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regardless of the direction of the primary electrons. Upon bombard-

ment at an angle the secondary- to primary-electron ratio increases as

the primary electrons strike more nearly parallel to the surface up to a

critical angle, beyond which the ratio drops to a small value less than

unity and remains nearly constant. The critical angle depends upon the

material and is a function of temperature, the angle with the normal

increasing with temperature. The explanation of the sudden drop in

emission with increased angle with the normal of primary-electron bom-
bardment seems to be that a layer of negative charge forms on the sur-

face which traps, by a space-charge action, the primary electrons and

the secondary electrons they would have freed.

In normal action an insulator will have its potential influenced by its

secondary-emission characteristics. The action will depend upon the

primary-electron energy relative to the secondary-emission characteris-

tics. Action can be divided into three cases as follows:

1. Primary-electron potential below that at which secondary-

to primary-current ratio is unity. Here the number of secondary

electrons emitted is less than the number of primaries, and so the

insulator acquires a negative potential that is large enough to repel

most of the primaries. This constitutes a blocking action. The
insulator is finally in stable equilibrium at zero potential.

2. Secondary- to primary-current ratio greater than unity. Under
this condition the insulator gives off more electrons than it acquires

and so becomes more positive than its surroundings. When this

happens, the insulator reattracts the slow secondaries and so

remains a few volts more positive than the potential through which

the primary electrons have been accelerated.

3. Primary-electron potential greater than that at which seccndary-

to primary-current ratio has dropped to unity. In such cases the

insulator will gain more electrons than it loses and so wall become

more negative in potential until the primary electrons are retarded

to the point where the ratio of secondary to primary current is unity.

At this potential, the primary- and secondary-electron currents

are equal, and the insulator is in stable equilibrium.



CHAPTER 5

DETERMINATION OF POTENTIAL FIELDS

The fundamental theoretical technique necessary for the study of the

internal behavior of a vacuum tube is that of determining the distribution

of the electric potential within the tube. From the determination of the

electric potential within a tube can be deduced the amplification factor

of the tube, the focusing properties of the electrodes, and the current-

voltage characteristics. In short, the determination of the distribution

of the electric potential within a tube is the point of departure for the

study of almost all its characteristics.

The methods of determining the potential fields of vacuum tubes are

rather special. The most extensive information is obtained from con-

formal transformations and from solutions of the Laplace differential

equation. The particular transformations and functional forms most

frequently encountered in tubes are ordinarily given only a fraction of

the total space allotted to the entire subject of electrostatics in books

devoted to this subject. For this reason a brief review will be given of

all the standard methods of determining potential fields, including some

numerical and graphical methods, so that the elegance of the special

methods mentioned will be appreciated.

6.1. Units and Dimensions. In this book there will be used the

system of rationalized mks units. For this system the units of length,

mass, and time are the meter, kilogram, and second, respectively and the

electrical units are the usual practical ones—the volt, the ampere, the

coulomb, etc. The term “rationalized” indicates that the factor 4ir

has been incorporated into the arbitrary constants in such a way that

the greatest over-all simphcity of all relations is obtained. This is done

in such a way that the factor 47r does not appear in relations involving

plane geometry and rectangular coordinates but does appear in relations

involving spherical geometry. A further feature of the rationalized mks
system of units is that the equivalent dielectric constant of free space and
the equivalent permeability of free space are not unity but have some
specific values. These are the only two values that need to be known
in this system to work practical problems, whereas in some of the other

systems a whole table of conversion factors has to be invoked every time

a practical problem is solved.

58
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6.2. Fundamental Quantities and Definitions: Forces between

Charges. All electrostatic relations are based upon the application of the

observed effects of charges upon one another. Qualitatively, the obser-

vations are that there are two kinds of charges, that like repel and unhke
attract, that the force between charges decreases as the distance between

them increases. Quantitatively, all this is expressed by Coulomb’s law,

p ^ gig^

4irer^
(5.1)

where F is the radially directed force in newtons (1 newton equals 10®

dynes) between charges qi and in coulombs, r is the distance between

charges in meters, and e is the so-called “dielectric constant” of the

medium. The dielectric constant is equal to the product of the relative

dielectric constant and the dielectric constant of free space,

t = SrSO (5.2)

where tr is the relative dielectric constant as would be determined by the

ratio of capacity of a condenser using the medium and free space as

dielectric and to is the equivalent dielectric constant of free space whose
value turns out to be 8.85 X 10“** farad per meter in rationalized mks
units.

The region in the vicinity of electric charges is referred to as the

electric field. The electric intensity E at any point in such a field is

the force -per unit charge on a small test charge placed at the point. The
intensity, which will also be shown to be the negative gradient of the

electric potential, is a vector quantity in that it has both magnitude and
direction.

Intensity at a distance r from a charge q is, by Coulomb’s law.

1^1 = W-.

Where more than one charge is concerned.

E„

I qn cos (a;,r„)

4irer„®

^ q„ cos (j/,r„)

4irer„*

(5.3)

(5.4)

(5.5)

The summation must be taken by a summation of components where

(a:,r„) is the angle between a line parallel to the x axis and the vector

from the charge qn to the point at which the intensity is being determined.
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A line of force, or a line of flux, is a line drawn so that it has every-

where the direction of the electric intensity. Lines of flux originate on

positive charges and terminate on negative charges. In the rationalized

mks system of imits me line of flux emanates from every unit positive

charge. The density of the flux lines is known as the displacement or

flux density. Displacement and intensity are related by the expression

D = tE* (5.6)

where D is the displacement, or number of flux lines per square meter,

and e is the dielectric constant of the medium. Equation (5.6) is, for

homogeneous isotropic dielectrics, strictly analogous to the expression

B = IXHf which applies for magnetic fields.

The potential at any point in an electric field is defined as the work

per unit charge required to bring a small positive test charge from infinity

to the point in question (symbol V). Potential is a scalar quantity, i.e.,

completely specified when its magnitude alone is given. Applying this

definition to obtain the potential at a distance r from a charge q,

The minus sign appears because the work is being done against the force.

The potential obtained above is in volts if g is in coulombs and r is in

meters. The work is independent of the path. The potential at a

point due to a number of charges is equal to the sum of the potentials

due to the separate charges.

V = (5.8)

For a continuous distribution of charge over a surface,

(5.9a)

where c is the surface density of charge, da is the element of area, and
the integration is taken over the area of the surface. For a continuous

distribution of charge throughout a volume,

(5.96)

* Bold-faced capitals will be employed to desigTiate vector quantities when used

in the vector sense. Components of vectors are themselves vectors but may usually

be treated as scalar quantities when dealt with separately.
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where p is the volume density of charge, dv is an element of volume, and

the integration is taken over the volume.

The difference of potential between two points in an electric field is

defined as the work per unit charge required to bring a small positive

test charge from one point to the other. This difference is independent

of the path by which it is evaluated.

From the definition of potential it is seen that the intensity is the

negative gradient of potential, the negative sign indicating that the force

is exerted in a direction opposite to that of increasing potential. The

gradient of the potential is a vector having the magnitude and direction

of the maximum variation of potential. Thus

\E\--f, (5.10)

The force per unit charge in any general direction is given by

dVEcosa=-^ (5.11)

where a is the angle between the direction considered and the gradient

of potential. Components of intensity are conveniently related to

potential by

E. - - f (5.12„)

dV= (5.125)

The form that components of intensity have in terms of derivatives

of potential depends upon the coordinates in which the potential and

distances are expressed. In all cases the component expressions cor-

responding to Eq. (5.10) have the form of the limiting value of the ratio

of an increment of potential to an increment of length in the direction of

the variable considered. Expressions for the intensity as a negative

gradient of potential are given in Appendix II for the coordinate systems

most commonly used.

5.3. Solution of Potential Fields by Summation of Intensities. The

electric field around any distribution of charges may be found by sum-

ming the forces due to the charges by means of Eq. (5.4). Forces are

best summed one component at a time. The procedure can usually be

simplified by choosing the axes to take advantage of any symmetries.

When an expression for each of the components of intensity has been

found, the resultant intensity has a magnitude that is the square root

of the sum of the squares of the components. The direction cosines of
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the resultant vector are given by the ratio of the respective componcnls

to the magnitude of the resultant.

Example: Find the electric intensity on the axis of a right-circular cylinder of

radius a and length A at a distance Xo from the end of the cylinder if the cylinder

has a charge uniformly distributed throughout its volume of density p. In the

configuration of Fig. 5.1 let x be the distance from the point P to the point on

the axis corresponding to an element of volume in the cylinder. The elementary

volume is given by

dv = r dr dd dx

and the corresponding element of charge is given by

dq = pdv

flv

Fio. 5.1.—Notation for the evaluation of the axial intensity due

to a cylindrical distribution of charge.

By symmetry there will be only an x component of intensity at the point P on

the a.xis to which the element of charge will contribute

_ pr dr dB dx x _]^
~

r^ + x^ (r^ -h 4irE

which will be recognized as being of the form

dq cos a

This differential expression must be integrated with respect to its three variables,

6 from 0 to 27r, r from 0 to a, and x from xo to Xo -|- h. When this triple inte-

gration has been performed, the resulting expression for the intensity on the

axis is

E, = 27rp [a - VC^o -h hy -f- o® -|- + o’*]^
6.4. Summation of Potentials. The potential at any point in a field

may similarly be obtained by application of Eq. (5.7). This procedure

is in general easier to apply than the direct evaluation of the intensity.
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for the summation for potentials is algebraic, whereas that for intensities

must be vectorial. The expression for the components of intensity is,

of course, derivable from the expression for potential.

Example: Find the potential at a distance c from the center of a spherical

shell with inner and outer radii ri and and with a charge uniformly distributed

throughout its volume of charge density p.

The element of volume in spherical coordinates is

dv = r* sin d dr dB d<t>

where the symbols have the significance indicated in Fig. 5.2 and
<t> is the azimuth-

Fig. 5.2.—Notation for the evaluation of the potential due

to a charge uniformly distributed throughout a spherical

shell.

al angle. Then the potential at the point P due to the element of charge

associated with the above element of volume is

pr* sin 0 dr dd dd> 1

y dTTE

It is convenient to use the distance y instead of the angle ^ as a variable,

two quantities are related by the law of cosines

2/
= (c^ + — 2cr cos B)^^

so that, for constant r,

dy
cr sin B dB

y

Making this substitution into the expression for the element of volume,

The

dV
pr

dy d<j> dr J_
47rc

SO that
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The result of this integration gives

V - ^ -i
3 c 4ire

From this it is seen that the potential at the point P is the same as though the

entire charge of the shell were concentrated at its center.

6.6. Gauss’s Law. Gauss’s law is one of the most useful relations in

electrostatics. It enables one to

determine quickly the field and
potential around any symmetrical

distributions of charge. The law

may be stated as follows: The

integral of the normal outward com-

ponent of electric flux over any closed

surface is equal to a constant times

the total charge enclosed by the sur-

face. For rationalized mks units,

the constant is unity.

Consider a closed surface S
enclosing a single point charge q as

shown in Fig. 5.3. Then the outward component of electric flux for the

element of area dS is

DndS — D cos a dS (5.13a)

DndS = cos a dS (5.136)

Fig. 5.3.—Notation for the evaluation

of Gauss's law, Eq. (5.17).

It will be recognized that cos a is the element of solid angle about the

point charge intercepted by the area dS, since solid angle is measured by
area intercepted on a unit sphere just as linear angle may be measured

by arc length on a unit circle. Thus

do
dS cos a

(5.14)

where dO is an element of solid angle. Then

DndS q do
4ir

(5.15)

If this is integrated over the entire surface surrounding the point charge,

jD„dS = q (5.16)

since there are 47r units of soUd angle around a point.
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Since the law of superposition holds for the potentials due to charges,

the integral of the outward normal component of flux is equal to the

total charge enclosed when the closed surface contains more than a single

charge.

For a volume distribution of charge the law can be written

JD cos a dS = Jpdv (5.17)

where p is the volume charge density, v indicates voliune, and the other

symbols have the previous significance.

Example: Consider the case of a uniform distribution ot charge on a circular

wire of infinite length. From considerations of S3rmmetry it is evident that the

Fig. 5.4.—The flux associated with a linear distri-

bution of charge.

electric field will everywhere be radial and will be constant along the length of the

wire. The equipotential surfaces will be cylinders concentric about the wire,

and the flux lines will be straight radial lines.

Let the charge be uniformly distributed along the wire with a density of X

units per imit length. Draw a cylinder of radius r about the wire of radius a.

Then the electric flux D = zE is everywhere outwardly directed as shown in

Fig. 5.4. The integral of normal component of flux per unit length of this wire

is equal to the product of the displacement and the area of the cylinder per

unit length. This product must be equal to the linear charge density, so that
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This gives the intensity at any distance r from a wire with a linear charge density.

The potential at any distance r from the wire is found by integrating the

negative of the field with respect to r, giving

V =

The constant is necessary to adjust the potential to a prescribed value at some

particular distance since the potential about a cylindrical wire, unlike that about

a point charge, does not vanish at an infinite value of the radius.

In the case of two concentric cylinders of radii ri and ri having potentials

V2 and Vi, respectively, the potential between them is

F(r) = Fi + I F, - Fi)
—

*

In-^
>•1

If

Fi = 0

F(f) =

From Gauss’s Law it may also be deduced that the field adjacent to a

plane with a surface charge density <r is given by
^
and is normal to the

plane. It may also be verified that a charge uniformly distributed

throughout a sphere or over the surface of a sphere looks to an observer

outside the sphere as though the charge were all concentrated at the center

of the sphere so that the laws for point charges hold.

The above results are summarized in the following table:
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6.6. Poisson’s and Laplace’s Equations. Poisson’s and Laplace’s

equations are differential expressions of Gauss’s law applied to an ele-

ment of volume. Poisson’s equation applies to regions containing charge.

Fio. 5.5.—Notation used in the derivation of Laplace’s

equation in rectangular coordinates, Eq. (5.24).

Laplace’s equation is the same equation for the case of no charge. The
equations are derived as follows:

Consider an element of volume in an electric field as shown in Fig. 6.5. If

the intensity at the origin is E, then

Flux into back face = tEx Ay Az

(

* BE \
Ex -h Axj Ay Az

BE
Net outward flux through front and back faces = t Ax Ay Az

Similarly

and

dE
Net outward flux through left and right faces = e Ax Ay Az

dE,
Net outward flux through bottom and top faces = e ^ Ay Az

Upon combining these, the outward flux through all faces is

(dEx
,
dEy

,
dE.\ ...^ ^ ^ (5-18)

by Gauss’s law where p is the volume charge density. The above equality is

abbreviated

Divergence E = V • E = ^ (5.19)

in which the element of volume has been cancelled and the term “divergence” has
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been applied to the limiting value of the net outward flux per element of volume

as the element of volume approaches zero.

But

E = negative gradient of V
frequently abbreviated

or in component form

£ = - VF

dz

Making these substitutions into Eq. (5.18),

dW dW dW
dx‘‘ dy

4-— = _ J:^ dz-^ t

(6.20a)

(5.206)

(5.21)

(5.22)

which is Poisson’s equation. This is abbreviated

VW = - -
t

(5.23)

In a region free of charge, p = 0 so that

d^F d^F d^F
dx^ + dy" dz"

“ (5.24)

which is Laplace’s equation. This is abbreviated

V"F = 0 (5.25a)

If the derivation is made in terms of general coordinates Ui, Ui, and Ui

with scale factors hi, h^, and 63
,
respectively, so that an element of arc

length is related to the coordinates and scale factors by

= hi^ dui^ + Aj* du2^ + hs^ du^^

then Laplace’s equation assumes the general form

27 = 1 r _d_
(
h2hs d7\ /A.fea

hihihi \_dui \ hi duij duz \ hi duij

+ J_ fhihj dF\1
dUi \ hi duzjj

(5.256)

Interpretations of Laplace’s Equation. As has been mentioned before

and as is evident from the development of the equation, Laplace’s equa-

tion is a differential expression of Gauss’s law for an element of volume.

* See Appendix II.
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In the language of differential equations it says that the net electric flux

emerging from an element of volume in a region free of charge is zero.

Another interpretation that can be given to Laplace’s equation in the

two-dimensional case is that it is an equivalent way of saying that the

potential at any point in a field is the average of the potentials at four

equally spaced surrounding points. Thus if there is given a set of curves

of equal potentials in the vicinity of some electrodes, known as a “ con-

tour representation of potentials,” then the potential at any point, say

the point (2,2), is the average of the potentials at the four surrounding

coordinate points, for the case assumed, the average of the potentials

at the points (2,1), (3,2), (2,3), and (1,2). This property will be proved

in a subsequent section.

Laplace’s equation can also be interpreted in terms of the curvature

of the potential profiles of a field configuration. Two-dimensional fields

can be represented either by contours of equipotential or by potential

profiles just as we can draw either a contour map or a set of profiles for

a topographic representation of terrain. In the profile representation

we draw potential as an ordinate against distance along some line as

abscissa. It will be remembered from elementary calculus that the

curvature of any curve is given by

d^y

from which it is seen that the sign of the curvature is determined by the

sign of the second derivative in the numerator since the denominator is

always positive. If we now examine Laplace’s equation in two dimensions.

dW dW
dx^ d^y

(5.27)

we see that the two terms may be interpreted as giving the sign of the

curvature of the profiles in the x and y directions. By Eq. (5.27) the

curvatures must be of opposite nature since the sum of the terms is

zero; and hence if the profile in the x cut at some point in the field is

concave upward, then the profile in the y cut at the same point must be

concave downward.

Examination of a simple case will illustrate the property described

above. In Fig. 5.6a is shown the contour representation for the case

of a concentric line with a circular inner conductor and a rectangular

outer conductor. The solid lines represent the equipotential lines or

contours. In Fig. 5.66 is shown the potential profile along the line ah,
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and it will be seen that the profile is curved away from the axis at the

point e. In Fig. 5.6c is shown the potential profile along the line cd,

and it will be seen that the profile is curved toward the axis at the point e.

Solutions of Laplace's Equation in Two Dimensions. The form which
the solutions of Laplace’s equation take depends upon the coordinates

in which the equation is expressed. For rectangular coordinates Laplace’s

d
(a) (c)

(b)

Fig. 5.6.—Example showing the relation between the

curvatures of the profiles of a potential field.

equation has the form of Eq. (5.27). The solutions of this equation have
the form

V = {A cos hx B sin kx){C cosh ky D sinh ky) (5.28a)

or

V = {A cos A-i/ + 5 sin ky){C cosh kx D sinh kx) (5.286)

The above results are arrived at by assuming that V has a solution of the

form XY where X is a function of x alone and F is a function of y alone.

If the product XY is substituted for V in Eq. (5.27), there results upon
differentiation and rearrangement

1 d^X 1 d^Y
X dx^ Y dy'^

(5.29)

It is seen that the left-hand member is a function of x alone and that the

right-hand member is a function of y alone. These can be equal only
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if each equals the same constant. If this constant is taken as then

we may write two component equations in the place of Eq. (5.29),

1

j X dx^

1 d^Y

(5.30)

(5.31)

The solution of Eq. (5.30) is

X = A cos kx + B sin kx (5.32)

and the solution of Eq. (5.31) is

Y = C cosh ky A- D sinh ky (5.33)

Thus V is given by the product of X and Y, resulting in the solution of

Eq. (5.28a) where multiple values of k as

determined by imposed conditions are

allowed. If the separation constant is chosen

as +k^ instead of —k^, then the solution of

Eq. (5.286) results.

For the polar coordinates of Fig. 5.7

Laplace’s equation has the form

r dr \ dr /
+

r^ dd^
= 0 (5.34)

when the problem is one of axial symmetry.

This has a solution in the form

Pig. 5 .7 .—Polar coordinate

notation.

V = {a COS nfl + 6 sin nd){cr^ + dr"”) (5.35)

as may be shown by the method demonstrated above using as the

separation constant. When n equals zero the second factor in Eq. (5.35)

is c + d In r.

For the cylindrical coordinates of Fig. 5.8 Laplace’s equation, for cases

of axial symmetry, has the form

r dr \ dr ) dz^
(5.36)

This has a solution of the form

V = [aJoikr) + bNo(kr)]{c sinh kz + d cosh kz) (5.37)

where do and No are the zero-order Bessel and Neumann functions.

Since the Neumann function of zero is infinite, this term is not often

encountered in electronics problems. Most potential configurations have
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Fig. 6.8.

tation.

-Cylindrical coordinate no-

a finite potential along the axis of symmetry, as in electrostatic electron

lenses where there is no conductor along the axis.

In order to apply the above solutions to definite problems it is neces-

sary to evaluate the constants in such a way that the potential function

fits the prescribed boundary condi-

tions. If the constants can be selected

so that the function fits all the bound-

aries (electrodes), then it will define

the potential at all points in the field.

The potential solutions frequently

appear as a series summation of terms

of the form indicated above.

Difference Form of Laplace’s Equa-

tion. We may write Laplace’s equa-

tion in the form of a difference equa-

tion of which the differential equation

is the limiting form. To do this

we shall assume that the potential is

known at a number of points whose spacing is finite though small.

We shall assume that the points are at the intersections of a rectangular

lattice as shown in Fig. 5.9 and that the spacing between the points is

The conclusions that we shall draw from the difference equation

set up on this basis will apply also to the differential equation and its

solution.

Consider the first derivative of potential at the point (0) in the xy

plane. The difference operators corresponding to the partial derivatives

are given by

dV
dx

dV
dx

dF
dy

dy

Vo) (5.38)

Vs) (5.39)

Vo) (5.40)

F4) (5.41)

* Morse, P. M., and Herman Fbshbach, “Methods of Theoretical Physics,”

Massachusetts Institute of Technology, 1946, pp. 139-147.

® Shortlbt, G. H., and R. Weller, The Numerical Solution of LaPlace’s Equa-

tion, Jour. Appl. Phys., vol. 9, pp. 334-348, May, 1938. Probably the best single

reference on this subject.

® Frocht, M. M., and M. M. Levin, A Rational Approach to the Numerical Solu-

tion of LaPlace’s Equation, Jour. Appl. Phys., vol. 12, pp. 596-604, August, 1941.
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The difference operators corresponding to the second derivatives are

given by

0 = ^ [(Fi - To) - (To - T,)] (5.42)

Upon substituting these values in Laplace’s equa-

tion there results

To = HiVi + T2 + Ts + T4) (5.44)

which states that the potential at the center of a

square is the average of the potentials at the cor-

ners of the square.

It is possible to obtain numerical values of

potential for various electrode configurations by

means of Eq. (5.44). The procedure is to break

up the field whose potential is desired into a suit-

able lattice, assume reasonable values of potential

at each point in the lattice, and then apply Eq.

(5.44) successively to each of the points, always

using any new values of potential obtained.

Successive applications of this procedure will correct any errors in the

original assumptions, and the values of potential at any point will con-

verge quite rapidly to the correct value. It is well to start with a coarse

network and then make it finer.

Fig. 6.9.—Arrange-
ment of net points for

the difference form of

Laplace’s equation in

two-dimensional rec-

tangular coordinates,

Eq. (5.44).

Fig. 5.10.—Arrangement of net points for the difference

form of Laplace’s equation in two-dimensional cylindrical

coordinates, Eqs. (5.46) and (5.46).

The expression given in Eq. (5.44) was derived for two-dimensional

rectangular coordinates. For two-dimensional problems of axial sym-

metry expressed in terms of the cylindrical coordinates of Fig. 5.8 that

hold for electrostatic electron lenses, and the like^ the corresponding
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expression for the lattice of Fig. 5.10 IS

Vo — ^{Vi-\-V2-\-V3-\- Vi) (Vi — Fs) (5.45)

in which the points 1 and 2 are on a line parallel to the axis and point 3
is closer to the axis than point 4. The expres-

sion [Eq. (5.45)] works for all parts of the field

except points on the axis for which

Plate KK) v

Vx — 3^(Fu, + Fj -h 4F„) (5.46)

It will be noticed that Eq. (5.45) reduces to

Eq. (5.44) for large values of r.

The above manipulations for the cylin-

drical case can be simplified by a change of

variable. H as a new variable there be taken

y = r^F (5.47)

then the Laplace equation reduces to

3 +S + I.-0 (5.48)

The corresponding net-point equation is

_ yi + y; + ya + Vi

hy

I y * I y o I

0 - 4̂ )

(5.49)

which is much simpler to apply than Eq. (5.45).

The case of two-dimensional polar coordi-

nates can be reduced to the rectangular coordi-

nate treatment by changing the variables

according to

field of a triode, calculated

from the difference form of

Laplace’s equation, Eq.

(5.44).

and
w = In, r

V = d

(.5.50)

(5.51)

For a lattice of equal increments of u and v,

Eq. (5.44) applies directly. The reasons for

this will become evident when the transformation IF = In, Z has been

studied.

In Fig. 5.11 is shown the potential field inside a half section of a

plane-electrode triode as calculated from repeated application of the

difference form of Laplace’s equation, Eq. (5.44).
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6.7. Elastic-membrane Models of Potential. It is possible to repre-

sent two-dimensional potential problems having a z-axis symmetry by
the elevation of a deformed elastic membrane. If an elastic membrane
is imiformly stretched in all directions and leveled when suspended in a

plane frame and is then deformed from its original plane by displacing

the membrane distances proportional to electrode voltages with blocks

shaped hke the electrodes to be studied, then the displacement of the

membrane at any point from the original plane is proprotional to the

potential at that point in the field. In other words, the membrane is a

topographic model of the potential field with vertical displacement pro-

portional to potential. The deformed surface that is obtained is a very

good representation of the potential field. This is because the surface

will deform itself so that its area will be a minimum. Analytically this

is expressed by making

'^ ’ / / 4' + (s)’ + (I)
*

where z is the elevation and x and y are the coordinates in the horizontal

plane. This is a problem in the calculus of variations that is converted

into a problem in differential equations by applying to the equation for

S that is in the form

(5.53)

-f- F. = 0 (5.54)

^ = j J
P {x,y,z,

The Euler differential equation

^F..-l-|-F.,
ax ay

where the subscripts indicate differentiation with respect to the following

factors:

Zx =

z, =

Fx.=

Fx, =

Fx =

dx

dz

dy

dF

dZt

dZy

dz
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Application of the Euler equation yields as the differential equation of

the defornaed surface'"®

1 +
\dy)

_
dy^

+ 2
dx dy dx dy

which reduces to Laplace’s equation,

dx^ ay®
“ "

(5.55)

(5.56)

for — « 1 and — <C 1. If the angles of all lines on the surface are keptdxdy
below 6 deg mth the horizontal, the departure in deformation from that

representing the true potential at any point will be less than 1 per cent.

Some practical considerations are of importance. A No. 30 rubber

surgical dam makes a good membrane. It should be stretched enough

so that it will be tight and not sag and yet not be too close to the rubber’s

elastic hmit. A linear stretch of about works well. It helps in

obtaining a uniform stretch to mark coordinate lines on the sheet before

stretching and then stretch so that these are straight and of the proper

spacing.

The applications of the elastic-membrane model of potential are

somewhat limited, for it is accurate only for small deformations, it can

be used to represent only two-dimensional problems with a z-axis (stack-

ing) symmetry—it cannot exactly represent problems with a rotational

symmetry about an axis—and it cannot be modified to include space-

charge effects. In spite of these limitations, models of this sort have

been used extensively by various laboratories in their studies of potential

fields and electron paths; in the latter regard it yields much information

in a short time. The use of the membrane in determining electron

paths will be mentioned in a later section. Figure 5.12 shows the elastic

membrane model used in the Electrical Engineering Department of

Stanford University.

6.8. Current-flow Models of Potential. The laws which govern the

flow of current in a uniformly conducting medium are the same as those

which govern the “flow” of electrostatic-flux fines in a vacuum. This

* Kleynen, P. H. J. a., Motion of an Electron in Two Dimensional Electrostatic

Field, Philips Tech. Rev., vol. 2 (No. 11), pp. 338-345, 1937. Original article on this

subject.

* Strutt, M. J. O., “Moderne Mehrgitter-Elektronenroehren,” pp. 3-6, Springer,

Berlin, 1938.

’ Zworykin, V. K., and J. A. Rajchman, The Electrostatic Pilectron Multiplier,

Proc. I.R.E., vol. 27, pp. 658-565, September, 1939.
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makes it possible to set up current-flow models of electrode systems and
to measure the potential at any point.

The equations for the components of current density in a continuous
and uniform medium such as some electrolyte are given by Ohm’s law in

terms of the gradient of potential as

dV
Jx = (5.57a)

(5.57b)

for the two-dimensional case, where J is current density and g is the

specific conductivity of the medium.

Fig. 5.12.—Elastic-membrane model of potential.

Since the flow of current in a medium of constant conductivity corre-

sponds to an irrotational flow of an incompressible fluid, as much current
will flow into any element of volume as flows out of it. This condition
is sometimes expressed by saying that the divergence of the current is

zero, which may be expressed mathematically as
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Substitution of the components of Eq. (5.57) into Eq. (5.58) yields

Laplace’s equation in the form

dW dW
dx^ dy^

(5.59)

Upon comparing the above equations with those developed for the elec-

trostatic field it is seen that an exact correspondence can be established.

The relations may be tabulated in one-to-one correspondence as follows

:

Currents

J Current density

g Specific conductivity

V Potential

Quantities

Relations

»
I

y _ Q
dx dy

ax* ay*

-Q
ay

Electrostatic Fields

D Displacement flux

tr Dielectric constant

V Potential

n n

dx ay

^ +^ = 0
ax* ^ ay* ”

av
‘dy

From the above tabulation it is seen that the correspondence between
the current flow and electrostatic field is quite complete. It is thus

Fig. 5.13.—Current-flow model of a cylindrical triode.

necessary only to set up a current-flow model with electrodes geometrically

similar to those of the electrostatic problem whose solution is desired and
to measure the potential contours. The model is easily set up for two-

dimensional problems by means of a flat tank. A weak solution of

copper sulphate may be used as an electrolyte. This has a fairly good

conductivity and has no polarizing action with copper electrodes. The
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equipotential contours can be traced with a probe connected to two
resistances forming two arms of a bridge. The other arms of the bridge

are in the electrolyte. By setting the external resistances any equipo-

tential contour can be traced by observing the points at which a null

indication is received. Tanks may be made of wood cemented to a glass

plate. A large sheet of coordinate paper may be put under the glass to

identify the location of points and thus facilitate their transfer to another

sheet for plotting. It is also possible to use a pantograph for plotting

directly. In using a flat tank it is absolutely necessary that the Hquid

be of the same depth at all points. Placing the tank upon a board with

leveling screws makes it easy to level.

Figure 5.13 shows a tank of the type

describea. This particular tank rep-

resents a section of a cyhndrical elec-

trode triode.

The arrangement of resistors

used with triode current-flow models

is shown in Fig. 5.14. The resistors

Rp and Rg are used to set the rela-

tive positive plate and negative grid

potentials. The resistors R\ and
B2 in the bridge arms are used to deter-

mine the potential of the contour

to be traced. If the resistors K 2 and

Rx are set in the ratio of 2 to 8,

the probe will trace out the contour

having 80 per cent of the plate-

cathode potential, since the percent-

age voltage of the contour is given

R
by D—r^- Headphones are conveniently used as balance detectors.

Ill I
R2

It is also possible to use a cathode-ray oscilloscope. If the probe and

RijRi junction are connected to the vertical plates and a voltage in

phase with the electrode potentials is connected to the horizontal plates,

there will result a straight-line Lissajous figure whose slope will be zero

when the probe is in the proper position. The advantage of this arrange-

ment is that the slope of the line will be negative or positive according

to whether the probe is to one side or the other of the proper position.

A low frequency of the order of 50 to 100 cycles should be used. If the

frequency is too low, it is difficult to detect a null. If it is too high, the

distributed capacities affect the balance.

It should be observed in the model of Fig. 5.14 that the proper

Rj R2

Fig. 5.14.—Circuit arrangement for

meastuing potential contours on a

current-flow model of a plane-elec-

trode triode section.
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conditions of symmetry are obtained along the nonconducting boundaries

which are indicated by dotted lines. Here the current flow must be
parallel to the boundary, which ensures that the potential contours are

at right angles to the nonconducting boundaries, since the equipotentials

are perpendicular to the flow lines. It will also be true that the equipo-

tentials will be perpendicular to all lines of symmetry running in the

direction of the flow. Flow lines will be perpendicular to conducting

surfaces. The flow will also be parallel to

the top and bottom of the liquid layer

since the air above and the glass below

are nonconducting.

For problems involving axial symme-
try such as are encountered in electron

optics, a slightly different arrangement

of electrodes must be used. Here it is

necessary to reproduce conditions of axial

symmetry and it is not correct to use a

uniform depth of electrolyte as in Fig. 5.14

without special electrodes. To obtain

correct results, either the electrodes or

the volumetric shape of the electrolyte

must be changed. It is possible to use a

deep flat tank if the electrodes are shaped

like portions of half cylinders with their

edges at the surface of the electrolyte.

For such an arrangement the probe should

be kept at the surface of the electrolyte.

A more convenient arrangement is to use

a wedge-shaped electrolyte. Use of such

a section corresponds to a pie-shaped

section of small angle cut out of the field

of revolution as shown in Fig. 5.15. The
wedge-shaped volume of electrolyte is obtained by simply tilting

a flat tank. Properly speaking the electrodes should be portions of

cylinders, but if the angle of the electrolyte wedge is small enough, say

less than 5 deg, they may be portions of planes without introducing any
appreciable error.

6.9. Sketching of Flux and Potential Fields. The properties of

electrostatic fields are such that, with a little practice, it is possible to

sketch fields with considerable accuracy without recourse to mathematical

methods. It is known, for instance, that flux and potential lines are

everywhere at right angles to each other. Flux lines emerge at right

Fig. 5.15.—Arrangement for

measuring potential contours on

a current-flow model of an elec-

tron lens. The lens electrodes

are cylinders of revolution that

require a tilted tank to represent

a wedge-shaped portion of the

potential field. The edge of the

wedge-shaped portion of electro-

lyte corresponds to the axis of the

electrodes.
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angles from conducting surfaces. Potential lines near conductors tend

to have the same shape as the conductor. These and other useful prop-

erties may be summarized as follows:

PROPERTIES USEFUL IN SKETCHING FIELDS

1. Flux and potential lines form orthogonal families of curves.

2. Flux lines are perpendicular to conductors at conductor surface.

3. Potential contours close to conductors tend to have the same form

as the conductors.

Pig. 5.16.—Sketch of flux and potential lines in an inside

right-angled corner. This sketch was made by the method of

Sec. 6.9 without mechanical or numerical aids.

4. Potential lines are parallel or perpendicular to lines of symmetry;

constructional bisectors may exist.

5. Flux-potential patterns should be drawn with curvilinear squares,

i.e., a four-sided figure, with right angles at the comers and with

equal average lengths of opposite sides, which maintains these

properties upon infinite subdivision.

o. Same potential difference exists across each square.

b. Same flux passes through each square.

c. Each square has the same attraction for the conductor face.

d. Each square has the same energy storage.

e. Each flux line represents the same increment of capacity between

electrodes.

Most of the above properties are self-evident. In Fig. 5.16 is shown

a plot of the flux and potential inside of a right-angled corner. This

plot was sketched, not calculated. It will be observed that all the eurvi-
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linear squares upon infinite subdivision will still be curvilinear squares.

The principal line of symmetry is shown by the center line. The con-

structional bisectors are shown by dotted lines.

A flux plot to be of value should include

1. Shape of fields at large distances as well as small distances from

the charges (conductors).

2. Location of all conductors and charges.

3. Geometrical symmetries of any kind.

4. All singular points, i.e., “saddle” points, giving rise to a crossing

of equipotential contours.

The above enumeration is actually quite general, and all these inclu-

sions are not always necessary in electronic problems. Singular points

occur where there is an apparent intersection of potential contours.

This occurs only where the equipotential surface is saddle-shaped.'’^

6.10. Method of Conformal Transformations. The method of con-

formal transformation is based upon solutions of Laplace’s equation in

two-dimensional rectangular coordinates and functions of the complex

variable z = x + iy. Most functions of the complex variable of the

form

W = fiz) (5.60)

are separable into real and imaginary parts

W = E{x,y) + iF{x,y) (5.61)

in which each part is a solution of Laplace’s equation. The two parts

of the complex function, E{x,y) and F{x,y), further represent orthogonal

famihes of curves. They may hence be taken as representing flux and
equipotential lines. The functions having the above properties are

known as analytic functions (to be defined more explicitly).

Every analytic function of the complex variable may thus be con-

sidered to represent the flux and potential field of some set of electrodes.

Fields may further be transformed by means of analytic functions from

one form to another. Thus, given a function that gives the field cor-

responding to one set of electrodes, the application of another function

will transform this field into one corresponding to another set of elec-

trodes. In the course of this transformation all the properties of flux

and potential fields are preserved.

Analytic functions when used for making transformations have the

property of preserving the angles between lines and of making corre-

1 Moore, A. D., Mapping of Magnetic and Electric Fields, Elec. Jour., vol. 23,

pp. 355-362, July, 1926.

* Stevenson, A. R., and R. H. Park, Graphical Determination of Magnetic

Fields, Trans. A.I.E.E., vol. 46, pp. 112-135, February, 1927.
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spending incremental areas similar in shape. It is for these reasons

that the transformations are called “conformal.”

Application of the method of conformal transformations usually

takes the form of finding a transformation which converts the electrodes

(equipotentials) of some simple field to the structure of which the field

is desired. The field of the simple electrodes can usually be determined,

and then the transformation converts the entire field to that of the more

complex arrangement.

Conformal transformations are familiar to everyone in the form of

maps. The surface of the earth may be mapped in many ways, which

give apparently different shapes to the land masses. The different shapes

are, however, merely different representations of the same thing. Most

maps could be transformed from one form to another by means of con-

formal transformations, since the transformations would preserve the

angles between river tributaries and keep the shape of small areas the

same. An example of this idea is found in the logarithmic transformation,

which, as will be shown, is capable of transforming a polar azimuthal

equidistant projection of the Northern Hemisphere into what is approxi-

mately a Mercator projection of this hemisphere.

Complex Functions Satisfy Laplace’s Equation. In studying conformal

transformations it will first be shown that functions of the complex

variable z — x iy are solutions of Laplace’s equation in two-dimensional

coordinates,

where

This follows since

Similarly

o11+ (5.62)

f{x,y) = -h iy) = f{z) (5.63)

df df dz df

dx dz dx dz
(5.64)

dff

dx^ dz^
(5.65)

df df dz _ . df

dy dz dy dz
(5.66)

1II (5.67)

It is evident that these partial derivatives are such as to satisfy Laplace’s

equation in the form of Eq. (5.62). The converse of this property is

also true, viz., that solutions of Laplace’s equation in two-dimensional

rectangular coordinates are expressible as functions of the complex

variable.
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Example: Let

Then

And

f{z) = Az^ + Bz
= Ax'‘ + 2Aixy — Ay'^ + Bx + iBy

dx
2Ax + 2Aiy + 0 + B + 0

dx^
2A

0 + 2Aix — 2Ay + 0 + tJS

-2A

Laplace’s equation is seen to be satisfied.

It is also true that the real and imaginary parts of the function are solutions

of Laplace’s equation.

dy

dy^

where

and

It is evident that

and that

f(z) = E(x,y) + il (x,y)

E{x,y) = Ax^ — Ay^ + Bx

F{x,y) = 2Axy + By

dx^ + dy^
~ 2A = 0

d^F dW
^2 + ^2 = 0 - 0 = 0
dx^ dy^

Definition of Analytic Functions. The properties of functions of the

complex variable will now be considered. It was mentioned above that

a large group of functions had the desired properties, and such functions

were referred to as “analytic functions.” It will be remembered that,

in the study of functions of the real variable, attention is usually restricted

to functions which are continuous and functions of which the derivative

at any point is independent of the direction in which we approach the

point as we take the limit of the ratio of the increment of the function

to the increment of the variable. Similarly in studying functions of the

complex variable we shall restrict attention to functions having a deriva-

tive that is independent of the direction of approach to the point in

question. This is necessary because only functions having this property

also have the desired properties of potential functions. Mathematicians

use the term analytic to describe such functions.

Consider

W = f{z) = fix + iy) (5.68)
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Such a function is said to be analytic if it has a derivative that is

independent of the direction of the increment of the variable Az as it

approaches zero.

For a single real variable

f{x)
+ - /W

Ai->0 Ax
lim
Ax—+0 Ax

(5.69)

For the complex variable z = x iy

f{z) = lim M = lim M
Az—*0 Az Az—>0 Az

Let

W = u + iv =‘ fix + iy)

If the function is analytic,

AW AIF Air
lim —— = hm = hm
A?—>0 Ax— Ay—>0 ^

A2<ss Ax-\-i Ay Az = Ax-^iO Az = 0+tAy

In derivative form

dz

dW
dx

—t
.djw

dy

(5.70)

(5.71)

(5.72)

But

Therefore

W = u + iv

dW du . dv

dx dx ^ dx
(5.73)

and

. dW . /du
,

. dv\
^ dy * ^ dy)

(5.74)

. dW dv . du
^ dy ~ dy ^ dy

(5.75)

Hence

du
,

.dv dv . du
dx dx dy dy

(5.76)

Equating real and imaginary parts,

du dv

dx dy
(5.77)

dv _ du
dx dy

(5.78)

These equations are known as the “Cauchy-Riemann conditions” and
serve to identify analytic functions.
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Dividing Eq. (5.77) By Eq. (5.78),

du dv

dx _ By

du dv

dy dx

(5.79)

which is the orthogonality condition for two functions since the deriva-

tive of a function of x and y is

dy _ dx

dx df

dy

(5.80)

and curves are perpendicular if the derivative of one curve is the negative

reciprocal of the derivative of the other. If we take derivatives of the

Cauchy-Riemann equations with respect to x and y, respectively, then

dx"^

dH
dx dy

Subtracting these gives

d'^u
,

dx^

dx dy
(5.81)

d^u

dy^
(5.82)

S-o (5.83)

or Laplace’s equation holds for the real part of the function. Similarly,

Laplace’s equation holds for the imaginary part.

To summarize, an analytic function is one whose derivative is inde-

pendent of the direction of the increment of the variable as the increment

approaches zero. For such a function the Cauchy-Riemann conditions

hold. Analytic functions have real and imaginary parts which are orthog-

onal to each other and each one of which is a solution of Laplace’s

equation.

It will be recognized that functions may be analytic except at certain

points just as functions of a real variable may be continuous except at

certain points. Such points are frequently those at which the function

has a pole, i.e., assumes an infinite value. It is possible to use such func-

tions if the regions in which the function is not analytic are excluded

from consideration.

A serious limitation of the method of conformal transformations is

that it is not always possible to find the transformation which will con-

vert one set of electrodes to another. In general, there is no definite

method by which the transformation which fits a set of electrodes can be

found. An exception to this remark is the Schwartz-Christoffel trans-
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formation, which transforms the real axis in the W plane into any poly-

gon in the Z plane, but this transformation does not find much use in the

field of electronics. However, it is also possible to use methods of

successive approximations and series expansions. Fortunately, the trans-

formations necessaryfor the most important vacuum-tube problems are known.

The Logarithmic Transformation. The transformation that solves the

problem of determining fields in the plane-electrode triode is known. It

is the logarithmic transformation

W = \n,Z (5.84)

where e = 2.718 is the Napierian base.

This is analytic for all finite values of x and y other than zero.

The nature of the logarithmic transformation can best be understood

by studying its component relations. It is most convenient to use polar

coordinates in the Z plane and rectangular coordinates in the W plane.

Thus let

and

In these coordinates

Z = re**

W — u + iv

u iv = In, r -|- id

(5.85)

(5.86)

(5.87)

so that the component equations relating the real and imaginary parts

are

or, solved for r and 6,

M = In, r (5.88)

V = B (5.89)

r = e** (5.90)

B = V (5.91)

This function is readily proved to be analytic for finite values of the argu-

ment by application of the Cauchy-Riemann equations.

Examination of the v component of W shows that it is multiple-

valued, in fact infinitely so. This occurs because any angle in the Z
plane can be written as an angle less than 27r plus any integral multiple

of 2ir. The angle 6 can be written as B 2irn, where n is any positive

or negative integer. Thus, corresponding to any point in the Z plane

there are an infinite number of points in the W plane evenly spaced by a

distance 2ir along a vertical line.

From Eq. (5.88) it is seen that any circle about the origin in the Z
plane, r = k, transforms into a line parallel to the v axis in the W plane,

u = \n k.* Circles with radii less than 1 give lines in the left half of the

* Hereafter, the notatioa Jn r will be used to designate the natural logarithm of r,
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W plane since the logarithms of numbers less than 1 are negative, and

circles with radii greater than 1 give lines in the right half of the W plane

since the logarithms of numbers greater than 1 are positive. Any radial

line through the origin, d = k, transforms into a set of lines in the W
plane parallel to the u axis and spaced a distance v + %m = k.

These relations are shown in Fig. 5.17. From this it is seen that a single

point in the Z plane such as r = 1.5, ^ ^
transforms into a series of

points u = In 1.5, r = ^
+ 2mr in the W plane. Thus a single point in

the Z plane that may be taken as representing a line charge transforms

Z PLANE W PLANE
Fig. 5.17.—The logarithmic transformation, W = Ine Z.

into a row of line charges evenly spaced in the W plane. This gives the

arrangement corresponding to a grid of evenly spaced parallel wires and

is the basis for the plane-electrode representation.

The nature of the logarithmic transformation is better understood if

the transformation be effected in a series of steps. Imagine the Z-coordi-

nate plane to be a stretched elastic membrane. If the polar-coordinate

diagram of the Z plane shown in Fig. 5.18a be split along the negative ar

axis and the upper and lower edges be rotated clockwise and counter-

clockwise, respectively, the pie-shaped section of Fig. 5.186 will result.

If now the point on the pie is stretched to the left and the outer edge is

compressed, the configuration shown in Fig. 5.18c results. Finally the

left and right edges are made the same length and are stretched to nega-

tive and positive infinity, respectively, to give a strip of the W plane as

shown in Fig. 5,18d.
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The nature of the logarithmic transformation is also well illustrated

by relationship between certain types of maps. Thus, if the Northern
Hemisphere on a polar azimuthal equidistant projection be taken as the
Z plane, then the Northern Hemisphere on a Mercator projection corre-

sponds very closely to the W = \n.tZ plane. It will be recognized that

each of these two common maps is but a different representation of a
part of the earth’s surface. In Fig. 5.19 is shown a polar azimuthal
projection of the Northern Hemisphere. In Fig. 5.20 is shown a Mer-
cator projection of the Northern Hemisphere.

The polar azimuthal equidistant projection is made by unfolding

the earth’s surface and stretching it out until it is a plane tangent to the

fcl
W PLANE

idL)

Fig. 5.18.—Steps in a progressive transformation from the Z to the Ine Z plane.

pole with distances from the pole made equal to the great-circle distances

on the actual sphere. This is indicated in Fig. 5.21. The longitude lines

become straight lines through the pole, and the latitude circles remain
circles.

Mercator’s projection is approximated by surrounding the earth with a

circular cylinder tangent to the earth at the equator as in Fig. 5.22 and
extending to infinity in both directions. Points on the earth’s surface

are then projected onto this cylinder by drawing a line from the earth’s

center through the point in question and extending it until it hits the

cylinder. The cylinder is then cut and unfolded to give a plane surface.

The latitude circles on the sphere become a series of parallel straight

lines on the Mercator projection. The longitude circles become another
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set of equidistant parallel straight lines perpendicular to the latitude

lines.

It is easily seen that the latitude circles, r = k,m the polar azimuthal

equidistant projection become straight lines parallel to the equator,

u = In fr, in the Mercator projection. The longitude lines through the

pole in the polar azimuthal equidistant projection, d = K, become a set

of evenly spaced lines perpendicular to the equator in the Mercator

Fig. 5.19.—The polar azimuthal equidistant proiection of the North-

ern Hemisphere. This may be considered as a polar-coordinate

representation of the Z plane.

projection, v = K. The pole, which is the center of things in the polar

azimuthal equidistant projection, recedes to infinity in the Mercator
projection. Distortions in the different representations are evident.

The polar azimuthal equidistant projection gives its most accurate repre-

sentation near the pole but stretches out the equator disproportionately,

causing Africa to be too wide. The Mercator projection is most accurate

in the band around the equator but causes areas near the poles to be

disproportionately large. Greenland on a Mercator projection looks

larger than South America but is actually only one-tenth as large.



;he

Northern

Hemi

:
Fig.

5.19.
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Observe, however, that angles and the similarity of small areas are

preserved.

The Function W = The simple power function given by raising

Z to some rational fractional power is the function that gives the fields

inside of a cylindrical triode. As usually written, this function is

W = (5.92)

It may also be written
InZ

IF = € "
(5.93)

or

In IF = - In Z
n

(5.94)

but the form of Eq. (5.92) iis preferred.

r

The nature of the power function may
best be understood by examining the form
of the function for a specific value of n.

A Consider the case of n = 2. Then

1
IF = Z^ (5.95)

1 1 or

j Z = IF=* (5.96)

Using rectangular components for

and IF,

both Z

Fig. 6.21.—Construction of

the polar azimuthal equi-

distant projection.

Z = X -X iy

and
(5.97)

(5.98)IF = u + iv

Making these substitutions,

X iy = vP- -X- i2uv — (5.99)

from which, by equating real and imaginary parts, the component equa-

tions are

X = (5.100)

and

y = 2uv (5.101)

These component equations satisfy the Cauchy-Riemann conditions

dx dy n 1 o T ,

since — = — = 2m and — = — ^ = —2v. Letting x and y assume
dU dv dV du a a

various constant values, it is seen that the component equations (5. 100)

and (5.101) represent two families of orthogonal hyperbolas previously

shown in Fig. 5.16. For a better comparison the Z and W planes are

shown in Fig. 5.23, in which corresponding flux and potential lines are
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indicated. It will be seen from this figure that the upper half of the Z
plane transforms into the first quadrant of the W plane. The trans-

formation is double-valued, i.e., one point in the Z plane transforms into

two points in the W plane. For example, the point (0,4) in the Z plane

Fig. 5.22.—Construction of the Mercator projection.

transforms into the point (1.414,1.414) and also the point (-1.414,-1.414)

in the W plane. For most purposes only the first, or “principal,” value

of the multiple values is used, though all of them have the correct mathe-

matical properties. It can further be seen that if the polar representa-

Fig. 5.23.—The transformation W =

tion of points is used the angle of the point in the W plane is half the

angle of the corresponding point in the Z plane and the radius vector

of a point in the W plane is the square root of the radius vector of the

corresponding point in the Z plane.
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In the general case of the function W = the function is n-valued

if n is an integer. As a result, the upper half of the Z plane transforms

into a segment of the W plane having an angle -• Angles in the W plane
Tlf

are ^th the corresponding values in the Z plane (principal values), and

radius vectors have a magnitude in the W plane that is the nth root of

the radius vector of the corresponding points in the Z plane.

Fig. 5.24—Polar azimuthal equidistant projection of the North-

ern Hemisphere transformed by IF — Z^.

The component relations are not readily written in rectangular com-

ponents for any general integral value of n. In polar form, however,

they are quite simple. Let

as before; and let

Z = rZ0 =

W = RZ<I> = Re'*

(5.85)

(5.102)

Then the component equations in polar form are

R = (5.103)
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and

S = - (5.104)
n

The nature of the transformation W = may be indicated as a

kind of deformation of the Z plane. Upon comparing the W- and Z-plane

representations in Fig. 5.23, it is seen that if the upper half of the Z
plane be cut along the negative x axis and if the upper edge of the nega-

tive X axis be swung clockwise 90 deg and the lower half of the negative

Fio. 5.25—Polar azimuthal equidistant projection of the North-

ern Hemisphere transformed by IF = Z^.

X axis be swung counterclockwise 90 deg then the TF-plane representation

will result if the intermediate regions are allowed to deform accordingly.

A set of polar maps can also be drawn to illustrate the nature of the

transformation. In Fig. 5.24 are shown maps illustrating the nature of

the transformation W = Z^. It is seen that the representation is

double-valued and that the scale of distances from the pole in the IF-plane

representation is quadratic rather than linear; the land areas are pushed

out from the pole toward the equator though the map as a whole differs

surprisingly little from the usual representation.
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In Fig. 5.25 are shown maps illustrating the nature of the trans-

formation W — Z''^. This transformation is quadruple-valued, i.e.,

every point in the Northern Hemisphere is repeated four times in the

IF-plane representation. The scale of distances from the pole is quartic

in the W plane, with the result that the land masses are compressed

strongly near the equator.

An inkling of how this transformation is used is obtained if we con-

sider that in the polar azimuthal equidistant or Z-plane representation

a cathode wire be located at the North Pole, a grid wire be located at

Iceland, and the equator be a circular plate surrounding both. Then
we have a simple tube structure with one cathode wire, one grid wire,

and one plate. If then the transformation W = he used, the corre-

sponding TF-plane representation has one cathode wire at the pole as

before, a surrounding plate at the equator as before, but four grid wires

located at the four Icelands, which are evenly spaced around the 66“

latitude circle. If the potential field can be found in the Z plane, then

it can be transformed into the W plane just as the land outlines have

been transformed. This is what Chap. 7 is mostly about.



CHAPTER 6

LAWS OF ELECTRON MOTION

A-Ll electronic devices depend for their action upon the effect of applied

electric or magnetic fields upon electron flow within the device. The
applied fields may control the direction or the magnitude of the current

flow or both. In this chapter there will be studied the effect of fields

upon the electron paths when the electrons are present in small enough
number so that their presence does not change the applied fields. In a

subsequent chapter there will be studied the effect of fields upon electron

flow when the electrons are present in sufficiently large numbers to

influence the fields.

6.1. Electron in a Uniform Electric Field. An electron in a uniform

electrostatic field experiences a constant force in the direction of increas-

ing potential. As a result, the laws governing an electron starting from

rest are the same as those which apply to a body falling freely under the

influence of gravity until very high velocities are reached. From New-
ton’s second law,

(6 - 1
)

where m is mass of the electron, 9.107 X 10“®' kg

X is distance, meters

t is time, sec

dV .—E = is gradient of potential, volts per meter

e is magnitude of the charge of the electron,

1.602 X 10“'* coulomb

A first integration of Eq. (6.1) gives

dx €
V = -^

= — ^Et meters per sec (6.2)

the constant being zero because the velocity is taken as zero when time

is zero. A second integration gives

X = —~ — Ei^ meters (6.3)
2 m '

97
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in which the constant is again zero for an electron starting from rest at a

point of zero potential.

If time is eliminated between Eqs. (6.2) and (6.3), there results

= eV (6.4a)

where V = —Ex is the potential through which the electron has fallen.

Equation (6.4a) states that the kinetic energy acquired by an electron

starting from rest is equal to the potential energy which it has lost.

Solving for v,

^ ~
\

~ meters per sec (6.46)

The relation between Eqs. (6.2), (6.3), and (6.4a) and the correspond-

ing equations for a falling body is evident. It is seen that the quantity

gE— — is the equivalent of the gravitational constant.

If the values for charge and mass be substituted and all quantities

be expressed in practical units, then

V = 1.758 X 10“E< meters per sec (6.5)

X = 0.879 X W^Et^ meters (6.6)

V = 5.93 X 10® \/V meters per sec (6.7a)

where v is velocity, meters per sec

E is gradient, volts per meter

V is potential, volts

X is distance through which the electron has been accelerated

The above expressions are not accurate for potentials exceeding 30,000

volts.

The ratio of the charge to the mass of the electron is so high that a

small voltage will impart a tremendous velocity to the electron. It

takes only three-tenths of a microvolt to give an electron a velocity of 700

mph which is approximately the velocity of sound. Although the speeds

of electrons are very high, their energy is low because of their minute

mass.

Electron speeds are frequently expressed in terms of the corresponding

voltage. Energies are also designated in terms of electron volts, 1 elec-

tron volt being equal to 1.602 X 10“^® watt-sec. An electron that has

“fallen” through 1 volt of potential is said to have acquired an energy

of 1 electron volt.

If an electron enters a region of uniform field at a poipt xo with an
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initial velocity vo parallel to the field, then

V Et + Vo meters per sec (6.8)
in

^ ^ '

X = —^ Et^ + Vot + xa meters (6.9)

where xo is the initial distance in meters.

Eliminating t between Eqs. (6.8) and (6.9),

- t>o^) = e{V - Fo) (6.10a)

or

V = 5.93 X 10® a/F — Fo meters per sec (6.106)

Equations (6.4), (6.7), and (6.106), which give velocity in terms of

potential, are not restricted to uniform fields or to one-dimensional fields.

This is due to the fact that these equations express the conservation of

energy and hence are independent of the electron path and the nature

of the potential field.

6.2. Initial Velocity Not Parallel to Field. When an electron enters

a region of a uniform field with an initial velocity that is at an angle with

the gradient of potential, the electron follows a parabolic trajectory.

This is because it experiences a constant force in the direction of the

gradient and no force at right angles to this. The case is analogous to

the mechanical case of a projectile fired from a gun in the absence of

friction. The projectile is subjected to a constant downward force but

has no force affecting the component of velocity parallel to the earth’s

surface.

The differential equations for the components of electron motion when
the electron meets a retarding component of field are

and

dt^
(6 . 11 )

(6 . 12)

The initial conditions that determine the solution of these equations

are as follows:

When t — 0,

dy
-T = Vo cos e
ctt

y = 0

dx = «o sin 6 X = 0
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where 6 is the angle that the initial velocity makes with the gradient

of potential and vo is the initial velocity.

A first integration gives

^ = --Et + vo cos d (6.13)
at m '

and

^ = Vo sin e (6. 14)

Electron
gun

Fig. 6.1.—Parabolic electron trajectory in a uniform elec-

tric field. This case results from the injection of an elec-

tron with an initial velocity into a region where the electric

field has a uniform retarding action.

(6.15)

(6.16)

Elimination of the time factor between Eqs. (6.15) and (6.16) gives

the equation of the parabolic trajectory

_ —Ex^ X
^ 4Eo sin* 9 tan 9

(6.17)

where Eo is the potential corresponding to the initial velocity. This is

observed to be the equation of a parabola in x and y and to be independent

of the system of electrical units used. The notation used in all the above

equations corresponds to that shown in Fig. 6.1.
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The slope of the trajectory at any point is given by

tan a =
—Ex

2Fo sin^ B
+ 1

tan 6
(6.18)

where a is the angle that the tangent to the parabola makes with the

horizontal axis.

The maximum height to which the electron rises is

2/m
Vo cos^ 6

E (6.19)

and the horizontal displacement corresponding to this is

2Fo sin B cos B
Xm — E (6 . 20)

6.3. Electrostatic Deflection of Cathode-ray Beams. An application

of the situation analyzed in the last section is found in the deflecting plates

Fig. 6.2.—Electrostatic deflection of an electron beam. The electron enters the

region of deflecting field at right angles to the field. The trajectory is parabolic

between the plates.

of the ordinary cathode-ray tube. Here a stream of electrons enters a

region of a uniform field, traverses a parabolic path while under the

influence of this field, and leaves the region between the plates at a
different angle from that at which it enters. It then travels in a straight

line until it hits the fluorescent screen.

In this case, as may be seen by reference to Fig. 6.2, the electron

enters the deflecting field at right angles, making the angle B equal to

90 deg. The potential gradient is Vd/a. For this condition the slope

of the trajectory upon emerging from the plates after a distance of travel

b in the horizontal direction is, by Eq. (6.18)

tan a
Vdb 1

2aVo op (
6 .21

)
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where Fd is the potential between plates and Fo
spending to the initial velocity. But

is the potential corre-

tan a ^ ^ (6.22)

so that

IbVa
(6.23)“

2«F„

This expression is only an approximate one, for it neglects the fringing

effect of the flux lines around the end of the deflecting plates.

In most cathode-ray tubes the deflecting plates are not parallel but
slope apart so that the electron in passing between them is subjected

to a constantly decreasing gradient. When this is the case, the expres-

sions obtained previously cannot be used and the problem must be
solved anew. This is readily done by setting the gradient between the

plates equal to

^ = ^0
dy „ ,

(«2 - ai) _
<ii i r X

(6.24)

where Oi and 02 are the separations of the ends of the deflecting plates

where the beam enters and leaves, respectively. Other symbols have
their previous significance. The expression for the crosswise acceleration

involving this factor is then integrated to obtain the crosswise component
of velocity at the point where the beam emerges from between the

deflecting plates. The ratio of the crosswise to the axial velocity multi-

plied by the distance to the fluorescent screen is then equal to the screen

displacement. This has the form

y = (6.2.5)

which reduces to Eq. (6.23) when ai = at. From this it is seen that the

effect of spreading the deflecting plates at one end is to decrease the

deflection. If the separation of the plates is increased 50 per cent at

the far end, the deflection is decreased to 81.2 per cent of its value for the

parallel plates having the near-end spacing. The deflection for divergent

plates is, however, slightly greater than for parallel plates having their

spacing equal to the average spacing of the divergent plates. Equation

(6.25) is still in error because it takes no account of the flux fringing at
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the ends of the deflecting plates. The effect of the fringing is to

increase the effective length of the plates.

6.4. Relativity Correction for Velocity. The general expression

developed in Sec. 6.1 giving electron velocity as proportional to the square

root of potential is valid only for velocities low compared with the

velocity of light. This is due to the fact that according to the theory of

relativity the mass of a particle changes with its velocity, and in the

derivation of the expressions of Sec. 6.1 the mass was assumed constant.

One of the postulates of the theory of relativity is that nothing can

move with a speed greater than the velocity of light. As a consequence of

this upper limit on velocity, it is seen that a body subjected to a constant

force must have its mass increase as it is accelerated, or otherwise its

velocity would increase indefinitely and finally violate the postulate by
exceeding the velocity of light. If, however, the mass of the particle

increases as its velocity increases, a constant force produces an accelera-

tion that decreases with velocity and permits the possibility of an upper

limit to velocity.

Another conclusion of the theory of relativity is that matter and energy

are equivalent. Mass may be considered a manifestation of energy. To
relate this to the remarks of the previous paragraph, the energy expended

in accelerating an electron manifests itself as an increase in its mass.

From this idea, the law for the change of mass with velocity and the cor-

responding law for velocity in terms of potential are readily deduced.

Mass and energy are related by a factor c^, where c is the velocity of

light.

w = c^m (6.26)

where w is energy in watt-seconds, c is the velocity of light, 3 X 10*

meters per sec, and m is mass in kilograms.

Consider the increase in mass that an electron experiences as it is

accelerated. Then

c* dm = dw = F ds (6.27)

where dm is the increase in mass, dw is the energy expended in accelerating

the particle, F is the applied force, and s is the distance factor.

According to Newton’s second law,

F = ^ (mv) (6.28)

1 See also Benham, W., Inclined Deflecting Plates, Wireless Eng., vol. 13 (No. 148)

pp. 1&-13, 1936.

* Hintbrberger, O., Correction for End Effects in Oscilloscope Deflecting Plates,

leit.furPhys., vol. 105, pp. 501-512, July, August, 1937.
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this being the general statement of the law when a variation in mass is

encountered. Making this substitution into Eq. (6.27), and integrating

J
dm = J

ds = J
V d(mv)

Equating the integrands and separating variables,

dm _ V dv

m

which integrates to give

[In m],

giving the result sought,

(6.29)

(6.30)

(6.31)

(6.32)

where mo is the rest mass of the electron.' It is seen that at low velocities

the mass is practically the rest mass. As the velocity increases, the mass

increases, slowly at first and then quite rapidly. At one-tenth the

velocity of light (2,600 volts) the mass has only increased by ^ of 1 per

cent. The mass tends to become infinite as the velocity of light is

approached.

The expression for mass as determined by the velocity can now be

applied to obtain an expression for velocity as a function of potential.

This is best done by equating the expressions for potential and kinetic

energy, the latter involving the general expression for the mass as a

function of the velocity.

But

Potential energy, Ve — kinetic energy, — e (6.33)

/
E ds (6.34)

' This is what is known as the “transverse mass” of the electron because it is the

effective mass of the electron to transverse deflection where the magnitude of the

velocity is not changed appreciably. It should be distinguished from the “longitu-

dinal mass,” which has the value which is the effective mass that an

electron presents to longitudinal acceleration where the mass as well as the velocity

change."..
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In this expression

= + (6.35)

Hence

Ve = J
V dt j

v^ v dt (6.36)

Ve = jmvdv + jv^dm (6.37)

If now the general expression for m as a function of velocity be sub-

stituted and the integrals be evaluated between the limits of 0 and v on

the variable v, there results

(6.38)

This is readily solved for velocity.

= c^l - 1

(1 + 1.966 X 10-»7)2

The corresponding expression for mass as a function of potential is

m = mo(l -i- 1.965 X 10-«F)

(6.39)

(6.40a)

The results of the above analysis deserve considerable study. Con-

sider first the way in which the mass varies. Referring to Eq. (6.32), it is

seen that at very small velocities the mass is practically the rest mass.

As the velocity is increased, the mass at first increases parabolically with

the velocity,

m = mo ^1 -b (6.406)

This expression is approximately correct until the velocity reaches one-

tenth the velocity of light. At this velocity the mass has increased only

3^ of 1 per cent.

From Eq. (6.40o) it is seen that the mass increases linearly with the

potential. This happens because of the energy relation, which requires

that the potential energy acquired manifest itself as an increase in mass.

At about 500,000 volts the mass of the electron has doubled. This

voltage is not ordinarily reached in ordinary tubes. At 5,000 volts the

mass has increased by 1 per cent.

The velocity of the electron follows the low-voltage law of Eq. (6.7)

until very large voltages are reached. Even at 100,000 volts the velocity
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has dropped only 7]^ per cent from the low-voltage value given by Eq.
(6.7a), which may be written

V ^ VF
c 506 (6.76)

By 1,000,000 volts, however, the velocity has reached 93 per cent of the

velocity of light. Above 1,000,000 volts the velocity becomes closer and
closer to the velocity of light but experiences no rapid change with voltage.

The above relations are shown in Fig. 6.3. On this log-log plot it is

seen that velocity follows the half-power law of potential well up to about
100,000 volts. Between 100,000 and 1,000,000 volts the change from the

half-power law occurs, and above 1,000,000 volts the velocity is practi-

cally constant. Several convenient reference points may be taken from
this curve. An electron reaches one-tenth the velocity of light at about
2,600 volts. If there were no change of mass with velocity, the electron

would reach the velocity of light at about 260,000 volts.

6.6. Two-dimensional Electric Fields. Electrons are frequently

exposed to fields that are not uniform but that are two-dimensional or

more. It is generally quite difficult to determine exactly what the elec-

tron path is by analytical methods.

The fundamental differential equations involved are quite simple,

but they are usually difficult if not impossible to solve. In rectangular

coordinates the differential equations are

d'^x

^ ~ (6.41)

and

d'^y

df^
-iEy{x,y) (6.42)

where

Ex = dV (x,y)

dz
(6.43)

and

Ey =
dV {x,y)

dy
(6.44)

When these equations can be solved, they give the components of electron

displacement parametrically in terms of t.

When the potentials are given in two-dimensional circular-cylinder

coordinates with an axial symmetry, as is the case in most electron-

optical problems, the equations have the same form as those above. It

is necessary only to substitute r for x and z for y to get the corresponding

equations for this case.
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For two-dimensional polar coordinates, such as are used for the

cylindrical triode, the equations are quite different and still more difficult

to solve. In terms of a radial variable r and an angular variable 6 the

differential equations of motion are

^ ^
dt^

^
\d< / m dr

d‘^0 ^dr do _ 1 e dV_
^ dt^ dt dt r m dO

These equations are most readily obtained by applying the Lagrangian

operator to the energy equation, which in these coordinates has the form

I [(§)’ + ’•(a)’]-'’' (««>

The difficulty in solving these two-dimensional problems arises from

the fact that the variables in the component equations are rarely separable.

Example; One of the few two-dimensional problems that can be solved exactly

is that of an electron released from a point on the side of an interior right-angled

conducting corner at zero potential. The potential configuration is shown in

Fig. 5.16. The equation for the potential is F = kxy so that the components

of electric intensity are = —ky and = —kx. The differential equations

of motion are then

(6.45)

(6.46)

and

dh; e
, , ^W = m^y

dhj € ,^.=--kx (6.49)

£
It is convenient to make the substitution —k = iA)^. If each equation is differ-m ^

entiated twice and the relations from the original equations substituted, there

result

d^x

^ (6.50)

and

d*y

d^ = ^"y
(6 .51 )

in which a separation of the variables has been achieved. When these equations

are solved subject to the initial conditions that when

t = 0

a; = 0

y ^ a
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there results

and

a: = g
(cosh wt — cos oii)

a , , ,
.

y = 2
(cosh wt + cos o}t)

(6.52)

(6.53)

The above solutions may be obtained either by standard methods or by the

operational calculus. The nature of the solution is more apparent if the com-

ponent displacements are referred to the line y = x, that is, if the system be

rotated 45 deg clockwise. When this is done.

Xi = —7= cosh ut
V2

2/i
= —1=^ cos o)t

V2

(6.54)

(6.55)

This same result may be obtained more quickly if the original potential field

be rotated 45 deg clockwise before formulating the differential equations. When
this is done, the field has the form shown in Fig. 6.4 and the potential is

k
F = 2

— 2/1^) and E, = —kxi, = +kyx

The differential equations are then

(6.56)

(6.57)

Here the variables are already separated in equations of lower order; and when
these are solved subject to the conditions that when

t = 0

a

V2
a

0

0

Vi =

dxi _
dl

dy, ^
dt

~

dHi

d^i
-w =

the same solution as was obtained above results.
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Examination of the solution shows that the electron oscillates about the line of

symmetry while moving outward at a constantly increasing rate. It is also seen

that the shape of the trajectory is independent of the strength of the field and

also of the charge and mass of the electron. This is a general characteristic of

such problems. The transit time, however, does depend upon all three of these

factors. This means that a heavier particle starting under the same conditions

will trace out the same path but be slower in doing so.

corner. Note that the electron does not follow a flux line but, because of its

finite mass, overshoots the line of symmetry and subsequently oscillates about

it.

If the general differential equations (6.41) and (6.42) are combined

with the energy equation

m
2

= eV (6.58)

and the factor i be eliminated between them, there results a differential

equation in the coordinates x and y alone,

2V{x,y)
d'^y

dx^
Ey 1 + (6.59)

This equation is no easier to solve than those previously given, but several

important properties of electron trajectories can be deduced from it.
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1. The mass and charge of the electron do not appear in the equation.

This means that the path taken will be independent of these factors.

2. The equation is not changed if either voltage or distance is changed
by a constant factor. This means that the path will be the same
for all magnitudes of voltage as long as the form of the field is

not changed.

3. If the tube structure is enlarged by any factor, then the trajectory

will be enlarged by the same factor.

6.6. Electron in a Uniform Magnetic Field. An electron in motion
constitutes a minute electric current of magnitude —ev, where e is the

magnitude of the charge on the electron and
V is its velocity. As such, an electron in a

magnetic field experiences a sidewise force

just as does a wire carrying current. The
magnitude of this force in newtons is Bev sin 6,

where B is the magnetic-flux density in

webers per square meter (1 Weber per meter

^

equals 10^ gausses) and B is the angle

between the vectors representing the field

and the velocity, the latter being in units of

meters per second. When the electron enters

the field at right angles to it, the force is

simply Bev directed at right angles to the

velocity. The relative directions of field,

velocity, and force are shown in Fig. 6.5.

The force changes the direction but not the

magnitude of the velocity and in this case is

continuously exerted at right angles to the

instantaneous velocity because the direction

of the force changes with the direction of the

velocity. This fulfills the conditions necessary for a circular motion of

the electron in a plane normal to the magnetic field.

The force developed by the magnetic field may be considered as a

centripetal force that must equal the centrifugal force developed by the

circular motion of the electron. Equating these forces.

Fig. 6.5.—The direction of

the force on an electron rela-

tive to the velocity and mag-

netic field that produce it.

The force is the vector prod-

uct of the magnetic-flux

density and the velocity. If

B is turned into v, then F
advances like a right-hand

screw.

Bev = newtons

where R is the radius of the circular electron path,

of the circular path is

e B

(6.60)

From this the radius

meters (6.61)
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It is more convenient for application of this formula to express the

physical quantities in numerical form and to use the potential correspond-

ing to the velocity. With these changes the expression for the radius of

the circular path becomes

/Vr

= 3.37 X 10-«^ meters (&.Q2)
£>

where V is the electron velocity in equivalent volts and B is the magnetic-

flux density in webers per square meter (10^ gausses). This relation

shows that, the stronger the field and the smaller the velocity of the

electron, the smaller the circle in which it moves. The results of this

relation are compactly presented in the nomogram of Fig. 6.6.

If the particle is not an electron but an ion of mass wip and with n times

the charge of the electron, the radius is given by

^ 10“®../^— meters (6.63)
^ B \me n

where m* is the mass of an electron and B is magnetic-flux density in

webers per square meter.

Since the radius of the circle followed by the particle is proportional

to the velocity, the period corresponding to one loop is independent of

the initial velocity and depends only upon the magnetic field. The
period is given by the circumference of the circle divided by the velocity,

r =— i sec (6.64)
e B

In practical units this is

T = 35.5

B
rp.icromicroseconds (6.65)

The value of the period can be obtained from the nomogram of Fig. 6.6

by observing that the period in microseconds is the same as the radius in

centimeters when the potential is 11.22 mv.

For particles with a mass rrip and having n times the charge of the

electron the period is

T = micromicroseconds (6.66)nB me

The fact that the period is independent of the velocity is significant

and useful. If a number of electrons of different velocities be injected

into a uniform magnetic field, they will trace out circles of different size

but they w'ill all return to the starting point at the same time. Use is

made of this property in magnetic focusing of electron beams.





114 Vacuum tubes

If an electron enters a magnetic field at an angle 6 with the field,

then there is a component of velocity parallel to the field, v cos d, that is

unaffected by the magnetic field. The other component of velocity,

that normal to the field, v sin 6, produces a circular motion which com-

bines wdth the parallel motion to give a helical path. The radius of the

helix is given by

R = 3.37 X 10-« VV sin 6

B
meters (6.67)

where V is in volts and B is in units of webers per square meter (10*

gausses). The pitch of the helix is given by the product of the parallel

component of velocity and the period as determined from Eq. (6.65).

P = 21.2 X 10-^W cos 6

B
meters (6 .68)

It will be observed that for small angles the pitch does not vary much
with the angle. Hence, if a magnetic field is placed parallel to a beam of

electrons in a cathode-ray tube, the electrons will return to positions cor-

responding to their original relative position in a distance p along the

beam. This is the principle of magnetic focusing, which is used to keep

electron beams from spreading. All the electrons trace out helical paths

of different radii but of the same pitch. Magnetic focusing cannot do

more than reproduce the original beam diameter, and the field must be

adjusted to produce this effect at the point desired.

6.7. Behavior of Electrons in Nontmiform Magnetic Fields. The

paths followed by electrons in nonuniform magnetic fields are extremely

complex. Little can be said about them except in certain simple limiting

cases. In all cases the magnitude of the velocity will he unchanged because

no energy is added to or taken from the electron when subjected to the influence

of a steady magnetic field alone. In contrast, the direction of the velocity

can experience very involved changes. The general form of the force

equation depends upon the components of field and velocity. An x

component of force results from a y component of field and a z component

of velocity and also from a z component of field and a y component of

velocity. Upon writing the components of force in terms of components

of acceleration the general differential equations for three-dimensional

rectangular components are

m d^x _ „ dz T> ^y\
~eW~^’'di~^‘dtj

~
"di "^

f

~
^dt j

(6.69)
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When the components of field vary from point to point, these equa-
tions are practically insoluble.

In electron-optics work, circular cylindrical coordinates r, 6
,
and z

are used where the coordinates specify radial distance, angle, and axial

distance, respectively. Here the equations have the same general form
as Eqs. (6.69) but are quite different in their specific appearance. They
are

11

1 'm
m fl d (r^dd\
e Lr dt V dt)\

m r d'^z

e \_dt^

n dz „ r de

=

= Br

dr

dt

r dd

Br
dt

dt dt

(6.70)

where the terms in the brackets on the left-hand side of the equations are

the components of acceleration in the r, 8
,
and z directions, respectively.

Example: It is a known property that low-velocity electrons in a strong

magnetic field will describe a tightly coiled spiral path which wraps itself around
one of the flux lines and will thus follow the magnetic field. This property will

be proved in the case of the magnetic field around a long, straight wire carrying

current.

In this case there is only a 6 component of field of magnitude where 1 is

the wire current. The r and z components of field are zero. For this condition,

neglecting constants, Eqs. (6.70) become

^
/My _idz

^ \dt ) r dt
(6.71)

11 o (6.72)

d^z _ I dr

dt^ T dt
(6.73)

These equations cannot be solved exactly, but the nature of the path can be

closely determined by some judicious approximations and observations. Inte-

grating Eq. (6.73) with respect to time,

dz

dt
-I In (6.74)

where ro is a constant of integration. Integrating Eq. (6.72)
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where Cs is a constant of integration. Substituting Eqs. (6.74) and (6.75) into

Eq. (6.71),

1

r [
-I In (6.76)

This expression would be difficult to integrate exactly, but the form of the varia-

tion in r can be determined. It is seen that there is a value of r for which the

acceleration is zero and that for values of r slightly less than this the acceleration

is positive, while for values of r slightly greater than this the acceleration is

negative. This means that, if the initial r component of velocity is small, the

electron will oscillate about the value of r for

which the acceleration is zero. Hence the

expression for the r component of position is of

the form

r = ri — a sin Id (6.77)

With this variation of r the z component of

velocity is also seen to be periodic of small varia-

tion from Eq. (6.74), and hence z oscillates

about its original value. Similarly the 6 com-

ponent of velocity is periodic and of small varia-

dd
tion from Eq. (6.75) so that the value of is a

constant with a superimposed periodic variation.

The net result of these component displace-

ments is that the electron will spiral around a

flux line in some fashion, keeping a constant

average value of r and z, and progress in the Q

direction with a constant average velocity as

shown in Fig. 6.7. Use of this property is made
in television pickup tubes of the Orthicon type.’

6.8. Combined Electric and Magnetic

Fields. When an electron is subjected to

the combined action of both electric and
magnetic fields, the paths tend to become

quite complex. Some simple cases can be studied, however.

When an electron starts from rest under the influence of parallel

electric and magnetic fields, the electron moves in the direction of the

electric field and is unaffected by the magnetic field. The path in this

case is a straight line, and the electron behaves as though the magnetic

field did not exist.

If an electron with a given velocity is injected into a region containing

electric and magnetic fields at right angles to each other and each at right

’ Rose, A., and H. Iams, Television Pickup Tubes Using Low-velocity Electron

Beam Scanning, Proc. I.R.E., vol. 27, pp. 547-555, September, 1939.

velocity electron about a mag-

netic flux line. In the absence

of strong electric fields, low-

velocity electrons will spiral

about magnetic flux lines.
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angles to the initial velocity, then there is a certain ratio of electric- to

magnetic-field strength for which the electron is not deflected in its path.

This occurs when the force due to the electric field is equal and opposite

to that produced by the magnetic field. For this condition

P

^
= 5.93 X 10® VFo = meters per sec (6.78)

where v is the original velocity and Fo the potential that produced it.

As long as the above relation holds, the electron moves in a straight line.

If any of the quantities involved is changed, the electron will be deflected

from the straight-line path.

If an electron starts from rest in the presence of uniform electric and
magnetic fields that are mutually perpendicular, it first experiences a

force in the direction of the electric field and is unaffected by the magnetic
field because of the low velocity. As it acquires velocity, it is deflected

sidewise by the magnetic field. This action turns it around and brings

it to rest at a point corresponding to its original position but displaced

to one side. If the electron is then free to move, the action is repeated

and the resulting path is a cycloid. The cycloidal nature of the path can
be seen by considering that, if the magnetic field were moving in a direc-

tion mutually perpendicular to the electric field and to itself at a velocity

given by Eq. (6.78), then to an observer moving with the magnetic field

the effects of the two fields would cancel as far as forces parallel to the

electric field were concerned. To this same observer the electron would
behave as though it were injected into a magnetic field alone with a

velocity given by Eq. (6.78) in a direction opposite to that of the observ-

er’s motion, and the resulting path would be a circle to this observer. To
someone standing still relative to the fields the motion would be a circular

motion combined with a translational motion, which in this case because

of the equality of the velocity components gives rise to a cycloidal path.

For the relative position of the fields shown in Fig. 6.8, where B is in

the negative z direction, the differential equations of motion are

and

d'^y _ e dV _ Be dx

dt^ m dy m dt
(6.79)

d^x _ Be dy

dt"^ m dt
(6.80)

These equations are more simply written in the form

y = {a — tax)

X ~ toy

(6.81)

(6.82)
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where the dots indicate derivatives with respect to time and a = —^m ay

and “ = The initial conditions are that, when t is zero, y, x, y, and

± are also zero.

Integrating Eq. (6.82) with respect to time,

X = o>y (6.83)

Fig. 6.8.—The cycloidal path resulting when an electron is

liberated at zero velocity in crossed uniform electric and mag-
netic fields. The electron progresses in the positive x direction

when the gradient of the electric field is in the positive y direc-

tion and the magnetic field is in the negative z direction.

since, when t equals zero, x and y are also zero. When this value of x is

substituted in Eq. (6.81), there results

y = a — w^y (6.84)

This can be solved either by standard methods or by the operational

calculus to give

2/ = (1 — cos ut) (6.85)

and the corresponding expression for x is from an integration of Eq. (6.83),

X — ^ {wt — sin o)t) (6.86)

The last two equations above give the motion of the electron para-

metrically in terms of t. The motion is seen to consist of a uniform trans-

lation in the x direction with a superimposed circular motion.
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The maximum displacement in the y direction is

^-11 dy
2/„ = -, = 1.138 X

Ct>

10-11
B̂2

(6.87)

The displacement in the x direction corresponding to one cycle of the

motion is found by substituting the value of time that restores the value

of y to zero. This occurs for oit equal to 2ir so that

xo = Ttym (6 .88 )

which is also to be expected from the ratio of the circumference to the

radius of the generating circle that produces the cycloidal motion.

When an electron is injected into a region with uniform electric and
magnetic fields at right angles to each other but with a finite initial

velocity normal to the magnetic field, it will follow a trochoidal path in a

plane normal to the magnetic field. Geometrically the trochoidal path is

generated by a point on the rim of a wheel that is rolling along a straight

line on a smaller diameter hub. The cycloid is the special case of the

trochoid for which the diameters of the rolling and tracing circles are

the same.

The differential equations for the case of an initial velocitj’- are the

same as for the cycloidal case [Eqs. (6.81) and (6.82)]; but in this case

the initial conditions are different, and the form of the solution is hence

different. When t is zero, y and x are zero, but y ~ Voy, x = vo*. Hence
the first integration of Eq. (6.83) for the configuration of Fig. 6.8 gives

X = wy — vt)^ (6.89)

When this substitution is made in Eq. (6.81) and this expression inte-

grated twice to obtain the value for y, there results

V =
(a — «t;oi)(l — cos w<)

,
.

5
1 sin m

03
(6.90)

Substituting this in Eq. (6.89) and integrating to get the corresponding

expression for x,

X = — Jf- — cos w<) — —
CO CO

CODoi
sin cof (6.91)

The two equations (6.90) and (6.91) determine completely the nature

of the trochoidal path. The corresponding expressions for the com-
ponents of velocity are

y = Voy cos cof sm co< (6.92)
0>

• ^1 * J ® /n rvO\X = —h sm wi cos coj (6.93)
W CO

\ /
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From the velocity-component equations it is seen that there is a constant

X component of velocity of magnitude This corresponds to the

translational velocity of the circles that generate the trochoidal motion.

To achieve this translational velocity the radius of the rolling circle must

be since the angular velocity of the velocity vectors is w. The initial
CO‘‘

conditions also require that the instantaneous velocity of rotation of a

point on the tracing circle be equal to the vector difference of the initial

Fig. 6.9.—Trochoidal electron path resulting when an electron is

injected with a finite velocity into a region of uniform crossed electric

and magnetic fields. The electron wiU progress in the positive x

direction when the gradient of the electric potential is in the positive

y direction and the magnetic field is in the negative z direction.

velocity and the translational velocity. This relation is shown by the

vector diagram of Fig. 6.9.

If the scale of the velocity-vector diagram be taken the same as that

of the diagram showing the generating circles and the resulting path,

the electron path can be constructed graphically in quite a simple manner.

It will be observed that the terms in Eqs. (6.90) and (6.91) giving the

instantaneous displacements are the same as those in Eqs. (6.92) and

(6.93) for the component velocities except for the o factors. The center

of the generating circles in the initial position is given by rotating the

rotational vector Vr, 90 deg in a clockwise direction. The radius of

the tracing circle is then given by the length of the rotational vector

Vr, and the radius of the rolling circle is given by the length of the vector
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vt, the translational velocity. With the rolling and tracing circles and
their initial position given, the path is readily constructed geometrically

for any case. This construction is also illustrated in Fig. 6.9.

6.9. Approximate Numerical and Graphical Methods for Determining
Electron Paths. The number of cases in which the motion of an electron

under the influence of applied fields can be determined exactly is actually

quite small and restricted to very simple cases. Hence the need exists

for methods that will give an approximate answer when the fields are

more complex, as they usually are.

Method of Joined Circular Segments. When an electron is moving
through a potential field, the instantaneous radius of curvature of its

path is determined by its velocity and by the sidewise force that is

exerted on it by the field. ^ The sidewise force exerted on the electron

depends upon the component of the gradient of potential normal to the

instantaneous direction. This component of the gradient will be desig-

nated by VnV. The actual sidewise force is eVnF. This force must
equal the centrifugal force of the electron in its instantaneous circular

• TTIV ^

motion, and this is given by -g-? where R is the instantaneous radius of
tc

curvature. Equating these two forces and substituting 2eV for mv^,

Irom which

2eV
R

= eVnF (6.94)

2F
(6.95)

This is the instantaneous radius of curvature of the electron path at

nny point in the field, as shown in Fig. 6.10, on the assumption that the

electron started from rest at a point of zero potential. It will be observed

that the radius of curvature is independent of the mass and charge of the

electron and also of the scale of potential, checking the conclusions drawn
from the differential equations of the electron path.

By calculating the radius of curvature at a point in the field by Eq.

(6.95), drawing a small segment of arc, and then applying this process

repeatedly a good approximation to the actual curve traced by the elec-

tron is obtained. The potential at any point in the field is easily obtained,

and the normal component of gradient is the projection of the vector

giving the magnitude and direction of the greatest variation of potential

upon a line normal to the electron’s path. The method is subject to

cumulative error unless the average potential and average normal
1 Salinger, H., Tracing Electron Paths in Electric Fields, Electronics, vol. 10,

pp. 50-54, October, 1937.
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gradient over each segment of arc is used. If the segment of arc drawn

at each step is kept a constant fraction of the radius of curvature, say

one-twentieth, the error will not be great. It is also possible to derive

simple expressions for the position of the next step in terms of the dis-

placement and change of angle when the radius of curvature is so large

that the arc segment is not easily drawn, as is frequently the case.

Fig. 6.10.—The instantaneous radius of cur-

vature of an electron path in a region of

varying potential. The instantaneous radius

of curvature is equal to twice the potential at

the point in question divided by the compo-

nent of the gradient of potential perpendic-

ular to the path.

Several ingenious gadgets have been devised that make the applica-

tion of the principle outlined above purely a mechanical one.^'^ These
make use of a double probe in a current-flow model that has been set up
to give the electric field involved. The double probe picks up a voltage

proportional to the component of gradient in the direction of its align-

ment, and the average potential of the probes gives the potential at the

point. The probe is connected to a small cart attached to a pantograph.

The cart is steered in such a way that the instantaneous curvature of

path which it is tracing is determined by the relation Eq. (6.95). Adjust-
I Gabor, D., Mechanical Tracer for Electron Trajectories, Nature, voi. 139, p. 373,

February, 1937.

^ L.angmuir, D., Automatic Plotting of Electron Trajectories, Nature, vol. 139,

pp. 1066-1067, June 19, 1937.
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ments on the steering are made as continuously as possible from the

information picked up by the double probe as it traces out the path.

These devices are capable of considerable accuracy.

Use of Elastic-membrane Model of Potential to Determine Electron

Paths. In a previous chapter it was pointed out that the elevation of the

surface of a stretched elastic membrane approximated closely the solu-

tion of Laplace’s equation when the deformations were small. Actually

such a model of potential fields is of more use in determining electron

paths than in solving potential problems. This is because it is found

that the laws governing the motion of a small sphere rolling on the mem-
brane are strictly analogous to the laws governing the motion of an elec-

tron in an electric field, and hence the path of such a sphere is a good
approximation of the path of an electron in the corresponding electric

field.

Except for frictional effects the kinetic energy picked up by a small

sphere, say a ball bearing, is equal to the potential energy it has

lost owing to its change in elevation. This is exactly what happens to

the electron. In the case of the mechanical model, however, the kinetic

energy is divided between translational and rotational components. As
long as the sphere rolls with a given circle of contact, the proportionality

between these two components of the kinetic energy is constant and the

path of the sphere will be similar to that of the electron. Although it is

difficult to prove mathematically, it can readily be shown by experiments

with a large sphere on a hard, curved surface that the sphere will turn

relatively sharp corners and finish with the same rolling circle of contact

as it had initially. The sphere can actually change its direction by about

300 deg without losing its original circle of rolling contact. If the angle

is more than 300 deg, the turn introduces a spinning action that spoils

the energy relations indicated above. Actually, it is the radius of curva-

ture of the path rather than the angle that matters. Roughly, the

limiting radius of the path is five times the radius of the sphere.

Application of the Principle of Least Action. In many electron-

trajectory problems use can be made of the principle of least action.

This principle states that in a potential field of the type encountered in

vacuum-tube problems a particle will move between two points by such

a path that the action, defined as the integral of momentum with distance,

will have a minimum value. This means that, if the paths are known and
conditions are such that only one electron goes through each point, con-

tours of constant action calculated from the defining integral will be

everywhere perpendicular to the electron paths. Hence, if the electron

paths aie known, contours of constant action can be found that give the

path of all electrons. If the electron paths are not known, as is generally
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the case, it is still possible to calculate the contours of constant action by
methods involving successive approximation.

This is done by assuming a path of the electrons that is known to be

close to the true path and then calculating the action along the assumed

path. The process is easy, for the square root of potential can be sub-

stituted for velocity so that action is given by

A = j
mv ds = \/2em

j \/V ds (6.96)

When the action along the assumed paths has been calculated, a first

approximation to the action function has been obtained and correspond-

ing contours of constant action can be drawn. If now curves be drawn
normal to these contours of constant action, these will give a more accurate

representation of the electron paths than those originally assumed. The
second approximation to the action function can then be calculated along

the improved paths and the process repeated to give any desired degree

of accuracy. This is seen to be a perturbation process between action

and potential.

In actual application in cases where the electron deflections are slight

the first step of the process gives results that are sufficiently accurate.*'^

The errors involved compensate because of the fact that, when the

assumed path is shorter than the actual path, the potentials involved are

smaller. In the determination of electron paths in tubes the assumption

of straight-line paths initially is usually sufficiently good for cases in

which the electron deflections are slight. The method is not accurate in

the vicinity of any line of symmetry.

1 Lange, H., Current Divi.sion in Triodes and Its Significance in the Determination

of Contact Potential, Zeit. fiir Hochfrequem., vol. 31, pp. 105-109, 133-140, 191-196,

1928.

* Spangenbebg, Karl, Current Division in Plane-electrode Triodes, Proc. I .R.E.,

vol. 28, pp. 226-236, May, 1940.



CHAPTER 7

ELECTROSTATIC FIELD OF A TRIODE

7.1. Method of Solution. The electrostatic fields within tubes are

most readily obtained by means of the conformal transformations given

in a previous chapter. These transformations give potential configura-

tions that represent closely the fields encountered in tubes, whose elec-

trode configuration is somewhat idealized. The cathode is assumed to be
a plane or cylindrical surface, which it rarely is in practice. The elec-

trodes are assumed to be infinite in length and breadth so that tube con-

stants per unit area evaluated on this assumption do not include end
effects.

It should be pointed out that, since the solutions obtained are not

mathematically exact, various degrees of approximation are possible.

In general, the more accurate the solution, the more complex and cum-
bersome the expressions obtained. Where extreme accuracy is desired,

the method of conformal transformations is used as a starting point for

series representations. Imaging or series procedures may also be used,

but these have not proved of great value as a general method.

In spite of the above-mentioned departures from exactness the for-

mulas obtained by the application of the method of conformal trans-

formations meet the accuracy requirements of modern engineering.

7.2. Electrostatic Field of a Plane-electrode Low-mu Triode. The
field of a low-mu triode may be determined by a method outlined by
Maxwell. 1 Vacuum tubes had not yet been invented in Maxwell’s time,

but his analysis of the electrostatic field about a shielding screen of parallel

wires is readily applied to the problem of the triode field.

The field analysis is based upon the Z-plane configuration shown in

Fig. 7.1a. This consists of two line charges located within a large cylin-

der. One line charge is located at the origin and has a linear-charge

density of -\-qc. The other is located at the point (1,0) and has a linear-

charge density of -\-qg. The field at great distances from these lines is

nearly circular and may be fitted to that of a circular electrode whose
radius is large compared with the distance between the line charges. It

may be seen that the Z-plane representation represents a simple tube

* Maxwell, J. Clerk, “Electricity and Magnetism,” 3d ed., Vol. I, Sec. 203,

Cambridge, London, 1904.
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with a cathode wire at the origin and a single grid wire at the point (1,0)

surrounded by a circular plate. This simple tube has electrical charac-

teristics the same as those of the plane-electrode and cylindrical-electrode

structures that may be derived from it.

To obtain the field within the plane-electrode tube it is necessary

to obtain an expression for the field in the Z plane of Fig. 7.1a and then

transform this expression by the logarithmic transformation to fit that

of the electrode configuration of Fig. 7.16, which closely represents

the structure of a practical tube. The potential at any point in the Z

Z PLANE WPLANE
Pig. 7.1.—Elementary triode and equivalent plane-electrode triode.

plane is given by the sum of the potentials resulting from each of the line

charges. Polar coordinates will be used in the Z-plane relations.

The potential at any point (p,0) is given by

where pi is the distance from the point in question to the grid-wire charge

at the point (1,0) and C is a constant that adjusts the level of potential,

and In will be used hereafter to denote the natural logarithm. Making
use of the law of cosines,

F. = - In (p2 -b 1 - 2p cos 0) - In p2 -f C (7.2)
471X0 47rto

The logarithmic transformation with a suitable coefficient will be

used. The coefficient is selected so that in the plane-electrode structure

of Fig. 7. 16 the grid wires are spaced a distance a.
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W = ~lnZ
,

The component parts of this equation are

2iru
u

IM = ^ In p

ad

or

e =

p =

«

%rv

a

(7.3)

(7.4)

(7.5)

in which m and v are the real and imaginary parts of W, respectively, and p

and 6 are the polar coordinates in the Z plane. Making the above sub-

stitutions in Eq. (7.2),

(

4iru 2»u n \ 4irii

-f 1 - 2e~^ cos^ In + C (7.6)
a f 4irEo

The above expression gives very closely the potential inside of a plane

triode. Examination of its form will show that the equipotential lines in

the vicinity of the origin and the points (0, + na) are circles, one set of

which may be fitted to the grid wires. For large positive and negative

values of u the equipotentials are almost planes that may be fitted to the

plate and cathode planes, respectively. The general potential expression

of Eq. (7.6) gives potential in terms of the charges and the constant

C. For application it is also necessary to evaluate these constants in

terms of the electrode potentials.

To evaluate the constants of Eq. (7.6) let the plate plane be located

at M = -^dgp where dgp ^ a. When this relation between dgp and a

holds, the second and third terms of the argument of the first logarithm

will be less than 1 per cent of the first term and may thus be neglected.

Making the substitution u = +dgp into Eq. (7.6),

Vp
dppQg dgpQc

I ^
oco aco

(7.7)

Let the cathode plane be located at —deg, where deg ^ a. In this

case the first and third terms of the first logarithm argument will be small

compared with 1 so that the first term is substantially zero. Making
the substitution v, = —deg into Eq. (7.6),

= 0 -b + C (7.8)
/7t*_ ' '

Let the grid wires be located at the points (0, + na) and be of radius

Tg and potential Vg. If r„ ^ the potentials at points (0,rj) and (re,0)
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differ by only a few per cent. Into Eq. (7.6) substitute the values m = 0,

V = Tg.

Vg = (7.9)

If the cathode potential is set at a reference level of potential of

zero, then

C = - dcgQe

ato
(7.10)

from which Eqs. (7.7) and (7.9) become

and

(7.11)

(7.12)

It is already possible to obtain the amplification factor of the tube
from Eqs. (7.11) and (7.12). The amplification factor of a tube is the

ratio of the plate voltage to the negative of grid voltage for a condition

of cutoff. 1 In terms of the electric field within the tube, cutoff exists

when the gradient of potential at the cathode is zero, which in turn

occurs when the cathode charge is zero. If Qc is made zero in the above
two equations and the ratio taken as indicated.

M = (7.13)

If Eqs. (7.11) and (7.12) are solved for qc and qg in terms of Vp and Vg

and the expressions simplified by use of Eq. (7.13),

eoa(Vp + /iiVg)

and

qc =

qa

(,dgp “b deg "b P'dcg)

Eoa/i[(d„y, “b dc„) degZJ
dgpidgp "b d>cg "b ^dcff)

(7.14a)

(7.146)

The expression for n of Eq. (7.13) given above is the simplest expres-

sion that adequately gives the amplification factor of a plane-electrode

triode. Examination of this expression shows that the amplification

factor increases as the grid-plate distance increases. This is in accord

* For a more general definition of the amplification factor see the chapter on

Triode Characteristics.
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with physical reasoning since the more remote the plate is the more
influence the grid has. Amplification factor is also increased if the grid-

wire spacing is decreased since this makes the grid more effective in

controlling the off-cathode gradient of potential. Amplification is also

increased if the grid-wire radius is increased, as would be expected. It

mil be observed that according to Eq. (7.13) the amplification factor is

independent 'of the cathode-grid distance. This is approximately true

as long as the approximations made in deriving the expression are not

exceeded, i.e., as long as the cathode-grid distance is not less than the

grid-wire spacing. This may be understood by considering that the

cathode charge is zero at cutoff. Thus for a cutoff condition all the flux

lines originating on the grid terminate on the plate, and though some of

them start toward the cathode they turn and end on the plate so that

as long as the cathode is not too close to the grid the field pattern is not

disturbed and the amplification factor is independent of cathode-grid

distance. This interpretation will be discussed further in connection

with equipotential contours and potential-profhe plots.

Contour Re-presentation of Potential Field. The form of the potential

field resulting from the equations developed above may be best studied

by examining the plots of the equipotential lines. A group of these

equipotential contour plots of a typical plane triode are shown in Fig.

7.2 for various potentials. The contours of Fig. 7.2a show the field

configuration for the case of the grid biased beyond cutoff. It will be

observed that the gradient of potential at the cathode is negative. In

the line of the grids the potential is increasingly negative in moving from

cathode to grid. Along this same line the potential is increasingly posi-

tive in moving from grid to plate. Along the line from cathode to plate

midway between grid wires the potential is at first negative and then

positive. The dotted lines shown represent the boundary between the

various types of equipotential lines. In the area within the dotted lines

including the grid wires the equipotential lines aie closed curves about

the grid wires. In the other areas the equipotential lines run continu-

ously from one section of the triode to adjoining sections, always on one

side of the grid plane.

The other equipotential plots may be interpreted in a similar fashion.

It will be observed that all the plots have some features in common.
The equipotential lines close to the grid wires are nearly circular in all

cases. The equipotential lines close to the plate and cathode are nearly

straight lines. The equipotential lines may be divided into two groups,

those which completely enclose the grid and those which run along from

section to section. It will be observed that in some cases the equipo-

tential lines of the second type listed above cross the grid plane between
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(d) fe)

Fig. 7.2.—Equipotential contours in the plane-electrode triode: (a) grid beyond

cutofi potential; (6) grid at cutoff potential; (c) grid negative at half cutoff

value; (d) grid at zero potential; (e) grid positive.
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PLATE

^100

95

grid wires but always pass the grid wires on the same side in moving
from section to section. This behavior is observed in the case of the

10 per cent contour for Vg = 0. In all the cases shown the equipotentials

are bowed toward the cathode through the grid plane. Only if the grid

is more positive than the potential that gives a uniform positive potential

gradient from plate to grid will the contours

that cross the grid plane be bowed toward

the plate. The equipotential plots shown in

Fig. 7.2 were obtained with an electrolytic-

trough model of potential. The equipoten-

tials calculated from Eq. (7.6) would be

almost the same in shape. For comparison

a contour plot calculated by Eq. (7.6) is

shown in Fig. 7.3. This plot represents an

extreme condition of potential and dimen-

sions. The grid-wire radius is Mo of the

grid-mre spacing. It will be observed that

the grid-wire contour is not quite circular.

It is of proper width in the plane of the grid

wires but is longer in the direction at right

angles to this. Because of this distortion

of shape, which increases as the ratio of grid-

wire diameter to grid-wire spacing increases,

the formula for the amplification factor of

Eq. (7.13) becomes inaccurate when the

above ratio, known as the screeningfraction,

becomes greater than Mo- In the following

section a more accurate formula is given,

which is good up to screening fractions of M-
Profile Representation of Potential Field.

The potential fields of a low-mu triode may
also be studied by reference to profile repre-

sentations of potential. These curves show
how the potential varies along certain lines

within the tube. The most common profile

representations are shown along lines running from cathode to plate.

In particular, two profiles are particularly informative. These are the

profiles through the grid wire in a line running from cathode to plate at

right angles to each of the latter, and m a line midway between grid

wires. Such profiles are shown in Fig. 7.4.

In Fig. 7.4a are shown the profiles for a condition of a tube biased

beyond cutoff. Here it is seen that the gradient of potential at the

90
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Fig. 7.3.—Equipotential con-

tours in a plane-electrode triode

with equal positive grid and

plate potentials.
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cathode is negative, thus making it impossible for electrons to leave the

cathode. This is true because most electrons that do succeed in getting

away because of some initial velocity are driven back by the negative

gradient of potential. In the line of the grids the potential goes strongly

negative until it reaches the negative grid potential. Beyond the grid

the gradient is positive. In the line between the grid wires the potential

is pulled negative at first by the presence of the negative grid, and it

-40 -20 0 + 20 +40 +60
Distance from grid, mils

Fig. 7.4a.—Potential profiles of a plane-electrode triode, with

grid at twice the cutoff value of potential.

then becomes positive. It will be observed that the potential profiles

are straight lines near the cathode and also near the plate. Further, it

is only in the vicinity of the grid that there is a great variation in the

value of potential in moving parallel to the cathode and plate planes.

In Fig. 7.46 are shown the potential profiles for the case of the grid

biased to approximately cutoff. Here it is seen that the gradient at the

cathode is zero. In the line of the grid wires the potential first goes

negative to the value of grid potential and then positive. In the line

between the grid wires the potential becomes increasingly positive in

moving from cathode to plate. In this representation the amplification
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factor of the tube is given by the ratio of positive plate to negative grid

potential. It is evident from these profiles why the amplification factor

is independent of the cathode-grid distance provided that this is not too

small. Up to a distance of about half the cathode-grid spacing the poten-

tial on both profiles is substantially zero for the particular dimensions

shown. Hence in this particular case a cathode at zero potential

Fig. 7.46.—Potential profiles of a plane-electrode triode, with

grid at the cutoff value of potential.

could be put at any distance greater than half the cathode-grid distance

shown without changing the shape or position of the potential profiles

to the right of the profiles. The curves of Fig. 7.46 show the potential

conditions that will just allow current to flow.

In Fig. 7.4c are shown profiles for a negative grid potential greater

than that which gives the cutoff condition. Here the gradient of poten-
tial at the cathode is positive even though the grid is negative. The
curves shown represent the potentials that would exist in the absence

of current, say in a cold tube. Although this condition of potential

would permit current to flow, the actual flow would depress the profiles

in the vicinity of the cathode, as will be described in a later chapter.

In Fig. 7Ad the grid is at zero potential, and it is now possible for elec-

trons to reach the grid, which has not previously been possible for nega-
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Fig. 7.4c.—Potential profiles in a plane-electrode triode, with grid

negative at half the cutoff value of potential, which is the usual

Class A operating condition.

Dislance from grid, mils

Fig. 7.4d.—Potential profiles in a plane-electrode triode, with

grid at zero potential.
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tive grid potentials. In Fig. 7.4c is shown an extreme condition of

positive grid potential. Here the grid is as positive as the plate. This

condition may be reached at the peak of the cycle in Class C power

amphfiers.

In all cases the profiles are straight lines in the vicinity of the cathode

and plate. For a condition of grid potential more negative than that

-40 -20 0 +20 +40 +60
Distance from grid, mils

Fig. 7.4e,—Potential profiles in a plane-electrode triode, with

grid and plate at the same positive potential. This condition

may exist at the peak of the current pulse in a Class C amphfier.

of cutoff the slope of the straight-line portion at the cathode is negative.

Above cutoff it is positive. The general form of the profiles corresponds

to that which one would expect from a deformed elastic membrane.

In each case the grid pushes a hole in what Would otherwise be a straight-

line profile from cathode to plate. Curvature requirements are met here.

It wUl be observed that when one profile is concave upward the other is

concave downward.

7.3. Electrostatic Field of a Low-mu Cylindrical-electrode Triode.

The same fundamental tube configuration as was used for the plane-

electrode triode in Fig. 7. la can be used to develop the cylindrical-electrode

triode. In this case, however, the transformation equation takes the

form

W = (7.15)

to give the electrode arrangement of a cylindrical triode with N grid

wires as shown in Fig. 7.56. Let the coordinates in the Z plane be /t
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and d and in the W plane s and <^; let Sg be the radius of the grid-wire

circle. Then the components of the transformation equation in polar

coordinates are

Fig. 7.5.—Elementary triode and equivalent cylindrical-electrode triode.

As before, the equation for the potential at any point in the Z plane

is

7. = - /?- In (p2 -f 1 - 2p cos e) - ^\n + C (7.2)
47rco 47rEo

Substitution of the component transformation equations gives

.
2N

7. = - In
4ireo

+ 1-2 cos N<j>

-l^lnf^Y
4x80 \Sg/

+ C (7.18)

This gives the equation of a potential field in which the contours are

circles close to the origin and at great distances from the origin. The

contours are also circles about the points where k

assumes integral values from zero to N.
The three sets of circles can be fitted to the cathode, plate, and grid
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wires, respectively. To fit the cathode to one of the circles close to

and about the origin let s = Sc Sg. Then

F, = 0 -^ In + C (7.19)
471X0 \Sg/

To fit the large circles centered at the origin to the plate electrode

let s = Sp^ Sg. Then Eq. (7.18) becomes

To fit one of the small circles about the point (sp,0) to one of the

It
grid wires let s = s„ and = — > where Rg is the grid-wire radius. Then

Sg

The three equations (7.19), (7.20), and (7.21) express the elec-

trode potentials in terms of the cathode and grid-wire charges. For

the TT-plane representation the charges are those of one pie-shaped

section of angle

As before, the amplification factor may be found by setting the

cathode charge and potential zero and taking the ratio of plate to nega-

tive grid potential. From this operation

The way in which the amplification factor of a cylindrical triode varies

with the various electrode dimensions can be seen by inspection of Eq.

(7.22) . As the number of grid wires is increased, the amplification factor

increases since N appears as a linear factor in the numerator and as a

logarithmic factor in the denominator. This is to be expected from

physical reasoning since an increase in the number of grid wires increases

the effectiveness of the grid in controlling the off-cathode gradient and

hence in controlling the current. The amplification factor increases as

the plate radius is increased, also to be expected since this makes the

plate less effective in controlling the current. The amplification factor

increases as the radius of the grid-wire cylinder decreases since the factor

in the numerator is more effective than that in the denominator. The
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amplification factor also increases as the grid-wire radius is increased.

Because of the way in which the factors combine, high amplification

factors may be obtained more readily with cylindrical-electrode structures

than with plane-electrode structures.

Fig. 7.6.—Equipotential .jontours in the cylindrical-electrode triode:

(a) grid beyond cutoff potential; <b) grid at cutoff potential; (c)

grid negative but above cutoff potential; (d) grid at zero potential;

(e) grid at “natural” potential; (/) grid at positive plate potential.

As in the case of the parallel-electrode tube it is desirable to express

the charges in terms of the electrode potentials. This is done by setting

the cathode potential equal to zero and solving for Qc and g,.

/> —
.

2ir£o V, In
!p\ Vp

J N In (2 sin

N
1 + ;^

i

NRX

2ir£o Fp In

'(ii
1
+ Fp ln|

fe)

N ln|{
^p \ 1 (ci ' NRff\

) In 1 2 sin — I

\Sc/ \ 2sp /J

(7.23)

(7.24)
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Potential Contours of a Cylindrical Triode. Contour representations

of potential are shown in Fig. 7.6 for various relative electrode potentials.

The contours of the cylindrical triode exhibit the same general charac-

teristics as those of the plane-electrode triode. In each case the con-

tours near any electrode have the same shape as the electrode. This

means that the contours about the cathode and just inside the plate are

RctoKoiI distance, mils

Fig. 7.7a.—Potential profiles in a cylindrical triode,

with grid at twice the cutoff value of potential.

circles concentric about the center of the tube. There are also circles

about each of the grid wires. The circles inside the plate have a non-

linear spacing in the case of the cylindrical triode. This is better under-

stood by reference to the potential profiles.

Potential Profiles of a Cylindrical Triode. Reference to the potential

profiles of Fig. 7.7 reveals several striking differences between the plane-

electrode and cylindrical-electrode cases. Although the profiles have the
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same general trend, they are characterized by different curvature char-

acteristics. In the plane-electrode case the profiles through and between

the grid wires coincided near the cathode and plate and were nearly

straight lines there. In the case of the cylindrical triode they do again

coincide but are curved instead of straight. The coincident profiles

near the plate tend to be logarithmic in shape, as would be the case in a

with grid at the cutoff value of potential.

cylindrical diode. The same is true for the profiles near the cathode,

though in the particular case of the relatively high-mu tube shown, the

region in which the profiles coincide near the cathode is small because of

the short cathode-grid distance.

Below cutoff in Fig. 7.7a the cathode gradient of potential is negative.

At cutoff as in Fig. 7.7b it is zero, and it can again be seen that this

condition of zero cathode gradient is independent of the grid-cathode
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distance provided that the distance is not too small. In the particular

figure shown any larger cathode-grid distance would not change the

amplification factor of the tube. The remaining figures show the profiles

for a grid negative, but above cutoff in Fig. 7.7c, for a grid at zero poten-

tial in Fig. 7.7d, and for an extreme condition of positive grid potential

in Fig. 7.7e.

Radial distance, mils

Pig. 7.7c.—Potential profiles in a cylindrical triode,

with grid at half the cutoff value of potential.

The curvature conditions that were noted in the case of the plane-

electrode triode are no longer valid in the case of the cylindrical triode.

It is no longer true that if one profile is concave upward the other is

concave downward. This follows from the fact that the Laplace equa-

tion for polar coordinates can no longer be interpreted so simply in

terms of curvatures. If the coordinates were changed so that the profiles

were plotted against the logarithm of r, then the curvature conditions
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that held for the plane-electrode case would be fulfilled. This follows

because with this change of variables the Laplace equation becomes iden-

tical with that for Cartesian coordinates. In Fig. 7.8 are shown the

potential profiles of Fig. 7.7a plotted with a logarithmic scale of radius.

It is seen that the profiles become straight lines in the vicinity of the

Radial distance, mils

Fig. 7.7d .—Potential profiles in a cylindrical triode,

with grid at zero potential.

cathode and plate and thus resemble the plane-triode profiles in this type

of plot.

7.4. Analysis of the High-mu Triode. Potential Contours and Profiles.

The method of Maxwell discussed in the previous sections has some

limitations that make the results inaccurate when the attempt is made

to apply them to a high-mu triode. In the previous analysis it was

assumed that the equipotentials about the grid line charge in the funda-

mental tube of the Z-plane representation were circles concentric about
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the line. This is very nearly true provided that the circles are not too

large. But if we examine the shape the grid wire in the Z plane must
have as determined by circles in Fig. 7.16 transformed back to the Z
plane, it is found that departures from small circles centered about the

point (1,0) are soon encountered as the grid-wire radius is increased.

Consider the grid wires of Fig. 7.16, and let the grid-wire radius be
increased from a small value to a fairly large value without changing the

other dimensions. This is equivalent to increasing the screening frac-

Roidial distance, mils

Fig. 7.7e.—Potential profiles in a cylindrical triode,

with grid and plate at equal positive potentials.

tion and increases the mu of the tube. As the grid-wire radii are increased,

the corresponding contours in the Z plane, which are at first small

circles with centers at the point (1,0), become larger curves that are nearly

circular in shape but that are shifted in position so that their centers are

not at the point (1,0) but to the right of this point. This applies as the

screening fraction is increased from 0.1 to 0.2. The progressive changes
in shape encountered are shown in Fig. 7.9. In the analysis indicated in

this section another line charge is introduced to take account of the shift

in position of the circular grid-potential contour. As the screening frac-
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tion is increased beyond 0.3, the transformed contour of the grid wire

loses its circular shape, becoming dented on one side, and the improved

analysis is no longer valid. The accuracy of the formulas developed can

be extended, however, so that they may be used for tubes having screen-

drical triode plotted with a logarithmic

scale of radius. On such a plot the

profiles are straight lines in the vicinity

of the cathode and plate. Also shown

is the graphical construction for deter-

mining the equivalent diode radius.

Fig. 7.9.—The shape of large transformed

grid wires in the Z-plane representation

of Fig. 7.1. The transformed grid wires

are nearly circular for screening fractions

as large as 0.2. Beyond this value, the

grid contour is noncircular and cannot

be represented by two line charges.

ing fractions as low as }4,
instead of merely Ko- The resulting expres-

sions are considered the most accurate simple expressions available.*'*

As before, use the plane-electrode transformation equations,

TIT U , IT Ol , I
tOd

I VoDQES, F. B., and F. R. Elder, Formulas for the Amplification Constant for

Three-element Tubes, Fhys. Rev., vol. 24, pp. 683-689, December, 1924.

* Dow, W. G., “Engineering Electronics,” pp. 24-53, Wiley, New York, 1937.
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which have the component transformation equations given by Eqs.

(7.4) and (7.5), p being ^-plane radius. Then the points a and b in Fig.

7.106 which have the coordinates (r„,0) and (— r^jO) respectively, trans-

form into the points a and /3, which in Fig. 7.10a have the coordinates
2irro _2irrff

(e “ ,0) and (e “ ,0). If the screening fraction is less than 0.16, the

transformed grid wire is nearly a circle through these two points. The

~v

Z PLANE
(a)

Fig. 7.10. —IT- and Z-plane representations of a high-mu

This is the basis of the analysis of Vodges and Elder.

radius of the grid wire in the Z plane is half the difference of the p com-

ponents of a and ^ and is given by

R = sinh (7.25)
a '

The location of the center of the grid-wire circle is given by the average

of the values of a and and is given by

2<ir7’

Pg = cosh (7.26)

It is now necessary to locate line charges so that this circle will be an
equipotential contour for all combinations of cathode, grid, and plate

potential.

In the analysis given for the low-mu triodes a single line charge was
placed within the circle at its center. When the analysis is extended so

that the circle is no longer small, this is not adequate. A line charge at

WPLANE
(b)

plane-electrode triode.
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the center of the circle will still give an equipotential contour that will

fit the circle if this charge is the only one present, which is not the case.

However, it is also possible to find another position within the circle such

that a line charge placed there together with a line charge at the origin

with an equal charge of opposite sign will give an equipotential contour on

the transformed grid-wire circle. ^ This follows from the well-known con-

figuration of potentials about a two-wire transmission line, which is

equivalent to these two line charges. Here the equipotential contours

are all circles, enclosing the charges, but with their centers successively

displaced.

If a line charge with a linear-charge density —Qc is placed at a point

(6,0) within the circle having its center at (pb,0), then the potential at any
point C on the circle due to it and to a linear charge with density

located at the origin is given by

Qc Pg^ ~b -j- 2pR cos

4irEo ^
_(ps — by — 2(p — b)R cos /'

(7.27)

where 4/ is the angle between the line joining C and (pp,0) and the axis.

It is required that this expression be independent of the angle It is

easily shown by substitution that if 6 has the value — this condition is
PQ

fulfilled. The two line charges with the above positions take care of the

charge on the cathode and part of the charge on the grid. If now a

charge of magnitude —qp be placed at the center of the transformed grid-

wire circle, it will be the source of flux lines that will extend in all directions,

becoming radial at great distances and terminating on a large plate circle.

Since any value of either qc or qp gives rise to an equipotential circle of

radius R with center at p„, this circle can be made the grid-wire circle

for any combination of charges and hence of potentials. With this

location of line charges it is easy to write the potential at any point in

the tube.

At any point (p,6) within the tube the potential is given by

F = — [ qc In p^ — gc In
(
p^

-I- — cos ^

— qp in (p^ -f-
pg‘‘ — 2ppg cos 0) -f cj (7.28)

in which the constant C is introduced to adjust the level of the potential.

In most tubes the cathode can be fitted to a small circle about the origin.

* This attack on the problem was first successfully appliedhy W. G. Dow.
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Let p = pc, d = 0; then

Vc = — Qc In Pc^ — Qc In ~ ~

If the cathode potential be taken as zero and the value of C then obtained

from Eq. (7.29) be substituted into Eq. (7.28), the expression for the

potential along the axis through the grid wire simplifies to

(7.30)

This has been obtained by setting d equal to zero and gives the potential

along the axis through the grid wire and also through the grid wires in

the plane- and cylindrical-electrode tubes, which may be derived from the

simple fundamental tube. To get the potential between the grid wires,

8 is set equal to tt, and the resulting expression is like Eq. (7.30) except

that the negative signs within the brackets become positive.

To find the potential of the grid wire let p = pg — R. Then making

use of the fact that = 1 -t- from the hyperbolic relations, and that

Pc is much smaller than pg or its reciprocal,

Similarly, to find the plate potential let p = pp, and make use of the fact

that Pc is much less than 1, which in turn is much less than pp. Then

Fp = ^^ ?cln (pcPp)^ -b ?p In
(^y ]

(7.32)

Equations (7.31) and (7.32) give the grid and plate potential in terms

of cathode and grid charges. In order to calculate potential profiles it is

desirable to know the charges in terms of the potentials. The above

equations are readily rearranged to give this form.

Qc = 2mo

qp = 2irto

In (pcpff)

In (i^pc) In (pcPff)

In {Rpc) In In (^pcPg')

(7.33)

(7.34)
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Amplification Factor of a High-mu Plane-electrode Triode. Again the

amplification factor is given by the ratio of plate to negative grid potential

for zero cathode charge. It will be noticed that the cathode charge is a

linear function of plate and grid potentials. In multielectrode tubes the

cathode charge is a linear function of all the electrode potentials. In

the case of a pentode, for instance, the cathode charge can be written

dc =
V,+ h + Zi + h

Ml M2 M3

D (7.35)

in which the various m’s indicate the relative effectiveness of the control

grid and the electrode in question in controlling the off-cathode potential

gradient. In the case of the triode considered here, the amplification

factor is

Substitution of values from Eqs. (7.3), (7.25), and (7.26) gives the ampli-

fication factor of a plane-electrode triode as

M = (7.37)

Making use of the definition of the screening fraction as the percentage

of the area in the grid-wire plane occupied by the grid wires, numerically

2,-

equal to and denoting the screening fraction by S, the expression for

the amplification factor can also be written

M =
— In cosh ttS

In coth irS
(7.38)

From this it is seen that the amplification factor depends upon only two

factors, the screening fraction and the ratio of grid-plate distance to

grid-wire spacing. The way in which the amplification factor varies

with these two factors is shown in Fig. 7.11. It is seen that the amplifica-

tion factor increases with the screening fraction and increases as the ratio

of grid-plate to grid-wire spacing increases. The upper solid curve

represents the limit of accuracy of the formula given by Eq. (7.38).
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If the screening fraction is small, then Eqs. (7.37) and (7.38) reduce

to the same expression that results from Eq. (7.13) so that these two dif-

Fig. 7.11.—Chart giving the amplification factor of a plane-electrode triode. The

solid curves were obtained from Eq. (7.38), which is accurate up to screening frac-

tions of 0.16. Dotted curves were obtained from Eq. (7.71), which is accurate up to

screening fractions of 0.4.

ferent expressions give substantially the same numerical result when the

screening fraction is less than Y\ q.

Amplification Factor of a High-mu Cylindrical Triode. When the

transformation relations of Eqs. (7.16) and (7.17) are applied to Eq. (7.36),
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the expression for the amplification factor of a cylindrical triode is

obtained. This development requires some intermediate justification

because for the cylindrical triode the transformation is that of Eq.

(7.15) instead of Eq. (7.3). It is readily shown, however, that expres-

sions similar to Eqs. (7.25) and (7.26) are obtained.

In the notation of Figs. 7. 10a and 7.56 the points a and ^ are given by

^1 -f and ^1
— • Usually the factor^ is much smaller than

1 so that series expansions for these expressions can be used to simplify the

development. Great care must be used in approximating these expres-

sions by terms of the series expansions; for the difference between the

expressions is desired, and two terms of the series are not sufficient. The

expressions for a and /3 are given very closely by exp

(^)-

(“) and exp

The series expansions for these exponential terms are identical

with those for the binomials given above for the first two terms and differ

only by a factor of 1 — ^ in the third term. Using the difference of the

exponential terms to get the radius of the transformed grid wire,

R = sinh—

^

(7.39)

and, using the average to get the location of the grid-wire center,

. NR,
Pg = cosh (7.40)

It is seen that Eqs. (7.39) and (7.40) are the exact counterparts of

Eqs. (7.25) and Eq. (7.26).

If now Eqs. (7.39), (7.40), and (7.15) are substituted into Eq. (7.36),

the expression for the amplification factor of the cylindrical triode results.

M = (7.41)

Since the screening fraction for the cylindrical triode is S
NRg
VSg

,
the
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above expression may be written

M =

The amplification factor is seen to depend upon three factors, the

screening fraction, the ratio of plate to grid-wire circle radii, and the

Values ftp

Fig. 7.12.—Amplification factor of a cylindrical triode.

number of grid wires. This is much more difficult to plot but may be

done by using a number of axes each corresponding to a different number
of grid wires. Such a plot of the amplification factor of the cylindrical

triode is shown in Fig. 7.12. It is seen that the amplification factor

increases with the screening fraction, with the number of grid wires, and

with the ratio The upper solid curve represents the limit of an
Sg

accuracy of about 2 per cent. The formulas of Vodges and Elder given

fe)-
In cosh ToS

In coth -kS
(7.42)
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in Eqs. (7.38) and (7.42) are considered the best practical formulas avaih

able for the amplification factor of triodes from the standpoint of sim^

plicity and accuracy.

. 7.6. The Equivalent Electrostatic Circuit of a Triode. Examination

of Eqs. (7.33) and (7.34) shows that these expressions have the form of

equations for a delta of capacities. A delta of capacities

such as could be used to represent a triode is shown in

Fig. 7.13. If the cathode is considered to be at zero

potential, then the relations between the potentials and

charges are

+
and

(7.43)

(7.44)Qp = (Fp — Vg)Cgp + VpCcp

which can be arranged into the simpler form

qp= - VgCgp + VpiCgp + Cgp) (7.45)

Equations (7.43) and (7.45) are the exact counter-

parts of Eqs. (7.33) and (7.34). Equation (7.43) can

be rearranged to give

of triode inter-

electrode capac-

ities.

-qo = C. (7.46)

from which, by comparison with Eq. (7.35), it is evident that the ampli-

fication factor is given by the ratio of the grid-cathode to plate-cathode

capacity.

(7.47)

This is physically reasonable since the ratio of these two capacities is a

measure of the extent to which the cathode is electrostatically shielded

from the plate by the grid. The capacities involved can be evaluated by

reference to Eqs. (7.33) and (7.34) if it is desired to know them in terms

of the geometry of the tube. The capacities in the above expressions are

in farads per unit length (meter) per grid-wire section of the elementary

tube in the Z plane of Fig. 7. 10. When the dimensions are transformed to

other planes, the capacities of the corresponding tubes result.

Reference to any tube manual wdll show that the numerical ratio of

the grid-cathode to grid-plate capacities listed there differs considerably

from the amplification factor of the tube. This is because the capacities

listed in the manual include the capacities of the leads and supports as

well as those of the parts of the tube in which the electrons are effective.

In most triodes the capacities between the leads and supports may be as
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large as those of the active portions of the tube or larger, the apparent

discrepancy being thus accounted for.

7.6. Equivalent-diode Spacing of a Triode. In the case of the plane-

electrode triode, examination of the potential profiles showed that the

profiles were straight lines in the vicinity of the cathode for all conditions

of potential. This means that the potential distribution in a triode as

seen from the cathode is the same as that in a diode. The cathode has

no data by which it can tell whether it is part of a diode or triode. It

was further shown in Eq. (7.14a) that the off-cathode gradient of potential

Y
depended upon an equivalent voltage, Vg -\ It would be expected,

A*

therefore, that for every triode there Avould exist an equivalent diode

which would have the same off-cathode gradient when the equivalent-

triode voltage is applied to its plate. To find such an equivalent diode

it is necessary only to find the equivalent-diode spacing.

The equivalent-diode spacing of any triode may be found graphically

by extending the straight-line portion of the potential profile in the vicin-

ity of the cathode until it reaches a potential equal to the equivalent-

triode potential, Vg -f-
l£. The distance from the cathode at which this

potential is reached is the equivalent-diode spacing. This construction is

shown in Fig. 7.4c. Once this equivalent-diode spacing is found it can

be used for all combinations of plate and grid potential.

The concept of the equivalent diode and the equivalent-diode spac-

ing is useful in the study of the current characteristics of triodes. Since

the current law for space-charge-limited diodes is known, the current law

for a triode can be approximated from the equivalent diode. Triodes

with equal equivalent-diode spacings and equal amplification factors

have approximately the same mutual conductance and plate resistance.

Actually, the triode and its equivalent diode are truly equivalent only

for a condition of no current flow, which means cutoff or beyond for the

triode since the flow of current changes the potential distribution. The
concept is, however, sufficiently useful to justify its inclusion here.

The subject of current flow and mutual conductance will be discussed in

the chapter on Space-charge Effects.

Diode Equivalent to a Plane-electrode Triode. An analytical expression

for the equivalent-diode spacing can be found from the expression for

cathode charge in terms of the equivalent-triode potential and the geome-

try of the tube. Since the cathode charge was taken as -\-qc per grid-wire

section, the off-cathode gradient of potential is given by

(dV\
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or

(7.49)

in which all the symbols have the previous significance and D is the

denominator of Eq. (7.33) or (7.35) when the equivalent-voltage factor is

extracted.

For a plane-electrode diode the electrode spacing is the ratio of the

potential difference to the gradient. For the triode the equivalent-diode

spacing is the ratio of the equivalent-triode potential to the off-cathode

gradient. Thus, from Eq. (7.33)

d,
a

2ir

In (p<,p„) In I
-

\P»,

In (pp/Pp)

— In (pcE) (7.50)

where de is the equivalent-diode spacing in terms of the Z-plane dimen-

sions. It is desirable to express de in terms of the cathode-grid distance,

the grid-plate distance, and the amplification factor. If the expression

for the amplification factor [Eq. (7.36)] is used to eliminate R, then

If now the plane-electrode transformation is applied to insert the triode

dimensions,

d. = dc, -1- f 1 -h -Vn cosh irS (7.52)

For tubes in which the screening fraction is less than fbe last term of

Eq. (7.52) is negligible so that the expression reduces to

de ^ dcp
[

1 + (7.53)

Examination of Eq. (7.53) shows that the plate of the equivalent diode

always lies beyond the actual grid of the triode. The distance beyond is

relatively less if the amplification factor and cathode-grid distance are

large and relatively more if the grid-plate distance is large. The mutual

conductance of a tube is an inverse function of the equivalent-diode

spacing so that the influence of the various tube dimensions is readily

determined from Eq. (7.53).

Diode Equivalent to a Cylindrical-electrode Triode. The procedure that

was used to find the equivalent-diode spacing of a plane-electrode triode
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is quite general and may be applied to cylindrical triodes as well, though

the form of the resulting expressions is quite different, as may be expected

from the fact that the potential profile for the plane-electrode diode is a

straight line, while for the cylindrical diode it is a logarithmic curve.

For a cylindrical diode the relation between cathode and plate radius,

potential difference, and electrode charge per unit length of outer elec-

trode is

In
25r£oF

0.

(7.54)

For the cylindrical triode the equivalent-diode radius is given by

where Se is the equivalent-diode radius and is the cathode charge per

unit length for each of N grid-wire sections. Substitution of the value of

gc from Eq. (7.33) and using Eq. (7.36) gives

In
In {pcPg)

-t- In (pcE) N (7.56)

Eliminating R by means of Eq. (7.39) and making the substitutions of

Eqs. (7.16), (7.40), and Eq. (7.42),

In (s)=[KIn — — -i In cosh irS
Sg N )

In — -h In cosh vS
Sg N (7.57)

For tubes with screening fractions less than the terms involving the

hyperbolic cosine can be neglected so that the expression takes the form

In (7.58)

The same remarks that applied to the diode spacing for plane electrodes

apply here. The equivalent-diode plate lies outside of the grid-wire

circle. The equivalent-diode radius for the cylindrical triode is readily

obtained by graphical construction. If the profiles of Fig. 7.7 are plotted

against a logarithmic abscissa as in Fig. 7.8, then the profiles are straight

lines in the vicinity of the cathode and plate. The equivalent-diode

radius can be found by projecting the straight-line portion of the potential



156 VACUUM TUBES

profile at the cathode until it reaches a potential equal to the equivalent-

grid potential.

7.7. Application of Amplification-factor Formulas to Actual Triodes.

The amplification-factor formulas previously developed have been derived

for simple idealized structures not always encountered in actual tubes.

It is, however, possible in most cases to interpret these formulas so that

they will apply to tubes whose structure departs somewhat from that for

which the formulas were derived.

The formula for the amplification factor of the cylindrical triode

[Eq. (7.42)] was given for a grid in which the wires had a squirrel-

cage structure of evenly spaced wires parallel to the axis of the tube.

In this expression the quantity N is the number of grid wires and
is also the active length of grid wire per unit axial length of the tube.

The expression may therefore be generalized by letting

N = L„ (7.59)

where is the active length of grid wire per unit axial length of the

tube.'

In case the grid structure differs from that postulated in the deriva-

tion of the amplification-factor formula, the screening fraction S may
always be interpreted as the ratio of the actual area of the grid structure

to the total area of the surface containing the grid.

If the cylindrical grid consists of a square mesh of fine wires, then

L, (7.60)

where d is the spacing of the square mesh and Sg is the radius of the grid-

wire circle. If the diameter of the wires in the square mesh is appreciable,

then

where rg is the radius of the grid Avires as shown in Fig. 7.14a. For a

cylindrical grid of parallel rings having supports parallel to the axis.

Lg
2Nsrs

s
(7.62)

where N, is the number of supports and r, is the radius of the support

wires and s is the spacing of the grid wires as shown in Fig. 7.146.

If the grid is a helix of diameter 2Sg and of pitch d as in Fig. 7.14c,

1 KusDTfoSE, Y., Design of Triodes, Proc. I.R.E., vol. 17, pp. 1706-1749, October,

1929.
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(7.63)

The screening fractions for the cases listed above are readily evaluated.

In general if all the wires have the same radius,

ttS = L, (7.64)

For parallel grid rings with supports,

ToS = 2r,iL„ - N,) + 2JV,r.

2s,
(7.65)

in which the symbols have the same significance as in Eq. (7.62). Equa-

£

J1
Grid

¥

Supporf

^ I"

„ S
3-

(a) (b)
Square mesh Supported parallel

grid rings

Fig. 7.14.—Practical grid structures: (a) square mesh; (6) grid rings with

supports parallel to the axis; (c) helical grid.

tion (7.64) also holds for a helical grid. Equation (7.65) reduces to

Eq. (7.64) for r, = r,.

The generalized amplification-factor formula for the cylindrical-

electrode triode is

Mo

Lg In — — In cosh ttS

^

In coth irS
(7.66)

The generalized amplification-factor formula for the plane-electrode

triode is

2wdgpLg' — In cosh irS
Mp =

In coth vS
(7.67)
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The relation of this to Eq. (7.38) is evident. L„' is the length of grid wire

per unit area of the grid plane. For parallel grid wires, = i-

In many tubes the structure is neither plane nor cylindrical but some-

thing intermediate. In such cases it has been found empirically that a

combination of the plane and cylindrical amplification-factor formulas

gives very nearly the amplification factor of the tube.^ The combination

formula is

fi = Up — K(ttp — fic) (7.68)

where Mp is the amplification factor as calculated by the plane-electrode

formula, is the amplification factor as calculated by the cylindrical-

electrode formula, X is a constant depending upon the tube structure,

and /i is the amplification factor of the actual tube. The constant K
for a number of tube types ranging progressively from a plane to a cylin-

drical structure is given by the following table:

TABLE IV

CONSTANT OF EQ. (7.68) FOR THE CALCULATION OF THE AMPLIFI-
CATION FACTOR OF TUBES OF NONIDEAL FORM

Tube Type K
.... 0 . 00 plane electrode

2A3 0.11

• • • « 0.22

< « « « 0.33

26 0.44

76 0.55

75 0.66

6K5 0.77

6B5 0.88
lOOTL 1 .00 cylindrical electrode

The results of Table IV are shown graphically in Fig. 7.15. The
empirical constant K given here includes the effect of the grid supports.

7.8. More Accurate Amplification-factor Formulas. The amplifica-

tion-factor formula of Vodges and Elder given in Eq. (7.38) is accurate

only for certain ranges of electrode dimensions. Specifically, the formula

breaks down if

() d„p < a

() <S > 0.16

(c) deg u

In general, the formula breaks down if any of the electrodes are too

close together. Since many modern tubes are built with very close-

* Jervis, E. R., Amplification Factor Chart, Electronics, vol. 12, p. 45, June, 1959.
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spaced electrodes, it is desirable to extend the range of the above rela-

tions. Various formulas have been worked out that extend the range of

any of the three limitations listed above, but as yet no formula has

appeared that is valid over the complete range of all variables.

Formulafor Small Grid-plate Spacings. When the grid-plate spacing is

small, an improved amplification-factor formula may be worked out by

2A3 26 76 75 6K5 6B5 27

Tube type

Fig. 7.15.—Value of the constant K of Eq. (7.68) for calculating the amplifi-

cation factor of tubes with geometries that are intermediate between plane

and cylindrical geometries.

placing an image set of grids outside of the plate position and then fitting

the plate to the equipotential curve midway between. ^ The resulting

expression is

In cosh irS — —
a

In tanh -irS - In 1 - cosh^ tS exp
^

4:‘jrdgp

^

(7.69)

This expression is valid for grid-plate spacings as low as one-quarter of

the spacing between grid wires but still assumes that the cathode-grid

spacing and the screening fraction are large.

' Salzberg, Bernard, Formulas for the Amplification Factor of Triodes, Proc.

I.B.E., vol. 30, pp. 134-138, March, 1942.
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Formulas for Large Screening Fraction. Perhaps the most serious

limitation to the amplification formula of Vodges and Elder is that it

begins to be in error for a screening fraction of and is 10 per cent low

for a screening fraction of Y- Many modern tubes are built with very

Screening fraction,^
Fig. 7.16.—A comparison of the values of amplification

factor of a plane-electrode triode as a function of screening

fraction as indicated by various formulas. The extension

of the region of validity by the successive refinements in

formulas is evident. (See discussion on page 161.)

large screening fractions, and it therefore is desirable to have a formula

valid in this range.

Such a formula has been evaluated^’^ by an analysis based upon the

1 Ollendorf, Franz, Berechnung des Durchgriffes durch enge Steggitter, Elek-

trotech. u. Maschinenbau, vol. 52, pp. 585-591, Dec. 16, 1934.

^ See also Herne, H., Valve Amplification Factors, Wireless Engr., vol. 21, pp.

59-64, February, 1944.
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expression IF = In sin Z, which gives the potential due to a row of evenly

spaced line charges positioned along a straight line. Derivatives of this

expression give the potential fields due to a row of dipoles, quadripoles,

and so on. By combining in series form such a succession of fields and

fitting the resultant field to the circular grid wires, some highly accurate

formulas for amplification factor are obtained.

The first approximation using the expression for the row of line charges

alone gives a formula which is virtually the same as that of Eq. (7.13)

based upon Maxwell’s grating theory. The second approximation is

obtained by using the field due to a row of line charges and a row of dipole

line charges. This gives

u
a 1 +

— In (jrS) +
1 + yuijsy

(7.70)

A third approximation may be obtained by including the field corre-

sponding to the next derivative of the field of a row of line charges. This

yields

%rda

M = a 1 -b H 2 ('>r(S)^

In (xS) -b

(7.71)

1 + 1 + V2ioy&Y

Equations (7.70) and (7.71) apply to plane-electrode triodes. The

corresponding expressions for cylindrical electrodes may be obtained by

substituting Sg In for dgp provided that the grid-wire radius is small

compared with the radius of the grid-wire circle.

A comparison of the values of amplification factor given by the various

formulas presented is shown in Fig. 7.16. In this figure the notation is as

follows

:

Ml, Eq. (7.13), Maxwell.

Pi, Eq. (7.38), Vodges and Elder.

pz, Eq. (7.70), Ollendorf second approximation.

Pi, Eq. (7.71) Ollendorf third approximation.

From Fig. 7.16 it is seen that the range of validity of the various formulas

within a 2 per cent error is

Pi, Eq. (7.13), S less than 0.1.

Pi, Eq. (7.38), S less than 0.16.

Pi, Eq. (7.70), S less than 0.325.

Pi, Eq. (7.71), (S less than 0.4.
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In the chart of Fig. 7.11 giving the amplification factor of a plane

triode, the solid lines were obtained from the formula of Vodges and Elder,

while the dotted lines were obtained from the Ollendorf approximations.

Formula for Small Cathode-grid Spacings. All the amplification-factor

formulas previously given are restricted to electrode configurations in

which the cathode-grid spacing is equal to or larger than the grid-wire

spacing. Many modern tubes have grid-cathode spacings that are less

than the grid-wire spacing. When this is true, it is really no longer

proper to speak of the amplification factor, for the gradient of potential is

not constant along the cathode but varies with position relative to the

grid wires. Such a tube exhibits no true cutoff condition since as the grid

is made more and more negative the cathode gradient opposite the

grid wires will become negative while the cathode gradient between the

wires is yet positive. This gives rise to a condition, sometimes referred

to as Insel Bildung, in which little island strips of the cathode are emitting

while other parts are not. Such a tube acts as a variable-mu tube in

that every part of the cathode surface has a different amplification factor.

It is possible to find the effective amplification factor of a tube with

small cathode-grid spacing if this effective amplification factor is under-

stood to be dependent upon position on the cathode. When the cathode

gradient is not uniform, as is the case with small cathode-grid spacings,

the field’s configuration can still be found if use is made of the theory of

images. 1 The true field that exists is the same that would result from a

line of grid wires of one charge and an image fine of wires located as

though mirrored in the cathode but having charge of opposite sign. The

field can therefore be obtained by studying the potential within a fic-

titious tube consisting of two parallel plates of opposite charge and

potential, between which there are two sets of identical grids of opposite

charge and potential, symmetrically disposed with respect to the center

plane. Under the conditions stated the mid-plane will be a surface of

zero potential and can be identified as the cathode.

The potential due to a grid of equally charged parallel wires, equally

spaced, a distance a along the y axis of the Z plane is

where q is the charge per unit length of each grid wire. This expression

may be obtained by considering the potential due to a line charge of

density q located at the point (1,0) and one of density — |
located at the

^ Fbemlin, J. H., Calculation of Triode Constants, Phil. Mag., vol. 27, pp. 709-

741, June, 1939. Also published in Elec. Commun., July, 1939.
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point (0,0) in the Z plane and then transforming this potential to the W
plane by means of the transformation W = -^ \n Z. Equation (7.72)

2nr

can also be shown to be the real part of the expression In

A plot of Eq. (7.72) is given in Fig. 7.17.

row of line charges as given by Eq. (7.72).

Upon using Eq. (7.72) to obtain the field due to grids of opposite

charge located a distance deg from the cathode and adding a linear com-
ponent of field to account for the effect of the plate the expression for the

potential within the tube is obtained. It is

F = + In
4ireo

cosh — (x + den) — cos — y
a a

cosh — (x — den) — cos — y
a “ a

+ Bx (7.73)
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in which q and B are related to the electrode potentials by

sinh=

= +/_ln 1+
sin^ (p\

+ Bdc,

Fp =^ + Bd,

If —Ec{0,y) is the gradient of potential at the cathode—a quantity

that varies with y—then the effective amplification factor may be defined

A = 4.
M dEc

w.
The resultant expression for amplification factor is given by

[
sinh^(?^^)l

,^ It \ ^ / _
sin2/!ll£\

1 ^ L \« / J _ ^
^ sinhf?^') ^

\ ^ / deg

cosh cos

^ (7.77)

This expression is properly independent of grid and plate potential and
reduces to the low-mu amplification-factor formula for large values of

— and — • This formula is reasonably accurate for values of — as low
G/ Gcg G

as 0.4. For small values of the ratio the reciprocal of the amplifica-

tion factor, sometimes referred to as the penetration factor or Durchgriff

since it is a measure of the shielding effect of the grid, exhibits what is

nearly a sinusoidal variation with distance parallel to the grid. For the

case in which the grid-cathode distance is 0.4 of the grid-wire spacing,

the relative amplification factor may vary between 0.7 and 1.4 times the

average value, the average value being very nearly equal to that given

by Eq. (7.13).

Expressions for the amplification factor of a plane triode have now
been given that cover nearly the entire range of practical electrode
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dimensions. All the expressions given are limited, however, to some

definite range of electrode dimensions. The expressions given in this

subsection, for instance, are limited to screening fractions of 0.1 or less.

The region of validity of the various amplification-factor formulas is

shown in Fig. 7.18. Here it is seen that formulas are good for either large

screening fractions or large ratio of grid-wire spacing to cathode-grid

distance but not both.‘

Cathode-grid spacing factor,^
“cflT

Fig. 7.18.—The region of validity of various ampUfica-

tion-factor formulas.

7.9. Amplification Factor of Unconventional Tubes. The methods

that have been studied in this chapter may be applied to numerous struc-

tures other than the idealized plane and cylindrical structures so far

treated. Where simple geometries are involved, it is usually possible to

find a correspondingly simple arrangement of line charges that can be

transformed into the desired structure. In Fig. 7.19 are shown some

sample unconventional tube structures along with their elementary forms

and the corresponding amplification-factor formula.

1 See Fremlin, J. H., R. N. Hall,, and P. A. Shafford, Triode Amplification

Factors, Elec. Commun., vol. 23, no. 4, pp. 426-435, 1946, for a semiempirical formula

good for both small screening fraction and small cathode-grid distance.
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In Fig. 7.19a is shown the famous gammatron “gridless wonder.”

This consists of a row of filament wires between grid and plate planes.

The tube has an inherently low amplification factor whose value is

W Plane Z Plane

Fig. 7.19a.

—

The amplification factor of a triode with a

cathode in the form of a row of filament wires located

between a grid and a plate plane.

approximately equal to as may be seen from consideration of inter-
deg

electrode capacities. The formula given is valid for screening fractions

of 0.1 or less and is based upon the same sort of analysis as was used to

WPlane

GO
CO
G

CO a

GO-^

\P

Z Plane

^d^p-ln(2cos^)

4ncos-^ -Insm-^

Fig. 7.196.—The amplification factor of a plane-elec-

trode triode with a cathode consisting of a row of

filament wires spaced midway between the grid wires

and having a single plate.

treat the low-mu triode. It is seen that the amplification factor has a

second-order dependence upon the cathode radius.

In Figs. 7.196, c, and d are shown tubes in which filament wires are

placed between the grid wires. The formulas are not greatly different
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from those for tubes which have a grid between cathode and plate except

that they exhibit a second-order dependence upon cathode radius.

The question arises as to what the effect of having a filamentary

IVPlane Z Plane

Fig. 7.19c.—The amplification factor of a cylindrical

triode whose cathode is a group of wires located between

the wires of a squirrel-cage grid.

emitter rather than a solid cathode would be. In general, if the filament-

grid spacing is large compared with the grid-wire spacing, the amplifica-

tion factor will be the same as for the case of a solid cathode. The

yi"Plane Z Plane

Fig. 7.19(1.—The amplification factor of a plane-

electrode triode whose grid and cathode wires are

alternate and equally spaced in a plane between two

equidistant plate planes.

equipotential lines around the filament will be circles very near to it but
become nearly straight lines, the same as for the solid cathode, between
the filament and grid. The current-voltage characteristics may, how-
ever, be considerably different.



CHAPTER 8

SPACE-CHARGE EFFECTS

8.1. Effects of Current Flow. In the previous chapter a study was
made of the potential fields inside of tubes in the absence of current flow.

Such studies can give only a partial picture of the true condition within a
vacuum tube; for ordinarily currents will flow, and the presence of the

electrons constituting the current introduces a distribution of charge

known as “space charge,” which changes the tube behavior. The
previous studies are perfectly valid in determining such things as the

amplification factor of tubes, for they can be applied to a condition of

cutoff at which no current flows and yet at which the relative influence

of the various electrodes is the same as for current flow. For studies of

such subjects as the variation of current with potential and the determina-

tion of mutual conductance it is necessary to take into account the effect

of currents and the corresponding space charge.

The effect of space charge is most readily studied in the case of the

diode, and the results obtained from this study can then be extended to

give the relations existing in triodes and multielectrode tubes. Actually,

this extension can be made only approximately, but enough information

can be obtained to answer most purposes. The most striking effects

of space charge in a diode are to limit the current to a value determined by
the three-halves power of plate voltage and to cause the potential distribu-

tion within the tube to be nonlinear.

In the plane-electrode diode the potential distribution in the absence

of space charge is a straight line from one electrode to the other as shown
in Fig. 8.1a. In this case all the flux lines emanating from positive

charges on the positive plate terminate on negative charges on the other

plate, as shown in the same figure.

If now one of the electrodes is a cathode capable of emitting a small

number of electrons and the other electrode is positive with respect to

this, there will be some electrons in the field between the two electrodes

moving toward the plate and some of the flux lines will terminate on
electrons in the field as shown in Fig. 8.16. The drawing has been con-

ventionalized and the unit of flux density chosen so that there is only one

flux line to each electron. Because of the negative charge in the field, the

potential at any point will be less than in the previous case. Accordingly
168
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the potential profile will be pulled down and will be a curve concave

upward at every point below the straight line, with the same initial and

final values. If instead of negative electrons there had been positive

ions in the field, the profile would have been moved up and would have

formed a continuous curve concave downward at every point above the

straight-line charge-free potential

profile.

If the cathode is capable of emit-

ting an unlimited number of elec-

trons, the current will limit itself to a

definite value because of the mutual

repulsion between the electrons and

because of the fact that the potential

contour can be depressed only until

its slope at the cathode is zero.

There is an equilibrium here; for, as

shown in Fig. 8. Ic, if in some manner

the slope could be made less than zero

at the cathode, the electrons starting

out would be forced to return to the

cathode, no current would flow, the

space charge would be reduced, and
the potential contour would lift until

its slope was zero at the cathode, at

which point an equilibrium would be

reached. If in some manner the

slope were greater than zero at the

cathode, more electrons would be

encouraged to leave the vicinity of

the cathode, the space charge would

be increased, the potential-distribu-

tion curve would be depressed, and
this action would continue until the

slope at the cathode again became
zero. The zero slope at the cathode indicates that the charge on the

cathode is zero, which means that the flux lines emanating from charges

on the positive plate all terminate on electrons in the field and that none
of them get through to the cathode. In the case of the current limited by
space charge, the potential distribution is a four-thirds-power law, as will

be shown presently. In this case also, the current varies as the three-

halves power of the potential on the plate.

The reason for the three-halves-power variation of current with poten-

(a)

SMALL CURRENT
(b)

/
•

—

'7

W''
CURRENT LIMITED BY SPACE CHARGE

(C)

Fig. 8.1.—Electric flux lines and poten-

tial distribution in a plane-electrode

diode for various degrees of space charge.
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tial can be shown from simple theoretical considerations. In Fig. 8.1c

it is seen that the space-charge-limited diode is roughly equivalent to a

condenser. As is the case in a condenser, charge on the plate and hence

also in the interelectrode space is proportional to the potential. The
current density is the product of the space-charge density and the

velocity of the electrons at that point. The velocity of the electrons is

proportional to the square root of potential so that the current density,

which is the product of charge and velocity, is proportional to the three-

halves power of potential. Although the above is not a very rigorous

demonstration of the validity of the three-halves-power law of current,

it mil at least make the relation seem reasonable. A more rigorous

demonstration will be undertaken in the next section.

8.2. Plane -electrode Space-charge Flow. The relations between

potential, distance, and current in the plane-electrode case can be

obtained from Poisson’s equation, the energy equation, and the relation

between current, charge, and velocity.

Poisson’s equation in the one-dimensional case reduces to

dW _ p

dx^ eo
(8 . 1)

where V is potential, p is volumetric space-charge density, and eo is the

dielectric constant of free space in rationalized mks units.

The energy equation has the form

— Ve (8.2)

where m and e are the mass and charge of the electron and v is the velocity

at any potential V. Electrical quantities are in practical units, and

physical quantities are in mks units. This assumes that the electron has

started from rest at a point of zero potential.

The relation between current density, charge, and velocity is

J = pv (8.3)

The three equations above suflBce for a determination of all the rela-

tions involved in a parallel-electrode space-charge flow. If p is expressed

in terms of J and V from Eqs. (8.2) and (8.3) and the resulting expression

substituted into Eq. (8.1),

dx^ So \2e
(8.4)

where J is now the magnitude of the current density, actually electronic

flow in the positive x direction is negative. A first integration is achieved

dV
by multiplying both sides of Eq. (8.4) by 2 ^^and integrating.
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The constant of integration is zero because the gradient is zero when the

potential is zero.

A second integration gives

4754

3
2 (8 .6)

in which the constant is again zero because the potential is taken as zero

when the distance is zero. Solving for current density,

J = 4eo F«
amperes per unit area (8.7)

Numerically this is equal to

- 2.335 X 10-«F«
amperes per unit area (8.8)

If X is in centimeters, the current density is in amperes per square centi-

meter.

From the above equations it is seen that the current varies as the

three-halves power of potential and inversely as the square of the distance.

The last two equations constitute the Child-Langmuir space-charge law.

It has been verified experimentally. If the equations be solved for

potential, there results

F = 5,680J^x^ (8.9)

showing that the potential varies as the four-thirds power of distance

between cathode and plate.

Values of current density in terms of distance and potential are given

in the curves of Fig. 8.2.

It is of interest to note how various other factors vary with distance.

The gradient of potential is given by the derivative of potential with

distance. Hence

E = kix^ (8.10)

' Child, D. C., Discharge from Hot CaO, Phys. Rev., vol. 32, pp. 492-511, Maj

,

1911.

^Langmtjih, I., The Effect of Space Charge and Residual Gases on Thermionic

Currents in High Vacuum, Phys. Rev., Ser. 2, vol. 2, pp. 460-486, December, 1913.

® Langmuir, I., and K. B. Blodgett, Currents Limited by Space Charge between

Coaxial Cylinders, Phys. Rev., Ser. 2, vol. 22, pp. 347-357, October, 1923.
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Velocity varies as the square root of potential, and therefore

V = (8 . 11 )

Space-charge density varies inversely as velocity, from Eq. (8.3), since

the current density is constant; thus

p = kiX-^ (8.12)

Curves showing the variation of these various factors are shown in

Figs. 8.3a and b. Here it is seen that the potential and gradient are zero

Fig. 8.2.—Current dengity in a plane-electrode diode as a func-

tion of voltage and electrode spacing, Eq. (8.8).

at the cathode. Since the velocity was assumed zero at this point, the

space-charge density is theoretically infinite here. Actually, the elec-

trons start with a small finite "velocity rather than with zero velocity so

that the gradient is initially :aeg:Aive for a small distance, passes through a
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minimum at a small negative potential, and then increases. In spite of

this difference, the Child-Langmuir law is quite accurate except for very-

low values of potential corresponding to the average velocity of emission,

which is of the order of a few volts.

8.3. Cylindrical-electrode Space-charge Flow. When the electrode

structure consists of two concentric cylinders the inner of which is capable

of emitting electrons, the space-charge-limited current still varies with the

Fig. 8.3a.—Curves of potential, gradient, space-charge den-

sity, and velocity as a function of Lnterelectrode distance in

a space-charge-saturated plane diode, linear scales.

three-halves power of the voltage but the effect of the electrode dimen-

sions is a little more complex.

The behavior of the cylindrical diode can be studied in just the same

way as the plane-electrode diode, but in this case it is necessary to use

cylindrical coordinates. Actually, this does not complicate the problem

too much, for the conditions of symmetry are such that, at any fixed

radial distance, conditions are the same regardless of angle. The problem

is thus still a one-dimensional one.

For this case Poisson’s equation reduces to

1 d /r dF\
r dr \ dr )

P

EO
(8 . 13 )

The same energy equation as for the plane-electrode case holds,

= eV (8.2)
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Current density at any radial distance r is given by

J(r) = pv (8.14)

Since the current density varies with radial distance, it is more convenient

to express the space-charge density in terms of total current per unit

length of axis,

^
= 2wrJ{r) (8.15)

= 2frrpv (8.16)

where I is the total current passing at right angles through an imaginary

cylinder of radius r and length 1.

Fig. 8.36.—Same as Fig. 8.3a, plotted with logarithmic scales.

Expressing the right side of Eq. (8.13) in terms of I and V from Eqs.

(8.2) and (8.16),

d / dV\ I
j
m

dr \ dr ) 2ircoZ v 2eV
(8.17)
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which may also be written as

^ 1^ _ J / m
dr^ r dr to\2eV (8.18)

An approximate solution of Eq. (8.18) can be obtained by observing

that for large values of r the second term of the left member of the equa-

tion is negligible. If this term is dropped, the resulting equation is the

same as Eq. (8.4) for the plane-electrode case so that the solution for

large values of r would be expected to be the same in both cases. Thus

J = 2.335 X
amperes per unit area (8.19)

or

I ^ X 2.335 X IQ-^F?^

I r
amperes per unit length of axis (8.20)

These approximate equations hold within 10 per cent for values of r

greater than ten times the cathode radius.

A more exact solution is obtained by assuming that the expression for

current is of the form

I ^ KV^
I

(8 .21 )

where is a function of the ratio of the radius at any point to the cathode

radius.^ Substituting Eq. (8.21) into Eq. (8.17) gives

3^,2^ + ,2 + 7prf+p^-l=0 (8 .22)

This can be simplified slightly by letting m = In a logical substitu-

tion because the space-charge-free potential is expressible in this form.

With this change of variable,

= 0 (8.23)

This may be solved by series, the solution being

2m2 Uu^ 47m^
P - u

5 + 120 3,300
+ (8 .24)

This expression is valid for either an internal or an external cathode.

‘ Langmuir, op. cit.
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Values of have been calculated by Langmuir by means of this series

and other equivalent expressions which are more convenient for large

values of u. In Table V are tabulated the values of and in Fig. 8.4

• •IT TT

is shown a curve of 3^ as a function of — It is seen that for ratios of -
rc

greater than 7 the value of /3^ differs from 1 by less than 10 per cent, thus

substantiating the approximate form of the equation for current, previ-

ously given. In the chart of Fig. 8.5 is given the current per unit length

of axis for various voltages and various values of plate radius for the case

in which has the value of 1. For other values of the current obtained

from this chart must be divided by the value of as obtained from Fig.

8.4.

In practical units the expression for current is

I ^ 14.66 X
I r(3^

amperes per unit length of axis (8.25)

Since the current per unit length of axis is a constant, for a constant

plate voltage, the variation of potential with radial distance r is given by

V = (8.26)

in which it must be recognized that is not a constant but a function of

the radial distance r. Velocity of the electron is given by the square
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volts r, cm

Fig. 8.5.—Nomographic chart of linear current density as a function of potential

and plate radius in a cylindrical diode = 1).

root of potential, and thus

V = (8.27)

From Eq. (8.16), space-charge density is the reciprocal of the product of

velocity and radial distance r,

k.
(8.28)
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TABLE V

VALUES OF ,82 AS A FUNCTION OF - AS GIVEN BY EQ. (8.24)
Tc

applies where r > n; applies where r < r^)

r Tc— or —
Tc r

^* -^*
r rc— or —
re r

(3* -/3*

1.00 0.0000 0.0000 3.8 0 . 6420 5.3795

1.01 0.00010 0.00010 4.0 0 . 6671 6.0601

1.02 0.00039 0.00040 4.2 0.6902 6.7705

1.04 0.00149 0.00159 4.4 0.7115 7.5096

1.06 0.00324 0.00356 4.6 0.7313 8.2763

1.08 0.00557 0.00630 4.8 0 . 7496 9.0696

1.10 0.00842 0.00980 5.0 0.7666 9.887

1.15 0.01747 0.02186 5.2 0.7825 10.733

1.20 0.02815 0.03849 5.4 0.7973 11.601

1.30 0.05589 0.08504 5.6 0.8111 12.493

1.40 0.08672 0.14856 5.8 0.8241 13.407

1.50 0.11934 0.2282 6.0 0.8362 14.343

1.60 0.1525 0.3233 6.5 0.8635 16.777

1.70 0 . 1854 0.4332 7.0 0.8870 19.337

1.80 0.2177 0.5572 7.6 0.9074 22.015

1.90 0.2491 0.6947 8.0 0.9253 24.806

2.0 0.2793 0.8454 8.5 0.9410 27.701

2.1 0.3083 1.0086 9.0 0 9548 30.698

2.2 0.3361 1.1840 9.6 0.9672 33.791

2.3 0.3626 1.3712 10.0 0.9782 36.976

2.4 0.3879 1.5697 12.0 1.0122 50.559

2.5 0.4121 1.7792 16.0 1.0513 81.203

2.6 0.4351 1 . 9995 20.0 1.0715 115.64

2.7 0.4571 2 . 2301 40.0 1.0946 327.01

2.8 0.4780 2.4708 80.0 1.0845 867.11

2.9 0.4980 2.7214 100.0 1.0782 1174.9

3.0 0.5170 2.9814 200.0 1.0562 2946 .

1

3.2 0.5526 3.5293 500.0 1.0307 9502.2

3.4 0.5851 4.1126 00 1.000 00

3.6 0.6148 4.7298

For small u
/S2 = u\l - 0.8m + 0.344m* + • •

• )

^ = 2m - 2.4m* + 1.374m* - C.509m* + • •

where w = In — •

Tc
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Gradient of potential is given by the negative derivative of potential^

E =
Ka —^

dr

(r/32)M
(8.29)

For radial distance r equal to Tc both the numerator and the denominator
of the expression for E are zero. However, the numerator is a zero of

Fig. 8.6o.—Curves of potential, gradient, space-charge density,

and velocity as a function of radial distance in a space-charge-

saturated cylindrical diode, = 5 .

higher order, as may be checked by referring to the series for /3, and there-

fore the gradient is zero for r equal to Tc- In plotting a curve of the

gradient the derivative of must be evaluated numerically from ths

table of values of Curves of Y, E, v, and p for a typical cylindrical

triode are shown in Fig. 8.6 for two ratios of plate to cathode radii.

Curves for other radii have forms similar to those shown. Although

not evident from the appearance of the curves, the potential profile

leaves the cathode with zero slope, having a considerable change of

slope in a short distance. This can also be seen from the series expan-

sion of the expression for potential near the cathode, the first term of

which is

(8.30)
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From this it can also be seen that the gradient has the value of zero at

the cathode.

In all the foregoing it has been assumed that the cathode cylinder is

smaller than the plate cylinder. The formulas are also valid if the

cathode is the outer cylinder, though tubes are rarely built this way.

It might be thought that if the cathode were the outer cylinder a greater

current would flow for a given voltage than if it were the inner cylinder

because the same current would be distributed through a greater volume
where its velocity is lowest. Examination of the numerical values shows
that this is not so, however. When the cathode is the outer cylinder, the

Fig. 8.66.—Same as Fig. 8.6a, ~ 2.

functon increases very rapidly as the ratio of plate to cathode I'adius

decreases. As a result, the current is actually less when the cathode is

the outer cylinder; for although the factor r in Eq. (8.21) is decreased,

the factor /3* has increased more than enough to offset this.

It is of interest to compare Eqs. (8.8) and (8.25) for the plane and
cylinder case. If Eq. (8.25) is divided by %rr, it then resembles Eq.

(8.8) except that x is replaced by rfi. When r is very large, /3 approaches

unity and the expressions become identical. When r is only slightly

larger than rc, |3 is approximately equal to In

with the result that the factor rp nearly equals r ~ and the expres-

^ and hence to ^

Vc/ To
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sions for current density again approach identity with x replaced by

r — Tc. This identity is expected for values of — near unity; for here

the electrode spacing is small compared with the radii, and a plane struc-

ture is approximated. The fact that Eqs. (8.8) and (8.25) are identical

* T
for limiting values of the ratio — does not mean that they are nearly

T
equal for all intermediate values. For values of — between 4 and 20

e

the value of current density as calculated from the plane-electrode

formula exceeds that obtained from the cylindrical-electrode formula

by nearly 20 per cent. This is the maximum discrepancy that can occur.

8.4. Space-charge Flow for Other Geometries. Spherical Electrodes.

The equations for space-charge flow of current can also be derived for

concentric spherical electrodes. ^ For this case it is found that the cur-

rent varies as the three-halves power of potential and is inversely pro-

portional to a dimensionless function of the ratio of plate and cathode

radius. The total current is given by

29 34
I = — — X 10“® amperes (8.31)

where V is the potential difference between the spherical electrodes in

volts and a is a function of w = In given by

a = u- 0.3u^ + 0.075m® - 0.00143m® -h 0.00216m® (8.32)

This expression for a is valid whether the cathode is external or internal.

Values of a for the spherical case and of jS for the cylindrical case are

T
equal within 2 per cent for values of — between 0.65 and 1.35. For

Tc

values of — less than 1, a differs not more than 10 per cent from the larger
T'c

T
value of /3.® For values of — very nearly equal to 1 the current density

T'c

approaches that for plane electrodes.

The General Case. The observation that the current varies with the

three-halves power of potential for plane, cylindrical, and spherical

electrodes leads one to believe that this is the case for electrodes of any

shape. Actually this is so, but the conclusion must be examined care-

fully, for the three cases enumerated are special cases in which the elec-

1 Langmuir, I., and K. T. Compton, Electrical Discharges in Gases, Part II,

Rev. Modern Phys., vol. 13, pp. 191-257, April, 1931.

^See Appendix VII for values of a®.
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trons move in straight lines perpendicular to the equipotential surfaces.

For other geometries this is not necessarily so. For electrodes of other

shapes the electrons will in general cut across the lines of electric force

and move in curved paths.

The validity of the three-halves-power law of potential can however

be shown by a simple dimensional analysis of the basic equations from

which the current laws were developed. These are Poisson’s equations.

^
to

(8.33)

the energy equation

= eV (8.34)

and the current-density expression

J = pV (8.35)

In previous cases the quantities in the last equation above have been

treated as scalar quantities, but in the general case current density and
velocity must be treated as vector quantities because they do not neces-

.
aarily have the direction of the gradient of potential.

Consider now what happens if the potential is increased by a factor k.

If the electrons move in a curved path, their centrifugal force
K

where R is the instantaneous radius of curvature, must equal the force

due to the component of the gradient of potential normal to the path,

eV„F. From Eq. (8.34) the centrifugal force will have increased by a

factor k, and likewise the gradient will have increased by the same factor,

so that the shape of the electron paths will be unchanged. This is the

same conclusion that was reached in the case of the space-charge-free

fields. Once this is established, the final conclusion follows immediately.

From Eq. (8.33) the space-charge density is increased by a factor k,

and from Eq. (8.34) the velocity is increased by a factor k^^. Hence, by
Eq. (8.35), the current density is increased by a factor k^^, and the gen-

eral validity of the three-halves-power law of potential for electrons

starting from rest is established.

It can also be shown by the same type of reasoning that, if an elec-

trode structure is enlarged by a factor n maintaining geometrical similarity

and voltages are kept unchanged, then if the current is space-charge-

limited, the current is also unchanged. From Eq. (8.33) space-charge

density is decreased by a factor n^, and hence current density is decreased

by a factor of from Eq. (8.35), velocity at corresponding points in the

original and enlarged structure being the same. However, since the total

area over which the current density is summed is increased by a factor of
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n^, it is seen that the total current is unchanged if the voltages are

unchanged.

8.6. Current Law for Plane Triodes. It is found experimentally in

triodes that the total current released from the emitter is very nearly

V
proportional to the three-halves power of the equivalent voltage, F„ -)-—-
This is most readily shown by plotting curves of constant space current,

Equivalent plate voltage^

Fig. 8.7.—Current as a function of equivalent voltage in a

210 triode.

^.e., the sum of plate and grid current, against equivalent voltage on
logarithmic paper. All points and curves so plotted tend to fall on the

same straight line, which has a slope of nearly Slight departures from
the slope of % are sometimes encountered because of initial electron

velocity, the Schottky effect, and because of potential drop along the

emitter. The relation holds whether the grid is negative or positive even

though the space current in the first case is all plate current and in the
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second case is the sum of grid and plate current. This is in accord with

the reasoning presented in the previous section.

The correlation between the theory and experiment is sufficiently good
so that in general it is a very good approximation to write

J = Jj> + Jg = k{v,+ (8.36)

in which A- is a constant to be determined later.

The equivalent voltage referred to here is the same as the equivalent

voltage encountered in the study of the space-charge-free potential dis-

tributions in tubes. There it was found that the off-cathode gradient

Fig. 8.8.—Constant-current representation of triode characteristics.

was a linear function of the equivalent voltage just as the cathode gradi-

ent of the space-charge-free diode is directly proportional to the plate

potential. Here the space current depends upon the three-halves power
of the equivalent potential just as the saturated diode current is pro-

portional to the three-halves power of the plate potential. This is

strictly true only when the space charge in the grid-plate region is

negligible. A curve showing how the space current varies with equivalent

voltage in a typical triode is given in Fig. 8.7.

The fact that the relative effectiveness of the plate and grid in con-

trolling current flow is the same for a great range of current is shown by
plotting contours of constant space current against axes of grid and plate

voltage. Such a set of curves is shown in Fig. 8.8. It is seen that the
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curves are substantially straight lines whose slope by definition is
M

The constancy of the slope of these straight-line curves attests to the

constancy of the amplification factor. It will be observed that for very

small currents the slope decreases, indicating a lower amplification factor.

This is explained by the fact that the amplification factor of all parts of

the electrode structure is not the same, with the result that the parts

with the highest n cut off first, leaving current to pass through the parts

of lower
fj,.

Variations in the magnitude of the amplification factor,

which actually is an equivalent amplification factor of a number of areas

with slightly different factors connected in parallel, also account for

slight departures of the current

law from a strict three-halves

power law.

Current Law in Terms of Elec-

trode Dimensions. The coefficient

of the current law given in Eq.

(8.36) can be evaluated by fitting

the triode electrode potentials to

the diode law for a particular com-

bination of potentials and then

assuming that the relation which

holds for this particular case holds

for all combinations by virtue of

the experimental observations.*

Consider a plane-electrode tri-

ode, and imagine first that the

grid is not present and that there

is a space-charge-limited current

flow from cathode to plate. Then
if the grid were inserted at a positive potential corresponding to that

which existed at its location before its insertion, its presence would not

disturb the existing potential distribution and would not change the

magnitude of the plate current. Since the equivalent voltage can now
be determined for a given current, the constant of Eq. (8.36) can be

evaluated. When this constant is known for one combination of poten-

tials, our experimental observations show that it is the same for all com-

binations of potentials and thus the current law for triodes is determined

in terms of the electrode dimensions.

The distribution of potentials referred to above is shown in Fig. 8.9.

Here it is seen that the potential distribution from cathode to plate is a

* Fremlin, J. H., Calculation of Triode Constants, Elec. Commun., July, 1939.

Fig. 8.9.—Potential distribution in a posi-

tive-grid triode with grid at its natural

potential.



186 VACUUM tubes

four-thirds-power-law curve as in the case of the diode. On this basis,

the relation between the current density, the diode plate potential V„,

and the cathode-plate distance is

_
dcp-^

amperes per unit area (8.37)

whereK is 2.335 X 10 ®. Let this be written in the form

(8.38)

The grid is inserted with the potential that would exist in the diode at

the location of the grid plane as shown in the figure. The relation for

current density, positive grid potential, and cathode-grid distance is

(8.39)

But the experimental observation in keeping with theoretical con-

siderations is that

.-.(n + L)’* (8.40)

Substitutions from Eqs. (8.38) and (8.39) give

j
/f

(8.41)K
so that

/r-
^

( -1-^ 1

(8.42)

or, numerically.

2.335 X 10-«
h =

As a result, the expression for current is

2.335 X 10-

J =

(8.43)

1 -t-

1

^ \dcg/

amperes per

unit area
(8.44)

This is the expression that has been sought and that has been the object

of the above development. It is seen to be of the same form as the expres-
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sion for the diode current density of Eq. (8.8). There is good experi-

mental verification of Eq. (8.44).

It may also be seen that the space-charge-saturatedequivalent-diode

spacing of the triode is

dge — deg I 1 (8.45)

A nomograph giving the space-charge-saturated equivalent-diode spacing

of a triode in terms of the cathode-grid distance, the cathode-plate dis-

Fig. 8.10.—Nomographic chart of equivalent-diode spacing of a space-charge-satu-

rated plane-electrode triode.

tance, and the amplification factor is given in Fig. 8.10. It should be

noted that the space-charge-saturated equivalent-diode spacing of a

triode given here is somewhat different from the space-charge-free

equivalent-diode spacing given in Eq. (7.53) of the chapter on Electro-

static Field of a Triode. Each is slightly greater than the cathode-

grid distance. For a p of 10 and a ratio of cathode-plate to cathode-grid

spacing of 5 the value of diode spacing from Eq. (8.45) is only 6 per cent

greater than that from Eq. (7.53). For large values of p the difference

is even less. Various attempts have been made to devise expressions for

the triode current and mutual conductance in terms of the space-charge-
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free equivalent-diode spacing, but all these are subject to an inescapable

error.

8.6. Mutual Conductance of a Plane Triode. The mutual conduct-

ance is easily obtained from the expression for current density of Eq.

(8.44), By definition,

dV, \dVjy,,^

Performing this operation on Eq. (8.44),

Qm

3.51 X 10-«

d 2
U,cg

amperes per volt

per unit area

(8.46)

(8.47)

This can also be written in the form

2.64 X 10-V«

As far as tube geometry is concerned, the mutual conductance of a

triode depends primarily upon the cathode-grid spacing. The smaller

the cathode-grid spacing, the larger the mutual conductance. The

mutual conductance also increases, though to a smaller extent, as the

ratio of cathode-plate to cathode-grid spacing is decreased and as

the amplification factor is increased.

It will be observed further that the mutual conductance increases as

both the equivalent voltage and the current are increased. A specifica-

tion of mutual conductance is really meaningless unless the corresponding

voltages are also indicated. The variation of mutual conductance with

the one-third power of current is a general law that holds well for all

types of tubes, including pentodes as well as triodes.

8.7. Mutual Conductance of a Cylindrical Triode. The current law

and mutual conductance of cylindrical triodes are readily evaluated by

an analysis similar to that used for the plane-electrode triode. The

current is given by

amperes per volt

per unit area
(8.48)

I

I

14.66 X 10-«

rgPcg^ 1 +

amifresper ^
unit length

‘ Walker, G. B., Theory of the Equivalent Diode, Wireless Engr., vol. 24, pp,

5-7, January, 1947.
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where Vg and Vp are grid and plate radii and the combination subscripts

indicate that /3^ is to be determined by the ratio of the radii of the elec-

trodes indicated by the subscripts.

The mutual conductance is

amperes per volt , . .

per unit length ^ '

8.8. Effect of Filamentary Emitters, When tubes have filaments

instead of solid cathodes, a number of effects contribute to making the

Vp/1^

Fig. 8.11.—Filament voltage-drop emission correction factor.

behavior different from that of tubes with solid cathodes. Foremost
among these is the voltage drop along the filament, which may cause

considerable divergence from the simple three-halves power of current

with voltage. If the plate current is returned to the negative filament

lead, the current is at all times less than that for a unipotential cathode
but becomes nearly equal to that value for large values of the ratio of

plate to filament voltage. The ratio of the current without to that with a
unipotential filament is shown in Fig. 8.11. This is essentially a cor-

rection factor for the fact that the filament potential is not uniform.
The ratio of currents is 0.4 for a plate- to filament-voltage ratio of 1,

dropping linearly to 0 with this ratio for plate voltages less than the

filament voltage. When the plate voltage exceeds the filament voltage

by more than a factor of 15, the current ratio is within 5 per cent of unity.

The above results are arrived at by integrating the emission effect

along the filament, taking into account the different potential differences
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to the plate at each point. Every element of length of the filament

contributes a current

dl
14.66 X 10-«fF(a;)l^ dx

(8.51)

which may be written more simply as

d/ = G[F(a;)P^ dx (8.52)

in which G is the so-called “perveance” of the tube. The perveance

is simply the coefficient of the voltage factor in the Child-Langmuir law.

It contains the geometrical factors of the tube and has dimensions of

current per unit length per volt^.

It is necessary to introduce the potential difference between the fila-

ment and plate as a function of distance along the filament. This is

F(x) = V^-jVf (8.53)

where Fp is the plate potential relative to the negative filament lead, x

is the distance from the negative end of the filament, I is the length of

the filament, and F/ is the potential drop along the filament. With this

substitution, Eq. (8.52) must be integrated from 0 to 1. The results of

this operation fall into two parts.

Case I. Fp < F/ leads to

I = \gV,^'^{^1. (8.54)

Case II. Fp > F/ leads to

/ = |^[Fp^-(Fp-F/)^] (8.55)

For purposes of computation Eq. (8.55) is best put in the form of the

series

I = 3Vf
4Fp ^ 24 VFp;

+
192

+

All the above equations for current can be put into the form

I = GlVj?W

(8.56)

(8.57)

in which F is the current ratio plotted in Fig. 8.11.

Some difficulty is occasionally encountered in calculating currents
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in tubes with filaments and plane electrodes. Neither the plane- nor

the cylindrical-electrode formulas will fit directly here. Experimentally

it is found that there is an equivalent filament area which may be

applied. This equivalent area is obtained by projecting the filament onto

the filament plane and surrounding it by a band twice as wide as the dis-

tance from the filament to the nearest electrode. This equivalent area

may be used either to obtain current in diodes or to obtain current or

mutual conductance in triodes. The same concept may be applied to

helical filaments in cylindrical-electrode tubes.

8.9. Effect of Initial Electron Velocity. In all the foregoing analyses

it has been assumed that the electrons start with zero velocity from a

point of zero potential. This is not

quite correct because of the mecha-

nism of electron emission. Actually,

electrons having zero velocity would

never get started from a cathode in

the presence of space-charge satura-

tion. The electrons come off from

the emitter with a Maxwellian distri-

bution of velocities ranging from zero

to infinity. The distribution is such

that 90 per cent of the electrons have

velocities below volt at usual

cathode temperatures, and fewer and

fewer have successively higher
velocities.

A good idea of what the actual

potential distribution is when the

initial velocities are considered may
be obtained by assuming that all

electrons leave the cathode with the same normal velocity. Because of

the initial velocity, the gradient at the cathode may and does become

negative, and the potential curve moves down until it has a minimum
somewhere close to the cathode at which the potential is negative and

corresponds to the velocity of emission. For this condition the electrons

are slowed down until they all come to rest at the potential minimum.

From this point, which acts like an ideal cathode and which is called a

“virtual” cathode, the electrons may start in either direction, either

being returned to the cathode or going to the plate.

For a condition of space-charge saturation the potential distribution

on either side of the virtual cathode will follow the four-thirds-power law.

The location of the potential minimum will be determined by the fraction

a plane-electrode diode for the case of

uniform initial velocity of emission.
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of the current that goes on to the plate. A typical potential distribution

is shown in Fig. 8.12.

Let it be assumed that the fraction of the emitted current which

continues on to the plate is given by P. Then if the emitted current per

unit area is /«, the current to the right of the potential minimum is PJe

and that to the left is (2 — P)Je. The current to the left of the mini-

mum is made up of the emitted current Je going in one direction and the

returning current (1 — P)Je going in the other. As far as the space-

charge effects are concerned, the directions of these current components

are immaterial because the charge densities add regardless of sign.

The relation between current, potential, and distance to the right

of the minimum is given by

y _ 2.335 X 10-«(F + amperes per , .

(x - unit area

where V is potential with cathode potential taken as zero, Vm is the

magnitude of the negative potential at the minimum, x is the distance

measured from the cathode, and Xm is the distance from the cathode to

the minimum.
Similarly the relation to the left of the minimum is

(2 - P)J, = 2.335 X 10-«(Fm +
{xm - xy

amperes per ,g

unit area
^ ‘

where V and Vm are magnitudes of potential. Equations (8.58) and

(8.59) give the potential distribution if the magnitude and the location

of the potential minimum and the fraction of the transmitted current are

known.

To determine the factors in terms of which Eqs. (8.58) and (8.59)

are expressed let these two equations be evaluated at the plate and

cathode, respectively. Then

amperes per

unit area

amperes per

unit area

Taking the ratio of these two expressions and solving for a;„.

PJe =

and

(2 - P)J. =

2.335 X lO-’^fFp +
^Xcj? Xm)

2.335 X 10-6(F„)«

(8.62)

from which the location of the potential minimum can be determined
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for any assumed fraction of transmitted current. The magnitude of the

potential at the minimum is known from the initial velocity.

The results of the above analysis are not exact because in the actual

case there is a distribution of velocities, with the result that the position

and magnitude of the potential minimum and also the fraction of the

transmitted current are uniquely determined from the potential and

cathode temperature. An exact analysis considering the velocity dis-

tribution is given by Langmuir. The exact expressions are quite

involved, but some approximate expressions which are accurate to within

about 2 per cent take the following form

:

2.335 X 10-«(Fp - f, 0.0247T« 1

(X., - "
(F,

- F.)^0 ^
^ ^

i.0247T«

— FP “ m)
(8.63)

where J, is emitted current per unit area

PJe is current per unit area passing potential minimum
Fp is plate potential

Vm is magnitude of minimum potential relative to cathode

Xcp is cathode-plate distance

Xp, is cathode-potential-minimum distance

T is cathode temperature, °K
The location of the potential minimum is given by

= 0.0156(1,000/)

The corresponding magnitude of potential minimum is

Vlooo/
(8.64)

(8.65)

where P is the fraction of the emitted current transmitted to the plate.

The exact relations for space-charge-saturated flow with initial

electron velocity are given by Langmuir in the form of the universal

curve I of Fig. 8.13. This curve gives potential as a function of distance

with the origin arbitrarily taken at the potential minimum. For com-

parison there are also shown the potential-distribution curves of Eqs.

(8.63) and (8.8) as curves II and III, respectively. It is seen that the

actual potential distribution is considerably different from that of the

Child-Langmuir law beyond the potential minimum and is totally differ-

ent from a four-thirds-power law to the left of the potential minimum
except in its immediate vicinity.

A study of the approximate relations given above and of the universal

potential-distribution curve reveals the following effects of initial velocity

‘ Langmuir and Compton, op. cit.. Part II. n. 243

.
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upon space-charge flow : The larger the emitted current and the cathode

temperature, the greater the magnitude of the potential minimum. The

lower the cathode temperature and the larger the plate potential, the

closer the potential minimum approaches the cathode and the lower it

becomes. The plate current considering initial velocity is larger than

that obtained from the Child-Langmuir law because the potential differ-

ence between the virtual cathode at the potential minimum and the plate

rpV/t

Fig. 8.13.—Universal diode potential-distribution curve including effect of Max-
wellian distribution of emission velocity (Langmuir). (See discussion on page 193.)

is greater than the actual plate potential, because the distance from the

virtual cathode to the plate is less than the actual cathode-plate distance,

and because the electrons leave the virtual cathode with an average

velocity that is greater than zero.

The distance of the virtual cathode from the actual cathode may be

appreciable. For a cathode temperature of 1000°K and a transmitted

current density of 1 ma per cm^, the distance from the cathode to the

virtual cathode is approximately 0.006 in. In modern close-spaced

electrode tubes, this distance is by no means inappreciable.

When the fraction of the emitted current transmitted beyond the

virtual cathode is not known, it is necessarv to solve Eqs. (8.63) to (8.65)
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by trial to determine the transmitted current for a given electrode

spacing, plate potential, and cathode temperature.

8.10. Effect of Space Charge upon Transit Time in Diodes. In

general, the transit time in an electric field is given by the integral of the

reciprocal of velocity with respect to distance.

T =
(8 .66)

For the plane-clectrode diode the transit time with and without space

charge is easily determined. Without space charge the potential profile

is a straight line so that

V(x) (8.67)
ilcp

where V{x) is the potential at any distance x from the cathode, Fp is

the plate potential, and dcp is the cathode-plate distance. The velocity

at any point, assuming zero initial velocity, is then given by

so that the transit time is

with the result that

(8 .68 )

(8.69)

(8.70)

When space charge is present in the plane-electrode diode, then the

potential follows a four-thirds-power law so that

V{x)

The velocity at any point is then given by

so that the transit time is

T

with the result that

=^ ['

Vp Jo
x~^ dx

rji _ 3dcp

Vp

(8.71)

(8.72)

(8.73)

(8.74)
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This is seen to be of the same form as for the space-charge-free case,

the only difference being that the time is 50 per cent greater.

For the cylindrical-diode case in the absence of space charge the

potential profile is a logarithmic function.

V = Vp (8.75)

where r is the radial distance to any point and and are cathode and
plate radius, respectively. The velocity at any point is

The transit time for this case is

If the substitution

(8.77)

(8.78)

be made, then the transit time is

T = (8.79)

This is now in a form which can readily be evaluated by series integration

and in which it is apparent that the integral is not infinite. The results

may be expressed in the form

T = (8.80)

where d is the distance between plate and cathode and B is a

function of the ratio of plate to cathode radius given in Fig. 8.14. It
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is seen that when the cathode is inside the transit time is less than that

in the plane-electrode case for the same distance and potential.

When there is space charge present in the cylindrical diode, the

potential profile is given by

where r is the radius to any point and is the function given in Fig. 8.4,

the subscripts indicating the distances determining the ratio for which

the function is evaluated. The velocity is

V = (8.82)

The integral for the transit time is now

T =
Vp

(8.83)

If again the substitution of Eq. (8.78) be made.

T = (8.84)

r
This is readily evaluated numerically for small values of —

To

T
values of - the form

Tc

For large

(8.85)

is more suitable for computation. The results of the computation can

be put into the form^

(8 .86)

in which the function A is that shown in Fig. 8.14. In this figure

it is seen that in the cylindrical diode with space charge and an internal

cathode the transit time is less than for the corresponding plane electrode

but more than for the same case not space-charge-limited. In the

* Ferhis, W. R., Input Resistance of Vacuum Tubes as Ultra-high-frequency

Amplifiers, Proc. I.R.E., vol. 24, pp. 82-107, January, 1936.
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curves of Fig. 8.14 are also included the values for cylindrical diodes

with the cathode outside. These are seen to have larger transit times

than the plane-electrode diode, which in turn has larger transit times

than the cylindrical diode with the cathode inside.

8.11. Summary. The primary effect of space charge in a tube is to

make the transmitted current follow a three-halves-power law of plate

voltage. In addition, it makes the plate current virtually independent

of the filament voltage. Modern tubes are designed so that the emission

at rated voltages is more than sufficient to supply the current required

Fig. 8.14.—Transit-time curves of a cylindrical diode (Ferris). The parallel-plane

case is given by t^Itc = 1.

by the Child-Langmuir law. Under these conditions the emission is

said to be space-charge-limited. The nature of this saturation is shown

in Fig. 8.15. Here is shown the variation of the plate current in a diode

with cathode heating power for different voltages. If the cathode

emission is not very great, a departure from the three-halves-power

law of voltage occurs at relatively low voltage. This occurs when the

plate is collecting all the current emitted from the cathode and gives

rise to what is known as temperature saturation. This effect is shown

in Fig. 8.16. Here is shown the plate current in a diode as a function of

plate voltage for various cathode powers. For low voltages the curve

follows the three-halves-power law, and then at some point determined
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by the cathode emission the current becomes nearly independent of the

plate voltage. The nature of the saturation in this case depends upon
the type of emitter. With tungsten as an emitter, the emission is very

nearly independent of plate voltage in the saturation range. With
thoriated tungsten and even more so wdth oxide emitters the emission

increases slowly with plate voltage in the saturation range. This is

because the emission depends upon the gradient at the cathode (Schottky

effect) . In the case of oxide emitters the increasing gradient through the

Fig. 8.15.—Diode plate current as a function of cathode

power.

emitter increases the liberation of emitting material in addition. In a
well-designed tube, temperature-saturation effects will not occur at

rated voltages.

In addition to the three-halves-power law of voltage and the satura-

tion effects mentioned above, space charge has the effect of reducing the

capacity between electrodes. The capacity between the cathode and
plate of a space-charge-saturated diode is three-fifths of that of the cold

diode. ‘ Further, transit times are in general increased over the diode

' Llewellyn, F. B., “Electron Inertia Effects,” p. 50, Cambridge, London, 1941.
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without space charge, being 50 per cent greater in the space-charge-

saturated diode with plane electrodes.

Power relations are unchanged. Although the voltage and gradient

distribution are different in the presence of space charge and in its

absence, the velocity of an electron is always the same relative to the

potential, as is required by the energy equation (6.4). The power put

Fig. 8.16.—Diode plate current as a function of plate voltage.

into the tube, as evidenced by the product of the voltage across it and

the current through it, appears in the form of heat at the plate. The
energy of impact of each electron is }/^Tnv^, and the number of electrons

dv
striking the plate per unit area per second is The product of these

is recognized as JV per unit area.



CHAPTER 9

TRIODE CHARACTERISTICS

9.1. Control Action of the Grid. The triode in its commonest form

consists of an emitter surrounded by a grid, which in turn is surrounded

by a plate. The grid is usually a mesh of fine wires supported quite close

to the cathode. The plate is spaced several times as far away. The entire

structure is supported in an evacuated glass or metal envelope with leads

to the electrodes coming out through glass on the bottom of the tube.

The outstanding feature of the triode is the ability of the grid to

control the flow of current to the plate without itself drawing any current.

As a result of this property, a small voltage on the grid is capable of

producing a large voltage drop in the plate circuit. Because of the fact

that the grid draws no current, the triode, at all but very high frequencies,

is a voltage-operated device in that virtually no power is required to

operate the tube. The term “electric valve” for a vacuum tube is

particularly expressive because the grid has an electrical valve action.

Vacuum tubes do not really amplify power. Actually, the grid controls

the flow of power from the plate power supply.

In the chapter on Electrostatic Field of a Triode it was shown that

both the plate and the grid electrodes were able to control the gradient

of potential in front of the cathode. It was also shown that the grid was
much more effective in so controlling the off-cathode gradient, in fact,

IX times as effective. When a tube is conducting, the negative charge

of the electrons passing through the tube produces a space charge that

alters the potential distribution in the tube, particularly in the vicinity

of the cathode, but the control property of the grid is not impaired.

The potential distribution between the cathode and grid, for usual

combinations of potentials, is now a curve that is concave upward
(for plane electrodes) instead of being nearly a straight line. The
positive plate potential reaches through the grid and causes the potential

on the cathode side of the grid to be positive. Electrons are drawn off

the cathode into this region of positive potential and are drawn to the

positive plate between the negative-grid wires from whose immediate

vicinity, however, they are strongly repelled. The negative control

grid easily regulates the degree of positiveness of the potential before

the cathode. This the grid is able to do primarily because of its greater

proximity to the cathode.

201
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9.2. Current-voltage Characteristics of the Triode. The plate cur-

rent in a triode depends upon both the plate and the grid voltage. It

also depends upon the filament voltage, but this is usually held at some

suitable fixed value. Hence it is usual to describe the current charac-

teristics of a triode in terms of grid and plate potential alone.

triode.

Plate-current-Grid-voUage Characteristics. As mentioned in the previ-

ous chapter, the space current in a triode is given approximately by

L = h + h = G{v, +^ (9.1)

where 7* is space current

Ip is plate current

Ig is grid current
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G is perveance

Vg is grid voltage

Vp is plate voltage

fi is amplification factor

d is a constant, approximately

When the grid voltage is negative, the entire space current goes to the

plate. Even when the grid is positive, the fraction of the space current

going to the grid is small so that Eq. (9.1) is a reasonably good approxima-

tion for plate current under all conditions except the combination of

very small plate voltage and rather large positive grid voltage. An actual

Fig. 9.2.—Plate-current-plate-voltage characteristics of a triode.

plot of plate current as a function of grid voltage is shown in Fig. 9.1.

The principal characteristics are quite evident and consistent with

expectations. The plate current is seen to increase with both grid and

plate voltage but more rapidly with grid voltage. Considering the varia-

tion with grid voltage alone, the current increases slowly at first and then

more rapidly. In the region of negative grid voltages the curves for the

different plate voltages are seen to be of nearly the same shape but merely

displaced horizontally. This is consistent mth the form of Eq. (9.1).

For positive grid voltages the rate of increase of current with grid voltage

shows a slight decrease. This is due to two factors. (1) The grid is

beginning to draw a fraction of the total, or space, current. (2) There is

a tendency for the current to saturate at large plate voltages.
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Plate-current-Plate-voltage Characteristics. A typical set of plate-

current-plate-voltage characteristics of a triode is shown in Fig. 9.2.

The same general properties observed in the plate-current-grid-voltage

characteristics are observable here. For negative grid voltages, however,

the curves are not similar in this representation. This is because for

large negative grid voltages the tube is operating near cutoff and here

the amplification factor of the tube is appreciably lower than for grid

voltages near zero. The change in shape of the curves for positive grid

voltages from concave upward to concave downward is due to the diver-

sion of part of the space current to the grid. The actual space current

Pig. 9.3.—Contours of constant plate current.

still has an upward curvature with plate voltage, but the fraction of

space current taken by the grid decreases as the plate voltage increases.

Contours of Constant Plate Current. In Fig. 9.3 are shown contours

of constant plate current plotted along axes of plate voltage and grid

voltage. These curves show the combinations of grid and plate potential

for which the plate current is constant. Over a large part of their range

these contours are parallel straight lines. The significance of this is

that the amplification factor of the tube is very nearly constant. For

small values of plate voltage and positive grid voltages the curves are

curved strongly upward. This is due to the diversion of part of the space

current to the grid. If contours of constant space current are plotted
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(one is shown dashed in the figure), they are found to be nearly straight

lines.

The Plate-current Surface. Inasmuch as plate current is a function

of two variables, it may be represented as a surface. The height of this

surface above a reference plane is given by the magnitude of the plate

current. Position on the reference plane and on the corresponding

point on the surface above is given by the plate and grid voltage. A
sketch of the plate-current surface is shown in Fig. 9.4. The relation

of the surface to the three representations of plate current previously

given is evident from the figure. The plate-current-grid-voltage curves

are the intersections of planes parallel to the plate-current and grid-

voltage axes with the surface.

Only a part of the surface is shown, to avoid confusion due to too many
lines. The surface becomes a horizontal plateau for large values of

current due to voltage saturation, i.e., insufficient emission. Since there

can be no plate current for negative plate voltages, the surface turns a

comer as it approaches zero values of plate voltage.

9.3; Definition of Triode Constants. Amplification Factor. Although
the characteristics of a triode are completely specified only by a set of

voltage-current curves, an index of the tube’s operation is ordinarily
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given in terms of the so-called tube “constants.” These so-called con-

stants suffice to describe the operation of a tube in the vicinity of a given

set of electrode potentials. The three so-called tube constants are the

amplification factor, the mutual conductance, and the plate resistance.

The amplification factor is a function of the electrode geometry and
has already been given in terms of the dimensions. It has previously been

given for a cold tube as the relative effectiveness of the plate and grid

potentials in controlling the off-cathode gradient of potential. Another

definition and the one generally accepted is that amplification factor

is the relative effectiveness of the plate and grid potentials in controlling the

plate current. Mathematically this is given by

dip

If a tube is conducting current under a given condition of potentials and
the plate voltage is then increased by a small amount, the plate current

will increase by a small amount. If then the grid voltage is made more
negative by the proper amount, the current will be restored to its original

value. The limit of the ratio of the change in plate voltage to the change

in grid voltage necessary to keep the plate current constant as these

changes are made vanishingly small is the amplification factor of the

tube. This is the significance of Eq. (9.2). The amplification factor of a

tube whether a triode or multielectrode tube is always taken with respect

to the control-grid voltage unless otherwise specified. In triodes the

amplification factor is a measure of the voltage-amplifying capabilities

of the tube. In multielectrode tubes it has no great significance and is

usually not even listed. Amplification factor is a dimensionless constant.

Practical values of amplification factor run from 2.5 to 200 in ordinary

triodes.

Mutual Conductance. The mutual conductance (sometimes called

the “transconductance”) of a triode has already been referred to in the

chapter on Space-charge Effects. The mutual conductance of a tube is

the rate of change of plate current with control-grid voltage. Mathematically
this is given by

An increase in the grid voltage of a tube effects an increase in the plate

current. The limit of the ratio of the changes as the change in grid

voltage is made vanishingly small is the mutual conductance. It will
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be remembered that the mutual conductance of a triode is directly

proportional to the square root of the equivalent voltage of the tube.

It is also proportional to the cube root of the space current. As the

name implies, the dimensions of this constant are those of conductance.

Mutual conductance is usually expressed in units of micromhos or micro-

amperes per volt. Practical values of mutual conductance are between
100 and 10,000 micromhos.

Plate Resistance. Another tube constant that is commonly used is

the plate resistance, also known as the “variational plate resistance”

or the “dynamic plate resistance.” The plate resistance of a tube is

the reciprocal of the rate of change of plate current with plate voltage.

Mathematically it is given by

dip dip \dlp /Fjconet

dVp

(9.4)

The plate resistance of a tube is the a-c resistance of the plate circuit

to a small alternating voltage superimposed upon the direct voltage.

The dimensions of this constant are those of resistance, and the magni-

tude is usually expressed in ohms. The plate resistance of a criode may
vary from 1,000 to 50,000 ohms. A typical value is of the order of

5,000 ohms.

Relation between Tube Constants. The three tube constants express

relations between the quantities that determine triode operation, viz.,

plate current, plate voltage, and grid voltage. Since the three constants

are expressed in terms of only three variables, it is expected that there

is a relation between them. This is the case. If plate and grid voltage

are changed by small amounts, the corresponding change in plate current

is

dip = +^ dVp (9.5)

or

dip = Gm dV

g

-j- ^ dV

p

(9-0)

If the change in plate current is held to zero, then

This relation, viz., that the product of the mutual conductance and the

plate resistance is equal to the amplification factor, holds exactly for any
tube for any combination of electrode potentials.
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Variation of Tube “ Constants.” The rather paradoxical heading

of this subsection is justified by the fact that the so-called tube constants

are not constants at all except approximately so in the vicinity of some

operating condition. Actually, the constants may vary considerably

over the entire range of voltages and currents in a tube. Of the so-called

tube constants, the amplification factor varies the least. This is because

it is basically dependent upon the geometrical structure of the tube. If

the tube were perfect in that there were no end effects and no asymmetries

and if no other electrode but the plate drew current, the amplification

factor would not vary at all.

Grid voltage

Fig. 9.5.—Contours of constant amplification factor of a triode.

From the definition of amplification factor it is seen that it is given

by the negative reciprocal of the slope of the contours of constant plate

current in Fig. 9.3. Inspection of the plate-current contours with this

in mind reveals that for the most part the amplification factor is fairly

constant. It tends to be somewhat low in the vicinity of very low plate

currents and even more so in the vicinity of very low plate voltages.

A better idea of the nature of the variation of the amplification factor is

given in Fig. 9.5, in which there are shown contours of constant amplifica-

tion factor superimposed upon the plate-current-grid-voltage curves of

a triode.^ The amplification factor is seen to be fairly constant over the

entire working range of the tube. Variations in magnitude do not exceed

1 Terman, F. E., and A. L. Cook, Variation in the Amplification Factor of Triodes,

Proc. I.R.E., vol. 18, pp. 1044-1047, June, 1930
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15 per cent of the mean value. The drop in amplification factor near

cutoff is due to end effects in the tube. Because of stray electrostatic

fields near the edges of the electrodes, these edges constitute a region

of low amplification factor. Thus the actual tube consists of a large

electrode area of constant mu in parallel with a small area of much smaller

mu. As cutoff is approached, the low-mu portion of the tube cuts off

last, giving the effect of a lower amplification factor. The reason why
the amplification factor is lower for low plate voltages in the positive-

grid region is that here the grid takes a very large portion of the space

current. Since, as will be shown later in this chapter, the fraction of the

I.V I..

Plate milliatnperes

Fig. 9.6.—Variation with plate current of G„, Rp,

and M of a Type 6F6 as triode.

space current going to the plate increases with plate voltage, a smaller

increase in plate voltage relative to a decrease in grid voltage is needed

to maintain the plate current constant when the grid voltage is positive

than when it is not. This means that the amplification factor is lower

for the conditions stated above.

From the definition, mutual conductance is seen to be equal to

the slope of the plate-current-grid-voltage curves. Reference to these

curves confirms that the mutual conductance is an increasing function

of plate current in the region of negative grid voltages.

The mutual conductance of a triode has been shown in the chanter
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on Space-charge Effects to increase with the equivalent voltage and with

the plate current. The nature of the variation is shown in Fig. 9.6.

The variation is quite in accord with expectations as may be shown by
plotting the variation of mutual conductance with plate current on

logarithmic paper. Such a plot is given in Fig. 9.7 for the same tube.

Here it is seen that, since the curve of mutual conductance as a function

of plate current is nearly a straight line with a slope of one-third, the

Fig. 9.7.—One-third-power-law variation of mutual conductance

and plate resistance with plate current, 6F6 as triode.

mutual conductance follows very closely a one-third-power law of varia-

tion with plate current as was predicted in Eq. (8.48). The correspond-

ence between the predicted and actual behavior is best at high currents.

At low currents the variation departs somewhat from the one-third-

power law because of the reduction in amplification factor.

Since the product of the mutual conductance and the plate resistance

is equal to the amplification factor and since the amplification is almost

constant, the plate resistance may be expected to vary with plate current
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in a fashion reciprocal to that in which the mutual conductance does.

This is seen to be the case in Fig. 9.6. Examining the variation more

critically, Fig. 9.7 shows that the plate resistance varies nearly as

the negative one-third power of plate current. The plate resistance

is the reciprocal of the slope of the plate-current-plate-voltage charac-

teristics of a tube. Reference to Fig. 9.2 shows that the plate resistance

decreases with increasing plate current in the negative-grid region.

For positive grid voltage the plate resistance may increase again. The
plate resistance is lowest at high currents and low plate voltages.

The total range of all the tube constants within a single tube may be

considerable. The amplification factor may vary over a range of 20

per cent. The plate resistance and the mutual conductance may vary

over a range of three to one. The range of values of the constants

encountered from triode to triode is even more considerable. In Fig.

9.8 are shown the tube constants for conditions of recommended opera-
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tion of a number of triodes. The representation is such that the location

of the point corresponding to each tube gives the three tube constants.

High amplification factors, of the order of 100 or so, may be obtained,

but at the expense of a low mutual conductance and a correspondingly

high plate resistance.

9.4. Effective Tube Constants of Combinations of Tubes. It is of

interest to consider what the effective tube constants are when two or

more tubes are connected in parallel. Consider first the case of identical

tubes connected in parallel. The effect of this is to double the mutual

conductance, halve the plate resistance, and leave the amplification factor

unchanged. This is logical, for with two tubes contributing current

an increase in grid voltage produces twice as much of an increase in plate

current as does a single tube. This explains the doubling of the mutual-

conductance value. Since the variations in plate current for a given

change in plate voltage are twice as great as for a single tube, the plate

resistance is half as great. The amplification factor is unchanged because

the product of mutual conductance and plate resistance is the same as

for a single tube.

If tubes with different characteristics are connected in parallel, the

combination characteristics are still readily determined. The effective

mutual conductance is simply the sum of the individual mutual con-

ductances since the plate currents add directly.

(rmeauiv = Gml + Gm2 + ‘ (9.8)

The equivalent plate resistance is obtained by adding the individual

plate resistances as one adds resistances in parallel.

Rv
= ± + ± +

Rpi Rp2
+

Rv
(9.9)

In other words, the equivalent plate conductance, reciprocal of plate

resistance, is the sum of the individual plate conductances.

The equivalent amplification factor is given by the product of the

equivalent mutual conductance and the equivalent plate resistance as

given by Eqs. (9.8) and (9.9). For the special case of two tubes in

parallel the expression for the equivalent amplification factor reduces to

Mequiv
fiiRpi -j- y^iRpi

Rp\ + Rp2
(9.10)

The equivalent amplification factor of tubes in parallel may be higher

or lower than one of the individual values but will lie within the extreme

values. The equivalent amplification factor will generally decrease as

the grid is made more negative. This is because the high-mu tubes
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Plate volts

Plate volts

Fig. 9.9.—Comparison of plate-current-plate-voltage curves of

the sharp- and remote-cutoff triode of a 6AE6G.

will cut off first, leaving the low-mu tubes to carry current alone. The

action may be illustrated in the case of two tubes by studying the rate

of change of the equivalent mu with respect to grid voltage. Holding

the individual mu’s constant in Eq. (9.10),
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dVg (Rpl + RpiY
(9.11)

The nature of the rate of change of the equivalent mu with respect to

grid voltage is, assuming in > (ii, determined only by the sign of

_d_

dV,
I Rpi\

\Rp2/
If, further, the mutual conductances of tubes are the

R
same, then the slope of ^ will be positive. As a result, the equiva-

tip2

lent amplification factor will increase as grid voltage is increased.

The above type of analysis may be extended to the case of more
tubes in parallel. It may also be extended to tubes in which the amphfi-

cation factor is not constant along the cathode surface. Tubes having

grids wound with a variable pitch are often used to obtain an amplifica-

tion factor that decreases with increasing bias. Such tubes are exten-

sively used in r-f amplifiers for automatic volume control.^ Such tubes,

also known as “remote-cutoff tubes” or “supercontrol tubes,” have the

characteristics of a low-mu tube at low plate currents and of a high-mu

tube at large currents.

Such tubes have a tremendous variation of mutual conductance as

well as the variation in amplification factor. This large variation results

from the combination of the normal increase in mutual conductance with

current and the increase in amplification factor with equivalent voltage.

In Fig. 9.9 are compared the plate-current-plate-voltage characteristics

of triodes which are identical except for the fact that one has a constant-

pitch grid, whereas the other has a variable-pitch grid. The reason for

the designation “remote cutoff” as contrasted with “sharp cutoff”

is apparent.

9.6. Electron Paths. In the previous discussion, tube characteristics

have been studied without reference to the electron paths. This has

been possible because from space-charge considerations it is possible to

determine the number of electrons transmitted past the virtual cathode

in front of the actual cathode. For negative grid voltages, all the

electrons leaving the cathode will be transmitted to the plate. For

positive grid voltages, however, part of the emitted current is intercepted

by the grid, and here the actual electron paths are of interest. Electron

paths are also of interest in multielectrode tubes, where they have a

considerable part in determining the tube characteristics. ^

* Baliantine, Stuabt, and H. A. Snow, Reduction of Distortion and Cross-talk

in Radio Receivers by Means of Variable-mu Tetrodes, Proc. I.R.E., vol. 18, pp. 2102-

2127, December, 1930.

* Thompson, A. C., Electron Beams and Their Application in Low Voltage Devices,

Proe. I.R.E., vol. 24, pp. 1276-1297, October, 1936.
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In Fig. 9.10 are shown electron paths in a triode operating with a

negative grid. These curves were obtained by photographing the motion

Fig. 9.10.—Electron paths in a negative-grid triode (Kleynen).

of small balls rolled upon a suitably deformed elastic membrane. Such
a model of potential takes no account of space-charge effects. It may
be expected that in this case the presence or absence of space charge will
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make no great difference in the electron paths. The space charge is

most pronounced close to the cathode. Here the gradient of potential

is normal to the cathode, and the electrons will move in straight lines

away from it, it being assumed that it is plane. Deflecting components

of field are not encountered by the electron until it approaches the grid

plane. Here, however, the velocity of electrons passing midway between

Fig. 9.11.—Electron paths in

the grid wires will be considerable and the space-charge effects will be

less. In contrast, electrons approaching a grid wire directly and there

turned back will be most affected by the space charge because the

velocity tvill be low' near the wires.

The successive parts of Fig. 9.10 show the effect of making the grid

more and more negative until cutoff is reached. The sidewise deflecting

forces become greater as the grid is made more negative until some of the

electrons are turned back, Up to that condition the electrons are passed
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through the grid wires in a bunch that is focused beyond the grid plane.

Coupled with the condition of more electrons being turned back as the

grid voltage becomes more negative is the fact that fewer electrons get

by the virtual cathode. Both factors contribute to the reduction in

current, though the latter predominates greatly.

When the control grid is positive, it may attract electrons. The

normal interception of current by the grid is roughly proportional to the

projected area of the grid, though there is a strong dependence upon

a positive-grid triode (Lange).

the relative voltages of the grid and plate. In Fig. 9.11 are shown some

electron paths for a positive-grid triode.^ These paths were calculated

by the use of the action function, as described in the chapter on Laws of

Electron Motion. The solid contours are equipotentials, the broken-dash

contours are surfaces of constant action, and the electron paths are drawn

1 Lange, H., Current Division in Triodes and Its Significance in the Determination

of Contact Potential, Zeit. Hochfrequenz, vol. 31, pp. 105-109, 133-140, 191-196,

1928.
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perpendicular to these. When the grid is positive but less than its

“natural potential,” i.e., that which would give the diode potential

distribution in the tube, the action of the potential field causes these

electrons, which initially miss the grids, to converge beyond, as was

the case with the negative-grid triode. This situation is shown in part g

of Fig. 9.11. When the grid is more positive than its natural potential

and also more positive than the plate, as in a and h of Fig. 9.11, the

potential field has a divergent action and the electrons are pulled into

the grid wires. In a of Fig. 9.11 is shown the case of a positive grid

with a plate at zero potential. Electrons that missed the grid initially

will just barely graze the plate and then be pulled back toward the posi-

tive grids. Individual paths in this case will differ greatly, but in general

the electrons will oscillate around the grid wires a few times before finally

falling into them. This is the action encountered in a Barkhausen-Kurz

oscillator.

9.6. Grid Current. Voltage amplifiers are operated with negative

grid voltages, which means that grid current cannot flow. Power

amplifiers of the Class B and C type are operated with the grid positive

over an appreciable portion of the cycle during which grid current does flow.

The grid current that does flow determines the power that is necessary

to drive such amplifiers, and thus the matter of grid current is one of

considerable importance.

Grid-current-Grid-voUage Characteristics. Qualitatively, the current

to the grid of a triode is expected to increase as the grid voltage increases.

This occurs because a more positive grid attracts electrons more strongly.

Some typical grid-current-grid-voltage curves are shown in Fig. 9.12.

These have the expected shape. The increase in grid current with grid

voltage is more rapid than is the case for plate current. The curves for

successively higher plate voltage fall below those for lower plate voltages.

Thus in contrast to the grid-voltage variation, the grid current decreases

with increasing plate voltage at a fixed grid voltage. This is logical,

however; for as the plate is made more positive, the electrons are pulled

past the grid more rapidly. They thus move in straighter lines, and

therefore fewer of them are pulled into the grid. The current charac-

teristics in the presence of secondary emission may be greatly different

and will be treated separately later.

Grid-current-Plate-voUage Characteristics. Some typical grid-current-

plate-voltage curves are shown in Fig. 9.13. For positive plate voltage

the primary grid current decreases with increasing plate voltages as just

noted. Curves for high positive grid voltage are shown above those

for lower grid voltage. Grid current may flow when the plate voltage

is negative, though such an operating condition is rarely encountered
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in practice. For this condition all the emitted current is taken by the

grid. The grid current drops slightly as the negative plate voltage is

made more negative. This is because the space current itself is reduced

owing to the reduction in the equivalent voltage in the triode.

Constant-grid-current Contours. Contours of constant grid current

are shown along with contours of constant plate current in Fig. 9.3.

Fig. 9.12.—Grid-current^grid-voltage characteristics of a

type 35T triode.

Grid current flows only when the grid is positive. The positive-grid-

negative-plate quadrant is not shown because it is of httle practical

value. In the absence of secondary emission the contours present an

orderly appearance. The contours follow no simple law as do the plate-

current contours in the negative-grid region. The increase in grid

current wdth grid voltage is much more rapid than the decrease with plate

voltage.
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The Grid-current Surface. Just as it was possible to draw a surface

for the plate current as a function of grid and plate voltage, so is it

possible to draw one for grid current. A sketch of such a surface is

shown in Fig. 9.14. The previous representations of grid current will

be recognized as part of this picture. The grid-current-grid-voltage

Fig. 9.13.—Grid-current-plate-voltage char-

acteristics of a type 826 triode.

curves are the intersections of the grid-current surface with a plane

parallel to the grid-current and grid-voltage axes. The grid-current-

plate-voltage curves are intersections of the surface with a plane parallel

to the grid-current and plate-voltage axes. The constant-grid-current

contours are intersections of the grid-current surface with planes parallel

to the grid-voltage and plate-voltage axes.

It is possible to define constants to describe the grid-current action,
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but this has no great value. It is of interest to note a few relations,

however. The grid-current-plate-voltage transconductance is negative.

The equivalent amplification factor for the inverted triode, i.e., one whose

grid is positive and whose plate is negative, is the reciprocal of the normal

amplification factor of the tube.

Effect of Secondary Electrons. Secondary electrons are created

whenever an electrode is struck with primary electrons that have been

accelerated through more than a few volts. Triode characteristics are

not affected much by secondary electrons as long as the grid is negative,

for the secondary electrons that are formed at the plate are attracted

back into the plate because there is no electrode more positive for them

to go to. When the grid is positive, however, the secondary electrons

formed by primaries striking the grid usually have a more positive plate

to go to. As a result, the net grid current becomes the difference between

the primary- and secondary-electron current. The magnitude of the

secondary-electron current may be sufficient to distort the primary-

grid-current curves almost beyond recognition.

When both grid and plate potentials are positive, secondary electrons

are formed by primaries striking both. When the plate is more positive

than the grid, the secondary electrons from the grid will be attracted

to the plate but those formed at the plate will be attracted back into the

plate. When the grid is more positive than the plate, the situation is

reversed and secondaries from the plate will be attracted to the grid

but those created at the grid will be attracted back into the grid itself.

The result of this action upon the grid-current-grid-voltage charac-

teristics is shown in Fig. 9.15. In this figure is shown a typical grid-

current-grid-voltage curve in the presence of secondary emission
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compared with the primary-grid-current curve. For small grid voltages

very few secondaries are created, and hence the currents with and without

secondary emission are almost equal. As the grid voltage is increased,

more secondaries are created and attracted to the plate. The grid

current is therefore reduced by the amount of the secondary current to

the plate. The grid current may be reduced enough to become negative.

As the grid becomes more positive, more secondaries are likely to be

Grid voltage

Fig. 9.15.—Influence of secondary emission upon the grid-cur-

rent-grid-voltage characteristics of a triode.

created but the gradient of potential driving them to the plate becomes

smaller, until finally it becomes negative when the grid potential exceeds

the plate potential. As this occurs, the primary grid current exceeds

the net grid current by less and less until when the grid potential and

plate potential are equal the net grid current is nearly equal to the primary

current. As the grid voltage is increased still further, the number of

secondary electrons created at the grid surface becomes still greater but

these electrons are confronted by a negative gradient of potential on all
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sides and so are attracted back into the grid. Now, however, secondary

electrons liberated from the plate are confronted by a positive gradient

of potential that attracts them to the grid. The grid current is now
greater than the primary grid current.

An action similar to that described above shows itself on the grid-

current-plate-voltage curves. When the plate is less positive than the

grid, secondary electrons from the plate are attracted to the grid and
hence the actual grid current is greater than the primary grid current

Fig. 9.16.—Influence of secondary emission upon the grid-current-

plate-voltage characteristics of a triode.

When the plate voltage is more positive than the grid voltage, secondary
electrons from the grid are attracted to the plate and the grid current is

less than the primary value. This action is shown in Fig. 9.16. Points

of equal grid and plate voltage are crossover points of net and primary
grid current. These points are marked by circles.

The effect of secondary emission upon the contours of constant grid

current may also be considerable, especially if the secondary emission

is great enough to make the grid current negative. In Fig. 9.17 are shown
some constant-grid-current contours of a water-cooled tube with a high

degree of secondary emission. The effect of secondary emission is to
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Fig. 9.17.—Effect of secondary emission upon the constant-grid-current contours of

a triode.

9.7. Primary-grid-current Law. The complications introduced by
secondary emission make it very difficult to treat grid current analytically.

A considerable impression can, however, be made upon the subject

of primary grid current. The analytical treatment of primary grid

current is simplified by the observation made in Sec. 6.5 that, for a given

ratio of plate to grid voltage, the electron paths within the tube are not

altered by a change in the magnitude of these voltages. Since the

electron paths are not changed, the division of current between the plate

and grid is not changed and hence the ratio of plate to grid current should

be a function of the ratio ofplate voltage to grid voltage alone and be independent
of the magnitude of these voltages. Were it not for secondary emission

and some other effects such as the change in the position of the virtual

cathode, this would be exactly true. Actually, the correspondence with

expectations is quite good, as is shown in Fig. 9.18, in which there are
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plotted cuives of the ratio of currents as a function of the ratio of volt-

ages. The characteristics in this figure are for a small high-mu trans-

mitting triode with tantalum electrodes. Such a tube is relatively free

of secondary-emission effects. It is seen that the curves for different

potentials superimpose reasonably well. If more curves were given,

they would form a bundle within the limits of the curves shown.

Plcite voltoiqe

Grid voltage

Fig. 9.18.—Electrode-current ratio in a positive-grid triode as a function

of electrode-voltage ratio.

Examination of many tubes shows their primary-current-division

characteristics to have the general form shown in Fig. 9.18. On such

a log-log plot the curves are nearly straight lines with a slope of ^ above

a voltage ratio of 0.8 and with a slope of 2 below a voltage ratio of 0.8.

Accordingly the primary current division may be expressed by

h = 5 for ^ > 0.8 (9.12)

= 1.3925 for < 0.8 (9.13)

and
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where 5 is a constant known as the current-division factor*"* and defined

as the ratio of plate to grid current for equal positive grid and plate

voltages.

Since triodes are seldom operated with the plate less positive than
the grid the form of Eq. (9.12) will be of more concern than that of Eq.

(9.13). The reason for the change of slope, and hence of exponent,

at the voltage ratio of 0.8 is that whereas all the electrons initially

missing the grid go to the plate when the plate is more positive than the

grid some of these will be returned to the grid when the latter is the more
positive. This occurs because electrons that just barely miss the grid

initially are strongly deflected and hence have not a sufiSciently large

component of velocity directed toward the plate to reach it, part of the

electron energy now being in the form of a crosswise component of

velocity. Thus, in addition to the grid intercepting a greater fraction of

the primary space current directly as the grid voltage is made more
positive relative to the plate, an increasingly greater fraction of the

current that initially misses the grid returns to it.

Current-division Factor. A check upon the validity of the empirical

Eq. (9. 12) is given by an examination of the constancy of the coefficient

of proportionality S. This factor 5 is logically called the “current-

division factor’’ since it measures the ratio of plate to grid current for

equal positive grid and plate voltage. It is a convenient reference

point because it refers to a condition that is easy to measure. To
measure the current-division factor it is necessary only to put current

meters in the grid and plate leads of a triode and then connect the leads

to a common voltage source and determine the ratio of currents. The
current-division factor is also a good reference figure because it cor-

responds to the condition of peak current in typical Class C amplifier

operation. If the ratio of plate to grid current in a triode is measured
as a function of equal positive plate and grid voltages, variations of the

sort shown in Fig. 9.19 result. For all the triodes shown, the current

ratio rises sharply with voltage and then assumes a nearly constant value.

The change in the current ratio with low voltages is caused primarily

by the change in the position of the virtual cathode in front of the actual

cathode. At low voltages the virtual cathode is located a considerable

distance out from the actual cathode. As will be shown later, a small

^ Tank, F., Zur Kentniss der Vorgange in Elektrodenrohren, Jahr. draht. Tel. u.

Tel. vol. 20, p. 80, 1922.

* See also Lange, op. cif.

* Evekitt, W. L., and Karl R. Spangenberg, Grid-current Flow as a Factor in

the Design of Vacuum-tube Power Amplifiers, Proc, I.R.E., vol. 26, pp. 612-639,

May, 1938.
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cathode-grid distance leads to a small current-division factor. As
the electrode voltages and correspondingly the current are increased, the

virtual cathode moves back toward the actual cathode, causing the

current ratio first to rise and then quickly to level off. The important

observation about Fig. 9.19 is that the ratio of plate to grid current for

equal grid and plate voltages is constant enough to make it eligible for a

position as a fourth tube constant. The current-division factor in a

tube free of secondary emission is as constant as the mu of the tube.

Fig. 9,19.—Plate-current-grid-current ratio as a function of equal plate and grid

voltage.

Even when a triode has considerable secondary emission, the meas-
ured current ratio for equal positive grid and plate voltages is nearly

equal to the primary current ratio because the interchange of secondary

electrons between grid and plate is small when their voltages are equal.

Approximate Primary-grid-current Law. Since the total space

current in a positive-grid triode is the sum of the grid and plate current,

this can be written

Is — Ip Ig (9.14)

(9.15)
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Then, substituting the relation of Eq. (9.12),

h

The space current itself is given by

/. = G(y, + L.)'

(9.16)

(9.17)

Fig. 9.20.—Comparison of actual and theo-

retical grid current.

where G is the perveance and a is a constant, approximately The

resulting expression for primary grid current is given by

e (y, +
(9.18)

An idea of the accuracy of this approximation is given by Fig. 9.20,

in which actual and theoretical grid-current curves are compared.
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The expression for primary plate current for positive grid voltages

corresponding to Eq. (9,18) is

g(v„

1 +

Current-division-factor Formula. A formula for the current-division

factor may be developed by solving for the point of origin on the

cathode of a limiting electron that grazes the grid for a condition

of equal grid and plate voltages. The distance between the points

of origin on the cathode of the two limiting electrons that strike a grid wire

gives what may be called the “effective grid diameter.” This is always

larger than the actual grid diameter by a matter of 5 to 50 per cent, in

typical cases. When the effective grid diameter or radius is known, the

current-division factor 5 is given by

(9.20)

where a is grid-wire spacing and r„ai is effective grid radius.

The effective grid radius may be solved for in terms of the sidewise

displacement of the electron grazing the edge of a grid wire. The
component of gradient accelerating the electron toward the grid plane is

virtually constant at the cathode value of

= ^ (9.21)
eo

The component of gradient giving the electron its sidewise deflection is

Ey = p 7 —7 ^ (9.22)

2o.„ [cosh cos

where x and y are measured from a grid-wire center as in Fig. 7.17, qc

is given by Eq. (7.14a), and Qg is given by Eq. (7.145). The sidewise

deflection of the grazing electron is very nearly that which is obtained

' Tellegen, B. D. H., De Groote van der Roosterstroom in een Triode, Physica,

vol. 6, pp. 113-116, March, 1926.

* Spangenbebq, K. R., Current Division in Plane Electrode Triodes, Proc. I.R.E.,

vol. 28, pp. 226-236, May, 1940.
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by assuming that the sidewise force on the grazing electron is the same

as that which exists along a line starting on the cathode at a point

opposite the edge of a grid wire and passing tangent to the grid wire.

This assumed force is correct at the point of contact on the grid, at which

point the force is greatest.

Making the small-value approximation for x and taking y as Vg in

Eq. (9.22) above,

2ir£o(a:^ + (9.23)

(Note that this has the correct value when x = 0.)

Upon substituting the approximate values of Ex and Ey from the

above into the acceleration equations (6.41) and (6.42), eliminating time,

and equating grid and plate voltage, the expression for the sidewise

displacement of the grazing electron is found to be

Tg

27r(M + 1) 2dxg
(“)

The effective grid radius is equal to yo + When the expression for

the effective grid radius is applied to Eq. (9.20), it is found that the

current-division factor is

ttfi Tg

'’’’ilJ' + 1 )

(9.25)

in which a = distance between grid wires

H = amplification factor

Tg = grid-wire radius

deg = cathode-grid distance

€ = Napierian base, 2.718

The magnitude of the current-division factor is given by the nomographs

of Fig. 9.21 and 9.22. In Fig. 9.21 is a nomographic chart from which

the effective grid radius is given in terms of the grid-wire spacing, the

cathode-grid distance, and the amplification factor. This chart is read

by means of two perpendicular lines ruled upon a transparent sheet.

The construction cross shown on the chart gives the effective radius of a

type 210 tube. The nomograph of Fig. 9.22 is a graphical representation

of Eq. (9.20) and gives the current-division factor from the effective

grid-wire radius and grid-wire spacing. Examination of Figs. 9.21

and 9.22 shows that the current-division factor increases with both

grid-wire spacing and grid-cathode spacing. The current-division factor

also increases with amplification factor, but only slightly. Typical
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values of the effective grid-wire radius will be 105 to 150 per cent of the

actual grid-wire radius.

Current-division Law in the Presence of Secondary Emission. When
the analysis that led to the current-division factor is generahzed by

allowing the grid and plate voltage to assume general values, the sidewise

deflection of the electron grazing the grid is found to be

±Agp)V, - d,,v^

^dgp(,Vp “
1

“ ^ In ('Me')
‘deg \ /

(9.26)

Equation (9.26) has been arrived at by solving for the sidewise displace-

ment of the electrons grazing the grid as a function of electrode-voltage

ratio. The corresponding current ratio is then readily determined. The
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electrode-current ratio is

Fia. 9.22.—Nomograph of current-division factor.

Upon substituting the value of yi from Eq. (9.26), the current ratio is

Ip O'

2
Op, i^dcg "f" deg

Vp

Ve\
D

)
4- rA

-1-

p) )

- 1
*

(9.28a)

* A somewhat more accurate formula has since been developed by J. H. L. Jonker

and B. D. H. Tellegen, Current to a Positive Grid in Electron Tubes, Philips Research

Reprints, vol. 1, pp. 13-32, October, 1945.
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/p LV, + MV„
I, PV, + QVj,

where L = iradgpn — an{d„p + dcg)D — 2irdgprgH

M = Todgp — 2ntdgprg + adcgDti

P Ct(jigp
I dcg‘}fJ' I

^TrdgpVgfJi

Q OjdcgPy' ^^dgpTg

2d

‘iedcg

(9.286)

Vp/V^

Fig. 9.23.—Primary-current division in a 45 triode.

A plot of Eq. (9.28a) in a typical case shows the curve to be concave

upward as in the dotted curve of Fig. 9.23. In such a plot, the slope

of the true current ratio is between and % so that the assumption of a

one-half-power law when this curve is slightly modified by space-charge

and secondary-emission effects is a reasonable one.
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To check the correctness of the above equation in actual tubes it is

necessary to correct measured curves for the effect of secondary emis-

sion, which is always present to a degree. This is done by an extension

of methods developed for screen-grid tubes. ^

The curves from which the deduction of the true primary distribution

are made are taken as follows; Filament emission is first reduced to the

point where the current is temperature-limited rather than space-charge-

Fig. 9.24.—Effect of secondary emission on current division.

limited. The grid voltage is then set at some value, and the ratio of

plate to grid current is observed as a function of the ratio of plate to grid

voltage by varying the plate voltage only. The grid voltage is then set

at another positive value, and another similar run is made. The two

solid curves of Fig. 9.23 were made by this method.

Because of the various factors that have been held constant and

‘ De la Sabloniere, C. J. L., Die Sekundaremission in Schrimgitterrohren,

Hochfreq. u. Audio., vc' 41, pp. 195-202, June, 1933.
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relations between the various current components a number of relations

exist that must be borne in mind. Before summarizing these relations

the notation to be used must be indicated in detail. Let Ip and Ig be

total plate and grid current, respectively, including secondaries. Let

Ipi and Igi be those parts of the plate and grid currents which are due to

primary electrons, i.e., the primary plate and grid currents. Let Ipi

and Ig 2 be the currents corresponding to all the secondary electrons that

are knocked out of the plate and grid, respectively. This includes not

only those secondary electrons which succeed in getting from one elec-

trode to another but also those which are knocked out of one electrode

and fall back into that same electrode. Let Igp be that fraction of /„2

which does succeed in getting from grid to plate. Similarly, let Ipg be

that fraction of Ip2 which is able to get from plate to grid. Obviously,

if the plate is much more positive than the grid, Igp will be a large fraction

of Ig 2 ,
while Ipg will not exist as a component of Ip 2 because all the

secondary electrons knocked from the plate will be drawn back into the

strongly positive plate.

Let s = The quantity s is a secondary-emission factor measuring
-'<71

the ratio of the number of secondary to primary electrons. Physical

studies have shown that s depends only upon the velocity of the striking

primary electrons for any given surface. Hence, along any curve such

as those in Fig. 9.24, s will be constant since each curve is taken with a

constant value of grid voltage.

Let p = This gives the division of primary current that from

theoretical considerations is a function of the ratio of plate to grid

V
voltage alone. Hence, for any particular value of p is a constant.

k e

Let d = Y' This is the ratio of plate to grid current, including the

secondary-emission effects. The curves of Fig. 9.24 are curves of d

against
* a

Let t — This is a kind of transmission factor for secondary
lg2

electrons. It measures the fraction of secondaries liberated that succeeds

in getting to the plate. Some secondary electrons from the grid have

such a low velocity that they are unable to climb the small potential

hill between the grid and the plate. De la Sabloniere has assumed that

V
for any value of the abscissa ^ the value of t is constant. That is, for
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Y
any value of the same fraction of the secondary electrons knocked

^ g

from the grid succeeds in getting to the plate. This is perhaps the only

assumption which is questionable. The matter is complicated by the

velocity distribution of the secondary electrons, which changes as the

striking voltage of the primary electrons changes. For the assumption

to be strictly true the velocity-distribution curve of the secondary

electrons must expand uniformly as the striking potential of the primary

electrons increases. This is not strictly true but for small ranges of

primary-electron velocity is approximately so. In the curves of Fig.

9.24 the primary-electron velocities are 10 and 50 volts. It was not

found possible to get a good check for velocities of 10 and 200 volts,

this being too great a range of primary velocities.

It will be noted further that the space current for each of the experi-

mentally determined curves is approximately constant.

Consider the ratio

Ipl + Igp

Ig Igl ^gp
(9.29)

Dividing both numerator and denominator by Igi there results

•^pi
_|_

Igp

Ip Igl Igl

Ig
1

Igp
^ T ,

(9.30)

But
Igp Igp Ig 2 .

Igl Ig^Igl
“ ^ (9.31)

so that the above ratio of net currents can be written as

, _ p -b fe

1 - <5
(9.32)

Solving this for ts,

d + l
(9.33)

Let the various
y

curves of d against ^ be numbered 1 .

^ ff

2, and so on.

as shown in Fig. 9. 24. Let the various values of have letters correspond-

ing to them. Thus the abscissa of ^ = 2 might be lettered a, that

. V
of ~ ^ might be lettered b, and so on. If we consider the four points

' a
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formed by the intersection of the upper two curves of Fig. 9.24 and any
two abscissas denoted by a and b, then it is possible to write four equa-

tions of the form of that last given. These will be

and

taSl

lurves

ibSi =

tiSi =

ft1
+ (9.34)

^a2 "Pa

da2 -h 1
(9.35)

1 and 2 with the abscissa a and

dbi — Pb

dbi -|- 1
(9.36)

db2 — Pb

db2 -f- 1
(9.37)

for the other intersections. Since t and p are presumed constant for

y
any particular value of they are given only a lettered subscript.

^ Q

Dividing the two pairs of equations and equating them gi ves

dgl Pa dbl Pb

da2 Pa db2 Jpb

(9.38)

which is the relation that has been sought. This may be solved for

Pb to give

(9.39)

From this last equation it may be seen that if one point, pa, on the true

primary distribution curve is known, then points at any other abscissa

b may be found from a pair of curves giving the net current division in

the presence of secondary emission. The above treatment has been given

for the case of Vp greater than Vg, but a similar treatment can be applied

when this is not so. In this particular instance the primary-current

distribution that was taken as known was that corresponding to the

condition of the grid being at its “natural potential” relative to the

plate. For this case, the electrons move in substantially parallel straight

lines from filament to grid and plate, and the ratio of plate to grid current

IS determined by the ratio of intergrid to grid area. For the 45 tube

this ratio of currents is 14.3 when the ratio of voltages is 2.81.



CHAPTER 10

TETRODES

10.1. Types of Tetrode. A tetrode, as its name implies, is a four-

electrode tube. The four electrodes are invariably, in the order of their

arrangement, the cathode, the control grid, the screen grid, and the plate.

There are two types of tetrode. These are the so-called “screen-grid

tube” and the “beam-power tube.”

The screen-grid tube was the successor to the triode and the prede-

cessor of the pentode, though, as indicated in the chapter on Basic Tube
Types, it is now virtually obsolete and seldom used because of unfavorable

current-voltage characteristics. The ordinary screen-grid tube has a

fine control grid surrounding the emitter, which in turn is surrounded

by a coarser screen grid a considerably greater distance out. The screen

grid is in turn surrounded by a plate. The intended function of the screen

grid was to shield the control grid electrostatically from the plate and
so reduce the tendency toward oscillation that existed in r-f amplifiers.

The screen grid performed this function, but it also introduced some other

characteristics that were not desirable. Specifically, it introduced

secondary emission, which distorts the current-voltage characteristics.

The beam-power tube is a special tetrode with aligned control and
screen grids. It was the historical successor to the pentode. The
pentode was developed to eliminate the secondary-emission action that

appears in the screen-grid tube. The beam-power tube was later found

capable of doing the same thing without an extra grid if proper attention

were paid to grid alignment and to dimensioning.

10.2. Current-voltage Characteristics of the Screen-grid Tube. The
screen-grid tube is usually operated with its screen at a fixed direct

potential and by-passed with a large condenser to ground so that no
alternating components of potential appear on it. The screen grid acts

as a shield between the plate and control grid. Electrostatic lines from
the plate terminate for the most part on the screen grid. This electro-

static behavior does not interfere with electronic action. An electron

stream of varying intensity can still pass between the screen-grid wires.

The current-voltage characteristics of the screen-grid tube are deter-

mined by two principal effects that are at work. (1) The relative screen-

grid and plate potentials determine how the space current will divide

238
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between these two electrodes. (2) The relative positiveness of plate and

screen grid determines how secondary electrons will be interchanged

between these two electrodes. In general, the behavior with regard to

both factors is similar to that which exists in the positive-grid triode.

As far as space-current effects are concerned, the control grid and

screen grid have the principal influence. With respect to first-order

effects, it may be said that the screen grid plays the same role in the

screen-grid tube as the plate does in the triode. The plate has only a

very small influence in modifying space current in the screen-grid tube

because of the shielding effect of the screen grid. The space current is

given by

L -b — + — (10.1)

where Vi is control-grid potential

F2 is screen-grid potential

G is perveance

Vp is plate potential

liig is equivalent amplification factor of the screen grid.

/p const

Up is plate amplification factor.

a is a constant, nearly

In this expression, is considerably smaller than /ip. The equivalent

screen-grid amplification factor may be calculated quite accurately from

the triode mu formulas by treating the screen grid as though it were the

plate. The accuracy of this approximation decreases as the shielding

effect of the screen grid decreases. The plate amplification factor may
be calculated from some special formulas, which will be developed subse-

quently. It may be determined approximately by calculating a triode

amplification factor, considering the control grid as the cathode, the

screen grid as the control grid, and the plate as the plate, and then

multiplying this amplification factor by the screen-grid amplification

factor. This relation holds because the fictitious amplification factor

cited first above measures the screening effect of the screen grid upon the

control-grid plane just as the screen-grid amplification factor measures

the screening effect of the control grid upon the cathode. The product

of these two amplification factors, which are reciprocal screening factors,

gives the over-all amplification factor. Thus, if the screen-grid amplifica-

tion factor were 20 and the triode amplification factor obtained by

considering the control grid as the cathode were 10, the plate amplification
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factor would be approximately 200. If the cold cathode were at zero

potential and all the other electrodes were at the same positive potential,

then one-twentieth of the electrostatic flux lines from the cathode would

penetrate the control grid into the space beyond (actually, the ratio would

be 1 in 21). Of the lines that passed through the control grid, one-tenth

would pass on to the plate, and the rest would terminate on the screen

grid. The over-all screening effect would be such that only 1 line would

reach the plate for every 200 that reached the control grid. The resulting

plate amplification factor is 200.

Grid voltCTge, volts

Fig. 10.1.—Plate and space current of a screen-grid tube as a function of control-

grid voltage.

The plate-current-control-grid characteristics of the screen-grid

tube are almost the same as the triode characteristics that result if the

screen grid and plate are connected together. The only difference is

that a small part of the space current is taken by the screen grid. Some
typical plate-current and space-current characteristics as a function of

control-grid voltage are shown in Fig. 10.1. Because of the usually high

value of the plate amplification factor the plate potential has only a

small effect upon the plate and space current compared with the screen-

grid potential. This in turn has much less influence than the control-grid

potential.
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Plate-current-Plate-voltage Characteristics of the Screen-grid Tube.

With a negative control-grid voltage and a positive screen-grid voltage,

the plate-current-plate-voltage characteristics of a screen-grid tube have

the form shown in Fig. 10.2. The shape of the plate-current curve

departs considerably from the shape of the primary plate-current curve

because of secondary emission. The probable shape of the primary

plate-current curve has been sketched for Vg = 0. The primary plate

current is not readily measured directly. It is seen to be an increasing

fraction of the approximately constant space current /«. The division

of space current between screen grid and plate follows approximately

Fig. 10.2.—Plate-current-plate-voltage characteristics of a screen-grid tube.

the same law as does the division of the space current between grid and

plate in a triode. When the plate voltage is zero, the plate gets none

of the space current. As the plate is made positive, it rapidly acquires

a major portion of the space current. When the plate is as positive as

the screen grid, it gets a slightly smaller fraction of the total space current

than the ratio of the area between the screen-grid mres to the total area

of the screen-grid plane. As the plate potential is made stUl more posi-

tive, the plate acquires still more of the space current until at very large

voltages the plate is getting nearly all the space current.

The difference between the primary plate-current curves and the

actual plate-current curves is obviously due to secondary-emission

effects. The effects are the same as in the positive-grid triode. When
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the plate is less positive than the screen grid, secondary electrons liberated

at the plate surface are attracted to the screen grid, thus reducing the

plate current. This accounts for the pronounced dip in the plate-current

characteristic. When the plate potential is equal to the screen-grid

potential, the interchange of secondary electrons between plate and
screen grid nearly balances and the actual plate current is nearly equal

to the primary plate current. As the plate becomes more positive, it

collects secondary electrons that are liberated from the screen grid, and,

as a result, the actual plate current exceeds the primary plate current.

The variation of plate current with control-grid voltage follows the

high-mu-triode law.

Also shown in Fig. 10.2 are curves of space current as a function of

plate voltage. If the plate amplification factor of the tube were

extremely high, the space current would be completely independent of

plate voltage. As it is, the space current tends to be fairly constant.

Departures from constancy are observed, however, at zero plate potential

and at the plate potential equal to the screen potential. The changes

in the space current observed in these places are due to changes in the

space-charge condition around the screen-grid wires. When the plate

potential is negative, the electrons that initially miss the screen grid are

reflected back from the plate and in general will oscillate around the

wires a few times before being drawn in. The presence of these oscillating

electrons constitutes an addition to the space charge and depresses the

potential before the screen grid and even reaches back through the

control grid to reduce the emitted current. When the plate potential

becomes slightly positive, part of the electrons that initially miss the

screen grid are received by the plate. This means that the current

reflected back toward the screen grid is suddenly reduced, the space

charge around the screen grid is correspondingly reduced, as is also its

depressing effect upon the potential before the cathode, and as a result

the emitted current suddenly increases. The nature of the change in

the potential distribution within the screen-grid tube as the plate potential

is changed from negative to positive is sketched in Fig. 10.3. The dotted

lines in this figure show potential profiles for a negative plate potential,

while the solid lines show potential profiles for a positive plate potential.

The manner in which the plate potential controls the off-cathode gradient

through the medium of the oscillating space charge about the screen

grid may also be seen.

When the plate potential becomes more positive than the screen-grid

potential, there is a change from a condition of partial reflection of

electrons from the plate to one of no reflection, for all electrons reach

the plate, no matter how strongly deflected by the screen grid. Here the
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space charge around the screen grid is again suddenly reduced, and the

space current increases. Thus the space current is influenced most by
the condition of current transmission to the plate and is hardly affected

by secondary emission.

5
<3

V.,

o o
o o
o
r\ o

Fig. 10.3.—Potential distributions within a

screen-grid tube for negative and positive

plate potentials.

Screen-current-Plate-voltage Characteristics of the Screen-grid Tube.

The screen-grid current is the difference between the space current and
the plate current in Fig. 10.2. This difference is plotted as screen current

in Fig. 10.4 as a function of plate voltage. The screen-current-plate-

voltage curves are like the positive-grid-current-plate-voltage curves

of a triode. Exactly the same factors enter into its composition. The
primary distribution is such that the screen current decreases uniformly
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with increasing plate voltage exactly as is the case for the triode grid.

When the plate voltage is less positive than the screen-grid voltage,

the screen grid acquires current from the plate and hence rises above the

primary-current value. If the secondary emission is sufficient, the net

screen-grid current will rise with voltage until it falls as the plate potential

becomes more positive than the screen potential. When this happens,

the screen loses secondary electrons to the plate and as a result the net

screen-grid current drops below the primary value and may even go

negative in some cases.

General Characteristics of Screen-grid Tubes. Because of the distor-

tions in the plate-current curves caused by secondary emission, the screen-

grid tube has rather restricted ranges of potentials in which it operates

Fig. 10.4.—Screen-current-plate-voltage characteristics of a screen-grid tube.

satisfactorily. For very high plate potentials relative to the screen-grid

potential, the current characteristics are very uniform. The range of

uniform current characteristics is necessarily quite limited. The screen-

grid potential must be relatively high to draw sufficient current. The

plate potential must be at least this positive to avoid secondary-emission

distortions and yet cannot be too much more positive because then the

plate dissipation becomes excessive. In this operating region the plate

resistance of the tube is very high. The amplification factor is also

high, but the mutual conductance is of the same order as in a triode.

Use is sometimes made of the negative plate-resistance characteristic

that the screen-grid tube displays at low plate potentials. It will be

recalled that the plate resistance of a tube is given by the reciprocal

of the slope of the plate-current-plate-voltage characteristic. Hence
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the plate resistance is negative whenever the slope of this characteristic

is negative. The negative resistance that can be realized from a screen-

grid tube has a limited amplitude of current and voltage to which it can

be subjected. It is further not very stable because secondary-emission

characteristics are extremely variable. The negative resistance that can

be realized will be different from tube to tube and will even change in

the same tube with time.

10.3. Beam-power Tubes. The beam-power tube is a special tetrode

designed to eliminate the interchange of secondary electrons between

screen grid and plate. Historically, it was developed later than the

pentode. Its development followed the discovery that when the screen-

grid-plate distance in a tube was made rather long there was a maximum
current which could be transmitted to the plate. This led to a study

of the space-charge effects within the tube, which in turn led to the

development of the final form of the beam-power tube.

The internal electrode arrangement of the beam-power tube is shown

in Fig. 2.6. The distinctive features of the construction of this tube

are the aligned control and screen grids of the same pitch. This is

coupled with a flat cathode and side deflecting plates to keep the current

sheets, which are formed by the aligned grids, from spreading. The
screen-grid-plate spacing is made rather large, and the successive

electrodes are curved so that they are at right angles to the electron flow.

The resulting plate-current-plate-voltage characteristics are shown

in Fig. 2.7. It is seen that the dips in the current curves due to second-

ary emission have been eliminated at all but the very lowest control-grid

voltages, and even here the dips are not very pronounced. The reason

for this improvement in behavior is found in the space-charge effects

that occur in the screen-grid-anode region. Before examining this

subject in detail it is desirable to investigate briefly the electrostatic

field of a beam-power tube.

10.4. The Electrostatic Field of a Beam-power Tube. The same

general methods that have been described in the chapter on Triode

Characteristics can be applied to multielectrode tubes in some cases.

For tube structures in which the grid wires have a regular pattern the

method of conformal transformations is easily applied. This is the case

for the tetrode with aligned grids, the structure of the beam-power tube,

which will be treated here by an extension of the method employed

with the triode.

The line-charge configuration of Fig. 10.5a gives rise to the configura-

tion of Fig. 10.56 upon application of the transformation W = ^ In Z.

The relation between the parts in the two planes is apparent from the
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previous study of triodes. The small circle about the origin in the Z
plane goes into a cathode line in the W plane. The control-grid-wire

circle at (1,0) in the Z plane goes into the series of equally spaced control-

grid wires in the W plane. The screen-grid wire at (e “
, 0) in the

Z plane goes into the line of screen-grid wires in the W plane. A large

plate circle about the origin in the Z plane goes into the plate line in the

W plane.

Fig. 10.5.— (a) Transformed beam-power tube, (b) beam-power-tube elec-

trode arrangement.

It is necessary only to write an expression for the potential at any

point P in the Z plane, transform it by the logarithmic transformation,

and then evaluate the electrode potentials in terms of the charges and

potentials. This is the procedure that was used for the triode, though

the form of the resulting expressions may be expected to be more com-

plicated because of the introduction of another electrode. In the

treatment that follows the small-grid-wire approximations will be made.

The potential at any point P in the Z plane is given by

V = - In r - In r' - + C
2irto 2wtQ 2Tto

( 10 .2)
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(r'Y = (1 + — 2r cos 6) (10.3)

(r")2 = (t
a -j_ ^2 — 2€ “ r cos 6) (10.4)

Substitution of Eqs. (10.3) and (10.4) into Eq. (10.2) and application

of the logarithmic-transformation coordinate equations gives

V = qc
— In

aeo 47rEo

/ ^^ In ( 1 - 26 “

47rEo \

- In
( 6

“ -
:

dirto \

21^ 2,rr
,“ cos 1- «

“

a i

Ardf/t 2r(u A-dgt)

26 “ cos^ -I- « “ ) -I- C (10.5)

To determine the electrode potentials in terms of the charges and
dimensions, let u = ~dcg, v = 0, where dco 5>> a, and set the cathode

potential equal to zero. This gives an expression for the constant C
that can be put into subsequent expressions.

0 ( Qcdcg “b q$dgs)
ato

(10.6)

To find the control-grid potential let m = 0, v = r„, where Vg <

Y = ^cgQc Qg
jjj”

ato 27reo a
(10.7)

To find the screen potential let u = dgs, v = r, where dg, > a. Then

F. = - dsg -f- dgg dgs qg . g /in 0\
9c qg

— In (10.8)
ato ato 2xeo a ^

To find the plate potential let u = a = 0, where dgg^ 2a. Then

Fi,= - dgp
I deg dgp ‘ dgp dgg

Q'c qg Os
ato ato

(10.9)

The last three equations give three electrode potentials in terms of

three charges. The system can, of course, be solved for the charges in

terms of the potentials. Solving for the cathode charge,

« - isb I
- 5 (b^)]

- ’'4 (b-')
*-
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where A is the determinant of the coefficients of the q's in Eqs. (10.7),

(10.8), and (10.9). From Eq. 10.10 the grid-plate amplification factor

is given by the ratio of the coefficients of Vg and Fp as

ftp —
dg,d,p -^ In

(10 . 11 )

This expression is accurate to rvithin a few per cent provided that the

spacings between the various .electrode planes are all greater than the

grid-wire spacing and provided that the screening fraction of the grids

(ratio of grid-wire diameter to grid-wire spacing) is less than 0.1.

It should be pointed out that the amplification factor derived above

gives the relative effectiveness of the control grid and plate in con-

trolling the total space current and not the plate current so that the above

constant will not correspond exactly with that given in the tube manuals.

That given in the tube manuals gives the relative effectiveness of the

control grid and plate in controlling the plate current, and this depends

upon the factor of Eq. (10.11) and also upon the way the space current

divides between screen and plate. However, since the current-division

function of a beam-power tube does not vary greatly with electrode

potentials, the above expression for amplification factor is accurate

enough for most purposes.

10.6. Space-charge Effects in the Screen-grid-Anode Region of Beam-
power Tubes. In Sec. 8.9 of the chapter on Space-charge Effects it was
shown that the effect of initial velocities in a diode was to create a

virtual cathode between the actual cathode and the plate. Similarly,

in tetrodes of proper design it is possible to get a virtual cathode or

potential minimum between the screen grid and plate. If a satisfactory

potential minimum can be achieved, it will suppress secondary electrons

from the plate and do away with the need for a suppressor grid. Such a

tetrode is the beam-power tube. It is in many respects superior to the

conventional pentode.

In order that space-charge effects be appreciable, it is necessary that

there be a very nearly parallel flow of electrons. This is not the case in

the ordinary tetrode, for the use of control and screen grids with different

pitches breaks up the electron flow. It is, however, possible to get what
is nearly a parallel flow in a tetrode by making the control and screen

grid have equal pitch and aligning the grid wires so that electrons which

pass through the spaces of the control grid will also pass through the

spaces in the screen grid. In Fig. 10.6 are shown some typical electron
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paths in a beam-power tube. * The paths give a sufficiently close approxi-

mation to a parallel flow in the screen-grid-plate region so that observed

tube characteristics correlate well with theoretical properties deduced

from this assumption.

Assuming a parallel flow of electrons starting at a high positive poten-

tial at the screen, a number of different potential distributions are

possible depending upon the plate potential and the magnitude of the

Fig. 10.6.—Electron paths in a beam-power tube.

(Jonker.)

current injected into the screen-grid-anode region. Associated operating

conditions are correspondingly different. The types of distributions

encountered are shown in Fig. 10.7. The Characteristics associated with

these various distributions are best listed in tabular form. They are

essentially determined by the sign of the constant which appears after

the first integration of Poisson’s equation as in Eq. (8.5) which may be

written

(S)’ - ^
'From JoNKER, J. H. L., Pentode and Tetrode Output Valves, Wireless Engr.,

vol. 26, [No. 189], pp. 274-286.
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where J = and has the value 2.335 X 10“® amperes per volt^.

The properties of the distributions as determined by the sign of the con-

stant Cl are as follows:

Type V, Cl
dV
dx

Current

transmission

to plate

V

A — + - None +,o, (-)

(Virtual cathode)

B 0 or -j- 0
1

-> 0, -b Partial +, 0, -b

(Potential minimum)
C + -

0, -b Complete +
D + — “h Complete +

In types A and B there is a virtual cathode at the point of zero

potential. In type C there is a potential minimum but no virtual cathode

at the point of zero gradient of potential. It is seen that the current

transmission is complete only when no virtual cathode exists. The

various types of distribution will be analyzed in some detail in the

following paragraphs. A number of extensive analyses of the space-

charge effects in the grid-anode region of tubes have been published.

The treatment given here makes use of dimensionless parameters giving

rise to universal characteristics as proposed by Fay, Samuel, and

Shockley.

Type A Distribution. This type of distribution corresponds to that

of a temperature-limited diode and is encountered when the plate is

negative. The electrons injected into the screen-grid-plate space

encounter a retarding field and are thus slowed down until they finally

reach a zero velocity at some point before the plate, reverse, and return

* Harries, J. H. O., The Anode to Accelerating Electrode Space in Thermionic

Valves, Wireless Engr., vol. 13, pp. 190-199, April, 1936.

“ Plato, G., W. Kleen, and H. Rothe, The Space Charge Equations for Electrons

with Initial Velocity, Part I, Zeit. fur Phys., vol. 101 [No. 6], pp. 609-520, 1936.

® Kleen, W., and H. Rothe, The Space Charge Equations for Electrons with

Initial Velocity, Part II, Zeit. fur Phys., vol. 104 [Nos. 11, 12], pp. 711-723, 1937.

* Salzberg, B., and A. V. Haeff, Effects of Space Charge in the Grid-anode

Region of Vacuum Tubes, ECA Rev., vol. 2, pp. 336-374, January, 1938. Excellent

discussion of dynamic characteristics.

‘ Fat, C. E., A. L. Samuel, and W. Shockley, On the Theory of Space Charge

between Parallel Plane Electrodes, Bell Sys. Tech. Jour., vol. 17, pp. 49-79, January,

1938.
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to the screen. There is thus a virtual cathode at the point of zero

potential. The potential distribution from the virtual cathode to the

negative plate is linear.

The equations for the relations between potential, distance, and

Fig. 10.7.—Types of potential distributions in the

screen-grid-plate region of a beam-power tube.

current are obtained by letting the constant in Eq. (10.12) assume the

positive value of where m is related to the slope of the potential-

distribution curve as will be shown and V i is the screen potential. The
differential equation then has the form

(SJ =^
or

dx 3a
(V^ -h (10.14)
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Let the following changes in variables be introduced:

X
<r
= —

Xo

(10.15)

(10.16)

where xa = - is the distance over which a potential V

i

will produce

<T in units of jc®

Fig. 10.8.—Potential-distribution curves of the

type A.

a current density J in a space-charge-saturated diode,

becomes

d4)

d(T

-4.2H

3
(^H

-I-
7n^^)H

The Eq. (10.14)

(10.17)

This may be written as

dd> - 4 -2>^

(014 3
^ (10.18)

for convenience of integration. Let d<i> = 2<t>^^ d(<^i^), and then, upon
integration,

-(</>^^- -H mW)W = 21V -f- Ci (10.19)
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Since <^ = 1 when cr = 0,

= (1 - 2m^^)(l + (10.20)

The factor 2''^ has been introduced because the reversal of current at the

virtual cathode has required that J be replaced by 2J in the above

derivation. Curves of the type A obtained from Eq. (10.20) are shown

in Fig. 10.8. If the slope of the curves be evaluated it is seen that

^ for 4> ^0 ( 10 .21 )
(i(X o

and

^ (1 + for <T = 0 (10.22)
da o

It will be recognized that the potential distributions resulting in

this case are the same as those encountered in the temperature-hmited

diode, the only difference being that the current is flowing in equal

amounts in both directions and is in this case injected at a positive rather

than at a zero potential.

Type B Distribution. This occurs when the integration constant

Cl is zero and as can be seen from simple physical considerations gives

rise to a Child’s law distribution on each side of a virtual cathode that exists

at the point of zero potential and zero gradient. Let it be assumed that, of

the injected current, a fraction P is transmitted beyond the virtual

cathode. Then the net current on the screen-grid side of the virtual

cathode, as far as its space-charge effects are concerned, is (2 — P)J.

Child’s law then assumes the form

(2 - P)J
a^
Xi^

but since J
Xa"^

1 then in terms of the factors
<i>
and a

<ri^

(2^^)

(10.23)

(10.24)

Since the actual potential factor is <^ = 1 when a is zero and the potential

decreases with increasing a, the relation must be put into the form

Vi
1 -

(2 - py‘‘
(10.26)

in which the subscript L indicates that the relation holds to the left

of the virtual cathode for values of between 0 and 1 and v is measured

from the point of current injection.
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To the right of the virtual cathode the current density is PJ so that

PJ (10.26)

where x is now measured from the virtual cathode. Combining this with

the Child’s law relation,

<r
2 4,^

7^
(10.27)

Actually, the potential factor is zero when c has a value of -

as may be seen from Eq. (10.25), so that the desired relation is

1

- py‘‘

(2 — Py^~^ P^^
(10.28)

where the subscript R indicates that the expression holds only to the

right of the virtual cathode and <r is again measured from the point

of current injection. Curves of the type B as determined from Eqs.

(10.25) and (10.26) are shown in Fig. 10.9. It will be recognized that

these are all three-halves-power-law curves drawn with different scales

from both sides of the virtual cathode.

A curve of considerable importance in the family (Fig. 10.9) is the

limiting curve that gives the maximum value of
<l>

for a fixed value of c

to the right of the virtual cathode. This is an envelope to the family of

type B curves. If the expression of Eq. (10.28) be solved for
<f> and

maximized with respect to P, there results

2
-

(2 - P)n

When this is substituted in Eq. (10.28), there is obtained

p_
1 +

(10.29)

(10.30)

The factor P can be eliminated between Eqs. (10.29) and (10.30) to give

the relation between and <r.

cr = (1 + ,^W)?42-^^ (10.31)

This curve is shown dotted in Fig. 10.9. Equation (10.30) tells what the

maximum transmitted current for any plate potential is. If the attempt
is made to increase the transmitted current beyond this value, the

distribution will jump from a type B to sl type C or D distribution.
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Type C Distribution. This type of distribution is characterized by

the existence of a potential minimum that is not at zero potential. The
distributions are obtained by letting Ci = — in Eq. (10.12).

This gives a positive value of V, equal to aVi, when ^ equals zero.

Integration of Eq. (10.12) with the above value of the constant gives

^ = ±(^^ + 2a^^)(4>^^ - + C2 (10.32)
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in which the negative sign goes with a negative slope at the screen and

the positive sign gives a distribution of the type D. Since <{> is unity

when <7 is zero,

= -(<^H + + (1 + 2a^^)(l - (10.33)

which holds to the left of the potential minimum with a measured from

the point of current injection. The distance at which the potential

minimum exists is found by setting <j> = a.

<7..^ = (1+ 2a^^)(l - (10.34)

To the right of the potential minimum the potential distribution is

given by

= (0W + 2«^^)(<^H _ + (1 + 2a^^)(l - a^^)« (10.35)

<r being measured from the screen grid. The slope of the potential-

distribution curves at the screen is given by

^ = - I (1 - a«)« (10.36)
U<T O

Curves of the C type are shown in Figs. 10.10a and b. Various limiting

curves are of interest. By letting <l>
equal a there is obtained the curve

which passes through all the minima and of which the equation is

cr = (1 -h 2<(.»)(1 - (10.37)

This curve is shown dotted in Fig. 10.10a.

By setting a equal to zero, another limiting curve is obtained,

= 1 + 4,h (10.38)

which is the boundary between the B and C type of curve. This curve

runs through the field of the type C curves because of the way in which

the curves overlap. The significance of the overlap curves of Fig.

10.106 is that two potential distributions are possible for one set of

electrode potentials.

By setting a equal to unity,

= (0W + 2)(</.« - 1)« (10.39)

which sets an upper limit to the type C curves.

Another limiting curve is obtained by making cr a maximum with

respect to a and holding 4> constant. This gives

a= <t)il + (10.40)

and
<r = (1 + (10.41a)
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In these expressions a and <j) are coordinates of a lower-limit envelope

that is tangent to the type C curves. The parameter a determines which

curve is tangent to the envelope at the point in question. Type C dis-

Fig. 10.10a.—Potential-distribution curves of the type C.

tributions cannot exist beyond this condition. If current or voltage is

changed beyond this boundary, the distribution jumps to a type B curve.

From Eq. (10.41a) is obtained the expression that gives the maximum
current that can be transmitted between electrodes at potentials Vj
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and V2 separated by a distance x. The limiting current density is

2.335 X 10-^(Fit^ + amperes per unit area (10.415)

Fig. 10.105.—Potential-distribution curves of the type C overlap.

If the injected current exceeds this amount, the potential distribution will

jump from a type C to a type B distribution, with an attendant reduction

in transmitted current.

Examination of the curves of Fig. 10.10 and their equations shows
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that the curves are all of the same form but differ only in scale and posi-

tion. Hence the upper limiting curve for which a equals 1 is a universal

curve showing how the potential varies on either side of the potential

minimum. The universal form of this curve is obtained by setting a
equal to 1 in Eq. (10.35), giving the universal form

cu = - 1)H (10.42)

which holds on either side of the minimum at which the potential value is

now Fi and Vu is measured from the minimum. Current is introduced

into this expression by the relation J = t and <r„ =

Type D Distributions. These include curves of the C type restricted

to the region of the curve before the potential minimum is reached.

They also include curves that start with a positive gradient and increase.

This latter type is given by using the positive sign in Eq. (10.32). It is

not of much practical importance. Since the curves of the D type are

included in the other types previously discussed, they will not be dis-

cussed in detail.

10.6. Dynamic Characteristics of Beam-power Tubes. In the above

discussion of the different types of potential distribution possible it has

been indicated that there are limiting conditions under which the separate

types could exist. It is also true that several potential distributions are

possible for a given set of externally imposed conditions. In actual tube

operation this means that there may be discontinuities in the current-

voltage characteristics; for as potential conditions are changed, the inter-

nal distributions may jump from one form to another and these changes

are sometimes accompanied by changes in the fraction of the current

transmitted to the plate. Furthermore, it sometimes happens that there

may be hysteresis effects as a cycle of voltages is impressed upon a tube in

that the current cycle produced does not retrace itself exactly.

The beam-power tube makes use of a potential minimum produced by
a type C distribution to reduce the secondary emission from the plate.

As long as the potential minimum is 20 or more volts more negative than

the plate, very effective suppression of secondary electrons is achieved

This expedient dispenses with the need for a suppressor grid but may cause

the dynamic characteristics to be different from those of other tubes.

Two of the most important dynamic characteristics will be discussed

in a qualitative fashion. Quantitative analyses have been given, ^ but

these are somewhat limited in value in that the ideal conditions of parallel

electron flow cannot be realized exactly in any actual tube.

Injected Current Varied, Potentials Constant. One case that is of

1 Salzbbbg and Haefp, loc. cit.
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considerable interest is that in which the screen and plate of a beam-
power tube are maintained at the same potential and the current injected

into the screen-grid-anode region is increased from zero to a large value

and then decreased. The changes in the potential distribution encount-

ered in the tube are shown in Fig. 10.11. Initially, for no injected cur-

rent, the potential distribution from screen grid to plate is a straight

horizontal line as shown at a. As the injected current is increased, the

potential-distribution curve is depressed, assuming the form of the type C
distributions as shown at b, in this case symmetrical with respect to a

potential minimum at the center. As the injected current is further

a

Fig. 10.11.—Potential distributions in a

beam-power tube as the injected current is

varied.

increased, the potential-distribution curve is depressed still further,

maintaining its symmetry. The physical reasons for the action are

quite apparent. As the current is increased, the space charge is increased,

which reduces the potential, which decreases the electron velocity, which

increases the space charge still further and thus depresses the potential

still more. Thus an increase in injected current starts a cycle of action

that is very sensitive to changes in current, so much so that an equi-

librium may not always be reached. This occurs in this case when the

potential curve has been moved about three-quarters of the way down to a

zero potential, as at c, at which point any further increase in current

causes the potential curve to drop as far as it will go because of the

instability in the sequence of actions described above. The potential
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curve can drop only to zero, at which point a virtual cathode is formed

halfway between grid and plate. When this occurs, part of the current,

which has previously all been going to the plate, is turned back toward

the grid, thus increasing the space charge or effective current to the left

of the virtual cathode. Child’s law demands that when the current is

increased without a change in potential the distance must be decreased

so that the virtual cathode moves toward the screen, finally coming to rest

at some position, as shown at d. Thus the distribution changes immedi-

ately from that at c to that at d, with an abrupt reduction in current to

the plate. Any further increase in injected current increases the space

charge and current on the screen side of the virtual cathode and causes

it to move closer to the screen, with a further reduction in transmitted

current.

If now the current is decreased, the sequence of operations will not be

exactly the same, for the initial conditions are different. For a given set

of voltages and current, two potential distributions may be possible but

only one can exist at a time, of course, and the physical choice between

the possible distributions is determined by the order in which limiting

conditions are established. If the current is decreased, the virtual

cathode moves toward the plate, an increasing fraction of the current

going to the plate. Finally the virtual cathode reaches the mid-point,

all the current going to the plate. The virtual cathode is now “satu-

rated.” The potential field and electron paths for such a condition are

shown in Fig. 10.12. The type B distribution cannot exist with any

smaller injected current, and thus a further decrease causes the potential

distribution to jump to the type C distribution, jumping from the distri-

bution at e to that at /. Any further decrease in current now maintains

the same type of symmetrical distribution, the potential minimum rising

until finally it is flat, with no current. Because of the fact that there

is a maximum value of plate current for any set of screen and plate

voltages in a beam-power tube, difficulties may sometimes be encountered

with pulsed operation.

Although the above discussion has been given for equal screen and

plate voltages, the same sort of behavior results if the electrode potentials

are not the same. In general, specific limiting conditions will be different

for different cases.

The associated current behavior is shown in Fig. 10.13, which shows

the relation between the plate current and the injected current. As the

injected current is increased, at first all the current is transmitted tc

the plate, giving the straight-line characteristic shown. When the

potential distribution jumps from c to d, the plate current suddenly

drops in value and then decreases uniformly, as shown, as the injected
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current is increased. When the injected current is then decreased, the

transmitted current is increased uniformly until the distribution shown
at e in Fig. 10.11 is reached. In this case the jump in distribution from e

to / produces no change in current, though it will be observed that the

highest current reached on the retrace of the cycle is less than that

obtained as the injected current was increased. All the injected current

now goes to the plate again; and as the injected current is decreased

further, the plate current decreases correspondingly, moving down the

straight-line portion of the curve of Fig. 10.13. The portion at the

extreme right of the current characteristic is seen to exhibit a negative

Fig. 10.13.—Transmitted current in a

beam-power tube as a function of

injected current.

transconductance since the injected current is a continuous function of

the control-grid voltage. Oscillators have been built utilizing this

property. The characteristic shown in Fig. 10.13 can actually be

observed on an oscilloscope if a beam-power tube is connected so that the

vertical deflection is proportional to plate current and the horizontal

deflection proportional to space current as the control-grid voltage is

varied sinusoidally.

Plate Potential Varied, Screen Potential and Injected Current Constant.

Another case of operation which is of particular importance is that which

occurs when the plate potential alone is varied. Consider the case in

which the injected current is quite high, corresponding to a positive con-

trol-grid voltage on a beam-power tube. Starting with a negative plate

potential, the potential distribution is of the type A (temperature-

limited), as shown at a in Fig. 10.14. When the plate potential reaches

a value of zero, a distribution of the type B (space-charge-limited) exists
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as shown at b. Then, as the potential is further increased, a three-

halves-power-law distribution holds on each side of the virtual cathode,

which moves toward the plate. Finally, a limiting type B curve is

reached, and even though all the current is not being transmitted to the

plate the distribution jumps from that at c to that at c', giving a type C
(potential minimum) distribution with a complete instead of a partial

transmission of current. As the potential is further increased, the poten-

tial minimum moves toward the screen as the curve moves up. Then,

as the cycle is reversed and the potential is decreased, the curve moves

a beam-power tube as plate voltage is

varied.

Fig. 10.16.—Plate current in an ideal

beam-power tube as a function of plate

voltage.

down through the stages indicated by e and /. At g there is reached a

limiting curve of the type C, and the distribution jumps to that at g',

giving a partial transmission of current. From this the virtual cathode

moves toward the screen as the potential and plate current decrease to

zero. The curve a is obtained again as the plate voltage is made negative.

The corresponding current behavior is shown in Fig. 10.15, in which

is shown the variation of plate current with plate potential. Plate

current begins to flow at b and continues to increase until c because of

the partial transmission of current. If the position of the virtual cathode

remained fixed, the current would increase as the three-halves power of

the plate potential in this region. Since it moves toward the plate, the
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current increases faster than the three-halves power, giving a very

steep characteristic and accounting for the sharp shoulder of the plate-

current-plate-voltage curves of the beam-power tube. At c the current

jumps to that at c'

,

at which the transmission is complete and the current

remains constant for further increases in potential. When the cycle is

reversed, the current remains constant as the potential is decreased until

g is reached, at which it drops to the value on the curve between b and c.

It will be noted that the jump in current on the retrace occurs at a lower

value of potential than when the potential is increasing.

The type of behavior described above occurs for other values of cur-

rent, though the effects are most pronounced when the current is high.

At lower values of current, potential minima may not be formed. The
area of the hysteresis loop is in all cases quite small and becomes smaller

as the current is decreased. In an actual tube such as the 6L6, having

the characteristics shown in Fig. 2.7, the distribution of initial velocities

and more particularly the spreading of the beam sheets cause the current

characteristic to depart from the idealized behavior indicated here.‘

Sometimes at high currents, instead of the jumps indicated, the curve will

run through a small s giving rise to a small region with a negative plate

resistance. The kinks are observed only for high currents. At lower

currents there is a sharp shoulder. At very low currents, potential

minima are not formed; and as a result secondary electrons from the plate

are not suppressed, and the curves have the characteristic depressions

associated with this effect. It is also not true that the current is com-

pletely independent of the plate potential when the current transmission

is complete, for the cathode region is not completely shielded from the

plate.

' ScHADB, O. H., Beam Power Tubes, Proc. I.R.E., vol. 26, pp. 137-181, February,

1938.



CHAPTER 11

PENTODES

11.1. Electrode Arrangement in a Pentode. The pentode, as its

name implies, is a five-electrode tube. The five electrodes, in order, are

cathode, control grid, screen grid, suppressor grid, and plate. The effects

of all these electrodes except the suppressor grid have been studied.

The suppressor grid was added to the screen-grid tube to eliminate

the exchange of secondary electrons between screen grid and plate.

It is invariably a coarse-mesh grid placed between the screen grid and
plate and operated at cathode potential. At this potential it is able to

^ suppress secondary electrons by causing

^ a deep dip in the potential between

t ^ ^ screen grid and plate while at the same

^ I
time its coarse mesh allows electrons to

-h
^ ^ P^ss on through it to the plate. The

<3 (S ^ <o ^ potential profiles of a pentode are

j

I
I I

j

shown in Fig. 11.1. From these it is

I j

i
I

I

seen that both the plate and the grid

I

' ^
I

I

present negative gradients of potential

to secondary electrons created at their

I
surface. This eliminates the exchange

I
of secondary electrons between screen

I grid and plate and results in current-

voltage characteristics which are almost

exactly those which would occur in a

perfect screen-grid tube having no sec-

1 j.
I II ondary emission.

^ ^2 Go P fj „ .
. fUt all the various types of vacuum

^ pentode is probably the one
^

in most extensive use. For voltage

amplification whether at audio or radio frequencies it is the invariable

choice. It is used at audio frequencies because a higher gain per stage

can be realized than with a triode. It is used at radio frequencies

because the extremely low control-grid-to-plate capacity virtually elimi-

nates the possibility of regeneration. Even as a power tube, it finds

considerable use because its control-grid current and hence the power

necessary to drive it are lower than for the corresponding triode.

266
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11.2. Current-voltage Characteristics of the Pentode. As stated

above, the suppression of secondary electrons in the pentode gives it

the characteristics of a screen-grid tube that is free of secondary emission.

The addition of the extra grid increases the extent to which the control

grid is shielded from the plate and results in a somewhat higher amplifica-

tion factor and a somewhat higher plate resistance.

Plate-current-Control-grid Voltage Characteristics. The plate-current-

control-grid characteristics of a pentode are similar to those of a tetrode

and not greatly different from those of a triode. The plate current is

Fig. 11.2.—Plate-current-control-grid voltage characteristics of a type 6J7 pentode.

most easily influenced by the control grid, less so by the screen grid, and
hardly at all by the plate. Some typical plate-current-control-grid

voltage characteristics of a pentode are shown in Fig. 11.2. Here there

is shown a group of curves for different screen-grid voltages. These

curves are almost identical with the corresponding curves in a triode. If

a group of curves for different plate voltages were shown, they would be

very closely grouped and, for the same screen-grid potential, would have

the same cutoff potential.

Plate-current-Plate-voltage Characteristics of a Pentode. The plate-

current-plate-voltage characteristics of a pentode are shown in Fig.
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11.3a. In a well-designed pentode the plate current varies only slightly

with plate potential for all plate voltages greater than 50 per cent of the

screen-grid voltage. Below this value of voltage the current falls rapidly

to zero. The magitude of the space current in a pentode is determined

almost entirely by the control-gnd and screen-grid potentials. The
plate potential determines only what fraction of the space current is

Plate voltage, volts

Pig. 11.3a.—Plate-current-plate-voltage characteristics

of a type 6J7 pentode.

transmitted to the plate. It does, of course, have a second-order influ-

ence upon the plate current, with the result that the plate current rises

slowly as the plate voltage is increased, but this rise is even slower than

in the screen-grid tube, where there is only one shielding grid between the

plate and the control grid. As a result of the action of the plate voltage

in determining the fraction of the space current that is transmitted to

the plate, all the plate-current-plate-voltage curves are similar in

shape and differ only in scale.
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Space-current-Plate-voHage Characteristics of the Pentode. Also shown
in Fig. 11.3o are the space-current-plate-voltage characteristics of a pen-

tode. The space current is even more constant with plate voltage than

is the plate current. The only departure from near constancy occurs

near zero plate potential. Here the space current increases by about

20 to 40 per cent as the plate potential is increased to about half of

the screen-grid potential. This increase in space current occurs because

there is a change in the space-charge condition around the screen grid as

the condition of reflection of electrons from the plate changes to one of

transmission. The action is exactly the same as that which was encount-

ered in screen-grid tubes (see Fig. 10.2).

Fig. 11.3b.—Screen-current-plate-voltage characteristics of

a type 6J7 pentode.

Screen-grid-curreni-Plaie-voltage Characteristics of a Pentode. The
screen-grid current in a pentode is the difference between the space cur-

rent and the plate current, provided that the other grids in the tube are

drawing no current. The nature of the screen-grid-current variation

with plate voltage is shown in Fig. 11.36. The screen-grid current is

seen to have a uniformly decreasing characteristic with plate voltage.

The screen current will generally lie between one-fifth and one-third of

the plate current at large plate voltages. The effectiveness of the sup-

pressor grid in suppressing secondary electrons is so complete that the

screen current rarely shows even a trace of distortion due to this cause.

Suppressor-grid Effects. With small pentodes such as are used for

Toltace amplification the suppressor grid is operated at cathode potential
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and is not used to influence the plate current. In power-output pentodes,

however, the suppressor grid may be used as an active electrode. It can
be used to modulate the plate current in amplifiers or oscillators.^ Use is

here made of the fact that the suppressor grid is able to control the

fraction of the current transmitted past the plane of the screen grid that

goes on to the plate. When the suppressor grid is at a low potential

relative to plate and screen grid, as it usually is, it can sort out the elec-

trons having a large component of energy directed toward the plate

from those which, because of deflection on passing close to a screen-grid

wire, have a lower component of plate-directed energy. Some typical

Fig. 1 1.4.—Plate-current-suppressor-grid

characteristics of a type 6J7 pentode.

curves showing the current transmitted to the plate as a function of sup-
pressor-grid voltage are shown in Fig. 11.4. It is seen that the plate

current is moderately sensitive to suppressor-grid voltage and that the

suppressor grid is readily capable of completely cutting off the plate

current. The action of the suppressor grid in controlling the plate cur-

rent is a combination of its action as a velocity sorter and a direct con-

trol on the gradient of potential before the suppressor grid. At voltages

near zero the first action predominates. As the suppressor grid is made
more negative, the second action becomes predominant. As the sup-

pressor grid approaches cutoff, there is a strong tendency for a virtual

1 Gbebn, C. B., Suppressor Grid Modulation, Bell Lab. Rec., rol. 17, pp. 41-44,

October, 1938.
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cathode to form before the suppressor grid owing to the space charge of

the approaching electrons, which have been reduced to a very low
velocity. The suppressor grid then has an action very similar to that of

the control grid in front of an actual cathode, as in a triode.

An alternative representation of the effect of the suppressor grid is

shown in Fig. 11.5. Here the control-grid action of the suppressor grid is

evident at large negative values of suppressor-grid potential. Power

1.6

1.4

1 1.2

fl.O

1 0.8

Eo-6

1 0:4

1

0.2

0

S'jppressor grid
pofentiats.^

Tofa!space
current —

5saaaasa
&msmBa

is

aaP
I
s m a -- HI

ii
amaaaaaa

r 1 iaa mma
m mi

1i
aa

fimz R 1 oreu>sor grid

mamam/ potentials

iJ L 1 I-
0 20 40 60 80 100 120 140 160 180 200 220 240 260

Plate voltage, volts

Plate voltage, volts

Fig. 11.5.—Effect of suppressor-grid voltage upon

the plate and screen-grid-current characteristics of

a pentode.

pentodes are frequently operated with slightly positive suppressor grids

in order to get a sharper shoulder on the plate-current-plate-voltage

characteristics. Some typical power-pentode characteristics are shown
in Fig. 11.6. The use of a positive suppressor-grid potential is seen to

give a considerable sharpness to the shoulder of the characteristics. The
reason why this is necessary in the power tubes is twofold. (1) The
current densities involved are greater, increasing the tendency for a
virtual cathode to form in front of the suppressor grid and hence requir-

ing a more positive value of suppressor-grid voltage to pass the major
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portion of the space current on to the plate. (2) The screen-grid pitch is

made relatively large to reduce the total current and power taken by the

screen. As this is done, the deflection imparted to the electrons passing

through the screen grid is increased and hence a smaller fraction of them

have enough plate-directed velocity to pass through the positive potential

spaces between the suppressor-grid wires.

AVERAGE PLATE CHARACTERISTICS

Plcite volts, Vfj

Fig. 11.6.—Plate-current-plate-voltage characteristics of a power pentode for zero

and positive suppressor-grid potentials.

11.3. Current Division in Pentodes. The pentode is often oper-

ated with a suppressor grid at cathode potential and with screen grid

and plate at the same positive potential. With this arrangement of

electrode potentials the screen grid will always intercept an appreciable

fraction of the space current. Some of this current is intercepted directly

on the first passage of the electrons. Some of the screen-grid current

consists of electrons which were so strongly deflected by the screen-grid

wires that they did not have enough plate-directed velocity to pass

between the suppressor-grid wires. All electrons that fail to penetrate

the suppressor grid upon their first attempt may be expected to return

to the screen grid.

The fraction of the total current transmitted to the plate is expected

to be a function of the ratio of plate to screen-grid voltages. So also is

the ratio of plate to screen-grid current. In Fig. 11.7 are shown curves

of these current ratios as a function of the electrode-voltage ratio. Both

current ratios are seen to vary rather slowly with the electrode-voltage
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ratio. The ratio of plate to space current in the vicinity of equal plate

and screen-grid voltages varies something like the one-tenth power of the

ratio of plate to screen-grid voltage. The ratio of plate to screen cur-

rent varies approximately as the one-fifth power of the ratio of plate to

screen-grid voltage. No simple theoretical analysis is available to give

the current-division law directly in either case.

Fig. 11.7.—Pentode current ratios as a function of electrode-voltage ratios.

Just as it was possible to define a current-division factor for positive-

grid triodes, so is it possible to define a current-divison factor for pen-

todes. Let

(11 . 1 )

Here SD is a current-division factor that measures the ratio of plate to

screen-grid current when the plate and screen grid have the same voltage,

other grids being presumed to draw no current. This pentode current-
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division factor may be determined quite closely from the considerations

that applied to the positive-grid triode.

Figure 11.11 shows the general nature of the potential field and elec-

tron paths within a pentode. The control grid has a slight focusing

action upon the electrons that pass between its wires. The screen grid

intercepts a fraction of the current that passes through its plane and has a

dispersing action on the rest. The suppressor grid will for the most part

pass the electrons that approach it, with the exception of some electrons

that fall into two groups. (1) The electrons that are aimed directly at a

suppressor wire. These are naturally reflected and collected eventually

by the screen grid. In general, all the electrons that are aimed at a

suppressor-grid wire within half a radius of the center of the wire will be

deflected back into the screen grid. This group comprises the great

majority of the electrons initially passed by the screen grid that are

returned to it. (2) The electrons that just barely miss a screen-grid wire

and are so strongly deflected that they do not have enough plate-directed

velocity to reach the suppressor-grid plane. This group of electrons is

distinctly in the minority and may not even exist in some tubes if the

screen-grid wes are large enough.

The same factors that determined the current division in a positive-

grid triode also determine the fraction of the space current transmitted

and intercepted by the screen grid of a pentode. The following identifica-

tion of the elements of a triode gives approximately the conditions

existing in a pentode

:

Triode Pentode

Cathode Control grid

Control grid Screen grid

Plate Suppressor grid

When this correspondence of the electrodes is used, then Eq. (9.28)

for current division in triodes may be applied directly provided that the

mean suppressor-plane potential is used as the triode plate voltage and

the equivalent triode cathode-plate distance is recognized as being some-

what larger than the pentode control-grid-screen-grid distance. When
these considerations are applied, a transmission factor for the screen

grid is determined. It is then necessary only to correct this for the

additional electrons reflected from elastic collisions with the suppressor-

grid wires.

For the condition of equal plate and screen-grid voltages prescribed

for the pentode current-division factor, the mean suppressor-plane

potential is a very small fraction of the plate and screen-grid potential.

In terms of the equivalent-triode current division this means that interest

is centered on the region of very small voltage ratios, far to the left on the
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true primary-current-division curve of Fig. 9.18. The value of the cur-

rent ratio will not be a great deal less than the triode current-division

factor because the current-ratio curve is concave upward. The true

primary-division curve rather than the measured triode division law may

be expected to apply in the case of the pentode because there is no modi-

fication of the electrode currents by sec-

ondary emission and because reflection

of electrons from the plate of a triode at

low potentials may be considerable,

whereas in a pentode suppressor grid of

the same mean potential the electrons

Avfill, for the most part, be able to pene-

trate in the spaces between the wires.

In order to apply the above ideas it is

necessary to evaluate the mean sup-

pressor-plane potential. Consider the

configuration of electrodes shown in Fig.

11.8. In this somewhat idealized config-

uration the screen grid is replaced by a

plane. Since the suppressor grid is

usually of a coarse mesh, the field approx-

imation of Eq. (7.72) is sufficiently accurate. If a linear potential term

IS included to account for the effect of the screen grid and plate, the expres-

sion for potential becomes
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Fig. 11.8.—Electrode dimensions,

in the suppressor-grid region.

Vix,y) = - 7

drrEo
In

2
^cosh — cos + Bx C (11.2)

where q is the charge per unit length of a single grid wire, x is measured

in a direction perpendicular to the grid plane and has a zero value in the

grid plane, and y is measured in the grid plane relative to a grid-wire

center in a direction perpendicular to the wires themselves. Upon
setting the potential equal to F2 at the screen grid at which x = —^23

and
2/
= 0, then approximately

U 2 = - ^ - Bd23 + C (11.3)
dz

Upon setting the potential equal to zero at the suppressor at which

a; = 0 and y = r^, then approximately
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Upon setting the plate potential also equal to F2 at a: = dzp, 2/
= 0,

there results, approximately,

Vz= - + + C (11.5)
^£0 dz

The same approximations apply above as do in the case of the low-mu

triode. The expressions are valid only for screening fractions less than

one-tenth and interelectrode spacings greater than the distance between

suppressor-grid wires.

The three equations above may be solved for the three unknowns

q, B, and C and these values- substituted in Eq. (11.2). When this is

done and the general expression for potential resulting is restricted to

the point x = 0, y = ^> there is obtained an expression for the maximum

potential between the suppressor-grid wires,

Vz In sin
fe)]

In 2
2t

az

dzzdzp

d^p

( 11 .6 )

The mean value of the suppressor-grid-plane potential is just half this.

F,ln

Vz>, =
Sin 1 — 1

\a3/_

2!r dzzdzp

dz d2p

(11.7)

When this mean value of the suppressor-plane potential is known, Eq

(9.28a), which is repeated here, can be applied with the electrode cor-

respondence previously mentioned to obtain the ratio of the current

transmitted by the screen grid to the current intercepted on the initial

passage.

h.
h

a

1 a/i

2 {

{deg “F" dgj^ deg
Ce

D )

1 (9.28a)

Upon substituting equivalent factors to suit the pentode problem this

expression becomes
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= di

/

(I2M23 (di2 + dii) — di2 yV 2

- 1 (118)

D

2x^23
^

+ ^*23^

+ r2)

where D = 7̂ In
2d 12 r2

T2 = ratio of current transmitted by screen grid upon initial

passage of electrons to cuiTent intercepted

= geometrical amplification factor of control grid relative to

screen grid

It is necessary only to modify the factor T 2 by the transmission

factor of the suppressor grid to obtain the screen current-division factor 2D

The transmission through the suppressor plane will generally be so

large that it will affect the over-all result by only a small fraction. The
transmission of the suppressor plane is given approximately by

Ta = — - 1 (11.9)
rs

since membrane-model studies show that only those electrons aimed at

the center half of a suppressor-grid wire will strike it. The over-all

current ratio is then given approximately by

2D
( 11 . 10 )

Example: Consider the 6J7 pentode, which has the following dimensions;

for

and

del =

di2 =

^23 =

dip —

8 . 65 mils

56 . 8 mils

109.5 mils

110 mils

ai

(I2

dz

21 . 1 mils

15.9 mils

50 mils

Ti = 1.1 mils

r 2 = 1.25 mils

Ti = 2.25 mils

In [sin (’^1^)]

2 sin

= 0.12

;i23 = 56

dii 109.5

(12 15.9

S = 2r2

«2

27r 109.5 X 1101

50 219.5 /

from Eq. (11.7)

from Fig. 7.11

= 6.89

2.5

15.9
= 0.1572
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15.9

„ fl5.9 X 56[(56.8 + 109.5) - 56.8 X 0.12]0.0683 „ )

^

^
I 27r X 109.5(0.12 + 56) J

= 4.3 from Eq. (11.8)

Note that this value of current transmission is only slightly less than the

5 factor of 4.63 calculated from Eq. (9.25), considering the screen grid of the

pentode as the control grid of a triode.

» = ^
—-—j— = 3.57

4J +^
This calculated value of £) agrees well with a measured value of 3.65. The

agreement is, in fact, better than there is any reason to expect in view of the fact

that the 6J7 does not have a plane-electrode structure at all but has a circular

cathode and suppressor grid, elliptical control and screen grids, and a plane plate.

11.4. Amplification Factor of a Pentode. The design of a pentode

presents a rather complex problem. Relatively little has been published

on this important subject. Most of the design equations exist in the

private notebooks of a few workers in the field and are largely empirical

modifications of simple theoretical relations. In this and subsequent

sections there is given a sketch of the factors involved in the determina-

tion of pentode tube constants. The results that are given can serve

only as a rough guide to the fundamental relations and should not be

taken as anything more than approximate design equations.

The amplification-factor formulas of a pentode may be expected to

be considerably more complicated than those of a triode for two reasons.

(1) There are three grids instead of one. (2) The division of current

between the various electrodes is a function of the relative electrode

potentials. If the amplification factor is calculated from electrostatic

considerations as was done for the triode, there results an expression that

gives the relative influence of the plate and control grid in keeping the

space current constant. This is not the true amplification factor but what

will be referred to as the “electrostatic amplification factor” since it

gives the relative influence of the plate and control grid in controlling

the off-cathode gradient of potential in a cold tube (or space current in a

hot tube). The true amplification factor is a modification of this value

that gives the relative influence of plate and control grid in controlling the

plate current. The subject will be treated by first studying the field in a

pentode, deducing the electrostatic amplification factor from it, and then

modifying this to obtain the true amplification factor-

from Eq. (11.9)

from Eq. (11.10)
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Electrostatic Field of a Pentode. The method of conformal transforma-

tions is not readily applied to tubes having several grids of different

pitches. It is, however, possible to construct the field from the expres-

sion for the potential due to a single row of grid wires given in Eq. (7.72),

[2 ^ - cos -b c (7.72)

where the wires are spaced a distance a apart upon the y axis and q is

the charge per unit length of wire. If three terms like the function in

Eq. (7.72) are combined properly with a linearly varying component of

potential, the resultant expression is a satisfactory representation of the

field of a pentode.

First consider some of the properties of Eq. (7.72). In the first

place the constant has the value

where F9 is the potential of the isolated grid and r„ is the radius of the

grid wires. Near the grid wires the equipotential contours are circles con-

centric with the grid wire. In this vicinity the potential is given approxi-

mately by

At a considerable distance from the grid the equipotential contours are

straight lines parallel to the grid-wire plane whose approximate potential

is given by

where the upper sign is associated with potentials to the right of the grid

plane and the lower with potentials to the left. It is seen that the

potential varies linearly with distance from the grid-wire plane, just as

it would from a plane with a surface-charge density of The second

term above gives the difference between the actual grid-wire potential and
the equivalent potential of the grid plane, found by extending the straight-

line portions of the potential profiles back to an intersection, as shown in

Fig. 11.9. The depth of the fillet about the grid wires is given by letting
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X = Oandi/ = ^inEq. (7.72). This substitution gives for the maximum
£i

deviation from grid-wire potential in the grid plane

It is therefore always true that the potential difference between the grid

wire and the equivalent potential of the grid plane is 0.693 ( = hi 2) of the

Fig. 11.9.—Potential profiles of a single row of grid

wires.

maximum difference of potential encountered in the grid plane. Also

shown in Fig. 11.9 is the gradient of potential about a row of grid wires.

Provided that the distance between electrodes is greater than the

distance between grid wires, which is a good approximation with the

exception that the suppressor-grid-plate distance is often less than

the suppressor-grid pitch, the field of a pentode is given by the sum of

three expressions like the right-hand side of Eq. (7.72) plus a linear com-

ponent of field plus a constant.
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- ^ + C (11.15)
to

in which the subscript n assumes the values 1,2,3 to correspond to each

of the three grids, den is the distance from the cathode to the nth grid,

hn gives the relative location of the grid wires along a reference line normal

to the cathode, a„ is the pitch of the nth grid, qc is the cathode charge

per unit area, and qn is the charge per unit length of grid wire on the nth

grid.

Upon making the usual approximations for large values of x and small

values of y, it is possible to write the equations relating the potential at

each electrode to the electrode charges. These equations are

qidci _ Q^dc2 QsdeZ
1 Q 1 ^ (11.16)

aito ajSfl tlsEo

?1
In ^2 sin—^ — q^dxi qadii q4ci + c (11.17)

2irto \ ai/ Clito asS-o to

qydii _ _ii- In ( 2 sin _ qzdiz _ Qcdc2 + c (11.18)
dltQ 2irto \ a-i/ O3E0 to

Qidiz q^M — In 1 2 sin
TiTaN _ QedcS + c (11.19)

aico CI2CO ^^0 \ azj to

Qidip • qzdip + c (11.20)
dlto <12^0 eo

The above expressions may be solved for the charges in terms of the

electrode potentials and then applied to Eq. (11.15) for the potential

field. This process is somewhat involved, however; for ordinary pur-

poses a simpler procedure that yields results accurate enough for most

purposes is recommended. This simplified procedure consists in sketch-

ing the potential profiles and then correcting the originally assumed

values. Ordinarily only one correction is necessary.

The simplified procedure for determining potential fields in pentodes

is applied as follows: Ordinarily a complete plot of the potential field is

not required, and potential profiles are sufficient. The procedure first

calls for a sketch of the potential profiles within the tube. For conveni-

ence the profiles will be drawn through a wire of each grid and midway

between the grid wires and the segments of such profiles joined. Actu-

ally, there may be no actual straight line in the tube that goes through a

wire of each grid, but this makes no difference. Such a sketch is shown
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in Fig. 11.10. The specified electrode potentials are marked, fillets of

reasonable size are attached, and the fillets are then joined by straight

lines. The next step in the procedure is to draw a curve of the gradient

of potential between electrodes as taken from the slope of the straight-

fine portions of the profiles joining the electrodes. Such a curve of

gradients is also shown in Fig. 11.10. If the gradients are taken from

the profiles in units of volts per meter, then the gradients will have the

values indicated on the figure in terms of the charges. From the four

values of the gradient between the

electrodes, the four electrode charges

in units of coulombs per square

meter can be calculated. When the

electrode charges are known,

then the factor — In (

J

-^0 \ «» /
applied to each grid, as shown in Fig.

11.9, to see how good the original

guess on the size of the fillet of poten-

tial around the wires was. Gener-

ally, the original guesses are not

exact, and some values of electrode

potentials different from those
desired are found to fit the straight-

line portions of the potential profiles.

Correcting these values is a simple

matter, and usually the first correc-

tion will be close enough to the

exact one for ordinary purposes.

A plot of the complete field

within a pentode is shown in Fig.

11.11. The figure shows some typi-

cal electrode dimensions and elec-

trode potentials and gradients in a pentode.

Electrostatic Amplification Factor of a Pentode.^ From work on the

triode it is possible to find an expression giving the potential of a grid in

terms of its charge and the charge to the left of it. By combining such

expressions for all the grids of a pentode there is obtained an expression

for the cathode charge in terms of the electrode potentials. From this

the relative effectiveness of the various electrodes in controlling the off-

‘ See also Dow, W. G., Equivalent Electrostatic Circuits for Vacuum Tubes,

Proc. I.R.E., vol. 28, pp. 548-556, December, 1940.
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Fig. 11.11.—Electrostatic field and electron paths in a pentode.

(Schade .

)



284 VACUUM TUBES

cathode gradient can be determined. This gives the electrostatic ampli-

fication factor.

If the component logarithmic-transformation equations are applied to

Eq. (7.31), there results

r,-
^TTEo a ClEo

-t-^ In sinh^
2irto a

Qp 25rr„
„ In cosh (11.21)
2ir£o a

The last term in the above equation rarely exceeds 1 per cent of the

second last term and so will be, dropped. The remaining terms can be

arranged to give

V^
aiEo 2ireo 0,1

(
11 .22)

in which qt is the total charge per grid-wire section to the left of the grid,

dx, is the distance from the grid to the next electrode to the left of the grid

in question (the cathode in the case of the triode), and the subscript 1

means that the particular S3Tnbol applies only to grid 1.

The first term of Eq. (11.22) establishes the average level of the grid-

plane potential since it is the gradient of the straight-line portion of the

potential profile to the left of the grid. The second term gives the rest

of the potential necessary to make up the actual grid potential. There

are no restrictions on Eq. (11.22) that confine it to a triode; it can just

as well be applied to any grid of a tube as long as the symbols are given

the proper interpretation. Since in summing potential expressions like

Eq. (11.22) it is necessary to take account of the fact that the various

grids may have different pitches, the charge per unit area instead of the

charge per unit length of grid wire will be used. The charge per unit

area is given by

Qn = - Qc = qo (11.23)
dn

where a„ is the grid-wire spacing.

To apply the summation procedure indicated above to a pentode, the

three grids will be referred to by numbered subscripts and the distance

between electrodes wall be given by the symbol d with a double subscript,

corresponding to the electrodes involved. The following equations are

thus obtained:

Fi

V, - Vi

Qcdci

EO

QiOi

27reo
In sinh

2irri

Oi

{Qe + Ql)dl2

to
?»l„3inh?V!

(11.24)

(11.25)
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V, - V2

V„ - F3

{Qc + Qi + Qi)di3 _ Qsas 2nn'3

EO 2'jrEo CI 3

(Qc ~l~ Qi ~l~ ^2 4~ Qa^dap

£0

(11.26)

(11.27)

It will be recognized that the first term of each of the above equations

establishes the average potential of an electrode in terms of the charge

and distance to its left. The second term takes account of the deforma-

tion introduced by the presence of the grid. In the case of Eq. (11.27)

there is no second term because the potential of the plate is constant.

The above set of equations gives the electrode potentials in terms of the

charges. The system can, of course, be solved for the charges in terms of

potentials by Cramer’s rule.

The determinant of the coefficients is

del

daa

dap

In sinh 0 0
\27r ai )

dn In sinh 0
\2ir 02 /

diz diz f^ sinh
\27r 03 /

dap dap dap

(11.28)

This can be simplified by the introduction of the symbols

and

K = dcidizdaadap

Eo’

Tp On
I

. 1 27r7*n
In sinh

(11.29)

(11.30)

when n = 1, n — 1 = c.

After substituting the above, the determinant assumes the form

A

0 0

1 Ba 0

1 1 Ba
1 1 1

(11.31)

The value of this determinant has the simple form

A = K(1 - Bi)(l - B2)(1 - Ba) ai.32)
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The cathode charge is given by

Q. = ,, r(l - B,){1 - B,)
,
Bi(l - £ 3)!

y 1 T 1 T
del diidel

+

+ Fa

di2

5i(l - Ba)

BiBo
I

B
I

daa

dz„ J
^ BiBiBg

di3p
(11.33)

Reference to Eq. (7.35) shows that the electrostatic amplification factor

is given by the ratio of the coefficients of the first and last terms.

(1 - B,){1

del

Ra)
,

Ri(l - B,)
I j

B1B2B3

IZp

(11.34)

Substitution of the values of the various R’s shows that the above
expression for amplification factor is independent of dci. In general, the

electrostatic amplification factor of the pentode will have a value approxi-

mately equal to that given by the product of three triode mu’s calculated

by considering the plate, the suppressor grid, and the screen grid as plates

of a triode and the next two electrodes in order toward the cathode as

grid and cathode.*

Also available from Eq. (11.33) is the electrostatic amplification

factor giving the relative effectiveness of the control grid and screen grid

in controlling space current. It is

(1 - R2)(1 - Ra)
I

Ri(l - Ra)

del dli

- R3) RiR 2

dii dzz

(11.35)

The above expressions for amplification factor have some small inherent

inaccuracies due to the fact that the filleting of potentials about some of

the grids has been neglected.The inaccuracy is probably not more than a

few per cent. More accurate expressions for electrostatic amplification

factor may be derived from Eqs. (11.16) to (11.20), but these are so

cumbersome as to be almost totally useless.

True Amplification Factor of a Pentode. The true amplification factor

of a pentode must take into account not only the electrostatic action

1 Thompson, B. J., Space Current Flow in Vacuum Tube Structures, Proc. I.R.E.,

toI. 31, pp. 485-491, September, 1943.
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within the tube but also the division of current between the electrodes.

Let the true amplification factor of the pentode be defined by

= -
\dV,U

(11.36)

In deriving the true amplification factor, use will be made of the following

relation,

7. = G ( Fi + — + — + ^ )
(11.37)

\ Ml2 Ml3 Mlp/

where n is a constant of approximate value 1.5, the n’s are electrostatic

amplification factors measuring the relative effectiveness of the electrode

in question and the control grid in controlling the space current, G is

perveance of value
2.335 X 10-«

amperes per unit area per volt", and d

is the equivalent control-grid-cathode spacing as calculated from Eq.

(8.45) but with the screen grid considered as the triode plate.

Let the ratio of plate to screen-grid current be given by

(11.38)

and let the functional relation be indicated subsequently by the symbol g.

The ratio of plate to space current is given by

and hence

I2 + If
1

i 2

9

i+j

F2
,
73

,
7p

(11.39)

(11.40)

where 7eq is the equivalent voltage 7i -| -| ^ -| -
M 12 Ml3 Mlp

The partial derivatives that enter into the determination of the true

amplification factor can now be evaluated.

= n(?(7e,)"-‘^ (11.41)

(Fe.)"-
1

+ <7(7J"
(1 + gy

(11.42)
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Upon combining these last two expressions, the resulting expression

for the true amplification factor is

fip = Mip

1 + dVp
ngil + g)

(11.43)

If the ratio of plate to screen-grid current is assumed to have the form

previously given

then

Mp =
1 +

Mip

filpTflVeq

1 + 2D

(11.44)

From this it is seen that the true amplification factor is less than the

electrostatic amplification factor by a considerable factor.

11.5. Transconductance of a Pentode. The transconductance of a

pentode is readily obtained. Let

but

and so

/-I ri
W'm *“ '-Tip

*
Q-yf

T = Jip

Ip
aUiJ,

(11.45)

(11.46)

(11.47)

since the ratio of plate to space

dL

current is independent of control-

grid voltage. The quantity may be designated as Gu and may be
OKI

obtained from the triode mutual-conductance formula [Eq. (8.47)] by

considering the screen grid of the pentode as the plate of a triode. Equa-

tion (11.47) states that the control-grid-plate transconductance of a

pentode is equal to the triode mutual conductance of the first three elec-

trodes, reduced by the ratio of the plate current to the screen current.

11.6. Plate Resistance of a Pentode. The plate resistance of a

pentode is the reciprocal of the plate conductance defined by
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Utilizing Eq. (11.40),

T -i?-

^ _ az. g ,

"‘rfUp

1 + g (1 + gy
(11.49)

The first term in this last expression results from the variation of the

emitted current with plate voltage. The second term results from the

change in plate current occasioned by the variation in current division

with plate voltage. When the current-division function of the pentode

has the form of Eq. (11.1), the above expression reduces to

G,
Gulp_^
Mip Zg

(11.50)

11.7. Design Considerations. In a pentode the ordinary constants

are readily made to assume satisfactory values. Prime interest is cen-

tered in the transconductance. Here the same considerations apply as

in the triode, and no greater diflSculty is encountered. The amplification

factor and plate resistance are naturally high and require no particu-

lar attention. Thus interest is focused upon some of the other character-

istics of the tube that affect its operation. These other characteristics

are

1. Suppression of secondary electrons.

2. Sharpness of the shoulder of the plate-current-plate-voltage

characteristic.

3. Plate-current to screen-grid-current ratio.

The above factors are controlled by some factors that have not appeared

before in this study of vacuum-tube design. These are

1. Shape of the potential field before the plate.

2. Electron deflection by the grids.

In previous considerations of tube characteristics the principal con-

cern has been with the potential field and with the space-charge flow.

In the pentode, in addition, the electron paths are critical.

The suppression of secondary electrons from the plate is not a difficult

problem, though some attention must be paid to the electrode dimensions.

The critical factors are the pitch of the suppressor grid and its distance

from the plate. In Fig. 11.12 is shown the effect of different suppressor-

grid pitches upon the retarding potential offered to secondary electrons

created at the plate as a function of plate voltage as calculated from Eq.
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(11.6). The minimum potential referred to in the figure is the minimum

of potential on a line normal to the plate passing midway between grid

wires. As the suppressor-grid pitch

is decreased, this minimum potential

is decreased and the retarding poten-

tial offered to the secondaries thus

increased. The effects are linear

with the various potentials involved,

provided that space-charge effects

do not distort the potentials appreci-

ably. In Fig. 11.13 is shown the

effect of putting the suppressor grid

in different positions between the

screen grid and plate, as calculated

from Eq. (11.6). This changes both

the magnitude and the rate of change

of the retarding potential. For sup-

pressing plate secondaries it is de-

sirable to have a fixed retarding

potential. This cannot be realized,

and therefore the arrangement of

electrodes that gives the most retarding potential at low plate potentials

is desired. This means that a small

suppressor-grid-plate distance is

indicated. So also is a small sup-

pressor-grid pitch. Some other con-

siderations, as we shall see, hmit the

degree to which the suppressor pitch

can be reduced, but both the above

factors should be considered to ensure

secondary suppression.

'

The other new factor in pentode

design, viz., the deflection of electrons

by the grids, is probably more impor-

tant than the secondary suppression,

since the latter is usually achieved

without too much difficulty. The
electron deflection by the grids will

affect strongly both the sharpness of

the plate-current-plate-voltage char-

acteristic and the ratio of plate to

* JoNKEB, J. H. L., Pentode and Tetrode Output Valves, Parts I, II, Wireless Engr.,

vol. 16, pp. 274^286, 344-349, July, 1939.

Fig. 11.13.—Retarding increment of

potential before the plate of a pentode

as a function of plate voltage for

various suppressor-grid locations.

Fig. 11.12.—Retarding increment of

potential before the plate of a pentode

as a function of plate voltage for

various suppressor-grid pitches.
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screen-grid current. The more the electrons are deflected by the grids,

the fewer will reach the plate at ordinary plate voltages and the less rapid

will be the increase of plate current with plate voltage.

An exact study of electron deflection by the grid wires is rather dif-

ficult, but an excellent approximate analysis of the deflections can be

made by using the fact that the potential field between the grid wires

acts like a cylindrical lens and may have the effect of either focusing or

dispersing the electrons which pass between them. Thus in Fig. 9.10a

C G, Gz G3 P
1

1

1

1

1

1

1

1 1

0
5

1

1

1
/'

Y

1

1

/ 1

y 1

1

1

1

1

1

-

1

1

1

1

0

1

1

1

1 V2-8Vp -
=0

Fig. 11.14.—Scattering action of a small-

pitch suppressor grid far from the plate of a

pentode.

it is seen that the control grid gives the focusing action of a convergent

lens. This lens, however, has some very pronounced aberrations. The
focal length for parts of the lens near the grid wires is less than for the

center of the space. In the language of optics, the lens has a positive

spherical aberration. In Fig. 10.6 the focusing action of the control grid

may again be seen. It is also seen that the screen grid exhibits the charac-

teristics of a divergent lens. In Figs. 11.14 and 11.15 it is seen that the

suppressor grid has a convergent-lens action. The nature of the lens

caused by the potential field between grid wires depends upon the gradient

of potential on the two sides of the grid and is, to first order, independent

of such things as the grid radius and pitch.
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The focal length of the lenses formed by the grid wires will be shown

in the chapter on Electrostatic Electron Optics to be given by

/ = (11.51)

where F„ is the potential midway between the wires of grid n,
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Fig. 11.15.—Focusing action of a large-pitch

suppressor grid close to the plate of a

pentode.

the gradient of potential to the right of the grid, and is the gradient

of potential profile to the left of the grid plane. It is seen that when the

gradient of potential increases upon passing through the grid, / is positive

and the lens is convergent. When the opposite is true, the lens is

divergent. The focal distance as given by the above formula will be

modified somewhat in actual cases when the gradient of potential is

not zero on the side where the focus occurs, for the electron trajectories
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will tend to be sections of parabolic curves instead of straight lines. The
formula does, however, give a fairly exact indication of the principal

effects and the correct value of sidewise components of velocity.

The nature of the focusing of a set of grid wires is shown schematically

in Fig. 11.16. An electron passing midway between grid wires suffers

no sidewise deflection whatever. As the distance from the midplane
increases, the electrons receive more and more deflection, by a linear law,

so that they all cross over at the same point. This holds true almost

exactly for the center half of the space between the grid wires. The

initial offset from the midplane, the focal length, and the tangent of the

angle of deflection are related by

tan a = y (11.52)

where yo is the offset from the midplane along the line of the grid wires

of the electron’s initial position, / is the focal length, and a is the angle

of deflection. In terms of velocity components.

f v^~ V
(11.53)

where Vx and Vy are the forward and sidewise components of velocity

possessed by the electron shortly after passing through the grid plane

and V is the total velocity.

The experimental agreement between this formula and the actual

behavior is quite good, as shown in Fig. 11.17. Here is shown the actual

deflection as measured on an elastic membrane (curve a) and the deflec-

tion calculated on the assumption of a constant grid-plane potential

equal to the mean potential of the grid plane (curve b). The measured
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deflection is seen to become greater than the linear value as the electrons

first approach the grid wires. This is due to lens aberration. The
deflection then decreases. This is because, as may be seen in Fig. 9.10,

those electrons which come very close to the grid wires are so strongly

deflected that they come within the influence of the next grid wire and

suffer a deflection in the opposite direction.

Fig. 11.17.—Deflection angle of an electron as a

function of the offset from the mid-point between

grid wires.

Introducing the value of / from Eq. (11.51) and the expression for

velocity in terms of potential.

Van —
2.96 X 10 "

vf;

in which is the sidewise component of velocity acquired, in meters

per second, from the nth grid, V„ is the mean grid potential of the nth

grid, in volts, and 3,nd the gradients of potential to

the right and left of the nth grid plane, respectively, in volts per meter.

The corresponding expressions for the three grids of a pentode become

Vyl =

Vy2 =

VyZ =

2.96 X 10" f Vz - Vi

VTi V <^12

2.96 X 10^ {Vz - Vz

\/V2 \ ^^3

2.96 X 10^ /Vp - Vz

V% \

(11.55)

(11.56)

(11.57)
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in which the sidewise components of velocity are in meters per second,

grid potentials are understood to be mean grid-plane potentials in volts,

and distances are in meters.

The sidewise components of velocity are additive in the form shown

in Fig. 11.18. Curve a of this figure shows the distribution of the side-

wise components of velocity after passing through one grid. The side-

wise components of velocity are uniformly distributed betw’een plus and

minus Vi where this is the maximum component of this tangential velocity.

After passing through two grids the distribution of velocities has the

form shown in b of Fig. 11.18. This is a trapezoidal figure with velocities

Fig. 11.18.—Distribution of sidewise component of

velocity in a beam of electrons scattered by one, two, or

three grids.

reaching from Vi -1- Vi to the negative of -the same quantity. In this

particular figure it has been assumed that V2 is less than Vi. The dis-

tribution given is arrived at by sliding a rectangular aperture of width

2v2 and of the same height as the rectangle of part a of the figure over the

rectangle of part a and plotting the exposed area as a function of the

displacement of the aperture. Upon repeating the process with an

aperture of width 2^3, the distributions of Ci and C2 result. The distribu-

tion of Cl results from the assumption that Vs is less than Vi — v^, whereas

the distribution of C 2 results when Vs is greater than Vi — Both

‘ JoNKBR, J. L. H., Electron Trajectories in Multigrid Valves, Philips Tech. Rev.,

vol. 5, pp. 131-139, May, 1940.
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these distributions consist of parabolic and straight-line sections with

the same over-all span. The difference is that the distribution of ci

has a straight-line center section, while that of C2 has a parabolic center

section of large curvature. Both these distributions already show

approximately the form of a Gauss error curve, which they would obtain

from the random deflection of a large number of grids.

If the distribution of tangential velocities as given above is known,

the plate-current-plate-voltage characteristic can be calculated. It is

necessary only to remember that at every plate voltage Vj, only those

Plate volts

Fig. 11.19.—Plate-current-plate-voltage characteristic of a

tube with electrons scattered by one, two, or three grids.

electrons tvill reach the plate whose tangential velocity after being

deflected by all grids is less than a maximum value given by

= 5.93 X 10* VVp (11.58)

This follows from the fact that an electron reaching the plate will have

the value of velocity given by Eq. (11.58), and if all this velocity exists

in a sidewise component then the electron will graze the plate and fall

back through more positive spaces in the suppressor grid. If the plate-

current-plate-voltage characteristic be calculated on this basis, the curves

of Fig. 11.19 result. The curves shown are for the corresponding

velocity diagrams of Fig. 11.18. Curve a is similar to that which occurs

in a beam-power tube. This is a tetrode with aligned grids in which

the net effect of deflection by two grids is not very different from that

of one grid as seen in Fig. 10.6. This effect undoubtedly contributes to

the sharpness of the shoulder of the beam-power tube. The effect of

two grids is shown at h. This would correspond to the curve of an ordi-
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nary tetrode free from secondary emission. The curve c is a typical

pentode characteristic resulting from the random action of three grids.

It is evident that it is necessary to keep the total sidewise velocity compo-

nent of the electrons low in order to achieve a sharp shoulder to the

characteristic. Since all three grids contribute to this in approximately

the same amount, it is necessary to study the effect of each of the grids

to see what can be done to reduce the resulting sidewise component of

velocity. Examination of Eq. (11.54) shows that, in general, the side-

wise component of velocity introduced by grid deflection may be reduced

by either reducing the grid pitch or decreasing the change in the gradient

of potential on passing through the grid.

Deflections Due to the Control Grid. The same factors that give rise

to a large mutual conductance also give rise to small deflection. These

factors are small grid pitch and a small value of cathode-grid spacing.

It might be thought that a small cathode-grid spacing would give rise

to a large change in the slope of the potential curves on the two sides of

the control grid, but this is not the case, for the mean grid-plane potential

increases as the cathode-grid distance decreases. Nothing much can

therefore ordinarily be done with the control grid to decrease the electron

deflection.

Deflections Due to the Screen Grid. The electron deflections due to

the screen grid may be reduced by increasing the distances dn and d2 z

in cases in which transit time is not a consideration. They can also be

reduced by decreasing the grid pitch, though there is a limit to this

method, for the current intercepted by the screen grid increases as this

is done.

Deflections Due to the Suppressor Grid. The suppressor pitch cannot

be made too small, for then the mean suppressor-plane potential becomes

too small and offsets the effect of the small grid-wire spacing as far as

electron deflections are concerned. It is, however, possible to make the

suppressor-grid-plate distance quite small, with resulting improvement
in the deflection characteristics. This has the added advantage, as is

apparent in Fig. 11.15, that the current is concentrated in front of the

plate, giving rise to considerable space charge, which aids in increasing

the retarding potential presented to the secondary electrons originating

at the plate. The bad deflection situation that results from the use of a

large suppressor-grid-plate distance is shown in Fig. 11.14.

By making use of the possibilities indicated in the above outline it is

possible to make pentode tubes with shoulders of the plate-current-

plate-voltage characteristic nearly as sharp as those of the beam-power
tube.



CHAPTER 12

NOISE IN VACUUM TUBES

12.1. Noise as a Limiting Factor in the Ultimate Sensitivity of Elec-

tronic Devices. Vacuum-tube amplifiers making use of triodes and

pentodes are capable of giving extremely large amplification of power

and voltage. In fact, it may be said that an amplification of any desired

magnitude may be achieved by the use of vacuum tubes. At first

glance this would seem to imply that arbitrarily small signals could be

detected. Ultimately, however, it is found that there is a limit deter-

mined by the noise generated by the random motion of electrons at the

input of the circuit. Any signal whose level is appreciably less than

that of the electron noise will be masked by it. The order of the equiva-

lent voltage of the electron noise is extremely small, of the order of

millimicrovolts, but many electronic devices have enough amplification

to bring this up to a detectable level.

Electron noise shows up in both resistors and in vacuum tubes. Even
in a passive resistor, the molecular and the electronic agitation is

evident with sufficient amplification. Here the noise is referred to

as “thermal-agitation noise.” In vacuum tubes the random emission

and fluctuation of space-charge-limited currents contribute a similar

noise. In temperature-limited tubes this noise is called “shot noise”

and is due to random emission. In space-charge-limited emission tubes

the noise is much less and is called “reduced shot noise.” Both types

of noise are characterized by a uniform distribution of energy over the

frequency spectrum. Depending upon the application, the noise from

either the tubes or the resistors at the input of an electronic device may
predominate.

Needless to say, resistor and tube noise is an exclusive concern of

electronic devices. No other type of device can have sufficient sensitivity

to be limited by random electron motion. Resistor and tube noise set

the ultimate sensitivity of high-gain amplifiers, receivers, phototube

input circuits, and television pickup tubes. Although resistor and

tube noise can never be avoided, much can be done by circuit design and

selection of tubes to approach the minimum attainable noise.

Although the formulas for various types of electron noise and their

application are quite simple, their derivation is dependent upon some

298
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intimate aspects of thermodynamics and the kinetic theory of gases that

have not been developed in this book. For this reason, only the basis

of the development will be given, and emphasis will be upon the inter-

pretation and application of the formulas.

12.2. Noise in Resistors. Noise in resistors is due to the random
motion of electrons within them. The noise energy is proportional

to the resistance, the absolute temperature, and the frequency band
width over which the noise is observed and is independent of the material

of which the resistor is made. The noise energy increases with absolute

temperature because the molecular agitation is proportional to this. The
noise is probably made up of extremely short and sharp pulses resulting

from the impact of the electrons with the molecules. These pulses are

probably so short and sharp that they are made up of a continuous distri-

bution of frequency components of equal amplitude up to the highest

frequencies in use today. As a result, the noise energy is uniformly

distributed over the useful r-f spectrum.

The mean-square thermal-agitation noise voltage across the ter-

minals of a resistor R at an absolute temperature T, associated with a

frequency band width B, is

= UTrRB ( 12 . 1 )

where e is rms value of the noise voltage, volts

k is Boltzmann’s constant, 1.3805 X 10“^® watt-second per °K
R is resistance, ohms
Tr is room temperature, °K (°C d- 273)

B is frequency band width, cycles per sec'’^

If room temperature is taken as 290°K (63°F), the expression for the

rms noise voltage becomes

firm, = 126.0 \/RB micromicrovolts (12.2)

A nomograph of this equation is shown in Fig. 12.1. For the sample

construction line shown, the rms value of the noise voltage across a

1,000-ohm resistor in a frequency band of 10 me is 12.6 microvolts.

The effect of thermal-agitation noise can be expressed either as an

emf in series with the resistor considered noiseless or as a constant-

current generator in parallel with the resistor considered noiseless. This

follows from application of Thevenin’s and Norton’s theorems. The two

equivalent circuits of a noisy resistor are shown in Fig. 12.2. The circle

in the figure indicates a zero-impedance constant-voltage generator

' Johnson, J. B., Thermal Agitation of Electricity in Conductors, Phys. Rev,,

vol. 32, pp. 97-109, July, 1928.

*Nyquist. H., Thermal Agitation of Electric Charge in Conductors, Phys. Rev..

vol. 32, pp. 110-113, July, 1928.
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of the value given by Eq. (12.2). The square in the figure indicates an

infinite-impedance constant-current generator whose output is

= 126.0 yj- micromicroamperes (12.3)

at room temperature. This is obtained by dividing the expression for

the rms noise voltage by the resistance. The general form of the above

equation is

Zims -4'UTBR
amperes (12.4)

where all the symbols have their previous significance. A nomograph of

the rms noise-current equivalent of a noisy resistor to fit the right circuit of

Zero impedance
constant voltage

generator

<u

^1
.!Si

II

1/
OV4kTj.RB

r

I'U

SO-I
•h 1.'

<1 ^
1

Infinite impedance
constantcurrent

generator

,^V^kTrB/R

Fig. 12.2.—Equivalent circuits of a noisy resistor.

Fig. 12.2 is given in Fig. 12.3. For the sample construction line shown,

the equivalent rms noise current of a 1,000-ohm resistor is 4 milli-

microamperes for a frequency band width of 1 me.

The noise power associated with thermal-agitation noise in a resistor

is x^R, or

N — 4kTB watts (12.5)

Note that this is independent of the value of resistance. The available

noise power that can be obtained from a resistor by perfect matching is

just one-fourth of this value. This follows immediately from maximizing

the power obtainable from the middle circuit of Fig. 12.2 by varying

the resistance load on such a generator. Maximum output power

is obtained when the load resistance equals the generator resistance and

e2
has a value of q-5 . Thus the available noise power is

Na = kTB watts (12.6)
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Fig. 12.3.—Nomographic chart of equivalent rms current through a noisy

resistor.
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At room temperature of 290°K this has a value of

Na = 4.0 X 10-215 watts (12.7)

A nomograph of this equation is shown in Fig. 12.4. A temperature of

300°K and a frequency band width of 10 kc is seen to give an available

noise power of 4.1 X lO-i® watt. It is convenient to remember that at

room temperature the available noise power for a 1-mc band width is 144 dh

below 1 watt.

When two resistances at different temperatures are connected in

parallel, the mean-square noise voltage becomes

RiRiifR^T I -f- RiTf)
volts^ (12 .8)

where the resistances are in ohms and the temperatures in degrees Kelvin,

and Boltzmann’s constant is 1.3805 X IO- 2 ® watt-sec. When several

Area under recfang/e issame as fhaf
underpowergain curee

Fig. 12.5.—Definition of equivalent band

width.

resistances are connected in parallel, the results are better expressed in

terms of conductances. Let conductances (?i, Gi, 0%, ... ,Gn at tem-

peratures Ti, Ti, ...
,
r„, respectively, be connected in parallel. The

resulting mean-square noise voltage is

e2 = Ak volts2 (12.9)

Some care must be used in determining the band width to fit the

above expressions. Since the concepts involved are basically those

concerned with power, the equivalent band width of any device must be

defined in terms of the power-frequency curve. In the case of an

amplifier the band width is defined as that frequency interval for which

a power gain equal to the gain at mid-band would transmit the same noise
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energy as does the actual power-gain-frequency curve. Analytically,

this becomes

r G^if) df
B = —

Gr.{fo)
(12.10a)

where Gp is the power gain. All this amounts to is finding the width of a

rectangular power-gain-frequency curve of height equal to the mid-

frequency power gain of the actual curve as shown in Fig. 12.5. In

terms of voltage amplification, the equivalent band width is

L^GAndf
B = —

GAfo)
(12.106)

where is the voltage gain.

12.3. Sources of Noise in Tubes. Noise can occur in vacuum tubes

from a rather imposing list of sources. The principal sources of noise

in tubes are

1. Shot effect (temperature-limited emission).

2. Reduced shot effect.

3. Flicker effect.

4. Collision ionization.

5. Random division of current between electrodes.

6. Induced noise at ultra-high frequencies.

7. Faulty tube construction.

. Hum.

. Poor insulation.

c. Vibration.

d. Varying wall charges.

Shot effect is the noise associated with random emission in a tube

whose emission is temperature-limited. This is probably the loudest

of the electronic tube noises but not the most serious, for tubes are seldom

operated so that their emission is temperature-limited.

The so-called “reduced shot effect” is observed in tubes whose

emission is space-charge-limited. The magnitude of the noise is much
less than in tubes whose emission is temperature-limited. In this case

the space charge exerts a smoothing action upon the true shot effect,

and the noise is principally due to variations in the space-charge currents.

Flicker effect is observed vdth oxide cathodes. This effect is asso-

ciated with variations in the activity of the emitting surface. The effect

is much more noisy than the true shot effect for temperature-limited
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emission. When the emission is space-charge-limited, the magnitude
of the noise is greatly reduced.

Noise in tubes is raised by the presence of an appreciable amount of

gas. This is due to the fact that gas molecules are ionized by collision

with emitted electrons and the positive ions formed subsequently

liberate httle bursts of electrons as they penetrate the virtual cathode

in front of the emitting surface. Gas noise is inappreciable unless the

positive-ion gas current is more than a few hundredths of a microampere.

Such gas noise appears mostly below 10 me.

Random division of current between electrodes contributes to the

noise of multielectrode tubes and makes pentodes three to five times as

noisy as the same tube connected as a triode. It may be said that

multielectrode tubes will always be noisier than triodes because of this

additional factor contributing to the tube noise.

The ultra-high-frequency components of the random fluctuations of

space charge in a tube will induce voltages in the grid circuit, which in

turn will react back upon the space-charge flow. This effect is important

only for frequency components above 30 me.

Noise due to faulty tube construction is always present to a degree.

If the filament is not sufficiently noninductive, hum will result. If

insulation is poor at any point in the tube, there will be leakage currents,

which will generally create noise because of nonconstant leakage resist-

ance. Vibration may be a factor in an electromechanical feedback

circuit. Dirt on the glass inside of a tube may give rise to varying wall

charges, which will influence the tube current in a noisy manner. All

these items can, however, with sufficient care in construction be held to a

very low level.

Items 1, 2, 4, 5, and 6 listed above can never be removed entirely.

They are, however, subject to an analysis that shows how their effects

may be minimized. These items will be the subject of the subsequent

sections. It has been found in most cases that it is convenient to

express tube-noise effects in terms of equivalent noisy resistors. These
resistors in turn are considered to have internal-noise emfs.

12.4. Shot Noise in Diodes with Temperature-limited Emission.

Noise in diodes was probably the first form of tube noise ever detected.

It is generally referred to as shot noise but also as “Schrot noise”

and “Schottky noise,” after the scientist who first analyzed the

effect. The noise is due to the random emission and arrival of electrons

' Schottky, W., Spontaneous Current Fluctuations in Electron Streams, Ann.

Physik, vol. 57, pp. 541-567, Dec. 20, 1918.

* See also Fry, T. C., The Theory of the Schroteffekt, Jour. Franklin Inst., vol,

199, February, 1925.
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at the plate. It cannot be explained in terms of individual electron

emission or arrival alone, for if the electrons were emitted at a uniform

rate the lowest frequency component of noise would be above the highest

frequency that vacuum tubes can handle. Thus a current of 1 ma cor-

responds to a flow of approximately 10^® electrons per sec. If these

did flow at a uniform rate, there would be no noise components below
10'® cycles per sec. The electron stream evidently exhibits rather

pronounced variations in density caused by the electrons arriving in

groups. The mean square of the fluctuation components of current is

Tnfinite impedance
consfanf current
generator

Temperature
limited
current

Fio. 12.6.—Constant-current-generator equivalent of a diode with temperature-

limited current.

found to depend only upon the magnitude of the emitted current and the

frequency band width

where e is electronic charge, 1.6020 X 10~'® coulomb

— 2eIoB amperes^ (12.11)

Jo is emission current, amperes

B is band width, cycles per sec

This expression may more conveniently be written

= 3.2041 X 10“*®/oB amperes® (12.12)

If the current from a diode with temperature-limited emission is put
through a resistor R, the diode effectively puts a noise power of value

i^R into the resistor.

The above relations have been verified experimentally and they are

reproducible to a high degree of accuracy. This property makes
the diode with temperature-limited emission valuable as a standard

noise source for such purposes as receiver and amplifier sensitivity

measurement.

The diode with temperature-limited emission acts like a constant-
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current generator as far as noise energy is concerned and will put a noise

current given by the above equations through a resistor of any size.

The equivalent circuit of the diode with temperature-limited emission is

shown in Fig. 12.6.

12.5. Reduced Shot Effect in Diodes with Space-charge-limited

Emission. In diodes in which the emission is space-charge-limited, the

shot noise is much less than in the same diode passing the same current

when its emission is temperature-limited.*"^ The noise power is of the

order of 10 per cent of that encountered for the same current when the

emission is temperature-limited. The space charge thus has a very

definite “smoothing” action upon the shot effect, giving rise to what may
be called the “reduced shot efect.” The mechanism of the smoothing

action of the space charge is something like this: The virtual cathode in

front of the emitting surface has a potential lower than that of the emitter

by a value determined by the mean velocity of emission. Electrons

with all velocities are storming this potential hill, and those with velocities

greater than the mean velocity w'ill on the average get past the virtual

cathode and go on to the plate. Occasionally there will come a group of

electrons with a velocity slightly in excess of that needed to get past the

virtual cathode. When this occurs, the potential minimum at the virtual

cathode is momentarily depressed by the additional space charge and as

a result a few electrons that normally would have got past the potential

minimum fail to do so and are returned to the emitter. This means that

for every burst of electrons which might give rise to noise there is a

compensating current set up in the opposite direction which tends to

cancel the noise produced by the burst. The net result is an over-all

reduction in noise that is considerable. The resulting noise levels are,

however, high enough still to be of concern in the design of electronic

equipment.

By considering the action of each increment of the velocities encoun-

tered in the process of emission some fairly good theoretical expressions

for the reduced shot noise may be obtained. If the ratio of the noise

1 Rack, A. J., Effect of Space Charge and Transit Time on the Shot Noise in

Diodes, Bell Sys. Tech. Jour., vol. 17, pp. 1-28, October, 1938.

^ North, D. O., Fluctuations in Space-charge-limited Currents at Moderately High

Frequencies, RCA Rev., vol. 4, Part II, pp. 441-473, April, 1940; vol. 5, pp. 244-260,

July, 1940.

* Williams, F. C., Fluctuations of Space Charge Limited Currents in Diodes,

Jour. I.E.E., vol. 89, Part III, pp. 219-229, December, 1941.

* Bell, D. A., Fluctuations in Space Charge Limited Currents, Jour. I.E.E., vol.

89, Part III, pp. 207-212, December, 1942.

See also Schottkt, W., IFiss. VerofferU. Siemens-Werken, vol. 14, p. 15, 1937.
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power of a diode passing a given current with and without space-charge

limitation of current be designated by then, for a plane-electrode

diode with a large ratio of plate voltage Vp to average emission voltage

(velocity equivalent) F«,

QV
r* =^ (12.13)

V p

seems to be functionally correct. The mean-square noise current can

be expressed by an equation similar to that for the diode with tempera-

ture-limited emission as

= r^2eIoB amperes^ (12.14)

by analogy to Eq. (12.11). The mean-square noise current can also

be written in the form

= 0 amperes^ (12.15)

by analogy to Eq. (12.4). In this form, 0 is a dimensionless parameter

that has an asymptotic value of 0.644 for large ratios of plate to minimum
potential, Tc is the absolute cathode temperature, and R\ is the a-c

diode resistance. Theoretically, the parameter B is within a fraction

of a per cent of the asymptotic value as long as the plate current is

less than 80 per cent of the emission current and the plate voltage is

greater than 2 volts for normal oxide operating temperatures. Experi-

mentally determined values of diode noise are 50 per cent higher than

predicted by the theoretical expressions of Eqs. (12.13) and (12.15),

so that 6 assumes a value of unity for diodes. The significance of Eq.

(12.15) is that the noise power from a diode whose emission is space-charge-

limited is the same as that from a resistor at the cathode temperature equal to

the a-c diode resistance.^ The equivalent circuit for this case is given in

Fig. 12.7.

1 Williams, op. cit.

‘ Bell, op. cit.

* Pearson, G. L., Shot Effect and Thermal Agitation in an Electron Current

Limited by Space Charge, Physics, vol. 6, pp. 6-9, January, 1935.

* R.ack, op. cit.

® North, op. cit.

2 V
® Combination of Eqs. (12.14) and (12.15) and the use of the fact that Ri =

fj 1 0

SkT
for the diode with space charge suggests that r* has the value (0.644) which is

consistant with the observed relation of Eq. (12.13).
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12.6. Reduced Shot Effect in Triodes with Space-charge-limited

Current. Triodes, too, are noisy. In fact, the noise in triodes, as pointed

out before, may be a limiting factor in the sensitivity of an electronic

device. The noise is due to the effects just observed in diodes and shows

Infj'nife impedance
consfanf current
generator

Temperature
limited
current

Space charge limited
current

^rws

'Zero
impedance
constant
voltage
generator

Fig. 12.7.—Resistor equivalent to a diode with space-charge-

limited current.

as a fluctuation in plate current. It is convenient to interpret the noise

in a triode as being due to a noisy resistor in series with the grid of the

tube considered free from noise. The value of this noisy resistor in

series with the grid is

ohms (12.16)

where B is the effective cathode-temperature ratio of approximate value
two-thirds, (?„ is the mutual conductance of the triode, O is the a-c

conductance of the diode equivalent of the triode, Tc is absolute cathode

temperature, and T, is absolute room temperature. The ratio of equiva-
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lent-diode conductance to triode mutual conductance is the inverse-square

ratio of equivalent-diode spacing to the cathode-grid spacing as discussed

in Chaps. 7 and 8. For the plane-electrode diode, from Eq. (8.45), this

ratio is

The corresponding ratio for cylindrical triodes is difficult to express

Noisy

^
-fr 'vn

Noise free

triode

. j „ ?.5 Ipf, 8T2 I

forpentode Re„=~—y (Ny—

/

Fig. 12.8.—Equivalent circuit of a noisy triode.

exactly but is given approximately by

Gm
= l + ‘|l + |lni (12.18)

The value of this ratio will generally lie between 1 and 2. Assuming

that a typical value of the conductance ratio is 1.25 and that the cathode
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temperature is 3.33 times the room temperature, Eq. (12.16) reduces to

2 5^ ohms (12.19)

which is sufficiently accurate for a good many purposes.^ The value

of equivalent resistance thus given is that resistance which if inserted in

series with the grid of the triode considered noise-free would cause as

much noise current in the plate circuit of the tube as does the reduced

shot effect. The equivalent circuits of triode in terms of a noise-generat-

ing resistor and a noise-free tube is given in Fig. 12.8. Observed values

of noise in a triode agree very closely with the values predicted by the

above equations, much more so than was the case with diodes.

12.7. Noise Due to Gas in Tubes. When there is gas in tubes, there

is an extra component of noise due to the electrons and ions liberated by
collision ionization. The electrons passed by the grid will collide with

some of the gas molecules, forming positive ions and liberating more
electrons. The liberated electrons will pass on to the plate and give rise

to some extra noise. The positive ions will be attracted to the negative

grid and flowing through the external impedance will cause a voltage

in the grid that will also give rise to noise. The noise is proportional to

the number of ions formed, which in turn is proportional to the normal
space current and to the number of gas molecules, or gas pressure.

Fortunately, the positive-ion grid current is a measure of the number of

ions formed per second and can be used to determine the noise without

knowing the gas pressure.^'® As with other components of noise, the

noise can be described in terms of a resistor in series with the control

grid of the tube considered noise-free. The equivalent noise-generating

grid resistor is

= ^20F,2 -b 4 X 10'^) /i ohms (12.20)

where Rg is shunt resistance of the grid circuit, ohms
Gm is mutual conductance, mhos
Ip is plate current, amperes

/i is control-grid current, amperes

* Haheis, W. a., Space Charge Limited Current Fluctuations in Vacuum Tube
Amplifiers and Input Systems, RCA Rev., vol. 5, pp. 505-524, April, 1941; vol. 6,

pp. 114^124, July, 1941.

* Ihid.

’ Thompson, B. J., and D. O. North, Fluctuations in Space-charge-limited Cur-

rents Caused by Collision Ionization, RCA Rev., vol. 5, pp. 371-388, January, 1941.



NOISE IN VACUUM TUBES 313

The first term in this expression is due to the flow of positive-ion current

through the external grid impedance. The second term is due to the

electrons liberated upon ionization that are attracted to the plate.

As an example, consider the case of a gassy tube for which the positive-ion

control-grid current is 0.01 microampere. Let the mutual conductance of the

tube be 5,000 X 10~® mho, the plate current 1 ma, and the shunt resistance of

the grid circuit 100,000 ohms. Then the first term of Eq. (12.20) contributes a

noise resistance of 2,000 ohms, and the second term contributes a noise resistance

of 3.20 ohms. The second term of Eq. (12.20) is usually much smaller than the

first term, as in this example, and can ordinarily be neglected.

12.8. Reduced Shot Effect in Multielectrode Tubes with Space-

charge-limited Currents. Pentodes are even noisier than triodes—by a

considerable factor. In fact, by comparison, triodes are relatively quiet.

The additional noise in pentodes is due to the random division of the

fluctuation noise between the electrodes. The individual groups of

electrons that burst through the virtual cathode are quite local in their

impingement upon electrodes in their subsequent travel, but the com-

pensating currents due to the displacement of the virtual cathode are

more or less uniformly distributed between the electrodes in the ratio of

the direct currents. As a result, the smoothing, or compensating, action

in a pentode is much less pronounced than in a triode.

As with the triode, the noise of a pentode can be expressed as being

due to a noisy resistor in series with the control grid of the tube con-

sidered noise-free. The equivalent resistor in this case is^’^

where all the symbols have their customary significance. Currents must

be expressed in amperes and conductances in mhos to yield equivalent

resistance in ohms. The first factor of Eq. (12.21) is seen to be the

equivalent resistance for a triode. The remainder of the expression

generally increases the value of the triode equivalent resistance by a

factor of three to five. For screen currents much smaller than the plate

current the noise in both the plate and screen circuits is approximately

equal to the true shot effect for a current equal to the screen current.

The value of the mean-square noise current in the plate circuit is readily

obtained from this by means of Eq. (12.12) and converted to an equivalent

noisy resistor in the -plate circuit by means of the nomograph of Fig. 12.3.

* North, D. O., Fluctuations in Space Charge Limited Currents in Multi-colleo-

tors, RCA Rev., vol. 5, pp. 244-260, October, 1940.

’ Harris, oy . cit.
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12.9. Noise in Mixer Tubes. Mixers are also noisy. The factors

that contribute to the noise of triodes and pentodes also contribute to

mixer noise. In a mixer a large voltage from the local oscillator is applied

to the tube so that the current and the mutual conductance swing over a

large value. Since the noise of tubes is known as a function of current

and mutual conductance, it is not too difficult to evaluate the mixer noise.

In a mixer it is the noise in the intermediate-frequency band that is of

importance. The noise in this band will vary periodically over the local

oscillator cycle as the mutual conductance and current vary with the

voltage applied at the local oscillator frequency. The total intermediate-

frequency noise can be obtained by summing the plate noise over the

local oscillator cycle.

d(cci) (12.22)

where is the mean-square noise current in the plate at any instant

t and CO is 25r times the local oscillator frequency. It is convenient (except

in the case of the diode mixer) to express the mixer noise in terms of an

equivalent noise resistance in series with the control grid of the tube

considered as noise-free. Thus

(12.23)

where Gc is the conversion transconductance of the tube. Corresponding

to this value of input noise, the equivalent input noisy resistor is

=
4kTrB

J? =" 4kTrGc^B

(12.24)

(12.25)

Upon applying the above ideas there are obtained the results shown in

Fig. 12.9 for a fictitious pentode tube connected in accordance with the

four most common mixer connections.* In this figure. Go is the maximum
value which the mutual conductance assumes over the local oscillator

cycle, generally that corresponding to zero grid voltage. The quantity

Gi is the maximum value of the screen-plate transconductance. The
quantity Ix is the maximum value of plate current when the signal is

‘ Herold, E. W., Superheterodyne Converter Considerations in Television

Receivers, RCA Rev., vol. 4, pp. 324-337, January, 1940.

See also the summarizing articles by Herold, E. W., and L. Maltbr, Some

Aspects of Radio Reception at Ultra-high Frequency, Proc. I.R.E., vol. 31, pp. 423-

438, 491-510, 567-582.
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injected into the screen circuit and the local oscillator into the control-

grid circuit.

It is seen that the triode is the best converter and the pentode with

signal and local oscillator applied to the control grid is the next best.

The others are too noisy for high-sensitivity applications.

TYPE OF
FIRST DETECTOR

APPROX. APPROX. EQUIVALENT
TYPICAL CONVERSION EQUIV.NOISE NOISE MICROVOLTS

CHARACTERISTICS TRANSCOND. RESIST. ON GRID*

^ Assuming Go=ISX 10 m̂hos
‘ lo =30xl0'^amps

at -4me
Fig. 12.9.—Comparison of fictitious modulators presumed to have similar cathode and

first-grid structures. (Herald.)

When the values required in the tabulation of Fig. 12.9 are not

available, the following formulas will be found sufficiently accurate for

most purposes:

For triode mixers,

-A (12.26)

R«i = (12.27)
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For pentode mixers

or

fie.

fie.

I- 207

A

7.\(?, GeV

7p /2.5G™ 2072\

7.V + av

(12.28)

(12.29)

where currents must be expressed in amperes and conductances in mhos.

Gm is the mean transconductance over the local oscillator cycle, and Gc

is the conversion transconductance of the local oscillator. In addition,

the following rules of thumb may be applied,

Gc (as converter) = }4Gm (as amplifier) (12.30)

Ip (as converter) = (as amplifier) (12.31)

li (as converter) = 1^72 (as amplifier) (12.32)

and, for pentodes only,

fie, (as converter) = 4f?«. (as amplifier) (12.33)

in which the values “as amplifier” refer to the peak of the local oscillator

cycle. ‘

12.10. Noise Induced at Ultra-high Frequencies by Random .Emis-

sion. At ultra-high frequencies there is a conductive component to the

input admittance of a tube. The finite transit time of the electrons

makes it possible for the grid to transfer energy to the electrons as they are

accelerated.^ There is a separate component of noise associated with

this effect.®’^ The high-frequency components in the tube noise induce

currents on the grid, which in turn influence the electron current, thus

giving rise to an extra component of noise. The equivalent input noise

conductance is found to be the same as the input conductance, but at

approximately five times room temperature. This extra component of

noise may be represented as a constant-current generator across the

electronic component of grid conductance across the input circuit.

To a first order of approximation the induced noise is independent of the

normal noise component, which may be added in series with the grid as

1 Harris, op. cit.

See also articles by Herold, Proc. I.R.E., for some typical values.

^ Ferris, W. R., Input Resistance of Tubes as Ultra-high Frequency Amplifiers,

Ptoc. I.R.E., vol. 24, pp. 82-107, January, 1936.

* North, D. O., and W. R. Ferris, Fluctuations Induced in Vacuum Tube Grids

at High Frequencies, Proc. I.R.E., vol. 29, pp. 49-50, February, 1941.

Ballantine, Stuart, Schrot Effect in High Frequency Circuits, Jour. Franklin

Inst., vol. 206, pp. 159-168 August, 1928.
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has been done before. The equivalent circuit for this effect is shown

in Fig. 12.10. At ultra-high frequencies there is a component of grid-

input conductance due to feedback through the cathode-lead inductance,

as well as the component due to electron-transit-time effects. Both
components vary as the square of frequency and thus are hard to separate.

The feedback component has noise associated with it too, but as a resistor

at room temperature.

Noisy VHP'
triode

Input
circuit

Output
circuit

Noise free

resismrs

e^^g-V4kT^RfqB^ Noise free

Input
circuit

Noise free
resistor

Output
circuit

Fig. 12.10.—Equivalent circuit for induced noise in a tube

at ultra-high frequencies.

In general, the noise of amplifiers does not change much with feed-

back. This is because the amplification and input impedance are

ordinarily changed by the same factor.

12.11. Noise in Velocity-modulation Tubes. In a velocity-modula-

tion tube a beam of electrons passes through the two grids of a resonator,

between which there appears a high shunt resistance. Noise is gener-

ated, but there is evidently very little space-charge smoothing action in
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this case. This is expected from the fact that there is no virtual cathode

between the grids of the resonator. As a result, the noise is nearly the

full shot noise of the beam, and therefore the noise power delivered to

the resonator is given closely by

N = 2eIoBReK watts (12.34)

where e is charge of the electron, 1.6020 X 10~*® coulomb

/o is beam current, amperes

B is frequency band width, cycles per sec

R,h is shunt resistance of the resonator, ohms

The equivalent circuit is shown in Fig. 12.11. In many cases the

electron transit time across the grids is an appreciable fraction of a cycle.

Infinite mpedancs
consianf current

generator

o
L §~ o

i^^-yC42e^ amperes

Fig. 12.11.—Noise-equivalent circuit of a veloc-

ity-modulated tube.

in which case the transfer of energy from the electrons to the resonator is

not perfect and the noise power delivered above is reduced by the factor

A = (12.35)

where 8 is the transit angle of the electrons. This expression gives the

efficiency of energy transfer between the electrons and the resonator and

is developed in Chap. 17. It applies only to tubes with fine grids.

12.12. Noise in Phototubes. High-vacuum phototubes produce the

same noise as do hot-cathode tubes with temperature-limited emission.

This is true shot effect, giving rise to a mean-square fluctuation current

of the value

ij = 2eIoB = 3.2040 X 10-i»/oH amperes^ (12.36)

This is the same value of current as is produced by a resistance at room

temperature of value

= Hoh ohms (12.37)



NOISE IN VACUUM TUBES 519

The noise may be represented by a constant-current generator in parallel

with the tube considered noise-free. The noise from the tube will often

be of the same order as that produced by the large-value resistor used to

develop voltage. Thus, if a 10-megohm resistor is used to develop

voltage, the noise from the tube will be the same as the noise from the

resistor when the current is 0.005 microampere. At higher currents the

phototube noise predominates. The equivalent circuit of a typical

phototube input circuit is shown in Fig. 12.12.

Gas is sometimes used in phototubes to increase the plate current

by cumulative ionization. When this is done, the noise is increased by

Jc

Actual circuit

s=V4kTj.B/R errr,.-V4kT^R^„B

J2-
^1^3 -

Equivalent noise circuit(^,°'«
^';f)

0 =Zero i'mpedance,constanfvolfage generator

1 [- Fnfinite impedance, constant currentgenerator

Fig. 12.12.—Noise-equivalent circuit of a phototube

input circuit.

about the same amount as the signal but the signal-to-noise ratio is in

general improved because the contributions of noise from other sources

becomes relatively less.

12.13. Noise in Secondary-emission Multipliers. Another type of

electronic amplifier in which noise may be a consideration is the second-

ary-emission multiplier. In such a tube there is a series of electrodes at

successively higher potentials, each coated with a material that emits a

large ratio of secondary to primary electrons. Electrons that strike the

first anode give rise to /S times as many electrons, which are attracted

to the second anode, where they give rise to <S times as many as the

striking electrons, or times as many as struck the first anode. After n
such impacts the current is S’' times as great as it was originally, S being

the ratio of secondary to primary electrons—a number that can be

made as high as 9 or 10. It might be thought that with such a system

tremendous amplifications could be obtained. True, they can, but no

improvement in signal-to-noise ratio can be achieved.
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Experimental results indicate that the following laws govern the

noise associated with secondary emission in such a device:

1. Secondary emission from any anode follows the shot-effect law,

= 2eBIo, where 7o is the emitted secondary current.

2. Shot noise from any anode is multiplied by subsequent stages in

the same way as the signal is.*

Consider the action in a few successive stages of secondary-emission

amplification. Let the current from a first anode be lo', then the mean-
square noise current associated with this is

= 2eBh (n = 0) (12.38)

When the direct current 7o strikes the next diode, it gives rise to a direct

current SIo and the corresponding mean-square noise current is multiplied

by S^, so that the mean-square noise current associated with the current

SIo is

IJ = S^2eBIo -b 2eBSIo (n = 1) (12.39)

in which the first term is the amplifier noise power from the previous

anode and the second is that associated with the liberated secondary

current. The above expression is more simply written

= 2eBIo(S^ + *S) (n = 2) (12.40)

At the next anode the liberated secondary current is S^h, and the mean-
square noise current is

= S^2eBIo(S^ + <S) -b 2eBSUo (n = 2) (12.41)

which is equal to

= 2eBIo{S* -b -b S^) {n = 2) (12.42)

Extension of this process to n stages yields

;S’‘fiS’*+* — 11
i'J = 2eBIo ^

^
(n = n) (12.43)

This means that the ratio of output to input noise power is

Noise power out _ iS’*((S"+* — 1)

Noise power in (S — 1
(12.44)

Correspondingly, the ratio of signal power out to signal power in is

Signal power out

Signal power in
(12.45)

‘ ZwoBYKiN, V. K., G. A. Morton, and L. Malter, The Secondary Emission

Multiplier, Proc. I.R.E., vol. 24, pp. 351-375, March, 1936.
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Upon taking the quotient of the last two equations, the relative change in

the ratio of signal to noise power is

Signal-power-to-noise ratio in _ — 1) n9dfi)
Signal-power-to-noise ratio out — 1)

' ’

This ratio is slightly greater than 1 but approaches this value as the

secondary-emission ratio S is increased. This simply means that signal

and noise are amplified about the same amount in a secondary-emission

multiplier, and as a result there is no gain on the signal-to-noise ratio.

There is, however, an advantage to using secondary-emission multiplica-

tion in that resistor noises are virtually eliminated. Thus a phototube

with secondary-emission multiplication has a lower signal-to-noise ratio

than a phototube-resistor-amplifier combination at low levels of illumina-

tion. A further discussion of this specific case is given in Sec. 19.20.

12.14. Definition of Noise Figure. From all the preceding sections

it is seen that there are inherent limitations to electronic devices deter-

mined by unavoidable noise. Most electronic devices will, in fact, be

noisier than simple theory predicts because of an accumulation of various

effects. The smallest amount of noise that an electronic device can

possibly exhibit is the available noise power from the thermal agitation

of a resistor in the frequency band considered, as given by Eq. (12.6).

Usually the noise will be more than this. It is therefore convenient to

use as a figure of merit for an electronic device the ratio of the actual

noise power at its output terminals to that which it would have if the

noise were limited to the minimum noise from thermal agitation. This

figure of merit is called the noise figure of the device. Basically, the

noise figure is an excess noise ratio.

A rigorous definition of noise figure involves a consideration of the

gain of the device and the available input noise power and the output

power. The gain of a device, invariably a four-terminal network, is

defined as the ratio of the available signal power at the output to the

available signal power at the output of the signal generator.

Power gain = = G (12.47)

This definition of gain is independent of the output impedance of the

device, but it does depend upon the impedance of the signal generator,

which is taken as the nominal input impedance of the device. In many
applications there is no difficulty in using a signal-generator impedance

that is equal to the input impedance of the device under consideration,

but in some applications, such as extremely broad-band devices, it is

extremely difficult to maintain a constant input impedance. Hence
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it is logical that the figure of merit should include nonconstancy of the

input impedance. The available noise power between two terminals is

defined as the noise power that would be absorbed by a matched output

circuit. The available input noise power is simply that given from the

Johnson noise formula of Eq. (12.6),

Nin = kTB (12.48)

The noise figure is defined in terms of the factor of most importance

in the ultimate sensitivity of an electronic device, the ratio of output

signal to noise power. The maximum value this can have is the ratio of

available input signal to noise power if there are no other noise sources in

the device and if all impedances are properly matched. Some four-

terminal networks that consist of passive elements only, say a trans-

former or a transmission line, have no noise sources present in them, but

electronic devices always have some extra sources of noise. The noise

figure F of the device is defined as the ratio of the available signal-to-noise

ratio at the signal-generator {in-put) terminals to the available signal-to-

noise ratio at the out-put terminals^-^

F =^ (12.49)
Oout

out

The noise figure of an electronic device is always greater than unity.

The reference temperature is invariably taken as 290°K (63°F).

Some rearrangements of Eq. (12.49) are useful. Upon utilizing the

power-gain definition of Eq. (12.47) the noise figure may be written

GkTB (12.50)

From this the available noise output power is

No.t = FGkTB watts (12.51)

The available output noise due only to noise sources in the network is

iVout - GkTB = {F - l)GkTB watts (12.52)

Example: It is desired to calculate the noise figure of a 250-ohm-mput 30-mc

intermediate-frequency amplifier having a band width of 2 me and using 6AC7

* Friis, H. T., Noise Figures of Radio Receivers, Proc. I.R.E., vol. 32, pp. 419-422,

July, 1944.

* North, D. O., Absolute Sensitivity of Radio Receivers, RCA Rev., vol. 6, pp.

332-343, January, 1942.
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pentodes. Coupling between stages is provided with two inductively coupled

tuned circuits. Let the tube constants be

/p = 10 X 10“’ ampere
I 2 = 2.5 X 10“’ ampere

(?m = 9 X 10“’ mho

Then, from Eq. (12.21), the equivalent noisy resistor in series with the control

grid is

„ _ 2.5 10 X 10“’ / 8 X 2.5 X 10“’\

9 X 10“’ 12.5 X 10“’ \ 9 X 10“’ /
= 715 ohms

From Fig. 12.1 this corresponds to an rms noise voltage of 4.85 microvolts.

Since the noise is developed across the input impedance in series with the equiva-

lent noise resistor, while the signal is developed only across the input impedance,

the noise figure is

715 -f 250

250
3.86

In cases in which the stage amplification is low the effect of the noise from the

following stage must be considered. In this case consider that the coupling

network is a unity-ratio impedance transformer with an input impedance of

50,000 ohms. If the second stage is identical to the first in operating charac-

teristics, then there is a noise voltage of 4.85 microvolts developed in series with

its grid. This voltage corresponds to a current of 97.0 micromicroamperes
through the plate load of the first stage. Upon referring this current back to the

97 X 10“”
control grid of the first stage, it corresponds to a voltage of ^ , or 0.01075

y X 1V

microvolt. This is small compared with the 4.85 microvolts due to the first

tube and so can be neglected in this case.

Noise Figure for Two Networks in Cascade. Usually the sources

contributing to the excess noise in an electronic device are principally

in the input circuit of the device. However, when the first stage of

amplification has insufficient gain, the noise sources effectively located

in the input circuit of the second stage of amplification contribute

appreciably to the over-all noise as well. Noise from subsequent stages

is generally so small compared with the amplified noise from the earlier

extra sources that it may be neglected. When the condition cited above
is the case, then the following relations hold: Let the first and second

stages of amplification be designated by subscripts 1 and 2, respectively.

Let over-all characteristics be designated by the subscript 12. The over-

all power gain Gn is equal to the product of the gains of the first and
Re^*ond stages, GiGi. Let the band width be that of the over-all charac-
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teristic as defined by Eq. (12.9). The available noise power at the

output of the first stage of amplification is

Ni = FiGikTB watts (12.53)

from Eq. (12.51). The noise power in the output of the second stage due

only to sources in that stage is, from Eq. (12.52),

Ni - GikTB = {Fi - \)GikTB (12.54)

The total available noise power at the output of the second stage is Gi

times the quantity in Eq. (12.53) plus the quantity in Eq. (12.54),

iVi2 = GiF^GikTB + (Fi - \)GikTB (12.55)

or

N^i = G,GJ<TB (12.56)

Now, upon applying the general formula [Eq. (12.51)] to

situation,

N \i = FiiGiikTB

The values of available output noise over-all, from Eqs.

(12.57), must be equal; therefore

Fu = Ex + (12.58)

This is the important relation that has been sought. It gives the over-all

noise figure of two amplifiers in terms of the separate noise figures and

the gain of the first amplifier. Needless to say, the expression is not

limited to amplifiers but may be applied to mixers and networks in

general.

Sometimes noise figures of circuit elements are expressed in terms of

equivalent temperatures, simply the room temperature multiplied by the

noise figure. The symbol t is often used to designate the ratio of the

actual noise to the available thermal-agitation noise of Eq. (12.6).

This is most frequently done with passive elements that produce noise,

such as crystal detectors. The noise figure of a crystal input receiver is

E = E.(4 - 1 + E„) (12.59)

where Lx is the conversion loss of the crystal detector corresponding to

the reciprocal of the conversion gain of a tube mixer, G is the equivalent

temperature ratio of the crystal, and Fa is the noise figure of the amplifier

into which the output of the crystal detector is fed. If the crystal were

noiseless, tx would equal unity.

the over-all

(12.57)

(12.56) and
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The design of electronic equipment with regard to obtaining a low

noise figure is a rather complex problem, which will only be touched

upon hered The problem is a combination one, involving consideration

of circuits and noise sources. It is possible in some cases that the mini-

mum noise figure will be obtained with a condition of mismatched imped-

ances owing to the fact that a mismatch will reduce the noise more than

it will the signal. With receivers it is found practical to use r-f amphfica-

tion before the mixer only up to a certain frequency. This frequency

is of the order of 600 me at this time. Beyond this frequency the noise

figure of amplifiers is so great that the signal-to-noise ratio is increased

rather than reduced upon amplification. There is also an upper fre-

quency limit at which vacuum-tube mixers are practical. At present,

this limit occurs at about 1,000 me. It is quite possible that these

frequency limits will be extended with time. The limits occur because

the effective mutual conductance of all tubes decreases with increasing

frequency owing to transit-time effects, thus raising the noise. The

ultra-high- frequency induced noise effect also contributes to increasing

noise.

12.16. Measurement of Noise and Noise Figure. It is not difficult to

measure the noise and noise figure of an electronic device when its gain

is sufficiently high so that an appreciable output noise power is obtained.

Square-law devices such as thermocouples are preferred in noise measure-

ments because the output indication is directly proportional to power.

Crystal detectors may also be used at low levels of power. If the rectified

crystal current is kept below a few microamperes, the crystal is almost

certain to be a square-law device and as such is extremely sensitive. In

this case the rectified crystal current is proportional to the input power.

If a satisfactory power-output indicating device is used, the noise figure

of a device can be measured by simply introducing signal input power

until the output indication from the noise alone is doubled. The input

power is then equal to that generated by the internal noise sources, and

the noise figure is given by

F = (12.60)

where Sin is the signal power in. For any other adjustment of signal

input power the noise figure is given directly from the defining relation

of Eq. (12.49), it being remembered that the output-power indication is

the sum of the noise and signal power out.

Diodes operating with temperature-limited emission may be used as a

standard source of noise. Such diodes preferably have either a tungsten

' See the survey articles by Hbuiold and Malter, op. cit.



326 VACUUM TUBES

or a thoriated tungsten filament. It is difficult to keep the emitted

current from an oxide-emitting surface constant under temperature-

limited conditions of emission. The noise, of course, is due to shot effect,

mth the mean-square noise current given by Eq. (12.12). Diodes may
successfully be operated as a standard noise source up to 100 me. Beyond

that frequency the impedance transformation introduced by the leads

cannot be determined very accurately. Undoubtedly, special diodes

can be built for noise measurements at higher frequencies. A standard

noise source for measurements of the noise figure of an intermediate-

frequency amplifier would consist of the diode in a shielded can with leads

brought in through properly bj-passed chokes. Across the diode there

can be placed a coil that tunes the capacity of the diode to the center

of the band of interest. The tuned ciremt thus formed should be shunted

by the nominal input resistance of the amplifier to be tested. Output

leads are then brought from across the tuned circuit to the amplifier under

test. Let the nominal input resistance of the amplifier be R; then the

noise power delivered to the resistor of value R shunted across the diode

is 2eIoRB, and the available power into the receiver is one-fourth of this.

Let the diode current /o be adjusted until the normal noise output power

of the receiver is doubled when the standard diode noise is connected to

its input. Under these conditions the noise figure, from Eq. (12.60),

is given by
eloRB
WTB’ has the numerical value of 20, the noise

figure is given simply by

F = 20hR (12.61)

where 7o is the diode current in amperes and R is the nominal resistance

of the receiver in ohms.

12.16. T3q)ical Tube-noise Values. In the table on the next page are

given some typical operating conditions and associated noise values of

representative triodes, pentodes, and mixers.
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CHAPTER 13

ELECTROSTATIC ELECTRON OPTICS

13.1. Introduction. The term “electron optics” as applied to the

behavior of electrons under the influence of electric and magnetic fields

has been in use for some time. As the term implies, there is a close

analogy between the behavior of light rays and electron beams, particu-

larly when the fields through which the electron moves are purely electro-

static. Electrons move through an electric field just as do light rays

through a medium of continuously variable index of refraction. Elec-

trons can be reflected, refracted, and focused very much as can light rays.

Electron optics is a relatively new field of science, but already its

study has led to the development of the cathode-ray tube, the high-

intensity kinescope, the image-dissector tube, the iconoscope, the

orthicon, the various forms of electron multiplier tubes, the electron

microscope, and many other devices. The groundwork for the new
science was laid more than a hundred years ago by Lagrange, Maupertius,

and Hamilton, who recognized that the principle of least action as applied

to particles was strictly analogous to the Fermat principle of least time,

which holds for light rays. The modern phase of the subject was

ushered in by Busch, who showed in 1926 that the action of a short

axially symmetrical magnetic field on electron beams was similar to that

of a glass lens on light rays. The science was given a firm foundation

by the early workers in the field, among whom Davisson, Calbick,

Brueche, Glaser, Knoll, Ruska, and Scherzer were outstanding. At this

writing, the total literature includes hundreds of technical articles, and

already a number of books completely devoted to the subject have been

written. Because of the extensive nature of the subject, it cannot

1 Brtjbche, E., and O. Scherzer, “Geometrische Elektronenoptik,” Springer,

Berlin, 1934.

* Maloff, I. G., and D. W. Epstein, “Electron Optics in Television,” McGraw-

Hill, New York, 1938.

2 Myers, L. M., “Electron Optics,” Van Nostrand, New York, 1939. Contains

excellent bibliography complete to 1939.

* Klemperer, O., “Electron Optics,” Cambridge, London, 1939.

For other, more compact summaries see Zworykin, V. K., and G. A. Morton,

“Television,” McGraw-Hill, New York, 1940, and Gray, F., Electrostatic Electron

328
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be hoped that the present chapter will be more than an abstract of the

most important aspects of the subject.

It has already been indicated that the electrostatic field between the

wires of a grid constitutes a cylindrical lens which is capable of focusing

electrons. A more useful type of lens is produced by any axially sym-
metric field, whether electric or magnetic. An example is the electrostatic

field about a circular aperture. All the laws that exist for the lenses

of physical optics apply as well to the lenses of electron optics. An
analogy can be developed between the quantities of geometrical optics

and the corresponding quantities of electron optics. In the treat-

ment given here, the laws of electron optics will be developed from the

mechanics of electron motion, and the analogy with those of geometrical

optics will then be shown.

Snell’s Law. The basic law of geometrical optics is Snell’s law of

refraction, from which all the properties of physical lenses can be deduced.

This law has its exact counterpart in electron optics. Snell’s law for

optics is

Wi sin 6i = W2 sin dn (13.1)

where ni and na are the indices of refraction on two sides of a plane

boundary and and $2 are the angles of incidence and refraction of a

light ray as measured from a normal to the boundary. The corresponding

situation for electron optics is shown in Fig. 13.1. This shows the

behavior of an electron moving in a region with a uniform potential

and suddenly crossing into a region with a uniform potential ¥2 . This is

approximately the situation that exists at the junction of the Z)’s of a

cyclotron, except that the region in which the potential changes from

one value to the other has a small but finite dimension. In going from

the region of one potential to the other, the component of velocity

normal to the boundary is increased if the potential is increased, but

the tangential component of velocity is unchanged. Equating the initial

and final tangential components of velocity,

«i sin 01 = V2 siir 02 (13.2)

where v = 5.93 X 10® a/F meters per sec when the potential is given

in volts. Comparing Eqs. (13.1) and (13.2) it is seen that the quantity

in electron optics corresponding to index of refraction is electron velocity.

Optics, Bell Sys. Tech. Jour., vol. 18, pp. 1-31, January, 1939; Zeit. fur Tech. Phys.,

vol. 17 (No. 12), 1936.

® Zworykin, V. K., and others, “Electron Optics and the Electron Microscope,”

McGraw-Hill, New York, 1946.
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This in turn is proportional to the square root of potential if the electron

starts from rest at a point of zero potential.

The Principle of Least Action. A further correspondence between
electron and geometrical optics lies in the principle of least time and the

principle of least action. The principle of least time states that a light

ray will assume a path such that the time between any two points of its

Fig. 13.1.—Electron refraction.

path will be a minimum compared with that for all other possible paths

between the same two points. Thus

T =
J nds = min (13.3)

where s is distance, T is time, v is the velocity of light in a medium of

index of refraction n, and c is the velocity of light in vacuum. In particle

dynamics the corresponding law is that the integral of momentum with

distance assumes a minimum value. The integral of momentum with

distance is defined as action. The principle states that

Action =
j mv ds = min (13.4)

The correspondence between the two principles is quite evident. Again
it is seen that the counterpart of index of refraction is electron velocity.

Note, however, that light velocity does not correspond to electron velocity.

Simple Lenses. The lenses encountered in electron optics are gener-

ally of a more complex type than the simple lenses of geometrical optics.
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In general, it is more difficult to analyze and to represent their charac-

teristics, on three distinct counts, as follows:

1. In light lenses a discrete number of refractions occur at surfaces

between materials of different indices of refraction, whereas in

electron lenses the refraction occurs continuously through the

equivalent of a material of variable index of refraction.

2. The thin lenses of geometrical

optics, i.e., lenses whose axial

dimension is short compared

with their focal length, are

often operated in air, i.e., the

light rays start and finish in a

medium with the same index

of refraction, with the result

that the lens characteristic can

be expressed in terms of a

single parameter, the focal

length. Electrostatic electron

lenses on the other hand more
often have initial and final

potentials that are different,

so that the equivalent initial

and final indices of refraction

are different, with the result

that it takes two focal lengths,

one for each direction, to

describe the lens.

3. The lenses of electron optics

are usually thick lenses, i.e.,

the axial dimension of the lens

is not short compared with the

focal length. In such a lens it is not correct to measure the focal

length from the center of the lens; rather, it must be measured from

a reference plane known as the “principal plane,” which may be
outside the lens. This introduces another parameter for the thick

lens. If in addition the initial and final potentials are different,

four parameters are required to describe the lens: a focal length

and a reference plane for each direction.

Although the electron-optical equivalent of thin light lenses is

seldom used, it is interesting for a first consideration to describe the

equivalent of such thin lenses. In Fig. 13.2 is shown a simple, thin.

,Vt

M Electron lens

Wf~\.

Physical
equi valent

n

Fig. 13.2.—Electron lens equivalent of a

thin physical lens.
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convex lens and its approximate electrostatic equivalent. This latter

consists of two concentric electrodes of revolution, as shown, with the

inner electrode at a higher potential than the outer. The corresponding

axial variation of the index of refraction is shown for both cases. The

focusing property of the lenses is derived from the combination of the

variation of the index of refraction and the curvature of the bounding

surface. In the case of the light lens the bounding surface is sharply

defined, while for the electrostatic lens it is not so sharply defined. Both

lenses have a convergent action. In the case of the electrostatic lens

the convergent action results because the radial component of the

gradient of potential pushes the electron toward the axis on both sides

of the lens. The electron path shown in the figure may be used to define

the term “focal length.” An electron entering the lens parallel to the

axis is deflected toward the axis while passing through the lens and

emerges headed toward it. The subsequent path is a straight line because

the electron is in a field-free region after passing through the lens. If

the initial and final straight-line portions of the path be extended so

that they intersect in the lens, then the axial distance between the plane

of this intersection and the plane at which the electron crosses the axis

is known as the focal length. The point at which the electron crosses

the axis is known as the focal point, and the plane through this point

normal to the axis is known as the focal plane. For the lenses of Fig.

13.2 the focal lengths in the two directions are the same since the initial

and final indices of refraction are the same. Further, any electron ray

entering the lens parallel to the one shown will cross the axis at the focal

point in the absence of aberrations.

The case in which the initial and final indices of refraction are not

equal seldom occurs in geometrical optics, but it is the most common
case in electron optics. A fictitious example to illustrate the light case

may be assumed to consist of a thin, convex glass lens in the side of a

tank of oil, so that the light rays start in air and end in oil. (It is further

assumed that the index of refraction of glass lies between those of oil

and air.) This situation is shown in Fig. 13.3 along with the equivalent

electrostatic lens. The equivalent electron lens in this case consists of

circular apertures in two parallel-plane conductors maintained at different

potentials. It is interesting to note that the focusing action of the

electron lens is derived from the curvature of the equipotential surfaces

shown rather than from the shape of the electrodes—this is usually the

case. Also shown are the electron and light rays entering the lenses from

both directions parallel to the axis. These rays are known as the

principal rays of the lens, and their intersection with the axis defines

the focal lengths as indicated above. The ray passing from right to left
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is known as the “first principal ray,” while that passing from left to

right is known as the “second principal ray.” In this case the focal

lengths in the two directions are not equal. It will be shown later that

the two focal lengths are in the ratio of the initial and final indices of

Fig. 13.3.—Double-aperture lerjs and physical

equivalent.

refraction, the larger index of refraction being associated with the longer

focal length.

The lens action in the case of Fig. 13.3 is more subtle than it appears

at first glance. Referring to the light lens and considering a ray passing

through it from left to right, it is seen that the action at the left face

of the lens is convergent while that at the right face of the lens is diver-

gent. The net action for the assumed indices of refraction is, how-
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ever, always convergent, as will presently be shown. The ray passing

from right to left, the first principal ray, experiences first a divergent and

then a convergent action. The same type of action occurs in the electro-

static lens except that the electron path is smoothly curved instead of

consisting of straight-line segments. The second principal ray, originat-

ing at the left, experiences a convergent action in passing through the

left part of the lens because the gradient of potential has a radial compo-

nent that is directed toward the axis. In passing through the right part

of the lens the second principal ray experiences a divergent action because

Equal c^iameler
Two cylinder lens

Fig. 13.4.—Two-cylinder lens and physical equivalent.

the gradient of potential has a radial component that is directed outward

from the axis. It may be noticed that when the electron is travehng

in the direction of increasing potential the curvature of the equipotential

surfaces corresponds to the curvature of the equivalent optical-lens

system. Thus, when the equipotential surface as approached by the

electron is convex, the action is convergent and the equivalent physical

lens surface is also convex. When the equipotential surface approached

by the electron moving in the direction of increasing potential is concave,

then the equivalent optical surface is also concave and the lens action is

divergent. When the electron is moving in the direction of decreasing
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potential, then a convex equipotential corresponds to a divergent action

and a concave equipotential corresponds to a convergent action (as on

the right face of the lens of Fig. 13.2).

It remains only to consider the case of a thick lens. Such a lens is

produced by the field of two equal-diameter coaxial cylinders at different

potentials as shown in Fig. 13.4. Such a lens is characterized by having a

long region in which the potential variation occurs. The corresponding

lens dimensions will generally not be short compared with the focal length.

Also shown in Fig. 13.4 is the equivalent physical lens. Principal rays

for this case have the form shown later in Fig. 13.20. The action here

is very similar to that in the preceding example except that the region in

which the lens action occurs is longer. In all the examples given the

electron-lens action has been shown for only one set of potentials. If

the electrode-potential ratio is increased, then the difference between the

initial and final index of refraction is increased and the lens becomes

stronger and the focal lengths become shorter. Thus, in effect, every

electron lens corresponds to a whole set of physical lenses, one for every

possible voltage ratio. This property makes the electron lens a much
more versatile instrument than the physical lens because the lens strength

can be changed by simply changing electrode potentials instead of having

to move lens components relative to one another.

Lens Formulas. For the simple thin lens of Fig. 13.2 having the same

initial and final index of refraction the formula relating distance from

the lens to object and image and the focal length is

^ + 1
h h

(13.5)

where h = distance from lens center to object

h = distance from lens center to image

/ = focal length

and the minus sign occurs because h is measured to the left from the lens

center. This is well known to photographers and students of physical

optics and will not be proved here. The general lens formula, of which

this is a special case, will be developed for electron lenses from the differ-

ential equation of the electron paths. The geometry of the arrangement

is shown in Fig. 13.5.

For the thin lens of Fig. 13.3, which operates between two different

indices of refraction, there are two focal lengths, and the lens formula is

given by

(13.6)

where /j is the so-called “first focal length” associated with a ray entering



336 VACUUM TUBES

the lens parallel to the axis from the right and is the “second foca

distance” associated with a ray entering the lens parallel to the axis

from the left, object distance is h, and image distance is h. The geo-

Fig. 13.5.—Focal relations in a thin lens.

metrical relations for this lens are shown in Fig. 13.6. Note that a ray

passing through the center of the lens does not make equal angles with

the axis before and after passage in this case. Note, however, that the

principal rays can still be used to construct an image; in fact, principal

rays can so be used to construct the image in general.

Fig. 13.6.—Focal relations in a lens operating

between two different media.

For the thick lens of Fig. 13.4 the situation is somewhat more com-

plicated. The lens formula in this case has the form

fi I h _
h-PiU- Pz

1 (13.7)

where the symbols have the significance shown in Fig. 13.7. Distances

measured to the right are positive, to the left negative. The focal

lengths fi and are measured from reference planes 77 1 and which

are designated as first and second principal planes, respectively. These

are located at the intersection of the extension of the initial and final

straight-line portions of the respective principal rays. The distances

Pi and P2 measure the distance from the lens center to the principal

planes in the direction of the principal rays. The distance Pi is negative
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in this case. The focal lengths /i and /2 are measured from the principal

planes to the intersection of the principal ray with the axis, /i being

negative. These intersections of the principal rays with the axis are

known as “focal points” and are located at a distance Fi and from the

lens center. The significance of Eq. (13.7) is that the object and image

distances must be measured with respect to the principal planes rather

than with respect to the lens center. In effect, the behavior of a thick

lens is the same as if the space between the principal planes did not exist,

making them coincident, and a thin lens were located at the plane of

coincidence.

The method of constructing an image from an object is evident from

Fig. 13.7. To find the point on the image corresponding to any point

on the object, draw a first principal ray through that point on the object

and through the first focal point until it intersects the first principal

plane. From this point of intersection draw a ray parallel to the axis

extending to the right. Through the same point of the object draw a

second principal ray parallel to the axis, and extend it until it intersects

the second principal plane. From this point of intersection draw a ray

through the second focal point, and extend it until it intersects the ray

first constructed. The intersection of the,two principal rays gives the

point on the image corresponding to the point on the object. Thus, if

the two focal lengths and the location of the two principal planes of a

thick lens are known, the image corresponding to any object can easily

be constructed.

13.2. Electrostatic-lens Fields. The analytical treatment of electron

lenses has not been very completely developed. Ideally, it would be

possible to obtain expressions for the potential fields associated with any

given set of electrodes and then solve for the path of an electron through

this field. Actually, the fields of electron lenses are not simple of deter-
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mination, and the solution of electron trajectories through them is

even less so. However, by studying all aspects of lens fields and electron

paths it is possible to accumulate enough fragments of information about

electron lenses so that the whole picture can be pieced together rather

well. The sum total of information that can be gathered is still small

enough so that frequent recourse is had to model determination of fields

and numerical solution of path equations. Even this procedure has

its limitations and in the end gives way to experimental determination of

lens characteristics. Nevertheless, no complete understanding of electro-

static lenses is possible without a fairly complete examination of the

nature of the fields of electron lenses.

Virtually all the electron-lens fields are two-dimensional fields having

a symmetry about an axis of rotation. Cylindrical coordinates are best

suited for describing such fields, radial distance being indicated by the

symbol r and axial distance by the symbol 2 . Because of the symmetry of

rotation the angular coordinate B is not involved. Laplace’s equation in

the above two-dimensional cylindrical coordinates takes the form

All expressions for fields of rotational symmetry must be solutions of

this equation.

General Form of Fields with Rotational Symmetry. One solution of

Laplace’s equation as given above is

00

V{r,z) =
^ (a„e*=”' -b 6„e-*”*)/o(A-„r) (13.9)

n = 1

where the A-’s are values of the separation constant encountered in solving

the Laplace equation, the a’s and 6’s result from fitting the potential

to the electrodes, and Jo is the zero-order Bessel function of the first

kind. The second kind of Bessel function, Noi^nv), does not appear

because the potential along the axis is finite. The k’s can be either real

or imaginary. If imaginary values of k are used, then an integral form

of the expression for the potential field may be written

Vir,z) = [A(fc) cos kz -f- B{k) sin kz]Jf,{ikr) dk (13.10)

where A and B are functions of k that are determined from the shape of

the electrodes. The function Jo(ikr) has real values and is something

like the function e'. The parameter k disappears in the integration.

Probably the most useful form of the solution of Laplace’s equation
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in cylindrical coordinates is obtained by expressing the potential as a

power series in r. This is done by assuming that the solution is of the

form
00

y(T,z) = ^ a„{z)r”’ (13.11)

b = 0,1,2,

If this expression is substituted in Eq. (13.8), the values of the coeffi-

cients a„, functions of z, may be determined and the series is thus

established. Consider the step-by-step operations upon the nth term

of the series in this determination.

^ = na„{z)r'^'>-
or

(13.12)

r— = na„{z)r”‘ (13.13)

(13.14)

(13.15)

The corresponding term for the nth power of r is (n -f- 2)“a„+2r". The
other term of Laplace’s equation jrields

d^V
(13.16)

where the primes indicate derivatives with respect to z.

involving the nth power of r, a process that takes care

because Eq. (13.8) is an identity,

Adding terms

of all powers

(n -f 2 )
2a„+2r" -|- o„"(z)r" = 0

which gives

,
_ a„"(z)

(n + 2)2

(13.17a)

(13.176)

This is a recurrence formula that gives the coefficient of any power of

T in terms of the coefficient of the second term proceeding.

The symmetry of the field about the axis allows only even powers

of r since values of the field for any positive and negative value of r

must be the same. This requires that

Oi = as = 05 = • • • =0 (13.18)

With this restriction the entire series can be expressed in terms of the

coefficient uq.
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V(r,z) = — ao"(2)r‘ .

22 + 22.42

+ +
(-
(n!)St©* (13.19)

where the superscripts in parentheses indicate the order of the derivative

and n is no longer the n of Eqs. (13.11) to (13.17) but assumes integral

values as before. If now the value of ao can be determined in terms of

the potential, the series will be given in its simplest form. The value

of Oo is fixed by the fact that, when r = 0,

F(0,2) = ao(2) = Fo(2) (13.20)

In other words, ao is the value of the potential along the . axis. This

axial potential will be denoted by the function Vo{z) hereafter, to simplify

the notation and to indicate that it is a function of a single variable.

The subscript zero will further serve as a constant reminder that the

potential along the axis only is involved. Expressing the coefficients

of Eq. (13.19) in terms of the axial potential,

F(r,2 )
= Fo(2) - Fo"(2)r^

22

Fo(">(2)r'

22 • 42

+ • + (_l)«Fo(2-)(2)/rY’‘

(n!)^ \2j
(13.21)

This is the expression that has been sought. It is one of the most useful

and most extensively used relations in electrostatic electron optics.

The significance of this expression is that if the variation of potential

along the axis of a field of rotational symmetry is known then the potential

at any point in the field can be calculated. It follows that if the axial

variation of potential is known then the derivatives of the axial potential

with axial distance are determined. The derivatives can always be
determined numerically or graphically if not analytically. In fact, the

axial potential need not be and frequently is not capable of analytical

expression. ^

* Scherzer has given another expression by which the potential at any point in a

field of rotational symmetry may be determined from the axial potential. The value

1 f'
of V {r,z) is given by the real part of the integral — / Vo(z + ir sin a) da, in which

27r y “*

the expression in the integral is the axial potential function of the argument

(z + ir sin a), a being a parameter that disappears upon integration. This expres-

sion converts to the series of Eq. (13.21) upon series expansion and term-by-term

integration. It is of somewhat limited use because it generally requires that the

axial potential be capable of analytical expression.

See Scherzer, O., Zur Theorie der Elektronenoptischen Linsen Fehler, Zeit fur

Phys., vol. 8, pp. 183-202, January, 1933.
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Many important properties of rotational fields can be deduced from

the series of Eq. (13.21). Let the series be expanded further in terms

of 3i = z — 2o in the vicinity of Zq. Then

V oizi) = F„(zo) + F«'(2o)zi + HVo"{zoW + • •
• (13i22)

by Maclaurin series. The corresponding expression for potential, by
Eq. (13.21), becomes

V(r,z) = Fo(zo) + 2iF„'(2o) +i2FFo"(2o) _
. (13.23)

The equipotential F(r,2)
= Fo(zo) in the vicinity of the axis reduces to

the hyperbola

r'Fo"

4
= ZiFo' + zFFo"

2
(13.24)

Upon applying Eq. (5.26), the radius of curvature of an equipotential

at the axis is found to be

R = 2Fo'

Fo"
(13.25)

The radius of curvature generally assumes its smallest value when the

second derivative of the axial potential is greatest.

At a saddle point of potential as shown in Fig. 13.14 at the aperture

center Fo' =0, the radius of curvature tends to become zero, and the

equipotentials are straight lines intersecting and forming a branch

point at the axis. From Eq. (13.24), for the conditions stated it is

seen that

tan^ y = — = 2 y = 54°44' (13.26)
Zi

where y is the angle between one of the equipotential branch lines and

the axis. Equipotential lines at a saddle point will always intersect the

axis as straight lines, making an angle of 54°44' with it.'

' It is of interest to record the properties of two-dimensional fields expressible in

the rectangular coordinates x and y and having no variation in the z direction. Let

the a; axis coincide with a line of symmetry; then ">

nx,y) = Fo(x) - + • •
• + + . .

4! (2n)\

The radius of curvature of an equipotential at a point along the line of symmetry is

Vo'
given by If = Try,- At a saddle point on a line of symmetry the equipotentials are

y 0

straight lines making an angle of 90 deg with each other and 45 deg with the axis.

These relations apply in cases such as the line of symmetry midway between the grid

wires of an ideal plane triode.
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The Equal-diameter Two-cylinder Lens. The equal-diameter two-

cylinder lens is very extensively used in electron optics. The field of

such a lens is shown in Fig. 13.8. Here are shown the equipotential

fines within the coaxial cylinders. All the equipotential fines pass

through the gap between the two cylinders. They also all intersect the

axis at right angles. The plot is further seen to be symmetrical about the

axis and about the midplane. The shape of the field is nearly inde-

pendent of the gap spacing, provided that this is small.

The axial-potential distribution of the equal-diameter two-cylinder

lens with small gap spacing has been found to be

Fo(z) = Fitanhi^ (13.27)

when the two cylinders have potentials of — Fi and -h Fi, respectively,

and R is the radius of the cylinders. If the cylinder potentials are not

* Gray, op. dt., p. 25.

• Bertram, S., Determination of Axial Potential Distribution in Axially Symmetric

Fields, Proc. I.R.E., vol. 28, pp. 418-421, September, 1940. See also Bertram, S.,

Calculation of Axially Symmetric Fields, Jour. App. Phys., vol. 13, pp. 496-502,

August, 1942, for general material on this subject.
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equal, then the axial potential takes the form

Vo(z) = tank^ (13.28)

where Vi is the first-cylinder potential and V 2 is the second-cylinder

potential. The derivatives of the axial potential are readily found to be

Fig. 13.9.—Axial potential and its derivatives—equal-diameter two-cylinder lens.

The axial potential and its first two derivatives for the case in which

Vi = —Vi and R = 1 are plotted in Fig. 13.9. Examination of the

curve for the axial potential shows that, at a distance of one radius

from the midplane, the potential is within 8 per cent of its final value.

At a distance of one diameter from the midplane, the potential is within

1 per cent of its final value. The entire region of variation of potential
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is therefore virtually confined to a region within one diameter of the

midplane.

Equal-diameter Spaced Cylinders. Another electrostatic lens fre-

quently encountered is that of two coaxial equal-diameter cylinders

spaced an appreciable distance. A simple approximate formula for the

axial potential in this case takes the form

Vo{z) = Vi-hV,
,
V2

o "T
Fi

2.64s
In

R

1

cosh (
1.32z'\

i, R }
)

|cosh
l.32(z -

L R J/

(13.31)

where s is the axial spacing between the cylinders. ‘ This expression

reduces properly to Eq. (13.28) for s = 0. The expression ^ven was
derived on the assumption that the potential variation between the two
cylinders at a radial distance equal to the cylinder radius is linear. This

is a moderately good approximation, but not exact.

Tor^this same case, an empirical approximation to measured axial-

potential distributions takes the form

Vo(z)
El + V2 + dz (13.32)

where b is an experimental parameter equal to the reciprocal of the slope

of the potential curve at z = 0 and having the value^

b 2R 0.73 + 0.53 (13.33)

For large values of z the value of axial potential assumes the correct

V^alue of the electrode potential by virtue of the fact that the integral

assumes the value
^

for z = ± oc

.

The formula is also approximately

correct for small values of z as may be seen by setting s = 0 and expanding

the integral in series. The first few terms give

Vo{z) =
(1

)' + ]

whereas the expression of Eq. (13.28) involving the hyperbolic tangent

gives

Fo(2)
El -b E. 7. - E,2^2 0.790 (13.35)

* Bebibam, S., Determination of Axial Potential Distribution in Axially Sym-
metric Fields, Proc. I.R.E., vol. 28, p. 420, September, 1940.

’ Kirkpatbick, Paul, and J. G. Beckerly, Ion Optics of Equal Coaxial Cylinders,

ftev. Sci. Instr., vol. 7, pp, 24-26, January, 1936.
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The slope of the empirical function thus agrees within 5 per cent with

the correct value for 2 = 0. The general formula is probably well within

10 per cent as long as the cylinder spacing is less than 1.75 cylinder

diameters. The integral form of Eq. (13.32) is very convenient for some'

lens calculations because of the fact that the function is readily differ-

entiated and integrated and because numerical evaluations of the func-

tions involved are extensively tabulated. The formula given applies

strictly to the case of electrodes that have toroidal corona rings attached

to the edge of the cylinders that are tangent to the cylinder edges at their

outside diameter and have a radius one-tenth of the cylinder radius.

Fig. 13.10.—Potential field of a two-cylinder lens, D^/Di = 1.25.

Two-diameter-cylinder Lenses. No exact analytical expressions are

available for electrostatic lens made of coaxial cylinders of different

diameters. The fields for such lenses are easily measured by means of an
electrolytic tank. Results of such measurements are given in Figs.

13.10 to 13.12 for diameter ratios of 1.25, 1.50, and 2.0, respectively.

All these electrode arrangements perform about equally well as lenses so

that there is not much choice between them. A comparison of their

characteristics is had by plotting their axial-potential variations on the

same graph, as is done in Fig. 13.13. The differences between these

curves are not of great practical interest. All exhibit the same general

characteristics. They differ only in the amounts and position of their

maximum slopes and curvatures.

Aperture Lenses. Another lens of great interest is that associated

with a circular aperture in a plate perpendicular to an applied field.
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Fig. 13.12.—Potential field of a two-cylinder lens, Di/Di = 2.0.

1
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Such a lens will have potential variations that are essentially the same

as those between parallel plates except in the immediate vicinity of the

1.0 -0.5 I

-I
Fig. 13.13.—Axial potentials of two-cylinder lenses for different diameter ratios.

aperture. The potential expressions for this case have been worked out

by fitting equipotential surfaces which are hyperboloids of revolution to

the circular aperture, the edges of which in any
plane through the axis are the foci of the hyper-

IIHIH lllllll ||||||||||||| ||

boloids.^ For the case of a plane electrode con- lllluUM
|

taining a circular aperture of radius R and
operated at zero potential midway between two

1 / / ll

planes at potential V and spaced a distance d
l\\\\

—

//I I

large compared with R, the expression for the
ll \/ (III

axial potential is 1
1 /\ \

1

Vo{z) = V
_7«2r

dTrll
arctan (?):']

(13.36)

where z is the distance measured from the center
l||||||||(||||j||||||

plate containing the circular aperture. The 13 . 14 —Aperture
resulting potential field is shown in Fig. 13.14. midway between plates

This is a case that exhibits a saddle point at the at the same potential,

center of the aperture. Here the potential pro-

files parallel to the axis and to the center plate curve in opposite direc-

* Ollendorf, F., “Potential Felder der Elektrotechnik,” pp. 295-297, Springer,

Berlin, 1932.
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tions. The equipotentials through this point are seen to be straight lines

making an angle of 54°44' with the axis.

A case of more general interest is that of a circular aperture in a plate

between two plates of different potentials and at different spacings.

Let the plates and their potentials be numbered in order from left to

Fig. 13.15.—Potential Pig. 13.16.—Potential field

field of a single-aper- of an Einzel lens,

ture lens.

right, the circular aperture being in plate 2. The axial potential is then

given by

Vo(z) = V2)d,s + (Vz- V,)d^

2di2di3

(Fa - - (Fi - V3)d,

^diidiz

2R[z
^

/R\— — ^ arctan I — 1
— 1

TT \Z / J

Z+V3 (13.37)

where F i is potential of first plate

Fa is potential of plate containing aperture, the second plate

Fa is potential of third plate

dia is distance from first to second plate

das is distance from second to third plate

z is axial distance measured from plate containing aperture

R is aperture radius

The resultant potential field for the case of F 1 and Fa having a value of

zero is shown in Fig. 13.15. The penetration of the equipotential lines

into the region of zero potential gradient is seen to be quite small. At
one aperture diameter the potential gradient falls to about 5 per cent

of the gradient on the other side of the aperture.
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A type of electrostatic lens using apertures that has proved very

useful in some electron microscopes is shown in Fig. 13.16. This lens

is called an “ Einzel lens” (single lens) because it initiates and terminates

in a single value of potential. It has the advantage that it may be placed

anywhere along an electron stream without disturbing adjacent potential

relations. The electrons leave this lens at the same potential at which

they enter. The axial potential forms a symmetrical hill with a saddle

point at the center.

13.3. Electron Paths. The general differential equation for the path

of an electron in an electrostatic field of rotational symmetry is a little

too complex to be generally useful. If, however, the considerations are

restricted to electrons that move close to the axis and make a small

angle with it, the so-called “paraxial rays,” then the differential equation

of motion becomes relatively simple. In electron optics as in physical

optics it is found that most of the properties of lenses can be determined

from the behavior of the paraxial rays.

The general differential equation in two-dimensional cylindrical

coordinates is the same as that for two-dimensional rectangular coordi-

nates as given in Eq. (6.59), with z and r substituted for x and y,

+ 03.3S)

where the potential V is understood to be a function of r and z. If

attention is restricted to paraxial electrons, then the angle that these

make with the axis is small and hence the term (
\dz)

îs small compared

with unity and can be dropped. Further, if the radial distance of an

electron from the axis is small, use can be made of the small value approxi-

mations derived from the series expansion for potential as given in Eq.

(13.21). Thus
dV „ 2rFo”

, ,^ +“
6^ + • • ' (13.39)

or, for small r, approximately

Likewise,

dV ^ rVo"

dr
—

2

dz
Fo' - r^Fo'"

4

(13.40)

(13.41)

or, for small r, approximately

dV
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Upon making these substitutions into Eq. (13.38) and letting V = Vo

for the conditions of small radial distance imposed, the differential

equation of motion of a paraxial electron becomes

dz^ ^ 2Vo dz ^ 4Fo
(13.43)

In all the above, the argument z has been understood to be associated

with axial potential Fo. Equations (13.43) and (13.21) are probably

the two most important equations in electrostatic electron optics. From
these all the important relations regarding lenses may be derived. The
above equation may be reduced to several alternative forms that are

sometimes more useful. By combining the first and second derivatives

there results

Vv]
dz

Fo"r
(13.44)

The first-derivative terms may be eliminated from Eq. (13.43) by mr.kiijg

the substitution:

P = rVo^* (13.45)

The differential equation of motion then becomes

(13.46)

All the above differential equations confirm the observations previ-

ously made on the properties of the electron paths. The path is seen

to be independent of the charge and mass of the electron. The path depends

only upon the shape of the potential field and not upon the magnitude of

the potential. If the electrode configuration is enlarged, the electron path

is correspondingly enlarged.

In general, the expressions for axial potential are sufficiently complex

in even the simplest cases so that it is not possible to solve explicitly

for the electron paths. It is, however, possible to solve the differential

equation of the electron path numerically in all oases. In spite of the

fact that the differential equations of motion are in general insoluble,

most of the important properties of lenses may be deduced from them.

13.4. General Lens Properties. Thin Lenses. A thin lens is one in

which the lens dimensions are short compared with the focal length.

The focal length of such a lens may be determined from Eq. (13.44)

by studying the path of an electron that enters a region of potential

variation parallel to the axis. If the angle at which this electron emerges

from the lens can be determined, the focal length will be known without

solving for the path completely. Let the lens under consideration be ono
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similar to that shown in Fig. 13.3. Let the initial and final values of

potential relative to a path from left to right be Vi and F2 ,
respectively.

A first integration of Eq. (13.44) gives

1 rFo

4A^ (13.47)

If the lens is very short, then the value of r will not be greatly changed

in passing through the region of potential variation though the direction

dv
of the electron and hence the value of -7- will be. The coordinate r

dz

may accordingly be treated as a constant and removed from within the

integral sign. If, in addition, attention be restricted to the second

principal ray, i.e., the ray entering the lens parallel to the axis from the

left, then the lower limit of the left-hand term of the equation is zero and

the equation reduces to

w.
L

« Fo''

z. VTo
dz (13.48)

In passing through the lens the electron is bent toward the axis.

As soon as the electron is a short distance beyond the lens, it is in a field-

free region and hence its path is subsequently a straight line. From
simple geometry

h — (13.49)

where r is the radial position of the electron on passing through the lens.

From this the formula for focal length becomes

1 _ 1 r- Fo" ,

A 4VF2A.
(13.50)

A similar treatment of the case of an electron entering the lens parallel

to the axis from the right yields

/i 4\/Fij„ VVo
(13.51)

When the axial potential of a lens is known, it is necessary only to

measure the area under the curve of
VTo

and then multiply by the

reciprocal of four times the square root of external potential. Com-
paring Eqs. (13.50) and (13.51), it is seen that the two focal lengths
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of the lens are in the ratio of the square root of the limiting values of

potential,

fj _ - VT2
h VFi

(13.52)

This is exactly analogous to the law for light lenses, which says

that the focal lengths are in the ratio of the indices of refraction on the

two sides of the lens.

Fig. 13.17.—Axial potential functions of a double-aperture lens.

Some typical curves of axial potential and the integrand of Eqs.

(13.50) and (13.51) for the lens of Fig. 13.3 are shown in Fig. 13.17.

The first part of the lens has a convergent action, and this is associated

with a positive value of the second derivative of the axial potential

The second part of the lens has a divergent action, which is, however,

weaker because of the higher velocity of the electron, and this is asso-

ciated with a negative value of the second derivative of the axial poten-

tial. The reason for the association of the sign is evident from Eq.
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(13.40), from which it is seen that the radial component of the gradient

of potential is directly proportional to the second derivative of the axial

potential as long as the distance from the axis is not too great. As a

result oi this, the radial force on an electron is directed toward the axis

when the second derivative of the axial potential is positive, and vice

versa. It may be stated as a general rule that the action of a lens segment

is convergent whenever the second derivative of the axial potential is positive

and divergent whenever the second derivative of the axial potential is negative.

In the case of a symmetrical lens such as is shown in Fig. 13.3, the con-

vergent and divergent forces in the two halves of the lens are the same,

but the deflection that results is always greater on the low potential

side; for here the velocity of the electron is less, and the deflection for a

given force is greater.

An alternative form of Eqs. (13.50) and (13.51) that yields much
useful information is obtained by evaluating the integral by parts. Let

u = and dv = Vf dz

Then
du = -i^Fo-^^^Fo'dz and v = Vf

Making use of these substitutions in the well-known formula for integra-

tion by parts,

^udv = uv — jv du (13.53)

there results

1 _ F„'(2,) - Vf{z^)
, 1 /•- (Fo')^ ..

h 4f„(0,) 8 vvo(z^) y..

(13.54)

where Zi refers to a point to the left of the lens just outside of the region

of appreciable potential variation and Z2 refers to a corresponding point

to the right of the lens. The corresponding formula for the first focal

length is had by simply interchanging the subscripts 1 and 2 in the above

equation. , ;

For the case of lenses whose initial and final gradients of potential

are zero, the first term of the right-hand side above becomes zero, and

the integral alone gives the focal length.

fi

(Vo'y

f dz (13.55)

The form of the integral in this case is particularly revealing. It is

apparent that the integrand is always positive because the first derivative

of the axial potential, which may be negative, is squared and hence the

focal length is positive. The interpretation of this is that the lens is
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convergent in all cases in which the initial and final gradients of potential

are zero.

When the initial and final gradients of potential are not zero, as is

the case with most single-aperture lens, the first term of Eq. (13.54)

will usually make the major contribution to the focal length.

J_ ^ Vo'jzi) - Vo'jzi)

fi 4^0(22)
(13.56)

This formula is generally accepted as a sufficiently accurate one for

single apertures. The lens action of such an aperture may either be

convergent, / positive, or divergent, / negative. In the simple case of an

aperture at a positive potential in front of a plane cathode and having

a field-free region beyond, the lens action is divergent and the focal

Fig. 13.18.—Divergent action of a single-aperture lens.

length is four times the cathode-aperture spacing, as may be seen by

substitution into Eq. (13.56).

‘

The focusing properties of single apertures are illustrated in Figs. 13.18

and 13.19. Figure 13.18 shows the case of an aperture with a positive

gradient of potential on its left and a zero potential gradient on its right.

The difference of the gradients is therefore negative, and the lens is

divergent. Figure 13.19 shows the case of an aperture with a zero

gradient of potential on its left and a positive one on its right. The

difference of gradients in this case is positive, and the lens is convergent.

^ The corresponding formula for the focal length of a lens consisting of a straight

slit in a plane electrode is

1 ^ V»'(22) - Fo'(2i)

fi 2Vii(zi)

This means that the cylindrical lens of a slot is twice as strong as the circular lens of an

aperture.
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Because of the positive gradient to the right of the lens the electron

paths upon emergence from the aperture are slightly curved, being

parabolic rather than straight. This results because the aperture imparts

a crosswise component of velocity which is proportional to the distance

from the axis at which the electron crosses the aperture plane. The

subsequent field adds a constant axial component of acceleration to this

constant crosswise component of velocity.

Thick Lenses. No simple formulas exist for the parameters of thick

lenses. In order to treat this subject it is first necessary to define the

lens parameters. Then a number of basic relations between the param-

eters can be pointed out. It can later be shown how the lens parameters

may be calculated or measured. After that it is desirable to present

the resultant lens characteristics in some simple compact form. These

Fig. 13.19.—Convergent action of a single-aperture

lens.

steps will now be taken up one at a time. Attention will be restricted

to those lenses whose initial and final gradients of potential are zero.

The differential equation of motion of the paraxial electron given in

Eq. (13.43) is a second-order linear differential equation. As such, it

has two linearly independent solutions, and any general solution can

be expressed as a linear combination of these two independent solutions.

It is convenient to take as the independent solutions of the equation the

ray that leaves the lens parallel to the axis and the ray that enters the lens

parallel to the axis. The two rays that leave and enter the lens parallel

to the axis, respectively, are known as the “principal rays” of the lens. The

ray that is parallel to the axis to the right of the lens is known as the

“first principal ray.” It is usually considered to be moving from right

to left, but it may just as well be considered as moving from left to right.

The ray that is parallel to the axis on the left side of the lens is known as
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the “second principal ray.” For lenses with initial and final gradients

of potential that are zero the initial and final portions of the rays will

be straight lines. The principal rays of an equal-diameter two-cylinder

lens are shown in Fig. 13.20. Any general ray may be expressed as a

combination of these two rays.

As mentioned before, the left portion of a lens such as that of Fig.

13.20 has a convergent action, while the right portion has divergent

action. The strength of these two portions is such that the convergent

action always dominates. The first principal ray, taken as moving from

right to left, first experiences divergent action and then a stronger

ra - Firsf principal ray Hi - Secondprincipalplane
rf, = Second principal nay - First focal length

ti- Second focal len^h

Fig. 13.20.—Thick-lens terminology.

convergent action. The second principal ray, taken as moving from

left to right, first experiences a convergent action and then a weaker

divergent action.

The principal rays serve to define the four thick-lens parameters.

7/ the initial and final straight-line 'portions of the 'principal rays are extended

until they intersect, the intersections locate 'what are kno'wn as the “principal

planes.” The principal planes are shown as Hi and in Fig. 13.20.

The location of the principal planes relative to the reference plane, usually

the midplane or electrode junction, is given by the distances Pi and Pi.

Almost without exception, the relative location of the principal planes

is as shown in Fig. 13.20. Both principal planes lie on the foreside of the

lens. Furthermore, the principal planes are crossed, i.e., the seconij

principal plane lies before the first principal plane. Although this is
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the usual relative disposition for electrostatic electron lenses, it is not

for light lenses. A thick double-convex light lens, for instance, has

its two principal planes on opposite side of the lens center and not

crossed.

A focal length of a thick lens is defined as the distance from the principal

plane of the lens to the point at which the corresponding principal ray crosses

the axis of the lens. There are two focal lengths, one associated with each

axis. These are designated by the symbol / as shown in Fig. 13.20.

The intersections of the principal rays with the lens axis are knovm as

“focal points.” The distance from the lens center to a focal point is

indicated by the symbol F. The above definitions are sufficient to

describe completely the characteristics of a thick lens.

Let the two principal rays of a lens be raiz), the first principal ray,

and ri,(z), the second principal ray. Then any general ray may be

expressed as a linear combination of these two principal rays,

r(z) = CcTaiz) -h CbCbiz) (13.57)

Although it is not ordinarily possible to write the expressions for the

complete principal rays, it is possible to write expressions for the initial

and final straight-line portions and the general lens formula can be derived

from these partial expressions.

Let the radial offset of the portion of the principal rays parallel to

the axis be unity. Then, to the left of the lens, as in Fig. 13.20 the

straight-line portions of the principal rays are given by

rM) = -/f (13.58)
yi

and
r,(z,) = 1 (13.59)

Assume that the general ray starts at a point on the axis of the lens to

the left of the first focal point. The general ray will then pass through

the lens, be deflected toward it, and cross the axis again at a point to the

right of the second focal point. At the point where the general ray

crosses the axis to the left of the lens, from Eq. (13.57),

Ca rtf f\

Cb ra Zi — Pi — fi

To the right of the lens the principal rays are given by

raizi) = — 1

(13.60)

(13.61)

nizi)
— Zj P2 f

2

h

and

(13.62)
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At the point on the right of the lens where the general ray crosses the

axis, r is zero, and from Eq. (13.57)

Co _ _ ^ "H E 2 -}~ /2

Cb Ta h
(13.63)

Equating

ray,

the ratio of constants at the two axial crossings of the general

-/1/2 = (zi -Pi- /i)(E 2 +h- Z2) (13.64)

This is readily rearranged to give

~/i
I h

Zi — El Z2 — Pi
1 (13.65)

This is the lens formula of a thick lens of the type shown in Fig. 13.20.

It is the counterpart of Eq. (13.7) for light lenses. The sign conven-

tion used here has been that all quantities measured to the right from a

reference plane are positive, while those measured to the left from a

reference plane are negative.

The significance of Eq. (13.65) is that the focal lengths are measured

not from the lens center but from the corresponding principal planes.

The lens parameters defined above are known as the “cardinal

characteristics” of the lens. It takes four of these to describe the thick

lens. The quantities that are usually given are the two focal lengths and

the distance of the focal points from the reference plane. In electron

lenses the parameters change with voltage ratio so that it is necessary

to present curves of these four quantities as a function of the voltage

ratio.

Knowing the focal lengths and the position of the principal planes

makes it possible to construct an image corresponding to any object.

The construction involved is shown in Fig. 13.21. Through a point
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on the object draw a line through the first focal point until it intersects

the first principal plane. From this point of intersection draw a line

to the right parallel to the axis. These two segments of straight line

correspond to the first principal ray. From the same point on the object

draw a line parallel to the axis to the right until it intersects the second

principal plane. From the point of intersection draw a straight line

through the second focal point until it intersects the first principal ray.

This last point of intersection defines the point on the image corresponding

to the point on the object from which the two principal rays originated.

From Fig. 13.21 the lateral magnification of the lens can be defined as

M =
2/1

h
h
Xi

(13.66)

where the y’s are the radial coordinates of corresponding points on object

and image and the x’a are the distances from object and image to the

nearest focal point. From the above relations there results Newton’s

law,

XiXi = /1/2 (13.67)

From Fig. 13.21 it is also seen that object and image distances from
the lens reference plane are given in terms of the cardinal lens parameters

by

zi = P = Fi - ^ (13.68)

and

Z2 = Q = P2 - M/2 (13.69)

To determine the remaining laws of importance applying to thick

lenses, reference is again made to the differential equation of motion of

the paraxial electron [Eq. (13.44)]. Consider the linearly independent
principal rays ra(z) and n(z). Substitute Ta into Eq. (13.44), and multiply

by n. Then substitute n into the same equation, multiply by r„, and
subtract from the first equation. Indicating derivatives with respect to

2 by primes,

r6(\/For„')' — Taiy/Y'^ri)' = 0 (13.70)

Add and subtract the quantity -s/Vara'ri,' •, then

^ in VFo rj — Ta y/Vo n') = 0 (13.71)
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Integrate between limits Zi and Zs far enough to the left and right of the

lens so that the potential variation is negligible. This allows Vaizi)

and n'izi) to be considered zero, and the result of the integration reduces

to

^0 (22) y/Va (Z2) n'izi) + rb(zi) \/Vo (zi) ra'izi) = 0 (13.72;

From this equation two very important conclusions may be drawn.

Observe that

(13.73)

and

Upon making these substitutions into Eq. (13.72), it follows that

h ^ _ y/Vo{^)

/i VV^)
This is a perfectly general proof that the ratio of the focal lengths of a

lens is the same as the ratio of the corresponding indices of refraction.

The relation is valid, however, only if the focal points of the lens lie

outside of the region of appreciable potential variation.

Returning to Eq. (13.72) again and identifying the ratio
rajZi)

nizi)

as the lateral magnification M, and
rb{z2)

ra'izi)
as the angular magnification

via,

Mvia
VVbjz,)

VEo(z,)
= 1 (13.76)

which is Lagrange's law. The angular magnification is the ratio of the

tangents of the angles that the second and first principal rays make
with the axis. For small angles, the tangent is approximately equal to

the angle. The above law states that the product of the lateral magnifica-

tion, the angular magnification, and the ratio of the final and initial

indices of refraction is unity. This law has its exact counterpart in

geometrical optics.

13.5. Calculation of Lens Characteristics. Since analytical methods

fail in general in determining the characteristics of thick lenses, recomse

is frequently had to numerical computation. From the previous dis-

cussion it is known that, if the potential along the axis of an electrostatic

lens is known, then the potential anywhere in the lens is determined and

can be calculated. Further, the differential equation for an electron
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moving close to the axis and making a small angle with the axis, a so-called

“paraxial electron,” can be written in terms of the axial potential. It

is necessary only to solve such an equation numerically for rays entering

and leaving the lens parallel to the axis, the principal rays, to obtain the

cardinal lens characteristics, i.e., the focal lengths and the location of the

principal planes.

Numerous methods for calculating the principal rays of electrostatic

lenses have been proposed. The most important of these will be briefly

described, and then two of the simplest methods will be given in more

detail.

Klemperer and Wright have proposed an application of the trigo-

nometric ray-tracing method of physical optics.* The electrostatic field

is broken up into a succession of thin lenses having a constant ratio of

equivalent index of refraction for adjacent lenses. Formulas are given

for calculating the effect of every refraction at a lens surface upon the

angle of a ray and the point at which it crosses the axis. Lens surfaces

are assumed to be spherical, and their radius of curvature must be

determined either graphically or from the axial potential. This method

requires a large number of equivalent thin lenses, at least 20 for an

accurate determination, and the results converge slowly as the number

of segments taken is increased.

Maloff and Epstein have proposed several methods based upon a

step-by-step solution of the differential equation of motion of the paraxial

electron. The methods give the electron path as an exponential of the

axial distance in any increment and join the paths in successive increments

both in magnitude and in slope. The methods are capable of good

accuracy, but the tabulations are very numerous.^

A method of joined circular segments based upon Salinger’s formula

for the radius of curvature of an electron path has also been proposed.

Increments of radial and axial displacement are expressed in terms of

axial potential and associated factors.* This method likewise requires

rather extensive tabulation.

Method of Linear Axial-potential Segments. One of the simplest

methods proposed is based upon the differential equation of motion of

1 Klemperer, and W. D. Wright, Investigations of Electron Lenses, Proc. Phys.

Soc. {London), vol. 51, Part II, pp. 296-317, March, 1939.

2 Maloff and Epstein, op. cit., pp. 81-89.

See also Schlesinger, Kurt, A Mechanical Theory of Electron-image Formation,

Proc. I.R.E., vol. 32, pp. 483-493, August, 1944.

3 Spangbnberg, Karl, and L. M. Field, Some Simplified Methods of Determining

the Optical Characteristics of Electron Lenses, Proc. I.R.E., vol. 3, pp. 138-144,

March, 1942.
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the paraxial electrons.* The axial potential is replaced by a number of

straight-line segments that approximate it as closely as possible, as

shown in Fig. 13.22. The differential equation is then solved for the

successive regions in which the potential is linear and the gradient is

constant. At each boundary between segments there is a jump in the

slope of the electron path because of the jump in the gradient of potential.

The final path as determined by this method consists of a number of

curved segments of path connected together, giving a path that is con-

tinuous but that has discontinuities in slope at the corners of the seg-

mented approximation to the axial distribution of potential. Such a

Fig. 13.22.—Approximation of axial potential by linear

segments of potential.

path cannot represent accurately the true nature of the path within

the lens, but it can be used to obtain relations between initial and final

values with considerable accuracy. The method is relatively easy

to apply and gives fair accuracy for as few as six straight-line segments in

the approximation to the axial-potential curve.

If the axial potential is assumed to be made up of straight-line

segments, then the second derivative of the axial potential is zero and the

differential equation of motion of paraxial electrons of Eq. (13.43)

reduces to

»-"+|^^Eo'=0 (13.77)

where both r and Fo are functions of axial distance z and the primes

denote derivatives with respect to z. A first integration of this equation

gives

r' = (13.78)

* Gans, R., Electron Paths in Electron Optics, Zeii. fur Tech. Phys., vol. 18,

pp. 41-48, February, 1937.
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A second integration gives

rizi) - rizi) = 2C[V^Hz,) - Fo^(zi)]

Vo'
(13.79)

where subscripts 1 and 2 refer to the left and right extremities of a seg-

ment. These two general equations give the electron path along any
segment of axis. At the junction of two segments there is a discontinuity

in the slope of the axial-potential function. Upon integrating the first

and last terms of Eq. (13.43), the difference of the slopes of the electron

path on the two sides of the junction is proportional to the difference of

the first derivative of axial potential on the two sides of the junction,

r'{zt) - r'(za) ^
[Vo'jz,) - Vo'jz.)]

4Fo
(13.80)

where subscripts a and b refer to values on the left and right side of the

junction, respectively. In the particular case where the derivative of

the axial potential is zero, integration of Eq. (13.77) gives

r(z2) — r(zj) = (Zi
—

Zj)[?-'(zi)] (13.81)

The above set of equations suffices to calculate approximate principal

rays. By alternate use of Eqs. (13.80) and (13.79) and the occasional

use of other equations where necessary, the focal lengths and focal points

of a lens may be obtained.

Method of Equivalent Thin Lenses. The usual electron lens has a

convergent behavior on the low-potential side and a divergent behavior
on the high-potential side, the net lens behavior being convergent.

The behavior is convergent when the second derivative of the axial

potential is positive and divergent when the second derivative is negative.

It is reasonable, therefore, to consider that the lens is made up of two
thin lenses, a convergent lens followed by a divergent lens.' If the

strength and location of these lenses are known, the cardinal points of

the equivalent thick lens may be determined.

The focal lengths of the convergent lens as shown in Fig. 13.23 are

given by

1 fZm Y"
(13.82)F

/i = -FVWi (13.83)

fi — 1
(13.84)

' Myers, op. cit, p. 131.
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where is a focal term from which the focal lengths are derived, Vi

is the lowest potential on the lens axis, and Vm is the potential at the

point at which the second derivative assumes a value of zero, changing

sign. The integration of (13.82) is carried over the region in which the

second derivative is positive.

Similarly, the focal distances for the divergent component of the

lens are given by
1 /« V" dz

(13.85)F ~
2

and

/i' = -F'vw:n (13.86)

= (13.87)

where F2 is the highest value of potential reached on the axis on passing

through the lens.

When the focal lengths of the convergent and divergent components

of the lens are known, the focal characteristics of the entire lens are

readily determined, this being a simple problem in the combination of

lenses. When the distance between the second focal point of the con-

vergent component and the first focal point of the divergent component

is di2 ,
then the focal lengths of the entire lens are*

fi" = - (13.88)
ai2

//' = (13.89)
«12

* Rosin, S., and O. H. Clakk, Combinations of Optical Systems, Jour. Opt. Soc.

Amer., vol. 31, pp. 198-201, March, 1941.
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The location of the first principal plane measured from the first focal

point of the convergent component is

Xi = (13.90)

and the location of the second principal plane as measured from the second

focal point of the divergent component of the lens is

X2 = / //

J2 (13.91)

The method is extremely rapid in application. The location of the

lens components is best taken as being at the center of gravity of the

area represented by the integrals of Eqs. (13.82) and (13.85), as shown
in Fig. 13.23.

13.6. Measurement of Lens Characteristics. All the computational

methods referred to in the previous section are subject to some error that

is difficult to determine except by extensive calculations. In general,

it may be said that, although computational methods are adequate,

experimental methods are preferable and usually more dependable.

As with computation so with experimental determination, several

methods are available. One method involves construction of a special

electron gun, which generates filamentary rays parallel to the axis that

are put through the lens being measured.^ Lens characteristics are

obtained from the voltages required to produce a focus.

Another method makes use of an ordinary electron gun followed by a

movable mesh grid and then by the lens under test. Data are taken on

the voltage ratio necessary to apply to the lens to focus an image of the

mesh on a fluorescent screen for all positions of the mesh. Magnifications

are also noted and lens characteristics are deduced from these data.^

Another experimental method used in determining the lens charac-

teristics is based upon observed magnifications of measuring grids

placed before and after the lens structure.® This method will be described

in some detail.

Double-grid Method of Measuring Lens, Characteristics. The experi-

mental method used in determining the lens characteristics is based upon
observed magnifications of measuring grids placed before and after the

lens structure.

A grid of closely spaced parallel wires (for measurement purposes

only and not for control of the beams) is placed in the fore part of the

lens. This grid casts a shadow upon a fluorescent screen following the

* Klempebek and Wright, op. cit.

^ Malopf and Epstein, op. cit .

* Spangenberg and Field, op . cit
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lens. In order to avoid the need of a tube having parts that can be

moved relative to one another while in a vacuum, another measuring

grid is used between the end of the gun and the fluorescent screen.

This arrangement is shown schematically in Fig. 13.24, in which the

measuring grid in the fore part of the lens is indicated by a vertical

row of dots. With this arrangement of measuring grids, it is necessary

to make observations on the magnifications of two grids, as the voltage

ratio of the main lens electrodes is varied for each of two distances

of the lens from a point source of electrons. Hence two complete runs

Fig. 13.24.—Experimental determination of electrostatic lens characteristics.

must be made to obtain the data from which the complete lens charac-

teristics can be measured.

The details of the mathematical relations involved can be seen from

Fig. 13.24. The cathode-lens structure gives the effect of a point source

of electrons at a known point near the cathode. The location of this

point and the constancy of its position under varying conditions of lens

voltage ratio are determined by placing two measuring grids in the fore

part of the lens and observing the ratio of their magnifications. The

constancy of the ratio of magnifications indicates that the location of

the point source changes very little with lens voltage ratio and also over

the normal range of control-grid voltages used. The location of the

point source is very nearly at the control-grid aperture in front of the

cathode. When these facts have been checked from a test run, it is no

longer necessary to use two measuring grids in the fore part of the lens.
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With the point source of electrons available the following general

method is applied: The angular magnification of the bundle of rays is

determined from screen patterns obtained on the fluorescent screen,

such as that shown in Fig. 13.25. Here the lines in one direction are the

shadows of one measuring grid, and the lines in the other direction

are the shadow of the other measuring grid. When the angular magnifi-

cation is known, then for any given voltage ratio the lateral magnification

can be determined from Lagrange’s law, which states that the product

of the internal magnification and the angular magnification is equal to

the square root of the ratio of the final and initial potentials. Image

Fig. 13.25.—Shadows of measuring grids on a

fluorescent screen.

distances at each of the two object distances used are given for various

voltage ratios from magnifications of the second grid alone. The object

distances are known from physical measurements on the gun assembly.

When lateral magnification, object distaiice, and image distance are

known as a function of voltage ratio for two different values of the object

distance, then the cardinal quantities /i, f^, Fi, and F2 of the lens may be
calculated readily.

The method by which this calculation is made will be briefly indicated.

Object and image distances can be expressed in terms of the lateral

magnification and focal distances as

Q = —Mfi Fi

(13.92)

(13.93)
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These two equations involve the four quantities fi, /a, Fi, and F2 as

unknowns. In order to determine them, it is necessary to know two
sets of associated values of P, Q, and M for the same voltage ratio.

When subscripts 1 and 2 are used to indicate values of P, Q, and M for

two different values of P at a given voltage ratio, then there may be

obtained from the above relations the following expressions for the

cardinal focal distances;

II
1

(13.94)

M2 Ml

^
Q\ — O2

M2 - Ml (13.95)

p P1M2 — P2M1
(13.96)M2 - Ml

Qi Qi

i,
M2 MlF2=
1 j

(13.97)
1 I

Up to this point the relations are the same as those used by Maloff and
Epstein. It is now necessary only to show how the lateral magnification

may be deduced from the screen patterns to complete the collection of

necessary relations. In Fig. 13.24 it is seen that the angular magnifica-

tion is given by

= ^ (13.98)

For small angles such as are encountered in the gun the angular magnifica-

tion in terms of the dimensions is given very closely by

6' _ ad

6 he
(13.99)

in which c is the distance beyond the fluorescent screen to the point at

which the ray would focus. This distance is determined from the

spacings of the grid images as follows:

For focus beyond fluorescent screen,

c = —^ (13.100)

1 --
g

where the symbols have the significance given in Fig. 13.24.
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For focus between second measuring grid (crosses) and fluorescent

screen

-c = (13.101)

1 +-
9

When the angular magnification

is known, then the lateral magni-

fication may be calculated from

Lagrange’s law as previously in-

dicated.

With the above relations the

cardinal quantities are readily cal-

culated. In practice, this is most

easily done by plotting curves of

the various quantities involved

against voltage ratio, for the same
voltage-ratio observations may
not have been taken on one run as

on the other. There is a small

hole in each curve at the point

where the beam focus is at the

fluorescent screen, for the image

becomes so small here that it is

not possible to measure the spac-

ings of the wires on the images.

However, there is no trouble in

drawing smooth and continuous

curves through these holes if the

data are taken with care.

The accuracy achieved by this

method is of the order of 10 per

cent for lenses with small open-

ings and 20 per cent for lenses

with large spacings.

13.7. Optical Characteristics

of Lenses. By means of the
method of double grids just
described in the previous section

it is possible to determine experi-

mentally the optical character-

istics of lenses over a wide range

Fig. 13.26.—Optical characteristics of a

two-cylinder lens, D 2/D 1 = 2/3.

of voltage ratios. The lens characteristics are completely prescribed
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Fig. 13.27.—Optical characteristics of a Fig. 13.28.—Optical characteristics of a

two-cylinder lens, D 2/D 1 — 1. two-cylinder lens, D^/D, = 1.6.
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Fig. 13.31 —Optical characteristics of a Fig. 13.32.—Optical characteristics of a

double-aperture lens, AjD =5. double-aperture lens, AjD =3.
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double-apertui« lens, A/D = 1. aperture-cylinder lens.



374 VACUUM TUBES

if the two focal lengths and the location of the two principal planes

are given as a function of the voltage ratio. In Figs. 13.26 to 13.34

there are plotted the focal lengths and location of the focal points of

nine of the commonest electrostatic electron lenses.*

Examination of the lens-characteristic curves of Figs. 13.26 to 13.34

reveals that all these lenses have the following characteristics in common;

1. Focal lengths are always uniformly decreasing functions of voltage

ratio.

2. Principal planes always lie on the low-voltage side of the lens.

3. Principal planes are crossed, with the exception of the large-

diameter aperture lens, Le., the first principal plane lies between the

second principal plane and the lens center on the low-voltage side

of the lens.

4. Focal length in the direction of increasing potential is always

greater than the focal length in the other direction.

5. The position of the principal planes does not change much with

voltage ratio except at very low values.

A comparison of the focal properties of the specific lenses yields the

following observations;

1. The focal length of two-diameter cylinder lenses increases, i.e., the

lens grows weaker for all but the highest voltage ratios, as the ratio

of second to first cylinder diameter increases.

2. The focal length of equal-diameter cylinder lenses increases, i.e.,

the lens grows weaker, as the axial spacing of the cylinders increases.

The change is small for small spacings but increases rapidly as the

spacing is increased.

3. The focal length of aperture lenses increases, i.e., the lens grows

weaker, as the aperture diameter increases. The change is small

for small diameters but increases rapidly as the diameter increases.

4. Aperture lenses have for the most part shorter focal lengths than

cylinder lenses if aperture spacing be taken equal to first cylinder

diameter as a unit of length.

5. The cylinder-aperture lens has the shortest focal length of all

lenses tested.

6. The equal-diameter lens with axial spacing of one diameter has the

longest focal length of all the lenses in this collection.

After all the comparisons between lenses have been made, it must be

admitted that there is not much choice between them, for the focal

1 Spangenberg, Karl, and L. M. Field, The Measured Characteristics of Some
Electrostatic Electron Lenses, Elec. Commun., vol. 21 (No. 3), pp. 194-204, 1943.
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length of any of the lenses can be adjusted at will by simply changing the

voltage ratio applied to the electrodes. Cylinder lenses are usually

preferred to aperture lenses as objective lenses because the electron beam
is shielded from the effect of any charges that may accumulate on the

glass walls of the vacuum envelope. They also permit the use of limiting

apertures within the cylinders to reduce the beam diameter.

13.8. Calculation of Lens Characteristics. In general, electrostatic

lenses are not amenable to extensive analytical treatment. The lenses

that can be calculated cannot readily be built, and vice versa. It is of

interest, however, to confirm the results observed in the previous section

by noting the results of such cases as have been completely solved. A
complete solution of the lens for which the axial potential is of the form

Vq(z) = A exp Cretan0 (13.102)

has been given.* In this expression for axial potential the constants A
and R are related to the initial and final values of potential by

and

(13.103)

, ,, f2 V3AA = Fi exp 1—g— 1 (13.104)

This axial-potential distribution is not greatly different from that found

in two-diameter cylinder lenses, as may be seen in Fig. 13.35, in which

there is plotted the potential distribution Vo(z) = exp (arctan z).

The general solution of Eq. (13.46) with the axial-potential distribution

of Eq. (13.102) is

+ (I)' (-^ 0
rCl sin (w arc cot^ -f- C2 f u) arc cot ^^1 (13.105)

where w = \/l -|- R^. From this the focal lengths are found to be

(13.106)

' Hutteb, R. G. E., Rigorous Treatment of the Electrostatic Immersion Lens

Whose Axial Potential Distribution Is Given by =
<j>i exp(arctan z), Jour. Appl,

Phys., vol. 16, pp. 678-699, November, 1945.
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Fig. 13.35.—Plot of the axial potential, Fo(z) = exp (arctan).

\/3RTr

h = (13.107)

The focal lengths as a function of voltage ratio are given in Fig. 13.36.

The position of the principal planes is given by

- VSRr
e 3» + cos

Pi = a
(-:)

Pi = a

“(s)
“ /irN— COS I — I

\wj
£ Sw

“"(s)

(13.108)

(13.109)

The position of these is also plotted in Fig. 13.36. All the properties of

lenses observed experimentally are confirmed by this example. It is of

interest to note that the ratio of focal lengths as given by the square root

of the electrode potential ratio holds only to a ratio of about 6 in this case.

At a voltage ratio of 16 the ratio of the focal lengths is 3.7 instead of

4. This departure from the theoretical value occurs because the lens is

a very strong one and for moderately large electrode-potential ratios the

principal rays cross the axis within the region of potential variation,

whereas in the derivation of Eq. (13.75) it was assumed that the rays

crossed the axis outside the region of appreciable potential variation.
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13.9. P-Q Curves of Lenses. The optical characteristics of lenses

presented in the previous section do not tell a great deal directly about
the lens performance. These optical characteristics are parameters that

enter into the calculation of image distance corresponding to object

distance for any voltage ratio. The lens parameters disappear in the

calculation, and only the associated object and image distance and
corresponding magnification remain. It would therefore seem logical to

present lens characteristics in such a way that the resultant properties

and not the construction parameters were revealed. This has been done
in a type of curve that will be referred to as the P-Q curves of a lens. The
significance of the letters is that the curves present associated object

distance P and image distance Q, as in Fig. 13.21, and corresponding

lateral magnification M for any voltage ratio. The object distance,

image distance, and lateral magnification are calculated by means of

Eqs. (13.68) and (13.69).
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The P-Q curves of the nine common lenses discussed before are shown

in Figs. 13.37 to 13.45. In these curves there are shown contours of

constant lateral magnification and constant voltage ratio against axes of

object and image distance. The P-Q curves are in effect a graphical

presentation of the solution to all the first-order image problems asso-

ciated with the lens. The advantage of this presentation is that it gives

design data immediately, without calculation. The presentation is

Pig. 13.37.

—

P-Q curves of a two-cylinder lens, D^IDx = 2/3.

further sufficiently explanatory so that it can be used without a complete

understanding of the theory of electron optics.

A study of the P-Q curves of Figs. 13.37 to 13.45 reveals the following

characteristics as being common to all lenses:

1. As object distance is increased at a given voltage ratio, the corre-

sponding image distance decreases, as does also the magnification.

2. For a given object distance the image distance and magnification

decrease as the voltage ratio is increased.

3. In any lens there is a minimum object distance that can be used

at any given voltage ratio. This minimum object distance is the
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P-Q curves of a two-cylinder lens, Di/Di = 1.5.
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P-Q curves of a double-aperture lens, A = £> = 1.
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Fig. 13.46.

—

P-Q curves of a cylinder-aperture lens.
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first focal length of the lens, plus the displacement of the first

principal plane from the lens center.

The outstanding magnification characteristics of electron lenses as

observed from the P-Q curves are as follows:

1. The contours of constant magnification are approximately straight

lines, with a slope of 1. This is exactly the case for thin lenses.

2. An approximate universal magnification formula that fits all lenses

shown is

M=k^ (13.110)

where P and Q are the object and image distance, respectively.

Values of the constant for the lenses tested are

Cylinder lens: ^ = 0.667
ttl

k = 0.82

di
^

di
~ S = 0.1 k = 0.78

II k = 0.76

02
^

di
" S = 0.5 k = 0.80

II

T3

^ = 1 k = 0.60

Aperture lens:
^
~ ^ k = 0.95

k = 0.80

3-> k = 0.78

Cylinder-aperture lens: k = 0.82

It is seen that, with only two exceptions, the value of the constant

is within a few per cent of 0.8.

The observed magnification property is strictly in accordance with

theoretical expectations, though the agreement is not at all apparent.

From Lagrange’s law [Eq. (13.76)] it is expected that the lateral magnifica-

tion will equal the product of the ratio of image to object distance multi-

plied by the square root of the reciprocal of the voltage ratio, namely.

This follows from the fact that the angular magnification

is nearly equal to the ratio of object to image distance. The actual con-
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tours of constant lateral magnification do not seem to follow this law, but

the discrepancy is only an apparent one, not a real one. The apparent

discrepancy is due to the fact that the object and image distances are

measured from an arbitrary point in the lens, whereas they should be

measured from an equivalent thin lens located between the principal

planes. If in the above modification of Lagrange’s law the distances

P and Q are measured from a point midway between the principal planes,

then the calculated contours of constant lateral magnification are almost

Object d isfoi nee, P/Dx

Fig. 13.46.—Comparison of the P-Q curves of two-diameter lenses.

indistinguishable from the measured ones in sample cases that have been

tested.

Comparison of Lenses. An important feature of the P-Q curves is

that they make possible a comparison of the focal lengths and magnifica-

tions of various types of lenses over the whole range of voltage ratios and

object distances. In Figs. 13.46 to 13.48 are drawn, for comparison,

parts of the complete curves of similar types of lenses.

In Fig. 13.46 are shown the effects of changing the ratio of diameters

in a two-diameter cylinder lens. The curves show that, for ratios of
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diameters between 1 and 1.5, there is not much difference in magnifica-

tion. For the smaller ratio of diameters the magnification is distinctly

more (object distance and voltage ratio held constant). In the vicinity

of useful application, say P = 3 and Q = 20, the voltage ratio required

for any ratio of cylinder diameters is about the same.

In Fig. 13.47 is given a similar comparison of equal-diameter cylinder

lenses for different spacings between cylinders. This comparison reveals

that the magnification of such lenses is about the same for small axial

Object distance, P/D
Fig. 13.47.—Comparison of the P-Q curves of equal-diameter lenses.

spacings up to about 0.5 diameter and then increases considerably as the

spacing is increased (object distance and voltage ratio held constant).

For the most part the lens becomes weaker as the axial spacing between

cylinders increases.

A comparison of aperture lenses is given in Fig. 13.48. It is a little

hard to draw any general comparisons because of the pronounced cross-

overs in the P-Q characteristics for different lens dimensions. In the

vicinity of a short object distance and a long image distance the magni-

fication is not greatly different for different ratios of aperture spacing to
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diameter. For a fixed object and image distance the voltage ratio

necessary to obtain a focus increases as the ratio of aperture spacing to

diameter increases.

The Einzel Lens. Another lens which is more or less in a class by

itself is the so-called “Einzel lens” (after the German word “single,”

indicating that there is a single value of the limiting potential). The

Einzel lens consists of three apertures equally spaced, the outer two of

which are maintained at the beam potential and the inner of which may

Object distcince^iVi)

Fig. 13.48.—Comparison of the P-Q curves of double-aperture lenses.

be at either a higher or a lower potential. The electrode arrangement

and potential field of such a lens have already been shown in Fig. 13.16.

Such a lens exhibits a convergent action whether the center electrode is

more or less positive than the outer electrode. The nature of the focusing

characteristics of a special type of Einzel lens are shown in Fig. 13.49.

The lens exhibits a focal length which decreases as the ratio
V, - Fi

Fi

increases, where F2 is the inner-electrode potential and Fi is the outer-

electrode potential. For negative values of the same potential ratio the

focal length decreases until the center electrode is sufficiently negative
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to make the saddle point at the center of the lens assume a negative

potential. Beyond this point the electrons cannot penetrate the lens

but are reflected back. The reflection is of such a nature that the action

as the center-electrode potential is made still further negative is first

that of a concave mirror and then that of a convex mirror. This change

in the nature of the reflection occurs because at first the electrons can

penetrate to a point within the lens where the equipotential lines are

concave and then as the center electrode becomes more negative they are

Fig. 13.49.—Focal characteristics of an Einzel lens.

only able to penetrate slightly into a region where the equipotential lines

are convex.^

13.10. Aberrations. As is the case with physical lenses, electron

lenses are not perfect image-forming detdces but are subject to a number
of distortions or lens errors known as “aberrations.” Because of the

almost exact analogy that exists between geometrical and electron optics,

every one of the aberrations found in light lenses is also found in

electrostatic lenses. Thus the terminology of light lenses is directly

transferable to electron lenses.

All the lens theory that has been given so far has been a first-order

theory. This is the so-called “Gaussian optics.” The differential

* JoHANNSON, H., and O. Scherzer, Uber die elektrische Elektronen Sammellinse,

Zeit. filr Phys., vol. 80 (No. 3, 4), pp. 183-192, 1933.
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equation of the paraxial electron was obtained by dropping all terms in

dv
r and -j- of order higher than the first. If the restrictions on the electron

CLZ

dv
under consideration are made more liberal and only terms in r and ^
higher than the third are neglected, then the theory of so-called “third-

order imagery” is obtained. This third-order theory reveals aU the

defects in image formation that are encountered.

The differential equation of third-order imagery is obtained by start-

ing again with the general differential equation of motion of Eq. (13.38),

then using the first two terms of Eqs. (13.21), (13.39), and (13.41), and

High vehcify

I

Low vehcify

Fig. 13.50.—Chromatic aberration.

then neglecting any terms of order higher than the third. The resulting

differential equation of motion of an electron of third-order imagery is

+ Eo'r'

2Fo
1 + /IV' _ iv:'\ ^

J

V4Fo 4Fo'/ ^ J

(Til
V4Fo

Fo''r

4F
1

Fo

8F 0 /
+ r' = 0 (13.111)

where the primes indicate derivatives with respect to z.

A study of Eq. (13.111) reveals five distinct types of monochromatic

aberration possible in electrostatic lenses. The five types are generally

classified as coma, astigmatism, curvature of field, distortion of field, and

spherical aberration. In addition to these types, chromatic aberration

may be present. This makes six defects that are possible with perfect

structures and low currents. Distortions due to space charge and

imperfections in the electrode structure may also be present. Each of

the above defects will now be briefly described.
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Chromatic Aberration. This is the well-known effect in geometrical

optics that causes light of different w'ave lengths to have different focal

lengths as shown in Fig. 13.50. In electron optics the analogous effect is

that electrons with different velocities will focus at different points. In

electron lenses the velocity of the electrons varies only to the extent that

Object Image

Fig. 13.51.—Coma.

the velocity of emission is different for different electrons. Since this

variation in emission velocity is generally small compared with the

accelerating potentials used, the error is not a serious one.

Image

kA“
LA \

"Sharp ^

f -'X
Image

kk \ n

'W ij

Fig. 13.52.—^Astigmatism.

As an example of the effect of chromatic aberration, consider the case

of a single-aperture lens for which the focal length is given by

Fo'fe) - Fo'(zi)
(13.56)

If the different electrons have energies corresponding to different values

of Fo, then

JL = I.
dVo Fo ( 13 . 112)
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which is really just another way of saying that the focal length depends

upon the electron energy; the higher the energy, the lower the change in

focal length.

Coma. This is an extraaxial aberration, i.e., one that appears only

for images and objects not lying on the axis of the lens system. The

Object Image

Fig. 13.53.—Curvature of field.

effect is due to the fact that different circular zones about the,axis have

different magnification. As a result, a set of concentric circles off the

axis is imaged as a set of slightly distorted circles that are not concentric

but that have a drop-shaped envelope with the tail pointed away from

Object Positive Negative
distortion distortion

(Pincushion) (Barrel)^

Fig. 13.54.—Distortion of field.

the axis. The type of distortion resulting is shown in Fig. 13.51. The
effect is lessened if a smaller portion of the lens center is used, but this

reduces the amount of light or beam current and may not always be

desirable.

Fig. 13.65.—Spherical aberration.

Astigmatism. This is a well-known effect in geometrical optics. The
effect is that, in any object off the axis, lines directed toward the axis

have a different focal length from those at right angles to these. A
compromise focus gives an image of least diffusion in which neither of the

lines is clear. This effect is illustrated in Fig. 13.52. As focusing voltage

is changed, a focus is first obtained at the center of the image, then along

a radial line, and then along circumferential lines. This is another of
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the extraaxial effects. In cylinder lenses, if the electrodes are slightly

elhptical the beam focus will be a short line instead of a spot. As the

focusing voltage is adjusted, the short line will become a fuzzy spot and

then a sharp short line again, but at right angles to its former position.

Curvature oj Field. This lens defect usually accompanies but is more

pronounced than astigmatism. The effect evidences itself by the fact

that an object lying in a plane perpendicular to the axis has an image

which does not lie on a plane but which lies on a slightly curved surface, a

surface of revolution about the axis approximately spherical which is

concave toward the lens. The result of this form of aberration is that an

Fig. 13.56.—Focal length as a function of the radial coordinate in the lens.

object consisting of a set of circles concentric about the axis gives an
image which is sharp at only one radial distance. If the image plane is

adjusted to make the center sharp, then the outside circle will be fuzzy,

and vice versa. This lens defect is illustrated in Fig. 13.53.

Distortion of Field. This defect is due to variations of the hnear
magnification with radial distance in the lens. If the object is a small

checkerboard, then the distortion evidences itself by giving rise to pin-

cushion- and barrel-shaped images shown in Fig. 13.54. If the magnifica-

tion increases with radial distance, it is considered positive and the

pincushion-shaped image results. If the magnification decreases with

radial distance, it is considered negative and the barrel-shaped image
results.
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Spherical Aberration. This is another lens defect well known in geo-

metrical optics. Basically the effect is that rays entering the lens parallel

to the axis have a focal length which changes with the radial distance at

which they pass through the lens, as shown in Fig. 13.55. The focal

length as a function of radial position in the lens can be measured by any

of the experimental methods previously described and yields curves such

as those of Fig. 13.56. In the curves shown the focal length reduces

^ < fraction of end of lens radius used

Fig. 13.57.—Minimum spot size as a function

of aperture radius.

as the radial distance increases. This is known as “positive” spherical

aberration and is the kind invariably encountered in electron lenses. The

focal length is seen to decrease slowly at first and then more rapidly.

This is an axial aberration that has the effect of giving a spot focus

instead of a point focus. The minimum size of spot that can be obtained

for any lens aperture increases with the radius of the aperture. A typical

curve illustrating this effect is shown in Fig. 13.57.

Spherical aberration is one of the most serious of the various aberra-
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tions. It is always present and in electron lenses is invariably positive.

In physical lenses it is possible to combine elements with equal positive

and negative spherical aberration to obtain a lens that is free of this

effect. In electrostatic lenses it is possible only to reduce this effect, as,

for instance, by using a two-diameter cylinder lens with the high-potential

cylinder having a smaller radius than the lower. ^ It is also possible to

reduce spherical aberration in aperture lenses by the use of specially

shaped thick electrodes with curved surfaces corresponding to the

equipotential^

V(r,z) = (o sin kz + b cos kz)Jo{ikr) (13.113)

It has also been shown that a symmetrical lens with an axial-potential

variation given by’

V,{z) = Fi(l -1- (13.114)

has minimum spherical aberration. Unfortunately, it is very difficult to

build a lens having such an axial variation of potential since the electrode

structure required is not a practical structure at all. In general, the

spherical aberration associated with a given lens structure may be

reduced by simply eliminating sharp corners and edges on the electrodes.

A rounding of corners and edges eliminates large gradients, which seem

to contribute considerably to the lens defects.

Other Lens Dejects. In addition to the above optical defects, electro-

static lenses are subject to a few ills to which physical lenses do not fall

heir. The space-charge mutual repulsion between electrons prevents

electron beams from coming to a point focus and in general exhibits the

same effects as spherical aberration. This subject will be given an

analytical treatment in the chapter on Cathode-ray Tubes. In addition,

imperfections in the electrode structure will give rise to some remarkable

distortions. In lenses with small apertures, if the plane of the apertures

is not perpendicular to the axis, the beam will focus into a tadpole-shaped

figure. Modern techniques are, however, sufficiently good so that

distortions resulting from electrode imperfections seldom appear in

commercial tubes.

' Klemperer and Wright, op. cit.

^ Gray, op. cit.

’ ScHERZER, O., Die Schwache elektrische Einsellinse geringster spharischer Aber-

ration, Zeit. fur Phys., vol. 1, pp. 23-26, June, 1936.



CHAPTER 14

MAGNETIC LENSES

14.1. Focusing Action of Axial Magnetic Fields. Electron beams can

be focused with magnetic as well as with electric fields, though the analogy

with optics is not so readily, established. Reference has already been

made to one type of magnetic focusing In Sec. 6.6 there was discussed

the case of a long uniform magnetic field parallel to an axis. Electrons

leaving a point on the axis with their principal component of velocity

directed parallel to the axis move out wdth helical paths of approximately

the same pitch and come to a focus farther along the axis. This action

is shown in Fig. 14.1. The motion of the individual electrons is a com-
bination of a linear translation parallel to the axis and a circular motion
in a plane perpendicular to the axis, giving rise to a helical path. The

Fig. 14.1.—Helical electron paths in a uniform magnetic field.

radius of the circular component of travel is given by Eq. (6.67). It is

proportional to the radial component of velocity and inversely to the

magnetic-flux density at the starting point. The focal length (pitch

of the helices) is given by Eq. (6 68). The focal length depends upon
the axial component of velocity directly and upon the magnetic-flux

density inversely. Thus the focal lengths of the different electrons are

within 134 per cent for initial angles with the axis that are less than

10 deg, and a pretty good focus is obtained. The radial and angular dis-

placement associated with this motion is shown in Fig. 14.2. The radial

displacement is sinusoidal in form. The angular displacement is uni-

formly increasing with distance.

The action of the long field parallel to the axis is more or less typical

of the action of all magnetic lenses. All magnetic lenses depend upon a
394
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component of magnetic field parallel to the axis. The electron paths

start from a point on the axis and return to it at a later point. In doing

so the electrons move in a plane through the axis, which rotates con-

tinuously as the electron passes
through the magnetic field.

The action of a short magnetic

lens may be understood by consider-

ing a fictitious case in which the mag-
netic field is short but uniform and

parallel to the axis, as shown in Fig.

14.3. In this case an electron leav-

ing the axis will move in a straight

line at a constant velocity until it

enters the magnetic field. When
this happens, from Eq. (6.70), the

radial component of velocity will

react with the axial component of

magnetic flux to produce an angular

component of force. This imparts a

Fig. 14.2.—Radial and axial displacel

ment of an electron in a uniform axia-

field.

twist to the electron path, and at

the same time the angular ( 0) component of velocity developed will react

with the axial component of field to produce a radial component of force

z—
Fig. 14.3.—Action of a short fictitious magnetic lens.

directed toward the axis, that serves to focus the electron and bring it

back to the axis. The radial and angular displacements along the axis

for this case are shown in Fig. 14.3.
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In an actual short magnetic lens the magnetic-flux lines cannot

terminate abruptly as in the fictitious example above. A typical field,

such as might be produced by a circular current coil, is shown in Fig.

14.4. Fundamentally, the action here is the same as that described in

the previous paragraph except that the action is more uniform. In parti-

cular, the angular displacement has no sharp corners but is continuous

in slope. Note that the action in each of the three cases cited is appar-

ently a function of the axial component of magnetic flux. It will be

shown in subsequent sections that this is indeed the case and that the

entire action of a magnetic lens can be described in terms of its axial

variation of its axial component
of magnetic field. Note further

that if the magnetic-field strength

in the last two cases cited is not

of just the right value the electron

may not hit the axis even though

it is deflected back toward it.

This is not the case with electro-

static lenses and means that mag-
netic lenses have an extra type of

aberration to which the electro-

static lens is not subject.

14.2. Magnetic Fields with
Rotational Symmetry. In the
case of electrostatic fields with

rotational symmetry it was found

that the potential at any point in

Fig. 14.4.-Action of a short magnetic lens.
expressed in

terms of the axial potential and
its derivatives by means of a series expansion. This series proved

very useful in studying the behavior of paraxial electrons. A similar

situation applies to magnetic fields. The z component of a magnetic

field obeys Laplace’s law provided that the region under considera-

tion does not include any current flow. If attention is restricted to

the vicinity of the axis of a field produced by something like a circular

coil, there is no current flow except that represented by the electron beam
and this is so weak in terms of the magnetic field it produces that it can

be neglected. The axial component of magnetic flux is of most impor-

tance; Laplace’s equation for it is

rdr\ dr /
^ dz^

(14.1)
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This can be solved for in the form of a power series in r by the technique

used to obtain an expansion for electrostatic potential. The result is

B,{r,z) = 5o - Bo" +^ Bo(« + • •
• (14.2)

where Bo = Bz(Si,z), the axial value of the axial component, and the

primes indicate derivatives with respect to axial distance z. This series

can also be written as the summation

Bz(r,2 ) = ^ (-1)”+*

Magnetic fields of rotational symmetry will not have an angular

component of flux but will have radial and axial components of flux.

The radial and axial components of flux are related by the fact that the

net outward flux over any small volume not containing current is zero.

Mathematically, this is stated by saying that the divergence of magnetic

flux is zero, and this condition is expressed by

V • S = 0 (14.4)

or

Equation (14.4) is simply a shorthand vector notation for the relation

of Eq. (14.5). When the series of Eq. (14.2) is substituted

into Eq. (14.5) and this solved for Br, there results

B, = - ^
Bo' + Bo'" - + • • • (14.6)

5^(2n-2)

[{n - 1)!]^
(14.3)

in which the constant of integration has been set equal to zero because

Br is an odd function of r. This series may also be written as the

summation

Br = I
m = 1

(_ l)»^2n-lg|j(2»-l)

2n[{n - l)!]222'‘-2
(14.7)

14.3. Electron Motion in a Magnetic Field Expressed in Cylindrical

Coordinates. The equations of motion of an electron in a magnetic

field as expressed in cylindrical coordinates have previously been given

in Eq. (6.70) but will be repeated here for convenience of reference. In

general, the force on a charged particle moving in a magnetic field is

given by
F = qv X B (14.8)
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where F, v, and B are vector quantities representing force, velocity, and
magnetic-flux density, respectively, and q is the charge of the particle.

The symbol x indicates the so-called “vector product,” which is a short-

hand notation to indicate that the product lies at right angles to the plane

of the vectors being multiplied and has the direction a right-handed screw

would advance if the slot in its head were turned from alignment with the

first to alignment with the second. Furthermore, the resultant vector

has a magnitude equal to the product of the magnitude of the vectors

being multiplied and the sine of the angle between them. Upon apply-

ing Newton’s second law and the fact that the electron charge is — e,

Eq. (14.8) becomes

ma = eB X V (14.9)

since A X B — —B x A. In Eq. (14.9) a is acceleration and m is mass.

Expanded in component form, this becomes three differential equations

as follows:

TF)— [f — rd‘‘\ = Boi — (14.10)

I (,.«)- (14.11)

TFl— z = Brvd — B)f (14.12)

in which the dots above the component variables indicate derivatives

with respect to time.

14.4. Differential Equations of Motion of the Paraxial Electron. The
set of component equations can be greatly simplified to yield the case

of an electron in a magnetic field of rotational symmetry, moving close

to the axis and making a small angle with it. In the first place, the rota-

tional symmetry of field means that the angular (0) component of magnetic

flux is zero. The first terms of the series expansions of Eqs. (14.2) and

(14.6) can then be substituted for the other components of magnetic

flux; and when terms of order and higher are neglected, tremendous

simplification results. Equation (14.11) can be integrated once with the

above substitutions to give

e = (14.13)m 2

the constant of integration being zero since the angular velocity is zero

when the magnetic field is zero. This rather remarkable equation states

that the angular velocity is proportional only to the axial component of

magnetic field. Applying these substitutions to Eq. (14.10),

'e Bn
r = \m 2 )

(14. lU
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Equation (14.12) reduces to

z = 0 (14.15)

which is approximate only to first order, of course, but is reasonable

since there is no electric field contributing to the motion.

Time may be eliminated from Eq. (14.14) by using the approximate

relations

and
V = z (14.16)

2Fe
m dz^

(14.17)

Substitution of these values into Eq. (14.14) yields

dh e

8»iF
= 0 (14.18)

Evaluating the constant of the second term numerically,

d^r Bn^r~ + 2.20 X 10‘»^ = 0 (14.19)

for rationalized mks units. This expression is similar to the reduced form
[Eq. (13.46)] of the paraxial differential equation for the electrostatic

case. By the procedures indicated above the electron motion has been

separated into radial and angular components. In most focusing

problems the radial component may be treated alone without regard for

the angle. It need be remembered only that the plane of the electron

rotates progressively as the electron moves through the lens.

14.6. Focusing Properties of Magnetic Lenses. General. By exactly

the same reasoning and process as that used in Sec. 13.4 the focal length

of a thin magnetic lens can be deduced from Eq. (14.18). The result

of this process is

^mV /.

Evaluating the constant

1 = 1 2.20 X IQi®

Y meters-* (14.21)

where Zi is a point to the left of appreciable field variation and zi a cor-

responding point to the right and Bo is the axial component of magnetic-
flux density in webers per square meter (10^ gausses). Two important
conclusions are immediately available from the above equations for

focal length. The first is that the focal length in the two directions is
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the same. The second is that the lens is always convergent since the
quantity in the integrand is always positive.

The corresponding rotation of image is given directly from Eq.
(14.13), making use of Eq. (14.16). It is

^ ~
2 VV>£ /.

(14.22)

Evaluating the constant,

1 480 V ifls r “
^

J
Bodz radians (14.23)

The rotation has a clockwise direction in a magnetic field that has a
component in the positive z direction.

Fig. 14.5.—Axial magnetic-field distribution of a circular turn of wire and of the

Glazer lens.

Magnetic Lens of a Circular Turn of Wire. A simple source of a

magnetic field suitable for a magnetic lens is that of a circular turn of wire

about the electron beam. Such a turn produces the necessary axial

component of magnetic field having the desired rotational symmetry.
The shape of the field is shown in Fig. 14.5. This is seen to approximate,

roughly, a short uniform field parallel to the axis. The axial component
of magnetic-flux density associated with a circular turn of wire is given by
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where /xo is 1.257 X 10~® henry per meter, the constant of proportionality

between magnetic intensity and flux in rationalized mks units, and R is

the radius of the turn of wire. Upon evaluating the coefficient, this

becomes

0.6285 X lO-^IR^

+ zyi webers per meter^ (14.25)

By using this expression for magnetic-flux density along the axis it is

possible to evaluate the integral of Eq. (14.21), with the result

, 97.9VR .

/ = — — meters (14.26)

It is not possible to get a sufficiently strong lens with a single turn

of wire, and therefore a coil of many turns is ordinarily used. When this

is the case, the focal length becomes

/ = X coil form factor meters (14.27)

where N is the number of turns and the coil form factor will generally

assume a value between 1.00 and 1.25. The coil lens is weaker per

ampere turn than the single-turn lens because the magnetic field is not

so well concentrated. Where extremely strong lenses are desired, the

field is further concentrated by means of iron pieces surrounding the

coil.

The Glazer Lens. It is possible to calculate exactly the characteristics

of a magnetic lens having an axial-flux-density function of the form

This field form^'^ is approximately that obtained

from a large coil or from a coil with pole pieces. A brief study of this

lens is valuable because it is possible to determine its optical charac-

teristics exactly and compare them with those obtained from the approxi-

mate formulas given before. The assumed field form is plotted in Fig.

14.5. It is seen to be similar to that of a single turn of wire. The field

of a circular turn of wire drops to 10 per cent of its peak value in 1.96

radii, whereas the field of the Glazer lens drops to 10 per cent in 3 radii.

^ Glazer, W.,StrengeBerechnungmagnetischerLinsenderFeldformiy = ,

Zeit. fur Phys, vol. 117, 285-315, 1941.

* Marton, L., and R. G. E. Hutter, Optical Constants of a Magnetic Type

Electron Microscope, Proc. I.R.E., vol. 32, pp. 546-552, September, 1944,
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Upon applying the approximate expression for focal length of Eq.

(14.20) to the assumed field form the focal length is found to be

16mF
/ = meters

RBi^eir

The paraxial differential equation for the assumed field form is

r

(14.28)

dz^ 8mV
= 0 (14.29)

By means of judicious substitutions this equation can be converted to a

form that is directly integrable.*

This yields a general-ray solution in the form

r(3) = Ryll + (l) Cl sin VTT p^ arc cot
{

-j- C2 cos "%/! "h^ arc cot
j

(14.30)

eBi^^
where Ci and C2 are arbitrary constants and is a lens-

strength parameter. By proper choice of the constants Ci and C2 the

general ray can be made to pass through any two points or meet any

two conditions in general.

Since the general-ray equation is known, the focal points, focal lengths,

and location of the principal planes of the Glazer lens can be found.

dv
The first principal ray is found by letting ^ be zero and r finite at

2 = -1- 00 . The second principal ray is found by letting the slope be zero

and the displacement finite at z = — 00
. The principal planes are

located at the intersection of the initial and final straight-line portions

of the principal rays. The focal points are found at the points at which

the principal rays cross the axis.

The focal length of the Glazer lens is

/i = -/. =
X (14.31)

sin n (vi + v)
where n assumes integral values. The significance of the focal length

being multiple-valued is that for very strong fields a principal ray enter-

* Let y = w X = and then make the further substitution y = and x = cot </>.

li li Sin 4*

This yields the differential equation = — (1 -|- k^)v{4>), which is readily solved.
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ing the lens parallel to the axis will advance and oscillate transversely,

crossing the axis several times. For normal apphcations the value of n
is taken as 1. The above value of focal length has the same low-field

value as given by the approximate formula of Eq. (14.28), that is.

For larger values of field there may be a considerable divergence

from the approximate value. The divergence does not, however, occur

Fig. 14.0.—Focal lengths of the Glazer lens by exact and approximate formulas.

until the lens is strong enough for the electron to cross the axis within

the region of appreciable field. A comparison of the focal lengths as

determined by the exact and approximate formulas is given in Fig. 14.6.

The location of the focal points is given by
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This has the same weak-field asymptotic value as the focal length, which

means that for weak fields the principal planes are located at the lens

center. As the lens field is increased, the focal length becomes greater

than the distance from the lens center to the focal points. This means
that the first principal planes move away from the focal points. The
first principal plane is to the right of the lens center and the second

001 0.02 0.05 0.1 0.2 0.5 1.0

0.219x10"^^

Fig. 14.7.—Focal length and principal-plane location of the Glazer lens.

to the left. A plot of the focal length and focal-point position is shown
in Fig. 14.7.

14.6. Practical Magnetic Lenses. A coil of fine wire, square or rec-

tangular in cross section, about the beam axis is a practical lens. Its

strength is not very great, however, and its field is not very well confined.

Both these features may be improved by partly shielding the coil with

an iron shield but still maintaining a gap along which magnetic lines will

pass parallel to the axis. In Fig. 14.8 are shown some practical lenses
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and their approximate fields. For extremely strong lenses such as are

needed in electron microscopes the gap is made very small and is brought

as close to the axis as possible by extended pole pieces. Such a lens is

shown in Fig. 14.8e. It is not possible to calculate the performance of

such a lens because of nonuniform saturation of the pole pieces. In

A

faJ (b) (c) (d) (e)

Fig. 14.8.—Practical magnetic focusing coils.

part d of the figure there is shown a double lens composed of two sections

containing coils passing currents in opposite directions. This makes
the net image rotation through the lens zero for equal currents in the

halves and tends to reduce the distortion associated with the image
rotation.

14.7. Magnetic-lens Defects. Magnetic lenses are subject to all the

aberrations encountered in electrostatic lenses, plus a type of distortion

Object Image

Fig. 14.9.—Spiral distortion in magnetic-lens

images.

associated with the image rotation. This type of distortion is known
as “spiral distortion” and is illustrated in Fig. 14.9. It results from
the fact that the rotation of different parts of the image is a function of

the radial position. Its effect may be reduced by limiting the beam by
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very small apertures, or it may be largely eliminated by using pairs of

lenses giving rotation in opposite direction.

In addition to spiral distortion there may be distortion from current

ripple in the magnetic coils or from stray fields. The effect of current

ripple is to cause a point focus to become a blurred spot. Stray alter-

nating fields will cause a point focus to become a short line.

14.8. The General Equations of Motion in Combined Electric and
Magnetic Fields. In the previous work in this chapter there have been
described the effects of a nonuniform magnetic field upon an electron

presumed to be moving in a region of constant electrostatic potential.

For completeness there will be outlined in this section the basic relations

that apply to electrons moving in combined electric and magnetic fields

of rotational symmetry. This involves considerable analysis the end
point of which is the differential equation of motion of a paraxial electron

in terms of the axial potential and the axial component of magnetic

field. Although the 3deld for a great deal of work is quite small, the

methods involved are fundamental and instructive enough to make the

inclusion of this section worth while.

The force on an electron in a combined electric and magnetic field is

given by

F = ma = c[VF -f- B x n] (14.33)

where VF is the gradient of potential and the components of 5 x i'

have been given in Eqs. (14.10) to (14.12). Equation (14.33) is a com-
pact representation of three coordinate equations and needs to be
expanded for any specific application.

In the work with electrostatic fields it was found that the electric

intensity and the corresponding forces on electrons were all derivable

from the electric potential. Similarly, it is convenient to consider that

the magnetic-flux vector B is derivable from a vector potential A. The
relations for the electrostatic case are similar but not exactly analogous

to those for the magnetic case. Electrostatic potential fields are analo-

gous to the irrotational flow of an incompressible fluid. Magnetic fields

are analogous to the sourceless rotational flow of an incompressible flow.

The basic relations for electrostatic potentials are quickly listed.

First the line integral of electric intensity around any closed path is

always zero.

fE-dl=0 (14.34)

where the dot indicates the so-called scalar product, which is equal to

the product of the magnitude of the vectors by the cosine of the angle

between them. An equivalent statement of this is that the curl of the

electric intensity, i.e., the microscopic circulation, is always zero.
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V xE = 0 (14.35)

Whenever the curl of a vector is zero, then that vector is the gradient of

some scalar function. Specifically,

E = -VV (14.36)

or intensity is the negative gradient of potential. The electrostatic

potential results from a summation of the effect of various electric

charges by the relation

V
1 f pdv

47reo J ^
(14.37)

The corresponding relations for the magnetic field are also quickly

given. The net outward flux through any closed surface is always

zero.

J
B ds = 0 (14.38)

An equivalent statement of this is that the divergence of magnetic flux

is zero.

V • 5 = 0 (14.39)

When the divergence of a vector is zero, then that vector is the curl of

some other vector.

B = V X A (14.40)

The vector A is called the “magnetic vector potential.” Just as the

electrostatic potential results from a summation of the effects of individual

charges, so does the magnetic vector potential result from the summation

of the effect of various currents.

ixo f J dv

^ J r (14.41)

in which J is vector current density. The vector A is seen to have the

same direction as the currents that create it. The divergence of A is taken

as zero in the static case.

When Eq. (14.40) is expanded and written in component form using

cylindrical coordinates, it becomes, first in determinant form,

ir

_d

dr

Ar

rtf

d9

rAt

u

dz

A.

(14,42)

where jV, ie, and u are unit vectors in the r, 6, and z directions, respec-

tively. When this determinant is expanded, the component equations
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become

Br

Be

B.

1 M _ dAe

r dd dz

dA-r dAz

dz dr

1 a
. , . IdAz

r dr r do

(14.43)

(14.44)

(14.45)

These are the general equations relating B and A for cylindrical

coordinates.

For the particular problems of electron optics most of the magnetic-

lens fields are like those of a circular coil. In such there is only a d

component of current and hence only a 6 component oi A. ^ Further,

the B component of either current or A does not vary with angle. Hence

we may write

= 0 (14.46)

A = Aeie (14.47)

= 0 (14.48)

With these restrictions the component relations between B and A become

Br = dAe
dz

Be = 0

Bz
r dr

(rAe)

(14.49)

(14.50)

(14.51)

From the above set of equations and the fact that V X 5 = 0 it is possible

to obtain a differential equation for Ae alone. In subsequent work the

6 subscript for A will sometimes be dropped for simplification, though it

will be remembered that the vector A has a 9 component only. Setting

the curl of B equal to zero in terms of the 9 component of A,

ir rie iz

V X B = -
r

d d

dr 99

d

dz
(14.52)

\-¥ »dz

1 d{rA)

r dr

which expands into

r component ofVxB = 0 — 0 (14.53)

9 component ofVxB=— 'l a(rA)\

^r dr }

d^A

dz^
(14.54)

2 component ofVxB=0 — 0 (14.55)
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Upon setting the d component of curl B above equal to zero there is

obtained the differential equation for the vector potential A,

dz^ dr^ dr\r)
= 0 (14.56)

which, of course, applies only to magnetic fields having a rotational

symmetry and produced by currents flowing exclusively in the 6 direction.

This equation is similar to but not identical with Laplace’s equation but

serves the same function in defining A as Laplace’s equation does in

defining V. This equation may be solved by series exactly as was done

for potential and magnetic flux. In this case the series is restricted to

odd powers of r because the vector potential like the current that gener-

ates it is an odd function of r. The resultant series expansion for A
is

Ae{i,z) = rBo
+22-4 ' 22 • 4 ^ 6

+

+
(_l)n4-15„(2.-«

w[(n-l)!]2 r' (14.57)

where Bo = 5(0,2) is the value of the axial component of magnetic

flux.

By restricting Eq. (14.33) to fields of rotational symmetry and

utilizing Eqs. (14.49) to (14.51) there result the component equations

of motion

m -

mid
e r dt

m
e

(14.58)

^ dAe . r d{rAe)
^ dz r dr

(14.59)

(14.60)

.SA,,3V— rB-z h
—

oz dz
(14.61)

These are the basic equations from which now some simplified relations

will be obtained. These equations are so far exact.

Equation (14.60) integrates to

mr‘^6 = erAn =
^ - (14.62)

for the paraxial case. The constant of integration is zero since Ae = 0

for r = 0 as may be seen by reference to its series expansion. Sub-

stituting the value of 6 from Eq. (14.62) into Eq. (14.58) yields
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A similar operation upon Eq. (14.61) yields

mz = e^(v — ^ — Ae^
dz\ 2 m /

(14.63)

(14.64)

The energy equation is obtained from these last two equations by
multiplying the first by r and the second by z, adding, and integrating.

The result is

^ [r^ +' ir6y + z^] = eV (14.65)

Use has been made in obtaining this of Eq. (14.62) . Note that the kinetic

energy is independent of A and hence of the magnetic field. This is

consistent with the idea previously propounded that a magnetic field

can change only the direction of an electron and cannot change its energy

because the force is always directed at right angles to the electron’s

velocity.

From Eq. (14.62) the approximate rotation of an electron is given by

Inserting the series expansions for A and V into Eqs. (14.63) and

(14.64) gives

The paraxial components of these last two equations are found by
retaining only first-order terms,

f + 21
- bA

2 m /
(14.69)

(14.70)

Note that the radial component of acceleration due to the magnetic field

is always convergent. The paraxial differential equation may now be
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(14.75)

These equations are seen to be of proper form because the paraxial

differential equation of either a varying electric or magnetic field alone

is derivable from them.

If in addition to the effect of the electric and magnetic fields there be
considered the defocusing effect of the mutual radial repulsion of the

electrons, then a factor of the form — ^ must be added within the paren-

theses of the last term of the above two equations, where p is the space-

charge density within the beam and to is the dielectric constant of free

space.

Note that the paraxial differential equations of Eqs. (14.74) and
(14.75) are second-order linear differential equations. This means that

even with combined electric magnetic fields a general ray can be expressed

in terms of two independent principal rays.



CHAPTER 15

CATHODE-RAY TUBES

16.1. The General Form of Cathode-ray Tubes. The external

physical form of cathode-ray tubes is well known. They generally

have a glass envelope shaped like an Erlenmeyer flask. The electrical

leads to the tube come out through a base at the mouth of the flask.

The inside of the flask is coated with aquadag. The bottom of the

flask is coated inside mth a fluorescent material.

The internal parts of the cathode-ray tube include an electron gun,

devices for horizontal and vertical deflection of the beam, and a fluores-

cent screen. The electron gun is a combination of electrodes for pro-

ducing and focusing a beam of electrons. It consists of a cathode, a

H- Heater FE-Fbcusinq
C- Cathode electrode or

'HS-Heat shield „„ secondanode

EO-Emitting oxide EB-Elytron beam
CE-Confro! electrode FS- Fluorescent screen

AE-Accelerating electrode _ °n mstde glOM

or first anode AC-Aquadag coat,ng
LA-Limiting aperture mstde glass

Fig. 15.1.—Schematic cathode-ray-tube structure.

control electrode, and two or more electrodes forming an objective lens.

One commonly used arrangement of these parts is shown in Fig. 15.1.

The general description of the parts of the electron gun and their

function is as follows: The cathode consists of a small capped cylinder

of sheet nickel. The cap is coated with emitting material. The cathode

is indirectly heated by an insulated filament wire inside the cylinder.

The cathode is generally surrounded by a close-fitting but nontouching

cylinder, which acts as a heat shield and increases the thermal efficiency

of the cathode. The heat shield is supported at the nonemitting end of

the cathode and projects slightly beyond the cap at the other end. This
412
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projection at the emitting end serves to keep the emitted electrons from

spreading. Figure 16.2 shows this cathode construction. The control

electrode takes the form of a cylindrical can completely surrounding

the cathode and having a circular aperture in front of the emitting cap.

It performs the same function as the control grid in a triode. The

main focusing lens is in the form of one of the lenses described in the

chapter on Electrostatic Electron Optics. The first part of this lens

always has limiting apertures to keep the electrons from spreading too

much by reducing the angle of the beam. With the arrangement shown

Fig. 15.2.—Typical cathode structure.

in Fig. 15.1 there is a crossover point of the electrons between the control

electrode and the first electrode of the objective lens. The spot seen

on the screen of the tube is an image of the crossover portion of the beam,

which is the cross section of minimum diameter. In the two-cylinder

objective lens shown in Fig. 15.1 the small cylinder is called the “first

anode” or “accelerating electrode.” The large cylinder is called the

“second anode” or “focusing electrode.”

The relative potentials on the electrodes of the electron gun are quite

important. For a typical tube with the electrode arrangement of Fig.

15.1 the electrode potentials are as follows:

1

Potential Potential

Electrode relative to relative to

cathode, volts ground, volts

Filament 0 -800
Cathode ' 0 -800

Heat shield 0 -800

Control electrode -10 to -MO -790 to -810

First anode -1-200 -600

Second anode -1-800 0

Aquadag coating -1-800 0

The physical construction of the electron gun requires a high degree

of precision in the alignment of the electrodes. The electrodes are

usually supported from glass or ceramic insulating rods, in turn sup-
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ported on a stem similar to that used in vacuum tubes. Mica spacers or

metal springs serve to center the gun within the neck of the envelope.

Extreme care must be used in aligning the electrodes axially. Such

alignment is usually achieved by means of a mandrel, which is removed

after the electrodes have been spotted or crimped into place.

The beam-deflecting devices most commonly used are electrostatic

deflecting plates or magnetic deflecting coils The deflecting plates

are always placed inside the tube and are usually supported from the

end of the electron gun. Some special-purpose tubes have the deflecting

electrodes supported directly from the neck of the envelope, with leads

brought out directly through the glass. Magnetic deflection, when used,

is achieved by coils external 'to the tube. The coils are arranged so

that they produce a component of magnetic field perpendicular to the

axis of the tube.

The fluorescent screen at the end of the tube serves to reveal the

position of the electron beam and to translate electrical impulses into a

visual picture. The screen consists of a thin layer of fluorescent material

on the inside of the tube, which lights up when struck by electrons. The

fluorescent coating is generally a fairly good insulator so that it is neces-

sary for the electrical circuit consisting of the power supply and the beam

to be completed by means other than electrical conduction. The means

in this case is secondary emission. As beam electrons strike the fluores-

cent screen, they liberate secondary electrons, which look for a more

positive electrode to be drawn toward. This electrode is found in the

aquadag coating, which is at beam, or ground, potential. The fluorescent

screen will assume a negative potential because of an accumulation of

beam electrons that are slow to leak off. This means that there exists a

potential difference between the fluorescent screen and the aquadag

coating that is in the right direction to attract the secondary electrons

liberated by the beam impact.

16.2. Electron-gun Design. The fields and electron paths in the

vicinity of the cathode of an electron gun are extremely complex. This

makes the exact design of electron guns necessarily at least partly

empirical. Although it is not possible to give equations resulting in

exact design relations, it is possible to indicate the nature and magnitude

of the effects encountered.

For low-current guns such as are used in ordinary cathode-ray

tubes the electrostatic field in the vicinity of the cathode has the general

shape shown in Fig. 15.3. The fields will be similar to those encountered

in the vicinity of simple apertures, but modified by departures in the

shape of the electrodes from that ideal configuration. Between the

control electrode and the first anode the field will be approximately
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Knear. In the vicinity of the cathode the field will be strongly curved

in such a way as to cause all electrons emitted from the cathode to be

drawn strongly toward the axis. Only a limited portion of the center of

the cathode emitting area will present a positive gradient of potential

to the emitted electrons. At cutoff the gradient of potential will be zero

at the cathode center and negative in other parts. As the control grid

is made more positive, a region of positive gradient will grow from the

center until at sufficiently positive control-electrode potentials the entire

surface of the cathode may emit.

Cutoff Relations in the Electron Gun. The control electrode has an

action somewhat similar to that of the control grid in a vacuum tube

-to volts +S00vo/ts

Fig. 15.3.—Field in the vicinity of the cathode of an electron gun.

except that in addition to controlling the gradient at the center of the

cathode it controls the size of the emitting area. For this reason it is

difficult to write a current-voltage relation, but it is possible to estimate

the cutoff relation. Exact relations for the configuration of Fig. 15.3

are almost impossible to write, but the field configuration is approximated

by the idealized electrode configuration of Fig. 15.4. For this configura-

tion the aperture-field formula of Eq. (13.37) will apply very closely.

Here the axial potential is given by

Fo(2) = -^2^23 -h (Fa - F2)d,

2d 12^2

+

I

. 2R / z R

(Fa — F2)di2 Fadas

12«23
2 + V2 (15.1)

when Fi = 0.
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The gradient of potential at the cathode is found by taking the derivative

of this expression with respect to z and then setting z = —dn. The

resulting expression is

dVo{ — dl2) _ V2(^23 — (y 3 V2)^12

dz 2dl2d23

‘1

TT

/l
^

R
I ^ arctan -j—
\iv Cli2, .)]

+ {V

3

~ ^2)^12 -h V2^23
(15.2)

1 R

1
\

U--d I? V3

Fig. 15.4.—Idealized cathode-electrode configuration.

The cathode current will be cut off when the gradient at the cathode is

zero. The equivalent amplification factor of the control structure is

found by setting at z = —d^ equal to zero and then taking the neg-
az

ative ratio of F3 to F 2 .

(15.3)

This is an amplification factor that determines the current cutoff.

The amplification factor has the specific value

A nomographic chart of equivalent amplification factor as a function of

control-electrode-aperture radius and grid-first-anode distance, each

expressed in units of cathode-grid distance, is given in Fig. 15.5. These

values, while not exactly the same as those for the electrode structure

of Fig. 15.3, will serve to indicate the order of magnitude and the nature

of the variation of the equivalent amplification factor with the critical

dimensions. Measured values of /n for the structure of Fig. 15.3 will
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be considerably higher than those obtained from Eq. (15.4) because of

the shielding effect of the control-electrode-cylinder extension. Meas-
ured data on some specific electrode structures are available in the

literature.^

Fig. 15.5.—Nomographic chart of the equivalent amplification factor of an electron

gun as given by Eq. (15.4).

Electron Paths in the Electron Gun. As may be seen from the equi-

potential plot of Fig. 15.3, the field in front of the gun cathode is strongly

convergent. It is not easy to apply the methods described in the

chapter on Electrostatic Electron Optics to this portion of the gun
because the focusing field is so strong relative to the low-velocity electrons

that a focus is obtained within the region of field variation. The type
* Malopf, I. G., and D. W. Epstein, “Electron Optics in Television,” pp. 167-169,

McGraw-Hill, New York, 1938.
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of lens encountered here is sometimes referred to as an “immersion lens”

because the object is immersed in the lens.

Some typical electron paths in the vicinity of the cathode of an
electron gun are shown in Fig. 16.3. Rays leaving the cathode are

propelled forward and attracted toward the axis. As a result of this

action, the rays cross the axis at a point not very far out in the field.

After crossing the axis the rays are curved the other way and are again

bent toward the axis, but the action in this portion of the field is so weak
that the rays invariably retain their divergent characteristic. Shown
in the figure are three rays. These rays differ by virtue of the direction

of the velocity of emission of the electrons. The three rays show the

effect of emission velocity directed toward the axis, normal to the cathode,

and away from the axis. All three rays are seen to come to u focus on
the plane a-a. This represents an image of the cathode. The minimum
diameter of the cross section of the beam occurs at the plane b-b. This

plane of minimum cross section is called the “crossover” of the beam.

It is seen to be much smaller in diameter than either the cathode or its

image. The best spot is obtained by focusing this crossover rather than

the cathode or its image on the fluorescent screen. Actually, the cross-

over cannot serve as object, but rather its virtual image at c-c, as found

by projecting back straight lines from the region of uniform field, serves

as object. This virtual image of the crossover is slightly larger than the

crossover itself but is still smaller than the cathode or its image.

Since the beam crossover is used as the object whose image forms the

working spot of the beam, its location and size are of considerable

importance. These values are rather hard to determine exactly, but
some good approximations can be given. The location of the crossover

can be estimated by making use of the fact that the field in the vicinity

of the cathode is approximately spherical. Hence, if the radius of

curvature of the zero-potential contour can be found, it is to be expected

that the crossover will occur at this radial distance from the cathode.

It was shown in the chapter on Electrostatic Electron Optics that the

radius of curvature of any equipotential surface in a field of rotational

symmetry is given by

where Vo' and Vo' are the first and second derivatives of the axial poten-

tial, respectively. The curvature radius can be obtained in a straight-

forward manner from Eq. (15.1), and at the cathode has the value

(15.6)
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for Fi = 0. As an example, ii R = = d^z and 1^2 = 0, then the

value of n from Eq. (15.4) is 9.02 and the value of i?o from Eq. (15.6)

is 1.14 A The very low value of results from the fact that the control-

electrode-aperture diameter is twice the cathode-control-electrode

distance in this example. From the value of the zero-potential radius

of curvature the crossover is expected to occur nearly in the plane of the

control electrode. If the cathode is flat, Eq. (15.6) will predict a smaller

radius of curvature than actually exists because of the influence of the

flat cathode upon the field. Cathodes may, however, readily be curved

to fit the normal aperture fields.

The size of the crossover diameter may also be estimated by assuming

that the field in the vicinity of the cathode is spherical. The finite size

Fig. 15.6.—Idealized cathode with spherical field,

gives the notation for use in Eq. (15.7).

This

of the crossover results from electrons being emitted at all angles from

each point on the cathode, and with appreciable velocity. The larger

the emission velocity, the larger the crossover diameter. The electron

behavior encountered is like that shown for the idealized spherical

electrodes of Fig. 15.6. For this situation the radius of the crossover is

given by

To =
+2r.

sin 20

(15.7)

where Tc is the radius of the cathode, ro is the radius of the crossover,

F 2 is the potential of the crossover. Ye is the voltage equivalent of the

velocity of emission, and 0 is the half angle of the cathode as viewed from

the crossover. 1

1 Ruska, E., Zur Fokusierbarkeit von Kathodenstrahlbiindeln grosser Ausgangs-

querschnitte, Zeit. fiir Phys., vol. 83 (Nos. 9, 10), pp. 684-698, 1933.
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This equation results from an analysis of the electron path in a

spherical field. It is properly valid only for small values of 6, say less

than 20 deg. Actually, electrons will be coming off the cathode with all

possible velocities so that an average value of Ve must be used. If a

value of Ve, that is, the voltage equivalent of the velocity not exceeded

by 80 per cent of the electrons is used, then the crossover radius of Eq.

(15.7) will contain at least 80 per cent of the beam current and probably

more, for not all electrons emitted with greater velocities will have

tangential components greater than that corresponding to F*. The
virtual image of the crossover will generally be larger than the actual

crossover. An enlargement by a factor of two is, however, not often

exceeded. The position of the virtual image of the crossover will be on

the cathode side of the actual crossover and may even lie behind the

actual cathode. It may generally be expected to lie within a distance

equal to the cathode-control-electrode distance of the actual cathode,

which is close enough for design of the subsequent lens system.^

Current-voltage relations for the electron gun are not readily specified

analytically. If a low-mu gun structure is used and the control electrode

is operated at zero potential, the cathode will come very close to being

temperature-limited. Some specific measured data on gun current-

voltage relations are available in the literature.

^

The concept of the screen spot as an image of the beam crossover

in front of the cathode is largely one of convenience. There is evidence

that the screen spot is actually an image of the cathode. The size of the

crossover may be obtained from optical considerations of the field in

front of the cathode. At low beam voltages, however, the thermal

velocities of emission of the electrons from the cathode are large enough

compared with the potential of the crossover so that they are an appre-

ciable factor in determining the spot size. At large beam voltages the

thermal velocities may be expected to be low compared with the potential

of the beam crossover so that they do not add appreciably to the size

of the cathode image. An examination of the operation of tubes with

beam potentials greater than 1,000 volts, from the viewpoint of straight-

forward cathode imaging, yields some useful information on the properties

of beams.*

A rough optical approximation to the field action in front of the

1 Zworykin, V. K., and G. A. Morton, “Television,” pp. 368-383, Wiley, New
York, 1940.

^ Maloff and Epstein, op. cit., pp. 171-176.

’ Liebmann, G., Image Formation in Cathode Ray Tubes and the Relation of

Fluorescent Spot Size and Final Anode Voltage, Proc. vol. 33, pp. 381-389,

June, 1945.
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cathode may be had by considering the equivalent lens to be made up of

two regions of constant index of refraction with a spherical refracting

surface between them, as shown in Fig. 15.7, For this equivalent lens

Lagrange’s law will hold,

MiM, = 1 (15.8)

where ni and Ui are equivalent indices of refraction, Me = — is the lateral
Vi

magnification, and Ma = — is the angular magnification.
«i

equation in this case is

Zi Zo

W2 — rii

R,

The lens

(15.9)

Fig. 15.7.—Spherical-surface refraetion equivalent of cathode-

lens action.

where za and Zi are object and image distance, respectively, and Rs

is the radius of curvature of the spherical refracting surface.* Solving

Eq. (15.9) for z„

7l2RaZo
2 • =

‘ Zo(»2 — Wi) — riiR,

From Eq. (15.8) the linear magnification is

Ml =
yi

n-iZi

Tl22o

(15.10)

(15.11)

Substituting the value for Zi from Eq. (15.10) into Eq. (15.11),

(15.12)

1 A derivation of this expression is available in almost any book on geometrical

optics.
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If it is now considered that the object is located very close to the refract-

ing surface so that zo is small compared with Rs, then approximately

Ml = -1 (15.13)

which says that the image is the same size as the object and is roughly

independent of the indices of refraction. Further,

n^Mg
ni

(15.14)

from Eq. (15.8), which says that the angle which a ray makes with

the axis at the image is inversely proportional to the index of refraction

712 if n-i is held constant. If the assumptions made here are approximated

in a cathode-ray tube, then it is to be expected that the size of the

cathode image is independent of the voltage of the first accelerating

electrode. Then, since, as was shown in Figs. 13.37 to 13.45 of the

chapter on Electrostatic Electron Optics, the magnification of the usual

electrostatic objective lens is approximately eight-tenths of the ratio

of image to object distance independent of voltage ratio, it is to be

expected that the spot size is also independent of the beam voltage.

It also follows from Eq. (15.14) that the product of the beam voltage

and beam area in the fore part of the objective lens is a constant,

xr^Fo = K (15.15)

where r is the radius of the beam in an arbitrary plane. Measurements

on actual tubes show that both these expectations are realized very

closely for beam voltages above 1,000 volts.* The above performance

applies only if the limiting apertures intercept a negligible amount

current.

Focusing System. The production of a beam crossover of small

diameter and high current density is the principal problem in electron-gun

design. The rest of the design problem is relatively simple. The beam
crossover need only be followed by one of the types of objective lenses

described in the chapter on Electrostatic Electron Optics. The cylinder

lenses are found to be most suitable, and there is not much to choose

between them. In fact, almost any kind of lens will do, for it is always

possible to find a voltage ratio that will focus the beam crossover on the

screen. When cylinder lenses are used, it is necessary to put limiting

apertures within the first cylinder to limit the initial divergent action

of the beam. This is illustrated in the schematic drawing of Fig. 15.1.

A limiting aperture is often put at the end of the second cylinder as well.

* blBBMANN, op. Cit,
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The data of Figs. 13.37 to 13.45 can be used directly to design the

focusing system. The object distance is simply taken as the distance

from the beam crossover to the reference point in the lens. The image

distance is the distance from the reference point in the lens to the fluores-

cent screen. Focusing, with the electrode arrangement of Fig. 15.1, is

obtained by adjusting the first-anode voltage, all other voltages being

kept fixed. Intensity of the beam is controlled by adjusting the control-

CE Ai A, As

CE A2 A^ A2

C-Cathode At- F/'rsfanode
CE'Contro! A2 -Secondanode

electrode Aj - Thirdanode

Fig. 15.8.—Typical electron-gun structures

using electrostatic focusing. -

electrode voltage. With this arrangement the two adjustments indicated

will have a principal effect upon focus and beam intensity, respectively,

but it will be noticed that the adjustment of the beam intensity affects

the focus somewhat, and vice versa. While adjustment of the control

electrode has the principal effect of changing the beam current, it also

changes the location of the beam crossover and so affects the focus.

Adjustment of the first-anode voltage has the principal effect of adjusting

the focus, but the field of the first anode reaches back to the cathode and
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changes the intensity somewhat. This interaction of controls can be

improved by making use of a different electrode arrangement.

Alternative Electrode Structures. In Fig. 15.8 are shown some alter-

native electron-gun structures that are extensively used. In the arrange-

ment of electrodes shown for gun a the cathode-control-electrode

structure is about the same as that just discussed. The focusing action in

this case, however, is divided into two parts so that there are really two

objective lenses. Thus, the accelerating anode is split in two, with

the focusing anode located between the two parts. The principal

M

C- Cathode
CE-Control electrode
AfFirst anode
A2'Second anode
M-Magnetic, focusing co//

Fig. 15.9.—Electron guns with magnetic

focusing.

advantage of this electrode arrangement over that shown in Fig. 15.1

is that the interaction between the intensity and focusing controls is

greatly reduced. With this arrangement the electrodes adjacent to

the control electrode are kept at a fixed potential. This means that any
changes in the focusing field of the objective lenses are shielded from the

control-grid region by the first part of the accelerating electrode. A
better capture of secondary electrons liberated at the limiting apertures

may also be effected. The action of the other guns is evident from their

structure.

Whe.re magnetic focusing is used, the simple arrangements of Fig.

15.9 are adequate. The arrangement of gun a consists of only a cathode.
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control electrode, accelerating electrode, and magnetic focusing coil.

The magnetic coil can usually be put outside the tube. This arrange-

ment, while simpler of construction, requires that part of the power

supplied to the tube must be regulated to give constant current for

the magnetic focusing coils. The arrangement of gun b actually involves

a combination electrostatic and magnetic focusing action.

16.3. Deflection Devices. Electrostatic Deflecting Plates.—Electro-

static deflection plates have already been discussed in the chapter on

Laws of Electron Motion. The deflection obtained from electrostatic

deflecting plates is given by Eq. (6.23), which states that the deflection

is equal to half the beam length multiplied by the ratio of the deflecting

voltage to the beam voltage and by the ratio of the axial deflecting-plate

length to the deflecting-plate spacing.

_ ZfeFd

2aVo
(6.23)

where y, is the spot deflection at the fluorescent screen in any units

of length, I is the beam length from plates to screen in the same units, b

is the deflecting-plate length in the same units, a is the deflecting-plate

spacing in the same units, Fd is the deflecting potential, and Fo is the beam
potential. Of principal significance is the fact that the spot deflection

is proportional to the deflecting voltage and inversely proportional

to the beam voltage.

Magnetic Deflection. Magnetic deflection of a beam may be achieved

by applying a magnetic field perpendicular to the beam for a short

distance of its length. The electrons moving through this magnetic

field will move in a short section of an arc of a circle if the field is constant,

emerging at an angle with their original direction. The radius of curva-

ture of an electron moving at right angles to a constant field was given

by Eq. (6.62) as

R = 3.37 X 10-' meters (6.62)

where F is in volts equivalent to the velocity and B is webers per square

meter (10^ gausses). Consider the deflecting arrangement of Fig. 15.10.

The magnetic field is shown by the dots in the rectangle astride the

beam. If the field is constant within this rectangle, the beam will move
in the arc of a circle of radius given by Eq. (6.62). Upon emerging

from the magnetic field the electrons will move in straight lines at an

angle B with the original path given by

tan B = ~ = ^tC I

(15.16)
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Hence the deflection is given by

^ ft ^ IbB

R 3.37 X 10-« VV
meters (15.17)

for B in webers per square meter. To obtain deflection in centimeters,

express B in gausses, and drop the factor 10“® in the denominator.

Magnetic deflecting coils are invariably placed outside of the tube neck

and take the form of a saddle-shaped coil.

Relative Merits of Electrostatic and Magnetic Deflection. Both electro-

static and magnetic deflection are capable of giving linear deflection

over the entire tube face. The differences in their operation lie only in

region of uniform magnetic field, as given by Eq. (15.17).

their sensitivity and frequency characteristics. There is an advantage

in using magnetic deflection at high beam voltages, for a relatively smaller

increase in deflecting field is necessary. This results from the fact that

electrostatic deflection is inversely proportional to beam voltage, whereas

magnetic deflection is inversely proportional to the square root of the

beam voltage. Hence, if beam voltage were raised from 1,()(X) to 4,0(X)

volts, four times the voltage would be necessary to give the same electro-

static deflection, whereas only twice the magnetic coil current would be

necessary to give the same magnetic deflection. For this reason, mag-

netic deflection is commonly used in high-voltage television viewing tubes.

A disadvantage of magnetic deflection is that a negative-ion spot forms

in the middle of the screen, due to negative ions emitted from the cathode.
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which, because of their great mass, are scarcely deflected by the magnetic

fields.' With electrostatic deflection a negative-ion spot does not form

because the negative ions are deflected the same as are the electrons.

Electrostatic deflection has the advantage as far as frequency charac-

teristics go. With ordinary construction, electrostatic deflection can

resolve frequencies as high as several hundred kilocycles. The practical

upper limit of magnetic deflection is of the order of 10 kc. Magnetic

deflecting coils are most suitably fed from a high-impedance source.

Since the coil represents a fairly high inductance, the voltage appearing

across it for the same current increases linearly with frequency. This

means that excessive voltages are reached at relatively low frequencies.
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Fig. 15.11.—Brightness and luminescent effi-

ciency of willemite as a function of beam
voltage. {Maloff and Epstein.)

An advantage of magnetic deflection which electrostatic deflection does

not possess is that it is more suitable for radial deflection and polar

representation. Magnetic deflecting coils can be made to rotate about

the tube and so give polar representations where the frequency of rota-

tion required is not too high.

Visual versus Deflection Sensitivity. Tlie light output from a spot on a

fluorescent screen under beam excitation is found to be approximately

linear with beam voltage in accordance with Lenard’s equation,

CP = AliV - Fo) (15.18)

where CP is the candle-power output, A is a constant of the material

of the order of 2 candle power per watt, I is the beam current, V is

' Bachman, C. H., and C. W. Carnahan, Negative-ion Components of the

Cathode Ray Beam, Proc. I.R.E., vol. 26, pp. 529-539, May, 1938.
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the beam voltage, and Fo is the voltage at which fluorescence starts,

somewhere between 500 and 1,000 volts. Curves of candle power
and candle power per watt as a function of beam voltage for willemite

are shown in Fig. 15.11. From this and Eq. (6.23) it is seen that if the
attempt is made to increase the brightness of the trace by using a higher

beam voltage a corresponding decrease in deflection is suffered. With
the gun arrangement of Fig. 15.1 this sets a practical limit to the deflec-

tion sensitivity of the order of 0.1 mm per d-c volt with a beam volt-

age of 3,000 volts. The deflection sensitivity can be increased by
reducing the beam voltage, but this correspondingly reduces the spot
brightness.

Postdeflection Acceleration. The dilemma of having to sacrifice

deflection sensitivity to achieve visual sensitivity, or vice versa, can be

G- 6/ass enve/ope
C-Cathode
CE- Controlelectrode

Fig. 15.12.—Structure of the postdeflection-acceleration tube.

circumvented by making use of the principle of postdeflection accelera-

tion.1’2 A schematic drawing of a tube making use of this principle is

shown in Fig. 15.12. The principle that is used increases the deflection

sensitivity by deflecting the electron beam at relatively low voltage and
then subsequently accelerating it before the electrons hit the screen.

With this arrangement the beam is deflected at relatively low velocity,

giving a good deflection sensitivity, and then is subsequently accelerated,

giving a good visual sensitivity. Part of the increase in deflection

1 DE Gbieb, J., a Cathode Ray Tube with Post Acceleration, PHli-ps Tech. Rev.

vol. 5, pp. 245-252, September, 1940.

* Pierce, J. R,, After Acceleration and Deflection, Proc. I.R.E., vol. 29, pp. 28-31.

January, 1941.
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sensitivity gained by this arrangement is lost because the final accelerat-

ing field is somewhat convergent, thus reducing the deflection.

The postdeflection-acceleration arrangement makes use of an ordinary

electron gun supplemented by a so-called “intensifier electrode,” which

takes the form of a ring of conducting material inside the tube near the

fluorescent screen and operated at about twice the voltage of the last

previous electrode.

Some typical voltages as used in this arrangement are as follows:

Electrode

Potential

relative to

cathode, volts

Potential

relative to

ground, volts

0

-10 to -1-10

1,500

375

3,000

-1,500
-1,490 to -1,510

0

-1,125
4-1,500Intensifier electrode

With this arrangement of electrodes the deflecting plates, which are

situated between the second part of the accelerating electrode and the

aquadag coating, are operated at zero direct voltage, as are also the

adjacent electrodes. With the above operating conditions a deflection

sensitivity of 0.3 mm per volt may be realized. In general, an improve-

ment of 3 to 5 times in deflection sensitivity may be obtained by this

arrangement of electrodes.

The amount of the beam intensification may be extended considerably

even beyond that indicated above. By putting in a number of intensifier

electrodes with potentials progressively greater, spot brightness may be

increased by a factor of 10, and yet the deflection sensitivity may be

increased slightly over that which would obtain if the final intensifier

potential -were applied to the last gun electrode and the intensifier

electrode were removed. Tubes with final intensifier-electrode potentials

as high as 15,000 volts are considered commercially feasible.

^

15.4. Fluorescent Materials. The characteristics of the fluorescent

material used for a cathode-ray screen are critical factors in the successful

operation of the tube. The various characteristics such as spot bright-

ness, spectral characteristics, trace persistence, secondary emission, and

voltage characteristics are all controllable by the composition and pro-

‘ Christaldi, P. S., Cathode Ray Tubes and Their Applications, Proc. I.R.E.,

vol. 33, pp. 373-381, June, 1945.
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cessing of the material. Hundreds of fluorescent materials have been

studied, and by now the data on such materials are very numerous.^-®

Definitions. Strictly speaking, the term “fluorescence” as applied to

cathode-ray-tube screen operation is a misnomer, but it is so widely used

that it will also be applied here. Properly, one should distinguish

between the three terms “luminescence,” “fluorescence,” and “phospho-

rescence.” These may be distinguished, briefly, as follows:

Luminescence. This refers to visible and near-visible radiation in

excess of black-body radiation due to some form of excitation. The term

applies to the radiation both during and after excitation. It can be

classified according to the means of excitation into many classes, such

as cathode luminescence (the luminescence produced by the impact of

electrons), photoluminescence (the luminescence caused by exposure to

radiation), electroluminescence (the luminescence given off by ionized

gases), and bioluminescence (the luminescence of living organisms).

About 10 kinds of luminescence can be enumerated.

Fluorescence. Fluorescence is luminescence during excitation. In

the case of cathode luminescence this refers to the light emitted during

the period of electron bombardment.

Phosphorescence. Phosphorescence is the luminescence occurring

after excitation. In a cathode-ray tube this is the radiation given off

after the beam excitation has ceased.

Phosphor. Materials that manifest cathode luminescence are known

by the general name of phosphors.®

Since phosphorescence as well as fluorescence is involved in cathode-

ray-tube operation, it would be more suitable to refer to screen action

as “cathode luminescence” than as “fluorescence.”

General Make-up of Phosphors. A great number of materials will

exhibit luminescences when bombarded with electrons. Practically

all nonmetallic inorganic crystals will exhibit this effect, as will also

glasses and some organic materials. Most of these will, however,, react so

* Levbrenz, H. W., and F. Seitz, Luminescent Materials, Jour. Appl. Phys.,

vol. 10, pp. 479-493, July, 1939.

* ZwoBTKiN and Morton, op. dt., Chap. II.

® Lbverenz, H. W., Cathode Luminescence as Applied in Television, RCA Rev.,

vol. 5, pp 131-175, October, 1940.

* Stauffer, L. H., Characteristics of Fluorescent Materials, Electronics, vol. 14,

pp. 32-34, October, 1941.

‘ Kushel, I., Phosphors and Their Behavior in Television, Electronic Ind., vol. 4,

pp. 100-105, 132, 134, December, 1945

* Perkins, T. B., Cathode Ray Terminology, Proc. I.R.E., vol. 23, pp. 1334- 1343,

November, 1935.
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weakly as to be useless. To be suitable for practical purposes a material

must produce a high brightness, be stable under electron bombardment,
have a suitable color, and have a persistence that is not too great.

The basic ingredients of a practical luminescent material are a base
material, a flux, and an activator. The base material is generally a

crystalline, colorless semiconductor. Good base materials are the oxides

and sulphides of zinc, cadmium, magnesium, and silicon. Oxides of

copper, iron, and nickel are not good bases. The flux is some material

such as sodium chloride that is used to catalyze crystallization of the base

and is subsequently removed. The activator is one of a group of metals
including silver, copper, manganese, and chromium. The presence of

10 to 100 parts per million of such metals may increase the light output
of the base material by a factor of 10 to 100. Various other metals such

as lead, iron, nickel, and cobalt will inhibit radiation to such an extent

that the presence of one part per million of these metals will ruin the

luminescence. The activator serves to furnish a material with additional

energy levels for the excited electrons to jump between. The theory

of luminescence is qualitatively understood, but so many anomalies

exist that there is no direct procedure that can be applied to synthesizing

a suitable phosphor.*

Phosphors are prepared by mixing the base material and flux, heating

to crystallize, drying, and regrinding for application. Screens may be

deposited from settling out of a liquid suspension or by spraying the

material suspended in a volatile organic liquid such as acetone to which

has been added a small amount of binder. In the settling process a mild

electrolyte such as ammonium carbonate is used to prevent the particles

from settling nonuniformly.

Luminous Properties of Fluorescent Materials. One of the best

and most widely used fluorescent materials is zinc orthosilicate,

ZnO + Si02:Mn, with a manganese activator. In its natural form this

is known as “willemite.” The natural material is subject to great

variations in performance due to impurities, and therefore only synthetic

materials' are now used. Synthetic willemite gives the bright-green

trace so well known to users of test oscilloscopes.

The light output of synthetic willemite follows quite closely Lenard’s

law as previously given. Curves of light output in candle power and
luminous efficiency in candle power per watt as a function of beam
voltage were previously given in Fig. 15.11. Actually, Lenard’s law

does not hold exactly for the fluorescent material but does so only

apparently in Fig. 15.11 because the output is plotted against beam

1 Lbverenz, H. W., Phosphors Versus the Periodic System of Elements, Proc.

I.R.E., vol. 32, pp. 266-263, May, 1944.
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potential, which is higher than the screen potential. When the output

is plotted against screen potential, then it is found that the light output

is given by
CP = AI{V, - Fo)" (15.19)

where A is a constant, I is the beam current, F* is the fluorescent-screen

potential and Fo is the screen potential at which luminescence starts,

and n is an exponent that is nearly 2 for synthetic willemite and in general

has a value between 2 and 2.8.*’^

The spectral characteristics of willemite are compared with the

sensitivity of the human eye in Fig. 15.13. This figure shows that most

4600 5000 5400 5800 6200 6600 7000
Woivelenqth, Angstrom units

Fig. 15.13.—Spectral characteristics of

willemite.

of the radiant energy from this material is concentrated in the green

legion of the spectrum. Phosphors are available giving almost any

desired color response. A few of the most useful phosphors are listed in

Table VII. A white luminescence may be obtained by mixing a yellow-

color-producing phosphor such as zinc cadmium sulphide with a green-

blue-color-producing phosphor such as zinc sulphide. Further specific

characteristics of commercial phosphors are given in Appendix IV.

The persistence characteristics of the luminescence are quite impor-

tant. In test oscilloscopes and television kinescopes a relatively short

persistence time is desired. In some transient studies and most radar

applications a long persistence is desired. Most of the phosphors have

short-persistence characteristics, while a few of the yellow-green sulphides

have long-persistence characteristics. Synthetic willemite will build

up to 50 per cent of its maximum radiation in about 2.5 milliseconds.

1 Nelson, H., Method of Measuring Luminescent Screen Potential, Jour. Appl.

Phys., vol. 9, pp. 592-599, September, 1938.

* Fonda, G. R., Phosphorescence of Zinc Silicate Phosphors, Jour. Appl. Phys.,

vol. 10, pp. 408—420, June, 1939.
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The radiation will decay to 50 per cent of its maximum in 3 to 5 milli-

seconds. The decay is approximately logarithmic except for the first

half milhsecond, during which time it is more rapid than logarithmic.

^

Electrical Characteristics of Phosphors. The potential that a fluores-

cent screen will assume will depend upon the beam potential, the second-

ary-emission characteristics of the screen, and the current-voltage

transmission characteristics of the screen to the more positive adjacent

electrodes. The secondary-emission characteristics of the screen have

the form of the general characteristics described in the chapter on

Fig. 15.14.—Ratio of secondary- to primary-electron current as a function of screen

voltage of a fluorescent screen.

Electronic Emission. A typical secondary-emission characteristic show-

ing the ratio of secondary to primary current is shown in Fig. 15.14.

The screen can function properly only over the range of voltages for

which the ratio of secondary to primary currents is greater than unity.

Below the voltage at which the ratio is first unity the screen will block

and repel beam electrons. The screen will “stick” at the potential

at which the ratio again drops to unity, and it will not be possible to

raise the screen above this potential. The screen-voltage-beam-voltage

characteristics can be estimated by combining the effect of the secondary-

current characteristic with the current-voltage transmission characteristic

of the screen in conjunction with its adjacent electrode. The current

* Nelson, R. B., R. P. Johnson, and W. B. Nottingham, Luminescence during

Intermittent Electron Bombardment, Jour, A-p-pl. Phys., vol. 10, pp. 335-342, May,

1939.
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taken from the screen secondaries by the adjacent electrodes will depend

upon the relative potential of the screen and the adjacent collector

electrode. This function will have the general form shown in Fig. 15.15.

When the collector is more than 20 volts more positive than the screen, it

will collect virtually all the secondary electrons liberated by it. When
the collector and the screen are at the same potential, the collector will

still collect about half the secondary electrons. When the collector is

more than 20 volts more negative than the screen, it will take virtually

none of the secondary electrons. The relation between Figs. 4.18

Potential difference between collector and screen

Fig. 15.15.—Collector current of a cathode-ray tube as a

function of the difference of collector and fluorescent-

screen potential.

and 15.15 will be apparent. The difference is due to the difference in

physical form of the electrodes corresponding to each curve. Let the

collector current be indicated by

Ic = hT(V, - V.) (15.20)

where le is the collector current, is fhe secondary current liberated

by primary-electron impact, is the collector potential, F, is the screen

potential, and T(Vc — F.) is the current-transmission function shown in

Fig. 15.15. Let the secondary-ratio function of Fig. 15.15 be given by

r = 'Sd'O (15.21)
i 1

where h is the beam current striking the screen and /S(F,) is the second-

ary-ratio function shown in Fig. 15,14. For current equilibrium the
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collected current must equal the beam current. Equating the collected

and beam current as given in the above two equations,

T(Vc - F.) = (15.22)

This neglects conduction-current components, which are, however,

ordinarily quite small. It is possible to find the screen-voltage-beam-

voltage (the latter being the same as the collector voltage) function

Fig. 15.16.—Graphical construction of the screen-potential-beam-

potential characteristic.

graphically from Eq. (15.22). The method of construction is shown in

Fig. 15.16. In this are plotted the reciprocal of the current-ratio function

of Fig. 15.14 and the collector-current-voltage-difference function of

Fig. 15.15 on a scale of screen voltage.

From Eq. (15.22) the screen potential is given by the intersection

of the two curves for any reference beam potential. The entire curve

desired is constructed point by point by shifting the collector-current-

voltage-difference curve to correspond to different beam voltages and
taking the corresponding intersections. Some shifted transmission

curves are shown. The resulting screen-voltage-beam-voltage charac-

teristic is shown in Fig. 15.17. Points a, b, and c are taken from the

similarly designated intersections in Fig. 15.16. It is seen that the screen

1 Nottingham, W. B., Electrical and Luminescent Properties of Willemite under

Electrical Bombardment, Jour. Appl. Phys., vol. 8, pp. 762-778, November, 1937.

* Nottingham, W. B., Electrical and Luminescent Properties of Phosphor under

Electron Bombardment, Jour. Appl. Phys., vol. 10, pp. 72-83, January, 1939.



CATHODE-RAY TUBES 437

potential never exceeds the beam potential. The curve confirms the

conclusion that the screen will not accept electrons below the potential

at which the secondary current ratio is unity, nor can the screen be raised

to a higher potential than that at which the ratio again drops to unity.

Sticking potentials for screens ordinarily lie between 5,000 and 8,000

volts, though they can be raised to as high as 15,000 volts. ^ The critical

blocking voltage will ordinarily lie in the vicinity of 200 volts.

Fig. 15.17.—Screen-potential-beam-potential

characteristic of a fluorescent screen.

16.6. Limitations of Spot Size. Effect of Thermal Velocity of Emission.

It has already been mentioned that the size of the beam crossover in

front of the cathode which is subsequently imaged into the spot is deter-

mined by the thermal velocities of emission of the electrons. The
approximate size of the crossover for any limiting velocity of emission

is given- by Eq. (15.7). Actually, electrons are coming off the cathode

with all velocities, as given by a Maxwellian distribution, so that there

is no sharp edge to the beam; rather, it is found to have a cross section

approximating the Gauss error curve

J(r) = (15.23)

where J{r) is the current density at any radius r and A and B are con-

* Beam potentials may be raised to as high as 30 kv by the use of metallized screens.

See Epstein, D. W., and L. Pensak, Improved Cathode Ray Tubes with Metal-

Backed Luminescent Screens, RCA Rev., vol. 7, pp. 5-10, March, 1946.
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stants related to the total current and rate of decay of current with radius,

respectively.*

Associated with this effect, it is found from a consideration of the

optics of thermally emitted electrons that the maximum current density

with perfect focusing at a crossover of cathode image is given by

£
Jo

(1 — sin* <f>) exp
Ve / Af* sin* <i>

\

kT \1 — M* sin* 0/
(15.24)

where J is current density at the crossover or cathode image, do is cathode

current density, M is the ratio of crossover or cathode-image diameter

to cathode diameter, 4> is the half angle of the cone including all electron

paths reaching the point in question, T is cathode temperature in degrees

Kelvin, k is Boltzmann’s constant, and V is the potential at the point

in question.

Limiting values of Eq. (15.24) are of interest. For Af large.

Z = J-
do Af*

For Af small,

where the symbol d„ is substituted for d because this is the largest pos-

sible value of current density that can be achieved under any conditions.

A curve of for various values of M and i^> is shown in Fig. 15.18
m

eV
for the case of -j^

= 10,000 (this corresponds to a voltage of about 800

volts since | has a value of 11,600 and T is about 1000°K for an oxide
fC

emitter.) <t> in this case is understood to be the value determined by a

stop or limiting aperture at, before, or after the crossover. As <t> is

decreased, more and more electrons with high thermal-emission velocities

are thrown away so that a greater fraction of the cathode current is

(15.25)

(15.26)

^Law, R. R., High Current Electron Gun for Projection Kinescopes, Proc. I.R.E.,

vol. 25, pp. 954-976, August, 1937.

* Langmtiik, D. B., Theoretical Limitations of Cathode Ray Tubes, Proc. I.R.E.,

vol. 25, pp. 954-976, August, 1937.

® Pierce, J. R., Limiting Current Densities in Electron Beams, Jour. Appl. Phys.,

vol. 10, pp. 715-724, October, 1939.

* Pierce, J. R., A Figure of Merit for Electron Concentrating Systems, Proc.

I.R.E., vol. 33, pp. 476-478, July, 1946.
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wasted and yet the more nearly the maximum possible current density

is realized.

Since the extent to which the limiting current density can be

approached depends upon the fraction

of current used, it is convenient to

draw a curve relating these two quan-

tities. Let the ratio of the actual to

the maximum current density be

called the intensity efficiency.

Intensity efficiency = (15.27)

The value of this expression is readily

obtained from the quotient of Eqs.

(15.24) and (15.26). Let the fraction

of cathode current used be called the

current efficiency.

Fig. 15.18.—Intensity efficiency of an

electron gun as a function of cathode

magnification for various aperture

sizes.

Current efficiency = JM^
Jo

(15.28)

Y
For a given value of

^
both of the above expressions are functions

of M sin <t>
alone. It further

turns out that the relation

between the two efficiencies varies

numerically only a few per cent

for voltages above 10 volts. A
curve showing the relation be-

tween the intensity efficiency and

the fraction of the current used is

given in Fig. 15.19. Also shown

in the figure is the curve for the

line-focus case. These curves

show that in order to approach

the limiting maximum value of

current density it is necessary to

waste most of the current with

limiting apertures. The above

equations do not include the

effects of electron collisions or lens aberrations but are limitations

imposed by thermal velocities alone. A figure of merit for electron guns

is the ratio of the area of the aperture that, in an equivalent ideal sys-

Fig. 15.19.—Intensity efficiency of an elec-

tron gun as a function of current efficiency.
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tern, would pass as much cathode current as does the actual gun to the

area of the actual aperture.^ An equivalent figure of merit for television

kinescopes in terms of the deflection angle and the number of scanning

lines can be worked out by application of the above formulas.^

Space-charge Limitation of Spot Size. Another serious limiting

factor in the production of small beam spots is the space-charge mutual
repulsion between electrons in the beam, which prevents the electrons

from coming together into a point focus. In a convergent beam, as

the beam tends to come to a smaller diameter, the electrons get closer

together, the space-charge density increases within the beam, and hence

the mutual-repulsion forces become greater. This means that the radial

components of velocity which the electrons have become less and less

as the beam becomes more and more constricted, until finally they become
zero at some finite beam diameter and then the beam begins to spread

again.

This action may be pictured by considering the behavior of the

electrons in a cross section of the beam as seen by an observer moving
along with the electrons. To such an observer, there is no axial motion,

and only radial effects can be observed. The action is actually inde-

pendent of the axial velocity. To make the problem soluble the following

conditions will be assumed:

1. Electrons are uniformly distributed throughout the cross section

of the beam.

2. Every electron has a radial component of velocity that is propor-

tional to its radial distance from the axis.

These conditions are close enough to the actual conditions to make
the answers based upon these assumptions useful. The first condition

will hold if only a small fraction of the cathode current or if a high-

current-density cathode, to be described later, is used. The second

condition is the assumption made in treating paraxial electrons and is

the condition for uniform convergence of the beam when small angles

are involved. The general picture encountered in a convergent beam

» Ibid.

*Law, R. R., Factors Groverning Performance of Electron Guns in Television

Cathode-ray Tubes, Proc. I.R.E., vol. 30, pp. 103-105, February, 1942.

^ Watson, E. E., The Dispersion of the Electron Beam, Phil. Mag., Ser. 7, vol. 3,

pp. 849-853, April, 1927.

^ Bobbies, B. V., and J. Dosse, Zerstreuung von Elektronenstrahlen durch eigene

Raumladung, Arch. Elektrotech, vol. 32, pp. 221-232, 1938.

‘ Thompson, B. J., and L. B. Headbick, Space Charge Limitations on the Focua

of Electron Beams, Proc. I.R.E.. vol. 28, pp. 318-324, July, 1940.
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is shown in Fig. 15.20 (the radial scale in this figure is greatly exaggerated,

and the axial scale is foreshortened). The beam is seen to decrease in

diameter to a minimum cross section and then expand again. At any
cross section as in a the radial velocity at any point in the cross section

is given by

Vr = kr (15.29)

The outward force on any electron in the cross section is given by

T?
epr*

^ -W - 2^
(15.30)

a
Fig. 15.20.—Effect of space-charge repulsion on a convergent beam.

where X is the charge per unit length of the beam. This follows from

the expression for electric intensity about a linear distribution of charge

and from the fact that

X = xrV (15.31)

where p is the volumetric space-charge density within the beam. It is

seen that the outward force on any electron is proportional to the radial

distance also. As a result of this relation, the percentage change in radial

velocity of any electron will be constant throughout the beam, and hence

* In addition to the outwardly directed electrostatic force there is also an inwardly

airected magnetic force. This magnetic force is only — times as big as the electro-

static force, where v is the electron velocity and c is the velocity of light, and thus it is

negligible for beam voltages under 10,000 volts. See Borries and Dosse, op. cit.
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the beam will constrict uniformly, maintaining the conditions that the

electrons are distributed uniformly throughout the beam and that the

radial velocity of any electron is proportional to its radial distance from

the axis. At b the cross section of the beam is less than at a. At c the

cross section of the beam assumes its minimum diameter. At this point

the radial velocity of the electrons is zero. Beyond this point the beam

expands to the larger diameter shown at d. In the region to the left

of c the radial velocities of the electrons are directed inward, while to

the right the radial velocities are directed outward. The behavior

of the beam will be the same whether the electrons are moving to the

left or to the right in Fig. 15.20. The shape of the beam envelope will

not change with beam voltage or beam current, though the radial and

axial scales will change. For purposes of analysis it is convenient to

start at the cross section of minimum diameter and to study the beam’s

subsequent spread. This study yields a universal beam-spread curve,

which can then be applied to any problem.

From Eq. (15.30) the radial acceleration of any outer electron of an

initially parallel beam is given by

^ ^ T?
irro Po /IK oo\= F = s—— e (15.32)

in which the numerator is the charge per unit length in terms of the

initial values of radius and space-charge density. If this equation is

simplified by the substitutions

R = -
ro

(15.33)

p, dR „„ _ d^R

dz dz‘
(15.34)

dz
^ dJ

(15.35)

then there results

2tomv^ _
e

(15.36)

This may be integrated by putting it into the form

epo R
(15.37)

with the result

KiR'y = In E (15.38)

where K = and the constant of integration is zero since R' = 0,
epo

E = 1, for z = 0. Extracting the square root,
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R' = x-H vnrs

which for purposes of integration is best put into the form

This has the solution

Ry^dR

-\/ln R

z = dR

A/hTff

(15.39)

(15.40)

(15.41)

This equation gives the envelope of the beam as an integral function

of R for any position z. Not much can be done to simplify this expres-

sion, for it does not integrate into simple standard functions. The shape

of the envelope of the beam is best presented in curve form. First

observe that the constant can be converted into a simpler form, making
use of the fact that

and

so that

I = tTo'^PoV

1 P dR
To Vln R

(15.42)

(15.43)

(15.44)

where Vkv is the potential in kilovolts and is the current in milli-

amperes. Although the integral cannot be expressed in terms of simple

functions, one further change of variable is useful. If the substitution

R = e‘ is made, then

/
dR

\/ln R
(15.45)

Values of the right-hand integral above are tabulated on page 106 of

Jahnke and Emde’s Tables of Functions.^ The plot of the values of

Eq. (15.44) yields the universal beam-envelope curve of Fig. 15.21.^

The universal beam-spread curve of Fig. 15.21 gives the shape of a

beam of initially parallel electrons. The curve applies for electrons

moving either to the right or to the left and is symmetrical about the value

z = 0. To apply the curve to any problem it is necessary only to enter

* Teubner, Leipzig, 1933.

2 The spread of a beam subjected to an axial gradient of potential can be analyzed

by a similar method. See Moss, H., A Space Charge Problem. Wireless Eng., vol. 22,

pp. 316-321, July, 1945.
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the curve properly and then take numerical values from the curve.

The curve will apply to low-current cathode-ray beams as well as to high-

current power -tube beams. The curve shows that the spread of a beam
is increased as the current is increased and the voltage is decreased.

Considering the action of a convergent beam, the minimum spot diam-

eter is decreased as the current is decreased and the voltage is increased.

An alternative representation of Fig. 15.21 is given in the nomographic

chart of Fig. 15.22. This nomographic chart gives the spread of a beam

Fig. 15.21.^—Universal beam-spread curve. This is a graphical representation of

Eq. (15.44).

with initially parallel electrons directly from the beam current, beam
voltage, and beam length, without calculation. The diagonal line from

lower left to upper right is a construction line. To use this graph draw

a line from the left to the right scale through points corresponding to

the voltage and current involved. Through the intersection of this line

with the diagonal construction line draw a line through the proper

point on the beam-length scale at the bottom, and extend it until it

intersects the beam-spread scale at the top. The value from this scale

will be the beam spread directly.

The functional relations of Eq. (15.44) have been verified experi-
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mentally.' It is found that although the current and voltage dependence

predicted is obeyed correctly the actual values of spread are about six-

tenths of the theoretical value (at pressures of 5 X 10“' mm of mercury).

This reduction is due to a partial neutralization of negative space

lllllilllllllllllllllllllllllllllllllllll

Fig. 15.22.—Nomographic chart of beam spread as a function of

beam voltage, beam current, and beam length, as given by Eq,

(15.44).

charge by the presence of positive ions, which are created by collision of

beam electrons with gas molecules. Even at the highest vacuums
obtainable, there are theoretically enough positive ions created to

1 See “The Production and Control of Electron Beams,” by K. R. Spangenberg,

L. M. Field, and R. Helm, published by Federal Telephone and Radio Corporation,

New York, 1942
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neutralize the beam completely. This does not occur, however, for

the positive ions drift down the beam from positive to negative electrodes

and run out of the beam at the cathode end almost as fast as they are

created. 1

A number of important problems can be solved by the use of the

universal beam-spread curves of Fig. 15.21. In the design of high-power

klystron tubes there arises the practical problem of putting the maximum
current down a cylinder of given dimensions with a given voltage. From
the above discussion of space-charge spread it would be expected that the

beam should be initially convergent, come to a minimum diameter some-

where in the cylinder, and then spread again until it just fills the end of

the cylinder. From symmetry it may be predicted that the beam will

have its minimum diameter at the middle of the cylinder. It therefore

only remains to specify the initial angle of convergence and find the

current that can be transmitted. If the beam enters the cylinder at a

point on the curve of Fig. 15.21 having coordinates x and y, then for the

minimum beam diameter to occur at the center of the cylinder of length

I and diameter d

where

and

Therefore

1 — ^

d r

2 - a:r„32.3

r = yro

32.3
xd

(15.46)

(15.47)

(15.48)

(15.49)

Therefore, to transmit maximum current at minimum voltage, that is,

to have the beam impedance a minimum, the beam must enter the

cylinder at a point on the curve of Fig. 15.21 that has the maximum
ratio of a: to 2/ or the minimum ratio of y to x. This is the point on the

curve where a line through the origin is tangent to the curve. The
coordinates of this point are

and

' Ibid.

y = L = 2.35
ro

(15.51)
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Thus the initial angle is

6 = arctan (15.52)

since substitution of Eqs. (15.50) and (15.51) into Eq. (15.49) gives

z I
- = The maximum current is transmitted at a given voltage when

the beam is so directed on entering the cylinder that in the absence of

electrostatic repulsion between the electrons it would converge to a point

at the center of the cylinder. Under these conditions the minimum

Fig. 15.23.—Diagram showing transmission of maxi-

mum current through a cylinder.

radius is ~ 0.425 times the cylinder radius. These relations

are illustrated in Fig. 15.23. The value of d is not extremely critical,

for the optimum is very broad. The minimum beam radius may be

varied from 0.25 to 0.6 of the cylinder radius, with a loss of only 10 per

cent of the maximum current.

When the beam is directed into the cylinder as shown in Fig. 15.23,

the maximum value of current that can be transmitted is

= l,230(Ft.)?^ ma* (15.53)

* Even with a strong axial magnetic field to prevent beam-spreading there is a

maximum current that can be transmitted along a beam. As current is increased,

the potential at the beam center drops below the value at the edge by the amount
V = 0 .478 volts. This potential difference finally becomes so large that

the beam is blocked by space-charge action at a value of 7omi = 1.025 (Vkv)^^ amperes
for a beam completely filling a conducting tube, independent of the tube dimensions.

If the beam does not completely fill the tube, then the blocking action will occur at a
lower beam current. Greater current can be transmitted if the negative electron

space charge is neutralized by positive ions, although even here there is a limit to the

mrrent that can be transmitted. See Habff, A. V. Space Charge Effects in Elec-
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The beam impedance corresponding to this condition is

Z = 813 ohms (15.54)

and this is the minimum that can be achieved under the applied

restrictions.

As an example of the operation of the above equations, let it be desired to find

the maximum current that can be transmitted through a cylinder 14 in. in diam-

eter and 1 in. in length at 1,000 volts. Equation (15.53) gives 7mai = 77 ma.
The corresponding beam impedance is 13,000 ohms. Actual currents may be

slightly higher in practice because of a partial neutralization of the negative

space charge by positive ions in the beam.^

Higher values of current cannot be passed through a cylinder if it is

permitted to waste current. Thus, consider the case of a beam of initially

parallel electrons, and let the current be increased. As the current is

increased the beam will spread. The current transmitted down a

cylinder will increase at first as the effect of increasing the current

predominates and then decrease as the effect of beam spread predomi-

nates. Maximum current will be transmitted when the cylinder area is

18 per cent of the area of the beam if it has been permitted to spread.

Under these conditions the transmitted current is

= 305 0^
ma (15.55)

which is about one-fourth of the value for a properly convergent beam
with no current wasted.

Effect of Secondary Emission. Beam spots will be enlarged slightly

by the effect of stray secondary electrons liberated at the limiting

apertures. This may or may not be serious depending upon the particu-

lar electrode configuration used. In general, secondaries from limiting

apertures located near the cathode will give most trouble because these

tron Beams, Proc. I.R.E., vol. 27, pp. 586-602, September, 1939; Smith, L. P., and
P. L. Hartman, Formation and Maintenance of Electron Beams, Jour. Appl. Phys.,

vol. 11, pp. 220-229, March, 1940; Petrie, D. P. R., The Effect of Space Charge on

Potential and Electron Paths of Electron Beams, Elec. Commun., vol. 20 (No. 2).

pp. 100-111, 1941; Pierce, J. R., Limiting Stable Current in the Presence of Ions,

Jour. Appl. Phys., vol. 15, pp. 721-726, October, 1944.

1 Field, L. M., K. R. Spangenberg, and R. Helm, Control of Electron-Beam
Dispersion at High Vacuum by Ions, Elec. Commun. vol. 24 (No. 1), pp. 108-121,

1947.
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will be accelerated by almost the full potential of the system. The stray

electrons show as a fuzzy edge to the beam and fairly widespread stray

light. It is possible, however, to design electron guns so that stray sec-

ondary electrons hardly affect the spot size.

Halation. “Halation” is a term well known in photography. It

refers to the “halolike” rings that sometimes appear around bright

points of light. The effect is due to light rays being reflected back and
forth between the surfaces of a film or, in the case of the cathode-ray

tube, back and forth between the faces of glass. When the electron beam
strikes the willemite surface on the inside of the end of the tube, a bright

spot is formed that radiates in all directions. Those rays which are

emitted perpendicular to the glass and moderately close to the perpen-

dicular will pass through the glass and can be seen outside. Rays that

are emitted from the spot at a large angle with the perpendicular to the

glass will strike the air-glass surface at a low angle and be reflected back
into the glass, where they will be reflected back and forth, with a gradual

loss of energy due to scattering effects. For the usual glass (index of

refraction of about 1.5) only about half the light emitted from the spot

on the screen will pass through the glass without multiple reflection.

The effect on an outside observer is that there is a bright spot surrounded

by a ring of lower intensity. Studies of the effect on the various param-
eters show that halation is reduced if the fluorescent screen is in

moderately poor optical contact with the glass, if it is moderately absorb-

ing, and if the glass is moderately thick. ^

16.6. High-efficiency Cathodes. When it is desired to obtain high

current from a cathode, then the design of the gun becomes complicated

by considerations of space charge and the efficiency of the structure,

i.e., the fraction of the cathode current that is utilized in the beam,
becomes of importance. If the attempt is made to operate the type of

gun already described at very high currents, difficulty is immediately

encoimtered in that the space-charge repulsion of the electrons causes

the beam,to spread so much that a large portion of the cathode current is

lost to the various gun electrodes.

The general problem of determining electron paths under conditions

of space-charge repulsion is very difficult to solve. ^ As yet no solutions

for space-charge flow in cases where the electron paths are curved are

known. This means that the design of high-current high-efficiency

‘Law, R. R., Contrast in Kinescopes, Proc. I.R.E., vol. 27, pp. 511-524, August,

1939.

‘‘ Spangbnberg, K. R., Use of the Action Function to Obtain the General Differen-

tial Equations of Space Charge Flow in More than One Dimension, Jour. Franklin

Inst., vol. 232, pp. 365-371, October, 1941.
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cathodes is very difficult. The most successful high-efficiency cathodes

are those designed upon a principle enunciated by J. R. Pierce. The

laws of space-charge flow are known for a few simple geometries such as

plane, cylindrical, and spherical. In each of these cases, the electrons

move in straight lines, and the behavior of the electrons can be described

in terms of a single parameter representing distance. Pierce has sug-

gested that the conditions of uniform space-charge flow can be achieved

in a cathode if a segment of such flow is utilized and the cathode and

accelerating electrodes be shaped so as to maintain along the edge of the

beam the same potential variation which would exist if there were a

uniform extensive space-charge flow. Cathodes designed on this

principle are often referred to as “Pierce cathodes.”*

Parallel Flow of a Rectangular Beam. The laws of space-charge flow

of electrons between parallel planes are known (see Sec. 8.2). The
potential variation along the direction of electron flow is as the four-thirds

power of the distance from the cathode. Hence it would be expected

that, if a beam in the form of a rectangular strip were cut out of such a

flow and if electrode shapes were such that they would create a potential

variation as along the edge of the beam, the beam would be subjected

to the same conditions which exist in the extensive space-charge flow

and hence would maintain its property of parallel flow. Specifically,

the cathode electrodes must create a potential field with the following

properties,

F(x,0) = Ax^ (15.56)

where A is merely a numerical constant and

— (x,0) = 0 (15.57)

where the edge of the beam is along the line y = 0.

The above conditions may be achieved by the electrode configuration

of Fig. 15.24. The conditions expressed by the above two equations are

achieved along the bisector of a 135-deg inside corner (three-fourths of

180 deg). This follows from the application of the transformation

W =
(15.58)

to the lines of constant u and v in the W plane. Hence, if an inside

135-deg corner be split in two and each half be applied to one side of the

rectangular strip beam, the conditions for plane-parallel space-charge

flow are maintained.

* Pierce, J. R., Rectilinear Electron Flow in Beams, Jour. Appl. Phys., vol. 11,

pp. 548-554, August, 1940.
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The conditions outside of the beam are shown in Fig. 15.25. The

gun structure in this case is a unipotential one. A good beam is formed,

Fig. 15.24.—Pierce cathode structure for rec-

tangular-beam parallel flow.

but it will diverge after passing through the anode because of the lens

action of the slot aperture. This type of gun has the advantage that it

draws current uniformly from the cathode. The laws of plane-parallel

Distance from ccilhode.sc

Fig. 15.25.—Potential field required to produce a

parallel-flow rectangular beam.

space-charge flow apply directly so that it is easy to design. The anode

can be shaped like any of the equipotentials in the plot of Fig. 15.25.
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Some difficulty would be encountered in properly restraining the strip

beam at its ends. This case serves primarily as an example of the

application of the Pierce principle. It also is about the only case for

which the electrode shapes can be detenu-ned exactly. The cathode

electrode is given by

y = X tan 67.5“

The anode is given by
/ V

(15.59)

cos = const (16.60)

In a practical case it is necessary to have a break in the zero-potential

electrode where it joins the emitting portion of the surface in order to

improve the thermal efficiency of the cathode. A small gap as shown
in Fig. 15.24 will not disturb the flow conditions much.

Parallel-flow Cylindrical Beam. If it is desired to build a unipotential

cathode gun producing a parallel-flow cylindrical beam, it is necessary

that the cathode and accelerating electrodes produce the following field

conditions along the edge of the beam.

V{ro,z) =
and

(15.61)

^(ro,.) =0 (15.62)

where ro is the radius of the beam. This problem has thus far defied

analytical solution. Approximate electrode shapes may, however, be

found with an electrolytic tank set up to represent this problem. A
wedge-shaped piece of electrolyte is used by tilting a tray, placing an
insulating strip of material in the tank to represent the edge of the electron

beam, and then bending sheet electrodes until shapes are found such that

the potential along the insulating strip follows a four-thirds-power law

with distance. The insulating strip simulates the electron beam because

it imposes the condition of Eq. (15.62). Since no current can flow into

the insulator, there will be no component of gradient normal to the strip.

The resulting fields and electrodes have the shape shown in Fig. 15.26.

Close to the beam the zero-potential electrode will be a section of a cone

with a half angle of 67.5 deg. This is expected from the results of the

case studied in the previous subsection. Close to the edge of the beam
the conditions are almost identical with the plane-rectangular-strip

case, and hence a 67.5-deg angle with the zero-potential electrode is

indicated. At great distances from the beam the zero-potential electrode

will be a section of a cone with a half angle of 71 deg. A cone of this angle
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will give a four-thirds-power variation of potential along its axis. The
anode will be a surface of revolution curved in the direction of increasing

potential. Such a set of electrodes will produce a parallel cylindrical

beam. If the region beyond the anode is field-free, however, the beam
will diverge owing to the lens action of the aperture in the anode. For

this reason a better type of gun is sought.

Convergent Radial Flow of a Conical Beam. The divergent effect of

the aperture in the anode noted in

the two cases studied above is

unavoidable. Even if the aper-

ture is covered with a grid, the

individual holes in the grid will

each have an action similar to

that of the large aperture and
with the same focal length. The
only difference will be that the

grid will produce more scattering

of the electrons and hence will

produce a divergent beam with a

less sharply defined edge. Be-

cause of the inescapable divergent

action of the aperture it is desir-

able to produce a beam which is

initially quite strongly convergent

so that the divergent action of the aperture in the anode will leave the

beam still convergent.

A convergent beam may be had by utilizing a circular conical section

of the radial flow between concentric spheres with the cathode outside

(see Sec. 8.4). The radial current flow in a cone of semiangle d cut out

of a sphere of radius is

function of rdr. See Appendix VII for

values of a}.

I =
0.928 sin^

amperes (15.63)

where is the beam voltage in kilovolts and a is the function of —

given by Eq. (8.32). The factor sin^ takes account of the fact

that the current flow takes place not over the entire sphere but merely

over a cone of semiangle d cut out of the sphere. The voltage as a

function of radius is given by
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n. = 1.051/^a^
(15.64)

in which the significant relation is the dependence upon the four-thirds

power of a. Curves of a and as a function of the ratio of cathode to

Eig. 15.28.—Electrolytic tank arrangement for the

determination of unipotential gun-electrode shapes.

anode radius are given in Fig. 15.27. Numerical values are given in

Appendix VII. Except for a proportionality constant, the curve of

is a universal curve of voltage variation as a function of radius for

spherical flow Equation (15.64) is therefore one of the conditions that

applies along the edge of the conical beam. The other condition is
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where B is the polar angle of a spherical coordinate system. Equation

(15.65) will apply inside the beam and at its edge, but not outside.

Electrode shapes for a conical section of a spherical flow can be
determined by means of an electrolytic tank, as described before. A
speciflc arrangement suitable for this purpose is shown in Fig. 15.28.

A tilted tank is used to obtain a wedge-shaped portion of electrolyte.

The vacuum-tube voltmeters are conveniently made with adjustable

sensitivities. These sensitivities should be adjusted so that when the

desired potential distribution is achieved each voltmeter gives some

4

Fig. 15.29.—Unipotential gun-electrode shapes

for the production of a 5-deg convergent beam.

convenient deflection, such as half scale. This procedure makes the

determination of the electrode shapes relatively simple and rapid. The
electrodes are conveniently made of thin copper sheet so that they can

be bent into any shape. The cathode electrode should make an angle

of 67.5 deg with the beam edge simulated by the insulating strip. The
oscilloscope shown serves to check the power factor of the electrolyte

and the presence of contact potentials. It is connected to plot the

Lissajous pattern of current against voltage. The pattern should show a

straight line or at worst a long, thin ellipse, corresponding to a small

phase angle. The voltmeter probes should be spaced to give equal

increments of voltage rather than of distance.

Some resultant electrode shapes for different angles of beam con-
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vergence are shown in Figs. 15.29 to 15.32.* These curves are universal

in that they will hold for any magnitude of applied voltage and that the

anode electrode can be any of the equipotential curves shown.

The anode aperture in a unipotential Pierce cathode will always

give rise to a divergent focusing action. This means that the beam on

leaving the anode will always be less convergent than on entering it.

The focal length of the anode aperture lens will be given very closely by

(15.66)

from the aperture-lens formula of Eq. (13.56) on the assumption that the

* These electrode shapes were determined by Robert Helm and were first published

by Spangenbero, Field, and Helm, op. cit. See also Helm, R., K. R. Spangenbehg,

and L. M. Field, Cathode-Design Procedure for Electron-Beam Tubes, Elec.

Commun., vol. 24 (No. 1), pp. 101-107, 1947.
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gradient of potential beyond the anode aperture is zero. Upon evaluating

the focal length by means of Eq. (15.66), it is found that

/ _ — 3q;

Tc da
dR

(15.67)

T f , T , . .

where R ~ A curve of — as a function of — is given in Fig. 15.33.
Tc Tc Tc

The focal length of the aperture lens being known, it is possible to

determine the exit angle 7 of the beam for any entrance angle B. The

R^ra/rc

Fig. 15.33.—Focal length of a unipotential convergent-beam gun as a func-

tion of the ratio of anode to cathode radius.

basic dimensions of the electron gun are shown in Fig. 15.34.

structure the usual lens formula applies,

i. _ 1 = - I
Ta b f

For this

(15.68)

In this equation the lens has been assumed to be located at the inter-

section of the anode sphere with the axis rather than in the plane of the

aperture. Equation (15.68) can be put into the form

b 1

r,
(15.69)
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This equation shows that the distance from the anode to the beam focal

point (in the absence of space-charge spread) depends only upon the ratio

of cathode to anode radius, since focal length, by Eq. (15.67), depends

only upon this ratio. The distance from the anode to the beam focal

point is independent of the entrance angle d of the beam because the

Fig. 16.34.—Diagram of a unipotential convergent-

beam gun.

ratio of entrance to exit angle for any ray of the beam will be a constant.

A cmve of the distance from the anode to the beam focal point as a

function of the ratio of cathode to anode radius is given in Fig. 15.36.

The lens action is convergent only for ratios of cathode to anode radius

greater than 1.455. Smaller ratios of cathode to anode radius approach

the plane-electrode case, which is strongly divergent.
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The relation between the entrance and exit angles in Fig. 15.34 is

readily deduced from the geometry and has the form

sm 6 _ b _ b Tc

sin y ra Va
(15.70)

in which the symbols have the significance given in Fig. 15.34. The
above equation shows that the ratio of the sines of the entrance and
exit angles depends only upon the ratio of cathode to anode radius,

0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2

R
ra

Fig. 15.35.—Location of the focal point of a unipotential convergent-beam gun in the

absence of space-charge repulsion.

since— is a function of this ratio, also. The relation between the entrance

angle 6, the exit angle y, and the ratio of cathode to anode radius is given

in Fig. 15.36. This representation has the advantage over the many

others possible in that the curves of constant 6, y, and — are straight lines.
Ta

The region of divergent lens action lies below the 6 axis and so does not

appear on the curve sheet. This curve sheet has been converted into a

universal design chart by superimposing curves of constant beam per-

meance on the other curves. Beam perveance in this case is defined as
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r* =

which, from Eq. (15.63), has the value

G =

(15.71)

(15.72)

Fig. 16.36.—Unipotential convergent-beam gun chart for use in designing guns like

that of Fig. 15.34.

A nomographic chart of the relation of Eq. (15.71) giving perveance

for any beam voltage and current is given in Fig. 15.37.

By means of Figs. 15.37 and 15.36 it is a simple matter to select

values of cathode to anode radius and entrance and exit angles for any
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Fig. 15.37.—Nomographic chart of beam perveance as a function of beam voltage

and current, for use in Fig. 15.36.
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desired voltage and current. Figure 15.36 gives the relation between

the four variables G, d, and 7 . Any two may be taken as independent
a

variables. When their values are prescribed, the values of the other

two variables are determined. Where the anode aperture has no grid,

it is necessary only to make sure that the aperture is not too big so that

it will not disturb the field in the cathode-anode region. Also shown

in Fig. 15.36 are contours of anode aperture diameter equal to 50 per cent

and 100 per cent of the cathode-anode distance. The value of the

gradient of potential at the center of the cathode is reduced about 5

per cent when the anode aperture diameter is 70 per cent of the cathode-

anode spacing. Aperture diameters larger than this should not be used

without attempting to compensate for the reduced cathode gradient

by changing the electrode shapes. When a spherical grid is used to

cover the anode aperture, no such limitations are encountered.

'

Guns designed from the chart of Fig. 15.36 have performed as theo-

retically predicted. It is not unreasonable to expect that 90 or possibly

95 per cent of the cathode current will become useful beam current

and that current densities as high as half the maximum theoretical value

as limited by thermal-emission velocities will be attained.

For determination of the beam action after leaving the anode aperture,

reference is made to the universal beam-spread curve of Fig. 15.21. If

this curve is entered at the right point, the subsequent beam envelope

will be like that of the universal curve to the left of the point, it being

assumed that the beam leaving the anode aperture is convergent. For

convenience in entering the universal curve, its slope at any point is

given, along with the universal curve replotted in Fig. 15.38. This

slope is given by
M = tan 7 (15.73)

and when divided by A =
/H

gives the proper scale value for

entering the slope curve. From the corresponding point on the envelope

curve it can then be determined where the minimum diameter of the

beam will occur and what the subsequent beam spread will be. Actual

beam-spreading action is usually only about two-thirds of the values

predicted here because of a partial neutralization of the negative space

charge by positive ions in the beam.

Example: Suppose it is desired to design a cathode that will put a beam of

40 ma at a voltage of 1,000 volts through a cylinder 6 cm in length and 1 cm in

* For an alternative treatment of this subject see Samuel, A. L., Some Notes on

the Design of Electron Guns, Proc. I.R.E., vol. 33, pp. 233-240, April, 1945. This

article also contains design data for the line-focus case.
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diameter. Then the conditions of Fig. 15.23 apply, and tan y will have the value

of 0.167, which corresponds to a value of y of 9.5 deg. Opposite this value of

exit angle and the corresponding value of perveance on the design chart of Fig.

15.37, it is found that a cathode-beam angle of 22.5 deg and a ratio of cathode to

anode radius of 2.13 are required. The required electrode shapes may be found

from a slight interpolation of the shapes given in Figs. 15.31 and 15.32.

Fig. 15.38.—Slope of universal beam-spread envelope.

MK

16.7. Ultra-high-frequency Deflection Effects. There is a limit to

the frequency of wave forms, which can be observed on a cathode-ray

tube with electrostatic deflecting plates. The deflection equation [Eq.

(6.23)] is evaluated for a direct potential and is valid for alternating

potentials only if the beam electrons’ transit time through the deflecting

plates is so small a fraction of the cycle that the deflecting plate voltage

does not change appreciably while any single electron is influenced by it.

In a representative tube having, say, a beam voltage of 1,000 volts and a

deflecting-plate length of 2 cm, the transit angle will not become appre-

ciable until the frequency is of the order of 50 me, at which frequency

ordinary sweep circuits have failed and the problem of getting the

voltage on the deflecting plates is considerable. However, there are an

increasing number of applications in which it is desired to observe very

high and ultra-high-frequency phenomena so that it is worth while to

make a brief study of transit-time effects to determine the limitations of

ordinary tubes and serve as a guide to the design of special tubes.
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Let the notation of Fig. 6.2 be used and let the static-deflection case

be reviewed for comparison. The crosswise acceleration of an electron

entering the field between the plates is

dt^ ma (15.74)

where y is transverse displacement, e and m are charge and mass of the

electron, respectively, is the deflecting potential, and a is the deflect-

ing-plate spacing. A first integration of this equation gives

^ _ eVdt

dt ma (15.75)

in which the constant of integration is zero since ~ = 0 when < = 0.
dt

The transverse velocity at the end of deflecting plates of length b is

dy _ eVdb

dt mavo
(15.76)

where Vo is the velocity of the beam electrons. From this equation the

deflection y, of a spot on a screen a distance I from the end of the deflecting

plates is

y>
since -j

dt

Vo

Ms = ^^<>5

I mavo^
(15.77)

The deflection sensitivity, or deflection per unit deflect-

ing voltage, is

. _ y, _ leb
0 Tr o

Vd mavo^
(15.78)

The dynamic-deflection case can be handled in much the same manner.^
For this case let the instantaneous voltage between deflection plates

1 Of the rather extensive periodical literature on this subject the following articles

are the most fundamental:

Hollmann, H. E., Die Braunsche Rohre bei sehr hohen Frequenzen, Hoehfreqnenz.

und Elektroakustik, vol. 40, pp. 97-103, September, 1932.

Libby, L. L., Cathode Rays for the Ultra-high Frequencies, Electronics, vol. 9,

pp. 15-17, September, 1936.

Bowie, R. M., Cathode Ray Wave Form Distortion at Ultra-high Frequencies,

Electronics, vol. 11, pp. 18-19, 29, February, 1938.

Hollmann, H. E., Ultra-high Frequency Oscillography, Proc. I.R.E., vol. 28,

pp. 213-219, May, 1940.

Habbibs, J. H. Owen, Deflected Electron Beams, Wireless Eng., vol. 21, pp. 267-

277, June, 1944.
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be given by Fd cos ost.

instant t is

Then the acceleration of an electron at any

d}y _ eV

d

cos cot

dt^ ma (15.79)

where all the symbols have their previous significance,

gives

dy _ eV

d

(sin (ol
— sin loto)

dt maos

A first integration

(15.80)

where <o is the time the electron enters the alternating field and the

particular value of the constant of integration given results from the

dy
condition that = 0 when I — U.

dt
For simplification in interpretation

let the time the electron spends in the alternating field be represented by

T = t - h
d^ _ eVd [sin a>(T + h) — sin cofo]

dt mao>

(15.81)

(15.82)

Integration of Eq. (15.80) gives

y =
eVd

mao 2
[cos oo/o — cos cot — o(t — to) sin wfo] (15.83)

where the particular value of the constant of integration results from the

condition that = 0 when t = to. The above equation is better written

in terms of the time the electron is exposed to the alternating field as

eVj
y = ^ [cos (oto

— cos co(T + to) — coT sin wfo] (15.84)
Ttl/CLW

This equation gives the path of the electron when used parametrically

with the expression

X = voT (15.85)

for the time the electron is exposed to the alternating field. A set of

curves showing the path of electrons between the deflecting 'plates over a

period of two complete cycles is shown in Fig. 15.39. It is seen that the

path for any starting time is a straight line at some angle with the axis

with a superimposed transverse sinusoidal motion. The angle of the

straight-line component of the path depends upon the starting angle,

being zero when the electron enters at a peak of the instantaneous

alternating voltage and maximum when it enters at an instant of zero

alternating voltage. The amplitude of the alternating component of

transverse sinusoidal motion is the same for any starting time and is
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proportional to the deflecting gradient of potential and inversely propor-

tional to the square of frequency. As an aid to visualization of the

electron behavior, it may be stated that this path is the same as that of a

ball rolled along a plank which rocks with a sinusoidal motion, the ball

having an initial velocity parallel to the long dimension of the plank.

0 IT/Z ir 3
/27r 2 -n

c^T

Fig. 1.5.39.—Path of an electron between deflecting

plates when the transit time is large compared to the

period of the deflecting voltage.

The electron will move in a straight-line path in the field-free region

beyond the end of the deflecting plates with a slope determined by

Eq. (15.82) and = vq. As before,

I Vo
(15.86)

so that the dynamic-deflection sensitivity, or deflection per volt, is

cl “ sin lofo] (15.87)
tn/UiCVo

Upon invoking Eq. (15.78) and simplifying by trigonometric transforma-
tion, the ratio of the dynamic to the static deflection sensitivity is

(15.88)
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which by virtue of the fact that T = — is readily written in the simpler
Vo

form

uT

0 tr 2ir 3ir 4ir Sir 6rr 1ir 8ir 9ir lOir

wT
Fig. 15.40.—Ratio of dynamic to static sensitivity of deflecting plates as a

function of transit angle.

From this equation several important properties of deflection at the ultra-

high frequencies are evident. In the first place the deflection is sinusoidal

with time so that there is no distortion of waves of a single frequency.'^

In the second place the maximum value of the deflection varies as the

ratio of the sine of half the transit angle through the deflecting plates

to half the transit angle. A curve of deflection sensitivity as a function

of transit angle u>T is given in Fig.. 15.40. It is seen that the deflection is

apparently zero whenever the transit angle through the deflecting

plates is some integral multiple of 27r radians. This is consistent with

the observation in Fig. 15.39 that the slope of the electron trajectory is

zero every 2ir radians. The above has assumed that the deflection in

passing through the deflecting plates is small compared with the subse-

quent deflection over the relatively long distance to the screen, 1. The

exact actual deflection will, of course, be the sum of the values given by

Eqs. (15.84) and (15.86). This means that the deflection will not be

quite zero even when the transit angle through the deflecting plates is a

* Bowie, op. cit.
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multiple of 2t but will be a minimum given by the value from Eq. (15.84)

when T has the value 2rwr, where n is a positive integer.

It is of interest to record the values of deflecting-plate transit angles

for which the dynamic deflection sensitivity drops to some arbitrary

fractions of the static sensitivity. The dynamic deflection sensitivity

will be 0.9 of the static sensitivity when the transit angle through the

deflecting plates is 0.794 radian, or 45.5 deg. It will be 0.707 of the

static sensitivity when the transit angle is 2.78 radians, or 159 deg. It

will be a minimum when the transit angle is 2ir radians, or 360 deg.

When the same ultra-high-frequency voltage is applied to both

horizontal and vertical deflecting plates, the resultant Lissajous figure

will not be a straight line because of the phase shift occurring between the

two sets of deflecting plates. For a pure sine wave the resultant figure

will be an ellipse. When the applied voltage contains harmonics, the

resultant figures will have odd shapes not encountered at low frequencies.

^

Harmonic analyses can be made from the resultant figures. They can

also be made from the so-called “inversion spectrograms,” which are

obtained by applying the complex ultra-high-frequency wave to the

vertical plates, allowing the beam voltage to vary sinusoidally over a

suitable range, and applying a fixed magnetic field parallel to the vertical

deflecting field. The transverse deflection of the beam will vary with the

beam voltage because of the effect of the magnetic field, and the different

harmonic components of the wave under observation will experience

different vertical deflections at the different velocities, in accordance with

Eq. (15.89).

16.8. Photography of Cathode-ray Traces. In the observation of

wave-form phenomena it is frequently important to obtain a permanent
record. This is readily done by simply taking a picture of the screen

trace. The science of photographing cathode-ray traces has now reached

such a state of development that, except for special applications, it has

rendered other methods of recording wave forms virtually obsolete.^"®

* Hollmann, H. E., Ultra-high Frequency OscUlography, Proc. I.R.E., vol. 28,

pp. 213-219, May, 1940.

* Feldt, R., Photographing Patterns on Cathode Ray Tubes, Electronics, vol. 17,

pp. 130-137, 262, 264, 266, February, 1944.

® Gray, C., Notes on Cathode Ray Photography, Radio Research Laboratory

Seminar Rept., Jan. 23, 1945.

* Cathode Ray Tubes, RCA Mantial TS2, pp. 86-93, 1935.

® “Photographic Papers for Recording Purposes,” Eastman Kodak Company,
Rochester, N. Y., 1942.

' “Photographic Materials Available for Use with Oscillograph, Cathode Ray
Tubes, and Similar Recording Instruments,” Eastman Kodak Company, Rochester,

N.Y., 1941.
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In taking pictures of cathode-ray-tube traces the experimenter has

under control at least nine different factors all of which will contribute

to the contrast of the resulting picture. These are

1. Cathode-ray-tube beam power.

2. Type of fluorescent screen.

3. Writing speed of the beam trace.

4. Exposure time.

5. Magnification of the camera lens.

6. Lens speed, or stop.

7. Film sensitivity.

8. Developer.

9. Development time.

TABLE VIII

PHOTOGRAPHIC PROPERTIES OF COMMON FLUORESCENT SERIES

Type of screen*

PI

medium-
persistence

green

P2
long-

persistence

green

P5
short-

persistence

blue

7.5 1.55 0.9

Relative brightness (Weston 603 meter,

8.3 1.7 1.0

0.63 0.25 1.0

Agfa SSS
Ortho

0.076

Agfa SSS
Ortho

0.15

Agfa Fluorapid

Blue

1.0

Ft-lamberts for equal photographic effect 13.2 6.7 1.0

* See Appendix IV for specific characteristics.

In the manipulation of the above factors the objectives sought are a

dense negative trace with a high contrast. The effect of the separate

factors listed above will now be briefly discussed.

Beam Power. It has already been mentioned that the brightness of a

beam trace is approximately linear with beam voltage at a fixed current.

It is also approximately linear with beam power. Hence the greater the

beam power for a given spot size, the greater the brightness of the spot

and the easier it is to get a satisfactory picture.

Screen Types. The three most commonly used screens today are the

PI medium-persistence green, P2 long-persistence green, and P5 short-

persistence blue. The principal characteristics of these screens are listed

in Table VIII.
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In the above table, visual brightness gives the relative response of

the eye. Relative brightness is a standard meter reading. For each

screen the type of film that gives the densest trace for a standard develop-

ing procedure is used. Photographic efficiency is the ratio of relative

film speed to relative brightness. Data in the last row are obtained

from the reciprocal of photographic efficiency.

Writing Speed. The writing speed is simply the speed of the beam
trace. Naturally, the greater the speed, the less the photographic

effect.

Time, Stop, and Magnification. These factors are interdependent.

Although it is possible to give specific coefficients that will determine

exposure time for a given set of operating conditions, these conditions

are subject to so much variation that it is almost necessary in all cases

to obtain the correct exposure time by a trial set of pictures. When
the best exposure time has been so determined for one set of operating

conditions, times for other conditions are readily determined by simple

formulas.

In the photography of recurrent traces, the exposure time can be

made as long as desired, subject only to the limitation of fogging due

to stray light. The exposure time necessary will be determined by the

beam power, the lens stop, and the image magnification according to

the formula

f (15.90)

Avhere t is exposure time (conveniently, sec)

K is exposure constant (determined by experiment)

F is lens stop (ratio of lens focal length to aperture diameter)

M is image magnification (ratio of object to image size)

w is beam-power density (watts per cm^ of fluorescent area as

determined from beam power and trace area)

If the correct exposure time is experimentally determined for one set of

operating conditions, it is a simple matter to evaluate the coefficient

K and the above formula then gives the exposure time for any other set

of operating conditions.

In the photography of transient phenomena where only a single trace

of the pattern occurs the camera lens is left open and the beam-trace
brightness is determined by the writing speed and the beam power.

The corresponding photographic image density is determined by the

lens stop and image magnification. The relation between writing speed

and the other factors is given by

CW
FKM + 1)2

(15.91)



CATHODE-RAY TUBES 473

where C is pfOportioiiality constant

V, is spot velocity (conveniently, km per sec)

W is beam power (conveniently, watts)

F is lens stop

M is image magnification

When a suitable exposure is obtained by test, it is a simple matter to

calculate the proportionality constant C. The above formula then

gives the relation between the four parameters involved for any other

set of operating conditions to obtain the same film-trace density. At
ordinary potentials (2.5 kv), recordable writing speeds are of the order

of 5 to 50 km per sec. With standard tubes and high accelerating poten-

tials (10 kv) writing speeds as high as 1,000 km per sec have been recorded.

The maximum lens aperture that can be used is, of course, determined

by the lens speed. Lenses with / ratings of //4.5 are usually available.

TABLE IX
PHOTOGRAPHIC-FILM SENSITIVITIES

Weston Speed Rating

Film (Daylight)

Agfa SSS Pan 200

Agfa SSS Ortho 100

Eastman Ortho X 100

Eastman Superpan Press 100

Eastman Super XX 100

Defender Ortho X-F 50

Defender X-F Pan 50

Agfa Fluorapid Blue

Eastman X-ray Blue

Lenses with speeds as high as //1.5 are available for Leica and Contax

cameras.

Examination of Eqs. (15.90) and (15.91) shows that the film density

may be increased, other factors being equal, by reducing the magnifica-

tion to get a smaller image. The gain that can be effected in this way
is not large, however, and the maximum gain possible over a magnifica-

tion of 1 is a factor of 4 in writing speed or equivalent exposure time.

Film Sensitivity. A number of special and ordinary films are available

for cathode-ray-trace photography. In Table IX is given a list of

available films in the approximate order of their sensitivity.

The Agfa SSS Ortho gives the best result of all films for the PI and
P2 screens. The Agfa Fluorapid Blue gives the best results of all films

for the P5 screen. It should be noted, however, that the Eastman Super

XX requires only about twice as much exposure as the best film in all

cases to give an equivalent image.

Film speeds can be increased 50 to 100 per cent by hypersensitizing
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the film with ammonia vapor. The well-known expedients of hyper-

sensitizing with mercury vapor or preexposing to get above the fog level

do not seem to do much good in the photography of cathode-ray traces,

where the work is often at minimal levels of exposure.

Developers and Development. Standard developers and standard

developing procedures with the usual precautions can be used. The

commercial developers D19 (high contrast), D72, and Ansco 47 are satis-

factory. Development can be carried beyond the recommended time to

increase contrast up to the point where fogging becomes excessive or the

gelatin softens too much.



CHAPTER 16

ULTRA-HIGH-FREQUENCY EFFECTS IN

CONVENTIONAL TURES

16.1. Introduction. It is well known that, as frequency is raised,

tubes are progressively less effective as amplifiers and oscillators. Ampli-

fiers require greater driving power, and the output drops off correspond-

ingly. If the frequency is raised high enough, the gain of an ampUfier

will drop to unity or less. At the same time this is happening, the input

impedance of the amphfier drops, as does also the maximum impedance

that can be realized in the plate circuit. Oscillator output drops even

more rapidly with frequency than does amplifier output. At the same
time the limitations on output change. At low frequency the output

for continuous operation is often limited by the plate dissipation. As
the high-frequency limit of oscillation is reached, the grid dissipation

commonly becomes the limiting factor while the plate hardly gets hot

at all.

All the above effects come about because of a combination of electronic

and circuital phenomena. Depending upon the design of the tube,

electronic considerations may limit the output before the circuit limita-

tions do as the frequency is raised, or vice versa.

16.2. Causes of Decreased Output at Ultra-high Frequencies.

Numerous factors contributing to a reduction of output at ultra-high

frequencies can be listed. The total number of contributing factors can

be divided into roughly three groups. These are

1. Circuit-reactance limitations.

2. Circuit- and tube-loss limitations.

3. Electron-transit-time limitations. -

At the ultra-high frequencies there exists a situation which is quite

different from that which exists at low frequencies. At low frequencies

the electrical circuits and the tube are quite distinct. As frequency

increases, this ceases to be true and it is found that part of the resonant

circuits exist inside of the tube. This comes about because electrode

leads have a small but finite inductance. As frequency rises into the

ultra-high classification, the reactance of this inductance becomes

appreciable. This means that the voltage across the external terminals

475
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will not appear across the electrodes. In addition, while the inter-

electrode capacities may be small, at the ultra-high frequencies they may
be a large fraction of the capacity required to give resonance in an

external circuit. As such, they represent a limitation in terms of actual

operation. The combination of the electrode-lead inductance and the

interelectrode capacity may give rise to resonances in the ultra-high-

frequency region. Even if resonances do not occur, the combination of

the reactances within the tube may constitute a network that mismatches

the equivalent tube generator and the load. All in all, there are a number
of respects in which the circuit reactances combine to limit tube per-

formance at the ultra-high frequencies. These detrimental effects can

be combated in two ways, (1) by making the tube smaller, which reduces

the inductances and capacities in direct proportion to the linear dimen-

sion, and (2) by making the tube structure such that the electrode leads

can be incorporated into external concentric-line resonators.

The power losses associated with a tube and circuit all tend to increase

with frequency. At ultra-high frequencies all currents flow in thin

surface layers because of skin effect. The associated resistance and
losses increase with the square root of frequency because the thickness

of the layer in which the current flows decreases in this manner as

frequency increases. Glass and other insulating supports have losses

associated with the molecular movements produced by the electric fields.

These “dielectric hysteresis losses,” as they are called, will usually vary

approximately as the first power of frequency. In addition, there will

be appreciable radiation from an exposed piece of wire such as an electrode

lead. The power radiated from a short length of wire carrying current

increases as the square of the frequency. All the above factors con-

tribute to a general reduction in tube efficiency as frequency is increased.

Resistance losses may be made low by increasing the area of the surfaces

carrying current. Dielectric losses may be reduced by proper positioning

of glass with respect to points of low electric field. Radiation losses

can be reduced by enclosing the tube and circuit or by using a concentric-

line construction so that the tube and circuit fields are entirely confined.

Electron-transit-time effects can contribute to reduced tube output

in many ways. If the transit times of the electron are appreciable

fractions of the ultra-high-frequency cycle, then plate current will lag

negative grid voltage and there will be a reduced output in an oscillator

because plate current and voltage are out of phase. Associated with

increased transit time there is a dispersal, or debunching, of electrons,

which has the result that plate-current pulses are not so sharp as the

pulses liberated from the cathode. In addition, there will be an energy

interchange between the electric fields and the electrons in flight so that
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as frequency increases the grid-input impedance will have a resistance

component which decreases with frequency even though no electrons

strike the grid. Furthermore, all the tube constants such as the amplifi-

cation factor will become complex instead of real numbers as a result of a
shift in phase and what is generally a reduction in magnitude. There
is not much that can be done about electron-transit-time effects except

to raise the voltages and reduce the dimensions, both of which processes

have definite limitations. In addition, certain tube types are less

adversely affected by electron-transit-time effects than others. The
tetrode, for instance, suffers less from the adverse effects of electron

transit time than does the triode.

In the subsequent sections there will be given a brief analytical

treatment of all the above effects. No complete analysis that embraces
all aspects of ultra-high-frequency tube operation is available. Rather,

the process of estimating the situation is that of looking through different

windows, corresponding to different avenues of approach, and then

trying to piece the complete picture together from the partial revelations

obtained.

16.3. Onset of Tube-reactance Limitations. The most important

reactance encountered in a vacuum tube is that associated with the lead

inductance. It is possible to speak of the inductance of a piece of straight

wire or of an unclosed circuit in general. It must be borne in mind,
however, that the inductance of the unclosed circuit is considered as part

of some closed circuit the total inductance of which is equal to the sum
of the self-inductances of all its parts plus the sum of the mutual induct-

ances of each one of the component parts relative to every other part.

In cases where the mutual inductances between various parts of the same
closed circuit are small the total inductance is simply the sum of the self-

inductances of the component parts. Taken in this sense, the induct-

ance of a straight piece of wire at very high frequencies is

L = 0.00508f ^2.303 logio^^
^ )

microhenrys (16.1)

where I is the length of the wire in inches and d is the wire diameter in

inches. The last term in the parentheses is negligible if I is more than

lOOd. A family of curves giving the dependence of inductance upon wire

length and diameter is shown in Fig. 16.1. The inductance is seen to

increase as the wire diameter is made smaller or as the wire length is

increased. In tubes, therefore, leads should be as large as possible in

diameter and as short as possible in length. As an example of how large

lead reactances can be, consider the case of a lead that is 100 mils in

diameter and 1 in. in length, as frequently occurs in small transmitting
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tubes. This lead has an inductance of approximately 0.015 microhenry,

as may be seen from Fig. 16.1. At 500 me this represents a reactance

of 47 ohms, which is fairly high.

Cathode-inductance-feedback Limitations. Since the tube lead react-

ances are internal to the tube, there will be coupling between the input

and output circuits due to grid and plate currents flowing through the

common cathode lead inductance. This will have the effect of introduc-

ing feedback into the stage involving the tube and may cause the grid-

input impedance to be affected adversely. If all the tube lead induct-

ances and interelectrode capacities are considered, some rather complex

relations are encountered. In general, the effect of the internal tube

1 Strutt, M. J. O., and A. van der Ziel, The Causes for the Increase of the Admit-

tances of Modern High-frequency Amplifier Tubes on Short Waves, Proc. I.R.E.,

vol. 26, pp. 1011-1032, August, 1938. Contains good bibliography.

“Sarbacher, R. I., and W. I. Edson, “Hyper and Ultra-high Frequency Engi-

neering,” pp. 431-436, Wiley, New York, 1943.
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reactances is to decrease the impedances presented at the tube input

terminals. This may be seen by considering the onset of reactance

effects in a triode at ultra-high frequencies.

Consider the triode circuit of Fig. 16.2, in which there are considered

only the effect of the cathode lead

capacity.^ Then the signal voltage

appears between the grid and the

cathode by the voltage drop in the

cathode lead inductance. Thus

Vs = V,+ j<.>Lsh (16.2)

But the plate current will be approxi-

mately proportional to the negative of

the product of the grid input voltage

and the mutual conductance of the

tube since at ultra-high frequencies

the plate-load resistance will usually

be small.

Ip = (?.F„ (16.3)

inductance and the cathode-grid

V, differs from the voltage that

Fig. 16.2.—The equivalent circuit of

a triode amplifier at ultra-high

frequencies.

The input current to the tube will produce a voltage drop across the grid-

cathode capacity that is equal to the tube input voltage

Vp
h

jo)Ocff
(16.4)

where Ii is the input-circuit current. Making this substitution into

Eq. (16.2) along with Eq. (16.3),

V, = /i(l -bjcoLcGJ

JO)Cy eg
(16.5)

in which the second term in the numerator is numerically small compared
with unity. Accordingly, the input admittance of the tube is approxi-

mately

= Y= jo’Csgil - jo^LsGr.) (16.6)

since (1 -|- a)~^ is approximately equal to 1 — a when a is small com-
pared with unity. The first term of the input admittance will be recog-

nized as the normal capacitive susceptance of the tube. The second

term is a real positive term representing a conductive component of input

admittance and having the value

(?.„ = io^LgCsgG,^ (16.7)

* Freeman, R. L., Input Conductance Neutralization, Electronics, vol. 17, pp. 24—

25, October, 1939.
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This input conductance corresponds to a resistance in parallel with

the input capacity whose value decreases inversely as the square of the

frequency. This resistance consumes power, which increases as the

square of the frequency for a given driving voltage. There is no real

loss of power involved here. The driving power consumed in this

fashion is simply transmitted to the plate circuit. The equivalent input

resistance encountered here can be fairly low. For a tube with a cathode

lead inductance of 10“* henry and a mutual conductance of 9,000

micromhos operating at a frequency of 30 me the equivalent input

resistance is of the order of 25,000 ohms. In addition to the input

conductance due to cathode-inductance feedback there is a similar compo-

nent of conductance due to eldctron-transit-time effects, as will be seen.

The transit-time conductance varies in the same fashion with frequency,

i.e., as the square of frequency The equivalent resistances that are

due to cathode-inductance feedback and electron transit time are in

parallel, and any measurement will involve the effect of both. In

triodes the equivalent resistance due to transit-time effects may be

smaller than that due to cathode-inductance feedback. In multi-

electrode tubes the transit-time resistance will usually be much larger

than the feedback resistance. The components of the input conductance

can be separated by making measurements with and without a bit of

external inductance inserted in series with the cathode lead.

Interelectrode-capacity Limitations. In addition to the lead induct-

ance, the interelectrode capacitances play an important role in the

operation of tubes in the ultra-high-frequency region. Interelectrode

capacitances due to active parts of the tube structure are incapable of

reduction beyond a certain point. However, in many tubes the inter-

electrode capacity results largely from capacity betw^een the leads in

parts of the tube where electrons do not flow. Thus the receiving-tube

practice of bringing all the tube leads out through a single glass stem at

the bottom of the tube is very bad from the standpoint of the inter-

electrode capacity.

Arrangements that bring out the leads separately as much as possible

are preferred from the standpoint of low interelectrode capacity.

Examples of such arrangements are to be found in the acorn tube, the

doorknob tube, and certain low-power radiation-cooled tubes (see Fig.

16.3). In the acorn tube the leads are brought out radially in such

a way that the capacity between them is greatly reduced. The leads of

the doorknob tube likewise are brought out rather well spaced. In the

radiation-cooled tubes the leads are brought out widely separated. In

addition, in some forms there are double leads, which can be paralleled

-fo reduce the inductance. When this is done, the interelectrode capacity
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is almost entirely that found in the active portion of the tube where the

electron flow is concentrated. Further reduction here is possible only

by scaling down the size of the tube, which in turn limits the power the

tube can develop because the heat-dissipation capacities are reduced.

If the resonant circuits of the tubes are made of lumped reactance

elements, then the lead inductance and interelectrode capacity determine

the highest frequency at which the tube can be operated. This highest

frequency is the frequency at which the interelectrode capacity resonates

with the shortest external connection between the tube electrodes. For

the tubes shown in Fig. 16.3 this frequency will be of the order of 2,000

955
Acorn tube

(a)

368
Door knob tube

(b)

Rediotion cooled
Type-227A

(c)

Fig. 16.3.—Common ultra-high-frequency tube types.

me for the acorn tube, 1,000 me for the doorknob tube, and 500 me for the

radiation-cooled tube. These frequencies may be exceeded if a trans-

mission-line type of resonant circuit is used, for then the connecting link

between electrodes may effectively be pushed inside the tube.

The interelectrode capacity is an important factor in determining

what plate-load resistance can be realized. This in turn determines the

gain and power output that can be made available. The equivalent

shunt resistance of a parallel resonant circuit can be written in a number
of ways, among which there are

R,k = (16.9)

where R is the equivalent series resistance, C is the total capacity deter-
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mining the resonance, and coo is the angular resonant frequency. For

operation at a given frequency it is seen that in order to increase the shunt

resistance it is necessary to decrease the capacity. This can be done up to

a point by reducing the capacity and increasing the inductance to main-

tain the same frequency of resonance. Eventually, this process is limited

by the fact that the capacity external to the tube has been reduced to

zero and the shunt resistance is determined by the tube interelectrode

capacity. The larger the interelectrode capacity, the smaller the shunt

resistance that can be realized. Accordingly, the power output tends

to drop off as the load resistance or as the square of the frequency as

frequency increases.

For amplifier operation the gain-band-width product is of considerable

importance. This product is one that depends upon the ratio of the

tube mutual conductance to the circuit capacity, various numerical

coefficients applying for different circuits.* Consider the case of a tube

with a simple single tuned circuit as a coupling and frequency-deter-

mining element between it and the next stage. The gain of such a stage

is approximately equal to the product of the tube mutual conductance

and the circuit shunt resistance.

A=G^^ (16.10)

where A is the stage voltage gain. The corresponding band width

depends upon the circuit Q and the operating frequency according to

A/ = ^“ (16.11)

Accordingly, the gain-band-width product is

(16J2)

The gain-band-width product can be increased by reducing the circuit

capacity up to the point where that capacity is the interelectrode capacity

of the tubes involved. Accordingly, it is again desirable to have tubes

with well-separated leads to reduce the interelectrode capacity.

16.4. The Nature of Currents Induced by Electron Motion at Ultra-

high Frequencies. The Plane Diode without Space Charge. At low

frequencies, the current flowing to any electrode in a vacuum tube is

considered as resulting from the arrival of electrons at the electrode in

accordance with the equation

i = nev (16.13)

* Wheeler, H. A., Wide-band Amplifiers for Television, Proc. I.R.E., vol. 27,

pp. 429-438, July, 1939.
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where n is the number of electrons per unit length of beam, — e is electron

charge, and v is the electron velocity. This concept is satisfactory as long

as the time required for an electron to move from one electrode to another

is so short that it can be considered as being virtually instantaneous. If,

however, the time required is appreciable when measured in time units of

the period of the alternating frequency involved, then this concept is no

longer adequate. The question arises as to

whether there is any current in the electrode

circuit while the electron is en route. It

turns out that there is such a current; and

since the electron transit time may be an

appreciable fraction of the period involved

it needs to be considered. When the elec-

tron transit time is appreciable, it is no

longer true that the electrode current is

determined by the rate of arrival of electrons

at the electrode. The current may be

greater or less.

The correct concept of electrode current

is that it is determined by rate of change of

the charge on the electrode induced by the

electron in flight. This induced current is

the real current, and its magnitude is readily

determined. Consider the situation shown
in Figs. 16.4a, h, and c. Here there is shown
an electron moving from the cathode to the

plate of a plane-electrode diode. From the

electron there emanate —e lines of electric

flux, which terminate on a like amount of

positive charge on the cathode and plate.

When the electron is close to the cathode

as in Fig. 16.4a, then most of the lines from

the electron terminate on the cathode, with

the result that the positive charge so induced

on the cathode is larger than the positive

charge induced on the plate. When the electron is midway between
cathode and the plate as in Fig. 16.46, then half the lines terminate on

the cathode and half terminate on the plate, with the result that the

induced charges on cathode and plate are equal. When the electron is

close to the plate as shown in Fig. 16.4c, then more hnes terminate on
the plate than on the cathode.

The exact magnitude of the induced charges described above may be

5 {a)

1-5 (c)
+ Q.

+

Fig. 16.4(a,6,c).—The electric

field of a single electron in

flight between parallel planes.
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calculated from the equality of the work done in transferring the charge

from cathode to plate to the energy gained by the electron in its move-
ment. Let qi be the charge induced on the cathode and q2 the charge

induced in the plate. As the electron moves across from cathode to

plate, the battery effectively transfers a charge 52 from cathode to plate.

This means that the battery does work of the amount Vq^. At the same
time the electron has moved a distance x under the mfluence of a field

— V
of strength —j— so that work of the amount —j- has been done on it.

a a

Accordingly,

(16.14)

from which

(16.15)

X =0 ofcafhode

x=cC atplate

Since the total charge induced on

both cathode acd plate must equal

d-e, it must be true that

9i (16.16)

Fig. 16.5.—Charges induced on the elec-

trodes of a plane diode by a single electrode

in flight.

This means that the induced

charge on the plate grows linearly

with electron position from a value

of zero to -\-3 as the electron

moves across the diode from cath-

ode to plate. At the same time the induced cathode charge decreases

from d-e to zero. These relations are shown in Fig. 16.5.

The current associated with the induced charges resulting from the

motion of an electron is given simply by the time rate of charge. Thus

dq2 _ edx _ ^
dt d dt d

(16.17)

This is the current flowing to the plate. The above is one of the most

important fundamental relations in the field of high-frequency-tube

behavior. The magnitude of the circuit current associated with the

electron flight is shown in Fig. 16.6, For the parallel-plane diode con-

sidered here, the field will be linear, and the velocity of the electron if

emitted with zero velocity will increase linearly with time. This gives

rise to a triangular-shaped pulse of current. Furthermore, the induced
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current depends only on the electron velocity and is independent of

electron position to the extent that the position is independent of the

velocity. It is seen that current starts to flow the moment the electron

enters the interelectrode space and continues until it reaches the plate.

It is not true that current flows only when the electron reaches the plate.

The area under the current pulse is fl-e from Eq. (16.17).

The total current that flows to any electrode is found by adding up
the triangular pulses of current

associated with each electron.
This summation will generally

result in a current curve that lags

the emitted-electron current by
an angle proportional to the

product of the angular frequency

and the transit time. Currents

may even be induced in electrodes

to which no electrons flow if the

number or velocity of the electrons

approaching the electrode is dif-

ferent from the number or velocity of the electrons receding from it. This

is the case with the control grid in ordinary triodes and multielectrode

tubes when operating Class

The General Case. The relations given above are a special case of

a more general relation in that they are restricted to the plane-electrode

diode in the absence of space charge. The general relation that applies

for any field configuration is

fl^p~ ^max.

No space charge

T=2<i/vo

Fig. 16.6.—Induced current resulting

from an electron in transit in a parallel-

plane diode without space charge.

tn = e^t;
(16 . 18)

where i is the induced current flowing to any electrode, e is the magnitude
dV„ .

of the electron charge, and is the gradient of potential in the direction

of the electron velocity that would exist at the electron’s instantaneous

position if the given electrode were raised to unit positive potential and

‘ North, D. O., Analysis of the Effects of Space Charge on Grid Impedance, Proc.

I.R.E., vol. 24, pp. 108-136, January, 1936. One of the earliest papers to make use

ev
of the relation i = -r •

a

® Thompson, B. J., Review of Ultra-high Frequency Vacuum Tube Problems,

RCA Rev., vol. 2, pp. 146-155, October, 1938.



486 VACUUM TUBES

all other electrodes were grounded. It will be noticed that the relation

of Eq. (16.18) reduces to the relation of Eq. (16.17) for the plane-electrode

case. From the general relation of Eq. (16.18) it is seen that the induced

current is maximum when the electron is moving along a path for which

the gradient of potential resulting, when the electrode in question is

raised to unit positive potential and all other electrodes are grounded,

is itself maximum. If the electron were to follow an equipotential line

under the conditions stated above, the induced current would be zero.

Induced Currents in the Space-charge-limited Diode. The shape of

the induced-current pulse associated with a single electron transit in a

plane diode is slightly differerit when the diode is space-charge-limited

from what it is when it is not. This comes about because the potential

variation with distance is a four-thirds-power law in the presence of

space charge, while it is linear in its absence. As a result, the electron

velocity follows a two-thirds-power law of variation with distance for the

space-charge-limited case, whereas it follows a one-half-power law in

the absence of space charge. Accordingly, the velocity of an electron

varies with the square of the time in the space-charge-limited case,

whereas it varies linearly with time in the absence of space charge. In

addition, the transit time in the presence of space charge has been

shown in Sec. 8.10 to be 50 per cent greater than in its absence. As a

result, the potential, velocity, and induced current in the space-charge-

limited case will have the form shown in Fig. 16.7. For comparison,

the corresponding relations that hold in the complete absence of space

charge are shown dotted. The current pulse with space charge is sharper,

which means that its fundamental component is smaller and is retarded

more than in the space-charge-free case. The difference between the

behavior with and without complete space-charge saturation is, however,

small enough so that for most qualitative evaluations the triangular

^ Shockley, W., Currents Induced by a Moving Charge, Jour. Appl. Phys., vol. 9,

pp. 635-636, October, 1938.

^ Ramo, Simon, Currents Induced by Electron Motion, Proc. I.R.E., vol. 27,

pp. 584-585, September, 1939.

’Jen, C. K., On the Induced Current and Energy Balance in Electronics, Proc.

I.R.E., vol. 29, pp. 345-349, June, 1941.

* Jen, C. K., On the Energy Equation in Electronics at Ultra-high Frequencies,

Proc. I.R.E., vol. 2D, pp. 464-466, August, 1941.

’ This relation results from the fact that the charge induced on one of a system of

grounded conductors by an electron is eF„, where F„ is the potential to which the

location point of the electron is raised when unit potential is applied to the electrode in

question and all other electrodes are grounded. The induced current is then simply

the time rate of change of charge. See Shockley and Ramo, op. cit.
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current pulse is sufficiently accurate. The area under the current pulse

in this case is again -1-e.

Currents Induced in the Electrodes ofa Triode. The relations discussed

above may be applied to triodes quite successfully to give an indication

of the magnitudes and phases of the currents induced in the different

Fig. 16.7.—Induced current resulting from a single electron

in transit in a plane diode whose emission is space-charge-

limited.

electrodes. Between the electrodes the potential fields will resemble

those of a diode in that potential will vary linearly with distance except

in the immediate vicinity of the grid wires. The gradients of potential

will be determined by the ele trode voltages and the tube dimensions.

The currents induced in any electrode can be calculated from the general

relation of Eq. (16.18). To find the current induced in the cathode it

is necessary to know the gradient of potential which exists at the elec-



488 VACUUM TUBES

tron’s location when the cathode is raised to unit potential and the other

electrodes are at zero potential. The potential contours in a triode for

this condition are shown in Fig. 16.8a. The effects of space charge have

been neglected in setting up these profiles. When the gradient of

potential is known, the induced current is simply the product of the

C G P

C G P
Pig. 16.8.—Potential contours in a triode

used in determining the currents induced in

the electrodes by the transit of a single

electron.

gradient, the electron charge, and the actual velocity. Since the gradient

of potential is negative in both the cathode-grid and in the grid-plate

region, the induced cathode currents will always be negative. P'urther-

more, the induced current will be greater in magnitude by approximately

the amplification factor of the tube when the electron is in the cathode-

grid region than when it is in the grid-plate region.

To determine the currents induced in the grid wires, it is necessary
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to know the potential distribution that results when the grid is at unit

positive potential and the cathode and plate are at zero potential.

The resulting potential profiles are shown in Fig. 16.86. The induced

grid current will be positive when the electron is in the cathode-grid

region but negative when the electron is in the grid-plate region. The
magnitudes of the currents will be approximately in the inverse ratio of

the cathode-grid distance and the grid-plate distance for a given electron

velocity since the magnitudes of the potential gradient are in this inverse

ratio.

To determine the induced plate current it is necessary to consider

the potential configuration that results when the plate is at unit positive

TARLE X
CURRENTS INDUCED IN THE ELECTRODES OF A PLANE-ELECTRODE

TRIODE BY THE PASSAGE OF A SINGLE ELECTRON

Cathode current

Ic

Grid current

It

Plate current

dp

Electron in

cathode-grid 1

region
-evil + m) +evn ev

dtp 4- (1 4- ti)dct dtp + (1 + ti)dct dtp + (1 + a)d«ir

—ev
/-•w' \ ^ evu ev

deg “ (1 + Mt fideg

Electron in
1

grid-plate

region
—evdtp eVfjtdcg ev{dgp fideg'}

dtp[dtp -f- (1 -1- ju)d.ol dtp[dtp -|- dcufl -ha)] dtp{dtp + (1 -f a)dcs]

^ —ev ^ —evfx1
*1:a.5 (1 fj^dgp ' (1 "f" fd)dgp

potential and the grid and cathode are at zero potential. The resulting

potential profiles are sketched in Fig. 16.8c. Then, by Eq. (16.18), the

induced current to any electrode is simply the product of the electron

charge, the electron velocity, and the corresponding gradient of potential.

The resulting electrode currents are listed, in Table X. It will be noted

that the induced electrode current is always of the form For any

position of the electron it will also always be true that the sum of the

cathode, grid, and plate current is zero.

Expressions similar to those for the plane-electrode triode can also

be worked out for the cylindrical-electrode triode. These expressions

will be more involved than those for the plane-electrode triode and will

involve the radial position of the electron. This comes about because
the gradient of potential is iiot constant in the interelectrode spaces.
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For the cylindrical diode, for instance, the induced cathode and plate

currents are

and

(16.19)

(16.20)

16.6. Onset of Transit-time Effects in Triodes. As the frequency of

operation of a vacuum tube is raised, there is finally reached a frequency

at which electron-transit-time effects make themselves felt. These are

evident first with the appearance of a conductive component of the grid

input admittance; i.e., a definite amount of power is required to drive the

grid even though it does not intercept any electrons. In addition, the

mutual conductance and amplification factor become complex and smaller

in magnitude, having a negative phase angle that increases in magnitude

with frequency. Of these various effects the appearance of a conductive

component of grid input admittance is most important. This component

is one that at first grows as the square of the frequency. The existence

of this component and its dependence upon frequency and other factors

can be demonstrated by examining the induced grid currents along the

lines indicated in the previous section.

Consider first the grid current induced by the transit of a single

electron from cathode to plate. Ordinarily the grid will be negative,

but above its cutoff value. The electron, however, passes readily through

the space between grid wires where the potential is positive. In the

cathode-grid region the gradient of potential is nearly constant at a small

positive value determined by the cathode-grid distance and the mean
potential of the grid plane. In the grid-plate region the potential

gradient is again positive, but at a much higher value. Potential con-

tours for a typical condition are shown in Fig. 16.9a. The associated

electron velocities will as a first approximation be considered linear with

time in both the cathode-grid and the grid-plate region because the

potential gradients in these regions are nearly constant. The electron

velocity is as shown in Fig. 16.96. It is seen to increase linearly with

time at a relatively slow rate in the cathode-grid region and at a rela-

tively faster rate in the grid-plate region.

The corresponding current induced in the grid electrode will be as

shown in Fig. 16.9c. The induced current has the form of the product

of the electron velocity as in Fig. 16.96 by the potential as shown in Fig.

16.86. The sign of the current changes as the electron passes the grid

plane, for here the electron changes its relative direction with respect to
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the grid. The induced-current pulse as a result consists of a positive

triangular pulse followed by a negative trapezoidal pulse. The area®

of the positive and negative pulses will nearly equal plus and minus e

respectively, yielding a net zero direct component as expected from physi-

cal considerations.

C G P

Fig. 16.9.—Factors determining induced grid current in a plane-

electrode triode.

If it is assumed that there is one electron liberated per cycle at the

same time after the maximum value of grid voltage, then the pulse of

Fig. 16.9c will occur once each cycle and will have a fundamental compo-
nent of current of the frequency of the exciting voltage. The funda-

mental component of current of the induced-current pulse will have the

position shown in Fig. 16.9c. This fundamental component of current
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will change from positive to negative at about the same time as the

induced-current pulse itself changes from positive to negative. As a

result, the fundamental component of grid current will lead the grid

voltage by 90 deg minus some small angle B. The total grid current

will be made up of the sum of all the induced currents resulting from the

total electron flow. Since the electron current will be nearly sinusoidal

and in phase with the grid voltage, the resultant fundamental component

of grid current will have the same location as that shown for the single

electron of Fig. 16.9c. This is because most electrons will flow at the

peak of the grid voltage, and as a result any summation of pulses will

favor those associated with the peak of the grid voltage.

The magnitude of the resulting fundamental component of grid cur-

rent will be proportional to the product of the mutual conductance, the

frequency, the electron transit time, and the grid voltage

1,1 = kG,„fTV, (16.21)

This occurs because the magnitude of the induced current depends upon
the change in the number of electrons in the stream, which in turn depends

upon the product of mutual conductance and voltage. The fundamental

component of induced grid current depends upon the frequency, for the

length of the current pulses induced by the individual electrons relative

to the period of the exciting voltage is directly proportional to this factor,

as will also be the area of the pulse. The fundamental component of the

induced grid current will also depend upon the transit time of the electrons,

for this will determine the area of the pulses of current induced by the

passage of each electron.

The grid input admittance will be defined as the ratio of the grid

current to the grid voltage

F„ = = kiGJT (16.22)

This admittance will have a conductance component and a susceptance

component. If the grid current led the grid voltage by 90 deg, the input

admittance would be purely imaginary, corresponding to the susceptance

of the cathode-grid capacity, joiCc,. Actually, this will be the larger

component of the input admittance. However, the admittance will

have a conductance component of the form

Gg = Yg sin B (16.23)

where B is the angle of Fig. 16.9c by which the fundamental component
of the induced grid current fails to lead the grid voltage by 90 deg. For
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small angles, sin 6 can be replaced by B. The angle 6 itself depends upon
the product of the frequency and transit time of the electron,

sin 0 = e = kifT (16.24)

This is evident from Fig. 16.9c, it being remembered that the angle of

a full period is 2x radians and that if the fundamental period is changed

the angle 6 will be changed even though the electron transit time is not

changed. As a result of Eqs. (16.23) and (16.24), the input conductance

is given approximately by

G, = (16.25)

to a high degree of approximation. ‘ Equation (16.25) shows that the grid

input conductance increases as the square of the frequency for a given set of

operating conditions. This is to say that the equivalent input resistance

considered to be in parallel with the input capacity decreases as the square

of the frequency. Some experimentally determined values are given in

Fig. 16.10. The input resistance encountered here is such that the driving

power required for a given degree of excitation increases as the square of

the frequency. This rapidly becomes a limiting factor of considerable

seriousness.

Although space-charge effects have been neglected in the above

development, their presence will merely change the numerical constant.

If the induced-current pulse of Fig. 16.9c had been drawn to include the

effect of space charge, the positive part of the pulse would have had
the form of the solid curve of Fig. 16.7c instead of the triangular form

g^”''n. The shape of the negative portion of the pulse would not have

been much changed. The constant of Eq. (16.25) can be evaluated to

include the effect of space charge.'* The specific form of the grid con-

ductance is

where Tcq is cathode-grid transit time, Tgp is grid-plate transit time, Vp

is electron velocity at the plate, and v„ is mean electron velocity in the

^ See Ferris, W. R., Input Resistance of Vacuum Tubes as Ultra-high Frequency

Amplifiers, Proc. I.R.E., vol. 24, pp. 82-105, January, 1936, for an alternative deriva-

tion of Eq. (16.25).

2 North, op. cit.
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grid plane. The numerical value of the constant given by the first term
only of the expression in brackets is approximately 2; that is, ks in Eq.
(16.25) is approximately 2 when T is the cathode-grid transit time.

Fig. 16.10.—Input resistance of triodes as a function of frequency.

A number of factors conspire to prevent Eqs. (16.7) and (16.25) from

being fulfilled exactly. The actual situation with respect to input con-

ductance is extremely complicated.' As a result the above equations

' “Input Admittance of Receiving Tubes,” Tube Department, Radio Corporation

of America. Harrison, New Jersey, November, 1946.
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indicate only first-order effects. Departures from the simple theory

indicated above are due to the following:

1. The input capacity of a tube is nonlinear with transconductance.

This is a low-frequency effect due to space charge. It con-

tributes to a nonlinearity between input conductance and tube

transconductance.

2. Partial resonance between lead inductance and interelectrode

capacity may change apparent input capacity.

3. There may be a negative input-conductance component due to

screen lead inductance in pentodes.

4. There are cold-tube input-conductance components due to lead

resistance and dielectric losses that obscure lead-inductance and
electron-transit-time effects. The lead resistance yields an input-

conductance component that increases as the five-halves power

of frequency as a result of skin effect and the series combination of

resistance and inductance. Dielectric losses yield a component of

conductance that increases linearly with frequency.

16.6. Transit-time Effects in the Space-charge-limited Diode. In

the discussions thus far, relatively little attention has been paid to the

effects of space charge. The effect of space charge may be expected to

be considerable, particularly in the vicinity of the cathode, where the

space-charge density is very high. Before going into this subject it will

be well to emphasize the distinction between the various components of

current encountered.

The general form of current involves a combination of conduction

current and displacement current.

J = pv+t„^ (16.27)
at

The first term here is the conduction current and is proportional to

the number of electrons arriving per second at any reference plane. The
second component of current is the displacement current. This is the

current that flows as a result of changes in the electric-field strength.

In vacuum-tube problems the resultant current will ordinarily be a

combination of conduction and displacement current. At low frequencies

the current will be nearly all conduction current, but at sufficiently high

frequencies the displacement current will be considerable. This occurs

because of the finite transit time required by the electrons to pass from

one point to another. Thus, if a group of electrons is liberated at a

cathode of a diode, it will be a while before they arrive at the plate.

This does not mean that the plate current is zero until the electrons
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arrive. True, the conduction current will be zero until the electrons

arrive, but in the meantime there will be current in the form of dis-

placement current (the induced current of the previous sections). The

total current in the general case is the sum of the conduction current and

the displacement current and is the same at any point in the circuit.

Thus in the diode the current at the cathode is virtually all conduction

current because the field there is zero. At the plate, in the presence of an

alternating voltage, the total current will be the sum of the conduction

current at the plate and the displacement current associated with the

changing electric field resulting from electrons en route to the plate.

To examine the relations in the plane-electrode diode with space

charge it is necessary to know'the equation of motion of the electron in

addition to the general definition of current flow. The equation of motion

is simply

— eE = = ma (16.28)

dV .

where e is the magnitude of the electron charge, is the gradient of

potential, m is the mass of the electron, and a is its acceleration. In

addition, Poisson’s equation will be involved to take account of the effect

of space charge upon the potential distribution. For the plane-electrode

case with the various quantities varying in the x direction only.

div toE = Eo
dx

(16.29)

where p is the space-charge density and co is the dielectric constant of

free space. Combining Eqs. (16.27) and (16.29) gives

J = /BE dx
,
dE\

dt dt /

dE
dt

(16.30)

Referring back to Eq. (16.28), it is now apparent that

J = -eo
TO da

e dt
(16.31)

The previous five equations are the fundamental ones upon which

all electron-transit-time studies involving space charge are based. Equa-

tion (16.27) is essentially Maxwell’s definition of current in its general

form. Here it is necessary only to remember that current in general may
be either displacement or conduction or a combination of both. Equations

(16.28) and (16.29) are relatively well known and deserve no particular

comment. Equations (16.30) and (16.31) are the new relations of
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significance. These give current as a function of time only, directly

proportional to the time rate of change of electric field or of acceleration.

Since electric field is a function of both time and distance, the total

derivative with respect to time has involved partial derivatives with

respect to each. Fortunately, the combination of partial derivatives

given in Eq. (16.30) is exactly the total derivative of the electric field.

It is the last of the above equations that is really new and significant.

From this it is seen that if the acceleration or for that matter any of its

derivatives be known then the current can be determined. From this

equation all the dynamic properties of space-charge flow can be

determined.

Let us test the power of Eq. (16.31) by obtaining some basic relations.

Let it be assumed that the current density is made up of a constant

component plus an alternating component of the form.

J = Jo + Ji€f‘ (16.32)

where Jo is a direct component of current density and Ji is the magnitude

of an alternating component, p being equal to jw, and it is understood

that we are dealing with only the real part of the exponential factor

«”*. This is a well-known procedure in network theory, and it is used

here because it simplifies the writing of the associated equations.

The differential equation corresponding to Eq. (16.31) becomes

S -

Let this now be integrated to obtain the acceleration, velocity, and

distance in a parallel-plane diode under the assumption that the initial

velocity and acceleration of the electrons are zero. With these restric-

tions, a first integration of Eq. (16.33) gives

a = — Jo(f - Q + - (e^‘ - 6^'“) (16.34)
mto I P

where is the time when the electron leaves the cathode. A second

integration gives

^ uy -h h (tr< _ - ^‘ (< - (16.35)
?aeo L 2 ' p

^
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These equations give acceleration, velocity, and distance as a function of

the time, the starting time, and the current-density components. Let the

validity of these equations be tested by examining the direct components.

If the above equations are restricted to the case in which the alternating

component of current density Ji is zero and \i t — ta be considered the

transit time U, then the above equations reduce to

Uo —

t;o =

Xo =

—cJ0^0

rma
— eJoto^

2meo
— eJoto^

Qmeo

(16.37)

(16.38)

(16.39)

Of these, the last equation will be recognized as giving the proper varia-

tion of distance with time. To bring the above equations into a more

familiar form it is desirable to obtain an expression of the voltage differ-

ence corresponding to the distance Xo. This is readily obtained from the

definition

Vo = - r^Eodz (16.40)
Jo

which by virtue of the equation of motion (16.28) is the same as

This yields

Vo
m
e

rt„

I aoVo dt
Jo

Vo = m vo^

(13.41)

(16.42)

to our small surprise. If now the expression for vo from (Eq. 16.38)

be substituted in this and the value of to as determined from Eq. (16.39)

be applied, there results

Im xqUo
\2e to

(16.43)

which is Child’s law as previously given by Eq. (8.7). Apparently

Eqs. (16.33) to (16.35) can be trusted to give some reliable answers if

properly interpreted.

In the same way as the direct current was found as a function of the

direct voltage, the alternating component of current can be found as a

function of the alternating component of voltage. In this case the

electron transit time is expected to be involved, and it is. When the

voltage and current are known, their ratio gives the equivalent imped-

ance, a factor of great importance in tube application problems. The
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derivation of the impedance of a diode whose emission is space-charge-

hmited has been given many times and is much too lengthy to be included

in the textd^® The specific formula for the diode impedance is

where /3 = id, 6 being the transit angle from cathode to plate, that is,

d = 2irfT, where T is the transit time. Ro is the low-frequency dynamic

plate resistance of the diode as determined by the slope of the voltage-

current characteristic. This expression separates readily into real and

imaginary parts corresponding to series resistance and reactance

components.

^ ^ [2(1 - cos d) - d sin d] (16.45)

^ ~ ^ ~ ^ + cos d) -2 sin d] (16.46)

i? X
Curves of r— and are given in Fig. 16.11 as a function of the transit

xto ^0

angle d. These components are part of the series representation of

impedance and indicate that the diode impedance is equivalent to a

resistance in series with a capacitive reactance, X being always negative.

Also shown as a dashed curve in Fig. 16.1 1 is the high-frequency asymptote

of the reactance curve. This has the form of the reactance curve of a pure

capacity. The resistance component drops from a maximum value for

zero transit angle to a zero value for a transit angle of 27r. After that, it

assumes alternately negative and positive values but never exceeds a few

per cent of the maximum value in magnitude. It is interesting to note

that the resistance changes from positive to negative at transit angles of

27r, 4x, 6x, etc., whereas the change from negative to positive resistance

occurs for transit angles of 3x, 5ir, 7x, etc. This means that the region in

which the diode resistance is negative is smaller than the region in

which the diode resistance is positive. The negative resistance pre-

dicted by the form of Fig. 16.11 for transit angles between 2/r and 3x is

quite real, and special diodes have been made to oscillate by virtue of

1 Benham, W. E., a Contribution to Tube and Amplifier Theory, Proc. I.R.E.,

vol. 26, pp. 1093-1170, September, 1938. This article summarizes work in earlier

British publications.

2 Llewellyn, F. B., “Electron Inertia Effects,” Cambridge, London, 1941 (dis-

tributed in the United States by Macmillan). This tract summarizes the work

covered in Llewellyn’s numerous papers prior to 1941.

“ Muller, J., Eletronenschwingungen im Hochvakuum, Hochfrequenz. und

Elektroakustic, vol. 41, pp. 156-167, May, 1933.
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this negative resistance. ^ The finite velocity of emission of the electrons

tends to reduce the magnitude of the negative resistance predicted by
Eq. (16.45).

The nature of the reactive component of diode impedance is best

understood by examining the imaginary component of the reciprocal

Transit angle, radians

Fig. 16.11.—Components of the equivalent series

impedance of a plane diode whose emission is space-

charge-limited. {After Llewellyn.)

of impedance, i.e., the admittance. A plot of the real (conductance)

and imaginary (susceptance) components of admittance of a plane-

electrode diode whose emission is space-charge-limited is shown in Fig.

16.12. From this it is seen that the susceptance of the diode is closely

represented by that of a capacity in shunt with a resistance for small

transit angles. At low frequencies or small transit angles, the capacitive

3 ^
susceptance ratio is given approximately by The proportionality with

1 Llewellyn, F. B., and A. E. Bowen, The Production of Ultra-high Frequency

Oscillations by Means of Diodes, Bell Sys. Tech. Jour,, vol. 18, pp. 280-291, April,

1939,
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transit angle and frequency means that the susceptance can be repre-

sented by a fixed capacity. The size of this capacity happens to be %
of the cold capacity of the tube. This amounts to saying that the

electron charge acts like a dielectric with a dielectric constant of %.
For higher values of frequency and transit angle the susceptance departs

from the low-frequency value and finally becomes asymptotic to the

value corresponding to the cold capacity.

Fig. 16.12.—Components of the equivalent shunt

admittance of a plane diode whose emission is

space-charge-limited. {After Llewellyn.)

It is possible to work out equivalent circuits for the diode admittance

over a large range of transit angles. For low frequencies the parallel

combination of a resistance equal to the plate resistance in parallel with a

capacity equal to % of the cold capacity works very well. For fre-

quencies giving rise to transit angles greater than 90 deg it is best to

refer to the curves of Figs. 16.11 and 16.12.

16.7. Small-signal Transit-time Effects in the Space-charge-limited

Triode. Much of the information obtained in the previous section can

be applied to the case of a triode operating with small signal voltages

and with its emission space-charge-limited. Here it is expected that

there will be something like a diode action between the cathode and grid.

This will influence the input impedance of the tube. Further, it is

expected that the tube capacities will play an important role. In
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GO—

addition, it is to be expected that the mutual conductance of the tube

will be changed by transit-time effects. Various equivalent circuits

have been proposed for triodes operating under

the above conditions, one of the most successful

being that shown in Fig. 16.13.^ This is a T sec-

tion of admittances with an internal generator in

the plate lead to represent the effect of the volt-

age applied in the grid circuit. The junction of

the admittances occurs, not on any of the elec-

trodes, but in the grid plane between the grid

wires. The admittance Yn is the admittance

between the cathode and the grid plane and is the

same as that given by Fig. 16.12 for a plane-

>ni

Fig. 16.13.—Equiva-

lent circuit of a triode

operating at ultra-high

frequencies.

electrode diode. The admittance F22 is simply the admittance of the

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Transit angle 6,, radians

Fig. 16.14.—Small-signal transadmittance of a triode as a

function of cathode-grid transit angle. {After Llewellyn.)

plate-grid-plane capacity. The admittance F„ is the capacity from the

grid wires to the grid plane and is mu times as big as the plate-grid-plane

> Llewellyn, F. B., and L. C. Peterson, Vacuum Tube Networks, Proc. I.R.E.,

vol. 32, pp. 144-166, March, 1944.
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capacity. The transadmittance Y12 replaces the (?„ used at low frequen-

cies. The transadmittance can be evaluated by an extension of the

arguments used to obtain the diode admittance. On the assumption

that the grid-plate transit time is small compared with the cathode-grid

transit time the transadmittance is given by the curves of Fig. 16.14.^

The magnitude of the transadmittance is seen to fluctuate with transit

angle, but not excessively. The magnitude never differs from the low-

frequency value by more than 25 per cent. This is apparently due to

something like the bunching action that occurs in klystrons in the pres-

ence of space charge where there is a periodic variation of the effective

bunching parameter. The phase of the transadmittance, however, is

continuously retarded with transit angle. The first minimum of the mag-

frequencies.

nitude occurs for a transit time of approximately one cycle in the cathode-

grid region.

With all the elements of Fig. 16.13 given it is a relatively simple

matter to compute the performance of the tube under any conditions.

Thus the predictions of Sec. 16.5 on the input impedance of a triode may
be verified by inspection. The input impedance of the circuit of Fig.

16.13 is ' essentially that of the grid-plane capacity in series with the

cathode-grid-plane diode impedance. At low frequencies this acts like

a capacity in series with a resistance. This is readily shown to be the

same as the impedance of a capacity paralleled by a resistance whose

magnitude varies inversely as the square of the frequency.

Multielectrode tubes can be treated by an extension of the ideas

applied above to the triode. Here it is merely necessary to add another

L section for each additional grid to the circuit of Fig. 16.13. Thus the

equivalent circuit of a tetrode is as given in Fig. 16.15.1 Here the first

Ubid
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branch point Ai is located in the control-grid plane between wires. The

second branch point A 2 represents the screen-grid plane between wires.

The admittances Yg, Y21, and F33 are the admittances of^the simple

capacities between adjacent electrodes. F, is the admittance of the

screen-grid-screen-grid-plane capacity, which is larger than the screen-

grid-plate capacity by the screen-grid mu. F 1, is the transadmittance of

the first-grid relative to the second-grid current. F 12 is the transadmit-

tance of the plate current relative to the grid potential.

16.8. Similitude and Scaling in Ultra-high-frequency Tubes. It is

frequently of interest to consider the effect of changing the size of tubes

or of operating given tubes at a different voltage or frequency. A study

of such changes is well worth while, for it lays a basis for design and also

aids greatly in the understanding of the operation of tubes at ultra-high

frequencies.

It is recognized that there is a relation between voltage, frequency,

and the distance that an electron must travel in a given length of time.

A basic relation between these factors can be obtained from the equation

of motion of an electron subjected to an electric field.

—eE = ma

Dimensionally, this is of the form

e dP- _ dAp

m Vt^ V

(16.28)

(16.47)

72/2

Since — is a numerical constant, it follows that is also a numerical
m v

7ft

constant. Essentially, this makes the combination — -y- a dimensionless

parameter that applies to the problems of motion. Thus, as long as

the factor is constant, no matter what the value of the individual

factors it will always be true that an electron will require the same frac-

tion of a cycle to travel corresponding distances. This same conclusion

is arrived at by considering transit angle as being equal to where T
is the transit time. Since the transit time is proportional to the ratio

of distance to velocity or the square root of voltage, transit angle is

proportional to the factor which is simply the square root of the

dimensionless factor given above. Hence to get tubes that will have the

same impedance at any given frequency, if tube a is twice as big as tube

h it must operate at four times the voltage of tube h. Likewise, to keep

transit time constant, it is necessary to build tubes smaller in inverse
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proportion to frequency for operation at a given voltage or operate at

voltages that are higher in proportion to the square of frequency for a

given size of tube.

Other factors besides the transit angle are involved in high-frequency

operation. If the size of tubes is changed, then power-dissipation

capacities are changed. So likewise are the actual inductances and

capacities of the tube. All these factors may be studied by setting up

some scaling factors with respect to the basic equations that determine

ultra-high-frequency operation. These equations are two, the equation

of motion of an electron and Poisson’s equation. Let there be considered

two tubes whose dimensions are in the ratio of D operating at wave

lengths in the ratio of W. Thus the defining relations for D and W are

D = - (16.48)
Xi

and

IT = ^ (16.49)
^1

If now an electron moves between corresponding points of two similar

tubes in the same fraction of a cycle,

dli = IT dti (16.50)

The equation of motion for an electron in the second tube is

= -eE^^ (16.51)

The corresponding equation of motion in terms of an electron in the first

tube is

mD d^xi _
ifw”

~ (16.52)

For these two equations to yield similar paths with the same dependence

upon transit angle at the respective frequencies it is necessary that

Ez E
(16.53)

Referring now to Poisson’s equation in the form of Eq. (16.31),

dE^

J 2 dt^ E

dtt

(16.54)
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In like manner the ratios of all the critical quantities may be obtained

in terms of the factors D and W. The resulting relations are sum-

marized in Table XI below.

TABLE XI
SCALING FACTORS FOR ULTRA-HIGH-FREQUENCY TUBES*

Quantity

Inductance

Capacity

Field

Voltage

Current density

Current

Power

Power density

Conductance

*D =-,W = ~
Xi Ai

Complete Voltage Wave-length

Ratio General scaling scaling scaling

W = D IF = 1 D = 1

L2 D W D 1
L\

^
IF"

c. D
IF D 1

c, IF"

E‘1 D 1 D
1

IF" IF

V 2 D"
1 D"

1

F. B'" : IF"

J2 D 1

D 1

Ji IF" IF" IF"

U D"
U"

1

h IF"
1 IF"

P2 D"
D"

1

Pi IF"
1 IF"

hz

hi

H"
IF"

D"
1

IF"

Gt D D
1

Oi IF
1 IF

It is interesting to note that this same table applies for magnetron

tubes, it being necessary only to add a row for the ratio of magnetic-flux

densities. The ratios in the column entitled “General” apply for similar

tubes operating at different frequencies but with electrons moving

between corresponding points in the tubes in the same fraction of a

cycle. The ratios in the column entitled “Complete scaling” apply for

similar tubes with dimensions proportional to wave length, the usual

case. If a tube is simply changed in size and the voltage adjusted accord-

ingly but operation is had on the same frequency, then the values in the

“Voltage scaling” column apply. If dimensions are not changed but

wave length and voltage are changed to get the same electronic action,

then the values in the “Wave-length scaling” column apply.

In the case of complete scaling, increased power output is actually

obtained up to the point where one of the requirements indicated by

the table is violated. This will usually be either the current-density
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requirement, which increases as the square of the frequency, or the power

dissipation per unit area requirement, which increases as the square of

the frequency.

In the case of voltage scaling an excellent gain in performance charac-

teristics is achieved. Tubes scaled on this basis will usually be limited

either by voltage breakdown or power dissipation. Note that the power

output goes up as the fifth power of the size. The required voltage

goes up as the square of the size. Inductance and capacity go up
linearly with size but will usually be the same percentage of the associated

external values.

Wave-length scaling amounts to operating a given tube at a variable

frequency but changing the voltage to compensate for transit-time effects.

This requires that the voltage be increased as the square of the frequency.

This requires emission-current density that increases as the cube of the

frequency and power dissipation per unit area that increases as the fifth

power of the frequency. Ordinarily, one cannot go very far in this

direction.

16.9. High-frequency Limit of Triode Oscillation. The operation of

power oscillator tubes at ultra-high frequencies is considerably more
complicated than that of receiving tubes. The increase in complexity

results from the fact that the alternating voltages are usually large and

therefore current will flow for only part of a cycle. Electrons flowing at

different times during the cycle will have widely different behavior as

far as transit times are concerned. The general treatment of large signal

effects will be left for the next section, and this section will be devoted

to some observations that can be made in limiting cases.

It is well known that transmitting tubes whether operating as oscil-

lators or as amplifiers suffer from a loss of output as the frequency is

raised. Figure 16.16 gives some curves showing the power output

of a number of different oscillator tubes as a function of frequency. All

these curves have the same general shape. At low frequencies the output

is constant. As frequency is raised, the power drops off, slowly at first,

and then very rapidly. Usually the power output will have dropped to

zero within a factor of 10 of the frequency at which a decrease in output

is first detectable. Of considerable importance is the observation that

there is a power-frequency limit for tubes of the same type.^ This is

evident in Fig. 16.16.

Although the curves for different tubes overlap, there is an envelope

that can be drawn to the family of curves as a whole. The basic trend

* Wagener, W. G., The Developmental Problems and Operating Characteristics

of Two New Ultra-high Frequency Triodes, Proc. I.R.E., vol. 26, pp. 401-414, April.

1938.
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is that tubes designed to produce high power are not able to go to as high

frequency as tubes designed for a lower power output. A better state-

ment of this effect is that as tubes are designed to operate at higher and

10 20 50 100 200 500 1000 2000 5000 IQOOO

Frequency, megacycles

30 10 3 I 0.3 0.1 0.03

Wavelength, meters

Fig. 16.16.—Power output of ultra-high-frequency oscillator tubes as a function

of frequency.

higher frequencies their output is inherently reduced. This is in accord

with the observations made in connection with the scaling values of

Table XI. The envelope for the water-cooled tubes is approximately a
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straight line with a slope of —4. This is the proper limit for tubes whose

output is limited by a given power dissipation per unit area. From
the Complete scaling column in Table XI it is seen that the power density

varies as the square of the frequency. Since the actual allowable dis-

sipation is fixed by the cooling system, the power must be decreased

inversely as the square of the frequency to keep the dissipation per unit

area constant. In addition, the area varies inversely as the square of the

frequency, and as a result the power output obtainable with a watercooled

tube of optimum design operating at a given fraction of its high-fre-

quency limit is expected to vary as the inverse fourth power of frequency.

The air-cooled tubes have a high-frequency limit that varies approxi-

mately as the inverse square of frequency. This is not greatly different

Frequency, megacycles

Fig. 16.17.—Power output of continuous-wave oscillators as a

function of frequency.

from the relation that is expected from complete scaling when the

cathode emission is the limiting factor.

Recent developments in tubes have pushed the high-frequency

envelope appreciably to the right. In Fig. 16.17 is shown the power

output as a function of frequency of various types of continuous-wave

tubes as of early 1946.^ Undoubtedly, further advances will push these

limits still farther to the right, but the big gains in this direction will

come from the development of new types of operation rather than from a

refinement of conventional tubes.

Not too much is known about the operation of tubes over the com-

plete range of frequencies from a low-frequency range of constant output

to a high-frequency limit of extinction. At low frequencies where the

' Byrne, John, Power Limits of Continuous Wave Tubes, Electronics, vol. 19,

p. 91, January, 1946.
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transit time of the electrons is negligible the performance is well under-

stood in terms of Class C amplifier theory. As frequency is raised, some

phase shifts are encountered as a result of the finite transit time of the

electrons and the performance can still be estimated. This takes one

out to frequencies where the output has dropped off to about 80 per cent

of the low-frequency value. As frequency is increased still further,

there are pronounced phase-shift and transit-time effects associated with

large alternating voltages and the resulting operation is at best poorly

understood. This covers the frequencies from about 80 per cent to about

5 per cent of the low-frequency output. When the output has dropped

to about 5 per cent of the low-frequency output, the alternating voltages

will be quite small and the smfill-signal theory of Llewellyn, Benham, and

Mueller will apply.

Frequency at Which Efficiency Begins to Fall Off. It is of interest

to identify some reference points on the curves of Fig. 16.16. One

such reference point is the frequency at which the output has dropped to

some given percentage of the low-frequency value, say 90 per cent. This

can be done fairly satisfactorily by the application of some simplifying

assumptions.^ Let it be assumed that the oscillator is operating Class C
and that the plate-current pulse is a rectangular one which flows for a

quarter of a cycle. Thus let ip = ii for ~
^ ^ j

and ip = 0 for

other angles of the cycle where 6 = wt. Let the corresponding plate

voltage be

Vp(t) = Vpo - Vp, cos e (16.55)

The plate power loss for these assumed conditions is as shown in Fig.

16.18.

Wpi = ^ y iiiVpo — Vpi cos 6) dd

“4

UP fiFpo iiVpt~T
Let it now be assumed that electron-transit-time effects set in as a

result of an increase in frequency and that the only effect is to cause

the plate-current pulse to lag the alternating plate voltage by the angle

coT, where T is the cathode-plate transit time. The plate loss under

these conditions corresponding to the dotted curves of Fig. 16.18 will be

* Gavin, M. R., Triode Oscillators for Ultra-short Wave Lengths, WireUss Eng.,

vol. 16, pp. 287-296, June, 1939.

(16.56)

(16.57)
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S
o

Fig. 16.18.—Effect of transit time upon the

plate loss of a Class C oscillator.

Wp
2k J

4

ii(Fpo — Vpi cos 9) dd

_ liZk cos 0,T

or for small transit angles

Wp2 =

TT

i\Vpi

V2 2,r V2

The efficiencies for the two cases cited above are

ITo - Wpi
m

and

Wo

Wo - Wp2

(16.58)

(16.59)

(16.60)

(16.61)

V2 = Wo
(16.62)
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where TFo is the input power and Wpi and Wp2 are the plate losses for

the two cases. Accordingly, the difference in efficiency is

iiV _ \/2 Vpi

2x -\/2 Wo IT Vpo
(16.63)

which indicates that the decrease in efficiency is proportional to the square

of the frequency, to the square of the transit time, and to the ratio of

peak alternating to direct plate voltage. A further assumption that is

reasonable is that the ratio of peak alternating to direct plate voltage is

0.9. This corresponds closely to the operating condition for maximum
efficiency over a wide rang© of conditions of voltage, load, and tube

selection. With this assumption Eq. (16.63) reduces simply to

— ij2 = (16.64)

Let now some voltages be assumed so that the transit time T can

^ ^ be determined. A representative

operating condition is that

= F, = (16.65)

mining low-frequency transit time in

a Class C oscillator

This means that the transit time will

be determined for a potential profile

like that shown in Fig. 16.19. Here
it is assumed that the current flow in

the cathode-grid region is space-
charge-limited while that in the grid-

plate region is not. Actually, the presence of space charge will depress

the voltage in the grid-plate region slightly as shown by the dotted

curve, but the error made in assuming that there is no space charge
present in this region will not be great. The cathode-plate transit time

for this condition is

Tcp ^ sec (16.66)

5.93 X 10^

where deg and d^p are cathode-grid and grid-plate distances in centimeters,

respectively, and Fpo is the direct plate voltage in volts.

If now it is desired to determine the wave length at which the

efficiency has dropped 10 per cent from the low-frequency value, then

)j2 — ’ll is set equal to 0.1, as a result of which

X 2 = 4^cTcp (16.67)
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where c = 3 X 10^“ cm per sec is the velocity of light. When now the

value of Tcp from Eq. (16.66) is substituted, it is found that

^ 20,200(3d.„ -b d„p)
cm (16.68)

This is the relation that has been sought. It gives the wave length at

which the efficiency of a Class C oscillator will have dropped 10 per cent

from its low-frequency value. The assumptions made were that the

plate current was a rectangular pulse of a quarter-cycle duration which

was shifted in phase but not changed in shape by electron-transit-time

effects and that the grid and plate voltage at the peak of the alternating

grid voltage were each one-tenth of the direct plate voltage. While

these assumptions are somewhat rough, the answer depends upon the

difference between the two quantities arrived at by making the same
assumptions and so the errors involved tend to cancel. The largest error

probably lies in the assumption that the shape of the plate current does

not change. The formula is probably accurate only w'ithin 10 per cent

but is still useful in estimating ultra-high-frequency behavior. Inspection

of Eq. (16.68) shows that the lower wave-length limit of tubes may be

extended by reducing the interelectrode spacings, with the cathode-grid

distance more critical than the grid-plate distance, or by increasing the

plate voltage.

Frequency at Which Oscillation Ceases. Another reference point

on the curves of Fig. 16.16 is the frequency at which the tube ceases to

oscillate. This is determined by circuit as well as electron-transit-time

considerations, but with proper design of tubes it is always the electron-

transit-time effects that finally dominate in reducing the output. It may
therefore be expected that whatever mechanism reduces the tube output

is some function of the total transit time from cathode to plate. If this

can be specified in terms of operating conditions at the limiting frequency,

then the extinction frequency can be related to the cathode-plate transit

time by experimental observations.'

Since most oscillators derive their grid bias from a resistor in the

grid circuit, it is expected that as frequency is raised and the oscillations

become weaker until finally they cease, the grid-bias voltage will be

reduced until at the extinction frequency it has become zero. Under this

condition the potential profiles along which the electrons must move will

be as shown in Fig. 16.20. The electrons will prefer to move between

the grid wires, taking the path that has the most positive potential.

For the case under discussion it will be assumed that the current flow ir

the cathode-grid region is space-charge-limited while that in the grid-
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plate region is not. This, as we shall see later by a comparison of transit-

time formulas, is a reasonable approximation to the true condition. As

^ ^ ^ a result of these assumptions the potential

will vary as the four-thirds power of the

distance from the cathode in the cathode-

grid region and linearly in the grid-plate

region.

At the extinction frequency, with the

grid electrode at zero voltage, the average

Y
potential of the grid plane will be—> where

Vp is the plate potential and is the ampli-

fication factor of the tube. With this infor-

mation the transit times can now be

calculated. The transit time in the cath-

ode-grid region will be

determining the high-frequency

limit of triode oscillation.

Tea =
Sdc,

5.93 X 10^

sec (16.69)

since the transit time in the absence of space charge is the distance divided

by the average velocity and with full space charge is 50 per cent greater.

The transit time for the grid-plate region is

Tap = y/#1

5.93 X 10^ y/Vp (Vm + 1)
(16.70)

since the transit time is the distance divided by the average velocity.

Adding the results of Eqs. (16.69) and (16.70), there is obtained

Tap = I Mea -f
5.93X10'\fA Vf^+1/

If the oscillator ceases to oscillate when this transit time is some

fraction fc of a cycle, then the limiting wave length of oscillation is

Xo =^ (16.72)

where c = 3 X 10“* cm per sec is the velocity of light. In terms of

the specific value of T^p this becomes

2dgp \

Vm -f 1/
cm (16.73)
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This is the relation for the limiting wave length of oscillation that has

been sought. It gives the limiting wave length in terms of the plate

voltage of the tube in volts, the interelectrode distances in centimeters,

the amplification factor, and the fraction of period required for an

electron to travel from cathode to plate, k. Gavin found that the limiting

total electron transit time was approximately half a cycle, k = 0.5, for a

series of tubes of the radiation-cooled type with single grid and plate

leads brought out the top of the tube. For tubes of the lighthouse type,

to be described, the limiting fraction of the cycle required by an electron

to travel from cathode to plate is greater, of the order of

It is possible to evaluate the transit time in the grid-plate region

more accurately than was done in Eq. (16.70). The ratio of the grid-

plate to the cathode-grid transit time as obtained from the assumption

that there is full space limitation of emission in the cathode-grid region

and no space charge in the grid-plate region is

2 dgp

7gp 3 deg
(16.74)

where Vg is the effective potential of the grid plane, Fp is the plate

potential, dgp is grid-plate distance, deg is cathode-grid distance, Tgp

is grid-plate transit time, and Teg is cathode-grid transit time. This

T
expression is accurate within a few per cent for values of less than

i eg

For cases in which the effective grid potential is relatively large compared

with the plate potential a more accurate expression that considers space-

charge effects in the grid-plate as well as in the cathode-grid region is

needed. Such an expression has the form^

(16.75)

This is a cubic equation, which is a little inconvenient to solve, but the

relation between the different variables is represented by the nomographic

chart of Fig. 16.21. It will be recognized that Eq. (16.75) reduces

T
approximately to Eq. (16.74) when the ratio is small enough so that

i eg

the third term on the right-hand side of Eq. (16.75) may be neglected.

1 Llewellyn, op. cil., p. 36.
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16.10. Large-signal Effects. The analysis of the previous sections

has been mostly restricted to small signal voltages, with the attendant

assumption that none of the electrons were ever turned back. In actual

tubes these assumptions will often not apply because of the large signal

voltages developed. When large signal voltages are developed, a new

set of considerations apply and it is of some interest to examine these

briefly. Unfortunately, the analysis of large-signal effects is so com-

plicated that only relatively simple cases can be solved.*

Transit-time Effects in Diodes. The simplest case of large-signal

effects that can be handled yielding some generally useful information

Fig. 16.21.—Nomographic chart relating triode transit times in the presence of

space charge to electrode dimensions and voltages as given by Eq. (16.75).

is that of the unbiased diode. Even here, it is not possible to take into

account the effect of space charge because of attendant complications

of the analysis. Accordingly, let it be assumed that the emission is

temperature-limited. This means that the same number of electrons

per second will be liberated whenever the potential gradient at the

cathode is positive. This assumed condition is often realized in pulsed

oscillators, where the voltages are so extremely high. Of principal inter-

est is the behavior of the electrons with regard to such matters as their

transit time, conditions for traveling a certain distance before turning

around, and so on. The voltage will be assumed to be of the form

7(0 = 7 sin (16.76)

' Wang, C. C., Large Signal High Frequency Electronics of Thermionic Vacuum

Tubes, Proc. I.R.E., vol. 29, pp. 200-214, Anril. 1941.
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The corresponding differential equation of motion is

V d'^x
e — sino)t = m (16.77)

where s is the distance between cathode and plate of the diode. The
starting conditions are that the initial velocity and acceleration of the

electron are zero. As a result, a first integration of Eq. (16.77) gives

V
eV
mois

(cos call
— cos wt) (16.78)

where v is the velocity of the electron and U is the starting time. A

second integration gives

- = — {6 cos di — cos di di sin di — sin d) (16.79)

where 0 = wf is a transit angle. This equation gives the fractional

distance from cathode to plate in terms of the elapsed transit angle and

the starting angle. Note that as a coefficient of the right side of the

equation there appears the dimensionless parameter of Eq. (16.47).

It is convenient to express the distance s in centimeters and the frequency

in megacycles, in which case Eq. (16.79) takes the form

r 0 9.42U
- = —

2

(6 cos 01 — 01 cos 01 + sin 0i — sin 0) (16.80)
5 Jme ^cm

The behavior of electrons in an unbiased diode is best studied by
plotting their position as a function of time from Eq. (16.79). Such a

plot is given in Fig. 16.22.1 It looks different from the more commonly
presented figure that results when the voltage is a square wave, but it is

the true representation for the unbiased diode without space charge with

an applied sine wave of voltage. This figure contains a great store of

useful information from which many interesting properties of the electron

trajectories may be observed. Curves are shown for electrons emitted

every 30 deg of the plate-voltage cycle. The most important observation

is that electrons will flow only when the plate voltage is positive or

between 0 and 180 deg for the sine wave of voltage assumed. In the

second place, all electron curves consist of a straight line with a super-

imposed sinusoidal component. The slope of the straight-line portion

of the curve is proportional to the rate of change of voltage with time

at the instant of emission. This makes the slope maximum at the

1 Curves such as those of Fig. 16.22 are readily plotted by graphical means. See

Kompfner, Rudolf, Transit-time Phenomena in Electronic Tubes, WireUfs Eng.,

vol. 19, pp, 2-7, 1942.
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beginning of the sine-wave cycle, zero at the positive peak of voltage,

and negative for the rest of the positive half cycle. Any electrons

emitted during the first half of the positive cycle will eventually reach

the plate, no matter how far distant. Electrons emitted during the

second half of the positive half cycle of voltage may return to the cathode

if they do not strike the plate electrode first. This means that the plate,

no matter how situated, will always receive at least half the emitted

electrons.

The curves of Fig. 16.22 are universal because of the fact that the

distance and the time are expressed in units of frequency, cathode-plate

Fig. 16.22.—Distance-time behavior of electrons in an unbiased diode without space

charge.

distance, and voltage. Increasing the frequency increases the time

parameter in direct proportion and the distance parameter in proportion

to the square of the separation. Increasing the voltage decreases the

distance parameter inversely as the voltage.

The point at which any curve of Fig. 16.22 reverses direction is given

by
B = 360° -

(9i (16.81)

The locus of the reversal points is shown by a dashed line in Fig. 16.22

up to the curve for the 90 deg electron, beyond which no electrons will

return to the cathode. The starting time of a grazing electron for any
plate distance, voltage, and frequency may be calculated from the above
relation.
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The current associated with the electron movements of Fig. 16.22

may be computed by summing the quantity — for all electrons in transit
s

over a cycle of voltage. This is rather difficult to do analytically because

different conditions hold for different parts of the cycle. Suppose, for

instance, that frequency, voltage, and electrode separation are such

that the electron liberated at the peak of the voltage wave (0 = 90 deg)

just grazes the plate. Then in evaluating the current the first electron

requires 150 deg of transit angle to arrive at the plate. During this time

the current increases rapidly. As soon as the first electron strikes the

plate, the current drops, quite rapidly at first, and then more slowly

because the contribution to the total induced current made by the

electrons striking the plate is much greater than that of the new electrons

liberated at the cathode. The induced current then drops because the

velocity of the electrons drops progressively from the beginning of the

cycle. After the voltage reverses, some of the electrons reverse direction

and return to the cathode so that some electrons are inducing positive

current while the returning electrons are inducing negative current.

Eventually, the current will become negative but will reach a finite

magnitude and then decrease. Although analytical treatment of the

current is difficult, the shape of the induced-current pulses is readily

obtained by graphical methods.* Some of the resultant shapes of the

induced-current pulses are shown in Fig. 16.23. Curves are labeled with

values of the distance parameter of Fig. 16.22, with x set equal to s,

that is, values of It must be remembered that the diode emis-

sion is temperature-limited, which means that for small transit angles

the current pulse is expected to be square.

The curves of Fig. 16.23 show the degeneration of the square pulse

of current, which exists for short transit times, into a nearly triangular

pulse with a negative tail as the transit angle increases. For very short

values of the determining parameter the current pulse is very nearly

square except for a sharp spike at the front of the pulse, which rises to

twice the height of the rest of the pulse. This occurs because the initial

induced current is made up of the contributions of a large number of

high-velocity electrons, which are bunched at the front of the electron

stream. When these are retired from action on striking the plate, the

current drops very rapidly because the successive electrons come along

at a lower velocity and are not so strongly bunched. This bunching

* Kompfner, Rudolf, Current Induced in an External Circuit by Electrons Mov-
ing between Two Plane Electrodes, Wireless Eng., vol. 19, pp. 52-55, February, 1942.

Figure 16.23 is from this paper.
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action is evident from the curves of Fig. 16.22, where it is seen that the

electrons liberated at 0 and 30 deg are separated by a time interval, over

most of their path, which is less than half that between any two successive

curves corresponding to electrons liberated at adjacent 30 deg intervals.

As the transit angle increases, the peak is reduced somewhat and the

subsequent current falls off more gradually. At the same time a negative

pulse of current forms, due to electrons falling back on the cathode as

the plate voltage becomes negative.

Transmit-time Effects in Triodes. Although the above remarks have
been restricted to the diode, they are readily extrapolated to cover the

Fig. 16.23.—Induced-current pulses in an unbiased diode without space charge.

behavior of a triode. For a triode operating Class B the electron behav-
ior may be expected to be very similar to that of the diode under the

conditions just discussed. As a result, the distance-time picture for

the cathode-grid region will be very similar to that of the corresponding

portion of Fig. 16.22. On passing through the grid plane the electrons

will encounter a positive gradient of potential that is quite large and
varying sinusoidally with time. The plate voltage will adjust itself in

an amplifier so that it will be minimum when the fundamental component
of plate current is a maximum. This means that the plate voltage lags

the negative grid voltage and the first electrons passing through the grid

plane will encounter a voltage gradient which is higher than the minimum.
As a result, the first electrons passing through the grid will be accelerated

more than the electrons immediately following. The resultant distance-
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time diagram will take the form shown in Fig. 16.24. Here it is seen

that the plate-current pulse has been stretched out considerably by
what is essentially a debunching action in the grid-plate space. The
length of the plate pulse is determined by the interval between the

times when the first electron enters the grid-plate space till the last

Fig. 16.24.—Distance-time diagram of elec-

trons in a triode.

electron leaves it. The corresponding plate-current pulse is shown in

Fig. 16.25. For comparison, there are shown in this figure the plate

current and plate voltage that would exist at low frequencies for a given

grid driving voltage. The plate-current pulse is seen to be displaced

and distorted. The displacement takes the form of a phase lag, due both

to the grid-plate transit time and to the debunching action of the field,

which causes the electrons to be progressively retarded throughout the

current pulse. The distortion is due primarily to the debunching action.
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The phase shifts which occur in the plate current because of transit-

time effects are sufficiently pronounced so that there is a considerable

difference between the operation of amplifiers and oscillators. In an

amplifier the plate voltage will adjust itself to the phase lag of the plate

current In an oscillator the plate is coupled to the grid so that the two

electrode voltages are ordinarily 180 deg out of phase. As a result, the

output of an oscillator falls off more rapidly with frequency than does

that of an amplifier. This is because in the amplifier the output is

decreased only as the reduction in the fundamental component of plate

current arising from pulse distortion

but is independent of the phase of

the plate current. In the oscillator

the output is reduced because in

addition to the reduction of the fun-

damental component of plate cur-

rent the phase of the current

relative to a plate voltage of fixed

phase causes a further lowering of

the output power. As a result, the

general experience is that amplifiers

will give output when the transit

angle is increased 50 per cent
beyond that at which oscillators

cease to operate. ‘

Transit-time Effects in Tetrodes.

Tetrodes have inherently better

operating characteristics than tri-

odes as far as transit-time effects are

concerned . This is because the con-

trol grid is followed by a positive

screen grid maintained at a fairly high potential. As a result, the elec-

trons are accelerated fairly uniformly as they pass the control grid and

the attendant debunching action is much less than is the case with the

triode. In addition, the over-all transit time from control grid to plate

of the screen-grid tube may actually be less than is the case for the triode

because the electron is moving in regions of higher potential most of the

time. In the screen-plate region of the tetrode the electrons will encoun-

ter a retarding potential gradient that will exert some debunching action

but that will not be as strong as is the case with the grid-plate region

of the triode. A typical set of distance-time curves of a tetrode is shown

in Fig. 16.26. These curves exhibit all the properties mentioned above.

1 Wagener, op. cU.

rent pulse in a Class C triode amplifier

caused by transit-time effects.
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To be a satisfactory tube, a tetrode should be built on the principle

of the beam-power tubes, i.e., with aligned control and screen grids.

This alignment, along with proper interelectrode dimensions, serves two

purposes. (1) It reduces the direct current to the screen. (2) It pro-

duces a strong enough potential minimum by virtue of space-charge

effects to suppress secondary emission from the plate. The beam tetrode

has a number of advantages for ultra-high-frequency operation in

addition to the favorable transit-time characteristics mentioned above.

In the first place it is possible to attach separate resonant circuits to

the cathode and control grid on the one hand and to the screen grid and

plate on the other hand. By means of concentric lines or cavity reso-

nators it is possible to separate almost completely the fields of what are

Pig. 16,26.—Distance-time behavior of elec-

trons in a tetrode.

then the input and output resonators. The only interaction that exists

is through the medium of the cathode-plate capacity, which is inherently

small.

Beam tetrodes built so that they may be connected to concentric-line

resonators have been very successful as ultra-high-frequency oscillators.

Such tubes, known as “resnatrons,”^ have^been built to give continuous

power outputs of 60 kw at frequencies of 500 mc.^’® In the form of

* The resnatron, also known as the “ Sloan-Marshall tube,” was developed at the

University of California. It underwent further development both at the Westing-

house Laboratories and at the Radio Research Laboratory during the Second World

War.

“ Salisbury, W. W., The Resnatron, Electronics, vol. 19, pp. 92-97, 1946.

’ Dow, W. G., G. Hok, and H. W. Walsh, “Very High-Frequency Techniques”

(report of the Radio Research Laboratory), Chaps. XVIII, XIX, McGraw-Hill, New
York, 1947.
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a very large tube operating continuously at voltages of 10 to 15 kv the
resnatron takes advantage of the inherent benefits of voltage scaling.

The large size makes possible water-cooled screen grids, thus removing
what might otherwise be a limiting factor in the tube design. In addi-

tion, the high voltage reduces secondary emission since at high enough
voltages the ratio of secondary- to primary-electron currents goes down
again. Evidence of this is found in the fact that scaled-down tubes

Fig. 16.27.—^Lighthouse tube—external

view. Type 2C39—plate at top.

designed to give about 1 kw of continuous power have shown efficiencies

of only about 20 per cent, whereas the large tubes have given efficiencies

of the order of 50 to 60 per cent.

16.11. Disk-seal Tubes. There have recently been developed a

number of tubes known as “disk-seal” or “lighthouse tubes.”i’^ Essen-

* Disc Seal Tubes, Gen. Elec. Rev., vol. 48, pp. 50-51, January, 1945.

® McAkthue, E. D., Disc Seal Tubes, Electronics, vol. 18, pp. 98-102, February,

1945.
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tially, the lighthouse tube is a tube with so many leads brought out

from a single electrode that the leads become a disk. The external form

of the tube is shown in Fig. 16.27. In small power tubes the plate is

brought out through a cap at the top of the tube. The grid is brought

out through a disk at the center of the active tube structure, and the

cathode is brought out through a cylinder at the base of the tube. The
electrodes are separated by cylindrical sections of glass, which are butt-

sealed to the metal disks with which they are in contact. The internal

electrodes are of a plane-parallel design. The grid is of parallel wires

supported over the hole in a disk in which currents flow radially to the

outside circuit. The cathode and plate are the ends of small-diameter

cylinders, which are supported by the glass tubing. A cutaway view

Pig. 16.28.—Lighthouse tube—cutaway-

view. Type 2C40.

of a low-power lighthouse tube is shown in Fig. 16.28. In high-power

lighthouse tubes having plate dissipations between 20 and 100 watts,

the position of the plate and cathode is reversed, with the result that the

plate is at the large end of the tube. This permits radiating fins to be
attached ta the plate for air cooling.

By -virtue of the electrode arrangemept of lighthouse tubes, lead

inductance is cut to a minimum. Therefore, operation is possible to

much higher frequencies than with tubes having single or even double

vdre leads. Lighthouse oscillators have been made that will operate to

3,000 me (1946).

A further advantage of the electrode arrangement is that it makes
the tube suitable for use in a double concentric-line structure such as is

shown in Fig. 16.29. The line type of resonator makes it possible to

operate at higher frequencies than the natural resonant frequency of

the shorted tube. This is possible with resonator operation on a three-
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quarter wave-length mode, for which it is possible to go to such high

frequencies that the voltage node is pushed inside the tube. In addi-

tion, it is possible to gang the cathode and plate resonators for broad-band

operation. This has been done successfully over a 3 to 1 band of fre-

quencies. If minor trimming adjustments are permitted, it is possible

to produce an oscillator that will operate at 300 to 3,000 me. Not
shown in Fig. 16.29 are the input and output coupling devices and the

intercavity coupling. These, however, are usually loops or probes of

conventional form and can readily be imagined.

In addition to the somewhat conventional resonator arrangement

Fig. 16.29.—Double concentric-line oscillator utilizing a

lighthouse tube.

of Fig. 16.29, various special methods of coupling the cathode and plate

lines for oscillator operation may be used.i~'*

Lighthouse-tube amplifiers have found some use in the ultra-high-

frequency band. Here the operation is that of a grounded-grid amplifier,

with the attendant advantages of low input impedance, high output

impedance, low interaction between input and output circuit, and the

relatively low noise associated with a triode.®’® At frequencies below

1,200 me an amplifier-converter combination using lighthouse tubes is

superior in its noise figure to a crystal mixer. There will undoubtedly

be advances in tube design, which will extend appreciably the present

limits of such tubes.

1 General Electric Company, Electronic Tube Eng. Bull. ET-Bl, June, 1945.

“ Gukewitsch, a. M., Cavity Oscillator Circuits, Electronics, vol. 19, pp. 135-137,

February, 1946.

® Guakrera, J. J., Tunable Microwave Cavity Resonators, Electronic Ind., vol.

5, pp. 80-82, March, 1946.

^ Gurbwitsch, a. M., and J. R. Whinnery, Microwave Oscillators using Disk

Seal Tubes, Proc. I.R.E., vol. 35, pp. 462-473, May, 1947.

® Dishae, Milton, Gain and Noise of Grounded Grid Amplifier at Ultra-high

Frequencies, Proc. I.B.E., vol. 32, pp. 276-284, May, 1944.

® Jones, M. C., Grounded-grid Radio Frequency Voltage Amplifiers, Proc. I.R.E.,

vol. 32. pp. 423-429, July, 1944.



CHAPTER 17

VELOCITY-MODULATED TUBES, OR KLYSTRONS

17.1. The Bunching Principle. We have seen in the last chapter that

there are some severe limitations on conventional tubes which conspire

to make their operation relatively poor at ultra-high frequencies. The
principal limitations arise from electron-transit time, lumped electrical

reactances, and low-Q resonant circuits. With negative-grid tubes each

of these factors has been pushed considerably beyond conventional

form, and yet the performance characteristics of these tubes leave much
to be desired at the ultra-high frequencies. It was not strange, therefore,

that various investigators sought means of efficiently generating and

amplifying power at ultra-high frequencies by a totally new attack

on the utilization of electronic principles. This new attack, which

resulted in the modem klystron, involved a combination of the elec-

tronic-bunching principle and the cavity resonator. Both were neces-

sary for the production of a successful tube. The bunching principle

overcame the transit-time difficulties, and the use of cavity resonators

largely eliminated lumped reactances and produced high-Q resonant

circuits.

In negative-grid tubes the transit-time difficulties encountered arise

largely because the electrons in the cathode-grid space start at zero

velocity, hence inherently move slowly, and thus take a large fraction

of a cycle to get from cathode to grid as the frequencies get up into the

ultra-high region. Since the method of producing variations in plate

current is inextricably associated with the large cathode-grid transit

angle, the pegative-grid tube always operates poorly if the frequency is

raised high enough. Means are therefore sought for producing varia-

tions in current that are not limited by transit time. Such means were

independently conceived by the Heil brothers and the Varian brothers.''^

Both these pairs of men proposed deAuces utilizing an electron beam

A Heil., A. A., and O. Heil, Eine neue Methode zur Erzeugung kurzer ungedampf-

ter elektromagnetishen Wellen von grosser Intensitat (A New Method of Generating

Short Undamped Electromagnetic Waves of High Intensity), Zeit. fur Phys., vol. 95,

pp. 752-773, July, 1935.

* Varian, R. H., and S. F. Varian, A High Frequency Oscillator and Amplifier,

Jour. Appl. Phys., vol. 10, pp. 321-327, May, 1939.

527
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similar to that in a cathode-ray tube and then obtaining current pulses

by periodically varying the beam-electron velocity a small amount
about its average value. When the velocity of the beam electrons is

varied, those which have been speeded up will subsequently overtake

those which have been slowed down. The result is that a short distance

beyond the point where the electron velocity is varied there will appear

bunches of current from which power can be extracted. This in its

essence is the bunching principle. The formation of electron bunches

is illustrated in Fig. 17.1. In this figure there is shown the behavior

of a series of electrons, represented by dots, released at uniform intervals

EMITTER— j— r-r-j-

BUNCHER -

CATCHER -i-

V •

s.

TIME
Fig. 17.1.—Elementary representation of bunching

action.

through a cycle of alternating voltage, which is applied between two
closely spaced grids of an input resonator known as the buncher. The
voltage between the grids of the buncher serves to modify the velocity

of the electrons as they arrive from the cathode. Some electrons are

speeded up a little, and some are slowed down a little. The bunching

action resulting from the regrouping of the electrons of different velocity

is evident from the figure. Thus, the application of the bunching

principle utilizes transit-time effects, whereas in negative-grid tubes

transit-time effects are detrimental.

To utilize the current bunches that are formed along the beam of

electrons it is necessary to extract energy from this current stream.

This is done by passing the bunched beam through the grids of an
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output resonator or catcher. As the electrons pass through the grids,

charges are induced on the grids that change in magnitude and sign as

each electron passes through. In effect, this causes the induced charge to

flow through the resonator to produce a current flow that delivers power

to the resonator by passing through its equivalent resistance. Tubes

utilizing the velocity-modulation principle are generally referred to as

klystrons after the Greek verb “klyzein,” expressing the breaking of

waves on a beach.

The physical form of the klystron has been described briefly in Sec.

2.7. Further information with specific reference to klystron amplifiers

is given in Sec. 17.5. The klystron differs from negative-grid tube

amplifiers and oscillators in two respects. First, the current pulses are

produced by a velocity variation rather than by an intensity variation.

Second, energy is extracted from the current pulses by the charges induced

on passing the beam through a short region of varying field instead of a

long one. Furthermore, the extraction of energy does not require the

electrons to strike the electrodes attached to the resonator. It is not

always recognized that energy is extracted from electrons in a negative-

grid tube by forcing the electron to move against an alternating compo-

nent of electric field, but this is the case. Electrons in a negative-grid

tube will arrive at the plate with velocities which are on the average less

than those which they would have had if no alternating component of

electric field were present. The residual energy represents a loss and

appears as heat liberated at the plate electrode. The difference between

the direct power input to the tube and the heat liberated at the plate

appears as useful output. In the klystron the electrons that have passed

through the catcher grids emerge with less energy on the average than

they would have had if the beam had been unbunched. The difference

in energy goes into useful r-f power. The residual energy appears as

heat on a collector electrode.

17.2. Cavity Resonators. The desirability of extracting energy from

electrons by passing them through a short region of alternating electric

field, which as we shall see leads to greater efficiency of conversion of

energy, requires the use of cavity resonators. The outstanding charac-

teristic of these devices is that current flow and associated alternating

components of field are entirely internal to the resonator.*'^ A con-

centric-line resonator in which the inner conductor is shorted to the outer

at one end and which is coupled by a small capacity gap to the outer

* Hansen, W. W., A Type of Electrical Resonator, Jour. Appl. Phys., vol. 9,

pp. 654r-663, October, 1938.

* Hansen, W. W., and R. D. Richtmyeh, On Resonators Suitable for Klystron

Oscillators, Jour. Appl. Phys., vol. 10, pp. 189-199, March, 1939.
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conductor at the other is one form of cavity resonator. Such resonators

have already been referred to in the discussion of grounded-grid amplifiers

and oscillators utilizing lighthouse tubes. Such a shorted concentric-line

resonator will resonate when the capacitive reactance of the gap equals

the inductive reactance of the line and hence if the gap is small will

oscillate at lengths somewhat less than Mi etc., of a wave length.

In such a resonator the electric and magnetic fields will be totally confined

to the interior of the resonator. In addition, if the wall thickness is

large compared with the skin depth, ‘ as it usually is, the currents asso-

ciated with the fields will flow in a thin layer on the interior conducting

surfaces of the resonator—no currents will flow on the outeide of the

resonator. The electric and"magnetic fields in such a resonator will be
established 90 deg out of time phase. As a result, when the magnetic

field is a maximum, the electric field is zero, and vice versa. The total

energy stored in magnetic and electric fields at any point on the cycle is

very nearly constant over a period of a cycle or two. The total stored

energy of a freely oscillating resonator decreases exponentially over long

periods of time and drops by a factor of 2.718 in a time of ^ cycles.

Electric- and magnetic-field components and associated voltages and
current likewise decrease exponentially with time in a freely oscillating

resonator. All the currents, voltages, and field components will decrease

* “Skin effect” is a term applied to the tendency of ultra-high-frequency currents

to flow in a layer on the surface of a conductor. This comes about because of the

tendency of the current to flow in such a way that it is encircled by the fewest number
of magnetic-flux lines. Thus with circular conductors the current tends to flow on the

surface, and hollow tubes are just as good conductors at sufficiently high frequencies

as are solid conductors. Since the penetration of current at 6.5 me is only 0.001 in.

in copper and is less at higher frequencies, most skin-effect problems for ultra-high

frequencies can be solved by assuming that the surfaces are plane, i.e., that the radius

of curvature of the surface is much greater than the skin depth. For plane-surface

conductors the relations are relatively simple (see Wheeler, H. A., Formulas for the

Skin Effect, Proc. I.R.E., vol. 30, pp. 412-424, September, 1942). The current density

drops off exponentially into the conductor, and the effective skin depth is defined as

that depth at which the current density is ^ of the surface current density. The
Z.tlo

formula for skin depth is d = {-n-ffur) meters, where ju is the permeability in mks units

and a is the conductivity of the material. For copper this reduces to 2.57 X 10“^/“W

in. The corresponding surface resistivity isR = (ifftip) ohms per unit square, where

p is the volume resistivity in ohm-meters and other units are mks. For copper this

reduces to F = 2.61 X ohms. The direction of current flow is always

parallel to the surface and directly proportional to the strength of the tangential

component of magnetic-flux density at the surface.
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by a factor of 2.718 in a time of — cycles. Another characteristic of a

concentric-line cavity resonator is that the magnetic-flux lines always
encircle current, whether this be in the form of conduction or displace-

ment current (displacement current is equal to the time rate of change
of electric field multiplied by the dielectric constant).

So far, all the remarks on closed resonators have been confined to

concentric-line resonators. Many other closed or cavity resonators are

possible. It is possible to get electromagnetic-field resonances that

exhibit all the above-mentioned characteristics in simple cavities such as

cubes or cylinders or spheres. These have limited usefulness for elec-

tronic purposes, for it is not possible to shoot an electron through such

pure cavities in a sufficiently small fraction of a cycle to secure an efficient
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Fig. 17.2.—Reentrant cavity resonators.
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energy exchange between the field and the electron. This is because the

dimensions of pure cavities are relatively large compared with a wave
length. The diagonal of a cubical resonator, for instance, is equal to

the wave length of oscillation for operation on its lowest resonant fre-

quency. For this reason, the pure cavity resonators find their principal

application in such devices as wavemeters and filter elements rather than

in vacuum tubes. For tube applications, cavity resonators that are

reentrant, i.e., have internal projections from the walls, are of most use

because this form produces a very intense electric field, concentrated in a

small region, through which it is convenient to shoot electrons. Some
typical resonators of this kind are shown in Fig. 17.2. The resonators

a, b, and c, shown in this figure have the same resonant frequency.

Extreme forms such as a and c may be considered equivalent to coaxial

and radial lines, respectively, with capacity loading' and may be studied

' Ramo, S., and J. R. Whinnehy, “Fields and Waves in Modern Radio,” pp. 404-

41 1, Wiley, New York, 1944.
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by conventional transmission-line formulas. Intermediate forms such

as are shown in Fig. 17.2b can be analyzed only by more powerful

methods. The electric field is almost entirely confined to the resonator

gap. The shape and location of the electric- and magnetic-flux lines

are shown in Fig. 17.2d.

Every cavity resonator has an infinite number of resonant frequencies.

Of these the lowest frequency of resonance is usually that of most interest.

In terms of response to a sinusoidal excitation, resonance occurs when

equal amounts of energy are stored in the electric and magnetic fields on

successive quarter cycles. At the frequencies for which this occurs the

impedance, or ratio of equivalent voltage to equivalent current, will be a

maximum at any point in the resonator. In terms of the transient

response to a shock excitation, currents and voltages will occur as a

combination of exponentially damped sine waves, provided only that

the losses are not excessive. The resonant frequencies are the frequencies

of the individual damped-sine-wave components. In terms of field

theory there will be certain solutions of the wave equation that fit the

resonator shape at distinct frequencies. These frequencies are the

resonant frequencies. For certain simple cavities the shapes of these

fields are readily found, but in general they are difficult to find.

The longest resonant wave length of a resonator such as that shown

in Fig. 17.2fl may be determined quite closely by solving for the frequency

for which the capacitive reactance of the gap equals the inductive react-

ance of the shorted transmission line formed by the rest of the resonator.

The formula for the resonant wave length is approximately

for dimensions as in Fig. 17.2a. This formula gives the resonant wave
length to within about 5 per cent for resonators of the shape shown in

Fig. 17.2a but will give values that range from 60 to 80 per cent of the true

value for resonators of the shape shown in Fig. 17.26.® It will be observed

from Eq. (17.1) that the resonant wave length is proportional to the

linear dimension of the resonator. This proves to be a general property

so that the resonant wave lengths of geometrically similar cavity reso-

^ Hansen, W. W., On the Resonant Frequency of Closed Concentric Lines, Jour.

Appl. Phys., vol. 10, pp. 38-45, January, 1939.

® Hahn, W. C., A New Method for the Calculation of Cavity Resonators, Jour.

Appl. Phys., vol. 12, pp. 62-28, January, 1941.

® Curves giving the resonant wave length of resonators having the approximate

shape of that in Fig. 17.25 are given in “Microwave Transmission Design Data,”

pp. 200-204, Sperry Gyroscope Company, Brooklyn, 1944,
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nators of different sizes are directly proportional to the size of the reso-

nator. Resonators of the general shape shown in Fig. 17.2c may be

treated by radial-transmission-line theory.*

In cavity resonators it is difficult to identify ' the lumped

reactance elements that are apparently involved. This occurs because

the fields are distributed more than they are grouped; i.e., there are not

specific regions within the cavity within which the electric field exists

alone and there is no magnetic field, and vice versa. As a result, it is

more convenient to express the resonator characteristics in terms of its

Q, shunt resistance, and resonant wave length instead of its inductance;

capacity, and resistance. Some more general definitions of circuit

parameters are therefore required. The Q of a cavity resonator, oy

reciprocal sharpness of resonance, is most conveniently defined in terms

of the transient response to shock excitation. As previously mentioned,

the fields within a resonator decay by a factor of 2.718 in a time of —
IT

cycles. Thus the time variation of any component of field is given by

E{t) = Elf Oro
”” (^

)

(17.3)

where To is the period of oscillation frequency. This is seen to correspond

to the equation for the voltage decay in a high-Q series resonant circuit

that has the form

V{t) = Vif sin (17.4)

Upon substitution of for Q, Eq. (17.4) may be obtained from Eq.
XV i 0

(17.3) with the further recognition that the equivalent voltage of a

cavity resonator is commonly taken as the line integral of the electric

field along the line of maximum field strength. The stored electrical

energy associated with a transient decay in a resonator will vary as the

square of Eq. (17.3) since the energy stored in the electric field is obtained

by integrating the square of the electric -field throughout the volume
of the resonator.

8e(0 Sel€

2ict

QTo gin (17.5)

This is seen to have twice the frequency and to decay exponentially

at twice the rate of the field. Likewise, the energy stored in the magnetic

field will be similar in form but shifted 180 deg in phase.

1 See Ramo and Whinnery, loc. cit.
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_ 2^
8„(<) = S„,ie cos^ (17.6)

The total stored energy is the sum of the energy stored in the electric

and magnetic fields and is given by

_^
&{t) = S.(0 + &n,it) = 8ie er. (17.7)

trom which it is seen that the total energy stored in the fields decays

by a factor of 2.718 in a time of ^ cycles. The decay in this case is a
2iir

simple exponential one. If the rate of change of stored energy with time

be obtained by differentiating Eq. (17.7) with respect to time and
solving for Q, there results

Q = 2ir8(<)
(17.8)

which may be written in words as

2ir X energy stored

energy loss per cycle
(17.9)

This last is probably the most fundamental definition of Q that can be

written and serves as a basis for the calculation of the Q of cavity reso-

nators. ‘ The energy stored in the field is most readily calculated from

the peak value of the energy stored in the magnetic field. Likewise,

the loss per cycle can be calculated from the ohmic losses associated with

current fiow, which is directly proportional to the tangential component
of magnetic field at the inner surface of the resonator. The unloaded

Q’s of cavity resonators will be quite high, for the current flow associated

with the fields is distributed over a large surface. The Q’s of pure

cavities (about 25,000 at 3,000 me) are about ten times as high as those

of reentrant cavities as shown in Fig. 17.2. The Q’s of reentrant cavities,

in turn, are at least ten times as high as those of resonant circuits con-

sisting of lumped inductances and capacities. The Q’s of loaded cavities,

i.e., cavities supplying power to an external load, may be calculated

from Eq. (17.9) if the energy loss per cycle be considered as the sum of

the energies delivered to the walls of the resonator and to the external

load. In most applications the energy per cycle supplied to the external

load will be many times that to the cavity itself, and as a result, the Q of

a loaded cavity is much lower than that of the cavity when not loaded.

* Hansen, W. W., A Type of Electrical Resonator, Jour. Appl. Phys., vol. 9, pp.

654-663, October, 1938.
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Another circuit parameter that is convenient in describing cavity-

resonator characteristics is the equivalent shunt, or parallel, resistance.

It is possible to talk about equivalent shunt resistance in terms of an

equivalent voltage and the power supplied to the cavity walls and load

by the fields. This is done in preference to the usual procedure of defining

resistance as a ratio of voltage to current, for it is relatively more difficult

to define an equivalent current than to determine the power consumed.

The equivalent voltage is ’ogically taken as the product of the negative

electric field in the reentrant-cavity gap and the gap spacing. It should

be pointed out that this is not a true voltage but merely an equivalent

voltage, for the energy interchange between an electron crossing the gap

and the field would be the same as for the low-frequency or direct-

voltage case only if the electron were able to cross the gap in zero time.

Since the frequencies involved in microwave generators are extremely

high and the velocity of an electron is ordinarily only a fraction of the

velocity of light, the electron will generally take an appreciable part

of a cycle to cross the gap and the energy change of the electron will be

somewhat less than the corresponding direct-voltage value. Nevertheless,

the concept of an equivalent voltage defined by

V = -Ed (17.10)

where E is electric intensity in the gap and d is the gap spacing, is an

extremely useful one. The shunt resistance of a reentrant cavity

resonator is given by

Rch =

Rih =

2 X power consumed

2P

(17.11)

(17.12)

from the usual power relation, where P is the power consumed by the

resonator walls and load and the factor 2 results from the use of peak

rather than rms-voltage values. Equation (17.12) is a fundamental

definition of shunt resistance that is consistent with lumped-reactance-

circuit formulas. The shunt resistance may also be calculated from the

fields for a cavity resonator. As with the Q, the shunt resistance of a

loaded cavity is lower than that of the unloaded cavity because of the

fact that the power loss includes the power delivered to the external

circuit as well as that consumed in the cavity walls. The shunt resistance

of pure cavities at frequencies of 3,000 me is of the order of megohms.
The shunt resistance of unloaded reentrant cavity resonators is of the

order of hundreds of thousands of ohms at the same frequency. The
shunt resistance of a loaded reentrant cavity resonator is likely to be of

the order of tens of thousands of ohms, depending upon the degree of
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loading. These values are much higher than can be achieved with

lumped reactance circuits at this frequency.

Wheii the resonant frequency, Q, and shunt resistance of a cavity are

fenown, its behavior in the vicinity of resonance is completely determined.

The impedance of a resonant cavity in the vicinity of resonance is given

approximately by

. AT'
Z{<^) = R»h

1 + 2j 5Q
(17.13)

where R,h is the shunt resistance at resonance and S is the fractional

deviation from resonance. ‘ It is sometimes of interest to determine the

equivalent series resistance, inductance, and capacity from the resonant

frequency, Q, and shunt resistance, though too much significance should

not be attached to these equivalents. By analogy with the low-frequency

relations in a closed series R,L,C circuit, the equivalent series elements are

Equivalent series resistance

Equivalent inductance

Equivalent capacity

R =

L =

C =

Rgh

w
Rth

COoQ

Q

(17.14)

(17.15)

(17.16)

where wo is the equivalent resonant angular frequency. Because of the

fact that the circuit elements are not lumped, equivalent values calculated

by all the methods possible will not agree. For pure cavities it is found

* This is arrived at by assuming that the circuit is equivalent to the parallel com-

bination of a resistance equal to the shunt resistance, a lossless inductance, and a loss-

less capacity whose resonant frequency is the same as that of the cavity. The

impedance of this parallel combination is
1

,
which may be written as

1

R>h

1 It
Bince -PTV S'nd Q = R,hcjC, the impedance can be written as ^

•

If now — be replaced by 1 -|- 5, the denominator expanded into a series, and only the
(Oo

first-power term of S retained, then Eq. (17,13) results.
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that the equivalent capacities as given by various arbitrary definitions

differ between themselves b3
'' 60 per cent from a mean value which is

about 50 per cent of the low-frequency value. ^ In reentrant cavities the

difference between the different values possible will be less, say 10 per

cent deviation from a mean value that is approximately 80 per cent of the

low-frequency value.

This has been something of a digression on the subject of cavity

resonators, but it has been desirable because of the necessity of using

klystron circuits in which the electric field appears only between two

closely spaced surfaces. Since only cavity resonators exhibit this

property in anything approaching its ideal form, an understanding of the

principal properties of such resonators is necessary before undertaking a

complete discussion of klystron principles.

17.3. Mechanism of Energy Interchange between Electrons and

Cavity Resonators. In klystron amplifiers and oscillators, resonators of

the reentrant type are most extensively used. In such resonators, the

gap surfaces are made as grids instead of solid conducting material, and

electrons are shot through the spaces in the grids, with the result that

the electrons will interact with the electric field which exists between the

grids. The grid structures are shown in Fig. 17.2. The grids may consist

of a fine mesh of wire that will give about 80 per cent electron transmis-

sion. Those electrons which hit grid wires will be retired from operation

and give up their kinetic energy in the form of heat. In high-power tubes,

where the heating from intercepted electrons may be appreciable, grids

are sometimes made of copper strips arranged like the spokes of a wheel

but with the center of the wheel cut out so that the strips are supported

only from the outside of the grid aperture. For minimum interception

of electrons such strips should present their thin edge to the oncoming

electrons.

When an electron enters the space between grids, the lines of flux

associated with the electron charge will terminate almost entirely on the

grid conductors. As an electron moves from the first to the second grid,

at first most of its flux lines will terminate on the first grid, where they

will induce a positive charge. This situation is shown in Fig. 17.3q.

As the electron advances toward the second grid, relatively less charge

will be induced on the first grid and relatively more induced charge will

appear on the second grid, as shown in Fig. 17.36. In effect, the passage

of an electron between the two grids causes a positive charge equal in

magnitude to the electron charge to move from the first to the second

grid. This transfer of charge must occur through the resonator circuit.

1 Ramo and Whinneby, o-p. dt.
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In the previous chapter it was shown that the charge induced on one of

two parallel plates between which an electron is passing is

92 = f (17.17)

In the case of the electron passing through the grids of a cavity resonator

this is the charge induced on the second grid when the distance between

Fig. 17.3.—Charges induced by an electron

moving between resonator grids.

grids is d and the distance from the first grid to the electron is x, as shown
in Fig. 17.3. The charge induced on the first grid is

9i = e (17.18)

Since the induced charge results from electric-flux lines of the electron

terminating on the grids, it must be true that

9i + 92 = e (17.19)

which it obviously does, as may be seen from the previous two equations
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Since the electron will move between the grids with a nearly constant

/elocity, the charge induced on the second grid will increase uniformly

with time, as shown in Fig. 17.4. It was also shown in the previous

chapter that the current associated with the transfer of induced charge

from one plate to the other has the

value

i(t) =
ev

d
(17.20)

1 / “I

2̂ \ / <

>

i-e
»

V _i
This same value is obtained if the cur-

rent is defined as ^ and the value of
dt

this derivative is obtained from Eq.

(17.17). The current given in Eq.

(17.20) represents a current flowing

from the first to the second grid since

the associated charge transferred is positive. Curves of i{t) as a func-

tion of time are given in Fig. 17.5, in which the time required for the

electron to move between grids is represented by Tg. As far as current

production goes, the result is the same as though an electron initially at

zero velocity suddenly acquired a velocity v and traveled to the second

Fig. 17.4.—Charge induced by an

electron moving between resonator

grids as a function of time.
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Fig. 17.5.—Induced current resulting from pas-

sage of an electron between resonator grids.

grid, where it was stopped. The current form of Fig. 17.5 is also seen

to be that determined by the slope of the charge function of Fig. 17.4.

The sha-pe of the induced-current pulse is independent of the intergrid

transit time and the voltage between grids, provided that this is not

excessively high. Thus a slow electron will induce a rectangular pulse of

current that is relatively small in magnitude but long in duration. A
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fast electron will induce a rectangular pulse of current that is large in

magnitude but short in duration. The area under the induced-current

pulse is numerically equal to the charge of the electron and hence must

be the same for electrons of any speed.

Since the electron stream has a current density that is periodic with

time in a period T\, there will be a fundamental component of resonator

current associated with it. If one electron arrives at the same point in

every cycle, it will produce rectangular pulses such as those of Fig. 17.5,

which are periodic in a time Ti corresponding to the r-f cycle. The

fundamental component of this current is given by Fourier series analysis

as

(17.21)

where 7,1 is the fundamental component of current flowing through the

resonator and the other symbols have their previous significance. Let

(17.22)

(17.23

be the ratio of the fundamental component of current for a finite transit

angle dg to that for a zero transit angle for the case of a pulse created by

the passage of a single electron each cycle between the grids, where dg

is the intergrid transit angle of the electron in radians, 27r radians cor-

responding to the period Ti of the radio frequency considered. The

factor A is the function encountered in Eq. (15.89) and plotted in Fig.

15.40 for the ratio of d-c to r-f deflection sensitivity of electrostatic-

deflection plates in a cathode-ray tube and will not be replotted here.

It has a maximum value of unity for zero transit angle and first falls to

zero for a transit angle of 27r radians.

The power delivered to the resonator by the periodic transit of a

single electron when the resonator is tuned to resonance at the frequency

corresponding to the period T\ is

P = 7rlFl

2
watts (17.24)
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when the voltage gradient is in a direction opposite to that of the electron

flow, i.e., when the voltage exerts a force on the electron in the direction

opposite to its motion, and for which condition the fundamental compo-
nent of induced resonator current and the resonator voltage are 180 deg

out of phase. In Eq. (17.24) the values of current and voltage are peak
rather than rms. The above value of power has the value

P = (17.25)

When the grid transit angle is negligible, the factor A is unity and the

power supplied to the resonator is
eFi

Ti-
lt is seen that the factor A is

therefore one which measures the efficiency of energy transfer; as such,

it will be extensively used in subsequent analysis. It is frequently

referred to as the beam coupling coefficient. It should be noted that the

value of A given in Eq. (17.22) is only a first-order approximation which
has assumed that the velocity of the electron has not changed in moving
between the grids. Actually, the velocity of the electron will change

as energy is extracted from it.^ A more rigorous analysis leads to the

same first-order results as those given above. ^

In an actual tube a fairly continuous stream of electrons passes

through the resonator grids. Each electron of this stream induces a

rectangular pulse of current that flows through the resonator. The reso-

nator current will therefore have the same form as the beam current as a

function of time except that the magnitude of any component will be
reduced by the factor A computed for the corresponding frequency.

17.4. First-order Bunching Theory. The general picture of the

bunching principle has been given in the first section of this chapter.

It now remains to give a quantitative analysis of the effects associated

' Actually, the velocity of an electron while crossing the resonator gap will be a

constant plus a sinusoidal variation in accordance with

V = Vo
T,V,

, .

,

47rT,Vo ~ sin w')]

where L is the time at which the electron enters the gap, the gap voltage being

assumed to be Fi cos at, Ti is the period of the r-f gap voltage, and Tg is the gap transit

time of an unmodulated electron. Maximum energy will be extracted from the

T
electron when it enters the gap at a time before the negative peak of the gap voltage.

Under these conditions the induced current will have the form shown by the dotted

curves of Fig. 17.5.

2 Black, L. J., and L. P. Morton, Current and Power in Velocity Modulated

Tubes, Proc. I.R.E., vol. 32, pp. 477-482, August, 1944.
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with this principle. The bunching principle was studied by the Heil

brothers, but their work was confined to numerical and graphical com-

putations on certain special kinds of operation.^ The first satisfactory

analysis of bunching was made by Webster, whose work has formed the

basis for virtually all the subsequent work in this field. Webster’s

attack on the subject has been considerably enlarged by Hansen, Hahn,

and Feenberg in this country, by Benham, Hartree, Petrie, Strachey, and

Wallis in England, and by Hollman, Briiche, and Recknagel in Germany.

The general picture of the bunching action of a set of resonator grids

is well illustrated by a distance-time diagram (attributed to L. M.
Appelgate). Let the problem under consideration be formulated

as follows: A beam of parallel electrons which have been accelerated

through a potential of Fo volts is passed through the grids of a' resonator

across which there appears a voltage Vi sin Let the resulting electric

field be parallel to the electron motion. Those electrons which pass

through the resonator gap at the time the alternating voltage has its

maximum value will emerge with an energy corresponding to Vo + Vi

volts if the grid transit angle is sufficiently small. More exactly, they

will emerge with an energy corresponding to Fo + A Fi if the grid transit

angle is appreciable. This occurs because the beam coupling coefficient

A given by Eq. (17.22) applies whether energy is transferred from the

electron to the resonator, or vice versa. Electrons passing through the

grids when the r-f voltage opposes the electron motion will emerge with

an energy corresponding to Fo — AFi volts. In general, they will

emerge with an energy corresponding to Fo -1- A Fi sin cota, where ta is the

time at which the electron passes the midplane of the resonator gap
Since the velocity of an electron is proportional to the square root

of the voltage through which it has been accelerated, the velocity with

which an electron emerges from the first, or bunching, resonator of a

two-resonator klystron will be

Va = Vo yjl -h sin oit (17.26)

In all subsequent work the numerical subscripts will be associated with

the corresponding frequency components; thus Vo is the d-c component
of velocity, and Fi is the fundamental r-f component of voltage. The
letter subscript a will refer to the first-resonator gap transit, and the

1 Heil, and Heil, op. cit.

* Webster, D. L., Cathode-ray Bunching, Jour. Appl. Phys., vol. 7, pp. 501-508,

July, 1939.

® Webster, D. L., Theory of Klystron Oscillations, Jour. Appl. Phys., vol. 10 1

pp. 864-872, December, 1939.
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letter subscript b will refer to the second-resonator gap transit. Let

the symbol a be used to designate the excitation-voltage ratio which will

ordinarily be less than unity. The product 4a is known as the depth

of modulation, since it is the ratio of the peak amplitude of velocity

modulation in volts to the beam voltage. Then if a is small, say less

voltage

Fig. 17.6.—Distance-time diagram^ of a klystron amplifier.

than 0.2, the radical of Eq. (17.26) is represented within a few per cent by
the first two terms of its binomial-series expansion,

Vo. = fo -b ^ sin co<^ (17.27)

From this equation it is seen that for a small excitation-voltage ratio

the velocities of the electrons emerging from a bunching resonator have
a value which is a constant plus a factor which is sinusoidal with time.
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It is instructive to make a chart that shows how this variation in first-

resonator velocity affects the subsequent grouping of electrons. Such

a chart is shown in Fig. 17.6. In this chart, distance is plotted vertically,

the time is plotted horizontally. The distance-time representation of

any electron moving in the field-free region outside of the bunching-

resonator grids will be a straight line whose slope is proportional to its

velocity. The horizontal axis of this chart corresponds to zero distance

from the first-resonator grid, and electrons are assumed to leave this

grid at the uniform rate of 40 electrons per cycle. Shown along the

horizontal axis is a sine wave corresponding to the r-f voltage between

the resonator grids. Electrons that pass through the grids when this

voltage is zero will be represented by lines that have a slope corresponding

to the original velocity of the electrons, which has been undisturbed by

passage through the resonator at this point of the cycle. All other

electrons will have either greater or smaller slopes (velocities) than the

undisturbed electrons. Those electrons which pass through the resonator

when the r-f voltage is negative, i.e., has its gradient in the direction

opposite to the electron velocity, will be slowed down and will have

slopes smaller than those of the undisturbed electrons. Correspondingly,

those electrons which pass through the resonator when the r-f voltage is

positive, i.e., has its gradient in the direction of the electron velocity,

will be speeded up and will be represented by lines whose slopes are greater

than those of the undisturbed electrons. In the resulting set of lines

the density of lines along any horizontal line corresponds to the magnitude

of the current as a function of time. The bunching action that results

is quite evident from the diagram. A bunch forms about the electron that

passes through the resonator at the instant the r-f voltage is changing from

retarding to accelerating. As the electrons move along the beam in what

is commonly called the drift space, there is first formed a bunch that is

very narrow and has a high current associated with it. Farther down
the beam, the bunch becomes wider and has the highest current asso-

ciated with its edges. The corresponding picture of current as a function

of time for any position on the beam is shown in Fig. 17.7. The particu-

lar shapes that the bunches of electrons give to the beam current will be

demonstrated analytically.

The time it takes any electron to move a certain distance along the

beam depends upon the point on the cycle at which it passed through

the resonator gap and also upon the magnitude of the gap voltage. For

travel a distance I from the first resonator gap,

I

h - t, (17.28)
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where is the time at which the electron leaves the first resonator, h
is the time at which the electron has moved a distance I along the beam,
and Va is the velocity with which the electron leaves the first resonator.

Substituting the value of Va from Eq. (17.27),

tb = ta -\-

(

1 1
d.Q: .

1 + -^ sinin Cijt^

(17.29)

If the depth of modulation factor a is small compared with unity, the

V 7/me ofone cycle Time ofone cycle

Time
Fig. 17.7.—Current a.s a function of time for various distances along a bunched

beam.

fractional term is closely represented by the first two terms of its series

expansion.

fft = fa "b lo ( 1 sin (17.30)

where the transit time of an undisturbed electron, U, has been written

for — This expression will be accurate within 5 per cent if yia is less

than 0.2. In subsequent analysis it is convenient to deal udth transit

angles instead of transit times. Transit angle is simply the transit

time multiplied by the angular frequency,

T = cot (17.31)

where r is the symbol that will be used for transit angle. Other times



546 VACUUM TUBES

as well as the transit time are also conveniently represented by the cor-

responding angle found by multiplying the time by the angular frequency.

Accordingly, Eq. (17.30) may be rewritten

Til = Ta + To — Aaro
sin Ta (17.32)

The factor
Aaro

occurs so frequently in subsequent work that it will be

Fig. 17.8.—Electron arrival time as a function of

departure time in a bunched beam.

designated by the symbol k and called the bunching 'parameter. With
this notation,

k = Aaro
(17.33)

and

Tt = Ta + To — k sin Ta (17.34)

This equation gives the arrival angle n with respect to travel of a distance

I in terms of the departure angle Ta and the bunching parameter k.

It is instructive to plot some curves of arrival time in terms of departure

time. This is done in Fig. 17.8, in which there are shown curves of to

as a function of Ta and k for values of the latter of 0, 0.5, 1.0, and 1.5.
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The bunching parameter k has its value determined by half the product

of the beam coupling coefficient A, the excitation-voltage ratio a, and

the d-c transit angle to. To discuss the curves of Fig. 17.8, let it be

considered that the value of k is varied by increasing the bunching vol-

tage Fi. For a value of the bunching parameter of zero, i.e., no bunch-

ing, the arrival angle (time) is a straight-line function of the departure

angle (time). As the bunching voltage is raised from zero, the arrival

angle as a function of departure angle will be a straight-line function

with a superimposed sinusoidal variation whose phase is such that elec-

trons leaving the resonator gap slightly before the reference departure

time of zero will have a greater transit time than for no-bunching voltage.

Likewise, electrons leaving after the reference departure time of zero will

have a smaller transit time than for no-bunching voltage. Those condi-

tions are evident for the value of k equal to 3^. For a value of k equal

to unity the properties observed above still hold but are accentuated

to the point where the slope of the curve of arrival angle as a function

of departure angle has a zero value at the reference departure angle of

zero. It will be seen later that this has a special significance. Up to a

value of k equal to unity the arrival angle is a single-valued function of

departure angle, and vice versa. The point for which k equals unity is

marked on the distance-time diagram of Fig. 17.6. At this value of the

bunching parameter there is evident a strong bunching action. At this

value of k the electrons that left just before and after the electron leaving

at time zero arrive together.

As the bunching parameter is increased still further, the curve of

Fig. 17.8 exhibits a negative slope at the departure time zero, and at this

point the departure time is a triple-valued function of arrival time.

Furthermore, it will be noted that the electrons near the center of the

bunch in the distance-time diagram have crossed, and over an appreciable

region it will be true that electrons leaving after a time zero arrive before

electrons which have left earlier, and vice versa. For still larger values

of k this property continues to hold. It should be noted that although

the departure time is a triple-valued function of the arrival time, the

arrival time is always a single-valued function of the departure time.

This is to say that, if the arrival time near the center of the bunch for

k greater than unity is specified, there will be three different electrons

which have left at different times in the vicinity of zero arriving simul-

taneously at this time. On the other hand, each departure time has a
single value of arrival time associated with it.

To find the current associated with the electron bunches it must first

be observed that the principle of conservation of charge applies to any
corresponding departure- and arrival-time intervals. The electron
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stream can always be broken up into increments such that all electrons

which depart from the bunching resonator between two particular

electrons m and n will arrive at a distance I between the times at which

these two electrons arrive. Mathematically, this is written

\dqb\ =
\
dq.

\
(17.35)

or

1
/t, d4 1

=
I
la dta

1

(17.36)

Only the magnitudes of the charge increments are of interest, for it is

these which will determine the current. Even though electrons may
arrive in a reverse order fropi that in which they left the bunching

resonator, their effect in producing output-resonator current is the same

since they are traveling through the output resonator in the same direc-

tion. From Eq. (17.36) the current at a distance I along the beam is

related to the current at a distance zero by

(17.37)

(17.38)

since la equals 7o, the direct current through the bunching resonator.

From Eq. (17.34), h, the current a distance I along the beam, as a

dt
function of U may be obtained by making use of the fact that equals

Utb

dr 1
-r-^, which in turn is equal to ^— This has the value
dth dTh

dra

h = la

h = /o

dta

dth

dtb

Ib(.Ta) = h 1

1 — k cos Ta
(17.39)

Curves of Ib as a function of Ta have no great significance. Curves of

7;, as a function of rb as determined by invoking Eq. (17.34) are shown in

Fig. 17.9 (top) for values of k of 0, 0.5, 1.0, and 1.50. For k equal to zero

the current is constant. This corresponds to an undisturbed beam. For

k equal to 3-^ a current pulse is seen to begin to form. For A: equal to

unity the current exhibits an infinite peak corresponding to the simul-

taneous arrival of several electrons. For fc equal to IJ^ the curve is

double peaked. Infinite current peaks will appear at points correspond-

ing to arrival times for which the slope of arrival time as a function

of departure time shown in Fig. 17.8 is zero. As k is still further

increased, the double peaks will spread farther apart and the magnitude

of the current midway between them will decrease, as shown in Fig. 17.7.
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The area under any of the curves shown in Fig. 17.9 is the same, regard-

less of the value of k, since the current distribution resulting from the

bunching action always involves the same number of electrons per cycle.

The distance s shown in Fig. 17.7 corresponds to a value of k of unity

Fig. 17.9.—a (top) Current as a function of time along a bunched beam,

for different degrees of bunching, h (bottom) Induced resonator current

as a function of time for different intergrid transit angles. {After Black

and Morion.)

for which a single infinite peak of current first appears. It has a value,

which may be obtained from Eq. (17.33), of

2t;oF(

AFico
(17.40)

The curves shown in Fig. 17.9a are curves of beam current as a

function of arrival time. The current induced in a catcher resonator
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by the passage of the beam will not have exactly the same form because

of the finite time required for electrons to pass between the resonator

grids. This finite time will have the effect of integrating the current at

different points on the beam between the resonator grids. The integrat-

ing effect may be simulated by making a mask with a vertical sht of

width corresponding to the intergrid transit angle and sliding this along

the curves of Fig. 17.9a. Actual resonator currents will be proportional

to the area under the beam-current curve revealed through the slit in

the scanning mask. Curves of actual induced resonator current obtained

by this method are shown in Fig. 17.96. Here it is seen that the infinite

peaks do not appear in the actual resonator current and that as the inter-

grid transit angle is increased the resonator-current pulse becomes less

sharp. ^ Examination of the fundamental components of current cor-

responding to each of the curves of Fig. 17.95 will reveal that they are

in the ratio of the corresponding A factors as given by Eq. (17.23) to

the fundamental components of the corresponding curves of Fig. 17.9a.

Several of the parameters which have been used in the preceding

analysis are used frequently enough so that it is convenient to have charts

giving their magnitude. One of these factors is the d-c transit angle

corresponding to a distance 1. This has the value

lal l,0007r?

Vo \/Fo X
(17.41)

A chart of this factor as a function of the variables upon which it depends

is given in Fig. 17.10. Another factor of importance is the bunching

parameter k given by Eq. (17.33). A chart of this factor as a function

of the variables upon which it depends is given in Fig. 17.11.

The curves of beam current shown in Fig. 17.9 give the bunched

beam current as a function of time. To find out how this current may
be used it is necessary to determine its various components, of which the

fundamental component is the most important. The fundamental

component of the periodic beam current for any degree of bunching may
be determined from the Fourier series coefficient formula

Ibl Ib cos Tb drb (17.42)

where Ihi is the fundamental component of Ib whose value is given by
Eq. (17.39). Since the curves of h are symmetrical about the bunch

center, the resultant terms in its frequency composition will be cosine

terms if the current is arbitrarily centered at the bunch center by neglect

-

1 Black, L. J., and P. L. Morton, Current and Power in Velocity-modulation

Tubes, Proc. I.R.E., vol. 32, pp. 477-482, August, 1944.
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Fig. 17.10.—Nomographic chart giving transit angle as a function of drift distance

and beam voltage.
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Fig. 17.11.—Nomographic chart giving bunching parameter as a function of beam
coupling coefficient, excitation-voltage ratio, and transit angle.
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ing the d-c transit-angle term. This amounts to neglecting the phase

factor, but this can be put in by inspection later. The fundamental

component indicated by Eq. (17.42) is not possible of determination in

the form given, for Ih is given as a function of Ta, whereas the integral is

in terms of tj. To follow the elegant method proposed by Webster, the

integral of Eq. (17.42) can be placed entirely in terms of t„ by using the

relations of Eqs. (17.34) and (17.38). This method eliminates all

the apparent difficulties associated with electron crossovers, for n is

a single-valued function of Ta. When this is done,

/(,! = - / h cos (to — k sin Ta) ^dTa (17.43)
TT J lb

which reduces to

Ibl = — / cos {Ta — k sin Ta) dTa (17.44)

in which it is seen that the ro term of Tb has been dropped. When the

integrand is expanded, the integral assumes the form

I
Ibl = — / [cos Ta COS {k sin Ta) + sin Xa sin (fc sin Xa)] dTa (17.45)

TT J -T

This is a somewhat formidable integral involving cosines and sines of a

sine function. Such terms are encountered in frequency-modulation

studies where the frequency of a wave varies periodically with time.

In the frequency-modulation problem it is found that terms such as the

above correspond to a carrier and a doubly infinite set of side bands whose

magnitude is expressed in terms of Bessel functions. The same situation

applies here. Each term of the integrand contains an infinite number of

terms according to the relations

cos (fc sin x) = Jo(fc) + 2[J2(fc) cos 2x + Ji{k) cos 4a: -f-
• •

•
] (17.46)

and

sin (fc sin a:) = 2[Ji(fc) sin x -f- /^(fc) sin 3a; -[- • •
• ]* (17.47)

If the above series are substituted into the integrand of Eq. (17.45),

the integral is readily evaluated term by term, all but the sin* To term

yielding zero. The result is

Ibl = 2/«/i(fc) (17.48)

which is the most important equation in the first-order bunching theory.

‘These relations are developed in Woods, F. S., “Advanced Calculus,” p. 281,

Ginn, Boston, 1932.
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If a curve of Ibi as a function of k be plotted, the form shown in Fig.

17.12 results.* The ratio of the fundamental component of beam
current to the d-c beam current is simply a curve of the first-order Bessel

function multiplied by 2. This curve starts out as a straight line for

small values of k of the form

^ = A: (for small k) (17.49)
i 0

The maximum value of the current ratio occurs for a value of k equal to

1.84 and is equal to 1.16. The curve falls to zero for a value of k equal

to 3.83. The significance of the maximum value is that the fundamental

1.5

1.16

1.0

Oi

IM
lo 0

•0.5

- 1.0

Fig. 17.12.—Fundamental component of current in a bunched

beam as a function of bunching parameter, /(.i = 2IbJi{k).

component of current will have its maximum value for k equal to 1.84,

which is marked on the distance-time diagram of Fig. 17.6. In this

figure, k varies directly as distance. The maximum value of fundamental

current is obtained not when the bunched beam has its first infinite peak

but rather when the double peaks have appeared and spread apart

* The Bessel functions resemble damped sine waves except that they are not

exactly periodic and that the damping is geometric instead of exponential. The

order of the Bessel function indicated by the subscript tells what the small-value

nature of the function is. For small values of x, JJx) = which is to say that
’

' n!2"
•’

the first-order Bessel function starts like a straight line, the second-order function

starts like a parabola, etc. The functions soon reverse curvature and have a zero

value, after which they approximate damped sine waves and the distinction between

the orders appears merely as a phase factor. For a compilation of the principal

properties of Bessel functions, see Appendix VI.
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appreciably. The maximum value of the fundamental component of

current occurs for a value of the bunching parameter for which the area

under the product of the beam current as a function of time multi-plied

hy a cosine wave is a maximum.
The phase of the fundamental component of current relative to the

peak of the bunching voltage may be determined by inspection from the

distance-time diagram of Fig. 17.6. Here it is seen that the bunch

center, or peak of the fundamental component of current, forms about an

electron which leaves the bunching resonator a quarter of a cycle prior

X
Fig. 17.13.—Curves of the higher order Bessel functions.

to the peak of the bunching voltage. Accordingly, the fundamental

component of current lags the bunching voltage by to minus radians.

The fundamental component of beam current can therefore be written as

/oi = (17.50)

in which the exponential factor is one that has unit magnitude and a

phase factor of — ^ro —

If the harmonics of the beam current were evaluated by the method

used to determine the fundamental, it would be found that

(17.51)
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Curves of the higher-order Bessel functions are shown in Fig. 17.13.

Curves of Jnink) as a function of k are shown in Fig. 17.14. The peaks

of the various harmonics are smaller as the magnitude of the harmonic

increases and occur for values of the bunching parameter closer to unity

but not less than imity. The locus of the peaks of Jn{nk) is shown
dotted in Fig. 17.14. The magnitude of the harmonics as given by Eq.

(17.51) drops off very slowly as the order of the harmonic increases,

indicating that the klystron should make a good frequency multiplier.

This is expected from the shape of the bunched beam current as a function

of time, for a current pulse with infinite peaks is rich in harmonics.

Maximum values of J„(nk), along with the corresponding values of k

that produce this maximum for different orders of n, are shown in Fig.

17.15. Maximum ratios of harmonic component to d-c component of

current fit the empirical function

Max^ ^ 1.16n-''-269 (17.52)

within a few per cent out to the tenth harmonic. Values of the bunching

parameter for which harmonic currents are maximum are given very

closely by^

A: = 1 + 0.808n“^ (for max Ibn) (17.53)

In actual frequency-multiplier tubes the output drops off much more
rapidly than is indicated by the relation of Eq. (17.51). This is because

of various deficiencies in the first-order bunching theory that have not

yet been considered.

17.6. The Klystron Amplifier. Historically, the bunching principle

was first applied to produce an oscillator tube. Some amplifier tubes

’ Hansen, W. W., and J. R. Woodyabd, A New Principle in Directional Antenna

Design, Proc. I.R.E., vol. 26, p. 338, March, 1938.
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were then built, using the velocity-modulation principle; and later a

special kind of klystron oscillator, known as the “reflex-klystron oscil-

lator,” was extensively used. In this exposition these three kinds of

tubes will be discussed in the order, klystron amplifier, reflex-klystron

oscillator, and two-resonator klystron oscillator. This order is used

because it makes the explanation of the operation of these tubes much

Fig. 17.-15.—Maximum values of J„(nk) as a function of the order n and

corresponding argument at which the maximum occurs.

easier. The amplifier is readily described in terms of principles already

discussed. The reflex-klystron oscillator is the simplest kind of klystron

oscillator to discuss. The methods of analysis used in describing the

reflex-klystron oscillator are readily applied to the two-resonator klystron

oscillator.

Structure of the Klystron Amplifier. The structure of a klystron

amplifier is shown schematically in Fig. 17.16. This type of tube has

evacuated reentrant cavity resonators, which are tuned by squeezing
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the cavities mechanically so that the resonator gap spacings and hence

the associated capacities are changed. The tuning range made available

by this means is small, being of the order of 10 per cent of the mid-

frequency. The tube contains a cathode gun, which may be of the form

of the unipotential cathode structures described in the chapter on

SYMBOL
Output
terminal

Catchergrid

Driftspace

Buncher grids

Smoother grid

y— Electron gun

Fig. 17.16.—Structure of the two-resonator klystron am-

plifier.

Cathode-ray Tubes or which may involve a control or focusing electrode.

The input and output resonators are usually identical and are placed

back to back so that there is a relatively short drift space between the

resonator gaps. The length of this gap is moderately critical. If it

is too short, there will not be

enough time for the electrons to

bunch sufficiently. If it is made
too long, the bunches are found to

deteriorate instead of improve.

Power is transferred in and out of

the resonators by means of coaxial

lines, which terminate in small loops

that provide inductive coupling to

the magnetic field of the resonator.

Electrons that have passed through
both resonators impinge on a collector electrode, which returns them to

the cathode.

Another form of the klystron amplifier tube is shown in Fig. 17.17.

In this form of the tube the resonant cavities are attached externally to

the evacuated tube and are tuned by plugs inserted into the cavity.

Copper discs

Fig. 17.17.—External-cavity klystron

amplifier.
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This form is easier to build but is not as stable as the first type

described.

Operation of the Klystron Amplifier. The operation of the klystron

amplifier is very simple. Radio-frequency power is fed into the input

resonator through the coaxial-line connection, where it produces fields

that bunch the electron beam. The bunched electron beam sets up alter-

nating fields in the output resonator. Power is extracted from the

output resonator through the coaxial line to a load. The amplifier may
be operated at virtually any beam voltage or current. It is necessary

only that the input and output resonators be tuned exactly to the

frequency of the excitation power.

Output Power of the Klystron Amplifier. If the electron beam passing

through the grids of the output resonator has a fundamental component

of value Ib\, then the output power will be the same as though a current

of value Alii were passed through the resonator, where A is the beam

coupling coefficient defined by Eq. (17.23) and it is assumed that the A
factor is the same for both buncher and catcher. This follows because

the current resulting from the stream of electrons is the simple summation

of the currents corresponding to the individual electrons. Accordingly,

Pm = Rsk (17.54)

where Pm is the power delivered to the resonator and P,* is the equivalent

shunt resistance of the resonator. In terms of the equivalent output-

resonator gap voltage

Pm = (17.55)

in which Fm is the fundamental component of the second-resonator gap

voltage. In both the above equations it must be remembered that In

is the fundamental component of beam current, whereas Ain is the cor-

responding effective component of resonator current.

Efficiency of the Klystron Amplifier. The efficiency of the klystron

amplifier is defined as the ratio of the output power to the input power,

Efficiency =^ (17.56)
A iu

Efficiency = (17.57)

not including the power required to bunch the beam. The maximum
theoretical efficiency is obtained when each of the factors in Eq. (17.57)

assumes its maximum value. The factor A has a maximum value of

imity when the gap transit angle is zero. The maximum value of In
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is I.I6/0. The maximum value of F61 is expected to be about Vo] for

if this value is exceeded, electrons wall be thrown back toward the

cathode by the output-resonator voltage and the effective output-

resonator resistance will drop very sharply because of the associated

increased losses. Upon substituting these maximum values into Eq.

(17.57) it is found that the maximum theoretical efficiency is 58 per cent.

Practical efficiencies are much lower than this because of various second-

order bunching effects to be described and are of the order of 20 per cent.

Equivalent Circuit of the Klystron Amplifier. The equivalent circuit

of the klystron amplifier is shown in Fig. 17.18. The circuit is the same
as that of an ideal pentode r-f^ amplifier with a delay circuit between the

pentode and the output circuit. The hypothetical pentode involved

Hypothetical vacuum tube with no ‘-Delay introduced by transit line

coupling between inputandoutputcircuits ofelectrons in drift space

Fig. 17.18.—Equivalent circuit of the klystron amplifier.

has a virtually infinite plate resistance, for there is no electronic or

electromagnetic interaction between the input and output circuits.

The delay circuit is one that produces a phase shift of

corresponding to the phase shift between the output current and the input

voltage.

Mutual Conductance of the Klystron Amplifier. An equivalent mutual

conductance of the klystron amplifier may be defined as the ratio of

the induced output current to input voltage Vai- From Eq. (17.50''

this may be written as

(7„
1
= ^ AJ,(k)

y oi
(17.58)

which is readily rearranged by the application of Eq. (17.33) to give

\G^\= GoAGo (17.5h,

where Go is a factor that may be called the d-c beam con-

ductance. The above assumes that the beam coupling coefficient A
is the same for input and output resonators. The mutual conductance
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is not a constant but rather is a factor that decreases as the magnitude

of the excitation voltage increases in accordance with the curve of

A curve of mutual conductance as a function of the factor k is given in

Go

Fig. 17.19.—Transconductance of a klystron amplifier

as a function of the bunching parameter.

Fig. 17.19. Since, for the zero value of U, is 3-^, the small-signal

value of mutual conductance is the maximum and has the value

Go

To
for small signals (17.60)

The value of mutual conductance for maximum current {k = 1.84) is

O.3 I6AV0 for maximum output (17.61)
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The mutual conductance as used above has a phase angle associated with

it that is —
(
TO

2)
;
accordingly, we may speak of the transadmittance

of the amplifier tube as the product of the mutual conductance and the

phase factor

^ (17.62)
Cro fC

^ = AVo (sin To + j cos to) (17.63)
Oro K

where Ym, the transadmittance, is the ratio of the output ^current to

the input voltage in phase and magnitude.

Power Required to Bunch the Beam. In the input resonator of a

klystron amplifier the bunching action speeds up electrons over half the

cycle and slows them down over the other half. When the intergrid

transit angle is small, the average energy of electrons leaving the

bunching resonator over a cycle will be nearly equal to the energy with

which they enter. However, as the intergrid transit angle increases,

the average energy of electrons leaving the resonator will be greater than

the entering energy and as a result the bunching resonator must supply

power to bunch the beam. Therefore, there is an equivalent resistance

that can be attributed to the power required to bunch the beam.

The calculation of the power needed to produce bunching action

requires extensive manipulation of second-order effects and will only be

indicated here.* It is a simple matter to calculate the velocity of any

electron passing through the bunching resonator as a function of the

point on the cycle at which it enters the resonator and the subsequent

time interval. Likewise, the distance-time behavior can be calculated.

The resulting expressions give velocity and distance as a function of time.

However, it is desired to know the velocity of an electron as it leaves the

resonator, which requires that the above expressions be inverted so

that exit velocity is given as a function of d-c transit angle. An equation

for this relation can be obtained in terms of a series in powers of the d-c

transit angle. When this is obtained, the average exit energy can be

calculated from the square of the velocity. The difference between the

average exit energy and the entrance energy is a measure of the bunching

power required. The ratio of the power required to produce bunching

to the d-c power required to produce the beam has the form

* See Fbbnberg, E., Notes on Velocity Modulation, Sperry Gyroscope Laboratories

Kept., 5521-1043, Chap. I, pp. 41-44.
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Pi 1

Po 2Fo^ 2 ^
2

Pi F„i®

sm©
2

-‘“(I)

Po 2Fo^
F(0.)

(17.64)

(17.65)

for values of less than where Po equals JoFo and the definition
y 0

Fig. 17.20.—Theoretical equivalent bunching resistance of a beam as a

function of the intergrid transit angle. (After Feenberg.)

of F{dg) is apparent. The ratio of equivalent beam resistance to bunch-

ing resistance may be defined as

Accordingly,

Po _ Fo^ 2Pi

Po Po Fal“

^=Fidg) ,
itg

(17.66)

(17.67)

RA curve of as a function of dg is given in Fig. 17.20. The justification
ti/g

2Pi
for defining an equivalent bunching resistance as is that the power

' al

required to produce bunching is proportional to FaF provided that the

excitation-voltage ratio is not excessive. This means that the power

required to produce bunching is the same as would be consumed by a

resistance Rg, as defined in Eq. (17.67), in narallel with the shunt resist-
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ance of the resonator. Examination of Fig. 17.20 shows that the equiva-

lent bunching resistance is ten times the beam resistance for an intergrid

transit angle of 1.66 radians (95 deg). For transit angles less than a

quarter of a cycle the equivalent bunching resistance will be greater than

ten times the beam resistance, and for transit angles greater than a

quarter of a cycle it will be less than ten times the beam resistance.

The power consumed by the equivalent bunching resistance is by no
means negligible and will ordinarily be of the same order of magnitude

as the ohmic power loss in the resonator itself. Measured values of

equivalent bunching resistance range from 20 to 50 per cent of the theo-

retical values and are not independent of the excitation-voltage ratio. ‘

Fig. 17.21.—Structuie of the cascade amplifier.

17.6. The Cascade Amplifier. If a three-resonator klystron amplifier

be made with the first and third resonators used as input and output

resonators, respectively, but the middle resonator be left unloaded and
simply tuned to the frequency of the input signal, very large power
amplifications are obtained. Such an amplifier has been termed a

“cascade amplifier” and has the structure shown schematically in Fig.

17.21. If a small input signal to the first resonator is assumed, there

is produced at the second resonator a fundamental component of current

that, though small, is appreciable. The second, or cascade, resonator,

being unloaded, will have a very high effective resistance, which is deter-

mined by the parallel combination of its shunt resistance and its effective

1 Hadley, C. F., Velocity Distribution of Velocity Modulated Beams, Ph.D.

Dissertation, Stanford, 1944.
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bunching resistance, as discussed in the previous section. Both these

components of resistance can be made quite high. As a result, a large

voltage will be produced in the cascade resonator by a small fundamental

component of beam current. Since the exciting current that produces

the voltage in the second resonator and the resulting current that is

Fig. 17.22.—Distance-time diagram of a cascade amplifier. {After Harrison.)

produced are 90 deg out of phase, the bunching actions before and after

the second resonator can be considered independently to a fair degree of

approximation . The ratio of bunching parameters of the first and second

resonators relative to the second and third resonators will be proportional

to the square of the transit angle between resonators. The ratio of

the output power of the third resonator to the input power to the first
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resonator will be proportional to the fourth power of the transit angle

between resonators.

A distance-time diagram of a cascade amplifier is shown in Fig.

17.22. In this diagram it is seen that a very small bunching action

between the first and second resonators gives rise to an appreciable

voltage on the second resonator. This in turn gives rise to a higher

degree of bunching. The resultant bunching action is not due to that of

the second resonator alone. Those electrons which pass through the sec-

ond resonator at times when the second-resonator voltage is zero form the

center of its bunching action, while those which pass through the second

resonator when its voltage is maximum are at the center of the bunch

formed by the first resonator. The combined action is much better than

could be achieved by a single bunching resonator and approximates

that which would result from a single resonator which had a saw-toothed

instead of a sinusoidal gap voltage. Maximum theoretical efficiencies

are 74 per cent, though actual efficiencies are much less. Cascade-

amplifier tubes have given power amplifications of the order of 1,000

to 5,000 times. Tuning of such an amplifier is quite critical since

all three resonators must be tuned to exactly the same frequency. Such

amplifiers are essentially single-frequency devices. Unfortunately,

the internal noise of klystron amplifiers is so high that the improvement

in signal-to-noise ratio is much less than the actual power amplification.

17.7. Frequency-multiplier Klystrons. Because the harmonic con-

tent of a bunched beam is relatively high, the klystron makes a good

microwave frequency multiplier. The frequency-multiplier klystron

is similar to the amplifier except that the output resonator is designed to

be tuned to a harmonic of the input frequency. To get a tube with an

input resonator that tunes to a low frequency it is necessary to use a

resonator in the form of a concentric line that is heavily loaded with

capacity. The structure of such a tube is shown schematically in Fig.

17.23. Such tubes are critical of excitation and beam voltage. This is

because the maximum value of harmonic current for a large frequency-

multiplication factor is relatively critical with respect to the bunching

parameter, as may be seen from Fig. 17.14. As input excitation is

increased for a given beam voltage, a frequency-multiplier tube will

pass through its maximum output rather sharply and is easily over-

driven. For a given input excitation, the power output as the beam
voltage is changed will follow a curve such as is shown in Fig. 17.24.

This curve is like the curves of Fig. 17.13 squared, but with the x axis

inverted. Maximum theoretical efficiencies are equal to half the ratio

of maximum value of harmonic current to d-c beam current as given in

Sec. 17.4. Actual efficiencies run about one-tenth of the maximum



VELOCITY-MODULATED TUBES, OR KLYSTRONS 567

theoretical efficiencies. Efficiencies are further found to drop off much

more rapidly with the order of the harmonic than the inverse one-third

Pig. 17.23.—Structure of the frequency-multiplier klystron.

power that is expected from the theoretical maximum values of harmonic

components of current. Frequency multiplication by a factor of 10 in a

single tube is entirely practical in the range of 300 to 10,000 me and makes

possible crystal-controlled microwave signals.

Fig. 17.24.—Power output of a frequency-multiplier klystron as a function of beam

voltage.

17.8. Second-order Btmching Effects. The theory of bunching that

has been presented up to this point is what may be called the “simole”
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or “first-order theory.” It gives a correct picture of the mechanism,

but appreciable departures from it are encountered in actual tubes.

One of the limitations of the first-order theory is that it has entirely

neglected the mutual electrostatic repulsion forces between the electrons

associated with the electron charge. This is to say that space-charge

effects have been neglected. The analytical treatment of such effects

becomes sufficiently involved so that only a description of the principal

effects will be undertaken here.’-

Space-charge effects will in general have the effect of reducing the

degree of bunching that would exist if there were no space charge. For a

beam that is large in diameter the axial repulsion forces of the electrons

will be greater than the radial forces except at the edge of the beam. For

such a beam, as electrons tend to come together there will build up

repulsion forces that oppose the bunching action. Near the center of a

bunch there will develop forces that are proportional to the distance of a

particular electron from the center of the bunch. The resultant electron

action is similar to that observed in mechanical compression problems.

Imagine an observer riding along with an electron at the center of a bunch.

He observes electrons approaching the center of the bunch in both direc-

tions. These electrons will be progressively slowed down as they

approach the center of the bunch because the electrostatic repulsion

forces will build up. As a result, the individual electrons before and

after the center of the bunch will approach to within a given distance

of the center of the bunch and will then turn and move away from it.

This action is illustrated roughly in the distance-time diagram of Fig.

17.25. Here electrons near the center of the bunch are seen to approach

each other and then diverge without crossing. To a first order of

approximation the velocity of an electron near the center of the beam and

the center of the bunch is a constant with a superimposed sinusoidal

variation. Webster has termed this action “longitudinal debunching.”

From the distance-time diagram it is seen that the maximum degree of

bunching occurs considerably farther along the beam than the distance

corresponding to the formation of the first infinite peak of current in

the absence of space charge. Furthermore, the maximum degree of

1 The most complete treatment of bunching theory in all its aspects yet published

appears in Sperry Research Laboratories Kept. 5221-1043 by E. Feenberg, 1945.

^ Webster, D. L., Cathode-ray Bunching, Jour. Appl. Phys., vol. 7, 501-502,

July, 1939.

® Hahn, W. C., Small Signal Theory of Velocity-modulated Electron Beams,

Gen. Elec. Rev., vol. 42, pp. 258-270, June, 1939.

* Ware, L. A., Electron Repulsion Effects in a Klystron, Proc. I.R.E., vol. 33,

pp. 591-596, September, 1945.
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actual bunching will be equal only to that which would occur con-

siderably before the first infinite peak of current in the absence of space

Time
Fig. 17.25.—Distance-time diagram of a high-current-density beam showing space-

charge debunching effects.

charge. Infinite peaks of current are, of course, a physical impos-

sibility, and it is doubtful whether or not even double peaks occur where

high beam currents are involved. Since the space-charge repulsion

Fig. 17.26.—Picture of a bunched beam showing radial disper-

sion due to space charge.

forces near the edge of the beam are less than at the center, the bunches

will tend to form sooner near the edge and be more intense. As a result.
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the bunches will tend to be crescent-shaped in a plane through the axis

of the beam, with their concave side toward the cathode.

In Chap. 15 it was shown that an unbunched beam would tend to

spread owing to radial electrostatic repulsion forces. The same action

occurs in a bunched beam except that it is accentuated by the bunching

action. As bunches tend to form, the space-charge density in that

region will increase and the radial expansion will be greatest about a

bunch center. Portions of the beam between bunches will have their

Fig. 17.27.—Electron arrival time as a function of departure time for

a bunched beam with a short drift distance and relatively large values

of r-f voltage.

space-charge density reduced and will not spread so much. The resultant

action is that the bunches will tend to form, achieve a certain degree of

grouping of electrons, and then literally explode radially. The actual

picture of a bunched beam may be expected to look something like

Fig. 17.26. As a result of this action, the current density associated

with any bunch will first increase as the electrons move along the beam
and then decrease.

The general observations made about space-charge effects above are

borne out in the operation of actual tubes. Studies of the velocity

distribution of bunched beams made with a special tube incorporating
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a velocity spectrograph where the collector electrode is normally placed

reveal that the actual velocity distribution is quite different from that

expected from first-order bunching theory neglecting space charge. ^

Furthermore, it is found that amplifier and oscillator klystrons built

with relatively short drift spaces give higher output and efficiency than

do those with long ones, this being particularly true of frequency-multi-

plier tubes. Likewise, the output of almost any klystron amplifier or

oscillator can be increased by applying an axial magnetic field even when
the cathode design is good.

Since space-charge effects dictate short drift spaces, larger driving

voltages are required to produce a given degree of bunching. Accord-

Vi
ingly, the limiting value of yy- of 0.2 assumed in the first-order theory is

y 0

generally exceeded. In general, the resulting action is the same as

before except that the degree of bunching is less than that predicted by
the first-order theory. Curves of arrival versus departure time for a very

Vi
short drift distance but relatively large values of are shown in Fig.

y 0

17.27 (space-charge effects neglected). According to such a set of

curves, double peaks occur at smaller values of k than unity, and maxi-

mum output results at a value of k appreciably smaller than 1.84. This

tendency is frustrated by the space-charge effects.

17.9. The Reflex-kiystron Oscillator. The reflex-klystron oscillator

is a single-resonator klystron with a reflector electrode, operated below

cathode potential and located so that electrons are reversed in direction

after a first passage of the resonator and made to return through the

same resonator.^ ® The electron stream is velocity-modulated by its

first passage through the resonator gaps, and power is extracted from the

bunched beam current upon the second passage of the electrons through

the resonator. The structure of some typical 10-cm reflex-klystron

oscillators is shown in Fig. 17.28. Tubes are of two types, those in which

the resonant cavity is sealed to the tube and evacuated and those in which

the resonant cavity is attached extern^ly to the tube. Both types

utilize a cathode for the production of the beam. The magnitude of

the cathode current is sometimes controlled by a control grid or focusing

ring. The entire resonator is operated at the same potential above

cathode, and this potential is that through which the electrons are

* Hadley, op. cit.

'Pierce, J. R., Reflex Oscillators, Proc. I.R.E., vol. 33, pp. 112-118, February,

1945.

3 Ginzton, E. L., and A. E. Harrison, Reflex-klystron Oscillators, Proc. I.R.E.,

vol 34, pp. 97-117, March, 1946.
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accelerated. Since the reflex-klystron oscillator is seldom used to

obtain appreciable power but rather finds its greatest application as a

local oscillator tube, large currents are not needed and the resonator gap

faces are made of a fine-mesh grid. The tube is usually constructed

so that immediately beyond the second resonator grid there is a region

of nearly constant potential gradient. The reflector electrode is ordinarily

(B)

Fig. 17.28.—Structure of the reflex klystron;

(A) evacuated resonator, Sperry type; {B) ex-

ternal cavity required.

concave toward the resonator so that there is a focusing effect which

directs the electrons back toward the center of the resonator grid.

Behavior of Electrons in the Reflector Space. Electrons in the reflector

space encounter a nearly constant gradient of potential opposing their

motion. In all the subsequent analyses it will be assumed that the
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potential variation in the reflector space is linear with distance and that

as a consequence the gradient of potential is indeed constant. As a

result of this assumption, the laws of motion of electrons in the reflector

space are identical with those of a ball thrown up into the air in the

absence of friction. In this mechanical analogy the ball experiences a

constant downward force due to gravity just as the electron experiences

a constant force directed toward the resonator. The equations of motion

for the acceleration, velocity, and position as a function of time of an

electron injected into a region of retarding potential gradient of value

vjrjth an initial velocity vo are
a

a =

V =

X =

dv _ c(To -h Vr)

dt md
dx _ et{Vo + T,)

dt md
et^

2md
(1^0 + Tr) + Dot

(17.68)

(17.69)

(17.70)

where a is acceleration, v is velocity, Vo is initial velocity, t is time, Vo is

cathode-resonator potential difference, Vr is the potential difference exist-

ing between reflector and second resonator grid, which are separated a dis-

tance d, e and m are, respectively, the charge and mass of the electron, and

X is distance measured from the second resonator grid. It is seen that the

acceleration is constant with time, velocity decreases uniformly with

time, and distance is a parabolic function of time. Hence, if a distance-

time diagram be plotted for electrons in the reflector field, the curves

will all be parabolas. The maximum distance to which an unmodulated
electron will penetrate the reflector field will be given by

Xmax
dVo

Vr+ Vo
(17.71)

since at this distance the potential has changed by an amount To, as

is apparent from Fig. 17.29, which shows the potential profile of the tube.

Hence the distance to which an electron penetrates the field is directly

pi’oportional to the initial potential through which the electron has been

accelerated. The average velocity of the electron in the reflector field

will be half of its initial velocity, and hence the time the electron spends

in the reflector field will be

to =^ (17.72)
Vo

Vo _ \/To
c 506

(17.73)

Since
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where c is the velocity of light, then

,
2,024(i Wo

" c(Fo + Vr)
(17.74)

If both sides of this equation be multiplied by the angular frequency

o) and use is made of the relation c = \f, where X is the wave length, then

the resulting expression for the d-c transit angle in radians spent in the

reflector space is

Fig. 17.29.—Potential profiles of a reflex-klystron

oscillator.

Distance-time Diagram of a Reflex-klystron Oscillator. Since the

distance to which an electron penetrates the reflector field against a

constant gradient of potential is proportional to the initial energy and
since the law of falling relative to the point at which the electron direc-

tion is reversed is the same for all electrons regardless of their initial

energy, the distance-time curves of electrons entering the reflector space

with different velocities will all be parts of the same parabola. This

makes it relatively easy to construct a distance-time chart by means of a

template since the energy of electrons leaving the resonator will be

Va = Fo(l -b Aa sin uit) (17.76)

where F„ is the voltage equivalent of the electron energy associated with

the first resonator transit (subscript a). Other symbols have their

previous significance, that is, Fo is beam potential, A is beam coupling
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coefficient, and a is excitation-voltage ratio. For the present, it is

assumed that an r-f gap voltage

Fi(0 = Fi sin wf (17.77)

exists, without saying how it is created. The distance to which any
electron penetrates the field will be proportional to the value of Ya
given by Eq. (17.76). The corresponding initial velocity of an electron

entering the reflector space is

«<x = «o ^1 +^ sin coij (17.78)

which is identical with the expression encountered in the klystron-

amplifier bunching resonator. The value of Va from Eq. (17.78) will

determine the initial slope of the parabola associated with any electron.

A sample distance-time diagram constructed by applying the above
observations is shown in Fig. 17.30. The bunching action is quite evident

and is slightly greater in this case than that required to produce a first

infinite peak of current. If the bunch which is formed returns to the

resonator at such a time that the electrons pass through the resonator

gap whm they are opposed by the potential gradient between the resonator

grids, then energy will be extracted from the bunched current and the

tube may oscillate if other conditions are suitable. Of great significance

is the observation that the bunch forms about the electron which passes

through the resonator when the modulating voltage is changing from
accelerating to retarding in its action. (It will be remembered that in

the klystron amplifier the bunch formed about the electron which
passed through the bunching resonator when the modulating voltage was
changing from retarding to accelerating.) This happens because those

electrons which enter the reflector field with energies greater than the

average will penetrate farther and take longer to return. Accordingly,

electrons which have been slowed down will overtake those which have
been speeded up, which is just the opposite to what happens in the

klystron amplifier. A combination of this property and the requirement

that the electrons return when the resonator voltage opposes their

motion through the resonator indicates that oscillations can occur only

when the d-c transit time is in the vicinity of n -|- M cycles, where n is

zero or any integer. The distance-time diagram of Fig. 17.30 shows a

d-c transit time of 1^^ cycles, which admits of oscillation.

Bunching Theory of the Reflex-klystron Oscillator. There has already

been given in Eq. (17.78) an expression for the electron velocity resulting

from a first transit of the resonator. For the distance-time diagram
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of Fig. 17.30 the principle of conservation of charge will hold, just as it

did for the klystron amplifier; i.e., Eq. (17.37) will again apply,

h = la ^ (17.37)
Cttb

where la is again equal to 7q. Likewise it will be true that the relation

between arrival and departure time of any electron will be the same

as for the klystron amplifier; i.e., Eq. (17.30) will hold.

Fig. 17.30.—Distance-time diagram of a reflex-klystron oscillator.

Since the equations that determine the shape of the current pulse are

the same as for the klystron amplifier, it is expected that the resultant

current will be the same and it is. Thus

hi = (17.50)

where all the symbols have their previous significance. It must be

noted, however, that for the case of the reflex-klystron oscillator the

current of Eq. (17.50) is taken with respect to the direction of the second

electron transit and this defines the positive gap voltage. For some

purposes it is more convenient to deal with the current associated



VELOCITY-MODULATED TUBES, OR KLYSTRONS 577

with the direction of the first electron transit, which will be the negative

of that given by Eq. (17.50) and will have the form

-Zm = 2/oJl(fc)€
-y(ro+0

(17.79)

In this form it is apparent that the klystron-amplifier and reflex-klystron-

oscillator bunches form about zero-excitation-voltage points which are

half a cycle apart.

From Eq. (17.50) it is apparent that whenever the d-c transit angle is

s' etc., radians the current will be in phase with the gap voltage

and the beam action will be equivalent to that of a positive resistance

StT "L 1*71"

shunted across the gap. Whenever the d-c transit angle is

etc., the fundamental component of beam current will be 180 deg out

of time phase with the gap voltage and the beam action will be equivalent

to a negative resistance shunted across the gap. Under this last set of

conditions the tube may oscillate if the magnitude of the negative beam
resistance is less than the positive resonator resistance.

Self-admittance of the Beam. It is convenient for purposes of analysis

to speak of the beam admittance, defined as the ratio of the fundamental

component of induced resonator current to the gap voltage that produces

it. From Eq. (17.50) this is

Fe =^ Jl{k) € 0

Fe =

17.80)

(17.81)

(17.82)

where Ye is the self-, or electronic, admittance of the beam. Go =

and use has been made of the relation k = The factor A that

appears in Eq. (17.80) arises from the desirability of comparing beam
and resonator admittances in terms of induced resonator currents.

The ratio of the electronic to the beam admittance is perhaps most
conveniently written in component form by expanding the exponential

into a comple.x quantity.

Ye J^{k)
,

.
,

^ (sin To -b J cos To) (17.83)
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The electronic admittance of the tube is seen to be a function of the d-c

transit angle and the bunching parameter fc, which also involves the

transit angle. Likewise it is seen that the electronic admittance has

both a conductive and a susceptive component depending upon the value

of the d-c transit angle. Let it be assumed first that the value of k is

zero, corresponding to zero r-f gap voltage. The factor then has a

value of Accordingly, the conductance and susceptance of the beam
have the form shown in Fig. 17.31. The zero signal value of beam

Fig. 17.31.—Electronic conductance and susceptance of a reflex klystron as a function

of electron transit-angle.

conductance is of the form x sin x. It is first positive and then alter-

nately negative and positive with increasing amplitude. Correspond-

ingly, the zero signal value of beam susceptance is of the form x cos x.

It is first positive for a quarter cycle and then alternately negative and

positive with increasing amplitude as d-c transit angle increases (reflector

voltage decreases). The tube may oscillate whenever the beam con-

ductance is negative and exceeds the magnitude of the positive resonator

conductance. The negative of the resonator conductance is shown in

Fig. 17.31. For the value shown, oscillations will not occur the first

time the beam conductance is negative, for its magnitude is not large

enough. Oscillations will occur the second time and subsequent times
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the beam conductance is negative as d-c transit angle is increased, for

the magnitude is then greater than the resonator conductance.

Mechanism by Which Oscillations Start. The above statements about

conditions for oscillation are readily demonstrated by reference to the

-Qt

sin coot

V(t)

6=^^ is positive

(a)

Fig. 17.32.—Transient response of an RLC circuit.

transient response of a parallel combination of a resistance, inductance,

and a condenser. Let the circuit be as shown in Fig. 17.32. The voltage

transient across such a circuit that has been shock-excited by some
disturbance has the form

-9L
V{t) = Vie sin wo< (17.84)

where G is the value of the shunting conductance, C is the capacity, and
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Ct}o

VLC
This equation is quite a good approximation for circuits

with a Q greater than 10. From the form of Eq. (17.84) it is seen that

the transient response has the form of a damped sine wave, though the

extent of the damping depends upon the nature of the conductance. If

the conductance is postive, then the response is a damped sine wave, as

shown in Fig. 17.32a. If the conductance is zero, the response will

be an undamped sine wave, as shown in Fig. 17.326. If the conductance

is negative, then the response is an exponentially increasing sine wave,

as shown in Fig. 17.32c. The circuit here discussed is the equivalent

of that encountered in the rejflex-klystron oscillator, the net conductance

being the algebraic sum of the resonator and beam conductance. The net

conductance can be positive, zero, or negative. If the beam conductance

is smaller in magnitude than the resonator conductance, then the net

conductance is positive. If the beam conductance is negative and equal

in magnitude to the resonator conductance, then the net conductance is

zero. If the beam conductance is negative and greater in magnitude than

the resonator conductance, then the net conductance is negative.

The mechanism by which oscillations start in a reflex-klystron

oscillator is evident from the above. Suppose that there is initially no

r-f voltage but that the beam conductance is negative and greater in

magnitude than the resonator conductance, as at the second negative-

conductance peak shoum in Fig. 17.31. The net conductance will be

negative, and hence any small disturbance will start a transient response

like that shown in Fig. 17.32c. As the transient gap voltage builds

up, the beam conductance will decrease in magnitude in accordance with

the factor > as sho^vn in Fig. 17.33. The result will be that the

transient voltage will build up less rapidly, but it will continue to increase

in magnitude as long as the magnitude of the negative beam conductance

exceeds the resonator conductance. As the transient gap voltage builds

up, the beam conductance will continue to drop off until finally it is

exactly equal to the resonator conductance. At this value of voltage

the net conductance will be zero, and stable oscillations of constant

magnitude as shown in Fig. 17.326 will result.

Variation of Beam Conductance with Amplitude of Oscillation. Exami-

nation of the real part of Eq. (17.83) shows that the beam conductance

Jiik)
varies as the factor

k
with the degree of bunching. Of particular

0^ 2 2-jy

interest are the values of transit angle of etc., for which the

negative conductance has its greatest magnitude. Shown in Fig. 17.33



VELOCITY-MODULATED TUBES, OR KLYSTRONS 581

are relative values of beam conductance as a function of resonator gap

voltage for different values of n, oscillations being considered possible for

transit times oi n cycles. All these curves have the same form

but differ in their initial magnitude, which is always '—j and in their rate

of decline, which increases as the value of n increases. Marked on the

curves are the abscissas corresponding to maximum power. As will

be shown, this occurs for a value of k equal to 2.405 and yields a conduct-

PiG. 17.33.—-Electronic conductance of a reflex-klystron

oscillator as a function of r-f voltage for transit angles

admitting of oscillation.

ance that is 43.1 per cent of the maximum value. The curves are

extended only to a value of of 0.5, which is well beyond the limit of
y 0

accuracy of the first-order theory. From the slope of the curves it is

expected that the oscillations for large values of n are more stable than

for the low values.

The Electronic-admittance Spiral. The condition for oscillation of a

reflex-klystron oscillator is that the electronic beam conductance be

negative and equal in magnitude to the positive resonator conductance.
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For the resultant circuit to be resonant it is also necessary that the net

susceptance of the parallel resonator-beam combination be zero. All

this can be stated by the single equation

Yr= - Fe (17.85)

where Fr is the resonator admittance and Fe is the electronic admittance

of the beam. For many purposes it is convenient to plot the locus

ELECTRONIC ADMITTANCE SPIRALS
k=0. Zero modulation
Jc=2,405, maximum poiver, Yg -0.43lYg (k=0)

Fig. 17.34.—Electronic-admittance spirals of reflex-klystron

oscillators.

of admittance as frequency is varied since for ordinary resonant circuits

the loci will usually be of some simple geometrical form. If a locus of

electron admittance also be plotted, then limits of oscillation can be deter-

mined by intersections of the resonator and negative-beam-admittance
loci. Pierce has suggested the use of a plot of the locus corresponding

to Eq. (17.83) for the beam admittance. For any fixed value of k the

locus of the beam admittance is a spiral of Archimedes. Two such

spirals are shown in Fig. 17.34. The solid curve is the spiral locus for



VELOCITY-MODULATED TUBES, OR KLYSTRONS 583

k equal to zero, or the limit-of-oscillation value. The dotted spiral locus

is for a value of k of 2.405, or the maximum-power value. The spirals

are geometrically similar except that the dotted spiral is only 43.1

per cent of the size of the solid spiral. Transit angle is measured clock-

wise from the positive susceptance axis, increasing transit angle cor-

responding to decreasing reflector voltage. The beam conductance is

zl<y= 0.00!(between points)

Fig. 17.36.—Analysis of oscillations of a reflex-klystron

oscillator by means of admittance loci.

TT StT
seen to be negative whenever the transit angle is within ^ radians of

^ Z 2i

7x Hit
-TT’ -s-’ etc.

Reflex-klystron Oscillation with a Simple Resonant Circuit. When
the resonant circuit is representable by a parallel combination of a

resistance, inductance, and capacity, then the locus of the circuit admit-

tance is a straight line parallel to the susceptance axis in the positive

half of the admittance plane, as shown in Fig. 17.35.^ On this line,

' Specifically, the approximate formula for admittance as a function of frequency is

Fr(ai) = (?,(1 -f- 2jQS), where S is the fractional frequency deviation from resonance.
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frequency increases upward. Also plotted in Fig. 17.35 is the negative

of the admittance spiral. Let it now be supposed that every parameter

in the oscillating circuit and tube is kept constant except the reflector

voltage, which is varied from some large negative value to zero. Then

on the beam-admittance spiral this corresponds to a clockwise traversing

of the spiral. As transit angle increases with reduction of the magnitude

of repeller voltage, the beam admittance will spiral out from a point

Negative repeller voltage

Fig. 17.36.—Power output of a reflex-klystron oscillator as a func-

tion of reflector voltage.

on the curve near the origin. When the beam admittance first has a

negative-conductance component (right half of Fig. 17.35), oscillations

will not occur for the case shown because the magnitude of the negative

beam conductance is less than the positive resonator conductance. As

transit angle is increased further, the beam conductance becomes positive

(left half of Fig. 17.35) and then negative again. When the transit

angle has increased to the point a on the spiral, the negative beam

conductance equals the resonator conductance in magnitude for the first

time and oscillations will start. As transit angle is increased still

more, the beam admittance will now follow a segment of the resonator-

admittance line from point a to b, the beam-admittance spiral shrinking

with increased gap voltage and output until it is equal to the resonator
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admittance at every point. Maximum gap voltage and output will occur

when the beam admittance is a pure negative conductance on the real

axis of Fig. 17.35. As transit angle is further increased, the tube will

drop out of oscillation at b. The admittance will now trace the spiral,

and oscillations will start again when the point c has been reached. As

transit angle is increased still further, the beam admittance will now trace

the segment of the straight-line resonator-admittance locus between c

and d, where the tube will again drop out of oscillation, and so on.

If the power output of a reflex klystron oscillator be observed with an

oscilloscope connected to a crystal output as the reflector voltage is swept

sinusoidally, the trace shown in the lower part of Fig. 17.36 results. Each

output pulse shown here corresponds to a segment of the resonator

admittance between intersections with the beam admittance. The

frequency corresponding to the center of the different output pulses is

the same but changes through the pulses as shown. The frequency

deviation for each mode of oscillation is about the same, but it will occur

for a smaller change in voltage and be more linear for large values of n.

Power Relations in the Reflex-klystron Oscillator. The power trans-

ferred from the resonator to the bunched electron beam is the product

of the resonator voltage by the in-phase component of induced resonator

current. This has the value

p _ FiA/m

Pe = Fi7oA/,(fc) sin tq

or

~ - kJiik) sin To
Pq To

by application of the definition of k given in Eq. (17.33). The power

transferred from the resonator to the beam will be negative whenever

sin To is negative, which is to say that the power is actually transferred

from the beam to the resonator under this condition. The power

delivered to the resonator will be a function of the bunching parameter k,

which is in turn determined by the requirement that the negative of the

beam admittance equal the resonator admittance. A set of curves

showing how power transferred from beam to resonator varies with

r-f gap voltage is given in Fig. 17.37. The peak power transferred for

each mode of operation shown occurs for a value of k of 2.405 and is

lower for successively higher values of the transit angle. This might at

first thought seem to indicate that the maximum power would be obtained

Stt Ttt
with the lowest transit angle of the possible oscillation values,

(17.86)

(17.87)

(17.88)
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etc. However, the maximum power for the lowest transit angle

occurs at such large gap voltages that the resonator and load demands
may exceed the power which can be delivered and oscillations will not

occur at all.

Pig. 17.37.—Power output of a reflex-klystron oscillator as a function of

bunching parameter (theoretical).

Equation (17.88) is really an expression for efficiency. The maximum
theoretical efficiencies apparent here for different values of n where

oscillations are presumed to occur in «• + cycles transit time are

listed below:

n Efficiency
AVr
Fo

0 0.531 1.018 (not valid)

1 0.227 0.436

2 0.145 0.278

3 0.106 ! 0.204

n
0.398

n + M
0.767 „(forn>3)

In the above tabulation the d-c transit angle has the value of

(n + M)27r. The values for n equal to zero are obviously not valid,
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for the excitation-voltage ratio greatly exceeds the limit of accuracy

of the theory. Values for higher orders are progressively more accurate.

Actual measured efficiencies are of the order of one-fourth of the theo-

retical values given above.

In the previous discussion there have been given formulas for the

fundamental component of beam current [Eq. (17.50)], for electronic

admittance [Eq. (17.83)], for electronic power [Eq. (17.88)]. Each o

these quantities depends upon the bunching parameter k in some com
bination of the first-order Bessel function of the factor k. Thus for a

Fig. 17.38.—Theoretical current, conductance, and power function in a reflex-

klystron oscillator.

fixed electron transit time the fundamental component of current is

proportional to Ji{k), the electronic conductance is proportional to

and the electronic power is proportional to kJ\{k). It is of interest

to plot these functions side by side in order to compare their properties.

This is done in Fig. 17.38. The three functions have in common a zero

value for a value of k equal to 3.84. The maximum value of current

occurs for a value of k equal to 1.84. The maximum value of power

occurs for a value of k of 2.408, corresponding to 0.431 of the maximum
value of conductance.

The magnitude of the actual power delivered to the resonator is best

obtained by plotting contours of equal power output on an admittance
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diagram. Such contours may be calculated from Eq. (17.88) and are

llx
shown in Fig. 17.39 for transit angles in the vicinity of radians

Ji

(n = 2). Contours for other values of n will be similar. The power

transferred from beam to resonator for any given load admittance is

rrequency inferva! betmen points = per cent

Fig. 17.39.—Contours of electronic power output of a

reflex-klystron oscillator on an admittance plane. This

representation shows the power supplied to both

resonator and load.

immediately evident from these contours. Of particular interest are

the variations of power output with reflector voltage for different degrees

of resonator loading. As the resonant circuit is loaded, its straight-line

admittance locus assumes a larger conductance component, while at

the same time equal frequency increments along the line become smaller

relative to the conductance. This is due to the fact that the conductance
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is given by where B is the magnitude of either the circuit inductive or

capacitive susceptance. At the same time the frequency increment

between values of admittance having angles of plus and minus 45 deg

is Hence, as the resonant circuit is loaded the Q decreases and

the conductance component increases, as does also the frequency incre-

PiG. 17.40.—Power output of a reflex-klystron oscillator as

a function of loading for variable reflector voltage.

ment between the 45-deg values of admittance. Accordingly, the change

in susceptance for a given frequency increment decreases. Figure 17.39

shows admittance loci of a resonant circuit for three degrees of loading.

The dots on the straight-line admittance loci of this figure show per

cent frequency variations. The corresponding curves of power output

versus reflector voltage are shown in Fig. 17.40.

Of interest is the amount of frequency variation between the limits
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of oscillation for a given resonator loading as the reflector voltage is

varied. This may be calculated exactly from determining the frequencies

corresponding to intersections of the zero-signal beam-admittance spiral

and the straight-line resonator locus. This determination requires

numerical or graphical computation. A good approximation for the

amount of frequency variation between limits of oscillation may be

obtained by assuming that the beam-admittance locus is a circle whose

radius is that corresponding to a transit angle of 2Tr{n + radians

instead of the actual spiral. With this assumption the limiting inter-

sections of the beam and resonator admittance loci can be calculated.

The errors appearing at the two intersections as a result of the assumption

of a circular locus cancel as far as the difference in frequency for the two

intersections is concerned and the resulting expression is accurate within

a few per cent. It is

Half band width between^ _ J_ //toGoA^V cq'v

oscillation limits /o ^Q\\ 2Gr )
~ ^

where the Q is that of the resonator, Go and Gr are beam and resonator

conductance at mid-mode, respectively, to is the transit angle at mid-

mode of value 2ir{n -f It will be noted that this expression

properly reduces to zero when the resonator-admittance line is tangent

to the beam-admittance spiral, i.e., when

Gr = (17.90)

This equation represents a limit of oscillation. It may also be used to

determine the minimum beam current required to start the oscillation for

a given resonator and a given reflector mode of operation. Since the beam
admittance as given by Eq. (17.83) is proportional to the d-c beam
admittance, which in turn is proportional to the d-c beam current, then

the starting current for any resonator and reflector mode is

7 mia

2GrVo

ToA^

2Fo
ToA^Rth

amperes

amperes

(17.91)

(17.92)

where i?,* = 77 is the shunt resistance of the resonator.

* This is arrived at as follows: At the intersection of the assumed circular beam-

admittance locus and the straight-line resonator locus the equality of the conductance

component gives G, = J^GotoA^ cos Ato, whereas the equality of the susceptance

components gives QGr^ = 7, GotoA* sin Ato, where Ato = to Squaring and adding
Jo ^ Jo

these relations and then solving for the band width yield Eq. (17.89).
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Voltage Stability of Reflex-klystron Oscillators. Since the d-c transit

angle of the electrons in the reflector space depends upon the electrode

voltages, the frequency of oscillation changes with supply voltage, as

has already been shown. This may be a serious limitation in applica-

tion, for a small change in electrode voltage will cause a relatively

large change in frequency of oscillation. If it is assumed that the cathode

and reflector voltage both change by the same percentage with a given

change in line voltage, then the frequency stability at mid-mode with

respect to voltage is'

7 ^
'IK nfP* cycles per volt (17.93)

/o 4Vo V 0

For the 2K28 with the characteristics shown in Fig. 17.36, this variation

is of the order of me per volt at mid-mode.

If the cathode-reflector voltage instead of varying proportionally to

cathode-resonator voltage is kept constant, then the frequency change

with voltage is zero when the cathode-resonator and cathode-reflector

voltages are equal. This occurs because under this condition the gradient

of potential in the resonator-reflector space and the distance to the point

of electron reversal change by the same percentage with a change of

cathode-resonator voltage, thus keeping the transit angle constant.

The frequency change with voltage for other conditions can be made
low by giving the cathode-resonator and cathode-reflector voltages

different degrees of regulation of the proper value.

The relatively large frequency change with voltage observed in Eq.

(17.93) may actually be of use in some applications, for it indicates that

frequency modulation is easily achieved. Even in cases where stability

is desired, automatic frequency control is easy to apply.

17.10. Broad-band Operation of Reflex-klystron Oscillators. Tubes
of the type shown in Fig. 17.286 are frequently used with an external

resonant cavity in the form of a concentric line. Such an arrangement

permits of an extremely wide band of frequency operation. The low-

frequency limit of oscillation will be governed by the resonator-reflector

distance, which in turn determines the largest transit time that can be
used without the reflector drawing current. The high-frequency limit

will be determined either by the gap transit angle, which reduces the beam

1 Arrived at by applying the relation ^ to the formulas
Ct r 0 Clto dV Q

mf-fo) = cos TO

y
and Eq. (17.74) on the assumption that^ is constant.

r 0
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coupling coefficient A and thus reduces the beam conductance, or by
the resonator shunt resistance, which may drop off with increasing

frequency to the point where oscillations cannot be maintained. Opera-

tion over a frequency band of as great as 2 to 1 may be had with this type

of tube and resonator.

Equivalent Circuit of Concentric-line Resonator. In the ordinary

reflex-klystron-oscillator tube built to use an external resonator there

will be an appreciable capacity across the electron bunching gap. As a

result of this capacity, the tube will oscillate when the capacitive react-

ance of the gap is equal in magnitude to the inductive reactance of the

shorted concentric line attached to it. Accordingly, the equivalent

circuit is that shown in Fig. 17.41. This is simply a capacity in parallel

L

For resonance

arc Ian(^)
Fig. 17.41.—Equivalent circuit of a concen-

tric-line resonator and reflex-klystron oscil-

lator.

with a shorted section of concentric line. Resonance will occur whenever
the gap reactance equals the inductive line reactance in magnitude,

i.e., when

sr, - (7)
<"•*'*)

where to is the angular frequency, C„ is the gap capacity, Zo is the charac-

teristic impedance of the line given by 138 logio I is the equivalent

line length, and X is the wave length. Curves of magnitude of capacitive

reactance and inductive line reactance are shown in Fig. 17.42. Reso-

nances will occur at the intersections of the two reactance curves shown.

The resonances are multiple, which means that, for a given line length,

resonance can occur at a number of different frequencies. The fre-
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quencies of resonance will occur at frequencies somewhat less than those

for which the line is 3^^, etc., wave lengths long.

For convenience in subsequent analysis, Eq. (17.94) may be solved

for I and written in the form

Z = Aarctan(^^) (17.96)

as a function of wave length, where Co is the distributed capacity of the

concentric line per unit of length.* The general form of curves of / as a

+X

-X

Fig. 17.42.—Curves of reflex-klyst. on gap reactance and induc-

tive line reactance as a function of frequency.

function of wave length is shown in Fig. J7.43. The various branches

of this curve correspond to the different possible line lengths. The
lowest branch of the curve gives resonant lengths slightly less than

Ya, wave length, the next gives lengths slightly shorter than wave

* This follows from the fact that Ko = and c = — —=> as a result of which
''Co VhoCo

cZo =
7^- Utilization of this last relation along with c = X/ leads to Eq. (17.96).
Co

Distributed inductance of the line per unit length is Lo; velocity of procagation is

c = 3 X 10*“ cm per sec.
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length, and so on. All curves start out like parabolas from the origin

and then become straight lines parallel to a line whose slope is

etc. respectively for the different curves starting from the bottom.

A, cm

Fig. 17.43.—^Length of a capacitively loaded line required

to give resonance at various wave lengths.

Possible Modes of Oscillation. A reflex-klystron oscillator with an

external concentric-line resonator has numerous possible modes of

oscillation. Oscillations can occur whenever the transit time of electrons

in the reflector space is n -|- % cycles, where n is zero or any positive

integer, and the cavity length is effectively an odd quarter of wave lengths

long. The tube gap capacity always loads the line resonator so that its

actual length is less than an odd quarter of wave lengths long, but it is

convenient to speak of the effective length as that corresponding to the

nearest odd number of quarter waves. Accordingly, if the cavity length
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and electron transit time in the reflector space are admitted as variables,

a considerable number of oscillation modes are possible. Each oscillation

mode needs to be designated in terms of both the electron transit time

and the effective cavity length.

The possible oscillation modes of the reflex-klystron oscillator with a

concentric-line resonator may be investigated conveniently by applying

an alternating voltage to the reflector and observing by means of a

cathode-ray oscilloscope the reflector voltages at which oscillations occur.

This is done by connecting the output of a crystal detector to the vertical

plates of the oscilloscope while at the same time applying the alternating

reflector voltage to the horizontal plates. The resultant screen repre-

sentation on the cathode-ray tube will be like that shown in the lower

half of Fig. 17.36. If now the cavity length is varied, the modes will

change position progressively as the voltage required to give different

transit times changes. A plot can be made showing reflector voltage

ranges that maintain oscillation as a function of cavity length, which is

usually nearly linear with wave length. It is even possible to record

such an oscillation mode plot photographically by intensity-modulating

the oscilloscope with the crystal output, applying the alternating reflector

voltage to the horizontal plates, and obtaining a vertical deflection

proportional to cavity length by means of a potentiometer connected to

the cavity-plunger drive. The cavity plunger is then moved uniformly

throughout its entire travel while a camera integrates the line indication

of the oscilloscope. Such a photographically recorded mode plot is

shown in Fig. 17.44. The numerous possible modes of oscillation are

labeled in terms of their corresponding electron transit time in cycles

and their equivalent cavity length in wave lengths. For the type 707B
tube shown, oscillations occur for transit times ranging from 1.75 to

3.75 cycles in integral steps and for equivalent cavity lengths ranging
from 0.25 to 1.25 wave lengths in half-wave-length steps. Maximum
output is obtained for an electron transit time of 2.75 cycles and an
equivalent cavity length of 0.75 wave length.

Method of Calculating Oscillation Mode Plot. It is possible to deter-

mine graphically the form of a mode plot such as was obtained photo-
graphically in Fig. 17.44 on the basis of the simple theory proposed in

the previous sections. Such a determination serves as a check upon the
validity of the assumptions made in deriving the above theory.

There is desired a relation between reflector voltage and cavity

length for the different cavity-length and electron-transit-time modes.
A relation between cavity length and wave length has already been given
in Eq. (17.96) and shown in Fig. 17.43. A relation between resonant
wave length and reflector voltage has been given in Eq. (17.75). From
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this relation it is seen that for a given transit angle the reflector voltage

is linear with the reciprocal of the resonant wave length. Plots of Eqs.

(17.75) and (17.96) can be combined to give the desired relations between

reflector voltage and cavity length by means of the construction shown in

Fig. 17.45. In the second quadrant of this chart is given the linear rela-

tion between reflector voltage and reciprocal wave length. In the fourth

Cavity Length, cms.

Z(j=50ohms

Fia. 17.44.—Photographically recorded mode plot of a broad-band reflex-

klystron oscillator. The number pairs give the number of quarter waves

in the resonator and the value of n respectively.

quadrant is given the relation between resonant wave length and cavity

length as shown in Fig. 17.43. In the third quadrant is given the curve

relating wave length and its reciprocal. A set of rectangular con-

struction lines tying together points in the second, third, and fourth

quadrants for a given set of electron-transit-time and cavity-length

modes yields an intersection in the first quadrant which is a point on one

of the reflector voltage-cavity-length modes desired.

Differences between the theoretical and actual reflector-voltage-
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cavity-length curves result from numerous limitations- to the simple

theory. Prominent among these is the inadequacy of the assumption

of the equivalent circuit shown in Fig. 17.41. This equivalent circuit

is probably adequate at long wave lengths, but not at short ones. At
short wave lengths the effect of the corner of the concentric-line cavity

adjacent to the tube needs to be considered. The comer has the effect

of an impedance-transforming network in the form of a tt section with a

series inductive reactance and shunting capacitive reactances. Another

(n,k)

limitation to the simple theory is the assumption that the reflector field

is linear. Actually, the curvature given the reflector electrode to focus

the electrons on the resonator grids may give an appreciable departure

from linearity.

Mode Interference. Mode interference may exist in reflex-klystron

oscillators with concentric-line resonators. This results from the

simultaneous resonance on several modes and may be a serious limita-

tion in oscillator design. The mode interferences may be said to arise

primarily from the external resonator characteristics in that they do not

exist in an ideal line resonator which has no capacity loading and in
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that they are independent of the reflector geometry. For an unloaded

line the length will be directly proportional to the wave length,

Z = ^ unloaded line length, cm (17.97)

where p = 1,3,5, etc., is the number of quarter wave lengths of field

variation along the line. The transit time of an electron in the reflector

space will be

Zo = ^ sec (17.98)

+ sec
c

(17.99)

Equations (17.97) and (17.99) can be combined to give the transit time

in the reflector space in terms of idealized cavity length for the various

reflector-transit-time and cavity-length modes.

Zo —

Zo —

(w + ^i)4l

pc

133.3 (n + H)l

P
micromicroseconds

(17.100)

(17.101)

A plot of electron transit time in the reflector space against ideal cavity

length is shown in Fig. 17.46.^ Examination of this chart shows that

ideally there will be no tendency for the tube to oscillate simultaneously

on two frequencies. (An exception is the coincidence of the 1.25-wave-

length-3.75-cycle mode with the 0.25-wave-length-0.75-cycle mode.)

However, many of the prominent modes are very close together, and a

small change in the resonator tuning curve may bring them into

coincidence.

In reflex-klystron oscillators with concentric-line resonators greatest

dependence is placed at present upon the 0.75-wave-length-resonator

modes. This is because the line loading by the cold-tube capacitance is

usually so high that only very low frequencies can be obtained with

quarter-wave resonance and interest is invariably centered about the

high frequencies. Undoubtedly, the tubes of the future will be made
smaller for a given wave length of operation so that greater use will be

made of quarter-wave-length resonances. With 0.75-wave-length-

resonator modes and the usual dimensions, oscillations will ordinarily

not occur for 0.75-cycle electron transit times, for the beam conductance

will be lower than the resonator conductance. Oscillations will not

* An alternative form of this type of chart was first proposed by W. Huggins and

H. Zeidler.
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ordinarily occur for electron transit times greater than 4.75 cycles,

for the electrons win eventually strike the reflector as its voltage is reduced

to lengthen the transit time. The resultant range of frequencies that

can be obtained with 0.75-wave-length resonators will bracket a 2-to-l

range of frequencies, though use will ordinarily have to be made of several

transit-time modes.

CdviTY cms length, I

Fig. 17.47.—Electron transit time as a function of length of a capacitively

loaded line used with a broad-band reflex-klystron oscillator.

The chart of Fig. 17.46 serves only to give a general idea of the relation

between the modes. The effect of tube capacity is to put a bend in the

quarter-wave mode line. From Eq. (17.96) it is seen that for very short

wave lengths the cavity length varies as the square of the wave length and

hence the electron transit time. All curves of the form given by Eq.

(17.96) have the same form for any one cavity length when plotted on

log-log paper, regardless of the ratio of Co to Cg. Some sample curves

pf this form are shown in Fig. 17.47. Various mode interferences are
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possible because of the bend in the curves introduced by the tube capacity.

Unfortunately, the bend frequently occurs right in the region of desired

operation. Examination of Fig. 17.47 shows that the mode interferences

are independent of the reflector-field characteristics of the tube. This is

because the possible crossovers in a chart such as that of Fig. 17.47 are

entirely determined by the geometry of the resonant cavity. Since the

reflector voltage required to give a certain transit time is always a single-

valued function of the transit time regardless of the shape of the reflector

field, it will be true that the mode interferences will not be altered by

changing the reflector-field characteristics. This is to say that, if a given

gap capacity and resonator dimensions result in mode interferences,

merely changing the resonator-reflector distance or the shape of the

reflector electrode will not eliminate these interferences. All that can

be done is to change the reflector voltage at which they occur.

The above serves only to introduce the problem of mode interference.

The actual problem is vastly more complicated than indicated above.

This is because a simple capacity loading of the line is not an adequate

equivalent circuit. Actual circuits may have impedance-transforming

circuits associated with the corner connection. Some tubes will even

have an equivalent shunting inductance at the resonator gap. In addi-

tion, the reflector field is seldom exactly linear. It may be expected

that in the near future much will be added to the present knowledge of

mode interferences.

Blind Spots. In addition to mode interferences the broad-band

reflex-klystron oscillator will frequently exhibit blind spots, i.e., regions

of no oscillation. In general, such spots will occur when the cavity

impedance is reduced by the effect of a coupled resonant circuit. The
possibility of such coupled resonances are numerous. Most of them can

be eliminated by proper design, but some cannot be eliminated by

resonator design alone since they are inherent in the higher-order oscil-

lations of the resonator.

The nature of the change of resonator admittance caused by coupled

resonances is of considerable interest. The admittance locus of a single

high-Q parallel resonant circuit is a straight line parallel to the susceptance

axis in the admittance plane, with frequency increasing uniformly

upward along the line in the vicinity of resonance. Mathematically,

this may be represented by

F.(cc) = (1 -b 2j 5iQi) (17.102)

where Bi is the magnitude of either susceptance at resonance and 6i is

r r

the fractional deviation of frequency from resonance, If now
Jo
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another resonant circuit is coupled to the above circuit, a bump in the

form of a protrusion to the right will appear in the line locus of resultant

admittance as the coupled circuit passes through resonance. If the

coupling to the second circuit be increased, the size of the bump will

increase up to a critical value of coupling, K\ = i) at which value the

bump will have the form of a cusp. If the coupling be increased still

Fig. 17.48.—Admittance loci of a resonant circuit with a coupled

resonant secondary.

further, the cusp transforms into a loop. This action is shown in Fig.

17.48. It will be apparent that if the bump, cusp, or loop extends suffi-

ciently far to the right the resonator admittance may exceed the electronic

beam admittance of the oscillator tube and oscillations will cease. Even
if the beam admittance is not exceeded, if the resonator admittance has a

loop there will be a frequency discontinuity in the oscillations as reflector

voltage or cavity length is changed because of the inability of the beam
admittance to follow the loop.

The quantitative details of the above phenomena will be indicated

a little further. The impedance of the secondary circuit in the vicinity

of resonance is approximately
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Z2 = J-' (1 + 2i 52Q2)
W2

(17.103)

where St is the fractional deviation of frequency from secondary resonance

and Xt is the magnitude of either reactance at resonance. The imped-

ance coupled into the primary circuit will be —^— ,
or, in component

//I

form,

Coupled resistance =

Coupled reactance =

com^Qt 1

Xt 1 -|- (2

_ 2 StQtWM^ 1

Xt 1 -f- (2 StQtY

(17.104)

(17.105)

Accordingly, the series impedance of the primary is

= R,{1 + a)+ -b) +^ (17.106)

where

K^QiQ,
“

1 + (2 StQtV
(17.107)

and

2 StQt^K^

1 + (2 StQtY
(17.108)

C Z
where use has been made of the relation Since y S

LiLt hi
the corresponding resonator admittance across the capacity junction is

approximately

Yr = ^ [(1 + a) -b 2j SiQi - jQih] (17.109)
vi

where all the symbols have their previous significance. It is seen that

the effect of a coupled resonant secondary circuit is to increase the normal

conductive component of the primary admittance by a fractional amount
a and to reduce the normal susceptive component of the primary admit-

tance by a fractional amount 6/25i. The reduction in the susceptance

component may be so large that the net susceptance actually decreases

with frequency. This happens when the coupling exceeds the critical

value

(17.110)

for the case of equal primary and secondary resonant frequencies, as

may be seen by setting the derivative of the susceptance term of Eq.
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(17.109) with respect to 6 equal to zero. The values of zero susceptance

for equal primary and secondary resonant frequencies occur for

5m = 0

5

at maximum conductance

at loop crossoverJl^

The corresponding values of conductance are

(17.111)

(17.112)

and

G„ = B + K^Q2 maximum value (17.113)

at crossover when crossover exists

(17.114)

Because of the factor in the expression for maximum conductance

and its nonappearance in the crossover value it is expected that the

loop size is a sensitive function of the degree of coupling.

Some typical admittance curves in the presence of a coupled secondary

resonant circuit are shown in Fig. 17.48 for fixed primary and secondary

Q’s, equal resonant frequencies, and different degrees of coupling. The

transition from bulge to cusp to loop as the coefficient of coupling is

increased is evident. It is seen that the loop can be eliminated by

reducing the coupling. It can also be eliminated by decreasing the Q
of the secondary circuit. Examination of Eq. (17.109) shows that the

change in admittance introduced by the presence of the resonant second-

ary circuit depends only on the frequency parameter 62 and hence the

shape of the resultant admittance does not depend upon the primary

resonant frequency. The primary resonant frequency will determine

only the position of the bulge, cusp, or loop and not its shape. In the

usual case, where the secondary resonant frequency is fixed, the resultant

bump on the resonator-admittance curve will move up as the resonator

length is increased.

Resonances may be coupled into the line resonator in many ways.

The resonator load may be resonant. Under certain conditions a reso-

nant load may be connected to the cavity coupling loop through an

unmatched line, in which case numerous loops may be induced in the

resonator admittance. This is known as the “long-line effect.” Some-

times the line plunger is not a perfect short, in which case back-cavity

resonances may couple in admittance loops, which wiU cause blind spots

or frequency jumps. When the resonant cavity is operating on a 0.75-

wave-length resonance, there may occur a higher-order cavity resonance
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that will be coupled into the principal cavity resonance through virtually

imperceptible asymmetries in the structure. The commonest higher

order mode that may occur in cylindrical resonators is shown in Fig.

17.49 in both the actual and the developed form. This is a transverse

electric mode for which the tube gap is a virtual short circuit, for voltage

drops resulting from equal currents flowing in opposite directions cancel.

Its resonant wave length is given approximately from the developed

rectangular form by the formula

W = 4 1
Vx/ ^ P

(17.115)

where rj and ri are the outer and inner radii of the concentric-line reso-

Ouhr radius -r2
Inner radius -ry

OnlvE lines
are shown
(TEni)

(„ I 1

Fig. 17.49.—Commonest higher order resonance field of a con-

centric-line resonator.

nator, respectively, and I is its length. Resonance in this manner cannot

exist until the length exceeds a half wave length and the mean circum-

ference of the line exceeds a wave length. Tuning curves for both the

desired cavity resonance and the undesired higher mode are shown in

3X
Fig. 17.50. For an equivalent cavity length of the desired line mode

will have the shape shown and previously discussed. Its slope will be
slightly greater than for the axes of Fig. 17.50. The first higher-

order mode will have a curve that starts out with a slope of 2 and then

becomes asymptotic to a wave length equal to the mean circumference

of the line. It is inevitable that the two curves shown should intersect.

For usual tube dimensions the intersection occurs at about 70 per cent

of the maximum wave length of resonance of the higher-order mode.

When the cavity is simultaneously resonant in both modes, a slight

coupling between them through some asymmetry in construction will

cause a loop to be induced in the resonator impedance with a resultant

blind spot or frequency jump as line length or reflector voltage is varied.

Such a blind spot is very difficult to eliminate. It should be pointed out
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that this type of blind spot cannot occur when the cavity is operated on a

0.25-wave-length resonance; for then the resonator tuning curve has a

slope of about 4 on a plot like that of Fig. 17.50, and it is impossible for

an intersection with the higher-order resonance to occur. This fact gives

a great incentive for developing tubes which are small enough so that

they can be operated on a 0.25-wave-length line resonance.

‘

Fig. 17.50.—Tuning curves of a concentric-line cavity for the desired mode and the

first higher order mode.

17.11. The Two-resonator Klystron Oscillator. A picture of an

early type of two-resonator klystron has already been shown in Fig. 2.9.

Modern tubes are quite similar except that the resonators are back to

back so that coupling may be introduced through a set of coupling loops

instead of by means of loops at the end of a transmission line of

appreciable length. A schematic drawing of a two-resonator klystron

oscillator and its equivalent circuit is shown in Fig. 17.51. The only

difference between the amplifier and oscillator is that the oscillator has

coupling between secondary and primary.

In the equivalent circuit shown in Fig. 17.51 several assumptions

have been made in the interests of simplicity, all of which are justifiable.

1 For further information on the subject of broad-band reflex-klystron oscillators

see Chaps. 31 and 32, Vol. II of “Very High-Frequency Techniques,” report of

the wartime researches of the Radio Research Laboratory, Harvard University,

McGraw-Hill, New York, 1947.
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It has been assumed that the coupling between buncher and catcher

resonators is purely inductive. This it is in many tubes, though in

some there is coupling through a transmission line, which merely changes

the phase of the mutual impedance from 90 deg to an arbitrary value.

It has been assumed that all losses may be inserted in series with the

resonator reactances. This is quite satisfactory if the proper conversion

factors are always used and if the circuit Q’s are greater than 20. Final

Fig. 17.51.—Schematic drawing of a two-resonator klystron

oscillator and the equivalent circuit.

answers will involve the Q’s of the resonators and will be independent

of whether the loss resistances are in series or in parallel tvith the reso-

nator. The resistance in series with the buncher resonator includes the

effect of the ohmic resonator losses and also the power required to bunch
the beam. The resistance in series with the catcher resonator includes

the ohmic losses of the resonator and also the load. The catcher reso-

nator will ordinarily be more heavily loaded than the buncher resonator

so that its Q will be lower.

The analysis of the two-resonator klystron oscillator will proceed

along the lines used for the reflex-klystron oscillator, though equivalent

methods are just as satisfactory.*-^ The fundamental requirement for

* Webster, D. L., Theory of Klystron Oscillations, Jour. Appl. Phys., vol. 10,

pp. 864-872, December, 1939.

* Harrison, A. E., Klystron Oscillators, Electronics, vol. 17, pp. 100-107, Novem-
ber, 1944.
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oscillation in a klystron is the same as for any oscillator. This is to say

that the transadmittance of the tube must equal the current-voltage

reduction factor (transfer admittance) of the network

= Yia (17.116)

where the transadmittance of the tube

(17.117a)

has been given in Eq. (17.62)

of the coupling circuit is

and the current-voltage step-down factor

(17.1176)

under the condition that all circuit meshes are closed.

The beam transadmittance has a phase angle that depends only

upon the electron transit angle between resonators, i.e., only upon beam

voltage. The magnitude, however, has a maximum value that is

directly proportional to the transit angle, while the fraction of this value

that is realized depends upon the buncher-resonator voltage Va. Thus

Ym is a nonlinear admittance, decreasing with amplitude of exciting

voltage. The circuit transfer admittance F^, on the other hand,

does not vary with electron transit angle, beam voltage, or amplitude

of r-f voltage. It is a quantity that for a given adjustment of the

resonators, coupling, and loading varies only with frequency. Hence

for a fixed adjustment of the circuit the tube may be expected to go in.

and out of oscillation as beam voltage is varied, for this changes the phase

of the beam transadmittance progressively. The resultant selective

oscillation with respect to beam voltage has already been shown in Fig.

2.10. It may be expected that the two-resonator klystron can be

analyzed by a method similar to that used for the reflex-klystron oscil-

lator, the difference being that instead of equating resonator admittance

and negative beam admittance for the condition of oscillation we now

equate beam transadmittance and the circuit transfer admittance Yi^.

In order to specify conditions of oscillation it will be necessary to

know the form of the factor Yba- This is readily obtained by direct

application of standard circuit theory. Let the series self-impedances

of the input and output resonant circuits be Za and Zb, these circuits

including all the loss effects in the form of series resistance. The input

and output impedances of the box representing the tube in Fig. 17.51

will be assumed infinite since the beam effects have been incorporated

into the resistance of the input and output circuits. The output voltage
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is developed across an admittance Yr, which includes the effect of the

coupled input resonator and has the form

Yr = g (z5 - (17.118)

where Z„ is the mutual impedance between the input and output circuits.

In order to establish the relation between output current and input

voltage let the sequence of current-voltage relations be traced backward

from the input. The input voltage is related to the current flowing in

the input resonant circuit by

V,=juLJa (17.119)

to a good degree of approximation for a high-Q circuit. The circulating

current in the input resonator is related to that in the output resonator by

(17.120)

The circulating current in the output resonator is related to the output

current from the tube by

h
juLbYr

(17.121)

with sufficient accuracy for high-Q circuits. Putting these last four

equations together to obtain the ratio of tube output current to the input

voltage that it produces,

^ ^ (Z„Z, - (17.122)

Since coLh = in the vicinity of resonance and since the coefficient
oiCb

of coupling between buncher and catcher resonators is given by

then

= Z ^

W^LoLb
(17.123)

T

^ {ZaZb - Zrr?) (17.124)

This ratio obtained from the circuit action must equal the ratio of output

current to input voltage produced by the beam, i.e.,
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This is the important defining relation for oscillation, similar to the

relation

Yr = - r. (17.85)

that holds for reflex-klystron oscillators.

Conditions for oscillation can now be studied by examining the locus

of beam transadmittance in the admittance plane and comparing with

the locus of circuit transfer admittance. The beam-transadmittance

locus will be exactly the same as the self-admittance spiral of the reflex-

klystron oscillator if the beam current does not change as the beam voltage

is varied. Under these conditions the locus of the beam transadmittance

will be a spiral as the beam voltage is varied.

Another type of beam-trtfnsadmittance locus commonly occurs. If

the cathode is space-charge-limited, the current will increase as the three-

halves power of the beam voltage. For this condition the d-c beam
conductance will be proportional to the square root of the beam voltage.

Since the beam conductance is also directly proportional to the d-c

transit angle, which depends upon the square root of the beam voltage,

this means that the transadmittance magnitude will be independent of

d-c transit angle for any given value of the bunching parameter. As a

result, the locus of the beam transadmittance will be a circle as the beam
voltage is varied. The power that the beam can deliver to the circuit

will, however, vary as the beam voltage, and the maximum power will

be proportional to the cube of the beam voltage.

The locus of the transadmittance through the circuit given by the

right side of Eq. (17.125) is not so well known. It will be recognized,

however, that the factor ZaZb — Zm^ is one which appears frequently

in coupled-circuit theory and is the one that contributes virtually all the

variation of the transfer admittance in the vicinity of resonance. In

the \ficinity of resonance the factor Z^ is relatively constant compared

with the factor Z^Zh — ZJ^ and will be so considered. In particular, the

factor ZaZi — Zm^ appears in the denominator for the expression relating

secondary current to series primary voltage in coupled-resonant-circuit

theory.* It is this factor that gives rise to the well-known double-

peaked response curves for couplings greater than critical. It would

be expected therefore that the locus of ZaZb — itself would be such

as to exhibit two minima for couplings greater than critical. This is

readily shown to be the case.

To examine the defining relation for oscillation given by (Eq. 17.125)

let the mutual impedance be assumed to be inductive of the form

= jwM (17.126)

‘Tebman, F. E., “Radio Engineering,” 2d ed., p. 74, Eq. (42), p. 82, Eq. (45),

McGraw-Hill, New York, 1937.
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For small coupling factors, coupling of any other form will lead to the

same result except that the phase of the coupling impedance may be

different from 90 deg. With the above assumed form of the coupling

impedance, Eq. (17.125) reduces to

Vm = (ZaZl, + (17.127)

If the input and output circuits have relatively high Q’s then their series

impedances can be represented by

Z. = (1 + 2j SQ,) (17.128)

and

^6 = ^ (1 + 2j 8Qi) (17.129)

where 5 is the fractional deviation from resonance and it has been assumed

that the resonant frequencies of the input and output resonators are the

same. The above are simple linear approximations for the actual

expressions but hold well enough in the vicinity of resonance. The
effect of different input and output resonant frequencies will be discussed

later. Using Eq. (17.125) and substituting Eqs. (17.128) and (17.129)

into Eq. (17.127),

[(1 + K^Q.Qs - iQaQs -1- j2 d{Qa + Qi)] (17.130)

The locus of the circuit transfer admittance is a simple parabola. The size

of the parabola depends upon the Q factors and upon the coupling factor.

The parabola is symmetrically disposed about the imaginary axis when
the primary and secondary resonant frequencies are the same. For a

given set of Q values the parabola will merely be shifted upward and
have its curvature increased by an increase in coupling. For critical

coupling

x,> = (17.131)

and smaller values of coupling, the vertex of the parabola will be the

closest point to the origin. For values greater than critical coupling

there will be two points symmetrically disposed about the vertex that

are closest to the origin, while the vertex itself will be slightly farther

away.

Some typical parabolic loci are shown in Fig. 17.52. These reveal

all the well-known characteristics of tuned coupled circuits and some
of the less well-known. Below critical coupling the transfer admittance
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is large, which means that there is a small buncher voltage for a large

output current. It is convenient to talk in terms of the reciprocal

magnitude of the transfer admittance since this gives the ratio of buncher

voltage to catcher current. Assuming a constant catcher current, the

buncher voltage increases as the coupling increases up to the critical

value and is single-peaked as frequency is varied. As critical coupling

is approached, the single resonant peak becomes broader, indicated by

Arrows s/70iy d/recfion of
increasing frequency

Fig. 17.52.—Parabolic transfer-admittance loci of a two-mesh coupled resonant

circuit.

the decreased size of a constant-frequency interval on the admittance

locus. Up to and including critical coupling the vertex of the parabola

is the point on the parabola closest to the origin, which means that the

frequency response will be single-peaked and that maximum buncher

voltage will occur at the frequency of resonance of the resonant circuits.

For couplings greater than critical, the vertex of the admittance locus

recedes from the origin, but the parabolas become curved strongly

enough so that two points symmetrically disposed on either side of the

vertex are closest to the origin. This means that the input voltage is

double-peaked as frequency is varied and that the response at the peaks

is less than for critical coupling. This is a proper characteristic of

coupled circuits. The peak response for couplings greater than critical

will be equal to that at critical coupling only if the circuits are the same.
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i.e., if the Q’s are identical. ^ The peak response with greater than

critical coupling drops off more rapidly with coupling as the dissimilarity

of the two circuits is increased (same resonant frequency but different

Q’s). In addition to becoming double-peaked and smaller in peak
amplitude as coupling increases, the response curves become broader

with frequency, as may be seen from the decreased size of the constant-

frequency interval. For klystron oscillators with the Q ratio given, it is

seen that coupling will probably have to lie within a factor of two of the

Fig. 17.53.—Two-resonator klystron-oscillator operation in terms of ad-

mittance loci.

critical value in order to give appreciable output. The error made in

using the linear approximations to the correct expressions is quite small.

It is independent of the Q values and depends only upon the value of 5.

The error is equal to three-halves of the 8 value. Thus the maximum
error for any of the loci shown in Fig. 17.52 is about two per cent.

The two-resonator klystron oscillator will oscillate whenever the

beam-transadmittance locus enters the area outside the circuit-transfer-

admittance parabola (the area outside of the parabola is that in which all

the possible tangents to the parabola lie). This requires that the cou-

pling between buncher and catcher circuits be great enough, that the

beam transadmittance be large enough in magnitude, and that the phase

angle be correct. Shown in Fig. 17.53 is the intersection of a beam-

* Aiken, C. B., Two Mesh Tuned Coupled Circuit Filters, Proc. I.R.E., vol. 25,

pp. 230-272, February, 1937.
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transadmittance spiral and the circuit-transfer-admittance parabola.

Whenever the zero-signal beam transadmittance exceeds the circuit

transadmittance in magnitude, oscillations will build up that will shrink

the beam-transadmittance locus. This has the result that as beam
voltage is varied the beam transadmittance will trace the circuit transfer

admittance whenever the latter is smaller than the zero-voltage beam
transadmittance. Oscillations will in general occur whenever the

electron transit angle is in near equality with the phase of the circuit

transfer admittance, i.e., whenever

^ =,)> + 27m (17.132)

where <j> is the angle of the circuit transfer and n = 1, 2, 3, etc. For the

particular case shown in Fig. 17.53 this will give oscillations in the vicinity

of

TO = 27m (17.133)

In general, oscillations will occur for values of the transit angle differing

by integral multiples of 2ir.

For any one loop of the beam-transadmittance locus, relative power

contours can be drawn, as for the reflex oscillator in Fig. 17.39. Positive-

power-output contours will occur only in the upper half plane of Fig.

17.53, because as may be seen by comparing Eqs. (17.118) and (17.127)

the circuit transfer admittance equals the output admittance multiplied

by some numerical factors and rotated 90 deg in the counterclockwise

direction. This means that the positive-conductance region of the output

admittance appears in the upper half plane of the circuit-transfer-

admittance plot. The relative power contours will have the same general

shape as those of the reflex tube.

The beam-transadmittance locus is traced in a clockwise direction as

the beam voltage is decreased. Hence, for a constant current, the

magnitude of the beam transadmittance will decrease as the beam voltage

is increased. This means that there is a highest voltage at which the

tube will oscillate which occurs when the transit angle is so small that

the magnitude of the beam transadmittance is reduced to the point

where it does not intersect the circuit-transfer-admittance parabola.

With actual tubes it may not be possible to reach this voltage without

exceeding some design limitation of the tube.

The selective oscillation with voltage is shown in Fig. 2.10. Output-

power loops as shown in Fig. 2.10 may be single- or double-peaked. If

the resonator coupling is much below critical, the mode loops will gener-

ally be single-peaked. However, with critical coupling the output-power
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pulses may be either single- or double-peaked. In general, if the vertex

of the circuit-transfer-admittance parabola is exceeded only slightly in

magnitude by the zero-signal beam transadmittance, the power loops

will be single peaked. If the vertex of the circuit-transfer-admittance

parabola is greatly exceeded in magnitude by the zero-signal beam
transadmittance, the output loops will generally be strongly double-

peaked. When the resonator coupling is considerably above critical,

the power-output loops will generally be double-peaked.

As the beam voltage is changed during a condition of oscillation, the

frequency of oscillation will change slightly. The curves of frequency

deviation will resemble the curves of phase shift through the coupled

resonant circuits as a function of frequency. When the resonator

coupling is critical or less, the frequency deviation will be nearly linear

with transit angle or beam voltage everywhere but at the edges of the

oscillation modes. The frequency will increase as the beam voltage

increases. When the resonator coupling is in excess of the critical value,

there will be a strong kink in the frequency-deviation curve near the

middle of the mode due to the fact that the frequency changes more
rapidly there. Of interest is the rate of frequency change at mid-mode
with beam voltage. By a method similar to that used in obtaining Eq.

(17.93) it is readily shown that

^ = ( 1 + -g^QgQA
^0 ^0

/o \ Qa Qb / 4 To
(17.134)

at the mid-mode. The frequency stability will ordinarily be of the order

of tens of kilocycles per volt.

If all operating conditions of the two-resonator klystron oscillator

but the magnitude of the beam current are kept constant, it will be found

that there is a minimum beam current which will sustain oscillations.

The limiting condition for oscillation is that at which the beam-trans-

admittance spiral is just tangent to the circuit-transadmittance parabola.

This point of tangency will be near the vertex of the parabola for all

cases except coupling greatly in excess of critical. For the usual condi-

tions the limiting condition of oscillation, "from Eqs. (17.60) and (17.130),

goA Vo ^ 1 + K^QaQb
2 uMQaQb

(17.135)

from which the minimum current that will sustain oscillations is

2 1 -H K^QaQb y
A Vo wMQaQb “

(17.136)

Two-resonator klystron oscillators have been built for frequencies

ranging from 600 to 4,000 me. In power output they have ranged from
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a fraction of a watt to one kilowatt. In the United States the develop-

ment of these tubes has been pioneered by the Sperry Gyroscope

Company, which has specialized in tubes with evacuated resonators.

European tube developers have favored tubes with cavities external

to the evacuated parts of the tube.

17.12. The Heil Tube. Historically, the first tube to use the velocity-

modulation principle was one proposed by the Heil brothers.^ A diagram

of such a tube is shown in Fig. 17.54. The tube makes use of a beam
of electrons, which are shot across the ends of a concentric-line resonator.

Each electron thereby follows a path along which r-f voltage appears

twice. The voltage across the second gap is instantaneously 180 deg

out of phase with the voltage across the first gap. After crossing both

gaps the beam electrons are taken out

of action by a collector electrode. The
tube operates by bunching the electron

beam in the first gap and extracting

energy from the bunched electrons in

the second gap. As with the reflex-

klystron oscillator the tube will reso-

nate when the transit angle between

gap crossings is n + cycles and if

the resonator admittance is smaller in

magnitude than the beam conductance.

The analysis of the Heil tube proceeds

along exactly the same lines as does that of the reflex tube. Some excel-

lent Heil tubes have been made, but they seem to have lost the applica-

tion race in competition with the reflex-klystron oscillator. This is due
to a number of reasons prominent among which are the following: The
transmission-line type of resonator is not quite as efficient at super-

high frequencies as is the reentrant-cavity type of resonator; the tube

is not so well adapted to an external resonator. Against these dis-

advantages, the Heil tube is superior to the reflex-klystron oscillator

in that multiple electron transits are avoided and that tubes can be built

to which magnetic beam focusing is easily applied.

17.13. Bunching Effects in Negative-grid Tubes. The analysis of

klystron tubes by means of simple bunching theory is so enlightening that

the question is raised whether the action of negative-grid tubes cannot

be explained in similar terms. Certainly, when transit times are large

and voltages are not excessive, there will be a bunching action occurring

in the electron stream of negative-grid tubes. An examination of this

' Heil and Heil, op. cit.; see also Hahn, W. C., and G. F. Metcalf, Velocity

Modulated Tubes, Proc. I.R.E., vol. 27, pp. 106-116, February, 1939.
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Fig. 17.54.—Diagram of the Heil

tube.
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bunching action should reveal some relations that will tie in with the

observed action of such tubes at ultra-high frequencies.

In attempting to analyze the action of negative-grid tubes in terms

of velocity modulation one immediately encounters the difficulty of

accounting properly for space-charge effects. However, even though

the neglecting of space-charge effects is bound to lead to large errors, it is

instructive to examine tube behavior under the assumption of their

absence. Let it be assumed that the potential variation from cathode to

grid plane and from grid plane to plate is linear. Let it further be

assumed that bunching action occurs only in the grid-cathode region, a

reasonable assumption since the a-c components of field will be larger

here and since the time spent in this region will be larger too. Let it

further be assumed that alternating components of voltage appear only

on the grid and that these are small compared with the direct potentials

involved. The final assumption is that the emission is directly propor-

V
tional to the equivalent grid voltage Vg -| In addition to space

charge, the displacement components of current are neglected.

If with the above assumptions an analysis of the electron action is

made, it is possible to solve for electron arrival time at the plate in terms

of its departure time from the cathode. Plate current can then be solved

for by allowing for variation of emission over the cycle. The resulting

expression for plate current is expected to be a function of the amplitude

of grid voltage and of the transit angles involved. It should reduce

properly to approximate expressions for current flow for negligible transit

angles and should exhibit some bunching effects.

The resulting expression for plate current obtained by neglecting all

but first- and second-order terms in grid voltage is

/inph.»= = U cosTcp d- V sin Tcp (17.137a)

/outotptuv,» = U sin Top — V cos Top (17.1376)

where the phase is taken relative to the grid voltage and Top is the cathode-

plate transit angle and where

t, = _2c (L‘ + 7
.) (°Y) j.

(I

+ (17.138)

and

F. 20
(L + A /.(>„„)

- GVgJ, Q (17.139)
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where G is mutual conductance, Vt and Vc are d-c components of plate and
grid-plane potentials, a is the ratio of a-c to d-c grid-plane potential.

Teg is cathode-grid transit angle, Vg is a-c component of grid-plane poten-

tial, and Jo and Ji are the zero- and first-order Bessel functions of the first

kind. From the above the expression for magnitude of plate current

can be written

1 / 1
= (17.140)

and the corresponding phase by which plate current lags grid voltage is

<f>p
= Tep — arctan (17.141)

The above expressions reveal much about the nature of the plate

current as affected by the transit time and the bunching action. In the

first place the magnitude of plate current as given by Eq. (17.140) is

independent of the cathode-plate transit angle and depends only upon
the magnitude of the a-c component of grid voltage and the cathode-

grid transit angle. The dependence is partly in terms of the well-known

first-order bunching parameter ^^azeg and also in terms of the second-order

bunching parameter — The components of plate current given by

Eqs. (17.137a) and (17.1376) each contain two types of terms. The first

term gives the a-c components of current that would result if the emission

were constant over the cycle and the plate current were produced only by
bunching action. These terms properly reduce to zero for zero transit

angle. The second terms give the current components resulting from
the normal grid action but reduced by the dispersing effect of the bunching
action. The normal-current terms are correctly maximum for zero

transit angle and drop off in magnitude as the transit angle increases.

The bunching terms initially are zero, increase, and then decrease again.

The nature of the plate current is best illustrated by some specific

examples. In Fig. 17.55 are shown the magnitude and phase of plate

current for a typical tube under the conditions that a = 0.2 and
Tep = 2Teg. The magnitude is seen to drop off more or less gradually.

Undoubtedly this should be a smooth curve, but it exhibits some small

ripples because higher-order effects have been neglected. The phase
of the current initially is — 180 deg and then drops back progressively

as the cathode-plate transit angle is increased. The change of phase is

always less than the change of cathode-plate transit angle but has its

principal dependence upon this angle.

In Fig. 17.56 is given another set of curves showing magnitude and
4t

phase of plate current for the conditions that a = 0.5 and Tep =
O
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This is a rather large value of a for bunching relations but is not too large

in this case because second-order effects have been included. The
magnitude in this case exhibits a striking decrease with transit angle

and then a slight increase. The locus of plate current in amplitude and
phase is again a form of spiral, but with the second turn not enclosing

a, -0.2 ^cp~

of
plate current

Fig. 17.55.—Triode plate current as a function of transit angle

for relatively small excitation.

the origin. As before, the magnitude depends only on the cathode-grid

transit angle, and the phase has its principal dependence upon the

cathode-plate transit angle, though the actual phase is always somewhat
less than this value. The plate-current spirals, which are really trans-

admittance spirals, bear a striking resemblance to the transadmittance

spirals for klystron tubes.
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The above analysis must not be taken too seriously because it has

neglected space-charge and displacement currents. However, the

nature of the variations in plate current is quite possibly not too different

from that shown in Figs. 17.55 and 17.56. Correlations with reduction

of
plate current

Fig. 17.56.—Triode plate current as a function of transit angle

for moderate excitation.

in amplifier output with increasing frequency and reduction of oscillator

output as a result of both reduction in magnitude of current and change

in phase are evident.



CHAPTER 18

MAGNETRON OSCILLATORS

18.1. Introduction. A brief description of the magnetron has already

been given in the chapter on Basic Tube Types. Basically, the mag-

netron is a tube containing a cathode and what is usually a symmetrical

distribution of anodes in which electrons move under the influence of an

internal electric field and a crossed externally supplied static magnetic

field. The electrons move in complicated curved paths, and under certain

conditions powerful oscillations will be sustained.

The magnetron underwent a tremendous development during the

Second World War. Its development made possible the numerous

microwave radars, which used it as a source of extremely high power

pulses in the frequency range of 700 to 24,000 me. It has amazed every-

one by its efficiency, relatively high for an electronic device. Efficiencies

are of the order of 50 to 80 per cent, and these are obtained at reasonable

values of current, voltage, and magnetic field. Furthermore, the physical

dimensions of magnetrons are of the order of the wave length, so that

even the highest frequency magnetrons are not too hard to build.

A brief study of electronic motion of the type encountered in mag-

netrons has already been made in Chap. 6. Here it was found that

electrons in combined electric and magnetic fields will move in strongly

curved paths with periods of rotation corresponding to microwave

frequencies. Thus, an electron in a uniform magnetic field of 1,070

gausses rotates in a circular path at a frequency of 3,000 me per sec.

By the use of multisegmented anodes, oscillations at frequencies higher

than that corresponding to the simple rotation can be obtained. Inher-

ently, then, electron motion in magnetic ,fields is of the right nature to

produce microwave oscillations.

Many kinds of magnetron tubes can be built, ranging from a single-

anode tube to multisegment-anode tubes. Many kinds of oscillations

are also possible. The nature of the electron paths is such that a negative

resistance can be obtained from the division of current between anode

segments. This leads to negative-resistance oscillations. This type

of oscillation is effective only at low frequencies and is no longer con-

sidered of great importance. Early work in the field was largely con-

fined to oscillations of two- and four-segment-anode tubes involving

621
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electron-transit-time characteristics. Later development showed that

such tubes were the least efficient of the entire class of magnetrons, and

they are now not of much interest except for special applications.^

Present interest is concentrated mainly in electronic oscillations of multi-

segment cavity magnetrons, and most of the comments in this chapter

will be restricted to this case.

The complete theory of magnetron operation is not known at present.

Wartime developments were largely of an empirical sort. Even a large

fraction of the present information available on the subject is based upon

specific calculations and tests.* It will probably be some time before

the great mass of information on this subject is reduced to a simple

organized treatment. The most complete organization of this sort

appears in the report of the wartime researches of the Radiation Labora-

tory.® The complete story will, of course, have to be written by the men
who are responsible for most of the recent development and by their

successors who will carry on this work. There will be given in this

chapter only those fundamental relations which are fairly well estab-

lished. This will obviously be insufficient as a basis for the design of

tubes but will serve as an introduction to the subject, which will furnish

a basis for understanding the detailed reports on this subject.

18.2. Structural Form of Magnetrons. All magnetrons have in

common a cathode, an anode, and an output-coupling device. In

addition, magnetrons may have tuning mechanisms, mode suppressors,

and end plates. Early two- and four-segment magnetrons were housed

in glass envelopes with the cathode in the form of a tungsten filament

and the anode segments supported from a two-wire transmission line

brought out through the end of the tube opposite to that at which the

filament leads were brought out. In some tubes, special end plates

supported from leads brought out at the filament end of the tube

were used to remove out-of-phase electrons from the cathode-anode

region.®'®

Modern multicavity magnetrons are housed in metal and use glass

^ Bibliographies of magnetron articles prior to 1941 are given in “ High Frequency

Thermionic Tubes” by A. F. Harvey, Wiley, New York, 1943, and “Einfuhrung in

der Theorie und Technik der Dezimeterwellen” by O. Groos, Herzel, Leipzig, 1937.

® Fisk, J. B., H. D. Hagstram, and P. L. Hartman, The Magnetron as a Gen-

erator of Centimeter Waves, Bell Sys. Tech. Jour., vol. 25, pp. 1-188, April, 1946.

^Radiation Laboratory Series, 28 Volumes, McGraw-Hill, New York, 1947-1948.

* Linder, E. G., Description and Characteristics of End Plate Magnetrons, Proc.

I.R.E., vol. 24, pp. 633-653, April, 1936.

® Linder, E. G., Anode Tank Circuit Magnetron, Proc. I.R.E., vol. 27, pp. 732-

738, November, 1939.
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only around the high-voltage filament leads and at the point where the

output power is taken from the tube. The multisegmented anode is

commonly formed of laminations having one of the forms shown in Fig.

18.1. Each of these consists in effect of a number of parallel resonant

circuits in series around the inner circumference of the anode. In form

a the individual resonant circuits are nearly lumped, i.e., there is a

(c) (d)

Vane lype Rising sun type

Fig. 18.1.—Various forms of muTtisegment anodes.

capacity across each gap in parallel with the inductance formed by the

inner surface of the circular hole. Actually, such a circuit is not truly

lumped, for the dimensions of the various parts may be an appreciable

fraction of a wave length long. In other forms of the anode the resonant

circuit consists of a shorted section of strip transmission line.

The cathodes of multicavity magnetrons are usually of appreciable

diameter and in tubes for pulsed operation are indirectly heated and make
use of oxide emitters. The cathode is usually supported by the filament
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leads, which are brought out at right angles to the axis of the tube. The

cathode usually extends on each end about 25 per cent in length beyond

the stack of anode laminations. Great precautions are taken to insulate

the cathode leads for the high voltage that the tube must withstand;

often the cathode lead insulator takes up about one-third the volume

of the tube.

The output-coupling device in a multicavity magnetron is commonly

a loop located at the base of one of the resonant radial anode spaces and

Loop

c i-

t
^

Fig. 18.2.—Output-coupling schemes for multicavity

magnetrons.

leading out of the tube through a concentric line with a vacuum

glass seal. Such an arrangement is shown in Fig. 18.2a. In some tubes

the output coupling is accomplished by means of a tapered transmission

line feeding from a narrow slot at the base of one of the radial resonant

spaces and leading to a wave-guide section, with the vacuum seal effected

by a window at the end of the guide section as shown in Fig. 18.26.

Numerous variations of these two basic schemes, including aperture

coupling to a wave guide, form the bulk of the output-coupling

arrangements.
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Fig. 18.3.— Approximate

equivalent circuit of the

magnetron of Fig. 18. lo.

Multicavity magnetrons will frequently have iron pole pieces built

into them, with the iron brought close to the cathode and arranged so

that a magnetic field parallel to the cathode is created. The pole pieces

are brought to the external surface of the tube so that a magnet can be

attached external to the vacuum. In some tubes the cathode leads are

brought out axially through a hole in the iron pole pieces.

In addition, there are frequently straps interconnected between the

anode pole pieces in order to separate the

various natural resonant frequencies of the

resonant circuit. Various tuning devices are

also used. These will be described in connec-

tion with the resonant properties of the multi-

cavity circuit.

18.3. Resonant Properties of Multicavity

Magnetrons. The resonant systems shown

in Fig. 18.1 will have a series of natural

resonant frequencies. These frequencies are

most properly determined by an analysis of

the electromagnetic fields of the system.

However, since most engineers are more

familiar with circuits than with fields, a partial approximate analysis will

be made in terms of some equivalent circuits. It must be recognized,

however, that the determination of suitable equivalent circuits depends

originally upon a knowledge of the fields.

The anode-cathode arrangement of Fig. 18.1a is, at first glance,

expected to have the equivalent circuit shown in Fig. 18.3. The capacity

Cl represents the capacity between a pole face and the anode. The
capacity C2 represents the capacity

between two adjacent pole faces.

The inductance Li is the induct-

ance of the inner surface of the

circular hole. Actually, this is a

poor equivalent circuit, for it neg-

lects transmission-line effects and
the large mutual inductance be-

tween adjacent anode spaces. It will, however, serve as a basis for an initial

discussion. Let the circuit be developed by unwrapping the structure to

give the arrangement of Fig. 18.4. This is seen to be a low-pass filter. As
such, it will have a pass band in which the attenuation is substantially

zero and in which there is a phase shift per section which increases

uniformly from zero at zero frequency to tt radians per section at cutoff.

When the total phase shift along the series of N pole faces and hence N

L,
Tsm (W)Ofoow iTWfrtT

1
I f 1 1 1 I

I ill I 1
[

I
I

1

1

1 1 1 I
1 1 I1^ t”|l r~f^ III III l|i r t I ri

T

(8)08fWW »V(fO<n

Fig. 18.4.—Developed form of the equiva-

lent circuit of the magnetron of Fig. 18.1a.
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sections is any integral multiple of 25r, then standing waves can exist in

the circular arrangement, which is merely the developed form connected

onto itself. The actual resonant fields are formed by two waves of equal

amplitude traveling in opposite directions around the cathode. Ana-
lytically, this occurs whenever

= 2rMr

~w (18.1)

where /3 is the phase shift per section in radians, n is the number of cycles

of a traveling wave around the cathode, commonly referred to as the

mode number, and N is the number of gaps or pole faces. When n
N

equals then the phase shift per section is ir radians and the fields will

reverse at adjacent gaps. This mode is called the ir mode and is the one

Fig. 18.5.—Fields in multicavity magnetrons.

ordinarily used in multicavity magnetrons. In Fig. 18.5 are shown the

fields in a multicavity magnetron of eight segments for n equal to 1 and

4, the latter being the x mode. The resultant field has the properties

of a standing wave, i.e., it remains stationary and only varies in magni-

tude periodically with time. Such a standing wave can, of course, be

resolved into traveling waves, and it is the study of the interaction

of the electrons with one of the traveling-wave components that leads

to the best picture of magnetron operation.

The phase-shift function of the circuit of Fig. 18.4 can be evaluated

by applying Campbell’s formula. ^ In the pass band this has the form

cos ;3 = 1 -b (18.2)

* Evebitt, W. L., “Communication Engineering,” 2d ed., p. 173, McGraw-Hill,

New York. 1937.
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where ^ is the phase shift per section in radians, Zi is the total series

impedance per section, and is the total shunt impedance per section.

In this case

U
Zy = (18.3)

+ Wl
which reduces to

Zy = (18.4)

1 -

where wi is the angular resonant frequency of the parallel LyCy com-

bination equal to — in magnitude. The shunt impedance is given
VLyCy

by

Z2 = -
jcoCl

(18.5)

Making the indicated substitutions into Eq. (18.2),

cos /3 = 1

1

2 coi^Ci
(18.6)

If now Eq. (18.1)

there is obtained

is invoked and the above equation solved for

1

2Cy

+ 1

(18.7)

where co is now the angular resonant frequency corresponding to a given

value of n and N. The resonant frequencies for the assumed circuit

will have the form shown in Fig. 18.6. The important observation about

Fig. 18.6 is that the frequency of the tt mode is not very different from

the next resonant frequency. This is a bad situation and cannot be

tolerated if the frequency separation is too small. A 1 per cent frequency

separation is poor and will give trouble from the oscillation jumping to

the adjacent frequency. A 3 per cent frequency separation is marginal.

A 15 per cent frequency separation is good.

The above analysis is not very satisfactory, for it neglects the mutual
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0 12 3 4
n

Fig. 18.6.—Resonant frequencies of the circuit

of Fig. 18.3.

Fig. 18.7.—Equivalent circuits of multicavity magne-
trons including the mutual inductance between slots.
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inductance between adjacent slots, which is expected to be quite high.

The magnetic flux lines are parallel to the axis of the tube in the slots.

At the edges of the slots the magnetic flux lines divide and return through

the adjacent slots. Accordingly, the equivalent circuit is expected to

look like that shown in Fig. 18.7a. The ratio of the number of magnetic

flux lines returning through adjacent slots to the total number will be

nearly unity, which means that the coupling is nearly unity. The mutual

inductances of Fig. 18.7a can be replaced by the T-section equivalent

of Fig. 18.76.1 This allows the circuit of Fig. 18.7a to be represented

as in Fig. 18.7c. This circuit has the characteristics of a band-pass

0 12 3 4
n

Fig. 18.8.—Resonant frequencies of the circuit

of Fig. 18.7.

filter, the phase shift at the low-frequency cutoff being ir radians per

section. For this circuit the resonant frequencies are given by

where “ MC^
relative disposition of the

resonant frequencies for the different rtiode numbers is shown in Fig.

18.8. Again the frequency separation between the ir mode and its

neighbor is very small.

Actual magnetrons will have characteristics between those cor-

responding to the two cases discussed, the behavior more frequently

corresponding to a band-pass filter and the resonant frequency of the x
mode occurring slightly above the low-frequency cutoff.

The difficulties associated with closely spaced resonant frequencies

iEveritt, op cil., p. 232.
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can be greatly reduced by strapping alternate pole tips together. The
commonest form of strapping, known as “double-ring strapping,”

is shown in Fig. 18.9. In this arrangement two rings are run around

the pole tips. Each ring is connected to alternate pole tips, one ring

being connected to all the odd-numbered pole tips and the other to all

the even-numbered pole tips. In the ir mode of resonance, alternate

poles are 180 deg out of time phase with each other. As a result, the

straps will be 180 deg out of phase with each other, and thus the capacity

between the straps is added in parallel with the capacity Ci in the equiva-

lent circuits. From Eq. (18.8) this is seen to lower the resonant frequency

of the T mode. Because of the symmetry and phasing no current will

flow in the straps at the resonance frequency of the tt mode. For other

modes, the phase shift between adjacent poles is not 180 deg, and so

currents will flow in the straps. This effectively puts more inductance

in parallel with the inductance of the slots and so raises the frequency

of the adjacent resonances. Both the

capacity and inductances thus com-

bine to increase the frequency separa-

tion between the 7r-mode resonance

frequency and the adjacent resonant

frequency. The shorter and heavier

the strap segments, the more heavily

strapped the magnetron is said to be.

Another device sometimes used to

increase the frequency separation

between the desired resonance and its neighbor is that of making alter-

nate anode slots of different length, as shown in Fig. 18. Id. Magnetrons

using this arrangement are designated as being of the rising-sun type.

By proper proportioning of the lengths a very good frequency separation

can be achieved.

All the multicavity-magnetron resonances correspond to standing

waves formed by two traveling waves of equal magnitude moving in

opposite directions. These traveling waves will have radial components

of electric field that are strongest at the plate and drop off somewhat

toward the cathode. They will also have tangential or angular compo-

nents of electric field that are very strong at the anode gaps and drop off

very rapidly toward the cathode. For the plane-electrode case of Fig.

18.15 the tangential component of electric field will drop off exponentially

from anode to cathode. In the cylindrical case the tangential compo-

nent will vary approximately as the nth-order Bessel function of the

radius, where n is the mode number.

Multicavity magnetrons may be tuned over an appreciable range by

I

Straps

Fig. 18.9.—Double-ring strapping.
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changing either the slot capacity or the inductance. One way of doing

this is to use a set of plugs, in a crown-shaped arrangement, that are

dropped into the slots at the appropriate point. If the plugs are inserted

near the interaction gap of the anode slots, the capacity of the resonant

slots will be increased and the frequency decreased. If the plugs are

inserted near the base of the anode

slots, the inductance will be decreased

and the frequency increased. An
arrangement using both an L ring and

a C ring for tuning is shown in Fig.

18.10. Where a very broad range is

desired, both an L and a C ring are

used. In this case the rings are

ganged so that the L ring enters as the

C ring emerges. For a narrow tuning

range a capacity tuning alone suffices.

This tuning arrangement admits of a

great variety of forms. Numerous
other methods of changing the slot capacity or inductance are also used.

18.4. Electron Behavior in Crossed Static Magnetic and Static

Electric Fields: Plane Case. The behavior of electrons in combined

electric and magnetic fields has already received a brief treatment in

the chapter on Laws of Electron Motion. This subject will be reviewed

and extended here.

First review the behavior of an electron moving at right angles to a

uniform magnetic field with a flux density B in the absence of an electric

field. The electron in this case will describe a circular path whose

radius will be

Fig. 18.10.—Inductive and capaci-

tive tuning rings.

R = 3.372 X
B meters (18.9)

where V is the potential in volts through which the electron has been

accelerated and B is the magnetic-flux density in webers per square meter

(10^ gausses). If this relation is converted to practical cgs units, it

becomes

R' = 3.37F!^

B'
cm (18.10)

where R' is in centimeters, F in volts, and B' in gausses [see Eq. (6.62)

for the development of this relation].

The frequency of rotation of an electron under the above conditions

depends only upon the magnetic-field strength. This is because the



632 VACUUM TUBES

electron velocity and radius are in direct proportion. The frequency of

rotation is given by

<ao = — B radians per sec (18.11)

Fig. 18.11.—-Dependence of the cyclotron and Larmor frequencies upon the mag-

netic-flux density.

where B is in webers per square meter. In practical cgs units the fre-

quency of rotation is

fo = 2.8005' me (18.12)

where B' is magnetic-flux density in gausses. For obvious reasons, this

frequency will hereafter be referred to as the cyclotron frequency. Note

that electron rotations in a magnetic field are inherently of the right

frequency for microwave operation. Thus a magnetic-flux density of
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1,000 gausses gives rise to a cyclotron frequency of 2,800 me or a wave
length of 10.82 cm. A curve of the cyclotron frequency as a function

of the magnetic-flux density is given in Fig. 18.11.

Another frequency that appears in magnetron electron orbits is the

Larmor frequency, which is just half the cyclotron frequency. The Larmor
frequency is the frequency with which atoms will process about lines of

magnetic flux.^ The atoms may be thought of as little gyroscopes hav-

ing the property of magnetic dipoles because of the fact that each rotat-

ing electron is equivalent to a small current loop. If an external magnetic

field is applied, the magnetic dipole of the atom has a torque applied to

it, which causes the atom to process like a top. The Larmor precession

frequency is

=
2m

radians per sec (18.13)

c
where B is in webers per square meter and — is in coulombs per kilo-

gram. In practical cgs units this is

/l = 1.400B' me

where B' is in gausses. The Larmor frequency as a function of magnetic-

flux density is also shown in Fig. 18.11. Something akin to atomic

precession is encountered in magnetron orbits. If an electron is moving

in a circular path under the influence of a radial electric and an axial

magnetic field and is then disturbed, it will oscillate about the original

circular path at the Larmor frequency. It is also found that electron

rotations in the presence of space charge occur at the Larmor frequency.

An electron starting from rest in a region that has a uniform gradient

of potential in the positive y direction and a uniform magnetic field in

the negative z direction will move in a cycloidal path progressing in the

positive X direction with components of displacement given by

at a . ^
X = 5 sin Wot

0)0 Wo
(18.14)

2/
== -^ (1 — cos o)ot)

0)0
(18.15)

, eEy j cB^
where a = and cuom m
given by

The corresponding velocity terms are

'See, for instance, Habnwbll, G. P., “Principles of Electricity and Electro-

magnetism,” p. 336, McGraw-Hill, New York, 1938.
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(18.16)

(18.17)

i = — (1 — cos cooU
<*>0

a .

y = — sin coat
COo

where the dots over the letters indicate derivatives with respect to time.

(See Sec. 6.8 for the development of these equations.) Examination
of the above equations shows that the cycloidal motion is a combination

of a circular motion at a frequency equal to the cyclotron frequency and a

d E
linear translational motion at a constant velocity of — or the field-

0)0 Bz
neutralizing ratio (see Sec. 6.8).

When there is again a y component of gradient of potential and a

negative z component of magnetic field and the electrons have an initial

velocity with components Xa and i/a at a point of zero potential, then

the equations of motion are

a: = — + (1 — cos (Oat) — — (- sin uot (18.18)
0)0 0)0 \ 0)0 ^ /

y = (- (1 _ cos (Oat) + — sin coot (18.19)
\ 0)0 / 0)0

(These were also developed in Sec. 6.8.) The corresponding velocity

components are

a
I

. • , /a — (ooXo\
X = [- yo sin (Oat — I I cos (Oat

0)0 \ 0)0 /

(

a — o)oi:o\
0)0 /

y = yo cos coot + sm coot

(18.20)

(18.21)

Consider now only the periodic terms in the displacement.

Xi = — — cos (Oat — (- gjn (18.22)

yi = ~ sin coot — (- cos (oot (18.23)
0)0 \ 0)0^ /

This is seen to be a circular motion with a radius given by

Ri^ = xi^ + yi^

— 0)^V
El-

COo V

(18.24)

(18.25)

For zero initial velocity, Ei reduces to — > which checks the cycloidal
0)0

case, as may be seen from Eqs. (18.14) and (18.15). Note that the con-
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stant term in the x component of velocity is independent of the initial

velocity and is equal to — or — as with the cycloidal case. Note also
030 Dz

that the frequency of the rotational component of the motion is again
the cycloidal frequency. Motion is again a combination of a circular

motion and a translational one. The velocity of the circular motion is

(18.26)

= o3o^Ri^ (18.27)

Thus the velocity is proportional to the radius and therefore corresponds

to motion in a magnetic field alone. The resulting paths are those

generated by a point on a projecting spoke of a rolling wheel and are

known as trochoidal paths. The radius of the rolling wheel and its angular

Fig. 18.12.—Modification of cycloidal path by subtraction of energy.

velocity are determined by the ratio of the fields and the magnetic field,

respectively, but are independent of the initial velocity, which is to say

the energy of the electrons. The square of the radius of the tracing circle

is directly proportional to the energy of the system and may drop to zero

if sufficient energy is extracted from the electron.

Because of the fact that the average translation velocity and the

frequency of rotation do not change with instantaneous velocity of the

electron, some observations can be made on the electron paths as energy

is added or subtracted from the electron by any means. Assume an

electron starting from rest at zero potential. Then the resulting path

will be cycloidal. Suppose now that energy is gradually taken from the

electron by some means. The path then becomes trochoidal, with the

radius of the tracing circle smaller than the radius of the rolling circle

but maintaining the same average translational velocity and the same
cyclotron frequency of rotation. This situation is shown in Fig. 18.12.

If energy were added to the electron in its original cycloidal path, the

orbit would again become trochoidal, but with the radius of the tracing

circle greater than the radius of the rolling circle. The resulting path is

shown in Fig. 18.13. Such electrons would be removed from operation

in an actual tube, for the electrons would strike the cathode as soon as
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any energy were added. The above conclusions on the effect of changing

the electron energy will be verified quantitatively in the next section.

18.6. Electron Behavior in Crossed Magnetic and Alternating Electric

Fields: Plane Case. Alternating Transverse Electric Field. Consider

now the case of an electron starting from rest at a point of zero potential

when the electric field is y-directed and consists of a constant component

with a superimposed alternating component of a frequency different from

the cyclotron frequency and when the magnetic field is directed in the

Fig. 18.13.—Modification of cycloidal path by addition of energy.

negative z direction. To treat this problem it is best to go back to the

original differential equations of motion

and

X = 0)0^’ (18.28)

y = a(l — a cos wif) — wox (18.29)

where E« = — Ei(l — a cos wi<), B = —Bz, a = —— and coo = —

•

* ’ m m
The starting conditions are that the initial velocity is zero, that is, x = 0

and 2/
= 0 for < = 0. Equation (18.28) integrates to give

X = woy (18.30)

Substituting this value into Eq. (18.29),

y + ojo^y = o(l — a cos onf) (18.31)

This is analogous to the circuit problem of a series inductance and

capacity with an impressed voltage consisting of a direct potential with

a superimposed alternating potential of a frequency different from the

resonant frequency. The solution will consist of two parts. The first

part is the transient response known as the “complementary function”

and is the same as that given in Eq. (18.15). The second part is known

as the “particular integral” and corresponds to the steady-state solution

in the equivalent electrical circuit. It is expected to be of the form

yt = A cos Wit -f- B (18.32)
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from inspection of Eq. (18.31). Substitution into Eq. (18.31) shows that

the particular integral associated with the a term of Eq. (18.31) is of the

form

2
/,'
= — ^

(cos 6)o< — cos (18.33)

The complete solution is therefore represented by the sum of Eqs. (18.15)

and (18.33),

2/
= — (1 - cos Wot) +

aa

Cdo — COl^
(cos woi — cos (18.34)

Substituting this into Eq. (18.30) and integrating to obtain x,

a (, sin woA
,

aao>o /sin wof sin wiA /io oir\
X = —[t I + ^

I I (18.35)
Wo \ Wo / Wo — Oil \ Wo Wl /

the constant of integration being zero because the initial velocity was
taken as zero. The above equations reduce to the cycloidal form for

Fig. 18,14.—Path of an electron in crossed magnetic and alternating electric fields.

a = 0. Each of the coordinate displacements is seen to have alternating

components with frequencies wo and wi. Because of this we expect that

the resultant path will display some beat phenomena at the difference

frequency of wo — wi. This occurs because the alternations at frequencies

Wo and Wl are alternately in phase and out of phase. A plot of the

resultant path is shown in Fig. 18.14. The amplitude is seen to be high

initially, to decrease to a minimum, and thgn to build up again. As the

amplitude decreases, average kinetic energy of the electron drops and

then builds up again. Average translational velocity is — H „ >

Wo Wo — Wl*"

a value that is maintained constant regardless of the amplitude of

oscillation. It should be pointed out, however, that, although the

translational velocity will be constant for an electron starting at any
particular time, the magnitude of the translational velocity will vary

for electrons starting at different points on the cycle. The value given

above is the maximum translational velocity that will be encountered.
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The minimum value will be — ^ electrons
0)0 <oo — cor

that leave half a cycle later than for the case solved above. The ratio

of the alternating components of displacement of frequency coo and coi

will be

Magnitude of coo component _ coo^ — coi^ , .

Magnitude of coi component acoo^
^ '

When the frequency of the alternating component of electric field is the

same as the cyclotron frequency, a resonance will occur that may build

up the oscillations to infinfte amplitude. For the off-resonance case

discussed above the instantaneous radius of the rotational motion will

be given approximately by

^ (—y -b —w cos (coo - coi)^ (18.37)
\oio / COo (cOo — cor)

on the assumption that coo and coi are not greatly different. This shows

that the radius changes periodically at the difference-frequency rate,

which means that the rotational kinetic energy changes periodically at

the same rate. In an actual magnetron, use is made of electrons behaving

somewhat like the one discussed above. Electrons liberated at the proper

point on the cycle will have high initial kinetic energy, which they will

lose at first through interaction with the alternating component of electric

field. If such electrons can be removed from the field before they begin

to take energy from the electric field and if electrons that initially

take energy from the electric field can be removed quickly, there will be a

selective mechanism by which the electrons will convert their kinetic

energy derived from the static field to r-f energy, which is supplied to

the alternating field. This naturally occurs in cylindrical magnetrons,

for electrons that lose energy will move away from the cathode, and, with

proper design, they will be taken out of action by striking the plate

before they begin to absorb energy. Electrons that tend to take energy

from the field will have the amplitude of their oscillations built up and

will usually be removed from action by coming back and striking the

cathode on the first loop of their orbit.

Effect of a Traveling Electric Field. In actual tubes the alternating

components of field result from standing waves, which may be resolved

into traveling waves of equal amplitude moving in opposite directions.

Such waves will have both transverse and longitudinal components. In

general, both the transverse component and the longitudinal component
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of electric field will increase in strength from cathode to plate. If an

electron moves with a translational velocity corresponding closely to

the velocity of the traveling waves, then the field components of the

wave moving with the electron will have a considerable effect, while the

field components of the wave traveling in the opposite direction will be

going by the electron at twice the frequency of the alternating field and
will merely introduce some perturbations, which will average out over

short periods of time.

It is possible to make a reasonably exact analysis of such a case as is

cited above, though by now enough properties of the electron orbits have

been pointed out so that a qualitative discussion will reveal the out-

standing characteristics of the resulting paths. Assume that the transla-

tional velocity of the electron is nearly equal to that of the traveling-wave

components, and neglect the effect of the wave traveling in the direction

opposite to that of the electron. Consider the effect of the longitudinal

component of electric force, which increases toward the plate. An elec-

tron initially moving in the same direction as the longitudinal force will

pick up energy on the portion of its loop closest to the plate and lose

relatively less on the portion of its loop nearest to the cathode. There

will thus be a net gain in energy, and the radius of the rotational part of

the motion will increase, with the result that the electron will probably

strike the cathode at the end of its first loop and be retired from action.

Such electrons as tend to extract energy from the traveling wave will

therefore in general be quickly removed. Those electrons which initially

move against the longitudinal component of electric force will lose

considerable energy on the portion of their loop closest to the plate,

where the longitudinal field is strongest, and regain relatively less energy

on the portion of the loop closest to the cathode. There is therefore a

net loss of energy, which will cause the electron to have the radius of the

rotational part of its motion decreased, indicating that the electron is

giving up energy to the traveling wave. If now the associated transverse

component of force is in the direction to attract the electron to the plate,

the electron will drift toward the plate, where it will strike with an

energy less than that corresponding to the direct potential of the plate.

Electrons moving under these conditions constitute the useful, or working,

electrons and serve to supply energy to the traveling wave. All other

groups will be retired from action by striking one of the electrodes in a

relatively short time, and the energy which they take from the traveling

wave will be much less than that supplied by the working electrons.

The mechanism by which the nonworking electrons are retired from action

is highly selective and accounts for the high efficiencies obtainable with

magnetron oscillators.
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The diagram in the upper half of Fig. 18.15 is the approximate form

of the electric field at the peak of a cycle. Both traveling-wave com-

ponents will have the same shape of field, and the shape of this field

will be preserved approximately as the waves move along. Shown
in the figure are lines of electric force on electrons. The direction of the

force on an electron will be opposite to the direction of the flux and field

lines. In magnetron tubes designed so that the average translational

velocity of the electrons is approximately equal to the velocity of the

traveling waves the electrons will be subjected to a nearly constant

Fig. 18.15.—Force lines in a plane-electrode multianode magnetron.

electric force as they move along, except that the field strength increases

as the electrons move from cathode to anode.

The direction of the electric force at a point midway between cathode

and anode is approximately as shown in the lower half of Fig. 18.15.

The force is seen to rotate progressively along a line parallel to the

electrodes.

Consider now the behavior of electrons emitted at different points

along the cathode (or at different times on the cycle). An electron

emitted in the region B will encounter a transverse force, which will

tend to drive it back toward the cathode. It will also encounter a

longitudinal force, which will tend to accelerate it. This means that the



MAGNETRON OSCILLATORS 641

axis of the rotational component of its motion will be bowed, as shown by
the dotted line of Fig. 18.16a. Also, because the electron is being

accelerated in the longitudinal direction the amplitude of its rotational

component of motion will increase, giving rise to a trochoidal orbit,

with the result that the electron will strike the cathode after a half cycle

of rotation. This is one of the nonworking electrons. It extracts a
little energy from the traveling-wave component of the alternating field.

- + - + -

(a)

(b)

(c)

F

(d)

Fig. 18.16.^—Approximate electron paths in a plane-

electrode multianode magnetron.

An electron emitted in the region D will meet with accelerating

components of both transverse and longitudinal forces. The axis of

its rotational motion will be bowed toward the anode, as shown by

the dotted line of Fig. 18.16fe. Because this electron is accelerated, the

amplitude of its rotation will increase and it wilt probably strike the

cathode after a half cycle of its rotational motion. This is also a non-

working electron, and it extracts a little energy from the alternating

field
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An electron emitted in the region F will meet with an accelerating

component of transverse force and a retarding component of longitudinal

force. As a result, the axis of its rotational motion will be bowed toward

the anode, as shown in Fig. 18.16c. Because of the retarding component

of longitudinal force the electron will give up energy to the alternating

field and suffer a decrease in its rotational amplitude. It will strike

the anode after about one cycle of its rotational motion, and during this

time the rotational component of its kinetic energy will be greatly

reduced. This is one of the working electrons, and it is electrons in this

group that convert the energy of the direct component of electric field

into r-f energy.

An electron emitted in the region H encounters retarding components

of both transverse and longitudinal force. As a result, the axis of its

rotational motion will be bowed, as shown by the dotted line in Fig.

18.16d. Because of the retarding component of longitudinal force the

amplitude of the rotational component of its motion will decrease

somewhat, though not very much, for it is forced back toward the cathode,

where the longitudinal component of force is very weak. Such electrons

will probably strike the cathode after the first half cycle of rotation, but

some may drift along the cathode, where they will form a space-charge

cloud, which will act as a source of electrons at different parts of the cycle.

These electrons are low-grade working electrons in that they will con-

tribute a little to the energy of the alternating field.

There is a bunching action associated with electrons in the F group.

Those electrons in the F group emitted near the point G will meet with a

larger retarding component of longitudinal force than those emitted

near the center of the group. Accordingly, they will be retarded more,

\\ ill move more slowly, and will fall back on those emitted near the center

of the region. Those electrons which are emitted in the F group near

the point E will meet with a smaller retarding longitudinal component of

force and hence will not be retarded so much, will move faster, and so

will catch up with those electrons emitted near the center of the group.

Calculations of electron paths show that this bunching action is very

strong and undoubtedly contributes to the efficiency with which energy

is transferred to the alternating field.

18.6. Electron Behavior in Crossed Magnetic and Radial Electric

Fields. The motions of electrons in crossed magnetic and radial electric

fields are somewhat similar to those for the plane case. The similarity

is close in the limiting case of very large radii but disappears as the radii

become small. The equations of motion for such fields are best expressed

in polar coordinates of radius and angle. The ’differential equations of

motion may be obtained by transforming the well-known rectangular-
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coordinate equations to polar coordinates.* In polar coordinates the

equations for the case of an axial magnetic field and a radial electric

field are

and

6
1

e dV
r — = r6Bz H t"m m dr

- (r'^d) = rS + 2rd = — fBz
rdt m

(18 .38 )

( 18 .39 )

where the dots over the coordinates indicate derivatives with respect to

time and the other symbols have their usual significance in mks units.

The equation for the radial component of motion is seen to consist of two

acceleration terms and two force terms. The first acceleration term is

the simple radial acceleration. The second radial-acceleration term

represents the acceleration associated with circular motion. The differ-

ence in signs is due to the fact that a positive radial force is required to

sustain positive radial acceleration, while a negative radial force is

required to overcome the acceleration due to circular motion. The first

force term in the radial equation is the radial force caused by the reaction

of the angular component of velocity with the axial component of mag-
netic field. The second radial-force term is that due to the radial

electric field. The equation for the angular component of motion

involves two angular-acceleration terms and one angular-force term.

The first angular acceleration results from the change of angular velocity

with time. The second angular-acceleration term corresponds to the

force required to maintain a constant angular velocity as the radial

distance changes. The angular component of force is entirely derived

from the magnetic field and results from the reaction of the radial

component of velocity with the axial magnetic field.

The above equations of motion are more simply written if the cyclo-

eBz .

tron angular frequency too = is introduced,

of this frequency are

The equations in terms

and

f — = — coor^ +

A|(r^^)=co„r

m dr (18 .40)

(18 .41 )

These equations are amenable to a little simplification if attention is

initially restricted to cases in which both the radial and the angular

' See, for instance, MacMillan, W. D., “Statics and the Dynamics of a Particle,”

p. 238, McGraw-Hill, New York, 1927.
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component of velocity are zero at a cathode, r = n. Equation (18.41)

can be integrated to give

(r^ - rj) (18.42)

or, solving for 6,

^ = (18.43)

This equation is subject only to the restriction that the velocity be zero

when the radius is equal to the cathode radius. It shows that the angular

velocity depends only on the radius and the magnetic-field strength.

The angular velocity is seen to rise from a value of zero at the cathode

to a limiting value of half the cyclotron angular frequency, i.e,, the Larmor

Fig. 18.17.—Angular velocity of an electron moving

under the influence of an axial magnetic field and a radial

electric field as a function of radius.

angular frequency, at very large radii. A curve giving the relation between
the angular velocity and the cyclotron angular frequency as a function

of radius is shown in Fig. 18.17. Equation (18.43) does not apply if

the electron gains or loses energy after its departure from the cathode.

It is possible to get a differential equation for the radial component
of motion alone by substituting the value of the angular velocity as

given in Eq. (18.43) into Eq. (18.40). The resulting equation is

^ + = (>««)

This equation is rather difficult to solve in general because it is non-

homogeneous and because F is a function of r (usually logarithmic).

However, many useful deductions about orbits in limiting cases can be
made from this equation.

The energy equation for polar coordinates is like that in any set of
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coordinates except that the velocity is expressed in terms of radial and

angular components. It is

^ (r^ + r^O^) = eV(r) (18.45)

on the assumption that the velocity and potential are zero at the cathode.

This simply states that the kinetic energy gained is equal to the potential

through which the electron has fallen. The magnitude of the velocity

is seen to depend only upon the potential and to be independent of the

magnetic field and the direction of the velocity. The direction of the

velocity will, however, depend upon the magnetic field. With the above

assumptions it is possible to specify conditions under which an electron

will just graze the plate of a cylindrical magnetron. Substitute the value

of the angular velocity from Eq. (18.43) into Eq. (18.45) to eliminate this

factor. There results

(18.46)

For an electron grazing the plate, i.e., for cutoff, the condition that f = 0

for r = rp is imposed, where the subscript p refers to the plate. This

gives

(l —
4 rp^J

(18.47)

or, solving for Vpc in terms of the other factors,

Vp, (18.48)

where Vpc is the voltage below which no electrons emitted with zero

velocity will reach the plate. This equation shows that the voltage

requi’ed to give cutoff in a magnetron increases as the square of the

magnetic field for a given tube geometry. It is often referred to as the

“cutoff parabola” and was originally derived by Hull.^ For convenience

in calculation let the magnetic field be -expressed in gausses as Bi',

let distance be measured in cms, and let the constant be numerically

evaluated. Then

Vpc volts (18.49)

The cutoff equation given above is exact whether there is space charge

present or not, for it is derived from the energy relation. The shape

* Hull, A. W., Effect of a Uniform Magnetic Field on the Motion of Electrons

between Coaxial Cylinders, Phys. Rev., vol. 18, pp. 31-61, July, 1921.
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of the potential field between cathode and plate will be influenced by the

presence of space charge, but the grazing relation will not. A nomo-

graphic chart of the cutoff relation of Eq. (18.49) is given in Fig. 18.18.

In the absence of oscillations and space charge, electrons will move out

from the cathode in cardioid-like orbits, returning again to the cathode

with zero velocity provided that they are not intercepted by the plate

en route. When there is no energy added or subtracted en route, the

orbits will always consist of single loops between the contacts with the

cathode. For the limiting case of a very small cathode the orbits are

represented approximately by^

%
(18.50)

Another static orbit of interest is that in which the electron simply

rotates in a circular orbit around the cathode at a constant radius.

In the absence of space charge, it is a little difficult for an electron to

get into such an orbit, but such an orbit is possible. The equation for

this case is obtained from Eq. (18.40) by setting the radial acceleration

equal to zero. The resulting equation may then be written

_ cood -^ = 0 (18.51)
ri>*

dV
where E = —3- is directed inward. This may be solved for the angular

dr

velocity to give

*
= ? + 5 4“'' +

^

Numerical substitution shows that the second term in the radical is

invariably much smaller than the first, and thus the first two terms of the

binomial expansion may be used to give

(18.53a)
r£>

or

1 dV
(18.536)

where B is in webers per square meter (10^ gausses). This shows that

the angular velocity is a little less than the cyclotron angular frequency.

Numerically, the second term seldom exceeds 10 per cent of the cyclotron

angular frequency. This means that the inward-directed radial magnetic

force is much greater than the outward-directed radial electric force.
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Fig. 18.18.—Nomographic chart of cutoff voltage in a cylindrical magnetron.

Ratio

of

plate

to

cathode

radius



648 VACUUM TUBES

For ordinary purposes the angular velocity for a fixed radial distance

can be taken as the cyclotron angular frequency.

18.7. The Effect of Space Charge. In an actual operating magnetron

it is expected that space-charge effects cannot be neglected. Since the

transit time associated with the curved paths is relatively large, the

electrons will stay in the interelectrode ^pace of a magnetron much longer

than in that of a cylindrical diode without axial magnetic field. As a

result, the space-charge effects should be much more pronounced and

should exhibit a considerable smoothing effect upon the shape of the

electron paths. The analytical treatment of space-charge effects is

expected to be somewhat difficult; yet a considerable impression has

been made on this subject.

The basic differential equations that have been given before are

expected to apply to the space-charge case, with the difference that the

potential distribution will be altered by the space charge. Specifically,

the equations involving angular velocity but not the potential distribu-

tion [Eqs. (18.41) to (18.43)] will be unchanged. Likewise, the energy

equation [Eq. (18.45)] and the corresponding differential equation for

radial displacement [Eq. (18.46)] will apply, with the difference that the

potential function is influenced by the space charge. The potential

distribution will be given by Poisson’s equation in polar coordinates for

the single coordinate of radius,

1 ^
r dr

(18.54)

where p is space-charge density in coulombs per cubic meter, negative

for electrons, and eo is the dielectric constant of free space in mks units.

The radial current through any cylinder concentric with the axis of the

tube is proportional to the radial velocity and the space-charge density,

Jr = 2-jrrpr

With this substitution, Eq. (18.54) becomes

1 ^ ^ -Jr
r dr \ dr J ztHmr

(18.55)

(18.56)

If now the value of f from Eq. (18.46) be substituted, there results

A
dr

(18.57)

This is the differential equation for the potential as a function of radial

distance, including the effect of space charge.
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A detailed study of Eq. (18.57) shows that the radial acceleration

of an electron is governed by an apparent potential which varies as the

two-thirds power of the radius near the cathode and as the inverse square

of the radius close to the plate as long as the current is not cut off. The

apparent potential referred to is the real potential less the critical poten-

tial that would just prevent an electron from reaching a plate of radius

Between the cathode and plate the apparent potential is a

4
Fig. 18.19.—-Spiral electron orbits in the cylindrical magnetron in the presence of

space charge. {After Brillouin.)

continuously increasing function of radius. As a result, the radial

velocity will always be -positive, increasing rapidly at first and then more

slowly. Since the corresponding angular velocity as given by Eq.

(18.43) and Fig. 18.17 is a continuously increasing function of the radius,

being small at first and then increasing with the radius, the resultant

electron paths will be nearly radial at the cathode, and will then curve

strongly into a spiral orbit out to the plate. In Fig. 18.19 are shown some

‘ Brillouin, L., Theory of the Magnetron, Elec. Commun., vol. 20, pp. 112-121.

* Brillouin, L., Theory of the Magnetron I. Phys. Rev., vol. 60, pp. 385-396,

Sept. 1, 1941.

^ Brillouin, L., Practical Results from Theoretical Studies of Magnetrons, Proc

I.R.E., vol. 32, pp. 216-230, April, 1944.
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electron orbits in the presence of space charge for a fixed plate potential

as the magnetic-flux density is increased. For low magnetic fields, the

paths are nearly radial, with only a slight curvature. As the magnetic

field is increased, the spiral orbits evidence themselves and the total

angular progression increases. At cutoff all the electrons move in circu-

lar paths, constituting a core of space charge that rotates about the

cathode almost as a solid body. As the magnetic field is increased still

further, the radius of the space-charge core decreases but still maintains

its composition of electrons moving in circular paths with a nearly

constant angular velocity.

The case of the electrons moving in circular orbits for voltages

beyond cutoff is of considerable interest, for it is found that actual

magnetrons operate most efficiently well beyond cutoff. The rotating

core of space charge undoubtedly plays an important role in the operation.

This case may be handled analytically. Setting the radial current in

Eq. (18.57) equal to zero requires that the radical in the denominator of

the right-hand term also be zero. Hence

Upon differentiating this in accordance with Eq. (18.54) there is obtained

an expression for the space-charge density as a function of the radial

distance,

p = -eo«o" ^1 -I- (18.59)

Each of the above expressions applies only out to the radius at which

the cutoff relation of Eq. (18.49) holds, with a general radius substituted

for plate radius. The potential is seen to increase nearly quadratically

with radius out to the edge of the space-charge core. Beyond that it will

follow the logarithmic function that applies for cylindrical electrodes

in the absence of space charge. The space-charge density is seen to be

nearly constant for large values of r but will rise to twice the large-radius

value at the cathode. The angular velocity follows the law of Eq.

(18.43) and Fig. 18.17. Accordingly, the core is one whose density is

nearly constant except for an increased density near the cathode and

whose outer portions rotate at half the cyclotron frequency and whose

inner portions rotate at lower frequencies.

The above picture of a rotating core of space charge has been verified

experimentally. In an experiment in which an indication of the current

flowing is measured by the number of positive ions created by collision,

the positive-ion current is found to increase sharply as the plate current



MAGNETRON OSCILLATORS 651

is cut off, indicating that a greater current is flowing around the cathode

than was flowing to the plate.* Further confirmation of this type of

motion is obtained by considering the equivalent relative dielectric

constant of an electron cloud, which in this case, by application of Max-
well’s equations, is found to be

e' --= 1 - g (18.60)

If an experimental coaxial diode is made that can be inserted into a

coaxial line, it is found that the equivalent dielectric constant of the tube

section of the line follows very closely the relation given above. The
quantitative agreement with the simple theory in the above experiments,

while not perfect, is very convincing, though the complete validity

of the ideas involved is subject to some question.*

18.8. Electron Behavior in Crossed Magnetic and Alternating Radial

Electric Fields. No complete analysis of electron motion in crossed

magnetic and alternating radial electric fields is available although the

relations seem to be reasonably well understood. Relations for small-

amplitude oscillations with and without space charge can be given,

though these obviously tell only part of the story since actual magnetron
oscillations involve large amplitudes. Large-amplitude relations can

be calculated numerically for specific tube dimensions and operating

conditions, from which some general deductions can be made. It is

worth considering the small-amplitude relations, however, in that they

will contain some elements of truthful representation of the actual

picture.

Consider first the small-amplitude oscillations without space charge,

based upon Eq. (18.44). Let the gradient of potential at any radius

ro be given by
p dV- = «o + ai(r - r„) (18.61)

i.e., a constant plus a linear term, and let

f = r - ro , (18.62)

’ Hull, A. W., The Paths of Electrons in the Magnetron (Abstract Only), Phys.

Rev., vol. 23, p. 112, January, 1924.

* Blewett, J. P., and S. Ramo, High Frequency Behavior of a Space Charge

Rotating in a Magnetic Field, Phys. Rev., vol. 57, pp. 635-641, April 1, 1940.

* Blewett, J. P., and S. Ramo, Propagation of Electromagnetic Waves in a Space

Charge Rotating in a Magnetic Field, Jour. Appl. Phys., vol. 12, pp. 856-859, Decem-
ber, 1941.

^ Gabor, D., Stationary Electron Swarms in Electromagnetic Fields, Proc. Roy.

Soc., (London), Ser. A, vol. 183, pp. 436—453, 1945.
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Upon making these substitutions in Eq. (18.44) and preserving only

first-power terms in f there results the differential equation for the

perturbed motion about any radius ro,

(18.63)

Of principal interest is the periodic term in the solution of this equation.

This will have the form

f. = Acosf^l-3(0' + 5l (18.M)

The resulting path is like that generated by a point on a small circle

rolling on a large circle of radius ro concentric with the cathode. The

angular frequency of the perturbed motion is seen to differ from ^ by a

radical containing a distance ratio raised to the fourth power (generally

small) and the coefficient of the gradient, oi, which will be positive in

the presence of space charge and negative in its absence. This means

that the perturbation frequency will ordinarily be less than the Larmor

frequency (half the cyclotron frequency) in the absence of space charge

and greater than the Larmor frequency in its presence. Correspondingly,

the average angular velocity will be

which is the same as previously given by Eq. (18.43). At large radii

and in the presence of space charge the perturbation frequency can be

many times the average angular velocity.

The conclusion that the perturbation frequency is more than the

Larmor frequency (half the cyclotron frequency) is confirmed by examina-

tion of a simple oscillation mode in the presence of space charge. Let

it be assumed that there is under consideration a rotating core of space

charge. At the outer edge of the core, where is much less than

unity, the differential equation of the radial component of motion will be

f _ e 1 _ too®

r m r dr 4
(18.66)

from Eq. (18.44). Now let r = ro + f as before, and apply this to a
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requires that

Now since

through the core. Conservation of charge then

p = Po ^1
— -)

ro/
(18.67)

1 dF _ -p
r dr 2to

(18.68)

from Eq. (18.54) and the large-radius value of po is

Po = (18.69)

from Eq. (18.59), then the differential equation [Eq. (18.66)] takes the

form

which reduces to simply

ti)o'

4

if terms in ~ of powers higher than unity are disregarded. From this

it is seen that the perturbation frequency of the electrons in the space-

charge cloud is for the simple mode of oscillation in which the whole

cloud pulsates uniformly.

Solutions other than the simple one indicated above can be obtained

for the magnetron with space charge. These will not be discussed in

detail, for their application is limited to small-amplitude oscillations.

In addition to the pulsating core of space charge just referred to, solutions

have been found in which the edge of the space-charge core has sinusoidal

ripples appear on it in the form of standing waves, with an integral

number of sine waves around a complete circumference. These standing

waves can be resolved into traveling waves of equal amplitude traversing

the circumference of the core with equal velocities in the two directions.^-^

(18.70)

(18.71)

* Brillouin, L., Theory of the Magnetron II, Phys. Rev., vol. 62, pp. 166-177,

Aug. 1 and 15, 1942.

^ Brillouin, L., Theory of the Magnetron III, Phys. Rev., vol. 63, pp. 127-136,

Feb. 1 and 15, 1943.
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Some of these modes exhibit an associated negative resistance and so

may give rise to oscillations. Likewise, there have been found solutions

in which there is a rotating cylinder of space charge with definite inner

and outer edges not in contact with the electrodes. In such cylinders of

charge it is possible to have clumps or spokes of increased space-charge

density, which rotate at half the cyclotron angular frequency.* The

appearance of spokes of space-charge density in an analytical solution

is of great significance, for it confirms the existence of such spokes pre-

dicted from simple qualitative considerations.

So far the information obtained about electron behavior in the

presence of alternating components of electric field has not been very

enlightening with regard to' efficiency of operation and other practical

matters. It is perhaps too much to expect that an analysis of this

complex problem will yield neat and simple engineering-design formulas.

The best that can be done at present is to attempt to get a composite

picture of the mechanism of operation by combining the impressions

obtained by looking through the various windows corresponding to

the different avenues of approach to the problem.

Considerable information is obtained from considering the reaction

of electrons with rotating-field components. If an electron moves so

that it is being continuously retarded by a tangential component of

electric force, it will give up energy, which will allow it to move in a larger

radius path. Since energy is being given up, it is possible for such an

electron to have its angular velocity become progressively less than the

value it would have at any radius if it had not lost energy. Accordingly,

it is possible for electrons to spiral out to the plate with a constant or

nearly constant angular frequency of rotation.**

The alternating components of the electric field of a cylindrical

multicavity magnetron contain both radial and tangential components,

which can be resolved into components traveling in the two directions.

Let the radial component of the alternating gradient of potential in the

direction of the electron travel be R(r)(t>{nd -f- ut) and the tangential

component be T{r)\j/{nB -\- oit). The components rotating in the oppo-

site direction will be neglected. The functions ^ and 4> are periodic

functions of the angle 0, with n an integer equal to the number of full-

period variations of field around the magnetron. Near the cathode, f
and <j> will be simple cosine waves, but near the plate they will be nearly

square waves. If these components of the gradient of potential are

* Blewett, J. P., and S. Ramo, High Frequency Behavior of a Space Charge

Rotating in a Magnetic Field, Phys. Rev., vol, 67, pp. 635-641, 1940.

^ Application of the above ideas was first made by Posthumus, K., Oscillations in a

Split Anode Magnetron, Wireless Eng., vol. 12, pp. 126-132, March, 1935.
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included in the basic differential equations of motion, then Eqs. (18.40)

and (18.41) become

f — ^ + R(r)(f>(nd + wi)
j

— oiord (18.72)

I It ^ T{r)4'{ne + a>t) + coor (18.73)

Let it now be considered whether it is possible for an electron tc

follow the field around in such a way that

nd = -o)t + a (18.74)

where the negative sign goes with the counterclockwise rotation of an

electron wKich occurs for a magnetic field in the negative z direction and

it is assumed that a changes very little with time. The interpretation

of the angle a is that it is the angle by which the electron lags some

reference point on the rotating field, conveniently the maximum. Then
since

e^~- (18.75)
n

the equations of motion above become

_ 2^- = „or + - T(r)^(a) (18.77)
n m

These equations can be partly solved without knowing the exact nature

of the functions ^ and <t>. Let Eq. (18.76) be integrated on the assump-

tion that the radial velocity and potential at the cathode are zero. Then

; (i + “•) + 1 +

1

/
If now the value of from Eq. (18.77) is substituted in the above, there

results

' - ^T(r)^(a)m
2(0

,

+ I ^"(r) +^j R{r)<t>{a) dr (18.79)

This equation tells how the angle a by whicn the electron lags some

reference line on the rotating field varies with the radial distance. Simple
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physical reasoning indicates that electrons will be in equilibrium when
they are slightly behind a radial line of maximum retarding force. Under
this condition a momentary increase of angular velocity increases the

radius of the orbit and brings the electron into a region of stronger

retarding force that acts to decrease the angular velocity. The argu-

ment here is the same as that used in consideration of Figs. 18.15 and

18.16. The radial force is not necessary to the argument and will for

the moment be considered negligible. A possible situation demon-

strated by Eq. (18.79) is shown in Fig. 18.20. Shown here are tangential

components of electron force rotating in the counterclockwise direction

for a six-segment magnetron operating on its ir mode. Nodal planes

frops and

Locus of
electrons in
equilibrium

Tangential
force
vectors

Nodalplane
'oftangential
force

Fig. 18.20.—Electron orbits in a multicavity magnetron as deter-

mined by rotating tangential components of field.

of force are shown by dashes. The position of electrons in equilibrium

with the field is shown by the dotted curve lagging a plane of maximum
retarding force. If the square of the radial function T{f) increases less

rapidly than the radial function of the right-hand side of Eq. (18.79),

then the angle a by which the electron lags the line of maximum retarding

force must increase as the radius increases. Note that, although the

effects of space charge have not been specifically considered, this treat-

ment admits of solution in cases with space charge, for then it is merely

necessary to introduce the proper form of the potential, F(r). Including

the effect of the radial forces will only change the locus of the electrons

in equilibrium with the field. The locus will always lie within the zone

between a plane of maximum tangential force and the nodal plane of

tangential force behind it.
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For the case of negligible radial force the square of the radial velocity

of the equilibrium electrons at the plate will be

V = + + (18.S0)

Correspondingly, the square of the total velocity at the plate will be

obtained by adding as obtained from Eq. (18.75), to the value of

above.

V = '•*.4(2 - —
2) ^ + (l - —1 + - Fp (18.81)

The above two equations are those whose properties it is desired to study.

For purposes of simplification let the angular velocity at the plate be

written as

rpO =
rp(o

n
= xva (18.82)

where Vo is the velocity corresponding to the plate potential and introduce

the factor

^ _ 0)0

Be Wc
(18.83)

where Be is the cutoff value of magnetic-flux density corresponding to

the plate potential Fp, as obtained from Eq. (18.48). Let the cutoff

relation be written

(18.84)

With the above substitutions, Eq. (18.80) becomes

-0

and Eq. (18.81) becomes

I'D

-f

x^-\-2

-h 1

xz \

(18.85)

(18.86)

T
Posthumus has examined these equations for the case of — = 0, for

which the above equations simplify to

+ 2xz + 1 (18.87)

and

= 2x^ + 2xz +

I

(18.88)
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The relations between these factors are shown in the curves of Fig. 18.21.

These curves show the square of the radial velocity and the square of

the total velocity as a function of the angular velocity oWf, which is

proportional to the square root of the plate potential and inversely

proportional to the mode number n. Since the energy taken from

Fig. 18.21.—Total and radial electron velocity at the anode of a

magnetron as a function of magnetic-flux density and angular veloc-

ity for a small ratio of cathode to plate radius. {After Posthumus.)

the potential source per electron is on the average, then the

electron efficiency is

Electron efficiency = 1 — ^ (18.89)

which means that an efficiency scale can be included on the curves of

V ^

total velocity squared with a zero value of ^ corresponding to 100 per

cent efficiency. This efficiency does not, of course, include the effect
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of circuit losses. The curves indicate only the maximum efSciencies

that can be obtained. Actual efficiencies will be less, since not all

electrons are as favorably operated as those discussed in this analysis.

The principal things to be learned from Fig. 18.21 are that higher effi-

ciencies can be obtained at progressively higher mode numbers with

higher d-c potentials and with magnetic-flux densities higher than the

critical value. The dashed curve in Fig. 18.21 is for the case of = 0.

This corresponds to the case of electrons that have given up all their

radial energy to the field and strike the plate at grazing incidence. This

curve represents the highest efficiencies obtainable for any value of

angular velocity and magnetic-flux density.

Equations (18.85) and (18.86) are a generalization of Eqs. (18.87)

and (18.88) originally given by Posthumus and make possible an exten-

sion of this analysis to magnetrons with finite ratios of cathode to plate

radius. Let a limiting small value of the ratio of cathode to plate radius

be 0.707. Then Eqs. (18.85) and (18.86) become

~ + V2 xz + 1 (18.90)
Vo ^

J^ = 3^-|- V2X2 + 1 (18.91)
ao ^

The corresponding curves for this high ratio of cathode to plate radius

are shown in Fig. 18.22. These have the same general form as those of

Fig. 18.21 except for some rather pronounced displacements. The

limiting curve (shown dashed) for which the radial velocity of an electron

at the plate is zero is the same for any ratio of cathode to plate radius

and is simply

^ (18.92)

However, for the larger ratio of cathode to plate radius of Fig. 18.22,

oscillations can be had for a given mode and magnetic-flux density at a

lower value of plate voltage but with a slightly lower efficiency.

In spite of some rather general assumptions made in this analysis,

the results have considerable validity. Without question, the curves

demonstrate correctly that it is possible to get higher efficiencies by going

to higher mode numbers and magnetic-flux densities in excess of the

critical value. Deductions as to the effect of the ratio of cathode and

plate radius cannot be taken too seriously. The curves of Figs. 18.21

and 18.22 should be displaced upward by the amount of the integral

of the radial force, which was neglected in Eq. (18.80). When this

displacement upward is made, the minima of the efficiency curves play
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a more prominent role within the region of operation and specific deduc-

tions with regard to the effect of the dimensions definitely need to consider

the effect of the radial electric forces.

Fig. 18.22.—Total and radial electron velocity at the anode

of a magnetron as a function of magnetic-flux density and

angular velocity for a large ratio of cathode to plate radius.

18.9. Basic Relations for Multicavity Magnetrons. Of the various

relations given for magnetrons thus far, the most important is the cutoff

relation of Eq. (18.48). Further relations which have a bearing upon

the a-c operation are semiempirical. Slater and his colleagues have

showm by extensive calculations and tests that maximum bunching

action and resultant efficiency occur in a tube when the area between

cathode and plate and between two corresponding pole points, as shown

by the shaded area in Fig. 18.1c, is approximately a curvilinear square.

More specifically, the ratio of the radial to the average angular dimension

4
of the four-sided figure shown should be -. In terms of the radii and the
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number of poles this gives

where N is the number of pole tips. This reduces to

(18.93a)

Is
Tp

1 - N
(18.936)

TA curve of — as a function of N is given in Fig. 18.23. For 4 plate
Tp

segments or fewer, the ratio of plate to cathode radius should be zero.

For a larger number of plate segments the optimum ratio increases but

Fig. 18.23.—Optimum ratio of cathode to plate radius as

a function of the number of plate segments. {After

Slater.)

does so rather slowly and even at 12 segments is only at half its asymp-
totic value of unity. Under the condition of Eq. (18.936) the dimensions

of a multicavity magnetron will be such that the working electrons will

traverse about two loops of a modified trochoidal path before being taken

out of action at the plate with a small residual energy.

Another condition which ensures favorable action is that the electrons

in their motion around the cathode move at the velocity of the traveling

wave. The angular velocity of the electrons varies considerably from
cathode to plate, and therefore let the angular velocity halfway between

the cathode and plate be set equal to the velocity of the traveling wave.

Referring to Eq. (18.40), setting the radial acceleration equal to zero,

and letting the angular velocity rB be represented by ve,

dr
= Ve

mve

era
,

(18.94)

where ro is to have the value corresponding to the halfway points between
cathode and plate.
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ro =
Tc + Tp

2
(18.95)

If now, Ve is to be equal to the wave velocity, then

rod

rpo)

n
2irroC

»Xo

ir(r^ + rp)c

nXo

Assume now as a simplifying approximation that

d̂r rp — rc

Ve =

Ve =

Ve =

Ve =

(18.96o)

(18.966)

(18.96c)

(18.96rf)

(18.97)

for r = rp. Then, with the substitutions of Eqs. (18.95), (18.96(i), and

(18.97), Eq. (18.94) becomes

Vp =
rr(rp^

nXp
3 X 10*

010463\

nXp /
(18.98a)

in mks units. For those who are more familiar with practical cgs units

this will appear as the general relation

y ^ 3007r(rp^ - r,*) /^ , _ 10,463\
” nXp \

^ nXp /
(18.986)

where Vp is in volts, Bz' is in gausses, and r and X are in centimeters. If

now the optimum ratio of cathode to plate radius of Eq. (18.936) is intro-

duced, the above equation becomes

Vp = 10,463\

nXp J
(18.99)

for the optimum dimensions. This is the important relation that has

been sought. It shows that there will be a linear relation between Vp

and Bz for optimum operation on any one mode. A plot of Eq. (18.99)

is usually referred to as the mode line or the Hartree line. The mode
lines have slopes that vary inversely as the value of n, Xp, and N. For

any one tube there is a family of mode lines in the V-B plane that

almost pass through the origin. Such a family of lines is shown relative

to the cutoff parabola in Fig. 18.24.
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The mode-line equation [Eq. (18.99)] may be solved for plate radius

to give

r® = 0+s)
y/nN

XoTp

V^.SOOtt 10,463
(18.100)

where B/ is in gausses. Tubes will ordinarily operate on the highest,

flux-density plane.

N
or X, mode for which n = in which case the above reduces to

rn =
XqTpN + 4

VpOtk 20,926 (18.101)

where Bz' is in gausses. The above may serve as an approximate design
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equation in determining plate radius of a magnetron. It assumes the

optimum ratio of cathode to plate radius of Eq. (18.936).

The cutoff relation itself may be rewritten to include the optimum
electrode ratio of Eq. (18.936). When restricted to the optimum ratio,

the cutoff parabola becomes

(18.102)

where Bz' is in gausses, and the relation is independent of the value of n
since it is a static relation.

Fig. 18.25.—Values of XoBj* for different values

of N.

Upon combining Eqs. (18.101) and (18.102), the quantities rp and Vp

may be eliminated and an expression obtained that gives \aBz' in terms

N
of the number of poles, N, for the case that n = This relation may be

solved for the product 'KoBz', which applies at cutoff for tubes with

N
different numbers of poles N and operating in the tt mode, ^ ‘

results are given by the curve of Fig. 18.25.^ The advantage of large

1 This and the other relations of this section follow the early work of J. C. Slater

and colleagues. Details of the analysis, along with refinements on this elementary

point of view, are given in the report of the wartime researches of the Radiation

Eaborat^^rv, volume on magnetrons, McGraw-Hill, New York, 1948.
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values of N in terms of low magnetic field is apparent. Actual operation

will be best at flux densities considerably above cutoff.

Another condition for operation which may be specified is that the

frequency of oscillation should be approximately equal to the cyclotron

frequency. Examination of this condition shows that the optimum
value of magnetic-flux density is approximately 33 per cent greater than
the cutoff value for values of N greater than 4. Oscillations may occur

almost anywhere in the V-B plane of Fig. 18.24, but greatest output

will be obtained in the vicinity of the mode lines to the right of the cutoff

parabola.

18.10. Dimensional Relations in Magnetrons. Many important

deductions about the effect of the various parameters involved in mag-
netron operation can be made by examining the dimensionality of the

basic differential equations involved, just as was done for the ultra-high-

frequency triode.* The differential equations of motion of an electron

under the influence of electric and magnetic fields in rectangular coordi-

nates are

^~di
~ ~ (18.103)

and
dv = —eVxBz — eEy (18.104)

for a magnetic field having only a z component and an electric field

having no z component. Poisson’s equation, which governs the space-

charge relations, is

dEx
I

dEy _ p

dx By Co
(18.105)

The relations between current density, space-charge density, and velocity

are

Jx = pOx (18.106)

Jy = pVy (18.107)

Let now the comparative operation of two tubes that are geometrically

similar be considered. Let D be the dimension ratio and W be the wave-

length ratio of the two tubes. Then, if an electron is moving between

two corresponding points in the two tubes,

dh = Wdh (18.108)

and
dx2 = D dxi (18.109)

dyi^Ddyi (18.110)

’ The analysis of this section follows the early work of A. M. Clogston, done at the

Radiation Laboratory.
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(18.111)

(18.112)

The equation of motion for tube 2 then becomes

= eVyiBi - eE^2 (18.113)
dti

or

m ^ ~ (18.114)

For these last two equations to be consistent it is necessary that

(18.115)

(18.116)

and that

where

and

IF =

D rj

ri

Since potential is the product of gradient by distance and the distance

ratio is D, then

F2 = (18.117)

By an extension of this type of reasoning, ratios of all the critical quanti-

ties in the two tubes as a function of the factors D and W may be obtained.

These are summarized in the table on page 667.

The quantities in Table XII enable the tube designer to tell how the

various operating quantities in a tube that has been scaled from a

given tube will compare with the corresponding quantities of the given

tube. It further tells how the quantities in a single tube will change

if the operating characteristics are changed. Thus, if a tube is enlarged

by a factor D but is to work at the same wave length, then the factors

in the Voltage scaling column apply. In this case the required magnetic-

flux density is unchanged, the required voltage is increased by a factor

of D^, and so on. If a given tube is to be operated at a wave length

greater by a factor of W than that for which the operating characteristics

are known, then the required magnetic-flux density is ^ times as great

as before, the required voltage is times as great as before, and so on.
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If with a known set of dimensions and operating characteristics the

dimensions and wave length are changed in direct proportion, then the

values in the Complete scaling column apply. The values in the General

column take care of the general case.

TABLE XII
MAGNETRON SCALING FACTORS

Quantity

Magnetic-flux density

Voltage

Current density

Current

Power

Conductance

Gradient

Complete Voltage

Ratio General scaling scaling

W = D W = 1

B, 1 1
1

B. W W
h 1 R2
Vi

J, D 1 D
J, Wi

h D‘‘ 1
Z)»

h w
Pi D* 1

D*
Pi Wi w
Gi 1 1

1

Gi W w
El D 1 D
El w

Wave-length

scaling

D = 1

W
J_
W*

J_
W*

W>

J_
W‘

W
Jj^
Wt

18.11. Output Characteristics of Magnetrons. It is not possible

to write simple formulas that describe the output characteristics of

magnetrons as was possible for reflex-klystron oscillators. This is because

no valid expressions for the equivalent electronic admittance of a mag-

netron have yet been proposed. From external measurements on mag-

netrons it has been established that the electronic conductance is negative

for conditions of oscillation and decreases in magnitude as the r-f voltage

increases, as was the case for reflex-klystron oscillators. However, the

electronic admittance evidently depends,upon the effective impedance

presented by the cavity, whereas in the reflex klystron the beam admit-

tance was independent of the cavity impedance. For this reason the

only suitable way of representing magnetron characteristics is by means

of a set of contours on some sort of load-impedance coordinates which

show the way in which such quantities as efficiency, power output, and

frequency depend upon the load impedance. In practice, magnetrons

feed loads through transmission lines, and the effective impedance into

which the magnetron works is determined by the standing-wave ratio

and position of the minimum of voltage on the line. Accordingly, it is
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convenient to plot magnetron characteristics on special transmission-

line-coordinate paper instead of on an impedance plane directly.

Although the exact nature of the electronic admittance of a magnetron

(which corresponds to the beam admittance of a reflex-klystron oscillator)

is not known, the nature of the conventional representations of magnetron

characteristics may be understood from a brief analysis based upon the

assumption that the electronic admittance of the magnetron is some-

thing like that of the reflex-klystron oscillator. With this assumption

the equivalent circuit of a magnetron, resonant cavity, coupling loop,

and line terminated in load, is that given in Fig. 18.26. The electronic

admittance of the magnetron is represented by the admittance labeled Ye-

ll will have a negative conductance component for a condition of oscilla-

tion. The electronic admittance is considered to be in shunt with the

unloaded resonator, which is represented by a parallel combination of an

inductance and capacity, and with the shunt resistance of the unloaded

Fig. 18.26.—Simple equivalent circuit of mag-

netron oscillator, output coupling, line, and

load.

resonator. The resonator is assumed to be inductively coupled to a

transmission line leading to a load. The impedance seen looking back

into the coupling loop from the line is

Z = Zi + -t- Ye) (18.118)

where Zi is the impedance of the coupling loop, w is the operating angular

frequency, M is the mutual impedance between the loop and the resona-

tor, and Yr is the unloaded admittance of the resonator at the operating

frequency. The requirement for oscillation is that the impedance seen

looking back into the coupling loop be the negative of the impedance seen

looking into the line Zl,

Zl^ - [Zl -1- cvWHF, + Fe)] (18.119)

While this equation is not capable of analytical solution, it is capable of

graphical representation. This graphical representation will now be

developed.

Assume that the electronic admittance is as shown in Fig. 18.27.

The locus of the electronic admittance is given by the vector in the
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second quadrant. For zero r-f voltage the electronic admittance has

the value given by the extremity of the vector. As the r-f voltage

increases, the vector will be assumed to shrink but maintain its direction.

This is not strictly true but will serve for a basis of discussion. It will

further be assumed that the electronic admittance is not affected by the

resonator admittance. Shown in the same figure is the unloaded reso-

nator admittance. This has a locus that is approximately a straight line

parallel to the susceptance axis, as was shown in the chapter on Velocity-

modulated Tubes, or Klystrons. Different points along this locus cor-

respond to different frequencies, frequency increasing upward. At

unloaded cold resonance the resonator admittance is a pure conductance.

y.^
R.F. Voltage is 2ero
at extremity but
increases towardbase

Electronic
admittance
of magnetrom

-G—
Origin of
admittarrce

-B

Locus of
‘ unloaded

resonant
circuit

fa
-y-G

Fig. 18.27.—^Ixici of electronic admittance of a magne-

tron and the resonator admittance in an admittance

plane.

Shown in Fig. 18.28 is the sum of the resonator and electronic admit-

tance. The electronic-admittance vectors are shifted to the right by

the resonator conductance and shifted up or down by departures in

frequency from the cold unloaded resonant frequency of the resonator.

The locus of w^M^{Yr -b Ye) will have the same form as that shown in

Fig. 18.28 except that the scale will be changed and the locus will be

plotted on an impedance plane with axes of resistance and reactance

instead of conductance and susceptance. The locus of

Zl -f wm^iYr + Ye)

is shown in Fig. 18.29. The addition of the loop impedance merely

shifts the previous representation strongly upward and a little to the

right since the loop will ordinarily have a higher reactance than resistance.



VACUUM TUBES

The negative of the impedance seen looking into the loop is shown in

Fig. 18.30 against coordinates of load impedance. In this representation

Locus of..

Ye-^Yr
for zero R.f.

Successively
greater values

of R.f. voltage

Fig. 18.28.—Sum of resonator and electronic admittance of a

magnetron.

it is possible to plot power contours. Ideally, the power will be con-

72
stant along any vertical line since power output is given by -

75
- Power

a

Locus of ""

for zero R. F.

voltage

Locus of

Ys+Ofr^Ye)
tor successively
greater values of
R.E voltage

Fig. 18.29.—Locus of Zt + + Fe) in an impedance

plane.

is expected to be zero along the vertical line through the extremities of the

transformed admittance vectors since here the r-f voltage is zero. It is
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also expected to be zero along the zero-resistance axis since the power
that can be delivered to a zero resistance is zero. Between these limits

the power will rise to a maximum. Actual contours of constant power
are not straight vertical lines but elongated closed loops, for the electronic

admittance of the tube apparently changes with the admittance into

which the electrons work. Such elongated loops are shown dotted.

They are closed about a point of maximum power output. Also shown
in Fig. 18.30 are lines of constant frequency in the form of the transformed

fX

plane.

electronic-admittance vectors. For the reflex-klystron oscillator the

slope of this line is related to the transit "time in the repeller space. For
the magnetron the slope of these lines is also probably related to the mean
transit time, though the exact relation has not been definitely established.

Shown in this same figure are some loci of constant standing-wave ratios

on a transmission line that will produce the indicated load impedance.

These loci are circles about the characteristic impedance of the line.*

* See King, R. W. P., H. R. Mimno, and A. H. Wing, “Transmission Lines,

Antennas and Wave Guides,” McGraw-Hill, New York, 1945, for an introductory

treatment of transmission-line impedance loci.
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Along any circle about the characteristic impedance of the line the

magnitude of the standing wave of voltage or current is constant, but

the distance from the magnetron output to the minimum of voltage

changes.

The contours of Fig. 18.30 are usually transformed to a representation

on which the circles of constant standing-wave ratio are concentric about

O
CO

Fig. 18.31.—Rieke diagram of a Raytheon 2J38 magnetron.

the center of the plot and evenly spaced on a radial scale, the value of the

standing-wave ratio at the center being unity. The contours of Fig.

18.30 are correspondingly deformed to give the representation of Fig.

18.31, which is known as a Rieke diagram. Positions of constant distance

of a voltage minimum from the output loop in electrical degrees become

radial straight lines in such a plot. The contours of constant power



Anode

poten+ioil,

kilovolts

MAGNETRON OSCILLATORS 673

output are closed contours about a point of maximum output, though

for low powers the contours are closed off the chart through regions of

voltage standing-wave ratios greater than 5. Contours of constant

Peak current, amperes

Recurrence rate = tOOO cps
Pu/se width = t microsecond

Magnetic field, gauss—— Peak power, kilowatts

Efficiency

—Frequency contours (megacycles deyiafion

from mean frequency as determinedby
corresponding Rieke diagram, and taken under
conditions ofconstant temperature). Matched
t/g''(48ohm) coaxial line using specified
matching transformer.

Fig. 18.32.—Voltage-current characteristics of a Raytheon 2J30 magnetron.

frequency are shown in this diagram, corresponding to those in Fig.

18.30. Ideally, these would intersect the constant-power contours at a

constant angle. It is seen that for a load corresponding to a given

standing-wave ratio of voltage and location of voltage minimum from
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the output loop the power output and frequency are specified. The
position of the point of maximum power output relative to the center

of the chart is determined primarily by the design of the output-coupling

loop. It is not always desirable to operate the tube at maximum output,

for here the frequency changes relatively rapidly with changes in load

impedance, an effect known as frequency pulling. Accordingly, the

output loop is usually designed so that the center of the chart falls at a

point in the characteristic field which represents a suitable compromise

between output and high-frequency stabihty. The amount by which the

frequency changes for a given standing-wave ratio as the position of

the minimum of the standing wave is changed is a figure of merit for the

tube; the less the frequency change, the better the tube. In a good tube

the amount of the frequency variation at a standing-wave ratio of 1.5 is

less than of I per cent. Rieke diagrams are usually plotted for a

condition of constant plate current and constant magnetic-flux density,

the voltage being varied slightly to keep the current constant as the

load is changed. The advantage of the Rieke diagram over other

possible representations is that a change in the reference point from which

the standing-wave maxima and minima are measured merely rotates the

plot without changing its form.

Another representation of magnetron characteristics that is commonly
given is a voltage-current plot as shown in Fig. 1 8.32. On this plot, known
as the “performance characteristic,” there are shown contours of con-

stant magnetic field, output, efficiency, and frequency. The controlled

variables are the magnetic field and the voltage, which determine the

current and at which frequency, power output, and efficiency can be

measured. Such plots are made for a constant load impedance, usually

a flat line of the proper characteristic impedance.



CHAPTER 19

PHOTOELECTRIC TUBES

19.1 . The General Form of Photoelectric Tubes. Photoelectric

tubes, or, as they are now more frequently referred to, “phototubes,”

are at first glance very simple devices, though the preparation of the

photosensitive surface involves some of the most delicate operations in

modern electronic practice. The tube is generally housed in a small

glass envelope and contains, in its simplest form, just two electrodes.

The cathode, or photosensitive emissive surface, is usually in the form

of a half cylinder. The anode, or electron collector, is usually in the

form of straight wire on the axis of the cylindrical cathode. Great pains

are taken to make the leakage resistance between the two electrodes as

high as possible. In some tubes the leads to the two electrodes are

brought out at different ends of the tube in order to achieve a high leakage

resistance. The envelope of the tube is usually made of a special glass,

which acts as a light filter to make the light absorption as low as possible

in the desired light frequency band.

Applications of the phototube are too well known to require much
discussion. Phototubes can be used to activate almost any kind of

electrical or mechanical device through the medium of suitable amplifiers

and relays. They can be used to cause a device to respond to almost

any variation in light intensity. They can be made to respond to light

of any color in the visible spectrum and to respond as well to radiation

in the infrared and ultraviolet portions of the spectrum. Applications

as door openers, counters, automatic light switches, and color sorters

are well known.

19 .2 . Fundamental Photoelectric Relations. Phototube operation

is based upon what are now the well-established properties of the photo-

electric effect. These may be enumerated as follows

:

1. Electrons are emitted from low-work-function surfaces when
exposed to radiations in the visible or near-visible region of the

spectrum.

2. The magnitude of the emitted photoelectric current is propor-

tional to the intensity of the illumination.

3. Photoelectrons are emitted with finite velocities. The maximum
675



676 VACUUM TUBES

velocity of emission is independent of the intensity of the illumina-

tion of the emitting surface (time rate of flow of radiant energy).

4. Any photoemissive surface has a low-frequency limit of radiation

beyond which no electrons are emitted regardless of the intensity

of illumination.

5. The emission velocity of photoelectrons depends upon the work

function of the emissive surface as well as upon the frequency of

the illuminating radiation.

These various properties will be described in some detail in subsequent

sections.

19.3. History of the Pholoelectric Effect. The history of the dis-

covery, theoretical development, and experimental verification of the

photoelectric effect is so fascinating that it deserves at least a topical

recapitulation. It is all the more remarkable in that the fundamental

relations of the photoelectric effect were established before the existence

of the electron was verified! Chronologically, the high spots in the

history of the photoelectric effect are somewhat as follows:

1887 Hertz discovered the photoelectric effect in his experiments on

electromagnetic waves. His experiments dealt with obser-

vations on the transmission of damped electromagnetic

waves of a frequency of about 1,500 me, generated with a

spark coil and a suitable resonant circuit. Transmitted

energy was picked up on a resonant circuit, and the intensity

of the transmission was observed on a spark gap adjustable

with a micrometer. Hertz found that his receiving circuit

sparked more readily when the electrodes were illuminated

by the spark from the transmitting gap. He further found

that the effect was present only when the negative electrode

(the gaps were polarized with a direct voltage) was illumi-

nated. He verified that ultraviolet radiations were responsi-

ble for the effect and that the effect was independent of the

source of the radiations.

1888 Hallwachs established that the effect consisted in the emission

of negative particles of electricity.

1889 Elster and Geitel showed a relation between the contact

potential of a surface and its long-wave limit of photo-

emission. They built the first photocells and made the

first photometer.

1889 J. J. Thompson discovered the electron as a fundamental

particle and constituent of matter. He established that

the negative particles emitted from incandescent bodies
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were the same as the particles emitted photoelectrically.

He deflected electrons electrically and magnetically and

made the first determination of the ratio of the charge to

the mass of the electron.

1889 Lenard showed that the magni-

tude of the photoelectric current

was proportional to the inten-

sity of the exciting illumination.

He also discovered that the

velocity of emission of photo-

electrons was independent of

the intensity of exciting illumi-

nation.

1905 Einstein applied the quantum
theory enunciated by Planck in

1900 to the photoelectric effect.

He predicted correctly the rela-

tion between the velocity of

emission of photoelectrons, the

work function of the emitting surface, and the frequency of

the exciting radiation.

1912 Hughes verified the Einstein equation.

1916 Millikan checked the values of Planck’s constant by photo-

electric measurements.

19.4. Specific Photoemission Characteristics. The photoemissive

properties of surfaces are usually investigated by means of the arrange-

ment of Fig. 19.1. Here the phototube is shown by the circle containing

a photosensitive cathode and an anode. The cathode is illuminated

from an external source. The cathode and anode are connected to a

source of direct potential in such a way that the anode can be made either

positive or negative relative to the cathode. A sensitive current meter

is connected in series with the tube and voltage source.

With the arrangement of Fig. 19.1 the'current registered by the meter

is a function of the intensity of the light and the electrode voltages, as

shown in Fig. 19.2. From this figure it is observed that for any anode

voltage positive relative to cathode voltage the photoelectric current is

directly proportional to the intensity of the illumination. Let the differ,

ence between anode and cathode voltage be designated by F. (F includes

the effect of contact potential.) Then for positive values of F the photo-

electric current is constant for a fixed illumination. This means that

the photoemission is constant and that the anode is collecting all the

photoelcctrons. When F is made negative at a fixed illumination, the

PhoMube ,
Rach'anf

'V' energy

Cathode—/^ \.Anode

Voltmeter

Galvanome'fei^

pA/WWyWWWS

I I I I I V
Fig. 19.1.—Circuit for ob-

serving the photoelectric

effect.
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current falls off, reaching zero at a value of Vo that is independent of

the intensity of the illumination. The explanation of these effects is

apparently that photoelectrons are emitted with velocities ranging from

zero to some maximum value. The number of electrons emitted is propor-

tional to the rate of incidence of radiant energy, but the maximum
velocity of the emitted electrons is independent of the intensity of illu-

mination of a given spectral distribution.

The maximum velocity of emission does, however, depend upon the

frequency of the light, as may be shown by illuminating the photo-

emissive surface with monochromatic light of a variable frequency but

constant intensity. The results of such a test are shown in Fig. 19.3.

+K
Potential difference between anode and cathode

Fig. 19.2.—Photoemission current versus retarding volt-

age for various intensities of illumination.

The three curves shown give current against retarding voltage for equal

intensities of illumination of three different frequencies of light such

that/i > /2 > /$. The higher the frequency of the light, i.e., the farther

toward the short-wave-length (blue) end of the spectrum, the greater

the maximum velocity of emission. Curves such as those of Fig. 19.3

are rather difficult to obtain, for it is necessary to measure radiant energy

with a thermocouple or bolometer, correct the resultant curves for contact

potential, stray light, and secondary emission, and be sure that the

emissive surfaces are free from any contamination and totally outgassed.

The relation between the maximum velocity of emission and the

frequency of the exciting radiation is given in Fig. 19.4. This shows

that the maximum energy of emission of photoelectrons is linear with

the frequency of the exciting radiation. There is a minimum frequency
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of light for any surface beyond which photoelectrons are simply not

emitted. The curve of Fig. 19.4 is a good straight line, which Millikan

has shown comes down to the axis with a definite angle and not asymp-

totically. The straight line of Fig. 19.4 may be represented by the

equation

Foe = = hf — w (19.1)

where — Fo is the intercept with the voltage axis of any curve in Fig.

19.3, Vm is the corresponding maximum velocity of emission, m is mass of

the electron, — e is charge of the electron, / is light frequency in cycles per

Fig. 19.3.—Photoemission current versus retarding voltage

for various frequencies of illumination.

second, h is the slope of the straight line of Fig. 19.4, and w is the fre-

quency axis intercept of the straight line of Fig. 19.4. As given above,

Eq. (19.1) is purely empirical. However, Eq. (19.1) is the equation

predicted by Einstein on purely theoretical grounds, with h identified

as Planck’s constant and w identified as the work function of the photo-

emissive surface in electron volts. From Eq. (19.1), the minimum fre-

quency of emission occurs when the velocity of emission is zero and is

given by

/o = f (19.2)

The relation between the work function and the minimum frequency
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or maximum wave length of exciting radiation predicted by Einstein in

the form of Eq. (19.1) has been verified experimentally. If we let

w = e<j>p (19.3)

where w is work function in electron volts, e is electron charge, and

is the voltage equivalent of the work function as determined from

photoelectric measurements, then the work function in volts should be

inversely proportional to the maximum wave length in angstrom units.

In Fig. 19.5 is given a plot on log-log paper of the relation between

experimentally observed values of the thermionic work function and

Fig. 19.4.—Maximum velocity of emission

of photoelectrons as a function of frequency

of exciting radiation.

the maximum wave length of photoelectric emission for different mate-

rials. If the relation predicted by Einstein is correct, then the plot of

the work function against the threshold wave length on log-log paper

should be a straight line with a slope of —1. Reference to Fig. 19.5

shows that this relation is obeyed fairly well. Departures from the

relation postulated are primarily due to the difficulty of getting an

uncontaminated emitting surface. There are also some discrepancies

due to a correction which must be made for the temperature of the

emitting surface. The most extensive work in trying to correlate values

of the work function as measured by thermionic and photoelectric

methods has been done on platinum. It is the consensus of workers in

this field that the photoelectric and thermionic work functions of platinum
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are the same and that those of other metals would be revealed as the

same if the measurements were sufficiently refinedd’2

1000 ISOO 2000 3000 4000 5000 6000
Pho+oelecfrtc threshold wavelength. Angstroms

Fig. 19.5.—Relation between the thermionic work function of

different metals and the threshold wave length of photo-

emission.

19.6. Fundamental Theory of Photoemission. The wave theory of

light meets with considerable difficulty in explaining the various aspects

of the photoelectric effect. The proportionality between the photoelectric

current and the intensity of illumination is consistent with the wave theory,

but the fact that the maximum velocity of emission is independent of

the intensity of the illumination cannot be explained on the basis of the

wave theory of light. When the independence of the velocity of emission

' The classical reference on all phases of photoelectricity is Hughes, A. L., and

L. A. DuBridge, “Photoelectric Phenomena,” McGraw-Hill, New York, 1932.

* An excellent elementary survey of the photoelectric effect is contained in Richt-

BiYER, F. K., and E. H. Kennard, "Introduction to Modern Physics,” 3d. ed.,

McGraw-Hill, New York, 1947.
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and the intensity of illumination was discovered a furor was created

among students of physics. The dilemma encountered in trying to

explain the above-mentioned effect can be circumvented by postulating

the dual nature of light; that is to say, light rays exhibit both a wave and a

particle aspect. The wave nature of light cannot, however, be com-

pletely discarded on the assumption that light is corpuscular in nature,

for some aspects of light behavior are very difficult to explain on this

basis.

The corpuscular aspect of light rays has its basis in the quantum
theory. The quantum theory had its origin in the study of heat-radia-

tion phenomena. The quantum theory has proposed that energy flows,

not continuously, but rather In small packages. The smallest unit of

energy that can be involved in any transfer is called the “quantum.”

A quantum of energy has a size that is directly proportional to the cor-

responding frequency of radiation as given by

Q = hf (19.4)

where Q is the quantum of energy, A is a universal constant having a value

of 6.624 X lO"** watt-second per cycle and known as “Planck’s con-

stant,” and / is the frequency of the radiation in cycles per second. Thus

if monochromatic orange light of wave length 6,000 angstrom units is

involved (1 angstrom unit = 10“‘® meter), the corresponding frequency

of radiation is 5 X 10‘® cycles per sec and the corresponding quantum

of energy for this frequency is 33.12 X 10~'* watt-second. This means

that light of this frequency delivers energy in units of 33.12 X 10“'*

watt-second and cannot deliver any but an integral multiple of this

amount of energy. Thus, just as the modern theory of matter postulates

the indivisible particle, the electron, so, correspondingly, the quantum
theory says that energy is finally delivered in minute but indivisible units

of quanta.

A quantum of light is known as a photon. Light rays may be con-

sidered to be made up of photons, which have many of the characteristics

of small particles in that each carries a discrete quantity of energy but

which also have the characteristics of waves. When the quantum
theory is applied to light rays, all the effects observed in connection with

photoemission are readily explained.

If light rays consist of photons each of which carries a definite quantity

of energy proportional to its frequency, then each photon on striking a

surface may transfer to an electron in the surface at most a quantum of

energy. This quantum of energy may give rise to emission of an elec-

tron, and the energy that the emitted electron will have will be at most

the quantum of energy minus the work necessary to overcome the surface
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electrostatic forces. Hence the validity of Eq. (19.1), the Einstein

photoelectric equation,

Voe = = hf-w (19.1)

The work necessary to overcome the surface electrostatic forces, to,

is the work function of the metal in question.

By applying the quantum theory of light, all the photoelectric effects

observed experimentally are completely explained. The threshold

frequency of photoemission is that frequency at which the energy of the

photon is converted into electron energy enabling the electron to just

barely overcome the surface restraints and thus be emitted with zero

velocity. The threshold frequency is accordingly proportional to the

work function of the metal, as previously noted. The proportionahty

between photoelectric current and intensity of illumination follows from

the fact that the number of photons is proportional to the intensity of the

illumination for a given area.

19.6. Spectral Response Curves of Photoemissive Surfaces. The

photoelectric emission of metal surfaces exhibits two important kinds of

selectivity The first selectivity is a variation in emitted current with

wave length of the exciting radiation. The second shows itself as a,

variation in emitted current with the polarization of the exciting radia-^

tion. The response to polarized light is much smaller when the electric

vector of the exciting radiation is parallel to the surface than when the

light is polarized at right angles to the surface. Of the two types of

selectivity the first is by far the more important since ordinary photo-

emissive surfaces as used in commercial tubes are so rough that no differ-

entiation with respect to polarization can be observed.

Every photoemissive surface exhibits peaks of sensitivity as the

wave lengths of the exciting radiation are changed. Typical of the

response characteristics of the pure metals are the curves for the alkali

metals shown i-n Fig. 19.6. ^ Observation of these curves shows that, as

the atomic number of the element increases, the maximum sensitivity

decreases, the resonance peak becomes broader, and the wave length of

the maximum sensitivity increases. No completely satisfactory quanti-

tative explanation for the above relations seems to be available. The
threshold wave length increases as the work function of the surface

decreases in accordance with Einstein’s photoelectric equation. Qualita-

tively it is expected that the wave length of maximum sensitivity would

follow somewhat the same relation. An investigation from the point of

view of quantum-mechanical considerations will no doubt some day give

* Seiler, E. F., Color-sensitiveness of Photo-electric Cells, Asirophys. Jour., vol.

52, pp. 129-153, October, 1920.
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the complete story. It is possible that the mechanism involved is

similar to that which occurs for secondary emission, which yields a

maximum emitted current for a given energy of excitation.

It is possible to make complex emitting surfaces that have lower work

functions than the pure metals. The surface that gives maximum
secondary emission also seems to give maximum photoelectric emission.

Maximum emission is obtained with a surface of the type caesium on

caesium oxide on silver. ‘ Such a surface is prepared by oxidizing silver

and then exposing it to caesium vapor. Photoemissive surfaces may also

Wavelength in Angstroms

Fig. 19.6.—Photoelectric color sensitivity of the alkali metals.

be prepared by sputtering metals, vaporizing metals, and electrolyzing

metals through a glass envelope.

19.7. Vacuum-phototube Characteristics. Current-voltage Character-

istics. Vacuum phototubes exhibit characteristics that depend pri-

marily upon the nature of the emissive surface and the transmission

characteristics of the glass envelope. A typical set of vacuum-phototube

characteristics is shown in Fig. 19.7. For a fixed amount of light flux

from the exciting source the curves of current against voltage are similar

to those of a diode. For very low voltages the current follows the three-

* Zworykin, V. K., and G. A. Morton, “Television,” pp. 22-28, McGraw-Hill,

New York, 1940.
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halves-power law of variation with voltage. Because the emission cur-

rent from a photosensitive surface is so small, this region is extremely

small and most of the curve of current against voltage shows pronounced

emission saturation. As a result, the emission current is almost constant

over nearly the entire operating range. A load line may be constructed

on the current-voltage characteristics of a phototube just as is done on a

set of vacuum-tube characteristics. Several such lines are shown in

Fig. 19.7. These lines have a slope that is the negative reciprocal of the

resistance in series with the voltage supply and the phototube. Such

Fig. 19.7.—Current-voltage characteristics of the RCA 929 phototube

(light from a tungsten filament at 2870°K).

load lines will always be straight lines regardless of the current-voltage

characteristics of the device since they are simply a graphical representa-

tion of Ohm’s law. The proportionality between current and light flux is

almost exactly linear for any operating voltage, as shown in Fig. 19.8.

The reaction of a photoemissive surface to illumination is almost

instantaneous. Experiments show that less than 3 X 10“® sec elapse

from the time the photoemissive surface is illuminated until photo-

emission begins. The photoelectric current ceases in less than 10“® sec

after the illumination is cut off. Hence in a vacuum phototube the

principal time factor involved is the transit time of an electron from
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cathode to anode. The transit time may be calculated from the curves

of Fig. 8.14. This time will generally be very short.

Example: Determine the transit time of a photoelectron emitted from a semi-

cylindrical cathode of radius 1 cm and collected at an anode of radius mm.
The ratio of cathode to anode radius is 20, and the distance between cathode and
anode surfaces is 0.95 cm. From Fig. 8.14, the factor K is 1.344. Let the anode

potential be 200 volts. Then the electron velocity at the anode is 243.5 X 10® cm
Kd

per sec. The corresponding transit time from the formula T = is 0.00525

microsecond. This means that a vacuum phototube can handle any known type

of light modulation.

Fig. 19.8.—Current versus light flux of an RCA 929 phototube.

Spectral Characteristics. Phototubes are available with spectral

sensitivities that cover the visible portion of the spectrum and carry well

into the infrared and ultraviolet. In general, the response curves will be

different from that of the eye, which is shaped something like a resonance

curve, with a peak at 5,550 angstrom units (1 angstrom unit = 10“'“

meter) and dropping to virtually zero at 4,000 and 7,000 angstrom units.

Some typical spectral response curves of commercial phototubes are

shown in Fig. 19.9. It is seen that there are tubes available which

cover the visible spectrum, the short infrared rays, and the Iona ultra-
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violet rays. The majority of phototube applications depend upon a

tungsten filament as a source of illumination. The tungsten filament

has its spectral characteristic centered in the infrared range, with appre-

ciable radiation in the visible portion of the spectrum. Light filters may
be used with phototubes where selective response with respect to color

is desired Where high sensitivity in the ultraviolet is desired, special

envelopes must be used with the tube, for the ordinary glass does not

transmit ultraviolet rays well. Such special envelopes usually take the

form either of a glass envelope with an extremely thin window in front

of the cathode or of a quartz envelope.

The spectral sensitivities of vacuum phototubes range from about

5 to 50 microamperes per lumen (1 lumen = 0.0016 watt for green light).

The number of lumens, L, of light flux falling upon an area ri of a surface

a distance d from a point source of light of candle-power strength C is

L
CA

lumens (19.5)

where any units of length may be used provided only that they are the

same for A and d^.

19.8. Gas-phototube Characteristics. The sensitivity of a phototube

can be increased by utilizing what is known as the gas amplification of

the photoemission current. If a small amount of gas of the right kind

and pressure is admitted into the phototube, then the photoelectrons in

their travel from cathode to anode will strike some of the gas molecules,

causing ionization. This ionization splits the gas molecule into a free

electron and a negative ion. The free electron is now available to join

the photoelectron in its travel toward the anode and may itself ionize

other gas molecules, giving rise to more electrons, which can add to

the effective current of the phototube. The positive gas ions formed will

move toward the cathode and, in doing so, will constitute a current that

is nearly equal to the electron current. In addition, the positive ions

on impact with the cathode will create some secondary electrons, which
mil further increase the total current. As a result of the cumulative

action of all the above effects, the net current to the anode of the photo-

tube can be made as much as ten times the photoemission current.

The current-voltage characteristics of a typical gas phototube are

shown in Fig. 19.10. For low anode voltages the characteristics are

about the same as for the vacuum phototube, for at low voltages there

is inappreciable ionization owing to the low energies of the photoelectrons.

At higher anode voltages, ionization occurs, and the current increases

rather rapidly with voltage. At sufficiently high voltages a glow dis-

charge will be sustained between electrodes, as shown in Fig. 19.10, ana
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the tube operation is impaired. Some appreciable departures from

current linearity with light intensity are expected in the gas phototube

and are indeed present, as shown in Fig. 19.11. The distortion resulting

from this nonlinearity of the characteristics is, however, no greater than

that encountered in ordinary vacuum tubes and does not prevent gas

phototubes from being used to reproduce the sound recorded on film.

Factors in the Design of Gas Phototubes. There are a number of rather

Fig. 19.10.—Current-voltage characteristics of a typical gas phototube.

critical factors that must be properly adjusted in the gas photocell to

obtain a good tube. These may be listed as follows:

1. Chemical properties of the gas.

2. Atomic weight of the gas.

3. Pressure.

4. Maximum allowable voltage.

The principal consideration involved in the choice of a gas is that it

must not react with the photoemissive surface. The only gases that can

be depended upon not to react with caesium surfaces are the inert gases

helium, neon, argon, krypton, and xenon.

The atomic weight of the gas used is a factor, for if the gas is too

heavy the transit time of the positive ions formed will be too great and

the high-frequency response of the phototube will be poor. Correspond-

ingly, the ionization potential, or potential of a striking electron that

will free an electron from the gas molecule, must be low; otherwise,

the potential across the tube will be so high that the cathode emission
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may be impaired by the bombardment of high-energy positive ions.

The critical physical characteristics of the inert gases are listed below:

1

1

Gas
Atomic

weight

Ionization

potential,

volts

Molecular

diameter,

cm

4.002 24.46 1.9 X 10-*

20 . 183 21.47 2.35 X 10-*

39.944 15.68 2 . 9 X 10-«

82.9 13.96 3.2 X 10-»

130.2 12.08 3.5 X 10-*

From this tabulation it is seen that as the atomic weight decreases

the ionization potential increases. A compromise must therefore be

0 0.02 0.04 0.06 0.06 0.10 ai2
Light flux, lumens

Fig. 19.11.—Current as a function of light flux in a typical gas

phototube.

effected in realizing the requirements of low atomic weight and low

ionization potential. The properties of argon represent a reasonable

compromise, and this gas is the one most commonly used, though other

gases may be and sometimes are used in special applications.

The gas amplification that can be realized in a gas phototube depends
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upon the gas pressure and the voltage involved. These factors deter-

mine the number of ionizing collisions of a photoelectron. The greater

the pressure, the less the average distance between molecules but cor-

respondingly the less energy the electron has at each collision. The
average distance between collisions of molecules or electrons in a gas

is known as the “mean free path.” The mean free path of an electron

moving among gas molecules is in turn related to the pressure, or number
of molecules per cubic centimeter, and to the molecular diameter of the

gas molecules by the relation

4
Mean free path = — ^— cm (19.6)

where dm is the molecular diameter in centimeters and n is the number
of molecules per cubic centimeter.* The number of molecules per cubic

centimeter of a gas depends only upon the pressure and the temperature

and is independent of the gas involved,

n = 7.244 X 10** ^ (19.7)

where P is pressure in bars or dynes per square centimeter

(1 atmosphere = 10® bars = 760 mm of mercury)

and T is temperature in degrees Kelvin (273 -(- C°). Combining Eqs.

(19.6) and (19.7) for argon and assuming room temperature to be 290°K,

Mean free path of electron _ 60.7

among argon molecules P cm (19.8)

where P is in dynes per square centimeter or bars.

A pressure of 0.2 mm of mercury is commonlj’’ used in gas phototubes.

This corresponds to a pressure of 263 bars and a mean free path of 0.23

cm. At every ionizing collision a new free electron is created that can
itself produce more electrons by collision. Thus, if the original photo-

electron in traveling from cathode to anode experiences n collisions each
of which produces a single free electron, then 2" free electrons reach the

anode for each photoelectron emitted. The potential distribution must
be such that each electron acquires enough energy to ionize another
molecule in a distance equal to or slightly less than the mean free path.

From the above figures it is seen that with a linear potential field it would
be necessary to have a cathode-anode spacing of only about 0.8 cm and
a total potential of only about 64 volts to ensure a gas amplification of at

least fifteen times (since for every electron formed a positive ion is

also formed that contributes to the current).

1 Dow, W. G., “Fundamentals of Engineering Electronics,” pp. 256-260, Wiley,

New York, 1937,



692 VACUUM TUBES

Frequency Distortion in Gas Phototubes. Owing to the presence of

the high-mass positive ions in the current flow of a gas phototube there is

appreciable frequency distortion in such tubes. This arises from the time

involved in the formation of the ions and in their large transit time. A

Fig. 19.12.—Response of i

at audio frequencies.

gas phototube to a constant illumination modulated

typical response curve to a light ray that is sine-wave-modulated at a

variable frequency is given in Fig. 19.12. Distortion is small enough

so that it is tolerable in the a-f range. It may be equalized by using an
amplifier with a characteristic that rises with frequency in such a way
as to offset the distortion introduced by the gas tube. A little har-

Time

Fig. 19.13.—Response of a gas phototube to a light ray that is

square-wave-modulated at a high audio frequency.

monic distortion is involved in the response of a gas phototube,, too,

but it is generally small enough so that it is not serious. If the light

source is square-wave-modulated, the current output of the gas phototube

will not be a perfect square wave but will have the form of the wave
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shown in Fig. 19.13. The current does not build up instantaneously to

its maximum value. The principal cause of this time lag is the time

required for the positive ions formed to reach the cathode. When the

light source is cut off the current does not immediately drop to zero, for

there are still positive ions floating about between electrodes. The

time lag here is primarily due to the time required for the positive ions to

diffuse to the electrodes or to disappear by combination with free

electrons.

Summary of Gas-phototube Characteristics. As a result of intro-

ducing gas into a phototube, a gain in the luminous sensitivity by about

a factor of 10 may be realized. A price must, however, be paid for this

gain in sensitivity—the fact that the resultant tube characteristics are

slightly nonlinear, introducing some harmonic distortion. Further,

some frequency distortion is encountered, due to the time-lag effects

in the tube.

The gas phototube must operate at much lower voltages than the

vacuum phototube. This effects a considerable simplification of the

power-supply circuit and is an advantage in many applications. How-
ever, there is a minimum resistance that can be used with the tube to

avoid a glow discharge. The glow discharge is readily avoided by using

a larger load resistance, but then the nonlinear distortion increases.

Further, since the voltages at which the gas phototube are operated are

of the order of one-half to one-fifth of the voltages used with the vacuum
phototube and the load resistances are correspondingly lower, much of the

gain in luminous sensitivity is lost. In general, gas phototubes are more

suitable for low levels of illumination because of the greater luminous

sensitivity, while vacuum phototubes are best suited for applications

in which the amount of light or the size of the voltage supply is not a

factor. Gas phototubes are further not as stable as vacuum phototubes

and have a greater tendency to age rapidly and are more susceptible to

injury from excessive light intensity or voltage.

19.9. Utilization of Phototube Characteristics. The output current

of a phototube is so low that the phototube must always be used in

conjunction with some other vacuum tube that can amplify the phototube

current to a value large enough to operate a relay or other registering

device. Generally this can be achieved with one stage of amplification

of the voltage across the load resistor in series with the photocell and

with the amplified voltage then applied to the grid of a small thyratron

in whose plate circuit there is a relay. The amplifier and thyratron may
be operated with either alternating voltage or direct voltage; in fact,

the former arrangement has the advantage that the relay operation is

generally better. If alternating voltages are used, then either a con-



694 VACUUM TUBES

denser must be put across the relay or a relay with a shaded pole must

be used. Recently there have been developed some small screen-grid

thyratrons, such as the RCA 2051, which have a sufficiently high control

ratio and a low enough control-grid current so that they may be operated

from either a vacuum or a gas phototube directly. In general, the

electronic circuits associated with phototube control systems are quite

simple and easy to build.

19.10. Photomultiplier Tubes. Much attention has been devoted

to the development of phototubes with a secondary-electron multiplier

as part of the tube to increase the minute photoemission current to a

larger value. Early attemj>ts met with great difficulty in achieving

stable secondary-emission surfaces that had low noise characteristics.

Suitable secondary-emission surfaces were finally developed, and photo-

multiplier tubes are now available commercially.

The principle of the photomultiplier tube is illustrated by the parti-

tion type of tube shown in Fig. 19.14. This is a longitudinal section of a

cylindrical structure, i.e., the individual electrodes are noncircular

cylinders generated by moving a line perpendicular to the paper. The

tube contains a photocathode PC, from which electrons are drawn

through a hole jT in a mica shield to a first electrode 1, which has an

electrostatic shield S attached. The photoelectrons striking the concave

side of the first electrode, which is more positive than the photocathode

by, say, 100 volts, give rise to secondary electrons, which are attracted

to the second anode, 2, which is, say, 100 volts more positive than the

^ Phototubes, RCA Tech. Bull. PT-20R1, pp. 4-41.

® Henney, Keith, “Electron Tubes in Industry,” 2d ed., McGraw-Hill, New
York, 1937.

® Shephard, F. H., Jr., Application of Conventional Vacuum Tubes in Uncon-

ventional Circuits, Proc. I.R.E., vol. 24, pp. 1573-1581, December, 1936.

^ Reich, H. J., “Theory and Application of Electron Tubes,” pp. 505-511,

McGraw-Hill, New York, 1939.

® Iams, H., and B. Salzbehg, The Secondary Emission Phototube, Proc. I.R.E.,

vol. 23, pp. 55—64, January, 1935.

® Rajchman, J. a., Le Courant residuel dans les multiplicateurs d’electrons elec-

trostatique. Archives sci. phys. nat., [V] vol. 20, September-October and November-

December, 1938. The same material is contained in Rajchman’s doctor of science

thesis from the Technical Institute of Zurich, 1938.
’’ Zworykin, V. K., and J. A. Rajchman, The Electrostatic Electron Multiplier,

Proc. I.R.E., vol. 27, pp. 558-566, September, 1939.

* Rajchman, J. A., and R. L. Snyder, An Electrically Focused Multiplier Photo-

tube, Electronics, vol. 13, pp. 20-23, 58, 60, December, 1940.

® Glover, A. M., A Review of the Development of Sensitive Phototubes, Proc.

I.R.E., vol. 29, pp. 413-423, August, 1941.



PHOTOELECTRIC TUBES 695

first anode. The secondary electrons from the first anode are more

numerous than the exciting photoelectrons. Likewise, the secondary

electrons from the first anode on striking the second anode give rise to

still more secondary electrons. Each successive anode is at a higher

potential than its predecessor, and each electron striking one anode

gives rise to several secondary electrons. If the secondary-emission

ratio for any one electrode is r and the number of electrodes is n, then

the output current is times the photoelectron current. By this

mechanism, current amplification of the order of 100,000 is possible.

Voltages of the successive anodes are readily obtained from a voltage

divider since the magnitude of the current is small.

A

Fig. 19.14.—Structure of a partition-type photomultiplier tube.

The shape of suitable electrodes may be determined from membrane-

model studies. Some typical electrode shapes and electron paths through

the resultant field are shown in Fig. 19.15. For the case shown, the

potential between successive electrodes is taken as 100 volts. The

paths of the electrons are critical only to the extent that the action of

successive electrodes produces a convergent focusing action which pre-

vents the electrons from spilling over the edge of some later electrode.

The focusing action of successive similar electrodes can be checked by

plotting a curve of the striking position on an electrode as a function of

the position of liberation on the previous electrode. A typical focusing

curve is shown in Fig. 19.16. The liberation point is indicated by the

parameter x in Fig. 19.15, while the corresponding arrival point is y

(Figs. 19.15 and 19.16 are for similar but slightly different tubes).

The crossover action evident in Fig. 19.15 gives rise to the peaked double-

valued focusing curve of Fig. 19.16. The focusing action of the succes-

sive electrodes may be studied from the curve of Fig. 19.16 with the aid

of a 45-deg construction line. An electron liberated from x = 10 on
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anode 1 will strike anode 2 at y = 2.8. Using the 45-deg construction

line, an electron liberated from x = 2.8 on anode 2 will strike anode 3 at

y = 9.1. An electron liberated from a: = 9.1 on anode 3 will strike

anode 4 at y = 3.6, and so on. The focusing action follows the rec-

tangular spiral shown, with eventual convergence on point P. The

electrode will have a convergent focusing action as long as the second

derivative of y with respect to x of Fig. 19.16 is negative. The height

of the focusing curve d is a figure of merit of the electrode shape because it

determines the active portion of the multiplier electrodes. A large

radius of curvature in the vicinity of the point P is desirable to prevent

the electrons from bunching into the middle of an electrode too rapidly.

Fig. 19.15.—Electron paths in the partition-type photomultiplier

tube.

In practical commercial tubes the circular structure of Fig. 19.17

is preferred because of its smaller space requirements. The action of

this tube is the same in principle as that of the tube of Fig. 19.14. In

the tube of Fig. 19.17 the same type of emissive surface is used for both

the photocathode and the multiplier electrodes. It was the discovery

of a surface with both good photoemission and good secondary-emission

properties that made the commercial form of this type of tube practical.

The photoemission sensitivity of this surface is about 15 microamperes

per lumen. The secondary-emission multiplication ratio is about 3.5

at 100 volts per stage and about 4.0 at 125 volts per stage. For 10

multiplying anodes, or “dynodes” as they are sometimes called, this

gives a total multiplication of 60,000 at 1,000 volts or 230,000 at 1,250

volts. Since a 25 per cent increase in voltage gives rise to a 200 per cent
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increase in current, the voltage must be regulated to 0.1 per cent if the

output current is to be constant to 1 .2 per cent. The luminous sensitivity

of the 931 tube is 0.6 ampere per lumen for light from a tungsten fila-

ment at 2879°K and a 1,000-volt supply. The corresponding background,

or “dark,” current is 0.25 ampere. The dark current arises from (1)

leakage resistance between electrodes, (2) secondary emission resulting

from bombardment of the photocathode by positive gas ions, (3) field

emission from all electrodes, and (4) thermal emission from all electrodes.

Contributions to the dark current from all these sources can be reduced

by careful design but can probably never be completely eliminated.

Fig. 19.16.—Focusing curve of photomultiplier electrodes.

The signal-to-noise ratio of the type 931 photomultiplier tube shown

in Fig. 19.17 is superior to that of an ordinary phototube-resistor-

amplifier combination. A comparison^ of the signal-to-noise charac-

teristics of the 931 photomultiplier tube and a 929 vacuum phototube

with amplifier is shown in Fig. 19.18. At threshold values of illumina-

tion the multiplier phototube is about 45 db superior to the vacuum-

tube-resistor-amplifier combination. The signal-to-noise ratio of the

photomultiplier tube increases 10 db for every factor of 10 in current,

while the signal-to-noise ratio of the phototube-resistor-amplifier com-

bination increases 20 db for every factor of 10 in current up to a point at

which relatively large currents flow. At this point the signal-to-noise

ratios of the two devices are about the same. The superiority of the
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multiplier phototube lies in the fact that noise is contributed only by
shot effect, whereas in the phototube-resistor-amplifier combination

there is a considerable contribution of noise from the rather large load

resistor that must be used.

The nature of the signal-to-noise characteristics can be better under-

stood from a study of the specific formulas involved. For a vacuum-

phototube-resistor combination, the signal-to-noise ratio has the form

No.. 2eBIoR -h ‘ikTB ^ ^

Fig. 19.17.—Structure of a circular photomultiplier

tube.

where F is form factor of light modulation wave
M is percentage modulation of light wave
/o is direct photoelectric current, amperes
R is effective load resistance, ohms
e is charge of the electron, coulombs

B is band width, cycles

k is Boltzmann’s constant, 1.372 X 10“^^ watt-sec per °K
T is temperature, °K

The numerator of Eq. (19.9) represents the signal power. The denomi-

nator contains two terms, the first of which represents the shot-noise

power originating in the phototube and the second of which represents

the thermal-agitation noise arising from the load resistor. For low

levels of illumination the first term in the denominator of Eq. (19.9)

will be small, and the equation will reduce to

Soo. FMUo'^R
Noot ^kTB (19.10)



PHOTOELECTRIC TUBES 699

The signal-to-noise level for low levels of illumination is seen to vary

with the square of the photoemission current (20 db for every factor of

10 in current). At high levels of illumination the second term of the

denominator of Eq. (19.9) will be small compared with the first, and the

equation will reduce to

S.„t ^ FM^Io
iVoot 2eB

(19.11)

Emitfed photocurrent from photosurfoce, microamperes

Pig. 19.18.—Comparative signal-to-noise ratios of a photomulti-

plier tube and a vacuum phototube with amplifier.

which is seen to be linear with photoemission current (10 db for every

factor of 10 in current). The low and high level rates of variation of

signal-to-noise level with photoemission current exhibited in Fig. 19.18

are thus explained.

It is of interest to examine the conditions under which either the shot

noise or the thermal-agitation noise predominates in the phototube-

resistor-amplifier combination. Noise contributions from the two sources

will be equal when the two terms in the denominator of Eq. (19.9) are

equal, i.e., when
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At room temperature, T = 290°K, this has the approximate value

/o
1

20R (19.13)

where 7o is in amperes and R is in ohms (or, more conveniently, h may
be taken in microamperes when R is in megohms). Thus the shot-

noise contribution will equal the thermal-agitation-noise contribution

from the resistor if the current is 1 microampere when the load resist-

ance is 1/20 megohms. When the current is less than the value given

by
20^'

tbe thermal-agitation noise from the resistor will be larger.

When the current is greater than the shot noise from the emitted

electrons will predominate.

For the photomultiplier the signal-to-noise ratio is given by

Aout FM^S^’^Io^R

Aout
2eB

- 1)

O 1

(19.14)

where the sjonbols have the significance of Eq. (19.9) and S is the second-

ary-emission-current multiplication ratio per stage. The total power
gain of the multiplier is thus S^’'. The numerator is evidently the same
as those in the previous equations except for the factor of power gain.

The first term of the denominator represents the photoemission shot

noise multiplied by the noise amplification factor developed in Eq.

(12.44), which includes the noise of subsequent secondary emission.

The second term of the denominator of Eq. (19.14) represents the

thermal-agitation noise in the frequency band B. Because of the rather

considerable noise amplification, the first term in the denominator will

generally be much larger than the second, and accordingly the equation

reduces to

So., FM\S - l)/o

Noo, 2eBS
(19.15)

This shows the signal-to-noise ratio to be linear with the photoemission

current (10 db for every factor of 10 in current). The signal-to-noise

ratio for this case is further seen to be the same as that of the vacuum-
phototube-resistor combination as given in Eq. (19.11) except that it is

g ^
smaller by the factor—^— Hence the observed behavior of Fig. 19.18,

o
which shows the signal-to-noise ratio of the vacuum-phototube-resistor

combination to be slightly less than that of the photomultiplier tube at

high levels of illumination.



CHAPTER 20

SPECIAL TUBES

20.1. Introduction. It was inevitable that in the development of

vacuum tubes there should arise the need for various special forms.

Fortunately, tubes are now manufactured so easily that it is actually

possible to get a tube tailor-made to suit almost any purpose. Attempts

at standardization have held down the number of special tubes that would

otherwise have come into existence. Also, the fact that tubes are quite

versatile and can be used to give various operating characteristics by

C G, 62 G3 G4 P

Fig. 20.1.—Potential profiles in a hexode.

changing connections and the applied voltages has acted somewhat to

restrict the number. During the Second World War the need for special

tubes was so great that hundreds came into existence, but with time these

will probably be reduced to a relatively small number.

In this chapter there will be discussed the principal special tubes

not treated in the previous chapters. The characteristics of con-

ventional tubes operated so as to produce special characteristics will

also be discussed.

701
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20.2. The Hexode. The hexode is a six-electrode tube. It consists

of a cathode, four grids, and an anode. It is generally used as a mixer

tube in superheterodyne receiver circuits. The nonlinear charac-

teristics of the tube are used in such a way that when a r-f signal is

applied to one grid and a signal from a local oscillator is applied to another

grid the beat- or difference-frequency component appears in the plate

current. Thus the mixer tube functions as a frequency converter.

For frequency-conversion purposes the hexode is invariably operated

with the relative potentials shown in Fig. 20.1. Let the grids be num-

bered consecutively from the cathode to anode, and let the voltages

applied to them be designated by the corresponding numerical subscripts

in all the following discussion. The function and operating conditions

of the various electrodes may be summarized by the following tabulation:

Electrode Direct voltage Function

Zero

Small negative

Large positive

Small negative

Large positive

Larger positive

Source of electron current

Injection of local oscillator voltage

Screen grid to reduce electrostatic coupling

between the signal and oscillator grids

Injection of r-f signal voltage

Screen grid to reduce electrostatic coupling

between signal and output circuits

Collector of modulated electron current

Grid No. 1

Plate
i

The complete representation of hexode characteristics involves a

large collection of characteristics, for many voltage combinations are

possible. However, since the No. 2 and 4 grids and the plate are usually

held at fixed potentials, the tube is well described by two characteristic

curves. These are the /p-Fi and the Jp-Fs characteristics. In addition,

the Ip-Vp characteristics are of some interest.

The Ip-Vi characteristics of a hexode are similar to the Ip-Vi curves

of a pentode for different values of suppressor-grid potential if the cur-

rents involved are small. The No. 1 grid under this condition will

control the space current to the subsequent electrodes. This current

will divide between these electrodes in a nearly constant fashion. The

Ip-Vi curves of an actual commercial hexode are shown in Fig. 20.2.

These curves exhibit a maximum of plate current due to the formation

of a virtual cathode in front of the No. 3 grid. When the virtual cathode

forms, some of the space current will be reflected back to the No. 2 grid

and the current transmitted to the plate will actually decrease as the

space current increases. This action is very similar to that which

occurred in the beam-power tube. As the No. 3 grid is made more
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negative, the virtual cathode will form at lower space current. The
formation of the virtual cathode corresponds to the peak of plate current.

In application, this tube must be operated to avoid the region of negative

transconductance.

6ricl No. I voltage, volts

Fig. 20.2.—/p-Vj characteristics of a hexode.

The Ip-Vs curves of a hexode will resemble those of a pentode if the

current is small. Actual characteristics as shown in Fig. 20.3 may
exhibit some crossovers due to the formation of a virtual cathode in front

of the No. 3 grid.

The Ip-Vp characteristics of a hexode will resemble those of a tetrode

if the current is small. There may be an interchange of secondary
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electrons between the No. 4 grid and plate since there is no shielding

grid between them. Actual curves as shown in Fig. 20.4 will resemble

beam-power-tube characteristics if the current is high enough, for then

a potential minimum will form between the No. 3 grid and plate that will

suppress the interchange of secondary electrons.

In addition to the static characteristics, several of the dynamic

constants of the hexode are of interest. As with other multielectrode

tubes, the amplification factor is of no particular significance. It is very

high because of the shielding action of the screen grids. The plate

resistance of the hexode is likewise of no great significance. It will

tend to be high, of the order of the plate resistance in a tetrode but not

as high as the plate resistance of a pentode. The control-grid trans-

conductances of a hexode, however, are of considerable importance. The
first of these transconductances is the first-grid-plate transconductance,

which is defined by

_ dip _ (dJp\
dVi \dVjV2.V3.V4,Vp ^onst

(20 . 1 )
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This transconductance is equal to the slope of the characteristics shown
in Fig. 20.2. The other transconductance of interest is the third-grid-

plate transconductance. It is defined by

(20 . 2)

This transconductance is equal to the slope of the characteristics shown
in Fig. 20.3. The transconductance gip will generally be greater than
the transconductance g^p.

Fig. 20.4.

—

Ip-Vp characteristics of a hexode.

Another hexode constant that is of particular significance is the

so-called “conversion transconductance.” This is the ratio of the

magnitude of the plate current of frequency /i — fi to the magnitude
of voltage of frequency /i applied to one of the control grids (No. 1 or 3

in the case of the hexode) under the condition that a fixed voltage of

frequency fi is applied to the other control grid and that all the direct

electrode voltages are kept constant. Thus, in contrast with other tube

conductances, the conversion transconductance is the ratio of an alter-

nating component of plate current at the difference frequency (/i — f^)

to the alternating component of signal voltage on one control electrode

at a different frequency /i under the condition that a local oscillator
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voltage at a still different frequency /2 be applied and maintained con-

stant on another control electrode. The conversion transconductance

is a function of the magnitude of the local oscillator voltage and passes

through a maximum at a particular value of local oscillator voltage.

In Fig. 20.5 are given some typical curves of conversion transconductance

OPERATION CHARACTERISTICS

LtYPE 6K8

Tf '6.3 volts

.Curve
Hexode plate volts 100 250

.Triode plate volts 100 100 _
Hexodj screen

(grids No.2 and4)volts 100 100 _
'Hexode control-grid

(grid No.3)volts -3 -3

'Triode grid resistor (ohms) 50,000 50.000 i

0 .0.1 0.2 0.3 0.4

Triode grid and hexode grid No. 1

,

d-c milliatnperes

Fig. 20.5.—Conversion transconductance of a mixer

tube.

of a hexode in terms of local oscillator grid current, which for a given bias

resistor is proportional to local oscillator voltage.

Frequency conversion in any of the mixer type of tubes can be

considered as a process of modulation of the oscillator frequency by

the signal frequency, the intermediate frequency appearing as one of the

sidebands. The modulation is accomplished through the medium of the

electron stream in the tube. The electron stream will ordinarily experi-

ence a large amplitude variation at the oscillator frequency. The com-

ponent of tube current at oscillator frequency is modulated in magnitude
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at the signal frequency. The degree of modulation is ordinarily so low

that higher-order effects can be neglected and the basic relations studied

by simple analysis.

As with an ordinary amplitude-modulated wave of current the ampli-

tude of the side bands is smaller than the carrier by half the degree of

modulation. Hence
vn

lif = 2
Io.c (20.3)

where /</ is the component of plate current at the intermediate frequency,

which is the difference between the signal and oscillator frequency; m
is the degree of modulation, or the ratio of the change in the component of

current at oscillator frequency to the magnitude of this component; and

lose is the component of plate current at oscillator frequency. All

values of current are peak rather than effective. The degree of modula-
tion is given by

_ ^losc _ diosc y 1
” T ~ /iT7 ^ T

1 oae ^ y aig J- oae
(20.4)

where V,ig is the peak value of the signal voltage.

Eqs. (20.3) and (20.4),

Hence, combining

jr 1 ^lose
“ 2dV.ip

(20.5)

Since the conversion transconductance is defined as

11 (20.6)

then, from Eq. (20.5),

1

2 dVsip
(20.7)

The component of plate current at oscillator frequency is given from the

well-known Fourier integral

jfjj cos-coi d(wl) (20 .8)

where Ip is the instantaneous value of plate current as a function of time

and w is the oscillator angular frequency. Taking the derivative of

this expression with respect to V,ie and substituting into Eq. (20.7),

1 f"'
ffc = ^ / gzp cos £o< d(o}t) (20.9)

results, as may be seen by recalling the definition of gap given in Eq.

(20.2). The above assumes that the oscillator voltage is applied to the
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No. 1 grid of the hexode and that the signal voltage is applied to the

No. 3 grid.

The third-grid-plate transconductance will vary over a large range

of values as the oscillator voltage swings over its range of voltages applied

to the No. 1 grid. The nature of the variation of the third-grid-plate

transconductance with No. 1 grid voltage is shown in Fig. 20.6, curve 6.

The conversion transconductance can be evaluated graphically or

numerically from this curve and Eq. (20.9). Also shown in Fig. 20.6 is

the effect of the sinusoidal variation of oscillator voltage upon the plate

i
-V, 0 +»r

Fig. 20.6.—Variation of transconductance of a hexode with control-grid

voltage.

current, which is proportional to the third-grid-plate transconductance

for a fixed small signal voltage. The conversion transconductance is by

the definition of Eq. (20.9) equal to half the fundamental component of

the resultant curve of as a function of time shown in Fig. 20.6. From

observation of Eq. (20.9) it is seen that the oscillator voltage should

be adjusted so that the tube current is cut off in the interval that cos co<

is negative. Otherwise, there is a negative area under the curve of the

integrand that reduces the conversion transconductance. The maximum
possible conversion transconductance would be obtained if the curve of

third-grid-plate transconductance rose sharply from zero to a maximum
value as shown for curve a of Fig. 20.6. Such a transconductance would

yield the square wave of plate current shown and a conversion trans-

conductance of value

ffZp max

IT
Qc = (20 . 10)
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In other words, the maximum possible value of the conversion trans-

conductance is about one-third the maximum value of the third-grid-

plate transconductance. Actually, the curve of gzj, against Vi has the

form shown at 6, which is an s-shaped curve that is almost straight.

This s-shaped curve is closely approximated by the straight-line curve

shown as c, which yields the triangular wave of plate current given.

The Fourier integral of Eq. (20.9) for this case yields the value

9c
QZp max

(20 . 11 )

The actual value for the curve h will lie somewhere between the values

given by Eqs. (20.10) and (20.11) but much closer to the latter. Hence,

in general it may he expected that the conversion transconductance will have

a value approximately equal to one-fourth the maximum value of signal-

grid-plate transconductance of any mixer-type tube.

Hexode grid No.4
(Mixerscreen section)

/infernalshield

Shell

Hexode (Mixer)plate

Hexode (Signal)gridNoJ

Infernal shield—

^
Hexode grid Mo.2 J,f.-friode COsc.)plate

(Mixerscreen section)
t . ..

'^—Triode(Osc.)gr/d

Hexode (Mixer)grid No.! Cathode

Fig. 20.7.—Electrode structure of the 6K8 triode-hexode.

The form of Eq. (20.9) indicates that there is generally an optimum
value of oscillator voltage. If the oscillator voltage is too large, the

plate current will not flow for a sufficiently large fraction of a cycle. If

it is too small, the current will flow for more than a half cycle and the

conversion transconductance will be reduced.

An example of a commercially available hexode is the 6K8, which
contains a triode and a hexode in the same envelope. This tube is

specifically designed to be operated as a mixer tube in a superheterod3me
receiver. The tube is built so that the No. 1 grid is common to the hexode
and the triode. The No. 2 and 4 grids^ are tied together internally.

The triode is built on one side of a strip cathode, and the hexode is built

on the other. A cross section of the tube electrode structure is shown
in Fig. 20.7. As a result of this structure, the local oscillator voltage

appears on the No. 1 grid of the hexode, and the r-f signal must be applied

to the No. 3 grid.

The hexode was one of the first mixer-type tubes developed. More
recently developed types exhibit better operating characteristics.

Hexodes in general suffer from some interaction between the two input

circuits, a relatively low conversion transconductance, and a relatively

low plate resistance.
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20.3. The Heptode. The heptode is a seven-electrode mixer tube

with five grids. It has the construction shown in Fig. 20.8. The
potential variation within the tube is shown in Fig. 20.9. The function

and operating conditions of the various electrodes may be summarized
in the following tabulation;

Electrode Direct voltage Function

Cathode Zero Source of electron current

Grid No. 1 Small negative Injection of signal voltage, source of bias for

automatic volume control

Grid No. 2 Large positjve Screen grid to reduce electrostatic coupling

between signal and oscillator grids

Grid No. 3 Small negative Injection of local oscillator voltage

Grid No. 4 Large positive Screen grid to reduce electrostatic coupling

between oscillator and output circuits

Grid No. 5 Zero Suppressor grid to improve plate-current

characteristics and further reduce electro-

static couphng between oscillator and out-

put circuits

Plate Large positive Collector of modulated electron current

Since the No. 2, 4, and 5 grids of the heptode are generally held at

fixed voltages, the static characteristics of the heptode may be repre-

sented by the Ip-Vi, Ip-V-i, and Ip-Vp characteristics.

The Ip-Vx characteristics of a 6L7, which is a typical heptode, are

shown in Fig. 20.10. These are similar to the Ip-Vi curves of a variable-

mu pentode for various suppressor-grid volt-

ages. The No. 1 grid has the principal influ-

ence in determining the magnitude of the

space current that is passed on to the sub-

sequent electrodes.

The Ip-Vi characteristics of a 6L7 heptode

are shown in Fig. 20.11. These curves are

similar to the plate-current-suppressor-grid-

voltage characteristics of an ordinary pentode.

The potential of the No. 3 grid determines the

fraction of the space current that is passed on

to the plate.

The Ip-Vp characteristics of a 6L7 heptode are shown in Fig. 20.12.

These curves are similar to the Ip-Vp characteristics of an ordinary

pentode. They resemble pentode rather than screen-grid-tube charac-

teristics because of the presence of a suppressor grid between the last

screen grid and the plate.

Fig. 20.8.—Structure of the

heptode.
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Heptode characteristics are in general superior to hexode charac-

teristicsd In the first place it is possible to use the No. 3 instead of the

Grid voltage, grid No. 1

Fig. 20.10.

—

I^-Vi characteristics of the heptode.

No. 1 grid for local-oscillator-voltage injection because of the extra

shielding between the No. 3 grid and plate introduced by the presence of

1 Nesslage, C. F., E. W. Herold, and W. A. Harris, A New Tube for Use in

Superheterodyne Frequency Conversion Systems, Proc. I.R.E., vol. 24, pp. 207-218,

February, 1936.
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the No. 5 suppressor grid. This arrangement allows the No. 1 grid to

be used for signal injection and makes it possible to obtain a variable-mu

action from this grid, which in turn makes good automatic volume con-

trol possible. In general, it is very diflBcult to design a tube with a

variable-mu characteristic on any but the first grid. This is because

the subsequent control grids are necessarily coarse in order to pass a

sufficient fraction of the space current, and being coarse do not allow a

large enough range of amplification factor. The addition of the No. 5

Grid No. 3 volts

Fig. 20.13.

—

g\p-Vz characteristics of the

heptode.

suppressor grid also raises the plate resistance and thus allows higher

screen-grid voltages, which in turn increases the No. 1 grid-plate trans-

conductance and so raises the obtainable conversion transconductance.

The increase in plate resistance improves the selectivity and gain of the

tube.

Aside from the above factors the mixer operation of the heptode is

like that of the hexode. In Fig. 20.13 are shown the g\p-Vz characteristics

of the 6L7 heptode. These transconductance curves are similar to the

limiting curve c of Fig. 20.6. The resultant gc-V

i

characteristics are

shown in Fig. 20.14. Excellent automatic-volume-control characteristics



714 VACUUM TUBES

are exhibited here. It should also be noted that the maximum conversion

transconductance obtained is approximately one-fourth of the maximum
No. 1 grid-plate transconductance.

-50 -40 -30 -20 -10 0
Grid No.l bias volts

Fig. 20.14.

—

gc-V\ characteristics of the heptode.

20.4. The Pentagrid Converter. The pentagrid converter is a heptode

as far as its static characteristics are concerned but is used as a mixer

by connecting the cathode and first two grids as a triode oscillator. With
this arrangement, the No. 2 grid acts as the triode plate, and the cathode

cannot be operated at zero potential but must be allowed to have oscil-

lator voltage on it. Furthermore, the local oscillator voltage is effec-

tively introduced on the No. 1 grid, and the signal is introduced on the

No. 3 grid. As with the heptode, the No. 4 grid is a screen grid, and the

No. 5 grid functions as a suppressor. This arrangement has the advan-

tage that it requires one less tube but has the disadvantage that bias

for the automatic-volume-control action is more difficult to apply.

Typical potential profiles for a pentagrid-converter connection of a

heptode are shown in Figs. 20.15 and 20.9. Two types of operation are

possible. In Fig. 20.15 the No. 3 and 5 grids are operated as screen grids.

This arrangement has the advantage that the reaction between the signal
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and oscillator circuits is reduced because the No. 2 and 3 grids exert a

shielding action but has the disadvantage that the plate resistance is

relatively low, with attendant loss of gain and selectivity. In the

arrangement of Fig. 20.9 the No. 2 grid acts as triode plate and screen

grid, the No. 3 grid is signal-injection grid, the No. 4 grid is a screen

grid, and the No. 5 grid is a suppressor grid. This arrangement has

better plate-resistance characteristics than the previous one but shows

more interaction between the signal and oscillator circuits unless specially

designed tubes are used.

In addition to the electrostatic coupling between the signal and

oscillator circuits in mixer tubes there may be an electronic interaction.

This occurs because with moderately large signal voltages the No. 3

C G, G2 Gj G4 Gs P

Fig. 20.15.—Potential profiles of a pentagrid converter.

signal grid may become negative enough on the negative half of the signal-

voltage cycle to repel low-velocity electrons approaching it from the

oscillator section of the tube. These electrons will be thrown back

into the oscillator section and constitute an electronic loading that may
change the local oscillator frequency appreciably.

The electronic interaction between the signal and oscillator circuits

may be reduced by using a heptode with the special electrode structure

shown in Fig. 20.16. This structure, typified in the 6SA7, differs from

that shown in Fig. 20.8 by the addition of some curved collector plates

which partly enclose the No. 2 grid and are connected to it. In addition,

the No. 3 signal grid has a supporting wire opposite the opening in the

' Strutt, M. J. O., “Moderne Mehrgitter-Elektronenrohren,” Vol. II, pp. 94-102,

112-114, Springer, Berlin, 1938.

* RCA Manufacturing Co., Operation of the 6SA7, Application Note, 100, 1938.
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collector plates. This causes the potential opposite the collector-plate

opening to be more negative than on either side of the supporting rod, and

as a result electrons are deflected to one side. By virtue of this special

electrode structure, electrons that are repelled from the No. 3 signal

grid are deflected so that they are caught by the collector plates and

prevented from returning into the active electron stream of the oscillator

section. The collector plates further increase the electrostatic shielding

between the signal and oscillator circuits, with attendant improvement

of operation. The resulting operating characteristics are appreciably

superior to those of the ordinary pentagrid tube.

6SA7
STRUCTURE AND SOCKET CONNECTIONS

Fig. 20.16.—Structure of the 6SA7 special pentagrid

converter.

20.6. The Octode. The octode is an eight-electrode mixer tube with

six grids. As ordinarily used, the cathode and first two grids are con-

nected as a triode oscillator. The No. 3 and 5 grids act as screen grids.

Signal is injected into the No. 4 grid. The No. 6 grid is used as a sup-

pressor grid. This arrangement achieves the desired effects of low

electrostatic coupling between the signal and oscillator circuits while

at the same time giving good plate-circuit characteristics. The 7A8

is an example of a typical octode. In addition, the electrodes may have

the special structure described in the previous section, with the difference

that the collector plates form the No. 3 electrode and are not connected

to the No. 2 grid. The No. 3 grid is operated as a screen grid, and inas-

much as it has a separate connection the repelled electrons that are caught
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by it do not flow through the triode oscillator or No. 2 grid circuit. The

Philips EK3 is an example of such a tube.^

20.6. Space-charge-grid Tubes. In all multielectrode tubes having

signal grids operated at small negative potentials there is the possibility

of the formation of a virtual cathode before the control grid if the space

current is high enough. This virtual cathode acts like an ordinary

cathode and has the advantage that it has a large area and so may give

rise to a relatively high transconductance. An ordinary screen-grid

tetrode can be operated as a space-charge-grid triode by connecting

the No. 1 grid at a positive potential and using the No. 2 grid as a control

C P

Fig. 20.17.—Potential profiles in the space-charge-

grid triode.

grid. This gives rise to the potential distribution shown in Fig. 20.17.

The No. 1 grid in this case is called the “space-charge grid” because it

draws a high enough current from the cathode to form the virtual cathode

in front of the No. 2 grid. Typical current-voltage characteristics are

shown in Fig. 20.18. The Ip-Vi characteristics are similar to those of a

triode except that they exhibit greater curvature and hence more distor-

tion in amplifier applications.

The space-charge-grid principle may be applied to pentodes and other

multielectrode tubes as well as to tetrodes. The space-charge principle

finds its chief application where tube operation is restricted to low

voltages, as with certain types of battery-operated circuits. When
the voltages available are of the order of 50 volts or less, appreciably

higher effective transconductances can be obtained than can be had with

' See Strutt, op. cit.
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conventional tube connections. For voltages above 50 volts there is no

gain, and the space-charge-grid principle finds little application.

20.7. Negative-resistance
Tubes. Many applications in

electron-tube circuits require the

existence of a negative resistance.

By a negative resistance is meant

a circuit which is such that an

increase in current through it pro-

duces a decrease rather than an

increase in voltage across it. Any
device having a current-voltage

characteristic that exhibits a nega-

tive slope has a negative resist-

ance in the region of the negative

slope. In general, circuits will

have a negative resistance over

only a part of their operating

characteristic. Just as a positive

resistance consumes power, so,

correspondingly, a negative-resist-

ance element delivers power.

This means that negative-resist-

ance devices must always have a

source of power associated with

them.

Means of obtaining negative-resistance characteristics from tubes are

almost too numerous to mention.* A few of the devices are fundamental

and important enough to deserve mention.

Glow-discharge Tubes. In an arc or glow-discharge tube an increase

in current produces an increase in ionization so that a smaller voltage

is required to maintain the discharge. Almost every two-element glow

tube exhibits a negative resistance somewhere in its operating charac-

teristic. The usefulness of this type of negative resistance is limited

by the fact that the magnitude of the resistance changes with temperature

and life of the tube. Also, the time lag associated with the positive ions

present limits the frequencies at which the negative-resistance charac-

teristic is available to low audio values..

The Dynatron. The negative resistance that is available over part

of the plate-current-plate-voltage characteristic of an ordinary screen-

‘ Herold, E. W., Negative Resistance and Devices for Obtaining It, Proc- I.R.E.,

vol. 23, pp. 1201-1223, October, 1935. Contains extensive bibliography.

Pig. 20.18.—Current-voltage characteris-

tics of the space-charge-grid triode.



SPECIAL TUBES 719

grid tube as shown in Fig. 10.2 is known as a “dynatron characteristic.”

The negative-resistance characteristic results from the transfer of

secondary electrons from plate to screen grid. When the screen grid is

more positive than the plate, an increase in plate voltage will attract

more primary electrons to the plate but relatively more secondary

electrons are lost to the screen grid so that the net plate current decreases

rather than increases. If a parallel resonant circuit is placed in the plate

circuit of a screen-grid tube and the tube operated at voltages that will

give a negative-resistance characteristic, oscillations will occur in the

plate circuit provided that the magnitude of the resistance of the parallel

resonant circuit is greater than the magnitude of the negative resistance

of the tube plate circuit. Oscillations will in general build up to the point

where the magnitude of the negative resistance as averaged over the

cycle of oscillation equals the positive resistance of the parallel resonant

circuit.

The negative-resistance characteristic obtainable from a screen-grid

tube is subject to change as the tube ages and as the secondary-emission

characteristics of the plate change from any of a number of causes. For
this reason this type of negative resistance is not extensively used.

Direct-coupled Negative-resistance Devices. The most interesting and
stable types of negative resistances are those which are obtained from
judicious interconnections of standard vacuum tubes. Such devices are

dependent not upon gas or secondary-emission characteristics but rather

upon current division between electrodes, space-charge effects, or a

feedback action, all of which are quite stable and are capable of giving

lower magnitudes of negative resistance and a wider range of operating

voltages than are available by other methods.

Negative Screen-grid Resistance of a Pentode. The screen grid of an

ordinary pentode exhibits a negative-resistance characteristic if it is

connected to the suppressor grid in such a way that an increase in screen-

grid voltage is accompanied by an equal increase in suppressor-grid

voltage. This is evident from the curves of Fig. 20.19. This family of

curves shows the I 2-V2 characteristics of a pentode for various values of

V3 ,
where the numerical subscripts refer to the grid number in order

from the cathode to plate. The solid curves show the I2-V2 charac-

teristics. As the No. 3 (suppressor) grid is made more negative, the

No. 2 (screen) grid current decreases. If the No. 2 and 3 grids are con-

nected so that there is a constant difference of potential between them,

the dotted curves shown in Fig. 20.19 result. The screen current

decreases as the suppressor grid is made more positive; for the latter

then transmits a greater fraction of the space current that approaches

it, and as a result less current is returned to the screen grid. This
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decrease in reflected current more than offsets the increase in directly

intercepted space current that is taken on by the screen grid as a result

of its more positive potential. The two dotted curves of Fig. 20.19

are for differences of No. 2 and No. 3 potential of 54 and 90 volts, respec-

tively. The magnitude of the negative resistance made available by
this means is of the order of 3,500 ohms, which is considerably less than

that obtainable from a dynatron, which is usually of the order of 10,000

ohms. The region of negative resistance is limited at low voltages by
the condition that the suppressor grid is returning all the electrons which

Vf=2.S tj=0, ll^22.S
Negative resistance characteristics

taken by assuming direct connection
|

(for incremental changes tbetween

screen grid and suppressor.

Typical circuit for this

60 80
Screen grid, volts

Fig. 20.19.—

I

2-F2 characteristics of a pentode.

approach it and beyond this condition the suppressor grid has virtually

no influence. Correspondingly, the region of negative resistance is

limited at high voltages by the condition that the suppressor grid is

passing all the current which approaches it and so again loses control.

In actual applications the screen and suppressor grids are separately

biased and fed through separate resistors but are coupled by a large

capacity connected directly across the tube leads. This means that the

No. 2 and 3 grids are connected together as far as voltage variations are

concerned over a large band of frequencies. The negative-resistance

characteristic is available from low audio frequencies, dependent upon
the size of the coupling condenser compared with the size of the resistors
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in series with the electrodes, to frequencies of the order of 60 me, at which

transit-time effects disturb the relations.

With proper connections the negative screen resistance of a pentode

can be made to furnish either sinusoidal or square waves. Likewise,

trigger and flip-flop characteristics can be made available.

Push-pull Negative-resistance Circuit. It is possible to connect two

triodes or two pentodes in a push-pull arrangement by which a very

good negative-resistance characteristic is made available. The circuit

and resultant characteristics are shown in Fig. 20.20. The current which

flows through the input terminals shown consists of two components.

Pig. 20.20.—Current-voltage characteristics of the push-pull circuit.

that produced by the applied voltage, which is in one direction, and that

produced by the tubes, which will be in the opposite direction because

of the cross connection of the grids. The latter component of current

can be made much larger than the former by tapping sufficiently high

on the plate resistor of the other tube, usually across the entire resistor.

The negative-resistance characteristic shown results. The resistance

available has the approximate value of

R = 2r„

rt + Tp

U
—'ixk

(20 . 12)

for small values of impressed voltage, where R is the effective value of

the resistance at the input terminals, Tj, is the dynamic plate resistance

of the tubes, r\, is the value of the plate resistor, p. is che amplification

* Reich, H. J., “Theory and Application of Electron Tubes,” 2d ed., Chap. X,

McGraw-Hill, New York, 1944.

* Brunetti, C., The Transitron Oscillator, Proc. vol. 27, pp. 88-94,

February. 1939.



722 VACUUM TUBES

factor of the tubes, and k is the fraction of the voltage developed across

the plate resistors that is applied to the other tube. If k is sufficiently

large, the effective resistance will usually be negative. ^

In application, the cross connection between grids is made through

a large capacity. By proper connection either sinusoidal or square waves

may be obtained. The negative-resistance characteristic is available

from low audio frequencies to frequencies of the order of megacycles.

This is the basic circuit of the Eccles-Jordan trigger circuit and

multivibrator.

Feedback Circuits. The push-pull tube connection just described

may be thought of as a feedback circuit composed of a two-stage direct-

Electrode No. 3 volts

Fig. 20.21.—Structure and characteristics of a special negative-resistance tube.

coupled amplifier that has its output connected to its input. More
complicated arrangements can be used as well to give negative reactances

as well as resistances.^ In principle, these methods use a feedback

connection so that an increase in voltage between two terminals causes

a current to flow in the opposite direction and thus gives rise to a negative-

impedance characteristic.

Special Negative-resistance Tubes. It is possible to design special

tubes so that they will have particularly good negative-resistance charac-

teristics. Such tubes will in general make use of rather well-known

electronic action. Already mentioned has been a negative resistance that

‘ See Reich, op. cit.

* Ginzton, E. L., Stabilized Negative Impedances, Electronics, vol. 18, pp. 140-

150, 138-148, 140-144, July, August, September, 1945.
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depends upon reflection of electrons from a grid. Such action can be
enhanced by making the electrons approach the grid at a small angle.

In addition, it is possible to get a negative resistance by deflection of an
electron beam. Shown in Fig. 20.21 is a special electron tube that

obtains its negative-resistance characteristic from the change of focal

length of an electron beam.^ Maximum current will be intercepted by
the No. 4 wire electrode when the voltage on it is just right to focus on it

the electron beam produced by the other electrodes. For higher or lower

voltages the current will drop off, thus giving rise to a negative-resistance

characteristic for voltages higher than that required for a focus on the

wire.

20.8. Negative-transconductance Tubes. Two instances in which

negative transconductances appear in tubes have already been mentioned.

One case is that of the beam-power tube in which as showm in Fig. 10.13

the curve of plate current versus current injected into the screen-grid-

plate region exhibits a negative slope over a portion of its characteristics.

Since the space current in a beam tube increases as control-grid voltage

increases, it will be true that over an appreciable portion of the available

characteristics the plate current can be made to decrease as the control-

grid voltage increases provided only that the space current is high enough

so that a virtual cathode forms between the screen grid and plate. This

gives rise to a negative control-grid-plate transconductance but with an

ordinary 6L6 requires that the tube be operated at its maximum
dissipation.

A negative suppressor-screen-grid transconductance also exists in

the ordinary pentode, as is evident from the characteristics of Fig. 20.19.

As suppressor-grid voltage is raised from a negative value, the screen-grid

curient decreases; for a greater fraction of the space current is passed

on to the plate, and hence a smaller current is reflected back to the screen

grid. The negative transconductance here is available only in the range

of suppressor-grid voltages between which the suppressor grid reflects all

current and passes all current.

20.9. Electron-ray Indicator Tubes. The electron-ray tube is an

indicator tube designed originally as a tuning indicator for radio receivers

but capable of a wdde range of applications. It is something of a cross

between a triode and a cathode-ray tube. Basically, in its commonest
form, it is a triode with one grid wire. The cathode is cylindrical, the

grid is of the form of a narrow metal strip, and the plate is of the form

of a wide-angle cone, which is coated with a fluorescent material and
faces the end of the glass envelope of the tube so that the observer looks

' Thompson, H. C., Electron Beams and Their Application in Low Voltage Devices,

Proc. I.R.E., vol. 24, pp. 1276-1297, October, 1936.
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in toward the apex of the cone. The arrangement of the electrodes is

shown in Fig. 20.22.

When the grid, or control electrode, of the electron-ray tube described

is sufficiently positive relative to cathode potential, electrons will move
in all directions, giving a complete circle of illumination from the fluo-

rescent material on the plate. As the control electrode is made negative,

it will repel electrons from its immediate vicinity and cause a sectorlike

shadow on the plate. As the control-electrode potential is made more

negative, the shadow angle increases. It is possible to make a tube in

which the shadow angle can be varied from 0 to 100 deg as the control-

electrode potential is varied from a suitable positive value to zero.

Characteristics of the 6AF6-G, which is an

electron-ray tube with two identical and sepa-

rate control electrodes, are shown in Fig.

20.23. Because of the relatively large varia-

tion in control-electrode potential required to

give an appreciable change in shadow angle,

the commonest types of electron-ray tubes

contain a directly connected triode in the

same envelope as the indicator electrodes.

Examples of such tubes are the 6E5 and the

6G5. The characteristics of the 6E5 are

shown in Fig. 20.24. These characteristics

represent the combination effect of the triode

amplifier and indicating device. The charac-

teristics of the 6G5 are similar except that the

sensitivity is about half as great. Many other

electrode structures exhibit the property of

having an electron ray whose position or width varies with the electrode

potentials.^

20.10. Directed-ray Electron Tubes. In this class fall all the tubes

in which the direction as well as the magnitude of the electron current is

important. Several tubes in this category have already been mentioned.

An example is the beam-power tube, in which the electron current is

formed into parallel sheets by means of aligned control and screen grids.

Likewise, the orbital beam tube, the 6SA7 special mixer heptode, and
the electron-ray indicator tubes make use of electron rays directed in a

specific manner to obtain the desired characteristics.

The directed-ray tubes fall into several classes according to the function

that the directed ray is intended to perform. The possible functions

include obtaining high current densities, a selective action between

um.

area

Fig. 20.22.—Construction of

the electron-ray tube.
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electrodes by a focusing action, a variable electrode current by changing
beam width, a discrimination between electrons of different velocities,

a high or low fractional electron-current discrimination with respect to

any particular electrode, and negative-resistance and negative-trans-

conductance characteristics. This list is by no means complete.

It is a relatively simple matter to form electrons into definite beams
of either sheet or circular form. In the ordinary triode the action of

the control grid is such that the electrons leaving it tend to form into

sheets. By proper use of grid wires and specially shaped electrodes a

rather wide variety of beam patterns can be had. In Fig. 20.25 are shown
a number of structures that can be used to produce specific electron-ray

patterns. With all such devices, the angle of the electron beam will be a

function of the electrode potentials, and the rate of change of angle or

electrode current with any electrode voltage will be relatively slow

because of the low amplification factors associated with a low number
of grid wires. ‘

Of particular interest are arrangements by which current to a set of

grid wires may be kept low. In Fig. 20.26 are shown two such arrange-

ments. The arrangement of Fig. 20.26a makes use of a cathode surface

the cross section of which is scalloped in shape and against the points of

which the grid wires are aligned. The curved equipotentials associated

* Knoll, M., and J. Schloemilch, Elektronoptische Stromverteilung in gitter-

gesteureen Elektronenrohren, Arch. Elektrotech. vol. 28, pp. 507-516, August, 1934
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nith the scallops of the cathode surface focus the electrons so that they

pass mostly between the grid wires even when the control grid is positive. *

In the arrangement of Fig. 20.266 the emitting material is painted on a

cylinder in a helical trace. The grid is likewise a helix of the same pitch

as the emitting helix and positioned so that the wire lies opposite a non-
emitting portion of the cathode cylinder. By these arrangements the

C G P P G C G P

(cl) material (b)

Fig. 20.26.—Electrode arrangements for reducing

control-grid current.

control-grid current can be kept to less than 1 per cent of the space cur-

rent when the control grid is as positive as the plate for a triode structure!

In spite of this remarkable operating characteristic the difficulties of

constructing such cathodes are great enough so that they have not found

commercial application. In Fig. 20.27 is shown a low-screen-current

tetrode. The low screen current is obtained

by using squirrel-cage control and screen grids

of the same number of wires and simply aligning

the grids. With this arrangement the screen-

grid current can be kept to a value as low as

0.2 per cent of the plate current.^

20.11. Deflection Tubes. Most electron

tubes make use of the variation of magnitude of

electron current with electrode potentials to

obtain their control characteristics. It would, Fig. 20.27.— Low-screen-

however, be entirely feasible to obtain control current tetrode,

characteristics from deflection of an electron beam rather than from

* Knoll, M., Verstarker und Senderohren als elektronenoptisches Problem, Zeit.

jiir Tech. Phys., vol. 15, pp. 584-591, December, 1934.

* Thompson, op. cit.
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change in magnitude of an electron current.*'^ In Fig. 20.28 are shown
two forms of deflection tubes. In the tube of Fig. 20.28a a cylindrical

cathode and two four-wire grids are used to form a four-lobed electron-

current pattern The resultant lobes are then deflected by the trough-

shaped external-corner electrodes so that the electron-beam lobes are

effectively switched between the sections of the plate. In the arrange-

ment of Fig. 20.28b a plane cathode and a parallel-wire control grid are

used to form sheet electron beams, which are then deflected by an

interleaved double screen grid so that the electron sheets are switched

between the sections of an interleaved plate in the form of a double-strip

grid. Alternate sections of the screen grid and plate are connected to

opposite ends of the driving and output circuits, respectively.

I

I

0
0
0
0
0

+

(a) (b)

Fig. 20.28.—Deflection tubes.

It might be thought that it would be possible to make a deflection

tube which would exhibit a nearly infinite transconductance by creating a

beam with a sharp edge and then deflecting this past the edge of a

collector electrode. This property does not seem realizable in practice,

for two reasons. (1) Thermal velocities place a limit upon the maximum
current density that can be achieved in a beam and upon the sharpness

of the edge, as discussed in Sec. 15.5. (2) To realize a high effective

mutual conductance it is necessary to place a large resistance in series

\vith the collector electrode, and current flow through this resistance

develops a voltage change that is in the direction to repel the electron

beam being directed toward the electrode.

20.12. Television Camera Tubes. In a class by themselves are the

television camera tubes. These tubes are means of electronically

scanning a visual picture. They tax the tube designer’s and the tube

maker’s art to the utmost, for they represent the most complicated

> Hazeltine, a,, Deflection Control Tubes, Electronics, vol. 9, pp. 14—16, March,

1936.

* Rothe, H., and W. Kleen, Die Bedeutung der Elektronenoptik in der Technik

der Verstarkerrohren, Zeit.fur Tech, Phys., vol, 17 (No. 12), pp. 635-642, 1936.
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assemblage of purely electronic components in existence. They involve

the preparation of sensitive photoelectric and secondary-emissive sur-

faces. They involve beam formation and deflection, invoking all the

tricks of combination electrostatic and magnetic manipulation. They are

probably the most difficult of any tubes to make, and their successful

development is a triumph of the application of fundamental electronic

principles.

The Image-dissector Tube. One of the earliest purely electronic

television viewing tubes developed was the so-called image-dissector tube,'

a diagram of which is shown in Fig. 20.29. This tube contains a large

Signal
output

Fig. 20.29.—The Farnsworth image-dissector tube.

photoelectric cathode upon which the picture to be imaged is focused.

The photoelectrons liberated from the photocathode are attracted toward

an anode in the form of a nickel wall coating designed so that the electrons

from the photocathode are brought to a focus in a plane at the other end

of the tube. In this way the electrons reproduce the current-density

pattern corresponding to the original pfcture. In early tubes of this

type the focusing was achieved by means of an axial magnetic field, but in

later tubes by purely electrostatic means. In the plane of the focus of

the photoelectrons there is located a pickup electrode shielded by an

aperture so that this electrode picks up only the current corresponding

to a small element of cathode area. The pickup electrode is followed

by a secondary-electron multiplier to increase the sensitivity. Picture

'Farnsworth, P. T., Television by Electron Image Scanning, Jour. Franklin

Inst- vol. 218, pp. 411-444, October, 1934.
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scanning is achieved by deflecting the entire field stream of electrons from

the photocathode so that the aperture in front of the collector electrode

successively collects electrons from every portion of the picture-activated

photocathode. Deflection is satisfactorily achieved by two pairs of

magnetic coils external to the tube and producing fields at right angles

to each other. The light image is projected upon the photocathode

through the collector end of the tube, the obstruction caused by the

collector structure and associated electron multiplier being negligible.

While the linearity of response of the image-dissector tube is virtually

perfect, its sensitivity is very low, of the order of 50 microvolts per

milhlumen per cm^ of cathode area. As a result, the tube is suitable only

for outdoor televising and reproduction of motion pictures where the

brightness of the objects to be viewed is quite high.

The Iconoscope. The iconoscope was the first of a series of television

camera tubes developed to make use of a charge-storage principle.

The tube derives its name from the Greek derivatives “icon,” meaning

image, and “scope,” signifying to view. The primary element of the

tube is a mosaic of photoactive silver particles. These are deposited

on a mica sheet and insulated from each other and from the sheet but

are capacitively coupled to a metal backing on the other side of the

mica sheet. The picture to be viewed is focused on this mosaic. The
mosaic is scanned by an electron beam injected from an electron gun
mounted at an angle with the mosaic. There is also a collector electrode

in the same envelope. The video signal is obtained between the electron-

gun anode and the conducting sheet backing the mosaic. The structure

of the iconoscope and the associated electrical connections are shown in

Fig. 20.30.

As the light image falls upon the mosaic screen, the various elements

of the screen will emit photoelectrons in proportion to the intensity of

the light falling upon them. The mosaic elements will thus become
positively charged as they lose photoelectrons to the collector electrode.

The mosaic elements act Uke a number of individual photoelectric cells

all connected by capacity to the common signal plate, which is the con-

ductive backing to the mica support. The elements of the mosaic are

1 Zworykin, V. K., The Iconoscope, Proc. I.R.E., vol. 22, pp. 16-32, January,

1934.

^ Zworykin, V. K., Television, Jour. Franklin Inst., vol. 217, pp. 1-37, January,

1934.

•Zworykin, V. K., Iconoscopes and Kinescopes in Television, RCA Rev., vol. 1,

pp. 60-84, July, 1936.

‘ Zworykin, V. K., G. A. Morton, and L. E. Flory, Theory and Performance of

the Iconoscope, Proc. I.R.E., vol. 25, pp. 1071-1092, August, 1937.



SPECIAL TUBES 731

successively struck by the scanning beam. This process restores to them

the charge that they have lost by photoemission and releases a correspond-

ing charge to the signal backing plate to the mosaic. There thus flows

through the signal-plate lead a current that is proportional to the light

A, accelerating electrode; Pa, collector; Pc, photocathodes; R, load resistor.

intensity of the areas scanned by the electron beam. A considerable

gain in sensitivity is achieved by this arrangement by virtue of the fact

that each of the picture elements is storing up charge continuously and

so ideally the signal current is amplified by the number of picture ele-

ments over that obtained from

such a tube as the image dissec-

tor. Actually, the process is only

about 5 instead of 100 per cent

efficient because of various detri-

mental effects to be described, but

even at that the sensitivity of the

tube is about 200 times as great as

that of the image-dissector tube.

The equivalent circuit of a

mosaic picture element made up
of many globules is given in Fig.

20.31. In effect, the mosaic glob-

ules in any picture element are equivalent to a photoelectric cell that is

capacitively connected to an output resistor. As light falls upon the

cell, electrons are passed slowly by the cell but gradually build up an

appreciable charge and corresponding voltage upon the coupling con-

'tenser. action of the beam is that of a separate circuit which dis-

Fig. 20.31.—Equivalent circuit of a mosaic

picture element.
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charges the condenser periodically and thus releases a peaked current

pulse through the output resistor.

Several effects enter into the action of the iconoscope that prevent

it from being perfect in its operation. For one thing, the photoelectric

emission from the mosaic elements is space-charge limited. Also, the

charge built up by the photoelectric emission is partially neutralized by a

rain of secondary electrons all over the mosaic, originating from the impact

of the beam primary electrons. Further, there is some loss of charge

by surface leakage. All these effects combine to make the efficiency

about 5 to 10 per cent of the theoretical maximum. The average

brightness of field builds up the mosaic potential to a level such that the

change in potential which the beam can effect is not the maximum value.

As a result, the sensitivity of the tube is nonlinear and is only about

one-fourth as much for high levels of illumination as for threshold values.

The potential behavior of the mosaic elements described earlier

applies only if the secondary emission from the globules is negligible,

which requires that the scanning electrons have only a few volts of energy.

Ordinarily, the scanning electrons will have enough energy to produce five

to seven secondary electrons for every primary electron, and the action

of the mosaic screen \vill be quite different from that previously described.

'

Since there are more electrons leaving than arriving on any mosaic

element, when the scanning-beam potential is appreciable, the potential

of the picture element being scanned will become positive instead of

negative. Further, under the conditions of appreciable voltage of the

scanning beam, the rain of secondary electrons falling upon elements

of the mosaic not being scanned will exceed the number of photoelectrons

being emitted, and the unscanned portions of the picture will assume a

negative rather than a positive potential. The iconoscope still works

under these conditions because the level of the negative potential assumed

by the unscanned portions of the mosaic depends upon the picture illumi-

nation being relatively more positive (though still negative) in the

illuminated areas than in the unilluminated areas.

The action described above is shown in Fig. 20.32 Figure 20.32a

shows the potential response of an unilluminated portion of mosaic to

the scanning beam. The rain of secondary electrons depresses the

potential of such portions of the mosaic to about 1.5 volts negative

relative to the collector. At this point a stable potential condition

exists, for any further depression of potential would cause the mosaic to

repel the secondary electrons. Thus in front of the scanning beam a

potential of —1.5 volts exists. The mosaic elements under the beam
become charged to about 3 volts positive, relative to the collector, by

the emission of secondary electrons. This is also a stable potential,
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for if the element became more positive than this there would be a nega-

tive gradient of potential at the mosaic surface, which would prevent

secondary-electron emission. The line behind the scanning beam rapidly

becomes negative in potential again because of the acquisition of second-

ary electrons. Figure 20.326 shows the response of an illuminated

section of mosaic to the scanning beam. Because of the emission of

photoelectrons the potential of an unscanned portion of illuminated

mosaic is less negative than for no illumination. The potential will,

however, not become positive however much the mosaic is illuminated.

(aj
UnilluminoitecI screen

Direction
of Scan

•*3-

=*- + 1-
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Fig. 20.32.—Potential reaction of mosaic to scanning.

for then a negative gradient of potential would exist, which would prevent

photoemission. The portions of the illuminated mosaic under the

scanning beam rise to the same maximum, about 3 volts positive, as was
the case for the unilluminated portions. Hence the signal is derived

from the difference between the change in potential that exists between

unscanned portions of illuminated and unilluminated portions of mosaic.

For the figures quoted, it is seen that the maximum change in potential

which can be achieved by illumination is 1.5 volts out of 4.5 volts, with

the added condition that the change in potential level is nonlinear with

illumination. From this factor alone, there is a loss of 67 per cent in

efficiency. For ordinary levels of illumination restricted to the region
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of linear response the loss is about 80 per cent. Leakage and other factors

bring the efficiency down to 5 to 10 per cent.

The structure of the mosaic is shown in Fig. 20.33. It consists of

silver globules on a mica sheet of about 0.001 to 0.003 in. in thickness.

The globules are formed by s fting a finely ground silver oxide powder

onto the mica sheet and then reducing the silver by heating. The silver

particles form into little globules ranging in size from 0.0005 cm in diam-

eter down to particles microscopic in size. There are thus hundreds of

mosaic particles scanned at any one instant by a beam of, say, 0.02 cm
diameter, and as far as the beam action is concerned the mosaic may be

considered as continuous. The conducting signal plate on the back

side of the mica is formed by vaporizing or sputtering silver on that side

of the mica. The globules on the front side of the mica are activated

Phofosensifized

Fig. 20.33.—Structure of the iconoscope mosaic.

by much the same process as is used in making photoelectric surfaces.

The silver globules are first oxidized and then exposed to caesium vapor

to give a photoemissive surface. The signal plate is made just thick

enough to become reasonably conducting and is usually backed by a heavy

sheet of mica to prevent buckling or warping of the mosaic. The
capacity of the mosaic to the signal plate ranges from 50 to 300 micro-

microfarads per cm^, and a value of 100 micromicrofarads per cm^ is

generally assumed in calculations. The photoelectric sensitivity of the

emissive surfaces is of the order of 7 to 10 microamperes per lumen.

The activated surface of the globules exhibits secondary emission as well

as photoemission, the ratio of secondary to primary electrons ranging

from five to seven for the usual conditions of operation. If the globules

are activated with care, the insulation between them is very good, though

some loss of charge is experienced from the fact that the resistance is

not infinite.
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The Image Iconoscope. Various arrangements have been tested

in the attempt to improve the efficiency of the iconoscope. One of these

arrangements is found in the image iconoscope.^'* The structure of

the image iconoscope is indicated in Fig. 20.34. This tube makes use of a

mosaic screen as in the iconoscope but charges it by secondary-electron

action. The mosaic is excited not with a light field but with a field of

electrons of which the intensity pattern corresponds to that of the picture

to be viewed. This field is generated by a transparent photocathode that

is excited by the picture. This tube uses an electron lens, which is rather

difficult to design, to focus the output of the photocathode upon the

mosaic.® The charge on the mosaic is derived from secondary-electron

emission, which exceeds the primary-electron current and also exceeds

the photoelectric current in the ordinary iconoscope. Such tubes are

Pig. 20.34.—Structure of the image iconoscope.

capable of giving sensitivities as high as 5 millivolts per millilumen per

cm*. These tubes have not found great use because of the difficulty

in constructing an electron lens that will reproduce the light image

upon the mosaic without distortion.

The Orthicon. Another arrangement by which the low efficiency

of the iconoscope is increased is the orthoiconoscope, usually abbreviated

to orthicon.^ The name is derived from the Greek prefix “ortho,”

meaning straight, which has reference to the linearity of characteristic.

The orthicon overcomes some of the limitations of the iconoscope by

1 IMd.

' Iams, H., and A. Rose, Television Pickup Tubes with Cathode-ray Beam Scan-

ning, Proc. I.R.E., vol. 25, pp. 1048-1070, August, 1937.

3 Morton, G. A., and E. G. Rambebg, Electron Optics of the Image Tube, Physics,

vol. 7, pp. 451-459, December, 1936.

I Rose, A., and H. A. Iams, The Orthicon, RCA Rev., vol. 4, pp. 186-199, October,

1939.
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scanning the mosaic with electrons of such low velocity that secondary

electrons are not created and hence do not neutralize the mosaic charge.

A diagram of the orthicon is given in Fig. 20.35. The picture to be

viewed is focused upon the mosaic, where it causes a variation in charge,

as in the iconoscope. The scanning beam is generated by a flying spot

of light upon a photocathode, which releases low-velocity electrons.

Focusing of low-velocity electrons is difficult but is achieved in the

orthicon by making use of the fact that low-velocity electrons will move
in a tightly wrapped spiral around a strong magnetic-flux line. The
scanning electrons generated by the light spot on the photocathode are

guided to the mosaic by a strong curved magnetic field. When the

Object

3

scanning electrons approach a brightly illuminated spot on the mosaic,

they are confronted with a positive potential, which draws them in and
neutralizes the positive charge. When they approach a dark spot on
the mosaic, they are repelled and return to the photocathode. Sensitivi-

ties of the order of 2 millivolts per millilumen per cm^ have been attained

with the orthicon. The conversion of the photoelectric scanning current

into signal is believed to be nearly 100 per cent.

Th£ Image Orthicon. Still greater sensitivity can be obtained with a

tube known as the “image orthicon,” a diagram of which is given in Fig.

20.36. This tube combines features of the image iconoscope and orthicon.

The light image is focused upon a transparent photocathode. The
emitted current from the photocathode carries current-density variations,
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corresponding to the light-intensity variations in the picture to be viewed.

The current field from the photocathode is focused upon a two-sided

target by means of a suitable electron lens. The target surface is

charged up according to the density of the exciting current by secondary-

electron emission. The target is scanned with a low-velocity beam,

which is deflected by magnetic means. The velocity of the scanning

electrons is low enough so that no secondary electrons are created in the

scanning process. The relative potentials of the mosaic and beam
electrons are adjusted so that the scanning electrons null be attracted

to neutralize the charge of the brightly illuminated areas but will be

reflected from the dark areas. The signal is derived from the reflected

electrons whose number will be an inverse function of the original picture

illumination. In addition, the reflected electrons are multiplied by an

Image Mulli'pller

Fig. 20.36.—Structure of the image orthicon.

electron multiplier, which helps increase the sensitivity and reduce the

noise figure of the device. This tube is so sensitive that it can be used

to view scenes illuminated with as little brightness as 0.01 candle per

ft^. The characteristics of the photocathode also make it possible to

observe objects from their infrared radiation alone.

The Monoscope. The monoscope is riot a camera tube but simply a

standard picture-signal-generating tube. It is similar to the iconoscope

in construction except that instead of the mosaic it has a fixed pattern

printed on the oxide coating of an aluminum sheet. The secondary
emission of the unprinted portions of the oxide coating is fairly high,

while that of the printed portions is low. The printed pattern is scanned
with an electron beam and gives rise to a variable secondary-electron

' Sensitive Television Camera Tube, Electronics, vol. 18, p. 330, December, 1945.

2 Rose, A., P. K. Weimer, and H. B. Law, The Image Orthicon, Proc. I.R.E.,

vol. 34, pp. 424-432, July, 1946.
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current to the collector electrode which corresponds to the printed signal.

The signal from the collector electrode has the same polarity as that from
the backing plate in an iconoscope. A negative picture signal may be
obtained from the backing plate of the monoscope. The tube is used

exclusively as a picture-signal generator for circuit-testing purposes.

20.13. The Electron Microscope. The electron microscope is not

really a vacuum tube in the sense that it is available in sealed-off form

that can be plugged into a circuit, but it is of sufficient importance to

deserve a brief comment. The electron microscope extends the electron-

optical analogy to the logical limit by actually using electrons to obtain

an expanded image of an object. Use is made of the fact that electrons

exhibit a wave as well as a particle behavior. Since electrons have
appreciable path lengths only in a vacuum, it is necessary that the speci-

men be placed in a vacuum and the specimen is viewed by shooting

electrons through it!^

Structure of the Electron Microscope. In its usual form the electron

microscope consists of a source of electrons, a condensing lens for the

electron beam, and a specimen holder followed by two magnifying

lenses. The lenses may be either electrostatic or magnetic. The electron

source is usually a tungsten filament shielded by a cathode electrode so

that emission occurs from only a small area of the filament. The elec-

trons are accelerated by a unipotential gun structure constructed so that

the angle of the electron ray is small. Since the magnetic type of electron

microscope is thus far that most extensively used, the remainder of the

remarks of this section will apply to it. A separate section will be
devoted to the electrostatic type of microscope.

A magnetic condensing lens of the type shown in Fig. 14.8e is used

to focus the electron beam upon the specimen. Just beyond the speci-

men to be viewed is placed an objective lens, also magnetic and of the

same form as the condensing lens. Another magnetic lens, called the

“projecting lens,” is used to focus the image formed by the objective lens

upon either a fluorescent screen or a photographic plate, both in vacuum.
An intermediate image can be obtained before the projecting lens. The
general structure involved is shown in Fig. 20.37.

The specimen is applied to a thin film of collodion, which is supported

* The literature on electron microscopes runs into hundreds of articles and a score of

books. The reader is referred to bibliographies on the subject by C. Marton and
S. Sass, published in the Journal of Applied Physics, which list articles and books since

the development of the electron microscope and are periodically extended.

See Mabton, Claibe, and Samuel Sass, A Bibliography of Electron Microscopy,

Jour. Appl. Phys., I, vol. 14, pp. 522-531, October, 1943; II, vol. 15, pp. 575-579,

August, 1944; III, vol. 16, pp. 373-378, July, 1945.
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upon a fine mesh screen, of 100 to 400 wires per inch. The collodion

film is prepared by placing a drop of the material in liquid form on the

surface of a dish of water, then raising the supporting screen through

the film that forms from below so that a single layer of the film becomes

attached to the screen, and then cutting away the excess collodion. The

specimen to be observed is then deposited upon the collodion film. The
specimen is admitted into the microscope through a rather intricate

arrangement in the form of a vacuum lock with attendant manipulating

1 +
. , . Ekcfron
LYJ source

Magnetic

\
condenser

tens

Specimen
,

Magnetic

S objective
' lens

lens

Photographic plate

or
fluorescentscreen

or
visual screen

Photographic plate

or
fluorescent screen

MAGNETIC
ELECTRON
MICROSCOPE

OPTICAL
MICROSCOPE

ELECTROSTATIC
ELECTRON

MICROSCOPE

Fig. 20.37.—Structure of the electron microscope.

levers. The microscope is left on a vacuum pump at all times, and when
the specimen is removed a door is first" opened into a small vacuum
chamber and the specimen put into this chamber. The door between

the chamber and the main body of the microscope is then closed, and

another door opening to the outside is opened and the specimen removed.

By this arrangement the entire microscope does not have to be evacuated

every time a specimen is admitted or removed; rather, the vacuum
pumps need remove only the small volume of the air admitted from the

intermediate chamber. Photographic plates are admitted and removed

by the same general scheme.
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Equivalent Wave Length of Electrons. One of the revelations of

modern physics is that there is a dual aspect of matter and energy.

This applies to light rays, which may exhibit the properties of either

waves or particles. Likewise, particles in motion exhibit the properties

of light rays. It is the wave aspect of the electron that is utilized in

the electron microscope. One of the teachings of quantum mechanics

is that a particle in motion exhibits an equivalent wave length, known
as the “De Broglie wave length,” given by

mv
(20.13)

where X is the equivalent wave length in meters, h is Planck's constant

whose value is 6.624 X 10“®^ watt-sec®, m is the mass of the particle in kg,

and V is the velocity in meters per sec. For an electron at low velocities,

the mass is constant, and the velocity is proportional to the square root

of the potential through which it has been accelerated. Invoking the

physical constants and Eq. (6.7a), the equivalent wave length of an

electron that has been accelerated through a potential V is

- _ 12.26W angstrom units (20.14)

where V is in volts and 1 angstrom unit equals 10“*“ meters. This

expression is accurate within 1 per cent for voltages up to 20,000 volts.

For higher voltages the relativity change of mass and the departure of

velocity from the dependence upon the square root of potential must be

considered. From Eq. (6.40a), the mass of an electron is seen to increase

linearly with the potential through which it has been accelerated. Figure

(6.3) and Eq. (6.39) give the dependence of electron velocity upon

potential. Upon combining these last two relations with Eq. (20.13)

there results the general equation for equivalent wave length of an

electron that has been accelerated through V volts.

12.26

VF V'l + 0.9788 X lO-Fp
angstrom units (20.15)

This expression reduces to that of Eq. (20.14) for low voltages. A
curve of equivalent w’ave length as a function of voltage is given in Fig.

20.38.

Theoretical Resolving Power of the Electron Microscope. The maximum
useful magnification that can be obtained from a microscope is limited by

the so-called “resolving power” and the lens defects. The resolving

power of a microscope is measured by the least distance between two

points that can just be distinguished and is determined by diffraction
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laws, which in turn depend upon the wave length of the light used.

The least resolved distance of a microscope is usually given in terms of

the Abbe formula, which has the form

d = ^
- (20.16)

n sm a

where d is the minimum distance separating two points which can be

resolved, X is the wave length of the light used, n is the index of refraction

of the medium in which the object is situated, and a is the maximum
angle which a ray leaving the central point of the object and entering the

objective lens makes with the optical axis of the system. The quantity

Fig. 20.38.—Equivalent wave length of an electron as a function of voltage.

n sin a is known as the “numerical aperture” of the lens. From the

Abbe formula it is seen that the least resolved distance d is decreased as

the wave length is decreased. This is supported experimentally by the

fact that the highest resolution with optical microscopes is obtained with

ultraviolet radiations. With ultraviolet wave lengths of the order of

2,500 angstrom units, refractive media with indices of refraction of a

maximum value of about 1.6, and a maximum value of sin a, it is seen

that the best that can be hoped for in the way of optical resolution is

of the order of 1,000 angstrom units.

It may be noted from Fig. 20.38 that the equivalent wave length of

even low-voltage electrons is much less than the wave length of the

shortest usable near-visible radiations. Hence the electron microscope

has a tremendous opportunity of increasing resolution and magnification.
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This it does, though as yet the maximum resolution is limited by the

small apertures involved. The maximum useful magnification obtainable

with an optical microscope is about 3,000 diameters. Electron micro-

scopes have given useful magnifications as high as 100,000 diameters.

That the resolving power of an electron microscope is given by the

Abbe formula may be demonstrated from a simple consideration of the

Heisenberg principle of uncertainty. The principle of uncertainty states

that the product of the error in determination of position and the error

of determination of velocity of a particle is a constant. In other words,

the more accurately the position is known, the less accurately the velocity

can be known, and vice versa. Specifically, the principle of uncertainty

states

Ax Ap = h (20.17)

where Ax is the uncertainty of position, Ap is uncertainty of momentum
mv, and h is Planck’s constant. Upon applying this to a particle that is

struck by an electron moving at an angle a with the axis of an electron

microscope it is expected that the product of the indeterminancy of x
of the particle by the indeterminancy of the x component of momentum
will equal Planck’s constant. If it is assumed that the point of contact

of the electron with the particle is such that the tangent through this

point is parallel to the optical axis, then the x component of momentum
imparted to the particle is 2mv sin a, where m is the electron mass and v

is the electron velocity, and hence

Ax Ap,, = Ax2mv sin a = A (20.18)

Substituting the value of the De Broglie wave length from Eq. (20.13),

Ax
X

2 sin a
(20.19)

which is the same as the Abbe formula of Eq. (20.16).* As an example,

suppose that the numerical aperture of a lens is 0.0025 and that a 50,000-

volt electron beam is involved. Then the De Broglie wave length, from
Fig. 20.38, is about 0.05 angstrom unit and the corresponding theoretical

least resolved distance is 10 angstrom units. The least resolved distance

would be of the order of atomic dimensions if it were not for the lens

defects. Actual least resolved distances of electron microscopes are of

the order of 20 angstrom units.

Operating Principle of the Electron Microscope. The electron micro-

scope produces an image because certain of the electrons in the beam
on passing through the specimen have been scattered rather than refracted

or absorbed. The scattering mechanism is entirely a dynamical one

‘ This derivation is attributed by Marton to Henriot.
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resulting from the reaction of the electron charge with the electrostatic

fields of the atoms and molecules that the electron approaches. Some
of the scattered electrons are intercepted by the apertures. Others

undergo single or plural scattering and remain in the field. Variations

in density of the resultant picture occur because of the scattering process,

which shifts some of the electrons from the portions of the picture cor-

Fig. 20.39a.—Soap-curd fibers. Picture taken with the electron

microscope. Magnification is about 10,000 times: 1/j = 1

micron = 10 meters. (Courtesy of'J. W. McBain.)

responding to dense parts of the specimen. Thus the electron-microscope

picture resembles an X-ray picture more than an optical picture. Some
photographs of soap-curd fibers obtained with the electron microscope

are shown in Fig, 20.39.

Limits of Resolving Power. A number of factors conspire to make the

resolving power of the electron microscope less than the theoretical value.

In the first place all the voltages and currents of the microscope are sub-

ject to some variation, which introduces a fuzziness in the pictures.
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This can, however, be virtually eliminated by stabilizing the voltages and
currents to a sufficient degree. The degree of stability required for a

least resolved distance of 10 angstrom units is rather large, being of the

following order:

Voltage stability.

Current stability

Condenser lens

Objective lens.

Projection lens,

1 part in 7,000

1 part in 1,000

1 part in 14,000

1 part in 1,500

Fig. 20.396.—Soap-curd fibers. Picture taken with the

electron microscope. Magnification is about 100,000

times. {Courtesy of J . W. McBain.)

Furthermore, any stray magnetic fields must be reduced by shielding

so that components normal to the axis are weaker than 5 X 10“® gauss.

In addition to the above there are all the various lens aberrations to

be coped with.^ Most of these are extraaxial so that they can be reduced
1 An excellent discussion of the limitations of the resolving power of electron

microscopes is given by Mabton, L., and R. G. E. Hutter, The Transmission Type of

Electron Microscope and Its Optics, Proc. I.R.E., vol. 32, pp. 3-12, January, 1944.
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by using a small beam angle, with attendant loss of resolving power.

Whereas beam angles in optical microscopes may be quite large, values

of a for electron microscopes are of the order of 10~^ to 10“* radian.

Some lens errors are axial and cannot be eliminated. These are spherical

and chromatic aberration and also the diffraction defects. Scattering

also imposes some irremediable limitations.

Chromatic aberration is proportional to the beam angle and thus may
be reduced by keeping the beam angle low. It is principally due to

changes in velocity incurred when the electrons pass through the speci-

men. It may be reduced by using thin specimens and supporting films

and materials of low atomic number.

Spherical aberration increases as the cube of the beam angle and with

the beam voltage because the minimum focal lengths of the magnetic

lenses increase with beam voltage, owing to saturation effects.

Diffraction errors are proportional to the equivalent wave length and

inversely proportional to the beam angle. Since the diffraction error

decreases with beam angle, while the spherical aberration increases with

beam angle, there is an optimum resolution which occurs at the angle at

which the two errors are approximately equal.

Because the De Broglie wave length decreases with increasing

electron energy, it might be thought that increasing improvement in

resolution could be achieved by simply going to higher voltages. This is

not realized in practice, largely because the magnetic lenses lose strength

through saturation, as a result of which spherical aberration and diffrac-

tion actually increase. A reduction of chromatic aberration and an

increase in penetration power are realized; but, in spite of this, pictures

obtained with beam voltages greater than 100 kv are not noticeably

superior to those taken mth beam voltages between 50 and 100 kv except

for the greater penetrating power evidenced.^

Electrostatic Electron Microscopes. The structure of an electrostatic

electron microscope is also shown in Fig. 20.37.^ A shielded tungsten

filament and a unipotential cathode gun are used to produce and acceler-

ate the electrons. Three lenses are used, and these have the same func-

tion as the corresponding lenses in the magnetic type. The electrostatic

lenses are of the Einzel lens type and are dimensioned so that the center

electrode of each lens is operated at cathode potential. This makes the

lens action independent of the voltage used, for the focal length depends

only on the shape of the field. As a result, the lens voltage supply

* Zworykin, V. K., J. Hillier, and A. W. Vance, Preliminary Report on the

Development of a 300 Kilovolt Magnetic Electron Microscope, Jour. Appl. Phys.,

vol. 12, pp. 738-742, October, 1941.

* Bachman, C. H., and Simon Ramo, Electrostatic Electron Microscopy, Jour.

Appl. Phys., vol. 14, pp. 8-18, 69-72, 155-160, January, February, April, 1943.
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does not have to be as carefully stabilized as is the case with the magnetic

type of electron microscope. Focusing is achieved in the General Electric

model by moving the specimen physically without changing the lens

characteristics. All the lens defects encountered in the magnetic type

of microscope appear in the electrostatic type and are distinctly greater

in magnitude. As a result, the least resolved distance as yet obtained

with an electrostatic microscope is about 80 angstrom units. Hence
the electrostatic types developed thus far are inferior in magnification

to magnetic types by about a factor of 4. This limitation is offset by an
appreciable reduction in cost and size.



CHAPTER 21

HIGH-VACUUM PRACTICE

21.1. Introduction. The construction of vacuum tubes requires a

high degree of skill and a great knowledge of the techniques associated

with obtaining and maintaining a high vacuum. It may be said without

exaggeration that the problem of producing a good vacuum tube depends

about 90 per cent upon the knowledge of high-vacuum techniques. With-

out a knowledge of these techniques a knowledge of the theory of

vacuum-tube design is useless. Much has been written on the subject of

high-vacuum techniques, but probably as much knowledge exists that has

never been recorded. This brief chapter cannot do more than collect

the most important relations and facts concerning high-vacuum practice. '

In answer to the question as to what is meant by high vacuum it is

first necessary to define the units in which vacuums are measured. There

are a number of systems of units that are commonly used to represent the

degree of vacuum. Vacuums may be described in terms of a fraction

of atmospheric pressure, 760 mm of mercury column. They may be

described in terms of the absolute gas pressure in units of bars, 1 bar being

nearly equal to 1 dyne per cm^ and 1,000,000 bars being nearly equal to

atmospheric pressure, actually 750 mm of mercury column. Vacuums
may also be measured in terms of the height to which the gas whose

pressure is being measured will raise a column of mercury. This height

is 760 mm at atmospheric pressure and will be proportionately less for

gases whose pressure is less than atmospheric. This method of repre-

senting pressure of vacuum has a definite physical significance in that

it is possible to devise an apparatus which will give direct measurements in

terms of a mercury column for heights of the mercury column as low as

10“^ mm. Sometimes the height of the mercury column is expressed in

1 The most useful books devoted entirely to high-vacuum practice are

Dushman, S., “The Production and Measurement of High Vacuum,” General

Electric Review, Schenectady, New York, 1922.

Dunoyer, L., “Vacuum Practice,” Van Nostrand, New York, 1926.

Espe, W., and M. Knoll, “ Werkstoffkunde der Hochvakuumtechnik,” Springer,

Berlin, 1936.

Yardwood, J., “High Vacuum Technique,” Chapman & Hall, Ltd., London,

1943.
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tinits of microns, 1 micron being
^ qqq qqq

meter. This has the virtue

that the numbers are a little easier to write for low vacuums. In Fig.

21.1 is given a chart comparing the different scales for measuring vacuums.

Bars,

Atmospheres dynes per S(i. cm. mm.ofHg microns of Hq

Fig. 2i.l.—Comparison of pressure scales.

The values along any horizontal line correspond to the same gas pres-

sure. Thus 1 micron equals 10“* mm of mercury and corresponds to

1.333 bars or 1.318 X 10“® atmosphere.
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Pressures of 10“^ mm of mercury or less are referred to as “high

vacuums.” A pressure of 10“^ mm of mercury is referred to as a “hard

vacuum.” One of mm of mercury or less is referred to as a “soft” or

“low vacuum.” An idea of the scale of vacuums encountered in elec-

tronic devices is given by the follomng tabulation:

Mm of Mercury Characteristic or Device

760 Atmospheric pressure

100 Gas-filled Lamps
10

1 Spark streamers in electrical discharge

10-1 Glow discharge, neon lamps
10-1 Lower limit of glow discharge

10-1 Glass fluoresces under electron bombardment
10-1 Bad receiving tube
10-® Old receiving tube, operating

io-« New receiving tube, operating

Old transmitting tube, operating
10-1 New transmitting tube, operating
10-1 New tube, cold

21.2. Fundamental Gas Laws. Since all vacuum processes are

merely operations upon gases at pressures less than atmospheric, it is

important to review the laws governing the behavior of gases. There

will also be included in this section comments upon the behavior of

molecules in a gas and of electrons in a gas.

Boyle's Law. Boyle’s law states that the volume which a given mass

of gas at a fixed temperature occupies varies inversely as the pressure

to which the gas is subjected. Mathematically this is stated by

P\Vi = P2V2 = const (21.1)

Charles’s, or Gay-Lussac’s Law. Charles’s, or Gay-Lussac’s, law

states that the volume which any mass of gas occupies at a given pres-

sure varies directly with the temperature. Mathematically this is stated

^ = const (21.2)

Avogadro’s Law. Avogadro’s law states that the number of molecules

in equal volumes of gases at the same temperature and pressure are equal.

More specifically, the number of molecules in a mole or in a mass in

grams of substance numerically equal to its molecular weight is always the

same regardless of the kind of gas. The number of molecules in a mole

is known as Avogadro’s number and is equal to 6.023 X 10^®.

General Gas-expansion Law. Boyle’s, Charles’s, and Avogadro’s

laws can be combined into a single law,

PV = RmT (21.3)
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where P is pressure in bars or dynes per square centimeter, V is volume

in cubic centimeters, P is a universal gas constant having a value of

8.314 X 10^ ergs per deg per mole, m is the mass of the gas in moles,

i.e., the mass in grams divided by the molecular weight, and T is the

temperature on the absolute scale, which is 273° plus the number of

degrees centigrade. From this equation and Avogadro’s number it is

readily calculated that the number of molecules in 1 cm® at a pressure

of 10® bars (750 mm of mercury, nearly atmospheric) and 0°C is

2.654 X 10^®. Even at the very low pressure of 10"^ mm of mercury,

about 10“^® atmosphere, the number of molecules per cubic centimeter

of a gas is about 3,000,000,000. In general, the number of molecules per

cubic centimeter of a gas is given by

p
n = 7.244 X 10'®^ molecules per cm® (21.4)

where P is pressure in bars and T is absolute temperature.

Distribution of Velocities in a Gas. The heat energy that a body of

gas contains exists in the kinetic energy of motion of the gas molecules.

As the temperature is increased, the heat energy increases and the velocity

of the molecules increases. The molecules will have velocities in all

directions and with all magnitudes, but most of them will have velocities

grouped around a most probable velocity. Maxwell has shown from

application of the theory of probability that the distribution of velocities

of molecules in a gas is given by

y = (21.5)VTf

where x is the ratio of velocity to the most probable velocity and y is

the corresponding probability that a molecule wll have a velocity x. A
plot of Eq. (21.5) is given in Fig. 21.2. The area under the curve between

any two values of x, say xi and X2 ,
divided by the total area under the

curve gives the fraction of the total number of molecules that have

velocities in the interval between Xi and Xz. The coefficient of Eq. (21.5)

is chosen so that the total area under the distribution curve is unity.

This causes the maximum ordinate to be other than unity but makes

the estimate of the fraction of the total number of molecules having

velocities in any given velocity interval very simple. Thus the area under

the curve between values of velocity Xi and xz gives the fraction directly

and may be estimated by simply counting squares, each square representing

1 per cent of the total number for the scale divisions given. Thus only

about 5 per cent of the total number of molecules have velocities greater

than twice the most probable velocity.
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The distribution curve of Fig. 21.2 holds for all temperatures, the

only difference being that the most probable velocity increases with the

square root of the absolute temperature.

Vp 12,900 cm per sec (21 .6)

where T is the absolute temperature and M is the molecular weight of

the gas. Also of interest is the average velocity, which is 1.124 times

the most probable velocity,

Va = 1.124yp (21.7)

where Va is the average velocity and Vp is the most probable velocity.

VjiVa

Vp - Most probable velocify

Va=Average velocity, 1.124 Vf,

Vgji =Rootmean square velocity, 1.224 Vp

Each square under curve corresponds to one
per cent of the total area under curve

4- 2 ~x^
^ Vw

Fig. 21.2.—Maxwell’s law of distribution of molecular velocities in a gas.

The rms velocity is involved in energy calculations and has the value of

1.224 times the most probable velocity, '

Vp, = 1.224t;p (21.8)

where Vm. is the rms velocity and Vp is the most probable velocity. All

the velocities cited above are independent of the pressure involved. A
curve showing average velocities at room temperature of various gases

as determined by their molecular weight is given in Fig. 21.3.

Mean Free Path of a Gas Molecule. Although it is true that the

molecules of a gas have rather high velocities, it is a common observation
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that gases diffuse together very slowly. This is undoubtedly due to the

fact that the molecules collide frequently with one another and so move

in zigzag paths made up of rather short straight-line segments. The

term mean free path is used to indicate the average length of path of a

molecule between collisions. The collisions themselves are of an elastic

nature and tend to leave the magnitude of the velocities involved

unchanged on the average.

An estimate of the mean free path of a gas molecule among other gas

molecules can be had by considering the total area of molecules in a

volume of cross-sectional area A and thickness t. The number of

Fig. 21.3.—Average velocity of gases at room temperature.

molecules in such a volume is nAt, where n is the molecular density.

Let the volume be viewed from the surface of area A, and assume that

the molecules are uniformly distributed throughout the volume in such

a way that their projections upon the surface of area A are also uni-

formly distributed. When the number and arrangement of the projec-

tions of the molecules upon the surface of area A have the form indicated

in Fig. 21.4, then it will be impossible for a molecule to travel a distance

t perpendicular to the surface of area A without making contact mth
another molecule. The equilateral triangle shown in Fig. 21.4 has an

, . j. 3 "n/S dm^ j
altitude of 1.5 molecular diameters and so has an area of ^ and

contains effectively one-half of a molecule. The density of the molecules

as projected on the surface of area A is therefore
/o j i

where
3 \/3 drrf

is the molecular diameter. Equating the number of molecules projected
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on the surface for this density to the number of molecules contained in

the volume,

2A

3 A/3d„2
nAt (21.9)

from which

2.60nd„2 (21 . 10)

There is a 100 per cent probability that a molecule will collide with

another molecule in a distance t, or roughly a 50 per cent probability that a

Fig. 21.4.—Arrangement of molecules in a gas to illustrate the

concept oi the mean free path of a gas molecule.

molecule will collide with another in a distance
|
which will be called

the “mean free path” of a molecule. Accordingly,

0.1923
Approximate mean free path of gas molecule = '

(21.11)

This formula is only approximate, for it' does not consider the random

distribution of molecular velocities. Maxwell has considered this prob-

lem and proposed the following formula;

Mean free path of gas molecule
1 0.225

(21.12)

Some further refinements on this formula give the coefficient as 0.315, but

for ordinary purposes Maxwell’s form as given in Eq. (21.12) is generally

used. The mean free path of a molecule of a gas is seen to be an inverse
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function of the molecular density and also an inverse function of the

equivalent molecular cross-sectional area or diameter squared.

The molecular diameter is a convenient fiction useful in many gas

relations. The agreement between the values of molecular diameter as

determined from various considerations is fairly good.* Values of the

molecular diameter of various gases are given in the following table.

Values are given only to two significant figures since the agreement

between various determinations is no greater than this.

TABLE XIII

MOLECULAR DIAMETER OF THE GASES
Gas - Molecular Diameter, Cm
A 2.9 X 10-«

CO 3.2 X 10-*

CO2 3.3 X 10-«

H 2 2.4 X 10-*

He 1.9 X 10-*

Kr 3.2 X 10-*

Ns 3.1 X 10-8

Ne 2.35 X 10-8

NHs 3.0 X 10-8

Os 3.0 X 10-8

Xe 3.5 X 10-8

Since the molecular density as given by Eq. (21.4) is directly proper,

tional to pressure, it follows that the mean free path of a molecule is

inversely proportional to pressure. Upon combining Eqs. (21.4) and

(21.12) the mean free path is given by

3 lOTT
Mean free path of gas molecule = '

, ^ X 10“*^ cm (21.13)
Jrclfn

where T is temperature in degrees absolute, P is pressure in bars, and dm

is molecular diameter in centimeters. A curve of the mean free path of

nitrogen, the principal ingredient of air, as a function of pressure is given

in Fig. 21.5. It is convenient to remember that the mean free path of

nitrogen at room temperature and a pressure of 1 bar (about 10~® mm of

mercury) is approximately 10 cm and varies inversely with the pressure.

The average number of collisions of a gas molecule per centimeter of

travel is the reciprocal of the mean free path and is given by

Pd 2

Collisions per cm = 3.219 X 10*® (21.14)

in which the units are the same as for Eq. (21 13).

‘ Dushman, op. cit, p. 27.
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Mean Free Path of an Electron among Gas Molecules. The reasoning

that was used in the previous subsection to get an estimate of the mean
free path of an electron may be used to get an estimate of the mean free

path of an electron moving among gas molecules. Since the electron

6015 pressure, mm. of Hg.

Fig. 21.5.—Mean free path of a nitrogen

molecule as a function of pressure.

has a negligible cross-sectional area compared with a molecule, if we again

consider a volume of surface area A and thickness t, then the molecules

must be sufficient in number and must arrange themselves as shown in

Fig. 21.6 to ensure that there will be a collision of an electron with a gas

molecule in a distance t. For the

arrangement of molecules shown,

each equilateral triangle of altitude

‘ has an area ofT
tains effectively

3 "v/s dm
and oon-

16

half a molecule.

Accordingly, the density of the mol-

ecules as projected upon the surface

8
of area A is or just four

Fig. 21.6.—Arrangement of molecules

in a gas to illustrate the concept of

mean free path of an electron.

3 V3d„2
times the density required to ensure

a molecule collision in a distance t.

One may therefore expect that the

mean free path of an electron among gas molecules is four times that of

the gas molecules themselves. Needless to say, this is a very rough
estimate and applies only to electrons having velocities corresponding
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to a few volts. Even at velocities corresponding to about 10 volts the

above estimate will not hold, for the exchange of energy between electrons

and molecules is extremely complex in the vicinity of the ionization

potential of the gas.^

|X0I.

Fig. 21.7.—Nomographic chart of the number of ions formed per centimeter of

electron beam per second as a function of current, voltage, and pressure.

The concept of the mean free path of an electron among gas molecules

needs revision when the electron velocity becomes appreciable. As the

electron acquires a higher voltage, it may approach closer to a molecule

before it will be deflected or before it will produce ionization. This is

because there is less time for the electrostatic forces to effect a transfer of

energy as the electron velocity increases. Of more interest than the mean

* Bkode, R. B., Quantitative Study of the Collisions of Electrons with Atoms,

Rev. Modern Phys., vol. 5, pp. 257-279, October, 1933.
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free path of an electron, which is difficult to define, is the distance between

ionizing collisions. Above a velocity corresponding to about 500 volts

for heavy molecules such as mercury and above a few hundred volts for

the molecular constituents of air, it is found that the number of ions

formed per centimeter per second by an electron beam is proportional to

the current and the gas pressure and inversely proportional to the beam
voltage. A satisfactory empirical form* of this relation for air is

3.75 X ions formed per secN = fr (21.15)
V per cm of length

where I is current in amperes, V is voltage through which the electrons

have been accelerated in volts, and p is gas pressure in millimeters of

mercury. A nomographic chart of the number of ions formed per centi-

meter of path per second is given in Fig. 21.7. Since current is the prod-

uct of the number of electrons passing a reference plane per second

multiplied by the charge, the number of ions formed by each electron

per centimeter of travel is

Number of ions formed by 1 _ 6 X lO^p ,2 i

electron per cm of travel V \ • J

where p is in millimeters of mercury and V is in volts. The distance

between ionizing collisions of an electron is the reciprocal of Eq. (21.16),

or

Distance between ionizing _ Vkv

collisions of an electron 60p
(21.17)

where Vkv is the potential through which the electrons have been acceler-

ated, in kilovolts, and p is pressure in millimeters of mercury. Thus an

electron with a velocity corresponding to 6,000 volts, moving in a vacuum
of 10“® mm of mercury, experiences an ionizing collision every 100,000

cm. At 10"^ mm of mercury the distance between ionizing collisions is

only 1 ,000 cm. A nomographic chart showing the distance between ioniz-

ing collisions, as a function of gas pressure and voltage through which

the electron has been accelerated, is given in Fig. 21.8.

21.3. Measurement of Vacuiun. The range of pressures over which

vacuum devices operate is so large that no one pressure-measuring device

can cover it. Accordingly, it is necessary to use a number of devices

to handle the entire range of pressures from atmospheric down to the best

vacuums producible. The number of types of vacuum gauges runs into

the dozens, but of these there are about half a dozen that have shown more

* Bennett, W. H., Magnetically Self-focusing Streams, Phys. Rev., vol. 45, pp.

890-897, June 15, 1934. Equation (21.15) is given originally as A = 2Q0pI/Ve,

with p in millimeters of mercury and electrical quantities in esu.
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Fig. 21.8.—Distance between ionizing collisions of an electron as a function of gas

pressure and voltage.
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Fig. 21.9.—Range of various pressure-measuring devices.

ruggedness and versatility than the others,

briefly. In Fig. 21.9 is shown the range of

the most commonly used types of vacuum
gauges. Where the range line is solid, the

range of pressures indicated can be covered

with a single instrument. Where the range

line is dotted, several instruments of the

same type are required to cover the range

indicated.

Manometers. The simplest type of

vacuum gauge is the mercury manometer,
or U tube, shown in Fig. 21.10. One sur-

face of the mercury column is exposed to

atmospheric pressure, and the other is

exposed to the low pressure to be measured.

These will now be described

To vacuum

Fig. 21.10.—Mercury manom-
eter.

The mercury column thus experiences a difference of pressure on the two
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surfaces and adjusts the height of these surfaces until the forces are in

equilibrium around the column. The difference in height of the two
surfaces is a measure of the vacuum relative to atmospheric in that

atmospheric pressure alone will support a mercury column of height

760 mm. The U-tube manometer is suitable for measuring only relatively

poor vacuums of the order of 10“‘ mm of mercury or less.

The McLeod Gauge. The McLeod gauge is a special type ofmercury
manometer. It works on the principle of compressing a sample of the

Reference
level for

1000:1
compression

To high
vacuum

Linear
scale

1 To high
vacuum

f ^ Vhive

Displacement\

piston

U

Lotv ^
vacuum

Reference

Quadratic
scale

Atmospheric
pressure

Fig. 21.11.—^Long and short form of the McLeod gauge.

gas of which the pressure is to be measured by a known volume ratio and
thus increasing the pressure in inverse ratio to an amount which is large

enough to measure by direct observation. The McLeod gauge is one of

the few gauges that give an absolute pressure indication. Most of the

other types of vacuum gauge have to be calibrated against the McLeod
gauge, which serves as a standard of measurement.

The general form of the McLeod gauge and the means by which a

sample of gas is trapped and compressed are shown in Fig. 21.11. All

McLeod gauges have in common a large volume F in which a sample of

gas can be trapped by raising a column of mercury. The volume V has a
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sealed-off capillary tube C sealed into its top. By raising the mercury

until its surface is well up in the capillary the volume of gas trapped can

be compressed by a factor of many hundred times. The pressure of the

compressed sample of gas can be measured by comparing the height of

the mercury column in a parallel capillary of the same diameter—pref-

erably from the same specimen of tubing as the compression capillary

—

in which the gas is uncompressed. The structure of the McLeod gauge

requires that it always be made of glass.

The various McLeod gauges differ only in the means of raising the

mercury column and of reading the gauge. In Fig. 21.11 are shown two

of the commonest methods of raising the mercury column. The arrange-

ment at the left shows a design, known as the “long form,” in which

the mercury column is raised by means of a displacement piston. The
piston can be arranged with a clamp and screw thread so that fine adjust-

ments of level can be obtained by turning the piston when it is clamped in

one position. This arrangement has the advantage that the use of rubber-

tubing can be avoided since the displacement piston can be made of metal.

The structure is of necessity quite high since a difference of elevation of

760 mm must exist between the level of mercury in the gauge and that

in the displacement-piston reservoir. This form of the McLeod gauge

requires mounting on a vertical rack rising from floor level to a height of

about 5 ft. A somewhat shorter vertical height can be achieved with the

arrangement at the right, known as the “short form.” With this

arrangement the mercury level may be raised and lowered by gas pressure

through a combination of valves. The mercury is raised by opening the

valve to the high vacuum to be measured. Too rapid a rise is offset by
partly evacuating the mercury reservoir by opening the valve connected

to a source of low vacuum such as a mechanical pump. If the pressure in

the mercury reservoir is made too low, the mercury will fall but this can

be offset by admitting air through another valve attached to the reservoir.

This form of the McLeod gauge requires extremely careful handling.

Another form of the McLeod gauge, not illustrated, carries the com-

pression volume, the compression capillary, and the comparison capillary

on a framework that can be tilted to achieve an effective raising or lower-

ing of the mercury relative to the measuring tubes.

The McLeod gauge can be used in two ways as a pressure indicator.

In the first method there is determined a point on the compression capil-

lary such that when the mercury is raised to this level the compression

volume is compressed by some convenient factor such as 100 or 1,000.

The height of the mercury in the free capillary above this reference point

will be a linear function of the gas pressure. Specifically, the difference

in height will be the original pressure in millimeters of mercury times the
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compression ratio. By using capillaries of equal diameter, surface ten-

sion forces are equal in the two tubes. Thus

P = /n^ (21.18)

where P is the pressure of the gas in millimeters of mercury; hi is the dif-

ference in level between the mercury in the free and in the compression

capillaries, in millimeters, when the mercury is raised to a point a dis-

tance ht, from the top of the compression capillary at which point the

compressed volume of gas is Fo; and F is the original trapped volume of

gas. Since

Fo = (21.19)

where d is the diameter of the capillary

^ = (21 .20)

The other method of using the McLeod gauge raises the mercury level

in the free capillary to a height the same as that of the top of the com-
pression capillary each time a measurement is made and reads the differ-

ence in height hi between the mercury levels in the free and compression

capillary. With this method there is a different compression ratio with

each gas pressure, but the basic relation of Eq. (21.19) holds in the form

P = hi^
(
21 .21 )

where F2 is the volume of the gas in the compression capillary to a height

hi. Accordingly,

Hence

ird^hi

4
(21.22)

, 2
(21.23)

and it is seen that the difference in mercury levels by this method is a

quadratic function of the gas pressure. The gas pressure is conveniently

read by attaching a suitable quadratic scale upside down to the com-
pression capillary, lined up so that the zero of the quadratic scale cor-

responds to the top of the compression capillary. The quadratic and
linear methods of measuring pressure may be used with either the long

or the short form of the gauge.

The sensitivity of the McLeod gauge may be increased by increasing
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the size of the compressible volume or by decreasing the diameter of the

compression capillary. There are definite limits beyond which neither of

these quantities can be carried. If the compression volume is made too

large, the weight of the mercury needed to fill it becomes a limitation.

The weight of 330 cm^ of mercury is 10 lb, and the problems involved in

making the gauge strong enough to support this weight are considerable.

If the compression capillary is made too small, there is trouble with the

mercury sticking. This imposes a practical limit of about mm at the

smallest diameter capillary. The reference heights used on the cali-

brated scales can be reduced to increase the sensitivity, but there are

limits here, too. The reference heights have to be more than a few
diameters of the capillary because of the difficulty of estimating the vol-

ume of the rounded end of the capillary.

As a rough guide to the design of McLeod gauges let it be assumed that

for linear-scale operation the reference height ho is nine times the diameter
of the capillary and that the smallest measurable difference in height hi

is equal to the diameter of the capillary. With these assumptions, Eq.

(21.20) reduces to

P™ = 7Md^
V (21.24)

where Pm is the minimum pressure that can be read with ease and accur-

acy where all quantities are expressed in terms of millimeters. Likewise,

for quadratic-scale operation let it be assumed that the lowest practical

height difference h^ is three times the diameter of the capillary. Substitu-

tion of this value into Eq. (21.23) again yields Eq. (21.24), which may be
used as a design equation. A nomographic chart showing the relations

between the variables in Eq. (21.24) is given in Fig. 21.12. The sample
construction line drawn shows that a sensitivity of 10“^ mm of mercury
can be realized with a compression volume of 100 cm® and a capillary

of diameter 1.091 mm.
McLeod gauges are frequently made with two capillaries attached in

series on top of the compression volume. The large-diameter capillary

is sealed directly to the volume, and the'small capillary is connected to

the large one and sealed off at its end. Two free parallel capillaries of

the same diameter are used. With this arrangement the use of linear

scales over a wide range of pressures is facilitated.

The McLeod gauge does not indicate the presence of water vapor,

carbon dioxide, ammonia, pump oil vapors, and condensable vapors in

general. When used with an oil-diffusion pump a cold trap should be
placed between the pump and the gauge; otherwise, the latter will simply
indicate the vapor pressure of mercury, which is 2.777 X 10~® mm at
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room temperatures. The tendency of the mercury to stick in the com-

pression capillary can be reduced by warming and thus degassing the

capillary with a soft flame. Mercury that has stuck can be evaporated by

heating. The McLeod gauge is considered reliable to 10“^ mm of mer-

cury and is useful to 10“®. Qualitative indications may be had for pres-

sures as low as 10“® mm of mercury.

Fig. 21.12.—McLeod -gauge design chart.

The Spark-discharge Tube. A convenient device for monitoring low

pressures is a spark-discharge tube about 1 in. in diameter and about 8

in. in length, with disk electrodes supported on tungsten wires sealed

through the glass, as shown in Fig. 21.13. The tube has a T joint to

the vacuum system and has a d-c potential of about 15 kv applied in

series, with a resistance large enough to limit the current to about 2 ma.

'I’he series resistance is necessary because the resistance of the discharge

tube between electrodes changes greatly with pressure. The nature of

the discharge serves as a rather good index of pressure in the range of 50

Compressible

volume,

cc.
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to 10“® mm. The glow generally has these distinctive parts : Immediately

surrounding the cathode, or negative electrode, and assuming its contour

is the cathode glow. Beyond the cathode glow is the Crookes dark space.

Beyond the Crookes dark space is the negative glow. Extending from the

positive anode, or electrode, is the positive glow, which will be continuous

To vacuum

CircuJar disc
electrode
of tungsten

Pig. 21.13.—Structure of the gas-discharge

tube.

or striated depending upon the pressure. The characteristics of the dis-

charge are roughly as follows;

Mm of Mercury
20-50

10

6

4

0.4

0.2

0.15

0.10

0.05

0.03

0.03-0.001

Appearance

Narrow streamers

Broad streamers

Cathode and negative glow forms, positive glow is small tuft at

positive electrode

Positive glow elongates

Elongated positive glow breaks into a row of tufts (very pretty)

Number of tufts in positive glow decreases, and tufts become larger

and more widely separated

Limit of tuft structure of positive glow—two large tufts close to

anode

Negative glow, which has been a small tuft at all higher pressures,

elongates. Positive glow is a single tuft

Negative glow extends nearly to anode, positive glow disappears

Glow diffuses the whole tube, no definite structure

Glow disappears and glass fluoresces from electron bombardment

In addition to the glow discharge changing its structure, it also

changes its color. At high pressures the predominating color for air is

pink. At lower pressures the pink changes to a blue as the oxygen and
nitrogen, which have higher molecular mobility, are removed and carbon

dioxide remains. The color of the glass fluorescence depends upon the

glass being a yellowish blue in all cases, but more yellow than blue for the

soft glasses and more blue than yellow for the hard glasses. The
presence of water vapor is indicated by a whitish glow.

In ordinary vacuum setups a spark coil that can be applied to an
insulated electrode of the system can be used as a rough pressure indi-

cator at low vacuums. The voltage will set up a glow in the entire



766 VACUUM TUBES

system. The nature of the glow is roughly as follows for different

pressures:

Mm of Mercury
100-^0

40-4

4-0.4

0 . 4-0.04

0 . 04-0.004

Appearance

Bluish-white filamentlike discharge

Purple filament

Wide, stringy pink discharge

Full glow—pink changing to gray to pale gray

Discharge disappears, glass fluorescence appears. Predominant
color is pale gray. Glass fluorescence disappears at lower limit

A high-frequency Tesla coil can be used instead of a spark coil. This

has the advantage that it is safer and will not puncture the glass. Leaks
in glass can be detected with a spark coil since a spark will tend to jump
from the coil electrode to any leak in the glass.

The Pirani Gauge. The Pirani gauge is simply a temperature-sensitive

resistance element to which a small amount of power is supplied and
which is cooled by the conduction away of energy by molecules of the gas

which have collided with it. Thus if the power to the temperature-sensi-

tive resistance element is kept constant, the cooling of the element will

be a function of the pressure and will produce a variation in the tem-
perature of the element that can be detected as a change in resistance.

A fine tungsten wire can be used as the temperature-sensitive ele-

ment. In fact, the filament of a 10-watt light bulb works quite well;

a gauge may be made by sealing a piece of glass tubing to such a bulb

and attaching it to the vacuum system. The resistance of the filament

increases rather rapidly with the power consumed by it. If the filament

structure is not coiled but consists of straight wire, it will make a better

gauge. In general, the higher the thermal efficiency of the filament as a

light-producing element, the lower its effectiveness as a vacuum-measur-
ing gauge, and vice versa. This is because, the higher the thermal effi-

ciency, the less effective the cooling by molecular impact. In operation,

the Pirani gauge is conveniently used at a temperature of 100 to 500°C
above room temperature, just below the temperature of appreciable

radiation. This is the temperature range of greatest sensitivity, for

the cooling of the filament is then mostly by conduction rather than by
radiation.

In principle, the Pirani gauge can be operated in three fundamental
ways.

1. Maintain the voltage across the filament constant, and measure the

resistance as a function of pressure.

2. Maintain the current through the filament constant, and measure
the resistance as a function of pressure.

3. Maintain the resistance of the filament constant, and measure the

power supplied as a function of pressure.
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Method 3 has been tested by Campbell, who found that the power
j squired to keep the filament resistance constant was a linear function of

pressure, becoming less as the pressure became less. This is in accord-

ance with the expectation that the conduction cooling by molecules of

the gas is proportional to the number striking the filament per second,

which is proportional to the pressure. The direct proportionality has

an upper limit at the pressure at which the mean free path of the molecules

is of the order of the bulb dimensions. Below this pressure the heat is

conducted by the molecules directly from

the filament to the bulb walls. Above
this pressure the heat is conducted from

layer to layer of gas surrounding the fil-

ament; and since the heat conductivity

of a gas according to the predictions of

the kinetic theory of gases is constant

under these conditions, there is no fur-

ther change in heat loss with pressure.

Since the mean free path of nitrogen is

about 1 cm at 10“^ mm of mercury

pressure, this will ordinarily be the

upper limit of linearity between power
and pressure for a constant filament

resistance, though indications can be

obtained up to 10“^ mm of mercury.

pressure data by method 3 to plot the ratio
^

”
as a function of

pressure. In this ratio, V is the voltage required to produce a given

resistance at a pressure p, and Fo is the voltage required to produce the

same resistance at pressures less than 10“^ mm of mercury. The low-

pressure voltage Fo across the filament represents heat loss primarily

by metallic conduction, though there will be some by radiation. For
pressures less than this value there are so few molecules present that there

is virtually no molecular cooling action. Accordingly, the range of the

Pirani gauge is about 10"^ to 10“'' mm of rnercury when an ordinary light-

bulb filament is used. It is possible to extend the upper limit of pressure

with specially designed tubes of small dimensions.

The simplest circuit by which pressure may be measured by the con-

stant resistance method is shown in Fig. 21.14. Filament resistance is

determined by the bridge balance as shown by the galvanometer. The
bridge is first balanced at very low pressures, and the bridge resistances

are then left unchanged. Bridge voltage is chosen to impart a suitable

temperature, well below color, to the filament. As pressure rises, the

cooling of the filament will increase and lower the temperature, in turr

Pig. 21.14.— Constant-resistance

method of using the Pirani gauge.

It is convenient in obtaining
172 _ 17„2
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lowering the resistance. Bridge balance is restored by increasing the

bridge voltage.

The Pirani gauge can be incorporated into an automatically self-

balancing bridge by means of the circuit of Fig. 21.15. The gauge-

bridge circuit is in the feedback circuit of an audio amplifier tuned to

about 1,000 cycles. The amplifier will oscillate at an output-power level

that nearly balances the bridge. Thus, if the amplifier gain between

input and output terminals is 100, the output power will rise until the

TUNED AMPLIFIER

Fig. 21.15.—Automatically self-balancing bridge circuit for use with the

Pirani gauge.

ratio of the input and output voltage of the bridge is which is nearly

a condition of balance. Under the conditions stated the gauge resistance

will be maintained constant within about 1 per cent, which is close

enough for pressure measurements. As pressure rises and the gauge

filament resistance tends to fall, the amplifier will supply more power to

keep the resistance constant. The power supplied by the amplifier is

conveniently indicated by a thermocouple milliammeter, properly

shunted, in the output circuit. Since the deflection of a thermocouple

meter is proportional to current squared, the deflection is directly pro-

portional to power. Hence the meter can be engraved with a scale that
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will be linear with pressure but have zero pressure slightly upscale. This

may be corrected by adjusting the zero setting of the needle so that it is

negative by the proper amount. When this is done, the indication of

the meter will be linear with pres-

sure. The shunt may be adjusted

to give different ranges of pressure.

The power supplied by the ampli-

fier to the bridge will divide in

constant ratio between the bridge

arms. If the ratio of the bridge

resistances is as indicated in the

figure, the power consumed by the

gauge filament will be nearly ten-

elevenths of the output power.

The simplest of all possible

methods of using the Pirani gauge

consists in putting the filament in a

bridge circuit to which a constant direct voltage is applied and calibrating

the unbalance current against pressure. The circuit of Fig. 21.16 shows

how this may be done. The use of identical filaments one of which is

Fig. 21.17.—Bridge unbalance current of a Pirani gauge as a function of pressure.

sealed off at high vacuum compensates for external-temperature varia-

tions. A typical curve of bridge unbalance current as a function of

pressure is shown in Fig. 21.17.

Fig. 21.16.—Pirani gauge with bridge

unbalance indicator.
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Thermoj'uncHon, Heater (W)

The Pirani gauge will respond to compressible gases and thus may be

used to check the presence of components not revealed by the McLeod
gauge. The calibration curves of different gases are slightly different.

In general, the more mobile gases will conduct heat away from the fila-

ment more readily. In calibrating the Pirani gauge against the McLeod
gauge a cold trap should be placed between the gauges to keep mercury

vapor out of the former.

The Thermocouple Gauge. The thermocouple gauge works on the

same principle as the Pirani gauge. A thermojunction is attached to a

heater wire as shown in Fig. 21.18. The heater wire is usually of tungsten

and is heated with a current of 10 to 100 ma. The thermoj unction can

' be made of any of the standard combi-

nations such as platinum-platinum
rhodium; chromel P-alumel; copper-

constantan (advance)
;
iron-constantan

(advance); nichrome-constantan
(advance). It is connected directly to

a sensitive d-c microammeter. The
cooling of the resistance wire is a func-

tion of the pressure, which is recorded

by the microammeter, which is acti-

vated by the thermal emf generated by
the junction on the wire. The range of

the thermocouple is from 10“^ to 10“^

mm of mercury, and it must be cali-

brated against some standard pressure

gauge such as the McLeod gauge.

The specific dimensions of a thermocouple that is excellent for routine

pressure indications are as follows: Couple of 3-mil nichrome and 4-mil

advance wire, each 1^^ in. long. Heater of 4-mil platinum wire 2%^ in.

long. The wire lengths are long enough to eliminate thermal end effects.

Heating current is 150 ma to give a junction current of 200 microamperes

in a perfect vacuum.®

Triode Ionization Gauge. All the gauges mentioned thus far have

been limited in their range to relatively low vacuums. The triode

ionization gauge is the most extensively used high-vacuum gauge. The

HH
Fig. 21.18.—Thermocouple vac-

uum gauge.

* “Handbook of Chemistry and Physics,” 26th ed., pp. 1876-1878, Chemical

Rubber Co., Cleveland, Ohio, 1942.

* Weber, R. L., “Temperature Measurement and Control,” Chap. IV, Blakiston,

Philadelphia, 1941.

3 Dunlap, F. C., and J. G. Trump, Thermocouple Gage for Vacuum Measure-

ments, Rev. Set. Instr., vol. 8, pp. 37-38, January, 1937.
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gauge itself has the form of (or may actually be) an ordinary triode tube

sealed into the vacuum system. The most sensitive electrode connection

is, however, not the usual triode connection. The grid is operated at a

relatively high positive voltage, while the plate is operated at a relatively

low negative voltage. With this arrangement the filament has to be

operated at considerably below its normal rating, i.e., the temperature of

the filament must be low enough so that the emission is temperature-

limited. The basic circuit arrangement involved is shown in Fig. 21.19.

Fig. 21.19.—Basic circuit of the triode ionization

gauge.

The function of the positive grid is to attract a stream of electrons into

the space between the positive grid and negative plate. In their initial

flight from the filament most of the electrons will miss the grid, and their

momentum will carry them toward the plate, where the negative potential

will repel them and return them to the grid. Some of the electrons will

make several oscillations about the grid before they fall into it. While

in flight the electrons may ionize some of the gas molecules present, by

impact. When this occurs the positive ions created in the grid-plate

space will be attracted to the negative plate. The positive-ion current
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in the plate circuit is therefore a measure of the number of ionizing

collisions, which, in turn, is a measure of the pressure. Thus for any

emission current /« the positive-ion current in the plate circuit, Z+, is a

linear function of the pressure.

The range of the triode ionization gauge is about 10“® to 10~® mm of

mercury. The upper limit of pressure occurs when a glow discharge

exists. The lower limit of pressure is fixed by the smallest positive-ion

current that can be measured, which in turn depends upon the leakage

resistance of the gauge between electrodes. The positive-ion plate cur-

rent of a type 45 triode used with an emission current of 5 ma, a grid

voltage of 4-120 volts, and a plate voltage of — 15 volts is of the order of

3 microamperes at a pressure of 10“^ mm of mercury. The positive-ion

current is linear with pressure within the range indicated, i.e., the posi-

tive-ion current will be 0.3 microampere at 10~^ mm of mercury and 0.03

microampere at 10'® mm of mercury for the operating conditions given.

Positive-ion current is linear with electron-emission current up to about

20 ma for the type 45. The positive-ion current will also increase with

positive grid voltage, but not in a linear fashion. The increase of posi-

tive-ion current to the plate with positive grid voltage is most rapid at first

and then relatively less rapid. The grid may be operated as high as -|-200

volts relative to filament. The limit to which the emission current and

positive grid voltage can be raised is the dissipation capacity of the grid,

which is of the order of 1 watt. For reliable readings both the grid and

plate should be degassed by heating to a dull red heat either by r-f induc-

tion coil or by direct electron bombardment. To keep the emission down
to the level of 5 to 10 ma it is necessary to keep the filament voltage quite

low, for the type 45 used as a gauge about 1 volt instead of the rated 2.5.

Oxide-coated filaments are fairly satisfactory for triode ionization gauges.

They have the advantage that they will not burn out if the vacuum sys-

tem accidentally springs a leak. On the other hand, the emission is easily

poisoned by pressures lower than 10~® mm. When this occurs, it is

frequently possible to restore emission by heating the filament to emission

temperatures in the presence of a glow discharge at pressures of the order

of 3 X 10~2 mm of mercury. The restoration of emission results from

positive-ion bombardment of the filament. Some gauges use tungsten or

tantalum emitters. These are very rugged but may give rise to false

readings at low pressures, for the filament itself will collect the molecules

that strike it and so tend to reduce the pressure in the gauge. The
characteristics of such a triode ionization gauge are given in Fig. 21.20.

Since the positive-ion current is so small, it is necessary to have either

a sensitive galvanometer or a vacuum-tube amplifier. When a gal-

vanometer is used, it is well to protect it against gas bursts or leaks by
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placing an inductance of henry or so in series with it and shunting the

galvanometer with a neon bulb and a condenser of about }/2 microfarad.

Any pulse of positive-ion current will tend to be by-passed around the

meter by the neon tube and condenser. Since high-sensitivity galvanom-
eters are expensive, it is common practice to use some sort of amplifier

that will give an indication on a low-sensitivity instrument. One simple

arrangement is shown in Fig. 21.21. This circuit makes use of a cathode

follower to measure the voltage across large resistors placed in series

Grid currenhmillioimperes Grid voltcige

Plate voltage Pressure,mm Hg » lO'S

Fig. 21.20.—Characteristics of a typical triode ionization gauge.

with the plate of the ion gauge. The resistors are large, ranging from

10 megohms on down in steps of 10. One-tenth microampere through the

10-megohm resistor produces a voltage drop of 1 volt, which the cathode

follower triode reproduces almost exactly in its cathode circuit in the

form of 1 ma through 1,000 ohms. A zero adjustment of the output

meter is provided in the form of a potentiometer. With the plate load

resistance of the triode gauge set to zero the potentiometer is adjusted to

give zero current in the cathode circuit of the cathode follower tube.

Resistance is now switched into the plate circuit of the triode gauge;
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and as positive-ion current flows, a positive voltage will appear on the

grid of the cathode follower tube and current will flow in its cathode lead.

The cathode voltage “follows” the grid voltage almost linearly and so

gives suitable indication. Almost any high-mu high-current triode can

200 V +

Fig. 21.21.—Cathode-follower metering circuit for use

with triode ionization gauge.

be used in the cathode follower circuit. The tube characteristics should

be such that about 5 ma of plate current will flow when the grid is at

cathode potential.

Fig. 21.22.—Circuit for regulating the emission of a triode

ionization gauge.

Variations and refinements of the basic circuit shown in Fig. 21.21

are numerous. If extensive vacuum work is done, it is sometimes con-

venient to have a circuit that will maintain the emission current at a

fixed value. Such a circuit is shown in Fig. 21.22. This circuit inserts a
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variable resistance in series with the filament in the form of the trans-

formed plate resistance of a pair of triodes, one of which conducts for

each half of the alternating-voltage cycle. The magnitude of the plate

resistance is controlled by a grid voltage derived from a resistor through

which the emission current flows. If the emission current tends to

increase, the triodes are biased negatively, with the result that their plate

resistance and hence the resistance in series with the filament circuit is

increased, thus decreasing the filament current and offsetting the increase

in emission.* It is also possible to construct a circuit using a “magic-

eye” electron-ray tube as an indicator and thus save the cost of sensitive

meters.®’®

21.4. Pumping Speed. Before talking about means of producing low

pressures it is well to define the terms in which the characteristics of

such devices will be described. In talking about vacuum pumps we are

concerned with the laws related to the movement of gases through tubes

and orifices.

Speed of an Aperture. Consider the case of a large volume of gas in a

chamber closed except for a small aperture opening into a perfect vacuum.

Gas will move out of the volume at a rate given by

^ = 10.08 ^ A liters per sec (21.25)

where A is the area of the aperture in square centimeters, T is temperature

in degrees absolute, and M is molecular weight of the gas involved (29

for air) . It is seen that at room temperature of 20°C the flow through an

aperture of area 1 cm® is 10.08 liters per sec. At a temperature of 27°C it

is 10.2 liters per sec. The volume flow is independent of the pressure!

This occurs because, although the number of molecules passing through

the aperture is proportional to pressure, the volume of gas corresponding

to a given number of molecules is inversely proportional to pressure.

Definition ofPump Speed. By analogy with an aperture the speed of a

pump is measured in volume flow, usually in units of liters per second.

Pumps are similar to apertures in that tljeir speeds are nearly constant

over a wide range of pressure and that their speeds are comparable

with those of pump output apertures. Pumps will, however, have a

limiting pressure, subsequently referred to as Po. Accordingly, the

' Ridenour, L. N., and C. W. Lamson, Thermionic Control of an Ionization Gage,

Rev. Sci. Inslr., vol. 8, pp. 162-164, May, 1937.

* Ridenour, L. N., Magic Eye Ionization Gage, Rev. Sci. Instr., vol. 12, pp. 134—

136, March, 1941.

' Perkins, W. E., and H. A. Higginbotham, An Ionization Gage Circuit, Rev. Sci.

Instr., vol. 12, pp. 366-367, July, 1941.
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removable volume of gas of any nominal volume in terms of any pressure

we wish to use as reference is proportional to the difference between the

existing and ultimate pressure,

V = k(P - Po) (21.26)

Speed is defined as the volume flow

„ dV ,dP V dP
^ dt ^ dl P - Podt

(21.27)

Integration of this equation from a pressure Pi at time zero to pressure P2

at time t yields

(21.28)

The above is useful in estimating the time required to reduce pressure to a

given level. When the ultimate pressure is low compared with the other

pressures concerned, then Eq. (21.28) reduces to

i = |ln(0 (21.29)

Speed of Tubing. At low pressures the flow of gases through tubing

is molecular rather than hydrodynamic in nature. The flow involves

frequent collisions with the walls and relatively few collisions between

molecules. On the assumption that the mean free path of the molecules

is large compared with the diameter of the tubing involved, that Lam-

bert’s cosine law holds for reflection from any impact with the walls, that

the velocity distribution is Maxwellian, and that the number of molecules

striking any area is proportional to the pressure, the flow through a piece

of tubing has been calculated to be

V:300 M liters per sec (21.30)

where r and I are radius and length of the tubing in millimeters, respec-

tively, T is temperature in degrees absolute, and M is the molecular

weight of the gas involved.* For air at 27°C the radical has the value of

unity. The symbol G is used because the quantity is analogous to elec-

trical conductance. A nomographic chart of tube conductance as a

function of radius and length is given in Fig. 21. 23. The above equation

is accurate to within a few per cent, provided that the diameter of the tub-

' Knudsen, M., Die Molekularstromung der Gase durch Offnungen und die

Effusion, Ann. Physik, vol. 28, pp. 99&-1016, 1908.
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Fig. 21.23.—Nomographic chart of the speed of air flow through tubing at low
pressures.

Conductance,

liters

per

second



778 VACUUM TUBES

ing is less than the mean free path of the gas molecules. The quantity

in parentheses in Eq. (21.30) is a correction factor for shortness of tub-

ing. When the tubing is long compared with the radius, this quantity

approaches unity very closely. Hence for long tubing containing air at

room temperature the conductance in liters per second is given approximately

by the radius in millimeters cubed divided by the length in millimeters. The
importance of using large-diameter tubing is evident from the dependence

of the conductance upon the cube of the diameter. Reduction of diam-

eter by a factor of 3 reduces conductance by a factor of 27. The speed

of flow of gases in a vacuum system cannot be greater than that given by
the lowest tubing conductance in the system.

WTien a number of pieces of tubing are connected in series, the recipro-

cal of the resultant conductance is equal to the sum of the reciprocals of

the individual conductances.

J_=JLq-JL-|-JL_|- + (21.31)

where is the equivalent conductance and G\,

Equivalenf
speefl

S^-

Speed
-St

CondfUcidrKe
O

Volume being
evacuated

Tubing

1 u+d-
S2 St c

©
Pump

Fig. 21 24.—Diagram illustrating

equivalent pumping speed.

resistances.

• G„ are the con-

ductances of the different portions of

tubing. If the resistance of a long

piece of tubing is defined as the recip-

rocal of the conductance, then, for air

at 27°C,

^ i = -3G r’
sec per liter (21.32)

where I and r are the length and radius

of the tubing in millimeters, respec-

tively. Then the resultant resistance

is simply the sum of the individual

= Ri -1- Ez + + En (21.33)

Only the length and diameter of a tubing are of importance in calculating

the gas flow. Bends and corners have little effect. It must always be

remembered that such computations as are indicated above are restricted

to the range where the diameter of the tubing is less than the mean free

path of the gas molecules.

E:Sect of Tubing upon Pumping Speed. The speed of a pump has the

same units of conductance, i.e
,
liters per second. Hence a pump may be

considered as a piece of tubing, of conductance equal to its speed, feeding

into an infinite reservoir of gas at the ultimate pressure of the pump.
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The reciprocal of the equivalent pumping speed of a pump with associ-

ated tubing is found by adding the reciprocal speed of the pump and the

reciprocal conductance of the tubing. Thus for the arrangement of

Fig. 21.24, where the speed of the pump is Si and the conductance of

the tubing is G, the equivalent speed at the volume being evacuated, >82,

is given by

-S2 Si
(21.34)

It is seen that the resultant speed is lower than both the tubing and the

Pig. 21.25.—Nomographic chart of equivalent pump speed.

pump speed. The importance of using large-diameter high-speed tubing

is again evident. A nomographic chart of Eq. (21.34) giving the result-

ant speed of a pump and tube in terms of the pump speed and tube con-

ductance is shown in Fig. 21.25.

* Proof of Eq. (21.34) may be found by equating the mass of flow at different

points in the system as Q = G(Pj - Pi) = SiPi = S 2P 2 . When pressures are

eliminated from these relations, Eq. (21.34) for the equivalent speed results.
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21.6. Production of Low Vacuum. Numerous applications require the

production of vacuums of 10“^ mm of mercury or less. In addition,

high-vacuum pumps will not operate if required to exhaust directly into

air but must exhaust into a low vacuum to be efficient. As a result, the

subject of production of low vacuum falls into a class by itself.

Low vacuums are most easily obtained by means of a mechanical

pump. Numerous designs for such pumps have been suggested, but the

Pig. 21.26.—Diagram and picture of Cenco Hyvac

pump.

successful pumps that are used in large quantities all embody the same
principle. An example of a widely used mechanical pump is the Cenco
Hyvac. A diagram of the internal structure of this pump is given in Fig.

21.26. Essential features of this pump are an eccentric rotor A, a valve

K, which divides the space between the rotor and stator into two vol-

umes, and an output valve L. As the rotor turns in the direction indi-

cated in Fig. 21.26, there is presented to the space being evacuated a

volume H, which expands, allowing gas to enter, and is then sealed off

by the rotor surface. The trapped volume of gas is then compressed



HIGH-VACUUM PRACTICE 781

against the output valve L through which it is expelled. By ganging

such rotors and running up the speed, very good evacuation properties

may be had. In Fig. 21.27 are shown the speed-pressure curves of some
well-known mechanical pumps. Ultimate pressures are of the order of

10“’ to 10“’ mm of mercury, the average being 10“’ mm of mercury.

Speeds of mechanical pumps are usually from three- to five-tenths of the

speed of the input aperture except in the immediate vicinity of the

ultimate pressure, where the speed is much lower. Limiting pressures

are determined largely by the excellence of the mechanical tolerance in

Fig. 21.27.—Speed-pressure curves of mechanical vacuum pumps.

the rotor and valve construction. Pumps are usually immersed in oil to

improve the valve action.

21.6. Production of High Vacuum. For the production of pressures

lower than those which can be obtained with mechanical pumps, vapor-

diffusion pumps are invariably used.* Roughly speaking, the diffusion

’ Some information on this subject is given in the general references cited earlier

(p. 747). For more recent information see Hickman, K. C. D., and C. R. Sanfohd,

A Study of Condensation Pumps, Rev. Sci. Insir., vol. 1, pp. 140-163, March, 1930;

Ho, T. L., Multiple Nozzle Diffusion Pumps, Rev. Sci. Instr., vol. 3, pp. 133-135,

March, 1932; Ho, T. L., Speed, Speed Factor and Power Input of Different Designs of

Diffusion Phimps, and Remarks on the Measurement of Speed, Physics, vol. 2„ pp.

386-395, May, 1932. See also the excellent summary given in Strong, J., and

others, “Procedures in Experimental Physics,” pp. 111-124, Prentice-Hall, New
York, 1941.
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pump works on the principle of creating a gas flow of a condensable

vapor that draws along with it all the molecules from the system being

evacuated that get into the flow. The vapor wind so formed is termi-

nated by condensation, and the liquid so formed is returned to a vapor-

izing unit, where it is again used to form part of a vapor flow. The
operation of this principle is best seen by considering specific vapor-

diffusion pumps.

The Mercury-diffusion Pump .—One commonly used type of vapor-

diffusion pump makes use of mercury as the circulating vapor. A dia-

gram of an early metal pump used by Langmuir is shown in Fig. 21.28.

Mercury is heated in the bottom of the unit at D, and the resultant vapor

rises up the chimney F, where it is deflected downward by the umbrella-

Hi vacuum

Tomech.
pump

Pig. 21.28.—Langmuir’s mercury-diffusion pump.

shaped cup F placed over the end of the chimney. The mercury vapor

moves down between the outside of the chimney and the outer wall of

the pump A, which is cooled by a water jacket J

.

The principle of

counterflow in cooling is purposely avoided, for the back vapor pressure

will be least if the condenser temperature is lowest at the high-vacuum end

of the pump. As the mercury vapor moves down, it is cooled to the point

of condensation and then runs back down into the reservoir at the bottom,

where it is again vaporized and recirculated. The probability that any

gas molecule that gets into the mercury-vapor stream will experience a

collision that will force it to move in the direction of the exhaust is

extremely strong. As long as the input pressure exceeds the exhaust

pressure by a factor of 100, the forces driving molecules toward the

exhaust will predominate over those acting in the opposite direction.
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Diffusion pumps of the type described require a low output pressure

to give an effective condensation action. As a result, vapor-diffusion

pumps are always operated into a mechanical pump. Diffusion pumps
will operate into exhaust pressures, or “fore pressures,” as high as 10“*mm
of mercury but in general should not be operated into fore pressures of

more than 10“^ mm of mercury for any length of time. This is about the

pressure at which a spark coil will fail to produce a discharge through a

gas, and therefore in practice the diffusion pump is not turned on until

the mechanical pump has reduced the pressure to the point where a glow

discharge can no longer be observed upon application of a spark coil.

When mercury is used as the pump vapor, it is necessary to place a

freezing trap between the pump and the system being evacuated to catch

such mercury molecules as diffuse out from the pump. If this is not done,

the minimum pressure that can be obtained with the system is the vapor

pressure of mercury, which is about 10“® mm of mercury at room tem-

perature. A commonly used type of cold trap is shown in Fig. 21.29.

Cold traps may be cooled with liquid air or with a slush formed by adding

alcohol to carbon dioxide snow. The temperature of the trap must be

such that the vapor pressure of the mercury is reduced to a value below

a level corresponding to the lowest pressure desired. A curve of the
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vapor pressure of mercury as a function of temperature is given in Fig.

21.30.

With vapor pumps, in general, it is necessary to use two pumps in

series to get a very good vacuum.

This is because there is a maximum
ratio of input and output pressures

of about 100 that oan be achieved

by a single stage.

Oil Pumps. Pumps using oil as

a diffusion-pump liquid have
become more popular than mer-

cury-vapor pumps as oils were
developed that had successively

lower and lower vapor pressures.*"^

The various oils now in use and

their corresponding vapor pressures

are shown in Fig. 21.31. Other

properties of the principal oils are

given in Table XIV. Oils have the

advantage over mercury vapor that

a freezing trap is not needed. Fur-

thermore, the speed factors of

pumps using oils will tend to be

about ten times as great as of those

using mercury vapor. Relative to

the equivalent aperture oil-vapor

pumps are about 50 per cent effec-

tive. In oil pumps a baffle or char-

coal trap must be used to prevent

oil vapor from diffusing into the

chamber being evacuated, with

Care must also be taken not to

Temperohjre, ’C.

Fig. 21.30.—Vapor pressure of mer-

cury as a function of temperature.

some resulting reduction in speed.

1 Burch, C. R., Oils, Greases and High Vacua, Nature, vol. 122, p. 729, Nov. 10,

1928.

*voN Bbandenstbin, M., and H. Klump, Ueber die Verwendun organischer

Substanzen in der Hochvakuumtechnik, inbesondere bei dem Betrieb von Hoch-

vakuum Pumpen, Physik. Zeit., vol. 33, pp. 88--93, Jan. 15, 1932.

® Klumb, H., and H. D. Glimm, Ueber die Sauggeschwindigkeit von Diffusion-

pumpen die mit organischen Substanzen betrieben werden, Physik. Zeit., vol. 34, pp.

64—65, Jan. 15, 1933.

* Hickman, K. C. D., Vacuum Pumps and Pump Oils, Jour. Franklin Inst., vol.

221, Part I, Some Fractionating Pumps, pp. 215-235, February, 1936; Part II, A
Comparison of Oils, pp. 383-402, March, 1936.
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expose the oil while hot to air at pressures greater than 10“® mm of mer-

cury. Likewise, the oil must not be overheated even at extremely low

pressure, for then decomposition will be accelerated. All the oils listed

in Table XIV are formed by fractional distillation, ending with the com-

ponent having the lowest product of vapor pressure and rate of chemical

breakdown.

lO'J

I0-* Apieion A

o»X

E
E

10
'®

<— Butyl phthcilate

-<— Butyl sebdcate
Amoil

<— Amyl sebacafe (Ainoil-S)

Apiezon B, Litton A

••— 2 Ethyl hexyl phthalate(Octoil)

-<— Litton C

2 Ethyl hexyl sebacateCOctoil-S)

10-8 ±
Fig. 21.31.—Oils and their vapor pres-

sures at operating temperature.

In addition to oils, extensive use is now being made of silicones.

Most prominent among these are the Dow-Corning silicones DC702 and

DC703. These are as good as the best oilSj^ with an ultimate pressure of

6 X 10“^ mm of mercury for the DC703 and 1 X 10“® mm of mercury

for the DC702. The great advantage of the silicones over oils is their

resistance to oxidation; the silicones do not burn. However, there is a loss

of ultimate vacuum due to absorbed gases, but the recovery time to

ultimate vacuum is about the same as for the best oils. The disadvan-

tage of the silicones lies in their present high cost. They also exhibit the

same undesirable back diffusion as the high-grade oils. Poisoning of

oxide cathodes is about the same as for oils without traps or baffles.

Both silicones and the highly refined natural oils from which sulphur
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compounds have been removed have a chemical stability higher than the

synthetic oils, and fractionation is less important.^

A typical diffusion pump using oil as the liquid is shown in Fig. 21.32.

The arrangement of the parts is evident. From the boiler, vapor rises

heater

To mech.
pump

Pig. 21.32.—Typical glass, water-cooled, oil-diffusion pump.

into the nozzle, where it is blown down a water-cooled section of tubing,

at the bottom of which the condensed oil is collected and returned to the

boiler. In general, the action of oil pumps is more positive when water-

cooled than when not, though air-cooled

pumps are quite common. Two such

pumps in series using a good oil can

achieve a pumping speed of 30 liters per

sec at 10“® mm of mercury and have

an ultimate pressure of better than 10“^

mm of mercury if a charcoal trap is

Charcoal in

openpan

used. The fore pressure required is

generally of the order of 10“’ mm of

Insulated^
heater
embedded
in charcoal

Rod
supportsmercury for positive action. The char-

coal trap serves to collect molecules of

oil vapor that tend to stray into the

chamber being evacuated.’ One com-

mon form of charcoal trap is shown in

Fig. 21.33. This trap consists simply of

a pan of charcoal powder located so that no oil-vapor molecules may move
directly into the chamber being evacuated without coming in contact

Fig. 21.33.—Charcoal trap with

electric heater.

1 The above information on silicones was privately communicated to the author by

C. V. Litton.

’ Becker, J. A., and E. N. Jaycox, A New High Vacuum System, Rev. Sci. Instr.,

vol. 2, pp. 773-784, December, 1931.
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with the charcoal. Oil molecules will stick to the charcoal. Provision

must be made for degassing the charcoal. This usually takes the form

of an electric heater embedded in the charcoal. When the charcoal is

heated to a temperature of several hundred degrees, the absorbed oil

molecules are decomposed into gases that may be removed by the pump.

A charcoal trap can absorb several thousand times its own volume of

oil vapor. Ultimate pressures of 10“* mm of mercury have been recorded

with charcoal traps and a good pump oil. Other means of keeping oil

vapors out of the vacuum system are baffles of some metal, such as alu-

minum, that will not react with the oil and yet that has a good heat

conductivity so that oil vapor will condense on it.
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A popular form of air-cooled oil-vapor pump is shown schematically

in Fig. 21.34. This pump achieves a three-stage action by suitable

bleeding of vapor from a chimney over a single boiler. Throat areas and

HIGHVACUUMUO mm.ofHq
FOREPUMP; 0.5 1 perg

77^ PUMPFLUIDtOctoil

JIIIIHIII
,
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GLASS THREE-STAGE PUMP,TYPE GF-25A
Speed vs Forepressure

]mSmnwrM.-r<j777nmatni\

IlSSIIIIIII^^illll

mmBssimmum
w/mm

wmi’i
ii/iWAl V
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ummAWix
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,_9yAU\m/AnwA
x^mmwAWiw
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GLASS THREE-STAGE PUMP.TYPE GF-25A

Speed vs. High vacuum

Pig. 21.35.—Operating characteristics of a triple-jet air-

cooled oil-vapor pump.

vapor speeds are adjusted to give maximum effectiveness at the different

pressures encountered in the system. Operating characteristics typical

of such pumps are shown in Fig. 21.35. Pumping speeds in the range of
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20 to 30 liters per sec at 10"*mm of mercury and ultimate pressures of 10~^

to 10"® mm of mercury may be obtained with this type of pump. Pump-
ing speed drops quite sharply if the fore pressure becomes too low. The
operating range of such a pump may be shifted toward low pressure by
decreasing heater power. In some pumps of this type the output tubing

leading to the mechanical pump contains a series of trapping ridges or

alembics that prevent substances of high volatility from returning to

the pumping-fluid reservoir.

Fractionating Pumps. In order to obtain extremely low pressures it is

necessary that the pump oils be uncontaminated with materials of lower

vapor pressure. One means of ensuring this is to use a type of pump
incorporating a fractional 'distillation still that continuously refines

To mech.
pump

Fig. 21.36.—Diagram of two-stage fractionating

pump.

the oils used.* A diagram of a two-stage fractionating pump is given in

Fig. 21.36. In operation the alembics in the output chimney collect

the extreme volatiles, which if left in the system cause turbulence in

the vapor flow. The boiler A at the low-pressure end of the pump
operates at the highest temperature and utilizes mainly the more volatile

low-vapor-pressure components of the oil. Less volatile components flow

through the connecting tube to the middle boiler fi, where they are more

effective at the lower pressure because of their lower vapor pressure.

The third boiler C serves to collect relatively nonvolatile residue and

redistill the volatile components back into the other two boilers. Operat-

ing characteristics of a three-stage fractionating pump are shown in

Fig. 21.37. Ultimate pressures of 10“® mm of mercury may be obtained

with pumps of this design, though pumping speeds are only of the order

‘ Hickman, K. C. D., Trends in the Design of Fractionating Pumps, Jour. Appl.

Phys., vol. 11, pp. 303-313, May, 1940.
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of 30 liters per sec. The operation of this type of pump is quite critical

with respect to temperature.

iiiiiiiiiiiiiiiini—

7#2SSiPiKim
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rm/mui
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mmi

BIISISSHnilK \

BiiiiK^niiii
f///fliiiii
fmmwm

High vacuum,mm of Hg

GLASS-METAL PUMP. TYPE &M-220AB

Fig. 21.37.—Operating characteristics of a three-stage

fractionating pump.

21.7. Glass and Its Properties. Almost every vacuum system oi

vacuum tube contains some glass in it. Early systems and tubes were

entirely of glass, though the trend at present is to use more metal and less

glass. Nevertheless, glass is still an indispensable item in vacuum-tube
research and construction.

The usefulness of glass is derived from its excellent working character-

istics. It can be shaped or molded into almost any form. The varieties

of glass which are available are so numerous that a glass can be found

suitable for almost any purpose. The greatest disadvantage of glass is
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the ease with which it breaks, but even this can be minimized with proper

design.

Composition of Glass. Glass is a fused mixture of silica, Si02, and

various metallic oxides. The silica is the predominant component,

being from 60 to 80 per cent of the total weight. The characteristics of

the glasses are determined by the percentages of the metallic oxides.

Pyrex glass is made up of 81 per cent Si02, 12 per cent B2O3, 4 percent

Na20, and a few per cent of other oxides. Lead glass is made up of 61.5

per cent Si02, 23 per cent PbO, and sodium and potassium oxide. These

two glasses lie near the extremes of a scale of glasses, pyrex being at the

so-called “hard” end and lead glass being at the so-called “soft” end.

Other glasses lie between these extremes both in composition and in

physical characteristics. Of considerable interest in transmitting-tube

manufacture is nonex glass, which is a hard glass but not as hard as pyrex.

Nonex glass contains 73 per cent Si02, 16.5 per cent B2O3, and 6 per cent

PbO. Nonex is not inactive enough chemically to make it useful for

chemical glassware though it is extensively used in transmitting-tube

manufacture.

Physical Properties of Glass. Loosely speaking, any material that is

hard, brittle, and transparent is referred to as a glass. More properly,

glass is an amorphous material that is hard and transparent at room

temperatures. As it is heated it softens gradually, becoming softer and

softer. Because of this gradual change, it has no definite melting tem-

perature. The transition from a solid to a viscous state is usually defined

in terms of the following arbitrary reference temperatures:

Strain point. An arbitrary point on the temperature-viscosity curve,

representing a viscosity of 10*^ * poises^ where rapid cooling will

not produce permanent strain.

Anneal point. Arbitrary point; viscosity 10'®-^ poises, corresponding

to relief of strain in 3^^ in. plate in 15 min.

Softening point. Arbitrary point; viscosity 10^ ®^ poises, correspond-

ing to unit elongation of glass rod in given time interval.

Working temperature. Arbitrary point; viscosity 10^ poises. Close

to maximum temperatures for glassworking—in general, higher

than temperatures used for metal seals by 150 to 200°C.

The transition between the various physical states of glass is shown

in Fig. 21.38. The temperature scale will be different for each kind of

* The poise unit of viscosity is the force in dynes required to impart a relative

velocity of 1 cm per sec to two parallel surfaces each having an area of 1 cm® and spaced

1 cm apart with the viscous material between them. The viscosity of pitch at is

10®“ poises. The viscosity of castgr oil at room temperature is 2 poises.
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glass, but the general characteristics of the curve will be the same. The
softening temperatures of the various glasses depend upon the composi-

tion, being higher for the higher percentages of silica. Glass must be

worked above the softening point. If the glass is maintained at a tem-

perature near the softening point too long, it will be devitrified and
possibly oxidized, with the result that its physical characteristics will be

Pyex i g

Nonex S —^ m
^nf+ r- oo o

<r w cJ r=
glcrss to CT*

Fig. 21.38.—Viscosity of glass as a function of tempera-

ture.

impaired. The critical temperatures for the commonest types of glasses

are listed in Table XV.
The expansion characteristics of glasses are different for the different

grades of glass and are nonuniform with temperature, unlike those of the

pure metals. 1 Hence different types of glass cannot be joined together

without cracking upon cooling unless their expansion coefficients are

1 Peters, C. G., and C. H. Cbagoe, Measurement of the Thermal Dilatation of

Glass at High Temperatures, U.S. Bur. Standards Sd. Paper 393.



794 VACUUM TUBES

Prepared

by

C.

V.

Litton

and

reproduced

with

his

permission.



F,Kf-d auarf-z (0. SS)_

oi I I I J I 1 I

0 iOO 200 300 400 500 600 700
Temperature, "C

Fig. 21.39.—Expansion-temperature characteristics of the common
metals and glasses used in vacuum-tube construction.

of expansion than hard glasses. The expansion-temperature character-

istics of the principal glasses and metals used in vacuum tubes are shown

in Fig. 21.39.
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Working of Glass. The working of glass requires a high degree of

physical coordination and skill. Simple operations can be learned in a

short time, but a professional touch is slowly acquired!*

21.8. Sealing of Glass to Other Materials. Very few vacuum tubes

have been built with no glass in them. Even in the so-called “metal

tubes” the leads are brought into the tube through a glass bead sealed

into an eyelet. In experimental and developmental work, glass is used

even more extensively and glass-to-metal sealing assumes even greater

importance.

Sealing of Small Leads into Glass. The problem of bringing leads into

vacuum tubes is ever present. The principal problem involved is that

of finding a metal of which the expansion coefficient matches that of the

glass quite closely. Since the expansion coefficient of metals is nearly

constant with temperature while that of glass generally increases with

temperature, the perfect combination is seldom found. However, if the

diameter of the lead is small, a considerable mismatch in expansion can be

tolerated. Thus with tungsten, of which the expansion coefficient is

4 ppm (parts per million) per °C, leads of diameter 0.020 in. or less can be

sealed into pyrex glass, of which the expansion coefficient is 3.3 ppm per

°C, whereas leads of diameter as great as 0.125 in. can be sealed into

nonex glass, of which the expansion coefficient is 3.6 ppm per “C, without

cracking. Because the coefficient of expansion of platinum, 9 ppm per

°C, is very nearly the same as that of G-12 soft lime glass, 8.7 ppm per “C,

lead size of this glass-metal combination is limited only by the budget.

Platinum leads can also be sealed into G-12 soft cobalt lead glass, of

which Ihe coefficient of expansion is 8.7 ppm per °C. In all cases the

glass and metal must be heated to a red heat together, bringing the glass

to a soft state so that it will wet the metal. This generally requires that

the metal be coated with an adherent coating of oxide and that the glass

and metal be heated together so that the oxide partly dissolves in the

glass, though perfect seals can be made with no oxide on copper, tungsten,

or Kovar.

Metal-glass combinations other than those mentioned above may also

‘ For further information the reader is referred to Fbaby, F. C., C. S. Taylob, and

J. D. Edwabds, “Laboratory Glass Blowing,” 2d ed., McGraw-Hill, New York, 1928,

and also the excellent illustrated treatment of Stbong, J., and others, “Procedures in

Experimental Physics,” Chap. I, Prentice-Hall, New York, 1941; Pebcival, G. A.,

The Technique of Glass Manipulation, Electronic Eng., April, 1944, pp. 453-457;

Bbeodueb, R. L., and C. H. Simms, Planning a Glassworking Department, Jour.

Sci. Instr., vol. 21, pp. 169-173, October, 1944; Holdman, J. D., “Techniques of Glass

Manipulation,” Prentice-Hall, New York, 1946.
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be used for sealing small leads into glass. Dumet, which is a copper-clad

iron alloy, is extensively used in receiving-tube stems of soft glass.*

The expansion coefficient of dumet is close enough to that of the soft

glasses so that it can be used in diameters under 0.040 in. Molybdenum
can be sealed into pyrex and nonex in small diameters. Corning G-71,

softest of the hard glasses, matches the expansion of molybdenum ver3^

closely and can be used to fairly large sizes. Some of the stainless steels

have expansion coefficients low enough to be used with this same glass.

Chrome-iron alloys containing 26 to 28 per cent chromium match G-6
glass quite well at low temperatures.

Copper-to-glass Seals. Copper may be joined to almost any type of

glass if the edge of the metal that is being joined to the glass is made
extremely thin. This is possible in spite of the fact that the coefficient of

expansion of copper is much greater than that of any of the glasses. A
thin piece of copper will give to high stresses because of its high ductility

and its low yield point. The technique of joining copper to glass was
perfected by Housekeeper, and such seals are often referred to as “ House-
keeper seals. Copper-to-glass seals are invariably used in transmitting

tubes for any seals requiring conductors larger than % in. in diameter.

Copper is prepared for sealing by cutting or rolling the edge of copper

tubing so that the edge is 1.5 ± 0.5 thousandths of an inch thick and
tapered back at about a 2.5-deg angle to about 40 thousandths thickness.

The joining of glass to the copper requires a high degree of skill and is

probably the most difficult of all the glassworking operations to perform.

Small seals, up to 3^^ in. in diameter, are commonly made with the glass

applied only to the inside of the copper edge. This is done because the

expansion of copper is greater than that of glass and the differential

expansion is therefore in the right direction to maintain the bond. For
seals larger than in. in diameter it is common to coat both the inside

and the outside of the copper edge with glass. This is done primarily to

prevent overoxidation of the thin copper at the seal. Copper must be
heated with an oxidizing flame. The black oxide is formed, and seal

temperature must be maintained constant throughout the operation.

The glass is bound to the black oxide. On further heating the excess

oxygen of the black oxide combines with more copper, changing it to the

red oxide. Simultaneously some of the black oxide dissolves in the glass.

* Dumet cores are 42 per cent nickel, and the copper coating is 20 to 25 per cent of

the total volume.

^ Housekeeper, W. G., Glass to Metal Seals, Jour. Artier. Inst. Elec. Eng., vol. 42,

pp. 954-960, September, 1923. Earliest seals were made by Kruh and Kraus.

Housekeeper introduced the featheredge.
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As a result, the final interface between the red oxide and the copper lies

at a new depth, created after the glass was fused to the outside. Mechan-

ically a rim of glass is first attached to the outside of the copper edge from

a piece of glass tubing and then detached from the glass tubing, leaving a

little glass projecting over the edge of the copper, which is then folded

over to cover the inner side. The glass tubing is then joined to this

“bead” of glass on the copper edge. The color of a properly fashioned

copper-glass seal is a bright red and will stand heating up to the softening

temperature of the glass. Seals are commonly made up to 6 in. in diam-

eter, and some as large as 10 in. in diameter have been made. The same

procedure is used in joining copper to all types of glass. Joining of copper

to pyrex is the most difficult, for there is a temperature interval of only a

couple of hundred degrees between the temperature at which the glass

softens and that at which the copper melts. The only disadvantages of

copper-glass seals are that they are relatively difficult to make and that

they have a relatively low mechanical strength because of the thinness of

the copper next to the glass.

In addition to the Housekeeper seal it is possible to make disk seals to

copper. This was anticipated by Housekeeper but only recently put

into extensive commercial use. Disk seals are used in tubes of the light-

house type and in reflex-klystron-oscillator tubes designed to work with

external cavities. The general method of construction consists in

stacking a circular copper disk with a circular hole in its center between

two equal-diameter pieces of glass and then heating the metal by torch or

preferably by r-f eddy currents until the copper disk becomes hot enough

to melt the glass, which forms a bond with the metal. The glass does not

cover the edges of the copper. If the copper disk is thin enough, 15

thousandths of an inch or less, then no intermediate materials are needed

between the glass and copper. As with the Housekeeper featheredge

seal, the difference between the expansions of the glass and copper is

taken up by the copper. Copper disks are frequently given a circular

crimp to weaken them to radial forces and allow radial contraction without

having to stretch the whole metal area. The surfaces of thick disks are

often coated with a layer of copper borate, which ensures maximum
bonding strength.

Kovar and Femico. Kovar and Fernico are trade names used by the

Westinghouse and General Electric Company, respectively, for some

nickel-cobalt alloys of iron having nonuniform expansion characteristics

Disc Seal Tubes, Gen. Elec. Rev., vol. 48, pp. 60-51, January, 1946.

® McArthur, E. D., Disc Seal Tubes, Electronics, vol. 18, pp. 98-102, February

1945.
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that match very closely the expansion of some commercial glasses.^-’

Pure metals have expansion coefficients that are virtually independent of

temperature. Ferromagnetic alloys, however, experience an increase in

their expansion characteristics at the temperature at which the alloy

becomes hot enough to lose its magnetic properties. The action is per-

fectly reversible, i.e., the magnetism is restored and the coefficient of

expansion reduced as the alloy is cooled. The composition of Kovar and

Fernico is as follows:

Alloy
Iron,

per cent

Nickel,

per cent

Cobalt,

per cent

Matching

glass

53.8 29 17 705A0, 705FN
705A0, 705FN1 54 28 18

Fernichrome 30 25 8 G8

The difference in contraction of the principal sealing glasses and metals

when cooled at a slow rate is shown in Fig. 21.40. It is seen that the iron

alloys match the glass characteristics quite closely over the entire tem-

perature range. As a result, the sealing of these metals to their corre-

sponding glasses is a relatively simple matter. No featheredges are

needed; in fact, edges as thick as }'s in. can be joined directly. Seals as

large as 4 in. in diameter can be made. Leads of Fernico wire in match-

ing glass set in a Fernico eyelet that is welded to a metal base are used

in the mass production of metal receiving tubes. As may also be seen

from Fig. 21.40, the reason why nonex seals fairly successfully to tungsten

is that the differential expansion is nearly zero in the annealing range.

Uranium nonex gives a better match and is sometimes used as an inter-

mediary between tungsten and pyrex glass.

Glass-to-porcelain Seals. The expansion characteristics of nonex glass

and some porcelains are close enough so that nonex can be sealed directly

to porcelain. Where a porcelain-pyrex joint is desired, nonex should be

used as an intermediary material.

Glass-to-mica Seals. Mica can be shaled to a special high-expansion

lead borosilicate glass having an expansion of coefficient of about 9.8

* Burgee, E. E., Expansion Characteristics of Some Common Glasses and Metals,

Gen. Elec. Rev., vol. 37, pp. 93-99, February, 1934.

2 Hull, A, W., and E. E. Burger, Glass to Metal Seals, Part I, Physics, vol. 5,

pp. 384-405, December, 1934.

® Hull, A. W., E. E. Burger, and L. Navais, Glass to Metal Seals, Part II,

Jour. Appl. Pkys., vol. 12, pp. 698-707, September, 1941.
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ppm per °C.‘ Mica-to-metal joints are more difficult to form, for the

metal invariably has a higher expansion coefficient than the mica, which

results in the mica becoming bowed on cooling. With proper inter-

mediary oxides and glass, mica can be sealed to copper with very little

resultant bowing. Window thicknesses may range from five to twenty-

thousandths of an inch in thickness and be as large as two inches in

diameter.

Metal-to-metal Sealing. Metals can be joined by suitable solders.

For demountable systems kept on a pump and not involving high tem-

peratures, brass can be used, joined by ordinary soft solder, the eutectic

proportions (lowest melting temperature) of tin and lead giving the best

results. Brass and soft solder cannot be used in tubes that are to be

sealed off, for brass is somewhat porous, evolves great quantities of gas,

and tends to vaporize its zinc at high temperatures. For tubes that are

to be sealed off, oxygen-free copper, most iron alloys, aluminum, and

beryllium can be used as vacuum-tight containers. Joining is most

satisfactorily effected by means of high-melting-temperature silver-

copper alloys melted in a hydrogen (reducing) atmosphere by means of a

tungsten filament or induction heater. This involves heating the metals

to a red heat, at which temperature the silver-copper alloys flow freely

and wet clean metal surfaces. For high-temperature work, gold-copper

alloys are also used. Gold has a lower vapor pressure than silver.

21.9. Metals Useful in Tube Construction. The properties required

of metals for use in vacuum-tube construction are rather numerous. In

general, no one metal meets all the requirements, but each metal in turn

has its distinctive advantages.^’®

Mechanically, a metal to be useful in vacuum-tube construction

should have a strength and ductility that permit easy forming of electrode

shapes. The strength must be retained at high temperature without

excessive crystallization to avoid deformation during degassing and sub-

sequent use. The stiffness and damping factor of the metal should be

high, to reduce vibration effects.

Thermally, the coefficient of expansion should be relatively low and,

* Donal, J. S., Jr., Sealing Mica to Glass or Metal to Form a Vacuum Tight Joint,

Rev. Sci. Instr., vol. 13, pp. 266-267, June, 1942.

* See Wise, R. M., Nickel in the Radio Industry, Proc. I.R.E., vol. 25, pp. 714—752,

June, 1937, for a detailed treatment of this subject with special reference to nickel.

This paper contains an extensive bibliography on the general subject of metals in

tubes.

’ Espb and Knoll, “ Werkstoffkunde der Hochvakuumtechnik,” op. cit., pp.

1-110. Obtainable from Edwards Bros., Ann Arbor, Mich. A classic source con-

taining the most extensive information available in book form.
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except for special applications, quite constant. Good thermal con-

ductivity is generally sought. Depending upon the application, metals

should have either a high reflectivity or a high thermal emissivity.

The vapor pressure at degassing temperatures should be low, while the

melting temperature itself should be well above the highest degassing

or operating temperature.

Electrically, a moderate conductivity is desired. Too low a conduc-

tivity introduces appreciable resistance and attendant losses, while too

high a conductivity makes spot welding difficult. Except for cathodes,

the primary and secondary emission should be low. Except for shielding

applications, the magnetic permeability should be low, and the metal

should be one that is readily demagnetized by a magnetic field.

Chemical freedom from oxidation at high temperatures simplifies

construction processes immensely. Resistance to corrosion by various

cleaning agents should be low. Most important of all, the metal should

absorb only a small amount of gas and give this up easily when heated

in vacuum.

In addition, materials should be relatively inexpensive and generally

available. Alloys having a wide range of physical characteristics as

determined by their chemical content are especially useful.

Nickel. Nickel is the metal that is most extensively used in forming

receiving-tube electrodes. It is easily drawn and formed. It stretches

easily and does not exhibit any sharp break at its yield point. Its

hardness and strength at high temperatures are good. It has thirteen

times the mechanical damping factor of iron and molybdenum. It

spot-welds well to almost all metals. Its expansion coefficient is nearly

constant with temperature, and its thermal and electrical conductivity

are good. When polished, nickel has an emissivity which ranges from

5 to 20 per cent of that of a black body, i.e., it makes a good reflector.

When carbon-coated, the thermal emissivity ranges from 80 to 94 per

cent of that of a black body, i.e., it makes a good radiator. Anodes
formed of nickel are usually carbon-coated to increase their radiation.

Vapor pressure is low at all but very high temperatures, 10“® mm of

mercury at a red heat. The work function of nickel is high, 5 volts,

but commercial nickel may have appreciable thermionic emission due

to barium contamination. Alloying about 4.5 per cent manganese
reduces both primary and secondary emission. Others of the desirable

properties are likewise present. As a result, nickel is an ideal metal

for tube construction in all applications except those where a high tem-

perature is involved.

Copper. The outstanding physical characteristics of copper are its

high thermal and electrical conductivity. As has also been mentioned.
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it can be sealed to all glasses by the Housekeeper technique. It is

extensively used as an anode material in water- and air-cooled tubes.

It is moderately porous and requires a thick wall to withstand atmos-

pheric pressure when hot. Likewise, it oxidizes readily and so cannot be

allowed to assume temperatures above a few hundred degrees centigrade.

It must be used in the oxygen-free form in all applications that involve

heating for red heat. Even within a vacuum, copper must be protected

from high temperatures, for it softens and vaporizes at relatively low

temperatures. Its high ductility and low yield point make it easy to

draw, form, and spin.

Aluminum. Aluminum is easy to work and is fairly noncorrosive to

other materials encountered in vacuum-tube construction. One valuable

property is that it does not sputter easily. However, it melts at too

low a temperature and absorbs too much gas to be very useful in sealed-off

tubes.

Molybdenum. Molybdenum has most of the excellent properties

of nickel except that it is somewhat harder to work and is more expen-

sive. Its relatively high melting temperature and low vapor pressure

make it useful in low-power transmitting tubes. It is readily spot-

welded to iron or nickel but not to tungsten. It absorbs oxygen when
heated to a dull red heat. Molybdenum is used in applications that

involve temperatures in the range of 200 to 500°C.

Tantalum. Next to tungsten, tantalum has the highest melting

temperature of all the metals. Its vapor pressure is very low. It is

easily formed and drawn. The metal is expensive as a result of the

relatively complicated vacuum processing required to put it into form

suitable for vacuum-tube construction. It is extensively used in radia-

tion-cooled transmitting tubes, where the electrodes are often run at a

red heat. It has a getter action that causes it to absorb gases, particu-

larly hydrogen, the maximum absorption occurring at 1000°C (cherry

red). The gases that have been absorbed are given off again at tem-

peratures of 1300°C and higher. Minimum temperature for getter action

is approximately 800°C. Tantalum is also used as an emitter in applica-

tions requiring specially shaped cathodes. Its work function is lower

than that of tungsten, with the result that its emission is greater at the

same temperature. Tungsten can, of course, achieve higher emission

because it can be heated to higher temperatures without melting.

Tungsten. Reference has already been made to some of the numerous

applications of tungsten in vacuum-tube construction; as an emitter

and filament wire and in some lead-sealing applications it has virtually

no substitute. Its high melting temperature makes it especially useful

in some vacuum-tube construction processes. It is used as a filament
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wire for silver-soldering operations. It is likewise used as a filament

heater in numerous metal-evaporation processes. It is one of the few

metals that can be used as a target in X-ray tubes. Numerous gauges

Fig. 21.41.—Relative prooerties of the principal
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and control devices make use of its large change of resistance with

temperature.

Tungsten is not readily drawn or formed. It must be hammered or

swaged into shape. As a result, it is principally available in wire or rod

form. Tungsten has a pronounced crystalline structure, which is

accentuated by heating. Tungsten filaments therefore become brittle

if overheated for appreciable periods of time. Tungsten is relatively

inactive chemically, which reduces contamination problems. It is

sometimes alloyed with molybdenum (W/Mo = to give a material

metals used in vacuum-tub? construction.
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that is more workable than tungsten itself and yet retains a high melting

temperature.

Relative Properties of the Metals. Metals other than those listed

separately above find many special applications in tube construction,

but those listed take care of the majority of the applications. The

relative properties of the principal metals used in vacuum-tube con-

struction are shown on the scale lines of Fig. 21.41.^ One of the most

important properties of a metal is its vapor pressure, which is an increas-

ing function of temperature. The last scale line gives the temperature

of which a metal has a vapor pressure of 10“® mm of mercury. This

determines the highest temperature to which a metal in a tube can be

raised during the exhaust process.

Spot Welding. In the construction of vacuum tubes the majority

of small metal-to-metal joints are formed by spot welding. Basically

the process of spot welding consists in passing a large current through

the joint to be welded. The joint is heated by the large current density,

of the order of thousands of amperes per square inch, to the point where

the metals melt and dissolve into one another, forming a weld.

Spot-welding machines consist of a set of pointed jaws supported by a

mechanical arrangement that brings the jaws together by the operation

of a foot pedal. The materials to be welded are placed between the jaws,

and pressure is applied by the foot pedal. Care must be taken in sup-

porting the work between the jaws to see that current will flow from the

jaws through the work and through the point to be welded. The jaws

are connected to a step-down transformer that gives a large current

through a closed circuit when the primary is closed by means of another

foot pedal. For most operations the jaws are made of copper and

because of their resulting high conductivity will have relatively little

heat developed at their point of contact with the work. Where welding

operations are at all critical, an electronic circuit should be used to control

the amount of current and the time duration of current flow. Many
welding operations require a current flow of hundreds of amperes for a

fraction of a second.

Not all metal combinations will spot-weld readily. Difficulties are

encountered with metals of high conductivity, high melting temperature,

and high oxidation tendencies. In Table XVI there is indicated the

relative ease with which different metals can be spot-welded to one

another.^

Spot welding forms only a part of the art of joining metals. In the

1 For more complete data than are given here the reader is referred to Espe and
Knoll, loc. cit.

‘ Espe and Knoll, ov. cit., pp. 135-130
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newer tube designs, extensive use is made of r-f brazing both in hydrogen

atmosphere and in air. This brazing process makes use of single shots

of r-f power (about 100 kc) where the pulses are of the duration of

0.001 to 0.1 sec for the whole weld. Arc welding is also employed in

both hydrogen and argon atmospheres. This is essentially atomic

welding. The gas is dissociated by the arc and then recombines on the

work, where it liberates energy in very concentrated form.

TABLE XVI
SPOT-WELDING PROPERTIES OF THE METALS

Monel
Con-
stan-

tan

o In-

var

Fe/Cr

CA)
A1 Cu Fe Ni Ta Mo

Tungsten 4 4 C3 2 A4 C4
Mo B B 4 4 C3 2 4 C4
Ta 4 A4 C3 2 3

Ni B 3 B B 2 3-4 3 1 1

Fe (pure) B 2 B 3 2-3 1

Cu 4 4 B3-4

A1 4 2 4

Fe/Cr {%)... 3

Invar B B B
Ni/Cr m... B B H
Constantan . .

.

B
Monel B I

1. Very good.

2. Good.

3. Difficult.

4. Bad or impossible.

A. Good with suitable flux.

B. Good with controlled current impulses.

C. Good for small wires with short controlled current impulses.

21.10. Insulators. In addition to glass, which is a good insulator at

low temperatures, mica and various ceramics are the principal insulators

used in vacuum-tube construction.

Mica is extensively and almost exclusively used as an insulator and

electrode spacer in receiving tubes. It is a potassium-aluminum silicate,

which in its natural form is known as “muscovite.” Mica as used in

tubes is a dehydrated muscovite. It has a crystalline structure that

permits it to be split into thin sheets. Sheets as thin as 0.5 thousandths

of an inch can be had. For receiving-tube use, the sheets are usually

of the order of 20 thousandths of an inch thick. Mica has one of the

highest specific resistances of all known insulators. Its dielectric con-
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stant of 5 to 8 makes it useful in electrical condensers. Its breakdown

voltage lies in the range of 60 to 200 kv per mm. It can be used at

temperatures up to 500°C.

Various ceramics are used as insulators in transmitting tubes that

involve higher temperatures and strength than mica can withstand and

furnish. Most useful are the various silicates, principally those of

magnesium. These materials are not machinable but can be formed

to almost any shape desired before they are fired. A compromise

on machinability has been achieved in some special materials, such

as Alsimag 222, which can be machined with a stellite or other hard

tool. For experimental work, soapstone, which is very soft, is often

machined to shape and then hardened by heating in hydrogen to a red

heat.

Porcelain, as has been mentioned, finds some applications where it is

necessary to get a glass-ceramic seal. It is not machinable but must be

formed in the desired shape before firing.

Aluminum oxide is often used as an insulating coating on filament

wires. The coating is obtained by either dipping or spraying from a

suspension of amyl acetate and then drying at about 600°C. A hard

vitreous coating is formed by flashing at 1500°C. Such insulating coat-

ings are most effective if made of a succession of thin layers each baked
individually. The resulting insulation has a sufficiently high mechanical

strength to make it useful for filament wires used in indirectly heated

cathodes. The electrical strength is likewise adequate for low-voltage

applications.

21.11. Degassing of Glass and Metals. Materials used in vacuum
tubes must be heated to drive off gases during the evacuation process.

Some of the gas is merely condensed on the surface, in which it is said

to be adsorbed. Other gases are in chemical combination with the

material, in which case they are said to be absorbed. With metals

there will generally be considerable quantities of gas trapped in crevices,

seams, and flaws. Such gases are said to be occluded.

In general, tubes should be degassed by heating at temperatures

appreciably greater than the temperatures the tube will encounter in

practice. The time required for outgassing may range from 15 min for

receiving tubes to hours or days for high-power transmitting tubes.

The gases encountered with glass are mostly adsorbed. A 40-watt

lamp bulb will evolve about 500 cm^ of gas (measured at room tempera-
ture and pressure) when heated at 500°C. About 90 per cent of this

gas is in the form of water vapor. Glasses should be heated at about

90 per cent of their annealing temperature to drive off adsorbed gases.

At higher temperatures the glass may soften, and some gases will be given
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off by decomposition of the glass. The time required for outgassing of

glass is about 15 min at top temperature. Heating may be done with

either soft gas flames or with a baking oven that surrounds the entire tube.

Heating with a baking oven allows a better control of temperatures,

though receiving tubes are frequently degassed with gas flames. Degas-

sing of a tube should not be begun until the tube has been evacuated to a

pressure of 10“^ mm of mercury or less.

The gases encountered with metals are mostly in the form of occluded

gases. Metal electrodes and parts may be degassed by heating to about

50 per cent of the melting temperatures of the metals. The amount of

gas evolved from a metal will depend upon the area multiplied by a depth

of a few thousandths of an inch, except for tungsten and molybdenum,

which have a laminar structure. The principal component of the gases

involved is generally carbon monoxide, which is present to the extent of

about 30 to 90 per cent of the total gases. The remainder of the gas

is mostly nitrogen, which comes off at a higher temperature than carbon

monoxide. Interestingly enough, when a metal has been degassed by

heating in a vacuum it will pick up very little gas upon subsequent

exposure to air at atmospheric pressure, if carefully handled. ' Degassing

of metals is commonly achieved by r-f induction heating. Radiation-

cooled transmitting tubes may be degassed by direct electronic bombard-

ment of the elements.

21.12. Getters. Getters are materials used in vacuum tubes to

clean up residual gases by chemical combination. The alkali metals

are most extensively used. Barium seems to be most effective in cleanup

action though magnesium, calcium, sodium, and phosphorus have also

been used.^-^ The getter material is usually enclosed in the pure metal

form in a small cup or wire cage of base metal and then reduced and

vaporized, after the tube is sealed off, by heating to a temperature of

about 700°C by r-f induction currents. Sometimes the getter material

is contained in a tube formed of a rolled nickel sheet, in which case the

vaporized metal escapes through the crack in the tube. The vaporized

metal deposits on the wall of the tube, care always being taken that it

does not deposit on any of the insulators. When gas molecules come

in contact with this layer, they will combine (except for the noble gases)

,

with the result that the vacuum gets progressively better with time. A

* Norton, E. J., and A. L. Marshall, The Degassing of Metals, Gen. Elec. Co.

Research Lab. Kept. 613, March, 1932.

^Ledbrer, E. A., and D. H. Wamslet, Batalum, a Barium Getter for Metal

Tubes, RCA Rev., vol. 11, pp. 117-123, July, 1937.

’ Lederer, E. a.. Recent Advances in Barium Getter Techniques, RCA Rev.,

vol. 14, pp. 310-318, January, 1940.
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getter in a receiving tube will usually be sufficient to improve the vacuum
obtained from a mechanical pump to 10“® mm of mercury in about 10

min. Previous treatment of the getter to remove gases seems to be more
important then the material of the getter itself.

The absorption properties of other metals may also be used in the

form of an auxiliary filament. Tungsten, molybdenum, and tantalum

can be used for this purpose if heated to 1000°C or higher. Most
interesting of all the metals in its cleanup action is zirconium.®'^ Zir-

conium will absorb 5 times its own volume of hydrogen at 400°C, while

at 1400°C it will absorb carbon monoxide and carbon dioxide as well

as 40 times its own volume of oxygen and 20 times its own volume of

nitrogen. At temperatures below 200°C, protective oxides and nitrides

form. For complete getter action, two filaments, one to work at 400°C
and one to work at 1400°C, are necessary. Zirconium-filament getters

are seldom used in commercial tubes but are useful in experimental

tubes. Zirconium is often used in the form of a sprayed powdered
coating applied to metal anodes. This gives increased thermal emissivity

and also a continuous getter action during operation.

* Andrews, M. R., and J. S. Bacon, The Comparison of Certain Commercial
Getters, Gen. Elec. Research Paper 574, June, 1931, also published in Jour. Amer.

Chem. Soc., pp. 1674-1681, May, 1931.

^ Dtjshman, “The Production and Measurement of High Vacuum,” op. cit. The
last half of this book is devoted to the subject gas sorption and degassing of materials.

^ Fast, J. D., Zirkon und seine hochschmelzenden Verbindungen, Philips Tech.

Rev., vol. 3, pp. 353-360, December, 1938.

‘ Fast, J. D., Metals as Getters, Philips Tech. Rev., vol. 5, pp. 217-221, August,

1940.
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PROPERTIES OF THE ELEMENTS
A. Atomic Weights and Numbers

Sym-
bol

Atomic

number
Atomic
weight

Sym-
bol

Atomic
number

Atomic

weight

Aluminum .... A1 13 26.97 Molybdenum .

.

Mo 42 95.95

Antimony .... Sb 51 121.76 Neodymium. .

.

Nd 60 144.27

Argon A 18 39.944 Neon Ne 10 20.183

As 33 74.91 Nickel Ni 28 58.69

Barium Ba 56 137.36 Nitrogen N 7 14.008

Beryllium Be 4 9.02 Osmium Os 76 190.2

Bi 83 209.00 Oxygen 0 8 16 0000
B 5 10.82 Palladium Pd 46 106 7

Bromine Br 35 79.916 Phosphorus P 15 30.98
Cadmium Cd 48 112.41 Platinum Pt 78 195 23

Calcium Ca 20 40.08 Potassium K 19 39 096

Carbon C 6 12.010 Praseodymium. Pr 59 140.92

Cerium Ce 58 140.13 Protoactinium Pa 91 231.

Cs 55 132.91 Radium Ra 88 226 05

Cl 17 35.457 Radon Rn 86 222.

Chromium .... Cr 24 52.01 Rhenium Re 75 186.31

Cobalt Co 27 58.94 Rhodium Rh 45 102.91

Columbium . . . Cb 41 92.91 Rubidium Rb 37 85.48

Copper Cu 29 63.57 Ruthenium .... Ru 44 101.7

Dysprosium . .

.

Dy 66 162.46 Samarium Sm 62 150.43

Er 68 167.2 Scandium Sc 21 45 10

Europium .... Eu 63 152.0 Selenium Se 34 78.96
P 9 19.00 Si 14 28 06

Gadolinium . . . ^Gd 64 156.9 Silver Ag 47 107.880

Gallium Ga 31 69.72 Sodium Na 11 22 . 997
Germanium . .

.

Ge 32 72.60 Strontium Sr 38 87.63

Gold Au 79 197.2 Sulphur s 16 32 06

Hf 72 178.6 Tantalum Ta 73 180 88

Helium He 2 4.003 Tellurium Te 52 127 61

Ho 67 164.94 Tb 65 159 2

Hydrogen H 1 1.0080 Thallium T1 81 204.39

Indium In 49 114.76 Thorium Th 90 232 12

I 53 126.92 Thulium Tm 69 169 4

Ir 77 193.1 Tin Sn 50 118 70

Fe 26 55.85 Titanium Ti 22 47 90

Krypton Kr 36 83.7 Tungsten W 74 183.92

Lanthanum. . . La 57 138.92 Uranium U 92 238.07
Pb 82 207.21 Vanadium V 23 50 95

Li 3 6.940 Xenon Xe 54 131 3

Lutecium Lu 71 174.99 Ytterbium .... Yb 70 173.04

Magnesium . . . Mg 12 24.32 Yttrium Y 39 88.92
Manganese . . . Mn 25 54.93 Zinc Zn 30 65.38
Mercury Hg 80 200 . 61 1

Zirconium
|

Zr 40 91.22
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APPENDIX II

DIFFERENTIAL OPERATORS AND
VECTOR NOTATION 1

1. Differential operators for rectangular coordinates (mutually perpem
dicular unit vectors c,, Oy, a,).

Gradient

:

-E = gradient F = VF = (a,
|^

+ a.

Components

:

^ T/grad, F = ^
grad„ F = ^
grad, F = ^

The gradient of any scalar quantity is always a vector quantity.

Divergence:

Divergence E = divE^V-E = ^ +^ +^dx dy dz

The divergence of any vector quantity is always a scalar quantity.

Qy Qz

curl E ^VXE = ^ ^ ^dx dy dz

E^ Ey E^

* For the development of the relations of this appendix and further information on

vector notation and relations see

Skilling, H. H., “Fundamentals of Electric Waves,” Wiley, New York, 1942.

Harnwell, G. P., “Principles of Electricity and Electromagnetism,” McGraw-
Hill, New York, 1938.

Stratton* J. A., “Elektromagnetic Theory,” McGraw-Hill, New York, 1941.
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Components:

curli E

curly E

dE^

dy

dE^

dz

curlj E = SEy

dx

dEy

dz

dE,

dx

dE^

dy

The curl of a vector quantity is always a vector quantity.

Laplacian

:

dW dW dW= 4- -I-

dx‘^^ dy^ ^ dz^

The Laplacian of a scalar quantity is always a scalar quantity.

2. Differential operators for cylindrical coordinates (mutually perpen-

dicular unit vectors Or, a^, Oz).

Gradient

:

—E = gradient V = W

Divergence:

div £ = V •

Curl:

Or rae Cz

± ^ ±
dr dd dz

Er rEt Ez
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Components:

,
_ 1 dEi dEf

curU E = -
r dd dz

curio E =

curL E

dEr _^
dz dr

1 d(rEe) 1 dEr

r dr r dd

Laplacian:

rdr\ dr ) r^ dd^ dz^

3. Differential operators for spherical coordinates (mutually perpen-

dicular unit vectors Or, a«, a^).

Gradient:

—E = gradient F = VF
Components:

, jr dV 2
gradr F = —

|Sr L

—

^ T/
^dV

gradoF = --^ rsin6d(p

grad, = 1 dV
r sin d d>p

irsinO

Divergence:

div £ = V • £ =— (r2£,) -f —^ ^ (sin dEe) + _J_ A (r^dr ^ rsmddd^ ' ^ r sin d d<p\d<p J

curl E = V X E =

Components:

Or rOfl r sin d a,

1 ± d ^
r^ sin d dr dd d<p

Er rEe r sin d £,

r Sin 0 L dd dtp J

curio E = ——^ _ i
r sin d dtp ’r dr

curl E = -\
rL ar dd

^
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Laplacian:

sin e dO ® 60

4. Differential operators for general orthogonal coordinates (mutually

perpendicular unit vectors Oi, a^, a^).

hi, hi, and hs are scale factors such that an element of length is given

by
ds^ = ht^ dui^ + hi^ dui^ + hz^ duz^

Gradient

:

+
1 dW
sin 0 d<p^

Components:

grad„, V

grad„, V

gradu, V

—E = gradient V =

= iiK
hi dui

=
hi dUi

=
ha dUa

TV

Divergence

:

^ - si; [^4; + 4. + 4 <'“«•)]

where

Curl:

E — OiEi “h QiEi Qa^a

Laplacian:

curl £ = V X E = 1

hihiha

hiQi haOa

d d d

dui du2 dUa

hiEi haEa

1 r /^3 ^ ^ ^
hihi

hihihal^duiy hi duij dUi\ hi dUiJ du3\ ha dUaJ

_



APPENDIX III

A NOTE ON MRS UNITS

Tn this book there are used rationalized practical mks units. Much
has been written on the subject of units. This section is intended to be

not an exposition of the topic but rather a group of comments that will

aid the student in using mks units.

In the mks system of units, distance is measured in meters, mass in

kilograms, and time in seconds. The term “rationalized” means

that the defining constants of the system have had the factor 4ir included

in them in such a way that Maxwell’s equations have the simplest

possible form. The term “practical” indicates that the common
electrical quantities such as potential, current, power, charge, and

resistance are expressed in the practical units of volts, amperes, watts,

coulombs, and ohms. This latter simplifies things greatly, for no con-

version factors need be applied for the common electrical quantities.

It may be argued that it would be more appropriate to use rationalized

practical cgs units in a book on vacuum tubes than the corresponding

mks units because it is easier to think in terms of coulombs per cubic

centimeter than in terms of coulombs per cubic meter, etc. The mks
units have been used, however, because they are so extensively employed

in books and papers on electromagnetic theory and so will ordinarily be

reasonably familiar to the student. It is probably a simpler matter to

shift a decimal point than to remember two sets of constants.

The basic constants of the rationalized practical mks units are the

permeability and dielectric constant of free space, which have values of

/io = 47r X 10“^ = 1.2576 X 10“® heniy per meter

and

*0 = X 10“® = 8.8485 X farad per meter
odtt

The dimensions of these units become apparent if one works out the

expression for the inductance of a long solenoid and the capacity of a

parallel-plate condenser in these units. The resulting expressions are

L = nN^
area

length

817
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where N is the number of turns, and

C = t ;— farads
spacing

Although the numerical values of the two fundamental constants given

above look very awkward, they may be remembered or quickly derived

by virtue of their relation to two other well-known physical constants.

One of these is the velocity of light, which has the value

c = —-^= = 3 X 10* meters per sec
VAioSo

The other is the so-called “intrinsic impedance of free space,” which

is the ratio of the electric- to the magnetic-field strength in a plane-

polarized wave,

n = ^ = Jf^ = 12(hr = 377 ohmsH \Eo

which by coincidence is the same as the angular frequency of a 60-cycle

wave. From the above it is seen that

and
1

In rationalized practical mks units, Maxwell’s equations have the form

div D = p

div B = 0

curl E = —B
curl H = b + J

This set of equations differs notably from the corresponding equations

written in Gaussian units by the fact that all the numerical coefficients

are unity. In particular, the factors c and 47r do not appear. This

means that the factor 4x and c have been absorbed into the constants p
and E. Unfortunately, if the factor 4w is suppressed in one place it will

necessarily crop out in another. In any rationalized system of units

the factor 4x will not appear in any relations involving rectangular

coordinates, but it will appear in relations involving spherical coordinates.

This is just the reverse of the situation encountered with unrationalized

units, of which the Gaussian units are an example. Since rectangular

components are used more frequently than spherical components in
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vacuum-tube ptoblenis and for that Matter in virtually all except antenna-

radiation problems, the rationalization seems justifiable.

So far it seems that the rationalized practical mks units achieve some

TABLE XVII
RELATIONS BETWEEN THE PRINCIPAL PHYSICAL, MAGNETIC, AND
ELECTRIC QUANTITIES IN THE PRINCIPAL SYSTEMS OF UNITS

Rationalized

practical mks

Length ,

1

1 meter

Mass, TO .... 1 kilogram

Time, t. 1 second

Force, F. 1 newton

Work, energy, £ 1 watt-second

1 joule

1 meter-kilogram

Power, W . 1 watt

Charge, q 1 coulomb

Current, I 1 ampere

Electric field, E 1 volt per meter

Potential difference.

Or emf, V 1 volt

Electric-flux density. 1 coulomb per

D square meter

Magnetic field, H . . .

.

1 ampere turn per

meter

Magnetic-flux den- 1 weber per square

sity, B meter

Resistance, R 1 ohm

Inductance, L 1 henry

Capacity, C 1 farad

Permeability of free 47r X 10”’ henry per

Space, Mo meter

Dielectric constant of
^ farads per

free space, co 36,r X 10®

L

meter

Electrostatic

100 centimeters

1,000 grams
1 second
10* dynes

10’ ergs

Magnetic

100 centirneters

1,000 grams
1 second
10* dynes

10’ ergs

10’ ergs per second 10’ ergs per second
3 X 10® statoou- 10~’ abcoulomb
lombs

3 X 10® statamperes] 10”’ abampere
1

statvolt
3 X 10*

per centimeter

}ioo statvolt

3 X 10*

127r X 10’

1

3 X 10*

1
statohm

9 X 10”

-

9 x\o”
9 X 10” statfarads

9 X JO’*
(seconds

per centimeter)*

Unity

10* abvolts per cen-

timeter

10* abvolts
10”*

4 TT X 10”* oersted

10* gausses

10® abohms

10® abhenry

10”® abfarad

Unity

x̂\o®°
(seconds

per centimeter)®

simplifications of formulas in return for some other slight disadvantages.

Another factor to be considered is that in the system of units used here

magnetic-fiux density does not equal magnetic field but rather

B=
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It is important to distinguish between B and H. Likewise, electric-

flux density does not equal electric field but rather

D = tE

In both the above relations there is a big difference in the numerical

values of the flux-density and field factors even for free space.

The price that is paid for reducing the common electrical quantities

to practical units is that some other quantities appear in relatively

unfamiliar units. Thus the unit of force becomes the newton, which is

equal to 10® dynes and is sometimes known as the “dyne-five.” The

magnetic units are a little strange, too. The magnetic field H appears

in units of ampere turns perimeter, which, however, makes good physical

sense. The magnetic-flux density appears in units of webers per square

meter, each one of which is equal to 10^ gausses. These are not too

dfficult to remember, however.

The relation between the most commonly used quantities in electro-

static, electromagnetic, and rationalized practical units are given in

Table XVII. Quantities in any row are equal.
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APPENDIX VI

PRINCIPAL PROPERTIES OF THE
BESSEL FUNCTIONS

Differential equation of the Bessel function

:

dPy
,

\ dy
, { ^ n^\ .

Form of solution;

y = AJ„(x) + BNnix)

where Jn is the nth-order Bessel function of the first kind and Nn is

the nth-order Bessel function of the second kind, also known as the

“Neumann function.”

Series expansion of the Bessel function

:

Z
I

± L
22(n + 1)

^ 2^2 !(n -|- l)(n -h 2)
^

2'*+«A:!(n -h fc)'-

Small-value approximations {x less than Ko of first root):

Jnix) =

Nnix) =
-(n - 1)! 2”

in = 1, 2,

Large-value approximations (x larger than third root)

:

* Jahnke, E., and F. Emde, “Tables of Functions,” Teubuer, Berlin, 1933.

* Bubrington, R. S., and C. C. Torrance, “Higher Mathematics,” pp. 432-442,

McGraw-Hill, New York, 1939.

® Hansen, W. W., and V. R. Woodyard, “A New Principle in Directional Antenna

Design,” Proc. I.R.E., vol. 26, p. 338 March, 1938.

* Smith, D. B., L. M. Rodgers, and E, H. Traub, Zeros of Bessel Functions, Jmir .

Franklin Inst., vol. 237, pp. 301-303, April, 1944.
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Roots of the Bessel function: Unm = wth root of nth-order function.

Moi = 2.405 Mil = 3.832 M21 = 5.135 M31 = 6.380

Mo2 = 5.520 Mi2 = 7.016 M22 = 8.417 M32 = 9.761

Mo3 = 8.654 mi3 = 10.173 M2s = 11.620 Ust = 13.015

Mo4 = 11.792 Mu = 13.324 Uu = 14.796 M34 = 16.223

Roots of first derivative of Bessel function: M'„m = Trath root of

nth-order function.

m'oi = 3.832 m'u = 1.841 M'21 = 3.054 m'si = 4.201

m'o2 = 7.016 m'i2 = 5.331 M'22 = 6.706 u'st = 8.015

m'o3 = 10.174 m'i3 = 8.536 M'23 = 9.970 u'33 = 11.346

m'o4 = 13.324 m'u = 11.706 M'24 = 13.170 M'34 = 14.586

Integral definition of the Bessel function:

ux) = - r
IT Jo

COS (x sin (f>
— n4i) d(t>

Other important relations:

= -lUx)+J„-r(x)

dJn ^ T J

'dx
~ x'^”

djn It 1 t- 2^«-l - 2-^n+l

cos (z sin x) = Jo(z) 4- 2[J2(z) cos x -|- Ji{z) cos 4a: -|- • •
•

]

sin (z sin x) = 2[Ji{z) sin x -j- J3(z) sin 3x -f-
• •

•
]

cos (z cos x) = Jo(z) — 2[J2(z) cos 2x — Jiiz) cos 4x -1- • •
•

]

sin (z cos x) = 2[Ji(z) cos x — /sCz) cos 3x ]



APPENDIX VII

VALUES OF AS A FUNCTION OF ^ FOR USE IN
r

EQ. (15.63)*

{tc = radius of emitter; r = radius at any point P; a* applies to case where P is

outside emitter, r > Tc', (—a)’ applies to case where P is inside emitter, Tc > r)

r re— or —
re r

(-«=)
r re— or —
re T

(-«)«

1.0 0.0000 0.0000 6.5 1.385 13.35

1.05 0.0023 0.0024 7.0 1.453 15.35

1.1 0.0086 0.0096 7.5 1.516 17.44

1.15 0.0180 0.0213 8.0 1.575 19.62

1.2 0,0299 0.0372 8.5 1.630 21.89

1.25 0.0437 0.0571 9.0 1.682 24.25

1.3 0.0591 0.0809 9.5 1.731 26.68

1.35 0.0756 0.1084 10 1.777 29.19

1.4 0.0931 0. 1396 12 1.938 39.98

1.45 0.1114 0.1740 14 2.073 51.86

1.5 0.1302 0.2118 16 2.189 64.74

1.6 0.1688 0.2968 18 2.289 78.56

1.7 0.208 0.394 20 2.378 93.24

1.8 0.248 0.502 30 2.713 178.2

1.9 0.287 0.621 40 2.944 279.6

2.0 0.326 0.750 50 3.120 395.3

2.1 0.364 0.888 60 3.261 523.6

2.2 0.402 1.036 70 3.380 663.3

2.3 0.438 1.193 80 3.482 813.7

2.4 0.474 1.358 90 3.572 974.1

2.5 0.509 1,531 100 3.652 1144

2.6 0.543 1.712 120 3.788 1509

2.7 0.576 1.901 140 3.903 1907

2.8 0.608 2.098 160 4.002 2333

2.9 0.639 2.302 180 4.089 2790

3.0 0.669 2.512 200 4.166 3270

3.2 0.727 2.954 250 4.329 4582

3.4 0.783 3.421 300 4.462 6031

3.6 0.836 3.913 350 4.573 7610

3.8 0.886 4.429 400 4.669 9303

4.0 0.934 4.968 500 4.829 13015

4.2 0.979 5.528 600 4.960

4.4 6.109 800 5.165

4.6 1.063 6.712 1000 5.324

4.8 1.103 7.334 1500 5.610

5.0 1.141 7.976 2000 5.812

5.2 1.178 8.636 5000 6.453

5.4 1.213 9.315 10000 6.933

5.6 1.247 10.01 30000 7.693

5.8

6.0

1.280

1.311

10.73

11.46

100000 8.523

*LANOMinB, I. L., and K. Blodobtt, Currents limited by Space Charge between Concentris

Spheres, Phyt. Rev., vol. 24, p. 53, July, 1924.
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length of a thin lens.

826



soqujTl

'aouopnpuoasue-ix

APPENDIX IX

Nomographic chart relating amplification factor, mutual conductance,

and plate resistance of a vacuum tube.
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APPENDIX X

DESIGNATION OF FREQUENCY BANDS^

Title Abbr. Wave length Frequency

Very low frequency : VLF 33.3- 10 km 10- 30 kc
Low frequency LF 10- 1 km 30- 300kc
Medium frequency MF 1,000-100 meters 0.3- 3 me
High frequency HF 100- 10 meters 3- 30 me
Very high frequency VHF 10- 1 meter 30- 300 me
Ultra^high frequency UHF 1- 10 cm 300-3,000 me
Super-high frequency SHF 10- 1 cm 3- 30 kmc

‘ As announced by Federal Communications Commission, Mar. 2, 1943.



PROBLEMS

CHAPTER 4

4.1. What fraction of the electrons emitted from an oxide coating at a tem-

perature of 1000°K can overcome a retarding voltage of 0.5 volt?

4.2. What is the emission-current density predicted by the emission equation

[Eq. (4.3)] for tantulum at 2500°K? What is the corresponding emission-current

density of tungsten at 2500°K? At what temperature will the emission-current

density of tungsten be five times as great as at 2500°K?
4.3. Using the data given in Table 2, calculate the operating characteristics

and life for a 10 per cent evaporation of mass of an ideal tungsten filament having

a length of 2 cm and a diameter of 0.25 mm w'hen heated to 2600°K.

a. Power radiated

W = W'ld = 263.0 X 2 X 0.025 = 13.17 watts

b. Resistance

R = R'l= 98.66 X 10”'

^

c. Filament current

I/ = I/ X = 1.632 X 0.0251^ = 6.45 amperes

d. Voltage drop

V, = V/ X = 161.1 X 10-’ X
0^, = 2.04 volts

e. Emission current

= 376 hr
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4.4. Calculate the operating characteristics and life for a 10 per cent evapora-

tion of mass of an ideal tungsten filament having a length of 1 in. and a diameter

of 10 thousandths of an inch when operated at 2850°K.4.6.

Design a tungsten filament in. long that will give an emission of 0.500

ampere and have a life of 1,000 hr. Find the emission efficiency of this filament

in milliamperes per watt.

4.6. Calculate and plot the emission efficiency of tungsten filaments in milli-

amperes per watt over a temperature range of 2000 to 3000°K. Show that the

emission efficiency is independent of the length and diameter of the filament.

4.7. Calculate the emission of an ideal tungsten filament whose length is

4 cm and whose diameter is 0.5 mm over the temperature range of 2000 to 3000°K.

Plot the results on power-emission paper to show that the curve is a straight line

when presented in this form. Plot contours of constant emission efficiency in

milliamperes per watt on this same sheet.

4.8. What is the emission-current density from a tungsten filament 1 cm
in length and 0.2 mm in diameter operating at a temperature of 2700°K when the

surface gradient of potential is 500 volts per cm? What is it when the surface

gradient results from a cylindrical electrode surrounding the cathode that is

2 cm in diameter and raised to a potential of 500 volts?

4.9. Determine the emission constants A and b appearing in Richardson’s

equation for thoriated tungsten and barium-strontium oxide from the intercept

and slope of the lines of Fig. 4.5.

4.10. What are the operating characteristics of a thoriated tungsten filament

1 in. in length and 10 thousandths of an inch in diameter operating at 2100°K7

Use the data of Table II for heating power and the constants determined in

Prob. 4.9 to determine the emission.

4.11. What are the relative emission-current densities of a pure tungsten

filament and a thoriated tungsten filament at 2500°K? For the case of a filament

2 cm in length and 0.1 mm in diameter what are the relative emission efficiencies

in milliamperes per watt?

4.12. Using coefficients determined as in Prob. 4.10, determine the emission-

current density of a barium-strontium oxide coating at 1000°K.

4.13. Using the emission efficiency data of Fig. 4.7, estimate the emission

of the oxide-coated cathode of a type 27 tube. The cathode dimensions are

0.065 in. in diameter by 14 mm in length. The cathode is heated by a voltage of

2.5 volts, which produces a current of 1.75 amperes. How does the emission

current compare with the rated space-charge-limited current of 5 ma? Suggest

bow you could measure the emission current without damaging the tube.

CHAPTER 6

6.1. Two particles are suspended by strings of the same length, L, from the

same point. Each has a mass m and a charge q. As a result of the forces arising

from the like charges the particles will separate. Show that the angle d which

each string makes with the vertical in the equilibrium position is given by

AmgL^ sin® 0 = g® cos 0(4)rto)
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6.2. Two point charges are located as follows

:

+200 coulombs at a: = 0, y = 0 meters.

— 100 coulombs at a: = 1, y = 0 meters.

. Sketch a curve showing how potential varies along the line passing through

the charges, outside the charges, and between.

h. At what points on the line is the potential zero?

c. At what point on the line is a gradient of potential zero?

.

3. Two parallel line charges are spaced 1 meter apart. If the first is located

at the point (0,0) and has a positive charge of +2 units per meter and the second

is located at (0,1) and has a charge of —1 unit per meter, sketch the relative

potential along a line passing through the two line charges and perpendicular to

both. If the potential midway between the wires is zero and if it is —100 volts

at (0,0.9), where else is it zero? Where is the gradient of potential zero?

6.4. Show that the electric intensity inside of an infinitely long straight

cylindrical rod of radius a which has a charge of X per unit length uniformly dis-

tributed throughout its cross section is

Er
\r

2irti)a^

6.6.

Obtain the potential plot about two parallel equally charged wires by
drawing logarithmically spaced equipotential circles about individual wires,

obtaining the potentials at the intersections of the circles by addition, and then

drawing equipotential contours through points of the same value of potential.

Let the wire diameter be one-twentieth of the spacing between wires, and assume
that each wire is charged to +100 volts.

6.6. Work Prob. 5.5 for the case of one wire charged to +100 volts and the

other charged to — 100 volts.

6.7. Prove that the electric intensity inside a uniformly charged spherical

shell is zero.

6.8. What is the gradient of potential between the conductors of a con-

centric cable whose outer and inner radii are r2 and ri, respectively, whose inner-

conductor potential is zero, and whose outer-conductor potential is Fi? Find
the potential at any radius between the conductors.

6.9. Evaluate the potential at a point that lies a distance c from a uniform

spherical distribution of charge of radius a. Let the charge per unit volume of

the spherical distribution be p. Show that tbe resulting potential outside the

charge is the same as though the total charge were concentrated at the center of

the sphere. Do this by integrating the effects of elements of charge in spherical

coordinates.

6.10 . Given a linear distribution of charge along a line segment of length I

and density of X coulombs per meter. Show that the potential gradient at a

distance a from the end of the line segment of charge along the extended line

segment is

^ ^ -X?
dx 4irco(o + 1)

Solve this problem by taking a summation of intensities.
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6.11. Solve Prob. 5.10 by evaluating the potential at any point along the

extended line segment of charge and then taking the derivative.

6.12. Sketch the potential-flux pattern around an exterior right angle of a

conductor, i.e., the field in the vicinity of a corner of a long square charged con-

ductor. Make use of the properties listed in the text.

6.13. Calculate and plot equipotential and flux lines outside of a right-angle

corner of a conductor by means of the function W = Compare the results

with the sketch of Prob. 5.12.

6.14. Obtain by integration a solution of Laplace’s equation in one dimension

for rectangular coordinates. Show that the potential varies linearly with distance

while the gradient of potential is constant.

6.16.

Obtain by integration a solution of Laplace’s equation in polar coordi-

nates when there is no variation of potential with angle. Show that potential

varies logarithmically with radius while the gradient of potential varies inversely

as radius.

6.16. A concentric conductor cable consists of a circular inner conductor

2 cm in diameter inside of an outer conductor of square cross section that meas-

ures 4 cm per side. Assume that the inner conductor is at a direct potential of

100 volts while the outer conductor is at a direct potential of 0 volts. Sketch

flux and potential lines in the space between conductors. Estimate the gradient

of potential at

a. The surface of the center conductor opposite a corner of the outer

conductor.

b. The surface of the center conductor closest to the outer conductor.

c. The surface of the outer conductor closest to the center conductor.

d. At a corner of the outer conductor.

Estimate the capacity per unit length of line by taking the ratio of charge to

potential. Remember that each flux line terminates on one unit of charge

when the field plot is given by curvilinear squares and the adjacent equipotentials

are separated by unit potential.

6.17. One section of a plane-electrode triode is approximated by the following

potential lattice

100 volts 100 volts 100 volts 100 volts 100 volts

a b c b a

d e f e d

g h — 10 h g

i j k j i

0 volts 0 volts 0 volts 0 volts 0 volts

The top row represents the plate at a potential of 100 volts. The bottom

row represents the cathode at a potential of 0 volts. The grid is represented by

the number in the fourth row of the third column and is at — 10 volts. The

points a, d, g, i are midway between grid wires on a line of symmetry. Find

potentials at the lettered points by first assuming reasonable values and then

correcting several times around by means of Eq. (5.44).
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E.18. Prove that the function W = In Z is analytic for finite values of Z
other than zero and infinity.

6.19. Prove that the function W = is analytic for finite values of Z other

than infinity.

6.20. Separate the function W = In Z into real and imaginary parts U and V,

respectively. Show that U = const and V = const form orthogonal families of

curves. Show that both U = const and V = const are solutions of Laplace’s

equation. Show also that the Cauchy-Riemann conditions are satisfied.

6.21. The transformation W = Z'>- transforms the upper half of the Z plane

into the first quadrant of the W plane, giving rise to the field configuration

associated with an inside right-angled corner. Show that the equipotential

lines inside the right-angled corner are given by rectangular hyperbolas. Show
that the flux lines are also hyperbolas. Show that the gradient of potential

along the u and v axes in the W plane is normal to the axis and proportional

to the distance from the origin.

6.22. Use the function W = Zy* to obtain the flux and potential plot for an
internal 45-deg corner between two plane conducting surfaces. Do this by
letting W = RZ(t) and Z = rZdnnd then transforming the lines x = r cos 0 = const

and 2/
= r sin 0 = const by means of the transforming function.

6.23. The function W = Z^ transforms the upper half of the Z plane into

the entire W plane and gives the potential configuration about the edge of a sheet

conductor corresponding to the positive real axis of the W plane. Find the

equations of the potential and flux lines in the W plane. Show that these

are orthogonal sets of parabolas. Find the gradient of potential at any point

in the W plane.

6.24. Show that the transformation W = In sin Z gives the field configuration

of a row of parallel equidistant line charges having the same charge, t.e., the field

about a grid of parallel wires.

6.26.

Show that the transformation W = in tan Z gives the potential about

a row of parallel equidistant line charges with alternate positive and negative

charges.

6.26.

Show that the function W = In gives the potential and flu.x

pattern about a two-wire transmission line having wires located at (a,0) and
(— a,0) in the Z plane. Find the equations for the flux and potential lines to

show that these are orthogonal families of circles.

6.27.

Show that the function TF = In (Z’ — 1) gives the field about n line

charges uniformly distributed around the unit circle, i.e., the field of a squirrel-

cage grid.

CHAPTER 6

6.1. An electron is liberated with zero velocity at the cathode of a plane-

electrode diode whose electrode spacing is 5mm and whose cathode-plate potential

difference is 100 volts. With what velocity does the electron strike the plate?

What energy has the electron acquired in moving from cathode to plate? How
long does it take the electron to make the trip? If a singly charged hydrogen
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ion and a doubly charged oxygen ion are liberated at the plate, give the velocity,

energy, and time associated with their arrival at the cathode.

6.2. An electron is liberated with zero velocity at the cathode of a cylindrical-

electrode diode whose cathode radius is 0.2 cm and whose concentric plate radius

is 1.0 cm. The cathode-plate potential difference is 100 volts. With what

velocity and energy does the electron arrive at the plate? How long does the

trip take? If a singly charged hydrogen ion and a doubly charged oxygen ion

are liberated at the plate, with what velocity and energy and at what time will

they arrive at the cathode? Refer to Fig. 8.14 for time factors.

6.3. An electron with a velocity acquired by falling through 10 volts is

injected into a region with a retarding potential gradient of 2 volts per cm. How
far will the electron travel before having its direction reversed? How long will

it take the electron to return to its starting point? With what velocity will the

electron return?

6.4. An electron is injected into the region between two parallel planes sepa-

rated 1 cm and differing in potential by 60 volts, the resultant field being retarding.

If the electron has a velocity acquired by falling through 100 volts of potential,

find the point at which the electron will strike one of the electrodes, the velocity

components with which it will strike, and the time of flight when the angle with

which the electron enters is 0, 30, 45, and 60 deg with the normal to the electrodes.

Tabulate results.

6.6.

Solve Prob. 6.4 when the potential between the plates is 50 volts and the

field is accelerating.

6.6. In Prob. 6.4 find the location of points closest to the second plate on

trajectories of those electrons which are returned to the first plate.

6.7. An electron is injected at an angle of 60 deg with the normal to the plates

into a region between two parallel plates separated 1 cm and having a retarding

field of 20 volts per cm. There is a small hole in the second plate displaced 3 cm
from the point at which the electron enters. Assuming that the transverse

component of electron velocity is in line with the point of entrance and the hole

in the second plate, with what velocity must the electron enter the retarding field

region in order to pass through the hole in the second plate?

6.8. Derive Eq. (6.25).

6.9. Through what potential must an electron fall in order to be accelerated

to 0 1, 0.5, 0.9, 0.95 of the velocity of light? What is the relative transverse

mass of the electron at each of these velocities?

6 .10 . At what velocity is the transverse mass of an electron increased 1, 10,

and 100 per cent? What are the corresponding accelerating potentials?

6.11 . Derive Eq. (6.38).

6.12. Calculate and plot curves of the transverse and longitudinal mass of an

V
electron as a function of —

c

6 .13 . Calculate and plot curves of the transverse and longitudinal mass of an

electron relative to the rest mass as a function of potential.

6.14 . Derive an expression for the deflection of a cathode-ray-tube beam by a

set of deflecting plates, the expression to include the relativity correction for
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mass and velocity. Express the deflection as a fraction relative to the deflection

in the absence of relativity effects.6.16.

Calculate and plot a curve of electron velocity in equivalent volts

required to produce a circular path 1 cm in diameter when an electron is moving
in a magnetic field ranging in intensity from 100 to 10,000 gausses.

6.16. Singly ionized lithium atoms with atomic weights of 6 and 7 are acceler-

ated by a potential of 2,000 volts and then injected into a region of constant

transverse magnetic field of density 800 gausses. The atoms are allowed to

traverse a half circle before striking a photographic plate. What will be the

separation of the marks on the photographic plate corresponding to the two
isotopes of lithium?

6.17. An electron is accelerated through a given potential and then injected

perpendicular to the elements of a cylinder, 10 cm in diameter, that has a con-

stant magnetic field of strength 10 gausses parallel to its axis. There is a hole in

the cylinder a quarter of a full circumference around the cylinder on a circle at

which the electron enters. Through what potential must the electron be acceler-

ated before entering the cylinder in order to pass out of the cylinder through this

hole? There is a second hole a quarter of a circumference around the cylinder

but displaced 3 cm axially along the tube. With what potential and at what angle

with the axis must an electron directed toward the axis enter the cylinder in order

to pass out through this second hole?

6.18. In a cyclotron a uniform magnetic field is used to cause ions to move in

segments of a circular arc. Every half revolution the ions are subjected to an
accelerating gradient of potential at the gaps of two D-shaped electrodes so that

the radius after each semicircle of motion is greater than before. The accelerat-

ing field is supplied by a r-f voltage impressed upon the two D’s and appears as

an alternating field across the gap. The frequency of the field is regulated so

that the ions cross the gap twice each cycle. If the magnetic-flux density is

10,000 gausses, what must the frequency of the applied voltage be when singly

charged light hydrogen ions are used (atomic weight unity)? If each passage

across the gap increases the energy of the ions by 40,000 volts, how many such

passages are required to produce a 2,000,000-volt particle? What will be the

diameter of the last semicircle of circular motion?

6.19. What will be the final diameter of the path of a 2,000,000-volt heavy
hydrogen ion (atomic weight 2) and what will be the frequency of the applied

voltage for the cyclotron of Prob. 6.18? Assume the same magnetic field and
energy increase per gap passage.

6.20. What will be the final diameter of the path of a 2,000,000-volt argon

ion and what must be the frequency of the voltage producing the accelerating

field for the cyclotron of Prob. 6.18? Assume the same magnetic field and
energy increase per gap passage.

6.21. An electron’s velocity is ar-directed in a region of uniformly directed

electric field of strength 50 volts per cm and uniform z-directed magnetic field of

strength 500 gausses. What must the electron velocity in equivalent volts be
in order that its net deflection is zero?

6.22. An electron is emitted with zero velocity from a plane surface where it
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is subjected to an accelerating gradient of field of strength 50 volts per cm and a

transverse magnetic field of 500 gausses. What is the maximum travel in the

direction of the electric field in the resulting cycloidal path? What is the

velocity at this point of maximum separation from the plane of emission? Where
does the electron again return to the plane of emission? What is the elapsed

time between departure and return to the emission plane?

6.23. Given the field conditions of Prob 6.22, but with an electron injected

with a velocity equivalent to 20 volts normal to the plane. Find the position

and velocity with which the electron again returns to the plane.

6.24. A diode consists of a straight filamentary cathode of radius Tc surrounded

by a concentric circular plate of radius tp. If the plate voltage is low enough,

the magnetic field of the filament current may cause the electrons to curve

strongly enough in their paths so that the tube will be cut off. Derive an expres-

sion for cutoff in such a tube in terms of the plate potential, the filament current,

and the cathode and plate radius.

CHAPTER 7

7.1. Consider an idealized type 210 plane-electrode triode for which

dcj = 0.050 in., dgp = 0.075 in., a = 0.050 in., and = 0.0025 in. Using the

low-mu formulas, calculate and plot potential profiles along lines perpendicular

to the plane electrodes and passing (1) through a grid wire and (2) midway
between grid wires for

. Grid at twice cutoff voltage.

. Grid at cutoff voltage.

c. Grid at half cutoff voltage.

d. Grid at zero potential.

e. Grid positive and at its “natural” potential.

/. Grid positive and at plate potential.

Assume a plate potential of 100 volts.

7.2. Find the diameters of the cathode, grid, and plate cylinders in the

Z-plane equivalent of the W-plane triode representation of the tube whose dimen-

sions are given in Prob. 7.1. Use the transformation of Eq. (7.3).

7.3. A cylindrical-electrode triode has a cathode diameter of 0.020 in. and a

plate diameter of 0.750 in. There are 10 grid wires each of 0.012 in. diameter

arranged to form a squirrel cage of grid wires evenly spaced around a grid-wire

circle of diameter 0.262 in.

o. Calculate the amplification factor of the tube.

6. Calculate the equivalent-diode radius of the tube.

c. Calculate the interelectrode capacities of the active portion of the tube

if this is 1 in. long.

7.4. Calculate and plot potential profiles of the cylindrical-electrode triode

of Prob. 7.3 in planes through the axis and (1) through a grid wire and (2) midway
between grid wires for a plate potential of 100 volts and
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a. Grid at twice cutoff potential.

b. Grid at cutoff potential.

c. Grid negative but at half the cutoff potential.

d. Grid at zero potential.

e. Grid positive at its “natural” potential.

/. Grid at plate potential.

7 .6

.

Find the diameters of the cathode, grid, and plate cylinders in the

.Z-plane equivalent of the triode of Prob. 7.3 if this latter be considered the

IF-plane configuration. Use the transformation of Eq. (7.15).

7.6. A plane-electrode triode has a cathode-grid spacing of 1 mm, a screening

fraction of 0.14, grid-wire diameter of 0.1 mm, and a grid-plate spacing of 2.6 mm.
Determine the amplification factor and the equivalent-diode spacing.

7.7. A cylindrical-electrode triode has the dimensions of the tube of Prob.

7.3 except that there are 14 grid wires evenly spaced around the grid-wire circle,

instead of 10. Calculate the amplification factor and equivalent-diode radius.

7.8. A plane-electrode triode is to have an amplification factor of 10. If the

screening fraction is and there are 50 grid wires per in., specify the grid-wire

radius and the grid-plate spacing.

7 .9 . A plane-electrode triode has a grid-plate spacing of 0.050 in. and a

square mesh grid of 0.005-in.-diameter wire spaced 0.015 in. Find the amplifica-

tion factor of the tube.

7 .10. A cylindrical-electrode triode has a plate radius of 0.500 in. and a grid

consisting of parallel rings of 0.250 in. diameter and of 0.005-in. wire spaced

0.015 in. There are four grid-ring supports of 0.010-in. wire parallel to the axis

of the tube and evenly spaced around the grid. Find the amplification factor

of the tube. Cathode diameter is 0.10 in.

7.11. A cylindrical triode has a cathode diameter of 0.10 in. and a plate diam-

eter of 0.500 in. The grid is a helix of O.Ol-in.-diameter wire wound so that the

largest circular cylinder that can be passed through it is 0.245 in. in diameter.

The helical grid has a pitch of 0.08 in. between turns. There are two support

wires for the grid of 0.025-in. wire parallel to the axis of the tube. Determine
the amplification factor of the tube.

7.12. A plane-electrode triode has a grid-cathode spacing of 8 mils, a grid-

wire spacing of 16 mils, grid-wire radius of 1 mil, and a grid-plate spacing of

20 mils. Determine the variation of amplification factor along the cathode.

What are the maximum, minimum, and ave"rage values of amplification factor

that appear? How do these compare with the values of amplification factor

that assume large cathode-grid spacing?

7 .13. Suggest means of measuring the amplification factor of a triode, given

a current-flow model containing a suitable electrolyte.

7.14. Prove that the amplification factors of two geometrically similar tubes

are equal.

7 .16. From a comparison of Eqs. (7.33) and (7.43) obtain expressions for the

cathode-grid and cathode-plate capacities of the fundamental triode of Fig.

7.1o. From a comparison of Eqs. (7.34) and (7.44) obtain an expression for the

grid-plate capacity.
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7.16. From the results of Prob. 7.15 and the transformation of Eqs. (7.4)

and (7.5) obtain expressions for the intereiectrode capacities of a plane-electrode

triode per unit of area.

7.17. From the results of Prob. 7.15 and the transformation of Eqs. (7.16)

and (7.17) find the intereiectrode capacities of a cylindrical-electrode triode per

unit of axial length of structure.

7.18 . Find the intereiectrode capacities per unit area of the triode of Prob.

7.1.

Consider that the grid and plate exist only on one side of the cathode.

7.19. Calculate the intereiectrode capacities per unit of axial length of the

cylindrical-electrode triode of Prob. 7.7.

7.20 . Calculate the capacity per unit length of a five-wire transmission line

made of wires of 3-mm-diametep wire. Four of the wires are located at the

corners of a square whose dimension is 10 cm on an edge in the cross-sectional

view and are connected together. The other wire is located at the center of the

square and acts as a return wire. From the capacity per meter determine the

characteristic impedance of the line neglecting losses, using the relation that

the characteristic impedance in ohms is the reciprocal of the product of the capac-

ity per unit length in farads per meter and the velocity of propagation in meters

per second.

7.21 . Given a plane-electrode triode with the dimensions of the tube of Prob.

7.1 except that the diameter of the grid wires is twice as large. Calculate the

amplification factor by the formula of Vodges and Elder and by the Ollendorf

second and third approximations, and compare results.

7.22. Given a cylindrical-electrode triode with the dimensions of the tube of

Prob. 7.3 except that the grid wires are twice as large in diameter. Calculate

the amplification factor by the formulas of Vodges and Elder and the Ollendorf

second and third approximations, and compare results.

7.23. Derive the amplification-factor formula given in Fig. 7.19o for the

electrode geometry shown.

7.24. Derive the amplification-factor formula given in Fig. 7.196 for the

electrode geometry shown.

7.26 . Derive the amplification-factor formula given in Fig. 7.19c for the

electrode geometry shown.

7.26 . Derive the amplification-factor formula given in Fig. JAM for the

electrode geometry shown.

CHAPTER 8

8. 1 . In an ideal plane-electrode diode whose emission is space-charge-limited,

the cathode-plate separation is 2 mm, and the potential difference is 100 volts.

Find the transmitted-current density, the space-charge density at the plate, and
the velocity of the electrons arriving at the plate. Find also the power dissipated

per unit area of plate surface and the gradient of potential at the plate.

8.2. What must be the cathode-plate spacing of an ideal plane-electrode diode

in order that the transmitted current per square inch be 250 ma when the poten-

tial difference between cathode and plate is 200 volts?
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8.3. Calculate and plot curves similar to those of Fig. 8.6 for a cylindrical

diode whose ratio of plate to cathode radius is 10.

8.4. Given an ideal cylindrical diode whose cathode diameter is 2 mm and

whose plate radius is 1 cm. Find the transmitted current per centimeter of

axial length for a potential difference of 100 volts. Find also the velocity with

which the electrons arrive at the plate, the space-charge density at the plate, the

gradient of potential at the plate, and the power dissipated per centimeter of

axial length at the plate.

8 .6

.

Find the potential, gradient of potential, electron velocity, and space-

charge density midway between cathode and plate in the diode of Prob. 8.4.

8.6. Solve Prob. 8.4 on the assumption that the outer electrode is the cathode

and the inner electrode is the plate, dimensions and potentials being otherwise

unchanged.

8.7. Calculate and plot curves showing the location and magnitude of the

maximum gradient of potential in a cylindrical diode as a function of the ratio

of plate radius to cathode radius when the inner electrode is the cathode.

8.8. Calculate and plot curves similar to those of Fig. 8.6a but for a cylindrical

diode whose outer electrode is the cathode and whose inner is the plate.

8.9. Given a diode whose electrodes are concentric spheres, the inner being

the cathode and the ratio of diameters being 2 to 1. If the plate diameter is

2 cm, what will be the plate current for a potential difference of 100 volts?

8.10. Solve Prob. 8.9 with the outer electrode considered the cathode and
other conditions unchanged.

8 .11. A plane-electrode triode has the dimensions of the tube of Prob. 7.1.

Calculate the mutual conductance for a plate potential of 100 volts and a grid

potential of half the cutoff value. Determine also the plate current per square

inch under these conditions.

8.12. A plane-electrode triode has a grid-plate spacing of 30 mils. Grid

wires are spaced 15 mils, and the screening fraction is Ko- What must be the

cathode-grid spacing to give a mutual conductance of 5,000 micromhos per

in.^ if the plate voltage is 200 volts and the grid voltage is 1 volt negative?

8.13. Calculate the equivalent-diode spacing of the tube of Prob. 7.1 for a

plate voltage of 100 volts and a grid voltage of 2 volts negative by the formulas

of Eq. (7.53) and Eq. (8.45), and compare results.

8.14. Derive Eqs. (8.49) and (8.50).

8.16

.

From Eq. (8.49) obtain an expressioh for the equivalent-diode radius

of a cylindrical triode. Calculate the equivalent-diode radius of the triode of

Prob. 7.3 by this formula, and compare with the result obtained by using Eq,

(7.58).

8 .16. Calculate the mutual conductance and plate current for the tube of

Prob. 7.3, assuming that the structure is 1 in. long and that the plate potential

is 500 volts while the grid potential is —20 volts.

8.17. It is desired to design a triode for high-power audio service. Assume
an ideal cylindrical structure. Assume that the cathode is to be 2 mm in diam-

eter and the plate to be 1 cm in diameter. The electrode structure is to be 1 cm
in length. What must be the grid dimensions in order that the tube will have ar
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amplification factor of 100 and an average mutual conductance of 5,000 micro-

mhos when the plate potential is 500 volts?

8.18. Given a plane-electrode diode whose cathode is emitting electrons having

an average velocity such that they can overcome a retarding potential of 2 volts.

Let the electrode spacing be 5 mm, and let the current that reaches the plate be

one-tenth of the emitted current. Find the location of the potential minimum

and the magnitude of the plate-current density for a plate 25 volts more positive

than the cathode. Use the relations of Eqs. (8.58) to (8.62).

8.19. The cathode of a plane-electrode diode is oxide-coated and operates at a

temperature of 1000°K. What is the transmitted-current density to a plate at a

potential that is 20 volts positive relative to cathode? Find the location and

magnitude of the potential minimum. Find also the fraction of the emitted

current that is transmitted to the plate.

8.20. A cylindrical diode is 1 in. long and has a plate diameter of 3^ in. and a

tungsten filament whose diameter is 5 mils. Neglecting end effects and initial

velocities of electrons, calculate the plate current when the plate is 20 volts

positive with respect to the negative end of the filament and the direct voltage

drop along the filament is 10 volts. Calculate the plate current when the

filament is excited by an alternating voltage whose rms value is 10 volts and one

end of the filament is grounded. How does this differ from the current resulting

when the filament is heated by alternating current with the same voltage drop

but with the center tap of the exciting transformer grounded?

8.21. Derive Eq. (8.85).

8.22. Carry out the steps leading to Eqs (8.22) to (8.24).

CHAPTER 9

9.1. Three triodes with constants as follows are operated in parallel;

fii
= 10 Gmi — 2,000 micromhos

g 2 = 12 G„2 = 5,000 micromhos

flu
= 30 Gmi = 3,000 micromhos

Calculate the equivalent amplification factor, mutual conductance, and plate

resistance.

9.2. A plane-electrode triode has the following dimensions:

deg = 40 mils r„ = 2 mils

a = 30 mils = 60 mils

Calculate the current-division factor. Calculate the ratio of plate to grid current

when the grid and plate are both positive and the plate potential is five times as

great as the grid potential, assuming that there is negligible secondary emission.

9.3. Estimate the current-division factor of the cylindrical triode having

the dimensions of the tube of Prob. 7.3.

9.4. Calculate and plot contours of constant plate and grid current per square

inch of electrode structure of the triode of Prob. 7.1. Let grid voltage range

from —100 to -t-100 volts. Let plate voltage range from —500 to +500 volts.

Show constant current contours in all four quadrants. Assume that secondary

emission from both grid and plate is negligible.
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CHAPTER 10

10.1. A plane-electrode beam-power tube has the following electrode dimen-

sions:

deg = 20 mils a = 20 mils

dg, = 30 mils r„ = 1 mil

dgp = 70 mils r, = 1 mil

Calculate the amplification factor by the formula of Eq. (10.11). Compare

this value with that obtained from the product of the triode mu’s as explained

in Sec. 10.2.

10.2. In an idealized beam-power tube the density of the current injected

into the screen-grid-plate region is 10 ma per cm^. If the screen grid is at a

potential of 100 volts positive and the plate is at a potential of 10 volts negative,

at what point will the electrons come to rest and reverse direction. The screen-

grid-plate spacing is 1 cm.

10.3. In the beam-power tube of Prob. 10.1 the plate voltage is raised to 10

volts positive. For the same injected-current density determine whether a type

B distribution of potential is possible.

10.4. For the beam-power tube of Prob. 10.1 let the screen-grid potential be

100 volts positive, the plate voltage be 10 volts positive, and the injected-current

density be variable. The potential distribution is of type B. Find the location

of the virtual cathode when the current transmitted to the plate is 0.25, 0.5, and
0.75 of the injected current.

10.6.

A beam-power tube has a screen-grid potential of 300 volts and a plate

potential of 60 volts. The potential distribution is of type C with a potential

minimum of 30 volts. What must be the screen-plate distance for an injected

current of 48.5 ma per cm^?

10.6. A plane-electrode beam-power tube has a screen-grid-plate spacing of

0.5 cm. Screen grid and plate are kept at a potential of 50 volts. Indicate the

position of the potential minimum or virtual cathode as the injected-current

density is increased from zero to 50 ma per cm'' and then reduced to zero again.

10.7. A beam-power tube has its plane screen grid and plate separated a
distance of 0.8 cm. Plot a curve of current density transmitted to the plate

against injected-current density as the injected-current density is increased from
zero to 50 ma per cm'' and reduced to zero again, when the screen grid is at a
potential of 100 volts and the plate is at a jlbtential of 50 volts.

10.8. A plane-electrode beam-power tube has its screen grid and plate

separated a distance of 0.8 cm. Let the screen-grid potential be 100 volts and
the injected-current den.sity be held constant at 10 ma per cm". Plot a curve of

plate current against plate voltage as plate voltage is raised from zero to 100 volts

and then reduced to zero again.

CHAPTER 11

11.1. Derive an expression similar to that of Eq. (11.6) giving the maximum
potential between suppressor-grid wires when the plate potential has the general

value Vp not equal to V 2 . Let V3 = 0.
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11.2. Justify Eq. (11.9) qualitatively.

11.3. An idealized plane-electrode pentode

dimensions:

dc\ = 10 mils fli = 12 mils

dit = 60 mils = 18 mils

^23 = 120 mils Us = 60 mils

dsp = 80 mils

has the following electrode

Ti = 1.5 mils

ri = 1.75 mils

Ts = 2.5 mils

Calculate the ratio of plate to screen-grid current.

11.4.

For the pentode of Prob. 11.3 determine the cathode charge per unit

area and the charge per unit length of each of the grids for the following potential

values

:

Vc = V3 = 0 Vi = —1 volt F2 = 200 volts Vp = 250 volts

11 6. For the pentode of Prob. 11.3 calculate the electrostatic amplification

factors fiip and /X12.

11.6. Assuming that the value of m in Eq. (11.1) is 0.2, calculate the true

amplification factor of the pentode of Prob. 11.3.

11.7. Calculate the mutual conductance of the pentode of Prob. 11.3 for

the electrode potentials of Prob. 11.4 and for an m of 0.2.

11.8. Calculate the plate resistance of the pentode of Prob. 11.3 for the elec-

trode potentials of Prob. 11.4 and an m of 0.2.

11.9. Plot curves similar to those of Fig. 11.12 for the pentode of Prob.

11.3,

assuming values of as of 30 and 90 as well as 60 mils. Plot curves with

If
Vs

as abscissa and as ordinate. Note that the Vmin involved here is

the Vs max of Eq. (11.6).

11.10.

Plot curves similar to those of Fig. 11.13 for the pentode of Prob.

11.3.

Let dsp have a constant value of 200 mils, but plot curves for dsp equal to

40 and 120 as well as 80 mils.
V

Plot curves with -r/ as abscissa and
y 2

F, Fmin

Ts
as ordinate.

11.11. Plot curves similar to those of Fig. 11.18 showing the distribution of

the sidewise component of velocity of electrons scattered by the three grids of the

pentode of Prob. 11.3 operating with the electrode potentials of Prob. 11.4.

11.12. From the results of Prob. 11.11 calculate and plot the plate-voltage-

plate-current characteristic.

CHAPTER 12

12.1. Find the rms voltage and current associated with the thermal-agitation

noise in a 10,000-ohm resistor over a band width of 50,000 cycles.

12.2. What is the available noise power from the resistor of Prob. 12.1?

12.3. What is the noise power available from a 200-ohm resistor over a band

width of 10 me?
12.4. What is the noise power available from a parallel combination of a

resistance of 50,000 ohms at 20°C and a resistance of 100,000 ohms at 200°C over

a band width of 2 me?
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12.5. What is the noise voltage associated with a parallel combination of a

20,000-ohm resistor and a 0.1-microfarad condenser over a band width of 50,000

cycles?

12 .6. The relative power gain of a resistance-capacity coupled amplifier is

given by

G,(J)

where Gp(fm) is the mid-frequency power gain, /i is the low-frequency 70.7 per

cent point, and /a is the high-frequency 70.7 per cent point. What is the equiva-

lent band width from Eq. (12.10)? Assume j- > 100.

12.7. What direct current is required in a diode whose emission is tempera-

ture-limited to give an rms noise current of 20 microamperes over a band width

of 5 me?
12.8. What is the rms noise current in a diode whose emission is space-

charge-limited when the cathode temperature is 1000°K, the band width is 1 me,

and the plate resistance is 10,000 ohms?

12.9. What is the rms noise current in a diode whose emission is space-charge-

limited when the plate current is 10 ma, the plate voltage is 50 volts, and the

band width is 0.5 me?
12.10. What resistance in series with the grid circuit of a triode will produce

as much noise in the plate circuit as does the tube itself if the mutual conductance

is 5,000 micromhos, the amplification factor is 50, the cathode-grid spacing is 12

mils, and the grid-plate spacing is 25 mils?

12.11 . What resistance in series with the grid of a triode will produce as much
noise in the plate circuit as does the gas in a triode when the grid-circuit resistance

is 1 megohm, the plate current is 10 ma, the positive-ion grid current is 0.1 micro-

ampere, and the mutual conductance of the tube is 2,000 micromhos?

12.12. What is the resistance whose noise when placed in series with the grid

of an ideal pentode produces the same effect as does the actual tube when the

mutual conductance is 6,000 micromhos, the plate current is 10 ma, and the

screen current is 2 ma?
12.13. What is the noise figure of a secondary-emission multiplier tube using

six stages of multiplication when the secondary-emission ratio per stage is 5?

12.14. What is the noise figure of an intermediate-frequency amplifier having

a pentode input stage operating from a resistance of 600 ohms over a band

width of 3 me? The mutual conductance of the tube is 7,000 micromhos, the

plate current is 10 ma, and the screen current is 2 ma. If the output impedance

of the first stage is 2,000 ohms and the second tube in the amplifier has the same

characteristics as the first, will it contribute appreciably to the output noise?

What is the over-all noise figure including the effect of the second stage?

12 .15 . Derive an expression for the noise figure of three stages of amplification

in cascade.

12.16. A receiver uses a crystal mixer without r-f preamplification. If the
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crystal conversion gain is 0.6 and its noise temperature is 2.3, what will be the

noise figure of the receiver if the noise figure of the amplifier is 3.12?

CHAPTER 13

13.1. An electron moving with a velocity equivalent to 500 volts crosses a

plane boundary into a region where the potential is uniformly 100 volts less.

If the electron made an angle of 30 deg with the normal to the plane boundary

before crossing it, what angle will it make after? By how much must the

potential on the far side of the plane boundary be less than 500 volts for the same

angle of incidence in order that the electron will just be refiected back?

13.2. Derive a series expansion for potential similar to that of Eq. (13.21)

about a radial line of symmetry dor two-dimensional potential fields expressed

in terms of polar coordinates r and 6. What angle do the equipotential lines

at a saddle point make with the radial line of S3rmmetry in this case?

13.3. What is the radius of curvature of the equipotential line on the axis

of an equal-diameter two-cylinder lens at a distance of one radius from the

cylinder junction when the cylinder spacing is very small?

13.4. An electric lens consists of a circular aperture in a plate between two

parallel plates. Plot the potential along the axis of the lens for the following

potentials and dimensions:

Pi = 10 volts di2 = 3 mm
P2 = 2 volts d2z = 9 mm
V 3 — 50 volts R = 1.5 mm

where the notation is that of Eq. (13.37).

13.6.

What is the focal length of the aperture lens of Prob. 13.4?

13.6. Calculate the two focal lengths and the location of the two principal

planes of an equal-diameter two-cylinder lens for a voltage ratio of 4 to 1 by
the method of linear axial-potential segments.

13.7. Solve Prob. 13.6 by the method of joined circular segments.

13.8. Solve Prob. 13.6 by the method of equivalent thin lenses.

13.9. For the lens of Prob. 13.6 what is the location of the image for an object

located four lens diameters from the cylinder junction on the low-voltage side

of the lens, and what is the corresponding magnification?

13.10. Calculate and plot the P-Q curves for the Hotter lens of Fig. 13.26.

13.11. It is desired to use a lens that will operate with an object distance of

3 cm and an image distance of 25 cm. The voltage ratio to be used is to be 5 to 1

.

If the resulting image is to have as small a size as is practically feasible, what

lens should you use?

13.12. Given a lens with the following constants:

fi= —1.8 mm fi — A. mm
Fi = —2.6 mm = 2.8 mm

Calculate and plot image distance and lateral magnification as a function of object

distance,
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CHAPTER 14

14.1. Derive Eq. (14.26).

14.2. Derive Eq. (14.30).

14.3. Derive Eq. (14.31).

14.4. Derive Eq. (14.57).

14.6. How many ampere turns are required for a magnetic lens that is to

have a focal length of 2 cm when the coil diameter is 3 cm and the beam voltage

is 800 volts? What is the rotation associated with such a lens?

CHAPTER 16

16.1. A cathode gun of the aperture type shown in Fig. 15.5 has the following

dimensions: E = 1 mm, dn = 3 mm, d^z = 6 mm. What is the amplification

factor determining current cutoff?

16.2. What is the radius of the crossover section of the beam of a gun cathode

for which = 2 mm, 6 = 0.1 radian, Vz = 10 volts, and the cathode is coated

with an oxide emitter operating at 1000°K?

16.3. What magnetic-flux density is required to produce a deflection of 2 cm
at a fluorescent screen 20 cm from the deflecting field if the region of uniform

field is 2.5 cm long and the beam voltage is 1,000 volts?

16.4. An electron beam leaves an electron gun converging with a maximum
angle of 5 deg with the axis. The current is uniformly distributed over the beam.
If the total beam current is 1 ma and the beam voltage is 800 volts, where will

the minimum-diameter cross section occur and what will be the value of this

diameter? Assume that the original diameter of the beam is 2 mm. What will

be the diameter of the beam on a screen 25 cm from the electron gun?

16.6. At what angle should a 1-kv beam with a current of 1 ma leave an elec-

tron gun in order that the cross section of minimum diameter will occur on a

screen 25 cm away? Assume that the original diameter of the beam is 2 mm.
16.6. What is the maximum current that can be transmitted in the form of a

beam through a cylinder 2.5 cm long and 0.5 cm in diameter without wasting

any current in the absence of positive-ion neutralization? What is the imped-

ance corresponding to this current? What will be the maximum current if it

is permitted to waste current?

16.7. It is desired to construct a Pierce cathode with a convergent conical

beam. The cathode diameter is to be 1 cm; the initial angle of convergence of the

beam is to be 15 deg after the anode and 50 deg before the anode. What will

be the size of the anode aperture, and what voltage will be required to produce

a current of 500 ma? Indicate the shape of the cathode and anode electrodes

outside the beam.

16.8. Design a Pierce cathode that will pass the maximum current through a
cylinder cm in diameter and 6 cm in length at a voltage of 1,000 volts.

16.9. Design a Pierce cathode that will produce a parallel circular beam in.

in diameter and carrying a total current of 1 ampere at a voltage of 5,000 volts.

16.10. Design a Pierce cathode that Will produce a strip beam 2 mm thick

tind carrying a current of 100 ma per cm’''at a voltage of 600 volts.

16.11. A set of electrostatic-deflection plates for an 800-volt beam is 2 cm
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long with a spacing of cm. At what frequency will the maximum deflection

be reduced to half the d-c value?

16.12. Derive an expression for the static deflection of a two-wire trans-

mission line of wires of diameter d and spacing s. The electrons are shot between

the wires in a direction normal to the plane of the wires. Extend this expression

to include transit-time effects.

16.13. Derive an expression for the spread of a sheet beam resulting from the

mutual electrostatic repulsion between electrons.

16.14. Derive an expression for the spread of a circular beam of electrons

including the effect of the magnetic forces involved.

16.16. At what angle must a beam whose initial diameter is 3 mm leave an

electron gun in order to have the minimum possible diameter at a screen 30 cm
away if the beam current is 0.1 ma and the beam voltage is 1,000 volts? What
is the resultant minimum diameter at the screen?

16.16. Solve problem 15.15 for the case of a beam current of 1 ma, all other

conditions being the same.

CHAPTER 16

16.1. Calculate the inductance of a straight piece of wire 2 in. long and 20 mils

in diameter. What is the reactance of this inductance at 250 me?
16.2. An ultra-high-frequency amplifier has a common grid and plate-circuit

inductance consisting of a lead 1 in. in length and 50 mils in diameter. What is

the compyonent of input conductance due to this at 200 me if the input capacity

is 10 micromicrofarads and the tube conductance is 2,000 micromhos?

16.3. What is the input conductance of a tube due to electron transit-time

effects at a frequency of 100 me if the tube has a mutual conductance of 2,000

micromhos, the cathode-grid spacing is 10 mils, the grid-plate spacing is 50 mils,

the effective voltage of the grid plane is 2 volts, and the plate potential is 100

volts?

16.4. A plane-electrode diode has a plate current of 100 ma at a plate potential

of 50 volts. (Cathode is one-sided, and there is a plate only on the emitting

side.) If the area of the cathode and plate are each 4 cm^, what is the r-f imped-

ance of the diode at a frequency of 400 me?

16.6.

Calculate the components of the equivalent circuit of Fig. 16.13 for

the idealized 210 tube of Prob. 7.1 if the effective cathode and plate area are each

1 in*. Take the plate potential as 100 volts, the grid potential as half the cutoff

value, and the frequency as 200 me.

16.6. WTiat is the effect of voltage-scaling a triode by a factor of 2 in dimen-

sions upon the various operating constants and properties of the tube?

16.7. What is the effect of completely scaling a tube in the direction of higher

frequencies if the tube size is reduced by 2 and the tube is to operate at twice

the frequency?

16.8. Two tubes are geometrically similar except that the smaller is half the

size of the larger. If the smaller is to be used at three times the frequency to

be applied to the larger, how will the tube constants and operating conditions

compare?
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16.9. At what frequency will the efficiency of a triode whose cathode-grid

spacing is 20 mils, whose grid-plate spacing is 100 mils, and whose plate voltage

is 1,600 volts have dropped to 90 per cent of its low-frequency value?

16.10. At what frequency will the efficiency of a triode whose cathode-grid

spacing is 6 mils and whose grid-plate spacing is 30 mils have dropped to 90

per cent of its low-frequency value if the plate voltage is 250 volts?

16.11. What is the frequency at which the tube of Prob. 16.10 would stop

oscillating if the amplification factor of the tube is 20?

16.12. What is the ratio of the grid-plate transit time to the cathode-grid

transit time of the tube of Prob. 16.10 if the effective potential of the grid plane

is 5 volts and the plate potential is 50 volts?

16.13. Obtain equations of motion for electrons in a plane-electrode diode

similar to those of Eq. (16.79) for the case of temperature-limited emission and

bias such that current flows for only 60 deg of the entire cycle.

CHAPTER 17

17.1. What is the skin depth of current penetration in copper at 4,000 me?
What is the corresponding surface resistivity?

17.2. What is the skin depth of current penetration in iron at 3,000 me if the

volume resistivity of the iron is six times that of copper and the permeability is

50? What is the corresponding surface resistivity?

17.3. The energy stored in the field of a cavity that is tuned to 4,500 me
drops by a factor of 10 db in 5 microseconds. What is the Q of the resonator?

17.4. What is the error in the approximate expression for the impedance

of a parallel resonant circuit given by Eq. (17.13) when the value of S is q?

17.6.

What are the equivalent series resistance, inductance, and capacity of a

resonator whose shunt resistance is 100,000 ohms, whose Q is 15,000, and whose

resonant frequency is 2,500 me?
17.6. Derive an expression for the beam coupling coefficient of a parallel

set of fine grids including second-order transit-time effects.

17.7. Obtain an expression for the beam coupling coefficient of a bunching

gap consisting of two equal-diameter cylinders placed end to end without grids.

17.8. Construct a distance-time diagram for electrons bunched by a set of

plane grids. The depth of modulation is 0.15, the beam voltage is 1,000 volts,

and the frequency is 3,000 me. Use at least 18 lines per cycle.

17.9. Repeat Prob. 17.8 for a depth of modulation of 0.30.

17.10. The bunching grids of a klystron amplifier are 2 mm apart. If the

beam voltage is 2,000 volts and the drift space is 2.5 cm long, what must be the

value of the r-f voltage at the bunching grids to produce a maximum fundamental

component of current at the catcher? The operating frequency is 3,000 me.

For the same bunching grids, what must be the magnitude of an exciting voltage

of 300-mc frequency to produce a maximum value of tenth-harmonic current

at the catcher?

17.11. A klystron amplifier has buncher and catcher grids that are fine and

plane and spaced 2 mm apart. The length of the drift space is 2.5 cm. The
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operating frequency is 3,000 me. The beam current is 20 ma at 1,500 volts.

Calculate and plot small-signal transconductance as a function of beam voltage

for the following cases:

a. Emission is space-charge-limited so that beam current is proportional to

the three-halves power of the beam voltage.

b. Beam current is constant as beam voltage is varied.

17.12. What is the theoretical power required to bunch a beam of 30 ma at

300 volts when the bunching gap spacing is 1.5 mm?
17.13. Construct a distance-time diagram for] a reflex-klystron oscillator

whose potential field in the reflector space is linear. Let the time spent by an

unmodulated electron in the reflector space be 2.75 cycles. Let the depth of

modulation be such that maximum power is obtained from the beam. (Con-

struction is simplified if a template of the parabolic curve involved is cut and all

curves are drawn from this.) Use at least 18 lines per cycle.

17.14. Plot the negative of the small-signal admittance spiral of a reflex-

klystron oscillator whose beam conductance is 100 micromhos and whose beam
coupling coefficient is unity. The tube has a resonator whose shunt resistance at

the resonant frequency of 3,500 me is 1,000 ohms and whose Q is 200. Plot

the line showing the locus of resonator admittance as frequency is varied. On
which transit-time mode will oscillations first occur? On which mode will the

power output be maximum? What will be the limiting frequencies of oscillation

on the two lowest modes? What will be the frequency stability in megacycles

per volt at mid-mode for the lowest mode, assuming that cathode and reflector

voltages vary proportionately?

17.16

.

Derive Eq. (17.89).

17.16. Derive Eq. (17.93).

17.17. Discuss qualitatively the factors determining optimum gap spacing

in a reflex-klystron oscillator of the evacuated-cavity type from the standpoint of

maximum output power.

17.18. What is the maximum power that can be obtained from a reflex-

klystron oscillator having a beam current of 15 ma and operating with a beam
voltage of 300 volts, if the gap spacing is 1.5 mm, the resonant frequency is

3,500 me, the unloaded shunt resistance is 1,000 ohms, and the unloaded Q is

300? Consider that the Q and shunt resistance can be reduced by coupling an

external resistive load through a lossless coupling loop. What is the resonator

efficiency for a condition of maximum output power?

17.19. Plot curves similar to those of Fig. 17.48 for k = 0.01, Qi = 100,

0)1 = 0) 2 ,
but with Qi assuming values of 50 and 200 as well as 100.

17.20. What is the frequency stability in kilocycles per volt of a two-resonator

klystron oscillator whose operating frequency is 3,000 me and whose beam voltage

is 1,500 volts if Qa = 250, Qi, = 60, and k = 0.02, the transit angle between

resonators being 87r radians?

17.21 . Derive Eq. (17.134).

17.22. AVhat is the starting current of the tube in Prob. 17.20 if the beam
coupling coeflicient is 0.7 and the mutual reactance between resonators is 50

ohms?
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A

Abbe formula, 741

Absorption of gases, 808

Action, least, principle of, 123

Adsorption of gases, 808

Aluminum, 803

Amplification factor, 128-165

of pentode, 286, 288

of screen-grid tube, 248

of triodes, definition of, 206

high-mu cylindrical-electrode, 151

high-mu plane-electrode, 148

low-mu cylindrical-electrode, 137

low-mu plane-electrode, 128

nonideal, 156

for small cathode-grid spacing, 162

for small grid-plate spacing, 159

for small screening fraction, 160

of tubes in parallel, 212

of unconventional tubes, 165

variation of, 208

Analytic functions, 84

Atomic numbers, 21

tables of, 811-812

Atomic weights, 21

tables of, 811-812

Atoms, 20, 21

Avogadro’s law, 749

B

Barium, 809

Batalum, 809n.

Beam coupling coefficient, 541

Beam-power tube, 9, 245

Bessel function, 71, 553-557, 823

Black-body radiation, 31

Boyle’s law, 749

Bunching of electron beam, 541-556

large-signal effects on, 570

Bunching of electron beam, power re-

quired for, 562

Bunching parameter, 546, 552

C

Camera tubes, 728

Campbell’s formula, 626

Cathode lead inductance, 478

Cathode-ray beam deflection, 101-103,

425-429

electrostatic, 101

magnetic, 425

Cathode-ray tubes, 412-472

description of, 12

form of, 412

photography of traces, 470

postdeflection acceleration in, 428

Cathodes, 413, 449^50
of electron gun, 413

high-efficiency, 449

Pierce, 450

Cauchy-Riemann conditions, 85

Cavity resonators, 529

excitation of, by electrons, 537

Q of, definition of, 534

shunt resistance of, definition of, 535

Ceramics, vacuum, 808

Charles’s law (Gay-Lussac’s), 749

Child-Langmuir space-charge law, 171

fof cylindrical-electrode diode, 173

filament voltage-drop effect on, 189

initial-velocity effect on, 191

for plane-electrode diode, 171

Complex functions, 82

Concentric-line resonator, 591-606

circumferential resonances in, 605

equivalent circuit of, 592

tuning curves for, 594

Conformal transformations, 82-96

Contact potential, 48
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Conversion transconductance, 705

Converter, pentagrid, 714

Copper, 797, 802

Copper-to-glass seals, 797

Coulomb’s law, 69

Coupled circuits, 611

Current, induced by electron motion, 482

ultra-high-frequency space-charge, 496

Current-division factor, 225

Cyclotron frequency, 632

Cylindrical-electrode triode, 135-142, 149-

152

electron paths in, 215

field transformation equation' for, 135

potential contours of, 138

potential profiles in, 139-144

D

De Broglie wave length, 740

Deflection, electron-beam, 101-103, 425-

429

electrostatic, 425

magnetic, 426

ultra-high-frequency, 466

Deflection tubes, 727

Degassing, 808

Diode, 5, 168-200, 495-501

admittance at ultra-high frequency, 501

impedance at ultra-high frequency, 499

ultra-high-frequency current form, 520

Diode characteristics, 5

Directed-ray electron tubes, 724

Disk-seal tubes, 524

Disk seals, 798

Dumet, 797

Dynatron, 718

E

Einstein’s photoelectric equation, 679,

683

Electric flux, definition of, 60

Electric intensity, definition of, 59

Electron, 19, 104, 740

equivalent wave length of, 740

mass of, longitudinal, 104

rest, 19

transverse, 104

radius of, 19

Electron beam, 5, 328-474

bunching of, 541-556, 562, 570

current efficiency of, 439

electric force within, 441

electrodes for conical beam, 456-458,

electrodes for cylindrical beam, 452-

453

impedance for maximum current, 448

intensity efficiency of, 439

magnetic forces within, 441

maximum current through cylinder,

447

maximum current with positive ions,

447

negative ions in, 427

slope of spread of, 465

spot size, space-charge limitation of,

440

thermal limitation of, 440

spread due to space-charge, 441

universal spread chart for, 444, 445

universal spread formula for, 443

Electron charge, 19

Electron gun, 412-425

amplification factor of, 417

cutoff relations in, 415

design of, 414

size of crossover in, 419

unipotential, 451, 455-462

Electron-gun structures, typical, 423, 424

Electron microscope, 738-746

electrostatic, 745

magnetic, 735

resolving power of, 740

stability of, 744

structure of, 734

Electron motion, 97-124

in combined electric and magnetic

fields, 116, 406

in crossed magnetic and alternating

electric fields, 636

in crossed magnetic and radial electric

fields, 642

in crossed static fields, 631

current induced by, 482

cycloidal path, 117, 633

initial velocity at angle with uniform

electric field, 99

in nonuniform magnetic field, 114

relativity effects on, 103
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Electron motion, segments, circular, 122

trochoidal path of, 119, 635

in two-dimensional electric fields, 107

in uniform electric field, 97

in uniform magnetic field. 111

Electron optics, 328-393

Electron paths, 97-124

in beam-power tube, 249

in cylindrical-electrode triodes, 216

determination of, 121-124

circular-segments method, 122

elastic-membrane method, 123

graphical methods, 121

least-action method, 123

numerical methods, 121

helical, in uniform magnetic field, 394

in magnetron, 641

in magnetron with apace charge, 649

in pentode, 283, 291, 292

in photomultiplier tubes, 696

in plane-electrode triodes, 215

Electron-ray indicator tubes, 723

Electron tubes, directed-ray, 724

Electrostatic field, of pentode, 283

of triodes, 125-167

cylindrical-electrode, 138

plane-electrode, 125

Elements, periodic table of, 21, 812

properties of, 811

Emission, 23-57

field, 23, 24

secondary, 48-57

of alkali halides, 55

current ratio, 49

dependence upon angle, 53, 54

of insulators, 56

velocity distribution of, 52-53

transient, 46

types of emitters, 35-42

atomic film, 39-42

thoriated tungsten, 39—41

oxide, 42

pure metal, 35-39

tantalum, 36

tungsten, 35, 37, 38

Emission equation, 30

F

Fermat principle, 328

Fernico, 798, 799

Field emission, 23, 24

Fluorescence, 430

Fluorescent materials, 429-437

and blocking potential, 437

characteristics of, 433

electrical properties of, 434

luminous properties of, 431

make-up of, 430

photographic properties of, 471

and sticking potential, 437

Flux, electric, definition of, 60
Fractionating pumps, 790

G

Gain-band-width law, 482

Gas laws, 749

Gases, absorption of, 808

adsorption of, 808

molecular diameters of, 754

occlusion of, 808

Gauges, McLeod, 760-764

Pirani, 766-770

thermocouple, 770

triode ionization, 770-775

Gay-Lussac’s (Charles’s) law, 749

Getters, 809

Glass, 791-795

composition of, 792, 794

hard, 792

physical properties of, 794

soft, 792

thermal expansion ot, 794, 800

viscosity of, 793

Glass-metal seahng, 796

Glass-mica sealing, 799

Glass-porcelain sealing, 799

Glow-discharge tube, 718

Gradient of potential, 61

Grid current, 2, 8, 237
primary law of, 224

secondary emission, effect of, 234

Grid-input conductance, 479, 492

Grid-input resistance, 494

H

Heil tube, 616

Heptode, 710-716

Hexode, 702-710

Housekeeper seals, 797
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I

Iconoscope, 730-734

operation of, 733

structure of, 731

Image-dissector tube, 729-730

Image iconoscope, 735

Image orthicon, 736

Induced currents, 482-495

in diodes, 483, 486

in triode grid, 487, 489

Insulators, 807

Intensity, electric, definition of, 59

Ionization, 22

by collision, 756

Ionization gauge, 770

Ionization potentials, 690

Ions, 21

Isotopes, 21

K

Klystron amplifier, 556-566

Klystron oscillators, 606-616

condition for oscillation, 610

frequency stability, 615

phase requirements, 614

reflex {see Reflex-klystron oscillators)

starting current, 615

Klystrons, 527-620

beam current, 545

bunching principle for, 527

bunching theory for, 541

cascade amplifier, 564-566

description of, 13

equivalent circuits, 560, 607

Kovar, 798

L

Lagrange’s law, 360

Laplace’s equation, 67-74

curvature interpretation of, 69

difference form of, 72-74

for cylindrical coordinates, 74

for rectangular coordinates, 72

solutions of, 70-72

for cylindrical coordinates, 71

for polar coordinates, 71

for rectangular coordinates, 70

Larmor frequency, 633

Least action, principle of, 123, 330

Lenses, electrostatic electron, 328-393

aberrations in, 387-393

astigmatism, 390

chromatic, 389

coma, 390

curvature of field, 391

distortion of field, 391

spherical, 392

characteristics of, 332-337

calculation of, 360-365

focal length of, 332

of specific lenses, 369-373

focal point of, 332

of specific lenses, 369-373

measurement of, 365-369

P-Q curves, 377-386

equation of, 335, 336, 358

fields of, 337-349

third-order imagery, theory of, 388

types of, 330-336, 350-360

aperture, 345, 354

cylinder, 342-345

Einzel, 386

Hutter, 375-377

thick, 355

thin, 350

magnetic, 394r^ll

aberrations in, 405

of circular turn of wire, 400

electron rotation in, 340

focal length of, 399

Glazer, 401

Lighthouse oscillator, 524

Lighthouse tube, 526

Logarithmic transformation, 87

Luminescence, 430

M

McLeod gauge, 760-764

design chart for, 764

for linear-scale operation, 762

long form of, 761

for quadratic-scale operation, 762

short form of, 761

Magnetic fields with axial symmetry,

396



SUBJECT INDEX 857

Magnetrons, 621-674

angular velocity of electrons in, 644

cutoff relations of, 645

dimensional relations of, 665

electron action in, 639

electron efficiency in, 658

electron paths in, 641, 649

electron reaction with rotating fields,

656

equivalent circuit of, 628

frequency pulling in, 674

mode interference in, 630

optimum dimensions for, 661

output characteristics of, 667

output coupling for, 624

performance chart for, 673

resonant properties of, 625

Rieke diagram of, 672

rising-sun type, 630

space charge in, 648

and strapping, 630

structural form of, 622

tuning of, 631

Manometers, 759

Maxwellian distribution of velocities, 24-

25, 750

Mean free path, of an electron, 755

of a molecule, 753

Mercator projection, 89, 91

Mercury-diffusion pump, 782

Meson, 20

Mesotron, 20

Metal-to-metal seals, 801

Metals, 801-806

lattice constant for, 29

melting temperature of, 29, 804

miscellaneous properties of, 804

radiation efficiencies of, 33, 34

thermal expansion of, 795, 800, 804

vapor pressure of, 804

work function of, 25-29

Mica, 807

Microscope, electron (see Electron Micro-

scope)

Mixer tubes, 705

Molecular diameters, 754

Molecules, 22

Molybdenum, 797, 803

Monoscope, 737

Mosaic, photoelectric, 734

Mutual conductance, 206

of pentodes, 288

of triodes, 188, 189

of tubes in parallel, 212

variation of, 209

N

Negative-resistance devices, 718 -723

feedback circuits, 722

pentode circuit, 720

push-pull circuit, 721

special tubes, 718, 722

Negative-transconductance tubes, 723

Neumann function, 71, 823

Neutrons, 20

Newton’s law, 359

Nickel, 802

Noise, in circuits, 298-305

in resistors, 299

in tubes, 298-327

in diodes, 306, 308

from gas, 312

in mixer tubes, 314

in pentodes, 313

in phototubes, 318

in secondary-electron multipliers,

319

sources of, 305

in triodes, 310

at ultra-high frequency, 316

in velocity-modulation tubes, 317

Noise figure, 321-326

definition of, 321

measurement of, 325

for networks in cascade, 323

Nonex, 792, 794, 795, 797

O

Occluded gases, 808

Octode, 716

Oil-vapor vacuum pumps, 784-791

air-cooled, 788

fractionating, 790

water-cooled, 787

Orthicon, 735

Oscillator, klystron, 606-616
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Oscillator, lighthouse, 526

reflex-klystron, 571-606

triode, 507

P

Pentagrid converter, 714

Pentodes, 266-297

amphfication factor of, 286, 288

current division in, 272

design considerations for, 289

electron paths in, 283, 291, 292, 296

electrostatic field of, 279

plate-current characteristics of, 267

plate resistance in, 288

screen-current characteristics of, 269

transconductance in, 288

Periodic table of the elements, 21, 812

Phosphorescence, 430

Phosphors (see Fluorescent materials)

Photoelectric mosaic, 734

Photoemission, 675-683

dependence of Initial velocity upon

frequency, 679

dependence upon illumination, 678

theory of, 681

Photographic-film sensitivities, 473

Photomultiplier tubes, 694-701

electron paths in, 696

noise in, 697

Photon, 20, 682

Phototubes, 675-700

gas-type, 688

frequency distortion in, 692

general form of, 675

use of, 693

vacuum-type, 685

Pirani gauge, 766-770

Plane-electrode triodes, 125-135, 142-

149

electron paths in, 215

field transformation of, 127

potential contours of, 130, 131

potential profiles of, 132-135

Plate resistance, 207-212

definition of, 207

of tubes in parallel, 212

variation of, 210

Platinum, 796

Poisson’s equation, 67

Polar azimuthal equidistant projection,

89-96

Porcelain, 799, 808

Positron, 20

Potential, 58-124

contours of, radius of curvature for,

341

current-flow models of, 76, 80

definition of, 60

gradient of, 61

membrane models of, 75

profiles of, 70

series expansion for axial, 339

sketching of fields, 80

Power-emission paper, 33

Pressure measurement, 757-775

by McLeod gauge, 760-764

by manometer, 759

by Pirani gauge, 766-770

by spark-discharge tube, 764

by thermocouple gauge, 770

by triode gauge, 770-775

Pressure scales, 748

Principal rays of lenses, 332

Principle of least action, 123, 330

Proton, 20

Pump-oil characteristics, 786

Pumping speed, 775-779

of aperture, 775

definition of, 775

of tubing, 776

Pumps (see Vacuum pumps)

Pyrex, 792-797, 800

Q

Q of cavity resonators, 534

Quantum theory, 682

R

Reflex-klystron oscillators, 571-606

admittance spiral, electronic, 581

band width of modes in, 590

beam admittance for, 577

beam conductance for, 580

blind spots in, 601

broad-band operation of, 591

bunching theory of, 575

distance-time diagram for, 576
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Reflex-klystron oscillators, general form

of, 571

mode plot for, 583, 596

calculation of, 595

ideal, 599

power relations in, 585

reaction with resonant circuit, 583

starting current for, 590

voltage stability of, 591

Resonator, concentric-line, 591-606

RLC circuit, transient response of, 579

S

Scaling, voltage, 506, 667

wave-length, 506, 667

Schottky effect (Schrot effect), 46, 306

Schwartz-Christoffel transformation, 86

Screen-grid tube, 238-245

plate-current characteristics of, 241

screen-current characteristics of, 244

Secondary emission (see Emission, sec-

ondary)

Shot noise (see Schottky effect)

Silicones, 785

Skin effect, 530, 822

Snell’s law, 329

Space-charge effects, 168-200

in cylindrical-electrode diodes, 173-

181

equivalent dielectric constant of, 651

in plane-electrode diode, 168-173

in screen-grid-plate space, 250

Spark-discharge tube, 764

Spot welding, 806

Stefan-Boltzmann law, 31

T

Tantalum, emission of, 36, 803

Television tubes, 728-738

Tetrodes, 238-265

beam-power tube, 245-265

screen-grid tube, 238-245

at ultra-high frequency, 522

Thermocouple pressure gauge, 770

Thoriated-tungsten emission, 39-41

Transconductance {see Mutual conduc-

tance)

Transient emission, 46

Transient response of RLC circuit, 579

Transit time, 195-198

in diodes, 195-198

at ultra-high frequency, 487, 516

in triodes, 514, 520

at ultra-high frequency, 490, 491

with space charge, 515-516

TransiCtime effects, 482-524

in diodes with space charge, 495-501,

516-520

onset in triodes, 490-495

in triodes with space charge, 501-502

Triode ionization gauge, 770

Triode oscillation, 507

Triodes, 201-237

constant-current curves of, 204, 224

current law in cylindrical-electrode, 188

in plane-electrode, 183

effective grid radius tor, 230

equivalent-diode radius for, 155

equivalent-diode spacing for, 153, 187

grid-current characteristics of, 218-237

mutual conductance of cylindrical-

electrode, 189

of plane-electrode, 188

plate-current characteristics of, 201-

218

ultra-high-frequency, 475-522

bunching effects in, 617

current form, 522

electrostatic field of, 125-167

lighthouse, 524

output versus frequency, 508, 509

small-signal transadmittance, 502

transit time, 512, 515

Tube-noise values, 327

Tungsten, 35-38, 796, 800, 803, 805, 807

U

Ultfa-high-frequency effects, 475-526

large-signal effects, 516

limit of triode oscillation, 507

scaling factors for ultra-high-frequency

tubes, 506

on tetrodes, 522

on triode current, 522

on tube output, 475

on tube reactance, 477
Ultra-high-frequency tubes, types of

481
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Unipotential electron gun, 451, 455-462

design chart for, 462

electrode shapes for, 456-458

focal lengths of, 459

general form of, 460

location of focal point, 461

Units, rationalized mks, 58, 817-820

V

Vacuum gauges (see Gauges)

Vacuum pumps, mechanical, 780-781

vapor, 781-791

Vapor pressure, of mercury, 784

of oils, 785

Velocity distribution, Fermi-Dirac, 24

in a gas, 751

Maxwellian, 24-25, 750

Virtual cathode, 191, 194, 253

Voltage scaling, 506, 667

W

Wave-length scaling, 506, 667

Work function, 25, 27, 29, 679, 681

Z

Zirconium, 810


